{ "cells": [ { "attachments": {}, "cell_type": "markdown", "id": "48fb6088", "metadata": {}, "source": [ "# 机器学习数学基础知识\n", "更新地址:https://github.com/fengdu78/WZU-machine-learning-course\n", "\n", "整理编译:黄海广 haiguang2000@wzu.edu.cn\n", "\n", "数据科学需要一定的数学基础,但仅仅做应用的话,如果时间不多,不用学太深,了解基本公式即可,遇到问题再查吧。\n", "\n", "\n", "\n", "线性代数建议参考资料为:\n", "\n", "[1] KOLTER Z. Linear Algebra Review and Reference[J]. Available Online Http, 2015.\n", "\n", "[2] 同济大学数学系.线性代数[M]. 北京:人民邮电出版社,2017.\n", "\n", "重点推荐第一个资料,这是斯坦福大学人工智能方向的课程的数学复习资料,建议学习,其翻译版本见:https://zhuanlan.zhihu.com/p/466410564\n", "\n", "\n", "概率论与数理统计建议参考资料为:\n", "\n", "[1] ARIAN MALEKI, TOM DO. Review of Probability Theory[J]. Stanford University, 2019.\n", "\n", "[2] 同济大学数学系.概率论与数理统计[M]. 北京:人民邮电出版社,2017.\n", "\n", "重点推荐第一个资料,这是斯坦福大学人工智能方向的课程的数学复习资料,建议学习,其翻译版本见:https://zhuanlan.zhihu.com/p/466416090\n" ] }, { "cell_type": "markdown", "id": "54fb2378", "metadata": {}, "source": [ "## 国内教材的数学知识整理\n", "以下是以前考研考博时候的数学笔记,难度应该在本科3年级左右。 " ] }, { "cell_type": "markdown", "id": "926b2b55", "metadata": {}, "source": [ "### 高等数学\n", "\n", "**1.导数定义:**\n", "\n", "导数和微分的概念\n", "\n", "$f'({{x}_{0}})=\\underset{\\Delta x\\to 0}{\\mathop{\\lim }}\\,\\frac{f({{x}_{0}}+\\Delta x)-f({{x}_{0}})}{\\Delta x}$ (1)\n", "\n", "或者:\n", "\n", "$f'({{x}_{0}})=\\underset{x\\to {{x}_{0}}}{\\mathop{\\lim }}\\,\\frac{f(x)-f({{x}_{0}})}{x-{{x}_{0}}}$ (2)\n", "\n", "**2.左右导数导数的几何意义和物理意义**\n", "\n", "函数$f(x)$在$x_0$处的左、右导数分别定义为:\n", "\n", "左导数:${{{f}'}_{-}}({{x}_{0}})=\\underset{\\Delta x\\to {{0}^{-}}}{\\mathop{\\lim }}\\,\\frac{f({{x}_{0}}+\\Delta x)-f({{x}_{0}})}{\\Delta x}=\\underset{x\\to x_{0}^{-}}{\\mathop{\\lim }}\\,\\frac{f(x)-f({{x}_{0}})}{x-{{x}_{0}}},(x={{x}_{0}}+\\Delta x)$\n", "\n", "右导数:${{{f}'}_{+}}({{x}_{0}})=\\underset{\\Delta x\\to {{0}^{+}}}{\\mathop{\\lim }}\\,\\frac{f({{x}_{0}}+\\Delta x)-f({{x}_{0}})}{\\Delta x}=\\underset{x\\to x_{0}^{+}}{\\mathop{\\lim }}\\,\\frac{f(x)-f({{x}_{0}})}{x-{{x}_{0}}}$\n", "\n", "**3.函数的可导性与连续性之间的关系**\n", "\n", "**Th1:** 函数$f(x)$在$x_0$处可微$\\Leftrightarrow f(x)$在$x_0$处可导\n", "\n", "**Th2:** 若函数在点$x_0$处可导,则$y=f(x)$在点$x_0$处连续,反之则不成立。即函数连续不一定可导。\n", "\n", "**Th3:** ${f}'({{x}_{0}})$存在$\\Leftrightarrow {{{f}'}_{-}}({{x}_{0}})={{{f}'}_{+}}({{x}_{0}})$\n", "\n", "**4.平面曲线的切线和法线**\n", "\n", "切线方程 : $y-{{y}_{0}}=f'({{x}_{0}})(x-{{x}_{0}})$\n", "法线方程:$y-{{y}_{0}}=-\\frac{1}{f'({{x}_{0}})}(x-{{x}_{0}}),f'({{x}_{0}})\\ne 0$\n", "\n", "**5.四则运算法则**\n", "\n", "设函数$u=u(x),v=v(x)$]在点$x$可导则\n", "\n", "(1) $(u\\pm v{)}'={u}'\\pm {v}'$ $d(u\\pm v)=du\\pm dv$\n", "\n", "(2)$(uv{)}'=u{v}'+v{u}'$ $d(uv)=udv+vdu$\n", "\n", "(3) $(\\frac{u}{v}{)}'=\\frac{v{u}'-u{v}'}{{{v}^{2}}}(v\\ne 0)$ $d(\\frac{u}{v})=\\frac{vdu-udv}{{{v}^{2}}}$\n", "\n", "**6.基本导数与微分表**\n", "\n", "(1) $y=c$(常数) ${y}'=0$ $dy=0$\n", "\n", "(2) $y={{x}^{\\alpha }}$($\\alpha $为实数) ${y}'=\\alpha {{x}^{\\alpha -1}}$ $dy=\\alpha {{x}^{\\alpha -1}}dx$\n", "\n", "(3) $y={{a}^{x}}$ ${y}'={{a}^{x}}\\ln a$ $dy={{a}^{x}}\\ln adx$\n", " 特例: $({{{e}}^{x}}{)}'={{{e}}^{x}}$ $d({{{e}}^{x}})={{{e}}^{x}}dx$\n", "\n", "(4) $y={{\\log }_{a}}x$ ${y}'=\\frac{1}{x\\ln a}$ \n", "\n", "$dy=\\frac{1}{x\\ln a}dx$\n", " 特例:$y=\\ln x$ $(\\ln x{)}'=\\frac{1}{x}$ $d(\\ln x)=\\frac{1}{x}dx$\n", "\n", "(5) $y=\\sin x$ \n", "\n", "${y}'=\\cos x$ $d(\\sin x)=\\cos xdx$\n", "\n", "(6) $y=\\cos x$ \n", "\n", "${y}'=-\\sin x$ $d(\\cos x)=-\\sin xdx$\n", "\n", "(7) $y=\\tan x$ \n", "\n", "${y}'=\\frac{1}{{{\\cos }^{2}}x}={{\\sec }^{2}}x$ $d(\\tan x)={{\\sec }^{2}}xdx$\n", "(8) $y=\\cot x$ ${y}'=-\\frac{1}{{{\\sin }^{2}}x}=-{{\\csc }^{2}}x$ $d(\\cot x)=-{{\\csc }^{2}}xdx$\n", "(9) $y=\\sec x$ ${y}'=\\sec x\\tan x$ \n", "\n", " $d(\\sec x)=\\sec x\\tan xdx$\n", "(10) $y=\\csc x$ ${y}'=-\\csc x\\cot x$ \n", "\n", "$d(\\csc x)=-\\csc x\\cot xdx$\n", "(11) $y=\\arcsin x$ \n", "\n", "${y}'=\\frac{1}{\\sqrt{1-{{x}^{2}}}}$ \n", "\n", "$d(\\arcsin x)=\\frac{1}{\\sqrt{1-{{x}^{2}}}}dx$\n", "\n", "(12) $y=\\arccos x$ \n", "\n", "${y}'=-\\frac{1}{\\sqrt{1-{{x}^{2}}}}$ $d(\\arccos x)=-\\frac{1}{\\sqrt{1-{{x}^{2}}}}dx$\n", "\n", "(13) $y=\\arctan x$ \n", "\n", "${y}'=\\frac{1}{1+{{x}^{2}}}$ $d(\\arctan x)=\\frac{1}{1+{{x}^{2}}}dx$\n", "\n", "(14) $y=\\operatorname{arc}\\cot x$ \n", "\n", "${y}'=-\\frac{1}{1+{{x}^{2}}}$ \n", "\n", "$d(\\operatorname{arc}\\cot x)=-\\frac{1}{1+{{x}^{2}}}dx$\n", "\n", "(15) $y=shx$ \n", "\n", "${y}'=chx$ $d(shx)=chxdx$\n", "\n", "(16) $y=chx$ \n", "\n", "${y}'=shx$ $d(chx)=shxdx$\n", "\n", "**7.复合函数,反函数,隐函数以及参数方程所确定的函数的微分法**\n", "\n", "(1) 反函数的运算法则: 设$y=f(x)$在点$x$的某邻域内单调连续,在点$x$处可导且${f}'(x)\\ne 0$,则其反函数在点$x$所对应的$y$处可导,并且有$\\frac{dy}{dx}=\\frac{1}{\\frac{dx}{dy}}$\n", "\n", "(2) 复合函数的运算法则:若$\\mu =\\varphi (x)$在点$x$可导,而$y=f(\\mu )$在对应点$\\mu $($\\mu =\\varphi (x)$)可导,则复合函数$y=f(\\varphi (x))$在点$x$可导,且${y}'={f}'(\\mu )\\cdot {\\varphi }'(x)$\n", "\n", "(3) 隐函数导数$\\frac{dy}{dx}$的求法一般有三种方法:\n", "\n", "1)方程两边对$x$求导,要记住$y$是$x$的函数,则$y$的函数是$x$的复合函数.例如$\\frac{1}{y}$,${{y}^{2}}$,$ln y$,${{{e}}^{y}}$等均是$x$的复合函数.\n", "\n", "对$x$求导应按复合函数连锁法则做.\n", "\n", "2)公式法.由$F(x,y)=0$知 $\\frac{dy}{dx}=-\\frac{{{{{F}'}}_{x}}(x,y)}{{{{{F}'}}_{y}}(x,y)}$,其中,${{{F}'}_{x}}(x,y)$,\n", "${{{F}'}_{y}}(x,y)$分别表示$F(x,y)$对$x$和$y$的偏导数\n", "\n", "3)利用微分形式不变性\n", "\n", "**8.常用高阶导数公式**\n", "\n", "(1)$({{a}^{x}}){{\\,}^{(n)}}={{a}^{x}}{{\\ln }^{n}}a\\quad (a>{0})\\quad \\quad ({{{e}}^{x}}){{\\,}^{(n)}}={e}{{\\,}^{x}}$\n", "\n", "(2)$(\\sin kx{)}{{\\,}^{(n)}}={{k}^{n}}\\sin (kx+n\\cdot \\frac{\\pi }{{2}})$\n", "\n", "(3)$(\\cos kx{)}{{\\,}^{(n)}}={{k}^{n}}\\cos (kx+n\\cdot \\frac{\\pi }{{2}})$\n", "\n", "(4)$({{x}^{m}}){{\\,}^{(n)}}=m(m-1)\\cdots (m-n+1){{x}^{m-n}}$\n", "\n", "(5)$(\\ln x){{\\,}^{(n)}}={{(-{1})}^{(n-{1})}}\\frac{(n-{1})!}{{{x}^{n}}}$\n", "\n", "(6)莱布尼兹公式:若$u(x)\\,,v(x)$均$n$阶可导,则\n", " ${{(uv)}^{(n)}}=\\sum\\limits_{i={0}}^{n}{c_{n}^{i}{{u}^{(i)}}{{v}^{(n-i)}}}$,其中${{u}^{({0})}}=u$,${{v}^{({0})}}=v$\n", "\n", "**9.微分中值定理,泰勒公式**\n", "\n", "**Th1:**(费马定理)\n", "\n", "若函数$f(x)$满足条件:\n", "\n", "(1)函数$f(x)$在${{x}_{0}}$的某邻域内有定义,并且在此邻域内恒有\n", "$f(x)\\le f({{x}_{0}})$或$f(x)\\ge f({{x}_{0}})$,\n", "\n", "(2) $f(x)$在${{x}_{0}}$处可导,则有 ${f}'({{x}_{0}})=0$\n", "\n", "**Th2:**(罗尔定理) \n", "\n", "设函数$f(x)$满足条件:\n", "\n", "(1)在闭区间$[a,b]$上连续;\n", "\n", "(2)在$(a,b)$内可导;\n", "\n", "(3)$f(a)=f(b)$;\n", "\n", "则在$(a,b)$内一存在个$\\xi $,使 ${f}'(\\xi )=0$\n", "\n", "**Th3:** (拉格朗日中值定理) \n", "\n", "设函数$f(x)$满足条件:\n", "(1)在$[a,b]$上连续;\n", "\n", "(2)在$(a,b)$内可导;\n", "\n", "则在$(a,b)$内一存在个$\\xi $,使 $\\frac{f(b)-f(a)}{b-a}={f}'(\\xi )$\n", "\n", "**Th4:** (柯西中值定理)\n", "\n", " 设函数$f(x)$,$g(x)$满足条件:\n", " \n", "(1) 在$[a,b]$上连续;\n", "\n", "(2) 在$(a,b)$内可导且${f}'(x)$,${g}'(x)$均存在,且${g}'(x)\\ne 0$\n", "\n", "则在$(a,b)$内存在一个$\\xi $,使 $\\frac{f(b)-f(a)}{g(b)-g(a)}=\\frac{{f}'(\\xi )}{{g}'(\\xi )}$\n", "\n", "**10.洛必达法则**\n", "\n", "法则Ⅰ ($\\frac{0}{0}$型)\n", "\n", "设函数$f\\left( x \\right),g\\left( x \\right)$满足条件:\n", "\n", " $\\underset{x\\to {{x}_{0}}}{\\mathop{\\lim }}\\,f\\left( x \\right)=0,\\underset{x\\to {{x}_{0}}}{\\mathop{\\lim }}\\,g\\left( x \\right)=0$; \n", "\n", "$f\\left( x \\right),g\\left( x \\right)$在${{x}_{0}}$的邻域内可导,(在${{x}_{0}}$处可除外)且${g}'\\left( x \\right)\\ne 0$;\n", "\n", "$\\underset{x\\to {{x}_{0}}}{\\mathop{\\lim }}\\,\\frac{{f}'\\left( x \\right)}{{g}'\\left( x \\right)}$存在(或$\\infty $)。\n", "\n", "则:\n", "$\\underset{x\\to {{x}_{0}}}{\\mathop{\\lim }}\\,\\frac{f\\left( x \\right)}{g\\left( x \\right)}=\\underset{x\\to {{x}_{0}}}{\\mathop{\\lim }}\\,\\frac{{f}'\\left( x \\right)}{{g}'\\left( x \\right)}$。\n", "法则${{I}'}$ ($\\frac{0}{0}$型)设函数$f\\left( x \\right),g\\left( x \\right)$满足条件:\n", "$\\underset{x\\to \\infty }{\\mathop{\\lim }}\\,f\\left( x \\right)=0,\\underset{x\\to \\infty }{\\mathop{\\lim }}\\,g\\left( x \\right)=0$;\n", "\n", "存在一个$X>0$,当$\\left| x \\right|>X$时,$f\\left( x \\right),g\\left( x \\right)$可导,且${g}'\\left( x \\right)\\ne 0$;$\\underset{x\\to {{x}_{0}}}{\\mathop{\\lim }}\\,\\frac{{f}'\\left( x \\right)}{{g}'\\left( x \\right)}$存在(或$\\infty $)。\n", "\n", "则:\n", "$\\underset{x\\to {{x}_{0}}}{\\mathop{\\lim }}\\,\\frac{f\\left( x \\right)}{g\\left( x \\right)}=\\underset{x\\to {{x}_{0}}}{\\mathop{\\lim }}\\,\\frac{{f}'\\left( x \\right)}{{g}'\\left( x \\right)}$\n", "法则Ⅱ($\\frac{\\infty }{\\infty }$型) 设函数$f\\left( x \\right),g\\left( x \\right)$\n", "\n", "满足条件:\n", "$\\underset{x\\to {{x}_{0}}}{\\mathop{\\lim }}\\,f\\left( x \\right)=\\infty ,\\underset{x\\to {{x}_{0}}}{\\mathop{\\lim }}\\,g\\left( x \\right)=\\infty $; $f\\left( x \\right),g\\left( x \\right)$在${{x}_{0}}$ 的邻域内可导(在${{x}_{0}}$处可除外)且${g}'\\left( x \\right)\\ne 0$;$\\underset{x\\to {{x}_{0}}}{\\mathop{\\lim }}\\,\\frac{{f}'\\left( x \\right)}{{g}'\\left( x \\right)}$存在(或$\\infty $)。则\n", "$\\underset{x\\to {{x}_{0}}}{\\mathop{\\lim }}\\,\\frac{f\\left( x \\right)}{g\\left( x \\right)}=\\underset{x\\to {{x}_{0}}}{\\mathop{\\lim }}\\,\\frac{{f}'\\left( x \\right)}{{g}'\\left( x \\right)}.$同理法则${I{I}'}$($\\frac{\\infty }{\\infty }$型)仿法则${{I}'}$可写出。\n", "\n", "**11.泰勒公式**\n", "\n", "设函数$f(x)$在点${{x}_{0}}$处的某邻域内具有$n+1$阶导数,则对该邻域内异于${{x}_{0}}$的任意点$x$,在${{x}_{0}}$与$x$之间至少存在\n", "一个$\\xi $,使得:\n", "\n", "$f(x)=f({{x}_{0}})+{f}'({{x}_{0}})(x-{{x}_{0}})+\\frac{1}{2!}{f}''({{x}_{0}}){{(x-{{x}_{0}})}^{2}}+\\cdots $ \n", "$+\\frac{{{f}^{(n)}}({{x}_{0}})}{n!}{{(x-{{x}_{0}})}^{n}}+{{R}_{n}}(x)$\n", " 其中 ${{R}_{n}}(x)=\\frac{{{f}^{(n+1)}}(\\xi )}{(n+1)!}{{(x-{{x}_{0}})}^{n+1}}$称为$f(x)$在点${{x}_{0}}$处的$n$阶泰勒余项。\n", "\n", "令${{x}_{0}}=0$,则$n$阶泰勒公式\n", "$f(x)=f(0)+{f}'(0)x+\\frac{1}{2!}{f}''(0){{x}^{2}}+\\cdots +\\frac{{{f}^{(n)}}(0)}{n!}{{x}^{n}}+{{R}_{n}}(x)$……(1)\n", "其中 ${{R}_{n}}(x)=\\frac{{{f}^{(n+1)}}(\\xi )}{(n+1)!}{{x}^{n+1}}$,$\\xi $在0与$x$之间.(1)式称为麦克劳林公式\n", "\n", "**常用五种函数在${{x}_{0}}=0$处的泰勒公式**\n", "\n", "(1) ${{{e}}^{x}}=1+x+\\frac{1}{2!}{{x}^{2}}+\\cdots +\\frac{1}{n!}{{x}^{n}}+\\frac{{{x}^{n+1}}}{(n+1)!}{{e}^{\\xi }}$ \n", "\n", "或 $=1+x+\\frac{1}{2!}{{x}^{2}}+\\cdots +\\frac{1}{n!}{{x}^{n}}+o({{x}^{n}})$\n", "\n", "(2) $\\sin x=x-\\frac{1}{3!}{{x}^{3}}+\\cdots +\\frac{{{x}^{n}}}{n!}\\sin \\frac{n\\pi }{2}+\\frac{{{x}^{n+1}}}{(n+1)!}\\sin (\\xi +\\frac{n+1}{2}\\pi )$\n", "\n", "或 $=x-\\frac{1}{3!}{{x}^{3}}+\\cdots +\\frac{{{x}^{n}}}{n!}\\sin \\frac{n\\pi }{2}+o({{x}^{n}})$\n", "\n", "(3) $\\cos x=1-\\frac{1}{2!}{{x}^{2}}+\\cdots +\\frac{{{x}^{n}}}{n!}\\cos \\frac{n\\pi }{2}+\\frac{{{x}^{n+1}}}{(n+1)!}\\cos (\\xi +\\frac{n+1}{2}\\pi )$\n", "\n", "或 $=1-\\frac{1}{2!}{{x}^{2}}+\\cdots +\\frac{{{x}^{n}}}{n!}\\cos \\frac{n\\pi }{2}+o({{x}^{n}})$\n", "\n", "(4) $\\ln (1+x)=x-\\frac{1}{2}{{x}^{2}}+\\frac{1}{3}{{x}^{3}}-\\cdots +{{(-1)}^{n-1}}\\frac{{{x}^{n}}}{n}+\\frac{{{(-1)}^{n}}{{x}^{n+1}}}{(n+1){{(1+\\xi )}^{n+1}}}$\n", "\n", "或 $=x-\\frac{1}{2}{{x}^{2}}+\\frac{1}{3}{{x}^{3}}-\\cdots +{{(-1)}^{n-1}}\\frac{{{x}^{n}}}{n}+o({{x}^{n}})$\n", "\n", "(5) ${{(1+x)}^{m}}=1+mx+\\frac{m(m-1)}{2!}{{x}^{2}}+\\cdots +\\frac{m(m-1)\\cdots (m-n+1)}{n!}{{x}^{n}}$ \n", "$+\\frac{m(m-1)\\cdots (m-n+1)}{(n+1)!}{{x}^{n+1}}{{(1+\\xi )}^{m-n-1}}$ \n", "\n", "或 ${{(1+x)}^{m}}=1+mx+\\frac{m(m-1)}{2!}{{x}^{2}}+\\cdots $ $+\\frac{m(m-1)\\cdots (m-n+1)}{n!}{{x}^{n}}+o({{x}^{n}})$\n", "\n", "**12.函数单调性的判断**\n", "\n", "**Th1:** 设函数$f(x)$在$(a,b)$区间内可导,如果对$\\forall x\\in (a,b)$,都有$f\\,'(x)>0$(或$f\\,'(x)<0$),则函数$f(x)$在$(a,b)$内是单调增加的(或单调减少)\n", "\n", "**Th2:** (取极值的必要条件)设函数$f(x)$在${{x}_{0}}$处可导,且在${{x}_{0}}$处取极值,则$f\\,'({{x}_{0}})=0$。\n", "\n", "**Th3:** (取极值的第一充分条件)设函数$f(x)$在${{x}_{0}}$的某一邻域内可微,且$f\\,'({{x}_{0}})=0$(或$f(x)$在${{x}_{0}}$处连续,但$f\\,'({{x}_{0}})$不存在。)\n", "\n", "(1)若当$x$经过${{x}_{0}}$时,$f\\,'(x)$由“+”变“-”,则$f({{x}_{0}})$为极大值;\n", "\n", "(2)若当$x$经过${{x}_{0}}$时,$f\\,'(x)$由“-”变“+”,则$f({{x}_{0}})$为极小值;\n", "\n", "(3)若$f\\,'(x)$经过$x={{x}_{0}}$的两侧不变号,则$f({{x}_{0}})$不是极值。\n", "\n", "**Th4:** (取极值的第二充分条件)设$f(x)$在点${{x}_{0}}$处有$f''(x)\\ne 0$,且$f\\,'({{x}_{0}})=0$,则 当$f'\\,'({{x}_{0}})<0$时,\n", "$f({{x}_{0}})$为极大值;\n", "\n", "当$f'\\,'({{x}_{0}})>0$时,$f({{x}_{0}})$为极小值。\n", "\n", "注:如果$f'\\,'({{x}_{0}})<0$,此方法失效。\n", "\n", "**13.渐近线的求法**\n", "(1)水平渐近线 若$\\underset{x\\to +\\infty }{\\mathop{\\lim }}\\,f(x)=b$,或$\\underset{x\\to -\\infty }{\\mathop{\\lim }}\\,f(x)=b$,则\n", "\n", "$y=b$称为函数$y=f(x)$的水平渐近线。\n", "\n", "(2)铅直渐近线 若$\\underset{x\\to x_{0}^{-}}{\\mathop{\\lim }}\\,f(x)=\\infty $,或$\\underset{x\\to x_{0}^{+}}{\\mathop{\\lim }}\\,f(x)=\\infty $,则\n", "\n", "$x={{x}_{0}}$称为$y=f(x)$的铅直渐近线。\n", "\n", "(3)斜渐近线 若$a=\\underset{x\\to \\infty }{\\mathop{\\lim }}\\,\\frac{f(x)}{x},\\quad b=\\underset{x\\to \\infty }{\\mathop{\\lim }}\\,[f(x)-ax]$,则\n", "$y=ax+b$称为$y=f(x)$的斜渐近线。\n", "\n", "**14.函数凹凸性的判断**\n", "\n", "**Th1:** (凹凸性的判别定理)若在I上$f''(x)<0$(或$f''(x)>0$),则$f(x)$在I上是凸的(或凹的)。\n", "\n", "**Th2:** (拐点的判别定理1)若在${{x}_{0}}$处$f''(x)=0$,(或$f''(x)$不存在),当$x$变动经过${{x}_{0}}$时,$f''(x)$变号,则$({{x}_{0}},f({{x}_{0}}))$为拐点。\n", "\n", "**Th3:** (拐点的判别定理2)设$f(x)$在${{x}_{0}}$点的某邻域内有三阶导数,且$f''(x)=0$,$f'''(x)\\ne 0$,则$({{x}_{0}},f({{x}_{0}}))$为拐点。\n", "\n", "**15.弧微分**\n", "\n", "$dS=\\sqrt{1+y{{'}^{2}}}dx$\n", "\n", "**16.曲率**\n", "\n", "曲线$y=f(x)$在点$(x,y)$处的曲率$k=\\frac{\\left| y'' \\right|}{{{(1+y{{'}^{2}})}^{\\tfrac{3}{2}}}}$。\n", "对于参数方程$\\left\\{ \\begin{align} & x=\\varphi (t) \\\\ & y=\\psi (t) \\\\ \\end{align} \\right.,$$k=\\frac{\\left| \\varphi '(t)\\psi ''(t)-\\varphi ''(t)\\psi '(t) \\right|}{{{[\\varphi {{'}^{2}}(t)+\\psi {{'}^{2}}(t)]}^{\\tfrac{3}{2}}}}$。\n", "\n", "**17.曲率半径**\n", "\n", "曲线在点$M$处的曲率$k(k\\ne 0)$与曲线在点$M$处的曲率半径$\\rho $有如下关系:$\\rho =\\frac{1}{k}$。" ] }, { "cell_type": "markdown", "id": "89502fd9", "metadata": {}, "source": [ "### 线性代数\n", "\n", "#### 行列式\n", "\n", "**1.行列式按行(列)展开定理**\n", "\n", "(1) 设$A = ( a_{{ij}} )_{n \\times n}$,则:$a_{i1}A_{j1} +a_{i2}A_{j2} + \\cdots + a_{{in}}A_{{jn}} = \\begin{cases}|A|,i=j\\\\ 0,i \\neq j\\end{cases}$\n", "\n", "\n", "或$a_{1i}A_{1j} + a_{2i}A_{2j} + \\cdots + a_{{ni}}A_{{nj}} = \\begin{cases}|A|,i=j\\\\ 0,i \\neq j\\end{cases}$即 $AA^{*} = A^{*}A = \\left| A \\right|E,$其中:$A^{*} = \\begin{pmatrix} A_{11} & A_{12} & \\ldots & A_{1n} \\\\ A_{21} & A_{22} & \\ldots & A_{2n} \\\\ \\ldots & \\ldots & \\ldots & \\ldots \\\\ A_{n1} & A_{n2} & \\ldots & A_{{nn}} \\\\ \\end{pmatrix} = (A_{{ji}}) = {(A_{{ij}})}^{T}$\n", "\n", "$D_{n} = \\begin{vmatrix} 1 & 1 & \\ldots & 1 \\\\ x_{1} & x_{2} & \\ldots & x_{n} \\\\ \\ldots & \\ldots & \\ldots & \\ldots \\\\ x_{1}^{n - 1} & x_{2}^{n - 1} & \\ldots & x_{n}^{n - 1} \\\\ \\end{vmatrix} = \\prod_{1 \\leq j < i \\leq n}^{}\\,(x_{i} - x_{j})$\n", "\n", "(2) 设$A,B$为$n$阶方阵,则$\\left| {AB} \\right| = \\left| A \\right|\\left| B \\right| = \\left| B \\right|\\left| A \\right| = \\left| {BA} \\right|$,但$\\left| A \\pm B \\right| = \\left| A \\right| \\pm \\left| B \\right|$不一定成立。\n", "\n", "(3) $\\left| {kA} \\right| = k^{n}\\left| A \\right|$,$A$为$n$阶方阵。\n", "\n", "(4) 设$A$为$n$阶方阵,$|A^{T}| = |A|;|A^{- 1}| = |A|^{- 1}$(若$A$可逆),$|A^{*}| = |A|^{n - 1}$\n", "\n", "$n \\geq 2$\n", "\n", "(5) $\\left| \\begin{matrix} & {A\\quad O} \\\\ & {O\\quad B} \\\\ \\end{matrix} \\right| = \\left| \\begin{matrix} & {A\\quad C} \\\\ & {O\\quad B} \\\\ \\end{matrix} \\right| = \\left| \\begin{matrix} & {A\\quad O} \\\\ & {C\\quad B} \\\\ \\end{matrix} \\right| =| A||B|$\n", ",$A,B$为方阵,但$\\left| \\begin{matrix} {O} & A_{m \\times m} \\\\ B_{n \\times n} & { O} \\\\ \\end{matrix} \\right| = ({- 1)}^{{mn}}|A||B|$ 。\n", "\n", "(6) 范德蒙行列式$D_{n} = \\begin{vmatrix} 1 & 1 & \\ldots & 1 \\\\ x_{1} & x_{2} & \\ldots & x_{n} \\\\ \\ldots & \\ldots & \\ldots & \\ldots \\\\ x_{1}^{n - 1} & x_{2}^{n 1} & \\ldots & x_{n}^{n - 1} \\\\ \\end{vmatrix} = \\prod_{1 \\leq j < i \\leq n}^{}\\,(x_{i} - x_{j})$\n", "\n", "设$A$是$n$阶方阵,$\\lambda_{i}(i = 1,2\\cdots,n)$是$A$的$n$个特征值,则\n", "$|A| = \\prod_{i = 1}^{n}\\lambda_{i}$\n", "\n", "#### 矩阵\n", "\n", "矩阵:$m \\times n$个数$a_{{ij}}$排成$m$行$n$列的表格$\\begin{bmatrix} a_{11}\\quad a_{12}\\quad\\cdots\\quad a_{1n} \\\\ a_{21}\\quad a_{22}\\quad\\cdots\\quad a_{2n} \\\\ \\quad\\cdots\\cdots\\cdots\\cdots\\cdots \\\\ a_{m1}\\quad a_{m2}\\quad\\cdots\\quad a_{{mn}} \\\\ \\end{bmatrix}$ 称为矩阵,简记为$A$,或者$\\left( a_{{ij}} \\right)_{m \\times n}$ 。若$m = n$,则称$A$是$n$阶矩阵或$n$阶方阵。\n", "\n", "**矩阵的线性运算**\n", "\n", "**1.矩阵的加法**\n", "\n", "设$A = (a_{{ij}}),B = (b_{{ij}})$是两个$m \\times n$矩阵,则$m \\times n$ 矩阵$C = c_{{ij}}) = a_{{ij}} + b_{{ij}}$称为矩阵$A$与$B$的和,记为$A + B = C$ 。\n", "\n", "**2.矩阵的数乘**\n", "\n", "设$A = (a_{{ij}})$是$m \\times n$矩阵,$k$是一个常数,则$m \\times n$矩阵$(ka_{{ij}})$称为数$k$与矩阵$A$的数乘,记为${kA}$。\n", "\n", "**3.矩阵的乘法**\n", "\n", "设$A = (a_{{ij}})$是$m \\times n$矩阵,$B = (b_{{ij}})$是$n \\times s$矩阵,那么$m \\times s$矩阵$C = (c_{{ij}})$,其中$c_{{ij}} = a_{i1}b_{1j} + a_{i2}b_{2j} + \\cdots + a_{{in}}b_{{nj}} = \\sum_{k =1}^{n}{a_{{ik}}b_{{kj}}}$称为${AB}$的乘积,记为$C = AB$ 。\n", "\n", "**4.** $\\mathbf{A}^{\\mathbf{T}}$**、**$\\mathbf{A}^{\\mathbf{-1}}$**、**$\\mathbf{A}^{\\mathbf{*}}$**三者之间的关系**\n", "\n", "(1) ${(A^{T})}^{T} = A,{(AB)}^{T} = B^{T}A^{T},{(kA)}^{T} = kA^{T},{(A \\pm B)}^{T} = A^{T} \\pm B^{T}$\n", "\n", "(2) $\\left( A^{- 1} \\right)^{- 1} = A,\\left( {AB} \\right)^{- 1} = B^{- 1}A^{- 1},\\left( {kA} \\right)^{- 1} = \\frac{1}{k}A^{- 1},$\n", "\n", "但 ${(A \\pm B)}^{- 1} = A^{- 1} \\pm B^{- 1}$不一定成立。\n", "\n", "(3) $\\left( A^{*} \\right)^{*} = |A|^{n - 2}\\ A\\ \\ (n \\geq 3)$,$\\left({AB} \\right)^{*} = B^{*}A^{*},$ $\\left( {kA} \\right)^{*} = k^{n -1}A^{*}{\\ \\ }\\left( n \\geq 2 \\right)$\n", "\n", "但$\\left( A \\pm B \\right)^{*} = A^{*} \\pm B^{*}$不一定成立。\n", "\n", "(4) ${(A^{- 1})}^{T} = {(A^{T})}^{- 1},\\ \\left( A^{- 1} \\right)^{*} ={(AA^{*})}^{- 1},{(A^{*})}^{T} = \\left( A^{T} \\right)^{*}$\n", "\n", "**5.有关**$\\mathbf{A}^{\\mathbf{*}}$**的结论**\n", "\n", "(1) $AA^{*} = A^{*}A = |A|E$\n", "\n", "(2) $|A^{*}| = |A|^{n - 1}\\ (n \\geq 2),\\ \\ \\ \\ {(kA)}^{*} = k^{n -1}A^{*},{{\\ \\ }\\left( A^{*} \\right)}^{*} = |A|^{n - 2}A(n \\geq 3)$\n", "\n", "(3) 若$A$可逆,则$A^{*} = |A|A^{- 1},{(A^{*})}^{*} = \\frac{1}{|A|}A$\n", "\n", "(4) 若$A$为$n$阶方阵,则:\n", "\n", "$r(A^*)=\\begin{cases}n,\\quad r(A)=n\\\\ 1,\\quad r(A)=n-1\\\\ 0,\\quad r(A) 0),A^{T},A^{- 1},A^{*}$正定;$|A| >0$,$A$可逆;$a_{{ii}} > 0$,且$|A_{{ii}}| > 0$\n", "\n", "$A$,$B$正定$\\Rightarrow A +B$正定,但${AB}$,${BA}$不一定正定\n", "\n", "$A$正定$\\Leftrightarrow f(x) = x^{T}{Ax} > 0,\\forall x \\neq 0$\n", "\n", "$\\Leftrightarrow A$的各阶顺序主子式全大于零\n", "\n", "$\\Leftrightarrow A$的所有特征值大于零\n", "\n", "$\\Leftrightarrow A$的正惯性指数为$n$\n", "\n", "$\\Leftrightarrow$存在可逆阵$P$使$A = P^{T}P$\n", "\n", "$\\Leftrightarrow$存在正交矩阵$Q$,使$Q^{T}{AQ} = Q^{- 1}{AQ} =\\begin{pmatrix} \\lambda_{1} & & \\\\ \\begin{matrix} & \\\\ & \\\\ \\end{matrix} &\\ddots & \\\\ & & \\lambda_{n} \\\\ \\end{pmatrix},$\n", "\n", "其中$\\lambda_{i} > 0,i = 1,2,\\cdots,n.$正定$\\Rightarrow {kA}(k >0),A^{T},A^{- 1},A^{*}$正定; $|A| > 0,A$可逆;$a_{{ii}} >0$,且$|A_{{ii}}| > 0$ 。" ] }, { "cell_type": "markdown", "id": "b187e113", "metadata": {}, "source": [ "### 概率论和数理统计\n", "\n", "#### 随机事件和概率\n", "\n", "**1.事件的关系与运算**\n", "\n", "(1) 子事件:$A \\subset B$,若$A$发生,则$B$发生。\n", "\n", "(2) 相等事件:$A = B$,即$A \\subset B$,且$B \\subset A$ 。\n", "\n", "(3) 和事件:$A\\bigcup B$(或$A + B$),$A$与$B$中至少有一个发生。\n", "\n", "(4) 差事件:$A - B$,$A$发生但$B$不发生。\n", "\n", "(5) 积事件:$A\\bigcap B$(或${AB}$),$A$与$B$同时发生。\n", "\n", "(6) 互斥事件(互不相容):$A\\bigcap B$=$\\varnothing$。\n", "\n", "(7) 互逆事件(对立事件):\n", "$A\\bigcap B=\\varnothing ,A\\bigcup B=\\Omega ,A=\\bar{B},B=\\bar{A}$\n", "\n", "**2.运算律**\n", "\n", "(1) 交换律:$A\\bigcup B=B\\bigcup A,A\\bigcap B=B\\bigcap A$\n", "\n", "(2) 结合律:$(A\\bigcup B)\\bigcup C=A\\bigcup (B\\bigcup C)$\n", "\n", "(3) 分配律:$(A\\bigcap B)\\bigcap C=A\\bigcap (B\\bigcap C)$\n", "\n", "**3.德$\\centerdot $摩根律**\n", "\n", "$\\overline{A\\bigcup B}=\\bar{A}\\bigcap \\bar{B}$ $\\overline{A\\bigcap B}=\\bar{A}\\bigcup \\bar{B}$\n", "\n", "**4.完全事件组** \n", "\n", "${{A}_{1}}{{A}_{2}}\\cdots {{A}_{n}}$两两互斥,且和事件为必然事件,即${{A}_{i}}\\bigcap {{A}_{j}}=\\varnothing, i\\ne j ,\\underset{i=1}{\\overset{n}{\\mathop \\bigcup }}\\,=\\Omega $\n", "\n", "**5.概率的基本公式**\n", "(1)条件概率:\n", "\n", " $P(B|A)=\\frac{P(AB)}{P(A)}$,表示$A$发生的条件下,$B$发生的概率。\n", " \n", "(2)全概率公式:\n", "\n", "$P(A)=\\sum\\limits_{i=1}^{n}{P(A|{{B}_{i}})P({{B}_{i}}),{{B}_{i}}{{B}_{j}}}=\\varnothing ,i\\ne j,\\underset{i=1}{\\overset{n}{\\mathop{\\bigcup }}}\\,{{B}_{i}}=\\Omega $\n", "(3) Bayes公式:\n", "\n", "$P({{B}_{j}}|A)=\\frac{P(A|{{B}_{j}})P({{B}_{j}})}{\\sum\\limits_{i=1}^{n}{P(A|{{B}_{i}})P({{B}_{i}})}},j=1,2,\\cdots ,n$\n", "注:上述公式中事件${{B}_{i}}$的个数可为可列个。\n", "\n", "(4)乘法公式:\n", "\n", "$P({{A}_{1}}{{A}_{2}})=P({{A}_{1}})P({{A}_{2}}|{{A}_{1}})=P({{A}_{2}})P({{A}_{1}}|{{A}_{2}})$\n", "$P({{A}_{1}}{{A}_{2}}\\cdots {{A}_{n}})=P({{A}_{1}})P({{A}_{2}}|{{A}_{1}})P({{A}_{3}}|{{A}_{1}}{{A}_{2}})\\cdots P({{A}_{n}}|{{A}_{1}}{{A}_{2}}\\cdots {{A}_{n-1}})$\n", "\n", "**6.事件的独立性**\n", "\n", "(1)$A$与$B$相互独立$\\Leftrightarrow P(AB)=P(A)P(B)$\n", "\n", "(2)$A$,$B$,$C$两两独立\n", "$\\Leftrightarrow P(AB)=P(A)P(B)$;$P(BC)=P(B)P(C)$ ;$P(AC)=P(A)P(C)$;\n", "\n", "(3)$A$,$B$,$C$相互独立\n", "$\\Leftrightarrow P(AB)=P(A)P(B)$; $P(BC)=P(B)P(C)$ ;\n", "$P(AC)=P(A)P(C)$ ; $P(ABC)=P(A)P(B)P(C)$\n", "\n", "**7.独立重复试验** \n", "\n", "将某试验独立重复$n$次,若每次实验中事件A发生的概率为$p$,则$n$次试验中$A$发生$k$次的概率为:\n", "$P(X=k)=C_{n}^{k}{{p}^{k}}{{(1-p)}^{n-k}}$\n", "\n", "**8.重要公式与结论**\n", "\n", "$(1)P(\\bar{A})=1-P(A)$\n", "\n", "$(2)P(A\\bigcup B)=P(A)+P(B)-P(AB)$\n", " $P(A\\bigcup B\\bigcup C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)$\n", " \n", "$(3)P(A-B)=P(A)-P(AB)$\n", "\n", "$(4)P(A\\bar{B})=P(A)-P(AB),P(A)=P(AB)+P(A\\bar{B}),$\n", "\n", " $P(A\\bigcup B)=P(A)+P(\\bar{A}B)=P(AB)+P(A\\bar{B})+P(\\bar{A}B)$\n", " \n", "(5)条件概率$P(\\centerdot |B)$满足概率的所有性质,\n", "例如:. $P({{\\bar{A}}_{1}}|B)=1-P({{A}_{1}}|B)$\n", "$P({{A}_{1}}\\bigcup {{A}_{2}}|B)=P({{A}_{1}}|B)+P({{A}_{2}}|B)-P({{A}_{1}}{{A}_{2}}|B)$\n", "$P({{A}_{1}}{{A}_{2}}|B)=P({{A}_{1}}|B)P({{A}_{2}}|{{A}_{1}}B)$\n", "\n", "(6)若${{A}_{1}},{{A}_{2}},\\cdots ,{{A}_{n}}$相互独立,则$P(\\bigcap\\limits_{i=1}^{n}{{{A}_{i}}})=\\prod\\limits_{i=1}^{n}{P({{A}_{i}})},$\n", " $P(\\bigcup\\limits_{i=1}^{n}{{{A}_{i}}})=\\prod\\limits_{i=1}^{n}{(1-P({{A}_{i}}))}$\n", "\n", "(7)互斥、互逆与独立性之间的关系:\n", "$A$与$B$互逆$\\Rightarrow$ $A$与$B$互斥,但反之不成立,$A$与$B$互斥(或互逆)且均非零概率事件$\\Rightarrow $$A$与$B$不独立.\n", "\n", "(8)若${{A}_{1}},{{A}_{2}},\\cdots ,{{A}_{m}},{{B}_{1}},{{B}_{2}},\\cdots ,{{B}_{n}}$相互独立,则$f({{A}_{1}},{{A}_{2}},\\cdots ,{{A}_{m}})$与$g({{B}_{1}},{{B}_{2}},\\cdots ,{{B}_{n}})$也相互独立,其中$f(\\centerdot ),g(\\centerdot )$分别表示对相应事件做任意事件运算后所得的事件,另外,概率为1(或0)的事件与任何事件相互独立.\n", "\n", "\n", "\n", "#### 随机变量及其概率分布\n", "\n", "**1.随机变量及概率分布**\n", "\n", "取值带有随机性的变量,严格地说是定义在样本空间上,取值于实数的函数称为随机变量,概率分布通常指分布函数或分布律\n", "\n", "**2.分布函数的概念与性质**\n", "\n", "定义: $F(x) = P(X \\leq x), - \\infty < x < + \\infty$\n", "\n", "性质:(1)$0 \\leq F(x) \\leq 1$ \n", "\n", "(2) $F(x)$单调不减\n", "\n", "(3) 右连续$F(x + 0) = F(x)$ \n", "\n", "(4) $F( - \\infty) = 0,F( + \\infty) = 1$\n", "\n", "**3.离散型随机变量的概率分布**\n", "\n", "$P(X = x_{i}) = p_{i},i = 1,2,\\cdots,n,\\cdots\\quad\\quad p_{i} \\geq 0,\\sum_{i =1}^{\\infty}p_{i} = 1$\n", "\n", "**4.连续型随机变量的概率密度**\n", "\n", "概率密度$f(x)$;非负可积,且:\n", "\n", "(1)$f(x) \\geq 0,$ \n", "\n", "(2)$\\int_{- \\infty}^{+\\infty}{f(x){dx} = 1}$ \n", "\n", "(3)$x$为$f(x)$的连续点,则:\n", "\n", "$f(x) = F'(x)$分布函数$F(x) = \\int_{- \\infty}^{x}{f(t){dt}}$\n", "\n", "**5.常见分布**\n", "\n", "(1) 0-1分布:$P(X = k) = p^{k}{(1 - p)}^{1 - k},k = 0,1$\n", "\n", "(2) 二项分布:$B(n,p)$: $P(X = k) = C_{n}^{k}p^{k}{(1 - p)}^{n - k},k =0,1,\\cdots,n$\n", "\n", "(3) **Poisson**分布:$p(\\lambda)$: $P(X = k) = \\frac{\\lambda^{k}}{k!}e^{-\\lambda},\\lambda > 0,k = 0,1,2\\cdots$\n", "\n", "(4) 均匀分布$U(a,b)$:$f(x) = \\{ \\begin{matrix} & \\frac{1}{b - a},a < x< b \\\\ & 0, \\\\ \\end{matrix} $\n", "\n", "(5) 正态分布:$N(\\mu,\\sigma^{2}):$ $\\varphi(x) =\\frac{1}{\\sqrt{2\\pi}\\sigma}e^{- \\frac{{(x - \\mu)}^{2}}{2\\sigma^{2}}},\\sigma > 0,\\infty < x < + \\infty$\n", "\n", "(6)指数分布:$E(\\lambda):f(x) =\\{ \\begin{matrix} & \\lambda e^{-{λx}},x > 0,\\lambda > 0 \\\\ & 0, \\\\ \\end{matrix} $\n", "\n", "(7)几何分布:$G(p):P(X = k) = {(1 - p)}^{k - 1}p,0 < p < 1,k = 1,2,\\cdots.$\n", "\n", "(8)超几何分布: $H(N,M,n):P(X = k) = \\frac{C_{M}^{k}C_{N - M}^{n -k}}{C_{N}^{n}},k =0,1,\\cdots,min(n,M)$\n", "\n", "**6.随机变量函数的概率分布**\n", "\n", "(1)离散型:$P(X = x_{1}) = p_{i},Y = g(X)$\n", "\n", "则: $P(Y = y_{j}) = \\sum_{g(x_{i}) = y_{i}}^{}{P(X = x_{i})}$\n", "\n", "(2)连续型:$X\\tilde{\\ }f_{X}(x),Y = g(x)$\n", "\n", "则:$F_{y}(y) = P(Y \\leq y) = P(g(X) \\leq y) = \\int_{g(x) \\leq y}^{}{f_{x}(x)dx}$, $f_{Y}(y) = F'_{Y}(y)$\n", "\n", "**7.重要公式与结论**\n", "\n", "(1) $X\\sim N(0,1) \\Rightarrow \\varphi(0) = \\frac{1}{\\sqrt{2\\pi}},\\Phi(0) =\\frac{1}{2},$ $\\Phi( - a) = P(X \\leq - a) = 1 - \\Phi(a)$\n", "\n", "(2) $X\\sim N\\left( \\mu,\\sigma^{2} \\right) \\Rightarrow \\frac{X -\\mu}{\\sigma}\\sim N\\left( 0,1 \\right),P(X \\leq a) = \\Phi(\\frac{a -\\mu}{\\sigma})$\n", "\n", "(3) $X\\sim E(\\lambda) \\Rightarrow P(X > s + t|X > s) = P(X > t)$\n", "\n", "(4) $X\\sim G(p) \\Rightarrow P(X = m + k|X > m) = P(X = k)$\n", "\n", "(5) 离散型随机变量的分布函数为阶梯间断函数;连续型随机变量的分布函数为连续函数,但不一定为处处可导函数。\n", "\n", "(6) 存在既非离散也非连续型随机变量。\n", "\n", "#### 多维随机变量及其分布\n", "\n", "**1.二维随机变量及其联合分布**\n", "\n", "由两个随机变量构成的随机向量$(X,Y)$, 联合分布为$F(x,y) = P(X \\leq x,Y \\leq y)$\n", "\n", "**2.二维离散型随机变量的分布**\n", "\n", "(1) 联合概率分布律 $P\\{ X = x_{i},Y = y_{j}\\} = p_{{ij}};i,j =1,2,\\cdots$\n", "\n", "(2) 边缘分布律 $p_{i \\cdot} = \\sum_{j = 1}^{\\infty}p_{{ij}},i =1,2,\\cdots$ $p_{\\cdot j} = \\sum_{i}^{\\infty}p_{{ij}},j = 1,2,\\cdots$\n", "\n", "(3) 条件分布律 $P\\{ X = x_{i}|Y = y_{j}\\} = \\frac{p_{{ij}}}{p_{\\cdot j}}$\n", "$P\\{ Y = y_{j}|X = x_{i}\\} = \\frac{p_{{ij}}}{p_{i \\cdot}}$\n", "\n", "**3. 二维连续性随机变量的密度**\n", "\n", "(1) 联合概率密度$f(x,y):$\n", "\n", "1) $f(x,y) \\geq 0$ \n", "\n", "2) $\\int_{- \\infty}^{+ \\infty}{\\int_{- \\infty}^{+ \\infty}{f(x,y)dxdy}} = 1$\n", "\n", "(2) 分布函数:$F(x,y) = \\int_{- \\infty}^{x}{\\int_{- \\infty}^{y}{f(u,v)dudv}}$\n", "\n", "(3) 边缘概率密度: $f_{X}\\left( x \\right) = \\int_{- \\infty}^{+ \\infty}{f\\left( x,y \\right){dy}}$ $f_{Y}(y) = \\int_{- \\infty}^{+ \\infty}{f(x,y)dx}$\n", "\n", "(4) 条件概率密度:$f_{X|Y}\\left( x \\middle| y \\right) = \\frac{f\\left( x,y \\right)}{f_{Y}\\left( y \\right)}$ $f_{Y|X}(y|x) = \\frac{f(x,y)}{f_{X}(x)}$\n", "\n", "**4.常见二维随机变量的联合分布**\n", "\n", "(1) 二维均匀分布:$(x,y) \\sim U(D)$ ,$f(x,y) = \\begin{cases} \\frac{1}{S(D)},(x,y) \\in D \\\\ 0,其他 \\end{cases}$\n", "\n", "(2) 二维正态分布:$(X,Y)\\sim N(\\mu_{1},\\mu_{2},\\sigma_{1}^{2},\\sigma_{2}^{2},\\rho)$,$(X,Y)\\sim N(\\mu_{1},\\mu_{2},\\sigma_{1}^{2},\\sigma_{2}^{2},\\rho)$\n", "\n", "$f(x,y) = \\frac{1}{2\\pi\\sigma_{1}\\sigma_{2}\\sqrt{1 - \\rho^{2}}}.\\exp\\left\\{ \\frac{- 1}{2(1 - \\rho^{2})}\\lbrack\\frac{{(x - \\mu_{1})}^{2}}{\\sigma_{1}^{2}} - 2\\rho\\frac{(x - \\mu_{1})(y - \\mu_{2})}{\\sigma_{1}\\sigma_{2}} + \\frac{{(y - \\mu_{2})}^{2}}{\\sigma_{2}^{2}}\\rbrack \\right\\}$\n", "\n", "**5.随机变量的独立性和相关性**\n", "\n", "$X$和$Y$的相互独立:$\\Leftrightarrow F\\left( x,y \\right) = F_{X}\\left( x \\right)F_{Y}\\left( y \\right)$:\n", "\n", "$\\Leftrightarrow p_{{ij}} = p_{i \\cdot} \\cdot p_{\\cdot j}$(离散型)\n", "$\\Leftrightarrow f\\left( x,y \\right) = f_{X}\\left( x \\right)f_{Y}\\left( y \\right)$(连续型)\n", "\n", "$X$和$Y$的相关性:\n", "\n", "相关系数$\\rho_{{XY}} = 0$时,称$X$和$Y$不相关,\n", "否则称$X$和$Y$相关\n", "\n", "**6.两个随机变量简单函数的概率分布**\n", "\n", "离散型: $P\\left( X = x_{i},Y = y_{i} \\right) = p_{{ij}},Z = g\\left( X,Y \\right)$ 则:\n", "\n", "$P(Z = z_{k}) = P\\left\\{ g\\left( X,Y \\right) = z_{k} \\right\\} = \\sum_{g\\left( x_{i},y_{i} \\right) = z_{k}}^{}{P\\left( X = x_{i},Y = y_{j} \\right)}$\n", "\n", "连续型: $\\left( X,Y \\right) \\sim f\\left( x,y \\right),Z = g\\left( X,Y \\right)$\n", "则:\n", "\n", "$F_{z}\\left( z \\right) = P\\left\\{ g\\left( X,Y \\right) \\leq z \\right\\} = \\iint_{g(x,y) \\leq z}^{}{f(x,y)dxdy}$,$f_{z}(z) = F'_{z}(z)$\n", "\n", "**7.重要公式与结论**\n", "\n", "(1) 边缘密度公式: $f_{X}(x) = \\int_{- \\infty}^{+ \\infty}{f(x,y)dy,}$\n", "$f_{Y}(y) = \\int_{- \\infty}^{+ \\infty}{f(x,y)dx}$\n", "\n", "(2) $P\\left\\{ \\left( X,Y \\right) \\in D \\right\\} = \\iint_{D}^{}{f\\left( x,y \\right){dxdy}}$\n", "\n", "(3) 若$(X,Y)$服从二维正态分布$N(\\mu_{1},\\mu_{2},\\sigma_{1}^{2},\\sigma_{2}^{2},\\rho)$\n", "则有:\n", "\n", "1) $X\\sim N\\left( \\mu_{1},\\sigma_{1}^{2} \\right),Y\\sim N(\\mu_{2},\\sigma_{2}^{2}).$\n", "\n", "2) $X$与$Y$相互独立$\\Leftrightarrow \\rho = 0$,即$X$与$Y$不相关。\n", "\n", "3) $C_{1}X + C_{2}Y\\sim N(C_{1}\\mu_{1} + C_{2}\\mu_{2},C_{1}^{2}\\sigma_{1}^{2} + C_{2}^{2}\\sigma_{2}^{2} + 2C_{1}C_{2}\\sigma_{1}\\sigma_{2}\\rho)$\n", "\n", "4) ${\\ X}$关于$Y=y$的条件分布为: $N(\\mu_{1} + \\rho\\frac{\\sigma_{1}}{\\sigma_{2}}(y - \\mu_{2}),\\sigma_{1}^{2}(1 - \\rho^{2}))$\n", "\n", "5) $Y$关于$X = x$的条件分布为: $N(\\mu_{2} + \\rho\\frac{\\sigma_{2}}{\\sigma_{1}}(x - \\mu_{1}),\\sigma_{2}^{2}(1 - \\rho^{2}))$\n", "\n", "(4) 若$X$与$Y$独立,且分别服从$N(\\mu_{1},\\sigma_{1}^{2}),N(\\mu_{1},\\sigma_{2}^{2}),$\n", "则:$\\left( X,Y \\right)\\sim N(\\mu_{1},\\mu_{2},\\sigma_{1}^{2},\\sigma_{2}^{2},0),$\n", "\n", "$C_{1}X + C_{2}Y\\tilde{\\ }N(C_{1}\\mu_{1} + C_{2}\\mu_{2},C_{1}^{2}\\sigma_{1}^{2} C_{2}^{2}\\sigma_{2}^{2}).$\n", "\n", "(5) 若$X$与$Y$相互独立,$f\\left( x \\right)$和$g\\left( x \\right)$为连续函数, 则$f\\left( X \\right)$和$g(Y)$也相互独立。\n", "\n", "#### 随机变量的数字特征\n", "\n", "**1.数学期望**\n", "\n", "离散型:$P\\left\\{ X = x_{i} \\right\\} = p_{i},E(X) = \\sum_{i}^{}{x_{i}p_{i}}$;\n", "\n", "连续型: $X\\sim f(x),E(X) = \\int_{- \\infty}^{+ \\infty}{xf(x)dx}$\n", "\n", "性质:\n", "\n", "(1) $E(C) = C,E\\lbrack E(X)\\rbrack = E(X)$\n", "\n", "(2) $E(C_{1}X + C_{2}Y) = C_{1}E(X) + C_{2}E(Y)$\n", "\n", "(3) 若$X$和$Y$独立,则$E(XY) = E(X)E(Y)$ \n", "\n", "(4)$\\left\\lbrack E(XY) \\right\\rbrack^{2} \\leq E(X^{2})E(Y^{2})$\n", "\n", "**2.方差**:$D(X) = E\\left\\lbrack X - E(X) \\right\\rbrack^{2} = E(X^{2}) - \\left\\lbrack E(X) \\right\\rbrack^{2}$\n", "\n", "**3.标准差**:$\\sqrt{D(X)}$,\n", "\n", "**4.离散型:**$D(X) = \\sum_{i}^{}{\\left\\lbrack x_{i} - E(X) \\right\\rbrack^{2}p_{i}}$\n", "\n", "**5.连续型:**$D(X) = {\\int_{- \\infty}^{+ \\infty}\\left\\lbrack x - E(X) \\right\\rbrack}^{2}f(x)dx$\n", "\n", "性质:\n", "\n", "(1)$\\ D(C) = 0,D\\lbrack E(X)\\rbrack = 0,D\\lbrack D(X)\\rbrack = 0$\n", "\n", "(2) $X$与$Y$相互独立,则$D(X \\pm Y) = D(X) + D(Y)$\n", "\n", "(3)$\\ D\\left( C_{1}X + C_{2} \\right) = C_{1}^{2}D\\left( X \\right)$\n", "\n", "(4) 一般有 $D(X \\pm Y) = D(X) + D(Y) \\pm 2Cov(X,Y) = D(X) + D(Y) \\pm 2\\rho\\sqrt{D(X)}\\sqrt{D(Y)}$\n", "\n", "(5)$\\ D\\left( X \\right) < E\\left( X - C \\right)^{2},C \\neq E\\left( X \\right)$\n", "\n", "(6)$\\ D(X) = 0 \\Leftrightarrow P\\left\\{ X = C \\right\\} = 1$\n", "\n", "**6.随机变量函数的数学期望**\n", "\n", "(1) 对于函数$Y = g(x)$\n", "\n", "$X$为离散型:$P\\{ X = x_{i}\\} = p_{i},E(Y) = \\sum_{i}^{}{g(x_{i})p_{i}}$;\n", "\n", "$X$为连续型:$X\\sim f(x),E(Y) = \\int_{- \\infty}^{+ \\infty}{g(x)f(x)dx}$\n", "\n", "(2) $Z = g(X,Y)$;$\\left( X,Y \\right)\\sim P\\{ X = x_{i},Y = y_{j}\\} = p_{{ij}}$; $E(Z) = \\sum_{i}^{}{\\sum_{j}^{}{g(x_{i},y_{j})p_{{ij}}}}$ $\\left( X,Y \\right)\\sim f(x,y)$;$E(Z) = \\int_{- \\infty}^{+ \\infty}{\\int_{- \\infty}^{+ \\infty}{g(x,y)f(x,y)dxdy}}$\n", "\n", "**7.协方差** \n", "\n", "$Cov(X,Y) = E\\left\\lbrack (X - E(X)(Y - E(Y)) \\right\\rbrack$\n", "\n", "**8.相关系数**\n", "\n", " $\\rho_{{XY}} = \\frac{Cov(X,Y)}{\\sqrt{D(X)}\\sqrt{D(Y)}}$,$k$阶原点矩 $E(X^{k})$;\n", "$k$阶中心矩 $E\\left\\{ {\\lbrack X - E(X)\\rbrack}^{k} \\right\\}$\n", "\n", "性质:\n", "\n", "(1)$\\ Cov(X,Y) = Cov(Y,X)$\n", "\n", "(2)$\\ Cov(aX,bY) = abCov(Y,X)$\n", "\n", "(3)$\\ Cov(X_{1} + X_{2},Y) = Cov(X_{1},Y) + Cov(X_{2},Y)$\n", "\n", "(4)$\\ \\left| \\rho\\left( X,Y \\right) \\right| \\leq 1$\n", "\n", "(5) $\\ \\rho\\left( X,Y \\right) = 1 \\Leftrightarrow P\\left( Y = aX + b \\right) = 1$ ,其中$a > 0$\n", "\n", "$\\rho\\left( X,Y \\right) = - 1 \\Leftrightarrow P\\left( Y = aX + b \\right) = 1$\n", ",其中$a < 0$\n", "\n", "**9.重要公式与结论**\n", "\n", "(1)$\\ D(X) = E(X^{2}) - E^{2}(X)$\n", "\n", "(2)$\\ Cov(X,Y) = E(XY) - E(X)E(Y)$\n", "\n", "(3) $\\left| \\rho\\left( X,Y \\right) \\right| \\leq 1,$且 $\\rho\\left( X,Y \\right) = 1 \\Leftrightarrow P\\left( Y = aX + b \\right) = 1$,其中$a > 0$\n", "\n", "$\\rho\\left( X,Y \\right) = - 1 \\Leftrightarrow P\\left( Y = aX + b \\right) = 1$,其中$a < 0$\n", "\n", "(4) 下面5个条件互为充要条件:\n", "\n", "$\\rho(X,Y) = 0$ $\\Leftrightarrow Cov(X,Y) = 0$ $\\Leftrightarrow E(X,Y) = E(X)E(Y)$ $\\Leftrightarrow D(X + Y) = D(X) + D(Y)$ $\\Leftrightarrow D(X - Y) = D(X) + D(Y)$\n", "\n", "注:$X$与$Y$独立为上述5个条件中任何一个成立的充分条件,但非必要条件。\n", "\n", "#### 数理统计的基本概念\n", "\n", "**1.基本概念**\n", "\n", "总体:研究对象的全体,它是一个随机变量,用$X$表示。\n", "\n", "个体:组成总体的每个基本元素。\n", "\n", "简单随机样本:来自总体$X$的$n$个相互独立且与总体同分布的随机变量$X_{1},X_{2}\\cdots,X_{n}$,称为容量为$n$的简单随机样本,简称样本。\n", "\n", "统计量:设$X_{1},X_{2}\\cdots,X_{n},$是来自总体$X$的一个样本,$g(X_{1},X_{2}\\cdots,X_{n})$)是样本的连续函数,且$g()$中不含任何未知参数,则称$g(X_{1},X_{2}\\cdots,X_{n})$为统计量。\n", "\n", "样本均值:$\\overline{X} = \\frac{1}{n}\\sum_{i = 1}^{n}X_{i}$\n", "\n", "样本方差:$S^{2} = \\frac{1}{n - 1}\\sum_{i = 1}^{n}{(X_{i} - \\overline{X})}^{2}$\n", "\n", "样本矩:样本$k$阶原点矩:$A_{k} = \\frac{1}{n}\\sum_{i = 1}^{n}X_{i}^{k},k = 1,2,\\cdots$\n", "\n", "样本$k$阶中心矩:$B_{k} = \\frac{1}{n}\\sum_{i = 1}^{n}{(X_{i} - \\overline{X})}^{k},k = 1,2,\\cdots$\n", "\n", "**2.分布**\n", "\n", "$\\chi^{2}$分布:$\\chi^{2} = X_{1}^{2} + X_{2}^{2} + \\cdots + X_{n}^{2}\\sim\\chi^{2}(n)$,其中$X_{1},X_{2}\\cdots,X_{n},$相互独立,且同服从$N(0,1)$\n", "\n", "$t$分布:$T = \\frac{X}{\\sqrt{Y/n}}\\sim t(n)$ ,其中$X\\sim N\\left( 0,1 \\right),Y\\sim\\chi^{2}(n),$且$X$,$Y$ 相互独立。\n", "\n", "$F$分布:$F = \\frac{X/n_{1}}{Y/n_{2}}\\sim F(n_{1},n_{2})$,其中$X\\sim\\chi^{2}\\left( n_{1} \\right),Y\\sim\\chi^{2}(n_{2}),$且$X$,$Y$相互独立。\n", "\n", "分位数:若$P(X \\leq x_{\\alpha}) = \\alpha,$则称$x_{\\alpha}$为$X$的$\\alpha$分位数\n", "\n", "**3.正态总体的常用样本分布**\n", "\n", "(1) 设$X_{1},X_{2}\\cdots,X_{n}$为来自正态总体$N(\\mu,\\sigma^{2})$的样本,\n", "\n", "$\\overline{X} = \\frac{1}{n}\\sum_{i = 1}^{n}X_{i},S^{2} = \\frac{1}{n - 1}\\sum_{i = 1}^{n}{{(X_{i} - \\overline{X})}^{2},}$则:\n", "\n", "1) $\\overline{X}\\sim N\\left( \\mu,\\frac{\\sigma^{2}}{n} \\right){\\ \\ }$或者$\\frac{\\overline{X} - \\mu}{\\frac{\\sigma}{\\sqrt{n}}}\\sim N(0,1)$\n", "\n", "2) $\\frac{(n - 1)S^{2}}{\\sigma^{2}} = \\frac{1}{\\sigma^{2}}\\sum_{i = 1}^{n}{{(X_{i} - \\overline{X})}^{2}\\sim\\chi^{2}(n - 1)}$\n", "\n", "3) $\\frac{1}{\\sigma^{2}}\\sum_{i = 1}^{n}{{(X_{i} - \\mu)}^{2}\\sim\\chi^{2}(n)}$\n", "\n", "4)${\\ \\ }\\frac{\\overline{X} - \\mu}{S/\\sqrt{n}}\\sim t(n - 1)$\n", "\n", "**4.重要公式与结论**\n", "\n", "(1) 对于$\\chi^{2}\\sim\\chi^{2}(n)$,有$E(\\chi^{2}(n)) = n,D(\\chi^{2}(n)) = 2n;$\n", "\n", "(2) 对于$T\\sim t(n)$,有$E(T) = 0,D(T) = \\frac{n}{n - 2}(n > 2)$;\n", "\n", "(3) 对于$F\\tilde{\\ }F(m,n)$,有 $\\frac{1}{F}\\sim F(n,m),F_{a/2}(m,n) = \\frac{1}{F_{1 - a/2}(n,m)};$\n", "\n", "(4) 对于任意总体$X$,有 $E(\\overline{X}) = E(X),E(S^{2}) = D(X),D(\\overline{X}) = \\frac{D(X)}{n}$" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" } }, "nbformat": 4, "nbformat_minor": 5 }