--- title: 'Exercise: Extending your analysis' output: html_document: fig_height: 3 fig_width: 6 --- ```{r setup, include=FALSE} knitr::opts_chunk$set(include = TRUE, error = TRUE) ``` ```{r packages} library(tidyverse) ``` Load and fix the old data: ```{r} gap_5060 <- read_csv("data/gapminder-5060.csv") %>% mutate(lifeExp = replace(lifeExp, (country == "Canada" & year == 1957), 69.96)) ``` Load the new data: ```{r} gap_7080 <- read.csv("data/gapminder-7080.csv") gap_90plus <- read.csv("data/gapminder-90plus.csv") ``` Combine data frames with `bind_rows()` from **dplyr**: ```{r} gap <- bind_rows(list(gap_5060, gap_7080, gap_90plus)) ``` Make the same plots, with the same code, just changing the input data frame: 1. Canada only: ```{r} gap_ca <- gap %>% filter(country == "Canada") ggplot(data = gap_ca, aes(x = year, y = lifeExp)) + geom_line() ``` 2. North America: ```{r} gap_NA <- gap %>% filter(country %in% c("Canada", "Mexico", "United States")) ggplot(data = gap_NA, aes(x = year, y = lifeExp, color = country)) + geom_line() ```