
PC-Planner: Physics-Constrained Self-Supervised Learning for Robust
Neural Motion Planning with Shape-Aware Distance Function
XUJIE SHEN∗, Zhejiang University, China
HAOCHENG PENG∗, Zhejiang University, China
ZESONG YANG, Zhejiang University, China
JUZHAN XU, Shenzhen University, China
HUJUN BAO, Zhejiang University, China
RUIZHEN HU, Shenzhen University, China
ZHAOPENG CUI†, Zhejiang University, China

Fig. 1. Given a prebuilt complex 3D environment, our PC-Planner can learn the time fields and execute motion planning for robots of various shapes from any
start state to any goal state in a self-supervised manner. Left: Time fields for a piano navigating through the environment, in which the rainbow color scheme
is used. Right: Close-up views of the manipulation of a UR5 robot.

Motion Planning (MP) is a critical challenge in robotics, especially pertinent

with the burgeoning interest in embodied artificial intelligence. Traditional

MP methods often struggle with high-dimensional complexities. Recently

neural motion planners, particularly physics-informed neural planners based

on the Eikonal equation, have been proposed to overcome the curse of dimen-

sionality. However, these methods perform poorly in complex scenarios with

shaped robots due to multiple solutions inherent in the Eikonal equation.

To address these issues, this paper presents PC-Planner, a novel physics-

constrained self-supervised learning framework for robot motion planning

with various shapes in complex environments. To this end, we propose

several physical constraints, including monotonic and optimal constraints,

∗
Xujie Shen and Haocheng Peng contributed equally to this work.

†
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1131-2/24/12

https://doi.org/10.1145/3680528.3687651

to stabilize the training process of the neural network with the Eikonal

equation. Additionally, we introduce a novel shape-aware distance field that

considers the robot’s shape for efficient collision checking and Ground Truth

(GT) speed computation. This field reduces the computational intensity, and

facilitates adaptive motion planning at test time. Experiments in diverse

scenarios with different robots demonstrate the superiority of the proposed

method in efficiency and robustness for robot motion planning, particu-

larly in complex environments. Code and data are available on the project

webpage: https://zju3dv.github.io/pc-planner.

CCS Concepts: • Computing methodologies→ Robotic planning;Mo-
tion path planning.

Additional Key Words and Phrases: motion planning, robot navigation,

Eikonal equation, self-supervised learning

ACM Reference Format:
Xujie Shen, Haocheng Peng, Zesong Yang, Juzhan Xu, Hujun Bao, Ruizhen

Hu, and ZhaopengCui. 2024. PC-Planner: Physics-Constrained Self-Supervised

Learning for Robust Neural Motion Planning with Shape-Aware Distance

Function. In SIGGRAPH Asia 2024 Conference Papers (SA Conference Papers
’24), December 3–6, 2024, Tokyo, Japan. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3680528.3687651

1

https://doi.org/10.1145/3680528.3687651
https://zju3dv.github.io/pc-planner
https://doi.org/10.1145/3680528.3687651

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan Shen et al.

1 INTRODUCTION
Motion planning (MP) is a long-standing problem in robotics that

aims to find a trajectory from a start configuration to a goal configu-

ration while satisfying all constraints like collision avoidance. With

the rapid advancement of embodied artificial intelligence, this prob-

lem has garnered increasing attention. The traditional MP methods

normally adopt sampling techniques to explore the robot’s obstacle-

free state-space and construct feasible paths [Gammell et al. 2015;

Karaman and Frazzoli 2011; Kingston et al. 2018]. However, these

methods often encounter limitations in high-dimensional spaces

with increased computational complexity and reduced efficiency.

Recently learning-based methods [Chaplot et al. 2021; Li et al.

2021; Wang et al. 2020], i.e., neural motion planners, have been

proposed to solve the curse of dimensionality. Most of the learning-

based methods [Huh et al. 2021; Li et al. 2021] utilize the deep

neural network to predict the motions iteratively to improve the

efficiency of planning in high dimensions. However, these methods

face some significant limitations. Firstly, these data-driven meth-

ods heavily rely on expert training data such as the trajectories

from the traditional methods, resulting in time-consuming data

generation processes, particularly for high-dimensional spaces. Ad-

ditionally, they typically employ constant velocity paradigms which

are not suitable for real scenarios [Vysockỳ et al. 2019]. In contrast,

some recently proposed physics-informed methods [Ni and Qureshi

2023a,b] offer a compelling alternative. These methods first prede-

fine a speed field that considers velocity constraints based on the

geometry of obstacles. Utilizing this predefined speed field, they

employ neural networks to solve the Eikonal equation for motion

planning. The training data can be efficiently generated by sampling

within the speed field, thereby circumventing the need for expert

data and significantly reducing data generation time. However, these

physics-informed methods struggle in complex environments with

shaped robots due to the multiple solutions inherent in the Eikonal

equation. Consequently, they may produce time fields with local

minima, as shown in Fig. 2 (left), leading to infeasible paths and

thus poor performance in complex planning tasks. Unlike some

optimization-based methods, where “local minima” refers to feasi-

ble but sub-optimal solutions, in our context, local minima in the

time fields lead to infeasible solutions, thereby reducing the success

rates.

In this paper, we present PC-Planner, a novel physics-constrained

self-supervised learning framework for neural robot motion plan-

ning based on a new shape-aware distance field, effectively ad-

dressing the local minima in the time fields and thus significantly

outperforming existing physics-informed methods in success rates.

Based on a deep analysis of the properties of the Eikonal equation,

we propose two physical constraints and incorporate them into the

training process of the neural network with the Eikonal equation

for motion planning in a self-supervised manner. Specifically, we

introduce the monotonic constraint to identify the local minima and

the optimal constraint to preserve the optimality of the solution to

the Eikonal equation. These constraints are seamlessly integrated

into a self-supervised training framework, allowing the network to

recognize situations where the solution is trapped in local minima

�������� ����

����������
�

Fig. 2. Comparison of time fields for Gibson. NTFields generates an incorrect
time field with local minima due to the inherent multiple solutions in the
Eikonal equation, while our PC-Planner learns to generate the correct time
field with the proposed physical constraints.

and enabling it to self-correct by adhering to the defined physical

rules, as shown in Fig. 2 (right).

However, these physical constraints are only applied to the collision-

free paths, which introduces significant computational overhead

for trajectory collision checks during training. To address this issue,

we further propose a novel shape-aware distance field (SADF) that

models the minimum distance from the robot with any shape and

configuration to the environment. With this neural implicit field,

we can efficiently conduct collision checking and apply the physical

constraints during the training process of the physics-informed neu-

ral model. Meanwhile, our SADF can be efficiently converted into

the required speed field for training the physics-informed model,

and further exploited during the test stage for collision avoidance

with adaptive path planning,

We analyze and validate the effectiveness of our method through

experiments in diverse scenarios with various robots, demonstrating

the superiority of PC-Planner over the existing methods.

Our main contributions can be summarized as follows:

• We introduce a novel physics-constrained self-supervised

learning approach for physics-informed neural robot motion

planning, which enables efficient and robust motion planning

for robots with various shapes in complex scenarios.

• We propose two physical constraints to enable the network

to jump out of local minima and converge to the correct

solutions that obey the physical rules.

• We develop a new neural shape-aware distance field for colli-

sion checking that can predict the minimum distance to the

environment for any robot with arbitrary shapes and con-

figurations in the fixed environment, which facilitates both

self-supervised training and test stages.

2 RELATED WORK
Our work focuses on the problem of robust motion planning for

robots with arbitrary shapes in challenging scenarios. Here, we

review the current state of research on motion planning and implicit

neural distance fields.

Motion Planning. Existing optimal path planning methods include

sampling-based approaches[Gammell et al. 2015; Karaman and Fraz-

zoli 2011; LaValle and Kuffner Jr 2001; Tukan et al. 2022] that explore

the environment through random state sampling to retrieve fea-

sible paths, optimization-based methods[Kalakrishnan et al. 2011;

Kurenkov et al. 2022; Mukadam et al. 2016] which minimize a de-

fined cost while meeting constraints to find the optimal trajectory,

2

PC-Planner SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan

etc. [Yang et al. 2019]. While effective for high-dimensional tasks,

they suffer from high computational costs and unstable solutions

due to their sensitivity to initial conditions. Neural motion planners

(NMPs)[Chaplot et al. 2021; Ichter et al. 2018; Johnson et al. 2023; Li

et al. 2021; Wang et al. 2020] have emerged to balance efficiency and

stability, using expert trajectories from classic methods for train-

ing. However, generating training data from traditional methods is

computationally expensive, limiting their flexibility.

The most pertinent method to our work is the physics-driven

method. The earliest of these methods is FMM[Chopp 2001; Sethian

1996; Treister and Haber 2016; White et al. 2020] which numerically

solves the Eikonal equation. However, its computational complexity

increases dramatically with dimensionality. Recently, NTFields[Ni

and Qureshi 2023a] has introduced a continuous-time path planning

method encoding the Eikonal equation directly into the network,

eliminating the need for expert trajectory supervision. Subsequently,

[Ni and Qureshi 2023b] incorporates a viscosity term and progres-

sive learning for smoother path solutions. Despite their success,

these methods struggle with challenging scenarios affected by local

minima. Our approach addresses the issues, ensuring high success

rates and fast inference across diverse scenarios including high-

dimensional planning, and various shapes of robots.

Implicit distance representation. The contemporary approach

[Chabra et al. 2020; Jiang et al. 2020; Ouasfi and Boukhayma 2022] to

learning Signed Distance Fields (SDF) primarily involves employing

neural networks to regress the mapping between 3D coordinates

to the signed distances. Similar work can be traced back to [Park

et al. 2019], where a neural signed distance function was introduced.

The function allows querying the shortest distance between the

object surface and continuous spatial points. However, it is designed

for point queries, and when dealing with a shaped robot as the

target, such distance functions cannot be directly applied. Recent

works like [Chen et al. 2021; Chou et al. 2022; Zhu et al. 2023] excel

in accurately representing the shape of objects, encompassing the

capability to handle key properties such as scaling and rotation.

These methods serve as inspiration for our proposed shape-aware

distance function, allowing us to characterize the distance between

the robot and the environment.

3 PRELIMINARIES

3.1 Robot Motion Planning

Let C ⊂ R𝑑 andX ⊂ R𝑚 represent the configuration space (c-space)

of the robot and its surrounding environment, where 𝑑,𝑚 ∈ N de-

note the dimensions. The obstructed c-space, formed by the obsta-

cles in the environment X𝑜𝑏𝑠 ⊂ X, is denoted as C𝑜𝑏𝑠 . Additionally,
the feasible space in c-space and the environment is represented as

C𝑓 𝑟𝑒𝑒 = C\C𝑜𝑏𝑠 and X𝑓 𝑟𝑒𝑒 = X\X𝑜𝑏𝑠 respectively. Given the robot

start s ∈ C𝑓 𝑟𝑒𝑒 and goal g ∈ C𝑓 𝑟𝑒𝑒 configurations, the objective

of robot motion planning algorithms is to find a collision-free tra-

jectory 𝜎 = {c0, ..., ci, ..., cn} ⊂ C𝑓 𝑟𝑒𝑒 𝑠 .𝑡 . ci ∈ C𝑓 𝑟𝑒𝑒 , where c0 = s,
cn = g, and ci denotes the waypoint along the trajectory.

3.2 NTFields
The recent work NTFields [Ni and Qureshi 2023a] introduces a new

perspective that relates motion planning problems with the solution

to the Eikonal equation. The Eikonal equation defines the wave

propagation with a first-order, nonlinear PDE formulation:

𝑆 (g)−1 =

∇g𝑇 (s, g)

 , (1)

where s and g are start and goal configurations, 𝑇 (s, g) represents
the arrival (travel) time from s to g, and ∇g𝑇 (s, g) denotes the partial
derivative of arrival time with respect to the goal point. The solution

to the equation yields the minimum arrival time of the wave from

the start point to the goal point under the predefined speed model.

NTFields employs the multilayer perceptron (MLP) to model the

time field 𝑇 , which is the solution to the Eikonal equation. The

neural network, parameterized by Θ, takes the robot’s start and goal
configuration (s, g) as input and outputs the time field, namely, the

Time Field Regressor:

𝑇Θ (s, g) = MLP(s, g;Θ) . (2)

The ground truth speed model is defined as:

𝑆∗ (c) = 𝑆𝑐𝑜𝑛𝑠𝑡

𝑑𝑚𝑎𝑥
× 𝑐𝑙𝑖𝑝

(
𝐷 [𝑟,X𝑜𝑏𝑠] (c) , 𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥

)
, (3)

where 𝑟 denotes the robot and 𝐷 is a function that computes the

shortest distance between the robot at configuration c ∈ C and

spatial obstacles X𝑜𝑏𝑠 . This distance is obtained by sampling points

on the surface of the robot and calculating the minimum distance

from these points to the obstacles (implemented using BVH [Karras

2012]). The 𝑐𝑙𝑖𝑝 function truncates the distance within the range

of the minimum distance, 𝑑𝑚𝑖𝑛 , and the maximum distance, 𝑑𝑚𝑎𝑥 .

𝑆𝑐𝑜𝑛𝑠𝑡 is a speed hyper-parameter, signifying that if the distance

between the robot surface and the obstacle surpasses 𝑑𝑚𝑎𝑥 , a max-

imum speed upper limit is imposed. By providing the GT speed

model which implicitly encodes obstacle information, NTFields can

be trained with these GT speed and predicted speed which is de-

rived from the predicted time according to Eq. (1). However, the

BVH-based speed model is computationally expensive, especially

when the robot has a complex shape. Our SADF (detailed in Sec. 4.2)

offers an accelerated approach to calculating the speed field.

3.3 Viscosity Solution of Eikonal Equation
The non-uniqueness of the solution for the Eikonal equation can

cause local minima when applied to motion planning as mentioned

in [Sethian 1999]. To solve this problem, the viscosity solution of the

Eikonal equation is normally utilized with the following definition:

Definition 3.1. The function 𝑇 is said to be the viscosity solution of
the Eikonal equation provided that for all smooth test function 𝑣 ,

1. if 𝑇 − 𝑣 has a local maximum at a 𝒙0, then 𝐺 (𝒙0,∇𝑣 (𝒙0)) ≤ 0

2. if 𝑇 − 𝑣 has a local minimum at a 𝒙0, then 𝐺 (𝒙0,∇𝑣 (𝒙0)) ≥ 0

where𝐺 (x,∇𝑇) is the general static Hamilton-Jacobi equation for

the Eikonal equation:

𝐺 (x,∇𝑇) = 0. (4)

As proved in [Crandall and Lions 1983; Sethian 1999], we have

the following theorem:

Theorem 3.2 (Existence and uniqeness). There exists a unique
viscosity solution 𝑇 of the Eikonal equation.

3

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan Shen et al.

��������������������

��������������������

������
������

���������

	����
����
�����������	����
����

���������

Fig. 3. The PC-Planner integrates a physics-constrained self-supervised learning framework with a shape-aware distance field. The start configuration s and
goal configuration g are utilized to predict the time𝑇 (s, g) through the time field regressor. The travel times𝑇 (s, g) ,𝑇 (s,wi) , and𝑇 (wi, g) are employed to
incorporate physical constraints during the training of the time field in a self-supervised manner to reduce local minima. It is essential that the waypoint wi
remains collision-free, which can be ensured by distance 𝐷 (wi) predicted through SADF. Moreover, 𝐷 (wi) can also be converted into the ground truth speed
𝑆∗ (wi) of wi to compute the speed loss with the predicted speed 𝑆 (wi) , which is determined using the time𝑇 (s,wi) and Eq. (1). During training, the motion
planning (MP) iterates to derive the waypoint for physical constraint loss, while during testing, it iteratively computes waypoints to generate a path solution.

In other words, the uniqueness of the viscosity solution can in-

herently address the issue of local minima for the Eikonal equa-

tion. To construct the viscosity solution, Fast Marching Methods

(FMM) [Sethian 1996] are commonly employed. FMM discretizes

the c-space and ensures the viscosity solution by:

Theorem 3.3. As the discrete space size goes to zero, the numerical
solution built by the Fast Marching Methods converges to the viscosity
solution of the Eikonal equation.

The proof of this theorem is provided in [Barles and Sougani-

dis 1991; Tugurlan 2008]. However, FMM has two limitations: 1)

the discrete space size cannot practically reach zero implying that

the numerical solution may not always converge to the viscosity

solution; and 2) the computational burden of FMM increases signifi-

cantly in high-dimensional spaces, as the number of discrete grids

required grows dramatically with the dimensionality.

To overcome those limitations, we utilize neural networks to solve

the Eikonal equation, which is more efficient. Meanwhile, instead

of pursuing the exact viscosity solution, we introduce our physical

constraints to reduce the local minima in the training process, which

will be detailed in Sec. 4.1.

4 METHOD
For any start-goal pair, our PC-Planner employs the time field to

compute the travel time and its partial derivatives, which are then

used in an iterative motion planning process to generate the final

path. To train a time field for a new environment, we propose a

physics-constrained self-supervised training framework (Sec. 4.1)

incorporating a SADF (Sec. 4.2) that is crucial in data preprocessing

(GT generation), training (efficient collision-checking), and testing

(rapid collision-checking in adaptive motion planning (Sec. 4.3)).

As illustrated in Fig. 3, in our self-supervised framework, pairs

of the start and goal configurations are first regressed into the time

field through Time Field Regressor. Subsequently, the time field is

employed to predict the speed and determine the waypoint along

the trajectory through motion planning (MP module). The physical

constraints are then applied to the start, waypoint, and goal config-

urations in a self-supervised manner, which can help the network

escape local minima and converge to the correct solutions consistent

with physical principles. Moreover, the proposed SADF Predictor is
utilized to obtain the shortest distance of any given configuration

to the environment. It facilitates collision checking to ensure the

collision-free status of the start, waypoint, and goal configurations

for the physical constraints and aids in generating GT speed fields

in the data processing stage. For ease of illustration, the visualized

time field represents the travel time from a fixed start configuration

cs to any goal configuration ci ∈ C for the robot and the visualized

speed field denotes the speed of the robot at any configuration c ∈ C.
Additionally, both fields are visualized in 2D space for clarity.

4.1 Physics-Constrained Self-Supervised Learning
As previously mentioned, the local minima in the solution of the

NTFields are caused by the non-uniqueness of the solution for the

Eikonal equation. Motivated by traditional methods like FMM, in

this section, we introduce a novel self-supervised strategy with

two physical constraints related to the viscosity solution, monotonic
constraint and optimal constraint, to enhance the physics-informed

neural motion planner by escaping local minima.

Monotonic Constraint. From Theorems 3.2 and 3.3, we have the

following property [Sethian 1999]:

Property 4.1. Travel time solved by FMM increases monotonically
away from the start point towards the goal.

This indicates that the travel time through any waypoint in the path

does not shortcut the overall travel time from start to goal. Based

on this, we introduce the monotonic constraint which implicitly

enforces the monotonicity property in the neural network.

4

PC-Planner SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan

Specifically, for any waypoint along the planned path, the total

travel time from the start to the goal configuration must exceed

both the travel time from the start to the waypoint and from the

waypoint to the goal configuration. More formally, let𝑇 (x, y) denote
the travel time from configuration x to y. We have:

𝑇 (s, g) > 𝑇 (s,w), (5)

𝑇 (s, g) > 𝑇 (w, g), (6)

where s, g and w ∈ C𝑓 𝑟𝑒𝑒 represent start, goal, and waypoint

configuration respectively in the free space. The significance of the

monotonic constraint in maintaining the fidelity of the viscosity

solution can be verified by the following proposition:

Proposition 4.2. If the solution 𝑇 violates the monotonic con-
straints, then 𝑇 is not the viscosity solution.

Proof. If 𝑇 violates the monotonic constraints, it fails to satisfy

the property described in Property 4.1, which is necessary for being

a solution generated by FMM. The limit of the FMM solutions also

adheres to Property 4.1, thereby indicating that 𝑇 cannot be the

limit of FMM solutions. Since the solution derived from FMM con-

verges to the viscosity solution via Theorem 3.2, and considering

the uniqueness of the viscosity solution according to Theorem 3.2,

it follows that 𝑇 is not the viscosity solution. □

In this way, our monotonic constraint implicitly forces the net-

work to converge to the viscosity solution. We also observe that the

occurrence of local minima in the time fields, depicted in Fig. 2, is

associated with waypoints that violate the specified monotonic con-

straints mentioned above. Therefore, we can exploit this constraint

to guide the network in a self-supervised learning process, allowing

it to correct and attain an accurate time field.

However, since our objective is to find the optimal path through

the Eikonal equation, obtaining a ground-truth waypoint on the

optimal path before receiving the correct solution from the Eikonal

equation proves impractical. A straightforward strategy involves

employing a traditional path planning approach, such as FMM, to

find the waypoint and thus guide the learning. However, this comes

at a significant cost due to the slow and cumbersome nature of

traditional methods.

To address this challenge, we integrate a self-correction mech-

anism in a self-supervised manner into network learning. During

training, we utilize the network to plan a path and designate any

segment of the path as our waypoint. Our goal is to prompt the

network to recognize that the current generated path violates the

monotonic constraint. This is achieved by integrating the monotonic

constraint loss into the network:

L𝑚 =
∑︁

max (𝑇 (s,w) −𝑇 (s, g), 0) +∑︁
max (𝑇 (w, g) −𝑇 (s, g), 0) .

(7)

While, from a global perspective, the chosen waypoint in each train-

ing batch does not represent the waypoint of the eventual optimal

path, the network perceives it as optimal during the training step.

Meanwhile, the selection of the waypoint evolves with the mono-

tonic constraint loss and will be optimized during each training

batch of the network. This self-supervised training approach with

the monotonic constraint loss demonstrates improvement in ad-

dressing local minima, as illustrated in Fig. 2.

Optimal Constraint.To further refine themotion planning process,

we introduce the optimal constraint, which penalizes the path for

deviating from the optimality criterion of the Eikonal equation’s

solution:

𝑇 (s, g) ≤ 𝑇 (s,w) +𝑇 (w, g). (8)

Similar to the previously discussed monotonic constraint loss, we

introduce an optimal constraint loss term as follows:

L𝑜 =
∑︁

max (𝑇 (s, g) − (𝑇 (s,w) +𝑇 (w, g)) , 0) . (9)

Following NTFields, we utilize the isotropic speed loss to govern

the training of the time field:

L𝑠 =
1

| C |
∑︁

ci,ck∈C

(

1 − √︁
𝑆∗ (ci)/𝑆Θ (ci)

 +

1 − √︁
𝑆∗ (ck)/𝑆Θ (ck)

+

1 − √︁
𝑆Θ (ci)/𝑆∗ (ci)

 +

1 − √︁
𝑆Θ (ck)/𝑆∗ (ck)

)
,

(10)

where |C| denotes the number of sampled configurations. ci and ck
represent an arbitrary pair of the start and goal configurations in

the c-space. 𝑆∗ (ci) and 𝑆∗ (ck) are the GT speed values calculated

by our SADF (introduced in Sec. 4.2) according to the speed model

in Eq. (3). 𝑆Θ (ci) and 𝑆Θ (ck) are the predicted speed values derived

from the predicted time field according to Eq. (1).

With the guidance of our physical constraints, the total loss func-

tion for the training of the time field is defined as:

L = L𝑠 + 𝜆𝑚L𝑚 + 𝜆𝑜L𝑜 , (11)

where 𝜆𝑚 and 𝜆𝑜 control the penalty weights for the monotonic

constraint and optimal constraint respectively.

Training details. To calculate the speed loss during training, we fol-
low these steps: 1) sample configuration pairs [ci, ck] in the robot’s

c-space; 2) derive the GT speed values [𝑆∗ (ci), 𝑆∗ (ck)] calculated by
Eq. (3); 3) approximate 𝑇Θ (ci, ck) via time field regressor; 4) obtain

the predicted speed values [𝑆Θ (ci), 𝑆Θ (ck)] according to Eq. (1);

Finally, the speed loss Eq. (10) can be derived via the GT speed

and predicted speed. For the physical constraint loss, we adopt a

different paradigm: 1) sample configuration pairs [ci, ck] in the fea-

sible c-space C𝑓 𝑟𝑒𝑒 ; 2) leverage the time field regressor to obtain

𝑇 (ci, ck); 3) utilize the gradient of the time field to conduct motion

planning, which determines the next waypoint cw. If the waypoint
is in collision, jump to step 1 to resample a new configuration pair; 4)

compute 𝑇 (ci, cw) and 𝑇 (cw, ck) through time field regressor. Ulti-

mately, the physical constraint loss can be calculated with 𝑇 (ci, ck),
𝑇 (ci, cw) and 𝑇 (cw, ck).

4.2 Shape-Aware Distance Function
When a shaped robot is navigating in the environment, it becomes

insufficient only to obtain the distance field of the environment, as

a real-world robot cannot be simplistically treated as a particle but

rather as a rigid or even deformable body. Therefore, we propose the

Shape-Aware Distance Function (SADF) to address the requirements

of real-shaped robots. We first introduce how to derive the SADF

for the rigid robots and then extend it to the articulated robots.

Rigid Robot. Following the definition of Signed Distance Function

(SDF), the Shape-Aware Distance Field (SADF) is defined as the

5

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan Shen et al.

�����
�������

����
�������

����������
��

����������

����
�������	

��������	

	

��� ��������

Fig. 4. Training pipeline of SADF. During inference, "Dist Dec" is omitted,
with only "SADF Decoder" branch employed as a SADF predictor.

distance between the surface of the robot and the environment:

𝑓[𝑟,𝑒] (𝐻) = min

x∈𝑟,y∈𝑒
𝑑 (𝐻 (x), y), (12)

with 𝐻 (x) = 𝑅x + t, 𝑅 ∈ RO(3), x, t ∈ R3
(13)

where 𝑟 and 𝑒 denote the surface boundaries of the robot and the en-

vironment, 𝐻 ∈ SE(3) denotes the relative transformation from the

robot’s coordinate system to the environment’s coordinate system,

and 𝑑 is the distance function between any two points.

Given a raw point cloud 𝑃 = {𝑝𝑖 ∈ R3}𝑁
𝑖=1

comprising 𝑁 points

from the robot’s surface and considering the transformations 𝐻 of

the robot, our objective is to learn the SADF between an arbitrary

robot and a fixed environment, denoted as Φ𝑒 (𝑃, 𝐻) = 𝑓[𝑃,𝑒] (𝐻).
To obtain a precise SADF, it is necessary to sample dense points

on the robot. However, directly calculating the distance from every

point to the environment and obtaining the minimum for every

transformation 𝐻 , following the definition (Eq. (12)), can be com-

putationally burdensome and inefficient. To tackle the problem, we

propose employing a sparse point cloud and local shape feature

derived from the dense point cloud to characterize the robot, and

use the neural network to approximate the SADF.

Specifically, the sparse point cloud 𝑃𝑠 , downsampled from the

dense point cloud 𝑃𝑑 , first undergoes transformation based on 𝐻

and is then processed into the distance feature F𝑑 through a small

MLP parameterized by Θ1. The distance feature, which encapsu-

lates the transformation information between the points and the

environment, is then decoded to derive the distance from a point to

the environment via a point distance decoder Θ2. The loss function

to govern the MLP and decoder is defined as:

L𝑑 =
1

|H | |𝑃𝑠 |
∑︁

𝐻 ∈H,x∈𝑃𝑠

∥ ˆSDF𝑒 (𝐻 (x) ;Θ1,Θ2) − SDF𝑒 (𝐻 (x)) ∥, (14)

where |𝑃𝑠 | and |H | denote the number of sparse point cloud and the

number of sampled transformations respectively, SDF𝑒 (·) represents
the GT SDF of the environment, and ˆSDF𝑒 (·;Θ1,Θ2) indicates the
learned SDF function parameterized by Θ1,Θ2.

Meanwhile, we utilize the pre-trained encoder from [Chou et al.

2022] to extract the plane features of the robot from densely sampled

points 𝑃𝑑 . Then, we aggregate the local shape feature F𝑠 for each
sparse point via bilinear interpolation in the plane feature space.

At last, we concatenate F𝑑 and F𝑠 of each sparse point and feed

them to the SADF decoder Θ3 to decode the ultimate SADF in the

environment, as shown in Fig. 4. The loss function for the SADF

training is as follows:

L𝑆𝐴𝐷𝐹 =

(
1

|H |
∑︁
𝐻 ∈H

∥Φ̂𝑒 (𝑃𝑑 , 𝐻 ;Θ1,Θ3,Θ4) − Φ𝑒 (𝑃𝑑 , 𝐻) ∥
)
+ 𝜆𝑑L𝑑 , (15)

where Θ4 denotes the frozen parameters of the shape encoder,

Φ̂𝑒 (·, ·;Θ1,Θ3,Θ4) represents the learned SADF parameterized by

Θ1,Θ3,Θ4, and 𝜆𝑑 determines the weights of L𝑑 . Note that the en-

coded shape feature F𝑠 , derived from the dense point cloud, only

needs to be computed once for a specific robot. This will significantly

reduce the overall computational cost.

Articulated Robot. To model the articulated robots, we draw inspi-

ration from [Li et al. 2024] and represent them by the union of each

part’s SADF. Consider the articulated robot with𝑚 links, charac-

terized by shapes 𝒍 = {𝑙0, 𝑙1, ..., 𝑙𝑚−1}, the SADF for the articulated
robot can be represented by the union of each link’s SADF, which

is defined as:

𝑓[𝑟,𝑒] (𝐻𝑏) = min{𝑓[𝑙𝑖 ,𝑒] (𝐻
𝑏
𝑖 𝐻𝑏)}, 𝑖 = {0, 1, ...,𝑚 − 1}, (16)

where 𝐻𝑏 denotes the transformation from the base frame of the

robot to the world frame, and 𝐻𝑏
𝑖
represents the transformation

from the 𝑖-th link’s frame to the base frame.

4.3 Adaptive Motion Planning
Due to the unpredictability of the network and the fact that our

physical constraints serve as a necessary condition for the viscosity

solution of the Eikonal equation but not a sufficient one, it remains

challenging to avoid all of the local minima entirely. Therefore, we

introduce an adaptive motion planning approach illustrated in Fig. 5

to bolster the robustness of the planning procedure, leveraging the

fast inference speed of our SADF for collision checking.

For the collision-free case, the ultimate path solution is obtained

by performing gradient descent bidirectionally, traversing from the

start to the goal and vice versa, which follows the trivial planning

strategy of NTFields:

s𝑖+1 = s𝑖 + 𝛼𝑆2 (s𝑖)∇s𝑖𝑇 (s𝑖 , g𝑖), (17)

g𝑖+1 = g𝑖 + 𝛼𝑆2 (g𝑖)∇g𝑖𝑇 (s𝑖 , g𝑖), (18)

where 𝛼 is a step size hyperparameter, and 𝑆2 (s𝑖) or 𝑆2 (g𝑖) is a reg-
ulation coefficient to address safety issues arising from low speeds

near obstacles, which can cause large gradients due to the inverse

speed-gradient relationship in Eq. (1).

If a collision is detected using our SADF, we employ adaptive

motion planning. As shown in Fig. 5, we proceed to find a collision-

free waypoint u adjacent to the collision point, thereby forming

the longest collision-free path from u to either the start or goal

configuration. Then, we randomly select a point v along such a

collision-free path for replanning. Random sampling employed here

is to increase the probability that subsequently sampled points are

also collision-free. Similar to the initialization of the sampling-based

method, we randomly sample an appropriate number of points

within a hypersphere in the configuration space, with v as the center
and 𝑟 as the radius. These points serve as candidate points to escape

local minima. Subsequently, the candidate point c can be utilized

as a waypoint on the path to devise a new collision-free trajectory

which is formed as s−c−g. To retain the optimality, we calculate the

sum of 𝑇 (s, c) and 𝑇 (c, g) to obtain the total time of the replanned

6

PC-Planner SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan

������ ������ ����������
���������

Fig. 5. Adaptive motion planning. We locate a collision-free waypoint u adjacent to the collision point and randomly sample points around u. These sampled
points serve as candidates to escape local minima. The candidate point c is selected based on traversal times calculated from s to c and from c to g.

path from the learned time field for each candidate point 𝑐 . We then

choose the candidate point with the shortest time to form the final

trajectory. Moreover, we adaptively enlarge the search radius 𝑟 if

a collision-free path is not found within the candidate points. This

adaptive strategy aids in exploring a larger configuration space to

find feasible paths when necessary, enhancing the robustness of our

PC-Planner. It’s worth noting that this strategy is cost-affordable

as it is applied only on the collision path (which is rare in practice

thanks to our physics-constrained learning).

5 EXPERIMENTS
In this section, we analyze and validate our method with differ-

ent robots and environments. We compare our methods with the

baselines NTFields [Ni and Qureshi 2023a], P-NTFields [Ni and

Qureshi 2023b], FMM [Sethian 1996], RRT* [Kingston et al. 2018],

RRT-Connect [Kuffner and LaValle 2000], and LazyPRM* [Bohlin

and Kavraki 2000]. For RRT*, RRT-Connect, and LazyPRM* which

are probabilistically complete and can theoretically find a solution

given infinite time, we impose a practical time limit (10 seconds

for rigid robots and 5 seconds for manipulators), since real-world

scenarios often require time-constrained solutions. Our evaluation

metrics include path length, planning time, success rate (SR),
and challenging success rate (CSR). For additional information on

the experimental settings, including metrics description, baseline de-

tails, and experimental specifics, please refer to our supplementary

material.

5.1 Motion Planning in 3D Environments for Rigid Robots
We perform a comparative analysis of our method against the base-

lines in two complex 3D Gibson environments (Arona and East-

ville) [Xia et al. 2018] in SE(2) and SE(3) space with rigid robots. In

those two Gibson environments, we employ different robots. In one

scenario, we deploy a mobile robot, a bear, and a bird for navigation

within the environment. In the other scenario, we showcase the

use of a piano, a toy car, and a drone to plan in the environment.

Specifically, the mobile robot, bear, piano, and toy car navigate in

SE(2) space with 3 Degrees of Freedom (DoFs) while the bird and

drone plan in SE(3) space with 6 DoFs. These planning examples

Table 1. Comparison of motion planning in 3D for rigid robots. The optimal
results are highlighted with first , second .

Methods Metrics

Arona Eastville

Bear Mobile Root Bird(SE(3)) Piano Toy Car Drone(SE(3))

RRT*

Length 0.26 0.26 0.23 0.19 0.23 0.23

Time(ms) 10189.2 10203.1 10121.2 10215.2 10226.5 10196.6

SR(%) 83.7 81.8 89.6 80.4 80.7 83.7

CSR(%) 84.4 37.3 29.3 60.5 63.0 29.2

LazyPRM*

Length 0.25 0.24 0.21 0.18 0.20 0.19
Time(ms) 10158.9 10152.6 10121.9 10152.3 10252.3 10130.5

SR(%) 84.6 87.4 92.9 81.6 87.3 90.3

CSR(%) 85.6 64.8 51.7 68.4 75.2 57.1

RRT-Connect

Length 0.70 0.72 1.1 0.66 0.70 1.03

Time(ms) 1543.4 1246.2 959.3 2008.1 1568.7 1259.1

SR(%) 90.0 91.5 93.6 85.5 89.4 89.7

CSR(%) 94.6 77.9 60.5 72.8 81.0 68.6

NTFields

Length 0.25 0.25 0.21 0.18 0.20 0.19
Time(ms) 6.1 6.1 4.5 5.7 6.7 2.5

SR(%) 85.4 77.3 88.5 86.1 94.3 86.4

CSR(%) 56.3 45.6 22.5 72.4 88.7 42.0

P-NTFields

Length 0.24 0.24 0.21 0.2 0.21 0.19
Time(ms) 2.8 2.7 1.4 6.5 4.2 1.7
SR(%) 94.9 96.7 86.3 80.4 88.9 85.4

CSR(%) 85.0 91.1 7.5 61.5 79.8 35.4

Ours w/o

adapt. planning

Length 0.24 0.24 0.21 0.17 0.20 0.19
Time(ms) 1.9 2.3 4.9 1.9 1.7 4.6

SR(%) 99.7 96.0 95.8 91.3 96.2 92.7

CSR(%) 99.1 88.8 72.1 83.0 92.5 67.7

Ours

Length 0.24 0.24 0.21 0.17 0.20 0.19
Time(ms) 2.8 26.0 4.6 49.0 25.1 38.5

SR(%) 99.8 96.8 95.8 92.6 96.9 93.2
CSR(%) 99.4 91.1 72.1 85.6 93.5 70.0

are depicted in Fig. 9. Additional experiments on 2D environments

in SE(2) space are demonstrated in the supplementary material.

The quantitative results are listed in Tab. 1. In the Arona en-

vironment, our proposed method demonstrates the best SR, CSR,

and path length with a competitive computation time. It is worth

mentioning that without adaptive planning, our method achieves

minimal computation time and best or second-best SR, CSR and

path length in most tasks. Moreover, our method is more efficient

compared to traditional methods, ranging from at least 40 times to

as much as 200 times faster than traditional methods, indicating an

affordable time cost of our adaptive strategy. This highlights the

effectiveness and superiority of our proposed method.

7

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan Shen et al.

Table 2. Comparison of motion planning for manipulators. The optimal
results are highlighted with first , second .

Methods Metrics

Manual Craft Single-cabinet Dual-cabinet

custom-arm UR5 arm UR5 arm

4-DoF 6-DoF 6-DoF 6-DoF

RRT*

Length 0.28 0.23 0.35 0.25

Time(ms) 5120 5120 5140 5130

SR(%) 90.1 90.5 88.1 85.6

CSR(%) 55.5 48.4 40.5 41.0

LazyPRM*

Length 0.25 0.21 0.28 0.21
Time(ms) 5080 5060 5070 5080

SR(%) 98.2 97.9 98.8 97.5

CSR(%) 86.4 87.9 85.1 85.6

RRT-Connect

Length 0.83 1.04 1.04 1.03

Time(ms) 370 460 360 810

SR(%) 97.4 97.4 98.9 96.7

CSR(%) 93.6 93.6 89.2 89.0

NTFields

Length 0.25 0.20 0.28 0.21
Time(ms) 4.9 1.5 1.7 1.9

SR(%) 91.2 96.0 97.1 93.1

CSR(%) 60.0 74.5 60.8 60.7

P-NTFields

Length 0.25 0.20 0.28 0.21
Time(ms) 1.0 1.1 1.2 1.3
SR(%) 89.7 87.9 95.5 84.9

CSR(%) 53.2 24.2 40.5 14.5

Ours w/o

adapt. planning

Length 0.25 0.20 0.28 0.21
Time(ms) 1.2 1.1 1.2 2.9

SR(%) 99.0 99.4 99.6 97.8

CSR(%) 95.5 96.2 96.0 87.3

Ours

Length 0.25 0.20 0.28 0.21
Time(ms) 2.5 2.0 18.4 58.3

SR(%) 99.4 99.8 99.6 97.9
CSR(%) 97.3 98.7 96.0 87.9

Table 3. Performance comparison of PC-Planner, specifically under con-
ditions without adaptive motion planning, using our SADF against BVH-
distance-query with different sampled surface points. PC indicates the phys-
ical constraints. The optimal results are highlighted with first , second .

Methods Points Metric

Aronna EastVille

Bear Mobile Robot Piano Car

NTFields 1024

SR(%)

85.4 77.3 86.1 94.3

PC + BVH 1024 99.9 97.0 96.1 96.6
PC + BVH 32 95.9 93.7 89.5 95.9

PC + SADF 32 99.7 96.0 91.3 96.2

Additionally, we validate our methods on the real-world Turtle-
Bot4 robot in the complex meeting room and hallway environments

with clustered obstacles, as shown in Fig. 6.

5.2 Motion Planning for Manipulators
This section showcases the performance of our method on both

custom-built and standard UR5 manipulators across various scenar-

ios. These scenarios include a simple manually crafted environment,

a single-cabinet operating environment, and a dual-cabinet oppos-

ing operating environment, each with increasing levels of difficulty.

As shown in Tab. 2, we conducted 4-DoF and 6-DoF experiments

with a custom-built arm in the manually crafted environment. Our

method outperformed in all metrics except for the time. However,

Table 4. Comparison of collision-checking time among FCL, BVH-distance-
query, and our SADF with different sampled points on various numbers (10,
. . . , 10000) of relative transformation 𝐻 between robot and environment.

Time (ms)

Transformation Numbers 10 100 1000 10000

FCL 1.0 4.9 40.4 392.6

BVH + 1024 points 5.4 9.1 39.0 382.1

BVH + 32 points 5.8 5.7 6.7 31.2

SADF + 32 points 0.7 0.8 1.4 13.4

Table 5. Comparison of training time for robots with different DoFs in a
new environment.

Methods

Time (h)

3-DoF robot 6-DoF robot

NTFields 1.0 9.1

P-NTFields 3.7 31.6

Ours 1.3 14.1

the time difference compared to the best performance is almost

negligible. The experiments with the 6-DoF UR5 manipulator are

presented in the last two columns of Tab. 2. In the single-cabinet

environment, our method continues to top all other metrics, even

without adaptive planning. In the dual-cabinet opposing environ-

ment, ours maintains the highest SR and ranks second in CSR under

challenging cases. Planning examples are depicted in Figs. 7 and 8.

5.3 Ablation Studies
The effectiveness of the proposed adaptive planning strategy can be

validated through Tabs. 1 and 2. As shown in Tab. 3, all pipelines uti-

lizing physical constraints (with or without SADF) achieve a higher

SR than the baseline NTFields, which verifies the effectiveness of

our physical constraints.

We also investigate the influence of the SADF on our robot motion

planning and present the quantitative results. For our SADF, the

robot’s sparse and dense point clouds consist of 32 and 1024 points,

respectively. The Ground Truth (GT) to train our SADF is generated

using BVH-distance-query [Karras 2012] with 1024 sampled points

of the robots (detailed in supplementary materials). Consequently,

we evaluate our SADF against BVH-distance-query using 32 and

1024 sampled surface points within the time fields + physical con-

straints pipeline. From Tab. 3, it is evident that utilizing our SADF

results in a higher SR compared to using BVH-distance-query with

only 32 surface points, and it is still competitive with using GT

distance field generated with 1024 points.

At last, we compare the collision-checking time cost of our SADF

with BVH-distance-query and FCL (a common collision-checking

library) [Pan et al. 2012] to demonstrate the lightweight nature of

our SADF as illustrated in Tab. 4. The results indicate that both

FCL and BVH-distance-query are nearly 30 times slower than our

learned SADF, particularly as the number of query points increases,

which can be the bottleneck in both the training procedure and the

real-time planning scenarios.

8

PC-Planner SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan

����� ������� ������� �������

Fig. 6. A real TurtleBot4 robot navigates in the real-world meeting room with clustered chairs and the hallway with cluster boxes.

������������������������������ ����������������������������

Fig. 7. The UR5 manipulator executes motion planning in the single-cabinet and dual-cabinet environment.

��

Fig. 8. 4-DoF and 6-DoF custom-built arms do motion planning in the
manually crafted environment.

6 LIMITATIONS AND FUTURE WORK
We report the training time for NTFields, P-NTFields, and our

method in a new environment, as shown in Tab. 5. Our method

shows comparable training times to NTFields and a significant re-

duction compared to P-NTFields. Once trained, our method is able

to generate paths in static scenes notably faster than training-free

methods like RRT* and RRT-Connect. However, in dynamic envi-

ronments, training-free methods, which provide solutions within

seconds, become valuable alternatives. A promising direction for

future work is to further investigate the generalization capabilities

of physics-informed methods in new environments.

Additionally, although the proposed neural SADF is agnostic to

robot shapes, it is environment-specific, i.e., we need to train the

SADF for a new environment. It is also interesting to further make

it environment-agnostic.

7 CONCLUSION
This paper introduces a physics-constrained self-supervised learn-

ing framework for efficient and robust neural motion planning

navigation in complex environments, named PC-Planner. To this

end, we propose two physical constraints, namely monotonic and

optimal constraints, to mitigate issues related to local minima in the

Eikonal equation and introduce a novel shape-aware distance field

to expedite the application of the physical constraints. Additionally,

we develop an adaptive motion planning strategy to enhance the

robustness of our proposed PC-Planner. Experiments with diverse

robots in various scenarios demonstrate the efficacy of our method.

ACKNOWLEDGMENTS
We thank all the reviewers for their constructive comments and

extend our gratitude to Xiao Liang for his help. We would also like

to acknowledge the support of NSFC (No. 62102356, No. 62322207),

Information Technology Center, and State Key Lab of CAD&CG,

Zhejiang University.

9

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan Shen et al.

��������

����

����������

�����������

���

��
	���

������������ ���������������� ������������������������������� �������������������

Fig. 9. The comparison results on multiple environments with different robots of various shapes.

REFERENCES
Guy Barles and Panagiotis E Souganidis. 1991. Convergence of approximation schemes

for fully nonlinear second order equations. Asymptotic analysis 4, 3 (1991), 271–283.
Robert Bohlin and Lydia E Kavraki. 2000. Path planning using lazy PRM. In Proceedings

2000 ICRA. Millennium conference. IEEE international conference on robotics and
automation. Symposia proceedings (Cat. No. 00CH37065), Vol. 1. IEEE, 521–528.

Rohan Chabra, Jan E Lenssen, Eddy Ilg, Tanner Schmidt, Julian Straub, Steven Lovegrove,

and Richard Newcombe. 2020. Deep local shapes: Learning local sdf priors for

detailed 3d reconstruction. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIX 16. Springer, 608–625.

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang,

Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. 2015. Shapenet:

An information-rich 3d model repository. arXiv preprint arXiv:1512.03012 (2015).
Devendra Singh Chaplot, Deepak Pathak, and JitendraMalik. 2021. Differentiable spatial

planning using transformers. In International Conference onMachine Learning. PMLR,

1484–1495.

Haiwei Chen, Shichen Liu, Weikai Chen, Hao Li, and Randall Hill. 2021. Equivariant

point network for 3d point cloud analysis. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. 14514–14523.

David L Chopp. 2001. Some improvements of the fast marching method. SIAM Journal
on Scientific Computing 23, 1 (2001), 230–244.

Gene Chou, Ilya Chugunov, and Felix Heide. 2022. GenSDF: Two-Stage Learning of Gen-

eralizable Signed Distance Functions. In Advances in Neural Information Processing
Systems, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Eds.),

10

PC-Planner SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan

Vol. 35. Curran Associates, Inc., 24905–24919. https://proceedings.neurips.cc/paper_

files/paper/2022/file/9dfb5bc27e2d046199b38739e4ce64bd-Paper-Conference.pdf

Michael G Crandall and Pierre-Louis Lions. 1983. Viscosity solutions of Hamilton-Jacobi

equations. Transactions of the American mathematical society 277, 1 (1983), 1–42.

Clemens Eppner, Arsalan Mousavian, and Dieter Fox. 2020. ACRONYM: A Large-

Scale Grasp Dataset Based on Simulation. In 2021 IEEE Int. Conf. on Robotics and
Automation, ICRA.

Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot. 2015. Batch

informed trees (BIT*): Sampling-based optimal planning via the heuristically guided

search of implicit random geometric graphs. In 2015 IEEE international conference
on robotics and automation (ICRA). IEEE, 3067–3074.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition. 770–778.

Jinwook Huh, Volkan Isler, and Daniel D Lee. 2021. Cost-to-go function generating net-

works for high dimensional motion planning. In 2021 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 8480–8486.

Brian Ichter, James Harrison, and Marco Pavone. 2018. Learning sampling distributions

for robot motion planning. In 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 7087–7094.

Chiyu Jiang, Avneesh Sud, AmeeshMakadia, Jingwei Huang, Matthias Nießner, Thomas

Funkhouser, et al. 2020. Local implicit grid representations for 3d scenes. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
6001–6010.

Jacob J. Johnson, Ahmed H. Qureshi, and Michael C. Yip. 2023. Learning Sam-

pling Dictionaries for Efficient and Generalizable Robot Motion Planning With

Transformers. IEEE Robotics and Automation Letters 8, 12 (2023), 7946–7953.

https://doi.org/10.1109/LRA.2023.3322087

Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor, and Stefan

Schaal. 2011. STOMP: Stochastic trajectory optimization for motion planning. In

2011 IEEE international conference on robotics and automation. IEEE, 4569–4574.
Sertac Karaman and Emilio Frazzoli. 2011. Sampling-based algorithms for optimal

motion planning. The international journal of robotics research 30, 7 (2011), 846–894.

Tero Karras. 2012. Maximizing Parallelism in the Construction of BVHs, Octrees, and

K-d Trees. In Proceedings of the Fourth ACM SIGGRAPH / Eurographics Conference
on High-Performance Graphics. Eurographics Association, 33–37. https://doi.org/10.

2312/EGGH/HPG12/033-037

Zachary Kingston, Mark Moll, and Lydia E Kavraki. 2018. Sampling-based methods for

motion planning with constraints. Annual review of control, robotics, and autonomous
systems 1 (2018), 159–185.

James J Kuffner and Steven M LaValle. 2000. RRT-connect: An efficient approach to

single-query path planning. In Proceedings 2000 ICRA. Millennium Conference. IEEE
International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.
00CH37065), Vol. 2. IEEE, 995–1001.

Mikhail Kurenkov, Andrei Potapov, Alena Savinykh, Evgeny Yudin, Evgeny Kruzhkov,

Pavel Karpyshev, and Dzmitry Tsetserukou. 2022. NFOMP: Neural Field for Optimal

Motion Planner of Differential Drive Robots With Nonholonomic Constraints. IEEE
Robotics and Automation Letters 7, 4 (2022), 10991–10998.

Steven M LaValle and James J Kuffner Jr. 2001. Randomized kinodynamic planning.

The international journal of robotics research 20, 5 (2001), 378–400.

Xueting Li, Shalini De Mello, Xiaolong Wang, Ming-Hsuan Yang, Jan Kautz, and Sifei

Liu. 2021. Learning continuous environment fields via implicit functions. arXiv
preprint arXiv:2111.13997 (2021).

Yiming Li, Yan Zhang, Amirreza Razmjoo, and Sylvain Calinon. 2024. Representing

Robot Geometry as Distance Fields: Applications to Whole-body Manipulation. In

Proc. IEEE ICRA.
Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization. In 7th

International Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA,May 6-9, 2019. OpenReview.net. https://openreview.net/forum?id=Bkg6RiCqY7

Mustafa Mukadam, Xinyan Yan, and Byron Boots. 2016. Gaussian process motion

planning. In 2016 IEEE international conference on robotics and automation (ICRA).
IEEE, 9–15.

Ruiqi Ni and Ahmed H Qureshi. 2023a. NTFields: Neural Time Fields for Physics-

Informed Robot Motion Planning. In International Conference on Learning Represen-
tations. https://openreview.net/forum?id=ApF0dmi1_9K

Ruiqi Ni and Ahmed H Qureshi. 2023b. Progressive Learning for Physics-informed

Neural Motion Planning. arXiv preprint arXiv:2306.00616 (2023).
Ruiqi Ni and Ahmed H Qureshi. 2024. Physics-informed Neural Motion Planning on

Constraint Manifolds. arXiv preprint arXiv:2403.05765 (2024).
Amine Ouasfi and Adnane Boukhayma. 2022. Few ‘zero level set’-shot learning of shape

signed distance functions in feature space. In European Conference on Computer
Vision. Springer, 561–578.

Jia Pan, Sachin Chitta, and Dinesh Manocha. 2012. FCL: A general purpose library for

collision and proximity queries. In 2012 IEEE International Conference on Robotics
and Automation. IEEE, 3859–3866.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-

grove. 2019. Deepsdf: Learning continuous signed distance functions for shape

representation. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 165–174.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional

networks for biomedical image segmentation. In Medical image computing and
computer-assisted intervention–MICCAI 2015: 18th international conference, Munich,
Germany, October 5-9, 2015, proceedings, part III 18. Springer, 234–241.

James A Sethian. 1996. A fast marching level set method for monotonically advancing

fronts. proceedings of the National Academy of Sciences 93, 4 (1996), 1591–1595.
J. A. Sethian. 1999. Fast Marching Methods. SIAM Rev. 41, 2 (1999), 199–235. https:

//doi.org/10.1137/S0036144598347059

Eran Treister and Eldad Haber. 2016. A fast marching algorithm for the factored eikonal

equation. Journal of Computational physics 324 (2016), 210–225.
Maria Cristina Tugurlan. 2008. Fast marching methods-parallel implementation and

analysis. Louisiana State University and Agricultural & Mechanical College.

Murad Tukan, Alaa Maalouf, Dan Feldman, and Roi Poranne. 2022. Obstacle aware

sampling for path planning. In 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 13676–13683.

Aleš Vysockỳ, Hisaka Wada, Jun Kinugawa, and Kazuhiro Kosuge. 2019. Motion plan-

ning analysis according to ISO/TS 15066 in human–robot collaboration environment.

In 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(AIM). IEEE, 151–156.

Jiankun Wang, Wenzheng Chi, Chenming Li, Chaoqun Wang, and Max Q.-H. Meng.

2020. Neural RRT*: Learning-Based Optimal Path Planning. IEEE Transactions on
Automation Science and Engineering 17, 4 (2020), 1748–1758. https://doi.org/10.1109/
TASE.2020.2976560

MalcolmC. A.White, Hongjian Fang, Nori Nakata, and Yehuda Ben-Zion. 2020. PyKonal:

A Python Package for Solving the Eikonal Equation in Spherical and Cartesian

Coordinates Using the Fast Marching Method. Seismological Research Letters 91, 4
(06 2020), 2378–2389.

Fei Xia, Amir R. Zamir, Zhiyang He, Alexander Sax, Jitendra Malik, and Silvio Savarese.

2018. Gibson Env: real-world perception for embodied agents. In Computer Vision
and Pattern Recognition (CVPR), 2018 IEEE Conference on. IEEE.

Yajue Yang, Jia Pan, and Weiwei Wan. 2019. Survey of optimal motion planning. IET
Cyber-systems and Robotics 1, 1 (2019), 13–19.

Minghan Zhu, Maani Ghaffari, William A Clark, and Huei Peng. 2023. E2PN: Efficient

SE (3)-equivariant point network. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 1223–1232.

11

https://proceedings.neurips.cc/paper_files/paper/2022/file/9dfb5bc27e2d046199b38739e4ce64bd-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9dfb5bc27e2d046199b38739e4ce64bd-Paper-Conference.pdf
https://doi.org/10.1109/LRA.2023.3322087
https://doi.org/10.2312/EGGH/HPG12/033-037
https://doi.org/10.2312/EGGH/HPG12/033-037
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=ApF0dmi1_9K
https://doi.org/10.1137/S0036144598347059
https://doi.org/10.1137/S0036144598347059
https://doi.org/10.1109/TASE.2020.2976560
https://doi.org/10.1109/TASE.2020.2976560

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan Shen et al.

PC-Planner: Physics-Constrained Self-Supervised Learning for Robust
Neural Motion Planning with Shape-Aware Distance Function
Supplementary Material

A FACTORIZED EIKONAL EQUATION
To make it applicable for motion planning tasks, we follow the

factorization in NTFields [Ni and Qureshi 2023a] for 𝑇 (s, g):

𝑇 (s, g) = ∥s − g∥
𝜏 (s, g) , (19)

where 𝜏 (s, g) is a factorized time field. The advantage here is that

𝜏 can effectively adjust the 𝑇 (s, g) ∈ [0,∞] within a constrained

range (specifically from 0 to 1) and avoid the singularity issue.

We then employ the MLP to model the underlying physics of 𝜏 .

The neural network, parameterized by Θ, takes the robot’s start and
goal configuration (s, g) as input and outputs the factorized time

field 𝜏Θ:

𝜏Θ = MLP(s, g;Θ) . (20)

Subsequently, we can obtain the predicted time field 𝑇Θ through

Eq. (20).

B IMPLEMENTATION DETAILS

B.1 Physics-Constrained Time Field
Training strategy. The speed loss is applied throughout the entire

training process, while the physical constraint loss is introduced

after a certain number of epochs (specifically, 50 epochs). This delay

is necessary because the time fields do not perform well in the initial

training stages, and the waypoints derived at this stage will mislead

the network’s training. It is important to note that our monotonic

constraint requires a relatively optimal waypoint to guide training

effectively, and a poor-quality waypoint will disturb training of the

time field.

Regressor Architecture. The network architecture of the regressor

for the time field follows NTFields. It contains the c-space encoder,

a non-linear symmetric operator, and the time field generator. The c-

space encoder, denoted as 𝑔(·), is comprised of fully connected (FC)

layers with ELU activation and several ResNet-style[He et al. 2016]

MLP with ELU, which takes the robot’s configuration c as input
and generate the embedding 𝑔(c). Given the start and goal config-

uration s and g, the non-linear symmetric operator is represented

as [max(𝑓 (s), 𝑓 (g)),min(𝑓 (s), 𝑓 (g))] where [·] denotes a concate-
nation operator. This operator ensures the output of the time field

is symmetric with respect to the start and goal configuration. The

time field generator takes the concatenated embedding as input and

outputs the time field value. It is composed of several FC + ELU

layers and ResNet MLP + ELU layers.

Hyperparameters. We use AdamW [Loshchilov and Hutter 2019]

optimizer with 2× 10𝑒−4 learning rate and 0.1 weight decay. During
training, 𝜆𝑚 and 𝜆𝑜 are set to 0.08 and 0.001 respectively.

B.2 Shape-Aware Distance Field
Training Setup. We create the training dataset from Acronym

[Eppner et al. 2020] following the procedure of GenSDF [Chou

et al. 2022]. Acronym is a subset of ShapeNet [Chang et al. 2015]

dataset which consists of 8872 watertight synthetic 3Dmodels of 262

categories. We use 147 models as our training dataset to learn our

SADF. For each 3D object, we sample 1024 points on the surface as

a dense input, and then downsample to 32 points to create a sparse

input. For a given environment, we sample 10
6
configurations for

each object that we viewed as our robot, and then calculate the shape-

aware distance by attaining the minimum of the queried distances

from the 1024 sampled surface points to the environment with BVH-

distance-query [Karras 2012]. This distance obtained from the dense

point cloud through BVH-distance-query is regarded as the GT for

SADF training.

Training Details. We fix the parameters of the pretrained shape

encoder in the training process. For each epoch, we randomly select

one object from the training dataset and use the shape encoder to

derive the shape feature which will be only calculated once in this

epoch. Then we derive the L𝑑 and L𝑆𝐴𝐷𝐹 to jointly optimize the

network parameters.

Network Architecture. We use the pretrained shape decoder from

GenSDF [Chou et al. 2022] which chooses 256 latent size and 64

hidden dimensions. The shape encoder utilizes the tri-plane feature

to represent the object’s geometry and uses the parallel Unet [Ron-

neberger et al. 2015] to aggregate shape information. For the shape

decoder and distance decoder, we employ the fully connected (FC)

layers with ELU activation and several ResNet-style[He et al. 2016]

MLP with ELU.

Hyperparameters. We use AdamW [Loshchilov and Hutter 2019]

optimizer with 2× 10𝑒−4 learning rate and 0.1 weight decay. During
training, 𝜆𝑑 is set to 1.

C MORE EXPERIMENT DETAILS

C.1 Experimental Setup
Evaluation Metrics. Our evaluation metrics include path length,
planning time, success rate (SR) and challenging success rate
(CSR). The path length quantifies the sum of configuration distances

between configurations of the waypoint in different settings, while

the planning time measures the time taken by a planner to seek a

valid path solution. The SR represents the percentage of collision-

free paths connecting the provided start and goal in the test dataset

identified by a given planner. The CSR is built upon the SR which

constructs a test dataset that removes the easy case. Here the easy

case implies the trajectory can be successfully planned just using

simple linear interpolation between the start and goal configuration.

12

PC-Planner SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan

The quantitative results for each set of experiments are averaged

from the planning outcomes.

Baselines. We compare our methods with the following baselines.

• NTFields [Ni and Qureshi 2023a]: As described earlier, it directly

learns to solve the Eikonal equation without relying on expert

training data.

• P-NTFields [Ni and Qureshi 2023b]: A physics-informed method

based on NTFields that introduces a progressive learning strat-

egy and incorporates a viscosity term into the Eikonal equation

to deal with complex scenarios.

• FMM [Sethian 1996]: A numerical method [Sethian 1996] that

discretizes the given C-space and computes the solution to the

Eikonal equation for path planning.

• RRT* [Kingston et al. 2018]: A sampling-based method that con-

structs optimal trees and finds a feasible path connecting the

given start and goal configuration.

• RRT-Connect [Kuffner and LaValle 2000]: A bidirectional sampling-

based planner that iteratively grows trees from both the start and

goal configurations, attempting to connect them by extending

the trees towards each other until a path is found.

• Lazy-PRM* [Bohlin and Kavraki 2000]: A multi-query method

that combines sampling with graph search, which constructs

a graph by sampling the environment and connecting nodes.

When given start and goal configurations, it queries the graph

to find a path.

Experimental Settings. Following the data preparation procedure

outlined in NTFields, we generate 10
6
(3,4 DoFs) or 10

7
(6 DoFs)

training configurations for NTFields, P-NTFields, and our method.

For FMM, which involves the process of discretization, we opt to

choose the nearest grid cells associated with our start and goal pairs

when seeking solutions. Moreover, we execute RRT*, RRT-Connect,

and LazyPRM* on our test set until they discover a path solution

with the given start and goal configuration in the specified time

limit (10 seconds for rigid robots and 5 seconds for manipulators).

For the success rate test, we randomly chose 1000 start and goal

pairs that are collision-free as our test set. All the experiments are

conducted with 3090 RTX GPU and Intel(R) Xeon(R) Gold 6139M

CPU.

C.2 Motion Planning in 2D Environments.
We conduct a benchmark of our proposed method on two 2D en-

vironments in SE(2) space. The first environment consists of six

obstacles with fixed sizes, while the second one comprises a cluster

of 15 randomly placed obstacles with variable sizes. We compare

our method with the aforementioned baselines and demonstrate

the planning capability with line and triangle as our robot in 2D

environments.

From Tab. 6, we can see that our method surpasses all other ap-

proaches in terms of both SR and computation time. Additionally,

our method achieves almost the best CSR with only a slight margin

behind FMM in the clustered environment. Notably, neural methods,

including NTFields, P-NTFields, and our proposed method, demon-

strate superior computational efficiency compared to traditional

motion planning methods like RRT*, LazyPRM*, RRT-Connect, and

FMM. Specifically, our method is more than 400 times faster than

Table 6. Comparison on the 2D environments in SE(2) . The optimal results
are highlighted with first , second .

Methods Metrics

Fixed Obstacles Cluttered Obstacles

Line Triangle Line Triangle

RRT*

Length 0.24 0.31 0.17 0.30

Time(ms) 10140.1 10131.2 10191.9 10185.6

SR(%) 93.4 96.7 82.9 83.7

CSR(%) 81.8 89.8 59.7 62.9

LazyPRM*

Length 0.22 0.28 0.16 0.27

Time(ms) 10143.0 10112.1 10145.8 10142.1

SR(%) 94.7 96.7 88.7 89.7

CSR(%) 85.4 89.8 73.2 76.3

RRT-Connect

Length 0.68 0.79 0.64 0.79

Time(ms) 612.1 262.7 1183.5 957.7

SR(%) 97.7 97.7 93.2 93.2

CSR(%) 95.3 95.1 88.9 88.3

FMM

Length 0.23 0.31 0.16 0.25
Time(ms) 1290.0 1381.2 1332.1 1762.3

SR(%) 98.4 99.2 99.4 99.2

CSR(%) 99.7 97.8 100 99.3

NTFields

Length 0.25 0.31 0.17 0.26

Time(ms) 3.3 2.4 5.3 3.1

SR(%) 98.3 99.9 82.6 94.0

CSR(%) 95.3 99.7 60.7 86.2

P-NTFields

Length 0.26 0.31 0.17 0.26

Time(ms) 2.5 2.3 4.3 2.0
SR(%) 96.9 100 94.9 97.2

CSR(%) 92.0 100 84.1 93.6

Ours w/o

adapt. planning

Length 0.24 0.31 0.16 0.26

Time(ms) 1.8 2.0 1.5 2.2

SR(%) 99.9 100 99.3 98.9

CSR(%) 99.7 100 98.3 97.5

Ours

Length 0.24 0.31 0.16 0.26

Time(ms) 1.8 2.0 2.6 3.7

SR(%) 99.9 100 99.8 99.6
CSR(%) 99.7 100 99.5 99.1

FMM, the numerical method to solve the Eikonal equation. In 2D en-

vironments, our method outperforms traditional planning methods

with a remarkable speed-up of over 100 times, while maintaining a

comparable path length to other methods within a small threshold.

C.3 Motion Planning on Constraint Manifolds
We apply our methods to geodesic distance learning, framed as a

constrained motion planning (CMP) problem, on a bunny-shaped

2D surface mesh manifold in 3D space. Following [Ni and Qureshi

2024], we define the GT speed model 𝑆∗ for the constrained motion

planning problem as follows:

𝐷M (c) = min

(
𝐷 [𝑟,X𝑚𝑛𝑓 𝑙𝑑] (c) , 𝑑𝑚𝑎𝑥

)
,

𝑆∗ (c) = exp(−
𝐷2

M (c)
𝛽𝑑2𝑚𝑎𝑥

),
(21)

where 𝐷M (c) determines the distance from the robot to the mani-

folds. 𝐷 is a function that computes the shortest distance between

the robot 𝑟 at configuration c ∈ C and manifoldX𝑚𝑛𝑓 𝑙𝑑 , 𝑑𝑚𝑎𝑥 limits

the maximum distance ranges, and 𝛽 ∈ R+
is a scaling factor. For

further details about CMP with time fields, please refer to [Ni and

Qureshi 2024]. As shown in Fig. 10, our method successfully finds an

13

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan Shen et al.

Fig. 10. Constrained motion planning on 2D surface mesh manifold (Bunny)
in 3D space, with the planned path highlighted in green.

effective path solution (in green) to determine the geodesic distance.

D LIMITATION
Our physical constraints serve as a necessary condition for ensuring

the monotonicity of the time field in the viscosity solution of the

Eikonal equation. However, these constraints are not sufficient to

guarantee that the network will converge to the viscosity solution.

Moreover, although the proposed neural shape-aware distance field

(SADF) is independent of robot shapes, it is specific to the envi-

ronment, requiring training for each new environment. Identifying

the sufficient conditions for network convergence to the viscosity

solution and developing an environment-agnostic SADF would be

an intriguing direction for future research.

14

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Robot Motion Planning
	3.2 NTFields
	3.3 Viscosity Solution of Eikonal Equation

	4 Method
	4.1 Physics-Constrained Self-Supervised Learning
	4.2 Shape-Aware Distance Function
	4.3 Adaptive Motion Planning

	5 Experiments
	5.1 Motion Planning in 3D Environments for Rigid Robots
	5.2 Motion Planning for Manipulators
	5.3 Ablation Studies

	6 Limitations and Future Work
	7 Conclusion
	Acknowledgments
	References
	A Factorized Eikonal Equation
	B Implementation Details
	B.1 Physics-Constrained Time Field
	B.2 Shape-Aware Distance Field

	C More experiment details
	C.1 Experimental Setup
	C.2 Motion Planning in 2D Environments.
	C.3 Motion Planning on Constraint Manifolds

	D Limitation

