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ABSTRACT

This report revisits Leane’s 2017 evolutionary strategy approach
to optimizing solutions for classic Nintendo Entertainment System
(NES) video games [1], focusing specifically on the first level of
Super Mario Bros (SMB). Recognizing NES games as computational
problems, we attempt to reproduce and adapt Leane’s methodolo-
gies with an instructional focus. The work involves interaction
with a game emulator, developing a representation for potential
solutions, and employing metaheuristic algorithms for optimiza-
tion. Our study, while less comprehensive than typical research,
provides insights into the basic workflow of these algorithms as
well as results we achieved in our attempt to reproduce the original
paper. Note: All code developed in the context of this report is freely
available in an opensource repository on GitHub [2].
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“It’s a dangerous business, Frodo, going out your door.
You step onto the road, and if you don’t keep your feet,
there’s no knowing where you might be swept off to.” -
JR.R. Tolkien, The Lord of the Rings

1 INTRODUCTION

The primary goal is to develop a solution for the first level of
Super Mario Bros and optimize it using evolutionary strategies.
We divide the problem into manageable tasks: interacting with
the game emulator, representing potential solutions, generating
initial feasible solutions, and optimizing them. Our work navigates
through various roadblocks and nuances in applying evolutionary
strategies to video games.

2 THE PROBLEM

Reading through the Leanes’s 2017 article [1] we find that it appears
to be possible to use old Nintendo Entertainment System (NES) [3]
videogames as "sandboxes” to experiment certain metaheuristics
algorithms.

That article [1] presents a evolutionary strategy approach [4]
of what it would take to optimize solutions to a few of these retro
videogames. For different types of videogames within the NES
the authors walk us through a flow that consists in generating a
feasible initial solution and then iteratively attempting to improve
that solution with a custom population-based approach.

There’s a handful of literature on Nintendo videogames being
NP-complete (see [5] and [6]), with the gist of it being: to achieve a
"victory" state in those videogames, or even just the completion of
a round or a level, we can input a sequence of input combinations
on the gamepad controllers that will be a solution for the game or
levels within the game.

So in this work, we make an attempt at reproducing the original
paper [1], with a smaller instructional scope.

The proposed goal is, like mentioned in the introduction, of at
the very least, being able to get to a solution for the first Super
Mario Bros (SMB) level, and to then try to optimise that solution.
The primary objective of all this being to understand the basic
workflow of the subject matter presented in [1], rather than delving
into the intricate depths that would be typical in a similar but
comprehensive research scenario.

3 SPLITTING THE PROBLEM

Reading through the Leanes’s 2017 article [1] it became clear that
to come close to reproduce it we need to split the whole endeavour
into smaller tasks. There will also be other tasks not explicitly
mentioned in the report. The main ones we came across were the
following:

o Interacting with the videogame emulator: being able to read
values from the game and perform inputs on it.

e How to represent potential solutions: what do we store and
how?

e Getting an initial feasible solution: following the article’s
approach and using a cyclic way of going through motifs to
get a solution that can complete a level in Mario.

o Optimizing the solution: performing mutations, crossover
and repair on solution segments that don’t perform well.

3.1 Interacting with the game

First off, and not necessarily expressed in the original article, we’ll
need to find a way to interact with the game.

For running the game we’ll use an emulator. The same kind of
emulator that is referenced in [1], FCEUX [7].

There are more NES emulators, but this one in particular is
appropriate for our work for two key features. The first is it has a
Lua (the programming language) scripting layer [8]. That enables
the following:

e We can mimic any specific combination of gamepad/joystick
inputs at each drawn frame of the game.

e We can read the position of where the Mario character is
from a RAM memory address of the game, provided we know
the memory addresses to look into [9] (See figure 1)

e We can also read if the player character has died or fallen
into a pit, or infer from the position if they are stuck at a
part of the level or have hit some sort of local maximum.

e We can define save states and easily restart back to a save
state and restart again a given path attempt we are following.

The second key feature of FCEUX is that we can increase the
emulation speed to play the game at more than its usual speed,
so we can test out different solution attempts faster. This is both
a blessing and a curse. Unlike with other metaheuristics example
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Figure 1: Example of watching values of some RAM addresses
in FCEUX for SMB

problems where we can maybe resource to parallelism for mutating
a large population of solutions and checking their fitness in code,
in this case we are conditioned by how long the emulator will take
to run through the solution to check its fitness.

3.2 How to represent a solution

We can split the solution space into different motifs . These motifs,
read, patterns, will be NES Gamepad input combinations. A typical
NES Gamepad [3] has 8 buttons the player can press (or not) simul-
taneously. So our solution can pick from can have a maximum of 28
(roughly 256 possible motifs). We don’t necessarily need all of these
motifs. Only a portion are useful in getting our player character
across a level, so we’ll initially narrow the motif possibilities down.

For representing the motifs in a String motifKeys we defined the
following motif keys:

{"right", "rightA", "rightB", "rightAB", "left",
"leftA", "leftB", "leftAB"}

Each motif key would represent a Gamepad input combination,
like the example bellow where we only simulate press the right
Gamepad button as well as the Gamepad’s A button:
motifs["rightA"] = {

up = false,
down = false,
left = false,
right = true,
A = true,

B = false

There’s a difference here from the original article, in order to
help readability of a given solution, the motif keys are written
expressing the Gamepad input combination, as opposed to just
code-like motifs like m1, m2, m3, ...

Attached to the motif we’ll also need a value to represent how
many frames we are attempting that combination:

local frameDurations = {10, 20, 30}

With these elements we can represent solutions strings. We've
done so like this:

rightA:20, rightB:10, right:30, leftA:10,

3.3 Initialization

The second problem has to do with generating an initial feasible so-
lution. The article talks about 2 methods: cyclic generation, another
random generation.

For brevity, for now we’ll focus on the first one. The general idea
of the proposed algorithm is the following:

e 1) We fill an initial solution attempt with motifs of the same
value, e.g. right : 10 for a length n.

e 2) We try to run that attempt and see how far we got and if
the player character dies or got stuck at any motif.

e 3a)If our player character got stuck or dies we try to increase
the duration of the motif and/or switch to next motif on the
list of possible motifs.

e 3b) If we were able to run through all the motifs without
getting stuck or dying but we haven’t reached the end of the
level we append another motif to the solution, increasing
it’s length n by 1 and try again.

e 4) We continue doing this until we reach the end of the level.

Once Mario reaches the end of the level we save that solution as
a feasible solution to a file. This can then be read and used as an
input solution into the population-based search algorithm which
will attempt to perform mutations to it and try to optimize it.

3.4 Optimization

The original article [1] basically shares the pseudo-code, in broad
strokes, for a custom population-based algorithm approach in order
to handle optimization of solutions. The understanding we achieved
of the underlying custom logic for the optimization step is the
following, in general terms:

1) Take a feasible solution S.

2) Find segments where heuristic score is low.

3) Mutate the motifs in those segments with random motifs.
4) Crossover different segments into a new solution §’.

4.1) Check if solution is feasible (reaches end of level) - if
not, repair it.

e 5) If S’ is "fitter", use it in 1) and repeat until termination
criteria.

A few things might make the reader’s curiosity senses tingle:
What does it actually mean when we say a solution is feasible...
does it mean Mario reaches the end of the level? Or perhaps even if
Mario does not reach the end of the level, as long as there is some
sort of improved fitness value, that makes it feasible? What does
it mean to repair a solution? Do we repair it to a point where the
solution completes a level or merely has an improved fitness value?

It’s tricky to derive, through intuition, what’s the answer to
most these just from reading the original paper. And as will be
mentioned in a later section, these questions ended up being actual
traps / choke points.
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Figure 2: Example of frequent failure spot where Mario can
get easily stuck dying between two groups of enemies close
to each other.

4 RESULTS/ ANALYSIS

4.1 Roadblocks faced while getting an initial
working solution

Starting with the algorithm we use for initialization. Some changes
had to be done in the actual code that makes the algorithm slightly
different than the one proposed in the article. This is due to a
handful of problems:

o Getting stuck between enemies that are too close together
(for example, see Figure 2).

o Getting stuck aggaist a "wall" where maybe we need to go
back a bit before jumping forward.

e Having to jump for a different time duration to hop over
different wall sizes.

e Having to jump in small hops (or with some acceleration) to
avoid falling into some pits/holes. (for example, see Figure 3)

One workaround added for some of these problems were to try
to change the motif previous the actual motif where the failure
happens. This helps in cases where Mario needs to already be exe-
cuting a helpful motif before the spot where we run a failing motif
(e.g. like be in a jump state slightly before a pit/cliff’s beginning).

The other workaround had to do with cycling through different
frame durations of a given motif. That would allow that gamepad
input to be pressed for a longer time and would accommodate for
Mario doing taller or longer jumps for example.

Generating a good solution, even with these workaround, can
take a long time and many iterations. This might explain why the
original author would then try to pick a random motif when trying
to fix a failing motif as a strategy opposite to cycling sequentially
through motifs.

After workarounds we managed to reach an initial feasible solu-
tion (see Figure 4). The record time for completing SMB first level is
roughly 29 seconds. Our un-optimised initial solution took about
42.5 seconds. Not too shabby.
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Figure 3: Example of a frequent failure spot where Mario can
easily fall into the pit
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Figure 4: Example of reaching a successful feasible solution
where Mario reaches the end of the level.

4.2 Massive roadblocks on Optimization, hic
sunt dracones...

Here be dragons. After attempting to implement an optimization
algorithm following the steps laid out by the original article [1],
there are a handful of dragons:

o Lack of meaningful detail into the heuristic function used to
pick segments to mutate

o Weirdness/confusion related to Fitness, e.g: euclidean dis-
tance vs. completing level

o Article talks about using a population of 3, but we found that
is not nearly enough to accommodate for this "evolutionary"-
like algorithm that they propose. This will be discussed in
the next subsection.

e And a handful more issues...

Even not considering the population bounds weirdness, there’s
feasibility weirdness. When we attempt to follow the suggested
optimization algorithm to the letter it doesn’t provide interesting
results when it comes to better solutions. This is both in terms of
how much time it takes to get to a useful or meaningful mutated
solution as well the very few solutions that are feasible (in our
understanding, that complete the level) are not necessarily "faster"
than the initial feasible solution we throw at the algorithm.



Attempting to salvage that algorithm by skipping the suggested
crossover and repair stages also doesn’t seem to help. It helps a
bit in the amount of level-completing mutated solutions produced
but we still face the same hardships as the previous point, in that
the vast majority of mutated segments tend to help Mario getting
stuck or failing to reach the end of the level, as opposed to actually
helping Mario finish the level sooner. This will be discussed further
in a follow-up subsection.

The major consequence of these issues is that we ended up not
being able to produce enough meaningful data using this algorithm
that would allow us use to sample and perform statistical analysis
and safely draw some considerations regarding its performance in
this context.

It might be the case the implementation we arrived at is not
nearly in the same working condition as the one in the original
article, and since we don’t have access to the code, we can guess
what might be causing most of these issues. We’ll share some more
in-deep observations in the next subsections.

4.3 Population sizing problems

There’s a major problem and pain point with the original article: the
size of the population. The article mentions a population of 3, and
narrows it down to the fact that at the time it was computationally
expensive to do a bigger population.

What we found in our implementation attempt was that that
particular size of population was not nearly enough to even get past
one iteration where we do a whole flow of of the custom "mutation,
crossover, repair and selection" algorithm.

In some cases it was necessary to cycle through hundreds of
mutation alternatives, even before crossover, just to make sure that
the proposed mutation was feasible in reaching the end of the level.

It felt at times that the article had a bit of an accidental oversight:
we mutate a segment, but we don’t consider when mutating the fact
that the mutation might make the solution infeasible at reaching
the end of the level.

Instead the article suggests we go ahead with a mutation and
crossover of motifs of mutated solutions and then have an Repair
step after crossover. In practice this was proving worse during
execution trials than the cyclic generation (which is itself kind of
a blind search?) for the feasible initial solution. We would end up
stuck for a long time trying to repair a solution that was a crossover
of multiple mutations for a longer time than it took to get to an
initial feasible solution with resource to cyclic generation at the
beginning of the problem.

One thing that was attempted was to try and not enforce any
bound of the population size [10], and just cycling through as many
working solutions as possible, to try to understand a reasonable
population bound. We didn’t arrive at a meaningful conclusion in
this particular last point.

4.4 Trying to salvage the optimization

We learned that in some cases the emphasis in evolutionary strate-
gies is more on mutation than on crossover [4]. So we tried per-
forming mutations of segments of motifs, skipping the crossover
and repair. Still no success.

As a light side-note: the crossover suggested by the article didn’t
"spark joy". Plainly put, it was something in the lines of... just take all
mutated segments and place them in a solution, if parts of a segment
that was mutated are shared by some other segment, keep the first
one... yeah, didn’t really spark a lot joy.

The suspicion at this point was that: there was likely something
wrong with our own implementation of the checking the heuristic
value of segments. The gist of it being the heuristic value being
calculated in a form that doesn’t help in picking good segments to
mutate, regardless of the parameter values used for the threshold
to pick lower heuristic value segments. It’s hard to know for sure
what is wrong since the original article only provides some clues
into how to implement each part of the optimization algorithm.

The whole mutation process where even in mutated solutions
that reach the end of the level, the amount of motifs of those so-
lutions remains the same as the initial feasible solution, when we
would expect that some motifs could be redundant after mutation.

4.5 Going for broke and rolling the dice

From all the problems mentioned in analysis we have to try to
change course if we want to at very least perform some sort of
statistical study and performance evaluation on a metaheuristic
and salvage some part of this whole effort under the time constraints
at hand for delivering the report.

One potential candidate is to turn our focus into the task of
achieving a first feasible solution.

The initial solution we got at this point was following the cyclic
generation algorithm that is presented in our article under study
[1]. From observing a couple of attempts of running this algorithm
we ran into a couple of hick-ups.

Like mentioned in the article, the cyclic approach doesn’t al-
ways help in getting our player character unstuck from a place or
creatively avoid some enemies.

The article points out that we can alter that cyclic generation
and replace motifs where we are failing with random motifs (and
vary the duration randomly) to try and progress the player further
through the level. This would make our algorithm closer to a unin-
formed random walk, which would at least enable us to evaluate it
and compare different runs with different random seeds.

We went ahead and implemented the following changes:

o 1) We fill an initial solution attempt with motifs of the same
value, e.g. right : 10.

e 2) We try to run that attempt and see how far we got and if
the player character dies or got stuck at any motif.

e 3a) If our player character got stuck or dies we change the
failing motif (or the motif previous to the failing one in some
cases) with a random motif and random duration.

e 3b) If we were able to run through all the motifs without
getting stuck or dying but we haven’t reached the end of the
level we append another random motif to the solution and
try again.

e 4) We continue doing this until we reach the end of the level.

With this kind of approach, and controlling only the random
seed as an imput parameter, we achieved results expressed in Figure
5 by doing 30 runs with different random seeds. We can also see
the standard deviation in Figure 6.
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4.6 Could the solutions be faster?

One of the things we will notice when looking at how the speed
runner community (see [11] and [12]) is that in the first level of
SMB there is a secret tunnel in the level 1-1 which helps scrape
off time. Technically the solutions could be faster if we add more
motifs required to make Mario go into the tunnel. We only allowed
the algorithms to run with a small subset of motifs that are the most
useful in propelling and moving Mario around (left and right, plus
Jjumping (A), plus running (B), and running and jumping at the same
time (AB)). In this case for example, to be able to enter the tunnel
we would need to add motifs that also press the down button.

4.7 (Bonus) Pointers for emulation hardships

The FCEUX emulator fully enabled us to do all this kind of ex-
periments, but there are catches, and it can become a whole time
consuming process, so folks might benefit from knowing some
pointers: 1) Change the emulation speed to speed up iterations, e.g.
emu. speedmode ("maximum"); 2) Make sure you run each parallel
instance of FCEUX executable in a separate CPU thread. This can
be achieved for example in Windows OS through setting processor
affinity settings [13].

5 CONCLUSIONS

Our expedition into the realm of optimizing NES game solutions
using evolutionary strategies has been a journey marked by some
achievements and significant challenges.

While we successfully developed an initial feasible solution for
the first level of SMB, the path to optimization was fraught with
complexities.

The obstacles encountered, particularly in the heuristic function
and the nuances of fitness evaluation, revealed some of the intricate
nature of algorithmic problem-solving in gaming contexts and our
experience underscores the importance of more detailed method-
ological guidance in replicating and adapting existing research.

Despite these challenges, our exploration contributes at the very
least to a broader understanding of applying metaheuristics in un-
conventional contexts and it highlights the potential of videogames
as effective sandboxes for educational and research purposes in the
field of optimization algorithms.
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