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1 Overview

Oh no, Stockfish forgot its glasses at home! The state of the art chess move-
suggestion engine can only recognize the location and color of pieces on the
board and must guess the piece types based on previously-observed games before
it thinks of a move to make. While Stockfish with perfect vision (i.e., being told
the exact board state) is far better than any human chess grandmaster, how
well can it perform when it has “poor eyesight” and might incorrectly guess
which pieces are on the board, influencing its decisions?

The primary goal of this project is to build a deep-learning model which
uses only chess piece location and color information to predict the exact board
state, trained on a history of chess games played by real people.

Even the most interesting models are mere curiosities without proper deploy-
ment, so I created a small chess program to play against this “Poor Eyesight
Stockfish” locally on the command-line, instructions for which can be found on
the GitHub page. Additionally, I created a Lichess “bot” account, PoorEye-
sightBot, where you can play against Poor Eyesight Stockfish online with no
downloads or setup required! A free account is required to challenge the bot
and it accepts challenges with between 1 and 15 minute base time and between
0 and 10 second turn-increment time.

I also created a dashboard for visualizing the model’s prediction from a user-
editable board.

In Section 2, I will provide a brief overview of the relevant terminology. In
Section 3, I will describe the model motivation and structure in more depth. In
Section 4, I will discuss the training and testing data source, mining, storage,
and volume along with a brief analysis of the data. In Section 5, I will go into the
technical details of the model training, testing, and tuning process. In Section
6, I will discuss implementation considerations for using this model together
with Stockfish. In Section 7, I will assess model performance. Lastly, in Section
8, I will discuss the dashboard.

1.1 Keywords

data mining, feature engineering, classification, class imbalance, deep learning,
parameter tuning, ensemble modeling, model deployment, dashboard.
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1.2 Libraries Used

pandas, python-chess, Matplotlib, PyTorch, NumPy, streamlit

2 Chess Terminology

In this Section, I’ll define the relevant terminology. First, the relevant chess
terminology to building the model, shown in Table 1.

Term Description
Piece Both players in a chess game start with the following

pieces: 8 pawns, 2 knights, 2 bishops, 2 rooks, 1 queen,
1 king.

Square/Piece location A chess piece is located on a square of the chess board.
There are 64 squares in an 8x8 grid, with columns or
“files” labeled “a” through “h” (left to right), and rows
or “ranks” labeled “1” through “8” (bottom to top).
For example, the white queen starts on “d1.”

Piece color One player controls the white pieces, while the other
controls the black pieces. The white pieces start on
the first and second ranks, while the black pieces start
on the seventh and eighth ranks.

Piece type For example, “pawn,” “knight,” or “rook.”
Board state The complete set of information of piece locations, col-

ors, and types across the whole board. When any of
this information changes (such as after a piece moves),
it is considered a different board state.

Square occupant The piece that resides in a square, or “empty.” For
example “white rook” or “black pawn.”

Table 1: Relevant chess terminology to building the model.

Next, some auxiliary terminology shown in Table 2.

3 Model Motivation and Structure

3.1 Motivation

As mentioned in Section 1, the goal is to build a model which can only observe
chess piece location and color information to predict the full board state (i.e.,
predicting which exact piece is on each square).

This project is inspired by one of the algorithms in the YouTube video
30 Weird Chess Algorithms by Thomas Murphy VII, also known as “tom7”.
However, his model only used piece location information without considering
piece color, which struck me as unmotivated and arbitrary. Tom’s model, as
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Term Description
Stockfish A chess AI which is the state of the art in chess move

decision-making.
Poor eyesight Limiting the information available to only the piece

location and color, simulating blurry vision in real life.
Perfect vision No limitations on board state information.
Pawn promotion If a pawn moves 7 squares forward, reaching the end

of the board, it promotes to another piece. This piece
can be a knight, bishop, rook, or queen and the choice
is up to the player who controls the pawn.

Table 2: Auxiliary terminology to building the model.

mentioned in the video, has deep faults in that it tends to think any piece deep
into a given side of the board belongs to that side’s starting color, allowing his
queen to infiltrate the AI’s side of the board without any resistance.

3.2 Structure

The modeling is actually done through an ensemble of 64 smaller classifiers, one
dedicated to each square on the board. Each of these 64 models uses the entire
board state to predict which piece is on its dedicated square (with a “no piece”
designation in case there is no piece on the square).

These models have 128 binary inputs: a binary input for whether a white
piece is on a given square and a binary input for whether a black piece is on
a given square, for each square on the chess board. When the given square is
empty, both inputs for the square are set to zero.

One sample of input data to the model (representing the poor eyesight board
state information) for an unmoved board has the structure shown in Table 3.

feature value
a1 white 1
a1 black 0
a2 white 1
a2 black 0

... ...
e4 white 0
e4 black 0

... ...
h7 white 0
h7 black 1
h8 white 0
h8 black 1

Table 3: Sample of input data corresponding to an unmoved board.
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The models have either 11 or 13 possible outputs. A given square can contain
a white or black pawn, knight, bishop, rook, queen, king, or can be empty.
However, the squares on the first and eighth ranks cannot ever contain a pawn
because pawns start on the second and seventh ranks, only move toward the
other side of the board, and promote to another piece when they reach the
opposite end of the board.

One sample of output data (representing the correct piece) for the “a1”
square on an unmoved board has structure shown in Table 4, note that there
are 11 total possible occupants of the square, due to the impossibility of pawns.

output class value
a1 white knight 0
a1 black knight 0
a1 white bishop 0
a1 black bishop 0
a1 white rook 1
a1 black rook 0
a1 white queen 0
a1 black queen 0
a1 white king 0
a1 black king 0
a1 empty 0

Table 4: Sample of output data corresponding to the “a1” square on an unmoved
board.

One sample of output data (representing the correct piece) for the an empty
square on an unmoved board has the structure shown in Table 5. Note that
there are 13 total possible occupants of the square, due to the possibility of
pawns on any square that starts empty.

The hope is that these models they will learn common board patterns and
structures. For example, if only a few pieces have been moved from the second
rank, then those pieces are likely pawns, if there is a piece far beyond the back
rank while the second-from-back rank is still occupied and not many pieces
have moved, then the further piece is probably a knight or bishop, or if there
are diagonally-adjacent chains of pieces, then they are probably pawns, and so
on.

One fault of this model is that the squares do not work together to form
a sensical, legal board state. The individual square models predict their oc-
cupant independently. It is possible no king is predicted, multiple kings could
be predicted, a large number of queens could be predicted, etc. The predicted
board state is minimally algorithmically fixed to produce a legal board state for
playing against Stockfish.

The better this model performs, the better Stockfish’s idea of the exact board
state, the tougher it will be to beat!
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output class value
white pawn 0
black pawn 0
white knight 0
black knight 0
white bishop 0
black bishop 0
white rook 0
black rook 0
white queen 0
black queen 0
white king 0
black king 0
empty 1

Table 5: Sample of output data corresponding to the an empty square on an
unmoved board.

Because there are an incredible amount of possible board states (the best
estimates place this number around 1045), the models cannot possibly be trained
on all of them. I focus the training on positions played in actual games. These
will be more useful when using the model to play against humans as it has
observed relevant positions.

3.3 Why not predict a whole boardstate at once?

It is possible to predict an entire board state at once with careful setup of
the model’s cost function, using only segments of the then-800-length output
layer (considering 11 possible occupants for the 16 squares on the first and last
ranks, and 13 possible occupants for the rest of the 48 squares) to predict a
given square’s occupant. However, the network would have to be quite large
to accommodate for the vastly increased output layer size. Also, as will be
discussed in Section 5.2, each square is almost always empty so dealing with
the large “class imbalance” square-by-square would be a huge challenge when
predicting an entire board at once.

3.4 Incorporating the Model with Stockfish

Figure 1 shows the workflow chart of a game when Poor Eyesight Stockfish plays
against a game against an opponent. The opponent makes a move, then the poor
eyesight board state (piece location and color data) is sent to the poor eyesight
model. The poor eyesight model predicts a board state, then this predicted
board state is fixed as discussed in Section 6, ensuring one king of each color is
on board. Stockfish uses this fixed predicted board state to make a move. This
move is made, and it is the opponents turn again. This repeats until the end of
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the game.

Figure 1: Chess game workflow chart with Poor Eyesight Stockfish

4 Data

4.1 Data Source and Parsing

The training and testing data come from Lichess’s database of rated games. I
semi-arbitrarily chose the March, 2016 database. This database contains PGN
data for 5,801,234 games. When unzipped, this database file is 5.07GB. A PGN
(Portable Game Notation) file contains information on the chess game played,
including player usernames, player ratings, the game result, the moves played,
etc. I used the library python-chess to parse these files and analyze individual
board states by progressing a chess board through a each game’s list of moves.

4.2 Data Storage and Volume

For each game in the dataset, I parsed board state information from every turn.
After every turn, I stored the piece and color on every square (with an empty
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designation) and stored the result as one row in a table.
Because, especially in the first few moves of the game, there are very common

board states, I only stored unique board states. It did not make sense to store
an unmoved board or one with a single pawn moved thousands of times.

Additionally, after the first 10 moves or so, it is very unlikely a board state
had been seen before. Thus, a huge number of board states were observed.
Because I have limited storage and RAM on my computer, I had to limit the
total board states stored in some structured way. I decided to only look at
100,000 total games in which both players were rated at least 2000. The board
states will be observed from skilled players and thus be more likely or more
at least important to get right. I figured observing lower-rated players’ games
would be more likely to lead to fairly nonsensical and unlikely board states.

This produced just over 6.5 million unique board states. Loading all of these
into a pandas dataframe at once used approximately 20GB of my 32GB total
RAM. When simply loading the dataset takes so much RAM, it is difficult to
fit in model training. I trimmed off a minor amount of board states from the
end to bring the dataset to 6.5 million unique board states, randomly shuffled
them, then stored them in 65 100,000-board state files. Splitting the files made
it easier to manage analysis and testing than loading one large file in chunks
every time.

If I had access to larger computing nodes, more RAM, more GPUs, more
storage, more time, etc., I would feel more comfortable training on more board
states.

4.3 Data Analysis

The data collected contains 6.5 million unique board states from 100,000 chess
games played by users of Lichess rated at least 2000.

Table 6 shows the totals and ratios of each square occupant across all 6.5
million board states. The class imbalance is clear: most of the time, squares are
empty. When a square isn’t empty, pawns are the most common occupant in
general. Because each player starts with 8 pawns, far more than any other piece,
this isn’t too surprising. Otherwise, the occupants are approximately equally
likely when the square is not known. Rooks are the most likely non-pawn piece,
likely because they sit in the corners for so long before seeing play and thus
appear in many unique board states.

Figure 2 shows the distribution of total pieces on the board in these games.
There’s a minimum of two pieces (the two kings), a maximum of 32 (a board
with no pieces captured), and a mean of 21.1 pieces. There’s a distinct pattern of
even-valued total pieces being far more common than odd-values total pieces, at
least when total pieces is greater than 20 or so. This is likely due to piece trading
(capturing an opponent’s piece with one piece, then that piece immediately
being captured in return) being more common than winning a piece (capturing
an opponent’s piece without them able to recapture), at least early enough in
the game when there are still many pieces remaining on board.
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Square Occupant Total % of All % of Non-Empty
White Pawn 35757481 8.60 26.1
Black Pawn 35906442 8.63 26.2
White Knight 5850774 1.41 4.3
Black Knight 5827044 1.40 4.9
White Bishop 6713153 1.61 4.9
Black Bishop 6823875 1.64 5.0
White Rook 9522341 2.29 6.9
Black Rook 9512308 2.29 6.9
White Queen 4100824 0.99 3.0
Black Queen 4076646 0.98 3.0
White King 6500000 1.56 4.7
Black King 6500000 1.56 4.7
Empty 278909112 67.05 –

Table 6: Square occupant totals and ratios across all 416 million squares from
all 6.5 million board states.

There are too many squares to draw any meaningful analysis if looking at all
of them. Narrowing our scope to a few squares scattered across the board, “a1,”
“e1,”, “e4,” “d5,” “h5,” and “g8.” Figures 3-8 show the distribution of pieces
on these squares. Note that the y-scale is logarithmic because the squares are
empty or sometimes contain a particular piece the vast majority of the time.

All of the squares are most commonly empty. “a1” has a white rook fairly
frequently, which is expected because the rook starts on that square and will
rarely move until castling kingside, which might not happen. “e1” commonly
has a white king and white rook, which is expected because the white king starts
on “e1” and the white rook is commonly moved from “f1” to “g1” after castling,
where the rook shines as the “e” file is commonly unblocked by pawns. Both
of these squares very rarely have a black king, because it would be dangerous
and unlikely for the black king to make it all the way there outside of a late
endgame “fighting to promote a pawn” situation. “a1” also rarely has a knight
because there are almost always more useful squares for knights to be. Neither
of these squares ever have pawns for reasons discussed above.

“e4” and “d5” both commonly have pawns, with the more common color
being the color which starts closer to them. Pawns are used to fight over the
center early and may stay there a while, or at least have pawns from nearby
files recapture to maintain a pawn on those files. Bishops, knights, and queens
commonly pass through the center squares.

“h5,” on the edge of the board, is most commonly empty. Controlling the
center is considered important, so maintaining pieces on the edge would be a
waste of time. Some pieces, such as knights and bishops, will pivot on these
squares to get to more useful squares. Pawns are the most common pieces on
this square, as they are used in attacking a castled king or pushed to stop an
opponent’s pawn advance.
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Black kings and black knights are the most common pieces on “g8.” This is
the square where a black knight starts, and the square where the black king lands
when castling kingside, which is the most common form of castling. Similar to
“a1,” the white king is very rarely on this square and is likely only there in a
late game situation.
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5 Training, Testing, and Tuning

I used 5.5 million unique board states for training and the remaining 1 million
unique board states for testing. I trained using my desktop computer which
has an AMD Ryzen 7 5800X 3.8GHz 8-Core CPU, 32GB of 2666MHz RAM,
NVIDIA RTX 3060 GPU with 12GB dedicated VRAM, and a Samsung 860
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EVO SSD. Each training epoch took approximately 4.5 minutes per square.

5.1 Parameter Tuning

I used deep learning models, built with PyTorch, for each square’s classification
model. Due to lengthy training times bogging down my personal computer, I
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decided to tune parameters manually. I examined performance on a few squares,
“f5” and “g4”, squares on which a variety of pieces commonly land. If I had
access to larger computing power, I would use a hyperparameter tuning library
such as Optuna to find the most optimal parameters.

I started with a similar model structure to that of tom7 in 30 Weird Chess
Algorithms: a three layer neural network with a moderately large first layer,
a much larger second layer, then a third layer which was equal in size to or
slightly smaller than the second layer. I kept all layer sizes equal to a power
of two, with all three layers containing at least 128 nodes, the size of the input
layer. I examined a variety of structures, with the first layer ranging from
256 to 2048 nodes, the middle layer ranging from 512 to 8192 nodes, and the
last layer ranging from 128 to 2048 nodes. I found that the performance of
the (512,2048,2048) had the best performance. All of these evaluations were
performed using a batch size of 1000 and 5 training epochs. A learning rate of
0.1 provided the fastest convergence without any divergence issues after testing
with 0.1, 0.05, 0.01, 0.05, 0.001. Using a step size momentum of 0.9 sped up
convergence drastically.

Because I expected the last layer to be significantly smaller than the second
layer, somewhere between the prior layer and the output layer, I decided to add
fourth layer. I kept the first 3 layer sizes and evaluated with a fourth layer sizes
of 128 through 1024. A layer size of 256 provided the best performance.

Finally, I evaluated performance on the test set across a number of total
training epochs to avoid over-fitting. I found that 20 epochs had good perfor-
mance, with more epochs leading to overfitting issues and decreased test set
accuracy. 20 epochs took around 90 minutes per square for a total training time
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of around 4 days.
Figure 9 shows the final neural network architecture for a single square’s

model.

Figure 9: Poor Eyesight neural network model for predicting the occupant of a
single square.

5.2 Class Imbalance

For any given square, there is no piece on the square for between 60-95% of
the board states. This provides a challenge for training, as the models tended
to predict “empty” every time and achieve low training cost. To solve this, I
over-sampled the board states, split by the corresponding square occupant, by
repeatedly training on them in inverse proportion to how frequent they were.
The number of times to repeat training on board states corresponding to a given
output class was given by 40,000 divided by the number of board states asso-
ciated with given output class, rounded up. This process of repeating samples
was performed for each of the files originally containing 100,000 board states
used in training.

This led to an overall minimum of approximately 2.6 million samples of each
square occupant, and an overall approximately five times increase in the number
of samples trained per epoch, for a total of 31 million samples per epoch. This
roughly balances the number of dataset entries of each square occupant such
that each square occupant comprises approximately 1/13 of the dataset, where
13 is the typical number of possible square occupants.
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This over-sampling process during training drastically improved test set ac-
curacy, going from predicting “empty” every time to a per-piece accuracy over
60%, sometimes over 90%. Note that the test set was not over-sampled.

There are methods of creating interpolated data to oversample and reduce
overfitting and often involve some sort of K-means clustering. Because of a
variety of factors—binary input data, desire to include only board states seen in
real games, the finicky nature of having 13 output classes, the drastic nature of
the class imbalance—I decided to do a simple repeated-sample technique. The
performance increase on the test set speaks to the success of this technique in
this case.

6 Implementation Considerations

As mentioned in Section 3, the individual models predicting the piece on each
square do not work together to ensure a legal board state. When assessing ac-
curacy and performance of the individual models, this is not important. This
becomes important when feeding a predicted board state into Stockfish, which
requires a legal board state to suggest a next move. Fixes need to be manu-
ally/algorithmically implemented to issues preventing illegal board states.

The primary issue to fix is the amount of kings on the board. For example, if
there are no kings predicted, the square which is most likely a white king is set
to contain a white king. If there are multiple white kings predicted, the square
which is most likely a white king is kept, while the less likely squares are set to
the next-most likely piece. The same process is performed for black kings.

If Stockfish suggests a move that is illegal given the true board state, a
random move is made for it.

Due to poor performance of Poor Eyesight Stockfish, I also implemented a
“memory.” This memory consists of the last 3 moves Poor Eyesight Stockfish
made would be “remembered” and modified in the board state’s output if the
pieces moved had not been captured and the models incorrectly predicted the
recently-moved pieces. After all, people with very poor eyesight would still
remember the last few moves they made. I did not want to include too much
memory, as that would defeat the purpose of this project.

The memory did not help very much and will be discussed more in Section
7.2.

7 Performance

7.1 Model Performance on Testing Data

I tested the models on 1 million board states which they had not been trained
on. The models did very well on the test data given the drastic class imbalance.
Table 7 shows the accuracy per square occupant in the test set, across all 64
million total squares from all board states. The class with the lowest accuracy
is 0.741 for Black Queens, with White Queens not far ahead with 0.745. Queens
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having the lowest accuracy is not terribly surprising as they have the flexibility
to land on squares which other pieces, such as knights or bishops, and can be
confused with them. Empty squares had a near 1.00 accuracy with only 251
empty squares incorrect out of nearly 43 million. The piece with the highest
accuracy were pawns with 0.963 accuracy for both white and black pawns. The
mean accuracy value across all square occupants was a quite-high 0.875. The
overall accuracy across all 64 million squares was 0.972, fuelled by the high
amount of empty squares.

Square Occupant Total Total Correct Accuracy
White Pawn 5500001 5297571 0.963
Black Pawn 5523187 5319379 0.963
White Knight 899884 750148 0.833
Black Knight 895917 732720 0.818
White Bishop 1032053 834461 0.809
Black Bishop 1049125 845129 0.806
White Rook 1464855 1351333 0.922
Black Rook 1463243 1362313 0.931
White Queen 630536 470036 0.745
Black Queen 626835 464731 0.741
White King 1000000 921336 0.921
Black King 1000000 918778 0.919
Empty 42914364 42914113 0.999
All 64000000 62182048 0.972

Table 7: Accuracy for each square occupant across all 64 million squares from all
board states in the test data. Mean square occupant accuracy: 0.875. Overall
accuracy across all 64 million squares: 0.972.

Figure 10 shows the frequency of the number of incorrectly-predicted squares
per board. 21% of the time, the models get the entire board exactly correct,
while 70% of the time there are 2 or fewer incorrect square occupants predicted
and 86% of the time, 3 or fewer.

Figure 11 shows the board same board state accuracy, but looking at a subset
of the board states. Figure 11a shows the accuracy on boards with more than
24 pieces on the board (at least 75% of the original total pieces), and Figure
11b shows the accuracy on boards with 8 or fewer pieces on the board (at most
25% of the original total pieces). The models are more accurate than average
when there are more than 24 pieces on the board, and less accurate when there
are 8 or fewer pieces. If there are still a lot of pieces on the board, they are
likely in expected positions relative to other pieces, while if there are very few
pieces on board, they have much more freedom of movement and there can be
a large variety of remaining pieces. It would be very hard to tell if there are
4 pieces on each side if a piece is a pawn, bishop, knight, etc. Additionally, it
is harder to get a lot of training data for board states with few pieces because
of the huge number of reasonable piece arrangements on the board. The large
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number of possible reasonable board states combined with the variety of pieces
which could remain makes modeling the endgame a huge challenge. This comes
into play when actually using Poor Eyesight Stockfish, discussed in Section 7.2.

Figure 12 shows the mean pieces predicted incorrectly versus the total non-
empty squares on the board. The mean is roughly equal to 2 for any amount
of non-empty squares. The mean decays as the number of pieces approaches 32
(zero pieces captured) and 2 (only the kings remaining on board). The mean
is nonzero for two non-empty squares clearly showing the model’s fault in not
always producing a legal, sensical board state in that there is only one combi-
nation of pieces when two pieces are on board (the white king and black king in
a stalemate). The standard deviations of the incorrectly predicted squares are
between 1 and 1.5 for all but 2, 3, 4, 32 non-empty squares while these amounts
of non-empty squares have standard deviations of 0.19, 0.53, 0.88, 0.80, respec-
tively.

The mean is fairly large for three to five non-empty squares, showing both
the difficulty in predicting the last few remaining pieces and the need for more
training data in this endgame situations. When there are only a few pieces
left on the board, there are so many possible sets of pieces which a player
could use to achieve a checkmate while the losing player could have practically
any leftover pieces as they get checkmated. Also, there are comparatively few
training examples from the endgame because the game could end before such
a late situation and the game usually ends quickly once it gets to that point.
For example, there are only 53 testing samples with two non-empty squares and
2753 with three, while there are over 20, 30, 50, or even 70 thousand testing
samples for board states with between 10 and 32 non-empty squares. Two non-

16



0 2 4 6 8 10
Total squares predicted incorrectly

0

20000

40000

60000

80000

100000

120000

140000

160000

To
ta

l b
oa

rd
 s

ta
te

s

153586

95117

66087

38445

19156
8247 3234 1046 341 86 26 4

Total squares per board state predicted incorectly
for boards with more than 24 total pieces.

(a)

0 2 4 6 8
Total squares predicted incorrectly

0

2500

5000

7500

10000

12500

15000

17500

To
ta

l b
oa

rd
 s

ta
te

s

7526

18991 18753

10867

4233

1130
196 25 2

Total squares per board state predicted incorectly
for boards with at most 8 total pieces.

(b)

Figure 11

17



empty square samples could easily be generated as they are always kings, but
it is not as obvious to generate useful samples for more than two pieces.

5 10 15 20 25 30

Total non-empty squares

0.0

0.5

1.0

1.5

2.0

M
ea

n 
sq

ua
re

s 
pr

ed
ic

te
d 

in
co

rre
ct

ly
Mean sqaure occupants predicted incorrectly

 versus total non-empty squares

Figure 12

Figures 13-18 show the per-piece accuracy of the same squares analyzed
in Section 4.3, “a1,” “e1,”, “e4,” “d5,” “h5,” and “g8.” Some squares fail to
ever predict a piece correctly, such as the failure to ever correctly predict a
black queen on “e1”. The accuracies are very high for the common pieces and
lower for the less frequent pieces, likely indicating a deficiency of the repeated-
sample oversampling technique in training. The models were only used to seeing
certain pieces on their square in particular board states. There is also a factor
of seeing another piece more commonly in similar board state setups, leading
to unavoidable errors.

The fact that the models have such high accuracy on a variety of pieces–
the “e4” model has over 70% accuracy on 5 pieces, including pieces of both
colors–shows some form of success. Even though the “d5” model failed to ever
accurately predict white rooks or black knights, it had over 70% accuracy on
6 pieces. The “g8” model correctly predicted pieces at least 55% of the time,
with 3 pieces having at least 95% accuracy.

Table 8 shows the overall proportions of predicting a color piece (or empty),
when the actual piece is a given color (or empty) across all squares and board
states. Because the models receive piece color information on their correspond-
ing square (along with all other squares), we would expect this to be perfect or
nearly perfect. This is confirmed.
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Figure 14

7.2 Poor Eyesight Stockfish Performance

Poor Eyesight Stockfish performs quite badly in real games. It is able to play
perfectly or nearly perfectly for the first 10-15 moves because the models are
able to predict the board with sufficient accuracy for Stockfish to be able to
recommend a good move. However, eventually, as the board state gets more
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complex, the models start to lose their accuracy. At this point, Stockfish has
starts to have such a misunderstanding of the true board state, it suggests moves
that are illegal, and a random move is made for it. Once it starts playing random
moves, practically any player or other bot account could beat it.

Performance did not improve with the “memory” feature addition, men-
tioned in Section 6. It played around 15 games against progressively weaker
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opponents (due to its own rating dropping) with the memory feature and did
not win once. So far, the only win attributed to Poor Eyesight Stockfish on
Lichess is when I ran out of time while play-testing and fixing bugs!

Figure 19 shows the typical story of a game played by Poor Eyesight Stock-
fish. This plot shows a post-game computer evaluation move-by-move of the
game. A more positive evaluation indicates white is winning, while a more neg-
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Predicted
Actual

White Black Empty

White 0.999351 0.000431 0.000218
Black 0.000447 0.999278 0.000265
Empty 0.000033 0.0000025 0.999994

Table 8: Ratio of colors (or empty) predicted for each actual color (or empty)
across all 1 million testing board states and all squares.

ative evaluation indicates black is winning. Early in the game, the evaluation
climbs in Poor Eyesight Stockfish’s favor, as the models produce an accurate
enough board state for it to act close enough to regular Stockfish, which is far
stronger than the opponent “maia5,” a bot trained to play like intermediate
human players.

The first major dip, at move 14, happens when Poor Eyesight Stockfish does
not move its bishop from being attacked by its opponent’s pawn. The evalu-
ation climbs back a little when maia5 chooses to take a pawn with its knight,
positioning itself for an attack on Poor Eyesight Stockfish’s queen, when tak-
ing the bishop would’ve been better. However, Poor Eyesight Stockfish does
not realize this black piece is a knight, so doesn’t move its queen. It chooses
to move a pawn to attack maia5’s knight instead, leading to the second ma-
jor dip in evaluation. maia5 takes the queen. An unhindered Stockfish may
be able win against maia5 from this position, but at this point Poor Eyesight
Stockfish does not stand a chance. The record of this game can be found at
https://lichess.org/P0DUK5dm#1, where you can use the left and right key-
board arrowkeys to go through the game’s moves.

Figure 19: Post-game computer evaluation of a game played between Poor Eye-
sight Stockfish (white) and the bot “maia5” (black). A more positive evaluation
indicates white is winning, while a more negative evaluation indicates black is
winning.

7.3 Performance Conclusions

The models did quite a good job of predicting the board state in general. How-
ever, there is clearly a deficiency as evidenced by the poor performance of Poor
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Eyesight Stockfish. It performs excellently for the first 15 or so moves, which is
30 different board states. However, making one mistake (such as not realizing
its queen is under attack) is enough to snowball each game into an inevitable
loss.

This could be partly solved by training on more board states, for more time,
with a larger network, with a more thorough parameter tuning process. In
the end it will never be perfect, for a few reasons. First and foremost, it is
attempting to predict the full board state with incomplete information. It is
bound to get information wrong. Secondly, there are too many possible board
states to ever train on all of them, so there are bound to be blind spots. Finally,
especially in the middle and late game, after each player has moved all their
pieces, pieces have been taken, and attacks have been formed, there is too
much flexibility to get accurate predictions all the time. A bishop and knight
could swap places, or an unexpected combination of pieces could be left on the
board near the end of the game. We can see this flexibility causing issues in
the models–the models on the edge of the board (“a1,” “e1”, “g8”) have much
better performance than those at the center (“e4,” “d5”)

This was a fun project to see how well a model could predict the exact state
of “reality” with deliberately incomplete information. I also had a lot of fun
setting up the Lichess bot and watching my own creation automatically play
games while I monitored it on the backend. I was pleasantly surprised at the
performance it did achieve, and enjoyed seeing where and how it failed despite
successes in other cases.

8 Dashboard

The dashboard exists for visualizing the model’s prediction from a user-editable
board and was created with the python library streamlit. Figure 20 shows the
user-interface. The user selects pieces from a dropdown menu to place in every
square. Then, a board is displayed with the user-selected pieces and another
board is displayed with the model’s predicted pieces with red highlighted squares
for incorrectly-predicted pieces. In the example, the model incorrectly predicts
a pawn as a knight in the seventh rank.
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