{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "Y7JgKfzlPBrr" }, "source": [ "![taller_python](https://github.com/fifabsas/talleresfifabsas/blob/master/python/2_Numerico/fig/logo_fifa.png?raw=true)" ] }, { "cell_type": "markdown", "metadata": { "id": "os_60KoG9612" }, "source": [ "# Taller de Python Capítulo 3: Práctica\n", "[Link al notebook en Google Colaboratory](https://drive.google.com/file/d/1a1uKTIJ19ouR6TawxHwRHZE3JKKb2M87/view?usp=sharing)" ] }, { "cell_type": "markdown", "metadata": { "id": "w5EORpIB961-" }, "source": [ "## Nuestra motivación para hoy\n" ] }, { "cell_type": "markdown", "metadata": { "id": "oe2yJvZN6CXS" }, "source": [ "Vamos a ver otra función que puede serles útil para analizar datos: `find_peaks`.\n", "\n", "Una vez aprendido esto, ¡Ponemos las manos en la masa y nos peleamos mucho rato con ejercicios re divertidos!.\n" ] }, { "cell_type": "markdown", "metadata": { "id": "EhenfPIp8f2v" }, "source": [ "## `find_peaks`: *como encontrar máximos y mínimos*" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "id": "oOr1YICgFz5X" }, "outputs": [], "source": [ "# Importamos las librerías que vamos a usar\n", "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "markdown", "metadata": { "id": "DRKKliyjFsHn" }, "source": [ "Supongamos que tenemos los datos de la siguiente figura y queremos saber cuales son los máximos de la señal.\n", "\n", "¿Cómo hacemos?" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "id": "QXEnKevEFsTZ", "colab": { "base_uri": "https://localhost:8080/", "height": 610 }, "outputId": "d67c712b-d510-49d1-ea23-815ba969fb28" }, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "<>:7: SyntaxWarning: invalid escape sequence '\\h'\n", "<>:8: SyntaxWarning: invalid escape sequence '\\h'\n", "<>:7: SyntaxWarning: invalid escape sequence '\\h'\n", "<>:8: SyntaxWarning: invalid escape sequence '\\h'\n", "/tmp/ipython-input-340745047.py:7: SyntaxWarning: invalid escape sequence '\\h'\n", " plt.xlabel('Eje de $\\hat x$', fontsize = 14)\n", "/tmp/ipython-input-340745047.py:8: SyntaxWarning: invalid escape sequence '\\h'\n", " plt.ylabel('Eje de $\\hat y$', fontsize = 14)\n" ] }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHACAYAAACh9WxwAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAiPpJREFUeJzt3XeYHNWVP/xvdZ7Uk3ryjDSjLKEsISGyQMEWxmbXi7GNCcLg14AWgRZs5MUIjC3BLmBYk2xM8toY/LMXDEYIZIGIEgLlnEcjTc7T0z3Tsd4/qm91jyb1dFd1pfN5Hh5bMx2uStVdp84991yO53kehBBCCCEGZVJ6AIQQQgghSqJgiBBCCCGGRsEQIYQQQgyNgiFCCCGEGBoFQ4QQQggxNAqGCCGEEGJoFAwRQgghxNAoGCKEEEKIoVEwRAghhBBDo2CIEEIIIYamqWDo448/xpVXXonS0lJwHIc333xz2Ods3rwZs2fPht1ux7hx4/Dyyy/LPk5CCCGEaIdF6QGMhMfjwYwZM3DTTTfhX//1X4d9/MmTJ3HFFVfgxz/+Mf70pz9h06ZNuPnmm1FSUoKlS5fG9Z7hcBh1dXXIysoCx3HJ/hUIIYQQkgI8z8PtdqO0tBQm09C5H06rG7VyHIc33ngDV1111aCP+elPf4p33nkH+/btE3/23e9+Fx0dHdiwYUNc73PmzBlUVFQkO1xCCCGEKOD06dMoLy8f8jGaygyN1JYtW7Bo0aI+P1u6dCnuvPPOQZ/j8/ng8/nEP7NY8eTJk8jKypJ0fIFAAB9++CEWLlwIq9Uq6WvrAR2fwdGxGRodn6HR8RkaHZ/BaenYuN1uVFVVxXXt1nUw1NDQgKKioj4/KyoqQldXF3p6epCWltbvOevWrcODDz7Y7+dbtmxBenq65GNMT0/HF198Ifnr6gUdn8HRsRkaHZ+h0fEZGh2fwWnl2Hi9XgCIq8RF18FQIlavXo1Vq1aJf+7q6kJFRQWWLFkCp9Mp6XsFAgFs3LgRixcvVn2ErQQ6PoOjYzM0Oj5Do+MzNDo+g9PSsenq6or7sboOhoqLi9HY2NjnZ42NjXA6nQNmhQDAbrfDbrf3+7nVapXtH17O19YDOj6Do2MzNDo+Q6PjMzQ6PoPTwrEZyfg0tbR+pBYsWIBNmzb1+dnGjRuxYMEChUZECCGEELXRVDDU3d2NXbt2YdeuXQCEouZdu3ahpqYGgDDFdf3114uP//GPf4wTJ07gJz/5CQ4dOoRnnnkGf/nLX3DXXXcpMXxCCCGEqJCmgqGvvvoKs2bNwqxZswAAq1atwqxZs3D//fcDAOrr68XACACqqqrwzjvvYOPGjZgxYwYee+wx/P73v4+7xxAhhBBC9E9TNUOXXnophmqLNFB36UsvvRQ7d+6UcVSEEEII0TJNZYYIIYQQQqRGwRAhhBBCDI2CIUIIIYQYGgVDhBBCCDE0CoYIIYQQYmgUDBFCCCHE0CgYIkQlAqHwkK0jCNELOteJ2miqzxAhelTd4sGat/bjs2MtcFjN+PbsMty9dCKyHOre94eQkdqwrx7//d5hHG/2oCIvDSsWjsN35lbEtas4IXKiYIgQBR1q6MLVz22BuzcIAOj2BfHKllPYdaYTf/zhPAqIiG68/NlJPPD2AfHPp9t68NO/7UV1qxc//dokBUdGCE2TEaKYbl8QP3z5K7h7g5hZkYN3V16El5afi5x0K3af7sB/vrFP6SESIomtJ1rx4D+EQOjG8yvxyU8W4u4lEwAAz24+jrd31yk5PEIoGCJEKY+/fwS1HT2oyEvDy8vPxeQSJxZOLMQLN5wLs4nDW7vr8P7+BqWHSUhSfMEQ7vnrbvA88G9zyrHmyimoyEvHisvG47ZLxwIAHnx7Pzq9AYVHSoyMgiFCFHC6zYs/bKkGAPzyqmnISbeJv5szOhc/ungMAOCRDYcQDIWVGCIhkvjj1hqcbutBkdOOB755Tp/6oJWLxmNsQQZauv343SfHFRwlMToKhghRwHMfHUcwzOPCcS5cMqGg3+9vvXQsctOtON7swTt76xUYISHJ8wVDeHazEOTctWgCMu19y1TtFjPuWSrUC/3h81Po7KHsEFEGBUOEpFinN4C/bj8DAFhx2bgBH+N0WHHj+VUAgBc/PUnLkIkmvbWrDi3dPpRkO/DtOeUDPmbJlCJMKMqE2xcUPxeEpBoFQ4Sk2Bs7z8AXDGNScRbmV+UN+rgfnDcKNosJu890Ys+ZzhSOkBBp/HHrKQDA9QsqYTUPfLkxmThct6ASAPDqF6co8CeKoGCIkBT7y1fC3e/35o0asr9KfqYdXzunGADwtx10x0y05UijG7vPdMJi4vCduQNnhZirZpYi3WbG8WYPdtS0p2iEhERRMERICh1v7saB+i5YTBy+NbN02MezqYW/76qDP0iF1EQ7WAC/cFIh8jPtQz42y2HF0kjg//ZuqpEjqUfBECEp9I/IF/2F4119VpAN5sJxLrgybejsCWDbyTa5h0eIJHiex3v7hLYQV80si+s535heAgBYv7ceoTBNlZHUomCIkBR6L9I36IppJXE93mzicNmkQgDAPw82yjYuQqR0vNmD6lYvbGYTLpnYf7XkQC4aX4AsuwVNbh/21lKNHEktCoYISZH6zh4cqO8Cx0EMcOKxeIowfbDxQCMVlxJNYIH7eWPz+y2nH4zNYsIF41wAgI8ON8s2NkIGQsEQISnywaEmAMCsipxhayhiXTjOBbvFhNqOHhxqcMs1PEIk888DQjC0eHL8QT8AMYv08VEKhkhqUTBESIp8cqQFALBw4sguEGk2My4aL9wxs4sMIWrV2u3D9siKsMsnF43ouRdHGpDurGmn7TlISlEwREgKhMM8vjjZCgA4PzIVMBKLIheVf0ayS4So1YeHm8HzwDmlTpTmpI3ouWU5aRhXmIkwD3x2vEWmERLSHwVDhKTA0aZutHsDSLOaMb08e8TPvzSSTdp7pgNdvXTHTNTr80gQM9A2M/G4eHxkquwITZWR1KFgiJAU2HpCyArNrcwdtBPvUIqzHRidn44wD2yvpqZ0RL2+OCG0gDhvTH5Cz2d1Q58cpcwQSR0KhghJARYMJXqBACBu3bE1Mt1GiNqcafeitqMHZhOHOaNzE3qNuaNzYTZxqO3oQV1Hj8QjJGRgFAwRIjOhXojdLQ++F9lw5lcJgRS78yZEbdi5Oa0sGxlxLqk/W4bdgsklWQBAW3OQlKFgiBCZHW3qRpvHjzSrGdPKchJ+nfmRQGpvbSc8vqBEoyNEOmyRwPwkgn4AmDNKyCptP0XBEEkNCoYIkdm2auFuec7oXNgsiX/kynPTUZaThlCYx47THRKNjhDpiBnQqsSngwFgdmSKbQcFQyRFKBgiRGa7I4HLrFE5Sb8Wqxv68iRdJIi6NHT24lSrFyZOWCiQjNmRzND+ui70BkJSDI+QIVEwRIjM9pzpAABML89J+rXmRYIhygwRtWFTWlNKnchyWJN6rfLcNBRm2REM89hzhvYpI/KjYIgQGXl8QRxr6gYAzEigv9DZZlTkAAD21XaBNvYmarI7EvTPkCDo57joajSqGyKpQMEQITLaXycELcVOBwqdjqRfb3xhJtKsZnj8ITTRqmOiImw6mAXsyaJgiKQSBUOEyCg6RZZ8VggALGYTppY5AQA13Zwkr0lIskJhHvtqheksKTJDgLA8HwAO1NE0GZEfBUOEyGh3pN5BqrtlIFp7RMEQUYsTzd3w+ENIt5kxrjBTktecXCoE/XWdvWj3+CV5TUIGQ8EQITJimSF2lysFFlidomCIqMSuyBTZ1LJsmE3SnJdOhxWj8tIBCNPNhMiJgiFCZNLh9eNUqxeAdNNkQLQQu9YL+INhyV6XkESxFV9SLBKIdU4kO3SgnqbKiLwoGCJEJuxudlReOnLSbZK97qi8dOSkWRHiORxudEv2uoQkSsr2EbFYMESZISI3CoYIkcmhBiFQmVScJenrchyHaZEi6j21dJEgyvIHwzhYL5zrMyWsjQOEnkUABUNEfhQMESKTww3CF/ikEqfkr83umNlFiBClHGvqhj8UhtNhQXlumqSvfU6pMO12orkbPX7qRE3kQ8EQITI5LFNmKPY1WfaJEKUcrBeC/sklTnCctEX9hVl2uDJtCPPAoQbKDhH5UDBEiAxCYV6s55koQzA0sUhYvnyk0Y0wtaImCmJBymQZMqAcx4mvS1NlRE4UDBEig5o2L3oDYdgtJlTmZ0j++pX56bByPHoCYZxq80r++oTEi03VTi6RPugHonVDlBkicqJgiBAZsHqhCUVZkvVdiWUxm1AstGDBoXq6SBDlsCBlUrH0mSEAmFAoBFlsjz9C5EDBECEyYLU8ckyRMaXpwvTYQQqGiEKa3L1o6fbDxAmBvxzGR6aEjzZSMETkQ8EQITI4VC9f8TRTliEEQwdoRRlRCDvPK10ZSLOZZXkPtr1Hq8eP1m6fLO9BCAVDhMiAFU/LNXUAAKVsmoxqKYhCxJVkMp7n6bbokn2aKiNyoWCIEIn1BkKobvUAACYUS7Np5UDYNNmZ9h509QZkex9CBhNdVi9fBhQAxkeyQ0cpGCIyoWCIEImdbPGA54HsNCsKMu2yvU+GFSh2Cq9/mPoNEQVEu6zLlxkCgPGReqSjtP0MkQkFQ4RI7ESzkBUaW5AheRO6s02g4lKikGAoLJ7rci4UACgzRORHwRAhEjveLHxhjymQb4qMGVfALhJ0x0xSq6bNC38oDIfVhLIcabfhOJuYGaJgiMiEgiFCJMaCobGpCIYKhYaOVFhKUo0FJuMKM2GSoZdWLLairNntQ4fXL+t7EWOiYIgQicVOk8mNBVwUDJFUY+fcuBQE/Zl2i5h9ouwQkQMFQ4RIiOf5aGaoUP6LBAu46jt74aYVZSSFWDA0XqZmi2djn6fjFAwRGVAwRIiEGrp64fWHYDFxGJWXLvv7ZadZUZAlrCg7HslIEZIKLBhKxXQwAIxxCYH/yVY6z4n0KBgiRELHm4Qv6lH56bCaU/PxElfa0LJjkiLhMB+TGUpNMFSZL9xcnKSgn8iAgiFCJHSiJbV3y0C0uPRYM00fkNSo6+xBTyAEq5nD6BRkQAGgKvKZqqbMEJEBBUOESIjVM4xJQfE0wzJDx6jXEEkRVsRc5cqAJUUZ0Kp84TNV3epFOMyn5D2JcVAwRIiEjosryVKZGRIKWCkzRFKFBf3jC1NTPA0AZblpsJo5+INh1HX2pOx9iTFoLhh6+umnUVlZCYfDgfnz52Pbtm1DPv6JJ57AxIkTkZaWhoqKCtx1113o7e1N0WiJ0ZxsEYIhVuyZCmyarKbNi95AKGXvS4yLdTxPxYpJxhyzKIF9zgiRiqaCoddffx2rVq3CmjVrsGPHDsyYMQNLly5FU1PTgI9/9dVXce+992LNmjU4ePAgXnjhBbz++uv42c9+luKREyPwBUPiHWtlCoMhV6YNTocFPE/1FCQ1orVxqTvPAaDKFakbomCISExTwdDjjz+OW265BcuXL8eUKVPw3HPPIT09HS+++OKAj//8889xwQUX4Pvf/z4qKyuxZMkSfO973xs2m0RIIk639YDngQybGfkZtpS9L8dx0eJSukiQFDjZ4gUAjHGlLjMEAFUuITN0gs5zIjGL0gOIl9/vx/bt27F69WrxZyaTCYsWLcKWLVsGfM7555+PP/7xj9i2bRvmzZuHEydOYP369bjuuusGfR+fzwefzyf+uaurCwAQCAQQCEjb1I69ntSvqxdaOz4nmoRzZVReOoLBoKzvdfaxqcxLw+7THTjW6EZgokvW99YCrZ07qZbM8XH3BtDSLXxHlmXbUnqMR+UKXahPNHfL+r50/gxOS8dmJGPUTDDU0tKCUCiEoqKiPj8vKirCoUOHBnzO97//fbS0tODCCy8Ez/MIBoP48Y9/POQ02bp16/Dggw/2+/n777+P9HR5lpBu3LhRltfVC60cn831HAAzbP5OrF+/PiXvyY5NoE147092HUZF98GUvLcWaOXcUUoix6emGwAscFp5fPLB+5KPaSiNncJ5vr+mOSWfMTp/BqeFY+P1euN+rGaCoURs3rwZa9euxTPPPIP58+fj2LFjWLlyJR566CH8/Oc/H/A5q1evxqpVq8Q/d3V1oaKiAkuWLIHT6ZR0fIFAABs3bsTixYthtVolfW090Nrx+eqdQ0B1DeafMwbLlkyQ9b3OPjb83gasP70HwbQ8LFs2T9b31gKtnTuplszxeWt3PbB3LyaW5WHZsnNlGuHAGrp68dSBj9HuN2Hx0sWyNTal82dwWjo2bGYnHpoJhlwuF8xmMxobG/v8vLGxEcXFxQM+5+c//zmuu+463HzzzQCAadOmwePx4Ec/+hH+8z//EyZT/w+S3W6H3W7v93Or1SrbP7ycr60HWjk+p9uF4ukxBVkpGy87NuOKhEC9utWriWOVKlo5d5SSyPGpaRdW444tyEz5sS3PsyDNakZPIITG7iCqZF6oQOfP4LRwbEYyPs0UUNtsNsyZMwebNm0SfxYOh7Fp0yYsWLBgwOd4vd5+AY/ZbAYgbKhJiJROtQop2VH5qenIG4utXmv1+NHZo/65fKJdbFl7KldMMhwXXV5f0xb/FAghw9FMMAQAq1atwvPPP49XXnkFBw8exK233gqPx4Ply5cDAK6//vo+BdZXXnklnn32Wbz22ms4efIkNm7ciJ///Oe48sorxaCIECkEQ2GcaRe+nCvzU3+RyLRbUBjZsJVWlBE5sfYNcmdlBlNBwRCRgWamyQDgmmuuQXNzM+6//340NDRg5syZ2LBhg1hUXVNT0ycTdN9994HjONx3332ora1FQUEBrrzySvzqV79S6q9AdKq+sxeBEA+bxYRip0ORMVS5MtDk9uFkiwczKnIUGQPRN57nxY1SU9lYNBbLDJ2mYIhISFPBEACsWLECK1asGPB3mzdv7vNni8WCNWvWYM2aNSkYGTEycYosLx0mE6fIGMYUZOCLk23Ug4XIpqXbD7cvCI5TZjoYAEblCcvra1opGCLS0dQ0GSFqxaYOKhW6QADRaQvaqoDIhZ1b5blpsFuUKTWgaTIiBwqGCJEA+2IelafM1AEQrVU62UIbthJ5sHNLibo4JnaajBbCEKlQMESIBE5FMkOjVZAZqm6hiwSRR3Vkakqp4mkAKM8VPmNuXxAdXlo5SaRBwRAhEjgT6TFUEalnUAKbPuj2BdFOFwkig5qY2jilpNnM4spJmiojUqFgiBAJsGCI3bUqwWE1o8hJFwkin+h0sHLneez703lOpELBECFJ6uoNiI0Oy3KUywwBwOhIzRJdJIgc2Hk1WsGaISCmbqidznMiDQqGCEnSmTYhK5SfYUOGXdluFeJKm1ZaUUak1emNBv1KTgcL70+9hoi0KBgiJEns7rQ8V9kLBBAt4KbMEJEaO6cKsuxItykb9NM0GZEaBUOEJEmsF1K4jgKIXiROUUM6IrFTbUK2Uel6ISDa8JGCISIVCoYISdIZFWWG2EWCpg+I1MR6IRUEQ+yzVtfRi2AorPBoiB5QMERIkk63Kb+SjGF37fVdvfAFQwqPhugJC7ArVBAMFWY5YDFxCIV5NLl9Sg+H6AAFQ4QkiWWGKlSQGcrPsCHdZgbPR6fvCJHCKRX0GGLMJg4lOcKGyLUddJ6T5FEwREgSeJ5XRY8hhuM4Ki4lsoguq1f+PAeA0mw2VUbBEEkeBUOEJKGzJ4BuXxCAOmqGgJiVNlRETSTiD4bFoEMNmSEAKIt83igDSqRAwRAhSWBfxAVZdjisyuzifTZaXk+kVtfRgzAPOKwmFES2wlAaa3BKmSEiBQqGCEkCKypVS1YIoB4sRHqx23BwHKfwaAQsGKKaISIFCoYISQL7IlZDvRBTQdNkRGKnVLInWaxSygwRCVEwREgSWDBUGlnZogZs36iaNi94nld4NEQPTovBkLJ7ksViNUO17T10npOkUTBESBLqO3oBKL9Ba6yynDSYOKAnEEJzN/VgIck71cq6T6vnPGeryTz+ELp6ggqPhmgdBUOEJKGuU8gMlWSr5yJhs5jE8VAnaiKFmkhjUaV3q4+VZjMjP8MGADjTQec5SQ4FQ4QkoS6SGSrJVs80GUBF1EQ6PM+rqvt0rGjdUK/CIyFaR8EQIQnyBUNoiUxDqWmaDKANW4l02jx+dPuC4Dh1rZoEYlaUtdN5TpJDwRAhCWroFO5GHVYTctKtCo+mL9rVm0jldKSXVlGWQzW9tBgxM9RJmSGSHAqGCElQdCVZmmp6rzDlMSttCEkG23tPbVkhoO+KMkKSQcEQIQliK8lKVVQ8zYjBEPVgIUmqFffeU995XkabtRKJUDBESILqxZVk6iqeBoCyHGGarL6zF8FQWOHREC1jW86UqTIYEs5zCoZIsigYIiRBtSwzpLLiaQAozLLDauYQCvNodFOvIZI4NXZZZ1iz02a3D75gSOHREC2jYIiQBLHMkJq6TzMmEycGaWeoiJokgdUMqW3FJADkZdjgsAqXsQYqoiZJoGCIkATVxRRQqxFtZEmSxfO8WDOkxmkyjosG/VRETZJBwRAhCaoXGy6q7yIBRAtez9BFgiSowxuAxy9MP6kxMwRQ0E+kQcEQIQno6g3A7RP2Q1LjNBkQU1xKwRBJEAswXJl21fUYYigYIlKgYIiQBLCsUE66Fek2i8KjGVgZLa8nSTqj4mX1TBlNkxEJUDBESALUuEHr2aLTZFRATRIjFk+rOBgqiQRDDV1UQE0SR8EQIQkQi6dV2GOIKYvZxDIc5hUeDdGi6LJ69QZDxU7hM0iryUgyKBgiJAH1Ku4xxJRkO2A2cfCHwmjupl5DZOTEaTIVn+fF2RQMkeRRMERIAsRpMpUWTwOAxWwS75ppRRlJRHQrDvU1XGRYMOT2BdEdWdRAyEhRMERIAtg0mVqXGzNsfFQ3RBKhhZqhTLsFWXZhEQNlh0iiKBgiJAH1neruMcTQhq0kUe7eALp6hUyL2oP+okh2qJGKqEmCKBgiZITCYT6m4aJ6p8mAmOX1NE1GRogF0LnpVmTY1dk+gmGfw3rKDJEEUTBEyAi1evzwh8LguGi9glpRF2qSqDNt6t2G42xFTsoMkeRQMETICLG6hIJMO6xmdX+ExC7UNE1GRkhcVp+j3uJpJpoZovOcJEbd3+SEqBBr7qb2rBAQvas/0+4Fz1OvIRI/LRRPM0ViryFqIUESQ8EQISPEUvHsC1jN2L5pvYEw2jx+hUdDtEQLDReZEiqgJkmiYIjIIhgK40ijG7UdPbrLSESDIbvCIxme3WJGYZYwTqobIiPBzhe1ryQDojcmeiyg9viCOFDXhU5vQOmh6Jq6lwgQTfrr9jN4+N2DaOkWMhGzR+Vg7b9Ow6Rip8IjkwarGSrWQGYIEKY5mtw+1Hb0YEZFjtLDIRoh9tLSUGao1eODPxiGzaL9+3x/MIzH3j+Mlz6vhj8oLNi4amYZ7v/GFORm2JQenu5o/4whqvLrjUdw9//bjZZuPxxWE8wmDjtqOnD1c1uw63SH0sOTRKNbqEvQwjQZEN0ypI6KqEmcegMh8WZGC5mhvAwbbGYTeB5ocms/OxQIhfGj//0Kv/34BPzBMLLsFvA88MbOWnznt1vQQtvrSI6CISKZt3bX4clNRwEAKy8fjz1rlmLLvZdhXmUe3L1B3PrH7bqoW2ns1E7NEBDdTFaPUwhEHiz7mWY1IzvNqvBohsdxHIqyhelgPdQNPfLuIWw+3Iw0qxnP/WAO9jywBG/efgGKnHYcberGv7+6E8FQWOlh6goFQ0QSzW4f/vONvQCAWy8di7sWT4DNYkKh04EXl5+LMQUZqO/sxdr1BxUeafK0tJoMiHbJpmXHJF6xe+9xHKfwaOJTrJO6oR017fj9pycBAE98dya+NrUYHMdhZkUO/nTzfKTbzNhyohUvf16t7EB1hoIhIolHNhyCuzeIaWXZ+I/FE/r8LtNuwWNXzwAg1BPtOdOhwAil0RsIobNHKGTUTGYosqKsrkPbFwmSOqzDeqnKt5uJVRwZq5b3J+N5Hg++fQAA8O3Z5Vh6TnGf348rzMLPvzEFgFCS0Oym6TKpUDBEknasqRv/t+MMAOChq6bCMkAjwlmjcvEvs8oAAL/54FhKxyclloJ3WE1wOrSx/oDVDFFmiMSL1ZexQFoLiiOrO7UcDH18tAW7T3cgzWrGT78+ccDHXDO3AjMqcuDxh/DcR8dTPEL9omCIJO3pD48hzAOLpxRh5hCrlVZcNg4cB2w80Iijje7UDVBCsSvJtDJ9wKbJmtzCShtChlOnkY2IY4mZIQ3XDD27WbhR/P78USjMGjgQNZk4Mfv+x62nqJhaIhQMkaQ0dfXiH3vqAAD/ftm4IR87tiATiycXAQD+9EWN7GOTg9ZWkgFAfsxKGz0UlxL5sSyitjJDrAu1Ns/xo41ubD3RBhMH/PDCqiEfe9F4F2ZU5MAXDONVjX6Xqg0FQyQpf/qiBoEQj7mjczG9PGfYx//gvNEAgL/tOIMef0jm0UlPayvJAOFOsphWlJERYDVD2soMRYIhjQb8r24TgprLJxeJU9uD4TgON11QCQD4362naGWZBCgYIgnjeR7/t1OoFbpuwei4nnPhOBfKc9Pg7g1i06FGOYcnC62tJGNoI0syEnVazAzFbMkRDmur6304zOMfe+oBAN89tyKu53x9agnyM2xodvvwybEWOYdnCBQMkYRtP9WO0209yLCZsWRK8fBPgJCl+OaMUgDAW7vq5ByeLBo0tC9ZrGjjRW3eNZPUcfcG4O4NAtBWZqgwyw6OAwIhHm1ebfUz217Tjma3D1kOCy4aXxDXc2wWE66MfJe+ubNWzuEZAgVDJGFvRD6AX5tagjSbOe7nfXOm8AHefLgZ7l5t7bfTpKF9yWJRZojEi02lOh0WZNi1sWISAKxmE1yZ2lxRtn6vkBVaPLloRFuJXBVZofve/gZ0+4KyjM0oKBgiCfEHw2Jaly2Zj9ekYieqXBnwh8L47FirHMOTjThNRpkholPRZfXayQoxLOjXUjAUDvPYsK8BAPD1aSUjeu6M8mxUuTLQGwjj/f0NcgzPMCgYIgn56EgzOnsCKMyyY8HY/BE//9KJQip48+EmqYcmG57n0dilvdVkQGzjRcoMkaGxzJAWgyH2udRSEfXuMx2o7+xFhs2Mi8a7RvRcjuNw1UzhZvQNmipLCgVDJCEbDwh3IcumlcBsGnm/nYUTCwEAHx5uAs9ro9ixwxsQ+/QUam6ajBovkvjURwLmEo0tEgCEuiFA6KmlFe8fEBaSLJxUCIc1/nID5hszhGzS1hOtNFWWBM0FQ08//TQqKyvhcDgwf/58bNu2bcjHd3R04Pbbb0dJSQnsdjsmTJiA9evXp2i0+hQO8/jwcDMAYFGkb9BIzavKQ5rVjMYuHw7Wa6MBI7vbzMuwwW4Z+ZeWkti2Cu3egCZbGpDUqdNwZog1KmzW0M71n0dWgl02qTCh548tyESVKwOBEI9PjzZLOTRD0VQw9Prrr2PVqlVYs2YNduzYgRkzZmDp0qVoahp4qsXv92Px4sWorq7GX//6Vxw+fBjPP/88yspGVuNC+tpX14lmtw8ZNjPmVeUl9BoOqxkXjBOm1z7UyFSZVleSAYAzzYL0SJE7ZYfIUOo0nBliCxvYdLbadfYEsLe2EwBw/tiRTZHFYoHUpoPa+C5VI00FQ48//jhuueUWLF++HFOmTMFzzz2H9PR0vPjiiwM+/sUXX0RbWxvefPNNXHDBBaisrMQll1yCGTNmpHjk+sI+cBdPKBjRyoezXRqZKtNK3ZBWV5IBQm1BCTVeJHGo1+BWHAybvm7SSGboixOtCPPAmIKMpHqXXT4pWnagtR5LaqGZYMjv92P79u1YtGiR+DOTyYRFixZhy5YtAz7nrbfewoIFC3D77bejqKgIU6dOxdq1axEK0TRBMj44JAQviaZ1GVYsuOt0B3oD6v83aegU7ja1tpKMia4oo8wQGRjP8+L5UabhabImjWSGPj8urKY9P4FFKLHmVuYhy25BS7cfeyKZJjIymmki0dLSglAohKKivjUqRUVFOHTo0IDPOXHiBD744ANce+21WL9+PY4dO4bbbrsNgUAAa9asGfA5Pp8PPl/0g9TV1QUACAQCCASk7YnDXk/q15VTk9snpnUvHJub1NhLsqwozLKjye3DVydbMP+sKTe1HZ+6Di8AoCDTqviYEjk2bFfvM20exccvN7WdO2oz2PFp8/jhiywSyEs3a+745aUJU8Et3T70+vwJLe4AUnf+fHZMqPGZX5ncdykH4IJx+diwvxEb99fjnOIMiUbYn5Y+WyMZo2aCoUSEw2EUFhbid7/7HcxmM+bMmYPa2lr893//96DB0Lp16/Dggw/2+/n777+P9PR0Wca5ceNGWV5XDl82cwDMqMjgse3jTUm/XpnNhCaY8OeNX6C1fOD0rlqOz77jJgAmNJ06ivXrjyg9HAAjOzbuRuHfbtu+o1jfc1i+QamIWs4dtTr7+JzxAIAFWVYem97foMiYkhHmAQ5mhHkOf3nrXWTbkns9Oc+fLj9wtEm4BLuPbcf6U8m9Xm6v8Pl+56vjmOCT//tJC58tr9cb92M1Ewy5XC6YzWY0Nvbdz6qxsRHFxQNvBVFSUgKr1QqzObryZ/LkyWhoaIDf74fN1v+Tsnr1aqxatUr8c1dXFyoqKrBkyRI4nU6J/jaCQCCAjRs3YvHixbBarZK+tlw+eWM/gFosnVWFZUsnJP16LXk12PnOIbgdhVi2bE6f36nt+Py2egsANy4/fy4WToyvZb5cEjk2nu212HBmPyzOgn7HWm/Udu6ozWDHZ9PBJmDPLlQWZmPZsvMUHGHi1u3/CE1uH6bPuxDnlCb2nZ2K8+edvQ3A9j2YXJyFq7+1IOnXm97egz8//gnOeE245PLLZeserqXPFpvZiYdmgiGbzYY5c+Zg06ZNuOqqqwAImZ9NmzZhxYoVAz7nggsuwKuvvopwOAyTSSiPOnLkCEpKSgYMhADAbrfDbu9fIGu1WmX7h5fztaX2RXUbAOCC8QWSjHn+GKFuaGdNJ0xmy4BpbbUcn+ZuYb+j0twMVYwHGNmxqcgXUucNXT7VjF9uajl31Ors49PYLUwrlOakafa4FTkdaHL70OoNJv13kPP82VMrtBSZV5UnyXtUFVpRnpuGM+092FXrFheoyEULn62RjE8zBdQAsGrVKjz//PN45ZVXcPDgQdx6663weDxYvnw5AOD666/H6tWrxcffeuutaGtrw8qVK3HkyBG88847WLt2LW6//Xal/gqadrrNi9NtPbCYOJxbmdiS+rNNLnEi026B2xfEoYb4o/hUC4V5tHYLtWSssZvWRBsvamOlDUk9tlu9FleSMVppvLjrdDsAYOaoHMlec8EYoRB7ywltbXOkBgkFQ+FwuM+fH3nkkZQUU11zzTV49NFHcf/992PmzJnYtWsXNmzYIBZV19TUoL6+Xnx8RUUF3nvvPXz55ZeYPn067rjjDqxcuRL33nuv7GPVI/YBm16ejUyJUrBmE4fZo3MBAF9Vt0vymnJo9fgQ5gETB+RnajMYYltydPuC6NLYBrkkNeoje9dpcSUZIy6vV/GKMn8wjH11ws3fzIpcyV6XbY205TgFQyM14mBo//79mD9/fp+frV69GlOnTsU777wj2cAGs2LFCpw6dQo+nw9ffPFFn7Fs3rwZL7/8cp/HL1iwAFu3bkVvby+OHz+On/3sZ31qiEj8tkY+YInsRTaUc1kwdEq9wRD7Ys3LsCe8QkVp6TYLctKFtHE9bdhKBsAacpbkaLN9BBBdXt+o4l5DB+u74A+GkZNuRWW+dAtz2HfzvtpOuuEZobiDoXA4jIceeghz587F4sWL+/zupZdegtvtxje/+U0sW7YMR46oY6UNkQ7P82JmKJlOqQOZUZEDANh7pkPS15VSs1vbU2QMm/6ooy7UZAB1HdptuMhoITO063QHAGBGeQ44Trqbq5LsNFS5MhDmgW0n2iR7XSOIOxh65JFH8Nhjj+H//u//sHbt2j6/u+GGG3DkyBHcdddd2LRpE6ZNm4a77757RJXcRN1qO3pQ39kLi4nD7FHSpXUBYFpZNgCgutWr2rsZFgwVaDwYKs2m3evJwEJhHo1dbF8y7WeG1Lw/GQuGZklYL8Swfm1fnqJgaCTiDoZKS0vR3d2NTz/9tF/NEABkZmbi0UcfxZ49e3DZZZfh8ccfx4QJEwbdKoNoy/bIFNY5ZdlIs0k7zZibYRNrFPaptHsqa++v+cxQ5CJH02TkbM1uH4JhHmYTJwYUWqSF/clYMDQzkhWX0pxI2cEOFZcdqFHcwdANN9yAf/7zn3j99dexcOHCQR83ceJEvPvuu3jzzTeRmZmJm2++Geeee+6gW2YQbWAfrDkSZ4UYlh1SazCkl8wQTZORwbBzoihLu3VxQDQz1NLtU+U+XR1eP062eADIGwztPtMJf7B/4oIMbEQF1Jdeeil2794d10an3/zmN3HgwAH86le/wsGDB3HhhRfiuuuuQ11dXcKDJcrZXiMEQ7NH58jy+tPKhWBob606p1abdFIzxDJwlBkiZ2PnRKmGV5IBgCvTBo4DgmEebV6/0sPpZ39kFdmovHTkpCfZInsAVa4M5KZb4Q+Gsb9OnTeXajTi1WQZGRn4n//5n0F/HwwGsX37djzzzDP40Y9+hD/84Q/o6ekBz/P405/+hIkTJ+Kxxx4Dz6svYicD8/iCOFgvNAhjdx1S005mSLvTBwBidq6nzBDpK7qSTNvBkMVsQn4GmypTX9B/IBIMJdodezgcx4nf09tpqixukjSL+fOf/4xt27bhiy++wK5du+Dz+cRgp6ioCN/61rdw/vnno6qqCo8//jjuuecevP3223jzzTeRk5MjxRCIjHaf6UAozKM02yHbKhMWDJ1s8aCrNwCnQ12dTcXMkFPbmSFx5/rOXvA8L+lKFqJtrBknC5i1rDDLjpZuH5rcPpyj9GDOcrBeCIYml8gTDAHA7NG5+OfBJuyooWAoXpIEQ9deey0AwGw2Y9q0aTj//PNx/vnnY8GCBaiqqurz2G9/+9t45plncOedd+LOO+/s1xeIqM/Omg4AEJsjyoEVUdd29GB/bZfkvYySwfN8NDOk0YaLDAvm/MEwOrwB5GZIn6Yn2tQQCYaKndoPhoqcdhyoB5pVWER9IBIMTZExGGK1ndtPtdNNT5wkCYZ++ctfYsGCBZg3bx4yMjKGffxtt92Gr776Cm+//bYUb09kxlKtck2RMdPKslHb0YN9tZ2qCoa6fUH0BEIAtF9AbbeYkZ9hQ6vHj/rOXgqGiKghMqVUrIvMUKTxosqmyXzBEI41dQMAJss0TQYA08tzYDFxaOzyobajB+W50jV21CtJ9ib72c9+hoULF8YVCDETJkxAWxv1QVA7nudjemLIGwyxtPHhRres7zNSLCuUYTPLthN0KhU51XmhIMoSM0N6CIac6tyf7FhTN4JhHtlpVrHnlxzSbGbx+3T3aXXWYaqNYhu1Xnfddfj973+v1NuTONV29KDN44fVzGFySZas7zWxOBMAcLhBXcFQtF5I+xcJILaImoIhIgjHNFzUwzQZ+6w2qazxIiuenlySJfvU1fTICt09tR2yvo9eKBYMlZWVibvNE/Xac0a4q5hU7ITdIu+ebhOLhTuZo01uhFTUH0Qv9UJMUSQYaqDMEIlo9fgRDPPgOO1PBQPRFhhqa7zIVuVOKcmW/b3EYIgyQ3FRLBgi2rA7sl8Y6wMkp1F56bBbTOgNhHG6zSv7+8WLZYYKNL6SjCmJ3DU30PJ6EsGyQq5MO6xm7V8WWDDUrLJpsgP1QmAid5YdEOqGAKFdiRqbT6qN9s96Iqu9kczQjBQEQ2YTh/FFwlTZIRVNlektM1QsZobUdaEgytHTsnogWhfX5O5VTU87nufF7zU5l9Uz4wsz4bCa4PYFcbLVI/v7aR0FQ2RQ4TAvBkPTynJS8p4TioQ7piMqKqIW9yXTSWZIDIYoM0Qi2JRpkQ7qhQAhwwUAgRCPdq86Nn9u7vahwxuAiQPGFWbK/n4WswnnlEamyiIZfjI4CobIoKpbPXD7grBbTJhQJP+HFwAmFQvBkJqKqPWWGSoRgyGqGSKCRh31GAIAm8WE3HShcWtLtzoyoMcahSX1o/Mz4LDKW3/JsGa2rPaTDI6CITIo9gE6p9QJS4rqCFhmSE3L65t1tpqM3f139Qbh9QcVHg1Rg3odLatnWHZILXVDRyP9hcYWpObGEogpoqZgaFiSXeGCwSB+/etfY968eXA6nbBYov1Ydu3ahdtuuw1HjhyR6u1ICrAPECvES4WJkczQyRYPfCrZcVlvmaEshxWZkX5JlB0iAHS1rJ5hq+JUkxmKBEPjU5RlB6Lf3fvrOhEMqeP7VK0kCYZ6enqwcOFC3H333Th16hScTmeforWqqiq89NJL+MMf/iDF25EUYTseTy2Tv3iaKXY64HRYEArzONGsfNFfIBRGq0fY+VovNUOAsF0BQMEQEeip+zRToLIVZUebhGz3+BTUCzFjXBlIt5nRGwjjZIvy36dqJkkwtHbtWnz22WdYt24dGhoacPPNN/f5fXZ2Ni655BK89957UrwdSQGe58U9dOTaXXkgHMeJU2XHmrtT9r6Dae0WAiGziUNeun62rmAb7lKvIQLoq/s0I06TqSwzlIriacZk4sSVa+z7nAxMkmDo9ddfx8KFC/GTn/wEHMcN2FlzzJgxqKmpkeLtSAqcae+BuzcIq5lL6Rw3AIwpELZ1UcOdDFtJ5sq0wWTSz2aHrG6IulCTbl8Q3T6hdkyP02RqyAy1e/xoidxYpfr7lPU0omBoaJIEQzU1NZg7d+6Qj8nKykJnJxVxacXByAdnfGEWbJbU1tmPiXxZnGhRvvGiWC+kg668sdiKMtqfjLCsUJbdoou99xg1FVCzLHdZTlrKjzHrds22AiEDk+Qql5WVhaampiEfc/z4cRQUFEjxdiQF2F3ElBROkTHszkkNNUPivmRZ+rljBqJbclBmiLBgqEhHU2RAbAG1X+GRAEcbUz9FxrDv8AN1XappQKlGkgRD5513Ht5++210dHQM+PvTp09j/fr1uPjii6V4O5IC7C5iSgo6pZ6NTZNVt3qgdBd5va0kY6JbclAwZHSsbkwv3aeZAhVlhpQonmYmFmXBxAn7z6nhWKiVJMHQPffcg/b2dlx++eX47LPPEAwK889erxebNm3C0qVLEQwGsWrVKinejqQAywylom382UblpcNi4tATCKNT4Zs6vXWfZopps1YS0aiz7tOMK0tY8NDm8Sm+8bMSy+qZNJsZVS7hBpPqhgYnyeTlxRdfjKeeegorV67sk/3JyhIKt8xmM5555hnMmTNHircjMuvsCeBMu7BVgxKZIavZhFH56TjR7EFjj7JFy01d+qwZYsFQS7cPgVBYF5tzksTUR7Zl0VPxNADkZ9hh4oAwD7R5/Ip+htmU/5gUF08zU0qzcbzZgwP1Xbh0YqEiY1A7yb4Bb731VuzevRsrVqzAueeei7Fjx2LWrFn48Y9/jJ07d/Zbbk/UixVPl+WkITvS0j7VxriEL40mhbfPYstyC3UWDOWl22Azm8Dz0booYkwNncK/v56W1QORdhgZQnZIyemh3kAIdZGAk2VoUo3d1FIR9eAkLWufPHkynnzySSlfkijgoILF08zYwgz88yDQ1EuZITmYTBwKnXacae9BQ2cPynLSlB4SUYgeu08zrkw7Wrr9inahPt3mBc8Lq/XyM5TpVSYWUdM02aAoN076UbJ4mhkbyQw1KpgZ4nk+JjOkvwtFdMNWygwZmR73JWPU0GvoRKRfWqUrY8AefKnAvstPtnhoP8JBUDBE+lGyeJphK8qaFKwZ6uoJwh/ZH01vmSEgtvGiwnORRDHCdjP6nCYDoivKlMwMVccEQ0opyLLDlWkHzwOHG9SzCbaaJDRNdtNNNyX0ZhzH4YUXXkjouSQ1/MGw2BMjldtwnI31Gurwc/D6g8i2pr52qbk70ozOYYHDak75+8uNGi+SZrcPPA9YzfraboZRQ2aoulUIhpSqF2KmlDrx8ZFmHKjvwqxRuYqORY0SCoZefvnlAX/OcdyATZ3YzykYUr/jzd3wh8LIsltQnqtcHUluhg3ZaRZ09gRR09aDaRmpH4te64UY2pKDNHZFp4H1tN0Mo4b9ydi2QlWudMXGAAhTZR8faaYi6kEkNE128uTJPv8dP34c3/jGN5Cfn4+HHnoImzdvxsGDB7F582b84he/QH5+Pq688kocPXpU6vETiR1qiE6RKTW/zYzOE748atqU2ZZDryvJGLZZK2WGjEuvDReZaBdq5YOhynxlM0Nsj7KDVEQ9oIQyQ6NHj+7z54cffhhffPEFdu/ejZKSEvHnEydOxMUXX4zly5dj1qxZ+Otf/4qf/OQnyY2YyOpwgzBFNrE4S+GRABV56dhT24WaNmVqWqKZIX1eKIqzhQsFZYaMqyFyjuttKw5G6f3JvP6gmH1TeppsUrFQ9nCksVucqSFRkhRQv/DCC/jOd77TJxCKVVZWhu985zt4/vnnpXg7IqMjjUJx3QQVBEMsM3RKocxQi0efW3EwxZHMUFOXD2Gl9z0hitDzsnpA+f3JqiObTeemW5GjcE1WlSsDFhOHbl8QdXQD1I8kwdCZM2fgcAz9YXI4HDhz5owUb0dkxFYaTCxSQTCUL1yslZoma418geZn6q+wFBCm/zgO8IfCaPMqv5klST2WGdJ7MNTm8SMQCqf8/U+qYCUZY7OYxFW6R2hFWT+SBEPl5eV444030Ns7cLTp9XrxxhtvoLy8XIq3IzJx9wZQ2yFMSU1QYA+ds41iNUOtSgVDwoXCpdNgyGo2idMItGGrMYmZIZ1Ok+WkWWGOFIa3KpAdUstKMmZiZKrscCMFQ2eTJBi6+eabceLECVxwwQX4+9//jtbWVgBAa2sr3nzzTVx44YWorq7GLbfcIsXbEZkcjWwmWOS0K57SBaLTZHWdvWK/n1Rq9UQyQxn6nCYDohkBCoaMidWz6DUYMpk48WZGiSLqapUUTzMTIze5lBnqT5LtOO655x4cOXIEL730Ev71X/8VAGAymRAOCxcwnuexfPly3HPPPVK8HZEJ+4BMUMEUGSBkZGwmHv4whzPt3pRvcqj3aTJAuAjure1EPa0oMxyeBxrd+p4mA4Qi6sYunyJF1Kfbhaw2y3IrjX23U2aoP0mCIZPJhBdeeAHXX389XnnlFezZswednZ3Izs7GjBkzcN111+HSSy+V4q2IjNgHRA31QoDQn8rlAOq8QhF1KoMhnufFO0mXTguogehFsJEyQ4bjCULMuBY69XuOi40XFcgMnY6shK3IU8fef2yV8NGmboTCvDiFSCTeqPWSSy7BJZdcIuVLkhRS00oyxuXgUeflcKrFA0xM3ft6/CH4IhcKvWeGAFpeb0SdkRKa/Awb7Bb9dVhnChRaXh8IhcWtbipy1ZEZqshNh8NqQm8gjFOtnpRn29WM9iYjIrHHkEoyQwDgimTvU728nhVPp1nNSLdJes+gKrQlh3F1+IWsQJGOp8gAwKXQlhz1Hb0I84DdYlJNF3uTiROnyo7QVFkfFAwRAMLFn00LjVfBSjLG5RD635xK8YqyFgPUCwHRaTLarNV4WGZIr92nGaU2a2UtQcpz01TV4FCsG4rc/BIBBUMEgNCVFBAK/dSUCWGZIbZENVVYZihfx/VCQHSajK0qIsYhZoZ0HgwplRlixdMVKimeZiZSZmhAFAwRADH1QiqaIgMAl13IDJ1p70lpl2S2rN6VofPMUORC2O0Lwt0bUHg0JJU6IrGBnleSAcplhk5HMkNqqRdiWE0orSjri4IhAiBmJVmxeqbIACDHDphNHPzBcEq/zKKZIX0HQ+k2C5wOIRNIdUPGwqbJ9NpjiCnIEj7Dqc8MCVPPallWz7DM0MkWD3zBkMKjUQ8KhggA9fUYYswcUBxZ9svSzqkQrRnS9zQZQCvKjKozMk2m/8yQ8Pfr6g2iN5C6i7+YGVLJsnqmyGmH02FBKMzjRHNqyw/UjIIhAp7nYzJD6gqGAKEAERCmylIl2n1a35khILphK3WhNpYOg2SGnGkW2MzCpY59rlPhTDsroFZXZojjOPF7nuqGoiQLhoLBIH79619j3rx5cDqdsFiiRbi7du3CbbfdhiNHjkj1dkRCDV29cPcGYTZxqtlDJ1ZZjgLBkAEaLjIs80bBkHH0+EPoCRljaT3HRbfkSNVUmccXFLPLaiugBmJXlFEwxEgSDPX09GDhwoW4++67cerUKTidTvB8tNi1qqoKL730Ev7whz9I8XZEYscie5KNzk9XZfO18kgwdDqFvYaMsBUHI+5PRjVDhtHoFv6t021msWZMzwpSvKKM3bg5HRZkp1lT8p4jMa5QqA1l3/1EomBo7dq1+Oyzz7Bu3To0NDTg5ptv7vP77OxsXHLJJXjvvfekeDsiMfaBGKfSbqTKTJNFCqh1vEkrQ9NkxtPQKZzfRVl2VfXAkYsrxSvKovVC6ssKAcD4QiEzdKyZgiFGkmDo9ddfx8KFC/GTn/wEHMcN+OEaM2YMampqpHg7IjExGCpUZzBUlitkLlJVQB0K82hjS+uNkBnKjkyTUWbIMNjKwSId70kWK9WZIbHHkMrqhRj2XX+q1SvuT2d0kgRDNTU1mDt37pCPycrKQmdnpxRvRySm9mCIfaHUdfQglIJeQx1eP9jb5BqggJrVjNDSeuNo6NL/bvWxWDCUusyQujZoPVuR044su7CiLNUNbdVKkmAoKysLTU1NQz7m+PHjKCgokOLtiMSON6s7GCrMssNq5hAI8Sm5YLMVJznpVljN+l9wWRKZJmvp9lPfEYNojGRI9F48zbhSvFkr24pDbT2GGI7jMDbyfX+0kabKAImCofPOOw9vv/02Ojo6Bvz96dOnsX79elx88cVSvB2RULvHL656GKvSmiGziUNpCleUsbtHIyyrB4DcdCtsFuGroIm25TAEVh9mlGkyFgyxhRFyE5fVqzQYAoDxVETdhyTB0D333IP29nZcfvnl+OyzzxAMBgEAXq8XmzZtwtKlSxEMBrFq1Sop3o5IiBXQleWkIcOu3lUlrIg6FSvKWg3UcBEQ7hLZRZGmyoyBrSYzyjQZWxWaimkynudVuxVHLDYTcLSJltcDgCRXv4svvhhPPfUUVq5c2Sf7k5UlVKybzWY888wzmDNnjhRvRyTE7grGqnSKjBG+VFpTkhmK9hgyRmYIAEqcaTjd1kNF1AbBNuY1TmYodcFQuzcAj1+YbmY3cWo0vogyQ7EkSwXceuutuPTSS/Hcc8/hiy++QFtbG5xOJ+bPn4/bbrsN55xzjlRvRSSk9mX1jJgZSsGKsmj3aWNcKIDozuW0vF7/gqGwWDtjnGBI+Ht29QbhD4bFaWE5sKxQYZYdDqv6+rYx4wqEZMWJFg9CYR5mk/5bLAxF0nmRyZMn48knn5TyJYnM1L6SjGEt7WtTUjNknIaLDHWhNo6WbmG1pAm8ITqsA4DTYYXFxCEYaZsh5xYkLHut5qwQAJTlpsFhNaE3EMbpNi8qVbj7QCppbqnM008/jcrKSjgcDsyfPx/btm2L63mvvfYaOI7DVVddJe8ANUYrwVCJuJlo6qbJjFIzBMQ0XqRpMt1j/8ZOGwyTDTCZOORlpGaqjH1HsUUfamU2cRjjYnVDNFWWUGbopptuAsdxWLt2LYqKinDTTTfF/Vy73Y7y8nJ861vfwtSpU0f0vq+//jpWrVqF5557DvPnz8cTTzyBpUuX4vDhwygsLBz0edXV1bj77rtx0UUXjej99M7rD6K2Q/jgqj0YYl8sdZ294Hle1q65bJrMZZDVZEDMlhyUGdK9hsjFOts4pzcA4eamye2TPRhi36llKg+GAKFu6EB9F441dWPxlCKlh6OohIKhl19+GRzH4ac//SmKiorw8ssvj/g1HnjgAfzf//0frrzyyrif8/jjj+OWW27B8uXLAQDPPfcc3nnnHbz44ou49957B3xOKBTCtddeiwcffBCffPLJoMv/jeh4k9BsKy/DJt41qVVxtgMcB/iDYbR6/LKm942ZGaIu1EbBAt5sm/wNTNWEFVHLvby+vkM4viUyTsVJhdWK0oqyBIOhkydPAgDKysr6/Dkevb29OHr0KG6//XasWbMm7mDI7/dj+/btWL16tfgzk8mERYsWYcuWLYM+7xe/+AUKCwvxwx/+EJ988knc4zSCY83CB0DtWSEAsJpNKMyyo7HLh7qOHpmDIQPWDEWmyZq6fAiHeZgMMn1iRKz7dI5xTm8AMb2GPPJmhuo0Mk0GRFeUHadpssSCodGjRw/55+FMnDgRn376KX7zm9/E/ZyWlhaEQiEUFfVN5RUVFeHQoUMDPufTTz/FCy+8gF27dsX9Pj6fDz5f9MPS1dUFAAgEAggEAnG/TjzY60n9uvE6Ui/83ca40hUbw1DOPj7FTgcau3w43dqNyUXyFPv5AiG4fUKfrGy7SZXHBZD+3Ml1mITMWyiMpk6P5rNiSn+21KwusiIzx8Yb6vjkpgmXu6au3mH/3smcP3WRabLCTKvqj+/oyL6Px5q64ff74yo/0NJnayRjTFmXPb/fj97eXjidTgDAD3/4QyxYsEC293O73bjuuuvw/PPPw+Vyxf28devW4cEHH+z38/fffx/p6fI00Nq4caMsrzuczw6bAJjgaz6F9eurFRlDPNjx4XqE8f5zyw4Eq+VJ8bf7AMACM8fj0w82Qu0bekt57mRazHAHOPzt3U0o18nCEqU+W2p2oFr4HGXbjHV8mms5AGbsPnwC60PH4nrOSI9PMAy0dAuX1f1ffopT1pGOMrVCYcDEmeHxh/Dqm+8idwT3QFo4d7ze+FuxJBwMjRkzBnfeeSfuuOMO8Wfvvfce3nvvPTz++OP9Hr9u3Tr84he/QCgkNKMaP348xo8fH/f7uVwumM1mNDY29vl5Y2MjiouL+z3++PHjqK6u7jMNFw4Lu/NaLBYcPnwYY8eO7fe81atX9+mU3dXVhYqKCixZskQM5KQSCASwceNGLF68GFZr6j81Tx79DIAHV15yLi4aF3/AmCpnH5/d3GHs+vwUckvHYNnXJ8rynntrO4EdX8CV5cAVV1wiy3tIQY5z53entmB/nRvjpp+LyyZqex9BpT9bavbrI58C8CLHxhvq+Hh31OLtmv1IyynAsmVDNwBO9Pw51eYFvvgUDqsJV3/z67Iu9JDK0yc+w/FmD0ZNmxfXdUBLny02sxOPhIOh6urqfsXIW7duxZNPPjlgMJQsm82GOXPmYNOmTeLy+HA4jE2bNmHFihX9Hj9p0iTs3bu3z8/uu+8+uN1uPPnkk6ioqBjwfex2O+z2/uGx1WqV7R9eztceTCAUFjcTnFSSo+qTmh2f8jwhXdHo9ss23s5eIWB2ZdpVfUwYKc+dkux07K9zo7k7oIm/ezyU+GypGc/zYpF8ts1Yx6c4W8jst3njP79HenyauoVpmdLsNNhs2ijKmlCUhePNHpxs7cVlk+P/u2rh3BnJ+NS7GdUAVq1ahRtuuAFz587FvHnz8MQTT8Dj8Yiry66//nqUlZVh3bp1cDgc/Zbu5+TkAMCIl/Tr0alWD4JhHhk2syZWPQBAaY4wTrZ0VQ4tBlxJxrAVZbQ/mX519QTRGxACfuMtrZd/NRlbSaaF4mlmHG3YCkBjwdA111yD5uZm3H///WhoaMDMmTOxYcMGsai6pqYGJpPm+kgq4mhjdE8yLaRygegXjJyNF43YY4ihXkP6x7JCOWlW2MxBhUeTWvkxO9fL1auMFU9r5QYTiA2GjL28XlPBEACsWLFiwGkxANi8efOQz02kH5JeaaXzdKwStvzb7ZNtf6FojyEDBkPUhVr32I2EsCeZ/N3c1SQ/coPjD4XR1RtEdpr0Uzx1ndrNDB1t6pa9oa2aURrFoI41ay8Yys+wwWYxgeflm8qJ9hgy4DQZZYZ0j31ujLJBayyH1YxMu3D/3ypTF2qWGWJT+lowtiATHAd0eANiZtyIKBgyKK3sVh/LZOLE9HOdTHVDLeKO9UbMDFEXar1r6BSCABb4Go3YhVqmi75W9iWL5bCaxU1ljVw3lNQ02R//+Eds3bpV/POxY0LvhmXLlvV7LPsdUV44zOO4BjNDgLBK41SrF/UyZS/YHaNRdvOOxabJ3L1BeHxBZNg1N4tOhtHQFTNNZsCYNz/TjupWL1rccmWG2FYc2gmGAOGm+HRbD441deO8MflKD0cRSX3bHTt2bMAgZ8OGDQM+3qhzkWpT29GD3kAYNrMJo/LkaSQplxKZV5QZcSsOJtNuQabdgm5fEA1dvRiroawhiQ+bAi1yOowZDLGd62XIDHX1BtAd6V6vpWkyQLgp/vBwM2WGEjGS/ciIurB6oUpXOixmbc2Ulsm4oozneXHfIiPWDAFCxqC7OYjGTgqG9IjtS1bktMPbpPBgFBBdUSZ9ZohN3eekW5Fu01ZWlc0QsBkDI0r4X2yk+5ER9TjWqM0pMiCafmbpaCl19QYRCAnbfBixZggQju/xZg/VDelUQ+QmotjpwAmFx6KEAhl7DYk9hjQ2RQbEBEMGzgxpKy1AJKHF4mmGpZ/lKKBmd4uZdgscVrPkr68FRZHCWrlqsohyegMhtHuFDslGXE0GxGSGZNi5vlaDK8mYcQVZAITWAB6fsfpPMRQMGZC4rL4oS+GRjBxbpSFLMOQxbr0QQ12o9aspMkVms5iQI0OPHS1gn+0WtwyZIQ2uJGOy063iohGjTpVRMGQwPM9rOjPEltZ39QbFYkWpiA0XDTpFBlCvIT1jF+uSbIdhF7PkZwgX/BYZMkN1GtyKI9a4QmHvR6MWUVMwZDAt3X509gTAccCYggylhzNiWQ4rshxCqVu9xNmhFgM3XGSoC7V+NXTFrCQzKJeMNUNa3IojltH3KKNgyGDYiV6Rm67Zuhi2okzq5fXsC9Jl5GkyygzpFpv61OrFWgpsKqizJwB/MCzpa9dFMm9lGs0MsdWjFAwRQ2Cb8WlxJRkT7UIt7QVbXFafYdzMUFGkZqi524dASNqLBVGW0btPA0B2mhVmkzBF2CZhr6FwmBdvIEo0GgyJmSGqGSJGcLzZA0DbwZBcUzlGbrjIuDLssJg48DzQLFOXXqKMaPdp4wZDJhOHPNZ4UcJeQ60ePwIhHhwHFGZp82aKXRNOtXolz5ppAQVDBqPl4mmG3dk2SRwMtXQbu+EiIFws2MWS6ob0RcxcGHiaDIgukJByfzI2BenKtMOqsUa2TLHTgUy7BaEwj1OtHqWHk3La/FcjCWPLJsdqODPEeqRInhmKfDm6DLyaDIge30aqG9KVRtZ92uDBUEGW9F2oG8XidO3eSHEch7EFxl1RRsGQgXT7gmIzPS1nhtiXudRFvq2UGQIQ7fJNjRf1IxzmxQu2kWuGgJj9ySQMhhp0cmzHGnhFGQVDBsJarbsy7chO127TNfaFI2VjwGAoLHbnNXLNEBCtKaHGi/rR4vEhGOZh4qKZEaOK7k8m4TRZ7Aa4GmbkImoKhgxEnCLTYH+hWCwYavcG0BsISfKabV7hi5HjgNx0YwdDrAs11QzpR2NkJZmWa1qkInahljAY0ktmiM0YGLELtbE/FQYjFk9ruF4IEHaFtlmEU5dtMZAsdpeYl24Tl94albhaj6bJdIN1ny42eL0QIKyYBKTdn6xBJ/VY0Q1bPQiHeYVHk1oUDBkIi/a1HgxxHBdtDihR9oKW1UdJfWyJ8qheKMqVJX3NEJsm0/rxHZWXDquZQ08gJDaRNAoKhgyEZYbGarh4mpG6bogaLkbFdqHmeWPdHeqVOI2j8cyFFNhnXNKaIbc+jq/FbEJlvjFXlFEwZBCBUBinWr0AtJ8ZAqLpaKmCoRbKDIkKI8uDfcEwOnsCCo+GSKFeJwW+UsiP2Z9MimC/NxBCR2TxhR6Or1H3KKNgyCBOtXoRDPNIt5l10XStKLIiRqq6Fras3mXwZfUA4LCaxS69tLxeH2hfsij2GfeHwnD7gkm/Hju2DqsJzsgm0lom1g0ZrIiagiGDiJ0i4zjtFwizdLTkNUMGb7jIUBdqfWnQSU2LFBxWMzLtQtAixVRZ7LHVw3crZYaIrumleJqRuheOWDNEmSEAQDF1odYVdsHW+monqUSX1ydfRN3Qpa8pSKPuXk/BkEEcb9JHjyFG6swQ1Qz1VUxdqHXD3RuAxy/046LMkEDcn0yCYKhRZ8XpwuyB0MdNyi1L1I6CIYM4prPMUHQ1mU+SIkiWGXJRMARAni7fRBns3zDLYUGGXfs1LVJgGWApGi82RBpa6iXQTLOZUZYj3AwZKTtEwZAB8DwvZob0EgyxFU/+YHQbjWREa4ZomgygLtR6Uk/1Qv24YlaUJatRZ9NkgDG35aBgyAAaunrh8YdgNnEYlaePaTK7JbriKdnshdcfhDcyjUDTZALqQq0fYoGvTqZxpOASM0M0TTaQcQasG6JgyADYCT06P13cxkIPpFrxxO4ObRaTuMrE6KgLtX5Q9+n+xJohCbbk0FsBNWDM3ev1c2UkgxKnyHTQeTpWkUQrnlo9QjDkyrDpYmmsFNiFs0PCzXCJMuopM9SPVDVDPM+L+yPq6fiyabITzR6FR5I6FAwZAJv3HauTeiFGquwFWzFBy+qjnGkWpFnNAGiqTOv0OI2TrGgX6uQyQ20eP/yhMACgQEffH+zGubajBx4JGlNqAQVDBnC8SYju9ZcZkmbFE23S2h/HcZK3LyDKaKBpsn5cEmWG2LF1Zdp0VYKQm2ETpxKNkh3Sz78eGZTeltUz4sU6ycxFC23SOiBxGpKCIU1roH3J+mHBUGdPAP5gOOHX0eNKMkasG2p2KzyS1KBgSOc6ewJodgsX+zE6abjIRKfJkkt1s8wQ9Rjqq4RWlGmePxgWsx+0L1lUTpoVpkh5YLs38eyQ3noMxTLathwUDOkc24aj2OlAlsOq8Gikxe7GmiSqGaJNWvtix5e6UGtXk1v4t7OZTWIrCgKYTBzyIplgdrOYCDEzpMNA02jL6ykY0jlxg9ZCfWWFgOg0WavHD18w8RVPbDUZ1Qz1VUzTZJoX3ZPMTislz8IywW2exDNDem5bQJkhoit6XVYPALnpVrFosSmJqbLovmSUGYolNl6kYEizqHh6cOKKsiR6DUV7DOnvu4MFQ6davQiEEq+r0goKhnROb7vVx+I4TlzO2pREqltcWk/TCH1IVaBOlEPF04Nj02TJbMnBbsIKdXh8S7IdSLeZEQzzONWq/xVlFAzpnDhNpsPMEBDdo6zZndgFOxzmxTQ51Qz1xbIJTW4fQuHkN8MlqceCISqe7i/ahTrxYKg5ciOlpx5DDMdx4nXDCFNlFAzpmC8YQk2bF4A+M0MAUJiVXGaoqzeAYORCTwWmfbkybTBxQCjMJ92cjihDj1tFSMWVZOPF2M9FoQ6nyQBj1Q1RMKRj1S1ehHkgy2FBQZY+P6yFWWxFWWJfaKxeyOmw6KppmhQsZpN4fGlFmTZR9+nBsWmyRAuoW7t9CPOAidNvjzIKhoguxE6R6XUlSTQzlNjFmpbVD62IulBrWj1Nkw2KFVAn2oWaZaPzM+0wm/T5/cqmyY4boAs1BUM6pufiaaYgyWkyWlY/NFper12xm4jSNFl/riRXk7H+RIU6zboD0WvH8eZuhHVeN0jBkI7pvXgaiM7VJzpNFl1Jpt8vtGSwLtQ0TaY9sZuIsulOEiVOkyWcGRI+E3oOhkbnp8Ni4uD1h1Cv8xsiCoZ0zAiZIfYl35xgEWQLbdI6JHEzXAqGNIcFsK5MO9XDDYB95j3+EHr8I2/ayjJDeq3HBACr2YRKl9CwV+91Q/QJ0alQmBdPXn0HQ6xXSGLLv1mKnBouDqw4WzguVDOkPdHiaTq3B5Jlt8BmFi6BiUyVNYnTZPrOuhllWw4KhnTqdJsXvmAYdosJo/LSlR6ObPIz7TBxQJhPbIksbdI6tGInbdaqVdR9emgcx4ntNBJZURZtuKjvYNMoK8ooGNKpI41uAEK9kF5XOgCA2cSJWZ1EiqhZMEQ1QwMrjllNxvP6LqDUGxbA0rL6wYlbciRQN6Tnhoux2L6WxykYIlp0NHLiTijS7xQZk8zy+hZxmowyQwNhWQWvPwS3L6jwaMhIiMEQZYYGxW6kWhLIKosF1HrPDBVkAQCONVMwRDSIZYbGF2UpPBL5icFQAivKaJpsaGk2M7LTrABoqkxrqPv08PITnCaLbVug95ohlhlq8/gTblCpBRQM6dSRRpYZMkIwFN1DayT8wTA6ewIAaJpsKCyzQMGQtkT3JUtTeCTqlej+ZF29QfiCQtsCPa8mA4B0mwVlOcI5pOe6IQqGdCgU5sVl9YaYJnMmNk3G7nLMJk7MfpD+qAu1NjXQarJhJTpNxpbVZzkscFjNko9LbcYaoIiagiEdOtXqgT8YhsNqQkWufleSMYlOk7EvwLwMG0w6LjJPltiFmjJDmuHxBeHuFWq8aJpscIlOkxmh4WIsIyyvp2BIh9gU2bjCTENc5AsSnCYTt+Kg3eqHVMy6UFNmSDNYVijDZkaWg7Keg0l0NVmzQXoMMbHbcugVBUM6dDRSPD2hUP/1QkB0mqx5pMEQbdIal2KFulD3BkLYfboDhxvcmt0XqaXbh+2n2lHX0ZPS9xXrhXKoXmgobJpspD3KjNB9OpYReg1ZlB4Akd6RyAlrhJVkQDRV3ez2ged5cFx82bBW2oojLqnuQh0MhfHcR8fx3Ecn0B1Zzl+Wk4b7rpiMr08rSckYklXf2YMH3tqP9/Y3ij+7aLwLv7xqKkbnZ8j+/iz4ot3qhxZbQD2S744mA2zSGosFQ7UdPfD69dligzJDOiRmhgxQPA1E7878oTA6vIG4nyf2GKKVZENKZRfqQCiMFa/uxKPvH0G3L4i8DBvSbWbUdvTg1j/twFMfHJV9DMk62ujGVU9/JgZCJdkOcBzwydEWfOvpz7C/rlP2MbB9yUppJdmQ2I2QLxiGZwT7kzV1GaPHEJOXYRMDx+PNHoVHIw8KhnQmGArjRORkNcKyegCwW8zISRfqIkZSN0SZofiwDsatHj98wZFvaDkSv3rnIDbsb4DNbMJjV8/AV/+5CDt+vhi3XFQFAHj0/SP4y5enZR1DMlq6fbjxpS/R2OXDxKIsvH/Xxdiy+nJsvvtSzCjPRoc3gJte/jKhJn8jUd8ZyQzlUGZoKOk2C9Iiq8FGMlUmdp82SGYIiF5PWE2q3lAwpDPVrV74Q2GkWc1ibwgjiJ0qi1e0ZoiCoaHkplvFXc8TaWwZr82Hm/Dy59UAgN98fxa+PaccJhMHh9WM/7xiCu64bBwA4L6/71Nl7QLP8/jJX/egtqMHY1wZeP3/O0+8gIzOz8D/3jwf4woz0djlw71/2yPrWOo6KDMUr7wEeg0ZpeFirInFFAypytNPP43Kyko4HA7Mnz8f27ZtG/Sxzz//PC666CLk5uYiNzcXixYtGvLxenBU7DxtjJVkTEECW3JEV5MZ5+4uERzHRRsvylQ31BsIYc1b+wEAyy+oxNJzivs95q7FE3DxhAL4g2Hc+7c9qtsr7e099fjgUBNsZhOeu24OctL7BtlOhxVPf382rGYO/zzYhI0HGgd5peSxzBDtSzY8VwIryoxWMwTEBEMqvBGRgqaCoddffx2rVq3CmjVrsGPHDsyYMQNLly5FU1PTgI/fvHkzvve97+HDDz/Eli1bUFFRgSVLlqC2tjbFI08dFrWPN8hKMiaRLtQ0TRY/ubtQv7atBqdavShy2vEfSyYO+BiO4/Dwv05DmtWMr0614x976mUZSyICoTAee/8wAGDFZeMGnaKeWJyFH144BgDwXxsOISTTKrl6lhmiabJhjXRFmS8YEjvXG3Ga7ChlhpT3+OOP45ZbbsHy5csxZcoUPPfcc0hPT8eLL7444OP/9Kc/4bbbbsPMmTMxadIk/P73v0c4HMamTZtSPPLUOdJkrOJpZqSNF3meF+s2aGn98MQu1DIEQ72BEJ7ZfBwA8O+XjUemffBFrqU5afjxJWMBAL/eeEQ1S+5f//I0TrV64cq04+ZIfdNgbls4Fk6HBUeburF+r/QBnbs3IG6qS1txDG+k02RsKt5mMRmqcz27pjS6ffDEv05FMzSztN7v92P79u1YvXq1+DOTyYRFixZhy5Ytcb2G1+tFIBBAXl7eoI/x+Xzw+aIX1K6uLgBAIBBAICDtGcBeT8rXPdIgjHeMK03y8abaSI5PfobwpdTY2RPX47t90b2FnHZOc8dKjnNnKEVZwgWjtt0j+Xu+uaMWTW4fipx2/MuM4mFf//rzyvHCpydwosWDDXvrsHhKYb/HpPL49AZC+J9Nwiq32y6pgpXjh3zfNDNw44LR+J8Pj+P5j49j6WRX3Eu643G6RbhzdzossJkGHkuqzx81y00TLoPNXT39jstAx6euXVigUpBpQzCoz2XmA3GYgbIcB2o7elHfo41zZyRj1Eww1NLSglAohKKioj4/LyoqwqFDh+J6jZ/+9KcoLS3FokWLBn3MunXr8OCDD/b7+fvvv4/0dHm2tti4caMkrxMKAyeazQA4nNn/JdYfk+RlFRfP8alt4QCYcehUPdavPzPs41t6AUC4WGz+5/tJj1EpUp07w2mvF47vzsPVWI8Tkr0uzwNP7RXO2XNzvPjn+xviet78fBM21prwX2/vhP9kCIPFEqk4PlsaOTS5zci18chu2Yf16/cN+5zCAGDmzNhT24Vn/vIuqiSc1T7YLvxbZZgCWL9+/ZCPTdX5o2ZNdcLx2nu0GuvX9z23Bzo+u1uFx1uCPcMeX73Jhgm1MKHey2ni3PF6vXE/VjPBULIefvhhvPbaa9i8eTMcjsHn0VevXo1Vq1aJf+7q6hJrjZxOp6RjCgQC2LhxIxYvXgyrNfl069GmboS++BwZNjOuvWqxpHebShjJ8ck/2YZXjn6FkC0Dy5ZdOOxr76zpAHZuQ6EzDcuWXSzRiFNH6nNnONYDTfhb9S7waTlYtuw8yV73YL0bZ7ZugdXM4f5rL0duenz1W/O6ffjosU9Q3R1G4TkLcG5lbp/fp+r48DyP3z67FYAbtyycgG9eOPQUWaztwb14Y1c96h2VuH3ZFMnG1P3VGeDQAUwoL8CyZbMHfEyqzx818+2sw99P7YMjuwDLls0BMPTxad92GjhyEBMqirBs2UwFRqyc/ZYjOPBJNeq9HBYvXqT6c4fN7MRDM8GQy+WC2WxGY2PfFRiNjY0oLu6/8iTWo48+iocffhj//Oc/MX369CEfa7fbYbf3ryGxWq2y/cNL9donW4V6jnFFWbDZ9FMUHM/xKckVuvq2dvvjOpYdvUK/nPwsh+o/0EOR87yMNcol1AvUd/kkfb939gmf58snFaEwO/7OzCW5Vnx7djn+vK0Gf/6qFueP7z9VBsh/fHbWtONAvRs2iwnfnVc5ovf6t7mj8MauemzY34iHrpomti9IVmO3MDVQlps+7HhSdf6oWWGkrqrNG+h3LAY6Pm2RgpmibG1/dyRiSmkOAKDey2ni3BnJ+DRTQG2z2TBnzpw+xc+sGHrBggWDPu+//uu/8NBDD2HDhg2YO3duKoaqmCPinmTGKp4GokXQbl8QvYHhGwOyYkkXbdIaF7atQ7PbJ1njxXCYx1u76wAAV80qHfHzr50/CgDw3v4GcXVPqv3v1lMAgG9MLxELceN13ph8FGbZ0dkTwObDA6+ITUR9ZCuOUlpWHxfXCFeTsRWrBZnGO75sRVm9F6prbZEszQRDALBq1So8//zzeOWVV3Dw4EHceuut8Hg8WL58OQDg+uuv71Ng/cgjj+DnP/85XnzxRVRWVqKhoQENDQ3o7tbn0sBDkeLpSSXSTudpgdNhgc0snM7xNF5kX3y0rD4+eRk22COZi8ZOaRovfnGyDfWdvchyWHDpxIEzO0M5p9SJScVZ8AfD+MeeOknGNBJdvQFxef91540e8fPNJg7fnCEEgX/fJd342VYcxbSSLC4siG2L7E82HHHHeoNsxRFrTEEGzCYOPSEOjSPcGFvtNBUMXXPNNXj00Udx//33Y+bMmdi1axc2bNggFlXX1NSgvj66VPXZZ5+F3+/Hv/3bv6GkpET879FHH1XqryCrg/VCZmhyibF6DAFCDxrW8yOerQ5axB5DxvtCSwTHcSiNdDSv65RmB/a3dgv9vpZNLYEjsiXCSMf07dnlAIC/bh++aF5q7+9vhD8YxrjCTMysyEnoNa6aVQYA+OfBRrh7pclusX8fygzFhwVDwTCPrp7hV4cZseEi47CaMTpPWEikt35DmgqGAGDFihU4deoUfD4fvvjiC8yfP1/83ebNm/Hyyy+Lf66urgbP8/3+e+CBB1I/cJm5ewOoaRMq5ycXGy8zBEQ7ybbE0Uk22n2aMkPxYlNl9RIEQ+Ewj/cjG5l+c+bIp8iYb80qhdnEYWdNR8q36GBTfN+cUZrwYoVzSp0YU5ABXzCMj440Jz0mnufFhoslBtqOJxkOqxlZkd5WbPPmobAu90ZquBhrYqTf0GEKhogasXqhYqcDuQa9wLO5/5FMk1HDxfiJmaGO5Bsv7q3tRKvHjyy7BfOqBu/7NZzCLAcuHu8CALyTwo7Urd0+fHasBYBQL5QojuNw+SRhinDz4eSDoc6eAHoiNXMllBmKW15mdKpsKOEwL95sGWlfsljjI8GQ3rbloGBIJw4YeIqMGck0GW3FMXJs2qWuI/nM0IeRguELx7tgNSf3NbRsmhCMbNjfkPS44vXuvgaEwjymljkxpiC5BQsLJ0aDoWQ7arNANS/DltDUo1GxDPFwRdRtXj9CYR4cZ9zvDrZAh92A6wUFQzpxqN64xdMMy/LEFQxF0uG0SWv8SsTMkBTBkJAFuXRiQdKvtWhyEcwmDgfru3Cq1ZP068Xj7ZgpsmTNrcxDhs2Mlm4fDtTH3xdlIGwKk7JCI5MvfncMnRli2/3kpduSDuK1alLkhvtokweBUFjh0UjHmP+aOnQw8iU62dDBkHCnNtw0WSjMi+lwl0Hv7hLBpsnqk9yfrLXbhz1nOgAgoVVkZ8vNsOG8McJU23spyA51eP34sroNAPD1qYlPkTE2iwkXjBOm+pJdYs/+bWhPspHJz4hvmqw5cqNl1HohAKjISYPdzMMfDONEc2puPlKBgiEdCId5HGqITJMVG3maTLgbHi4z1OH1g81GjLQ3jJFJNU328dFm8LwQuBc5pclgfO0cofHqhn3yB0ObDzcjzAMTi7JQkSfNFj0sKPwwybohlhmi3epHhk15DTdNxm60jBwMmUwcyiKn/YH6TmUHIyEKhnTgdLsXXn8INosJVa74u/jqTbyrydhKstx0KywGTXUngk2TdfUG0e1LfIPKj48IhcdSTJExSyLB0I6aDjR1JV/gPZR/Hox0zZ6cfFaLYcdiZ017Ug0kxZVklBkaETZd3jJMZojdaBUYfOFFWYZwN3mgLrlpXTWhK4EOsCmyiUVZhr64u7LiW03WIjZcNPYX2khl2i1wOoQlyPVJZIe2nRSmmC4Y65JkXABQ5HRgRnk2AEiyRH0wgVB0Cfzlk4uGeXT8SnPSUOXKQJgHdpxqT/h16qhmKCEsM9Q2zI1US+S7xWXgzBAAlKVHgqEka9zUxLhXTh1hzRYnGXiKDIimrruH2ZJDXElGU2QjFm28mFj25Uy7F7UdPbCYOMwenSPhyIBL2KosGYOhL6vb4O4NIi/DlnCjxcHMqxTqnr6IBIuJiNYMUTA0Eiwz1DpMnyHxRsrg3x3lMZkhvWzLQcGQDlDxtCDLbhE3uxwqO0Q9hhJXmuSKMpYVOqcsG+k2afeJvmSCMNX06dEWBGVa5fLBQaHAeeHEQphNiTVaHMy5kX5L2062JvR8nufFYKiUGi6OSJ64tH64aTK28MLY3x3F6cJ2Mu3eABpknpZOFQqGdEAsnjZ4MMRxnDiX3zxEIaTYfZpWko2Y2IU6wWCIrcKan0SjxcHMrMhBdpoVnT0B7KmVJ33/8VEh67RwknT1Tgw7JntrO9HjH/lmuK0eP/zBMDgOkhWmGwWrN2yP9BEaDMsMGX2azGoCxkbqU/VSN0TBkMb12YbDwA0XGfYl1TJEZkjcl4x6DI1YstNkbAqITQlJyWzicFGkG/XHR1skf/3Grl4caewGx0lb78SU56ahJNuBQIjHztMjrxtixdOuTLuYISXxYV37w7yw2nQw0cwQ3Uix6w0FQ0QVWFaoJNuBnHT6gBbEsaKMdqxPHFuyncg0WbPbhxPNHnAccK4MwRAQnSqTIxj6NPKaU0uzZdnyhuM4cWuSbQnUDdEGrYmzmk3ITrMCiGaOzyb0J6PVZIwYDOmkiJqCIY3be0bo83BOabbCI1GHePYna6WGiwljS7YTabzIpsgmFmUhO90q6bgYFgztq+uCR5pN4EVsL7ILx0ufFWJYMPTFiZEHQ2zqkpbVJybaa2jgYKg90p+M46g/GQBMoWCIqMm+WiEYml5OwRAQ3/5krbS0PmGl2dEC6pGuItlZI0z9zK3MlXxcTKHTgXGFmeB54FiXdAXOPM/j00gwdNE4+YKhuaOFYGjPmY4ha1cGUt/FdqunzFAiXMOsKGPfKbnpNkO3MGHY6uVTrV64eyW+81AA/Ytq3J5IMDStjIIhIL79yWhpfeKKsu3gOMAXDA+7dcHZdp8WztUZ5TkyjCzq/LH5AICjEgZDRxq70eT2wWE1YY6Mwdy4wkyk28zw+EM43jyyXcGjDRcpGErEcCvKWtz0vRErN90mTsmycg0to2BIw7p9QfELcyoFQwCimaHBpsl6AyG4I92TKTM0cnaLWQw4RzJVFgyFsTcSuEvdn+dsYjDUKV0wxLJC51bmwW6Rbzd4s4kTb2x2ne4Y0XOjm7TSNFkixGmyQYL8FmrJ0c+UUmEF8/5a7W/LQcGQhgkNr4Q7QSPvlRNruMwQy2ZYzZzYTZmMTCJ7lB1r7kZPIIQMmxljCjLlGhoAYH5VPjgOaOjhht2nLl6s98/5MqwiO9uMSLDINrONV20725eMgqFEsJujwfYno2X1/U2J1Kru08GKMgqGNIx9WdIUWdRw+5O1xiyr5zhpm+YZRSKNF3dHshzTyrMlb1Z4ttwMGyYVCfUMWxMoRD4bz/Pi6q55MvRHOhubRmTTivEIhMJi87vyXAqGEpE/3DQZLavvh22Bs3uEWUw1omBIw/ZRvVA/sVtyDNS4rsVDy+qTlciKst1nUlMvxCwYIwQtW5PY2oI51tSNdm8ADqspJZ81thjiUEPXkNvKxGrs6kWYB2xmEy37TpC4PxlNk8VteuTzfKy5O6nNm9WAgiENE4unaSWZKNNugT3ScG6gKRIxM0RfaAkTew2NJBiK3DnOkLleiJk/hvXrSXzTU4Y1ipw9KjclzQzLc9OQn2FDIMSLW+0Mh02RleQ4YJI586ZX0Z3rh54mo2AzqiDLjrKcNPB8tM2LVlEwpFHu3gBOtngAUGYoFsdx0V5DAwZDkbs7WhGSsJFOk/UGQjgcWW2SqhYQsyNB18lW76A1IPFK5RQZIJzD7DjtifMCUxv5tyijeqGEDddnKFozRN8dsWZURKbKRljjpjYUDGnU/kjxdFlOGmU5zjLUijLalyx5I92f7EB9F4JhHvkZtpRdrHPSrShOE/r0fHUq8exQquuFGJZBi7cWg2WGKBhKHKsZ6uwJIDDARr/RpfX0fRsrWuPWoeg4kkXBkEZRvdDghlpR1kINF5PGLrgNXb1x7Q7P9i6aWpad0qL1Mc5IMFSdeN3QmfYeNHT1wmrmMKtCvv5CZ5saWaUTb3dfMTNExdMJy0m3gc0wtnv7NhHkeV5sxkiryfqaTsEQURJLn1O9UH8FkTQ2u5OLRQ0Xk+fKtMNq5hDmgcYhtj1h2AV9colT7qH1MSZLCIa+rE48M8TqhaaX5yDNJl9/obNNjvRvOdbUDV9w+CJqFgzRsvrEmU0cctMHnirr6gkiEBLOJ/ru6GtaeTY4TqghbHIntoGzGlAwpFGUGRpcgVgz1P+DKd7dUWYoYSYTJ1502fTMUFgRMGvQliosGNpX2zngysJ4sP5CqZwiA4ReTtlpVgTDPI41Dd+JmgVD5RQMJUVcUXbWzvWs/jDLYYHDmrqgWAsy7RaMLxR6h+0ZQTsItaFgSIPaPX6coOLpQbE09pCZIaoZSgqbKqvt8A75uFCYF4un2caOqZJnB4qcdgTD/Ii7OTNK1AsBQhG1uCv4MA3teJ4Xi9lpmiw5rB7o7MwQrSQbmjhVpuEiagqGNGjnaSHtP6YgA7mUsu1nsJohnudpab1EWGO/M21DZ4ZOtXrg9YfgsJpQ5ZK38/TZOA6YO0qo80mkbqipqxfVrV6YOGDO6NTVCzFTSoQbnYP1Q+/71OrxozcQBsfRVhzJyhtkSw7qMTQ0seBfw8vrKRjSoO2R1TFzRqX+C1oLxNVkZwVDbl8Q/kjBL837J6csJx2AUGA8FHYhn1iUJXvn6YHMGZ0DAPgygRVl7HM2sdgJp8Mq5bDiImaG6oe+wLCpysIse0r6IOkZa7nRfnYw5KZl9UOZGVNEzfO8soNJEH1yNGjHqQ4AwGwF7la1QMwMnVXcy7JCmXaa908WywzVDrO8/qBCxdMMC4Z2nGpHKDyyL+kdNUIwNHtUjsSjig87Zgfr3UNeYKjHkHTE/cn6ZYZoWf1QJhZnwWY2obMngOrWoafO1YqCIY0JhsJi/YMSqXstYHsHefwheP3RFvGt4rJ6urtLljhN1j70F98BhYqnmYlFWci0W9DtC+JQw8g2k9xZ0wFA6DythPFFmbCYOHT2BIbs9l1HK8kkk5dB02SJsFlMOKdM+IzvSKKvl5IoGNKYQw1u9ARCyHJYME7m3b+1Ssj8RLbkiCmibqFl9ZJhhbp1Hb0ID5FxUTozZDZxYgb1qxEssfcHw+J2N0plYO0WM8ZFVukcHKKImk1VUvF08lyD7E8mbtJK02SDOrdSWGTwZRJ9vZREwZDGsNT9rFG5tAfRIAbbkqPVQw0XpVLsdMBs4uAPhQfc9gQAOrx+cTPXScWpXUkWi01z7ayJPxg6UN8FfzCM3HQrKvPTZRrZ8KJTZYMHQ7SsXjqDT5NRZmg4FAyRlKLi6fgMtKKM1Qy5aJosaRazCcVOYVuOwabKjkb645TlpCFLgQJkZmZkpctIltezVP+sUbkp7Zp9tglFQhB5dIheQ7WUGZIMTZMlbm4kg3q82ZP0foBKoGBIQ2L3SaJ6oaENtD+ZWDNERZCSiNYNDVxEfaRRWEk2vkjZ6VwWDFW3evutEhrMzkjgpFTxNDMhcuzYsRxItIBauQyWXrgi3w0eXwiByE4zPM9Tn6E45GbYxOaLyewHqBQKhjSkps2L+k5hnyQKhobG7uBim6e10CatkiobJhg62ihkM1h2Qyk56TZUuTIAALvibArHMkNKFU8z4wuFY3ei2TPgPnDdviA6e4R9tEpzHCkdmx450yywRMoPuiPbk3n8IfRGIiOqGRrauZHmpF+e1N5UGQVDGrL1hLA1wMyK1O6TpEVsKqzvNBnVDEmpPFfIRAy2vJ5lM1gRsJJmRbJDbIXYUJq6elHb0QMTB0yPPE8p5blpSLOa4Q+FUdPWfzqSrSRzOiyKTkXqBcdx4lQZC4ZYi440qxnpNotSQ9OEcyuFm4dE+nopjYIhDdl6Qoi2zxuTr/BI1E/MDHkGqBmi1WSSGG6ajNW5KJ0ZAoCZkemueOqG2CKFCZFl+UoymTgxmDzS2L9uKFovRFNkUmE3S90BIUMk1gtRVmhYrIh6X20nPL7gMI9WFwqGNILneTEzRMHQ8NhUWOzS+lYPbcUhJbZ6aaAC6g6vX6zXUkNmiNUNxdMhdwfrL6SSqWhWc3V0gLqhM9RwUXIsq+yOXMvFZfX0vTGsspw0lOemIRSO1rdqBQVDGhFbL6R0HYMWsCLplkhmKBgKo91LNUNSEqfJ2nv6BRgsi1GWk6Z4dgUAJhU7YbMIHXJPRjY5HszOGnXUCzGsbmigFWUsEC2nlWSS6TdNRivJ4sZxHC4a7wIAfHK0ReHRjAwFQxpB9UIjU5DFMkPCF1mb1w+eFzbvzE2nYEgKxdkOcBzgC4bFu2dGLSvJGJvFhKmRLthDTZUFQ2HsjTRbnKlwvRAz1IoytlFuRR5Nk0mF3Uj1myajYCguF4wTgqHPjlEwRGTAouwFNEUWF/aF1tUbhD8YFuuF8tJtimwYqkc2S7TX0NlF1GxKRw31QszMCiHTM1QwdKSxG72BMLLsFoyJrEBTGjuGA60oOx3JDFVQZkgyLHPsPiszVEAZ5bicP9YFjgMON7rR5B58Gxm1oWBIA4KhMD4+0gwAuGRigcKj0YbsNKu4RLbN4xeDIZoik1bZIHVDbEpnvArqhZh4iqj3RJbeTyvPVk2H97KcwVeUsT9TZkg6+f1Wk7GtOCgzFI+8DBvOiWRhPz/WqvBo4kfBkAbsOt2Brt4gctKt4t0tGZrJFF0i29Lti27FQQ0XJTXYirJjkWBIDcXTDFtef7C+C72B0ICP2R0JhmaoZIoM6LuiLLZuyN0bQIdXuGJTMCSdwVaT0XdH/NhUmZbqhigY0oDNh4Ws0EXjC2iKZwTyY7bkaKHMkCxii6iZbl8QTZFarTEq2ky4PDcN+Rk2BEI89g+y8enu00K90Izy7FQObVhjCoQpuxPN0eLv05F6obwMmyqK1PWCfUd0i6vJWM0QfXfE68JIMPTx0eYhN3JWEwqGNODDw00AgIU0RTYi0caLfrHhIhVBSivahTo6fXMycsF2ZdqQnaaeRoAcx2HWEFNlvYEQDkdqnaaX56RuYHEY4xKCyhPN0cyQOEVG9UKSYtNkrGZI7E9G02Rxm1eVh0y7Bc1un5htVTsKhlSuyd0r3sVePIGCoZGIbsnho01aZcKmyU7HZIZOtAgX7CqVFCDHGmrT1v11nQiFebgy7SjJVtfWFmJmKKYtAAtAaYpMWiyjHAhzaPf64Y40D6QbqfjZLWaxvnXjgUaFRxMfCoZU7oODQlZoenk2fRhHiAU+rR5/tGaIjqGkRkUuxKfbvGKvIdbHh2Uz1CS6oqz/dgFsimxmRbaiO9UPJDpNFs0MnabiaVlk2MywW4RLI+uXZTOb4HTQVORILJlSBICCISKRd/bWAwCWnlOs8Ei0R6wZcsfUDNFWHJIqzUmDKdJriHWcZsFQVYH6MkPTK7LBcUK9Tey+dUB0JZnapsiAaJat3RtAW6STenSajIIhKcXuT8aCIVemTXUBstpdOrEQFhOHo03dwzY6VQMKhlSstduHz48LSxO/Mb1E4dFoD8uktVBmSDZWswkl2cJUGbs4syJfNU6TOR1WsX/Q3jOdfX63J/Ln6SorngaAdJsFpZGpO5YdYlOToygzJDl203SYBUNULzRi2WlWceuojQcaFB7N8CgYUrF39zUgFOYxrSwbo/PVd2FRu+j+ZFQzJCdxqqxdmCpjd4FjVZgZAqKZn9jCzs6egFiPM0OFmSEgujLvRLMHPM/HTJNRAbXU8sXMkLvPn8nILDlHmCr7x556hUcyPAqGVOydyAl0BWWFEuKK9AU53e6F1y/0laHMkPRYMFTT2oPmbh+6fUGYOPXWsrDMT2xmiP3/UXnpyFXphY/VDR1v6Uaz2wdfMAwTJ0xVEmnlZQirII80sWky+t5IxBXTSmAxcdhzpnPA7WTUhIIhlWrs6sUXJ4UpsiumUTCUCFdkfzJ3r7AaxG4xIYP2dZPcqPxIMNTmFafIynPTYbeo81hHM0OdYtH3brFeSH1TZAyb3jvR7BG34SjJToPVTF/jUmM1Qx6fcBNF02SJyc+0Y+GkQgDA37afUXg0Q6NPkUr9eVsNwjwwd3Suau+w1S7vrDt8V6adiiBlUBGzokwsnlZhvRAzpcQJs4lDS7cP9Z3C3km7I0vt1TpFBsROk3XHbMNBWSE5nN2clTJDifv27HIAwBs7a/vtracmFAypUCAUxp+31QAArlswWuHRaJfdYu6zHJa6T8tDnCaLCYbGqLReCADSbGZx81O2gowVT6tpG46zjY1sySEcZ1pJJqe89LODIfruSNRlkwqRm25Fk9un6u05KBhSoY0HGtHY5YMr04avTaUl9cmIvaOjIkh5sGCooasXB+uFBqFq2fF9MGy7jT1nOtHY1YuGrl6YOGBqmVPhkQ2uxOmAw2pCIMRja2SVKa0kk8fZN04FlBlKmM1iwlWzygAAL352UuHRDI6CIRX6w5ZqAMA151aotu5CK8pjLhZUPC2P3HSrWIvF7vyqVNhwMRarG9pzplOcIhtfmIV0m3ob65lMHEbnCUHmtuo2AOotUte6s2+c6Dgn56YLqmA2cfjkaEu/lhZqQcGQymw/1YatJ9pgNnH4/nyaIktWVX5sMESZITlwHNfvYqHmaTIgWii950xHzE716i2eZipdfY8z1QzJI7be0GrmaMVekiry0vGtGaUAgGc2H1N4NAOjYEhFeJ7Ho+8dAQD82+xylNEHMGmVMdM1bKk9kV7sdI3DakKxU117e51tYnEWbBYTunqDeGt3HQB1dp4+W+VZ/cYoYyGP2Jqh3HQbzCZaeJGsH186FgCwYX+DKpfZUzCkIu/ua8CWE62wWUxYcdk4pYejC7HBEGWG5BMbDFXmZ8Ck8ouH1WzClBKhPuh0m9DJWc0ryZjY89lhNVEti0zSYlpwZNGeZJKYUJSFr08tBs8Da/6+X2xroRaaC4aefvppVFZWwuFwYP78+di2bduQj/9//+//YdKkSXA4HJg2bRrWr1+fopGOTLPbh/v/vg8A8ONLxtIdn0SqYu6k1dpMTw/mVuaK/z/Dro2LR2xPIZvZhInFWQqOJj6xmaHZo3KpVUQKZDmsSg9BN362bDLsFhO2nGjFn76oUXo4fWgqGHr99dexatUqrFmzBjt27MCMGTOwdOlSNDU1Dfj4zz//HN/73vfwwx/+EDt37sRVV12Fq666Cvv27UvxyIfW4w/h1j9uR0u3H5OKs3BbJJ1IkleeG51qtJo0dbprytJzijEpEkxcFmmypnax02KTS52wWdR/fowvyhSnbB785jkKj8YY6MZUOhV56bhn6UQAwC/+cQCfH1fPUnv1f/pjPP7447jllluwfPlyTJkyBc899xzS09Px4osvDvj4J598El/72tdwzz33YPLkyXjooYcwe/ZsPPXUUyke+cB6AyEc6wS++/tt+OpUO5wOC37zvVlwWGkFmVQsZhNuPL8S86ryMK8qT+nh6BbHcfjbrefjiWtm4sbzK5UeTlyWnFOEiycU4JxSp2ZuQFyZdvzp5vl4e8WFGF+k/kyWll1dFcKEwkys/vokpYeiKzddUIWl5xTBHwzjxpe+xO8/OYFmt0/xaTNt5LMB+P1+bN++HatXrxZ/ZjKZsGjRImzZsmXA52zZsgWrVq3q87OlS5fizTffHPR9fD4ffD6f+OeuLqFvSiAQQCAQSOJv0Nc7extw11/2gIcFgBu56Vb89tpZqMxzSPo+WsaOQ7LH4z+/PkH4P3wIgUAo2WGpglTHRko2E3DF1EIAvOLjiuf4pJmBF66b1e85ajenQqh1Sma8ajx/1CQQCODCYh4PLj4XVquFjlMMKc6dx749FYFgGB8cbsYv3zmIX75zEPOrcvHHm86VapgARjZGzQRDLS0tCIVCKCoq6vPzoqIiHDp0aMDnNDQ0DPj4hoaGQd9n3bp1ePDBB/v9/P3330d6unTp0mo3wMOCdDOPaXk8llX0oH7f56hX1wyeKmzcuFHpIagWHZuh0fEZGh2fodHxGVyyx+bKXMA1hsPH9SY09gBBd6vkNb1erzfux2omGEqV1atX98kmdXV1oaKiAkuWLIHTKV13Wn8wjG8v7cH2zz7CkiWLYbVSkd7ZAoEANm7ciMWL6ficjY7N0Oj4DI2Oz9Do+AxOymPzjcj/+gIhePyhfvtJJovN7MRDM8GQy+WC2WxGY2Njn583NjaiuHjgLSuKi4tH9HgAsNvtsNv7L1e1Wq2SfiisVqFNOcdJ/9p6Q8dncHRshkbHZ2h0fIZGx2dwUh4bq9WKTBnq1EcyPs0UUNtsNsyZMwebNm0SfxYOh7Fp0yYsWLBgwOcsWLCgz+MBIbU32OMJIYQQYjyayQwBwKpVq3DDDTdg7ty5mDdvHp544gl4PB4sX74cAHD99dejrKwM69atAwCsXLkSl1xyCR577DFcccUVeO211/DVV1/hd7/7nZJ/DUIIIYSoiKaCoWuuuQbNzc24//770dDQgJkzZ2LDhg1ikXRNTQ1MMb1kzj//fLz66qu477778LOf/Qzjx4/Hm2++ialTpyr1VyCEEEKIymgqGAKAFStWYMWKFQP+bvPmzf1+dvXVV+Pqq6+WeVSEEEII0SrN1AwRQgghhMiBgiFCCCGEGBoFQ4QQQggxNAqGCCGEEGJoFAwRQgghxNAoGCKEEEKIoVEwRAghhBBDo2CIEEIIIYZGwRAhhBBCDE1zHahTjed5AEBXV5fkrx0IBOD1etHV1UU7Iw+Ajs/g6NgMjY7P0Oj4DI2Oz+C0dGzYdZtdx4dCwdAw3G43AKCiokLhkRBCCCFkpNxuN7Kzs4d8DMfHEzIZWDgcRl1dHbKyssBxnKSv3dXVhYqKCpw+fRpOp1PS19YDOj6Do2MzNDo+Q6PjMzQ6PoPT0rHheR5utxulpaV9NnEfCGWGhmEymVBeXi7rezidTtWfVEqi4zM4OjZDo+MzNDo+Q6PjMzitHJvhMkIMFVATQgghxNAoGCKEEEKIoVEwpCC73Y41a9bAbrcrPRRVouMzODo2Q6PjMzQ6PkOj4zM4vR4bKqAmhBBCiKFRZogQQgghhkbBECGEEEIMjYIhQgghhBgaBUOEEEIIMTQKhhTy9NNPo7KyEg6HA/Pnz8e2bduUHpJqfPzxx7jyyitRWloKjuPw5ptvKj0k1Vi3bh3OPfdcZGVlobCwEFdddRUOHz6s9LBU49lnn8X06dPFhnALFizAu+++q/SwVOnhhx8Gx3G48847lR6KKjzwwAPgOK7Pf5MmTVJ6WKpSW1uLH/zgB8jPz0daWhqmTZuGr776SulhSYKCIQW8/vrrWLVqFdasWYMdO3ZgxowZWLp0KZqampQemip4PB7MmDEDTz/9tNJDUZ2PPvoIt99+O7Zu3YqNGzciEAhgyZIl8Hg8Sg9NFcrLy/Hwww9j+/bt+Oqrr3DZZZfhW9/6Fvbv36/00FTlyy+/xG9/+1tMnz5d6aGoyjnnnIP6+nrxv08//VTpIalGe3s7LrjgAlitVrz77rs4cOAAHnvsMeTm5io9NEnQ0noFzJ8/H+eeey6eeuopAML+ZxUVFfj3f/933HvvvQqPTl04jsMbb7yBq666SumhqFJzczMKCwvx0Ucf4eKLL1Z6OKqUl5eH//7v/8YPf/hDpYeiCt3d3Zg9ezaeeeYZ/PKXv8TMmTPxxBNPKD0sxT3wwAN48803sWvXLqWHokr33nsvPvvsM3zyySdKD0UWlBlKMb/fj+3bt2PRokXiz0wmExYtWoQtW7YoODKiRZ2dnQCECz7pKxQK4bXXXoPH48GCBQuUHo5q3H777bjiiiv6fAcRwdGjR1FaWooxY8bg2muvRU1NjdJDUo233noLc+fOxdVXX43CwkLMmjULzz//vNLDkgwFQynW0tKCUCiEoqKiPj8vKipCQ0ODQqMiWhQOh3HnnXfiggsuwNSpU5Uejmrs3bsXmZmZsNvt+PGPf4w33ngDU6ZMUXpYqvDaa69hx44dWLdundJDUZ358+fj5ZdfxoYNG/Dss8/i5MmTuOiii+B2u5UemiqcOHECzz77LMaPH4/33nsPt956K+644w688sorSg9NErRrPSEadfvtt2Pfvn1U13CWiRMnYteuXejs7MRf//pX3HDDDfjoo48MHxCdPn0aK1euxMaNG+FwOJQejup8/etfF///9OnTMX/+fIwePRp/+ctfaIoVws3X3LlzsXbtWgDArFmzsG/fPjz33HO44YYbFB5d8igzlGIulwtmsxmNjY19ft7Y2Iji4mKFRkW0ZsWKFfjHP/6BDz/8EOXl5UoPR1VsNhvGjRuHOXPmYN26dZgxYwaefPJJpYeluO3bt6OpqQmzZ8+GxWKBxWLBRx99hP/5n/+BxWJBKBRSeoiqkpOTgwkTJuDYsWNKD0UVSkpK+t1QTJ48WTdTiRQMpZjNZsOcOXOwadMm8WfhcBibNm2iugYyLJ7nsWLFCrzxxhv44IMPUFVVpfSQVC8cDsPn8yk9DMVdfvnl2Lt3L3bt2iX+N3fuXFx77bXYtWsXzGaz0kNUle7ubhw/fhwlJSVKD0UVLrjggn5tPI4cOYLRo0crNCJp0TSZAlatWoUbbrgBc+fOxbx58/DEE0/A4/Fg+fLlSg9NFbq7u/vcjZ08eRK7du1CXl4eRo0apeDIlHf77bfj1Vdfxd///ndkZWWJdWbZ2dlIS0tTeHTKW716Nb7+9a9j1KhRcLvdePXVV7F582a89957Sg9NcVlZWf1qyzIyMpCfn081ZwDuvvtuXHnllRg9ejTq6uqwZs0amM1mfO9731N6aKpw11134fzzz8fatWvxne98B9u2bcPvfvc7/O53v1N6aNLgiSJ+85vf8KNGjeJtNhs/b948fuvWrUoPSTU+/PBDHkC//2644Qalh6a4gY4LAP6ll15SemiqcNNNN/GjR4/mbTYbX1BQwF9++eX8+++/r/SwVOuSSy7hV65cqfQwVOGaa67hS0pKeJvNxpeVlfHXXHMNf+zYMaWHpSpvv/02P3XqVN5ut/OTJk3if/e73yk9JMlQnyFCCCGEGBrVDBFCCCHE0CgYIoQQQoihUTBECCGEEEOjYIgQQgghhkbBECGEEEIMjYIhQgghhBgaBUOEEEIIMTQKhgghhBBiaBQMEUKICrzyyitYu3YtgsGg0kMhxHBobzJCCFHY5s2bcdNNNyEjIwPBYBD333+/0kMixFBoOw5CCFGQx+PB9OnTcfXVV+Oiiy7Ct7/9bXz55ZeYNm2a0kMjxDBomowQokrV1dXgOA433nijrt/33nvvRUlJCX75y1/iiiuuwJ133okbb7yRpssISSEKhgghKcGCjKH+q6ysVHqYKfeb3/wGn376KSwWoWrh4Ycfxvbt28U/E0LkR582QkhKjR07Fj/4wQ8G/F1OTo74/8vKynDw4EFkZ2enaGSEEKOiYIgQklLjxo3DAw88MOzjrFYrJk2aJP+ACCGGR9NkhBBVGqp25+OPP8aVV14Jl8sFu92O8ePH47777oPX64379UOhEB555BGMGzcODocD48aNw7p16xAOh4d8nhTvvWDBAnAchy1btvT5eVdXF2bOnAm73Y6NGzfG/XqEkORQMEQI0ZRnn30Wl156KT777DNcccUVuOOOO1BeXo5f/epXWLx4Mfx+f1yv86Mf/Qj33nsvwuEwbr/9dixduhSPP/44Vq5cKft7P/LIIwCA++67T/yZ3+/Hv/zLv2DPnj145ZVXsHjx4rheixCSPJomI4Sk1LFjxwadJjvvvPPwta99bdDnHjhwAHfccQemT5+OTZs2IT8/X/zdww8/jNWrV+M3v/kN/uM//mPIMWzevBkvvvgiZsyYgc8++wwZGRkAgJ/97GeYOXOmrO8NABdffDGuuOIKvPPOO9i8eTMuueQS3Hjjjfjggw/wxBNP4Lvf/e6wr0EIkRBPCCEpcPLkSR7AkP+tXLmy3+NvuOEG8Wd33HEHD4D/+OOP+71+KBTiCwoK+Dlz5gw7luXLl/MA+L/97W/9fvfQQw/1e18p35vZs2cPbzKZ+AsvvJBftWoVD4BfvXp13M8nhEiHMkOEkJRaunQpNmzYkNBzt27dCgB47733sGnTpn6/t1qtOHTo0LCvs3v3bgDARRdd1O93A/1Myvdmpk2bhh/84Af4wx/+gE8//RQ33XQT1q5dG/fzCSHSoWCIEKIZbW1tAIBf/epXSb1OZ2cnTCYTXC5Xv98VFRXJ+t6xCgoKAABZWVl4+umnJXtdQsjIUAE1IUQznE4nAGHVFc/zg/43nOzsbITDYbS0tPT7XWNjo6zvzTz11FN47LHHUFRUBLfbjVdeeSXu5xJCpEXBECFEM+bPnw8gOmWVqBkzZgAAPvnkk36/G+hnUr43APzlL3/BypUrsXDhQuzcuRPZ2dl48MEHR7Q8nxAiHQqGCCGacdttt8FiseDf//3fUVNT0+/3HR0d2Llz57Cvc9111wEAfvGLX8Dj8Yg/r62txZNPPinre2/atAnXXXcdpk2bhjfffBMlJSW46667UF9fP+h7E0LkRbvWE0JSorq6GlVVVUNuxwEIG5c6HA7x8TfccANefvll8ffPP/88br31VlitVixbtgxjx46F2+3GiRMn8NFHH+HGG2/Ec889N+x4brrpJrz00kuoqqrCv/zLv8Dn8+H111/Heeedh3/84x/93leK996xYwcuvfRS5Ofn4/PPP0dJSQkAYeqtqqoKoVAIJ06cQF5e3rDjJ4RIKPUL2AghRhTP0noAfHt7e5/Hn73Ened5ftu2bfx3v/tdvrS0lLdarbzL5eJnz57N33vvvfzBgwfjGk8wGOTXrVvHjxkzhrfZbPyYMWP4tWvX8seOHRv0fZN572PHjvFFRUV8fn4+f+jQoX6/f+SRR3gA/N133x3X+Akh0qHMECFElQ4dOoTJkyfjRz/6EX77298qPRxCiI5RzRAhRJWOHTsGACgvL1d4JIQQvaM+Q4QQVTly5AhefPFFvPrqqzCZTPjWt76l9JAIITpHmSFCiKocOHAATz75JHJzc/G3v/0N06dPV3pIhBCdo5ohQgghhBgaZYYIIYQQYmgUDBFCCCHE0CgYIoQQQoihUTBECCGEEEOjYIgQQgghhkbBECGEEEIMjYIhQgghhBgaBUOEEEIIMTQKhgghhBBiaBQMEUIIIcTQKBgihBBCiKFRMEQIIYQQQ/v/AQkNAsLv/7+2AAAAAElFTkSuQmCC\n" }, "metadata": {} } ], "source": [ "# Definimos el dominio y la imagen\n", "x = np.linspace(0, 2*np.pi, 500)\n", "y = np.abs(np.sin(x)*np.sin(2.5*x))\n", "\n", "# Graficamos la función\n", "plt.plot(x, y)\n", "plt.xlabel('Eje de $\\hat x$', fontsize = 14)\n", "plt.ylabel('Eje de $\\hat y$', fontsize = 14)\n", "\n", "plt.grid()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "id": "dm9_5LnRJTH_" }, "source": [ "Para eso existe ```find_peaks```, una función de la librería llamada ```scipy``` que tiene un montón de cosas útiles para hacer ciencia." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "id": "DZBCiNuVJEkx" }, "outputs": [], "source": [ "# De esta manera importamos solo la función y no la librería entera, que puede ser pesada\n", "from scipy.signal import find_peaks" ] }, { "cell_type": "markdown", "metadata": { "id": "qMnGDRRHLMpd" }, "source": [ "```find_peaks``` recibe una lista/array de una dimensión y calcula los máximos locales.\n", "\n", "Apliquemos la función a nuestra tira de datos ```y``` para ver que nos devuelve." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "id": "-X-SUoAtJlpp", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "158f73b1-ce6b-4b72-f2b3-769ddaa2dc8e" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "[ 62 146 223 276 353 437]\n", "\n", "\n", "{}\n" ] } ], "source": [ "picos, diccionario = find_peaks(y) # Recordemos esta forma de nombrar varias variables\n", "\n", "print(picos)\n", "\n", "print(\"\\n\")\n", "\n", "print(diccionario)" ] }, { "cell_type": "markdown", "metadata": { "id": "urDOxL7eMDmW" }, "source": [ "```find_peaks``` devuelve primero un array con los índices donde encontró máximos y luego un diccionario, que está vacío, pero más adelante vamos a ver que cosas puede contener.\n", "\n", "De momento, graficamos los picos para ver que encontró ```find_peaks``` de base." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "id": "EN0VWY1wJwgF", "colab": { "base_uri": "https://localhost:8080/", "height": 610 }, "outputId": "59942695-3d58-49ad-d114-e7999b11515b" }, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "<>:7: SyntaxWarning: invalid escape sequence '\\h'\n", "<>:8: SyntaxWarning: invalid escape sequence '\\h'\n", "<>:7: SyntaxWarning: invalid escape sequence '\\h'\n", "<>:8: SyntaxWarning: invalid escape sequence '\\h'\n", "/tmp/ipython-input-1120291555.py:7: SyntaxWarning: invalid escape sequence '\\h'\n", " plt.xlabel('Eje de $\\hat x$', fontsize = 14)\n", "/tmp/ipython-input-1120291555.py:8: SyntaxWarning: invalid escape sequence '\\h'\n", " plt.ylabel('Eje de $\\hat y$', fontsize = 14)\n" ] }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHACAYAAACh9WxwAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAiKNJREFUeJzt3XmYFOW5N/5v9T77vs/ADDvKKgiioqAgCcboMSYmMWowml9UjhheTSTHiMYE9Jxo9CQuiXHLmxjNa9DESFBEUVQWZd9hgGH2fevpnum1fn9UP9U9zNbTXdW13Z/r8kqY6eWhqO66637u5344nud5EEIIIYQYlEnpARBCCCGEKImCIUIIIYQYGgVDhBBCCDE0CoYIIYQQYmgUDBFCCCHE0CgYIoQQQoihUTBECCGEEEOjYIgQQgghhkbBECGEEEIMjYIhQgghhBiapoKhTz75BNdccw2Ki4vBcRzefvvtEZ+zdetWXHDBBbDb7ZgwYQJeeeUV2cdJCCGEEO2wKD2A0XC5XJg5cyZuu+02XH/99SM+/syZM7j66qvxox/9CH/5y1+wZcsW3H777SgqKsKyZcuies9gMIj6+nqkpaWB47h4/wqEEEIISQCe5+F0OlFcXAyTafjcD6fVjVo5jsNbb72F6667bsjH/PSnP8W7776LQ4cOiT/79re/jc7OTmzatCmq96mtrUVZWVm8wyWEEEKIAmpqalBaWjrsYzSVGRqt7du3Y8mSJf1+tmzZMtx7771DPsfj8cDj8Yh/ZrHimTNnkJaWJun4fD4fPvroIyxevBhWq1XS19YDOj5Do2MzPDo+w6PjMzw6PkPT0rFxOp2oqKiI6tqt62CosbERBQUF/X5WUFCA7u5u9Pb2IikpacBz1q9fj0ceeWTAz7dv347k5GTJx5icnIydO3dK/rp6QcdnaHRshkfHZ3h0fIZHx2doWjk2brcbAKIqcdF1MBSLNWvWYPXq1eKfu7u7UVZWhquuugrp6emSvpfP58PmzZuxdOlS1UfYSqDjMzQ6NsOj4zM8Oj7Do+MzNC0dm+7u7qgfq+tgqLCwEE1NTf1+1tTUhPT09EGzQgBgt9tht9sH/Nxqtcr2Dy/na+sBHZ+h0bEZHh2f4dHxGR4dn6Fp4diMZnyaWlo/WgsWLMCWLVv6/Wzz5s1YsGCBQiMihBBCiNpoKhjq6enBvn37sG/fPgBCUfO+fftQXV0NQJjiuuWWW8TH/+hHP8Lp06fxk5/8BMeOHcOzzz6Lv/3tb/jxj3+sxPAJIYQQokKaCoa+/PJLzJ49G7NnzwYArF69GrNnz8ZDDz0EAGhoaBADIwCoqKjAu+++i82bN2PmzJl44okn8Mc//jHqHkOEEEII0T9N1QwtWrQIw7VFGqy79KJFi7B3714ZR0UIIYQQLdNUZogQQgghRGoUDBFCCCHE0CgYIoQQQoihaapmiBC9CgQC2LZtGxoaGlBUVISFCxfCbDYrPSxCJEfnOlEjCoYIUdiGDRuwatUq1NbWij8rLS3F008/jeuvv17BkREiLTrXiVrRNBkhCtqwYQNuuOGGfhcHAKirq8MNN9yADRs2KDQyQqRF5zpRMwqGCFFIIBDAqlWrBm0XwX527733IhAIJHpohEiKznWidhQMEaKQbdu2DbhLjsTzPGpqarBt27YEjooQ6dG5TtSOgiFCFNLQ0CDp4whRKzrXidpRMESIQjJz8qN6XFFRkcwjIUReHXxyVI+jc50ohYIhQhSy050Pc1rusI/JKyzGwoULEzQiQqTn8QfwWnVy6FznhnxcSWkpnetEMRQMEaKAmnY3/ryrBtlX/hDgOHDcuRcJ4c8Fy/4/8MNcQAhRuz/vqEZtpxcV19wFjsMg57rgiu/fT/2GiGIoGCJEAc9/fAr+II+rrv46/v7mmygpKen3+5LSEpTf+HM4C+fg3YNUR0G0yeMP4LmtpwAAj676Ad4c5FzPKyxG3nU/w17TZHT1+pQYJiEUDBGSaF1uH97cLaysWXnFBFx//fWoqqrCRx99hNdeew0fffQRzlZV4d7bbwYAvPTpmUGXJBOidv/cV4/WHg+KMhz4xpzSQc/1uuqzmHXZVXB6/OLngpBEow7UhCTYW3tr4fEHMaUwDfMrsgEAZrMZixYt6ve47100Bs9srcT+2i4cqO3CzLLMxA+WkDj8ecdZAMAtC8phNQv33oOd6zcvKMfP3z6E13aexW2XlA85lUaIXCgzREiC/e1L4e73O/PGDPuln5Nqx1fOLwQA/H0P3TETbTnR5MT+2i5YTBy+Nbd02MdeN6sYyTYzTrW4sKe6I0EjJCSMgiFCEuhUSw+ONHTDYuJw7aziER//jTnCReQf++rh9QflHh4hkmEB/OIp+chJtQ/72DSHFctCgf87+6lGjiQeBUOEJNC/Ql/0l07MRWaybcTHXzohF7mpNnT1+rDrTLvcwyNEEjzP471DjQCA62aVjPBowddmCD2GNh5sQCBINXIksSgYIiSB3jssXCCunh5dczmzicMVU4TmjB8cbZJtXIRI6VSLC1VtbtjMJlw+OS+q5yycmIc0uwXNTg8O1nXJPEJC+qNgiJAEaejqxZGGbnAcxAAnGkvPE6YPNh9polVlRBNY4H7R+Byk2qNbp2OzmHDJBKEJ6cfHW2QbGyGDoWCIkAT58FgzAGB2WeaINRSRLp2QC7vFhLrOXhxrdMo1PEIk88ERIRhaOjX6oB+AmEX65CQFQySxKBgiJEG2nWgFACyePLoLRJLNjIUThTtmdpEhRK3aejzYHVoRduXUglE997JJQjC0t7oDXW5qwEgSh4IhQhIgGOSx80wbAODiCcPvRzaYJaGLygeh7BIhavXR8RbwPHB+cTqKM5NG9dySzCRMyE9FkAc+O9Uq0wgJGYiCIUIS4GRzDzrcPiRZzZhRmjHq5y8KZZMO1naiu4/umIl6fR4KYi6fFF3h9LkumxiaKjtBU2UkcSgYIiQBdpwWskJzy7PETryjUZjhwNicZAR5YHcVNaUj6rXztNAC4qJxOTE9n9UNbTtJmSGSOBQMEZIALBiK9QIBQNy6Y0douo0QtantcKOusxdmE4c5Y7Nieo25Y7NgNnGo6+xFfWevxCMkZHAUDBEiM6FeiN0tZ8f8OvMrhECK3XkTojbs3JxekoGUKJfUnyvFbsHUojQAoK05SMJQMESIzE4296Dd5UWS1YzpJZkxv878UCB1sK4LLo9fotERIh22SGB+HEE/AMwZI2SVdp+lYIgkBgVDhMhsV5VwtzxnbBZsltg/cqVZySjJTEIgyGNPTadEoyNEOmIGtCL26WAAuCA0xbaHgiGSIBQMESKz/aHAZfaYzLhfi9UNfXGGLhJEXRq7+nC2zQ0TJywUiMcFoczQ4fpu9PkCUgyPkGFRMESIzA7UdgIAZpRmxv1a80LBEGWGiNqwKa3zitOR5rDG9VqlWUnIT7PDH+RxoJb2KSPyo2CIEBm5PH5UNvcAAGbG0F/oXDPLMgEAh+q6QRt7EzXZHwr6Z0oQ9HNceDUa1Q2RRKBgiBAZHa4XgpbCdAfy0x1xv97E/FQkWc1weQNoplXHREXYdDAL2ONFwRBJJAqGCJFReIos/qwQAFjMJkwrSQcAVPdwkrwmIfEKBHkcqhOms6TIDAHC8nwAOFJP02REfhQMESKj/aF6B6nuloFw7REFQ0QtTrf0wOUNINlmxoT8VElec2qxEPTXd/Whw+WV5DUJGQoFQ4TIiGWG2F2uFFhgdZaCIaIS+0JTZNNKMmA2SXNepjusGJOdDECYbiZEThQMESKTTrcXZ9vcAKSbJgPChdh1bsDrD0r2uoTEiq34kmKRQKTzQ9mhIw00VUbkRcEQITJhd7NjspORmWyT7HXHZCcjM8mKAM/heJNTstclJFZSto+IxIIhygwRuVEwRIhMjjUKgcqUwjRJX5fjOEwPFVEfqKOLBFGW1x/E0QbhXJ8lYW0cIPQsAigYIvKjYIgQmRxvFL7ApxSlS/7a7I6ZXYQIUUplcw+8gSDSHRaUZiVJ+trnFwvTbqdbetDrpU7URD4UDBEik+MyZYYiX5NlnwhRytEGIeifWpQOjpO2qD8/zY7cVBuCPHCskbJDRD4UDBEig0CQF+t5JssQDE0uEJYvn2hyIkitqImCWJAyVYYMKMdx4uvSVBmREwVDhMigut2NPl8QdosJ5Tkpkr9+eU4yrByPXl8QZ9vdkr8+IdFiU7VTi6QP+oFw3RBlhoicKBgiRAasXmhSQZpkfVciWcwmFAotWHCsgS4SRDksSJlSKH1mCAAm5QtBFtvjjxA5UDBEiAxYLY8cU2RMcbIwPXaUgiGikGZnH1p7vDBxQuAvh4mhKeGTTRQMEflQMESIDI41yFc8zZSkCMHQEVpRRhTCzvPy3BQk2cyyvAfb3qPN5UVbj0eW9yCEgiFCZMCKp+WaOgCAYjZNRrUURCHiSjIZz/NkW3jJPk2VEblQMESIxPp8AVS1uQAAkwql2bRyMGyarLajF919Ptneh5ChhJfVy5cBBYCJoezQSQqGiEwoGCJEYmdaXeB5ICPJirxUu2zvk2IFCtOF1z9O/YaIAsJd1uXLDAHAxFA90knafobIhIIhQiR2ukXICo3PS5G8Cd25JlFxKVGIPxAUz3U5FwoAlBki8qNgiBCJnWoRvrDH5ck3RcZMyGMXCbpjJolV3e6GNxCEw2pCSaa023CcS8wMUTBEZELBECESY8HQ+EQEQ/lCQ0cqLCWJxgKTCfmpMMnQSysSW1HW4vSg0+2V9b2IMVEwRIjEIqfJ5MYCLgqGSKKxc25CAoL+VLtFzD5RdojIgYIhQiTE83w4M5Qv/0WCBVwNXX1w0ooykkAsGJooU7PFc7HP0ykKhogMKBgiREKN3X1wewOwmDiMyU6W/f0ykqzISxNWlJ0KZaQISQQWDCViOhgAxuUKgf+ZNjrPifQoGCJEQqeahS/qMTnJsJoT8/ESV9rQsmOSIMEgH5EZSkwwVJ4j3FycoaCfyICCIUIkdLo1sXfLQLi4tLKFpg9IYtR39aLXF4DVzGFsAjKgAFAR+kxVUWaIyICCIUIkxOoZxiWgeJphmaFK6jVEEoQVMVfkpsCSoAxoRY7wmapqcyMY5BPynsQ4KBgiREKnxJVkicwMCQWslBkiicKC/on5iSmeBoCSrCRYzRy8/iDqu3oT9r7EGDQXDD3zzDMoLy+Hw+HA/PnzsWvXrmEf/9RTT2Hy5MlISkpCWVkZfvzjH6Ovry9BoyVGc6ZVCIZYsWcisGmy6nY3+nyBhL0vMS7W8TwRKyYZc8SiBPY5I0QqmgqG3njjDaxevRpr167Fnj17MHPmTCxbtgzNzc2DPv61117DAw88gLVr1+Lo0aN48cUX8cYbb+BnP/tZgkdOjMDjD4h3rOUJDIZyU21Id1jA81RPQRIjXBuXuPMcACpyQ3VDFAwRiWkqGHryySdxxx13YMWKFTjvvPPw/PPPIzk5GS+99NKgj//8889xySWX4Lvf/S7Ky8tx1VVX4Tvf+c6I2SRCYlHT3gueB1JsZuSk2BL2vhzHhYtL6SJBEuBMqxsAMC43cZkhAKjIFTJDp+k8JxKzKD2AaHm9XuzevRtr1qwRf2YymbBkyRJs37590OdcfPHF+POf/4xdu3Zh3rx5OH36NDZu3Iibb755yPfxeDzweDzin7u7uwEAPp8PPp+0Te3Y60n9unqhteNzulk4V8ZkJ8Pv98v6Xucem/LsJOyv6URlkxO+ybmyvrcWaO3cSbR4jo+zz4fWHuE7siTDltBjPCZL6EJ9uqVH1vel82doWjo2oxmjZoKh1tZWBAIBFBQU9Pt5QUEBjh07Nuhzvvvd76K1tRWXXnopeJ6H3+/Hj370o2GnydavX49HHnlkwM/ff/99JCfLs4R08+bNsryuXmjl+Gxt4ACYYfN2YePGjQl5T3ZsfO3Ce2/bdxxlPUcT8t5aoJVzRymxHJ/qHgCwIN3KY9uH70s+puE0dQnn+eHqloR8xuj8GZoWjo3b7Y76sZoJhmKxdetWrFu3Ds8++yzmz5+PyspKrFq1Co8++ih+/vOfD/qcNWvWYPXq1eKfu7u7UVZWhquuugrp6emSjs/n82Hz5s1YunQprFarpK+tB1o7Pl++ewyoqsb888dh+VWTZH2vc48Nf7ARG2sOwJ+UjeXL58n63lqgtXMn0eI5Pv/c3wAcPIjJJdlYvvxCmUY4uMbuPvzuyCfo8JqwdNlS2Rqb0vkzNC0dGzazEw3NBEO5ubkwm81oamrq9/OmpiYUFhYO+pyf//znuPnmm3H77bcDAKZPnw6Xy4Uf/vCH+K//+i+YTAM/SHa7HXa7fcDPrVarbP/wcr62Hmjl+NR0CMXT4/LSEjZedmwmFAiBelWbWxPHKlG0cu4oJZbjU90hrMYdn5ea8GNbmm1BktWMXl8ATT1+VMi8UIHOn6Fp4diMZnyaKaC22WyYM2cOtmzZIv4sGAxiy5YtWLBgwaDPcbvdAwIes9kMQNhQkxApnW0TUrJjchLTkTcSW73W5vKiq1f9c/lEu9iy9kSumGQ4Lry8vro9+ikQQkaimWAIAFavXo0XXngBr776Ko4ePYo777wTLpcLK1asAADccsst/Qqsr7nmGjz33HN4/fXXcebMGWzevBk///nPcc0114hBESFS8AeCqO0QvpzLcxJ/kUi1W5Af2rCVVpQRObH2DXJnZYZSRsEQkYFmpskA4MYbb0RLSwseeughNDY2YtasWdi0aZNYVF1dXd0vE/Tggw+C4zg8+OCDqKurQ15eHq655hr86le/UuqvQHSqoasPvgAPm8WEwnSHImOoyE1Bs9ODM60uzCzLVGQMRN94nhc3Sk1kY9FILDNUQ8EQkZCmgiEAWLlyJVauXDno77Zu3drvzxaLBWvXrsXatWsTMDJiZOIUWXYyTCZOkTGMy0vBzjPt1IOFyKa1xwunxw+OU2Y6GADGZAvL66vbKBgi0tHUNBkhasWmDsoVukAA4WkL2qqAyIWdW6VZSbBblCk1oGkyIgcKhgiRAPtiHpOtzNQBEK5VOtNKG7YSebBzS4m6OCZymowWwhCpUDBEiATOhjJDY1WQGapqpYsEkUdVaGpKqeJpACjNEj5jTo8fnW5aOUmkQcEQIRKoDfUYKgvVMyiBTR/0ePzooIsEkUF1RG2cUpJsZnHlJE2VEalQMESIBFgwxO5aleCwmlGQThcJIp/wdLBy53nk+9N5TqRCwRAhceru84mNDksylcsMAcDYUM0SXSSIHNh5NVbBmiEgom6og85zIg0KhgiJU227kBXKSbEhxa5stwpxpU0brSgj0upyh4N+JaeDhfenXkNEWhQMERIndndamqXsBQIIF3BTZohIjZ1TeWl2JNuUDfppmoxIjYIhQuIk1gspXEcBhC8SZ6khHZHY2XYh26h0vRAQbvhIwRCRCgVDhMSpVkWZIXaRoOkDIjWxXkgFwRD7rNV39sEfCCo8GqIHFAwREqeaduVXkjHsrr2huw8ef0Dh0RA9YQF2mQqCofw0BywmDoEgj2anR+nhEB2gYIiQOLHMUJkKMkM5KTYk28zg+fD0HSFSOKuCHkOM2cShKFPYELmuk85zEj8KhgiJA8/zqugxxHAcR8WlRBbhZfXKn+cAUJzBpsooGCLxo2CIkDh09frQ4/EDUEfNEBCx0oaKqIlEvP6gGHSoITMEACWhzxtlQIkUKBgiJA7sizgvzQ6HVZldvM9Fy+uJ1Oo7exHkAYfVhLzQVhhKYw1OKTNEpEDBECFxYEWlaskKAdSDhUgvchsOjuMUHo2ABUNUM0SkQMEQIXFgX8RqqBdiymiajEjsrEr2JItUTJkhIiEKhgiJAwuGikMrW9SA7RtV3e4Gz/MKj4boQY0YDCm7J1kkVjNU19FL5zmJGwVDhMShobMPgPIbtEYqyUyCiQN6fQG09FAPFhK/s22s+7R6znO2mszlDaC716/waIjWUTBESBzqu4TMUFGGei4SNotJHA91oiZSqA41FlV6t/pISTYzclJsAIDaTjrPSXwoGCIkDvWhzFBRhnqmyQAqoibS4XleVd2nI4XrhvoUHgnROgqGCImRxx9Aa2gaSk3TZABt2Eqk0+7yosfjB8epa9UkELGirIPOcxIfCoYIiVFjl3A36rCakJlsVXg0/dGu3kQqNaFeWgVpDtX00mLEzFAXZYZIfCgYIiRG4ZVkSarpvcKURqy0ISQebO89tWWFgP4rygiJBwVDhMSIrSQrVlHxNCMGQ9SDhcSpTtx7T33neQlt1kokQsEQITFqEFeSqat4GgBKMoVpsoauPvgDQYVHQ7SMbTlTospgSDjPKRgi8aJgiJAY1bHMkMqKpwEgP80Oq5lDIMijyUm9hkjs1NhlnWHNTlucHnj8AYVHQ7SMgiFCYsQyQ2rqPs2YTJwYpNVSETWJA6sZUtuKSQDITrHBYRUuY41URE3iQMEQITGqjyigViPayJLEi+d5sWZIjdNkHBcO+qmImsSDgiFCYtQgNlxU30UCCBe81tJFgsSo0+2DyytMP6kxMwRQ0E+kQcEQITHo7vPB6RH2Q1LjNBkQUVxKwRCJEQswclPtqusxxFAwRKRAwRAhMWBZocxkK5JtFoVHM7gSWl5P4lSr4mX1TAlNkxEJUDBESAzUuEHrucLTZFRATWIjFk+rOBgqCgVDjd1UQE1iR8EQITEQi6dV2GOIKYnYxDIY5BUeDdGi8LJ69QZDhenCZ5BWk5F4UDBESAwaVNxjiCnKcMBs4uANBNHSQ72GyOiJ02QqPs8LMygYIvGjYIiQGIjTZCotngYAi9kk3jXTijISi/BWHOpruMiwYMjp8aMntKiBkNGiYIiQGLBpMrUuN2bY+KhuiMRCCzVDqXYL0uzCIgbKDpFYUTBESAwautTdY4ihDVtJrJx9PnT3CZkWtQf9BaHsUBMVUZMYUTBEyCgFg3xEw0X1TpMBEcvraZqMjBILoLOSrUixq7N9BMM+hw2UGSIxomCIkFFqc3nhDQTBceF6BbWiLtQkVrXt6t2G41wF6ZQZIvFRd7hPNCsQCGDbtm1oaGhAUVERFi5cCLNZnR1sR4vVJeSl2mE1q/t+QuxCTdNkZJTEZfWZ6i2eZsKZIf2d53r+LlUTCoaI5DZs2IBVq1ahtrZW/FlpaSmefvppXH/99QqOTBqsuZvas0JA+K6+tsMNnufBcZzCIyJaoYXiaaZA7DWkrxYSev8uVRN139YSzdmwYQNuuOGGfh9eAKirq8MNN9yADRs2KDQy6bBUPPsCVjO2b1qfL4h2l1fh0RAt0ULDRaZIhwXURvguVRMKhohkAoEAVq1aBZ4f2O2Y/ezee+9FIBBI9NAkFQ6G7AqPZGR2ixn5acI4qW6IjAY7X9S+kgwI35jopYDaKN+lakLBEJHMtm3bBtzFROJ5HjU1Ndi2bVsCRyU9VjNUqIHMEEAbtpLYiL20NJQZanN54PUHFR5N/IzyXaomFAwRyTQ0NEj6OLVqcgp1CVqYJgPCW4bUUzBEotTnC6C1R5hW1UJmKDvFBpvZBJ4Hmp3azw7V1NVF9Titf5eqCQVDRDKnXdaoHldUVCTzSOTV1KWdmiEgvJmsXqYQiPxY9jPJakZGUnSfayVxHIeCDGE6WA91Q1urfVE9TuvfpWpCwRCRRIvTg79WJ8Oclgtg6BVLaTkFWLhwYeIGJgMtrSYDwl2y9bjsmMgjcu89raxALNRJ3dCe6g580JEtfJcOc+yz8os0/12qJhQMEUk8vukYerw8Zn3rXnAcBnyBsj87Fv4AhxucSgxREn2+ALp6hbs2zWSGQivK6ju1fZEgicM6rBerfLuZSIWhsWp5fzKe5/HIO0fAmcxYfscacBj4XcpuNlMu+wHa3bQxrVQoGCJxq2zuwYY9QrHfH9fejTfffBMlJSX9HlNaWoqvrf41kidfjN9+WKnEMCXBUvAOqwnpDm206WI1Q5QZItFi9WUskNaCwtDqTi0HQ5+cbMX+mk4kWc3448N3DfpdWlZWirm3/wrm8Rfh+Y9PKTRS/dHGtzlRtWc+qkSQB5aeV4BZZZmYVXY9rr322gFdU6vae7HkyY+x+UgTTjY5MbEgTemhj1rkSjKtTB+wabJmp7DSxmaheyAyvHqNbEQcScwMabhm6Lmtwo3id+ePQX6aA9dfP/h36Wen2nHLS7vw5x1nceei8chNVX+bD7WjYIjEpbm7D/86UA8A+M8rJog/N5vNWLRoUb/Hjs9LxdKpBXj/SBP+srMaD3/9/EQOVRJaW0kGADmhlTbeQBBN3X0oy1b/9gpEWSyLqK3MEOtCrc1g6GSTEztOt8PEAT+4tEL8+WDfpQsn5mJmWSb213TitZ3VuOfKiQkerf7QLSKJy192VsMX4DF3bBZmlGaO+PjvXTQWAPD3PbXo9WqvYZjWVpIBgMnEicXeWi8uJYnBaoa0lRkKBUMazQy9tqsaAHDl1AJxansoHMfhtkvKAQD/d8dZ+APa762kNAqGSMx4nseGvUKt0M0Lxkb1nEsn5KI0KwnOPj+2HGuSc3iy0NpKMkbPG1kS6dVrMTMUsSVHMDiwc7OaBYM8/nVA6Bn07QvLonrOV6cVISfFhhanB9sqW+UcniFQMERitvtsB2rae5FiM+Oq8wqjeo7JxOHrM4sBAP/cVy/n8GTRqKF9ySKFGy9q866ZJI6zzwdnn7BKSUuZofw0OzgO8AV4tLu1tQ/f7uoOtDg9SHNYsHBiXlTPsVlMuCb0Xfr23uiaNJKhUTBEYvZW6AP4lWlFSLKZo37e12cJH+Ctx1vg7IuuuZhaNGtoX7JIlBki0WJTqekOC1Ls2ikrtZpNYiGx1uqGNh4UskJLpxaMaoHDdbOFlWbvHW5Ej4eW2ceDgiESE68/KKZ1/2N2yQiP7m9KYToqclPgDQTxWWWbHMOTjThNRpkholPhZfXayQoxLOjXUjAUDPLYdKgRAPDV6aPrKD2zNAMVuSno8wXx/uFGOYZnGBQMkZh8fKIFXb0+5KfZsWB8zqifv2iykAreerxZ6qHJhud5NHVrbzUZENl4kTJDZHgsM6TFYIh9LrVURL2/thMNXX1IsZmxcGLuqJ7LcRyumyXcjL5FU2VxoWCIxGTzEeEuZPn0IphNo++3s3hyPgDgo+PN4HltFDt2un3ijtj5mpsmo8aLJDoNoYC5SGOLBAChbggQemppxftHhIUki6fkw2GNvtyA+dpMIZu043QbTZXFQXPB0DPPPIPy8nI4HA7Mnz8fu3btGvbxnZ2duPvuu1FUVAS73Y5JkyZh48aNCRqtPgWDPD463gIAWDK1IKbXmFeRjSSrGU3dHhzVyPYc7G4zO8UGu2X0X1pKYtsqdLh9mmxpQBKnXsOZofw0IYBr0dDO9Z+HVoJdMSU/puePz0tFRW4KfAEen55skXJohqKpYOiNN97A6tWrsXbtWuzZswczZ87EsmXL0Nw8+FSL1+vF0qVLUVVVhTfffBPHjx/HCy+8MKC9ORmdQ/VdaHF6kGIzY15Fdkyv4bCacckEYXrtI41MlWl1JRkApCdZkBwqcqfsEBlOvYYzQ2xhA5vOVruuXh8O1nUBAC4eP7opskgskNpyVBvfpWqkqWDoySefxB133IEVK1bgvPPOw/PPP4/k5GS89NJLgz7+pZdeQnt7O95++21ccsklKC8vx+WXX46ZM2cmeOT6wj5wl03Ki2trh0WhqTKt1A1pdSUZINQWFFHjRRKFBg1uxcGw6etmjWSGdp5uQ5AHxuWlxNW77Mop4bIDrfVYUgvNBENerxe7d+/GkiVLxJ+ZTCYsWbIE27dvH/Q5//znP7FgwQLcfffdKCgowLRp07Bu3ToEAjRNEI8PjwnBS6xpXYYVC+6r6USfT/3/Jo1dwt2m1laSMeEVZZQZIoPjeV48P0o0PE3WrJHM0OenhNW0F8ewCCXS3PJspNktaO3x4kAo00RGRzNNJFpbWxEIBFBQ0L9GpaCgAMeOHRv0OadPn8aHH36Im266CRs3bkRlZSXuuusu+Hw+rF27dtDneDweeDzhD1J3dzcAwOfzweeTticOez2pX1dOzU6PmNa9dHxWXGMvSrMiP82OZqcHX55pxfxzptzUdnzqO90AgLxUq+JjiuXYsF29a9tdio9fbmo7d9RmqOPT7vLCE1okkJ1s1tzxy04SpoJbezzo83hjWtwBJO78+axSqPGZXx7fdykH4JIJOdh0uAmbDzfg/MIUiUY4kJY+W6MZo2aCoVgEg0Hk5+fjD3/4A8xmM+bMmYO6ujr8z//8z5DB0Pr16/HII48M+Pn777+P5GR5NrjcvHmzLK8rhy9aOABmlKXw2PXJlrhfr8RmQjNM+OvmnWgrHTy9q5bjc+iUCYAJzWdPYuPGE0oPB8Dojo2zSfi323XoJDb2HpdvUCqilnNHrc49PrUuALAgzcpjy/ubFBlTPII8wMGMIM/hb//8NzJs8b2enOdPtxc42Sxcgp2Vu7HxbHyvl9UnfL7f/fIUJnnk/37SwmfL7XZH/VjNBEO5ubkwm81oauq/n1VTUxMKCwffCqKoqAhWqxVmc3jlz9SpU9HY2Aiv1wubbeAnZc2aNVi9erX45+7ubpSVleGqq65Cenq6RH8bgc/nw+bNm7F06VJYrVZJX1su2946DKAOy2ZXYPmySXG/Xmt2Nfa+ewxORz6WL5/T73dqOz6/r9oOwIkrL56LxZOja5kvl1iOjWt3HTbVHoYlPW/AsdYbtZ07ajPU8dlytBk4sA/l+RlYvvwiBUcYu/WHP0az04MZ8y7F+cWxfWcn4vx592AjsPsApham4ZvXLoj79WZ09OKvT25DrduEy6+8Urbu4Vr6bLGZnWhoJhiy2WyYM2cOtmzZguuuuw6AkPnZsmULVq5cOehzLrnkErz22msIBoMwmYTyqBMnTqCoqGjQQAgA7HY77PaBBbJWq1W2f3g5X1tqO6vaAQCXTMyTZMzzxwl1Q3uru2AyWwZNa6vl+LT0CPsdFWelqGI8wOiOTVmOkDpv7PaoZvxyU8u5o1bnHp+mHmFaoTgzSbPHrSDdgWanB21uf9x/BznPnwN1QkuReRXZkrxHRb4VpVlJqO3oxb46p7hARS5a+GyNZnyaKaAGgNWrV+OFF17Aq6++iqNHj+LOO++Ey+XCihUrAAC33HIL1qxZIz7+zjvvRHt7O1atWoUTJ07g3Xffxbp163D33Xcr9VfQtJp2N2rae2ExcbiwPLYl9eeaWpSOVLsFTo8fxxqjj+ITLRDk0dYj1JKxxm5aE268qI2VNiTx2G71WlxJxmil8eK+mg4AwKwxmZK95oJxQiH29tPa2uZIDWIKhoLBYL8/P/744wkpprrxxhvx61//Gg899BBmzZqFffv2YdOmTWJRdXV1NRoaGsTHl5WV4b333sMXX3yBGTNm4J577sGqVavwwAMPyD5WPWIfsBmlGUiVKAVrNnG4YGwWAODLqg5JXlMObS4Pgjxg4oCcVG0GQ2xLjh6PH90a2yCXJEZDaO86La4kY8Tl9SpeUeb1B3GoXrj5m1WWJdnrsq2Rtp+iYGi0Rh0MHT58GPPnz+/3szVr1mDatGl49913JRvYUFauXImzZ8/C4/Fg586d/caydetWvPLKK/0ev2DBAuzYsQN9fX04deoUfvazn/WrISLR2xH6gMWyF9lwLmTB0Fn1BkPsizU7xR7zChWlJdssyEwW0sYNtGErGQRryFmUqc32EUB4eX2TinsNHW3ohtcfRGayFeU50i3MYd/Nh+q66IZnlKIOhoLBIB599FHMnTsXS5cu7fe7l19+GU6nE1//+texfPlynDihjpU2RDo8z4uZoXg6pQ5mZlkmAOBgbaekryulFqe2p8gYNv1RT12oySDqO7XbcJHRQmZoX00nAGBmaSY4Trqbq6KMJFTkpiDIA7tOt0v2ukYQdTD0+OOP44knnsCGDRuwbt26fr+79dZbceLECfz4xz/Gli1bMH36dNx3332jquQm6lbX2YuGrj5YTBwuGCNdWhcAppdkAACq2tyqvZthwVCexoOh4gzavZ4MLhDk0dTN9iXTfmZIzfuTsWBotoT1Qgzr1/bFWQqGRiPqYKi4uBg9PT349NNPB9QMAUBqaip+/etf48CBA7jiiivw5JNPYtKkSUNulUG0ZXdoCuv8kgwk2aSdZsxKsYk1CodU2j2VtffXfGYodJGjaTJyrhanB/4gD7OJEwMKLdLC/mQsGJoVyopLaU6o7GCPissO1CjqYOjWW2/FBx98gDfeeAOLFy8e8nGTJ0/Gv//9b7z99ttITU3F7bffjgsvvHDILTOINrAP1hyJs0IMyw6pNRjSS2aIpsnIUNg5UZCm3bo4IJwZau3xqHKfrk63F2daXQDkDYb213bB6x+YuCCDG1UB9aJFi7B///6oNjr9+te/jiNHjuBXv/oVjh49iksvvRQ333wz6uvrYx4sUc7uaiEYumBspiyvP71UCIYO1qlzarVZJzVDLANHmSFyLnZOFGt4JRkA5KbawHGAP8ij3e1VejgDHA6tIhuTnYzM5DhbZA+iIjcFWclWeP1BHK5X582lGo16NVlKSgr+93//d8jf+/1+7N69G88++yx++MMf4k9/+hN6e3vB8zz+8pe/YPLkyXjiiSfA8+qL2MngXB4/jjYIDcLYXYfUtJMZ0u70AYCInespM0T6C68k03YwZDGbkJPCpsrUF/QfCQVDsXbHHgnHceL39G6aKouaJM1i/vrXv2LXrl3YuXMn9u3bB4/HIwY7BQUFuPbaa3HxxRejoqICTz75JO6//3688847ePvtt5GZmSnFEIiM9td2IhDkUZzhkG2VCQuGzrS60N3nQ7pDXZ1NxcxQurYzQ+LO9V194Hle0pUsRNtYM04WMGtZfpodrT0eNDs9OF/pwZzjaIMQDE0tkicYAoALxmbhg6PN2FNNwVC0JAmGbrrpJgCA2WzG9OnTcfHFF+Piiy/GggULUFFR0e+x3/jGN/Dss8/i3nvvxb333jugLxBRn73VnQAgNkeUAyuiruvsxeG6bsl7GcWD5/lwZkijDRcZFsx5/UF0un3ISpE+TU+0qTEUDBWmaz8YKki340gD0KLCIuojoWDoPBmDIVbbuftsB930REmSYOiXv/wlFixYgHnz5iElJWXEx99111348ssv8c4770jx9kRmLNUq1xQZM70kA3WdvThU16WqYKjH40evLwBA+wXUdosZOSk2tLm8aOjqo2CIiBpDU0qFusgMhRovqmyazOMPoLK5BwAwVaZpMgCYUZoJi4lDU7cHdZ29KM2SrrGjXkmyN9nPfvYzLF68OKpAiJk0aRLa26kPgtrxPB/RE0PeYIiljY83OWV9n9FiWaEUm1m2naATqSBdnRcKoiwxM6SHYChdnfuTVTb3wB/kkZFkFXt+ySHJZha/T/fXqLMOU20U26j15ptvxh//+Eel3p5Eqa6zF+0uL6xmDlOL0mR9r8mFqQCA443qCobC9ULav0gAkUXUFAwRQTCi4aIepsnYZ7VZZY0XWfH01KI02aeuZoRW6B6o65T1ffRCsWCopKRE3G2eqNeBWuGuYkphOuwWefd0m1wo3MmcbHYioKL+IHqpF2IKQsFQI2WGSEibywt/kAfHaX8qGAi3wFBb40W2Kve8ogzZ30sMhigzFBXFgiGiDftD+4WxPkByGpOdDLvFhD5fEDXtbtnfL1osM5Sn8ZVkTFHorrmRlteTEJYVyk21w2rW/mWBBUMtKpsmO9IgBCZyZ9kBoW4IENqVqLH5pNpo/6wnsjoYygzNTEAwZDZxmFggTJUdU9FUmd4yQ4ViZkhdFwqiHD0tqwfCdXHNzj7V9LTjeV78XpNzWT0zMT8VDqsJTo8fZ9pcsr+f1lEwRIYUDPJiMDS9JDMh7zmpQLhjOqGiImpxXzKdZIbEYIgyQySETZkW6KBeCBAyXADgC/DocKtj8+eWHg863T6YOGBCfqrs72cxm3B+cWiqLJThJ0OjYIgMqarNBafHD7vFhEkF8n94AWBKoRAMqamIWm+ZoSIxGKKaISJo0lGPIQCwWUzIShYat7b2qCMDWtkkLKkfm5MCh1Xe+kuGNbNltZ9kaBQMkSGxD9D5xemwJKiOgGWG1LS8vkVnq8nY3X93nx9ur1/h0RA1aNDRsnqGZYfUUjd0MtRfaHxeYm4sgYgiagqGRiTZFc7v9+M3v/kN5s2bh/T0dFgs4X4s+/btw1133YUTJ05I9XYkAdgHiBXiJcLkUGboTKsLHpXsuKy3zFCaw4rUUL8kyg4RALpaVs+wVXGqyQyFgqGJCcqyA+Hv7sP1XfAH1PF9qlaSBEO9vb1YvHgx7rvvPpw9exbp6en9itYqKirw8ssv409/+pMUb0cShO14PK1E/uJppjDdgXSHBYEgj9Mtyhf9+QJBtLmEna/1UjMECNsVABQMEYGeuk8zeSpbUXayWch2T0xAvRAzLjcFyTYz+nxBnGlV/vtUzSQJhtatW4fPPvsM69evR2NjI26//fZ+v8/IyMDll1+O9957T4q3IwnA87y4h45cuysPhuM4caqssqUnYe87lLYeIRAymzhkJ+tn6wq24S71GiKAvrpPM+I0mcoyQ4konmZMJk5cuca+z8ngJAmG3njjDSxevBg/+clPwHHcoJ01x40bh+rqainejiRAbUcvnH1+WM1cQue4AWBcnrCtixruZNhKstxUG0wm/Wx2yOqGqAs16fH40eMRasf0OE2mhsxQh8uL1tCNVaK/T1lPIwqGhidJMFRdXY25c+cO+5i0tDR0dVERl1YcDX1wJuanwWZJbJ39uNCXxelW5RsvivVCOujKG4mtKKP9yQjLCqXZLbrYe49RUwE1y3KXZCYl/BizbtdsKxAyOEmucmlpaWhubh72MadOnUJeXp4Ub0cSgN1FnJfAKTKG3TmpoWZI3JcsTT93zEB4Sw7KDBEWDBXoaIoMiCyg9io8EuBkU+KnyBj2HX6kvls1DSjVSJJg6KKLLsI777yDzs7OQX9fU1ODjRs34rLLLpPi7UgCsLuI8xLQKfVcbJqsqs0FpbvI620lGRPekoOCIaNjdWN66T7N5KkoM6RE8TQzuSANJk7Yf04Nx0KtJAmG7r//fnR0dODKK6/EZ599Br9fmH92u93YsmULli1bBr/fj9WrV0vxdiQBWGYoEW3jzzUmOxkWE4deXxBdCt/U6a37NFNIm7WSkCaddZ9mctOEBQ/tLo/iGz8rsayeSbKZUZEr3GBS3dDQJJm8vOyyy/C73/0Oq1at6pf9SUsTCrfMZjOeffZZzJkzR4q3IzLr6vWhtkPYqkGJzJDVbMKYnGScbnGhqVfZouXmbn3WDLFgqLXHA18gqIvNOUlsGkLbsuipeBoAclLsMHFAkAfaXV5FP8Nsyn9cgounmfOKM3CqxYUjDd1YNDlfkTGonWTfgHfeeSf279+PlStX4sILL8T48eMxe/Zs/OhHP8LevXsHLLcn6sWKp0syk5ARammfaONyhS+NZoW3z2LLcvN1FgxlJ9tgM5vA8+G6KGJMjV3Cv7+eltUDoXYYKUJ2SMnpoT5fAPWhgJNlaBKN3dRSEfXQJC1rnzp1Kp5++mkpX5Io4KiCxdPM+PwUfHAUaO6jzJAcTCYO+el21Hb0orGrFyWZSUoPiShEj92nmdxUO1p7vIp2oa5pd4PnhdV6OSnK9CoTi6hpmmxIlBsnAyhZPM2MD2WGmhTMDPE8H5EZ0t+FIrxhK2WGjEyP+5Ixaug1dDrUL608N2XQHnyJwL7Lz7S6aD/CIVAwRAZQsniaYSvKmhWsGeru9cMb2h9Nb5khILLxosJzkUQxwnYz+pwmA8IrypTMDFVFBENKyUuzIzfVDp4HjjeqZxNsNYlpmuy2226L6c04jsOLL74Y03NJYnj9QbEnRiK34TgX6zXU6eXg9vqRYU187VJLT6gZncMCh9Wc8PeXGzVeJC1OD3gesJr1td0Mo4bMUFWbEAwpVS/EnFecjk9OtOBIQzdmj8lSdCxqFFMw9Morrwz6c47jBm3qxH5OwZD6nWrpgTcQRJrdgtIs5epIslJsyEiyoKvXj+r2XkxPSfxY9FovxNCWHKSpOzwNrKftZhg17E/GthWqyE1WbAyAMFX2yYkWKqIeQkzTZGfOnOn336lTp/C1r30NOTk5ePTRR7F161YcPXoUW7duxS9+8Qvk5OTgmmuuwcmTJ6UeP5HYscbwFJlS89vM2Gzhy6O6XZltOfS6koxhm7VSZsi49NpwkQl3oVY+GCrPUTYzxPYoO0pF1IOKKTM0duzYfn9+7LHHsHPnTuzfvx9FRUXizydPnozLLrsMK1aswOzZs/Hmm2/iJz/5SXwjJrI63ihMkU0uTFN4JEBZdjIO1HWjul2ZmpZwZkifF4rCDOFCQZkh42oMneN624qDUXp/MrfXL2bflJ4mm1IolD2caOoRZ2pImCQF1C+++CK+9a1v9QuEIpWUlOBb3/oWXnjhBSnejsjoRJNQXDdJBcEQywydVSgz1OrS51YcTGEoM9Tc7UFQ6X1PiCL0vKweUH5/sqrQZtNZyVZkKlyTVZGbAouJQ4/Hj3q6ARpAkmCotrYWDsfwHyaHw4Ha2lop3o7IiK00mFyggmAoR7hYKzVN1hb6As1J1V9hKSBM/3Ec4A0E0e5WfjNLkngsM6T3YKjd5YUvEEz4+59RwUoyxmYxiat0T9CKsgEkCYZKS0vx1ltvoa9v8GjT7XbjrbfeQmlpqRRvR2Ti7POhrlOYkpqkwB465xrDaobalAqGhAtFrk6DIavZJE4j0IatxiRmhnQ6TZaZZIU5VBjepkB2SC0ryZjJoamy400UDJ1LkmDo9ttvx+nTp3HJJZfgH//4B9ra2gAAbW1tePvtt3HppZeiqqoKd9xxhxRvR2RyMrSZYEG6XfGULhCeJqvv6hP7/SRSmyuUGUrR5zQZEM4IUDBkTKyeRa/BkMnEiTczShRRV6mkeJqZHLrJpczQQJJsx3H//ffjxIkTePnll3H99dcDAEwmE4JB4QLG8zxWrFiB+++/X4q3IzJhH5BJKpgiA4SMjM3EwxvkUNvhTvgmh3qfJgOEi+DBui400Ioyw+F5oMmp72kyQCiibur2KFJEXdMhZLVZlltp7LudMkMDSRIMmUwmvPjii7jlllvw6quv4sCBA+jq6kJGRgZmzpyJm2++GYsWLZLirYiM2AdEDfVCgNCfKtcB1LuFIupEBkM8z4t3krk6LaAGwhfBJsoMGY7LDzHjmp+u33NcbLyoQGaoJrQStixbHXv/sVXCJ5t7EAjy4hQikXij1ssvvxyXX365lC9JEkhNK8mYXAePejeHs60uYHLi3tflDcATulDoPTME0PJ6I+oKldDkpNhgt+ivwzqTp9Dyel8gKG51U5aljsxQWVYyHFYT+nxBnG1zJTzbrma0NxkRiT2GVJIZAoDcUPY+0cvrWfF0ktWMZJuk9wyqQltyGFenV8gKFOh4igwAchXakqOhsw9BHrBbTKrpYm8yceJU2QmaKuuHgiECQLj4s2mhiSpYScbkOoT+N2cTvKKs1QD1QkB4mow2azUelhnSa/dpRqnNWllLkNKsJFU1OBTrhkI3v0RAwRABIHQlBYRCPzVlQlhmiC1RTRSWGcrRcb0QEJ4mY6uKiHGImSGdB0NKZYZY8XSZSoqnmcmUGRoUBUMEQES9kIqmyAAg1y5khmo7ehPaJZktq89N0XlmKHQh7PH44ezzKTwakkidodhAzyvJAOUyQzWhzJBa6oUYVhNKK8r6o2CIAIhYSVaonikyAMi0A2YTB68/mNAvs3BmSN/BULLNgnSHkAmkuiFjYdNkeu0xxOSlCZ/hxGeGhKlntSyrZ1hm6EyrCx5/QOHRqAcFQwSA+noMMWYOKAwt+2Vp50QI1wzpe5oMoBVlRtUVmibTf2ZI+Pt19/nR50vcxV/MDKlkWT1TkG5HusOCQJDH6ZbElh+oGQVDBDzPR2SG1BUMAUIBIiBMlSVKuPu0vjNDQHjDVupCbSydBskMpSdZYDMLlzr2uU6E2g5WQK2uzBDHceL3PNUNhUkWDPn9fvzmN7/BvHnzkJ6eDoslXIS7b98+3HXXXThx4oRUb0ck1NjdB2efH2YTp5o9dCKVZCoQDBmg4SLDMm8UDBlHrzeA3oAxltZzXHhLjkRNlbk8fjG7rLYCaiByRRkFQ4wkwVBvby8WL16M++67D2fPnkV6ejp4PlzsWlFRgZdffhl/+tOfpHg7IrHK0J5kY3OSVdl8rTQUDNUksNeQEbbiYMT9yahmyDCanMK/dbLNLNaM6VlegleUsRu3dIcFGUnWhLznaEzIF2pD2Xc/kSgYWrduHT777DOsX78ejY2NuP322/v9PiMjA5dffjnee+89Kd6OSIx9ICaotBupMtNkoQJqHW/SytA0mfE0dgnnd0GaXVU9cOSSm+AVZeF6IfVlhQBgYr6QGapsoWCIkSQYeuONN7B48WL85Cc/Acdxg364xo0bh+rqainejkhMDIby1RkMlWQJmYtEFVAHgjza2dJ6I2SGMkLTZJQZMgy2crBAx3uSRUp0ZkjsMaSyeiGGfdefbXOL+9MZnSTBUHV1NebOnTvsY9LS0tDV1SXF2xGJqT0YYl8o9Z29CCSg11Cn2wv2NlkGKKBmNSO0tN44Grv1v1t9JBYMJS4zpK4NWs9VkG5Hml1YUZbohrZqJUkwlJaWhubm5mEfc+rUKeTl5UnxdkRip1rUHQzlp9lhNXPwBfiEXLDZipPMZCusZv0vuCwKTZO19nip74hBNIUyJHovnmZyE7xZK9uKQ209hhiO4zA+9H1/sommygCJgqGLLroI77zzDjo7Owf9fU1NDTZu3IjLLrtMircjEupwecVVD+NVWjNkNnEoTuCKMnb3aIRl9QCQlWyFzSJ8FTTTthyGwOrDjDJNxoIhtjBCbuKyepUGQwAwkYqo+5EkGLr//vvR0dGBK6+8Ep999hn8fj8AwO12Y8uWLVi2bBn8fj9Wr14txdsRCbECupLMJKTY1buqhBVRJ2JFWZuBGi4Cwl0iuyjSVJkxsNVkRpkmY6tCEzFNxvO8arfiiMRmAk420/J6AJDk6nfZZZfhd7/7HVatWtUv+5OWJlSsm81mPPvss5gzZ44Ub0ckxO4Kxqt0iowRvlTaEpIZCvcYMkZmCACK0pNQ095LRdQGwTbmNU5mKHHBUIfbB5dXmG5mN3FqNLGAMkORJEsF3HnnnVi0aBGef/557Ny5E+3t7UhPT8f8+fNx11134fzzz5fqrYiE1L6snhEzQwlYURbuPm2MCwUQ3rmcltfrnz8QFGtnjBMMCX/P7j4/vP6gOC0sB5YVyk+zw2FVX982ZkKekKw43epCIMjDbNJ/i4XhSDovMnXqVDz99NNSviSRmdpXkjGspX1dQmqGjNNwkaEu1MbR2iOsljSBN0SHdQBId1hhMXHwh9pmyLkFCcteqzkrBAAlWUlwWE3o8wVR0+5GuQp3H0gkzS2VeeaZZ1BeXg6Hw4H58+dj165dUT3v9ddfB8dxuO666+QdoMZoJRgqEjcTTdw0mVFqhoCIxos0TaZ77N843QbDZANMJg7ZKYmZKmPfUWzRh1qZTRzG5bK6IZoqiykzdNttt4HjOKxbtw4FBQW47bbbon6u3W5HaWkprr32WkybNm1U7/vGG29g9erVeP755zF//nw89dRTWLZsGY4fP478/Pwhn1dVVYX77rsPCxcuHNX76Z3b60ddp/DBVXswxL5Y6rv6wPO8rF1z2TRZrkFWkwERW3JQZkj3GkMX6wzjnN4AhJubZqdH9mCIfaeWqDwYAoS6oSMN3ahs7sHS8wqUHo6iYgqGXnnlFXAch5/+9KcoKCjAK6+8MurXePjhh7FhwwZcc801UT/nySefxB133IEVK1YAAJ5//nm8++67eOmll/DAAw8M+pxAIICbbroJjzzyCLZt2zbk8n8jOtUsNNvKTrGJd01qVZjhAMcBXn8QbS6vrOl9Y2aGqAu1UbCAN8MmfwNTNWFF1HIvr2/oFI5vkYxTcVJhtaK0oizGYOjMmTMAgJKSkn5/jkZfXx9OnjyJu+++G2vXro06GPJ6vdi9ezfWrFkj/sxkMmHJkiXYvn37kM/7xS9+gfz8fPzgBz/Atm3boh6nEVS2CB8AtWeFAMBqNiE/zY6mbg/qO3tlDoYMWDMUmiZr7vYgGORhMsj0iRGx7tOZxjm9AUT0GnLJmxmq18g0GRBeUXaKpsliC4bGjh077J9HMnnyZHz66af47W9/G/VzWltbEQgEUFDQP5VXUFCAY8eODfqcTz/9FC+++CL27dsX9ft4PB54POEPS3d3NwDA5/PB5/NF/TrRYK8n9etG60SD8Hcbl5us2BiGc+7xKUx3oKnbg5q2HkwtkKfYz+MLwOkR+mRl2E2qPC6A9OdOlsMkZN4CQTR3uTSfFVP6s6Vm9aEVmZk23lDHJytJuNw1d/eN+PeO5/ypD02T5adaVX98x4b2faxs7oHX642q/EBLn63RjDFhXfa8Xi/6+vqQnp4OAPjBD36ABQsWyPZ+TqcTN998M1544QXk5uZG/bz169fjkUceGfDz999/H8nJ8jTQ2rx5syyvO5LPjpsAmOBpOYuNG6sUGUM02PHheoXxfrB9D/xV8qT4OzwAYIGZ4/Hph5uh9g29pTx3Ui1mOH0c/v7vLSjVycISpT5banakSvgcZdiMdXxa6jgAZuw/fhobA5VRPWe0x8cfBFp7hMvq4S8+xVnraEeZWIEgYOLMcHkDeO3tfyNrFPdAWjh33O7oW7HEHAyNGzcO9957L+655x7xZ++99x7ee+89PPnkkwMev379evziF79AICA0o5o4cSImTpwY9fvl5ubCbDajqamp38+bmppQWFg44PGnTp1CVVVVv2m4YFDYnddiseD48eMYP378gOetWbOmX6fs7u5ulJWV4aqrrhIDOan4fD5s3rwZS5cuhdWa+E/N0yc/A+DCNZdfiIUTog8YE+Xc47OfO459n59FVvE4LP/qZFne82BdF7BnJ3LTHLj66stleQ8pyHHu/OHsdhyud2LCjAtxxWRt7yOo9GdLzX5z4lMAbmTaeEMdH/eeOrxTfRhJmXlYvnz4BsCxnj9n293Azk/hsJrwza9/VdaFHlJ55vRnONXiwpjp86K6Dmjps8VmdqIRczBUVVU1oBh5x44dePrppwcNhuJls9kwZ84cbNmyRVweHwwGsWXLFqxcuXLA46dMmYKDBw/2+9mDDz4Ip9OJp59+GmVlZYO+j91uh90+MDy2Wq2y/cPL+dpD8QWC4maCU4oyVX1Ss+NTmi2kK5qcXtnG29UnBMy5qXZVHxNGynOnKCMZh+udaOnxaeLvHg0lPltqxvO8WCSfYTPW8SnMEDL77e7oz+/RHp/mHmFapjgjCTabNoqyJhWk4VSLC2fa+nDF1Oj/rlo4d0YzPvVuRjWI1atX49Zbb8XcuXMxb948PPXUU3C5XOLqsltuuQUlJSVYv349HA7HgKX7mZmZADDqJf16dLbNBX+QR4rNrIlVDwBQnCmMky1dlUOrAVeSMWxFGe1Ppl/dvX70+YSA33hL6+VfTcZWkmmheJqZQBu2AtBYMHTjjTeipaUFDz30EBobGzFr1ixs2rRJLKqurq6GyaS5PpKKONkU3pNMC6lcIPwFI2fjRSP2GGKo15D+saxQZpIVNrNf4dEkVk7EzvVy9SpjxdNaucEEIoMhYy+v11QwBAArV64cdFoMALZu3Trsc2Pph6RXWuk8HamILf92emTbXyjcY8iAwRB1odY9diMh7Ekmfzd3NckJ3eB4A0F09/mRkST9FE99l3YzQyebe2RvaKtmlEYxqMoW7QVDOSk22Cwm8Lx8UznhHkMGnCajzJDusc+NUTZojeSwmpFqF+7/22TqQs0yQ2xKXwvG56WC44BOt0/MjBsRBUMGpZXd6iOZTJyYfq6XqW6oVdyx3oiZIepCrXeNXUIQwAJfoxG7UMt00dfKvmSRHFazuKmskeuG4pom+/Of/4wdO3aIf66sFHo3LF++fMBj2e+I8oJBHqc0mBkChFUaZ9vcaJApe8HuGI2ym3ckNk3m7PPD5fEjxa65WXQygsbuiGkyA8a8Oal2VLW50eqUKzPEtuLQTjAECDfFNe29qGzuwUXjcpQejiLi+rarrKwcNMjZtGnToI836lyk2tR19qLPF4TNbMKYbHkaScqlSOYVZUbcioNJtVuQaregx+NHY3cfxmsoa0iiw6ZAC9IdxgyG2M71MmSGuvt86Al1r9fSNBkg3BR/dLyFMkOxGM1+ZERdWL1QeW4yLGZtzZSWyLiijOd5cd8iI9YMAULGoKfFj6YuCob0iO1LVpBuh7tZ4cEoILyiTPrMEJu6z0y2ItmmrawqmyFgMwZGFPO/2Gj3IyPqUdmkzSkyIJx+ZuloKXX3+eELCNt8GLFmCBCO76kWF9UN6VRj6CaiMN2B0wqPRQl5MvYaEnsMaWyKDIgIhgycGdJWWoBIQovF0wxLP8tRQM3uFlPtFjisZslfXwsKQoW1ctVkEeX0+QLocAsdko24mgyIyAzJsHN9nQZXkjET8tIACK0BXB5j9Z9iKBgyIHFZfUGawiMZPbZKQ5ZgyGXceiGGulDrV3NoisxmMSFThh47WsA+261OGTJDGlxJxmQkW8VFI0adKqNgyGB4ntd0Zogtre/u84vFilIRGy4adIoMoF5DesYu1kUZDsMuZslJES74rTJkhuo1uBVHpAn5wt6PRi2ipmDIYFp7vOjq9YHjgHF5KUoPZ9TSHFakOYRStwaJs0OtBm64yFAXav1q7I5YSWZQuTLWDGlxK45IRt+jjIIhg2EnellWsmbrYtiKMqmX17MvyFwjT5NRZki32NSnVi/WUmBTQV29Pnj9QUlfuz6UeSvRaGaIrR6lYIgYAtuMT4sryZhwF2ppL9jisvoU42aGCkI1Qy09HvgC0l4siLKM3n0aADKSrDCbhCnCdgl7DQWDvHgDUaTRYEjMDFHNEDGCUy0uANoOhuSayjFyw0UmN8UOi4kDzwMtMnXpJcoId582bjBkMnHIZo0XJew11ObywhfgwXFAfpo2b6bYNeFsm1vyrJkWUDBkMFounmbYnW2zxMFQa4+xGy4CwsWCXSypbkhfxMyFgafJgPACCSn3J2NTkLmpdlg11siWKUx3INVuQSDI42ybS+nhJJw2/9VIzNiyyfEazgyxHimSZ4ZCX465Bl5NBoSPbxPVDelKE+s+bfBgKC9N+i7UTWJxunZvpDiOw/g8464oo2DIQHo8frGZnpYzQ+zLXOoi3zbKDAEId/mmxov6EQzy4gXbyDVDQMT+ZBIGQ406ObbjDbyijIIhA2Gt1nNT7chI1m7TNfaFI2VjQH8gKHbnNXLNEBCuKaHGi/rR6vLAH+Rh4sKZEaMK708m4TRZ5Aa4GmbkImoKhgxEnCLTYH+hSCwY6nD70OcLSPKa7W7hi5HjgKxkYwdDrAs11QzpR1NoJZmWa1qkInahljAY0ktmiM0YGLELtbE/FQYjFk9ruF4IEHaFtlmEU5dtMRAvdpeYnWwTl94albhaj6bJdIN1ny40eL0QIKyYBKTdn6xRJ/VY4Q1bXQgGeYVHk1gUDBkIi/a1HgxxHBduDihR9oKW1YdJfWyJ8qheKCw3TfqaITZNpvXjOyY7GVYzh15fQGwiaRQUDBkIywyN13DxNCN13RA1XAyL7ELN88a6O9QrcRpH45kLKbDPuKQ1Q059HF+L2YTyHGOuKKNgyCB8gSDOtrkBaD8zBITT0VIFQ62UGRLlh5YHe/xBdPX6FB4NkUKDTgp8pZATsT+ZFMF+ny+AztDiCz0cX6PuUUbBkEGcbXPDH+SRbDProulaQWhFjFR1LWxZfa7Bl9UDgMNqFrv00vJ6faB9ycLYZ9wbCMLp8cf9euzYOqwmpIc2kdYysW7IYEXUFAwZROQUGcdpv0CYpaMlrxkyeMNFhrpQ60ujTmpapOCwmpFqF4IWKabKIo+tHr5bKTNEdE0vxdOM1L1wxJohygwBAAqpC7WusAu21lc7SSW8vD7+IurGbn1NQRp193oKhgziVLM+egwxUmeGqGaov0LqQq0bzj4fXF6hHxdlhgTi/mQSBENNOitOF2YPhD5uUm5ZonYUDBlEpc4yQ+HVZB5JiiBZZiiXgiEA8nT5Jspg/4ZpDgtS7NqvaZECywBL0XixMdTQUi+BZpLNjJJM4WbISNkhCoYMgOd5MTOkl2CIrXjy+sPbaMQjXDNE02QAdaHWkwaqFxogN2JFWbyadDZNBhhzWw4KhgygsbsPLm8AZhOHMdn6mCazW8IrnuLNXri9frhD0wg0TSagLtT6IRb46mQaRwq5YmaIpskGM8GAdUMUDBkAO6HH5iSL21jogVQrntjdoc1iEleZGB11odYP6j49kFgzJMGWHHoroAaMuXu9fq6MZEjiFJkOOk9HKpBoxVObSwiGclNsulgaKwV24eyUcDNcoowGygwNIFXNEM/z4v6Iejq+bJrsdItL4ZEkDgVDBsDmfcfrpF6IkSp7wVZM0LL6sPQkC5KsZgA0VaZ1epzGiVe4C3V8maF2lxfeQBAAkKej7w9241zX2QuXBI0ptYCCIQM41SxE9/rLDEmz4ok2aR2I4zjJ2xcQZTTSNNkAuRJlhtixzU216aoEISvFJk4lGiU7pJ9/PTIkvS2rZ8SLdZyZi1bapHVQ4jQkBUOa1kj7kg3AgqGuXh+8/mDMr6PHlWSMWDfU4lR4JIlBwZDOdfX60OIULvbjdNJwkQlPk8WX6maZIeox1F8RrSjTPK8/KGY/aF+ysMwkK0yh8sAOd+zZIb31GIpktG05KBjSObYNR2G6A2kOq8KjkRa7G2uWqGaINmntjx1f6kKtXc1O4d/OZjaJrSgIYDJxyA5lgtnNYizEzJAOA02jLa+nYEjnxA1a8/WVFQLC02RtLi88/thXPLHVZFQz1F8hTZNpXnhPMjutlDwHywS3u2LPDOm5bQFlhoiu6HVZPQBkJVvFosXmOKbKwvuSUWYokth4kYIhzaLi6aGJK8ri6DUU7jGkv+8OFgydbXPDF4i9rkorKBjSOb3tVh+J4zhxOWtzHKlucWk9TSP0I1WBOlEOFU8PjU2TxbMlB7sJy9fh8S3KcCDZZoY/yONsm/5XlFEwpHPiNJkOM0NAeI+yFmdsF+xgkBfT5FQz1B/LJjQ7PQgE498MlyQeC4aoeHqgcBfq2IOhltCNlJ56DDEcx4nXDSNMlVEwpGMefwDV7W4A+swMAUB+WnyZoe4+H/yhCz0VmPaXm2qDiQMCQT7u5nREGXrcKkIquXE2Xoz8XOTrcJoMMFbdEAVDOlbV6kaQB9IcFuSl6fPDmp/GVpTF9oXG6oXSHRZdNU2TgsVsEo8vrSjTJuo+PTQ2TRZrAXVbjwdBHjBx+u1RRsEQ0YXIKTK9riQJZ4Ziu1jTsvrhFVAXak1roGmyIbEC6li7ULNsdE6qHWaTPr9f2TTZKQN0oaZgSMf0XDzN5MU5TUbL6odHy+u1K3ITUZomGyg3ztVkrD9Rvk6z7kD42nGqpQdBndcNUjCkY3ovngbCc/WxTpOFV5Lp9wstHqwLNU2TaU/kJqJsupOEidNkMWeGhM+EnoOhsTnJsJg4uL0BNOj8hoiCIR0zQmaIfcm3xFgE2UqbtA5L3AyXgiHNYQFsbqqd6uEGwT7zLm8Avd7RN21lmSG91mMCgNVsQnmu0LBX73VD9AnRqUCQF09efQdDrFdIbMu/WYqcGi4OrjBDOC5UM6Q94eJpOrcHk2a3wGYWLoGxTJU1i9Nk+s66GWVbDgqGdKqm3Q2PPwi7xYQx2clKD0c2Oal2mDggyMe2RJY2aR1eYTpt1qpV1H16eBzHie00YllRFm64qO9g0ygryigY0qkTTU4AQr2QXlc6AIDZxIlZnViKqFkwRDVDgyuMWE3G8/ouoNQbFsDSsvqhiVtyxFA3pOeGi5HYvpanKBgiWnQydOJOKtDvFBkTz/L6VnGajDJDg2FZBbc3AKfHr/BoyGiIwRBlhobEbqRaY8gqiwXUes8M5aUBACpbKBgiGsQyQxML0hQeifzEYCiGFWU0TTa8JJsZGUlWADRVpjXUfXpkOTFOk0W2LdB7zRDLDLW7vDE3qNQCCoZ06kQTywwZIRgK76E1Gl5/EF29PgA0TTYcllmgYEhbwvuSJSk8EvWKdX+y7j4/PH6hbYGeV5MBQLLNgpJM4RzSc92QRekBEOkFgry4rN4Q02TpsU2Tsbscs4kTsx9koIIMB443ORO+oiwQCGDbtm1oaGhAUVERFi5cCLPZnNAxxEPp8TfSarIRxTpNxpbVpzkscFi1c07Ganx+Kuo6e1HZ3IPZpfq8wabMkA6dbXPB6w/CYTWhLEu/K8mYWKfJ2BdgdooNJh0XmcdL7EKdwMzQhg0bUF5ejsWLF+O73/0uFi9ejPLycmzYsCFhY4iH0uN3efxw9gk1XjRNNrRYp8mM0HAxkhGW11MwpENsimxCfqohLvJ5MU6TiVtx0G71wypkXagTlBnasGEDbrjhBtTW1vb7eV1dHW644QbVB0RqGD/LCqXYzEhzUNZzKLGuJmsxSI8hJnJbDr2iYEiHToaKpyfl6zOdeS42TdYy2mCINmmNSmECu1AHAgGsWrVq0GX87Gf33nsvAoHRdwxOBLWMX6wXyqR6oeGwabLR9igzQvfpSEboNUTBkA6dCJ2wRlhJBoRT1S1Oz6h64bTRVhxRSWQX6m3btg3IqETieR41NTXYtm2b7GOJhVrGX9/ZC4B2qx9JZAH1aL47mg2wSWskFgzVdfbC7dVniw0KhnRIzAwZoHgaCN+deQNBdLp9UT9P7DFEK8mGlcgu1DV1dVE9rqGhQeaRxCbacck9frYvWTGtJBsWuxHy+INwjWJ/suZuY/QYYrJTbGLgeKrFpfBo5EHBkM74A0GcDp2sRlhWDwB2ixmZyUJdxGjqhigzFB3WwbjN5YXHL+/0zpaq6Go3ioqKZB1HrJIzcyR9XKwaukKZoUzKDA0n2WZBUmg12GimysTu0wbJDAHh6wmrSdUbCoZ0pqrNDW8giCSrWewNYQSRU2XRCtcMUTA0nKxkq7jreSyNLaO19XgzPurKgTktF+CGLvy3pOeiaPJs2cYRK57n8VZDujD+YZjTcvGPxnRZx1LfSZmhaGXH0GvIKA0XI00upGBIVZ555hmUl5fD4XBg/vz52LVr15CPfeGFF7Bw4UJkZWUhKysLS5YsGfbxenBS7DxtjJVkTF4MW3KEV5MZ5+4uFhzHhRsvylQ31OcLYO0/D4MzmfGNu/8LXOh9zx0HAGRd8UP819uHVbdX2jsHGrD1RBvyl/5/4Dhu0PFzHIe8pT/Eh8fbsPlIk2xjYZkh2pdsZLkxrCgzWs0QEBEM6bSIWlPB0BtvvIHVq1dj7dq12LNnD2bOnIlly5ahubl50Mdv3boV3/nOd/DRRx9h+/btKCsrw1VXXYW6KOsStIhF7RMNspKMiaULNU2TRU/uLtSv76rG2TY3CtLtePHhlXjzzTdRUlLS7zGlpaV44U+vIWfaQnx5tgP/OqCeuiFfIIgn3j8OAHjgrluHHP+bb76JVbffDAD4703HEAjKE9A1sMwQTZONaLQryjz+gNi53ojTZCd1mhnSVAfqJ598EnfccQdWrFgBAHj++efx7rvv4qWXXsIDDzww4PF/+ctf+v35j3/8I/7+979jy5YtuOWWWxIy5kQ70Wys4mlmtI0XeZ4Xmy7S0vqRFWTIFwz1+QJ4duspAMB/XjERqXYLrr/+elx77bWDdnB2fXASv/ngBH6z+QSunl6kigzoG1/U4GybG7mpdty+sALJtolDjr+7z4fXdp7FyeYebDzYgGtmFks6FmefT9xUl7biGNlop8nYVLzNYjJU53p2TWlyeuCKfp2KZmgmGPJ6vdi9ezfWrFkj/sxkMmHJkiXYvn17VK/hdrvh8/mQnZ095GM8Hg88nvAFtbu7GwDg8/ng80l7BrDXk/J1TzQK4x2XmyT5eBNtNMcnJ0X4Umrq6o3q8T2e8N5C6XZOc8dKjnNnOAVpwgWjrsMl+Xu+vacOzU4PCtLt+I+Zhf1e/5JLLhH/fzAYRDAYxC0XleLFT0/jdKsLmw7WY+l5+QNeM5HHp88XwP9uOQkAuOvyClg5XnzfwcafZAa+v2As/vejU3jhk1NYNjV3wJRaPGpahTv3dIcFNhM/6DFI9PmjZllJwmWwpbt3wHEZ7PjUdwgLVPJSbfD79bnMfDAOM1CS6UBdZx8aerVx7oxmjJoJhlpbWxEIBFBQUNDv5wUFBTh27FhUr/HTn/4UxcXFWLJkyZCPWb9+PR555JEBP3///feRnCzP1habN2+W5HUCQeB0ixkAh9rDX2BjpSQvq7hojk9dKwfAjGNnG7Bx49B9XpjWPgAQLhZbP3g/7jEqRapzZyQdDcLx3Xu8ChtxWrLX5XngdweFc/bCTDc+eH9TVM+bn2PC5joT/vudvfCeCQxZb52I47O9iUOz04wsG4+M1kPYuPHQiM/J9wFmzowDdd149m//RoWEs9pHO4R/qxSTDxs3bhz2sYk6f9SsuV44XgdPVmHjxv7n9mDHZ3+b8HiLv3fE46s3GTChDiY0uDlNnDtutzvqx2omGIrXY489htdffx1bt26FwzH0PPqaNWuwevVq8c/d3d1irVF6urQrQHw+HzZv3oylS5fCao0/3XqyuQeBnZ8jxWbGTdctlfRuUwmjOT45Z9rx6skvEbClYPnyS0d87b3VncDeXchPT8Ly5ZdJNOLEkfrcGYn1SDP+XrUPfFImli+/SLLXPdrgRO2O7bCaOTx005XISo6ufmtejwcfP7ENVT1B5J+/ABeWZ/X7faKOD8/z+P1zOwA4ccfiSfj6pRVRP3e3/yDe2teABkc57l5+nmRj6vmyFjh2BJNK87B8+QWDPibR54+aefbW4x9nD8GRkYfly+cAGP74dOyqAU4cxaSyAixfPkuBESvnsOUEjmyrQoObw9KlS1R/7rCZnWhoJhjKzc2F2WxGU1P/FRhNTU0oLCwc9rm//vWv8dhjj+GDDz7AjBkzhn2s3W6H3T6whsRqtcr2Dy/Va59pE+o5JhSkwWbTT1FwNMenKCsFgFAUHc2x7OwT+uXkpDlU/4EejpznZaQxuUK9QEO3R9L3e/eQ8Hm+ckoB8jNSon5eUZYV37igFH/dVY2/flmHiycOnCoD5D8+e6s7cKTBCZvFhG/PKx/Ve90wdwze2teATYeb8Oh108X2BfFq6hGmBkqykkccT6LOHzXLD9VVtbt9A47FYMenPVQwU5Ch7e+OWJxXnAkAaHBzmjh3RjM+zawms9lsmDNnDrZs2SL+LBgMYsuWLViwYMGQz/vv//5vPProo9i0aRPmzp2biKEq5oS4J5mxiqeBcBG00+NHn2/kxoCsWDKXNmmNCtvWocXpkazxYjDI45/76wEA180efRHxTfPHAADeO9woru5JtP+74ywA4GszisRC3GhdNC4H+Wl2dPX6sPX44CtiY9EQ2oqjmJbVRyV3lKvJ2IrVvFTjHV+2oqzBDdW1toiXZoIhAFi9ejVeeOEFvPrqqzh69CjuvPNOuFwucXXZLbfc0q/A+vHHH8fPf/5zvPTSSygvL0djYyMaGxvR06PPpYHHQsXTU4rkbeimRukOC2xm4XSOpvEi++KjZfXRyU6xwR7KXDR1SdN4ceeZdjR09SHNYcGiyYNndoZzfnE6phSmwesP4l8H6iUZ02h09/nE5f03XzR21M83mzh8PbSS7B/7pBs/24qjkFaSRYUFse1R7k8m7lhvkK04Io3LS4HZxKE3wKFplBtjq52mgqEbb7wRv/71r/HQQw9h1qxZ2LdvHzZt2iQWVVdXV/fb8+e5556D1+vFDTfcgKKiIvG/X//610r9FWR1tEHIDE0tMlaPIUBoaMd6frRGcYfXKvYYMt4XWiw4jkNxqKN5faihX7z+uV/o97V8WhEcoS0RRjumb1xQCgB4c/fIRfNSe/9wE7z+ICbkp2JWWWZMr3HdbKEX0QdHm+Dskya7xf59KDMUHRYM+YM8untHXh1mxIaLjMNqxthsYSGR3voNaSoYAoCVK1fi7Nmz8Hg82LlzJ+bPny/+buvWrXjllVfEP1dVVYHn+QH/Pfzww4kfuMycfT5UtwuV81MLjZcZAsKdZFuj6CQb7j5NmaFosamyBgmCoWCQx/uHhXqhr8+Kvc/OtbOLYTZx2FvdicoEd8ZlU3xfn1kc82KF84vTMS4vBR5/EB+faIl7TDzPiw0Xiwy0HU88HFYz0uxC+SzbvHk4rMu9kRouRpoc6jd0nIIhokasXqgw3YEsg17g2dz/aKbJqOFi9MTMUGf8jRcP1nWhzeVFmt2CeRVD9/0aSX6aA5dNFPYCezeBHanbejz4rLIVgFAvFCuO43DlFGGKcOvx+IOhrl4fekM1c0WUGYpadmp4qmw4wSAv3mwZaV+ySBNDwZDetuWgYEgnjhh4iowZzTQZbcUxemzapb4z/szQR6GC4Usn5sJqju9raPl0IRjZdLgx7nFF69+HGhEI8phWko5xefEtWFg8ORwMBePcnoMFqtkptpimHo2KZYhHKqJud3sRCPLgOON+d7AFOuwGXC8oGNKJYw3GLZ5mWJYnqmAolA6nTVqjVyRmhqQIhoQsyKLJeXG/1pKpBTCbOBxt6MbZNlfcrxeNdyKmyOI1tzwbKTYzWns8ONIQfV+UwbApTMoKjU6O+N0xfGaIbfeTnWyLO4jXqimhG+6TzS74AkGFRyMdY/5r6tDR0JfoVEMHQ8Kd2kjTZIEgL6bDcw16dxcLNk3WEOf+ZG09Hhyo7QSAmFaRnSsrxYaLxglTbe8lIDvU6fbii6p2AMBXp8U+RcbYLCZcMkGY6ot3iT37t6E9yUYnJyW6abKW0I2WUeuFAKAsMwl2Mw+vP4jTLYm5+UgECoZ0IBjkcawxNE1WaORpMuFueKTMUKfbCzYbMdreMEYm1TTZJydbwPNC4F6QLk0G4yvnC41XNx2SPxjaerwFQR6YXJCGsmxptuhhQeFHcdYNscwQ7VY/OmzKa6RpMnajZeRgyGTiUBI67Y80dCk7GAlRMKQDNR1uuL0B2CwmVORG38VXb6JdTcZWkmUlW2ExaKo7FmyarLvPjx5P7BtUfnJCKDyWYoqMuSoUDO2p7kRzd/wF3sP54Gioa/bU+LNaDDsWe6s74mogKa4ko8zQqLDp8tYRMkPsRivP4AsvSlKEu8kj9fFN66oJXQl0gE2RTS5IM/TFPTctutVkrWLDRWN/oY1Wqt2CdIewBLkhjuzQrjPCFNMl43MlGRcAFKQ7MLM0AwAkWaI+FF8gvAT+yqkFIzw6esWZSajITUGQB/ac7Yj5deqpZigmLDPUPsKNVGvouyXXwJkhAChJDgVDcda4qYlxr5w6wpotTjHwFBkQTl33jLAlh7iSjKbIRi3ceDG27Etthxt1nb2wmDhcMDZTwpEBl7NVWTIGQ19UtcPZ50d2ii3mRotDmVcu1D3tDAWLsQjXDFEwNBosM9Q2Qp8h8UbK4N8dpRGZIb1sy0HBkA5Q8bQgzW4RN7scLjtEPYZiVxznijKWFTq/JAPJNmn3ib58kjDV9OnJVvhlWuXy4VGhwHnx5HyYTbE1WhzKhaF+S7vOtMX0fJ7nxWComBoujkq2uLR+pGkytvDC2N8dhcnCdjIdbh8aZZ6WThQKhnRALJ42eDDEcZw4l98yTCGk2H2aVpKNmtiFOsZgiK3Cmh9Ho8WhzCrLREaSFV29Phyokyd9/8lJIeu0eIp09U4MOyYH67rQ6x39ZrhtLi+8/iA4DpIVphsFqzfsCPURGgrLDBl9msxqAsaH6lP1UjdEwZDG9duGw8ANFxn2JdU6TGZI3JeMegyNWrzTZGwKiE0JScls4rAw1I36k5Otkr9+U3cfTjT1gOOkrXdiSrOSUJThgC/AY2/N6OuGWPF0bqpdzJCS6LCu/UFeWG06lHBmiG6k2PWGgiGiCiwrVJThQGYyfUDzolhRRjvWx44t2Y5lmqzF6cHpFhc4DrhQhmAICE+VyREMfRp6zWnFGbJsecNxnLg1ya4Y6oZog9bYWc0mZCRZAYQzx+cS+pPRajJGDIZ0UkRNwZDGHawV+jycX5yh8EjUIZr9ydqo4WLM2JLtWBovsimyyQVpyEi2SjouhgVDh+q74ZJmE3gR24vs0onSZ4UYFgztPD36YIhNXdKy+tiEew0NHgx1hPqTcRz1JwOA8ygYImpyqE4IhmaUUjAERLc/WRstrY9ZcUa4gHq0q0j2VgtTP3PLsyQfF5Of7sCE/FTwPFDZLV2BM8/z+DQUDC2cIF8wNHesEAwdqO0ctnZlMA3dbLd6ygzFIneEFWXsOyUr2WboFiYMW718ts0NZ5/Edx4KoH9RjTsQCoaml1AwBES3PxktrY9dQYYdHAd4/MERty441/4a4VydWZopw8jCLh6fAwA4KWEwdKKpB81ODxxWE+bIGMxNyE9Fss0MlzeAUy2j2xU83HCRgqFYjLSirNVJ3xuRspJt4pQsK9fQMgqGNKzH4xe/MKdRMAQgnBkaapqszxeAM9Q9mTJDo2e3mMWAczRTZf5AEAdDgbvU/XnOJQZDXdIFQywrdGF5NuwW+XaDN5s48cZmX03nqJ4b3qSVpsliIU6TDRHkt1JLjgHOKxZWMB+u0/62HBQMaZjQ8Eq4EzTyXjmRRsoMsWyG1cyJ3ZTJ6MSyR1llSw96fQGk2MwYl5cq19AAAPMrcsBxQGMvN+I+ddFivX8ulmEV2blmhoJFtplttOo62L5kFAzFgt0cDbU/GS2rH+i8UK3qIR2sKKNgSMPYlyVNkYWNtD9ZW8Syeo6TtmmeUcTSeHF/KMsxvTRD8maF58pKsWFKgVDPsCOGQuRz8Twvru6aJ0N/pHOxaUQ2rRgNXyAoNr8rzaJgKBY5I02T0bL6AdgWOPtHmcVUIwqGNOwQ1QsNELklx2CN61pdtKw+XrGsKNtfm5h6IWbBOCFo2RHH1hZMZXMPOtw+OKymhHzW2GKIY43dw24rE6mpuw9BHrCZTbTsO0bi/mQ0TRa1GaHPc2VLT1ybN6sBBUMaJhZP00oyUardAnuo4dxgUyRiZoi+0GIm9hoaTTAUunOcKXO9EDN/HOvXE/umpwxrFHnBmKyENDMszUpCTooNvgAvbrUzEjZFVpTpgEnmzJtehXeuH36ajILNsLw0O0oyk8Dz4TYvWkXBkEY5+3w40+oCQJmhSBzHhXsNDRoMhe7uaEVIzEY7TdbnC+B4aLVJolpAXBAKus60uYesAYlWIqfIAOEcZsfpQJQXmLrQv0UJ1QvFbKQ+Q+GaIfruiDSzLDRVNsoaN7WhYEijDoeKp0sykyjLcY7hVpTRvmTxG+3+ZEcauuEP8shJsSXsYp2ZbEVhktCn58uzsWeHEl0vxLAMWrS1GCwzRMFQ7FjNUFevD75BNvoNL62n79tI4Rq3TkXHES8KhjSK6oWGNtyKslZquBg3dsFt7O6Land4tnfRtJKMhBatj0sPBUNVsdcN1Xb0orG7D1Yzh9ll8vUXOte00CqdaLv7ipkhKp6OWWayDWyGscPdv4kgz/NiM0ZaTdbfDAqGiJJY+pzqhQbKC6Wx2Z1cJGq4GL/cVDusZg5BHmgaZtsThl3Qpxalyz20fsalCcHQF1WxZ4ZYvdCM0kwk2eTrL3SuqaH+LZXNPfD4Ry6iZsEQLauPndnEISt58Kmy7l4/fAHhfKLvjv6ml2aA44QawmZnbBs4qwEFQxpFmaGh5Yk1QwM/mOLdHWWGYmYyceJFl03PDIcVAbMGbYnCgqFDdV2DriyMBusvlMgpMkDo5ZSRZIU/yKOyeeRO1CwYKqVgKC7iirJzdq5n9YdpDgsc1sQFxVqQardgYr7QO+zAKNpBqA0FQxrU4fLiNBVPD4mlsYfNDFHNUFzYVFldp3vYxwWCvFg8zTZ2TJRsO1CQboc/yI+6mzOjRL0QIBRRi7uCj9DQjud5sZidpsniw+qBzs0M0Uqy4YlTZRouoqZgSIP21ghp/3F5KciilO0AQ9UM8TxPS+slwhr71bYPnxk62+aC2xuAw2pCRa68nafPxXHA3DFCnU8sdUPN3X2oanPDxAFzxiauXog5r0i40TnaMPy+T20uL/p8QXAcbcURr+whtuSgHkPDEwv+Nby8noIhDdodWh0zZ0ziv6C1QFxNdk4w5PT44Q0V/NK8f3xKMpMBCAXGw2EX8skFabJ3nh7MnLGZAIAvYlhRxj5nkwvTke6wSjmsqIiZoYbhLzBsqjI/zZ6QPkh6xlpudJwbDDlpWf1wZkUUUfM8r+xgYkSfHA3ac7YTAHCBAnerWiBmhs4p7mVZoVQ7zfvHi2WG6kZYXn9UoeJphgVDe852IBAc3Zf0nmohGLpgTKbEo4oOO2ZHG5zDXmCox5B0xP3JBmSGaFn9cCYXpsFmNqGr14eqtuGnztWKgiGN8QeCYv2DEql7LWB7B7m8Abi94RbxbeKyerq7i5c4TdYx/BffEYWKp5nJBWlItVvQ4/HjWOPoNpPcW90JQOg8rYSJBamwmDh09fqG7fZdTyvJJJOdQtNksbBZTDi/RPiM74mjr5eSKBjSmGONTvT6AkhzWDBB5t2/tUrI/IS25Igoom6lZfWSYYW69Z19CA6TcVE6M2Q2cWIG9ctRLLH3+oPidjdKZWDtFjMmhFbpHB2miJpNVVLxdPxyh9ifTNyklabJhnRhubDI4Is4+nopiYIhjWGp+9ljsmgPoiEMtSVHm4saLkqlMN0Bs4mDNxAcdNsTAOh0e8XNXKcUJnYlWSQ2zbW3Ovpg6EhDN7z+ILKSrSjPSZZpZCMLT5UNHQzRsnrpDD1NRpmhkVAwRBKKiqejM9iKMlYzlEvTZHGzmE0oTBe25RhqquxkqD9OSWYS0hQoQGZmhVa6jGZ5PUv1zx6TldCu2eeaVCAEkSeH6TVUR5khydA0WezmhjKop1pcce8HqAQKhjQkcp8kqhca3mD7k4k1Q1QEKYlw3dDgRdQnmoSVZBMLlJ3OZcFQVZt7wCqhoewNBU5KFU8zk0LHjh3LwYQLqJXLYOlFbui7weUJwBfaaYbneeozFIWsFJvYfDGe/QCVQsGQhlS3u9HQJeyTRMHQ8NgdXGTztFbapFVSJSMEQyebhGwGy24oJTPZhorcFADAviibwrHMkFLF08zEfOHYnW5xDboPXI/Hj65eYR+t4kxHQsemR+lJFlhC5Qc9oe3JXN4A+kKREdUMDe/CUHPSL85ob6qMgiEN2XFa2BpgVlli90nSIjYV1n+ajGqGpFSaJWQihlpez7IZrAhYSbND2SG2Qmw4zd19qOvshYkDZoSep5TSrCQkWc3wBoKobh84HclWkqU7LIpOReoFx3HiVBkLhliLjiSrGck2i1JD04QLy4Wbh1j6eimNgiEN2XFaiLYvGpej8EjUT8wMuQapGaLVZJIYaZqM1bkonRkCgFmh6a5o6obYIoVJoWX5SjKZODGYPNE0sG4oXC9EU2RSYTdLPT4hQyTWC1FWaESsiPpQXRdcHv8Ij1YXCoY0gud5MTNEwdDI2FRY5NL6NhdtxSEltnppsALqTrdXrNdSQ2aI1Q1F0yF3D+svpJKpaFZzdXKQuqFaargoOZZVdoau5eKyevreGFFJZhJKs5IQCIbrW7WCgiGNiKwXUrqOQQtYkXRrKDPkDwTR4aaaISmJ02QdvQMCDJbFKMlMUjy7AgBTCtNhswgdcs+ENjkeyt5qddQLMaxuaLAVZSwQLaWVZJIZME1GK8mixnEcFk7MBQBsO9mq8GhGh4IhjaB6odHJS2OZIeGLrN3tBc8Lm3dmJVMwJIXCDAc4DvD4g+LdM6OWlWSMzWLCtFAX7OGmyvyBIA6Gmi3OUrheiBluRRnbKLcsm6bJpMJupAZMk1EwFJVLJgjB0GeVFAwRGbAoewFNkUWFfaF19/nh9QfFeqHsZJsiG4bqkc0S7jV0bhE1m9JRQ70QM6tMyPQMFwydaOpBny+INLsF40Ir0JTGjuFgK8pqQpmhMsoMSYZljp3nZIbyKKMclYvH54LjgONNTjQ7h95GRm0oGNIAfyCIT060AAAun5yn8Gi0ISPJKi6RbXd5xWCIpsikVTJE3RCb0pmognohJpoi6gOhpffTSzNU0+G9JHPoFWXsz5QZkk7OgNVkbCsOygxFIzvFhvNDWdjPK9sUHk30KBjSgH01neju8yMz2Sre3ZLhmUzhJbKtPZ7wVhzUcFFSQ60oqwwFQ2oonmbY8vqjDd3o8wUGfcz+UDA0UyVTZED/FWWRdUPOPh863cIVm4Ih6Qy1moy+O6LHpsq0VDdEwZAGbD0uZIUWTsyjKZ5RyInYkqOVMkOyiCyiZno8fjSHarXGqWgz4dKsJOSk2OAL8Dg8xMan+2uEeqGZpRmJHNqIxuUJU3anW8LF3zWheqHsFJsqitT1gn1H9IiryVjNEH13ROvSUDD0ycmWYTdyVhMKhjTgo+PNAIDFNEU2KuHGi16x4SIVQUor3IU6PH1zJnTBzk21ISNJPY0AOY7D7GGmyvp8ARwP1TrNKM1M3MCiMC5XCCpPt4QzQ+IUGdULSYpNk7GaIbE/GU2TRW1eRTZS7Ra0OD1itlXtKBhSuWZnn3gXe9kkCoZGI7wlh4c2aZUJmyaricgMnW4VLtgVKilAjjTcpq2H67sQCPLITbWjKENdW1uImaGItgAsAKUpMmmxjLIvyKHD7YUz1DyQbqSiZ7eYxfrWzUeaFB5NdCgYUrkPjwpZoRmlGfRhHCUW+LS5vOGaITqGkhoTuhDXtLvFXkOsjw/LZqhJeEXZwO0C2BTZrLIMRXeqH0x4miycGaqh4mlZpNjMsFuESyPrl2Uzm5DuoKnI0bjqvAIAFAwRibx7sAEAsOz8QoVHoj1izZAzomaItuKQVHFmEkyhXkOs4zQLhiry1JcZmlGWAY4T6m0i960DwivJ1DZFBoSzbB1uH9pDndTD02QUDEkpcn8yFgzlptpUFyCr3aLJ+bCYOJxs7hmx0akaUDCkYm09Hnx+Slia+LUZRQqPRntYJq2VMkOysZpNKMoQpsrYxZkV+apxmizdYRX7Bx2s7er3uwOhP89QWfE0ACTbLCgOTd2x7BCbmhxDmSHJsZum4ywYonqhUctIsopbR20+0qjwaEZGwZCK/ftQIwJBHtNLMjA2R30XFrUL709GNUNyEqfKOoSpMnYXOF6FmSEgnPmJLOzs6vWJ9TgzVZgZAsIr8063uMDzfMQ0GRVQSy1HzAw5+/2ZjM5V5wtTZf860KDwSEZGwZCKvRs6ga6mrFBMckN9QWo63HB7hb4ylBmSHguGqtt60dLjQY/HDxOn3loWlvmJzAyx/z8mOxlZKr3wsbqhU609aHF64PEHYeKEqUoirewUYRXkiWY2TUbfG7G4enoRLCYOB2q7Bt1ORk0oGFKppu4+7DwjTJFdPZ2CoVjkhvYnc/YJq0HsFhNSaF83yY3JCQVD7W5xiqw0Kxl2izqPdTgz1CUWfe8X64XUN0XGsOm90y0ucRuOoowkWM30NS41VjPk8gg3UTRNFpucVDsWT8kHAPx9d63CoxkefYpU6q+7qhHkgbljs1R7h6122efc4eem2qkIUgZlESvKxOJpFdYLMecVpcNs4tDa40FDl7B30v7QUnu1TpEBkdNkPRHbcFBWSA7nNmelzFDsvnFBKQDgrb11A/bWUxMKhlTIFwjir7uqAQA3Lxir8Gi0y24x91sOS92n5SFOk0UEQ+NUWi8EAEk2s7j5KVtBxoqn1bQNx7nGh7bkEI4zrSSTU3byucEQfXfE6oop+chKtqLZ6VH19hwUDKnQ5iNNaOr2IDfVhq9MoyX18Yi8o6MiSHmwYKixuw9HG4QGoWrZ8X0obLuNA7VdaOruQ2N3H0wcMK0kXeGRDa0o3QGH1QRfgMeO0CpTWkkmj3NvnPIoMxQzm8WE62aXAABe+uyMwqMZGgVDKvSn7VUAgBsvLFNt3YVWlEZcLKh4Wh5ZyVaxFovd+VWosOFiJFY3dKC2S5wim5ifhmSbehvrmUwcxmYLQeauqnYA6i1S17pzb5zoOMfntksqYDZx2HaydUBLC7WgYEhldp9tx47T7TCbOHx3Pk2RxasiJzIYosyQHDiOG3CxUPM0GRAulD5Q2xmxU716i6eZ8tz+x5lqhuQRWW9oNXO0Yi9OZdnJuHZmMQDg2a2VCo9mcBQMqQjP8/j1eycAADdcUIoS+gDGrTxiuoYttSfSi5yucVhNKExX195e55pcmAabxYTuPj/+ub8egDo7T5+r/Jx+Y5SxkEdkzVBWsg1mEy28iNePFo0HAGw63KjKZfYUDKnIvw81YvvpNtgsJqy8YoLSw9GFyGCIMkPyiQyGynNSYFL5xcNqNuG8IqE+qKZd6OSs5pVkTOT57LCaqJZFJkkRLTjSaE8ySUwqSMNXpxWC54G1/zgstrVQC80FQ8888wzKy8vhcDgwf/587Nq1a9jH/7//9/8wZcoUOBwOTJ8+HRs3bkzQSEenxenBQ/84BAD40eXj6Y5PIhURd9JqbaanB3PLs8T/n2LXxsUjsqeQzWzC5MI0BUcTncjM0AVjsqhVRAKkOaxKD0E3frZ8KuwWE7afbsNfdlYrPZx+NBUMvfHGG1i9ejXWrl2LPXv2YObMmVi2bBmam5sHffznn3+O73znO/jBD36AvXv34rrrrsN1112HQ4cOJXjkw+v1BnDnn3ejtceLKYVpuCuUTiTxK80KTzVaTZo63TVl2fmFmBIKJq4INVlTu8hpsanF6bBZ1H9+TCxIFadsHvn6+QqPxhjoxlQ6ZdnJuH/ZZADAL/51BJ+fUs9Se/V/+iM8+eSTuOOOO7BixQqcd955eP7555GcnIyXXnpp0Mc//fTT+MpXvoL7778fU6dOxaOPPooLLrgAv/vd7xI88sH1+QKo7AK+/cdd+PJsB9IdFvz2O7PhsNIKMqlYzCZ8/+JyzKvIxryKbKWHo1scx+Hvd16Mp26che9fXK70cKJy1fkFuGxSHs4vTtfMDUhuqh1/uX0+3ll5KSYWqD+TpWXfrAhgUn4q1nx1itJD0ZXbLqnAsvML4PUH8f2Xv8Aft51Gi9Oj+LSZNvLZALxeL3bv3o01a9aIPzOZTFiyZAm2b98+6HO2b9+O1atX9/vZsmXL8Pbbbw/5Ph6PBx6PR/xzd7fQN8Xn88Hn88XxN+jv3YON+PHfDoCHBYATWclW/P6m2SjPdkj6PlrGjkO8x+O/vjpJ+D98AD5fIN5hqYJUx0ZKNhNw9bR8ALzi44rm+CSZgRdvnj3gOWo3p0yodYpnvGo8f9TE5/Ph0kIejyy9EFarhY5TBCnOnSe+MQ0+fxAfHm/BL989il++exTzK7Lw59sulGqYAEY3Rs0EQ62trQgEAigoKOj384KCAhw7dmzQ5zQ2Ng76+MbGxiHfZ/369XjkkUcG/Pz9999HcrJ06dIqJ8DDgmQzj+nZPJaX9aLh0OdoUNcMnips3rxZ6SGoFh2b4dHxGR4dn+HR8RlavMfmmiwgdxyHTxpMaOoF/M42yWt63W531I/VTDCUKGvWrOmXTeru7kZZWRmuuuoqpKdL153W6w/iG8t6sfuzj3HVVUthtVKR3rl8Ph82b96MpUvp+JyLjs3w6PgMj47P8Oj4DE3KY/O10P96fAG4vIEB+0nGi83sREMzwVBubi7MZjOampr6/bypqQmFhYNvWVFYWDiqxwOA3W6H3T5wuarVapX0Q2G1Cm3KOU7619YbOj5Do2MzPDo+w6PjMzw6PkOT8thYrVakylCnPprxaaaA2mazYc6cOdiyZYv4s2AwiC1btmDBggWDPmfBggX9Hg8Iqb2hHk8IIYQQ49FMZggAVq9ejVtvvRVz587FvHnz8NRTT8HlcmHFihUAgFtuuQUlJSVYv349AGDVqlW4/PLL8cQTT+Dqq6/G66+/ji+//BJ/+MMflPxrEEIIIURFNBUM3XjjjWhpacFDDz2ExsZGzJo1C5s2bRKLpKurq2GK6CVz8cUX47XXXsODDz6In/3sZ5g4cSLefvttTJs2Tam/AiGEEEJURlPBEACsXLkSK1euHPR3W7duHfCzb37zm/jmN78p86gIIYQQolWaqRkihBBCCJEDBUOEEEIIMTQKhgghhBBiaBQMEUIIIcTQKBgihBBCiKFRMEQIIYQQQ6NgiBBCCCGGRsEQIYQQQgyNgiFCCCGEGJrmOlAnGs/zAIDu7m7JX9vn88HtdqO7u5t2Rh4EHZ+h0bEZHh2f4dHxGR4dn6Fp6diw6za7jg+HgqEROJ1OAEBZWZnCIyGEEELIaDmdTmRkZAz7GI6PJmQysGAwiPr6eqSlpYHjOElfu7u7G2VlZaipqUF6erqkr60HdHyGRsdmeHR8hkfHZ3h0fIampWPD8zycTieKi4v7beI+GMoMjcBkMqG0tFTW90hPT1f9SaUkOj5Do2MzPDo+w6PjMzw6PkPTyrEZKSPEUAE1IYQQQgyNgiFCCCGEGBoFQwqy2+1Yu3Yt7Ha70kNRJTo+Q6NjMzw6PsOj4zM8Oj5D0+uxoQJqQgghhBgaZYYIIYQQYmgUDBFCCCHE0CgYIoQQQoihUTBECCGEEEOjYEghzzzzDMrLy+FwODB//nzs2rVL6SGpxieffIJrrrkGxcXF4DgOb7/9ttJDUo3169fjwgsvRFpaGvLz83Hdddfh+PHjSg9LNZ577jnMmDFDbAi3YMEC/Pvf/1Z6WKr02GOPgeM43HvvvUoPRRUefvhhcBzX778pU6YoPSxVqaurw/e+9z3k5OQgKSkJ06dPx5dffqn0sCRBwZAC3njjDaxevRpr167Fnj17MHPmTCxbtgzNzc1KD00VXC4XZs6ciWeeeUbpoajOxx9/jLvvvhs7duzA5s2b4fP5cNVVV8Hlcik9NFUoLS3FY489ht27d+PLL7/EFVdcgWuvvRaHDx9Wemiq8sUXX+D3v/89ZsyYofRQVOX8889HQ0OD+N+nn36q9JBUo6OjA5dccgmsViv+/e9/48iRI3jiiSeQlZWl9NAkQUvrFTB//nxceOGF+N3vfgdA2P+srKwM//mf/4kHHnhA4dGpC8dxeOutt3DdddcpPRRVamlpQX5+Pj7++GNcdtllSg9HlbKzs/E///M/+MEPfqD0UFShp6cHF1xwAZ599ln88pe/xKxZs/DUU08pPSzFPfzww3j77bexb98+pYeiSg888AA+++wzbNu2TemhyIIyQwnm9Xqxe/duLFmyRPyZyWTCkiVLsH37dgVHRrSoq6sLgHDBJ/0FAgG8/vrrcLlcWLBggdLDUY27774bV199db/vICI4efIkiouLMW7cONx0002orq5Wekiq8c9//hNz587FN7/5TeTn52P27Nl44YUXlB6WZCgYSrDW1lYEAgEUFBT0+3lBQQEaGxsVGhXRomAwiHvvvReXXHIJpk2bpvRwVOPgwYNITU2F3W7Hj370I7z11ls477zzlB6WKrz++uvYs2cP1q9fr/RQVGf+/Pl45ZVXsGnTJjz33HM4c+YMFi5cCKfTqfTQVOH06dN47rnnMHHiRLz33nu48847cc899+DVV19VemiSoF3rCdGou+++G4cOHaK6hnNMnjwZ+/btQ1dXF958803ceuut+Pjjjw0fENXU1GDVqlXYvHkzHA6H0sNRna9+9avi/58xYwbmz5+PsWPH4m9/+xtNsUK4+Zo7dy7WrVsHAJg9ezYOHTqE559/HrfeeqvCo4sfZYYSLDc3F2azGU1NTf1+3tTUhMLCQoVGRbRm5cqV+Ne//oWPPvoIpaWlSg9HVWw2GyZMmIA5c+Zg/fr1mDlzJp5++mmlh6W43bt3o7m5GRdccAEsFgssFgs+/vhj/O///i8sFgsCgYDSQ1SVzMxMTJo0CZWVlUoPRRWKiooG3FBMnTpVN1OJFAwlmM1mw5w5c7BlyxbxZ8FgEFu2bKG6BjIinuexcuVKvPXWW/jwww9RUVGh9JBULxgMwuPxKD0MxV155ZU4ePAg9u3bJ/43d+5c3HTTTdi3bx/MZrPSQ1SVnp4enDp1CkVFRUoPRRUuueSSAW08Tpw4gbFjxyo0ImnRNJkCVq9ejVtvvRVz587FvHnz8NRTT8HlcmHFihVKD00Venp6+t2NnTlzBvv27UN2djbGjBmj4MiUd/fdd+O1117DP/7xD6SlpYl1ZhkZGUhKSlJ4dMpbs2YNvvrVr2LMmDFwOp147bXXsHXrVrz33ntKD01xaWlpA2rLUlJSkJOTQzVnAO677z5cc801GDt2LOrr67F27VqYzWZ85zvfUXpoqvDjH/8YF198MdatW4dvfetb2LVrF/7whz/gD3/4g9JDkwZPFPHb3/6WHzNmDG+z2fh58+bxO3bsUHpIqvHRRx/xAAb8d+uttyo9NMUNdlwA8C+//LLSQ1OF2267jR87dixvs9n4vLw8/sorr+Tff/99pYelWpdffjm/atUqpYehCjfeeCNfVFTE22w2vqSkhL/xxhv5yspKpYelKu+88w4/bdo03m6381OmTOH/8Ic/KD0kyVCfIUIIIYQYGtUMEUIIIcTQKBgihBBCiKFRMEQIIYQQQ6NgiBBCCCGGRsEQIYQQQgyNgiFCCCGEGBoFQ4QQQggxNAqGCCGEEGJoFAwRQogKvPrqq1i3bh38fr/SQyHEcGhvMkIIUdjWrVtx2223ISUlBX6/Hw899JDSQyLEUGg7DkIIUZDL5cKMGTPwzW9+EwsXLsQ3vvENfPHFF5g+fbrSQyPEMGiajBCiSlVVVeA4Dt///vd1/b4PPPAAioqK8Mtf/hJXX3017r33Xnz/+9+n6TJCEoiCIUJIQrAgY7j/ysvLlR5mwv32t7/Fp59+CotFqFp47LHHsHv3bvHPhBD50aeNEJJQ48ePx/e+971Bf5eZmSn+/5KSEhw9ehQZGRkJGhkhxKgoGCKEJNSECRPw8MMPj/g4q9WKKVOmyD8gQojh0TQZIUSVhqvd+eSTT3DNNdcgNzcXdrsdEydOxIMPPgi32x316wcCATz++OOYMGECHA4HJkyYgPXr1yMYDA77PCnee8GCBeA4Dtu3b+/38+7ubsyaNQt2ux2bN2+O+vUIIfGhYIgQoinPPfccFi1ahM8++wxXX3017rnnHpSWluJXv/oVli5dCq/XG9Xr/PCHP8QDDzyAYDCIu+++G8uWLcOTTz6JVatWyf7ejz/+OADgwQcfFH/m9XrxH//xHzhw4ABeffVVLF26NKrXIoTEj6bJCCEJVVlZOeQ02UUXXYSvfOUrQz73yJEjuOeeezBjxgxs2bIFOTk54u8ee+wxrFmzBr/97W/xf/7P/xl2DFu3bsVLL72EmTNn4rPPPkNKSgoA4Gc/+xlmzZol63sDwGWXXYarr74a7777LrZu3YrLL78c3//+9/Hhhx/iqaeewre//e0RX4MQIiGeEEIS4MyZMzyAYf9btWrVgMffeuut4s/uueceHgD/ySefDHj9QCDA5+Xl8XPmzBlxLCtWrOAB8H//+98H/O7RRx8d8L5Svjdz4MAB3mQy8Zdeeim/evVqHgC/Zs2aqJ9PCJEOZYYIIQm1bNkybNq0Kabn7tixAwDw3nvvYcuWLQN+b7VacezYsRFfZ//+/QCAhQsXDvjdYD+T8r2Z6dOn43vf+x7+9Kc/4dNPP8Vtt92GdevWRf18Qoh0KBgihGhGe3s7AOBXv/pVXK/T1dUFk8mE3NzcAb8rKCiQ9b0j5eXlAQDS0tLwzDPPSPa6hJDRoQJqQohmpKenAxBWXfE8P+R/I8nIyEAwGERra+uA3zU1Ncn63szvfvc7PPHEEygoKIDT6cSrr74a9XMJIdKiYIgQohnz588HEJ6yitXMmTMBANu2bRvwu8F+JuV7A8Df/vY3rFq1CosXL8bevXuRkZGBRx55ZFTL8wkh0qFgiBCiGXfddRcsFgv+8z//E9XV1QN+39nZib179474OjfffDMA4Be/+AVcLpf487q6Ojz99NOyvveWLVtw8803Y/r06Xj77bdRVFSEH//4x2hoaBjyvQkh8qJd6wkhCVFVVYWKiopht+MAhI1LHQ6H+Phbb70Vr7zyivj7F154AXfeeSesViuWL1+O8ePHw+l04vTp0/j444/x/e9/H88///yI47ntttvw8ssvo6KiAv/xH/8Bj8eDN954AxdddBH+9a9/DXhfKd57z549WLRoEXJycvD555+jqKgIgDD1VlFRgUAggNOnTyM7O3vE8RNCJJT4BWyEECOKZmk9AL6jo6Pf489d4s7zPL9r1y7+29/+Nl9cXMxbrVY+NzeXv+CCC/gHHniAP3r0aFTj8fv9/Pr16/lx48bxNpuNHzduHL9u3Tq+srJyyPeN570rKyv5goICPicnhz927NiA3z/++OM8AP6+++6LavyEEOlQZogQokrHjh3D1KlT8cMf/hC///3vlR4OIUTHqGaIEKJKlZWVAIDS0lKFR0II0TvqM0QIUZUTJ07gpZdewmuvvQaTyYRrr71W6SERQnSOMkOEEFU5cuQInn76aWRlZeHvf/87ZsyYofSQCCE6RzVDhBBCCDE0ygwRQgghxNAoGCKEEEKIoVEwRAghhBBDo2CIEEIIIYZGwRAhhBBCDI2CIUIIIYQYGgVDhBBCCDE0CoYIIYQQYmgUDBFCCCHE0CgYIoQQQoihUTBECCGEEEOjYIgQQgghhvb/A5bce+03PLwFAAAAAElFTkSuQmCC\n" }, "metadata": {} } ], "source": [ "# Graficamos la función\n", "plt.plot(x, y)\n", "\n", "plt.plot(x[picos], y[picos],\"o\", color = \"k\")\n", "\n", "\n", "plt.xlabel('Eje de $\\hat x$', fontsize = 14)\n", "plt.ylabel('Eje de $\\hat y$', fontsize = 14)\n", "\n", "plt.grid()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "id": "fGwxx0puNcuV" }, "source": [ "¡```find_peaks``` logró hallar todos los picos! ¡Es increíble!\n", "\n", "Veamos ahora otro caso." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "id": "PbfcCTNdN88Z", "colab": { "base_uri": "https://localhost:8080/", "height": 606 }, "outputId": "e1bf8012-8ee8-4d62-b4c0-f0f75ba157b7" }, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "<>:7: SyntaxWarning: invalid escape sequence '\\h'\n", "<>:8: SyntaxWarning: invalid escape sequence '\\h'\n", "<>:7: SyntaxWarning: invalid escape sequence '\\h'\n", "<>:8: SyntaxWarning: invalid escape sequence '\\h'\n", "/tmp/ipython-input-2077513170.py:7: SyntaxWarning: invalid escape sequence '\\h'\n", " plt.xlabel('Eje de $\\hat x$', fontsize = 14)\n", "/tmp/ipython-input-2077513170.py:8: SyntaxWarning: invalid escape sequence '\\h'\n", " plt.ylabel('Eje de $\\hat y$', fontsize = 14)\n" ] }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAG8CAYAAAAo6yp6AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAgGJJREFUeJzt3Xd8XOWVP/7Pnao66l2yimVb7hUbG3AJ2AYTWrKEbCgGEvKFQAJxgMX72w2wSWzYDS0BQiABQxI2ZEkwAUwxBmPcMC5yl2X13stII0299/fHnWck2yoj6c7cdt6vF6/E0sydR1ejO+ee5zzn4QRBEEAIIYQQQkZlkHsAhBBCCCFqQYETIYQQQkiQKHAihBBCCAkSBU6EEEIIIUGiwIkQQgghJEgUOBFCCCGEBIkCJ0IIIYSQIJnkHoDW8DyPhoYGxMbGguM4uYdDCCGEkCAIgoCenh5kZmbCYBg+r0SBk8QaGhqQk5Mj9zAIIYQQMg61tbXIzs4e9vsUOEksNjYWgHjibTabZMf1eDz45JNPsGbNGpjNZsmOqxV0fkZG52dkdH6GR+dmZHR+Rqam82O325GTkxP4HB8OBU4SY9NzNptN8sApKioKNptN8W8+OdD5GRmdn5HR+RkenZuR0fkZmRrPz2hlNlQcTgghhBASJAqcCCGEEEKCRIETIYQQQkiQKHAihBBCCAkSBU6EEEIIIUGiwIkQQgghJEgUOBFCCCGEBIkCJ0IIIYSQIFHgRAghhBASJAqcCCGEEEKCRIETIYQQQkiQKHAihBBCCAkSBU6EDMHr4+UeAiFEJXgB4HlB7mGQMDHJPQBClOTjk0148qMSVLQ6MCPDhv+4ejqWFSbLPSxCiAJ193vw2LvH8cExI/7zyOe4YX4WHrmqCNFW+mjVMso4EeL31tc1+H9/OoSKVgcA4FSjHbf88St8fLJJ5pERQpTG7vTgX363F+8UN8LNc+h1efGn/dW47dUDcHp8cg+PhBAFToQAONVgx//3zgkAwG1Lc7HjZytw3bxM8AKw4a1i1LT3yTxCQoiSPPL3Yzjb0ou0WCvuneHDy7fMhy3ChEPVndi07bTcwyMhRIET0T1BEPDzd0/AywtYMyMNj187E5NTYvDrG+dicV4iHG4ffvnBKbmHSQhRiF2lrdh2vAkmA4cXvzcPU+MErJqWgt9+bwEA4E/7q3GivlvmUZJQocCJ6N7O0lYcrO5EpNmIx6+bCY7jAABmowG/umEWjAYOn5xqxqHqTplHSgiRmyAIePKjEgDAbUvzMCc7LvC9FVNTcO3cTAgC8Mz2UrmGSEKMAieiey/tLAcA3HLxJGTERZ7zvSlpsfjW/CwAwCu7KsI+NkKIsuwtb8fJBjsizUb8+BuFF3z/p6unguOAHSUtKG3ukWGEJNQocCK6Vtrcg68qO2AycLjjkvwhH/PD5QUAgI9PNaGuk2qdCNGz1/ZUAgBuuigHCdGWC76fnxyNtTPSAQB/3l8d1rGR8KDAieja/x2sBQCsKkpFZnzkkI+ZkhaLpQVJEATgH4frwzk8QoiCtPQ48fmZVgDALRfnDvu47y2ZBAB4t7iBVthpEAVORLd8vIB3jjQAAG5cmD3iY//F//23D9VBEKjRHSF69O6RBvh4AQsmxaMwNWbYx11SmIyMuAh093vwWUlLGEdIwoECJ6Jbh6o70dbrgi3ChJXTUkd87FWz0xFpNqKmow8n6u1hGiEhREk+8vd0u8Ff9zgco4HDtfMyAQAfnqA+cFpDgRPRrY/8F7QrZqTBYhr5TyHKYsLKaSkAgA9PNIZ8bIQQZWnvdeFwjbiy9ooZaaM+/sqZYp3TZ6ebabpOYyhwIrq1/bQYOK31X+BGc+Us8XHUSZwQ/fmspAWCAMzMtF2w+nYoc7PjkW6LgMPtw/6K9jCMkIQLBU5El2ra+1Db0Q+TgcOlQe5Ft6ooFQYOKG91oKGrP8QjJIQoyY7TYq3S5dNHzzYBgMHAYcVUMUu9p6wtZOMi4UeBE9GlPeXihWz+pPigN+S0RZgxNyceALCbLoSE6IbT48Ous+JqutVBBk4AsKwwCQCwp4wyTlpCgRPRJRb4XBJktom5zP/43WcpcCJEL76q7ECf24c0mxWzsmxBP2/ZZPF6carRjvZeV6iGR8KMAieiOzwvYF+5eAc41sCJPX5PWRt4ntoSEKIHe/0Z6hVTUwJbMgUjJdaKovRYAMA+qnPSDAqciO6cbrKjw+FGtMWIef6pt2DNn5SAKIsR7Q43SppoOwVC9OBAZQcAYEl+0pifO/hmi2gDBU5Ed/b66w0W5yfCbBzbn4DFZMCS/EQAwO6yVsnHRghRln63D8frugGI14yxuoTqnDSHAieiO19VihcwVn8wVpdOEVfK7C2nCyEhWnekphNeXkBGXASyE0ZvQ3C+xflJMBo41HT00WpcjaDAieiKIAg4UtMFAFiQmzCuY1yUJz7vSE0Xbb9CiMZ95Z+mW5yfOKb6JibGasK0NLHOqbi2S8qhEZlQ4ER0pa6zH+0ON8xGDjMzg18dM1hRug1WkwHd/R5UtDkkHiEhREkODAqcxmvepHgAFDhpBQVORFfYhWt6hg0RZuO4jmExGTAnOw4AcLi6U6qhEUIUxu3lA9usLJlI4ORfhEKBkzZQ4ER0hV24xrqa7nzzJ/mn6+hCSIhmnWzohsvLIyHKjMkpMeM+znz/9eZ4XTe8Pl6i0RG5UOBEdEWqwGmBP/VOGSdCtOt4vbiabm5O/Ljqm5jJKTGItZrQ7/GhtLlXquERmVDgRHTD4+Nxwn8hlCrjVNrcg16Xd6JDI4Qo0DF/G4I52fETOo7BwGFOjji9T9N16keBE9GNksYeuLw84iLNyE+OntCx0mwRyIqPBC8Ax+hCSIgmHavrAgDMyYqb8LEG6pwoS612FDgR3Sj2XwQnmnZn2EoZqnMiRHscLi/KWsRptdnZUgROYpaaMk7qR4ET0Y1TDWLaffYYNukcCbsLZdN/hBDtONVoBy8AaTYr0mwREz7ebP/1orzVAafHN+HjEflQ4ER041SjuLfc9AxpAqeZmXH+49olOR4hRDmkqm9i0mxWJESZ4eMFnKUCcVWjwInogo8XcKZJDHCkC5zE41S398Hu9EhyTEKIMkhZ3wQAHMcFrj2n6WZL1ShwIrpQ3e6A08MjwmxAXtLECsOZhGgLMuPEFP7pBroQEqIlbGNfKeqbmKJ0f+DURNcLNaPAiejCaf803bS0WBgNEy8MZ2b4p+tOUuBEiGb0uryB7ZRmS5RxAoDpGeKedZRxUjcKnIgusAuVVNN0zAz/dB0FToRox5km8UYrNdaKpBirZMcdmKrroQ3CVYwCJ6ILoQqcWJ0TFYgToh0l/qm0IomvF1PSYmA0cOju96Cx2ynpsUn4aDpw2rVrF6655hpkZmaC4zhs3bp1xMfv3LkTHMdd8F9TU1N4BkxChgVORemxkh6XBU5nm3vg8tISY0K0oIStwJX4emE1GTE5RayxpOk69dJ04ORwODB37ly88MILY3remTNn0NjYGPgvNTU1RCMk4dDd50GD/+5O6jvIrPhIxEWa4aUlxoRoBpuqK8qQNnACBrLeJf7XIOpjknsAoXTVVVfhqquuGvPzUlNTER8fL/2AiCxY2p0FOVLiOA4zMmzYV9GO0412zJKwkJQQEn6CIARWvbFVcFKanmHDu8UNNL2vYpoOnMZr3rx5cLlcmDVrFh577DFccsklwz7W5XLB5XIF/m23i38MHo8HHo90vX3YsaQ8ppaMdH5ON4rLigtTo0Ny/gpTo7Gvoh0ljd3weNIlP74U6P0zMjo/w9PbuWno6keP0wuTgcOkeOuoP/dYz09BUiQA4GxTjy7OqZreP8GOkRN0UtrPcRzeeecdXH/99cM+5syZM9i5cycWLVoEl8uFP/zhD/jTn/6Er776CgsWLBjyOY899hgef/zxC77+5ptvIioqSqrhkwn4e6UBu5oM+EYGj+vyeMmPv7eZw1sVRkyP53H3dOmPTwgJnxOdHF4pMSIjSsAjc6WvW2x3Av91xAQjJ+B/lvhglK47Cpmgvr4+fO9730N3dzdstuGzjRQ4jWLFihWYNGkS/vSnPw35/aEyTjk5OWhraxvxxI+Vx+PB9u3bsXr1apjN0k43acFI52f9loPYW96BTdfPxI0LsyR/7UPVnfjuH75GRlwEdj24XPLjS4HePyOj8zM8vZ2b331Rgac/LcO1czLw1I2zR338WM8PzwuY+8sdcHp4bH/gEska8iqVmt4/drsdycnJowZONFU3isWLF2P37t3Dft9qtcJqvbDPh9lsDsmbJFTH1Yqhzk9Fax8AYFpGXEjO3fQscdfzxm4n+n2ALUK5vx96/4yMzs/w9HJuSlvExpczssZ2vRjL+SlIjsGpRjuqOlyYkh4/nmGqjhreP8GOT9Or6qRQXFyMjIwMuYdBxsnu9KDJLq6oK0yNCclrxEWake7fPZ1W1hGibmxF3TSJWxEMNiVNvBadbaGVdWqk6YxTb28vysrKAv+urKxEcXExEhMTMWnSJGzcuBH19fV44403AADPPvss8vPzMXPmTDidTvzhD3/AZ599hk8++USuH4FMUHmLGMikxlolX1E32NT0WDTZnSht7sHC3ISQvQ4hJHQ8Ph6V/q1WpqaFLnAqTBEDp7IWutFSI00HTgcPHsSqVasC/96wYQMAYP369diyZQsaGxtRU1MT+L7b7cbPfvYz1NfXIyoqCnPmzMGnn356zjGIurALU6iyTczU1BjsKm1FaTPdQRKiVtXtffDyAqIsxsAG3qHArkflFDipkqYDp5UrV464H9CWLVvO+ffDDz+Mhx9+OMSjIuFU1hqmwMmf1qfAiRD1KvNPnRWmxoDjQrfcjV2Pylp6IQhCSF+LSE/TgRMhZf6aoymhDpzSWOBEd5BDabE78attp7H9VDMsJgO+e9Ek/HT1FFhNRrmHpgu7Slvx3x+X4ExTDyanxOBna6Zh9Yw0uYelOIEMdUporxe5SdEwGTg43D40djuRGR8Z0tcj0qLicKJpLOM0OcSBEwvMWntc6HS4Q/paatPY3Y9/eWkf3i1uQJ/bh64+D176ohw/eP0gPD7qexVq7x1twO2vHcCJejs8PgElTT24642D+N8DNaM/WWfOssApLbTXC4vJgNwksc8f1TmpDwVORLOcHh9qO8RWBKGeqou2mpDlv2ssb6ULIePjBdz/v8Wo6ehDblIU/vb/luI3/zofURYjvjzbhmc/LZV7iJpW0dqLh98+Bl4AbpifhU9+uhw3L5kEAPjPrSdwvK5b5hEqCwtipqSGrjCcGTxdR9SFAieiWdXtfeAFIDbChJSYC3ttSa3Av+t5Rasj5K+lFv97oAYHqjoQbTHijTsXY3F+Iq6dm4n//pc5AIDf7SynD44QevSfJ9Hv8WHZ5CQ8deNcTE2LxS+vn4V1s9Ph5QU89PZR8LwueiCPiueFwE1PqG+0AGCyfzqwoo3e/2pDgRPRLLasOD85OizFl+xCWE4XQgBAn9uL53acBQA8tHYacgd1SP7mnExcMT0VvAA8vf2MXEPUtL3lbfjybBvMRg5PfGsODAbxb4DjOPzq+tmIjTChpKkH7x6tl3mkylDf1Q+nh4fFZEBOQuhrjvKSxb+Hqra+kL8WkRYFTkSzqtoHAqdwYBmn8hbKOAHA/x2sQ2uPCzmJkfjektwLvv/g2mkAgA9PNKGmnT48pPbKrgoAwHcvmoRJSefum5kQbcHdKyYDAF78vHzE1cd6wZpRFiRHw2QM/Udjgf+6xG7wiHpQ4EQ0q9I/ZRauvaAKkin1zvC8gC17qwAAd11WAIvpwktNUboNy6emQBCAP39VHeYRaltVmwM7S1vBccD3L80f8jG3Ls1FtMWIsy292F3WFuYRKg/r+h+OaTpgIOPU0N0Pp0f6zYRJ6FDgRDSr0p9xYpmgUGOvU9Pep/vVYvsq2lHZ5kBshAnfXpA97ONuu1jMRL19qE7350xKbx+qgyAAK6amBD6gz2eLMONfFoq/mz/vp8A1nPVNAJAUbUFshAmCANR0UMZVTShwIprFUuDhyjil2yIQaTbCywuB1Xx69ffDdQCAa+dmIto6fLu4ldNSkBRtQYfDjT2U9ZCEIAiBuiUWGA3nu4vFFXaflbSgq0/fbTTY9aIgxD2cGI7jAmUENF2nLhQ4EU3qdXnR2uMCgGHvuKVmMHADdU46XlnX5/bioxNNAIBvjZBtAgCT0YBvzhE30f5ncUPIx6YHxbVdqO3oR7TFiMuLRm5yOT3DhukZNnh8At4/1himESpTIHAK0/UCGLipo8BJXShwIppU5b8QJUVbQrq57/nY3WqFjns57T7bhj63D9kJkVgwKX7Ux39zbiYAYEdJC7w0XTdhn5W0AABWFaUi0jJ6Z/br5onn/5NTzSEdl5J193vQ1itm3MJ1owUMLFyposBJVShwIpoUmKYL40UQGLhb1XMvpx2nxQ/uK6anBdUGYsGkBCREmdHd78HB6s5QD0/zvihtBQCsmpYa1OOvmC5mpfaXt6PX5Q3ZuJSMBS6psVbEjDC1LDWaqlMnCpyIJg3u4RROgSaYOl1Zx/MCdvgzHpdPD+6D22jgsKpIfOyO0/rNekihrdeFY/5u4JdNTQ7qOZNTopGXFAW3j8fus62hHJ5iyXW9oMBJnShwIppUJdOFMNAEU6cZp2P13WjrdSHGasKS/KSgn7fSnx3ZW94eqqHpwpf+wGdmpg2psRFBPYfjOFzuzzp96s8W6k1FW3hX4DIsI97S44JDp9k+NaLAiWgSa0UQrhV1DAvUOhxuXa5S+tRfJ7NiasqQvZuGc3F+IgDgVKMd3X2ekIxND744IwZOK6amjOl5LDv4WUkLfDrcgkWujFNcpBmJ0ZZzxkCUjwInoklVgRqnqFEeKa1oqwkZceKdvh6zTmOdpmNSbREoSImGIAAHqjpCMTTN43kBu86KLR3GGjhdlJcIW4QJHQ43imu7QjA6Zav0T63nJ4enFcFgef6u7tXUPV81KHAimmN3etDpz1pMSgxv4AQM3uxXX3VOHQ43TjfaAQDLx/jBDQAXF4hTe/sraLpuPEqaetDhcCPaYsSC3IQxPddsNOCyKeLvbK/O+mkJghDYZSDcGScAgT0cqQmmelDgRDSHNZ9MjLYgNiJ8rQgYtvWK3jJOByrFgGdKagySY6xjfj4FThNzuEZckTh/UgLM49hrbUmBOF36VaW+Mn6tPS443D4YOHlutHL8r0mBk3pQ4EQ0hwVOOTJcBAH9Zpz2V4gfuOwDeKyozmliDvtbOYw128SwYv5D1Z262v6GFYbnJEaNqS5PKixY0/tuA2pCgRPRHHbnJsfdIzCoCabOij1ZpoJljsYq1RaBgmSxzumrSso6jRXLOAXTdHQoU1JjkBhtQb/HF2hpoAdyFYYzkyjjpDoUOBHNGQicImV5/fxBNQu8TlYodfd5UNIk1jctzh9fxmnwc4/osEB5Itp7XajyFxfPnzS+jJPBwGFxnnj+9TRdqpTAqb6rnzrnqwQFTkRzajr6AciXccqMj4DJwMHt5dFkd8oyhnA7UNUBQRCnKYPtHzSUOdnxAIBjdV3SDEwnDtd0ARCzRhPZYkiPdU6sy38496gbLDXWCovJAB8voLFbH9cLtaPAiWiO3DVOJqMh8NpV7fqYrvvKn6EYS9PLoczJjgMAHKvrhiDoI1snBTZNt3Cc9U1MoM6pqkM3dU5ytiIAxExfToKYHafpOnWgwIloio8XUNcpb40TAOT6e7PU6KQ3y9f+wuQlE5imA4CpabGwmAzocXqpr80YHGKF4eOcpmOK0mNhizDB4fahpLFHiqEpmtfHB4KV/DB3DR+M6pzUhQInoinNdic8PgFmI4eMOHlqnAAgN5Bx0v6F0OX14XSDWN80f5yFyYzFZMD0DBsAcfsWMjofL+C4v5h7ouffYOAwN0c8RrEOpkvru/rh8QmwmgzIsI1/inmiqJeTulDgRDSltlOsb8pOiILRwMk2DnYhrNbBVF1JYw/cPh4JUWZJsnxz2XQdFYgHpbLNgX6PD5FmY2BF50TM9wdOR3Vw/tnK17ykaBhkvF4Eejnp4EZLCyhwIprCCsPlqm9i2FYvesg4sS065ubEg+Mm/uEzO8sfOFHGKSin/N3aizJiJblZCGScdBA4Vcu0NdP5aKpOXShwIppS2ylvKwImkHpvd2i+yJllJub5P3Anin1wn6zv1uWGs2N1yj9NOsM/xTlR7PyXt/bC7tR2I1K5V+AyFDipCwVORFNqFXIhzE6IBMcBDrcPbb1uWccSaoMzTlKYnBKDSLMRDrdPd93Xx4NlnGZkShM4JcdYkZ0QCUFAoHZKq2o6xIzTpCT5CsMBIMd/o9fd76Gu+SpAgRPRFFbjJHfgZDUZkekvTtdynVN3nydQJzLP34NpoowGLhAEsKCADE/qjBMwkD3U+nQdW7mZK/P1IspiCuzvyLLmRLkocCKawi46ctc4AfqoczrqX3mVmxSFhGiLZMedlh4LADjTpP0l8RPRYneirdcFAwcUpVPgNBY8LwSmxlj7EDmx8gKarlM+CpyIZjh9QIdDTHMrIXAaXOekVay+aa5E2SZmWpoYOJU2U+A0kpP+jFxBSgwiLUbJjjtXByvrWnpccHl5GA0cMuPlrYkEqM5JTShwIprR7t+tICHKDFvE+LedkEpekvYzTicaxBoY1vFbKizjVEIZpxGFYpoOAGZm2sBxYnDR2uOS9NhKwQKUrPhImI3yfxRS4KQe8r9bCJFIu0tcii13fRMzKVH7vZykLkxmivyBU11nP3pdXkmPrSWhOv9RFlNg77bTGg1e2d+lUq4XLEteS4GT4lHgRDSDZZyUME0HaL/GqbvfE1jFKHXGIz7KgjSbWCxLdU7DK/WfG5ahk9KMTDGLyLJaWsMyO5MUUN8EUMZJTShwIprR7lRaxkkcR3e/B1192mtJwD5Qs+IjER8lXWE4M5XqnEbk8fGo9K9oZOdKSjP9WSztZpyUsaKOYQFcfWc/vDrZYFmtKHAimtHuL8XITlDGhTDKYgpkTbS4Ye1Jf33TTImniZgiWlk3oup2B7y8gGiLEZlx0u+zNjPQEkKb579aQSvqACAtNgJmIwcvL6BZo3VlWkGBE9GMTreYccpKkH+FDJPrr3Oq0mCdE6uvmZkpbWE4M82/vL6kSZtTRRN1tllsDlqYGiPJVjfnY9OvVe19cPokP7zsagI1TvI2v2QMg1b31dF0naJR4EQ0o9N/k5YVL98u5+djd7NazDgFVnSFIeOk9W1rxuNsCwucpJ+mA4CkGCvSbeLfUoPG4n6704NOf4dupdQ4AeK0NwDUd/XLPBIyEgqciCbY+z1w+sS7biX0ZGHykrWZcXJ6fIEP7lBN1YmZFKCzz6P5bWvGo8x//qekxYTsNdjvts4hfUZLTjX+G5mkaAtirCaZRzMgEDh1UuCkZBQ4EU1o6BaX1CVEmRFlUc6FkGWcajSWcSpt7oGPF5AQZUZGCOprACDCbES2f9qV9qy7UCDjlEKB01gpbUUdw+oz6yhwUjQKnIgmsNR2poKm6QAgL4llnLQVOJX4C4ZnZNpCUl/DTPYHBWw/PCLy8QLKW0OfcWLTsA192gqclLaijmH1mTRVp2wUOBFNaPRnnNjGukrB7mjbel2aauR4xt8iYFpaaKbpmIJkMSgob6GM02C1HX1we3lYTYaQriJlBfpN/WKwphU1Hf7C8CRlFIYzVOOkDhQ4EU2o7/IHTgrLONkizEj0b36rpQ7iZwKNF0OX7QCAghTxg40yTudi03STU2JgNIQuGzQpMQpWkwEentPU9FFgqk5hGSc2NV3f2Q9eQ4Gq1lDgRDShwX+HlqWgwnBGi3VOLOMUisaLg7GpunKqcTpHOArDAcBo4FCYKgavpc3a+R0EpuoUVuOUHhcBAwe4fTzaeqmXk1JR4EQ0oSEwVaesjBMwUEehlTqnDoc7sPHrlJAHTuKHdm1HH1xeDTYTGicWSE4OYWE4MzVVfI1SjUyXur184EZLaTVOZqMh0AKijqbrFIsCJ6IJDQqdqgMG6ihYXYXasS1QchIjQ76UOyXWilirCbygrYzdRFX5py7zk0Nfo8Oyimc1knGq7+oHLwCRZiNSYq1yD+cCtLJO+ShwIqrn8vrQ4s+AKKmHE8PuarXSBLM0UBge2mwTAHAcF6hzoum6AawvWHgCJ5Zx0sbWK9WBjuFRIV0ROl5ZCdTLSekocCKq1+SfpjMbBCRGmWUezYW01j2cFYaHur6JGahz0kbGbqLszoGGoHlhCJym+KfqKtvElXxqV+svDM9R2DQdM7CyThvXCy2iwImoHrszS7BAkXeQrCVBY3e/Jj54Ahmn9PAETpRxOhebpkuJtYal63W6zYpIowAvL6CiTf2/A6UWhjPZlHFSPAqciOqxIspEqzKX76bEWBFlMYIXgLpOdd9FCoIQ9oxTAWuCSRknAEAlq28KUw8ijuOQ7o8x2O9ezao7lB04sak6qnFSLgqciOqxFTIJyqvzBCB+8LB+MdUq3/W82e6C3emF0TBQexRq7HW0tt/feFWGsTCcyYgSb0pYtlHN2CIDpfVwYgY3waTNrZWJAieieoGpOoVmnICBi7TaV4aVNNkBiB/aVpMxLK/Jzl1XnwddfbTZL5uqC0d9E5MRKf5tnWlS91SdIAiB5pe5CusazrAFLn1uH7r6PDKPhgxF04HTrl27cM011yAzMxMcx2Hr1q2jPmfnzp1YsGABrFYrCgsLsWXLlpCPk0xMQzebqpN5ICPQSoF4uOubACDKYkKqf9m42s+fFAYyTuHLmGT6M05nmu1he81QaO11od/jg4FTZrNcQNzcmrVJoOk6ZdJ04ORwODB37ly88MILQT2+srISV199NVatWoXi4mI88MAD+MEPfoCPP/44xCMlE6GKjJNGejmxjEM4WhEMxjZLVvtU50QJgjAocAp980uG1TjVdvTDoeI9F1nGNyMuEhaTcj/+aGWdsoV+SYaMrrrqKlx11VVBP/6ll15Cfn4+nnrqKQDA9OnTsXv3bjzzzDNYu3ZtqIZJJoDnhUDzywSLzIMZgVZ6OZWGaauV8+UmReFAVQeqdb5nXWefB3anGLiEs7g5xgykxFjQ2uvG2ZZezMuJD9trS0npK+qY7IRIFNd2UcZJoTQdOI3Vvn37cMUVV5zztbVr1+KBBx4Y9jkulwsu18CeQna7mMr2eDzweKSbn2bHkvKYWtDa44Lbx8PAAfEW5Z6fzDgxqqvp6IPL5YYhhBuzDkWK94+PF3DW3wRxcnJEWM91tr8jfEVbb0heVy1/X2ebugGIWwsZwcPjCX17C3ZOClOi0drrxqn6TsxMV2Z90GgqW/1d7xOke/+G4r2TYROn6mraHYp/T45GLX9bQPBjpMBpkKamJqSlpZ3ztbS0NNjtdvT39yMy8sI58c2bN+Pxxx+/4OuffPIJoqKkv6vZvn275MdUs6oeADDBZhZgNCj3/Ph4wAAjXF4ef333Q8TLVI81kfPT5gScHhNMnIAT+7/AqTDGfh1tHAAjisvqsW1bTcheR6nvH+ZAq3geooU+bNu2LayvbelvB2DA9q9OILr5WFhfWyr7zhoAGNDXUoNt26olPbaU753OJvH3fORMFbZxFZIdV05K/9sCgL6+4GYEKHCaoI0bN2LDhg2Bf9vtduTk5GDNmjWw2WySvY7H48H27duxevVqmM3K644tl23Hm4ATx1CQFg+gXdHn55nSL1Hb2Y/C+RdjcV5iWF9bivfP52dagSNHMDk1Ft+8epnEIxzZpHo7Xj+7H72CFevWrZT8+Gr5+yr7rAwoq8CCqTlYt25mWF6TnZsVC4rwxbZS8LGpWLduQVheW2pbXv4KQDdWL52Pq2alS3LMULx3okpb8XblEXitcVi3bqkkx5SLWv62gIEZo9FQ4DRIeno6mpubz/lac3MzbDbbkNkmALBarbBaL0wfmM3mkLxJQnVctWr2bz3BmsYp+fzkJUejtrMf9d1u2cY4kfNT3SHWkhWmxYZ9/AVp4k1Ia68bbp5DdIg6Ziv5/QMA9V1iWUBuckzYxzk1XfwdVLQ5FH2ORlLrrxkqSLVJ/jNI+d7JTRZrCOu7+lV7rs+n9L8tAEGPT7nLCmSwdOlS7Nix45yvbd++HUuXqjvi1zK2oi4zTplLiwdTey+nshZxRR3bOy6c4iLNSPDvQ6j2AvuJqPV3ns9JCH9xc6G/EWldZz+cHl/YX3+iel3ewB5/kxReHM5W1dmdXvQ4lV8bpDeaDpx6e3tRXFyM4uJiAGK7geLiYtTUiDUSGzduxG233RZ4/N13342Kigo8/PDDKCkpwYsvvoi//e1v+OlPfyrH8EkQ6v1dwzP9xcNKFujlpNIl9WyvuMLU8AdOwEDDwmoddxBnzRvl6HqdGG1BfJQZgqDOfQPZDUtClBm2CGVnPqKtpsCNArvGEeXQdOB08OBBzJ8/H/PnzwcAbNiwAfPnz8fPf/5zAEBjY2MgiAKA/Px8fPDBB9i+fTvmzp2Lp556Cn/4wx+oFYGC1ftbEWSpIHCalOjv5aTCD35BEFDWyjJO8qyoUnvgOVFOjw/NdnGqLkeGwInjOBT6s40s+6gmrIfaJIV2DD9fYM+6DgqclEbTNU4rV64cca+fobqCr1y5EkeOHAnhqIiU6v1TF5lxkTgr81hGo+YP/g6HG119HnAcUBDGxouDsYxTlU57ObGePjGDshHhVpgag4PVnShXZeDk7+Gk0D3qzpcVH4kT9XbKOCmQpjNORNt6nAPNANUwVTd4z7XufnXVLbAMQ1Z8JCIt4dmj7nzs/LE6H71hP3d2QiQ4Lrx9wBhW31beqr7gtVrhm/ueL9tfx0aBk/JQ4ERUi3UMj48yh2yVlZSirSYkx7DGdur68GcflHLVNwFADpu60Gk35VoZ65sY9vtX51Sd//wpvDCcYQXidTq9UVAyCpyIarF9nNSwoo4ZmK5T1x07+6AslGFFHZPtDxgauvrh45W7L2GosGBbjvomhgVOlW0OeH2h71oupcB2KyrJOLEaJ1bHSZSDAieiWoHC8AQVBU4q3bMuUBguY8Yp3RYBk4GDxyeg2a6/DxM2VSdnxikrPhIRZgPcPj7QE0kNPD4+MOWVq5bicH/GqYGm6hSHAieiWqyHE7vAqAGbJlDdVF2LvK0IAMBo4JAZr9/puhr/6io5AyeDgQssDlDTdF1jlxM+XoDVZEBqrEz7HY0Ru6619rhU2TdLyyhwIqrF7iDVFDipcaquz+0NnGs5ml8Olu3PLtaqcGXiRAiCgLoONlUn7/tdjXVO7O8tJzEq7Btsj1d8lBmRZnEhRlO3/jKsSkaBE1EtlsJW01TdQC8n9XzwV/gLwxOjLUiMtsg6FtYxW28Zp64+D3pc4grSbBm6hg82WYW9nNRW3wSIfbMG6pz09X5XOgqciGoFtltRYcap0e6Ey6uO9Hu5zI0vB8tO0OdKI1bflBprRYRZnnYQDMs4qal7uNpW1DHs2kaBk7JQ4ERUyePj0dzDuoarJ3BKirYg2mKEIAC1KukIrIT6JibbP02lt15Ocm61cr5A4NTSO2KDYSVh2/SoKeMEDFzb6nWWYVU6CpyIKjV1OyEIgMVkQHKMvNNHY8FxXGDLhxqV1DkNbLUif+Ck16m6mg75WxEweclRMHBAj8uLlh6X3MMJSmCqTiUr6hi2lRRlnJRF+V0DyTkEQcDnZ1pwoLIDKTFWXDsvM9BUUU/qBq2ok6uL8njlJkbhdKNdNS0JylvEAE/OVgQMq+9p7HbC6+NhMurj3o9lJ5UQOFlNRuQmRaOyzYGyll6k2ZTdtV8QBNVO1bEaJ722JOB5AZ+VtODrqg5kxEXghgXZiIuUf4NmCpxUxMsD9/31KD451RL42vOfl+H5783HssnJMo4s/BpUuKKOCaysU0Hg5PXxqPTvDSdn80smNdYKi1HsI9TY7VREIBEOSugaPtjklJhA4HRJobKvPW29bvS5feC4gRo5tWDNffWYcXK4vLj3zcPYeaY18LXnPy/Hq7cvwpzsePkGBpqqU5W/VhjwyakWWIwGfGt+FqamxaDD4cYP3ziEM009cg8vrNTYioAJ9HJSwZL6us5+uH08rCaDIs61wTCw0khP03WspitHIR/8k1PFKS81rKxjU+KZcZGwmuQtrB8r9l5v7HKC11G3fJ4XcP9fj2DnmVZYTQb8y8JsFCRHo63XhfWvHpC9HQkFTiqx/VQLvm41wGjg8If1i/D0TfPwz/suxcUFieh1efHTt4pVtwXCRKhxRR2T629JwApWlYx9MBakxCim/02gl5NOCsR9vBB4vytlqqlQRS0JqtpYfZMyzt1YpNsiYOAAt49HW6866smk8OaBGnx6ugUWkwFv3rUEv75xLv7540sxOysOnX0e/Ps7x2VdmECBkwr0u314/P3TAIAfXJKH5VNTAAARZiOe/94CxEWacarRjr98VSPnMMOqoVt9PZwYdgGv7exX/F0kKwxXwoo6JltnGacmuxNeXoDZyCEtVhn1RGpqSVDdod7AyWQ0IN2mrwLxrj43nvyoBACw8aoiLMxNBADEWE147rvzYDEZ8OXZNvzzaINsY6TASQUiLUb8/JtFKLTxuG9VwTnfS46x4sE1UwEAL+4s001r/oGMkzI+SMYiI07cc83t5dGk8D3XWCsCJfRwYrIDK+v0kXFi9XwZcZGKyfqxwKmlx4Xufo/MoxlZjT+zy5rPqo3emmD+cXclepxeFKXH4raleed8ryAlBj+9YirWL83F5dPT5BkgKHBSjTUz0vDjmfyQze++c1EOMuMi0Gx34e+H62QYXXgJghC4iGTHq/MukmVNlF4gruiMk0r6YE2UEvdkjI0wI80mruZVetZJzRknYKAcQQ8r6xwuL7bsqQIAPHDFFBiHuFG4Z+VkPH7dLMRY5VvbRoGTBlhNRtx5aT4A4E/7qlXTlG682h1uuLw8OA5Ij1NfxgmAKno5CYKgqOaXDFtJp5eME7tJUFo9H+vrVa7wOie2vZFSViSOlZ6aYG4trkePy4v85GismZEu93CGRYGTRty4MAcRZgNKmnpwuKZL7uGEFLuApMZaYTGp8y3MOhgrOePU2uuC3emFgQPyFNQ4kGWcmuxOuL3aXxBRr9A9GQOb/So449Tj9KDd4Qag/oyTHqbq/rxfrNO95eJcxUxLD0WdnzrkAnFRZqyblQEAeE/GorlwUHMPJybQy0nBLQlY48ucxCjZ90cbLCXGCqvJAF4AGru1/2EyMFWnrOzqQMZJuVlTdmOSFG1BbIT8jRPHY6DGSdn1kBNV1tKD0412mI0cvr0gS+7hjIgCJw355lwxcNp2vFHxq7UmYuAOXJ13kMDAtEGNgjNOStpqZTCO43S1sm7gRkFZ73c1rKxTa8fwwQam6pR7rZDCB8eaAACXTUlBfJSyt9GiwElDLi1MQWyECS09Lhys7pR7OCFTp+IVdQzbM0vJvZyUWN/EsJV1cjfCC7XBCyGU9n5nAXVNRx9cXmWu5g3sUafS+iZgYKrO7vSix6nsFYwT8cFxcaZk3ewMmUcyOgqcNMRiMgQK6j44pt3puobAijr1TtWxjJPd6UVXn1vm0QytvFV5rQiYwEqjbm1PX3T3e9DnFoMSpRWHp9msiLGa4OMFxdbqscUXkxRUozdWMVZTYH+2Bo1O151t7kFpcy/MRg6rZ8jXZiBY4wqceP7cgswnn3wSHo92I2E1+eYcMVr/8EQTfBqdrlNqsexYRFqMSIkVl3Mr9UOnTMEZJ1bvo/Ul2iy7mhxjUVSdGSBOmbKNn5W6sk4LGSdgYLpOq+/3D443AhCn6ZSwie9oxhw4nTx5EkuWLDnnaxs3bsSsWbPwwQcfSDYwMj6XFCYHpuuO1nXJPZyQUOry7LEKrKxT4HRTr8uLRn82R2k1ToB+etsofSEEy0YqdesVFjjlJas8cGI1fRp9v28/1QwAuGqWclsQDBZ04MTzPH7xi19g0aJFWL169Tnfe+2119DT04Nrr70W69atQ2lpqeQDJcGxmAy41L9b+e6zbTKPRnoOlxddfWJ2U6kfJsEKbParwDqnCv80XXKMRZGFmixwatT4VJ3SbxKUXCDu8voCWzOptWs4o+WMU3uvCycb7ACAFdNSZB5NcIIOnJ588kk89dRT+Mc//oFNmzad873169ejtLQUP/3pT7Fjxw7Mnj0bDz74IOx2u+QDJqO7dIp2Ayd24bBFmFS7vJgZ2OxXeRkn9kFYoMBsEzBopVFXv6Ybvio/46TcXk51nf0QBCDKYkRyjPKC/7HQchPM3WXi51RReixSFbIX42iCDpwyMzPR29uL3bt3X1DjBAAxMTH49a9/jWPHjuEb3/gGnn76aUydOhWvvvqqpAMmo1s+RYzaD9d0otfllXk00qpT+B34WCi5l5OS65sAIM0WAY4D3F4+0OBQi1STcWpxKK4FyuCO4Ryn3GaKwdByE0x2g882r1eDoAOn9evX49NPP8Vbb72FVatWDfu4adOm4cMPP8TWrVsRExODH/zgB7jooouwb98+SQZMRpeTGIW8pCh4eQH7y9vlHo6kAivqVFwYzgxM1Sk4cFJoxsliMiAlRiyu1+L0BcOaHip1IcSkxCiYDBz6PT40KmzDatbqQ60dwwdjv3+tvdcFQcCX/sDpMv9MiRqMqTh85cqVOHr0KObOnTvqY6+99lqcOnUKv/rVr3D69GlceumluPXWW9HQoN1l8krCpuu+PNsq80ikVd+p7DvwsWDF4U12J5weZfXBYYHTZIVmnAB9FIgrcYPfwcxGA/KSxSlnpa2sG9jcV931TcBAD69muxMen3a2GSpv7UWT3QmLyYCL8hLlHk7QxryqLjo6Gr/5zW+G/b7X68WhQ4fw4osv4oc//CHeeOMN9PeLdQh/+ctfMG3aNDz11FOarktQgsv803VflmmrzknpNR9jkRhtCezwraRGjh4fH6i7UupUHTC4zklZmQ6pOD0+tPW6ACj7/a7UlXXVKt/cd7DkaHFfTl4AmjS0IIJlm5bkJyqu3cZITFIc5H//939x4MABfPXVVyguLobL5QoERmlpabjuuuuwbNky5Ofn4+mnn8ZDDz2E9957D1u3bkV8fLwUQyDnubggCRwHVLQ60NrjCvQMUjst9HBiOI7DpMQonGq0o7q9D1PSYuUeEgDxA8fLC4iyGJEZp9xiTXYX3qjRjBNbMRhpNiI+SrkLIQpTY/DxyWbFraxjU3VK2qB6vAwGDplxEahq70N9Vz9yNBAMAsCByg4AwNLJSTKPZGwkCZxuvvlmAIDRaMTs2bOxbNkyLFu2DEuXLkV+fv45j/32t7+NF198EQ888AAeeOABbNmyRYohkPPERZoxLS0WJU09OFTdgStnKb+NfTC0NFUHiPUXpxrtiioQD0zTpcQouqh2oHu4NgOnwDRdQqSifw+BlXUKyjjxvIBa//nTQo0TIL4Pqtr7NDM1LQgCvq4StwZbrKJpOkCiwOmXv/wlli5disWLFyM6evTo/kc/+hEOHjyI9957T4qXJ8NYlJeAkqYefF3VqYnAyevj0eQvQFXzdiuDKbGXE8scKHmaDhi80kg7UxeDNSh8RR2jxF5OTXYn3F4eJgOHDAVnTcdCay0Jqtv70NbrgsVowKysOLmHMyaSBE7//u//PubnTJ06FR0dHVK8PBnGRXmJ+PP+Ghys0sZ5brI7wQuAxWhAcow2ph4DvZwUmHFSeuCk5aaAwEDrDSXXNwEDvb7aet3o6nMromEqq2/KToiEyaiNLVm1lmH92v+5NCc7TlX1TYBEgdN43HrrrUhLU/5mfmq2yJ/+PNFgR5/biyiLbL9uSbA7rYz4CBgMyp26GItcBbYkGDxVp2Qsk9Da44LL64PVpK6L72gGFkIoO2MSYzUhIy4Cjd1OlLf2YmGu/NMulW1iBjc/Wf31TQwLoOs0knE66J+mW6SyaTpgnJv8SiErKwt33HGHXC+vC1nxkciMi4CPF1Bc0yX3cCaM3Wkp/Q58LNiKn9rOPkVsyszzgmqm6hKjLbCaxEuYllYaMWqq5xvcCFMJKtvE93B+srLfw2OhtQzr19VixumivASZRzJ22shhkmEt9EfzrAhPzZTe02Y8MuMjYTZy8PgENCogBd9od6LP7YPJwCm+qJbjuEEfJtoLnNj7QQ2Bk9K2XglknFI0lHFK0M42Q+29LlS0ir+jhbkUOBGFYdH8wWr11zkpffuJ8TAaOGQnKGe6jk3T5SZFwayC2hCtNsEUBCHQjiAzTvnv98mBjJMyAqcKFjhpoBUBk+6fmnZ6eHSofJuhw/4ZkCmpMYqoiRsr5V8ZyYTMzxEDp2N13aq/S1H69hPjxabrlFAgXq6SwnCG9XLSWuDU1eeByyt2iE6LU/5CiEATTAVknLw+PnAToqWMk9VkRGos22ZI3RnWo7VdAID5k+JlHcd4UeCkcdPSY2ExGdDd7wmsNFGr+k5x/FqaqgMGbfargN9PmUrqmxitrTRi2M+THGNRRdE7e7/UdvTJvn1QfVc/vLwAq8mADJuyC+vHaqAFh/zXiok4Vt8NAJidHS/vQMaJAieNs5gMmJFhAwAcreuSdzATIAhC4C5La4ET62zMClrlpJZWBIxWezmxYvd0lfQgSomxIjbCBF4AqmTuSVYxaEWdVlbfMgN1Tup9vwuCgOP+z6K52erq38RIFjh5vV4888wzWLx4MWw2G0ymgaXvxcXF+NGPfoTS0lKpXo6MAXtzHq3tlnkk49fZ50G//042Q+HLs8eqwD+dwIol5RSYqktRxvYvo2H1P1qbqmtggZNNHTcJHMcpZmVdZav2WhEwWmiCWdfZj84+D8xGDtPS1XGdOZ8kgVN/fz9WrVqFBx98ENXV1bDZbOfU0+Tn5+O1117DG2+8IcXLkTGamxMPADim4owTu1CkxFpVMXUxFmxFUnW7vC0JOh1utPuLTienquNDZ/B+dWqv4RusKbCiTj03CUrZekWLPZwYLbQkOO6fpitKt6n2Wi5J4LRp0ybs2bMHmzdvRlNTE37wgx+c8/24uDisWLECH3/8sRQvR8Zojn8e+URDN7w+Xt7BjFO9Srooj0dmfCQsJgPcPh51nfLVLrD6pqz4SNU0S2VTdQ63D939HplHI51GlU3VAcrZekUPgVO9igMnVjIyW6XTdIBEgdNbb72FVatW4eGHHwbHcUNuSFlQUICamhopXo6MUUFyNGKtJjg9PEqb5a+jGY9A4KSxFXWA2JKgIFn+6bpAx3CV1DcBQITZiMRocTlzo4aaYDZ2qacVAaO0jFOBhlbUMVpov3G8Tsw4qbW+CZAocKqpqcGiRYtGfExsbCy6u9VbY6NmBgMXiO7VOl2nxeaXg7GLvJx36+WBrVbU9YGT7l85paXu4WwzazVmnCraesHLNOXs9PgCN1la6hrOsBvHdocb/W55Vy+OB88Lgam62Vnx8g5mAiQJnGJjY9HS0jLiY8rLy5GSkiLFy5FxYNN1bBmo2rDlt5oNnJLZh46MGSeVtSJg2J51Wsk4iStI/TVOKso45SREwmI0wOnhZZtKYiv64iLNSIgyyzKGULJFmBBjFafR1ThdV93Rhx6nF1aTAVPS1HWdGUySwOniiy/Ge++9h66uriG/X1tbi23btmH58uVSvBwZh5mZYkuCUw12mUcyPuwika3BqTpgUMZJxmmOQCsChW/uez62yrJJI72cBje/TLUpv/klYzIakJcs9iSTK3PKVtTlJUcPWTKiduduM6S+9zub8ZiRaVPFzgTDkWTkDz30EDo7O3H55Zdjz5498Hq9AIC+vj7s2LEDa9euhdfrxYYNG6R4OTIOLHAqabIrYjPZsWI7gmuxxgkAClLkzTj1uwemONSXcWJNMLWRcWKZs6RoCyLM6lp1xN47ctU5sb+fAg0WhjNspaUaM07HAvVN8fIOZIIkWTqzfPlyPP/887j//vvPySrFxoo9GoxGI1588UUsXLhQipcj45CXFI0oixF9bh8q23pRmKqe/hm9Li+6+sQVU5qdqvNnnFp7XOhxehAbEd5phrKWXggCkBhtQVKMerIcgPZqnNjmvmrsVyZeV5pwVqZFKFpeUcewm0c1ZpxYYfjsLPUWhgMSNsC85557cPToUdx333246KKLMHnyZMyfPx933303jhw5ckGLAhJeBgOH6f4O4idVNl3HCsPjo8xhDyjCxRZhRrI/YJFjZd2Z5h4AwLQ09QTUzECNk/o+SIbSqLLml4Ox9w97P4VblQ4Cp0yVNsH08QJONIiB0xwVr6gDJMo4MdOnT8dzzz0n5SGJhGZk2HCouhOnGuy4bl6W3MMJWp1G96g7X0FKNNp6Xaho6w00LQ2XUhY4qbCTb/qg4nBBEFRf29KowuaXzLR0caqutLkHPC+EfcsTXWScVNrLqbq9D31uHyLNxkBpglqptzqLjBmrc1JdxknjheHMZBm3XilpEgOnqarMOInviz63Dz0ur8yjmTg1Nr9k8pKiYTEa0DeoZi5cBne+p8BJeVgWcmp6LIwq30NQ84HTCy+8gLy8PERERGDJkiU4cODAsI/dsmVLoIEn+y8iQn0Xr+HMYCvrGu2q2p4iUBgeHyXzSEKLNRCUI3AqbWIZJ/XdCUZajIj3Lz1vVPHmpwz7GTJUGDiZjIZAA9UzTeGdrhvc+T7aqo7O9+PBapyaup2qWuhz2v9+mJGhvpuz843r3XXnnXeO68U4jsMf//jHcT13PN566y1s2LABL730EpYsWYJnn30Wa9euxZkzZ5Camjrkc2w2G86cORP4t9rT/oNNTRMj/Q6HG012Z+BOXenYVJ3WM05yNcHs7vMEGi5OUWHGCRALxLv6PGjs7lfldONg7Hehlr/P801Li8HpRjvONPfgihlpYXtdVpCutlWhY5UaGwGTgYOXF9DSo57rOMtqs1pbNRtX4LRly5Yhv85x3JCZDPb1cAdOTz/9NO666y7ccccdAICXXnoJH3zwAV599VU88sgjQz6H4zikp6cH/Roulwsulyvwb7tdnAbzeDzweKTbO4sdayLHNAKYnByN0pZeHKvtRHKUOu7K6jrEwCnDZhn255fi/Mhtkr+mpbLNAZfLLWl9yEjn51RDJwAgMy4CkUZ1nsM0mxUlTT2o73CMa/xKef8IghCocUqONsk+HmDs56bQfwNwuqE7rOMvbRILjwuSo8L6unK8d9JtVtR1OVHT1qv46zg7LyxwKgzz72csgh3XuM54ZWXlOf/meR73338/9u/fj/vvvx+XXXYZ0tLS0NzcjF27duE3v/kNli5dimeeeWY8Lzcubrcbhw4dwsaNGwNfMxgMuOKKK7Bv375hn9fb24vc3FzwPI8FCxZg06ZNmDlz5rCP37x5Mx5//PELvv7JJ58gKkr6qaXt27dP6PlxvAGAAe9+cRDOcnWkeSuajQA4VJw4iG2VIz92oudHTj4BMHJGuLw8/rL1QySFYKZmqPOzu4kDYEQ814dt27ZJ/6Jh4OkS39dfHjqBmJZj4z6O3O8fhwdwesTLcvHenTipoGKKYM9Nd6f4fjpU3oht2+pCO6hB9p8S3wN9TRXYtq08bK/LhPO9E8GL18QPdu5DU7Lyr+N9XqCxW0ww1Bzbh9ZTMg9oGH19wW2yPq7AKTc395x/P/HEE/jqq69w9OhRZGRkBL4+bdo0LF++HHfccQfmz5+Pt99+Gw8//PB4XnLM2tra4PP5kJZ2bqo4LS0NJSUlQz5n2rRpePXVVzFnzhx0d3fj17/+NZYtW4aTJ08iOzt7yOds3LjxnMaedrsdOTk5WLNmDWw26VKSHo8H27dvx+rVq2E2j39JftOeKnz9USm8sRlYt26eZOMLlX63D737dgAAvvvN1bBFDv2zS3V+5PZC+R6UtzqQO3sxlk9Jluy4I52fr98/DVTW4pJZBVi3dqpkrxlOlTsrsHdHGWLTcrBu3fA3OsNRyvvndGMPcHAfEqPNuO6ba2Qbx2BjPTdzu/rxSsmXaHMZsHrt6rB1iH7i1C4ATtzwjYuxMDchLK8JyPPe+bzvOMqONiI1rwjrlueH5TXHy+Px4Hdvi0FlVnwEvn2tcncQYTNGo5Ekx/fHP/4R3/nOd84JmgbLysrCd77zHbzyyithC5zGY+nSpVi6dGng38uWLcP06dPx+9//Hr/4xS+GfI7VaoXVemHDQLPZHJI/ooked3aOeEE53dSjigCjulOs94iNMCHJNnoGL1TnPVympsWivNWByvZ+XD4jPO+f0haxGH16Zpxqz11WgvjeaLK7JvQzyP3+aXWIUwWZ8ZGK+10Ee25yk02IthjhcPtQ3+0OS92cw+UNrEYsyoyX5dyF872TkyROhzb1TOz9Hi4NfWLZwfQMZV9jgh2bJLcCdXV1o64+i4iIQF1d+NK2ycnJMBqNaG5uPufrzc3NQdcwmc1mzJ8/H2VlZaEYoixm+Avzajv60d2vzHnmwWoDK+rUUQA5UexDpjRMDQQFQQi8lhpbETCsQFbt3cPV3PyS4TgOU9PD2wiTLahIjrEgPsoSlteUk9qaYNb7AyctrKgDJAqcsrOz8c4778DpHPqi1dfXh3feeWfY6a5QsFgsWLhwIXbs2BH4Gs/z2LFjxzlZpZH4fD4cP3582EyaGsVHWQJByOlG5fdzYheG7ARttyJgpqaxBoLhWVnX2uNCV58HBk7dq5FYzyO1B05s/GpsRTBYoIN4mFoS6GVFHTOw0a863u/1DjFwKtLAijpAosDpBz/4ASoqKnDJJZfg3XffRXt7OwCgvb0dW7duxaWXXoqqqircddddUrxc0DZs2IBXXnkFr7/+Ok6fPo177rkHDocjsMrutttuO6d4/L/+67/wySefoKKiAocPH8Ytt9yC6upqzW0XMz0jvBe1iajr1EfzS4Z94Jxt7glLry2WEchLjlbdhrKDsUCjx+VFj1P5mdThNKh4n7rBpoY5cGI9nPQSOGUOaoKp9J58Pl5Ak7/mWgutCACJapweeughlJaW4rXXXsO3vvUtAOIKNp7nAYjTAXfccQceeughKV4uaDfddBNaW1vx85//HE1NTZg3bx4++uijQMF4TU0NDIaB2LGzsxN33XUXmpqakJCQgIULF2Lv3r2YMWNGWMcdatPSY/Hp6ZbA8lAl00sPJyYvORpmIyfWh3T1hzzTxj7Y1LhH3WDRVhNsESbYnV40252q3dNQKxmnovTwTjmXtfgDJ5Vv5REslnHqdXlhd3oRN8yiGSWoau+DR+AQaTYgN1EbMweSBE4GgwF//OMfcdttt+H111/HsWPH0N3djbi4OMydOxe33norVq5cKcVLjdl9992H++67b8jv7dy585x/P/PMM2FtmSCXaeli1H+mSQVTdTrZboUxGw3IT45GaXMvzjb3hjxw0kJ9E5MRFwm7swcNXU4Upqrz52nsVnfzS4bVOFV39KHf7UOkJbTZTPY+VmsD17GKtBiRGG1Bh8ON+s5+RQdOg7dzCvfehaEiaeesFStWYMWKFVIekoTAwN1gr+I3RdXLdiuDTUmLRWlzL0qbe7CqaOgO91I5o+I96s6XHheBM809qq1zGtz8Uu0Zp+QYK5KiLWh3uFHa3BPSTasdLi+q28XMdJHKu8aPRVZ8JDocbjR09Qe201Iido3R0u9GQe3VSLjk+6eDel3eQGCiRE6PD609YtM0vWScAGBq6kBgG0peHx+4G1TyhTdYLNhoVGng1N3vgdMjljek2dQdOAED9SynQrwIhWWbUmKtSIq5sDWMVqlls9/TgcBJO9OoFDjpkNloCGwoq+QC8Qb/BSFq0CauesA22j3bEtrfTXmrAy4vjxirSRO1B4GVdXZlf5AMh62QSoq2qLpQn5nJNhVvCG3gVKLBjEYwMlUSOGnx90OBk04VhbnPyngMXlGn5OlEqU0JrKzrBR/C3c9PNoh7e03P0EbtQaa/LkitGScW8KWrfJqOYVlM9j4LFS1OBQUjK0H5gVNXnxtNdnHWYFoaZZyIyrECcSWvrBsoDFd/NmQschOjYDEZ0O/xoaYjuL2TxoNlAmZoZIkwCzgaVdLb5nws46T2wnCGZZxON/bAF8IbANaPrihdG+/jYLGpOiWXW5xuFD9fEq2Cale6DoUCJ50KZJwUvLKOtSLQS9dwxmQ0BNoDhLI+5KQ/cJqZGRey1wingRon5X6QjEQrrQiY/OQYRJjFG4CqdkdIXkMQhEDWfJrOMk45if7AKYQ3VxPFgtqsKGX3mhorCpx0il1kKlodcHt5mUczNL01vxws1PUhgiAEplC0UBgODGSc7E4vHC6vzKMZO9b8UitTdUYDF8gCnQzR+7jZLna+Nxo43TS/ZHL8dYntDrdi3+8l/hvzzGiZByIxCpx0KiMuArERJnh5IbDPk9Kw7VaydBg4sWAmVBmnus5+2J1emI2cJloRAEBshBkxVrHDSpNdfdN1LOOUqfKu4YPNDHGdE/tgzld55/vxsEWYA4tmajuVmXVipSCZlHEamtfrxTPPPIPFixfDZrPBZBpoEVVcXIwf/ehHKC0tlerlyARxHDdouk6ZdU51OtunbjBWdxSqjBMLyApTY2Exaef+KUPFe9Y1aWCD3/OxaeBQvY+1uGJrLHL818baDuVNT/P8wAbiGRQ4Xai/vx+rVq3Cgw8+iOrqathstnP2z8nPz8drr72GN954Q4qXIxJh03VKLBB3e3k094gfJHqcqivKsIHjxMxJe69L8uMP1DdpY5qOYdNcDQpeaTQUQRACU3VayjjNGDTlHIo91VhAppU90MZqkn+6LpSLSMarpqMPTg8Pq8mAFO28pQFIFDht2rQJe/bswebNm9HU1HTBprhxcXFYsWIFPv74YylejkhEyVuvNHb3QxCACLMBSdEWuYcTdjFWE/KSxMKAUEzXHa/rAgDM0ljgpNaMk9aaXzJF6bEwGTi0O9xoCMHv5ES9OAU4K0sbCxzGKttfIF6rwMCJ3ZAXpkZDA91OziFJ4PTWW29h1apVePjhh8Fx3JA9dwoKClBTUyPFyxGJKHmqjk3TZcbrq4fTYKGarhMEAUfrxA+ceZMSJD223NJZLyeV1ThprfklE2E2oihDvM4U13RJemy704OKNnG13mydBk4DU3XKC5y0tJ3T+SQJnGpqarBo0aIRHxMbG4vu7tA2QiNjw97QDd1OdPd7ZB7NudjeU1roaD1eoSoQr+3oR4fDDbORw/QMbV3U1Jpx0lrzy8HmZscDAI76s5xSOVnvX+oeH4lEHWalgYGpOiUWh59pFn8/UzW42lGSwCk2NhYtLS0jPqa8vBwpKSlSvByRSFykGZn+C3WpwjqIszn7SXoOnDJCs5S72P8BNiPDBqtJO9kNQL371TVqrIfTYPP8G/wW13ZJetzj9eLx9JptAgZaEtR29Iekhmwi2FSdljqGM5IEThdffDHee+89dHV1Dfn92tpabNu2DcuXL5fi5YiElFogXtMhpuAnJWmsAcgYsLqN8tZe9Dilywge9X+AzQvhjvVyyQhsu6Ku4vBGjXUNH4y9z47XdcPrk65n3HF/xml2tn4Dp6z4SHAc0O/xoa3XLfdwApweH6r806hTKXAa2kMPPYTOzk5cfvnl2LNnD7xesRlXX18fduzYgbVr18Lr9WLDhg1SvByRkFILxCnjJO72np0QCUEAjtVJN83N7vznajBwYlNdXX0e9Lt9Mo8meCzjpMWpuoKUGMRYTej3+HC2RbqecWyBg54zThaTARn+xQRKWllX1tILXgDio8xIjbXKPRzJSRI4LV++HM8//zyOHz+O5cuXY9OmTQDEKbw1a9agrKwML774IhYuXCjFyxEJKbFAXBCEgRqnJP0GTsDA3fqRmk5Jjufx8YGVSFoMnGwRJkRZxOlHNTXBbNRgKwLGaOAwx58Vkmq6zu70oMp/jdBz4AQMTNfVKajO6Uxgmi5Wk4t7JOt8d8899+Do0aO47777cNFFF2Hy5MmYP38+7r77bhw5cuSCFgVEGQZP1Slljry734Mep5i1zNFh88vB5vtXvUn1gVPa3AuXl4ctwoR8DU6Dchw3sNmviqbrtNj8cjAWpB+V6H3Mgv/shEgk6LQwnGGBU027ggKnZm03JjWN/pDgTZ8+Hc8995yUhyQhNjklBiYDhx6nF43dTmQqYENdlm1KjbUi0qKt4uWxGlxYKwjChO/eiv1TfnOy42HQWnMVv8y4SFS0OlSzsk4QBE0XhwMD7+PDEmVOj/hbG8zRcX0To8SVdaxmdqpGAyft7LVAxsViMqAgRcw8KGW6js3V632aDhA7e5uNHNp63YHeVhPxdZX4wXVRXuKEj6VU6SpbWdfd70G/R6zH0mKNEwAsyhUzp6XNveh0TLyI+WBVh/+42n0fByvH3wRTSTVOrGaWMk6D3HnnneA4Dps2bUJaWhruvPPOoJ9rtVqRnZ2N6667DrNmzRrPyxOJTUu3obS5FyVNPVhVlCr3cAIXgBwdF4YzEWYjZmTYcLSuG0dquyZ0TgRhIHBanK/dD5wMlU3VsQAvUWPNLwdLirGiMDUGZS29OFDVgbUz08d9LJ4XcLBa+zcAwZqUqKz96rr63Gi2i9tEabH5JTDOwGnLli3gOA7/9m//hrS0NGzZsmXMx3jsscfwj3/8A9dcc814hkAkVJQei/eOKmdlXU2g+aX2anDGY15OvBg41XTi2rmZ4z5OqxNo6XHBYjRg/qR46QaoMOkqa4LJAjytTtMxS/ITUdbSi68qJhY4lbb0oMfpRbTFqLkGruPB6kAbu/vh8fEwG+WdSGIzF1nxkYiNMMPjUVZzZSmMK3CqrKwEAGRlZZ3z72A4nU6cPXsW9957Lx599FEKnBRgWpqyejlVB3o4yV9vpQQLchPw+r5qfO2fnhivcrtY0zQvJ16zmQ1AfU0wtV7fxCwpSMJfvqrBV5XtEzrO15Xi38GC3ASYZA4SlCAl1gqryQCXl0dDVz9yZV70ofXCcGCcgVNubu6I/x7NtGnTsHv3bvz2t78dz8sTibGVdeWtvYq4Y2Ep50mUcQIAXFyQBEDsIN7d50FclHlcx2GBk5an6YCBJpJqyTg1abiH02BL/O+7U4122J0e2CLG9z5m081U3yTiOA45iVEoa+lFTUef7IFToGO4hgOnsH1Cut1u2O0DU0Hf//738eabb4br5ckIshMiEWM1weMTUNHqkHUsLq8PDd0scKIaJwBIs0Vgcko0BAHYP4G79TJ/4LSkQNsfOCxz0+5ww+lRfhPMBg13DR8szRaBvKQoCMJAcfd4sOdelKetDaonIidBOQXiZyhwGl5BQQF+85vfnPO1jz/+eNju4Js3b0ZCwsAbfcqUKbjuuuvG+/JEQhzHDernJG+dU31nPwQBiLIYkRyj7/4sg11SmAwA2FvWNq7n13X2o9PNwWTgsDBX2x84cZFmRJjFS1uzCppgsg1+tT5VBwBL8sXs6f6K8QVOdZ19aOh2wmTgME/DdXpjxbJMcvdyEgQBpRQ4Da+qquqCven2799PfZxUqkghe9ZVD9pqRYsdZ8dr2WTxA2dv+fgyTrvOigHX3Ow4RFkkbd+mOBzHDdqzTvmBk5a3WznfskLxfbyrtHVcz99VKr6P5+jgfTwWef7WLZVt8s4Y1Hf1o8flhcnAoSBZe3vUMVRZRwAoZ+uVWtqjbkhL8pPAccDZll609Iw9GPj8jPhBtWpaitRDU6R0mzpW1gmCENjgN1PjU3UAsGJqCgyceIM2ni1CPj/TAgBYNU3+tilKkpcsZpyq2uUNnEr9heGTU2JgMWk3vNDuT0bGpChD3Oy3pFHeqTrWNZwCp3MlRFsww/872jfGrFO/24d9/qmRVdOSJR+bEmX493xrUHgvJ3u/V/PNLweLj7IEpoo/L2kZ03NdXh/2+KeqldBvTknyA4FTH3hevq2z9FAYDlDgRPxYo7KGbie6++Xru0Fdw4d3qb/O6bMxfuDsLW+Dy8sj0SpgSqp20+eDZaikl1Ojv75Jy80vz/eNojQAwI4xvo+/ruxEn9uHlFhr4CaCiLLiI2E2cnB7eVlvFvRQGA5Q4ET84iLNyPLvUyfndB0rbqSu4Rda428auON0y5hWi7EPqJnxE9/rTi3S/dNebMWaUrFpOja1qAeXTxezRXvL29Hn9gb9PDZNt3Jqimb3WRwvk9EQuGZWtclXIM4+O7TcwwmgwIkMMi1Q5yTPdJ0gCIGME03VXWh+TjzSbRHodXmx+2xwq+t4XsBnp/2BU4J8Kfxwy2QZJ7uyp+r00vxysCmpMchOiITby2NPWfDTzoH6JpqmG1K+f2VdpUx1Th4fj/LWXgDa3WqFmdCyhD//+c/Yv39/4N9lZWUAgHXr1l3wWPY9olxF6bH4rKQFp2XKODXbXej3+GA0cJRxGoLBwOHKWenYsrcK20404ooZaaM+51BNJ5rsTkRbjSiMC/7uXu0Cq+qUnnFi263E6ydw4jgOV0xPw5a9VXj/WANWB/E+PtPUg4pWB8xGLtCag5wrUCAu08q6ilYHPD4BMVYTshO0vdBhQoFTWVnZkAHRRx99NOTj9TJNoFbTZF5ZV9Em3q1MSoySvXu5Uq2bnYEte6uw/VQz3F5+1JUrW4/UAwDWzEiD2VATjiEqwvlNMJVaPzSQcdL2B835rpuXiS17q/DJyWY4XF5EW0f+KPrnUfF9vGJqKuIix9dxXOtYgbhcLQlYD8CpaTGa/6wfd+A0lv3piDpM9xdcnmnqgSCEvx6G/cGzCwC50MLcBKTEWtHa48Ku0tYRs05Ojw/vH2sEAFw7JwP2Uv0ETvFRYhNMp4dHs90p+zYUwwlst6KjGidA3C8xLykKVe19+OB4I76zKGfYx/p4AVuPNAAArp8//k2utS5f5owTa0UwLV37hfvjDpzGuj8dUb785GiYjRx6XV7UdfaHfbqsspUCp9EYDRyum5uJP+yuxJsHakYMnN472oDufg+yEyKxtCARH5eGcaAy4zgOmXGRqGhzoKFLuYFTgw6n6gDx9/Odi3Lw3x+dwV/2V48YOH1R2oL6rn7ERZpxxfTRp/X0ik3V1XT0wevjw74Bsl4KwwEqDieDmI0GFKbK10GcMk7Bufli8abl8zMtw95dCoKA1/ZUiY9fkgujDlchsb5IjQrt5SQIQiDjpLepOgC4aVEOLEYDjtZ141D18FuwbNlbDQD4zqJsxU65KkGGLQJWkwFeXkB9V/jf83rp4QRQ4ETOUyTjyjoWOBVQ4DSi/ORorJqWAkEAfvvZ0Isutp9qxqlGO6ItRtx00fB381qm9G1X7E4v+tz+5pc6m6oDgKQYK26YnwUAePbTs0M+5khNJ3aVtsJo4HDLxTTLMRKDgQv0vwt3nRObpQCAaRpfUQdQ4ETOwwKncK+s8/j4QCuC/BQKnEZz/xVTAQDvHKnDifruc77n9PjwxEclAID1y/KQGK3PzZIz45WdcWLjSogyI9Kiz0zKfd8ohMnA4cuzbYF2AwzPC9i8TXwff2t+lmKnW5VErgJxtuNEms2KBB1cbyhwIueQa2VdXWc/vLyASLMRabH6u/seq3k58bh6TgZ4AXjw/46e00jwvz86g4pWB1Jirfh/yyfLOEp5BabqFNqSYGBzX/1N0zE5iVG4fVkeAODf/3EcrT2uwPde3VOJA1UdiDQbcf8VU2QaobrI1ZLglD9wmpkZF9bXlQsFTuQcbGVdZZtjTN2pJ6rS34ogLzmaugIH6bFrZiIx2oKSph6sf/UAvihtxWP/PIlX94grXn95/SzERel36XamwqfqmnTY/HIoG9ZMRX5yNBq7nbj5D/vx6alm/GbHWfxq22kAwL9dOQ3ZCdTXLRgDTTDD2z38VIMYOOllKxwKnMg5UmOtiI8yw8cLKGvpDdvrVrRSfdNYpcRa8Yf1ixBlMeLrqk6sf/UAtuytAgD825VFWOvfokWvMpQ+Vecv4NV74BRlMeHV2y9CcowVpc29+MEbB/H09lIIAnDrxblY789IkdHJnXGakUmBE9EhjuMG6pwaw1cgTivqxmfBpAR88JPLcPXsDGQnRGJJfiJevX0R7lmp3yk6JsMmZpw6+zzod4cvexosPW63Mpz85Gh8eP9luGlRDiYlRmFeTjx+feNc/Nd1MzXfTFFK7MazrrMPbi8fltf0+vjAijq9ZJwm1DmcaNOMjDjsr+gI3EWEA8s45VHgNGb5ydF44eYFcg9DcWyRJkRZjOhz+9BkdyouKNdr1/DhpMRa8eS/zJF7GKqWEmtFtMUIh9uHmo4+FKbGhPw1K9occHt5RFuMutljlDJO5AIz/enWkw3hC5zK/JtDhuMPnegDx3GBbE6jDH1tRhPYp44yTkQiHMehIEW8hoar1ILVN03PsOmmPpUCJ3KBmVli4HSqwQ6eF0L+el197sBqGgqciJRYNqdBYQXigiAMWlVHgRORzpRUFjiFZ2W03uqbAAqcyBAKU2JgNRnQ6/IGeiuFErszyoyLQMwom30SMhYsm9OksALxwc0vaaqOSKkwTQyczoY546SX+iaAAicyBJPRECgQP9HQPcqjJ479gU/RQcdZEl4Z8crMOLFWBPE6bn5JQmOKf9uss82hD5wEQaCMEyHMzCyxkVk46pzYH/gUmqYjElNqjROrb9LjVisktNh1tLy1F74Ql1o0213ocLhhNHCYqqMbXwqcyJDCWSB+1j8XPyWNAicirUDgpLCMExtPZjxN0xFp5SRGwWIywOXlUdcZ2lKLU43ijMTklGhdbcBMgRMZ0ix/6/yT9d0QhNDetbAap8JU/dyxkPBggYlSAycqDCdSMxo4TPavrAv1dJ0e65sACpzIMKalx8Jo4NDucKPZ7hr9CePU4/QEPkRoRR2RGgtMuvs95+znJzdWrJ5BU3UkBNh0XagLxPVY3wRQ4ESGEWE2Bv74TtSHrkCcZZvSbFbERep3XzUSGrYIc2ClppKyToHmlzRVR0JgIHAKbUuCE/Us46SPzX0ZzQdOL7zwAvLy8hAREYElS5bgwIEDIz7+//7v/1BUVISIiAjMnj0b27ZtC9NIlWdGGOqcAivqaJqOhMhAgbgCAyeaqiMhwOpFQ9kEs6vPHWhXMzuLAifNeOutt7BhwwY8+uijOHz4MObOnYu1a9eipaVlyMfv3bsX//qv/4rvf//7OHLkCK6//npcf/31OHHiRJhHrgyszimULQnONot3RDRNR0KFTdc1KKiXUxPVOJEQKhzUkiBUTYyP+2cicpOiEBelr9kCTQdOTz/9NO666y7ccccdmDFjBl566SVERUXh1VdfHfLxzz33HK688ko89NBDmD59On7xi19gwYIFeP7558M8cmVgK+tOhTDjdLpRDJxY3yhCpJbpbzDZpJCpOrvTg16XWG9FGScSCnlJ4sq6fo8P1SFqYnysTgyc5mTHh+T4SqbZNs1utxuHDh3Cxo0bA18zGAy44oorsG/fviGfs2/fPmzYsOGcr61duxZbt24d9nVcLhdcroHiabtdDDI8Hg88Hs8EfoJzsWNJeczRTEkRN2ys7+pHc5cDidEWSY8vCAJO+rNZU1OjJvSzyXF+1ETP5yctVnzf1nc6hv35w3l+6trE6ZO4SBPMnKD434me3zvBUOr5mZYWg+P1dhyv7UB2nLTXbgAorukEAMzMiBnxZ1fq+RlKsGPUbODU1tYGn8+HtLS0c76elpaGkpKSIZ/T1NQ05OObmpqGfZ3Nmzfj8ccfv+Drn3zyCaKipN8pevv27ZIfcySpEUa0ODm8unUHZiRIm/LtdgOdfSYYIKD88B7UHp34McN9ftRGj+enpZkDYMSxslps21Y94mPDcX5Od4rjieY8qqqh1ON7ZyyUdn5iPAYABry/uxhCDS/58b8uNwLg4Kg5hW3dp0Z9vNLOz1D6+oLLzmk2cAqXjRs3npOlstvtyMnJwZo1a2CzSbdE0+PxYPv27Vi9ejXM5vDNJ3/edxxbjzbCkjEF675RKOmxd5a2AoeOYHJqDK6/5pIJHUuu86MWej4/sWVt+GvFYfgsNqxbt2zIx4Tz/PQerANKTmFKdgrWrVsQ0teSgp7fO8FQ6vnp+KoG+94vgTs6VfL3WVuvC137vgDHAXd+a82Ie4wq9fwMhc0YjUazgVNycjKMRiOam5vP+XpzczPS09OHfE56evqYHg8AVqsVVqv1gq+bzeaQvElCddzhLMhLxNajjThW3yP565a2iNH9jMw4yY4d7vOjNno8P5OSxIUHjXbnqD97OM5PS684HZAZH6Wq34Ue3ztjobTzMys7AQBQ0tQr+bhON3cAACanxCAhJriWGko7P0MJdnyaLQ63WCxYuHAhduzYEfgaz/PYsWMHli5dOuRzli5des7jATG9ONzj9WBeTjwA4Ghdl+QdxAPN03TWdZaEV7q/OLzH6Q0UZcuJ7VOXSYXhJITYgpsmuxMdDrekxx4oDNdXGwJGs4ETAGzYsAGvvPIKXn/9dZw+fRr33HMPHA4H7rjjDgDAbbfddk7x+P3334+PPvoITz31FEpKSvDYY4/h4MGDuO++++T6EWRXlG6DxWRAV58HVe3Srs443aDPrrMkvGKsJsRGiMn1JgW0JKDtVkg4xEaYkZsk1tmebpR2ZfSRmi4AwFwdrqgDNB443XTTTfj1r3+Nn//855g3bx6Ki4vx0UcfBQrAa2pq0NjYGHj8smXL8Oabb+Lll1/G3Llz8fbbb2Pr1q2YNWuWXD+C7CwmA2b5A5vi2k7Jjtvn9qKy3QEAmE4ZJxJibNl/gwKaYDZ0icFbFnUNJyHGsvlStpTheQGH/SvqFuYmSHZcNdFsjRNz3333DZsx2rlz5wVfu/HGG3HjjTeGeFTqMi8nAYdrulBc04Ub5mdLcsySph4IApAaa0VyzIU1YoRIKSMuEqXNvYFpMrkIghAI3jIpcCIhNj3Dhg9PNEmacTrb0osepxdRFqNu++9pOuNEpDFvUjwAoLi2S7Jjsv3vaJqOhENmvH/bFZmbYHb1edDv8QGgqToSeizjdFzC/UYPVYvZpnk58TAZ9RlC6POnJmMy318gfrLBLtkO88X+OXJWfE5IKKXbxOyO3PvV1fun6ZJjrIgwG2UdC9G+uf7ra1lrL+xOaRpQssBJr9N0AAVOJAjZCZHIjIuAlxcCRYETdcSfvZo/Sb9/fCR8MuKVsV9dfaC+ibJNJPRSYq3ISYyEIADHaqXJOrH6pgUUOBEyPI7jsDg/EQDwVWXHhI/X6XCjsk0sDJ+n01UZJLyUsl9doDA8geqbSHjMzxEDnCM1E1/c09brCly7F+j4ppcCJxKUxflJAIADle0TPharlSpIidbdrtpEHqyeSO4aJxY4sUCOkFCb769RPSJBjeph/zTd1LQYxEXq99pNgRMJCss4Hanpgsvrm9Cx2J0PuxMiJNRYcXivy4vufvk2G6UVdSTcWDnEkZrOCTcx3l8hzjgszE2c8LjUjAInEpTJKdFIjrHA5eUDXWPHa6C+KX7iAyMkCFEWExL82U2W9ZEDq3GiwImEy4wMsYlxZ58H1RNsYry3vA0AcGlhshRDUy0KnEhQBtc5HZhAnRPPC4EVdRQ4kXBidUX1nfIFTtT8koTb4CbGRybQxLi1x4WSph4AwNLJSZKMTa0ocCJBW5wnBk77ysdf53S2pRc9Li8izUZMS9Nn8zQiDxas1MuUcXJ5fWjpcQEYmDokJBzYdN3BqvEHTizbNCPDhsRoiyTjUisKnEjQLp0ipmcPVHaMu5/TnjLxj29RXoJum6cReWTKHDg1d4tBk9Vk0P0HDwkvNlswkZvevWXicy8p1He2CaDAiYzB5JQYZCdEwu3jA39EY7W7jObIiTwCGSeZpurqB03TcRwnyxiIPi2dnAQDB1S0OcZ947DHn3FaRtduCpxI8DiOw8ppKQCAnaUtY36+28tjf4UYcLHsFSHhkp0gb8apgQrDiUxsEeZAF/HdZ1vH/PzqdgfqOvthMnCBkg09o8CJjMmqaakAgJ1nWse8tLW4tgt9bh+Soi2Ynk571JHwyoqPAiB/4ESF4UQOl/kzRbvHMVuw/VQzALHEItpqknRcakSBExmTpZOTYDEaUNfZj/LW3jE9l93pLCtMhsFAUxUkvNiqutYeF5yeifUiGw9qRUDkdIk/cNpT1gaeH9tN7ycnxcDpypnpko9LjShwImMSZTFhSYGYqv2sZGzTday+6TKaIycySIgyI9K/sa4cHcQHAidaUUfCb/6kBERZjOhwuHG6yR7081p7XPi6WmxBs4YCJwAUOJFxWD0jDQDw/rHGoJ/T4XDjqL9x5iVU30RkwHGcrL2caKqOyMliMuDiAnFF3M4zwdc5fXq6GYIAzMmOo2ypHwVOZMyunp0Bo4HDsbpulLUEN123/VQTfLyAmZk2+uAgshno5TSxDspjJQgCbbdCZMduej88EfxN78cnmwAAaynbFECBExmzpBgrVkwVV9e9W1wf1HM+PCH+8V01i/74iHwGejmFd6quq8+Dfn9dFdtwmJBwWzMjDQYOOFFvR23H6DcPnQ53oPfe2plpoR6ealDgRMbl+vlZAIB3jtSPurqutceFL8+Kf3xXzsoI+dgIGU62TFN1rL4pOcaKCH+dFSHhlhRjDUzXbT0y+k3v1uJ6eHziTEFhKu30wFDgRMZl9fQ0RFuMqOvsx9ejtPHfeqQePl7AvJx4FKbGhGmEhFxIrqm6gfomyjYReX17QTYA4P8O1Y24uk4QBLz1dS0A4DuLcsIyNrWgwImMS6TFiG/OyQQAvLanctjH8byA/z1QAwC4cVF2WMZGyHCyZGqCSa0IiFJcNTsdMVYTajr6At3Ah7KvvB0lTT2IMBtw3bzMMI5Q+ShwIuN256X5AMTiwYphejptP92MijYHYiNMuG5eVjiHR8gFWMapscsJ3xh72UxEbYcYOOUkRoXtNQkZSpTFhH9ZKN7EvryrYtjH/e6LcgBitik+ivZWHIwCJzJu09JjcXlRKngB+J+Pz1zwfR8v4LlPzwIAbr04FzHUcZbILM0WAZOBg5cX0NITvgLx2k5xapDVWBEip+9fmg+jgcOXZ9vwdVXHBd/fW9aGL8+2wWTg8H3/DTIZQIETmZCHryyCgRNXze043XzO9/7yVTVONdphizDRHx9RBKOBC6xqC2eBeJ3/tXISKONE5JeTGBWoW3r03ZNweQc66fe7ffjPd08AAG65OBe5SdGyjFHJKHAiEzItPRZ3XCIGRQ/+31GcahA70u4rb8cv3z8NANiweiqSYqyyjZGQwQZaEoQncBIEAXX+pd85iZRxIsrw4JqpiIs041SjHf/fOyfg9fFwe3ls+FsxylsdSLNZcf/lU+QepiLR3AmZsIevnIaD1Z04WtuF61/Yg+mZNhyv6wIviA3XbluaJ/cQCQnIjo/EAYQvcOru96DH5RVfmzJORCGSYqx49rvzcOeWr/H2oTocqOyAjxdQ39UPs5HDMzfNQ0I01TYNhTJOZMKsJiPeuHMxVkxNgdvH42itGDRdOzcTv/nufNrQlyhKuLddYYXhKbHUw4koy6ppqXjxewsQbTGipqMP9V39SIq24JXbFmHZZNoaaziUcSKSiIs0Y8sdF+FoXTeq2hwoyohFUbpN7mERcoGsME/VUWE4UbKrZmfgkinJ2H22DWajAUsnJ9FCnlHQ2SGS4TgO83LiMS8nXu6hEDIs1hIgmC0npMBehwrDiVLZIsxYN5t2dQgWTdURQnRlEgucOvtH7JwsFZZxosJwQrSBAidCiK5kxEXAaODg9vJo6XGF/PWoFQEh2kKBEyFEV0xGQ6DOqSYM03WBqTrqGk6IJlDgRAjRHTZdF+rASRCEQMaJisMJ0QYKnAghujMpyR84tTtC+jqtPS64vDwMHG3wS4hWUOBECNGdcGWcWGF4RlwkzEa63BKiBfSXTAjRnbAFTh00TUeI1lDgRAjRnYHAKbRNMKkwnBDtocCJEKI7LJBp63Whz+0N2etQYTgh2kOBEyFEd+IizYiLNAMYmE4LhUDzS+rhRIhmUOBECNGlcNQ5DXQNp8CJEK2gwIkQokuhDpy8Ph4NXU4AtN0KIVpCgRMhRJdCvdlvY7cTPl6A2cghLTYiJK9BCAk/CpwIIboU6oxTdfvANJ3BwIXkNQgh4UeBEyFEl0IdOFX5u5LnJ0WH5PiEEHlQ4EQI0aXBgRPPC5Ifv9ofOOVS4ESIplDgRAjRpcz4CBgNHNxeHi29LsmPX+WfqstLphV1hGgJBU6EEF0yGQ3I8m+8G4peTlVtYsYpjzJOhGgKBU6EEN1i03Ws35JUeF5Atb92igInQrSFAidCiG5NShIDJzatJpUmuxNuLw+TgUNmPLUiIERLKHAihOhWQbKYDaqWOHBi03STEqNgMtJllhAtob9oQohu5fsDp8o2iQMnfyCWm0SF4YRoDQVOhBDdYoFTVbsDgoQdCagVASHaRYETIUS3chKjYDRw6Pfw6HZLd9xA88tkCpwI0RrNBk4dHR24+eabYbPZEB8fj+9///vo7e0d8TkrV64Ex3Hn/Hf33XeHacSEkHAzGw2BlXWtTum2Ralqo6k6QrRKs4HTzTffjJMnT2L79u14//33sWvXLvzwhz8c9Xl33XUXGhsbA//993//dxhGSwiRC8sKtTilOZ7YioB6OBGiVSa5BxAKp0+fxkcffYSvv/4aixYtAgD89re/xbp16/DrX/8amZmZwz43KioK6enp4RoqIURmgcCpX5qMU31XP5weHhajAdkJkZIckxCiHJoMnPbt24f4+PhA0AQAV1xxBQwGA7766ivccMMNwz73L3/5C/785z8jPT0d11xzDf7zP/8TUVHDp9tdLhdcroHtGux2OwDA4/HA4/FI8NMgcLzB/0vORednZHR+hjcpQeyz1NIvzfkpbeoGAOQlRUHgffDwvgkfU0703hkZnZ+Rqen8BDtGTQZOTU1NSE1NPedrJpMJiYmJaGpqGvZ53/ve95Cbm4vMzEwcO3YM//Zv/4YzZ87gH//4x7DP2bx5Mx5//PELvv7JJ5+MGHCN1/bt2yU/ppbQ+RkZnZ8LtXRzAIxodXKSnJ/PG8TjRXnt2LZt24SPpxT03hkZnZ+RqeH89PUF15ZEVYHTI488gieffHLEx5w+fXrcxx9cAzV79mxkZGTg8ssvR3l5OSZPnjzkczZu3IgNGzYE/m2325GTk4M1a9bAZrONeyzn83g82L59O1avXg2z2SzZcbWCzs/I6PwMb363Ey+c2oV2J7DyG5cjKsI6oePtffcUUF2HZbMLse6KQolGKR9674yMzs/I1HR+2IzRaFQVOP3sZz/D7bffPuJjCgoKkJ6ejpaWlnO+7vV60dHRMab6pSVLlgAAysrKhg2crFYrrNYLL7Rmszkkb5JQHVcr6PyMjM7PhbITTYg0G9Dv4dHc68XU2JgJHa/S3/xyarpNU+ea3jsjo/MzMjWcn2DHp6rAKSUlBSkpKaM+bunSpejq6sKhQ4ewcOFCAMBnn30GnucDwVAwiouLAQAZGRnjGi8hRPkMBg55SdE43dSDilYHpmbET+h45S1i25PC1IkFYIQQZdJkO4Lp06fjyiuvxF133YUDBw5gz549uO+++/Dd7343sKKuvr4eRUVFOHDgAACgvLwcv/jFL3Do0CFUVVXhn//8J2677TYsX74cc+bMkfPHIYSEWGGquLLubMvIvd5G0+lwo90hdtKk5peEaJMmAydAXB1XVFSEyy+/HOvWrcOll16Kl19+OfB9j8eDM2fOBIrBLBYLPv30U6xZswZFRUX42c9+hm9/+9t477335PoRCCFhMsWfHTrb4pjQcSraxMArMy4C0VZVJfQJIUHS7F92YmIi3nzzzWG/n5eXB2HQ5lQ5OTn44osvwjE0QojCDAROE8s4lfsDr8k0TUeIZmk240QIIcFigVNFmwM+fvy7/Za1ioHX5BQKnAjRKgqcCCG6l50QCTMnwOXlUdsRXC+XobDCcMo4EaJdFDgRQnTPaOCQ6t8dpbS5Z9zHOeN/7hQKnAjRLAqcCCEEQHqUOEU33jonu9ODus5+AMD0dOma3xJClIUCJ0IIAZDhD5zGm3EqbRKflxEXgbgoZTf6I4SMHwVOhBACID0wVTe+jNNpf+BUlB4r1ZAIIQpEgRMhhGAg41Te2juulXUljeI+V0UZNE1HiJZR4EQIIQASrUCk2QC3l0dl29izTmco40SILlDgRAghAAzcQNBzsiG4XdIZQRBQ4g+cplPGiRBNo8CJEEL8ZmaKQc+J+u4xPa+usx+9Li/MRo72qCNE4yhwIoQQvxkZ48s4sWxTYWoszEa6rBKiZfQXTgghfjMyBjJOg/eyHA0rDJ9O9U2EaB4FToQQ4jclNQZmIwe70xtoZhmM4/6pvRmZVN9EiNZR4EQIIX4WkwFTUsc+XXe0rgsAMDcnPgSjIoQoCQVOhBAyyKwsMWt0siG4AvGmbiea7S4YDVyguJwQol0UOBFCyCAzM+MABJ9xKq7tAgBMTYtFlMUUqmERQhSCAidCCBmEZZyO1XUFVSDOpunm5cSFcliEEIWgwIkQQgaZmRkHi9GAtl43ajr6Rn38MVbflB0f2oERQhSBAidCCBkkwmwMZJ0OVnWO+FieF3CsVqyFosJwQvSBAidCCDnPorxEAMDB6o4RH1fR5kCPy4sIswFTUmPCMTRCiMwocCKEkPMszE0AMHrG6XCN+P3ZWXEwUcdwQnSB/tIJIeQ8i/yB09mWXnT1uYd93P7ydgDA4vzEsIyLECI/CpwIIeQ8STFWFPg362VZpfMJgoC9/sBp2eTksI2NECIvCpwIIWQIo03XVbY50GR3wmIyBB5LCNE+CpwIIWQIF/mn3/b4s0rnY19fOCkBEWZj2MZFCJEXBU6EEDKEFVNTAIh9mtp7XRd8f195GwBg2eSksI6LECIvCpwIIWQIabYIzMy0QRCAnWdaz/kezwvYx+qbCilwIkRPKHAihJBhfKMoFQDw2ZmWc75+ssGOzj4PoixGzKGO4YToCgVOhBAyjFX+wGlXaSs8Pj7w9e2nmgAAy6ekwEz9mwjRFfqLJ4SQYczNjkditAU9Ti8OVQ+srvvkVDMAYM3MNLmGRgiRCQVOhBAyDKOBw0p/kfhHJ8QsU3lrL0qaemA0cIGpPEKIflDgRAghI7hmbiYA4L2jDfD4eLxzuB6AuOouPsoi59AIITKgwIkQQkZw2ZRkJMdY0O5wY8fpZrxzRAycvrUgS+aREULkQIETIYSMwGQ04FsLsgEAd//5MOq7+hEfZcYV06m+iRA9osCJEEJGcdvSXBgNXODftyzJpW7hhOgUBU6EEDKK7IQo3HpxLgAg3RaB25blyjwiQohcTHIPgBBC1OCxa2fikauKYDEaYBiUfSKE6AsFToQQEiSaniOE0FQdIYQQQkiQKHAihBBCCAkSBU6EEEIIIUGiwIkQQgghJEgUOBFCCCGEBIkCJ0IIIYSQIFHgRAghhBASJAqcCCGEEEKCRIETIYQQQkiQKHAihBBCCAkSBU6EEEIIIUGiwIkQQgghJEgUOBFCCCGEBMkk9wC0RhAEAIDdbpf0uB6PB319fbDb7TCbzZIeWwvo/IyMzs/I6PwMj87NyOj8jExN54d9brPP8eFQ4CSxnp4eAEBOTo7MIyGEEELIWPX09CAuLm7Y73PCaKEVGROe59HQ0IDY2FhwHCfZce12O3JyclBbWwubzSbZcbWCzs/I6PyMjM7P8OjcjIzOz8jUdH4EQUBPTw8yMzNhMAxfyUQZJ4kZDAZkZ2eH7Pg2m03xbz450fkZGZ2fkdH5GR6dm5HR+RmZWs7PSJkmhorDCSGEEEKCRIETIYQQQkiQKHBSCavVikcffRRWq1XuoSgSnZ+R0fkZGZ2f4dG5GRmdn5Fp8fxQcTghhBBCSJAo40QIIYQQEiQKnAghhBBCgkSBEyGEEEJIkChwIoQQQggJEgVOKvHCCy8gLy8PERERWLJkCQ4cOCD3kBRh165duOaaa5CZmQmO47B161a5h6QYmzdvxkUXXYTY2Fikpqbi+uuvx5kzZ+QelmL87ne/w5w5cwKN+ZYuXYoPP/xQ7mEp1hNPPAGO4/DAAw/IPRRFeOyxx8Bx3Dn/FRUVyT0sxaivr8ctt9yCpKQkREZGYvbs2Th48KDcw5IEBU4q8NZbb2HDhg149NFHcfjwYcydOxdr165FS0uL3EOTncPhwNy5c/HCCy/IPRTF+eKLL3Dvvfdi//792L59OzweD9asWQOHwyH30BQhOzsbTzzxBA4dOoSDBw/iG9/4Bq677jqcPHlS7qEpztdff43f//73mDNnjtxDUZSZM2eisbEx8N/u3bvlHpIidHZ24pJLLoHZbMaHH36IU6dO4amnnkJCQoLcQ5MEtSNQgSVLluCiiy7C888/D0DcDy8nJwc//vGP8cgjj8g8OuXgOA7vvPMOrr/+ermHokitra1ITU3FF198geXLl8s9HEVKTEzE//zP/+D73/++3ENRjN7eXixYsAAvvvgifvnLX2LevHl49tln5R6W7B577DFs3boVxcXFcg9FcR555BHs2bMHX375pdxDCQnKOCmc2+3GoUOHcMUVVwS+ZjAYcMUVV2Dfvn0yjoyoTXd3NwAxOCDn8vl8+Otf/wqHw4GlS5fKPRxFuffee3H11Vefcw0iorNnzyIzMxMFBQW4+eabUVNTI/eQFOGf//wnFi1ahBtvvBGpqamYP38+XnnlFbmHJRkKnBSura0NPp8PaWlp53w9LS0NTU1NMo2KqA3P83jggQdwySWXYNasWXIPRzGOHz+OmJgYWK1W3H333XjnnXcwY8YMuYelGH/9619x+PBhbN68We6hKM6SJUuwZcsWfPTRR/jd736HyspKXHbZZejp6ZF7aLKrqKjA7373O0yZMgUff/wx7rnnHvzkJz/B66+/LvfQJGGSewCEkNC79957ceLECarBOM+0adNQXFyM7u5uvP3221i/fj2++OILCp4A1NbW4v7778f27dsREREh93AU56qrrgr8/zlz5mDJkiXIzc3F3/72N91P9fI8j0WLFmHTpk0AgPnz5+PEiRN46aWXsH79eplHN3GUcVK45ORkGI1GNDc3n/P15uZmpKenyzQqoib33Xcf3n//fXz++efIzs6WeziKYrFYUFhYiIULF2Lz5s2YO3cunnvuObmHpQiHDh1CS0sLFixYAJPJBJPJhC+++AK/+c1vYDKZ4PP55B6iosTHx2Pq1KkoKyuTeyiyy8jIuODmY/r06ZqZyqTASeEsFgsWLlyIHTt2BL7G8zx27NhBtRhkRIIg4L777sM777yDzz77DPn5+XIPSfF4nofL5ZJ7GIpw+eWX4/jx4yguLg78t2jRItx8880oLi6G0WiUe4iK0tvbi/LycmRkZMg9FNldcsklF7Q+KS0tRW5urkwjkhZN1anAhg0bsH79eixatAiLFy/Gs88+C4fDgTvuuEPuocmut7f3nDu8yspKFBcXIzExEZMmTZJxZPK799578eabb+Ldd99FbGxsoCYuLi4OkZGRMo9Ofhs3bsRVV12FSZMmoaenB2+++SZ27tyJjz/+WO6hKUJsbOwF9XDR0dFISkqiOjkADz74IK655hrk5uaioaEBjz76KIxGI/71X/9V7qHJ7qc//SmWLVuGTZs24Tvf+Q4OHDiAl19+GS+//LLcQ5OGQFTht7/9rTBp0iTBYrEIixcvFvbv3y/3kBTh888/FwBc8N/69evlHprshjovAITXXntN7qEpwp133ink5uYKFotFSElJES6//HLhk08+kXtYirZixQrh/vvvl3sYinDTTTcJGRkZgsViEbKysoSbbrpJKCsrk3tYivHee+8Js2bNEqxWq1BUVCS8/PLLcg9JMtTHiRBCCCEkSFTjRAghhBASJAqcCCGEEEKCRIETIYQQQkiQKHAihBBCCAkSBU6EEEIIIUGiwIkQQgghJEgUOBFCCCGEBIkCJ0IIIYSQIFHgRAghhBASJAqcCCFEhV5//XVs2rQJXq9X7qEQoiu0yS8hhKjMzp07ceeddyI6Ohperxc///nP5R4SIbpBe9URQoiKOBwOzJkzBzfeeCMuu+wyfPvb38bXX3+N2bNnyz00QnSBpuoIIZpQVVUFjuNw++23a/p1H3nkEWRkZOCXv/wlrr76ajzwwAO4/fbbacqOkDChwIkQokgsIBnpv7y8PLmHGXa//e1vsXv3bphMYqXFE088gUOHDgX+TQgJLfpLI4Qo2uTJk3HLLbcM+b34+PjA/8/KysLp06cRFxcXppERQvSIAidCiKIVFhbiscceG/VxZrMZRUVFoR8QIUTXaKqOEKIJI9Ua7dq1C9dccw2Sk5NhtVoxZcoU/Md//Af6+vqCPr7P58OTTz6JwsJCREREoLCwEJs3bwbP8yM+T4rXXrp0KTiOw759+875ut1ux7x582C1WrF9+/agj0cIGT8KnAghmva73/0OK1euxJ49e3D11VfjJz/5CbKzs/GrX/0Kq1evhtvtDuo4P/zhD/HII4+A53nce++9WLt2LZ5++mncf//9IX/tJ598EgDwH//xH4Gvud1u3HDDDTh27Bhef/11rF69OqhjEUImhqbqCCGKVlZWNuxU3cUXX4wrr7xy2OeeOnUKP/nJTzBnzhzs2LEDSUlJge898cQT2LhxI37729/iZz/72Yhj2LlzJ1599VXMnTsXe/bsQXR0NADg3//93zFv3ryQvjYALF++HFdffTU++OAD7Ny5EytWrMDtt9+Ozz77DM8++yy++93vjnoMQohEBEIIUaDKykoBwIj/3X///Rc8fv369YGv/eQnPxEACLt27brg+D6fT0hJSREWLlw46ljuuOMOAYDw97///YLv/eIXv7jgdaV8bebYsWOCwWAQLr30UmHDhg0CAGHjxo1BP58QIg3KOBFCFG3t2rX46KOPxvXc/fv3AwA+/vhj7Nix44Lvm81mlJSUjHqco0ePAgAuu+yyC7431NekfG1m9uzZuOWWW/DGG29g9+7duPPOO7Fp06agn08IkQYFToQQzero6AAA/OpXv5rQcbq7u2EwGJCcnHzB99LS0kL62oOlpKQAAGJjY/HCCy9IdlxCSPCoOJwQolk2mw2AuPpMEIRh/xtNXFwceJ5HW1vbBd9rbm4O6Wszzz//PJ566imkpaWhp6cHr7/+etDPJYRIhwInQohmLVmyBMDAtNl4zZ07FwDw5ZdfXvC9ob4m5WsDwN/+9jfcf//9WLVqFY4cOYK4uDg8/vjjY2ppQAiRBgVOhBDN+tGPfgSTyYQf//jHqKmpueD7XV1dOHLkyKjHufXWWwEA//Vf/wWHwxH4en19PZ577rmQvvaOHTtw6623Yvbs2di6dSsyMjLw05/+FI2NjcO+NiEkdDhhLLliQggJk6qqKuTn54+45QogbnobERERePz69euxZcuWwPdfeeUV3HPPPTCbzVi3bh0mT56Mnp4eVFRU4IsvvsDtt9+Ol156adTx3HnnnXjttdeQn5+PG264AS6XC2+99RYuvvhivP/++xe8rhSvffjwYaxcuRJJSUnYu3cvMjIyAIjTf/n5+fD5fKioqEBiYuKo4yeESCT8C/kIIWR0wbQjACB0dnae8/jz2wIIgiAcOHBA+O53vytkZmYKZrNZSE5OFhYsWCA88sgjwunTp4Maj9frFTZv3iwUFBQIFotFKCgoEDZt2iSUlZUN+7oTee2ysjIhLS1NSEpKEkpKSi74/pNPPikAEB588MGgxk8IkQZlnAghmlBSUoLp06fjhz/8IX7/+9/LPRxCiEZRjRMhRBPKysoAANnZ2TKPhBCiZdTHiRCiaqWlpXj11Vfx5ptvwmAw4LrrrpN7SIQQDaOMEyFE1U6dOoXnnnsOCQkJ+Pvf/445c+bIPSRCiIZRjRMhhBBCSJAo40QIIYQQEiQKnAghhBBCgkSBEyGEEEJIkChwIoQQQggJEgVOhBBCCCFBosCJEEIIISRIFDgRQgghhASJAidCCCGEkCBR4EQIIYQQEiQKnAghhBBCgkSBEyGEEEJIkP5/mVPE7KmN6d0AAAAASUVORK5CYII=\n" }, "metadata": {} } ], "source": [ "# Definimos el dominio y la imagen\n", "x = np.linspace(0, 2*np.pi, 500)\n", "y = np.abs(np.sin(x))+np.cos(5*x)/1.2\n", "\n", "# Graficamos la función\n", "plt.plot(x, y)\n", "plt.xlabel('Eje de $\\hat x$', fontsize = 14)\n", "plt.ylabel('Eje de $\\hat y$', fontsize = 14)\n", "\n", "plt.grid()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "id": "AM5Ya2w8OKiI" }, "source": [ "Ahora quiero los picos más grandes nada más.\n", "\n", "¿Que parámetro los caracteriza como para que ```find_peaks``` encuentre solo esos?\n" ] }, { "cell_type": "markdown", "metadata": { "id": "3kCEzuC5QVuR" }, "source": [ " ### Respuesta ***(¡Animense a contestar dale!)***" ] }, { "cell_type": "markdown", "metadata": { "id": "2vZEUSdfQb0K" }, "source": [ "**Hay varias cosas que podríamos usar:**\n", "\n", "\n", "* La altura de los picos.\n", "* La distancia entre los picos (en índices)\n", "\n", "**Si utilizamos la altura de los picos obtenemos:**\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "id": "MZbO5JqXQ09y", "colab": { "base_uri": "https://localhost:8080/", "height": 606 }, "outputId": "d579a1c3-f7a6-4dfe-bb19-b84c61b36f1b" }, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "<>:7: SyntaxWarning: invalid escape sequence '\\h'\n", "<>:8: SyntaxWarning: invalid escape sequence '\\h'\n", "<>:7: SyntaxWarning: invalid escape sequence '\\h'\n", "<>:8: SyntaxWarning: invalid escape sequence '\\h'\n", "/tmp/ipython-input-819487722.py:7: SyntaxWarning: invalid escape sequence '\\h'\n", " plt.xlabel('Eje de $\\hat x$', fontsize = 14)\n", "/tmp/ipython-input-819487722.py:8: SyntaxWarning: invalid escape sequence '\\h'\n", " plt.ylabel('Eje de $\\hat y$', fontsize = 14)\n" ] }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAG8CAYAAAAo6yp6AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAgJJJREFUeJzt3Xd8HOW1P/7PbFVd9S5ZxbIt94qNDbgEbIMJgSSXwA3F1HwhcANxgIvv7yZACobc0BJaIBhDEm7IJcEEMMUYjHHDuMhdVu+9rtrWmd8fs89KtlVW0uxOO+/Xi1diaXf20Wg1e+Y85zkPJwiCAEIIIYQQMiqD3AMghBBCCFELCpwIIYQQQgJEgRMhhBBCSIAocCKEEEIICRAFToQQQgghAaLAiRBCCCEkQBQ4EUIIIYQEyCT3ALSG53nU19cjOjoaHMfJPRxCCCGEBEAQBHR3dyM9PR0Gw/B5JQqcJFZfX4+srCy5h0EIIYSQcaipqUFmZuaw36fASWLR0dEAxBNvs9kkO67b7cann36KNWvWwGw2S3ZcraDzMzI6PyOj8zM8Ojcjo/MzMjWdH7vdjqysLP/n+HAocJIYm56z2WySB04RERGw2WyKf/PJgc7PyOj8jIzOz/Do3IyMzs/I1Hh+RiuzoeJwQgghhJAAUeBECCGEEBIgCpwIIYQQQgJEgRMhhBBCSIAocCKEEEIICRAFToQQQgghAaLAiRBCCCEkQBQ4EUIIIYQEiAInQgghhJAAUeBECCGEEBIg2nKFkHOUlJRg8+bNqKysRE5ODm677TZMmTJF7mERQhSopKQEf/7zn/HWW28hLy+Prhc6QIETIYO8/vrruOOOO8BxHARBAMdx+O1vf4vXXnsNt9xyi9zDI4QoCLteMHS90AeaqiPEp6SkBHfccQd4nofX6z3rf2+//XaUlpbKPURCiEIMvl6w/+h6oQ8UOBHis3nzZmCYXbE5jsNrr70W4hERQpRq8+bN4Oh6oUsUOBHis+vwKfA8P+T3BEFAZWVlaAdECFGskrJyeHlhyO/R9ULbKHAiBMCpejtOdVsBDH8HmZOTE9IxEUKUq9wRMez3BND1QssocCK6JwgCfvHeCUTMumyYsAngeQG33357SMdFCFGmXcUtaEpdCmC4jBOPS678QWgHRUKGAieiezuLW3CwqgO2lEl4+vmXYDAYYDQa/f8LjkP8FT9BlzlB7qESQmQmCAKe/LgI5vgMXPOTX8FgMPj/MxqN4DgDEq64D/8o9cg9VBIk1I6A6N7LO8sAADdeOAn3X3k5vr3mW3jttdf8fZxa0pfhszoDXt1VjoU3LZR5tIQQOe0ta8PJejvCzUZs/vmDaPx/38PPf/5zGI1G5OXlYc13/x23vVuDHUXNKG7qxtSUaLmHTCRGgRPRteKmbnxd0Q6TgcOtF+UCAPLz87Fp0yb/Y0qauvHZM7vwyalG1Hb0ITNu+NoGQoi2vb6nAgBw3QVZiIu0ICo/HzfddBPWrVsHs9kMAFh7xo2PTzbiL/ur8MurZ8k5XBIENFVHdO3/DtYAAFYVJCM9NnzIx0xJicbSvAQIAvDPw3WhHB4hREGaux344kwLAODGC7OHfdwPl0wCALxXWA+H2xuSsZHQocCJ6JaXF/DukXoAwLULM0d87L/5vv/OoVoIwtAFoYQQbXvvSD28vIAFk2KRnxw17OMuyk9EWkwYuvrd+LyoOYQjJKFAgRPRrUNVHWjtccIWZsLKackjPvaK2akINxtR3d6HE3X2EI2QEKIkH59sBAB8d37GiI8zGjh8Z146AOCjE41BHxcJLQqciG597LugXTYjBRbTyH8KERYTVk5LAgB8dKIh6GMjhChLW48Th6s7AIjXjNFcPjMVAPD56SaartMYCpyIbm0/LQZOa30XuNFcPkt83Ccn6Q6SEL35vKgZggDMTLchLWboesjB5mbGItUWhl6XF/vL20IwQhIqFDgRXapu60NNez9MBg4X5ycG9JxVBckwcEBZSy/qO/uDPEJCiJLsOC3WKl06ffRsEwAYDBxWTBWz1HtKW4M2LhJ6FDgRXdpTJl7I5k+KRaQ1sK4ctjAz5mbFAgB204WQEN1wuL3YVSKuplsdYOAEAMvyxaa5e0op46QlFDgRXWKBz0UBZpuYS3yP311CgRMhevF1RTv6XF6k2KyYlWEL+HnLJovXi1MNdrT1OIM1PBJiFDgR3eF5AfvKxDvAsQZO7PF7SlvBD7MzOiFEW/b6MtQrpiaB44bb0fJ8SdFWFKSKncP3UZ2TZlDgRHTndKMd7b0uRFqMmOebegvU/ElxiLAY0dbrQlFjd3AGSAhRlAMV7QCAJblj369y8M0W0QYKnIju7PXVGyzOjYfZOLY/AYvJgCW58QCA3aUtko+NEKIs/S4vjtd2ARCvGWN1EdU5aQ4FTkR3vq4QL2Cs/mCsLp4irpTZW0YXQkK07kh1Bzy8gLSYMGTGjd6G4FyLcxNgNHCobu+j1bgaQYET0RVBEHCkuhMAsCA7blzHuCBHfN6R6k7afoUQjfvaN023ODd+TPVNTJTVhGkpYp1TYU2nlEMjMqHAiehKbUc/2npdMBs5zEwPfHXMYAWpNlhNBnT1u1He2ivxCAkhSnJgUOA0XvMmxQKgwEkrKHAiusIuXNPTbAgzG8d1DIvJgDmZMQCAw1UdUg2NEKIwLg/v32ZlyUQCJ98iFAqctIECJ6Ir7MI11tV055o/yTddRxdCQjTrZH0XnB4ecRFmTE6KGvdx5vuuN8dru+Dx8hKNjsiFAieiK1IFTgt8qXfKOBGiXcfrxNV0c7Nix1XfxExOikK01YR+txfFTT1SDY/IhAInohtuL48TvguhVBmn4qZu9Dg9Ex0aIUSBjvnaEMzJjJ3QcQwGDnOyxOl9mq5TPwqciG4UNXTD6eERE25GbmLkhI6VYgtDRmw4eAE4RhdCQjTpWG0nAGBORsyEjzVQ50RZarWjwInoRqHvIjjRtDvDVspQnRMh2tPr9KC0WZxWm50pReAkZqkp46R+FDgR3ThVL6bdZ49hk86RsLtQNv1HCNGOUw128AKQYrMixRY24ePN9l0vylp64XB7J3w8Ih8KnIhunGoQ95abniZN4DQzPcZ3XLskxyOEKIdU9U1Mis2KuAgzvLyAEioQVzUKnIgueHkBZxrFAEe6wEk8TlVbH+wOtyTHJIQog5T1TQDAcZz/2nOabrZUjQInogtVbb1wuHmEmQ3ISZhYYTgTF2lBeoyYwj9dTxdCQrSEbewrRX0TU5DqC5wa6XqhZhQ4EV047Zumm5YSDaNh4oXhzAzfdN1JCpwI0Ywep8e/ndJsiTJOADA9TdyzjjJO6kaBE9EFdqGSapqOmeGbrqPAiRDtONMo3mglR1uREGWV7LgDU3XdtEG4ilHgRHQhWIETq3OiAnFCtKPIN5VWIPH1YkpKFIwGDl39bjR0OSQ9NgkdTQdOu3btwlVXXYX09HRwHIetW7eO+PidO3eC47jz/mtsbAzNgEnQsMCpIDVa0uOywKmkqRtODy0xJkQLitgKXImvF1aTEZOTxBpLmq5TL00HTr29vZg7dy5eeOGFMT3vzJkzaGho8P+XnJwcpBGSUOjqc6Ped3cn9R1kRmw4YsLN8NASY0I0g03VFaRJGzgBA1nvIt9rEPUxyT2AYLriiitwxRVXjPl5ycnJiI2NlX5ARBYs7c6CHClxHIcZaTbsK2/D6QY7ZklYSEoICT1BEPyr3tgqOClNT7PhvcJ6mt5XMU0HTuM1b948OJ1OzJo1C48++iguuuiiYR/rdDrhdDr9/7bbxT8Gt9sNt1u63j7sWFIeU0tGOj+nG8RlxfnJkUE5f/nJkdhX3oaihi643amSH18K9P4ZGZ2f4ent3NR39qPb4YHJwGFSrHXUn3us5ycvIRwAUNLYrYtzqqb3T6Bj5ASdlPZzHId3330X11xzzbCPOXPmDHbu3IlFixbB6XTiT3/6E/785z/j66+/xoIFC4Z8zqOPPorHHnvsvK+/9dZbiIiIkGr4ZAL+UWHArkYDvpXG4+ocXvLj723i8Ha5EdNjedw1XfrjE0JC50QHh1eLjEiLEPDwXOnrFtscwC+PmGDkBPzPEi+M0nVHIRPU19eHH/7wh+jq6oLNNny2kQKnUaxYsQKTJk3Cn//85yG/P1TGKSsrC62trSOe+LFyu93Yvn07Vq9eDbNZ2ukmLRjp/KzfchB7y9rx+DUzce3CDMlf+1BVB67/0zdIiwnDrgeWS358KdD7Z2R0foant3Pz0pflePqzUnxnThqeunb2qI8f6/nheQFzf70DDjeP7fdfJFlDXqVS0/vHbrcjMTFx1MCJpupGsXjxYuzevXvY71utVlit5/f5MJvNQXmTBOu4WjHU+Slv6QMATEuLCcq5m54h7nre0OVAvxewhSn390Pvn5HR+RmeXs5NcbPY+HJGxtiuF2M5P3mJUTjVYEdluxNTUmPHM0zVUcP7J9DxaXpVnRQKCwuRlpYm9zDIONkdbjTaxRV1+clRQXmNmHAzUn27p9PKOkLUja2omyZxK4LBpqSI16KSZlpZp0aazjj19PSgtLTU/++KigoUFhYiPj4ekyZNwsaNG1FXV4c333wTAPDss88iNzcXM2fOhMPhwJ/+9Cd8/vnn+PTTT+X6EcgElTWLgUxytFXyFXWDTU2NRqPdgeKmbizMjgva6xBCgsft5VHh22plakrwAqf8JDFwKm2mGy010nTgdPDgQaxatcr/7w0bNgAA1q9fjy1btqChoQHV1dX+77tcLvzsZz9DXV0dIiIiMGfOHHz22WdnHYOoC7swBSvbxExNjsKu4hYUN9EdJCFqVdXWBw8vIMJi9G/gHQzselRGgZMqaTpwWrly5Yj7AW3ZsuWsfz/00EN46KGHgjwqEkqlLSEKnHxpfQqcCFGvUt/UWX5yFDgueMvd2PWotLkHgiAE9bWI9DQdOBFS6qs5mhLswCmFBU50BzmUZrsDv9l2GttPNcFiMuD6Cybhp6unwGoyyj00XdhV3ILfflKEM43dmJwUhZ+tmYbVM1LkHpbi+DPUScG9XmQnRMJk4NDr8qKhy4H02PCgvh6RFhWHE01jGafJQQ6cWGDW0u1ER68rqK+lNg1d/fi3l/fhvcJ69Lm86Oxz4+Uvy3DHGwfh9lLfq2B7/2g9bnn9AE7U2eH2Cihq7Madbx7E/x6oHv3JOlPCAqeU4F4vLCYDshPEPn9U56Q+FDgRzXK4vahpF1sRBHuqLtJqQobvrrGshS6EjJcXcN//FqK6vQ/ZCRH4+/9bit//+3xEWIz4qqQVz35WLPcQNa28pQcPvXMMvAB8d34GPv3pctywZBIA4OdbT+B4bZfMI1QWFsRMSQ5eYTgzeLqOqAsFTkSzqtr6wAtAdJgJSVHn99qSWp5v1/Pylt6gv5Za/O+BahyobEekxYg3b1uMxbnx+M7cdPz23+YAAF7aWUYfHEH0yL9Oot/txbLJCXjq2rmYmhKNX18zC+tmp8LDC3jwnaPgeV30QB4Vzwv+m55g32gBwGTfdGB5K73/1YYCJ6JZbFlxbmJkSIov2YWwjC6EAIA+lwfP7SgBADy4dhqyB3VI/vacdFw2PRm8ADy9/YxcQ9S0vWWt+KqkFWYjhye+NwcGg/g3wHEcfnPNbESHmVDU2I33jtbJPFJlqOvsh8PNw2IyICsu+DVHOYni30Nla1/QX4tIiwInolmVbQOBUyiwjFNZM2WcAOD/DtaipduJrPhw/HBJ9nnff2DtNADARycaUd1GHx5Se3VXOQDg+gsmYVLC2ftmxkVacNeKyQCAF78oG3H1sV6wZpR5iZEwGYP/0Zjnuy6xGzyiHhQ4Ec2q8E2ZhWovqLxESr0zPC9gy95KAMCdl+TBYjr/UlOQasPyqUkQBOAvX1eFeITaVtnai53FLeA44PaLc4d8zE1LsxFpMaKkuQe7S1tDPELlYV3/QzFNBwxknOq7+uFwS7+ZMAkeCpyIZlX4Mk4sExRs7HWq2/p0v1psX3kbKlp7ER1mwvcXZA77uJsvFDNR7xyq1f05k9I7h2ohCMCKqUn+D+hz2cLM+LeF4u/mL/spcA1lfRMAJERaEB1mgiAA1e2UcVUTCpyIZrEUeKgyTqm2MISbjfDwgn81n17943AtAOA7c9MRaR2+XdzKaUlIiLSgvdeFPZT1kIQgCP66JRYYDef6xeIKu8+LmtHZp+82Gux6kRfkHk4Mx3H+MgKarlMXCpyIJvU4PWjpdgLAsHfcUjMYuIE6Jx2vrOtzefDxiUYAwPdGyDYBgMlowLfniJto/6uwPuhj04PCmk7UtPcj0mLEpQUjN7mcnmbD9DQb3F4BHxxrCNEIlckfOIXoegEM3NRR4KQuFDgRTar0XYgSIi1B3dz3XOxutVzHvZx2l7Siz+VFZlw4FkyKHfXx356bDgDYUdQMD03XTdjnRc0AgFUFyQi3jN6Z/ep54vn/9FRTUMelZF39brT2iBm3UN1oAQMLVyopcFIVCpyIJvmn6UJ4EQQG7lb13Mtpx2nxg/uy6SkBtYFYMCkOcRFmdPW7cbCqI9jD07wvi1sAAKumJQf0+Mumi1mp/WVt6HF6gjYuJWOBS3K0FVEjTC1Ljabq1IkCJ6JJg3s4hZK/CaZOV9bxvIAdvozHpdMD++A2GjisKhAfu+O0frMeUmjtceKYrxv4JVMTA3rO5KRI5CREwOXlsbukJZjDUyy5rhcUOKkTBU5EkypluhD6m2DqNON0rK4LrT1ORFlNWJKbEPDzVvqyI3vL2oI1NF34yhf4zEy3ITk6LKDncByHS31Zp8982UK9KW8N7QpchmXEm7ud6NVptk+NKHAimsRaEYRqRR3DArX2XpcuVyl95quTWTE1acjeTcO5MDceAHCqwY6uPndQxqYHX54RA6cVU5PG9DyWHfy8qBleHW7BIlfGKSbcjPhIy1ljIMpHgRPRpEp/jVPEKI+UVqTVhLQY8U5fj1mnsU7TMcm2MOQlRUIQgAOV7cEYmubxvIBdJWJLh7EGThfkxMMWZkJ7rwuFNZ1BGJ2yVfim1nMTQ9OKYLAcX1f3KuqerxoUOBHNsTvc6PBlLSbFhzZwAgZv9quvOqf2XhdON9gBAMvH+MENABfmiVN7+8tpum48ihq70d7rQqTFiAXZcWN6rtlowCVTxN/ZXp310xIEwb/LQKgzTgD8ezhSE0z1oMCJaA5rPhkfaUF0WOhaETBs6xW9ZZwOVIgBz5TkKCRGWcf8fAqcJuZwtbgicf6kOJjHsdfakjxxuvTrCn1l/Fq6neh1eWHg5LnRyvK9JgVO6kGBE9EcFjhlyXARBPSbcdpfLn7gsg/gsaI6p4k57GvlMNZsE8OK+Q9Vdehq+xtWGJ4VHzGmujypsGBN77sNqAkFTkRz2J2bHHePwKAmmDor9mSZCpY5GqtkWxjyEsU6p68rKOs0VizjFEjT0aFMSY5CfKQF/W6vv6WBHshVGM5MooyT6lDgRDRnIHAKl+X1cwfVLPA6WaHU1edGUaNY37Q4d3wZp8HPPaLDAuWJaOtxotJXXDx/0vgyTgYDh8U54vnX03SpUgKnus5+6pyvEhQ4Ec2pbu8HIF/GKT02DCYDB5eHR6PdIcsYQu1AZTsEQZymDLR/0FDmZMYCAI7VdkozMJ04XN0JQMwaTWSLIT3WObEu/6Hco26w5GgrLCYDvLyAhi59XC/UjgInojly1ziZjAb/a1e26WO67mtfhmIsTS+HMiczBgBwrLYLgqCPbJ0U2DTdwnHWNzH+OqfKdt3UOcnZigAQM31ZcWJ2nKbr1IECJ6IpXl5AbYe8NU4AkO3rzVKtk94s3/gKk5dMYJoOAKamRMNiMqDb4aG+NmNwiBWGj3OajilIjYYtzIRelxdFDd1SDE3RPF7eH6zkhrhr+GBU56QuFDgRTWmyO+D2CjAbOaTFyFPjBADZ/oyT9i+ETo8Xp+vF+qb54yxMZiwmA6an2QCI27eQ0Xl5Acd9xdwTPf8GA4e5WeIxCnUwXVrX2Q+3V4DVZECabfxTzBNFvZzUhQInoik1HWJ9U2ZcBIwGTrZxsAthlQ6m6ooauuHy8oiLMEuS5ZvLpuuoQDwgFa296Hd7EW42+ld0TsR8X+B0VAfnn618zUmIhEHG64W/l5MObrS0gAInoimsMFyu+iaGbfWih4wT26JjblYsOG7iHz6zM3yBE2WcAnLK1629IC1akpsFf8ZJB4FTlUxbM52LpurUhQInoik1HfK2ImD8qfe2Xs0XObPMxDzfB+5EsQ/uk3VdutxwdqxO+aZJZ/imOCeKnf+ylh7YHdpuRCr3ClyGAid1ocCJaEqNQi6EmXHh4Dig1+VFa49L1rEE2+CMkxQmJ0Uh3GxEr8uru+7r48EyTjPSpQmcEqOsyIwLhyDAXzulVdXtYsZpUoJ8heEAkOW70evqd1PXfBWgwIloCqtxkjtwspqMSPcVp2u5zqmrz+2vE5nn68E0UUYD5w8CWFBAhid1xgkYyB5qfbqOrdzMlvl6EWEx+fd3ZFlzolwUOBFNYRcduWucAH3UOR31rbzKTohAXKRFsuNOS40GAJxp1P6S+IlotjvQ2uOEgQMKUilwGgueF/xTY6x9iJxYeQFN1ykfBU5EMxxeoL1XTHMrIXAaXOekVay+aa5E2SZmWooYOBU3UeA0kpO+jFxeUhTCLUbJjjtXByvrmrudcHp4GA0c0mPlrYkEqM5JTShwIprR5tutIC7CDFvY+LedkEpOgvYzTifqxRoY1vFbKizjVEQZpxEFY5oOAGam28BxYnDR0u2U9NhKwQKUjNhwmI3yfxRS4KQe8r9bCJFIm1Ncii13fRMzKV77vZykLkxmCnyBU21HP3qcHkmPrSXBOv8RFpN/77bTGg1e2d+lUq4XLEteQ4GT4lHgRDSDZZyUME0HaL/Gqavf7V/FKHXGIzbCghSbWCxLdU7DK/adG5ahk9KMdDGLyLJaWsMyO5MUUN8EUMZJTShwIprR5lBaxkkcR1e/G5192mtJwD5QM2LDERshXWE4M5XqnEbk9vKo8K1oZOdKSjN9WSztZpyUsaKOYQFcXUc/PDrZYFmtKHAimtHmK8XIjFPGhTDCYvJnTbS4Ye1JX33TTImniZgCWlk3oqq2Xnh4AZEWI9JjpN9nbaa/JYQ2z3+VglbUAUBKdBjMRg4eXkCTRuvKtIICJ6IZHS4x45QRJ/8KGSbbV+dUqcE6J1ZfMzNd2sJwZppveX1RozaniiaqpElsDpqfHCXJVjfnYtOvlW19cHglP7zsqv01TvI2v2QMg1b31dJ0naJR4EQ0o8N3k5YRK98u5+did7NazDj5V3SFIOOk9W1rxqOkmQVO0k/TAUBClBWpNvFvqV5jcb/d4UaHr0O3UmqcAHHaGwDqOvtlHgkZCQVORBPs/W44vOJdtxJ6sjA5idrMODncXv8Hd7Cm6sRMCtDR59b8tjXjUeo7/1NSooL2Gux3W9srfUZLTtW+G5mESAuirCaZRzPAHzh1UOCkZBQ4EU2o7xKX1MVFmBFhUc6FkGWcqjWWcSpu6oaXFxAXYUZaEOprACDMbESmb9qV9qw7nz/jlESB01gpbUUdw+ozaylwUjQKnIgmsNR2uoKm6QAgJ4FlnLQVOBX5CoZnpNuCUl/DTPYFBWw/PCLy8gLKWoKfcWLTsPV92gqclLaijmH1mTRVp2wUOBFNaPBlnNjGukrB7mhbe5yaauR4xtciYFpKcKbpmLxEMSgoa6aM02A17X1weXhYTYagriJlBfqN/WKwphXV7b7C8ARlFIYzVOOkDhQ4EU2o6/QFTgrLONnCzIj3bX6rpQ7iZ/yNF4OX7QCAvCTxg40yTmdj03STk6JgNAQvGzQpPgJWkwFuntPU9JF/qk5hGSc2NV3X0Q9eQ4Gq1lDgRDSh3neHlqGgwnBGi3VOLOMUjMaLg7GpujKqcTpLKArDAcBo4JCfLAavxU3a+R34p+oUVuOUGhMGAwe4vDxae6iXk1JR4EQ0od4/VaesjBMwUEehlTqn9l6Xf+PXKUEPnMQP7Zr2Pjg9GmwmNE4skJwcxMJwZmqy+BrFGpkudXl4/42W0mqczEaDvwVELU3XKRYFTkQT6hU6VQcM1FGwugq1Y1ugZMWHB30pd1K0FdFWE3hBWxm7iar0TV3mJga/RodlFUs0knGq6+wHLwDhZiOSoq1yD+c8tLJO+ShwIqrn9HjR7MuAKKmHE8PuarXSBLPYXxge3GwTAHAc569zoum6AawvWGgCJ5Zx0sbWK1X+juERQV0ROl4ZcdTLSekocCKq1+ibpjMbBMRHmGUezfm01j2cFYYHu76JGahz0kbGbqLsjoGGoDkhCJym+KbqKlrFlXxqV+MrDM9S2DQdM7CyThvXCy2iwImoHrszi7NAkXeQrCVBQ1e/Jj54/Bmn1NAETpRxOhubpkuKtoak63WqzYpwowAPL6C8Vf2/A6UWhjOZlHFSPAqciOqxIsp4qzKX7yZFWRFhMYIXgNoOdd9FCoIQ8oxTHmuCSRknAEAFq28KUQ8ijuOQ6osx2O9ezaralR04sak6qnFSLgqciOqxFTJxyqvzBCB+8LB+MVUq3/W8ye6E3eGB0TBQexRs7HW0tt/feFWEsDCcSYsQb0pYtlHN2CIDpfVwYgY3waTNrZWJAieiev6pOoVmnICBi7TaV4YVNdoBiB/aVpMxJK/Jzl1nnxudfbTZL5uqC0V9E5MWLv5tnWlU91SdIAj+5pfZCusazrAFLn0uLzr73DKPhgxF04HTrl27cNVVVyE9PR0cx2Hr1q2jPmfnzp1YsGABrFYr8vPzsWXLlqCPk0xMfRebqpN5ICPQSoF4qOubACDCYkKyb9m42s+fFAYyTqHLmKT7Mk5nmuwhe81gaOlxot/thYFTZrNcQNzcmrVJoOk6ZdJ04NTb24u5c+fihRdeCOjxFRUVuPLKK7Fq1SoUFhbi/vvvxx133IFPPvkkyCMlE6GKjJNGejmxjEMoWhEMxjZLVvtU50QJgjAocAp+80uG1TjVtPejV8V7LrKMb1pMOCwm5X780co6ZQv+kgwZXXHFFbjiiisCfvzLL7+M3NxcPPXUUwCA6dOnY/fu3XjmmWewdu3aYA2TTADPC/7ml3EWmQczAq30cioO0VYr58pOiMCBynZU6XzPuo4+N+wOMXAJZXFzlBlIirKgpceFkuYezMuKDdlrS0npK+qYzLhwFNZ0UsZJoTQdOI3Vvn37cNlll531tbVr1+L+++8f9jlOpxNO58CeQna7mMp2u91wu6Wbn2bHkvKYWtDS7YTLy8PAAbEW5Z6f9Bgxqqtu74PT6YIhiBuzDkWK94+XF1Dia4I4OTEspOc609cRvry1Jyivq5a/r5LGLgDi1kJG8HC7g9/egp2T/KRItPS4cKquAzNTlVkfNJqKFl/X+zjp3r/BeO+k2cSpuuq2XsW/J0ejlr8tIPAxUuA0SGNjI1JSUs76WkpKCux2O/r7+xEefv6c+KZNm/DYY4+d9/VPP/0UERHS39Vs375d8mOqWWU3AJhgMwswGpR7frw8YIARTg+Pv733EWJlqseayPlpdQAOtwkmTsCJ/V/iVAhjv/ZWDoARhaV12LatOmivo9T3D3OgRTwPkUIftm3bFtLXtvS3ATBg+9cnENl0LKSvLZV9JQYABvQ1V2PbtipJjy3le6ejUfw9HzlTiW1cuWTHlZPS/7YAoK8vsBkBCpwmaOPGjdiwYYP/33a7HVlZWVizZg1sNptkr+N2u7F9+3asXr0aZrPyumPLZdvxRuDEMeSlxAJoU/T5eab4K9R09CN//oVYnBMf0teW4v3zxZkW4MgRTE6OxrevXCbxCEc2qc6ON0r2o0ewYt26lZIfXy1/X6WflwKl5VgwNQvr1s0MyWuyc7NiQQG+3FYMPjoZ69YtCMlrS23LK18D6MLqpfNxxaxUSY4ZjPdORHEL3qk4Ao81BuvWLZXkmHJRy98WMDBjNBoKnAZJTU1FU1PTWV9ramqCzWYbMtsEAFarFVbr+ekDs9kclDdJsI6rVk2+rSdY0zgln5+cxEjUdPSjrssl2xgncn6q2sVasvyU6JCPPy9FvAlp6XHBxXOIDFLHbCW/fwCgrlMsC8hOjAr5OKemir+D8tZeRZ+jkdT4aobykm2S/wxSvneyE8UawrrOftWe63Mp/W8LQMDjU+6yAhksXboUO3bsOOtr27dvx9Kl6o74tYytqEuPUebS4sHU3suptFlcUcf2jgulmHAz4nz7EKq9wH4ianyd57PiQl/cnO9rRFrb0Q+H2xvy15+oHqfHv8ffJIUXh7NVdXaHB90O5dcG6Y2mA6eenh4UFhaisLAQgNhuoLCwENXVYo3Exo0bcfPNN/sff9ddd6G8vBwPPfQQioqK8OKLL+Lvf/87fvrTn8oxfBKAOl/X8HRf8bCS+Xs5qXRJPdsrLj859IETMNCwsErHHcRZ80Y5ul7HR1oQG2GGIKhz30B2wxIXYYYtTNmZj0iryX+jwK5xRDk0HTgdPHgQ8+fPx/z58wEAGzZswPz58/GLX/wCANDQ0OAPogAgNzcXH374IbZv3465c+fiqaeewp/+9CdqRaBgdb5WBBkqCJwmxft6Oanwg18QBJS2sIyTPCuq1B54TpTD7UWTXZyqy5IhcOI4Dvm+bCPLPqoJ66E2SaEdw8/l37OunQInpdF0jdPKlStH3OtnqK7gK1euxJEjR4I4KiKlOt/URXpMOEpkHsto1PzB397rQmefGxwH5IWw8eJgLONUqdNeTqynT9SgbESo5SdH4WBVB8pUGTj5ejgpdI+6c2XEhuNEnZ0yTgqk6YwT0bZux0AzQDVM1Q3ec62rX111CyzDkBEbjnBLaPaoOxc7f6zOR2/Yz50ZFw6OC20fMIbVt5W1qC94rVL45r7nyvTVsVHgpDwUOBHVYh3DYyPMQVtlJaVIqwmJUayxnbo+/NkHpVz1TQCQxaYudNpNuUbG+iaG/f7VOVXnO38KLwxnWIF4rU5vFJSMAieiWmwfJzWsqGMGpuvUdcfOPijzZVhRx2T6Aob6zn54eeXuSxgsLNiWo76JYYFTRWsvPN7gdy2Xkn+7FZVknFiNE6vjJMpBgRNRLX9heJyKAieV7lnnLwyXMeOUaguDycDB7RXQZNffhwmbqpMz45QRG44wswEuL+/viaQGbi/vn/LKVktxuC/jVE9TdYpDgRNRLdbDiV1g1IBNE6huqq5Z3lYEAGA0cEiP1e90XbVvdZWcgZPBwPkXB6hpuq6h0wEvL8BqMiA5Wqb9jsaIXddaup2q7JulZRQ4EdVid5BqCpzUOFXX5/L4z7UczS8Hy/RlF2tUuDJxIgRBQG07m6qT9/2uxjon9veWFR8R8g22xys2woxws7gQo7FLfxlWJaPAiagWS2GraapuoJeTej74y32F4fGRFsRHWmQdC+uYrbeMU2efG91OcQVppgxdwwebrMJeTmqrbwLEvlkDdU76er8rHQVORLX8262oMOPUYHfA6VFH+r1M5saXg2XG6XOlEatvSo62IswsTzsIhmWc1NQ9XG0r6hh2baPASVkocCKq5PbyaOpmXcPVEzglRFoQaTFCEIAalXQEVkJ9E5Ppm6bSWy8nObdaOZc/cGruGbHBsJKwbXrUlHECBq5tdTrLsCodBU5ElRq7HBAEwGIyIDFK3umjseA4zr/lQ7VK6pwGtlqRP3DS61Rddbv8rQiYnMQIGDig2+lBc7dT7uEExD9Vp5IVdQzbSooyTsqi/K6B5CyCIOCLM804UNGOpCgrvjMv3d9UUU9qB62ok6uL8nhlx0fgdINdNS0JyprFAE/OVgQMq+9p6HLA4+VhMurj3o9lJ5UQOFlNRmQnRKKitRelzT1IsSm7a78gCKqdqmM1TnptScDzAj4vasY3le1IiwnDdxdkIiZc/g2aKXBSEQ8P3Pu3o/j0VLP/a89/UYrnfzgfyyYnyjiy0KtX4Yo6xr+yTgWBk8fLo8K3N5yczS+Z5GgrLEaxj1BDl0MRgUQoKKFr+GCTk6L8gdNF+cq+9rT2uNDn8oLjBmrk1II199VjxqnX6cE9bx3GzjMt/q89/0UZNt+yCHMyY+UbGGiqTlX+Vm7Ap6eaYTEa8L35GZiaEoX2Xhd+9OYhnGnslnt4IaXGVgSMv5eTCpbU13b0w+XlYTUZFHGuDYaBlUZ6mq5jNV1ZCvngn5wsTnmpYWUdmxJPjwmH1SRvYf1Ysfd6Q6cDvI665fO8gPv+dgQ7z7TAajLg3xZmIi8xEq09TqzffED2diQUOKnE9lPN+KbFAKOBw5/WL8LT183Dv+69GBfmxaPH6cFP3y5U3RYIE6HGFXVMtq8lAStYVTL2wZiXFKWY/jf+Xk46KRD38oL//a6UqaZ8FbUkqGxl9U3KOHdjkWoLg4EDXF4erT3qqCeTwlsHqvHZ6WZYTAa8decS/O7aufjXf1yM2Rkx6Ohz47/ePS7rwgQKnFSg3+XFYx+cBgDccVEOlk9NAgCEmY14/ocLEBNuxqkGO/76dbWcwwyp+i719XBi2AW8pqNf8XeRrDBcCSvqmEydZZwa7Q54eAFmI4eUaGXUE6mpJUFVu3oDJ5PRgFSbvgrEO/tcePLjIgDAxisKsDA7HgAQZTXhuevnwWIy4KuSVvzraL1sY6TASQXCLUb84tsFyLfxuHdV3lnfS4yy4oE1UwEAL+4s1U1r/oGMkzI+SMYiLUbcc83l4dGo8D3XWCsCJfRwYjL9K+v0kXFi9XxpMeGKyfqxwKm524mufrfMoxlZtS+zy5rPqo3emmC+trsC3Q4PClKjcfPSnLO+l5cUhZ9eNhXrl2bj0ukp8gwQFDipxpoZKfiPmfyQze9+cEEW0mPC0GR34h+Ha2UYXWgJguC/iGTGqvMukmVNlF4gruiMk0r6YE2UEvdkjA4zI8UmruZVetZJzRknYKAcQQ8r63qdHmzZUwkAuP+yKTAOcaNw98rJeOzqWYiyyre2jQInDbCajLjt4lwAwJ/3VammKd14tfW64PTw4DggNUZ9GScAqujlJAiCoppfMmwlnV4yTuwmQWn1fKyvV5nC65zY9kZKWZE4Vnpqgrm1sA7dTg9yEyOxZkaq3MMZFgVOGnHtwiyEmQ0oauzG4epOuYcTVOwCkhxthcWkzrcw62Cs5IxTS48TdocHBg7IUVDjQJZxarQ74PJof0FEnUL3ZPRv9qvgjFO3w422XhcA9Wec9DBV95f9Yp3ujRdmK2Zaeijq/NQh54mJMGPdrDQAwPsyFs2Fgpp7ODH+Xk4KbknAGl9mxUfIvj/aYElRVlhNBvAC0NCl/Q+Tgak6ZWVXBzJOys2ashuThEgLosPkb5w4HgM1Tsquh5yo0uZunG6ww2zk8P0FGXIPZ0QUOGnIt+eKgdO24w2KX601EQN34Oq8gwQGpg2qFZxxUtJWK4NxHKerlXUDNwrKer+rYWWdWjuGDzYwVafca4UUPjzWCAC4ZEoSYiOUvY0WBU4acnF+EqLDTGjuduJgVYfcwwmaWhWvqGPYnllK7uWkxPomhq2sk7sRXrANXgihtPc7C6ir2/vg9ChzNa9/jzqV1jcBA1N1docH3Q5lr2CciA+PizMl62anyTyS0VHgpCEWk8FfUPfhMe1O19X7V9Spd6qOZZzsDg86+1wyj2ZoZS3Ka0XA+FcadWl7+qKr340+lxiUKK04PMVmRZTVBC8vKLZWjy2+mKSgGr2xirKa/Puz1Wt0uq6kqRvFTT0wGzmsniFfm4FAjStw4vmzCzKffPJJuN3ajYTV5NtzxGj9oxON8Gp0uk6pxbJjEW4xIilaXM6t1A+dUgVnnFi9j9aXaLPsamKURVF1ZoA4Zco2flbqyjotZJyAgek6rb7fPzzeAECcplPCJr6jGXPgdPLkSSxZsuSsr23cuBGzZs3Chx9+KNnAyPhclJ/on647Wtsp93CCQqnLs8fKv7JOgdNNPU4PGnzZHKXVOAH66W2j9IUQLBup1K1XWOCUk6jywInV9Gn0/b79VBMA4IpZym1BMFjAgRPP8/jVr36FRYsWYfXq1Wd97/XXX0d3dze+853vYN26dSguLpZ8oCQwFpMBF/t2K99d0irzaKTX6/Sgs0/Mbir1wyRQ/s1+FVjnVO6bpkuMsiiyUJMFTg0an6pT+k2CkgvEnR6vf2smtXYNZ7SccWrrceJkvR0AsGJaksyjCUzAgdOTTz6Jp556Cv/85z/x+OOPn/W99evXo7i4GD/96U+xY8cOzJ49Gw888ADsdrvkAyaju3iKdgMnduGwhZlUu7yYGdjsV3kZJ/ZBmKfAbBMwaKVRZ7+mG74qP+Ok3F5OtR39EAQgwmJEYpTygv+x0HITzN2l4udUQWo0khWyF+NoAg6c0tPT0dPTg927d59X4wQAUVFR+N3vfodjx47hW9/6Fp5++mlMnToVmzdvlnTAZHTLp4hR++HqDvQ4PTKPRlq1Cr8DHwsl93JScn0TAKTYwsBxgMvD+xscapFqMk7NvYprgTK4YzjHKbeZYiC03AST3eCzzevVIODAaf369fjss8/w9ttvY9WqVcM+btq0afjoo4+wdetWREVF4Y477sAFF1yAffv2STJgMrqs+AjkJETAwwvYX9Ym93Ak5V9Rp+LCcGZgqk7BgZNCM04WkwFJUWJxvRanLxjW9FCpCyEmxUfAZODQ7/aiQWEbVrNWH2rtGD4Y+/1r7b0uCAK+8gVOl/hmStRgTMXhK1euxNGjRzF37txRH/ud73wHp06dwm9+8xucPn0aF198MW666SbU12t3mbySsOm6r0paZB6JtOo6lH0HPhasOLzR7oDDraw+OCxwmqzQjBOgjwJxJW7wO5jZaEBOojjlrLSVdQOb+6q7vgkY6OHVZHfA7dXONkNlLT1otDtgMRlwQU683MMJ2JhX1UVGRuL3v//9sN/3eDw4dOgQXnzxRfzoRz/Cm2++if5+sQ7hr3/9K6ZNm4annnpK03UJSnCJb7ruq1Jt1TkpveZjLOIjLf4dvpXUyNHt5f11V0qdqgMG1zkpK9MhFYfbi9YeJwBlv9+VurKuSuWb+w6WGCnuy8kLQKOGFkSwbNOS3HjFtdsYiUmKg/zv//4vDhw4gK+//hqFhYVwOp3+wCglJQVXX301li1bhtzcXDz99NN48MEH8f7772Pr1q2IjY2VYgjkHBfmJYDjgPKWXrR0O/09g9ROCz2cGI7jMCk+Aqca7Khq68OUlGi5hwRA/MDx8AIiLEakxyi3WJPdhTdoNOPEVgyGm42IjVDuQoj85Ch8crJJcSvr2FSdkjaoHi+DgUN6TBgq2/pQ19mPLA0EgwBwoKIdALB0coLMIxkbSQKnG264AQBgNBoxe/ZsLFu2DMuWLcPSpUuRm5t71mO///3v48UXX8T999+P+++/H1u2bJFiCOQcMeFmTEuJRlFjNw5VtePyWcpvYx8ILU3VAWL9xakGu6IKxP3TdElRii6qHegers3AyT9NFxeu6N+Df2WdgjJOPC+gxnf+tFDjBIjvg8q2Ps1MTQuCgG8qxa3BFqtomg6QKHD69a9/jaVLl2Lx4sWIjBw9uv/xj3+MgwcP4v3335fi5ckwFuXEoaixG99UdmgicPJ4eTT6ClDVvN3KYErs5cQyB0qepgMGrzTSztTFYPUKX1HHKLGXU6PdAZeHh8nAIU3BWdOx0FpLgqq2PrT2OGExGjArI0bu4YyJJIHTf/3Xf435OVOnTkV7e7sUL0+GcUFOPP6yvxoHK7VxnhvtDvACYDEakBiljalHfy8nBWaclB44abkpIDDQekPJ9U3AQK+v1h4XOvtcimiYyuqbMuPCYTJqY0tWrWVYv/F9Ls3JjFFVfRMgUeA0HjfddBNSUpS/mZ+aLfKlP0/U29Hn8iDCItuvWxLsTistNgwGg3KnLsYiW4EtCQZP1SkZyyS0dDvh9HhhNanr4juagYUQys6YRFlNSIsJQ0OXA2UtPViYLf+0S0WrmMHNTVR/fRPDAuhajWScDvqm6RapbJoOGOcmv1LIyMjArbfeKtfL60JGbDjSY8Lg5QUUVnfKPZwJY3daSr8DHwu24qemo08RmzLzvKCaqbr4SAusJvESpqWVRoya6vkGN8JUgopW8T2cm6js9/BYaC3D+k2VmHG6ICdO5pGMnTZymGRYC33RPCvCUzOl97QZj/TYcJiNHNxeAQ0KSME32B3oc3lhMnCKL6rlOG7Qh4n2Aif2flBD4KS0rVf8GackDWWc4rSzzVBbjxPlLeLvaGE2BU5EYVg0f7BK/XVOSt9+YjyMBg6ZccqZrmPTdNkJETCroDZEq00wBUHwtyNIj1H++32yP+OkjMCpnAVOGmhFwKT6pqYdbh7tKt9m6LBvBmRKcpQiauLGSvlXRjIh87PEwOlYbZfq71KUvv3EeLHpOiUUiJeppDCcYb2ctBY4dfa54fSIHaJTYpS/EMLfBFMBGSePl/ffhGgp42Q1GZEczbYZUneG9WhNJwBg/qRYWccxXhQ4ady01GhYTAZ09bv9K03Uqq5DHL+WpuqAQZv9KuD3U6qS+iZGayuNGPbzJEZZVFH0zt4vNe19sm8fVNfZDw8vwGoyIM2m7ML6sRpowSH/tWIijtV1AQBmZ8bKO5BxosBJ4ywmA2ak2QAAR2s75R3MBAiC4L/L0lrgxDobs4JWOamlFQGj1V5OrNg9VSU9iJKirIgOM4EXgEqZe5KVD1pRp5XVt8xAnZN63++CIOC477Nobqa6+jcxkgVOHo8HzzzzDBYvXgybzQaTaWDpe2FhIX784x+juLhYqpcjY8DenEdrumQeyfh19LnR77uTTVP48uyxyvNNJ7BiSTn5p+qSlLH9y2hY/Y/WpurqWeBkU8dNAsdxillZV9GivVYEjBaaYNZ29KOjzw2zkcO0VHVcZ84lSeDU39+PVatW4YEHHkBVVRVsNttZ9TS5ubl4/fXX8eabb0rxcmSM5mbFAgCOqTjjxC4USdFWVUxdjAVbkVTVJm9Lgo5eF9p8RaeTk9XxoTN4vzq11/AN1uhfUaeemwSlbL2ixR5OjBZaEhz3TdMVpNpUey2XJHB6/PHHsWfPHmzatAmNjY244447zvp+TEwMVqxYgU8++USKlyNjNMc3j3yivgseLy/vYMapTiVdlMcjPTYcFpMBLi+P2g75ahdYfVNGbLhqmqWyqbpelxdd/W6ZRyOdBpVN1QHK2XpFD4FTnYoDJ1YyMlul03SARIHT22+/jVWrVuGhhx4Cx3FDbkiZl5eH6upqKV6OjFFeYiSirSY43DyKm+SvoxkPf+CksRV1gNiSIC9R/uk6f8dwldQ3AUCY2Yj4SHE5c4OGmmA2dKqnFQGjtIxTnoZW1DFaaL9xvFbMOKm1vgmQKHCqrq7GokWLRnxMdHQ0urrUW2OjZgYD54/u1Tpdp8Xml4Oxi7ycd+tl/q1W1PWBk+pbOaWl7uFsM2s1ZpzKW3vAyzTl7HB7/TdZWuoazrAbx7ZeF/pd8q5eHA+eF/xTdbMzYuUdzARIEjhFR0ejubl5xMeUlZUhKSlJipcj48Cm69gyULVhy281Gzglsg8dGTNOKmtFwLA967SScRJXkPpqnFSUccqKC4fFaIDDzcs2lcRW9MWEmxEXYZZlDMFkCzMhyipOo6txuq6qvQ/dDg+sJgOmpKjrOjOYJIHThRdeiPfffx+dnZ1Dfr+mpgbbtm3D8uXLpXg5Mg4z08WWBKfq7TKPZHzYRSJTg1N1wKCMk4zTHP5WBArf3PdcbJVlo0Z6OQ1ufplsU37zS8ZkNCAnUexJJlfmlK2oy0mMHLJkRO3O3mZIfe93NuMxI92mip0JhiPJyB988EF0dHTg0ksvxZ49e+DxeAAAfX192LFjB9auXQuPx4MNGzZI8XJkHFjgVNRoV8RmsmPFdgTXYo0TAOQlyZtx6ncNTHGoL+PEmmBqI+PEMmcJkRaEmdW16oi9d+Sqc2J/P3kaLAxn2EpLNWacjvnrm2LlHcgESbJ0Zvny5Xj++edx3333nZVVio4WezQYjUa8+OKLWLhwoRQvR8YhJyESERYj+lxeVLT2ID9ZPf0zepwedPaJK6Y0O1Xnyzi1dDvR7XAjOiy00wylzT0QBCA+0oKEKPVkOQDt1TixzX3V2K9MvK40okSmRShaXlHHsJtHNWacWGH47Az1FoYDEjbAvPvuu3H06FHce++9uOCCCzB58mTMnz8fd911F44cOXJeiwISWgYDh+m+DuInVTZdxwrDYyPMIQ8oQsUWZkaiL2CRY2XdmaZuAMC0FPUE1MxAjZP6PkiG0qCy5peDsfcPez+FWqUOAqd0lTbB9PICTtSLgdMcFa+oAyTKODHTp0/Hc889J+UhiYRmpNlwqKoDp+rtuHpehtzDCVitRveoO1deUiRae5wob+3xNy0NlWIWOKmwk2/qoOJwQRBUX9vSoMLml8y0VHGqrripGzwvhHzLE11knFTay6mqrQ99Li/CzUZ/aYJaqbc6i4wZq3NSXcZJ44XhzGQZt14pahQDp6mqzDiJ74s+lxfdTo/Mo5k4NTa/ZHISImExGtA3qGYuVAZ3vqfASXlYFnJqajSMKt9DUPOB0wsvvICcnByEhYVhyZIlOHDgwLCP3bJli7+BJ/svLEx9F6/hzGAr6xrsqtqewl8YHhsh80iCizUQlCNwKm5kGSf13QmGW4yI9S09b1Dx5qcM+xnSVBg4mYwGfwPVM42hna4b3Pk+0qqOzvfjwWqcGrscqlroc9r3fpiRpr6bs3ON69112223jevFOI7Da6+9Nq7njsfbb7+NDRs24OWXX8aSJUvw7LPPYu3atThz5gySk5OHfI7NZsOZM2f8/1Z72n+wqSlipN/e60Kj3eG/U1c6NlWn9YyTXE0wu/rc/oaLU1SYcQLEAvHOPjcauvpVOd04GPtdqOXv81zTUqJwusGOM03duGxGSshelxWkq21V6FglR4fBZODg4QU0d6vnOs6y2qzWVs3GFTht2bJlyK9zHDdkJoN9PdSB09NPP40777wTt956KwDg5ZdfxocffojNmzfj4YcfHvI5HMchNTU14NdwOp1wOp3+f9vt4jSY2+2G2y3d3lnsWBM5phHA5MRIFDf34FhNBxIj1HFXVtsuBk5pNsuwP78U50duk3w1LRWtvXA6XZLWh4x0fk7VdwAA0mPCEG5U5zlMsVlR1NiNuvbecY1fKe8fQRD8NU6JkSbZxwOM/dzk+24ATtd3hXT8xY1i4XFeYkRIX1eO906qzYraTgeqW3sUfx1n54UFTvkh/v2MRaDjGtcZr6ioOOvfPM/jvvvuw/79+3HffffhkksuQUpKCpqamrBr1y78/ve/x9KlS/HMM8+M5+XGxeVy4dChQ9i4caP/awaDAZdddhn27ds37PN6enqQnZ0NnuexYMECPP7445g5c+awj9+0aRMee+yx877+6aefIiJC+qml7du3T+j5MbwBgAHvfXkQjjJ1pHnLm4wAOJSfOIhtFSM/dqLnR05eATByRjg9PP669SMkBGGmZqjzs7uRA2BELNeHbdu2Sf+iIeDuFN/XXx06gajmY+M+jtzvn1434HCLl+XCvTtxUkHFFIGem64O8f10qKwB27bVBndQg+w/Jb4H+hrLsW1bWchelwnleyeMF6+JH+7ch8ZE5V/H+zxAQ5eYYKg+tg8tp2Qe0DD6+gLbZH1cgVN2dvZZ/37iiSfw9ddf4+jRo0hLS/N/fdq0aVi+fDluvfVWzJ8/H++88w4eeuih8bzkmLW2tsLr9SIl5exUcUpKCoqKioZ8zrRp07B582bMmTMHXV1d+N3vfodly5bh5MmTyMzMHPI5GzduPKuxp91uR1ZWFtasWQObTbqUpNvtxvbt27F69WqYzeNfkt+4pxLffFwMT3Qa1q2bJ9n4gqXf5UXPvh0AgOu/vRq28KF/dqnOj9xeKNuDspZeZM9ejOVTEiU77kjn55sPTgMVNbhoVh7WrZ0q2WuGUsXOcuzdUYrolCysWzf8jc5wlPL+Od3QDRzch/hIM67+9hrZxjHYWM/N3M5+vFr0FVqdBqxeuzpkHaKfOLULgAPf/daFWJgdF5LXBOR573zRdxylRxuQnFOAdctzQ/Ka4+V2u/HSO2JQmREbhu9/R7k7iLAZo9FIkuN77bXX8IMf/OCsoGmwjIwM/OAHP8Crr74assBpPJYuXYqlS5f6/71s2TJMnz4df/zjH/GrX/1qyOdYrVZYrec3DDSbzUH5I5rocWdniReU043dqggwqjrEeo/oMBMSbKNn8IJ13kNlako0ylp6UdHWj0tnhOb9U9wsFqNPT49R7bnLiBPfG41254R+BrnfPy294lRBemy44n4XgZ6b7EQTIi1G9Lq8qOtyhaRurtfp8a9GLEiPleXchfK9k5UgToc2dk/s/R4q9X1i2cH0NGVfYwIdmyS3ArW1taOuPgsLC0NtbejStomJiTAajWhqajrr601NTQHXMJnNZsyfPx+lpaXBGKIsZvgK82ra+9HVr8x55sFq/Cvq1FEAOVHsQ6Y4RA0EBUHwv5YaWxEwrEBW7d3D1dz8kuE4DlNTQ9sIky2oSIyyIDbCEpLXlJPammDW+QInLayoAyQKnDIzM/Huu+/C4Rj6otXX14d333132OmuYLBYLFi4cCF27Njh/xrP89ixY8dZWaWReL1eHD9+fNhMmhrFRlj8QcjpBuX3c2IXhsw4bbciYKamsAaCoVlZ19LtRGefGwZO3auRWM8jtQdObPxqbEUwmL+DeIhaEuhlRR0zsNGvOt7vdb1i4FSggRV1gESB0x133IHy8nJcdNFFeO+999DW1gYAaGtrw9atW3HxxRejsrISd955pxQvF7ANGzbg1VdfxRtvvIHTp0/j7rvvRm9vr3+V3c0333xW8fgvf/lLfPrppygvL8fhw4dx4403oqqqSnPbxUxPC+1FbSJqO/TR/JJhHzglTd0h6bXFMgI5iZGq21B2MBZodDs96HYoP5M6nHoV71M32NQQB06sh5NeAqf0QU0wld6Tz8sLaPTVXGuhFQEgUY3Tgw8+iOLiYrz++uv43ve+B0BcwcbzPABxOuDWW2/Fgw8+KMXLBey6665DS0sLfvGLX6CxsRHz5s3Dxx9/7C8Yr66uhsEwEDt2dHTgzjvvRGNjI+Li4rBw4ULs3bsXM2bMCOm4g21aajQ+O93sXx6qZHrp4cTkJEbCbOTE+pDO/qBn2tgHmxr3qBss0mqCLcwEu8ODJrtDtXsaaiXjVJAa2inn0mZf4KTyrTwCxTJOPU4P7A4PYoZZNKMElW19cAscws0GZMdrY+ZAksDJYDDgtddew80334w33ngDx44dQ1dXF2JiYjB37lzcdNNNWLlypRQvNWb33nsv7r333iG/t3PnzrP+/cwzz4S0ZYJcpqWKUf+ZRhVM1elkuxXGbDQgNzESxU09KGnqCXrgpIX6JiYtJhx2RzfqOx3IT1bnz9PQpe7mlwyrcapq70O/y4twS3Czmex9rNYGrmMVbjEiPtKC9l4X6jr6FR04Dd7OKdR7FwaLpJ2zVqxYgRUrVkh5SBIEA3eDPYrfFFUv260MNiUlGsVNPShu6saqgqE73EvljIr3qDtXakwYzjR1q7bOaXDzS7VnnBKjrEiItKCt14Xipu6gblrd6/Sgqk3MTBeovGv8WGTEhqO914X6zn7/dlpKxK4xWvrdKKi9GgmVXN90UI/T4w9MlMjh9qKlW2yappeMEwBMTR4IbIPJ4+X9d4NKvvAGigUbDSoNnLr63XC4xfKGFJu6AydgoJ7lVJAXobBsU1K0FQlR57eG0Sq1bPZ72h84aWcalQInHTIbDf4NZZVcIF7vuyBEDNrEVQ/YRrslzcH93ZS19MLp4RFlNWmi9sC/ss6u7A+S4bAVUgmRFlUX6jMz2abi9cENnIo0mNEIRLpKAict/n4ocNKpghD3WRmPwSvqlDydKLUp/pV1PeCDuPv5yXpxb6/padqoPUj31QWpNePEAr5UlU/TMSyLyd5nwaLFqaBAZMQpP3Dq7HOh0S7OGkxLoYwTUTlWIK7klXUDheHqz4aMRXZ8BCwmA/rdXlS3B7Z30niwTMAMjSwRZgFHg0p625yLZZzUXhjOsIzT6YZueIN4A8D60RWkauN9HCg2VafkcovTDeLnS7xVUO1K16FQ4KRT/oyTglfWsVYEeukazpiMBn97gGDWh5z0BU4z02OC9hqhNFDjpNwPkpFopRUBk5sYhTCzeANQ2dYblNcQBMGfNZ+ms4xTVrwvcArizdVEsaA2I0LZvabGigInnWIXmfKWXrg8vMyjGZreml8OFuz6EEEQ/FMoWigMBwYyTnaHB71Oj8yjGTvW/FIrU3VGA+fPAp0M0vu4yS52vjcaON00v2SyfHWJbb0uxb7fi3w35umRMg9EYhQ46VRaTBiiw0zw8IJ/nyelYdutZOgwcGLBTLAyTrUd/bA7PDAbOU20IgCA6DAzoqxih5VGu/qm61jGKV3lXcMHmxnkOif2wZyr8s7342ELM/sXzdR0KDPrxEpB0injNDSPx4NnnnkGixcvhs1mg8k00CKqsLAQP/7xj1FcXCzVy5EJ4jhu0HSdMuucanW2T91grO4oWBknFpDlJ0fDYtLO/VOaivesa9TABr/nYtPAwXofa3HF1lhk+a6NNe3Km57m+YENxNMocDpff38/Vq1ahQceeABVVVWw2Wxn7Z+Tm5uL119/HW+++aYUL0ckwqbrlFgg7vLwaOoWP0j0OFVXkGYDx4mZk7Yep+THH6hv0sY0HcOmueoVvNJoKIIg+KfqtJRxmjFoyjkYe6qxgEwre6CN1STfdF0wF5GMV3V7HxxuHlaTAUnaeUsDkChwevzxx7Fnzx5s2rQJjY2N522KGxMTgxUrVuCTTz6R4uWIRJS89UpDVz8EAQgzG5AQaZF7OCEXZTUhJ0EsDAjGdN3x2k4AwCyNBU5qzThprfklU5AaDZOBQ1uvC/VB+J2cqBOnAGdlaGOBw1hl+grEaxQYOLEb8vzkSGig28lZJAmc3n77baxatQoPPfQQOI4bsudOXl4eqqurpXg5IhElT9Wxabr0WH31cBosWNN1giDgaK34gTNvUpykx5ZbKuvlpLIaJ601v2TCzEYUpInXmcLqTkmPbXe4Ud4qrtabrdPAaWCqTnmBk5a2czqXJIFTdXU1Fi1aNOJjoqOj0dUV3EZoZGzYG7q+y4GufrfMozkb23tKCx2txytYBeI17f1o73XBbOQwPU1bFzW1Zpy01vxysLmZsQCAo74sp1RO1vmWuseGI16HWWlgYKpOicXhZ5rE389UDa52lCRwio6ORnNz84iPKSsrQ1JSkhQvRyQSE25Guu9CXaywDuJszn6SngOntOAs5S70fYDNSLPBatJOdgNQ7351DRrr4TTYPN8Gv4U1nZIe93ideDy9ZpuAgZYENe39Qakhmwg2VaeljuGMJIHThRdeiPfffx+dnZ1Dfr+mpgbbtm3D8uXLpXg5IiGlFohXt4sp+EkJGmsAMgasbqOspQfdDukygkd9H2DzgrhjvVzS/NuuqKs4vEFjXcMHY++z47Vd8Hil6xl33Jdxmp2p38ApIzYcHAf0u71o7XHJPRw/h9uLSt806lQKnIb24IMPoqOjA5deein27NkDj0dsxtXX14cdO3Zg7dq18Hg82LBhgxQvRySk1AJxyjiJu71nxoVDEIBjtdJNc7M7/7kaDJzYVFdnnxv9Lq/MowkcyzhpcaouLykKUVYT+t1elDRL1zOOLXDQc8bJYjIgzbeYQEkr60qbe8ALQGyEGcnRVrmHIzlJAqfly5fj+eefx/Hjx7F8+XI8/vjjAMQpvDVr1qC0tBQvvvgiFi5cKMXLEQkpsUBcEISBGqcE/QZOwMDd+pHqDkmO5/by/pVIWgycbGEmRFjE6Uc1NcFs0GArAsZo4DDHlxWSarrO7nCj0neN0HPgBAxM19UqqM7pjH+aLlqTi3sk63x399134+jRo7j33ntxwQUXYPLkyZg/fz7uuusuHDly5LwWBUQZBk/VKWWOvKvfjW6HmLXM0mHzy8Hm+1a9SfWBU9zUA6eHhy3MhFwNToNyHDew2a+Kpuu02PxyMBakH5XofcyC/8y4cMTptDCcYYFTdZuCAqcmbTcmNY3+kMBNnz4dzz33nJSHJEE2OSkKJgOHbocHDV0OpCtgQ12WbUqOtiLcoq3i5bEaXFgrCMKE794KfVN+czJjYdBacxWf9JhwlLf0qmZlnSAImi4OBwbex4clypwe8bU2mKPj+iZGiSvrWM3sVI0GTtrZa4GMi8VkQF6SmHlQynQdm6vX+zQdIHb2Nhs5tPa4/L2tJuKbSvGD64Kc+AkfS6lSVbayrqvfjX63WI+lxRonAFiULWZOi5t60NE78SLmg5XtvuNq930cqCxfE0wl1TixmlnKOA1y2223geM4PP7440hJScFtt90W8HOtVisyMzNx9dVXY9asWeN5eSKxaak2FDf1oKixG6sKkuUejv8CkKXjwnAmzGzEjDQbjtZ24UhN54TOiSAMBE6Lc7X7gZOmsqk6FuDFa6z55WAJUVbkJ0ehtLkHByrbsXZm6riPxfMCDlZp/wYgUJPilbVfXWefC012cZsoLTa/BMYZOG3ZsgUcx+E///M/kZKSgi1btoz5GI8++ij++c9/4qqrrhrPEIiEClKj8f5R5aysq/Y3v9ReDc54zMuKFQOn6g58Z276uI/T4gCau52wGA2YPylWugEqTKrKmmCyAE+r03TMktx4lDb34OvyiQVOxc3d6HZ4EGkxaq6B63iwOtCGrn64vTzMRnknktjMRUZsOKLDzHC7ldVcWQrjCpwqKioAABkZGWf9OxAOhwMlJSW455578Mgjj1DgpADTUpTVy6nK38NJ/norJViQHYc39lXhG9/0xHiV2cWapnlZsZrNbADqa4Kp9fomZkleAv76dTW+rmib0HG+qRD/DhZkx8Ekc5CgBEnRVlhNBjg9POo7+5Et86IPrReGA+MMnLKzs0f892imTZuG3bt34w9/+MN4Xp5IjK2sK2vpUcQdC0s5T6KMEwDgwrwEAGIH8a4+N2IizOM6DguctDxNBww0kVRLxqlRwz2cBlvie9+darDD7nDDFja+9zGbbqb6JhHHcciKj0Bpcw+q2/tkD5z8HcM1HDiF7BPS5XLBbh+YCrr99tvx1ltvherlyQgy48IRZTXB7RVQ3tIr61icHi/qu1jgRDVOAJBiC8PkpEgIArB/Anfrpb7AaUmetj9wWOamrdcFh1v5TTDrNdw1fLAUWxhyEiIgCAPF3ePBnntBjrY2qJ6IrDjlFIifocBpeHl5efj9739/1tc++eSTYbuDb9q0CXFxA2/0KVOm4Oqrrx7vyxMJcRw3qJ+TvHVOdR39EAQgwmJEYpS++7MMdlF+IgBgb2nruJ5f29GPDhcHk4HDwmxtf+DEhJsRZhYvbU0qaILJNvjV+lQdACzJFbOn+8vHFzjVdvShvssBk4HDPA3X6Y0VyzLJ3ctJEAQUU+A0vMrKyvP2ptu/fz/1cVKpAoXsWVc1aKsVLXacHa9lk8UPnL1l48s47SoRA665mTGIsEjavk1xOI4btGed8gMnLW+3cq5l+eL7eFdxy7iev6tYfB/P0cH7eCxyfK1bKlrlnTGo6+xHt9MDk4FDXqL29qhjqLKOAFDO1is1tEfdkJbkJoDjgJLmHjR3jz0Y+OKM+EG1alqS1ENTpFSbOlbWCYLg3+A3XeNTdQCwYmoSDJx4gzaeLUK+ONMMAFg1Tf62KUqSkyhmnCrb5A2cin2F4ZOTomAxaTe80O5PRsakIE3c7LeoQd6pOtY1nAKns8VFWjDD9zvaN8asU7/Li32+qZFV0xIlH5sSpfn2fKtXeC8ne79H880vB4uNsPinir8oah7Tc50eL/b4pqqV0G9OSXL9gVMfeF6+rbP0UBgOUOBEfFijsvouB7r65eu7QV3Dh3exr87p8zF+4Owta4XTwyPeKmBKsnbT54OlqaSXU4OvvknLzS/P9a2CFADAjjG+j7+p6ECfy4ukaKv/JoKIMmLDYTZycHl4WW8W9FAYDlDgRHxiws3I8O1TJ+d0HStupK7h51vjaxq443TzmFaLsQ+ombET3+tOLVJ9015sxZpSsWk6NrWoB5dOF7NFe8va0OfyBPw8Nk23cmqSZvdZHC+T0eC/Zla2ylcgzj47tNzDCaDAiQwyzV/nJM90nSAI/owTTdWdb35WLFJtYehxerC7JLDVdTwv4PPTvsApTr4Ufqils4yTXdlTdXppfjnYlOQoZMaFw+Xhsac08Glnf30TTdMNKde3sq5Cpjont5dHWUsPAO1utcJMaFnCX/7yF+zfv9//79LSUgDAunXrznss+x5RroLUaHxe1IzTMmWcmuxO9Lu9MBo4yjgNwWDgcPmsVGzZW4ltJxpw2YyUUZ9zqLoDjXYHIq1G5McEfnevdv5VdUrPOLHtVmL1EzhxHIfLpqdgy95KfHCsHqsDeB+faexGeUsvzEbO35qDnM1fIC7Tyrryll64vQKirCZkxml7ocOEAqfS0tIhA6KPP/54yMfrZZpArabJvLKuvFW8W5kUHyF793KlWjc7DVv2VmL7qSa4PPyoK1e2HqkDAKyZkQKzoToUQ1SEc5tgKrV+aCDjpO0PmnNdPS8dW/ZW4tOTTeh1ehBpHfmj6F9HxffxiqnJiAkfX8dxrWMF4nK1JGA9AKemRGn+s37cgdNY9qcj6jDdV3B5prEbghD6ehj2B88uAOR8C7PjkBRtRUu3E7uKW0bMOjncXnxwrAEA8J05abAX6ydwio0Qm2A63Dya7A7Zt6EYjn+7FR3VOAHifok5CRGobOvDh8cb8INFWcM+1ssL2HqkHgBwzfzxb3KtdbkyZ5xYK4Jpqdov3B934DTW/emI8uUmRsJs5NDj9KC2oz/k02UVLRQ4jcZo4HD13HT8aXcF3jpQPWLg9P7RenT1u5EZF46lefH4pDiEA5UZx3FIjwlHeWsv6juVGzjV63CqDhB/Pz+4IAu//fgM/rq/asTA6cviZtR19iMm3IzLpo8+radXbKquur0PHi8f8g2Q9VIYDlBxOBnEbDQgP1m+DuKUcQrMDReKNy1fnGke9u5SEAS8vqdSfPySbBh1uAqJ9UVqUGgvJ0EQ/BknvU3VAcB1i7JgMRpwtLYLh6qG34Jly94qAMAPFmUqdspVCdJsYbCaDPDwAuo6Q/+e10sPJ4ACJ3KOAhlX1rHAKY8CpxHlJkZi1bQkCALwh8+HXnSx/VQTTjXYEWkx4roLhr+b1zKlb7tid3jQ5/I1v9TZVB0AJERZ8d35GQCAZz8rGfIxR6o7sKu4BUYDhxsvpFmOkRgMnL//XajrnNgsBQBM0/iKOoACJ3IOFjiFemWd28v7WxHkJlHgNJr7LpsKAHj3SC1O1HWd9T2H24snPi4CAKxfloP4SH1ulpweq+yMExtXXIQZ4RZ9ZlLu/VY+TAYOX5W0+tsNMDwvYNM28X38vfkZip1uVRK5CsTZjhMpNividHC9ocCJnEWulXW1Hf3w8ALCzUakROvv7nus5mXF4so5aeAF4IH/O3pWI8HffnwG5S29SIq24v8tnyzjKOXln6pTaEuCgc199TdNx2TFR+CWZTkAgP/653G0dDv939u8pwIHKtsRbjbivsumyDRCdZGrJcEpX+A0Mz0mpK8rFwqcyFnYyrqK1t4xdaeeqApfK4KcxEjqChygR6+aifhIC4oau7F+8wF8WdyCR/91Epv3iCtef33NLMRE6HfpdrrCp+oaddj8cigb1kxFbmIkGrocuOFP+/HZqSb8fkcJfrPtNADgPy+fhsw46usWiIEmmKHtHn6qXgyc9LIVDgVO5CzJ0VbERpjh5QWUNveE7HXLW6i+aaySoq340/pFiLAY8U1lB9ZvPoAteysBAP95eQHW+rZo0as0pU/V+Qp49R44RVhM2HzLBUiMsqK4qQd3vHkQT28vhiAAN12YjfW+jBQZndwZpxnpFDgRHeI4bqDOqSF0BeK0om58FkyKw4c/uQRXzk5DZlw4luTGY/Mti3D3Sv1O0TFpNjHj1NHnRr8rdNnTQOlxu5Xh5CZG4qP7LsF1i7IwKT4C87Ji8btr5+KXV8/UfDNFKbEbz9qOPrg8fEhe0+Pl/Svq9JJxmlDncKJNM9JisL+83X8XEQos45RDgdOY5SZG4oUbFsg9DMWxhZsQYTGiz+VFo92huKBcr13Dh5MUbcWT/zZH7mGoWlK0FZEWI3pdXlS39yE/OSror1ne2guXh0ekxaibPUYp40TOM9OXbj1ZH7rAqdS3OWQo/tCJPnAc58/mNMjQ12Y0/n3qKONEJMJxHPKSxGtoqEotWH3T9DSbbupTKXAi55mZIQZOp+rt4Hkh6K/X2efyr6ahwIlIiWVz6hVWIC4IwqBVdRQ4EelMSWaBU2hWRuutvgmgwIkMIT8pClaTAT1Oj7+3UjCxO6P0mDBEjbLZJyFjwbI5jQorEB/c/JKm6oiU8lPEwKkkxBknvdQ3ARQ4kSGYjAZ/gfiJ+q5RHj1x7A98ig46zpLQSotVZsaJtSKI1XHzSxIcU3zbZpU0BT9wEgSBMk6EMDMzxEZmoahzYn/gU2iajkhMqTVOrL5Jj1utkOBi19Gylh54g1xq0WR3or3XBaOBw1Qd3fhS4ESGFMoC8RLfXPyUFAqciLT8gZPCMk5sPOmxNE1HpJUVHwGLyQCnh0dtR3BLLU41iDMSk5MidbUBMwVOZEizfK3zT9Z1QRCCe9fCapzyk/Vzx0JCgwUmSg2cqDCcSM1o4DDZt7Iu2NN1eqxvAihwIsOYlhoNo4FDW68LTXbn6E8Yp26H2/8hQivqiNRYYNLV7z5rPz+5sWL1NJqqI0HApuuCXSCux/omgAInMowws9H/x3eiLngF4izblGKzIiZcv/uqkeCwhZn9KzWVlHXyN7+kqToSBAOBU3BbEpyoYxknfWzuy2g+cHrhhReQk5ODsLAwLFmyBAcOHBjx8f/3f/+HgoIChIWFYfbs2di2bVuIRqo8M0JQ5+RfUUfTdCRIBgrEFRg40VQdCQJWLxrMJpidfS5/u5rZGRQ4acbbb7+NDRs24JFHHsHhw4cxd+5crF27Fs3NzUM+fu/evfj3f/933H777Thy5AiuueYaXHPNNThx4kSIR64MrM4pmC0JSprEOyKapiPBwqbr6hXUy6mRapxIEOUPakkQrCbGx30zEdkJEYiJ0NdsgaYDp6effhp33nknbr31VsyYMQMvv/wyIiIisHnz5iEf/9xzz+Hyyy/Hgw8+iOnTp+NXv/oVFixYgOeffz7EI1cGtrLuVBAzTqcbxMCJ9Y0iRGrpvgaTjQqZqrM73OhxivVWlHEiwZCTIK6s63d7URWkJsbHasXAaU5mbFCOr2SabdPscrlw6NAhbNy40f81g8GAyy67DPv27RvyOfv27cOGDRvO+tratWuxdevWYV/H6XTC6RwonrbbxSDD7XbD7XZP4Cc4GzuWlMcczZQkccPGus5+NHX2Ij7SIunxBUHASV82a2pyxIR+NjnOj5ro+fykRIvv27qO3mF//lCen9pWcfokJtwEMyco/nei5/dOIJR6fqalROF4nR3Ha9qRGSPttRsACqs7AAAz06JG/NmVen6GEugYNRs4tba2wuv1IiUl5ayvp6SkoKioaMjnNDY2Dvn4xsbGYV9n06ZNeOyxx877+qeffoqICOl3it6+fbvkxxxJcpgRzQ4Om7fuwIw4aVO+XS6go88EAwSUHd6DmqMTP2aoz4/a6PH8NDdxAIw4VlqDbduqRnxsKM7P6Q5xPJGcW1U1lHp874yF0s5PlNsAwIAPdhdCqOYlP/43ZUYAHHqrT2Fb16lRH6+08zOUvr7AsnOaDZxCZePGjWdlqex2O7KysrBmzRrYbNIt0XS73di+fTtWr14Nszl088lf9B3H1qMNsKRNwbpv5Ut67J3FLcChI5icHIVrrrpoQseS6/yohZ7PT3RpK/5Wfhheiw3r1i0b8jGhPD89B2uBolOYkpmEdesWBPW1pKDn904glHp+2r+uxr4PiuCKTJb8fdba40Tnvi/BccBt31sz4h6jSj0/Q2EzRqPRbOCUmJgIo9GIpqams77e1NSE1NTUIZ+Tmpo6pscDgNVqhdVqPe/rZrM5KG+SYB13OAty4rH1aAOO1XVL/rrFzWJ0PyM9RrJjh/r8qI0ez8+kBHHhQYPdMerPHorz09wjTgekx0ao6nehx/fOWCjt/MzKjAMAFDX2SD6u003tAIDJSVGIiwqspYbSzs9QAh2fZovDLRYLFi5ciB07dvi/xvM8duzYgaVLlw75nKVLl571eEBMLw73eD2YlxULADha2yl5B3F/8zSddZ0loZXqKw7vdnj8RdlyYvvUpVNhOAkituCm0e5Ae69L0mMPFIbrqw0Bo9nACQA2bNiAV199FW+88QZOnz6Nu+++G729vbj11lsBADfffPNZxeP33XcfPv74Yzz11FMoKirCo48+ioMHD+Lee++V60eQXUGqDRaTAZ19blS2Sbs643S9PrvOktCKspoQHSYm1xsV0JKAtlshoRAdZkZ2glhne7pB2pXRR6o7AQBzdbiiDtB44HTdddfhd7/7HX7xi19g3rx5KCwsxMcff+wvAK+urkZDQ4P/8cuWLcNbb72FV155BXPnzsU777yDrVu3YtasWXL9CLKzmAyY5QtsCms6JDtun8uDirZeAMB0yjiRIGPL/usV0ASzvlMM3jKoazgJMpbNl7KlDM8LOOxbUbcwO06y46qJZmucmHvvvXfYjNHOnTvP+9q1116La6+9NsijUpd5WXE4XN2JwupOfHd+piTHLGrshiAAydFWJEadXyNGiJTSYsJR3NTjnyaTiyAI/uAtnQInEmTT02z46ESjpBmnkuYedDs8iLAYddt/T9MZJyKNeZNiAQCFNZ2SHZPtf0fTdCQU0mN9267I3ASzs8+NfrcXAE3VkeBjGafjEu43eqhKzDbNy4qFyajPEEKfPzUZk/m+AvGT9XbJdpgv9M2Rs+JzQoIp1SZmd+Ter67ON02XGGVFmNko61iI9s31XV9LW3pgd0jTgJIFTnqdpgMocCIByIwLR3pMGDy84C8KnKgjvuzV/En6/eMjoZMWq4z96ur89U2UbSLBlxRtRVZ8OAQBOFYjTdaJ1TctoMCJkOFxHIfFufEAgK8r2id8vI5eFypaxcLweTpdlUFCSyn71fkLw+OovomExvwsMcA5Uj3xxT2tPU7/tXuBjm96KXAiAVmcmwAAOFDRNuFjsVqpvKRI3e2qTeTB6onkrnFigRML5AgJtvm+GtUjEtSoHvZN001NiUJMuH6v3RQ4kYCwjNOR6k44Pd4JHYvd+bA7IUKCjRWH9zg96OqXb7NRWlFHQo2VQxyp7phwE+P95eKMw8Ls+AmPS80ocCIBmZwUicQoC5we3t81drwG6ptiJz4wQgIQYTEhzpfdZFkfObAaJwqcSKjMSBObGHf0uVE1wSbGe8taAQAX5ydKMTTVosCJBGRwndOBCdQ58bzgX1FHgRMJJVZXVNchX+BEzS9JqA1uYnxkAk2MW7qdKGrsBgAsnZwgydjUigInErDFOWLgtK9s/HVOJc096HZ6EG42YlqKPpunEXmwYKVOpoyT0+NFc7cTwMDUISGhwKbrDlaOP3Bi2aYZaTbER1okGZdaUeBEAnbxFDE9e6Cifdz9nPaUin98i3LidNs8jcgjXebAqalLDJqsJoPuP3hIaLHZgonc9O4tFZ97Ub6+s00ABU5kDCYnRSEzLhwuL+//Ixqr3aU0R07k4c84yTRVVzdomo7jOFnGQPRp6eQEGDigvLV33DcOe3wZp2V07abAiQSO4zisnJYEANhZ3Dzm57s8PPaXiwEXy14REiqZcfJmnOqpMJzIxBZm9ncR313SMubnV7X1orajHyYD5y/Z0DMKnMiYrJqWDADYeaZlzEtbC2s60efyIiHSgumptEcdCa2M2AgA8gdOVBhO5HCJL1O0exyzBdtPNQEQSywirSZJx6VGFDiRMVk6OQEWowG1Hf0oa+kZ03PZnc6y/EQYDDRVQUKLrapr6XbC4Z5YL7LxoFYERE4X+QKnPaWt4Pmx3fR+elIMnC6fmSr5uNSIAicyJhEWE5bkianaz4vGNl3H6psuoTlyIoO4CDPCfRvrytFBfCBwohV1JPTmT4pDhMWI9l4XTjfaA35eS7cT31SJLWjWUOAEgAInMg6rZ6QAAD441hDwc9p7XTjqa5x5EdU3ERlwHCdrLyeaqiNyspgMuDBPXBG380zgdU6fnW6CIABzMmMoW+pDgRMZsytnp8Fo4HCstgulzYFN120/1QgvL2Bmuo0+OIhsBno5TayD8lgJgkDbrRDZsZvej04EftP7yclGAMBayjb5UeBExiwhyooVU8XVde8V1gX0nI9OiH98V8yiPz4in4FeTqGdquvsc6PfV1fFNhwmJNTWzEiBgQNO1NlR0z76zUNHr8vfe2/tzJRgD081KHAi43LN/AwAwLtH6kZdXdfS7cRXJeIf3+Wz0oI+NkKGkynTVB2rb0qMsiLMV2dFSKglRFn903Vbj4x+07u1sA5urzhTkJ9MOz0wFDiRcVk9PQWRFiNqO/rxzSht/LceqYOXFzAvKxb5yVEhGiEh55Nrqm6gvomyTURe31+QCQD4v0O1I66uEwQBb39TAwD4waKskIxNLShwIuMSbjHi23PSAQCv76kY9nE8L+B/D1QDAK5dlBmSsREynAyZmmBSKwKiFFfMTkWU1YTq9j5/N/Ch7CtrQ1FjN8LMBlw9Lz2EI1Q+CpzIuN12cS4AsXiwfJieTttPN6G8tRfRYSZcPS8jlMMj5Dws49TQ6YB3jL1sJqKmXQycsuIjQvaahAwlwmLCvy0Ub2Jf2VU+7ONe+rIMgJhtio2gvRUHo8CJjNu01GhcWpAMXgD+55Mz533fywt47rMSAMBNF2YjijrOEpml2MJgMnDw8AKau0NXIF7TIU4NshorQuR0+8W5MBo4fFXSim8q28/7/t7SVnxV0gqTgcPtvhtkMoACJzIhD11eAAMnrprbcbrprO/99esqnGqwwxZmoj8+oghGA+df1RbKAvFa32tlxVHGicgvKz7CX7f0yHsn4fQMdNLvd3nx8/dOAABuvDAb2QmRsoxRyShwIhMyLTUat14kBkUP/N9RnKoXO9LuK2vDrz84DQDYsHoqEqKsso2RkMEGWhKEJnASBAG1vqXfWfGUcSLK8MCaqYgJN+NUgx3/37sn4PHycHl4bPh7IcpaepFis+K+S6fIPUxForkTMmEPXT4NB6s6cLSmE9e8sAfT0204XtsJXhAbrt28NEfuIRLilxkbjgMIXeDU1e9Gt9MjvjZlnIhCJERZ8ez183Dblm/wzqFaHKhoh5cXUNfZD7ORwzPXzUNcJNU2DYUyTmTCrCYj3rxtMVZMTYLLy+NojRg0fWduOn5//Xza0JcoSqi3XWGF4UnR1MOJKMuqacl48YcLEGkxorq9D3Wd/UiItODVmxdh2WTaGms4lHEikogJN2PLrRfgaG0XKlt7UZAWjYJUm9zDIuQ8GSGeqqPCcKJkV8xOw0VTErG7pBVmowFLJyfQQp5R0NkhkuE4DvOyYjEvK1buoRAyLNYSIJAtJ6TAXocKw4lS2cLMWDebdnUIFE3VEUJ0ZRILnDr6R+ycLBWWcaLCcEK0gQInQoiupMWEwWjg4PLwaO52Bv31qBUBIdpCgRMhRFdMRoO/zqk6BNN1/qk66hpOiCZQ4EQI0R02XRfswEkQBH/GiYrDCdEGCpwIIbozKcEXOLX1BvV1WrqdcHp4GDja4JcQraDAiRCiO6HKOLHC8LSYcJiNdLklRAvoL5kQojshC5zaaZqOEK2hwIkQojsDgVNwm2BSYTgh2kOBEyFEd1gg09rjRJ/LE7TXocJwQrSHAidCiO7EhJsRE24GMDCdFgz+5pfUw4kQzaDAiRCiS6GocxroGk6BEyFaQYETIUSXgh04ebw86jsdAGi7FUK0hAInQoguBXuz34YuB7y8ALORQ0p0WFBegxASehQ4EUJ0KdgZp6q2gWk6g4ELymsQQkKPAidCiC4FO3Cq9HUlz02IDMrxCSHyoMCJEKJLgwMnnhckP36VL3DKpsCJEE2hwIkQokvpsWEwGji4PDyae5ySH7/SN1WXk0gr6gjREgqcCCG6ZDIakOHbeDcYvZwqW8WMUw5lnAjRFAqcCCG6xabrWL8lqfC8gCpf7RQFToRoCwVOhBDdmpQgBk5sWk0qjXYHXB4eJgOH9FhqRUCIllDgRAjRrbxEMRtUJXHgxKbpJsVHwGSkyywhWkJ/0YQQ3cr1BU4VrRIHTr5ALDuBCsMJ0RoKnAghusUCp8q2XggSdiSgVgSEaBcFToQQ3cqKj4DRwKHfzaPLJd1x/c0vEylwIkRrNBs4tbe344YbboDNZkNsbCxuv/129PT0jPiclStXguO4s/676667QjRiQkiomY0G/8q6Fod026JUttJUHSFapdnA6YYbbsDJkyexfft2fPDBB9i1axd+9KMfjfq8O++8Ew0NDf7/fvvb34ZgtIQQubCsULNDmuOJrQiohxMhWmWSewDBcPr0aXz88cf45ptvsGjRIgDAH/7wB6xbtw6/+93vkJ6ePuxzIyIikJqaGqqhEkJk5g+c+qXJONV19sPh5mExGpAZFy7JMQkhyqHJwGnfvn2IjY31B00AcNlll8FgMODrr7/Gd7/73WGf+9e//hV/+ctfkJqaiquuugo///nPERExfLrd6XTC6RzYrsFutwMA3G433G63BD8N/Mcb/L/kbHR+RkbnZ3iT4sQ+S8390pyf4sYuAEBOQgQE3gs3753wMeVE752R0fkZmZrOT6Bj1GTg1NjYiOTk5LO+ZjKZEB8fj8bGxmGf98Mf/hDZ2dlIT0/HsWPH8J//+Z84c+YM/vnPfw77nE2bNuGxxx477+uffvrpiAHXeG3fvl3yY2oJnZ+R0fk5X3MXB8CIFgcnyfn5ol48XoTHjm3btk34eEpB752R0fkZmRrOT19fYG1JVBU4Pfzww3jyySdHfMzp06fHffzBNVCzZ89GWloaLr30UpSVlWHy5MlDPmfjxo3YsGGD/992ux1ZWVlYs2YNbDbbuMdyLrfbje3bt2P16tUwm82SHVcr6PyMjM7P8OZ3OfDCqV1ocwArv3UpIsKsEzre3vdOAVW1WDY7H+suy5dolPKh987I6PyMTE3nh80YjUZVgdPPfvYz3HLLLSM+Ji8vD6mpqWhubj7r6x6PB+3t7WOqX1qyZAkAoLS0dNjAyWq1wmo9/0JrNpuD8iYJ1nG1gs7PyOj8nC8z3oRwswH9bh5NPR5MjY6a0PEqfM0vp6baNHWu6b0zMjo/I1PD+Ql0fKoKnJKSkpCUlDTq45YuXYrOzk4cOnQICxcuBAB8/vnn4HneHwwForCwEACQlpY2rvESQpTPYOCQkxCJ043dKG/pxdS02Akdr6xZbHuSnzyxAIwQokyabEcwffp0XH755bjzzjtx4MAB7NmzB/feey+uv/56/4q6uro6FBQU4MCBAwCAsrIy/OpXv8KhQ4dQWVmJf/3rX7j55puxfPlyzJkzR84fhxASZPnJ4sq6kuaRe72NpqPXhbZesZMmNb8kRJs0GTgB4uq4goICXHrppVi3bh0uvvhivPLKK/7vu91unDlzxl8MZrFY8Nlnn2HNmjUoKCjAz372M3z/+9/H+++/L9ePQAgJkSm+7FBJc++EjlPeKgZe6TFhiLSqKqFPCAmQZv+y4+Pj8dZbbw37/ZycHAiDNqfKysrCl19+GYqhEUIUZiBwmljGqcwXeE2maTpCNEuzGSdCCAkUC5zKW3vh5ce/229pixh4TU6iwIkQraLAiRCie5lx4TBzApweHjXtgfVyGQorDKeMEyHaRYETIUT3jAYOyb7dUYqbusd9nDO+506hwIkQzaLAiRBCAKRGiFN0461zsjvcqO3oBwBMT5Wu+S0hRFkocCKEEABpvsBpvBmn4kbxeWkxYYiJUHajP0LI+FHgRAghAFL9U3Xjyzid9gVOBanRUg2JEKJAFDgRQggGMk5lLT3jWllX1CDuc1WQRtN0hGgZBU6EEAIg3gqEmw1weXhUtI4963SGMk6E6AIFToQQAsDADQQ9J+sD2yWdEQQBRb7AaTplnAjRNAqcCCHEZ2a6GPScqOsa0/NqO/rR4/TAbORojzpCNI4CJ0II8ZmRNr6ME8s25SdHw2ykyyohWkZ/4YQQ4jMjbSDjNHgvy9GwwvDpVN9EiOZR4EQIIT5TkqNgNnKwOzz+ZpaBOO6b2puRTvVNhGgdBU6EEOJjMRkwJXns03VHazsBAHOzYoMwKkKIklDgRAghg8zKELNGJ+sDKxBv7HKgye6E0cD5i8sJIdpFgRMhhAwyMz0GQOAZp8KaTgDA1JRoRFhMwRoWIUQhKHAihJBBWMbpWG1nQAXibJpuXlZMMIdFCFEICpwIIWSQmekxsBgNaO1xobq9b9THH2P1TZmxwR0YIUQRKHAihJBBwsxGf9bpYGXHiI/leQHHasRaKCoMJ0QfKHAihJBzLMqJBwAcrGof8XHlrb3odnoQZjZgSnJUKIZGCJEZBU6EEHKOhdlxAEbPOB2uFr8/OyMGJuoYTogu0F86IYScY5EvcCpp7kFnn2vYx+0vawMALM6ND8m4CCHyo8CJEELOkRBlRZ5vs16WVTqXIAjY6wuclk1ODNnYCCHyosCJEEKGMNp0XUVrLxrtDlhMBv9jCSHaR4ETIYQM4QLf9NseX1bpXOzrCyfFIcxsDNm4CCHyosCJEEKGsGJqEgCxT1Nbj/O87+8rawUALJucENJxEULkRYETIYQMIcUWhpnpNggCsPNMy1nf43kB+1h9Uz4FToToCQVOhBAyjG8VJAMAPj/TfNbXT9bb0dHnRoTFiDnUMZwQXaHAiRBChrHKFzjtKm6B28v7v779VCMAYPmUJJipfxMhukJ/8YQQMoy5mbGIj7Sg2+HBoaqB1XWfnmoCAKyZmSLX0AghMqHAiRBChmE0cFjpKxL/+ISYZSpr6UFRYzeMBs4/lUcI0Q8KnAghZARXzU0HALx/tB5uL493D9cBEFfdxUZY5BwaIUQGFDgRQsgILpmSiMQoC9p6XdhxugnvHhEDp+8tyJB5ZIQQOVDgRAghIzAZDfjegkwAwF1/OYy6zn7ERphx2XSqbyJEjyhwIoSQUdy8NBtGA+f/941LsqlbOCE6RYETIYSMIjMuAjddmA0ASLWF4eZl2TKPiBAiF5PcAyCEEDV49Dsz8fAVBbAYDTAMyj4RQvSFAidCCAkQTc8RQmiqjhBCCCEkQBQ4EUIIIYQEiAInQgghhJAAUeBECCGEEBIgCpwIIYQQQgJEgRMhhBBCSIAocCKEEEIICRAFToQQQgghAaLAiRBCCCEkQBQ4EUIIIYQEiAInQgghhJAAUeBECCGEEBIgCpwIIYQQQgJkknsAWiMIAgDAbrdLely3242+vj7Y7XaYzWZJj60FdH5GRudnZHR+hkfnZmR0fkampvPDPrfZ5/hwKHCSWHd3NwAgKytL5pEQQgghZKy6u7sRExMz7Pc5YbTQiowJz/Oor69HdHQ0OI6T7Lh2ux1ZWVmoqamBzWaT7LhaQednZHR+RkbnZ3h0bkZG52dkajo/giCgu7sb6enpMBiGr2SijJPEDAYDMjMzg3Z8m82m+DefnOj8jIzOz8jo/AyPzs3I6PyMTC3nZ6RME0PF4YQQQgghAaLAiRBCCCEkQBQ4qYTVasUjjzwCq9Uq91AUic7PyOj8jIzOz/Do3IyMzs/ItHh+qDicEEIIISRAlHEihBBCCAkQBU6EEEIIIQGiwIkQQgghJEAUOBFCCCGEBIgCJ5V44YUXkJOTg7CwMCxZsgQHDhyQe0iKsGvXLlx11VVIT08Hx3HYunWr3ENSjE2bNuGCCy5AdHQ0kpOTcc011+DMmTNyD0sxXnrpJcyZM8ffmG/p0qX46KOP5B6WYj3xxBPgOA7333+/3ENRhEcffRQcx531X0FBgdzDUoy6ujrceOONSEhIQHh4OGbPno2DBw/KPSxJUOCkAm+//TY2bNiARx55BIcPH8bcuXOxdu1aNDc3yz002fX29mLu3Ll44YUX5B6K4nz55Ze45557sH//fmzfvh1utxtr1qxBb2+v3ENThMzMTDzxxBM4dOgQDh48iG9961u4+uqrcfLkSbmHpjjffPMN/vjHP2LOnDlyD0VRZs6ciYaGBv9/u3fvlntIitDR0YGLLroIZrMZH330EU6dOoWnnnoKcXFxcg9NEtSOQAWWLFmCCy64AM8//zwAcT+8rKws/Md//AcefvhhmUenHBzH4d1338U111wj91AUqaWlBcnJyfjyyy+xfPlyuYejSPHx8fif//kf3H777XIPRTF6enqwYMECvPjii/j1r3+NefPm4dlnn5V7WLJ79NFHsXXrVhQWFso9FMV5+OGHsWfPHnz11VdyDyUoKOOkcC6XC4cOHcJll13m/5rBYMBll12Gffv2yTgyojZdXV0AxOCAnM3r9eJvf/sbent7sXTpUrmHoyj33HMPrrzyyrOuQURUUlKC9PR05OXl4YYbbkB1dbXcQ1KEf/3rX1i0aBGuvfZaJCcnY/78+Xj11VflHpZkKHBSuNbWVni9XqSkpJz19ZSUFDQ2Nso0KqI2PM/j/vvvx0UXXYRZs2bJPRzFOH78OKKiomC1WnHXXXfh3XffxYwZM+QelmL87W9/w+HDh7Fp0ya5h6I4S5YswZYtW/Dxxx/jpZdeQkVFBS655BJ0d3fLPTTZlZeX46WXXsKUKVPwySef4O6778ZPfvITvPHGG3IPTRImuQdACAm+e+65BydOnKAajHNMmzYNhYWF6OrqwjvvvIP169fjyy+/pOAJQE1NDe677z5s374dYWFhcg9Hca644gr//58zZw6WLFmC7Oxs/P3vf9f9VC/P81i0aBEef/xxAMD8+fNx4sQJvPzyy1i/fr3Mo5s4yjgpXGJiIoxGI5qams76elNTE1JTU2UaFVGTe++9Fx988AG++OILZGZmyj0cRbFYLMjPz8fChQuxadMmzJ07F88995zcw1KEQ4cOobm5GQsWLIDJZILJZMKXX36J3//+9zCZTPB6vXIPUVFiY2MxdepUlJaWyj0U2aWlpZ138zF9+nTNTGVS4KRwFosFCxcuxI4dO/xf43keO3bsoFoMMiJBEHDvvffi3Xffxeeff47c3Fy5h6R4PM/D6XTKPQxFuPTSS3H8+HEUFhb6/1u0aBFuuOEGFBYWwmg0yj1ERenp6UFZWRnS0tLkHorsLrroovNanxQXFyM7O1umEUmLpupUYMOGDVi/fj0WLVqExYsX49lnn0Vvby9uvfVWuYcmu56enrPu8CoqKlBYWIj4+HhMmjRJxpHJ75577sFbb72F9957D9HR0f6auJiYGISHh8s8Ovlt3LgRV1xxBSZNmoTu7m689dZb2LlzJz755BO5h6YI0dHR59XDRUZGIiEhgerkADzwwAO46qqrkJ2djfr6ejzyyCMwGo3493//d7mHJruf/vSnWLZsGR5//HH84Ac/wIEDB/DKK6/glVdekXto0hCIKvzhD38QJk2aJFgsFmHx4sXC/v375R6SInzxxRcCgPP+W79+vdxDk91Q5wWA8Prrr8s9NEW47bbbhOzsbMFisQhJSUnCpZdeKnz66adyD0vRVqxYIdx3331yD0MRrrvuOiEtLU2wWCxCRkaGcN111wmlpaVyD0sx3n//fWHWrFmC1WoVCgoKhFdeeUXuIUmG+jgRQgghhASIapwIIYQQQgJEgRMhhBBCSIAocCKEEEIICRAFToQQQgghAaLAiRBCCCEkQBQ4EUIIIYQEiAInQgghhJAAUeBECCGEEBIgCpwIIYQQQgJEgRMhhKjQG2+8gccffxwej0fuoRCiK7TJLyGEqMzOnTtx2223ITIyEh6PB7/4xS/kHhIhukF71RFCiIr09vZizpw5uPbaa3HJJZfg+9//Pr755hvMnj1b7qERogs0VUcI0YTKykpwHIdbbrlF06/78MMPIy0tDb/+9a9x5ZVX4v7778ctt9xCU3aEhAgFToQQRWIByUj/5eTkyD3MkPvDH/6A3bt3w2QSKy2eeOIJHDp0yP9vQkhw0V8aIUTRJk+ejBtvvHHI78XGxvr/f0ZGBk6fPo2YmJgQjYwQokcUOBFCFC0/Px+PPvroqI8zm80oKCgI/oAIIbpGU3WEEE0YqdZo165duOqqq5CYmAir1YopU6bgv//7v9HX1xfw8b1eL5588knk5+cjLCwM+fn52LRpE3ieH/F5Urz20qVLwXEc9u3bd9bX7XY75s2bB6vViu3btwd8PELI+FHgRAjRtJdeegkrV67Enj17cOWVV+InP/kJMjMz8Zvf/AarV6+Gy+UK6Dg/+tGP8PDDD4Pnedxzzz1Yu3Ytnn76adx3331Bf+0nn3wSAPDf//3f/q+5XC5897vfxbFjx/DGG29g9erVAR2LEDIxNFVHCFG00tLSYafqLrzwQlx++eXDPvfUqVP4yU9+gjlz5mDHjh1ISEjwf++JJ57Axo0b8Yc//AE/+9nPRhzDzp07sXnzZsydOxd79uxBZGQkAOC//uu/MG/evKC+NgAsX74cV155JT788EPs3LkTK1aswC233ILPP/8czz77LK6//vpRj0EIkYhACCEKVFFRIQAY8b/77rvvvMevX7/e/7Wf/OQnAgBh165d5x3f6/UKSUlJwsKFC0cdy6233ioAEP7xj3+c971f/epX572ulK/NHDt2TDAYDMLFF18sbNiwQQAgbNy4MeDnE0KkQRknQoiirV27Fh9//PG4nrt//34AwCeffIIdO3ac932z2YyioqJRj3P06FEAwCWXXHLe94b6mpSvzcyePRs33ngj3nzzTezevRu33XYbHn/88YCfTwiRBgVOhBDNam9vBwD85je/mdBxurq6YDAYkJiYeN73UlJSgvragyUlJQEAoqOj8cILL0h2XEJI4Kg4nBCiWTabDYC4+kwQhGH/G01MTAx4nkdra+t532tqagrqazPPP/88nnrqKaSkpKC7uxtvvPFGwM8lhEiHAidCiGYtWbIEwMC02XjNnTsXAPDVV1+d972hviblawPA3//+d9x3331YtWoVjhw5gpiYGDz22GNjamlACJEGBU6EEM368Y9/DJPJhP/4j/9AdXX1ed/v7OzEkSNHRj3OTTfdBAD45S9/id7eXv/X6+rq8NxzzwX1tXfs2IGbbroJs2fPxtatW5GWloaf/vSnaGhoGPa1CSHBwwljyRUTQkiIVFZWIjc3d8QtVwBx09uwsDD/49evX48tW7b4v//qq6/i7rvvhtlsxrp16zB58mR0d3ejvLwcX375JW655Ra8/PLLo47ntttuw+uvv47c3Fx897vfhdPpxNtvv40LL7wQH3zwwXmvK8VrHz58GCtXrkRCQgL27t2LtLQ0AOL0X25uLrxeL8rLyxEfHz/q+AkhEgn9Qj5CCBldIO0IAAgdHR1nPf7ctgCCIAgHDhwQrr/+eiE9PV0wm81CYmKisGDBAuHhhx8WTp8+HdB4PB6PsGnTJiEvL0+wWCxCXl6e8PjjjwulpaXDvu5EXru0tFRISUkREhIShKKiovO+/+STTwoAhAceeCCg8RNCpEEZJ0KIJhQVFWH69On40Y9+hD/+8Y9yD4cQolFU40QI0YTS0lIAQGZmpswjIYRoGfVxIoSoWnFxMTZv3oy33noLBoMBV199tdxDIoRoGGWcCCGqdurUKTz33HOIi4vDP/7xD8yZM0fuIRFCNIxqnAghhBBCAkQZJ0IIIYSQAFHgRAghhBASIAqcCCGEEEICRIETIYQQQkiAKHAihBBCCAkQBU6EEEIIIQGiwIkQQgghJEAUOBFCCCGEBIgCJ0IIIYSQAFHgRAghhBASIAqcCCGEEEIC9P8Dcy/xbzks6m8AAAAASUVORK5CYII=\n" }, "metadata": {} } ], "source": [ "# Calculamos los picos\n", "picos, diccionario = find_peaks(y, height = 1.5) # Acá agrego el parámetro\n", "\n", "# Graficamos la función\n", "plt.plot(x, y)\n", "plt.plot(x[picos], y[picos],\".\", c = \"k\", ms = 10)\n", "plt.xlabel('Eje de $\\hat x$', fontsize = 14)\n", "plt.ylabel('Eje de $\\hat y$', fontsize = 14)\n", "\n", "plt.grid()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "id": "7iEHO2yWREoa" }, "source": [ "¡Conseguimos lo que queremos! También podriamos haberle pasado la distancia u otro parámetro para que la función cuente con la mayor información posible.\n", "\n", "Podemos ver ahora que cambio el diccionario, este contiene ahora la altura de los picos." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "id": "k9vuiphqRMfW", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "650b0d16-46e6-43b6-a781-ed631299c8a3" }, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "{'peak_heights': array([1.78657323, 1.78657323])}" ] }, "metadata": {}, "execution_count": 8 } ], "source": [ "diccionario" ] }, { "cell_type": "markdown", "metadata": { "id": "kjs-AUxVfe_K" }, "source": [ "Veamos otro parámetro más: el ```distance```.\n", "\n", "El ```distance``` define la cantidad de datos intermedios que debe haber entre picos. Hay que tener en cuenta que ```find_peaks``` recibe un array 1D, por lo que esta distancia es en índices y no en nuestra variable ```x```." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "id": "eugTtoz7AMe0", "colab": { "base_uri": "https://localhost:8080/", "height": 606 }, "outputId": "c4d115c3-1ee4-42a8-b2e0-6ddcd05fce9b" }, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "<>:7: SyntaxWarning: invalid escape sequence '\\h'\n", "<>:8: SyntaxWarning: invalid escape sequence '\\h'\n", "<>:7: SyntaxWarning: invalid escape sequence '\\h'\n", "<>:8: SyntaxWarning: invalid escape sequence '\\h'\n", "/tmp/ipython-input-3532168980.py:7: SyntaxWarning: invalid escape sequence '\\h'\n", " plt.xlabel('Eje de $\\hat x$', fontsize = 14)\n", "/tmp/ipython-input-3532168980.py:8: SyntaxWarning: invalid escape sequence '\\h'\n", " plt.ylabel('Eje de $\\hat y$', fontsize = 14)\n" ] }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAG8CAYAAAAo6yp6AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAgJJJREFUeJzt3Xd8HOW1P/7PbFVd9S5ZxbIt94qNDbgEbIMJgSSXwA3F1HwhcANxgIvv7yZACobc0BJaIBhDEm7IJcEEMMUYjHHDuMhdVu+9rtrWmd8fs89KtlVW0uxOO+/Xi1diaXf20Wg1e+Y85zkPJwiCAEIIIYQQMiqD3AMghBBCCFELCpwIIYQQQgJEgRMhhBBCSIAocCKEEEIICRAFToQQQgghAaLAiRBCCCEkQBQ4EUIIIYQEyCT3ALSG53nU19cjOjoaHMfJPRxCCCGEBEAQBHR3dyM9PR0Gw/B5JQqcJFZfX4+srCy5h0EIIYSQcaipqUFmZuaw36fASWLR0dEAxBNvs9kkO67b7cann36KNWvWwGw2S3ZcraDzMzI6PyOj8zM8Ojcjo/MzMjWdH7vdjqysLP/n+HAocJIYm56z2WySB04RERGw2WyKf/PJgc7PyOj8jIzOz/Do3IyMzs/I1Hh+RiuzoeJwQgghhJAAUeBECCGEEBIgCpwIIYQQQgJEgRMhhBBCSIAocCKEEEIICRAFToQQQgghAaLAiRBCCCEkQBQ4EUIIIYQEiAInQgghhJAAUeBECCGEEBIg2nKFkHOUlJRg8+bNqKysRE5ODm677TZMmTJF7mERQhSopKQEf/7zn/HWW28hLy+Prhc6QIETIYO8/vrruOOOO8BxHARBAMdx+O1vf4vXXnsNt9xyi9zDI4QoCLteMHS90AeaqiPEp6SkBHfccQd4nofX6z3rf2+//XaUlpbKPURCiEIMvl6w/+h6oQ8UOBHis3nzZmCYXbE5jsNrr70W4hERQpRq8+bN4Oh6oUsUOBHis+vwKfA8P+T3BEFAZWVlaAdECFGskrJyeHlhyO/R9ULbKHAiBMCpejtOdVsBDH8HmZOTE9IxEUKUq9wRMez3BND1QssocCK6JwgCfvHeCUTMumyYsAngeQG33357SMdFCFGmXcUtaEpdCmC4jBOPS678QWgHRUKGAieiezuLW3CwqgO2lEl4+vmXYDAYYDQa/f8LjkP8FT9BlzlB7qESQmQmCAKe/LgI5vgMXPOTX8FgMPj/MxqN4DgDEq64D/8o9cg9VBIk1I6A6N7LO8sAADdeOAn3X3k5vr3mW3jttdf8fZxa0pfhszoDXt1VjoU3LZR5tIQQOe0ta8PJejvCzUZs/vmDaPx/38PPf/5zGI1G5OXlYc13/x23vVuDHUXNKG7qxtSUaLmHTCRGgRPRteKmbnxd0Q6TgcOtF+UCAPLz87Fp0yb/Y0qauvHZM7vwyalG1Hb0ITNu+NoGQoi2vb6nAgBw3QVZiIu0ICo/HzfddBPWrVsHs9kMAFh7xo2PTzbiL/ur8MurZ8k5XBIENFVHdO3/DtYAAFYVJCM9NnzIx0xJicbSvAQIAvDPw3WhHB4hREGaux344kwLAODGC7OHfdwPl0wCALxXWA+H2xuSsZHQocCJ6JaXF/DukXoAwLULM0d87L/5vv/OoVoIwtAFoYQQbXvvSD28vIAFk2KRnxw17OMuyk9EWkwYuvrd+LyoOYQjJKFAgRPRrUNVHWjtccIWZsLKackjPvaK2akINxtR3d6HE3X2EI2QEKIkH59sBAB8d37GiI8zGjh8Z146AOCjE41BHxcJLQqciG597LugXTYjBRbTyH8KERYTVk5LAgB8dKIh6GMjhChLW48Th6s7AIjXjNFcPjMVAPD56SaartMYCpyIbm0/LQZOa30XuNFcPkt83Ccn6Q6SEL35vKgZggDMTLchLWboesjB5mbGItUWhl6XF/vL20IwQhIqFDgRXapu60NNez9MBg4X5ycG9JxVBckwcEBZSy/qO/uDPEJCiJLsOC3WKl06ffRsEwAYDBxWTBWz1HtKW4M2LhJ6FDgRXdpTJl7I5k+KRaQ1sK4ctjAz5mbFAgB204WQEN1wuL3YVSKuplsdYOAEAMvyxaa5e0op46QlFDgRXWKBz0UBZpuYS3yP311CgRMhevF1RTv6XF6k2KyYlWEL+HnLJovXi1MNdrT1OIM1PBJiFDgR3eF5AfvKxDvAsQZO7PF7SlvBD7MzOiFEW/b6MtQrpiaB44bb0fJ8SdFWFKSKncP3UZ2TZlDgRHTndKMd7b0uRFqMmOebegvU/ElxiLAY0dbrQlFjd3AGSAhRlAMV7QCAJblj369y8M0W0QYKnIju7PXVGyzOjYfZOLY/AYvJgCW58QCA3aUtko+NEKIs/S4vjtd2ARCvGWN1EdU5aQ4FTkR3vq4QL2Cs/mCsLp4irpTZW0YXQkK07kh1Bzy8gLSYMGTGjd6G4FyLcxNgNHCobu+j1bgaQYET0RVBEHCkuhMAsCA7blzHuCBHfN6R6k7afoUQjfvaN023ODd+TPVNTJTVhGkpYp1TYU2nlEMjMqHAiehKbUc/2npdMBs5zEwPfHXMYAWpNlhNBnT1u1He2ivxCAkhSnJgUOA0XvMmxQKgwEkrKHAiusIuXNPTbAgzG8d1DIvJgDmZMQCAw1UdUg2NEKIwLg/v32ZlyUQCJ98iFAqctIECJ6Ir7MI11tV055o/yTddRxdCQjTrZH0XnB4ecRFmTE6KGvdx5vuuN8dru+Dx8hKNjsiFAieiK1IFTgt8qXfKOBGiXcfrxNV0c7Nix1XfxExOikK01YR+txfFTT1SDY/IhAInohtuL48TvguhVBmn4qZu9Dg9Ex0aIUSBjvnaEMzJjJ3QcQwGDnOyxOl9mq5TPwqciG4UNXTD6eERE25GbmLkhI6VYgtDRmw4eAE4RhdCQjTpWG0nAGBORsyEjzVQ50RZarWjwInoRqHvIjjRtDvDVspQnRMh2tPr9KC0WZxWm50pReAkZqkp46R+FDgR3ThVL6bdZ49hk86RsLtQNv1HCNGOUw128AKQYrMixRY24ePN9l0vylp64XB7J3w8Ih8KnIhunGoQ95abniZN4DQzPcZ3XLskxyOEKIdU9U1Mis2KuAgzvLyAEioQVzUKnIgueHkBZxrFAEe6wEk8TlVbH+wOtyTHJIQog5T1TQDAcZz/2nOabrZUjQInogtVbb1wuHmEmQ3ISZhYYTgTF2lBeoyYwj9dTxdCQrSEbewrRX0TU5DqC5wa6XqhZhQ4EV047Zumm5YSDaNh4oXhzAzfdN1JCpwI0Ywep8e/ndJsiTJOADA9TdyzjjJO6kaBE9EFdqGSapqOmeGbrqPAiRDtONMo3mglR1uREGWV7LgDU3XdtEG4ilHgRHQhWIETq3OiAnFCtKPIN5VWIPH1YkpKFIwGDl39bjR0OSQ9NgkdTQdOu3btwlVXXYX09HRwHIetW7eO+PidO3eC47jz/mtsbAzNgEnQsMCpIDVa0uOywKmkqRtODy0xJkQLitgKXImvF1aTEZOTxBpLmq5TL00HTr29vZg7dy5eeOGFMT3vzJkzaGho8P+XnJwcpBGSUOjqc6Ped3cn9R1kRmw4YsLN8NASY0I0g03VFaRJGzgBA1nvIt9rEPUxyT2AYLriiitwxRVXjPl5ycnJiI2NlX5ARBYs7c6CHClxHIcZaTbsK2/D6QY7ZklYSEoICT1BEPyr3tgqOClNT7PhvcJ6mt5XMU0HTuM1b948OJ1OzJo1C48++iguuuiiYR/rdDrhdDr9/7bbxT8Gt9sNt1u63j7sWFIeU0tGOj+nG8RlxfnJkUE5f/nJkdhX3oaihi643amSH18K9P4ZGZ2f4ent3NR39qPb4YHJwGFSrHXUn3us5ycvIRwAUNLYrYtzqqb3T6Bj5ASdlPZzHId3330X11xzzbCPOXPmDHbu3IlFixbB6XTiT3/6E/785z/j66+/xoIFC4Z8zqOPPorHHnvsvK+/9dZbiIiIkGr4ZAL+UWHArkYDvpXG4+ocXvLj723i8Ha5EdNjedw1XfrjE0JC50QHh1eLjEiLEPDwXOnrFtscwC+PmGDkBPzPEi+M0nVHIRPU19eHH/7wh+jq6oLNNny2kQKnUaxYsQKTJk3Cn//85yG/P1TGKSsrC62trSOe+LFyu93Yvn07Vq9eDbNZ2ukmLRjp/KzfchB7y9rx+DUzce3CDMlf+1BVB67/0zdIiwnDrgeWS358KdD7Z2R0foant3Pz0pflePqzUnxnThqeunb2qI8f6/nheQFzf70DDjeP7fdfJFlDXqVS0/vHbrcjMTFx1MCJpupGsXjxYuzevXvY71utVlit5/f5MJvNQXmTBOu4WjHU+Slv6QMATEuLCcq5m54h7nre0OVAvxewhSn390Pvn5HR+RmeXs5NcbPY+HJGxtiuF2M5P3mJUTjVYEdluxNTUmPHM0zVUcP7J9DxaXpVnRQKCwuRlpYm9zDIONkdbjTaxRV1+clRQXmNmHAzUn27p9PKOkLUja2omyZxK4LBpqSI16KSZlpZp0aazjj19PSgtLTU/++KigoUFhYiPj4ekyZNwsaNG1FXV4c333wTAPDss88iNzcXM2fOhMPhwJ/+9Cd8/vnn+PTTT+X6EcgElTWLgUxytFXyFXWDTU2NRqPdgeKmbizMjgva6xBCgsft5VHh22plakrwAqf8JDFwKm2mGy010nTgdPDgQaxatcr/7w0bNgAA1q9fjy1btqChoQHV1dX+77tcLvzsZz9DXV0dIiIiMGfOHHz22WdnHYOoC7swBSvbxExNjsKu4hYUN9EdJCFqVdXWBw8vIMJi9G/gHQzselRGgZMqaTpwWrly5Yj7AW3ZsuWsfz/00EN46KGHgjwqEkqlLSEKnHxpfQqcCFGvUt/UWX5yFDgueMvd2PWotLkHgiAE9bWI9DQdOBFS6qs5mhLswCmFBU50BzmUZrsDv9l2GttPNcFiMuD6Cybhp6unwGoyyj00XdhV3ILfflKEM43dmJwUhZ+tmYbVM1LkHpbi+DPUScG9XmQnRMJk4NDr8qKhy4H02PCgvh6RFhWHE01jGafJQQ6cWGDW0u1ER68rqK+lNg1d/fi3l/fhvcJ69Lm86Oxz4+Uvy3DHGwfh9lLfq2B7/2g9bnn9AE7U2eH2Cihq7Madbx7E/x6oHv3JOlPCAqeU4F4vLCYDshPEPn9U56Q+FDgRzXK4vahpF1sRBHuqLtJqQobvrrGshS6EjJcXcN//FqK6vQ/ZCRH4+/9bit//+3xEWIz4qqQVz35WLPcQNa28pQcPvXMMvAB8d34GPv3pctywZBIA4OdbT+B4bZfMI1QWFsRMSQ5eYTgzeLqOqAsFTkSzqtr6wAtAdJgJSVHn99qSWp5v1/Pylt6gv5Za/O+BahyobEekxYg3b1uMxbnx+M7cdPz23+YAAF7aWUYfHEH0yL9Oot/txbLJCXjq2rmYmhKNX18zC+tmp8LDC3jwnaPgeV30QB4Vzwv+m55g32gBwGTfdGB5K73/1YYCJ6JZbFlxbmJkSIov2YWwjC6EAIA+lwfP7SgBADy4dhqyB3VI/vacdFw2PRm8ADy9/YxcQ9S0vWWt+KqkFWYjhye+NwcGg/g3wHEcfnPNbESHmVDU2I33jtbJPFJlqOvsh8PNw2IyICsu+DVHOYni30Nla1/QX4tIiwInolmVbQOBUyiwjFNZM2WcAOD/DtaipduJrPhw/HBJ9nnff2DtNADARycaUd1GHx5Se3VXOQDg+gsmYVLC2ftmxkVacNeKyQCAF78oG3H1sV6wZpR5iZEwGYP/0Zjnuy6xGzyiHhQ4Ec2q8E2ZhWovqLxESr0zPC9gy95KAMCdl+TBYjr/UlOQasPyqUkQBOAvX1eFeITaVtnai53FLeA44PaLc4d8zE1LsxFpMaKkuQe7S1tDPELlYV3/QzFNBwxknOq7+uFwS7+ZMAkeCpyIZlX4Mk4sExRs7HWq2/p0v1psX3kbKlp7ER1mwvcXZA77uJsvFDNR7xyq1f05k9I7h2ohCMCKqUn+D+hz2cLM+LeF4u/mL/spcA1lfRMAJERaEB1mgiAA1e2UcVUTCpyIZrEUeKgyTqm2MISbjfDwgn81n17943AtAOA7c9MRaR2+XdzKaUlIiLSgvdeFPZT1kIQgCP66JRYYDef6xeIKu8+LmtHZp+82Gux6kRfkHk4Mx3H+MgKarlMXCpyIJvU4PWjpdgLAsHfcUjMYuIE6Jx2vrOtzefDxiUYAwPdGyDYBgMlowLfniJto/6uwPuhj04PCmk7UtPcj0mLEpQUjN7mcnmbD9DQb3F4BHxxrCNEIlckfOIXoegEM3NRR4KQuFDgRTar0XYgSIi1B3dz3XOxutVzHvZx2l7Siz+VFZlw4FkyKHfXx356bDgDYUdQMD03XTdjnRc0AgFUFyQi3jN6Z/ep54vn/9FRTUMelZF39brT2iBm3UN1oAQMLVyopcFIVCpyIJvmn6UJ4EQQG7lb13Mtpx2nxg/uy6SkBtYFYMCkOcRFmdPW7cbCqI9jD07wvi1sAAKumJQf0+Mumi1mp/WVt6HF6gjYuJWOBS3K0FVEjTC1Ljabq1IkCJ6JJg3s4hZK/CaZOV9bxvIAdvozHpdMD++A2GjisKhAfu+O0frMeUmjtceKYrxv4JVMTA3rO5KRI5CREwOXlsbukJZjDUyy5rhcUOKkTBU5EkypluhD6m2DqNON0rK4LrT1ORFlNWJKbEPDzVvqyI3vL2oI1NF34yhf4zEy3ITk6LKDncByHS31Zp8982UK9KW8N7QpchmXEm7ud6NVptk+NKHAimsRaEYRqRR3DArX2XpcuVyl95quTWTE1acjeTcO5MDceAHCqwY6uPndQxqYHX54RA6cVU5PG9DyWHfy8qBleHW7BIlfGKSbcjPhIy1ljIMpHgRPRpEp/jVPEKI+UVqTVhLQY8U5fj1mnsU7TMcm2MOQlRUIQgAOV7cEYmubxvIBdJWJLh7EGThfkxMMWZkJ7rwuFNZ1BGJ2yVfim1nMTQ9OKYLAcX1f3KuqerxoUOBHNsTvc6PBlLSbFhzZwAgZv9quvOqf2XhdON9gBAMvH+MENABfmiVN7+8tpum48ihq70d7rQqTFiAXZcWN6rtlowCVTxN/ZXp310xIEwb/LQKgzTgD8ezhSE0z1oMCJaA5rPhkfaUF0WOhaETBs6xW9ZZwOVIgBz5TkKCRGWcf8fAqcJuZwtbgicf6kOJjHsdfakjxxuvTrCn1l/Fq6neh1eWHg5LnRyvK9JgVO6kGBE9EcFjhlyXARBPSbcdpfLn7gsg/gsaI6p4k57GvlMNZsE8OK+Q9Vdehq+xtWGJ4VHzGmujypsGBN77sNqAkFTkRz2J2bHHePwKAmmDor9mSZCpY5GqtkWxjyEsU6p68rKOs0VizjFEjT0aFMSY5CfKQF/W6vv6WBHshVGM5MooyT6lDgRDRnIHAKl+X1cwfVLPA6WaHU1edGUaNY37Q4d3wZp8HPPaLDAuWJaOtxotJXXDx/0vgyTgYDh8U54vnX03SpUgKnus5+6pyvEhQ4Ec2pbu8HIF/GKT02DCYDB5eHR6PdIcsYQu1AZTsEQZymDLR/0FDmZMYCAI7VdkozMJ04XN0JQMwaTWSLIT3WObEu/6Hco26w5GgrLCYDvLyAhi59XC/UjgInojly1ziZjAb/a1e26WO67mtfhmIsTS+HMiczBgBwrLYLgqCPbJ0U2DTdwnHWNzH+OqfKdt3UOcnZigAQM31ZcWJ2nKbr1IECJ6IpXl5AbYe8NU4AkO3rzVKtk94s3/gKk5dMYJoOAKamRMNiMqDb4aG+NmNwiBWGj3OajilIjYYtzIRelxdFDd1SDE3RPF7eH6zkhrhr+GBU56QuFDgRTWmyO+D2CjAbOaTFyFPjBADZ/oyT9i+ETo8Xp+vF+qb54yxMZiwmA6an2QCI27eQ0Xl5Acd9xdwTPf8GA4e5WeIxCnUwXVrX2Q+3V4DVZECabfxTzBNFvZzUhQInoik1HWJ9U2ZcBIwGTrZxsAthlQ6m6ooauuHy8oiLMEuS5ZvLpuuoQDwgFa296Hd7EW42+ld0TsR8X+B0VAfnn618zUmIhEHG64W/l5MObrS0gAInoimsMFyu+iaGbfWih4wT26JjblYsOG7iHz6zM3yBE2WcAnLK1629IC1akpsFf8ZJB4FTlUxbM52LpurUhQInoik1HfK2ImD8qfe2Xs0XObPMxDzfB+5EsQ/uk3VdutxwdqxO+aZJZ/imOCeKnf+ylh7YHdpuRCr3ClyGAid1ocCJaEqNQi6EmXHh4Dig1+VFa49L1rEE2+CMkxQmJ0Uh3GxEr8uru+7r48EyTjPSpQmcEqOsyIwLhyDAXzulVdXtYsZpUoJ8heEAkOW70evqd1PXfBWgwIloCqtxkjtwspqMSPcVp2u5zqmrz+2vE5nn68E0UUYD5w8CWFBAhid1xgkYyB5qfbqOrdzMlvl6EWEx+fd3ZFlzolwUOBFNYRcduWucAH3UOR31rbzKTohAXKRFsuNOS40GAJxp1P6S+IlotjvQ2uOEgQMKUilwGgueF/xTY6x9iJxYeQFN1ykfBU5EMxxeoL1XTHMrIXAaXOekVay+aa5E2SZmWooYOBU3UeA0kpO+jFxeUhTCLUbJjjtXByvrmrudcHp4GA0c0mPlrYkEqM5JTShwIprR5tutIC7CDFvY+LedkEpOgvYzTifqxRoY1vFbKizjVEQZpxEFY5oOAGam28BxYnDR0u2U9NhKwQKUjNhwmI3yfxRS4KQe8r9bCJFIm1Ncii13fRMzKV77vZykLkxmCnyBU21HP3qcHkmPrSXBOv8RFpN/77bTGg1e2d+lUq4XLEteQ4GT4lHgRDSDZZyUME0HaL/Gqavf7V/FKHXGIzbCghSbWCxLdU7DK/adG5ahk9KMdDGLyLJaWsMyO5MUUN8EUMZJTShwIprR5lBaxkkcR1e/G5192mtJwD5QM2LDERshXWE4M5XqnEbk9vKo8K1oZOdKSjN9WSztZpyUsaKOYQFcXUc/PDrZYFmtKHAimtHmK8XIjFPGhTDCYvJnTbS4Ye1JX33TTImniZgCWlk3oqq2Xnh4AZEWI9JjpN9nbaa/JYQ2z3+VglbUAUBKdBjMRg4eXkCTRuvKtIICJ6IZHS4x45QRJ/8KGSbbV+dUqcE6J1ZfMzNd2sJwZppveX1RozaniiaqpElsDpqfHCXJVjfnYtOvlW19cHglP7zsqv01TvI2v2QMg1b31dJ0naJR4EQ0o8N3k5YRK98u5+did7NazDj5V3SFIOOk9W1rxqOkmQVO0k/TAUBClBWpNvFvqV5jcb/d4UaHr0O3UmqcAHHaGwDqOvtlHgkZCQVORBPs/W44vOJdtxJ6sjA5idrMODncXv8Hd7Cm6sRMCtDR59b8tjXjUeo7/1NSooL2Gux3W9srfUZLTtW+G5mESAuirCaZRzPAHzh1UOCkZBQ4EU2o7xKX1MVFmBFhUc6FkGWcqjWWcSpu6oaXFxAXYUZaEOprACDMbESmb9qV9qw7nz/jlESB01gpbUUdw+ozaylwUjQKnIgmsNR2uoKm6QAgJ4FlnLQVOBX5CoZnpNuCUl/DTPYFBWw/PCLy8gLKWoKfcWLTsPV92gqclLaijmH1mTRVp2wUOBFNaPBlnNjGukrB7mhbe5yaauR4xtciYFpKcKbpmLxEMSgoa6aM02A17X1weXhYTYagriJlBfqN/WKwphXV7b7C8ARlFIYzVOOkDhQ4EU2o6/QFTgrLONnCzIj3bX6rpQ7iZ/yNF4OX7QCAvCTxg40yTmdj03STk6JgNAQvGzQpPgJWkwFuntPU9JF/qk5hGSc2NV3X0Q9eQ4Gq1lDgRDSh3neHlqGgwnBGi3VOLOMUjMaLg7GpujKqcTpLKArDAcBo4JCfLAavxU3a+R34p+oUVuOUGhMGAwe4vDxae6iXk1JR4EQ0od4/VaesjBMwUEehlTqn9l6Xf+PXKUEPnMQP7Zr2Pjg9GmwmNE4skJwcxMJwZmqy+BrFGpkudXl4/42W0mqczEaDvwVELU3XKRYFTkQT6hU6VQcM1FGwugq1Y1ugZMWHB30pd1K0FdFWE3hBWxm7iar0TV3mJga/RodlFUs0knGq6+wHLwDhZiOSoq1yD+c8tLJO+ShwIqrn9HjR7MuAKKmHE8PuarXSBLPYXxge3GwTAHAc569zoum6AawvWGgCJ5Zx0sbWK1X+juERQV0ROl4ZcdTLSekocCKq1+ibpjMbBMRHmGUezfm01j2cFYYHu76JGahz0kbGbqLsjoGGoDkhCJym+KbqKlrFlXxqV+MrDM9S2DQdM7CyThvXCy2iwImoHrszi7NAkXeQrCVBQ1e/Jj54/Bmn1NAETpRxOhubpkuKtoak63WqzYpwowAPL6C8Vf2/A6UWhjOZlHFSPAqciOqxIsp4qzKX7yZFWRFhMYIXgNoOdd9FCoIQ8oxTHmuCSRknAEAFq28KUQ8ijuOQ6osx2O9ezaralR04sak6qnFSLgqciOqxFTJxyqvzBCB+8LB+MVUq3/W8ye6E3eGB0TBQexRs7HW0tt/feFWEsDCcSYsQb0pYtlHN2CIDpfVwYgY3waTNrZWJAieiev6pOoVmnICBi7TaV4YVNdoBiB/aVpMxJK/Jzl1nnxudfbTZL5uqC0V9E5MWLv5tnWlU91SdIAj+5pfZCusazrAFLn0uLzr73DKPhgxF04HTrl27cNVVVyE9PR0cx2Hr1q2jPmfnzp1YsGABrFYr8vPzsWXLlqCPk0xMfRebqpN5ICPQSoF4qOubACDCYkKyb9m42s+fFAYyTqHLmKT7Mk5nmuwhe81gaOlxot/thYFTZrNcQNzcmrVJoOk6ZdJ04NTb24u5c+fihRdeCOjxFRUVuPLKK7Fq1SoUFhbi/vvvxx133IFPPvkkyCMlE6GKjJNGejmxjEMoWhEMxjZLVvtU50QJgjAocAp+80uG1TjVtPejV8V7LrKMb1pMOCwm5X780co6ZQv+kgwZXXHFFbjiiisCfvzLL7+M3NxcPPXUUwCA6dOnY/fu3XjmmWewdu3aYA2TTADPC/7ml3EWmQczAq30cioO0VYr58pOiMCBynZU6XzPuo4+N+wOMXAJZXFzlBlIirKgpceFkuYezMuKDdlrS0npK+qYzLhwFNZ0UsZJoTQdOI3Vvn37cNlll531tbVr1+L+++8f9jlOpxNO58CeQna7mMp2u91wu6Wbn2bHkvKYWtDS7YTLy8PAAbEW5Z6f9Bgxqqtu74PT6YIhiBuzDkWK94+XF1Dia4I4OTEspOc609cRvry1Jyivq5a/r5LGLgDi1kJG8HC7g9/egp2T/KRItPS4cKquAzNTlVkfNJqKFl/X+zjp3r/BeO+k2cSpuuq2XsW/J0ejlr8tIPAxUuA0SGNjI1JSUs76WkpKCux2O/r7+xEefv6c+KZNm/DYY4+d9/VPP/0UERHS39Vs375d8mOqWWU3AJhgMwswGpR7frw8YIARTg+Pv733EWJlqseayPlpdQAOtwkmTsCJ/V/iVAhjv/ZWDoARhaV12LatOmivo9T3D3OgRTwPkUIftm3bFtLXtvS3ATBg+9cnENl0LKSvLZV9JQYABvQ1V2PbtipJjy3le6ejUfw9HzlTiW1cuWTHlZPS/7YAoK8vsBkBCpwmaOPGjdiwYYP/33a7HVlZWVizZg1sNptkr+N2u7F9+3asXr0aZrPyumPLZdvxRuDEMeSlxAJoU/T5eab4K9R09CN//oVYnBMf0teW4v3zxZkW4MgRTE6OxrevXCbxCEc2qc6ON0r2o0ewYt26lZIfXy1/X6WflwKl5VgwNQvr1s0MyWuyc7NiQQG+3FYMPjoZ69YtCMlrS23LK18D6MLqpfNxxaxUSY4ZjPdORHEL3qk4Ao81BuvWLZXkmHJRy98WMDBjNBoKnAZJTU1FU1PTWV9ramqCzWYbMtsEAFarFVbr+ekDs9kclDdJsI6rVk2+rSdY0zgln5+cxEjUdPSjrssl2xgncn6q2sVasvyU6JCPPy9FvAlp6XHBxXOIDFLHbCW/fwCgrlMsC8hOjAr5OKemir+D8tZeRZ+jkdT4aobykm2S/wxSvneyE8UawrrOftWe63Mp/W8LQMDjU+6yAhksXboUO3bsOOtr27dvx9Kl6o74tYytqEuPUebS4sHU3suptFlcUcf2jgulmHAz4nz7EKq9wH4ianyd57PiQl/cnO9rRFrb0Q+H2xvy15+oHqfHv8ffJIUXh7NVdXaHB90O5dcG6Y2mA6eenh4UFhaisLAQgNhuoLCwENXVYo3Exo0bcfPNN/sff9ddd6G8vBwPPfQQioqK8OKLL+Lvf/87fvrTn8oxfBKAOl/X8HRf8bCS+Xs5qXRJPdsrLj859IETMNCwsErHHcRZ80Y5ul7HR1oQG2GGIKhz30B2wxIXYYYtTNmZj0iryX+jwK5xRDk0HTgdPHgQ8+fPx/z58wEAGzZswPz58/GLX/wCANDQ0OAPogAgNzcXH374IbZv3465c+fiqaeewp/+9CdqRaBgdb5WBBkqCJwmxft6Oanwg18QBJS2sIyTPCuq1B54TpTD7UWTXZyqy5IhcOI4Dvm+bCPLPqoJ66E2SaEdw8/l37OunQInpdF0jdPKlStH3OtnqK7gK1euxJEjR4I4KiKlOt/URXpMOEpkHsto1PzB397rQmefGxwH5IWw8eJgLONUqdNeTqynT9SgbESo5SdH4WBVB8pUGTj5ejgpdI+6c2XEhuNEnZ0yTgqk6YwT0bZux0AzQDVM1Q3ec62rX111CyzDkBEbjnBLaPaoOxc7f6zOR2/Yz50ZFw6OC20fMIbVt5W1qC94rVL45r7nyvTVsVHgpDwUOBHVYh3DYyPMQVtlJaVIqwmJUayxnbo+/NkHpVz1TQCQxaYudNpNuUbG+iaG/f7VOVXnO38KLwxnWIF4rU5vFJSMAieiWmwfJzWsqGMGpuvUdcfOPijzZVhRx2T6Aob6zn54eeXuSxgsLNiWo76JYYFTRWsvPN7gdy2Xkn+7FZVknFiNE6vjJMpBgRNRLX9heJyKAieV7lnnLwyXMeOUaguDycDB7RXQZNffhwmbqpMz45QRG44wswEuL+/viaQGbi/vn/LKVktxuC/jVE9TdYpDgRNRLdbDiV1g1IBNE6huqq5Z3lYEAGA0cEiP1e90XbVvdZWcgZPBwPkXB6hpuq6h0wEvL8BqMiA5Wqb9jsaIXddaup2q7JulZRQ4EdVid5BqCpzUOFXX5/L4z7UczS8Hy/RlF2tUuDJxIgRBQG07m6qT9/2uxjon9veWFR8R8g22xys2woxws7gQo7FLfxlWJaPAiagWS2GraapuoJeTej74y32F4fGRFsRHWmQdC+uYrbeMU2efG91OcQVppgxdwwebrMJeTmqrbwLEvlkDdU76er8rHQVORLX8262oMOPUYHfA6VFH+r1M5saXg2XG6XOlEatvSo62IswsTzsIhmWc1NQ9XG0r6hh2baPASVkocCKq5PbyaOpmXcPVEzglRFoQaTFCEIAalXQEVkJ9E5Ppm6bSWy8nObdaOZc/cGruGbHBsJKwbXrUlHECBq5tdTrLsCodBU5ElRq7HBAEwGIyIDFK3umjseA4zr/lQ7VK6pwGtlqRP3DS61Rddbv8rQiYnMQIGDig2+lBc7dT7uEExD9Vp5IVdQzbSooyTsqi/K6B5CyCIOCLM804UNGOpCgrvjMv3d9UUU9qB62ok6uL8nhlx0fgdINdNS0JyprFAE/OVgQMq+9p6HLA4+VhMurj3o9lJ5UQOFlNRmQnRKKitRelzT1IsSm7a78gCKqdqmM1TnptScDzAj4vasY3le1IiwnDdxdkIiZc/g2aKXBSEQ8P3Pu3o/j0VLP/a89/UYrnfzgfyyYnyjiy0KtX4Yo6xr+yTgWBk8fLo8K3N5yczS+Z5GgrLEaxj1BDl0MRgUQoKKFr+GCTk6L8gdNF+cq+9rT2uNDn8oLjBmrk1II199VjxqnX6cE9bx3GzjMt/q89/0UZNt+yCHMyY+UbGGiqTlX+Vm7Ap6eaYTEa8L35GZiaEoX2Xhd+9OYhnGnslnt4IaXGVgSMv5eTCpbU13b0w+XlYTUZFHGuDYaBlUZ6mq5jNV1ZCvngn5wsTnmpYWUdmxJPjwmH1SRvYf1Ysfd6Q6cDvI665fO8gPv+dgQ7z7TAajLg3xZmIi8xEq09TqzffED2diQUOKnE9lPN+KbFAKOBw5/WL8LT183Dv+69GBfmxaPH6cFP3y5U3RYIE6HGFXVMtq8lAStYVTL2wZiXFKWY/jf+Xk46KRD38oL//a6UqaZ8FbUkqGxl9U3KOHdjkWoLg4EDXF4erT3qqCeTwlsHqvHZ6WZYTAa8decS/O7aufjXf1yM2Rkx6Ohz47/ePS7rwgQKnFSg3+XFYx+cBgDccVEOlk9NAgCEmY14/ocLEBNuxqkGO/76dbWcwwyp+i719XBi2AW8pqNf8XeRrDBcCSvqmEydZZwa7Q54eAFmI4eUaGXUE6mpJUFVu3oDJ5PRgFSbvgrEO/tcePLjIgDAxisKsDA7HgAQZTXhuevnwWIy4KuSVvzraL1sY6TASQXCLUb84tsFyLfxuHdV3lnfS4yy4oE1UwEAL+4s1U1r/oGMkzI+SMYiLUbcc83l4dGo8D3XWCsCJfRwYjL9K+v0kXFi9XxpMeGKyfqxwKm524mufrfMoxlZtS+zy5rPqo3emmC+trsC3Q4PClKjcfPSnLO+l5cUhZ9eNhXrl2bj0ukp8gwQFDipxpoZKfiPmfyQze9+cEEW0mPC0GR34h+Ha2UYXWgJguC/iGTGqvMukmVNlF4gruiMk0r6YE2UEvdkjA4zI8UmruZVetZJzRknYKAcQQ8r63qdHmzZUwkAuP+yKTAOcaNw98rJeOzqWYiyyre2jQInDbCajLjt4lwAwJ/3VammKd14tfW64PTw4DggNUZ9GScAqujlJAiCoppfMmwlnV4yTuwmQWn1fKyvV5nC65zY9kZKWZE4Vnpqgrm1sA7dTg9yEyOxZkaq3MMZFgVOGnHtwiyEmQ0oauzG4epOuYcTVOwCkhxthcWkzrcw62Cs5IxTS48TdocHBg7IUVDjQJZxarQ74PJof0FEnUL3ZPRv9qvgjFO3w422XhcA9Wec9DBV95f9Yp3ujRdmK2Zaeijq/NQh54mJMGPdrDQAwPsyFs2Fgpp7ODH+Xk4KbknAGl9mxUfIvj/aYElRVlhNBvAC0NCl/Q+Tgak6ZWVXBzJOys2ashuThEgLosPkb5w4HgM1Tsquh5yo0uZunG6ww2zk8P0FGXIPZ0QUOGnIt+eKgdO24w2KX601EQN34Oq8gwQGpg2qFZxxUtJWK4NxHKerlXUDNwrKer+rYWWdWjuGDzYwVafca4UUPjzWCAC4ZEoSYiOUvY0WBU4acnF+EqLDTGjuduJgVYfcwwmaWhWvqGPYnllK7uWkxPomhq2sk7sRXrANXgihtPc7C6ir2/vg9ChzNa9/jzqV1jcBA1N1docH3Q5lr2CciA+PizMl62anyTyS0VHgpCEWk8FfUPfhMe1O19X7V9Spd6qOZZzsDg86+1wyj2ZoZS3Ka0XA+FcadWl7+qKr340+lxiUKK04PMVmRZTVBC8vKLZWjy2+mKSgGr2xirKa/Puz1Wt0uq6kqRvFTT0wGzmsniFfm4FAjStw4vmzCzKffPJJuN3ajYTV5NtzxGj9oxON8Gp0uk6pxbJjEW4xIilaXM6t1A+dUgVnnFi9j9aXaLPsamKURVF1ZoA4Zco2flbqyjotZJyAgek6rb7fPzzeAECcplPCJr6jGXPgdPLkSSxZsuSsr23cuBGzZs3Chx9+KNnAyPhclJ/on647Wtsp93CCQqnLs8fKv7JOgdNNPU4PGnzZHKXVOAH66W2j9IUQLBup1K1XWOCUk6jywInV9Gn0/b79VBMA4IpZym1BMFjAgRPP8/jVr36FRYsWYfXq1Wd97/XXX0d3dze+853vYN26dSguLpZ8oCQwFpMBF/t2K99d0irzaKTX6/Sgs0/Mbir1wyRQ/s1+FVjnVO6bpkuMsiiyUJMFTg0an6pT+k2CkgvEnR6vf2smtXYNZ7SccWrrceJkvR0AsGJaksyjCUzAgdOTTz6Jp556Cv/85z/x+OOPn/W99evXo7i4GD/96U+xY8cOzJ49Gw888ADsdrvkAyaju3iKdgMnduGwhZlUu7yYGdjsV3kZJ/ZBmKfAbBMwaKVRZ7+mG74qP+Ok3F5OtR39EAQgwmJEYpTygv+x0HITzN2l4udUQWo0khWyF+NoAg6c0tPT0dPTg927d59X4wQAUVFR+N3vfodjx47hW9/6Fp5++mlMnToVmzdvlnTAZHTLp4hR++HqDvQ4PTKPRlq1Cr8DHwsl93JScn0TAKTYwsBxgMvD+xscapFqMk7NvYprgTK4YzjHKbeZYiC03AST3eCzzevVIODAaf369fjss8/w9ttvY9WqVcM+btq0afjoo4+wdetWREVF4Y477sAFF1yAffv2STJgMrqs+AjkJETAwwvYX9Ym93Ak5V9Rp+LCcGZgqk7BgZNCM04WkwFJUWJxvRanLxjW9FCpCyEmxUfAZODQ7/aiQWEbVrNWH2rtGD4Y+/1r7b0uCAK+8gVOl/hmStRgTMXhK1euxNGjRzF37txRH/ud73wHp06dwm9+8xucPn0aF198MW666SbU12t3mbySsOm6r0paZB6JtOo6lH0HPhasOLzR7oDDraw+OCxwmqzQjBOgjwJxJW7wO5jZaEBOojjlrLSVdQOb+6q7vgkY6OHVZHfA7dXONkNlLT1otDtgMRlwQU683MMJ2JhX1UVGRuL3v//9sN/3eDw4dOgQXnzxRfzoRz/Cm2++if5+sQ7hr3/9K6ZNm4annnpK03UJSnCJb7ruq1Jt1TkpveZjLOIjLf4dvpXUyNHt5f11V0qdqgMG1zkpK9MhFYfbi9YeJwBlv9+VurKuSuWb+w6WGCnuy8kLQKOGFkSwbNOS3HjFtdsYiUmKg/zv//4vDhw4gK+//hqFhYVwOp3+wCglJQVXX301li1bhtzcXDz99NN48MEH8f7772Pr1q2IjY2VYgjkHBfmJYDjgPKWXrR0O/09g9ROCz2cGI7jMCk+Aqca7Khq68OUlGi5hwRA/MDx8AIiLEakxyi3WJPdhTdoNOPEVgyGm42IjVDuQoj85Ch8crJJcSvr2FSdkjaoHi+DgUN6TBgq2/pQ19mPLA0EgwBwoKIdALB0coLMIxkbSQKnG264AQBgNBoxe/ZsLFu2DMuWLcPSpUuRm5t71mO///3v48UXX8T999+P+++/H1u2bJFiCOQcMeFmTEuJRlFjNw5VtePyWcpvYx8ILU3VAWL9xakGu6IKxP3TdElRii6qHegers3AyT9NFxeu6N+Df2WdgjJOPC+gxnf+tFDjBIjvg8q2Ps1MTQuCgG8qxa3BFqtomg6QKHD69a9/jaVLl2Lx4sWIjBw9uv/xj3+MgwcP4v3335fi5ckwFuXEoaixG99UdmgicPJ4eTT6ClDVvN3KYErs5cQyB0qepgMGrzTSztTFYPUKX1HHKLGXU6PdAZeHh8nAIU3BWdOx0FpLgqq2PrT2OGExGjArI0bu4YyJJIHTf/3Xf435OVOnTkV7e7sUL0+GcUFOPP6yvxoHK7VxnhvtDvACYDEakBiljalHfy8nBWaclB44abkpIDDQekPJ9U3AQK+v1h4XOvtcimiYyuqbMuPCYTJqY0tWrWVYv/F9Ls3JjFFVfRMgUeA0HjfddBNSUpS/mZ+aLfKlP0/U29Hn8iDCItuvWxLsTistNgwGg3KnLsYiW4EtCQZP1SkZyyS0dDvh9HhhNanr4juagYUQys6YRFlNSIsJQ0OXA2UtPViYLf+0S0WrmMHNTVR/fRPDAuhajWScDvqm6RapbJoOGOcmv1LIyMjArbfeKtfL60JGbDjSY8Lg5QUUVnfKPZwJY3daSr8DHwu24qemo08RmzLzvKCaqbr4SAusJvESpqWVRoya6vkGN8JUgopW8T2cm6js9/BYaC3D+k2VmHG6ICdO5pGMnTZymGRYC33RPCvCUzOl97QZj/TYcJiNHNxeAQ0KSME32B3oc3lhMnCKL6rlOG7Qh4n2Aif2flBD4KS0rVf8GackDWWc4rSzzVBbjxPlLeLvaGE2BU5EYVg0f7BK/XVOSt9+YjyMBg6ZccqZrmPTdNkJETCroDZEq00wBUHwtyNIj1H++32yP+OkjMCpnAVOGmhFwKT6pqYdbh7tKt9m6LBvBmRKcpQiauLGSvlXRjIh87PEwOlYbZfq71KUvv3EeLHpOiUUiJeppDCcYb2ctBY4dfa54fSIHaJTYpS/EMLfBFMBGSePl/ffhGgp42Q1GZEczbYZUneG9WhNJwBg/qRYWccxXhQ4ady01GhYTAZ09bv9K03Uqq5DHL+WpuqAQZv9KuD3U6qS+iZGayuNGPbzJEZZVFH0zt4vNe19sm8fVNfZDw8vwGoyIM2m7ML6sRpowSH/tWIijtV1AQBmZ8bKO5BxosBJ4ywmA2ak2QAAR2s75R3MBAiC4L/L0lrgxDobs4JWOamlFQGj1V5OrNg9VSU9iJKirIgOM4EXgEqZe5KVD1pRp5XVt8xAnZN63++CIOC477Nobqa6+jcxkgVOHo8HzzzzDBYvXgybzQaTaWDpe2FhIX784x+juLhYqpcjY8DenEdrumQeyfh19LnR77uTTVP48uyxyvNNJ7BiSTn5p+qSlLH9y2hY/Y/WpurqWeBkU8dNAsdxillZV9GivVYEjBaaYNZ29KOjzw2zkcO0VHVcZ84lSeDU39+PVatW4YEHHkBVVRVsNttZ9TS5ubl4/fXX8eabb0rxcmSM5mbFAgCOqTjjxC4USdFWVUxdjAVbkVTVJm9Lgo5eF9p8RaeTk9XxoTN4vzq11/AN1uhfUaeemwSlbL2ixR5OjBZaEhz3TdMVpNpUey2XJHB6/PHHsWfPHmzatAmNjY244447zvp+TEwMVqxYgU8++USKlyNjNMc3j3yivgseLy/vYMapTiVdlMcjPTYcFpMBLi+P2g75ahdYfVNGbLhqmqWyqbpelxdd/W6ZRyOdBpVN1QHK2XpFD4FTnYoDJ1YyMlul03SARIHT22+/jVWrVuGhhx4Cx3FDbkiZl5eH6upqKV6OjFFeYiSirSY43DyKm+SvoxkPf+CksRV1gNiSIC9R/uk6f8dwldQ3AUCY2Yj4SHE5c4OGmmA2dKqnFQGjtIxTnoZW1DFaaL9xvFbMOKm1vgmQKHCqrq7GokWLRnxMdHQ0urrUW2OjZgYD54/u1Tpdp8Xml4Oxi7ycd+tl/q1W1PWBk+pbOaWl7uFsM2s1ZpzKW3vAyzTl7HB7/TdZWuoazrAbx7ZeF/pd8q5eHA+eF/xTdbMzYuUdzARIEjhFR0ejubl5xMeUlZUhKSlJipcj48Cm69gyULVhy281Gzglsg8dGTNOKmtFwLA967SScRJXkPpqnFSUccqKC4fFaIDDzcs2lcRW9MWEmxEXYZZlDMFkCzMhyipOo6txuq6qvQ/dDg+sJgOmpKjrOjOYJIHThRdeiPfffx+dnZ1Dfr+mpgbbtm3D8uXLpXg5Mg4z08WWBKfq7TKPZHzYRSJTg1N1wKCMk4zTHP5WBArf3PdcbJVlo0Z6OQ1ufplsU37zS8ZkNCAnUexJJlfmlK2oy0mMHLJkRO3O3mZIfe93NuMxI92mip0JhiPJyB988EF0dHTg0ksvxZ49e+DxeAAAfX192LFjB9auXQuPx4MNGzZI8XJkHFjgVNRoV8RmsmPFdgTXYo0TAOQlyZtx6ncNTHGoL+PEmmBqI+PEMmcJkRaEmdW16oi9d+Sqc2J/P3kaLAxn2EpLNWacjvnrm2LlHcgESbJ0Zvny5Xj++edx3333nZVVio4WezQYjUa8+OKLWLhwoRQvR8YhJyESERYj+lxeVLT2ID9ZPf0zepwedPaJK6Y0O1Xnyzi1dDvR7XAjOiy00wylzT0QBCA+0oKEKPVkOQDt1TixzX3V2K9MvK40okSmRShaXlHHsJtHNWacWGH47Az1FoYDEjbAvPvuu3H06FHce++9uOCCCzB58mTMnz8fd911F44cOXJeiwISWgYDh+m+DuInVTZdxwrDYyPMIQ8oQsUWZkaiL2CRY2XdmaZuAMC0FPUE1MxAjZP6PkiG0qCy5peDsfcPez+FWqUOAqd0lTbB9PICTtSLgdMcFa+oAyTKODHTp0/Hc889J+UhiYRmpNlwqKoDp+rtuHpehtzDCVitRveoO1deUiRae5wob+3xNy0NlWIWOKmwk2/qoOJwQRBUX9vSoMLml8y0VHGqrripGzwvhHzLE11knFTay6mqrQ99Li/CzUZ/aYJaqbc6i4wZq3NSXcZJ44XhzGQZt14pahQDp6mqzDiJ74s+lxfdTo/Mo5k4NTa/ZHISImExGtA3qGYuVAZ3vqfASXlYFnJqajSMKt9DUPOB0wsvvICcnByEhYVhyZIlOHDgwLCP3bJli7+BJ/svLEx9F6/hzGAr6xrsqtqewl8YHhsh80iCizUQlCNwKm5kGSf13QmGW4yI9S09b1Dx5qcM+xnSVBg4mYwGfwPVM42hna4b3Pk+0qqOzvfjwWqcGrscqlroc9r3fpiRpr6bs3ON69112223jevFOI7Da6+9Nq7njsfbb7+NDRs24OWXX8aSJUvw7LPPYu3atThz5gySk5OHfI7NZsOZM2f8/1Z72n+wqSlipN/e60Kj3eG/U1c6NlWn9YyTXE0wu/rc/oaLU1SYcQLEAvHOPjcauvpVOd04GPtdqOXv81zTUqJwusGOM03duGxGSshelxWkq21V6FglR4fBZODg4QU0d6vnOs6y2qzWVs3GFTht2bJlyK9zHDdkJoN9PdSB09NPP40777wTt956KwDg5ZdfxocffojNmzfj4YcfHvI5HMchNTU14NdwOp1wOp3+f9vt4jSY2+2G2y3d3lnsWBM5phHA5MRIFDf34FhNBxIj1HFXVtsuBk5pNsuwP78U50duk3w1LRWtvXA6XZLWh4x0fk7VdwAA0mPCEG5U5zlMsVlR1NiNuvbecY1fKe8fQRD8NU6JkSbZxwOM/dzk+24ATtd3hXT8xY1i4XFeYkRIX1eO906qzYraTgeqW3sUfx1n54UFTvkh/v2MRaDjGtcZr6ioOOvfPM/jvvvuw/79+3HffffhkksuQUpKCpqamrBr1y78/ve/x9KlS/HMM8+M5+XGxeVy4dChQ9i4caP/awaDAZdddhn27ds37PN6enqQnZ0NnuexYMECPP7445g5c+awj9+0aRMee+yx877+6aefIiJC+qml7du3T+j5MbwBgAHvfXkQjjJ1pHnLm4wAOJSfOIhtFSM/dqLnR05eATByRjg9PP669SMkBGGmZqjzs7uRA2BELNeHbdu2Sf+iIeDuFN/XXx06gajmY+M+jtzvn1434HCLl+XCvTtxUkHFFIGem64O8f10qKwB27bVBndQg+w/Jb4H+hrLsW1bWchelwnleyeMF6+JH+7ch8ZE5V/H+zxAQ5eYYKg+tg8tp2Qe0DD6+gLbZH1cgVN2dvZZ/37iiSfw9ddf4+jRo0hLS/N/fdq0aVi+fDluvfVWzJ8/H++88w4eeuih8bzkmLW2tsLr9SIl5exUcUpKCoqKioZ8zrRp07B582bMmTMHXV1d+N3vfodly5bh5MmTyMzMHPI5GzduPKuxp91uR1ZWFtasWQObTbqUpNvtxvbt27F69WqYzeNfkt+4pxLffFwMT3Qa1q2bJ9n4gqXf5UXPvh0AgOu/vRq28KF/dqnOj9xeKNuDspZeZM9ejOVTEiU77kjn55sPTgMVNbhoVh7WrZ0q2WuGUsXOcuzdUYrolCysWzf8jc5wlPL+Od3QDRzch/hIM67+9hrZxjHYWM/N3M5+vFr0FVqdBqxeuzpkHaKfOLULgAPf/daFWJgdF5LXBOR573zRdxylRxuQnFOAdctzQ/Ka4+V2u/HSO2JQmREbhu9/R7k7iLAZo9FIkuN77bXX8IMf/OCsoGmwjIwM/OAHP8Crr74assBpPJYuXYqlS5f6/71s2TJMnz4df/zjH/GrX/1qyOdYrVZYrec3DDSbzUH5I5rocWdniReU043dqggwqjrEeo/oMBMSbKNn8IJ13kNlako0ylp6UdHWj0tnhOb9U9wsFqNPT49R7bnLiBPfG41254R+BrnfPy294lRBemy44n4XgZ6b7EQTIi1G9Lq8qOtyhaRurtfp8a9GLEiPleXchfK9k5UgToc2dk/s/R4q9X1i2cH0NGVfYwIdmyS3ArW1taOuPgsLC0NtbejStomJiTAajWhqajrr601NTQHXMJnNZsyfPx+lpaXBGKIsZvgK82ra+9HVr8x55sFq/Cvq1FEAOVHsQ6Y4RA0EBUHwv5YaWxEwrEBW7d3D1dz8kuE4DlNTQ9sIky2oSIyyIDbCEpLXlJPammDW+QInLayoAyQKnDIzM/Huu+/C4Rj6otXX14d333132OmuYLBYLFi4cCF27Njh/xrP89ixY8dZWaWReL1eHD9+fNhMmhrFRlj8QcjpBuX3c2IXhsw4bbciYKamsAaCoVlZ19LtRGefGwZO3auRWM8jtQdObPxqbEUwmL+DeIhaEuhlRR0zsNGvOt7vdb1i4FSggRV1gESB0x133IHy8nJcdNFFeO+999DW1gYAaGtrw9atW3HxxRejsrISd955pxQvF7ANGzbg1VdfxRtvvIHTp0/j7rvvRm9vr3+V3c0333xW8fgvf/lLfPrppygvL8fhw4dx4403oqqqSnPbxUxPC+1FbSJqO/TR/JJhHzglTd0h6bXFMgI5iZGq21B2MBZodDs96HYoP5M6nHoV71M32NQQB06sh5NeAqf0QU0wld6Tz8sLaPTVXGuhFQEgUY3Tgw8+iOLiYrz++uv43ve+B0BcwcbzPABxOuDWW2/Fgw8+KMXLBey6665DS0sLfvGLX6CxsRHz5s3Dxx9/7C8Yr66uhsEwEDt2dHTgzjvvRGNjI+Li4rBw4ULs3bsXM2bMCOm4g21aajQ+O93sXx6qZHrp4cTkJEbCbOTE+pDO/qBn2tgHmxr3qBss0mqCLcwEu8ODJrtDtXsaaiXjVJAa2inn0mZf4KTyrTwCxTJOPU4P7A4PYoZZNKMElW19cAscws0GZMdrY+ZAksDJYDDgtddew80334w33ngDx44dQ1dXF2JiYjB37lzcdNNNWLlypRQvNWb33nsv7r333iG/t3PnzrP+/cwzz4S0ZYJcpqWKUf+ZRhVM1elkuxXGbDQgNzESxU09KGnqCXrgpIX6JiYtJhx2RzfqOx3IT1bnz9PQpe7mlwyrcapq70O/y4twS3Czmex9rNYGrmMVbjEiPtKC9l4X6jr6FR04Dd7OKdR7FwaLpJ2zVqxYgRUrVkh5SBIEA3eDPYrfFFUv260MNiUlGsVNPShu6saqgqE73EvljIr3qDtXakwYzjR1q7bOaXDzS7VnnBKjrEiItKCt14Xipu6gblrd6/Sgqk3MTBeovGv8WGTEhqO914X6zn7/dlpKxK4xWvrdKKi9GgmVXN90UI/T4w9MlMjh9qKlW2yappeMEwBMTR4IbIPJ4+X9d4NKvvAGigUbDSoNnLr63XC4xfKGFJu6AydgoJ7lVJAXobBsU1K0FQlR57eG0Sq1bPZ72h84aWcalQInHTIbDf4NZZVcIF7vuyBEDNrEVQ/YRrslzcH93ZS19MLp4RFlNWmi9sC/ss6u7A+S4bAVUgmRFlUX6jMz2abi9cENnIo0mNEIRLpKAict/n4ocNKpghD3WRmPwSvqlDydKLUp/pV1PeCDuPv5yXpxb6/padqoPUj31QWpNePEAr5UlU/TMSyLyd5nwaLFqaBAZMQpP3Dq7HOh0S7OGkxLoYwTUTlWIK7klXUDheHqz4aMRXZ8BCwmA/rdXlS3B7Z30niwTMAMjSwRZgFHg0p625yLZZzUXhjOsIzT6YZueIN4A8D60RWkauN9HCg2VafkcovTDeLnS7xVUO1K16FQ4KRT/oyTglfWsVYEeukazpiMBn97gGDWh5z0BU4z02OC9hqhNFDjpNwPkpFopRUBk5sYhTCzeANQ2dYblNcQBMGfNZ+ms4xTVrwvcArizdVEsaA2I0LZvabGigInnWIXmfKWXrg8vMyjGZreml8OFuz6EEEQ/FMoWigMBwYyTnaHB71Oj8yjGTvW/FIrU3VGA+fPAp0M0vu4yS52vjcaON00v2SyfHWJbb0uxb7fi3w35umRMg9EYhQ46VRaTBiiw0zw8IJ/nyelYdutZOgwcGLBTLAyTrUd/bA7PDAbOU20IgCA6DAzoqxih5VGu/qm61jGKV3lXcMHmxnkOif2wZyr8s7342ELM/sXzdR0KDPrxEpB0injNDSPx4NnnnkGixcvhs1mg8k00CKqsLAQP/7xj1FcXCzVy5EJ4jhu0HSdMuucanW2T91grO4oWBknFpDlJ0fDYtLO/VOaivesa9TABr/nYtPAwXofa3HF1lhk+a6NNe3Km57m+YENxNMocDpff38/Vq1ahQceeABVVVWw2Wxn7Z+Tm5uL119/HW+++aYUL0ckwqbrlFgg7vLwaOoWP0j0OFVXkGYDx4mZk7Yep+THH6hv0sY0HcOmueoVvNJoKIIg+KfqtJRxmjFoyjkYe6qxgEwre6CN1STfdF0wF5GMV3V7HxxuHlaTAUnaeUsDkChwevzxx7Fnzx5s2rQJjY2N522KGxMTgxUrVuCTTz6R4uWIRJS89UpDVz8EAQgzG5AQaZF7OCEXZTUhJ0EsDAjGdN3x2k4AwCyNBU5qzThprfklU5AaDZOBQ1uvC/VB+J2cqBOnAGdlaGOBw1hl+grEaxQYOLEb8vzkSGig28lZJAmc3n77baxatQoPPfQQOI4bsudOXl4eqqurpXg5IhElT9Wxabr0WH31cBosWNN1giDgaK34gTNvUpykx5ZbKuvlpLIaJ601v2TCzEYUpInXmcLqTkmPbXe4Ud4qrtabrdPAaWCqTnmBk5a2czqXJIFTdXU1Fi1aNOJjoqOj0dUV3EZoZGzYG7q+y4GufrfMozkb23tKCx2txytYBeI17f1o73XBbOQwPU1bFzW1Zpy01vxysLmZsQCAo74sp1RO1vmWuseGI16HWWlgYKpOicXhZ5rE389UDa52lCRwio6ORnNz84iPKSsrQ1JSkhQvRyQSE25Guu9CXaywDuJszn6SngOntOAs5S70fYDNSLPBatJOdgNQ7351DRrr4TTYPN8Gv4U1nZIe93ideDy9ZpuAgZYENe39Qakhmwg2VaeljuGMJIHThRdeiPfffx+dnZ1Dfr+mpgbbtm3D8uXLpXg5IiGlFohXt4sp+EkJGmsAMgasbqOspQfdDukygkd9H2DzgrhjvVzS/NuuqKs4vEFjXcMHY++z47Vd8Hil6xl33Jdxmp2p38ApIzYcHAf0u71o7XHJPRw/h9uLSt806lQKnIb24IMPoqOjA5deein27NkDj0dsxtXX14cdO3Zg7dq18Hg82LBhgxQvRySk1AJxyjiJu71nxoVDEIBjtdJNc7M7/7kaDJzYVFdnnxv9Lq/MowkcyzhpcaouLykKUVYT+t1elDRL1zOOLXDQc8bJYjIgzbeYQEkr60qbe8ALQGyEGcnRVrmHIzlJAqfly5fj+eefx/Hjx7F8+XI8/vjjAMQpvDVr1qC0tBQvvvgiFi5cKMXLEQkpsUBcEISBGqcE/QZOwMDd+pHqDkmO5/by/pVIWgycbGEmRFjE6Uc1NcFs0GArAsZo4DDHlxWSarrO7nCj0neN0HPgBAxM19UqqM7pjH+aLlqTi3sk63x399134+jRo7j33ntxwQUXYPLkyZg/fz7uuusuHDly5LwWBUQZBk/VKWWOvKvfjW6HmLXM0mHzy8Hm+1a9SfWBU9zUA6eHhy3MhFwNToNyHDew2a+Kpuu02PxyMBakH5XofcyC/8y4cMTptDCcYYFTdZuCAqcmbTcmNY3+kMBNnz4dzz33nJSHJEE2OSkKJgOHbocHDV0OpCtgQ12WbUqOtiLcoq3i5bEaXFgrCMKE794KfVN+czJjYdBacxWf9JhwlLf0qmZlnSAImi4OBwbex4clypwe8bU2mKPj+iZGiSvrWM3sVI0GTtrZa4GMi8VkQF6SmHlQynQdm6vX+zQdIHb2Nhs5tPa4/L2tJuKbSvGD64Kc+AkfS6lSVbayrqvfjX63WI+lxRonAFiULWZOi5t60NE78SLmg5XtvuNq930cqCxfE0wl1TixmlnKOA1y2223geM4PP7440hJScFtt90W8HOtVisyMzNx9dVXY9asWeN5eSKxaak2FDf1oKixG6sKkuUejv8CkKXjwnAmzGzEjDQbjtZ24UhN54TOiSAMBE6Lc7X7gZOmsqk6FuDFa6z55WAJUVbkJ0ehtLkHByrbsXZm6riPxfMCDlZp/wYgUJPilbVfXWefC012cZsoLTa/BMYZOG3ZsgUcx+E///M/kZKSgi1btoz5GI8++ij++c9/4qqrrhrPEIiEClKj8f5R5aysq/Y3v9ReDc54zMuKFQOn6g58Z276uI/T4gCau52wGA2YPylWugEqTKrKmmCyAE+r03TMktx4lDb34OvyiQVOxc3d6HZ4EGkxaq6B63iwOtCGrn64vTzMRnknktjMRUZsOKLDzHC7ldVcWQrjCpwqKioAABkZGWf9OxAOhwMlJSW455578Mgjj1DgpADTUpTVy6nK38NJ/norJViQHYc39lXhG9/0xHiV2cWapnlZsZrNbADqa4Kp9fomZkleAv76dTW+rmib0HG+qRD/DhZkx8Ekc5CgBEnRVlhNBjg9POo7+5Et86IPrReGA+MMnLKzs0f892imTZuG3bt34w9/+MN4Xp5IjK2sK2vpUcQdC0s5T6KMEwDgwrwEAGIH8a4+N2IizOM6DguctDxNBww0kVRLxqlRwz2cBlvie9+darDD7nDDFja+9zGbbqb6JhHHcciKj0Bpcw+q2/tkD5z8HcM1HDiF7BPS5XLBbh+YCrr99tvx1ltvherlyQgy48IRZTXB7RVQ3tIr61icHi/qu1jgRDVOAJBiC8PkpEgIArB/Anfrpb7AaUmetj9wWOamrdcFh1v5TTDrNdw1fLAUWxhyEiIgCAPF3ePBnntBjrY2qJ6IrDjlFIifocBpeHl5efj9739/1tc++eSTYbuDb9q0CXFxA2/0KVOm4Oqrrx7vyxMJcRw3qJ+TvHVOdR39EAQgwmJEYpS++7MMdlF+IgBgb2nruJ5f29GPDhcHk4HDwmxtf+DEhJsRZhYvbU0qaILJNvjV+lQdACzJFbOn+8vHFzjVdvShvssBk4HDPA3X6Y0VyzLJ3ctJEAQUU+A0vMrKyvP2ptu/fz/1cVKpAoXsWVc1aKsVLXacHa9lk8UPnL1l48s47SoRA665mTGIsEjavk1xOI4btGed8gMnLW+3cq5l+eL7eFdxy7iev6tYfB/P0cH7eCxyfK1bKlrlnTGo6+xHt9MDk4FDXqL29qhjqLKOAFDO1is1tEfdkJbkJoDjgJLmHjR3jz0Y+OKM+EG1alqS1ENTpFSbOlbWCYLg3+A3XeNTdQCwYmoSDJx4gzaeLUK+ONMMAFg1Tf62KUqSkyhmnCrb5A2cin2F4ZOTomAxaTe80O5PRsakIE3c7LeoQd6pOtY1nAKns8VFWjDD9zvaN8asU7/Li32+qZFV0xIlH5sSpfn2fKtXeC8ne79H880vB4uNsPinir8oah7Tc50eL/b4pqqV0G9OSXL9gVMfeF6+rbP0UBgOUOBEfFijsvouB7r65eu7QV3Dh3exr87p8zF+4Owta4XTwyPeKmBKsnbT54OlqaSXU4OvvknLzS/P9a2CFADAjjG+j7+p6ECfy4ukaKv/JoKIMmLDYTZycHl4WW8W9FAYDlDgRHxiws3I8O1TJ+d0HStupK7h51vjaxq443TzmFaLsQ+ombET3+tOLVJ9015sxZpSsWk6NrWoB5dOF7NFe8va0OfyBPw8Nk23cmqSZvdZHC+T0eC/Zla2ylcgzj47tNzDCaDAiQwyzV/nJM90nSAI/owTTdWdb35WLFJtYehxerC7JLDVdTwv4PPTvsApTr4Ufqils4yTXdlTdXppfjnYlOQoZMaFw+Xhsac08Glnf30TTdMNKde3sq5Cpjont5dHWUsPAO1utcJMaFnCX/7yF+zfv9//79LSUgDAunXrznss+x5RroLUaHxe1IzTMmWcmuxO9Lu9MBo4yjgNwWDgcPmsVGzZW4ltJxpw2YyUUZ9zqLoDjXYHIq1G5McEfnevdv5VdUrPOLHtVmL1EzhxHIfLpqdgy95KfHCsHqsDeB+faexGeUsvzEbO35qDnM1fIC7Tyrryll64vQKirCZkxml7ocOEAqfS0tIhA6KPP/54yMfrZZpArabJvLKuvFW8W5kUHyF793KlWjc7DVv2VmL7qSa4PPyoK1e2HqkDAKyZkQKzoToUQ1SEc5tgKrV+aCDjpO0PmnNdPS8dW/ZW4tOTTeh1ehBpHfmj6F9HxffxiqnJiAkfX8dxrWMF4nK1JGA9AKemRGn+s37cgdNY9qcj6jDdV3B5prEbghD6ehj2B88uAOR8C7PjkBRtRUu3E7uKW0bMOjncXnxwrAEA8J05abAX6ydwio0Qm2A63Dya7A7Zt6EYjn+7FR3VOAHifok5CRGobOvDh8cb8INFWcM+1ssL2HqkHgBwzfzxb3KtdbkyZ5xYK4Jpqdov3B934DTW/emI8uUmRsJs5NDj9KC2oz/k02UVLRQ4jcZo4HD13HT8aXcF3jpQPWLg9P7RenT1u5EZF46lefH4pDiEA5UZx3FIjwlHeWsv6juVGzjV63CqDhB/Pz+4IAu//fgM/rq/asTA6cviZtR19iMm3IzLpo8+radXbKquur0PHi8f8g2Q9VIYDlBxOBnEbDQgP1m+DuKUcQrMDReKNy1fnGke9u5SEAS8vqdSfPySbBh1uAqJ9UVqUGgvJ0EQ/BknvU3VAcB1i7JgMRpwtLYLh6qG34Jly94qAMAPFmUqdspVCdJsYbCaDPDwAuo6Q/+e10sPJ4ACJ3KOAhlX1rHAKY8CpxHlJkZi1bQkCALwh8+HXnSx/VQTTjXYEWkx4roLhr+b1zKlb7tid3jQ5/I1v9TZVB0AJERZ8d35GQCAZz8rGfIxR6o7sKu4BUYDhxsvpFmOkRgMnL//XajrnNgsBQBM0/iKOoACJ3IOFjiFemWd28v7WxHkJlHgNJr7LpsKAHj3SC1O1HWd9T2H24snPi4CAKxfloP4SH1ulpweq+yMExtXXIQZ4RZ9ZlLu/VY+TAYOX5W0+tsNMDwvYNM28X38vfkZip1uVRK5CsTZjhMpNividHC9ocCJnEWulXW1Hf3w8ALCzUakROvv7nus5mXF4so5aeAF4IH/O3pWI8HffnwG5S29SIq24v8tnyzjKOXln6pTaEuCgc199TdNx2TFR+CWZTkAgP/653G0dDv939u8pwIHKtsRbjbivsumyDRCdZGrJcEpX+A0Mz0mpK8rFwqcyFnYyrqK1t4xdaeeqApfK4KcxEjqChygR6+aifhIC4oau7F+8wF8WdyCR/91Epv3iCtef33NLMRE6HfpdrrCp+oaddj8cigb1kxFbmIkGrocuOFP+/HZqSb8fkcJfrPtNADgPy+fhsw46usWiIEmmKHtHn6qXgyc9LIVDgVO5CzJ0VbERpjh5QWUNveE7HXLW6i+aaySoq340/pFiLAY8U1lB9ZvPoAteysBAP95eQHW+rZo0as0pU/V+Qp49R44RVhM2HzLBUiMsqK4qQd3vHkQT28vhiAAN12YjfW+jBQZndwZpxnpFDgRHeI4bqDOqSF0BeK0om58FkyKw4c/uQRXzk5DZlw4luTGY/Mti3D3Sv1O0TFpNjHj1NHnRr8rdNnTQOlxu5Xh5CZG4qP7LsF1i7IwKT4C87Ji8btr5+KXV8/UfDNFKbEbz9qOPrg8fEhe0+Pl/Svq9JJxmlDncKJNM9JisL+83X8XEQos45RDgdOY5SZG4oUbFsg9DMWxhZsQYTGiz+VFo92huKBcr13Dh5MUbcWT/zZH7mGoWlK0FZEWI3pdXlS39yE/OSror1ne2guXh0ekxaibPUYp40TOM9OXbj1ZH7rAqdS3OWQo/tCJPnAc58/mNMjQ12Y0/n3qKONEJMJxHPKSxGtoqEotWH3T9DSbbupTKXAi55mZIQZOp+rt4Hkh6K/X2efyr6ahwIlIiWVz6hVWIC4IwqBVdRQ4EelMSWaBU2hWRuutvgmgwIkMIT8pClaTAT1Oj7+3UjCxO6P0mDBEjbLZJyFjwbI5jQorEB/c/JKm6oiU8lPEwKkkxBknvdQ3ARQ4kSGYjAZ/gfiJ+q5RHj1x7A98ig46zpLQSotVZsaJtSKI1XHzSxIcU3zbZpU0BT9wEgSBMk6EMDMzxEZmoahzYn/gU2iajkhMqTVOrL5Jj1utkOBi19Gylh54g1xq0WR3or3XBaOBw1Qd3fhS4ESGFMoC8RLfXPyUFAqciLT8gZPCMk5sPOmxNE1HpJUVHwGLyQCnh0dtR3BLLU41iDMSk5MidbUBMwVOZEizfK3zT9Z1QRCCe9fCapzyk/Vzx0JCgwUmSg2cqDCcSM1o4DDZt7Iu2NN1eqxvAihwIsOYlhoNo4FDW68LTXbn6E8Yp26H2/8hQivqiNRYYNLV7z5rPz+5sWL1NJqqI0HApuuCXSCux/omgAInMowws9H/x3eiLngF4izblGKzIiZcv/uqkeCwhZn9KzWVlHXyN7+kqToSBAOBU3BbEpyoYxknfWzuy2g+cHrhhReQk5ODsLAwLFmyBAcOHBjx8f/3f/+HgoIChIWFYfbs2di2bVuIRqo8M0JQ5+RfUUfTdCRIBgrEFRg40VQdCQJWLxrMJpidfS5/u5rZGRQ4acbbb7+NDRs24JFHHsHhw4cxd+5crF27Fs3NzUM+fu/evfj3f/933H777Thy5AiuueYaXHPNNThx4kSIR64MrM4pmC0JSprEOyKapiPBwqbr6hXUy6mRapxIEOUPakkQrCbGx30zEdkJEYiJ0NdsgaYDp6effhp33nknbr31VsyYMQMvv/wyIiIisHnz5iEf/9xzz+Hyyy/Hgw8+iOnTp+NXv/oVFixYgOeffz7EI1cGtrLuVBAzTqcbxMCJ9Y0iRGrpvgaTjQqZqrM73OhxivVWlHEiwZCTIK6s63d7URWkJsbHasXAaU5mbFCOr2SabdPscrlw6NAhbNy40f81g8GAyy67DPv27RvyOfv27cOGDRvO+tratWuxdevWYV/H6XTC6RwonrbbxSDD7XbD7XZP4Cc4GzuWlMcczZQkccPGus5+NHX2Ij7SIunxBUHASV82a2pyxIR+NjnOj5ro+fykRIvv27qO3mF//lCen9pWcfokJtwEMyco/nei5/dOIJR6fqalROF4nR3Ha9qRGSPttRsACqs7AAAz06JG/NmVen6GEugYNRs4tba2wuv1IiUl5ayvp6SkoKioaMjnNDY2Dvn4xsbGYV9n06ZNeOyxx877+qeffoqICOl3it6+fbvkxxxJcpgRzQ4Om7fuwIw4aVO+XS6go88EAwSUHd6DmqMTP2aoz4/a6PH8NDdxAIw4VlqDbduqRnxsKM7P6Q5xPJGcW1U1lHp874yF0s5PlNsAwIAPdhdCqOYlP/43ZUYAHHqrT2Fb16lRH6+08zOUvr7AsnOaDZxCZePGjWdlqex2O7KysrBmzRrYbNIt0XS73di+fTtWr14Nszl088lf9B3H1qMNsKRNwbpv5Ut67J3FLcChI5icHIVrrrpoQseS6/yohZ7PT3RpK/5Wfhheiw3r1i0b8jGhPD89B2uBolOYkpmEdesWBPW1pKDn904glHp+2r+uxr4PiuCKTJb8fdba40Tnvi/BccBt31sz4h6jSj0/Q2EzRqPRbOCUmJgIo9GIpqams77e1NSE1NTUIZ+Tmpo6pscDgNVqhdVqPe/rZrM5KG+SYB13OAty4rH1aAOO1XVL/rrFzWJ0PyM9RrJjh/r8qI0ez8+kBHHhQYPdMerPHorz09wjTgekx0ao6nehx/fOWCjt/MzKjAMAFDX2SD6u003tAIDJSVGIiwqspYbSzs9QAh2fZovDLRYLFi5ciB07dvi/xvM8duzYgaVLlw75nKVLl571eEBMLw73eD2YlxULADha2yl5B3F/8zSddZ0loZXqKw7vdnj8RdlyYvvUpVNhOAkituCm0e5Ae69L0mMPFIbrqw0Bo9nACQA2bNiAV199FW+88QZOnz6Nu+++G729vbj11lsBADfffPNZxeP33XcfPv74Yzz11FMoKirCo48+ioMHD+Lee++V60eQXUGqDRaTAZ19blS2Sbs643S9PrvOktCKspoQHSYm1xsV0JKAtlshoRAdZkZ2glhne7pB2pXRR6o7AQBzdbiiDtB44HTdddfhd7/7HX7xi19g3rx5KCwsxMcff+wvAK+urkZDQ4P/8cuWLcNbb72FV155BXPnzsU777yDrVu3YtasWXL9CLKzmAyY5QtsCms6JDtun8uDirZeAMB0yjiRIGPL/usV0ASzvlMM3jKoazgJMpbNl7KlDM8LOOxbUbcwO06y46qJZmucmHvvvXfYjNHOnTvP+9q1116La6+9NsijUpd5WXE4XN2JwupOfHd+piTHLGrshiAAydFWJEadXyNGiJTSYsJR3NTjnyaTiyAI/uAtnQInEmTT02z46ESjpBmnkuYedDs8iLAYddt/T9MZJyKNeZNiAQCFNZ2SHZPtf0fTdCQU0mN9267I3ASzs8+NfrcXAE3VkeBjGafjEu43eqhKzDbNy4qFyajPEEKfPzUZk/m+AvGT9XbJdpgv9M2Rs+JzQoIp1SZmd+Ter67ON02XGGVFmNko61iI9s31XV9LW3pgd0jTgJIFTnqdpgMocCIByIwLR3pMGDy84C8KnKgjvuzV/En6/eMjoZMWq4z96ur89U2UbSLBlxRtRVZ8OAQBOFYjTdaJ1TctoMCJkOFxHIfFufEAgK8r2id8vI5eFypaxcLweTpdlUFCSyn71fkLw+OovomExvwsMcA5Uj3xxT2tPU7/tXuBjm96KXAiAVmcmwAAOFDRNuFjsVqpvKRI3e2qTeTB6onkrnFigRML5AgJtvm+GtUjEtSoHvZN001NiUJMuH6v3RQ4kYCwjNOR6k44Pd4JHYvd+bA7IUKCjRWH9zg96OqXb7NRWlFHQo2VQxyp7phwE+P95eKMw8Ls+AmPS80ocCIBmZwUicQoC5we3t81drwG6ptiJz4wQgIQYTEhzpfdZFkfObAaJwqcSKjMSBObGHf0uVE1wSbGe8taAQAX5ydKMTTVosCJBGRwndOBCdQ58bzgX1FHgRMJJVZXVNchX+BEzS9JqA1uYnxkAk2MW7qdKGrsBgAsnZwgydjUigInErDFOWLgtK9s/HVOJc096HZ6EG42YlqKPpunEXmwYKVOpoyT0+NFc7cTwMDUISGhwKbrDlaOP3Bi2aYZaTbER1okGZdaUeBEAnbxFDE9e6Cifdz9nPaUin98i3LidNs8jcgjXebAqalLDJqsJoPuP3hIaLHZgonc9O4tFZ97Ub6+s00ABU5kDCYnRSEzLhwuL+//Ixqr3aU0R07k4c84yTRVVzdomo7jOFnGQPRp6eQEGDigvLV33DcOe3wZp2V07abAiQSO4zisnJYEANhZ3Dzm57s8PPaXiwEXy14REiqZcfJmnOqpMJzIxBZm9ncR313SMubnV7X1orajHyYD5y/Z0DMKnMiYrJqWDADYeaZlzEtbC2s60efyIiHSgumptEcdCa2M2AgA8gdOVBhO5HCJL1O0exyzBdtPNQEQSywirSZJx6VGFDiRMVk6OQEWowG1Hf0oa+kZ03PZnc6y/EQYDDRVQUKLrapr6XbC4Z5YL7LxoFYERE4X+QKnPaWt4Pmx3fR+elIMnC6fmSr5uNSIAicyJhEWE5bkianaz4vGNl3H6psuoTlyIoO4CDPCfRvrytFBfCBwohV1JPTmT4pDhMWI9l4XTjfaA35eS7cT31SJLWjWUOAEgAInMg6rZ6QAAD441hDwc9p7XTjqa5x5EdU3ERlwHCdrLyeaqiNyspgMuDBPXBG380zgdU6fnW6CIABzMmMoW+pDgRMZsytnp8Fo4HCstgulzYFN120/1QgvL2Bmuo0+OIhsBno5TayD8lgJgkDbrRDZsZvej04EftP7yclGAMBayjb5UeBExiwhyooVU8XVde8V1gX0nI9OiH98V8yiPz4in4FeTqGdquvsc6PfV1fFNhwmJNTWzEiBgQNO1NlR0z76zUNHr8vfe2/tzJRgD081KHAi43LN/AwAwLtH6kZdXdfS7cRXJeIf3+Wz0oI+NkKGkynTVB2rb0qMsiLMV2dFSKglRFn903Vbj4x+07u1sA5urzhTkJ9MOz0wFDiRcVk9PQWRFiNqO/rxzSht/LceqYOXFzAvKxb5yVEhGiEh55Nrqm6gvomyTURe31+QCQD4v0O1I66uEwQBb39TAwD4waKskIxNLShwIuMSbjHi23PSAQCv76kY9nE8L+B/D1QDAK5dlBmSsREynAyZmmBSKwKiFFfMTkWU1YTq9j5/N/Ch7CtrQ1FjN8LMBlw9Lz2EI1Q+CpzIuN12cS4AsXiwfJieTttPN6G8tRfRYSZcPS8jlMMj5Dws49TQ6YB3jL1sJqKmXQycsuIjQvaahAwlwmLCvy0Ub2Jf2VU+7ONe+rIMgJhtio2gvRUHo8CJjNu01GhcWpAMXgD+55Mz533fywt47rMSAMBNF2YjijrOEpml2MJgMnDw8AKau0NXIF7TIU4NshorQuR0+8W5MBo4fFXSim8q28/7/t7SVnxV0gqTgcPtvhtkMoACJzIhD11eAAMnrprbcbrprO/99esqnGqwwxZmoj8+oghGA+df1RbKAvFa32tlxVHGicgvKz7CX7f0yHsn4fQMdNLvd3nx8/dOAABuvDAb2QmRsoxRyShwIhMyLTUat14kBkUP/N9RnKoXO9LuK2vDrz84DQDYsHoqEqKsso2RkMEGWhKEJnASBAG1vqXfWfGUcSLK8MCaqYgJN+NUgx3/37sn4PHycHl4bPh7IcpaepFis+K+S6fIPUxForkTMmEPXT4NB6s6cLSmE9e8sAfT0204XtsJXhAbrt28NEfuIRLilxkbjgMIXeDU1e9Gt9MjvjZlnIhCJERZ8ez183Dblm/wzqFaHKhoh5cXUNfZD7ORwzPXzUNcJNU2DYUyTmTCrCYj3rxtMVZMTYLLy+NojRg0fWduOn5//Xza0JcoSqi3XWGF4UnR1MOJKMuqacl48YcLEGkxorq9D3Wd/UiItODVmxdh2WTaGms4lHEikogJN2PLrRfgaG0XKlt7UZAWjYJUm9zDIuQ8GSGeqqPCcKJkV8xOw0VTErG7pBVmowFLJyfQQp5R0NkhkuE4DvOyYjEvK1buoRAyLNYSIJAtJ6TAXocKw4lS2cLMWDebdnUIFE3VEUJ0ZRILnDr6R+ycLBWWcaLCcEK0gQInQoiupMWEwWjg4PLwaO52Bv31qBUBIdpCgRMhRFdMRoO/zqk6BNN1/qk66hpOiCZQ4EQI0R02XRfswEkQBH/GiYrDCdEGCpwIIbozKcEXOLX1BvV1WrqdcHp4GDja4JcQraDAiRCiO6HKOLHC8LSYcJiNdLklRAvoL5kQojshC5zaaZqOEK2hwIkQojsDgVNwm2BSYTgh2kOBEyFEd1gg09rjRJ/LE7TXocJwQrSHAidCiO7EhJsRE24GMDCdFgz+5pfUw4kQzaDAiRCiS6GocxroGk6BEyFaQYETIUSXgh04ebw86jsdAGi7FUK0hAInQoguBXuz34YuB7y8ALORQ0p0WFBegxASehQ4EUJ0KdgZp6q2gWk6g4ELymsQQkKPAidCiC4FO3Cq9HUlz02IDMrxCSHyoMCJEKJLgwMnnhckP36VL3DKpsCJEE2hwIkQokvpsWEwGji4PDyae5ySH7/SN1WXk0gr6gjREgqcCCG6ZDIakOHbeDcYvZwqW8WMUw5lnAjRFAqcCCG6xabrWL8lqfC8gCpf7RQFToRoCwVOhBDdmpQgBk5sWk0qjXYHXB4eJgOH9FhqRUCIllDgRAjRrbxEMRtUJXHgxKbpJsVHwGSkyywhWkJ/0YQQ3cr1BU4VrRIHTr5ALDuBCsMJ0RoKnAghusUCp8q2XggSdiSgVgSEaBcFToQQ3cqKj4DRwKHfzaPLJd1x/c0vEylwIkRrNBs4tbe344YbboDNZkNsbCxuv/129PT0jPiclStXguO4s/676667QjRiQkiomY0G/8q6Fod026JUttJUHSFapdnA6YYbbsDJkyexfft2fPDBB9i1axd+9KMfjfq8O++8Ew0NDf7/fvvb34ZgtIQQubCsULNDmuOJrQiohxMhWmWSewDBcPr0aXz88cf45ptvsGjRIgDAH/7wB6xbtw6/+93vkJ6ePuxzIyIikJqaGqqhEkJk5g+c+qXJONV19sPh5mExGpAZFy7JMQkhyqHJwGnfvn2IjY31B00AcNlll8FgMODrr7/Gd7/73WGf+9e//hV/+ctfkJqaiquuugo///nPERExfLrd6XTC6RzYrsFutwMA3G433G63BD8N/Mcb/L/kbHR+RkbnZ3iT4sQ+S8390pyf4sYuAEBOQgQE3gs3753wMeVE752R0fkZmZrOT6Bj1GTg1NjYiOTk5LO+ZjKZEB8fj8bGxmGf98Mf/hDZ2dlIT0/HsWPH8J//+Z84c+YM/vnPfw77nE2bNuGxxx477+uffvrpiAHXeG3fvl3yY2oJnZ+R0fk5X3MXB8CIFgcnyfn5ol48XoTHjm3btk34eEpB752R0fkZmRrOT19fYG1JVBU4Pfzww3jyySdHfMzp06fHffzBNVCzZ89GWloaLr30UpSVlWHy5MlDPmfjxo3YsGGD/992ux1ZWVlYs2YNbDbbuMdyLrfbje3bt2P16tUwm82SHVcr6PyMjM7P8OZ3OfDCqV1ocwArv3UpIsKsEzre3vdOAVW1WDY7H+suy5dolPKh987I6PyMTE3nh80YjUZVgdPPfvYz3HLLLSM+Ji8vD6mpqWhubj7r6x6PB+3t7WOqX1qyZAkAoLS0dNjAyWq1wmo9/0JrNpuD8iYJ1nG1gs7PyOj8nC8z3oRwswH9bh5NPR5MjY6a0PEqfM0vp6baNHWu6b0zMjo/I1PD+Ql0fKoKnJKSkpCUlDTq45YuXYrOzk4cOnQICxcuBAB8/vnn4HneHwwForCwEACQlpY2rvESQpTPYOCQkxCJ043dKG/pxdS02Akdr6xZbHuSnzyxAIwQokyabEcwffp0XH755bjzzjtx4MAB7NmzB/feey+uv/56/4q6uro6FBQU4MCBAwCAsrIy/OpXv8KhQ4dQWVmJf/3rX7j55puxfPlyzJkzR84fhxASZPnJ4sq6kuaRe72NpqPXhbZesZMmNb8kRJs0GTgB4uq4goICXHrppVi3bh0uvvhivPLKK/7vu91unDlzxl8MZrFY8Nlnn2HNmjUoKCjAz372M3z/+9/H+++/L9ePQAgJkSm+7FBJc++EjlPeKgZe6TFhiLSqKqFPCAmQZv+y4+Pj8dZbbw37/ZycHAiDNqfKysrCl19+GYqhEUIUZiBwmljGqcwXeE2maTpCNEuzGSdCCAkUC5zKW3vh5ce/229pixh4TU6iwIkQraLAiRCie5lx4TBzApweHjXtgfVyGQorDKeMEyHaRYETIUT3jAYOyb7dUYqbusd9nDO+506hwIkQzaLAiRBCAKRGiFN0461zsjvcqO3oBwBMT5Wu+S0hRFkocCKEEABpvsBpvBmn4kbxeWkxYYiJUHajP0LI+FHgRAghAFL9U3Xjyzid9gVOBanRUg2JEKJAFDgRQggGMk5lLT3jWllX1CDuc1WQRtN0hGgZBU6EEAIg3gqEmw1weXhUtI4963SGMk6E6AIFToQQAsDADQQ9J+sD2yWdEQQBRb7AaTplnAjRNAqcCCHEZ2a6GPScqOsa0/NqO/rR4/TAbORojzpCNI4CJ0II8ZmRNr6ME8s25SdHw2ykyyohWkZ/4YQQ4jMjbSDjNHgvy9GwwvDpVN9EiOZR4EQIIT5TkqNgNnKwOzz+ZpaBOO6b2puRTvVNhGgdBU6EEOJjMRkwJXns03VHazsBAHOzYoMwKkKIklDgRAghg8zKELNGJ+sDKxBv7HKgye6E0cD5i8sJIdpFgRMhhAwyMz0GQOAZp8KaTgDA1JRoRFhMwRoWIUQhKHAihJBBWMbpWG1nQAXibJpuXlZMMIdFCFEICpwIIWSQmekxsBgNaO1xobq9b9THH2P1TZmxwR0YIUQRKHAihJBBwsxGf9bpYGXHiI/leQHHasRaKCoMJ0QfKHAihJBzLMqJBwAcrGof8XHlrb3odnoQZjZgSnJUKIZGCJEZBU6EEHKOhdlxAEbPOB2uFr8/OyMGJuoYTogu0F86IYScY5EvcCpp7kFnn2vYx+0vawMALM6ND8m4CCHyo8CJEELOkRBlRZ5vs16WVTqXIAjY6wuclk1ODNnYCCHyosCJEEKGMNp0XUVrLxrtDlhMBv9jCSHaR4ETIYQM4QLf9NseX1bpXOzrCyfFIcxsDNm4CCHyosCJEEKGsGJqEgCxT1Nbj/O87+8rawUALJucENJxEULkRYETIYQMIcUWhpnpNggCsPNMy1nf43kB+1h9Uz4FToToCQVOhBAyjG8VJAMAPj/TfNbXT9bb0dHnRoTFiDnUMZwQXaHAiRBChrHKFzjtKm6B28v7v779VCMAYPmUJJipfxMhukJ/8YQQMoy5mbGIj7Sg2+HBoaqB1XWfnmoCAKyZmSLX0AghMqHAiRBChmE0cFjpKxL/+ISYZSpr6UFRYzeMBs4/lUcI0Q8KnAghZARXzU0HALx/tB5uL493D9cBEFfdxUZY5BwaIUQGFDgRQsgILpmSiMQoC9p6XdhxugnvHhEDp+8tyJB5ZIQQOVDgRAghIzAZDfjegkwAwF1/OYy6zn7ERphx2XSqbyJEjyhwIoSQUdy8NBtGA+f/941LsqlbOCE6RYETIYSMIjMuAjddmA0ASLWF4eZl2TKPiBAiF5PcAyCEEDV49Dsz8fAVBbAYDTAMyj4RQvSFAidCCAkQTc8RQmiqjhBCCCEkQBQ4EUIIIYQEiAInQgghhJAAUeBECCGEEBIgCpwIIYQQQgJEgRMhhBBCSIAocCKEEEIICRAFToQQQgghAaLAiRBCCCEkQBQ4EUIIIYQEiAInQgghhJAAUeBECCGEEBIgCpwIIYQQQgJkknsAWiMIAgDAbrdLely3242+vj7Y7XaYzWZJj60FdH5GRudnZHR+hkfnZmR0fkampvPDPrfZ5/hwKHCSWHd3NwAgKytL5pEQQgghZKy6u7sRExMz7Pc5YbTQiowJz/Oor69HdHQ0OI6T7Lh2ux1ZWVmoqamBzWaT7LhaQednZHR+RkbnZ3h0bkZG52dkajo/giCgu7sb6enpMBiGr2SijJPEDAYDMjMzg3Z8m82m+DefnOj8jIzOz8jo/AyPzs3I6PyMTC3nZ6RME0PF4YQQQgghAaLAiRBCCCEkQBQ4qYTVasUjjzwCq9Uq91AUic7PyOj8jIzOz/Do3IyMzs/ItHh+qDicEEIIISRAlHEihBBCCAkQBU6EEEIIIQGiwIkQQgghJEAUOBFCCCGEBIgCJ5V44YUXkJOTg7CwMCxZsgQHDhyQe0iKsGvXLlx11VVIT08Hx3HYunWr3ENSjE2bNuGCCy5AdHQ0kpOTcc011+DMmTNyD0sxXnrpJcyZM8ffmG/p0qX46KOP5B6WYj3xxBPgOA7333+/3ENRhEcffRQcx531X0FBgdzDUoy6ujrceOONSEhIQHh4OGbPno2DBw/KPSxJUOCkAm+//TY2bNiARx55BIcPH8bcuXOxdu1aNDc3yz002fX29mLu3Ll44YUX5B6K4nz55Ze45557sH//fmzfvh1utxtr1qxBb2+v3ENThMzMTDzxxBM4dOgQDh48iG9961u4+uqrcfLkSbmHpjjffPMN/vjHP2LOnDlyD0VRZs6ciYaGBv9/u3fvlntIitDR0YGLLroIZrMZH330EU6dOoWnnnoKcXFxcg9NEtSOQAWWLFmCCy64AM8//zwAcT+8rKws/Md//AcefvhhmUenHBzH4d1338U111wj91AUqaWlBcnJyfjyyy+xfPlyuYejSPHx8fif//kf3H777XIPRTF6enqwYMECvPjii/j1r3+NefPm4dlnn5V7WLJ79NFHsXXrVhQWFso9FMV5+OGHsWfPHnz11VdyDyUoKOOkcC6XC4cOHcJll13m/5rBYMBll12Gffv2yTgyojZdXV0AxOCAnM3r9eJvf/sbent7sXTpUrmHoyj33HMPrrzyyrOuQURUUlKC9PR05OXl4YYbbkB1dbXcQ1KEf/3rX1i0aBGuvfZaJCcnY/78+Xj11VflHpZkKHBSuNbWVni9XqSkpJz19ZSUFDQ2Nso0KqI2PM/j/vvvx0UXXYRZs2bJPRzFOH78OKKiomC1WnHXXXfh3XffxYwZM+QelmL87W9/w+HDh7Fp0ya5h6I4S5YswZYtW/Dxxx/jpZdeQkVFBS655BJ0d3fLPTTZlZeX46WXXsKUKVPwySef4O6778ZPfvITvPHGG3IPTRImuQdACAm+e+65BydOnKAajHNMmzYNhYWF6OrqwjvvvIP169fjyy+/pOAJQE1NDe677z5s374dYWFhcg9Hca644gr//58zZw6WLFmC7Oxs/P3vf9f9VC/P81i0aBEef/xxAMD8+fNx4sQJvPzyy1i/fr3Mo5s4yjgpXGJiIoxGI5qams76elNTE1JTU2UaFVGTe++9Fx988AG++OILZGZmyj0cRbFYLMjPz8fChQuxadMmzJ07F88995zcw1KEQ4cOobm5GQsWLIDJZILJZMKXX36J3//+9zCZTPB6vXIPUVFiY2MxdepUlJaWyj0U2aWlpZ138zF9+nTNTGVS4KRwFosFCxcuxI4dO/xf43keO3bsoFoMMiJBEHDvvffi3Xffxeeff47c3Fy5h6R4PM/D6XTKPQxFuPTSS3H8+HEUFhb6/1u0aBFuuOEGFBYWwmg0yj1ERenp6UFZWRnS0tLkHorsLrroovNanxQXFyM7O1umEUmLpupUYMOGDVi/fj0WLVqExYsX49lnn0Vvby9uvfVWuYcmu56enrPu8CoqKlBYWIj4+HhMmjRJxpHJ75577sFbb72F9957D9HR0f6auJiYGISHh8s8Ovlt3LgRV1xxBSZNmoTu7m689dZb2LlzJz755BO5h6YI0dHR59XDRUZGIiEhgerkADzwwAO46qqrkJ2djfr6ejzyyCMwGo3493//d7mHJruf/vSnWLZsGR5//HH84Ac/wIEDB/DKK6/glVdekXto0hCIKvzhD38QJk2aJFgsFmHx4sXC/v375R6SInzxxRcCgPP+W79+vdxDk91Q5wWA8Prrr8s9NEW47bbbhOzsbMFisQhJSUnCpZdeKnz66adyD0vRVqxYIdx3331yD0MRrrvuOiEtLU2wWCxCRkaGcN111wmlpaVyD0sx3n//fWHWrFmC1WoVCgoKhFdeeUXuIUmG+jgRQgghhASIapwIIYQQQgJEgRMhhBBCSIAocCKEEEIICRAFToQQQgghAaLAiRBCCCEkQBQ4EUIIIYQEiAInQgghhJAAUeBECCGEEBIgCpwIIYQQQgJEgRMhhKjQG2+8gccffxwej0fuoRCiK7TJLyGEqMzOnTtx2223ITIyEh6PB7/4xS/kHhIhukF71RFCiIr09vZizpw5uPbaa3HJJZfg+9//Pr755hvMnj1b7qERogs0VUcI0YTKykpwHIdbbrlF06/78MMPIy0tDb/+9a9x5ZVX4v7778ctt9xCU3aEhAgFToQQRWIByUj/5eTkyD3MkPvDH/6A3bt3w2QSKy2eeOIJHDp0yP9vQkhw0V8aIUTRJk+ejBtvvHHI78XGxvr/f0ZGBk6fPo2YmJgQjYwQokcUOBFCFC0/Px+PPvroqI8zm80oKCgI/oAIIbpGU3WEEE0YqdZo165duOqqq5CYmAir1YopU6bgv//7v9HX1xfw8b1eL5588knk5+cjLCwM+fn52LRpE3ieH/F5Urz20qVLwXEc9u3bd9bX7XY75s2bB6vViu3btwd8PELI+FHgRAjRtJdeegkrV67Enj17cOWVV+InP/kJMjMz8Zvf/AarV6+Gy+UK6Dg/+tGP8PDDD4Pnedxzzz1Yu3Ytnn76adx3331Bf+0nn3wSAPDf//3f/q+5XC5897vfxbFjx/DGG29g9erVAR2LEDIxNFVHCFG00tLSYafqLrzwQlx++eXDPvfUqVP4yU9+gjlz5mDHjh1ISEjwf++JJ57Axo0b8Yc//AE/+9nPRhzDzp07sXnzZsydOxd79uxBZGQkAOC//uu/MG/evKC+NgAsX74cV155JT788EPs3LkTK1aswC233ILPP/8czz77LK6//vpRj0EIkYhACCEKVFFRIQAY8b/77rvvvMevX7/e/7Wf/OQnAgBh165d5x3f6/UKSUlJwsKFC0cdy6233ioAEP7xj3+c971f/epX572ulK/NHDt2TDAYDMLFF18sbNiwQQAgbNy4MeDnE0KkQRknQoiirV27Fh9//PG4nrt//34AwCeffIIdO3ac932z2YyioqJRj3P06FEAwCWXXHLe94b6mpSvzcyePRs33ngj3nzzTezevRu33XYbHn/88YCfTwiRBgVOhBDNam9vBwD85je/mdBxurq6YDAYkJiYeN73UlJSgvragyUlJQEAoqOj8cILL0h2XEJI4Kg4nBCiWTabDYC4+kwQhGH/G01MTAx4nkdra+t532tqagrqazPPP/88nnrqKaSkpKC7uxtvvPFGwM8lhEiHAidCiGYtWbIEwMC02XjNnTsXAPDVV1+d972hviblawPA3//+d9x3331YtWoVjhw5gpiYGDz22GNjamlACJEGBU6EEM368Y9/DJPJhP/4j/9AdXX1ed/v7OzEkSNHRj3OTTfdBAD45S9/id7eXv/X6+rq8NxzzwX1tXfs2IGbbroJs2fPxtatW5GWloaf/vSnaGhoGPa1CSHBwwljyRUTQkiIVFZWIjc3d8QtVwBx09uwsDD/49evX48tW7b4v//qq6/i7rvvhtlsxrp16zB58mR0d3ejvLwcX375JW655Ra8/PLLo47ntttuw+uvv47c3Fx897vfhdPpxNtvv40LL7wQH3zwwXmvK8VrHz58GCtXrkRCQgL27t2LtLQ0AOL0X25uLrxeL8rLyxEfHz/q+AkhEgn9Qj5CCBldIO0IAAgdHR1nPf7ctgCCIAgHDhwQrr/+eiE9PV0wm81CYmKisGDBAuHhhx8WTp8+HdB4PB6PsGnTJiEvL0+wWCxCXl6e8PjjjwulpaXDvu5EXru0tFRISUkREhIShKKiovO+/+STTwoAhAceeCCg8RNCpEEZJ0KIJhQVFWH69On40Y9+hD/+8Y9yD4cQolFU40QI0YTS0lIAQGZmpswjIYRoGfVxIoSoWnFxMTZv3oy33noLBoMBV199tdxDIoRoGGWcCCGqdurUKTz33HOIi4vDP/7xD8yZM0fuIRFCNIxqnAghhBBCAkQZJ0IIIYSQAFHgRAghhBASIAqcCCGEEEICRIETIYQQQkiAKHAihBBCCAkQBU6EEEIIIQGiwIkQQgghJEAUOBFCCCGEBIgCJ0IIIYSQAFHgRAghhBASIAqcCCGEEEIC9P8Dcy/xbzks6m8AAAAASUVORK5CYII=\n" }, "metadata": {} } ], "source": [ "# Calculamos los picos\n", "picos, diccionario = find_peaks(y, distance = 100) # Acá agrego el parámetro\n", "\n", "# Graficamos la función\n", "plt.plot(x, y)\n", "plt.plot(x[picos], y[picos],\".\", c = \"k\", ms = 10)\n", "plt.xlabel('Eje de $\\hat x$', fontsize = 14)\n", "plt.ylabel('Eje de $\\hat y$', fontsize = 14)\n", "\n", "plt.grid()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "id": "BGhdZ0bAjH7k" }, "source": [ "Existen muchos otros parámetros opcionales más tales como:\n", "\n", "\n", "\n", "* **width**: Ancho de los picos (en índices)\n", "* **threshold**: Delimita de cuanto puede ser el salto del máximo respecto a los otros puntos, verticalmente.\n", "* **prominence**: Prominencia de los picos (que tan picudos son los picos)\n", "\n", "\n", "Si no, siempre conviene leer la [documentación](https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html).\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "id": "HIL8fx8PqcVt" }, "source": [ "### Muy lindo todo esto... ¿Pero cómo puedo calcular los mínimos con ```find_peaks```?" ] }, { "cell_type": "markdown", "metadata": { "id": "zQJemJQPry7e" }, "source": [ "Muy fácil: ¡Invertimos los datos!\n", "\n", "Así los mínimos pasan a ser los máximos y viceversa." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "id": "UMce2R_Rrx5j", "colab": { "base_uri": "https://localhost:8080/", "height": 606 }, "outputId": "deb6824c-d59f-414c-a6b1-70d63f0d5b0b" }, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "<>:12: SyntaxWarning: invalid escape sequence '\\h'\n", "<>:13: SyntaxWarning: invalid escape sequence '\\h'\n", "<>:12: SyntaxWarning: invalid escape sequence '\\h'\n", "<>:13: SyntaxWarning: invalid escape sequence '\\h'\n", "/tmp/ipython-input-2232368767.py:12: SyntaxWarning: invalid escape sequence '\\h'\n", " plt.xlabel('Eje de $\\hat x$', fontsize = 14)\n", "/tmp/ipython-input-2232368767.py:13: SyntaxWarning: invalid escape sequence '\\h'\n", " plt.ylabel('Eje de $\\hat y$', fontsize = 14)\n" ] }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAG8CAYAAAAo6yp6AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAzFVJREFUeJzsnXd4HNXVh9/ZolXvvVjNttx7t3EBY4PB1IQSinGALyEhoSc4hcSQ4BBaSGgBQgkltAChGBdcMLj33tSt3ru0db4/ZmclWW0lbde8z6NnV6vZmbtXszPnnvM75wiiKIooKCgoKCgoKCj0icrdA1BQUFBQUFBQ8BYUw0lBQUFBQUFBwU4Uw0lBQUFBQUFBwU4Uw0lBQUFBQUFBwU4Uw0lBQUFBQUFBwU4Uw0lBQUFBQUFBwU4Uw0lBQUFBQUFBwU407h6Ar2GxWCgpKSEkJARBENw9HAUFBQUFBQU7EEWRxsZGEhMTUal69isphpODKSkpISUlxd3DUFBQUFBQUBgA586dIzk5uce/K4aTgwkJCQGkiQ8NDXXYfo1GIxs2bGDJkiVotVqH7ddXUOand5T56R1lfnpGmZveUeand7xpfhoaGkhJSbHdx3tCMZwcjByeCw0NdbjhFBgYSGhoqMeffO5AmZ/eUeand5T56RllbnpHmZ/e8cb56Utmo4jDFRQUFBQUFBTsRDGcFBQUFBQUFBTsRDGcFBQUFBQUFBTsRDGcFBQUFBQUFBTsRDGcFBQUFBQUFBTsRMmqcyOiKGI2mzGZTH1uazQa0Wg0tLW1YTabXTA670KZn97xxPnRarWo1Wp3D0NBQUGhXyiGkxsQRZG6ujoqKyvtvomJokh8fDznzp1TKpJ3gzI/veOp8xMeHk58fLxHjUlBQUGhNxTDyQ2UlZVRV1dnq/Wk0Wj6vHFYLBaampoIDg7utRT8UEWZn97xtPkRRZGWlhYqKioASEhIcPOIFBQUFOxDMZxcjNlspr6+npiYGKKjo+1+n8ViwWAw4O/v7xE3Pk9DmZ/e8cT5CQgIAKCiooLY2FglbKegoOAVeMYVdAhhNBoRRZGgoCB3D0VBwe0EBgYC0vdCQUFBwRtQDCc3oWg6FBSU74GCgoL3oRhOCgoKCgoKCgp2ohhOCgrdYBFFdw9BQUHBS7CIYLYo14yhgmI4KShYEUWRmmY9p8saOVZcz8nSBsob2hxiRC1cuJCFCxcO6L233XYbaWlpgx5Db7z55psIgkB+fr5Tj6Og4Eucq2nh3g+O8Os9asY/+g03vbaLI0V17h6WgpNRDCcFhyHffOUff39/EhMTWbp0KX//+99pbGwc8L537NjBH//4R+rq6hw34A6IokhRbStFta3oTVJtLaPZQnlDG/lVzcpqUkFBoRNHiuq44vnv+epYGQaLgNEssj27mh+8tJN1x0rdPTwFJ6IYTgoO59FHH+Xtt9/mpZde4he/+AUA9957L+PHj+fIkSMD2ueOHTtYvXq10wyn8gY9tS0GBAQSwvwZHR9KSmQgakGgSW+iqLYFcRCepw0bNrBhw4YBvffVV1/l9OnTAz62goKCYymtb+XHb+6ltsXI+KRQ7h9nYt0v57J4dBwGs4Vfvn+Iw+fq3D1MBSehGE4KDufSSy/l5ptvZuXKlaxatYr169fzzTffUFFRwRVXXEFra6u7h9iJZr2JisY2AJIiAogJ8UerURER6EdadBCCIFDfaqSm2dDvfbe0tADg5+eHn5/fgMan1WrR6XQDeq+CgoJjEUWRhz46QlWTgVHxIby9chqpIZAZE8Q/b5nK4tGxGEwW7vvwEG1Gz2hvpOBYFMNJwSVceOGF/P73v6egoIB33nnH9vqRI0e47bbbyMjIwN/fn/j4eH784x9TXV1t2+aPf/wjDz30EADp6em2UKCsxzGZTPzpT39i8uTJBAQEkJaWxm9+8xv0en2nMezbt4+lS5cSHR1NQEAA6enprFy5kuI6yZCLCPQjMqizcROk0xAf6s8Hb73GzKmT0Ol0JCYm8vOf/7yL92vhwoWMGzeO/fv3M3/+fAIDA/nNb35j+9v5GqeCggKuuOIKgoKCiI2N5b777mP9+vUIgsDWrVtt252vccrPz0cQBJ566ileeeUVMjMz0el0TJ8+nb1793Y6hjy/w4cPJz4+nsTExC7z2xtff/01F1xwAUFBQYSEhHDZZZdx/PjxTtuUlZWxcuVKkpOT0el0JCQkcOWVVyp6KQWf5IsjpXyfXYWfRsWLN00hSNdeR1qtEnj6uknEhOjIrWzmlW25bhypgrNQKod7CKIo0trL6sRisdBqMKMxmFxS+TlAq3Z4jZ1bbrmF3/zmN2zYsIE777wTgI0bN5Kbm8vKlSuJj4/n+PHjvPLKKxw/fpxdu3YhCALXXHMNZ86c4T//+Q/PPvusreJ6TEwMAHfccQdvvfUWV155JQ8++CB79uxhzZo1nDx5kk8//RSQqlMvWbKEmJgYHn74YcLDw8nPz+fj//6XNqMZtUoK0XXH8089zuOPPsqsCxay8o47KSvM46WXXmLv3r1s374drVZr27a6uppLL72UG264gZtvvpm4uLhu99nc3MyFF15IaWkp99xzD/Hx8bz33nts2bLF7vl87733aGxs5Cc/+QmCIPDXv/6Va665htzcXNuY5Pm97bbbCAsLIzc3l1dffbXT/PbE22+/zYoVK1i6dClPPPEELS0tvPTSS8ybN4+DBw/ajLlrr72W48eP84tf/IK0tDQqKirYuHEjhYWFThe1Kyi4EqPZwlPrpbD53YuGkxET3KV4a1iAlt9dNpp73j/Eq9tyuXV2KuGBA/M2K3gmiuHkIbQazYx5ZL27h2HjxKNLCfRz7OmRnJxMWFgYOTk5ttd+9rOf8cADD3TabtasWdx44418//33XHDBBUyYMIEpU6bwn//8h6uuuqrTzfjw4cO89dZb3H777Tz11FOEhoby85//nNjYWJ566im2bNnCokWL2LFjB7W1tWzYsIFp06YBkrF6y92/Rm8yEx2sQ6PuapBWVlbyl7/8hQsXX8zT/3ofjVpNVnwIo0aN4u677+add95h5cqVtu3Lysp4+eWX+clPftLrXPzzn/8kNzeXzz77jCuvvBKAn/zkJ0yePNnu+SwsLOTs2bNEREQAkJWVxZVXXsn69eu5/PLLO82vxWKhoaGB0NBQZs+e3Wl+u6OpqYlf/vKX3HHHHbzyyiu211esWEFWVhaPP/44r7zyCnV1dezYsYMnn3ySBx980LbdqlWr7P4cCgrewqcHiymsaSE62I87LkjvcbvlExJ5+dtcTpY28Pr3edy/JMuFo1RwNkqoTsGlBAcHd8quk/uVAbS1tVFVVcWsWbMAOHDgQJ/7W7t2LQD33Xdfp9dlY+yrr74CIDw8HIAvv/zStkJs1JvQm8yoBYHo4O5XhN988w0Gg4EH7ruXYH8tFlGkptnAnXfeSWhoqG3/MjqdrpMh1RPr1q0jKSmJK664wvaav7+/zRNnD9dff73NaAJsRlBubnt4YKDzu3HjRurq6rjxxhupqqqy/ajVambOnGnzjAUEBODn58fWrVupra21e+wKCt6GKIq8tSMfgNvnZfS6sFSpBO5eNByAd3YXKlonH0PxOHkIAVo1Jx5d2uPfLRYLjQ2NhISGuCxU5wyampqIjY21/V5TU8Pq1at5//33qaio6LRtfX19n/srKChApVIxfPjwTqLz+Ph4wsPDKSgoAGDBggVce+21rF69mmeffZaFCxcy96JLufCyq0mMCkXdw5zK7x81ahSRwToKa1qobjIQExJCRkaG7e8ySUlJdonACwoKyMzM7BIqGz58eJ/vlRk2bFin32UjqqMBM9D5PXv2LCBp07ojNDQUkAzFJ554ggceeIC4uDhmzZrF5Zdfzq233kp8fLzdn0VBwdM5dK6O4yUN+GlUXD89pc/tl46NIyk8gOK6Vr48UsoPpia7YJQKrkAxnDwEQRB6XcFYLBZMfmoC/TQe092+vxQVFVFfX9/JOLjuuuvYsWMHDz30EJMmTSI4OBiLxcIll1yCxWKxe9996bEEQeDjjz9m165dfPHFF6xbv55f33MXmS88x65du4CAXt8PEBqgRaNSYbJYaGozdbtNRw+Ps1GruzduO5ZNkOf3wQcfZOTIkTZdWF/zK//t7bff7tYA0mjaz9V7772X5cuX89lnn7F+/Xp+//vfs2bNGjZv3tyv0KOCgifzzq5CAC6fkNAliaQ7NGoVN0xP4emNZ/j0YJFiOPkQiuGk4DLefvttAJYulTxrtbW1bNq0idWrV/PII4/YtpO9HR3pyTBKTU3FYrFw9uxZkpKSbK+Xl5dTV1dHampqp+1nzZrFrFmzuG/VI7z2xr9Z9cv/47P/fsQdd9zR4/4BTp8+TUZGBuGBWqqa9JTXNZGXl8fixYv7MQOd93vixAlEUez02bKzswe0v+7oOL+/+93vbBqnjhqznsjMzAQgNjbWrs+YmZnJAw88wAMPPMDZs2eZNGkSTz/9dKcMSgUFb6W22cAXR0oAuGVWah9bt3PV5CSe3niGHTnVlNW3Ed9DAoqCd+GdrgsFr2Pz5s089thjpKenc9NNNwHtHpPzC0v+7W9/6/L+oKAggC4lAJYtWwbAc8891+n1Z555BoDLLrsMkIyIjsepazGQNXY8QJeyBR1ZvHgxfn5+/P3vf0cURSKs2TFvvfkG9fX1tv33l6VLl1JcXMznn39ue62trY1XX311QPvrjv7Mb3fjCw0N5fHHH++SNQSSaB6kOlVtbW2d/paZmUlISEiv86qg4E18fawMg8nC6IRQJqWE2/2+lMhApqdFIIrw+eFi5w1QwaUoHicFh/P1119z6tQpTCYT5eXlbN68mY0bN5Kamsrnn3+Ov7+06goNDWX+/Pn89a9/xWg0kpSUxIYNG8jLy+uyz6lTpwLw29/+lhtuuAGtVsvy5cuZOHEiK1as4NVXX6WqqoqLLrqIvXv38tZbb3HVVVexaNEiAN566y1efPFFrr76aoalpZNbUsUn//k3oaGhNuOrO2JiYli1ahWrV6/mkksu4YorrmD3waO89+ZrTJ46jZtvvnlAc/STn/yE559/nhtvvJF77rmHhIQE3n33XdvcOKIURMf5NRgMREZG8t1339lVXyk0NJSXXnqJW265hSlTpnDDDTcQExNDYWEhX331FXPnzuX555/nzJkzXHTRRVx33XWMGTMGjUbDp59+Snl5OTfccMOgP4OCgiew9qjUQuWKiYn9/m5eNTmJvfm1fHqwhP+bn+mM4Sm4GMVwUnA4ctjNz8+PyMhIxo8fz9/+9jdWrlxJSEhIp23fe+89fvGLX/DCCy8giiJLlizh66+/JjExsdN206dP57HHHuPll19m3bp1WCwW8vLyCAoK4rXXXiM9PZ033niDL7/8kvj4eFatWsUf/vAH2/sXLFjAnj17eP/99ykvLycoJJRJU6bx8Qf/IT2957RikApwxsTE8Pzzz3PfffcRHhHJtT9awcO/X92phlN/CA4OZvPmzfziF7/gueeeIzg4mFtvvZU5c+Zw7bXX2gyowSLP74svvojFYulxfrvjRz/6EYmJifzlL3/hySefRK/Xk5SUxAUXXGDLHExJSeHGG29k06ZNvP3222g0GkaNGsWHH37Itdde65DPoKDgTmqaDezMlQrGLhvf/4SHy8YnsPrzE5wsbeBseSMj4kL6fpOCRyOIg2nApdCFhoYGwsLCqK+vt2UedaStrY28vDzS09P7dXPsWIfHW8XhzqQ/83O2vJFWo5nkiEC7RJ7nYzBZOFXWAMCYhNBu6z8NlL/97W/cd999FBUVddJsDRZPPX8G+n1wNEajkbVr17Js2bIBG8O+ylCfm/f3FPLwJ0cZmxjKV7/sWvfMnvm57Y09bD1dya8vGcVdC4eW18mbzp++7t8ynnMFVVBwAUazxVahPcR/YA5XP43KVq6hoYfsOns4v2dfW1sb//znPxkxYoRDjSYFBYWB85U1TLdsfMKA93HhKKkEy5ZTFX1sqeANKKE6hSFFY5skdA70U6MdhKcoJEBLq9FMY5txQF4rgGuuuYZhw4YxadIk6uvreeeddzh16hTvvvvugMeloKDgOOpbjezIkcN0AzecFmXFAsfZX1hLfYuRsEDP9rwo9I7icVIYUjRaPUQh/oO7cIVavVWNbSYsA4x2L126lO3bt/PQQw+xevVqdDod77//Pj/60Y8GNTYFBQXHsD27CrNFJDMmiPTooAHvJyUykBGxwZgtIt+erXTgCBXcgeJxUhgyWESxg+E0uFM/QCt5rIxmC81604AMsXvvvZd77713UONQUFBwHtvOSEbOgpGxfWzZNxeOiuVsRRNbTlVwxcS+kzMUPBfF46QwZGjRS94hjUo16JYygiDYjK/B6JwUFBQ8E1EUbYbT/JHRg97fIqvOaevpCiwWJSfLm1EMJ4UhQ5O+3dvkiDpJspepp/YrCgoK3kt2RRMl9W34aVTMTI8a9P6mpkYQ5KemtsXIqbLGvt+g4LEohpPCkKFJL2XTBekcE6EO8lMjAHqTGaPJ/r56CgoKns+3Vm/TzPRIAvwG3/Rcq1YxLS0SgF3WulAK3oliOCkMCcwWkVaDZDgF6wZ/EQSpiae/9YIqe7MUFBR8g29t+qYYh+1zVobkuVIMJ+9GMZwUhgQtBhMiIn5q1aDKEJxPsNV7pRhOCgq+g8FkYW9+DQAXjHCk4SR5nHbn1Sg6Jy/Gpw2nbdu2sXz5chITpf5Cn332Wa/bb926FUEQuvyUlZW5ZsAKTqPZatgE6Ryjb5LpaDgpRfgVFHyDo8V1tBktRAb5MTIu2GH7HZcURpCfmvpWRefkzfi04dTc3MzEiRN54YUX+vW+06dPU1paavuJjR18KqqCe3G0vkkmyE8yxIxmCwZF56Sg4BPsypW8TdPTIhy60FJ0Tr6BTxtOl156KX/605+4+uqr+/W+2NhY4uPjbT+e1NtLof8MVt+0cOFCFi5c2O3fVCqBQA/XOeXn56NWq3nvvff63Pa2224jLS3N+YNSUPBgdudJhpMjsunOR9E5eT9KAcxumDRpEnq9nnHjxvHHP/6RuXPn9ritXq9Hr9fbfm9okJq/Go1GjEZjl+2NRiOiKGKxWLBY7PdQyGEg+b2eyJtvvsntt99u+12n0xEZGcm4ceO47LLLuO222wgJGVhn8B07drBx40buuecewsPDu/y9t/lpMZgREdGqVWhUwoDnr6f3BfmpadabaNabiHBjK4X33nuPyspK7rnnnk6vdxx3X+ePPI+uOscsFguiKGI0GlGrHSPaHwjyd7W77+xQZ6jNjclsYb9V3zR1WGifn7u/8zM1RWoeu6+gBoPB4FCPlifiTeePvWNUDKcOJCQk8PLLLzNt2jT0ej2vvfYaCxcuZPfu3UyZMqXb96xZs4bVq1d3eX3Dhg0EBgZ2eV2j0RAfH09TUxMGg6HfY2xs9Ny4eFtbGwC/+c1vGDZsGCaTifLycrZv3859993H008/zXvvvce4ceP6ve8tW7bw6KOPcu211/bqAexufhqs06wVLDbDtj98+OGH0n56eK9odTQ1tRlpaHDfxeHtt9/m5MmTrFy5stPrERERlJaWotVq+zx/jEYjFsvA5mkgGAwGWltb2bZtGyaT+z12GzdudPcQPJahMjcFTdBs0BCgFsk98D35dto19s6PyQJqQU1Ns5G3P/2aaP9BDNaL8Ibzp6Wlxa7tFMOpA1lZWWRlZdl+nzNnDjk5OTz77LO8/fbb3b5n1apV3H///bbfGxoaSElJYcmSJYSGhnbZvq2tjXPnzhEcHIy/v/3fGFEUaWxsJCQkxGNXKPLnufLKK5k2bVqnv23evJkrrriCm2++mePHjxMQEDCgfQcHB3c7r73NT11NK2AkLMif0AE25O2NYBGqShswiRAYHIJG5dr/T3NzM0FBQWg0GlQqVb/npyNarbbHfTiDtrY2AgICmD9/fr++D47GaDSyceNGLr74YrRapQFrR4ba3Lz2fT4cPcPs4bFcftnkPrcfyPz8u3g3h4vqCcuczLKJA28e7A140/lj94JRHCIA4qefftrv9z344IPirFmz7N6+vr5eBMT6+vpu/97a2iqeOHFCbG1t7dc4zGazWFtbK5rN5n69z5W88cYbIiDu3bu3278//vjjIiC+8sorttcOHz4srlixQkxPTxd1Op0YFxcnrly5UqyqqrJt84c//EEEuvzk5eWJoiiKRqNRXL16tZiWlib6+fmJqamp4qpVq8S2tjbRYrGIx4vrxcPnasVt23eKS5YsEaOiokR/f38xLS1NXLlyZZ+fa8GCBeKCBQtsv2/ZskUExA8++ED805/+JCYlJYl+Op04Y+58cf+R47btfv7zn4tBQUFic3Nzl33ecMMNYlxcnGgymWyvrV27Vpw3b54YGBgoBgcHi8uWLROPHTvW6X0rVqwQg4KCxOzsbPHSSy8Vg4ODxSuvvFJcsGBBl/lJTU0VRVEU8/LyREB84YUXOp0/n376qTh27FhRp9OJY8eOFT/55BNxxYoVtvfJNDU1iffff7+YnJws+vn5iSNHjhSffPJJ0WKxdNpuw4YN4ty5c8WwsDAxKChIHDlypLhq1ape53ag3wdHYzAYxM8++0w0GAxuHYcnMtTm5vY394qpv/5S/Oe32XZtP5D5Wf35cTH111+Kj3x2dKDD9Bq86fzp6/4to3ic+uDQoUMkJPj2isBV3HLLLfzmN79hw4YN3HnnnYDkvs3NzWXlypXEx8dz/PhxXnnlFY4fP86uXbsQBIFrrrmGM2fO8J///Idnn32W6Gipb1RMjFRf5Y477uCtt97iyiuv5MEHH2TPnj2sWbOGkydP8v5HH2OyWKipruKay5cRExPDww8/THh4OPn5+XzyyScD/jx/+ctfUKlUPPjgg5wrr+LF557ljpUrOLBvLwDXX389L7zwAl999RU//OEPbe9raWnhiy++4LbbbrPpet5++21WrFjB0qVLeeKJJ2hpaeGll15i3rx5HDx4sJNg22QysXTpUubNm8dTTz1FYGAg8fHx1NfXU1RUxLPPPgtI3rme2LBhA9deey1jxoxhzZo1VFdXs3LlSpKTkzttJ4oiV1xxBVu2bOH2229n0qRJrF+/noceeoji4mLbsY4fP87ll1/OhAkTePTRR9HpdGRnZ7N9+/YBz6+CgqsRRZEDhbUATE2NdNpxJg8Lh+1woLDOacdQcCIuMePcRGNjo3jw4EHx4MGDIiA+88wz4sGDB8WCggJRFEXx4YcfFm+55Rbb9s8++6z42WefiWfPnhWPHj0q3nPPPaJKpRK/+eYbu485YI+TxSKK+qYef8ytDWJtRbFobm3odTuH/ZznTbCHvjxOoiiKYWFh4uTJk22/t7S0dNnmP//5jwiI27Zts7325JNPdvIyyRw6dEgExNtvv72TR+7BBx8UAfF/a9eLh8/Vii++8V6fY+uJnjxOo0ePFvV6vSiKoljbrBd/tfovIiAePSqtIi0Wi5iUlCRee+21nfb34Ycfdvp8jY2NYnh4uHjnnXd22q6srEwMCwvr9PqKFStEQHz44Ye7jPOyyy7r4i0Sxe49TpMmTRITEhLEuro623YbNmzo5KkSRVH87LPPRED805/+1GmfP/jBD0RBEMTsbGlV/uyzz4qAWFlZ2e0cypjMZtFoavd6KR4n12E2W8TKxjax1WDqe+MODIW5kcmrbBJTf/2lOOI3a8U2o33zNJD5KaptEVN//aWYueorsUXfv/+Ht+FN54/icQL27dvHokWLbL/LWqQVK1bw5ptvUlpaSmFhoe3vBoOBBx54gOLiYgIDA5kwYQLffPNNp304DWMLPJ7Y459VQLjzR9HOb0rAL8jhuw0ODu4kUO6odWpra6OpqYlZs2YBcODAAS644IJe97d27VoA7rvvvk6vP/DAAzz11FOsXbuWn42fQUy0tHr88ssvmThxokNi7StXrsTPT9JMBfppmDJjNgDZ2TmMGzcOQRD44Q9/yD//+U+amppsHqAPPviApKQk5s2bB0het7q6Om688Uaqqqps+1er1cycOZMtW7Z0OfZdd9014HGXlpZy6NAhHn74YcLCwmyvX3zxxYwZM4bm5mbba2vXrkWtVvPLX/6y0z4eeOABPv74Y77++mvuvvtuW6bj//73P1auXNlFwN+sN1Fa30aLQRKAB/ppSAjzx315dEMHi0XkjR35/PPbHCoa9eg0Kq6YmMhvLxtNeKDjNX/ezMFzkrdpbFIoOo3zzs7EMH9iQ3RUNOo5WlzPjHTnebcUHI9PFyhauHAhoih2+XnzzTcBKX1+69attu1/9atfkZ2dTWtrK9XV1WzZssU1RtMQoqmpqVNJgpqaGu655x7i4uIICAggJiaG9PR0AOrr6/vcX0FBASqViuHDh3d6PT4+nvDwcAryCwC4aNFCrr32WlavXk10dDRXXnklb7zxRqdSEv1l2LBhtud+GhXRkREAlHcwfq6//npaW1v5/PPPAenzr127lh/+8Ic2kfbZs2cBuPDCC4mJien0s2HDBioqKjodV6PRdAmp9YeCAmlORowY0eVvHZMj5G0TExO7lJEYPXp0p31df/31zJ07lzvuuIO4uDhuuOEGPvzwQywWC3UtBnIrm21GE0gtcHIrm2ho7X9mqYL9mC0i935wiMe+PEFFo3Su600WPtpfxOX/+J7iulY3j9CzOFBQB8DklAinHkcQBClcBxy0hgYVvAef9jh5FdpAycvTAxaLhYbGRkJDQlxTkFPbtZTCYCkqKqK+vr6TkXPdddexY8cOHnroISZNmkRwcDAWi4VLLrmkX7WEesoUM1vrEgXpNHz88cfs2rWLL774gvXr1/PjH/+Yp59+ml27dvWqB+qJ8+sO6bTS7/oOFcRnzZpFWloaH374IT/60Y/44osvaG1t5frrr7dtI3/Ot99+m/j4+C7H0Wg6f011Op3HFWUNCAhg27ZtbNmyha+++op169bxwQcfsGDhIv725seo1CrCArQkhksextK6VupajZTV6xGViutO46/rT/H54RK0aoFHLh/DddNTOHyungc/OkxhTQsrXt/D53fPJdBPuRUANn3TlNRwpx9r8rAI1h8v59C5OqcfS8GxKN8WT0EQeg+NWSygNUvbeNhN017kkg5Lly4FoLa2lk2bNrF69WoeeeQR23ayB6YjPRlGqampWCwWzp49S1JSku318vJy6urqSEhKQaNqb+w7a9YsZs2axZ///Gfee+89brrpJt5//33uuOOOQX++AKvhdH7rleuuu47nnnuOhoYGPvjgA9LS0mzhSIDMzExAqli/ePHiAR/f3jIVqampQPfzfPr06S7bfvPNN7ZSBjKnTp3qtC8AlUrFRRddxEUXXcQzzzzDn/78Z37/u9+xZ8c2li65mGGRgbYxpkQGIta0UNdooKbZQJvBjBurEfgku3Kr+ee3uQA8c90klk+UpAAz0iN5//9mcfWL28muaOKxL0+w5poJ7hyqR9BiMNn6x00Z5lyPE8CEJClMfrS4b8+6gmfhnXdgBa9j8+bNPPbYY6Snp3PTTTcB7R4b8bzmuH/729+6vD8oSDIq6+rqOr2+bNkyAJ577rlOrz/zzDMAXHDREgL81NTV1XU5zqRJkwAGFa7rSE+G0/XXX49er+ett95i3bp1XHfddZ3+vnTpUkJDQ3n88ce7rVxbWVlp1/GDgoLsCm8mJCQwadIk3nrrrU7bb9y4kRMnTnTadtmyZZjNZp5//vlOrz/77LMIgsCll14KSCHX80kdMQYAi9lIckRgJ8NOEASSIwLQqFSYLCIf7jtn12dUsA+T2cIfPz8OwA3TU2xGk0xieAB/u16qUfSfPefYX6CEiw6fq8dsEYkP9bd5Rp3JWKvhVFTbSm2zErL2JhSPk4LD+frrrzl16pStcvjmzZvZuHEjqampfP7557ZCh6GhocyfP5+//vWvGI1GkpKS2LBhA3l5eV32OXXqVAB++9vfcsMNN6DValm+fDkTJ05kxYoVvPrqq1RVVXHRRRexd+9e3nrrLZYuW86MORcQoFXx1htv8eKLL3L11VeTmZlJY2Mjr776KqGhoTbja7DIoTqzRcRotti8XFOmTGH48OH89re/Ra/XdwrTyfPw0ksvccsttzBlyhRuuOEGYmJiKCws5KuvvmLu3LldDJfumDp1Kh988AH3338/06dPJzg4mOXLl3e77Zo1a7jsssuYN28eP/7xj6mpqeEf//gHY8eOpampybbd8uXLWbRoEb/97W/Jz89n4sSJbNiwgf/973/ce++9Nm/Zo48+yrZt27jssstITU2lpKyMF154ibiERC6/eBHqboqCqlUqYkL8KAHe33uOH8zMINIJBUqHIp8dKuFUWSNhAVp+fcmobreZnRnFD6cm89H+Iv781Qn+e9ccjy2u6wpkYbgrwnQAYQFaUqMCKahu4VhJPReMiHHJcRUGj2I4KTgcOezm5+dHZGQk48eP529/+xsrV67sIjJ+7733+MUvfsELL7yAKIosWbKEr7/+msTEzivk6dOn89hjj/Hyyy+zbt06LBYLeXl5BAUF8dprr5Gens4bb7zBl19+SXx8PKtWreKmn96PGQjw07BgwQL27NnD+++/T3l5OWFhYcyYMYN3333XJkYfLB2Ng1aDGW1Au0P3+uuv589//jPDhw/vtn3Pj370IxITE/nLX/7Ck08+iV6vJykpiQsuuKBLC5We+NnPfsahQ4d44403ePbZZ0lNTe3RcLrkkkv46KOP+N3vfseqVavIzMzkjTfe4H//+1+nhAmVSsXnn3/OI488wgcffMAbb7xBWloaTz75JA888IBtuyuuuIL8/Hxef/11qqqqiIiMYurMOTyw6nckx0X3OOYQfy1+agG9ycwb2/N4YElWj9sq2IfZIvLi1mwAfrogk4hejNGHLsni88MlHCisY9vZKhaMHLo376NFkvd1YnK4y445PimMguoWjhYrhpM3IYjnxy8UBkVDQwNhYWHU19f32HIlLy+P9PT0frWYkPuHhYaGepww2BM4f34sFpHjJQ2IiIyKD8VP45o5K6ppoabFQGyIP/FhniPaceX5YzRbOFXaiIhIZkwwQbqe12dtbW2cOJ3NL74sosmkYvdvLsJf6/oiBUajkbVr17Js2TKPbwvRF1tOV7Dyjb2E+mvY/vCFhPj3/nke+/IE//o+jzmZUbx356wuf/eluemNuX/ZTHFdK+/dOZM5mT0b++czmPn557c5rPn6FMvGx/PiTVP7O2SvwJvOn77u3zLKHVjBJ2kzmRERrcJw14UfAvykm37H1PuhRk2zARGRQD9Nr0aTjL9WTWyIP/WtRr443HNmqYJ9fLhX0otdOzW5T6MJ4Mfz0lEJsCOnmuyKpj6390Vqmg220gzjksL62NpxjLce60iRIhD3JhTDScEnaTWYAcmQcaVuI9BqOLUazV3E6EMBURSpsQpdo4Lt0ysJAiyfJLU1en+vIhIfDNVNer45WQ7AddNS7HpPUngAF46KBeDd3QVOG5snI2e2ZUQHEWqHsekoFIG4d6IYTgo+SavRajhpXXuK67RqVIKA2SJ2ya4bCjS0mTCaLWhUKsL6cQNaMiYeQYD9BbVKUcZB8OnBYoxmkQnJYYxO6DnUcD43z5LKSny8v2hIekuPFtUBMD7Zdd4maBeIAxwrUbxO3oJiOCn4JDaPk4v1MipBsGl0ZONtKCF7myKCtKi6yaTriehgHTPSpLYTXx1RwnUDQRTbyzr80E5vk8z8ETEMiwyksc3El0dKnTE8j0YOlY13YZhORg4NHitucPmxFQaGYjgp+ByiKNJm9fb4+7leaBxo0zkNLcPJZLbQ1CZ5KyIH0APtcmutoaF443YEOZVNnClvQqsWuGJiz30vu0OlErhumtTGZyjqzORQ3QQXZtTJjLF6Bk+VKYaTt6AYTgo+h95kQRRFVIKAn9r1p3jAEDWc6tuMiIgEaNW2mlb94dJx8ahVAkeK6imobu77DQqd2HBC0jbNzowmLKD/Op3LJkjG1o6capvncChQ0dhGaX0bggBjE+0PbzqK0QlSiZaTpYrh5C0ohpObGIrCYVfRZg2R+WtdKwyXCbQaDW1DTCBe3yJVPQ8LtP+m3XF+ooN1zMmMAhSv00D4xmo4XTwmbkDvT48OYmxiKGaLyPrjZY4cmkdzzOptGt5H6QxnMSpeMtZyKpvRm4bWYstbUQwnF6PVahEEgeZmZUXtLNwlDJfx06hQCwIWUezU8NeXMZotNOulMF1/vB0tLS0Atvoul4yTmhxvPV3h4BH6NpWNeg5am8UuHh074P1cNkHKbvxyCOnMjhZJnh536JsAEsL8CQvQYraInC0fmuUgvA2lcriLUavVhIWFUVlZiV6vJzQ0FI1G06dnxGKxYDAYaGtrUwpgdkPH+WluaUM0mVBZVLS1tbllPFpMmExm6puaIcD9bUScff7UNhuwmAzotGpEk5E2U9eeex0RRZGWlhYqKioIDw+39S2cb62efKCwjoY2o0tTw72ZzafKEUXp5p8QNvA+a5ePT+Sv606zM6eaqiY90cE6B47SMzlaXAe4PqNORhAERieEsCu3hlNljS6tI6UwMBTDyQ3Ex8cTEBBARUUFDQ32xbVFUaS1tZWAgIAh3U+qJzrOT1mDHrNFhBAddS6qGH4+dS1GmvQmWms0A9KbOBpnnz9VTXrajBbCAjTkNdj/ecPDw4mPj7f9nhIZSEZMELmVzezIruKScQkOH6svsvGE5KEbaJhOZlhUIOOTwjhaXM/mUxV214LyZuSMugluMpxACtftyq1RdE5egmI4uQFBEAgPDycsLAyz2YzJ1HfdFKPRyLZt25g/f77Hl613B/L8TJoxmzs/3QPA57+YR5Cfe07xr4+V8tSW00xKDufp6ye5ZQwdceb502owcdeLOzCaLbx+23RSo4Lsep9Wq7V5mjqyYGQMuZXNfHumUjGc7MBotrAzpwrAVshyMFw4KpajxfVsGQKGU3lDGxWNelQCjElwn+EkZ9YphpN3oBhObkQQBDQaDRpN3/8GtVqNyWTC399fMZy6QZ6f3BojxY1mhkUGEhUa7LbxjEyMpLjRTGNePTqdzu1eQmeeP9/nlpNfZyQ5IoCRiZGD/qzzR8bwxvZ8tp2pQhRFt8+dp3O0uJ5mg5mwAK3tBjwYFo2K5blNZ/nubBVGs29r9I5bi04Ojw22ZcO6g1EdMuuUc97zUcQyCj7FybJGoD3F112MiA1BqxZoaDNRVOvblbC3WIXcF46KdcgFf1Z6FH4aFcV1reRUKmLZvtiZUw3A7IyofhUd7YkJSWFEBfnRpDexN79m0PvzZE6USB6esYnu1RWNjAtBJUBti5GKRr1bx6LQN4rhpOBTnC6XDCc5xddd+GlUjIyTjLfjJb7rfhdFkS2nJMNpUdbgw0Qg1cGamS5VEf/+bJVD9unL7LCG6eYMj3LI/lQqgQVZkkh/6+lKh+zTUzlhDY05wlM3GPy1atKjpRC3Eq7zfBTDScGnOGXzOLn3QgjtF+MTPtyD6kx5EyX1beg0KmZnOubGDdgMp735tQ7bpy+iN5nZZ52jOQ6cf1krJRvFvorscRrjhsKX5zPapnNqdPNIFPpCMZwUfAazCGcrpPpY7l5BQnsVYl/2OH17Rrqxzs6MsvXocwTTrX3r9uTXDKkiov3lYGEdepOFmBAdmTGO0/RdMCIGtUrgbEUTJT7adLlJbyK/Wqoj5gkLrdGKQNxrUAwnBZ+hshUMJgtBfmqSIwZey8ZRjLXWY/Flw2l7tqSvmTc82qH7nZgSjp9aRWWjngLrzU2hKzus+qY5mVEOFRSHBWhtBSF35vqmzumU1UCJD/UnMsj9tdZkXabSs87zUQwnBZ+huEW6cYxKCHWISHawjE4IRRCgrKGN6ibfE3waTBabeHiugw0nf62aiSnSjXtPnm/euB3BPuv8z0x3XJhOZq5VM+WrhpNN3+QBYTpo9zjlVDbb2kYpeCaK4aTgM5RaDaesePdm1MkE6zSkWWsa+aLX6XBRHS0GM5FBfmTFOX7OO4brFLpiMls4ZG2zMjU1wuH7n5spGcM7c2vwxWjpSQ8RhsvEh7a3XlGyST0bxXBS8BnKrBGdkbHuq990PvJq9oQP6ha2Z0vZXLMzHZMGfz7TbQJxxXDqjtPljbQYzIToNIxwwjk/JTUCP42KikY9Fe7pXORUPEkYDlJdv5Fx0v9R6Vnn2SiGk4LPUN4q3bxHOMH7MVB8WSDeUV/jDKamRiAIUFDdQkWDD965B8mBwjoAJg0Ld4rh6q9VM83qyTpT7/7QtyMxmS22DFxP8ThB+7XrTLmSWefJKIaTgk+gN1motN5bnbH6HihyYb3jPlaSoMVg4mChlAYvh3QcTai/1hYCPGgNSSm0c7BAmv8pwxwfppORjWJfM5zyqprRWxNJhkUGuns4NuRr1xnF4+TRKIaTgk+QX9WMiECov4aYEM/p6C6vZvOqmmnW992T0Fs4UFCH0SySEOZPapTzbjyTh4UDcFgxnLpwwGq4TnGCvklmjlX0n90gYLH4jtBJDp2P9pBEEhm5aG52heJx8mQUw0nBJ8iulOo3DY8N9qg+TzEhOmJDdIiib6UZy7qjGemD703XGxOSwwFJiK7QTnWT3laDaFJKuNOOMy4xDH+tihaTQE5Vs9OO42o8Td8kM8KqcSqoaVEy6zwYxXBS8AmyKyTX9vCYIDePpCu+qHPaVyAZTnLmm7OYaDWcjpyr9ymPx2CR9U0jYoMJC3Be028/jYpJyVK4eX9BndOO42o6epw8iZhgHeGBWkSx/Zqm4HkohpOCT9DR4+Rp2HROxb5hOBnNFg5Yb6LONpxGxgXjr1XRqDeR60Mej8FyxOqBk0OZzkQudbCvwDfa34ii2O5x8jDDSRAERsZK4bqzSrjOY1EMJwWfQK57kumBHic5HHDSR0J1J0oaaDWaCQvQOl2Ir1GrbBWsFZ1TO0eLpWQDeW6ciZxZt99HDKeKRj3VzQZUgufUfOuIHK5TBOKei2I4KXg9RrPFpvfwxFCdvKo9VdaIyWxx82gGj6xvmpYa4RJh7URF59QJURQ5WmQ1nKxz40wmpYQhIFJU10Zpvff3rZPDdJkxwQ7tr+goZIH4WaUkgceiGE4KXk9BdQtGs4hOJWV5eRrDIgMJ8lNjMFl8ItxkM5ycHKaTmWgVPyseJ4nS+jaqmw1oVAKjXOAxCdZpSLKuR/bme7/XyVOF4TJKSQLPRzGcFLweOXU3LgCPyqiTUakEmwj1hJcLxEVRZJ/15jkj3Xlp8B2Rs8ZOlDZgMHm/x26wyGG6EXEhLvOYZIZIwvx9PlDF/YSHtVo5H7kI5rnaFloNSmadJ+LThtO2bdtYvnw5iYmJCILAZ5991ud7tm7dypQpU9DpdAwfPpw333zT6eNUGBxye4L4QM/NuvKV1iu5Vc1UNxvw06gY5wJ9DUByRACh/hqMZlERzALHbPom1934M0Kl75YvNFw+6eEep+hgPyKsmXVKzzrPxKcNp+bmZiZOnMgLL7xg1/Z5eXlcdtllLFq0iEOHDnHvvfdyxx13sH79eiePVGEwnLWm7cYHeLDhZF3dnvRyw0n2OExKCUencY23QxAE203Ol0o6DBRXCsNlMqwep9PljdS3Gl12XEfTrDeRVy2Fyz2tFIGMIAhK6xUPR+PuATiTSy+9lEsvvdTu7V9++WXS09N5+umnARg9ejTff/89zz77LEuXLnXWMBUGiWw4xXlO54Qu2DxOJQ2IouiRIUV7kDUu09NcE6aTGZsYxq7cGq8PdQ6WjsJwV3n8AEL9IDUykIKaFg4U1rIoK9Zlx3Ykp8oaEUWIDdERHew5HQbOZ2RcMHvyahSdk4fi04ZTf9m5cyeLFy/u9NrSpUu59957e3yPXq9Hr9fbfm9okC7sRqMRo9FxKzN5X47cpy9gtog2d3Z8gOix85Me6Y9KgOpmA8U1TcSFulbE7qjzZ681VDM5OdSlcz0qTlInHyuuc8pxveX7JQvD1SqB4dEBLhmvfIzJKaEU1LSwO6eKeRmuNZwdxdEiyfAfHR/isLlzxrmTGS2tAk+X1Xv8OdkX3vLdAvvHqBhOHSgrKyMuLq7Ta3FxcTQ0NNDa2kpAQECX96xZs4bVq1d3eX3Dhg0EBjreBbJx40aH79ObqWwFg0mDViUSqfPs+Yn1V1PWKvDvL7YwNsI9YcXBzE+TEQpqpEtG5am9rM121Kj6pqoFQMPRc7V8+dVanFUFwZPPH4BjNQKgJtbfwuaNrpUQ+DcWA2o2HcphtPGsS4/tKDbkqAAV2pYK1q5d69B9O/Lcqa6X/s9H8isdPk534enfLYCWlha7tlMMp0GyatUq7r//ftvvDQ0NpKSksGTJEkJDHRdDNxqNbNy4kYsvvhit1nktFryNTScr4NAhMmNDUAl1Hj0/3zQf4YsjZQQnZ7FsQYZLj+2I82fL6UrYd5CM6CB+cMVcB4+wd4xmC88e34zeZGH8rIUObyzsLd+v/K25cDqbGSMSWbZsvEuOKc/NjUtm8f7Leylu07L0kgtRe1BzXHt5/Z+7gXounzuJZePjHbJPZ5w71U16nj/xLdV6gYWLlxDo5723am/5bkF7xKgvvPe/4QTi4+MpLy/v9Fp5eTmhoaHdepsAdDodOl3XWLlWq3XKSeKs/XoruTVSQT6p9kmdR8/PuKRwvjhSxunyZreNcTDzc7REEqpOSY1w+fi1WhgVH8KRonpOV7QwPN45+h5PPn8AzlhbC41JDHP5OLMSwgnWaWjSm8irafNYcXVPmC0ip61i6/Epjj+HHXnuxEdoiQzyo6bZQEGtngnJ3d9/vAlP/24Bdo/Pp7Pq+svs2bPZtGlTp9c2btzI7Nmz3TQihb5ob+7reT3qzsfWesVLM+sOWQtQynWVXE17s+R6txzfEzhdJt343dEqRK0SmJgiGawHrU2GvYn86mbajBYCtGrSojyvw8D5yIUwzyoCcY/Dpw2npqYmDh06xKFDhwCp3MChQ4coLCwEpDDbrbfeatv+pz/9Kbm5ufzqV7/i1KlTvPjii3z44Yfcd9997hi+gh3YDKdYz78Qyiv0vOpmmvUmN4+mf1gsIoesN0t3GU5j5GbJQzSzrs1oJteaCOEub8/kFEkUfuic91UQlzMys+JDvCLMKLdeOaPULvM4fNpw2rdvH5MnT2by5MkA3H///UyePJlHHnkEgNLSUpsRBZCens5XX33Fxo0bmThxIk8//TSvvfaaUorAQ7FYRK/yOEUH64gL1SGKUlq0N5Fb1USj3oS/VuWSNh/dMSZBOu5pL5s7R5Fd0YRFhIhALbEh7kmll41mb/Q4yZ5ebwkxjoxTPE6eik9rnBYuXIgo9py91F1V8IULF3Lw4EEnjkrBUZTUt9JiMKNVCwyLDOCUuwdkB6MTQilvqOREaQNTU70npVu+UU5ICkejds96S16BlzW0Ud9iJCzQs/USjka+8Y+KD3VbHbBJw8IBqXZafauRsADv+R/YWq14aMXw8xkea232q3icPA6f9jgp+DZy4cuM6GC33cz7yxgv7Vl30Kpvmmy9cbqDEH8tSeGSSPb0EKyoLHspRyW4x+MHktd0WKSU0XikqM5t4xgIJ2096tw3f/1hhNXjVFTbqvSs8zC8426joNAN2VYX9vA4zw/TyXhrzzp365tk5PDF0DScrKGmePd6TGTj2ZvCddVNesob9AgCZLl5/uwlKkjpWeepKIaTgtciu7Dl7BNvQPY4nS5rwGzx3N56HWkxmGw37cnD3BteHGnVV50ZYjonURQ5Wep+jxPAZJvOyXsE4vLcpUYGEqzzDoWKIAiMsIbrZC2ngmegGE4KXoscqpMvLt5AalQQgX5q2owW8qqa3T0cuzhaVI9FhPhQf+LDXNsq5nxkYfpQ8zhVNumpaTYgCO4/32Xj+dC5ul41pJ6EtwnDZWRvuqJz8iwUw0nBKxFFsT1U50UeJ7VKsN38vSVc5wn6JhlZIH66rNFrbtqO4JTVY5IeFUSAn9qtYxmdEIqfRkVti5GCavtaVLgbmzDc2wynGCWzzhPxDp+lgo02o5mPDpSyv6AWf62Ki8fEsWBkjNuybNxFeYOeRr0JtUogLToQRIu7h2Q3oxNCOVBYx4mSBq6YmOju4fSJp+ibADJjglEJUN9qpKJR7/Jmye7itAcIw2X8NCrGJUrn8MFztaRFe34NNW/1OMkC8ewhqnFqNZj5aP85DhbWEazTcOn4eGZnRLn9fqcYTl5EeStc8cJO8jqs8t7dXcji0XE8d8Mkgrwkdu8IZNd1alQgOo0ao9F7DCdvE4gftBY79ATDyV+rJi06iNzKZk6XNQ4Zw+lkWXspAk9g8rAIyXAqrOPqycnuHk6v6E1mm0bIW0oRyMhh2YLqFvQmMzqNe72NruRYcT3/9+99lNS32V57e1cBV01K5C/XTsBf6765UEJ1XkJxXSvPH1eTV91CXKiOX144nFtmpeKnUfHNyXJWvrEXvWnopKxm2/RN3hOmk/GmkgSl9a2UN+hRqwTGJzunP1x/kUOdZ4aQzkkO1bmr+Oj5eFNm3dnyJkwWkbAALQlu1uj1l7hQHSE6DWaLSH6Vd4RFHcGpsgZueGUXJfVtJIUHcO/iEdw4IwW1SuCzQyXc+/4htybXKIaTF2C2iPz03UM0GAVGxgbz1S8v4P4lWTx21Tg++L9ZhOg07Mmv4dEvTrh7qC7DG4XhMqPiQ1EJUNWkp6Kxre83uBE5TJcVF+IxHdplnZPLq6+f2QD/WgrvXgdNFS47rMlssYVqPMnjBFIIzNNrDLWH6ULcHuLpL4IgDDmBeGObkTve2keT3sT0tAi+vvcC7l08kjXXTODNldPxU6tYd7yMF7dku22MiuHkBahVAr9eOpL4AJHXbp1CdHB7u4XJwyL4x4+kljLv7i7ku7OV7hqmS5GF4SO8qIaTTICfmnSrLsTTvU6eJAyXyYpzg8eppQY++ymc2wVn18O6VS479LnaVgwmC/5aFckRAS47bm8khvkTG6LDZBE55uFNl9uF4Z7hMe0vskB8qJQkeHztKYpqW0mOCODVW6cR6t9enf6CETE8dd1EJqWEc+PMYW4bo2I4eQnzhkfx64nmbl3NC7NiWTE7FYA/fn4co9l79D4DQRRFW+NLb8qo64jcsFauL+OpeJIwXCarQ6jO4ip3/bYnoaW6/fdjH0Phbpcc+qzVQMyMCUblIc1pBUGwnROHPDxc19Hj5I2MsHmcfN9wOlZcz/t7pf6xT/1wIuGBfl22uWJiIv+9a04nB4KrUQwnL6K3a+b9S7KIDPIjp7KZj/cXuW5QbqC62UBdixFBkG4m3ohN5+TBAnGj2cKR4jrA/YUvO5IaFYSfRkWb0cK5WhfoPhrLYN/r0vObP4Ept0rPt65x/rHpGJb2rHNd7lsnJw94IqIo2ry63iYMl7EVwRwCJQn+8vUpRBGumpTIrIyoHrdTu3kBoRhOPkJYgJafLxoOwCvbcr2mKvVAkGuaDIsMdGtmxWCQV78nPDjMcbqskTajhRB/DRkelHKuVgk2I+K0K3ROu18GUxukzILMC+GCB0GlgdwtUHzA6Ye3JULEeZbHZHKKtRCmB3ucSurbaGgzoVEJXuudlsedW9WEyYejCUeL6vk+uwqNSuDBpVnuHk6vKIaTD3HD9BTCArTkVTWz8US5u4fjNLK9sNXK+cir39yqZloMJjePpntkfdOklHCPCRHJZHUohOlUTAY4+I70fM7dIAgQkQpjr5Fe2/OKc49PuyjY0278E5LDUAmScVLe4JlJDrK3aXhssNem8ieFBxCgVWM0ixTW+G5m3T+35QCwfGIiyRGBbh5N7yiGkw8RpNNw8yxJMPeK9ST0ReTQRaaH3Uj6Q2yIP9HBOkTRRV6TASB7EiZ7kL5JZrirCgOeXgvNlRAcByMvaX995k+kx2P/lYTjTsJiEcmpkFrzeNpCIUinsWU4empZgpNeWjG8IyqVQGas5PH1VZ3TuZoW1h4tBeDOCzLcPJq+UQwnH2PFnDT81CprcTrP1R4MBjlU542lCDri6YUwbYUvPSijTsZlmUb735QeJ98M6vbsHpKnQexYMBvg5OdOO3xxXSutRjN+ahXDIj1vFS5nWx6yeic9DW+tGH4+vt7s980d+VhEuGBEtFdo0RTDyceIDfHn8gkJAHzkoyJxTxXL9hd5FXzSAw2n+hYjuZWSp2NSiucIw2XksFVOZZPzMutq8iQdE0K7ILwjE34oPR792DnHp/1GmR4dhEbteZdrWefkqYs0WykCL7gZ94Z8vp/1waKvRrOFzw4WA7Bybpp7B2MnnvdNVBg0P5gqtUD44nAJbUbPLk7XX+paDFQ16QHvDtVBB4+TB9ZyOlxUB0gtbSKDuqYEu5thkYFo1QJtRgvFda3OOciJz6TH9PkQkdb17+OulR7zv4f6YqcMwaZv8tB6ZbI38mhxvccJl5v0JlsTYu/3OPluz7qtpyupbjYQHaxj/ogYdw/HLhTDyQeZlRFFUngAjW0mnxOJyyvwpPAAgr28N5/scTpV1uhxWZAHPbB+U0c0ahVpUZLuI8dZN5OTX0qPY67o/u/hw2DYHECUtE5OoD0s7ZmGU2ZMMME6DS0GM2c8LF3+lNXbFBeq80jjvz/IHqfsCid6WN3Ef62RkasnJ3qkV7U7vGOUCv1CpRK4enISAP894FvhOjlM52kZRgMhPToIf62KFoOZgupmdw+nE7K+aYoH1W86n443E4fTUArF+6TnWZf1vN34H0iPx5wTrpM9DJ6q51OrBCamSMVcPU3ndKxYKvUxLtE7K4Z3ZFhkIH5qlXM9rG6gttnAplPS4v7aqZ7dLLojiuHko8gn4bYzlbbQli/g6Svw/qBWCWTFe55AXBRFm8fJk1qtnE9HnZPDOf2V9Jg8HUITet5utNUbVXpYKpTpQERRtBU99OSFgq2CuIcVwjxaLH2nxiV5v+GkUavIiJEz63xH5/TV0VKMZpGxiaEe04fRHhTDyUdJjw5ifFIYFhG+8aFwnXzR8MYedd1hqyDuQTqnvKpm6luN6DQqj76YOdXjJIfpRl3e+3bBMZA4RXqe/Y1Dh1DeoKdRb0KtEkiL9ryMOpl2gXidewdyHsetxWV9wXACJ5/vbmL9cWmxsXxioptH0j8Uw8mHWTo2DoB1xx27EnYn2bZQnWeGLvqLJ5YkkG+A45PC8NN47iUi01klCdrqIf876fno5X1vP2KJ9Hh2g0OHIS8SUqMCPbp4oywQz65soqHN6N7BWGkzmm1h/XFJnmv89wc5XHvWw7RkA6WuxcDOHKn/49Kx8W4eTf/w3KuiwqC5ZJx0Mm7PrvKYC9pgaGwzUlovVSj25NBFf/DEkgSHOlQM92QyY4IRBKhtMVLtyHB0/vdgMUFkJkRl9r39iIulx5ytYHbc98xbwtLRwTqSIwIQRThyzjNaCJ0sbcBsEYkO9iM+tGtjdG/EVpLARzxOm05WYLKIjIoPId2DWjrZg2I4+TDDY0PIjAnCaBbZcqrC3cMZNLJnITZER1iAto+tvYNR8SEIghSW8RQtmiwM96TGvt0R4KcmKTwAgJxKB4rrc7+VHjMW2rd94mQIjAJ9PZzb47BheLowvCPyueIpOqdj1tD32MQwBMGz2gUNFFmekF3RhCh6f2adHKZb4mXeJlAMJ59H9jqt94Fwna3wpY/om0BqWyGn1XuC16nVYOZkqRQi8mRhuIxTwnW5W6VHew0nlRoyL5KeOzBcl2NrLeT5q3HZO+kpOqdjRZLna7yP6JsA0qKCUKsEmvQmyhs8Y5E1UFoMJr49UwnAJYrhpOBpyLHjracrMZg8q0Bdf7F1ifeCFXh/8CSB+NHieswWkbhQHQlhnh/icLhgtqEUqk4DAqRf0I+BLJYeZW2UA8itkrxoGdGev1Do2HrFE7whx2zCcN/QNwH4aVSkRUlJAt6eWff92Sr0JgspkQGMTvC+67liOPk44xLDiA72o8VgZl++85qRugK53YCv6JtkZIH4cQ8wnOTWGZNTIrwixDHcwRWVhQKr4ZM4CQL6EapMmys9lhwC/eBvao1tRiobJa9Ceozne5zGJISiVQtUNxsoqnVvnSG9ycwZ67XCVzLqZHxFIL7V6m1alBXrFdeZ81EMJx9HpRKYP1IqYy+frN5Ku+bDtwynsVbDSS7Y5068oX5TR2y1nBzkcVLl9VPfJBOWLFUSF81wbvegxyH3CYwO1hHq7/l6Pn+tmjHWQpMH3Ny37kxZE0azSHig1qaB8xV8QSAuiiLfnpbuRQuzvKPFyvkohtMQYGFWLABbT3uvQLzFYLKtZEfEeZ9rtzcmJocDUmimvtV92Y+iKNpuep4uDJcZbtU4Fde10qw3DW5nooggh9rSF/T//anzpMf87YMbB5BbJd0YM7zA2yQz2VYIs86t47CF6XxIGC7TLhD33lBddkUTxXWt+GlUzM6IdvdwBoRiOA0B5o+IRiXAmfImSry0XH9uZTOiCFFBfl7fd+p8IoL8GBYpaReOFrnP61Ra30ZFox61SvAaUW1EkB9R1vMhd5CZdQHGaoTGEhDUkDKz/zuQw3UFOwY1Dmj/LJleZDh5ikD8aLFvFb7sSEePkydoyQbCVqu3aWZ6JAF+nlufrDcUw2kIEB7oZ/MgyCett2HrEu9jYTqZCcnSRf5wUZ3bxiDf8EYnhHjVBU32yshemoES2XRWepIwAfwGUKk7dY70WLwfDC2DGos3CcNl5PDuiZIG9Caz28ZxvNj3hOEycu2yuhYj1c0Gdw9nQGw9I0U+5EiIN6IYTkOEhVad0zYv1Tmd8YKeXYNBXq0fdmOYQ67BI7fQ8BZk42KwHqfIZqvhlDJrYDuISIeQRLAYoWjvoMYifxZvCtUNiwwkMsgPg9liK2nhavQmMyfLpGN7i9e0P/hr1aREWDPrvFAg3mowszdPus54q74JFMNpyDBvhBRL3plbjdnifS5eOaNupI/pm2QmWHVOnuBx8vSK4ecjZ53lVTnKcJoxsB0IQrvXqXDngMdhsYjkWb1n3lRRWRCEDuE69wjET5Y2YjBZiAjU2sLfvsaIWO/VOR0orMVgthAf6k+GF53b56MYTkOE8UlhhOg01LcaPaLQYn+RPU6+VPyyI+OSQlFZK4iXWdvKuBK9yWzThnhLRp2MfAEeVKjO0ERYa6H0fCD6JhnZ6CraN+BdlDa00Wa0oFEJpHjZzV8WiB9wk87pkNVgm5QS7nPCcJnhcd7b7Hd3nlQSZ2ZGpFf/fxTDaYigUauYmREJwI6cKjePpn+0Gsycq5U0I77qcQr009g+mzu8TseK69GbLEQF+XmVlwPaw1l5lc0DFswKxQcQEBFDkyEsaeCDSZomPRbvhwGOJddadmNYVCBatXddoqemSWHevXk1bhEvH7SGur0lK3Qg2Go5eaPhlCs19Z2ZHuXmkQwO7/pWDoAXXniBtLQ0/P39mTlzJnv29NxL6s0330QQhE4//v6eXz3ZXmZnSuG67dnVbh5J/5B6M0kZddHBOncPx2nIZQmOuMFw2psvrdSnpXlH4cuODIsMQiVAs8FMRePAWlEIRdJ1QRxomE4mfhyo/aC1BmpyB7QLm77Ji4ThMpNSwtGoBMoa2ih2QwavtzSoHgwjvLSWk95othm28iLeW/Fpw+mDDz7g/vvv5w9/+AMHDhxg4sSJLF26lIqKnusZhYaGUlpaavspKChw4Yidy5xMycrfm1/jVe1XTlv1Tb4appOZkGLNrHNDh/m9Vhf69DTvu6D5aVS2kNZABeJCsRRaE5MGaThpdBA/QXpevH9Au5C1Wt5UikAm0E/DWKsoe6+LOxVUN+kpqJY80xN92HDKtBpOlY166lvcV/etvxwursdgshAdrPNqfRP4uOH0zDPPcOedd7Jy5UrGjBnDyy+/TGBgIK+//nqP7xEEgfj4eNtPXFycC0fsXLLiQogMktqvuMOrMVB8XRgu09HjZHGhgN9iEdlXIHmcvNFwgkHqnEQRofSQ9DRxyuAHk2wN1w1Q55RT6X3FLzsyQw7X5btWIC6HuDNjgggL8Pxq6wMlWKch0dpHMrvSewTie/PrAKl+k7d5tc9H4+4BOAuDwcD+/ftZtWqV7TWVSsXixYvZubPnjJempiZSU1OxWCxMmTKFxx9/nLFjx/a4vV6vR69vDw80NEjCa6PRiNHouNWAvK/B7nNWegRrj5Wz7UwFE5O8wxA5VSbNaUZ0YI+f31Hz404yovzRaVQ0tJnILq93qNaot/k5W95EfauRAK2KETEBXjmHqZFSa43s8sb+j7/+HNqWKiyoMUSOQBzk5xfiJ6EBLEV7MQ9gX7LGKSXc3yP+F/39bk221iTbk1vt0vHvs3pNJySHufS47rj2ZMYEUVLfxqmSeiYkevZ1XJ4XWd80LdW1/5/+YO+4fNZwqqqqwmw2d/EYxcXFcerUqW7fk5WVxeuvv86ECROor6/nqaeeYs6cORw/fpzk5ORu37NmzRpWr17d5fUNGzYQGOj4jJiNGzcO6v3BLQKgZu2+bDJbTztmUE7maIEaEKjOPcraqqO9bjvY+XE3Cf5q8psE/v3VNqbHON7r1N38fF8mnRMpgSY2rl/n8GO6gmbrZ9h9Io+1Yk6/3ptQt5cZQENAMt9u+W7QYwnUN3IxIJYeYd2X/8Oist/7YTBDSZ10vuce3knliUEPx2HY+91qMgJoyK5s5qP/rSXIRc6fTSdUgApN3TnWri10zUE74Mprj7pZ+qwb9xwjuOKIy447UMwW2F9QAwi0nTvG2upj7h5St7S02Fe41mcNp4Ewe/ZsZs+ebft9zpw5jB49mn/+85889thj3b5n1apV3H///bbfGxoaSElJYcmSJYSGOq5yrdFoZOPGjVx88cVotQO/Eo2pbubDv22noFnFosWLPb5CdJPeRM3OzQDccsViIgK7b7fiqPlxNwc5xZs7C7FEprJs2RiH7be3+dn00VGglKVThrPswuEOO6Yricyt4aO8fTSrglm2bF6/3qvash/yoC4wwzHnjygi5v8FdUs1l05ORkyaavdbT5U1Iu7ZSai/huuuuNgjQhoD+W79K387uVXNRI6cxkWjnV8h2mIR+e2BLYCJmy6Za2uc7Qrcce1p2lfE1v+dwBwUw7Jl9p9f7sBoNPLKJxsxWAQiArX8+JqLUancf153hxwx6gufNZyio6NRq9WUl5d3er28vJz4+Hi79qHVapk8eTLZ2dk9bqPT6dDpumZ6abVap3yJBrvf4XFhJIT5U1rfxuGSRi4Y4dnVW/NLpbBFTIiO2LC+Q1fOmndXMSMjmjd3FnKgsN5l589+a82dmRkxXjt3I+Kl8FBRXSuioMZP0w/5ZtlhAOoC00hy1PmTOBmyv0FTeQzS7K9EXlgrhf0zYoLx8/Osnoz9+W7NSI8kt6qZg0UNXDJhEOUd7CS7opEmvQl/rYpxyRFo3FDGwZXXnqwE6XzPrWrxiu9sdoNkKM1Ij0Sn86zzuiP2zqXPisP9/PyYOnUqmzZtsr1msVjYtGlTJ69Sb5jNZo4ePUpCQoKzhulyBEFgdoaUXbc717VZLwNBbisw0scz6mSmpUrC2tPljTS0OV8HUFLXSnFdK2qV4HWFLzsSF6oj0E+N2SJSWNOPPnGiCCUHAagLTHfcgBImSo+lh/v1NrliuLcKw2XkJIM9Lsqsk6veT0gKd4vR5Grk1lPFda006U1uHk3f5NgMJ++u3yTj02fY/fffz6uvvspbb73FyZMnueuuu2hubmblypUA3HrrrZ3E448++igbNmwgNzeXAwcOcPPNN1NQUMAdd9zhro/gFGakWy9qeZ5vOJ2RSxHEerYA0lHEhvqTEhmAKLqmy7ycMj42MZQgnfc6oAVBsInp+9V6pTYP2uoR1Toa/LvXMQ4IuSRBaf/0J3I5hcwY714oyIbTseJ6Wg3Ob/gr1wea5MXGf38ID/QjJkSKdOR4eD0nk9lCbqNkOM1M986s3fPxacPp+uuv56mnnuKRRx5h0qRJHDp0iHXr1tkE44WFhZSWltq2r62t5c4772T06NEsW7aMhoYGduzYwZgxjtOaeAKy4XSoqI42o/u6mNvDmQrZ4zQ0DCeA6anS/2e/C1brsuHkrWUIOpIRIzf77ceNpPgAAGLcWESVAw1H2eNUcQJM9nexz7Eafd5Wvf18UiIDiAvVYTSLtqKUzkSuQzbFhyuGn4+3FMI8WdaI3iwQ4q9hdILrtGfOxKcNJ4C7776bgoIC9Ho9u3fvZubM9j5UW7du5c0337T9/uyzz9q2LSsr46uvvmLy5MluGLVzSY8OIjrYD4PJwpEi1xdb7A9nyuQaTt69Au8PctsKubaSM9mZI6UI+4LhNCCPkzWUJsZPdOxgItJAFwZmA1R2n8V7PqIo2ow+bw/VCYJgC8vszHVup4LqJr3NeJjhIx4Nexge6x096/bIXQlSw1F7qCi8v/i84aTQFemiJl1gXF3dtz/Utxopa5Aa3o4YQh6naVaP06FzdZjMzqvwXt7QRk5lMyoBm+7Nm5Erbfereni5lBYtxo1z7GAEARKs4boy+8J1VU0GGttMCAKkRXm34QTtnQp2Ork3pnwNGxkXTGSQ5wqPHc0Im+Hk2UUw9+RJhtMMH1icySiG0xBF9jDs9mCdk3xBiA/19+lKwOczIjaYUH8NLQYzJ0rtS48dCHKz53FJYYQFev/8pg+kenj5cekxrucitwOmnwJx2duUFB6Av9azy4TYw1xrb8yDhXU0O1HALF/DhpK3CWC4Vfd5ptxzPU6duxL4ThhVMZyGKPJF5kBBrVO9GoNBviD4eo+681Gp2j2CcijNGcjNnmdner+3CdoNp6omA/WtdmQkNlVCUzkgIMaMdvyA+ms4WUOMGV4uDJcZFhVIckQAJovo1Oy6PTbDyTfOY3vJipcMp3O1LU41TAfDqbJGGtpM6FQiYxN8J2owIMPJYul8o33iiSc8toS6QveMig8lRKehSW/iZKlnunrPDJEedd0x27pa3+Ekw0kURZtRJnsGvJ0Qf60t08gunVO5tQp9ZAb4OSE0JmfWlR0DS99JGPKYvb0Bakfaw3XOOY8b2ow2r6yvZGzZS2SQH7EhOkSx/VrpaezOk/7v6SGiT5WJ6PcnOX78eCeBNUjVs8eNG8dXX33lsIEpOBe1SmCa1XXqqlor/aXdcPKNFXh/kG84e/NrMJgc7xEsqG6huK4Vrbr9PPAFMmwCcTvCF84M0wFEjwBNABiboSavz819RRjekbnDJaN8e7ZzdE778msQRUiLCiQu1N8px/BkRlmz1E6VeajhZK0VODzMdU3LXYHdhpPFYuGxxx5j2rRpXHzxxZ3+9sYbb9DY2MgVV1zBsmXLOHPmjMMHquB4ptvqOTk362WgtIfqhp7HKSsuhMggP1oMZo5Yu747ku1WfdPkYREE+nlv/abzyeiPQLzM2i8rfrxzBqNSQ0yW9LzieJ+by2POiPadhYIcBj5R2kBNs/1lGexlhzXcPNT0TTKjrOG6U07UQg4UUWwP0Q4PHaKG0xNPPMHTTz/NJ598wuOPP97pbytWrODMmTPcd999bNq0ifHjx/Pggw/a3fdFwT3MtGXW1SKKnnVi17UYqGyU2k/I2SNDCZWqvcK7M8J1W09XAnDBcN8I08nIRkeuXaE6J3ucOu67vPduvUazxVbx3Jc8TrEh/oyKD0EU4buzlQ7f/3dnpQWAp7eOchay4XTSAz1O2RVN1DQb8NeqSPGdUxroh+GUmJhIU1MT33//fReNE0BwcDBPPfUUR44c4cILL+SZZ55h5MiRvP766w4dsILjGJ8Ujk6joqbZQE5/iga6AFl3lRQeQIi/92d8DQR5tb7DwencepPZFjpZNMr5DVhdiS2zri+Pk6lDfSVHlyLoSKy1eG5F74ZTYU0LJotIgFZNvI+FnBZmSefYllMVDt1veUMbp8sbEQSY52MLAHsZFS+F6k6XNXrc4neXVbQ/OSWc/rSO9Abs/jgrVqzgm2++4YMPPmDRokU9bpeVlcXXX3/NZ599RnBwMHfccQfTp09n586dDhmwguPw06hs/cnkWhuewkmr63mMC7ucexqyzulAQR0tBsdlzezNq6XFYCY2ROfSLvKuQPbW5Fc1Y7H0ciOpOgMWI+hCIXyY8wYUa83W68Nwkg299Oggj+0cP1AutBrn356pxNzb/6SfbDsjebAmJIURMYTqN3UkMzYIjUroVPPOU9idKxfX9R0NpUy/7MCFCxdy+PBhJk7su8ruFVdcwYkTJ/jzn//MyZMnmTdvHrfccgslJSUDHqyC45GLknmazknOlPGVEv0DIT06iOSIAAxmi03L4Qi2nJZW/guzYhAE37pJp0QGolEJtBrNvd9IOobpnDkHcqiuJheMrT1uJovZ030oTCczZVg4If4aaluMHHagXm+oh+kAdBq1bbFwyoOyo0VRbK+vNdQNJ4CgoCD+/ve/9/h3k8nE/v37efHFF/m///s//v3vf9Pa2oooirz77rtkZWXx9NNPe5xbcagi1z7Zm++hHicfqv3RXwRB4CLran2TA8MccshkUZZvhekAtGoVwyIDgT7CdXIpAmeG6QCC4yAgEkRLr61XbM19fagUgYxGrWL+SMm4cVS4zmIR+d4abpb3PVSRw3UnyzxHU5xf3UJlox4/tYpJyWHuHo7DcUjk8T//+Q/33Xcfc+bMITQ0lBkzZnD33Xfz73//m7q6Oq688kr++te/8tFHHzFhwgQeeughFi1aRF1dnSMOrzAIJg+T+gcV17VSVNvi7uEAklD2rDWjbih7nAAuHC01pN58qtwhi42CmhZyq5rRqATmjvBNXYi8Au+1JIErhOEgebPsEIjbMup8pPjl+chG+mYHGU7HSuqpaTYQrNPY5AZDlVHWxeVpDxKIy2G6SSnh6HygCv75OCQP+aabbgJArVYzfvx45syZw5w5c5g9ezbp6emdtr322mt58cUXuffee7n33ns7NdlVcD1BOg3jksI4fK6Ovfk1JEcEuntI5FY2YzBbCPJTk+IB43EnM9MjCdCqKW/Qc7ykgXFJg1u9bThRDkjp26E+KrqXBeI5vXmcnF2KoCOxYyD/u151TnKbGF/KqOvIwqwYVAIcL2ngXE0LKZGD+15vOC6dx/OGR6P1ocKKA6G9JIEHGU7WMN3MDN8sE+EQw+lPf/oTs2fPZsaMGQQF9f3F/9nPfsa+ffv44osvHHF4hUEyIy2Cw+fq2JNXw9WTk909HFuYbnRCqM8JZfuLv1bNvBHRbDxRzpZTFYM2nL4+Jt1wlo1PcMTwPBLZa9Nj9fCmCmiuAIR28bYzies9s66+1UhVk1TjKN0HQ3UA0cE6ZqZHsTO3mrVHS/nJgsxB7W/d8TIALh0f74jheTVyqC6nsgm9yYxO414PjyiKNo/TTB9tg+MQU/03v/kNixYtsstokhk5ciQ1NZ5ZsXqoIeucBt3wt6EEtj0Jn/4UNj0KlQMrhHpSEYZ3QtY5fXOyfFD7qWqDo8UNqAS4ZJzv3nD6bPYrGzCR6c5ptXI+sb2H6mQDLzZE59OlNy6bIBnra4+WDmo/2RWNZFc0oVULPldOYyAkhPkT6q/BZBHJqbCjftn5iCKc/hq+vA/+dzccfh9M+gGPp6i2lZL6NjQqgSmp4QPejyfjtpLBt9xyC3Fxce46vEIH5HTR3Mpmqpr0RAfr+r+TIx/BF/dI7SVktj8HF/4O5t7br8wlJaOuMxeNjkMlHOVwUT35Vc2kDdArcaha+h/Mzowa2P/YS5DDXUW1rd2vwCusIm1nNPbtjthR0mNTGbTUQGDn8IXcasVXvU0yl4yL55H/HeNwUf2gwnXrjknepnnDo3023NwfBEFgVEIoe/JqOF3e0L8SLm318NFtkLO5/bWDb8P2v8N1/4bo4f0ej7wAn5AcRqCfxif72LotOJyUlMTKlSvddXiFDoQH+tni5HsH4nU69B58codkNCVNk4ylEUvAYoJv/gjfPdWv3bV7nIZuRl1HYkJ0tp5f/zs08HIeB6ulr7svh+kAYoJ1BOs0iKLUk68Lcnab3A7F2ehC2mtFlXdtveLrwnCZ6GAds6zV8L8ahNdJDtP5ste0v9gqiPdH52RshbevlowmjT/M+D+Ydx8ERkstgt68zK4ei+cjh+lm+GiYDtxoOCl4FnKvp36H60oOSp4mgBk/gds3wPyH4KaPYMmfpdc3/xmyv7FrdxWNbVQ1GRAEyIpXDCeZqyYlAfC/w8UDyq7LrmiiqFmQwnRjffuGIwhC7z3rKk9Lj67QN8nI4bpudE5ySDHTR4XhHZHDdZ8dHNh5nFPZxDFruHnxaCViITPG6p0/XlJv/5u+/hUU75fKZdy+AZY9CYv/CD/bKSU0NJXBh7eCsX+FNX1dGA6K4aRgZUCGk8kg6ZnMBsi6DC59QmpsKjPnbph2OyDCF/eCvu+2LvKKKT06yKeazw6WJWPj0GlU5FY2c6y4//Va3t9XBMCFWTFE+XCYTqZHnZMoQuVJ6bmrPE7QLhDv1ePk+4bT5eMT8deqOFXWyIHCun6///09hYBUjXwonMf2IieNHCtusM8gzd0KB/4NCPDDNyChQ1Hr4Fi4+b8QGAVlR2DbX+0eR2l9K4U1LagEmJbqe4UvZRTDSQFoN5xOlTVQ32JnTHr3S1LYIzAarny+ex3TkscgbBjUn4MdPRdOlVGE4d0T4q9l8Rhphf3fA0X9em+rwcynB6UQ340zUhw+Nk/E1uz3fI9TcyW01gICRI1w3YB66FlnsYjkV8vtVnw7VAcQFqhl+YREAN7dXdCv9+pNZv57oBiAG6Y7sU2OFzIyLgQ/tYr6ViPnanquUA+AxQxfPyw9n34HZCzsuk1oIix/Tnq+/e9QddauceyxLrzHJYX5dKKDYjgpAFIX84zoIEQR9hXY4XXSN8H3f5OeX/xoF8GrDb8gWPKo9HznC9Dce+uQEyVyxXDFcDqfH0yVSkV8vL+Ihjb7BZdfHimhoc1EpE5kXqbv6g460h6qO8/jJOubIlLBz4U1wmKsAvHKM5LXy0pJfSttRgtatUBKRIDrxuNGbpqVCsCXR0qpazHY/b6NJ8qpaTYQF6pjYdbQrhZ+Pn4ala0Q5tHiPsJ1x/4reV39wyQ9ak+MutyqVTXC5j/ZNY5dudYwXbrvhulAMZwUOiB7nfbYE67b9y9orYHITJhwfe/bjr5SKjRoaIK9r/W66QlFGN4jC0bEMDw2mCa9iQ/3nrPrPaIo8s4uaWU/J84yZOpi2Qyn82s5yfomV2XUyUQNB0EF+npoai8rIXvEhkUGohkihRwnJocxJiEUg8nCh/vsO48B/mMN0103LWXIzFV/GJsohet6NZxEEb57Rno+55cQEN7ztoIgaZ4Q4MRnvVa+l9md59v1m2QcdvaZTCaeffZZZsyYQWhoKBpNuz7l0KFD/OxnP+PMmYHV9VFwDXbrnAwtsOMf0vMLHgB1H1oklUoqSQCw99UexYbNehM5Vg/BuETf6280WFQqgTvmSZX439iej8ls6fM9O3KqOVxUj06jYlbs0OkPKWuc6lqM1DR38Gq4OqNORusPEWnWMZy2vSzXcPL1jLqOCILAijmS1+m17/JoM5r7fM/Ronq2Z1ejVglcN21ohJv7y3ibzqkXwylns+Rt8guWwnR9ETcWRi+Xnu9+qddNKxrbyK1sRhBgepriceqT1tZWFi1axIMPPkhBQQGhoaGdBGrp6em88cYb/Pvf/3bE4RSchGw4HS2up1lv6nnDQ+9KWpHwVJhwnX07H3MlhCZJ7zv9VbebHC9pQBQhPtSf2FD//g5/SHDV5CSigvwormvliyO9lyYQRZFnN0qLleunJRPiu5KDLgT6aUgMk86hTuE6m8dplOsHFW011qraF5Dy2IaCMLwjV09OJjHMn4pGPe/tLuxz++c2SRqbKyYmDrpdi68iG05Hi+t7Fojvf0N6nHxz796mjsz6mfR45MNepRZypGJUfChhgb59sXGI4fT444+zfft21qxZQ1lZGXfc0dmSDQsLY8GCBaxfv94Rh1NwEskRgSSFB2C2iBworO1+I1GE/W9Jz2fdBWo7vyBqLUy8UXp++INuNzlSVAfAeB/spu0o/LVqfmz1Oj21/kyvq/W1R8vYV1CLv1bFnRekuWiEnoPsxekkEK9wQ0adTMxI6bGDx0kOJWb4ePHL8/HTqPj5hVJxxec2naW2uWet067car45WY5KgJ8vGlyrFl9mZHwwWrVAfauRotpuBOItNXDGeg+efIv9Ox42S8q6M7XBgTd73Ew2nHxd3wQOMpw++OADFi1axK9+9SsEQUDoJrsqIyODwsK+VxYK7mVmXzqn0kNQfhTUur61Tecz8QbpMfsbqV/Yecgu5gmD7Mfm69w+L53EMH+K61ptHqXzqW028McvpNT3n8zPJH4IevDkukhy+JfmKmipkp67xXCSBeKnbC8NleKX3XH9tBSy4kKobzWy+ouuZRpAygj97adHAfjRzGEMj1W0jz2h06htte+61Tkd/1QqHRM3HuLH2b9jQYCZd0nP97wmZeV1w26rMHyWD9dvknGI4VRYWMi0adN63SYkJIT6+n4U51JwC33qnGRv05gres6k64noEZA0FUQzHP24y5+PWL/sisepd/y1ah69UrrwvfJdLhtPdO5hZzRb+OX7B6ls1DM8Npi7Fg7NVbpsjOTIHifZ0xM+zDU96s7nvFBdm9FMcZ3kGRhqHicAjVrFmmvHoxLgs0MlXcoTiKLIbz87Sk5lM7EhOh5c4gZj18voGK7rwuH3pceJ/VzwAoy7BgIioLEE8rZ1+XN1k57T5VINPl/XN4GDDKeQkBAqKrp6EDqSk5NDTIySQurpyIbToXN1XcNAhuZ2g2fKrQM7gC1c959OLze2GW2r7/GKx6lPFo+J4+ZZwxBF+Pl7B3h/TyFmi0hpfSt3/nsf352tIkCr5m/XT8Jf695u6e6iPbPO6nGyCcPdoG8CaeEAUlZda51NGB4WoCUyyM89Y3IzU4ZFcP/FUgjzd58d44Ut2ehNZupaDDzw0WE+OVCMWiXw9HUTCQ8cmnPUH8b1JBCvzoGiPVJm5/gf9n/HGh2MvVp6fuTDLn+WyxCMig8ZEoVJHWI4zZo1iy+++IK6urpu/37u3DnWrl3L/PnzHXE4BSeSHh1EdLAOg8nCkaLzvnynvwZDo5QdlDpvYAcYew0IaqkibU2u7WW5GnZSeMCQ+OI5gj8uH8uSMXEYTBYe/uQoYx5Zx+w1m9l6uhJ/rYoXb55iu5AORWSPU2F1C0azxf2Gk38ohEjFH6k6Y1sopEcHdStvGCr8fNFwbp2diijCk+tPM/4PG5jy2EY+OVCMSoC/XDOeC0Yoi257kLORj50vED/xP+kxYyGEDLDlkizNOPm5lFndgZ25Ugh89hCpE+cQw+mhhx6itraWiy66iO3bt2MySRlZLS0tbNq0iaVLl2Iymbj//vsdcTgFJyIIgk3ntCv3vAyK459Kj+OulUoMDISgKEidIz0/054scLS4DpA6aivYh0at4qWbp/LrS0YRHqhFb5LKE8xIj+S/d81hUVasm0foXhJC/fHXqjBZRM7VtLjfcIIOAvFTQzaj7nwEQWD1FWN54trxxIXqMJgtWESpCO47d8zkh0r5AbvJig9BoxKobTHawsAAnFknPY66bOA7T5kphbkNTXB6bac/7ciR7hWzM4aG4eSQZmDz58/n+eef55577unkVQoJkYRqarWaF198kalTpzricApOZlZmFF8dLWVHThW/vMgaXtA3tTfqHXPV4A4w8hLI/076Ms+SRIeHzyn6poGgVgnctTCTOy5I51xNC2EBWsVjZ0WlEsiIDuZEaQO5lc1k2EoRuFErEzNK6hNWeZq8ugkAZA5BYfj5CILA9dOH8cOpKRTVtuKnUREXqhvSnriB4K+VBOLHSxo4UlRPckSgVELg3B5pg5GXDHzngiB5nbY9KYXrxv8AgPIGqX6TSoCZQ8RwclgBzLvuuovDhw9z9913M336dDIzM5k8eTI//elPOXjwYJcSBQqey7zh0QAcKKij1WDVOZ1ZJ6WjRmZIVcAHg/zlzd8ObVKITi5/MDnFdxtDOhOtWkVGTLBiNJ2H7M05V1raXrE7eqT7BiQfu+oMOUO0FEFvqFQCw6ICiQ/zV4ymATIpJRyAAwXWkjJnNwCilE0Xljy4nY+7VnrM3QJ6SQy+0+ptGpsYRliAb9dvknFo+/nRo0fz3HPPOXKXCm4gLSqQxDB/Surb2Jtfw/yRMVLJfZC8TYO9oEUPl1pQVGdDzmZKkpZSWt+GWiUwMUXxOCk4Dlnn1FRsDdMFx0laI3dh9XaJlafJrZNDdYrHScFxTE2N4N3dhe21+OQwXdYgvE0yMaOkxXNNLmRvgrFXsSNH0jfNGSL6JlB61Sl0gyAIzLV6nbZnV0lCwLPWMN3YqxxzENnrdGad7Qs+OiGEQD+H2vIKQxy5lhPV1u7u7vQ2QXtJgrpCjG1Se4rUKKUStoLjmJoqee2PFTeg17dKBg4MLkwnIwjtOqlTUgeInVYt7CzFcFIY6swbIRlO32dXQd63YGqFsGEQP8ExBxi5VHrM3sT+fCmVdeowJUyn4FgyoiVvTkBDnvRC1HA3jgYIioaASAREMoVSksIDhmy5CAXnMCwykKggPwxmC/mHvpUyoQOjIXGKYw4w6nLp8ex6zlXWc66mFY1KGBL1m2QGtLz/8Y9/PKCDCYLAv/71rwG9V8G1yGmlJ0obaDuxHn+AkUsGH6aTSZkJGn9orqAi7ygQypRUxXBScCzpVo9ToukcqGmvpeQuBEEK1xXuJFMopi5munvHo+BzCILAlNQINp4op+nUFunF9PkDz4Q+n+TpkiHWUkXO/g1AIBOSwwjWDZ1owYA+6Ztvvtnt64IgdNtcUH7dHYbTCy+8wJNPPklZWRkTJ07kH//4BzNmzOhx+48++ojf//735OfnM2LECJ544gmWLVvmwhF7BrEh/mTFhXC6vAFRLhswYqnjDqDRQcoMyNtGTOVu4GKmKB4nBQcTrNMQH+pPRlup9EKUmw0nkMKFhTsZriqmRhGGKziBqVbDKaR0h/RCugNrKKrUkHUpHHwb1em1wA+YkxntuP17AQMyQfPy8jr95OTkcPnllxMVFcVjjz3G1q1bOXnyJFu3buXRRx8lKiqK5cuXc/bsWUePv1c++OAD7r//fv7whz9w4MABJk6cyNKlS3uscr5jxw5uvPFGbr/9dg4ePMhVV13FVVddxbFjx1w6bk9h7vBoRgnnCGgtA00ApF/g2ANYv8wzhOPEhOhIjghw7P4VFIDMaH/ShTLpl2g3h+rA5vXKEMqGfA0nBecwZVgEOgyktZ2QXnCk4QQ2vVRq7U4AmyZ2qDAgwyk1NbXTzwcffMDu3bs5fPgwv/3tb5k/fz5ZWVnMnz+f3/3udxw8eJCdO3fy8cdd+5M5k2eeeYY777yTlStXMmbMGF5++WUCAwN5/fXXu93+ueee45JLLuGhhx5i9OjRPPbYY0yZMoXnn3/epeP2FOYOj+JC1QHpl4wFoHWwYZMmfZlnqU4wNSVUST9WcApTwprQCUZMghbCU909HJvXK0MotWmwFBQcyYTkMGZqzuKHCVNQgpQJ50jS5yMKGlIpJcuvyiZIHyo4JCj5r3/9i+uuu46EhIRu/56UlMR1113Hq6++yq9+9StHHLJPDAYD+/fvZ9WqVbbXVCoVixcvZufOnd2+Z+fOnV2qmy9dupTPPvusx+Po9Xr0er3t94YGqS6R0WjEaDQO4hN0Rt6XI/fZF1NSQglTHwagMv4Cwh197NjxmAV/ImliSVTVoD6bO+bHmxjK8zPGT6rfVK5JItZsAbOlyzaunB9TSCoBQLpQSnC41uP/J0P53LEHT5wfNXBlaDa0wLmwqSRbu3k47gABlIdMILnhALdEZyOIZozn9za14onz0xP2jtEhhlNRURH+/v69buPv709RUZEjDmcXVVVVmM1m4uLiOr0eFxfHqVOnun1PWVlZt9uXlZX1eJw1a9awevXqLq9v2LCBwEDHpxlv3LjR4fvsCY25lUtUUnj11ZMBjG1c28c7+ofJAjHmkcxXHSEu/wvWrh38F8uV8+ONDMX5CTq3G4Azxhj2re39HHbF/FS2mFghqgkQDJzY8jEHdd4R5hiK505/8LT5mWSQogVrqxNI7uO8HwiVTcO5gwNMbv6etXbs39PmpztaWlr63ggHGU7Jycl8+umnPPbYY90aUC0tLXz66ackJw+yaqkHsmrVqk5eqoaGBlJSUliyZAmhoY4rtGc0Gtm4cSMXX3wxWq1rqrMKZ9ahPmIhzxLH6YBxPLTMQemsVvYX1LJ13xjmq44wK6IOyyBE+O6YH29iKM9P62cboAZOmRNZecmlqFVdQ8KunJ9NpyooPBlLplDK4onDEDMWOvV4g2Uonzv24JHzY2xBfUjKft9onsKHl17qUClEY5uR2/YUcYf2Q0abTzFy6WJQ+3U/FE+cnx6QI0Z94RDD6Y477mDVqlXMnTuXRx55hHnz5hEVFUV1dTXfffcdjz76KPn5+axZs8YRh7OL6Oho1Go15eXlnV4vLy8nPr777tDx8fH92h5Ap9Oh03Vtc6HVap1ykjhrv91S+D0AOyzj2JVbg0lUEeDnuJozewvq2WeRChKqi/eh1mgGXe7ApfPjhQzF+dE0FwCQbU6gvMlIalTPgmxXzM+5Wj1qMZFMStHU54OX/D+G4rnTHzxqfoqPgWiiXIzgUFMoRfUGh1ao33O6mqPmYdT4hRNpqkNVur9PAbpHzU8P2Ds+hxR2eOihh1i5ciUHDx7kmmuuITY2Fq1WS2xsLNdeey2HDh3itttu46GHHnLE4ezCz8+PqVOnsmnTJttrFouFTZs2MXv27G7fM3v27E7bg+Re7Gl7nyf3WwBO+E9Gb7KwM7fKobvfkVPNUTEDs6CB5gqoK3Do/hUUAITqbAByxQRyKpvcPBrIqWwiR7TqQatcm2msMESwhqfzAsYCgq26t6PYfKocERXnImZJL+Rudej+PR2HGE4qlYp//etfbNmyhRUrVjB58mTS0tKYPHkyt912G5s3b+Zf//qXy7Om7r//fl599VXeeustTp48yV133UVzczMrV64E4NZbb+0kHr/nnntYt24dTz/9NKdOneKPf/wj+/bt4+6773bpuD2CxjKoPAkIBI5aBMDmU92XcRgIbUYz+wtr0eOHMdbaNFju4K2g4Cj0jdAo1XDKERPIrWx284Agu6KJPNlwqlYMJwUnULQXAEPCNEBapDoKs0Vk00npXhCYJd0byNvmsP17Aw4t9blgwQIWLFjgyF0Oiuuvv57KykoeeeQRysrKmDRpEuvWrbMJwAsLC1F1qKY6Z84c3nvvPX73u9/xm9/8hhEjRvDZZ58xbtw4d30E92H1NpEwgdnjRvDqvn1sOVVpK2Q6WA4U1GIwWYgJ0aFLmwXlByXDacJ1g963goINq7epWRtJQ1swOW42nERRJLuyCcEie5yy3ToeBR9EFG0ep6jR8+FkGztzqrFYRFTd6Pv6y4HCWqqbDYQFaEmbdgns/DUUH5AWKbqQQe/fG/D5XnV33303BQUF6PV6du/ezcyZM21/27p1a5cq6D/84Q85ffo0er2eY8eODcmq4YDUnw4gYyFzMqPx16oormvleIl94rm+2GT1Xi0YGYMwzPo/sX7ZFRQchjUU1hqSDkCum0N11c0G6lqM5GE1nOrPgbHVrWNS8DFqcqGlGtR+jJw4hxCdhppmA4eK6hyy+w3HpSzzC0fFoo1Kg4g0EM1Q0H2ZH1/E5w0nhQEgiu0x64yF+GvVXDgqFoCvjpY65BBy2O+iUbGQbG2BU34c9O7XoCj4EFbDSbBW686tcq/H6Wy5dH4HhseDfxggSjc6BQVHIUseEiej1QUwPysGgM0nBy+1EEWRDSekBKolY6yle9KsHSXyh064TjGcFLpSnQMNxVJ6aYok/ls2Xlohf3WktNt+hP0hp7KJvKpmtGqBC0bGQFgShCZLq5aSA4MevoKCDauGKChpFACVjXoa2txXiC/b6vEaHhcCUdb2L4pAXMGRyJ77ZKmB9OLR0qL3m5PlPb3Dbs6UN1FQ3YKfRsX8kZJBRrpVnjOEdE6K4aTQlVxrR+2UmeAnFfG8cFQs/loVhTUtgw7XbbJ+gWdlRLV31E6xdom3ihoV+olJDxWnoMExHkGfwaoh8o8fRWyIVDYkp8J9Xk352MNjg9sbDisC8XbMJsmQrC2QPN8K/ad4n/SYInnyF46MRSXAqbJGimrtK/DYE58fLgZg/ohoguRrt9zDtPQItNYOav/egmI4KXQl/zvpMb1d6B/op2FRlmPCdXJGxkXW8B8ASVOlx5KDg9r3kMNihm1PwpMj4MWZ8MwoeO1iZR4BLBabOJyoEYyIk+rYnHWj4ZQtG04xwe0Nh6tz3DYej0EUYd/r8MxoeH4aPDcBXpwNOVvcPTLvwtgGFSel54lSweKIID9bL7ktg8iMtlhEPjtYAsBVk5Pa/xASD9EjARHytw94/96EYjgpdEYUoWCH9DxtXqc/yeG6L4+UYLEMbDVY3aRnX4G0KrlwVIf2NomTpceSQwPa75DEbIT3fwSb/wT6etAGgaCCoj3w+iVwep27R+heGorB1AoqDUSkMiJWyvjJ9gDDKbOjx2moh+pEEb68F768T6rnpgmQ/meVJ+Gda2D/W+4eofdQcRwsJgiMgrD2Th3ytVbWJw2E/YW1FNe1EqzTsHh059ZktuKX8qLbx1EMJ4XOVGdDcyWodZDUucXK4tFxhOg0nKtpHXBBtS8Ol2C2iIxLCmVYVIdefvETAEHKMmqqHMQHGEJ89QCcWSfdaK56CVYVwf0nYeQlYGqDj24b2p6nqjPSY2QGqLVSeAw4W97oluE0tBkpa2gD5FCd7HE6O7TDUt/+Ffa/KRn9Fz8Kq87BQzkw+WYQLZJRdfYbd4/SO5AXngkTO3VhWDZe6n6xPbuKcus52F8+PSiF6S4dF4+/9rwOErJAfIjonBxmOJlMJp599llmzJhBaGgoGk17iahDhw7xs5/9jDNnzjjqcArOosDqak2eDprOrWQC/NRcOTkRgPf3nhvQ7uUv37VTzutb6B8K1swnSg8NaN9DipNfwoG3pJvNdW/BpB+BSiW5za9/F4ZfLHlb/nvn0E137xCmAxgZJ3mczpS7x+Mk65tiQ3SEBWghKhMQoK0emh1bld9rKNwF3/5Fen7532DuPaDWQkA4XPF8u/H02V3Q7Njq1z6JfO1MmNTp5dSoIKalRmAR4X+Hivu92zajma+OSBKNqzuG6WRkw6nixJBY+DrEcGptbWXRokU8+OCDFBQUEBoa2inzKj09nTfeeIN///vfjjicgjORw3Spc7r98w3ThwGw/lgZtc2Gfu06u6KRw0X1aFQCyycmdt1A/rIPZS+JPRiaYa21fdHce2Dk0s5/V2vgmlcgJEHyZnz3jOvH6AnIITCrlmiE1eNUXNdKs97k8uFkdxSGA2gDICxFej4UBeJmE3xxj2QYTbwRpq7o/HdBgGVPQcwoKYS3+TH3jNObkD1OiZO6/Oka62L1kwP9N5y+OFxCfauRxDB/ZmZEdd0gKApix0rPC3f0e//ehkMMp8cff5zt27ezZs0aysrKuOOOOzr9PSwsjAULFrB+/XpHHE7BWYgdxH09GE7jksIYlxSKwWzhk4P9+wLKX9gFI2OIDu7aGLld56QYTr2y80VoLIHwYbDg4e63CYyES/8qPd/xd0nvM9SQjRGrxykiyI/oYKmDuzt61tlKEciGE3QQiA/BCuIH3oTKUxAQCZf00ABeGwCXP2vd/q124bNCV0z69vk5z+MEcNn4BPzUKk6VNXKiH5nRoijyxvZ8AG6ZnYa6p+rjaXOlxyEgEHeI4fTBBx+waNEifvWrXyEIQrctOTIyMigsLHTE4RScRV0hNBRJwkxrKmt3yF6n17/Pw2i22LVrg8nCfw8UAe0rny4ohlPfGFth90vS8wsfAa1/z9uOXg7D5oCpDdWOv7tmfJ6E3M5EDgFDB52TGwwn6zFHdDSchmotJ5Metj0tPV+4CgIiet42dQ6MulzyTH33tGvG542UHweLUZrL8GFd/hwWqGXxGCmT+YO99t+L9+TVcKK0AX+tihtnpPS8obzYLlAMJ7soLCxk2rRpvW4TEhJCfX29Iw6n4CzkMF3iZPAL6nGzH0xNJjpYR3FdK5/a6fZde7SU8gY90cE625e3C/HjJc1OY6lSj6gnDv9HaqcQNgzGXt37toIAi6Qm1qpD76Az1jl/fJ6CoVlaBEB79hoddE4VrheIyx6nzE6Gk1zLaYh5nA69J3lNQxK6hui6Y8GvpMdj/4XafKcOzWvpqG/qoZ/oj2akAvDR/iLqW+wrBCt7m66enEx4oF/PG6ZaPU7lx6Glxq59eysOMZxCQkKoqOi9PkROTg4xMTGOOJyCsyjoPUwn469V85P5GQC8sDUbUx9eJ4tF5OVvpVo1K2anotOou99QF2ytBwKUHrZ/3EMFi0UK0wHMukvSMvVF2gWQNA3BrGdY9dDIeAHaDZGASEl/YUX29mS72OPUZjRzrkYqPthtqG4oeZxEEfa+Jj2f/fMuSSjdkjARMhZJXqcDila2W+RrZjf6Jpm5w6MYFR9Ci8HMWzvz+9zliZIG1ll70/14blrvGwfHttdzKvTtvnUOMZxmzZrFF198QV1dXbd/P3fuHGvXrmX+/PmOOJyCs7AJw+f2uelNs4YRGeRHQXWLLQTXE18dLeVUWSMhOg03z0rtfcfx46XH8qP2jHhokb1R0u3oQqVsI3sQBJguaQ7TqrdKBTOHAjZh+IhOLw+31nJydRHMvKpmLCKE+muI6ajvkz1OtXmSWHooULQPyo+Bxh8m3WT/+6beJj0efHfozFV/sJUimNTjJoIgcNfCTABe/S6XupaeE3xEUeSJdacAWD4xkRFWb22vyPeOAt8WiDvEcHrooYeora3loosuYvv27ZhM0knd0tLCpk2bWLp0KSaTifvvv98Rh1NwBo1lUJMDCFKrlT4I9NNw1wLpC/jEutM9Ztg1602sWSsJFu+4IIOIoF5cvQBx46THsmN2D33IcOhd6XHyzVL5BnsZexWifziBhiqE3M3OGZuncV4pAhm5evi52hZaDa4zIs9Ya0cNjw3urAENTZLqcFlMUFfgsvG4lX2vS49jr5GSGOwlaxkERkNTGZxVEo06YTJIpQCgV48TwPIJiYyKD6GxzcST60/3uN26Y2V8e6YSP7WK+y8ead845KLJ+d/bt72X4hDDaf78+Tz//PMcPXqU+fPn8/jjjwNSCG/JkiVkZ2fz4osvMnXqVEccTsEZyGG6+HFSDRU7uG1uGllxIdQ0G3jwo8PdVhP/01cnKKlvIzkigDvnp/e9U5vHSTGcOtHW0F4JfML1/XuvNgCL9T2qA0OkCrNsOMmhMCvRwToig/wQRddm1p0ukwynrPjzDF6VylrPiaERrmutheOfSM+n/bh/79X4SfXKQKkmfj4VJ8BsAP9wCO/dq69SCfxhuVQ64N3dhWw707XuUkldK6s+lbz+P1mQQXp0z5rXTsgyj7IjUn0yH8VhBTDvuusuDh8+zN1338306dPJzMxk8uTJ/PSnP+XgwYNdShQoeBi2MN283rfrgFat4unrJuKnUbHpVAWPfH4Ms9V4EkWRl7bm8J895xAEWHPNeAL97NDkyIZTdY4k8FWQOPkFmPWShiBhYr/fbpl8GwBC9oYhUaDOZoREDe/yJ1tmnQsF4rLHaVR8N+GOjhXEfZ1jn0hV7ePGQXLvCUXdMsUqJM/eODTOY3uxCcMn9igM78jszCh+NFPKvPvFfw5ypKjO9rfyhjZWvL6HuhYj45PCuPvCrt+hHglNhIh0SYtWuLsfH8C7sONOZj+jR4/mueeec+QuFVxFH4Uve2JcUhh/vXYC9314iHd2FXL4XD0XjorlQGEt352VqiE/tDSLC0bYmRgQHAtBsVLBu4qTA7u4+iJHP5Iex19n14WxC9EjqA1MJ6IlD05+DtNvd+z4PAlRbG+ce16oDiSB+J68GpeWJDhl8zh1YzhFD6HMuuOfSo8Trh/geTxc0vCUHoLTa+3LyBsKyNKGfiyqHrl8DCdLGzhYWMcPXt7JD6cmE+in5uP9RdS2GIkP9efFm6b0nMzTE2lzJc1ewfcwckn/3uslKL3qFKTUUTk+3k/DCaRO2X+/YTLBOg1Hi+t5btNZvjtbhVYt8LvLRvOzhf1YsYAULgTJ3asAjeWQ9630fPwPBrybknBrbS755uWrNJWDoVEqbRHZNTwsZ9a5qvVKk95EUa3U9qZXj1OVjxtOTRXtkoAxVw58P6OXS48nPx/8mHyF8uPSo6wRtQN/rZq3b5/JoqwYDCYL7+4u5NXv8qhtMTImIZT3/28WKZGBfe/ofOSohQ8LxAfkcfrxj3+MIAg8/vjjxMXF8eMf2x+r1ul0JCcnc+WVVzJunP3/ZAUnIqeORo+EoOgB7WL5xERmZkTyyYFi8iqbiQ/z56rJSfbHxjsSNw5yNisCcZkzX0uu76Sp3RoC9lIcPoOxJR9IN6+mCsm754vInpvwYd2musu1nFwVqpP1TXGhuu7r4NhqOfl4qO7k5+3ncUQf2bW9MeZKqf1K7rfQWme3JtNnEcUOhtPYfr01WKfh9dum8+2ZSraersRotjAjPZJLxyXgpxmgX0VefJcclOQWQh8JQV7IgAynN998E0EQ+PWvf01cXBxvvvlmv/fxxz/+kU8++YTly5cPZAgKjmSAYbrziQ3x56fWTLtBoQjEO3PGmkGUdemgdtOqi8GSOAVVyQFruM5HdYe96JsARlq9PoU1LTTrTQTpHKpY6IJsOI3sKZ1bFrA3lUuCWv8wp47HbRz/THrsq3BrX0SPkPrXVZ6SvhsT+5ks4WvUF4G+Xur4EG1n9lsHBEFgYVYsC7MctJCKSJV6MNafg3O7YdgFjtmvBzEgkzIvL4/c3FwyMjJsv9v7c/LkST7//HMSExP5wx/+4NAPozBA+lG/ySXYDKfjUtHHoYyxFXK3Ss9HXjLo3Ymjr5CeyDcxX6SHUgQy0cE6YkJ0iCKcLne+1+l0mdQXrNswHUiGUpD1puWrOqemivYU9cGE6WSUcF07sswiOkvKPPQEUn27b92Allqpqam9/t4XWVlZfP/99/zjH/8YyOEVHIm+qb3i7LDZ7h2LTNQIUOvA0CSJDKMc4MXyVvK/B2OLVO+nH/qFnrBkXY560x+l8Kyvejd6KEXQkdEJoVQ2VnKytIEpw3rpk+YATvVUiqAj0SOkhIjqHCmU5Wuc3QiIkrC7mz5q/WbU5bDtSWlRYTJ4jsHgDmTPfNwY946jI2lz4cj7Ptu3zmXicIPBQENDe0fm22+/nffee89Vh1foiaI9IJql3mfhvTRwdCVqDcSOkp4P9XCdHKYbsWRgWUjnE5EmufMtJsjZMvj9eSI2j1MvhpPV+3Oq1LkeJ1EUey9FIOPrtZzObpAeRy51zP7iJ0jFMA1NULTXMfv0Vgaob3IqssepeL/kNfcxBmw4ZWRk8Pe/d+64vn79+h6rg69Zs4aIiPaV3YgRI7jySge4bBUGhy1M5yHeJpk4a7huKAvERbHdcHJAmM7GCGuK8NmNjtunp2A2tjeB7SFUB5LHCeBkaUOP2ziCykY9tS1GVMJ5PerOx5cF4mZju5E+wkHp6SoVZC6Snudscsw+vZUBZNQ5ncgMCI4HswGhZL+7R+NwBmw45efnd+lNt2vXLqWOk7dRYM2oG6Qw3OHIJQmGssepOhvqC6WwZboD+zyOuFh6zN7oexqy2nzJm6YNhJCEHjcblWD1OJU1IopdK947CjlMlxYdhL+2l3o4ci0nXyxJcG6PJF4OjILEyY7bb+ZF0mPOEGkj1B0mfbuX0pM8ToIghesAwQfLEih1nIYyJn27m3uYpxlOssdpCDf7lWs3pcwAvwHUU+mJYXPAL1jK4io77Lj9egK2MF2m5JXogcyYYLRqoVONJWdga7XSV4PUqA5FMH3NmJX7yg1fDKp+FlPsDdnjVHIImqsdt19vovK0JLUIiOh1oeAWrOE6oVAxnBR8iZKDUhuPwOguXeTdjrx6qj8n9WkbiuRtkx7TFzh2vxo/yFgoPT+zwbH7djd9lCKQ0apVDI+VjBlnhut6rRjekYhUKZ3c1AoNxU4bj1uQQ8KOCtPJhMRD7FhAhFwf1ev1hRymix3rGA2kI7E2/BWK96GyGN08GMeiGE5DGTnjIXW2533pAiKkGDlIq6qhhsUCed9Jzx0ZppMZvlh6lEsd+Ap9lCLoyOgE2XBynkD8dHkfpQhk1Fqpxxf4VkmCxjJrurwAmRc6fv/Drfv01USHvqjwQGG4TPRICIxGMLUR3pLn7tE4FMVwGsrY9E0eUr/pfOTMOrlOyVCi4ji01oA2CJKmOH7/GVYvVtFe32qmbEdGncwYJwvETWaLrR9er6UIZGzNfn3IcJK9pgkTIDDS8fuXvbE+mvbeJ56YUScjCDbtbFTTKTcPxrEohtNQxWKWqrqC59RvOp+Y0dJjpW996exCvuGkzpG8EY4mIl0qQWExtrfc8QXsqOEkM8pqzJwqc47hlFvVjN5kIdBPTao9Pb/kMftSSYJcq07P0eFmmZQZUk/C2jxoKHHOMTwZT8yo64g1XBftY4bToHoNvPPOO+zatcv2e3a2dNFatmxZl23lvyl4COXHQN8AfiHtQmxPI9ZqOFWcdO843IFN3+SEMB1Iq8H0+XDoHenmJofuvJm2BknwDnZ5nORQXYG19YqjOV5SD0ieLZXKjlC4r5UkEMX2BAdnGU7+YdL1q/SwVFplEE2wvY7mKuv5LrR75z0NazQjsvksotkIWicsAt3AoAyn7Ozsbg2idevWdbu94Gk6mqGMnCI6bKZjM10cSewQ9ThZLO1h1HQn9nnKWCAZTrKR5u3I3qagWLsqokdZW69UNuo5U9Hk8OEcK5Y8WeOS7KzO7mslCWrzpOQOlda5deJS51oNp+1Dy3CSJQwRaeA3gGbqriB2DKJ/OJq2OkxlRyBtlrtH5BAGbDjl5fmW2GvI4aDGvk4lJkt6bCwdWl3QK09KdW+0Qe2FQJ2B7M0qPQwtNc7RoLgSW5jO/gxRufXKqbJGHN185lix1eOUaIe+Cdo9TvXnpGrL2gAHj8jFyGG65OnOvbGnzoVdL7Zf04YKctKMvMD0RFQqxJRZCGfXSWUJhrrh1N/+dAoehCh28Dh5sOHkHyb1aGsolrxOw3zjS9cnhdbwd/I0qf2MswiJlxqDVp2WeuKNucJ5x3IFHWs42cno+BC2nankZGkjsxw41RaLyIkSq8cp0U6TLChaOufb6qEm1zMFv/3B2eFmGVmjWXlKCl8FRTv3eJ6CbDhFj3TvOPpATJ0DsuFE951FvA1FHD4Uqc6GliqpIrUzMrYcScwQzKyzifZdYCjKoUBfEIjbajjZ73GSw2jHSxwrED9X20Kj3oSfWsWIuF5arXREENq1Wd4uEO+4OHNmuBkgKKo9kWQoeZ1kCUOMh+qbrFisi3Ph3C4pKckHUAynoYicups8DTQ6946lL2wC8SGkc5I9TikznX8sebXuCzecfpQikJmQLBlOJ8saMTmwYLesb8qKD0Gr7sdl1lcE4rV50FQm6ZuSpjr/eLKGqmiP84/lKcgeJ1nS4KnEjceoCkDQN/pMJwifNZxqamq46aabCA0NJTw8nNtvv52mpt4FoAsXLkQQhE4/P/3pT100YhfiDfomGZtAfIhk1jWUQl2BlGKdPN35x5MNp7IjoHdeIUinI4pQnSM974fGaVhkIGEBWoxmkdIWxw1Hzqgbl2SnvknGVpLAywXisvGfNMU1Wi35u1K0z/nH8gRaaqC5Qnru4aE6VGqqg61j9JF6Wz5rON10000cP36cjRs38uWXX7Jt2zb+7//+r8/33XnnnZSWltp+/vrXv7pgtC5EFNsrUntq4cuOxAwxj9M56w0nbiz49/OmOxDCkiB8GIiW9r6F3khDCRibQVBDuP36S0EQbF6nc82Oy/o9Zg39jbVX3yTjKx4nm4bSRbrEpGnSY8khMPtWe49uqTojPYalgM7OULAbqQ62esXyFcPJYzl58iTr1q3jtddeY+bMmcybN49//OMfvP/++5SU9F4kLTAwkPj4eNtPaKgLbl6upDoHGktA7ecdYmvZDd1cIa2yfJ1Cq74pxYX/G9nrVLir9+08GTlMF5Em9eLrB+OtOqfCJscYTqIocrSoDuhHKQKZjiUJRNEh43EL8rnkquSTqOGgC5N6/clFIX0Zm77Jw8N0VqqDrTqswh0+0cTaiSk77mPnzp2Eh4czbdo022uLFy9GpVKxe/durr766h7f++677/LOO+8QHx/P8uXL+f3vf09gYM9Vf/V6PXq93vZ7Q4O00jQajRiNjlv5yPsa7D5V2ZtRA5bk6ZjRgAPH6BRUOjRhKQj15zCVHkXs4ULsqPlxN+qivagAU+IURBedP6qk6aiPfIClYAdmL50/VcUp6byOzOz3ZxgTL63YzzULDjl/CqpbqG0xolULDI8O6N8+Q1LQICDo6zHWl0JQzKDHM1j6/d1qrkJr9ZgZE6a47BqjTpqCKncL5sLdWGJcl5HojmuPqvwEasAcNQKLh39njUYjdYFpiNpAhNZajKVHIXaMu4fVLfb+D33ScCorKyM2NrbTaxqNhsjISMrKynp8349+9CNSU1NJTEzkyJEj/PrXv+b06dN88sknPb5nzZo1rF69usvrGzZs6NXgGigbN24c1Pun5X1IEnDaEMeZtWsdMygnM1OMJJ5zHN/yMfkxdb1uO9j5cSeCxcRlJYcB2HqmkeZCx/9/upufkFYjFwKWwt18/dXniIL3XRbGFW0iE8itV3G8n+d1jR5AQ0kLrF2/Ee0g/fD7KgVATWKAhU0bui8G3BuL/aIIMlSx66t3qAn2HI+Cvd+thLp9zAAa/JPYssV12ZqjWkLJAor3/I+D5fEuO66MK689s7O3EwscKTVQ6A3XcUFDpX8GscZjnPz6VfJiLnb3iLqlpcU+oaNXXSEffvhhnnjiiV63OXly4CLijhqo8ePHk5CQwEUXXUROTg6Zmd3Xhlm1ahX3399em6KhoYGUlBSWLFni0DCf0Whk48aNXHzxxWgHWrZetKB59l4ARiy5g+HJMxw2Pmei2rwXdh5mXJyGMZd0becDDpofd1N6GPVhI6J/GAuuXimlpzuIXudHtCA++1c0rbUsm5SM6OklKrpB/f6/oRLSpl1M6pTuz5GeEEWRf5zaSk2LkeRxM5maFjWosez76hRkF7JgXCrLlvU/VVxd/wbkbmH2iGjEyf37LM6gv98t1Tc7IQ+CxlzMsktdN34hWwsf/I8UoZyEbtp+OQt3XHs0f38YgPGLrmWch1/H5fkJn3QZfHeMccH1jHbh/6c/yBGjvvAqw+mBBx7gtttu63WbjIwM4uPjqaio6PS6yWSipqaG+Hj7VyIzZ0rp4NnZ2T0aTjqdDp2ua0q/Vqt1ypdoUPstOwqtNaANQjNshnOaxzoDayFAddUZ1H18dmfNu0sol7xNQuIUtH790+nYS4/zkzILznyNpmQPpLmgDIKjqZEy6jSxWQPqhzU+OYxvz1RxvKyZWSMG5604Yi1FMDUtcmDnYvRIyN2Cpi7Xo3p72f3dspYEUKfN7fP76lCGSeetUJ2N1tQEARGuOzYuvPa0NUg6VUATP8ajzpHeUKXNg++eQHVuJyqNxqELQ0dh7//PqwynmJgYYmL6jvnPnj2buro69u/fz9SpUg2RzZs3Y7FYbMaQPRw6dAiAhISEAY3X45Ar+abO8R6jCdobWPp6SYKSA9KjK+renE/qbDjztSTqnfML1x9/MJj0UgkH6Fcpgo5MTgnn2zNVHCis4/ZBDEVvMnPSmlE3KSV8YDvx5p51hmaphQ+0Jx24iqAoiMyQqq4X7/eNxtXdIRdHDY53uXE4GMTEKaDxh+ZK6TPEeHgZhV7wyay60aNHc8kll3DnnXeyZ88etm/fzt13380NN9xAYmIiAMXFxYwaNYo9e6TVUU5ODo899hj79+8nPz+fzz//nFtvvZX58+czYcIEd34cxyEbThlO6lTuLKKzAAFaqqGp0t2jcR7FsuHkhlCZLbNup/dlc9XmS+UU/IIhOG5Au5gyTMp+O1BYN6ihnChpwGC2EBnkx7DIAWoc5QKe1V5oOBXtA4sJQpMhPMX1x5fLEhTtd/2xXYWXZdTZ0Oja620VfO/esQwSnzScQMqOGzVqFBdddBHLli1j3rx5vPLKK7a/G41GTp8+bROD+fn58c0337BkyRJGjRrFAw88wLXXXssXX3zhro/gWMym9hoazu4d5Wj8AqU0c/Bdr5Ohuf2C6A6PU8IkaTXYUu19N2xbq5XhA3b/T0gKQ4VIaX0bJXWtAx7KoXN1gORtEgYaipA9TrV53leTyJXtgrrDVgjTi2uS9YW3Gk7QXjvQy+s5eVWorj9ERkby3nvv9fj3tLQ0xA4r65SUFL799ltXDM09lBwEQ6Pk2o0b7+7R9J/Y0dKNpOKk9xl+9lB6WPKahCRKzXddjcYPEidLHqeivQMOebmFAbRaOZ8gnYbEIChqhv0FtSSGD6zateyxGnCYDqRzQBsIxhaoLWivJu4NyAZLipsEy8nWRUfxPslz6oE6mkHjLa1WukPuVlGw3av/Pz7rcVI4j5zN0mPaBaDywn+7rdmvj3qciq2hBXdmtMmeLm9brctVtgdp7GWESAup/QW1A3q/KIrsyasGYFraILQnKhVEWpNRvKmCuCi2tzxJntb7ts4ibrzUvLy1VtI6+SJVsuHk2c19uyV5ulR8ubHUqxtZe+EdVGFAZFtrjHirYFLuWSe3GvA13KlvkvHWfl9yj7pBeJwA0gdpOBVUt1DeoMdPrWLKsEGKdm0967zo5lKTK2XtqnXu82pr/CB+nPRcFqn7EgarFxK803DyC2z3OmV7b809xXAaCrTUtN8MvdVwkt3SlT7as87mcXKDvklGNpzKj0uaK29BNqYdZDidKG2gxWDq9/v35EktgSamhOGvVQ9qLF7Zs04+hxMm9LvtjUNJmCg9lh5y3xicRfVZQISASAiKdvdoBsZwa/HLs4rhpODJ5GwGRKnMfViSu0czMKJGYMusa65y92gcS3N1ezp9wiT3jSMsSdLXiGapWao30FwtnRMw6FBdhA4SwvwxW8QBeZ12WcN0M9IjBzUOoP2zyN40b0AO8coGuLuQv0O+6HGq9OIwncwIq+FUsN27FmgdUAynocBZLw/TgeTiDR8mPfc1r5NcvylqBASEu3UoNm2Kt+icZL1H2DDwCxr07mZlSEbP9uzqfr93d67kcZqZPrjK40C798ybQnWyV9udXlNo9ziVHPK+0hp94c3CcJnokdL31WyAvO/cPZoBoRhOvo7FAtnfSM9lS99bkVdZvmY4ySGFxEnuHIWEt6Vz224kjimmN9dmOPXPq1lU20JxXStqlcDUVAcUJZQNp+YKaKsf/P6cjbFN6kwA7vc4xY4GlRba6qCu0L1jcTS2UgRe7HESBBhhXcR7qc5JMZx8nZKD0FIlFQdMcVNtFUdh0zn5mEC87Jj0GO8BhVY7Gk7esFqXPTLRjjGcZmdK3qJjJfXUtRjsfp+sbxqfFEaQzgFVXvxD24t5ekMF8bIjYDFCUEy7Z9hdaHQQN0Z67ms6JwcvFNyGrHM6s8E7rjPnoRhOvs4pawHP4YvdK9h0BL7qcZJX6vEeUF8rYSKoNNBUDvVF7h5N38ihOgcZTrEhOkbEBiOKsDPH/nDdt2ekivZzMh0QppPxJoF4R32TJ9TmsQnEfUjnZNK3l1jwZo8TSN0rNAFQX9h+/fMiFMPJlxFFOGk1nEYvd+9YHIHNcDrt3nE4En1j+8XQEwwnv0CIs6Zze0O4TvY+OlDzMXe4lK30vZ3hOrNFZJvVcFqYFeuwcbT3rPMCD6un6JtkfFEgXp0jJW7oQiHEy/un+gXB8Iuk5ye9rzuHYjj5MpWnparKaj8YscTdoxk8snu6qUwqcOcLlJ8ARCmbzVPSi+VwXbGH9/syNEsrVrD2M3QM86yGk706p8NFddS2GAnx1zBlWLjDxuFVC4ViNxe+PB/ZcPIlgXhVB2G4J3j1BsvoK6RHxXBS8CjkEzJjoaSZ8HZ0IVLzUPAdnVPZEelRLtrnCXiLQFzWNwVGQZDjQmQzMyLRqgXyq1vIrWzqc/utpyoAmD8yBo3agZdUb6ld1lRhFWELkOjGAq4diRsDglrSdzaUuHs0jkE2oB24SHArI5dIsoDKk96h4+uAYjj5Mic/lx59IUwn4y03E3vxJH2TjOw1KDkEJvsF0i5HDmE5+EYS4q9lVoZkiK0/Xt7n9lvlMN3IGIeOw+ZxqsmV9C2eihymixnlOQs0bUB7twFfEYh7c3Pf7giIaO87Kt+rvATFcPJVqs5K3gxBDVnL3D0ax+FN4Qt78ETDKTJDuqiZ9VDuwcJN2XByQobR0rFSo+X1x8t63a6yUc+RIqlcwIIsBxtOIfGgC5OaP3tyIUybMNxDwnQyviYQ94Xil+cjL+qPfeLecfQTxXDyVQ69Jz0OX+w52hlHIN8kfcHjZDZBxQnpuSeUIpARBO/oW1fp2Iy6jiwZE4cgwKFzdZTVt/W43TqrYTUhOYzYEH/HDkIQvON89zR9k0xHnZO3YzZJelXwHY8TwJirJA1u+VGvyq5TDCdfxGKGIx9Izyfd6N6xOBpf8jjV5ICpDf6/vTuPj6q89wf+ObNkspCE7GSDJAQIWyCArLIoIAJV9LZWrVgQf5dbLxVQ217s9apYAbmtva6F2lsF20vR1oLWKghRVtkh7AJhC0sWwpINyDJzfn88c2bCkjAhZ+Ys83m/XnmdwyznfDmZzHzneb7P89gjgJhMraO5lpI4ndqqbRzN8VNXHQAkRoUiL70tAGDVgaZbnT7ddQYAcH+vFNVjANCoa1qnr3eXEzizS+yn6i1xMlGL08UTYqZtezgQna51NOoJjwU63yv2C/6ibSwtwMTJjI6vAyrPAKHRQOexWkejLqV1ofK0GMpvZJ5uuh6ARWd/ikrrwRmdtjg5G7zdV36aDFDprvti780Tp1MXLmP7yYuQJOB7uf5KnHQ+d9m5Q0BdlUj+lZoivUjqBkASo3CNvr6l8vuP76S/94rW6v2Y2O79GHDWaxuLj0z2GyAA3m66Hj8A7Cp3H2gtPLbRjMoGH1mnjKhL0tGIOoUyOuriCX1+6Fw8Lmaqtod7R1qqbFzPZEgSsOnYeRSdv3zD/Z/tFqO1BmbGoV20n/7O9N7CqiTWqX0Ai1XbWK7niARi3S25BuoGuikzLLXSlOyRYsb5mnPe5cF0jomT2VSVAAeWi/28xzQNxW/03n3hKz0WhivC2nq7wPRY5+Spb/LfN/D02HAM7SQKvpduu3bNM1mW8VmBSJwm9PZTaxPgfa2fLxStbHqj18JwhfKlpHSftnG0lhkW922K1Q7kPiz2tyzUNhYfMXEymy0LRV94+kD9zOKrNr13X/jKkzjpqDC8MT1315UHZk6bH/UX9SQfbz+NeqfLc/uuU5dwqLQKIVYLxvbw4yzOUWmiVc1VL1rZ9Oa0e5JUvdU3KZS/LaO3OAXo9a6ZAf8mRoAfW2OImjQmTmZSWwVse1/sD5mubSz+ZIYWp6pS0TQtWfRXG6JQEm9dtjj5byqCxkZ2TUJCpAPl1bVYfcA7p9OijScAAPf3TkF0uN1/AVgs3ro+vX1RqK3yjgrVa4uTMrFsiYFbnFyuRq93E3bVAWJh6O4Piv2Nb2kbiw+YOJnJjkVAbYVYHNRsReGNmaHFSfkGHNdJrA+nR42XXnG5mn9soJXtF9vEbn49jd1qwQ/7iRqqP6w/BlmWUXT+Mr7YWwwAmDw4w6/nB6Df1/vZXQBkMcorsp3W0dyc0g1efkjfk4g2p6IIaLgihu3HZGgdjf8oX/b3LxO1lTrGxMksrlwE1r8u9odMN9/Ii8aUD5KLJ4G6G4t2DcGz1IoO65sUid1EN1FtJXD+iNbReDkbvN/AA9BaN2lwBkLtFuwsuoS1h8/h7a+PoMElY1jnBPRIjfb7+XXbwqq3hX1vJioVCG0LuBr0l3j6Svm9x3UCrDZtY/Gn5F5Ax7vFQsb5r2gdTbNM/OlqPpLsbPrO/FdE8pTQFej1o8AFpYWIeLE+GWR9faC3hJ4LwxVWG5CSJ/b1tG7dxeNiVnN7ONA2w++nS4wMxcQBHQAAkz/Yhr/uOA0AmDmqk9/PDUC/I+uUxElpmdQjSfL+jRm1u84zos6/3dK6MGo2AAnY9wlwbG3Tj9N4oAQTJ4OQClfj7oOzgIrTN955eCWw3V3bNHa+ub+VKPT6YeKrxnM46Zke65yUupqEnIC1rD49shPiIkI8/34wLxV92scE5NyeFqfyw2LCST2QZf3OGH49T+Jk0AJxs9c3NZacC/SbIvY/nQbUnL/xMbs/Av53pKgT1QgTJyNwOWFdMwdtakthW/qwWI1cUbQF+NuTYr//VCBruCYhBpxeC2Z9UVfjXT5BryPqFHpceqXUnTj5ub6psegwO377cG8MzIrFPd2S8ML4ABb0x2QAVoeYZf7SycCdtzkVp4DqUrG6vTJDt14ZfUoCsy3ueyujZ4vXfMUpYOmjoidFcWS1SKiKC4BdH2oVIYKgacIELFY0/PDPaFg4AmHlh4AFQ4C8icDlcjFNvaseyBgK3DNH60gDx8gtTqUHAMhiIs82iVpH0zylNaFsv0j4QiK0jQfwtjgFeDTi8M4JGN5Z5YV8fWGxig/Nkj3itRObFfgYrqd03bbrCdjDtI3lVjwtTntES5kkaRtPS8iyORf3bY4jEnj0I+CP9wCntojPu16PAlXFwO6/iEWvuz8I3PmcZiGyxckoolKxMXsW5PjOQE0ZsOG3wM4PRdLU9X7gRx8BtpBbH8cs9Fow64tSA9Q3KaJSgMgU8Wall8VSyw6KbVLgWpw052k12a9tHAoj1DcpErqIlrGrFTcvddCzyrNiSRvJCsR21DqawEnMAZ74QkxTUHkGWP8boOD/xPtQ78eAB3+v6QAotjgZSE1oMhqe/Br27z4FijaL4tguY4GsEcb6FqUG5dvXhWPuYcYG+g5ghMLwxtL6AQc/E60MGUO0jaX+qlgcGQhoV53mlCRRL91NnhnDDZA42Rzi/aJ0n/jba2ugRXKViS9js4LrizEg6j+nbQV2LxWJuiMS6HY/0GGw1pExcTIcW6jopsubqHUk2opsBziixbxV548CsQEa4aQGoyZOephBvPyQ+NYZFuNdszAYJHUXWz20ODXUAsXu6TT0XhiuSOohEqfSfUDOOK2j8Z2Zl1rxhT0M6PeE+NERA31NJ2pEkhp11xmoQNzl9H74JRklcdJRgbjSTZfYLbhaWZWuugvHtJ+7rGSfmA4iPA6IydQ2Fl95ZhA32Mg6My/ua2BMnMi4jFjndOEYUH8ZsIUBcQapWUjuLWosqoqBijPaxlIW+BF1utAmUawgDxk4d1DbWJRuutR+xklejTolQbC3OOkUEycyLr0uRdEcZcbwpO5itJQRhIR7u4q0ngjT0+Kk0/X9/Ekv3XVGqm9SKK27F4+LNfaMQJaDbyoCg2DiRMZlxCkJjFbfpFBqWbSuc9JgDifd0MvIOk/iZJD6JgCIiBOjQwHtr5+vasrdcxhJYrkV0g0mTmRcyrew84WAs17bWHylLPtgtMQp1f0hqWWd09UKoNI9nDwxCGs+9NDiVF3mnoRTAlL7aBfH7TBanZPS2hTTQb8LgQcpJk5kXNFpgD1CzGWl89W0PTwtTjqfMfx6SrfM2QLtktQy9wdJVKoYVRdsPInTPtGNowUlcU7IAUIDsMCxmpQvK3qZ0uFWlMQpnt10esPEiYxLkjwLX0rlhzUOxgfVZUB1CQDJeJM3xmWL6R8arngLtANNqQ8Lxm46QHyASlbRfVNVrE0MnvXp+mpz/tZIMliLk6eeLwhbV3XOtInTnDlzMHjwYISHh6Nt27Y+PUeWZbz44otITk5GWFgYRo0ahSNHjvg3UGodd52TVG6AOiflDTuuoz6WLmkJi8X7YalVgbiSOCUbrLVOLfZQkcAC3lqvQDNiYbjC0+J0QD+LJTfHUxgehAMhdM60iVNdXR0eeughPPXUUz4/57//+7/x1ltvYeHChdiyZQsiIiIwZswYXL161Y+RUqu465wMlTgZrb5J4alz2qHN+ZVJF43Wzammxt11geZyAmd2in0jJk6xWWK1hYYrYtJcvVMSJ7Y46Y5pE6fZs2fjmWeeQc+evn1IybKMN954Ay+88AImTJiA3NxcfPjhhzh79iyWL1/u32Dp9nlanAzQVWf0xMkzEaYGLU7Oem/XRbC2OAHaFoiXHwLqqoGQNsackNFi9XbzKq2XelV9Drh8HoDEGicd4pIrbsePH0dJSQlGjRrluS06OhoDBgzApk2b8Mgjj9z0ebW1taitrfX8u7KyEgBQX1+P+nr1imiVY6l5TFOI6Qg7AJw/AiS7dH19bCV7IQFoiO8GOcBxqvL6Scr1XOv6ynNAWFs1QvNN2QHYnbWQQ9qgoU0qoPL1M8rflxSfAxsAuWQvGgIUq3JNXEVbxDYlD06nC3C6AnJ+NVkSu8N6ZjucxXvgypmgyjH98dqRiveK33PbDmiQ7Kq/3gPJKH9bgO8xMnFyKykpAQAkJV27/lVSUpLnvpuZN28eZs+efcPtX331FcLD1R9CumrVKtWPaWiyC9+T7LA2XEV43TndXh+Lqw7fc7eKrd5fhtrDX2gSR2uvz0hHEtrUlmL78gUoi+6lUlS3ln5+A/oAOG9PxcYvV/jtPHp9/ShC6y5gDAD53CGs+Hw5XJbALfxauu1TtAdQeKUtDn6hzeu3tTLKJfQCUL7vG2y+om6Bu5qvncxzq5ALoMQVg60GvdbX0/vfFgBcvuzbckaGSpxmzZqF+fPnN/uYgwcPIicncM3Izz//PJ599lnPvysrK5Geno577rkHUVFRqp2nvr4eq1atwujRo2G321U7rhlYinOA0r2IvHoWQ743UZfXRzq7E9JuGXJEAkbe/2jAl6pQ6/Vjda4A9ixB/3ZOuO4K3GKpllUbgSIgpttwjLtH/fMa5u9LliGfmANLzTmMzUuDnOr/SSiVa5PmEnNoZd01EZkdR/r9vP4gnUkEFi1CoqsU48ap8zryx2vH8uXXwGkgsccwjAvg35k/GOZvC94eo1sxVOL03HPPYfLkyc0+Jisr67aO3a5dOwBAaWkpkpOTPbeXlpaid+/eTT7P4XDA4XDccLvdbvfLi8RfxzW0RCVxOqPf61Mu6nOkpB6whwSuleB6rb4+GYOBPUtgPb0V1kBeZ3dNjzWlt1/Pq9vXT2MpecCRr2Ar2wdkDArIKR31l2C5dAKABFvGIEDv16gpKbkAJEjVpbDXXhRrAKpE1deOu3XamtQtsH9nfmSEvy1f4zNU4pSQkICEhAS/HDszMxPt2rVDfn6+J1GqrKzEli1bWjQyjzTgHlkXeVXjBWibY/TCcEV79wf1mR1AQy1gu/FLg+pk2Xv9grkwXJHcGzjylZiMNEDiqt2DL5J6GG/iy8ZCIsSUDuePiNdUtg5bzuRGCzkbsQg/CJh2VF1RUREKCgpQVFQEp9OJgoICFBQUoLq62vOYnJwcLFu2DAAgSRJmzpyJV199FZ999hn27t2LH//4x0hJScEDDzyg0f+CfBKvJE5nNQ6kGUadMfx6cR2BiATAWQuc3RWYc148AdRWANYQjjACgJTeYltcELBTxta4E6cOgWnh8ivly4teJ8KsOeddoy6+s9bR0E0YqsWpJV588UUsXrzY8++8vDwAwDfffIMRI0YAAA4dOoSKigrPY37xi1+gpqYGU6dOxaVLl3DnnXdixYoVCA0NDWjs1ELub2WRV89C1mopiua4XMZdo+56kgS0Hwgc/Adw8lux729n3PNGtesJ2LTr5tSN5N5iW3YQqL8C2MP8fsq4avc8aYH4fftbux7A/r/rN3FSpt2IyeAadTpl2hanRYsWQZblG36UpAkQczc1rpmSJAmvvPIKSkpKcPXqVaxevRqdOzPj173YTMgWO2yuWqBSh911F48D9TWArdHMz0amdNcVbQ7M+ZRJF1MNuMyHP0SliFY/2RmY+ZxqqxB9pUjstzdDi5O71VeviZNn4kvOGK5Xpk2cKIhY7aILCTqdQVx5g07sBlhN0MirfHie2ixa0/xNaXFi4iRIkrfVKQDdpdKZ7ZAgQ27bQSRtRqe0+p4/Ilrs9KaM9U16x8SJTEGO1/HSK8osxe16aBuHWtrlAvYI4GqFt4jVX5z1QPFusc/EyStFlB4EokBccrcsyukD/H6ugGiT5G6xc2m3YHVz2OKke0ycyBRkdxGldE6PiZNJCsMVVhuQ5p4/qGiTf89VdlCsLeaIBmI7+vdcRpLaR2wDsPyNdFokTq40kyROkqTfAnFZbtTixIEQesXEiUxBaXGCHtesUxanTQ7cTNt+12Gw2J70c+J0VqlvygMsfLvySOsvtuWH3COw/KShDpK7q1Q2Q32TQq+JU3UpcPUSIFk4ok7H+E5EpnBNV52eRtZVlwHVJQAk7wKtZqCMrjr5rX+vN+ubbi4iztsCd3qH/85TXACp4SpqrW2AuE7+O0+g6bVAXOmmi8kIyGhJuj1MnMgcYrPgggVSbSVQ1fTaggGntDbFZYvJ98wirb+YV6nqLHDhmP/OoyQFKX38dw6jSne3Op3e6r9zHFsLADjfJifgywT5lafFaV9gBjj4qsydOCWwvknPmDiROdgcqHG4F2hWvrXpQYm7sNlsM16HhHu7i46t8c85rlzyFu+m+X9NNsNJu0NsT23x3zmOi8TpXGQ3/51DC3HZgC1MTBNy8bjW0Xgpgy0SOaJOz5g4kWlUhbqHSuupQFxpcTJLYXhjWcPF9vg6/xz/1FYAMhCbBUS28885jMzT4rQDcDnVP379FffvACiPNFE3MwBYrN5Ra8qoVz1gi5MhMHEi06j2JE5+HiLfEsqbstlanAAgc5jYHl/nn+6Oom/Ftv1g9Y9tBondgJA2QF2Vf1pZT20BnLWQI5NR7TBh4qq3AvHGa9SxxUnXmDiRaVSGpYudUp3MzXK10lv/085EI+oUqX3FfE5XLgBlfpjBWhmxZ4b10fzBYvUWzfuju85d3yRnDDVXfZNCb4lT5RkxN5rFxhF1OsfEiUyjwpM47ddHwWepe326qFQxCspsrHbvtATuD1nV1F/xTkXQgS1OTVKmCDixUf1ju+ubXBnD1D+2HnhG1u3TNg6FEkd8Z8Dm0DYWahYTJzKNGkc7yFaHKPi8dELrcMw38eXNKHVOx75R97hndgDOOqBNOyAmU91jm0nj7lI1p4W4ctGznIucMVS94+pJUjcAkhgZWlOudTTeL1pmmrbEpJg4kWnIkhWysr6THr5FFpu4vkmRPUpsT2wA6i6rd9zG3XRm7CZSS1o/MTqspkzdQRGF+WJJkoSuosXUjByRYuABoI/uOk/iZJKlmUyMiROZS6L721ogVo2/FWUqAjO3OCXkANHpQMNV4MR69Y57coPYsjC8eTYH0N69FIqaoxuPrBLbTqPVO6Ye6anOqYSJk1EwcSJTkZVm7lKNW5wa6rxDi83c4iRJQKd7xP6Rr9Q5Zl2NmJEcALJGqHNMM/N016lUZ+ZyAYXuxKnzGHWOqVd6SZzqLgMXjop9sywGbmJMnMhUPImT1m+E5w4CrnogtK1okTEz5cP18Ffq1Nmc2Cjqm6LbA/EmWubDXzLddWYnNqgzn9PZncDl84AjCkg3ycK+TfEUiGs8l9O5g6JrNDweaJOkbSx0S0ycyFRkpavu0kkxHYBWGtc3mb1GJ2MoYAsFKorUqbM5mi+22Xeb/9qpIbk3EBIpFodVIwFQWg473iVGTpqZ0hpcfli0dGpFKS1I6s7XvAEwcSJzCYvxFrOWaTifU4mJZwy/Xki4SJ4A4PCXrT9e4WqxVQrPqXlWm7e77vDK1h/v8Aqx7WTybjpAzEgfmSxae7RspVbqm5SuQ9I1Jk5kPnqoc/K0OJlw4subyRkntvuXt+44F08A5wsByepNBujWuowV20NftO44548CxbvF9Td7fZMiJU9szxZoF0PjFifSPSZOZD7KqBStpiRwubxJW7B8g+x6v/iwLS4QH763q9DdTZc+AAiNViW0oND5XgCSSHoqTt/+cQ4sF9vMYUBEvBqR6V9yb7F1z1sVcLIMlLpbuziizhCYOJH5KKNStJqS4MIxoK5azK8TFyTFzRHx3hYi5cP3dhz8TGzNPgxebW0SvIv+HmpFd+n+ZWLb/cHWx2QUnhYnjRKnxkutJHTRJgZqESZOZD5JjRInLZZeObNDbJNzRf1JsFA+bPctu73nV5d55yIKpg9utXRxd5febnddeaGo87HYgK73qReX3qX0Ftvyw0BtVeDPz6VWDIeJE5lPbEcxyqu+Brh4PPDnV9ZYUxZgDRZd7xMfuqV7gXOHW/78A5+KIt2UPkAsl1lpsZzxYnt8vVgypaX2/11ss0YA4bGqhaV7bRKBqDQAsrc2MZDYTWc4TJzIfKw2MaM1oM1IGaXFKaVP4M+tpfBYoOPdYn/Xhy1//j73B3eP76sXUzCJ7yRmznfVA3v/1rLnupzArj+J/WC8/kqrkxbddSVco85omDiROSmj2Yp3B/a8znrvt9bUIEucAKDvE2K76/+A+qu+P6/yLFDkXp+u+wOqhxU08iaKrZIE+aowH7hUJCZs7faA2lHpn5Z1TsUFYhssI3BNgIkTmZPyDVJ5UwqU0v2As1Z8ACkLiAaTzmPETOlXLrSsSLxgCQAZSB8IRKf5Kzrzy30YsNjFF4aWdDtt/6PY9n5MzMsVbLRqcbpyUUzBATBxMhAmTmROniHGBeosA+IrpZsutU9wzgBssQJ9J4n9bf/r23NcTmDHIrHfd7I/ogoeEXHeObV2/dm351w86Z04s98U/8Sld8nuFqcLR4ErlwJ3XqVFvG2H4KorMzgmTmROSd3FN+8rF4CKU4E7b7AWhjeW92Nx7U9vA4q23PrxBz8Tv6OwGI6mU0Pej8V291IxzP1WNi8AIIui8Phsf0amXxFxQNv2Yj+Q3fvKpJtKVyEZAhMnMiebA0jsKvYDOSPwGSZOiEwCej8q9tfMbf6xsgysf13s958K2EP9G1sw6Hg3EN8FqK24datfZTGw4wOxP2Sm30PTNS3qnJRSAqWrkAyBiROZV6DrFmqrgXPfuc8dhIXhjQ19TkxNcGxN8+un7ftEjHy0RwADfhKw8EzNYgGGPiv2N74J1Jxv+rH5rwANV0VtWdaIgISnW0ripHS3B4Ly3qSUFpAhMHEi81LejAJVIF68W8xDFJUmWl2CWUwGMPApsf/Fz4GrlTc+5sol4Kv/EvtDn2GNh5p6PgQk9RRddatevPljjq0Bdi8R+2PmBmdNXmNpd4jt6W2BqYtkYbhhMXEi8/K0OBUE5o3QUxjOegUAwPD/ECPsLp0EPp0misAVLqe4reosEJMJDPqpdnGakcUKjPs1AAko+DOw5+Nr779UBPz938R+vylAWhB3LStS8sR6i1XFrVvvz1csDDcsJk5kXondRXfRlQvig8LfWBh+LUck8P0/ikLxg58BH/8YuHQKqDgD/HUy8N3n4r4f/BGwh2kdrfl0GOTtslv2E2DzQtGdfHwdsGg8UF0CJHQF7pmjbZx6ERLhXefy9Fb/n0/ppmN9k+EwcSLzsocC7XqK/TPb/X++0+5zBHt9U2PtB4jEyGITidIbPYD/6SYSKckq7mOi6T93/SeQ+wggO4EV/wHMSwUW3ye+SMRkAo//PTjnbWpKmnuh5NMBfL9I7ef/c5GqmDiRuSl1C6e2+fc8FafFkHrJykTget0mAE+uAjoM8d6WPlDc1m2CdnEFA4sVeGABMO437vXYANjDxXxZU9cAUSlaRqc/6e7E6ZSfW5xkWdRSAd73KDKMIFq6nYJSWn9g63veNyl/Kdostu16Ao42/j2XEaX2AZ74AqirEQX0jkitIwoeFgvQ/1+BO/6fKEh2RAJWu9ZR6VOau/WneLdYMshf02NUnAKqS0VLLLvqDMe0LU5z5szB4MGDER4ejrZt2/r0nMmTJ0OSpGt+7r33Xv8GSv51/RuhvyiJU/tB/juHGYREMGnSiiSJImQmTU2LyQTC48VCyf6cCFNp0WrXk/V9BmTaxKmurg4PPfQQnnrqqRY9795770VxcbHn5y9/+YufIqSAiMkAIhLEG2FJC9buaqlTSuI00H/nICL/kiQgfYDYV/6m/UGpb1JqqshQTJs4zZ49G8888wx69uzZouc5HA60a9fO8xMTE+OnCCkgJOna+Vn84WqlWNwXYOJEZHQd3K3GJ7/13zlY32RorHG6zpo1a5CYmIiYmBjcfffdePXVVxEXF9fk42tra1FbW+v5d2WlmOivvr4e9fX1qsWlHEvNY5pJc9fHktIX1kNfwFW0Bc5+U1U/t3RyM2yyC3LbDDSExgE6/B3x9dM8Xp+mBdu1kVIHwAZAPvktGmqvigL7ZrT4+jRcha14NyQA9cl5uny/UJORXj++xijJciCXjg+8RYsWYebMmbh06dItH7t06VKEh4cjMzMTR48exS9/+Uu0adMGmzZtgtV68z+el19+GbNnz77h9iVLliA8nMN89SCu6iDuLJyHK/ZYfNX9f1SfITmn+BN0KfkUp2KGYGfGv6l6bCIKLEl2Yuyep2B3XcWaLq+gIjxD1ePHVB/BsCO/wlVbFFb2eJsztuvI5cuX8aMf/QgVFRWIiopq8nGGSpxmzZqF+fPnN/uYgwcPIicnx/PvliRO1zt27Bg6duyI1atXY+TIkTd9zM1anNLT01FeXt7shW+p+vp6rFq1CqNHj4bdzuLO6zV7feovw/abjpBc9aiftkPM1Ksi65/ug6VoExrGvg65zyRVj60Wvn6ax+vTtGC8Ntalj8BydDWco1+Fq3/zayi29PpYvn0T1m9+BVeX8XD+YLFaIeuWkV4/lZWViI+Pv2XiZKiuuueeew6TJ09u9jFZWVmqnS8rKwvx8fEoLCxsMnFyOBxwOBw33G632/3yIvHXcc3iptfHHi3mVjq1GfbTm4GEbPVOWFfjKfS0Zd8F6Px3w9dP83h9mhZU1yZjCHB0NaynNsM65GmfnuLz9SkStVOWzGGwBMv1hDFeP77GZ6jEKSEhAQkJCQE73+nTp3H+/HkkJycH7JzkJxl3ilEyJzYAeRPVO27RJjFiLzodiFUvaSciDWXcKbYnvwVcLjEXlhqc9d6pS5RzkOGYdlRdUVERCgoKUFRUBKfTiYKCAhQUFKC6utrzmJycHCxbtgwAUF1djZ///OfYvHkzTpw4gfz8fEyYMAHZ2dkYM2aMVv8NUovyJnV8vboL/h5fJ7aZw1mrQGQWKXlihvUrF4BzB9U77tkCoL4GCIsBErupd1wKKNMmTi+++CLy8vLw0ksvobq6Gnl5ecjLy8P27d41iA4dOoSKigoAgNVqxZ49e3D//fejc+fOePLJJ9G3b1+sX7/+pl1xZDDp/cWCspWngYsn1DvusbVimzVcvWMSkbasdqDDYLF/9Gv1jntivdh2GKJeKxYFnKG66lpi0aJFWLRoUbOPaVwXHxYWhpUrV/o5KtJMSISnzgknNgCxma0/5uUL3tmFM4a2/nhEpB8dRwKFq4HCfGCwb3VOt3Rig9jy/cLQmPJS8FC665Rvfa11ciMAGYjvAkSxDo7IVLJHie3Jb4G6y60/HuubTIOJEwWPzGFie/RrUfDZWkdWiW3WiNYfi4j0Jb6TGPThrHV/SWqlos2ivik8jvVNBsfEiYJH+0FASCRQcw4o3tW6Y7lcwOEVYr8zBw8QmY4kAR3vFvuF+a0/3hF3KUj2aNY3GRx/exQ8bCFAxxFi//BXrTtW8S6gulQkYmx2JzInpbuucHXrj6W853S+p/XHIk0xcaLg0sndOnSklQMBDrlbm7LvBmwcdUlkSlnDAYsNOH8EKC+8/eNcPAGUHwIkqyg6J0Nj4kTBpZP7297ZXUBV6e0f59CXYtt5bOtjIiJ9Co321jAeWH77x1Fam9oPAsLatjIo0hoTJwoukUlicjsAOHKb3XWXTgGlewHJ4k3EiMicuk0Q29YkTkoLN7vpTIGJEwUfpZXowKe39/z9fxfb9IFARJw6MRGRPuV8T3SxlewFzh9t+fMvX/BOlNv5XnVjI00wcaLg0+P7Ynv0a6C6rGXPlWWg4C9iv9fD6sZFRPoTHuudyuR2vmztXybWs2zXE0joom5spAkmThR84rPFLOKyE9j3ScueW7JHrF1ldQDdHvBLeESkM90fENt9n7R8rcs9H4ltLr9omQUTJwpOypuY8qbmq91LxbbLWBZ5EgWLrvcDtlCgdB9wepvvz7twHDi1RdRD9viB/+KjgGLiRMGpx/dF3cLZXcC5w749x1kP7P2r2O/1qP9iIyJ9CY/1dvFv+1/fn6e8X2QO57JMJsLEiYJTRDzQabTY3/6+b8/Zv1zMOh6RCGRzLhaioHLHk2K7fxlQU37rxzvrgR2LxD676UyFiRMFr/7/Kra7/gRcrWj+sbIMbHrH+zyr3b+xEZG+pPYVU5k464Cdi2/9+IOfAZVngIgEoPuD/o+PAoaJEwWvjiOBhBygrhrYvLD5xx5eCRQXALYwoN+UgIRHRDrTf6rYbnoXqK1u+nEuF7DudbHf70nAHur/2ChgmDhR8JIkYPgvxP6md5pufnc2APmviP0BU0U3HxEFn54PAbFZwOXzwLdvN/24fX8DyvYDjmhg4E8CFx8FBBMnCm7dHhTzq9RWAiuev/ljNr8r3gTDYoAhMwMaHhHpiNUO3P1fYn/D/wDlR258zJWLwMr/FPtDpov3DTIVJk4U3CwW4HtvApCAvR8DOz+89v6T33pbm0a/IkbXEFHw6v6g6OZ31gIf/xiorfLe52wA/j4VqCkD4rsAg5/WLk7yGyZORGl9gRGzxP4/ZgDrfgNcPAns+j/gzz8AXA3izTLvcW3jJCLtSRIw4V2gTRJQdgC2P92P2OrDQOl+YOmjYg1MWyjwL+8BNofW0ZIf2LQOgEgXhv0CqDwrRst8/Svxo8gaId4oJUmz8IhIR6KSgcf+CvzpXyCV7sXQ0r3AkVfFfbZQ4AcfACm9NQ2R/IctTkSA6LK7701gwu9EEzskILo9MPIl4Ed/BUIitI6QiPQkuRcwdQ1cPX6AeksYZFsokD0KePIrIGec1tGRH7HFiUghSUDeY+LH5RLJFBFRU9qmwzlhIb6w/RPjxo2FPYRdc8GAnwxEN8OkiYh8JUliPToKCvxNExEREfmIiRMRERGRj5g4EREREfmIiRMRERGRj5g4EREREfmIiRMRERGRj5g4EREREfmIiRMRERGRj5g4EREREfmIiRMRERGRj5g4EREREfmIiRMRERGRj5g4EREREfnIpnUAZiPLMgCgsrJS1ePW19fj8uXLqKyshN1uV/XYZsDr0zxen+bx+jSN16Z5vD7NM9L1UT63lc/xpjBxUllVVRUAID09XeNIiIiIqKWqqqoQHR3d5P2SfKvUilrE5XLh7NmziIyMhCRJqh23srIS6enpOHXqFKKiolQ7rlnw+jSP16d5vD5N47VpHq9P84x0fWRZRlVVFVJSUmCxNF3JxBYnlVksFqSlpfnt+FFRUbp/8WmJ16d5vD7N4/VpGq9N83h9mmeU69NcS5OCxeFEREREPmLiREREROQjJk4G4XA48NJLL8HhcGgdii7x+jSP16d5vD5N47VpHq9P88x4fVgcTkREROQjtjgRERER+YiJExEREZGPmDgRERER+YiJExEREZGPmDgZxLvvvouMjAyEhoZiwIAB2Lp1q9Yh6cK6detw3333ISUlBZIkYfny5VqHpCvz5s3DHXfcgcjISCQmJuKBBx7AoUOHtA5LFxYsWIDc3FzPxHyDBg3Cl19+qXVYuvXaa69BkiTMnDlT61B04eWXX4YkSdf85OTkaB2Wrpw5cwYTJ05EXFwcwsLC0LNnT2zfvl3rsFqNiZMBfPTRR3j22Wfx0ksvYefOnejVqxfGjBmDsrIyrUPTXE1NDXr16oV3331X61B0ae3atZg2bRo2b96MVatWob6+Hvfccw9qamq0Dk1zaWlpeO2117Bjxw5s374dd999NyZMmID9+/drHZrubNu2Db///e+Rm5urdSi60r17dxQXF3t+NmzYoHVIunHx4kUMGTIEdrsdX375JQ4cOIDXX38dMTExWofWapyOwAAGDBiAO+64A++88w4AsR5eeno6nn76acyaNUvj6PRDkiQsW7YMDzzwgNah6Na5c+eQmJiItWvXYtiwYVqHozuxsbH49a9/jSeffFLrUHSjuroaffr0we9+9zu8+uqr6N27N9544w2tw9Lcyy+/jOXLl6OgoEDrUHRp1qxZ2LhxI9avX691KKpji5PO1dXVYceOHRg1apTnNovFglGjRmHTpk0aRkZGVFFRAUAkCOTldDqxdOlS1NTUYNCgQVqHoyvTpk3D+PHjr3kPIuHIkSNISUlBVlYWHnvsMRQVFWkdkm589tln6NevHx566CEkJiYiLy8Pf/jDH7QOSxVMnHSuvLwcTqcTSUlJ19yelJSEkpISjaIiI3K5XJg5cyaGDBmCHj16aB2OLuzduxdt2rSBw+HAT37yEyxbtgzdunXTOizdWLp0KXbu3Il58+ZpHYruDBgwAIsWLcKKFSuwYMECHD9+HEOHDkVVVZXWoenCsWPHsGDBAnTq1AkrV67EU089henTp2Px4sVah9ZqNq0DIKLAmDZtGvbt28c6jEa6dOmCgoICVFRU4G9/+xsmTZqEtWvXMnkCcOrUKcyYMQOrVq1CaGio1uHoztixYz37ubm5GDBgADp06ICPP/6YXb0QX9T69euHuXPnAgDy8vKwb98+LFy4EJMmTdI4utZhi5POxcfHw2q1orS09JrbS0tL0a5dO42iIqP56U9/is8//xzffPMN0tLStA5HN0JCQpCdnY2+ffti3rx56NWrF958802tw9KFHTt2oKysDH369IHNZoPNZsPatWvx1ltvwWazwel0ah2irrRt2xadO3dGYWGh1qHoQnJy8g1fQLp27WqK7kwmTjoXEhKCvn37Ij8/33Oby+VCfn4+azHolmRZxk9/+lMsW7YMX3/9NTIzM7UOSddcLhdqa2u1DkMXRo4cib1796KgoMDz069fPzz22GMoKCiA1WrVOkRdqa6uxtGjR5GcnKx1KLowZMiQG6Y+OXz4MDp06KBRROphV50BPPvss5g0aRL69euH/v3744033kBNTQ2eeOIJrUPTXHV19TXf8I4fP46CggLExsaiffv2GkamD9OmTcOSJUvw6aefIjIy0lMXFx0djbCwMI2j09bzzz+PsWPHon379qiqqsKSJUuwZs0arFy5UuvQdCEyMvKGWriIiAjExcWxRg7Az372M9x3333o0KEDzp49i5deeglWqxWPPvqo1qHpwjPPPIPBgwdj7ty5+OEPf4itW7fivffew3vvvad1aK0nkyG8/fbbcvv27eWQkBC5f//+8ubNm7UOSRe++eYbGcANP5MmTdI6NF242bUBIH/wwQdah6a5KVOmyB06dJBDQkLkhIQEeeTIkfJXX32ldVi6Nnz4cHnGjBlah6ELDz/8sJycnCyHhITIqamp8sMPPywXFhZqHZau/OMf/5B79OghOxwOOScnR37vvfe0DkkVnMeJiIiIyEescSIiIiLyERMnIiIiIh8xcSIiIiLyERMnIiIiIh8xcSIiIiLyERMnIiIiIh8xcSIiIiLyERMnIiIiIh8xcSIiIiLyERMnIiIDWrx4MebOnYuGhgatQyEKKlzkl4jIYNasWYMpU6YgIiICDQ0NePHFF7UOiShocK06IiIDqampQW5uLh566CEMHToU3//+97Ft2zb07NlT69CIggK76ojIFE6cOAFJkjB58mRTn3fWrFlITk7Gq6++ivHjx2PmzJmYPHkyu+yIAoSJExHpkpKQNPeTkZGhdZgB9/bbb2PDhg2w2USlxWuvvYYdO3Z4/k1E/sW/NCLStY4dO2LixIk3va9t27ae/dTUVBw8eBDR0dEBioyIghETJyLStezsbLz88su3fJzdbkdOTo7/AyKioMauOiIyheZqjdatW4f77rsP8fHxcDgc6NSpE1544QVcvnzZ5+M7nU7Mnz8f2dnZCA0NRXZ2NubNmweXy9Xs89Q496BBgyBJEjZt2nTN7ZWVlejduzccDgdWrVrl8/GI6PYxcSIiU1uwYAFGjBiBjRs3Yvz48Zg+fTrS0tIwZ84cjB49GnV1dT4dZ+rUqZg1axZcLhemTZuGMWPG4Le//S1mzJjh93PPnz8fAPDCCy94bqurq8ODDz6IPXv2YPHixRg9erRPxyKi1mFXHRHpWmFhYZNddQMHDsS9997b5HMPHDiA6dOnIzc3F/n5+YiLi/Pc99prr+H555/H22+/jeeee67ZGNasWYP3338fvXr1wsaNGxEREQEA+OUvf4nevXv79dwAMGzYMIwfPx7//Oc/sWbNGgwfPhyTJ0/G119/jTfeeAOPPPLILY9BRCqRiYh06Pjx4zKAZn9mzJhxw+MnTZrkuW369OkyAHndunU3HN/pdMoJCQly3759bxnLE088IQOQP/nkkxvu+9WvfnXDedU8t2LPnj2yxWKR77zzTvnZZ5+VAcjPP/+8z88nInWwxYmIdG3MmDFYsWLFbT138+bNAICVK1ciPz//hvvtdju+++67Wx5n9+7dAIChQ4fecN/NblPz3IqePXti4sSJ+PDDD7FhwwZMmTIFc+fO9fn5RKQOJk5EZFoXLlwAAMyZM6dVx6moqIDFYkF8fPwN9yUlJfn13I0lJCQAACIjI/Huu++qdlwi8h2Lw4nItKKiogCI0WeyLDf5cyvR0dFwuVwoLy+/4b7S0lK/nlvxzjvv4PXXX0dSUhKqqqqwePFin59LROph4kREpjVgwAAA3m6z29WrVy8AwPr162+472a3qXluAPj4448xY8YM3HXXXdi1axeio6Mxe/bsFk1pQETqYOJERKb17//+77DZbHj66adRVFR0w/2XLl3Crl27bnmcxx9/HADwyiuvoKamxnP7mTNn8Oabb/r13Pn5+Xj88cfRs2dPLF++HMnJyXjmmWdQXFzc5LmJyH8kuSVtxUREAXLixAlkZmY2u+QKIBa9DQ0N9Tx+0qRJWLRokef+P/zhD3jqqadgt9sxbtw4dOzYEVVVVTh27BjWrl2LyZMnY+HChbeMZ8qUKfjggw+QmZmJBx98ELW1tfjoo48wcOBAfP755zecV41z79y5EyNGjEBcXBy+/fZbJCcnAxDdf5mZmXA6nTh27BhiY2NvGT8RqSTwA/mIiG7Nl+kIAMgXL1685vHXTwsgy7K8detW+ZFHHpFTUlJku90ux8fHy3369JFnzZolHzx40Kd4Ghoa5Hnz5slZWVlySEiInJWVJc+dO1cuLCxs8rytOXdhYaGclJQkx8XFyd99990N98+fP18GIP/sZz/zKX4iUgdbnIjIFL777jt07doVU6dOxe9//3utwyEik2KNExGZQmFhIQAgLS1N40iIyMw4jxMRGdrhw4fx/vvvY8mSJbBYLJgwYYLWIRGRibHFiYgM7cCBA3jzzTcRExODTz75BLm5uVqHREQmxhonIiIiIh+xxYmIiIjIR0yciIiIiHzExImIiIjIR0yciIiIiHzExImIiIjIR0yciIiIiHzExImIiIjIR0yciIiIiHzExImIiIjIR0yciIiIiHzExImIiIjIR/8fw2CK/9ndamoAAAAASUVORK5CYII=\n" }, "metadata": {} } ], "source": [ "# Definimos el dominio y la imagen\n", "x = np.linspace(0, 2*np.pi, 500)\n", "y = np.abs(np.sin(x))+np.cos(5*x)/1.2\n", "\n", "# Calculamos los picos\n", "picos, diccionario = find_peaks(-y) # Acá agrego el parámetro\n", "\n", "# Graficamos la función\n", "plt.plot(x, y, label = \"Datos originales\")\n", "plt.plot(x, -y, label = \"Datos invertidos\")\n", "\n", "plt.xlabel('Eje de $\\hat x$', fontsize = 14)\n", "plt.ylabel('Eje de $\\hat y$', fontsize = 14)\n", "plt.legend(loc = \"upper left\", fontsize = 12)\n", "\n", "plt.grid()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "JbdhDMohsj4w" }, "outputs": [], "source": [ "# Calculamos los picos\n", "picos, diccionario = find_peaks(-y) # Le paso los datos invertidos\n", "\n", "# Graficamos la función\n", "plt.plot(x, y)\n", "plt.plot(x[picos], y[picos],\".\", c = \"k\", ms = 10)\n", "plt.xlabel('Eje de $\\hat x$', fontsize = 14)\n", "plt.ylabel('Eje de $\\hat y$', fontsize = 14)\n", "\n", "plt.grid()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "id": "y4CQvLRBCDN1" }, "source": [ "Con esto termina todo lo que teníamos para enseñarles hoy, ahora les toca aprender por su cuenta, llegó la hora de elegir un problema y pensar un rato largo.\n", "\n", "## ¡Manos a la obra!\n", "\n", "## Les pedimos por favor que **lean y respeten las consignas**." ] }, { "cell_type": "markdown", "metadata": { "id": "9fVj0z1tbvSz" }, "source": [ "# _Problema integrador 1 (Física)_\n", "\n", "En un laboratorio se armó el montaje que se muestra a continuación: un carrito sujeto a un resorte fijo en uno de sus extremos.\n", "\n", "![surface32779.png]()" ] }, { "cell_type": "markdown", "metadata": { "id": "jJFe_UW05ZfX" }, "source": [ "Se propuso estudiar como la masa del carrito (que se podía variar agregando pesas sobre el) afectaba su frecuencia de oscilación. Con este objetivo, se realizó el siguiente procedimiento 9 veces, comenzando con el carrito vacío y agregando una pesa en cada iteración:\n", "\n", "1. Se comenzaba a grabar el carrito con una cámara lateral al montaje.\n", "2. El carrito se alejaba $5~\\mathrm{cm}$ de su posición de equilibrio y se soltaba.\n", "3. $10~\\mathrm{s}$ después de soltar el carrito, se cortaba la grabación. Esta se guardaba como `[n].mp4`, con `[n]` el número de pesas sobre el carrito.\n", "\n", "Finalmente se subieron todas las grabaciones a un software de trackeo, calibrado para poder medir la distancia del carrito a su posición de equilibrio cada $0.2~\\mathrm{s}$ desde que se soltó. Los datos de cada grabación se guardaron en archivos nombrados `[n].csv`, con `[n]` el número de pesas correspondiente.\n", "\n", "La idea es ahora hacer el análisis de las mediciones, que se pueden encontrar en este [link](https://github.com/fifabsas/talleresfifabsas/blob/master/python/3_Ejercicios/Datos_f%C3%ADsica/Datos%20Ejercicio%201%20-%20F%C3%ADsica.zip), en Python." ] }, { "cell_type": "markdown", "metadata": { "id": "Ccs3GpRG962T" }, "source": [ "---\n", "\n", "### Ejercicio 1 (para ir entrando en calor)\n", "\n", "Escribir una función llamada `masa_carrito(n)` que tome:\n", "- `n`: el número de pesas colocadas en el carro.\n", "\n", "y que devuelva:\n", "- `m`: la masa total del carrito.\n", "\n", "Considerar que la masa del carrito sin pesas es de $0.15~\\mathrm{kg}$ y cada una de las pesas agregadas tiene una masa de $0.10~\\mathrm{kg}$.\n", "\n", "---" ] }, { "cell_type": "code", "source": [], "metadata": { "id": "HLh912RTkU43" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "6Fd9nZca639_" }, "source": [ "Cada `.csv` tiene 3 columnas: \"T [s]\" para los tiempos, \"X [cm]\" para la posición, y \"X_err [cm]\" para la incerteza en la posicion. Las mediciones de tiempo también tienen incerteza, pero mucho más chica y la vamos a despreciar en el análisis. También despreciariemos las incertezas en las mediciones de masa. (Si llegan a encontrarse con un experimento similar en un labo, registren todas las incertezas y hablen con sus profes antes de no tener en cuenta incertezas en algún cálculo o ajuste).\n", "\n", "De cada archivo queremos obtener una frecuencia de oscilación. Para enfrentar esta tarea, vamos a empezar analizando solo un archivo, `0.csv`, y luego veremos como adaptar el código para poder analizar los otros .csv's sin hacer mucho más trabajo." ] }, { "cell_type": "markdown", "metadata": { "id": "bHA-u8QgHhRm" }, "source": [ "---\n", "### Ejercicio 2: Abrir y graficar `0.csv`\n", "\n", "Queremos empezar graficando la posición en función del tiempo del carrito sin pesitas, para observar las mediciones registradas que pueden encontrar [acá](https://github.com/fifabsas/talleresfifabsas/raw/refs/heads/master/python/3_Ejercicios/Datos_f%C3%ADsica/Datos%20Ejercicio%201%20-%20F%C3%ADsica.zip).\n", "\n", "1. Importar `numpy` y `matplotlib.pyplot` para poder acceder a las funciones de Numpy y del módulo `pyplot` de Matplotlib. Usar las abreviaciones estándar `np` y `plt` (ver clase pasada).\n", "2. Cargar los datos del archivo `\"0.csv\"` subiendolo a Colab y usando la función `np.loadtxt`. Guardar:\n", " - los _tiempos_ de las mediciones en la variable `ts`,\n", " - las _posiciones_ medidas en `xs`,\n", " - y las _incertezas_ de las posiciones en `xs_err`.\n", " \n", " _Para usar la función `np.loadtxt` tienen de referencia el material de la clase pasada o la documentación de Numpy_.\n", "3. Usar la función `plt.errorbar` para gráficar `xs` en función de `ts` (`ts` corresponde al eje $\\hat x$ del gráfico, mientras que `xs` corresponde al eje $\\hat y$). Incluir las incertezas en la posición.\n", "4. Etiquetar los ejes del gráfico \"Tiempo [s]\" (eje $\\hat x$) y \"Posición [cm]\" (eje $\\hat y$). De título poner \"0 pesas sobre el carrito\".\n", "5. _(opcional)_ Embellecer.\n", "\n", "---" ] }, { "cell_type": "code", "source": [], "metadata": { "id": "13C8LHpgkTbr" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "RjQre3h1GGPV" }, "source": [ "### UN PROBLEMA COMÚN\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "id": "ePqT8OJIHgpo" }, "source": [ "Ahora que vimos que los datos tienen un comportamiento oscilatorio, como es de esperar por la naturaleza del experimento, nuestro objetivo es medir su frecuencia de oscilación. Nos gustaría hacer un ajuste sinusoidal, pero como vimos la vez pasada, `curve_fit` no siempre devuelve los parámetros más óptimos. A veces devuelve los parámetros correspondientes a algún otro mínimo local de la función RMSE. Veamoslo con los datos de `0.csv`, ajustandolos con un coseno:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "A5Bc6FOrHdBz", "colab": { "base_uri": "https://localhost:8080/", "height": 452 }, "outputId": "0cd853cb-c961-4707-812a-fcc2a52d81d8", "cellView": "form" }, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGzCAYAAADT4Tb9AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPANJREFUeJzt3Xt8VNW5//FvEiQEAlFDuEQCAkqDgERBUKEVy8ValZfaatsfWtDWRosVS39atbXUUxXRWls5FuMFbc/Raq1HrT1i5Ue9NKiAwCgoECnSRBJAtM2NEiBZvz9WM0lIIJNkz+y913zer9e8yExmwsqenZlnnmc9a6UYY4wAAAAcker3AAAAALxEcAMAAJxCcAMAAJxCcAMAAJxCcAMAAJxCcAMAAJxCcAMAAJxCcAMAAJzSze8B+KGhoUHl5eXq3bu3UlJS/B4OAACIgTFG1dXVys3NVWrq4fMzSRnclJeXKy8vz+9hAACATigrK9OgQYMO+/2kDG569+4tyR6cPn36+DwaAAAQi6qqKuXl5UXfxw8nKYObxlJUnz59CG4AAAiZ9qaUMKEYAAA4heAGAAA4heAGAAA4heAGAAA4heAGAAA4heAGAAA4heAGAAA4heAGAAA4heAGAAA4heAGAAA4heAGAAA4heAGAAA4heAGAAA4JSl3BfdaRUWFKioqWt0+cOBADRw40IcRAQCQvMjceKCoqEjjxo1rdSkqKvJ7aAAAJB0yNx4oLCzU9OnTNXnyZElScXGxMjIyyNoAAOADghsPDBw4UH369IleLygoUK9evXwcEQB4h9I7woayFADgiCi9I2zI3MRBWVmZ8vPz/R4GAHiC0jvChuDGI2VlZdGvCwoKVFJSosGDB/s4IgDwBqV3hA1lKY98+umn0a/r6uq0Z88eH0cDAEDyIrjxSHZ2dvTr9PR09e3b18fRAACQvChLeSQvLy/6dSQSoSTVhlg6LujKiA3HCQAOj8xNHDQPdNAklo4LujJiw3ECgMNLMcYYvweRaFVVVcrKylJlZWWLSXJdUVtbq8zMTElSTU0Nk+3aUFFRoW3btrXZcdE8c9PefcBxQuLxGocgiPX9m7IUEiaWjgu6MmLDcYKfWO4CQUdZygMVFRWKRCLR65FIROvWrWtzTgQAhNGhy12Ulpb6OBrgyAhuPFBUVBQtD0jS5MmTmf8AwCksd4EwoSzlgcLCQs2cObPV7cx9QKJQJkC8sdwFwoTgxgNM4oQfWBW7fbTMe4flLhAmlKWAkKJM0D5a5uOD5S4QdAQ38E3zzENX7pOsKBO0r7CwUMXFxdHrxcXFWrt2rQoLC30cFYB4oyyFhIqllEK5JTaUCdoXS8s8pSvAPWRukFCxlFIot3QcZYLOo3QFuIfMDRIqllIK5RYkUmFhoaZPn97mas8AwongBgkVSykl2cstsW4wum3btuj3IpEI2y90Eqs9t4/zDWFDWQq+iaWUkozlllg3GGXhSCQK5xvChswNEDCxlElYOBKJxPmGsCG4AQIm1g1GeWPpOFZy7hzON4QNZSkATmPDRyD5ENwAcBpLCwDJh+AGgNM6urQAq2ID4cecGyRMLO2ktJzCa7EsLcCq2IBbyNwgYWJpJ6XlFPF0uKUFKF0BbiFzg4SJpZ2UltPW6PCJP1bFBtwS+uDmrrvu0s0336x58+bpl7/8pd/DwRHEUlqi/GRRJkmsZF8VG95gE9bgCHVZas2aNSoqKtLJJ5/s91AAT1Em8U8yrooNb7AJa3CENripqanRrFmz9PDDD+uYY47xeziApyiTAOFTWFio4uLi6PXi4mKtXbtWhYWFPo4qOYU2uJk7d67OO+88TZs2ze+hAJ6jTAKEz8CBA1VQUBC9XlBQoFNPPZWSlA9COefmqaee0rp167RmzZqY7l9XV6e6urro9aqqqngNDfBcZ8sk1P9ZWgBIVqHL3JSVlWnevHl64okn1KNHj5ges3DhQmVlZUUv1NSRDKj/s7QAkKxSjDHG70F0xPPPP6+LLrpIaWlp0dvq6+uVkpKi1NRU1dXVtfie1HbmJi8vT5WVlS02KASCora2VpmZmZLs/LJDN86MRWPWoq3dxZMlaxFr9sqL4w1ILc+lTZs2sYyDx6qqqpSVldXu+3foylJTp07Vhg0bWtx2xRVXKD8/Xz/84Q9bBTaSnZCZnp6eqCECgRDL7uKuiyWQo3TlHUqhLOMQFKErS/Xu3VujR49ucenVq5eys7M1evRov4cHIGQoXXmHUijLOARF6DI3AOAlVsX2TmFhoaZPn95mKTRZsIxDMDgR3Lz22mt+DwHwDGWSxOK4eodSKMs4BEXoylKA6yiTAG6gM9c/TmRuAJdQJgGAriG4AQKGMgkQTpSUg4OyFAAAHqCkHBxkbgAA8AAl5eAguAGSRFlZGaulAnFE+Sk4CG4Ah7FaKhAsrOKcGMy5ARzGaqlAsLCKc2KQuQEcxmqp8BOl0NZYxTkxCG4Ah7FaKtrjdZmEUuiRsYpzYlCWApIEq6WiLV6XSSiFIgjI3ABAEvO6TEIpFEFAcAMASczrMgmlUAQBZSkAQFxQCoVfCG4AAPBJ8wnY8A7BDQAACXRoR1lpaamPo3ETwQ0AAAlER1n8EdwAAJBAdJTFH8ENACCKOSDxR0dZ/NEKnkAub5jm8u8WVhUVFdq2bVv0eiQSia5fwnOC5lhV2D90lMUHmZsEcnnDNJd/t7AqKiqKLswmSZMnT+Y5QZuYAwLXkLlJIJc3THP5dwurwsJCzZw5s9XtPCc4FHNA4BqCmwRyecM0l3+3sKL8hFh5NQeEUiiCgrIUACCqK3NAKIUiKMjcAAA8QSkUQUFwAwDwBOWn9lG6SwzKUgAAJAilu8QgcwMAQIJQuksMghsAocOikd6hTJJYHNfEoCwFIHRYNNI7lEngIjI3AEKHRSO9Q5kELiK48VFZWZny8/P9HkZcuPy7wX8sGukdyiRwEcFNgrm8QZ3LvxuA5MY8r3Bhzk2CubxBncu/G4DkxjyvcCFzk2Aub1Dn8u8GILkxzytcCG4SzKsN6oLI5d8NQHJjnle4UJbyUVc2qAs6l383AECwEdwAAACnENwAAACnENwAAACnENwACL3maywBAMENgFA6dNHI0tJSH0cDIEgIbgCEEotGAjgcghsAocSikQAOh+AGQCixaCT8xDyvYGOF4gSqqKjQtm3botcjkUh0+e6wL+Gd6N+NTezQHItGIhHYHDg8yNwkUFFRUXRfEkmaPHmyMxuvJfp3YxM7AInGPK/wSDHGGL8HkWhVVVXKyspSZWVli71C4s3lbEOif7fGTFFbm9iF/VgiNrW1tcrMzJQk1dTUsM8P4m7z5s0aOXKkJDvPi8xN4sX6/k1ZKoFcfuNN9O/GJnYAEo15XuFBWQoAgA5inlewEdwAAACnUJYCAABdFqR5pWRuAABAlwWpi5XMDQAA6LLCwkJNnz69zS7WRAtd5mbhwoU67bTT1Lt3b/Xr108XXnihtmzZ4vewAABIagMHDlRBQUH0ekFBgU499VSCm1i8/vrrmjt3rt5++20tX75cBw4c0IwZM1RbW+v30AAkSEVFhSKRSPR6JBLRunXr2qz3A0g+oQtuXn75Zc2ZM0ejRo3S2LFj9fjjj6u0tFRr1671e2gAEsTl1b4BdF3o59xUVlZKko499lifRwI/lZWVKT8/3+9hIEEKCws1c+bMVre7ukgmgI4JdXDT0NCg66+/XpMmTdLo0aMPe7+6ujrV1dVFr1dVVSVieIgzNrFLXi6v9o1gcnnjYxeFrizV3Ny5c7Vx40Y99dRTR7zfwoULlZWVFb2wsqQb2MQOQKJQCg2X0G6cee211+qFF17QG2+8oaFDhx7xvm1lbvLy8hK+cSa8xSZ2ABIlSAvUBVm8N7R1duNMY4y+973v6bnnntNrr73WbmAj2Te+9PT0BIwOicQmdgAShSAmXEIX3MydO1dPPvmkXnjhBfXu3Vs7d+6UJGVlZSkjI8Pn0cEvlBoBAI1CN+dmyZIlqqys1JQpU6KR9MCBA/X000/7PTQAAPBvzZs+Ei10mZuQThECAMB5QeliDV3mBgAABFNQulgJbgAAgCeys7OjX6enp6tv376+jIPgBgAAeCIoXayhm3MDAInGGidAx/nZxUrmBgDaUVRUpHHjxrW6sDotEExkbgCgHYWFhZo+fXp0+f3i4uLovkIAgofgBqEU1k3sKG+E08CBA1ss9V5QUOD5svIAvENZCqEU1k3sKG8AQPyRuUEoFRYWaubMma1uD3r2g/IGAMQfwQ1CKaxlHMobABB/lKUAAIBTCG4AAIBTKEsBAJIaXYzeCFIXK5kbAEBSo4vRG0HqYiVzAwBIanQxeiNIXawENwDQQWVlZcrPz/d7GPAIXYzeCFIZj7IUAMSgrKws+nVBQYFKS0t9HA2AIyG4AYAYfPrpp9Gv6+rqtGfPHh9HA+BICG4AHzXPBiDYsrOzo1+np6erb9++Po4GwJEw5yZgaEl036HljZKSEg0ePNjHESEWeXl50a8jkQjPGRBgZG4ChpZE91HeCL/mgQ6A4CFzEzC0JLqP8gYAxBfBTcDQkug+yhtIFMrcSFaUpQAfUd5APFHmRrIicwMAjqLM3Tks0hh+BDcA4CjK3LGji9EtlKUAAEmPLka3ENwAAJIeXYxuIbgBACQ9uhjdwpwbAGhHRUWFtm3bFr0eiUSiE3OZnOsev7sYaeHvOjI3ANCOoqKiaMeRJE2ePJmWasQNLfxdR+Ym4GhJBPxXWFiomTNntrqdT9GIB1r4u47gJoBoSXQX5Y1w4vlBItHC33WUpQKIlkR3Ud4AgPgjcxNAtCS6i/IG/ESZG8mC4CaAaEl0F+UNJBplbiQjylIB53dLIoBwo8yNZERwAwAOo8yNZERZCgAcRpm7fXQxuofMDQAkCcrcbaOL0T0xZ27++Mc/dviHT58+XRkZGR1+HAAAiUIXo3tiDm4uvPDCDv3glJQUffjhhxo2bFhHxwQkF2OknTulLVvs5eOPpV277GXPHmnfPmn/fnuRpJ49pV697L85OdKgQdJxx0l5edJJJ0nDh0vdqDgjJA4elD76yJ77H34oVVRIu3fby2efSXV10oED9vxPS7Pnfq9eUmamNGBA0/l//PHSqFFSbq6UktKhIQS9/EQLf8d16BVw586d6tevX0z37d27d6cGBDhvxw7prbek1aulVaukSESqqvLu53fvLuXnS6ecIp15pjRpkjRypJRKFRo+a2iQ3n/fnverV9vL++/bAMcrRx9tg5zx4+25P2mSDXhChhb+rok5uJk9e3aHSkyXXXZZi+WjgaRVWyu9/rr05z9Lr7wibd7c+j6pqdLQodLnPicNGSL1728vOTk2Q9O9u700/ry9e6WaGpvd2bHDZnu2b5c2bbLfe+89e/nNb+xjjj5amjpVOu886dxz7SdeIBHKy6Xly+25v3y59Mknre+TkSGNGCGdeKLNQPbvL/XrJ2VnS+np0lFH2Ut9vT3/a2ul6mqb5fn4Y3v5299s5uef/5RWrrSXX/3K/vxhw6RzzrHn/9ln27+pgGurhZ/gJnYpxhjj9yASraqqSllZWaqsrAxkAFZbW6vMzExJUk1NDXuKhFF1tfSnP0lPPy29/LJNrTdKTZXGjpUmTrSX8ePti3p6etf/34YG6e9/lzZutJ+KV660n5L37m15v3HjpK98Rfr6121QBWf58npSWio984y9rFrV8nuZmdKECU2XU0+1AY0XmcW6Olveeu896e237fn/3nv276JRjx7SF78oXXqpdNFFUgDfAyRp8+bNGjlypCTbwk/mxor1/bvTwc2+ffv03nvvaffu3WpofuJIbU7MCpIgBzeNLYlt7QYb5JowZFPrL78sPfaY9NJLdq5MoyFD7CfHGTNsBuXooxM3rgMHpLVrpWXL7Ljeeafl9884Q/o//8cGOqyB4pyEBTeVldITT0j/9V82sGiUkmID+Bkz7N/A6afbLEyiVFVJb7wh/e//2kuzco/S06ULLrDn/3nnNWVHA6D587Zp0ybm3PxbzO/fphOWLVtmcnJyTEpKSqtLampqZ35kQlVWVhpJprKy0u+htLJgwQIjqdVlwYIFfg8Nh7N9uzG33mrMcccZY6cH28uJJxrz4x8b8+67xjQ0+D3KJjt3GvPww8ZMnWpMSkrTeLt3N2bWLGP++tdgjRddUlNTE30dqamp8faHNzTY82X2bGMyMprOpZQUY846y5gHHjCmosLb/7MrGhqM2bDBmP/4D2Py81v+vfbrZ8zNNxvz0Ud+j9IYE+fnLcRiff/uVObmxBNP1IwZM/STn/xE/fv373Dk5begZ24qKipa3U7mJmCMkf7yF+kXv7AZkcY/o+xsafZs6fLLbempg10bCVdeLv3+9/bT9rp1TbePGiVdc400Z47tTEFoxSVzs2+f9N//Ld13n/TBB023jxolffvb0te+JgX99coYO5n/ySdtxqnxdTclxc5L++537b8+TcRnekLb4lqW6tOnj9avX6/hw4d3aZB+CXJwg4Dbv1966ikb1Lz7btPtU6dKV10lXXihN3Nn/PDOO1JRkX2xb5yjc8wx0ty50ve+Zyd4IlQ8L3Pv3i0tWSI98EDTxOCePW1J89vftiWnoAf0bTlwQHrxRenBB+2k50YnnSTdcIMtWyW4ZEVw07a4lqWuuOIK88gjj3TmoYEQ5LIUAqqmxph77jEmN7cpjd2zpzHXXmvMhx/6PTpv/fOfxixebMwJJzT9runpxhQWGlNS4vfo0AGelbk/+sg+/+npTefE4MHG3HuvPV9cUlJizPz5xvTp0/S75uYac/fdCf1dKUu1La5lqb179+qSSy5RTk6OxowZo6MOmRx23XXXdfRHJhSZG8Sspkb69a+le+6xC+pJto36uuukwkLp2GP9HV881ddLL7wg3X13U8dLaqr9FPuTn9gOLwRal8vcH30k3XGHXVKgcS2a006TfvAD223n8mKRlZXSQw9Jv/ylLd9KthFg/nxp3ry4d1mRuWlbXMtSjz76qK6++mr16NFD2dnZSmmWhkxJSWmxAVkQEdygXTU1NvX+8583BTXDh0u33CLNmhXe0lNnGCMVF0uLFtluE8kGOZdfLt16qz0ucMu2bTao+e1vm4KaadPs8/35z4ez9NRZdXW2VHv33U1rVB1zjPR//68t18ZpwVqCm7bFtSzVv39/c8cdd5j6+vrOPNx3lKVwWHv32vRzdnZTSnr4cGMef9yYAwf8Hp3/3nnHmPPPbzo2aWnGXHGFMdu2+T0yeKGszJhvfcs+r43P8YwZxqxc6ffI/HfwoDG/+13LLqvsbGPuusuY6mrP/zvKUm2L9f27U9PA9+/fr6997WtKZTn3lvbtswunIXzq66XHH7crBN94o/Tpp9IJJ9h0/ObNtgPK5RR8rMaNsxMvV62ynST19XZdn899zpbq2lp9FsH3z39KN91kS42PPmqf1y99SXrzTbuy9pln+j1C/6Wl2YnTGzfaTrERI+zrxE032deKJUvsxGQEQqeik9mzZ+vpp5/2eizht3ixXXH2kkukrVv9Hg1iYYwttRQUSFdcYRf4GjRIWrrUbmXwzW8S1LRlwgS7IOBbb0nTp9sX9cWLbYnqZz+zy+Mj+Pbtk+69125PsGiRvf75z9ugZtkyu8AjWkpLs6Xp99+3H36GDbPboHz3u7YV/g9/aFoaAr7p1Jyb6667Tr/97W81duxYnXzyya0mFP/iF7/wbICH88ADD+iee+7Rzp07NXbsWC1evFgTJkyI6bFxm3Pzgx/YyWcNDfYN8ZprbI06J8e7/wPeWbVK+uEP7b5Pkp0seMst0rXX2r1ukoBn6yqtWGGP5dq19vqAAdKCBdK3vpXY1WgRm/p6O4/kxz+2WyVI9o35rrvsSr3JNKemq/bvlx5+WLrttqbM5cSJdo7OF77QqR/JSvWHF9c5N1OmTDns5eyzz+7Mj+yQp556ynTv3t0sXbrUvP/+++aqq64yRx99tNm1a1dMj4/rnJv33jPmy19uqsn27m3MHXcYU1vr/f+FzikpMearX23Z5nzDDcZ89pnfI0s4T1fErq835qmnjBk2rOnYjhhhzB/+wIrHQdHQYMyyZcacfHLTc3TcccY8+qidU4LOq6oy5ic/MaZXr6Zje955dkXkDmKl+sOL9f27U8GN3yZMmGDmzp0bvV5fX29yc3PNwoULY3p8QiYUr1hhzKmntnwBWbqUFxA/7dxpzDXXGNOtW9MS8VdcYUxpqd8j8015ebkpLi6OvngWFxebtWvXmvLy8s7/0Lo6Y+6/35i+fZvO/4kTjXn9de8Gjo5bs8aYs89uek6ysuxk2L17/R6ZWyoq7OtM46TslBRj5szp0OtMeXm5Wbt2batLl/4uHeFscFNXV2fS0tLMc8891+L2b37zm2bmzJltPmbfvn2msrIyeikrK0tMt1R9vTFPPGHMkCFNLyijRxvz0kt8kk2kqipjFixo+Ynq/PM79YnKRXHryqistHtu9ezZ8rhv3Ojd/4H2bd1qzNe+1nIPsR/8wJg9e/wemdu2bGmZIe7Rw5gbb0zKDLGX4tottXDhQi1durTV7UuXLtWiRYs68yNjtmfPHtXX17fa06p///7auXNnm49ZuHChsrKyope8vLy4jjGqccGzLVvspL1jjrEz7b/8ZbtmROP8BMTHgQN2Ab4TTrD18NpaWwt/7TXb8TN6tN8jdFufPtJ//If0t79JV19tJ2L+6U/SySdLV14pffyx3yN02+7ddh2W/Hzp6aftPJrLL5dKSuz6TdnZfo/QbSNGSM88Y3dI/8IX7GTtu++2k+5//nN7HfHTmchpyJAhZmUb6x68/fbb5vjjj+/Mj4zZjh07jCTz5ptvtrj9hhtuMBMmTGjzMb5lbg712Wd2bkfzJcy/8Q37yQreaWgw5pln7K7czXfofuYZMmZtSNh6Glu2GPOVr/BJNt6qq+2u15mZTcf6S18yJhLxe2TJq6HBmD/9yWbuG5+TvDy7fhZTFTokrpmbnTt3tjljOycnp83OCy/17dtXaWlp2rVrV4vbd+3apQEDBrT5mPT0dPXp06fFxRfHHGMj9y1bpMsus7f97nf2k9XcuU270qLz3njDtq9econ04Yd2s8cHHrBtm1/9Kl0gfhoxwrbJvvWWbTdu/kn23nv5JNtVBw7YjR9POMFuj1FTY9clWrHCtnWPHev3CJNXSortQotE7LpQgwbZZSfmzJFOOcUuq0D7uKc6Fdzk5eVp5cqVrW5fuXKlcnNzuzyoI+nevbvGjRunFStWRG9raGjQihUrdEZY1mQYMkT6r/+S1q+3C6EdPNhUPvnRj+yCWuiY99+XLrhAOuss2+Ldq5dtRd661a4/QTtycJx+um2/f/FF2378j3/Ypew/9zm73H99vd8jDBdjpP/5H1tmveYau+bKsGF29/rVq6UvftHvEaJRWpoNaEpKbGB/9NHShg028PniF1kE1kudSQstWrTIZGdnm6VLl5rt27eb7du3m0cffdRkZ2ebO++8s1Oppo546qmnTHp6unn88cfNBx98YL7zne+Yo48+2uzcuTOmxwdu+4XXXjPmjDOa0pXHHGO3AKCLoX0lJcbMmmU7Ehq3A7jmGtuxgJj4usz7wYO2Dfm445rO/5NPZtJ9LBoajHn5ZWMmTGg6dn372k61ujq/R4dYtDVV4ZJL7Osa2hTXbqmGhgZz4403mh49epjU1FSTmppqevbsaW677bZODbYzFi9ebAYPHmy6d+9uJkyYYN5+++2YHxu44MYY+0L1wgvGjBrVdJLn5hqzZIkx+/b5Pbrg+dvfbHtl8z1wLr7YmM2b/R5Z6ARiD5u9e21bclZW0/N5xhn2zZsgp6WGBmOWLzfmzDObjlXPnsb8+Me2Qw3hU1pqX8+af0ibM8eYDz/0e2SBk5BW8OrqarN69WqzYcMGsy9Eb8CBDG4aHTxoJ5kNHtz0wjVokP00RibHmL//3Zirrmpaq6axvfidd/weWWgFIrhp9Omntk25R4+Wa+QsW0aQY4wxr75qzOc/33JS9vz5dg0nhN9779mF/xqf39RUYy6/3E7GhzHG4XVuvBDo4KbRvn02oGmerh8wwJif/9wYv9+A/LBxozHf/GbLoOacc4zpQMYObQtUcNOovNyY669vGeRMmGA7TpItyKmvN+bFF1sGNenpxlx3nT1OcM+qVa2DnFmzjPngA79H5jvPg5t3333X1NfXxzyAjRs3mgMHDsR8/0QKRXDTaN8+W5pqvhBgdrZNQSfDC1txsTEXXND0u0vGTJ1qb4cnmgc3mzZt8ns4LVVU2MxERkbT83/SScY88ogx//qX36OLr7o6m8VtXqo+6ihjvvtdY8rK/B4dEmHNmtavf+efb1fAT7Yg/99iff+OeePMtLQ07dy5UzkxbgLZp08fRSIRDRs2LObJzYkSt40z4+nAAdthdeeddlE0yXYAfe1r0vXX25ZPV9TVSc8+a1u433zT3paSIl18sd2c8bTT/B2fYzZv3qyRI0dKsssmlJSUaPDgwT6P6hC7dtmFz4qKpOpqe1tOjl1C4ZprbMu/K3bvlh591HZQNi502KePXQhx3jwpzh2p8ebZZq3JZN066Wc/k154oallfOxYaf586etfl7p393d8CRTr+3fMwU1qaqq+853vqGfPnjEN4Ne//rU++OADghuvHTxoT/D77pOat+NPmiRddZVdy6VXL//G1xXbt9s3r0cfbdpdt3t3afZs2yo8YoSvw3PVypUro7sPS9LatWt16qmn+jiiI6islB55RPrVr+w6IZI9Ry6+WPr2t6Wzz7Yrg4eNMdJf/yotWWID+wMH7O0DB9oPL4WFUlaWr0P0yk9/+lPddtttrW5fsGCBfvrTnyZ+QGFSUmLP/ccfl/butbf162fby7/1raR4jfQ8uJkyZYpSOrgA2pNPPhnISDzUwU1za9bYE/3pp23QI0mZmTabc+WVdjG7oC9aV1UlPfec9N//bRcbazwdjzvOvqB/+9v2BR5xE4rMzaEOHrRBwL332r+DRkOH2hf5yy+Xgv47SDagf/JJe/5v2tR0+8SJNlPzjW9I6em+DS8eKioqtG3btmhAXVxcrIyMDDI3HfHZZ9JDD0mLF0vl5U23f/7z9vy/+GKpd2//xhdHngc3LnEmuGlUXm5XvXzssaaSlWRf6C++WPrKV+yLZVA+0VZVSX/+s1147IUXpH/9q+l706bZRfcuuEDq1s2/MSaR2tpaZWZmSpI2bdqk/Px8n0fUQevW2WzfE0/YzE6jiRPtStVf/apdODMoSkvtAoa/+13L7GvPntKsWbbMdsop/o0vAZqfczU1NeoV1myz3w4ckP73f+35/9JLUkODvb1HD+lLX7Ln//nn27KmIwhujsC54KZRY2r7scek3/++KW0p2ezH+edLU6falTBjnDvliYYG+6n0//0/u3Hi6683pd0luzLtZZfZTUYDWMZ0nTNvNHv32mzO0qX2HGv+0jZ2rDRjhr1Mnmxf/BOlrs6uPPvSS/aNaMOGpu+lpNhS2qxZ9kOII6Wn9jhzzgXJjh22XPWb39itZxqlp9uNO6dNk6ZPt38LQfmg2wkEN0fgbHDTXG2tzY48+6wNKKqqWn7/5JPtMvjjx9vLqFHeTUrbtUt67z27j8rKlTbg+uyzlvcZMcJmZ77xDenUU4NfPnOYk280O3fazOAzz7QOdHr0sFmd006TJkyw/w4e7M0Lfn299NFHNoBZs0YqLraBTV1d031SU6Uzz5QuushOBg35BOHOcPKcCwpj7OvvH/5gz/8tW1p+PyfHnn+nnWYv48Z5t0P8vn3SBx/Y8/+dd+z0CI+zkAQ3R5AUwU1zdXXSq69Kr7xi57W8917r+6Sl2dT9CSfYS26u1LevvRx9tC0Rdetm71dXZ4Ol6mq7L9DHH9tUe2mpnfC2e3frn5+RYecAffnLNqhJgolvYeH8G83u3fa8f+UVafly+wn3UBkZ9rwfMUI6/ng7STMnx14yMmxnYrduNgivrbWbUtbU2CDq44/tZft2+8LevMzaKCfHfnI+/3zpnHO8ezMJKefPuaAwRtq8uencf+01e/4e6thjpRNPtOd/Xp593c/Jsf+mp9tz/6ijbPBeXW3P/aoqOyWirMye/3/7m80YNZbGJNvh+IMfePorxTW4qa6uVu8QT1ZKuuDmULt322zKO+80XbzcrDMlxb5RjBljPyF/4Qs2O5NE7YphklRvNI0v9m+/bTMrq1fbYL95mbSrevSQTjrJpv8nT7aXE08kO9lMUp1zQbJ/f9N5v3q1/br5PE0vHHusfe0vKLBzfiZN8vTHxzW4KSgo0Msvv6wBAwZ0aZB+Sfrg5lDGSBUVdgftrVvtyb57t23H3rPHBj719fZy8KCN5Hv3tpPU+vSxnU2DB9vLsGH2hZ0Xq9BI+jeagwelv//dZh23bLGfQj/5xP4N7NljU+0HDtiLMbYjMTPTnuM5OfaT7qBB9t+RI21gn5bm928VaEl/zgVJba193S8psZmXioqm1/5PP2069w8etAF67972kpkpDRhgz/u8PJv5HzXKzu+MYyAf6/t3p9pRTjnlFE2cOFF//vOfW3RWRCIR3XLLLXrppZc682Phl5QUW4bKzbVZFiCZdOsmDR9uL+ee6/dogMTq1ctmGceO9XsknurUDLrHHntMc+bM0eTJk1VcXKySkhJdeumlGjdunNL4xAIAAHzU6YVEbrvtNqWnp2v69Omqr6/X1KlT9dZbb2nChAlejg8AAKBDOpW52bVrl+bNm6fbb79dJ510ko466ijNmTOHwAYA0CFljdtoAB7qVHAzdOhQvfHGG3rmmWe0du1aPfvss/rOd76je+65x+vxAYijiooKRSKR6PVIJKJ169a1ubEh4JXmAU1BQYFKS0t9HA1c1KngZunSpVq/fr3OO+88SdKXvvQlvfrqq7rvvvs0d+5cTwcIIH6KiopabJo5efJkjRs3TkVFRT6OCq779NNPo1/X1dVpz549Po4GLvJ0Eb/t27fr3HPP1abmG8AFEK3ggFVRUdFmloZNDBFPodysFYEQ11bwwzn++OP15ptvevkjAcQRQQz8kJeXF/06EokQ2IRA2D4Ieb571jHHHOP1jwQAOKp5oIPgKioq0rhx41pdglrC9jRzAwAA3FNYWKjp06dH5+gVFxcrIyMjkFkbieAGDgtbGhUWzxsQPAMHDmwxx6WgoCDQ22Z4XpYCgiJsaVRYPG8AuorMDZwVtjQqLJ43AF1FcANnhS2NCovnDUBXUZYCAABOIbgBAABOIbgBAABOYc4N2kVrbvs4RkBsKioqtG3btuj1SCQSnTDO3wq8QuYG7aI1t30cIyA2bNaKRPB048ywYOPMjmn8pNVWa27QP2nV1tYqMzNTklRTUxO3rpswH6MgStTzhsQjyxlezf8uN23apPz8/ISPwZeNM+EmWnPbxzECYkMQE15lZWXRrwsKCgK9mztlKQAA0K5PP/00+nVdXZ327Nnj42iOjOAGSaP5pw6EB88bEAzZ2dnRr9PT09W3b18fR3NkBDdw2qFp1NLSUh9Hg1jxvAHBk5eXF/06EokEtiQlEdzAcWFKo6IJzxsQbM0DnSAiuIHTwpRGRROeNwBdQXADp4UpjYomPG8AuoLgBkkj6GlUtI3nDUBHEdwAAACnENygw2jNbR/HCAD8wwrFiEmYVqb0C8coubGtABAcZG4QE1pz28cxSm5sngoEB5kbxITW3PZxjJJbYWGhpk+f3ubmqQASi+AGMaE1t30co+TG5qlwWUVFhbZt2xa9HolEosF7EAN4ylLoMFpz28cxAuCSoqKiaFZSkiZPnhzosiuZGwAAcESFhYWaOXNmq9uDmLWRCG7gsLClUWHxvAHBE7a/P8pScFbY0qiweN4AdBWZGzgrbGlUWDxvALqK4AbOClsaFRbPG4CuoiwFAACcQnADAACcQnADAHHA5qmAf0IV3Gzfvl3f+ta3NHToUGVkZGj48OFasGCB9u/f7/fQnFZRUaFIJBK9HolEtG7dujY3CUxWHCNIrTdPLS0t9XE0QPIKVXCzefNmNTQ0qKioSO+//77uu+8+Pfjgg7rlllv8HprTaM1tH8cIEpunAkGRYowxfg+iK+655x4tWbKkxaJf7amqqlJWVpYqKytb7AWDtlVUVLSZgaCrpQnHCJL9ADZy5EhJdvPUkpIS9hgDPBTr+3foW8ErKyt17LHHHvE+dXV1qquri16vqqqK97Ccwht0+zhGkNg8FYnFh6rDC1VZ6lBbt27V4sWLVVhYeMT7LVy4UFlZWdELmxoCiDdeZxBvRUVFGjduXKsL5fCAlKVuuukmLVq06Ij32bRpk/Lz86PXd+zYobPOOktTpkzRI488csTHtpW5ycvLoywFwFO1tbXKzMyUJNXU1KhXr14+jwgua9yHrXG+X3FxsfP7sMValgpEcPPJJ5+0mIjXlmHDhql79+6SpPLyck2ZMkWnn366Hn/8caWmdiwBxZwbAPFAcINES7ZzLlRzbnJycpSTkxPTfXfs2KGzzz5b48aN02OPPdbhwAYAALgtEMFNrHbs2KEpU6ZoyJAh+vnPf65PPvkk+r0BAwb4ODIAABAUoQpuli9frq1bt2rr1q0aNGhQi+8FoLoGAAACIFQ1nTlz5sgY0+YFAABACllwAwAA0B6CGwAA4JRQzbkBgKBqXHOkUSQSieuaI6xOCxwemRsA8ECiN09ldVrg8AKxiF+isYgfAK8lOpOSjKvTorXmi/gdupK/i0K1iB8AhF2ig4qBAwe2eHEvKChwfnVatFZWVhb9uqCggJ3o/42yFAAAIdV866K6ujrt2bPHx9EEB8ENAAAhlZ2dHf06PT1dffv29XE0wUFwAwBASOXl5UW/jkQilKT+jTk3AAAnJVu7fPNAJ9mRuQEAOIl2+eRF5gYA4KTCwkJNnz69zXZ5uI3gBgDgJNrlkxdlKQAA4BSCGwBwQPPF3IBkR3ADACF16Oq0paWlPo4GCA6CGwAIKVanBdpGcAMAIcXqtEDb6JYCgJBiddrk1rgzfKNIJMLO8P9G5gYAHMDqtMmnqKgouoaPJE2ePJlFCv+NzA0AACFUWFiomTNntro92bM2EsENACBJlJWVKT8/3+9heIby0+ER3ABoV7JtQAh3HNouX1JSwtykJMCcGwDtYgNChBXt8smJzA2AdrEBIcKKdvnkRHADoF1sQIiwol0+OVGWAgAkBdrlkwfBDQAAcAplqRCicwUAq9MCh0fmJoToXAHA6rTA4ZG5CSE6VwCwOi1weAQ3IUTnCgCXy0+U3tFVlKUAAIFC6R1dReYGABAolN7RVQQ3ADrMtQ0IESyU3tFVlKUAxOTQDQhLS0t9HA3QvoqKCkUikej1SCSidevWtTmfB24huAEQEzYgRNjQLp+8KEsBiAkbECJsaJdPXgQ3AGLCBoQIG1rHkxdlKQAdxgaEAIKM4MYBzSd6AgCQ7ChLhdShnSslJSWUCRB4rDwLJFay/s2RuQkpOlcQRqw8CyRWsv7NkbkJKTpXEEasPIvOYNHIzkvWvzmCm5CicwVhxMqziBWld28k698cZSkH0LkCwDWU3tEVBDcAgMCh9I6uILgBAAQOpXd0BXNukNSStU2yoyoqKrRt27bo9UgkEp2UyHFCvFF6R0eRuUFSS9Y2yY5iA0IAYULmBkktWdskO4oNCAE3JEtbPcENklqytkl2FOUnILzaa6t3sTxPWQoAAIe111bvYnmezA0A3yRLihzwU3tt9S6W50Mb3NTV1WnixIl69913tX79ehUUFPg9pIShcwVhlswrz7qY/kfwtddW72J5PrRlqRtvvFG5ubl+D8MXdK4gzJJ55VkX0/8Il2Rpqw9l5mbZsmV65ZVX9Oyzz2rZsmV+Dyfh6FyJH8ok8ZfMK8+6mP4Hgih0wc2uXbt01VVX6fnnn1fPnj1jekxdXZ3q6uqi16uqquI1vIQghe2tZC6T+CGZV56NNf2f7OUrSu/oqlCVpYwxmjNnjq6++mqNHz8+5sctXLhQWVlZ0UuypOUQm2Quk/iNv8W2JXv5itI7uioQmZubbrpJixYtOuJ9Nm3apFdeeUXV1dW6+eabO/Tzb775Zs2fPz96vaqqihdVRCVzmQTBlOzlK0rv6KoUY4zxexCffPJJi0/PbRk2bJguvfRSvfjii0pJSYneXl9fr7S0NM2aNUu/+c1vYvr/qqqqlJWVpcrKyhYpYiSn2tpaZWZmSrJBNHNu4qv58a6pqQl9V0ZHxfr7J/txgndiOZfC8joY6/t3IDI3OTk5ysnJafd+999/v26//fbo9fLycp1zzjl6+umnNXHixHgOEUmCjB4Al8Q6f8m1uYehmnMzePBgjR49OnoZMWKEJGn48OEaNGiQz6MDACBYYp2/5Nrcw0BkbgAgGbH0AOIt1vlLrs09DHVwc/zxxysAU4bguGRvy4W3XEv/+4W/y9jEejxcW6IhVGUpwA/J3pYLb7mW/vcLf5fx48Lcw1BnboBESPa2XHirM+l/ylet8XeJIyG4QVKLpZPAxU3l/MLKs7Gn/ylfHRl/lzgSylJIaqyEmlgc75aOlP6nfAV0HpkbJDVWQk0sjnfsXOteARKJ4AZJLZnKIUHA8Y6da90r8ca8JDRHcAPAE7Tmxo8L3SvxwLwkb7g4F445NwA8QWsuEo15Sd5wcS4cmRugg0h/t43WXCQa85K84eJcOIIbR1Ei8Bbp7/bRmts+F9P/fmJekjdcPP8oSzmKEoG3SH/DCy6m/4OCeUlojsyNoygReIv0d8dRvmvNxfQ/EEQEN46KpURA6Sp2pL9jQ/nuyGL926J81T6OEY6EslQSo3TVOaS/D4/ynTcoX7WPY4QjIXOTJNoqEVC6gtco33mD8lX7OEY4EoIbh7VXIqC7BV6jfOcNSivt4xjhSChLOYwSAfxE+Q6AXwhuHEaJAACQjAhuHEaJAACQjJhzkyQoEXQeLaex4TgBCAoyN0A7aDmNDccJQFCkGGOM34NItKqqKmVlZamysrJFt5BramtrlZmZKUmqqalpsxOq+X02bdrEirJtYLHD2HCcAMRbrO/flKUcFWuJgBVl28ebc2w4TgCCgrKUo2ItEdAuDgBwDZkbR8W6eift4gAA1xDcOCrWEgHt4gAA11CWQhTt4gAAFxDcAAAApxDcAAAApxDcAAAApxDcAAAApxDcAAAAp9AKnsTY6BAA4CIyN0mMjQ4BAC4ic5PEYl3FGACAMCG4SWKUnwAALqIsBQAAnEJwAwAAnEJwAwAAnEJwAwAAnEJwAwAAnEJwAwAAnEJwAwAAnEJwAwAAnEJwAwAAnEJwAwAAnEJwAwAAnEJwAwAAnJKUG2caYyRJVVVVPo8EAADEqvF9u/F9/HCSMriprq6WJOXl5fk8EgAA0FHV1dXKyso67PdTTHvhj4MaGhpUXl6u3r17KyUlxbOfW1VVpby8PJWVlalPnz6e/Vy0xrFODI5zYnCcE4PjnBjxPM7GGFVXVys3N1epqYefWZOUmZvU1FQNGjQobj+/T58+/OEkCMc6MTjOicFxTgyOc2LE6zgfKWPTiAnFAADAKQQ3AADAKQQ3HkpPT9eCBQuUnp7u91Ccx7FODI5zYnCcE4PjnBhBOM5JOaEYAAC4i8wNAABwCsENAABwCsENAABwCsENAABwCsGNhx544AEdf/zx6tGjhyZOnKjVq1f7PSSnLFy4UKeddpp69+6tfv366cILL9SWLVv8Hpbz7rrrLqWkpOj666/3eyhO2rFjhy677DJlZ2crIyNDY8aM0TvvvOP3sJxSX1+vW2+9VUOHDlVGRoaGDx+un/3sZ+3uT4Qje+ONN3TBBRcoNzdXKSkpev7551t83xijn/zkJxo4cKAyMjI0bdo0ffjhhwkZG8GNR55++mnNnz9fCxYs0Lp16zR27Fidc8452r17t99Dc8brr7+uuXPn6u2339by5ct14MABzZgxQ7W1tX4PzVlr1qxRUVGRTj75ZL+H4qR//OMfmjRpko466igtW7ZMH3zwge69914dc8wxfg/NKYsWLdKSJUv0n//5n9q0aZMWLVqku+++W4sXL/Z7aKFWW1ursWPH6oEHHmjz+3fffbfuv/9+Pfjgg1q1apV69eqlc845R/v27Yv/4Aw8MWHCBDN37tzo9fr6epObm2sWLlzo46jctnv3biPJvP76634PxUnV1dXmxBNPNMuXLzdnnXWWmTdvnt9Dcs4Pf/hDM3nyZL+H4bzzzjvPXHnllS1uu/jii82sWbN8GpF7JJnnnnsuer2hocEMGDDA3HPPPdHb/vnPf5r09HTzu9/9Lu7jIXPjgf3792vt2rWaNm1a9LbU1FRNmzZNb731lo8jc1tlZaUk6dhjj/V5JG6aO3euzjvvvBbnNbz1xz/+UePHj9cll1yifv366ZRTTtHDDz/s97Ccc+aZZ2rFihUqKSmRJL377rsqLi7Wueee6/PI3PXRRx9p586dLV4/srKyNHHixIS8Lyblxple27Nnj+rr69W/f/8Wt/fv31+bN2/2aVRua2ho0PXXX69JkyZp9OjRfg/HOU899ZTWrVunNWvW+D0Up23btk1LlizR/Pnzdcstt2jNmjW67rrr1L17d82ePdvv4TnjpptuUlVVlfLz85WWlqb6+nrdcccdmjVrlt9Dc9bOnTslqc33xcbvxRPBDUJp7ty52rhxo4qLi/0einPKyso0b948LV++XD169PB7OE5raGjQ+PHjdeedd0qSTjnlFG3cuFEPPvggwY2Hfv/73+uJJ57Qk08+qVGjRikSiej6669Xbm4ux9lRlKU80LdvX6WlpWnXrl0tbt+1a5cGDBjg06jcde211+pPf/qTXn31VQ0aNMjv4Thn7dq12r17t0499VR169ZN3bp10+uvv677779f3bp1U319vd9DdMbAgQN10kkntbht5MiRKi0t9WlEbrrhhht000036etf/7rGjBmjyy+/XN///ve1cOFCv4fmrMb3Pr/eFwluPNC9e3eNGzdOK1asiN7W0NCgFStW6IwzzvBxZG4xxujaa6/Vc889p7/85S8aOnSo30Ny0tSpU7VhwwZFIpHoZfz48Zo1a5YikYjS0tL8HqIzJk2a1Go5g5KSEg0ZMsSnEblp7969Sk1t+XaXlpamhoYGn0bkvqFDh2rAgAEt3herqqq0atWqhLwvUpbyyPz58zV79myNHz9eEyZM0C9/+UvV1tbqiiuu8Htozpg7d66efPJJvfDCC+rdu3e0bpuVlaWMjAyfR+eO3r17t5rH1KtXL2VnZzO/yWPf//73deaZZ+rOO+/UpZdeqtWrV+uhhx7SQw895PfQnHLBBRfojjvu0ODBgzVq1CitX79ev/jFL3TllVf6PbRQq6mp0datW6PXP/roI0UiER177LEaPHiwrr/+et1+++068cQTNXToUN16663Kzc3VhRdeGP/Bxb0fK4ksXrzYDB482HTv3t1MmDDBvP32234PySmS2rw89thjfg/NebSCx8+LL75oRo8ebdLT001+fr556KGH/B6Sc6qqqsy8efPM4MGDTY8ePcywYcPMj370I1NXV+f30ELt1VdfbfM1efbs2cYY2w5+6623mv79+5v09HQzdepUs2XLloSMLcUYlmgEAADuYM4NAABwCsENAABwCsENAABwCsENAABwCsENAABwCsENAABwCsENAABwCsENAABwCsENAABwCsENACdMmTJFKSkpSklJUSQSiekxc+bMiT7m+eefj+v4ACQOwQ2AUPj+97+viy+++Ij3ueqqq1RRURHzBp+/+tWvVFFR4cXwAAQIwQ2AUFi9erXGjx9/xPv07NlTAwYMULdu3WL6mVlZWRowYIAXwwMQIAQ3AAJt//79Ouqoo/Tmm2/qRz/6kVJSUnT66afH/Pg//OEPGjNmjDIyMpSdna1p06aptrY2jiMG4LfYPt4AgE+6deumlStXauLEiYpEIurfv7969OgR02MrKir0jW98Q3fffbcuuugiVVdX669//auMMXEeNQA/EdwACLTU1FSVl5crOztbY8eO7dBjKyoqdPDgQV188cUaMmSIJGnMmDHxGCaAAKEsBSDw1q9f3+HARpLGjh2rqVOnasyYMbrkkkv08MMP6x//+EccRgggSAhuAAReJBLpVHCTlpam5cuXa9myZTrppJO0ePFife5zn9NHH30Uh1ECCAqCGwCBt2HDBhUUFHTqsSkpKZo0aZJuu+02rV+/Xt27d9dzzz3n7QABBApzbgAEXkNDg7Zs2aLy8nL16tVLWVlZMT1u1apVWrFihWbMmKF+/fpp1apV+uSTTzRy5Mg4jxiAn8jcAAi822+/XY8//riOO+443X777TE/rk+fPnrjjTf05S9/WSNGjNCPf/xj3XvvvTr33HPjOFoAfiNzAyDwLrvsMl122WUdftzIkSP18ssvx2FEAIKMzA0AZ/z6179WZmamNmzYENP9r776amVmZsZ5VAASLcWwmhUAB+zYsUP/+te/JEmDBw9W9+7d233M7t27VVVVJUkaOHCgevXqFdcxAkgMghsAAOAUylIAAMApBDcAAMApBDcAAMApBDcAAMApBDcAAMApBDcAAMApBDcAAMApBDcAAMApBDcAAMApBDcAAMAp/x+IMh0vjXSklwAAAABJRU5ErkJggg==\n" }, "metadata": {} } ], "source": [ "#@title código secreto (solo abrir con doble-click **luego de haber intentado hasta el Ejercicio 2**)\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from scipy.optimize import curve_fit\n", "\n", "ts, xs, xs_err = np.loadtxt(\"0.csv\", delimiter = \",\", unpack = True, skiprows = 1)\n", "\n", "def sinusoidal(t, A, w, phi):\n", " return A*np.cos(w*t + phi)\n", "\n", "popt, pcov = curve_fit(sinusoidal, ts, xs)\n", "A, w, phi = popt\n", "\n", "ts_ajuste = np.linspace(min(ts), max(ts), 1000)\n", "xs_ajuste = sinusoidal(ts_ajuste, A, w, phi)\n", "\n", "plt.errorbar(ts, xs, yerr = xs_err, fmt = \"s\", ms = 2, capsize = 2, color = \"k\")\n", "plt.plot(ts_ajuste, xs_ajuste, color = \"r\")\n", "plt.xlabel(\"$t$ [s]\")\n", "plt.ylabel(\"$x$ [cm]\")\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": { "id": "7U8MYWCSP77k" }, "source": [ "**¿Como solucionamos esto?** Como repaso, queremos que `curve_fit` empieze a buscar los parámetros óptimos _cerca de la solución que esperamos_, que se puede hacer pasandole parámetros iniciales a través del argumento `p0`:\n", "```python\n", "popt, pcov = curve_fit(sinusoidal, t, x, p0 = [5, w_aprox, 0])\n", "```\n", "De esta forma, la función va a buscar la frecuencia óptima cerca de la frecuencia aproximada `w_aprox`.\n", "\n", "La pregunta es ahora, **¿de donde sacamos estos parámetros iniciales?** Algunas posibilidades:\n", "- **Usando más información:** Por ejemplo, ya sabemos que la amplitud de la curva debe ser aproximadamente 5 cm por el procedimiento llevado a cabo en el laboratorio. De la misma forma, sabemos que el defasaje `phi` del coseno debe estar cerca del 0 (si no les resulta intuitivo pregunten).\n", "- **A ojo:** Observamos el gráfico y elegímos parámetros razonables. Se puede aproximar la frecuencia estimando primero el período $T$ de las oscilaciones. $T$ está dado por el tiempo que tarda el carrito en alejarse de y volver a un máximo, como se puede ver en el siguiente gráfico:\n", "![0csv.png]()\n", "La frecuencia aproximada se calcula entonces con $\\omega_\\text_{aprox} = 2\\pi/T$.\n", "\n", "- **Usando `find_peaks`:** Una forma de automatizar el método \"a ojo\" es midiendo el período de las oscilaciones usando `find_peaks`. Esto es lo que vamos a usar ahora, ya que tenemos muchos datos para analizar y el método \"a ojo\" puede ser tedioso.\n" ] }, { "cell_type": "markdown", "metadata": { "id": "Nk-SViwj2GK1" }, "source": [ "---\n", "### Ejercicio 3: Estimar la frecuencia de las oscilaciones usando `find_peaks`\n", "\n", "Lo que queremos hacer es medir el intervalo de tiempo entre los dos primeros picos de amplitud. Recordemos que `find_peaks` devuelve los indices de los picos del array que le damos y un diccionario con más información.\n", "\n", "1. Importar `find_peaks` de `scipy.signal` y aplicarlo al array de posiciónes `xs` de `0.csv`. Imprimir `picos` y el diccionario.\n", "\n", "2. Graficar los datos de `0.csv` nuevamente (podés copiar y pegar!!). Luego, graficar los picos encontrados por `find_peaks` con `plt.plot(ts[picos], xs[picos], \"o\")`. ¿Coinciden los picos con lo que esperan?\n", "\n", "3. Calcular el periódo `T` e imprimir el resultado (`f'Período estimado: {T} s'`). _Ayuda: ¿cuanto vale el tiempo en el segundo pico? ¿y en el primero? Restando estos valores van a poder obtener la respuesta!_\n", "\n", "4. Calcular la frecuencia `w0` usando que está dada por $2\\pi / T$. Imprimir el resultado (`f'Frecuencia estimada: {w0} 1/s'`).\n", "\n", "_Nota: Estamos usando este método para estimar los parámetros iniciales, pero se podría usar para medir la frecuencia. El tema es que no estamos calculando la incerteza del valor del $\\omega$ que obtenemos, y **una medición tiene incerteza**. Además, un ajuste usa todos los datos, no solo los picos, lo que está bueno para tener más información. Si queres conversar un poco más del tema, llama a un profe!_\n", "\n", "---" ] }, { "cell_type": "code", "source": [], "metadata": { "id": "tlJDHJPIkWh3" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "cFmXk2MVCaek" }, "source": [ "---\n", "### Ejercicio 4: Hacer un ajuste sinusoidal usando la frecuencia estimada\n", "\n", "1. Definir una función llamada `sinusoidal` que tome la variable independiente `t` y los parámetros a determinar `A, w` y `phi` (amplitud, frecuencia, y fase), y que devuelva el resultado de $A\\cos(\\text{w}t + \\text{phi})$.\n", "2. Usando `curve_fit` (hay que importarlo), ajustar los datos de `xs` en función de `ts` y obtener la frecuencia óptima `w` de `popt` (los parámetros óptimos), y su error `w_err` de `pcov` (la matriz de covarianza). Imprimir el resultado usando `f'Frecuencia: ({w} ± {w_err}) 1/s'`. _Ayuda: ver clase pasada! Y configuren los parámetros iniciales (`p0`) en `curve_fit`._\n", "3. Graficar la función ajustada sobre los datos.\n", "---" ] }, { "cell_type": "code", "source": [], "metadata": { "id": "KQLOs5sskWIR" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "8VNHb10jC1Zr" }, "source": [ "---\n", "### Ejercicio 5: Repetir para los demás archivos guardando los datos de la masa y la frecuencia.\n", "\n", "**Acá**, _esto_ es porque programar es _super útil_. Ya trabajaste un montón para analizar `0.csv`. El solo pensamiento de repetirlo 10 veces te pone los pelos de punta. ¡Pero no lo tenés que hacer! Copiando el código que ya hiciste, ordenandolo un poco y usando la mágia de las iteraciones vas a haber analizado todo en un suspiro.\n", "\n", "1. Inicializar tres listas vacías, `[]`, guardandolas en las variables `ms`, `ws`, y `ws_err`. En estas listas vamos a guardar la masa y frecuencia correspondientes a cada archivo.\n", "\n", "2. Recorrer los archivos `\"0.csv\"` a `\"8.csv\"` _(recordar subirlos a Colab)_ con un `for`, obteniendo la frecuencia de los datos y la masa total del carrito en cada uno. Si les ayuda, pueden usar la siguiente planilla. _TIP: hagan un gráfico en cada ciclo del for para verificar que find_peaks está agarrando \"bien\" los picos y vayan probando si el for funciona mientras lo van armando._\n", "\n", "```python\n", "for n in range(9):\n", " ts, xs, xs_err = np.loadtxt(f\"{COMPLETAR}.csv\", delimiter = COMPLETAR, skiprows = COMPLETAR, unpack = COMPLETAR)\n", "\n", " # USAR FIND_PEAKS PARA ESTIMAR LA FRECUENCIA (COPIAR CÓDIGO ANTERIOR, OJO CON LAS INDENTACIONES).\n", "\n", " # GRAFICAR SEÑAL Y PICOS\n", "\n", " plt.show() # para que los gráficos queden en figuras distintas\n", "\n", " # USAR CURVE_FIT PARA CONSEGUIR EL VALOR DE LA FRECUENCIA Y SU ERROR (COPIAR CÓDIGO ANTERIOR, OJO CON LAS INDENTACIONES).\n", "\n", " # AGREGAR FRECUENCIA OBTENIDA A LA LISTA ws\n", " # AGREGAR ERROR DE LA FRECUENCIA OBTENIDA A LA LISTA ws_err\n", " # AGREGAR MASA CORRESPONDIENTE A LA LISTA ms (usar función que hicieron al princípio)\n", "```\n", "\n", "---" ] }, { "cell_type": "code", "source": [], "metadata": { "id": "X1_YaoamkXT0" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "FfWUVs5eDyQL" }, "source": [ "---\n", "### Ejercicio 6: El Ajuste Final\n", "\n", "El modelo de un oscilador sin amortiguamiento cuya fuerza restitutiva está dada por:\n", "$$\n", "F_\\text{resorte} = -kx\\qquad \\text{(Ley de Hooke)}\n", "$$\n", "con $k$ una constante y $x$ el desplazamiento del oscilador del equilibrio, tiene como frecuencia natural:\n", "$$\n", "\\omega(m) = \\sqrt{\\frac{k}{m}}\n", "$$\n", "1. Graficar `ws` en función de `ms`, mostrando el error de `ws`. (`ws`en el eje $\\hat y$, `ms` en el eje $\\hat x$)\n", "2. Ajustar la función $\\omega(m) = \\sqrt{k/m}$ a los datos de $\\omega$ y $m$ que se guardaron en el item anterior, obteniendo el parámetro óptimo para $k$ y su error. Graficar la función ajustada encima de los datos y juzgar si el modelo es apropiado. _Nota: En los labos van a ver herramientas útiles para realizar estas evaluaciones de forma sistemática._\n", "\n", "AUTOCORRECCIÓN: Les debería dar $k = (2.000 \\pm 0.001) ~\\text{N/cm}$\n", "\n", "---" ] }, { "cell_type": "code", "source": [], "metadata": { "id": "5ycFdJ1ikX1V" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "nEM1fRoYJkAo" }, "source": [ "# _Problema integrador 2 (Estadística)_\n", "\n", "Vamos a resolver probabilísticamente un problema simple.\n", "\n", "Si tiramos 100 monedas y las ordenamos en una secuencia como la siguiente:\n", "\n", "$$... \\text{Cara, Cruz, Cara, Cara, Cruz}...$$\n", "\n", "¿Qué es más probable? ¿Encontrar la subsecuencia \"Cara, Cara\" o encontrar la subsecuencia \"Cruz, Cara\"? ¿Son equiprobables?\n", "\n", "Rompamos nuestra cabeza." ] }, { "cell_type": "markdown", "source": [ "---\n", "### Ejercicio 1: Función ```generar_secuencia(largo)```\n", "\n", "Lo primero que necesitamos hacer es generar una secuencia de caras y cruces. Como tanto “cara” como “cruz” comienzan con la misma letra, vamos a representarlas con los números `0` y `1`. Es decir, estudiaremos cuántas veces aparece la subsecuencia `00` y cuántas veces aparece la subsecuencia `01`.\n", "\n", "#### Instrucciones:\n", "\n", "Escribí la función `generar_secuencia(largo)` que reciba como parámetro el largo de la secuencia a generar y devuelva una lista llena aleatoriamente con ceros y unos.\n", "\n", "Una forma de hacerlo es:\n", "\n", "1. Dentro de la función, inicializá una lista vacía llamada `secuencia`.\n", "2. Utilizá un bucle `for` que, en cada iteración, genere un `0` o un `1` de forma aleatoria y agregue ese resultado a la lista. \n", " *Pista: El `for` tiene que hacer tantas iteraciones como indique `largo`* \n", "3. Devolvé la lista utilizando el comando `return`.\n", "4. Testeá la función con `largo = 1` y `largo = 10`, imprimiendo los resultados.\n", "\n", "#### AYUDA:\n", "\n", "La función `np.random.randint(0, n)` genera un número aleatorio entre `0` y `n - 1`, es decir, no incluye el valor `n` (igual que la función `range`).\n", "\n", "---" ], "metadata": { "id": "QgeFGvadIGoE" } }, { "cell_type": "code", "source": [], "metadata": { "id": "FajcLkP0j_nH" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "---\n", "### Ejercicio 2: Función `calcular_puntajes(secuencia)`\n", "\n", "Ahora queremos calcular los puntajes de cualquier secuencia que generemos. Vamos a lograr esto definiendo la función `calcular_puntajes(secuencia)` que, usando un ciclo `for`, va a recorrer una secuencia e ir sumando sus puntajes:\n", "\n", "- **Si encuentra un `0` y, en el siguiente elemento, otro `0`, va a sumar un punto para la subsecuencia `00`.**\n", "- **Si encuentra un `0` y luego un `1`, va a sumar un punto para la subsecuencia `01`.**\n", "\n", "A arremangarse, porque este es un punto difícil.\n", "\n", "#### Instrucciones:\n", "\n", "Dentro de la función:\n", "\n", "1. Inicializá las variables donde vas a guardar los puntajes: \n", " ```python\n", " puntaje_00 = 0\n", " puntaje_01 = 0\n", " ```\n", " *(¿Por qué las inicializamos en 0?)*\n", "\n", "2. Escribí un ciclo `for` para recorrer la secuencia e ir sumando los puntajes. Algunas preguntas que por ahí sirven de guía:\n", "\n", " - Lo que nos interesa es analizar **dos elementos consecutivos** de la lista. ¿Cómo se puede acceder a dos elementos consecutivos dentro del `for`?\n", "\n", " - **Si** detectamos un `0` al recorrer la lista: \n", " ¿Cómo debe ser el siguiente elemento para que se sume un punto a la subsecuencia `00`? \n", " ¿Y cómo debe ser para sumar un punto a la subsecuencia `01`?\n", "\n", "3. Devolvé `puntaje_00` y `puntaje_01`.\n", "4. Calculá e imprimí los puntajes de la secuencia `[0,0]` y de la secuencia `[0,1]`. ¿El resultado es el que esperás?\n", "\n", "#### Ayudita:\n", "\n", "Recordá que se pueden anidar `for`'s dentro de `if`'s dentro de `if`'s dentro de `for`'s dentro de `if`'s... (no es taaaaan enredado el ejercicio, peeero casi que si)\n", "\n", "Cuidado con las indentaciones!\n", "\n", "---" ], "metadata": { "id": "usFI3tvtvUup" } }, { "cell_type": "code", "source": [], "metadata": { "id": "T3nWYlx1kCq6" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "---\n", "### Ejercicio 3: ¡A simular!\n", "\n", "Ahora nos gustaría hacer estadística para ver cuál subsecuencia es más probable según el largo de la secuencia original. Vamos a generar muchas secuencias para cada largo (entre 2 y 100), calcular cuántas veces gana cada subsecuencia (00 o 01) y ver cuál es más probable en promedio.\n", "\n", "Este inciso es la cima de la montaña; después, es todo cuesta abajo. ¡Vamos que se puede!\n", "\n", "#### Instrucciones:\n", "\n", "1. Inicializá un `np.array` con todos los largos a probar y nombralo `largos`.\n", "\n", "2. Inicializá 3 listas vacías: `probabilidad_00`, `probabilidad_01` y `probabilidad_empate`.\n", "\n", "3. Para **cada largo** *(¿qué usamos para recorrer una lista o `np.array`?)*:\n", "\n", " (a) Inicializá las variables:\n", "\n", " ```python\n", " victorias_00 = 0 \n", " victorias_01 = 0 \n", " empates = 0\n", " ```\n", "\n", " (b) Procesá 1000 secuencias: *(el aire tiene un aroma sutil a más cosas anidadas, ¿o soy yo?)*:\n", " \n", " - Generá cada secuencia utilizando la función `generar_secuencia(largo)` y luego calculá su puntaje con `calcular_puntajes(secuencia)`.\n", " - ¿Quién ganó? Sumá la victoria donde corresponda (`victorias_00`, `victorias_01` o `empates`).\n", " \n", " (c) Ahora que procesaste las 1000 secuencias y tenés el número de victorias para las subsecuencias `00`, `01` y los empates, podés calcular las probabilidades de que gane `00`, `01` o que haya un empate para un determinado largo. *(Dividí las victorias por 1000, cof cof)*\n", "\n", " Añadí estas probabilidades a las tres listas de probabilidades que inicializamos al principio del ejercicio.\n", "\n", "4. Imprimí las listas de probabilidades.\n", "\n", "#### Comentario:\n", "\n", "No hagan más de 1000 secuencias por largo porque, si no, el código va a empezar a tardar en ejecutarse, y acá queremos las cosas ¡YA! Si tienen ganas de esperar más tiempo, pasen a 10000, pero solo pueden hacerlo una vez que saben que el código funciona; si no, la compu **explota**.\n", "\n", "¿Qué secuencia creés que va a ser más probable que la otra? Chan chan chan...\n", "\n", "---" ], "metadata": { "id": "w3ZkNpgC51cu" } }, { "cell_type": "code", "source": [], "metadata": { "id": "GxM_aKeKkEn_" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "---\n", "### Ejercicio 4: ¡Es hora de graficar!\n", "\n", "Llegó el momento de responder la tan esperada pregunta, y vamos a hacerlo utilizando un gráfico.\n", "\n", "#### Instrucciones:\n", "\n", "Graficá las probabilidades de cada subsecuencia y de empatar en función del largo de la secuencia original. Es decir, que el largo de la secuencia quede en el eje $\\hat{x}$ y la probabilidad de cada subsecuencia en el eje $\\hat{y}$.\n", "\n", "¡Hacé el gráfico lo más hermoso posible! Ponele grilla, leyenda, nombres a los ejes y labels a cada curva. Si tenés ganas, jugá con los colores y preguntanos qué tan lindo te quedó el gráfico *(por contrato tenemos que responder que quedó hermoso)* *(mentira, no hay contrato)*.\n", "\n", "---" ], "metadata": { "id": "RL1jogCPLQXs" } }, { "cell_type": "code", "source": [], "metadata": { "id": "-PgCVjIfkLto" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "---\n", "### Ejercicio 5: ¿¡Qué está pasando!?\n", "\n", "Respondimos la pregunta de qué subsecuencia tiene más chances de ganar, pero el gráfico no responde por qué ocurre esto, así que vamos a ahondar más profundo.\n", "\n", "#### Instrucciones:\n", "\n", "1. Generá 100000 secuencias de largo 4. Para cada secuencia, calculá la diferencia de puntaje entre `00` y `01`. Guardá todas las diferencias en una lista.\n", "\n", "2. Hacé un histograma de las diferencias de puntaje utilizando `plt.hist(lista)` y hacé el gráfico lo más bello que puedas. ¿Hay alguna tendencia? ¿Con cuánto puntaje máximo gana una secuencia y con cuánto gana la otra?\n", "\n", "3. Luego, **LUEGO** de hacer esto, abrí el siguiente enlace. ***¡¡LUEGO ES LUEGO!!***\n", "\n", " [¡SOLO LUEGO DE RESOLVER EL INCISO!](https://drive.google.com/file/d/1E6mq9gDdjaWj0hhhsFbvDU-Bb1glLmP0/view?usp=sharing)\n", "\n", "Si querés, jugá a cambiar el largo de la secuencia para ver cómo cambian los histogramas.\n", "\n", "---" ], "metadata": { "id": "anT2IJF9MQIN" } }, { "cell_type": "code", "source": [], "metadata": { "id": "PBqNqX7akMlo" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "9hkbVPC4M59g" }, "source": [ "---\n", "### Ejercicio 6: *¡Felicitaciones!*\n", "\n", "Con esto hemos podido responder la pregunta, o al menos iluminar bastante la respuesta. Acá hay algunas funciones que pueden ser muy útiles para el análisis de datos:\n", "\n", "#### Instrucciones:\n", "\n", "Calculá el valor medio y la desviación estándar del histograma que calculaste recién. Utilizá las funciones de numpy `np.mean(lista)` y `np.std(lista)` y aprendé inglés para saber cual es cual. Anotate en el Laboratorio de idiomas de la UBA y... bueno paro.\n", "\n", "¿Tenes ganas de charlar un rato? Preguntanos qué significa ```ddof = 1```.\n", "\n", "---" ] }, { "cell_type": "code", "source": [], "metadata": { "id": "yVwJ_u6GkNiT" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "oqMfNBFVoSYS" }, "source": [ "# _Problema integrador 3 (Biología)_\n", "\n", "Vamos a estudiar la dinámica de poblaciones según un modelo clásico de depredador-presa. ¡el modelo **Lotka-Volterra**!\n", "\n", "Tanto Lotka como Volterra propusieron de manera independiente un sistema de ecuaciones diferenciales para describir la dinámica de las poblaciones de dpredadores y presas, para modelar como interactúan entre sí.\n" ] }, { "cell_type": "markdown", "source": [ "---\n", "### Ejercicio 1: Primero de todo, los *datos.com* (**No es necesario entrar a esta página**).\n", "\n", "Para arrancar a trabajar necesitamos los datos, sino no podemos hacer nada.\n", "\n", "#### Instrucciones:\n", "\n", "1. Bajarse los datos, que están dentro de una carpeta en el siguiente enlace:\n", "[Mercado Pago de la FIFA](https://github.com/fifabsas/talleresfifabsas/tree/master/python/3_Ejercicios)\n", "\n", "2. Utilizando la función `np.loadtxt()` (recordar la clase pasada) cargá los datos del archivo `\"datos_poblaciones.csv\"`. A cada columna asignale el nombre apropiado, es decir, definí las variables `tiempo`, `pob_presas` y ```pob_depredadores```.\n", "\n", "---" ], "metadata": { "id": "kYh6JuxBl4UK" } }, { "cell_type": "code", "source": [], "metadata": { "id": "cjCESjCBkfMn" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "---\n", "### Ejercicio 2: ¡El momento de graficar!\n", "\n", "Lo primero que tenemos que hacer cuando nos dan unos datos, a parte de cargarlos, es graficarlos, así vemos cual es su pinta y podemos pensar en que análisis realizar.\n", "\n", "#### Instrucciones\n", "\n", "Utilizando lo que vimos la clase pasada de ```matplotlib```, graficá las poblaciones de presas y depredadores en función del tiempo y hacé que el gráfico sea lo más canchero posible, ponele grilla, leyenda, los colores que vos quieras, etc.*\n", "\n", "¿Son las poblaciones como esperabas? *¿No?* $\\;$ **Enseñanos algo de biología... ¡Por favor!**\n", "\n", "---" ], "metadata": { "id": "1b3QfxRDnkfL" } }, { "cell_type": "code", "source": [], "metadata": { "id": "VFQcM1cYkf4S" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "---\n", "### Ejercicio 3: Aprendiendo un poco sobre las poblaciones\n", "\n", "Estaría bueno tener cierto conocimiento general de las poblaciones, como su promedio y cuanto se desvían las poblaciones de este.\n", "\n", "#### Instrucciones\n", "\n", "1. Calculá el promedio de la población de presas utilizando la función de numpy `np.mean(pob_presas)`, guardalo en la variable `valor_medio`, e imprimilo. ¿Es un valor representativo de la población?\n", "\n", "2. Graficá este promedio en la figura anterior que hiciste, utilizando\n", " ```python\n", " plt.axhline(valor_medio, color=\"g\", linestyle=\"--\", label=\"valor medio presas\")\n", " ```\n", " Probá cambiando los parámetros opcionales.\n", "\n", "3. Calculá e imprimí también la desviación estandar, utilizando `np.std(pob_presas)`.\n", "\n", " ¿Este valor te dice algo más respecto al promedio?\n", "\n", "---" ], "metadata": { "id": "KLbXcdW53prr" } }, { "cell_type": "code", "source": [], "metadata": { "id": "TWIj95nikg4v" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "---\n", "### Ejercicio 4: El momento de utilizar `find_peaks`\n", "\n", "Observamos que las poblaciones oscilan y, en particular, notamos varios picos.\n", "\n", "#### Instrucciones\n", "\n", "1. Utilizá la función `find_peaks` aplicada a la población de las presas para determinar la posición de los máximos. Graficá los picos en un nuevo gráfico, junto a la población de presas en función del tiempo.\n", "\n", " ¿Cuánta población de presas hay en esos picos?\n", "\n", "2. ¿Cuánto tiempo pasa entre picos? Imprimílo.\n", "---" ], "metadata": { "id": "gIMfjams4NkG" } }, { "cell_type": "code", "source": [], "metadata": { "id": "Q31_GkLMkh2b" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "---\n", "### Ejercicio 5: Ciclos poblacionales, gráficos hermosos, ¿¡el espacio de fases!?\n", "\n", "Vamos a tomarnos el laburo de hacer un gráfico bello, pero que les puede resultar complicado, así que vamos de a poco.\n", "\n", "#### Instrucciones\n", "\n", "1. Graficá la población de depredadores en función de la población de presas. ¿Qué se observa? *¿¿Alguna especie de ciclo?? Guiño guiño.*\n", "\n", "Si lo pensas, en este gráfico perdemos la noción del tiempo, no sabemos de donde parte la población ni donde termina (aunque quizá sí te des cuenta), así que vamos a tomarnos el trabajo de agregarle esto.\n", "\n", "2. Copiá las siguientes líneas:\n", "\n", " ```python\n", " from matplotlib import colors\n", " colormap = plt.cm.plasma\n", " norm = colors.Normalize(vmin=min(tiempo), vmax=max(tiempo))\n", " scalar_map = plt.cm.ScalarMappable(norm=norm, cmap=colormap)\n", " ```\n", "\n", " *TIP: no hace falta que las entiendas todas. Recomendamos buscar `matplotlib colormaps` en el navegador y cambiar `plasma` por el colormap que más te guste. Puede ser que el que más te guste sea `plasma`, a mí me gusta...*\n", "\n", "Ahora se viene lo lindo:\n", "\n", "3. Realizá un ciclo `for` que recorra las listas de las poblaciones y graficá para cada `i` *(exceptuando la parte del colormap, esto si debería entenderse):*\n", " ```python\n", " plt.plot([pob_presas[i], pob_presas[i+1]], [pob_depredadores[i], pob_depredadores[i+1]], color=colormap(tiempo[i]/max(tiempo)))\n", " ```\n", " ¿Que tal el gráfico ahora?\n", "\n", "4. Para agregar la barra de colores del tiempo, copiá:\n", " ```python\n", " cbar = plt.colorbar(scalar_map, ax=plt.gca())\n", " cbar.set_label(\"Tiempo\")\n", " ```\n", "\n", "5. ¿Te molesta como quedaron los números del eje x? Agregale al gráfico la línea `plt.xticks(rotation=45)`, mirá a los ojos a algún docente y decile que pensas que no queda mucho mejor.\n", "\n", "---" ], "metadata": { "id": "su1GOvD_75wc" } }, { "cell_type": "code", "source": [], "metadata": { "id": "8VmvX8EDkiww" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "---\n", "### Ejercicio 6: ¿Qué te pareció?\n", "\n", "Este fue un ejercicio de biología pensado por una persona que no sabe de biología, así que nos re sirve tener tu opinión!\n", "\n", "Te dejamos tu última misión:\n", "\n", "*Aprendé programación por tu cuenta el tiempo que sea necesario para formar parte del plantel docente del taller de Python de la FIFA, cambiá este ejercicio y lentamente añadí gente de Biología al taller hasta que pase a ser un taller de estudiantes de Biología **para** estudiantes de Biología. **El taller de Python de la FIBA**...*\n", "\n", "---" ], "metadata": { "id": "PFu43pe1-7N7" } }, { "cell_type": "markdown", "metadata": { "id": "5BAn1MvrzaSV" }, "source": [ "---\n", "### **Desafío:** Integración numérica\n", "\n", "El modelo de Lotka-Volterra con el que se generaron numéricamente los datos *(te pido disculpas, no fuimos a medir durante 5 años las poblaciones)* sigue las siguientes ecuaciones diferenciales, donde $u$ es la población de presas y $v$ la de depredadores:\n", "\n", "$$\n", "\\frac{du}{dt} = au - buv\n", "$$\n", "\n", "$$\n", "\\frac{dv}{dt} = -cv + duv\n", "$$\n", "\n", "Los parámetros son los siguientes:\n", "\n", "- $a$ es la tasa de nacimiento de presas \n", "- $c$ es la tasa de muerte de depredadores \n", "- $b$ y $d$ son los acoplamientos entre especies, que definen cómo interactúan\n", "\n", "Estas ecuaciones se pueden resolver numéricamente para jugar con distintos parámetros y entender cómo evolucionan las poblaciones. Para esto, utilizaremos la siguiente función de Scipy:\n", "\n", "```python\n", "from scipy.integrate import odeint\n", "```\n", "\n", "---\n", "#### (a) Intervalo de tiempo\n", "\n", "Definí un array de tiempos como vimos en la clase pasada, que vaya de 0 a 5 y tenga longitud 5000. \n", "Si querés probar otro intervalo de tiempo o una cantidad distinta de puntos, ¡hacelo!\n", "\n", "---\n", "#### (b) ¡Definiendo los parámetros! Acá está la joda\n", "\n", "1. Definí `a`, `b`, `c` y `d` con ávida intuición, para que pase lo que vos querés.\n", "\n", " *Por ejemplo: si $a$ es muy grande, la población de presas crecerá muy rápido. Si $d$ es muy chico, la población de depredadores crecerá muy poco al alimentarse de las presas.*\n", "\n", "2. Definí las poblaciones iniciales de presas y depredadores en una lista de dos elementos, llamada `X0`, que contenga: \n", " - en el primer elemento, la población inicial de depredadores.\n", " - en el segundo elemento, la población inicial de presas.\n", "\n", "---\n", "#### (c) Ecuaciones diferenciales en código\n", "\n", "1. Definí una función llamada `lotka_volterra`, que tome una variable `X` y los parámetros `t` (de tiempo, no la van a usar pero es necesaria) `a`, `b`, `c` y `d`. \n", " En lo que sigue, te decimos qué tiene que hacer.\n", "\n", " *OBSERVACIÓN: la función toma la población de depredadores y la de presas en una sola variable, `X`, que es un array de dos elementos. \n", " No podemos tener `pob_depredadores` y `pob_presas` como argumentos separados de la función. Así es la vida.*\n", "\n", "2. En la primera línea de la función, definí:\n", "\n", " u, v = X\n", "\n", "3. La función debe devolver una lista con la derivada temporal de cada población, usando las ecuaciones diferenciales definidas más arriba.\n", "\n", "---\n", "#### (d) Magia\n", "\n", "Utilizá la siguiente línea para integrar numéricamente las ecuaciones\n", "\n", "```python\n", "pob_presas, pob_depredadores = odeint(lotka_volterra, X0, tiempo, args=(a, b, c, d)).T\n", "```\n", "\n", "El `.T` del final es para transponer la matriz que nos devuelve la función; probá si hace falta o no.\n", "\n", "---\n", "#### (e) ¿¿Funciona o no funciona??\n", "\n", "1. Graficá las poblaciones en función del tiempo, probá todos los parámetros que te gusten y sé feliz el resto de tu vida (*esto último no es opcional*).\n", "\n", "2. Si querés chequear que funciona bien, probá que las interacciones sean nulas y que evolucione cada población por separado. *¿Qué sucede en este caso?*\n", "\n", "¡Ahora ya sabés cómo resolver ecuaciones diferenciales y podés modelar lo que vos quieras! *¿no?*\n", "\n", "---" ] }, { "cell_type": "code", "source": [], "metadata": { "id": "LjgxbkgVkkeu" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "242J7FqPfFun" }, "source": [ "# _Ejercicios adicionales sueltos_" ] }, { "cell_type": "markdown", "metadata": { "id": "ZWmePcAzfKS3" }, "source": [ "La idea de estos ejercicios es que son cortos pero requieren conceptos que son importantes a la hora de programar o son problemas que se van a encontrar en algún momento en el futuro.\n", "\n", "Algunos son más divertidos o fáciles que otros, pero no por eso son menos importantes." ] }, { "cell_type": "markdown", "metadata": { "id": "OBq45yD8sp5J" }, "source": [ "---\n", "## Histogramas\n", "\n", "Queremos generar numeros aleatorios con una cierta distribución de probabilidad, en este caso una Gaussiana, que es una distribución muy **normal** *(jajá que buen juego de palabras jajajajajajajajajajajajajajajajajajajajajajaja)* que aparece en todas las ciencias.\n", "\n", "Utilizando la función de `numpy` llamada `np.random.normal()` *(si, a la Gaussiana también se la llama la normal, ahora entendiste el chiste de arriba)* podemos generar números aleatorios según una distribución Gaussiana.\n", "\n", "1. *Generá 100 números aleatorios utilizando `np.random.normal()` y guardalos en una `lista`. Realizá un histograma utilizando `plt.hist(lista)` y hacé que el gráfico sea lo más canchero posible (recomendamos utilizar el parámetro opcional `edgecolor = \"k\"` para ponerle color negro a los bordes).*\n", "\n", "2. *Calcula `np.mean(lista)` y `np.std(lista)`. Estos devuelven el valor medio y la desviación estándar de los datos, respectivamente.*\n", "\n", "3. *Si conoces a la Gaussiana, sabés que esta tiene un valor medio, donde está centrada la campana, y una desviación estandar, que determina que tan dispersos están los datos. En particular `np.random.normal()` genera números aleatorios con valor medio 0 y desviación estándar 1. Probá cambiando los valores de la siguiente manera `np.random.normal(valor_medio, desviacion_estandar)` y ponele los valores que quieras. También jugá a cambiar la cantidad de números aleatorios que generas (100 por 1000 y así) y fijate como van cambiando `np.mean(lista)` y `np.std(lista)`.*\n", "\n", "4. *Si te pareció que hay demasiados chistes, dejalo en las encuestas, aprendé programación todo un cuatrimestre, vení la siguiente edición y modificá este ejercicio.*\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "id": "Q2VXtb3Hsmvo" }, "source": [ "---\n", "## Diccionarios\n", "\n", "Tenemos la siguiente lista de nombres y carreras. Armá un diccionario que asocie cada nombre con su respectiva carrera.\n", "\n", "```python\n", "nombres = ['Rosalind Franklin', 'Juan G. Roederer', 'Albert-László Barabási', 'Emmy Noether', 'Phyllis Nicolson',\n", " 'Ada Lovelace', 'Luis Caffarelli', 'Miguel Ángel Virasoro', 'Luis Federico Leloir']\n", "\n", "carreras = ['Química', 'Física', 'Física', 'Matemática', 'Física',\n", " 'Computación', 'Matemática', 'Física', 'Química']\n", "```\n", "\n", "*AYUDA: Realizá un ciclo `for` para recorrer las listas. Ayuda: Al nombre i-ésimo le corresponde la carrera i-ésima.*\n", "\n", "*Una vez hayas hecho el diccionario, recorrelo e imprimí en pantalla los nombres de las personas cuya carrera sea \"Física\" (si así no sale ya no se que más hacer, te pido perdón).*" ] }, { "cell_type": "markdown", "metadata": { "id": "zGFaKEjbGGqt" }, "source": [ "---\n", "## Funciones\n", "\n", "### Factorial\n", "\n", "Definí la función `factorial(n)`, que recibe un número entero y devuelve el factorial dicho número.\n", "\n", "Expresión del factorial:\n", "\n", "$$n! = n \\cdot (n-1) \\cdot (n-2) \\cdot \\; ... \\cdot 1$$\n", "\n", "La biblioteca `math` ya tiene una función para realizar esto, llamada `math.factorial()`. Compará los resultados de tu función y la función de `math`.\n", "\n", "### Valor absoluto\n", "\n", "Definí la función `absoluto(x)` que recibe un número real (`float`) `x` y devuelve su módulo. Si $x < 0$ debería devolver $-x$ y si $x \\geq 0$ debería devolver $x$.\n", "\n", "En Python ya existe una función que hace esto, llamada `abs()`. Compará los resultados." ] }, { "cell_type": "markdown", "metadata": { "id": "0hi281OPJbTX" }, "source": [ "---\n", "## Listas\n", "\n", "La idea de este ejercicio es familiarizarse con funciones super útiles aplicables a listas.\n", "\n", "```python\n", "numeros = [20,12,10,3,8,14,1,42]\n", "```\n", "\n", "*Copie la lista de arriba y aplique las funciones `max()` y `min()`.\n", "¿Qué devuelven?*\n", "\n", "Ahora aplicaremos `métodos` a la lista de números.\n", "\n", "*Aplique el método `pop()` a la lista de números, de la siguiente manera `numeros.pop()` (recuerde el `append()` de la primera clase).*\n", "\n", "Por último, aplicamos otro método.\n", "\n", "*Aplique el método `insert()` a la lista de números, de la siguiente manera `numeros.insert(0,77)`.*\n", "\n", "¿Qué hace cada método?" ] } ], "metadata": { "colab": { "collapsed_sections": [ "bHA-u8QgHhRm" ], "provenance": [] }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" } }, "nbformat": 4, "nbformat_minor": 0 }