{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "import glob, os, re, json, pickle\n",
    "import pandas as pd\n",
    "from classifier import *\n",
    "from sklearn.metrics import classification_report\n",
    "from sklearn.model_selection import train_test_split\n",
    "\n",
    "pd.set_option('display.max_colwidth', -1)\n",
    "pd.set_option('display.max_rows', 200)\n",
    "pd.set_option('display.max_columns', 200)\n",
    "\n",
    "%reload_ext autoreload\n",
    "%autoreload 2"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Human labeled data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>text</th>\n",
       "      <th>manifestolabel_true</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>46</th>\n",
       "      <td>„Die Digitalisierung der Verwaltung schleift einfach. Keine Verwaltung ist wirklich digital, was auch daran liegt, dass es den Verwaltungen freigestellt wird.“ @AnnaVTreuenfels</td>\n",
       "      <td>infrastructure +</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>723</th>\n",
       "      <td>Brütende Rotmilane wegen Windkraft erschossen? - es geht bei Energiewende und Klimaschutz nicht um die Umwelt, sondern um Geld und Macht. Wir brauchen Naturschutz statt linker Ideologie!</td>\n",
       "      <td>environmentalism +</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>927</th>\n",
       "      <td>„Das C in #CDU steht nicht für Christenclub\" - @SerapGueler über unsere #Heimat und unsere Partei. „warum falsch mit den Morden in #Hanau umgeht, welche die Fehler der @CDU bei #Migranten gemacht hat und weshalb @ArminLaschet #Kanzler werden sollte“</td>\n",
       "      <td>multiculturalism +</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>93</th>\n",
       "      <td>Wie ein Post-#Corona-#Konjunkturprogramm den #Klimaschutz mitdenkt: Förderung energetische Gebäudesanierung + klimafreundliches Heizen Senkung #EEG-Umlage #Verkehrswende in Gang setzen Investition in zukunftssichere Industrieanlagen Energiewende europäisch denken</td>\n",
       "      <td>environmentalism +</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>280</th>\n",
       "      <td>Waschmaschinen von Männer für Frauen gemacht. Schon mal im Flusensieb rumgepfriemelt, Männers?</td>\n",
       "      <td>ignored</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>341</th>\n",
       "      <td>Spoiler: Wenn Corona die Menschheit ausrottet ist der #Klimawandel besiegt. Traurig dass ein Virus mehr für den #Klimaschutz tut als die Bundesregierung.</td>\n",
       "      <td>environmentalism +</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>31</th>\n",
       "      <td>Ich mag die vielen Frauen in diesen Führungspositionen. Spiegelt gerecht den Anteil der Frauen in den sozialen Berufen wider. Perfekt.</td>\n",
       "      <td>social justice +</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>98</th>\n",
       "      <td>Wenn du in das Reich Gottes eintreten willst ... Sie müssen zur Gerechtigkeit des Messias zurückkehren ... Und Dies wird erreicht, indem die wahre Errettung Christi Jesus angenommen wird. #HeavenlyFocusedChristian</td>\n",
       "      <td>traditional morality +</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>830</th>\n",
       "      <td>Ich* bin von Natur aus rebellisch. *putzt Holztisch mit Glasreiniger</td>\n",
       "      <td>ignored</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>546</th>\n",
       "      <td>In der #Corona-Pandemie haben ohnehin miserable Arbeitsbedingungen in #Schlachthöfe​n schwere Konsequenzen. Gesundheit geht vor Profitinteressen. Deshalb besserer #Arbeitsschutz häufigere Kontrolle der Betriebe Arbeitskräfte über Arbeitnehmerrechte informieren</td>\n",
       "      <td>labour +</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>499</th>\n",
       "      <td>Juten Morjen allerseits Neue Woche &amp;amp; viel Arbeit</td>\n",
       "      <td>ignored</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>86</th>\n",
       "      <td>Unser Regierungsrat @MartinNeukom stellt die Weichen für die fossil-freie Beheizung der Gebäude im Kanton Zürich. Mit der Teilrevision des Energiegesetzes will Neukom klar in Richtung null CO2-Emissionen. Ein ganz wichtiger Schritt für den Klimaschutz. http://bit.ly/2zmzR9Q</td>\n",
       "      <td>environmentalism +</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>665</th>\n",
       "      <td>Er hat versucht eine Sache zu sagen aber hat eigentlich was viel besseres damit gesagt</td>\n",
       "      <td>social justice +</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>392</th>\n",
       "      <td>Wer die @mopo stilllegt, schwächt die Demokratie. Wir brauchen Journalisten, die politische Zusammenhänge und Entscheidungen erklären und unabhängig sowie kritisch einordnen. Das ganze Statement: #RettetdieMopo</td>\n",
       "      <td>democracy +</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>110</th>\n",
       "      <td>Wir leben für die Freiheit, wir arbeiten an der Freiheit und wir kämpfen für die Freiheit! Danke @KonstantinKuhle und @johannesvogel für diesen Artikel</td>\n",
       "      <td>freedom/human rights +</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>154</th>\n",
       "      <td>Das liegt doch an uns! So wie Deutschland jetzt aussieht, gehört die CDU/CSU 30 Jahre in die Opposition. Wenn wir die Altparteien erneut wählen, glaubt man da tatsächlich an eine Verbesserung der Politik? Lassen wir doch mal die anderen ran! Jedem seine Chance. ...</td>\n",
       "      <td>political authority +</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>602</th>\n",
       "      <td>Was ist die Position der SPD? Warum hat die SPD den Grünen-Antrag abgelehnt? @EskenSaskia fasst das ganz gut zusammen.</td>\n",
       "      <td>national way of life -</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>692</th>\n",
       "      <td>Gerade jetzt wäre die Stunde für Europa. Ein Europa, das in Anbetracht einer globalen Krise zusammen arbeitet. Ein Europa der Solidarität, gerade mit den Ländern, die die Krise am härtesten trifft. Ein Europa, das niemand zurück lässt. #LeaveNoOneBehind</td>\n",
       "      <td>europe +</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>634</th>\n",
       "      <td>#NieMehrCDU daran ändert sich auch nach wie vor nichts. Ja, sie handhabt die Krise aktuell gut. Aber das erwarte ich von einer Regierung, egal welche Partei diese bildet. Bei nie mehr cdu geht es darum, dass Deutschland die Digitalisierung verschlafen hat. Umweltschutz nicht</td>\n",
       "      <td>infrastructure +</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>691</th>\n",
       "      <td>#Klimaschutz kam 2019 durch CO2-Preis und weniger Kohlekraftwerke ETWAS (zu wenig) voran, Gebäude &amp;amp; Mobilität bleiben Sorgenkinder. 2020 wird vermutlich #Corona die Einhaltung des Pariser Klimaabkommens ermöglichen. Soeben Vorstellung der #Klimabilanz durch @SvenjaSchulze68 @bmu</td>\n",
       "      <td>environmentalism +</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                                                                                                                                                                                                                                                                                            text  \\\n",
       "46   „Die Digitalisierung der Verwaltung schleift einfach. Keine Verwaltung ist wirklich digital, was auch daran liegt, dass es den Verwaltungen freigestellt wird.“ @AnnaVTreuenfels                                                                                                              \n",
       "723  Brütende Rotmilane wegen Windkraft erschossen? - es geht bei Energiewende und Klimaschutz nicht um die Umwelt, sondern um Geld und Macht. Wir brauchen Naturschutz statt linker Ideologie!                                                                                                    \n",
       "927  „Das C in #CDU steht nicht für Christenclub\" - @SerapGueler über unsere #Heimat und unsere Partei. „warum falsch mit den Morden in #Hanau umgeht, welche die Fehler der @CDU bei #Migranten gemacht hat und weshalb @ArminLaschet #Kanzler werden sollte“                                     \n",
       "93   Wie ein Post-#Corona-#Konjunkturprogramm den #Klimaschutz mitdenkt: Förderung energetische Gebäudesanierung + klimafreundliches Heizen Senkung #EEG-Umlage #Verkehrswende in Gang setzen Investition in zukunftssichere Industrieanlagen Energiewende europäisch denken                       \n",
       "280  Waschmaschinen von Männer für Frauen gemacht. Schon mal im Flusensieb rumgepfriemelt, Männers?                                                                                                                                                                                                \n",
       "341  Spoiler: Wenn Corona die Menschheit ausrottet ist der #Klimawandel besiegt. Traurig dass ein Virus mehr für den #Klimaschutz tut als die Bundesregierung.                                                                                                                                     \n",
       "31   Ich mag die vielen Frauen in diesen Führungspositionen. Spiegelt gerecht den Anteil der Frauen in den sozialen Berufen wider. Perfekt.                                                                                                                                                        \n",
       "98   Wenn du in das Reich Gottes eintreten willst ... Sie müssen zur Gerechtigkeit des Messias zurückkehren ... Und Dies wird erreicht, indem die wahre Errettung Christi Jesus angenommen wird. #HeavenlyFocusedChristian                                                                         \n",
       "830  Ich* bin von Natur aus rebellisch. *putzt Holztisch mit Glasreiniger                                                                                                                                                                                                                          \n",
       "546  In der #Corona-Pandemie haben ohnehin miserable Arbeitsbedingungen in #Schlachthöfe​n schwere Konsequenzen. Gesundheit geht vor Profitinteressen. Deshalb besserer #Arbeitsschutz häufigere Kontrolle der Betriebe Arbeitskräfte über Arbeitnehmerrechte informieren                          \n",
       "499  Juten Morjen allerseits Neue Woche &amp; viel Arbeit                                                                                                                                                                                                                                          \n",
       "86   Unser Regierungsrat @MartinNeukom stellt die Weichen für die fossil-freie Beheizung der Gebäude im Kanton Zürich. Mit der Teilrevision des Energiegesetzes will Neukom klar in Richtung null CO2-Emissionen. Ein ganz wichtiger Schritt für den Klimaschutz. http://bit.ly/2zmzR9Q            \n",
       "665  Er hat versucht eine Sache zu sagen aber hat eigentlich was viel besseres damit gesagt                                                                                                                                                                                                        \n",
       "392  Wer die @mopo stilllegt, schwächt die Demokratie. Wir brauchen Journalisten, die politische Zusammenhänge und Entscheidungen erklären und unabhängig sowie kritisch einordnen. Das ganze Statement: #RettetdieMopo                                                                            \n",
       "110  Wir leben für die Freiheit, wir arbeiten an der Freiheit und wir kämpfen für die Freiheit! Danke @KonstantinKuhle und @johannesvogel für diesen Artikel                                                                                                                                       \n",
       "154  Das liegt doch an uns! So wie Deutschland jetzt aussieht, gehört die CDU/CSU 30 Jahre in die Opposition. Wenn wir die Altparteien erneut wählen, glaubt man da tatsächlich an eine Verbesserung der Politik? Lassen wir doch mal die anderen ran! Jedem seine Chance. ...                     \n",
       "602  Was ist die Position der SPD? Warum hat die SPD den Grünen-Antrag abgelehnt? @EskenSaskia fasst das ganz gut zusammen.                                                                                                                                                                        \n",
       "692  Gerade jetzt wäre die Stunde für Europa. Ein Europa, das in Anbetracht einer globalen Krise zusammen arbeitet. Ein Europa der Solidarität, gerade mit den Ländern, die die Krise am härtesten trifft. Ein Europa, das niemand zurück lässt. #LeaveNoOneBehind                                 \n",
       "634  #NieMehrCDU daran ändert sich auch nach wie vor nichts. Ja, sie handhabt die Krise aktuell gut. Aber das erwarte ich von einer Regierung, egal welche Partei diese bildet. Bei nie mehr cdu geht es darum, dass Deutschland die Digitalisierung verschlafen hat. Umweltschutz nicht           \n",
       "691  #Klimaschutz kam 2019 durch CO2-Preis und weniger Kohlekraftwerke ETWAS (zu wenig) voran, Gebäude &amp; Mobilität bleiben Sorgenkinder. 2020 wird vermutlich #Corona die Einhaltung des Pariser Klimaabkommens ermöglichen. Soeben Vorstellung der #Klimabilanz durch @SvenjaSchulze68 @bmu   \n",
       "\n",
       "        manifestolabel_true  \n",
       "46   infrastructure +        \n",
       "723  environmentalism +      \n",
       "927  multiculturalism +      \n",
       "93   environmentalism +      \n",
       "280  ignored                 \n",
       "341  environmentalism +      \n",
       "31   social justice +        \n",
       "98   traditional morality +  \n",
       "830  ignored                 \n",
       "546  labour +                \n",
       "499  ignored                 \n",
       "86   environmentalism +      \n",
       "665  social justice +        \n",
       "392  democracy +             \n",
       "110  freedom/human rights +  \n",
       "154  political authority +   \n",
       "602  national way of life -  \n",
       "692  europe +                \n",
       "634  infrastructure +        \n",
       "691  environmentalism +      "
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df_human = pd.read_json('human_labeled_data.json')\n",
    "df_human['text'] = df_human['text_data'].str.replace('https[^\\s]*\\s', '')\n",
    "df_human['manifestolabel_true'] = df_human['major_label'].str.replace('\\d\\d\\d ','')\n",
    "# df_human['manifestolabel_true'] = df_human['manifestolabel_true'].replace('ignored','undefined')\n",
    "df_human = df_human.drop(['text_data','labeled','major_label','selected','taught','labels','users','uncertainty','text_id','predicted_label'],axis=1)\n",
    "# df_human.to_json('human_labeled_anonymized.json',orient='records')\n",
    "df_human.sample(n=20)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "ignored                   175\n",
       "environmentalism +        156\n",
       "political authority +     130\n",
       "democracy +               112\n",
       "social justice +          79 \n",
       "freedom/human rights +    49 \n",
       "education +               43 \n",
       "infrastructure +          36 \n",
       "welfare +                 34 \n",
       "europe +                  19 \n",
       "culture +                 17 \n",
       "anti-growth economy +     16 \n",
       "agriculture +             12 \n",
       "free enterprise +         12 \n",
       "national way of life +    11 \n",
       "social harmony +          9  \n",
       "labour +                  9  \n",
       "law and order +           7  \n",
       "market regulation +       7  \n",
       "multiculturalism +        7  \n",
       "military +                7  \n",
       "productivity +            7  \n",
       "traditional morality +    6  \n",
       "europe -                  5  \n",
       "multiculturalism -        5  \n",
       "national way of life -    5  \n",
       "non economic groups +     4  \n",
       "traditional morality -    4  \n",
       "internationalism +        3  \n",
       "foreign special +         3  \n",
       "nationalization +         3  \n",
       "political corruption -    2  \n",
       "military -                2  \n",
       "controlled economy +      2  \n",
       "education -               2  \n",
       "peace +                   2  \n",
       "gov-admin efficiency +    2  \n",
       "incentives +              2  \n",
       "marxist analysis +        1  \n",
       "constitution +            1  \n",
       "economic goals            1  \n",
       "constitution -            1  \n",
       "centralism +              1  \n",
       "Name: manifestolabel_true, dtype: int64"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df_human['manifestolabel_true'].value_counts()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Classification performance on tweets\n",
    "\n",
    "* we want to predict manifesto codes on tweets well\n",
    "* but we only have few tweets labeled\n",
    "* we'd like to use as much training data as possible\n",
    "* but we don't want to degrade manifesto-prediction performance on tweets by adding irrelevant manifesto training data. \n",
    "\n",
    "$\\rightarrow$ How many manifesto training data should be have in our training set to achieve high tweet classification performance?\n",
    "\n",
    "$\\Rightarrow$ **Crossvalidation with blending in manifesto data**:\n",
    "* We start with 0 manifesto data and all labeled tweets and add manifesto data\n",
    "* We evaluate on held-out tweet data "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    2.1s remaining:    2.1s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    2.1s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=0\n",
      "\n",
      "                       precision    recall  f1-score     support\n",
      "culture +              0.750000   0.750000  0.750000  4.000000  \n",
      "democracy +            0.846154   0.846154  0.846154  26.000000 \n",
      "education +            0.636364   0.777778  0.700000  9.000000  \n",
      "environmentalism +     0.846154   0.846154  0.846154  26.000000 \n",
      "europe +               1.000000   1.000000  1.000000  6.000000  \n",
      "ignored                0.760000   0.542857  0.633333  35.000000 \n",
      "infrastructure +       0.500000   0.166667  0.250000  6.000000  \n",
      "political authority +  0.814815   0.687500  0.745763  32.000000 \n",
      "social justice +       0.833333   0.833333  0.833333  12.000000 \n",
      "accuracy               0.551724   0.551724  0.551724  0.551724  \n",
      "macro avg              0.249529   0.230373  0.235883  203.000000\n",
      "weighted avg           0.612815   0.551724  0.575523  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.3s remaining:    0.3s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.9s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=0\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "democracy +             0.931034   0.843750  0.885246  32.000000 \n",
      "education +             0.750000   1.000000  0.857143  6.000000  \n",
      "environmentalism +      0.818182   0.600000  0.692308  30.000000 \n",
      "europe +                0.666667   0.666667  0.666667  3.000000  \n",
      "freedom/human rights +  0.555556   0.500000  0.526316  10.000000 \n",
      "ignored                 0.600000   0.264706  0.367347  34.000000 \n",
      "political authority +   0.589744   0.741935  0.657143  31.000000 \n",
      "social justice +        0.833333   0.909091  0.869565  11.000000 \n",
      "welfare +               1.000000   0.166667  0.285714  6.000000  \n",
      "accuracy                0.497537   0.497537  0.497537  0.497537  \n",
      "macro avg               0.217565   0.183639  0.187337  203.000000\n",
      "weighted avg            0.592329   0.497537  0.520413  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.3s remaining:    0.3s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.3s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=0\n",
      "\n",
      "                       precision    recall  f1-score     support\n",
      "democracy +            0.869565   0.869565  0.869565  23.000000 \n",
      "education +            0.750000   0.545455  0.631579  11.000000 \n",
      "environmentalism +     0.875000   0.700000  0.777778  40.000000 \n",
      "ignored                0.608696   0.560000  0.583333  25.000000 \n",
      "infrastructure +       0.666667   0.400000  0.500000  5.000000  \n",
      "political authority +  0.666667   0.952381  0.784314  21.000000 \n",
      "social justice +       1.000000   0.583333  0.736842  12.000000 \n",
      "accuracy               0.477833   0.477833  0.477833  0.477833  \n",
      "macro avg              0.169894   0.144085  0.152607  203.000000\n",
      "weighted avg           0.531038   0.477833  0.494850  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.2s remaining:    0.2s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.3s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=0\n",
      "\n",
      "                        precision    recall  f1-score    support\n",
      "culture +               1.000000   0.500000  0.666667  6.00000  \n",
      "democracy +             0.777778   0.736842  0.756757  19.00000 \n",
      "education +             1.000000   0.692308  0.818182  13.00000 \n",
      "environmentalism +      0.805556   0.805556  0.805556  36.00000 \n",
      "europe +                0.500000   0.500000  0.500000  6.00000  \n",
      "freedom/human rights +  0.428571   0.375000  0.400000  8.00000  \n",
      "ignored                 0.500000   0.225806  0.311111  31.00000 \n",
      "infrastructure +        1.000000   0.400000  0.571429  5.00000  \n",
      "political authority +   0.586207   0.772727  0.666667  22.00000 \n",
      "social justice +        0.777778   0.500000  0.608696  14.00000 \n",
      "welfare +               1.000000   0.166667  0.285714  6.00000  \n",
      "accuracy                0.467980   0.467980  0.467980  0.46798  \n",
      "macro avg               0.261747   0.177341  0.199712  203.00000\n",
      "weighted avg            0.588630   0.467980  0.500586  203.00000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.2s remaining:    0.2s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.3s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=0\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "culture +               1.000000   0.500000  0.666667  6.000000  \n",
      "democracy +             0.888889   0.800000  0.842105  20.000000 \n",
      "education +             0.700000   0.777778  0.736842  9.000000  \n",
      "environmentalism +      0.827586   0.750000  0.786885  32.000000 \n",
      "freedom/human rights +  1.000000   0.384615  0.555556  13.000000 \n",
      "ignored                 0.600000   0.500000  0.545455  30.000000 \n",
      "political authority +   0.750000   0.782609  0.765957  23.000000 \n",
      "social justice +        0.764706   0.866667  0.812500  15.000000 \n",
      "accuracy                0.497537   0.497537  0.497537  0.497537  \n",
      "macro avg               0.217706   0.178722  0.190399  203.000000\n",
      "weighted avg            0.572813   0.497537  0.522386  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.2s remaining:    0.2s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.3s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=0\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "culture +               1.000000   0.666667  0.800000  3.000000  \n",
      "democracy +             0.800000   0.666667  0.727273  24.000000 \n",
      "education +             0.444444   0.666667  0.533333  6.000000  \n",
      "environmentalism +      0.694444   0.862069  0.769231  29.000000 \n",
      "europe +                0.400000   0.666667  0.500000  3.000000  \n",
      "freedom/human rights +  0.800000   0.266667  0.400000  15.000000 \n",
      "ignored                 0.933333   0.437500  0.595745  32.000000 \n",
      "infrastructure +        0.500000   0.166667  0.250000  6.000000  \n",
      "political authority +   0.534884   0.851852  0.657143  27.000000 \n",
      "social justice +        0.900000   0.500000  0.642857  18.000000 \n",
      "welfare +               1.000000   0.166667  0.285714  12.000000 \n",
      "accuracy                0.502463   0.502463  0.502463  0.502463  \n",
      "macro avg               0.276107   0.204072  0.212458  203.000000\n",
      "weighted avg            0.658690   0.502463  0.523000  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.2s remaining:    0.2s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.3s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=0\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "democracy +             0.875000   0.736842  0.800000  19.000000 \n",
      "education +             0.428571   0.750000  0.545455  4.000000  \n",
      "environmentalism +      0.814815   0.666667  0.733333  33.000000 \n",
      "freedom/human rights +  0.818182   0.900000  0.857143  10.000000 \n",
      "ignored                 0.739130   0.459459  0.566667  37.000000 \n",
      "infrastructure +        0.750000   0.375000  0.500000  8.000000  \n",
      "political authority +   0.571429   0.714286  0.634921  28.000000 \n",
      "social justice +        0.722222   0.764706  0.742857  17.000000 \n",
      "welfare +               1.000000   0.250000  0.400000  8.000000  \n",
      "accuracy                0.507389   0.507389  0.507389  0.507389  \n",
      "macro avg               0.191981   0.160485  0.165154  203.000000\n",
      "weighted avg            0.606087   0.507389  0.535597  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.2s remaining:    0.2s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.3s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=0\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "culture +               1.000000   0.500000  0.666667  2.000000  \n",
      "democracy +             0.826087   0.760000  0.791667  25.000000 \n",
      "education +             0.428571   0.750000  0.545455  4.000000  \n",
      "environmentalism +      0.852941   0.783784  0.816901  37.000000 \n",
      "freedom/human rights +  0.444444   0.666667  0.533333  6.000000  \n",
      "ignored                 0.695652   0.470588  0.561404  34.000000 \n",
      "infrastructure +        1.000000   0.600000  0.750000  5.000000  \n",
      "political authority +   0.657143   0.718750  0.686567  32.000000 \n",
      "social justice +        0.666667   0.571429  0.615385  14.000000 \n",
      "welfare +               1.000000   0.375000  0.545455  8.000000  \n",
      "accuracy                0.536946   0.536946  0.536946  0.536946  \n",
      "macro avg               0.252384   0.206541  0.217094  203.000000\n",
      "weighted avg            0.618749   0.536946  0.564133  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.2s remaining:    0.2s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.3s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=0\n",
      "\n",
      "                       precision    recall  f1-score     support\n",
      "culture +              1.000000   0.714286  0.833333  7.000000  \n",
      "democracy +            0.952381   0.952381  0.952381  21.000000 \n",
      "education +            0.500000   0.500000  0.500000  10.000000 \n",
      "environmentalism +     0.812500   0.722222  0.764706  36.000000 \n",
      "ignored                0.772727   0.425000  0.548387  40.000000 \n",
      "law and order +        0.333333   1.000000  0.500000  1.000000  \n",
      "political authority +  0.583333   0.777778  0.666667  18.000000 \n",
      "social justice +       0.842105   0.727273  0.780488  22.000000 \n",
      "accuracy               0.512315   0.512315  0.512315  0.512315  \n",
      "macro avg              0.186980   0.187708  0.178902  203.000000\n",
      "weighted avg           0.598614   0.512315  0.541719  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.2s remaining:    0.2s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.3s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=0\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "culture +               0.833333   1.000000  0.909091  5.000000  \n",
      "democracy +             0.894737   0.809524  0.850000  21.000000 \n",
      "education +             0.750000   1.000000  0.857143  9.000000  \n",
      "environmentalism +      0.714286   0.869565  0.784314  23.000000 \n",
      "europe +                0.428571   1.000000  0.600000  3.000000  \n",
      "freedom/human rights +  0.714286   0.625000  0.666667  8.000000  \n",
      "ignored                 0.937500   0.348837  0.508475  43.000000 \n",
      "infrastructure +        0.500000   0.166667  0.250000  6.000000  \n",
      "political authority +   0.540541   0.869565  0.666667  23.000000 \n",
      "social justice +        0.722222   0.812500  0.764706  16.000000 \n",
      "welfare +               0.666667   0.285714  0.400000  7.000000  \n",
      "accuracy                0.541872   0.541872  0.541872  0.541872  \n",
      "macro avg               0.248456   0.251206  0.234099  203.000000\n",
      "weighted avg            0.616265   0.541872  0.537021  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.2s remaining:    0.2s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.3s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=100\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "agriculture +           0.500000   1.000000  0.666667  2.000000  \n",
      "culture +               1.000000   0.500000  0.666667  2.000000  \n",
      "democracy +             0.800000   0.842105  0.820513  19.000000 \n",
      "environmentalism +      0.904762   0.633333  0.745098  30.000000 \n",
      "europe +                0.555556   0.833333  0.666667  6.000000  \n",
      "freedom/human rights +  0.600000   0.272727  0.375000  11.000000 \n",
      "ignored                 0.684211   0.361111  0.472727  36.000000 \n",
      "infrastructure +        0.600000   0.333333  0.428571  9.000000  \n",
      "political authority +   0.617647   0.700000  0.656250  30.000000 \n",
      "social justice +        0.750000   0.562500  0.642857  16.000000 \n",
      "accuracy                0.453202   0.453202  0.453202  0.453202  \n",
      "macro avg               0.241799   0.208222  0.211759  203.000000\n",
      "weighted avg            0.570627   0.453202  0.490556  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.3s remaining:    0.3s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.3s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=100\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "democracy +             0.933333   0.608696  0.736842  23.000000 \n",
      "education +             0.333333   0.428571  0.375000  7.000000  \n",
      "environmentalism +      0.896552   0.666667  0.764706  39.000000 \n",
      "freedom/human rights +  0.500000   0.285714  0.363636  7.000000  \n",
      "ignored                 0.705882   0.387097  0.500000  31.000000 \n",
      "law and order +         1.000000   1.000000  1.000000  1.000000  \n",
      "political authority +   0.583333   0.807692  0.677419  26.000000 \n",
      "social justice +        0.785714   0.523810  0.628571  21.000000 \n",
      "welfare +               1.000000   0.250000  0.400000  8.000000  \n",
      "accuracy                0.453202   0.453202  0.453202  0.453202  \n",
      "macro avg               0.232350   0.170974  0.187799  203.000000\n",
      "weighted avg            0.614850   0.453202  0.504701  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.2s remaining:    0.2s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.3s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=100\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "culture +               1.000000   0.285714  0.444444  7.000000  \n",
      "democracy +             0.666667   0.777778  0.717949  18.000000 \n",
      "education +             0.750000   0.900000  0.818182  10.000000 \n",
      "environmentalism +      0.736842   0.777778  0.756757  18.000000 \n",
      "europe +                0.800000   0.800000  0.800000  5.000000  \n",
      "freedom/human rights +  0.800000   0.444444  0.571429  9.000000  \n",
      "ignored                 0.666667   0.352941  0.461538  34.000000 \n",
      "infrastructure +        0.666667   0.285714  0.400000  7.000000  \n",
      "political authority +   0.583333   0.840000  0.688525  25.000000 \n",
      "social justice +        0.750000   0.600000  0.666667  15.000000 \n",
      "accuracy                0.448276   0.448276  0.448276  0.448276  \n",
      "macro avg               0.218240   0.178364  0.186044  203.000000\n",
      "weighted avg            0.512955   0.448276  0.456581  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.3s remaining:    0.3s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.3s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=100\n",
      "\n",
      "                        precision    recall  f1-score    support\n",
      "agriculture +           1.000000   1.000000  1.000000  1.00000  \n",
      "culture +               1.000000   0.666667  0.800000  3.00000  \n",
      "democracy +             0.842105   0.842105  0.842105  19.00000 \n",
      "education +             0.555556   0.555556  0.555556  9.00000  \n",
      "environmentalism +      0.848485   0.800000  0.823529  35.00000 \n",
      "europe +                0.666667   1.000000  0.800000  4.00000  \n",
      "freedom/human rights +  0.500000   0.555556  0.526316  9.00000  \n",
      "ignored                 0.750000   0.357143  0.483871  42.00000 \n",
      "political authority +   0.750000   0.777778  0.763636  27.00000 \n",
      "social justice +        0.846154   0.687500  0.758621  16.00000 \n",
      "accuracy                0.532020   0.532020  0.532020  0.53202  \n",
      "macro avg               0.277106   0.258654  0.262630  203.00000\n",
      "weighted avg            0.626365   0.532020  0.562754  203.00000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.2s remaining:    0.2s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.3s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=100\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "culture +               1.000000   1.000000  1.000000  4.000000  \n",
      "democracy +             0.884615   0.793103  0.836364  29.000000 \n",
      "education +             0.583333   0.700000  0.636364  10.000000 \n",
      "environmentalism +      0.787879   0.787879  0.787879  33.000000 \n",
      "europe +                0.666667   1.000000  0.800000  2.000000  \n",
      "freedom/human rights +  0.333333   0.142857  0.200000  7.000000  \n",
      "ignored                 0.736842   0.318182  0.444444  44.000000 \n",
      "political authority +   0.650000   0.590909  0.619048  22.000000 \n",
      "social justice +        0.916667   0.647059  0.758621  17.000000 \n",
      "accuracy                0.497537   0.497537  0.497537  0.497537  \n",
      "macro avg               0.234262   0.213571  0.217240  203.000000\n",
      "weighted avg            0.627873   0.497537  0.540342  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.2s remaining:    0.2s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.3s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=100\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "culture +               1.000000   0.400000  0.571429  5.000000  \n",
      "democracy +             0.840000   0.777778  0.807692  27.000000 \n",
      "education +             0.800000   0.800000  0.800000  10.000000 \n",
      "environmentalism +      0.866667   0.722222  0.787879  36.000000 \n",
      "freedom/human rights +  0.833333   0.333333  0.476190  15.000000 \n",
      "ignored                 0.933333   0.518519  0.666667  27.000000 \n",
      "political authority +   0.680000   0.680000  0.680000  25.000000 \n",
      "social justice +        0.818182   0.500000  0.620690  18.000000 \n",
      "accuracy                0.502463   0.502463  0.502463  0.502463  \n",
      "macro avg               0.241840   0.168995  0.193234  203.000000\n",
      "weighted avg            0.671464   0.502463  0.563270  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.2s remaining:    0.2s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.3s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=100\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "democracy +             1.000000   0.772727  0.871795  22.000000 \n",
      "education +             0.400000   1.000000  0.571429  4.000000  \n",
      "environmentalism +      0.648649   0.800000  0.716418  30.000000 \n",
      "europe +                0.600000   0.600000  0.600000  5.000000  \n",
      "freedom/human rights +  0.600000   0.375000  0.461538  8.000000  \n",
      "ignored                 0.722222   0.371429  0.490566  35.000000 \n",
      "infrastructure +        1.000000   0.111111  0.200000  9.000000  \n",
      "law and order +         1.000000   0.500000  0.666667  2.000000  \n",
      "political authority +   0.631579   0.800000  0.705882  30.000000 \n",
      "social justice +        0.666667   0.315789  0.428571  19.000000 \n",
      "accuracy                0.472906   0.472906  0.472906  0.472906  \n",
      "macro avg               0.242304   0.188202  0.190429  203.000000\n",
      "weighted avg            0.584982   0.472906  0.489027  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.3s remaining:    0.3s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.3s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=100\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "culture +               1.000000   1.000000  1.000000  1.000000  \n",
      "democracy +             0.894737   0.739130  0.809524  23.000000 \n",
      "education +             0.555556   0.714286  0.625000  7.000000  \n",
      "environmentalism +      0.750000   0.750000  0.750000  24.000000 \n",
      "europe +                1.000000   0.200000  0.333333  5.000000  \n",
      "freedom/human rights +  0.428571   0.250000  0.315789  12.000000 \n",
      "ignored                 0.833333   0.348837  0.491803  43.000000 \n",
      "infrastructure +        1.000000   0.285714  0.444444  7.000000  \n",
      "political authority +   0.575000   0.741935  0.647887  31.000000 \n",
      "social justice +        0.625000   0.625000  0.625000  8.000000  \n",
      "welfare +               0.500000   0.142857  0.222222  7.000000  \n",
      "accuracy                0.448276   0.448276  0.448276  0.448276  \n",
      "macro avg               0.291507   0.207063  0.223750  203.000000\n",
      "weighted avg            0.604774   0.448276  0.484477  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.2s remaining:    0.2s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.3s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=100\n",
      "\n",
      "                       precision    recall  f1-score     support\n",
      "culture +              0.750000   1.000000  0.857143  3.000000  \n",
      "democracy +            0.941176   0.695652  0.800000  23.000000 \n",
      "education +            0.833333   1.000000  0.909091  5.000000  \n",
      "environmentalism +     0.843750   0.818182  0.830769  33.000000 \n",
      "ignored                0.900000   0.391304  0.545455  46.000000 \n",
      "political authority +  0.541667   0.520000  0.530612  25.000000 \n",
      "social justice +       0.600000   0.500000  0.545455  12.000000 \n",
      "accuracy               0.433498   0.433498  0.433498  0.433498  \n",
      "macro avg              0.200368   0.182413  0.185871  203.000000\n",
      "weighted avg           0.581523   0.433498  0.481941  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.3s remaining:    0.3s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.3s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=100\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "culture +               0.500000   0.333333  0.400000  3.000000  \n",
      "democracy +             0.894737   0.653846  0.755556  26.000000 \n",
      "education +             0.857143   0.750000  0.800000  8.000000  \n",
      "environmentalism +      0.823529   0.823529  0.823529  34.000000 \n",
      "europe +                1.000000   1.000000  1.000000  2.000000  \n",
      "freedom/human rights +  0.666667   0.545455  0.600000  11.000000 \n",
      "ignored                 0.900000   0.500000  0.642857  36.000000 \n",
      "infrastructure +        0.500000   0.285714  0.363636  7.000000  \n",
      "political authority +   0.593750   0.826087  0.690909  23.000000 \n",
      "social justice +        0.923077   0.666667  0.774194  18.000000 \n",
      "accuracy                0.546798   0.546798  0.546798  0.546798  \n",
      "macro avg               0.255297   0.212821  0.228356  203.000000\n",
      "weighted avg            0.665642   0.546798  0.587976  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.4s remaining:    0.4s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.6s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=500\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "culture +               0.250000   1.000000  0.400000  2.000000  \n",
      "democracy +             0.900000   0.500000  0.642857  18.000000 \n",
      "education +             0.666667   0.800000  0.727273  10.000000 \n",
      "environmentalism +      0.695652   0.516129  0.592593  31.000000 \n",
      "freedom/human rights +  0.625000   0.833333  0.714286  6.000000  \n",
      "ignored                 0.769231   0.270270  0.400000  37.000000 \n",
      "infrastructure +        0.500000   0.200000  0.285714  5.000000  \n",
      "political authority +   0.518519   0.608696  0.560000  23.000000 \n",
      "social justice +        0.857143   0.300000  0.444444  20.000000 \n",
      "accuracy                0.349754   0.349754  0.349754  0.349754  \n",
      "macro avg               0.180694   0.157138  0.148974  203.000000\n",
      "weighted avg            0.535528   0.349754  0.395555  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.4s remaining:    0.4s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.6s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=500\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "agriculture +           1.000000   0.500000  0.666667  2.000000  \n",
      "culture +               0.666667   0.666667  0.666667  6.000000  \n",
      "democracy +             0.937500   0.652174  0.769231  23.000000 \n",
      "education +             0.777778   0.500000  0.608696  14.000000 \n",
      "environmentalism +      0.821429   0.718750  0.766667  32.000000 \n",
      "freedom/human rights +  0.750000   0.300000  0.428571  10.000000 \n",
      "ignored                 1.000000   0.259259  0.411765  27.000000 \n",
      "infrastructure +        1.000000   0.500000  0.666667  6.000000  \n",
      "law and order +         1.000000   1.000000  1.000000  1.000000  \n",
      "political authority +   0.600000   0.692308  0.642857  26.000000 \n",
      "social justice +        0.769231   0.454545  0.571429  22.000000 \n",
      "welfare +               1.000000   0.142857  0.250000  7.000000  \n",
      "accuracy                0.458128   0.458128  0.458128  0.458128  \n",
      "macro avg               0.355952   0.220226  0.256869  203.000000\n",
      "weighted avg            0.718030   0.458128  0.529654  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.4s remaining:    0.4s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.6s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=500\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "culture +               1.000000   0.500000  0.666667  4.000000  \n",
      "democracy +             0.833333   0.800000  0.816327  25.000000 \n",
      "education +             0.666667   0.750000  0.705882  8.000000  \n",
      "environmentalism +      0.806452   0.806452  0.806452  31.000000 \n",
      "europe +                0.666667   0.666667  0.666667  6.000000  \n",
      "freedom/human rights +  0.666667   0.444444  0.533333  9.000000  \n",
      "ignored                 0.800000   0.222222  0.347826  36.000000 \n",
      "infrastructure +        0.714286   0.555556  0.625000  9.000000  \n",
      "political authority +   0.666667   0.620690  0.642857  29.000000 \n",
      "social justice +        0.900000   0.600000  0.720000  15.000000 \n",
      "accuracy                0.497537   0.497537  0.497537  0.497537  \n",
      "macro avg               0.275741   0.213073  0.233250  203.000000\n",
      "weighted avg            0.656298   0.497537  0.542421  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.4s remaining:    0.4s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.5s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=500\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "culture +               1.000000   0.750000  0.857143  4.000000  \n",
      "democracy +             0.937500   0.714286  0.810811  21.000000 \n",
      "education +             0.444444   0.571429  0.500000  7.000000  \n",
      "environmentalism +      0.857143   0.731707  0.789474  41.000000 \n",
      "europe +                0.500000   1.000000  0.666667  2.000000  \n",
      "freedom/human rights +  0.545455   0.600000  0.571429  10.000000 \n",
      "ignored                 0.833333   0.312500  0.454545  32.000000 \n",
      "infrastructure +        1.000000   0.333333  0.500000  12.000000 \n",
      "military +              1.000000   1.000000  1.000000  1.000000  \n",
      "political authority +   0.478261   0.578947  0.523810  19.000000 \n",
      "social justice +        0.846154   0.578947  0.687500  19.000000 \n",
      "welfare +               1.000000   0.142857  0.250000  7.000000  \n",
      "accuracy                0.482759   0.482759  0.482759  0.482759  \n",
      "macro avg               0.314743   0.243800  0.253713  203.000000\n",
      "weighted avg            0.690771   0.482759  0.540305  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.4s remaining:    0.4s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.5s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=500\n",
      "\n",
      "                        precision    recall  f1-score    support\n",
      "culture +               1.000000   0.833333  0.909091  6.00000  \n",
      "democracy +             0.782609   0.782609  0.782609  23.00000 \n",
      "education +             0.714286   1.000000  0.833333  5.00000  \n",
      "environmentalism +      0.760000   0.612903  0.678571  31.00000 \n",
      "europe +                0.800000   0.666667  0.727273  6.00000  \n",
      "freedom/human rights +  1.000000   0.400000  0.571429  10.00000 \n",
      "ignored                 0.733333   0.314286  0.440000  35.00000 \n",
      "infrastructure +        0.833333   0.625000  0.714286  8.00000  \n",
      "political authority +   0.545455   0.571429  0.558140  21.00000 \n",
      "social justice +        0.777778   0.437500  0.560000  16.00000 \n",
      "accuracy                0.443350   0.443350  0.443350  0.44335  \n",
      "macro avg               0.294326   0.231249  0.250916  203.00000\n",
      "weighted avg            0.601792   0.443350  0.495222  203.00000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.3s remaining:    0.3s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.5s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=500\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "culture +               0.750000   1.000000  0.857143  3.000000  \n",
      "democracy +             0.857143   0.545455  0.666667  22.000000 \n",
      "education +             0.615385   0.888889  0.727273  9.000000  \n",
      "environmentalism +      0.888889   0.600000  0.716418  40.000000 \n",
      "europe +                0.666667   1.000000  0.800000  2.000000  \n",
      "freedom/human rights +  0.600000   0.333333  0.428571  9.000000  \n",
      "ignored                 0.720000   0.545455  0.620690  33.000000 \n",
      "infrastructure +        0.750000   0.333333  0.461538  9.000000  \n",
      "political authority +   0.633333   0.633333  0.633333  30.000000 \n",
      "social justice +        0.727273   0.533333  0.615385  15.000000 \n",
      "welfare +               0.666667   0.500000  0.571429  4.000000  \n",
      "accuracy                0.502463   0.502463  0.502463  0.502463  \n",
      "macro avg               0.262512   0.230438  0.236615  203.000000\n",
      "weighted avg            0.650346   0.502463  0.556899  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.4s remaining:    0.4s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.5s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=500\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "culture +               0.500000   0.500000  0.500000  2.000000  \n",
      "democracy +             0.909091   0.476190  0.625000  21.000000 \n",
      "education +             0.600000   0.857143  0.705882  7.000000  \n",
      "environmentalism +      0.760000   0.760000  0.760000  25.000000 \n",
      "europe +                0.750000   0.500000  0.600000  6.000000  \n",
      "freedom/human rights +  0.125000   0.166667  0.142857  6.000000  \n",
      "ignored                 0.909091   0.250000  0.392157  40.000000 \n",
      "infrastructure +        0.666667   0.285714  0.400000  7.000000  \n",
      "political authority +   0.740741   0.689655  0.714286  29.000000 \n",
      "social justice +        0.733333   0.647059  0.687500  17.000000 \n",
      "welfare +               1.000000   0.333333  0.500000  9.000000  \n",
      "accuracy                0.423645   0.423645  0.423645  0.423645  \n",
      "macro avg               0.248191   0.176315  0.194441  203.000000\n",
      "weighted avg            0.652805   0.423645  0.482322  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.4s remaining:    0.4s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.5s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=500\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "agriculture +           1.000000   0.250000  0.400000  4.000000  \n",
      "culture +               1.000000   0.800000  0.888889  5.000000  \n",
      "democracy +             0.625000   0.909091  0.740741  11.000000 \n",
      "education +             0.500000   0.555556  0.526316  9.000000  \n",
      "environmentalism +      0.700000   0.700000  0.700000  30.000000 \n",
      "freedom/human rights +  0.714286   0.555556  0.625000  9.000000  \n",
      "ignored                 0.900000   0.257143  0.400000  35.000000 \n",
      "market regulation +     0.500000   1.000000  0.666667  1.000000  \n",
      "political authority +   0.800000   0.645161  0.714286  31.000000 \n",
      "social justice +        0.928571   0.650000  0.764706  20.000000 \n",
      "accuracy                0.438424   0.438424  0.438424  0.438424  \n",
      "macro avg               0.255595   0.210750  0.214220  203.000000\n",
      "weighted avg            0.606773   0.438424  0.481074  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.3s remaining:    0.3s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.5s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=500\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "culture +               1.000000   1.000000  1.000000  2.000000  \n",
      "democracy +             0.933333   0.608696  0.736842  23.000000 \n",
      "education +             0.777778   0.583333  0.666667  12.000000 \n",
      "environmentalism +      0.714286   0.689655  0.701754  29.000000 \n",
      "europe +                0.666667   0.666667  0.666667  3.000000  \n",
      "freedom/human rights +  0.500000   0.600000  0.545455  10.000000 \n",
      "ignored                 0.666667   0.242424  0.355556  33.000000 \n",
      "political authority +   0.538462   0.736842  0.622222  19.000000 \n",
      "social justice +        0.769231   0.555556  0.645161  18.000000 \n",
      "welfare +               0.500000   0.111111  0.181818  9.000000  \n",
      "accuracy                0.413793   0.413793  0.413793  0.413793  \n",
      "macro avg               0.207836   0.170420  0.180063  203.000000\n",
      "weighted avg            0.547247   0.413793  0.451023  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.4s remaining:    0.4s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.5s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=500\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "culture +               1.000000   0.500000  0.666667  2.000000  \n",
      "democracy +             0.900000   0.782609  0.837209  23.000000 \n",
      "education +             0.500000   0.250000  0.333333  12.000000 \n",
      "environmentalism +      0.774194   0.705882  0.738462  34.000000 \n",
      "europe +                0.750000   0.750000  0.750000  4.000000  \n",
      "freedom/human rights +  1.000000   0.454545  0.625000  11.000000 \n",
      "ignored                 0.611111   0.379310  0.468085  29.000000 \n",
      "infrastructure +        1.000000   0.571429  0.727273  7.000000  \n",
      "political authority +   0.608696   0.538462  0.571429  26.000000 \n",
      "social justice +        0.666667   0.444444  0.533333  18.000000 \n",
      "accuracy                0.448276   0.448276  0.448276  0.448276  \n",
      "macro avg               0.251957   0.173441  0.201638  203.000000\n",
      "weighted avg            0.598871   0.448276  0.505884  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.4s remaining:    0.4s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.6s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=1000\n",
      "\n",
      "                        precision    recall  f1-score    support\n",
      "culture +               1.000000   1.000000  1.000000  2.00000  \n",
      "democracy +             1.000000   0.727273  0.842105  22.00000 \n",
      "education +             0.500000   0.300000  0.375000  10.00000 \n",
      "environmentalism +      0.714286   0.483871  0.576923  31.00000 \n",
      "europe +                0.500000   0.666667  0.571429  3.00000  \n",
      "freedom/human rights +  1.000000   0.250000  0.400000  8.00000  \n",
      "ignored                 1.000000   0.250000  0.400000  32.00000 \n",
      "infrastructure +        1.000000   0.285714  0.444444  7.00000  \n",
      "political authority +   0.666667   0.666667  0.666667  21.00000 \n",
      "social justice +        1.000000   0.421053  0.592593  19.00000 \n",
      "accuracy                0.354680   0.354680  0.354680  0.35468  \n",
      "macro avg               0.246499   0.148566  0.172622  203.00000\n",
      "weighted avg            0.653413   0.354680  0.434707  203.00000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.5s remaining:    0.5s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.7s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=1000\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "agriculture +           0.500000   0.500000  0.500000  2.000000  \n",
      "culture +               1.000000   0.333333  0.500000  3.000000  \n",
      "democracy +             0.954545   0.807692  0.875000  26.000000 \n",
      "education +             0.636364   0.777778  0.700000  9.000000  \n",
      "environmentalism +      0.913043   0.617647  0.736842  34.000000 \n",
      "europe +                0.666667   1.000000  0.800000  2.000000  \n",
      "freedom/human rights +  0.888889   0.571429  0.695652  14.000000 \n",
      "ignored                 1.000000   0.272727  0.428571  33.000000 \n",
      "infrastructure +        1.000000   0.250000  0.400000  8.000000  \n",
      "military +              1.000000   1.000000  1.000000  1.000000  \n",
      "political authority +   0.750000   0.461538  0.571429  26.000000 \n",
      "social justice +        0.857143   0.461538  0.600000  13.000000 \n",
      "accuracy                0.448276   0.448276  0.448276  0.448276  \n",
      "macro avg               0.327956   0.227538  0.251855  203.000000\n",
      "weighted avg            0.748816   0.448276  0.536659  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.5s remaining:    0.5s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.7s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=1000\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "culture +               1.000000   0.333333  0.500000  3.000000  \n",
      "democracy +             0.750000   0.714286  0.731707  21.000000 \n",
      "education +             0.555556   0.555556  0.555556  9.000000  \n",
      "environmentalism +      0.809524   0.566667  0.666667  30.000000 \n",
      "europe +                1.000000   0.500000  0.666667  2.000000  \n",
      "freedom/human rights +  0.800000   0.400000  0.533333  10.000000 \n",
      "ignored                 1.000000   0.209302  0.346154  43.000000 \n",
      "political authority +   0.600000   0.461538  0.521739  26.000000 \n",
      "social justice +        0.714286   0.454545  0.555556  11.000000 \n",
      "accuracy                0.339901   0.339901  0.339901  0.339901  \n",
      "macro avg               0.225918   0.131101  0.158668  203.000000\n",
      "weighted avg            0.613265   0.339901  0.409327  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.5s remaining:    0.5s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.6s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=1000\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "culture +               1.000000   0.333333  0.500000  3.000000  \n",
      "democracy +             0.857143   0.631579  0.727273  19.000000 \n",
      "education +             0.857143   0.666667  0.750000  9.000000  \n",
      "environmentalism +      0.846154   0.611111  0.709677  36.000000 \n",
      "europe +                0.666667   0.800000  0.727273  5.000000  \n",
      "freedom/human rights +  0.571429   0.333333  0.421053  12.000000 \n",
      "ignored                 0.750000   0.162162  0.266667  37.000000 \n",
      "infrastructure +        1.000000   0.333333  0.500000  6.000000  \n",
      "military +              1.000000   1.000000  1.000000  1.000000  \n",
      "political authority +   0.681818   0.681818  0.681818  22.000000 \n",
      "social justice +        0.777778   0.388889  0.518519  18.000000 \n",
      "accuracy                0.394089   0.394089  0.394089  0.394089  \n",
      "macro avg               0.300271   0.198074  0.226743  203.000000\n",
      "weighted avg            0.647301   0.394089  0.465545  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.5s remaining:    0.5s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.6s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=1000\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "culture +               1.000000   1.000000  1.000000  3.000000  \n",
      "democracy +             1.000000   0.666667  0.800000  18.000000 \n",
      "education +             0.500000   0.800000  0.615385  10.000000 \n",
      "environmentalism +      0.800000   0.571429  0.666667  35.000000 \n",
      "europe +                0.750000   0.750000  0.750000  4.000000  \n",
      "freedom/human rights +  0.500000   0.333333  0.400000  6.000000  \n",
      "ignored                 0.750000   0.243243  0.367347  37.000000 \n",
      "infrastructure +        0.500000   0.200000  0.285714  5.000000  \n",
      "political authority +   0.611111   0.523810  0.564103  21.000000 \n",
      "social justice +        0.750000   0.461538  0.571429  13.000000 \n",
      "accuracy                0.369458   0.369458  0.369458  0.369458  \n",
      "macro avg               0.217003   0.168182  0.182444  203.000000\n",
      "weighted avg            0.555829   0.369458  0.426514  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.5s remaining:    0.5s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.6s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=1000\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "culture +               1.000000   0.500000  0.666667  2.000000  \n",
      "democracy +             0.869565   0.714286  0.784314  28.000000 \n",
      "education +             0.750000   0.500000  0.600000  6.000000  \n",
      "environmentalism +      0.900000   0.545455  0.679245  33.000000 \n",
      "freedom/human rights +  0.500000   0.428571  0.461538  7.000000  \n",
      "ignored                 0.909091   0.222222  0.357143  45.000000 \n",
      "political authority +   0.687500   0.550000  0.611111  20.000000 \n",
      "social justice +        0.666667   0.285714  0.400000  14.000000 \n",
      "accuracy                0.344828   0.344828  0.344828  0.344828  \n",
      "macro avg               0.209427   0.124875  0.152001  203.000000\n",
      "weighted avg            0.630740   0.344828  0.425781  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.5s remaining:    0.5s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.6s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=1000\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "culture +               1.000000   0.750000  0.857143  4.000000  \n",
      "democracy +             0.941176   0.842105  0.888889  19.000000 \n",
      "education +             0.250000   0.111111  0.153846  9.000000  \n",
      "environmentalism +      0.812500   0.433333  0.565217  30.000000 \n",
      "europe +                0.833333   0.833333  0.833333  6.000000  \n",
      "freedom/human rights +  1.000000   0.333333  0.500000  6.000000  \n",
      "ignored                 0.666667   0.250000  0.363636  40.000000 \n",
      "infrastructure +        0.800000   0.500000  0.615385  8.000000  \n",
      "political authority +   0.666667   0.518519  0.583333  27.000000 \n",
      "social justice +        0.909091   0.588235  0.714286  17.000000 \n",
      "accuracy                0.384236   0.384236  0.384236  0.384236  \n",
      "macro avg               0.254175   0.166451  0.195970  203.000000\n",
      "weighted avg            0.620830   0.384236  0.463153  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.5s remaining:    0.5s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.7s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=1000\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "culture +               0.750000   1.000000  0.857143  3.000000  \n",
      "democracy +             0.947368   0.857143  0.900000  21.000000 \n",
      "education +             0.666667   0.500000  0.571429  12.000000 \n",
      "environmentalism +      0.774194   0.666667  0.716418  36.000000 \n",
      "europe +                0.750000   0.600000  0.666667  5.000000  \n",
      "freedom/human rights +  0.727273   0.666667  0.695652  12.000000 \n",
      "ignored                 0.857143   0.193548  0.315789  31.000000 \n",
      "infrastructure +        0.500000   0.142857  0.222222  7.000000  \n",
      "political authority +   0.750000   0.480000  0.585366  25.000000 \n",
      "social justice +        0.785714   0.647059  0.709677  17.000000 \n",
      "welfare +               1.000000   0.125000  0.222222  8.000000  \n",
      "accuracy                0.458128   0.458128  0.458128  0.458128  \n",
      "macro avg               0.265886   0.183717  0.201956  203.000000\n",
      "weighted avg            0.692963   0.458128  0.520307  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.5s remaining:    0.5s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.7s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=1000\n",
      "\n",
      "                       precision    recall  f1-score     support\n",
      "culture +              1.000000   0.500000  0.666667  4.000000  \n",
      "democracy +            0.866667   0.565217  0.684211  23.000000 \n",
      "education +            0.833333   0.714286  0.769231  7.000000  \n",
      "environmentalism +     0.772727   0.653846  0.708333  26.000000 \n",
      "europe +               0.800000   0.800000  0.800000  5.000000  \n",
      "ignored                0.888889   0.275862  0.421053  29.000000 \n",
      "infrastructure +       0.600000   0.300000  0.400000  10.000000 \n",
      "political authority +  0.576923   0.517241  0.545455  29.000000 \n",
      "social justice +       0.750000   0.428571  0.545455  14.000000 \n",
      "accuracy               0.359606   0.359606  0.359606  0.359606  \n",
      "macro avg              0.244432   0.163966  0.191048  203.000000\n",
      "weighted avg           0.555991   0.359606  0.423004  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    0.6s remaining:    0.6s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    0.8s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=1000\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "agriculture +           0.333333   0.500000  0.400000  2.000000  \n",
      "culture +               1.000000   0.750000  0.857143  4.000000  \n",
      "democracy +             0.882353   0.714286  0.789474  21.000000 \n",
      "education +             0.714286   0.555556  0.625000  9.000000  \n",
      "environmentalism +      0.777778   0.840000  0.807692  25.000000 \n",
      "europe +                0.750000   0.750000  0.750000  4.000000  \n",
      "freedom/human rights +  0.666667   0.400000  0.500000  10.000000 \n",
      "ignored                 0.750000   0.166667  0.272727  36.000000 \n",
      "infrastructure +        1.000000   0.125000  0.222222  8.000000  \n",
      "political authority +   0.760000   0.655172  0.703704  29.000000 \n",
      "social justice +        0.909091   0.588235  0.714286  17.000000 \n",
      "accuracy                0.433498   0.433498  0.433498  0.433498  \n",
      "macro avg               0.275597   0.194997  0.214266  203.000000\n",
      "weighted avg            0.646455   0.433498  0.486557  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    2.1s remaining:    2.1s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    3.2s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=5000\n",
      "\n",
      "                       precision    recall  f1-score     support\n",
      "democracy +            0.777778   0.350000  0.482759  20.000000 \n",
      "environmentalism +     0.545455   0.176471  0.266667  34.000000 \n",
      "europe +               1.000000   0.600000  0.750000  5.000000  \n",
      "infrastructure +       1.000000   0.200000  0.333333  5.000000  \n",
      "military +             1.000000   1.000000  1.000000  1.000000  \n",
      "political authority +  0.636364   0.280000  0.388889  25.000000 \n",
      "social justice +       1.000000   0.333333  0.500000  15.000000 \n",
      "accuracy               0.147783   0.147783  0.147783  0.147783  \n",
      "macro avg              0.175282   0.086465  0.109460  203.000000\n",
      "weighted avg           0.374434   0.147783  0.208674  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    3.5s remaining:    3.5s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    4.6s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=5000\n",
      "\n",
      "                       precision    recall  f1-score     support\n",
      "culture +              1.000000   0.250000  0.400000  4.000000  \n",
      "democracy +            1.000000   0.380952  0.551724  21.000000 \n",
      "education +            1.000000   0.125000  0.222222  8.000000  \n",
      "environmentalism +     0.600000   0.171429  0.266667  35.000000 \n",
      "infrastructure +       0.500000   0.142857  0.222222  7.000000  \n",
      "political authority +  0.777778   0.269231  0.400000  26.000000 \n",
      "social justice +       1.000000   0.380952  0.551724  21.000000 \n",
      "accuracy               0.157635   0.157635  0.157635  0.157635  \n",
      "macro avg              0.209921   0.061444  0.093377  203.000000\n",
      "weighted avg           0.486316   0.157635  0.235660  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    1.9s remaining:    1.9s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    2.5s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=5000\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "culture +               0.666667   0.400000  0.500000  5.000000  \n",
      "democracy +             1.000000   0.444444  0.615385  18.000000 \n",
      "environmentalism +      0.900000   0.281250  0.428571  32.000000 \n",
      "europe +                0.333333   1.000000  0.500000  1.000000  \n",
      "freedom/human rights +  0.714286   0.357143  0.476190  14.000000 \n",
      "ignored                 1.000000   0.071429  0.133333  28.000000 \n",
      "political authority +   0.375000   0.142857  0.206897  21.000000 \n",
      "social justice +        1.000000   0.277778  0.434783  18.000000 \n",
      "accuracy                0.172414   0.172414  0.172414  0.172414  \n",
      "macro avg               0.181494   0.090149  0.099853  203.000000\n",
      "weighted avg            0.563259   0.172414  0.248089  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    1.3s remaining:    1.3s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    1.9s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=5000\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "democracy +             1.000000   0.538462  0.700000  26.000000 \n",
      "education +             0.625000   0.416667  0.500000  12.000000 \n",
      "environmentalism +      0.666667   0.270270  0.384615  37.000000 \n",
      "europe +                0.500000   0.200000  0.285714  5.000000  \n",
      "freedom/human rights +  1.000000   0.125000  0.222222  8.000000  \n",
      "political authority +   0.833333   0.217391  0.344828  23.000000 \n",
      "social justice +        1.000000   0.071429  0.133333  14.000000 \n",
      "accuracy                0.182266   0.182266  0.182266  0.182266  \n",
      "macro avg               0.187500   0.061307  0.085690  203.000000\n",
      "weighted avg            0.501642   0.182266  0.253373  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    1.3s remaining:    1.3s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    1.8s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=5000\n",
      "\n",
      "                        precision    recall  f1-score    support\n",
      "culture +               0.500000   0.333333  0.400000  3.00000  \n",
      "democracy +             0.894737   0.708333  0.790698  24.00000 \n",
      "environmentalism +      0.818182   0.281250  0.418605  32.00000 \n",
      "europe +                0.500000   0.200000  0.285714  5.00000  \n",
      "freedom/human rights +  1.000000   0.125000  0.222222  8.00000  \n",
      "labour +                1.000000   1.000000  1.000000  1.00000  \n",
      "military +              1.000000   0.333333  0.500000  3.00000  \n",
      "political authority +   0.600000   0.136364  0.222222  22.00000 \n",
      "social justice +        1.000000   0.111111  0.200000  18.00000 \n",
      "accuracy                0.177340   0.177340  0.177340  0.17734  \n",
      "macro avg               0.215086   0.094962  0.118808  203.00000\n",
      "weighted avg            0.467268   0.177340  0.235307  203.00000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    1.6s remaining:    1.6s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    2.3s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=5000\n",
      "\n",
      "                       precision    recall  f1-score     support\n",
      "culture +              1.000000   0.250000  0.400000  4.000000  \n",
      "democracy +            0.785714   0.423077  0.550000  26.000000 \n",
      "environmentalism +     1.000000   0.200000  0.333333  35.000000 \n",
      "europe +               1.000000   0.500000  0.666667  2.000000  \n",
      "ignored                1.000000   0.030303  0.058824  33.000000 \n",
      "political authority +  0.500000   0.107143  0.176471  28.000000 \n",
      "social justice +       0.666667   0.095238  0.166667  21.000000 \n",
      "accuracy               0.128079   0.128079  0.128079  0.128079  \n",
      "macro avg              0.212585   0.057349  0.083999  203.000000\n",
      "weighted avg           0.603096   0.128079  0.193509  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    1.6s remaining:    1.6s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    2.4s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=5000\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "culture +               1.000000   0.333333  0.500000  3.000000  \n",
      "democracy +             1.000000   0.368421  0.538462  19.000000 \n",
      "education +             0.666667   0.285714  0.400000  7.000000  \n",
      "environmentalism +      0.777778   0.259259  0.388889  27.000000 \n",
      "europe +                0.500000   0.666667  0.571429  3.000000  \n",
      "freedom/human rights +  0.666667   0.250000  0.363636  8.000000  \n",
      "infrastructure +        0.666667   0.285714  0.400000  7.000000  \n",
      "law and order +         1.000000   0.500000  0.666667  2.000000  \n",
      "political authority +   0.700000   0.205882  0.318182  34.000000 \n",
      "social justice +        1.000000   0.153846  0.266667  13.000000 \n",
      "accuracy                0.162562   0.162562  0.162562  0.162562  \n",
      "macro avg               0.249306   0.103401  0.137935  203.000000\n",
      "weighted avg            0.482594   0.162562  0.236809  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    2.1s remaining:    2.1s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    2.7s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=5000\n",
      "\n",
      "                       precision    recall  f1-score     support\n",
      "culture +              1.000000   1.000000  1.000000  2.000000  \n",
      "democracy +            0.857143   0.521739  0.648649  23.000000 \n",
      "education +            0.166667   0.142857  0.153846  7.000000  \n",
      "environmentalism +     0.571429   0.307692  0.400000  26.000000 \n",
      "europe +               0.500000   0.200000  0.285714  5.000000  \n",
      "infrastructure +       0.666667   0.200000  0.307692  10.000000 \n",
      "political authority +  0.714286   0.192308  0.303030  26.000000 \n",
      "social justice +       1.000000   0.200000  0.333333  20.000000 \n",
      "accuracy               0.172414   0.172414  0.172414  0.172414  \n",
      "macro avg              0.176651   0.089181  0.110718  203.000000\n",
      "weighted avg           0.421065   0.172414  0.233728  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    1.9s remaining:    1.9s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    2.7s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=5000\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "culture +               1.000000   0.200000  0.333333  5.000000  \n",
      "democracy +             0.846154   0.478261  0.611111  23.000000 \n",
      "environmentalism +      0.900000   0.272727  0.418605  33.000000 \n",
      "europe +                0.500000   0.200000  0.285714  5.000000  \n",
      "freedom/human rights +  0.500000   0.153846  0.235294  13.000000 \n",
      "political authority +   0.600000   0.111111  0.187500  27.000000 \n",
      "social justice +        1.000000   0.166667  0.285714  18.000000 \n",
      "accuracy                0.147783   0.147783  0.147783  0.147783  \n",
      "macro avg               0.178205   0.052754  0.078576  203.000000\n",
      "weighted avg            0.479613   0.147783  0.217876  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    1.5s remaining:    1.5s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    2.2s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=5000\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "democracy +             1.000000   0.428571  0.600000  21.000000 \n",
      "environmentalism +      0.875000   0.280000  0.424242  25.000000 \n",
      "freedom/human rights +  0.666667   0.307692  0.421053  13.000000 \n",
      "political authority +   0.600000   0.120000  0.200000  25.000000 \n",
      "social justice +        0.666667   0.333333  0.444444  12.000000 \n",
      "accuracy                0.133005   0.133005  0.133005  0.133005  \n",
      "macro avg               0.122849   0.047406  0.067411  203.000000\n",
      "weighted avg            0.367200   0.133005  0.192183  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    3.4s remaining:    3.4s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    4.6s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=10000\n",
      "\n",
      "                       precision    recall  f1-score     support\n",
      "agriculture +          1.000000   0.250000  0.400000  4.000000  \n",
      "democracy +            0.857143   0.315789  0.461538  19.000000 \n",
      "education +            0.666667   0.222222  0.333333  9.000000  \n",
      "environmentalism +     0.833333   0.142857  0.243902  35.000000 \n",
      "political authority +  1.000000   0.166667  0.285714  18.000000 \n",
      "social justice +       0.666667   0.105263  0.181818  19.000000 \n",
      "accuracy               0.093596   0.093596  0.093596  0.093596  \n",
      "macro avg              0.167460   0.040093  0.063544  203.000000\n",
      "weighted avg           0.424232   0.093596  0.150262  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    2.9s remaining:    2.9s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    4.0s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=10000\n",
      "\n",
      "                       precision    recall  f1-score     support\n",
      "culture +              1.000000   0.333333  0.500000  3.000000  \n",
      "democracy +            1.000000   0.136364  0.240000  22.000000 \n",
      "education +            1.000000   0.066667  0.125000  15.000000 \n",
      "environmentalism +     1.000000   0.103448  0.187500  29.000000 \n",
      "europe +               0.500000   0.166667  0.250000  6.000000  \n",
      "political authority +  0.333333   0.050000  0.086957  20.000000 \n",
      "social justice +       1.000000   0.071429  0.133333  14.000000 \n",
      "accuracy               0.054187   0.054187  0.054187  0.054187  \n",
      "macro avg              0.194444   0.030930  0.050760  203.000000\n",
      "weighted avg           0.456486   0.054187  0.094573  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    2.5s remaining:    2.5s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    3.5s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=10000\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "democracy +             1.000000   0.318182  0.482759  22.000000 \n",
      "education +             1.000000   0.090909  0.166667  11.000000 \n",
      "freedom/human rights +  0.666667   0.222222  0.333333  9.000000  \n",
      "political authority +   1.000000   0.066667  0.125000  30.000000 \n",
      "social justice +        1.000000   0.083333  0.153846  12.000000 \n",
      "accuracy                0.064039   0.064039  0.064039  0.064039  \n",
      "macro avg               0.155556   0.026044  0.042053  203.000000\n",
      "weighted avg            0.399015   0.064039  0.103695  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    2.7s remaining:    2.7s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    3.8s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=10000\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "culture +               1.000000   0.166667  0.285714  6.000000  \n",
      "democracy +             0.888889   0.421053  0.571429  19.000000 \n",
      "education +             0.500000   0.100000  0.166667  10.000000 \n",
      "environmentalism +      0.600000   0.115385  0.193548  26.000000 \n",
      "freedom/human rights +  0.500000   0.166667  0.250000  12.000000 \n",
      "infrastructure +        1.000000   0.100000  0.181818  10.000000 \n",
      "law and order +         1.000000   0.333333  0.500000  3.000000  \n",
      "political authority +   0.833333   0.217391  0.344828  23.000000 \n",
      "social justice +        1.000000   0.105263  0.190476  19.000000 \n",
      "accuracy                0.118227   0.118227  0.118227  0.118227  \n",
      "macro avg               0.228819   0.053930  0.083890  203.000000\n",
      "weighted avg            0.495840   0.118227  0.182949  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    2.4s remaining:    2.4s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    3.3s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=10000\n",
      "\n",
      "                       precision    recall  f1-score     support\n",
      "culture +              1.000000   0.500000  0.666667  2.000000  \n",
      "democracy +            1.000000   0.315789  0.480000  19.000000 \n",
      "education +            0.500000   0.166667  0.250000  6.000000  \n",
      "environmentalism +     0.500000   0.024390  0.046512  41.000000 \n",
      "political authority +  0.600000   0.115385  0.193548  26.000000 \n",
      "social justice +       0.666667   0.133333  0.222222  15.000000 \n",
      "accuracy               0.068966   0.068966  0.068966  0.068966  \n",
      "macro avg              0.137634   0.040502  0.059966  203.000000\n",
      "weighted avg           0.345320   0.068966  0.109487  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    2.6s remaining:    2.6s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    3.6s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=10000\n",
      "\n",
      "                        precision    recall  f1-score   support\n",
      "democracy +             1.000000   0.458333  0.628571  24.0000 \n",
      "environmentalism +      0.666667   0.166667  0.266667  36.0000 \n",
      "freedom/human rights +  0.666667   0.181818  0.285714  11.0000 \n",
      "political authority +   0.500000   0.133333  0.210526  30.0000 \n",
      "accuracy                0.113300   0.113300  0.113300  0.1133  \n",
      "macro avg               0.088542   0.029380  0.043484  203.0000\n",
      "weighted avg            0.346470   0.113300  0.168199  203.0000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    2.5s remaining:    2.5s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    3.4s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_ranking.py:657: RuntimeWarning: invalid value encountered in true_divide\n",
      "  recall = tps / tps[-1]\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=10000\n",
      "\n",
      "                       precision    recall  f1-score     support\n",
      "democracy +            1.000000   0.352941  0.521739  17.000000 \n",
      "education +            0.750000   0.250000  0.375000  12.000000 \n",
      "environmentalism +     0.900000   0.214286  0.346154  42.000000 \n",
      "military +             1.000000   1.000000  1.000000  1.000000  \n",
      "political authority +  1.000000   0.181818  0.307692  22.000000 \n",
      "social justice +       0.750000   0.157895  0.260870  19.000000 \n",
      "accuracy               0.128079   0.128079  0.128079  0.128079  \n",
      "macro avg              0.200000   0.079887  0.104128  203.000000\n",
      "weighted avg           0.497783   0.128079  0.200166  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    2.5s remaining:    2.5s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    3.4s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=10000\n",
      "\n",
      "                       precision    recall  f1-score     support\n",
      "culture +              1.000000   0.333333  0.500000  3.000000  \n",
      "democracy +            0.857143   0.352941  0.500000  17.000000 \n",
      "education +            1.000000   0.100000  0.181818  10.000000 \n",
      "environmentalism +     0.750000   0.103448  0.181818  29.000000 \n",
      "europe +               0.500000   0.500000  0.500000  2.000000  \n",
      "political authority +  0.857143   0.181818  0.300000  33.000000 \n",
      "social justice +       1.000000   0.125000  0.222222  16.000000 \n",
      "accuracy               0.098522   0.098522  0.098522  0.098522  \n",
      "macro avg              0.175420   0.049898  0.070172  203.000000\n",
      "weighted avg           0.466045   0.098522  0.155401  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    2.5s remaining:    2.5s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    3.7s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=10000\n",
      "\n",
      "                       precision    recall  f1-score     support\n",
      "culture +              1.000000   1.000000  1.000000  3.000000  \n",
      "democracy +            0.875000   0.241379  0.378378  29.000000 \n",
      "environmentalism +     1.000000   0.068966  0.129032  29.000000 \n",
      "military +             1.000000   0.250000  0.400000  4.000000  \n",
      "political authority +  0.500000   0.047619  0.086957  21.000000 \n",
      "social justice +       1.000000   0.153846  0.266667  13.000000 \n",
      "accuracy               0.078818   0.078818  0.078818  0.078818  \n",
      "macro avg              0.179167   0.058727  0.075368  203.000000\n",
      "weighted avg           0.418103   0.078818  0.121220  203.000000\n",
      "Loading manifesto/manifesto-Germany.csv\n",
      "Fitting 2 folds for each of 3 candidates, totalling 6 fits\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.\n",
      "[Parallel(n_jobs=-1)]: Done   3 out of   6 | elapsed:    2.8s remaining:    2.8s\n",
      "[Parallel(n_jobs=-1)]: Done   6 out of   6 | elapsed:    3.9s finished\n",
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "N=10000\n",
      "\n",
      "                        precision    recall  f1-score     support\n",
      "democracy +             1.000000   0.300000  0.461538  20.000000 \n",
      "education +             1.000000   0.250000  0.400000  8.000000  \n",
      "environmentalism +      1.000000   0.051282  0.097561  39.000000 \n",
      "freedom/human rights +  0.666667   0.166667  0.266667  12.000000 \n",
      "infrastructure +        1.000000   0.125000  0.222222  8.000000  \n",
      "political authority +   0.666667   0.066667  0.121212  30.000000 \n",
      "social justice +        1.000000   0.052632  0.100000  19.000000 \n",
      "accuracy                0.078818   0.078818  0.078818  0.078818  \n",
      "macro avg               0.211111   0.033742  0.055640  203.000000\n",
      "weighted avg            0.600985   0.078818  0.131772  203.000000\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/Users/felix/anaconda3/envs/pdds_1920/lib/python3.7/site-packages/sklearn/metrics/_classification.py:1268: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    }
   ],
   "source": [
    "mixin_manifesto = []\n",
    "\n",
    "for N in [0, 100, 500, 1000, 5000, 10000]:\n",
    "    for rep in range(10):\n",
    "        df_manifesto = get_manifesto_data()\n",
    "        tweets_train, tweets_test, labels_train,  labels_test = train_test_split(df_human['text'], \n",
    "                                                                                 df_human['manifestolabel_true'],\n",
    "                                                                                 test_size=.2)\n",
    "        df_manifesto = df_manifesto.sample(n=N)\n",
    "        train_text = pd.concat([df_manifesto['text'],tweets_train])\n",
    "        train_labels = pd.concat([df_manifesto['manifestolabel'],labels_train]) \n",
    "\n",
    "        enough_samples_per_class = train_labels.value_counts() > 5\n",
    "        valid = train_labels.isin(enough_samples_per_class[enough_samples_per_class==True].index)\n",
    "\n",
    "        train_single(train_text[valid], train_labels[valid], 'tweets_and_manifesto')\n",
    "\n",
    "        df_test = pd.concat([tweets_test,labels_test],axis=1)\n",
    "        df_test.columns = ['text','manifestolabel_true']\n",
    "        tw = score_texts(df_test,['tweets_and_manifesto'])\n",
    "        results_tweets_and_manifesto_df = pd.DataFrame(classification_report(tw['manifestolabel_true'],tw['tweets_and_manifesto'],output_dict=True,zero_division=0)).T\n",
    "        print(f'N={N}\\n')\n",
    "        print(results_tweets_and_manifesto_df[results_tweets_and_manifesto_df['f1-score']>0])\n",
    "        mixin_manifesto.append(\n",
    "        {\n",
    "            'N': N,\n",
    "            'rep': rep,\n",
    "            'f1':results_tweets_and_manifesto_df.loc['weighted avg','f1-score']\n",
    "        })\n",
    "\n",
    "mixin_manifesto_df = pd.DataFrame(mixin_manifesto)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Results\n",
    "\n",
    "More than 500 manifesto samples lead to decreased classification performance on held-out tweets "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<matplotlib.axes._subplots.AxesSubplot at 0x1a1b2cce90>"
      ]
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEcCAYAAADXxE9kAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAR0klEQVR4nO3df6zdd13H8edrZU3j2FDauml/rI0UR42o5K6AwQiBwTbMCsqPjUUER2rFiZgsUv4hEkLYTEgmYVvTyBASTBlRR2XdRkRQCRLaTZxZYaMpnbuUQemABWVshbd/nNPt7HJ/fG977j33fPp8JDc538/3c895f3NvX/fT73mf7zdVhSRp/J0x6gIkScNhoEtSIwx0SWqEgS5JjTDQJakRTxvVC69atao2bNgwqpeXpLF01113faeqVk+3b2SBvmHDBvbv3z+ql5eksZTkgZn2ecpFkhphoEtSIwx0SWrEyM6hS9Jiefzxx5mcnOTRRx8ddSmdrVixgrVr13LmmWd2/h4DXVLzJicnOfvss9mwYQNJRl3OnKqKY8eOMTk5ycaNGzt/n6dcJDXv0UcfZeXKlWMR5gBJWLly5bz/R2GgSzotjEuYn3Ay9RroktQIz6FLOu1s2HHbUJ/v8LWvnHPOBz7wAW666SY2b97MkSNHuPvuu3nve9/LNddcM7Q6xi7Qh/2DmEuXH5QkzeXGG2/k9ttv56yzzuKBBx7g1ltvHfpreMpFkhbY9u3bOXToEJdddhkf+9jHuPDCC+fVjtjV2K3QJWnc7Ny5kzvuuIPPfvazrFq1asFexxW6JDXCQJekRhjoktQIz6FLOu2MsnvtoYceYmJigkceeYQzzjiD66+/ngMHDnDOOeec8nMb6JK0CA4fPvzE48nJyQV5jU6nXJJcnOS+JAeT7Jhm/4uTfD/Jl/tf7xp+qZKk2cy5Qk+yDLgBuAiYBPYl2VNVB6ZM/feq+p0FqFGS1EGXFfoW4GBVHaqqx4DdwNaFLUuShquqRl3CvJxMvV3Ooa8BHhzYngSeP828Fyb5L+AIcE1V3Tt1QpJtwDaA9evXz7tYjT8v3aBRWLFiBceOHRubS+ieuB76ihUr5vV9XQJ9uqOf+qfjbuD8qvpBkkuBW4FN0xS5C9gFMDExMV5/LheJgScN39q1a5mcnOTo0aOjLqWzE3csmo8ugT4JrBvYXktvFf6Eqnpk4PHeJDcmWVVV35lXNZK0AM4888x53flnXHU5h74P2JRkY5LlwOXAnsEJSc5L//8xSbb0n/fYsIuVJM1szhV6VR1PcjVwJ7AMuLmq7k2yvb9/J/Aa4I+THAd+CFxe4/YOhCSNuU4fLKqqvcDeKWM7Bx5/EPjgcEuTJM2H13KRpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY3odPlcSd0s5i0EvX2gpnKFLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiM6BXqSi5Pcl+Rgkh2zzLswyY+TvGZ4JUqSupgz0JMsA24ALgE2A1ck2TzDvOuAO4ddpCRpbl1W6FuAg1V1qKoeA3YDW6eZ96fA3wPfHmJ9kqSOugT6GuDBge3J/tgTkqwBXg3snO2JkmxLsj/J/qNHj863VknSLLoEeqYZqynb1wPvqKofz/ZEVbWrqiaqamL16tVda5QkddDlJtGTwLqB7bXAkSlzJoDdSQBWAZcmOV5Vtw6lSknSnLoE+j5gU5KNwDeAy4E3DE6oqo0nHif5W+BThrkkLa45A72qjie5ml73yjLg5qq6N8n2/v5Zz5tLkhZHlxU6VbUX2DtlbNogr6o3nXpZkqT58pOiktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqRGdAj3JxUnuS3IwyY5p9m9Nck+SLyfZn+RFwy9VkjSbp801Icky4AbgImAS2JdkT1UdGJj2GWBPVVWS5wK3ABcsRMGSpOl1WaFvAQ5W1aGqegzYDWwdnFBVP6iq6m+eBRSSpEXVJdDXAA8ObE/2x54iyauTfBW4DfjD4ZQnSeqqS6BnmrGfWoFX1T9W1QXAq4D3TPtEybb+Ofb9R48enV+lkqRZdQn0SWDdwPZa4MhMk6vq34BfSrJqmn27qmqiqiZWr14972IlSTPrEuj7gE1JNiZZDlwO7BmckORZSdJ//DxgOXBs2MVKkmY2Z5dLVR1PcjVwJ7AMuLmq7k2yvb9/J/B7wBuTPA78EHj9wJukkqRFMGegA1TVXmDvlLGdA4+vA64bbmmSpPnwk6KS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWpEp5tES9KGHbct6usdvvaVi/p6LXCFLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjegU6EkuTnJfkoNJdkyz/8ok9/S/vpDk14ZfqiRpNnMGepJlwA3AJcBm4Iokm6dM+zrw21X1XOA9wK5hFypJml2XFfoW4GBVHaqqx4DdwNbBCVX1har6bn/zi8Da4ZYpSZpLl0BfAzw4sD3ZH5vJVcDtp1KUJGn+ulxtMdOM1bQTk5fQC/QXzbB/G7ANYP369R1LlCR10WWFPgmsG9heCxyZOinJc4G/AbZW1bHpnqiqdlXVRFVNrF69+mTqlSTNoEug7wM2JdmYZDlwObBncEKS9cA/AL9fVfcPv0xJ0lzmPOVSVceTXA3cCSwDbq6qe5Ns7+/fCbwLWAncmATgeFVNLFzZkqSpOt2xqKr2AnunjO0cePwW4C3DLU2SNB9+UlSSGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiM63YJOklq3Ycdti/p6h6995dCf0xW6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhrRKdCTXJzkviQHk+yYZv8FSf4jyY+SXDP8MiVJc5nzaotJlgE3ABcBk8C+JHuq6sDAtIeBtwGvWpAqJUlz6rJC3wIcrKpDVfUYsBvYOjihqr5dVfuAxxegRklSB10CfQ3w4MD2ZH9s3pJsS7I/yf6jR4+ezFNIkmbQJdAzzVidzItV1a6qmqiqidWrV5/MU0iSZtAl0CeBdQPba4EjC1OOJOlkdQn0fcCmJBuTLAcuB/YsbFmSpPmas8ulqo4nuRq4E1gG3FxV9ybZ3t+/M8l5wH7gHOAnSd4ObK6qRxawdknSgE43ia6qvcDeKWM7Bx4/RO9UjCRpRPykqCQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWpEp0BPcnGS+5IcTLJjmv1J8oH+/nuSPG/4pUqSZjNnoCdZBtwAXAJsBq5IsnnKtEuATf2vbcBNQ65TkjSHLiv0LcDBqjpUVY8Bu4GtU+ZsBT5aPV8EfjbJLwy5VknSLJ7WYc4a4MGB7Ung+R3mrAG+OTgpyTZ6K3iAHyS5b17VnppVwHfm+025bgEqWRge3zTG5PhaPjbw+KZ1Csd3/kw7ugR6phmrk5hDVe0CdnV4zaFLsr+qJkbx2ovB4xtfLR8beHyLqcspl0lg3cD2WuDIScyRJC2gLoG+D9iUZGOS5cDlwJ4pc/YAb+x3u7wA+H5VfXPqE0mSFs6cp1yq6niSq4E7gWXAzVV1b5Lt/f07gb3ApcBB4P+ANy9cySdtJKd6FpHHN75aPjbw+BZNqn7qVLckaQz5SVFJaoSBLkmNMNAlqRFd+tDHUpIL6H2CdQ29nvgjwJ6q+spIC5OkBdLkm6JJ3gFcQe8yBZP94bX0Wi53V9W1o6pN3SQJvctODP5B/lK1+AvbmCSvAF7FU392n6yqO0Za2Gmg1UC/H/iVqnp8yvhy4N6q2jSayoan5cBL8nLgRuBrwDf6w2uBZwFvrapPj6q2YWk19JJcDzwb+ChPXUy9EfhaVf3ZqGobtiTPBKqqvjvqWk5oNdC/Cryiqh6YMn4+8Omq+uXRVDYcrQdekq8Al1TV4SnjG4G9VfWckRQ2JC2HXpL7q+rZ04wHuH/cF1NJ1gN/BbwU+B69y56cA/wLsGPq7+xia/Uc+tuBzyT5Gk9eNGw9vcC7emRVDc9fAy+bKfCAsQ48er+Xk9OMfwM4c5FrWQiXzhB6HwfuB8Y20IFHk2ypqi9NGb8QeHQUBQ3Zx4HrgSur6sfwxCXGX0vvFO8LRlhbm4FeVXckeTZPnpIIvYDYd+KHMOZaD7ybgX1JdvPkH+R19N4D+dDIqhqelkPvTcBNSc7myd/RdcAj/X3jblVVfXxwoJ8pu5O8Z0Q1PaHJUy6tS/JO4HX0VgRTA++WqnrfqGoblv5NVC7jqX+Q91TVgZEWNgT9O3rdBEwXem+tqrtGVduwJDmPgZ9dVT004pKGor/IeBj4CE/9t/cH9ML+daOqDQz0sdVy4J0uGg69lt+wXw5cxZMt0U/82wM+VFU/GmF5BrqWniTPAN5JrwtkdX/428AngWur6nujqm1YWg291t+wX+oM9DHUeuAluZNe18BHTqxa+6vZNwEvraqLRljeKWs59FrvUIKl3XJqoI+h0yDw7puptXS2feOi5dDrd5Y9p6qOTxlfDhyoqmeNprLhWOotpwb6GDoNAu/TwD/T+4P1rf7YufT+YF1UVS8bYXmnrOXQa/0N+6XeZ99k2+Jp4IEkf8H0gffgbN84Jl4P7AD+tX9cBXyL3htPI+0iGJJm2zKr6n1JPknvDfsX8uSbhlc28ob9km45dYU+hpL8HL3A2wr8fH/4ROBdu5Q+ijwMSX6L3huI/z3O55cH2aU0npZ6y6mB3pgkb66qD4+6jlOR5EtVtaX/+C3AnwC3Ai8H/smLqy1drb9hf8JSbTn1eujtefeoCxiCwU+7/hHw8qp6N71Av3I0JQ1PkmckuTbJV5Mc6399pT/2s6Ou7xTdAnwXeHFVrayqlcBL6F335BMjrWxI+ufLz+9/rQPO74+NnOfQx1CSe2baBZy7mLUskDP6p5XOoPe/yKMAVfW/SY7P/q1j4RZ6XUovnqZL6RPAOHcpbaiq6wYH+sd4bZKlePP4eZmt5TTJyFtOPeUyhpJ8C3gFvZXQU3YBX6iqX1z8qoYnyWHgJ/SOp4DfrKqHkjwd+HxV/foo6ztVLXcpnQYdSku65dQV+nj6FPD0qvry1B1JPrf45QxXVW2YYddPgFcvYikLpeUupdY7lJb0hfFcoUuL7HTqUmqtQ2mp99kb6NISMu5dSqdDh9JSbjk10KUlJMn/VNX6UddxspL8Z1X9Rv/xPno38zia5Czgi1X1q6OtsG2eQ5cWWeNdSk13KC31PnsDXVp85zJLl9LilzNUzwDuot+hlOS8gQ6lJdGrfYqWdMupp1ykRZbkQ8CHq+rz0+z7u6p6wwjKWlBJfgY4t6q+PupaTsVSbzk10CWpo6XeZ+9H/yWpu9cDK+n12T+c5GHgc8AzgdeOsjBwhS5JQ7EUWk4NdEkagqXQcmqXiyR1tNRbTg10SepuSbecGuiS1N2SvjCe59AlqRG2LUpSIwx0SWqEgS71Jakk7x/YvibJX46wJGleDHTpST8CfjfJqlEXIp0MA1160nFgF/Dnoy5EOhkGuvRUNwBX9q97LY0VA10aUFWPAB8F3jbqWqT5MtCln3Y9cBVw1qgLkebDQJemqKqH6d2Z5qpR1yLNh4EuTe/9gN0uGit+9F+SGuEKXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRvw/mUf4vZuy5xAAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "mixin_manifesto_df.groupby('N').agg({'f1':np.median}).plot.bar()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}