{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Guide to accessing and reviewing the bendit results\n", "\n", "Potentially, a lot of data can be generated when the demo pipeline is run, and steps were taken to make handling all that as easy as possible. However, accessing that collected data may not be obvious to the uninitiated. This notebook covers what the 'realistic' pipeline [here](index.ipynb) produces and how to access it. Furthermore, it touches on how to use Jupyter/Python to conveniently view and further process all the data.\n", "\n", "The hope is this covers what is necessary to use the generated output. Therefore, if you just plugged your sequences into the demo pipeline, you should be able to follow along to get the bendIt results for all you data. If you are looking to adapt the pipeline, this notebook will give you a flavor of the types of output you may wish to gather or not include your adapted bendIt pipeline.\n", "\n", "### Navigating this Jupyter notebook page\n", "\n", "Because this notebook covers all the possible data types from the bendIt analysis run and various ways to access the information, it is rather long. To make it easier to navigate you can click on the 'Table of Contents' icon ![svg image](data:image/svg+xml,%3Csvg%20xmlns%3D%27http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%27%20xmlns%3Axlink%3D%27http%3A%2F%2Fwww.w3.org%2F1999%2Fxlink%27%20version%3D%271.1%27%20width%3D%2724%27%20height%3D%2724%27%20viewBox%3D%270%200%2024%2024%27%3E%3Cpath%20fill%3D%27%23616161%27%20d%3D%27M7%2C5H21V7H7V5M7%2C13V11H21V13H7M4%2C4.5A1.5%2C1.5%200%200%2C1%205.5%2C6A1.5%2C1.5%200%200%2C1%204%2C7.5A1.5%2C1.5%200%200%2C1%202.5%2C6A1.5%2C1.5%200%200%2C1%204%2C4.5M4%2C10.5A1.5%2C1.5%200%200%2C1%205.5%2C12A1.5%2C1.5%200%200%2C1%204%2C13.5A1.5%2C1.5%200%200%2C1%202.5%2C12A1.5%2C1.5%200%200%2C1%204%2C10.5M7%2C19V17H21V19H7M4%2C16.5A1.5%2C1.5%200%200%2C1%205.5%2C18A1.5%2C1.5%200%200%2C1%204%2C19.5A1.5%2C1.5%200%200%2C1%202.5%2C18A1.5%2C1.5%200%200%2C1%204%2C16.5Z%27%20%2F%3E%3C%2Fsvg%3E%0A) on the left sidebar to bring up a table of contents in the left panel. \n", "\n", "You can get a sense of how to use the Table of Contents to navigate a notebook from the animation below, despite the fact the animation features another notebook.\n", "\n", "\n", "\n", "\n", "When you need to navigate the directory structure or access files in the file browser, switch back to the file browser by clicking on the 'folder' icon \n", "on the top of the left sidebar. \n", "\n", "## Saving files or bundles of files from the session to local\n", "\n", "This notebook includes ways to make various files. You'll need to download those from this **temporary, remote session** to your local computer. \n", "\n", "To make this easier once you start to generate a lot of files, the ability to right-click on any directory in the file navigator and choose to save it as an archive has been added. It will resemble the following animation:\n", "\n", "\n", "\n", "For example, if you unpack the archive as instructed below you may end up making things in `unpack` and want that entire directory. Therefore in the file navigator panel on the left, you'd go to a point in the directory hierarchy above that `unpack` directory and right-click on it and choose `Download as an archive`. You can make a new directory any time using the 'New folder' icon above the left panel and then use drag and drop in the file navigator to move any files you want into it.\n", "\n", "The archive defaults to being `.gzip` format. You can alter that format if you'd prefer by going to the JupyterLab menu bar along the top of your browser window and selecting `Settings` > `Advanced Settings Editor`, and then selecting `Archive` in the `Settings` window that comes up in the main window. There you can edit the '\n", "`User Preferences` on the right to override the system default. For example maybe you'd prefer `tar.gz`, and so you'd edit the contents of `User Preferences` to be `{\"format\": \"tar.gz\"}`. Be sure to click on the disk icon in the upper right to save your new settings." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Accessing the bendIt results: Starting up an active session\n", "\n", "If you already have an active Jupyter session going, you can skip this step.\n", "\n", "However, if you have a previously saved result from the demo pipeline and you are now returning to it and looking to access the contents of the archive, the best way to get started is to start a session by going [here](https://github.com/fomightez/bendit-binder) and clicking on the `launch bend.it` badge. When the session starts, select the `Accessing_and_reviewing_the_bendit_results.ipynb` notebook from the navigation panel at the right and work through the steps below this.\n", "\n", "The uncompressing step below should work on an unix-style command line. However, some of the advanced steps under the section entitled 'Using Python to review the data or customize the plots' involve modules/packages that aren't necessarily in a standard Python installation. By running in the recommended environment as directed above, the code is more likely to work without hiccups." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Accessing the bendIt results: Uncompress the Archive\n", "\n", "This notebook assumes, you just ran the pipeline and are trying to access the results. There is then a number of files in the current directory beside the archive. To make things easier, I am going to suggest making a new directory with a simple name and then you could drag the archive into that folder and work there. To make things match witih the demo, I am going to write out those steps as commands, too. Feel free to run the cells or to do it by hand. If you make a different 'unpack' directory, you'll need to adjust things below accordingly.\n", "\n", "The exclamation marks in front of the shell commands, tells Jupyter to run those commands as shell commands and not Python." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "!mkdir unpack\n", "!mv bendit_analysis*.tar.gz unpack/" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To make things in this notebook work, you'll need to switch the current working directory over to where we are going to unpack the archive. We'll use the Jupyter magic command `%cd` to change the working directory for all subsequent cells in the notebook. If we just used `!cd`, it would only change the directory for that cell." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/home/jovyan/unpack\n" ] } ], "source": [ "%cd unpack" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note you can check anytime what is the current working directory with `pwd`. (Note most shell commands need an exclamation point but a few were added in to Jupyter so they work without it and `pwd` is one.) Also of note, is that this location is completely independent of where the file navigation pane on the left side of this window may be showing." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'/home/jovyan/unpack'" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pwd" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To **unpack the archive**, we'll run the command in the following cell. \n", "You need to edit the command so it will extract your file. In other words, the part after the `xzf` has to be changed to match the actual file name of the archive you are working with in particular. To make it easier you should be able to click after the default code in the cell below and hit `Tab` button on your keyboard and Jupyter will auto-complete the file name for you after a slight pause.\n", "\n", "(Note that I am keeping this untarring step as generic as possible so that it would work as written on any unix-style command line without the exclamation point.)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "!tar xzf bendit_analysis" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If you ran the above cell and saw anything like `tar (child): bendit_analysisZZZZZZZZZ.tar.gz: Cannot open: No such file or directory` (where `ZZZZZZZZZ` is used to represent the date time stamp), it simply means you had the file name wrong. You'll need to edit it and run the cell again.\n", "\n", "If things worked, you should just see the asterisk to the left of the cell turn to a number. If you changed the file navigation pane on the left-side of this browser window over to the 'unpack' directory, after a moment you should see more files show up in the file pane. Don't worry if you didn't switch. We are going to explore the contents using commands next anyways." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Overview of the Unpacked Items\n", "\n", "If all is correct and you used the `%cd` command to previously switch to the 'unpack directory, running the next cell will show the contents of the current working directory so we can begin to explore the contents of the-now-unpacked archive." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "total 1.3M\n", "-rw-r--r-- 1 jovyan root 11K Feb 21 20:27 A_output.png\n", "-rw-r--r-- 1 jovyan root 365K Feb 21 20:28 bendit_analysisFeb2120202027.tar.gz\n", "-rw-r--r-- 1 jovyan root 10K Feb 21 20:27 B_output.png\n", "-rw-r--r-- 1 jovyan root 3.1K Feb 21 20:27 demo_A.pkl\n", "-rw-r--r-- 1 jovyan root 38K Feb 21 20:27 demo_A.png\n", "-rw-r--r-- 1 jovyan root 43K Feb 21 20:27 demo_A.svg\n", "-rw-r--r-- 1 jovyan root 1.6K Feb 21 20:27 demo_A.tsv\n", "-rw-r--r-- 1 jovyan root 3.1K Feb 21 20:27 demo_B.pkl\n", "-rw-r--r-- 1 jovyan root 38K Feb 21 20:27 demo_B.png\n", "-rw-r--r-- 1 jovyan root 44K Feb 21 20:27 demo_B.svg\n", "-rw-r--r-- 1 jovyan root 1.6K Feb 21 20:27 demo_B.tsv\n", "-rw-r--r-- 1 jovyan root 1.3K Feb 21 20:27 demo_cassettesGC.pkl\n", "-rw-r--r-- 1 jovyan root 171 Feb 21 20:27 demo_cassettesGC.tsv\n", "-rw-r--r-- 1 jovyan root 1.1K Feb 21 20:27 demo_mergedGC.pkl\n", "-rw-r--r-- 1 jovyan root 115 Feb 21 20:27 demo_mergedGC.tsv\n", "-rw-r--r-- 1 jovyan root 65 Feb 21 20:14 demo_sample_set.fa\n", "-rw-r--r-- 1 jovyan root 5.3K Feb 21 20:27 LOG_baFeb2120202027.txt\n", "-rw-r--r-- 1 jovyan root 100K Feb 21 20:27 plots4review_from-baFeb2120202027.ipynb\n", "-rw-r--r-- 1 jovyan root 544K Feb 21 20:27 seqs_dfs_and_plots_for_each_set.pkl\n" ] } ], "source": [ "ls -lh" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "That lists out the contents of the directory. The options added along with the `ls` command make the output more redable by showing. In particular, the `h` in `-lh` means the file sizes are human readable and the `l` in `-lh` says to list the details in long form and not just the names.\n", "\n", "You'll see there is much more than the compressed archive that was originally added when we made the directory just a few cells back. These are the results of the bendIt run. The following section will go through what these are and how to use them.\n", "\n", "----" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## About the Contents" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If you used your own data, your results will be different but the types will be the same. I am going describe the contents as if you ran the demo sequences; however, mostly you just need to pay attention to the file extensions, or sometimes the start of the name, to tell which file types correspond.\n", "\n", "After a brief overview, I am going to add some details about most of the types." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Typical contents overview:\n", "\n", "- Log file\n", "- Image files for the plots\n", "- a Jupyter notebook for reviewing all the plots en masse\n", "- serialized (pickeled) bendIt data \n", "- bendIt data as tabular text\n", "- Nucleotide composition detail\n", "- serialized processing information and results on a per sample basis\n", "- input files\n", "- raw gnuplots\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Log file\n", "\n", "The Log file will look something like `LOG_baZZZZZZZZZ.txt` with the `` showing the abbreviation for the month and the `ZZZZZZZZ` portion being derived from a time date stamp.\n", "\n", "This contains much of what was shown as the demo pipeline ran with some additional details from the actualy bendIt job(s) for each sequence.\n", "\n", "At the end is a summary. *When `lightweight_archive` is true, only the summary is in the Log file.*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Image files for the plots\n", "\n", "The plots have been saved a two forms of images. The first part of the name of each is derived from the sample_set name and the individual sample name. The two extensions delineate them:\n", "\n", "- `.png` \n", "Examples from the demo input `demo_A.png` and `demo_B.png`. \n", "This is a raster/bitmap file format made of pixels that you are probably familair with. While it is great for viewing easily as a lot of software, including JupyterLab, can handle it, please see the note below suggesting `.svg` for scaling up, or the Python section that discusess making individual plots larger and making new image files in `.png` format from that.\n", "\n", "- `.svg` \n", "Examples from the demo input `demo_A.svg` and `demo_B.svg`. \n", "This indicates SVG (scalable vector grpahics) file format. SVG is really the best choice for scaling up or adapting further as it offers the most control and no less of resolution. Sugggest using Adobe Illustrator or Inkscape for scaling and customizing. This is what you'll want to use if you don't want to remake the plot and are looking to customize it for publication. Any modern browser can view `.svg` files, and fortunately an SVG viewer is built right into JupyterLab. \n", "\n", "When `lightweight_archive` or `lightweight_with_images` is true, these image files are not saved as part of the archive. In that case, you'll want to see sections below to make the image files 'after-the-fact' from the tables of data for each sequence." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Jupyter notebook for reviewing all the plots en masse\n", "\n", "The file name for this file will resemble `plots4review_from-baZZZZZZZZ.ipynb` with the time data stamp matching the arhive file name and log file name.\n", "\n", "The image files dsicussed above are nice but not that easy to view unless you bring them local and use your file browser. Alternatively, you can browser them right in the session by opening this notebook and then opening subsequent views of it. (**ADD MORE DETAILS ON HOW TO OPEN MULTIPLE VIEW AND ADD IMAGE EXAMPLE**)\n", "\n", "At the top of this notebook, I emphasized you'll want to be in an active notebook session for working with the output. One of the main reasons is that it offers a standard environment where the archive can be unpacked easily and Jupyter offers nice viewers for many of the data types. This is the case for the 'Review' notebook. The plots are already part of the notebook, and so nothing has be run again, but a Jupyter environment is useful for viewing it. Alternatively, nbviewer can be used to view a 'static' from of the notebook if you don't mind placing the notebook file somewhere [the online nbviewer](https://nbviewer.jupyter.org/) can be pointed at it. Note the static form will look much like it does in Jupyter but you cannot modify or run any cells, or modify the text content further.\n", "\n", "Keep in mind for sharing this notebook with anyone not fluent in Jupyter notebook use, you can use `File` > `Export Notebook As..` > `Export Notebook to PDF` to also generate a PDF and then download that file as well.\n", "\n", "Note that the sample names on the plots should look like the original input sample names but might not match sample names seen in the 'serialized processing information and results on a per sample basis' file, `seqs_dfs_and_plots_for_each_set.pkl`. This is because certain characters can an issue with the processing steps and were eliminated from the sample names for processing. In the plot representations, efforts were made to substitute back in names matching a pattern used by a user.\n", "\n", "When `lightweight_archive` or `lightweight_with_images` is true, the Jupyter notebook displaying all the plots is not saved as part of the archive. In case of that there are several options on how to access similar content. The one I suggested in the Jupyter notbeook running the demonstation pipeline was to save the notebook or export a PDF of the notebook to your local computer. However, using the contents of `seqs_dfs_and_plots_for_each_set.pkl` this notebook could be made after-the-fact. That is described in the section 'Making the review Jupyter notebook after-the-fact' as part 'Using Python to review the data or customize the plots' below." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Serialized (pickled) bendIt data\n", "\n", "This will resemble files looking like `demo_A.pkl`.\n", "\n", "The data plotted from the bendIt analysis is stored in a compressed form that can easily be read back in as a Pandas dataframe for convenient use in the Jupyter environment or further analysis. Acessing these Pandas dataframes in the Jupter environment will be discussed below as part of the 'Using Python to review the data or customize the plots' section." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### bendIt data as tabular text\n", "\n", "This will resemble files looking like `demo_A.tsv`.\n", "\n", "The data plotted from tbe bendIt analysis is stored in a tab-delimited tabular text form that can easily be used in standard spreadsheets, such as Excel or Google sheets. Jupyter allows easy viewing of these as well. You can click on the 'frame' symbol next to the file name in the file navigto panel on the left, and they'll open as full-featured spreadsheet-like views. If you right click, and select `Open with ...` > `editor`, you can see the text form that underlies it.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Nucleotide composition detail\n", "\n", "These files will look like sample set names followed by `_cassettesGC.pkl` and `_cassettesGC.tsv` for the cassette sequences and sample set names followed by `_mergedGC.pkl` and `_mergedGC.tsv for the sequences of the combined cassette sequences merged with the defined flanking sequences. \n", "\n", "The examples from the demonstration data are:\n", "\n", "- `demo_cassettesGC.pkl`\n", "- `demo_cassettesGC.tsv`\n", "- `demo_mergedGC.pkl`\n", "- `demo_mergedGC.tsv`\n", "\n", "These provide a breakdown of nucleotide composition and %G+C for every cassette sequence. In the serilaized (pickeled) data, it is dataframe with each sample as a row. In the tabular text data, it is a tab-separated file with each sample as a row. The rank of %G+C from lowest to highest is the final column.\n", "\n", "Similar data is provided for every merged sequence where cassette flanked by the defined sequences.\n", "\n", "Accessing the tabular text is similar to what is described under 'bendIt data as tabular text'.\n", "\n", "Accessing the serialized Pandas dataframes in the Jupter environemnt will be discussed below as part of the 'Using Python to review the data or customize the plots' section.\n", "\n", "The source dataframes are also included in the 'serialized processing information and results on a per sample basis' file, `seqs_dfs_and_plots_for_each_set.pkl`." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Serialized processing information and results on a per sample basis\n", "\n", "This file will be named `seqs_dfs_and_plots_for_each_set.pkl`.\n", "\n", "This is almost all the input sequences and output stored on a per sample set and per sample basis using Pyton dictionaries. This is mainly meant for advanced use. It actually gets used in the top of the `Notebook for reviewing all the plots en masse` to render all the plots. It will be used to access the dataframes as well as an example below. Really beyond being used to easily render all the plots, it is really just there to have it in case something not collected here is necessary or needs to be checked. \n", "\n", "In the `seqs_dfs_and_plots_for_each_set.pkl`, there is a value for each sample set. That value is a list of dictionaries, or in two cases a dataframe. The order of the items for each sample set are as follows:\n", "\n", "- cassette sequences processed keyed on name\n", "- sequences of the cassette sequences merged to the defined flanking sequences processed keyed on name\n", "- breakdown of nucleotide composition and %G+C for every cassette sequence (dataframe with each sample as a row)\n", "- breakdown of nucleotide composition and %G+C for every merged sequence where cassette flanked by the defined sequences (dataframe with each sample as a row)\n", "- dataframes produced by bendIt analysis & used to make the plots keyed by sample\n", "- plots as Python objects produced from each dataframe keyed by sample (**not saved in 'lightweight' settings**)\n", "\n", "As the information is stored serialized (pickled), it has to be unpickled first. The following code can be used to do unpickle and bring it into an active Jupyter notebook namespace:\n", "\n", "```python\n", "import pickle\n", "with open(\"seqs_dfs_and_plots_for_each_set.pkl\", \"rb\") as f:\n", " seqs_dfs_and_plots_per_sample_set = pickle.load(f)\n", "```\n", "\n", "You'll note that this code gets used in the notebook for reviewing the plots en masse as it is from this source that the plots were added to the review notebook.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Input files\n", "\n", "The sequence files of the cassette sequences were stored in FASTA format in the archive as well in order to provide a more an intact artifact of all stages of the run.\n", "\n", "As they are in FASTA format, they'll most likely end in `.fa` or `.fasta`.\n", "\n", "The input files may also exist in sanitized and unsanitized form if the sample names included characters that would have caused issues in the processing steps.\n", "\n", "### Raw gnuplots\n", "\n", "These files will look like sample names followed by `_output.png`.\n", "\n", "The raw gnuplots made by bendIt for each sample are saved depending on the setting of `include_gnuplots`, which is moot in case `lightweight_archive` is `True`. If `lightweight_archive` is set to true, or if `include_gnuplots` is `False` in the case where `lightweight_archive` is not true, these 'raw' gnuplots won't be included in the archive.\n", "\n", "Overall these should resemble the plots generated for each cassette merged into the flanking sequences analyzed and are only meant for verification of that and troubleshooting. Keep in mind that for short sequences, the right side of the gnuplot will not represent the correct form as extra sequences were added to avoid a segmentation fault when bendIt was run." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "----\n", "\n", "\n", "----\n", "\n", "## Using Python to review the data or customize the plots\n", "\n", "A number of options readily exist for using and further processing the unpacked data. This section illustrates some of those. A good portion at the end focuses on accessing the data in the 'serialized processing information and results on a per sample basis' file, `seqs_dfs_and_plots_for_each_set.pkl`. That portion is probably best considered 'advanced' as it requires more understanding of Python syntax to fully understand what is going. Most of the other examples only require name changes to get to data.\n", "\n", "----\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Viewing dataframes for the plotted data\n", "\n", "While JupyterLab adds big improvements for viewing the CSVs/TSVs derived from (or which can be the source of) such dataframes, viewing and handling the dataframes within Jupyter is going to come up. Jupyter is particularly good at rendering Pandas dataframes nicely. \n", "\n", "This section will describe accessing the serialized (pickled) bendIt data in files looking like `demo_A.pkl`. This is mainly to serves as an introduction to illustrate the process and handling dataframes. \n", "\n", "If you are looking to use the bendIt data that is actually plotted elsewhere, you'd probably want what is described above as 'bendIt data as tabular text' which is in the files looking like `demo_A.tsv`. Where there sample set and sample names are in te file. The dataframe form is nice if you are continuing on with using Python to examine.\n", "\n", "Let's illustrate viewing a dataframe in Jupyter by bringing the serialized form in.\n", "\n", "It would be fairly easy to bring in the TSV form to a dataframe as well, but the serialized just needs to be read in at this point.\n", "\n", "As the command shows in the next cell, we can just put the file name of the serialized dataframe in a command like `df = df.read_pickle('demo_A.pkl')` where you'd replace `demo_A.pkl` with your file name of interest." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "df = pd.read_pickle('demo_A.pkl')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To view a representation of the dataframe, we can call it now since we defined it as `df` above:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PositionSequencePredicted_curvatureBendability
03a0.00000.0633
14a0.00001.3522
25a0.00003.9733
36c8.97656.1887
47g9.27966.2942
...............
7679a6.82335.9429
7780g0.00006.8829
7881c0.00006.8913
7982t0.00006.1950
8083g0.00000.0000
\n", "

81 rows × 4 columns

\n", "
" ], "text/plain": [ " Position Sequence Predicted_curvature Bendability\n", "0 3 a 0.0000 0.0633\n", "1 4 a 0.0000 1.3522\n", "2 5 a 0.0000 3.9733\n", "3 6 c 8.9765 6.1887\n", "4 7 g 9.2796 6.2942\n", ".. ... ... ... ...\n", "76 79 a 6.8233 5.9429\n", "77 80 g 0.0000 6.8829\n", "78 81 c 0.0000 6.8913\n", "79 82 t 0.0000 6.1950\n", "80 83 g 0.0000 0.0000\n", "\n", "[81 rows x 4 columns]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We could just look at the top." ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PositionSequencePredicted_curvatureBendability
03a0.00000.0633
14a0.00001.3522
25a0.00003.9733
36c8.97656.1887
47g9.27966.2942
\n", "
" ], "text/plain": [ " Position Sequence Predicted_curvature Bendability\n", "0 3 a 0.0000 0.0633\n", "1 4 a 0.0000 1.3522\n", "2 5 a 0.0000 3.9733\n", "3 6 c 8.9765 6.1887\n", "4 7 g 9.2796 6.2942" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Or look at the end:" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PositionSequencePredicted_curvatureBendability
7679a6.82335.9429
7780g0.00006.8829
7881c0.00006.8913
7982t0.00006.1950
8083g0.00000.0000
\n", "
" ], "text/plain": [ " Position Sequence Predicted_curvature Bendability\n", "76 79 a 6.8233 5.9429\n", "77 80 g 0.0000 6.8829\n", "78 81 c 0.0000 6.8913\n", "79 82 t 0.0000 6.1950\n", "80 83 g 0.0000 0.0000" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.tail()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Or easily view an overview of the data contents." ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PositionPredicted_curvatureBendability
count81.00000081.00000081.000000
mean43.0000003.6515045.332964
std23.5265812.1005181.584404
min3.0000000.0000000.000000
25%23.0000002.4767004.875700
50%43.0000003.3518005.416200
75%63.0000004.9639006.195000
max83.0000009.2796009.082300
\n", "
" ], "text/plain": [ " Position Predicted_curvature Bendability\n", "count 81.000000 81.000000 81.000000\n", "mean 43.000000 3.651504 5.332964\n", "std 23.526581 2.100518 1.584404\n", "min 3.000000 0.000000 0.000000\n", "25% 23.000000 2.476700 4.875700\n", "50% 43.000000 3.351800 5.416200\n", "75% 63.000000 4.963900 6.195000\n", "max 83.000000 9.279600 9.082300" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.describe()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "I include a more detailed introduction to dataframes [here](https://nbviewer.jupyter.org/github/fomightez/blast-binder/blob/master/notebooks/BLAST%20on%20Command%20Line%20and%20Integrating%20with%20Python.ipynb#Demonstrating-the-Utility-of-Having-the-BLAST-Results-in-Python) and [here](https://nbviewer.jupyter.org/github/fomightez/ptmbr-accompmatz/blob/master/notebooks/PatMatch%20with%20Python%20basics.ipynb#Demonstrating-the-Utility-of-Having-the-PatMatch-Data-in-Python)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "----\n", "\n", "### Understanding sample names and how serialized information keyed\n", "\n", "This section will introduce accessing the contents in the 'serialized processing information, `seqs_dfs_and_plots_for_each_set.pkl` on a per sample basis to get a sense of how the infromation is keyed.\n", "\n", "The next cell unpickles the `seqs_dfs_and_plots_for_each_set.pkl` as described under the 'Serialized processing information and results on a per sample basis' section." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pickle\n", "with open(\"seqs_dfs_and_plots_for_each_set.pkl\", \"rb\") as f:\n", " seqs_dfs_and_plots_per_sample_set = pickle.load(f)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The sample set labels are the overarching keys in this collection. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "seqs_dfs_and_plots_per_sample_set.keys()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There is only one sample set in the demonstration set as there is only one sequence file. The name of that sample set is `demo` for the demonstration sequence file.\n", "\n", "As described under the section 'Serialized processing information and results on a per sample basis', there are several items for each sample and for all except two, those items are further keyed on a per sample basis. (The '%G+C brekadown' dataframes don't have further 'keyed' contents per se, but they have each sample as a row.) For example, the first listed item is 'cassette sequences processed keyed on name'. And so to access that item, we'd use the following:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "seqs_dfs_and_plots_per_sample_set['demo'][0]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The zero in the brackets at the end specifies the first item in Python since the language is zero-indexed. In other words, the first item in a list in Python is referenced by the index 'zero'; whereas, it is generally common to number the first item as 'one'.\n", "\n", "That first item is actually a dictionary of keys and corresponding values. The dictionary keys are the sample names as can be see by listing the keys using the folllwing code:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "seqs_dfs_and_plots_per_sample_set['demo'][-1].keys()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We see the labels for sample sequences 'A' and 'B' that were present in `demo_sample_set.fa`.\n", "\n", "If we want to see the corresponding value, which in the case of this dictinary is a nucleotide sequence, we can use a particular key to access it. For example:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "seqs_dfs_and_plots_per_sample_set['demo'][-1]['B']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Using that code, the output of that cell above shows the cassette sequence corresponding to sample sequence 'B'.\n", "\n", "Note when you see the sample names, there is a chance they may not correspond to the specific text you specified in your FASTA file. This is because certain characters, such as `|` along with parantheses and slashes don't play well with processing approach used here, and so if the text for the sample names contained those in the FASTA description, they have been sanitized to avoid issues. (Note for a certain pattern of labels, the names are corrected in the displayed plot titles.)\n", "\n", "We'll use similar approaches below to access some of the other items that are stored for each sample set. For example, in the sub-section 'Accessing the nucleotide composition/%G+C information via Python', we'll see `seqs_dfs_and_plots_per_sample_set['demo'][2]` used to access the third item in the serialized data, which is the dataframe with a breakdown of the nucleotide composition and the %G+C of the cassette sequences. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Looking at specific plot and adjusting the plots via Python\n", "\n", "If you used the lightweight setting and want to generate image files for all the plots, see 'Generate image files for all plots via Python' below. This section is meant for when you are just interested in the image files for a few plots.\n", "\n", "If you are looking to scale or edit just a few of the plots, I suggest you use the `.svg` file with the images as scaleable vector graphics.\n", "\n", "However, maybe you used the `lightweight_archive` setting previously and want to generate images from the plots now or you want to make the plots larger. This section will illustrate accessing the contents in the 'serialized processing information and results on a per sample basis' file, `seqs_dfs_and_plots_for_each_set.pkl` to bring the plots back into the session here so image files can be saved or the image dimensions altered.\n", "\n", "The next cell unpickles the `seqs_dfs_and_plots_for_each_set.pkl` as described under the 'Serialized processing information and results on a per sample basis' section." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "import pickle\n", "with open(\"seqs_dfs_and_plots_for_each_set.pkl\", \"rb\") as f:\n", " seqs_dfs_and_plots_per_sample_set = pickle.load(f)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The sample set is the first key in this collection. That is `demo` for the demonstration sequence file.\n", "\n", "See the sub-section entitled 'Understanding sample names and how serialized information keyed' above. for more information on that" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As described under the section 'Serialized processing information and results on a per sample basis', the plots are the last item in the serialized collection. As the last item it can be accessed using a special shortcut to indicate the last item ,`-1`. And so to access the plot collection for the demo set the code is:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'A':
,\n", " 'B':
}" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "seqs_dfs_and_plots_per_sample_set['demo'][-1]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The cryptic code, `
`, after each sample name identifies a Python object. In this case a figure of particular size.\n", "\n", "*Note: If instead of something that looks like that, you see the text 'saving serialized Python plot object scrubbed due to \\`lightweight\\` setting', it means one of the 'lightweight' settings was used, and so the individual plots as Python objects weren't stored in serial form. The plots can still be generated from contents of the archive; you'll want to to see the section below about generating the plot images from data.*\n", "\n", "Normally we could call one of them with the following to display it for sample sequence 'A':" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "
" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "seqs_dfs_and_plots_per_sample_set['demo'][-1]['A']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "However, it it will be represented by Python object code and not a display of the plot. While it might some convoluted, the issue is that the canvas that Jupyter would display here was lost when the underlying data associated with it was serialized in the source notebook. We can make a 'dummy' canvas and swap in the underlying plot data, see [here](https://gist.github.com/demisjohn/883295cdba36acbb71e4#gistcomment-3177271)." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdoAAAEKCAYAAAC12pSAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8GearUAAAgAElEQVR4nOydd4BcZbn/P++Zmd3Z3ndTNskmIWUJIQFCDyhBIAFCiAFFLChc0fsTKSKoV+Heq3ARUbwCoiKKDbhIMwFCMwYIJARSIL3XTdndbG+zOzPn/f3xnjPbppyZnS1Z3s8/2Ux5zzk7s+d5n/Z9hJRSotFoNBqNpl8wBvsENBqNRqMZzmhDq9FoNBpNP6INrUaj0Wg0/Yg2tBqNRqPR9CPa0Go0Go1G049oQ6vRaDQaTT/iHuwT0Gg0faOxsZGLL76YQCAAwMUXX8z//M//DPJZaTQaG+3RajTHOcuXLw8ZWYB3330Xn883iGek0Wi6og2tRnOc889//rPb/1tbW3nvvfcG6Ww0Gk1PtKHVaI5j6uvr+eCDDwC48MILSU1NBeDNN98czNPSaDRd0IZWozmOWb58OcFgEFC52VmzZgE6fKzRDCW0odVojmNszzUlJYWzzz6b8847DwCfz8eKFSsG89Q0Go2FNrQazXFKXV0da9euBWDWrFmkp6dz/vnnh55/4403BuvUNBpNF7Sh1WiOU5YtWxYKG0+aNIldu3bR2NjImDFjAFi5ciWtra2DeYoajQYQekyeRnN88s1vfpM1a9ZEfc0999zD3LlzB+iMNBpNOLRHq9Ech9TU1LB+/fqYr9PVxxrN4KOVoTSa45CuYePbb7+dL3zhC92ev/baa9mxYwfvv/8+LS0tZGRkDMZpajQatEer0RyX2CIVLpeLiy66qNfzF198MQDt7e28/fbbA3puGo2mOzpHq9FoNBpNP6I9Wo1Go9Fo+hFtaDUajUaj6Ue0odVoNBqNph/Rhlaj0Wg0mn6kX9p71q1bR1paWn8sPeC0t7eHJqIMB/T1DG309Qxt9PUMbQbzetrb25k5c2bY5/rF0AohKC8v74+lB5ytW7cOm2sBfT1DHX09Qxt9PUObwbyerVu3RnxOh441Go1Go+lHtKHVaDQajaYf0YZWo9FoNJp+RGsdazQazXGM3++noqICn8+X0Huj5RaPNwbierxeL6WlpXg8Hsfv0YZWo9FojmMqKirIysqirKwMIURc721raxs2HSLQ/9cjpaSmpoaKigrGjx/v+H06dKzRaDTHMT6fj4KCgriNrCZ+hBAUFBTEHT3Qhlaj0WiOc7SRHTgS+V0PS0Nb0xrgltcPcddbR2kPmIN9OhqNRqP5BDMsc7TXv3yQpbuaAPCbkp/OGTnIZ6TRaDTDm+rqav7nf/6HjRs3kp2dTUFBAf/xH/8RVy4zHl544QXOPfdcSkpK+mX9ZDLsPNqtx3ws3dWEx1Du/W/X1tDm116tRqPR9BdSSm666SbOOOMM/vnPf/LCCy9w++23U1NT4+j9wWAw7mO++OKLVFVVxfWeQCAQ93GSwbAztM9tbQDgzrOLmD8pmxa/yT/3Ng3yWWk0Gs3w5f3338ftdvOFL3wh9NjUqVMJBoN84xvfCD324x//mBdeeAGAOXPm8MADD7Bw4UL+8Ic/cNVVV4VeV1FRwfz58wF45JFHWLRoEZdffjl33XUXUkpee+01Nm3axHe/+10WLFiAz+djzpw51NXVAbBx40a+/OUvA/Dwww9zxx13cM0113DnnXdSW1vLt7/9bRYtWsSiRYtYu3Ztv/9+hl3oeMkOZWg/W57DhLwUXtrZyEs7G5k/OWeQz0yj0Wj6l68sPsBLOxudv0FKiFHcM39SNn9ZMDbqa3bu3Mm0adOcH9ciNzeXF198EYBXXnmFgwcPMmbMGJYuXcq8efMA+NKXvsRNN90EwB133MHy5cuZO3cuTz75JHfeeSfTp0+PeZzdu3fz1FNP4fV6uf3227nuuuuYNWsWhw8f5oYbbuDVV1+N+9zjYVgZ2qb2IBuqfBSlu5he5KUwTV3eewdbBvnMNBqNRtOTSy+9NPTzvHnzePXVV7nxxht59dVX+eUvfwnA6tWrefzxx/H5fNTX1zNp0iTmzJkT13HmzJmD1+sFYOXKlezatSv0XHNzMy0tLWRkZCThisIzrAzth4dbMSWcXZqBEIJRWR7G5XjYUdvBsdYAhenD6nI1Go2mG7E8z54kS+Bh0qRJvP76670ed7lcmGZnjUx7e3u357se+9JLL+WWW27hoosuQghBWVkZ7e3t/Pd//zfPP/88I0eO5OGHH+61RtdjSSljHsc0Tf7+978P6Di9YZWjXX24FYCzRqeHHju7VO1SVlVor1aj0Wj6g7POOouOjg6eeeaZ0GPbtm0DVNi2o6ODxsZGVq1aFXGNsWPHYhgGjz76aChsbBvMvLw8WlpauhnzjIwMWlo67+ujR49my5YtALzxxhsRjzN79mz++te/hv4/EBKUw8rQbqxSah2njujcvZxtGd2VFa1JOYaUksDT1xNYckdo96TRaDSfZIQQPPLII6xcuZLPfOYzXHbZZTz44IMUFhYyd+5cLr/8cm699VZOPPHEqOtceumlLFmyJGRos7Ozufrqq7n88su54YYbuuVjFy5cyH/+53+GiqFuuukmfvazn/HZz34Wl8sV8Rg//OEP2bRpE/Pnz+fSSy/l6aefTs4vIQpC9oO1WL9+Paecckqyl43JjMe2s+VYOwduLmdkphJ8/qiyjdP/sJNzS9N56ysnxL1mz0HC5oE1BB46FwD3LSsxxpyWnJMfIPSg56GNvp6hzVC8nr6ck9Y6Toxwv/Non8Ow8Wg7giY7atvJT3MxIqMzFzu9yEtmisGaI21JUYmS+1Z2/lyxrs/raTQajWZ4M2wM7Y6aDgImnFjo7aZF6TIEZ45Kpz0oWXe0rc/HkdU7On+u3NLn9TQajUYzvBk2hvZwsx+AstyUXs+dU6rytO8f6nueVlbt7Py57mCf19NoNBrN8GbYGNrqViWtVZjWOwluVx6vTEI/bVePloZDfV5Pk3yaO4J0BLXspkajGRoMG0N7zDK0RWF6Zc8cnY4hVOVxX2q/ZHszNB6G7JEgBFIb2iHH81vrGfm/Wzj5sR1UWlEOjUajGUyGkaFVotQF6b092uxUFycVealqDbC7riPxg9SrULEonATpBdBcjTS15zRUqGjs4GsvHcQXkOyu6+Dn71cP9ilpNBrN8DG0dT5laPO94dWfQsIVfcjTyobDAIicUZBRANIEX0PC62mSy73vVtEWkCyaqnStn9vaoHudNZoBoLy8nAULFnDFFVewcOFC1q1LTkdGRUUFl19+edTXrF69utvggq58/etfp7FRaT/bLaeVlZXcfPPNgGrJefvtt5NyrtEYNoa21RqFl+4Jf0l2QVRf8rShUHHOKER6gXVgZ2OgNP1LU3uQpzfXk+oS/HruaE4ZkUZFk5+PLRETjUbTf3i9XhYvXsySJUv4zne+w4MPPjjYpwTA73//e7Kzs7s9VlJSwkMPPQRoQxs3PqtHNs0dfhLFOcmQYuzm0eYDIFtqE19PkzSe29ZAi9/kyinZFKS7mTcxC4B/7W0e5DPTaD5ZNDc3dzNujz/+OIsWLWL+/PkhA1dRUcG8efP40Y9+xGWXXcb111+Pz6c2xZs2beKKK67giiuu4MknnwytU1FRwbXXXsvChQt7ec3Nzc3ceOONLFiwgLvvvjukrzxnzhxqa7vfo20vuaOjg4ceeoilS5eyYMECli5dysUXXxx6vWmaXHTRRb3enwjDRmW/zTK03gge7bgcDyMz3Ww+1k5dW4C8tPgv3fZoRfZoRHoBEqDlWKKnrEkiT25Ucyi/OkNtgM62IhhrjiRHelOjOR4IPPVVzM0vOX69IaEj+pQ8jGnzcV/7p6iv8fl8LFiwgPb2dqqrq/nzn/8MwLvvvsv+/ft57rnnkFLy7//+73z44YeMHDmS/fv38+CDD3LPPfdwyy238Prrr7NgwQJ+8IMfcPfdd3P66adz//33h45RUFDAE088QWpqKvv27eM73/lOaLbthg0bWLp0KXl5eXz729/mjTfeYO7cuVHPOSUlhZtvvplNmzZx9913A7Bnzx6WLFnCV7/6VVauXMnUqVPJz8+P8VuMzbDxaNv8KhcXyaMVQnDGKHXz3ZhgOLFr6Jh0y6Nt1R7tYNPYHuS9ihZyvS4+PS4TgNNGqM967ZG+i5RoNJro2KHj1157jccff5zvfe97SCl57733eO+997jyyitZuHAhe/bsYd++fQCUlpaGJAunTZvGoUOHaGxspKmpidNPPx2ABQsWhI4RCAT40Y9+xPz587nlllvYvXt36LmTTz6ZMWPG4HK5uOyyyxIe5r5o0SIWL14MwPPPP89nP/vZhNbpybDzaNPckfcO5YVeFu9oZMuxds63bshx0XgEAJE9EpGhc7RDhWV7mwmYcNH4TNyG2mgVZbgZl+NhT30HtW0B8hOIYGg0xxuxPM+e9Ic28CmnnEJdXR21tbVIKbnxxhu55pprur2moqKClJROcSGXyxVx/J3Nn/70JwoLC1m8eDGmaXLyySeHnhM9htf3/L9TRo4cSUFBAatWrWLDhg38/Oc/T2idngwfjzZgebQRQscAUwvV/MFtNQl6tM1Wu0hWSadHq3O0g85re5oAmGvlZW1OLlY3kC3Hov8BazSa5LF7926CwSC5ubnMnj2b559/PjTOrrKykpqayM5JdnY2WVlZrFmzBoCXXuoMgzc1NVFUVIRhGCxevJhgMBh6bsOGDRw8eBDTNHn11Vc57TRnw156jtoDuPrqq7njjjuYO3du1ClA8TBsDK3PH70YCqDcMrRbE7jxSimhuRpSMxEeLyKjUD2hc7SDzvJ9quDp4gndDe2UAmtjdUxXHms0/Ymdo12wYAG33XYb999/Py6Xi9mzZ3P55ZdzzTXXMH/+fG6++eZehq0n9913Hz/+8Y9ZsGBBt/a8a6+9lhdffJErrriCPXv2kJ7eOXd8+vTp/OQnP2HhwoWMHj2aiy66yNF5n3nmmezatStUDAWqgKq1tTVpYWP4hIWOp+R7gQRvvB0tEPBBznj1//Q89W9rXfxraZJGtU+yt97PCXkpjLBGI9rYEYztNdqj1Wj6k2jD06+77jquu+66Xo+//PLLoZ9vuOGG0M8nnXQSS5YsCf3/zjvvBKCsrKybh3vHHXcAylja1ck9Q+H/+te/Qj+vX78eULlh+9i5ubk8//zz3c5r27ZtTJ06lYkTJ0a8pngZRoZW7Xy8UTzajBSDshwP+xr8NPiC5HjjCAtYYWORUaT+71WiCFILVgwqH9eoz/0sq32rK1MLrI2VNrQajcYBjz32GE8//TQPPPBAUtcdNqHjtoCJ1y1iJsGnFiZ285V2iNgKGQuv1Sfma4zvRDVJ5aNaZWhtQZKuTC3QHq1Go3HOjTfeyPLly5k1a1ZS1x0+htYvo4aNbSZYY/T21cepedxcBYDItDzaNNuj1YZ2MPnI8mjPHt3bo83xuhiZ6WZffQdtfq1JrRm+aKnRgSOR3/WwMLQBU+I3ZdRCKJtxOcrQHmiMz9DKZsujtQ1tqvZoB5ugKdneIMnwGKFCt55MKUhFAjvrtFerGZ54vV5qamq0sR0ApJTU1NTg9Xrjep+jHO2f/vQnnn32WYQQTJ48mfvuu4/U1PA3tsHA9laitfbYjM1RBTP7G+IcodZi52it0LHLDZ50PVRgENlV1067CTNHenEZ4TdZE/JSeWt/C3vrOkLtPhrNcKK0tJSKigqqq+OfVuX3+/F4PLFfeJwwENfj9XopLS2N6z0xDW1lZSV/+ctfWLp0KV6vl1tuuYVXXnklqaXPfaWzEMqJobU82oY+erSgwseNR5DBgDK8mgFlQ6WqHp9eFHl3Od76vPfG+XlrNMcLHo+H8ePHJ/TerVu3htSZhgND9XochY6DwSA+n49AIIDP56O4uLi/zysu2mIMFOjKuGzbo403R2t5tF0NrV0Q1d4U31qapGBLaU4vjmJoE83JazQaTZKI6YaVlJRw/fXXc8EFF5Camsq5557L7Nmzo77HNM2ofVXJZm+T8mhlhy/mcaWUpBqwt66dLVu2xKxS9vnUmiMq95IB7K1upkOqY4yWKXiBXZvWEsganYxL6Xfs6xkOrNwTACC7rZKtWyOEzerVJmzjwVq2bh36+fTh9PmAvp6hjr6egSGmoW1oaGDZsmUsW7aMrKwsbrnlFhYvXtxN7LknhmEMqPvuO9oG7KQgJ4Py8gkxX1/2zna217ZTUjaZgvTovwI7FOF/3YcEJpx0OiJvLAD+FSXI6o1MLC3GGDX0whXhGKqhlUTYu2wr4Gf+6VMj9kQXtATg7S0cC6ZQXj5lYE8wAYbT5wP6eoY6+nqSe+xIxAwdr1y5ktLSUvLz8/F4PFx88cUhhY2hgh06TneQo4UuBVFxVB6H+mjDhY7bdEHUQFPvC3Kg0c+odKIKjxSlu8jwGOyt79BVmRqNZlCIaZlGjRrFxx9/TFtbG1JKVq1alVRpqmRg6xxHmkXbE7sg6mA8lcchnePOylVhqUPRPvRDksONTVZ+dlJ29NC/EIKy3BTaApLKlsBAnJpGo9F0I6ZlmjFjBpdccgkLFy5k/vz5mKbJ5z//+YE4N8f4grHlF7syMlOFi480O7vxyvYW8LeGVKFCWB6tFq0YeD6uUnNmp+TE/szH56oIxl5dEKXRDAmkGUQeHXq51P7CkQt4880389prr/Hyyy/zwAMPdJsjOBTosAxtSoReyp7Y4vNHmx16tC09dI4tQh7tAIWOZXsLgb9/k8ALt3ziw6B2xfFkR4ZW9Xz3t6GVTZUEXr0bs2JopVY0GqcEVz9B4KmvIdub+/c4S3+E/+czCa59sl+PM1QYFspQftvQuuL0aB2GEsP20AKkDaw6VPCNn2B+8ATmyt8id78zIMccqmx0GDoGKMsZmBaf4Iu3YS67n8CvL0A2Hu3XY2k0yUY2HCb47Dcx1z2F+d5v+u84ZhDzrQcBQv8Od4aFoe0wlaH1ODS0CXu0PQ2tPcFnAHK0svEo5srfhv5v7n673485VAmakk3VbaS5BWMzY78+FDruR9EK6fdhbnlF/cffRnDVY/12LI2mPzB3vdX5885/RX5hH5FHNnX+XHcAaQ5/HfJhYWgT9mid5mgtsYqeOVoxgFXHwbceBH8bYtQMdU4V6/r9mEOVPfUdtPol04q8uGL0QQOMylKG9nBTnLKbcSAPf6zmFeeOAcD8+PkY79BohhbyUGfKQx7e2H/H2ftu5398jdA0/KM/w8LQ2jlaj8McbUmGMrSOPdqQKlT4Yqj+Dh3LpkrMVY+BKwXXNY+rx2r29OsxhzJOFKG6UmoZ2kNN/Vd1LI9uAcCYcRUUT4Gqbciq7f12PI0m2cjKLsVJLdX9lqeVe95TP1ibZNlwqF+OM5QYVobWqUeb4jIoSHNR2RIgaMYuKuqcRRshdNzPgwVsb9Y483rEyOmQkgF1Bz6xBVEbKlXF8XSHQwKKMtx4DNG/Hq11kxIjTsSYegkA5p4V/XY8jSbZyGO7ABClp6r/1+5L/jGkxNz7HgiBMeNq9aA2tMcHfjM+QwsqT2tKONbqwMtpsmbRZpd0e7hz+Hv/aR3LpkrMlb9T3uycOxBCIPLGgb8t5Gl/0thYrTzaGQ49WkMIRma6qfMF+20uraxUHq0oORFjvJIolXtX9suxNJpkI00T6g+BNwcxeqZ6sD+iZjW7oekoYsRJiBHT1LHrK5J/nCHG8DC0lkfrdhg6hvgqj6WdQ8ga0f0Ju72nHz3abt5srjWayZKAlHX7++24Qxk7dHySQ0MLnXnaQ/3k1cqqHQCI4imIsrMB1M49GWtLqXq5NZr+oqUagh2I3FJEvpoEJGv3Jv0wphU2FuPPhRylD68N7XFCvKFjiLPyuKkSAJHV3aPtb8EK2VTVzZu1Efnj1A91B/rluEOZxvYge+s7KM3ykJ/mfDTh6H4siJJmEBoqIKMQ4c1CZBVD3jio3Ydsre3b2u3NBB6ajf+uYoIrHknSGWs03ZF1B9UPuWMgv0w9Vpv8jby0Np9iwuxOx0GHjo8PEgkdx1N5LJsqQRi9q449XnCl9JtHG1z2U8ub/VrnlxJCQw0+iR6t7c2eXOLcm4UuHq3TArh4aDwCZrD7Z2SF3+ThDX1a2lz5W+TBNWAGCL78fWTD4T6tp9GEpUF5lSK3FJFtRe4sByOZmFbFsTH+XESu5dFqQ3t8EG/VMcCIDIcerRlQYZXMYoQRRrzemwO+xqQXJslju5Q360nHdeH3uz9phbCllTv+JBFvxbHN6Cy1seoXj9YOfVmtPQCG3YZ1+OM+rW1uewMAMWYWBP2Ya5/q03oaTTikFR0TuWNCkTuZZEMrG4/Csd1QMB6RMwoy1Vxz+QmoNRkWhrY/PVqXrw6k7B02tknLBmlCkkvhA6/8CMwAxqdvU1/KLoSEMz4BX9CebLQ0jqcXOas4thnVjy0+sl6F3URep6EVo09Wzx1K3KOVfh9y//uQmolr0cMAmOuf7sOZajThCUVKckZ32cgnt7/VLg40ys5VD3hzwHBBS01SjzMUGRaGNhGPdqTDHK2r1foSRDC0wpurfkhi+NjcsQy58UXIKsH1qdt6v8DecTZ/8jzaDYl6tNbnfaQ/iqFsbyCnS+g4CR6trFgLgXZE2TmI0adA3jjkkU3IxiN9Ol2Nphe2VkB2iao9cXuTHjo2D6xWxyg7S/0rhErHtdWqOodhzLAytPF4tCWWR3s0RtWxu0310IqeFcc2aVYvbZLUoWSgg8A/lHF1XX4fwpvV6zWfVI/WlJKNVT5SXYLJBalxvbfYEimpctLOFSfSym/Z1eCACiOn5SErtyIDiUk/hnpzR89ECIEx+UIAzJ3L+3S+Gk1PQpv2zGJlALNKVEqsozV5xziwBgAx9ozQYyKjEKSEtrqkHWcoMiwMbWfo2PnljLBvvDEMrcsytGRHCh1bHm2Svijmu49A1XbE+HMxTr02/Iss4YxPmke7p66DFr/JtCJvXK1c0MXQ9sNMWrtis1sxlBCIESeqHP+x3Ymta7cMFU1W/57wafW4FsLQJBvrXmJv4pNdECWDASUb60kL9c8CnQWmtijQMGVYGNrO0LHz92SmGKS5BUdj5WhbbY82Qug4ZGjrnR88ArLhMME37wVh4Fr4v2pnGe6Y7hRl4JurPlHqUBsSrDgGyPW6cBv949Fi52i7FEMBiJKpQA9puziQ1TvVOkWTADAsT0AeXJPQehpNJDr13K1oWahQKTmbeVm5BfytiNJTEa4ubXkZBdZx4je0UkpkfQUy0J6Uc+xPhoWh7Rwq4PxyhBCUZLhp8Zu0dERWC3K12TnaSKFjZWiTIcMYfPn70N6Mce43MUadHP3FmUUQ9PerWMZQw5ZePNmh9GJXDCEoTndT2xYMfV+ShayvUEUd2SO7PS5KytXzCRtaWwRDebTkl0FGocrTagELTZKQUiqPNi1PbeJB9YJD0gT/5YEP1bpjZnV7XFiGNt6CKFm7j8Avz8B/z0T8/zmawOs/Qfp9STnX/mB4GNo4x+TZlFgFMpUtkQtkOnO0MTzaVmehY3P/avy/uYTA377crSHc3PU25vpnILMY1yX/GXMdYe04+QSFj22P1qn0YldkewuXsA63DFCdRK9WdrSqsFf26F7tXyFDWxW/oZVmEGr3QXo+Ij1frScEYuzpIM1uk1Y0mj7RVq827V3HgIY82uSEdO0ojBh7evcnrNCxjCN0LIMBAk8sUj3q2aPA34b55j34H5yF98jQjPYMC0MbCh2HaXONRmiKT5S8nV11HLG9x5ZhdFAMJaUk8NRXkbvfwvzo7/h/dS7m4Q3IoJ+gXQB12b2dxjsamXae9pNTELXBbu2J09BKKQn8/nIeOXADf2v+fnLDx3ajf96YXk91erTb4l+3qRLMQK9wtDFG3ahsD0Gj6TN2frbLPU4kOXcqD3wAgNHD0HYex7lHa378LPLIJsSY0/H8cAeeOz5CTPw0VO9k9NJ/I/jOQ0k552QyLAxtKHRsxHc5JQ4KZDqLoUaGf0F6HgDSFztHK49sUkLdhSdgzPoKtFQT+M3FBP7yBeTRzYhxZ2Gc9iVH597p0X4yDG29L8j+Bj9jsz3kxSG9CMooyX2qh2++/23a9iVvlm+4QqgQ2aPAm42s3oEMxmfcQyIYlh6sjRhzmnq+Ym38J6vRhCG0We/m0SZvIy/bm9UYyYwiJU3alQQ8WnPl7wBwXXIXwuVBFE3C/c3XcH3uMaThIfjyDzCtsZVDhWFhaPvs0UYpiHK31YAnDVJ7t9kACNujbXVgaK2bo1E+D9fnH8OY/S1oq0NufgncXtyf/x3C6WbBDu18QtShbKGKRAqhzLVPAtCUqm4eORv/krTzssUqyA3j0QqBKJ4KgXaIV6DdkqXracBtaUezj9KOGk2Ipu4Vx91+ToahrVgP0kSMndWrwLMzR+vM0Mr6CuS+VZA9EjH5os51hMB1xnXUzrwRzADmsp/2+byTyfAwtAm09wCUWDKMVRFytLK9BcPfAlklESuAO4uhHBhaa5clRp2svhgLfoH7umcwPnUr7m/9S92UHdL5h/DJMLQfV1oVx3EWQkkpMbe8AsAr5z4BQMn+15NXrV3fqREbjkQLomRD+HVF9gi1yareoQuiNElBhlp7uqTH7BbCliQY2lDY+IzeT8bp0Zpblqq1TloQ1ilpmHYtpOVifvTskBJ2GRaG1p+AYAV0erSVkULHzfbUnggVx4BIt9t7HORoLa9GFExQ/wqBMf1K3PPvx7BCgk4Rn7AcrZ2fPTne/OzRLVB/EDFqBrL0NDa4JpHVdgQSyZuGWz9Ca49NZ4tPfMeT9ZbQeo/QMaiNGlIij26Oa02NJhzhQsci08qdJuH+YoYKoWb1eq7zOA49WnsogSXe0uv5lAyMUz4P0sT86O8JnG3/MCwMbSISjNCpDhXJ0IZEtSMVQgF44xCsqN0HgCgY7/QUI/MJafS26eyhjdOj3fYqAKJ8LiUZbv7psWbF7ngzKecVLXQMfWjxsUPHYQ2tJe94RIePNUkgVAxV3EMxG7kAACAASURBVPmY7Wkmoeo4pAg1prehDR2nNXYxlJQSc48ytGL8uRFfZwv9mB8/H++p9hvDwtD29GjNinUE1/wtZmgtpkcbaQ5tV+zQcQyPVkqJrNkL7lTIilBYFQ8hj3b4G9qAKdlc7SPDYzAxLyWu95pbXwNUXrwo3c0yz5nq8e1JMrR1vQcKdCXh0HEoJB3G0I62DO2hj+JaU6MJR1iP1uWBtDxoqe5TmkU2HoX6A1A4MdSm1hXhSQNPujOHoXYfNBxClJR35nbDIMaeofrND3yIdNh22d8MD0PbZXqPuW8VgYdmE/y/Gwj8YQHSjCxGEcvQykbVrB01dOzxKgHuWMpQrbXQ3gR545wXPEUh9EVrHTxD++quRr71agU7avpXmWVnbTu+gOSkYi9GpFx5GGRbvao2Ts9HjD2D4gw3K90zaRVpyN3v9NJxlR2tmAc+RPrbnK0vpcrRetLVTSkcuWPBk46s2h71u9hrbXtGZ3YYQxvqz93peD2NJiKWkRM95m0nQxRHHlRtaGHzs12P094cU3DCtIfGR/FmAYRhqNCyNJFDRBd8WBjarqHj4LKfgTUJQu5ZEXWsWGaKiwyPQWWLP+yuLRQ6jqRzbJOWC76GqBMo7CHtIr8s+lpOSU9cuiwZ7G/o4LPP7eOx9bVc+4/9/SoFuSFUCBVfftbc/k8wgxhTLkIYLorT3XSIFFZ6z4SAD7nrrc7XVqzDf/90Ag/Nxv/zU51Vc7fWgr8V8sZElss0DETxFPU6O8wcA2maKnSclodIzei9ppXjlzV7HK2n0USjc6BAUbfHk1F5bEYLG9vHcVh5LG1DO2F2zOPaFcnJShH1lWFhaG2P1tV0WOXk0gtwX/8CAOaKX0d974hMN61+SXM4GcYm26ONZWitFh9fY+TXWPMew+XcEkG43JCeDy3HBkXv+OlN9QSsX9nHlT7WHHHmBSaCXQg1I+78rAobi/J5AKS6DXJSDV5yqR2xuVXlb2XtPgKPL1DiE+kFULNHaU7HWj9GIVQIKydvb7Zi0lxliVVEqGROzVSSoA0HjwudV80Qp/kYGO7OehObBHpce2JXHPdShAp7nOh5Wjs/azgwtKFJV7vfdnKa/c6wMLQdQYnHEKoiTUqMk65AlF8KhRORFWsxj0SuziyOEj7uLIaKHDoGEHbYsLU24ms6vePoa8VFRqGaDpOEgQbx8uxWdcwvTVfX/teN/ZcL+agy/opjaZqY214HITCmdPbbFWe4Weq2CqI2/gNZfxD/4wuguQrj9OvwfHcdGG7MdU/Fbp9xaGiF1aQvrWK4mOfeELniOLRm4UQ1Xize/lyNpitmANpqIaOwV0qrry2E0jSRB9eCyxMq4AtHpzpUZM9ZNlVB9Q6Veou1sQVEziiVtjm2O6YBHwiGjaFNcQnkXqX+I8afo1pnTvkCAHLzkojvLUmPkqd1UgwFnYPYo42UanToHcdBsmXSnNLgC7KxysfITDf3fnoEAnhxWwNBM/metZSSdUfaMER8Hq2sWAfNVYixZ3TLPRWluzlslNA66VJorsJ/zwlQtQ0x6QJcV/0akT0CcdIV4GsM9d9GPEb1LiB2OsB+vqu2dVSiFEKF1rTDx9Y5aDSJ4GpvACk722y60teCy2M7wdeAGHmyqmWJRGZsj9ZWdjNi5Ge7Yss9DgW50mFhaP2mZWj3vw+AUaY8FmPaZUBnk3M4OgcLRPNooxvH0OzGKA3SsumI9dokVBzbZPY9tJMIa460IoEzR6UzKsvDOaXpHG0JsLIi+QIKFU1+jrUFKS/0kh7HHEQ7LGxMndvtcbsAbvcZ/xFS+xLll+L+6nOq0hLVDA8gt70e9Rih6Tol0YVGRL4lO+cwdBwSq8gJHzpWa5ap1zrM+2o04XDZbYk98rPQZSOfYI7WtCf2hOmfjfc4pjWDWUxwbmjtcLWpDW3fkVLSEZR4RVCJE6RmQeEJAIhRMyF7JPLghxG9zc7K4+7qUFJKaDpKMCUb4U6Neg4ie5R6T1RD68xox0Nf/xAS5YPDqlr3zNHpACwqV7md57Ymf2TfOiv3e8qIOPOzm18CQJx4WbfHi6wIxoG0yUqQ/Pub8dzwosp7WhhTLgIhMLe/EbVSuHMw+5So5yLyytTrnYaOo4hVhMixvnNW7l+jSQTDpwytyOhtaEMyrwmqQ4VG40WrOIbOmbTRPNo9qhAqHo9WjLPmN1t54sHkuDe0dkHOBHkYgh2I4qmhClBhGBjl80BKla8LQ8jQ9tQ7bquDoJ9gepiQSk8sjzaq5JeDVqG4sUM7A+zRbrTEI2zj99mpOSp8vL0BM8mFWeuPKkN7ahyGVtYdQB7+WOVzesz17ZqTF+n5CGtT1hWRUaBuDs1VUcfRyartag5t4cToJ5Rv52gdho5DOsdRQse2EbbzuRpNArh8Vl1JmNBxvKpNPbFH4xkxPVrLyEcw6NLXqP6eMwohHpna0aeAEEOi3/y4N7R2xfGU4D6gdxjPsCpOI+XbIvbSNioPNJgWuTHaJmQ8GyMPSe6PYqhERkwlg21W3+zUQpV3GW2Fj480B1h5sDXaW+Nm3dH4PVpz88uASh30bLuxDW2smbTGlEsAkDv+GfZ52XhU3RgKJoSGZUdCpKQr76ChAhmMPPs4tHYM/WQArLByyPvVaBLAZXu0mcW9nwzNpI2/GEr6fco4enOgcHL0F2dEb1WUe1eqoQTjz42sOR8GkZIO+ePVhjlKoepA4MjQNjY2cvPNNzN37lzmzZvH+vVDZ+i03UN7QsDSEe6x4xGT5oArBbnzX2FvcrYMY88ZpdJq7Qk4MLShMF5TeI9WSqnyt94cpYSSLEIyaQMXOg6akp217WSmGIzK7BxXFwofb0tuBfT6o20IYGYcU3tMK2xsTJvf6zl7kERENTALMeUzaq3t4Q1tqNVg3FmOzknkjQNpOuqltXO04cQqQuvZ37lGbWg1iRPyaHuKVdC3Ykt5eAME/Ygxp8UU6Al5zhEcBnOXEp0wJl0Q93mIYpXWkdWDK+7iyNDee++9nHfeebz22mssXryYiRNjhMoGEFt+sSxwAABRPKnb8yI1UzU4+xrVeKUe2DfenqPybA80mBY7dGwXOEX0LtrqINiR3NYeun5BBy50fKDRjy8gmVKQ2m13eeWUbABe3tmYtL7eI81+jrYEmFKQSmaKsxmIsq0BufsdtamZcF6v54tDM4ije5ai9DRIy0XuW4n0NfV63lz/f+p1XVqHoq6XN1adX10MQytN1XPtzUF4w49mBJRIiicd6g8NSh+1ZnhgF0OJMMVQsTzNaNiKUFH7Z0PHid7eI3f+C0jQ0NpRoUGuZYhpaJuamvjwww+56qqrAEhJSSE7O7vfT8wp9oi80X7LyOVP6PUaY6oKA9q6t10piXTjtfKtTkLHZBRCaibU7g1fPNMYewpQQmQM/ASfbcdUfnZKQfcCsTHZKcwo8bK/wc+m6uhSak5JpBDK3PY6mAGM8rmhKuKuxNS3thAut4qGmAFkj6Z32XgUuXUppOVinHSFsxOztJBjVQm7fPWq1sDyWCOenxAqkuJv7ZNE3vGGPyj52coqfrj8CHVt0T9DTWzs0HHYqmOXxxLFiV/v2C6EMqIoQoVIywfDFVaNTTZXK+84exTEKDoMh13LIAe5lsEd6wUVFRXk5+fzgx/8gG3btjFt2jR++MMfkp6eHvE9pmmydWuc00oSpKJFfQFGdqhw245qH7Kh+7E9KZMZC7R9vISKiV/utUaGG440+dmyZUvISyvYv4VcoM2T4+haSjPHkFqzlV1rlhPI6n6TTDu8mlFAo0yjKom/F1dzPWVAW00Fuxyu6/P5+vTZvLNTyUzmm4291jkrN8jHlfDEyt18fYozDzQab2xTxxoteh/Lpuf1FK96kizgcO6ptIR5T7NffV8q6lpj/h6ysqZRzAvUrH6WY0ZnFCdn458pNIM0lF3MsV37HF1Ljs9DIVC1cx31GVFGIlqVyc2efI7GOL9RnjzSgD3rVtCR37uoayjQ1+9bT361OcgfdqjN7Ht7jvGbc2LewpJKsq9nsBlhTc3Zc7QRv6/3dY3xZJPSWsuOjz/ATHXuYI3Z9R4pwK72XIIOfl9j04rxtBxh28Z1SHfnxjpr5xKKgabiU6naFnvUZM/PJ6sFioFjezZSWzh4n1vMb2kgEGDLli3cddddzJgxg3vuuYfHHnuMW2+9NeJ7DMOgvLw8qScaCVdNOy65mRGBo5Cez9QZvUMVUk7Fv7yM1NqdTB2Z2UtZZNTb29hZ20HpxClkpyoDEVgfwASM7BGOriWwdjpmzVYm5kqMyd1fH2z7iCCQUzqZgiT+XqS/DP8z4A22OP59b926tU+fTd3eCqCW2VNKKS/vLtn2lZxWfrd9Fx80eHmwvO83/oOb9gGNzJtRRvm4zLCv6Xo9MtCB/8lV4PIwZs7XELY0ZheklHhf20StX8T8PciSL+F/7yfkVK+lyD6GGcS/WOWACy65jaJSZ79LM3A6gdVQ5PExMspxD+xV2qxZpeXkxTi/wEeTMY98yPjCVIwpA/P3Fi99/b51pbE9yNMvb8EQkO4xeK/S5GjaGC4oC//diIRsqkIeWK2EGsbMihk96Eoyr2co0PycqqmYOOPMsNN1/PmlyIZ9TB6dhyiKUdRkIVtr8TcegNwxTD7tfEfv8RdPQO49wpSSjFBeFcC/4rtIIO/8GxzdO3t+Pqa5m8AKKEgTlPTz5xZtAxYzdDxixAhGjBjBjBlKQmvu3Lls2bIleWfXRzqCklFmNS6CERV6hBCd4eMwbT7FVm9l1zytXQzlqL0HoEjlhsMm3a0wdLJDx8KTBikZA9pHu6++A4CJ+b17i2eNTGNEhpsPDrVSFSM06wS7tcepIpTcs0Ip0Uw8P6yRBfVdKMlw09xh0uqPPk1H5Jepz7V6J7JK7abNj5+DY7sQ485S7QNOsUPHMXK07marDcySbYyKXRBlVSknG3PLUoIrHkFG0/AeQJ7b2kCrX/K5E3N58CJ17X/8yHk1qfQ1Enj23/H/eByBJ64i8Ker8d8zgcBfvxhd1W0Y4/LVhdc5trFFceLI09ptPdEGCfTEdn66fpdl41GVn00vcFwL0Qtr8yCdzAvvR2Ia2qKiIkaMGMGePWpSyKpVq4ZUMVSHaVJmWonuKFJ4tkJQOEM7wlKH6mYc4iiGAhBRDK09bo9kqkLZZBSCv7XXyLf+Yn+DMrRlOb1bWgwhmHdCFhJYuqtvN+eqlgAVTX4m5aeQ43UWho5WbdyVaPrWPTFmfg6A4OonkH4fwTfuAcD1mR/E12pgqzzFMIruZuu7bBVPRV3TEkqhIUr/doIE1z5F4I8LCS6+ncCv5wyJuZ5Pb1bncN3JeVw1NQevW7BkZwMt4QaC9EAGAwR+Px9z9R8hNRPjtC9izPoKpBdgfvwcgd/Nizmmbbghg36M9oawOsc2TnSIe617wO6fdVAIZROmhsH84AmQJsaMRWHrLZzQqUM/xA0twF133cV3v/td5s+fz9atW/nmN7/Z3+flGH8QykyrwT+KoRUnfBrcqarNJ9DR7bniMOpQsqkSDBfBSDu9nusXRvFonU4BSoBkjLJyiiklBxr95KQa5EYwfpdPUnmcV3b2zdDa3uwpTr1ZKTE3q15po4caVE8iqYGFw3XGV8FwYa76PYE/LIDqHYiJn0JYERLHZBap71+MYihPsxX9iDBIviuhQo/G5FZUSl8TwSV3qv/kjkUe2UjgmX+La55usqlqCfDOgRaK0l18elwmWakuLpmQRatfsuJgc8z3m2v+gtz/PmLUyXi+txn3F/6I+5rf4/nBVkTZOcijmzHferD/L2Qo0VSJQEaXhQ310jq/v3RKLzo3tPZG1I74SF8jQWvymmv2/3O8Ti/SLUM71D1agPLycl544QVeeuklHn30UXJywoflBgN/UDIuaI2gixJuEynpiInnqwHD1lxDG/vGe9TycGTQr1pmMktAONP0EEUqJ2nr33YlNEA+jlyQY+xe2tb+F6042hygIygZF8abtbmwLItUl+DNvc34AonfmEOKUCMdGtrDG6D+AGL0zFArTSSKM8JEMCIg8sZiXHAHdLSo+bW5Y3B//vdxebNgVQnnlkJ7E7ItcpWwu8UOHcf2aO0ISbJlGM11T0FLNeLkz+L5zgeQX4bc/DLmmr8k9TjxoFTHYMHkHNyG+t3budnl+6IbWhWJUGMPXQt/hcjqFGcQ3mzcn/8dCIPgiodjT2waRoS+N1HuS/GqQ0kpkRVrQYi4UishPfBjakhG8OUfQEs1xsyrESV9yK1ahnawIzLDQhlqnGl5ATGmqHTmabu3+XS2+Fg3XksJJR4PVKTlqt1f3f5eM0JDHkd28g1tyKN1Mqi8j+yzwsbRDG1GisGnx2XS4jdZeTDxm9a6oyoU7tijdRg2hhgTm8LgmvtfuK/7O64rfobn1lWdN4U46cxDRfZq3c1HVM7MwXcltHGLJv0ZJ1JKzFWPAeA67yZEeh5Vl/0WgPaXfzhoN6wXtqnNyVXlnZv8C6wCubf2R/+emSt/Cw0ViPJ5GOPP6fW8KJqMMX0htNZifvDHJJ71EKfRwaATu4XQaei44ZDylIunRu8D74EoPRVQ6Z/AMzdivv84pOXimn+/4zXCrutOVf3mx4NHO5TpCErGWTlaUVAW9bV2nrbnVJZeHm2CAwBE0SSQEo7tCT0mpVTN0p508Pa9/7gjaPK7dTU8ualOrW17NUkOH4Zjf8jQRs+XXDRB3QDf3Bs7pBeJ9XFKL9qyi2La5TFfW9xzYxUDIQTG9AW4zr8lfGO/Q0Su5aXWHQj7vGxvVmPLckYjDAd56awSpeWaxM9e7n8feWQTYsQ0RNk51LQGOGN5MU+nzMPdeoyqxf+VtGM5pbolwFv7mylIc/GpLtXn5YWplGS4WX+0LWJPrfQ1Elz2MwBcc/874jGMC24HUMVfZjCJZz90sXtLRbS5x3GmpmTFWvW+0igtbOGOk1WCGHcmdLRgfvhn8Obg/uqzUc/NMen5KpLZI2U4kAwDQ2tSFrQLSKJ7GqJokhoGX7m12ySVklAxlJWzs0O9cSo5hQqijnUJH7c3QUcL5IyMO9wYju8tO8JNrx3iq0sO8ov3q0PKJ/FUnpp73sX/p8/Rcd9U/L+5BHP7m47et79e/X7G5UbX9r1ovNrJvrm3t6KSE2paA+xr8DM+N4W8tNh9krL+oBL/zx0bdcC0jVPRiqQT47Oyv5OOwsZYggKZJUrL1YGGshPM95T3apz9dYQQ3LeyiurWIPdm30ILXjLX/QFZM7DD5pfsVGHjKyZnh8LGoDZAnxqbgQRWHQpfDBh8+1fQWoMx83MYoyN/N4wxpyHGnwu1+0LRkeFOaAhK1BytLYrjLGJmHlwHgBhzatzn4/7a87guvQfX5T/Fc8d6jInOWoNiIdKtOptB9GqPe0Mb8HcwUlbTmFLoSEc4XJtPzxtvwh5tuIIoy9sQSQgbH2sN8Nj6znaG+1dV05FpV57GVj6R/jYK37uXwKMXIjcthpq9yN1vEXh8PsEP/xrz/dEqjrtSXpjK6CwPH1f6qGyO3wB8VBlfIVS0IQLh6JUqGCBEDHUoWan68GLNt+22ZvZIFUVpijzQotdx6g/i/8NC/L++kODap0KqP7LhsGpfSs3COO2LmFLyzOZ6BPDqN87hbzlfxCP9VC/5L8fHSgav7VIbtismq7CxNIOYm18m8Oy/87PNC9lefxlnPjGNwN++jLm/cySarD+oCpwMF65L7o55HNf5NwMQfOehsM/Lyq1kb3uOwIu34v/NxXTccwIdd4+k497JmB8/39fLHHisHG202pFQusPh5KlEPVpQ3rNrzh24Pn1bcjxZmzSrP1gb2sQxmo9gIGn0OjNk4dp8QqFju4+2yZZMTCB0DMjqXaHHZEPyBr6/truJjqDkKyfnceXkbOp9Qd6stW4+DsTqg//4DjnbnoW0PFxXPYrnx0dxfe4xQBB8/ibMI5uivt82tGNjhI6FEHxmvArxLYtRqBKOeCf2dBra2GFjiK+9J5mEhFIiGdqjm9XrRkxzvmhoLq2zPK30t+H/3Tzk1qXIve8SfPprBJ/9JjLQTnDFI0q+8ozrEN5sPjzcxtGWAGeMTmdiXirB826jVmSTvfkZzCObnZ9jH+gImizb10yKS3DBuEzMA2sIPHg6gScWYa7+I0X1myk1q8hqr8L86O8EHj4P/28uIfjhXwn89Yvgb8WY/a3Q32Y0xLT5qvBr73uYW19T+eqjWwi+cQ/+B07B/8BMit67B/O93yhZzvqD4GuEuv0E/vZFTEuT93ghFFmxW8/CINJyIL0A6g4gg9H/XqSUyIPrwHD1Gk85qFge7WAWRB33htZjNfg3pTkzimLi+eD2IncuD/XNed0G+WkujjT7MaUMhVTiFZiwlVO6erSOwjMOeX232tlfOjGLr85Qu7QXjiiDFit0LP1tmGufxHR58dy6CtdZNyDS83CdcZ3a7Qd8BJ++PmoI0qlHC13Dx/Eb2jWHlaE9fZSDCEVHk7rpebMRE5yFmuy+aSftPckkVphfWhsdMeIk52va3yuHeVrzrV9C9U7ExE/hvu7vkFmM+cGf8P9iFuY7/wvuVFyzbwLgrf3qs7vsBPVZXn1aGQ96r8NAEnw1toeYDFZVtNLUYXL+2AzSDr6rojFHNyPGzMJ1zR/w37GN/PyVTBu1AuPK/4W8ccjdbxF85t+Q+1cjRs/EdbGzcxWGC9elqjo58Lcv4r93MoGfn0LwjZ8gK7dA0WTqpl+H69o/4/7OGjz3NZDysxZcVz0KUhJ45hsD1s+eDKRV4SsKxkd9nSiYAGYA6sPXFoSo2w+tNYiSE9WIuiTwy9XV5Dywkac2JW4khd2i2ZbcyWLxcNwb2hSrwb/Z68yQCU+a6qn1tyL3vht6vDTLQ8BUXk6ioWMKJ6jilK4tPqHQcd8MbdCUvLm3CZeAC8dncUFZJqkuwT8OepBuL9RXRBX+lgc+hEA7bSNP6/WHZcy5EzH2DOThjzHf/lXY95tSsr/BT1aKQZ4DAYkLx2cigGV7m+IWJP/wiLpZnTYy9h9rWsVKCPoxps6NORfWJifVIMNjcLDRP7CTb+wwXKRiqJBHe6LjJTtF02MbWtlSQ/BfD4Dhxr3oIYzpC/Dc8h5i9Eyo3gFmENf8n4W+H2sOq8/hzFHqcxid5WF12Vc4LIqQW17G3Pe+4/NMlFetzeVl49wEnr4BAj5cF9+N+9srcM36Ehkl4zmhKIt9Pi+Hpt+A5/ubcX3xrxizv6Wqxb/xalzVr8aMRRhn3QDtzapdbORJGJ/5Ae7b1+K5cwO1Z9yG69RrMEZNR3jU6EbjzOsR5fOg/oD6/R4HyI5WaKggkF4c0yja3wdZsyfq62QoPxt/2DgcppTcuewIrX4ZlwJYL7xWAd0gboKOe0Ob2qI8xpZ0595nuGk+pdnKyznY6E88dOxOhYKJqjjFKqgKebR97KFdd7SNmrYgZ41OJ9frIt1j8KlxGbQEJG1ZY1TBVZReWnl4AwDtRb29JWG4cF39GzDcavd+bFev1xxrDdIelIzJ9jjKg+ZXr+MPPMztlfexe/1bjq/zSLOfg41+JuenRBTF6ErGAbW2k2pjGyEEY7M9+AKSmraBqzAVqZmQlgeNh3tVtsr2FqjdSyC9CJHhYGKUTRxV5+bqJ1Qo9fSvhOY2i7yxuG9+F/f/W4b7O2twndspRrPmiN3L3Hkj/szkEu5L+zcAgkvv6veNymuWob268g/K8E2di3HRf3RTMjrN6rVef7QN4fLgOuVzuK98UKl3hdHvjYYQAvdVj+L50W48/1WB5/a1uOf+F8bIkyJ+74UQuBf8HFwpmG/9IqZBGgrYBW3+HAeFdwVqIpo8Fv26zFB+Nv5CqHC836XAraG9D3+nKVbUrz2x4sxkcNwbWq9laFvTnXuMRnnvPG1pljK0hxr9IZ1jEtAmNqwvmaxQuzvb0+irzrH9pTt/bGd7g/3zkVRVbS2P7Y74ftvL7sjtPUYQwBh5EsacOyDgI/Dst3rdQI9YRU0jM6PnZ6UZJPCP2wg8fB6fr/0L/97+d8Y+NZfgW7+M+j4b24uaNSq2NyuDftIPvguGO7R5ckq3jdUAIvLGQLBzM2cjK7eClHTkxidvGipkiZGjlcEAwZW/A8CY/a3ua7g8GBNmY4yaHnrsaLM/JIHZdcNz2aQs/pJ6BRUpY5F73kFufyOu842HisYONlf7ODHLT96634IwcC/4eS+DN61QeZbbjrWHWyYhRG5pXK1covAEjE/fBoF2Araq1lDG2kz7sxwokNmGNpZH24dCqHC8e6CzP/pAH/5ORaoV0WhPvN2wrxz3hja9Vd1gfHEYWlEwAYomQ/WOkHHq5dF60tWM2TgRpUoNRVasVw9YX85YeZBYfGgZoDNGdxqgs62ft0orfBjN0FZtB8CfUxbxNa4Lvw9Fk5G738Jcdn9nNWprHS371nGOfz1l3sjhFyklwSXfxXz3UUjLY9/se7gz/TY6RArBl7+PuXuFg+u08rMOwsZy73u4OpoQE89TgiFx0Pl5D3BvXQTRCnn4IwDaC+KcuWlVs8vG6FXncssryiOccD7GyNg54LWWN9szfD+zJI2CTC8/8nwDgOC/fh7f+cbB29aN9s7UN6CtHuPkz4YtappaqAZcbKsZXK1i15zvQU4pcvNLmJuWAFaBUONRzP2rMY9sGtRezq7YUSsnHq0TQxsqhHJ5EF02bH3BvucB1LYFCZgJRk9SM9S/g2hoB3aYYz8QMrSZ8YVmjamXYFbvwNz2Oq7Z/4/SbJXfq66rU2HYgvEJ9b2GFE4OrcOQUhVGub1RK/ucsMbKW87qIkk4a1Q6LgHv+0q4nFiGdgcIEfUPS3i8uD//GIHfXkLwtf8k+Pb/AhLa6pkFvAkE3k8h4P8Crkt/0iu0bi7/RcjIem5aTlnhFP60cwttwwjc+QAAIABJREFUrkwebvoJwcXfQdz2QdTfq52fPd2BR2tufRWIrW0cjrHW5z3gHm1uKRLUcIFxZ4Yel4eUoe0oiE9uToQm+EQ3tMF3HwWc68bagiGn9ZDANKyK8qebL+RR8VvS97yDeegjjNEz4zpvJ7y9vxlDBpl35M/q2Fb7TU+mFtiGNnkebSKI1Axc839K8G9fIvCnqyFnNLTUQKDLBiAlAzHpAlxn3oAon5eU3vpECBna7NgqZ6LQioJF82hrdqvJWaNPUSm0JGCnLkZneTjU5KfBF6QgPQGTZYeOO7RHmzAZbSrM25ERX7FRz/CxHTpuqbFCvZmJDQCw9T1lxXolcdbRgig6IeJ0DCfUtgXYWdvBmGxPqGIW1EzOmSPS2BS0es5qwhta2d6sirJyxnQbqhwOo+xs3F9/WW0Y2hvVpqPwBPYVn8/LnvORhhvzwz/jv3+6UtGxSv6DK39HcOkPwe3Fff0LiJJyUlwGnx6XwR/d82kumIY8vCFqqDFoSj443IrHEMwo8cb8vYQMbfm8mK/tie3RVgy4oVUbnZ4FUbLC9mid99ACSvUmNVO1X0TIl5pHNiN3vwU5paqFxQFbjynjcFJR78/hoglZmMLFa8VfVOuveCS+c3bIigMtzPO/S2bTXsS4szC6bEy6Mi4nBa9bsL2mfWCL28JgzLgK1xUPqLRTwyHV6lJyIqL8UsSE88AMIDe/TOCPCwk8fH5o/OJAY2/K/dmxQ8dkjVQDMWr3Rf6O9UGoIhzVXaZ32Up0db7E8rSh0LFv8HK0x7VHK02TTF8l9SITYYcHHCImnAeedOSut5D+ttCNN2C1XtitGPEi0nKgeApUbe/UVC6M3cMXDTuMFy6ceuaodF6rsMKRETxa+6YeSwvaxph4Psatq6yCHYEwDH7zxiEeWVPDM3OzuGLvLzDff5zg4tsJvvtrRMEE5I5/gsuD+8t/66Yne9GELF7Z1cTrI69jUc2dmBteiJhP/biqjcZ2k3NK0/G6o29MZM0eqNpOR/ZYUgrjHzI/drBCx7ZoRUOXuZvBAPLIRkjNdFac0gUhBCK/TLUGNR0N20ZmvqsMoeucbyBczv7kt1j5zvLCMIbWat26t2Men015GHP9M8jL7k3qdKrDTX521XXwROBJoFNMIhwuQzAhN4Utx9qpbg2G+qQHAyEErvNvxnX+zUrz3JXSzWuVHa2Ym1/GXPZT5IEP8P9qNu7rX8SYeN6AnmenoY19nxOGAfnjoWqbNWyld+46lJ+NYwZtNOyN3rRCLx1WyLg+0YIo2zZ0DN7AiOPbo205htvs4LBRjMeIc5qKOxUx6QII+JC73wl5tG4715WgoQUwyi8FIPjPn6pjOWiWj8aaUDi1tzd66sg0DhgjCQpX5NCxbWgdSvvZCMMV8sRtMY+CgiLcix7BfcsqRNk5ULNHGdn0fNzXPdNL1P/iCeqm/Hir+gM097xLJN6xcnJdC74iYe56G4DW0nPjuiab0sEKHVufQVcZQ1m1HQI+JR/pcFpUN6wNVDhpRNlyDHPtU+D2qrYVBwRMyY7adrJTDUZl9jZaxRluZpZ42daaTv20L0CwA/ODP8d/3lF450Azpwc2cqpvPeSXIaZfGfX1ZZYs6N76oZEDBese0yM0LFLSVVX0basxPnUrtDcR+OOVSZ/AFA27tYec0TEjXDadLT7h5TdDrT1JKoTqutGzi/HqE/RosTxaqYuhEsNuaTgsivG44s91dJ3mk+YxKEhzkdFiCW3nOgipRFr3pCvUD3VKtizcxJB4CBUIhclbzixJIyDcVHpGQWtNWPWTUOGNgxmnkbAHLtgqWkbpKXhuWo7nextx37gUzw+2hc2VnpCXQlmOh3fqszAzipRh9reFPcYKy9B+alzs6ITctwoAX0liucExg1V1HFIP6+y1tguhRBQt3qhr2oa2i363jbnqcQj4ME671nHb0N76DjqCkvJCb8Qcor2Ber3wagCCH/45qWHbdw60cGubkgV1nX9LzCEL40OGdnDztE4RLg/u+fdjnP11aG8m+MZPBuzYdlGTiCMSFDK0tWE2c6aJPLQO3Klx9YBHw/Zoy4tSyU3tq6G1Nu66vSdBrDDvoQQ8Wuite1ya7WGUafXQ9sEoibKz1SQKUJNYJn4q4bWkVHlLAZwaRpLwxEIvKS7BNizVoTAFC6HQcR82D/Z0lMIexQiiaDLG5AtVyDwMQggusm7K1ZkngDTD9uMFTcmKAy24DTh7dGxDa+5bCSRuaNM8BiMz3VQ0+vs0NzdeREahkrSr2RtS4bIr1OOZ39ltTTsl0MPbkK11BN/+JQiB67zIodee2Dc5u8goHHb4+OnasUrw4tgupPWZJIOm7e9wpX85ZnoBxunXxXy97dHuqx/YjVNfcc39b/CkYa59auAkAq3Ilyh03kom8q2uiXAe7bEd0N6MGDVDDbpIAlu7eLQZKcpMtfgT+zsVtqHVoePEsMMth42ihAytyC9TQ4WP7UZW76Q0y8MY0+qh7YNREkLgvv5FXFf/Fs+3/tUnObKKJj+VLQHKC1PJSu29q/e4BNOLvewQlqENFz62PNp4Q8ddqbV2k05EJHpiez+7zJJu59OV1YdbqfMFOXt0RugPKxKyuRqqd0LuWIIZiecFT8hLRQK76wY23CiKJytJO6t4Te5frR5PMOwmilVLkKzc0u3x4L9+ptpiTvsSYoTzamb7JndimPyszTlj0snwGKw42ELw1K8AYH6Y+GB4c9MSOu6bSsf3Mmm7ZzIPVyjhDM+lP3FUfzHekgXd2zB0QsdOEBkFGDOuhoAPc+2TA3JMeUxJxMZlaKO0+IQKoZIkVAFqsyeAKfmpZHgsQ9uR4IY4RXu0fcIOHR8yEgsdA4gu4ePS7BRKLUPbF+8P1B+Q68yvOS5AioQdNo4m4DCzJI09LiunHKbyWNbZhjaxa5JSUtsWJCfV6DamzCkXjMvEJWCtT4Uuww1AeNWa0HLpCbHl8uR+Jf1njD877nPpyiTLY9tVO7Dhxk7DuB3Z0arETdLy1KYvkfVGKa/etERSQIWmzXd/rbSLHUyu6coO6/cxKT+ypKVdUe4LSFYWXQ6GC3PTSwnNcjUPb1ADAGr2gtuLq34/boK8UfpvGGde72iN8Xm2R3t8GVoA42yltGWu/uOAVE3LkEcbRxFhyNCGCR2HCqGSk5+tbQtwtCXAhLwU0jwG6ZahbUs08uTVOdq+YfUOJlIMZdN1ms+YDMHEYAXtnizIKEzaafYFu2k7moDDKSPS2G3YlceRQ8fkJubRtgUk7UFJvoPZsOHI8bo4c3Q6O4PF6nzCiOq/sqsRgHknZMdcz9yr8rOirI+G1ro57xxoQ2tNNjEPfog88AGYAUTZ2Qm3gImsYtWnXbMH2Vav1Lme/X8QaMe44LtxRzJ2W7+PE/Kj90N+xgofv3rYgxh7hqoRsEb9xYP5zkMQ7MB18d2k3HuMH37qI0bmLefYBT9x3Gca8miPQ0Mrxp4BxVORRzeHpFL7k1DUK54cbagOIIyhTXIhVGfYWH3/0vvq0bq9qshQG9rEsNVwlKFNbA0x/lxIzUTufodpwV2k4qcy/YRBayTvyQchRajI1YHKo7UMbQ+PVgYD0HgIMgoTDmHXWvlZJ8MEInHJhCwOGXbouLuh3VnbzsYqH2U5Hk4sjN3sLg98CIAYd1bC5wMwyTIkOwc6dFymiuPk3lWYW14BwDgh8Tw+dPYvmhv/QfD5m5B7ViBKynFd+L2419pd14Ggs8AoEnZK4M09Tapims4JRPFgV5Ab59yo1jti4BNezh/rvGUvK9VFQZqLAw0diSsIDRJCCFynWT3JAxA+7pzaE16ONRwiJd3qDa5QbUv2WsGAElvxpIciNX0lVAhlpS5CoeNEc7RCqMpjHTpODNnVo000dOxOQUyaA4F2ZuxRLQp7U+PTm+0vgqZk7ZE2vG7B9KLIhvbkYi8HXaMwEb1ztI2HwQz2KRRu52fz0xI3tFdOyaHCMrQ9Q8d/26iKQL4wLS/mBkdKiTz8sZJ6i2duaxhsj23nACsKiZHT1ebuwAeYa58GwJi+sE9rGicvAiD4929grv4jpOXhvu7/4lbpae4IcrQlwJhsT8xe5kn5qqJ887F2GnKtcLgl9ekU6WtU49dyxyIyizjWGmDzsXZKszwxDX1PynJTCMqBFyFJBsap1wBgrv+/mHNf+4Jq7TmkijTj3HiLgvEgJXSpbpdV28Hfihg903GPdix69nDbhrbV34cNVEo6BNqR5sAVPnbluDa0NB6mQ6RQI3ISyh3a2OHjki1/A2Czy/lOrz/ZcsxHi9/klBFpUTcSaR6DCUXZHDT+f3tnHiBVeeXt5721dFfv+0LTLM0iDQi4grjjAhEVVNQkZtFonDhGEjVqollmklEnfpovMZNvRpOYxIyJxBg1iksiKKjgCohAs0PTDb3vW3Vt7/fHrVvdDb3UcmuD9/mru6u66n3r3rrnnnN+55wS6KofkosIhI0jEEK1+Sfc5EdgaGcWppJZpK/B2TJgaH1S8ox/1uSXTs4NYjHVequ34plBj8UbiSm5dgSwty3GhtZiRUy/GLwu6GlCTFyAyBu7Fd5oaPOuQ7v4fv1zmb0M28p3AhN6QsEQhk3JHdtAD1aUf+L0NzEYYaj9SBiGWRTrhtoo8TpvYnrIUaWKBKylDRaROwEx5QLoakDuWRO19wmU9uSH7kyIYfK0suZj/TGTOkIBbG8a2pUsLUKPFgCb31EZobQw2iStoZXOLnB20movBiHC9mgBtJOXwSBZ+vu+yBpMmEUgbBxE3995xans144t8ZFhNqsYTKvf0OamRnbHunR2OS6s+LqbAn97eXcn1R1uzhqfxvRRykkM5OFPAQKhykhItWpMyLZR1+2hK5IxXGFgufh7en2fNRXL0gcjfj2haViX/AjbPZux3fiXsJuk7A8Y2uBuYowynzdb9aEOhvAuaAJdy/TykfWH9JvEUMLGBonYtCIUtNO+CKA3GIkSskFv+Wjc2IRE3rG1tAOG1pyOUADbGp1oYqC8bMCjDd/QCsPQepShDQ2/4rjVpgtswhVDgV7baPSAdWJntXsW3gTI83zoVxwHZWhLHOzz52kZHD42w9A69VBWJKFjgBvn5dGs5eLwdHGkvQevT/If7+p1y3fND24kme+I39CWzYloLQZGnnZvjPO0Wtk8febpDw+iVZwT0/cejX1thhAqOEO7aJKuKH++QRexyfbhh9qPhNGK0khtrAuhO9jRTMpOXuUxgDbnKr2m9rMXwu4UJd1OfFWvITuGHzJhiNXCiXYM1x3KGAeqmVTa09jjobHXw1S/4hggza5f2yMxtNj819A4DX9PWkMr/fM8W6y6OtgegUcLYF32GNqZN/KdCf+NE1ugE1I8+aBWv+gEM8nmlGLHgEfbtCfwd+nvTiVyww9NBjzaCA1tSYYtoOb+9gtbufvNI2xpcHJKiYMrp4+tNgb0/CwDJS2RYhjaXXEYsSYcOYi0IMLlMWRvCKFjGFCUH+p34EnJhvbakPJggalDOWW09nnY1uikNMPK1CA96sEEukMlWS2tgUjNQltwC3j68b72o5D/37d7De7HTsXz2+W4Hzt9WHU/jYZHG3op2YCh1SNm0uPSVdKpWRH3czcYCBsPaFLSrCaEjo18tFsZ2pCQnXq9a7NF94Qi8WhBHzdmve4Jmkr13rkxbzZ/FPXdbrY39zMhy8ak7LG7rcwtdlDlzy3L+gHlpxk5WsPQ5kWgOjYoKdKb3u+tOcyvPm4hw67xxGXj0YLMxw2Ejs3xaI2mDNubkqN1X7QxPNpgQ8cwED5uTRmn5527G8b4j0H4PS+RPZ53a3qQ6GHjcFT/k5M8dAxgWXQPpBfg+/hpvEH2j5ZdDXj+dCOeJy/To1lCQG8r3vW/OPa5hkdbHI5H69eu+EPHsu4z8LoQ40+NaDrZYLb5De2swoEbvUg7QwFg07/n0h2fmcVJa2jp0g1tk1VvghBJjnYw4zP1L2u8lYtvVeu5qkWTM4K66OSkWmjP01W47tqBWjxTcrQB1XHkqkJrln5j9LWpXj4/M4c1X6rglGFaSw6H7GnRxTZ5k0Zs+Rgqs4v0L+C2pvjkbhINQwxVkRO8WtkQRB2Q+rEdazbuYIwQp8gpCwyVODeMsDHAhGwbguQNHQOIzGKsN/wBhMD719vwbX9lxOfKrga8bz6M+5E5+Db9GdILsXzx99i+vw8sNnwf/G6IYZFejx7tSsmErNDmdwN6eY81FdlywD/o3fz8rDFAZU7xwDXByNH2qdBx7DFCx02a39BG6NEaTPB7j4c64mto1xzQDe1Fk4K/6JSNK6dJ5KA170a6nXqXmfYasKfrc0vDpM2EOtoA/tDxbZXwx+UTOLUk+BIDo5hfmDhkfJa/bld5tPqFrKbTzbgM65htMAdzeqmDPIeF3S7/zU9P0+j/MIiAUc4uGzS9KXQhFOjdqsZn2Wjo8USWz4sz2vSLsVzzK/B58Tz9Bbzv/Q/S59WNW9shvO//FvevL8f9kwq8r/+b3mZz/tew3bcVy6lfQGSXIaZfAv1dQxXMrft1D7S4MqyIgRBCDx+7eqC7EVmjd4TSTGpUAfBejX4OLBw/cA6YoToOiKHiFDpO3nm0/tBxg0mhY4NJCdBhRkrJ2oO6ob1wYvCGdl5JGtstU7nA8zGyYQciezy4+8L+YhkEQscR5mgBhDHLsjv4i7GBPKxPudFMUBwb5DqsjM+0caDdRVe/d9h+0icKxjkfbH7WwKIJLpqUQWOLnm+WQR5bKSV01YEjl3aPjS31fRSnW0cdZjAWk7Lt1HS6OdjuYuYwQ+uTBcuCm8Hr0mc+v/AtvP98EKRPnwdrkJqNdurnsSy87Zhe1trsK/FWvYpv28uBqVryiJ5SimjCTt5kaKhCtuw3vfViTaeL6g43J+WlDJkpnGIRaCKCzlAAdlXeExbSHzpuFOaGjo2eqfE0tHvbXNR0upldmEpxRvDTMOaVOPjMMh3Qvb9Al6gI+y0HQscmerRy8AUjSAIerUn5WQMjfLy9OT75m0QhkJ8NUnE8mIsnZ9Ik/FGT7sbg/snZAV43ZBQG8rPnh5mfNQhM8UlSQdRgLGffhvW2fyImLdSjBL2tiJJZaAtuxnrL37H9Wy3Wqx8fdmCENutyEBq+7a8E+k/7DMMYgUI40Ke7+gNk/Q5IL4xI/zGYF3bqbViPHpMphCDdptEbyZQtf+hYuuJjaJPXo/WHjuuFuaHjyQlQIhAIG08OLVc1r9jBKut06PfXt/m/YKI4shmRbSapjiFCjzZQ2mNe6Bj0wvjX93WxtcHJgiBG9B2vGIrjqSF6tACXVmTwlub3aLuCPLb+my2RXsDb1cYs4vDyswZG04r9MS7Xihba5LPRvvmWPsNZWIJu0iIyChGTFiIPvIs8sAEx5VxTcqraxPn4AO+GJ0D6EOWnmdKu9nCXm59u0G/Qvjr32DRXmk2joceDT8qghZNDiHPoOHk92s56EBqNQi+Ut5kU8ctzWMi0axzocOGLwSSN4Vh7UO/JGUp+FqA0w0pV5hkAePeuR9ZvB0CURtaqsNXpIcOuYbeYcLqE6dFKdx+ycac+yzW7LPJ1DOL0Uv1LaDQIOVHZF2KzisGMz7LjyNFbbHa21gf1P7KnRf8hPZ91/kYVR3szoXI8ebSDETZHyJ3QtJOXAeDb9pIuhKrdpLcuLZ0d/jqMOdtGhykThFD9Hh/XPV9NY6+Hr8zJHbZvwIAgKrxrcqDdZKKHjr1eL8uXL+df/uVformeoJBeN/Q2Q0YR/T59C2Z5tEIIJufYcXkldd2xr6X1+iRvV+sD0M8NURQihKBwfAUHtHGIpl34dutCiEh6Ajs9Pnrd0pywMSAy/FORukM0tPU79J7NZXNNH/gwv0z/En50ghva/f7Qcag9hg1Omqg3nWhrDs7QGh6tKzWfrQ1OStKtTB9jYtBYDAyAP74MbThos68E9Fm/8uAGcHYiJp0dcv/rwYjscYGReQDalHMjWqOUkpX/OMKHR3o5tcTBfy0e/iY61ap/5/u9YYaPDY820VXHTz/9NFOmJEazfbqbQEpEZjFun8QiMPXiG896vM0NfbQ5vcwfl0aGPXTjNq/YwRqbf6pN407QrBFN1Whzmhc2BvScDiBDUKbC4EYV5gmhDMZn2SnLtLGjuZ92Z2xbMSYS4YqhDE6dqufqPJ3B5Wil/2brkCcLCVwwMbhSttE4HmppzULkTdJH17VV433pbgC0yiURv67lnNv1Hwqn69PPIuA3W1p5aksrhWkWnrtmYqAb1NEYAy6cnjCjjIHQcQLX0dbX1/P222+zYsWKaK8nKAwhFFkluH3SNCGUQTy/rGsD+dmxB6APx7xiB79NuTrwu5h89oC0PQwGmlWYlM535IJmCd2jrfsMMF8IZXDmOP0zMur4TjS8PsnBDhe5qRZywoxezJ+mG9oUZzOuYDwPv0e706mnSM6LMGwMevokxSI40O6KyRD1REc77w7ALyQUIuDlRvSa59yO9fa12O5Yh7AEL9Y8mj2t/dz9zyNYBPz5qolMyB45kmJ4tM5wBVGGGCqRc7QPPfQQ99xzD5pJ3T8ixl/aIzJLcHulaWFjg3iGn/6xX8/PLgoxP2swr8TBVutJ/D13BdjTw5pHOpg2E0t7QG9+jyMP+tpCa9VndLSJpDRhFAwRlDE95kSjtsuNxxd+2BggzZFKtyWLAl8rG2vG/hyNHO0nnfpF8IIIhVAAmhBMyrbT5fIFbhJPZLS51yKm6LOOtXNX0pI2kTUHuiIaoiGEQJt8NiKC2nyA2187TJ9Hcu9ZRWOK4CL1aEWcWzCO6aa89dZb5OXlMXv2bD744IOgXtTn81FVVRXx4kYic/cWioAWlwW3V2IX0tT3s3bpBmDzwUYuz/BEdS+D6XJL3qvxkGWDrM5qqqpCv4HwSUm6Fb7qu4+NX7gPm9cGg9bvdDpD2s/WI/pnIZxdpn0O5bZM7LKJ3Vs/xJcSXIeniYe3YUGwu9WH7Ax/PyNRgf4F/vuOJj5f1Bbx64WLWfsJlQ+b9ONcYIns/bPtuWT0dfLi+9so6ssZdT+Fh/eSBWzpyqAkG9z1+6hqiPymudDmYRfw5uZdzMkz1zmI1/GJiPN/juXMFt7syOO+X+7A6YXCVPjlWVYqUvvjsp+Pm328Ve1lfDpcU9BKVdXo3zmPv2lO1d79iOaRz5GRjk9afTOlQHtjHU1x2O+YhnbTpk2sXbuW9evX09/fT3d3N9/5znd49NFHR/wfTdOorAy9aXWweA+/iBfInzQbTw047FZz36/QCRt30yodpKa6o7qXwTxf1Y5HHuJz07I5eVb4QwDmfbyX92p7EcXTqCwaGjauqqoKaT8fuFqBWipK86msLA17TYNx55Yi2/czvSw/qHFusrcNd28T5E9mxslDawBD3c9IzJCSkg+q2N7mIa98akj1y2Zi1n5CZWO/fpznTiiI6Di354+D2moOtXVTWXnWqPtxb/QggWYthytm5DFz5viw33cwpx8+wrsNzTgzS6msjMzrOpp4HZ9IOdDu4rtP7sLphTlFqWxtdHLvJ4JV56XEZT8//ls10MH3zy9j7uz8MZ9fsKMaGjooLZ9I5fiRUwwjHR+ftR4PkJOeQkGU9jvaDcuYt3t3330369evZ+3atfzsZz9jwYIFoxrZWGAMFPBl6OUEZudoK3LsWATsbOmPaZ7n1X162PhzU4ObZDMS8/y9g7c0RJ74b3OaGzoGAu0gA+UdYxAYDh7GaK9gEUJw5XRdlPPsjvaovU+iYugRIgkdA6T7S3yaGutoHGsClv/4t4hsLovwnB9MpX9QRFWzaqtp8P236ujzSO5eUMjHN09j6dRMDnW6+d99sW9V2eH08sreTtJsgutn5gT1PymG6jhcMZQ9CXK0iYbR59iTHvks2uFIsWpMz0uhpc9LS4y+qz4peWNfFwK4NEwhlME8f0PuLfWR14wNtF80r7eJ8NfS0hukofWP+4pk1F8wfGWOfgPwm82tdPZ7efi9Bmb+z06+9GI1nTEeDB9rDrTrJ3pFhIbWKN8qkG28eaBr1OcatdRd1ryQWo2ORaW/f3XVCd7py6C6w8Vfd3aQk2rh++cUIYTgpxeVogn40z5fcMI1E1l3qBunR3L51KygKysiF0PFtwVjSFfP+fPnM3/+/GitJXj8qmNPegngNN3Qgt6Wr6qlnz2dksgqxYJjQ00vDT0eFpSlUZgemVEb8GjNMLT+oe8m1dECIXu0dBqj1MxtVHE0Z45zcOa4ND480kv+Y9sDf9/T6iLNpvHk0vKovn882W+SR4u/81eBr41/HujmlKkjP9Xd1YQPG6dNKgxpiMFYVAZGHypDC/Dbza34JNw8Ly9g2E7KT+WiSRn880A3b+zr4orp5kzDCoZNdfp1acEoIeCjiVgMFaijTfCGFYmEUd7jStM9WqvJoWOAWf6G5Hs6YhM6XuUPV14XZChlNGYWpGDTBJ829EUc+o5G6Fik+/NmwYaOO47oP2SHMdorBIQQPHXFeKbk6qmDa2Zks/ZLFWTYNf73s3aae2PfwCRWHGhzYRFQnhWhR5uu59sKZAdv7u8a8fyTXje2/g5aRA5XnhT5OT+YnFQLFTl2qjvcY4evj3O8PsnTn+lCo1vmDc1Xf3G23jLzb7s6Y7qmT/yRtlODHI8JAx5tX7gerRr8HhpSSr28JyUDl1W/IxqhxjkiZvsN7d7O6Btaj0/y/M52NAErKiO/s7RbNGYVptDR74u4FtgIHeeaVUcLA20Ye1uDe77f0IooG1rQ7/R3fOMkOu6ZzbNXT+TcCRlcNzMHt0/y7PbjM3fb1e+luc/LhGx75HoHf0OSmY4u6ns87B7hGu7u0sPGzVoO18ww35s609/t60Rvq/nmgW4Od7k5tzydqUd13VrsnyO89sDIN0RmI6VkU10fmhhIcQVDqsWshhX5us04AAAgAElEQVTKow2O/i79w/J3hQLzxVAw4NGOdKEwkxd2dtDU6+XCiRmUmqR2NUsQ1RoNj9aovwuy37Hh0Yosc1TPY6EJQYp14KvxZf+d/1+rjk9De6Rbn71clhn5uWfkaCsden52Xf3wHsiGXYf0H9ILKEgzf7aJ0S/3w8MntqH93af6zexN845VXxemW5mRDUe6PeyMkRjlcJebxl4PlfkpIaULTGtYkegtGBOGrqHNKsB8MRRARa6d3FQLuzsk3a7oCWGcHh8P+6dWfPOMAtNe1yxBlKlD3w1C9Ghl58Bw8HiwsDyN0gwrG2p7OdLljssaokm9v6d3aYYJBs/v0U6y6YZ27ZHhPZD1VdUA5OQVRf6ew2AY2g9OYI+2udfD33d3kmnXuPqk4aMGC4p0E/CmvyNdtNnkvx6dUnrs4IDRMHK0/d4wPVprCgihPNpgkYO7QvmiZ2g1ITh3QjoeCRtqzf2y/u9nbZz/9F7mPrmLqb/ayWeNTuaXpXHZ1MjUxoMJGNoIBVEtfV4cVjFiD9JwCDVHS2c92NMRqeaVgISCJgTLpmcjgRd3dcRlDdHE8GhLTIimGDnaTHcrE7Js7GiXVB81Sae+282Oav3mqawkOlGKecWp2C2Cj4704vWdmK0Y/7StHbdPcv3MnBG9xwWF+rVzXXWMDG1d6PlZGCjvCdejFUKA1aEMbbAYpT1kRTd0DAMt4daMUaYQCr/Z3MJNL9ewobaXHc39NPR4OGOcg2evmhDenMURmFuciiAyQ+v2SrpcPlNLewB91B0EZWilq1f/cqSb5+2Hg5FHfOE4NLSmerTGvOGeZpb7vaijb05+u6WVHK8ehrdnFUb+nsOQYtWYV+ygy+WLWVg00TAEll86OXfE58zLF1gEvFvTE5M8bThCKBgcOo5gjfY0JYYKmhiFjoGAh/n8zg5TTsKWXg/3ra1DAM9eNYGGO2dS/+2ZvPfVqYyPUO15NBl2C9Py7NR1e6jvDi/cGZjcY2bYGPTBAkIgg6mjHTQcPJ6cMyGdAoeF9Yd6jjsla53//DBDHyCsKZCSCd1NXHWSHoF4dnt74PvT1e/lVx83UyD9LffSx+4KFC4L/IKoDbUnXv/qA+0uPjzSy4QsG2eNHzlMm2YVzCtx0NLnjXqDj3CFUDC4vCeCml+bA3xepCf2PeyTztAaoWMGh46j5NFOyU1hVo6gusNtSq7nD1vb6Oz38eU5uVxTmUOew0p+mtX0+aoGp5boX7BNYeZpAzW0ZnaFAoTFCqk50NMy5g1MII8bxQtyMFg1wbKTsvFJeGn38eXV1pnp0QJkFIDHyVnFMDEDPq7rCwxrePyjZpp6vSzI8Z+TUbyBMuY5n4iDIp7ze7PXzswZM1J2brn+Ob0bxCCISDCEUDNCFEIBpFpM8GhtusAVT+zrq5PO0OIPHYvMYjx+jVK0PFqAJeP11/7TtsgUpz4peWKT7sHdYaLoaTROLdXvGo28SKgEFMdme7SgG06fR1eRj0aCeLQAV/vDxy/FuO4w2tSbmKMFEGn6sdJ6mvnaNP3cue21WlZtb+fh9xqxCFiYq5+T0Tyu55QPGNoTbWTeQF3+2KVTgc8pyoY2IIQKMWwMgzzacMVQgLD6DW0cZtImnaE9ehYtRNfQfm68hk0T/PGzNjoiGAr+j/1d7G93saAsLeSwSbic5j+hw/VojRF5pg19H4QhmhmrxCfQPSrOHi3ABRPTybBrvFXdHVUleqyp64qCR4s+2H3ZRMGiSRnsbnXxpZcO0e+V/Nt5JWR6jEhF9AxtQZqVWQUp1Ha5Odhx/KnFR6Kq2cnWRifT8uycEsS15my/oX0v2obWf8N/WoiKYzChvAfAqjza4BlOdRyl0DFAkUNw3cxsul0+frslyAYLw/A/n+gG4xunxc5gGLW0n4Q5zHyghtb8OseBNoxjfKYBjzb+htZu0bh0ciYur2TtwdioNGNBXY+bFIswLRcv0gcEUZoQPL9iInecUcDZ49P4f58r476FhdDtP64Z0RFDGZw7QRc0rj90/ByvsTDCxtdV5gSVlipIszKzIIWaTvcxCnEzCVcIBQTq2sMeKgCDQsexF8clnaGVXQ0gNMgoHBBDRdHQAnx7vn4xeGRjY6CuNBQOtrt4dW8XBQ5LVLrgjERWioXpeXaOhCmIikqfYz+BkGGwHm1a/A0twGXTdIHc6r3mKdHjSa/bR2e/j5IME7UC/psiY2hAht3Czy4Zx9tfmcrXT8lHCIHsbhry3Ghh5GnXn0B52hf9XXauCaHL3Nnl0c1nRyKEArM8Wr0zllSGdnSk1wM9TZBRiNAsMQkdg35i3DA7h5Y+Lz9Y1xDy//96cwsSvTtLqjW2H/mppeELoqIZOg54tGM1rUigHC3AkopMBPDqnk58JuT9pD93P/fJXVz6zH4OdMU2l2im4tjA6A6FYUyPQkoJ3Y2QloewRHfu7wUTMxDAP/Z1mXK8Ep3qDhefNTqZnGMPtJENhnOiLIiqjUAIBeCIcKgAMODRqhztGHQ3gpSIzBKAQeU90X/rhy4sJTtF44lNLTwfQiu+PrePp7a0IoCvnxJ7r8wI04QjiIqmGCroUXkJojo2KM6wcca4NOp7PGHnvgfz6PtNfPP1w+xo7uet6m6+udET05F8piuOIdAdSo4Urehr14VwUQ4bAxSlW5lfph+vE6Hv8St7dG926dTMkCIUhucfrTzt+/6mP0YP6lAxw6MVKkcbHIFmFZn6cOlY5GgNxmXaeOoKfUzaV/9eE3QTiz9+1kZzn5crpmdFPoIsDAxB1Cf1oV9kjNBxfjRytOnBjcoLXKwTxKMF/SIGulcbCR8d6eUHb9eTahWs/vxklkzJpKZHT1HEiroucxXHMMijHenYdjf6nxed9otHc+V0vZ735Vg0Lo8zhqG9YlpoXdTKs+xMzLaxs6U/KnXiRnnkgrANbeSqYyN0rAztWBjNKvzN5WMVOja4cno2j1xUSr9XctVzB3lt7+hfXLdX8vMP9fDZXfOjf/c+HPMi8Gibe/0ebVoUPNpgu0P5H08EMZTBUv9FLJI8rZSSe9fU4ZXw4AWlXFqRyS8Xl2EV8MuPmmkIs8lIqETHo/WrjntGCB0bIeUYeLQwYHSeq+o4rtsxdvZ7WVfdQ1aKxjkTgp/1ahBN9bERkp4/LvR1gUl1tIahVaHj0RloVuH3aKPcGWo47pxfyH8uKqHPoxvbP/pnPQ7HTzc0sqfVxTnl6YGTONZkpVg4KS8lLEFUi9+jLYiKRxucoU2k8h6DOUWpjM+0sam+L+whA6v3dvFuTQ/T8+zc5leiT8qxc80kjV635PGPgptsFCn1PVHwaI3oQ/cIe/Ab2mgrjg1mFKRy1vg0DrS7eG3f8SFiG45/7O/C7ZMsqcjEbgn90h5p4wopJbtb+vnwSC/9g0K8h7vcfFLXR1mmjZmFKaO8wsgEhgpE1BlKqY6DY1CzCoht6Hgwdy8o4n8uK0MCX3u5hu+8eWRI7sAnJY9ubOTf32nAbhE8vjj6c1RH45TS8OppjVm0+VERQ/mVqaPkaKWUuhgqNSvqoplQEEIE2nO+OkZUYziklPxonX7T+B8XlA45f2+cpqEJ+M2WVnrdEVxUgsTwaMeZaGgNT3WkHK2McegYYKW/Scw9bx6JWbQg1hhh48unhzd8w8jTrgmxdO3jul7u/MdhJjxexawndnH27/dS8V87eejdBlr7PPzFX2505fSssPu5p5jR69ifo5VxCB1HwVWJHrKzDhgIHbvi4NEa3Dwvn8I0Kze9XMMvPmzmr1UdXDczmwybxit7u9hc34dNE6y6eiInF8WmQcVInFri4Nnt7Wyq62NyCKnO5j4P6TZtyGxWswiEgkdTHbt69LvPGAx8D5XFUzJ5cnMrbx3s5pYQRW7v1fSytdHJrMJUlp809KJYli5YNj2LF3Z18qdtbSG/dqgMdIUy8VKQkgkW+8ilWzEOHYM+FGJxRSZv7O/ijKf28L/LJnCef2iImfS5fWxtdLK7tZ+9rf0caHfR6/YhgeJ0K2eNT+f6mdlheZyj4fFJXtvXhUXoyvhwmJ6XwvQ8O9ubnOxocjJzDNXy2we7+fd3GgIesECfmpRpt/BOTQ8/Wt/Av7/TgBGtH224wVhYNYFVM6lhRRxCx8llaI8SQ3ni5NEaXDk9m09udnDHG4d5fV8X//eDgQvLrIIUnry8PDAXM54MFkRdE6ShdXp89LolE7OjdIqkBSGGMvKzaYkjhDI4tzwdAazzt/cLReH535/o58ltp+UP+393nFHAC7s6+a+Pmrl5Xl7UemHDgBjK1PIeIXQj2nEYvMd6jwGPNj12hlYIwbNXT+C21w7z7PZ2LvnTfh44u4j7zynGGsGNupSSDbW9vLS7g7UHu9ne5GQ0W/Drza08sqGRPywrD/QiN4ONtT209nk5f0I6uWGmeoQQXD8zh5+828hfdrTzb+eXjPjcH62r56H39ONYkWPnX07N5/pZOZRl6ufRzmYnP/ugiZd2d5JiEdy9oDDia2GqVYusBWMcex0nlaE9JnTsr4KI5IsSKZNy7Lx8/WSqmp1srO2l3+vj5EIHC8vTTB17FwlDBFGzg1tTS18Uu0IBwmrXPR//YIHhjEkgrJxA+VmDXIeVeSUONtf3UdXcP+bdv0FXv5eXdneSYde4YXbOsM85pzyducWpfNrgZM3Bbi6ebN6c4qOp6/Fg1aDAZMGbyCpFdhzG2nusICrWYiiDDLuFp68s5/wJ6dz1zyP85N1G3qru4ell5ZSHMT3rg8O93P56LZ82DFy48xwWTi1xMKswlam5KUzJtZOZouGTUNvp5n8+aeGdmh4W/XE/f10x0bRjawjzloaoNj6a6/yGdtWOdn50XvGw38u1B7p46L1GMuwaP790HDfMzj3mGjyjIJUnl5bz5NKIljOEVIugPZLSt4DqOPY52qQytLJLDx0TJ9XxaFQWpFJZEHyBeCwxBFG7WvtpdgZ3yJt7jdKeKORnDdLzofWgHiJOGSaMl2DNKo7mgonpbK7vY92h7qAN7Rv7u+j3Sq6cnkWGffjPVgjBt84s5Gsv1/B/P2iKmqHt9/ho7fNSlmkz/6YwuwxqPsbaO0yDF0MMlRl7Jb4QgltOyWfh+HRuePEQ79b0cNpv9vDk0vGB+bnB8PtPW7n99cO4vJLZhal8ZU4uS6dmMS3PPmoE4trKbH7yTgM/ebeRa/56kDe+WMGCssiFkq8G6mcjM7QzClIDN3mf1Pdx+jB9iX/8jn5MH19cxpcjCAeHSqpVw9PnxeOT4TlXViWGGhMpJXQ2gD0d4b8oD7RgjOfKkgNDELWjPbjQS1SFUH5Elj/32nlk2McTUXE8mPP9fXTXVQev0nzJX8t55RiCletnZlOaYeUf+7vZ1hidUFe9v17S1PysH+HPq1t6jq0Jlsbxziw1/X2DZWZhKhtunMo3Ts2nzenl2uer+c6bRwLpqJFw+yTf/sdhvr66Fo9P8shFpWy6ZRp3zi9ken7KmGF+IQQ/PK+EH51bTK9bcuWqg+xqiez47m/rp6qln2l5dqbnh6fqHcz1M/VIiyFiGsxHR3p5r7aXihw7X5w1fEQmWkTctMIfOpaqvGcU+rvB3RvIz8KAR2u2sOB4xOgQtb0tOEM74NFGL+hhXIxlx/CGNtE92nPK09EErKvuDmoMm8vr47W9ndg0weemjG5o7RaN20/X9/2Lj4avR40UozTJVMWxH5E9HgBrz1CPVvp80HYIHDkIR+z6fg+Hw6bxyyVlPHfNRLJTNH7xYTPL/3JwxCld+9v6ufkdL7/6uIXcVAurPz+ZO+cXhpVDf+CcIv71NN3Ir/hrdUTdwF71h43HOqeC5dpK3YCu2t5+zI3H4x/q38lvnlGAJcaRxJRI2zCqhhVB0DVUcQyDQ8dxWVFSYQiigvVoW2Lg0TKGoR3waPOit4YIyE61MLfYQXOfl50tY4ej1lX30NHv48JJ6WQH0dby66fkkWYTPPNZOwfazZ+qcthvaA0Bi6nklAFgPdqj7aoDrxuRO8H89wyT5Sdl896NU5mWZ+eN/V2c84e97GkdOJ5en+S/P2nmtN/uYUur5OSiVDbeNDWikL4QgscuGceiSRnsbOnntldrw36t1/YNtF00g0k5di6YmM6Rbg+rB3U/q+l08VxVO1kpGjfOiV3I2CBSj1bNow0C2TlUcQzxaViRrMwrcSCAqqBDx/7JPdH0aI2bphFCxwNdoRLTo4XQmrG/uKsD0NXqwZDnsHLHGQW4fZIf+utuzaTWb2jHZ0XDozUM7dB1y9Zq/Yfciaa/ZySclJ/Ke1+dysWTdcO34Hd7eHRjI7/7tJWFv9/LyjeO0OPy8dWpGhtvnMqU3MhDtFZN8MzyCYzLsPKXqo6QeqgbdLu8vF3dQ6Y9vG5QI/GNU/V0zX9/MlAV8IsPm/FKuGVeHpkpsc/XRdwdKo5iqOQxtEcpjiF+DSuSEX1kXgqNzoGJLaPR7PdozVajDsF/MR45dJxYI/KGI1hD65OSl/cEl58dzD0Lish3WPQ66DD6VY/GkSh6tMJvSG1dQz012aYbWpGXWIYWdCX5y9dP5ttnFtDV7+N7b9Vz6+paNtX3MacolXe+OpW7T7aYWldekGblvy/Tw+x3vHE4kLIJlrUHu3F5JRdPzjA1hXbl9GzKMm2sOdjNxtoeWno9/GZzK3aLLtSLB6mRho7jWN6TNIZ29NCxMrTBEOgQFUTf45ZoDhTwY4ihRg4dJ3aOFgYM7Vj9YT843Etdt4f5ZWkh1axmp1q4/2z95vK7a+qDygUHy+FOv0cbldBxOaRkYGvfj/QNyj/6PdpECh0PxqoJ/s/F49hw01S+dWYB/3paPi9eO4kPvjaN+WE2xB+Ly6ZmccPsHJp6vdy3ti6k/zXys5dFqDY+GptFcP/Zeueub7xay62v1tLj9vGlk3MZF43zJQgCoWNvmGIoqxJDjcnRzSqAmA1+P14IjMwLohWjMcGjKD2Khtafx6N9hPxUoN4ycQ1tUbqVk/JSqO5wU9M5ch71BX/Y+OoQSkgMvnFaHhU5dt6q7ub1EXr1rt7Tyf1v1fFZY/BtNo3QcVk0QseahiiqRPO6oGVf4O+y7jP98eJK09/TTE4vTePRi8fxi8VlLJ2WFfVa/ccuHkeew8LTW9t4/3BwKnYpZWCwyZIp5peAfW1eHhdMTGdHcz9/391JUZqVH59XPPY/Rgnl0caCTiN0PNCtxKM82pA4PdDzeOwQpNEDtySKhpacchAasvXgsA/LnmYQItBFKlE5e8Lo4WMpJS/u0i+IR7dcDAa7ReM/LtDP+zv/eYS+o3og/2FrK8ufO8j/2djEmU/pucVgPN+oiqEAUToLAFlfFfibr+Zj/bFx86LynslKfpqVH/s7MX3rjSNBTRna0uDkSLeH00sdpg6FMLBqgueumcS/npbPNTOyWf2FyRRH4X2Cxeh3HPZgAVVHOzYDzSoGDG0idIZKJuYV64KoYELH9d1uLAIKo+nRWmy6se1pQvYPbWQufT59KLwjD6EldqF0IE97aHhD+2mjkwPtLuYWp1IRpohmRWU2F03KYF+bi59uGFDy7m7p51tvHEEAN87NxSIE33urnq/8veYYgzwYn5Qc6fKQm2ohLUqyfVE6W38vv3GV7bV6g5KCKYjM2A0USBZumZfHvOJUNtX38dSno/QA92N4s2aHjQeTk2rhF4vLePbqicwrjm/P9kg9WqHEUEGgxFARk5liYXw6HOn20D5CrSDo9Z4tfV6K061RbyMp8iYDHOvVOtvB503osLHBWHnaP2/TRyleFUbY2EAIwS+XlJFiEfznhkY21Pbg8vr48kuH6HH7uHdhIb9eWs5bX57CuAwrz25vZ+mzB0asCW3q8eD2yah5swCi4lwA5L71APj2vwOANuX8qL1nMmPRBL9YrKdTvv92fUD5PxJG28XPmVTWk+gMqI4ja1ihyntGQXY1gNBg0GgtJYYKnYkZ+mc1uE7waBoCHYOiHyYS+ZP0H1oPDH3AaNMXw8bz4TIp20ZZpo3tzf20HKUa7ff4eHprG4LIppcATMtL4T8XleKV8IW/VXP936rZVN/H6aUOfnSuHuk5Y1waG2+axslFqbxT08NFz+wbdixcNEt7DETpHLz2LGTNx0hnF7Lqdf3vU86L2nsmOwvHp/PF2Tm09nn59eaRvdrGHg8fHemlJN0a0F4c7wyIocIt70ngHG1dXR1f/vKXueyyy1i6dCl/+MMfYrGuIUivB7obIaNwSBhR1dGGTjCGNpCfjUJrvqMReZMAkC1DDW1glmkSeLRCiBGHZr+wq4PmPi9LpmQyMTv0xvVHc/vp+XxhVg5Huj28sqeLojQrzyyfMCSqMy7TxtovTeHs8Wl82uDkgj8ea2z3t+nCrQnRNLSaRm/ZWeDz4Pvgt/i2vQTWVLTKy6L2nscD31mg31w+taUV3wi59tf3dSKBJVMzE2Z4SbRxBELH4eZo9dBxPObRjmloLRYL3/3ud3n11VdZtWoVf/rTn9i7d28s1jZAdyNIOSRsDINDx7FdTjJjjOAc1aMNzCiNgfBhpNBxd+KX9gzmgkm6oT1aFfyrj/Va4FtPNacWWAjBby8v5z8uKOHrp+Tx9lemDJv3zUm18OoXKlgyJZO9bS5ufbV2iEBqt//4n5Qf3UEYnZUrAPC+fB+4+9BOXh731ouJzslFDs4Y52B/u4sNtcMLF18zpvVEMT+baESsOg50hkrAHG1RURGzZunqwYyMDCoqKmhoGGYiRxSRXf7uMllDm5Abg99Vr+PgmRSCR1saTcWxn4BHe5ShlT3xGaUWLoYg5dW9nQGD9sHhXt4/3MuUXDuXmZhHs1kE9y0s4v99bjzT8kYWV6XZNP60fAKTc+y8ureLVYOaxO9qMQxt5B2ORsNZcjripEv0X1KzsSz+QVTf73jh8zP1NMOq7cd2i3J7Jf840IVNE1w0yfzh9YlKSqQtGC1W0CyJP4+2traWqqoq5s6dO+rzfD4fVVVVoz4nFNIOfUQp0OFz0DTodTt6dM/r0P69OB3RCZ84nU5T9xJvSmwuwMLWIx0j7uuzg7qARnY3U1XVFtX1WHrdTAL6j+xk76D15BzYQT7Q2OWhY5TPP5GOz+xcwbY2D3/bWMXMXMGDH+k3LCvKPezauTOo14jGfu6b6eMbG+Bbr9cwyVNHtl3w6WF9bZa2Gqqqohd6dPb3s/esB0mbuIz+vGl4m9zQlBjHKxxidb7NtUoEsGpbC7eWdwyprPiwyUdnv4+zigS1+3dH9D6J9P0Zi/Zm/bp0qK6RqqqWYZ8z1n4ma3Zw9cZ8z0Eb2p6eHlauXMn9999PRsbod1GaplFZaV5BurfjPbxATvkMCga9rvbubsDJrBnTKUiLjvdVVVVl6l7ijW/HDlKtXmp6BTNmzBh28oj3YC3QyilTy6mMQCkbDFJK3H91YO+pG7Iez26BDyieMptxo3z+iXR8rm1pYNv6Bt7ryWHGtDzeOLyb7BSNey+pJCvI3rDR2E9lJbzdcYhnt7fz+8NZ/GpJGYdWbyfVCotOq4xqji+wn9mj35wnC7E63yqB86v28XZ1D/WOci6pGIiIPFFzGGjh2rmlVFZGllpJpO/PWEx2tcKntWTk5FNZOfyIxbH247KngbMjKnsezXgHFXN1u92sXLmSK664gksvvdS0hQVNpx46FseEjvUQQooq7wkaTQim5KbQ7fIF5pEeTb0/dFwci9CxEHr42N070AkKBnK0SSCGMrhxbh42TfCbzS1c9/xBfBLuW1gUtJGNJo9dPI7cVAu/3dLKrz5uodvl47QSxwkjpElGjLmwzw4K+fuk5IWdepexq8JofpLMGPXefeHmaEEv8fF5hrYFjQFjGlopJQ888AAVFRXcdNNNsVjTsWvoPLbPMUC//wM3YveK4Jiaq6tf97UN3zIw2h2DjiGQpx1QHgdytElQ3mMwLtPGLafk0eeR7G51saAsjTvOSIwbhaJ0Kw8v0kuA7n5T7y0dyZg3RfS5ekY2Nk3w4q6OQF5yQ20vR7o9nDU+jfFZkavYkwmH/zo/WiOWMYlT04oxDe0nn3zCSy+9xPvvv8+yZctYtmwZ69ati8XaAhiG9mgxVL8q7wmLCr+h3d82/Ml2uMuNgJCa30fCsIKoLr37kUgSMZTBoxeX8tjF4/j384p5+frJAaVkInDT3DxuO01XP0/KtvH1UxK7teWJTp7DyqUVGXT2+wJq9j9+pmsmVszIiefS4oIj4NGGb2hFnGppx4wNnn766ezatSsWaxmZQOi4ZMifXV6J3SKGzTMqRsaYpTmcR+vy+mjs8VCSYY1Zxy2Rr5f4MKiWVnYcBs06ZIhEMmC3aKw8MzG82KPRhODxxWX8+PwSMuyaal2aBFw/K4fVe7tYtb2ds8en8+dtbaRaBTfMPvEMrXHT2ueOMHQMMe8OFf0knAkEynsyhxrafq9P5WfDYErAoz3W0NZ1e5AQ01FYomAaALJJV1BKVy/0tkLOhITvc5yM5KSqzzRZuGJaFpl2jb/t6uBAh4s+j+Trp+SRHyXxZyITCB1H4NHGqztU4sS1RkD6vNBVD+kFCOvQnES/R/doFaFheLR7hwkd10ZzRukIGCPTZINftddxWP+7MUZPoThBybBb+NF5xfgkfFLXR77Dwr+fVzL2Px6HpJkQOsawITFuWpH4t0U9zeDzHhM29vokXqkUx+FQnmXDpolhQ8dH/EKomA53zp0INgeyYSfS59PDxoDIVoZWobjjjAK8PtjW5OTO+QVRnaiVyBgtGCNSHRvD3z1OYmk5Ev6Iyc7hw8ZGV6iUBBKbJAtWTTApx8aeVhetfR7yHAOnQaDZfCw9Wk1DFM1AHt4MbdUBQ4sytAoFmhDctSC5RIHRwBTVcZyGvye+lerUSxFE1rghfzYUx3Yl6AiLkQRRhkdbFsVm88NhzC6VRz6Fthr9b6dQCUcAAA48SURBVCp0rFAo/JiqOo6xGCrhDW3Aox1GcQxgVzW0YTElUEs7NFcRqKGNUWmPgZhwBgC+g+8HRFGiYGpM16BQKBIXh5mq40Qr74k7gWYVxyqOQeVow6UiR/doj1Ye18bLo524AABZ/UHgSyCKZsR0DQqFInGxWQQWEakYymhYMXyznmiR8IZWththxPIhfze6QinVcXhMzdM92r0jhY5jKYYCRMksSM1CHtyg/8GRGxihp1AoFKArj80o74n1TNrEDx23HdJ/yJ0w5O9GjjZFjcgLi4qcY0PHPik53OUmN9USkNLHCmGxos28PPC7Nm0RQlPHVqFQDOCwavS55ZDZyiERp4YVCX8lMwzt0R7tgOpYebThMDnHjmBo6Lixx4PHF3tv1kC78DtgSwOLHe2CO+OyBoVCkbg4bALJwPU/VBK2BWM8kVJCew3Y0yFtaF9WI0erQsfhkWLVmJBto7rDTbfLS4bdwsEO3ehOyI6ToS2dhe2728HrRuRNjMsaFApF4mIIonrdvvBKOwMNK/pMXNXYJLZH29uifyA55cf0M3YZk3uUoQ2bgCCqXTewhndrhJXjgcgep4ysQqEYltRAG8YwQ8cBjza2YqiENrSBsHFu+TGPuXxKDBUpgRKfVv2kO+A3uBX+GluFQqFIJCKupfWrjmWijcmLK0bjgqOEUKBUx2ZgGFqj5/G+BPBoFQqFYiTSIq2lNcp7vMrQBpBt1QCInGEMrVIdR8xJ+fpJt6NZP+kMj3ayMrQKhSIBcdginOCTqIPf44lhaBkmdBxoWKFUx2Ezt9gBwKcNfUgp2dXiRBPK0CoUisRkoDtUeIZWGIZWlfcMIJv2AAPzSgcTaMGoQsdhU55lIyfVQlWzk0Odbpp6vUzPSwnkQRQKhSKRSI10gk8gdKzEUAFk4y4ARNH0Yx7rV6rjiBFCMLcoFY8PVm1vB2BOUWqcV6VQKBTDE/HwdxU6Hop0O6GtGjKLEY6cYx5XOVpzmOMPH//vZ21DflcoFIpEI+Lh70p1PBTZvA+kRBQe680CuFXo2BTmFusebFWLfuKdXqoMrUKhSEwinuBjUTnaoYwSNgZwelRnKDO4YGJG4Od0m8bZ5elxXI1CoVCMTMSqY6PXsSrv0QnMJB3BozWS4en2hN1CUjAx2861ldkA3HtWYUBsoFAoFIlGasSqY39FhRqTpyMbqgAQRScN+3iv/4NOU4YhYv64bAI/ucDFFNURSqFQJDCOSFXHFiWGGoKvdhMAomzesI8HDK1NhY4jxaIJZWQVCkXCY0Qwe8L0aJXqeBDS2QlNuyG7DJFVOuxzev0xelXzqVAoFCcGmX5D29XvDe8FAqpjJYZCGt7s+FNHfI4Ro3eo0LFCoVCcEGQZhtYVoRhKebQgaz4BQCs/fcTn9Prl3WnKo1UoFIoTgowUCwBdrjA92kCOVnWGwlfzMQBi/CkjPkflaBUKheLEIuDR9oepOtY00KzKo5U+L3Lv26BZEJPOGvF5Rh2V8mgVCoXixCDT79F2hhs6Bj1Pe6LnaGXtZuhtRUyYj0jNGvF5qrxHoVAoTiyyIhVDAVhTlUcr96wBQJt+8ajPa3PqH3R2qiXqa1IoFApF/Mmwa1i1get/WFhTwOdB+iLwikMk4Qytr+o1AMT0i0Z9XpvTS1aKhlVTOVqFQqE4ERBCUOCw0trnxesLd1SevztUDNswJpShla0HkQc3QtY4xIQzRnye0+PD6ZHkKm9WoVAoTijy06xIoKUvslraWIaPgzK069evZ/HixVxyySU8+eSTUVuMb/MqfVGnXIfQRjaiRtggRxlahUKhOKEoTNOv+829nrD+X1hjP8FnzF7HXq+XH//4x/zud7+juLiYFStWsGjRIqZOnWr6Ynz71gHgnnM97lFabB3qcAMoj1ahUChOMEozbADsbu1nco59yGNOrxxz4IBmSUFATD3aMQ3t1q1bmThxIuXl5QAsXbqUNWvWRMXQ/jLnX9mUfj6rnrEC28Z8/iklanaqQqFQnEicVurgz9vbufb56hGeMbrteL3Tw7lAj7OPjFGfaR5jGtqGhgZKSkoCvxcXF7N169ZR/8fn81FVVRXyYpodk3gvbwJlQeS4M2ywKKudqqqOkN8nFJxOZ1h7SVTUfhIbtZ/ERu0n/syxSmbmCDpcxxoKKSVCjC6QfV1eRqorlcyWfmwdsdl7VMbkaZpGZWVlyP/3UCU8FIX1REJVVVVYe0lU1H4SG7WfxEbtJ/5UAp+O0AY/uP3MAX5o8qoY9YZlTDFUcXEx9fX1gd8bGhooLi42Z2UKhUKhUBznjGloTz75ZA4ePEhNTQ0ul4vVq1ezaNGiWKxNoVAoFIqkZ8zQsdVq5Yc//CG33HILXq+Xa665hmnTpsVibQqFQqFQJD1B5WjPP/98zj///GivRaFQKBSK446E6gylUCgUCsXxhjK0CoVCoVBEEWVoFQqFQqGIIsrQKhQKhUIRRYSUMsxZQyOzZcsWUlJSzH5ZhUKhUCgSkv7+fubNmzfsY1ExtAqFQqFQKHRU6FihUCgUiiiiDK1CoVAoFFFEGVqFQqFQKKKIMrQKhUKhUEQRZWgVCoVCoYgiytAqFAqFQhFFTB38vn79eh588EF8Ph/XXnstt956q5kvH3W+973v8fbbb5Ofn88rr7wCQHt7O3feeSeHDx+mrKyMn//852RnZ8d5pcFRV1fHvffeS0tLC0IIrrvuOr761a8m7Z76+/u54YYbcLlceL1eFi9ezMqVK6mpqeGuu+6ivb2dWbNm8cgjj2C32+O93KAwJmIVFxfzxBNPJPVeABYtWkR6ejqapmGxWPjb3/6WtOdbZ2cn3//+99m9ezdCCB566CEmT56clHvZv38/d955Z+D3mpoaVq5cyfLly5NyPwC///3vee655xBCMH36dB5++GEaGxsT8/sjTcLj8ciLLrpIHjp0SPb398srrrhC7tmzx6yXjwkffvih3LZtm1y6dGngbz/96U/lE088IaWU8oknnpCPPPJIvJYXMg0NDXLbtm1SSim7urrkpZdeKvfs2ZO0e/L5fLK7u1tKKaXL5ZIrVqyQmzdvlitXrpSvvPKKlFLKH/zgB/KZZ56J5zJD4qmnnpJ33XWXvPXWW6WUMqn3IqWUF154oWxpaRnyt2Q93+699175l7/8RUopZX9/v+zo6EjavQzG4/HIhQsXytra2qTdT319vbzwwgtlX1+flFL/3jz//PMJ+/0xLXS8detWJk6cSHl5OXa7naVLl7JmzRqzXj4mnHHGGcfcza1Zs4bly5cDsHz5ct588814LC0sioqKmDVrFgAZGRlUVFTQ0NCQtHsSQpCeng6Ax+PB4/EghOD9999n8eLFAFx11VVJc97V19fz9ttvs2LFCgCklEm7l9FIxvOtq6uLjz76KHBs7HY7WVlZSbmXo9m4cSPl5eWUlZUl9X68Xi9OpxOPx4PT6aSwsDBhvz+mGdqGhgZKSkoCvxcXF9PQ0GDWy8eNlpYWioqKACgsLKSlpSXOKwqP2tpaqqqqmDt3blLvyev1smzZMhYuXMjChQspLy8nKysLq1XPgpSUlCTNeffQQw9xzz33oGn617CtrS1p9zKYm2++mauvvppVq1YByfkdqq2tJS8vj+9973ssX76cBx54gN7e3qTcy9GsXr2ayy+/HEjOYwO6ffna177GhRdeyDnnnENGRgazZs1K2O+PEkOFgBACIUS8lxEyPT09rFy5kvvvv5+MjIwhjyXbniwWCy+99BLr1q1j69at7N+/P95LCou33nqLvLw8Zs+eHe+lmMqf//xnXnjhBX7961/zzDPP8NFHHw15PFnON4/Hw44dO/jCF77Aiy++iMPh4MknnxzynGTZy2BcLhdr165lyZIlxzyWTPvp6OhgzZo1rFmzhnfeeYe+vj7eeeedeC9rREwztMXFxdTX1wd+b2hooLi42KyXjxv5+fk0NjYC0NjYSF5eXpxXFBput5uVK1dyxRVXcOmllwLJvyeArKws5s+fz5YtW+js7MTj8QB6ODYZzrtNmzaxdu1aFi1axF133cX777/Pgw8+mJR7GYyx3vz8fC655BK2bt2alOdbSUkJJSUlzJ07F4AlS5awY8eOpNzLYNavX8+sWbMoKCgAkvdasGHDBsaPH09eXh42m41LL72UTZs2Jez3xzRDe/LJJ3Pw4EFqampwuVysXr2aRYsWmfXycWPRokW8+OKLALz44otcdNFFcV5R8EgpeeCBB6ioqOCmm24K/D1Z99Ta2kpnZycATqeTDRs2MGXKFObPn88bb7wBwAsvvJAU593dd9/N+vXrWbt2LT/72c9YsGABjz32WFLuxaC3t5fu7u7Az++99x7Tpk1LyvOtsLCQkpKSQMRk48aNTJkyJSn3MpjVq1ezdOnSwO/Jup9x48bx6aef0tfXh5SSjRs3MnXq1IT9/pg6vWfdunU89NBDgZKF2267zayXjgl33XUXH374IW1tbeTn53PHHXdw8cUX8+1vf5u6ujrGjRvHz3/+c3JycuK91KD4+OOPueGGG5g+fXogD3jXXXcxZ86cpNzTzp07+e53v4vX60VKyZIlS/jmN79JTU0Nd955Jx0dHVRWVvLoo48mhqQ/SD744AOeeuqpQHlPsu6lpqaG22+/HdBz6Zdffjm33XYbbW1tSXm+VVVV8cADD+B2uykvL+fhhx/G5/Ml5V5Av/m58MILefPNN8nMzARI2mMD8Pjjj/Pqq69itVqprKzkwQcfpKGhISG/P2pMnkKhUCgUUUSJoRQKhUKhiCLK0CoUCoVCEUWUoVUoFAqFIoooQ6tQKBQKRRRRhlahUCgUiiiiDK1CoVAoFFFEGVqFQqFQKKLI/wdQqidxlYL+kAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "def make_manager(fig):\n", " # create a dummy figure and use its\n", " # manager to display \"fig\" ; based on https://stackoverflow.com/a/54579616/8508004\n", " dummy = plt.figure()\n", " new_manager = dummy.canvas.manager\n", " new_manager.canvas.figure = fig\n", " fig.set_canvas(new_manager.canvas)\n", "\n", "plot_a = seqs_dfs_and_plots_per_sample_set['demo'][-1]['A']\n", "make_manager(plot_a)\n", "plot_a.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can now refer to it from this point on as `plot_a`." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdoAAAEKCAYAAAC12pSAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8GearUAAAgAElEQVR4nOydd4BcZbn/P++Zmd3Z3ndTNskmIWUJIQFCDyhBIAFCiAFFLChc0fsTKSKoV+Heq3ARUbwCoiKKDbhIMwFCMwYIJARSIL3XTdndbG+zOzPn/f3xnjPbppyZnS1Z3s8/2Ux5zzk7s+d5n/Z9hJRSotFoNBqNpl8wBvsENBqNRqMZzmhDq9FoNBpNP6INrUaj0Wg0/Yg2tBqNRqPR9CPa0Go0Go1G049oQ6vRaDQaTT/iHuwT0Gg0faOxsZGLL76YQCAAwMUXX8z//M//DPJZaTQaG+3RajTHOcuXLw8ZWYB3330Xn883iGek0Wi6og2tRnOc889//rPb/1tbW3nvvfcG6Ww0Gk1PtKHVaI5j6uvr+eCDDwC48MILSU1NBeDNN98czNPSaDRd0IZWozmOWb58OcFgEFC52VmzZgE6fKzRDCW0odVojmNszzUlJYWzzz6b8847DwCfz8eKFSsG89Q0Go2FNrQazXFKXV0da9euBWDWrFmkp6dz/vnnh55/4403BuvUNBpNF7Sh1WiOU5YtWxYKG0+aNIldu3bR2NjImDFjAFi5ciWtra2DeYoajQYQekyeRnN88s1vfpM1a9ZEfc0999zD3LlzB+iMNBpNOLRHq9Ech9TU1LB+/fqYr9PVxxrN4KOVoTSa45CuYePbb7+dL3zhC92ev/baa9mxYwfvv/8+LS0tZGRkDMZpajQatEer0RyX2CIVLpeLiy66qNfzF198MQDt7e28/fbbA3puGo2mOzpHq9FoNBpNP6I9Wo1Go9Fo+hFtaDUajUaj6Ue0odVoNBqNph/Rhlaj0Wg0mn6kX9p71q1bR1paWn8sPeC0t7eHJqIMB/T1DG309Qxt9PUMbQbzetrb25k5c2bY5/rF0AohKC8v74+lB5ytW7cOm2sBfT1DHX09Qxt9PUObwbyerVu3RnxOh441Go1Go+lHtKHVaDQajaYf0YZWo9FoNJp+RGsdazQazXGM3++noqICn8+X0Huj5RaPNwbierxeL6WlpXg8Hsfv0YZWo9FojmMqKirIysqirKwMIURc721raxs2HSLQ/9cjpaSmpoaKigrGjx/v+H06dKzRaDTHMT6fj4KCgriNrCZ+hBAUFBTEHT3Qhlaj0WiOc7SRHTgS+V0PS0Nb0xrgltcPcddbR2kPmIN9OhqNRqP5BDMsc7TXv3yQpbuaAPCbkp/OGTnIZ6TRaDTDm+rqav7nf/6HjRs3kp2dTUFBAf/xH/8RVy4zHl544QXOPfdcSkpK+mX9ZDLsPNqtx3ws3dWEx1Du/W/X1tDm116tRqPR9BdSSm666SbOOOMM/vnPf/LCCy9w++23U1NT4+j9wWAw7mO++OKLVFVVxfWeQCAQ93GSwbAztM9tbQDgzrOLmD8pmxa/yT/3Ng3yWWk0Gs3w5f3338ftdvOFL3wh9NjUqVMJBoN84xvfCD324x//mBdeeAGAOXPm8MADD7Bw4UL+8Ic/cNVVV4VeV1FRwfz58wF45JFHWLRoEZdffjl33XUXUkpee+01Nm3axHe/+10WLFiAz+djzpw51NXVAbBx40a+/OUvA/Dwww9zxx13cM0113DnnXdSW1vLt7/9bRYtWsSiRYtYu3Ztv/9+hl3oeMkOZWg/W57DhLwUXtrZyEs7G5k/OWeQz0yj0Wj6l68sPsBLOxudv0FKiFHcM39SNn9ZMDbqa3bu3Mm0adOcH9ciNzeXF198EYBXXnmFgwcPMmbMGJYuXcq8efMA+NKXvsRNN90EwB133MHy5cuZO3cuTz75JHfeeSfTp0+PeZzdu3fz1FNP4fV6uf3227nuuuuYNWsWhw8f5oYbbuDVV1+N+9zjYVgZ2qb2IBuqfBSlu5he5KUwTV3eewdbBvnMNBqNRtOTSy+9NPTzvHnzePXVV7nxxht59dVX+eUvfwnA6tWrefzxx/H5fNTX1zNp0iTmzJkT13HmzJmD1+sFYOXKlezatSv0XHNzMy0tLWRkZCThisIzrAzth4dbMSWcXZqBEIJRWR7G5XjYUdvBsdYAhenD6nI1Go2mG7E8z54kS+Bh0qRJvP76670ed7lcmGZnjUx7e3u357se+9JLL+WWW27hoosuQghBWVkZ7e3t/Pd//zfPP/88I0eO5OGHH+61RtdjSSljHsc0Tf7+978P6Di9YZWjXX24FYCzRqeHHju7VO1SVlVor1aj0Wj6g7POOouOjg6eeeaZ0GPbtm0DVNi2o6ODxsZGVq1aFXGNsWPHYhgGjz76aChsbBvMvLw8WlpauhnzjIwMWlo67+ujR49my5YtALzxxhsRjzN79mz++te/hv4/EBKUw8rQbqxSah2njujcvZxtGd2VFa1JOYaUksDT1xNYckdo96TRaDSfZIQQPPLII6xcuZLPfOYzXHbZZTz44IMUFhYyd+5cLr/8cm699VZOPPHEqOtceumlLFmyJGRos7Ozufrqq7n88su54YYbuuVjFy5cyH/+53+GiqFuuukmfvazn/HZz34Wl8sV8Rg//OEP2bRpE/Pnz+fSSy/l6aefTs4vIQpC9oO1WL9+Paecckqyl43JjMe2s+VYOwduLmdkphJ8/qiyjdP/sJNzS9N56ysnxL1mz0HC5oE1BB46FwD3LSsxxpyWnJMfIPSg56GNvp6hzVC8nr6ck9Y6Toxwv/Non8Ow8Wg7giY7atvJT3MxIqMzFzu9yEtmisGaI21JUYmS+1Z2/lyxrs/raTQajWZ4M2wM7Y6aDgImnFjo7aZF6TIEZ45Kpz0oWXe0rc/HkdU7On+u3NLn9TQajUYzvBk2hvZwsx+AstyUXs+dU6rytO8f6nueVlbt7Py57mCf19NoNBrN8GbYGNrqViWtVZjWOwluVx6vTEI/bVePloZDfV5Pk3yaO4J0BLXspkajGRoMG0N7zDK0RWF6Zc8cnY4hVOVxX2q/ZHszNB6G7JEgBFIb2iHH81vrGfm/Wzj5sR1UWlEOjUajGUyGkaFVotQF6b092uxUFycVealqDbC7riPxg9SrULEonATpBdBcjTS15zRUqGjs4GsvHcQXkOyu6+Dn71cP9ilpNBrN8DG0dT5laPO94dWfQsIVfcjTyobDAIicUZBRANIEX0PC62mSy73vVtEWkCyaqnStn9vaoHudNZoBoLy8nAULFnDFFVewcOFC1q1LTkdGRUUFl19+edTXrF69utvggq58/etfp7FRaT/bLaeVlZXcfPPNgGrJefvtt5NyrtEYNoa21RqFl+4Jf0l2QVRf8rShUHHOKER6gXVgZ2OgNP1LU3uQpzfXk+oS/HruaE4ZkUZFk5+PLRETjUbTf3i9XhYvXsySJUv4zne+w4MPPjjYpwTA73//e7Kzs7s9VlJSwkMPPQRoQxs3PqtHNs0dfhLFOcmQYuzm0eYDIFtqE19PkzSe29ZAi9/kyinZFKS7mTcxC4B/7W0e5DPTaD5ZNDc3dzNujz/+OIsWLWL+/PkhA1dRUcG8efP40Y9+xGWXXcb111+Pz6c2xZs2beKKK67giiuu4MknnwytU1FRwbXXXsvChQt7ec3Nzc3ceOONLFiwgLvvvjukrzxnzhxqa7vfo20vuaOjg4ceeoilS5eyYMECli5dysUXXxx6vWmaXHTRRb3enwjDRmW/zTK03gge7bgcDyMz3Ww+1k5dW4C8tPgv3fZoRfZoRHoBEqDlWKKnrEkiT25Ucyi/OkNtgM62IhhrjiRHelOjOR4IPPVVzM0vOX69IaEj+pQ8jGnzcV/7p6iv8fl8LFiwgPb2dqqrq/nzn/8MwLvvvsv+/ft57rnnkFLy7//+73z44YeMHDmS/fv38+CDD3LPPfdwyy238Prrr7NgwQJ+8IMfcPfdd3P66adz//33h45RUFDAE088QWpqKvv27eM73/lOaLbthg0bWLp0KXl5eXz729/mjTfeYO7cuVHPOSUlhZtvvplNmzZx9913A7Bnzx6WLFnCV7/6VVauXMnUqVPJz8+P8VuMzbDxaNv8KhcXyaMVQnDGKHXz3ZhgOLFr6Jh0y6Nt1R7tYNPYHuS9ihZyvS4+PS4TgNNGqM967ZG+i5RoNJro2KHj1157jccff5zvfe97SCl57733eO+997jyyitZuHAhe/bsYd++fQCUlpaGJAunTZvGoUOHaGxspKmpidNPPx2ABQsWhI4RCAT40Y9+xPz587nlllvYvXt36LmTTz6ZMWPG4HK5uOyyyxIe5r5o0SIWL14MwPPPP89nP/vZhNbpybDzaNPckfcO5YVeFu9oZMuxds63bshx0XgEAJE9EpGhc7RDhWV7mwmYcNH4TNyG2mgVZbgZl+NhT30HtW0B8hOIYGg0xxuxPM+e9Ic28CmnnEJdXR21tbVIKbnxxhu55pprur2moqKClJROcSGXyxVx/J3Nn/70JwoLC1m8eDGmaXLyySeHnhM9htf3/L9TRo4cSUFBAatWrWLDhg38/Oc/T2idngwfjzZgebQRQscAUwvV/MFtNQl6tM1Wu0hWSadHq3O0g85re5oAmGvlZW1OLlY3kC3Hov8BazSa5LF7926CwSC5ubnMnj2b559/PjTOrrKykpqayM5JdnY2WVlZrFmzBoCXXuoMgzc1NVFUVIRhGCxevJhgMBh6bsOGDRw8eBDTNHn11Vc57TRnw156jtoDuPrqq7njjjuYO3du1ClA8TBsDK3PH70YCqDcMrRbE7jxSimhuRpSMxEeLyKjUD2hc7SDzvJ9quDp4gndDe2UAmtjdUxXHms0/Ymdo12wYAG33XYb999/Py6Xi9mzZ3P55ZdzzTXXMH/+fG6++eZehq0n9913Hz/+8Y9ZsGBBt/a8a6+9lhdffJErrriCPXv2kJ7eOXd8+vTp/OQnP2HhwoWMHj2aiy66yNF5n3nmmezatStUDAWqgKq1tTVpYWP4hIWOp+R7gQRvvB0tEPBBznj1//Q89W9rXfxraZJGtU+yt97PCXkpjLBGI9rYEYztNdqj1Wj6k2jD06+77jquu+66Xo+//PLLoZ9vuOGG0M8nnXQSS5YsCf3/zjvvBKCsrKybh3vHHXcAylja1ck9Q+H/+te/Qj+vX78eULlh+9i5ubk8//zz3c5r27ZtTJ06lYkTJ0a8pngZRoZW7Xy8UTzajBSDshwP+xr8NPiC5HjjCAtYYWORUaT+71WiCFILVgwqH9eoz/0sq32rK1MLrI2VNrQajcYBjz32GE8//TQPPPBAUtcdNqHjtoCJ1y1iJsGnFiZ285V2iNgKGQuv1Sfma4zvRDVJ5aNaZWhtQZKuTC3QHq1Go3HOjTfeyPLly5k1a1ZS1x0+htYvo4aNbSZYY/T21cepedxcBYDItDzaNNuj1YZ2MPnI8mjPHt3bo83xuhiZ6WZffQdtfq1JrRm+aKnRgSOR3/WwMLQBU+I3ZdRCKJtxOcrQHmiMz9DKZsujtQ1tqvZoB5ugKdneIMnwGKFCt55MKUhFAjvrtFerGZ54vV5qamq0sR0ApJTU1NTg9Xrjep+jHO2f/vQnnn32WYQQTJ48mfvuu4/U1PA3tsHA9laitfbYjM1RBTP7G+IcodZi52it0LHLDZ50PVRgENlV1067CTNHenEZ4TdZE/JSeWt/C3vrOkLtPhrNcKK0tJSKigqqq+OfVuX3+/F4PLFfeJwwENfj9XopLS2N6z0xDW1lZSV/+ctfWLp0KV6vl1tuuYVXXnklqaXPfaWzEMqJobU82oY+erSgwseNR5DBgDK8mgFlQ6WqHp9eFHl3Od76vPfG+XlrNMcLHo+H8ePHJ/TerVu3htSZhgND9XochY6DwSA+n49AIIDP56O4uLi/zysu2mIMFOjKuGzbo403R2t5tF0NrV0Q1d4U31qapGBLaU4vjmJoE83JazQaTZKI6YaVlJRw/fXXc8EFF5Camsq5557L7Nmzo77HNM2ofVXJZm+T8mhlhy/mcaWUpBqwt66dLVu2xKxS9vnUmiMq95IB7K1upkOqY4yWKXiBXZvWEsganYxL6Xfs6xkOrNwTACC7rZKtWyOEzerVJmzjwVq2bh36+fTh9PmAvp6hjr6egSGmoW1oaGDZsmUsW7aMrKwsbrnlFhYvXtxN7LknhmEMqPvuO9oG7KQgJ4Py8gkxX1/2zna217ZTUjaZgvTovwI7FOF/3YcEJpx0OiJvLAD+FSXI6o1MLC3GGDX0whXhGKqhlUTYu2wr4Gf+6VMj9kQXtATg7S0cC6ZQXj5lYE8wAYbT5wP6eoY6+nqSe+xIxAwdr1y5ktLSUvLz8/F4PFx88cUhhY2hgh06TneQo4UuBVFxVB6H+mjDhY7bdEHUQFPvC3Kg0c+odKIKjxSlu8jwGOyt79BVmRqNZlCIaZlGjRrFxx9/TFtbG1JKVq1alVRpqmRg6xxHmkXbE7sg6mA8lcchnePOylVhqUPRPvRDksONTVZ+dlJ29NC/EIKy3BTaApLKlsBAnJpGo9F0I6ZlmjFjBpdccgkLFy5k/vz5mKbJ5z//+YE4N8f4grHlF7syMlOFi480O7vxyvYW8LeGVKFCWB6tFq0YeD6uUnNmp+TE/szH56oIxl5dEKXRDAmkGUQeHXq51P7CkQt4880389prr/Hyyy/zwAMPdJsjOBTosAxtSoReyp7Y4vNHmx16tC09dI4tQh7tAIWOZXsLgb9/k8ALt3ziw6B2xfFkR4ZW9Xz3t6GVTZUEXr0bs2JopVY0GqcEVz9B4KmvIdub+/c4S3+E/+czCa59sl+PM1QYFspQftvQuuL0aB2GEsP20AKkDaw6VPCNn2B+8ATmyt8id78zIMccqmx0GDoGKMsZmBaf4Iu3YS67n8CvL0A2Hu3XY2k0yUY2HCb47Dcx1z2F+d5v+u84ZhDzrQcBQv8Od4aFoe0wlaH1ODS0CXu0PQ2tPcFnAHK0svEo5srfhv5v7n673485VAmakk3VbaS5BWMzY78+FDruR9EK6fdhbnlF/cffRnDVY/12LI2mPzB3vdX5885/RX5hH5FHNnX+XHcAaQ5/HfJhYWgT9mid5mgtsYqeOVoxgFXHwbceBH8bYtQMdU4V6/r9mEOVPfUdtPol04q8uGL0QQOMylKG9nBTnLKbcSAPf6zmFeeOAcD8+PkY79BohhbyUGfKQx7e2H/H2ftu5398jdA0/KM/w8LQ2jlaj8McbUmGMrSOPdqQKlT4Yqj+Dh3LpkrMVY+BKwXXNY+rx2r29OsxhzJOFKG6UmoZ2kNN/Vd1LI9uAcCYcRUUT4Gqbciq7f12PI0m2cjKLsVJLdX9lqeVe95TP1ibZNlwqF+OM5QYVobWqUeb4jIoSHNR2RIgaMYuKuqcRRshdNzPgwVsb9Y483rEyOmQkgF1Bz6xBVEbKlXF8XSHQwKKMtx4DNG/Hq11kxIjTsSYegkA5p4V/XY8jSbZyGO7ABClp6r/1+5L/jGkxNz7HgiBMeNq9aA2tMcHfjM+QwsqT2tKONbqwMtpsmbRZpd0e7hz+Hv/aR3LpkrMlb9T3uycOxBCIPLGgb8t5Gl/0thYrTzaGQ49WkMIRma6qfMF+20uraxUHq0oORFjvJIolXtX9suxNJpkI00T6g+BNwcxeqZ6sD+iZjW7oekoYsRJiBHT1LHrK5J/nCHG8DC0lkfrdhg6hvgqj6WdQ8ga0f0Ju72nHz3abt5srjWayZKAlHX7++24Qxk7dHySQ0MLnXnaQ/3k1cqqHQCI4imIsrMB1M49GWtLqXq5NZr+oqUagh2I3FJEvpoEJGv3Jv0wphU2FuPPhRylD68N7XFCvKFjiLPyuKkSAJHV3aPtb8EK2VTVzZu1Efnj1A91B/rluEOZxvYge+s7KM3ykJ/mfDTh6H4siJJmEBoqIKMQ4c1CZBVD3jio3Ydsre3b2u3NBB6ajf+uYoIrHknSGWs03ZF1B9UPuWMgv0w9Vpv8jby0Np9iwuxOx0GHjo8PEgkdx1N5LJsqQRi9q449XnCl9JtHG1z2U8ub/VrnlxJCQw0+iR6t7c2eXOLcm4UuHq3TArh4aDwCZrD7Z2SF3+ThDX1a2lz5W+TBNWAGCL78fWTD4T6tp9GEpUF5lSK3FJFtRe4sByOZmFbFsTH+XESu5dFqQ3t8EG/VMcCIDIcerRlQYZXMYoQRRrzemwO+xqQXJslju5Q360nHdeH3uz9phbCllTv+JBFvxbHN6Cy1seoXj9YOfVmtPQCG3YZ1+OM+rW1uewMAMWYWBP2Ya5/q03oaTTikFR0TuWNCkTuZZEMrG4/Csd1QMB6RMwoy1Vxz+QmoNRkWhrY/PVqXrw6k7B02tknLBmlCkkvhA6/8CMwAxqdvU1/KLoSEMz4BX9CebLQ0jqcXOas4thnVjy0+sl6F3URep6EVo09Wzx1K3KOVfh9y//uQmolr0cMAmOuf7sOZajThCUVKckZ32cgnt7/VLg40ys5VD3hzwHBBS01SjzMUGRaGNhGPdqTDHK2r1foSRDC0wpurfkhi+NjcsQy58UXIKsH1qdt6v8DecTZ/8jzaDYl6tNbnfaQ/iqFsbyCnS+g4CR6trFgLgXZE2TmI0adA3jjkkU3IxiN9Ol2Nphe2VkB2iao9cXuTHjo2D6xWxyg7S/0rhErHtdWqOodhzLAytPF4tCWWR3s0RtWxu0310IqeFcc2aVYvbZLUoWSgg8A/lHF1XX4fwpvV6zWfVI/WlJKNVT5SXYLJBalxvbfYEimpctLOFSfSym/Z1eCACiOn5SErtyIDiUk/hnpzR89ECIEx+UIAzJ3L+3S+Gk1PQpv2zGJlALNKVEqsozV5xziwBgAx9ozQYyKjEKSEtrqkHWcoMiwMbWfo2PnljLBvvDEMrcsytGRHCh1bHm2Svijmu49A1XbE+HMxTr02/Iss4YxPmke7p66DFr/JtCJvXK1c0MXQ9sNMWrtis1sxlBCIESeqHP+x3Ymta7cMFU1W/57wafW4FsLQJBvrXmJv4pNdECWDASUb60kL9c8CnQWmtijQMGVYGNrO0LHz92SmGKS5BUdj5WhbbY82Qug4ZGjrnR88ArLhMME37wVh4Fr4v2pnGe6Y7hRl4JurPlHqUBsSrDgGyPW6cBv949Fi52i7FEMBiJKpQA9puziQ1TvVOkWTADAsT0AeXJPQehpNJDr13K1oWahQKTmbeVm5BfytiNJTEa4ubXkZBdZx4je0UkpkfQUy0J6Uc+xPhoWh7Rwq4PxyhBCUZLhp8Zu0dERWC3K12TnaSKFjZWiTIcMYfPn70N6Mce43MUadHP3FmUUQ9PerWMZQw5ZePNmh9GJXDCEoTndT2xYMfV+ShayvUEUd2SO7PS5KytXzCRtaWwRDebTkl0FGocrTagELTZKQUiqPNi1PbeJB9YJD0gT/5YEP1bpjZnV7XFiGNt6CKFm7j8Avz8B/z0T8/zmawOs/Qfp9STnX/mB4GNo4x+TZlFgFMpUtkQtkOnO0MTzaVmehY3P/avy/uYTA377crSHc3PU25vpnILMY1yX/GXMdYe04+QSFj22P1qn0YldkewuXsA63DFCdRK9WdrSqsFf26F7tXyFDWxW/oZVmEGr3QXo+Ij1frScEYuzpIM1uk1Y0mj7RVq827V3HgIY82uSEdO0ojBh7evcnrNCxjCN0LIMBAk8sUj3q2aPA34b55j34H5yF98jQjPYMC0MbCh2HaXONRmiKT5S8nV11HLG9x5ZhdFAMJaUk8NRXkbvfwvzo7/h/dS7m4Q3IoJ+gXQB12b2dxjsamXae9pNTELXBbu2J09BKKQn8/nIeOXADf2v+fnLDx3ajf96YXk91erTb4l+3qRLMQK9wtDFG3ahsD0Gj6TN2frbLPU4kOXcqD3wAgNHD0HYex7lHa378LPLIJsSY0/H8cAeeOz5CTPw0VO9k9NJ/I/jOQ0k552QyLAxtKHRsxHc5JQ4KZDqLoUaGf0F6HgDSFztHK49sUkLdhSdgzPoKtFQT+M3FBP7yBeTRzYhxZ2Gc9iVH597p0X4yDG29L8j+Bj9jsz3kxSG9CMooyX2qh2++/23a9iVvlm+4QqgQ2aPAm42s3oEMxmfcQyIYlh6sjRhzmnq+Ym38J6vRhCG0We/m0SZvIy/bm9UYyYwiJU3alQQ8WnPl7wBwXXIXwuVBFE3C/c3XcH3uMaThIfjyDzCtsZVDhWFhaPvs0UYpiHK31YAnDVJ7t9kACNujbXVgaK2bo1E+D9fnH8OY/S1oq0NufgncXtyf/x3C6WbBDu18QtShbKGKRAqhzLVPAtCUqm4eORv/krTzssUqyA3j0QqBKJ4KgXaIV6DdkqXracBtaUezj9KOGk2Ipu4Vx91+ToahrVgP0kSMndWrwLMzR+vM0Mr6CuS+VZA9EjH5os51hMB1xnXUzrwRzADmsp/2+byTyfAwtAm09wCUWDKMVRFytLK9BcPfAlklESuAO4uhHBhaa5clRp2svhgLfoH7umcwPnUr7m/9S92UHdL5h/DJMLQfV1oVx3EWQkkpMbe8AsAr5z4BQMn+15NXrV3fqREbjkQLomRD+HVF9gi1yareoQuiNElBhlp7uqTH7BbCliQY2lDY+IzeT8bp0Zpblqq1TloQ1ilpmHYtpOVifvTskBJ2GRaG1p+AYAV0erSVkULHzfbUnggVx4BIt9t7HORoLa9GFExQ/wqBMf1K3PPvx7BCgk4Rn7AcrZ2fPTne/OzRLVB/EDFqBrL0NDa4JpHVdgQSyZuGWz9Ca49NZ4tPfMeT9ZbQeo/QMaiNGlIij26Oa02NJhzhQsci08qdJuH+YoYKoWb1eq7zOA49WnsogSXe0uv5lAyMUz4P0sT86O8JnG3/MCwMbSISjNCpDhXJ0IZEtSMVQgF44xCsqN0HgCgY7/QUI/MJafS26eyhjdOj3fYqAKJ8LiUZbv7psWbF7ngzKecVLXQMfWjxsUPHYQ2tJe94RIePNUkgVAxV3EMxG7kAACAASURBVPmY7Wkmoeo4pAg1prehDR2nNXYxlJQSc48ytGL8uRFfZwv9mB8/H++p9hvDwtD29GjNinUE1/wtZmgtpkcbaQ5tV+zQcQyPVkqJrNkL7lTIilBYFQ8hj3b4G9qAKdlc7SPDYzAxLyWu95pbXwNUXrwo3c0yz5nq8e1JMrR1vQcKdCXh0HEoJB3G0I62DO2hj+JaU6MJR1iP1uWBtDxoqe5TmkU2HoX6A1A4MdSm1hXhSQNPujOHoXYfNBxClJR35nbDIMaeofrND3yIdNh22d8MD0PbZXqPuW8VgYdmE/y/Gwj8YQHSjCxGEcvQykbVrB01dOzxKgHuWMpQrbXQ3gR545wXPEUh9EVrHTxD++quRr71agU7avpXmWVnbTu+gOSkYi9GpFx5GGRbvao2Ts9HjD2D4gw3K90zaRVpyN3v9NJxlR2tmAc+RPrbnK0vpcrRetLVTSkcuWPBk46s2h71u9hrbXtGZ3YYQxvqz93peD2NJiKWkRM95m0nQxRHHlRtaGHzs12P094cU3DCtIfGR/FmAYRhqNCyNJFDRBd8WBjarqHj4LKfgTUJQu5ZEXWsWGaKiwyPQWWLP+yuLRQ6jqRzbJOWC76GqBMo7CHtIr8s+lpOSU9cuiwZ7G/o4LPP7eOx9bVc+4/9/SoFuSFUCBVfftbc/k8wgxhTLkIYLorT3XSIFFZ6z4SAD7nrrc7XVqzDf/90Ag/Nxv/zU51Vc7fWgr8V8sZElss0DETxFPU6O8wcA2maKnSclodIzei9ppXjlzV7HK2n0USjc6BAUbfHk1F5bEYLG9vHcVh5LG1DO2F2zOPaFcnJShH1lWFhaG2P1tV0WOXk0gtwX/8CAOaKX0d974hMN61+SXM4GcYm26ONZWitFh9fY+TXWPMew+XcEkG43JCeDy3HBkXv+OlN9QSsX9nHlT7WHHHmBSaCXQg1I+78rAobi/J5AKS6DXJSDV5yqR2xuVXlb2XtPgKPL1DiE+kFULNHaU7HWj9GIVQIKydvb7Zi0lxliVVEqGROzVSSoA0HjwudV80Qp/kYGO7OehObBHpce2JXHPdShAp7nOh5Wjs/azgwtKFJV7vfdnKa/c6wMLQdQYnHEKoiTUqMk65AlF8KhRORFWsxj0SuziyOEj7uLIaKHDoGEHbYsLU24ms6vePoa8VFRqGaDpOEgQbx8uxWdcwvTVfX/teN/ZcL+agy/opjaZqY214HITCmdPbbFWe4Weq2CqI2/gNZfxD/4wuguQrj9OvwfHcdGG7MdU/Fbp9xaGiF1aQvrWK4mOfeELniOLRm4UQ1Xize/lyNpitmANpqIaOwV0qrry2E0jSRB9eCyxMq4AtHpzpUZM9ZNlVB9Q6Veou1sQVEziiVtjm2O6YBHwiGjaFNcQnkXqX+I8afo1pnTvkCAHLzkojvLUmPkqd1UgwFnYPYo42UanToHcdBsmXSnNLgC7KxysfITDf3fnoEAnhxWwNBM/metZSSdUfaMER8Hq2sWAfNVYixZ3TLPRWluzlslNA66VJorsJ/zwlQtQ0x6QJcV/0akT0CcdIV4GsM9d9GPEb1LiB2OsB+vqu2dVSiFEKF1rTDx9Y5aDSJ4GpvACk722y60teCy2M7wdeAGHmyqmWJRGZsj9ZWdjNi5Ge7Yss9DgW50mFhaP2mZWj3vw+AUaY8FmPaZUBnk3M4OgcLRPNooxvH0OzGKA3SsumI9dokVBzbZPY9tJMIa460IoEzR6UzKsvDOaXpHG0JsLIi+QIKFU1+jrUFKS/0kh7HHEQ7LGxMndvtcbsAbvcZ/xFS+xLll+L+6nOq0hLVDA8gt70e9Rih6Tol0YVGRL4lO+cwdBwSq8gJHzpWa5ap1zrM+2o04XDZbYk98rPQZSOfYI7WtCf2hOmfjfc4pjWDWUxwbmjtcLWpDW3fkVLSEZR4RVCJE6RmQeEJAIhRMyF7JPLghxG9zc7K4+7qUFJKaDpKMCUb4U6Neg4ie5R6T1RD68xox0Nf/xAS5YPDqlr3zNHpACwqV7md57Ymf2TfOiv3e8qIOPOzm18CQJx4WbfHi6wIxoG0yUqQ/Pub8dzwosp7WhhTLgIhMLe/EbVSuHMw+5So5yLyytTrnYaOo4hVhMixvnNW7l+jSQTDpwytyOhtaEMyrwmqQ4VG40WrOIbOmbTRPNo9qhAqHo9WjLPmN1t54sHkuDe0dkHOBHkYgh2I4qmhClBhGBjl80BKla8LQ8jQ9tQ7bquDoJ9gepiQSk8sjzaq5JeDVqG4sUM7A+zRbrTEI2zj99mpOSp8vL0BM8mFWeuPKkN7ahyGVtYdQB7+WOVzesz17ZqTF+n5CGtT1hWRUaBuDs1VUcfRyartag5t4cToJ5Rv52gdho5DOsdRQse2EbbzuRpNArh8Vl1JmNBxvKpNPbFH4xkxPVrLyEcw6NLXqP6eMwohHpna0aeAEEOi3/y4N7R2xfGU4D6gdxjPsCpOI+XbIvbSNioPNJgWuTHaJmQ8GyMPSe6PYqhERkwlg21W3+zUQpV3GW2Fj480B1h5sDXaW+Nm3dH4PVpz88uASh30bLuxDW2smbTGlEsAkDv+GfZ52XhU3RgKJoSGZUdCpKQr76ChAhmMPPs4tHYM/WQArLByyPvVaBLAZXu0mcW9nwzNpI2/GEr6fco4enOgcHL0F2dEb1WUe1eqoQTjz42sOR8GkZIO+ePVhjlKoepA4MjQNjY2cvPNNzN37lzmzZvH+vVDZ+i03UN7QsDSEe6x4xGT5oArBbnzX2FvcrYMY88ZpdJq7Qk4MLShMF5TeI9WSqnyt94cpYSSLEIyaQMXOg6akp217WSmGIzK7BxXFwofb0tuBfT6o20IYGYcU3tMK2xsTJvf6zl7kERENTALMeUzaq3t4Q1tqNVg3FmOzknkjQNpOuqltXO04cQqQuvZ37lGbWg1iRPyaHuKVdC3Ykt5eAME/Ygxp8UU6Al5zhEcBnOXEp0wJl0Q93mIYpXWkdWDK+7iyNDee++9nHfeebz22mssXryYiRNjhMoGEFt+sSxwAABRPKnb8yI1UzU4+xrVeKUe2DfenqPybA80mBY7dGwXOEX0LtrqINiR3NYeun5BBy50fKDRjy8gmVKQ2m13eeWUbABe3tmYtL7eI81+jrYEmFKQSmaKsxmIsq0BufsdtamZcF6v54tDM4ije5ai9DRIy0XuW4n0NfV63lz/f+p1XVqHoq6XN1adX10MQytN1XPtzUF4w49mBJRIiicd6g8NSh+1ZnhgF0OJMMVQsTzNaNiKUFH7Z0PHid7eI3f+C0jQ0NpRoUGuZYhpaJuamvjwww+56qqrAEhJSSE7O7vfT8wp9oi80X7LyOVP6PUaY6oKA9q6t10piXTjtfKtTkLHZBRCaibU7g1fPNMYewpQQmQM/ASfbcdUfnZKQfcCsTHZKcwo8bK/wc+m6uhSak5JpBDK3PY6mAGM8rmhKuKuxNS3thAut4qGmAFkj6Z32XgUuXUppOVinHSFsxOztJBjVQm7fPWq1sDyWCOenxAqkuJv7ZNE3vGGPyj52coqfrj8CHVt0T9DTWzs0HHYqmOXxxLFiV/v2C6EMqIoQoVIywfDFVaNTTZXK+84exTEKDoMh13LIAe5lsEd6wUVFRXk5+fzgx/8gG3btjFt2jR++MMfkp6eHvE9pmmydWuc00oSpKJFfQFGdqhw245qH7Kh+7E9KZMZC7R9vISKiV/utUaGG440+dmyZUvISyvYv4VcoM2T4+haSjPHkFqzlV1rlhPI6n6TTDu8mlFAo0yjKom/F1dzPWVAW00Fuxyu6/P5+vTZvLNTyUzmm4291jkrN8jHlfDEyt18fYozDzQab2xTxxoteh/Lpuf1FK96kizgcO6ptIR5T7NffV8q6lpj/h6ysqZRzAvUrH6WY0ZnFCdn458pNIM0lF3MsV37HF1Ljs9DIVC1cx31GVFGIlqVyc2efI7GOL9RnjzSgD3rVtCR37uoayjQ1+9bT361OcgfdqjN7Ht7jvGbc2LewpJKsq9nsBlhTc3Zc7QRv6/3dY3xZJPSWsuOjz/ATHXuYI3Z9R4pwK72XIIOfl9j04rxtBxh28Z1SHfnxjpr5xKKgabiU6naFnvUZM/PJ6sFioFjezZSWzh4n1vMb2kgEGDLli3cddddzJgxg3vuuYfHHnuMW2+9NeJ7DMOgvLw8qScaCVdNOy65mRGBo5Cez9QZvUMVUk7Fv7yM1NqdTB2Z2UtZZNTb29hZ20HpxClkpyoDEVgfwASM7BGOriWwdjpmzVYm5kqMyd1fH2z7iCCQUzqZgiT+XqS/DP8z4A22OP59b926tU+fTd3eCqCW2VNKKS/vLtn2lZxWfrd9Fx80eHmwvO83/oOb9gGNzJtRRvm4zLCv6Xo9MtCB/8lV4PIwZs7XELY0ZheklHhf20StX8T8PciSL+F/7yfkVK+lyD6GGcS/WOWACy65jaJSZ79LM3A6gdVQ5PExMspxD+xV2qxZpeXkxTi/wEeTMY98yPjCVIwpA/P3Fi99/b51pbE9yNMvb8EQkO4xeK/S5GjaGC4oC//diIRsqkIeWK2EGsbMihk96Eoyr2co0PycqqmYOOPMsNN1/PmlyIZ9TB6dhyiKUdRkIVtr8TcegNwxTD7tfEfv8RdPQO49wpSSjFBeFcC/4rtIIO/8GxzdO3t+Pqa5m8AKKEgTlPTz5xZtAxYzdDxixAhGjBjBjBlKQmvu3Lls2bIleWfXRzqCklFmNS6CERV6hBCd4eMwbT7FVm9l1zytXQzlqL0HoEjlhsMm3a0wdLJDx8KTBikZA9pHu6++A4CJ+b17i2eNTGNEhpsPDrVSFSM06wS7tcepIpTcs0Ip0Uw8P6yRBfVdKMlw09xh0uqPPk1H5Jepz7V6J7JK7abNj5+DY7sQ485S7QNOsUPHMXK07marDcySbYyKXRBlVSknG3PLUoIrHkFG0/AeQJ7b2kCrX/K5E3N58CJ17X/8yHk1qfQ1Enj23/H/eByBJ64i8Ker8d8zgcBfvxhd1W0Y4/LVhdc5trFFceLI09ptPdEGCfTEdn66fpdl41GVn00vcFwL0Qtr8yCdzAvvR2Ia2qKiIkaMGMGePWpSyKpVq4ZUMVSHaVJmWonuKFJ4tkJQOEM7wlKH6mYc4iiGAhBRDK09bo9kqkLZZBSCv7XXyLf+Yn+DMrRlOb1bWgwhmHdCFhJYuqtvN+eqlgAVTX4m5aeQ43UWho5WbdyVaPrWPTFmfg6A4OonkH4fwTfuAcD1mR/E12pgqzzFMIruZuu7bBVPRV3TEkqhIUr/doIE1z5F4I8LCS6+ncCv5wyJuZ5Pb1bncN3JeVw1NQevW7BkZwMt4QaC9EAGAwR+Px9z9R8hNRPjtC9izPoKpBdgfvwcgd/Nizmmbbghg36M9oawOsc2TnSIe617wO6fdVAIZROmhsH84AmQJsaMRWHrLZzQqUM/xA0twF133cV3v/td5s+fz9atW/nmN7/Z3+flGH8QykyrwT+KoRUnfBrcqarNJ9DR7bniMOpQsqkSDBfBSDu9nusXRvFonU4BSoBkjLJyiiklBxr95KQa5EYwfpdPUnmcV3b2zdDa3uwpTr1ZKTE3q15po4caVE8iqYGFw3XGV8FwYa76PYE/LIDqHYiJn0JYERLHZBap71+MYihPsxX9iDBIviuhQo/G5FZUSl8TwSV3qv/kjkUe2UjgmX+La55usqlqCfDOgRaK0l18elwmWakuLpmQRatfsuJgc8z3m2v+gtz/PmLUyXi+txn3F/6I+5rf4/nBVkTZOcijmzHferD/L2Qo0VSJQEaXhQ310jq/v3RKLzo3tPZG1I74SF8jQWvymmv2/3O8Ti/SLUM71D1agPLycl544QVeeuklHn30UXJywoflBgN/UDIuaI2gixJuEynpiInnqwHD1lxDG/vGe9TycGTQr1pmMktAONP0EEUqJ2nr33YlNEA+jlyQY+xe2tb+F6042hygIygZF8abtbmwLItUl+DNvc34AonfmEOKUCMdGtrDG6D+AGL0zFArTSSKM8JEMCIg8sZiXHAHdLSo+bW5Y3B//vdxebNgVQnnlkJ7E7ItcpWwu8UOHcf2aO0ISbJlGM11T0FLNeLkz+L5zgeQX4bc/DLmmr8k9TjxoFTHYMHkHNyG+t3budnl+6IbWhWJUGMPXQt/hcjqFGcQ3mzcn/8dCIPgiodjT2waRoS+N1HuS/GqQ0kpkRVrQYi4UishPfBjakhG8OUfQEs1xsyrESV9yK1ahnawIzLDQhlqnGl5ATGmqHTmabu3+XS2+Fg3XksJJR4PVKTlqt1f3f5eM0JDHkd28g1tyKN1Mqi8j+yzwsbRDG1GisGnx2XS4jdZeTDxm9a6oyoU7tijdRg2hhgTm8LgmvtfuK/7O64rfobn1lWdN4U46cxDRfZq3c1HVM7MwXcltHGLJv0ZJ1JKzFWPAeA67yZEeh5Vl/0WgPaXfzhoN6wXtqnNyVXlnZv8C6wCubf2R/+emSt/Cw0ViPJ5GOPP6fW8KJqMMX0htNZifvDHJJ71EKfRwaATu4XQaei44ZDylIunRu8D74EoPRVQ6Z/AMzdivv84pOXimn+/4zXCrutOVf3mx4NHO5TpCErGWTlaUVAW9bV2nrbnVJZeHm2CAwBE0SSQEo7tCT0mpVTN0p508Pa9/7gjaPK7dTU8ualOrW17NUkOH4Zjf8jQRs+XXDRB3QDf3Bs7pBeJ9XFKL9qyi2La5TFfW9xzYxUDIQTG9AW4zr8lfGO/Q0Su5aXWHQj7vGxvVmPLckYjDAd56awSpeWaxM9e7n8feWQTYsQ0RNk51LQGOGN5MU+nzMPdeoyqxf+VtGM5pbolwFv7mylIc/GpLtXn5YWplGS4WX+0LWJPrfQ1Elz2MwBcc/874jGMC24HUMVfZjCJZz90sXtLRbS5x3GmpmTFWvW+0igtbOGOk1WCGHcmdLRgfvhn8Obg/uqzUc/NMen5KpLZI2U4kAwDQ2tSFrQLSKJ7GqJokhoGX7m12ySVklAxlJWzs0O9cSo5hQqijnUJH7c3QUcL5IyMO9wYju8tO8JNrx3iq0sO8ov3q0PKJ/FUnpp73sX/p8/Rcd9U/L+5BHP7m47et79e/X7G5UbX9r1ovNrJvrm3t6KSE2paA+xr8DM+N4W8tNh9krL+oBL/zx0bdcC0jVPRiqQT47Oyv5OOwsZYggKZJUrL1YGGshPM95T3apz9dYQQ3LeyiurWIPdm30ILXjLX/QFZM7DD5pfsVGHjKyZnh8LGoDZAnxqbgQRWHQpfDBh8+1fQWoMx83MYoyN/N4wxpyHGnwu1+0LRkeFOaAhK1BytLYrjLGJmHlwHgBhzatzn4/7a87guvQfX5T/Fc8d6jInOWoNiIdKtOptB9GqPe0Mb8HcwUlbTmFLoSEc4XJtPzxtvwh5tuIIoy9sQSQgbH2sN8Nj6znaG+1dV05FpV57GVj6R/jYK37uXwKMXIjcthpq9yN1vEXh8PsEP/xrz/dEqjrtSXpjK6CwPH1f6qGyO3wB8VBlfIVS0IQLh6JUqGCBEDHUoWan68GLNt+22ZvZIFUVpijzQotdx6g/i/8NC/L++kODap0KqP7LhsGpfSs3COO2LmFLyzOZ6BPDqN87hbzlfxCP9VC/5L8fHSgav7VIbtismq7CxNIOYm18m8Oy/87PNC9lefxlnPjGNwN++jLm/cySarD+oCpwMF65L7o55HNf5NwMQfOehsM/Lyq1kb3uOwIu34v/NxXTccwIdd4+k497JmB8/39fLHHisHG202pFQusPh5KlEPVpQ3rNrzh24Pn1bcjxZmzSrP1gb2sQxmo9gIGn0OjNk4dp8QqFju4+2yZZMTCB0DMjqXaHHZEPyBr6/truJjqDkKyfnceXkbOp9Qd6stW4+DsTqg//4DjnbnoW0PFxXPYrnx0dxfe4xQBB8/ibMI5uivt82tGNjhI6FEHxmvArxLYtRqBKOeCf2dBra2GFjiK+9J5mEhFIiGdqjm9XrRkxzvmhoLq2zPK30t+H/3Tzk1qXIve8SfPprBJ/9JjLQTnDFI0q+8ozrEN5sPjzcxtGWAGeMTmdiXirB826jVmSTvfkZzCObnZ9jH+gImizb10yKS3DBuEzMA2sIPHg6gScWYa7+I0X1myk1q8hqr8L86O8EHj4P/28uIfjhXwn89Yvgb8WY/a3Q32Y0xLT5qvBr73uYW19T+eqjWwi+cQ/+B07B/8BMit67B/O93yhZzvqD4GuEuv0E/vZFTEuT93ghFFmxW8/CINJyIL0A6g4gg9H/XqSUyIPrwHD1Gk85qFge7WAWRB33htZjNfg3pTkzimLi+eD2IncuD/XNed0G+WkujjT7MaUMhVTiFZiwlVO6erSOwjMOeX232tlfOjGLr85Qu7QXjiiDFit0LP1tmGufxHR58dy6CtdZNyDS83CdcZ3a7Qd8BJ++PmoI0qlHC13Dx/Eb2jWHlaE9fZSDCEVHk7rpebMRE5yFmuy+aSftPckkVphfWhsdMeIk52va3yuHeVrzrV9C9U7ExE/hvu7vkFmM+cGf8P9iFuY7/wvuVFyzbwLgrf3qs7vsBPVZXn1aGQ96r8NAEnw1toeYDFZVtNLUYXL+2AzSDr6rojFHNyPGzMJ1zR/w37GN/PyVTBu1AuPK/4W8ccjdbxF85t+Q+1cjRs/EdbGzcxWGC9elqjo58Lcv4r93MoGfn0LwjZ8gK7dA0WTqpl+H69o/4/7OGjz3NZDysxZcVz0KUhJ45hsD1s+eDKRV4SsKxkd9nSiYAGYA6sPXFoSo2w+tNYiSE9WIuiTwy9XV5Dywkac2JW4khd2i2ZbcyWLxcNwb2hSrwb/Z68yQCU+a6qn1tyL3vht6vDTLQ8BUXk6ioWMKJ6jilK4tPqHQcd8MbdCUvLm3CZeAC8dncUFZJqkuwT8OepBuL9RXRBX+lgc+hEA7bSNP6/WHZcy5EzH2DOThjzHf/lXY95tSsr/BT1aKQZ4DAYkLx2cigGV7m+IWJP/wiLpZnTYy9h9rWsVKCPoxps6NORfWJifVIMNjcLDRP7CTb+wwXKRiqJBHe6LjJTtF02MbWtlSQ/BfD4Dhxr3oIYzpC/Dc8h5i9Eyo3gFmENf8n4W+H2sOq8/hzFHqcxid5WF12Vc4LIqQW17G3Pe+4/NMlFetzeVl49wEnr4BAj5cF9+N+9srcM36Ehkl4zmhKIt9Pi+Hpt+A5/ubcX3xrxizv6Wqxb/xalzVr8aMRRhn3QDtzapdbORJGJ/5Ae7b1+K5cwO1Z9yG69RrMEZNR3jU6EbjzOsR5fOg/oD6/R4HyI5WaKggkF4c0yja3wdZsyfq62QoPxt/2DgcppTcuewIrX4ZlwJYL7xWAd0gboKOe0Ob2qI8xpZ0595nuGk+pdnKyznY6E88dOxOhYKJqjjFKqgKebR97KFdd7SNmrYgZ41OJ9frIt1j8KlxGbQEJG1ZY1TBVZReWnl4AwDtRb29JWG4cF39GzDcavd+bFev1xxrDdIelIzJ9jjKg+ZXr+MPPMztlfexe/1bjq/zSLOfg41+JuenRBTF6ErGAbW2k2pjGyEEY7M9+AKSmraBqzAVqZmQlgeNh3tVtsr2FqjdSyC9CJHhYGKUTRxV5+bqJ1Qo9fSvhOY2i7yxuG9+F/f/W4b7O2twndspRrPmiN3L3Hkj/szkEu5L+zcAgkvv6veNymuWob268g/K8E2di3HRf3RTMjrN6rVef7QN4fLgOuVzuK98UKl3hdHvjYYQAvdVj+L50W48/1WB5/a1uOf+F8bIkyJ+74UQuBf8HFwpmG/9IqZBGgrYBW3+HAeFdwVqIpo8Fv26zFB+Nv5CqHC836XAraG9D3+nKVbUrz2x4sxkcNwbWq9laFvTnXuMRnnvPG1pljK0hxr9IZ1jEtAmNqwvmaxQuzvb0+irzrH9pTt/bGd7g/3zkVRVbS2P7Y74ftvL7sjtPUYQwBh5EsacOyDgI/Dst3rdQI9YRU0jM6PnZ6UZJPCP2wg8fB6fr/0L/97+d8Y+NZfgW7+M+j4b24uaNSq2NyuDftIPvguGO7R5ckq3jdUAIvLGQLBzM2cjK7eClHTkxidvGipkiZGjlcEAwZW/A8CY/a3ua7g8GBNmY4yaHnrsaLM/JIHZdcNz2aQs/pJ6BRUpY5F73kFufyOu842HisYONlf7ODHLT96634IwcC/4eS+DN61QeZbbjrWHWyYhRG5pXK1covAEjE/fBoF2Araq1lDG2kz7sxwokNmGNpZH24dCqHC8e6CzP/pAH/5ORaoV0WhPvN2wrxz3hja9Vd1gfHEYWlEwAYomQ/WOkHHq5dF60tWM2TgRpUoNRVasVw9YX85YeZBYfGgZoDNGdxqgs62ft0orfBjN0FZtB8CfUxbxNa4Lvw9Fk5G738Jcdn9nNWprHS371nGOfz1l3sjhFyklwSXfxXz3UUjLY9/se7gz/TY6RArBl7+PuXuFg+u08rMOwsZy73u4OpoQE89TgiFx0Pl5D3BvXQTRCnn4IwDaC+KcuWlVs8vG6FXncssryiOccD7GyNg54LWWN9szfD+zJI2CTC8/8nwDgOC/fh7f+cbB29aN9s7UN6CtHuPkz4YtappaqAZcbKsZXK1i15zvQU4pcvNLmJuWAFaBUONRzP2rMY9sGtRezq7YUSsnHq0TQxsqhHJ5EF02bH3BvucB1LYFCZgJRk9SM9S/g2hoB3aYYz8QMrSZ8YVmjamXYFbvwNz2Oq7Z/4/SbJXfq66rU2HYgvEJ9b2GFE4OrcOQUhVGub1RK/ucsMbKW87qIkk4a1Q6LgHv+0q4nFiGdgcIEfUPS3i8uD//GIHfXkLwtf8k+Pb/AhLa6pkFvAkE3k8h4P8Crkt/0iu0bi7/RcjIem5aTlnhFP60cwttwwjc+QAAIABJREFUrkwebvoJwcXfQdz2QdTfq52fPd2BR2tufRWIrW0cjrHW5z3gHm1uKRLUcIFxZ4Yel4eUoe0oiE9uToQm+EQ3tMF3HwWc68bagiGn9ZDANKyK8qebL+RR8VvS97yDeegjjNEz4zpvJ7y9vxlDBpl35M/q2Fb7TU+mFtiGNnkebSKI1Axc839K8G9fIvCnqyFnNLTUQKDLBiAlAzHpAlxn3oAon5eU3vpECBna7NgqZ6LQioJF82hrdqvJWaNPUSm0JGCnLkZneTjU5KfBF6QgPQGTZYeOO7RHmzAZbSrM25ERX7FRz/CxHTpuqbFCvZmJDQCw9T1lxXolcdbRgig6IeJ0DCfUtgXYWdvBmGxPqGIW1EzOmSPS2BS0es5qwhta2d6sirJyxnQbqhwOo+xs3F9/WW0Y2hvVpqPwBPYVn8/LnvORhhvzwz/jv3+6UtGxSv6DK39HcOkPwe3Fff0LiJJyUlwGnx6XwR/d82kumIY8vCFqqDFoSj443IrHEMwo8cb8vYQMbfm8mK/tie3RVgy4oVUbnZ4FUbLC9mid99ACSvUmNVO1X0TIl5pHNiN3vwU5paqFxQFbjynjcFJR78/hoglZmMLFa8VfVOuveCS+c3bIigMtzPO/S2bTXsS4szC6bEy6Mi4nBa9bsL2mfWCL28JgzLgK1xUPqLRTwyHV6lJyIqL8UsSE88AMIDe/TOCPCwk8fH5o/OJAY2/K/dmxQ8dkjVQDMWr3Rf6O9UGoIhzVXaZ32Up0db7E8rSh0LFv8HK0x7VHK02TTF8l9SITYYcHHCImnAeedOSut5D+ttCNN2C1XtitGPEi0nKgeApUbe/UVC6M3cMXDTuMFy6ceuaodF6rsMKRETxa+6YeSwvaxph4Psatq6yCHYEwDH7zxiEeWVPDM3OzuGLvLzDff5zg4tsJvvtrRMEE5I5/gsuD+8t/66Yne9GELF7Z1cTrI69jUc2dmBteiJhP/biqjcZ2k3NK0/G6o29MZM0eqNpOR/ZYUgrjHzI/drBCx7ZoRUOXuZvBAPLIRkjNdFac0gUhBCK/TLUGNR0N20ZmvqsMoeucbyBczv7kt1j5zvLCMIbWat26t2Men015GHP9M8jL7k3qdKrDTX521XXwROBJoFNMIhwuQzAhN4Utx9qpbg2G+qQHAyEErvNvxnX+zUrz3JXSzWuVHa2Ym1/GXPZT5IEP8P9qNu7rX8SYeN6AnmenoY19nxOGAfnjoWqbNWyld+46lJ+NYwZtNOyN3rRCLx1WyLg+0YIo2zZ0DN7AiOPbo205htvs4LBRjMeIc5qKOxUx6QII+JC73wl5tG4715WgoQUwyi8FIPjPn6pjOWiWj8aaUDi1tzd66sg0DhgjCQpX5NCxbWgdSvvZCMMV8sRtMY+CgiLcix7BfcsqRNk5ULNHGdn0fNzXPdNL1P/iCeqm/Hir+gM097xLJN6xcnJdC74iYe56G4DW0nPjuiab0sEKHVufQVcZQ1m1HQI+JR/pcFpUN6wNVDhpRNlyDHPtU+D2qrYVBwRMyY7adrJTDUZl9jZaxRluZpZ42daaTv20L0CwA/ODP8d/3lF450Azpwc2cqpvPeSXIaZfGfX1ZZYs6N76oZEDBese0yM0LFLSVVX0basxPnUrtDcR+OOVSZ/AFA27tYec0TEjXDadLT7h5TdDrT1JKoTqutGzi/HqE/RosTxaqYuhEsNuaTgsivG44s91dJ3mk+YxKEhzkdFiCW3nOgipRFr3pCvUD3VKtizcxJB4CBUIhclbzixJIyDcVHpGQWtNWPWTUOGNgxmnkbAHLtgqWkbpKXhuWo7nextx37gUzw+2hc2VnpCXQlmOh3fqszAzipRh9reFPcYKy9B+alzs6ITctwoAX0liucExg1V1HFIP6+y1tguhRBQt3qhr2oa2i363jbnqcQj4ME671nHb0N76DjqCkvJCb8Qcor2Ber3wagCCH/45qWHbdw60cGubkgV1nX9LzCEL40OGdnDztE4RLg/u+fdjnP11aG8m+MZPBuzYdlGTiCMSFDK0tWE2c6aJPLQO3Klx9YBHw/Zoy4tSyU3tq6G1Nu66vSdBrDDvoQQ8Wuite1ya7WGUafXQ9sEoibKz1SQKUJNYJn4q4bWkVHlLAZwaRpLwxEIvKS7BNizVoTAFC6HQcR82D/Z0lMIexQiiaDLG5AtVyDwMQggusm7K1ZkngDTD9uMFTcmKAy24DTh7dGxDa+5bCSRuaNM8BiMz3VQ0+vs0NzdeREahkrSr2RtS4bIr1OOZ39ltTTsl0MPbkK11BN/+JQiB67zIodee2Dc5u8goHHb4+OnasUrw4tgupPWZJIOm7e9wpX85ZnoBxunXxXy97dHuqx/YjVNfcc39b/CkYa59auAkAq3Ilyh03kom8q2uiXAe7bEd0N6MGDVDDbpIAlu7eLQZKcpMtfgT+zsVtqHVoePEsMMth42ihAytyC9TQ4WP7UZW76Q0y8MY0+qh7YNREkLgvv5FXFf/Fs+3/tUnObKKJj+VLQHKC1PJSu29q/e4BNOLvewQlqENFz62PNp4Q8ddqbV2k05EJHpiez+7zJJu59OV1YdbqfMFOXt0RugPKxKyuRqqd0LuWIIZiecFT8hLRQK76wY23CiKJytJO6t4Te5frR5PMOwmilVLkKzc0u3x4L9+ptpiTvsSYoTzamb7JndimPyszTlj0snwGKw42ELw1K8AYH6Y+GB4c9MSOu6bSsf3Mmm7ZzIPVyjhDM+lP3FUfzHekgXd2zB0QsdOEBkFGDOuhoAPc+2TA3JMeUxJxMZlaKO0+IQKoZIkVAFqsyeAKfmpZHgsQ9uR4IY4RXu0fcIOHR8yEgsdA4gu4ePS7BRKLUPbF+8P1B+Q68yvOS5AioQdNo4m4DCzJI09LiunHKbyWNbZhjaxa5JSUtsWJCfV6DamzCkXjMvEJWCtT4Uuww1AeNWa0HLpCbHl8uR+Jf1njD877nPpyiTLY9tVO7Dhxk7DuB3Z0arETdLy1KYvkfVGKa/etERSQIWmzXd/rbSLHUyu6coO6/cxKT+ypKVdUe4LSFYWXQ6GC3PTSwnNcjUPb1ADAGr2gtuLq34/boK8UfpvGGde72iN8Xm2R3t8GVoA42yltGWu/uOAVE3LkEcbRxFhyNCGCR2HCqGSk5+tbQtwtCXAhLwU0jwG6ZahbUs08uTVOdq+YfUOJlIMZdN1ms+YDMHEYAXtnizIKEzaafYFu2k7moDDKSPS2G3YlceRQ8fkJubRtgUk7UFJvoPZsOHI8bo4c3Q6O4PF6nzCiOq/sqsRgHknZMdcz9yr8rOirI+G1ro57xxoQ2tNNjEPfog88AGYAUTZ2Qm3gImsYtWnXbMH2Vav1Lme/X8QaMe44LtxRzJ2W7+PE/Kj90N+xgofv3rYgxh7hqoRsEb9xYP5zkMQ7MB18d2k3HuMH37qI0bmLefYBT9x3Gca8miPQ0Mrxp4BxVORRzeHpFL7k1DUK54cbagOIIyhTXIhVGfYWH3/0vvq0bq9qshQG9rEsNVwlKFNbA0x/lxIzUTufodpwV2k4qcy/YRBayTvyQchRajI1YHKo7UMbQ+PVgYD0HgIMgoTDmHXWvlZJ8MEInHJhCwOGXbouLuh3VnbzsYqH2U5Hk4sjN3sLg98CIAYd1bC5wMwyTIkOwc6dFymiuPk3lWYW14BwDgh8Tw+dPYvmhv/QfD5m5B7ViBKynFd+L2419pd14Ggs8AoEnZK4M09Tapims4JRPFgV5Ab59yo1jti4BNezh/rvGUvK9VFQZqLAw0diSsIDRJCCFynWT3JAxA+7pzaE16ONRwiJd3qDa5QbUv2WsGAElvxpIciNX0lVAhlpS5CoeNEc7RCqMpjHTpODNnVo000dOxOQUyaA4F2ZuxRLQp7U+PTm+0vgqZk7ZE2vG7B9KLIhvbkYi8HXaMwEb1ztI2HwQz2KRRu52fz0xI3tFdOyaHCMrQ9Q8d/26iKQL4wLS/mBkdKiTz8sZJ6i2duaxhsj23nACsKiZHT1ebuwAeYa58GwJi+sE9rGicvAiD4929grv4jpOXhvu7/4lbpae4IcrQlwJhsT8xe5kn5qqJ887F2GnKtcLgl9ekU6WtU49dyxyIyizjWGmDzsXZKszwxDX1PynJTCMqBFyFJBsap1wBgrv+/mHNf+4Jq7TmkijTj3HiLgvEgJXSpbpdV28Hfihg903GPdix69nDbhrbV34cNVEo6BNqR5sAVPnbluDa0NB6mQ6RQI3ISyh3a2OHjki1/A2Czy/lOrz/ZcsxHi9/klBFpUTcSaR6DCUXZHDT+f3tnHiBVeeXt5721dFfv+0LTLM0iDQi4grjjAhEVVNQkZtFonDhGEjVqollmklEnfpovMZNvRpOYxIyJxBg1iksiKKjgCohAs0PTDb3vW3Vt7/fHrVvdDb3UcmuD9/mru6u66n3r3rrnnnN+55wS6KofkosIhI0jEEK1+Sfc5EdgaGcWppJZpK/B2TJgaH1S8ox/1uSXTs4NYjHVequ34plBj8UbiSm5dgSwty3GhtZiRUy/GLwu6GlCTFyAyBu7Fd5oaPOuQ7v4fv1zmb0M28p3AhN6QsEQhk3JHdtAD1aUf+L0NzEYYaj9SBiGWRTrhtoo8TpvYnrIUaWKBKylDRaROwEx5QLoakDuWRO19wmU9uSH7kyIYfK0suZj/TGTOkIBbG8a2pUsLUKPFgCb31EZobQw2iStoZXOLnB20movBiHC9mgBtJOXwSBZ+vu+yBpMmEUgbBxE3995xans144t8ZFhNqsYTKvf0OamRnbHunR2OS6s+LqbAn97eXcn1R1uzhqfxvRRykkM5OFPAQKhykhItWpMyLZR1+2hK5IxXGFgufh7en2fNRXL0gcjfj2haViX/AjbPZux3fiXsJuk7A8Y2uBuYowynzdb9aEOhvAuaAJdy/TykfWH9JvEUMLGBonYtCIUtNO+CKA3GIkSskFv+Wjc2IRE3rG1tAOG1pyOUADbGp1oYqC8bMCjDd/QCsPQepShDQ2/4rjVpgtswhVDgV7baPSAdWJntXsW3gTI83zoVxwHZWhLHOzz52kZHD42w9A69VBWJKFjgBvn5dGs5eLwdHGkvQevT/If7+p1y3fND24kme+I39CWzYloLQZGnnZvjPO0Wtk8febpDw+iVZwT0/cejX1thhAqOEO7aJKuKH++QRexyfbhh9qPhNGK0khtrAuhO9jRTMpOXuUxgDbnKr2m9rMXwu4UJd1OfFWvITuGHzJhiNXCiXYM1x3KGAeqmVTa09jjobHXw1S/4hggza5f2yMxtNj819A4DX9PWkMr/fM8W6y6OtgegUcLYF32GNqZN/KdCf+NE1ugE1I8+aBWv+gEM8nmlGLHgEfbtCfwd+nvTiVyww9NBjzaCA1tSYYtoOb+9gtbufvNI2xpcHJKiYMrp4+tNgb0/CwDJS2RYhjaXXEYsSYcOYi0IMLlMWRvCKFjGFCUH+p34EnJhvbakPJggalDOWW09nnY1uikNMPK1CA96sEEukMlWS2tgUjNQltwC3j68b72o5D/37d7De7HTsXz2+W4Hzt9WHU/jYZHG3op2YCh1SNm0uPSVdKpWRH3czcYCBsPaFLSrCaEjo18tFsZ2pCQnXq9a7NF94Qi8WhBHzdmve4Jmkr13rkxbzZ/FPXdbrY39zMhy8ak7LG7rcwtdlDlzy3L+gHlpxk5WsPQ5kWgOjYoKdKb3u+tOcyvPm4hw67xxGXj0YLMxw2Ejs3xaI2mDNubkqN1X7QxPNpgQ8cwED5uTRmn5527G8b4j0H4PS+RPZ53a3qQ6GHjcFT/k5M8dAxgWXQPpBfg+/hpvEH2j5ZdDXj+dCOeJy/To1lCQG8r3vW/OPa5hkdbHI5H69eu+EPHsu4z8LoQ40+NaDrZYLb5De2swoEbvUg7QwFg07/n0h2fmcVJa2jp0g1tk1VvghBJjnYw4zP1L2u8lYtvVeu5qkWTM4K66OSkWmjP01W47tqBWjxTcrQB1XHkqkJrln5j9LWpXj4/M4c1X6rglGFaSw6H7GnRxTZ5k0Zs+Rgqs4v0L+C2pvjkbhINQwxVkRO8WtkQRB2Q+rEdazbuYIwQp8gpCwyVODeMsDHAhGwbguQNHQOIzGKsN/wBhMD719vwbX9lxOfKrga8bz6M+5E5+Db9GdILsXzx99i+vw8sNnwf/G6IYZFejx7tSsmErNDmdwN6eY81FdlywD/o3fz8rDFAZU7xwDXByNH2qdBx7DFCx02a39BG6NEaTPB7j4c64mto1xzQDe1Fk4K/6JSNK6dJ5KA170a6nXqXmfYasKfrc0vDpM2EOtoA/tDxbZXwx+UTOLUk+BIDo5hfmDhkfJa/bld5tPqFrKbTzbgM65htMAdzeqmDPIeF3S7/zU9P0+j/MIiAUc4uGzS9KXQhFOjdqsZn2Wjo8USWz4sz2vSLsVzzK/B58Tz9Bbzv/Q/S59WNW9shvO//FvevL8f9kwq8r/+b3mZz/tew3bcVy6lfQGSXIaZfAv1dQxXMrft1D7S4MqyIgRBCDx+7eqC7EVmjd4TSTGpUAfBejX4OLBw/cA6YoToOiKHiFDpO3nm0/tBxg0mhY4NJCdBhRkrJ2oO6ob1wYvCGdl5JGtstU7nA8zGyYQciezy4+8L+YhkEQscR5mgBhDHLsjv4i7GBPKxPudFMUBwb5DqsjM+0caDdRVe/d9h+0icKxjkfbH7WwKIJLpqUQWOLnm+WQR5bKSV01YEjl3aPjS31fRSnW0cdZjAWk7Lt1HS6OdjuYuYwQ+uTBcuCm8Hr0mc+v/AtvP98EKRPnwdrkJqNdurnsSy87Zhe1trsK/FWvYpv28uBqVryiJ5SimjCTt5kaKhCtuw3vfViTaeL6g43J+WlDJkpnGIRaCKCzlAAdlXeExbSHzpuFOaGjo2eqfE0tHvbXNR0upldmEpxRvDTMOaVOPjMMh3Qvb9Al6gI+y0HQscmerRy8AUjSAIerUn5WQMjfLy9OT75m0QhkJ8NUnE8mIsnZ9Ik/FGT7sbg/snZAV43ZBQG8rPnh5mfNQhM8UlSQdRgLGffhvW2fyImLdSjBL2tiJJZaAtuxnrL37H9Wy3Wqx8fdmCENutyEBq+7a8E+k/7DMMYgUI40Ke7+gNk/Q5IL4xI/zGYF3bqbViPHpMphCDdptEbyZQtf+hYuuJjaJPXo/WHjuuFuaHjyQlQIhAIG08OLVc1r9jBKut06PfXt/m/YKI4shmRbSapjiFCjzZQ2mNe6Bj0wvjX93WxtcHJgiBG9B2vGIrjqSF6tACXVmTwlub3aLuCPLb+my2RXsDb1cYs4vDyswZG04r9MS7Xihba5LPRvvmWPsNZWIJu0iIyChGTFiIPvIs8sAEx5VxTcqraxPn4AO+GJ0D6EOWnmdKu9nCXm59u0G/Qvjr32DRXmk2joceDT8qghZNDiHPoOHk92s56EBqNQi+Ut5kU8ctzWMi0axzocOGLwSSN4Vh7UO/JGUp+FqA0w0pV5hkAePeuR9ZvB0CURtaqsNXpIcOuYbeYcLqE6dFKdx+ycac+yzW7LPJ1DOL0Uv1LaDQIOVHZF2KzisGMz7LjyNFbbHa21gf1P7KnRf8hPZ91/kYVR3szoXI8ebSDETZHyJ3QtJOXAeDb9pIuhKrdpLcuLZ0d/jqMOdtGhykThFD9Hh/XPV9NY6+Hr8zJHbZvwIAgKrxrcqDdZKKHjr1eL8uXL+df/uVformeoJBeN/Q2Q0YR/T59C2Z5tEIIJufYcXkldd2xr6X1+iRvV+sD0M8NURQihKBwfAUHtHGIpl34dutCiEh6Ajs9Pnrd0pywMSAy/FORukM0tPU79J7NZXNNH/gwv0z/En50ghva/f7Qcag9hg1Omqg3nWhrDs7QGh6tKzWfrQ1OStKtTB9jYtBYDAyAP74MbThos68E9Fm/8uAGcHYiJp0dcv/rwYjscYGReQDalHMjWqOUkpX/OMKHR3o5tcTBfy0e/iY61ap/5/u9YYaPDY820VXHTz/9NFOmJEazfbqbQEpEZjFun8QiMPXiG896vM0NfbQ5vcwfl0aGPXTjNq/YwRqbf6pN407QrBFN1Whzmhc2BvScDiBDUKbC4EYV5gmhDMZn2SnLtLGjuZ92Z2xbMSYS4YqhDE6dqufqPJ3B5Wil/2brkCcLCVwwMbhSttE4HmppzULkTdJH17VV433pbgC0yiURv67lnNv1Hwqn69PPIuA3W1p5aksrhWkWnrtmYqAb1NEYAy6cnjCjjIHQcQLX0dbX1/P222+zYsWKaK8nKAwhFFkluH3SNCGUQTy/rGsD+dmxB6APx7xiB79NuTrwu5h89oC0PQwGmlWYlM535IJmCd2jrfsMMF8IZXDmOP0zMur4TjS8PsnBDhe5qRZywoxezJ+mG9oUZzOuYDwPv0e706mnSM6LMGwMevokxSI40O6KyRD1REc77w7ALyQUIuDlRvSa59yO9fa12O5Yh7AEL9Y8mj2t/dz9zyNYBPz5qolMyB45kmJ4tM5wBVGGGCqRc7QPPfQQ99xzD5pJ3T8ixl/aIzJLcHulaWFjg3iGn/6xX8/PLgoxP2swr8TBVutJ/D13BdjTw5pHOpg2E0t7QG9+jyMP+tpCa9VndLSJpDRhFAwRlDE95kSjtsuNxxd+2BggzZFKtyWLAl8rG2vG/hyNHO0nnfpF8IIIhVAAmhBMyrbT5fIFbhJPZLS51yKm6LOOtXNX0pI2kTUHuiIaoiGEQJt8NiKC2nyA2187TJ9Hcu9ZRWOK4CL1aEWcWzCO6aa89dZb5OXlMXv2bD744IOgXtTn81FVVRXx4kYic/cWioAWlwW3V2IX0tT3s3bpBmDzwUYuz/BEdS+D6XJL3qvxkGWDrM5qqqpCv4HwSUm6Fb7qu4+NX7gPm9cGg9bvdDpD2s/WI/pnIZxdpn0O5bZM7LKJ3Vs/xJcSXIeniYe3YUGwu9WH7Ax/PyNRgf4F/vuOJj5f1Bbx64WLWfsJlQ+b9ONcYIns/bPtuWT0dfLi+9so6ssZdT+Fh/eSBWzpyqAkG9z1+6hqiPymudDmYRfw5uZdzMkz1zmI1/GJiPN/juXMFt7syOO+X+7A6YXCVPjlWVYqUvvjsp+Pm328Ve1lfDpcU9BKVdXo3zmPv2lO1d79iOaRz5GRjk9afTOlQHtjHU1x2O+YhnbTpk2sXbuW9evX09/fT3d3N9/5znd49NFHR/wfTdOorAy9aXWweA+/iBfInzQbTw047FZz36/QCRt30yodpKa6o7qXwTxf1Y5HHuJz07I5eVb4QwDmfbyX92p7EcXTqCwaGjauqqoKaT8fuFqBWipK86msLA17TYNx55Yi2/czvSw/qHFusrcNd28T5E9mxslDawBD3c9IzJCSkg+q2N7mIa98akj1y2Zi1n5CZWO/fpznTiiI6Di354+D2moOtXVTWXnWqPtxb/QggWYthytm5DFz5viw33cwpx8+wrsNzTgzS6msjMzrOpp4HZ9IOdDu4rtP7sLphTlFqWxtdHLvJ4JV56XEZT8//ls10MH3zy9j7uz8MZ9fsKMaGjooLZ9I5fiRUwwjHR+ftR4PkJOeQkGU9jvaDcuYt3t3330369evZ+3atfzsZz9jwYIFoxrZWGAMFPBl6OUEZudoK3LsWATsbOmPaZ7n1X162PhzU4ObZDMS8/y9g7c0RJ74b3OaGzoGAu0gA+UdYxAYDh7GaK9gEUJw5XRdlPPsjvaovU+iYugRIgkdA6T7S3yaGutoHGsClv/4t4hsLovwnB9MpX9QRFWzaqtp8P236ujzSO5eUMjHN09j6dRMDnW6+d99sW9V2eH08sreTtJsgutn5gT1PymG6jhcMZQ9CXK0iYbR59iTHvks2uFIsWpMz0uhpc9LS4y+qz4peWNfFwK4NEwhlME8f0PuLfWR14wNtF80r7eJ8NfS0hukofWP+4pk1F8wfGWOfgPwm82tdPZ7efi9Bmb+z06+9GI1nTEeDB9rDrTrJ3pFhIbWKN8qkG28eaBr1OcatdRd1ryQWo2ORaW/f3XVCd7py6C6w8Vfd3aQk2rh++cUIYTgpxeVogn40z5fcMI1E1l3qBunR3L51KygKysiF0PFtwVjSFfP+fPnM3/+/GitJXj8qmNPegngNN3Qgt6Wr6qlnz2dksgqxYJjQ00vDT0eFpSlUZgemVEb8GjNMLT+oe8m1dECIXu0dBqj1MxtVHE0Z45zcOa4ND480kv+Y9sDf9/T6iLNpvHk0vKovn882W+SR4u/81eBr41/HujmlKkjP9Xd1YQPG6dNKgxpiMFYVAZGHypDC/Dbza34JNw8Ly9g2E7KT+WiSRn880A3b+zr4orp5kzDCoZNdfp1acEoIeCjiVgMFaijTfCGFYmEUd7jStM9WqvJoWOAWf6G5Hs6YhM6XuUPV14XZChlNGYWpGDTBJ829EUc+o5G6Fik+/NmwYaOO47oP2SHMdorBIQQPHXFeKbk6qmDa2Zks/ZLFWTYNf73s3aae2PfwCRWHGhzYRFQnhWhR5uu59sKZAdv7u8a8fyTXje2/g5aRA5XnhT5OT+YnFQLFTl2qjvcY4evj3O8PsnTn+lCo1vmDc1Xf3G23jLzb7s6Y7qmT/yRtlODHI8JAx5tX7gerRr8HhpSSr28JyUDl1W/IxqhxjkiZvsN7d7O6Btaj0/y/M52NAErKiO/s7RbNGYVptDR74u4FtgIHeeaVUcLA20Ye1uDe77f0IooG1rQ7/R3fOMkOu6ZzbNXT+TcCRlcNzMHt0/y7PbjM3fb1e+luc/LhGx75HoHf0OSmY4u6ns87B7hGu7u0sPGzVoO18ww35s609/t60Rvq/nmgW4Od7k5tzydqUd13VrsnyO89sDIN0RmI6VkU10fmhhIcQVDqsWshhX5us04AAAgAElEQVTKow2O/i79w/J3hQLzxVAw4NGOdKEwkxd2dtDU6+XCiRmUmqR2NUsQ1RoNj9aovwuy37Hh0Yosc1TPY6EJQYp14KvxZf+d/1+rjk9De6Rbn71clhn5uWfkaCsden52Xf3wHsiGXYf0H9ILKEgzf7aJ0S/3w8MntqH93af6zexN845VXxemW5mRDUe6PeyMkRjlcJebxl4PlfkpIaULTGtYkegtGBOGrqHNKsB8MRRARa6d3FQLuzsk3a7oCWGcHh8P+6dWfPOMAtNe1yxBlKlD3w1C9Ghl58Bw8HiwsDyN0gwrG2p7OdLljssaokm9v6d3aYYJBs/v0U6y6YZ27ZHhPZD1VdUA5OQVRf6ew2AY2g9OYI+2udfD33d3kmnXuPqk4aMGC4p0E/CmvyNdtNnkvx6dUnrs4IDRMHK0/d4wPVprCgihPNpgkYO7QvmiZ2g1ITh3QjoeCRtqzf2y/u9nbZz/9F7mPrmLqb/ayWeNTuaXpXHZ1MjUxoMJGNoIBVEtfV4cVjFiD9JwCDVHS2c92NMRqeaVgISCJgTLpmcjgRd3dcRlDdHE8GhLTIimGDnaTHcrE7Js7GiXVB81Sae+282Oav3mqawkOlGKecWp2C2Cj4704vWdmK0Y/7StHbdPcv3MnBG9xwWF+rVzXXWMDG1d6PlZGCjvCdejFUKA1aEMbbAYpT1kRTd0DAMt4daMUaYQCr/Z3MJNL9ewobaXHc39NPR4OGOcg2evmhDenMURmFuciiAyQ+v2SrpcPlNLewB91B0EZWilq1f/cqSb5+2Hg5FHfOE4NLSmerTGvOGeZpb7vaijb05+u6WVHK8ehrdnFUb+nsOQYtWYV+ygy+WLWVg00TAEll86OXfE58zLF1gEvFvTE5M8bThCKBgcOo5gjfY0JYYKmhiFjoGAh/n8zg5TTsKWXg/3ra1DAM9eNYGGO2dS/+2ZvPfVqYyPUO15NBl2C9Py7NR1e6jvDi/cGZjcY2bYGPTBAkIgg6mjHTQcPJ6cMyGdAoeF9Yd6jjsla53//DBDHyCsKZCSCd1NXHWSHoF4dnt74PvT1e/lVx83UyD9LffSx+4KFC4L/IKoDbUnXv/qA+0uPjzSy4QsG2eNHzlMm2YVzCtx0NLnjXqDj3CFUDC4vCeCml+bA3xepCf2PeyTztAaoWMGh46j5NFOyU1hVo6gusNtSq7nD1vb6Oz38eU5uVxTmUOew0p+mtX0+aoGp5boX7BNYeZpAzW0ZnaFAoTFCqk50NMy5g1MII8bxQtyMFg1wbKTsvFJeGn38eXV1pnp0QJkFIDHyVnFMDEDPq7rCwxrePyjZpp6vSzI8Z+TUbyBMuY5n4iDIp7ze7PXzswZM1J2brn+Ob0bxCCISDCEUDNCFEIBpFpM8GhtusAVT+zrq5PO0OIPHYvMYjx+jVK0PFqAJeP11/7TtsgUpz4peWKT7sHdYaLoaTROLdXvGo28SKgEFMdme7SgG06fR1eRj0aCeLQAV/vDxy/FuO4w2tSbmKMFEGn6sdJ6mvnaNP3cue21WlZtb+fh9xqxCFiYq5+T0Tyu55QPGNoTbWTeQF3+2KVTgc8pyoY2IIQKMWwMgzzacMVQgLD6DW0cZtImnaE9ehYtRNfQfm68hk0T/PGzNjoiGAr+j/1d7G93saAsLeSwSbic5j+hw/VojRF5pg19H4QhmhmrxCfQPSrOHi3ABRPTybBrvFXdHVUleqyp64qCR4s+2H3ZRMGiSRnsbnXxpZcO0e+V/Nt5JWR6jEhF9AxtQZqVWQUp1Ha5Odhx/KnFR6Kq2cnWRifT8uycEsS15my/oX0v2obWf8N/WoiKYzChvAfAqjza4BlOdRyl0DFAkUNw3cxsul0+frslyAYLw/A/n+gG4xunxc5gGLW0n4Q5zHyghtb8OseBNoxjfKYBjzb+htZu0bh0ciYur2TtwdioNGNBXY+bFIswLRcv0gcEUZoQPL9iInecUcDZ49P4f58r476FhdDtP64Z0RFDGZw7QRc0rj90/ByvsTDCxtdV5gSVlipIszKzIIWaTvcxCnEzCVcIBQTq2sMeKgCDQsexF8clnaGVXQ0gNMgoHBBDRdHQAnx7vn4xeGRjY6CuNBQOtrt4dW8XBQ5LVLrgjERWioXpeXaOhCmIikqfYz+BkGGwHm1a/A0twGXTdIHc6r3mKdHjSa/bR2e/j5IME7UC/psiY2hAht3Czy4Zx9tfmcrXT8lHCIHsbhry3Ghh5GnXn0B52hf9XXauCaHL3Nnl0c1nRyKEArM8Wr0zllSGdnSk1wM9TZBRiNAsMQkdg35i3DA7h5Y+Lz9Y1xDy//96cwsSvTtLqjW2H/mppeELoqIZOg54tGM1rUigHC3AkopMBPDqnk58JuT9pD93P/fJXVz6zH4OdMU2l2im4tjA6A6FYUyPQkoJ3Y2QloewRHfu7wUTMxDAP/Z1mXK8Ep3qDhefNTqZnGMPtJENhnOiLIiqjUAIBeCIcKgAMODRqhztGHQ3gpSIzBKAQeU90X/rhy4sJTtF44lNLTwfQiu+PrePp7a0IoCvnxJ7r8wI04QjiIqmGCroUXkJojo2KM6wcca4NOp7PGHnvgfz6PtNfPP1w+xo7uet6m6+udET05F8piuOIdAdSo4Urehr14VwUQ4bAxSlW5lfph+vE6Hv8St7dG926dTMkCIUhucfrTzt+/6mP0YP6lAxw6MVKkcbHIFmFZn6cOlY5GgNxmXaeOoKfUzaV/9eE3QTiz9+1kZzn5crpmdFPoIsDAxB1Cf1oV9kjNBxfjRytOnBjcoLXKwTxKMF/SIGulcbCR8d6eUHb9eTahWs/vxklkzJpKZHT1HEiroucxXHMMijHenYdjf6nxed9otHc+V0vZ735Vg0Lo8zhqG9YlpoXdTKs+xMzLaxs6U/KnXiRnnkgrANbeSqYyN0rAztWBjNKvzN5WMVOja4cno2j1xUSr9XctVzB3lt7+hfXLdX8vMP9fDZXfOjf/c+HPMi8Gibe/0ebVoUPNpgu0P5H08EMZTBUv9FLJI8rZSSe9fU4ZXw4AWlXFqRyS8Xl2EV8MuPmmkIs8lIqETHo/WrjntGCB0bIeUYeLQwYHSeq+o4rtsxdvZ7WVfdQ1aKxjkTgp/1ahBN9bERkp4/LvR1gUl1tIahVaHj0RloVuH3aKPcGWo47pxfyH8uKqHPoxvbP/pnPQ7HTzc0sqfVxTnl6YGTONZkpVg4KS8lLEFUi9+jLYiKRxucoU2k8h6DOUWpjM+0sam+L+whA6v3dvFuTQ/T8+zc5leiT8qxc80kjV635PGPgptsFCn1PVHwaI3oQ/cIe/Ab2mgrjg1mFKRy1vg0DrS7eG3f8SFiG45/7O/C7ZMsqcjEbgn90h5p4wopJbtb+vnwSC/9g0K8h7vcfFLXR1mmjZmFKaO8wsgEhgpE1BlKqY6DY1CzCoht6Hgwdy8o4n8uK0MCX3u5hu+8eWRI7sAnJY9ubOTf32nAbhE8vjj6c1RH45TS8OppjVm0+VERQ/mVqaPkaKWUuhgqNSvqoplQEEIE2nO+OkZUYziklPxonX7T+B8XlA45f2+cpqEJ+M2WVnrdEVxUgsTwaMeZaGgNT3WkHK2McegYYKW/Scw9bx6JWbQg1hhh48unhzd8w8jTrgmxdO3jul7u/MdhJjxexawndnH27/dS8V87eejdBlr7PPzFX2505fSssPu5p5jR69ifo5VxCB1HwVWJHrKzDhgIHbvi4NEa3Dwvn8I0Kze9XMMvPmzmr1UdXDczmwybxit7u9hc34dNE6y6eiInF8WmQcVInFri4Nnt7Wyq62NyCKnO5j4P6TZtyGxWswiEgkdTHbt69LvPGAx8D5XFUzJ5cnMrbx3s5pYQRW7v1fSytdHJrMJUlp809KJYli5YNj2LF3Z18qdtbSG/dqgMdIUy8VKQkgkW+8ilWzEOHYM+FGJxRSZv7O/ijKf28L/LJnCef2iImfS5fWxtdLK7tZ+9rf0caHfR6/YhgeJ0K2eNT+f6mdlheZyj4fFJXtvXhUXoyvhwmJ6XwvQ8O9ubnOxocjJzDNXy2we7+fd3GgIesECfmpRpt/BOTQ8/Wt/Av7/TgBGtH224wVhYNYFVM6lhRRxCx8llaI8SQ3ni5NEaXDk9m09udnDHG4d5fV8X//eDgQvLrIIUnry8PDAXM54MFkRdE6ShdXp89LolE7OjdIqkBSGGMvKzaYkjhDI4tzwdAazzt/cLReH535/o58ltp+UP+393nFHAC7s6+a+Pmrl5Xl7UemHDgBjK1PIeIXQj2nEYvMd6jwGPNj12hlYIwbNXT+C21w7z7PZ2LvnTfh44u4j7zynGGsGNupSSDbW9vLS7g7UHu9ne5GQ0W/Drza08sqGRPywrD/QiN4ONtT209nk5f0I6uWGmeoQQXD8zh5+828hfdrTzb+eXjPjcH62r56H39ONYkWPnX07N5/pZOZRl6ufRzmYnP/ugiZd2d5JiEdy9oDDia2GqVYusBWMcex0nlaE9JnTsr4KI5IsSKZNy7Lx8/WSqmp1srO2l3+vj5EIHC8vTTB17FwlDBFGzg1tTS18Uu0IBwmrXPR//YIHhjEkgrJxA+VmDXIeVeSUONtf3UdXcP+bdv0FXv5eXdneSYde4YXbOsM85pzyducWpfNrgZM3Bbi6ebN6c4qOp6/Fg1aDAZMGbyCpFdhzG2nusICrWYiiDDLuFp68s5/wJ6dz1zyP85N1G3qru4ell5ZSHMT3rg8O93P56LZ82DFy48xwWTi1xMKswlam5KUzJtZOZouGTUNvp5n8+aeGdmh4W/XE/f10x0bRjawjzloaoNj6a6/yGdtWOdn50XvGw38u1B7p46L1GMuwaP790HDfMzj3mGjyjIJUnl5bz5NKIljOEVIugPZLSt4DqOPY52qQytLJLDx0TJ9XxaFQWpFJZEHyBeCwxBFG7WvtpdgZ3yJt7jdKeKORnDdLzofWgHiJOGSaMl2DNKo7mgonpbK7vY92h7qAN7Rv7u+j3Sq6cnkWGffjPVgjBt84s5Gsv1/B/P2iKmqHt9/ho7fNSlmkz/6YwuwxqPsbaO0yDF0MMlRl7Jb4QgltOyWfh+HRuePEQ79b0cNpv9vDk0vGB+bnB8PtPW7n99cO4vJLZhal8ZU4uS6dmMS3PPmoE4trKbH7yTgM/ebeRa/56kDe+WMGCssiFkq8G6mcjM7QzClIDN3mf1Pdx+jB9iX/8jn5MH19cxpcjCAeHSqpVw9PnxeOT4TlXViWGGhMpJXQ2gD0d4b8oD7RgjOfKkgNDELWjPbjQS1SFUH5Elj/32nlk2McTUXE8mPP9fXTXVQev0nzJX8t55RiCletnZlOaYeUf+7vZ1hidUFe9v17S1PysH+HPq1t6jq0Jlsbxziw1/X2DZWZhKhtunMo3Ts2nzenl2uer+c6bRwLpqJFw+yTf/sdhvr66Fo9P8shFpWy6ZRp3zi9ken7KmGF+IQQ/PK+EH51bTK9bcuWqg+xqiez47m/rp6qln2l5dqbnh6fqHcz1M/VIiyFiGsxHR3p5r7aXihw7X5w1fEQmWkTctMIfOpaqvGcU+rvB3RvIz8KAR2u2sOB4xOgQtb0tOEM74NFGL+hhXIxlx/CGNtE92nPK09EErKvuDmoMm8vr47W9ndg0weemjG5o7RaN20/X9/2Lj4avR40UozTJVMWxH5E9HgBrz1CPVvp80HYIHDkIR+z6fg+Hw6bxyyVlPHfNRLJTNH7xYTPL/3JwxCld+9v6ufkdL7/6uIXcVAurPz+ZO+cXhpVDf+CcIv71NN3Ir/hrdUTdwF71h43HOqeC5dpK3YCu2t5+zI3H4x/q38lvnlGAJcaRxJRI2zCqhhVB0DVUcQyDQ8dxWVFSYQiigvVoW2Lg0TKGoR3waPOit4YIyE61MLfYQXOfl50tY4ej1lX30NHv48JJ6WQH0dby66fkkWYTPPNZOwfazZ+qcthvaA0Bi6nklAFgPdqj7aoDrxuRO8H89wyT5Sdl896NU5mWZ+eN/V2c84e97GkdOJ5en+S/P2nmtN/uYUur5OSiVDbeNDWikL4QgscuGceiSRnsbOnntldrw36t1/YNtF00g0k5di6YmM6Rbg+rB3U/q+l08VxVO1kpGjfOiV3I2CBSj1bNow0C2TlUcQzxaViRrMwrcSCAqqBDx/7JPdH0aI2bphFCxwNdoRLTo4XQmrG/uKsD0NXqwZDnsHLHGQW4fZIf+utuzaTWb2jHZ0XDozUM7dB1y9Zq/Yfciaa/ZySclJ/Ke1+dysWTdcO34Hd7eHRjI7/7tJWFv9/LyjeO0OPy8dWpGhtvnMqU3MhDtFZN8MzyCYzLsPKXqo6QeqgbdLu8vF3dQ6Y9vG5QI/GNU/V0zX9/MlAV8IsPm/FKuGVeHpkpsc/XRdwdKo5iqOQxtEcpjiF+DSuSEX1kXgqNzoGJLaPR7PdozVajDsF/MR45dJxYI/KGI1hD65OSl/cEl58dzD0Lish3WPQ66DD6VY/GkSh6tMJvSG1dQz012aYbWpGXWIYWdCX5y9dP5ttnFtDV7+N7b9Vz6+paNtX3MacolXe+OpW7T7aYWldekGblvy/Tw+x3vHE4kLIJlrUHu3F5JRdPzjA1hXbl9GzKMm2sOdjNxtoeWno9/GZzK3aLLtSLB6mRho7jWN6TNIZ29NCxMrTBEOgQFUTf45ZoDhTwY4ihRg4dJ3aOFgYM7Vj9YT843Etdt4f5ZWkh1axmp1q4/2z95vK7a+qDygUHy+FOv0cbldBxOaRkYGvfj/QNyj/6PdpECh0PxqoJ/s/F49hw01S+dWYB/3paPi9eO4kPvjaN+WE2xB+Ly6ZmccPsHJp6vdy3ti6k/zXys5dFqDY+GptFcP/Zeueub7xay62v1tLj9vGlk3MZF43zJQgCoWNvmGIoqxJDjcnRzSqAmA1+P14IjMwLohWjMcGjKD2Khtafx6N9hPxUoN4ycQ1tUbqVk/JSqO5wU9M5ch71BX/Y+OoQSkgMvnFaHhU5dt6q7ub1EXr1rt7Tyf1v1fFZY/BtNo3QcVk0QseahiiqRPO6oGVf4O+y7jP98eJK09/TTE4vTePRi8fxi8VlLJ2WFfVa/ccuHkeew8LTW9t4/3BwKnYpZWCwyZIp5peAfW1eHhdMTGdHcz9/391JUZqVH59XPPY/Rgnl0caCTiN0PNCtxKM82pA4PdDzeOwQpNEDtySKhpacchAasvXgsA/LnmYQItBFKlE5e8Lo4WMpJS/u0i+IR7dcDAa7ReM/LtDP+zv/eYS+o3og/2FrK8ufO8j/2djEmU/pucVgPN+oiqEAUToLAFlfFfibr+Zj/bFx86LynslKfpqVH/s7MX3rjSNBTRna0uDkSLeH00sdpg6FMLBqgueumcS/npbPNTOyWf2FyRRH4X2Cxeh3HPZgAVVHOzYDzSoGDG0idIZKJuYV64KoYELH9d1uLAIKo+nRWmy6se1pQvYPbWQufT59KLwjD6EldqF0IE97aHhD+2mjkwPtLuYWp1IRpohmRWU2F03KYF+bi59uGFDy7m7p51tvHEEAN87NxSIE33urnq/8veYYgzwYn5Qc6fKQm2ohLUqyfVE6W38vv3GV7bV6g5KCKYjM2A0USBZumZfHvOJUNtX38dSno/QA92N4s2aHjQeTk2rhF4vLePbqicwrjm/P9kg9WqHEUEGgxFARk5liYXw6HOn20D5CrSDo9Z4tfV6K061RbyMp8iYDHOvVOtvB503osLHBWHnaP2/TRyleFUbY2EAIwS+XlJFiEfznhkY21Pbg8vr48kuH6HH7uHdhIb9eWs5bX57CuAwrz25vZ+mzB0asCW3q8eD2yah5swCi4lwA5L71APj2vwOANuX8qL1nMmPRBL9YrKdTvv92fUD5PxJG28XPmVTWk+gMqI4ja1ihyntGQXY1gNBg0GgtJYYKnYkZ+mc1uE7waBoCHYOiHyYS+ZP0H1oPDH3AaNMXw8bz4TIp20ZZpo3tzf20HKUa7ff4eHprG4LIppcATMtL4T8XleKV8IW/VXP936rZVN/H6aUOfnSuHuk5Y1waG2+axslFqbxT08NFz+wbdixcNEt7DETpHLz2LGTNx0hnF7Lqdf3vU86L2nsmOwvHp/PF2Tm09nn59eaRvdrGHg8fHemlJN0a0F4c7wyIocIt70ngHG1dXR1f/vKXueyyy1i6dCl/+MMfYrGuIUivB7obIaNwSBhR1dGGTjCGNpCfjUJrvqMReZMAkC1DDW1glmkSeLRCiBGHZr+wq4PmPi9LpmQyMTv0xvVHc/vp+XxhVg5Huj28sqeLojQrzyyfMCSqMy7TxtovTeHs8Wl82uDkgj8ea2z3t+nCrQnRNLSaRm/ZWeDz4Pvgt/i2vQTWVLTKy6L2nscD31mg31w+taUV3wi59tf3dSKBJVMzE2Z4SbRxBELH4eZo9dBxPObRjmloLRYL3/3ud3n11VdZtWoVf/rTn9i7d28s1jZAdyNIOSRsDINDx7FdTjJjjOAc1aMNzCiNgfBhpNBxd+KX9gzmgkm6oT1aFfyrj/Va4FtPNacWWAjBby8v5z8uKOHrp+Tx9lemDJv3zUm18OoXKlgyJZO9bS5ufbV2iEBqt//4n5Qf3UEYnZUrAPC+fB+4+9BOXh731ouJzslFDs4Y52B/u4sNtcMLF18zpvVEMT+baESsOg50hkrAHG1RURGzZunqwYyMDCoqKmhoGGYiRxSRXf7uMllDm5Abg99Vr+PgmRSCR1saTcWxn4BHe5ShlT3xGaUWLoYg5dW9nQGD9sHhXt4/3MuUXDuXmZhHs1kE9y0s4v99bjzT8kYWV6XZNP60fAKTc+y8ureLVYOaxO9qMQxt5B2ORsNZcjripEv0X1KzsSz+QVTf73jh8zP1NMOq7cd2i3J7Jf840IVNE1w0yfzh9YlKSqQtGC1W0CyJP4+2traWqqoq5s6dO+rzfD4fVVVVoz4nFNIOfUQp0OFz0DTodTt6dM/r0P69OB3RCZ84nU5T9xJvSmwuwMLWIx0j7uuzg7qARnY3U1XVFtX1WHrdTAL6j+xk76D15BzYQT7Q2OWhY5TPP5GOz+xcwbY2D3/bWMXMXMGDH+k3LCvKPezauTOo14jGfu6b6eMbG+Bbr9cwyVNHtl3w6WF9bZa2Gqqqohd6dPb3s/esB0mbuIz+vGl4m9zQlBjHKxxidb7NtUoEsGpbC7eWdwyprPiwyUdnv4+zigS1+3dH9D6J9P0Zi/Zm/bp0qK6RqqqWYZ8z1n4ma3Zw9cZ8z0Eb2p6eHlauXMn9999PRsbod1GaplFZaV5BurfjPbxATvkMCga9rvbubsDJrBnTKUiLjvdVVVVl6l7ijW/HDlKtXmp6BTNmzBh28oj3YC3QyilTy6mMQCkbDFJK3H91YO+pG7Iez26BDyieMptxo3z+iXR8rm1pYNv6Bt7ryWHGtDzeOLyb7BSNey+pJCvI3rDR2E9lJbzdcYhnt7fz+8NZ/GpJGYdWbyfVCotOq4xqji+wn9mj35wnC7E63yqB86v28XZ1D/WOci6pGIiIPFFzGGjh2rmlVFZGllpJpO/PWEx2tcKntWTk5FNZOfyIxbH247KngbMjKnsezXgHFXN1u92sXLmSK664gksvvdS0hQVNpx46FseEjvUQQooq7wkaTQim5KbQ7fIF5pEeTb0/dFwci9CxEHr42N070AkKBnK0SSCGMrhxbh42TfCbzS1c9/xBfBLuW1gUtJGNJo9dPI7cVAu/3dLKrz5uodvl47QSxwkjpElGjLmwzw4K+fuk5IWdepexq8JofpLMGPXefeHmaEEv8fF5hrYFjQFjGlopJQ888AAVFRXcdNNNsVjTsWvoPLbPMUC//wM3YveK4Jiaq6tf97UN3zIw2h2DjiGQpx1QHgdytElQ3mMwLtPGLafk0eeR7G51saAsjTvOSIwbhaJ0Kw8v0kuA7n5T7y0dyZg3RfS5ekY2Nk3w4q6OQF5yQ20vR7o9nDU+jfFZkavYkwmH/zo/WiOWMYlT04oxDe0nn3zCSy+9xPvvv8+yZctYtmwZ69ati8XaAhiG9mgxVL8q7wmLCr+h3d82/Ml2uMuNgJCa30fCsIKoLr37kUgSMZTBoxeX8tjF4/j384p5+frJAaVkInDT3DxuO01XP0/KtvH1UxK7teWJTp7DyqUVGXT2+wJq9j9+pmsmVszIiefS4oIj4NGGb2hFnGppx4wNnn766ezatSsWaxmZQOi4ZMifXV6J3SKGzTMqRsaYpTmcR+vy+mjs8VCSYY1Zxy2Rr5f4MKiWVnYcBs06ZIhEMmC3aKw8MzG82KPRhODxxWX8+PwSMuyaal2aBFw/K4fVe7tYtb2ds8en8+dtbaRaBTfMPvEMrXHT2ueOMHQMMe8OFf0knAkEynsyhxrafq9P5WfDYErAoz3W0NZ1e5AQ01FYomAaALJJV1BKVy/0tkLOhITvc5yM5KSqzzRZuGJaFpl2jb/t6uBAh4s+j+Trp+SRHyXxZyITCB1H4NHGqztU4sS1RkD6vNBVD+kFCOvQnES/R/doFaFheLR7hwkd10ZzRukIGCPTZINftddxWP+7MUZPoThBybBb+NF5xfgkfFLXR77Dwr+fVzL2Px6HpJkQOsawITFuWpH4t0U9zeDzHhM29vokXqkUx+FQnmXDpolhQ8dH/EKomA53zp0INgeyYSfS59PDxoDIVoZWobjjjAK8PtjW5OTO+QVRnaiVyBgtGCNSHRvD3z1OYmk5Ev6Iyc7hw8ZGV6iUBBKbJAtWTTApx8aeVhetfR7yHAOnQaDZfCw9Wk1DFM1AHt4MbdUBQ4sytAoFmhDctSC5RIHRwBTVcZyGvye+lerUSxFE1rghfzYUx3Yl6AiLkQRRhkdbFsVm88NhzC6VRz6Fthr9b6dQCUcAAA48SURBVCp0rFAo/JiqOo6xGCrhDW3Aox1GcQxgVzW0YTElUEs7NFcRqKGNUWmPgZhwBgC+g+8HRFGiYGpM16BQKBIXh5mq40Qr74k7gWYVxyqOQeVow6UiR/doj1Ye18bLo524AABZ/UHgSyCKZsR0DQqFInGxWQQWEakYymhYMXyznmiR8IZWththxPIhfze6QinVcXhMzdM92r0jhY5jKYYCRMksSM1CHtyg/8GRGxihp1AoFKArj80o74n1TNrEDx23HdJ/yJ0w5O9GjjZFjcgLi4qcY0PHPik53OUmN9USkNLHCmGxos28PPC7Nm0RQlPHVqFQDOCwavS55ZDZyiERp4YVCX8lMwzt0R7tgOpYebThMDnHjmBo6Lixx4PHF3tv1kC78DtgSwOLHe2CO+OyBoVCkbg4bALJwPU/VBK2BWM8kVJCew3Y0yFtaF9WI0erQsfhkWLVmJBto7rDTbfLS4bdwsEO3ehOyI6ToS2dhe2728HrRuRNjMsaFApF4mIIonrdvvBKOwMNK/pMXNXYJLZH29uifyA55cf0M3YZk3uUoQ2bgCCqXTewhndrhJXjgcgep4ysQqEYltRAG8YwQ8cBjza2YqiENrSBsHFu+TGPuXxKDBUpgRKfVv2kO+A3uBX+GluFQqFIJCKupfWrjmWijcmLK0bjgqOEUKBUx2ZgGFqj5/G+BPBoFQqFYiTSIq2lNcp7vMrQBpBt1QCInGEMrVIdR8xJ+fpJt6NZP+kMj3ayMrQKhSIBcdginOCTqIPf44lhaBkmdBxoWKFUx2Ezt9gBwKcNfUgp2dXiRBPK0CoUisRkoDtUeIZWGIZWlfcMIJv2AAPzSgcTaMGoQsdhU55lIyfVQlWzk0Odbpp6vUzPSwnkQRQKhSKRSI10gk8gdKzEUAFk4y4ARNH0Yx7rV6rjiBFCMLcoFY8PVm1vB2BOUWqcV6VQKBTDE/HwdxU6Hop0O6GtGjKLEY6cYx5XOVpzmOMPH//vZ21DflcoFIpEI+Lh70p1PBTZvA+kRBQe680CuFXo2BTmFusebFWLfuKdXqoMrUKhSEwinuBjUTnaoYwSNgZwelRnKDO4YGJG4Od0m8bZ5elxXI1CoVCMTMSqY6PXsSrv0QnMJB3BozWS4en2hN1CUjAx2861ldkA3HtWYUBsoFAoFIlGasSqY39FhRqTpyMbqgAQRScN+3iv/4NOU4YhYv64bAI/ucDFFNURSqFQJDCOSFXHFiWGGoKvdhMAomzesI8HDK1NhY4jxaIJZWQVCkXCY0Qwe8L0aJXqeBDS2QlNuyG7DJFVOuxzev0xelXzqVAoFCcGmX5D29XvDe8FAqpjJYZCGt7s+FNHfI4Ro3eo0LFCoVCcEGQZhtYVoRhKebQgaz4BQCs/fcTn9Prl3WnKo1UoFIoTgowUCwBdrjA92kCOVnWGwlfzMQBi/CkjPkflaBUKheLEIuDR9oepOtY00KzKo5U+L3Lv26BZEJPOGvF5Rh2V8mgVCoXixCDT79F2hhs6Bj1Pe6LnaGXtZuhtRUyYj0jNGvF5qrxHoVAoTiyyIhVDAVhTlUcr96wBQJt+8ajPa3PqH3R2qiXqa1IoFApF/Mmwa1i1get/WFhTwOdB+iLwikMk4Qytr+o1AMT0i0Z9XpvTS1aKhlVTOVqFQqE4ERBCUOCw0trnxesLd1SevztUDNswJpShla0HkQc3QtY4xIQzRnye0+PD6ZHkKm9WoVAoTijy06xIoKUvslraWIaPgzK069evZ/HixVxyySU8+eSTUVuMb/MqfVGnXIfQRjaiRtggRxlahUKhOKEoTNOv+829nrD+X1hjP8FnzF7HXq+XH//4x/zud7+juLiYFStWsGjRIqZOnWr6Ynz71gHgnnM97lFabB3qcAMoj1ahUChOMEozbADsbu1nco59yGNOrxxz4IBmSUFATD3aMQ3t1q1bmThxIuXl5QAsXbqUNWvWRMXQ/jLnX9mUfj6rnrEC28Z8/iklanaqQqFQnEicVurgz9vbufb56hGeMbrteL3Tw7lAj7OPjFGfaR5jGtqGhgZKSkoCvxcXF7N169ZR/8fn81FVVRXyYpodk3gvbwJlQeS4M2ywKKudqqqOkN8nFJxOZ1h7SVTUfhIbtZ/ERu0n/syxSmbmCDpcxxoKKSVCjC6QfV1eRqorlcyWfmwdsdl7VMbkaZpGZWVlyP/3UCU8FIX1REJVVVVYe0lU1H4SG7WfxEbtJ/5UAp+O0AY/uP3MAX5o8qoY9YZlTDFUcXEx9fX1gd8bGhooLi42Z2UKhUKhUBznjGloTz75ZA4ePEhNTQ0ul4vVq1ezaNGiWKxNoVAoFIqkZ8zQsdVq5Yc//CG33HILXq+Xa665hmnTpsVibQqFQqFQJD1B5WjPP/98zj///GivRaFQKBSK446E6gylUCgUCsXxhjK0CoVCoVBEEWVoFQqFQqGIIsrQKhQKhUIRRYSUMsxZQyOzZcsWUlJSzH5ZhUKhUCgSkv7+fubNmzfsY1ExtAqFQqFQKHRU6FihUCgUiiiiDK1CoVAoFFFEGVqFQqFQKKKIMrQKhUKhUEQRZWgVCoVCoYgiytAqFAqFQhFFTB38vn79eh588EF8Ph/XXnstt956q5kvH3W+973v8fbbb5Ofn88rr7wCQHt7O3feeSeHDx+mrKyMn//852RnZ8d5pcFRV1fHvffeS0tLC0IIrrvuOr761a8m7Z76+/u54YYbcLlceL1eFi9ezMqVK6mpqeGuu+6ivb2dWbNm8cgjj2C32+O93KAwJmIVFxfzxBNPJPVeABYtWkR6ejqapmGxWPjb3/6WtOdbZ2cn3//+99m9ezdCCB566CEmT56clHvZv38/d955Z+D3mpoaVq5cyfLly5NyPwC///3vee655xBCMH36dB5++GEaGxsT8/sjTcLj8ciLLrpIHjp0SPb398srrrhC7tmzx6yXjwkffvih3LZtm1y6dGngbz/96U/lE088IaWU8oknnpCPPPJIvJYXMg0NDXLbtm1SSim7urrkpZdeKvfs2ZO0e/L5fLK7u1tKKaXL5ZIrVqyQmzdvlitXrpSvvPKKlFLKH/zgB/KZZ56J5zJD4qmnnpJ33XWXvPXWW6WUMqn3IqWUF154oWxpaRnyt2Q93+699175l7/8RUopZX9/v+zo6EjavQzG4/HIhQsXytra2qTdT319vbzwwgtlX1+flFL/3jz//PMJ+/0xLXS8detWJk6cSHl5OXa7naVLl7JmzRqzXj4mnHHGGcfcza1Zs4bly5cDsHz5ct588814LC0sioqKmDVrFgAZGRlUVFTQ0NCQtHsSQpCeng6Ax+PB4/EghOD9999n8eLFAFx11VVJc97V19fz9ttvs2LFCgCklEm7l9FIxvOtq6uLjz76KHBs7HY7WVlZSbmXo9m4cSPl5eWUlZUl9X68Xi9OpxOPx4PT6aSwsDBhvz+mGdqGhgZKSkoCvxcXF9PQ0GDWy8eNlpYWioqKACgsLKSlpSXOKwqP2tpaqqqqmDt3blLvyev1smzZMhYuXMjChQspLy8nKysLq1XPgpSUlCTNeffQQw9xzz33oGn617CtrS1p9zKYm2++mauvvppVq1YByfkdqq2tJS8vj+9973ssX76cBx54gN7e3qTcy9GsXr2ayy+/HEjOYwO6ffna177GhRdeyDnnnENGRgazZs1K2O+PEkOFgBACIUS8lxEyPT09rFy5kvvvv5+MjIwhjyXbniwWCy+99BLr1q1j69at7N+/P95LCou33nqLvLw8Zs+eHe+lmMqf//xnXnjhBX7961/zzDPP8NFHHw15PFnON4/Hw44dO/jCF77Aiy++iMPh4MknnxzynGTZy2BcLhdr165lyZIlxzyWTPvp6OhgzZo1rFmzhnfeeYe+vj7eeeedeC9rREwztMXFxdTX1wd+b2hooLi42KyXjxv5+fk0NjYC0NjYSF5eXpxXFBput5uVK1dyxRVXcOmllwLJvyeArKws5s+fz5YtW+js7MTj8QB6ODYZzrtNmzaxdu1aFi1axF133cX777/Pgw8+mJR7GYyx3vz8fC655BK2bt2alOdbSUkJJSUlzJ07F4AlS5awY8eOpNzLYNavX8+sWbMoKCgAkvdasGHDBsaPH09eXh42m41LL72UTZs2Jez3xzRDe/LJJ3Pw4EFqampwuVysXr2aRYsWmfXycWPRokW8+OKLALz44otcdNFFcV5R8EgpeeCBB6ioqOCmm24K/D1Z99Ta2kpnZycATqeTDRs2MGXKFObPn88bb7wBwAsvvJAU593dd9/N+vXrWbt2LT/72c9YsGABjz32WFLuxaC3t5fu7u7Az++99x7Tpk1LyvOtsLCQkpKSQMRk48aNTJkyJSn3MpjVq1ezdOnSwO/Jup9x48bx6aef0tfXh5SSjRs3MnXq1IT9/pg6vWfdunU89NBDgZKF2267zayXjgl33XUXH374IW1tbeTn53PHHXdw8cUX8+1vf5u6ujrGjRvHz3/+c3JycuK91KD4+OOPueGGG5g+fXogD3jXXXcxZ86cpNzTzp07+e53v4vX60VKyZIlS/jmN79JTU0Nd955Jx0dHVRWVvLoo48mhqQ/SD744AOeeuqpQHlPsu6lpqaG22+/HdBz6Zdffjm33XYbbW1tSXm+VVVV8cADD+B2uykvL+fhhx/G5/Ml5V5Av/m58MILefPNN8nMzARI2mMD8Pjjj/Pqq69itVqprKzkwQcfpKGhISG/P2pMnkKhUCgUUUSJoRQKhUKhiCLK0CoUCoVCEUWUoVUoFAqFIoooQ6tQKBQKRRRRhlahUCgUiiiiDK1CoVAoFFFEGVqFQqFQKKLI/wdQqidxlYL+kAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "plot_a" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Using that reference we can now save it just as any matplotlib/seaborn plot." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "plot_a.savefig(\"znew_image_saved.svg\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can go to the file navigator at the left and double-click `znew_image_saved.svgznew_image_saved.svg` down at the bottom of the file list to view it.\n", "\n", "Or make a cell here using the `+` symbol on the menu toolbar above and run this code to see it here:\n", "\n", "```python\n", "from IPython.core.display import SVG\n", "SVG(filename='znew_image_saved.svg')\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "What if we wanted to adjust size. The next cell does this on a exaggerated scale just to illustrate." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABAgAAAJQCAYAAAADlFa6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8GearUAAAgAElEQVR4nOzdaYBkZXn28f9TVb0v09PL9OwbDMywLwOIoEEEZB8BjUKMMRpR8yJEjSbGJW+M0SRGEpfXJIpLTNS4gIICiiAgMCzCjMAMPcMwG9Oz9TbTe1VX1XneD6dO9WzdXd1d55yq6uv3hZ6qU6ef7mJqqu5z39djrLUWEREREREREZnRImEvQERERERERETCpwKBiIiIiIiIiKhAICIiIiIiIiIqEIiIiIiIiIgIKhCIiIiIiIiICCoQiIiIiIiIiAgQC3sBIiIiUnj6+vq47LLLSKVSAFx22WV87nOfC3lVIiIi4id1EIiIiMhRHn744WxxAODxxx8nHo+HuCIRERHxmwoEIiIicpQHH3zwsD8PDQ3xxBNPhLQaERERCYIKBCIiInKYgwcP8swzzwDwxje+kYqKCgB+/etfh7ksERER8ZkKBCIiInKYhx9+mHQ6DbjZA6tXrwY0ZiAiIlLqVCAQERGRw3idAuXl5Zx//vm87nWvAyAej/PYY4+FuTQRERHxkQoEIiIiknXgwAGee+45AFavXk11dTWvf/3rs/c/8MADYS1NREREfKYCgYiIiGQ99NBD2fGCFStW8Morr9DX18eiRYsAWLt2LUNDQ2EuUURERHxirLU27EWIiIhIYXj/+9/Ps88+O+4xn/3sZ7n88ssDWpGIiIgERR0EIiIiAkB3dzfr16+f8DjtZiAiIlKaYmEvQERERArDoeMFH/nIR7jxxhsPu/+mm27i5Zdf5qmnnmJwcJCampowlikiIiI+UQeBiIiIAPDggw8CEI1GufTSS4+6/7LLLgMgkUjw6KOPBro2ERER8Z8yCEREREREREREHQQiIiIiIiIiogKBiIiIiIiIiKACgYiIiIiIiIigAoGIiIiIiIiI4NM2h+vWraOqqsqPU0sIEokEFRUVYS9D8kjPaenRc1p69JyWHj2npUXPZ+nRc1p69JweWyKR4Iwzzjjmfb4UCIwxrFq1yo9TSwja2tr0fJYYPaelR89p6dFzWnr0nJYWPZ+lR89p6dFzemxtbW1j3qcRAxERERERERFRgUBEREREREREVCAQEREREREREXzKIBARERERERE5VDKZpL29nXg8Htj3G2/evtRVVlaycOFCysrKcn6MCgQiIiIiIiLiu/b2durq6li6dCnGGN+/3/Dw8IzdXc9aS3d3N+3t7Sxbtiznx2nEQERERERERHwXj8dpamoKpDgw0xljaGpqmnS3hgoEIiIiIiIiEggVB4Izld+1CgQiIiIiIiIiogKBiIiIiIiIzBydnZ186EMf4pJLLuH666/nve99L9u3b/ft+911113s37/ft/Pnk0IKRUREREREZEaw1nLLLbfw5je/mX/9138FYNOmTXR3d+cU5pdOp4lGo5P6nj/96U9ZsWIFra2tOT8mlUoRiwX/cV0dBCIiIiIiIjIjPPXUU8RiMW688cbsbStXriSdTvO+970ve9tnPvMZ7rrrLgAuvvhivvCFL3DdddfxzW9+k7e85S3Z49rb27nmmmsA+OpXv8oNN9zA1Vdfzac+9Smstfzyl79kw4YN/OVf/iVr1qwhHo9z8cUX09PTA8CLL77IH//xHwPwla98hY9+9KO8/e1v52Mf+xg9PT188IMf5IYbbuCGG27gueee8/33ow4CERERERERCdQ7736Vn2/py+s5r1lRz3fXLB73mC1btnDyySdP+twNDQ389Kc/BeDee+9l165dLFq0iPvuu48rrrgCgHe84x3ccsstAHz0ox/l4Ycf5vLLL+d73/seH/vYxzj11FMn/D5bt27l+9//PpWVlXzkIx/hT/7kT1i9ejV79uzhPe95D/fff/+k1z4ZKhCIiIiIiIiIjOPKK6/Mfn3FFVdw//33c/PNN3P//fdnRxWefvpp7rjjDuLxOAcPHmTFihVcfPHFk/o+F198MZWVlQCsXbuWV155JXvfwMAAg4OD1NTU5OEnOjYVCERERERERCRQE13p98uKFSv41a9+ddTt0WgUx3Gyf04kEofdX1VVlf36yiuv5LbbbuPSSy/FGMPSpUtJJBL83d/9HXfeeSfz5s3jK1/5ylHnOPR7WWsn/D6O4/CjH/2IioqKyf+gU6QMAhEREREREZkRXvOa1zAyMsIPf/jD7G2bNm0C3Pb+kZER+vr6ePLJJ8c8x+LFi4lEInzta1/Ljhd4H/Rnz57N4ODgYUWImpoaBgcHs39esGABGzZsAOCBBx4Y8/tceOGF/Pd//3f2z21tbZP5UadEBQIRERERERGZEYwxfPWrX2Xt2rVccsklXHXVVdx+++00Nzdz+eWXc/XVV/MXf/EXnHTSSeOe58orr+See+7JFgjq6+t561vfytVXX8173vOew/IGrrvuOv72b/82G1J4yy238LnPfY7rr79+3B0RPvGJT7BhwwauueYarrzySn7wgx/k55cwDmO93oY8Wr9+PWeeeWa+TyshaWtrY9WqVWEvQ/JIz2np0XNaevSclh49p6VFz2fp0XPqv6B/x8PDw4e17M9Ex/qdj/c8qINARERERERERFQgEBEREREREREVCEREREREREQEFQhEREREREREBBUIRERERERERAQVCEL3r093Mu9fN3Lqf27m8VcHJ36AiIiIiIiIiA9UIAjR/248wMce2kvXcJpN3QluuHMHr/aOhL0sERERERGRkrRq1SrWrFnDtddey3XXXce6devyct729nauvvrqcY95+umned/73nfM+9773vfS19cHwJlnngnA/v37ufXWWwF3a8JHH300L2sdjwoEIUmkHP76N/sA+Nlbl/KeMxrpGU7z+Sc6Ql6ZiIiIiIhIaaqsrOTuu+/mnnvu4cMf/jC333572EsC4Bvf+Ab19fWH3dba2sqXv/xlQAWCkveDjQfZ3Z/ksuW1XLWins9eNJeqmOG7Lx6gYzAV9vJERERERERK2sDAwGEfyu+44w5uuOEGrrnmmuwH8/b2dq644go++clPctVVV/Hud7+beDwOwIYNG7j22mu59tpr+d73vpc9T3t7OzfddBPXXXfdUV0KAwMD3HzzzbzpTW/i05/+NI7jAHDxxRfT09Nz2Pq8roSRkRG+/OUvc99997FmzRruu+8+LrvssuzxjuNw6aWXHvX4qYhN+wwyJd/bcACA285tAaC5OsZNp8zmm7/v4a5Nvbz/7KYwlyciIiIiIuKb1PffhbPx53k9Z+Tka4jd9J1xj4nH46xZs4ZEIkFnZyf/9V//BcDjjz/Ozp07+clPfoK1lg984AP87ne/Y968eezcuZPbb7+dz372s9x222386le/Ys2aNXz84x/n05/+NOeccw7/9E//lP0eTU1NfPvb36aiooIdO3bw4Q9/mLvuuguAF154gfvuu4/58+fzZ3/2ZzzwwANcfvnl4665vLycW2+9lQ0bNvDpT38agG3btnHPPffwrne9i7Vr17Jy5UoaGxun8dtzqYMgBHsHkjy6c5CW6igXL63N3v7WVbMAuGtTb1hLExERERERKVneiMEvf/lL7rjjDv7qr/4Kay1PPPEETzzxBG9+85u57rrr2LZtGzt27ABg4cKFrFq1CoCTTz6Z3bt309fXR39/P+eccw4Aa9asyX6PVCrFJz/5Sa655hpuu+02tm7dmr3vtNNOY9GiRUSjUa666iqee+65Kf0cN9xwA3fffTcAd955J9dff/2UznMkdRCE4L5X+rDAm0+cRSxisrf/wZJaGquiPPrqAL3xNLMqo+EtUkRERERExCcTXekPwplnnsmBAwfo6enBWsvNN9/M29/+9sOOaW9vp7y8PPvnaDRKIpEY97zf+c53aG5u5u6778ZxHE477bTsfcaYw4498s+5mjdvHk1NTTz55JO88MIL/Mu//MuUznMkdRCE4DfbBwB40/K6w26PRQwXLa7FsfD4Lm15KCIiIiIi4petW7eSTqdpaGjgwgsv5M4772Rw0P0ctn//frq7u8d8bH19PXV1dTz77LMA/Pzno+MS/f39tLS0EIlEuPvuu0mn09n7XnjhBXbt2oXjONx///2cffbZOa21pqYmuzbPW9/6Vj760Y9y+eWXE43m5+KyCgQBc6zlNzsGiBi3Y+BIFy2tAeCRnQNBL01ERERERKSkeRkEa9as4UMf+hD/9E//RDQa5cILL+Tqq6/m7W9/O9dccw233nrrUR/Ij/T5z3+ez3zmM6xZswZrbfb2m266iZ/+9Kdce+21bNu2jerq6ux9p556Kn//93/PFVdcwYIFC7j00ktzWvd5553HK6+8kg0pBDfYcGhoKG/jBQDGHvqT5Mn69euzezfK4TZ2xjnjGy+zel4VT/7piqPub+uKc9rXX+asuVU8/e6j7w9DW1tbduZGSoOe09Kj57T06DktPXpOS4uez9Kj59R/Qf+Oh4eHqaqqCuz7Be3FF1/k85//PN///vfHPOZYv/PxngdlEATsqd1uFeq1C2uOef+JTRXMrozyQscww0mHqjI1eYiIiIiIiMior3/96/zgBz/gC1/4Ql7Pq0+fAXt69xAA5y2oPub9EWM4Z34VKQfW7RsOcmkiIiIiIiJSBG6++WYefvhhVq9endfzqkAQsGcmKBAAnDffve+ZPUOBrElERERERCQIPky4yxim8rtWgSBAQ0mHtu4ELdVRFteXjXncuZnigVdMEBERERERKXaVlZV0d3erSBAAay3d3d1UVlZO6nHKIAjQhs44joUzWqvG3e/ynHlugeBpdRCIiIiIiEiJWLhwIe3t7XR2dgby/ZLJJGVlY1+YLXWVlZUsXLhwUo9RgSBAz+93MwVObx0/SbOpOsaKxnK29Iywpz/J/LqZ+z+1iIiIiIiUhrKyMpYtWxbY99POFJOnEYMAPb8/DsDprRO3eZyrHAIREREREREJkAoEAXqp0y0QnNIy8V6cXoihCgQiIiIiIiISBBUIArS5O0HEwIrG8gmP9ToInlZQoYiIiIiIiARABYKAHBhO0TGUYllDORWxiX/tp82pojJmeG7vMCmneFI+reOQ/v2PsUMHwl6KiIiIiIiITIIKBAHZ3JMA4MSmipyOL4sazppbxWDSYWNmNKEYOL//Een/eQep/7hM25eIiIiIiIgUERUIAvJyt1sgOKExtwIBFGcOgfP8TwCwe17Abv1tyKsRERERERGRXKlAEJCXMx0EJ+TYQQDFl0Ng08nDigJ2x5MhrkZEREREREQmQwWCgGzucgsEKydRIPA6CH5XJB0Edv8miPeO/rljc4irERERERERkclQgSAg2Q6CSYwYLKwrY15tjLauBL3xtF9LyxuvIGBOvCzz501hLkdEREREREQmQQWCAKQcy5aeERoqo8ypieX8OGMM582vxgLP7i2CLoJMgSBy4iVQVoXt2KygQhERERERkSKhAkEAdhwcIelYTmiswBgzqceeu6B4cghsZ6aDoPUkTMsJMDIIve0hr0pERERERERyoQJBALYeGAHg+MbyST/2PC+osAhyCOx+d6TAzDkRGpe6tx3YFeKKREREREREJFcqEASgazgFQOskxgs8Z82rImLg2T3DBd2ub63Fdr0CsUqYtRBTP9e9o29fuAsTERERERGRnKhAEICeYTdgsKlq8gWC2vIoq5or6RhK8WpfMt9Ly5+hHnekYPZiTCSCqZ8HgO3fG/LCREREREREJBcqEASgJ9NBMLsyOqXHnzO/CoBnC3jMwB54FQAze7F7Q53bQWDVQSAiIiIiIlIUVCAIwGgHwdQKBKvnuTkEv9s7nLc15d0RBQKNGIiIiIiIiBQXFQgC4BUIGqcwYgCjHQS/K+gOgp0AmEw4IRoxEBERERERKSoqEASgJ+6OGDROsYPg1JYqKqKGdfuGSTuFGVTojRjgdRDUqYNApFBZa+lLpMNehoiIiIgUGBUIAtCd7SCYWoGgLGo4Y24VAyMOm7oT+Vxa3hyVQVDbAiaiDAKRAtPeN8KZd2yh6Ysb+aOf7izYoqOIiIiIBE8FggAcmMYuBp7V8zJBhXsLdMygdw8AZtZC97+RqFskGOrCOrpSKVIIkmnLDT/ZycbOOAA/auvl9qc7Q16ViIiIiBQKFQgC0D2coiJqqIqZKZ/jnPmZoMI9hRlUaPvcAgFeOCFgqhvBWhg+GNKqRORQX3qmk3X7hjl7XhVP/unxGODfnu4ikXLCXpqIiIiIFAAVCHyWciy9CYemqijGTL1AUMgdBNZJQ/8+qGnGxCpG76hucv871B3OwkQkq3soxefXdhAx8I2rFrJ6XjVXHF9Hx1CKuzb3hr08ERERESkAKhD47GDcba+fXTm1/AHPisYKZlVEeGF/vPCu9g10gpPGZHYuyKppBMAO9oSwKBE51DfW99CXcPjjU2dz6hy34Piu09y/o3dv7gtzaSIiIiJSIFQg8NlQ0v0wX1M+vQJBxBjOnldN0rG8mJkfLhS2L7OV4REFAqMOApGCkHIs/7nO/Xv4F+e2ZG+/dHktFVHDr7b1F17hUUREREQCpwKBz7wCwXTyBzynzakEYENHYRUI6PMCChccfnu1OghECsE9L/fR3p/koiU1nJJ5HQGoLY/yhqW1DIw4rG0vvPElEREREQmWCgQ+G8pclasum/6v+tTMG/sXCqxAYHu9gMIjOwjcAoE6CETC9e/PdQHw52c3H3XfRUtqAHh812CgaxIRERGRwqMCgc+Gku4e4/kpELhzwy92FNZOBt6IgTlkBwNgNINgSB0EImHZO5Dk0Z2DtNbEuOaE+qPuv2CRCgQiIiIi4lKBwGfxTAdBVR4KBKuaK4gaeLEjjrV22ufLm4EOAEzd4QWCbAbBoDoIRMLys829WODNJ84iFjl61OmsuVVUxQxP7R4k5RTQ64qIiIiIBE4FAp/lM4OgMhbhxKYKuofT7B1ITft8+WIHOt0valsOv6NaHQQiYbtrk7uF4Q0rZx3z/vJohLPmVjGUtLzUVVjjSyIiIiISLBUIfOYVCPIxYgCjOQQvFlIOQaZAYI4sENR4HQQqEIiEoWMwxW9fHaSpKsrrFteMedxZ86oBWLe3sMaXRERERCRYKhD4LJtBEMvPr/q0AswhsJkRgyM7CExVg/vF8IGAVyQiAPe83ItjYc0Y4wWes+a6ryvr9hXO64qIiIiIBE8FAp/51UHwfEF1EHRBtAwqj2hhzvzZxntDWJSIPLh9AICrj68b9zgVCEREREQEVCDwnRdSWFk2/QwCgJNb3AJBW4HMCtvUiNshUDsHY474GcurIRKFeF84ixOZwdKO5eGdA0QN/MGS2nGPPaGpgvKo4aXOAgtAFREREZFAqUDgs2wHQZ5GDBbWl1EVM2zpSeAUwhv5QXd/9aPyB8AtGFTOgnivPnSIBGz9/mF6htOct6Ca+orouMfGIoYTGivoH3HY3Z8MaIUiIiIiUmhUIPDZUCqTQZCnEYOIMaxorGAoaQvijfyYOxh4KuvBScPIUHCLEhF+kxkveOPS8bsHPCc1VwCwqTvh25pEREREpLCpQOCzfG5z6DmxyX0j/3IhvJHPBBSa2jnHvNt4uQTKIRAJ1EM7MgWCZePnD3hWNbvjSy91FsDrioiIiIiEQgUCn+U7pBDghEa3QLC5AAoEE3cQqEAgErR4yuGJXYPUlkc4d351To9ZlekgKJR8ExEREREJngoEPvNCCvNaIPA6CHrCLxCMdhCMUSCoqgfAKqhQJDDP7R0mkbZcsLCGsmhu3UteB4EKBCIiIiIzlwoEPhtKuhkEVX4UCAqqg0AjBiKF4sn2QQDOX5hb9wDA8Y3lxCLwUldCoaIiIiIiM5QKBD7zI4PAGzEojA4Ct0BgapqPfX9lpoNgWB0EIkF5crcbCnr+gtwLBOXRCCtmV3AgnqZjMOXX0kRERESkgKlA4LMhH0YM6iuizKuNsbM3mS1AhMVmRgzG6iBQBoFIsKy1PNk+SMTAOTnmD3hGxwwKoPgoIiIiIoFTgcBnfoQUwmgXwZawuwi8DoIxMghMpoNABQKRYGw9MELnUJpT51RSVxGd1GO9oMKXlEMgIiIiMiOpQOCzeCaDoDqW5wJBU2EUCCbcxaDK7SBQSKFIMEbHC2om/djjMoXHbQdH8romERERESkOKhD4zBsxqMxjBgHA8oZyAHb2hvxGfqATKmox5WO0MmvEQCRQUwko9HivK9sOqEAgIiIiMhOpQOCzRMrtICjPcauxXC3NvJHffjCZ1/NOhk0MQnJo7O4BDhkxUEihSCCe2zsMTD5/AOC42V6BQBkEIiIiIjORCgQ+S6QdKqIGY/JbIFgyqwA6CAYz+QPVY+xgANkOAqsOAhHfjaQdNnTGqa+IZD/sT0ZrTYyasgjbDo5oq0MRERGRGUgFAp8l0paKPI8XACzLdBDsCHFW2A71uF/UNI15jMmOGKiDQMRvGzrjjKQtZ7ZWEZlCUdIYw7KGcoZTln3a6lBERERkxlGBwEfWWhIpS0WexwsAmqqi1JRF2NEb4pW+wW4ATHXj2MdUaRcDkaCs3+eOF5w1r2rK5/A6D7Yqh0BERERkxlGBwEcpByxQEc3/r9kYw9KGcuIpS0dIV/pGOwjGKRBoxEAkMOsy+QNnzp16gWC5cghEREREZiwVCHyUSLs7GPgxYgCwdFYZANvDyiHIFAhM9dgjBpTXQCSqkEKRAKzzOgimUyBoyGx1qA4CERERkRlHBQIfeTsY+DFiAIcEFYa1k8FgpoOgevaYhxhjoKIe4r0KPRPxUdKxvNgRp648worGiimfJztiEGK+iYiIiIiEQwUCHyXS/mxx6PG2OgxrJwM75GYQMF4HAUBlPTgpSA77vyiRGWpbv/uac8YUAwo9oyMGKhCIiIiIzDQqEPjIKxBUxPz5NS/NdBBsD+tK39ABAMx4GQSAqfJ2MlAOgYhfXu51X29Ob62c1nkW15cTNcogEBEREZmJVCDwUSKVySCY8R0EKhCI+G1Ln1sgOGXO9AoEZVHD4lnldA2n6U+k87E0ERERESkSKhD4KNtB4FeBIBNSuCOskMJBL6Rw7AwCwB0xAKyCCkV8ky0QtEw9oNCzuN59bdnVF1K+iYiIiIiEQgUCH42OGPhTIJhdFaOuPMKrvclQAgBz7SAw6iAQ8d2WzIjByS1TDyj0LMqML73apxwCERERkZlEBQIfjWR3MfDv17ygroxE2tIzHEIr8NABiJZBRe34x2U6CIirg0DEDz3DKTrisLyhnNry6LTPtyTTQbCzVx0EIiIiIjOJCgQ+SqTdDAK/djEAmF/nvpHfPRDsG3nrpCF+EKob3a0Mx5MJKbQqEIj4YkNHHJh+/oBn0SxvxEAdBCIiIiIziQoEPvJ7xABGCwR7+1O+fY9jGj4A1mKqx9/BAMBU1LlfJPp9XpTIzPRiZ6ZA0JKfAsGSWV4AqjoIRERERGaSWC4Hfec73+HHP/4xxhhOOOEEPv/5z1NRMf0511KXCGDEYH6t+xTu7g/4jfyQG1A44Q4GAF6BIK4CgYgfsh0EeSoQLPJCCsMKQBURERGRUEz4yXX//v1897vf5c477+QXv/gF6XSae++9N4i1FT1vxMCvXQxgtINgT8AFApvZwYCaiTsIqHQLBFYdBCK+2NCZ5xGDei+kUB0EIiIiIjNJTpe20+k08XicVCpFPB5nzpw5fq+rJAQxYrDAyyAIvIPA3cEgtxGDTIihCgQieWetpa0rTszAisb8dHZVl0VoqY6yuz9Jygl+hxQRERERCceEIwatra28+93v5g1veAMVFRVccMEFXHjhheM+xnEc2tra8rbIYrWz3d1ZoO9AN21tB335HiM9bpfCy3sP0NbmzwfweDx+1PNZ98oG5gDdw5aeCZ7rqv0HmQ/0drTTof8vCsKxnlMpTp1xS2/CYVmtZcvmTXk7b0u5Q+cQPLq+jfnV/hU5ZWz6e1p69JyWFj2fpUfPaenRczp5ExYIent7eeihh3jooYeoq6vjtttu4+6772bNmjVjPiYSibBq1aq8LrQYzR7oAvawsHUOq1b503VR35+ER9vopYJVq07w5Xu0tbUd9XymOx8gDTQvOoHWCZ5rp2aQ1P1QXxGhSf9fFIRjPadSnPbtGAC2cVx9fl93T3xpBy8d7KOiZQmrFtfk7bySO/09LT16TkuLns/So+e09Og5PbbxiiYTjhisXbuWhQsX0tjYSFlZGZdddhnr16/P6wJL1YiXQeDjiEFrTYyIKewMAlOpXQxE/NLW5eYPLK/L7+uMl0OwU1sdioiIiMwYExYI5s+fz/PPP8/w8DDWWp588kmOO+64INZW9LxdDMp9DCmMRQytNTE6h9IkUo5v3+cok8ggQNscivhmU3cCgGV5LhAsnuXtZKCgQhEREZGZYsIRg9NPP503velNXHfddcRiMVatWsXb3va2INZW9LIhhT4WCMDdyWDvQIq9AymWNpT7+r2yhg64/51EgUC7GIjk36Yut0CQ7w6CxV4HgbY6FBEREZkxJiwQANx6663ceuutfq+l5IzuYpDTZhFTtqCujOf2DrNnIBlYgcBmOgiobpr44PIaMAbiKhCI5Num7jgGWFqb3/N6HQSvasRAREREZMbw95PrDOe1/PveQVDrvpEPNIcgk0FgqmdPeKiJRKC8ViMGInnWG0+zdyDFklllVOU568TrINCIgYiIiMjMoQKBj4IbMXAbQXYHWCCwQ15IYQ4dBOCOGSSHsemUf4sSmWHaut2AwpXNlXk/d3N1lKqYYWffCNbavJ9fRERERAqPCgQ+Gh0x8D+DAGDvQIAfvod6oLwGE6vI7XjtZCCSd17+wMqmHP8eToIxhsX15QwlLT3D6byfX0REREQKjwoEPhpJeR0E/v6a59a4BYL9g8EUCGwqASODueUPZBjtZCCSd94OBiub818ggNEcAm11KCIiIjIzqEDgo5FMB0GZzyMGc2rcEYP9AwGNGAx6WxxOnD+QlekgsAoqFMmbTV2ZEYGOlIEAACAASURBVIOm/I8YACyapRwCERERkZlEBQIfjTjBhBS2egWCoDoIvC0Oa3LY4tCjDgKRvPM6CFb51UFQ7+1koAKBiIiIyEygAoGPguogaKmOYQiuQMCQ10GgEQORsMRTDtsPjtBaE6OxKqcdaydtQV0IO6SIiIiISGhUIPCRVyAoj/hbICiLGpqqonQOpUg7AaSNezsYTGbEwCsQaMRAJC9e7kngWH8CCj0LMx0E7SoQiIiIzEjWcUj+19tI3fnBsJciAVGBwEdJr0DgcwcBQGttGY6F7gDSxm0mg2AyIYXZDIIZ2kHgbPw5ye/eiLPxF2EvRUpEdgcDH7Y49MyvnTkdBNZJ4+zdqK1YRURkQtZaUj/7EKlf/E3YS/GdbbsX++LPcJ78Os6Op8JejgRABQIfjTgBFggyOQT7BgN4I5/JIDCTyCAwFfXuF4k+P1ZU0JxXnyX17bdgX7iL1D1/qT3lJS9GAwr97yDYPQMKBOlffJzUF88i+c+nYHt3h70cEREpYM7v/gvn8a/hPPJFnI0/D3s5vko/8R/Zr50n/j3ElUhQVCDwUVAZBDC6k0FHADkEdmgKHQQVte5/EwP5X1ABs06a9F2HtGR1b8fufDq8BUnJ8DugEKC+IkpdeYT2vmRJF7Zs93acJ77m/qF7O6kf3hzugkREpKA5j30l+3X60S+HuBJ/2XQSu+3x7J+d9nUhrkaCogKBj1IBZRAAzPU6CAYCaI/NZBBMapvDipm5zaHz9Lew7eswC84getU/uLe13RfyqqQUtAUwYgBuUGEibekJYHwpLM4Ld0E6SeT8m2H2EuzLD+K8+ruwlyUiIgXIDh/E7tsINc1QVoXd9WzJjqfZ3c9DKo457iKoaYGuV7DJeNjLEp+pQOCjMEYMgukg8EIKJ7GLQeXMGzGwyTjpX38OgOj1X8YsPd+9fc+LIa5KSkHasWzpSVBXHmF+rT87GHi8nQxKOajQ2fYYAJHTrif6+lvd2x7/WphLEhGRAmV3PAXWYo57PWbhWZAccgsGJcjufBIAs/Q1mLkng3WwHZvCXZT4TgUCHwU5YtCaCRPbH0QGwWCmg2ASGQQzccTAefpb0LcHs+pKIkvOw8w9BaBk/xGR4Gw/OEIibVnZXIEx/r6+LCjxHALrpLHbn4BoOWbJeUTOeSfEKnA23qOrJCIichQnMyoaWXo+ZvE5ANhXnwlzSb6xmVDCyJLzMPNOdm/T+9iSpwKBj7IFggBGDEZDCoMYMfAyCCZTIPBGDGZGB4FNxkn/5gsARC/7JACmahbMXgIHdmKHe8NcnhQ5L39gZZO/4wUAC2pLvECwfxPE+zCLzsaUV2Mq6zEnXAKJAezLvw57eSIiUmDs/pcAMPNPxyw4071t74Ywl+Qbb9zOLDkX07oKANuxOcwlSQBUIPBRMm2JGogGUCAINqSwB4yBqtwzCExmm8OZ0kHgrP+h2z2w8nIii87O3m7metXX0vyHRILh7WDgZ0ChJ9tB0FeiBYLMlRAz/7TsbZFT3wyA85LyQkRE5AidWwAwc07ANB8PgO3eFuaKfGH798OBndB8HKamGdOwyL3joHb6KXUqEPhoxLGBjBfAaEjhfp8LBNZaN6SwsgETieb+wAqvQFD6IYXWWpzH/x8A0T/4i8PuM3NOdI/pKr1/SCQ4bdkOAv8LBAtLPIMgWyBoPSl7W+SESwBwtvwmlDWJiEhhso6D7drqjs7WzcU0L3dvL8UCQWZsIrL4XPeGTIHAHmwPa0kSEBUIfDSStoEEFAI0V8cwwH6/dzFIDEA6CZPJHwDIhBTOhBEDu+1x7J7nMa0nYY6/6LD7TOMS94sDO4NfmJSMTQHtYACjHQR7SrVA4LWKzh0tEJhZ82HOSujZUZJv+kREZIp6291U/+YVGGMw1Y1Q1eCOjzqltduPs9MtEHg5C6ZhIQC2d1doa5JgqEDgo2TaBrLFIUAsYmipjtE1nCLt+LhfeSZ/wFRNskBQPnNCCtOZ7oHI6/7PUQFyZrZbILA9KhDI1Fhr2dQdpzxqWNZQ7vv3K/kMAq+D4JACAUAkU9xztj4W9JJERKRAWW+8oGVF9jbTtNy9eHawtD44ex0EJtNBYKpmuR3BB3e7HcVSslQg8EnasaRtMDsYeObUxHAsdA7510Vghw64X0yyg8BEIlBeU/IjBvbAq9gNd0PVbCJn3nj0AY1Ls8eJTMXegRR9CYcVjRXEAihANldHKY+akhwxsOkU9OyA6iZMTfNh95mlr3GP2fVs8AsTEZGClO0qa1qevc00H3f4fSXAOmnsrucgVoGZf3r2dtOwEFJxGOwKcXXiNxUIfJLMXMUPasQARoMK/SwQZDsIqpsm/9jKehgZLLkWrEOl1/4nWIfIeX+Kqag56n4zezEA9sCOgFcmpSIbUBhA/gCAMYZ5tTH6Eg5DSSeQ7xmY3nZw0phM4e5QkUWrAbCZBGcRERFv/t7MXjR6Y4P33q50Oghsx2ZI9GMWnIGJHdKt6I0ZKIegpKlA4JNkOvgCQUu1GxrY6WNQoR3scb+YbAYBuIEuULJjBnZkCOepb4KJEH3t+495jKmoheomONjuXr0UmaRsQGEAOxh4WmvcMQO/Q1CDlh318bJBDtV8PFTNxu59EZscDnZhIiJSmLwCwayF2ZtMwwL3i97SSfe3O58GRvMHPNmfu4R+VjmaCgQ+GfEKBAFlEAC0VHsdBD5eoZ9GB4GpcIMKSZRmUKGz/n9h+ADmlGtHwwiPwcxeDE4K+vcGuDopFdmAwib/Awo9rdldUkprzMAb9fGyQQ5ljMEsXg1OCrv7+aCXJiIiBSh75bxhtIPAzHILBLaEPjQfmT+QVTfHvX+gI+glSYBUIPDJSGbEIBZoB0EAIwZeB0H1VDoIMlsdxkuvg8Dd2vBrAEQv+MD4B9fPcx/Tt8/vZUkJ2tTtjhgE2UHgjS91lFgHgbebiDf6cySzyL1yYndpzEBERMAezBSWG0Y7CKif797XuyeMJfnCG6+LHFEgMLVugYB+FQhKmQoEPhkJYcSgOVMg6PI1pDATSlIzlQwCd8TAlmBQod3+BHbvi+7Whsf9wbjHmvq57hd96iCQydvUlcAAJzQGVyCYmykQ7PN7G9WAeSMGY3X8RBZ7OQQKKhQRmemstW5rfUWdm+ifYWa5BQL6SqNAYBMD7g4/NS3ZcO2sWnUQzAQqEPgkGeqIgf8dBGYKHQSlPGLgPPHvAEQu+MBRWxsexas0q0Agk3QwnmbfYIplDeVUlQX38l2qHQQ200HA7KXHvN9kggqdTKuliIjMYAOdkEoc3j0AUDcXTKRkOghs+zqwDmbxOUdv150ZMUAFgpKmAoFPvA6CILc5DKJAYDMZBFPqICjRkELbuxvnxZ9B5SwiZ9804fFeB4FGDGSy2rqCHy8AmFtbqiGFO4BxRgzqWmHWAujeho2XXueTiIjkznodApnMAY+JxqCuFQY6sKmREFaWX3anWxSPLDn3qPtMbat7jEYMSpoKBD4ZCWGbw5aazC4GfoYUTqODwMsgsPHS6iBIP/VNcFJEznmnu0vBBDRiIFO1ydvBIKAtDj1zSjCk0KZT7jaH1U2YyroxjzNzT3aP3/9SUEubMmfb46R/8y/YfW1hL0VEpPRkLuyYTJbUoUy9N2ZQ/O/tnLECCgHqWtz/qoOgpKlA4JNwtjkMIoMg00EwlV0MKr0Rg9K5EmdTIzhP3QFA9LXvy+1BGjGQKdqU7SAIbgcDOHQXgxLqIOjbA0563B1HAMy8UwCwezcEsaopS//+x6T+/RLS932C5JcvwNnxZNhLEhEpKbZ/v/tFXevRd3rp/oNdAa7IH3bXcwCYRWcffWdVI0Si6iAocSoQ+CQ7YhBgBkFDZZSo8TmDYKgHYpVQXj35x5bgiIHzwl3Qvx9z4mWYlhU5PUYdBDJVYXUQzC3BDAIvoJAxxgs82QLBvsItENiRIdI//RBYi1lyHowMkv7xn7tdEiIikh/9XgfB3KPuMjXelfXOIFeUd7Z/v9td13w8pqrhqPtNJOKGFw51Y9Ol01Uoh1OBwCdhdBBEjKG5Okb3cJpUZsQhn2w6CfE+qGmaOIjvWDIdBKUyYmCtxXnkdgCiF/557g/Mzm/t92NZUsI2dbkFglUBdxDUlkeoihn2lVKBILvF4QQdBHO9DoLCHTFwnv1vGOzEnHItsVsexSw5D7v/JZznfxL20kRESobNFAioO7pAQG2ze0yxFwja1wEQOVb3QIapzRRDBruDWJKEQAUCnyQdL6Qw2F+xN2bQ7UcXQeaFYEr5A4DJZBCUyoiB3fwAds/zmHmnYFZenvPjTDQG1Y0w2OVumSOSg+Gkw/aDI8ytidFQGQ30extjaK2JMTDiMJR0Av3evplgi0OPmXOi2065b0PB/n11NtwNQPSCP8cYQ/SNf+3e/vS3wlyWiEhp6XMv7JhjjBiMfmgu8gLBLrdAYBaeNfZBmTFjO9QTxJIkBCoQ+GQkhA4COHQng/wHFWZfCKaQPwCU3IhB+jdfACDyho9OvqOipgmcFAwf9GFlUope7klgCX4HA09rie1kYHvbATCzFo57nCmrhObjYbALCrDrx44MYbc9DhW1mGUXAGBOvAxmLcBufTS7U4OIiEyPHWfEgMyIQbF3EDjtmfyB8QoENZkLheogKFkqEPgkjAwCgJZq98qiL0GF3gtBzdQ6CEppxMDZ+lvstsegcSmR098y6cdnZ9WKvNIswfHGC1Y2BTte4PGCCvcNlMbMYXab0VnzJzw2Mrdwcwjs9ifcfbmP+wNMrBxwu5Qip10PgLPx52EuT0SkZIw3YpDtIBgo7pBC274OjMEsOGPMY7KdxMPqIChVKhD4JBnCNocAzdkOAh8KBEPT2OIQstscFvuIgbWW9H2fAiB6yd+4IwOT5c2qqfoqOdrU7e1gEE4HwZzqEgsqzISEHvNK0BEKeScDL206kuke8EROvgYAZ+MvAl+TiEhJ6t/vBnVXHGNr3Fqvg6B40/1t7x7338aWE0Z3HjuWzOcAO6gCQalSgcAnYY8YdPhQIMhucVgztRGD7F7j8SIvELx0L3bnUzBnJZGz/2hK5zA1boGg2NNuJTjZgMKAdzDwzK0tra0Oxw2bOoKZe5L7mI7Nfi5pSpw9zwMcdbXHLLsAKmdhtz2OHRkKY2kiIiXDphLuiGxtyzHHSkczCIq3gyAbULhw7IBCOORC4ZAucpUqFQh8EtqIQaYN2J8Rg/x0ENgi7iCwTpr0/Z8GIHbF302tewBGK81F/A+JBKvN2+Iw4B0MPHNqSqdAYNMp90pQTQsmWjbh8ablRPdxHS/7vbRJs16BYP5ph91uojHMsteCk8K++kwYSxMRKR1eUPdYF8lqiz+DwGn3AgrPHP/AGi+k8IDfS5KQqEDgk7A7CPwJKfQ6CJqndoLy4g8pdNb/ELtvI2bRaswpa6Z8nuw/MEU+qybBSDmWLT0J6isizKudYlFqmlprSiikcKADrIOZNS+345uXg4kUXAeBjfdD11aYtWD06tUhIssvdI/b9njQSxMRKSnZkdAxLpKZsioorynqzlBvZM2Ms8UhHNpBoBGDUqUCgU/CyiDwNaRwmhkEJhqDsmpIFGdIoU2NkP7l/wUgeuXfT37ngkPVqINAcrf94Agjacuq5srp/X83Dd5riy9bqAYsO15Qn1uBwMQqoGkZDHYW1LZOtmMTAGbuyce83yx/HQDOdhUIRESmZcjrIBjnIlltCySHsInBgBaVP9baTEBhBDP/9PEPzmYQaMSgVKlA4JNkSCMGfoYUZj/MTjGDAIDKOkgMYJ3i20vdeeoOOLATs+JiIisunta5TCaksJhn1SQ4bV2ZgMKQ8gcAmqoy40vDxV8goHcPACbHAgGAaTkBKKwxA9u5BQAz54Rj3m8WnAllVdgdT2FTI0EuTUSktEzQQQBFvkNV724Y6MDMWYnxtiUfg/F2M9OIQclSgcAn3ohBLOACgZc03ulHG/B0MwgAvBedkeIaM7CJAdIP/SMA0Sv+fvonLJH9ciUYbZmAwpNCyh8Af8eXgjbZDgI4pEDQWYAFguYVx7zfxMoxS86D5DB29/oglyYiUlKyV8vHu0iWzSEovos/tj0zXrDwrIkPrs78DhRSWLJUIPBJKjNiUBYN9vvOrooSNT51EExzFwMAU5HZNqXIggqdx74K/fsxp15HZPHqaZ9PHQQyGdkOgpC2OARorIpiKJERg97MFoc57GDgMXO8oMICyiHoegUA03L8mIdEMmMGyiEQEZmGoQlCCjlkJ4Mi3OrQ2ZUJKFyUQ4GgajZAQY3cSX6pQOATL4Mg6BGDiDE0VcXoHk6TzqwhbwZ7wESgsmHq5/D2ji2iAoEd7Cb9yBfBRIhd/rf5OWlmhk3zW5ILr4NgVYgdBNGIobEqStdwCmvz/NoStL7MiEGuIYUUZwcB4HYQMBo+JSIikzcaUjjORbLse7viu/gz2kEwfkAhZDLFKmfBUE/xvx+QY1KBwCejHQTBB4q1VEexQM9w/lqBrbUw3ANVszGRafxvU5nZ6jBePAWC9MP/AvE+Iue8E9O6Ki/nLIW0WwmGYy2buxNUxQxLZk28JZ+fmqtipBzoTRRfhsihbJ83YjA/58eMdhAURoHAWovtegViFdCwaMzjvO2qHI0YiIhMnRfUXYIdBG5A4XqIRI/aMndMNY2QSsDIkL+Lk1CoQOATr4Mg6AwCGA0q7MhnK3C8F5y0+4IwDabIOghs726cx78G0XKil34ivyevaXbTbvXiKuPY1ZdkMOlwYlMFkZB2MPA0+blLSpD6MiMG9bmPGFDbAlUN0L0Vmy6Anz/e676ONiwat2hrapqhYTF0b8MOHwxwgSIipSOnoO5izSA48CoMdmFaV2HKq3N6iFEOQUlTgcAnYe1iADCnJpM2ns838YM5bO+SCy+ksEg6CNIPfBZScSIXvB8ze3Fezz1aaVYXgYxtNH8gvPECT4uPu6QEKRtSOJkMAmPcLoJ0Enq2+7Sy3NkDuwAws8fuHvCYhWe4j9n9e1/XJCJSsrJB3Tl0EBTZiIFtz+QP5DBekFWtHIJSpgKBT1KZDtwwOwjy+Sbe5rC9S04q3ZBCWwQdBHZfG84z34HKeqJv/Kv8fwNvVk3VVxnH6A4G4QUUepoyry3deRxfCppNp6B/P9S0YKKTG9kY3eqwAIIKD74KgGmYuHAZyaRSe28CRURkcuzQZDoIimvEwJnMDgYZox0EKhCUoljYCyhVoyGFwX9vX67yeemt44Wz5KCYRgxS930CrEP0DR+dfufEMZiaZiyog0DG5XUQhBlQ6GnJjBgUdQfBQAdYZ1IBhZ5sDkEBBBV6HQTj5Q94zAI3h0AdBCIiUzTYA9FyNz9qDNltwAeL60OzF2I7mQKBN3JsQ/xZ7VAPzjPfwe7dADXNRE6/gUgmmFemRwUCn4QZUtjsvYkfzGMHgVchnGYGgRdSWOgjBs7Wx7Av3QuzFhB53S3+fJPa4k27leBs6nY7CFY2FUAHQVWmg6CICwTZ8YL6KRQIsh0EBVAgOOiNGEzcQZANKlQHgYjIpNl00s19qZ+PGS8LKHMRzQ4XT4HAWovd/XwmoPDU3B9Ylfk8EFIXrLPrOVLfus7tCPRu++2XMCe8kdiaL+YtVHym0oiBT8IMKfQ6CLry2QY8mJ8OAm+bw0IeMbDWkv7FxwGIvunTOQe2TJapUQaBjM9aS1tXgrKI4bjZ4RcImv14bQlab2aLw+kUCAqgg4ADmRGDXDII6lph1gLo3IKN9/m9MhGR0pLdwWCCi2QVtRCJFVcHQe9uGOrGtJzo7rCVo+zvYuiATwsbmz24i9Q3rob+/UROfwux9/yM6LVfgIbF2JcfInn7uaQf/Ee3sCNTogKBT9JOeCGF2QJBPjMI8tRBEPSIgT3YjvPyg9hJfAi3L9yF3fU7TOtJRFb/sX+Ly8yxKeBFxrJ/MMXBeJoVjeWhdCMdqRRGDKbTQUDzcRCJFkQGQbaDIIcRAyC7dZXdt9G3NYmIlCTvA3/1+OOmxhj3vV38INYpjkK6N3pmFpwxuQd63RIhdBCkfvznMNRD5Lx3E33H/xBZdQXR199K2V9vJPqmvwUs6V/+LakvXYCj0bopUYHAJ8nM60I0xJDCrqEC7CAIcMQg/dhXSf7DClJfv4rkZ5aS+tXfY60d9zE2NULq/k8BEL36c5hI1Lf1jc6qKaRQjs0LKCyE/AHrpGmqdP8+FPWIQW9mi8NJ7GDgMbFymL0YBrtC3zJwNINgYU7Hm7knu49TgUBEZFJGtzic+CKZqW4Ea6FItpW1e14ARovIuTKZXQyC7pZwXnkEu/kBaFxKdM0XDxv5MLFyopf+DbEPPYNZfC52z/OkvvRaGp/9MjYZD3SdxU4FAp8kQ+wgaK7y4Sqfd5V7ursYBDRiYLu3k777IxCJYVZdAZEYzq8/S/quW7GOM+bjnKfugK6tmOMuwqy83Nc1Zn+XIbRnSXF4ydviMOT8AWf38yQ/s5STv3k6b0g+TWc+i49B68uMGEwhpBDANB8PgO18JW9LmiybTro/R+2cnFtCzbxT3Mfu3eDn0kRESk92xCCHi2TZdP/iuPjjTLuDINgCQfrBzwMQvfSTY44AR+aeROyWR4he+88QLWf2898i9dWLQi/sFxMVCHySymYQBP+9m/wYMeh3t2wxdXOmd6LsiIG/c7DOC3cBELngA5S952fEPvhbqG7CefLrpO/5y2N2Eth4H+lf/wOQ6R4YL4gmH2rCa8+S4rCpADoIbDpF6jtvhYEOYn27+PbAp0gXcW6G7fNGDOZP6fHZAkFXeAUCeve4OzHkOF4Ah3YQvOTXqkRESlK2gyCXLtrMlfUw0/0nw+55HphGB0GAH7pt1yvYVx6B+vlEzrpx3GNNJEr09bdR9pHniLecit29ntR//9G4FwlllAoEPkmGuItBLGKYXRmlazg1YUt9ruxAJiV0Cm25h8pmEMQHprmi8Tkb7gYgcvpb3P8uOJ3Y+38FVbNxHv9/OI/cftRj0g9/EQa7iJzxh0QWne3r+uCQF1dlEMgYslsctoTXQWA3PwAHdmKWXYA560Za7AHWdH0vtPVMW19mxKB+aq9lpmWF+0WIBQIvf4AcAgo9Zs6Jbn7C3g15+3dBRGRGyDWkkEO6DIrgvZ0dPgg9O6BhUW7dEYfyCiEB/pzpZ/8HgMg578REc9uIzzQfx97LvwbNx2NfftDtFJYJqUDgk1SIIwbghomlHOhN5KlS1r/f3f+1qmF656n0f8TAppPY9vVQWY9ZfE729sj8U4m9+y6IVZC+929Ir/vf0cd0b8f57ZcgWkb0ir/zbW2HybZnacRAjm1Td4KIgRMawysQON4/yK/5M2KXfgKAmwZ/yshIIrQ1TUc2pHCKxc5C6CCw3g4Gk+kgiFVA8wq37fWQbaFERGR8oxkE44cUAtnx0WIIoM7mDyw4ffIPrpwFxsBwcO9h7cafAxA54w8n9TinvI7Yjd8CIP2rv8MO9+Z9baVGBQKfJNPhbXMIo0GF+cghMKmE20JU1zr9tvsAdjGwnVsgPYKZd+pR640sey2xP/ouGEP6f99N+pHbsR2bSX3/XZAcJvK6WzFNy31b26FMrNzdEkchhXIM3UMp9g+mWN5QTmUYs0q4xTbn5V9DtJzIKddiWlbwbPV5zLNd9L70SChrmg6bTrkfjmtaMNGyKZ2jEDII8HYwmL14Ug+LKKhQRGTyMuMCJoccruwxRTA+mt3BYP7kCwQmEnWLBEMHAulKsz073Qyd2Uswc0+a9OMjS84jcubbYLALZ+1/+LDC0qICgU+SmQv3YXUQNOcxhyA6nNnBoK512ucy0TKIVfpbIPAqovNOPeb9kVPfTPQPvw5A+hcfJ/nPp2F3PoWZfxrRN33Kt3UdU1UjJIeUripHaet2r9CvbA5xvGDHUxDvwyy/AFNRC8Dvmt3wTmfjPaGta8oGOtzZ/SkGFAIwewlEYtiuLaG16tve3QCYWQsm9bhsUOE+BRWKiOQqmxU1mQ6CIsgg8N4vR6bSQQDumEF6BEaG8riqY3Pa7gcgcvJVU75YGX3jxwF3lzObKs4uyKCoQOCTMEMKwZ8CAXkoEABuF0Gi37c313bviwCY+ccuEABEz3knsQ8+hjnlWkzrSUTOv5nYBx7MORE8X7LzbEXQiibB2uTlD4QYUOhs/hUAkRPflL3tldZLAah++d6im2XPjhfUT71AYKIxaFrmdlWFdIVoNGhxcj+HggpFRKYgu9V3iWUQTKODAMBUeUGF/o8ZOG33ARBZdeWUz2HmrsKsfBMMdGA33puvpZUkFQh8EuY2h+BmEAB52Y4snx0EgJtDYC2MDObnfEewHZsAMK3jtyBFFp1N2bt+TNlH1xO74SuYqlm+rGdcRTSrJsFqy+xgEOYWh3aTWyAwK0cLBLHZ8/l99EQqBvdC5+awljY1vZktDqdRIIACGDOYYtCi15aprQ5FRHI3qQ6CquIIoLapBHZ/m5stNnvJ1E6SDSr0t0BgE4Pu7gXlNZjjXj+tc0XP+RMA0s/9Tx5WVrpUIPBJOsRdDACaqtwOgu7hfHQQZMJZ8lQgMH7nEHRvd79P83H+nD+PstVo5RDIETZ1h9tBYHv3uO2HDYswrauytzdXx/htmbvLh7PlkVDWNlX56CCA8IMKp9pBQNNyKKvC7ntJWz2JiORqsBsiMaisn/jYItnC2u57CZwUZv7pU27ZD6qDwO58ClIJzPEXuYG702BOugqqGrCbfpXdwl2OpgKBT5JOuCGFLXkMKYzlvYMg8wIb78vP+Q5hrcV2b4eyaqidk/fz551XIAgwBVaKQ9gdBM7mXwMQWXnZYW8emqpiPBpb7R6z9dFQ1jZVtjdz5X2627WGWCCw1kL/PqicNemRKBOJusWe5BD0bPdphSIipcM6afc9Wk1TTh+kR0MKC/t9nd3zPDDFHQw82e26/f1Z0Au0mgAAIABJREFUnW2PAxBZ/rppn8uUVbpboDspnN//cNrnK1UqEPgkFXJIYUs2gyAPIwZDbgfBdN9UZ2XCzmxiID/nO9RAJySHMI1Lpr/jQhC8SrM6COQQfYk0u/qSLKovo64iGsoavPGCQ/MHwB1feqLsTNImit362+K6Et2XGTGYTkghYFpWuF+E0UEw1OOGQk1yvMBj5npBhdrJQERkQsMHwNqc8geAogkpnG7+ADD6s/rdQbD9CQDM8gvzcr7I6ncA4Dx/Z17OV4pUIPBJ2NscNmUyCAoxpNDPEQPrXRVrXJb3c/vBVBfHrJoEa2OnO15wSktI4wXpFM6WhyASw6x4w2H3NVfH6De17Kg5GQa7iuqDZrY1v654Mwi8n8FM8WfI5hAU0fMmIhIa7wJOdVNOh5uySreLtdBHDLwdvxacMeVzmKoG9wsf38Pa1Ah259NQVj2ttR7KLD4PalqwO59WBtgYVCDwSTLkXQzyOWIwGlKYp5b9ykyBwI8Rg54dAJimpXk/ty+qvVk1vUDJKK9AcHJYBYL2dTB8ELP0fMwRM5feDinrqs91j936SMCrm4ZsB8H86Z2nYRHEKsLZ6rB/agGFnmyBYP+mvC1JRKRUZd+f1eRWIMgeOzJYsFvpWcdxRwxiFZg5J079RNmgbf86CGz7OkjFMUvPc7dKzwMTiRBZeRlYJztOKYdTgcAnKccSixBam3tzNqRw+iMGsWwHQb5GDNwPHNaHAgE9OwEwU01kDdjorJoKBDIq9ALBK48AEDn+DUfd11zldic9Xu7lEDwW2Lqmyx7cDSYy7dcyE4lgmpZDYgD69+dpdbmZckBhhhc4afe35WtJIiKlazAzZjuJAkHBv7fr2QaJAczck6f1oTuIkELr5Q8sm37+wKHMqivc87f9Mq/nLRUqEPgk6djQxgsAasojVMXMtDsIrLXuLgblNZhMdsB0ZVuS4r15Od+hbG+7+z0aFuX93L7IzqoVdiuaBGtjp3vVIawCgfPKwwCYFRcddV9jpvj4CKdAJIrd9nhR5BDYVAIGO6FuLiYam/4Jwwoq9EYMpthBQMMiqKjFdmx2w7dERGRM2SyByXQQeNv/FWgOgd2dCSicTv4ABBJS6GTzBy7I63kjJ1wCJoKz+QH9W3gMKhD4JOXY0AIKPS3VMQZGHOKpabx5TwwQScXzlj8AuHuuAgwdzN85M2xmn3NmLcj7uf1gaooj7VaCtbEzTsSEs4OBTSWw29e6836Lzjnq/rKoYXZllJ3xSsyCM2GoG9tRBO3qfZnW/Dy9NoS1k4HNjElMuYPAGMyclZCKQ2YkS0RExuB1EOQaUggYL6+gQHMInHzsYACQ6SDwK6TQWot99XdgIsd8PzIdpno2Zun5bpbSrufyeu5SoAKBT5Lp8AIKPU3ZnQym0UXQ7wVi5Wm8ALIFAhvPf4GA3t1AHmaMg1Lg/4hI8DoGU3QMpTh+djlVZcG/RNudz7jzfssvwMTKj3lMc3WUpGNJLnEThe3W3wa5xCmxmdcG8vTaYFpC7iCYxmuymbMS0JiBiMhERjMImnN/UIFf/MnLDgYcGrTt08954FUY7MS0rsJU1OT99JEVFwNgtxXPqGRQVCDwgbWW5AQdBHagk9T//hnJ288h/cA/+NKi25LZyaBzGlsd2oEO94t8BRRyaOqpTx0Exkz56lrgqhrAGIUUStZL2R0MJrfHfb442fyBi8Y8pikzZnBw3vlAcfzj6nUX5at4GNZOBrZ/miMGHFLc6N6WlzWJiJSszAjoZDoIRsP7CvPij93zAhiDmXfq9E7k8zaH3pV9s2i1L+c3y9yxBW+MQUblYRBTjpTZwICy6LELBDadIvXdG7NvqtN7XsAOdBC7/kt5XUdzPjoI+twALuPDiEG+OwhsOgkD+6G2NW9Jp34zkShUNsBQD9ba0EItpXBsyAYUBj9eAKMBhea4i8Y8pjlTfNzbci7NxuBse7zw//89mMknmbUwL6czLSvcL7q25OV8ubKZUYlpFUGblrvnUoFARGRc2Q/5UwkpLMAMAtu/3x25az4e4+0qNlVlVRAt962DwNn1LOBjgWDxuRCJYbevxToOJqLr5h79Jnww0RaHznPfw257DDP3ZGI33wvVjThr/wMnz2263k4GXcNTLxBYH0YMTNUs94vhPIcU9u0Fa/M2YxyYmkZIJ91EdDnKlp4Er/3OFhZ96SUe2t4f9nJ8tyHEHQxsYhD76tNQOWvc/Ya9DoIOp9a9AtG/L/APypOVnd3P1/hR/Xwoq8Z2bQ0spNFa644YlFVDxdTf2BkVCEREcpP5kD+ZXQwKeQtrm8kfiIzzb3yujDFuF0G815egP+sVCBb7VCCoqHGzlIYPaOTuCCoQ+CCVKRAca8TAWovz6L8BEF3zRSInXEL06n8EIP3L/5vXdbRkOgg6B6cxYuBt4ZXXDgJ/tkXJ94xxUEyVN6tWmK1oYUo5lj/62av8bs8w+wZTvO2unXQMTm9njkIX5haHdsdaSCcxx71u3KT/bHfScBqz3N16yMlsRZQLZ/takt+4hpF/PInUj94fzJuog14+SZ5CCo3BNB8HyWHo35uXc04o0Q/JIZg1b1rdGioQiIjkxmZCCrOZUTkYDaAuwAJBvnYw8FQ1gLV535nMOg62fR1EyzFzT8nruQ/l7Y5gt+f+HmYmUIHAB8m010FwjAJB+zrs/pcw807FZGZ8I6vfAU3LsdufwNnxVN7W4bUBTy+k0McRg3x3EPS7eQnTmc0NRY03q1aYYTZh+uXWftbvG+bMuVXceHIDvQmH/3mxdH9P1lo2dsYpjxqObwx+xMDZ+igwfv4AQHPV6GtLJFMgsFtzyyFIP3UHqa+9Ebv5AejaivPMt0n9+6XY5PDUF54Dr4MgrwGmsxe75z6wK3/nHI+3E0PdNDNWqhuhchb07ND2TiIi4xnqARMZ3YErFwWcQWDztYNBRnacIt/FkM7NkOjHzD99zMDkfIgs8woEa337HsVIBQIfeLsKHqtA4Gy4B4DIGW/NXgEykSjR193i3v/Mt/O2jtGrfNMfMchnB4Epq4RYJQznOYPAC1SszV+gYhAKfTucMH3r9+4/OB8+r5nbznUThL/zvJvXUIp29SXpH3FY2VQRyi4odssjAJjj3zDucd4OKd3DKcxydycDZ+tvJ3xenOfvJP2T/wORKNHr/o2yT2zBLD0fu3cDzqP5zWA5kh9boJqGRe65DwZTILB90w8ohEz3Q9Nyd7TJ67wSEZHDWGvd92ZVs93MqByNfmguvAsajh8dBIDNc/C44wUU+jRe4MkGFe540tfvU2xUIPDBeBkE9qVfABA5+drDbo+c+XaIluM8/xNsYjAv68hLSKF3VT6fHQTgvqDke2ZpoJP/z955hslRnWn7PlXdk3PSSDOKoyyBAElkgUgGTHLACWxYJ5yzd21/XmyvbRzWu8ZhbZyxwQkcMMkEI5AEAokolMMoSyNpcp7u6a46349T1T2SJnSo6jBT93XttVjTder09HTVqfc87/MAiKJq58ZMBVZMjMxAM5t00jto8PieHkpyNd40r5SzavNZVJXL9rYg21uD6Z6eK6S1vWCgC3n4FSisRkxaOOprowoCA1FUrXwIug6P2sMnm3cSvv82AHw3/Q79go8gyqfhe/vPQNMxVv+vY9e+U85tmupBOL8ckVPg2LjCUhDQcdCxMUcjalDogEqqTJk1Sq9A4OHh4TE8gS4wjbgMCoHo6/sya+NHBnuVX1BxrWNq20gxZMDZNaw8+JIa3yWDQhtRWAmVM6HjQLSdxMMrELiBXSA4OcVA9rUhj26Bsqkwaf4JPxOFlYiFb4RgL3LXvxyZR3VBdBGfKK54EADYRoWBbseGtBUEImsVBF6BYChrD/YRMiWXTi8iz6chhOD6uerv5uHdzv3dZBJbIxGHaSgQ7H0WpIk2++IxnXwjCgKr+CgWXK3G2P7Y8GOHBgjfezMEe9Eu/Q+0JW+N/EzUzEcsvgEC3Ziv/8WJt3IqfS1ghhFlDhuY2i0GKVIQONZiQNSLQXZ6BQIPDw+PYbEeGOMyKASVTkXmmRTKo1uUmfeU050btMAdBYEdcahNXerouMOh1atzyMOvun6ubMErELjASCaF0srZ1GZeMKzBlLZYqQrMrY86Mo9IikGCCgJpmtB7HCOnBOFzth9auGFUaCkIyDYFQQab2aSTJ/eqxIIrZkXd2q+fVwLAg7sc9q/IEOwEg8U1qS8QmJF4w4vHfG00IUUVHzWrQGBufXjY1xv/+Czy6GbEzAvQr/zqKT/Xz/2AOv6le+OedyxEdslLnDUwTXmLgd3y5cDOj7AUBHQdTnosDw8Pj/FIRNlp75LHiNB9Sinb35ZRLZHyyEaAUVOK4iVqtO3cGlaGB5VXQm4xVM9zbNyREPVnqvMe8goENl6BwAVGMik0LQMMMfP8YY/T5l8FQsPc/k9HpPfl+TqagJZEWwwGOsAIYRRUJT2XU7ANXByU1cusbTHIXDObdPLsQSU3v3RGUeTfltbmU1fs56WmAZp6QumammuktcXAKhBoc1aO+VrbADWiIJh+LpTWI/e/gGzdc8JrjQ2/wdzwGyioxHfzPcOmI4jZK6GoBrl/XaTP3lE61UOw0xGoolwVCEiZSaEzHgRAxIvBazHw8PDwGAFrXSYKE1gHF1gR1oPutM4lQsSg0Cn/AYi0yTrpKyaPbQFjEFG/dExFoxMIS0FgegqCCF6BwAVsk8JTFAR2P82M84Y9ThRWImacD32tyAMbkp6HJgSV+TrtAQPDjL+CabcXGPnxVU5jIXKxdbLfJ2tNCjPXzCZd9A2abGkJUJWv01Aeda8VQnDtHKUiGG9tBmFTsr01SFGOxrQSf0rPLftakUc3q4fGqjljvr4sTxUfbQNUoWloZ70TUAUBG3P/eoy/fwqEhu89v4/uWp+E0HSloJJyRBVCMsiOA+o8FdOdHbh4Muh+ZMo8CGwFQfJKiEixxGsx8PDw8BgWaXsIxKkggCFruwzyIbAjDjWHEgyAqI+WkwqCiP+A++0FMERB4BUIIngFAheImhRGCwRSSuTRTSrPc9KCEY/VFl0DgLnNmTaD6gIfpoSOQAKKBKtAEM53QUFg9XM5uWsue1tA08FuX8gW7N9FBt1E0s2rx/oxJSyfUnBKO84Nc1WB4KFx1mawpyNI0JAsqs5LKuM+EWTjWkDFG8Zybrv42DZgYFrySf3cD4Dux3zuJ5hNmzG3PEj4V9eBMYh+zR1ocy4dfcxF1wJg7nTGg2Uosl0VCCh3tkAgNE0VVQY6kIEeR8ceDtljeRA40mLgKQg8PDw8RiVZBQGZ40MgjbDamc8tgsoGx8aNtAw7uMkV9R9w16DQRuSXQVUDdB5CWubsEx2vQOACUZPCIf/Yvh8C3YjaRQh95N1BbaEqEIxk9hUvdpJBIm0GUQVBnOYsMeC0gkAaYXUhL6xOiRzJSaIX18y4iWQCLzUNAHD2lFMd5y+eXkhJrsYz+/voDo6fDPetLSqZIR3tBeae1UBs/gM2Vfmq+NhpFR9F5Uy0Cz4KoQHC319G+Ldvh0A32srPoV38mTHHE7NWqN34xtXq++wgsn2/OkfFDEfHBRBlVpJBZwp6+buPgZ7jTBHUazHw8PDwGJXIxk1hAgqCwswyoJbNOyEcREw+3dl1sq0gcNBTTB56GXA/4nAoWv1Z6tyeigDwCgSuMJxJoWzaBIAYS9ZTPRfKpiKPbXWkimWbibUlkmRgGWIZbioInNo1729TzqzZ5j8AQ9QUmXETyQQ2NasCwZm1+af8LEfXuLqhmJApeXyP+7u2qSLiP1CVPoNCbXbsBYLKSIxq9NqiX3MH2mVfgMpZiBnn4bv1fnzXfismVYLILVJeBoEu52/QbhYIym2jQnfbDGRoQEVulUx2RGEi/PlQWAXdTc7GzXp4eHiMF/psBUECG2UuSO+TIeo/4GCCASAKnFUQyEAP8vg21S5sGQGnAlFntRkceS1l58xkvAKBC4SHMSmURzcDICYvHvVYIQTa7JUAmHvWJj0X20wsKQVBgRsKAjsj1iEFQbYmGIByadV8GVNlzgS2tard9IUj7KZfN8eKO9w1fnwIohGHziaGjIXsPgrNO6FiRlwP0FX5VozqQPTaInQ/vqu/Ts6XtuP/+Gq0026Iay52G4LcvSqu40ZDSqkUBL5cKHYm9/kEUhV1GIk4dC5yVpTWqYxvO87Ww8PDwyNC1IMg/nVwJMI6Q9pH3UgwAKKKNocUBPLIa2rDb9rylLZb2hu48uiWlJ0zk/EKBC4QHs6DoHknwKj+AzbCKhDIxmeSnkt1Ei0GUQ8C5wsEWC0GjikILINCkWUGhaCKQhRUqD5mbycPU0p2tAYo8Aumlw7fjnNVQzF+TfDPPd0MGmaKZ+gO6UowMBvXAEQKk7FiKwjaEk1JGQYx9zI1p13OFQjob4dgD5RPc6X9KBJ16HKSgV2wdSLiMILXZuDh4eExMtbGjUhko8w2KXQyzjsJIgoCJw0KIVIgkE4pCCyDQm3ackfGixUx+TQATGtDd6LjFQhcIGQ9r5xQIGjZBYConjvm8bbM15b9JkNkET+QaR4EzlZWs1pBAOpGIqWSEE9w9nUOMhCWLKjKQxuhelyap7NyeiHdQZN1h/pTPEPnCYRNdrcHqS7QmVSU4gSDPapAIOIsENjqpNYB54paon4p5JUiD6xHBp2JhpKtjWpsB02ZhhKNOnQ5ycCOOHRQBWEbFeIVCDw8PDxOxTbSTqTFIIMMqKWUKsFA8yEmLXR0bKH7IK/EsUKIGUkwSJ3/AFjqvKIaaNmtWvomOF6BwAWiJoXq4UaaJrJ5F/gLoHT4mK+hiLKpUDUbWhuTlq1WR1oMEk8xcMeDwOGYwyxWEIDzBZNsZpu1k75wjF78q2erNIPH9mR/m8HOtiCGTJNBoe0/EIdBIUBlvgsKAt2HmHUhGCHkgRccGTOq3prvyHgnI0otBUFXkyvj20i7xaBksmNjCut+JFNhsOjh4eGRZSQXc5hBBtSdh2CgAzFpPsLvwjojvxxCA448WEcMClNcIACrDVyayGPbUn7uTMMrELjAKSaF3Ucg1I+onhOzxDXiQ2DJfxMlmRYD2dsMQmDklSU1h2HJLwehOVZZzX4FQWaZ2aQT239g0Ri9+Fc3FAPweGP2GxWmq71AdhyEtr1QPRdROiWuY+2EFCcVBADarBUAmHufc2S8SIGgZp4j451CqXpgl90uFwgs01gc9CDwWgw8PDw8hkdKqTZt8svULnm8FGSQgsD2H5jisP+AhbALKEmuYWX3UVXMqJ4TLbCkELsN3FZ9T2S8AoELhCImhep/y2arvaBm7PYCGzH7EnXs7uR8CBLtE5amqXb38yuUgZ7DCE1TD/N9LUgjlPyAVoEgK1MMGNLf5hUIIg/LYykIZlfkMqcih+1tQfZ1DqZiaq6xJe3+A/GpB2CISaGDCgIA0XARAHLPs46M53qBIK8U/PngcoHAVnQJBz0IIi0GnoLAw8PD40SCvWAMJqQegCEPzRngQRBNUnM2wSCCQ+0UEf+Bqan1H7AR1XPUPFp2p+X8mYRXIHCBsDxRQSDb96kfVM6KeYyhPgTSGi8RElYQDHQod2sXH7hFyRTVd2/vjCWBtFoMyNIWA/sG5CkIYFurVSCI4WH5qgbVZvB4lrcZpE1BEIk3vCTuYyvyE/c3GQ0xZQnkFiMPvuiMXNHlAoEQAkomQ7AXGXBPzWK3GOBki0GJrX5I/hrs4eHhMa7otyMOE2yztdd1GaAgMN1WEDjUNmza7QUpNii0sQsEeAUCr0DgBqGTYg5lJIN7ZsxjiKJq5ajZdRgsk61EsHf52uKVAfelYEfekjQ70rvbY3sQZKuCwKo0Z8CNJJ0YpmRnW5CiHI1pJWOb9UXaDPZkd5tBpEAwhmrCSaSUmLZBobVrHw8Rk8JE/E1GQeg+xMzzwRhEHngxqbFkoAdad0PxpMQXeTEgSqz2DDdVBC6YFNqxj7LXizn08PDwGEoy/gOAMu7LkAjriIJgSnYoCNJWIKiareaRxHPXeMErELhA2EoxiHgQtCkFQTwZ4xB1FU8mzSDXp1Gco9HSH45LiSB73O/pj/Q8O1AgyHoFQaGtIEi/FC2d7O8aJBCWzK/MjSn/dsW0Qgr8gmf29zIQys64w+6gwYGuEFNL/JTm6ak7cdse6DyEmLw4ocJalUsKAgBtltVmsDe5NgN5+JVInrKb2NeyyC6/C8ieYyCEs9e4/DLQcyLtCx4eHh4eFhEFQWJJXidGWKdvfSL726HjAJRPd62v3wkFgTRNZVCo+90rZIxF2VTw5SJbdiel3h4PeAUCF7BTDCIeBBEFwYy4xrGNCmWScYfVBT4CYUlfPA9Q1pfc1V03Jw2yelsgpxCRW5j8WGkg6kEwsRUEtpfA7PLRDQpt8nwal84oYiAsWXvQmVi8VGO3VKTLf0DEmV5gU5Kr4dOcVxAAiAbLqDBJHwJbgaBNOzvpOY2KLdV3KclAmoa6xhVWJ2aWNQJCCGV6ONCJDAUcG9fDw8Mj25F91s5/ggUCQBlQSwmBTmcmlQBR/4El7p3EiSSu1l0Q6EZMWYLwxbYGdBqh6VAxA4I9E3497hUIXMBuMYjEHLbvB01Xlak4ELNWgNAwG9ckVX2sTEAKnJId+RJnWgxksA8G+7I3wQAiKQaZIEVLJ3s7VIFgZllOzMfYPgTZGndotxcsTrX/wB7boHBlQscLIajK99ERMCLJLU4h6s8CfwHywHpkOJjwOOb+59V4bisIbF8At1oMeptBmo4aFNpEomHta76Hh4eHR3SjrCDxAkHk2DS2j9oJBppL/gMQ3UyUSSgIzP3r1Vhpai+wiXjz9Ezse6JXIHCBoSaFMtCjLjJlU+Pe+RH5pYj6pcrp/3jimZwJGRX2WhfGIjcVBA717Ub8ErK0vQCicTgTvUBgKQhmlcdTIFA+BI819mSlJGxLc+ymjE4hpVStS0KoQmSC2Ckp7Q5HHQrdj5hxLoQDyEOvJDSGDHQjdz8NuUWIGec5Or9TcLnFIGIi6KT/gI0Vmyi9NgMPDw+PCJH1WDIKggxoH3U9wQAcURDYyUVaEmsSJ4j4/DhgoJ7NeAUCFwhbCgJdEwm3F9iIOSsBkI2Jxx1G8srjKBDYCgI3H7pFab06V2dyLQay132/BLcRhbZJ4cQuEOyzFASz4lAQTC/NYVFVLns7B9ndnn1xh3bE4Wk1KSwQHNsGPccRdWcm1ZPoVtQhgNaQnA+Buf0xCAfRFrwR4c93cmqnEFEQdLnkQWAVHoSDCQY2EVXCBF8MeXh4eJyAkwqCNMrVbQWBqHNPQYATCgLrXi9mXejIlBLGLppP8HSfmAoE3d3dfPKTn+Sqq67i6quv5rXXXnN7XlnNCSaF7bZBYewJBkOx5b/m7iQKBPYiPp5dPvtL7qIHAeWq5cIuoiRMCooZruPFHAKwt1PJyWfGoSAAuGq2HXeYXWkGUko2NwfQBSyoTF3Pndz5BABi3hVJjWMXH90wKrSVDeaetQkdb77+NwC009/i2JxGwm2TwsjuvrVwcRTrujnR5ZQeHh4eJ+CEgsAqwKdrbSdDAWTzDrXGtDbl3EAkqSCQ7QeUkWLNPIQb97k4iJx/ghfNYyoQ3HHHHaxYsYLHH3+cBx98kIaGBrfnldVETQoFsj2xBAMbMeN80P3Ivc8po6oEqE5IQeC+bF/kFqnFaddhpBFKeJxxoSDw54M/f0J7EEgp2ds5SI4uqCseO+JwKFfMLAJg1f7sKhA09YZpGzCYX5lLri91gi5z55MAaPPekNQ4lYnGqMaAmLYcfHnI/S/EfX2QwV7kjifAX4CYf6XjczuFYtuk0AHD1eGwFiqueBBEFkNei4GHh4eHTWQ3PIkCQbo9COSxrWAaiLolMSVDJYytIEjQy8ZWD2jpVg8AWPfZid52N+aKtKenh5deeokbb7wRgJycHEpKSlyfWDYTNSkcsjtemZiCQOQUIKadDYGuiEwoXqoS8iCwH7pdVBBgFU6kCR0HEx8kUszI3gIBoHwIgj3IcPbJ5J2gfcCgO2gyszQHLc4b2QVTC8nzCdYc6GPQyJ64w83NAwCcVuOuBH4oMtiL3LsO8koQ089JaqxE2pdiRfhy1fwG+5CH41OtmdsehXAAseAqRE6B43M7GZFbCHml0H3UFR8MW5kgil1oMSi2F0MTe7fEY2wMU/L0vh7WHOjFzEK/Fw+PuOh1IM0rzR4Esul1AMQUFxMMUL5BFFRCb3NCpuoy0l5wkdNTixuvaK4Y0zXv8OHDVFRU8KUvfYkdO3awaNEivvzlL1NQMPKiyzRNtm/f7uhEs4njLWo3reXYMXoObKEQONANwQR/J+Wli6hgHcefv5/O0+Nf7A60qS9rY1Mr27fHFrUyo+somtDYceA4gcGQa59nja+CYuDAxrUM1CX2YFx5YAdlQFN3iN4s/rur1wvIBXa/vgGjwN3CTCAQyLjv6JYO9Xda4x9MaG5nVcDzzSb3Pb+dZVXZYa+yape6VkyiO+nPI9bPtODgWiYbg/ROXcHxXY1JnTPcrea//cBRtuc5L1EvL5lPBWs4vv6vdPYXx3xc7ZpfUAgcrb6QvhT9nU/NqyQnsJddG9dj5pU5Mqb9mU5qaqQIONARIODw+8lrH6AO6G7aw/EMuyaMRzLx2hsLIVPy8RcMXmhWhYGLJgnuPFdXrZQTmGz9PD1Gxv5Mp3cdwwfsONQMWmIP+IXt/dQCHUcaaU3D30nVlmcoBY5S7fr6eGpOKTn9bex6fT1mXhzeRlIybftT+IE9Zi2GC/OM53ua097PVKD32F6OTuDv9pgFgnA4zLZt27j99ttZsmQJ3/zmN/nFL37Bpz/96RGP0TSNBQsWODrRbKLkSBPQyrT6KRRtbkECM89amXBfjel/K+GNv6CqZzuTE/i9dpX0wfo9hHOKWbBgxpivl6acqBF7AAAgAElEQVRBKNgFhVUsWLSY7du3u/Z5hvedjrn3caYWmegJniP8moEJ1M09A21u9v7dhVZPQbbvYk5dFaLW3ffh5meaKJu2dgIHOa2+ggUL6uI+/k3dLTy/6ii7jEres8AFt3cXOLbrINDJZYunsWB2csqsWD/T8I6fYwKly95KRZJ/A4uMDth8CK2oggULpiQ11nCY/rcQfu3nVPXsjPnaJ3uOE2p6AfLLmXrFB1KWpxyqno7s3Muc2mK0yc58t+zPNPRUHxKYsfgcRJWzLX6yykfoUSimP+m/B4+xycRrbyx8bc0xXmhupq7Yj5SStcfD3Ndczh2XOK9qySay9fP0GJnt27czf/58QoEOKKhgwaLE3f9N/3HCT0N5rqQ6DX8noVWHkEDd8jeiubyuDFVNs+6BpXHdA2XzDkI9h6FmPnOXrXRlbvF8T2VvFaEHoNDoGfff7dGKJmNus9XW1lJbW8uSJUqectVVV7FtW+KRexMBOxPcL0B2HgJfXsQIKhHE9HPBl4vctw5pxC/ljTvmsL9dZW67aVBoYXszJGNUGOl5ymaTQhgiRUuf22062ZdAxOFQLrN8CP61L3t8CDZbEYenT0pdi0HUfyA5g0IY0mLgggcBoFoM9Bzk/udj9mAxN/4FTAPtjBtTVhwAECVWUcsFH4KI+aELKQZ4LQYeY9A+EOZHL7Xi0+BfN8/i6fc0kOcT/ODFVvZ3TsyWOI9xzkAnmOHkjbrTGGEtTUNFHPryENVzXT9fJB6wNz5pvrn1UQC0Rdc6PaXE8EzDgRgKBNXV1dTW1rJ3714AXnjhBc+kcAxCVvtNntELwV4oq0vKHET481SRINiLPPxq3MdX5cfpNG71XaXigTti3phMksE48SCIxM1N0AKBnWAQT8ThUE6rzmNSoY9Xjw7Q5kJPvNMEwyY72wJU5OtMKRpTzOUIsrURWvdAzXxE+bSkx4uYFLr0+xb+fGVWGOiOZDmPhfnKHwDQzrrJlTmNSKllVOhwkoGUUpkU5pW446eQW6QMUhM0l/IY/9y7uYOeQZObFpczpyKXhvJcPrG8ikFD8pOXE4818/DIWPqcWVdG1nXpiLBu2wODfYjJixF6CtYYxXYiTpwFgm2ZVSAQmg75ZdDf7oqnULYQU6Pu7bffzuc//3muu+46tm/fzoc//GG355XV2AqC4oEmAETp1KTH1BouBkDuWRP3sSW5Gn5N0NIf2w6cjMQGZouCwDJUTIHiwVUileb0mNmkm/2dyql+RoIFAiEEl88sQgJP7+91cGbusKMtSNhUhQ1X3YWHYO78FwDa/OTSC2yiCgL3CjJ23KHcO3bcoXnoFVVErZqNmHGea3MaDmHv7jsddRjognAwstPvNEIIFZ8Y7EUGM/9745F6/rK9C4D3LqmI/NtHl1aiC/jtpg76Q9ljDOvhEQuOpWMVpk9BYB6xDQoTb5GIh0TM/WRfK3L/C1BYrQzZM4WCcjAGITSQ7pmkjZgKBAsWLODvf/87Dz/8MD/96U8pLS11e15ZjR1zWNhnFQjKks8eFbNVgcBsXB3/sUJQXaDTGTAiCQujYke7pGJHvnwaCC3hAoE0TaUgKKhMTYXURYQla0pXHE66OdyjpKrTShIrEABcPlMZ2WVDm4HdXnBaTV7KzmnucCbe0CaiToqx+JgIWoMqEJh7nh3ztea6nwGgn39byoouNqJEeTDIriZnB7YTDNxoL7CISEMnuGuzx6ns7xxkw5F+6ov9nF8fVbDUl+RwzZwSOgMGjzV2p2Vu0jQx979A+PGvEf7T+wjfcxPhh7+IueVBZDiYljl5jBOcSDAgvRHWkQSDujNSc8Li+OMBze2PgzTRFr5R7dxnCCLfVvRO3DaD7H6iylDsh/CCfmuhWBa/4drJRDLB9z2PDA8ifPE9RFUW+KzM9TC1RaNnzEcUBIXuFwiE7ofSeug8iAz2InKL4hsgYPWJZXl7ATCh+56klBzqDlGco1Gal/hNwvYhWLWvFyllyh8S4yHVEYcyHEQ2rgZ/fmRXPlkK/II8n3BXQTD9POVD0LgaGQ6O6Csg+9owN94P/ny0Zbe4Np8RKXGpxaBbeQMkanIbE7Y0tLfZcRNEj+zmr1by0Y0LSk+Jn337gjIe2tXNX7Z38dYFziR3xIKUErn5H4Qfux1adp/yc3PNnZBfhn7pv6Ot+ERKvUg8xgdRbysH1pYFldB1OKG1ezLY0ehuRxzaCOs+Ek+h2Xz1TwBoi693Y0qJY7WGyP4ORzZ5s5HsyALLMgxLQZBvKwhKHVAQ+HIRM8+DUD/y0MtxHx+PUaHsTaGCgKFtBgfiPzjSDpHlBoWAsEwKJ2LFsrXfIBCWTC0ZvXg1FpOL/JxWk8fB7hC72jN7BynVCgK5bx2E+hENFyH8zpxTCEFVvo/uoMmg4Y7MWOQWIuZcCsEe5K5VI77OfOGXEA6gnfWuaN9nCons8DusIJDd1niuKgjGX+6zbN6J8eQ3MV79U0Lmvh6K+632grctPLUAcO2cEvJ8gsf2dBMMp6bNQAa6Cd/zTsL3vBNadiPql6Jf8y18H3gI34efQL/xp4gFb4RAN8ajXyb0v8swj25Jydw8xhGWktYJb6uov1Rq13ayaRMIgZh8WmpOaD3ryM7DMb1cdh5G7l6l2gvmX+nmzOImougdmJgtv+AVCFzBbjHI7VVu1k5Vn7SGlUBiPgRVlplYayxS4MhDd2oLBLTvi/tY2TM+DAqBtLrdpptDVntBfZIFAoDL7TSDvZndT725OYAAFlWnpkDgdHuBTWWBZVToUpIBgHb6mwEwX//bsD+X/R0Ya+4EIdBXfNK1eYyKSwoCrMWWq7sYRapAYKsVsh1z3zpC3z8b48lvYPzx3wjf/RbkBO4lTZT9nYO8dmyA6aV+lk8+VelUmKOxYmoh/SHJ+iP9rs9H9rcT/vFFyM3/gLJp+N73d3yfWod+yefQ5l+JNnsl+rnvx//+B/B99mVEw8XQsovwTy+L9GN7eMRC1NvKIQUBqV3byZ7jquBbNRuRW5iSc9rGx7Ijts0+89U/gZRoZ71TqYkziXyrIDpBPcHAKxC4gl1Iz+uzWwycWdgl40NQXRiHgiCVHgSAqJypzpuID4F9ES8eBwqCdLrdppnD3cqgsD4J/wEb24dg9YHMLRA094U51hdmTkUOBf7UXIalHW/okEGhje1D0OpicoS2+Abw5WFu+htyoOuUnxtr7oSBTrSzbka4nPU8EsKXoxaTPcdijmSMBRkpECRvdjsStoJAjoMkAxnoJnzvzRE1CVUNyB1PYNz/oQntSJ0Ij+xW3gLXzy0dsV3Lvt4+tc/d662UkvCf3oc8vh0xawX+Tz+PtvCaEeelTV6E70OPo634BAx0Ev79zchB94sYHuOESDqWA+bXaVCH2qk/2uTUGBQCqkW4oAI6D495D5RSYrx0DwDa8jS0BI7FBG75tfEKBC5gKwhyep0zKQQQU5dBTiFy//q4DXgmWQWC430xLOKdvDDGQhJJBnIctRjYVWYGJt4F6ZBVIJhanHwV+YL6QnwarDnYF2n3yTS2pNp/oOsI8thWKJ8OVXMcHbvKVhC4aFQoCsrRlrwVQgOYG35zws9k2z7MtT8G3Y/+hv90bQ6xIEongzQdlepH5JouKghEid1ikP0KAuOp70D3UcTpb0F/1934P/IUlNZhvnYf5qrvpnt6WcXDVoHgujklI77m8llKsfWUy8awcuvDyO2PQcUMfO/9W0yqQaFp6Nf9N2LOJdCyG3PND1ydo8f4QfbZKQbJry3TEWFtFwhSlWBgI8qnKV+w7tFb7eSuf0HLLsSUJWgpnmMsREwKvRYDDycJGRKkxN9zBPwFkO9MP6zQ/YiZ50M4gDywIa5ja6wCQXMMBYJovEtqHrqTiTp01Egm3dgVywmtIEi+QFCYo3HOlAI6AwYbj2emrHhTS2r9B4bGGzpt3FiZ737UIYB20adACIxV3424JMvQAOE/3gqhfmVGZqmR0obdZuDkg3aXpSAoTd7sdkTsFoMs9yCQ/e2Yz/8MdD++676LEAJROgXfe/8K/nyMJ7+Oefi1dE8zK+gMGKw92EtZns6FU0eWKJ9WncekQh+vHB2gzSUVkQwHCT/8BQB8138PkR97kpbQNHxv/iFoOsbq70/oHUGPOHAoxQCIthikcG0nj24GQExJkf+ATaTN4OCoLzNW/TcA2srPuj2jxIgoCLwCgYeDhE1JuexGC/VDWb2jC3Lbh8BsjM+HoKbAVhCExn5xXytoOuSlxpU46kGwP/6Dx5GCQOg+yCuB/rYJJ4U91G1HHDrTh7ZyutrVytQ2g5QbFLrkPwBQVWC3GLinIADQ6pagLb8VBjoI//xqjBd/S/hnVyEPbEDUnYF+5VddPX8s2FGHThoVys7DoPnAxRSDqElhdrcYmBvuhsE+tKXvjvTDAmj1Z6Ff/V9gGhj3fRAZHkzjLLODx/d0Ezbh6oZi/PrIaxghBJfNLEICz7h0vTWf/zm07UXMuRSx6Lq4jxc189DOuhmCPacokDw8hiPqQZB8gSBieDcRFARWK9xoBQJz3zrk3mehcibakhtTNbW4EAW2B8HELSh6BQIXCJmSOtN6cHUg4nAotg9BvEaFNYXqwWssBYE0DXURK6xGaCn68yiuBV8usn1/3A/GUbXDOFAQgKpahoMwwQy1DjnoQQBwyQxVIHhmf58j4zlNtEDgfouBNMKYu1eB5kPMvsTx8SvzbZNC953i9TfdiZh5IfLYVtVTfmA9YvJp+N7/oGPJDEnhsFGhCA+oBUppnbsZ0cXZryCQUmK+/HsAtPNvO+Xn2oUfR0w/B3l0M+azP0r19LKOh3eN3V5gc6l1vV170PnrrTRCGGvV56Vf862EN1y0iz4BgLHuZ16qhcfoSKk2ygoq1MZNsljr00hCmMvIcBDZvFOplx1IUYuHiKdYS+OwP5dSYjz+XwDol3zemd+vG0RaDDrTO4804hUIXCBsQp2pFlqi1FljKVF3JuQWIw9siMuV2fYgaB5LAtjXBlKmzn8AJQGkfDoEe+Kv1vWOoxQDQNg+BCmsNGcCTrYYAJxTV0CeT/DcoT7V8pNBhE3JtpYAxTka00vdd+6Vh16CgU7EzAsQecWOjx9VELi/6BY5BSrK7G0/Qzv/w+g3/gTfJ59DlNS6fu5YEA4XCHy91n3E5RxmkVMAucXKYDFL1Uuy6XXk8W1QM1/dJ09CaDr6jXeB0Kw2lexWS7jJoGHy+N4e/Jrgyoaxrxnn1akWBDeSDMzX/wadhxBzLkGrP/VzjRVtyumIWRdB5yHk1ocdnKHHeEMb7FF99E60FwDCNtFOkQmsPL4DzDBi8mmOtxSOhZiyRM2haeOwPzdfu09tcFbNRlv2nlROLT7yVBuTDHSneSLpwysQuEDIlNRbBQKnjaWE7kPMuhCMQeT+9TEfNylGD4J07cgn6kMQ9SDI/hYDACwzm4nkQ2CYkiM9ISrzdccc/fN8GufXF9IXMnnpaGY5V+9uDxI0JItr8tBScPN2K97QJhKh6mLM4VCE7kM/57343vJD9HM/kBnKAYtIocKpAkG/XWh20X/ApniSUi8FTk2JyAbMV/4AgL7s3aM622vnvA8C3RhPfiOV08sq1h7soztocsmMQkpyx1auzKnIoTJfZ9PxAfpDpmPzkFJirrkTAP3izyQ9nn7RxwEwnvtp0mN5jF90yyjasdbViMdLakxgo+0FKfYfYEiB4PCpBQLZtg/jgU8B4HvzDxC+3JTOLR4imylBd81XMxmvQOAC4RNaDJzf+dEarLjDONoM8v0axTkax/vCo+8QWc6twons1ziIFAja9sV3YG8L6Dmqd38cEDHE6UuNFC0TONYXxpDOqQdsLrF9CPZnlg9BpL2gOkX+A1a8oXA43tCm0lIQuGVQllVYHgTOKQisBaXLCgIAUWwVN7KwzUAaYczX7gMh0M5656iv1a/8CuQWY274NbJld4pmmF08vkctiq9uiO2+KoTgnLoCDAmvOFiQlY2rkUc2ImoXIRwocIqF10JpHXLvWmTLLgdm6DEe0QOWMZ1DStpUe7zIo+nxHwCUgWhVA3QdPkGlJTsPE/rV9SqO+IKPoM27IuVziwv7mcJTEHg4SdiIKgjc2PkRs1cCIOM0KpxU6CMQlvQMjlzhT7eCIB6jQhkeVP1BRTUpl1G5RqRXrSXNE0kdB7uUYdhUhwsEK2co2atbxlmJklL/gd4W5OFXoLgWMdmd3YRIi0GKFASZjChVLQaOKQj6UtNiANFFrOzOvqhDuesp6DmOaLg4YpI1HN1Bg183+tg09zZlWPjUt1M4y+zhX3tVgSCW9gKbc6YUALDBwTYDw1IPaBd/2pF7vNB0ZXQKGBvuTno8j/GJHrAUBA61GFBYBUJEFa8uky6DQhtt2jkAGI9/FfPIRox1dxG681wVazjvCvTrv5eWecVFrioQyICnIPBwkBNbDJz1IADrS59fhjz0EjIYuylQdSxtBmnq6RcVlrFJexwKgr7x5T8AQ3fxsm+RnigR/4FiZwwKbZZNLqA4R+OFw/0MOCh7TZbNzco7JBUJBuauVSAl2rwrXCuiRUwKPQWBkpIK4ZyCoE9dB1JRIKAke40K7fYCbenNI77meG+Ic+/ezUceO8JVh66hRyvGePVPyszLI8Kh7kG2tQaZVZbD7PLYr8nn1qkCgVM+BPLYduSOJ6C4Fu3MdzgyJoB+9r+BEJgv3eulWXgMi95vrS0tT5lkEboPCquht0UZgbuIlBLZtBk0HTFpoavnGgn98i+CPx9zw28I33kOxgOfhr4WtGW34Hvv3xC6+95LySJ8OeDLy9qWOyfwCgQuEDYlU1xsMRCabvkQhJD7n4/5uEmRqMORF/JpSwWwnU/jURBkaYJB76AxcpuHZWYzkQy0DveoAsE0hw37fJpgxbRCgoZ0xTwrUWwFweIUtBhE2gtc8h8A5fdQlKPR3D9G+9IEQOg+VSTobUYaMUTKjoGtIEiFE7UothbDWVaclIFuzC0PgT8f7bQ3j/i6TzxxhN3tg5xfX8CCqZP4Qe67ENIk/K9vpXC2mc+TlnrgilnFcRUVl00pQKAUBE5cBwwraUK/8KOO9iqLiumIuZdDXwty6yOOjesxfvD1Wy2eDhUIwDIqlKb77aPdTdDfhqiemzZ/HlEzD98HH0E76ybE3MvRzvsgvo89g++dv8xo34FTyCuBYPeEXdd4BQIXCNktBjlFrvXGJ+JDUBOLgiDdHgTxmBRaO12OGcm4TE/Q4M1/2Uf5/2xl0c93sqsteMpror1q2beLlyiHHE4wGMrK6XbcYWa0GXQGDA52h5hR6qc0z8XYOkCapjIoFBra3MtcPZfdvtQ7SvvSREGUTFYxWQ58h20PgpQoCLI06tDc9ACEA2iLbxgxpePlo/08sLObumI/D719Jo+9ayZP1t5CuyjB3Hg/snlHimeduTy5R10rr5xVFNdxJbk6C6vzONYX5mB3csUx2duiVCH+fLRzP5DUWMOhn/N+AIwNv3Z8bI/sx2kFARAx0nZ78yfd7QU22qwL8d10N/7bHsX31v9Dm3l+WueTEHnF6l4+mJlx2W7jFQhcoDjcQT5BKKt3TdabiA+BnWSQiQoCUVAO+WXQcSDmjOJIr2yGRJyNxZeeOcYju9XuzO72Qa69b9+p0nd7kd6b+kW6bNmFse4ujCe/ibH+18iOgyk57yHbg8DhFgOIFghWH8yMAsGWVPoPNG2EvhbEtOWIwkpXz1UTw7VlwuBQ1KGUUrUY+HKVPNVlsrU4GWkvWDZye8H/vaR27T59ThWleTpFOTpfecM8fpR3s1IRPPXdlMw10wmbklX7Vbyhfe2Mh6WT1XVt47HYI5iHw3z+FxAOoi17tyvXLrHwGiiqQe5eFXdyksf4x2cVCJxVENjto860n42EPLpFnc8lz6GJhMid2EaFXoHABapC7htLidrFUFCJPPxKzCYaNYVqh7a5b5Tqfq9aSAmH3FvjQVQ2gBGCzhgfTG0FQRYUCHa3B/nla20U52js+/h8LptRxL7OQX744olys3Qs0s09awn9+CJC3z0N44FPYzz5DYy/fpTQt+YR/utHkUF3H64P9binIDi9Jo/SXI2Xm5yN30qUTSn0H5A7ngBAm3el6+eKpX1pohCNOmxKbqDeFrRQH1TMRGgpuFVb805VFJcTyPYDKlO7uBYx+9JhXzMQMnlgZxd5PsF7T6+I/PsbZxfzbP176BRFKpu7bW+qpp2xbDjST1fQ5Pz6AopjiDc8mTMmqQLBa0kUCGQogPH8zwDQV3wi4XFGQ/hyVAa7lBgv/taVc3hkL/qAtQ52UkFQaiXcdLlcILAVBF6BIHnyStX/D3oFAg+HqAm5LwsVmoZoWAGmgdz3XGzzslsM+kc2SYm4rKZBti+qZ6s5tO6J6fXSrsQWZ36B4N5NHZgSPrasivqSHO58g7pZ/N/LrQwaQx5cC6uVyVkKPAhkoIfwn95P+K4rkAc2QMUMtJWfRX/zD9Eu/KiKAlv/a8I/vQzZ3+7aPA53hxBAXbHzBQJdE1wwtZCQKXkxA3wIogkGKTAotAoEbsUbDiWm9qWJQokzC0H7gVVY/ixuk40KAvPl3wOgnfkO5f8wDE/t66E/JLliZvEJbT1CCN57zkx+nvt2hDQwnvmflMw5k0kkvWAoZ07Ko0AOsOdwE7LneEK9u+aG30BvM2L+VYiaeQnNIxb0c96rzvfi72JWLSaCHOxHdh9FtjYiW3YhB9N/H/IYHV9/C2i6o0raSKJZ1xHHxhwOM0NaDMYFVsuaHJiYBYLh76geSVFlOG9wMhxaw8UYm/+B2bgGbcHVY74+uogfRUHQ1wq6P1o5SyVVdoGgEWLJSO22FAT2wjZDkVLyx60qV/c9p5UDsKAqjzfMKuLJvb08uLObty0sAyyTs4IqZXJmGgjNnT51f8ceQg/eCK2NUFSDfs0daEvffcJOpbz0C4TveSdy/wuE774R34efHHERnijBsMnxvjCTi3z4dXfacVZMLeSfjT08e6iPlTPil806yeaW1BQIZH+HKvoUViHql7p6LoitfWmiYEcdJrsTHy0QzEp6TjFRVANCS4sHgbn7GYynvoPsPIA2dTnaZV9Am7x41GOkEY70kOvnvm/E1z28Wy3ubph3qh/QW+aXclrhTXwi+EfyX7oX/YovuxJNnC38a59Si10+M7YCgew8hLntMeS+55DNO1neuoeWYA90QOg1VALBvCvQLvokWgwPLDLQjWGZRupXfiXh9xELonoOouFi5J41yB2PIxZdm9R4MhRANr2OPPgi8vBGVRBo2wsnR9vpfrTzbkO/9tvZZdg2QZDhQfRAB5TWObr+EmXquiK7Djs25snI0AC07FKxii4/f0wERF4JEiasgsArELhAtWEZnLi8sx3xIYjRqHCsRbw0wtDfDiVTXPNOGA0xtEAQAzJLWgxebw5woCvEmbX5zK2MLgjef0YlT+7t5b5tnZECAaj3I/ta1E6eJUtzErNxNXWP3AqDvYi5l+N712+GLbKIklp8H3iY8E8vRe5bh/HUt/Fdebujc2nqVX+LbqgHbC6cVgjAswfTazRjSsmW5gB5PsHscncXhire0FTxhimQp8fUvjRBiMhSk406THGBQNg7Zr3NSCPseDFwJMxNDxD+/c1gxX+ZbfswNz+AfuNd6MvfM+Jxcvuj0HUE0XAxomb+iK9bc0B9798w69SH3rI8nbPnTOVXG9/CJwN/xFh9J74bJqaSoCtg8PLRfirzdZZMGrmAKaVE7n4a45n/QTY+o0y8LIQvl8O+OrpkHvPLfehtuzBfvhfz5XsRC69Bv/obaJMXjTi2sfpOFYd2xtvQprpf2NTOeR/GnjUYz/8cLc4CgQwFkNseperlBwk90Yg8ukm1SA5FaFA+XXks5RQCAnn4FcznfoLsPorv3X9ITfuQR+xY123H1+9WEo3sdE9BII9tA2kippyWljX8uCPXumfE2MY93vAKBA4jpaTGUhDYO0luISYtUEY7RzYiBzoR+WWjvn7SWDJgO8EgDf4DAKKqARh/LQaPN6qLyzWzT1ygXtVQTIFf8MTeHnoHDYpyrGp1WT0c3YzsPIxwuEAgg32Ef/cO9MFetIs+iX7td0atkou8Ynw330PoznMxn/oW5vw3oE0/x7H5HO1VC6opLhYIltYWUOAXrD/Sx6BhkqOnZ0G2r3OQvpDJ0sn56Jq7N+9UxBsOxVMQDCHSYpCcB0HKFQQoNZbsOa7uBSnYgZLtBwjffxuYhmptOuNGzPW/xnj8axj3fQB6m9Ev+dywxxov/BIA7bzbRhz/cPcgezsHmVORw+Si4a8x71hYxud2vJuPBP+Cf/2vkJd9AZFl0blO8NyhPkypjF21ER4uZNte5Uuz+xn1D0U1aEveijbnUkT9mVBSx+0PHuL+7V088raZvGFyCPPF32Gs/SFy26OEt/8Tbel70K+8HVE+7YSxzabNmM/8D2g+9Kv+y+23C4B2+psxHvkScueTmIdfRas/a8xjzCOvY754N+arf4aBDkpB7TLmlSIaliGmnY02dalqjyifofLUhyDb9xP66RXITX/HXPcT13wWPBJDdhxQ/3HS32eypKLFIOo/4LUXOEK+UlJLz6TQwwkMCZNNywG12OUCgRBoDReBNJF7x/YhKM7RyPcJjo2kIIgkGKQnNjBeBQE9x8GfH63yZSiP71EXl6saTpS4Fvg1rm4oIRCWPLUvagQoyqaq/+h0Xopmvv5XGOikd/ql+K7/XkwSOjFpAfp13wFpYvztE0hzZA+LeDlmKQhqC92rVfp1wXl1hQyEJa8cTc5dOxlS5T8gpcTc+SQIgRZLq44DeCkGUZxSEMjmXWq86jnJTil2Uhx1GH7o8xDoRlvxCfQLPoworEK/7Av4br0PfHkYj/4/wk98/ZRedvPQK8id/1IS9sXXjzj+WqD3PA0AACAASURBVEs1dNG0kVuLrpldQnduDb/Pux5CAxjP/tiZN5dlPHNA3YNGSi8wXv0zof9dpooDVQ3oN/0W/+378L35B2iLr0eUTUVoGmfWWkkGxwcQBRXoKz+D/4vb0N94B+SVYr58D6HvLib80L9jHnwZGRrA3Pc84V/fAMYg+pVfjWwWuI3w5aJf8ln1/h750oieCbK/A2PdXYTuPJfwnWdjrrsLgt2IhdfQfNHX8f/HJvxfP4b/tn/iu+praIuuUzn0vlOTeUTFDHy3/hk0HeOftyNduM97JI6damFHbztGUQ1oPqSbBYKjmwHPf8ApoikGXemdSJrwCgQOEzYlk83UKAgARMPFAJgxtBkIIZhS7Kd30KQnOMxDntUrJ9JVICishPxyaNs3pmmQDPZCsBdKajNaSjUQMnmxaYCSXI1lk0+NtrvCypp+Zv+QAoFVuZaxpjnEgfnanwHonn9jXMdp530IUb8U2fS6MpFyiFQoCABWZECbQaRAUO1uxKFs2gTdRxF1Z6VsJ9RTEAyhqBo0PamYQyklsnk7pp4LKVUQ2AkM7icZmPtfQG55CEqmoF/1tRN+pi2+Ht8HH4acQsx/3YHx6P+LPLxJ08B46D8A0C/992EfwmxetgqC59YVjPiawhyNK2YW872c92AKHXPdXciBziTfXfZh34MuHcanxXj6exh/vBVC/WiXfB7/515FP+tdw7ahnFF7apKByClAv/Tz+L+0A23l5wCBufZHhH90AaEvlRH+ySXQdQTtjLejjaAYcQvtvNugqgHZuBrT8rQA1UJgbnmI8B9uIfT16RgPfBp55DWomo3+xjvwf7kR//v+Ts+c6xE18+JqFdCmLkW78GOqIPXkN9x4Wx4J4laBQGgalNZBf7trRpWyKTsLBMd7QzzW2E0wnP6kqRPIVetGBtPbnpouvAKBw4QMSa1VIKDIffM8bfZFAMjG2HwI7J3ao72nLuQjzvnF6SkQgNVmYIbBlnmNhGUA5rbPQ7K81NRPyJScV1c4rKz8Emu3ZvWBIVGCZXavmrM7C9I0kAdfBF8uA5OXx3Ws0DT0N30fAOOxrzq2gLYLBLVF7nY7rZhqFQgOpbNAoBbMp7utILDbC+a7H29oM2b70gRCaLpqe+prRYaDiQ3ScRCCvYRKZ7hmVDoskahD9xUExlPfBkC/4v8hck99KNUaLsJ326OQV4K5+vuEf30D5tZHMO7/EHLfc4hJC9DO++Co57AfUs8apjg7lCtmFXNAr+O12hsg0K12iCcQrf1hNjUHqCv2M6fixIKL8eJvMf75n+DLw3frffiuuQPhH/kadnqN+l1vsQqiQxEF5fiu/Rb+L25Fu+LLiFkroGwaYuoy9DfdiX7Tb1P7945SEfhuvAuEhvH3T6qCwC+vJfS1esK/fRvma/eB0NGW3YLvo6vwf2EL+qWfT7r9T7/si0pR8dI9mEe3OvRuPJLGLQUBQ5LNxlrfJoCUUvlgaD5X0z/c4JaHDnH9/fs55+7GhJJPXCNH3ZfcjvrOVLwCgcOEwmEmyTba9fJRdzYco3oeFNcij26KKYrO7sO0H8xOIKIgSF//ZaTNoG10H4LIAjbDEwyesx5IL7QeUE9mVnkuM0r9bGsNcsz6TOwWA9l5yNG5yOM7INiLqDtTJVXEiTbjXLSzboL+NoxV/+3InOxC1Uj9wU6xfEoBObpg3aE+DDM9NyBbQbDY5QKBHW+opSDe0KbIal/yFASKZHfi5fFtAAyWp0ZqbZOqqEPz8KvIHU9AyRS05beM+Dptxnn4PvwklE9H7niC8N1vxXz5XiioQH/3H0Z1gTelZOPxAXJ1wYLK0b9ztoHhHf5bQQiMtT+eUIvCNZH2gsITFHmy8xDGA58BoeF739/RFt8w5lg1hT6qC3R2dwQJjLAjKMrq8V35FfwffYqc/9yN/1Pr0C/8aMqLAzba7IvR3/5zEDrma/ep9pVwUBkrvus3+L96AN87f4k260LHFIuisBL9sv9QrXtPfM2RMT2SR7arh3dRMd3xse2ig61ScJTOQzDQiZg0P6vSMfZ1DvK0pV7a2hKgM+BcC2uyRArXE+heMBSvQOAwRk8LOiZtvtQ8ZAsh0GZfDFIi9zw75usnF49cIIgoCFKgfBgRu0DQMoYPQXd2KAjGKhAAkeg9W0UQ8SDocLhAcPBFNf60+NQDQ9Gv+hr4cjGf+z9kR/ItEHZRxO0CQb5f4+wpBfQMmrzenHofgu6gQWPHIHXFfqoK3FNLyIEu5P4XIL8cMe1s185zMkIIJhX66AuZ9A1mmEwwHdhRhwm2Gchj6SkQ2IavyUY0joX5tEoK0C/57JiLWa3+TPyffxX9hv9FO/MdaCs/i/+zL47qhg/Q2D5I76DJaTV5Y0aozizLYU5FDk/0TmFg/g3Q34a5/ldxvads5hkr6eGSk9oLjEf/U7UVrPg42tzLYh5vcXU+poTtrQkqaNKAvvwW/F/YolQSn1iL/5vN+N/3d/SlNyPyTo3IdALtgo9C8STkloci+fUe6SXy8O6CgoCKmSeew0Gy1aDw/m0nqlGP9GTQJoPXYuDhJKa1IGzzpU6mH/UhWD3maycXjdxiQK+dYpBGBYFlyCWbd476OnsBm8kRh2FT8sKRfnJ0wbIpI0tc7TYDu4pK6RQQwvG8XHlkIwAiifgoUTFd9U6GgxiPJ+80HVUQuB+oEmkzSIMPwabjSj1wxijxYU4gG58BM4w27/KU78bZUYfHvajDqFFhgg/a8vh2AAbL0qQgcNGDQPa1Ym59CHKL0c5+X2zzyi1CX/FxfDffg+/ab0eLqKNgtxfYpnljYasI/jXjowAYa36ADJ0qkx+PrN5/qkGhuX+98qwprEa/4stxjWerpLa2ZNfvT1RMRzvtTWjTz0H43fWKAcub4eLPANGWG4/0IcNB6D5COL/Klc/fTQVB1KDwNMfHdpNVlkH37HKluD7Sk0HrB6/FwMNJ7B2jDn/qHrK12apAEIsPQe0oLQayNwM8CGoXqrlYC+SRyIYWg03NA/QOmiyfnE+eb+Svmr0osx23he5XUWk9xx1doMoWVXQRkxYmNY5+2RegoALz1T9gHnk9qbGO9oTQBFS7uKtuYxsVPpeGAsFrx9XDyhmT3F102u0FqYo3HIpnVBhFRKIOE3OsTpeCQKQgxcB89U9ghNDOeBsid2RlVbLY37l4CwR/7ZqBWHA1dB/FfOke1+aXKTT1hNjZHmRWWQ7TS6NtkbZ5nn7VV8eMUD6ZhVVKFbK9NbsKBOlAO+82KKxSsYeeF0F66TgIUhIudjZe2iZSIGjb5/jYtgIlmwwKA2GT5w/3UZSjcf1cpdLJqAKB3WIw6BUIPBxAdlkFgpwU7sJXNkBpPfLY1mhU4QhMGVVBkN4UAwBRPReEFlkgj0ikxSBzCwQvHFZOtReM0l4AysF/RqmfPR2DtParzyViZuOgisCp2DSRX4Z++RdBSoxHv5TwOIOGSeuAwaRC37AGjk4iQwHOG1jPuwYfY7BxLUYotdLXjXE+rCSElJg7lEFhquINh1LjGRVGKbULBE1xHypNUxVI/fmEi+ucntnoWMoHt1oMpJSYL/4OAO3sf3PlHDYb41QQXDi1EE0ohZF26RcAMJ75H6SRQQtWF7Db4C6aHr1PmU2bkbuegtI6tOW3xj3mnApVIGhsH3RmkuMYkVsYURGYqzwVQTqxd/ZDLl13ReUM9R9uKgiyqMVgw5F+gobkwqmFkeJkJhUIoh4EXouBhwMIa2HV6U9hi4HtQwDIPWtHfa2tIDg2rILAKi6ks8XAnwdVDdDXEvVEGIbIArbE/SjJRHndeihcOnnkiC2b5VPUa14+qooKUaNCZwoEMtADXUegfDoiZ+z5jIV2/oehYgZy1ypMyzU/XuydZjf9B2Swj/BjXyH0jVnk3H0tv+r9Cn9p/SDBO+ZhvHafa+c9Gfth5QwXCwQ5HXug6zBiypKoxD2FeAqCKJECXyLf344DEOpH1MwHkeJbdG4x+PNdMymURzaqhWzNPFc9MqSUvHZ8AJ8Gi6tja+spydU5Y1I+zf1hdhWfiWhYCR0HMF/9s2vzzASG88kx19wJgH7hxxIyW55tFwg6sseDIJ1o539IqfJe/+uY6kkP95BWukC4yB0FASVTQM9xvMVABvugtRGKaxFpVADHy4tN1iZafSH1JWodmEkFArvFwFMQeDiC1qMUBF25qf2SRnwIGleP+rqIB8FJRiBSSrUozCtNuwOqLYG3nbyHJQsUBK9bfedLYug7twsELzVZBnp2gcAho0LZYqkHauY6Mp7w5aJfrSSoxiNfQhrxPxS67T9gHn6V0J1nY676Lgx0IOZfyboZ72eNbxm+3qMYf7iFsAM+CmMRDJtsaw1QnqczrcS9Ykj+kXVAauMNh+JFHUYRSUSV2tc9u90qlQghVNtWsEctOh3GfPG3gDKEc8oNfjiaesO0DxjMq8gdtb3rZOw2pGcP9imHecB89seZFb3lMHaB4IJ69d5lV5OK9sstRjv3AwmNObnIR75PsKdjcFz/7pxC5BWjX/xppcpb9d10T2fC4rqCQNOhfBoEupD9HY6NK49tBSkRkxc7NmYqeOWovYmWz5TiDCwQ5HoeBB4OovWqB9dUFwhsBYG5Z3QfgvI8nVxdcPRkI7FANxiDafUfsBG1yp16tDYD2XkYND29iQujEDIkW1sCFOdozCwbewdm+WS7QGArCJxtMZAtu9W4SbYXDEVbciNi6nLk0S2Ya38Q9/G2iqXWBQWBuf8FwnddAa2NiLmX4f/iNvwfeIi+K7/DG0vu4s6Fv4CcQsynvoWx/teOn38oW1oChE3lP+DmQ1HBIVUg0NLgPwDRz7FpuAjViUZp4lGl8pjaQUzWKyRRIskwvc6qCGQooB48NR1t6c2Ojn0yO6ze94UxqgdsLhpSIBBzLoWa+cim15EHNjg+x0ygM2CwpTlAbaGPBsskzHz5XmV0uvw9iPzShMbVhKChPJe+kDl8O6PHKWgXfATyy1TMolXQ90gxVoHAzdauqFGhcz4E8mj2+Q8AvGIpZpdOzo8oSYdTN6cNfz4I4aUYeDiDzyoQ9OSm9sFVVMyA8unQvBM5igO1EILJRT66gyfFkVmLwXT6D9hEjAqPDW/YI4N90N8GpfUI3X1zu0TY0RYgaEhOr8lDi+Gh8MzafHShCgRSSkS5rSBIPkoQiNz4hBWz4wRC09DfdhdoPownvo5s3hHX8U2WimWKwwoC88hGwr+8DoK9aJf+B74PPIKoVO/7gvoCBPDT3uXo//YX0HSMf3zW1QWZ7T9wRq17CQYy2Ev+8VchrwQx41zXzjMaddYOQFMm7QCkCZFbCPnl0N2ENOOLfYwqCBa4MbWxccmo0Nz6sFLyzLvS9RaYbVa83oKq+L5ztsx+7UG1Y6Sf/yEAzOd/5uDsMofnD/chUe9bCIE0TYwX7wZAO+f9SY09p0IVHPZ4bQYxIfJK0Fd8EqRJ+J9fSfd0JiSybT8AoSL3CwRY53ICmYUGhW39YfZ3hZhZlkNFvo+yXJW61B3MnJhkIYRqM/AUBB5O4OtTD+d9uanv49dmrwTAjNGHYGiSQdR/IAMKBJPGSDLoUrtysURdpQu7vSDWnvPCHI1F1Xm0Dhjs7wpB2TTAuQKBjBQIZjgyno025TS0y74I4SDh378nLlmyGwoC2ddG+Ldvh2AP2iWfR7/66wgtepkrz/exuCaPpt4w+6svVGZk4QDhv3/KsTmczMZjdsShe/4DsvEZhBlGzLlUpWCkgYzsIUwjoqwejFDcO/G2cip9CgJ3og7Nl5Q5oe6yOSFEFQTzK+Nrl6vI97G4Wl0f9nYOoi17N+QWYb7+t1E9cbKVSHuBVRiRe1ZD2z7EtLPRkpQrN5Sr3/1uz6gwZrSLPgklU5CbH8Dc8mC6pzPhkO37QWiEXVSm2psVjioImrLPoHCLFYG6xIpELfALdAFdQSOd0zqV3CIY7Iu70D8e8AoEDiJNA39fMy2iLCFjn2QRDRepeexZPerrpkSkPEOkf1aBQKTRoNBGVM8BzYc8tm3Y/kX7odneZc9EbIPCJXE8FNo+BC8e6UdUTAecLBBYNyMHFQQ2+mVfQMw4H9m0ifDdbxmxt05Kqfpbtz+OseE3zN3xK948+BQNhkPv0TQI/+EW6DiAWHw9+hu/Oaykf0Vkl7BPpTFUzEDufhpz11OOzONkUpFgYMcbamnyHwCoLfShC69AECEBHwJpGkqJ4y9QirA0IFxIMpCdh5QrfmGVihB0me0JKggg2maw9mAfIq8E7aybwBiM+CeMJyIGhdZ7NjfY6oH3JT32bE9BEDcirxjfW1S7Xvi+2yLRdcMhjRDy2HbMzQ9ivPIHjI1/xWzaNO5TN9xCBvugrwVK60Fzr8huqzidMiqUUirjVz3HMY+pVLC5WRUIFlsFAiEEJbk6XUEjs3xLcizz1gnYZpCZ+uxspa8VIQ2O61X4dHdj24ZDm30xBmA2ju5DUGtJuof2CkfkpJmgIPDlIKrnKAVBdxOUnij3ihj3lU9Lw+xiIx6DQptlk/P59UaV3/32hbWqctlxULUcJNm7brvz2oUHJxG+HHy33kf4Z29ANq4m9N3FaAuvUTcrCbK7SUVwHt2qbsAWN1r/x30QWrcUbeVnlK9Bgu/VeOLr6iGkeg6+d/56xHEumlbIT19pY+3BPt67pAL9yq9i/Om9GKv+G23u5Qmde8Q5mZJNzQMU+AVzK9wz/7SLG+nyHwDQNcHkIj+He0IEwmZc5nDjEVFWjwSVZDBteWwHte+D0ABi6rITlC8ppUR5ECQS0TgS5st/ACnRlt6UkuL59tYAmojK3OPh5OuDdv6HMV/4BcYLv0S75HPKaGwcMBAyeblpgJJcjdOq85B9rZib/wG5RWhnvC3p8eeUe1GHiaAtvgHtok9hrv0h4R9diLbwWkT9meDPQ/a1QfMuZMtOZPNOpVA6mdxixOyL0Ra8Ee2MtyHySlL/JrKQ6BpphrsningQ7HdmvPb9EOxB1J2RNvVgItgKgqEpM6W5Gh0Bg0BYku9P/TPUcIjcInUfH+yFvOJ0TyeleAUCB5HdKsHgqFaFz+Vc9+EQZVOhcha0NiK7jiBKh++jst1Ch7YYRBQEGWBSCCDqzkQe3448/Oop78M2/srUFgMpJa83q4ithXHsYJ1uqQ02HR9ACIEon658GHqORxbtCc3HNKDjEBRUuLZYEMU1+D72NMYDn8bceH9ETnwCmo6YtED1yVXM4Fdb+jE6m3hv/qv4Dr+C8ft3Yz77f/je8XMV8RYH5paHMFd9B3IK8d/6l1Hfp91n/JzVZ6yd8XaMx7+G3LMG89AraFOXxnXu0djdHqQ/JDmnrgDdpWuCbD8AbfsYLJ1Bjm1umSbqSlSBoKknxKzy9KahpJtoVGnsRoXpbi+AIddVpyJWpcSwrgfa8lsdGXM0WvrCtA4YzK3IITeBItUp14fJixAzL0DuW4fc/TRi3hWOzjddvNTUT8iUXFZfhK4JjFf+CIZqq4jkfydBg1UQ3e0pCOJGv+67kFuM+cz3MDf9DTb97dQX5ZUipi1G1MxTfifBHrVmOrABufURjK2PYDz4ebQz3oZ+8WfS52mSLVgqS7cLBI5fX22DwixqL4BogWDRkAJBSa4OhOgKGuT7M2SDwY46nIA+BF6BwEmsAsExUYU/DQUCUD4EZttezMY16EtvGvY1toJgaIuBrSDIBJNCADH1LHj1j+qBbdF1J/6w3ar0ZmiB4FB3iPYBg8XVeXHtoi6uzkMTsMmSXlE+HY5tRXYcRCRRIKDrCJhhhMuSZVFQge/me5DXfht56GVk6x7QfFBYiahVCxnhj94MfnRgB7tDg9zy2YXk7XtKxSUeWE/o++egX/tttAs+EpOaQDbvJPxnZajle8cvx1wITSryM78ylx1tQQ52DTKtNAd9xccwHvoPzPW/crRA8Ooxy6DQRf8BO7lkYPJykl/WJ0d9sZ8NqDaDiV4gSKjFwPJdSediPmKQmkACw3DIvc9B215E/VlJ97XHwo42df1MpL0Ahr8+aMtvwdi3DvOle9DGSYEg0l4wtRAppaPtBaDMZ1XUYdARFdxEQgiB78rbkSs+jjywXl0XjDDklyKq56o2zNK6YX+nMtiH3LsW87X7MTf9DfOl32G+fC/a0nfz/9l77/g4zvvO//3MFuyi90oA7CJIipRFiSqUZMmSreIiFzlKXBPHF+fSHZe7XC6xL7+zc8npnLskv+ScOI675RJHiuNuUbIkSqI6KfYKECRI9L5957k/nplZgETbxe7ODDDv1ysvM8Bi5xHKlM/z+X4+vrd81hFjpE4kk9NU4NGu8gbwlyDH8uQONfMHWt1TcSil5NhQjKBPsHGGs7LKCCocj6cL0m6VEyVGPktimtV2BnOIRLMyyDgIGmwTCMQGVXcoF6g7bJmjjkxOGQFMTnEQtF8HgOx96YrPmYnz+azsyyeZ/IHsblBLAxqbakron07RP5VE1JhBhT3LWo8cv6D+UaTdZVHVhrb9fny3/yG+234P3673orXtnCUOAAxF0gR9gvISH1rXPfj/8Hm0N/4x6EnSj3yU1Bfeav1NzYecGiT5T/dDbALt9X+AtvNdS1rjrTPmjAG0Xe8DX1BVTCUiOfxXz83zRm3l7tZCBhQ+AUC0dYk29gJiupPOezkEiCrj7y0bgcABDgKrojFP+Sf6C18BiuMegEz+wJb63AWqK84PO96lalEPPZrX/nI7mRlQKHv2I/uPIFq2W9fe5SKMqsNIUnJp2qs6zAVRWoPWda+6lt75SXw3fwRt0x2I6jXzPliKkjK0rnvxv+efCfxpD757/z8IVaK/+BWS//MaL/xwHizLf6EdBEJAdbvakY6NL/v9zJwKNzkIBiNpxuM6G6qDs9zWVSH1SDruoCYDK4NgFToIPIEgnxipz5e0euwav9U2KoFANx4a5qJlDgcBxrypqGwt2NqyQbTuBM2HPPfCrPRQKaWavfMFC34iz5VsGwxmssMQFQ4OxDJK9jIFAutnO8/IiR2kdMloLE1d2Gfd6AhfAP/df4r/tx+H+g3I4z8j+dAulSA+V1hlZITUF9+pUre77sP35s8u+fiZIDJ10hdldco6nJhGnt2Xh/9Cxf4LpkBQmrf3nImU0vpbjzbn58Z+OawxBIILE55AIEwHwXg2DgKz4tDGEYOSMiitg/ELajxpGcjYJPqB74K/BO11D+ZphQtzdGh5DgLInB+eMh6iRahCiQSpOPor31r+Im0mpUuevRChxCe4viWM/tw/Aco9kM+d/rXV6nzQM+7lENiBKK3Bd+cnCfzRUbTr3g/TQ6S+9EukfvSnqzKVfSHkSJEyCJjh0hpdvkvLGjFwUcXhiREl4m66rGWmImhWHTqnyUCYAkEyfxtHbsETCPKInFAPYhe1egI2hBSCkUDdsBlGuq0T3uW0WC0GMxwEZiBVgfupl4oIliLaroXoqJrDN5m8pAJZ6jc6NizKdBBc05iDQGB8zcGBqDUSMN/PcamYDyhOEghGouoCUBe+cspJ67yBwEefV1bXyDCpr76H1D/ch37maUsokAPHSP7N65HnnkesuRb/+76a1e/DbR3KjP/UuUwyrbbpDQDoJ/fm/N81k1hK50B/jKoSjc1Z1q0tmaGTMH4B0bIdPVxbmGNkQZvnIMiQ5YiBTKeQ/cegpELtMNmIqF4Dekqdb5eBfvBfIBlB234/orQmT6tbGLNWbzmhoLda54fMrpF2/QeAjCPCzRzojzKV0Lm+tZRgcgL9wHfAH1KNDXmko1KFRJ4b984HdiJKa/H/8hfwf+Bh5YR57C9If/s3kGnP2WFRoCrouRBGjTVjy3NpydgEDJ9V4yZldXlYWXE4ZQoEl52jrRGDmHMEAgLGfXwiau86bMATCPKINBwE/aLOlpBCE8tFMM+YQV3YR0AT9BkOAqmnYfIilNZdYQO3E6u28cyT1sfkgBovwMF1LgeMDIEdWY4YzPyaA/0xq+ZsuVZfS/ypcoY7BGAoon736kvnfqgXJeX43/33+D/0r1C3HnlyL6m/u5Pkn28h+Te3kXzoWhg8gdh8J/7f/EnWoVqtFQE21gQ5NZqgz3iYFYZAIBdw32TDK5eiJHXJ7tZStALN3+qn1d+GOVpkN22VxviSJxAg/CWqFWbi4tJuxAdPQjqBaLna/nntPO1w6c+b4YQfWPaSlsopIxRvY03ubQltFQE21AQ5OZKwwnzF+lvUuej8S+gXD+VlrXbxnOFsunlNKfrL34RkVDXI5FnE6awyBQLPQeAEtB3vwP+7T0JFM/qLXyX9rQ87q1LORuRIN/gCxdkkq87P+dXcPBMtVy97ScXk5Mjc52hzxGAi4SB3S1C5P6XnIPBYFsYc/yXNvpBCALHhdgDkPHWHQghayv2MxdJEk7pqMNDTCAc9QAJoG24FZo9LWCFeDc4UCMZiac6OJeioDFA7x+74YuxonDFiYNY45m3EwDk/34UcBDPRtt5H4BOv4nvn3yDarlHOmJ79UFKJ7+5P4f/QIzk3M9x6+ZhBUxeUlCMvHVm2tRpm5g8UZrwAQHbvB0Bbd0vBjpENazwHwSxETQdIHZYQ+KdfNMKmihDktxi5NDBcjhw4hux+BqrWWOJboUmmJd1jCerCPmpyOP/OxDw/mC4jIQQ+00Xw0jeWt1CbMUefbmwNoz/3BQC0mz6c9+N0VKnzQbfnIHAMWst2Ar/1c6hqQ3/5m+hP/bXdS7IdGRlVeQA1HUVxpuYrCFb2uW+8ADICweUur5khhY4hYNy/5TGbyi14AkEeMR0EA1qdrQKBZuy866d/Ma86bCaEXppOWaMRThkvMBHrbwN/CHn851ZwnOx5DgAtT0FK+eagFVCYWyhdW0WA2rCP48MxEqE6CISRo+eWpfJLBwoEQ1G1o1oXXvxiLPwl+G7+DQIf3U/gU+cI/KfX0pvj+gAAIABJREFUCHzqHL43/pdldaqbYwZPzngAEA1XQSoGeQhoe8EUCNoKJxDo554HQHTuLtgxsqG1Qj2UeRkEClG/AQA5fHrR10pLILB/NyhTxZX7DWz62X8EwHfDrxVtHKx7PEFaMisZO1dubZ8dVAiqEhVAf/U7rp7hNsXLm+QR5MVDiKatiM4b836cDs9B4EhEwyb8H/w2aD7SP/5vi4YBr3RkEccLID/nV3CzQKDOB5dnEFQaAsGEg0YMhOEg8DIIPHJGSglTAyT85URFyNYRA1HRqFKwx3qtbtfLMYMK+yaTqgYPZ82ogwrLElveBMkI8vhPAdDPqAA5se5mO5c2L6+aAYU5jBeAekjd0RgipcOR4YQaM0hMQ2Q45zXJCaPFoNI5P9/MiEF2u3yioknVPC1DGDC57bIdQgBhjK7IgePLfv+CBxRGx2DgmJo/LFJDxWIEfRpNZX4uTqVIpj3rKnXrAZBDZxZ9qaNu9swGlRxvYGUigv7i10Dzod3wa/lc2YKcmse6mgumgPj0jBwCUb8B0bEbxs4he55d9jHsYHA6xenRBOuqg1S/alQb3vjrBRlr6TRGjjyBwHloHdeh3fwRSEyT3vuXdi/HXkaLF1AI+QspNEVlrdV+UXmp6FJyajROeVCjuWz2/V9ViQNbDLwMAo9lE5+EZJRISHXMBmzOzxNWm8HcYwYzgwrluKEeO2iH2UTb+QAA6X1/jxw+o0JdGq9ybJfvgYHlOQjg8qBC40Y9x6BCKaUaMSipQIQqcl5Tvhle4ohBIemoCrK2KsCx4Tj95pxx41UAyMHlCQS9Ewm6x5Nsrg1mLYIsFXnuBQD1wOIgWisCSLBmt1czoi4bB4GaaxfN2wq6pqUgljkjq7/6HYiOIba+pajC86lR9SC6sWb5DoLOqgDtlQEOD8UtQRNAe53hInBpm4HpHri7bhL9lYchUIq2670FOVZjmZ+QX9AzkfRm3R2I7w3/SdX77v9n5PSQ3cuxDTmsNtJEzdriHDAfI1y6rq4Z/hDUbczXygrO+YkksZRkY03wClHSbDGYTDjHQeBlEHgsHyPtebqkHgCfjQ4CAM0ILZPzBBVaDoKpzIiBcNiIAYC2451Q04k89QTJv1CzudrWt9i8qvk5sMwRA5hRddg/s+owR8t7ZARScceJP8PmiME8IYXF4hYzrdysM2swBIJlOgjMjnHz/QuB7FHjBZpDxgtMzF1Dr9psxojB0MICgYyMwPh5qFvnCCHP3OHKxQIrpUR/+m8B8N38G/lc1qJYDoLa5TsIhBDcYowZ7OudMWaw8wEQGvqB7yHT7hPBTGfT+ye/AekE2o0fKljDhBCCjsoAUwmdUQfZhj0UorJZiUPJqOtzNZaDOWJQrOpsEQhDWYOqks21SWL4NCSmEc3bED77NlqyZb4GA4CygHokjSYdJCZ6GQQey0VOqoDCqRLDQWCzQCCsgL+5cwiaZ1YdOnBG3UT4Avjf8j9ACNDTUFaP7w2fsHtZc5JI6xwZjFNVotFphDPlwtxVh905vZcT8wcAhiLqZrHeRgcBZMYMrDlj84Eux++3ydPG+5lzzIVAP6cCCkXnDQU7Ri6srVYPZ2fHPIFAGCMGDC88YmC5BxyQPwBARTNo/pwcBPLYT5B9B1Ubw6Y7C7C4+bEaDPKQQQAzggpnCASiskU59KYHkXmqRC0m+/siVOpTXH3mq6D58N32+wU9ntlk0OMFFToScwRIf/GrNq/EPoqdQQCGCCt1MDPAskT2GZk1ThhJy4ITZv7AHOfosCEQTCedM2IggsZmn+cg8MiZyX4ApoLKQWBnBgGAKKtXN5sTfaor/TLMMLGLMxwEOCyDwETb+U78v/Y9tDf+VwK/+4ui9Wlny5GhOEldsrMpvKx5zq31JfgEvDYQmzELnKODwMyXcFD+ADjHQXC5QCCy7K6fD8tBUCCBQEqpRgw0P6LtdQU5Rq6YAkG3JxBARRMEy5DDZxYMtbPyBxwiEAjNp64HkWFkfGrxL5hB+vGHANDe8Imi1zWezuOIAWQEvpk5JQDaNQ8C7hszSOuSF/oifDL+ZXyJSbRrHsy05RQIL6jQ2YiO3dCwGdl3EP3CAbuXYw9FziAAlj1mYLXeuCh/ADINBgs5CJwkEHgZBB7LRhojBpMOcRDAwjkEpoPg4kwHgQNHDEy0rffhv/tPEPXOnbXKx3gBQIlfY1NtCcPRNKMh9WCfcwaBJf4400FgZwYBwPrqIG0VAQ4PxtSccWmtuiCM9uY8Mzs4neLIUJz2ysCynCQLMtINkRFlLwwWriUhF9aZAoG3Y6iaMeo3QDIKk/MnhcvzLwOgte0s1tIWRdStAxYfj5iJfnYf8sxTULcObce7CrW0OTErDuvDPqpD+REer6oroaHUx6v9USZmVG9pV78dfAH0w99HpuJ5OVYxODoUp2v6VX4n9jXwh/Dd86mCH7PTqjr0BAInMqu+84Uv27ya4iOlVPdXgVIoYrbVcoMK5UVTVHaXgyDj8rpyDKwsqB5JI44SCMwWA08g8MgRc8RgPGiGFNovECyUQ9BSNsNBMN4HvoCaifLImQPLbDCYybYG9R5H003qA7lmEDh0xMB0ENQvoeawkAghLBvx073Tasezeo2yk0VHc3rPfecz7oFC7aDKPrXTI9quKcj7L4e1VZ6DYBZLaDLQHRg4mQnsPLGk10spSf/o0wD47vhE0edi81lxaCKE4Nb2cnQJz13IWExFaQ1i0xsgNoE88fO8HS8fyIFjpP7ld0n+7e0kv/A2Uv/6B6Sf/zL6yceZeOyveGTq9wjIFL77/qwoO6YZB4EnGDoVbdd7QAijvnOVZUVMDUAygqjtLKrjablVh5kRA3c6CDbPcZ4u9avvv6McBF5IoceyMUYMJgJ1APgd8J0V629VJ/2TT1xhb20o8+MTMDo5qR6EKloQmgMW7WLy5SCAjEDwynQV+EuQozk6CKwKS6cJBGmCPkF50P7fudcbAsHj3cpKbSW45zhm8ESPep9CjRcA6BdeBUA4aMfZxBox8HYMgcWbDGR0DAZPQNUaR7m4RIOq/GSJgZ3y1OPIM09C3Xo0Y0eymJiZF6aDJV/smW/MwHBI6Ie+n9fjLQf9tUdIfu4G9Gf/Adn9LPLYT9D3/T3pb/8Gqc/fw3UvfZoqOc2JHb+LduvvFWVNnZXeiIHTEVVtiLV7YGoAefYZu5dTVDIBheuKelxRbYyP5rD5I6NjaiyiphMRrs730gpGMi05M5qgLuyjdg73qBMdBGIVjxi4J/rS4UhDIBgNqAwCR4wYlNYg2q9Hnnse2XcAsSYzq6wJQXN5gKDxECSqnHNj6kaklBzojxLQBF31y9/B2mq8x5HhhJpVGzqFjI5lfTEwQwpxUAZBMi0Zi6VpKfcXfUZ5Lt6wVjUNzBQIJChlP4cAoJ+fUe9z17oCNhhccK6DoDSg0VTm5/xEkkRaJ+izXwSyk8WaDGTvi+p1HdcVbU1LIRsHgXIPKLu6701/gvAVaLRmAboLJBBYQYXnZmcxaFe9kTSgn9yLlNL2c5l+4QCpr38Q0nG0O/8zvl3vQcankAPH1QjLZD9f7w7y9/pdfPv+dxVtve3GiEHvpOcgcDLa1feTPvs0+qFH0IyQ69WAVXFYV1yBgJrcMwgs90DL9rwuqdAs5vIqDThPIMiMGHgOAo9cMQUCvzNCCk20LXcDII//9IrPtZT7adPVuql01g6z2+geTzIe19naUJKXByLTQXB4MFN1mFMOwYTzRgxGzIBCm/MHTNbXlLCuOsjR4TgXJpNqxIDcZgN7xhMcH4mzsSbI+jwFpc2FNWLg0PnDtdVBJJ6tGGYIBINXhsUCyHNKINA6ri/ampaC6SCQ/ccWfa08+kPkuecRTV1or3uw0EubE7NW00zNzxc7GkNUlmi8cDFKdMaNq6hqhcYtaidvkZaKQiOlJP3IRyEVw3f3p/Hf+98QjVehte/Ct+s9+O9/iOkHvsR/0H6fvuqdtFcWT8BpLQ+gCej1zgWORrv67QDorz2ac/6OKxmxRyAwA5FzqpI18wdc1mCwUEAhqI3LsF84csTAEwg8csZ0EIwZIwZOcBAAiKveBIB+7CdXfK6lPMBa3XiALGZ66wokn+MFoBTWoE9wZCgGhhWNHMYM5HgfaD6Vpu4QhqJGxaHNDQYzMV0Ee7unLDHFDB7Nhp+fnQTgrnWF67KXU4OqnaJ+AyJUuOMsh3VV3piBiWjeBoA0UqcvR+818gfanSUQUN0OoUpk/9EFg/hkKkHq3/8IAN+b/lQ1INiAKRCszXMwqE8T7FlTRiKtGgBmom26AwD9zNN5PWa2yO5nkGf3QcNmtDs+PudrXrwYQQI3tJYW1e0Q8AlaygMMRFLEUg668feYhajpQKzZBWO9VmjqasByEBR5xIDyJvAFcquSNWpxNYduEMzHCSt/YH4RtzSgMZ3QnSNSGQ4CmfAEAo8ckFLCVD+Ea4hK9YvvhJBCANG+C0prkT3PqbmlGTSX++lMGwJBse1VKwxTILgmTwKBXxNcVVfCRFxnssxMu81OIJCpOEwPQUWzbTftczFiBRQ6w0EAcKchEDx2dhJhiimG6JcN5njBG9cXcrxA5Q9orc4bLzAxcwjOekGFiPIGqGyB4dPI+Ow5dquuUgjEmmttWuHcCE1Ta0onLEvrXOhP/jUMHEesvxWx4x1FXOFszNaMzjyPGMCMMYPe2T8/0aoyQOTA4i6LQiJPPgGAb/cH5w2H3G+ELN7QVvzWE9OxcH7CcxE4mYyL4BGbV1I8TIHADJMtFkLTlFsxNo6Mjmf1tVYtrssCCk+NLF5DWxbQSEtI6k4RCIx7eq/FwCMnoqOQTkJFIynjl9rvDH0AofnQNt8Fehp58vFZn2stD7BON0LsPIFgWeSzwcDEHDPo0ZqBHEYMrPpK54wXAIwYDoJ8VZHlgztmOAhkuRII5ER2DoK0Lnmsewq/Brd3rs78AZO11Ua1mScQAMasqJTIS4dnf2L4DEz2I5q2OtINIoyxBzMn4XLk8BnSP/sMaD587/g/ts7h94wlEFAQ+/wt8wQVWjkNSxjDKCT62acAEOtumfc1+/s8gcBjYbSr7wdAf+1fnbODW2CkOWJgg4vWCirMIhBZ6ml1HQmWgRGA6xasEYO6hQUCgOmEM9xGQtPAHwLPQeCRExNqp1FUNFsCgVMcBADCyCHQL8shaC73s9YUCIptr1phvGo4CHY05sdBALD9sqrDbNNupZE/gIPyBwDGjD7xGpsrDmdSX+rnmqYQF6dSnE7VqA9ODWT1Hs9eiDAaS3NTWxmVJYX7b5N9zm0wMFnnVR3OwsyKMLMjTPRTSrQVG28v9pKWhNaughNl97NXfE4mY6S++l5IRtBu+wO0lm3FXp5FNKlzaTpFW0WgIKGYu1rChP2CZy9Mk0xnHpxE0xbAXgeBTKeQ3fshEJ7XhSKlZP+FCD4B1zbbJxCcm/DOB05GNF6FaNoKgyeRl47YvZyCI1NxGD+vXJbB4v9dZKoOs7i3GzoJySiiZbvrmsdMgWBjzfwur7ApEDgth8DLIPDIBTllCgRN1s2DzyEZBIByEAD6sZ/OUoVbygOsS19AR0BNp13Lcz3DkRS9E0nWVQepyuOuuNlk8GKsUX0g2xED00FQ7ZwGA4CxmOEgKOBDdC7caeQG/HxQiTwyyxGDR44rm+DbrqrM78IuQ3eFg8AYMfAyCICZD9rPzfq46eoyZ9mdhtjwevAF0Y/8+6wZTDMUT55/GdGxG989n7ZvkWQePDvznD9gEvRp3NhWRiQpeflSxmoqSmuhvBFGupHJWEGOvSgjZ1SPe+sOhH/uG+/TowmGo2mubgxZVWLFpN2oOuz1HASORxhjBnI1jBmM9oCU9jlozSaDLHIIdKvBwF3jBdGkTu9EktZyP+XB+e/9yqwmAwc5WAKlkE4i06vr/OUJBHnAepCoaCRlPIA7JaQQQFQ2q4eJ8fOzVOG2khjNcpjhYMu8NxYei3NwQN0Y7mzM33gBZEYMnh2vBF8QOXw2O9vfuOEOcVDFIcC4IRDkU0zJB2YOwc96kxCuhslLS/5+Syl51BAI3r65qmBrlPEptYNQ0ZzJSnAg7ZVBNOE5CEzE+j0A6Geesj4m00n0E4+B5kOsv82upS2IKK1BbL0P4lPoT/61ykyITZD+1n9A3/9FKK3D//6v23796Clg/oCJmUPwdO/sukPRuAWkPm+NZaGRg6fUOuo3zfuazHhBWVHWdDmmg8ATCJyPZuSI6K99z+aVFB450g3Y56A1HQTZVB1m8gfcFVB4anThBgMTU8B0loNgdeYQeAJBPpjMjBgk1bOPo0YMAMSWewCQh79vfawtom5oTgW88YLl8GqeGwxM1lYHKQ0IDg8noXYtxMYhMrLkrzcdBM4bMVAnfqc5CPa0lxHyi0wOQTqp8kWWwKv9MbrHk1zTFLJ2zwuBvPia2vFw8HgBqPNfe2WAwUiaqUTa7uXYjqhogobNMNpjjQrJk3shOorYeAciXDhRabn4bvs98AVI//hTJP/7BpJ/thb9xa9CWQP+j/wQUdNh9xKtMMy1ea44nMmt8+UQGDW0WdmE84gcMgSCho3zvsbOgEKA9ipTIPAEQ6cjWq6G+g3Ii4fmrWZdKWQCCm0SCGrMEYMcBAKXOQhOGgGFiwkEpX7nCQTCaDJYbTkEnkCQBzIOgqYZIYXOEgis8JlDj1ofqx47CsBBUdz01pWG1WDQnF+BQBOCrvoQ0ZQkWrkWUKFgS8bIIBBOEwhizgspBFWv86b1FUSSkhF/vfrgxNLGDMzxgrdfVdgHvczugbMFAoB11WYOgbdrCDMq8YxzsP7yw+rjO99l25qWgrZuD/4P/5sKWhy/AHoK7dpfIfCHz6M5ZMzFrDjsLKBAsLutlIAmeLp3mvTMhO3q7G3C+cQUCKhfgkDQapNAUKF+Ll5IofMRQqBdbboIVvaYgW0VhwYih3OHWXHoNoHg1MjSHASlQXPEwDkCAWY+xSrLIfAEgnxgOgjKG61qjoCznn0Qba+D6g7k+ZetNHzRr8YNXpLriXv9xDnz6iXTQZDfEQPIjBkMhIwLSRYCgZVB4DCBYDxujhg47/TzDuMB/3SyGsjkiyyELiUPHx6b9fWFwkzBFy3bC3qcfGA6Kbq9HAIAtGvfA4D+/JeRo+fQX/02lJSj7XinzStbHG3TGwh87CUC/32IwGeG8b/nS446r/RYDoLCZBCAEhCvaw0zHtc5NJjJGzB3AbOxCecTy0Ewj0AQTeocHIhSE/KxaYH+8UJSX+oj5Becm0iumnR8N2MJBAf/1eaVFBY7GwyAjLi4xHOHjIyoUMW6dY5svVmIE5ZAsPA5KJNB4KBnEqPqUCa8EQOPLLEcBJWZFgO/gzIIwFSF3waAfvjfAJCXlBJ52LeBvqmUbWtzM9MJnaPDcRpKfaypyP/N6bZ6JRCc0YwcgawEApVBgMMyCJwaUgjwlk2VBDTBoYgxqzs9vOjXPH1umjNjCa5rCbO1If8i0UzkJeX6EU1bC3qcfGA2GZz1cggAEJ03IJq6kBdfI/mZTWon/qbfQISr7V7akhGhCoSvcA/hudJdhAwCmHvMIJNEbpNAYFwTRP3clWcvX4qS0tV4gV01lEIIOioDTCV06/zv4VxE+y5jQ+ml7OuV3YTpILBrxKCkHEprYfwCUl/87yIzXuCu/AGYUXG4mIMgoM5RThox8BwEHrkzl4PAYQIBgLbdGDM4+IiqRup9iZQIcMy3jguTnvUvF17tj6JLVR1ViJsv00HwWkrt1smhpQkEUkqYuAihKkSJPcFU8zHm0JBCUGMPd64r56KunAByemjRr/nSQZVT8MEdtQVdG4DsP6JC7Ro3F/xYy2WdUWV0xggnWu0IIfA9+AXwqxsk0XYNvrv+yOZVrQx6xhMIMmF4hSITVDhDIMghiTxfSF2HsQvqPB+auz3l+T57xwtM1phNBt69huMRQqDtUG0G+msr00UgpVQOAl8QKu1zQ4nqdtBTMHlp0deaAoHmsoBCgBPDcTSRGT2cDzODwEkOAmE4CLwMAo+skZP9IASUN1g1h05zEACIdXugognZvQ956FGITdBdvYuYCNHnXbRzwqy82tWS3/wBk20N6mHimWgzkMWIQWQYUnFH2YBNJuLOdRAAPNBVxbBm7OouEgo5GU/zL8fGCPkFv7ytsDvBcnIApoegbgPCv7AK7wQ21Kg1nh71HAQmWsd1BD75Gv5ffxT/7zwx70Odx9KJJnX6p1O0VQQI+gp7S3NTWxmaUA4CyypfZeOIwfQQpBOIqvldYnYHFJpYTQbj3r2GG9B2qGwU/aVv2LySAhEZgdgE1K5FaDY+CmUhMEqz4rDVXfkDQ5EUQ9E0G2uClPgX/l6HjRGDWMpBo0gBz0HgkQNST8P0IJTWI3wBzFF+JzoIhOZD2/kASEnq4V8HoL9F1Wt5DoLcMAWCa/McUGjSVhGgskTjiUkVmrdUgUCOGeMFDhQIxuI6QZ8g5Hfe3wjAu7uqiZUoN8DEyMCCr/3SwVEiScnbN1cVPHRRGpkhotn54wUAmwwHgWkt9FCI2k60rnsyuxIeyyITUFj40YeqkI+dTWEGIilrplaUlM2wCRd310saQbRULy4QXG+zg8CrOnQXovMGaLwK2XcA/fwrdi8n70ibxwtMsqk6lBfdOWJwbEidK7fULz6CWWLcFzoqF81yEHgZBB7ZMD0MehpR0QhgZRA4rebQRNv1XvUPo89zcuO9AJ6DIEdevqhuvq4tkINACMG2hhCTsoRURStM9CGX0sVq5A8Ih+UP6FIyHktTXeKzbR52MUoDGrs3qu/b6Qt9874ukdb53HODAPz+DfUFX5e8ZAgELsgfAKgJ+6kL+zg7lrCcVR4e+abH2JEuZL3oTObMIahoVjbhyOKZJXll7Lw6ftWaOT99fiLB+ckkXXUltrfGtJsjBl7VoSsQQuDb/asA6Pu/aO9iCoAc6QbsazAwsTJMRheuSZXplLoHKKmAms4irCx/HBlSoa5b6hZ3PoZ8DnQQGBkE0nMQeGSDnDJ2GCuaAGaEFNq1ooXR2nehGXOv2l3/hYoOpUR6AkH2TCXSHBuO01jqL0hAoYkZVDhWpi4KVnfvAlgBhQvsLNnBZFxHAtUObDCYyX07VfXnyNAA04m5leyvHxrj/GSSN64r57qWwu/Ouc1BALCxtoS09JoMPAqH+bu1toAVhzMxcwiempFDQKUxAjax+BxxPrHO8/OMGDzfp8Tk3TaPFwB0GA6Pc56DwDVou94Hmh/9lYeRK23+2gz3tKvBwKSmA1jcQSAHT6hxopar7R2JyIFjw0t3EISNkMJY2kkOAuP8udL+BhbBXb9lTsQIFhEV6gbBySGFJv57Pk3gT7vx3/MpWiv8gDdikAuv9sdUQGFLuKC74WYy/oWAsUs0fHrRr5HmzlL13DtLdjEWd25A4UzamtXfc0VqlL/aP3jF52Mpnf+xT4mD//nmxqKsyU0NBiYbjTGDU96YgUeBsEYMiuQg2LPGCCqc6SCobFH/WELQWD4xBYL5smb2X1Br3G3zeAFgiejnPYHANYiKRsT2t0FsAv35f7Z7OYAKDk796FOkvv+fltWwYNWDNmzK19JyYqkjBlaDgcvyBwCOGQ6CrvqlOwiiSec4CETQcAh7DgKPbLAqDo0RAyeHFM7EvKFpMy7aXs1h9rxgpEPvKlD+gMl2QyA4gXrYl4OnFv+iRaynduHkisNZlNYBUC/H+YtnBzgyo/cc4M/3DXBmLMGda8utHcVCIqU0Ggz8tt/QZINZaXRyxHMQeBSGnrHiOggayvxsrS/h3ETSEidMB2GxHQSMLSYQqGuUExwE3oiBO/Hd8XEA0nsfQsYmbVuHlJL0/i+S/POt6I/9D/Rf/G+Sn78bGRnN7f0GTwAOEAhqzBGDpQoE7sofgBkOgqWMGBgZBDFHZRCYIYVeBoFHNpgVh9aIAQjA53CBwKQ86KOyRKNvMplJZfZYEvsMi+me9sI+IJpVh/uTpkBwYtGvMR0EmPNtDmHcFAgc7iAQwVIIhGnWJoilJO/8brf1MPDNw6P8+b4BQn7B/35Ta3GyFCb7Vepy/UaEvzgPQvlgo9FkcMqrOvQoEN1GBkExQgpN9lyWQyCMEYOiOwjM481R05ZMS166FKUsoFkis52UBTVqwz4uTCZJ6969hlvQ2ncpF8FEH+kf/rEta5DTw6S+/CDp7/xHiE+g7XofovNGGD5L+uefze09B0+C5gObMwioaAbNv7iDwKUBhZPxNL0TSdorA5QHF7/vCxnz2TEn5RaZGQTeiIFHNmQcBEogSOrSsQGF89FWHiCelgxH03YvxTVIKdnXO40m4MYC7840lvmpD/v4RVTNmcqBJQgE4+piIxyWQWCNGDjdQQBQVk9Jaor715dwejTB1Z8/zs5/OM4HHlXf28/ft2ZJM3X5wI35AwAbar0RA4/C0jOeQBOwprJ4AsEVOQQVZgbBxaKtAQAjA8kMSZ7JwYEosZTk+tawYxyN7ZWq6enStOdYdBP+d/wfCFejP/N59FNPFPXY+snHSX7uelXNXd2B/z/+HP+v/BP+D3wTfEH0Z7+AnM4uHFRGRlRFaO062wV3oflUhkhkBBmfmvd1su8gCA3Rsr2Iq1s+2bgHIOMgcFaLgVdz6JELk+YFOhNS6NSAwvloNcYMvByCpXN8OM5QNM3OpjAVRXjY3dYQ4pTWjhQacuD4gq+VUirraUk5hKoKvrZsGHOJgwBAlKqqw6+9qYzf312PLuHIUJyOygDfeVcn79leU7S1uK3BwGST5SDwbMUe+Sea1OmfTtFWESDoK96F95Z2M4dA3dCbGUSmo7BYyMkBEALKGq74nDlecIMDxgtMOowxg3NeaKmrEFWt+N72EACpb/xqZmOsgMhUgtQP/pjUP9wL4xfQdj5A4GMvoK2/xVqTtus9kIz6dmKFAAAgAElEQVSgv/Jwdu894IzxAhNhBBUyj4tATlxS55aGTcrd6CJMgaBriZsploPAQS0GVgaB5yDwyAbL4jcjpNDJAYVz0WLmEHgCwZLZd17tHN1S4PECk20NIRIiyFR5J0wPLqyYR4YhFYOqNY6rEhyLKVXYDQIBZSqHIBgf46G7Wun/6DZO//YWTvzWFu6/qrjCi+kg0FzmIKgK+Wgo9dEzniDhpFRijxWBFVBYpPwBk/bKIOuqg5wYSXBpKomoLH4GgdR1mB6E0jqEz3/F558zBQIHBBSamC4PL6jQfWjXvQ/tdQ/CxEVSX/sAUi+c41ReOkrqb1+P/vhDECjF9+A/4nvf1xDh6tlruv4DAOgvfTO79x88CYBo2JyfBS+TxYIKZd8BALS2a4q2pnxxaEDN7S8loBAyDoKoIx0EsYVft8LwBILlYmYQlGdCCp1i51sqbV6TQdY83atuvvasKc7Nl9lk0BdW9XsL5RA4tcEAYNxFIwairF79Y3oIUDO0HVVBW/JF3NhgYLKptgRdwikvqNAjz/TYkD9gYrkIeqfBuP7L6SsbTwpGZBj0tHXvcTnPGyG6TmgwMOkwBIJeTyBwHUIIfA/8HaKpC3n6CdI//nTejyHTKdJ7/yfJv9qNPP8yov06An/4PL7rPzDnZofovAlqOpG9LyBHupd+HIcEFFoYQYVy9Nycn3ZzQOErl9RD9euWGOadCSl0joPAyiDwRgw8skFODqigk7I6lbIqnV1xOBet5Z6DIFueKVJAoYkZVHhc6wRYeMxgzMwfcFZAIcwcMXDBqccYMSDL+cZ8YzUY+ALQsNHWteSCmdNgWg09PPJF93hxGwxmYuUQnJuGULW6DyjiuUIa443MkT8wOJ3i9GiCddVBmsqLL57MxxpLIPDEQjciSsrxf/BhKClH3/uXpJ//Ul7eV+pp9NceIfm/riX9w/8KSHz3/Df8v/MEon7+a57QNLRtbwZAP/aTpR/PaQ6CGuO+bh6Rw3QQiNadxVpSXpBS8mp/FL/GkoNSnThiYDkIvBEDj6Ui00mIDEF5I0LzYTpiXBdSaGYQeFWHS6JvMsmZsQQba4I0F+nma5thz3oxZSjNCwgETnYQmCGF7hgxUA6CbAOQ8s7ERYiOIeo3IXzOudlfKqa10OxC9vDIF9aIQbUNAsEMB4HQNFWNGhkpqPV6FlOzG5RmYroHnDReADOrDr3NCLciGrfgf+9XQfOR/u5vob/2SM7vJccvkP7pZ0h+9ipSX34QBo4j1t6E/w+ew3fXf17S9U7ruhcA/eiPl35ghzkITBHEFC4uR7/wqnqdyxwEPeNJRmNpttaHKFliOFvYEgicM2JgZRB4NYceS2ZqEKS0LH4po7rHbSMGrV4GQVaY9YY3F8k9AFAT9tNa7ufp+NIFAqqc1WAAmZpDd4wYqAwCIjY7CFzaYGDSVad2Do4OeQ4Cj/zSPWafg2BDTZCWcj+vDcQYjabU+ULqEM2tlz1bLAfBHCMGZkDhbgcFFAJ0GKMg5zyBwNVoW+/D98DfgZ4m9ZVfycpJIFMJ9CM/IPnPD5D8zCbSP/0zGOtFrLsF/69+G/9vP46WRVK/WH8bBMLIU48jl/AAJ3UdOXRKhThXtiz5OIVEmM7AoVNXfE7Gp9THK1vmFAOdzAuGUHlty9LGC2DmiIFzBILV6iC4MtnGY8nIKdPil6k4BAi4THZp81oMsqLYAYUm2xpCvDSxlBEDBzsIXNRiYIYU2u0gcGuDgYnpIDg67DkIPPJLtxVSWHxnjRCCW9vL+PbRcfadj3B3WQNwVGWWmPklhcSsOJxLIOhzXoMBQEt5AE3AeW/EwPX4dv8qCI30d36T9Lc/gjyzD9/9DyHCVwb4yvgU8vST6K89gn7oUYiOqU+Ea9Cuey++Gz6MaO7KaR0iEEJsvAN59IfI008itty98BeMnIVUHNG8zTkhzpWtEChFDp1G6rpyJBnIi4fURqTL3ANg5LMAN69Z+r2yIzMIAkrgkIlpmxdSXDyBYDkYicUzKw7BfQ6CpjI/PuE5CJaK6SDYk8VJLx9sawjxs7PVxErqCA2fQSZjiMCVc11OHjEYd9GIgeUgsFsg6DcCCl3qIGivDFAe1Dg+HCetS1tCHj1WJj1jSTSRmW0vNrd2lPPto+P8omeKu01BcWoIMXduYF6xhEvzPGWQ1iUv9EUo8QmuaVra3G+x8GuCtooAvRNJokmdsNt2Uzxm4bv+A4jyRlIP/zr6i19Bf+1f0Xa9B9GxG2LjyP5jyL6DyN4XQTdGWDU/YsvdaK97EG3HOxGBpe8uz4fWdS/poz9EP/ojtEUEAnnxNQBEy9XLPm6+EEIgGjaqMMKJPphx7+bW/AHICATZbKYFNIHAmQIBqdW1yeEJBMvgCgdB2p0CgU8TNJcHuDCZJJbSrZAQjyuZiKc5OBCjsdTPptri2lrNJoPz5VvYOLwPefEQouO6K15nVeU4MKRwPG7UHLpgxCCTQTBk6zIsB0GOOyx2I4TgqroSXroYpWc8wfqapdUdeXgsRCSpMxBJ0V4ZIOiz55p1e6e68X28ZwpRXY+E4gmKkRFghpBpcHQozmRC58a2Utu+LwuxplIJBOcnk2yq9c4FbkfruofAx18m/e9/hP7Kt9Cf+Tw88/nZLwrXIDa+Hm3LPWhX348wA4DztYYtbyIN6Cd+vuhrdasRwDkCAYCo36TElIHjszZ33CoQDEdSvDYQo6nMz8aapd8rCyEI+QUxJ9Ui+w2hNbW6xiQ9gWA5TM4OCbJGDFwWUgjQWuHnwmSSvsmkdwO/AM9diKBL2NNeWnR7mtlkcDDQxUb2IS+8ApcJBDKdhPELUFqLKCkv6vqWwlgsTUATlo3MyVg3McaNuB1kGgyCUOe+BgOTrvoQL12McnQo7p1fPPKCFVBoQ/6AyVV1JTSX+TnYHyPWWEuQIlYdmlkH4ZpZH97fp3btnDZeYNJRGeBZoHc84QkEKwRR0YT/V76IfPNn0Q89ihw+A8FyRNMWRFOX+j+tcJsConYt1G+EwZPIkR5Ebee8r81UBjrrgVs0b4WD/4K8dBg232l9XF5Q69Xa3DVi8G8nJ5DAPRsqsr5XDgc0phLOEQiEpql7sOTqchA4T152EXJSjRhgjRio/9dtDgKANqvq0GsyWIinzxU/oNBkqzHL/YuUSt6V51++8kWj50BPIerWF3NpS0KXkvF4muqQ5pzZv4UoNTMIbHQQjF+A2ASicTPC5149t6vOaDLwcgg88kSPjfkDJkIIbl9bjgROJirVB4vkIJCmcHnZbqwZUOi0BgMTs8nACypceYjKZnw3fwT/W/8C/91/gu+ad6O1bC+oOGCibb4LAP3kYwu+zhIIHDRiACCMYEZ56bD1MZlOqZGIYJnrNgi+e1TlTLxry5WZFIsR8gkSaUlad9KYQchrMfDIgsnZIUGZkEIXPPxcRruxC9M76YUHLYRdAYUA5UEfa6sC7E0aAoFRfTMTOXwGAFG/oahrWwpTCR1duiN/AIBgKfgCmUAlG7AaDFwaUGhiBhUe8ZoMPPJE95h6wLSjwWAm5pjBgSn1QC6niuQgmDZHDGYLBM9fcGZAoYmZF3HeEwg88ohm7LrL4/OPGcjoGIz2QHUHorRm3tfZgWjeBhihhCZDJyEVQ7TumBVc6HQODkT56ZkpGkp9vGFt9k5Wc8w5nnaQQOAPQSqGlA5aU4Fxz2+cA7k8gyATUmjXinKn3bho9457F+35SKR1nu+LUBbQuKZp+cE6ubCtIcRZrY1UsAJ58RAyNVvQMQUCHOggGHNRxSGo3UHCNSpsSbfH7pbJH3C3QGDmZxwa8BwEHvnBchBU2y0QqBvgZ0aMB3IbHQTjsTRHhuK0lPuta7rT6Kg0qw69zQiP/CE23g6aD/3kXqSenvM1ss8IKHRY/gCg7tkCYeSlI9b6M3kJ7hkvkFLyXx9X7uqP39hISQ4PRM6sOjTu+dOr57zlwkdZB2FYj4URZuZmB0Hmou0JBPPx0sUosZTkhrZS28ZItjaEkEJjqHo7pBPWDrOJ5SBwokDgogYDi3A1SAmxcVsObzUYuNxBsK46SEVQ4/BgzApz9fBYDqZAYLeDYH11kPbKAC9PKidBUTMI/KFZKfAvXowgUeMFTh3jWmOMGHgOAo98IkKViM4bITqKPP/KnK+RF52ZPwAgNJ8SApIR67pvukSduN75+LcTE/zo9CSdVQF+c1fd4l8wB6aDwFFNBn4jL2UVjRl4AsEykFODIIRVM+TWFgOYMWLgqfrzsi+HypZ8YwYVngirB8bLL4Ry6DTgTIFg3HAQuKLBwMCyIZqBYEXG7Q0GJpoQ7GgMEU9Ljg97YwYey6fbARkEYOQQdJYzqFWrDxTBQSDTSYhNzJ8/4NDxAshsRvR6AoFHntE2GWMG87QZmA4CzaE78mLtTQDIs8+o/3VZg8FkPM1Hf9YHwF+9sZXSHGtMneggsCrFV1FQoScQ5IjUdeUgKK23AljM32U3thhYDgJvxGBenjIEglsdIBDsZzMA8vxLsz5v7Tg3XlXchS0Ba8TAbQ4CjNnFIqMaDI4q5brOeZkS2bLTGMs5MLB6FHiPwtEzlkQTmZl2O7m9s4xhYZwrpooQahpRguXl+QPPGgLBbocGFALUhn2UBgTnJhKrap7Xo/CIq4ygwvkEgp796nVrXle0NWWDtvZmAGT3syqgsPcl8AUQLdtsXtniSCn5rR9foHciyVs2VfDWzdmHE5qYDoKokxwEplMr5QkEHosRHQU9jShvsD7k5hGDxjI/QZ/wHATzkNYlT/dOE9CErbszW+pK0AT8W1xdMPTTT1mfk4kIDJ+GiqZZv5dOYSyuFDQ3jRgIs0IsYoODYKwX4pOIxquKkgJdaCyBoN8TCDyWRySpMxBJ0VYRIOiz/zbm9s5y4qKEaVFqjR4WlKiRPxDOCAS6lDx7Xl2jrnOwQCCEoL0iSCQpGY3NPSvu4ZELYs0uCFerB+zYxKzPyciIGsmsWgM189cg2onpINBP7kWeex6iY4jOG2eNETmVL7w6wsOHx2gp9/N/712zrPdyooMAv+kgWD33L/ZfWd2KGVA440Es7eKQQk0I2isDjMd1ywrukeHgQIyJuM71rWHCOdqm8kHIr7GxJsjLiSb06g4YOIacUIEwcuAYSGml4TqNMReOGJgOAjuaDKzxApfnD5jsbFIX2AP9q0eB9ygMmYpDe/MHTDqqgqyvDjIoqtUMcSJS0ONJU7CckcR+eDDGeFzndc3hnK29xaK9yss88sg/wudHu+pNoKfQj/1k1udM27627mbH5nOIikbE+lth8hLpf/8jIFPf6GReuRTloz/tQxPw9bd30FS+PFdXyOfcDAKZWj0jks6+ijgYs8poLgeBGzMIYEaTgXfRvoKnzhnjBR32jReYmGMGgy23AKCfegLI1OM4VSAYt0YMXHTaMW7ApQ0ZBFbFocsbDEy2NYTwCeUg8KzFHsvBCii0ucFgJq/vLGNImDkEBXYRGDkHYkYGwTPnlSixp9257gETr+rQo1CI7W8DQB56dNbHzfskse7mYi8pK7Tr3geA7HkOALH1PjuXsyhjsTS//L0e4mnJn72+mVs7sq81vJxQQD1DxZ3kIDBdHF4GgceimF3HMwSClOsFAi+ocD6e7p0C4LY8nPyWy9Z6ozKu5lYA5KF/U//bq/IIRIsDK3xwZ4uBsNVBYDYYuDug0CTk19hSH2I4mubCpPdg4JE73WPq92etzQGFM7ljbTnDRlChLLBAkHEQZAQCM0T35jX2i9iL0WHca5wb9+41PPKLtuVu8JegH/4BMjYJqPl4/cgPjM/fY+fyFkW79lcQV71J/fv2jzk2UBHUWNOHvt/LmbEE922s4BM35We01YkZBJmQQm/EwGMRLAdB2QwHQdq9GQTgVR3Oh5SSp85Nowm4yQHp0KaD4CeBPeAPoR/9ETIRQT/1OADahtvsXN68uHPEwHQQ2CAQrDAHAWTGDF6+tHoush75x2kjBqByCIaEYfkvtIPAyCCY6SB49rx7BALPrehRKESoEm37/ZCMoB/8F8AIbx4+g2jaiqhbZ/MKF0b4S/D/+qMEPnkQ35s/Y/dyFuR/PTfI909OsLYqwJfe2o6Wp9GNkM/BGQReSKHHYsg5HARJF7cYQGYu0HMQzOboUJyhaJrXNYepcMDDrSkQvDLqU/azZIT03r+EgeNQu9axF8BxF7YYiFLDQVDkkEKp60aDQQhqnfnzzIXrW5TAZtaxeXjkgjVi4CCBoKU8gF6qKo+HBi4V9FiXZxBcmEzSPZ5kU22QxjJ/QY+dD9q9EQOPAqLt/iAA+pN/jdR19Of+EQCx4512LmvJCE1T4cQOzUoAeLU/yp88cYmgT/DwOzupCefvvGOFFKad4yDAdBB4GQRXkk6nefvb385HPvKRQq7HPRghhaKi0fqQ20cMMrY/76I9EyfUG85kU20JAU1wZCiOduvvAaD//M8BZwfajJstBg4QWZaM2WJQbAfB2DlITCOatqyIBgOTm9YogeDZ855A4JE73aaDwEEZBAC1dWrD4HRfYQUCK4OgTAkSz7hovAAy44znvM0IjwIgNt2JaL8Oeekw6Yc/hP78l8EXwHfTh+1e2oogrUt+84fnSUv477c3s6slv87asN8MKXSeg0B6IwZX8pWvfIUNG9zfxZ0vrBnDOWsO7VjR8vFU/bl52ggovM0BAYWgHCqb60oYi6W5VH8d2s4H1CdKyvG94ZP2Lm4B3JhBkBkxKLKDYIU1GJjsaAxTGhC8eDFijWR5eGRL91gCTcCaCudkEACsaW4GoK+/v7AHMs9Hxvlpn4vGC8ALKfQoLEIIfG/9C9D86C9/ExLTaHt+C1HZYvfSVgR/99IwL12Mcm1zmN+9vj7v7x/yO7DFwMog8EYMZnHp0iWeeOIJHnjggUKvxz1YGQSZPw7XOwgMu2a3FxxkIaXkyXMqoHCPQxwEANvqVeXKkcEYvvd8Gd87/jf+Dz2CqHVmvy9kRgzcJBBkRgyK6yBYifkDoMSt61tKiaYkBwZWjxLvkT+mEzqDkTRrKgKOG+fb2KYEgvHRwYI2dciIyiAwQwrd1GAAUBrQqA/7uDCZtOqhPTzyibb+Fvy/9l3ElrvR3vAJfG/+rN1LWhFMJ3Q++7QSQP/u3raCPO+U+J2XQSDMFoNVlEGwpKGRz372s3ziE59genp6SW+q6zpHjx5d1sKcTvvweYLAib4x9GH133ruvPplHh8Z5ujR4oea5YP6EqXqHzx8xApbjMViK/7nOR+9U5K+qRSbKqG/+yQF3hdaMo2oh+29h3pYE/dB7e2QAJb4c7LjZzo8ncQvoPvkMUfP1s1EJCOsBxLjA5wq4ver8fizVADnkxVEHPwzzYVNoTS/AB556QxlG9wjFtmBW36mxeT0hHqgbAikHPe9CU9GKQOC8TF++uJROsqvPM/l42faNnKREHCqb5iJoSMcuJSiJgjp/jMcHXDHubWhJM1QFJ589SjNYXeseS68v1Ensxb2/IX654mTS/4q72c6P188kWYoqnNXq6B0rIdCPOqMDan7296LAxw9OpyX91zuz7RqZJx6oP9CD+Or5HdjUYHg8ccfp7a2lu3bt7N///4lvammaXR1rYxqrvlIJMdB87N5527rYac+MgT00dLUQFdXk70LzJFNL5xi6HyEUPMGNtepXeqjR4+u+J/nfOw/MAKc542b6ujqarN7ORa3a+P87dEeBrUqurras/76Yv9MpZRMPvIadWEfW7e6Z1dcSklS8xNITxf1+5X86SUk0LHrjYj6pY12ueXv9K2BCb5wopuzyQq6upzreHECbvmZFpPuUxNAN12t1Tmd+wqJXpUk9SOo1cfp9Tdxd1fdFa/Jx8808T21WbNp5w38uCeJTje3r6tk69a1y3rfYrLpcDdHxyYINnTS5SB3XrZ4f6PuI57S+e6xcU4Ox9nWEOIdW6pm7YR7P9O5mU7ofO3H6uH4L+/bSFdjuCDHWZsYgQPnqaipp6urOS/vudyfaXq4gzTQVFtF6wr63VhINFlUIHj55ZfZu3cvTz75JPF4nKmpKT7+8Y/z0EMP5XWRbkKmUxAZgcqWWTuhphvGrSMGAOuqgzx7PsLZsYQlEKxmnuhR4wW3OiR/wGSr0WRwZMgddqephI4u3TVeAGqWkXANRIaRuo7QihMwIofPguaDmpX3AH1Dq7JBP907jZTSNW4SD2fQbTUYOCt/AEAYrQI1cpxv9Ezx4dddKRDkhego+EOIQJjHe1Qewe2d5YU5VoFYbwRMnhlLOGp8z2Nlc2I4ztu/c5aTI5lR2u0NIR75pbWOqk11It86MsZQNM07rqrk6gKJAwBhB44YYIwYSC+DIMPHPvYxnnzySfbu3cvnPvc5brzxxlUtDgBWx7GYEVAImQyCgIsFgg3GRfv06Oqp8pgPKSV7u6cQOO/ma311kJBfcGQwjl7AWdd8YQYUVrqpwcCktBqkDvHJohxORschMgw1HQif8yvLsqWu1M81TSH6plIcGlw9F1uP/NBjtOw48mbeqDmsleM80TNdkBwCmU5CbMLKH3i8W4nYd6x11jVqMTbVqg2Ik8PevYZHcbg4leSNXz/NyZEEr+8o43NvbGV3aymHBmPc/Y0zjERTdi/R0XzpoMo++ci1BRI+DcyQwqgjQwpXT3aSS/P27UUaAYXMIxD4XPxdXVejLtpnx7ygwiNDcS5OpbimOUx9qbMe1HyaoKs+xHRSt26YncyYGVDoQoFAWFWHxWkykCPd6ri164pyPDu4b2MlAD86VRzRxWPl0DNmOggcKBAEwuAvoYEJ+qdTHCvEw69RuSpKaxiJpjjQH6O5zM8Wlzn+LIFgxBMIPAqPlJIP/3svfVMpfqmrip+8Zz2/e309j79/PfdsqOD0aILf+fEFu5fpWI4OxXj2fITOqkDBxciQAx0Ewqg5XE0hhVk9yt5www18/vOfL9Ra3MO00WBQ3jjrw2Ztl5sdBKbtzxMI4LGzamfmrnXO3JnZOqPJwOmMx9SJ3m0jBgCEVZOBjBYpeHTkLACibuUKBPdsqADgR6c9gcAjO8wRg85q5wkEQggoraNcn8IvU9aIWl6JGKFdpXU8eW4aCdy+ttx1ozqbatXP74QnEHgUge8dG+enZ6bYUBPkH9/Sjs+4Tw/6NL7ytnaay/x85+g4PzvjXZPm4ksHlHvggztq0Qp8rgkZu6xxJzoIUqvnfOXivW77sBwEZbP7P91ecwiwvsYcMfAEgr3d6kJxp0Otm9uNHILDLhAIzBGDKhcKBOZcMZEiOQiGz6jj1q4vyvHsYHdrKXVhH8+en2bUs3V6ZEHPeAJNwJoK52UQAIgyZf2vkRM80b205qdskOZ5qLTGGi+4vdN9M/ytFQFKA4JTo/GCVkJ6eKR1yaefVB1Un3tjK6WB2Y8+NWE/f3lXCwB/8otL3u/jZUgp+faRcQDef3VNwY/nxJpDTAeBl0HgsSBTA8AcDgLjd9lp3czZ0FzmJ+wXnB1LrOqTZDIt+cW5aUp8gpvXOPPma5spELggqDAzYuDCU47hIKBIDgJzxIDatUU5nh34NMGb1leQlvCzswXYZfVYkUwndAYjadZUBJx7nQ0rgaCOCX5xbir/GTERtZMnSmsth8IdDsvIWQqaEGysKSGSVFXCHh6F4tETExwbjrO7tZR7Dffa5Ty4tZrtDSFeuhjlmYHVe+87F4cGY5yfTHJNU4i1RXBuhQ0BJ5Z20M/BcBBIL4PAYyHmyyBIroCQQiEE66uDTCd1BqZX70V7f1+EqYTOnvYy62TlNLa6yUFgCgQudBBgZBDIYmUQTFwEQFQ7p1azELxlk8oh+PaRIo1ueLieHnO8wIn5AyaGg+CmmijD0XTegzjltBIIIv4qjgzF6awKsM6B4xZLwQsq9CgGf/uCChb/xE0N847iaELw8ZvUPf3XTjto59oB/NgYBbx3Q2VRjhcyxN9o0kE/B6PFwMsg8FiYKTODYL4Rg6KvKK+sq8nUD61W9p5VJ0Sn5g8AdFQGKA9qHBuKk9YdpLTOwbg5YuDKkELDQVCkEQPG+9RxK1uKczybeOumSqpKNH5wamJVi5EeS6fHwfkDJsJoF9hTpx56zTGAvBFVAsGpuLo23d7pvvwBE0sg8FqTPArEsaEYT/VO01EZsETp+Xh3VxVNZX729UvOja/e+9/LefKcGpUq1v2w2WLgJAeB8BshsMnVc65y+aOsPWQcBCsvpBBgfbX6Q1jNAsFjxk3dGxyaPwDK7bGtIUQ8LR2fGeFqB0Gp6SAo0oiB4SBghQsE4YDGg1urSenwf18auuLzBweivPVbZ6n4y9fY8LdH+WcjJMlj9WI2tnRUOjN/ALDqB6+tVDtN+Q4qNDMIXp1UDjInX6MWwwwq9JoMPArF1w6pv5cP7KhZNB8s6NP4lW1qQ+Cbhz1nG6j8gRf6IvgEXNdaWpRjOrHFwMogSHkjBh4LYTkI5q45dHNIIcAGw0GwWm1/I9EU+y9EqAv7uKYpbPdyFsRsMnD6mIEZUuhGgaCYNYdST8PkJSirzyjWK5g/uKEBTcDfvDhM36R6+EukdT7zdD83fvEUPz49iS7h3ESS3/jBeStJ2WN1Yv6OtDk0oBAyDoJNoSlKfIJf9Exbmwd5wcgg2DdUggDuXj/3TLUb2OhVHXoUEF1KvnFIPei/d/vSwvXea4TweaNvitOjCYajaa5uDF0R7lgown4nthgYzwJeSKHHQsjpeRwEZgaBU8OTlsjWeqWUHR1anRftH5+eJC1VFZvP4WLPNpfkEEwYNYduHDEoakjh1ADo6RU/XmCyqbaEX7+mlrFYmjc/fJa/2j/IdV84yaef7EcI+OwdzYx8bBv/+u61COATj11kOOKNI6xW+qacLxCYDgJ/bJSb15QxmdB5vi+Sv/c3BIKzyQpuaCulrtSfv/cuMpsNgeD4Kt2M8J3V0XsAACAASURBVCgsT/ZM0zuR5KY1pZYYtRg7G0O0hOHgQMwSJFcz+41z1+4iuQcg4yCIOslBYIYUehkEHgsyNajsJsHZ6fZWi4HDHyoXo8vYlT7ignT8QvCDkxMAi86rOQFTIHD6z8rNDgJrxKAIGQTSyB+gqrXgx3IKD93Vyo1tpRwajPHJxy5ydDjOnjWlvPChTXzipkZK/Bpv2VTJB3bUMBZL8/+/eOU4gsfqwLxhb3WwQGDWHBIZ4U5jZndvHnMIpCEQjIpK7tvoXvcAQH2pn5ZyP6dGEkwl0nYvx2OF8VVjvOB9S3QPgBrd3NOkHo1+emayIOtyE89fMASCtuIJBEGfOWLgOQjsxBMIskQmYxCbgPLGK4KBVsqIQWOZn7qwj5MjcRJpByl4RSCZlvzkzCQBo4bN6bjFQeDmDAJRTAfBhBlQuHoEgtKAxt73beCLb23nj/c08si717L3/Ruslg6Tj9+oRrq+fHA0/9VxHq7AEgjKHbxrbtQcysiIlQ/w2Nk8PmgYQuWIVsk9RUoVLyTXNIWRqB1bD498EUvpPHJ8nIAmeKCrKquvvaVJ3cP/5LQnEJjupxuK6CAQQhDyC2dlEPiMYFzPQeAxL9Nz5w8ApFZISKEQgq76EGkJJ4adHX6Xb57unWY8rnNbRxmVLrDDN5f5qQ37ODESJ+6kk+llmC0G1S74nl5BEWsO5WS/+kdFU8GP5SQCPsH7r67h069v5s2bKtHmSGXfUh/ipjWlnJtI8pSRquyxuuibShHQBA1lDhYIyurU/0ZGuLY5THXIx/6+CJPx/OyQp6aUgyBUXss1TaFFXu18dho5P69eWj3hXx6F58enJ5mI67xpfTm14ezOF7sbBH4Nft49ZW38rUZiKZ0D/TGqSjQ21xU3Eynk14g6yEEghFDOcc9B4DEfcsqwt15WcQgZB4FvBXxXzfC7ow63ruebR46PA/BmF4wXgDppbW8IkdLhmIPnOMdiafwalAZcKJ6VlIPmg0gxMgjU+WUuAdID3t2l3BzfN8aAPFYP0aTOaCxNS7l/TgHJKZghhURG8GmCOzrLSOnwVG9+RK309DBRSrh9c5Nr6w1nYoocBzwHgUce+ZbRQvCg0UqQDeUBwZ41ZYzF0uy/kMf8EJdxcCBGUpdc11Ja9HNuyCdIpCXSSW7BQBiSq0fIXAGPskVmagAAcVlAIayckEKArnp3zLbnk5Qu+e7RcQTwzi3ZWdLsZEej+lk51aIppWQslqa6xOfKG1ohhHIRxMYKfrHKBKB6AsFcmLkg/35ywlk3Dh4F54IL8gcAK6RQTqud/jvXqVG1x84uP4dAppMEk5OMikru3eD8EbilcE2z5yDwyC+T8TQ/ODVB2C94a46bPXcZf7dPnstvTambOGTcU+60walUYgQVJvLZALNcAiFIJ5C6c926+cQTCLJETs1/A28JBC4fMYDMbPtqajJ4vHuKgUiK13eWOTsl+zKublQ3WK8NOPMGazqpk5buzB+wCFeDnoZ4gWcSTQdB2ZUOJQ9YVx1ke0OI06OJVXVu8nBHxSGA8AeV68gIE7zTzCHIQ1BhfFK955hWab2v21lXHaQiqHFoMJbfOkiPVcv3T04QTUnesqmS8mBu9x172tXM/TPnV6+DwMy22tZQfIEgZFixHRVUaFZPp1fHvYcnEGTL1AIZBIao5PaQQpjRZODw8Lt88k3DkvbLOVjS7GSHoe4e7Hfmz8oMKKxysUAgjBwCCtxk4DkIFuetM1wEHqsHs+KwxckBhSbhWkhGkMkYG2qCdFYFODwY4+LU8mrT9p04r/5RWkOFG/Nc5kATgp1NYRJpybFhZ17DPNzFt44Y4wVbc7+Xu66llIAmeO5CZNWG4topEAQNB0HcQaKhsJoMnLkZl288gSBLLAdB2RwOghUSUgjQZITfnRyNO8viUyCiSZ1HT6jE23de5Z7xAoBt9SE0Aa85dMRgLKaUM1cGFJqUqhsNWegmA89BsChv2awEAi+HYHXRN5kCnO8ggNlVh0IIq81guXWH+473AlBZc+WIo5sxLcyvOlTk9nAPI9EUPz0zSVWJxj3LGMMJBzSubQkzFktzZHB17BhfzuHBGILMyHExKfGZAoGD7Px+4/uwSoIKPYEgWxZyEEiz5rCoKyoIQgh2NoZJ6XBiYuULBF8/NMpEXOctmyqoyTLx1m7CAY3NtSUMRFL0L3OHqhCMxd1bcWhiOQgK3GQgp40QVE8gmJfrWsI0l/nZfyHiyN93j8LgmgwCyOQQWGMGy88hiKd0Dp9TNajNDSvLYXStkUPw0sXVa+f2yA/fOzZOSof7r6qiZJk34zevUWMG+86vvtacoUiKS9MpNtQEKQ0U/6Em5HfgiEHAEAhWSdXhCniULS7SCCmkYo6QwvTKCSkEuL5VXbQPjTroD7QApHTJXz+vHsx++zp3Pphd7eCgwnFjxKCyxMWnm7BhVSygg0BKqQTIUJWaY/aYE00I3rypEgn80OupXjWY9nxXOAjMJoP/x955h8d11fn7vdNHo94ly5J7t+PEdooT0p2QQhp1CQkpwLJZEpbOArvL7sICC0v/sZQNhJDEkJCQkEKK7XSn2nHvtixLtnqfIk07vz/u3JFiq4w07d47532ePPYTjaRjzejOud/zKb5uAC4apSCYbrjmhkYvrqDasuMoKEt+kTpiVY16I7alNTeku5L08eAe9XfkI0nYCzTW1nkA2JyDAwLNXrAsC/YCGKUg0OGAQEgFgWRMfONLgMMmCikE1YMFsNvkA4L/3dLN3u5hzpqRx/n1nmwvZ1qsiAcV6u/CZQYFwciJYBoVBMODEAmOWaEqeTcyhyD30BQENfn6HxBo1wtNcVTpsbGi0sXxwRDTdRms391LiVBvfpQ8cw0IFpU58dgtbGsPyKBCybTp9IV58ZiXMrc1PpRLhnNmqHvg13IwqHBXFvMHYKTFQJcWA6kgkIzFxC0G6p9mCCmEEQXB9h7zvmE/fXiAr25qxaLAj9bVGrKGD0YUBNt12GSghRQaOYNA0RQEMclwWtDsS2Pkm0jezcWz8nHbFJ47Mog/pKMNhCRtGKXFAACPegMvYgoCgEtmqzcsr3VM/fXaPxThsQMDVCmxgVheSfJr1BFWi8IZ1W6GwoLdOVStLEktfz3YT1TANQsKU7IPr8q3M6fYQWNfkE5fOAUrNA7ZDCgEvbYY5FYGgbHM1llGlQB3gLNgJM1yFGEThRQC1BU6mFPs4EhfkJaBIHWFxpQ9b2sP8KM3OtnaGmAoHMVhVbBbFCIC9nWr4TM/uLSGNbV5WV7p9NEGBHpUEPSboMVA25CnM6Qwnj8gFQST4rZbWDengL8eGGDTUS9XT7PrWmIMhBC0esMUOi14HPo/11C0G/hRA8XL5hTwoze6eKlt6hveP+/rYygsOKNwCHyjLAwmYlWNm5ebfWxp9bOy6tT9lUQyGY/uVwdo16cwaHp1jZsjfUG2tPl579zceZ/J9oBAazHQU0i6YncjQLYYSMYg6FNfGONUkI2EFJpjQAAjpx6p6HDOBvfv6uWc3x3kgV197Ose5mh/iAM9QXZ3DbOve5jafBv3XDOTz55p7FPbmYV2il1W9nUNE9STJAtzWAwyElIoFQRT4sp5avDb3w5Jm4HZ6R+OMhwRVHsMcqYRswCIUQOC8+s9FDotvNkp4kPTRLlvpzqYXJofkzqbTEEAI5bGt0/kxuZbklr6hiJsbPRS6LTEW0NSQS7mYwgh2N05hN2iML/UmZU16LLFIMdCCg3ybqsTJmgwgNEhhRlbUdq5ZFY+v3mnhw2NXj6+wlinFq8f93H7480I4NsXVnPLaaUUOCyEooJgRBCKCirybKYY6CiKwvIKFy83+9jXPRzPJNAD/cNmqDnUTgTTNyCQCoKpcfkcdUDwzJFBhBCGtQdJJqcjJu+t9BjAXsDYCgKH1cKVcwv5454+nj48yIeXJhaitq9riFeafcwosFOJZjEwVwYBwOqYpfFt2WQgmQZPHRogFBW8f17y7QWjWV2jNWzkzoCgZTBE/3CUZRWurIWu67LFwBYbloRyo/ZSKgimwET5AzASUmiGG06Ni2blowCbGr1Ep5m+nA3CUcGnn2whIuD7l9Ty5bWVVHpsuO0WCp1WyvNs1OTbTfVcrYh1Se/QWZe0KSwGbs1ikE4FQSwA1YSb/3RQV+hgWYWLpv5Q3CokMSfxAUGeQc40xlAQALxvgSpRfvxgf8Jf6pdb1RyDT6wsRYldfxQTKgjmFDsocVnZ1TnEUFhHp4YSQ/DofvV36oYU2gsAVla7UcitwVW8waAyO/YC0GuLgTosEuHcGBbJAcFUiFUcKvmnVhwChKICi6LWcJmFUreNpSUKHf6wLv3t4/HQ3j52d6nNBJ9Zkxs3XCM5BPq6eJkipDBPCylMZwbBxANIyam8d66qInha1h2amg6/piAwxoBA8Wg1h+8eELx3bgE2Bf52eJDhBG6CB4cj3LujF5sFbj+9dGTgYMIMAkVRWFXjJhyF7Tobckv0jS8Y5enDg7htCpfFlGWpotBpZWGZk1ZvOB6UanayXXEIOm8xyJGQQjkgmAIjEuBxLAZR8wQUjubsCvXf9IxBNuFRIfjeZvVm61/fU2Wqgc1E6LXqcCSDwMCXG3es5jCQzhaD8StUJWOjDQiMcm2STI92n7oxN8qAIH4D7+9+1/8udFo5p1JhYDjKk4cmf83et6uXwWCU9y8qUusd/b2qzHWMkGQzEM8hyKHTWknyPHtkkEBYcPmcgrSEmK6K2wxy43W5q1NV5C0pz07+AIArpiDQk8VA0TIIZEih5BTiIWJjb+DDUWEqybrGRTXqv+nRA4nLIrPJkwcH2N05xBnVbtbNTl1Yjd5ZWuFCAXbobECgWQyMHFKIIw+s9jQrCCYeQEpOZW2dhwKHhZebfXiDUwt+kxiHTp+xFARxS9IYmSXXNqjbrt9tn3jYGIoIfvSGek24Y3U5IhKGoX7IKzNt3obm9347h/zekuR5JGYvuH5Rau0FGqvig6vceF3uyXKDARDPkRjWUYtBPIMgnBuWRjkgmAIiZjFgPItBRGQt0COdLC1RqCuw89aJAM0DwWwvZ1J+9pZ6avOVtZWm3UiNRZ7dwvxSB+2+MO1e/Ujh+oYiWBXw2I17uVEURd30D/UhommSvPmkgmCq2K0Kl8zKJxgRvNjky/ZyJGmiw68Of4ySQaBYrOAuBn+3Wo88igurFSryrDxzeJADE2Rn3L+rl8a+IBfUe1hb54k3qJgxf0BDO6ndmiMntZLkCUaiPHVoALtF4cp56akhXJVDQYVRIdjXPUSeXWFWcfaqzR1WreZQTxaD2IAgov/7oFRg3B17NpikxSAcFdhMeD9qURSuW6heeLWeWb3SPBDkhSYvVR4b1yzInc5ajbjNoFMfKgIhBH3DEYpdVuMPa/JKQAj1FC8NTBaCKhmby2QOgenpiFkMKoyiIADVZhAJqfXIo3BYFe5YVY4AfvB6x5ifGo4KvrtZ/di/vKdK/Z8mzh/QmFFgp9pjY2/XMIPDUhEkmZyXj/kYGI5yYYMnbSrFlVVurIpqMTh54Gc2jvYF8YcEi8pcWbXnumz6sxhoAwIhFQSSk5loAy+EICIwpYIA4PpYMuxf9unbZrB+Vx8C+PCSYlPaPSZjJKhQHwMCf0gQjhrcXhBDicmGSVeTga8L7Hkojrz0fH2TEs8hiNUdSsyH1mJQZaABQbyNxNd9ysf+YVUZhU4Lv9/RO2ao7C/e7uZwb5DzZno4v94DjLIrmFhBoCgKq2vdCOCdNvOf1kqSR8vyuGp++g6E8uwWllS46ApEaOrXjzozHWgBhUuyaC8AcFpjFgNdDQhkSKFkPCZQEGiBxGYMKQQ4d6aHyjwbrzT7aNGpzUAIwf271E3UjcsT65g2GyuqVAXB9nZ9bK60gMIiAzcYxHGrrykRSH0OgQgH1ZNGT240bqSSmYUOlpY7aewLcqAnNyb7uUa8xcAgFgMgfiN/ctUhQFmejX9eW0lUwO1PtLyr0WBnR4B/ebEViwL/s65mRHkVCzw0ew3qqmp1QLpFDggkkyCE4MmDqqo1XfYCjVwJKtzTpb6HLs1iQCHos8VAiVsMcmOfIQcEUyCuIBjDIxyKqlMus55aWy0KH1lajADu25m+oLZkeKc9wJ6uYZaWOzm9ypwpz5OhNwVBnxkCCmMo8WTyNDQZaP5id24OtpLlcmkzMDUdvjBOq0Kh0zhbFkUb9o1zvfjsmRWsqXXzTluAG/58lIM9w2xoHOTK9Y34Q4KvnVvJGdUjaqJcUBAArKlV/81vHjf3jZgkefZ1D3OkL8jSciez0+yX1xo2zD640ouCQI8tBvEMAqkgkIxGCAG+TsgrRbHaT/l4KJa0aVYFAcAtp6kbk3t29OhSyqsNLm5cXmJ8v/s0qS+0U+S0sLdrWBfhLvEBgRkUBHkxBUE6mgxywF+cTt47Vz09eu6IN8srkaSaoXCU/uEolR6bsa7rEygIQLUjPnhDA/NKHDx7xMuSX+7nivWNtPnC3LS8ZCR7QCP2dRSTXyPOrFWH+5tbfLrcZ0j0w1OHVPVAOu0FGpqC4O0T5h4Q7OnKfoMB6L3FQJ8q6lQjBwSJMtSvBg5NUHEIYDPxT3R5pZtVNW4O9wZ5pVlfieHhqOBPu/tQgL9bmrunsIqisLzSTSgq2D9BQnam6NcsBi4T/GKkMYMgbluQCoJpsbYuD7dN4aVj3nfJtSXGp9NvsIrDGHErwASKo7pCB5tvmcc/nVnO0goX59bl8X9X13H31XWnBISNKAjMPSAocdtYWu7khDdser+3JDmePKgqxtJtLwBYXuHCblHY2uYnatLBVSS2b8x3WKgvPPUgNJM4rZrFQEc/a2kxkIxJrOJQGa/iUBsQmDSkUOOWFerm5Ndb0yCzToLnjgzS4Q9z0ax86gqzV82iBzSbwQ4d2AzMZTGIDQjG6DZPmhw5HUwXTpuF99R7CIQFr0tpsqlo9xkwfwBGbuQnsSSVuG18/9Jatn1yAS/cPI+PrygdWykRzyAw/zXinDo1mPG14/o6iJDoh55AmM0tPkrdVs6ekf5gX6fNwooqF/3DUQ71mPME+UhfkKGwYHG5M+tqLa3FQFcD/1hIoZAWA8loJqsg0xQEZrYYAHx0WTFFTgsP7e2jqV8/F8l4OOEyeQK7Qkc5BNqAwBwhhTHJsFQQ6JJLZqk5BBsapc3ATHT6jKkg0AYEYowWg2mRIxkEAGtnqgOCzc1y2CcZm2eODBIRaouNNUP7bi2H4C2TBhXu0fIHyrNrLwBwWPVsMZAKAslovF0AKPljWwxCsSGXWUMKNQqdVj51RhkRAT95syvbywGgfyjCYwcGcNuUeB1jLrO8UvXKjVWflWkGhtVfDDMMCOIBgmloMdA2/0oObP7TxSWz8wHY0CiDCs1Eh1EtBh5NQZCagaLIoZyStXXqjdjmFqkgkIzNUzF7wdUZsBdoaPkYb50w6YBAJ/kDMKrFQEchhYpdDggkYyBiFgPGsxjkQEihxmdWl2O3KPx2Ww/dsc1bNnlkfz9DYcG1C4soMMGNaLIsq3ChADvadaAgGDaPxWCy0LFkiPuL3XJAMF2WV7qozLOxpTVATyD71yVJaugwrIJAzSAQ/lQpCHLHhjSn2EFlno1dnUMMxN5DJBKNcFTw9JFBbBZYN6cgY99Xa9h4y6RBhXs61RtfPSgIRloMdGQxsMoBgWQsYhYDZRKLgdkVBAC1BXZuWlGCLxTlu5s7sr0c7t+p3lzdtFzeXAF4HBbmlTpo84Xjm+tsYaoMArd2IpgGBUEgd+TD6cKiKFw8Ox8BPH9U2gzMQodBMwhGMktSM1DMJQWBoiicOzOPqIBXdRaILMk+r7f46RuKcG6dJ6N7i4VlTgocFra1B3TREpVqdndpFYfOLK9E7y0GckAgGYXwaQOCiUMK7ca/D0qIfzmvErdN4Rdbumnsy14WQVN/kBeP+aj22Lh4Vn7W1qE3VujEZtBvwprDdLQYSItBarg0bjOQAwKzoIUUVhlWQZAixZG/V92g2t2p+Xo658IG9Xd5kxz2SU7i2SOqveCKeZlTD4A6hF5dk0cwItiuA4VmKglF1AaDQqeFuoLsNhiATlsM7DFlRdhcz/14yAFBomghhZPWHJpfQQBqPdNnz6wgGBH886bWrK1j/S71NPcjS4tz5mefCHppMugzYc2hSEMGQTz4UFoMkuLS2eqGcaPBbio2NA5y7j2HyPvuTpb9cj/rd6dhCGVQtJrDCqMNCFyFYLGCL/kBgYiE1arlvHEaDkyIlilitN9lSfp5LpYzo13vM8mZM8yZQ7C7a4hgRLCyyq2La4wuWwxiFgMhFQSS0YjBBBUEOXST+qVzKqj22Hh4Xz+P7e/P+PcXQsTbCz4m7QXvQjcDAjNZDOwu9fQuDRkEUkGQGmYU2Flc5qSxL8jhXmO8if/i7S6uWN/Imyf82Cywv2eYmx9r5kdvdGZ7abrAqDWHiqKAuxQCvYhokpvcgHZ9ML+9QGNBqZO6Ajs7O4aybpWT6Icuf5gtrQGqPLZ4Y1MmWRNvMjBXDsGWWDPDGdX6UCg5ZYtB1pEDgkTRQgoLxssgUP/MpQFBodPK/7tiBgD/+PTxjAcWvt0aYF/3MMsqXJxWpY+Lml7QLAY72rNsMRg2Uc0hqCf8w4PqiV4KkQqC1HGJgWwGzx4Z5LPPnsBuUbj76jr6vrSMRz84C6dV4aubWtneraPTkyzR6QujAOUGGxAA4CkFEVVP/5Mhh/IHNJRYpgjITBHJCJuOehGodrJsnHRrQYVvm0xBsDU28DijRh97aV22GFhtqipMDggkoxG+LlAs6onAGIQjuWUx0LhmQREfWVJMuy/MrY83ExWZ+2W+e5u6abp5hbypOpmGIjuFTgt7u4bjDRvZoDcQwapAgcMcl5p41eFQim0G/l5QFHDJms5kidsMdF532OYNcetfmwH4zdV13LyiFIuicNX8Qr53SQ1RAT/YFUVk8JqqN6JC0OkPU+a2GvK9NX7in2STQbzlJMcURlqu0Maj+v5dlmQOzV5wWQbbC0ZTW2BnRoGdfd3DcYWkGdjaFhsQ6ERBYLMoWBWdtRiAajOQAwKJhohGwNcFnnIUy9g/Ms1iYLMabxOTLD+9vJY5xQ7+dniQb7+SmVYDbzDCn/b04bAqsr1gDBRFYXmFi1BUsK87OzYDIQS9QxGKXVZdeNpSQnzDnzqbgRBClRC7ise9vkgS5/x6DzYLPN/kIxLV7831nU8fp8Mf5uYVJdy47N3XsL8/o4zFZU629wj+emAgSyvMPj2BCBFhwIBCjdj1In6DP120kORxMpDMijYgeObwYEYPHyT6RAjBc0dUNUk28gc0zqxVb6I1Wb7RCUUEOzuGKHBYmF+a/QYDDadN0ZfFANSgQhlSKInj7wERHbfiEEaHFGZqUfqhxG3joQ804LYp/MfL7dy7Iw0e7ZP4054+vMEo1y0oNKb0NAOsqNKaDLJzMfMGo0QElJggfyBOrMlApLLqMOiDSCjnTgfTRYHTylm1efQNRXhbpz7Rl5q8PHpggNp8Gz+5rPaUj9ssCt+6qBqAb7zQputBRzrR8gcMF1AYI64g8CWpINA+P8cGBDX5ds6akccJb5g3jpvjZkwyffZ2DXN8MMTKKheVWbwmaDaDN01iM9jdNcRwRHB6tRuLjg5znFaL/gYENidEQsnnyhiAHLydnQbeLvXPCQYEuRhSOJoVlW7uu64eiwKferKFJw6m79RLCMGvt6pDiNtX5o4nc6qsyHJQYa+JAgo1FC0jIJVVh1oAmcwfSBl6thlEheCLG9Xml/+8sJp8x9i/H++bX8jyEoV93cNpvZ7qmU6jVhxqaAqCZK8XsT2I4ilLdkWG44aFqu3qL1kIQpboi2dj1/N1WbIXaJwzwwPAK82+rK4jVcTzB3RiL9Bw2RSCEaEv9ZDVof4ZyV69e6aQA4IEELGAwokVBOqfuTogADWP4JdX1hER8Hd/aeLlY+kJFtrQ6GVrW4DFZU4ujEkQJaeyPMtBhdqAwFwKgljVYbKS4VHE1QgxdYIkebSgwueb9Bdu9si+ft5pC7CyyjVh+4qiKHx8vvoW/eM3uzK1PF3RoVUcGlQlFr+hT1pBMPkhhVm5fpE6IHhkX39O53FIYEPMXrAui/YCgDW1blw2hVeb/VnNeEoVWmWjXgIKNZwxy3ZQTz9je6w5IwdsBnJAkADCG6ubmkhBkKMhhSdz62mlfOeiaobCguseOsrbafBofedVdWDz1XMrdSWH0hvLKlwoZM9i0GfCAUFaFASxPINcqjBLN6tr8vDYLbzW4tdVyJEQgu9uVq9f3zy/etLr1yW1CrOLHbzS7DNd73YitMcVBPYsr2SauLWBYpK2u9iAQMnLPQXB7GIHp1e7aeoPxYPUJLnHUDjKS8e85NkV1tblZXUtTpuFc2Z48IWibGkz/nX5pdhh3nkzPVleybuJVx3qqckgh6oO5YAgEeIKgspxHxK3GORgSOHJfPGcSr5wdgUDw1GuXN/IOyl8U3+pycvLzT7mljj40BJ54joRHoeF+aUO2nzhrPRIawOCIhMNCNBaDAIpzCDQvpZbvp5Thd2q8J56D8MRwest+tnAPXvEy/b2IZZVuLhy3uSnYFZF4c41qu/8Z2/lnoqgM55BYMxrSFxBkOSAIJcVBAAfiKkI/rAzhYNZiaF4tdlHICy4oD4fpw7Cvi5oUG+mX2oyts3gxGCIAz1B5pY4mFnoyPZy3oVWdainIT+2mIIgJBUEEka9OU8QEJTLIYVj8Z2LqvnM6jJ6hyJcsf4IOzqSHxIMh6Pc9ewJAL66tjLn1RqJELcZpODnP1XMaTHQUslT2GKQgx3nmeDC2AbuBR3ZDL4XUw98eW1Fws0eH19RQp5d4ZF9/XT7Mz/oyyaaxaDSoBaDePBosteLHM4gALhpRQk2iYCdJgAAIABJREFUizog8AV1dLMgyRgbGrPfXjCaC+pVG9tLx4w9INh4VP25nl+vL/UAjAwIdBVUqCkIIlJBIIGpKQjkTSug+md/uK6WT59RRncgwuX3H0lKSSCE4NN/O87uziHW1uVx8woZ6JYIWlBhNmwGZhwQKNopfwozCEZCCqWCIJVc2KCvHILNLT5ebvYxp9jBBxcn/lwXOq18eEkxwxHBfbty6wRVUz5VGtViELMEiKQzCGI2R09uKghq8u1cv7CIgeEov9yae0oayciN7KWz9ZE7Fc8haPHpIocgFBG81OTll1u6uXdHD80DiYXoPRYL/7xibmE6lzct4hYDHfx849hUlYUIy5BCCYllEITlgOAUFEXhJ5fX8omVpXQFIlx832GePjy9NO5vv9LBfTt7qfLY+MO19TJ7IEG0qsPtWQgq7DNhi4GmIoqrilJAPPBQKghSysoqN8UuK2+dCOji1PHHb6jvI58/u2LK6qdPnK7eaN79Tk9OBbXFFQQGbTFQPLHf6WQHir5uVdrqyK73Opv887mVKMB/v9ZJuzeU7eVIMki3P8y2tgA1+TYWlzuzvRxAzSFYW+fBG4zyWkt2VAThqGBj4yCffqqFmT/dwyX3H+HOZ45z+xMtzPn5Pi67/8iEaxscjvDMkUHy7AqXz9WHMmM0LmkxyCpyQJAImrxvwpBC9U8pe383FkXhF1fM4GvnVuINRrnuwaP87K2uhDe5Qgi+9nwr//5yOy6bwiMfnEV9kb58UnpmeRarDk2pIMiP2Yy8KTzFkjWHacFqUTi/3kMoKticpQ2cRqs3xF8PDFDssnLzBM0F47Gmxs2KShd7u4d5tVk/mQrpRssgMKzFwK1ZkqavIBDhYRgehPzEbSlmZHmlm1tOK6EnEOGjjx5jYDiS7SVJMsQLTV4EcNGsfF39Dmg5Mk8cymwNbZs3xLdebmfuz/fy3vWN3L2th96hCBc15PP1cyv59BllVHtsPN/k5fx7D/N3jzRxqOdUSfxv3ulhKCy4Zn4ReXb93Q5qLQb6UhBIi4FkFFrNYUIKAhlSeAqKovDvF1TzqyvrAPj8cye47qGjNPVPLNFp84a47qGjfP+1TgocFp788GzOrM3dE5TpUF9op9hlZV/XMMFIZqewZhwQaBJf4U/hgCCuIJADglSj+USzbTP4/fZeIgJuXFaMexobMUVR+MTp6s3mb7YlJ1c3Eh3+MHl2BY/DoFsVR566oUxGQeDL7fyB0fzg0lqWlDt56ZiPi+87zPFBqSTIBTR7wSU6q7V+33xVlv/4gYGMKLv2dQ1x82PHmPPzffz7y+2c8Ia5oN7D/3vvDFruWsKzN87hmxdU87P3zqDxzsX84ooZVObZ+PO+fpb/ej9//1QLLzZ56faHeXR/P//1ajsAX1qrT+uSPlsMckdBYNCxfIbxdoLVDq6icR8Sisqaw8m4bWUpi8qd3PLXZp46NMiGxv3celopNy4rZnVNHnarQlQIdncOsX53H7/a2s3AcJTZxQ7+eEM9Z1TL4cBUURSF5RUuXm72sa97mBWVmeu57Tdji4EjT5WYpVBBILTKRKkgSDkXzcp+UGFUCO6O3dR/YuX0b/I+urSEr25q5eG9/fx4XZgSt7nfvv2hKN6gev03KoqiqDkEAycQkTCKderPmfBOHpKcKxQ6rTx/01yuf+gom1v8nHn3QdZfX8/5Dfq6cUw1wUiUpv4QjX1BjvYF6RuK0D8cISLAYVEHaA1FdmYXOzmtyoXLZGnZm2IDgot1NiCYU+JkaYWL3Z1D7OseZnG5Ky3f51h/kH97qZ0HdvUSFVDgsPCpFaV8+owyFo3zPW0WhU+eXsZHlhTzwzc6+fGbXfx2Ww+/3fbuwNQvnF2R0X3hVIiHFOrKYpA7NYfm3mGkABEJqRLgohkTSpu0kBKZQTAxa+s8vH37fL63uYOfvtXFr7Z286ut3dgsUOa2MRiM4A+pP0urAp88vZTvXVxDgdNEN5kZZnmlOiDY0T6U0TcCMyoIFEVRlUR9zYjw8EgnbjL41ZpDRSoIUs7SChflbitbWgN4gxHyHZl/Lb7Y5ONof4izZ+SxrHL6G8gil5UPLC7m3h29PLC7j39cbe4bRi2gsMKo9oIYSl4JYuCE2mRQMH7Q8bj4Jrc45hKlbhvPfHQOn3n6OL/f0ctlDxzhu5fU8Nk15bqSn0+XvqEI29sDbG0L8E5bgO3tAfZ1DxNN8BC12KWGmn79vEpq8g0a7jmKo31BDvcGWVjqpE5nNXygqgh2dw7xxMGBlA8IgpEoP36ji2+/2o4/JCh2WfncmeV8Zk05hQnuiQucVv7t/GruWFXOn/b08cTBAY4PhmgocnDzihI+uHj8g89so88Wg9hrMGL+kEJjv/Nmgri8b+LNWLzFwDz3Qmmj0Gnl2xfVcOeactbv7uOvBwbY0zVEu0+Vk66ucXPJ7Hw+eXoZDTJvIGlWVGlNBgEgczehfSYcEIB6LRB9zaqyqLgu6a8nArGJvlQQpByLonB2XR5PHBzk7RMBLszCCdTD+9SU6I8uS76l4rbTSrl3Ry+/3dbDHavKTHFDNB4jAYUGv35oewdf97QGBCM1y9JioOGyWfjNVXWcWZvHPz17gi9taOWt435+fdVMw9lRmgeCvNjk46VjXl5p9nGw59Qbj3K3lfllTmYVOZhV5KAsz0qR04rNojAciTIYjNLUF2Rf9zAvNHn51dZu1u/u5b8vqeH2JFRLeiCuHtBJe8HJXD2/kO9u7uCvBwb40jnTGACOQ7c/zFV/amRLawCrAv90ZjlfP69q2qHPFR4bn1mjDheMgmYxGNKRxUALKRTSYiBJpMEAZM3hdKjOt/O5syr43FnqzzYqhGwnSAOaaiDTQYW9QxEUTGYxAMgfaTJQUjAgwN+nWphyOKE8nZw9w8MTBwd5/bg/4wOCSFTw2P5+FOC6hcmf1Kyty2NRmZMdHUNsbQuwqsa8rxnDVxzGUPIrEIDwtqOweOpfILYHUXK04nA8FEXhU2eUsaLKxUceOcaDe/vZ3TXMgzc0sKBMH0n343Gkd5g/7u7jL/v72db+7vflmYV2zqh2s7LKzenV6n81+baEh4EdvjDfeqWdX27p5tNPHeedtiF+tK7WsPlYm44OAvrLH9BYU+umymPjjeN+2r0hqlKg2ogKwUf+0sSW1gCratz85qo6luvUBpBOXHEFgbQYZAM5IJiMWEChkj/xZDBuMTDoRVgPyOFAelha4cKiwI72zA0IhBD0DkUocllN97wqHnXDr23ck0FEozDUB/mVpj4NziZnz1Bvot84kfkmg9da/LT5wqyty0uJ3FdRFG5bWcqXN7by2209uTEgMLjFQFMNiMGOaX268MVCKaWCYEzOnuHhjVvnceOjx3jxmI9z7jnI7943k2sW6Es6LYTgyUOD/OLtLp5rHMlEaSiys252Aec3eDi/Pp8ZBcldJyo9Nn56+Qzev6iIDz3SxK+2dtPuDfHA9Q2G259GhWDTUS8WBS7Qac6ERVG4an4hv93Ww1OHB7n1tOTriu/e1sMLTT4WlTl57qNzctZiq8cWg3hIYdj8CgJjabGyQDwgaBIFQTD2AnZIBYFEZ+TZLcwvcdLhD2esPzoQFgQjwnT2AuBdCoKkGeoHIcCdvPxcMjara/KwKPB6iz8jSdOjeWS/ai+4flHqblZuXFaCzQJ/3NOHL6ijk5UU0+k3SQZBfpX6F2/79L6AL6YgkBkE41KVb+fpj87h82eVMzAc5f1/buIbL7QSSdS4n2b2dQ1x2QNHuP6hozzX6KXKY+PL51Tw5m3zOXjHIv73yjr+bmlJ0sOB0VzQkM/mW+bRUGTn0QMDfOzRY7r5eSTKzo4hOv0RVtW4py2tzwTXxNoMnjiYfN2hLxjlP15SrxW/vqouZ4cDMDIg0JfFIHcUBHJAMBlxBUGCFgODTWgluYGWQ5Apm4GWP1DkNN8lJi71TYGCAL+aP6DkJX/qIBkbj8PC8koXXYEIh3szFywkhODxA7EBQQrsBRqVHhvXzC9iYDjKw/v6UvZ19Ua7zyQZBKlSEORJBcFE2CwK37uklj9eX0++w8L3Nndy1R8b6Yy9jrLFH3f3cvbvDvFCk4/5pQ7uv66exs8s5tsX1XB6tTutyrG5JU423DiXhiI7j+zv54sbTqTte6WDTfF6w4Isr2RiLp6Vj9um8NyRQfyh5Ia2D+zupc0X5toFhZxT50nRCo2J1sahp5rDeEhh2PwhhebbvacYmUEgMQPLK7UBQSAj32+kwcDYp39jkkIFgQjEbvCkgiCtnD1D3Wi9ftyfse95oGeYo/0hlla4Uh62ettKdaD0u+29Kf26ekK7sasyfAZBzJ7ond6AQKtUVfKNEy6WTd6/uJjNt8xjUZmTjUe9nHPPQfZ1ZV4OLITg26+0c9NjzfhCUb66tpJtn1zAh5YUZ/QgaVaxgyc/MpsSl5Wfv93Nz95KXUVvuhkZEOjTXqDhtltYN6eAQFiwoXEwqa/1f++ohwZ3GihMMF04YhkEQV1lEEiLgUTDm5i8T2YQSPRMpoMKzVhxqBFvNEmFxUAqCDKClkOQyQHBs0fUze1lc1K/ub10dj4zC+280uxjf7c5NyodJrEYUKBaDMRgchYDJmlSkoywuNzF5lvmce2CQpr6Q1zwh8NsbslcBokQgi9tbOWbL7WTZ1d49IOz+M8Lq3FYs7PlXljm4s/vb8BuUfjihhM8fTh5KXy6CUaivHTMi9umNtHonWsXqDaDR2KtNdNha5ufrW0B5pc6OL8+t9UDoG+LgZAWA4mIvzlPPCAISwWBRMfELQYZCirULAbFbvMNCDQ1UTyfJAmkgiAzjAwIMneT8NwR9STp8jmpl8daLQq3rFBrMc2qIhhpMTD2gCCuIJiuxWCgDSw2aTGYIgVOK3+6oYE7VpXRE4hw+QNHeGz/9G/eEiUcFXzyyRZ+8mYXxS4rf/u7OVwV86hnk/Mb8vnllTOICrj5sWaO9ulbIv3GcT/+kOC8mZ641FzPvG9+IXaLwuMHBxgOT+/E++6YeuATK81dYZsocYuBjkIKsUsFgUQjQQVBUCoIJDqmrsBOscvKvu6hab95TQVzKwhiG3WpIDAMc0sclLut7OwYykiw31A4ygtN6unXuTPTcxL08dNKUYA/7OiNK9jMRIcvjEWBMqMPGTUFwTQsBiIUgEAvFNagWOR2bapYLQo/vqyW71xUzVBY8KFHmvjttp60fb/hcJQb/3KM3+/opcpjY+PH5rBWRz7ym1eU8ukzyugdivDhR5oYysBeYLpo9oKLdW4v0Chx27hkdj4Dw1E2jGqpSBRvMML63X3YLQo3LS9JwwqNx0iLgX5ep4oMKZRoxN/UJ6s5lAoCiY5RFIUVlS7CUdjXnf4LW28gpiAwYwKvR1MQpCCkUCoIMoKiKJw1I4+ogLdb028zeLXZRyAsuKAhP22nXw1FDi6dnU+HP8yTh/QvGZ4KkaigKxCm3G3DavD3VMXuUn+/B9vUWtOpMNCmfo2C6jSsLDdQFIUvnlPJPdfMRAH+/qkWfvh6Cq7dJ+ENRrj2waM8sr+fhiI7z980N27t0xM/uLSGNbVutrYF+Pxz+g0t3KgNCGYbY0AA8P5YW83D07AZPLinn8FglOsWFlJhcNVUqtClxcAqQwolGt4usOehOCeeAofU+yGpIJDolhWVmWsy6B1S5cGlRj/9Gwt3sSr5TUVIoT8mD5cKgrSjBRW+eSL9A4JnY/aCdbPTm76thRX+5p3utH6fTNMTiBAVmGajrBTWQiQ05WuGGFQHBBTVpGFVucWNy0r48wdm4bIpfGVTK994oTVltafd/jCXPXCEjUe9LC5z8sJNc5lf6kzJ1041TpuFP17fQJnbym/e6eH+XfqzKA0MR3jzuJ9St5WVVfobsozHNQsKsVng8YMDUw7W+79t6jX8EyvlXkBDWgyyixwQTIAIBWB4cNIGA5AKAon+Wa4FFbanv8mgy69OzMqNHjA2BoqiqIFh/h5EJMkKrYC6OVOkgiDtnFmrvv7fzEBQYToDCkdzzYJCavJtPHvEy64MBZBmgnjFoVmuH8UzABADUzyx7W8FQCmUA4JUcPX8Qp788GwKYjWIn3n6OJFocjcfO3qinPW7g7x1IsDqGjebbppLXWFqW0tSTX2Rg3uvrQfgrmeO0zKgr9PQl475iAi4uCEfi4G8+KVuGxfPyqdvKBK3SCTC9vYAb50IMKfYwYUGsVRkAmesxSATttiEkSGFEiDh/AEY1WIgBwQSnaIFFe7MwI1ET0Dd4BvePzwO8coxf3IntyMKAuk5TDeratSgwrda0zsgOzEYYlfnEA1FdhaWpfcU0WG18JnV6mvxx2+mXjadLTr9WsWhOQYESpE6IKCvZUqfJwblgCDVnN+Qz3M3zqHcbeXX7/Tw8b8em1aNWlQIfvh6J7e8FKGpP8Q1Cwp59qNzDDMUv2xOAXesKmNgOMo//O14ytQUqUC7ub7IgDfL71+kDvsf2pu4zeDuWC7G7StLDTUQSTfxDAI9WQy0msOQeQby4yEHBBMQ9xhPRUEgLQYSnbK03IVFgR0dgbRvBrpiGQRlbmNslqZMrHIs6SaD2IBAkQOCtFPksrKozMnxwRDHB0Np+z6j7QWZSKL+5OmleOwWHtjVx4k0/rsyidZgYBaLAYW1AIj+qSkIxEBr7PPlgCCVrKrJ4/mb5lJXYOdPe/p5/5+b8IcSHxJ0+cNc/9BRvrJJfX5+uK6WP7+/gQKDZe58+6JqZhc7ePrwIL/foR+rwaZG9Rp6iYHyBzSuW1iIw6rwyL5+vMHIpI/3h6Lcv6sXmwVuXiH3AaNx6tFioIUURqSCILfRFASTVBzCSIuBQw4IJDrFbbewoNRJpz9CV5qvbV2xE8CyPGNtmBJFiSWT451mt7lGzGKAW24MMsGa2piKII05BFq94WVpqDccixK3jdtWlhKKCn70hjlUBB1+c1kMFM1i0H98ap+oWQxkSGHKWVTu4oWb5zK/VL1BvnL9kfj71kRsahxk9d0HeerQIHOKHfzhAit3rik3ZC1dvsPKb66qA+CLG07Q7s3+gLHVG2J31zCziuzMKda3VWMsSt02rltQiDcYTUhF8NDePgaGo7xvfiHV+fYMrNA46LPFQIYUSpimgkBaDCQ6RgsqPNCf3olsT1xBYM4BwXRPBE8mbjGQA4KMsCaWQ5CuAUEkKthw1ItVyWw91xfOrsBhVfjV1m7adLDJT5YRBYE5rh9K7HrBVBUEvU3q55c2pHpJEtQmkBdumsdpVS5ebfFz5m8P8vpx35iPHRiOcMffWrh8fSPHB0N8YFERb942n6Ulxt5GX9CQzydPL6V/OMrXXmjL9nJG6g0zpMBKB7fGggZ/t33ySk3NXvCJ08vSuiYjossWA2kxkAAQqzhMJIMgHM8gSOuKJJKkWBFLBN6f5gFBVyBModOCw2rOXwilSNvwT/FE8GQCveDwjEylJWllREGQnhyCLW0BegIRzp6RR5Ercze3Mwrs3L6ylEBY8D9pqHDLNB3xDAKTnKgVq6e0or95Sp8metQBASVyQJAuKj02Nn1sLu9fVETzQIiL/nCY/3y5nU5fGCEEB7qH+e6rHSz8xT5+804PJS4r91wzkweur8/o73g6+c8Lqil1W7l3Ry+vtYw9IMkUGxtjA4IG49kLNC6elU9DkZ3XWvzs6Rz/RnJrm5/XWvzMKrJzqQHtFOlGly0G0mIgARBaJVFB5aSPlRkEEiOwPAMKAn8oylBYmDd/gJHQsSlLhkchwkEI+mTFYQZZUenCaVV4u9WfdHr5WGTaXjCaL58zoiLQg1Q4GTo1BYFZLAalswAQ3Y0Jf46IhKC/BfIrURx5aVqZBKDQaWX99fX8cF0tCgr/8XI7tT/ZQ8F/72Lpr/bzLy+20R2I8KHFRWz/1AJuXFZi2NPtsSjLs/GtC1Uby2efPZGWa2MiCCF43sABhRoWReH2mIrgBxMMbH/ypnqPccfqchlOOAayxSC7yAHBRMQzCMonfai0GEiMQNxiMJC+DUA8f8Cs9gKAohRYDGTFYcZxWC2srHYzGIyyvzv1b/DPaAGFWRgQ1BU6uO20mIrA4FkEbT51wFFpkpBCxVWoBpv2NUM0weFNXzOIaHy4IEkviqJw55py3vnkfG5bWcrsYgdOm8KKShd3rSln2ycXcP/1DdSY1Cd+22mlnFHt5p22AL9NQBqfDg70DNMyGGJFpcvwv/v/sKqcQqeFB3b1cqT31Pea44MhHtzTR77Dwm2nyUOCsZAtBtlFDggmQMQsBuQnoCCISAWBRP/MKLBT6rZydDB9U9mueMWhsd/gJyJeW5aMxcAf24TJ/IGMsqYmlkPQmtocgt5AmDeO+ylzWzmj2p3Sr50oX16rqgh+uaU77uM3Iq2D6tpr881zDVHK5kA0gs3bmtDjRc9R9fNk/kBGWVjm4ldX1nHgjkV0f2EZWz6xgP9ZV8uSCle2l5ZWrBaFH12mDr7//aV2BocnT+BPNZq9wIjtBSdT7LLyj6vKiQj43munDmx/9lYX4ag6mDGLVSXV6NJiYI3ZQSMypDC30RQECWQQBCMCq4KUCUl0jaIoLK9wERawNw0nqDAqoNCkDQaAWjumKEkpCESgT/2LR54eZJJ05RBsPOolKlT1gDVLSrKZo1UEr3dkZQ3JEhWCVm+IMrc1XnNlBpSyOQDYB1oSerw2IJD5A5JMsbbOww0Li2j3hflhFlRI8YBCA9sLRvPZM8vJd1i4Z3vPu4Jxj/YF+flbXTisCnedOblCOVcZaTHQz4BAsVjUIYFUEOQ28Y7zBFsMpHpAYgS0oMId7ekJahuxGJjn9O9kFKtdVRZ521Wv8HTwdatfS2YQZJQzYwOCN1PcZKDZC947N/P2gtF8eW0FdovC/xpURdDpCxMRmE/KHR8QJBZUKNr3AqBULEjbkiSSk/nWRdXYLPDDNzo5MZi5LJNIVPBCkxe7ReG8mZ6Mfd90UpZn4z8uqCYq4GOPHqPNG2I4HOXWx5sZjgjuWlNOQ5EMKB4Pq0XBqsCQnjIIQM0hkBkEuYsQQm0xcBWiaKmVExCKCpk/IDEEWg7Bjo70TEC7YwqCcjNnEBCrLhMCBhKTDJ+MrDjMDnNLHJS4rOzsCBAIpWbjIYTg2cOx/IHZ2R0QzCx0cFus0SAbp4DJcsIbsxcUmGvAqJTPBcA+0JTQ40XrLvXzapalbU0SycnML3Xy92eU4Q8J/v3l9ox93y1tAfqHo5w9I498h3n2DnesKuPq+QUc6Qty2m8OsOLXB3il2cfSChf/8p6qbC9P97hsFl0pCAB1QCBbDHKYYS+EhxJSDwCEIjJ/QGIMtCaDnekaEMQUBKUmVhAAUKw1GUzTZhBQMwikgiCzKIrCmlo34ShsS5GKZlfnECe8Yc6odusiXOsrcRVBV1IqAiEEB3uGac1gK4L2vcymIFCqlwDg6D2c0ONF225QFJSqxelclkRyCt84r4pCpyqN3z1BTV8q2WSi/IHRWC0K91/XwI3LiukJRDjSF+T0ajePf3gWebIXfVKcNkVfIYWgBhVGI4iI8RR6U0G+OsfDp+UPTB5QKISQCgKJYVhYpipiDvakZwIaVxCYOYOAmIIAYJoDgriCIE8qCDJNqm0Gz8TUA5dnob1gLGYWOrj1tBL8IcGPpqkiODGodsIv+eV+6n+6l0892Yw3mP7gMk3WXGu2AUHVYlAUHL2HJn2s8HbCYDuUzZUVh5KMU55n4yvnVBIV8M+bpqeQmyobj6rXUCPXG45Hnt3CPdfUc/TOxWz/5AJev3UeMwultSARnFaFUFQQFToaEthiz53JbQZyQDAOIhZQSAIVh5o9xiEVBBIDkO+wUumC5oEQ/hRJrEfTHWsxKDe5gkBrMhAD02wy8EsFQbbQggrfTlFQoZY/cHmW8wdG85W1ldgtCv/v7S6OT9FL3BMIc+n9h3m1xU99oZ0ip4Xfbe9lzd0H2deV3hPF1pjFoMZsFgO7G8rmYgt0j+wvxkGc2KF+jrQXSLLEnWvKmVlo52+HB3k+Fh6YLvyhKJtb/BQ4LKypMe9AbEaBnSUVLhlmPgXiTQZ6UhHkSJOBHBCMR6ziMJEGg1A0VnEoFQQSg9CQr75WD43Rz5ssXX71lLHU5AoCilQFgeib7oBAUxDIAUGmWR3bhKai6nBwOMKrzX6KnBbOmqGfzW19kYM7VpcRCAv+5YW2KX3uHX87zsGeIJfPKWD3pxey8+8Xsm52Pod6g5z3+0NsbBxM06pHFAQzCsylIABQqpcCMfvABIiWrQBY6lalfU0SyVi47Rb+/YJqAL66qTWtJ7ibW3wEI4ILGjzSqit5F7psMtBy6aSCIDeJT/gTsBiEInJAIDEWs2IDgoNpqDrMNQUBA9O1GKgKAjkgyDyVHhuziuwc7g3GWzemy3ONXkJRwbrZBdh09h7w9XMrKXVb+cPOXrYkOAx5+vAAD+/rpybfxn3X1eOyWajJt/P4h2fz2TPL6R+OctUfG7l3R09a1mzWDAIAS+1pAIjj2yZ8XLT5bQCUmXJAIMkeNy4rZkWli61tAR7a05+277OxUas31I8CS6IPnDb1PVVXTQZyQJDjxCoOp6IgsMnJp8QgNMRsfgd7Ui+R0jIIyszeYqApCKYbUhhTECgygyAraDkEbyepIvjLPnXjfO3CwqTXlGpK3Da+cZ6alP2lDa1qO88EBEJR7npGfT3/cF0txa6R32GrReEHl9byiytmIIDbn2jhf7d0pXzNIy0G5hsQKDPPAEA0b5nwcdrH5YBAkk0sisJ3Lq4B4F9fbCMYSc9N2saj2oDAfPkDkuRwWmMWAx0pCOIDApM3GcgBwTiImMUgkRaDEYtBOlckkaQOzWJwMA0Wg+5AmHyHBafN5L8QRXUAiL7Ees1PRgSkgiCbrI4NCN5KIodgOBzlyUMDOKwKV87T34AA4NPyxcdnAAAgAElEQVRnlLGg1MHLzT4enOQU8DuvdtDYF+SyOfm8f1HRmI/55OllrL++AbtF4a5nTvA/r3ekdL2tgyEUoEoHbRCpRolZBjSFwFiI/uPQ1wwV81HcxZlamkQyJutm53PxrHyO9AX51dbUq4a6/WG2tQWo9thYUj55pbgkt4hbDHSVQaAOr0U4c+0+2cDkO/gk8GotBgkMCDSLgVQQSAxCvTYgSHGTQSAUxR8SplcPACiuAnAXQ/9xRHQaJyu+HnUSbXenfnGSSVkTHxBMX0Gw8aiXwWCUS2fnU+jU52veblX40WWqHeZzzx2P15CezL6uIX7weidOq8JPLpuBMkGQ1g2Linj4Aw24bApf3dTGt19JTV96KCJo94Wp8th0Z9dIBUpBJSFPDXQfGbEYnUT08MsAWOa8J5NLk0jGRFEUvnOxmkXwvc0dKZd6v9DkRQAXz86f8JojyU1cmsUgTeqVaSEVBLmN8CWeQRCMDQgcJtzQSMxJnQesSuozCNpjnet66ILPBEpxHURC4J3aDZKIhGGoH/JK5aYoS5xR7caqqFWHk0nvx+Mv+9UT+esWjn3arhcum1PAx5aX0OmP8LnnTrXERIXgH58+Tigq+OdzK5lXOvlJ3hXzCnn8Q7PJsyt886V2vv9a8kqCdl8IAdSY0F6gMVQVyyE48sqYHxdH1AGBMue8jK1JIpmIM6rzuGpeAe2+MPft7E3p19bsBZdIe4FkDLQMAl0pCGQGQY6jKQgSqDmMWwykgkBiEOwWhdnFDroCEXoCyYW0jabNp0quzCgPHpPimQCI3inaDIb6AFDcMn8gW+TZLSyrdNEdiHC4d+pZHIFQlL/s68dmgffN16e9YDQ/uKSGKo+N9bv7uGf7u0+vf/pWFy8d87G4zMkXz55cNadx4ax8Hv3gbFw2ha8938aP35y4vm8y4vkD+ea9fgzVrAYgevjFMT8ePfQCAJbZckAg0Q+fO0u9Lvx2e2ptBptk/oBkAvSYQSBbDHKceIvBVAYEUkEgMRDzY6eEqQwq7IgpCKo85j0BHI0SGxDQ1zK1T5QNBrpgbZ0HgFdbfFP+3McO9NM/HOXKeYWU5+n/hrYsz8bvr5mJAtz5zHG2tavZC++0BfjG823YLPC7a2ZOOTvkoln5PPyBWTisCl/a0JpUcGHroHkbDDQCNWsAEIdOHRCIzgPQdQgqF6GUNmR6aRLJuLyn3kNDkZ23TgRSZk1s7AtyuDfIwlIndYWOlHxNibkYURDoyGJgjb1WI6kP+dYTckAwBkIIVUGQV4ZinXzjJzMIJEZEkxEfSmFQYZtXGxDo/4YpFSgl9QCIvmNT+jwRazBANhhklfNmqgOCV5qnPiD4/Q71Ofz4CuM8h5fMLuBf31PFUFhw1fpG/vWFNq5Yf4ThiOAb51WxqiZvWl/3sjkFPHjDSHDh3du6p/V1jg2oA4K6QvMOCEKF9VBcj2jdiehpetfHonueAsCy5MpsLE0iGReLovCRpWpo5vpdqbEZbDo6CKj5AxLJWMRDCnWkIMAWGxBIBUEOEuiDaDihBgOQCgKJMZlVpF7kmvrSoSDIjQEBxVqTwfQUBIpUEGSV+IDg2NQGBMf6g2xs9FKZZ+OKufq3F4zma+dV8vEVJXT4w3xncwfdgQh3rCrja+dOnrczEVfNL+SB6+uxKvAPTx3nD9PwKjf1q9eiWcUmPk1UFCzLrwUguuvRd30o+s6DAFiWXp3xZUkkk/HRpeowdP3uvmnntozmeZk/IJmEuMVAlxkEUkGQe8QqDhNpMIBRCgI5IJAYiNnF6ildY3/qLnJtOTYg0CwGU606lAoCfVBbYGdeiYNDvUFODCZeWXTfzl4E8NFlxYZTjlkUhd9cVcdjH5rFN8+vYsONc/jJ5RO3FiTKdQuLuPfaehQFPvFEM5unaN3QhpUNRSYeEACWFTcAEH37/viNVrR1F6JlC5TPRZm1Nourk0jGZkmFi9OqXBzqDbKlbfr1sKAGo2466sWiwAUNckAgGRtdthjELAZCKghyj3j+wFQHBAbbKEpyG+2U7mhKFQSxkEITe4hHE88gmGpIoVQQ6Ibz6qdmMxBCcO9OzV5gzOdPURSunFfI18+rSvnm/ENLivnhulqiAu54qoXgFDZ2RzUFQZG5rx/KrHNQqpYgTmxHHNwEQHTj9wCwrrlFNptIdMsNscaWpw4OJPV1dnYM0emPsKrGTbFLnxWxkuyj6xYDmUGQgwxqCoLEJJeh2P5HDggkRiJuMehP/OR0MnJNQUBRLSgKon9qFoMRBYExbzDNxFRzCF5p9nG4N8iqGjfLKl3pXJph+YdVZZw308PurmG+/1rizQZN/SHsFsXUIYWgDmgsF34egPDDnyGy4TtEtz0InnIs5346u4uTSCbgylhjy5OHBpP6OhsbNXtBQdJrkpgXXbYYWGWLAQCtra3cdNNNXHnllVx11VX8/ve/z8S6sorwTnVAIC0GEuNR4LRS5rZyrD9IOJqai6+WQVCdIwMCxWqHwloYbEeEhhL/xIBUEOiF8+vVE3TNDzsZ9xgwnDDTWBSF/71iBnaLwn+/1hG/LkxE/1CE3qEI9UV2rDnwXmpZdSPKwnXQfYTI098EwHrdj1Bcxsq0kOQWp1W6mFFgZ2tbgFbv9A8XNjSqA4Z1MqBQMgFxi4GeWgxkzaGK1Wrlq1/9Kk899RR/+tOfeOCBBzh06FAm1pY1tAEBBQkOCGQGgcSgNBQ5iAg4PgX/9US0ecO4bQr5jtwRJ8VtBlNREfi0mkN5k5ltZhc7mF/qYF/38KR2m4HhCA/v7cdhVfjwkuIMrdCYLCp3cfvKUvwhwX+/1jHp44/0afYCc+cPaCgWC7ab1mO55Csoy67F9vEHsZ7+oWwvSyKZEEVRuGKueur/t2mqCAKhKC83+/DYLZxdN73mFElu4Igps4M6UhBgiynccj2ksLKykqVLlwKQn5/PnDlzaG9vT/vCssp0FQTSYiAxGLNTmEPgDUbwhaJU59tzykOrlGhBhYkPCIRfGxBIBYEeuGyOuuF95sjEG94HdvXhC0W5YVERpe7cUMkkwz+fW4nLpvDLLd2TDiH3d6sKnAVlzkwsTRcorgJsV/wH9lsejDcbSCR656qYzeCpQ9PLIXi1xcdQWHBBgweHNXcOEyRTR5ctBtbcyCCY0g6npaWFvXv3ctppp034uGg0yt69e5NaWDapOnGYfKCp28dQAv+Oo82q9GWwr4e9e/vTvLrMMzQ0ZOjnU3Iq2nNaEIkA8NreJir9yb1RN3vVC3ihJZRTr5eyiJti4MSeNxgMVSX0OTO6W3ABh0/0EB5Izc9K/p5OnyV29Rr+520nON899mm3EIKfvqZK5d9bOpiRn7UZntMPzVK491CULz+xn2+sHD+M7NX96rWoONTL3r3JBaDpGTM8p5IRcvH5rAkLHBZ49vAA23ftiZ/yJsqfdqm/68vcPl3+7HLxOdUrvZ3qe3NLeyd79/ZM++uk8jkt6OyhEuhqO06PiV8nCQ8IfD4fd911F1/72tfIz5/YM2SxWFi8eHHSi8sWoY1DCGDWsjNRyudN+vjXgz1AC9UV5SxeXJ329WWavXv3Gvr5lJyK9pye4e/inoMnGM4rS/q129viAw4zq7yAxYtnpWSdRiDSvZLIznupcUeoS/D3JPiw6neft/IcFLs7JeuQv6fTZ9a8KF94azdvdSvMmb8Qp+3UYdlrLT4ODhxmabmTj563ICMqGTM8p9+pD/PwL/bxSFOUb12xIK5aOpmefU1AP+cvbWDxbPMGl5nhOZWMkKvP58V7Gnn68CAdeTNZN2dqv69bXz0ADPGxc+axuFx/Qa+5+pzqkW3RXtjaTEFxKYsX107766TyOY343yEClBUXUGXw18lEQ5OEjgxDoRB33XUX73vf+7jssstStjC9IrwxC0WiFoN4BkG6ViSRpIe4xSAFTQbt3hxrMIihZRCIvsSqDoUQ4OsEZ0HKhgOS5HDbLZxf78EXio7bZvDzt7oA+MTpZTlloUmWSo+NO9eUE47Ct14Z3564r1sNfFqYQxYDicSoXDlPHQo8McW6w3ZviB0dQ9QV2Fkkf9clk6DHFgOssSG3yS0Gk97SCiH4+te/zpw5c7j11lszsabs4+0EmwuciU1FZQaBxKg0FKUug6A91yoONaY4ICDog1AA8svTuCjJVLk65qv98xg2sT2dQzy0t58yt5VbTpPBklPl82eVU+S0cN/OXvZ1ndr2EYoIDvQM47FbmFFg7opDicQMXDlPvV7+7fCgOvROkI2xtphLZufLQatkUvTYYqDYYgOCXG8x2LJlC4899hivv/461157Lddeey0vvvhiJtaWFURoCIYGIL8y4YuXrDmUGBUtMbypPxUDAlWFUGXyDvOTiYcU9iY4IJhiCKokM3xgUTFWBR7e18/wSZuR/3q1HQF87qwK8h3j++glY1PitvH5syqICvi3F09VEezsDDAUFqyqcWORNw0Sie5pKHKwrMJFY1+QPV2J3yg916gOCNaZ2EYkSR3O2MGrrhQE8ZpDcysIJj3qW716Nfv378/EWvSBtnlPsOIQIBx74dqkgkBiMNx2C1UeGy0DIYKRaFKJwm05ajEgrwzsbuhvQQgx6WBReFWpOvkVGVicJFEqPDYun1vAU4cGuW9XL7evLANga5ufB/f0U+q2cseqsiyv0rjcuaacX2zp5pH9/WxoHOTSUTcIbx4PAHBmraw8k0iMwtXzC9nVOcRThwZYWjF5lkAkKnjm8AAWRVUQSCSToVkMgnpqMdAGBJEcVxDkGmIwlmA9hc271s/pkAoCiQGZVexAAMeSzCHo8OfmgEBRFNVmMOyFQN/kn6ANIT1yQKA3vnS2Ohj+r1c66BuK0D8U4ba/NiOAr59bRYFTqgemS4HTyvcvrQHgzqePv0sy+uYJPyAHBBKJkZhqDsFrx/10+iOsrfNQnpdb+wTJ9HBqFoOIfiwGWgaBMLmCQA4ITiauIEisrgxkBoHE2MxOkc0gZxUEgFJcB4DoPTbpY4VPKgj0ynn1Hq5ZUMixgRDn3XOIs353kN1dw1xQ7+EfV0v1QLJ8ZEkxF8/K51BvkC9uaEUIwXA4ypOH1FPFtXVyQCCRGIUza/OoyLPy+nE/XbEDgol4/ICa73LNgsJ0L01iErQBwbAeFQS5nkGQawhvp/qXKWzeZQaBxMg0FKuZAY1JBhV2aBkEntzKIABQSmepf+k9OvmDY9cYRQ4IdMn/XVXH6ho3+3uGOdwb5D0zPfz5A7Owyut70iiKwi+vrKPUbeVXW7v59N+O87Xn2+gJRLhibkHO5ZdIJEbGalF479xCogKeOTI44WOFEDweUxq8b74cEEgSQ9cZBCa3GOTeUd9kTCNALF5zKBUEEgMyElQ4fYuBEII2X5h8hwWPI/fmjkrZHABE15FJHyu8U7cxSTJHidvGKx+fxyvNPuxWhXNm5Mm07RQyu9jBXz44i2sfPMpvt/XE//9n1shWD4nEaFw9v5A/7OzlyYMD3Lhs/IaXfd3DHOwJsqTcybxSWW8oSQyXTd1PDulIQTDSYmBui4EcEJzEyOZ9CgOCmDVGKggkRmRWcfJVh4PBKENhwbyS3DwBjA8Iehonf3AspFAqCPSL1aJwQYMM0UoXa+s8vPOJ+fxiSzcdvjA3Livholny5y2RGI11s/OxWxSeOTLIUDgav6E7mT/tVvN5rl1QlMnlSQzOiIJAfxkEROSAILcYnHqLgRZSKAcEEiOiKQiOJpFBoOUPVOZg/gAAZbMBEN1TUBDIkEJJDlNX6OC/LqrJ9jIkEkkSFDitvHduAY8fHOCJgwN8YHHxKY+JCsEfdvYC8LHl46sMJJKT0QYEumwxkBkEucX0FASxFgNpMZAYkJmF6qn/sSQGBB0+dUBQnYP5AwBKqTYgSERBIDMIJBKJRGIOtJv++2JDgJN5/qiXYwMh1tblsaBM2gskiRO3GOgxg0AOCHIMmUEgyTGcNgu1+TZOeMMMh6cn42qLBRTmqoJAySsBdwn0NiGikQkfG28x8EjPtUQikUiMzVXzCihxWXn68CDt3lOzjO7ZoQ4OPr6iNNNLkxickRYD/VkMhBwQ5BbC2wmKBTyJV1rJFgOJ0WmI5RAcG5heUGG7piDIz80BAYBSNhsiIehrGfcxQgh1COkuHgm6kUgkEonEoDhtFj60pJiIgAdiWQMaJwZD/GVfP3l2hQ8ulvkDkqlhURRsFr22GEw/2NsIyAHBKEQ0osp/PeUoFmvCnxeWGQQSg9NQGBsQTNNm0J7rGQSMshlMFFQ4NKC+qUh7gUQikUhMwq2nqTaDn73VRXBUoNz3X+tgOCK4fWUZBc7E99USiYbLZtFViwEWGyiKtBjkFP4eENEpe4M1BYFNXvskBqWhWM0OmG5QYbtfyyDI3QEB5bEmg4mCCqdhYZJIJBKJRM+sqslj3ex8mgdC/PytbgC2tQf43y3d5NkVvnC2HIpLpofTquiqxUBRFLA6TT8gyOHd/KmIWIMBU2gwgJEWAxlSKDEqDbEmg6a+aVoMvFoGQW6GFEJiQYUiFlAo8wckEolEYia+fVENzzcd5F9fbGMwGOF323uJCPi391QzoyB39waS5HBaFcJRiEQFVr0otW0O0w8IpIJgNNM83ZMZBBKjEx8QDExTQSAzCNQMAoCJLAbxBgM5IJBIJBKJeTi92s13Lq5hOCL41isdHB8M8eElRXz2TPl+J5k+WpOBrnIIrE6ITL/5ywjk7m5+DKZTcQijWgzkgEBiUBqK1Ol+U19yA4KqHLYYKGUxi0HX4XEfIwZOqI8tnJGRNUkkEolEkin+6cwKFpe52Hh0kNOr3XxocbF+Tn0lhsRpHWkyyLPr5Fzb5gQRRUTCKFZz7nvN+a+aLskqCKTFQGJQ6gun32IghKDdF6bIaYlPenOS4nqwuxHt+xDRKIrl1J+F6D8ee6wcEEgkEonEfFw+t4DL5xZkexkSk+DQqg71pCDQWqjCw2DSAUEO7+ZPJZ5BMM2QQqkgkBgVt91ClcfG8cHQuxKIE6FvKEIwInJaPQCgWCwolYsg5IfeprEf1KcOCJQiOSCQSCQSiUQimQjt4ElXTQbW2IDAxDYDOSAYjaYgmGJIYdxiIBUEEgPTUOQgKqBliiqCEXuBDCFSqpcAINr3jPlxTUGgFNVlbE0SiUQikUgkRiRuMdBTk4HNqf7FxEGFckAwCjHQpv6lsGZKn6cNCBxSQSAxMFoOwbH+qQ0I2rwyf0BDqYoNCNr2jvlx0d+i/kVaDCQSiUQikUgmZGRAoCMFgRwQ5BiD6oBAKaia0qfJDAKJGdCaDI72T00y1epTBwq1ssYIpXoxMLaCQAihWgycBSiuwkwvTSKRSCQSicRQ6NJioA0IInJAkBOIgTZQlKm3GMRULzKDQGJk6uMKgikOCAZVBUFtgVQQjCgIxrAY+LshPAQyf0AikUgkEolkUjQFQVBPAwKrul8W4akHexsFOSCIIaIRNYMgrxzFOrWTUJlBIDEDs+IKgqld8E541cfX5EsFASUNYM9DdKhNBqMR3UcBUEpmZmFhEolEIpFIJMZipMVAPxkEUkGQS3g7QURRCqun/KmaxUDOByRGRrMYNE1ZQRCzGMgBgdpkULUYQgHoaXzXx0TXIfUx5fOysTSJRCKRSCQSQ6Fri4HMIDA/YrBd/csU8wcAghGB3aKgKHJCIDEu2oBgqhaDE7GQwhppMQBGNRm07X73B7QBQcX8TC9JIpFIJBKJxHDoMaRQthjkEgOt8P/bu/fgKus7j+Of59xyTyAxnAgEkACactPddRFayxDLZRfdUtHOtP7R2nY667RlC247WjrdGWfAmY52nG6nM6Vure60HadVwSGOWoMCI6C0FKMlqIhAQHLCkiuQk5zLb/84l4ilkMtzOM/znPfrn9w4P35zfslz8nzzvUiyRjnBQEplEIRIH4DLlYV8uqbEr/a+mOLJkV+IT58jg+DjrMnzJUnJUwcv+jwZBAAAACPnxDGH8qf+oKbE6P6g5iYECNJMf2bE4RhKDBKG/gPwhGlVISWMdKp/ZH0IjDH6qD+m8pBPFUX+HO/OHaxpiyRJ5vi+iz5vzhAgAAAAGClnlhikAwRkEBSAdInBaEccSqkMgiDPJDxgxijLDHoHkxqIG00up7wgw5p6k+QPyZzYn21UaJJJmTPvpjrfTpye5x0CAAA4XzaDwFEBgkyJARkEnmfSJQaqGF2JQdIYJQ0jDuEN0yekygRGOsngo34mGHySFShKBQmifTId70iSTKRNivbJmnKTLD/BFAAAgCspcuIUg3SJgSGDwPtMX6rEYLQZBIw4hJdMqxxdBkGm/8C1FQQIPs6a3SRJMm0vpt4e25P6/IzF+doSAACAqxT5U7eqjswgoAdBAciUGIyyB8FQJkBABgE8YMaEVIDg2AgDBJkJBpQYXMz3qdWSpOShZkmS+fD11OevW5K3PQEAALjJcAaBcwIElp8pBgXD9GdKDMYWICgigwAeMK0qlQlwvGdkJQan+8kguBRr6j9KldfKHN+n5PE3lHzneckfkjXz1nxvDQAAwBUcOcWAMYeFwRgj9UWkUJms4opRPTYT0QoFeCrhftMzJQZ9I80gYMThpVg+n/yfvk+SFP/vz0pD5+VbcKesspo87wwAAMAditMZBM6aYpD+nZcmhR432C/FLoxpxOEgGQTwkKpivyYW+3WiN6ZE8soX49P9mRIDAgSf5Fvy78MTC0Jl8i27P78bAgAAcBFH9iDw04OgMKQnGFijLC+QpKF0ykuIAAE8YlpVULGkyTYgvJyPsk0K6UHwSVZJlYLr98m/epOC//G6fJMX5HtLAAAAruHIKQbpEgOmGHic6f1IkmRVjm7EoUQGAbxnRlWqzOD4CEYdnuyjxOByrNJq+Zf9p6xwY763AgAA4CrFfieWGNCDoCCY3lOpdyZMHfVjs00KAwQI4A3TswGCy6dOxRJGH52LaVJpQCVBLiUAAACwT6bH25CDphjIn/o9mRIDr+s5KUmyxhAgyNTEhHw8lfCGzCSDE1fIIDjVH1PSDP97AAAAwC5F2QwC55QYWIF0gIAMAm8zvekAQdXYMwhCZBDAIzIlBseukEFwIv31TMYBAAAAYJfibA8CB2UQZEsMyCDwNJPOIBhPiQFNCuEV0yekAwQ9l7/wHU/3HyCDAAAAAHZz5BSDTIAgQQaBt6V7EFhVU0b90ExXTZoUwisa0gGCD7ovf+HLZBDUV5JBAAAAAHtlerxFnTTFIN2DwJBB4G2m56TkC0gV4VE/NhPRIkAAr6go8itcFtCJvpgGL1PzdTxbYkAGAQAAAOyVmWLgyAwCehB4lxm6IF3okiony/L5R/34oSQlBvCeWRNDShrp6GXKDDJNDKfRgwAAAAA2K3LiFANKDApAprxgwujLC6SPZxDwVMI7GqpTF78Puv9+gKC9L51BUEkGAQAAAOzl7CkGlBh4lhnHiEPpYz0ImGIAD5k9MRUgeL/r0tFRY4xO9MVUEfJpQvHoM28AAACAyyly4hSDdA8CJQgQeJZJZxBoDA0KJaYYwJtmVacufkf+ToCg83xc0bjRtMqgLIvvfQAAANjLZ1kK+ixnBQjoQVAAxplBQIAAXjTrCiUGwyMO6T8AAACA3CgOWI4qMSBAUABMbzpAUEWAAMjIjDo88ndGHWZGHBIgAAAAQK6kAgRGxjgkiyA75pAAgWdlehBorD0IaFIID6oo8quuLKATvbFLRm2PpacbzGDEIQAAAHKkNOhT0jhokkF2ikEsv/vIIe5qe9ol0aQQ+KRZ1UUyko5eoszgvXRvgtnpUgQAAADAbiXpUYcDcYcECHwBybIoMfAqY4zM2Q+lQLFUUTemNbIlBj4CBPCWTKPCS00yeL8rFTQgQAAAAIBcKQmmblcvxJzRh8CyLMlfRIDAs86dkYbOy6q5bsyd2DNdNckggNd86ppiSdJfz0T/5mvvdw3KktQwkR4EAAAAyI2S9D3WgKMaFYYIEHiV6fow9U71dWNeIxsgoAcBPGb+pFSA4J1PBAh6owlFzsc1Y0JIRQG+7wEAAJAbpQ7LIJCUyiBIXHrSlxcU9G/35mwqQGDVjD1AwBQDeNW82lSA4O3OiwME72b7D5A9AAAAgNxxXA8CKdWo0CRlEvF87yQnCjpAoC4bAgRxAgTwpnBZQLWlfr3XNXjRJIO3OwckDQcQAAAAgFwoDaZLDJyUQRBI/5HMo2UGBR0gyGYQjKvEgCkG8CbLsjSvtkRJIx36v+EsgrciqfcXhEvytTUAAAAUgOJsBoGDAgT+dIDAo2UGBAgkqWbmmNegxABeNi/Th+BjZQatkVQGwcJJBAgAAACQO8M9CJxTYmAF0lO8yCDwnkyTQqt6xpjXGG5SSIAA3vPJRoVJY/T2mahCfkvX1zDiEAAAALnjzCkGBAg8ycQHpd6TUkWdrFDpmNcZziAo2KcSHvbJRoXvnImqbzCpG8MlChIUAwAAQA45copBJkCQIEDgLd3HJWPG1aBQIoMA3ja3tlg+S/pLx4CSxmjn8fOSpKXTy/K8MwAAAHhddoqBg0oM5A9Kkkw8lueN5EbBBghM1zFJ42tQKElD6XQXAgTwotKgTzdPLtXZgYQOdAxo5/FzkqSl08rzvDMAAAB4XUnQgU0KySDwJnPmSOoduzIImGIAj/qXhgpJ0v+2duvFD/pVGrT06fqxl+UAAAAAI5HtQeDEEgN6EHiL6TwsSbIm3TCudQbiqQBBJv0F8Jp/nVUpSfr5n89qMGF0z7yJKg/587wrAAAAeF22B4GDMgiYYuBRJvKuJMkKjzdAkFTQZ8nvI4MA3nRTXYnuXThRkjSx2K/1i2rzvCMAAAAUAmf2IAil3iaG8ruPHAnkewP5YjoPS5Ylq3b2uNYZiCVVEiQ4AG/72aopWjmzQp+dVq7asoK9bAAAAOAqcmIGgQLpACooK78AAA7dSURBVIFHMwgK8jd9M9Aj9XdI1TNkBUvGvo4xGogbVRaRbg1vC/l9Wts4Id/bAAAAQAHJ9CCIOrIHgTczCAqyxMB0pssLxtl/INOgsIQGhQAAAABgqxInZhCkSwyMRzMICjNAEEk3KBxv/4F0JKuYBoUAAAAAYCtH9iDIjjkkg8Az7J5gUEwGAQAAAADYqjTd6+28g0oMLD9TDDwnm0Ew6fpxrTOQTnXJpL4AAAAAAOyRGa3tpAABGQQelM0gGHeJQaYHQUE+jQAAAACQM+Wh1H3W+SEnBQiCqbdkEHiDGTwvdR2TKsKySqvHtVY2g4ASAwAAAACwVUnAks+S+ocS+d7KsHSTQiVi+d1HjhRegOD025JJypq8cNxrRbMBgoJ7GgEAAAAgpyzLUnnIp3OOyiBIlRgwxcAjzKmDkiRryo3jXivbpJAeBAAAAABgu/KgTwNxo0TSIZMMMhkEcXoQeIL56C1Jkm/KTeNeK0qJAQAAAADkTLYPgVMaFWabFJJB4Anm5F8kSdaU8ZcY0KQQAAAAAHKnLD3JwCllBhYZBN5hEjGZjr9KxVVSzcxxrzc85pAMAgAAAACwW3m6nNspAQIFMk0KCRC4nom0SYkhWZMXyrLGf1M/QJNCAAAAAMiZTInBuZhDJhmQQeAddpYXSFI0TokBAAAAAORKRaYHgWMyCDI9CAgQuJ45eUCSPRMMJGkg3SijiCaFAAAAAGC7snSAoN8pAYJ0BgFjDj3AHNsrSfLNuMWW9QbIIAAAAACAnCl3WJNCMgg8wgz0ypx+W6oISzUNtqxJk0IAAAAAyB2nNSkcnmJABoGrmRNvSCYpa8YSWxoUSsMlBmQQAAAAAID9sk0KHRIgGJ5iEMvvPnKkYO5skx/ukST5rlts25qUGAAAAABA7mR6EJx3yhSDABkEnmA+TPUfsGZ82rY1M500M9+0AAAAAAD7VDgtgyBTYkAPAvcyiViqxCBYatuIQ0nqHUxFsaqKCuJpBAAAAICrqrIo1aSwJ+qUDIJUk0KmGLiYObFfig3Imv7PsvxB29btSQcIJhT7bVsTAAAAAJBSnb7X6nZKgIAMAvdLvvuyJMk3Z7mt6/ZlMwgIEAAAAACA3apLApKkswMOCRBkxhzGCRC4ljmcChBYN6y0dd3eaFKWhjtrAgAAAADsU1Oa+mNs10A8zztJsXx+yfIRIHAr098pc/LPUuW1sq6dZ+vaPYMJVRX75bNpbCIAAAAAYFimxKDLKRkEUiqLgBIDd0q+3yJJ8l2/QpaNN/LReFJDCUODQgAAAADIkaKAT2VBn3NKDKRUHwKaFLqTOfySJMm6foWt6/amm2RU0n8AAAAAAHKmusSv87GkBuMOGXVIBoE7mfigkodekHwB+ebcZuva2QkGBAgAAAAAIGeqS9JlBk6aZGCSMgln9EWwk7cDBO+1SNFeWXNuk1U60da1ewdT0auqYk8/hQAAAACQV9XF6UkGFxwSIAh4d9Shp+9uk63PSpJ8C9bavnZmxCElBgAAAACQOzXpDILuqEP+Yu9PBwg82IfAswECEx9U8p3nJX9Qvnn/Zvv6PVFKDAAAAAAg1zIlBk5pVGiRQeA+5vibqfKC2U22lxdIUm86g6CKAAEAAAAA5Ex9ZeqG/EiXQ/5i7y9KvS3UDIJdu3Zp5cqVWr58ubZs2ZLrPdnCqmuU7x++LP/K/8rJ+h90p6JFk8oCOVkfAAAAACDdVFciSfpLx0Ced5Lm4QyCK97dJhIJPfTQQ3riiScUDod11113qampSbNmzboa+xszq+waBb78RM7Wf/GDfklS04zynP0fAAAAAFDoMgGCAw4LEJj4kKw8b8VuVwwQtLa2avr06aqvr5ckrV69Wi0tLY4PEJzqj+nuZ46pK0d1Kh90D2l6VVCN1xTlZH0AAAAAQCpre2pFUEe6h3T9zw+P+HFDsZhCr47834/Uz0/HdKukwcGoSmxfPb+uGCCIRCKqq6vLfhwOh9Xa2nrZxySTSbW1tY1/d+PwQZ/Roc64zuew0eUdkxM6fNj+bziniUajeT9P2Isz9R7O1Hs4U+/hTL2F8/QeztTZmsIJPdUvHe0ZbVq//WUAr2iBrvcd0unIoMoveOt7JicF9D6fT42NjblYesQaJZ35J6NY0uRkfZ8lFQc82+PxIm1tbXk/T9iLM/UeztR7OFPv4Uy9hfP0Hs7U2f6nUfpZLKnR3N0dPnxYN9xwQw5286iCvkc11e/O+8HLBcKuGCAIh8Pq6OjIfhyJRBQOh+3ZWY4F/ZaCfq9VhQAAAABA4SkJju6GvCRgqXSUjyl0V3y25s+fr2PHjqm9vV1DQ0Nqbm5WU1PT1dgbAAAAAAC4Sq6YQRAIBPSjH/1I3/jGN5RIJLR27VrNnj37auwNAAAAAABcJSPqQbB06VItXbo013sBAAAAAAB5QkEGAAAAAAAgQAAAAAAAAAgQAAAAAAAAESAAAAAAAAAiQAAAAAAAAESAAAAAAAAAiAABAAAAAAAQAQIAAAAAACACBAAAAAAAQAQIAAAAAACACBAAAAAAAAARIAAAAAAAACJAAAAAAAAARIAAAAAAAACIAAEAAAAAABABAgAAAAAAIAIEAAAAAABABAgAAAAAAIAIEAAAAAAAAEmWMcbYvejBgwdVVFRk97IAAAAAAGAcBgcHdeONN17yazkJEAAAAAAAAHehxAAAAAAAABAgAAAAAAAABAgAAAAAAIAIEAAAAAAAABEgAAAAAAAAIkAAAAAAAAAkBexcbNeuXdq0aZOSyaTuvvtuffOb37RzeVwFDz74oF577TXV1NRo+/btkqSenh6tX79ep06d0pQpU/TYY4+pqqoqzzvFSJ0+fVrf//73dfbsWVmWpS9+8Yv6yle+wrm61ODgoO655x4NDQ0pkUho5cqVWrdundrb27Vhwwb19PRo7ty5+vGPf6xQKJTv7WIUEomE1q5dq3A4rF/84hecqcs1NTWprKxMPp9Pfr9fzz77LNddl+vr69MPf/hDvffee7IsS5s3b9Z1113HmbrU0aNHtX79+uzH7e3tWrdundasWcOZutSvf/1r/f73v5dlWZozZ44efvhhdXZ28lo6SrZlECQSCT300EN6/PHH1dzcrO3bt+vIkSN2LY+r5M4779Tjjz9+0ee2bNmixYsX6+WXX9bixYu1ZcuWPO0OY+H3+/XAAw/ohRde0NNPP63f/va3OnLkCOfqUqFQSE8++aSef/55bd26Vbt379bBgwf1yCOP6Ktf/ar++Mc/qrKyUn/4wx/yvVWM0lNPPaWGhobsx5yp+z355JPatm2bnn32WUm8nrrdpk2bdOutt+rFF1/Utm3b1NDQwJm62MyZM7Vt27bsz2hJSYmWL1/OmbpUJBLRU089pWeeeUbbt29XIpFQc3Mzr6VjYFuAoLW1VdOnT1d9fb1CoZBWr16tlpYWu5bHVXLzzTf/TZS0paVFa9askSStWbNGr7zySj62hjGaNGmS5s6dK0kqLy/XzJkzFYlEOFeXsixLZWVlkqR4PK54PC7LsrRv3z6tXLlSkvSFL3yB66/LdHR06LXXXtNdd90lSTLGcKYexHXXvfr7+7V///7sz2goFFJlZSVn6hF79+5VfX29pkyZwpm6WCKRUDQaVTweVzQaVW1tLa+lY2BbgCASiaiuri77cTgcViQSsWt55NHZs2c1adIkSVJtba3Onj2b5x1hrE6ePKm2tjYtXLiQc3WxRCKhz3/+81qyZImWLFmi+vp6VVZWKhBIVY3V1dVx/XWZzZs363vf+558vtTLcnd3N2fqAV//+td155136umnn5bE66mbnTx5UtXV1XrwwQe1Zs0abdy4URcuXOBMPaK5uVm33367JH5O3SocDutrX/uali1bps985jMqLy/X3LlzeS0dA5oUYlQsy5JlWfneBsbg/PnzWrdunX7wgx+ovLz8oq9xru7i9/u1bds27dy5U62trTp69Gi+t4RxePXVV1VdXa158+bleyuw0e9+9zs999xz+uUvf6nf/OY32r9//0Vf57rrLvF4XIcOHdKXvvQlbd26VSUlJX+Tes6ZutPQ0JB27NihVatW/c3XOFP36O3tVUtLi1paWrR7924NDAxo9+7d+d6WK9kWIAiHw+ro6Mh+HIlEFA6H7VoeeVRTU6POzk5JUmdnp6qrq/O8I4xWLBbTunXrdMcdd2jFihWSOFcvqKys1KJFi3Tw4EH19fUpHo9LSqWrc/11jwMHDmjHjh1qamrShg0btG/fPm3atIkzdbnMedXU1Gj58uVqbW3luutidXV1qqur08KFCyVJq1at0qFDhzhTD9i1a5fmzp2ra665RhK/H7nVnj17NHXqVFVXVysYDGrFihU6cOAAr6VjYFuAYP78+Tp27Jja29s1NDSk5uZmNTU12bU88qipqUlbt26VJG3dulW33XZbnneE0TDGaOPGjZo5c6buvffe7Oc5V3fq6upSX1+fJCkajWrPnj1qaGjQokWL9NJLL0mSnnvuOa6/LnL//fdr165d2rFjh37yk5/olltu0aOPPsqZutiFCxd07ty57Puvv/66Zs+ezXXXxWpra1VXV5fN2Nq7d68aGho4Uw9obm7W6tWrsx9zpu40efJkvfXWWxoYGJAxRnv37tWsWbN4LR0Dyxhj7Fps586d2rx5c3ZU03333WfX0rhKNmzYoDfffFPd3d2qqanRd77zHX3uc5/Td7/7XZ0+fVqTJ0/WY489pgkTJuR7qxihP/3pT7rnnns0Z86cbH3zhg0btGDBAs7VhQ4fPqwHHnhAiURCxhitWrVK3/72t9Xe3q7169ert7dXjY2NeuSRRxjj40JvvPGGfvWrX2XHHHKm7tTe3q5vfetbklI9Q26//Xbdd9996u7u5rrrYm1tbdq4caNisZjq6+v18MMPK5lMcqYuduHCBS1btkyvvPKKKioqJImfUxf76U9/qhdeeEGBQECNjY3atGmTIpEIr6WjZGuAAAAAAAAAuBNNCgEAAAAAAAECAAAAAABAgAAAAAAAAIgAAQAAAAAAEAECAAAAAAAgAgQAAAAAAEAECAAAAAAAgKT/BzSt2XghO756AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "plot_a.set_size_inches((18, 10))\n", "plot_a" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In fact, in JupyterLab it won't be readily apparent just how large it is. You'll need to double-click on it to open it at 100% scale.\n", "\n", "You'll note though that the lines didn't scale. The blue and the orange plots of the data are the same thickness as when the plot was smaller and now seem anemic. This is one of the reasons I suggest using a vector graphics handling-capable image editing software like Inkscape or Adobe Illustrator to scale up the `.svg` files if you need larger images of the plots. You can then easily scale all parts in proportion. To do this using Python is possible. For example, to make the blue and orane lines less anemic: " ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABAgAAAJQCAYAAAADlFa6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8GearUAAAgAElEQVR4nOzdeYAcZZ0//vdT3T09dyaZI9ck5CAhQ7gJp1ERuSHEgHwX3fVYFNSVBVFxv/tV2Z/o6rr61d8CuruKK6KoqAGDCIjcRyBcIRczuTPJZJLMfU/3dHc93z+ame7nqe6ZPqqqj3m//kmquqr6melkpvtTn0NIKSWIiIiIiIiIaFozcr0AIiIiIiIiIso9BgiIiIiIiIiIiAECIiIiIiIiImKAgIiIiIiIiIjAAAERERERERERgQECIiIiIiIiIgLgzfUCiIiIKP8MDAzgkksuQTgcBgBccskl+Pa3v53jVREREZGTmEFAREREFs8+++xEcAAAXnrpJQQCgRyuiIiIiJzGAAERERFZPPXUU8r2yMgIXn755RythoiIiNzAAAEREREp+vr68NprrwEAPvjBD8Lv9wMA/vrXv+ZyWUREROQwBgiIiIhI8eyzzyISiQCI9h5YtWoVAJYZEBERFTsGCIiIiEgxnilQUlKC8847D+9973sBAIFAAC+++GIul0ZEREQOYoCAiIiIJvT29uLNN98EAKxatQrl5eV43/veN/H4k08+maulERERkcMYICAiIqIJTz/99ER5wbJly7Bnzx4MDAxgwYIFAICNGzdiZGQkl0skIiIihwgppcz1IoiIiCg/fPazn8Ubb7wx6THf+ta3cNlll7m0IiIiInILMwiIiIgIANDd3Y3NmzdPeRynGRARERUnb64XQERERPkhvrzgS1/6Ej7ykY8oj3/0ox/Frl278Oqrr2J4eBgVFRW5WCYRERE5hBkEREREBAB46qmnAAAejwcXX3yx5fFLLrkEABAMBvH888+7ujYiIiJyHnsQEBEREREREREzCIiIiIiIiIiIAQIiIiIiIiIiAgMERERERERERAQGCIiIiIiIiIgIDo05fOutt1BWVubEpSkHgsEg/H5/rpdBNuJrWnz4mhYfvqbFh69pceHrWXz4mhYfvqaJBYNBnHbaaQkfcyRAIIRAU1OTE5emHGhububrWWT4mhYfvqbFh69p8eFrWlz4ehYfvqbFh69pYs3NzUkfY4kBERERERERETFAQEREREREREQMEBARERERERERHOpBQERERERERBQvFAqhra0NgUDAteebrN6+2JWWlqKxsRE+ny/lcxggICIiIiIiIse1tbWhqqoKixYtghDC8ecbHR2dttP1pJTo7u5GW1sbFi9enPJ5LDEgIiIiIiIixwUCAdTW1roSHJjuhBCora1NO1uDAQIiIiIiIiJyBYMD7snke80AARERERERERExQEBERERERETTR2dnJ2677TZcdNFFuOaaa3DjjTdi//79jj3fQw89hGPHjjl2fTuxSSERERERERFNC1JK3HzzzfjQhz6EH/7whwCAlpYWdHd3p9TMLxKJwOPxpPWcDz/8MJYtW4bZs2enfE44HIbX6/7HdWYQEBERERER0bTw6quvwuv14iMf+cjEvhUrViASieAzn/nMxL4777wTDz30EADgwgsvxPe+9z2sW7cOP/vZz/DhD3944ri2tjasWbMGAHDPPffg2muvxVVXXYWvf/3rkFLiiSeewPbt2/HlL38Za9euRSAQwIUXXoienh4AwLZt2/Cxj30MAHD33Xfj9ttvx/XXX4+vfOUr6OnpwT/+4z/i2muvxbXXXos333zT8e8PMwiIiIiIiIjIVR/fcBB/2j1g6zXXLKvG/WsXTnrM7t27sXLlyrSvXVNTg4cffhgA8Oc//xmHDh3CggUL8Nhjj+Hyyy8HAPzd3/0dbr75ZgDA7bffjmeffRaXXXYZHnjgAXzlK1/BySefPOXz7N27F7/+9a9RWlqKL33pS/jEJz6BVatWob29HZ/61Kfw+OOPp732dDBAQERERERERDSJK664YuLvl19+OR5//HHcdNNNePzxxydKFTZt2oR7770XgUAAfX19WLZsGS688MK0nufCCy9EaWkpAGDjxo3Ys2fPxGNDQ0MYHh5GRUWFDV9RYgwQEBERERERkaumutPvlGXLluEvf/mLZb/H44FpmhPbwWBQebysrGzi71dccQVuvfVWXHzxxRBCYNGiRQgGg/jGN76B9evXY+7cubj77rst14h/LinllM9jmiZ+97vfwe/3p/+FZog9CIiIiIiIiGhaOPfcczE2NoYHH3xwYl9LSwuAaHr/2NgYBgYG8MorryS9xsKFC2EYBn784x9PlBeMf9CfOXMmhoeHlSBERUUFhoeHJ7bnz5+P7du3AwCefPLJpM+zevVq/PKXv5zYbm5uTudLzQgDBERERERERDQtCCFwzz33YOPGjbjoootw5ZVX4gc/+AHq6upw2WWX4aqrrsIXvvAFnHjiiZNe54orrsAjjzwyESCorq7Gddddh6uuugqf+tSnlH4D69atw7/8y79MNCm8+eab8e1vfxvXXHPNpBMRvvrVr2L79u1Ys2YNrrjiCvzmN7+x55swCSHHcxtstHnzZpx++ul2X5ZypLm5GU1NTbleBtmIr2nx4WtafPiaFh++psWFr2fx4WvqPLe/x6Ojo0rK/nSU6Hs+2evADAIiIiIiIiIiYoCAiIiIiIiIiBggICIiIiIiIiIwQJAXRkMmIqbtrSCIiIiIiIiIUubN9QKmsyNDIdzyxGH8afcAKksM3LyqDl9dPRs+j8j10oiIiIiIiGiaYYAgR/oDEVz0q73Y1TMW3Q6a+NeXO3B0OIz/uqIxx6sjIiIiIiKi6YYlBjny1eeOTgQH4v3s7R48uW8wBysiIiIiIiIqbk1NTVi7di2uvvpqrFu3Dm+99ZYt121ra8NVV1016TGbNm3CZz7zmYSP3XjjjRgYGAAAnH766QCAY8eO4ZZbbgEQHU34/PPP27LWyTBAkAPtgyH8fEtP0sf/7eUOF1dDREREREQ0PZSWlmLDhg145JFH8MUvfhE/+MEPcr0kAMBPf/pTVFdXK/tmz56Nu+66CwADBEXtp5u7MRZJ3pTwxUPD2Nox6uKKiIiIiIiIppehoSHlQ/m9996La6+9FmvWrJn4YN7W1obLL78cX/va13DllVfihhtuQCAQAABs374dV199Na6++mo88MADE9dpa2vDRz/6Uaxbt86SpTA0NISbbroJl156Ke644w6YpgkAuPDCC9HTo95EHs9KGBsbw1133YXHHnsMa9euxWOPPYZLLrlk4njTNHHxxRdbzs8EexC4TEqJB9/pU/bdfel8PLyzH88cGJrYt765H6c0lLm9PCIiIiIiIseFf/1JmDv+ZOs1jZVr4P3ofZMeEwgEsHbtWgSDQXR2duIXv/gFAOCll15Ca2sr/vCHP0BKic997nN4/fXXMXfuXLS2tuIHP/gBvvWtb+HWW2/FX/7yF6xduxb//M//jDvuuANnnXUWvvvd7048R21tLX7+85/D7/fjwIED+OIXv4iHHnoIALB161Y89thjmDdvHj796U/jySefxGWXXTbpmktKSnDLLbdg+/btuOOOOwAA+/btwyOPPIJPfvKT2LhxI1asWIFZs2Zl8d2LYgaBy7Z0BLA7rvdAiUfg+pU1+NuTapTj1jf3u700IiIiIiKiojZeYvDEE0/g3nvvxT/90z9BSomXX34ZL7/8Mj70oQ9h3bp12LdvHw4cOAAAaGxsRFNTEwBg5cqVOHz4MAYGBjA4OIizzjoLALB27dqJ5wiHw/ja176GNWvW4NZbb8XevXsnHjvllFOwYMECeDweXHnllXjzzTcz+jquvfZabNiwAQCwfv16XHPNNRldR8cMApc9sUdtQHjJkkrUlHqwZlk1fIZAyIyWHuzsCeJA3xgW1ZTkYplERERERESOmepOvxtOP/109Pb2oqenB1JK3HTTTbj++uuVY9ra2lBSEvtM5vF4EAwGJ73ufffdh7q6OmzYsAGmaeKUU06ZeEwIdaS9vp2quXPnora2Fq+88gq2bt2K73//+xldR8cMApc9fUANEFxxfLTmZWaZF+fOL1cee651CERERERERGS/vXv3IhKJoKamBqtXr8b69esxPDwMIDpBoLu7O+m51dXVqKqqwhtvvAEA+NOfYuUSg4ODqK+vh2EY2LBhAyKRyMRjW7duxaFDh2CaJh5//HGceeaZKa21oqJiYm3jrrvuOtx+++247LLL4PF4Uv66J8MAgYtGQiY2to0o+z64qHLi7x+I+zvAAAEREREREZGdxnsQrF27Frfddhu++93vwuPxYPXq1bjqqqtw/fXXY82aNbjlllssH8h13/nOd3DnnXdi7dq1kDLWhP6jH/0oHn74YVx99dXYt28fystjN4JPPvlkfPOb38Tll1+O+fPn4+KLL05p3eeccw727Nkz0aQQiDY2HBkZsa28AACEjP9KbLJ58+aJ2Y0U8+LBIVz4q30T24trSrDrH1YkfXzRDB92f77J1TUm0tzcPFFzQ8WBr2nx4WtafPiaFh++psWFr2fx4WvqPLe/x6OjoygrK97G79u2bcN3vvMd/PrXv056TKLv+WSvA3sQuGjTYTV74PxGtaTgrHnlSh+CA/0hdAyH0VDBl4mIiIiIiIiifvKTn+A3v/kNvve979l6XZYYuOhVLUBwjtZzoNRr4NTZpcq+19rVc4iIiIiIiGh6u+mmm/Dss89i1apVtl6XAQIX6R/2z51fYTnm7Hlq0EDPOiAiIiIiIipUDlS4UxKZfK8ZIHDJ0aEQjgyFJ7ZLvQIn1ZdajtOzChggICIiIiKiYlBaWoru7m4GCVwgpUR3dzdKS62fOSfD4naXbO0IKNsn1ZfC57HOvNQzCN44MoKIKeExMpuPSURERERElA8aGxvR1taGzs5OV54vFArB5/O58lz5qLS0FI2NjWmdwwCBS7YcG1W2T52duJvm0pklqC3zoHs0OitzcMxEc1cQJzWkF/khIiIiIiLKJz6fD4sXL3bt+TiZIn0sMXCJNUCQ+AO/EMKSRcBGhUREREREROQ0Bghc8k5XUNk+uSH5PE5LHwIGCIiIiIiIiMhhDBC4wJQSu3vUAEFTrT/p8YU8yUD2tSHy8n/BbH0t10shIiIiIiKiNLAHgQsO9ocQCMc6ddaWeVBbnvxbf5YWIHinM4DBYARVfo9ja7SDHOpE6IfnAMNdgDDg/cSDME66OtfLIiIiIiIiohQwg8AFO7vV7IHlk2QPAEBNqQcr4o6RAN44Mpr8hDxhvn5/NDgAANJE+OEvQAaHc7soIiIiIiIiSgkDBC7QAwQnTBEgAICz5xdeo0Jzx6Pqjv7DMHc8kpvFEBERERERUVoYIHDBzu6Asn3CrBQCBAXWh0CO9kEe3GTdf/jtHKyGiIiIiIiI0sUAgQt29aRXYgBYJxm81j4CKWWSo3NPtm8DzIh1f8fOHKyGiIiIiIiI0sUAgQsyKTE4qb4U5T4xsX1sOIzW/pDta7OL7EwcCGCAgIiIiIiIqDAwQOCwgWAER4bCE9teA1hSM3WAwGsInDmncMoMkgYCeg5AhgKJHyMiIiIiIqK8wQCBw/TsgaU1fvg8IsnRqkJqVJg0QCBNyK497i6GiIiIiIiI0sYAgcMO9I0p28tqS1I+9xy9UWEhBggAoK/NvYUQERERERFRRhggcFjXaFjZnl3hS/lcPYPg7aOjCEXyr1GhDI8BvQeTPz541MXVEBERERERUSYYIHBY76ja2X9WmSflc+dX+TCv0juxHYxIbOsctW1ttulvA6SZ/PEBBgiIiIiIiIjyHQMEDuvWAgS1aQQIAGCVVmbwRnv+BQjkJNkDACAHjri0EiIiIiIiIsoUAwQO6wnoGQTeJEcmdtZcNUDw+pH860MwZYCAJQZERERERER5jwECh/VoPQhmlaabQVCmbOdjBoHef0Acd476OEsMiPJKfyCCQwNjMGX+9TQhIiIiotxhgMBhPZYSg/QyCM6cowYI3ukKYHhsknr/HJA9rcq2WHi2+jhLDIjyxo/f6ELjXe9gyT0tWHx3M15oHcr1koiIiIgoTzBA4DA9g2Bmmj0IZpZ5sWxWbDSiKYHNR/Mri0D2TZFBMHgUkncqiXLu51t6cOuT7QiEo/8f24fC+PD6Vss4ViIiIiKanhggcFi2TQoBYFWe9yGQ/e3KtmhYAfjiMh/CQSA46PKqiCje/r4x3PZku2V/byCCrz/HMiAiIiIiYoDAUaaU6LU0Kcw+QPBGe34FCKCVEIgZ84DyWvWY4W4XF0REuv/zzBEMhxKXJ/2hpQ/tgyGXV0RERERE+YYBAgf1ByIw4zLrK0sMlHjS/5afpTcqPJI/JQYyMKhmB3hKgPJZEBWz1ONGelxeGRGN23x0FH9o6U/6eNgEfr2918UVEREREVE+YoDAQXr2wMw0JxiMO212Gbxxr9S+vjF0jYSTn+CmQa0BYfVcCCGAcjVAgBFmEBDlyo/e6FK2T59Thu9fNFfZ96fdA24uiYiIiIjyEAMEDhoJqY35Kn2ZfbvLfAZW1pcq+7Ycy48sAtmfoLwAgNBKDOQwMwiIcqFrJIzf7uhT9n1tdQPWnTBD2fdK2wg6hvMk8EhEREREOcEAgYNGw2q9b1mGAQIAOHW2WmawtSOQ8bXsZBlhWP3uXckKZhAQ5YOfb+lBMBILVi6a4cOVx1dj4YwSnDo7FniUAJ7jyEMiIiKiaY0BAgeNag3ByrMIEJzSoGYQbMuTAAEGtAkG4wECZhAQ5ZyUEj97W/2/99kza+ExBADgosVVymMvHRp2bW1ERERElH8YIHDQSFgPEIiMr3VKg5pBsK0jT0oM9AkG1e+WGDCDgCjn3j4WwN7esYltv0fg70+N/d9cvaBCOZ4BAiIiIqLpjQECB+k9CMq8mX+7T9J6ELzTFUTYlEmOdtFQp7pdNTv6pz7mkFMMiFz3kDa54NKlVZhV5p3YPr9RHaG6vSOAfq25KhERERFNHwwQOMjOHgT1FV7MrYy9sR+LSOzsDmZ8PbvIoQ5lW1TWR//UphjIYWYQELlJSomHWtTmhHpjwlllXjTV+mPnAHg7TxqgEhEREZH7GCBw0IiNPQgA4GRLH4I8eCNvySBoiP5ZwQwColza0RnErp5YeYHPELhqWbXluNPnquVLbx3Ng58rRERERJQTDBA4yBIg8GbegwBI1Icg940KpRYgEBV10T/LatTjRtU7mUTkrEd2qeUFH1xciZpSj+W4M+ZoAYIjDBAQERERTVcMEDhoVOtBYHcGQa5HHUrTtGYQvFtigFI1lRmBAXcWRUQAgKf2qyML1y63Zg8AwJlz1D4ELDEgIiIimr4YIHCQpQdBFk0KAeAkLUDQ0pXjDIJAH2CGY9v+Kgjfu3cjy/QAQT+kzIOmikTTwNBYBK8eHlH2XbykKuGxp8xWf67s7gliLGImPJaIiIiIihsDBA6yuwfBspl+xBcptPaHMBrK4Rt5rUHhRPYAAHhLAY8vth0JAeHcl0QQTQcvHhxGKG7KyfEzS3DcjJKEx1b7PWisiv1fjUhgV/dYwmOJiIiIqLgxQOAgPUBQ5suuB0GZz8DCGbE38hLAnt7cTTKQg1r/gcqG2N+FsJYZjKo10UTkjKcPqOUFH1ycOHtgXFOdX9luznV2EhERERHlBAMEDhoJ29uDAACWz1LfyO/K5ajDZP0HxpVqNc8BBgiI3KD3H/jgospJjz+xXi0zYICAiIiIaHpigMBBAT2DIMseBACwvFYLEPTkMINgWM8gUAMEQssgkGxUSOS4juEwdnTGPuAbArjguIpJz7FmEOQw8EhEREREOcMAgYNGwvb2IACsGQQ78yqDoEHdtkwyYAYBkdNePTysbJ82uwwzy7yTntNUxwwCIiIiImKAwFGWJoXe7HoQAMCKfMog0JoU6hkEKNNKDEaZQUDktFfa1OkF5zeWJzkypsnyc2UMoQinjhARERFNNwwQOGgkpL7BLrMjg0B/I98dzNn4QDlFBoG1xIAZBERO29imZhCc1zh5eQEAzCzzYm5lLMsgZErszWEDVCIiIiLKDQYIHDTqQInB/CofKuKu0x800TEczvq6GRnSexDUqY+zSSGRq4JhE28eGVX2nZdCBgGQqMyAAQIiIiKi6YYBAgeNOtCkUAiBZbPUeea5KjPQSwym6kHAJoVEztp8bBTBuNKABdU+LKgumeSMGL18Kaf9TYiIiIgoJxggcJClB4Ev+x4EAHBCvvQhsGQQ6FMMmEFA5Ca9/8B581PLHgCA47UGqHv7GCAgIiIimm4YIHDQaFjrQWBDBgEALKlR38i39oVsuW46ZCQEjPTEdggBlNeqB5VpUwzYpJDIUZsOqwGCc1PoPzBu6Uw102Bf75gtayIiIiKiwsEAgYOCETWDwG/DFAMAOK7Gp2zv78/BG/nhLnW7vBbCo45SY5NCIne9dVTtP3D2vNQzCJbUMEBARERENN0xQOCgoJZB4PfY8+1ePEN9I9+agwCBHNICBBV11oNYYkDkmv4xif19sZ8FHgGc0lA6yRmqxTUliA9hHh4MIaA1WiUiIiKi4sYAgUMipkT8GHEBwKYKAxyn3elr7cvBnb6RbmVTVNRaj9EyCMAmhUSOae5TA5In1pemNVrV7zXQWB3LTpKAEnAgIiIiouLHAIFD4juJA9HyAiHsKTFYUO1T7vS1D4Xdv9M30qtul8+yHCLK1AwClhgQOecdLUBwxpyytK/BMgMiIiKi6Y0BAocEtQ/sfo89wQEAKPGod/oA4GC/u40KpZ5BkCBAYMkgYJNCIsfoGQSnZxIg0BoV7mWAgIiIiGhaYYDAIZYMApv6D4w7Ltd9CIZ71O1UAgTMICByjB0ZBEtnqhNS9nHUIREREdG0wgCBQxKVGNhpkZYK7HatsCWDIFEPAl8ZYMRNNoiMQYYCDq+MaPrpC0RwaDi2bQjg1NksMSAiIiKi9DBA4BDrBAObAwQz1BID1zMIUulBIASzCIhcsOWYOt6wqa4U5Wk0KBynlxgwQEBEREQ0vTBA4JBgxLkeBIC1xOBArjMIEpUYAEAZRx0SOW1rh5qZc9rs1McbxtNLDPb3jyFiyiRHExEREVGxYYDAIXqJQYldMw7ftVhLBT7gcpPClHoQABBaBoFko0Ii223vVAMEJzdkFiCoKfVgVplnYnssInF0OJzV2oiIiIiocDBA4BCnSwxyn0GgBQgS9SAAWGJA5ILtWgbBSfXp9x8Yt7A6x+VLRERERJQzDBA4ZMwyxcDeAEFjtQ9G3CU7RsKW0YqO0gIESUsMSvUSA2YQENnJlBI7tAyCkzLMIACAhVrw8ZDb2UlERERElDMMEDjE0oPA5ikGXkNgToVX2dc+5E4qsJTSEiBIucSAGQREttrfN4bhUOznzcxSD+ZVeic5Y3J6BsHBAWYQEBEREU0XDBA4xFpiYP+3em6V+kb+8KBLd/qCg4AZF4zwlUP4ktyxtDQpZAYBkZ2s5QWl0QkiGdIzCA4yg4CIiIho2mCAwCF6k0K7SwwAYL4WIGh3K0AwrE4wSNp/AAD8Vep2cMj+9RBNY3qDwmzKCwBmEBARERFNZynlod533334/e9/DyEEli9fju985zvw+/1TnziNWacY2B8gmFepBQiG3AkQ6A0KRfnMpMcKv5pBIIODjqyJaLpKlEGQjQXMICAiIiKatqbMIDh27Bjuv/9+rF+/Ho8++igikQj+/Oc/u7G2gqY3DCyqDIIRLYMgWYNCAPBXqtssMSCylZ0NCgHgOGYQEBEREU1bKZUYRCIRBAIBhMNhBAIBNDQ0OL2ugmctMbC/mmNeldak0KUAgRzpVbZF+SQlBvoUA5YYENkmFJHY3RtU9q2syy5AUF/hVQKaA0ET/YFIVtckIiIiosIwZYnB7NmzccMNN+ADH/gA/H4/3vOe92D16tWTnmOaJpqbm21bZCE61K6+oR7u70Vzs713zyO9apbC7mMDjnzfA4GAct3qfe+gPu7x3jEDXUmet7yzD3Pjtge72nF0mv/byAf6a0qFad+ARHyyUkMp0L5/F9qzvO6cUonW4dj2c2/vxPIZ9mdB0eT4/7T48DUtLnw9iw9f0+LD1zR9UwYI+vv78fTTT+Ppp59GVVUVbr31VmzYsAFr165Neo5hGGhqarJ1oYWmpqcDwNGJ7bkNtWhqmpv8hEzUB4CXd01s9kV8aGpaYe9zAGhublZez8ghH+LDHzPnL0F9ktfb9B5F+KnYdqUP0/7fRj7QX1MqTC0t/QBaJ7ZPmlOJpqYlWV936eZ9aB2OZft4axvRtKx6kjPICfx/Wnz4mhYXvp7Fh69p8eFrmthkQZMp8943btyIxsZGzJo1Cz6fD5dccgk2b95s6wKLUTDifA8CvUnh4cEQpJRJjraPtUnhJD0ILCUGbFJIZJeWbrX/wIpae5rHLpyh/mxp7WcfAiIiIqLpYMoAwbx587BlyxaMjo5CSolXXnkFS5cudWNtBc3Sg8Brfw+Car+BCl/susGIRM+oC7XCWoAAk/QgEFqTQhlkk0IiuzR3qf0HVtTZFCCoVicZHBrgJAMiIiKi6WDKEoNTTz0Vl156KdatWwev14umpib8zd/8jRtrK2jBsDbm0IEMAiEE5ld5sasndnevfSiE2vKUpldmTA6rUwwmG3PIJoVEzmnpVgMETbXZNSgcp2cQHGQGAREREdG0kNInyVtuuQW33HKL02spKtYpBs40+JpX5VMDBINhnOz0kAk9g6BikikG/ip1m2MOiWxhSomdeomBQxkEB5lBQERERDQt2J/3TgAS9CDwOhcgiHfYhVGHafUgKKkARNzXHhqFjIQdWhnR9HFoIISRUCwQWeUDZlfYkz3EDAIiIiKi6YkBAofoJQZ+jzPf6vlagKDdhQBBOhkEQghrFsEYywyIstWi9R9YUiWi/99s0Kj9XDkyFMaYFvQkIiIiouLDAIFDxtwqMdAmGbQPORsgkJEwMNqn7iytmfwklhkQ2a5ZKy9YUpXkwAz4vQbmVsayESSANpYZEBERERU9Bggc4laJgZ5S3M+m2DUAACAASURBVDHscPp+QAsOlNVAeKZIa7ZMMmAGAVG29AyCxVX2/oxZwEkGRERERNMOAwQOcavEYE6l+uH8mNMBAm2CASbrP/Au4dcnGQzauCCi6amlS88gsDdAcJzWh6CVfQiIiIiIih4DBA4Jme6UGDRUuBsgSKtB4bhSNYOAJQZE2dNHHNodIFhQrQYIWGJAREREVPwYIHCI3oPA61CAYHaF+ib+2HAIUsokR9sggwwCWDIIWGJAlI3O4TC6RyMT26Vegbnl9j7H/Cq1xMCNCSlERESUX8ydT2Ls309F6IfnwmzbnOvlkAsYIHCIHiAocShAMMNvKNkJIyGJoTHnuo3LkV5lW0wywWDiGK1JoZxmGQRytA+RJ/8Vof++HOH1/zjtvn6yX4vWoHD5LD88Nk0wGDe/Ss1OKvYAgRzphbn/ZUi9CSsREZFGdrQgdO9ahP7nGsjufblejmPkaB/Cv/xboKMF8vBmhO/7X5BhlhwWO3uGZpOFWwECIQRmV3hxMC7999hwGFV+jyPPh5FMMgi0EoNp1INARsII/3QN5MHXotu7nwGEAe81/5HjlVEha9YaFDbV+QGM2Poc8/USgyIOEJjt2xD+8YXR8ievH56r/g2e1f+Q62UREVEeksPdCP3oImC4EwAQat8K3+1vQ+jvd4uAuel/1NLgvoMw33wAnnP+PneLIscxg8AhYa0Hgc9wJkAAuNuHILMeBNO3xMB85b8nggMT+958ADI0mqMVUTHQ+w+sqC21/Tkaq9QAweEi7UEgpUTk4Vtjb4DCQUT+eBvMbRtyuzAiIspLkSe/OREcAAD0HULkuR/mbkEOMt/4lXXflt/nYCXkJgYIHOJWBgHg8iQDLUCQ2hSD6VliIAeOIPLE/2d9IDgIc8efXV8PFQ99gsGKOr/tzzGn0of4uGbXaASBsHPlS7ki974Auf9ly/7ww19gGiURESmklDC3Pmzdv3V9DlbjLDnSC3l0h3X/ke05WA25iQECh7gZIGhI0KjQMcNagCCFHgQoVQME06XEIPKXO5NObJB7n3N3MVRU3Mgg8BoCc7TspPYiLDMwW55I/MBAO8wtf3B3MURElN96DgCDRy27ZUdL0d0Ak62bEj8weAxyqDPxY1QUGCBwiD7m0MkSg9nlWgbBkJMlBmoPgpRKDPzTL0Agew7AfP3+5I8fsUZkiVIxNBbBobh0f0MAy2aVTHJG5vQ+BMXYqFDufTHpY+ar97q4EiIiynfmgVcSPyAl5KE33F2Mw8zWV5M+liizgIoHAwQOcTODYHahlRhMgwBB5Jl/B8y418FQXyN5dLuz4yipaOnZA0tnlsDvdeZHuaUPQZEFCGRgEPLwW8kfP7ARcsB6p4iIiKanpHfVAciDr7u4EudN+rWyzKCoMUDgEFcDBK42KdTGHKbUpFDLIAgUd5NC2dcG87VfKPs8H/6x2qwxMAD0HnR5ZVQMWrqcLy8YN6/YAwSH3wbMSGxH/TKIxjPiDpAwt7NZIRERRcnOnckfO9bi4kqcJU1z0owI2bXHxdWQ2xggcIheYlAsAQIMa2MOU+lBYCkxKK4aLV1k43+r2QO1S2Cc+bcQc05SjpNHGX2l9LV0O9+gcJyeQdBWZJMM5LF3lG1j/ukwTv6Qss/c+aSbSyIiojwmO5N/MJbd+1xcicM6dibtowVEb4ZR8WKAwCF6BoGjPQi0JoUdDjUplKEAEIqbtW54rR/+E9DnwhZziYEMjcJ89WfKPs/7b4PweCFmr1CP7d7v5tKoSFgzCJwLEOg9CNoHHQw+5oBeQynmrIRYcZl6zN4XICPF9XUTEVH65NgI0Hco+eNde11cjbNMbUS35f0+AwRFjQECB0RMifgEAkMAHkcDBGoGwdHhsDP17Qn6DwiRwtcVn1oPAMHiLTEwNz8IxDdyLKuBcebfAgDErEXKsbK31cWVUbGwBAjqnCsxsGQQFFuJwdFmZVvMaYKYezJQURfbGRiAbHvT5ZUREVG+sQQAahaqPaaGOyEDxXETTGoBAuPUa9XHGSAoagwQOMDN8gIAqPYbKPXGniMQlhgcs39eucygQSEAa9SxyMbAjJNSwnzxHmWfcfbfQ/grohszj1OP72GAgNIzFjGxp9e9DIKi70GglRiIOSshDAPG8Reox+3f6OKqiIgoL3XuUjbF7BWAfvOnSMoM9IaLxso1gIj72DjcGc0spqLEAIED3CwvAAAhhDWLwIlRh1r/AZFK/wEAKFFLDDA2DBnfGKxIyH0vQh7ZFtshDHje89nY5iw1QMAmhZSuPT1jiP/xMr/Kh2q/x7Hnm68FCI4MhRA2i2P6hhztA4a7Yjs8JcCsxQAAseg89dgiG11FRETpkz1qaaioWwpRu0Q9qAgCBDI4rL6fxbu/F6vnqgf2H3ZvUeQqBggc4OYEg3H15WqAoHPEgQCBJYNgZkqnCcMAtD4ExVhmEHnpR8q2WLlGKSsQegYBSwwoTfqIQyezBwCg1GtgVlksAGFKoMuJny05IPUA3cyFEEb0axULz1IeMotsdBUREaVPT6sXNQus5aOT9CgoFLLtLUDGZSLXHQ9RUQtR06gexzKDosUAgQPyIUDgxJt4OaJlEJSnmEEAJJhkUBw1WuNkTyvk9keUfZ7Vn1cPqpoTvUs5bqQHskjLLcgZLV3uTTAYN7vcxSkpbtICdPEZPmLeqYDHpxwrBzvcWhkREeUhywfimgUQM+arx/S3u7giZ1j6Dyw8O/oX/WsdKPyvlRJjgMABeg8Cp0sMAKBeKzHocOIu33CGPQiAog8QRF75iRJtFXNPglj6PuUYYRjAzAXKPkZfKR3NlgwC5xoUjptdqf1sKZIAgd4DJD7DR/hKIeaeoh7PMgMioulNzyCYuQCYMU89pgg+NOtZc+NZdaJqtnrgEAPnxYoBAgdMmwyCVHsQABBagKBYurwC74423PRzZZ+x+vMJJzyIav0XyREnl0ZFRs8gaHIjgyDBlJRioJf46GmiYuEqZdtkgICIaFqzlhg0QmgBgmLMIBDHnRP9s7JBPY6ZdUWLAQIH5CZAoDYq6xxxoAlgNhkEpcWbQWC+/XtttOFMGKdfn/BYUT1H2ZaDR51cGhURU0rsdLkHAQA0VKiNCjuGi2OSgWWKyMyFyqZYoPYh0Ds6ExHR9CFDAWC4M7ZDGEDVXIhqvcSgsDNDZf9htfmg1x8d/wsAVWqAAAwQFC0GCBxgKTFwIUBQ50KTQmsGQV2SIxMo0hIDKSXMl36s7DPO/iRESXniEywdYJlBQKk52B/CaDj2s2VmqQcN2t19J8ypmCY9CLQmooaWQSAPvQEpi2OCAxERpUn/4F89D8LjtZYY9LcX9O8KPRgu5p8O4Y32z7JkEAwdc21d5C7n311OQ26POQTcKTGwTjFIPYNA+KsQ/10plhID2boJ8vDm2A4h4Dn/pqTHiyo9g4ABAkpNS7e1QWGiMha76UEIR0ao5oA+xcAyhrT+hOj0lfGJKyM90dpSrUlTvpChUZiv/xKyvw1izkkwTv1wtO8JERFlTS8dEDXv/i4orQZKKoCx4eh2OBj9fZFGGW4+MVs3KdvKVB8tQIChTlBxYoDAAfnQg8CJRmJyWM0gSOuHX5GWGJgv/6eyLVZcbp2JG88SaWaAgFLT3OV+eQFg7UFQDE0KZWBADXh6fECVmt0jDANi9olKLaY8st3SsTofyMAAwj+5Ul3rtj/C87f3R+9wERFRVuSgdrf83Rs+Qojoe7vO3bFjB46k1acrn1gyCN7tPwAAooo9CKYL3l5wQDgPAgSOZBAM62MOp/cUAzlwFObW9co+z+p/mPQcawYBexBQalq0/gNNdc5PMACsUwyKocRAzx7AzIUJ77aLuSep5x3Z7uSyMhbZ8GVLUylz63qYz34/RysiIioy2vu1+J5SolLv7l+Yd9alGVGzYgEYC+LK7SxfZ0dBl1NQcgwQOGAsF2MOLT0IIrb+p5WmCYz2qjvTLDFQrlcEAYLIKz8FInEN2+qXQSz74KTniBnqXUrJKQaUIn2CgXsZBGqTwmPF0KSw54CyqfcfmNg/Z6WyLY/ucGpFGZPd+2G++auEj0We+XfrXS8iIkqbHNACBPE3fCrVnlyyQAME6NwVK6sDgPJaIG7Cj/BXRMspxkXGgEC/e+sj1zBA4IBclBhUlBgo88aeJ2RKDARN+54g0AfIuOv5qyaalqRELzEIDNizrhyRwSGYL6vNCT3nf3bqml8tjRl8804pkFJaMghWuJRB0GDJToogbBb2HQPLiMNUAwR5mEEQ2fQzwEwytWZs2DKClYiIMmApMYjdTbc07R4uzACB2faWsi0WnGHtdVRZr24PscygGDFA4IBQDgIEgLWZWIedZQZ6/4F0yguABCUGQ4mPKxDmpp+pNcxlNTDO+sTUJ5ZWR+udx40NQ4ZG7V8gFZXOkQh6RmMfAsu8AsfN8E1yhn18HoFZZbExqhIOlTC5SB9xaGlQOL5fLzHoaIGM5NfXLpufULb1oEbktZ9HM8CIiChjekmoMrba0t2/y40l2U7qAYLGMyzHiHK1t4Ic6bUcQ4WPAQIH5GKKAeDsqEOpTTBIt/mKKK1Wr1fAJQYyHETk+f9Q9hnv+RyEniWRgBAC0CPNhZqKRq7RywuW1/phuDDBYJw+6vBoofchGFC7UWNGY8LDRGW9cpcI4SDQtTvhsbkgB45AHtkW2yEMeD/5e8AbV37ScwDy4CbryURElDqtxABV8T0I9Pd1hXlXXR5SAwRG45nWg8pnqtv6DUQqCgwQOMDSg8ClDAJHGxVmM8EAiI4Li1fAJQbmKz8B+g/HdvjK4Fn9+ZTP11PR5HBhRprJPc16g8Jad8oLxlmykwo8QGCpJdWni8Q/ZulD8I4ja8qEued5ZVssWAVRtxTGyjXqcTsedXNZRERFR+/nMmkGQQG+r4s2KHxb2ScWJMggqNAzCHosx1DhY4DAAWMRNZ3TrRIDVzMIytMNEBRHiYEMDCLy1HeVfca5n47eaUyVHmkuwF8k5C5Lg8I6dxoUjtNHHRb6JAOpZxBUz018IKwBAjOP+hDo3abF8e+P/skAARGRbaQZsfYViAsKWHoQFGBmqOzYCYRGYjsqGxJn1+klxgwQFCUGCBwQ0vpFlXjc+TY3lHuU7a6RJI2rMqF/iK1IrweB8BdHiYH5wl3qL4mSCngu/Epa1xAVajChUGvVyD2WBoUuTTAYp08y6CjgSQZSSkuqqEgjQCA7WhxZVyb0uz3G/NOjfzZdBhhxQZ2OFk5MISLK1EgPED8ZrGwmRHw/KUsPggIMEBx6U9kWjadbGxQC0ckG8ecxQFCUGCBwgLUHgTvPq5cY2JkGnHUGQaleYlB4AQI53IXI8z9U9hnvuxWiqiHJGUno5RkF2u2W3NPSlZsJBuP0DIKjQwWcQRAcBMaGY9teP1BWk/Rw0XCCuqNzl0MLS4+UErJ9q7JPzDsl+mdZjaW5lLnvZdfWRkRUVEb0Mlv1Jpm1B0Hhva+TbXqAIEH/AQCCPQimBQYIHBAyi6/EIPspBmoGAQowgyDy9L+r6y6vhef9X0j7OswgoHQMBiNoG4zdsfcIYNmsNEaM2kDvQVDQJQYJygsS3iV5l2hYrmzLzt3RdNNc629TUztLKoDapRObYslq5XC5/yW3VkZEVFSk9h7YcpNM3x7thYwUVqadPsHASNB/AID1JhczCIoSAwQOyFWJgZNNCi0pRNk2KQwOFtToLdl3CObG/1L2eS68HaJsRvoXYw8CSoNeXnD8TL9rP1PG6T9bukcLN0BgaVBYnbxBIfBubWn8m79wEOg96MTS0iI7dirbYu5JEEbs34WhBwj2MUBARJSRKRp1C4/XGiQooDvrMhKGPLxF2Zc8g0C9QcgSg+LEAIED9CaFbpUYOJtBoJcYpNmDwPAAvnJ1Z3yab56LPPmv0Q8G42Y0wnjPZzO6liWDgAECmkRzjhsUAtafLbb2N3GZpRY/vhN1EpYsAu3DeS7ITnXcoqhX1ygWnQ/EZUbIo9s5r5qIKAMpldlqN38KqQ+BPNYMhOPea1TNST7dh00KpwUGCByQqzGHehpwp51v4i31V2lmEABAaWGWGciOFpiv/0LZ57nkqxC+sswuqH/vWGJAk2jW+g80udx/AADqtAaohZxBAC1AMFmDwoljtD4EMg/6EFgDBMvU7fKZEHNOijtBQh7Y6MbSiIiKi6VRt/U9sNAaFRZSfylr/4Ek5QVIkEEwzABBMWKAwAFhLXPeZ7gTIKjX3sR3joSjHbttYI2eptmDAEhQZjCQxYrcE37iG4CMe1Hrl8FY9fHML1ipZxAUzi8Rcl9Ldx5kEJQ5mJ3kMj2DIKUAgfbhOy8DBHXHW47R+xCwUSERUfr0D8Ei0U2yigLOINAmGBgLEpcXALAGR0YZIChGDBA4IKRNMfC6lEFQ4TNQ6o0911hEYnDMhjp/KRNET+sSHzsJ4a9SLxsYymZVrjAPvQm59SFln/eyb0TrzTJknZfLDAJKzppB4H6AoNpvKIHOkZDESKhweogoLCUGGWQQdORBgKBrj7pDC2IA75YZxJ9z+C3LMURENAU9izbBTTKh3fwppEkGsm2zsi0aT09+cOkMwIi7IRkcggyPObQyyhUGCBwQ1koMvJN0yLaTEMLSTMyOO30iHFDr7z0l0Y7Z6bKUGOR/BkHk8a8r26LxDIiT12V30YpapTa4ELvdkjtGQyb298V+8QoAK2rdLzEQQljKDOxsguoma5PCVDII9EkGuQ0QyEgY6G1V9om4CQbjDO1Nnmx727asMiKi6cIyxSDRTTJLdmhh3PyR4THII9rI3MlKDIQAyrRRh3oAhQoeAwQOCOWoBwFg7TZuR4DAE+xTd1TUTjoWLKkEkwzymbn7WchdTyv7PJffqXQKz4QwPEAZm7zQ1Hb1BBH/4+S4GT6Uu9X1VGNpVFigfQhkgjGHU6pdAhhxX//AEchADgOcA+1A/KjFygYIf4Kgbe1SID5za7QX6Dng+PKIiIpKCqO+rdmhHQ4uyD7y2DtaE+75UwfOLZMM2AC32DBA4ABLgMClHgRAggCBDfPKjUC/sp1R/wEAQssgkMH8LTGQponIn7+q7BNLL4BYfpE9T6DVcEmWGVAC+gSDXDQoHKf3ISjESQZSSiCTDAKPLxokiL9WDssMZN8hZVvULEh4nDAMiPlaFsHhtx1bFxFRMZKWRt2JMgjUJoWF8r5O7z8wWfbAxDF6H4ICGulIqWGAwAF6k0Kvi99lPQ3YjkkGlgyCRONdUqFnEOTyDtwUzC1/sHR19VxxZ2aZEwlYatXYqJASaNH6D+SiQeG4oigxCA6q41W9fqCsJqVTrZMMcjfqUPaqAQLMTBwgAADReJqybbaxDwERUVosTQoT9SDQMwgK432d1H4nGCkECPJl1KF5+G2E//S/EbrvfyH84E2IvPlr9kOwSead1iipcCR/SgzseBNvBNUMAiT4wZgSrUkh8jSDQIaD1t4Dp1wD47hz7HsSS7fbwog0k7vyYcThOEuJQQFmECBBeUGqQT9RvxzxP9lz2qiw96CymSyDAECCDILNSY4kIiKdNM0ETQoT3CjT9unTv/KVHiBIKYOgfJb6+9Dlr1WaJiKP/m+YL/xHbB8AvP4LRB7/F3gu/TqMVR+z7abedMQMAgfkqkkhADRUONCDIKBmENhXYpCfPQjMV36i1ukaXngvv9PW57BEmplBQAnoIw5zMcFgXF1Z4WcQWBsUzkv5XOskgxxmEPRpAYKZC5Mea21UuJmNComIUhXoV0dd+6sgvCWWwyxZBQUQIJCREOSR7cq+SScYjLNkELhbYhD5421KcEDRdxCRB29E+CdXQHbvd3VdxYQBAgfksklhrQPzyhM1KcyIyyUGUkqYh9+GuX0D5NHm1M4Z7UPkr99R9hnnftoyBz1rzCCgKYQiErt6tAyCHEwwGFcMTQqlZcThnJTPFQ3qJAPkcJKBXmIwWYAA9cvVqTPDXUB/m0MrIyIqMvo0gmQ3yfSsgpGevA/Gyo6dQCQuJb96LkTV7CnP03sQyGH3giHm1odhbvyvKY+Tu59B6PtnIPLiPWpTX0oJSwwckNsmhepdvu7R7P9TGDZlEMCvjzl0rsRADhxF+Fcfg9z3wsQ+sfT98F73nxB11nFg4yLPfl+NhPor4bn4q0mPz5SlwQtHxJBmT29Q6Wcyr9KLGaWe5Cc4rMEfgZAmpIjGlQsxgwBagCCVBoUTx+oZBF17IM1IdCqJ27QmhZisxMDwQMw9GbL11Yl98sj2ScsSiIgoSk+fTzjiEIDwlQK+ciA0Et1hhqN9b/QR33lEb1or5p2a2on6mMNRd6YYyNAown/8orqzei48l94BeXgLzE3/owY8QiOIbPgS5jWcCln3C4jZTa6ssxgwg8ABlhIDFwME+l0+ezII9B4EiX84TkVoPQicGhMmTRPh+69XggMAIPc+j9A9F8A8+k7i8/oOwXzhbmWf5wNfhqhqSHh8ViyRZo6IIZW1QWFusgekaSL82Ndw1S+X4GjvBfjWyF3wynBB9iDQMwjSKjEon6X+vw0Hgb7c3IlPdYrBxONzV6rnH9lh+5qIiIqSnkEwWR8u/QZannf3l+1blG0xP7UAgTWDwJ2v03z1XrWXkMcH76c2wHPODfBe8x/wfWULxPEXWM4r69iC0A/ORuTNB1xZZzFggMABIe19s5tjy62NxOwPEGScQVCqlRg41INAtr4KeeCVxA8OdSD8n5dAHrOWHET+8k0gHFfzXT0XxntvcWSN+vfQMkKHpj3riMPc9B+I/PVbMJ/5HgwzjEqM4rbAL/H9ke8XaAaB2oMgnRIDABD1xyvbsmtPtitKmxztV8uzvH5An4qiEXO0AMFRBgiIiFKhp88nyyCIPqa/t8vvPgTysBogMOadluRIjaUHgfM3uaRpRssF4hirPw8jLqghapfA+5kn4Pnwj62ZG5ExRH77aZjv/NnxtRYDBggckMsMAusUAxvGHI5qH14rM7yj7lKJgbl1/eQHDHci9NOrIftjUUjzyHaYb9yvHOa55OsQ/gr9bHtYosz5/UuE3NfcnfsJBnKkF+az37fsvzG4Ho19hdcN35pBkHqJAQCIOi1A0Lk76zWlS2oTDFCzYMpOzWLOSeo1jm5PciQRESksEwzSyCDI4wCBlDJBBsEpqZ1crpcYOP91yr3PqQ3EvX54LviS5TghBDznfgq+L2+GaLpCu4iJ8G9vtDQsJisGCByg9yDwutikcIbfgDfuVR0OmRgNmclPSIEeIMg45d6lEgM9Ouj9+G9hnP8Z9aC+gwj/bC1kYABSSkT+/H+A+GYyDStgnPUJR9YHJIgyu/DDlQqLJYOg1v0MAnPzb6Op9An8Tf9vYeZ5AyadTDDmMB2WAEEOMgiQxgSDiWP0EoNjLZCRAswAISJymZ4+LxKNOBxnyQ7N4/d2va3AaFyPMX8VMGtJSqcKrQeBHOlLcqR9zM0PKtvGyesm/TwiahrhveEheP7mXkgR1ytopBuRx+9waplFgwECB+SySaEQAnU2TjKQpgmP/uE1hQ6niQh9ioEDGQRytB+IH2tieCBWXArPuv+Acc4N6rHtWxG+92pEHv1nyJa/KI95r/xXCI+DPTz1XzDMIKA4EVNiZx5kEOi/kONdM/YUers7XFxNdqSUlhKDdDMIkAcBgrQmGIwfU1EHVMWVU0TGgC73sx+IiAqOnkEwySQvSwluHvcgsGQPzDsFwkjxY6GeQeBwIESaJszmx5V9xlkfm/I8IQQ8Z30MPWf+g7LffON+mOzFMykGCByQyxIDwOZxZCPdEDKuTKF0BoSvLLNr6fVAQfszCOSRbcq2qD8BoqQ8+kPimrst6UbywCswn/+hes6S90KceKXta1OU1QDxacGBft7Rowmt/WMIhGM/R2rLPKivcHfojBzpgWzdpOwLxQ2+8SOEwLYCquULDgJjw7Ftb2n0/2Ea8qIHQZoNCieOm3Oiep0kzVqJiCjG0oBvslHflglV+duA2jycWYNCANFsg/gJPqERyCTZhnaQbW8Cg8diO0qrIZa8L+Xz+07+BNCwIu6CEuZz/9fGFRYfBggcEI7kLoMAsLcPgYz/DwlknD0AwFJigOCQ7TNiLQGCeSfH/u7xwvt3v4JYsCr5BTwl8F5z95Q1vdkShgco1T6cuDQmhvJfc1ceZA/segaQsfIkMWclflP/aeUYT8ujbi8rc1r/AVTPSfv/uV5igO797gf2+rUyiRnzUzpNzFX7EJhsVEhENDVLk8JJMggsqfeFlEGQeoBACGEddehgMMR85zFl21h+MYS3JPULGF54L79TvebmB9mLYBIMEDggrJX8e13+LteVq3O5s+o2Pqil5Fal1/VbOdfjBeKzD6QJjI1kfL1ELAGCuWrDFeGvgPfGRyGWvj/BAg14PvwjiDkuzUm1pGjl7y8ScldLd+4nGOhlN2LFpdjecLGyb8aBZxy9a2CnbEYcTpxTWq0GSc1wtI7TRXIws0aLlkkGR9iokIhoSvqYw8l6EFgyCPK3fFSfYCDmpzjBYJzlPaxzAQLZrAYIxIlXJDkyObFyDVC/PLbDDEf7LFFCDBA4wNKDwMUmhYC1xCCrHgSDao1xxg0Kx1myCOwtM5Adu5RtPa0WAET5THhveiwaDFh0HjDzOIimy+H93F/hOevjtq5nMnqjG32UDk1f72gZBCtq3c0gkFLC3Pmkss844RIM1p2CwyL2M8ATGYVsfc3VtWVKDxCkO+JwXM4bFVpGNWYYIGAGARHRlPRGg5NmEBRIk0I53A3El6sZXojZ6d0cs3ytDmXByv52yMNvxz2xgLHi0rSvIwwDnnP+XtlnvvGrbJdXtBggcEDOexCU6RkEWYw61DIIsioxAABLo8LB7K6nkfEjUACIuqUJjxMeLzznfhq+m59DyVd3wfepP8JYstrWtUyponDG4ZC79AkGJ9a7m0EgtYvRsgAAIABJREFU27eq//f9lRCL34O6ci9e8J2pHrv3eVfXlrEsRxxOnJfjAIE1EyK1QIeYrQVLu/dC2pzBRURUTKSUaTUptDyWpzd+LOUFc06E8Kb5PkPv4ePQe1hz34vKtlh4NkRlfUbXMs74CCBiH33lkW2WXgwUxQCBA3I5xQBI0KQwqwwCtQdBNiUGwLspuvHXt3GSgQwHgf62uCcTwMzjbLu+3Qol0kzuklKixZJB4HKAQMseEMd/AMJbgvpyL573qT08zD3PubiyzNlRYgAkCBB0ujcNQIZG1bFUhgeoSO2NkvBXALWL4y4mITtabF4hEVERCQ4CkVBs21c2aaNuUV4YPQgs5QVp9B+YOMeSQeDMqEO57yX1eZem3pxQJ6rnQiy/SNlnvsksgkQYIHBAKO+aFGbTg8DGJoWAtcQgYGOJQe9BIL7pYfV8CJ/7zd1SVkDjcMg9bYMhDI7FGplUlRiYX+VzdQ2m1n/AOOESAEBtuRfPe9UAgWzdFP3gmu8sqfkFWGKgfw2Vs1MfSwVAzFEbFbIPARHRJCwTDOomP17vT5CnN34sGQTpTDAY51IGgdz/srJtLH5PVtczVqnjEc0df7K9YXoxYIDAAWHt35n7TQrt7EGgNym0uweBfSUGsme/si1mLbLt2k6w9CDgFAMCsKNTLS9YWV/q+FSNeDIwAHngFWWfsSIaIKgr8+CgZx4OGHF33yNjluPzkTWDILMSA+Rw1KHl53GaQQ72ISAiSp0+4lC/a26hd/Yf7YM0syjzdYgdGQT6TS4nMgjkcLf6e0oIiEXnZXVN48QrAE/cBITu/UDnruQnTFMMEDjAkkHgepNCtQdB92g2PQjUJoXIusRADRDIgI0Bgu4D6nPFp9PmI70DLDMICMD2DmuAwE1y34vR7vzjGk6YCLaNBx9f8Kp9CAqhzED2H1a2My4xqNX6mvS0QobHMl1WevQMgjR/HlsCBMeas10REVHxSqf/AN6d1lU6Q92ZZzd/ZGgUsnOnsi+jEgMXMgjkgY3qc8492fq8aRL+Soil71X2mS1PZHXNYsQAgQNy3aRQLzHILoNA70Fgd4lBf3bXiyO1cWP5nkGg/6JhDwICgO0JMgjcpH/YN5ZdOPH38QCB3odArxHMN1JKQAsQoGZ+RtcS/gpgRty50gS07CWnZNqgcOJ4rUu1PMYeBEREyVgyCKYIEACwNqDOs5s/8sgOID6rYdYiiLIZyU9IRs+mcCCDwNynlhcIm5qJGysuU5+nmQECHQMEDsh1k8LaMjVA0DMaQcRMv75GRkLq/FchgAw7h07QI3+j9gUI0N+ubs/I7AOAWyypagwQEKwlBie7nUGgBwiO/8DE38eDjy96z1DPOfh6fvchGOkBwnGNH/2Vloap6chVHwK9xABpZkGI+mVKB2f0ttraKJaIqKjoGQRTlRggQfnoSJ5lELS/rWyL+adldB1rQ0YnMgi0csfFNgUImi5Xn2ffi/xdqGGAwGamlIj/LC4AeFwOEPg8AjWlsTIDiWiQIG1DWnlBeR2EJ7tmaUKrz7KzZsmSQpzhHULXMEBAmogp0axNMHAzg0AOd0VHHI4TQknFm+E34DWAw5451j4Era+5ts506T8b0v1grdPHp7rWh2Agyx4EvlJ1kgEAydpLIqKEpD6mcKomhYC1fDTPJhno/QeMTPoPANZ+CzYHQmQkBHlYC2YsOteWa4v6ZUD87/FIyHJzZLpjgMBmqZYXmLufQehHH8TYN5cg/MDHbX+DWa/1IcikzEBq/QeyblAIAHoak4MBAlTnd4DAMiImT+flknv29o4hGNfDpKHci/oK7yRn2EvueUHZFvNOU/6dCiEmMpRe8p6unqvNKs4rNgcPraMOXcogyLLEAEhUZsA+BERECcVn0SKFJoVIkEGQZ+/tbJlggAQZBDb3WpBHdwDhuIzK6nkQNmYGG8svVrZNbVrCdMcAgc1C2o16n8d6jLn1YYR/cgXk/peA/sMwNz+I0F3vhdm+zbZ16GUG3aMZ9CHQ01mz7T8AWEoM7MogSFRjLGZkd5fQcXotGzMIpr1EEwzcZO55VtkWx7/fckxdWfSH2ss+tczAzOMAgdTKj0SWwUNhmWSwO6vrpUwLEKAq/UkMom6Zsi279mWzIiKi4qW/L0slg0DvQTCaP+/tpBmB1D5rZDTBAHA+g+DQG8q2WHBmkiMzI5aojQr1cYrTHQMENpsqg0AOHEH4dzcB+szNkR6Ef/V3tnXDtjYqTL/EwNqgMLsJBkCCrqcBmzIIRvuA+BpoX7m130G+8VcBRtzrFBqBDAWSHz8NSSnxby93YNHdzaj53nZ8+tFDCIbNXC/LMdYAgd/V57c0KDz+Assxtcn6ELRucq+bf5os2UXZlh/pH7I792Z3vRTJLEsMAEDULlF3dDNAQESUiNQzCPQP/wnkdQZB124gNBLbrqjLvF+XXkox2hu9WWcTeVANEBgLViU5MjPG4vPV52t7C3JsJMnR0w8DBDabqkFh5MV7gMBA4pM7WmC+9CNb1qGPOsxokoEWIHAigwAjNmUQ6B8AZsxzdXZ8JoQQCfoQ5FetWq7d+3YPvv78URweDGE4ZOIXW3tx818OT31igcplBoHsb1dnARseiAQNgerezU7ab8xHu4hrWhoahWx7c+rnCY8h8uLdCP3/52HszsUI/fflMHc/O+V5WbFkEGTZg6B2SbRp68T1Dzke3Is2je2MW4TI6GeyqFMDBJIBAiKixDLJIMjjHgTm4a3Ktph3SsbvlYXXH70ZN3HxCBC0cXS5nkGw0N4AgZgxT+3JEwlBHnzd1ucoZAwQ2EwPEMRnEMjQKMxX7530/MgLd0GGg5Mek4o6LYOgO6MeBDaPOIQ1g0DalUFgKS/I7/4DE/Q+BHnW7TaXekbD+MrTRyz779vSi81H87hjfhZyOeLQ3Pu8si0WnAVRWmU5rnY8+CgEXtLKDKYadyiHOhH+z4sR2fBlyLa3gIF2yN3PIPyTyxF57RfZfQGTPW9/m7KddQ8CXylQszDuCaTzow71gG2GTWP1DAIGCIiIEtPv/qfSgwBaBgHyKIPA0vQvwwkGEyw3uex5DyuDw5DH3lH2iUZ7SwwA61QElhnEMEBgM73EID6DQO56Wm3KV14L39f2ACUVsX0D7TC3rM96HdYSgyLPINAbKmaQepsLll82eTYvN5d+vb0PQ2OJywl+viV/fuHaJRA2sbsnhxMMtPICkaC8AIhlEADWRoXm3hf0w2PXDwwg/NOrIFtfTfCgRGT95yE7Harld2AEqph5nLIt+w5lfc3J2FFeACAa2IgvbRrqgAzYd9eHiKhoaCUGlg//CehlCDKfehDoDQoz7T8wfn653lfMpgBB+9vRjIRxdUstTRHtIBa/R9k2909+k2M6YYDAZqGIFiDwxAIE5o4/KY8Zp10HUbMAxtmfVPabb9yf9Tpqy9QSg64Mxhw6kUFgCRAE+iFNG2rK9ZGMlfWJj8s3ej0bGxVOuG9r8u/Fb3f0Wf6vFbqd3UHEf0kLq32o9ifocuoQPc0/Uf8BIC6DALBmEBzYmLAPgZQSkd991nL3QhEJIfzY11JfcBosI1CzLDEAADFzgfocvc4GCDCoZdNkGCAQHi8wc6GyT/a2ZroqIqKiJMdG1C76nhLAXzn1iWX6jZ/8eF8npbSOOMxwgsEE/Wu16T2sXl5gd/+BiesuUQMEsvU1ez6TFAEGCGym90/zvvsdllLCfOcx5THj5LXRP8/9tLJf7nkOsk9NiU2XnkHQlVGJgT7FwIYmhR6fmjEhTVtqluRQp7ItKm0YyegCSzMbBggAAIcGxrDlWPKa7t5ABC8eHHJxRc7T+w+c1OBi9kD3fiD+Q6LXj2TzhuPLl3Yai9Dvi6vJDA4lTNEzN/43zK1qZpRYegGMC76krmP7Bsgeez+syuCwmrlleAE7fj7UaAEC1zMIMg9yiBo1QKCXaBERTXt69kBFbUr1+pYMgnx5XzdwRO1j4ysD6pdnd01LvwWbsoIPqf2MhEMBAtQtU6cxBAejjRyJAQK7JW1S2LlLvcvtr5wYsWHMOVGtrZES5o5Hs1qH3oPAjhIDUW1DBgFgzSKwY9ShFiAomAwCyw/XPPlFkmNP7Vc//J/fWI5Pnqp+rzbsStLss0DlskGhPr1AHHcuhK8s4bHxJQYQAq9XqaOCzObH1e22zYg8crt6/XmnwnvDQ/Bc+a9qiqOUiGz6n/S/gMkMaB9+q+dBGNn/6tMzCOBwBoEeIMg0gwCw9mCwNHklIprm9A/2Qh9NnYxehpAn7+ss/QfmngxhZJelqKf921VOYVpGHDoTIBBCQDRqpZJtmx15rkLDAIHN9B4EnncDBOb+jcp+cdy5SoMp49RrlMfNd+wNEHSnOeZQhkbVaQuG15pKlCFLo0IbAgRSKzEo2AwC9iAAADy1T80quXhxFa5eVq3s+9PuAVtH6uRaTicYpDDecFytNiHl2TK1yY+57Y8TKXpypAfh+68HInFlB/4qeD/2AIS/AkIIGOd/Rj3/7d/ZOypJn2CQ7YjD8etY0vQP2nLdpLQSg6zGzmo9GGQfAwRERIoM+g8AAEqrgfgP3mPDtjQfz5Zst04wyFqZ/RkEcqQH6IobHWx4sm+mOAmxQG1+KNvecuy5CgkDBDZLlkEgtQCBoTXGME68UtmWe57PqnFUfYIxh2m96dYbFFY22HLXDUCC6KoNH4otGQSFESCw9CCwqcFLodvYps6i/eDiSly0uArlvlh636GBEDYfK55pBrkKEEgprRkEkwQIlAwCAI8b50ZTFcf1tkLuexHSjCD8q48BPQeU4z3X/SdE/bKJbeO066K1neO690Ee2Zbul5GUE/0HAEBYSgycDRDIfi1AUD0342tZprwwg4CISKFPMLB07E9CCJGgD0Hub/6Ydk8wQIIMAhuyJSzlBbNPhCgpT3J09oz5Wi8lBggAMEBgu2RNCvX54GLReeqJDSuAuqWx7cgY5K6nMl5Hhc9AqTf2YSoYkUk7wifiSIPCcRX23zW39iAojBIDof0SYQYB0D4YQttgaGK7xCNwxpwylPkMXLxYHbv3yM7iKDMYDEZwoD/2NRsCWFHrd+fJO1qA+H4jJRWTpvPVacHH1qAfYuUaZV9kw5cQ+c0Nlp9hxnk3wnPadco+UVoNsfwiZZ+5bUM6X8Hkug+o23ppQKa0AAH6D0Oa6TeDTZneE8bWEoPset4QERUd7eZVyiUGgOXmTz6MsLZ7ggEAawaBDTe5LAGChWdlfc3J6CUG8vBmNioEAwS2i+hNCgUgQwHIjhZlv/4PUggB48SrlH361IN0CCEsd/rSmmRgaVBoX4BAb+BiSeNKk5QywRSDAs0gyJNatVx6rV3NHjhtdhn873b7vHq5WmbwyO7iCBDs6FKzB5bN9KPU686PZ3PP88q2WHw+hLckydHR4KM/bjpLICwROuMTyjHyyDaYm3+rXve4c+FZ+38TXnO8YevE+bufSWntqdA79ItZi2y5rvBXqneUIiFr5pWNLE0KsyoxaFS3WWJARKTSb9ikESDQy0dtyZTNghztB7r3xXYIA2LuSdlf2JJBkH2AwNp/4MwkR9pk1iL1d3lwCOja5exzFgAGCGxmKTHwCMhj76jzPGceZ6nDB6xlBuaup7OqxdXv9KXTqFAOajX9WdytsqioU7ezvWseGFBrnH3lEP6K5MfnkzxtZpNLbxxRAwRnz4ulr19xfDWMuCbC2zoC2N9nHatXaPKpQeFk/QeAd4OPehPUee+FWLw6yRkAZsyH9+O/gfAmzoowtAwCeXATZMCe4I/UShzsChAAicoMnGlUKE0TGNKCD9lkEOg9CFhiQESkkNlkEORZA2pL2V79clvS9vUSA3syCNxpUDhxfTYqTIgBApvpTQq9hrDMHRVJ5o6KxeerIwAHjwLHWhIem4qsRh3qd8JszSDQSwyyyyCwZg8URnkB4Ez9VqHb3qF+WD5zbuyXWF25F6sXqMGfR3b1u7IuJ+3oVBsYrax3p7xAmibk3heUfWLpBVOeV1umBh+7RiPwXHMX4K9KcPAS+D73JMSM5LX/oqYRaDghtsOMWNaVKScDBHq5gnRqksFwpxpkLqtJOmUiJRV1at+HQH9WPW+IiIqOfvMq1SaFyL8G1PoEA8Oupn+WJoXZBQhkX1t0HOM4bynEnJVZXTMVyiQ5AJIBAgYI7JaoSaE8ukPZJ+Ym7hwqPD6IJVpH8D3P/j/2zjvMjepc4+85I2l78/a1vbZ3beOGbWwMphhMNy0kQCAJoYRckktuAoRAQgq5N5QULrk3N5BCQkihJPQAoRcbG+OGGy7rtl6vvcXbe9FKM+f+IWs15xxpdyTNqFjze548YUYzo1nvanTOd97vfSO+l8IoCgRMaDEwNRXAZAWB7D+QJO0FgCxZG+g4rpz5I2F3Oz9ZniNMli8X2wyOg7jDuBkUHt3FSx/T8wwZF0kpKUMqaPlcOG//CGT+lb4Wn+KZoOfdA+e3N4IUTR/3mnTGudy2tv99Yz/EGDDVA4ir+gVTor6uH1FBAKGdwSxETxhE014A+AxnxYKNGAdpY2Njk8KIk/poPAiinThHiyUJBgi2yBVlgUBUD0w6iUt8swrRj4Ed3Wn5eyY6doHAZESTQgclYK17uX20bE7I80V5ryj/DQdZQWDcg8DsAakeubIarYJATDBIIgWBM4N3gNe8vv6nFGVgRONaBgiAWYX8ZFmMO/zoyAA6wlHHJCBxKxAIBUhSdSaI4ghxdIAiUUFw7N+flMyC84a/w/VfR+D63g44Lv4JSHoQVUEQ6MzzuG1tX/QFAnQfAZjOGCan1FQ35Fi1GHArKjCn5YsIPgR21KGNjY2NjqgUBKJJYWIpCEyLDRSTHaJsMdAOb+K2rW4v8EMreD8G1mwXCOwCgcmILQbOIAUCFM8MeT6Zfg63zWpXR+yMLUYdtg9F3mJgboqB2QoCwS8hJ4kUBID8gI3zF0k8qengJ8pVBS5kOqmwLw3zdBNojQHv1CWvPLptwIuWgcBnM00hmD4hNi0GWi1vUEinn23oPFmdFL17P6k+m8+Obt0bdW88a9vPv0dhVVTXkxDUCKzLmqhDUw0K/deQkgzsAoGNjY2NH7HlUzLYHgtpXBe/9lHmHfF5oekI1eocNmm5ANEZQ7n7fMq9CGFigaDylIivFRaF0wGHbmGmr0VeKE0x7AKByYgtBpkYBvT52ISAFIeW25KKBXxPz1CXJA0ySqGQYhCeSaFQIMi10oMgyglxX/J6EADBKs2p60OwW1hJn1MUfCX90hn8qvSbB5K3QLBbSDCYVZQGh96J0SKYpoLVruH2iQXKUIgKgo5wio8hIOm5IJP5OCPt4EdRXVMszhK9z4EJiJNscaXfNEyMOBxFMCqEXSCwsbGxCSAu1oiLW2MgKWXjWSBoqfGl7PjJmwQSxs8yFoRS03wImKZKkfC0MjYKAqI4QEpn8/eT4ioCu0BgMl4h5rDcXQ/oe8rzK8c0lyKUggireKIM2CjRmRRaGBsoKQjao+q7lxQESVYgsJMMAoznP+BnRTXfZvDOwT6oWnJ6N+yMV3tB4zZgWGfwmFkIUmYs9igaf5OxINXLuO1ojQqlAsEY6q1IILl8Hz/raTL1+qPXFT1hzFAQiEkG3Q1RX9PGxsbmeIB53Xy7J1WA9DzjFxDd/QfiWCBoEozSTfIfGEVKMojsZ2Wte/l/88xCYMK0KG4sPEQzRNaW2lGHdoHAZEQFwcThQ9w2KRl/gGqWD4EYc2hUBszcA4AnEDXHqCO8B+N4pGXzfffeYX6iEi6SB0GytRgIJi9x/CKJN0YVBEsnZiI/PfD33TGkYpMQj5gsiKkN82LmP7CK2ybVZ/lWAwxQlCGbFJoBreILBNrBNSGONAZr5b/gzVYQSCv5/S1gqvl+GGKLAXLLo74myRc9COwCgY2NjQ2AoP4DhISh7BMNDePYOmqZ/4D/esKiH+uPzFdMbi84Obx/8yghxTP4+2k/ELP3TkTsAoHJiCaFJW7etMqQm7dQIGAHPwLzhp/1LjqNG17lG+An3Gr6BFM/pIQQaYAbzcqbnGKQXAoCqa8thT0IRLn9nBCTZQcluHBaNrfvrSRtM9jVHh8FgVh4NOo/AAQrPpqkIJh6GkB0X0uteyPuA2SMgbXyMbGmtxg40nhFFGNAvwV9i5IHgQktX2KRIcX7LW1sbGz8SK2voqfAOCRS66jYpkzN8h/wI6pgI2wbZoc3cts0Vv4Dx5AKBIKHUaphFwhMRjQpLB7mV2UMZXCXzOJTA0YGpOgPI4gtBkY9CMTqn5peEOLIyBHlrdH0v4otBsmnIBArzfGNw4kX/SMq6nsCfXKUALMKQ5v1rZjOtxm8WZt8BQLGWFwSDJjqAatby+2j1csNny+1GJikICDpuSATT+L2sUh9CHoaAP2zwZFuiVyR5IltBub7ELA+C1IMhCJDqhsy2djY2IwyKEYchtmzLykIOuMSYc00LUiLgbkFAklBEGEymRRxGKMEg1GEBVy7QGBjKmKLQdGwoCAwMEAlhMgqggjaDArSFejX/XvcmqRwCIow4VYzwqucGkEeVEfRu5vsCgIpRzY1FQT7Onn/gap8F9IdoR9RF1XxRoVbjg7haH/k7rnxoKHPg153wLgk20VRmWt95i87shkYGQjsyCkFSmcZPl8yKTQxZlL0IdAi9CFg9YJccdIiQxGOYSOuxPeaa/bHGJMUBGa0GEBUIfS3gGla8GNtbGxsUglxFTycBAMci7DWu+KrnvhEWHcdAoZ7A9vpeYCRhcpwEIshESgImGcIrHkHt4/EyKBw9P2KqvkdnYciUm8fL9gFApNRhfHVhCEhF9vgB5OY4EOgUIJCMa/cgNu4WP2zQkEAwdwLvZEVCJjqjcppNiGQ5Fmp6UFQ18U/iMeL+ivJcuDkct7w8+2DyaUiCKYeiEXPnVhwpNVnh/W+YkJK+5DXtNUR0YeA1UWmINAEuSKpXBLiyOiQjQpNVhC4+wDPUGDbkW6KJwxxZvDX0dSIzaVsbGxsjifEFgMxlcAQCeBDwBpl9YDZYwwzFASsYavvO8hPYZVpSQtGIWnZfPGdaT4lYopiFwhMRq8gIExD/jA/8TXUYoAgPgSH1oHpB4kGiSjJQFQQpMdCQRDhqpv4IMosBFGsX4E1E9GDIFVjDg928wWCqnzXuOdcXM2rCJLNhyAe7QUAoNWu4rbFguR4ZDgpspyBrw+vBk4JEQ2k6kwuV5k174woClVMQLAsT1n0UzE76lC8Xk6peQO8HL4di/XabQY2NjY2UpqUONk3gOxDEPv2UU1sL5hocoIBYI6CoO5jbptaVNAfD6ngLya6pRB2gcBk9BL+ctYGh6ab9GROAMkwtvJDCqcBBVMCO9QRsEPrwr4fOY5s/F5hyYNAzDg1ASliK8IWA9GgEEnWXgBANr9J1QKBoCCYVjB+gUD0IXi3rs9YG02CsENIMJgbIrXBTJhnGKyOf5aEY1DoRzIqNKBOMgLJyAcp5wcx4aoIWOchPk+ZENCqM8y4PQmx2ClN6KNETDAgZrQX+K8lxiUKcYo2NjY2qYi4Ci5O9g0hje3ioSAQEgwqzE0wAAAiFAgiURCIiUVk6unR3FLkiK13KezNYxcITEZvUjhN5VfFjaoH/NAZ53LbkbQZFAuDeENGhf1yioHpiCaFkUZsCWoHkmwGhQhWZU5ND4I6QUFQbUBBcHJ5Bvc33uPWsK5hYIwzEguxQDC/JAYFgrq1vmhRP3mTgMLq0CeEQGozMBijagTZhyC8uEPt05f460093dSJNXdtKZHFZA8CcdJugkGhH8moUDR8tbGxsUlFJAVBBHJ3cWwXh/ZRMcGAmJ1gAMj/NmEqCJimgh3iFQSk+qxo7yoiRANg0xWBSYShAkFvby9uu+02rFixAhdffDG2bt1q9X0lLfoWg6masCoeZoFAlP2y/SvDvp9Iog6ZFHNogYKgoJJ/z85DEV0n2SMOAdgpBscQWwym5Y/tQQAAlBBcKJgVvlsXByOgCPCoDDXtvDHjvBgUCLS973Db9IQLIpKsiwqCDpMUBABAq/jBATsYZoFgO18goPOvjPqeQmKxgkC8nrTqHw1Ci4FkhmhjY2OTgkgKgjBNCoOeE2N1KOtv4xPCFBdIiXEzYqPICoK2EEcGhzVt540Us4pASmebcWvhY6f7jGKoQPDggw9i2bJleOutt/DKK6+gujr81aZUQa8gmKJG5j/gR5T9sobNYMPh9VgXSat8ESgILEgxQE4Z4NBNAId7IuvPkiIOk7FAIBRghrrANPNWY5MBj8pwuEcsEIyvIAAQpECQHD4EezvcXEGxItshFfSsgO19l9umJ1wY0XVkBYGJSQZCOwBr2g421G3oXNZ1GOwIn2BAT/ysafcmIikIzG4xEAYoVrYYpPJgyGZ8uodVPLOzC//Y1YVed2p9R9mkGOJqfyQmhXFuH5XiDcvmgDiMjavCQhx3h9liIPkFVZ0ZE7PmYIiqulRuuxu3QNDX14dNmzbh6quvBgC4XC7k5uaOc1bq4tH5dIkKAiMRh9zxueVA8czADk2VssvHQ5xwtEXiQWCFSSGlkqIiEhWBrCBIwhYDxQmk6z5TjAEGJ0PHC0d6R6C3DijLciDLZawD6ryp2dz2luYhU2P3rGJHG286emJJRogjzYN1N4Ad3RXYQRWQmeeGPmEMxGdLx5CJLQZZRSClcwI7GDP87NO2Psdfa+ppIPmTTLs3iewSgOrUFIOdYJ7h0MeHi7iqLw5gokGKOrRbDGyC8+7BPsz87R7c+OoRXP/KEZzw2z1YeSg51Fo2NuEitluR7PBbDOLdPir5D0w0338AAJBRAOjNwd39YG7jrZ6i/4CYZBRL7KJ5gHGXqxoaGjBhwgR8//vfx549ezB37lz88Ic/RGZmZshzNE1DTU2NqTeaLLR1BAbJUzW+F/XIgIInXXusAAAgAElEQVShMP9digoXIK9tX+D6G19CJ6aMcQbPSDfvLF7X0omamt4QRwNgDNP6WrjK0SDJsOT3WeYqQhb2jm43fPoRBvrCk1gXN+yHvlx1tF9FbxL+7VU6c+DUSaxqd2yCJ8/47zlchoeHE+ozuq6V/zstS1PDur8T8oC9Pb7/ZgCeXLsXF01KbIuVVbv5CXWFMhDV78TI7zRn78vQl9CGiuah9lAzgPBXvVk/f/97j7SgJjd8c6JQFE2Yh7yW3aPb7Zv+iQ5SNc5NMUz++Ano10jaSs9Ej8V/61PSC+EYDAwoD2xZA29u9EWJ4eFh9B+thf7btqHHg0GTfp7MLjf0eoT+5lo0J9Bz4Xgk0Z69RjjYy/DFVV7oa4DtQyquePYgnl7uwPTc+Kz2JQLJ+Pu0GZvh4WFofa3cOHhfYxe09vB+zzk9bu77tqepDq0x/FspqVkDvb6yhZZaNj6ekj4BjoHAZPrAto+NfQdqHkzd/yH0DYuHyCSMmHyfRj+n6Z1D0DukDbUewoEU/XyPWyDwer3YvXs37r33XixYsAAPPPAA/vCHP+COO+4IeQ6lFLNnx6l/JM5k1zUA8MmIpgotBlMWLgPRKwIMoLo/C3XP86PbE7p2ojSMf9uGtD7gk7rRbbcjE7Nnh24RYe5+eFRdX7QjHa7sCZb8Pr0186A1BFYFJ2Z6oIT5Pp51I9B71pfPmI+JSfi358krBesLFJSqygtAp1j3c9TU1CTUZ3TNUAeAwM8/tyIPs2dXhj5B4LLmZuxdH1CT7B7JxR2zJ5t5i6bT9GkdgEA7xPLZEzF7duR+H0Z+p55N93Gfl+yTPhvx38GsoQ6gJvA7Y5n5mD3bvJV61X0F1JqAGqCgezdKxrlXrXE7vN21gR1UQfmKb6HCzFX3IHgKK8F0BYLqkkzQadF/vmpqapCl9nK/s8lzTwGdaM5nV8sZglfXcZLF+hPquXA8kmjPXiP88PlDGFLlhYUhFfj1gTS886WquEmC400y/j5txmbPji2gXp3CT3Fi5oJTwv4b19T98OoWx3OdKgpj+Lcy8lodt12++CJMNOF7KRiegklgugJBdWk26NTx30s78CG8I7q20MxCVJ1+OQhVQp8UAUY/p6zYBc+/Atvp3t7j+vM9VtFk3CW2srIylJWVYcECn/PlihUrsHv37nHOSl38PcUO5kU5E4w68o1PePxQwcmTNW4FG+oxfL5sUjiODDhYT79FX/yiJ0NERoXHQ8whIPeqRZAjm8yIBoVVBv0H/FwwjW8zeL+uH4wldtyhmGBwosUGhUz1gu17n9tHIvQfAICiDMGk0OS2Dlp1JrfNGreO68GibX6a2yYzz5d7Cq1ASjIwz4dA8iAw0aRQSjFI4cxnm+DsaB3Ca/tDqw5X1Q/gA7vVwOY4QhkS/LCyiiIrgGWJBtSx8yBg7gFApz4GAFJ+onVvKBreGpTma7v/xW3TOZeYXhwIC8lPIbXG4nrGLRAUFxejrKwMBw8eBACsW7fONikcA79JYZnWDqpf98kqBnGGPwEgOSVCL64WlqO3lFU+ziBe9B+wMhVA9GSIzINA7BNLzgKB5AIrfkEd59R1CQWCgvETDPScMTkL6Y7AF/jhXg/2dbrHOCO+dAx60djnGd12UoITCsP7mcOFHd4IDOuKi1lFIJMWRXy9SBJSwoHklskeLPXrQh7PvCPQtv6D20cXX2fqPYWCSEkGTcEPDBd1hB9UEmpuEVT0bBloA1MT37/DJnY8uYP/LlpSkYHzhYLsbzen7iDa5vhDGeb/5iMdV8bTg4Ad3enzs/JTVA2Sbp1/XCS9+4wxaLvEAsGlpt5X2KTl8J5CnkEwb+KOJa3EkGX2vffei7vuugsejweTJ0/Gz372M6vvK2nxFwgmacKqTxQmWWT62WC6Xlyt9kPQuZcZOrdYHMQPecEYC10NFRUEkWS/GsUSBUHymRQC8Jm86EmxquUhIcFgapgKgnQHxbLJWVzE4bsH+3FCofWxgZGws41XD8wqSoNLsdYzQYo3nHm+zyw0QsQUAzNNCv3Q6mXQdKsgWu2akKkL2o5/8qsWaTmgcy83/Z6CQXL5AgHrMadA4BgUPB2yS0xdXSGK0+fO7R+4MgYMtEmKCJvURGMML9TwisXblhRhcq4L7+metf/a34vGPg8m5jjFS1gKc/eD7XkHWu2HYD2NgNcNkj8JpGIB6PzPxUY9ZHPcIRYIIh4HxzHCmjUKCQYVC6x9Q0FBYMjcr3UP0HEwsK24QGaeb/KNhQchxDce1ycxDHYBuSbGCycJhgoEs2fPxksvvTT+gTbwHvNamygUCBBFgYBOXw5t7e9Gt9mBDw2fm+6gyHZR9I9oo/fX49aQnx58kBnLVAAp9rGzHkzTDE9amHsAGNE5pSpOID3PvBuMJaKCIMZxOPGmodfDbVfmhj/QvKAqhysQvH+oD99cYmGBKwo+jXF7AQCwPXyBgMyKvL0ACF+dFAmk6ixg/Z9Gt8U4JD3ax49x23TxdSCu0Ga6piJOqE2KOlSGBEWXBYMUklPKrWyxvlZToxRtkpd1DYM4ons2ZzoJLp+Rh0wnwfyS9NHnmMaAF2q6cfspsVHwsaEeqCv/G9qa3wCeQf61Y/+v/vPboPOvhHLJAyCF4SVI2aQ2yjA//op4HBwiwjoWEnrWxCcYUKsSDI4RSTygtvNV/hrTl4Ok54Q4OoZk2gUCwECLgU14eKxQEAiRH6z507AmkGKvcNtYA3kxvzSCaBejkMwCfkLvHQ4vc3RAVg8kq1GSKEWLdV5uPHF7NbTq/iYpASoiWIk6T5C9rqofgEdNTB+CHa18xOF8q/0H+tvAGrdw+2iUlXpRQdA5rELVzP33lnwIDm8M2ievNe8Eq/uI26ec/u+m3stYkDzBg8CkAoGkIDDRfyBwTbF3NPlznxlj0Ha/Du9Lt0H94GEwMSrSxhDP1/Bxu5dOz0WWi4IQguvmFQjHGvdGigatdjU8D50I7YP/looDHEyDtv0FeP57AdSVvwTTtNDH2tjooKKCIMJxcDwjrFnjp/y9VMy39P3CbTFgjEH95Clun1FltNVIrSEp1vLrxy4QmIx/QiIVCPKiKBBkFfLmIoyB1YbjQ8AP5McqEMS6pz8ao0JxopCs/gMAZJPCFCoQNPTx6oHybCccNPxCz4nF6SjNCvyt949o2NA4xgAyjsgGhRmWvp+2732uH5FMPClq+a1TIchLC3yFaAzoHja3zcAvFx6FadB2vSYdp73/c/686uUgZTF0Hs6dyG0ykzwIlEHhGWfByv7xlvvMVC/UJ6+D94kroX38GNQ3fuibUAoGnTZjozGGl/bwk/7Pz84f/e+rZ/NqvY2Ng6YblYqo6x+H97EVhg3QAABeN9TXfwD1hVvtIoGNIUSTQpIVxdgyDmM7pnp9HgQ6iMUKAog+PF1HxjycHd7ImygqTtAFV1lwYxGQkc9vp9B4XI9dIDAZvweBmS0GgM+HQI9Wu8rwuZIPwVhf4oJJIaJ5MBohGh+CYIkLSYpUsUwhD4IjPXyBYFIE7QWAr3dMVBG8Wze26308UDWGXW0xTjDYa257gR/JqHDI/AkCPfGz3La2hTci1Bq3Q9v2PLdPOfNW0+9jLEQFAXqaTEnRcPTzK9/RKNFCIklDkzvJQH39+9A+fZHfOdwL7xOfg1a/IT43lYRsbBpEc3/g85ztolhRHZD/Vua5sKA08NxigKVpBtqet6G++E1AE4qQOaWgZ90O5ctPw3HTc1BW/IQ3dvafv/Ev0FY+bNn92Rw/iC0G0YwtZaPCGEw22/cDHp1KMavYGvWZDlLAp7Sx7rELBNqmv/Hnz74ExErPszCQf2e2gsDGBDyjBQJh5SfKgR2t5gsE4fgQiIP41oHEVRAgHAVBDP0SLEeKw0mdB9KRvuj9B/ycP43vX1tZn3jxW7VdIxjyBiaPRRkKyrIM2cFEBNM0aHvf5faFMvoLF7HNYNwY1QigC67kttnB1WCte33/zRjUN+/lXicVC0Dmfsb0+xiTjALAoUuhGBkA3NEXpxyD5haagyFHHSavHF9r3AZtzaPBX/S64f3L58G6Dsf2ppKU1/bx0YYrqnKQ4eSHjOLz1qqCLHP3w/vc13lXdgD03LvhvKcGjs88BGXh1aDzroBy/j1wfGczlGsfl8x/1XfuA2vdY8k92hw/yCkGUUxc4xBhrTUL6oGKE61vv80p9/mA+RnsBHMHH38x94Bc1F9yvZV3Fx6Sd4StILAxAb9JodxiMDHI0cYhVcsA3QecHd0lTZBDUZplvMVA9iBI3BYDOcEgmRUE/AMplUwKG3r5BINIFQQAcM6ULG57U9Mg+tzmT1qjQfIfKM2w9MubNW3n1TbpuSBTTjXl2qJRYYcFCgJSMgtk2hncPvU9X0uBtuUZsD1vc68pF/8kqnSGSCCEyEaFPY1RX9fRb56XTUhEBYGozEoi1Df/E2BjyMj7WuB96nowcRXaRuJf+/kCweUz5Yi0CwTF1vt1/aYoZ0TUDx7ijT8JhePGZ+G45AGQtCzpeEIplCXXw3nbat5JXvXA+8aPTb8/m+MLKcUgisUnKcI6Fi0GTbH1HwB8nzkI85xQxVhtw+NC5HIxyKwVVt5eeGSICoLY+EYkGnaBwGQ8GoOTeVDC9NnVRPrghAvJLACp4HuIjPoQlAgFgpYxFQTiqnziFghktUMSKwikOJwUajEQEgwm5YQXccidm+vCzAmB870asLZhYIwzYo/sPxDj9oLp5/jMk0wgFgoCAKCnfY3b1rY8A8+fr4L6PN9KQKadEbeBhhR1aIIxnmNAaDGI8nskGJKCoDc5PQi0ph1ge97i9jm++k/Qc+/m9rH69dDW/jaWt5Z0HOh0Y3d7IPtbIeDaC/ycMTkL6Y5AcfNwrwf7Os3NDGcdddA+/BW3j55zl9R6FAxSPBPK5/6Xv97OV6QVVhsbPYqwYhyV9F2MsD5OCwQAQAqm8Du66qVjmNcNdZXweV56s2ljEjMQF+xsDwIbU/CoDOVaGyh0VfTsUhBH5JMeP5H6EIgFglAtBowxeVXeYg8CMoGPH4pOQZDEBYL0PIDoPo7ufjDvSOjjjyPEiMPJUSgIAGD5FDnNIJHYEWP/AU2IN6Qm+Q8AsVEQAABd+HmQ8nncPrbrX4BXNxlxpMFx1W/ilmQiGghGm2TANA0OwaQQ+ZOjumZQJJPC5Gwx0Db8idsmU5aCzFoBZcV9ILMu4l5T3/gxWEddLG8vqXhNUA8sq8zChAy5DSrdQXHmZH4F/706c9u61A8e4j/nueVQzvue4fPpwmtAJp/M7dM++o1Zt2dzHCIrCKIYB8dDQdC8g9sm5bEqEAg+BEEUBNonTwJ6E19nBpRl37L61sIjSDxlKmIXCEzGqzHT2wv8iD4EmkEfArHFIKSCYLgXUHWTUmdmUPmeqUwQKo7dR8BUT/BjBWLtl2AlhNK4VJoTAUlBEGWB4JypfIFgpYXGWZHwaQvfYmBlgYAN9YDVr+P20ZkXmHb9IklBYE2BgFAFylWPAkroQqty1W9im1wgIhoVRht12N8Coun+PTPyQdKyQx8fIUSMOUzCFgPmHYG29Tlun3LW7SCEgFAKx+d/x0fqegahvv7DGN9l8iD6D1w+Iy/EkcD5QpvBx0fMK8iyvhZom5/m9ikX3x/W54AQAuWcu7h92uZnwMR2ShsbAGxkENSr+45WnPyzI0wk9YHFz1c20MG3tylOkJITLH3PUQQFgd8raHR7qAfq2/dx++jSrybc2J0IKQa2SaGNKQQrEJhlLEWqzgSobsWudY8hGatRBQEGYt/TT1yZfA8s04Bx3E9HERUE4kA32ciKg9ttAnBE8CCIVkFwdiU/eNx6dAhdFq1sh0vPsIpDutQGSoA5RRYWCA6s5F2/S2aBiEW5KCgUFATtQ9b1dtOpp8Fx/VOASyhaOtKgXP3buJscma4g6OY9DCzxHwCArCJevTTYCeY1VyZuNWzv23xbVkYByNxLRzdJ3kQol/+CO0f79EVodR/H6haThvZBr9SWFcx/wM/pk/jP44Ym86Jl1Y8f49UDBVNAF30x7OuQuZcD+brVTe8wtPVPmHCHNscdQVS00ajSZBNYiwsEYntBySxTFMxGoBUnctuscRu3rb5yFx9R6kiDcva3Y3Fr4SEWhEwwHE5G7AKByQRVEJhVIEjPBZm4iNun1a4e97zSTGMKglj7D4y+T4RtBvG6X6sgkg/B8V8g6HOr6HEHTMVcCpEKWuFSnOXAvGI+fmv14cRoM9gptBecMCEN6Q7rHsPaXuvaCwBZQWB1DjqddwWc3/0UykX/CXry9VAuvBfOu7dBWfpVS9/XEIIHQdQKgp4GftsC/wHAp86Q2rPCyZlPANRP+FVmuvBqEH2qBAC65EaQSYv58179riWmesnMW7V90HT/JPOK0zEtP/QEY1FZBlxKYAJV3+NBc78xFeBYsJFBaGt/z+1TzvoWiBL+9wNRHFDO+Dq3T13/OJg2hqGlTUoiKkuiSjAA5Ger1QoCsb0gRv4DAEAmnsTfS+O20c+Yuvr/oH3CRxvSc+6yrvAdDelCQXS4N/hxxzl2gcBkPBpQYXLEIXctwYeAGfAhKMp0QF//7BpWMaIG+WKUKqexySSNxKiQaZqseLDYL8Fy4hCHE29kg0InqAk95FKbQYLEHcbSoJAxBm2PNfGGfgqF4qOVCgI/JH8SlAt+AMcXHody4Y9ACqssf08jkFyhlz9qBQGvpLJyIBXrVS4zYYNdYLtf5/bRxV+WjiOUonn5A/y5RzZJ56Y6bx/kV8sunxFaPQAAaQ6KhaUZ3L4NjdGrCLRPnhRUIfmgS26K+Hr01JsBh+5521UPtv/9yG/Q5vjE5HQskiuawFrr8cKaRP+BE0McaQEFlfw4dmQA2sqH4X3+Vqivfpe/r9LZUAQD2USBpPGGrGzYVhDYmEDQFoM88wZ2VDQqNOBDoFAimYm1BXEbl1fkYyTZjyTJYKiLl06n54I4rTV7sxqxF5gl2SpeJDT0mes/4EeMO1yVID4EYsThiSUZIY40gdY9QLfOJMiZ4YtLNZGiDMGk0GIFQSIjtxg0hTjSGKybVxAQKwwK/YhRh0lkVKhtf4H3zimqDhrj+cimdsx8swivOpdz+9V3HrBVBMfQGMN7QoHgwiDpBSJLJ2Zy2+ujLBAwTYO6+v+4ffS0W0DSx7+XUJDMCaDzr+T2qRvsNgMbHmkcHO3CU7YcI2vl84Y1xyfBAPD5fZBJvMpZffNeaOLnLC0bypefAnFaOP6JBlFB4LYVBDYm4FGtazEAADL1dIDqVu3aD4AZyNsuyeInXi0DQSSAomlPtNIqg4gKAhhxlxZlWknSXjCiajjSOxJcwSGt4h3/BQLRf8CsAsGyymxQnRBhV7sbLSbIXqMllgkGYnsBqT7L9CJaURwUBAmL2GLQ0xzdQLBbbDGwUkEgJhkkz7NHMrFbdJ3UM/x2bR/ufLcJKgMezOAjM1njVrBdr1l+n8nAlqND3Gc4L41Kk/9gnCocE62CgNW8DrTXBnYoTihnfCOqawLHVAT699n1WlKpZWxigFgcFYun4ZKeC+jbnTxDgNuaBQumesCO7ub2xbJAAAB0yQ1jH+DMgOOGf4AKqUQJRZAWg1QsItsFApPxaAwTrWwxSMuWI3sMqAjEJINgRoXxSgWIqMUgXmqHKHivrg8zfrMHVY/uwaT/q8H/bmjjHjrSz9CfPIP0SDE74tBPfrqCRWV8dTrecYcaY9gZwxYDbc/b3DY9wbz0Aj8F6QpXiOkO1b6UCqTnAk7dRMk7DAz3RHw5sfBraa9mrqggSI5nD2uvBTskpHQs5k3sPCrDf7wVKLbsdMzAS87zuGNG3rrP7kcH8K6gHjhvag4cdPyWL7GIsLl5EB418gG1+uGvuW268FqQvIoQRxuHVJ0JFM/UvZHH18pgY3MMUfklKsPChRAiRclapdBirft4NVVuecy9uejCa0DmXRH8xaJqOG5915KxiJkQxQno1Q1MA0YSw8cqltgFApOhqhslLGAuxwgBonzAiMg+BOMXCETjt6BGhf2CgiBGPf0RFQjEAWyCKwg2Ng3iM88eQlO/79+9a1jFd99vxi8+1hU64riKxzQV2oFVUN/7ObyvfQ/qyoehHVpvedX0sORBYJ7bruhD8EGcfQjqezzoGwlMQvLSqGkFERHmHgCrXcPto0IWvBkolEhGhcHal1IBQogcddgTuQ+B3GJgjUkhEMSDIFqDxRihbn6G2ybTzpA8KV7a04P6Hv4587OMf4Omc+ahR3fYKgL4lBZ6LqgyFic4OdeJiuzAc2DIyyRDVqNoDVvBDvLmy/Ss2yK6lgghBMqpX+H2qRv/nJKrgzbBYeIz24zClLD4Iy7GmYXUXhBL/wH/exICx3V/hfKZh0BmXwwy9TTQ+VdBufZxOO/aClq5JOb3FBG2UaFdIDCbYo8wqcsp81WjTIRWCz4EBgoEiawgQP5kvm2iv3V8UxChAitKZBMJjTHc9nYjPJo8CLlvTQv2d/pinKQ88hgUCJjXDXXV/8DzQDW8v78I6lv/Ce3DX0F9/YfwPno2vL9aCq1+o2XvLyoIKvPM+6wsn8IPbj86HN8CQTD/gWjik8aC1X7IryQUTgOKZljyXnLxMf6tHPGCCG0GkfoQMO8In2UNWNpiEM/iZKQwxqBtEdILFl8nHfe7zXzh+5aTJuDK5afjRdf53H7Puz9L6Yliz7AqeQdcWGWs558QgsXlvIpgW8tQiKPHRlvNqwdI9XLQiQsiulYw6MnX+7Lt/bTtBzu4JvQJNqmFOLY0Y4FPHNv1WvN8lSIOY9xeMPq+zgwoZ90O51f/Cec3V8FxwzNQllwvJcskNIJRYSr6ENgFApMp9QrSIQsGdWTqafwXXEcdWNfhkMcDQImRqEPJgyBGCgLFAQjZ7KyjNsTRx14XBrCJXCBYeagfm5uDD5Y8GsN9q30/i+wkbu0gXTu0Hp6HF0H91/dDRrKxxm3w/uYcqJuskWE2WORBAACnT8qELn0L+zpHTInfipRYJhjI7QUXWlaMMFJ8TBVko8IIV+K76n2yRj+55SCu8XvBI0V6fiZDgeDQOt6vxpEGuuAq7pimPg/WNvCT3m8tKcJdS0vwuzzei4A0bQUTfDtSiQ8O9UPfFTCnKA2VecYVXQtL0+FgXpRq7ZiiNqKhdrev0BUGrPsItG3PcfuUs81RD/gh2cWgcz/D7dM2/NnU9/DDNA2s9yhY2z5ojdugNWxJiuJbKsN6xBaD6MeWYnsM6x3fNywSpIjDOCgIjheIoCBIxSSD6ALHbSRKvPwqPLUgu5q4MkEqTwWr+2h0n3bgQyhLrg99X4YUBGJff+xk+6RoOpjOlIi1HQAmLgx9ghgVY8JD3Cqe3NE15usv7unBw/0elAQZpDPGTJ/YMcaQ/+lf4N38CJ8EEQrNC/W5W0BcWaALrhz/+DDuQ4w5nJxjXoEg26VgUXkGNjUFijMfHR7A5+fkm/Ye4RDTAoEw0bGivcBPsZH2pVRBXG2KsEDAOg5y21ZHOUpRXDFMMWBeN7TVv4a25e9gfa0gJSeALr0Z9KQvgtDQaxja+j9x23TOZSAZ/Gf71X38qs/i8gzMLvJ97s4+ZQleeWc5rvCsGn1dff8Xln5WEhkx3vCCcdQDjDGww5vA9r0H7dA63Na0F3f1NcCBY98pHwOejekg004HPfVm0BM/51sMGAP17fsBTff8KJ4BMuviiH6esaBLb4b26Yuj29qnL4F99n9AMgsivibrbwM7vAna4U0+qXd7LVhHnc+LRIBMWQrlqkdBK+wJXCLBGJOf2TnRKwiIsFDIui0qEIgRh3FSEBwXpNktBraCwERUjaFM41fhSX70/UvBCNeHYLxVPsaY6fmv4UCKpvM72g+Mebw4gBVX3xOFYa+Gf+7lHyxvfnEaZkwIrMx4NIandnaFcLs1t2rJvCNQn/0aCjf9Si4OuLJAF30JyiUPgMy9TDiRwfvcLdLEJRo6h1QMeQNLVllOivx0ZYwzwmfZZD7ucM2R+BnNyC0G1hQIWNt+QP97Ulwg1csteS/AVhDoEVebIm4xiHGBQDbRaomJ3J4N98H72CVQ3/gR2NFdwEAbWN1HUP9+M7x/vBRsqDv4eYOd0LY/z+0L5p79Vi3/7P3szLzR/75x/gQ8lCG42tethVabmnLzD4Qo2FDtBWxkEOrq/4PnF/PgfWQZ1Ld/Arb3HWT21QeKA368w2D7P4D61JfheehEqFv+EdIMUmveJRkGKsvvHLNIFClk+rlAgU616B2GtuWZ0CcEgfU2Q/3oNyhZeQ9GfnoCPP81Cd4nPgftvZ+C7foXWEtN0OIAALD69fA+chY0wWDTJs4MdvKteWk5UUVrjiIuFBpIHgsX1tfKt0c40kD0hpw24ZFhFwjsAoGJeDWGcrFAIEZfmYTkQ3DgwzEHdOOaFA5185X7tOyYZpSKBQK9miAookwvQVsMVh8ewIAnMCAqz3bgnCnZuOWkQu64F2p6grvdRpmlLqK+fDu0T/4m7adLvwrnD/bC8aU/Qzn3bji/8iKULz8NUN2E3d0P7zNfAVPNmQA29osGhU7T1RJnVfI+BGsOx6dAMOjRsL+Tl9vOK7amQCDFG1adCZKWFeLo6BELBKmtIBCkpBGaFMa8QJCWw7s2e4YsHxAxxqC+9C1OCce9vv8DeH97niT5BeCbSHrdgR0FU0BOuJA7RtUYPhIKghdPDwz2ZxamgUxahHecp/Hnvf/zcH+UpKeuewR13YHnk0shUnGVMQZ167Pw/Gw21Fe/O24RX6LjINRnbvT52ux5mxuvME2D+up3+LaakhNATx4nMi1CCKWyWeGaR8b9bmOqB9rOV+D50+fgeaAa6j/vRM7BtwADxsoSnkF4n7gqaQxBUwHpWWOSMlU0mDUSTR4ukkFh6ZxxFTs2oSFpYouBXSCwiQKPxtEbzusAACAASURBVFDGhD5+iyauZMqp/Gpz92Ggsy7k8eOu8omuqllF0d5iWJCiam6bjacg6BWNZBKzQPDGAf6hcun0XCiU4FpB5v5J8xDqe0ZA8idz+1nXEdPuhXUegrZR6LXMyIfjKy/AcfVvpZYSZeHVUK74H/4a9euhrXnElPtp7uP/BstzzP8yO31SJvQlh51tw+gciv0EdlfbMPTlu+oCF7Jd5qol/ATzH7ASQwkpKYJkaBWhVF9S6ljdYkCInPdtcZsB2/UatC1/H/uY5p3w/PZcsM76wD7VC/Xjx7jjlNNukVaaP20dRo87MOGckKFIqp0vzMnHQ+mCimDfe9AOfxLWz5LsrBISXk6bmIkMZ+Dfkw33wvu3L0J9+oZx/y7aSD7qaTlayISgr7Om7fA+/hl4f38RtN2vg/U0Qn39B2D7V3LHOS6539IJDl1yo+TlpG1+OuixrHUPvK/dA8/9VfD+5RqwmjeMtecBQEY+UFTtk3uLSsnBDnhf+I8IfwIb0+k6xG2K47FIIYKCQEyoMYNEMSg8bhCVI7ZJoU00eDWgTBP6+MXYK5MgznSQKfzKh3YgdJuBOIhvG/TCq3PVl/wHYizZlxUEoQsETPUCA2I7REnwg+PMewf5gZd/Basix4nTJ/GmY+8c7AMpEAoEJn6RqBv/CuhVJvmT4fzWatC5l4c8h57+dZDZl/DXefdBqUATCaJhYHm2+ZF/BRkOaVKwNg5tBpL/gEXqAeYZAqsVIsJmrbDkvfzYLQYBxOd9sNVvI7CWPfx1hQKqFYhGhVaaqTGvG95X7uLfv2wuHF9/E2TKUv7gjjp4fnv+6HeC9smTgF5hpjh9kz0BUT1w5uQsUEGhdPXsPKxzLsQax0ncfvWDX4T7IyU1K4X2An0CDOtphPc354LteFk+UXGBzLsCyud/B8d3NuPBFTWYWvAu5uS/iqr8t/DrM98GPeUrfEqR/7q1H8L7xJXw3F8F7cP/5V4j1ctBBCNBsyF5Fb5EAx3qm/eCDfpiqlnvUahrfw/Po8vheWiB7x7HiqejDpBJi0BP+xqUa/8Ix21r4byvGa77W+C6Zzecd26C655doOf/gDuN7X4d2r73Tf/5bMJHjNgWI7gjRmwx6G0K2WoTKbL/QPL4W6xrGMDTO7vQ1JdACUhizOGQXSCwiQKPylCmdfA7TTA4CQUNw4fApVAUZQRWLBmElb44+g8A8PUDSlGHIT6QA238RDerCMRh3G05VrT0e7C3MyCDVQhwjm7gdcl0/gG08lA/kC+a2ZioINj9L25bOf8ekJITxjyHEALHNY8B6YHeXbj7oL7546jv52i/oCDItma1aFll/H0IYuY/cHCNTx7uJ78SKJ1lyXv5sRUEOsTnfW9z2L38zDPMe0gAIKWzo72z8Ylhior2yVO+pAY/VIHypb+CzjjXVySYcyl/QvdheB49B963fgL1te9yL9FFX5IjYgFsbubTC86YJLfZVOa5cOrETPy36EWw81VozTvD/KmSE8aYpCBYPtX3PcUGO33FGcEdHY400HPugvPeg3De9ByUU28GLZ+HuRU61QAheGegEo5rfg/nd7eDLvy8sRvKKIDjC3+0LHVFj3Le93glZl8LPP99Ejy/Og2e+6dCffl2X1pGCEj5PHQsuR2Ob66C88F2OO9YB8dVj0BZcgNo5ckgmbKKQrnwR1IRTH39B6ZPGG3CRy4QTDPluiQt26ck8aN6xi42RYCcYJAcCoKndnThrL/V4qZXj2D6b/bgb592xvuWAABEiDlkI/Hzr4oXdoHARDwaQ3mMFASAbFQ4ng9BueAQr6/WSbGBMV6RJ4rDl9WuI5SKQGovSFCDQjFea2FZBnLSAkUa/SoNcEzmmSdI2kxqMWDufjBhwEvnG0skIDklUC66l9unffI3aI3borqnJkFBUGaBggCQjQpXx8GHQE4wsMbfQ9sjphdcYPlAuzSL/721DiTQKkCMIek5fH6yOuIzvgoD1rqX78UumOIbYFqM1KZlUYsBU71QP3iI20eX/tuooztxZcJx47PyhLK/Fdp7P+W9ERxpUC78UdD32XaUL8otLg/+mbuoKgfvO07FZoUvwmjCPR6v7O1wo1lXrM10EpxS4fu38j7373KxauJJcH57AxyXPii1pS0o5Qufu9p8zz1SNB2OLz8Fxx3rQGaeF/pmMvLhuOU1kILKaH4kw5AJU0GXf4ff2XcUrGELvwihJz0X9LRb4LhtLRx3foLu+V8BnXqaYc8mQhUoVzzM7WON26BtezaCn8DGTPStTAAAsxQEAIi4+NNVH+LI8GHeEbBWQXWWBAoCjTHctyYw9/BoDHe91wyPar1B7ri4hILySH/w445j7AKBiahDvchGYFDihgvIiDw2ZzzI5CW8sVRvE9C+P+Tx4grtUd0ETWwxiIdk37BRoThwTdACQTCJq57F5RnITQt8BNsGVRwm/L876zGpQNCwhZt0jORNCbq6EQp6+r/zq5iMQf3XPVE5nR+VWgysUhDwk6utR4fQ5zbYP2oCjDHsaItNxKHkPxCDyLaSTP731j6ocu1LKYfgQxCuCRlr2c1tx0Q9gNi1GGjbnuVN3RQnlHN5VQBRnD5FweIvj3kt5ZL7g04mBz0aajrc3L4FpcEncBdUZQOESIkG2rbnx/XCOR5YKagHzpycBZdCfUaCO1/hXiNzL4PjPz4I+TdZXZCGNCVQkGwd9HItR3TSIji/9gYc//4O6Gm3gJTO8Y2RiqaDnv51OO/aAlq5xMSfbnyU878PMvX0cY8j1WdD+eITcP64Ho6rHvUpBCIsvtLKJVIBTH33QTCjvgY21mBViwEgFRtEtUI0sNY9PlWCn7xJYY3v4sXaIwOcOSoAdA2r0uJRXBCL8m5bQWATBZowEGxzFFm6ekccLpCpxn0IxBVa/aoB+kUFQYxbDGA86lBSO4jGYAnCeAUCByU4S5C/f9zPpxuYZVLIDm/ktt3F4VWXieKEchnv7s32rwQTHPPDoVloMaiwSEFQkuXArMKAjFRjwLrGwTHOMJcjvR50DgUGfllOiqoC81tiHH2NQNu+wA7qAJl+junvI+JUCCYI7Uvtg6nbZiA9j8JMImFHhQJB2Zxob8kYYqHVBJ+RYGhrHuW26ZIbpNU14NhK67V/hHLhvXyaiv+8M24FXXZb0Pf4tHUI+hpVdYErZITqkvJMFKQreN15FnYrOjNIpkH94OGg5xxPrDrEf0+dMyUbTPXA++rd3H4y+WQ4rv87iIv3ztHjoASzi9K4fbva5Kg/Ov1sOK56FM67t8J1/1G47tkFx5W/lszcYgFxuOC4+UWQEy6QX5t4EpRLHoDz+zVw3voOlMXXjfnzh4Oy4if833Xbfmjbng99go2lMMaCtBhMCX5wBEjtCmYWCCSDwsRXDwDAS3t6gu5vTAAvAuLiCwTMVhDYRIVQIOhwWD/JptOXc9tj+RCIE7DmsRQEcViVlxQEglHXKOLANQEVBL1uFdtbeIlrsB5Ysc3gzY48/oDuBlPyyMX2guHieWFfg8y6CGQGP+H09U5GtuohKgisajEA5OJMLOMOtwl/BwtK0yWzNDPIbFjLbZNpZ4CIRjsWUZpp+xD4EQsE4Rp6ygqC2BQIxFYtZkGLgda0w6dmGn1TAuWcu0IeTyiFcuGP4Lx7O+jy74DMuRR0yY1wfO11OD73q5AF+K1Ce8FJIdQDAKBQgvOnZYMRKiUaaJufMtUHJtHQGMOqw7L/gLbhCaB1b2AnIVCuetSQ189cwYBVbK9KREjmBDj+7TU47lgH5drH4bj5ZTh/XA/nt9dDOfduS2JGSVG1pJBR3/uZrSKIF4OdgLsvsO3MNFVJK6oRTFUQJGmCwcr64OOwxt74FwggRkO77QKBTTQIA8H2GBQISLXgQ1C7OuSEskyQcHMruH28YUpcFATCSpk4UB7d35f4HgTrGwe5FaxZhWkozpIl9OdM5QsE7zQpvLTJOwwMCNGZEcD0gz0AIwXhu6ITQqBc+jP+us07fYZj4d4PY2iKkUkhAFxQ1I/PjbyHrw6/iMtHVmL7wdgN+sXJysIxJivRIBYIrI431CMaFaZykoHYYoAwkwzipyAQPQjMbzHQNv2V2yYzzjM0+SLFM+C47Kdw3vwSHNf+AXTm+WMeLxUIysb+zF1Q5fONeNF1Pg5QnQ+M6oG66n9CnJX87Ggd5tRNeWkUC4tdUIVUAbrkJtBJJ4mnB2WeUCDY25H4BQLA9/1GJy2CsuR60DmXxCQ6WTnvuwDRDcNb90D7NEhahI3lBFMPmKkAlgoEYpRtFLBmoUCQBAaFLf2eoOoiAGhIAAWB1GJgmxTaRAPpExQETuv7+MnkxbyZRl8L0Bp85V2MkeM9CMQCQRwUBGKBoHVv0Gq61BubgC0GGwUJ+xmTZfUA4BtM5el8CLrdGkZyxCSD6KIOGWNSgcCTF5k7L510EuiiL3H71Ld/AjYSnmS/a1jFiM6IJstJOQNHs9CaPoXnr1/Apc8vwlP938evB3+Of/R/F0/vPgfDz38TbCi4xM1MRAXBwnEmK5HAvG5kNPFtJCQG/gN+xKjDlFYQ5FVw26zH+OeXjQwCnXX89UqsTaEYfZ9ca1MMmHcE2pa/c/uCxROaQbgFAn+6jEYU/DKDvydt/ROWJjrEE7ENblllFuiuV4AO3d+g4oKy4j8NX3PGBL7F4EDXSIgjbUjRdNBFX+T2ae/91E40iAcWGhT6rieYcJukIGCMSRGHNAlaDMRnj56EiDt0iR4EtoLAJgpoP7+y3eWMgYJAcYJMO4PbF8qHQFyh5VZwpRaDOCgIsop4SZfXDXQEMSpMghQDsb3g5BAO2pQQnFzO9zR2uoSCR/fh6G6mp5GvfqbnQc0oDH38OCgr/ouPhupphLbmkbCuIfkP5JirHmCaCvX9X8D7q9PAdrwMwvhCUxo8oBv+CM//nSY7F5vMtqN8ldwKBQGrWwvq1f3N5VaAlIffRhIptoIgAMmLvMDnSzAIFM48ORNBRKmjVYhF4f42U+XOrOYNXg2VkQ86z/ys+xFVw6423qBwvM/c1HwXKnN9BfS/uy7BEar7t/AOQxV8E44X1oo+OZMyJcUEXXxdWD4/04UCQW2XO8SRNsCxqEWdioAd3QW269U43lFqwsTCrMkFAul63UfAVBO+J/uO8s9VZwYg+nklIJ80D4V8LSE8CITvXduDwCYqFLFA4IpNEgAV4w5D+BCEUhAwzzAwrFtJpQqQER8HVLHfVpTbAgATlBoJWSAQ+i5DOWgDwJIKvkBQT4SVvCiNCkX1ACk5AYhCOkcmTAE98z+4feoHD4F1GS9kSP4DWeb5DzDVC/XvX4H65o8BbZwv4PZaeB67CGygw7T35y4/6OXkck5KMLc4bYwzIkOON7wwJjnifsSow5YUjjqEaLgXToFAaKsayQ+/FShSiMMFZOoKh0wzNatb3ci3F9CTrgVxmp/msb9zBB5df1dFtiNoe5fIsmOGsR7ixK/Sr+de0zY8AeY9via6jDFpFe8C116wI59w+5Szbw/rulX5vE/B4R4Phr32ingoSMkJoAuv4fap7z5oiveQjXGkFoMC8wwKgWMTTv0CmKYCJvibSP4DZXNBgpi6JhqbE7xAICsI7BYDmyhwCgWCnhgVCEj1cm6b1a4OKlETFQQtA16oGgMGBPVAVjEIjc+fBikfu0DANA3obuRPioPz8Vh0D6tcdItC5L5MPUsq+OLBTg+v3oi6xaCNj74kxTOjuh4AXyyZPsLT3Q/vC98wPKixyn+AaRrUZ/8N2lY5U7o7byb+5rocdZSXgKOjDt5/fNWSAZnYXjCnOA0uxfzPFhPjDU+IXXsBAJSOpU5KMaS863AKBMLzLhKvkGiQjQrNkdaz3mawPW9x++gpN5lybZGadr44O2eMZ6+eZbpEmb+mXYF+RWfwOdAObfuLptxfonCwe4RTcmU4CGYdeIY7hsxaEXbMZoaTYnJuoGDIABy02wzGRDnvHq5oz5o+BdtpqwhiiVQgKIysDXMsrDAqFNsLksGgUGMMW46GbktNCAWiFHNoKwhsosAxwBcIemNVIJi4EEjnBzPBDP7SHJSLI9OYL6eYJYBB4eh7iwoC8efobwVU3WAjIz9mTu1G2dHKTwpnFaYhwxn6oyYqCD4ZEuT/UVaZ5S++6B2ZSWYBlIt/wr/P3nehrfujofOtSjDQ3vup1OeMrCI4bvgHer+xCbdm/xiL857DCy7e5IzVvAlt6z9MuQc922JgUMi6j/CfE6qAzDzX9PcZi0k5/O8vIVyI40VOKUB1BZOhLjCDqw9SgSCGCgIAQK41UYfa5qd9ioRjkPJ5IBONmd6FS007v9I/u8hYgeCsysCAcIik46m0S7nXtY9/H/3NJRBie8HyMgZsf47bp5x2S0TXnl5gtxmEAymbDTr/Km6f97Xvhu3tYxM5rMtiDwJYVCCQDAoT33/gYNcIetyhVUU97gRI8nAKcaaewZRLGLELBCbiEgsEabGZaBPFATLtTG4fO7Aq6LHlWWKSgUeWkcazQCAaFTbv4rcFGTvJn4xEY6vQcz5/nElhebaTm2AdgthiEJ0HgfzFZ450ji69BaTqLG6f+sqd0Ha/Efw+VA+05l1Qtz6L6p2P4e6hJ3CD+xWc5tmGidnRy+G1mjehvvsAvzO/Es7bPgKd/zlUT0hDRbYDbpKGf8u6D+sd/Bep+vqPwDyhZW+RIBkUWlAgENsLyJSlIBn5pr/PWEwUCgRN/albICBUkVVNPcaKfFKLQUFse0mJkGRghoKAMSa3Fyy5wbIWmD2CgmB2kbGWnukFLk7J9DsnP2Fj9RugNWyN/gYTBLG94GbyPu9Vk1sBMmtFRNeuLuDbDGyjwvGh5/+ATzToPAT1xW+GNCxkQ93Q6j6GuulvUNf+Hur6P/lSrAa7YnTHxw+MMcmk0GwPAgBS0cEcBUHyRRzuFNILThEWycYqHsQKQilvAA8AKVawsy5XLMVgw31weAJfrm44MewqGOMMc6HTz4ZaE5iYabUfQln2Tem48hwndulWWI72B1EQxLGnX1IQtO8HUz0gyrEJiLiaXlAZozszzvbW8CeFSyoy0LDXN6mqp0KOepQFAkjxPVMBExZ0CKVwXPN7eH55MuA59uBUPfD++UqfNLX8RN+Ap/sIWPNOsNY9PuNJAJcd+5+foTdK4e2+CcryOyOa3LKOg/A+cxNn8IasYjhvfXtUKkgIwbLKLDy7uwce4sTXs/4Tm/u+BId2bPDa0wBt3R+gnBVez+1YSBGHFiQYaHsF/4EYxhv6mZTLFwgaej1gjMXUByGRIPmTuMIc624YN42AuQf4zyqh8ORPteYGQyE++/uiVxCw+g1A277ADuqQklDMZLeoICg0piAghGDZ5Cw8V+Pz4zmgTEF9yTJMaV0zeoz28e9Br3nMvJuNI5JB4dHnuW265AYQJbIhophksL/TVhCMBy2fC3rGrdA++s3oPm3z02DtB0CqloGkZYP1tYC17ff5CoVSFhIKUrkEZOYFUBZda0pL4XFP31FfpPQxVFc2XBYU2aW2BcEYMVyYZxhM/2xFcigIdgoeXSeXZ2Dr0aFR75gRlWHYqyHdEec17LRsvmg60g+k58TvfmKMrSAwC8E47ygtgsOCXuNQkOnLuW1WuyZo5VmUcjf1eeQEg3gqCDILgFxdj7jq4Uz2kkFBICYYLCgdf4CqTzJopKXQ9B/NvqNRrWzL+b5TI76WCCmqhuMLjwtvyHyS/Q8egvb+z32DnKbto8WBYGQMtUB7/xfw/GwO1A1PhOUHwEYG4f3rtcBQt+7GKBxfflJqpzhzckBGfECZgjeKr+NeVz/8NZhqzup3/4iK/Z2BlTMCYEGJuaZsTFPB9q/k9pFZsS8Q5KYpyHEF/mbdKkPHUGrJ8fRE4kPAxHjawmlgDvNN/MZCUhD0NIY40jjaJl49QOZcalkbm1dj0mTUqIIAAJZV8n2n/8j9AretbX02JtGoVtPS78E+3bPpRPUAcls2c8coUXhEiAqCWltBYAjl4vsAYULP6jdAW/kw1Lf+C9ra34Hte2/stkOm+c559wF4fnEiPL+9ANr2l+zoxDEQx0jebGt8reQWg+gSlFhLjc/s0E/BFJCMvKiuGQt2CQqCeSV83DcA9CaAikBSEKSYD4FdIDAJJvRqNtMiOGnsVs9I+XzeNG6oS+pNAmQzuKP9XrB+0YMgvqkAokSKHQkMXJgQ+UcKEqtAMKJq2C1EbI2VYBDsGC9xoM0p+FdEqCJgw73AYGdgh+IEwoisMgJdcBWUKx+JKhlhlMEOqM/fCu8TVxqSNzPGfDJMQWanXPIA6IxzpOPPquQf+D9g1/ligfz0NEDb8c/I7l1ge8sw9GWOGRNcyEkz112YNW7jE0gyC0EqFpr6HkYRfQgaEsGJOF7khZ9kIPoPiGqqWEAERVbUBqnuAWjb+JVp5ZQbo7rmWNR1j8CtBj51xZkKCjONr4IvE54Pj/SfzKdSeIagbX8eyc7aBl4qe5fyL26bzDg3KpM2MerwgK0gMARJy4bzpud4t/soYQdXw/vkF+H91dKQEdipjlgg8ORYVCAQFrSifr4mYXsBILcYzCtOR146PzZKBB8CIhgVspHUSjKwCwQmwXp5BUEzKUYs1TGEUpCq8X0IxKjDRPMgAAAyeTG3zRp0BYKOQ/zB+YnVYlDT7uYitiblOFFkYIA6X1AZHIQ5bQbSeQWVlkTgKKd/DY6vvQGMI6NGbjnIrIvw1+xr8b/p1+NF1/noQ6Z0GKt5A56HF0Hb9dqYl9NW/dJngKaDzL8SdPmdQY+fXZSGIp1RZ503Dx1zeLmztuFPY/8MBhFjfCwxKBQ+42T62XFLIJmYaxsV+olIQSD4D4h+LDFBVGRFaZCq7XgZcPcFduSUgViYsCH7D4SnwJgjPB+6RihaZgnPh01/i/wGEwS9/0Aac+OSPr5AQE+9OarrVxe4oC8XH+m1ow6NQkpnw/nNVSBBCtwcVAEpnQ264GrQ027xxYaOkTjBmrbD+/sLfWlDKRjZNibCSr7XogKBFIHb2xSVYlEyKEyCAoFHlVVec4vTOQUikBgFAjnqMLUUBLYHgVn0BmkxiKGCADjmQ6CbUGm1q6GcfQd3jKggaO73ggl9pvFMMQAAOnkx9EMJTkEg9lsVx9bEazwiaS8AgLIsB4ozFbQN+h6Kh0gZTtO9LhkNGkWYmJA86xQXdMa5cN69DaxpO1jjdrCuehDq8CVNlM3x5fNmF4Mxhm/9fAfUYyrUTDaElpPfB/3wYb7fa6Ad3j9fDbr0q1Au+wWI0Pulbn0W6us/5G+iZBYc1/whZO+734fg5b29o/veKf0CvohAUYDtXwnW0wSSVxHsEobZ1MSv0p1cIRdCokUTCgS0+mzT38MoolFhKisI5ALB+BPtxFAQCCtcXVEWCITJNF18XcR97UYQEwxmFRpvLwBCPB8mfBbX46HRbVa/AaylJuz4v0RCXyC4YmQlMj28ConO+0xU1093UEzKdeLIsSIhg0/dEW7BJlUhRdVwfv0tsPZaaPXrwdprAdUDkp4LUjwDKJoOUjwDxCH/fbOeJmh73oK26UmwQx9Lr2vr/wRWvwGOG58DKYpxSkqCEjMFgTPDpw7xL8oxDehpitg4Wow4pEngP3CoZwQ6kRfKsx3ITVOQJ6gre4cToECQJrYY9AU/7jjFVhCYhKggOEqL4FRiWyAg1cu5bXbwIymWI5iCgPU08RcSHbhjDJkkKAiatoONDIJ5RyRTF1I0I5a3Ni7bWvgVLCPtBYBvYDq/JHCsWUaFrJf/3UY76R0PQgjoxIVQTrkRjot+DOWCH0A58xug05ePFp563Br3BUFcWUi/6Adw3rkJZMpS6Zra+j/B89CJPm+CkUFfW8GaR6A+I0iV0/PgvOlZqZAgIvYZv9JTKf3NiRPvSNgoFAhEp95oYaoHrG4tt4/OWG7qe4SDHXWoIwIpKWup4bbjoiDILvW1IfkZ6gIbjmxQxDoOgtXykmbllBuiubtxqemILOJQj96nBADe6CwEEQpvahKrCHrdKlfI/or7Ze51evJ1QSee4TIlj/chONyTws+DCCFF1VAWXwfHRT+G45L7oZx7N+iJnwUtnxfyd0TyKqCcejOc31wJx3e2gC78vHQMa94Jz6+XQWvcZvWPkBQwYVzpzbZunCS3GURWhGWMBWkxSPwCgage8Buayi0GCaA4Ej0IPMPBjztOsQsEZiF4EBylRXDE2MGblM0FMgsDO4Z7fD3KOoJ5EKAntpPI8SC5ZYC+/1H1+JywO2p5Q5a8ieNOBmONrCAwLivXtxkcFgoEogTOMFLxJ76/WwBoH/Ry20WZvi8GUlQNxzfeh7LiJ3yOPAD0NkN9/lZ47psCz8/nQH3lLj6xgDrguPHZcZ3iAdmH4KMjA8AJ53P72P4PwviJZNoGvDjYHTDmclBgkckJBuzIJ5ziwptRBBSfYOp7hIPYYmArCHT0NIxpvMmGegC9SogqcXEfJ5TKMtgI+2TVTU/y155yqqHPZzSIg89ZYRgU+jlrivx8IEv4woa2+RkwlX+OJQsbGgfh74KboR7CWd4t3OtKlO0Ffirz+OdBfY9tVBhraPlcOL78FBz/8QFQLCymDHbA+7sLoR3eFJ+bSyBkBYGF4yRRpRVpG1dPAzCki7RMywYmVIU+PkHYJzyj/X4luaKCYCT+CgLi5Bd1mCe1Yg7tAoFJiCaFR0kcFASUglTzufRij7KoIOjv6+ZlM4qTLzLECVrF/xzawTVB2gsSSz3AGIu4xQAApyA4rJikIBBcyONd/AEgudsXZgSKAURxQDn/Hji++aE8oAGA4V6g4yC/jypQvvB4UFPCYJxYko4CXbW6a1jFoSLev0OrXW3oWqEQ1QMnlmQgw2nu45bVruG2hyqWxDVWUGwxaEzhAgGyigB9AoG7nzeTFGBHd3LbpHgmCPnfOAAAIABJREFUiDM+cmySLxoVhv/sYZoK7RO+QECXWGdO6Ec0w5teEH6B4MTidOTrng+dQyr2lF8MpOmK0X1Hwfa+HfF9xpP1jYFn01fcvCErmXamaa0TU0UFQa9dIIgXdNoZcN6xHnTB1fwLwz3w/vkqU9JKkhWmeiWvFatSDIAgyVsRtnFJ6oGyeXHzHwqHA538c2DmBN9zIlf0IBhOBAWBsKgzYhcIbCJA7ONvoYUx9yAAfD4EejRB4pnhpNzgp1gVIg5zKxLiISMVOva9B9a8iz+mJH6rpcGo7/FwsqjcNIpp+a4xzuAZS0EQqQeB2D5C4tw+AgAdQ8EVBHpo5clw3rEB9LzvAcoY/4auLDhufhnKoi8afn9KCM6czK8SvqvOAYju776rPiojJ7FAcKoV/gOHN3Dbw6WLTH+PcJAKBCncYkAIkVeKhFUq7jWhlzSeWdaR+CeIsL3v8INuZ0ZQqbOZdA15ueKjSyGYLKhajKBQgjMm8Z/XD5uZdP/a1mcju9E4s+FYgcDFRnCdWzAnXPpV095HVhCk7vMgESBp2VC+/BTo8u/wL/S1wPvyHUHPSQl6GnllanYJmNN8Q2E/ks9LBAVYwNcmwl03CdoLgDFaDEQFQSKYFAoKAtgKApuIEJIAWmghTF4wNAQVfQjq1kouqeVZgRXbcq2dey0RVpgBSKvBrH4DtO0vcPtIxYJY3tK4iOqB+SUZoGGs6M4qTBuNxjxC+Txy9Db5PBjCRfAgQG78f79ii8GEjOCmZSQtC46L74PzeztAl9/JRz9RBWTeFXB+ewPorPBd0cU4s1WNXr6tBQBr3x/2df1I/gMTTfYfYAysfiO3b7gkvg7GwWIOx5LVH++QQkHu2X4w+IEAWHPiFAgk/4QIVrjUdX/ktun8q0DSc6O6rfE40MU/H6vyXVAiLNKfJfiUrDk8ALpISDPY+VrSucFrjI0+mz4zsgpFTKdqySgAnf85095L9iCwFQTxhhAC5dIHIRYJ2M5XUzYCUSzckoLIDAONIim0zFIQlCd+ggEgFwj8Kq+89ARMMRALRSNDwY87TrELBCbAvG4ua14FRTvJj3mLAQCgdBaQUxrYdveDNfA9hmW6NoMKjS9skASYQAK+lW4yeQm3jx3lFQS06oxY3tK4bIuivQAAXArF7GM9syPEhWZSFHiRsYgix2QFQfx/v2KLgT5WLBhkwlQ4LvsZnD8+BOd3t8Nx+8dw/lcjnDc9F3GbiehDsObwgNTzzVr3RnRtVWPWKwg6D/FFSVcWRgri60g9IUNBuiPwzBvwaOhNBKOhOCE6hLOO2pDHSqtB5fMsuScjiCtc4T53WNdhsJo3uX309K9Fe1vjcqBL7G01rt4SOTOYT8nU04E8nbrCMwht9+sRv0c82N/pRtcxd/Cvu5/jXqMnX+dzWTeJylzbpDARIYRAueR+kMpTuP3qB7+I0x3FF6lAUDjV2jc0KUpWkwwKE79AMOTRRpNNAIDAF4kKyB4EiVAgIC7bg8AmWgT1QDvJh0aUmJsUAsdc5CUfAr4yXJ4TWLGt0IQWgzzBHC+O0PmfDf1iVnFcDdmCsT3CBAM983Xn1Es+BOG1GTCvGxjQKUQIBXLKQp8QI+QWA2OxZ4QqICWzQCcvBsksiOoeFpZmIDct8PhrH1LRmS1M6CIsEOxoG+YmxhMyFMyIYrISDO0wrx4gk0+WjR1jDCFEUhGkct+xqCBg7cELBEzTZA+COMpFZZft8EwK1fV/8sV3+a9XMV+ajFhBrdDbGon/gJ9FZRnI0kkAWwa8ONDtDdJm8I+I3yMe+NsLlnq243Tvdu41eqp57QWA3GLQ1O+BR01dRVEiQagC5XK+IMD2vQ9NKFSmAlLr14Splr6f3GIQwcLPyCDQfoC/btncqO4rFohF3Kn5LqQ5fM/ZHMGDYGAkARYXJAWBXSCwCRPWJ7cXAIiPggCQIpm02lXctt6osFwoECSKggAA6MnX80Zf+temnx1XQ7ZgRGNQ6Gd+id6HgP9dhG1UKCYY5JRamkFulPbB0CaFscLXZ8yvEu4kgrRQMMU0yprDvOx42eQs0/9WWT3vP0CmWD8BM8JkYdUwlfuOSaFQcApRIEDXIZ+JoZ+MfH6lOsZEY1LI3P3QPn6M20dP+1pMntX7hcFndRQFAgclOF3wIVhzpB/0pGu5fWzvO2A69WCi4y8QfHuYj2kkJ1wAanKsZrqDolTXzqix1E42STTotNNBpgnmvBv/Ep+biSfCwguxuECArGJAH1E53OtLsQkDdnQXV4RFYVXCJXoFY79QxNUvnGQJPdkDnkQoENgeBDbRIhgUthJfgSAeJoWAbFTI6tZx/etl2XoPAlFBEH8TOz8kpxR0afDIJbr8ztjezDh0DnlxWCedclBgbgQZ3Au4AgG/2s/CjDpkgv9AohR/OgQPgsJxWgysQoo7HBQUGxFGS34kFAjOEAwRzUAsENAYrNAaYWo+v2pY153CCgKpxSC4B0Ew/4G4Fj+DxBwyzdhgTVv/OB+9lVEAGoaBaDSI7tjRqnZEI9M1hwdAJi4E9K1Iqgfajn8iWdjQNIi53gO4zMOntCjn3GXJ+9k+BIkNPf3r3La25e+ReR0lMVKLgdUKgiBRsuGqtCT/gSRoLwBC+w8ACVogEFoMbA8Cm7AJqSCIU4EARTN4MzrPINiRQNZtBedBICoIEqfFAACUFfdJXgT0zG+ATl4cpzsKzqdCe8HsovRR6VQ4cC0GgoIAYSoIRP8BJID/AOCT8+sx2mJgNssEI7K3OvK47XC/tAGfeeCaI/3cPtEQMVqY1w3WxMuDYyHhNoKY2nEohQsEmDAV0E/0exrAPPIAQ0owiLMbNUnPATJ0LTyqB+hrHvc85h2BuvrX3D56xq0gadkhzjCXWsmDIHIFASB/bj86MuDr3xZUBMmSZjAwomF3Sz9+OfgQt59MWiypDs1iipRkkMLPgwSEzrscSNd97w20g+15M/QJxyGxNikEgkQdhplkIBYIaJIaFM7QPaPFGOhBT/zbkYjT9iCwiZa+Fm6zlU4AAChx+tcdz4egXK8gYEKBIEEmkX5Ieg4ct74D5dKfgp51OxxfeQHKZ34Z79uS2Cq1F0Rm9lSU6RiVZYpJBmFHHQrZxonyu+0UPAgKg8QcxgKxz/jT4Qn8AX3NYa+m7Ot0o03XQpHtolgY4d9CKNjRXb5Jm5/8ySC58feWAHw9hXoOpfCEgDjSAFGu31EnHacd3sRtJ4IbNRETPdoOhDgygLbxz/wzx5kB5cxvmH1rQREjDtMijDjUs6QiEy5dm2B9jwf1PSOgJ13DHcdqV0uLBPGCMQZtxz/h+cs18PxyMTyPLof3mZugrvpfHPzoOTzR9yMs827lzlEu+L5lipXKPLvlKJEhzgzp71nd9GSc7ib2MK+bT3oiBCioDH2CSUSbZHC8RBzOLNQpCEQPgoRQENgeBDZRwoQWgxYSZwUBADJd9CHQFwh8AyfCNLnFIEFk6HqIKxPKOd+B4zMPgc693CfRSjDM8B/wM7fYd269Ep0HgZxgkBjtI4ngQQD4PEL0fcYjxIWh/2fvvePbuu7z/+dcAMTg3qREStTey7IlL3mv2HHiJM7ezmySpkmcfps2v+bbNmk6Mpo2u26zvrGTNI1jO45nLG9bsiVZtiRrb5Li3gMggHt+f0Ag7vkcgARJAPdc4Lxfr7ziC14QVwRw7jmf8zzPx1ebOIFzuU3kNND8gUubAhm3GvG2vcIxm78xo79/LrSQBUEhWwwAgNWQVoekkwHnHPzsLvE5CqhBZtrRg4fHEf3TPwuPGVvvACupTfGMzJKsxeFMWswmw+c2sIV0H3nubKzbiSDp5SbM/ffP6bUyAQ+NIPLTtyHy83eC778f/Nx+8FMvwtzzK0Qf/BJWPPRBvDX8hPActuJ6sNVvzNo1LSjTCgLVMS78gHDMDz0KHhyy6WpyTP/p2H0+Ttn8WGE328whqJBzLtvSHGsxSJ1BMKZCgUDKINAWA81MUSykEAAMIhnkp16MJZ8iUSCo5f3wwLJY85WDeTPvly4EaAeDjXWz3zWOFwioggCDreDRSJJnpIAubhUoEJicS10M7MogAOR+5x3ueuF4pjaDJ0+J9gLqY84EtEBgKFQgSGYx4Nx+qaBdTNvJoO+U2GmkqBisfmX2L2wapALBNIGd5gs/Fscbtw+ua/4yG5eWFFqIWlyZma4h25LkEACAsf5twuPmQXtl2dw0Efnl+8Fn0HZx1N8I9zv+M6t5F3IGgVYQqAZbcBFgHaeiEzAPPmLfBeWQXOcPTL7OXFod9p8GgpZQQ18ZkANbxFwZCEYFdaXHYML4EKAZBCp0MZAyCLSCQDNDeAqLgV0hhQBiA751sIuEwM+rCIqLDJQWGWg0e4SnqCJBdxrBiIlDvWKBYP0cFASra2IV7HHmQxezyN7NKDCY/oJVVhDY//4OBqOwdroqKTLgm0VWQ6a4ukUsEByK1AnHMykQRE2OP5ECAf39mYC3kfyB+Rsy/hqzpb7YDb87Me4NT5joG7e/n7FdTNfJwKTqgabNYIZ9BbNJ6tIvEPDgMKLbvyE8Zlz2ZznNs6E709TqMlukHILzBQK2+hbhcX78mZkVbzOMueMu8IMPpX3+ftdStL/nwazfE5pJBkHrsFYQqAZjDMY6saU0d1Dw5lygli9qrcoWUqvDGVgMpIBCu0Nt0ySZesBlWSNJCoKIAgUC3cVAM1f4iFggUMJiwBiMFTcIj5mHH5v873klHsw3RWuEKiF2TuP1niCsY9nCcg+q5iCbjysIgCSdDGZgM+AKZhD00oBCG9UDALC50Y9yb2IYPMHFAsFMKvuvdI4Li+EKnwsXNgameMbM4WZUniAopCBgjMk2gwKWFbOapcIx7xIX2pzmDywQA1ntgtWtEI5556GU55rP/IeogvCWwHVNdlLxU0HDMOnO9Wy5eH4AViHg4b4QOkfCsZ7jxRb7RGhYsorkCh4aRfTRrwqPscZ1cH/qCbg//hBcb/4Wxja8Fw97Lscvi27Bh4u/iuur/h9WrMh+3/QFpO3p2aFwQSuKVIUWCMxDjyQNVM03pAJBVY4KBBVzsBjQUNtGZ+YPLKsWrRzJFAR2jxWMZBBwrSDQzBiiIIhbDGzcGAUAGCtJgeBQokDQUOJGi0l2mB0gU1KRvR2iemC2AYVxrAUCKYcgzdZ7nHNgiCSPl9lvMegh9oK5FFIygdtguGphYpe/zSAKAvo3nII/nRDVA9csLMm8iqjnmFjFDlQD5U2pz7cBKaiwgHMIqF2An9snTHpogcBQpUBQuwywKhn6T4OP9Unn8d6TiG4XU/GNbZ8FK67J9iUK0PA7WqSaLaVeFzY1iOP5c2dHwQwDxrKrhMf5GbH1aK7ghx4BRi1ZQp4A3HfcC2Px5TCWXwvXts/gsc3fxu2l/4ZPlPwd/sd7EzbMK8+JwrHcG1MrxglGuJRBo7Ef1nyRaEGcGAU//Lh9F5QjeB8Jjc2RggDUYjDYCm6m970wzzmzxeGxKfIHgNhczBoKyxEbL2xFZxBo5gIPjwOWQJcwXOhnZQDsVRAAAFtyFeCySPx6jk1KXBtLPFgUJTvMxC+rSQ8poLBu9vYCACjzuiYTuKUcgnQVBGO9QMQyIHtLY+3LbKZ3jLY4tF9ObbUBdJ0v7k0ykn46+eMnh4Xj6xdn3l5gSvaC9crJC3WBwELNUsBjWWCO9U4W7ng0At4mJsqzBRfm8upSwjz+2C65hWQ75JH77wQilgJpcQ1cV/5Fti9PIlsWA0C2GTx79rzNoElstTuVyiKbmCeeFY6Ni+8AI0nsO9vEna+t8zOrbEoFY3I3iTNDBTweKAozDBhr3yQ8Zu6zP3gz69hlMSgKANYiqhmVN3RS4NyAQvF7vyxJG1rlggppBoG2GGhmBM0fYNXgLPZntTOkEIi1CGSLLhMei9sMGkvdaDHFAgFyJK/KN+QOBnNvazfZycAQfbzptjqk+QOq2Ef6g2KBoMpnr4IAAK61FAg6SYGAD3XS05MyHIrihVaxg8F1izJfkJE6GMxTx14QhwYVFnInA2a4wBrWCo/FLSK8dbe4I1HaoJQahDWLxQp+RiwQRF/6mRSK57rl62D+iqxfmxXOudROs6V8bi0OraQKKpRsGNN0esgW/MRzwrGx9GrpnJ3t9hQIAKCZ2Axah3RQoYpINoPXHwSP5u97xTmXFAS5shgAs7MZ8NAI0HvC8ksMqZCrKkdoi8M0CgS2tzr0yG0O7bY95BJdIJgjqQIKAZtDCs8j5RCctxk0lnhki0Gu5FV5hMk5XuvKrMUAsBYIaKvD9AoEUDB/AIgl2Vqp8NmvIFhR7cX80tiCIp4fEoe2ME3FI8eHhRyK5VVFGd3FnLyednVbHMah8m66eCs0aI9q3h5TgfCj24XHjSXblFKD0DwE89hTif9ufw3Re0WlAGu5BMaF78/BlYl0jUYEKWqZ18jouHIZKRDs6wqifzwi20dsUBDw4BB4B+mJvuhS4TgUMfFKh1jEpu0bs0mTpCDI30Wnk2GLLhd3tccHwC3f+bxjvF9Q/8LjB0rrU5+faWYRVMjP7RfbMtYsjakRFIdzLocUJikQBDzi/c/uAgFzeUQVNjeBaOHMZ3SBYK6QBYR1B9JuiwEAsJU3Csf82FPgkRAai11okSwGukAwU04OTGDY0o6lwufCwgzsXsU7GVCLAW3Lkwqpg4EC+QMAMBhSr0DAGMM151UEVEFAFUKpuO/woHD8xmVlGbk2K5xzqYOBoVAHgzjaYiDC5m8Sjs2TL8T+/4hYIGDLrsnZNaWDsfhy4Zgffxpmx+swz+xC5K5bRWuBJwD37T8EM3I/pThF8gcWlhdltNBS5XdjrSUXhgN4oXUs1lrMbbGTjfWCj3TLvyCL8K4j4oKhdjlYoEo4Z29nEBOW1jELyjyYV5o5hcV0LCAFglZtMVAS5nLDWHOr8Ji57/c2XU32SRZQmMsCrdzqcHr7KA0oNhxiL+gajQjz5GKPgcYSWT0qBRXarSAA5ByCAgoq1AWCOcKHRY+ydQdSBQUBa1gDlFl2j8Nj4MefwULWgwASFb1RowTwV9pwhc5mb4ecP5CJm0xcQXDKRRb2A2fTkv2pajGQFQRqDEHXLooVCHpZOSKwFC2Cg9OmOQcjJh46LuYPvHlFecavEUPtYlq8JwCQfvUqQC0GpwbDMAtIlkdhdKF96gXw4S7wU88LjyeThtsJq10u+ewj39yEyH9cJhXGXbd/H6xhVS4vbxIpfyBDAYVWkuUQMMMVC3O0wLuPZvy1p4L3HBOOWZ08HtiVPxCnuVzuZKBRE8lmsO+BtMPznAYtEAhtwXOAZDFIS0HgzIBCOX8geRGXFgjGVSgQFHAOgRqzcyczhcVACQUBYzCIisDc/wDmj4ntto55cls9zRde7cy8vQAAVtX4wACMMT86mWVHyIymF1Q4RBQEqhQIiIKgzGu/ggDApIKAMwNdTNyBm05FsP3UCEYs1fGGYjcuzsIkXM4fWAdmqPH3s1LhcwnKkIkox7kR+3rE2w2rWxnrNhEnOIToo38f+y7Hz6lfraSCy9jywenPufxTcG1+Tw6uJjm0QJAJBRclVQ4BTT2fSbuyTEALErStJgC81C5mo2zJdYGAqBV0gUBd2LJrAJ+luD3aLWVc5A00fyDH4y8NEk0rg0Bqcbg2xZlqQfMHkgUUAgpmEAByDkEBdTLQBYI5QjMIrBJllyJ/XWMtkY0d+ANqBkW/5GtscUGFb2SKV7toQOHcOhjECXgMLD7fBuaESwwu49aQmhRwRTMIBqmCQJECQWOJB5sbYzcCa5EPkL/jlN8Te8GblpfByEKxTZocKLx7QEPiCjuo0JBUBOaO/xKOjQ1vy+UlpY2x9SNTWh+MKz4L15u+lcMrkqEWloVZyP64nCgI9nSMYWQiKsuE09gFzChUQZCkQCApCHKYPwAAzeW6QOAUmLsIxupbhMfy1WZA51E5L9BKFoOpxw5umo7tYHCsf5YFggn7CwQ044FP6AKBJk2kkELL7qPdXQzisGXXAl5Ly7Whc3Dv/rlwzj5jMXrH81NKlk1o+FOmFARAwmZw0ph5gQDUYqBIBsFAUBzwVcggiPPW87aAmeQQjE6Y+N1BsUBwWzbsBQB45+vCMWtcl+JM+5FsBgVcIAAAY+Pbp/n57Tm6kpnBXG64P3IfjOu/LKggWPOFcH/kPrjf9A1bcgesnCYZBNmwGDSWeLCsKvF7I2Zs4S0nkafZhjZDSBYDYnnoGAkLGQ0eg2FTQ+buUenQRBQE7cNhhKN6M0JVjPXUZnA/uGn/Qi3T2NnBAADYTEMK+04CExY1kL9Sqa43U3G0N70CgV9JBYG2GGhmyxQKAhUsBgDAPD4YK28SH+wWLQavu5agbVhX9mdC+3BYkE57XQyrazKjIACANed/1+wUBM6wGJQrVCB4y8rYwr6HiVkcfLQ35XPuPTwohO80FLtxtaVtYibhHaRAUL86K6+TCXRQoYix5lZRumuBrbo5ZkNQFOb2wn3jV+D5u7Pw/O1JeL7aBc9fPA9j1RvsvjQAySwGmS8QAMDlSWwGkkw4xwoCKWitZolw/BJpb7ixwQefO7fTPq/bQH1xIpCMA2gf0XMNVWErbgCKLJ/1oXbwMy/Zd0FZQsogqF6c2wsoqRcT8sf7wYPDKU9Pph5wii2YdjBIV0EwFlagkKhDCjWzhY+kLhCoEFIYh61985Q/P+BainZdIJgRe4h6YH29L6OqkdW1sUH0pCHu/k9XIODhcWDMsqg1XLlt3zMFqloMgNhNa22tD32MLOTGUhcIfvZqn3D8vnWVWfne82hE6rPOGtQtEFAFwfECLxAwjw+uq++Uf2C44Lrxb3N/QbOAGS6w8nlg/uwoZGYD51xqo0ntLZli2wKx8Pfs2dEZy4QzSdJxvkwsBNttL4hDWx2eHdRzDVVhHr9U/DNf+51NV5MdeDQsfVdZrkMKDQOoIAqAgdaU55vtNKBQXQWhlYjJcaxfDilMhhRSGFFAQVBEMwh0gUCTLkPUYqCeggAAjFU3Aa7kX8qDxiJ0GdVaQTBD9pwTB4rNDZmdfMUtBieIxQDTKQiovaC0QZkwO6ogUMliAABvW1mOHqNCeIyPJC8QHOsL4ZkzYgDYB9dnqRNI73Gx/25pPVhxderzbWZppbhDcIzsIBQixtVfBFv7JssDbrjeeReMpgvsuyiH0zUaQTCS2GUq8xpZG1NoUOHOtjGES0nxNpchhSRnBmXzpHHe7g4GcWirw7PDhV0wVB227i3Csbn7V+CRPHrPBs4KIbEobZC85rmAVdCgwtQWJdrikDU6I3/g5MAEQhZLUV3AjSq/3OIQAPwecc0UVKBAwDw6g0AzC3hoRKgmhVgRBllilyHHSr4pYb4ysBSS0Cc9WwBAKwhmCFUQXNCYWW/nimov3Ibc6pD3npwyUFKyF5SpYS/gnEttDsu9Cn1JALx/fSX6DXGHtLO7I+m5394p9jy/pCmAlRm0mFjhnQeFY1ZvT0u5dFlapQsEFGa44P7Ar+H+5GNwvfcX8HxxD1yb32v3ZTmaU2QnemF58vZZmWBhuQfNloVuKMrx8kgZkQkPxOYFOYAP0CBa8T4RMTl2nRPvUVvni0WOXNFcRlodagWB0hirb5a7Gbz+R/suKMNI1pwcqwcmX1fKMEldYJQKBA4JKDzUI3b6WlmT3F4AAD6S7G4t/tqGbnOomRWkF3SPUQ1YJieqhBTGcW16V9LH/+S5BADQVsCtyGYDLRBsznCBoMhlYFmlF12sCiOw/O6J0SmD8zhpcQhF8gdGJkyYlvHe72bwqlRFQ2yBsWi++Pc62yH/rduHw/j5a/3CY5+4IHs7+lL+gML2AiC2Y1hkGf96xqNScagQYYYLxtIr4dr0TrC6FXZfjuOh+QPZCCiMwxiTcgieOzsOlDaIJw4nLyhmGtqpho7zB7qDQshXXcCdNfvFdEgWA93JQGlYUQDGBeJ8MbrzJzZdTebhfaeEY9tazKYZVMjHB4H+04kHDJfymwRxDpGAwpXVUxQI3OopCKQ2hzqDQJMOtINBt0tcIKhkMQAAtvZWsIY1wmO7XavwuOdiAFpBMBNoQKHPndmAwjhran0AYzg5k6BC4mNjFYp0MFDcXhDn2tWi7G9iqFuqgn/npW5MWGRzLeUevHO1aE3IJFIHA4UDCgHAZTAsJjkENKhIo5krckBhdhfA2xbQAsEoGMl3ma4tasaQgmjFcT6ZvcCuUDPJYjCUR3L1PMXYeodwzI88Lgf72YB5agciv7oDkV9/DObRJ2f1O6T5U447GMSR2qSmUBDwjv3i82qXg3myo1bMNAd7SIFginky3TAa1woCW9EFgrkw3CUcdpH2aCqFFAIAc3ng/tBvgfO9kkPlLfhQyT/CZLGFms4gSB+qHthQ78/K+53IISA2g77UN2o+SAoEirTCGaQtDhUKKLRywRLxpl1lDuDOP7VP2jqO9oXw/V1iLsEXL6nL6vfdaQoCAFhKgohoL2SNZq7Q7hgLK7KnIADkHIIXWkfBqYJgKFcKAjrOkwJBuxr5AwDQRCwGZ7SCQHmM+RvB5m9KPMA5ok9+07br4aM9iNz9AUS+dyXM3XfD3PULRH58E6JPfmvmv6v7qHDMct3BIP666SoIHGovAICDZHNl1VQWAyUVBLSLgc4g0KQBJ1LCLlYlHKumIABibZA8d+6C+87dGP7UDpxwJQYorSBInx1tYjjdBVnqLb36fIFAUhCQG5zwM5qES6vUNqFyi0MrrKRGOK7ig3jsxAi+8WI3hkNRvP/+M4J6oLHEnb1wQsQSlzlpS6q6ggBIFlSodw01meU08bJn02IAxHJhagOJcWt4wkSvWxwv+NC5rF7D5OtIFgOxQPASURBssamDAQAsIMqOVl0gcATG5Z8Sjs2XfgqzdU/Or8M88gTC37oQ5iu/kX4Wfejz+5DuAAAgAElEQVT/g3l658x+Ib2f1i2fy+XNGjmDIHlIoVMDCjnnOEwsBqumUBD43eplENDwSq4VBJp0oFLCDqa2giAO8/hhNK5FfWUFrDEJveNRNSp2DuA5kl5/aVN2Jl9rzrc6PGIsFH/QdSTJ2edR1GIgtThUtECAgFjoq+JDMHgUX36qA9XfOoDdJPjrn69pzG5v8Z5jQNQyoS5rBAtkryCRKWhQobYYaDKNbDHIboGAMYZtzWK7wxMR8buYM4sBeR1W1jj53/3jEcH7azDgwgxn5MyE+mK3sGHSH4xiZEJnkqiOccG7Aas/34wi+uuP5qyjAY9MIPKHLyHynzcDqQpv3ET0sa+l/zvNKHjPceExVmtPgUDavBlsAzflOThv3yccO6XFYdtwGMMTiX9PaZGBeSXJOxgAsoIgpECBANTKoQsEmrSQCgREQaDo+ieOy2BoKBEr+1pFMD3BiImXySLxsubspEMvqfTC62I47BI9crz7cMrnUAWBKhYDKYNAUYsBc3mEBGcDHBV8GABAb1e3LivDu9dkL3sAAHiHszoYxFlaqS0GmuzBOccpKaQw+yF8l5McglfHyfc/VxYDWiAorZv8b3p/WlPrQ6mN463BmA4qdCDM5YH7zaKEn3ccQPThv836a/Ouw4h8dxvMp/9t+nMPPwbz3P5pzwMQC/uztgwurrWt4M68JeKGRDQMjIjfax6NgJ+jBYINubi8OSMFFNZ4p8xBoRstwagCG5baYqCZDfQG3e4QBYGVeaViNa99WHcymI5d58YFiXms/VV2dq7cBsOKai+OuEQFAe8+Cm7KOzA8EgJGLNkYjCnTxUBqcaiqggAAisXvcjUfkE7Z3OjHT29tznrwlxxQ6JACgdTqUFsMNJmjczQiSFDLvEZOVEk0qPDFwVLhmA/nxmJAM5BgCUuUAgpttBfEadYFAkdirL4FBmnHaj79HZj77s/K63HOEX3xLoT/7WLwtr3iDxmDce2X4PmXEbCWS8Vr2n13er+f5g/ULpvL5c4ZyWZAcwh6jgIRi4+/tB6sjOSeKMrr3bSDwdTBilRBMB5WQEGgQwo1s4LcoDstBQKDxarmqjOfKAh0UOH0vHCW2guy21t6Ta0PfUYFupllpyoSEtvexKG+1NLG2I64AsgWA3WHHxYQCwRX1yZudD43w6cvrMYT712SkyKHEwMKgdiCwOsSZcW9Y7oAqckMVD2wsLwoJyn962p9KPcmxq6jEVE5OFUL2kzBQyPiRNVVJKieknUwsBuqIDgzqAuGTsH15m9KGReR33wUvOdYRl+H951G5D9vRvR3n5EXYuVNcH/yMbjf8PdgLg+MSz8h/Njc8+uk8nzpNRTJH5ikcupOBmbbq8KxkwIK93WLu+2rpwgoBNRUEDCiIOC6zaEmHaiCoMtITBRUDChMRmMpsRiM6ALBdDxHCgTZshfEWXs+qPCIq0V4nHfJNgPJXlChhr0AcI7FAICkIPjuNh9aP7sKez+2HJ2fX4Pv3DAfxUW5GT6d1uIwjsGYZDM4rHMINBni9EBuAwrjuAwmFIW7GckgGO2lT8k8tAhRWj9ZHDE5x0sKdTCIs4Co7HRQoXNggSq4338PYFgUp8EhRH56O/hY/5x/Px8fQOTRf0D4m5vAj26XX3/9W+G5cxeMJVdMPmasuRUossy9htrBW3dP/1pUQVCjmoJA3Pjh7bRA4Ax7AQC8Qrp9bZwmzFvuYqCCgoBcs1YQaKaDcw6QLgadljaHTrAXAMD8Uq0gmAkm53ihVSwQXJ7lAkG8k8HhWRQIoFKBwEEWA1ZMkslHe1Ff4sGaWh8CntwNmzwyIU9oHKIgAOSex4d6dIFAkxnkgMLcKaWsNoNeg2QQjHRPtkTNFnxEVC+ykkT+wNG+EPotY22518CK6ql37nIBtRjoVofOwmi5GK5b/1l4jHceROSnb5vVrirnHObpnYj85uMI/0MLzMf/EZgQ51YoKobrHT+G+/33SDkBzFsMY+VNwmPmwUemf11JQWBzgaBygXDMe0+Ixw4tEIQipmQx2Fg/TYHAJc6tQiqEpusMAs2MCQ4KQSfcE8AoS3yQPC5nFAjmUQWBLhBMyYHuIAZDiUGr0ueasq9rJlgTVxAYLcLjyQoEcgcDdQoEg0FxsFdbQUBkw6M9tlwG7zkGmBZZftk8MH92QxEzyUqyMKE9kTWa2SJZDCpyoyAAxKLwKPwIMsvnPDoBhEayewFS/kCiQEDtBVvmBZSwO9ICgVYQOA/j8s/A2Ph24TF+8nlE7npj2koCPtKN6PM/QuTbFyHy3StgvvxzICwvutiSq+C5czdcWz6U0jrEVokFAn7w4elfv1u0RbAaey0GrGapcGy1bXDOwdvEFofGfGdYDA70BBE2E4XS5jIPagKpOxgASTIIlFAQFG4GwdTvliY1RD1gltQLx27778dpMZ+0HNEKgqmR7QXZn3wtLPeg2GPgyESL8DhP0uqQE/8aK1ejxSGQxGLgKAVBny3XIecPOCOgMA7teUxTjTWa2UIVBLmyGACxgFK/m8UmsIyhh5WjiVsW7aPdgK809S+YI3IHgykCChWwFwCQgnzPDukMAqfBGIPrnXeBD54DP/nc5OP85PMI/8flcL/7JzAWbpWexwfOwjz0GMzXfgd+7CkgScDyJMW1cL3h72BsuQPMmHoP01h5I6y/ibfuBh/uFL4PwnWERkWPPzOAmsVTvka2oRYH3m1pwTh0LjaWxPH4AZstEelCx6FN09gLgGQWA/sVBMwjXnchZRDoAsEs4aSCb5bUA5a1o1YQ5CcvnBUHh8uyHFAIxLzcq2q8OBwknQy6DknnyhkEzdI5duEkiwHNIMBYDnzFSXBq/kCclTVaQaDJDjSDYGEOCwRFLgMXzy/Gk6djSoEeVokmJOYEfLQXrDqLC4+RbvHYYjHYqWD+AJC8iwHnPCfBkprMwTx+uD/8v4j86Abwdsvuds8xRL53JdiKG2CsvBEYHwTvOgTz7C6g53jqXxinohmuiz8K4/JPg6VZXGOl9WBNm4XsAfPQo3Bd9IGk50tzpqoWMLfN9puaxbFuU3Fb0sAZ8PA4mMcv2wsa14EZCs+bLDxPNtMuSWMc8tOQQhUUBNRikETtkq9oi8EsoRX8aKBWOHZKSCHNIGgfiWTdP+lUOOeSguDSLOcPxFlT68MZoxHjsNzMRnukQpXUxUAliwFREFiTwFVDVhDYZDFwaAeDOMurvLAOhacHwxidsH9XQONsOOc4PUQVBLnt1nKFNYeAyTkE2YSTgiU7X9AcnTCxr0sswl3UqEaBoNznQpllzA9FObrHpthJ1igLC1TC/WePgy26XPwB5+CHHkX0vi8g+ujfw3zlN1MXB5gBtvoWuO/4PTx/cxiu676UdnFg8ldINoPUOQRCQQMAa1w7o9fKBsztBSpIDkFPLIdAut75zsgfiM2VyWZaGnNlqYuBAgoCeGhIYeFscqg7Q1cdYjEIF9cJx04JKSz1ulBqSWOfiHL06Jt2Us4MhdFqUVj43Ayb05BNZYI1tT6YzIWDLnFXireLfYKV7mJA2xyqnEEQoBkENlkMHK4g8HsMLCbe8EO9hXOD1WSHztGIsLtU5jVyblm6cmFiwttDggqz3smA+r3Pj1e7z43BYvvF8qoiVE/j+80l1GZwRtsMHAvzV8D98QdhXPKxmT+3cS1cN/0dPF8+As8d98JYffOsd8aloMJjT4KnsDDwc7RAoIafn9US28B5pQOXWhw6o0BwsCck2JV9bobNjdPPlb1JuhjYvmHpEW2SiBTO/EUXCGYJ3bkNB0TPk1MUBECSTga61WFSqHrgosYAvO7cfIXiQYV73SuEx3nrK4n/Dg6JUniXByhtyMn1TQfn3GEWA/sVBDwSAkifaVbvrAwCQLYZ6BwCzVyRAgrLi3IuVd8yLwD/+QmtpCAYzbGC4HyBgNoLtszPjcItXXRQYX7BPH643/Y9uD/2IFjT5tQnGm6wRZfBdcNX4PnLvbHwwev+OiMWSNa8GfBbOhyM9QnzIiu8fZ94WfMUKRDUrxSOzY4Dsf93aAeD3x8eFI63NRejyDX9XNltMFin1ByxTUtbcZMCQQFZDNQpLTsNYjGYIBaDHK0bM8K8Uo8waW8bCk/bjqQQoZ6qbLc3tDJZIHCRG0nrK4gvs2l7HFS1KONXGw2bsI7zPjeT5GQqwaiCYCz3CgLefVQMcypvAvOX5/w65sqqGh8ePDo8eaxzCDRzheYP5DKgMI7XbeDSpmI8cWoE3YbYgs0uBYEUUDhPDXtBHKnV4aAuEOQDxorrYay4HubZ3eCHHwcfOAN4AmB1K2L/a9oM5s3OfIkZLrBlV4O/du/kY/zIn4AFFwrncc5lyb4qBYIG0erAz+0HDw6LGwTMUMISMR1Rk+Oe/eL49NaV6c9b/G4DwxYbYjDC4bVzperyxMIs+flrMiPg0QiYK/+Xz/n/L8wSNIMg5CcFAoeEFAJAU5LwII3MC1IHg9wVCOaVuFHuNfBKRCwQ8DZLpbxHLBBkNSRrhjjKXgAApOcyxvtzHqjl9A4GceRWh1pBoJkbUgeDHLY4tHLVwhI8cWokiYIgu4ojTgqWLFAJzrmyHQziSAqCYW0xyCeM5s1A8xRKgmy97vLrELUUCMwjT8B13ZfEk/pPx9qTx/GVAVUtubnAaaALf96xH/ycqHZA7TIw2nJPQX57cABH+hLfaxcD3rw8/QKBz81gHRaCERPlsG++yBiLqQis7Q0jIaAACgTqbuGpDgkhogUCJ1kMFkgFAn3TpvSORXDAsrBhAC7O4eSLMYY1tT4ccC1FxDpY9p2anCxSBYFaBQIxbEblFofA+eAgaziNGc1+b3OC0/MH4qyuFSV6+7u0gkAzN2SLQW4DCuNc1RIrEvdICoIsW5KSKAhOD4bRMRqZfMjvZlhXR+SxNiO1OtQKAk0GMJZfKxzz0y/GduCtj0kBheuU6aDB6lfHOhnE6T0BfuoF4RzDAfaCkYko/nq7mM/27rWVqC1OfzEtBRXabTEAkuQQFIbNQBcIZgmdAAS9Yls0p4QUAsmCg/RNm/JCq6geWF/vy7mHfk2tDyHmlYMK22JBhbxXTAtWqUAgdTBQvEAAQPQ1AsB4f/LzsoTTOxjEWVPjEzoZnBiYwGBQB6FqZo+kILDBYgAAmxsCKCky0CN1MchegYCbpjwWBaok9cCFjQHl5iF0M0LPNTSZgFW1ADVLEw9Ew+AnnhHOofkDrHFdDq4sPZi3GKhekniAc0R3/kQ8xwEFgq8+2ykEebsN4G8uq5viGTI+ElQ4HtadDOxCFwhmAeccGBFDCkM+sUDgKAUB2X05O6gVBBQaUHhZU+7Dn1bXxHMIkgcV8h7nFAiUtxggltJshY8P5PT180VB4PcYks2AtmLTaGYCzSBYaJPFwONiuLy5GL1SF4MsKgiCgwk/LAB4S8FcHimgUDV7ASDbGVu1WlGTIYzl1wnH5pEnxGMa+KdYy0Cj5RLxATqfm69GXkIqXmgdxb+/JI57n9tSi2VV3hTPSI7XpaCCwE3+DQUSVKgLBLNhYlT8gLi9CLpKhFNUq9xPBfUF6gwCmWdJgWDbgtwXCNZOdjIgQYVnXo4F8JxPvo3D6pbn7NqmQ8og8Dlg6KE5BFTWm0V4OChPEBzYwSDOehJ6urezMG6wmszDOcfpITUUBABw1cJi9DAyVmSzQEADU88HFL5IVG5bFAsoBGIdk6wzo3MjEUxEFdgh1DgeYwUtEPxp8r855+Cndwg/Z/M35uS60oXRAgH9ucIKgp6xCN77+zNCEHVzmQdfvnxm6gEA8Htoq0P7xwdGOhnwSGHkKDlglq4gJH8AJXWIcPFD7VF/g3QSajFoGw4jaipQtVOE4VAUe86JC5ptOQwojBPvZPCymwTanHgWGO4QJ6UevyhZsxmpxaEDFAQgCgLkUEHAu4+Iu4QVC8B8pTl7/UyzsV68wb7apQsEmtnRORpBMJK4P5V7DVszTa5aWII+VgbTuvQdHwCPZqfQzkmhkgUqMTphSkW3S5vUKxB43QbqLX5kDqB9OJL6CRpNmrAlVwLWrk1dh8F7T8b+u+eY2HmsqBisUa0deWPRpal/WLcCrLQ+9c9txOQcH/7DWcFaAADfu2k+SopmPi77iIIgFFFgLaItBpp04aRAwIprECYLaicpCAIeAzX+xBc5yoFzI1pFEGdH25hQGV1R5UV9Se5DsWqL3agNuLDXtQJDsBQoRntg7v2tcC6rX6VMi0MgicXAARkEjGQQ8BxmEORLB4M4G4iC4NXOwrjBajKPHFBon3oAADbW+1HmL0IfKxN/kK1Wh2Pk9waq8HL7GKwbbUsri2y5R6VDM7U0apuBJgMwXxlYy2XCY+aBB2L/f1IM/GMLt6rXpq5uZcquCtQ+oRL/+kI3HjkuBkJ+YWsNbl5aluIZU0MzCIJKFAhISKG2GGhSQvIHUFKLMPHJOCmDAACay3VQYSqePSNKNy+3wV4QZ02tD1HmxvOeTcLj0af/XTimfXXtRrYYqF8gQIAoCHJpMciT/IE4G+rEAsGB7qA0Zmo06UDzB+xqcRjHZTBsay6WWh3yLBUIZAVBlRSie4kNGTnp0lxKOhnouYYmQxhrbxWOzX33AwD4kceFx1nLFLv1NsEYg7H5fUl/pmqBYPvJYfzfZ8SuBZc0BfC1qxpn/TtpF4NxBSwGUgZBpDA2OHSBYBZICoKSOkRMZxcIpFaHuv3QJCrkD8SJ2wy2e7aIPxhsFQ5Z45pcXVJaDITEQd4JFgNZQZBDi0GedDCIU1vsxvzSxBgzEeU41FsYN1lNZqEdDOxWEADAlQuLpVaHGO1OfvJckTIIKvE8KRBc1qyevSCOrCDQcw1NZjDWiAUCfvJ58K7DMA89Jp634vpcXlbauLZ+GPCKVkLWuA5sxQ02XVFqWocm8L77z8C69Kn2u3DPbQvgcc1+/eOXFAQKFAioxUAXCDQpoQFEJc62GADJggq17A+ItVh5iaRDX2FjgSDeyeABz9VTnscWXTblz3MNbWvnCAWBlEGgFQRzYQPJIdh9rjBkeprMIlsM7JfSX91SIikIotlqdUgKBNxfhR2kxeGlKisIaKtD3TVJkyFY9SKwhRcLj0Xu/kCs80ec4lqwBRfl+MrSg1U0wf3BX08Gj6K8Ce4P3KOcHcLkHO+77wy6xxLzOgbgl7ctQFPZ3Aq2XqIgUMFiIIUU6gwCTSo4sRiwklpJQeCeQwXNDhZoi0FSXm4fw4RFCt1S7pFCHXNJXEHQ6mrAy64UKgFfOVjTBTm8qulxpsWA7AjmSEHAw+NA7wnhMVa/MsXZzmFzg1iFp4sajSYdqILAzg4GcdbW+jDiEceLs+3tWXktTgoEHWYphiwKrWq/S2orqhL0/knDzTSauWBc9H7hmLftFX+++mal8pkoxvLr4PnyUbg/9QQ8X9wNVqtON6o4P97Ti+dbxfv3V7bV47pFcw9SdkYGgS4QCESjUdx22234xCc+kc3rcQZJuhjICoIcXk8G0AqC5FB7weULSlKcmRviBQIA+InvLUnPYUuuUO4GOBByXhcDRhQE1PubLXjXYYBbxpPKhWBeez93mYD6oncQWbRGkw40g2ChzRkEAGAwhtKKWuGxsx2dKc6eI2QcOjwu2gkuaQqAMXU3KGQFgS4QaDKHsfGdiR34ZD+/+KM5vJrZwbwlMBZfLs1BVKB1aAJfflLMHbh+UQn+ZhYtDZOhZAYBLRBoi4HIL37xCyxZok7bNDtJpiAIi+sfx2UQ0Kq+vmnHoAGFdtoLgNjOe9zL/auim3HGaJDOcW29I9eXNS2yxcABFTS/TQqCzoPCsdPzB+JsmRcQeqAf6AlJyhKNZipMziWLgQoKAgCoqxUnyD092ckgoAqCvcNigUBlewEgFwi0gkCTSZivFK6r70z+s5ZLYCzckvRnmvT426c7MTyRWLSXFBn48S1NMDJUlKQKAiXaHLp1F4OUdHR04KmnnsLtt9+e7etxBtRbWCxbDJxWIFhAfJynBifAuQJfTBsJRzlebCMBhc32T77W1Mbko2HmwYeLv4awJ7G7bGx8B4zVN9t1aSmRLAaOUBDY0+ZQCijMg/wBACj3ubC6VrzR0nwPjWYqOkcjCFksX+VeQxm70qJ5YrF2bKgnO506SIFgR59oJ1C9QFBX7EaRxYI5EIxiKKQLhZrMYWz7LNjSq8QHfWVw3/5DW64nXzjSG8I9+8V50Neuasio7dYvZRAooCCgBYJIyJ7ryDFpJV98/etfx1/+5V9idDQ9Sahpmjh48OD0JzqUhQPtwh/ueMcg2jpEyc3QQD8OHhzK7YXNAc45fC4gvo4bCpnY8epBVHgZgsFgXr+fqXi1z8RYODHBq/UBEx3HcbDT3uJPg5GYTO3wbMA/L70Hn4neh6ivEoNr3gWk8V7l8j3lnEsFgnOnjqJP8ZwO11g3WizH0eGenPzNGo69BOsU/5xZgRHF3tPZsqo4igOWjdUH9p5Gc0iNBZ6KOOE9zSWv9oqTxQafOnONwISobCiLDuJ/X3wdG6vJhHeO72nzQAes0/FD48XA+a+QxwCKB0/j4IjaY2u9j8Pq3nt672EsLVP7mlOhv6Nqwi79J1T5fghv92swvRXo2/RJTPQD6D+IjjGOx9tNdIwB84uBG+YbqPElPn/6PU3O3+yKCF0LFpcCVwa6cPBg5tRSQ33iXLGtqwcHD859c2Yu72nl4AisppXuc2fRXwCfj2kLBE8++SSqqqqwdu1a7Ny5M61fahgGVq1aNeeLUxHOOcIhUWq8dOMlqN49AiBRJKivrcaqVbPvBWoHS547jAM9icqYu64Fq+YFcPDgwbx9P6fijy92wfqeXr2oHKtXL7Tvgs6zbaIPvziWaGt40LsC9ecr4/PS/B25fE9HJ0xE+P7JY6+LYeNa9XfFeXgRwr9KHLsmhrFy5cqs+3snHmgTjudvuhZG8/TvlRO+p28I9+F/TyU+u8eCAaxatdjGK1IbJ7ynueTVA/0Azk4er6gvw6pVLbZdjxXT24vIE4njSj6I11kN3r2qXjhvru/pRETcqOlnZZP/vWVeABvXLp31784Vi3cfx1nLhpO7ugmrlpZN8Qx10d9RhVl/1+R/ViI2f//2zm585elOIXz6Pw5yfOPaefj4BdUA9HuajJMDE3io9ZDw2D9cswBrV2c2J6F5uAc4kAh4LS6vxKpV8+f8e+fynkbPNSP6SuK4prwEDXny+ZiqaDKtxWDPnj3Yvn07rrnmGnzhC1/Ajh078MUvfjGjF+gogoNA1OKZKyoGKwo4PqQQABZVijKhE/2FHVS4/dSIcLzN5oDCOGuITPv1HrUDU2hAoSqS4OlgHp8oLTMjwER2g/W4GQX6TovXUaP+hD9dpKDCtjGEVJAQahzBaZKNs1CR/AEAYIFq4bjKHMRTpzM7XnDTlNqtWgsE17SocY+aDjrXOFbgcw1Nbvi/T3fiS9s7hOIAAIyFOT79SBu+vSM7uSH5wM9e7RPUA6uqvbh9VXnGX4dmEIwrkUFAusLokMIYd955J5555hls374d3/72t3HxxRfjm9/8Zi6uTU1IQCFKYsnF1GvotAwCAFhUIX4JTg4U7k07GDHxHOlgoMrka1WN+D4d65vAeFjdRZYT8wcmkVodZjmHYKgdiFq+d4FqMH/mb8J2sbSyCPNKEsK10bApdQrRaFJxityTFpLsHFshY0UVH8QLraOZLYAFBwGe+H0jrBhhlvgbXK3IPWo6llXSe1hheHo19nH/4UH80wtdU57zpe3nsP3kcI6uyDlETY5fvCbOfT67pQauLKxz/B4FMwg8YotmXSDQJIWTFoesJJZcTD/DbgcWCBaTdlEnBgr3pr2jdUyoXDaXebCsSo3dqpIiFxZZ3isO4FCvuu8VLRCUO0RBACRrdZjdTga896T4+tWLsvp6uYYxhhuXiL2SHz6mJ2Sa9DitaAcDAFJrtUo+jFA4ip1tGQziJAGFvRb1gM/NsGVegD5DSZZViQWCo7pAoMkig8EoPvOIaN2r8LnwsU1VCHgSc3UO4JMPt6mxa60Qfzo5InQbCXgY3pFha0Ecn8sJXQx0gUBi69at+PGPf5yta3EGpEAwqSBweBcDAFisLQaTPEHsBde0lCjVWzreySDOgW51B6xByWLgoLpkjlsd5nuBAABuJl7jh487J8xVYy+0QLCwQp0CAXMXAd7EDr4LJsr5CJ46PTLFs2YGH0ttL7isqRheh3gbdYFAk0u+saMLHaORyWOPwfDAO1rwgzc04Xe3twjtd08OTOBXJxTYtVaIn70qFibftrICZVlSglKLgRoKAl0g0KSBrCCIFQikNoeKJ7QngyoICtli8MQpcVfz2kVqSTdX14gDlqMKBE6yGBAFQbYtBrxPLBCgKv8KBNe2lAgF1KN9E3qBoJkWk3Mpg0ApBQEAkByCSj6U2RyCcXGibi0QOMVeAABLKouERdnpwbAaCwFN3tE7FsH3d/UKj/3lJbWTeTjXLSrFpy4Uv7c/PWJiWLfeBACEIiYePi7Oh+/YUJXi7Lnjk9oc2q8gYKRAwLXFQJOUNBUELoV2m9OlhRQIzg6FCzJArH88gt3nxoXHrlmo1uTLSUGFjrYYEF8xz7KCQAoorGrJ7uvZQKnXhW0LxLDCPx7TKgLN1HSORhCyZP2Uew3lAk8ZsRlU8UHsbB/DWIYyYvgosRgYiXySqxS7R02F32NggSU/ggM4XsCKRU32+O+9fRiZSHz/6gJu/J9L6oRzvrKtHmXexHJoMAz8Yl+W84YcwrNnRzFqGb8aS9y4rDl7ViY5pFCBNYhkMRhPfl6eoQsEM4STkEKWKqRQrXlLWvjcBuaXijdtumNTCDx1elRIa11b60N9iUJhWABW1zpIQRAUB3jVJvVTkmsFwVC7cMwqmrL6enbxhqViDsHdU0zGwlEOk9u/i6CxFzmgUDH1ACAFFXuTx0IAACAASURBVFabA5iIcrzYmiEVwRhVEMQKBKVFBjY3+pM9Q1mWVmqbgSa7RE2OH+0R1QOf31qD4iJx6VPld+PPL6wRHvv+rh5wfd/BI0Q9cNOS0qzabVVUEMghhYUxVukCwUwZ7RGPi89bDMhn2IkhhYAOKgTk/AHV7AUAsLLaC+tH7PRgWFlJnNTm0FEWA6IgyHZI4aBYIEDZvKy+nl28fVWF8Pnd2xnEno5EmJvJOf57by823XUEgX/Zh5pvHcDH/3gWPWORJL9NUwhIAYUK5Q/EYcWyxQBA5mwGKTIIrlhQ7Lg5B80h0J0MNJlm+6kRnB1KbHL53Qx3bEwuj//k5mrJ+vZiJgNGHcoLpLh54+LSFGdmBqogUELFrEMKNenAh5NnEORDm0NA7k9ciLK/J0ibm2sV9Hb63IbUKur1HjUnWM62GORWQYChc+Lrl+dngWB+qQfXLxInGv/yfGxsPdEfwg13n8AnH2rD/vPKmOEJEz99tR/X/vI4enWRoCCxTvQBYEGZWqouAFIngyo+CCC2UMkEfEzcDe07ryC4SsF71HTQAsERXSDQZJj/R5Rpt6+qQJXfnfTchhIP3rRcDND9ZYHbDEIRE692iovhS5uLU5ydGSQFQVQFBYG2GGjSgVgMMNnm0PkhhUCsT7mVQpP9HekN4ZilKOIxmOSXVoXVDulkMBjMHwVBNrsY8OAwELIUp9xeacGRT3yaBEPde3gQN9x9AhvuOoKnzyTfcX29J4TPPd6e9Gea/KZtWCwQNDmgQFBpxhQEu86NoX88A4UtqiAwYguam7K8q5cNllfTuUbhbUZossdwKIr7Dg8Kj31gXWWKs2O8j/z8gSNDBW1ve6VzHBOWBfqCMg8as2y3lTIIMpTfMhd0SKEmLdLtYuB2YEghAKysJuF33YVVIKBhaVcsKEZJkZoLWhpUqGqBQLIYOElBQDIIaJuxjDJE7QWNSrXWzDQ3LSnFpgbR2/fk6ZFpPYe/PjCAl9u19LPQaCcFgnml6hUIkoUUAoDJkbLoNRM4ySDoY2VYXFGEFdXeFM9QF6ogONgT1J5vTca49/Agxi33kuYyD65YOPVmzw2LS1BiySfoHI3gtS4151W54KU2cad8y7zshRPG8auoIKAWA51BoKFwMwoQiR+KY8Em+aIgoLvSBxVOx88GDx4VCwS3LCtLcab9OKWTgWwxcNCwE8ihgoDaC/I0fyAOYww/eMN8FE0xVl63qAT7Pr4c6+rEz/oPd/emeIYmX2kfEXfg5ykWHAtAUhBU88QO5hMnM2AzGKcZBOVZDw3LFi3lRQh4EtfdOx6V3mONZrbcs1+8V793bSWMab4nRS4D1xC7zmMkpK+QoIX4LfOzXyCgCgIl2p9qi4FmWsb6AG75sPorwNwxmRxtc+h26F92SaVXmLB3jEYwOKFABS8H9I1H8PxZcZfnjQoXCFbXOENBMJhPIYVZzCCgAYWsrDFrr6UKFzYG8Is3NaPYIw6Y1X4X/uuNTXjoXYuwssaHr13VIPz8d4cGMKRoKKcmOzhRQVBpKRBsPzX3hQYfJRkERjluXqruPWoqXAbDujpRQbS3ozAm3prs0jESxlOnxYLce9ZWpDhb5AZi16Ep/oXETlogyIGCIFkXA9uVRW7SxUCHFGoo1F6A8/YCAAiTuapTQwrdBsNyIv07PlQYBYJHjg/DqmZaU+vDIgWTsuMsq/IKn7NzIxElA9yogsDJFoNsKggw3CEelzUkPy/PeNuqChz45Ar867WN+IstNfjBG+bj4CdX4IPrqyZ3Rm9cXIomy4JwLMzxELEDafIXk3OcGxELBPMVLBCAdDGwKgiO9E3gzODcfPaRUdFiMO4pxxWKZuSkw8Z6UiDo1AUCzdz534ODQqvqDfU+rCIbKqmgKf0vto1KOUqFQPdoBCctrWXdBnBBQ/ZbqboNBquo0OTyBmzOcRMLV6Qw7FC6QDATaP5AcaJAkC8WAwBYXUMKBMP5/0UAgN8dEgNt3rhM7eAnj4thJXmv9inml+OcYyAoSsScVCCQLAZj/Vm7MfARsYUqOx+AWgjML/Xg81tr8c3r5uFjm6pRSZKmXQbDu9aIxRpqB9LkL12jEViVphU+FwIe9aYvjIwXjYa4+ziXbgbcNGGQAuXGlkb4Ffw7pMuGenHR9qouEGgywG9eF78n71qdnnoAiLVPtXa2jpixbJxCYw9R86yr8+dsrKEqgtA0uUTZhrncgGGZk3ATiIZTPyFPcO6dxQamVBDkSUghAKwm3vZCUFj1j0ckKdltK8ptupr0WU+82aoF6oxHuPDd8LqYNPirDPP4xepxdCJ7/jOab1JSk53XcSi3khZUjxwfxkRUAX+iJuu0E/XAvJLkrcpsJyAqCOJdDOI8MZd2h6EhGEh83ocRwPXLnD1GyAoCte5fGudxamACO9pEafzbZ1AgAIBL68U5ynNn5x4w6jSoZXVjfXoKjEzglXIIFNik9BD1RAF0MnDOTF0FSItDVpJaQeB2sIKASrEKwWLw+8NDQjuXZVVF2JwDOdVcWU88nK91qbUD42R7wSRSq8Ps5BBIHVIsCiUNsHVeALWBxOdnMGTiuQwkw2vUp32YBBSqaC8AAH8FYNkc8EWG4OKJa99+cmTWCqTu7k7huM8oxxuWqq1ym461tT5BTnxyYEK6Z2g0M+G3B0X1wCVNASwsn5lVdHO1OH+n2VSFwH5SIKCh2NnES9ZPIRU2AmgngwLIIdAFghkgKwgSEuB8CSkEgFVEtn6iACwGvz4gS9KckAxN091VsxhIBQInBRTGkVodZimHYFS0GGgFgYjLYFIg2x+0zaAgaHNAQCEAMMMF+MTxotmTWFx0jUUw24/s04fOCsfBoooZL3xUw+8xsJK0aHxN2ww0c4DO5d45Q/UAAGwiBYK9neMYCyuwSM0hVEGwNocFAslioEKrwwLsZODgZawNjJIdPssEPkw+wE4NKQSApZVi+F13EEqG32WK04MTUuLtO9fM/KZiB9Ri8HpPUFKz2MkASZovc1KLw/NQX3HuFAS6QEC5lXQVefDoUEGEBRU6tIPBfBVbHMYpFjsZ3NAgBhPu6JrdQmPX8Tbh2F9aneJMZ7GBKPX26AKBZpYc7AkKNkuDAbevnLlVtNrHsKQyUXyLmHLLv3wmanKpxbmdCgI1LAbk368tBhorUykIaKtOt4MLBB4Xk1QEu/O4/dAPd/fCOvxsavBjRXXuBsO5UF/iQV0g4ccNRjiO9oVsvCIRmv6bDwqCbBUIZAWBthhQrltUKkweTg2GJSmkJv+gGQSNpYpmEABgfrFAcGUNKRB0z3yy2zUaQWunaHGsrsmPEFOaQ7DnXP7ONTTZ5TdEPXD1whLUz7KYeGmT2B2kkGwGJwcmMG5ZlNf4Xagvzt2YW6SgxYARiwGPqDPPzha6QDAT6A7fFBkETlYQAMCFpN/prjytnrYPh/Gj3WI43CcuqEpxtpqsr1fXZkAVBE7MIGAkgyAbFgMeCQFBi/Y4iVRZAxQXGbjWGjEN4A9HtM0g35EUBIpaDABICoItleJ4vKuHzzhc8/eHB1Fpil12SivyQ0FwYaNYINh9Lj/nGprswjmX8gfeMQt7QZxLm8Q58AuthfO5TJY/kEvLrWpdDAAkySDI/0KmLhDMAElBkKdtDgHgInLTfjkPb9rBiImPPHgWoxZvWY3fhfesqZziWepBcwhUCiqkGQTlTlQQBKiCoC/5eXOBqgcC1WCGHp6TQW0GOocg/2lzSkghABYQCwTNriE0WrouBKPAzraZ3U/v3t+PSi4WCBBwViE7FZsa/LDupxzp00GFmplzoDuEI30JtY7HYHjLirIpnjE1VEGwo20UZoHY2Wj+QC7tBUCSkEIVCgS0i0EBhBSqq9NTkSkUBHJIobMLBFRB8GLrGEzOYTgguM+KyTnu3j+Au/f142BPEBNRDo+LwWMw9I5HheIAAHzlinrH9ZWmnQxUUhAMhcS/rxMVBCCS4awoCEbEAoHOH0jNLcvKgIcTfuxd58bRPhxWetGomRvnRhykIKAL9/F+XNNSgrv3J8aNx0+MYNuCEqTD0b4QXmwdw1tIy0SqbHIqJUUurKr24kBPQrK759wYrlnk7A4Nmtxy32GxgHZNSwkq/bNf4qys8aLC55osVg2GTBztCznGfjoXbC8QuKnFQIUCgWi71hkEmkl4ZEL0HjMGFCckfnJIYa6uLDusrfWh3Jv4R/SOR7HXYeFBg8EobrznBO74w1k8cWoE7SMR9IxHcW4kgjNDYak4cPH8AD62yXmyTUlBoFAv6Xxoc8gkBUEWMghGab6Jzh9IRWOJBxfNE4tifzymVQT5SjBiom88MY4YDELuimqwgHgP4WN9uH6xuNidierl7n2x8aaSk+cUO+9elYrNZEMinzOPNNnhXlIgeMvK2asHAMBgTGp1vbtA8jHsLhD4pAKB/RkEus2hJjWSBLgm1tLoPPkUUgjErv+qheIOxxMnR1KcrR4Rk+Nt/3sKT51OL1hmeVURfvu2hY5831bVeIW2mq3DYfSNq9F1Ii8sBnSnbizzBQKtIJgZbyTtDh89PmzTlWiyTdeoOJbVBdxwqTxO064no724aXEprKrZ/d1BnOifPuTK5By/3B8bb6qIxUDqruJg6EJsV3thLMQ0meFYX0hQThoMeNOymXcvoFw4r/AKBKGIiSMk6Dr3FgNxaapCFwNGLAZcKwg0cTgpEDDSo5xaDJweUghACgP7k4MKBN/Z2Y2nz0xfHChyMXxkYxWe/9AyNKjcOmsKilwGVhLZ235FbAaDUkih84YcOhHnOVEQ6ALBVNy0VNyRfeLUyIyD3zTOoIu02K3NYZr2rKA7+2P9qA64cVmz6Gl+IA0VwaPHh3F6MGavqCQWg3zJIACShCLnYeaRJnvcf0Qsnm1rLs7IOLG5ofA+l0f6QsKGZ3OZJ+fKT7mLgf0FgkJUECh+p1WIEbHFkLXFIZB/IYVArKWYlefPjmI8bCrv0e8ejeCrz3UKj22ZF8CPb25CXbEbYZMjHOUImxxNpR7l/z3psL7eJyTPvtoVxBUL0/O4ZpN8sBhICoLx7GcQWANQNTIb6/2oL3aj8/zu8siEiRfOjuGqFvs/85rMQhUEuWy3NRukguJYrEvOm5aX4RlL0fqBw0P43Japv+c/tHTYoSGFtJ2ik9lQ54PHYJMbLWeGwugajaBO8fdaowb3HhKLZ7etmLt6AAA2k7DuvZ3jiJjckUrTdEnWwSDXSBYDKtG2A5pBoLsYaOLQDgaMeITzLaQQAJZWFmFheWJXPRTleM4BvWC/+3IPxsKJ96PS58Lv396CtXU+1BW7Mb/Ug5aKIiyr8uZFcQAA1tfRVodqDF60zaETLQZym8NsdDGg44tWEEyFwRhuIL7uR09om0E+QgsEtQrnDwAAAlRBEBsv3rRcXLQ83zqKThK+aOVYXwiPWKwz1GJA2yk6Ga/bwFpyD9PtDjXp0Do0gZdIG+7b5tC9wEpzmUfIOxkLcxzqmd4a5GTszh8A1LQYSF0MtMVAM4nU4lCcwEsKgjwoEDDGcA3ZkVM9DGwwGMUPdou7sX99WV3e70SsI50MXlPFYpAPCgIaUpiDLgZaQTA9N5ICwSM6hyAvcZ6CgHY9iVmSFlUUCYGyJgfuOZB6LPnB7l7EZxWMm6jk5POdJ10M4lxIdmt3FYDfWzN37jsszkm3zAugqawoI7+bMSapCPLdZkALBKtrvCnOzB60i8GEthjYgi4QpImsIEhYDDjnSUIKc3FV2edmEgZ23+EhpXvB/ucrvRi0tNar9rvwsU35s9OSCqogONAdRNS0/30aCOZDm0NqMegHz/R3YJqME43M9YtLhP7p+7uDaB2aSP0EjSOhGQTKF3tpNsBowibw3rVisfG/X+lLej/tGAnjrlcSzyvjo3DBMpZ6S8DcmVkEqcKFjaSTQZ4vxDSZgbY3fOscuxdQaIEg34MKX++2N6AQULOLAXOLhRIeyW8lCaALBOlDFQQWiwEtDrhYrPKYD9ywuBTWNV3bcBgvK5owzDnHT/aK8u8/v6gGJUUOXJTOkPpiN2oDiX9nMMJxtM/eAYxzLlkMKpxoMfD4RHmZGQFCmQ3spAVIrSCYniq/G1tIuJm2GeQfnbSLgeoFAl8ZYFiuMTwGfn636X1rK2Gd+x7uC+HhY/Jn9ls7ugVZ7aoAWSznUf5AHJoYv+vceOYLsZq8omcsgmeJ7TVT+QNxpMJVR/4WrsbCJk4OJIrsDMCqGm0xACArCHSBQBOHk5BCVppQEFB7QT7kD8QJeAxcXi/+e2jFVhV2to/hWH9icPMYDJ+8IH96RU8FYwzric1gn802g2CEC9KwIheTKsOOIYmKIKNoBcGsuGkJySHQNoO8oztJm0OVYYzJKoLzOQT1JR5cP18cA//h2U5BRdA2HMaP9/QK53xmjfgclkf5A3FW1/jgt9wfOkcjaB1OndGg0Tx6YhjW6fe6Oh+WVGZWEk8VBK92BvO2Y87BniCsq5lFFUUI2JDT5VWyiwFRbOkMAs0ko9QjnJjASy0O86CDgZVr54kfk98fHlSysn/3PtHPecvSUlQrPpnMJOukoEJ7B7Bk6gGnKmvkVoeZyyHgZlQuONCgM01SblwitzsMqzCZ0GQMxykIAEDqZJBQtn1omaii2tMxjv96JfZzzjk+80grxi07Zo0lbry5WRxL6e/PB9wGw8YGoiJQVK2oUYM/klahb1yaWXsBADSUeNBUmgjrnohyKek/X3idBDCurs19/gAgZxAo0cVAKwg0qZAUBILFIP8CCq1c2cCEvqTH+yewo00tmdVE1MT/HBQXbe9bl3+TqKlYX0+DCu2dXMktDh083FAFQSY7GYwPANaCm68czOWARZACXNDgF3aUh0ImdrSp32lFkz7dTssgAMBSdDIAgFUVDLevFGXQd/6pHb/c14/PP96OB4+KKpi/uawenpB4b8unFodWCknOrZkb4SiXLGU3LytNcfbcKJQcgtcV6GAAyBYDNRQEpFgSyf+8IwfP2HOMlEGQsBjQHat8CSiMU+JheAPZqfvZaxmWWM+Rh48No288sSCt8rvwhqXZuVmoinIKAlIgKHdiQGEc2skggwoCqdiQh7uD2cJgDNcvFjut6G4G+YPJuVwgcIIqjH6HyXf869c0otgi3Q1GOD78h7P4/i7RWrBlXiAWskvHiDy0GADyQmynYhsRGnV4/uwohiyB1LUBFy4iBaZMUTAFgh7awcCmAgFREKiRQUALBPmpIrGSZ0vZ7MDD42IomeEG/IkFg2QxyDMFAQB8aIM4Ifnt6wMYnVBA9nOeu/eLBYu3r6pAkauwPt6rqr1CcerMUBj945HUT8gyg3kQUBiH7tjFW5dlAmpXYHnWvizbUJvB4yczGyCpsY/esajgMS73GvA6oAJPFQScLPAXVRThuzfNn/J3VPtd+OVtC+AyGDBKi4j5WSC4eL64wHupfUxbhjRJoS23b1pSFvuuZAGqbMnXVodUQbDaJgUBzapSIfOBecS/he5ioImRpIOB1UsttzjMvwLBTUtK0WCRdg5PmPjdocz3g58NfeMRSZb5vnUVKc7OX7xuAyuqxUHMTq+cbDFwboFAUhBk0mKgFQRz4toWsUCwt2McPWP2FcY0mYO2OKx3gL0AgLzDTxf4AN6/rhLfuK4RyWYL9cVu/PFdi7CoIhaMxcfF5+drEXFxRZHwHo+FOV612SqnUZOHSIHgjcsynz8Q5wKSjXGgO4jxsP2L1kwyMhHFqcFEKKjBgJXVNmUQUIuBCgoClw4p1CSBtiCz5g8A+R9SCMSKHtTT/71dvUqEFf724KDwHiyrKsLWedmRmqnOemIzeLXTzgKBeAMtc7SCIIshhVpBMCfqit3YUJ/43HMA209pFUE+0EUCCmudYC8AwAJUcdSb9LzPbanFsx9ciresKMPCcg9W13jxha01eOWjy7HZumtJFUt5qiBgjOHSJvHe/cLZ/Nyt1cyeI70hHOkTO1Zdt6hkimfMjeqAe7JYB8Q2Bfd25lfh6iAJKFxSWQSfTWot2sUgqIKKyKNDCjXJIAGFIAWCfA8pjPPhDVXCbscrHeN46rT9gWDUXvCeNZWOTcufK7RAsM9GBYFkMXC0giCLbQ6lyb8uEMyU6xaJKoI/ndQ5BPkALRDUF3tSnKkYUpvD1OPF1vkB/M/bWnDs06vw6sdX4F+unYdaopSgFoV8bHMY55KmYuFYh45qKNRecMWC4qxvQFxEcgh25VkOgSr5A4BsMVBCQaBDCjXJ4COkR3nx1AqCbPmg7GZ5tRe3LhdlXN/a0Z3i7NxwrC+EF1vFHYb3rC08e0GcdXXiTWyfjfLMfMogkLsYZLBAILU41AWCmUJ3j544OaKEukkzN2iLQ7pwVpV0FQRpI9mQ8rdAcCkpELzQOqa/yxoBai+4OQvtDSkXElXqy+35pWyR8gdsLBDIXQwUsHO4dEihJhnTKAhoiI4nj/+qX9gq/tsfPTFs60B5D1EPXNYUwOJKe3xTKrC+nmQQdAURNe2ZXMldDJz7xWB+sejEM6ggoIGH2mIwcy5rKhZkiWeGwjjal/8V/nxH7mDgkCIjXcAnySCYCZKCIE/bHALApgafsIPYNhzGmaHwFM/QFBIDwSieOyuqSm7JUntDKxfle4GAWAxW19o3jy5SsYuBthhokiFnENQJx4UQUhjnsuZiXEI8gl/afs6WCj/nHHfvF/3b711X2IurhmI3avyJSfR4hON4vz0LpcG8CimkCoJMtjnUCoK54vcYuLxZ3Hl0os0gFDH1bqkFGlJY5xSLQbHYxWDOoaYFNEYUuQypXd3Tp3WmiCbGEyeHhTn3ymovluRgU+iCBj+s1vhj/RPos7FLVKY5oEgHAyCJxUCBDALmFkMKuVYQaAAAo6LFQFIQFEBIoZWvbKsXjp85M4o/Hsv9ZPyF1jGcGEgsfr0uhttXluf8OlSCMYb19aLN4DWbbAYDeWQxYAEaUpjJNodaQZAJqM3AKUGFoYiJf3yuE0u+dxAl/7of9f/2Oj73WJutLUpVoWtU3Dmuc4zFgIwXcygQcNMsKIsBAFy5UCz2PeGQ77Im+9A2tjctyb56AAACHgNrScZTvuQQDASjOGtR6bgYsKLKPgUBDSlUoc2hbDHIf4WiLhCkAScWA1ZSIxxTCbc7zwPyrltUihsWi5PxLzzejtGJ3H6JaTjhG5eVodLvjAlkNllHbmKv2dTJgHYxKHeygiCbGQQFtDuYTa4lQYVPnh6RAmRVo3s0gm2/OI6/e6ZzUkbdH4zi+7t6se3nx9E1rvb1Z5uuUbHI6JQCAQKygmDWypDQEMAtY6m3RNrNyjdo69LtOlNEg5hq9PET4mbUDYtzUyAAIClbXmrLD5vBKx1ioWNljQ9emzoYAHIGgbYY2IMuEKQDsRiAWAwKTUEAAP90jdi/+eTABL781LmcvX4wYuK3BweFx95bwOGEVuROBvZUuSWLgYMVBCAZBAgOxHb2MgFVI2gFwazYUO8T7DVDIVNpn2gwYuKW35yUJmdxDveF8MWXolLGTSEhKQgc0uYQHr+Yeh2dACZmmcZP1QN5nD8QZ8t8P4otYU4doxHJI60pPI70hYQ8Cp+bSdaybCLlEJxT9/4yE/Z0iP+OzaRjQ65xRhcDbTHQIFkGwXQhhflfIFhf58enLxR3Sb6/q1eq7maLPxwZEkLwavwu3JgjqZnq0E4GdikI+qWQQucWCJjLA3gtny/OYzt7GUAKKdQKgllhMIZrWuRuBqryV0+cS1kciLO3j+NHe+aYgO9gaAZBvUMUBIwxWUUwOrv3URof8rjFYZwil4ErFogLP6dYhjTZ47ET4mdgW3Mx/DlMBb9onji3erk9Pzps7CZWiQsa7C0QUIuBEl0M3FpBoCFwzmUFAWlzSGWsNipzcsrXrmrE4gpR6vj++8/g9GD2vTn/vVfcVXnnmgoUuQrkDz8Nq2u8wmfwzFBY6iiQbTjnUgZBpYMLBACS2AzmGDwWRysIMga1GagaVPjHo0P4wW5xwXhtSwlO//kqXE+yFL7+XCeGQrn9/qrAyEQUY+HEvbXIxVDmdc4YTxfys84toS0SqZopT7laKvap+V3W5A46nl+fQ3sBEGv9Z1W2dI9FcXrQ+R029nQoViBwK2gxcBFbVySUF8WhqXDO3dYuQiOilMTtA7zijStMiluFoCAAgOIiA3fd0gTrP7d3PIq3/PZUVhekJ/pDUmjRHRvzf1clXbxuAyuqic0gx0GF4xGOiag4ufe7nf29YAHa6nDunQx4OAiELe+N4ZbGF0360KDCne1jGFZscR2KmPj84+3CY4sqivCbty7EvFIPfnprszAJ7RmP4t92dtNfk/d0jcrqAeakfB9qBZitgoA8jxXXpDgzv7g2SehornOONOoQiph4inSzuH5RbgsELoNJ8vuXFLaxpcNAMCp0ujIYsKFeNQUBt30xzgwDcJEuOtH8DirUBYLpIAGFKKmTJimygsBBk5g5csXCEvzDlQ3CY/u6gnjLb09hnFZOMsTPXhV3Yi6a58f6OnsHNNWgQYWv5thmQO0FlT6Xsyb3yaAT/kwEFSZRDzj+72QjC8qLsLwqUemPmMDTZ2bp/c4S39/Vi5OW7isuBvzytgWTFpz6Eg++sFVcBH7npZ6cq4DsppMUCGqdkj8QhyoIZjteSArGwigQrKv1obksMSEfj3A8cjwzti6N83ixdUxQFM0rcWNNbe6T9mkOwU6HBxVSm9uqGh8CObRtJMNlMEmJTbPebKHAbAa6QDANnLQ4pPkDgPzBdRdASKGV/3NJLW5bXiY89tzZUbznvtMZTxEfnTBx1yvijspHtHpAYoMUVJjjAsF4ntkLAIAqCDJRIBgjKgSdPzBnVLYZ9I1H8PXnO4XHPnFBNbaQSefnt9aiNpD4zoxMmPivVwori6DbofkDcRhtRUitAmlCcaI2zAAAIABJREFUFQSFUiBgjOEtK8S2xb8/PJjibE2+8xgZx69bXGpLMX0rGaufPatWAXqm0IBCu+0FcZTsZECDCsP5HVSoCwTTISkI5JszXQQXisUgDmMMP3/zAlzaJA6cDx4dxsf+2Aozg9Kg/9rbix7L4rO0yMA7VhWGJ3MmrK+nQYW5tRjQ3c6KPCgQMJoNMFtPsQU+LuYY6IDCuUNtBk+dVmcC9/1dvRgMJZRV5V4Df7utXjqv1OvCZy8Si9Hf29WrRj/oHEEtBrUOKxBAKhDMMrNklIYkF0aBAADeslIsEPzx2DCCkcL5DmgS0ABsmtWSK7aR8My9HeOOVnftaFWzQKBmJwOiIIhqBUFBI3cwqJPOoV0MCiWk0ErAY+C+t7dgTa34Bfrlvn782cNtGSkShCImvr1DfD8+dWE1Sp3cPi9LUIvBge4gojmUaNGAwnwoEEi7+xnIIJBsCjqgcM5csaBEyEU50B2UFpt2MDIRxXdfFhVpf3VpHWpSSOc/fkEVrF+btuGw1No1n0mWQeAkqIKAz7JAICsIZBVjvnJpUwCNJYn3fWTCxKPH1VEEaXJD50gYey02SQbguhznD8SpCbix1jLP5YgpZp2IyTmeIdd+aXMgxdm5Rc1OBnJQYT5TgEvZGUL9f2lYDApNQRCn0u/GQ+9ahJZyMcjjJ3v78NlH2+ccMvLdl3vQPpKYNPrdDH9xUeFMlmZCQ7FbkCiPRziO9eduMKMZBPlQIKAKgtlO+MXfoVscZpoKnwsbiYLm6dP2t0i765U+4XtR4XPhkxdUpzy/yu/GbQvFW/SPdheOzYC2OHRcBgFVEIzOcrwYITbH4tSfmXzDYAxvXi6qCGgHI03+Q0OpNzX4UxZWc8GVC0UVgQr3l9mwryuIPosit9xrYIMieV4qdjJgxGLAw7pAUNBICoIk/j+qeCukkELKvFIPHn73YqHqDwA/3tOLzz3WPmslwe5zY/j7Z0Xv7sc2VTtPdpojGGNScONrOQwqzMsMAtpeLBMKAmpT0AWCjEBbpNH061wTipj4DulE8KnN06uf3rtEvEXvaBvLeUcSu+gmCoI6h431UpvDWSsIxAJBsk2KfOb968Ux8ZHjwzjSm98Tc40ILRBcv9jeTj9XLhBfX4Ug3P7xCO49NIhvvtiF777cg51tY9NuylHbxrYFxXApsn7xJelkYDvaYqARkBQEssVAyiAosJBCytIqLx5/72JJEvqD3b34wP1nZuwhbB2awFt/e0qoIFb6XPirS+X3QpOA2gxe68pdgWAgKE7u86JAkCHJsPg7tMUgG1xFdnjsLhDcvX9AUj995sLpveQLSxiuXihORgtlB5V2MXCaxUDuejLbDILCVRAAwEWNfmyy+KI5gK8+15n6CZq8gnOO7SfF8fu6FnvsBXGS5RD0j+fextY/HsHPX+vDrb85iXn//jreee9p/PWTHfjC4+24/OfHsPKHh/H9XT2SDTrOvST081qb/65WimgGgRIWAx1SqLHASUhhsi4GhdzmMBUrqn147D2LBZk7APzm9UHcdM+JtD3BJ/pDuPaXJ4TJNQB8+/p5jttRyjU0qDCXO495aTEozkxfcwGiIGBUpaCZFZc1FcNapz3SN4H24bAt18I5x/d3iYu8j2ysSlv99NFN4ufu7v0DGMtSC1mVoF0MHGcxIAt5PosuBtyMyoWFAuliEIcxhju3ivOuXx8YwO8PFU4eRyFzpC+EVsvY7XczXNxkr08+WQ7BYydyV4R+qX0MH3rgDJr+4yA++mArHjk+LCmZAeDEwAQ+91g7Ntx1GPcfHhQUBUf7Qni5XZwT0lBQO1Gzi4Fuc6ixQuV9pdOHFBZqBgFlda0Pj71nCerIxO751jFsuusIHjgyOKUE6qFjQ9j28+M4YekZDgCf31qD963TO63Tsd5OBUFIvFvlhYKAhINR+9GsoDYF6lvWzIpSr0vqV22XiuDlc+PCd89gwOe2pi8Tf/PyMtT4E9+f/7+9O49vo77zx/8aHbZky/chO47jI3GCyUm5AiSEJATCVUI4ylGu0na/dNsU2F/749iybb8L3bLQ7fLd7X5LKVcLNKUFQknKFSAJR7iTkJCQOKfj+IrvS5YtzfcPk1ifz0i2JOuYGb2ej0cfZeSRMvZIo5n3vI9Ojw9/TYGLIzmIbLSAsHbMYRRTTwY6ADXgWOrIgWK1h17fpK6ozdE0QL7mhYN4YmtqZNOksvVS9sCC8kw4dNAJfPlU8W77y3u64/rv+VUVL+zqwhmP78FZT9Th6e2d8IaZdr+n3Ysr/noQC5/ai2d3dKCufRDff6VBWOeMyRkoy9LPsUWeYuDVRYAgtZoUGusbNwnC6UEgNynUwbFLN2YVO/DOTdPw9dX7sSugbrClfxiX/+Ugzp6Sif/1tQKcW+VCntOGgSE/3j3ch9983Ia/BTngXjYjG79YXJrIX8GwTihIh80y2iOjvnsI7QPDyHfG/2MvlxiYIoNAHi8mBw+jIJcpMIMgds6pcGFzw+gIp7cO9uLaWYkPLD76mXjnePnULFTkpIVYWyvdZsENc/Lwqw9G32+/+6wN15s4SDrsV9Em9TEpTMBxK6aCjDlU/RFmfmhKHFMre+AYq0XB/72wDIue2otjp1s+FfjO2sPY2jyAB5ZOMnVpZ/vAMPZ1erG/w4tD3V50evzoGvTB51eRZlWQYbegPDsN1XlpmOd2Gi6YNpa3pP4DS5M03lB2cU02HgyYqvX3vd0Y8qlxeR++srcb//x2E7aO00dqRn46lla50Ng7hHV1PZq6/Q8a+vFBQ3/Q537vZH2VLmmnGOghQCCVGDBAkLpUvz+qKQZpJv6iikZVbho23jAVV/71oKaZy8ZDfdj41WNOmwLPsIpQh4FrZ+Xi0YvKddNERe/SbRacUODA9tbRL5XtLR6cXRH/L1hTNimUg4P9bVD9PiiWCfxuzCCIm8UVmfi390aX3z6Q+AyC7kEfVn8h7uPvnBT5idgt8wqEAMH7h/ux86gHtYWOMZ5lXEf7h4XvgQKn1XAXgIotDUh3AYNfve9UP+CJLPNDHnEY7AZFqphflon/Wl6Gf/x7g/De+K+P27Cl2YNnL5uCEpd+7oBGQ1VVHOwawmdNA9jSPIDPmkb+1xTBmFaLAiyrysLtpxdiaZJGAcaKz6/iLSnzS25AmyzzyzJQlGFFa//IuU7XoB+bDvViSQz/5vs7vbjj9Qa8vCf0aM+q3DRcMzMXV9TmYFaRA4oycpxs6h3CTzc24/Gt7RhvwvXMIgeurNXXzYl0KYMg0t5l8aDYHcKxRzV5gID3usfi6QT8AQfm9Cwodu0IEJYYjC/PacMr11bj3oVuhPrzDIQIDlgV4N6Fbjx+SbnhThKTbY5bvIDYmqAyg04z9iCw2sVJBqoafeOxYy+hySAw713hRDtjcqYQrD3QNYSGBPchWLO7G/1Do0e1siy7JjU1HNML0rFIaoz1uInTq+URh3KZmmFkSMGgSI8XcpZSCgcIgJHg2p9WVmjuLr5T34fTHtuDdw02j96vqvi0qR//8UErVj53ACW//gI1v9mFq54/iPvfbcHf9/ZEFBwYeU3g1X09WP7sfnzzxYM42p/45nmx8knTALoCyhXzndoRtslitSi4cFq28FiwrNdoPbujA3Mf+TJkcGD51Cy8dFUldt06Az9bVILZxc7jwQEAKHHZ8X8vnIxPbpmOS2qyg74GAFTk2PHnlRW6u/HmkHoQ6CKDwCpnELBJYeoKM71P7hdl40VsUDaLgp8sdOODb9VgWZhpYqeUOrHhhmn4yUI3LAr/rpHS9iFITKNCuUmhKTIIAE3jMXlGecT65QwCBghixWm34Gsl4snk5sOJvYCQG6l9c3Zu1E1svzVPzC75w7YOePXQ2TkO5BGHRh1nK/ch0IwsHIe8fipnEByz8oQcbLhhKqZki9kCjb3DOPfpvfjvj4+OO94tmfyqircP9OL7rzSg4uGdOP2xOvx4fSP+tqdbmEkfC6u/GKlZ357A/kOxJE8vWFLh0tV5oHzh/fKe7pi89178sgs3rqnHQJC6+ytOyMHW70zH375RhQumZY/795hV7MDzV1bio1tq8KMzijDX7UBZlh2nlDpx70I3Pr5lOqYXpI/5GsmgnWKgg8+0nSUG9BVN/4EgIw4BZhBEap7biXXXVOOTxn48s70T6/f3YE+H93jDlcocOxZVuHDtzFwsrnQJUVGKzJxieZJBgjIIBs0ZIFAyi6Ae3Xt8We1rhYLaqF5LVVVgQLqjyABBTM0vyxD6EGxu6MflCUql7Bn04TVpzvTKCXSJvmxGDlalNxy/o3Z0wIe/7e5O2O+TSPKIQ8NmEMgliT3NgDX03TwNOQDJAAEA4OTSDHzwrRp888VDWB9QOjTsB2577Qg+PNKP/7lgMjLs+rkH1j3ow++3tON3n7VhT7t3/CcESLcqmJqXhqrcNFTmpqEow4bsdCtsFsDrU9Hl8eFA1xA+bRrAjlbxO/5A1xDOfqoOf/tGFc4qzwzxL+jTm1JZ2BKd9B845tyqLKRbleMXrwe6hrC91YPZxdFnOTT1DuEf1h3WZNPOL8vAw+eXCSM/IzHP7cQ8txP3G6SHl9yIUg8lBuxBQKPC6D8AAF4/AwTROLk0AyeXjnQaH/ar6B/yI9Nu0V2qk5HJGQQ7Wj2asZyx5vX5hbRqqwK40vRzojYhchbRRDIIBnsBf0AgxZ4BRf4CogmZXyZOMtgcokFTPPx9r9gkqio3DSdNID3Wabfg2ll5+J9PRuvSH9vabsoAgabEwKgZBFlusWa1twXIqQn7+doMAn01Ekumwgwb1l5dhXs3NOGB98VztWe2d+LzFg/+vLIC0/KTe0xVVRVPfd6Be95q0gS+gslKs2Cu24mTSkb+N8/twAkFjrDLK9873IdVrzYIDe16vH5cvHo/1l5dhTMnGyNI0P9Vw+pAS3TSf+CYzDQLlla5sK5uNBD88p7uCQUIfraxWcgksVmAh88vwy3z8nWVPRFvmiaFephiwBIDOibaDAI2KYyczaIgO93K4ECMuV124e6bZ1jFnvb4Rj3lBoW5DqtpskAUedRh3wRGHcr1yMweiLn50snwp00DGEzQnQi5vOCyGdkT/hzIZQav7+vFoa7I7kYagVxiYNQAAbLc4nJPS2TPl0sSQtykSFVWi4L7FpfiucsrkCUFoT9v8WD+43uwNs7j58bSPejDNS8cwrdfPhwyOOBKs+DS6dl46NxJ+OiWGrTeMRNvXT8Vv1o2CdfPzsPsYmdEvZfOnJyJ92+qwXdOEo8VvV4/Lv3zAew8aoyLmvcO9wlj/Cpz7KjODX/6S6LIZQYv7Y7+/bavY1DTW+bni0rwnZMKUio4AGgDBOGOdIwru9QUeNh8372BGCAYi5xBECK9T55iwEZ6pCdyo8Jt44zKmSjT9h8AtBkEUpfxSKjSBAOFAYKYK8uyozygVtnrU7Elzu9/YCRo/KpUXnDZBMoLjpnndgp9FVQAT27rmPDr6o18MVVk0BIDJUu8qaD2NEf0fGYQhGfFjBy8f/M0nFgo3uHrGvRjxXMH8It3mxPel6C+24sFT9Thr7u0kyvsFgXfODEHa66qRONtJ+IvV1Ri1WmFmOd2xuQmid2q4L+Xl+FnZ4sBqk6PD5f++QBaImx8mAzr5f4DVVm6vNFwkRQg+LhxAEeibIb76JZ2BF4H1+Sn4bbTUjMoqMcSAznDU2UGQepSe8VovxIiej/MHgSkY7OlMoPPW+PbqFAOEJhhgsExcpOwmGYQcIJBXJw+SS4ziH+jwg8a+tHjHT2hcWfacJq0HdGSswie2NoOX5zLhhKtVSoxcBs1g8AlXqDJ5xTj0vQgSM2LhXDMKHDg3Zum4cpabSDu3g3N+N7fG+JeXnfM7rZBnPPUXuxsE7P10q0K7jqzGAd+UIs/rqjAhdOyNRdCsaIoCu5e4Ma9C8X34P5OL1b+5QAG5O7aOrNe6j+wVGflBceUuuw4dZJYUhBNFoHX58eTW8Vg74/OKE7ZG46aEgM9ZBCkWA8CBgjGoulBEKLEgD0ISMfkRoXxziDoMmmDQgDaFN+J9CCQMgiEEYoUM6dPFi/MP0hAHwI5e+Dcqth13776xFw4Azo8H+oe0pxMG518h9OwUwykDIJISww0ZY7MIBiTK82Kp1dMwb+fWwr5uurRLe248q8H0B/nC+MtzQNY/Ie9ONQt3kWe63Zgy3em4+fnlCS0ZOafFxRrgoofNPTjttePJGwbItXWP4wtTeKNjMUV+gwQAMCl08Wg1PNBskbG8/KeHqH3Sna6BVeZsL9MuNL1OMWAAQI6RpPeF3LMIUsMSL80JQZxnmRg5hKDWGYQqAPi3QJ5JBrFRjIaFcrTC86rzorZa+c4rJrGhI9taQ+xtjHJAQLjTjGQMwjCLzFQ/X6gp0l8MKskFltlaoqi4LbTivDqtdWa756X9/TgvGf2oX0gPin279b34dw/7tU02Vw5IwebbpiWlIaJiqLgv84v09yBf2xLO57cps/jxtsHe4XmnnOKHboOEsrTaTYc6o24jOPRz8RyxWtn5iHTLM2do5Bu1V+JAQMENEpOBwyRQSA3z2AGAenJCQXpwnuyoWcInYPxi8bKTQpzTBQgiGkGgabEIHXvFsTTSW6n0Di2vnsIDVHWiIajtW8Yn0l3v86til2AAABumSsGk17a3a1p7GdUqqqaaIrBBDII+tsAf8DfwZENJd0YHej1YFGFCxtumIopAT1IgJG750v+uA+NvbE9Bry6twcXPLvv+BjSY26am4enL5sCZxJHLtqtClavrEBNvtjk7/uvNGBrc3xLDqOhKS/Q2XhDWU1+ujAxyq8Ca3aHn0Wwv9OL16WeC7eclNo3DDQZBHqYYmCTmxQyQJCytFMMgtf/cYoB6Vma1YITpOZNu7vjd7DtNHMGQYaY4itnGUVC26QwtU8I4iXdZhEa+wHA5sPx60PwxoEe4e7XSSXOmF/gnlWegekBJ/tDfhV/3G6OZoW9Xj88ASeDDpui6VBvGBkFgCVg33u6oAyHd0GmdjeKD2QbY365ntQWOrDpxmmaPjw7Wj0456m92NcRmxP81Ts6seK5/RiQLmJuO60Qj1w4GTYd3DTKcVixemWFUJ7kGVZx9fMH0SV9Zyfbm5r+A7ENsMbD5VIWwV93hh8geFzKADul1Il5ExiJawaG6EEwxCaFKUn1+0Yi+IHCnWKggy8DokBzpBOkL7vid7BtkzIICpzGvPsXlBwk7DsafXdsZhAkjFxm8OGR+JUZvLpXLC84P4blBccoiqKpK/7tp22maFaoyR7IsOmye3k4FItFc2Fv6wszi0AKEChZDBBEY1KWHW99cyoWlovZF/s6vTjnD3uxfQIldz6/iv/e6cP1aw5BzoD+6dluPLC0VFfv3dnFTvzmgsnCY3UdXqx6rSFJW6R1oNOLvR2j4+PsFgULyvWfOXO51Bzz7YO9ONo/flbXkE/FE1Kpx7dTPHsAGAkMB0rUeOKxaKYY+JhBkJr62oDAE39nHhSrPeiqcoDAZp4bpmQScqPCPXENEIhfivlO83wglLQMwB5wsekbAjyRNyQCAPRLTQqZQRA38gSBj47EJ63Wr6p4Q0oVPa86Pumx35yVJwSj93Z4JzSDWy80Iw4NWl5wjJJTJixb+8MLEMgZBEoOAwTRynFYsfbqKlw0TQzWNfYOY8kf90bVuPRIzxDOe2YffrvLL2QMKQD+87xJuGeBW1fBgWO+OTsP35EuQJ/Z3om/RZASH09y9sAZkzMMUYs/o8CBmUWjN2J8YZYZrKvrRmPv6DHPlWbBN07kzQK5B4EuMwhYYpCa5PICzZ3DAHKJATMISG/kRoVfxrHEQM4gKDRqg7FQNH0IomtUqA6Idw2UDJ4UxMupUoDgk6b+uIw829biES5ws9IsmF8Wn7tfbpcd18wS3zO/+mACYzd1Qu6lYNgGhcfkTBIWw88gYIPCWHLaLXju8kpcM1P8zHR4fDj/mX1Yv78nxDO1Xt3bg5Mf3Y2Nh8RSJZsFeOrScnzvlODZpnrxq2WTNGUX3/t7Q9yaN0bizQPiflii0/GGwVwhlRms3jF+gOD3UnnB1SfmwpVmnpsq0TLEFIMhBghSk9SgUAnRoBAIEiBgDwLSGTmDYG834jYTWk6rM1MGARBskkGUfQjkDAInMwjipSLHjqKM0fdh/5CKnUdjXz/4ujS9YHGlK67fB7efJgarNjf04536+PVXSASzNCg8RokyQKB2i2PomEEwcXargie+Xo5bTxZ7yfQN+fH1Px8Ydzzd4LAfd73ZiItX78dRKRDuzrRh3dXVuHpmXsy3O9YcNgseu6QctoArgKa+Ydye5NGHflXVZBAYKkAglRm8dbAX+zu9IdYGDnV58YpUksbyghEO6XtTH1MMpCaFLDFITZqT/rEyCNiDgHSuONMGd8CJttcP7G6Lz8GtXc4gMFMPAkB7LOgJf3RZILWfGQSJoiiKpswgHn0I5P4Dy2I8vUA2q9iB5VPFf+O+d6J7P+qFZsSh4QMEUZYYdEkXa+xBEBMWRRkpAThLvOnj9an4xvMH8ZO3m4IGzz860o/THtuDBzdrs3SWVrrwyS01WGygi9l5bifuPFP8GzyzvRMbDvaGeEb8fd7iQWv/6PlDVppFk/2lZycUOjTfM09uDT1K8vGt7ZqGtieXGuf3jac0mwFKDNikMEVpMghCp4wNSYEtTjEgPZIbFW5riU8d9lEpTbHAbBkE0h1BtSvKBk8D7EGQSPKJZqz7EPR6fXjvsBh0iFf/gUA/mi8GrN7Y34v34jilId7kAEGR4UsMxACBrS/MAE7HQWFRyZsSqy1KeYqi4KeLSvDgudqgy7+914Llz+zDluYBeIb9eKe+Dze+dAgLnqzDF0fFoLpFAb5/ogVrr66C2xW8R5We3XVWsabU4IevHdFkxSaKnD1wToVLFxMgInHzXDGD5MltHUGbxw77VTy+VZw88+15PAc4RjPFQBdjDqUmhexBkJq0PQgiKDEw2AGNUsMcaWzOtgl0bw5lyKeiO2AOtEUBck005hDQ3hHU3OkLg+r3aZsbOnKCr0wxoQ0QxDaD4O2DfUI2WU1+Gqrz0sd4RmycXeHCoilin4N/3WTcLIJWqcTAbfQMgmy5xKApxJoitV0KEORXxGybaMQPTyvCoxdPhnxPZ8OhPpz6+z3IemA7Fv9hL57Z3gn5Gq8sy471103Fd2dYYTXoOV+a1YL/Xi5+n+1o9eB/PmkL8Yz4kgMERsrIOOaqE3ORYR99PxzuGcLaOm3z2Od3daGhZ+j4coZdwdUzmUV4jBGmGLDEIFVJAQIlkhIDZhCQDsl3Cj6PQ4BAM8HAYdyTp5CkAAGiySCQswccOVAs5gqk6M0ppWKAbEerB33e2J10vLYvseUFgX6y0C0sv76/F+8bNIvAdCUG0oW9vWf844Xa3yEGEG0ONimMkxvn5OO1a6tREsH77IY5edjynelYMEX/4/fGc8bkTNwwR7zr/bNNTWjqHQrxjPjw+vzYeEgMECw1YIAgO92KK2rFC/37320RxiGrqor/kBrKXjcrD9npPAc4xhBTDNikMDVpMggy2YOAjE1TYtAc+xKDo/1i/4ECs/UfQLASgygaOw2IqYXI0H9jK6PLd9pQk592fNmnAp81xe4zIAcIzqtOXIBgUYULZ8tZBAbtRaAZc2iGEgPr6PvOOtgFVQ4QSlSpvAB5U3Q5Ms8szq5w4aNbasZtiFdbkI6/faMSv7+43FSZcfefU4Ls9NHLge5BP362MbHHjw8a+tE/NHouXeqyobYw/hlY8XDbaWJJ8ieNA3ht32jw473D/fi4Ufzu+eFp+p58kWi6nGJgl5oUssQgRUWQQeBliQEZwAkFDuG9eaR3WDNxYKLkMUkFGeY5iTpOU2IQeQaB2i8GCBQnAwSJcIrUAOqjxtiUGdS1D2Jvx2i36jSrgkUVib27eK+URfDavl5sbjBeFsER6c7lJAPWdgdSLFagoEp4TG3bN/aT2g+Ir5FfGduNIo0Slx2vXFOF1SsrsHxqFvIcVigAJmfZcfXMXDx3eQW2fHc6lk/NTvamxpzbZce/LBQzVB7b2o4vWhPXhC3Y9AKjBsVmFztx6XTxffIvG5vg86tQVRX/WyoBu3BaFmYUSBefKU6XUwysLDEgAOoExhyySSHpkd2qaCLysS4zkEc/pUIGAbqOCOmDYZEmGCCTzYkSIV59CF6VsgcWlGcmfJb1ogoXFpbLvQjC65ivF71en9DDxG5RUGiCIKNSUC0sq0fHDhDIAQT2H0gMRVGw8oQc/O0bVWi5Yya8d8/B/h/U4g+XTsGKGTmwGPSCNRy3nlwgZFj5VeDutxoT9u+vlwIESxNYohUPd0lTMj5pHMC/vdeC53Z2aX7XH57K7AFZOqcYJB0DBKHIYw6z2IOAjE9uVLg1xpMM5B4EpswgcOYB9oC/41C/tqfAODQZBJxgkBDxGnUolxecn8DygkByFsGr+3rwQUPsxznGy5Ee8fgxKctm2LuIgeQAAcbJIFCbdorPL5wW600iEtitCu47R5zqsLauJyFjD7sHffhQOk6NV+6hdyeXZuDyE8TGwz/d2IzrXjwkPLa4wmXIZozxpsspBlY7EPh95B8eaThtUgwQBKEOe8UTfsUCOIOfwPtVVdPdlvEB0ittH4LYRkDbUqEHgaIAE+1DIGcQsMQgIea6xTKbg11DaJ5gMy7PsB9vSXeEEtl/INCiikwskLMIJtCLwOvzY0vzAL5o9USeJROFRmlflBq8vOAYTQZB6+4x11ebtovPL50V820ikq2YkY0zJ4tB1B+vb4Q/zp/9jYf6EHiD+ISCdJRlGf+z/x/nTUL+GGOe06wKHlxWaoogaKwF60GQiO+gsSiKoi0zMHEfAgYIgumTGxQWQrEE/1MFG3HIDzvplRwg2B7jGsOjUgZB4Rgzcf2tAAAgAElEQVRfjkamZEuTDLoj7EPQLzcpZAZBIjhsFsxxi58BuVlUpN6p78NAwN2NyVl2zCxKTnMtRVE0WQSv7O2JKlPime0dqPo/u3Dq7/dg7u9246RH98Qs4yIUs/UfOEZx1wrLatOOkOuqfh/UZimDoIQBAoo/RVHwy6ViFsGnTQP4047IMuQitX6/mIFl9OyBY0pddqy+rCJk2fFD507CnGJn0J+lOouiaPq5yf3ekiKFGhUyQBCE2iuWF0Q24jAum0QUEycWiQe3Pe2DMY3Ktkk9CPJNmEEAAEqu3KgwsgwCdUDMIFA4xSBh5DKDifYheHWvNL1galZSg8TnBMki+HmEHcl//WErbnypHi0BTUx3tHpw9pN1eGhzS9zu5DRKJQalWeY4fsgZAGrzztCpqW37gKGAoFVmIZDlDr4uUYzNL8vEFVJq/E/eboprkzg5A2tplTkCBABwTqULb1xXjRn5o0HjXIcVj1w0Gf/r5IIkbpn+6XKSQcBEGgAMEKQcqUHhWCMOOcGAjKQk0wZX2ujHvtfr14wVm4g2aSqCGRqMBZUtNSrsZAaBUciNCid6V1wOECSr/8AxiqLgJwvEBlmv7uvBG9JdulDe2N+DH78RvDmZTwXufLMJ3157GF5f7C8YzJpBAFfxyIX+MUMDIfsQ+Bu2CstKySxmJVJC/eviEuFc9lD3EH7zcVtc/q3G3iHsODp6kWVRgEVTzBMgAIAzJmdi2z9Mx2ffno53b5qGgz+oxc1z+Z0/Hu0kAx0ECORGhQwQpBZVHnE4VoNCTjAgA1EUBdPyxAjonvbYHeDkDAIz9iAAtJMM1AhLDNR+ZhAky6mlYkrnR40DUd8RP9jlxc620c+PVdFHeuziSu1Egx+90Qif3DBH0j/kx63rDmO8v8ZT2zqw/Jn96PTEtkFTY4/Ug8AEdcjAyHFXLhMIVWag1n8sPnfyvLhtF1EwU/PSNXe3/+29FnQMxHYsMqAdb3hKaQZyHOa7sWBRFMwqduC0SRnIsPPSKxzaSQY6GHVokzIIfN7g65kA36XByBkEkZQYMIOAdG56vhgB3R3TAIE0xcCsPQhyJlZioGlSyAyChJlekI6c9NGvvk6PD3Ud0X3Jv7S7W1ieX5aBXB2c3CqKggfOFWuJt7d68PjW9hDPGPGLd1twoGv0It2iAOuursILV1Zqfq9N9X1Y9vReHO2P3UXDkV5pioHLPAFGZZIYIPAf/jToemr9J+Lzyk+N2zYRhXLPWcXIDjhOdnh8+OX7rWM8Izrr90vlBToIsJI+6HGSgSI1KVSHGSBIKWqf3IOgOMSawJAU0OKIQ9K7GilAsKc9dgc4+WKhMMM8J/gCKUCArglmEISYkkKxZ1EUnFIamzKDF3Z1Cctfn54TYs3EO6U0A9fNyhUe+5cNzegKcdd/51EPHtosXgB87+QCLKvOwsU12Xjnxqma7KMtzR4s/eNezfSBaJl1igEAKJNPFpblQADwVYPCBjFwYCk/WbMeUbwVZNjw/58hnvv+10dHcagrducLqqqauv8ATYzDpscSAzmDgCUGqaVXO8UglGBTDIj0rKZADBDUxSiDYMinomtwNGKmAMjTwd3UeNA0KZxwDwKWGCSS3IcgmkaFzb1DeKe+T3hsxYzsCW1XrP3rOSVwBpxktfQP4+63tP0FVFXFD15pEDLiSl02/GxRyfHlGQUOvHPjNM0YtC+ODmLxH/aivntiFw6qquKIVGJghlFnx1jKvyYsq4c/1ZS2qI3bgcGAC6aMAiC/MgFbR6T1g1MLhc/goE/FzzZFPzZVtrt9EIcDPvNOm4L5ZRljPINSiVyyrY8SA/YgSGlqj1hiMFYGAZsUktFoMwhic4Brl8oLch1WWM36ecgqASwB2RH9bVC94V1kqn4/SwyS7LRJUh+CI5GPOnxpT7dQqz/X7UB1XnLGG4YyOTsN/zRfLJF75LN2bDwo3rV7ensnNhwSgx0PnTsJ2eligK8gw4Z1V1dr0oD3dnix7Ol9mgv8SHR6fMK4yAy7IqQ4G17hdMAREEDqbweO1gmrqPs2CstK9VlsUEhJ47Rb8C9nixM0ntneMeFg4DFyecHCKZmaunNKXdoeBDrIILDKAQKWGKQWqcQgkh4ENpYYkM7VSGnCdR3ecZuXhaNZKi9wZ5q0vACAYrFqyww668N78mAPoAZEwtNdUOS0NYqrU6QMgi3NAxF35ZfLCy6boZ/ygkA/PqMYNfni++uWl+uPNxw70jOEO14Xe2gsq3Lhitrgv09mmgUvXlWJi2vEaQ17O7w4/5l9aI6y3EDbf8BuqotjxWKBIpUL+PdtkpbfEZYt1Qvivl1EY7lhdh6mBxw/hv2I2UQDuUGhHhq8kn7IUwz00IOAJQYpTu2VMwjGKDHwc4oBGUue04bAGIHXp+JQ98RriJulE/xiEwcIAEDJLReW1XADBHL2APsPJFypy47y7NHUWa9PxWdNnrCf39AzhPXSya1eAwROuwW/vXCy8NiBriF86+V6+FUV3117GB0BfQnSrQoePr9szItzh82CP6+sxOXSvPRdbYM4/9n9UTUuNHP/gWMsUxcJy2rdhtH/9g1DrXtb+LlSvTARm0UUktWi4PbTxZtkz+7onPBNhWG/ircPygGC5I6IJX1Jt+mwxMAqBQhYYpBi5B4EYzUpZIkBGVCFS3yfxqIPQXOfeFFQYvoAgXjRpXaEFyBQB8T+AxxxmBxyreu7Uj+Bsfzx8w4Enh/PdTtwYpEjVpsWcwunuPD9U8SxZS/v6UHmLz/Hq/t6hMd/vqgE0/LHL5WwWxX84dIp+Pp0se/CjlYPlj+7T1NyNB65PGFSlvmOH4oUIPDXvT1ScgRAPfA+MNA5+sOMAiiT5iZy84iCumZmHjIDRvM19Axh46Hwj5fBfNo0IPQsKnBaMdet32MoJV66VSox0EUGAUsMUpbq7Qe8AQc+qx1whL4zNMwxh2RAFVImXyz6EDT3iSf4Zs8gQJ6cQXA4vOdp+g8wQJAMC8ozheVN9b0h1hSpqoont4n78MY5+s8C+bclpTilVOy9MCzdkFlQnokfnhY6Y05mtyp4ZsUUXDBVvPO3tdmDC/+0P+TEhGAOdckBAvNlECjlp8BvDwhM9TRBPfQhAMD/xVphXUvt8pFSJqIky0yz4FKpAeszOzpCrB2eN/drywssJiopoonT4xQDRQoQqD4GCFJHkOyBsVIt5RIDjjkkI5icKb5PD8ZgdJEmg8CEKcKB5BKDcHsQqJoJBvq/uDSjhVPEAMG79f3wq+OfgLzf0C+MBrVbFFwzM3eMZ+hDus2CP62sQFFG8IvO4gwbHr+kPOLGouk2C/58eYWmceEnjQO49M/7NVl2oRyQjkGVOebry6HY0tA/Wewr4N/2PFTfMPyfPiuuW3tBIjeNaEzXzRID2c/v6oJHjjBGYP0BMXNpMfsPkESXUwxYYpC6VClAoIwx4hDgFAMypkkZ4vv0QOfEexA09aZOk0IgSIlB56HwntgnNnhiiUFyzCxyCGM4Ozw+7Ggdvw/Bk9vEAM8lNdkozDDGe70iJw1rr65GqUvc3ql5aXj12mpU5kZ3Ue6wWfD8lZU4Ww66HO7Hf37YGuJZIjlIGe226F1v5VJh2f/xH+Hf8megp2n0wfQsWGovTPCWEYW2pNKF4oDjXPegH2/sDy/rStY/5Md7h8WpP3KAkUiXUwzkJoUMEKQQqUHhWBMMAG0PAjYpJCOQRw3Ld++i0dKXWgEC5E4RFsMuMRhgBoEeWBQFZ5WLH4RN49TV9nn9eO6LTuGxG+caK8BzUokT2/9hBv7ngjL86IwiPHZJOT779nTMKp5Y/W+G3YI1V1XijMni3/Rnm5qxt2P8kyi5xKDChBkEANBffjbgDMg46W+D79mbhXUs866Ekp4JIr2wWRSslJqSrqvrjuq13jvcJ9xcq8pN092IWEo+eYqBHkoMND0IWGKQOjQTDLLcIdYcoSkxYAYBGcAkqcQgFgGCJjlA4DJ3gECRehCgox5qGCnqqtSDQHEa6wLTTBaWi3etxgsQvPBlF3q8o2mOJZk2nFdtvM7b2elWfPukAty/uBTXz86D0x6bUwFXmhV/ubwS+c7RzAzPsKoZoyjz+VUckmarV+SYs0RJtTthmf/t0CsoCiwLvp+4DSIK08U1Yh+CdXU9YX3nyV7fx/ICGp88xSDSUcRxoWlSmMIZBI2Njbj++utx4YUX4qKLLsKTTz6ZiO1KHk0PgnEyCDQ9CGK9QUSxV+wQs13aB3zoHgy/oVgwLVKTQnemOU/wj3PkAOkBF4fDHqDv6PjPYw8C3VggpcS/dbB3zPFdcnPC62bnwcagsKA404YHlpYKj62r68F7h0MHX470DgkNEwudVrjSzPtlaj37h0BGQdCfWU65AZbSmQneIqLxLarIRIZ99HjX0DOErS3hj4c9Ri5NWFbFAAFp6XKKgaYHQQpnEFitVtx5551Yt24dVq9ejWeeeQZ1dXWJ2LakUHuahWUlwhIDniySEVgURXOHbiJZBMN+FUf7xQBDsUHqsqOlKEqQPgTjlxloMggYIEiar5U4kRvQh6BtwIePGweCrlvXPoi3D4oXuTfOYfZHMDfMztOUGvx0Q3OItYG97VL2gEn7DxyjZBXDds1jmpNNpewkWL/+70naKqKxOWwWLK0UM6b+HmGZQXPvELYFBBUUAIvlsUpEMMgUg1TOICguLsbMmSPRbJfLherqajQ3h/6iNzxNBsHYJQaaJoXsQUAGIdf4HuiMPkDQ2j+MwE9CgdOaGp8FzSSDMBoVajIIeJGZLDaLorl79ere4Ce8v/tMbC55elkGags5tzsYRVHwvxeVCI+9dbAXbx0I3tRsV5t4kjU93/z1yJba5bCt2gTLnMuhVJ8N6/Kfwva99VCcoccqEyXbhdPEAMHaup4Qawa3XjoGnFzqRIHJbyZQdNL1OMVAblJo4h4EEX0qDx8+jJ07d2Lu3Lljruf3+7Fz584JbViylDbvR+B9j8MdHvSP8bvUHxHvmvZ1dWHnzug6u+qVx+Mx7P6k4DweD3JV8b37wZf1qPGNXSscys5OMVCWa/OlxHumEFkIPJ1v2vUxuqzTx3xOeUcDAr9i9jd1weud+N+Kn9PozHH68VzA8os7WnFlkRjEGfSpeOwzscfGxe7BuP+9jbxPiwGcXqTgg9bRY8OPX9mPJ8+2akYHb64Tj0UF/m7D/t7jEfdpOnDqT0Z/uC/MSSikG0b+jEZjmtRz4MOGfry75Qvkp4d3Q+Av0nF0Xlb8j6ORSrV9qlcdR8XvhabWduzc2RXVa8Vqn+Yc7UTgbLv2lka0mfS9EnaAoK+vD6tWrcLdd98Nl2vsdCCLxYLa2toJb1wyDK3rE+6Elp94CiyTQ/8uBT1HAYxeVBUX5qG2tix+G5gEO3fuNOz+pOB27tyJeZUF+MuB0dFaA4581NZOiur1Du3tAbD/+PKUfBdqa6snupm652uYDd+Xfz2+XJw+hEnjfFa8XvEOdfWc06FkFU94W/g5jU5u+RB+8unoF/z2DhVFFTXC6MKnt3eg01s/+hyHFT9cWhuz5n6hGH2f/ntWH85+au/x5S3tKg6lT8byqWKzs9at+wCMBtbPOmEyamtzYUZG36ckSrX9WQtg3me7saV5pExABbDPWoqzasfPhFNVFR+/vhPAaJDgmlMrUauzEoNU26d6VTHQBnzecHzZmZ2L2trJYzwjtFjtU19HOQLDFvnZmSg28HtlrKBJWGc3Q0NDWLVqFS655BKcd955MdswPVJ7pCkG4/QgGOYUAzKoSqnEQJ5DHokmuUGhyScYHKcpMagPvt5X1GGvOOZQUYDM4M3KKDFKXXbMdY+WCqgA/r53NG3Wr6r49/fF0rMbYtj538zOmJypSUm+d0OzpvP5bqnEYEaB+UsMiIzqomligG/tnvD6EOxoHURj72hwINNuwXypVwnRMfIUg0Ff8nsQaKcYmLfEYNwzHFVVcc8996C6uho333zzeKsbmur3abuQu8a+s6edYsAAARlDRa7YpHD/BHoQtMgjDjNTI0CgSAECdZwAgeb4klEIxWLebu1GcYF0R/vPX3Qe/+8XdnVhR6vYVOsfvsagTrh+erbYi+CzpgG8+OXoBUWnx4cDXaMBRgXANM5EJ9KtC6Vxh6/v7wlrBN3r+8V+BYsqMpFmZaCVgpN7EHiH9dCDQPpuMnEPgnE/mZ988gnWrFmDzZs349JLL8Wll16KDRs2JGLbEq+vDVAD3oDOXChyQwqJPMWAGQRkFFVBMgiimWkMAE29YoCgJGUCBNIUg45xMgikAIHiKgyxJiXSVSeKjeFe39eDhp4h+Pwq/vUdMavsGzNzMZ13uMN2UokTl58g/n3veqsRnq9O9j5u7Bd+dmKRg9kZRDp2SqlTuAnQPejHO4dCjzE95vV9YoDg3KqsEGsSjUzNCOTRQQaBIk2eMfMUg3HP4k855RR8+eWXidiWpFM1EwzGrwvWTDFggIAMojjTBqdNwcBXo2O6B/3o8PiQ74z84l7OIChOkQABpAABehqh+oagWO3B1+8VLzbDOcZQ/M0udmJmkeN4poBPBR58vwVTctKwXcoeuPss7rNI3bvQjed3dR3v77O3w4sH3mvBvWeX4MMGMUBw2iRn4jeQiMJmURRcMC0LT2wdLZdbW9eDJWNc8PcM+rBBCiKcW6Wv3gOkL5opBjoYc6iZYmDiAAHD9IF6xfGNShgn7ywxIKNSFEXThyDaMgO5B0GJK8QFsskotnQgKyCFWlWBroaQ68tByPF6nFDi3HqyWDbwXx+34cfrG4XHvnFiLkcbRuHEIge+K5Vl/PL9VnzeMoB3D4sXDadNYk0ykd5p+hDUdY+Zgfjqvh7hhtq0vDScwEwsGoM+xxzKJQYMEKQETQZBGJ3F5QBBGgMEZCCVuXKZwVCINceWshkECNKHoGOMUWXyMSaTJQZ6cdOcPEzOCh3YynVY8culpQncInP513NKUBwwGcLrU/G1R/fgtX3iWOD5ZZmJ3jQiitC5VS7hfHdvhxdftoW+WHppt9jI8JLp2Zpxp0SB0uUSAz1kEFjlJoXRnTMbAQMEgXrkDILx7+7JPQhsLDEgA6mQMggORJ1BkJo9CABAya8QltX2AyHX1WYQMF1dL9JtFjxy0WQEO4JbFOD3F0/GpDECCDS2XIcVDy0bO8AyszAdM4t4V5FI71xpVpxTIQbz1tYFn2Yw5FOFyTAA8PWanKDrEh2jzykGUokBMwhSg/bk3T3uczQlBgwQkIFUSRkEB6IYdej1+dE+MDoZVgGEGfKmV1AlLKpt+0Ovq+lzwhIDPVlWnYUnvl6O7PTRr8YCpxXPXlaBr0/nCe1EXT0zD985KT/kz2+al8+7ikQGcaFm3GFP0PU2HepFp2f0HKHQacUZHG9I4zDEFAMT9yBIobP4MGgaiIWRQaDpQRDLDSKKr4oc8Y5oNBkEcnlBUYYtpTJplHwxQID20AECtY89CPTu2ll5uHBaNt6t74PVAiwoz4QrjQf2WHn4/DKoKvDolnbh8TMnZ+BWjo8kMoyLpmXjtteOHF9+93AfGnuHUCr1IPrD9k5h+cKabFhT6ByBoqPHKQbaEgMGCFKC2iMGCJSs8TMIOMWAjEzbgyDyAEGzFCBwu1LrsKIUVAvLatu+0Cszg8AQch1WXCTN+qbYsFkU/M+Fk3HViblY/UUnugd9WFCeiVvm5WtqTolIvypz0zDX7cDW5pFJL34V+NOOTtx++uj3Ws+gD8/vEgME18zMTeh2kjHpcYqBIpUYqL7oynKNILXO5McTRQbBsI9NCsm4ND0IurxQVTWiNF9NgCCF+g8AgBJBiYEqHWOYQUCpanGlC4srOeaMyMium5WHrc2j016e2taB204rPH4O8dzOLvQPjZ4nl2fbsbiCn3sany6nGFjlMYfmDRAwXB9A04MgiikGzCAgIylwWpFpHz0M9A+paAvoJxCOVA8QIGcyYAn4nXtboA72Bl+396i4zAABEREZ1DUzcxF4Hbe91YMtX2UUAMDjW8VSoutn57G8gMKiKTHQQQZBKvUgYIDgK6qqaqYYIIwO49oeBDzwkXEoioJKuQ9BhGUGzb2pHSBQrDZAnmQQJItAHfIAgwFNnCw2wMFUSyIiMqYSlx3nVWcJj/3uszYAwDuH+rC5oV/42Q1z8hK2bWRs+pxiIAUITFxiwADBMYO9wPBo1BO2dCA9K/T6XxmSbrYyg4CMZopUZnCoK7K5rs194volrtQbBadtVBikD0Gftv+AYuEhmIiIjOv62eJF/5PbOnCwy4u7324UHl9W5cLUPI4xpfDIJdtenzpyMzeZNCUG5s0gSK1bfWPplbMH3GHVYWuaFDKDgAxG7kMQaaNCucSgOMUyCICRPgSBR4KgGQRyCVNmYZy3ioiIKL5WzMhBZY4dB766ueD1qZj237s069111vhZuUTHWBQFaVZFuM4a9Klw2JJ4ncUSg9SjOXkPszaYPQjI6CY66lAOEJSkZIBAnmQQpFFhT+RNUImIiPTMblVw5zgX/xfXZGHhFDYnpMjobZKBYrUBSsCls+qH6hsO/QQDY4DgGPnkPYwGhQB7EJDxyRkEh7on1oMgNTMIxh91GG0QkoiISM9unpuPBeWZQX+W57DiP88rS/AWkRloJxmwD0GiMEDwFe34sTADBHKJATMIyGAqcqVRh50R9iDolzMIUq8HAaQeBOrROu063UfE5ezSOG4QERFRYlgUBX9cMQUzC8WLpwKnFS99o1LT64goHNpJBnocdWjOMoPUu9UXinR3jxkElCoqssUL+oNdXqiqGlYPDs+wH52e0U6dVgUoyLDGfBv1TimcJj7Qvh/q0AAUu/P4Q2pXg/icHN5RISIicyjLsuPdm2rw9PYObGkewLS8dNwwJw+FGbzUoOgYYpIBAwTmpkojDsNN/x1mBgEZXHGmDQ6bcnzGbI935KI/zzn+4aElSINCSxiBBbNR0jOB/Eqg/cDIA6oKteVLKGXzjq/DAAEREZlZZpoF3/1aQbI3g0xCbz0IAKRMgIAlBl+RSwwQZomBl00KyeAURUFFtlRmEOaowyZOMDhOcZ8oLKtNX4grdIoBAjBAQERERBRUulxi4NNDiYFURsseBCbX3SQsKlklYT1N04OAJQZkQBW54gHvUJijDpt7xUBCSvYf+IpSIgUImsUAgSaDIJcBAiIiIqJg9JhBoEgZBOowAwSmpvZIAYLsMAMEUgZBGgMEZEDyJIMDYQYIjkgTDEqzUjiDQA4QBGQQqMODQGCWkmIBwgxCEhEREaUaOUDg1WMPAh9LDExLVVVNBkG4J++cYkBmIAcIDoZZYtDYI643yZXCGQSaEoMdowtS9gCySqDIaWpEREREBECnUwzYgyCFDPYCQ/2jy7Z0wJkb1lM1Uwz4FyUDqsiJrsTgiFRiUJrKAYLiGUBgg8b2A1AH+wAAatt+cd3cyYncNCIiIiJD0eUUA82YQ5YYmFdPo7icVRLWiDeAYw7JHOQZxeGWGDRKJQaTUrnEIC0DyK8SHlNbdo38/9E6cd2imoRtFxEREZHR6LEHAWxSgIAlBualyg0Kw+w/AGjrYVhiQEZUGWWJwZEeZhAE0vYhGCkz0AQICqclbJuIiIiIjEafUwxYYpAy1J5m8YEw+w+oqgq5HIYZBGREJS6b0GCz0+NDl8c37vMapRKDSVmpHiCYJSyr9R+P/H/rHnFFBgiIiIiIQtJnBoEcIGCJgXl1iyUGSpY7rKfJwQGrAljCLE0g0hOLomBKtnhxf7B77IOe1+dHa/9oEEEB4M5M3RIDALBUnCYsqwc/GPl/lhgQERERhU0TINBBDwJFKjFQfQwQmJacQaBkl4b1PPYfIDPRTDLoHPug1yT1H3Bn2mBL8RIbpeJ0YVlt/BxqbyvQtk9cr3BqIjeLiIiIyFAccpNCPUwxYIlBCtGMOAwvg4AjDslMpkiTDMbrQ6CZYJDi5QUAoGQWiuUDfh98Gx8G/AHlGoVToTiyE79xRERERAaRbhUvU/WQQaBpUsgAgXmpPdE1KdQ0KGQGARmYtlHh2BkEjT3SBANXapcXHGOZeraw7H/zAfHnFWckcnOIiIiIDEcz5lAXPQjkKQYsMTCvHjmDILwAgabEgBkEZGAVueJB71CkGQQpPsHgGEvtBWP+XKligICIiIhoLHKJAacYJA4DBIh+zKGc6iI30yAykopsMUBwYLwMAk4wCEqpWartchvAUr0ggVtDREREZDxpcomBLjIIOMUgJai+IaDv6OgDigK4isN6rleKZMmpMERGUpEr9yAY+6B3RCoxKGWJAQBASc+EZc7lwX825TQoxSckeIuIiIiIjEWfUwzEAIHKDAKTkiYYIKMQijW8O6HyG1WOdBEZySSXHbaAt3DbgA+9Xl/I9ZlBEJplyY9Ggo3y42fdmoStISIiIjIWTYmBLqYYsAdBStCOOAxvggGgbVKYxhIDMjCrRUF5ttyoMHQfgsYe9iAIxVJyIqyX/FJ87GvXwvK1a5K0RURERETGIU8xkK+7kiJFphgwJ7jrsLicXRr2U+VaGPYgIKOryLFjf+doNPRglxczixxB162XAgRlzCAQWM/+IZSqBfDveBmWKadAqb0QSpCsAiIiIiISaaYY6CJAkBpNClM+QKB2NgjLSm552M9lBgGZzZScNAB9x5dD9SHo9PjQPTia6uWwKSjKsMZ78wzHUn4yLOUnJ3sziIiIiAxFLjFgk8LEYYlBp5hBoORMDvu5coCAGQRkdJU54ZUYyIGDKdl23h0nIiIiopiQSwzYgyBxUj5AgC4xgwC5ZWE/dZBTDMhkpuSIZQKHQmQQyI9PkQILRERERETRkjOz9VBiwCkGKUKTQZAbfgaBnOqSZkn5PycZnJxBsK8zeIBAzixggICIiIiIYkVTYqCDAEGqNClM+StatUsuMQg/g8Drl5CQhn0AABUISURBVAIEzCAgg6vOEw98de2DUFXtAflQtxg4qMhmg0IiIiIiig25xGBQlyUGDBCYjur3a0sMIuhBwCkGZDZlWXYhYts16EfbgE+z3iFmEBARERFRnBhjikHoceBGltIBAvS1Ar6AHevIgeLICvvpnGJAZmNRFEzNEw9+e9q10VG5SWFFDjMIiIiIiCg2DDHFgBkE5jOR/gNAkCaFDBCQCUyTygz2dmj7ENR3ixHT8mxmEBARERFRbOhyioEmg4ABAvOR+g8ggv4DADMIyJym5YsHvzopg8Az7Edz3/DxZYsyUppARERERBQL8o1XXZQYyD0IGCAwn4lmEMgBAjnSRWREcgZBXYd48JP7D5Rl2WFncIyIiIiIYkSPUwwUaYqB6gs+7cvoUvqKVu0UGxQqETQoBII0KeQUAzKBaZoeBOLBT55gMIUTDIiIiIgohuTMbK9PhT/IZK2EssolBgwQmI9cYjDBHgQsMSAzmJYv9yAQRx3KDQo5wYCIiIiIYklRFE0WgSfZjQrZg8D8NBkEuexBQDQpyw6nNOrwaP/oqMP9nfIEAwYIiIiIiCi2nDbxUnVgKMmNCqUSA7DEwHzUjkPCcuRTDNiDgMwn6KjDgD4Ee9rEg2FNPgMERERERBRbGXbx2qo/2ZMMNCUGzCAwFXXYC3TViw/mVUb0GnKAgBkEZBZyo8LdbaMHwN3SVIMaaeoBEREREdFEOaUSg4EhlhgkQsoGCNBxEAhsdJFTBsXuiOglNFMM2KSQTKK2UPwsbG/1AAD8qqqZajCdAQIiIiIiijGn3jIILFZACbjeU/1QfcOh1zeolA0QqO37hWUlvyri1/BKjTLSLAwQkDnMLpYCBC0jAYLD3UNCg5h8pxUFGbaEbhsRERERmZ/eehAoiqItMzBhH4LUDRC0SQGCgigCBH7xTcoMAjKLWXKA4KsMgl1tYvaAPBKRiIiIiCgWMuxyiUGSMwiAlCgzYIDgK9FkEAwOs0khmVNNfjrSA3pqNPcNo6VvGNuaB4T1ZhYxQEBEREREsafJIEj2mEOAAQIzk0sMEEUGAZsUklnZLApqC8UD4PaWAWz9qtTgmDnFzkRuFhERERGlCM0UAz1kEFil6V0MEJhILEoMGCAgE5stXfx/3urB51IGwVx3ZI09iYiIiIjC4ZCnGCS7SSEA2KQAAXsQmIOqqjFpUihnELAHAZmJ3KjwoyP9mh4EzCAgIiIionjQZhAkv8RAkUoM1GHzBQhSs/14fzvg6R5dtjuBLHfEL+OVoljMICAzkQMEq7/oEpan5qUhx2FN5CYRERERUYrQ9iDQQwaBPMWAJQamEKxBoaJEfnHv9ctNChkgIPOYVTR2+cDCKZkJ2hIiIiIiSjVyBoEuphiwB4E5xaJBIaCdYpDGKQZkIiUuO6py00L+/JwKVwK3hoiIiIhSiVPTgyD5JQbaKQbmKzFIzSva1j3CYjQNCgHAI71J5UYaREZ3fnVWyJ8tYgYBEREREcWJU49TDDRNCplBYApqy5fCslI0I6rXketg5DoZIqO7YFrwAMHSShcmZ4fOLiAiIiIimghd9iBgiYE5qS27hGXFfUJUr8MMAjK7ZVVZqMnXBgK+f2phEraGiIiIiFJFhl28ttJHBgFLDExH9fu1GQTFkWcQ+PwqhgKaFCpgk0IyH7tVwR8unQJX2uih4v+bX4SLa7KTuFVEREREZHZyBoF8czYZNGMOfeYLEKTemMPOQ8DQwOiyMw9wFUf8MnKKi8OmRDUJgUjvTi7NwIffqsH6/b04vSwDJ5U4k71JRERERGRy8hQDXWQQWOUMAvOVGKRcgEBt1pYXRHNhPzAkRrDkJhpEZlKTn46a/PTxVyQiIiIiigHtFAMdBAhsdnHZhAGClLuqVVvl8oLo+g+wQSEREREREVF8aKcYJL/EQNODwIQlBil3VavJICieHtXraAMELC8gIiIiIiKKBbnEoI8lBgmRegECTYPCaDMI5AkGKfenJCIiIiIiiovAJtmATnoQ2OQxh8wgMDRVVYP2IIjGgPQGddqZQUBERERERBQLLimDoNfrS9KWjFKs5p9ikFIBAnQ3Av1to8s2B5BXEdVLyWM22IOAiIiIiIgoNlxpVmG518sMgkRIqatatWGLsKyUzoZisYZYe2xsUkhERERERBQfTruCwBztgWEVw/4kNyqUAwQ+9iAwNPXIVmFZmTwv6tfSlBiwSSEREREREVFMWBQFmVIfgr5kZxFYmUFgKn45g6BsAgECuUmhPaX+lERERERERHGl6UOQ7EaFHHNoLurhz4RlZdJEAgTMICAiIiIiIoqXrHSdNSpkBoF5qP0dQMfB0QcsViils6J+vYEhNikkIiIiIiKKl0zNJAOdZRAMsweBYWn6D7hrodgdUb+eR84gYIkBERERERFRzOhtkoEiZRBwzKGBaSYYTKC8AGCJARERERERUTy50vSWQSCXGDCDwLDU+k+EZaVs7oReT25SyBIDIiIiIiKi2NE0KUx2gEDuQcAMAmNSVRX+/e8KjykVp0/oNeUxhw4GCIiIiIiIiGJGHnPYO8QmhfGWGle1HYeArobRZZsDStlJE3pJj0/KILCzxICIiIiIiChW9FdiwDGHpuA/8J6wrEw5FYpcPxIhOYOAJQZERERERESxkyU1KexLeoCAJQamoO6XAgRVZ074NTVTDNikkIiIiIiIKGbkDIKepE8xEDMIVDYpNCZVyiCwVE48QCC/OeX6GCIiIiIiIopepl1fAQLY7OIyMwiMRx3ohNq0Y/QBRYFSOX/Cr9s1KDbIyEm3hliTiIiIiIiIIpWdLl6uytdgCSf3IGCTQuNR694G1NGGgor7RCjO3Am/bpeHAQIiIiIiIqJ4yXfahOWOAU4xiDfTBwj8u14VlpXpS2Pyul2DYnpLjoMBAiIiIiIioljJd4rXWG0Dw0nakq9ophiwB4GhqKoK/5evC49ZZpwXk9eW01tymUFAREREREQUMwVSgKDDwwyCeDN1gADNu4DO+tFluxNK9cIJv+zgsB+e4dGyBasCZNg5xYCIiIiIiChW8h1iiUFbsksMgmQQqAHl7GZg6gCB/0upvGDq2VDsjgm/brDyAkVhgICIiIiIiChW8qQMgk6PD8P+5F2QKxYroARcQqsq4E9y0CLGzB0g2Pl3YTle5QVsUEhERERERBRbNouCXIc2SJBUmjIDc/UhMG2AQO1thbp3o/CY5YTzY/La2gCBaf+MRERERERESZPv0HujQnP1ITDtla1/+xpAHS0FUEpnQSmqiclrc8QhERERERFR/MmTDNqT3YeAGQTG5N/6F2HZMveKmL02RxwSERERERHFX4FTbFSY9AABMwiMR+1thVq3QXjMMmdlzF6fPQiIiIiIiIjiT25UeDTpJQZ2cZkBAv1T6z+RygtmQymeEbPXlxtjsAcBERERERFR7E1yiRkEX7YlOaXfKmYQqMMpGCDYuHEjzj//fCxbtgyPPPJIvLdp4nLKhPETlvm3xPTlP2/xCMuFGbYQaxIREREREVG05pU4heXPmgaStCUjFJvUg8BkGQTjXtn6fD78/Oc/x+OPPw63240rrrgCS5YswbRp0xKxfVGxTJqNV099GJnb/4TNtrn4zYcLoX70Rcxev90jprWcNTkzZq9NREREREREI05yiwGCNw/0ouzX4V3bDfuGYXs1dteBAPBCqx/zhH/EXE0Kxw0QbNu2DRUVFSgvLwcAXHTRRVi/fr2uAwQfHunHyrrTAcfpIw8M+AH4x3xOtFxpFpxZnhGX1yYiIiIiIkpl0wvS4UqzoNc7cj3nV4GW/kj6EMS2Z0GfKl5CH+3pR3FM/4XkGjdA0NzcjJKSkuPLbrcb27ZtG/M5fr8fO3funPjWRWlHS3yCAcEsKFKxd/eXCfv3ksHj8SR1f1LscZ+aD/ep+XCfmg/3qblwf5oP96l+nZSnYlNzsrdiRJ1lCs7CluPLu4760Gai901ciuctFgtqa2vj8dJhmXGCio3dh/Hs9g741Pj9OzOLHPjNZZUoz04bf2UD27lzZ1L3J8Ue96n5cJ+aD/ep+XCfmgv3p/lwn+rX/yn04OrnD2JXshsUAvi183rMH96Kqf7D2Dz1u1hyzrnJ3qSIjRUIGzdA4Ha70dTUdHy5ubkZbrc7NlsWJxZFweOXlOPh8yahfyg+2QRWi8LmhERERERERHE2s8iBbd+djtZ+H1Q1/DvAe/bsQU1NTYy3phZQlwMOG5bYzTfNbtwr3NmzZ+PAgQOor6+H2+3G2rVr8dBDDyVi2yYsK92KrHTr+CsSERERERGRbimKguLMyG7QtjsUuF32OG2ROY37F7bZbLj33nvx7W9/Gz6fD5dffnkcojBERERERERElExhhWAWLVqERYsWxXtbiIiIiIiIiChJzFc0QUREREREREQRY4CAiIiIiIiIiBggICIiIiIiIiIGCIiIiIiIiIgIDBAQERERERERERggICIiIiIiIiIwQEBEREREREREYICAiIiIiIiIiMAAARERERERERGBAQIiIiIiIiIiAgMERERERERERAQGCIiIiIiIiIgIDBAQERERERERERggICIiIiIiIiIwQEBEREREREREYICAiIiIiIiIiMAAARERERERERGBAQIiIiIiIiIiAgMERERERERERARAUVVVjfWLbtmyBenp6bF+WSIiIiIiIiKagMHBQcybNy/oz+ISICAiIiIiIiIiY2GJARERERERERExQEBEREREREREDBAQERERERERERggICIiIiIiIiIwQEBEREREREREYICAiIiIiIiIiADYYvliGzduxH333Qe/348rr7wS3/3ud2P58pQAd911F95++20UFBTg5ZdfBgB0dnbi9ttvR0NDA8rKyvDrX/8aOTk5Sd5SCldjYyN+/OMfo62tDYqi4KqrrsKNN97I/WpQg4ODuO666+D1euHz+XD++edj1apVqK+vxx133IHOzk7MnDkTDzzwANLS0pK9uRQBn8+Hyy+/HG63G7/97W+5Tw1uyZIlyMzMhMVigdVqxfPPP8/jrsF1d3fjn//5n7F7924oioL7778fVVVV3KcGtW/fPtx+++3Hl+vr67Fq1SqsWLGC+9SgnnjiCTz33HNQFAXTp0/HL37xC7S0tPC7NEIxyyDw+Xz4+c9/jkcffRRr167Fyy+/jLq6uli9PCXIypUr8eijjwqPPfLIIzjjjDPw2muv4YwzzsAjjzySpK2jaFitVtx5551Yt24dVq9ejWeeeQZ1dXXcrwaVlpaGJ598Ei+99BJefPFFbNq0CVu2bMGDDz6Im266Ca+//jqys7Pxl7/8JdmbShF66qmnMHXq1OPL3KfG9+STT2LNmjV4/vnnAfD71Ojuu+8+LFy4EK+88grWrFmDqVOncp8aWHV1NdasWXP8M+p0OrFs2TLuU4Nqbm7GU089hb/+9a94+eWX4fP5sHbtWn6XRiFmAYJt27ahoqIC5eXlSEtLw0UXXYT169fH6uUpQU499VRNlHT9+vVYsWIFAGDFihV44403krFpFKXi4mLMnDkTAOByuVBdXY3m5mbuV4NSFAWZmZkAgOHhYQwPD0NRFGzevBnnn38+AOCyyy7j8ddgmpqa8Pbbb+OKK64AAKiqyn1qQjzuGldPTw8++uij45/RtLQ0ZGdnc5+axPvvv4/y8nKUlZVxnxqYz+eDx+PB8PAwPB4PioqK+F0ahZgFCJqbm1FSUnJ82e12o7m5OVYvT0nU1taG4uJiAEBRURHa2tqSvEUUrcOHD2Pnzp2YO3cu96uB+Xw+XHrppTjzzDNx5plnory8HNnZ2bDZRqrGSkpKePw1mPvvvx8/+tGPYLGMfC13dHRwn5rALbfcgpUrV2L16tUA+H1qZIcPH0Z+fj7uuusurFixAvfccw/6+/u5T01i7dq1uPjiiwHwc2pUbrcb3/rWt7B48WIsWLAALpcLM2fO5HdpFNikkCKiKAoURUn2ZlAU+vr6sGrVKtx9991wuVzCz7hfjcVqtWLNmjXYsGEDtm3bhn379iV7k2gC3nrrLeTn52PWrFnJ3hSKoWeffRYvvPACfve73+Hpp5/GRx99JPycx11jGR4exhdffIFrrrkGL774IpxOpyb1nPvUmLxeL958800sX75c8zPuU+Po6urC+vXrsX79emzatAkDAwPYtGlTsjfLkGIWIHC73Whqajq+3NzcDLfbHauXpyQqKChAS0sLAKClpQX5+flJ3iKK1NDQEFatWoVLLrkE5513HgDuVzPIzs7G6aefji1btqC7uxvDw8MARtLVefw1jk8//RRvvvkmlixZgjvuuAObN2/Gfffdx31qcMf2V0FBAZYtW4Zt27bxuGtgJSUlKCkpwdy5cwEAy5cvxxdffMF9agIbN27EzJkzUVhYCIDnR0b13nvvYfLkycjPz4fdbsd5552HTz/9lN+lUYhZgGD27Nk4cOAA6uvr4fV6sXbtWixZsiRWL09JtGTJErz44osAgBdffBFLly5N8hZRJFRVxT333IPq6mrcfPPNxx/nfjWm9vZ2dHd3AwA8Hg/ee+89TJ06FaeffjpeffVVAMALL7zA46+B/NM//RM2btyIN998E7/61a8wf/58PPTQQ9ynBtbf34/e3t7j//3uu++ipqaGx10DKyoqQklJyfGMrffffx9Tp07lPjWBtWvX4qKLLjq+zH1qTJMmTcLWrVsxMDAAVVXx/vvvY9q0afwujYKiqqoaqxfbsGED7r///uOjmm699dZYvTQlyB133IEPP/wQHR0dKCgowA9+8AOce+65uO2229DY2IhJkybh17/+NXJzc5O9qRSmjz/+GNdddx2mT59+vL75jjvuwJw5c7hfDWjXrl2488474fP5oKoqli9fju9///uor6/H7bffjq6uLtTW1uLBBx/kGB8D+uCDD/DYY48dH3PIfWpM9fX1+Md//EcAIz1DLr74Ytx6663o6OjgcdfAdu7ciXvuuQdDQ0MoLy/HL37xC/j9fu5TA+vv78fixYvxxhtvICsrCwD4OTWwhx9+GOvWrYPNZkNtbS3uu+8+NDc387s0QjENEBARERERERGRMbFJIRERERERERExQEBEREREREREDBAQERERERERERggICIiIiIiIiIwQEBEREREREREYICAiIiIiIiIiMAAAREREREREREB+H/ZsZ7GcKZ+5AAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#scale linewidth up based on https://stackoverflow.com/a/48547567/8508004\n", "lines = plot_a.axes[0].lines #getting axes from a figure based on https://stackoverflow.com/a/24107230/8508004 ;\n", "# note that it is a list of them and what we want is in the first\n", "for line in lines:\n", " line.set_linewidth(4)\n", "plot_a" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "However, then you would probably also want to scale the tick labels, the title, the legend, etc.. And at this point you'd probably have an easier time of going back to the data that is being plotted and plot the many you need at a larger size or dimension. Or scale the SVG [by using a command line tool](http://www.imagemagick.org/discourse-server/viewtopic.php?t=23979).\n", "\n", "I'll show how easy it is to go back to the original data that is being plotted and take advatange of the ease in [controlling seaborn aesthetics](https://seaborn.pydata.org/tutorial/aesthetics.html). The code for plotting is in the `bendit_standalone_results_to_df.py` code [here](https://github.com/fomightez/sequencework/blob/master/bendit_standalone-utilities/bendit_standalone_results_to_df.py) between where it says the following:\n", "\n", "```\n", "# Plot the reported data\n", "#----------------------------------------------------------------------#\n", "...\n", "# CLEAN UP:\n", "#----------------------------------------------------------------------#\n", "````\n", "\n", "The three dots line is to reprsent the plotting code. Additionally, things can be boiled down further to the code in the next cell because we don't need the comments included in the full version and in this example `report_with_curvature == \"bendability\"` and `smooth_plot_curves == True`. The first two lines use code we discussed above under 'Viewing dataframes for the plotted data' to bring the demo_adataframe into memory.\n", "\n", "Note the addition of `sns.set_context(\"talk\")` and altering of `fig, ax1 = plt.subplots(figsize=(8,4))` to `fig, ax1 = plt.subplots(figsize=(12,6))` to control the size and scaling of aspects. (Note that a good portion of this code is to handle a special case where want to accomodate `show_date_with_slashes_in_plot_title`.)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAGFCAYAAAD3p5WQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8GearUAAAgAElEQVR4nOydeZgU5bX/v2919+wLwzAzwGxsQ7MvAhpQMIIsKoIxGsEl1+0aTa5Lool6s5h74/LTYMSQxH2JN4JxAZV9UQQhKEEEZGdYBhiYAWaf6Zleqt7fH7V0NzPdXdVdvQxzPs/jY3dVdb0vNb2cOu/3fA/jnHMQBEEQBEEQRBdDiPcECIIgCIIgCCIeUCBMEARBEARBdEkoECYIgiAIgiC6JBQIEwRBEARBEF0SCoQJgiAIgiCILgkFwgRBEARBEESXxBrvCRAEQRDBaWxsxLRp0+DxeAAA06ZNw9NPPx3nWREEQXR+KCNMEASR4Kxfv14LggFg06ZNaGtri+OMCIIgLgwoECYIgkhw1q1b5/fc4XBg8+bNcZoNQRDEhQMFwgRBEAlMfX09tm7dCgCYMmUKkpOTAQBr166N57QIgiAuCCgQJgiCSGDWr18PURQByNrgsWPHAiB5BEEQhBlQIEwQBJHAqJnfpKQkjB8/HhMnTgQAtLW14csvv4zn1AiCIDo9FAgTBEEkKHV1dfjmm28AAGPHjkVaWhomTZqk7V+zZk28pkYQBHFBQIEwQRBEgvLZZ59psoiysjKUl5ejsbERxcXFAIB//etfcDgc8ZwiQRBEp4Zxznm8J0EQBEG0595778W2bduCHvPkk09ixowZMZoRQRDEhQVlhAmCIBKQmpoafPvttyGPI/cIgiCI8KHOcgRBEAmIryzi4Ycfxty5c/3233zzzTh48CC++uortLS0ID09PR7TJAiC6NRQRpggCCIBUZtoWCwWTJ06td3+adOmAQCcTic2bNgQ07kRBEFcKJBGmCAIgiAIguiSUEaYIAiCIAiC6JJQIEwQBEEQBEF0SSgQJgiCIAiCILokFAgTBEEQBEEQXZK42KepLUMtFks8hicIgiAIgiC6CKoV5ZgxY9rto4xwJ0MURe0PShiDrl340LULD7pu4UPXLnzo2oUPXbvw6MzXLS4ZYYvFAlEUMWrUqHgM36k5cOAAAMBut8d5Jp0PunbhQ9cuPOi6hQ9du/Chaxc+dO3CI9Gv244dOwLuo4wwQRAEQRAE0SWhQJggCIIgCILoklAgTBAEQRAEQXRJKBAmCIIgCIIguiQUCBMEQRAEQRBdkri4RhAEQRAE0bVobW1FY2MjnE4nOOfxnk6HtLW1AQAqKiriPJPORTyuG2MMycnJyMrKQmpqatjnoUCYIAiCIIioUltbi+rqai14EYTEXJDOzMyM9xQ6JfG4bqIooq6uDrW1tSgoKED37t3DOg8FwgRBEARBRI3W1lZUV1cjMzMTvXr1SuiusmpmMyUlJc4z6VzE67qJoojTp0+juroaqampYWWGE/OWjCAIgiCIC4LGxkYwxhI+CCY6HxaLBb169QJjDE1NTWGdgwJhgiAIgiCihtPpRHJyMgXBRFSwWCxITk7WstJGoUCYIAiCIIiowTlPWE0wcWEgCELYBZj0zjQBt8hR4/DEexoEQRAEQRCEASgQjpCd1a0Y+Lf96Dl/L67/4BicHineUyIIgiAIgiB0QIFwBLhECXMWV+BkkxsAsPRQI57efCbOsyIIgiAIgiD0QIFwBLy7ux7ldS5YGHBZcToA4MWt59DQJsZ5ZgRBEARBxJKKigr89re/xeTJkzFs2DCMGTMGt9xyCxYuXAiXyxXv6QVk+fLlePvtt+M9jbhBgXAEvLmjFgBw45Bu+PjGPki1MrS4JXy4vz7OMyMIgiAIIlZ8/vnnuPbaa7FmzRpceeWVeOKJJ/DQQw8hNzcXTz75JObPnx/vKQZk+fLleOedd+I9jbhBDTXC5GSjC19VOgAAd4zIQXaKBbMGZuGfexuw/FAT7hqVG+cZEgRBEAQRbY4fP46HH34YxcXFeOedd5Cb6/39v+2221BeXo5///vfEY/jcDiQlpYW8XliRWtra0Stj2MFZYTDZEW5bNzcLcWCiSUZAICp/eQWgxuON8MjJWYfdYIgCIIgzOP111+Hw+HAU0895RcEqwwYMABz587FyZMnYbfbsXjx4nbH2O12LFiwQHu+YMEC2O12HDlyBA899BDGjBmDn/zkJ3j99dcxaNAgVFVVtTvHE088gdGjR2t+uuvWrcM999yDyy67DMOGDcOVV16Jv/71rxBFr3zztttuw2effYbKykrY7XbY7XZMnjwZALB48WLY7XacPHnSb5yvv/4adrsdX3/9tbbtrrvuwo9+9CPs2rULc+fOxYgRI/D6668DkLvOvfDCC5gyZQqGDRuGK664Ai+++CI8nsRw26KMcJh8ebwFADClTwZsFgYAuKJUDogbnRK2V7Xi4t6d586NIAiCIAjjrF+/HiUlJRg1apTp577//vvRv39/PPLII7BarZgwYQL++Mc/YtWqVbj99tu140RRxNq1azF58mStzfGSJUuQlpaGO+64A2lpafjqq6/w5z//Gc3NzXj00UcBAPfeey9aWlpw6tQpPP744wCA9PT0sOZaW1uLn/zkJ7j22mtx3XXXoVevXpAkCffeey927tyJOXPmoE+fPtizZw9efvllVFVV4ZlnnonsApkABcJhsqVSDoTHF3mD3ZLsJAzISUJ5nQvrjzVTIEwQBEEQQXCLHJWK81I8Kcy0aUktIzQ3N+PMmTOYMmVKFGYFDB06FM8995zftpEjR2LlypV+gfDWrVtRU1ODq6++Wtv2/PPPa0ExAMydOxe/+93vsGjRIvz85z9HUlISLr30Urz77ruor6/H7NmzI5rr2bNn8dRTT+GGG27Qtn388cfYunUrFi1ahJEjR2rbi4qK8Pzzz+Puu+9G//79Ixo3UigQDoPKJjcqGuQP7oQi/zun75dmoLyuFhsqmvHohPx4TI8gCIIgEh63yDH81QM4XBd/R4X+OUn47h674dc1NzcDCD+LGoo5c+a023bVVVfh2WefxalTp9C7d28AwMqVK5GZmYmJEydqx/kGwc3NzXC5XBg7diz++c9/4siRIxg0aJCpc01JSWkXTK9evRplZWUoLi5GbW2ttn38+PEA5ACeAuFOyFcn5WxwqpVhVIG/EHxiSTpe31GLLZUOeCQOq2D8DpMgCIIgiMQnI0OWRLa0tETl/EVFRe22qYHwypUrcdddd0EURaxZswZTpkxBUlKSdtyhQ4cwf/58fPXVV1rArtLU1GT6XAsKCmCz2fy2VVRU4PDhw1rgez6+wXG8oEA4DFS3iLG90totpah+ws0uCbvOtOKiniSPIAiCIIjzsVkYvrvHnlDSCNHgVDIyMpCXl4dDhw6FPJaxjhNjvsVr5+Ob1VXp2bMnRo0apQXCX3/9Nerq6vxkEY2Njbj11luRkZGBBx54ACUlJUhOTsaePXswb948SFLoLriB5hvotR3NVZIkDBkyBL/85S87fE1xcXHIeUQbCoTD4LszckXmRb3a24KUZCehOMuGE41ubDruiHkgzOtPgJ85AFY2JeCbmCAIgiASAZuFoU+3pNAHJjBXXHEF3n//fezcudNPB3s+2dnZAOQg1ZdTp04ZHvOqq67C008/jRMnTmDlypXIzs7GhAkTtP1bt25FfX09/vKXv2DcuHHa9vMdIIDAAW9WVhaA9tnjyspK3fMsKSlBeXm539wSDbJPC4M9Z+VAeGhe+7sfALhUyQr/62R0lkoCwTmH57VZ8Lx6DaQvF4R+AUEQBEEQEXH33XcjNTUVv/nNbzpc6j98+DDee+89ZGRkICcnB9u2bfPbv3DhQsNjzpgxA4IgYNmyZVi7di2mTp3qJ0sQBDm849xr5epyuTocKzU1tUOpRElJCQD4eSCLooj3339f9zynT5+OyspKLFmypN2+lpYWOJ1O3eeKFpQRNsg5hwdVLbL3XcBAuCgd7+2px6YTLeCcxywzyyu/Ba/eCwAQP/0lhIn3U1aYIAiCIKJIaWkp5s2bh5///Oe46qqrcN1112HAgAFwOp345ptvsGbNGs3h4cYbb8Srr76KX//61xg2bBi2bduGo0ePGh6zoKAAF110EV577TW0tLT4ySIAYPTo0cjOzsZjjz2G2267DYwxfPLJJ36BscqwYcOwdOlSPPPMMxg+fDjS0tIwefJklJWVYdSoUfjTn/6EhoYGZGdnY8WKFYb8f6+77jqsWLECjz/+ODZv3ozRo0fD7XajvLwcK1euxOLFi1FaWmr4328mFAgbZK+SDQaAoT06DoRVnXB1iwfldS6UdU+Oydz4wc/9NzRVA1k9YzI2QRAEQXRVrrzySnzyySd44403sHbtWrz77rtITk7G4MGD8bvf/Q7XX389AOBnP/sZamtrsXr1aqxcuRKTJk3C66+/HrCYLBhXX301tm3bhpycHHzve9/z25eTk4OXX34Zzz77LObPn4+srCzMmjUL48ePx1133eV37E033YQ9e/ZgyZIlePvtt1FYWKg11Zg3bx5+97vf4dVXX0VWVhZuuOEGXHLJJbjjjjt0zdFiseCll17Cm2++iU8//RSrVq1Ceno6SkpKcM8996CgoMDwv9tsGO/o9iDK7NixA6IoYsyYMbEeOmL+uu0cHlpzCv26JeHATzu2HpE4R88X9qKuTcRr1xTh9pHdTRv/wIEDAOQuNOfjWXg7pO2LtOfW/1wGwT7VtLE7O8GuHREcunbhQdctfOjahU+iXbuKigoAiHvmTw9qV7aOCr+IwMT7uoV6j+3YsQMAOmx6Qhphg+wNoQ8GAIExTFAabWw6ETudMD+92/+5IpMgCIIgCIIg2kOBsEFUm5dQVa6XxbhgjksS+NmD/tvq21eHEgRBEARBEDIUCBvkrEP2+8tLswQ9boISCB+qdaGqOQYeiU1VgEeuvmR9L5W31eu3OCEIgiAIguhqUCBskHMOuVqyR1rwOsOxvVKRYpUdGzbHQB7B6yq0x6yPLLrnDRQIEwRBEARBBIICYYOcVQLhvBCBcJJFwMW9ZZ3w5pOOqM+L1yqBcHoPsLyB8jYKhIkYsLO6FT/88Bh+/MlxVMdi9YMgCIIgTILs0wzg9EhocsmtBUNlhAHZT3jj8ZbYFMwpGWGWUwqW3Vve1ngKXJLABLrfIaLD8QYXpi88gppWUXu+/rb+5F9NEARBdAooQjLAuVZvP/BQGmEAuKxE1gnvrG5FozNwL3Ez4LXH5AfdS4GMPPmxJAJtDVEdl+jaPLLulBYEA/Lqx7qjzXGcEUEQBEHohwJhA9S0erup5KaGzgh/rzANAgMkDnxdGV15BPfNCKf5+BY7aqI6LtF12XS8BUsONAIA3pldjIlKgeg739XFc1oEQRAEoRsKhA3Q5JS0x5lJoS9dVrIFI/Jlv+FoyyNUjTDrXgqk9/Bub6FAmIgOz205AwAY1zsVc4Z0wy3DuwEAlh1qhEuUgr2UIAiCIBICCoQN4HDLP+4WBiRZ9GkgVT/haDpHcEkC6o4DUDLCSWmAVWn4QYEwEQWO1Dmx6nATAOBX4/PBGMNV/bMAAM0uCd+cbo3n9AiCIAhCFxQIG6BFCYTTkwTdxUCXKoHw1lMOeKQodbN21ACiS37crUj+v5IV5o7a6IxJdGle31ELDqAo04aZZXIA3DvThgE5cqOZWHZUJAiCIIhwoUDYAFogbNN/2cb0ki3UWj0ch2qdUZkXb6zSHrPMnvL/0xWdcMu5qIxJdF0453h/bz0A4PaRObAK3pvCiUqB6MbjFAgTBEHEi8ceewyTJ08O67V2ux1PPfVUyOMWLFgAu93e7rULFiwIekyiQYGwAVpcxgPhPtk2ZCXLx++sjtJycdNp+f+C1asPVgrmKCNMmM22062oaJD9gm8c3M1v38SSDACyFEiM1goIQRBEArF48WLY7Xa//yZMmIA777wTW7dujff0Eo5XX30V69ati/c0NCgQNoCaEU4zEAgzxjAiPxUAsLO6LSrz4o3V8oPMAs0zmKkBMWWECZP5aL9syTc4NxlD8lL89k0okldAmlwSDkZpBYQgCCIR+fnPf47nnnsOzz77LO644w5UVlbizjvvxHfffRfvqUWF++67D7t27TJ8TKIFwtRQwwAOH42wEUYWpGDTiZYoZoRlaQTLLPBuUzPCLZQRJsxlxSHZMu0Hg7Lb7evbLQmZSQKaXBJ2VbdhcI+UdscQBEFciFx++eUYPHiw9nzWrFmYNGkSVq9ejeHDh8dxZtHBarXCag0eRuo5Jt5QRtgA4WiEAWBkgZwR3nUmWhlhRRqh6IMBeCUS5BpBmMiJRhf21ciZ3un9M9vtFxjDcMUycNcZco4gCKLrkpOTA6vVCo/H24Ogra0NL7zwAqZMmYJhw4bhiiuuwIsvvuh3zMmTJ2G32/H2229j0aJFuPLKKzFs2DD88Ic/7DADu27dOsycORPDhw/HzJkzsXbt2g7n88Ybb2DOnDm45JJLMGLECFx//fVYtWpVwPl//PHHmD59OoYPH44bb7wRO3fu9NuvR/97/jF2ux1NTU1YsmSJJiN57LHH8NFHH8Fut2Pv3r3tzvHCCy9g+PDhaGiIToOwxA7TE4xwNMIANC/h6hYPzrR4kJ9u8mVvkqURLMsbCGvFctRQgzCRtUfkrnHZyQIu7p3W4TEjC1Lxr5OOqN34EQRBJCKNjY2orZVXYc+ePYs333xTtpa86ioAgCRJuPfee7Fz507MmTMHffr0wZ49e/Dyyy+jqqoKzzzzjN/5PvnkEzgcDtx0001gjOH111/H/fffj3Xr1sFmswEANm3ahPvvvx8DBgzAww8/jLq6Ojz++OPo2bMnzuedd97B5MmTce2118LtdmP58uV48MEH8corr+D73/++37FfffUVli9fjltvvRVWqxXvvvsu7rjjDnz88ccoKSkJ+xo999xzeOKJJzB06FD86Ec/AgCUlJSgrKwM//u//4ulS5diyJAh2vGccyxduhSXX345srPbr0KaAQXCBnB4wpNG2HOTtccHa5ymB8Kaa0QHGWFqqEGYybqjsnfwlD6Zfm4Rvqg3fruiJQUiCOKCgYtuoKEy3tMAsgvBLLaITvHjH//Y73laWhpeeOEFjBw5EgDw6aefYuvWrVi0aJG2DQCKiorw/PPP4+6770b//v217VVVVVizZg0yM+XVt759++KnP/0pNm3ahCuuuAIAMG/ePOTn52PRokXIyJCLlS+++GLceeedKCws9JvP6tWrkZLilavdcsstuP766/HWW2+1C4QPHTqEjz/+GIMGDQIAzJgxA1dddRVeeumldgG7EWbPno0//OEPKC4uxuzZs/32TZkyBStWrMCvfvUrzaJ2+/btqKysxGOPPRb2mKGgQNgAjjAzwhlJFhRn2XCi0Y19NW24TLGYMguuuEb4ZYTTvBlhzrlu32OCCATnXLNFm9w3I+BxIxQp0KlmD862eJBn9goIQRAXBFx0w/3cCKDmSLynAuT2g+1XwQu/QvE///M/Wrb0zJkzeO+99/DII4/gjTfewNixY7F69WqUlZWhuLhYyxwDwPjx4wEAW7du9QuEr7nmGi0IBoCxY8cCAE6cOKGNsW/fPtx3331aEAwAl156KQYMGIDWVv9khG8Q3NDQAFEUMWbMGCxfvrzdv2XMmDFaEAzIWduJEydi48aNxi+MTmbPno3ly5dj69atuOSSSwAAS5cuRVZWVrtA3UzoF8oA4WqEATkrfKLRjQM1Uaik70AagbRc+f+iG3A2ASlZ5o9LdClOtMjyHgC4tCjwzdxQnwK5/TVtyEsPHDQTBEFcKIwcOdKvWG769OmYOnUqnnrqKSxZsgQVFRU4fPiwFviej29wDAC9e/f2e65KAxob5YLlU6dOAQD69OnT7lx9+/Ztp7ddv349XnrpJezbtw8ul0vb3lGirLS0tMNt69evh9PpRHJycrv9kXLZZZehR48eWLZsGS655BK43W6sXLkS06dPR1JSkunjqVAgbIBWj+yLmmoNLxBed7TZ9ECYO5sBp6zbRGYvbTtL9dHStDVQIExEzLc18o1gtxQLhuQF/hJMTxK0FZADNU7NW5ggCMIXZrHJWdhEkka4RdNOmZqaipEjR2LdunVwOByQJAlDhgzBL3/5yw6PLy4u9nsuCB3HGpwb92jftm0b7rvvPowbNw5PPPEE8vLyYLPZ8NFHH2HZsmWGzxcNLBYLZs6ciSVLluC3v/0tNm/ejPr6esyaNSuq41IgbIA2RSOcbDUuM1B1wqZnhJVsMACwzHzv9hRvIMxbG8H8+x4QhGF2KIHw9wrTIISQ2gzsLq+AkJcwQRDBYBYb0L1PvKcRNVQ3CIfDgZKSEpSXl2PChAmmnFvNGB87dqzdvqNHj/o9X716NZKTk/HGG2/4ZVc/+uijDs9dUVHR4bbc3NyIs8HBpJqzZ8/G22+/jY0bN2LFihXo3bs3xo0bF9F4oSD7NAM4RfkuLNliPBAelCsvFx+rd6FVkViYAfdtmJGe533slxGuN208ouvybY38/lebZgRjYLRu/AiCIDoJjY2N2LFjB3r06IHc3FxMnz4dlZWVWLJkSbtjW1pa4HQa+77Mz8/H4MGDsWTJEjQ3N2vbN2/ejPLycr9jLRYLGGMQRW/G++TJk/jss886PPc333yD/fv3a8+PHz+OTZs2YdKkSYbm2BGpqamavON8hgwZgoEDB+L999/H559/jmuuuSbqNU6UETaAU5FGJFmM3z+ogQEHcKTehaF5JjUaaD4r/9+WCpbs1W0yazJgTQE8bUBrdLz3iK5Dg4ujvFF+/48vDF3sqa6AHKRAmCCILsKGDRtw8OBBALJ92ocffoj6+no88cQTYIzhuuuuw4oVK/D4449j8+bNGD16NNxuN8rLy7Fy5UosXry4Q21uMH7xi1/gJz/5CebOnYsf/vCHqK+vxz/+8Q+UlZXB4XBox11++eV46623cPfdd2PmzJmoqanBwoULUVJSggMHDrQ7b1lZGe68807cdtttsFgsePfdd2Gz2XDvvfdGdpEADB06FFu2bMFbb72F/Px8FBUV+blozJo1C/PmzdMeRxsKhA3gEsOXRvTKsCLZwuAUOY6ZGAhrGWHfbLBKajbQ1Abe1vGdF0HoZacii7AwYFwA/2Bf1ED4aL0LTo+E5DB09QRBEJ2JF154QXuckpKCgQMH4vnnn8fMmTMByFnZl156CW+++SY+/fRTrFq1Cunp6SgpKcE999yDgoKCQKcOyKRJk/Diiy9i/vz5eP7551FSUoJnnnkGn332GbZu3aodN378eDz11FN47bXX8PTTT6OoqAiPPPIIKisrOwyEv/e972Ho0KH429/+htOnT8Nut2P+/PkdFuYZ5dFHH8Vvf/tbzJ8/H21tbfjBD37QLhD+05/+hIEDB2LgwIERjxcKCoQNEIk0QmAMpdk2HKx14Wi9K/QL9NIsB8Iso0f7fSlZsoa4jTLCRGTsrZff+8PzU3T5aA/sLgfCIgcO17kwxKwVEIIgiATj+uuvx/XXX6/r2KSkJNx7771BM6tFRUUdBqcAOtw+bdo0TJs2zW/b1KlT2x13ww034IYbbmi3/f777w84xnXXXRdwnvfff3/Q1wY6pk+fPvi///u/gOe1Wq1gjMUkGwzo1AgfO3YMDz30ECZNmoRRo0bh6quvxquvvupnv9EVUKUR4WSEAaBPN1mgbmYgzFsUaUR6+0CYqQVzlBEmIuRAg/zeV9uFh6Ioy4YU5XNyxMwbP4IgCOKCRi3gUzPp0SZkRri6uho33ngjMjMzceuttyI7Oxvbtm3D888/j0OHDuGPf/xjLOaZEHgzwuEt8/btlgygGccaopER7kAaoVimccoIExFyQMkIj8jXFwgLjKFvdhL21ThxpI4CYYIgCCI4W7ZsQXl5OV555RXMmDEjLKlIOIQMhD/55BM0NjZi4cKFKCsrAwDcdNNNcDqdWLFiBZ5++mmt5/WFjlPVCIchjQCAvt3k6xSrjLBmoUbFckQENLtEnGhRM8L6JQ59c5RAuJ4K5giCIIjg/O1vf8O3336Liy66KKotlc8nZCDc0iK3VM3NzfXb3qNHD1itVlgslujMLAGJWBqRLUsjjtW7zGt7HCQjzFKzwQGSRhARsftsG1T79uH5BgLhKEiBCIIgiAuTYLrhaBJyjV81Mv71r3+N/fv34/Tp0/j000+xZMkS/Od//mfAzicXGqLEoSgjkBKmNELVCDe5JNS2mtO9hjcHywiTNIKInF3VbQCAglSge6r++tp+3RTnCJJGEARBEAlKyF+1yy67DA8++CBeeeUVfP7559r2Bx54AD/72c8iGjxQVWQiorZXBoCqyuM40Go8GBZd3nNs2HUIQ3OMn0P1BVSvXWnTGQgATjU44TjvenZr8SAHQGttFY50omsdLc6/doQ+Nh50AwAGZHBD1y65Rb7ZO1znxL79+0N2o7sQofdc+NC1C59Eu3ZtbW3IzMxEW1tbvKcSEkmSJZCdYa6JRLyvmyiKaGpqCji+KIoBFQy60jtFRUW4+OKLMXXqVHTr1g1ffPEFFixYgO7du2Pu3Lnhz7wT4fJpBmcLMwmeZQNSLECbCJxp5RiaE9mcmNsBQZT/6GJK93b7paQMAIDgaopsIKJLozpGlGUZ629flCEHvi4JONsmZ5QJgiAIIpEIGQgvX74cTzzxBFatWqVV8E2bNg2cczz33HO4+uqrkZ2dHeIsHWO328N6XTyoanYD2AcAsPfvC3uP8HxRi9bvR3mdC8gqgN2eG/oF56He4dvtdvDaY3Ar20uHjAHr0d/vWLGxDOIWIIk7O9W1jha+147Qh8Q5Di/dA4BjaG6SoWtX7JaAtbsBAEL3YthLQneku9Cg91z40LULn0S7didOnIDL5UJycnLU2+VGippRTEkh73MjxPO6cc7BOUf37t1RXFzc4TE7duwI+PqQuc2FCxdi6NCh7WwsJk+eDIfD4deL+kJGtU4DEFGXrN6ZsnPEqSZ3iCNDw5VCOQBAR8Vymo8waYSJ8DhW70KTshxizzb2A5ZmE9ArQ77XPuOlcQgAACAASURBVEzOEQTRZcnIyIDL5cLZs2e1JXSCMANJknD27Fm4XC5kZGSEdY6QGeFz586he/f2y+5utxzIiaI5RV+JjtNHIxyufRoAFCqB8EkTAmGo1mmWJCA5s/1+pVgOziZwSQLrIoWNhHnsOiPf5ScLQGmm8fd9325JON3soYI5gujCZGdnw+FwoKamBnV1dbDZbAnrOKXGNIk6v0QlHtdNFEW43W5IkoSsrKyw1QkhI6O+ffti9+7dOH78uN/25cuXw2KxJMzSS7RRPYQBcwJhUzPCGXkdLzelKm8KzgEn6YQJ4+yqbgUADMhmsISxpNkvR3aOOEwWagTRZREEAYWFhSgpKUFWVlZC9x5oampCUxP9XholHtfNZrMhKysLpaWlKCwsDNvFLGRG+K677sLGjRsxd+5c3HLLLcjOzsYXX3yBjRs3Ys6cOe38hS9U/KUR4QfCZkoj1Iww68g6DQBTM8KALI9IDe9uiei6fKdkhI3KIlT6KZaB1F2OIIj09HSkpyd2rYCqdS0tLY3zTDoXnfm6hQyEx40bh/feew8LFizAwoULUV9fj8LCQjz88MO46667YjHHhMBfGhG+xEDNCFc2m5kR7jgQ1jrLAeBtjUjsEgUiEdmlBcLhvedLs+X3+3Ez24oTBEEQ7eCNVZD2Locw5mYwG9n06EWXfdqIESPw2muvRXsuCY1LyQgzABHUyqF3pnzJG50Sml0iMpIi0NO0KF3l0tsXygHwC4QTvWCOcw5p018gHVgLy5RHIfS9NN5T6vI0OkUcUSQN4WaE1W6KVS0etHkkpETy4YkCvKUG0o4PIPS/HKzn4HhPhyCIBEaq2gvxk19AGHc7LBfNifd0/OCcw/POHPBjW8CPb4X1R6/Ee0qdhsT6VUpg2jyyRjjZyiKyf1EzwgBQGaE8QusqFyAjzKxJgHpX2Fof0VjRRtr6NsRPHgHfvxri4gfAuTHPWsJ8VFkEAJSFGQiXKIEwAJxoNEEOZCKcc3j+fhPEJQ/C/cI4SMe2xHtKBEEkKFyS4Hn7RvBD6yEuuh285mi8p+QHP74VXPkOk7a+De6ojfOMOg8UCOtE1QhHUigHAD3TbZpE4VSTJ7JJhcoIA1pWmLc1RjZWFOEtNRCXPe59fno3+OndcZwRAXgD4ZIsG7KTwnvfF2baICgvTTR5BK/4CvzIl/IT0Q1x8YN0A0YQRIfwqj3AuXLlCYe0d1l8J3Qe/NDn/s9PfhunmXQ+KBDWiaoRjkQfDAA2C0NBuiyPiDgj3BI8IwzAa6HWmrjSCHHV74HWOnmuSradH98a30kR2HVGdowYURC+QbrNwrRVkIqGxMoIS/vX+D3np3aCl38Rn8kQBJHQ8PL1fs+lI5vjNJOOkQ5v8HvOKykQ1gsFwjpR7dMicYxQMc05ojl0RtjbVCMxM8JS1V5IX70OALBM+y3YoBkAAH5yezynRcBbKDciP7Kii5KsxCyYU7PBwsT7wUovAQBI2xfFc0oEQSQo5/8m8RPb4jST9nCPE/yoIu0S5EQbr9obxxl1LigQ1olZ0gjAxzkigkCYe5xeb+BgGeFUOSPME7RYTvrs/wFcAvLKIFx6H1jhaAAgaUSckTjHbiUQHp4fWctMVSdckUAaYc65vNQJgBVdBGHUjwAA0v5V4NT5iiCI8+DV+wAAzD5V3lB/AtzZEscZeeHH/w145O9r4eLb5W21x+I3oU4GBcI68UojEiQjrBbKIbCPMACvc0QCBsL8XDmkHR8AACyTHwWz2MDyypR9h+M5tS7PkToXWtxyQBhpRrhUCYQTKiPcVA0oxSSs5xAIg6Zp23kV3YQRBOGFSyJ49X4AgDD8Ou/2c4fiNSU/+FFFppE/CKxknLyttiKOM+pcUCCsE9U+LckE+6dCxUItEi9hrhTKAQAyOqc0Qvx8npwNzimFoFjRsNx+8s6Wswld4Heho8oi0mwM/XOSQhwdnET0EubVyrIhE8Dy7UCPMiBHNoLnB9fFcWYEQSQc9Se8Gdd+E4HUHAAAP3MwnrPSkJRAWOh3KVj3PvLGxkp55ZgICQXCOtE0wiZkhHtmyIFBdXMErhFqRliwACndAh+ndJPjCVYsx+tPQPrmHwAAyxUPg1nka8J69PceU3MkLnMjvK2Vh+alwCJE9p4vylKlQJ6EcWXQ9HO5fcFsqWCMQRg4BQAgUSBMEIQPmsyAMaB7H2+wWX88XlPS4JIIfuwrAADr6xMIcy4H8ERIKBDWiSqNSDGhWK6n4hpR1RJ+YKBlhNPzwIL012YJKo0Qv3gBEN1AVi8I4/7DuyO9B5CcIT+mpZ24YVahHAD0Um783BJHTasY8fnMQM0Is4Ih2jY24Pvyvoqt4FJizJMgiPijBcJZhWDWZKBboby9oTJ+k1LgVXu033ehzwQgq5d3X1N1vKbVqaBAWCfeYrnIL1lBhhwIu0SOBmeYhTnNZwAALFihHJCQ9mm8qRrS128CACyTHgSzeYuxGGNAVm/5uMZTcZkfAXynWqdFWCgHmNtExix4lVL40tMbCAuKtg7OJvAzB+IxLYIgEhA1EGbdZfkUU3+j6hMgEFb1wdmFcrbamgykKqvETWfiN7FOBAXCOtECYRMywgXp3sCgKkydMFes04LpgwFoH4hE0tuKG+YD7lYgLRfC+P9st1/7kmmgQDgeNLSJOKZ4/o4oiDwjnJtqgU2RV5yOQBdvJtoPW65XioPufeUVCcTWx5qLbkgnt4O720IfTBBE7KmTJRBMqSNg3Yrk7QnwG8WP/gsAIPSd4O16m1kg72uqite0OhUUCOvE6TFPI5yfZtUen2kJUyesaISDdpUDwNSMcIJII3jLOUj/knugWyY9AKbKIHxg2XIgjMbTsZwaoeDbWnl4XuQZYcYYeisFohF3UzQBLrqBJvm9xXKKte2MMbDisfIxMQqEeWMV3PNGwzN/PNzPDiddPEEkINrqpCKJQHZiSCM451qhHOszQdvOMtRAmKQReqBAWCdqRjjJhEDYZmHokWoBIOuEw8HbVS5ERljVCDubEkL3KG5cALhagNRuEC69r+ODFI1TvL9kuio7FVlEn2wbslMsppxT1QknREa4oVIuJAHAuhX77RJKLgag+HLGAHHl74CzigVT/XF43g/wmSAIIm7wBuXGWfltYkogjKbT8o11vKirkL/PIBfKqbAsORAGBcK6oEBYJ15phDmXTG2zXBWuc4SaEQ4pjcj2Po6zPIK3nIO0+W8AAOGyn4H5zs0HygjHFzUjbIYsQsWMJjJmwetPep+oS5wKrPgi+ZjqfeCe6Nq98dYGSNsXyuMOvFLedvgLSEoFOEEQCUKjGgjLv01MzQxzDsRRfiApsgikZIH1GubdkZEPgDLCeqFAWCcuExtqAECBkiE74whXI6wvI6y5RgBxl0eIq34vB+Mp2bBc9rOAx5FGOL7sMrFQTqWXUiCaCBlhrloKpeeB2fyDfdZ7hPxAdEe9YE7av1p2TrEmw/of/9S6Kkr//ntUxyUIQj/c5fD+dmb1VP5f6N0fx4I5tVCOlX4PTPCu3rFMZZ4UCOuCAmGdmOkjDAD5ZmWEQ2iEfTPC8SyYk07tgvTVGwAAy7TfgKXnBj5YzQi3NSRMC8uugij5tlY2LyPs7aYYf40wlIywrz5YI6s3kNYdAMBPfxfVafAjG+V59JsIlpwBYcxcAIC0Z1lCyJgIgoDfyqQmjUhO9zozxDFh4y2Uu9R/h1YsR64ReqBAWCdmukYAXi/hcIrlmMcJOJvkJ6GkEclZ3set9YbHMgPOOcSPfyF3kcsfFFgbrMB8fBDVoiYiNpTXOdGqrH6YmxFOHI0wVyrAz5dFAErBXK/h8nHRDoSPb5PHLP0eAEAYeq28o/kMeAXJIwgiEeC+Ej2f3yamFcydPP8lMYG31Hj90PtO8NvHMmVpBJqqEqaJUSJDgbBOnB7zfIQBoGeGt6mGUYS2Ou1xKB9hZrECSenykzhJI/iuxeBHvgQAWGfP07rIBcTXEJzkETFlV7WcDU63CegXYWtlX3or7/fqFg9EKb5fzKo04vxCORVVa8dP7YreHDxOLdAWSmSnCpbbTwvCpd1LozY2QRD60QLhtFzZo1dFCTY1mWKM4ce2yA8sNs3tRkOVRoiuuEsiOwMUCOvE21DDLGmE2mbZeIbM0lbrfaKI4oMSRy9h7myGZ+mjAAA2dCYE+9SQr2HWJECRfHAqmIspaqHcsPwUCMyc9zrgfb9LHPHvLqdKIzrICANenTA/vTtqU+BnDwGSx288AGCDZ8j7D2+M2tgEQRhAsU5jqj5YQZMlxikQlpRAmBVdBJaU5rdPywgDcS3m6yxQIKwTl6IRtpkUCGvSCIcHksGlC0urEghbbF57tCCwOHaXE9c+Lfc7tybDeu1zul+nuWE0k8YplkSjUA7wauIBoLolvvIIrViuW0mH+9WsLJqqoqax41XykiZSsrVOigAg9Jso76/8FrytKSpjEwShH96oBJK+kj1AkyVqVqYxhlfIXues9JL2O30SZKQTDg0Fwjpxm+gjDHgDA48E1BrMkGmBcHqet5NMMNRgOcZLJLxqH6SNLwIALJMfBevRP8QrfFC/ZNQOekRM2KVap5lYKAfI3eWU5nLhN5ExAd7WpGnlOyyWg9J2mclfjbwqOllhXu1t8ez7GWZ9xstjc4l0wgSRCJxnnabiTdbE/jeKSyL4yW/keSje574wi81bzNdSE8updUooENaJW9E1qq1iI6WnX4bMWGCgaoRD6YM1FOcIHsOMMOccniUPysu/uf0gXPGwodczpdUt4nS33RWpbfXgRKPaWtncjLBFYMhL8+qE44aPh3BAaYQtFcgrAxBFnXDNYXmsHmX+Y6dkgRWOAgBIRzZFZ2yCIHSjtSlWm1SoqO3Y47Bqyav2yo2pAAgl4zo+SHFm4i2UTAoFBcI6ccvKCNOkET3SrFqGzKhOWMsIh3KMUGBxyAhL3/4T/PAGAID1B/PBbAYDqwz1S4Y+xLFit8mtlc8n30cOFC94veIYIVi9BSUdwHoOlY+v3h+dedQclcfp0a/92EoFOKfGGgQRfwI0r2Kq/CAOgSY/oXS+zMgHcko7PMabTDJ/fvzsIUi7PwU/c+CCcKWwhj6EALzSCLMywmqGrLrFY9g5wqJmhEN5CKvEWCPMWxsgLv0VAIAN/wGEQdONn0T9t9HdbMzYqQTC/bolITPZnNbKvuSnhW8ZaBZaV7nsQj8D+vNhBYPB4ZUwmD4PJRBG9z7txy6WMzy88ltwSQITKF9BEPFCS8acX5iursi2NYJ7nP6OEtGek9ICnhWPDSyPVDPWJv6Gco8L4kf/5df0hxWPg2X2PAA5po0Ta+gbVicukzXCgLfNstGlYqMZYVUjzE3ICPPaCkj7VgW1jBFX/4/c0SYpHdbZfwxrHKZlhEkaESt2VsuFciNNlkWo5If5fjeTUNZpKqxgsHx89T7TMx68rUmT/LDufdvtF5Q2z2hr0CQUBEHEHi5J3s9qur8U0e95jH+n+HG5UE4oba8PVvFmhM3TCIsfP+QNghUbVH7i3/D85XL0WP/fsDg65+81BcI6MVsjDIQfCAuKfdr5SzWBYKpoPkL7NPGbd+H+f4PheWM23E+VQfzq9XbHSJU7IW1+CQBgmfrfIQOOgFBGOOZ4A2FzC+UAQKr4Gjef+jPs4lGcTQCNcKBCORU1EEZbg19nKTPgtce84+S2D4SRO0BbxZFObjd1bIIgDNBWD6hdHttlhH2cGWL4O8WdzZrrDAukDwa8GmGTgnTp8Jdad1hhyqOwPdMA631rwYrkG/fM8mUo+udMiGueBBcToIOoASgQ1okWCJuZEVa6bYWdEU7XWSyn/KhGkhHmogfisse9XwruVogf/gzimie9x0gSxMUPeDvITXwg7PG0QkBHbaf7UHVGXKKEveecAIBRJgfCUuVOeP52JSYfXoANDbfDVhu/LCevU63TOi6UU2F5ZV7nCLPlEbVH5P/b0jr0AWeCAFY4Wh77xDfmjk0QhH58CuHaFaendpNrDYCYZoT5iW/k31igfSMNH8zOCIufy/anrORiWKb/HkywQOg/CdYHNsNy40sQU3IgeFohrvkDxI/+y5QxYwUFwjoxWyMMeJ0jDBXLcQ6rsvzAzvc1DITiGhGJRpgf3iDLHRiD9RfbwAZfBQAQ1/wBntV/AOcc0ua/apZP1uv/LDfGCBdf/bOD7F+izf4apyb/MVsaIa2fJ3c4ApAJB249/WdTz28E3qBTGmFNBhS7P7MDYa1QLrdvQH2fmmXhlBEmiLjhV6x9Xk0OY8zHOSKWgbBSKJdv9672doSmEY7895PXHgM/uBYAYJn8iF/dAhMEWC65EyduWobGIXMAANLWtyDt/CjicWMFBcI6iYZGWNVMGimWE5yNYJISOOsMhM1wjVA1SaznMAi9h8N6+wdgI64HAEhrn4RnwSSIy/5bnuPFt0MYcHnYYwH+d9/kHBF9diqtlXNTLSjMDNEC2wDc5YC0+1MAQF3vywAAMxxrITVVmzaG7rlIUsiucr746oRNnYdaKNeRLEIdu3iMfGzlt+BSnDvxEURXRQ1wU7I7TOxo8sQY2nxKSqGcUBxEFgGAKdIIM+Ymbv07wDmQ1Qts8NUdHsOTMlEz4XEw+zQAgOfjX4C72zo8NtGgQFgHosShlsuYmhHOUDPC+gNhi8NnqcZoRtjdCi6G19VLUpZo1aUYZrHBess7EC66GYASKIsuILcvLLPCK5DzIy3X+5i8hKOOrz5YV5MWnfDy9YCnDRAsqJr1OhqRDgsktOz41LQxdNNyFvDI8o9AXeV88QbC5lqoaQV7OYHnICgZYTibgbMHTR2fIAh9aJneQPU4cSjq1hwjgumDAe+c3a3gLkdkY363BAAgjLlFbtYRCMZgveGvciFdU5Wfu0QiQ4GwDlR9MABYTXSVKlDspM61eiBK+irTLQ4lO8oEw64RAMLOCquNBVSzf0AJhm9+C9bbP4Aw+iYIlz8E239t9LZ0jgBmsQJp3eWxKSMcdaLlGCHtWwkAYKXjkZtfiFVJclZY3LXE1HH0wH2baYQolgN8A+G95jpHNFTK588OkpXO7ad1hpIqd5g3NkEQ+gngIayiWZjG6DeKN1R6vz+COEYAPhlhIKKic15zVFsVE4bNCnk8yymBMOZWAID4xZ/klbgEhwJhHaj6YMBk1wilWE7iwDmdTQZUfTAyewb1QfXFLzBV2ssagYtuQM1i5Q1ot18YNgvWW96B9dpnwTLbF/+EDXWXiwmcc+xQpBFmOkZwziHtlQNhYchVyE+34uOkyQCAlIoN4GG8FyNCeQ8jOcP/5jAAmnOEo9bUYhheL/+QBSvYY4yB9R4pHx+t7nYEQQRF6xoXMCMsb+cx+o1Ss8GwJoP1Gh78YJ9i+khcLdRkBtLzghbn+WL5/kPyg9pj4EcTv0MmBcI6cPkGwiZqhH3bLOvVCVu0QrnAXbHa4SOo5+FYqNUd91apduB7Gi3Uu3DKCEeX441u1LfJOtSR+SYGwqd3Aw2KJnfw1UiyCPh3xmVwwgZB8oAf/Ny0sXTNx8dDWI/8g+UNBJTjzNIJc3eb15c0uzD4+L1HyK85tdOUsQmCMIgSQJ7vIayiZYpjJI1Q9cGscHRwiQIg3+yrrhaRBML7VwEAhEHT9Sff8gdpjYGkbxaGPXasoEBYB77SiCQTM8I5qRZYlb+A3m5bFp+MsG6SMrQf9HCcI3itUtzDBCCIrtF0KCMcE1RZRLKFwZ5rXnckvm+F/CCnVMuuZmZkYpNV1r9KB1abNpau+ei0TlNhSWla5zfTCuYaT3nPHzIQVjLClbsuiDamBNHZ8GqEA6x0xtg1Qrc+GOe5WoTpHMElEfzov+TzDZxi6LXCGLl+SNr1Ebham5GgUCCsA99A2MyMsMAYCtLluzq9GWHNOi1bZ6EcZHsTpCrtDx11xiYJnyr3bsWh70JNRHOOoIxwVFEdI4bmpZj6/laX1ITBV2kZ2Px0K9baxsv796+JaYCnt6ucLyzfXOcITRYBANm9g49dKAfCaDlrelMPgiB0oGmEA2WElQA5Bg01uCSCn1SK1kuC64NVNJ1wmIE6P/0d4GwCAAh9LzX0WmHkD+UHbY3gRxJbHkGBsA6CaYR5Sw2kk9vDdmPIN+glrBXLZeoPhAF4u8yEkV319T2NKemq/ooC4WgSjUI53nJO85QWhnjtdgrSrViTNEF+0nhKlk/ECq2rnP5VDVYwCIB5zhFcKXRBep7sVRxs7PxB3jamJI8giJgTMiOsBshtjVG3CuPV+2QXGQCCjowwAJ/f0DAzwmoA260YrHupodeyzAJNU6zpjBMUCoR1EEgjLB1YA/eTA+CZPx6e+ePBG6sMn7unwTbLqn2akYwwEFmXGVUawXL7GX5tJHgzwp1bGuH0SGh0Jq4XbDRaK0v718i+k7Y0sP5eT+m8dCsOCH1wNkmWBfD9sZNHqBlhBHNrOA/NOeKMSdIIVTPdLbgsAgCYNQmsR5ky/gFzxicIQhdcErVmTgE1wr7bo5ywUb38kZ6nSbZC4fUSDm9u0tHNAIxng1UExXOYAuELgI40wrytEZ53bwfcsj8fP/0dPO/fY/jcRppqcM61jDAzohEGfLRCYXwgauITCF8IGeEvjzejdME+FLywB4v2GJelRJv6NhHHGuTVCFMdIxR9MCu7AszmzTQXpFsBxrAlQ7ZRk4IEwtzdBvHbf0Lc/LI3kxrufDwuoEm+UdXTTENFc45oqjanQ5P67wihD9ZQu9udi19baoLokjhqtSLxwBlhr5uEGd8PwfDqg8fq93rXVoKN/4Zyzr364L4TDL8eANgQuQMtzpV7JZYJCAXCOuhIIyx99YZ8t2hLg+WapwHI2S3p2BZD51abaugqlmuthyAqonO9zTQUIsoI11XID3KMLY1EipYRbjnXKbwIz8ctcvzHpydQ0yrCIwE/XVmJpgTLDO9SssEAMCLfHGkEF92QDsjtOH1lEYD3xm+dohPmx/7VoZMJrzkC9/NjIL77Y4hLHoT7j6MhRdJuuK5CzlADYDqzKYAiT1DnZEJjC1UjHKpQThu/h2xXyGsoECaImOJTmxJII4yUboDqpBDlom41EBZ06oMB+BSchxGk1xz2Jg/6Xmb89VAKfhWrSunIl2GdIxZQIKwDt0/somqEpe2yJYgw7jYI3/8FWJHcElVcP8/QufPTZA2gLo2wj/RCd1c5lTA1wtzdJt8ZQ99yrqmoZuVcAtpi7DlrAh8faMCJRu/ftdkl4f19ifXvUP2D++ckISvZnG4x/NgWza9aGDTDb1++0kRmqXSRrH+VPOCH1vu/vuUc3K9dC5wrl+1/bKlAWwPERXeF3W5Ycz4RrICRYrmUTO/KRO2xsMb2QzXD1+tcQRlhgogLmocw4OfJ6wsTBK0LajQzwtzZDF61Rx5Trz4Y/skko0hHZFkEUnO8K2MGYYIFTJFV8MMUCHdq3OdphHlDpWZyL4yeA8YYLFc8DADge5Z5tYg60Nos65FGNMmV4xws8FJNALxaIYMf1iaf4NuoHCNC/O7CO6FO+KP9slXdNQMycfMw2cv5jR218ZxSO3ao+mAT/YO1bnK9R7YL+NSM8BkxFVKp/AWp+lQCAHe3wvPmD+Ug2JoC631rYP3pZ/K+6r3ge5aGNSd+7oj8IKdE7lpoAK1I1ISlPaPSCDUQRt1xWd5BEERsUIPH1JygbknaamsUf6P4ye1eL38DgbDX3i0MacQxryyCCeGHikI/RQZ3lALhTo0qjWAALAyQFN0MktI1GxM2bLb2ppN2fqT73AXpaptl0S/g7gi1GE9M7W74xzzc6lG/AkCjWehIMakzTjxwixyrj8i2M9fZs3H3KLld9L9PteJgTeJ4Km6vkgPh0T3N1AcrgfDgq9rtK/BpItPUbyoAQPruE3B3G7jogWfh7bLbBGOw3vJ3CH0vhVA8BkzJLItbw+td7y34NO58or4mUo0bF93epUa9gXCuEghzCahNXI0dQVxohOwqpxJJ/Y3euagd5fIGgvk0yAqFlgBz1BiWF0qKY4QQpj5Ym0P/SfKDmqN+be4TCQqEdaAGwjYLA2MMXKmkZKUXawEps1ghDL8OACDt+ED3uX0Dg7Oh2iwrZvxiWogPZgeEXT2q+pemZMkNBmIIsyYDyZnyk04WCH9b3Ypml/zFM7VfJi4tTkdRppxV+CBB5BEOt4R952RpxEW9zAmE/frSn6cPBrwZYQCo6PsDWargqIG45g/w/OMW8O8+BgBYZv1R+zwBgDBW7l3PD64Fj8ALO6zOiMpreKSBaFOVV6esV2bUrQiwJMnjkzyCIGKGmkVloVZfI5Af6EXS9MEGssFA2PJC3lglr8ohfH2wCiscBVjl+hN+YltE54oWFAjrQM3UqvpgrZKyj7+liDDqR/L+E9t06wl7ZniXXKpaguuEtYxwGIGwll11t4I7W3S/jKuBcKyzwSqqtrmTNdXYdFy+xv1zklCYaYPAGG4YLBcNfLA3MQLhXWdaodaBXmRSRtjbl75Hh33pM5IsSLPJn6PTrAeEcT+WX7d+nhYEC1c+DsvE+/1eJwy+GrClAaIb0u5PjU+sRpZGhON8YlpG2LeZRpbOjLBg8Xa3o4I5gogdOjPCLAa/UUY6yvmiJcAAQ9INNcaBNQWs6CJDY7abg8UGVjQagDegTzQoENaB6iNsszDwtia52wraLxmwfpcBafISeDBbKF+ykwUkKU4U1c0hMsJNaiAcoII1CH4fCAN3rlxdyjXawMMkmHpH28kywturZFu9Swq9WfQbh8hLWnvOObHnbHTN1/Ww/bQsiyjJsqFHmkGpTQAkxTZNGDQjYF96tZtidYsHlpnPgPX/vrwjtRssP5gP64zft3sNS07XMszS7k8MzYlzHpEXtpZFbqyMzDRf1Qen5oAlp+sfX2kA4hdIEwQRVbjWVS6UNEL9jYpOsRxvwzE6tQAAIABJREFUOOX1HzfiGAGcJy/UPz/p2GZtPGZNMjZmB7Bi2UyAMsKdGFUakSQw8Oq9XtG68sdVYYIFgn0aAEDatwp6YIzpbqqhZoQ9kWSEAXCHgQ+sMibLim2hnEZG9PVX0WBHlRwwjfLx5h3XKxV9shV5RAJkhc3WB3NnM3j5BgAd64NV8pSg+6zDA5baDbb7VsP2+5Ow/f4kLJfeF/B16jn54Q3GOjk2n9U6MiECjTA4l23YwoQbaKbhN76qJ1akUQRBxIBQXeUUvM4M0SmW0/TB1mSwXsMNvZbZUoDkDPmJkQSY4hjB+oXXSKPdPIrlTDY/uT0hrVApENaBr0ZY1T8iq1eHonU2WC7q4eXrdWeP8nUHwqpG2HhGGClZWrtWQ0sk6o9vnAJhb0Vu5wmEW1wSDtbKBXG+gTBjDDcMlt8zH+yrB+fBiyOjzbdKIGyWLIIf+hwQXYBghWC/MuBxBR2831lGXtDKbAAQyibLD5zN4BVf65+XYjsExrRObYbILvS2Oo7AQk3L6OptpuE7PigjTBCxRC2WC+ghrBKBM4MepBOKLKJwVHjZ2TRjTTV4a4PW0j3cjnLnI5QoMrm2RuBc5H7sZkOBsA68GmGAV+8HALB8e4fHCvapAGOyFvfIRl3n122hpmmEjVmnAXIQpn1gm86EOLr9mIZ9i81Cq8jtPPZp351thRrint+k4sYhsk74YK0Lu87ETx7R5pGw1+RCOc02re+lQSub89INNJHxgWX3Bus5VB7r4Ge6X6cFwt37GpIkaOMKFp9gNIKq5wZjzTS08ZUMsppRJggiBrToK5bTkjVhODPogVeEpw9WMdpMix/dLK96C1awPuPDGrMduf21wnfp1G5zzmkiugPhXbt24Z577sG4ceMwevRozJo1C4sXL47m3BIGP42wkhEOZDDN0ntoOh698oj89NBNNXhbE+CSC7DCyggDYGojgbrjul+j2afFKRD2LjtFt32lmexUmlQUZ9mQe572dnRBKgbkyHf18XSP2HWmDR7lO/uinpG7gXDOtfe7EEQWAQAFaeEFwgDABsqZZn5wnf65nZa/eFmvYYbH08ZVPjtGPMLbzSPcQFg9vuFUQi4rEsQFh+TWGknptU8Dl4BW4442weCSCH5S1tUa1gerGJQXSoflBB4rHgOmyioihDGmxUzaqnoCoSsQ3rBhA26++WZ4PB48+OCDePTRRzFhwgScPn062vNLCDRphMDAz6gZ4UEBj1cDAd9GAcHQpRFu8l7rsDTC8Kl+17m8yz0uTfcU62YaGlFedooGatvijloWM8ZwoyKPWLy/IW7yCLVQrijT5mdpFi781E5NwyoMCR4I54eZEQagSS74iW3gDn3NSSTFGF4oGhPiyMBojUEiyAhr2WSdXeU0spXjRVenKxoliM6IxcdqLFSxnJ90wuSVS169X6tvMGydpmBUXsiVVsia/69JeAPhvaae1wxC/gI2NTXh8ccfx5w5c/Cb3/wmFnNKONRAOIO1acUyrCBwIMwGzQBW/R44dxj87CGwvOC6RD0aYd7gDYTF1PAywpoNk14/1OZq7WG8iuW8yzqdJwA4oDTMGJLXPhAGgNn2LDzzrzM4VOvC/honBvfo+Lho8m21uYVy0m6l41tuPyCvY9mQihYIh/LN7gDW9zLAmgx4nOCH1oON/GHQ43lTNXDmgPza/hMNj6ehBK/hZoS5JGo3CnrbK6v4FtfxhkqwTOPSKIIg9GNp9bnJDuUjfJ4zAzNxHvz4Vu8Y4XigA14LUh2/obytUe5iB0AwOxDOGyg/UKwsE4mQGeGlS5eisbERDz74IACgubk57kU+scajSCP6uY97DfGDZIRZ75GAkkHVkxVWM8JVwQJh1TotJcdb9GYQpgXCx3Qd799VrndYY0aM5n/sAHc54jMHg6iFcmXdkzvcf1HPVK25xqcHG2M2L1+2n3ZoczEDrliaCcNmyXr0IKjFcjU6uimeD0tKA1NsCyUd8ghp54fyg+TMDn2NdY+brQbCYWaEG08Dkiify2hGODVHM6TXLNgIgogaQpsicRAs8ucvCH6Nn0xeueRqoVzx2JDfq4FgBuzdvPpgC1ifyDrKtUOrdUg895uQgfCWLVvQr18/bNiwAZdffjnGjBmDiy++GPPmzYMoirGYY9xRNcLFovIjmJwBZBYEPJ4JAoRB0wHo0wkXKE016ttEOD0BNIBKY4tw9cGANxBGw0lZ9hAKtZlGUjpYSmbY40aC37JTFHu5m0WjU8RpxQ96YIBAmDGGWQOzAACfHGyI2dxUnB4Je87KwboZhXK85ojXW3vY7JDH5/nops+1hiGPUHTC0sHPQt6US9velV8z8gb5BytMWI6ir68/GVYiwC+Azi42NjZjPj8iFAgTRLSxtCpBY3oPMEGHgjRKNp9c6ygXpj4Y8MkIh/79lMq/AKAE3ibpg1WYmkxrPqMv/oghIaURFRUVqKqqwmOPPYa7774bQ4YMwfr16/Haa6/B6XTi17/+ddiDHzhwIOzXxpLTZ+Uf6/wWWVLgTO+NoweDW4CkZQ1HAQCpfAMO7v4W3Ba4IMnR5A1+t3x3EL3S2t/55VTsRTcAruTucDgcYV07ayNHMQBwjiPbN8CTXRL0+MxDO9ADgDslF0fj9Ldirib0UR4f27sdrrzwnRYcDjkLGs333Z4679/SUncCBxwd38VflCYf9+9Trdi4Yz8KUs1cUAvO7jpJk/tkt5zCgQOhtf7Brl3Wrr8jF4AnNRdHnTlAiOvb5PQGklv3lGNQN2PmNUlJA1AIAHUVOPLvtfBkl3Z4nK22HEUnvwEAnMyfBGcEf/ekelEe09OG8p1fQUrtrut16nU7dXgr8gGIyVk4esx4VrmnrTtScRg1R3ahLrdzfG9GSiw+r6HYXCVhe42EiT0FjMrtPCZLiXDtOisOhwMpjbIs0GXL0vXb10tIRwqAs8f2oSHHnGvO3A6Unt4NBqBS6IXWMP+WaQ1uORZprMKB/ftlV6sAFO74GEkAaruPRL3B8UK956wNTqgpgCM7NsGTadBGMkJEUYTF0nGTp5CfbIfDgYaGBjzwwAN46KGHMG3aNDzzzDOYMWMGFi1ahNpafQUrnRk1SVvkkbMxnszQS5utRePBmQVMciP1VHDP0x4p3jfmubaOs01W5W7OHa4+GIAnowCcyX9ya1PozJLFId/dRpKFjhRuywAX5Ps1S1viv9eONSkBZhKQkxz4C2dMD4YsReGy/lRsnQD21slzzE/xf++FS/qxzwEAjtIrABY6WMhKApRmiqgJ477GlWuXJUIAUk9uCTzOvn8CANxZJXD2jKxNqCfdq5G3tlQFObJjLMprfM9jBDG9QDlPdYgjCbN4/4iIn2x245X9In78hRtrK7vGCigBWBVphJii74ZXUo6ztJnnGpF8bi+Y0rzLmW+skYYvnnRZ4yx42iC4mgIeZ6s/iqSGYwCU73KTEdO9WmtLiwEL1xgQMiOckiJr02bOnOm3/dprr8WqVavw3Xff4fLLLw9rcLs9eFFNopB18hSAcyiW5B+zzNLhyNExd3ffCeBHvkSvpt2w2u8NeBznHKkrdqPVw5HSoxD2sqz25/rcAQ65aC0tLS3sa+fqVgzUVaAozQ1LiHN4drkhAUjr2T+ufytXRh7QeBqFOSkh5xwM9U41mv+W96qrAJzBoLw02O0Dgh4789BxLNxdj68bUvCE3Xjr33A5dfgkgFqMK8qE3a6vACPQteNN1XCf2QEA6H7pbeih89rmp+/F6WYPkrr3hN0eXIPXEZ7B0yF9+x7yGnaht/2Jdvt5WyPc7ywHAKR8/37YBwXW9OuBcw63LQ1wO1CabYGg89+pXre8JCckACkF4X2WPIcHQypfhizehNxO8r0ZKbH4vAbibIsHLyzdrz2XADy5k+PWCQPQLaXjrFIiEc9r19k5cOAAUjxy7UZ6QR9d19DzbR9IJzYiJ0lEnknXXDy1DCIA5JWhbER4jhEAwHtmwv2x/HhAfgZYz47nJ36xXB4vqzf6TLhOnyTEBz3vOVdKNtDWgJJuSbq/Q81ix44dAfeF/Jfm5clC6x49/LOC6vOGhthrHGONqhHu6VJapOps06rphPevCaorZIyhp6ITrm7p2EuYK/ZpYmp41mnaWD3kgIufOxzyWK1YLogeOhZ0JueIQ0qhXCB9sC+zB8rNNdZXNKO+LXbZpu0mdpST9iyTC0iTM8HK9GcRIrFQAwBmnwoA4Ac/B3e2tJ/Xtn/ItkO2NAjjfhzWGH7jMQbkhO8lzOvk1xgulFPHzyaNcCx5c2ctmlwSuqVYsOuegchIElDTKuKlb8z/DuKSBN5YBV57LOG0k10VrVguXedqqGKxpnajMwPphOwfLBSHHwQDkH+/BfnmjTcG/v6QdnwgjzfkasNBsG5ULbUjsfoChPzXDh0qd3KqrvZfkquqkoOk7t31LR10ZtwSIHAReU7FEF+njQlTAmHUVQBn9gc9VrNQaw4QGChBqSdCmYLaYpafOxT6YMWpgmXGqauciir27wRewkfq5R+y/jmhW2FO65eBZAuDRwJWHY6Ne4RLlLD7rNpRLvJGGpLqFjH4KkPFaPlp4VuoAYAw5BrZPcXtAD/PmYWLHoib/iofN2Zu0C53RmDdInCOUF6jNbUxOrZvU40u5toTazjneHunLMO6fUQOBvdIwT2j5d+5t3bWmXb9ee0xeD66H+7/KYH7f0vhftoO969z4X59FqSD6+jvHEdU+7RQXeVUWJaSLGoyT7qkFsqF21FOhQkWzcXK14bVF+n0bq9t2pibIxov6FwMdrmLFSED4RkzZgAAPvzwQ20b5xwffPAB0tLSMGrUqOjNLkFwSxy9pbOwcjlbqzcjzHoN12zHpP2rgx4brKkGdzmANjnz7quzCQfV05ifDR0Ie7vKxamZhoL2ZdQJXCOOKYFwn26hA+GMJAsm95Erc1ceDqzdMpPdZ9u0FY5IM8K8rRH80HoAANPhFuGLHu/sYLC0HLCyKQAAceeHfvukb/4BnCsHGIPlsvvDOn+HY3bzOkcYRWuPHGZGWG3xDFeL9l0QT6SD6+D+y/fhfmk6pOPb4j0dU9l2uhXldfLn+LYRsmznP0bIgfDRehe+PhW5jaO4+WW4nxsJacur/k0YRBf4/tXwvHoNxIW3gyvNFIjYovkIh+oqp6Iki/wsRyOAN54GlJWnsDvK+aA5NgRYzZL+/Xf5QY/+MN02zZc0+XNktrtGpPx/9s47PI7qXv+fM7O76pIlq1nuVe42Nja9F4dQAymUkMTcFHIDCUluckN+pHBJuGnccNMIl0sSwg1pdAIBTDemF9uAG5aLLLmrl5V2d+b8/jgzsytbZcvMrtbs+zw8yNLszGg1e857vuf9vu+IRHj+/PlcdNFF3H777dxwww3cc889XH311bz44ot86UtforjYXYuN0YiwIZlqWlsKQkD54F3qh0IIgTb7bGBkIjwsMeiMruKSDtOw78kO92jZhjSG8S02DSdQQ2RYGmFLM2TnyO4GmUR3yOBAr5I4TCkbmQgDfGi6sqV7sqELw/S+AvS2JYuoLfJRV5KcH7UNc9MTKu1MDzjPebyISiOGjhUfCdqijwIgNzyK7FJbkjLYjvHETernR12GqB08Cj0plCUZqmGEnEqR7UecKERZ1Mc70z6cZtNbRO68CLnjZWTDc0RuOysuT+dswV/eU6li86ryWVitFotzq/KdpMg/v5taNLrx4m8wHvgKRPqgbDz6eT/C97U38H/rPXxX3oOYpoIMzLf/QuTuy3Ox2umGlI592kipcjacObLnoCvyFidIQw8g6hamfD4nVXaQMAsZ7MB87Q/qcss+nbRfcVz3ka0VYYCbbrrJIb8333wzO3fu5MYbb+Szn/2s1/c3KjCACJeOR/jjTwLT6pU8Qm57cdjVvROq0X04MbDDNACMJOOVbThE2Ag7KXmDoqfFCQCgNLPSCCfVrsud1bZX2NkR/dtNjaMiDFEifDBo8IYVe+wl7GhlV/yDLVmEmHk6Iv/wBs/hUJOiRhhAW3ixMruP9GM8dTPSNDHuuwY6msBfgL7iO0mfezAIRyOcWEXYF9MhnaxGmOJqR+eXyVANaZoY939FjR+l41SlOtxL5I+XOfHz2QzDlPxtgyK6l80bKKn5xFz173+835m0bEEe2ILxj+sBEHPPxf+NteinfhWtbgGicgbaokvwffFJ9PN/rI7f9ATm2r8m++vkkAREuBstYo3FcQZJDUhedUEnbNqyiPGLEb745pJhMdbqDWo5PFXWfOl26OuEQBHacZ9L/VrDwZY5ZptGGCAQCHDdddfx3HPP8e677/L4449z6aWXen1vowZhUzLFsPTBccoibIhZp6sJzAghLbPqwVBdpKpzg2om7e2WgjHIFEIBACifApYd2XDyiFjynal4ZQel7m47eQVbFpGnC2qLRzRkAWBaeR6zx6q/aTp0wnaj3FE1KcoiIv1OWIy2IDFZBERDNVIhwiKvCP30fwPAXHMb4R/NcRo+9PN/ghjrrhOHQ2I7d6sdkzgxwG4t2WY5TY9uv2awIizfedCpVvmuuBv/l1crstDXSeTuK7K+2ev5nd1OwufH5w4kwh+aoRatjZ1hJz0yUUQeuE5VgsdMwnfFHwddQAoh0E+5DrHwYgCMx76LDCfvn55DYhiwcC2LM1G1JDpHujFPSatRLlV9sA3hEOGBFWHZtQ/j2Z8BoB37WUShtz1fWV0R/qAjbEYrwvE2ytkQBWMQk48DhpdH2MRp7yDNcrYkQLhQmRW6L7o6HK5hzpYhaD6IMzzAKwh7kOnenxABSTe2W0R4cpkfLYHtJbsq7LVOOGxI3tlvN8qlSITffwb6u0AItLnnjfyCQ1ATs/BLpSlIO/kr0aZUKzpcO+GLnlQ2HCJsGgPkSiNB77YmxuLq1NLt7Em5M3NE2FjzG3Uvc89Fm34Somw8vk/9GYSG3PMu5jM/zdi9uYE/W9XgY8cXHrars6Aq39nJeGp74tpdc9uLyC1PA+D7yM9HTO7yffgHqiG0vVHp3nNICxyPW02P3zEpvxT81pia4s6lNE3kLtW4lkosfCycneDO3UiLhEopMR74quo5KKxAP/0brlxrWBQqzX1WVoQ/6AgbMRVhO6Y4AURt1J4YctK3B9iukElveKAmzNHGulSZjadhTtrdryW13lmpxAt7ASDNUd0wt6Mj/ka5WJxjEeE39wTZN4g0xi1sONhHv0uNcua7DwMgphyPKEm8gdPWCEdMaEvBOk7ofnwr70e//C60M6/H94XH8X3kVm90bjHRyInohP1dlmNEnL0FQ8LeGcmQNMLc8y5y22oA9BO/5Hxfm3Is2slfBsB4+j+Rezdm5P5SRcgweWCTakS8dN7hTiNCCM6Yqsjrqm2JL1qNJ5V2XUxajph77ojHi8rpaEddpl77wi9zLhJpgq/XIsIltWonJg4IIZz5WaYq4WvZ6jTEahOXpnYuC2L84uhO8M5XkaaB8ei3MdffB4B+7s1x66FTQr6yDKUvPc3h8SJHhONAyJBOmAYViU9mA2zUDgweP2gTYRikYa7TXRszUTULGME5wr5mpmURDGzWS3mQ8RCOY0ScjXI2TphYRHFAfRSfSGKCjRe2LKK60Mf4FBrlpGko/2BAm39BUueoHu55TxBC96EvuRTfh76PloCXccLXySuKdj0noBP2dTSq11cNH7Ay4vWtinCmmkbNNbepL6pmIWae7ny/L2Ly/bzP0xSYCEaY0CP/npH7SxXP7+yho99EABfPLhv0mDMsl5cXd/VgJkBMzYbVjjROP/uGuBdq2smW68n+TcjNT8Z9vRySh53eKOLUB9twdi47U7NQM61qMPmlYNmdpgoRKETULQIg8pfPEv7pYszn/gsAbflKtOWfceU6I96HLQXq6xhVC7scEY4DMtJPjbS6SJPwARV1C51qzlDyiHHFUWKyu2tgVdAO03CraS1aEd465DHONdPsGBEMmzy4uYNXmmNCEgorQLfI5Sh2jrArwvE2ytnI82nOBPu4h/KINyzbpyXjClKqmMqdrzgNIVqCtmk2bB9hSE0nnG448oi2xrhf4++0iHBlqkQ46iWcbshgB+ZbfwZAP+HqAc/P1Y818eM3evha4CvqPjc/gbl5VdrvMVU8vEVp9JePLxwwHsfi+AlFAHT0m2w8GL9O2Fj1A8CqBtfH77Ci1S1EzDhVneOF/477dTkkD0cjHK8+2Ibt1duV2hzl6IPHL3F1N1Y7ydrF6W2BA1vU946/Gv2SX3rqFDEAdkXYCCut/ChBjgjHgbLQPjTU6iWZrm8hBFr98DZqBX6Nciu681Ai7HZ11tELtTciw4M7FcgMVISDYZNT7m7gY/ft5KS7GvjRGjUgCSFiBhl3DMtlpB9z85MYL9+Bue4+ZG9ryufc4WiEE+/ydWzUtnUR8chGzXalODpFfbD5juUWUbcw4eZRG35dMLZAPe+D6eJHLayFsOMLHAf8nZaMonJ6ate2K8IZIMLmW/coD2N/IdrSTzrff7W5lz9ZdmJ7Jq7geZ/aym277xujWs9/KKSUPPK+IsIXzhraAWV6eYCqQvXcDlisD4MB1eAV30mYdOiW7ERueRpz9zsJvTaHxKFb0oi4G+Us2DuXqc5RdrCFcEkWYUNfegW+q+5HO+laJSP78hp8F/83Qk/NRjMhxDaH9qUnRCoe5IhwHKjoi5l4kuz6tnXCsmH1oJGwgLNd3XRoRbjTm4owDBO17GiE02ed9vNXDzg+twDfe2Gv82+HkKfakWuEMV74BeH/mELkjvMx7ruGyN2XE75pGsZzP096u6YtGKGjX2m7E9UIQ5QId/SbvNKUumH/oeiPmE6j3NEpJMpJKaNpcklWg23YVbfdHuqi3Ya9I2RHJo8Erb8T3YprTbkibG/Vdu9DGul7z6SUmC/9DwDakksRBVHZwK/eUMb4i2vyeeWqmTww43pMBCWtGx1v0mzAm3uDNFvj7vkzhybCQgiOHa+qwq80jUyEpZQYj92gXjv5GMSssxK+NzH7HKiuB8B0oSosTSOrFinphl0RdnZg4oRzfDLJkxakEUE2vQ24pw+OhTb3XHwX/kzJyCa504iXCAa4pIyCYCAbOSIcB8b2KyLak59817eYdUbURq3huUGPmVBqEYMYIiwj/WBVK0WJS9XZklqwO5aH0Ak7ThVpkkaEDclv31Lyk2uOHsvcyjxMCT9+ydqmshsRUpBG+NsaGP/AJzAe/oZ6T4WAsVPBlw/hIMY/voXxj28lRYa3d0RtoxKVRgBMKA2wwDLsf8wDG7V1+/sIW5XmVCrCcs87jjuDSFIfbKOuRMkj9mQTES630+XiI8K+zqiEQqRYEXYqVFK65qltbnma8G/OJPzTo4j849uDep3L7WuQ+zYADHDj6A2bPLxFTWZXLx2LEIJPnHUa9wQ+DEDwnzcNueM02vCIJYuYVRFgduVAn3gpJWbzOiKP30j4jvO4/Z2z2NN6Kr94rp7Qf0wh8pfPYlpVvEMh19+vpESAfs5NSW1BC01DP1nJTsy3/xLfjoAZJtCyCeOVO4k8/A3C/3sBoZvrCV1fTvibhYS/VUL4lqMxtz6f8P0c6dCTlUYME1oRL+T+TRBWhRC3K8KjAvnRRbQM5irCWYXKkEWECxP8YMRA2agdCwwtj7CTvppjK8IxFVBR5lJFWAhE5dDOEVLKtDfLvbirhz3WFvlXllfxjeOUE8FDWzpoC0Yc67hkO+bNna9R9+BlBNq2gqajHf8F/N/ZTuD6Tfi/14i2RHVnm8/fivnqnQmfv9EK0yjya86Wf6I4J0Ye4TZsffCkUj81Q+gf44G03CKomKIixFOAXRHek1XSiElA/BVhv9UoR2FF6h6dpe6my5mbniByx3nIbauR+zZgPncL4VuWYjavG3Cc7TMqJh6NNmGJ8/01u3roDUs0AR+pVxPcyZOKeHDSV+jHT6BnD+aLv075PtMBWx98wayBTXLmlqeI3HockZ8vx3zqZuTmVZT1NlJKDzomdO7BfONuIrceR/jOizB3vOwspGXnHiL3K1mDmPNhtBmnJH1/2tIrVKiKEcZ46j8HPUb2tmG8+nvCt5/D5D8cz/j7P45x779ivvAL5KYn1ALWIlmYBnLPO0TuOA9zxytJ39eRBhkJRVPlEm2Ws33Lg+1JS+3krjfVF4Vj406wzSoEilQBCqA/R4SzCtVhRYR7ixLbKjkUI9moTRiECA9wSXBRpuA0zA2WBtXfFR0w05QqZ+vzlo4rYMqYAB+pL6PQL4iY8OCWzqhtnVWNTBTGE99Hi/QRKarF96/P4Lv4Fw65FgVl6JfeiVhwkTr2oW8grWaCeNHUqf5mE0v9STcenD1NEeF1+/oGTRhMBVF9cPKyCGCALCLVBos6mwgfqokfxXAqwr0tQ0qcYuHvUElOqcoiAER+CeSpZyTVplEZbCfy18+BNBHjFqCd+nXw5UHrDiK/OgVj7b2ApW/d+E+Aw3xGn9upqseLawqoKFDVfSEEHzp6HnfkqfjryNM/Rfa2pXSvXmNHe4h3DyjZ0PmWPlj2dxP506eJ/M+5yGa1VU3VTLTjr8a46JdcXvJTzi/5FZtPuNlZEMqN/yTyq1MVcf77Fwn/+nToOQgF5fgu+UVK9yj8+dHwmFf+16lAy/5ujLf/Rvj3HyV84ySMv1+NfP8ZNMNq5CupQcw6E+3EL6Ff/At8K+/Fd/WT+K66H6pmgREics+nkaNIr5lRtG5H2P1AiYZnxQT4DJbgFg+cRrmJS9PXwGZfW0r2dYc9dXMQmgZ5tnPE6Hnm4ou/+oCjxiLCfcWpEWExewX887uKzB3Y4ui+bNhbxQMrwtaEl1ei7JtcgqidB4Dc+97hP4yZZNMhjZBS8qhFhM+boT4kRQGNc2eU8veNHdy7sZ1Pz7NCQFq3I6VMaJCQ3QccI/uDJ3ybSVOOPewYoeknn+nkAAAgAElEQVT4Pn474V1vQXsjkb9dje+LT8XdtWvrum15SzI4bkIhxQGN7pDJqu3dXLmgPOlzHYo396iFzdF1ycsifJ1NyN3rgeTS5A7FuGyURsS6xnTsgurZwx4faFF2iWLcfHduoKwO9m9O2UvYePz7qg8gUITvqvsR5ZMwl1xG5PeXQNtOjP+7ArnxMWfrXEw+BnGIJvz5RrUQOHXywHHpktllLClcyaf6H6a0rx3juVtUOMQohW1ZOLZA55i6QmQkROSO85E7XgJATDsJ/cM3ISYfixACH7Bry/u8tTfIA2Or+c6FX0W+9wjG0z9GNr2JbH47Sp51P77L7kzKbehQaCf8K+arf0Du20Dkf85DjJ2qpEqRGPcKfyHa/PPZU7GM/uqFTF9y8pBjpb9iGuFbj4XWHRhP3oTvguwOQ3ED8qByUpKa32mMjReisBwKxqiKcMs2SELaEG2US79+9wcv7uc/Vu/juAmFPPPJ6fg0j4h4fqmyTwvmNMJZhZqIahxLmQjXLXLcDwaTR0woUdrS3V0Rx6PS7TAN515q56rz79uINAZuTUvbGkrT485aTwWbW/rZZjkunBfTsf3ROcrU/pkd3fQWqy1p+rtVlSUByO1qQpOan77xxw15nCgYg+/jv7VeswbzlTvivkazVRFOxZ83oGucNllpt5900Uatq99wrJ5SqQgX7nxWfVFU5ch8UkGd0yyXRdKI0nHqc0F88oi8g2rHRYxf7MrlhQvOEbJ1B+bL6tnWz74BUa4+W1rdAvzXvYSYrrbwzTf/BB1N4C9Ev+RXAwhVV7/hyG1OmTwwIa2m2M/8qRP574Ir1HlW/yqjsdAjwZYinTW1BF0TGI9e75Bg/cJb8H1xFdqU4wb8/outQJr1+/sQmoa24EJ8X1mD70vPoJ3yVcSCi9CO+zy+L7+IFkd4RjwQuh/9irsUkehtUdXDSD/ofsTcc9Evvwv/95vwXfFHeqedjVFcO2zBQNTOQT/r/wHKIzoVbeuRApsIh0snxh2mEQunKpzEeykjoWihYeKSEY52F90hg5tWK57zclMvmxKwBkwUTsNcThqRXRgXUfKEUElyjhE2RrJRsyvCYVNywPJWjdqYuUtInQpVpB9aBjpHOES4bIKKZPYYz+1UlaXqQh+LqqONKmdMKUYTKn3s5WA0vUwmKI8wrUmtv2o+coRmR23WGWhHfwoA49Fvx50gtqtTEfmJKVSEISqPWLW9C8MlG7W39gaxz5RKolzhjmcA0Oafn9QkcSjGWYuG7pBJV392dLELTYcyNQ6M9GzInhZ8Pdbn1y0iXJq6l7DxzE/AjEDZeLSYhDgAUVSJ7/OPop/3I8T0UxELL8Z3zbNodQsHHPfGniCGBAGcOPHwnarzZpbyy/wrOKiVq0bUVT9M+n69RMgweXaHknicNa0Ys+ltR9esnXUD+knXDEomF1Spccp2YgFrfJ96Ar7zf4T/03/Fd8kv0Vz6u9vQ6hbi/+praGd8S1lgfeZv+L/fhP+q+9GXXJrwrqF28rWq8mmEMR77jqv3mo2wvfXDZZOSer1NhJNZVMg974Ch5hExIb2Nco83dBE72zR2hoY8NmXYDXO5ZrnsgQx2UCrVQBlKsSIM0ZQ5uW01MjTQJmtCTDWx2d4u7vKoaa18CvhVdVDu3TDgR7Jtp7pmeXKDQaJ4cZd6f0+aVDRg0inL11lqORw8tUeLpnolqL+Se5T3Zn/V3LiO1y/4sQoS6e8mct+1cWmmbDlLSoltoV4u7HuCG3p/y5Wtf+C9DetGflEceMOSRdRX5FGWnxyB1YKt5O+zbH3mne/KfdUVRxdZ2dQwF6+Fmmxeq/4vtJQbCx2kWBGWXfsxX78bAP20fxvUBUfofvRTv4r/i0/g/9SfByVzb+21nqmxeZTmHf5MnTO9hB5RyH/m/wsA5mu/T1h3nw680tRLV0jZHp41rQTjkW+BlIjaeehnXj/k6xbVKCK8rT1EZ5oXcWLsVHzn3KgssOZfiCg4PA467nP5C9DPuREAc929H/jGObsiHClNcu6zifDBJIiw3ShXWpewh3GqODTIaWeHl0RYFXtkzj4texBb9THKUqsIg6o4IjSI9Dsm6zbG5OsU+BQRtLfanQnPLes0C0LTHHmEuefdgT+0KsLpIMJSSl6wtIYnTTq8mnG6lbj2zI5uRIXVvNCaIBG2iH6oPL6GJVFYge+iW9VrN/4T8+2/Dnu8KSXNXYrIJasRNt68h/APZzL2gZVc33cnPwz+gvo/HEvkse+k7Pn5xm7VKLc0BX1wYePzCGlCXvGAeN1UUFPkx172ZJVOOE4LNblbLWTCZZMRgdSaFJ1rOzHLSbqnvPo7VXUqKE8pVvUtq/nyqCF2GGZU5DGjPMCdeRfTXjgRTAPj8RuTvp5XsPXBC6vzqTn4pmNtqZ//o2F3wxZUR3/v2KpwNkI76jKE5QZiPPyNURV9m27YvvrhsuQcG0QKFmqySRHhTNimrdk1sPHXdkHyAsKuCPd7l6KaKHJEeCRYk10/fmRx9QgHjwxRWD6kjZoQwiFSNrGiUxFhL1aItjxC7lk/4PuONCIN9i0NbSGnGnjyIETY1syu29dHeMwUdX8JSCNkb6vT/BeuiD+3XSz8iNMcZDz0dWT3gSGP3d8TcTx6bZ13IjCevQXjzyuV9ln3s6NsCc2iGoHEfOYnGP8YujIVD+yKcEr6YFsWUb8C4c8f4ej44NcF1UWKbBwaIjOqEXdFWBHh0NjhG+oSgSORSsI1QhphjJetYIxjVqZEzt+ygm6WDONJvWJ6CWHh57YKJb8w192LaVXJRwtsffCK6SVOhLGYsGTE4Isx+TqTrLE624mw0DT0838CgGx8DfPtv2T4jjIDGe6DdjX3hZOsCDsa4c5mlQGQyPWtirCW5ka51mCErW2qAjyrQs1fuzyVRlga4VyzXPbAtCa7Zq0av566LhJibNQ2H26jNv4QCzWnIpxgyk08sKsAsvGNAd+XaawIv9ysSNqYfJ15VYcTrOV1hWgCJLA7YGkzE1htx5LmcGn8xF4Ige8jtyo9U89BIn++Sg2UgyCWxCVaETZeuRPj0W+ra9afjf/bW9h62RPMG/Mgd+ZdDKg0KTvWOFEc6Imww1rdJxukIfu7KWh+Wd1jiiEah8LWVO/ysALhNhxpRHvjsMfZpM9NIuyY/Pd3J2x5Jd99GDqaQQj04z6f9C109BnOxLl0GM25nZZ4c89pGNXW7tNz/5X0dd3G3u4wa/dZtmljW5HvPAiAdsp1cbnS2AE4tvVaNkObflLUPvKB6xLuwzgi0LpdhdWQgkbY3rWUEiyJYTyQoV4ntEakuVHOttbUBZw5VX1m2/o8lPtYRHg0SSNy9mkjwLRsipq1avJcshMRs1fA49+Dlu1w8H3l52ghNlRDhoPRVDkvKsKTlqsvOncj25sQYyao6Fbrd04HEX7d6jxfNq4AbZDJpyRPZ25lPu8e6GOTWcskEtQI29XtvGLMvKGjUweDKKtDv/AWjL9+Frn5SSK/OgVt0UchUITs3K220fZvZt6BbbQZYXboEyh+4gLkCVfHlSJmrP07xn2qWiZmno5v5b0IXx6nFJgIX4DrCr/JBWMPUrX7BSKPfBP/7MSrsS83qy2vgC6G3MYeCXLzKjQjhNR8aHPOSeocQ2FyWYA39gTZ4aUmzWVEpRFNSNMc1GJPhnqVRSLQXznHvWvHjgMdzdHqShwwXvyNOsfccxP2SI3F2n3RtLhFNUM/U6dMKibfJ+iLaKyr/wJL9n8Fc929yHN/6IqdWKp41vJBLvJrLG24E6QJZRPQFl4c1+tnVuQBXWxt9a7DPp3wXfRzwtvWQM8Bwr85E/2Yq6CoUjlUtO5EHmxAtjRAsB2Kq9AmLUdMPUE1z3pQqEk3bH2wqedhFCVpGzpmAmg+MCPIlu2ImLl92Gs3rwVLApfuRrnXrGLU/Op8h394SYRz0ogshNmhtiD3alX4dZeIcN0i1YzF4fIIu2GuqTM8oDPcbdcIsKQRPkWsZOPr6psdzWpCID1E2N62X1Y39Dbt8vHqZ68ErcGpfZci7HHAafwbMymaaJMA9GVXop/3I3Wu5rUYj92A8eBXMZ/5qYpP3fseuhEkQIRZxg7M1b8g/NNFRB751rAVO3PjPzHu+YxqzJl8DL7P/N1pXCoKaJw4sQhT6Nw26btqYG3dgfny7Qnf/4uW9uvocQXk+5L7uJtWmlxw3HJEQdkIRyeGyWXqeW/MKiI8RX1hhBzp0qGQe951PkehsfWDHpMUSmpBV++ZI2GKA+bud5DbXwRAP+FfU7qF96wK6NQxgUEb5WwU+DVOshwl/iDOVPduGg4hzzSet9xqzhoXgTfuAkA/6UsIPb5dHUWEYWvbkUGERVkdviv/T80J7bswnrgR4/5rMR7/vmp23PaCmh9CPWo8Wvs3jAe+QvgH0wnfcR5mw+pM/wopwXaMiJROUH08SUBoOlSoncdECja2PpiKKYiisUldO1m8bs/B4woZYzVTt6ejIpyTRmQPbOP63VoVfneUEcp3cggbtag0IjSwM9yLirDud+QRZuNrQLRZAKGBx0S4P2KyztqaHI4IH2P97Mn2SvUNaY7YqGRDtlrbUxXJ6531U7+K74tPoR39KdX9X12PmHEq2vKV6OfezH3L7uDi4lu5q+Yax4rIfP7nhH+yCGPtvYfJX8z3nyVy16VgRhDj5uP7l4cQeQO9WM+epv59z95KtGM/C4Dxwi8TbpyzifAJg1hcxQNpRDA3PgZA75TTkjrHcJhUpjRpnnYpu42xU5wvh5Lp2I4RkaIazHz3glGEpjufy0QmWnONRT6r61NudrQ9qedWDm9FCMqJAeCfO0JoJ1yt7uWVO5F9ma8GrW5UFeEvRB5W/uR5xWjHXBX3620i3NgRpi9ienKP6YY241T8172CdvwXVMGmcjpi8rFoCy9BO/2b6B+/Hd9n/o5+4c/U7lhhBUiJ3LyKyG1nEv79Rx3Lz2xD1EM4td4YOwVVJtDUnSl9MODMwUvGFTAmL31EOJcsl02wmlL2iCr8LiatiNkr4I27kQ0vIEO9TuOKo5nsDEfTowrHDmpz5Mp9TFqG3PFSNHRir+UgUTnds2vaWL+/j5ChSOJw+tXlFhF+J1SFFDpCGsiWbQMiLYeCW3pnbfpJaNNPGvRnax5v5olAC4XTzuGzF/wQ8/mfYzz9Y+jcjfF/V2C+9jv00/8dMeVYzNf/iPHQ15V/c+V0fJ97VCUSHYKzp5XwrWf2sqszzPazP8/kl36rKuGNryGmDB0KEouekMnbVlPTYF6v8UA2v622QoHeSScndY7hMNkiwo2d4YQTAzMF4S9QXsIdTWrhOP3w90XuVkS43019sH39iqlqmzrOiVb2tmK+9WcA9BO+mPJ7vOGgmjjnVI4s0zl7WgnffHoPu7sjbJn5aWY8/WPo68B8/S70k65J6T5SwZ7uMFtaQ/hkhGN3/B4AbfnKhKzIZlqNRRLV9DtYj0M2QtTOwXdxHJHQJ12rQiA2PY7xzE+Rja8h33uE8PaX8H3qHrQZp3p+r27CIcJJ6oNtiIqpSBJcqO7KjGNEe5/h9CPNq8qn27ISbOszPBuPhR0TH+p2/dzJIlcRHgHCIsK7NXeJ8AAbtYbnne9PtIhBMCLpOdik7sFDT0F7sJK7XkcG2x2rMVHrUiTsMLD1wRNL/dQWD70dOacyj+KARkT46Cm2GuYONgx5/AA4nsjeOWDY4SfVRX6EPx/9zOvxf2MtwkqUklueJvLbswl/qxTjvmsUCa6ahf/qJ4b0h55fle/47D7aXo2osZqNNj4e9329truXiKlCD44bn5xDgLQidsOlEzGKxyV1juFgSyP6IpJ9PVnkJTyCcb7jGFHpBRGeoq4RZ0OT+dofIByEvBK0pZ9M+fobLSI8Nw7iN7cyz9nlemKvH23p5eqeXrkzozZdL1iyiCuMJwl07wahoR8SLjIS6kr8jt3lkaITThTCF0CbfwG+a19Av/wPUFAOvS1E/udczPceyfTtJQR7TomkSoTHJmbzKYMdTj9BuvXB9qIWYG5lviONiJjQG/bo82m71fR3jxqrvhwRHgYyHEQLqma1PS5qhEF51YrJxwAD5RETYwIZulusirCHRFhMPwX0AJgG5obHols049JAhK1u1WUj2HrpmnCOaQ5Y+qs4iXA6rOD291pEuDCqnREVU/BfdT++lfdFmxItaEuvwH/Nc8M2DAkhnG3lJxu6EDNPBWK0ZHHAlkXMq8qnvCC5zR/T8lXtG7csqdePBLsiDLAzm5wj7GbIQZ5DaUSURhgIjXWvUc65tj3RxlFxkqaBsUbFhmvLrkRYZvbJ4kBPhAO9att0ThzSCPUcW7Hh27rQjv2cuq99G5A7Mxfe8HxjN0Ka/HtIhYtoiz6acAOhJgQzLHnE+x9QImxDCIG+5DL8X3sNUTsPzIhy2unan+lbiwsyHHTkdslap9kQFdYiuXVHXERPNr1lvVA4UsV0YYOl9x9f4mdMvu5IIwDa+jwqTNgyQGmqotAoQI4ID4cYr87dWhUBF4kwxNioxRDhigKdQr+6TrjNcm/wsCNX5BUh5n5Y3cczP3FS2MS0wWUAbuIN2zEijqAH+5hNqPdCtoxMhGWww9nWFylohEeCXRGuKjqcbGrzzsP/5dX4b2jA94V/4v/2FnyX/S6uhgg7bnn1rh4iVfMAkHvei/u+VjemqA+OhBzJTLDOGyJcmqc7VYisapgbpiIs92+CiJpgXLVOs6/tTLTbR5xozfUPOLsi+glfTPnaG2MqSHPGxicFONuyZFrd2ENfzaJoX8Ird6Z8P8lidWMPHwq/yOQ+tR2unfZvSZ1nZrlFhNuy59n1EqJ8Er4vPK60w32dGI9/L9O3FBdiZQypEmHsBVVfp+P6NOy17eJGVX3KC9VEseEQvX95fiwR9kgnHIiZj0I9Qx+XRuSI8DCIbVbb47I0AqJxy7RsQx54X31PCCZaoQzCTo/ywDEiFvrylQDIfRvVNwJFiCnHenrNjj6DzS3qQzhco5yNxZZN0+v9VrKW1eE7HGK76r10wNjnVISHrrqKMRPQZp6eECE/Y0oxmlCygbexKpCdu1VIyAjoCZmsaVKDjJ3OlyjkrjecgaqvbvkIRyePKZY8Ynt79pAJuyIsWxoOI6PSajylqIqIB3ISp1mvrxOCbUMeJk0D48mbAOX/HK+V03B4zyLCU8r8FAXimz7OmKqe435Dsrqxx2lIM9fdi7QWqunE3u4wmw8G+VZQEXFRfxba+EVJnWtauRqrd2TRs+s1REk1+tnfAZQsx2lYHs04qOZf/AUYRakFZ8XuLMSjEzadRrn0J8rZFWFb5lSaF/1M29HjbmNAkE+OCI9+SKsi3CLK6Bd57hPhusVgpdUNkEdYxKCoy9K3WppAryBmr0BYLhYA+unf8LxR7q29QSRKv7okDn9b2wN3A1bMdcu2kR0UbENzX77zPruNkGE6HbbVg1SEU8HYQp+TBvdIR5RQxbMIeL6xm5Ah0UUKRNjWrlfNwiisSuoc8WCGU1UbHdtkccFu1OzrhENSB20rQjFpWVKWfSPBMe0H5MGhw2XMt/8K+zcBoJ/9XVeu7ThGJNAYVlEQfY5Xbe9CO+oTqioUDmK+eY8r95UIVjf2cGXoEY42VD+Efua3kz6XLe3JEeGB0I77HJSOA2livHJHpm9nRNhjqqicnrR1mg1RMEZppYnPOUJmqFEOohrhuVbja0AX2C6bPR4R4VxFONtguTbs0RQJcFMjDEPbqE0o9VMog5T0qwlWVI7sjpDSfQiB7zN/Q7/wZ/iuvAftjG95ej2INsrNqcyjZBgvUhvTygOUBDS26RYRNkLQ3jTsa2wPYconeeZGYOslAaqGqQgnixWWvvKRXSJmcN0x4uueaFD2VMeMj3pDJgrTkkVog7giuAlbZ7m1NXvIhKiudyZMx2nFgtz5KgCa1QPg+rULy9XWMyDtStYhkOE+jCf/Q93Hoo+i1S1w5dobE3CMiIVtB7hqWxciv1SRYcB8/Y+u3NdQkF37MJ75GZEHv0rkn9/DeP1uQi/dwU96VMKdtuQytKnHJ33+qWNs15MQhjk6Gn9GA4TuR7f04OYrvxsylXO0wHaMoHKGK+eL6viHT0GV3QeiDd1pbpRrC0bY0612M+dWqTFYCEFxQM0X3WkgwjLU6801EkSOCA8DWxqxR1P+tW5rhCEqj5ANLyD71epoUmmAqUZz9JiKxJo4kroPfwH6SdeiLbokLRZWNhE+Og5ZBKjGlMU1BezQxmNaj+1IOuF0REXvj3E6cLsiDFEf1k0t/YTLLFlFHER41XZFhFdMS05zJqVU0ghwmjq9wgzLhiqbOu9FoNCZNG2HCADZ1xWNSp3kja4aUA1J4DTlHQrzhV+oZjrNh77iO65dd5NVEY6nUS4WdnTrhoP97OoMoR19JaDs+aRVtXYbZtNbhH96FMZj/w/zxd9gPv0jjL9+lo9tuoESeukoGO+E5SSLKWPU7l3ExLGhykFBO/Yq0HTobRn1DhJ287VwiQgTp7OLXQ1G8yGSlOcki/cORsfbuTEL22K/ml+7w2moCPePDgu1HBEeDrZ1mlDb6m5LIwC0+rNUclikD7nlKUBVhKeaVrXTX6C2mI4wvBGnY0QsFtcWEBZ+9gcsnfAIzhG2Ns3TRjlLH+zTBjYauIVldYXOeZv9VqPgCNtt29r6ed+qrp6VJBHm4Fan0UPzkNBBNJhgb0+Ezn4Pjdxdhq0rtRtMAWTjqyCl6gD30Bx/OCIsO3ZjPK0InnbivyKq3WnY6w4Z7LUWfvbfLF4cM76QMkt/uGpbN2LKccqLGTDfe9SV+4uF7Osi8vuPQW8LFIxBzDsPMfVEzOJqWkUpfw+czbZL/zmkfWG8iHU9yckjBkKUjkNYkezm63dl+G6Gh10RdtxgUkS8oRq2Y4Sonaf8ydMIWx88ocQ/ICGy2NL+d4e8GYuFpjuJtjlpRBbArgjv1qoQKBsvtyEKyxHW1rP5zoMATCr1RyvCFVOzImQgEezuCtNkVU/icYywYeuEtwjbS3gEraxTEfaOCNvet9WFPk/+Tj5NcIal8d0QUQsyOYIk5NGtqhpcWaCzdJigkuFg2pHb+WVQ5WJE8CCwO+8hu+JqxbiFAMjd0YqwueVp9bPxS1yPox5wbUvqIJveGtCsJ6Ukcv+1aoIpqkI/6/+5ds2GGGeEGeWJEWGfJhyt+qptXQgh0OZYrjnvP+PaPdow3/gjdDSBLx//Nc/hX3kf/i89zaOfeIeJ5U9z9ZibWVQ/M+Xr5Ps0xll+3zuyyPUkXdCXfQoAueWpEcetTEGGeh0ZpFsV4Xi9vk171y0D+uCoH/jAz7LdBOuZRhicqnBOGpEFkJ22NMJdD+FDoS24CABz42NIIzygItxXNsWz62YKb1jZ5gFdsKA6fq3h4hp1rGOhNlJF2PEQ9k4acdCqCFd6oA+2cfZ0VdV9vduKpuwaPsL0vo2qE//8WaVoSZJz2/lATFyK0LwdJioLdadamFU6YZuM7tuEtPww7V0dUX+mt9eeYulau/er6r0F8+U7kO/9AwD9wp8llJQ2EmwiXBLQqCpMfPfD3p14ekc3hikRk5TkJrai7hbMzasAlNSrJurl/IJlKXhMXSH5Pnee6yljcg1zQ0HM+TAUVYGUmG/+KdO3MyhiLRDdJsK07Rq2qdupCGekUc62Ths4BzvSiDQQ4VxFeJRDSgkxFWEv9ME2tHnnqy+C7ciG55lYGmCaRYTbi7yrZmYKb+xWsojFNQUE9PgfwTmV+eT7BA26RWyHIcKyvwd6rGZDDyvCLUFFhMcmGVgRD2w/4Z2m8h6WnUMT4d1dYV5qUguNj85JngRFnQ+8s02zIWKCCbJKJ1xnafrMCHL3emTnXuTu9QBoszwmwtWznYY50yK+5jsPYjx4nbr+wkuchjS30GBV66eXB5La/bCf47Y+g9f39CLs0J6ufa4GL0jTRG57EQAx64wBP3veIsKnTE7OSWUw2PKI7VkUCJMuCN2PtvQyAIzX7xo1SWIDsF+luhEock2G6BBhMzJkU7fsaHbkl+lulIOhG18daYRXGmGIpsvliPAoR7DNMcX3wkM4FqKsLpoyt/4BCv0a9aZKudkXGDp9LFvxulURPjrBbXufpirIDZoljWjZhjSH+LC2p8dDuDWoVvsVBe7rg22ML/EzryqfvVbTJj0HkMbgqT9/39iOROmVT0tyspfhPme732t9sI1sDCYQZXVg+wm//wzmBkVICRQhJnvrwy00DW3xxwAwnryJ8P9eSOSuT4BpIOoWon/8dtelOlutv02isggbk8sC1FsLnlXbuhG1cx17Obk3/qCYEdG+C/qVPEiLSeo62BvhPUsXefKk5EJmBsNUiwjvzFWEB4W27DPqi4MNyO1rMnovg0Ha8cbV9e59ZmKKL0PJI+xmZHx50UVhmjCYY4SNqEbYOyIs7HS5HBEe3ZAd0VQ5r4kwqC08AHPdfciufUyyNMJb81M3wR9NkFJGG+XidIyIxeKagmhFONIHnc2DHueYuOt+T5sN29JAhAHOnVESJcJSqi3xQyCl5PfrVMDCR+eUJS3nkbvXg6GqW146H8QiG50jIFr5Ndff7ySlaQs+gvAFhnuZK9BP+SoUVUKoB7npcQDE1BPxfe4fniRUNVh/m+kVyf9usXHLwl8AZWqhH4/farxwgoE03wA7LDtpMU8XHDM+8bFnKDjSiJxGeFBo4+Y5FU+v7fKSgdy/GbAsEV2C8Oc7QVhDEWFzlyWLqFuE0P2uXTsebIhxjDg0IbLIsk9Lj0Y4R4RHNyyCZQqd/aLCU40wgLb4E8pqJtiG8dR/Ot9/W0u9oWM0YWtbyAmgSLQiDKphbodWh4lVSRoiXMLRB4+ZoLpUPUJrX3qI8OXzy9krKp1/y0F0wq/vCToVr6sWVyR9Ldm8VtXXJSsAACAASURBVH1RNgFRUpP0eRJBNkojALQllwPqPbP1ftqx/5KWa4uxU/F/7TW0s25AO/Zf0C+9E9/VT3j2N7M1wtOTrAhDVB7x2u5e2vuMuJuKEoFDhCtnDCAYLzQqq6blLuqDIZqM2NQZJmR4SB6yGJrVNGeuuxc5SiyzbDhE2IXkxViM9Gw79pQxuxbpgh2kMaHET9khbkdR+zQPHXxy0ojsgF0RDhbUIIXmqUYYQJTWImadBYC55jYANmuTaQgmZlw/2mH7B5fmacwam/iEurimgJAIsEtTtkdDOUfIdu8dIyCqEa7I904jDDCvKp9p46oIYr1nnXsOO+ZXrx8EYEF1PkvjSOsbCnK3IsLp9LW07bgOBg1ag4PLPkYjxORjBqQyagsvSSmgIeHrl43Ht+I7+D76G/SjP4nQvXkOg2HTcXqZUZ58RfjkScUEdIEp4Zkd3THBAy5WhK3qsqga2PgU1Qe7J4uAaEVYArs6czrhwaAd9Qnw5UGoB3P9/Zm+HQdSSuQB9yvCEKMTHoQISyljGuW8s1kcChuH8QMvSkOznMg1y2UJLMeIngJFuPxpeKdsk3kbq/zH03iEbbe92qyI8NLawqQcDRZU56ML2KIrgjukGb/tIewxEU6XNAJg5eIK9mqqYa5t/0BJyLa2fv66QblFfGV5ZUpaN9msGr6cZrA0YE7Moih22260QwiB78p70M+9Gf3Cn6Ff9rtM35In2Bajf02lIlwU0DhxopoEn9zW5RBh6SYRHsQ2sTUY4d39tj7YvUY5gImlAWzlXM45YnCIwnK0+RcAo0we0bknGurgMhEeNlSjdbvj055Z67TDC20FfvUwByMeNjY6RDhnnzaqIS1fwZ58tc3otUYYQJt3nhOjC3Bf4EyajrAKw/M71aBz4sTkNHr5Po05lfls0lTstNw3OBFOR6ocpE8aAfDphRW0+FTc98sbBzpmfP+FfZhSeVBfPq98sJfHBWlEHDsrLY0V4ZI8nYmlaovZNnrPFoj8EvTTvo5+0rVKG3gEwnaMKPAJxzc3WcTGLTs6ykF2OJLGIJ/91Y09SJRlo5v6YAC/LphQop7d7TkiPCS0ZZ8GQG5bPbIHfAqQ4T5kX1d8x1qyCIRwLUzDxnChGqadKBcocr0SHQ/sMXawinCBVfULeukakWdphEeJTCZHhIeAPTB3FSgi7PNYGgFKYO9beS9i0nIaT76Z1/wLORg06PXygUwj9naHnVjH06ck38xzVG0Bm/QpwHBE2GqW87AiHDJMZ/vIa2kEQKFfo6xKeSg3Nu3ipSa1rfTU9i7+/J6qBn/7xOrU9OwH3nfcUtJZEYaon6WtX8th9CBWH5xqZ73tJ9zYGaYJtcNB196hHWASgJQyugi2t6aJ+gcvG1dAoQfbe7Y8YmfOQm1IiJmnwxjVHGk8fqPr55fhIJEnbiL83XGEv1uD8dx/jfwamwiXT3Y92c15/jr3IMPBgde17SknLPW0h2UwtAYj7LYcIw61TgMosPTzwUjORzgHy0O4Ky99FWEAbdqJ+L+8msAp1zrfO1Kqws9a1eBCv2D5+OQHncU1BWzSVUWYjiZkX+eAn8tIf9SfMQ3WaZCeijDAzElqIqk2W/j4fTv5wep9XPGgmviPn1DIykXJN8kBmHZKWn6Zs7WXLtg2PhuzSBrxQYHdxJiKPtjGgqp8aovUwnF1u5W+Z0ag52DK56av07FOsyOcIdoo57YswkYuVGNkCE1HX/FdAMy1f8N87xHXzm1ufJzwz47CXPUDCPeCaWD843rMHa8M+7pY6zS3EatRPzT8yWmUm5R+ffBbexUp1wQsqj58Hi7wWdKIsHfSCJGTRmQH7Ipwh02E01ARjkVdid/Rne3qPDIG12d32LKIooSCNA7FktoCNlsVYRikKtwW4yFc4V1FOBNEWC9TW8njaWFfT4QbV++jNWhQXejjd+dPTDpJzobtGCHqFqU92tuuTmSbNOKDAKciXJG8PtiGEIIzrarwoweijWuuyCNi3FREmbJNbAtGWLdPPVNuN8rZmOKEahwZY7VX0I6+EjHtZAAi96zE3PNuSueTnXuJ3H0FkTsvVA2Xuh/tpGtgrCqUGE/dPPzrPbBOc1BaB7Zfrl15xpKfNb0NgJaBRrk3LfvSOZX5TpxyLNJTEc65Rox6SCMCXfsAaA8oIhxIU0XYhk8T1BUr3dmR0olsE+HTp6RWlVlYk0+bVsZeYSWtHdIw51inCQ3Kxqd0reFg64MhfUSYIvU7Lyzp5WNzypg9No9L543hpZUzUmpismEHaYjxC1M+V6KwpRF7eyJZ5RzxQUBsqpwbsHXCjzb5kLp1TqtBORVIa9wGoLgagDVNvUjAp8Gx4z0iwrmKcFwQQuD75B9Vtb6/i8idHxk2KXMoSCOM8fIdhH+6CHPdverc00/F/7XX8V14C77zlAWp3LwK2TH0c2UXUdy2TgP1u9rntSvP6pobVdWazDhGvGUR4SVDOAvZ0qF0SCNyPsKjGV17QaqHoC2QmYowwMSyI4cIb2vrZ4elnzstRSJcmqczozzARkseYTd32XCy48dM9NSo3CZrxQEtpQp3IhBFykvYH2zlno9M5p0v1HP3hZOcmNdUIKVENltEuG5xyudLFHMrs9M54khHf8SksdO2Tkt9sQVw5pQSBBA0oL9QjbFuVIQdUlVU6Xz27QbdZXWFg1bA3MBUiwjv64kcMT0dXkGUjsP3Lw8oMtTeSPi3K5zm9JEgO5oxnvsvwj9ZgHHfNRBsh4Jy9E/cge/qxxE1c9Q15nwYCseCNDHf+vPg5+ppgQ4VfyzqvFn425VmuT+GCO9S+mCKq8HjZu7B8OZey7lpCB//WGmEZ5HYATtZLieNGLWIHZBbA6qqkC6NcCwmlthEOPurDLY+uDxfH1SXlCgW1xSw3metti3yZsPuSHa7C/hQOPHK+WlsdrAqwgTbhoxZThodzdDbAqTXQ9hGNjtHHMnY0RHCtOZDtyrCVUU+jrIqUvt15YRCh3vSiNhQEds/2M1Y5UNhE2HIVYXjgVa3EN+VfwI9APs3Ef7VaVEnhUMgW3divHQ74d+uIPyD6Rj/uF7JIISGdvSV+L+5Hn3ZpwZIuYQvgHbUxwGGJsK711sHC0StNxHHUSIcI42w9cETj067/Gx/T8Rp6ByKCOdbFWEJ9BveEGHhSCNGh2uE963u2Qh7KyVQRLcoAvozVBFWg+uRUBG2ZRGnTi5Cd2FRsbi2gLX6bABk89tI00Ro1gfYakwQlTOGfL0baLOkEeXpkkWAitS10dsKJdWundqWRaAHENWzXTtvIphbmc+uznDOOWIUwdYH5+mCCaXu7bCcPa2Et/YG2WqMZRIgu1yoCNvSiFLl/97eZ7DWag46dbI3jXIA44p95OmCfkOyvT00qD9rDgOhzTkH3788QOT3H4O2nUR+eRLaoo8hZpwC/d3IPe8iG1+LJgXaKByLtvij6Cd+aVhtr7b445hrbkPueQfZsg1h6YZtyD0WER47HZHnzSIpVhohpUQIgWxURDgT+mB7Hi7wCRbXDFURjtZHg2HT1RRGBzGuEfb7kknkKsKDQNpatbI6wlL9gTJREba9KbPdNUJKybM7VFUmVVmEjcU1Baz1WWStr1MZlNtIe0U4fetJURjjCtHT4uq5HVlE7VyEz53KX6KYX60IxPp9OSI8WrC1VRHhaWMCKTdjxsLWCW8KqWfanWY5RYRFiSLCqxu7kajx+ziP9MEAmhBMLst5CScKbdaZ+K59Hqpng2lgvv0XjL9/EePhb2C+fleUBBeUox11Kb6r7sf/vZ34Lv7FiA1uYvIxjk7cfPfhw34ud1t+6V7aRNr32N8FnbuRoV7kXtUgmAnHiCe2KUeVkyYVDUlwC/3Rz7hnoRp2RVhKMDL/eclVhAeBLa4XpeOd7PhMVIQnWQNrY2doVKyaksV7B/rZ36u28U9zqSqzuCafrdpEuimgmCCyeS2icjrSNB2NsNcVYTteeWxaK8JjnS9lbwtuPhGm0yiXfn2wjaOsKsXafUFMKV0lXjkkB6dRrsLdxdGx44soCWjsDVq7HC5IIxwybUkjbFnEsroCz/TBNqaOyWNLa4gdOeeIhKDVLcT/tdcx3/wT5rq/Kz1toBBRMxdt/CLEjFMRk5Yn7LcrNB1t3nmYr/4O892H0U+5bsDPncZgj/TBAKJqJuh+MMLKkaewAkxVQEl3o1xPyOTBzR0AnDujdMjjBlSEvWqYi/VsDgdV/HYGkSPCg8EmwmXjsPseMlERnmRJI3rDkoO9BlVF2fnnesbajqkr9lE/1p0HvqbYT21JHuu7ZnF8ZB3mrjfRFl2imh8iauKO9XH0Ana8cjqlEUL3K4/fvg4PKsK2dVr6HSNs2LrRrpBJQ1uImS7YdeWQGmLDNNyEXxecNqWYfe9Y7i9dibsHHAanIqyI8HNWb8IpHvkHx8J2jshVhBOH8AXQj1mJfsxKV8+rzb8Q89XfIXe8hOza5zwXsr8buXeDuraH/RDCl4eona/ke01rId8Kkho7FRFT1EgHfv7qAbpCJgFd8PG5Y4Y8LpYIe9X4OSCBM9QLBUPfTzqQk0YMAkcaUVpHxBKLZ6IiPC2mAaOhPXu76J/dqbZjTptS7GpVe3FtAa/5FgAgG15Q/7eNy4UGFVNdu9ZgSGe88gBYA6h0I4DAggy2Q+sOIP2JcrGYURGg2Krcvb03OMLROaQDblunxeKsqSUcEFYkePeBlLvUHY1wSS2twYgjsTnVI//gWEwdk5NGjDaImadBXglIibnhUef7cuerKsRFCMSU47y9hwlHAWA2vuo0ymkTl3l6zUOxfn+Qm9fsB+DaZZVUFg5dVCtIhzTCHxNzHs78OJ8jwoNADqgIW0Q4AxXh0jydSotkbWvLzsE1Ykon3jRV/+BDsbimgOd9antJNr2JDHZEu3PHTER4vN3S6kgj0lupty3U3KwIOx3UZLYirIloE0eOCGceYav5C9yzTovF2dOKOahZRNgIQX/yXeTSiEDPAQBEaS2rG3scffCxE7wnwnaoxo72kHe2UzkkBOHLQ5tzDgDmOw853ze3vah+Pm4hwuNqpJh2EgBy+xrMbWvU99KoD24NRrj8/kbCpmRmRYDvnFgz7PGxFeE+r6wAY6QRh8ZPZwJJEeE77riD+vp6LrzwQrfvZ3TAjuctHR9DhDNzK9OsySdbifCbe4J09qsPk1uNcjYW1xSwxn8UYXSQJnLb6phACO+rmnazXHk67dPAm4qw7Rgxdhoif2j9WDpgyyPe2DM6PCY/yNjZEcJw2TotFtPK8ygaUxX9hkVkk0LPAdV8A4jiGkcffMz4QickwEtMtd6frpBJS0zqZA6ZhZh/AQDy/WeQfZ3qa5sITzvR8+trM05VX/R3R32LLXLsNfojJh+7byebW/sJ6ILfnz9pRK28rgkC1g54riI8BA4cOMBtt91GYWHhyAdnIWR/j9JfApSNI5RBaQTANGtwbcjS7bantitZxMyKABNL3Z1Ij6otoEcU8rpPeUCa7z8dja4cf5Sr1xoMmZJGiEJLW+ZmRbhZVYQz2Shn45g6Nba8vjtIxMxV1jIJWx/s06I9C25j8bRoqIDsTn5xN+C1JVUx+mDvq8EAU2Pen5w8YvRAm71C+RUbIcyNjyt9cONr6mdTvSfCoqwOYZNhgLIJiDTMT1JKrv5ns7Mje+d5EzhmfHy8zQ7V8Cwc5tBmuQwjYSJ8yy23MH/+fObP98aAOuPojCbciNI6whYRDmSKCNsNGG3ZqRF+0rJrOXtaievnnlzmpzxf5wn/CQCYL/8vslkRYTFhievXi0XIMOkOqUGiIs3SCG8qwqpRzlMroThx/EQ1WPeETdbty/wg+UHGVmvcmTomgM8jedipM6sJona+etv3jXD0MLA/D0LQKkt4Z7+tD/a+UQ6gvMBHWZ6aUnNEePRA5Jci6s8CwHztd0orHOlTfumzTk/LPegrvuuQP/2cG9PiAPXzVw/yf++0AXDTKbVcOq887tfa8givXCOEpqnFCYyKdLmEiPD69et5+OGHuf766726n4xDxlr4lGZWIwzRivC2LBxYO/oMXm1WD7kXRFgIwaKafP4a+BAmIupH6MtHTD/Z9evFoi1m6zOtyXLEaIR7W105n4yEHL/OTOqDbUwsDTgJcy81ZX6Q/CDDK8eIWJw6pYSDmtJpbm6ML2p3MEh7h6SggheaFAkO6CLuKpgbsKVsDVlauDhSoR/3OQDk+89i/OlTAIjZKzzXB9vQpp6A/1sb8H3tDfSjP+n59Z7a3sX1zyouc/n8Mfz78VUjvGIgCvzeEmEg6iUcybxnfNylLCklN910ExdddBFz5sxx5eKbN28e+aA0o2jrm1QDRn452xu209mjJoKO1hY2Wx586YS/Sz2Ie7ojrH1vEzKkKmSj8b07FKuaDQyp9NXj+nezebMLhvmHYHIgwnP6OFaVnsOKzscA6J50Cge27zrs2N5eRarceO8aOqMDRNvuHWxuTd9CqaQ7TCUQat/DNhd+F39bAxMMFdqyLViIMcg53Xzv4sH8UoNdnfDExr2cXequTVw6ke73zW2s26Weiwp6Pf0dQv5y6N/Hxq0NFFvXSfS9K9n2nvpcBEq59231+V9UAY3b3vfkngfDOH+Yt4E3th9gc2V72q57KLL9uXMdYirjqheRv3+d863maR+lP+1jXQA8/pv0hCUrV6lY9Pnlgq/N6GXLli0JnUM31ed+Z/M+NhfEt/OY6Ps2UfjxAbsbt9ET8P45NQwDXR+8aBV3RfjBBx9k69atXHfddSMfnMXw9SiLkUiR6qy0F0RepAzGg4lFUYLV1JNdesk1e9Wbt2SsoNDnDVGcPUad9yt5X6d76tkExx1N63Hf9ORasYj1zPdIOjkkjDy1xaX1uTPR+tuU5ZzpL8QoqnXlnKliSaX6wL1+wMTMdeBnDLu61XvvtQ2vKFTPdFdn8rscep/aBjbyxrBmnxp7TqhJ78A9uViNRzu6c8/sqIIQHDj9R/SPnY3py6d12Vfor1U63bApj6gx5rebDPYGIU+Dnyz3k5+ErDPP4ov9hnfvi9TV7okWybz8La6KcHd3N7fccguf//znqa6udu3i9fXDRyRmApFNYUwgv2oK9fX16C9uAfoYV1NNfX1i2wtuYKaU5D/5Ln0RiTmmjkKpTOdH43sXCyklr63aBJhcNL+G+nr3nptYGBV9XP/6FnYZpXRccR9TxwQoG+JYe6Xqxnu3RXQAOykOaMyfMzvl8yUC03+AyFOgh7qYNWOaCtlIAcbOv2MAeu086mcP/ru4+d7Fg09W9fPDtZtp7YeeskkcPS47m3PT/b65CcOUND2g4mCPr59I/TBpVKli/7iJ0PYyef1t6FVTmFGRl/B7F9kAJmCWjafZKmJdvnwa9bUFw77OTRwfaeO2jbto7NWYNWtWxtJAs/m58w71yKVrQUpqNY1QR4gvPd7MEw1dFAc0rjm6ku+eXEPD+6p6mo3v3b7uMH95aBMA159Yw1lLh7dKGwrlrzVAWw9FY8ZSXx9fcSTRZy5cVIbsaqKmooy6NLzXa9euHfJncS2Xb7vtNvx+PytXupv6MiphaYRFWR1AxpvlNCGchrls0glvbumnsVNtr5w93X19sI36sXlOh+vaNPrOOo4R6bZOI8Y1AlxxjnD0wTXuSJ7cwIyKPGZY+vjHt3Zl+G4+mNjVGXZ6JLzUCAOUj1WTbaVsdxpsE4b1WWiMKMJeXehjUU3+cK9wHXYSYnufkbNQG4UQQiA0jYO9EU7/vwYeb+hCoizv/vOl/ax8eFdWe0Df+tpBghFJRYHOl5dVJn0ee071zD4Nos4R2eAasX//fu666y4uv/xyDh48SFNTE01NTfT39xMOh2lqaqKjI/3aWa/gxHyWjgPIeLMcxFiotWYPEX7CmszGFftYUOXdZKRrggXV6Q9gaM1AvLKDmGhO6QYRtqNGa9Jb2R4JK6wF1GMNnRm+kw8m7IYvTcCUMantOowErVjttlWabazanhwRtl1UNgWVXdqZ04rR0lyRnRUTCb65JdcwNxohpWTlI7vY2RGm0C+464KJDmn8y4Z2Ht3lYYOYhwgbkrvWK2nRtUdXUpKX/NxUmI5mOYsIZ0WgRktLC+FwmJ/97GecccYZzn/r1q2joaGBM844gzvuuCMd95oWSDtMo0RVKMIZ9hGGaJUhmwbWR7Yo8rJieonn24OLrarP2jRabdlEON2pcgAUVkS/TtFCTRph5EHVTCRq56Z0Lrdx4Swlcnl9d5AtWfTsHynYajlGTC4LENA91toWKyJSKdt5dkcP/clMwNai8O0uRYRXeOBUMxJK8nTGFasxYUtr7pkdjXhyWzePN6jF1u0fnsDl88v52ZnjuGiW2kn48boIXeHsqwo/tb2LA71qXvrUwvit0gZD1D7tg1ERHnEWnzBhAr/+9a8P+/6tt95Kb28v3/72t5kyZYoX95YZWFn1olRpa2w/6UxWhOdUKqK38WAfkIEKZIJo6Y2wepcy8b5o1lCKXfew2NIAppcIq3jltKfKAUL3QUE5BNtSl0a0N4HlGCGqZrpwd+7hlMlFTC7zs7MjzF3rW/nhaeMyfUsfKNgVYS8S5Q6FbQlYabbREzZZvauHiQmew64I75Fj0AScNTX9RBhg9th89nR3s+FA5m2hchgIKSXffV7t+p4+pdjx1hVC8N8rxrNqezdtIZP7thscnWVRCfe8p5qnT5lUlHL4Tb7f40ANiBLhbPARLikp4cwzzzzsv/LycudnM2bMSMe9eg7Z3w0hReA4tCKcQSI81yLCe3sidIRG/0r10a2dmBKK/BqnuxyrPBjsSN493RH2dYc9vx5AW4ZS5RwUqaqw7E2NCMv2GJu5MYlSD2+hCcGnF6rf8w/r2uixAkxeburhnD9vY/ytG7jwb9vZ1Zk9kqFsgu0hbPcoeApLGlFMkHzZx6PvJyaHkVI6uyMtYgwnTCiiqigDuzXg6JLTuTDPIT68uKuHtywJ3Y2nDGwkqyvxs3KRIsb/t9XIqlRLKSWrLDnix+am7o1sV4T7PCTCYhT5CGfIFGyUwtYHE5VGhMzMSyPmVEZ1Zw2do//D+bAti5hW4hhze4n5VfnYf561+9LzobKlEZkiwk6oRooVYdnepL4oqUX4vG2ISgZXLa4g3yfY3xvh0w838qmHGjn5jw08tb2b/b0RHtvaxYp7thH0snLxAcVOyyNwWhorwgCVZjuPbu1KrGkp1AMRVcE+qI3hwnrvHC5GQnSHqi+rG6+ORPzP20pDu7yukGPHHx69fe2ySgSwN0jyTZsZwIaD/U5z5mkuJClGNcIfDGlE0izl7rvv5qGHHnLzXjIO2RUT71liSSMy7BoBUJqnO0lbo50I94RMZwC5IE2TUb5Pc+Qj6WqYsyvCmZBGAI5OONWKMFZFWIyZkOodeYLxJX5uOFF9Fh/a0smfre2/o2oL+NHptfg1wfutIW57M3tDN0YrdlmuLxNL01cRBqiUbWxvD7GtK4GxLkYr3yLKuCANkqyhsMhq3m3vMxznnBwyj4O9Ee7fpBr7P3dUxaDHTCvPY2mlmusfyECAVrJY3ah2smuKfMysSP3zGnWN8FIaoeZsmQ3SiA8UOq2KcMEYhPVHGg2uERCVR2wd5UT4oS0dBCMSvyb4sIe2aYci3TrhKBHOzParY6HWk1rMsiONGKVEGOCbx1Xxo9Nrqa/IY0ltAf9z7gRe/swMvn5sNZ+1JrQ717bkqm8uojtkOLse9iLcU+SXgeWHPSdfLaSf3xP/JBzrnlJbXcvUdMg5hsDsyjzy9PRbOuYwPP64vo2QISnL0/j4MPKBM+oULfrHls6skUe8uKsbgJMmFrnSnG5LI7zVCFvSiGyuCB+JcKzTSqLaoahGOBN3FMXcKss5omN0bwH/6V2V7nTujBLK0+iokG7nCLtZLuMa4VRdI6zFn+2bPRohhODrx1bz7tX1vHrVTFYuqkC3FqY2Ed7SGmLNrsxXFo4U7IqpZKbaeBMPhBBgySNOq1Sf4ecSIMJmt/ochPCxYk5mn2WfJphfnd4dqhyGhykld7ytFkufXFDubP0PhjPq1Jh+MGjwktX0PdrxUpMa+06YeLjcIxnkp8E1QjjSiJxGeFTBlkbY+mDDlNiPQSY1woCTrPVem8QYpZWv5q4wT21XK9MrFqRm35IollgV4Ya2EB193hrZG6ako19N0pmSRjiayt7UKsJ0q0hxUZxcAlGmsbC6gKPHqb/93dYiLIfUYRNhnwa1aWo6s5/pZWVqUl/bImnvj2+s27hTad0PinIuS/PYMxiWWeP1K825xdlowOrGHscO8HNHjR322LoiwcxSNd8/s6Pb83tLFQd7I87ndek4d1IU8y1pRMjwXhpBOPOfkRwRjoVjnWY5RsRsi/gyLI1YXqcG1qAxeuURv3njIKaEqkKdc9IoiwBYVBMdANZ5XBVujyHaGQnUANc0wnZFOHYXJNtw6Ty1zfnQ5g5nByeH1NBoNcpNKPE71XfPYXkJz8jrosAnMIEX98U3Ea/frohwMK/c8xS8eHD8RDVev7q7FyNLttePZNy1Xi2Sl9cVMi+OgKflVYoaPd84+ivC9i6oJlRhwA3YTe5BL/2Uc9KI0YlDSUEoZlLNZLMcwOQyP9WFqjLzTuvoG1i7QwZ3WB25X1xaSZ4vvY9WaZ7uNAm86fF2ZGsMEc5ExDK4oxGWUkYrwiXVbtxWRnDJbNUY1RI0eG7n6K/gZAPS2ihnwa4I+4ItnDFVdb7HI4/oDZs071Vjd0HZ6HiOj7McCbpDJu/k/IQziu6Q4TTJxRs0saxKzfev7e71VifrAmwden1FHkUBd+bdfIvv9KUjWS7XLDfKYGmExSGOEZB5aYQQguXj1YOzvnV0fTCllHz9qT209Rnk+wRXLxl+68krLLW2I9/Y7e0Hqy22IpyhZjknZjnYhjQi2CetIwAAIABJREFUyZ2jvyu6GrfkQNmICaUBjpug/vb3bsqeTu/RDNvtYGJZGhrlbFhEWPYc5NwZynFmzT5zxCr/3ze2UxJRFb+qqtGxszG5zE+dlTCXLTrTIxX3b+qgJ2ySpws+Pic+N5FlVRoCVQx7pWl0//3sivCiWneqwRCVRvR5ucOW8xEenXDs00oOl0Zk2jUCcHwPXztgZqxDvjtk8B8v7OWku7Yy+7ZNLLh9MzN+vYnfrf3/7Z13eFR12v7vMzW9VxJqQkKvglJFAUUUsSHI2ntbEXdd3HXdtay7+yq6uooNX/2xttcuAksTsKPSEQiBBEIJ6X2STP/+/jhlJmSSmUzmzDkz83yui4swc4acfHNmznPucz/3wyuTj03NVCzIXvSKyq0INwjd9AYthxi9QsdFrNvFRruf3tgOudnqUNL8RVSFyR4RGE4J1oh+QVWEhQg1Uy3mCoVwiw349mTXKj9jDCt21iHVycfqGRPSutw2mHAch8m5/Of1dvIJK8o7v/Kfj5cXJPjcwJ1o4DBSaHhUuz1ibyVfSI7NDGQhLAzUkFER5iSPMFkjVANzOtxuE4vjldVVCF80iPfdnm4FimqDP8feZHVg9nvH8NT31fipvA2lDVYcrrNI6tFd41Lx+0npXv4X+RAV4dIGq5TqIAf1ZiExIkobkKgaf+Bi3HIw/fQJs5Zq1z/iwqMQJntEYDgjTGjsEx/Ei1rh4o611qJPvB6jU/j31v8dauzyJdvL27Cnsh1pTNgmVh2FMACcJ9yl2K5yRTGcOdFkxdcn+PW/oYdNlDOEwRRq/jwxWR04Us/XAmJyUiAQ49PsTsgXIRdKI5YjhtY6wCnc8k7IBqAuawTAH+jiRd+6kp6NIA0Ej2ytxM6Kdmg44P5zUvHKJTn498V98K/ZffD9Tfl4eU4ONAoVhgB/RSxer+yqkO8qU8xXVWyYBtBBEWb++oTFOyDRyaqcKtcTyB4RWCpM/MVen7jgWSM4caiGEAk4ty///vr8cBMsXShTK3bw2/bV8IUwp6JCWFSETzTZUN5CgzWU4F1BDc6K1WH2oJ41cJ/fn//97TjTrlqf8P5qs5RsNSaA1gijznUel00VFpvlnHb/7X0BggphAfepcpwKm+UA/nbbjGz+V7b6SHAL4aJas5TD+PcLsvCvi3Jwx9hU3DM+DfdPSMO5OTFB3R9PxBo00uAROQthMTVCscQIgC9cjcIoTT+zhF1WIHX4KnsL2SMCg8nqgMnKn/yyglgIn+17vzhXAw2AJosTXxR3/rw7XGuWLnoyOeHiJ065O1JnMyYzWrJOkU84+DDGpFz7xSOSepz8NEW4kLE5mex9J/4iNsr1S9AjJYC5/VEdCmGZFWFA8Qg1KoRFRL+kRgsIHflqs0YArrDvn8vbcKwhePaIJ76tgpMB+ckGPDBBPSebsxFzFHdWyPfGEhVhxYZpiAjHKfMzS9iVmx1ehXBdu6NbXynRPaIaDADZccG0RgifK4wBbfVIi+IwQ5jytfyn6k59EU99x38mDU7SIsrKFzxcrDKNup7QazkpT5h8wsFnT1U7jtbzXvfFI3qeLZ0ao8OwNP5O2fcqvZARG+UCqQYDLo8wIKci7F4IK9swR4WwgBSdFpcJTsMvixoL4XMzOIgxiB8c7No7F0hONlmluet/mZ6pCptIV4iDR3bKaY0QFOEkpRIjBCSfcKufWcJneeJDndwEAyb04T9c1xwNvnUoXKg0uW7jZwWxEObiXLYGcWLibQX8xebeKnOHu2Dbykz4qIj/THp8goEvngFXMa0SJgmq4o/kEw46nwjHR2GKEaMy/PPPivYWtRbC+6r4AnJMABvlACDaTRGWa7pcBzuewskRVAiLeFDHbG4DytRS/Gk5TvLOvftrA5xBSI94c089nIxXh64Z0vWMdjVwjlAIlbfYUGGSx5fX6NYspyjSmGV/m+UEa4SKbif3lnmD+bSBNUeaFUtWCXVERTg1WguDNoinCPcGUKEQHp2qwWwhU/je9adR3mJDlcmGu/7LD9A4LycGV+W6FGz3YloNTBZ863sr29FqVafPNBxhjOFjoclywbBEv5uap/ZzJX/I1jTmJzYHw8EasRAOXKMcECxF2G2fqRBWB0y0RiS48lTVqAgDwJUD+F9bSYMVm4/JewvY6nDirX38rfdbR6eo5oKgK0amR0m/K7l8wmqxRvR6zLJQQHNhVQjz9oiTzTbsq1Y+nzIUES8gg+oPBsBp9UC0cAvb5PK9v35pLpKitKhpc2DsyiMYtfIIjjdaEaXj8NrcXGja3DzyMeqxRgB8oc4BcDDgp3J1qorhyM6KdpQ18cfxNUP9F2+m9nUNRtlfrXzMlzsHa82wCL0QYwNujQiCR1jnKoSZLfgpWO5QISwiKcJuhbBbw02QB6V1S36CBhcI0S4v7/SvUcpXVhc3o6rVDg0H3DY2xfsLFMao02CUcHUsV4ODmCOcpLQi3Msxy+LtZ7UVD71heLoRg5L47Ns1QW4oDRcqBUU4qP5gEbcINZG+CQb835X9EGfQoMHsQH27A3EGDT68qj8/LlfcNioRnC54uce+kBytk/ybW8vItx4sPi7i1eBhaUafRip3Rf9EA/om8BeE359Ul897tyD0ZMTokBMf2ItWd0XYEoxmOVKE1YGnDnpREdZrOMXyYrvi/gn8CWNDaQt2V8r3Bn1tN19kXTY4IajjVnuD6BOWa7CGOFlOaUUYvR2zLCrCKoqc6i0cx2FegWCPIJ+wXyilCAOdI9REZg6Mx6G7C/Gv2Xxc48G7CqWhG1LRrDJbhMjMAbxo8dVxKoSDAWNM8gcv6IUaLDJFpT7v3cL5bVx2dMDrE52Gk8S/drmsEe4eYWqWUwesuQLA2R5hoRBWuN7xxGWDE6Qr3ce/qfKytX8cqjHjW2Gqzl0KjU32Byk54kxbwH2ijDGpWS5F6WY5ySPc87sCzGEHzOIQAvUr/T1B9AnvqWzHqWarwnsTeiirCLvGLJ9Ndpwe90/g4xr7uCtgwrZqvaCbKXic91S2o65N2bzUSOCn8jacahZtEb6NVO6OKX1dDXNq6jvYIxbCAbZFiMg9XY7TaAGt8D62K2s7oUJYxJM1wk0RVhsajsMT0/mifX1pCzaWtgT8e7wh5AbnJRswS/gwDwXEUcu17Q5p6l2gaLMxKV9ayRxhAK4pWv54hNsb3Drt1VlA+MuUvrGSWk/2iJ4jpkZkxSqgCIvHYg8u7piphv9CpcfxlNxYGLUcGIBtKp5SFi58KmRLj8yIwpC03jeRiT7hqlY7ShrUcWFtdzLJsxxof7BIlNAPJJtHGHD5hEkRVh5mawfMQiB7QmePsBoLYYCfnX6+0NX6wMZytFgcXl7hO61WpzSV546xKYpOjOspQ9OipCD7QPuEG8wuRUfRyXJwi09rq+u5UuFWaKgpezUQ6DQcLsnjp0gpYY/44GADxrxRjP7/PoS/7bGh1aYeFckXKloVVITjulaEu0RUhFXa9Bmt10iq4hayR8gKYwxrhff8lYW9V4MBYFi6Ufqs/0ElMWqHas1SgSq7IizncCKhEGZ2apZTHg9T5QA3RVilSQkcx+HlOTkwaDkca7Ti7v+eDtitm3cPNKDJ4oRRy+GmUaF161yn4aRcxUDnCYu2CEAN8WlCAet0uC7kfKRD5FoYNcuJXF7AnwS/OdGKJnPgLhC98YctZ3Dj6lM4WGvBGZMd/3fMiXt/tMHqCI3oLIvdKaWiZCvhERaPRVMPFGGxaFapIgxAuqO28ViLqm6vhxuH6ywoFVTbSwf3bKRyV2g4TorBU0uesNgolxatlZr5Ak20ICa1yzleWk+KsGpwH6/s3iwn3gJXw3jlrhiSFoXls7IBAB8VNeFfP/c+RYIxhhU7+P/nuhFJSItR1gvrD1LDXIALYTExAlA+NYJzL2B7miUsJk0Y41XXaR8ILhoUB4OWg83JsPFY4G1DnnhzT530/pubH48/T80AAOyqZfj3L/KmuwSKylbXHY9gDtOQEFTdHinCJtEjrN4LussE3/qpZht2yDjsJ9L5bwmvBufE6zE2gEMmRHuEWhRhsVFubFbgG+VEjFrRIyynIiw0zFFqhAoQp8oZ48AZXV5YNXuE3bl7XCquG853xy7bWoHXd/s5aUxga5kJRXX8rYr7zlGvytId4mCNXZVtAR06IiZGJBo10Cp9XLid+Hs6ZllShFVcPPSGOINWihgUT45ycrzRit99dQYAb1n6fMEA/HV6Fhbn8RdLT31fhdMh0LjnPoRGEUVYPB5ba10edi+4FGF1WiMA3q4ljuv9/HDP7t4QvrP2KH/ROzc/PqAF4mShEC5psHaYvKgUYhP7uTkxsn0PMUvYIuPdLE5UhKkQVh5pmMZZo2bV7hEW4TgOr8/NlU78928ox0s7/Fegnt3ON59M6xsb8NGNwWJ8Fv8B0Wxx4mh94PxHrmEaKlDJDbGAVlBze6oIh2F02tlcks/fGt1Y2iL7BMYlG8vRZmPIidfj7Xl9JU/9b4drkWrkmyyfEd5XakZMjIg3aBBrUOD0IBazdgs4m3d/P2PMzSOs7mNZ9Kx+XNQIh8qmlIUDdW12KeJMVOADxTnZ0VJhqLQqXGWySRPlLhwgXxO7KzVCTkVYqC9ooIbyMCkxIrvD46IirFOxNUIkWq/B5wsGSM1zD20+g8e/qeyxH23zsRZsEYLfH56kXoXFG/kpBiQa+cM7kPYIsVlO6UY5gL8AkgYQ9HCohktFC09FGIDUMFfb7gi4V9ydbWUmrBdSW/41uw8SjK5jI17P4bZC/t9v7a3HmRbl1aTuEBVhRRrl0LHhTWv24S6HxQSIjTYqv6hbJNy1O9FkC5pdJ5LYcKwFTgZE6zhJFAoUBq0GE/uowyf89Qn++0frOGmf5CBaKPxlyxEGJI8ws1F8mvIIijB3liJsDxFrhEisQYM1CwfiUkEJe/qHajyw8YzPalhDux2/3VgOADi/Xyzm5AWm2UAJNByH8YJPOJBFkKgIq6EQBtxvJfdUEeaLDC4MG+VEBiUbUZjC345eL5M9gjGGR7/mM8in9o3FFYWdlagFA7XIiNHB4mB47id1q8KiIqzEMA0AHVJ7tG0+rFWraxu1390YkhYlDddYIfNE0Ejkv0JaxMyBcYjWB760EUUmpRset5TxF1FT+sbCKOPI2+AowuQRVg1Ss1xCx0LY6lB3aoQnovUafHz1APxmBK8+vLa7Dld9XIaG9u6D3E1WB6797ARKG6yI0nF4/qI+qpum11OkwRoVgYtQU81UOZEYcSQtKcKeEO0R62XI2QaAL480Y8cZ/kLrbzOyPL5nonUclp7LF2kr99SpeqiC4oqwzghEJwMAtG3ei8UOx71K49Pcue8c/v226ZgJ31CmcMCwOVxNsZfmB9YWIXKZMLHyaL0Vh+sCdyufMYYD1WY89V0VLnynFCnLD6Dvi4dw4+qTnc5dVocTq4Vs9IsGyStUiVYQuQZqAHClRlAhrAKaRUU4q8PDokfYECKKsIhey+GteX2xZCJ/8l1X0oKJbx3Fui4yVYtqzZjxTql0y+XVS3IxKiM0vcHuiMkReyvbJXW/tzSoTRGO55MJYKru2Qvbwt8jDLjsEbsq2lEV4CYXxhj+Zzu/7nPz46WsWE/cNS4ViUYN2u1MGlSjRhRXhAGpV0PnQyEMcZiGzsh75lXOpYMTpNvZ131+At9SMRwQvj/ViiYLX7BdGmB/sMjYzGgpquzLAAzqqWuzY/n2aox8/QjGvnkET35Xhe9OtaLF6kRlqx0fHGzEpLdLcNF7x7D5WAssdide3lGH+nYHNBywcFjvx0d3hzEIijCnkoEaKuj4UR5JET67WU64EAolRVhEw3FYPqsPRmZE4f4N5ShrsuGKj8swJTcG1wxNQl6yAfVmBzaWtuCjQ41wMEDDAa9ckoPrRyYrvfsBQVSE2+0Mh2rNMHrZ3hfEHGHFp8qJxPGFcIcIQB+IFEV4St9YxBk0MFmd2HisBTcGMBP7h9Ntkhr88KSMbreNN2pxx9hULP+pBit21mHpuenSrUc1obQiDABcQhZY9WFo231QhMULwLiMkLiDpeE4vDUvF9NWlaKmzYHZ7x/DE9Oz8PCkdOVTaAQYYyhvseFInQXF9RaUNVrRaHHCZHFAr+UQq9dgULIB47JiML1frCr2WxyiMT47Wra0E47jcHlBAlbsrMMnRY1YNrn793xXVJhs+McP1Xh7X32HInNAoh7zChIxoU80Gs0OrNxTj1+rzdh2wtRpIuH1I5M7jhmXgehgKMJiIazwQI2IL4QZY24e4bMU4RDzCHviplEpOLdPDJZsOoOtZSb8cLoNP5zubBUYkKjH2/P6YWo/9asqvtIvQY/0GC1q2hzYeaYdUwIgctcKt7VT1ZAaATdfe0sPFWHRIxzmirBRp8HMAXFYfaQZmwJcCL+2iy/UJvSJxpRc700r952Tihd+qUFVqx3vH2jErWPUN6hGDYowF58FBt+sEWjiI+u4xD7y7lQAKUyNwvZb8rHwsxPYV2XGY99UYktZC96e1xe5CcHP9C6pt+Cn8jbsONOGnRXtOFhjRquPQxTykw14dlafgKc09ATGGNYJPQBy2SJEFgxNwoqdddhbZUZRrRlDezDCmTE+Oebp76vQLhTAiUYNbhyVgutHJmFsZsdM4LvHpWLTMRP++WN1hwa9aX1j8cyF2Z3+/0ATFI+wXh0eYXWczZWkvQFwCLdMEzxbI/QqEf/8ZUhaFDZcNxBby0xYtb8BP55uRaXJjjiDBqMzo7FgaCJuGJksq/FeCTiOwznZMVhf2oJdFW2YMqj3/2edYI1QzZARoRDuiSLMHHb+uAeAGPUVY4HmAqEQ/vZkKxhjAVEOm8wOyat359hUn/7P3AQDFg5LwnsHGvHCzzW4eXSyqkaX250MVeJ45VgFj2/hmPZJEW7mC2EkyF8YBJK8ZCO+uzEfy7ZW4NVddfj6RCvG/+9RvDE3F/MDNBq4Ow7WmPH/9tVjXUkzjtZ7zrfWcMCARAPykg1IjdYh1qCBzclgsjhxuM6MQ7UWlDRYceXHZbh3fCqem90HOgVEo2IZpsl1xeTcGAxI1KOsyYYPDjTiyRlZ3l8k8M8fq/GXb/jP6fQYLZZNzsDtY1K7jCnkOA4X58Xj4rx4lLfYcKzBgtRoHYamGYNy9yM4HmFenWJkjVCYZs/jlYHwUIRFOI7DzIHxmDkwdJMg/GF8djTWl7bwyRG9LIQZY5IinKYSawQXJ3qEq3wv8tyHb4S5IgwA5/fjO/UrTHYcrbeiILX3JplPDzfBbGeI1nG4aojvhcvSc9Px3oFGFNVZsLG0BZfIrGD1hKpWO0TtR+7brt3BCYKET81yzXxiRygpwiLReg3+fXEOZg+Mwx3rTqOu3YFrPj2BO8amYPmsPoiRIfngcK0ZD20+g83HO95qT4rS4pzsaJyTHYMxmVEoTI1CfoqhW/vOoRozHtx0BttOmPDKrjqUNVnx4VX9g275WSfTNDlPcByH64Yn4x8/VuODgw14/PxMny5mj9RZ8OR3fK2xaHgSXr0kB3EG388hOfF65AT5PRmlFQthOVMjqFlOFUjDNDiu02SiUBixTHSP2DD3a7VZ+n36S6vNCYvwf6hGERbvYtgtgNnHiVVunfZqHksbKIalG6ULl29OBqY56cNDjQCA+QWJHXKDvTE6M1qK0ArEOPRA4p5xrGQhjHjfC2HJGpEQeoWwyLyCROy6vUDKvl25px6T3j6K/dWBzVZ959cGTHjrqFQE5ycb8NjUDPx0Sz6qlg7D+usG4akZWbh6aBJGZER5LWiHpUdhw+KB+N15/HnzvyUtuO7zE9Kd1GAh1zS5rrhOSGQqa7LhRw82Q0/8+esK2J28BXHlpbk9KoKVQoygkzVHWCXNclQIi4VwbDo4bcfiRhqoEQaKcKRyjtAwZ3MyFDf17gO6ts0hfa2WQlhShAHAR3tEh+EbEVAIazgO0wVVWBxN2hsa2u1S9NU1Q3t+G/shoXDYdsKEPZXKBsm7IxbCsXoN4pWYKicgKcLmesDp6HZbUREONWvE2eTE67Fh8UD8/YIs6DTAoVoLJr9dgpd21PY6s9bmYHhgYzluXXMKZjtD/0Q9Pr2mPw7eXYi/TM/C+OwYvy06Go7DPy/MxjMz+fVfe7QFt6w5GbTJeXJOk+uKoWlRGJfFn1feP9DgdfsD1WZ8Xsyr1n+bka3KJllPGLVBSI3QUyGsDpo9D9MA3D3CVAiHKplxeuQK6tahxt69oWvc8l/VYo2AWyHss09YVISjEsBpFVT+gsj0/nwT6LcnTL0uLNaVtMAhTLCa7UeW5+yBcRiezp8A/vWzegZsnBESI3LidcomMAiKMMec0Jq7LjSYwy5d/IWiNeJsNByHhydl4Nsb85GXbIDFwfDQ5jO49tMTMFm7vyDoivp2Oy79v+N4dRf/nr8kLx47bh2MywsSA+pPX3puOv4yjT+HfnioCX/aVhGw/7s7Nso4Ta47Fguq8CdFTbB4UUz/vYN/jxemGLFgmPz+70AheoQtDjkVYXU0y0V8IewaptHZ9B5qk+UIz4gxagcbeveGrhOGkhi0HOIUVMzc4XQGqeGN+ZgcESnRae6IPuEzgk+4N6wu5i0oFw2K98vHyXGuARsfHWrEqebe7U+gqGgRGuWUzBCGSxEGAG1rN8e0qQpgTuE1oa0IuzOhTwx23DpYirH84kgzpq0qxfHGnh0nZS1OTF1VIkVv/WlKBr64dgCSZUq8+fPUDGlgyPM/1+LtfT6MyO4l62SeJtcVC4clQcPxA5Y2dDOsp0ZIiAGA+yekqao51huuZjn5PcKMCmGFERWF+M6FsKQIUyEc0oi3sQ42BMYakRatVVVmqStCrdK3FwiKMBcT/o1yIsPSjUgVVHz3KKKe0mZzShOsLi/w/1bsomFJyIrVwcGAl3eowyssKsLZSvqDAX6ynJG/cNGZznS5GWtyUx0Tc+Teq6ASb9Ti7Xl9sWJODnQa4ECNGZPePoqvy7x73J2M4f0SBxZsseFovRVGLYd35vfFE+dnyVqIcRyH52b1wRxhiM1968vxQy/ea94IxjS5rsiK02PWQP4YFQtdT6zcUweLgyEpSosbQiyfP1qwcLT7GKXnF5I1Qtkc4YgvhFmL8GHqwRphdZI1IhwYLzTMlTQzmHvRyFErKMKpKvEHS8QJEWo+TpeLREVYw3GYKkx++64XJ+evjreg3c6g5Xp38jXqNLh/gjh2uR5NZv9ufQcScZhGHwWHaQB8QcUl9QUA6Ezd3GJvLuf/NsQCxvBMw7lzXCo2LR6EtGgt6todmPPBMbyys2vf8NF6Cy58pxR/32dHu4P/XX51/SAsGh6cIkyr4fDeFf0wPM0Im5Phpi9PynZsu0+Tm6tA+sriEfyari1p9ji10mJ3SpaU28akdBmTplYkRVjO5kchPo2sEUojxKdxHqwRNkqNCAtERdjBgOJe+ITrJEVYXYWwdOw2+ejLa42M8cpnIw6L+b4XyRFidvC0frG9viC6c2wKYvUatFideO4n5b3C5YI1QtHECJHkfgC6L4RZo1AIJ2Sr6g5NoJnWLw7bbxmMkRlRcDBgyaYzuPO/p9HoVmCarA787bsqjHvziDQw6coBGuy7sxDn5QR3SFKCUYsPruqPKB2HE002PLi5a1W/N4ixaeOyohU5Zq8sTERKtBZWB8PKPZ1tIB8eakRlqx1aDpJlJJRwDdSQTxHmyCOsDlzjlT0UwuQRDgvSY3Xon9j7hjkxQzg9RiWNciLJvHrGGk76tHkkKsIAP5EJ4GOPTjb13JdrdzLJk3h5Qe+bXpKjdXhwIn8x8q9favzap0DiUoSVL4Q5sRBu6cYaUXeM3zY1AJNyVM6AJAO+uzEfVwnDNv7fvgYMe+0w7t9QjtvWnkLeisN44rsqmO0M/RL0eH2qHk+N1yMpSpnPqqFpUfgfYfrZu7824JOiru0D/sCY672o1FS7GL0GtwnTIV/bXdfBQsAYwwu/8J+zC4Ymoa8CEwN7i6gI252ufqmAI1kjlE3PiehCmNmtgBAl1W1qBBXCIc/4LN4e0ZuGOWm8ssqsEVwSXzSwxhO+vSBCFeHRmdFSk6M/PuEfTrVKkwXn98If7M7vJ6UjO04Hs53h0W0+erxlwGx3ol742RT3CAPgUvMAAPrmro9pVlvCb5uWF5R9UppYgwYfXNUPz87KRpxBg5o2B17fXYf/7G9AfbsD0ToOf5iUjr13FGBKpvKn9nvGp0p+4Qc3nUFDu93LK3ynuI6fagfIP02uO+4dnwqDlkNVqx0v73R5/f9b0oJfq3mVc8m5ofk56x7zJpsqLOYIO2xgXqIS5UT5d4uSmLqeKgcA4gUeeYRDn3HZvW+Yq213NcupCVE9Q+Npnz5MWFtkKsI6DYfJufwF0Xd+5AmLtohxWdHolxgYhSfOoMVTwpjW/zvUiJ/K5Wsu6o4Kk6tIUdojDABcRgEAQN90sstj2lUI5wdtv5RGw3F4cGI6DtxViD9OzsCcvHhcVZiIZ2Zmo/jeIXj6gmzE92DAi5xwHIdXLslBnEGDqlY7Hv06cBd6wZwm1x25CQbcO57/HP3nj9U41mCB1eHEw1v4OxmzBsZJQ51CDVERBmRMjhALYYAfCqUQEV0IM7fxyp4C2ckaET6IEWqlzQytVv+ubmtaVaoIp/Tnv3DYgGYffMIRqggDwLS+fKd3TxVhxpgUmxYoNVjkhpHJGCv42B/+qqLXOcf+UO42VU7p+DQA4NL5Qphz2oD6sk7PM5sZqDvObxNBhbBITrweT87IwpqFA/Hh1f2x9Nx0VfzezqZvggFPTOcv9FbuqZeGX/SWYE+T644/TslAWrQWzRYn5n9Uht98fhJH663QcsCzM0M33zooirDevRBWzicc0YWwFDelj/bYdWylgRphg9gw5wSwt8o/P1JlqxAvpbYTjmCNALzlnzo2AAAgAElEQVT7hJndCph5NSXSFGHA1TB3uM6C6lbfb9XurTLjZDP/+59fGNhQfA3HYbkwmeun8jZ8dMj7qGzGGLYcb8GKnbUoqe+9klIhFMIp0dqg5rF2ScpAOLW86s4qDnR6mlUeBJz874/LGRPUXSN6xn3npEqfv/euL+/1COb6dtc0uWDHpnkiJVqHj67uD72Gw+E6C74Q7hwtm5yBERlRXl6tXoKhCEvNcoCi0+VU8ImnHK5GuUyPV5V28giHDSnROvQR7lAdqOn5G67d5pSiejJjVaYIG2MBQd312jDnNl6Zi8BCeEJ2NIzChW1PMk6/PMIXp/nJBgxLM3rZuudM7x+HKwSl+U/bKrrN7nQ4GW5ecwpzPjiOBzedweiVR/DPH6p71dAiZQir5CKP0+pgTR0KAHCe2tHpeXZ6N/9FQh+PiT+EetBqeIuEhgMO1ph7PU1xQ6lrmtyFA4I3Ta47pvWLw9qFA3BuTgzykw34+wVZ+Ov0znbLUCLaTRFul9sjDJAirBjieOUuphJJ1gh1WK6IXpKXwB/uh/wohCvd1MNsFXgoz0byCXtThFtdhTAi0Bph1Glwbo7gE+5BIfxFMa/yzC9MlO1W7D8uzIZew+Fks63bOLXHv62SQvwNWg5WB8Nj31Ri7gfHpYbOnnKmRR0Zwu5YMkYAANhJD4Vw2XYAANd3fFD3ifCP8dkxuP8c/vPm6R+qejVNUalpct64cGA8vr8pH0X3DMHDkzJCaoqcJ4LiEda7+bsVHKqhnqNIAZhojfDQKAeQRzjcyIvnf49FtT1/w1W6BaZnqUQ164BQCLMGL8kRYnQax/ETvCIQMUbtOx/zhA/WmKW7CIH2B7uTn2LEA0Kc2t9/qMaB6s4XbD+ebsUz2/nBKQ9MSEP10uFSRum2Eyac+9ZRv6w/J5r44ztQTYCBwJIuFMKndoE5O0ZTOUu+AQBo8s9XZN+InvPX6ZnIitWhzcbwx60+Zp6fhZLT5CINd4+wRbZC2KUIKzlmOcILYXG8cheFMHmEw4r8BP73eKjWD0VY6KpPMGoQoyIVQoRL5hvmvBfCgiIcnQxOqx71L5iIPuF9VWafpl69f6ABADAoyYDzcuTtAP/LtEzkJxtgczLctvYUrA5XAWiyOnDrmlNwMmB0ZhT+cWEWYg0avHBRDt6/oh9i9RqcbLbhgndK8dXxlh593+ONvEI3MElNhfBI4YsWoKbY9UTdMaDpNACAy6NCOFRIMGrx9AW8jeXDQ00+X4i684PC0+QiCZ2Gg1j6mB1BsEYomCWsvjN6MJEKYc8eMyspwmFFnlAIV7XaUdfDW8hio1yWyvzBIpykCHuzRkRmdJo75+XEQMsBDPDaxe5wMnxwkLchLB6RJHuHeoxeg5WX9QUHYHdlO5Zucg2UeHDTGZQ2WGHQcvh/8/rBoHV9fC8YloTvbspD3wQ9TFYn5n14HO/+2uDz9xUL4QEqUoTtCX3hMCYBAJyl30mPO0t5NRgxKeCyRiixa4SfXD8yGROFZo2lm8/0OCFlrcLT5CIN0XrSXc9Cr9Dq+buTgLo9wvv378cTTzyBuXPnYsyYMZgxYwaWLl2KEyd8DO9XMUyMmuqi2YJGLIcXYiEM9NweISrCqrRFoKNHuNuTSwRHp4nEGbRSrrQ3n/D60hacEtIifjMiOFaSqX1j8dg0/i7VG3vq8dKOWqzYWYtV+/nC9m8zsjx2o4/MiMZ3N+VjRHoU7E7gljWn8MyP1V6LjSazAw2CMj5ARYowOA7tuecBAJzFG6WHnUXr+afzpoPTRLaWE2poOA7Pz+YjxfZVmXuU562GaXKRRpRQ+8iWGsFxLlVYzakRb775JjZv3ozJkyfj0UcfxbXXXotffvkFV1xxBUpLS4Oxj7LAGHNThMkjHAnE6DiI2eY9tUeIzXJqVYQhWCNga3f5gD1AijCPyyfc/Yn45R38el08KB75KYFPi+iKR6dmSON0H9p8Bg8KyvD8ggRpLLMncuL1+PqGPMzoz/98j35did97ySY+7jbaeZCaCmEA7X2nAQBY8Vdg7U38n8ObAACaEfOV3DXCT87NiZEaVlfuqff5dWqZJhdJiD5hcy8j77pFLITVPFDj5ptvxtatW/HnP/8ZCxYswL333ov33nsPdrsdK1euDMY+yoO52SXFd2GNII9w+NE/jv9dljb0VBEWrBFqVYTFoRoAWH03d2tIEQbAxx0BwM6KNjRbPPuED9WYsaWM9zGKDWnBQsNxeGteX8we6IqHuiQvHm/P6+vVnpEYpcXahQOxaBhvK/j3jlr86+euL46OC8VFrF6DtBh1ReS09r+AP1HazXDueg/On9/iP7cNsdAMv0zp3SP85PYxKQCAz4qbUO/j6OX/lvC+9z5xOkWnyUUSYnKEbAM1AKlhTtXNcuPGjYPB0FElGDBgAAYPHhzSirA0TAPwmEPJGIN4EUSKcPggFsKisuArLmuEOhVhLjpJSoFg9ce73E5ShGMiWxE+v18s9BoOdiew5bjnpp0VO/m1yk824OK84CtQsQYN1i0aiB9vzscvtw7G6msH+Dw+16jTYNX8vlIx/MdtFdhd2eZx2zJBER6QZFB8StfZMEMcNOMXAwAca5bBsf4xAIDmnBvARdHt8VBlwdAkxOj56L81gt3BG2uF7ebmJ6juOA1XREW43SajIqwPAWuEJxhjqK2tRXJy6MYvsWa3uedxGZ2et7rdCtBRIRw29IsVFOEeTuMSFWG1DdNwh0sdyH9Rd6zrjSRFOLIL4XijFtOE9Ij1pZ1PxI1mB94V0iLuPSdNsUxQjuMwoU8MxmZF9/jkr+E4rLwsF8PTjHAy4K51pz0O3XAlRqjzbod29p/4izyHlR8jHpsG7UV/Vnq3iF4Qa9Dgkjz+QubTIu+TFN2nyZE/OHiIirBFrtQIAJxkjVCuEPbrrP7ll1+iqqoKS5cu7dU3Ly4u9r6RTMSW7kEGAEdUMo6XdC4cWt2ugCrLT6K4TR1NGW1tvKqj5NqFKm1tbcjSA4AWJfUWFB0+7FOBY3cySRF2NlahuLh3k5HkIt2QjjgAjaV7UJvr+fjo21QJHYDKFjtMPTiGwvG4OyfBjq0A1hY3oCivtcOxsOqIHW02hhgdMDm6FsXFdV3/R92ghnV7ZIQTN3zNj4l+ekMRFuV1VJV3n+QL4VS0qer3K67dkSrAcPErSN71CgAO9ROXwFZeD8B3f2mkoYbjzhvnJTjwKYDNx1qw49fDSDB0/Vm85qQDDgZEaYFc2xkUF/uXQ+wLobB2wYLZ+M+G05U1KC7uPoXG33Xr4wCMAKrPnESzjGvucDig1Xq+o9bj6q60tBRPPvkkxo8fj/nzQ7dZQdvG3/Z0RHtWxqxuF0AGddTARADI5UVAWJyAr3MH6iyAeDhkqNiaZk/IBQDoWk553oAxaNr54sERFbp3cwLF+Vn8G7vGDOypc134Wh0M/ynhfcPz+2kQpw/tO0JjUzW4cgD/s750yI5GS0dV+Ggz/+/BCer9Oa3pw1E1ZwWq5rwMW8pgpXeHCADnZ2tg1AB2Bmyr6F5x3FLOPz85QyMlGRDyI9Y+FhktwkzLNyFr7P5PG+wtPVKEa2pqcNdddyExMREvvvgiNL2MriksLOzV63uDvYTBCcCY3t/jfpS32AAUAQAK8wahIDV4HePdIV5tKbl2oUpxcTEGGxk0nBVOBrDkXBT6MKu+6UwbgBIAwNRRBUjw0acZbByNE+DY+7+Ibqv0eHyw9kbYHLwlJHfYOdDk+n4MheNxVwhg/K9HsauiHd80xWPxFP5C4rVddahqL4dOAzw5p6BXkWJqWbeXcmzY8noxmixOvHMmHi/PyQEAVLfaUW85BACYOWoACrPlHRjSE9SydqFIqKzd3MNl+Ly4GdubovGHwoEet2mzOfHD6oMAgOvPyUFhobwX8aGydsEgbX8ZUN2MmIRkFBb26XZbf9fNFp8EVgWkJsUhU8Y137t3b5fP+VzJtrS04I477kBLSwvefPNNpKenB2TnFEPwCHc1TMPi1iVp1NEVaLhg0HLol8B7IY/66BM+08L7g+MMGtUWwQDApQ7iv2guB/PUeODeINpFZGCkIWYDf1rUiFarE7Vtdjz1HR+reMPIZHXl6vaCzDg9/iJkE6/cUyeNYf65nPdd6jTA8LTO2cQEISdXDeEjAjcdM3U55XHzsRa02xm0HHBpPsWmBZOgpEaowCPsUyFssVhw9913o6ysDK+//joGDRok937JDhOLgi4KAvdmORqoEV7kJfPqvq8RauVCIZyj0ug0ES5NeF8yBnhIjmDNVa5/eGgQjUQWDUuCUcuhyeLEsq0VuHPdaVS32RFv0EhDLcKFe8enYZjQOHfnutNotznxvTBQ5JzsGGmKFEEEi0vzExCl49MjVh/x3DT3eTH/+Iz+cUiJVm+zcjhiFHOEZRqoASA0UiMcDgcefPBB7N27Fy+++CLGjBkTjP2SHy/DNCxuhbCRCuGwQhyM4GuEmqgIq36kZ0IOoOUVTOYhOYIJxzxi08BpVf6zBIn0WB2WCAMqXt9dJ0U5PTsrG30TwkMNFtFrObx0cQ40HLCnsh3XfFqG/93Le8bPFwZwEEQwiTdqcVk+nwIhjjJ3x2x3Yp2QHzy/kNIigo3ox7bIqAhzeqHxRs0DNf75z39i69atmDZtGhobG7F69Wrpz1dffRWMfZQFKT4tIdvj8x0LYVJKwom8ZL7A8TVCrVwqhNWtRnAaDZAyAIDnQhgtfKe1p9zsSOav0zOxYCh/i1av4fDE9EzcOjpF4b2Sh+n94/DPC/nPvE3HTGiyOMEBuCVMf15C/Vw3gs+63lpmkmIqRb480oxGswNaDtKkRSJ4iHeJ2uVUhFVgjfB6Zj98+DAAYNu2bdi2bVuH53JycjBr1ix59kxGmMMGCKkRXSnCVrdfPHmEw4vBboqwkzGvEWpnWvjotBy1K8LgfcKs5ohnRVi0RpA/uAMGrQbvX9kfz86yIUbHITnMb78+ODENcQYNnvmxGhYHw1+mZUp2IYIINnPy4pEcpUWD2YEPDzViyURX/9Gq/fwdi7n5CchUuTUtHAmOR5j/7GE2H2Oc5NgFbxu88847wdiP4GKq4X2U6KYQFgKkOQDkjAgvREXY4mAob7F5vQUeMtYI8D5hBoDVelKERTsQKcKeCIULnUDAcRzuGJuKO8ZG9lAVQh0YtBpcPSQRb+6tx6r9DXhgQho4jsPhWjM2H+OnPt40iuIelUC0RsjqERYKYVVbI8IR1uwWxu3FGmHUcTTOMcwYmGSA+Bs95oNPuFy4XRcKhRKXmgcAYLUlnZ5jgjUCVAgTBKEibh3DW3N+rTbjv4In+OkfqsHACxeX0jQ5RRBHLJtlnCwnNcupPTUi7Ggq5//WxwBRnn1HUiFMcnDYEaXTIFeIUCvxkhzRbHHAJExXCQlFOHMI/0Xdsc4RaqIinEDWCIIg1MOEPjG4aBCf6f6XbyqxsbQFHwrNc3+akgGdhs7DSiAWwu02+RRhTisqwsoN1IjIQpg1neG/SOzTpdprsYuFcEQuUdgj2iO8KcJioxwQIopw5jD+C+YEqznS4TmXR5gUYYIg1MVj0zLBAdhfbcZlHx4HAzAmMwqLR5AtQilEj7BFTkWYrBHKwJr5QphLzOlyG/EXTxnC4ckgKUvYt0JYywFZsSHQRJWQDUTzXdisqkh6mNktQGsNAPIIEwShPs7LicX/zHRZFQcmGfDhVf1JDVYQV7OcnDnCYiGs4tSIsKTJeyFsdfMIE+FHvhih5sUaIRbCWXF6aEPgA5njOHCZQ8HKtoNVHnI90XDStU1yPwX2jCAIonuWnpuOOXnxONVsw7S+sTTkRWEkj7CcqRGCNYKRIhxcWNNp/ovErmdnk0c4vBmUJBbCVjDW9dXumRDJEHaHyxwK4CxFWCyEOQ2QlKvEbhEEQXhlaFoULhoUT0WwCogWhEBZc4SlyXJUCAcVJinCXRfCoiJM1ojwJE/IEm6xOlHb5nnGPQCUixnCIZRhyWXxPmFWeVB6jDWc4L9IzKGpcgRBEIRXgqIIix5hBxXCwcUHa4TYLGegZrmwJC/JlR3cXXJEKGUIi3B9hDHotSVgbXwgPasv458jWwRBEAThA6JH2O4E7E55VGGOmuWCDzO3ABY+pxAJ3SnC/BUQWSPCk3ijFhkxvN2hu4Y50SMcCokRIlzf8YCG/9nYiZ/5v6uL+ecyChXbL4IgCCJ0MOpcJaJFLnuEWAifHfcZRCKuEEZzufRld9YICzXLhT2DpAi1MFOEDTHg+owGADjFQljwC0s5wwRBEATRDdFu9U+7XPYIN2tEd/06chJxhbCUIcxpus1TpWa58EfMEi7pQhG2ORiqWgWPcAgVwgDADTgPAPj0CLsFqC3lHxca6QiCIAiiO6LcFGHZfMI6oVmOMcBh635bmYjcQjg+E5y26yQAl0eYCuFwJU/IEj7W6LkQLm+xQbw+FSfRhQrcgEkAAHbiF7DSbwEnX9CLSjFBEARBdEeUmyIsW5awqAgDivmEI64QlhrluvEHA4DVSZPlwh1RES6t9/zmO9nkKpD7hVghrBl8AaDRArY2OL58GAA/dY6Lp/HKBEEQhHeitO6KcBAKYYWSIyKuymNNgkc4qevECACwCLcBDOQRDltEj3BtuwNN5s4RamVCIZwdp+vQNBAKcLFp4ApmAXDzBw+9RMldIgiCIEKIaL38HmHOvRBWqGEutM7uAUAshL0qwuQRDnvyk11vwNLGzleiJ5t4v1K/REOn50IB7aw/AZxw/OqjoZ16j7I7RBAEQYQMUcFMjQDIGhE0xEK4mwxhwNUsRx7h8CU1WosEI/8WOOahYe5EM//YgMTQskWIaAacB90tn0Ez/nro7loPLqmv0rtEEARBhAg6DQexBDI7ZG6Wg3JjlkNnbmyAkEbNpvTvdjtShMMfjuOQl2zEnsp2j1nCJxpDWxEGAM2wudAMm6v0bhAEQRAhSJROg1abk5rlwgVmMQGttQAALrn7Qli8DUDNcuGNOGHO03S5k4Ii3D+EC2GCIAiC8BcxS7jdJnOOMECFcDCQ1GAAnBdF2CJOlqNmubAmP4V/Ex6t6/gGdDImeYT7h6g1giAIgiB6g+gTNjuCoQhTs5z81Jfxf+uMQFz3MVLkEY4MhqTxb8Kiuo5Tbc602GATIvT6JZAiTBAEQUQeYpawXAM1OI4DtMI5lhRh+WENJ/gvkvuB03T/o1upEI4IhgqFcH27AzVtrgi1I4JCrOFcMWsEQRAEEUmI0aGyeYQBQC80zJEiLD+sni+EvfmDAcBKHuGIoDDF1bF6uNb1JiwWhmwMSDR0iJAhCIIgiEghWmZFGACg5QUpZvc85VVuIuoMLyrC3vzBAHmEI4VYg0byAB+qdd2WKRYU4cJUo8fXEQRBEES4IwpBsjXLAS6fMFkjgoDgEeaSB3jdlDzCkcPQNF4VPlznpghTIUwQBEFEODHCdLk2Wa0RYiFM1ghZYYyB1Zby/0gZ4HV7yhGOHIYIxe6hGtfVqOgRLqBCmCAIgohQYvV8mdgmoyLMaZVVhCNnoIapBjA3AQC4jAKvm1uoEI4YRmbwivDeqnYwxtBmYzjZzEenDaFCmCAIgohQYoRCuFVOa4TYLGdTRhGOmEKY1R6VvubS8r1uLw3UoEapsGdcVgwAoMHsQFmTDfXtdum5ghQqhAmCIIjIRCyE26xB8Ag7lGmWi5xCuEYohBNzwBnjut3WyZiUIWvQkCIc7gxJMyJax6HdzrC7og117XyMWnacDplxNEyDIAiCiEwka0RQUiOoWU5WxEKYSxvsdVub2wQVA6VGhD06DYfRmdEAgN2V7dhZ0QYAOCc7RsndIgiCIAhFEQvhVjkVYbFZTiFrRAQVwkcAAFy6D7YIt0KYPMKRwbgsVyH87clWAMDEPlQIEwRBEJFLTDAUYckaQYqwvIiKsC+Ncnb3QjhyliiSOTeHL3q/Om5CaQPvU5o9qHsLDUEQBEGEM8HwCHM6ZZvlIqLKY3YrWG0JAIBL914Imx2uXzgN1IgMLsmLh3tfZG68HmMFlZggCIIgIpFYQxBSI6SBGjRZTjZYzRHAwcdhcdkjvW7vnpcn+mOI8CY5WofrhidL//79pHRoOLoIIgiCICKXGJ2YIyzjQA2dgf9bIWtERKRGsIpf+S+ik4HEHK/bu//CY6gQjhhenpODgUkG9E3Q46ZRyd5fQBAEQRBhTHAUYd4awShHWD7YGb4Q5rJHgvNB5XNXhMXxgkT4E6PX4LFpmUrvBkEQBEGoAvfJcowxn2qoHqNTdrJcRMidrPIAAIDLHu7T9u1Cd6SWA/SUI0wQBEEQRAQi3hVnANrtMtkjxGY5KoTlg1WIhbB3fzDgUoRj9Bp5rn4IgiAIgiBUToLRVSa2WByyfA+OFGF5Yc2VQFM5AIDrM8qn17gXwgRBEARBEJFIvMFVBzXLFaEmNstRISwP7OQv/BdaQw8KYV7+p0KYIAiCIIhIJcGolb5ulkkRdlkjKEdYFpwndwAAuNyxLvndC5IiTBnCBEEQBEFEKHFuirBJNkWYr80YKcLywE7wijDXb4LPrxGb5aJJESYIgiAIIkLRcJxUDMumCOupWU42mNMBdnonAIDrN9Hn14mKMA3TIAiCIAgikkkQCuEWuRRhLTXLyQYr3wtYTAAATf9zfX4dNcsRBEEQBEG4fMLNFnkKYY6a5eSDHd3Gf5E6EFzKAJ9fR81yBEEQBEEQLp9wi1VuawQ1ywUcZ8lWAIAm/4Ieva5N8AhHUbMcQRAEQRARjKgIt8ikCEvWCIcNzCnjKOcuCNtCmNktYMd/BABwgy/s0WubzPxVT6JbbAhBEARBEESkIXqEG+VulgMAR/DtEeFbCB/dBtjaAY6DJn9Gj17bIBTCyVFUCBMEQRAEEbmkxugAAHVtdnm+gXu0rQI+4bAthJ0HVgMAuAGTwcWl9+i1YiGcFE2FMEEQBEEQkUu6UAjXtMk0YllLhXDAYU4HnAfXAgA0Iy7v8esbhUI4hRRhgiAIgiAimLQYvhaqkUsR1rsVwrbgN8z5VAhbrVY8++yzmDp1KkaNGoVrr70W27dvl3vf/IYd+x4wVQPwrxCubydrBEEQBEEQhKgI1wbDGqFWj/AjjzyCVatW4fLLL8ejjz4KjUaDO+64A3v27JF7//zCufNdAADXdwK41EE9eq3NwdAq5AgnR+kCvm8EQRAEQRChglQIt9vBGAv8N9C5muWYTYWF8P79+7Fu3Tr8/ve/xx/+8AcsXLgQq1atQnZ2NpYvXx6MfewRzGKCc/+nAADNhBt7/HrRHwwASaQIEwRBEAQRwaQJhbDd6bKOBhS1N8tt2LABer0eCxYskB4zGo245pprsGvXLlRXV8u6gz2FVR0GrK2ALgqaMQu8v+Asqltd0n8yNcsRBEEQBBHB9E/US18frJWhUFXYGuH13n9RUREGDhyI2NjYDo+PGjUKjDEUFRUhIyPDr29eXFzs1+u6w+GIRlH/JdinycfeT8oBlPfo9WfaeNk/1Qg0l5fCxKlrqEZbWxsAedYu3KG18x9aO/+gdfMfWjv/obXzH1o7z/SP43DCxPDbtcfQN7ZzXeRw8CKi9ucDPf/PGcOH0EALJ04cOwqrNa23u9sJh8MBrdazuOm1EK6pqUFmZmanx9PT+UgytSnCR1o0WNRyPf+PJv8nlMzK0UCjsiKYIAiCIAgi2IxL4wvhAw38n86IBgP/6q46LgkZrB4nzQZk+b2X/uG1EDabzdDr9Z0eNxp5Kdti8V/GLiws9Pu1XTGYMfwPq8XRev/3K8Gowe/Oy0BGrPqa5cSrVDnWLtyhtfMfWjv/oHXzH1o7/6G18x9aO888n21F/19qYbJ6LnSbmhoBAImJSX79/x/Xv4DRzqM4f8610GoDX3vt3bu3y+e8freoqCjYbLZOj4sFsFgQqwUNx+Gh83o2QIMgCIIgCILwTG6CAc/O6tPl88XFrQCAwsJcP7/DQj9f13u8Nsulp6d7tD/U1NQAgN/+YIIgCIIgCIJQEq+F8JAhQ3D8+HG0trZ2eHzfvn3S8wRBEARBEAQRangthOfMmQObzYaPP/5YesxqteKzzz7DuHHjPDbSEQRBEARBEITa8eoRHj16NObMmYPly5ejpqYG/fr1w+eff44zZ87gH//4RzD2kSAIgiAIgiACjk+tec888wxeeOEFrF69Gk1NTSgsLMQbb7yB8ePHy71/BEEQBEEQBCELPhXCRqMRy5Ytw7Jly+TeH4IgCIIgCIIICl49wgRBEARBEAQRjlAhTBAEQRAEQUQkVAgTBEEQBEEQEQkVwgRBEARBEEREQoUwQRAEQRAEEZFwjDEW7G+6a9cuAIBWqw32tw55HA4HAFo7f6C18x9aO/+gdfMfWjv/obXzH1o7/1D7uon75yn216f4NEI9qPUgCwVo7fyH1s4/aN38h9bOf2jt/IfWzj9Ced0UUYQJgiAIgiAIQmnII0wQBEEQBEFEJFQIEwRBEARBEBEJFcIEQRAEQRBEREKFMEEQBEEQBBGRUCFMEARBEARBRCRUCBMEQRAEQRARCRXCBEEQBEEQRERChTBBEARBEAQRkVAhTBAEQRAEQUQkVAgTBEEQBEEQEQkVwgRBEARBEEREQoUwQRAEQRAEEZEEtRC2Wq149tlnMXXqVIwaNQrXXnsttm/fHsxdUD3V1dVYvnw5brjhBowdOxaFhYX4+eefPW67ZcsWXHnllRg5ciRmzJiBl19+GXa7Pch7rB7279+PJ554AnPnzsWYMWMwY8YMLF26FCdOnOi07e7du3Hddddh9OjRmDJlCv72t7+hvb1dgb1Wnl9//RX33XcfLrjgAowaNQpTpkzBbbfdht27d3faltbNOytXrkRhYSHmz5/f6TlaPxc///wzCgsLPf4pLS3tsC2tm2f279+PO++8ExMmTMDYsWNx+eWX47PPPmS526IAAAvzSURBVOuwDZ0nOvLII490edwVFhaiqqpK2paOu46UlZXhwQcfxPTp0zFmzBjMnTsXb7zxBqxWa4ftQm3ddMH8Zo888gg2bdqEG2+8Ef3798fnn3+OO+64A++88w7Gjh0bzF1RLcePH8fKlSvRv39/FBYWYs+ePR63++abb3DffffhvPPOw2OPPYYjR45gxYoVaGhowGOPPRbkvVYHb775Jnbv3o05c+agsLAQNTU1eO+993DFFVfgk08+QV5eHgCgqKgIN998M/Lz8/HII4+gsrISb731Fk6fPo3XXntN4Z8i+Jw6dQoOhwMLFixAeno6WlpasGbNGlx//fVYuXIlpkyZAoDWzRdqamrw6quvIiYmptNztH6euemmmzB8+PAOj2VmZkpf07p5RjwHTJw4EUuWLIFOp0NZWRkqKio6bUPnCRcLFy7EpEmTOjzGGMPjjz+OnJwc6dij464jVVVVWLBgAeLj43H99dcjMTERO3fuxHPPPYejR4/i2WefBRCi68aCxL59+1hBQQF7++23pcfMZjObNWsWW7x4cbB2Q/W0tLSw+vp6xhhjmzdvZgUFBeynn37qtN3cuXPZlVdeyex2u/TY888/z4YMGcKOHz8erN1VFbt27WIWi6XDY8ePH2cjRoxgy5Ytkx67/fbb2bRp05jJZJIe++ijj1hBQQH78ccfg7a/aqatrY1NnjyZ3XnnndJjtG7eWbZsGbvhhhvY9ddfzy6//PIOz9H6deSnn35iBQUFbPPmzd1uR+vWmebmZjZp0iT21FNPdbsdnSd8Y8eOHaygoIC9+uqr0mN03HXk9ddfZwUFBezIkSMdHv/tb3/Lhg0bxqxWK2MsNNctaNaIDRs2QK/XY8GCBdJjRqMR11xzDXbt2oXq6upg7YqqiYuLQ3JycrfblJSUoKSkBAsXLoRWq5UeX7x4MZxOJzZt2iT3bqqScePGwWAwdHhswIABGDx4sHSr1WQy4ccff8QVV1yB2NhYabv58+cjJiYG69evD+o+q5Xo6GikpKSgubkZAK2bL+zfvx9ffvkl/vjHP3Z6jtave0wmk8fb9bRunlmzZg2am5uxZMkSAPw6McY6bEPnCd9Zu3YtOI7DZZddBoCOO0+0trYCAFJTUzs8npaWBp1OB61WG7LrFrRCuKioCAMHDuywOAAwatQoMMZQVFQUrF0JeQ4dOgQAGDFiRIfHMzMzkZWVJT1P8Le8amtrpYuL4uJi2O32TmtnMBgwdOjQiD4OTSYT6uvrcezYMTz//PM4cuSIdAuR1q17GGN46qmncMUVV2Do0KGdnqf165qHH34Y48ePx+jRo3HrrbeiuLhYeo7WzTPbt2/HoEGD8M033+D888/H+PHjMXHiRCxfvhwOhwMAnSd8xWazYf369Rg7dixyc3MB0HHniQkTJgAAHn30URw+fBgVFRX48ssvJYurRqMJ2XULmke4pqamg+9LJD09HQBIEe4BNTU1AFxr5056ejqtpRtffvklqqqqsHTpUgDe127v3r1B3T818ac//QkbN24EAOj1eixatAh33303AFo3b3zxxRcoKSnBihUrPD5P69cZvV6Piy++GNOnT0dycjKKi4vx1ltvYfHixfjkk08wcOBAWrcuOHHiBCorK/HII4/g9ttvx7Bhw7Bt2zasXLkSFosFjz76KJ0nfOT7779HY2Mj5s2bJz1Gx11npk6diiVLluD111/H1q1bpccfeOAB3HfffQBCd92CVgibzWbo9fpOjxuNRgCAxWIJ1q6EPGazGQA62QAAfj3V3J0ZTEpLS/Hkk09i/PjxUge/t7UTn49E7rvvPixcuBCVlZVYvXo1rFYrbDYbDAYDrVs3mEwmPPfcc7jzzjuRkZHhcRtav86MGzcO48aNk/49c+ZMXHjhhbj66qvx8ssv47nnnqN164K2tjY0NTXhd7/7He68804AwEUXXYS2tjZ88MEHuOeee+g84SNr166FXq/HJZdcIj1Gx51ncnNzMXHiRMyePRtJSUn4+uuv8dJLLyElJQXXXXddyK5b0ArhqKgo2Gy2To+LBbBYEBPeiYqKAoBOkSUAv57i85FMTU0N7rrrLiQmJuLFF1+ERsO7gGjtukaMDwKAyy+/HFdffTX++Mc/4t///jetWze8+uqr0Ov1uOWWW7rchtbPN4YMGYJJkybhp59+AkDr1hXizy16WkXmzZuHDRs24Ndff6W184HW1lZs2bIFU6dO7dCbQ2vXmXXr1uGvf/0rNmzYIN3dv+iii8AYwzPPPIO5c+eG7LoFzSPc1a0YUUrvSkkhOiPedhDXzp2ampqIX8uWlhbccccdaGlpwZtvvtnhNg2tnW/o9XrMnDkTmzZtgtlspnXrgurqaqxatQqLFy9GbW0tTp8+jdOnT8NiscBms+H06dNoamqi9esB2dnZaGpqAkDv164Q1yUtLa3D4+K/6Zjzja+++grt7e0dbBEAHXeeeP/99zF8+PBOFtcLL7wQbW1tOHz4cMiuW9AK4SFDhuD48eNS56HIvn37pOcJ3xCbcQ4cONDh8aqqKlRWVnps1okULBYL7r77bpSVleH111/HoEGDOjxfUFAAnU7Xae2sViuKiooieu3Oxmw2gzGG1tZWWrcuqKurg81mw/LlyzFz5kzpz759+1BaWoqZM2di5cqVtH494NSpU5I6R+vmGTF32X34AwBUVlYCAFJSUug84QNr1qxBTEwMLrzwwg6P03HXmdraWqkR0x3xTr/D4QjZdQtaITxnzhzYbDZ8/PHH0mNWqxWfffYZxo0b57GRjvDM4MGDMWjQIHz44YcdDswPPvgAGo0GF110kYJ7pxwOhwMPPvgg9u7dixdffBFjxozptE18fDwmTZqE1atXd7goW716Ndra2jBnzpxg7rIqqK+v7/SYyWTCxo0bkZ2djdTUVFq3LsjNzcWKFSs6/Rk8eDBycnKwYsUKXHHFFbR+HvB03O3cuRM///wzpk6dCoDer10h/tyffPKJ9BhjDB9//DFiYmIwZswYOk94ob6+Htu3b8fs2bMRHR3d4Tk67jozcOBAHDhwACdPnuzw+Lp166DValFYWBiy68axs8MHZWTJkiXYsmULbrrpJvTr1w+ff/45Dhw4gFWrVmH8+PHB2g3V88orrwDgm73Wrl2Lq6++Grm5uUhISMD1118PANi2bRvuuecenHfeeZg7dy6OHDmC9957DwsXLsTjjz+u4N4rx9NPP43//Oc/uOCCCzo0PgBAbGwsZs2aBQA4ePAgFi1ahMGDB2PBggWorKzE22+/jXPPPRcrV65UYtcV5cYbb4TRaMTYsWORnp6OiooKfPbZZ6isrMTzzz+PuXPnAqB16wk33HADmpubsXr1aukxWr+O3HjjjYiOjsbYsWORnJyMo0eP4sMPP0R8fDw++eQT9OnTBwCtW1csW7YMq1evxjXXXINhw4bhm2++wddff42HH34Yt99+OwA6T3THu+++i6eeegpvvvkmpk2b1ul5Ou46smPHDtx0001ITk7Gb37zGyQmJuLrr7/Gt99+i0WLFuGJJ54AEJrrFtRC2GKx4IUXXsCaNWvQ1NSEwsJCPPTQQ5g8eXKwdiEkEBuWziYnJ6dDbMlXX32Fl19+GaWlpUhJScHVV1+Ne++9FzpdUCdnq4YbbrgBv/zyi8fnzl67nTt3Yvny5Th06BDi4uIwd+5cPPTQQx5H44Y7n3zyCVavXo2SkhI0NzcjPj4eY8aMwa233oqJEyd22JbWzTc8FcIArZ87//nPf7BmzRqcPHkSJpMJKSkpmDp1Kn77299KRbAIrVtnrFYrXnnlFXzxxReora1Fbm4ubr75ZixatKjDdnSe8MzChQtx6tQpfPfddx0GjrhDx11H9u/fj5deeglFRUVobGxETk4Orr76atx2220d1jDU1i2ohTBBEARBEARBqIWgeYQJgiAIgiAIQk1QIUwQBEEQBEFEJFQIEwRBEARBEBEJFcIEQRAEQRBEREKFMEEQBEEQBBGRUCFMEARBEARBRCRUCBMEQRAEQRARCRXCBEEQBEEQRERChTBBEARBEAQRkVAhTBAEQRAEQUQk/x8V7N1He4dzygAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import pandas as pd\n", "df = pd.read_pickle('demo_A.pkl')\n", "sample_name = \"A\"\n", "import seaborn as sns\n", "sns.set()\n", "sns.set_context(\"talk\")\n", "sns.set_style(\"whitegrid\")\n", "import matplotlib.pyplot as plt\n", "fig, ax1 = plt.subplots(figsize=(12,6))\n", "import numpy as np\n", "from scipy.interpolate import Akima1DInterpolator\n", "akima1 = Akima1DInterpolator(df.Position, df.Predicted_curvature)\n", "akima2 = Akima1DInterpolator(df.Position, df.Bendability)\n", "x_4smooth = np.linspace(\n", " min(df.Position), max(df.Position), round(len(df)*14.492753))\n", "sns.lineplot(x=x_4smooth,\n", " y=akima1(x_4smooth),\n", " label=\"Curvature\",\n", " #linewidth=1.9, # turn these off so scales with content settings\n", " color=\"xkcd:cerulean\",\n", " ax=ax1)\n", "sns.lineplot(x=x_4smooth, \n", " y=akima2(x_4smooth),\n", " label=\"Bendability\",\n", " #linewidth=1.9, # turn these off so scales with content settings\n", " color=\"xkcd:orange\",\n", " ax=ax1)\n", "plt.legend()\n", "plt.ylabel(\"\");\n", "right_side_buffer = 0\n", "plt.xlim(0, max(df.Position) + min(df.Position))\n", "show_date_with_slashes_in_plot_title = True\n", "if show_date_with_slashes_in_plot_title and (\n", " sample_name.count(\"_\") == 2) and (\n", " sample_name.split(\"_\")[1].split(\"_\")[0].count(\"-\") == 2) and (\n", " sample_name.split(\"_\",2)[2].count(\"+\") == 2) and (\n", " sample_name.endswith(\"+\")):\n", " title_text = sample_name.split(\n", " \"_\")[0]+\"|\" + sample_name.split(\"_\")[1].replace(\n", " \"-\",\"/\") +\"|\" + sample_name.split(\"_\",2)[2]\n", " if title_text.endswith(\"+\") and \"+\" in title_text[:-1]:\n", " title_text = title_text[:-1] + \")\"\n", " title_text = title_text.replace(\"+\",\"(\")\n", "else:\n", " title_text = sample_name\n", "plt.title(f\"{title_text}\",color=\"#333333\",fontsize = 15, \n", " fontweight='bold')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "(Note there is also at `sns.set_context(\"poster\")` setting that results in even further emphasized labels. I found though with the dimesions I was usign here it that the legend overlapped and so I went with `talk`.)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's save that plot as an image file. Run the next two cells. The first saves a version with a high dpi and the second saves with default settings. I include `z` at the start of the name to improve the chance they are eaier to find in the listing in the file navigator bcause they should be towards the bottom." ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "fig.savefig('zhigh_dpi.png', dpi=600)" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "fig.savefig('zno_dpi.png')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now you can review the difference between the two by double-clicking on the files in the file navigator to the left. (Remember you have to navigate into the `unpack` directory if not already there.) When you open `zhigh_dpi.png` it actually **might appear at first it is blank**. In fact most likely it will because you need to click on it and scroll down and to the right to see the contents. By default it starts in the upper left which has no content. You'll note for `zhigh_dpi.png`, the content is huge on your screen. That won't be the case with `zno_dpi.png`. To make it easier to review `zhigh_dpi.png` overall, I suggest left-clicking in the image open in JupyterLab and select `Open Image in New Tab`. You then get a new tab next to your JupyterLab tab that you can click on and view. It will actually take a few seconds to open this image in the tab because it is so large. When you postion the cursor over the image, you'll get a magnifying lens icon. You can click to view at higher resolution. Again, here you'll need to scroll.\n", "\n", "By way of showing the effect of the dpi setting here, I'll list the files with the sizes shown using the next cell:" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "total 2.2M\n", "-rw-r--r-- 1 jovyan root 11K Feb 21 20:27 A_output.png\n", "-rw-r--r-- 1 jovyan root 365K Feb 22 21:22 bendit_analysisFeb2120202027.tar.gz\n", "-rw-r--r-- 1 jovyan root 10K Feb 21 20:27 B_output.png\n", "-rw-r--r-- 1 jovyan root 3.1K Feb 21 20:27 demo_A.pkl\n", "-rw-r--r-- 1 jovyan root 38K Feb 21 20:27 demo_A.png\n", "-rw-r--r-- 1 jovyan root 43K Feb 21 20:27 demo_A.svg\n", "-rw-r--r-- 1 jovyan root 1.6K Feb 21 20:27 demo_A.tsv\n", "-rw-r--r-- 1 jovyan root 3.1K Feb 21 20:27 demo_B.pkl\n", "-rw-r--r-- 1 jovyan root 38K Feb 21 20:27 demo_B.png\n", "-rw-r--r-- 1 jovyan root 44K Feb 21 20:27 demo_B.svg\n", "-rw-r--r-- 1 jovyan root 1.6K Feb 21 20:27 demo_B.tsv\n", "-rw-r--r-- 1 jovyan root 1.3K Feb 21 20:27 demo_cassettesGC.pkl\n", "-rw-r--r-- 1 jovyan root 171 Feb 21 20:27 demo_cassettesGC.tsv\n", "-rw-r--r-- 1 jovyan root 1.1K Feb 21 20:27 demo_mergedGC.pkl\n", "-rw-r--r-- 1 jovyan root 115 Feb 21 20:27 demo_mergedGC.tsv\n", "-rw-r--r-- 1 jovyan root 65 Feb 21 20:14 demo_sample_set.fa\n", "-rw-r--r-- 1 jovyan root 5.3K Feb 21 20:27 LOG_baFeb2120202027.txt\n", "-rw-r--r-- 1 jovyan root 61K Feb 22 21:49 no_dpi.png\n", "-rw-r--r-- 1 jovyan root 100K Feb 21 20:27 plots4review_from-baFeb2120202027.ipynb\n", "-rw-r--r-- 1 jovyan root 544K Feb 21 20:27 seqs_dfs_and_plots_for_each_set.pkl\n", "-rw-r--r-- 1 jovyan root 61K Feb 22 21:47 test.png\n", "-rw-r--r-- 1 jovyan root 725K Feb 22 21:49 zhigh_dpi.png\n", "-rw-r--r-- 1 jovyan root 61K Feb 22 21:57 zno_dpi.png\n" ] } ], "source": [ "ls -lh" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note the contrast:\n", " \n", "```\n", "-rw-r--r-- 1 jovyan root 725K Feb 22 21:49 zhigh_dpi.png\n", "-rw-r--r-- 1 jovyan root 61K Feb 22 21:57 zno_dpi.png\n", "```\n", "\n", "The one with the dpi setting of `600` is over 10 times larger. While this type of file would be better suited for a talk or poster or publication, I am still going to suggest use of the `.svg` version for any scaling and printing use. \n", "\n", "If you wanted the current seaborn aestethic setting for editing later, you can save a scalable vector graphics version (`.svg`) with the following code:" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [], "source": [ "fig.savefig('zsvg_version.svg')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "-----\n", "\n", "### Making the review Jupyter notebook after-the-fact\n", "\n", "In the case where the `lightweight_archive` setting was used when the generating notebook was run, the new notebook that is meant to be used for reviewing the plots en masse was not generated and this not saved as part of the archive. However, using the contents of `seqs_dfs_and_plots_for_each_set.pkl` this notebook can still be made after-the-fact.\n", "\n", "I'll detail two ways to do this. Both rely on the same underlying steps. However, in one you just run some code here and it is done. Alternatively, you run the steps in a new notebook yourself. \n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First, I'll cover running code to generate the review notebook. **You need to be in the working directory where you unpacked the archive**. Running the next cell will list the contents of your current working directory. Mare sure it looks as exepected. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "!pwd|ls" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If it doesn't contain the unpacked contents of the archive as expected, see the section at the top of this notebook entitled 'Accessing the bendIt results: Uncompress the Archive'. \n", "\n", "Now that you verified you are working in the right place, let's generate the review notebook my running part of the code from the analysis. The following code will do this:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# First let's make sure the analysis script is in the current working directory\n", "import os\n", "file_needed = \"bendIt_analysis.ipy\"\n", "if not os.path.isfile(file_needed):\n", " # note that in the curl command I refer to a specific version of the script\n", " # to eliminate possibility line numbers drift slightly as script edited. \n", " # However,this means if something about review notebook making changes in \n", " # the script, I need to update the specified version here.\n", " !curl -OL https://raw.githubusercontent.com/fomightez/bendit-binder/0096dab481a267dea5640bfe4323c75148faabc7/{file_needed}\n", "# presently bendIt_analysis.ipy is an IPython script that doesn't seem able to \n", "# be imported like a Python script, see \n", "# https://stackoverflow.com/questions/1031659/ipython-modules . Let's make the\n", "# necessary parts into a smaller script that can be called because we certainly \n", "# don't want to run the entire `bendIt_analysis.ipy` script since already did.\n", "!sed -n '1,48p;49q' bendIt_analysis.ipy > review_nb_making.ipy\n", "!sed -n '337,383p;384q' bendIt_analysis.ipy >> review_nb_making.ipy\n", "!sed -n '269,289p;290q' bendIt_analysis.ipy >> review_nb_making.ipy\n", "!sed -i '103s/.*/ #/' review_nb_making.ipy # remove line 103 b/c no log\n", "%run review_nb_making.ipy\n", "now = datetime.datetime.now()\n", "serial_fn = \"seqs_dfs_and_plots_for_each_set.pkl\"\n", "plots4review_fn = make_and_run_review_nb(now,review_nb_stub, serial_fn)\n", "!rm {plots4review_fn[:-6]+\".py\"} #clean up\n", "!rm review_nb_making.ipy #clean up\n", "sys.stderr.write(\"A Jupyter notebook listing the resulting plots for \"\n", "f\"convenient reviewing\\nhas been saved as `{plots4review_fn}`.\"\n", "\"Download it to your local computer for future use.\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The second way to make the notebook for review is doing those steps manually:\n", "1. Navigate the file browser to the directory where the archive contents were unpacked if it isn't already.\n", "\n", "2. make a new notebook by clicking the ![svg plus icon image](data:image/svg+xml,%3Csvg%20xmlns%3D%27http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%27%20xmlns%3Axlink%3D%27http%3A%2F%2Fwww.w3.org%2F1999%2Fxlink%27%20version%3D%271.1%27%20width%3D%2716%27%20height%3D%2716%27%20viewBox%3D%270%200%2032%2032%27%3E%3Cpath%20stroke%3D%27%23222%27%20stroke-width%3D%272px%27%20d%3D%27M16%202%20L16%2030%20M2%2016%20L30%2016%27%20%2F%3E%3C%2Fsvg%3E%0A) icon along the top of the right panel ot bring up the 'Launcher' in the right pane and then under 'Notebook' choose the 'Python 3' tile. Alternatively, a new notebook can be made from the main menu bar at the tip: `File` menu > 'New' > `Notebook`.\n", "3. Paste the following code in a cell in the new notebook." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```python\n", "%matplotlib inline\n", "import pickle\n", "serial_fn = \"seqs_dfs_and_plots_for_each_set.pkl\"\n", "with open(serial_fn, \"rb\") as f:\n", " seqs_dfs_and_plots_per_sample_set = pickle.load(f)\n", "def make_manager(fig):\n", " # create a dummy figure and use its\n", " # manager to display \"fig\" ; based on https://stackoverflow.com/a/54579616/8508004\n", " dummy = plt.figure()\n", " new_manager = dummy.canvas.manager\n", " new_manager.canvas.figure = fig\n", " fig.set_canvas(new_manager.canvas)\n", "import seaborn as sns\n", "import matplotlib.pyplot as plt\n", "for ss,collected_dicts in seqs_dfs_and_plots_per_sample_set.items():\n", " for sample_name,the_plot in collected_dicts[-1].items():\n", " make_manager(the_plot)\n", " the_plot.show()\n", "````" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then press `shift-Enter` to run the cell. Save the notebook using `File` > `Save Notebook`. Download the notebook to your local machine." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Keep in mind for sharing the produced notebook with anyone not fluent in Jupyter notebook use, you can use `File` > `Export Notebook As..` > `Export Notebook to PDF` to also generate a PDF and then download that file as well." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Generate image files for all plots via Python\n", "\n", "In the case where the `lightweight_archive` setting was used when the generating notebook was run, the archive won't contain the image files. The subsection 'Looking at specific plot and adjusting the plots via Python' above covered how to access individual image files. If you want to generate image files for them all. You can run the following code. By placing a `#` at the start of the line, you can comment off the appropriate lines that begin `ea_plot.savefig` you can control if just want the `.svg` or `.png` versions. The current working directory has to contain the unpacked `seqs_dfs_and_plots_for_each_set.pkl`. (The `%%capture`on the first line simply blocks the plots from being output in Jupyter output here.)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "%%capture\n", "import pickle\n", "import os\n", "with open(\"seqs_dfs_and_plots_for_each_set.pkl\", \"rb\") as f:\n", " seqs_dfs_and_plots_per_sample_set = pickle.load(f)\n", "import matplotlib.pyplot as plt\n", "def make_manager(fig):\n", " # create a dummy figure and use its\n", " # manager to display \"fig\" ; based on https://stackoverflow.com/a/54579616/8508004\n", " dummy = plt.figure()\n", " new_manager = dummy.canvas.manager\n", " new_manager.canvas.figure = fig\n", " fig.set_canvas(new_manager.canvas)\n", "\n", "for sample_set,dicts in seqs_dfs_and_plots_per_sample_set.items():\n", " for sample_id,ea_plot in dicts[-1].items():\n", " prefix_4_plot_file_saves = f\"{sample_set}_{sample_id}\"\n", " plot_png_nom = f\"{prefix_4_plot_file_saves}.png\"\n", " plot_svg_nom = f\"{prefix_4_plot_file_saves}.svg\"\n", " file_needed = plot_png_nom\n", " if not os.path.isfile(file_needed):\n", " if ea_plot == None:\n", " make_manager(ea_plot)\n", " ea_plot.savefig(plot_png_nom) #comment this line 'off' to not make `.png` images\n", " file_needed = plot_svg_nom\n", " if not os.path.isfile(file_needed):\n", " if ea_plot == None:\n", " make_manager(ea_plot)\n", " ea_plot.savefig(plot_svg_nom) #comment this line 'off' to not make `.svg` images\n", " ea_plot = None" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "----\n", "\n", "### Accessing the nucleotide composition/%G+C information via Python\n", "\n", "Run the unpickling process if not done already." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pickle\n", "with open(\"seqs_dfs_and_plots_for_each_set.pkl\", \"rb\") as f:\n", " seqs_dfs_and_plots_per_sample_set = pickle.load(f)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here is the third element in the serialized collection, which is a dataframe with the breakdown of nucleotide composition and %G+C for every cassette sequence. Each sample is a row." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
seqACTGTotal_nts%G+Crank_on_GC
AACCTGCGATGACTGACTCCCCTTTAGAGG6977290.5517242.0
BAGGAGCTAGACTTTAGGACTATAGCTCTC8687290.4482761.0
\n", "
" ], "text/plain": [ " seq A C T G Total_nts %G+C rank_on_GC\n", "A ACCTGCGATGACTGACTCCCCTTTAGAGG 6 9 7 7 29 0.551724 2.0\n", "B AGGAGCTAGACTTTAGGACTATAGCTCTC 8 6 8 7 29 0.448276 1.0" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "seqs_dfs_and_plots_per_sample_set['demo'][2]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here is the fourthelement in the serialized collection, which is a dataframe with the breakdown of nucleotide composition and %G+C for every sequence where the cassette sequence has been merged with the defined flanking sequenes. Each sample is a row." ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
GTACTotal_nts%G+Crank_on_GC
A25192220860.5232562.0
B25202417860.4883721.0
\n", "
" ], "text/plain": [ " G T A C Total_nts %G+C rank_on_GC\n", "A 25 19 22 20 86 0.523256 2.0\n", "B 25 20 24 17 86 0.488372 1.0" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "seqs_dfs_and_plots_per_sample_set['demo'][3]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "-----\n", "\n", "-----\n", "\n", "Enjoy." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" }, "toc-autonumbering": false, "toc-showcode": false, "toc-showmarkdowntxt": false, "toc-showtags": false }, "nbformat": 4, "nbformat_minor": 4 }