# %% [markdown] # # File Sensor # # This example shows how to use the `FileSensor` to detect files appearing in your local or remote filesystem. # # First, import the required libraries. # %% from flytekit import task, workflow from flytekit.sensor.file_sensor import FileSensor # %% [markdown] # Next, create a FileSensor task. # %% sensor = FileSensor(name="test_file_sensor") # %% [markdown] # To use the FileSensor created in the previous step, you must specify the path parameter. In the sandbox, you can use the S3 path. # %% @task() def t1(): print("SUCCEEDED") @workflow() def wf(): sensor(path="s3://my-s3-bucket/file.txt") >> t1() if __name__ == "__main__": wf() # %% [markdown] # You can also use the S3 or GCS file system. # We have already set the minio credentials in the agent by default. If you test the sandbox example locally, you will need to set the AWS credentials in your environment variables. # # ```{prompt} bash # export FLYTE_AWS_ENDPOINT="http://localhost:30002" # export FLYTE_AWS_ACCESS_KEY_ID="minio" # export FLYTE_AWS_SECRET_ACCESS_KEY="miniostorage" # ```