

Bound impurities in a one-dimensional Bose lattice gas

arXiv:2402.03070

Felipe Isaule

Instituto de Física, PUC

Collaborators:

A. Rojo-Francàs, B. Juliá-Díaz Universitat de Barcelona

Special thanks to J. Martorell

felipeisaule.github.io

Universitat Politècnica de Catalunya

11th July 2024

☑ felipe.isaule@uc.cl

y felipeisaule

We study **two bosonic mobile impurities** interacting with a **bosonic bath** in **one-dimensional optical lattices**.

1. Impurities in ultracold atom gases

2. Model

- 3. Ground-state properties
- 4. Quench dynamics
- 5. Conclusions

1. Impurities in ultracold atom gases

2. Model

- 3. Ground-state properties
- 4. Quench dynamics
- 5. Conclusions

Impurities and quantum mixtures

- The study of **impurities in quantum mediums** has a long history.
- Impurities are usually understood as **dressed quasiparticles** referred to as **polarons**.
- The experimental progress realising ultracold atomic mixtures offer a unique setting to probe impurities.

C. Baroni, G. Lamporesi, and M. Zaccanti, arxiv:2405.14562 (2024).

Impurities are realised with highly-imbalanced mixtures.

Electrons in a ionic crystal. L. Landau and S. Pekar, Zh. Eksp. Teor. Fiz **18**, 419 (1948).

Bose polarons and bipolarons

• **Bose polarons**, impurities immersed in a **BEC** gas, were achieved in landmark experiments in 2016.

N. B. Jørgensen et al., PRL **117**, 055302 (2016). M.-G. Hu et al., PRL **117**, 055301 (2016).

• The study of **two impurities** immersed in a BEC has also received increasing theoretical attention, as they can form bound **bipolarons**.

A. Camacho-Guardian *et al.*, PRL **121**, 013401 (2018).

Ultracold atoms in optical lattices

 Ultracold atoms in optical lattices offer another interesting setting to study many-body physics.
 Gross and I. Bloch, Science 357, 995 (2017).

Phase diagram of the 1D BH model. S. Ejima *et al.*, PRA **85**, 053644 (2012). Bosons in tight optical lattices are described by the Bose-Hubbard model

$$\hat{H} = -t \sum_{\langle i,j \rangle} \left(\hat{a}_i^{\dagger} \hat{a}_j + \text{h.c.} \right) + \frac{U}{2} \sum_i \hat{n}_i \left(\hat{n}_i - 1 \right) \,.$$

t: tunnelling *U*>0: boson-boson interaction

The Bose-Hubbard model shows a **superfluidto-Mott insulator** phase transition.

J. K. Freericks and H. Monien, EPL 26, 545 (1994).

Lattice polarons

- The study of **impurities in optical lattices** has received renewed interest.
- These are often called **lattice polarons**, even though optical lattices do not support phonon excitations.
- Several recent works have studied Bose lattice polarons.
 V. Colussi, C. Menotti C and A. Recati, PRL 130, 173002 (2023).
 M. Santiago-García, S. Castillo-López and A. Camacho-Guardian, NJP 26, 063015 (2024).
 F. Caleffi, M. Capone, I. DeVega and A. Recati, NJP 23, 033018 (2021).
- Lattice polarons in **fermionic mediums** have also been studied.

I. Amelio and N. Goldman, Scipost Physics 16, 056 (2024).

Lattice bipolarons

• **Bipolaron**-like physics in optical lattices with bosonic baths has also attracted significant attention.

M. Pasek and G. Orso, PRB **100**, 245419 (2019). S. Ding, G. A. Domínguez-Castro, A. Julku, A. Camacho-Guardian and G. M. Bruun, SciPost Phys. **14**, 143 (2023).

• Systems with purely **repulsive interactions** can induce the formation of a **bound state between two impurities**.

K. Keiler, S. I. Mistakidis and P. Schmelche, NJP 22, 083003 (2020),

• We study stationary and quench-induced dynamics properties of two mobile impurities interacting with a bosonic bath and immersed in a one-dimensional optical lattice.

1. Impurities in ultracold atom gases

2. Model

- 3. Ground-state properties
- 4. Quench dynamics
- 5. Conclusions

Model

• We consider a two-component Bose-Hubbard Hamiltonian

- We study stationary properties with the exact diagonalisation (ED) method for a fixed number N_σ of particles of each species.
 D. Raventós, T. Graß, M. Lewenstein and B. Juliá-Díaz, JPB 50, 113001 (2017).
- We consider M=6,7,8,9 sites, $N_b=M$ bosons in the bath (unity filling) and $N_I=2$ impurities.

Model

• We consider **periodic boundary conditions** (a ring), which can be achieved in experiment.

L. Amico, A. Osterloh and F. Cataliotti, PRL 95, 063201 (2005).

• It has also become possible to realise systems with a few atoms.

D. Blume, RPP 75, 046401 (2012). Sowiński and M. A. García-March, RPP 82, 104401 (2019).

• The proposed configuration can be produced with highlyimbalanced atomic mixtures.

N. B. Jørgensen et al., PRL 117, 055302 (2016).

1. Impurities in ultracold atom gases

2. Model

3. Ground-state properties

4. Quench dynamics

5. Conclusions

Static limit

 The ground state in the static limit can be examined analytically

$$\hat{H} = \frac{U_{bb}}{2} \sum_{i} \hat{n}_{i,b} (\hat{n}_{i,b} - 1) + U_{bI} \sum_{i} \hat{n}_{i,b} \hat{n}_{i,I}.$$

- The bipolaron energy: $E_{bp} = E(N_I = 2) 2E(N_I = 1) + E(N_I = 0)$. A. Camacho-Guardian *et al.*, PRL **121**, 013401 (2018).
- One obtains:

Static limit

 A negative bipolaron energy suggests the formation of **bound** states.

Bipolaron Energy

• Now we examine mobile systems.

• A negative bipolaron energy suggests the formation of **bound states**.

Average distance between particles

• A small $\langle r_{\prime\prime} \rangle$ signals the formation of a **bound dimer of impurities**.

 r_0 : Average distance between two free bosons.

Average distance between particles

• For large interactions U_{bb} and U_{bl} , the average distance between the bath and the impurities converges to:

$$r_s^* = r_0 + r_{F,0}/M.$$

 $r_{\rm F,0}$: Average distance between two free fermions of the same spin..

 r_0 : Average distance between two free bosons.

Bound impurities

- A large bath-impurity repulsion U_{bl} produces a **phase separation**, inducing the formation of **bound impurities**.
- A Mott-like bath supports the formation of **tightly bound dimers**, while a superfluid-like bath supports **shallow dimers**.

Tunnelling of dimers

• To further characterise the formation of dimers, we examine the **tunnelling correlator**

C. Menotti and S. Stringari, PRA 1, 045604 (2010).

$$C_{t} = \langle \hat{a}_{i,I}^{\dagger} \hat{a}_{i,I}^{\dagger} \hat{a}_{i+1,I} \hat{a}_{i+1,I} \rangle - \langle \hat{a}_{i,I}^{\dagger} \hat{a}_{i+1,I} \rangle^{2}.$$

• Dimers form for $U_{bI} > U_{bb}/2$.

- 1. Impurities in ultracold atom gases
- 2. Model
- 3. Ground-state properties
- 4. Quench dynamics
- 5. Conclusions

Quench-induced dynamics

- We prepare an **initial state** Ψ_0 from the ground state for chosen interactions U_{bb}/J and U_{bI}/U_{bb} .
- We choose a large U_{bI}/U_{bb} so a **dimer is formed**.
- We perform sudden **quenches** at t=0 to a lower value of U_{bb}/J or U_{bI}/U_{bb} .
- We follow the time evolution by numerical exponentiation

$$|\Psi(t)\rangle = e^{i\hat{H}t}|\Psi(t=0)\rangle.$$

• We consider lattices with M=7.

Overlaps: Quench in U_{bI}

- The system shows **collapses** and **revivals** of the dimer states.
- The periods reach a maximum around the interaction when $C_t=0$.

Overlaps: Quench in U_{bb}

- The system shows **collapses** and **revivals** of the dimer states.
- The periods reach a maximum around the superfluid-Mott transition region.

Fourier Analysis: Quench in U_{bI}

• The oscillations are driven by phase-separated excitations.

- 1. Impurities in ultracold atom gases
- 2. Model
- 3. Ground-state properties
- 4. Quench dynamics
- 5. Conclusions

Conclusions

- We have studied **stationary properties** and **quench-induced dynamics** of two impurities immersed in a 1D Bose lattice gas.
- We have characterised the formation of **bound dimers of impurities**.
- We revealed an intriguing onset of **collapses and revivals** after a quench of the interactions.
- We found that the **oscillations** are driven by **phase-separated excitations**.
- Future work:
 - Consider fermionic baths.
 - Study Rabi (driven) impurities.
 - Employ other theoretical techniques.

Conferences en Chile

QUANTUM OPTICS22

December 9 to 13

https://www.miroptics.cl/quantum-optics-2024-chile/

3rd Workshop on Molecular Quantum Technology - MQT 2024

December 16 to 20 https://mqt2024.org/

Puerto Varas

Thank you!

Agencia Nacional de Investigación y Desarrollo Ministerio de Ciencia, Tecnología, Conocimiento e Innovación

Bipolaron Energy

• Now we examine mobile systems.

 A negative bipolaron energy suggests the formation of **bound** states.

Average distances: Quench in U_{bI}

