{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Adquisición de datos automatizada\n", "![](logo_fifa.png)\n", "\n", "En este notebook vamos a presentar la adquisición automática de datos, a partir de un osciloscopio Tektronix TDS2000. La idea es que saquemos información relevante de estos datos, veremos que tenemos a mano" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import visa\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Para la adquisición hicimos una clase que abstrae el uso del osciloscopio TDS2000" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "class Osciloscopio(object):\n", " '''Clase para el manejo osciloscopio TDS2000 usando PyVISA de interfaz'''\n", " def __init__(self, resource):\n", " #Defino el recurso\n", " self._osci = visa.ResourceManager(\"@py\").open_resource(resource)\n", " self._osci.query(\"*IDN?\")\n", "\n", " #Configuración de curva\n", " self._osci.write('DAT:ENC RPB') # Modo de transmision: Binario positivo. \n", " self._osci.write('DAT:WID 1') #1 byte de dato. Con RPB 127 es la mitad de la pantalla\n", " self._osci.write(\"DAT:STAR 1\") #La curva mandada inicia en el primer dato\n", " self._osci.write(\"DAT:STOP 2500\") #La curva mandada finaliza en el último dato\n", "\n", "\n", " #Adquisición por sampleo\n", " self._osci.write(\"ACQ:MOD SAMP\")\n", "\n", " #Seteo de canal\n", " self.setCanal(canal = 1, escala = 20e-3)\n", " self.setCanal(canal = 2, escala = 20e-3)\n", " self.setTiempo(escala = 1e-3, cero = 0)\n", "\n", " #Bloquea el control del osciloscopio\n", " self._osci.write(\"LOC\")\n", "\n", " def __del__(self):\n", " self._osci.write(\"UNLOC\") #Desbloquea el control del osciloscopio\n", " self._osci.close()\n", "\n", " def setCanal(self, canal, escala, cero = 0):\n", " #if coup != \"DC\" or coup != \"AC\" or coup != \"GND\":\n", " #coup = \"DC\"\n", " #self._osci.write(\"CH{0}:COUP \".format(canal) + coup) #Acoplamiento DC\n", " #self._osci.write(\"CH{0}:PROB \n", " print\n", " self._osci.write(\"CH{0}:SCA {1}\".format(canal,escala))\n", " self._osci.write(\"CH{0}:POS {1}\".format(canal,cero))\n", "\n", " def getCanal(self,canal):\n", " return self._osci.query(\"CH{0}?\".format(canal))\n", "\n", " def setTiempo(self, escala, cero = 0):\n", " self._osci.write(\"HOR:SCA {0}\".format(escala))\n", " self._osci.write(\"HOR:POS {0}\".format(cero))\t\n", " \n", " def getTiempo(self):\n", " return self._osci.query(\"HOR?\")\n", " \n", " def getVentana(self,canal):\n", " self._osci.write(\"SEL:CH{0} ON\".format(canal)) #Hace aparecer el canal en pantalla. Por si no está habilitado\n", " self._osci.write(\"DAT:SOU CH{0}\".format(canal)) #Selecciona el canal\n", " #xze primer punto de la waveform\n", " #xin intervalo de sampleo\n", " #ymu factor de escala vertical\n", " #yoff offset vertical\n", " xze, xin, yze, ymu, yoff = self._osci.query_ascii_values('WFMPRE:XZE?;XIN?;YZE?;YMU?;YOFF?;', \n", " separator=';') \n", " data = (self._osci.query_binary_values('CURV?', datatype='B', \n", " container=np.array) - yoff) * ymu + yze \n", " tiempo = xze + np.arange(len(data)) * xin\n", " return tiempo, data\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "rm = visa.ResourceManager('@py')\n", "rm.list_resources()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "osci = Osciloscopio('USB0::0x0699::0x0363::C108013::INSTR')\n", "osci.setCanal(1, 2)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEACAYAAAC08h1NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHL9JREFUeJztnHuwXVV9x7+/3JuEPAgEAgkYaUCMrbQYA2KUDj2iVogv\nRtqp2rFTOr5mqjBDB4PImHtHHNQZR6nUcZhafEydWqhWtEqxJUcGHcojJIRHgA4RSSXBJBIIeRiS\nX//YJ9ydfc65N3uttR+/tb6fmTv3nHv3Wt+11l7nu9f+7r2PqCoIIYSkw7SmG0AIIaReaPyEEJIY\nNH5CCEkMGj8hhCQGjZ8QQhKDxk8IIYkRxPhF5BgRuUlEHhGRh0Tk9SHqJYQQEp7RQPVcB+DHqvrn\nIjIKYHagegkhhARGfB/gEpF5AO5X1VeEaRIhhJAqCRH1nApgm4jcKCJrReQGEZkVoF5CCCEVEML4\nRwEsB/APqrocwG4AVwaolxBCSAWEyPg3A3hKVe/tvb8ZwKriRiLCLwUihBAHVFVC1ue94lfVrQCe\nEpGlvT+9GcDDQ7aN9mf16tWNt4F9Y//Yv/h+qiDUXT2XAvhnEZkO4AkAlwSqlxBCSGCCGL+qrgfw\nuhB1EUIIqRY+uRuITqfTdBMqI+a+AeyfdWLvXxV438d/xEIiWpcWIYTEgohA23ZxlxBCiC1o/IQQ\nkhg0fkIISQwaPyGEJAaNnxBCEoPGTwghiUHjJ4SQxKDxE0JIYtD4CSEkMWj8hBCSGDR+QghJDBo/\nIYQkBo2fEEISg8ZPCCGJQeMnhJDEoPETQkhi0PgJISQxaPyEEJIYNH5CCEkMGj8hhCQGjZ8QQhKD\nxk8IIYlB4yeEkMSg8RNCSGLQ+AkhJDFo/ISQuNm5s+kWtI7REJWIyC8B7ARwEMB+VT0nRL2EEOLF\nrl3AsccCqk23pFUEMX5kht9R1d8Gqo8QQvzZsyf7feAAMDLSbFtaRCjjF7QpNnrhBeD224HRUWDe\nPGDOHOA3vwFmzwZmzAB+97vsbzt2APv3A9N6TT/1VOD00930Nm7M6n3xReD55ye0nn02+9sxx2Ra\ns2cDBw8Ce/dmWkuWlNf79a+Bxx7L+rZzJzBr1oQ2kL0WyfT37s1ez5oFnHJK1seybNsGbNoEbN2a\njdvISFYnkK2kZs4Edu8G9u3Lxvzoo7O2LF0KnHBCeb2NG7OfuXOzul54IdPYswc47jhg+/bsfzt2\nZGMwbVo2tmeemf2/LE8+mf3MmgVs2QIsWpSN4b592X47cCBrw8hINqa7dmW6Z5yRjUcZDh4E1q7N\n5sVRR2X7Z8aMbLxmzszGc9asrG8zZwLz52f6Iln/Do37kbJvH3DHHdm8GxnJ2j5nTvb3o4/Ottm9\nO2vH/PnZvj5wIJsnr351OS0g68dDD2Xtnzt3Yl7u3w9Mn571b/r0rB0zZmQ/+/YBJ56YjWfZ/h2a\nm4c+04f2044dWZ+feSbb7vvfBxYsyMZ/xoxsmze8oXz/YkFVvX8APAFgLYB7AHxoyDZaG6edpppN\nsexn6dLD3wOqJ57Y/zfXNn7mM4PrOpIfF1y1XPUuushN68ILy2vt21d//1y1rrmmvNbdd7vrPfhg\nfX0DVLdtK6/3ox+pzpvnprd+vV//hn2mh/1s3VperwF63omQP6FW6eeq6nIAKwH8rYj8caB63Xji\nicPf33pr/zZXXRVO77nnwtXVRlz7N81heu3e7abVBPv3ly/jM1eef9697CCOP37y/+/aVb7O554D\nVq50a4/LeOa5/vpy2x86Q06QIFGPqj7d+/0bEfk+gHMA3Fncbmxs7KXXnU4HnU4nhPzUDDodL3tK\nORlPPRWurjbi2j+XMa7b+A8erFfPp387doRrB5B9LrZvH/5/l4PUM89kUVUTjIZKrpul2+2i2+1W\nK+J7ygBgNoC5vddzAPwcwJ8O2K6S06CB5E/nTj5Zde/eiffve1/2+7HHBp/+HTxYXu+kk1Tf8x7V\nj3+8/OmtT/+uuCL7/cEPVqd3KHr50IeG13n11YP//va3l9d74onBdS1enP3+4hez3yecMPG/Zcvc\n+3fXXRNlixEhoHrJJYPbM2+e6qc/XV7vppsm6pg1a3DdH/nIxOtLL53o31e+Ul7vvPMm6jr11MN1\nvvnNw98vX374++99r7ze5ZdPjNmqVYP7N2fO4eN46PU995TXA1TPOkt1xQrVX/1K9ZWvVH3nOw/X\ne+97B7dj8+byeg2ACqIe/wqAUwGsA3A/gA0ArhyyXVXj0s9556muWVO+nKvxn3GG6oYN5co8/bTq\nwoXltVRV589X3b69XJn77lN97WvLa+3ZozpzZvlyP/yhu/EvWVK+3A03ZAfAstx5p+ob31i+3OrV\n7sZ/8cXly334w6pf+1r5cl/+cnbwKMs73qF6yy3ly61apXrtteXLnXWWm/F/4APZAawsJ5+ctPF7\nnxup6iYAy3zrCcqhOwgIqQqRbN1IiEHacwtmSF580T3vc/kwuxqAhXI+5kY96sWmFwlxGr/rit/n\ngm/Zsr4Xl+vUcykbu54PFvpHvaih8RPiQuLGQWwTp/GffXb2ZGVd1H3KWKeepVN3FyzpWWirpf4l\nTBw3vhb5xjfcy7pOPpcVoM9Er1PPwqk7UG//6taz0EafsnX3z7esceJc8btS5+m7hVzZEhzP4Vhq\nqwvM+EtD4w+BhVNwC1rUq66sBT1SGzT+IlaiHhdijkJi17PQRh8917KWDqQtgsafx1LUU/fto2Wh\nXnuwMDZWrilEAo0/BAmvHAgh9qDxF7EQ9fDJXepRrxm9SKDx52HUE64s9agXq14E0PhDkPDKgRBi\nDxp/EUY9YbSoR706y1rQaxE0/jyMesKVjV3PBwv9s6LXxJPJEUDjJ8SFxI2jVXBflIbGX4Tfxx9G\ni3rUq7OsBb0WQePPw+/jD1c2dj0fLPTPih6jHido/IS4kLhxtArui9LQ+EMQ8ymqpajABUt6Ftpq\nqX8JQ+MvYuF2zrr1LEQFgJ0vJIs9CrHQP9+yxqHx57F0O2fb9eqG4zkcS211gU/ulobGH4KYVw6M\netqjZ6mtFvQShsZfxELUU3c5Rj3N61looyU937LGofHnsRT1tP37+OuGUc9wYh8bRj2lofGHIOaV\nQ+yn+5b0LLWVtBoafxFGPf3EftpvQc9CG330fMta0GsRNP48jHrCEbueJSzsCysHtkig8Ycg4ZVD\nsiRuHK2C+6I0wYxfRKaJyFoRuSVUnY3AqCeMFvWoV2dZC3otIuSK/zIADwesr34Y9YQrG7ueDxb6\nZ0WPUY8TQYxfRBYDWAngH0PUZ46EVw7JkrhxtArui9KEWvF/CcAVANJ1wDonH7+kLRyW9Cy01VL/\nEmbUtwIReTuAraq6TkQ6AIY64NjY2EuvO50OOp2Or3x4rJgqv6StHyu3LsYehVjon2/ZCul2u+h2\nu5VqeBs/gHMBvEtEVgKYBeBoEfmWqv5VccO88beSOiefhVzZEhzP4VhqqwuRPblbXBSPj48H1/CO\nelT1KlU9RVVPA/BeALcPMv3oafFE8oJRT3v0LLXVgl7C8D7+IhaiHgtP7jLqCatnoY1N6PmQ8IEm\nRNTzEqr6MwA/C1lnrViKetr+5G7dMOoZTsxjY+lA0yK44g9FrBOJUU979Cy1tU69WD97FULjL8Ko\npx9GPc3rWWhjE3o+JBz10Pjz8Mldu8TePx8Y9fST+Hyh8Ycg5pWDldP9uvVSuO/cyrxO3MRdoPEX\n4Ze09WPltD9mPQtt9NHzLWtBr0XQ+PMw6glH7HqWsLAvrBzYIoHGH4KEVw7J0sSKmAwmcRN3gcYf\nCgsXtOrW4u2cYbEwNpainoSh8RexYqr8krZ+rOTZsUchFvrnW9Y4NP48lp7cbbte3XA8h2OprS5E\n9iVtdUDjD0WsE4lRT3v0LLXVgl7C0PiLWIh6LNzOyagnrJ6FNjah50PCBxoafx5LUU/bb+esG0Y9\nw4l5bCwdaFoEjT8UsU4kRj3t0bPU1jr1Yv3sVQiNvwijnn4Y9TSvZ6GNTej5wKiHAGDUY5mY4wxf\nYh4bSweaFkHjD0WsE4lRT3v0LLW1Tr1YP3sVQuMvYiHqqVuPUU/zehba2ISeD4x6CABGPZaJvX8+\nMOrpJ/H5QuMPRawTiVHPYFL4igErerF+9iqExm+NJk5PrUQ9MetZaCNA8zYCjb9InatUKysqK3A8\n+7GyUGgCC/uvImj8eepcpca+gnPFSvRiKeqxsu9d4BmGEzR+MjVWTNUVC3oW2uiLlfkSATT+Im2/\nndPKxUFLxmFFzwUrY5LCfGkRNP48Vm7ntLBirJsUVsSuxDw2lg40LYLGH4pYJxJv52yPnqW21qkX\n62evQmj8RRj19GPldk4rFz/55G44PR8SjnpGfSsQkZkA7gAwo1ffzao67ltvIzDqsUvMcYYvMY+N\npQNNi/A2flXdJyJvUtXdIjIC4Oci8hNVvTtA++wQ60Ri1NMePUttrVMv1s9ehQSJelR1d+/lTGQH\nE7vnUIx6+mHU07yehTY2oedDwlFPEOMXkWkicj+ALQB+qqr3hKi3dhj12CX2/vnAqKefxOeLd9QD\nAKp6EMBrRWQegH8XkVer6sPF7cbGxl563el00Ol0Qsi3g1gnEqOewVh6cjd2vcg+e91uF91ut1KN\nIMZ/CFV9TkTWALgAwKTG31oY9fRjJeqpW8/KeLpgYUwipbgoHh8Pf6+Md9QjIgtE5Jje61kA3gpg\no2+9pqh7ZcQPyWASzmyHwi9pG07C8yXEiv8kAN8UkWnIDiTfVdUfB6i3fvglbf1YiXqsrFCtnLH5\n6LliYb5EQojbOTcAWB6gLeRIsLKCSyHqqVPPQhuBZow4cRN3gU/uFrFwQdLKCq5uLKxQ68bKQqEJ\nLOy/iqDx52HU048VM7WyQmXUExZGPU7Q+MnUWDFVVyzoWWijL1bmSwTQ+Iu0/RZLK/eBWzIOK3ou\nWBmTFOZLi6Dx57FygcnCirFurKyIU8jc+eRu66Hxk8mxcjunK5ZWfbGPDU28Nmj8RRj19GPldk4r\nFz/5JW3h9HywdNAPDI0/j5UvTmPU00/McYYvHJt+LLSxQmj8ZHIY9bRHz1Jb69JLeNXuA42/CKOe\nfhj1NK9noY1N6PmUTfigQePPw6jHLrH3zwdGPf1YaGOF0PjJ5DDqGYylJ3dj1kt41e4Djd8aVu4D\nt/JMhBU9C20EbEU9CUPjL9L2jB9gpjkMCyvUurGyUGgCC/uvImj8eaxk/C5YiSasRC9WxhOws1Cw\nMF8igcZPpoZRT/N6FtrYlF7iJu4Cjb9I26MeSxcH68bCCrVuOCbDsdTWwND481iJeizcB+5a1kqc\nYWU8gbjHhlGPEzR+MjWMeprXs9DGpvQSN3EXaPxFGPXYhbFGPxyT4Vhqa2Bo/HkY9djFygo1hdsr\nLcw1C22sEBo/mRwrGb8rlow49rGxMF8igcZfhFFPP1YyfgsXI12JfUwszZcIoPHnYdRjl9j75wOj\nnn4stLFCaPxkchj1DMbS7Zwx6yW8aveBxh+COieflUza0u15FvQstBGwFfUkDI2/iIUVIDPNwVhY\nodaNlYVCE1jYfxVB489jZVVVp5aVqMfKCtXKxXkfPVcszJdI8DZ+EVksIreLyEMiskFELg3RMFPE\nvnJg1NO8noU2NqWXuIm7MBqgjhcBXK6q60RkLoD7ROQ2Vd0YoO76afuqytLFwbqxsEKtG47JcCy1\nNTDeK35V3aKq63qvdwF4BMDLfOttBCurHH5JWz+MeoaTwtiUJfGzhKAZv4gsAbAMwP+ErLf1xL5y\nYNTTvJ6FNjahF/tnryJCRD0AgF7MczOAy3or/z7GxsZeet3pdNDpdELJh6PtqxxGPcNhrNFPCmMS\n2UGj2+2i2+1WqhHE+EVkFJnpf1tVfzBsu7zxtxIrqxxGPf2kEGdYaasFI25x1FNcFI+PjwfXCBX1\n/BOAh1X1ukD12aKlK4dgMOppXs9CG5vQi/2zVxEhbuc8F8BfAjhfRO4XkbUicoF/0xqi7ascRj3D\nSSHWKEsKY8KDRmm8ox5V/TmAkQBtaR4rqxwrUU+derH3z6eslainTiy0sUL45C6ZmtiNw0KUZWFM\nfOGXtNUGjT8EsX9JmwuJr6iShV/SZgIafxELp9NWYo26sRDbWGijL1aMOPbPwyTQ+PPEfDpt5fZD\nCwdeHz2fslbGxhXezlkbNP4QxL5ysJCB+2DBBGIfEysHp0ig8Rdp+6qKt3MOJ+YVqispjAkPGqWh\n8eexssqxcjsno55wej5lUxibslg4y6sQGn8IYl85MOppXs9CG5vQi/2zVxE0/iJtX+Uw6hlOCrFG\nWVIYEx40SkPjz2NllcOop58U4gwrbbVgxIx6iDexrxwY9TSvZ6GNTejF/tmrCBp/kbavchj1DCeF\nWKMsKYwJDxqlofHnsbLKYdTTTwpxhpW2WjBiRj3Em9hXDox6mtez0MYm9GL/7FUEjT8UdX1QONFJ\nm7EU9SQMjb+IhUy0ztWRlaiHeu3QA+ys3hNeRNH481jJQuvWshD1UK89ei7ErtcyaPyhSHwiEdII\nCa/afaDxF2n76SZv5xxO2/edaxkfYtcD7ERLLYLGn8dK1MPbOfuxsu98ysY+NrydszZo/KGIeSJZ\nyKR9sLDvYh8TCweLiKDxF2n7qTGjnuG0fd81QQpjwoNGaWj8eayschj19JNCnGGlrRaM2MJZXoXQ\n+MnUMOppXs9CG5vQS3jV7gONv0jbVzmMeoaTQqxRlhTGhAeN0tD481hZ5TDq6SeFOMNKWy0YMaMe\n4kUKqwZGPc3rWWijJb3EofEXafupMaOe4bR93zVB7GPCz4MTQYxfRL4uIltF5IEQ9TWGlVUOo55+\nLMQLvnpWxsaCXuJnGKFW/DcCeFugumyRwqqBUU+YMk3puRC7XuIEMX5VvRPAb0PUZZI6J20KBxpi\nF0tnUAnDjL+IhYnL7+OnXlv1ABtRj49eBND487hMIJ/Jw+/jp16Mei7ErtcyRusUGxsbe+l1p9NB\np9OpU746Ep9EhDRGhKv2breLbrdbqUZI45fez1Dyxt9a2h71WIoKXLDUP+qF1XMlsqinuCgeHx8P\nrhHqds7vAPgFgKUi8isRuSREvbVjJeqxEBUAdm7Po17zegCf3K2RICt+VX1/iHrMkvgkGgjHhJTB\nwsEiInhxt0jbow0+qTictu871zI+xK4H8KDhAI0/D6OefqxkxBbiKN+ysY8No57aoPGHIPZJZCUj\ntqLnQuxjYmEfRASNv0jbT40Z9Qyn7fuuCWIfE34enKDx52HU0w+jnrDwSdp26CV+hkHjD0Hsk4hR\nT5gyTem5ELte4tD4rZHw6SkxgKUzqISh8RepM3N3Lc8vaaNeW/UAG1GPj14E0Pjz1Jm5+5SrWyv2\nKIR6YfVciF2vZdD4CSF2SXjV7gONv0jbM8q2t8+3LPWoVxZGPaWh8efh7ZzUo549PRcY9RBvEp9E\nhBBb0PiLtD1KqfsuotijAupRL0Fo/Hlijnp8iD0qoB71EoPGH4LEJxEhxBY0/iKMeuzS9n3nWsYH\n6lVT1jg0/jyxRz119y/mL2nj9/Hb1kv8LJ3GH4LYJ5GFzNYHC/sv9jGxsA8igsZvjYRPT4kBLEU9\nCUPjL2Ihc/dZHfF2TupVXdZC1OOjFwE0/jwWMncf+KQw9erQcyF2vZZB4yeE2CXhVbsPNP4ibY96\nLOlZiCaoZ1sPYNTjAI0/j5Wox0I5S9EE9WzrucCohxBCSErQ+IvEHL3UrWchKqAe9RKExp/HQoRi\npZylqIB61EuMIMYvIheIyEYReUxEVoWokxBCSEWoqtcPsoPH/wL4PQDTAawD8PsDttPWk538Of2s\nWbMmjN4xxxyZZhX9W7FicN9c9LZvLz+O11yT/X7Na8rrrV9fXu9Vr8r6d/HF5fVuueXwus4888h1\nP/ax8no33JCVXbSo/Nz85CfL6332sxN1LF6set11wzWWLTv8/Q9+UF7vox91/+zdeGN5vfPPd9Nb\nsEB19+7yeh70vBMhf0Ks+M8B8LiqPqmq+wH8C4B3B6jXDuPj6Ha7YerauTNMPS7cddfAP3dd6po/\nv3yZq6/Ofq9fX77skiXlyzz6KACgOzJSvuyzzx7+/oEHjrzszTeX1zvqqOz3li2li3Y3bSqvd8kl\nE683bwYuu2z4tuvWHf5+8+byejNnli/To3vnneULHX20m9i2bcDoqFvZFhHC+F8G4Knc+829v6XD\n297WdAvaR92Z7dy57nrz5pUv42FUTri08RAzZpQvc9JJ7nq7d5cvs2CBu97+/eXLvPzl7nrTp7uX\nbQm8uBuC2bObbkFcnHNO+TLTPKayywrOdcUIAKefXr7MnDnuenUblctB0ad/LguFE05w14sAySIk\njwpEVgAYU9ULeu+vRJZJfb6wnZ8QIYQkiqoGvQ0phPGPAHgUwJsBPA3gbgDvU9VH/JtHCCEkNN5X\nKVT1gIh8DMBtyKKjr9P0CSGkvXiv+AkhhNjC6+KuiMwXkdtE5FER+U8ROWbIdgMf8JqsvIicKSK/\nEJEHRWS9iDjcmuBHlf3r/f8UEXleRC6vui+DqKp/IvIWEbm3t9/uEZE31dinKR8mFJG/F5HHRWSd\niCybquyRjlMdVNS/L4jII73t/01EPG4h8qOK/uX+/3ciclBEjquyD5NRVf9E5OO9fbhBRD43ZUN8\nHgIA8HkAn+i9XgXgcwO2GfqA17DyAEYArAfwh73389E7O6nzp6r+5creBOC7AC6vu28V77/XAFjU\ne30GgM019WfKhwkBXAjgP3qvXw/gLt/9WOP+qqp/bwEwrff6cwCujal/vf8vBnArgE0AjoupfwA6\nyKL20d77BVO2xbMjGwEs7L1eBGDjgG1WAPhJ7v2VAFZNVr7X+W81sXPq6F/v/bt7hvJpNGf8lfWv\nUMc2ANNr6M/Qtub+9jUAf5F7/wiAhSH6abV/hfIXAfh2bP1Dtsj6IzRr/FXNz+8COL9MW3zv4z9R\nVbcCgKpuAXDigG0me8Br4ZDySwFARG7tRQZXeLbTldD9WwgAIjIXwCcAjANo8tuiqtp/LyEifwZg\nrWZPdVfNkTxMOGwbr37WRFX9y/M3AH7i3VI3KumfiLwLwFOquiF0g0tS1f5bCuA8EblLRNaIyNlT\nNWTKu3pE5KfoGdahPwFQAFcP2Nz3SvGh8qMAzgVwNoC9AP5bRO5V1TWe9fdRc/8O9n6vBvAlVd0t\n2cMnlZl/Q/vvkPYZAK4F8FbPeqvEZewt3RFxxP0TkU8B2K+q36mwPaGZtH8iMgvAVTh8Dlr6as4j\naesogPmqukJEXgfgXwGcNlWBSVHVoR9aEdkqIgtVdauILALwzIDN/g/AKbn3i3t/A4AtQ8pvBnCH\nqv62p/NjAMsBBDf+hvr3egAXi8gXkF2/OCAie1T1q94dKtBQ/yAiiwF8D8AHVPWXvv04QiZra36b\nlw/YZsYkZYf2s2aq6h9E5K8BrARwfrjmlqaK/r0CwBIA6yVbZS0GcJ+InKOqde/HqvbfZmSfNajq\nPb0L2Mer6vahLfHMrD6PiZxp2MXBEUxclJiB7KLEH0xWHsCxAO4FcBSyg9NPAVzYQCZXSf8K5Vej\n2Yu7Ve2/dQAuqrk/Q9ua22YlJi6ercDExTOv/Wi8fxcAeAjA8U30q+r+FcpvQrY6jqZ/AD4CYLz3\neimAJ6dsi2dHjgPwX8ie3L0NwLG9v58E4Ee57S7obfM4gCunKt/73/sBPAjgATR3l0Fl/ctt06Tx\nV9I/AJ8C8DyAtQDu7/2e8k6DQH3qa2vvg/Hh3DbX9z5E6wEsD7Efa9xnVfTvcQBP9vbTWgBfjal/\nhfqfQEMXdyvcf9MBfBvABmQL5j+Zqh18gIsQQhKD385JCCGJQeMnhJDEoPETQkhi0PgJISQxaPyE\nEJIYNH5CCEkMGj8hhCQGjZ8QQhLj/wExBOJY+7mAtwAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "t,V = osci.getVentana(1)\n", "plt.plot(t,V,\"r-\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.1" } }, "nbformat": 4, "nbformat_minor": 0 }