{ "cells": [ { "cell_type": "raw", "metadata": {}, "source": [ "\n", "\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# UK Python Users" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Data Source" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is an analysis of the **2019 StackOverflow survey** data, available [here](https://insights.stackoverflow.com/survey).\n", "\n", "The data includes information about StackOverflow users from across the world, including demographics, primary programming languages, salaries and more.\n", "\n", "This analysis looks only at **UK** users who use **Python** and are **employed full time**.\n", "\n", "The code to analyse the data and produce the charts is hidden by default but you can **view the code** by clicking on the `Show Code` button at the top left of the page." ] }, { "cell_type": "code", "execution_count": 245, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "import pandas as pd\n", "\n", "# Show a chart created using matplotlib directly under the code that produces it\n", "%matplotlib inline\n", "\n", "# Import pyplot from the matplotlib library, for creating charts\n", "from matplotlib import pyplot as plt\n", "\n", "# Import seaborn for additional chart styles\n", "import seaborn as sns; sns.set()\n", "\n", "# Configure the aesthetics of the charts\n", "plt.rcParams['figure.figsize'] = (18, 12)\n", "plt.rcParams['figure.facecolor'] = '#FFFFFF'\n", "plt.rcParams['figure.frameon'] = False\n", "plt.rcParams['axes.facecolor'] = '#FFFFFF'\n", "plt.rcParams['axes.spines.top'] = False\n", "plt.rcParams['axes.spines.right'] = False\n", "plt.rcParams['savefig.facecolor'] = '#FFFFFF'\n", "\n", "sns.set(style=\"ticks\", color_codes=True)\n", "sns.set_context(\"notebook\")\n", "\n", "sns.set({ \"figure.figsize\": (12/1.5,8/1.5) })\n", "sns.set_style(\"white\", {'axes.edgecolor':'gray'})\n", "\n", "# Read in the csv of the global data into a dataframe called s\n", "s = pd.read_csv('survey_results_public.csv')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Overview" ] }, { "cell_type": "code", "execution_count": 246, "metadata": {}, "outputs": [], "source": [ "# Create a new dataframe, p_uk, containing responses from UK users who use Python\n", "# and are employed full time.\n", "p_uk = s.loc[ \n", " (s['Country']=='United Kingdom') &\n", " (s['LanguageWorkedWith'].str.contains('Python') &\n", " (s['Employment']=='Employed full-time'))\n", "]" ] }, { "cell_type": "code", "execution_count": 247, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'1772 UK Python users employed full time (1.99% of all survey respondents) responded.'" ] }, "execution_count": 247, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# How many UK Python users (employed full time) responded to the survey?\n", "str(len(p_uk)) + ' UK Python users employed full time ('\\\n", "+ str(round(len(p_uk)/len(s)*100, 2))\\\n", "+ '% of all survey respondents) responded.'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Top 10 Tools" ] }, { "cell_type": "code", "execution_count": 248, "metadata": {}, "outputs": [], "source": [ "# Separate each 'LanguageWorkedWith' value into a list of words, \n", "# by splitting where there is a semi-colon\n", "lang_lists = p_uk['LanguageWorkedWith'].str.split(\";\")\n", "\n", "# Create an empty list called lang_col, that will be used to\n", "# store one language per row in the subsequent 'for' loop\n", "lang_col = []\n", "\n", "# loop through each row, and each element in the list in each row,\n", "# and add the language in each element to the lang_col list\n", "for row in lang_lists:\n", " for element in row:\n", " lang_col.append(element)\n", "\n", "# change the lang_col series into a dataframe\n", "lang_col_df = pd.DataFrame(lang_col)\n", "\n", "# Rename the column from '0' to 'Language'\n", "lang_col_df.columns=['Language']" ] }, { "cell_type": "code", "execution_count": 249, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmcAAAFgCAYAAAD+X940AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzde1yO9/8H8FfdKnKoEDkksq9j5xwKORRKGcJXM0LMYVvbMpuyYZMMk/laa6PN6Yv50pTvJoeGOSbHJEtKRsxKDimhu+4+vz/8ur7uJSp33Zd6PR+PHg/3dXy/r0u8Htfnuq9LRwghQERERESyoKvtAoiIiIjofxjOiIiIiGSE4YyIiIhIRhjOiIiIiGSE4YyIiIhIRhjOiIiIiGSE4YyIiIhIRhjOiIiIiGSE4YyIiIhIRhjOiIiIiGSE4YyIiIhIRhjOiIiIiGSE4YyIiIhIRupouwCqvVTKHEAUaruMmkdHDwp9Y21XQURElcRwRtojCpF5xEvbVdQ4Zi4x2i6BiIheAoc1iYiIiGSE4YyIiIhIRhjOiIiIiGSE4YyIiIhIRhjOiIiIiGSE39akCsvNzcV3332H2NhY3L59G2ZmZhg1ahT8/Pygp6en7fKIiIheaQxnVCE5OTnw8fFBkyZNEBISgtatWyM5ORkhISFITU1FaGiotkskIiJ6pTGcUYWEhoZCT08P69atg4GBAQDA3NwcJiYm8PX1ha+vL2xtbbVcJRER0auL95xRuSmVSsTExGDcuHFSMCvRo0cPbNiwAR06dNBSdURERDUDr5xRuWVkZODhw4ewtrZ+5nwnJ6dqroiIiKjm4ZUzKrfc3FwAQMOGDbVcCRERUc3FcEblZmJiAgC4f/++lishIiKquRjOqNzatGkDY2NjJCUlPXN+QEAA9u3bV81VERER1SwMZ1RuCoUCXl5e2LRpE5RKpdq8+Ph47N69W7q6RkRERJXDcEYV4u/vj4KCAvj5+SE+Ph4ZGRmIjo5GQEAARo4cCUdHR22XSERE9ErTEUIIbRdBr5asrCyEh4fj0KFDuHfvHlq3bo3Ro0fD19e3Qm8IUBVkI/OIVxVWWjuZucRAYWCq7TKIiKiSGM5IaxjOqgbDGRHRq43DmkREREQywnBGREREJCMMZ0REREQywnBGREREJCMMZ0REREQywnBGREREJCN8lAZpjUqZA4hCbZdR8+joQaFvrO0qiIiokhjOiIiIiGSEw5pEREREMlJH2wVQ7cVhTS3hsCcRkawxnJH2iEK+vkkLzFxitF0CERE9B4c1iYiIiGSE4YyIiIhIRhjOiIiIiGSE4YyIiIhIRhjOiIiIiGSE4awWcHV1RceOHaWfrl27ws3NDREREQCAsLAwjB079pnr9u3bF1FRUQCAqKgote106tQJDg4OmDJlCtLT06utHyIiopqMj9KoJYKCgjB06FAAQFFREeLj4/Hpp5+iWbNmFdqOqakpoqOjAQBCCOTk5GDhwoV4++23sWfPHujqMu8TERG9DP5PWks0aNAApqamMDU1RYsWLeDt7Q1nZ2fExsZWaDu6urrSdpo1a4YOHTpg1qxZuHbtGi5dulRF1RMREdUeDGe1WJ06daCvr//S21EoFACgkW0RERHVdgxntVBhYSFiY2Nx7NgxuLq6vtS2srKysHLlSrRr1w5t27bVTIFERES1GO85qyWCg4PxxRdfAAAeP36MunXrYuLEiRg2bBjCwsJw7tw52Nvbl1rv0aNHap9v3bolLadSqVBQUIDOnTtjxYoV0hU0IiIiqjyGs1rC398fHh4eAAADAwOYmpqqhamSgPV348aNU/vctGlTbN68GcCT+8+MjIzQqFGjKqyciIiodmE4qyUaN24MCwuLMucbGBg8c/7fv32pq6v73O0QERHRy+E9Z0REREQywnBGREREJCMMZ0REREQyoiOEENougmonVUE2Mo94abuMWsfMJQYKA1Ntl0FERGXglTMiIiIiGWE4IyIiIpIRhjMiIiIiGWE4IyIiIpIRhjMiIiIiGWE4IyIiIpIRPkqDtEalzAFEobbLqH109KDQN9Z2FUREVAaGMyIiIiIZ4bAmERERkYzU0XYBVHtxWPMVwWFQIqJqxXBG2iMK+fqmV4CZS4y2SyAiqlU4rElEREQkIwxnRERERDLCcEZEREQkIwxnRERERDLCcEZEREQkI/y2Zi2Um5uL7777DrGxsbh9+zbMzMwwatQo+Pn5QU9PT9vlERER1WoMZ7VMTk4OfHx80KRJE4SEhKB169ZITk5GSEgIUlNTERoaqu0SiYiIajUOa9YyoaGh0NPTw7p16+Ds7Axzc3O4u7tj+fLl+OWXX5CYmCgtGxUVBV9f3zK3deLECbi6ulZH2URERLUGw1ktolQqERMTg3HjxsHAwEBtXo8ePbBhwwZ06NBBS9URERERwGHNWiUjIwMPHz6EtbX1M+c7OTlVc0VERET0dwxntUhubi4AoGHDhmUuc/PmTXh5PXmlUlFREYqKimBvbw8AmD59OmbMmCF9VqlUUCqV0ufXX38dwcHBVdkCERFRjcdwVouYmJgAAO7fv1/mMs2aNcOOHTsAALGxsYiNjZW+JGBkZAQA0vzExESEhoZi48aNAIAGDRpUWe1ERES1BcNZLdKmTRsYGxsjKSkJNjY2peYHBARg6NChGDhwIACgSZMmqFu3LiwsLNSWK/mcmZmJOnXqlJpPRERElccvBNQiCoUCXl5e2LRpE5RKpdq8+Ph47N69W7q6RkRERNqhI4QQ2i6Cqs/du3cxevRotGjRAu+99x5atmyJM2fOYOnSpRgwYAAWL15cbbWoCrKRecSr2vZHlWPmEgOFgam2yyAiqjUYzmqhrKwshIeH49ChQ7h37x5at26N0aNHw9fXt1rfEMBw9mpgOCMiql4MZ6Q1DGevBoYzIqLqxXvOiIiIiGSE4YyIiIhIRhjOiIiIiGSE4YyIiIhIRhjOiIiIiGSE4YyIiIhIRvgoDdIalTIHEIXaLoNeREcPCn1jbVdBRFRrMJwRERERyQhffE5awytnNQSvrBERaRTDGWmPKOQbAmoAM5cYbZdARFSj8AsBRERERDLCcEZEREQkIwxnRERERDLCcEZEREQkIwxnRERERDLCcEZEREQkIwxn9Ey5ublYunQp3NzcYGtrC3d3d0RERKCw8H/PJUtJSYG7uzsAQKVSwc7ODnl5edoqmYiIqEbgc86olJycHPj4+KBJkyYICQlB69atkZycjJCQEKSmpiI0NBQAkJycjK5duwIA0tPT0axZMzRs2FCbpRMREb3yGM6olNDQUOjp6WHdunUwMDAAAJibm8PExAS+vr7w9fWFra0tfv/9d3Tp0gUA1P5MRERElcdwRmqUSiViYmIwe/ZsKZiV6NGjBzZs2ICFCxciKSlJmr5s2TLpz3fu3MHGjRurrV4iIqKahuGM1GRkZODhw4ewtrZ+5nwnJyf88MMPKCwsxODBg/HTTz+hUaNGePvtt+Hn54fevXtXc8VEREQ1C78QQGpyc3MB4Ln3jhkbG6OoqAiGhoZo3749TE1NkZGRAUdHRxgb8wXYREREL4PhjNSYmJgAAO7fv//c5dLS0vCPf/wDAJCZmQkhBMzMzKq8PiIiopqOw5qkpk2bNjA2NkZSUhJsbGxKzQ8ICMCBAwcghEBxcTHs7e1RXFyMgoIC2Nvbw9HRET/88IMWKiciIqoZGM5IjUKhgJeXFzZt2oR//vOf0NfXl+bFx8dj9+7d+PHHHxEeHo6+fftiwIAB2LRpEx4+fIhp06ahbt26WqyeiIjo1cdhTSrF398fBQUF8PPzQ3x8PDIyMhAdHY2AgACMHDkSjo6OuHr1Kvr27QsLCwvcvHkTzs7OsLCwQPPmzbVdPhER0SuNV86olMaNG2PLli0IDw9HYGAg7t27h9atW2PatGnw9fXF3bt3kZubi3bt2gF48oyzwMBALVdNRERUM+gIIYS2i6DaSVWQjcwjXtoug16SmUsMFAam2i6DiKjG4LAmERERkYwwnBERERHJCMMZERERkYwwnBERERHJCMMZERERkYwwnBERERHJCB+lQVqjUuYAolDbZdDL0tGDQp8vvCci0hSGMyIiIiIZ4RsCSGt45YyqHK/qEdEriOGMtEcU8g0BVKXMXGK0XQIRUYXxCwFEREREMsJwRkRERCQjDGdEREREMsJwRkRERCQjDGdEREREMsJwRkRERCQjDGe1TGRkJFxdXbVdBhEREZWB4YyIiIhIRhjOiIiIiGSE4awWS0hIwJtvvglbW1vY2dlhypQpyMrKQnFxMVxcXBAZGam2vKenJzZv3gwA2L59O4YMGQIrKyv07NkTn332GYqKirTRBhERUY3CcFZLPXjwANOnT0evXr2wc+dOrFmzBjdu3MB3330HXV1deHh4YO/evdLyqampuHr1Ktzd3XH69GksWLAAM2fOxN69e7FgwQJERUUhNjZWix0RERHVDAxntdSjR48wffp0vPvuuzA3N4ejoyMGDx6My5cvAwCGDh2K+Ph45OXlAQD27NmDnj17omnTpqhbty4WLVqEwYMHo1WrVvDw8ECXLl2kdYmIiKjy+OLzWsrU1BTe3t5Yv349Ll68iMuXL+PSpUuwsbEBANja2qJ58+Y4cOAAhg8fjj179sDPzw8AYGVlhbp16+Lrr7+W1rt27RqcnJy02RIREVGNwCtnNdzt27dx5coV6bMQAgqFAllZWRg2bBji4uLQtWtXfPLJJ1L4KuHl5YXY2FikpaUhIyMDgwcPBgAcOXIE3t7eyM7OhouLC77++ms4ODhUa19EREQ1Fa+c1XBr1qxBamoq1qxZAwDIy8uDiYkJfv31V9SvXx/ff/+9tOzGjRshhJA+e3p6YuzYsejQoQP69OkDIyMjAE+elebt7Y3g4GAAQFFRETIyMtC9e/dq7IyIiKhm4pWzGq5bt244deoUjh07hvPnz+M///kPevXqBWNjY9y6dQvHjh3D9evXERERgdjYWCiVSmndTp06oWXLlli/fj08PT2l6cbGxkhISEBKSgrS0tIQFBSE7OxstXWJiIiochjOajg3NzdMnjwZgYGBmDRpErp164bp06djyJAhGDZsGAICAjBy5EjEx8djzpw5+OOPP/D48WNpfS8vLxQXF8PNzU2a5u/vj2bNmuGNN96An58f9PT0MG7cOCQnJ2ujRSIiohpFRzw9jkVUjVQF2cg84qXtMqgGM3OJgcLAVNtlEBFVCK+cEREREckIwxkRERGRjDCcEREREckIwxkRERGRjDCcEREREckIv61JWqNS5gCiUNtlUE2moweFvrG2qyAiqhCGMyIiIiIZ4bAmERERkYzw3ZqkNRzWJHqFcciYqMownJH2iEK+IYDoFWXmEqPtEohqLA5rEhEREckIwxkRERGRjDCcEREREckIwxkRERGRjDCcEREREckIwxkRERGRjPBRGrVEUVERIiIiEB0djb/++gsmJibo378/AgIC0KRJE2m56OhobN68Genp6TA0NET37t3xzjvvoEOHDtIyQUFBKCoqQmhoqDZaISIiqtF45ayWWL58OWJiYvD5559j7969WLFiBVJTUzF16lSUvMHrs88+w9KlS+Hj44Off/4Zq1evhqGhIXx8fHDixAktd0BERFQ78MpZLREVFYUFCxagd+/eAIBWrVohNDQUAwcORGJiIu7fv4/t27fjp59+QqdOnQAA5ubm+OKLL6Cvr485c+Zgz5490NfX12YbRERENR6vnNUi8fHxUKlU0mdzc3PExMSgU6dO2LZtG9zc3KRg9jR/f3/cvHkTR48erc5yiYiIaiWGs1piwoQJ2LJlCwYMGIC5c+ciJiYGubm5eO2111C3bl0kJibCzs7umes2bdoU7dq1Q2JiYjVXTUREVPswnNUS7777LlasWIE2bdogKioKH374Ifr06YMffvgBAJCTk4P69euXub6RkRHu3btXXeUSERHVWrznrBbx9PSEp6cncnNzERcXh61bt2LZsmVo27YtjI2NkZWVVea6eXl5zw1vREREpBm8clYLpKSkICQkRPrcqFEjeHh4YO3atbCyskJcXBxsbGyQlJT0zPXv3buHP/74A1ZWVtVVMhERUa3FcFYLqFQqbNy4EefOnVObrqOjg4YNG6Jx48bw8fHBoUOHpGUKCgrg7u6OzZs349tvv4WxsTFcXV21UT4REVGtwmHNWqBr164YMGAA/P39MWvWLHTr1g05OTnYt28fLl68iCVLlsDMzAzjxo3DjBkzMGvWLDg5OWHcuHFYtGgRVCoVlixZgnr16knbzM7OxuHDh9X206pVK7Rv37662yMiIqpRdETJE0ipRnv8+DEiIiKwa9cu3Lx5E/r6+ujevTtmzZqF1157TVouKipKekOAgYEBHBwc0KRJE/z666/4+OOPMXr0aAQFBSE6OrrUPsaNG4f58+eXuyZVQTYyj3hppD8iql5mLjFQGJhquwyiGonhjMolMTERWVlZGDx4sMa2yXBG9OpiOCOqOhzWpHKxtbXVdglERES1Ar8QQERERCQjDGdEREREMsJwRkRERCQjDGdEREREMsJva5LWqJQ5gCjUdhlEVBk6elDoG2u7CqIaieGMiIiISEY4rElEREQkI3zOGWkNhzWJahgOdRJpBMMZaY8o5BsCiGoQM5cYbZdAVCNwWJOIiIhIRhjOiIiIiGSE4YyIiIhIRhjOiIiIiGSE4YyIiIhIRl4Yzjp27Kj207NnT3zyySd48OCBRgro2LEj4uLinrvML7/8gsDAQADA3bt3MXfuXPTu3RtWVlbw8PDAd999h8LC/z2SoTzbLEtYWBjGjh0LAIiKikLfvn2fWcuNGzdKHRsbGxt4e3vjt99+q9S+Ne348eMYN24c7Ozs4ODgAF9fXxw/flya/6z+KsLV1RWRkZEAAF9fX6xYseKlayYiIqrtynXl7F//+heOHj2Kw4cPY/Xq1bhw4QKWLFlS1bVJ4uLi4OzsDACYNm0a7t27h1WrVmHPnj2YOXMmNm/ejGXLllV7LQCwdetWHD16FEePHkVMTAwcHR3x3nvvISMjo1rqKcvFixcxY8YMeHh4YMeOHdi2bRvs7OwwdepUJCUlabU2IiIiKlu5wpmRkRFMTU3RvHlz2NnZYcKECdi1a1dV1yaJj4+Hs7MzLl26hKSkJCxcuBDW1tZo3bo13N3dERAQgK1bt6K4uLjaailhYmICU1NTmJqawtzcHIGBgdDX18eBAweqvJbn+e9//wsnJyf4+vqibdu2eO211zBr1izY2tpKV7uIiIhIfip1z1njxo3VPj948ACffvopnJ2dYWVlBXd3d+zdu1eav2fPHnh6esLa2hqDBw/G9u3b1dY/e/Yshg0bBmtra7z55pu4fv26NO/q1aswMDBA8+bNoaOjAwClhiy9vLwQHR0tzX/RNtPS0jBhwgTY2Nhg0KBBWLt2LcrzitGnaylLnTpPnuurr68PALh//z7mzZuHXr16wcHBAbNmzUJOTg6Ki4vRo0cP7Nu3T1p3+PDhePvtt6XPa9euhZ+fHwAgMzMT77zzDuzs7NC/f3+EhoZCqVQCeDI8OWbMGLz//vtwdHREZGQkdHR0kJqaiuzsbLX6vvrqK7z//vtq08LDw+Hk5IRu3bphyZIlasdi69atcHNzg729PcaOHYvz58+/8DgRERFR5VU4nN29excbN27EsGHDpGmLFy9Geno61q5di507d6J79+6YN28elEol7ty5g48++giTJk3Cnj17MH36dMydOxfp6enS+tu2bcOcOXPw008/IS8vT22IMi4uDr169QIAdOjQAc7Ozpg1axaGDRuGL7/8EkePHkWdOnVgaWmpFs7K2ubjx4/x1ltvwc7ODj///DPmzp2LDRs2YNOmTS/s/elaniU/Px8rVqxAYWEh+vTpAwDw9/fHxYsXsWrVKqxfvx5//PEHZs+eDV1dXTg7O+PEiRMAnoS4tLQ0JCQkqO2vb9++EELg3XffhZGREbZv347Q0FAcPHgQX331lbRsYmIiLCwsEBkZiQEDBmD06NHIycmBq6srpk2bhnXr1iE9PR3NmzdH06ZNpfWysrKQlpaGH3/8EcHBwVi/fj0OHjwIADhw4ABWrlyJOXPmIDo6Gn379sXEiRNx69atFx4rIiIiqpxyhbMZM2bA3t4ednZ2cHZ2RnJyMnx9faX5jo6OWLBgATp37oy2bdti8uTJuH//PrKyspCVlYXCwkI0b94crVq1wqhRo7B27Vq1gDB9+nQ4OzujY8eOGD16NFJSUqR5fx9GjIiIwKxZs6BSqbBmzRpMmTIFAwYMwNGjR9VqLmubv/zyC4yMjPDhhx+ibdu26NevHwICArBhw4YXHoe/1wI8udplb28Pe3t7ODg4YMeOHVi8eDHatGmDlJQUnDx5EkuXLoWNjQ1sbGwQGhqKQ4cOIS0tDX369MHJkycBAKdPn4ajoyMeP36MK1euQKlU4vTp03BxcUF8fDxu3LiBkJAQtG/fHt26dcP8+fOxadMmFBUVqfVsaWmJpk2bon379ti+fTu8vLyQmJiIJUuWwNPTE1OmTMHdu3elderUqYOQkBBYWlrC09MTnTp1ko7VDz/8gGnTpmHgwIFo27Yt3n77bVhZWXFYlIiIqAqV692awcHBsLe3B/DkCs8vv/wCHx8fREZGol27dhgxYgT27duHyMhIXLlyBb///jsAoLi4GJ07d8bQoUMxbdo0tGnTBgMGDMDIkSNhZGQkbb9NmzbSnxs2bIiCggJp/VOnTmHhwoXSfH19fUybNg3Tpk3DzZs3cejQIaxfvx7vvvsu9u3bB1NT0+du88qVK7h8+bLUT8l+lEqlNEz4LM+qBQC+++47tGzZEjo6OjA0NFQLnVeuXEH9+vXRvn17aZqlpSWMjIyQnp4OFxcXzJ8/Hzk5OTh16hR69uwJIQTOnDmDW7duwcTEBK+99hri4+ORm5uLbt26SdsRQqCwsBA3b94EABgbG6NBgwZqtVlaWmLJkiVQqVRISkrCnj178OOPP2LevHkIDw8H8OSeuafXe/pYpaen46uvvsLKlSul+UqlEmZmZmUeJyIiIno55QpnzZo1g4WFhfTZxsYGhw8fxrZt2xAYGIjZs2fj7NmzGD58OMaOHQtTU1P4+PgAAHR0dLB8+XJMnjwZBw4cwIEDB/Djjz9i1apV0tCfQqFQ21/JPU+///47WrZsKQW52NhYZGVlSVftWrZsibFjx8Ld3R39+vXDmTNn4OHh8dxtFhUVoUePHliwYEHpg1Gn7MPx91pKtGzZUu3YPK3kvrO/U6lUKC4uhpmZGSwtLXH69GmcPHkSs2fPRmFhIc6ePYvr16/DxcVFqtnCwgKrV68uta2SoGRgYKA2fenSpdJ9fgqFAnZ2drCzs0Pr1q2xfPlyaTld3dIXT0uOlUqlQmBgoHSeShgaGj6zLyIiInp5L/UQWpVKhQcPHmDnzp1Yvnw5PvjgAwwaNAj3798H8OQ/+fT0dCxevBhdu3bFe++9h+joaHTr1g2//vrrC7d//PhxtXu8/vzzT4SHhyM/P19tufr166NOnTqlvqjwLO3atcPVq1fRqlUrWFhYwMLCAhcvXsT333//zKBSVi3lYWlpifz8fLX76y5fvowHDx6gXbt2AIA+ffpg//79uHz5MmxtbdGtWzecPXsWR48elZ5B1q5dO2RmZsLY2FiqOTs7G8uXLy/ziwxHjx595vBjw4YNYWJiUq76S/Zbsk8LCwusXbtWGoolIiIizStXOLt//z6ys7ORnZ2N69ev41//+heuXbsGDw8PGBgYoF69eoiNjcWNGzdw9OhRBAcHA3gyBNaoUSNs3boVYWFhuH79OuLj43Hp0iVYWVm9cL/Hjx9Xu8fL29sb9erVg5+fH44cOYI///wTJ0+eREBAADp06IDu3bu/cJvDhg2DUqmUvpRw7NgxBAcHl7oi9qJaysPS0hIDBgxAYGAgzp8/j/PnzyMwMBCOjo7o3LkzgCfh7JdffkHnzp1Rr149ODg44MaNG0hNTYWTk5O0jLm5OT766COkpKQgISEBc+fOha6ubqkrZiXeffddREZGYvHixbh48SKuXr2KnTt3IjQ0FG+99Va56vfz88PGjRsRHR2NjIwMfPPNN9i+fTssLS0rdByIiIio/Mo1rBkQECD92cDAAJ06dUJYWBgcHBwAAMuWLcPSpUuxefNmtG7dGjNmzEBYWBiSk5MxYsQIhIWFYfny5fj+++9hZGSEsWPHYvTo0c/dp1KpxIULF6R9AE/uq9qyZQtWrlyJTz/9FHfv3oWxsTEGDRqEJUuWqH1bsywNGjTADz/8gMWLF8Pb2xuNGjWCt7c3Zs6cWaFaymvJkiVYuHAhJk2aBIVCATc3N8yZM0ea36NHDygUCjg6OgJ4chWwU6dOMDQ0lO4FUygU+Pbbb7Fo0SK88cYbMDAwwKBBgxAUFFTmfj08PFC3bl2sWbMG27dvR0FBASwtLREQEIBRo0aVq3ZPT0/cuXMH33zzDW7dugVLS0uEh4dLwZKIiIg0T0eU5wFfRFVAVZCNzCNe2i6DiDTEzCUGCgNTbZdB9Mrji8+JiIiIZIThjIiIiEhGGM6IiIiIZIThjIiIiEhGGM6IiIiIZIThjIiIiEhG+CgN0hqVMgcQhdoug4g0RUcPCn1jbVdB9MpjOCMiIiKSEQ5rEhEREclIuV7fRFQVOKxJRBIOiRJJGM5Ie0QhX99ERACevPqJiJ7gsCYRERGRjDCcEREREckIwxkRERGRjDCcEREREckIwxkRERGRjDCcvQRXV1dERkaWmh4XF4eOHTsiLCwMHTt2LPMnLCwMJ06cQMeOHTFgwIBn7mPmzJno2LEj4uLiAABBQUH46KOPnltXVlaW2vZyc3OxdOlSuLm5wdbWFu7u7oiIiEBhofpjLDZv3oyhQ4fC2toaTk5O+PDDD3H9+nW1ZZKTkzF16lQ4OjrCzs4OY8aMwe7du8t1vIiIiOjF+CiNKjR58mS88cYbAIA///wTPj4+iIyMRIsWLQAAhoaGuHDhAgAgOzsbKSkp6NSpk7S+UqnE0aNHK7zf48ePw8nJCQCQk2JAorAAACAASURBVJMDHx8fNGnSBCEhIWjdujWSk5MREhKC1NRUhIaGAngSzFatWoXPPvsMnTp1wt27dxEeHo7x48dj165dqF+/PrKysjBhwgT4+voiKCgICoUCBw8exKxZs6Cnp4eBAwe+1PEiIiIihrMqVb9+fdSvXx8A8PDhQwBA48aNYWpqWmrZbt26Yf/+/WrhLD4+Hu3bt0dCQkKF9nv8+HH07t0bABAaGgo9PT2sW7cOBgYGAABzc3OYmJjA19cXvr6+sLW1xfbt2zFp0iQpYLVu3RorVqyAs7MzDh48CC8vL8TGxsLMzAwffPCBtK9JkyYhOTkZW7ZsYTgjIiLSAA5ryoSbmxt+++03tWn79u2rVOCJj4+Hk5MTlEolYmJiMG7cOCmYlejRowc2bNiADh06SNNOnToFpVIpfTY0NMR///tf9OvXDwCgo6ODmzdv4sqVK2rbCgwMREhISIXrJCIiotIYzmTC1dUVv//+O27dugUAEELgt99+q3A4S09PR8OGDdGsWTNkZGTg4cOHsLa2fuayTk5OqFevHgBgwoQJ+O233+Di4oKPP/4YUVFRuH37Ntq2bYsGDRoAAIYMGQJDQ0MMHToUEyZMwKpVq3DhwgU0adJEGqolIiKil8NhzZcUHByML774Qm2aSqWq8HaaN2+OLl264ODBgxgzZgzOnz8PIyMjtG3btkLbefp+s9zcXABAw4YNX7jeiBEjYGpqinXr1mHPnj34+eefoVAoMH78eAQFBUFXVxdNmjTB9u3bsXr1asTGxuLEiRNYsWIFrK2tsWLFCpibm1e4byIiIlLHcPaS/P394eHhoTYtISEBgYGBFd6Wm5sbDhw4gDFjxlR6SDMuLg6jRo0CAJiYmAAA7t+/X651e/fujd69e+PRo0c4ceIEoqOjsWHDBrRq1QoTJ04E8CREzp8/H/PmzUNKSgr279+PDRs24P3330d0dHSF6yUiIiJ1HNZ8SY0bN4aFhYXaT7NmzSq1LTc3Nxw/fhyPHj3C/v37MWjQoAqtr1KpcObMGfTo0QMA0KZNGxgbGyMpKemZywcEBGDfvn3466+/8PnnnyM/Px8AUK9ePfTv3x8rV66Eu7u79BiPiIgIHDlyBMCT+886d+4Mf39/fPnll0hOTsbdu3cr1TcRERH9D8OZjHTs2BGmpqb4z3/+g0ePHqFr164VWv/ChQto27atNIypUCjg5eWFTZs2qd3oDzz50sDu3bthYmICfX19bNu2DQcPHiy1zYYNG6Jx48YAgLNnz2LDhg3PXMbAwEC6N42IiIgqj8OaMuPq6oqwsDBpaPJZsrOzcfjwYbVprVq1QlxcnHS/WQl/f38cPHgQfn5+eO+999CyZUucOXMGS5cuxciRI+Ho6AgAGDt2LObPn4+7d+/CxcUFjx8/RlxcHHbt2oXNmzcDAKZPnw5fX1/Mnj0b48ePh4mJCS5duoSvvvoKvr6+0NfX1/DRICIiqn0YzmTGzc0NGzZseO79ZvHx8YiPj1ebNm7cOFy+fBnvvPOO2vTGjRtjy5YtCA8PR2BgIO7du4fWrVtj2rRp8PX1lZb75JNPYG5ujsjISCxfvhw6OjqwsbHBmjVr0KVLFwCAvb09Nm7ciG+//RZTp05Ffn4+WrVqhTFjxmDSpEmaOwhERES1mI4QQmi7CKqdVAXZyDzipe0yiEgGzFxioDAo/YBuotqI95wRERERyQjDGREREZGMMJwRERERyQjDGREREZGMMJwRERERyQjDGREREZGM8FEapDUqZQ4gCrVdBhHJgY4eFPrG2q6CSBYYzoiIiIhkhMOaRERERDLC1zeR1nBYk4iqHIdL6RXEcEbaIwr5+iYiqlJmLjHaLoGowjisSURERCQjDGdEREREMsJwRkRERCQjDGdEREREMsJwRkRERCQjDGdVLDIyEq6urlW+n+TkZEydOhWOjo6ws7PDmDFjsHv37kpvLygoCB999FG5ls3Pz0dUVFSl90VERET/w0dp1ABZWVmYMGECfH19ERQUBIVCgYMHD2LWrFnQ09PDwIEDK7zNTz/9tNzLrlu3DseOHcPIkSMrvB8iIiJSx3BWA8TGxsLMzAwffPCBNG3SpElITk7Gli1bKhXOGjZsWO5l+QYwIiIizeGwZjVKSEjAm2++CVtbW9jZ2WHKlCnIyspCcXExXFxcEBkZqba8p6cnNm/eDADYvn07hgwZAisrK/Ts2ROfffYZioqKAAA6Ojq4efMmrly5orZ+YGAgQkJCpM/JyckYP348bG1t4ebmhp9++gkAcOLECfTt2xfBwcFwdHREWFiY2rBmWFgY3n//fXzyySewtbWFu7s79u3bBwCIiorCN998g7Nnz6Jjx45Vc+CIiIhqEYazavLgwQNMnz4dvXr1ws6dO7FmzRrcuHED3333HXR1deHh4YG9e/dKy6empuLq1atwd3fH6dOnsWDBAsycORN79+7FggULEBUVhdjYWADAkCFDYGhoiKFDh2LChAlYtWoVLly4gCZNmqBFixYAgLt372LSpEmwtLREdHQ0Zs6cic8//xynT58G8GRo9MGDB4iOjoa3t3ep+g8cOACVSoWoqCiMHj0a77//Pi5dugRPT09MnjwZNjY2OHr0aDUcSSIiopqNw5rV5NGjR5g+fTomT54MHR0dmJubY/DgwUhISAAADB06FOPGjUNeXh4aNmyIPXv2oGfPnmjatCkyMzOxaNEiDB48GADQqlUrrFu3DpcvXwYANGnSBNu3b8fq1asRGxuLEydOYMWKFbC2tsaKFStgbm6O3bt3o379+vjss8+gUChgaWmJnJwcFBcXSzW+9dZbaNOmzTPrb9SoERYuXAh9fX20b98ehw4dwk8//YRPP/0UhoaGqFOnDkxNTav4KBIREdV8DGfVxNTUFN7e3li/fj0uXryIy5cv49KlS7CxsQEA2Nraonnz5jhw4ACGDx+OPXv2wM/PDwBgZWWFunXr4uuvv5bWu3btGpycnKTtN2/eHPPnz8e8efOQkpKC/fv3Y8OGDXj//fcRHR2Ny5cvo1OnTlAoFNI648ePB/BkWBN4EvrK0qVLF+jr60ufrayskJaWprkDRERERAA4rKlxt2/fVrv3SwgBhUKBrKwsDBs2DHFxcejatSs++eQTKXyV8PLyQmxsLNLS0pCRkSFdKTty5Ai8vb2RnZ0NFxcXfP3113BwcJDWi4iIwJEjRwA8uf+sc+fO8Pf3x5dffonk5GTcvXsXenp6L6zdwMCgzHl16qjneJVKBR0dnRcfECIiIqoQXjnTsDVr1iA1NRVr1qwBAOTl5cHExAS//vor6tevj++//15aduPGjWrfdPT09MTYsWPRoUMH9OnTB0ZGRgCePCvN29sbwcHBAICioiJkZGSge/fuAICzZ8/i5MmTcHFxUaulYcOGMDAwQIMGDWBhYYF9+/ahuLgYurpPMvmcOXNgZmamdgWuLKmpqWrrXrhwQQqIDGlERESawytnGtatWzecOnUKx44dw/nz5/Gf//wHvXr1grGxMW7duoVjx47h+vXriIiIQGxsLJRKpbRup06d0LJlS6xfvx6enp7SdGNjYyQkJCAlJQVpaWkICgpCdna2tO706dMRHx+P2bNn4/z587h+/Tr27duH+fPnw9fXF/r6+hg2bBjy8/PxxRdf4I8//sDOnTuxc+fOUoGuLH/++SeWLFmCK1euSF84+Oc//wkAMDQ0RHZ2Nq5fv67BI0lERFQ7MZxpmJubGyZPnozAwEBMmjQJ3bp1w/Tp0zFkyBAMGzYMAQEBGDlyJOLj4zFnzhz88ccfePz4sbS+l5cXiouL4ebmJk3z9/dHs2bN8MYbb8DPzw96enoYN24ckpOTAQD29vbYuHEj7t27h6lTp2LIkCFYtmwZRo0ahQ8//BDAk6toEREROH/+PIYNG4awsDB88cUXasOjz2NlZYW8vDx4e3tj165diIiIQNu2bQEAgwcPhq6uLoYOHYo7d+5o6EgSERHVTjqCTxClFwgLC0NcXBy2bNmi0e2qCrKRecRLo9skInqamUsMFAb8Jjm9WnjljIiIiEhGGM6IiIiIZITDmqQ1HNYkoqrGYU16FfHKGREREZGMMJwRERERyQjDGREREZGM8J4z0hqVMgcQhdoug4hqMh09KPSNtV0FUYUwnBERERHJCIc1iYiIiGSELz4nreGwJhERyZYWh8QZzkh7RCGfc0ZERLJk5hKjtX1zWJOIiIhIRhjOiIiIiGSE4YyIiIhIRhjOiIiIiGSE4YyIiIhIRhjOXhGurq7o2LGj9NO1a1e4ubkhIiLihevm5+cjKipKbVuRkZFVWS4RERFVEh+l8QoJCgrC0KFDAQBFRUWIj4/Hp59+imbNmmHEiBFlrrdu3TocO3YMI0eOrK5SiYiIqJJ45ewV0qBBA5iamsLU1BQtWrSAt7c3nJ2dERsb+9z1+IYuIiKiVwfD2SuuTp06KCgoQOfOnZGdnS1Nv3LlCrp06YLvv/8e33zzDc6ePYuOHTuqzR87diysra0xfPhw/P7779K8zMxMfPDBB+jRowd69uyJ4OBgFBQUAACioqIwduxYfPPNN3ByckKfPn2waNEiFBcXV1/TRERENRjD2SuqsLAQsbGxOHbsGIYPH45WrVph79690vxdu3bB2dkZvr6+mDx5MmxsbHD06FFp/rZt2zB58mT8/PPPMDY2xrx58wAASqUSEydOxMOHD/Hvf/8bK1euxOHDh7FkyRJp3aSkJKSnp2Pz5s0ICAjApk2bcOTIkeprnoiIqAZjOHuFBAcHw97eHvb29rCxsUFgYCAmTpyIYcOGwcvLC3v27JGW3b17N7y8vFC3bl0YGhqiTp06MDU1leb7+Phg0KBBaNeuHXx9fZGamgoAOHLkCDIzM7Fs2TJ06tQJTk5OmD9/PrZu3Yq8vDwAT+53Cw4ORvv27TF69Gh06tQJSUlJ1XswiIiIaih+IeAV4u/vDw8PDwCAgYEBTE1NoVAoAACvv/46IiIicOvWLeTk5CAjIwODBg0qc1tt2rSR/tywYUMUFhZCpVIhPT0dbdq0gbHx/1726uDgAJVKhatXrwIATExM0LBhQ2l+gwYNUFRUpMlWiYiIai2Gs1dI48aNYWFh8cx5r732Gjp06IBff/0Vd+7cQb9+/dQC1N+VhLqnCSFgYGBQarpKpQIA6b4yPT29Z65LREREL4/DmjWIl5cXDhw4gIMHD8LLy0uarqOjU+5ttG/fHhkZGcjJyZGmnTt3DgqFQu1qGxEREVUNhrMaZOjQoTh16hSuXbuGAQMGSNMNDQ2RnZ2N69evv3AbvXr1Qtu2bTF79mykpKTgxIkTCAkJgaenJ0xMTKqyfCIiIgLDWY3SsmVLdOnSBa6urqhbt640ffDgwdDV1cXQoUNx586d525DV1cX4eHh0NHRgY+PDwICAjBgwAAsWrSoqssnIiIiADqCNwvVKAMHDsS8efPQr18/bZfyQqqCbGQe8XrxgkRERNXMzCUGCgPTFy9YBfiFgBri0KFDOH78OIqLi9GnTx9tl0NERESVxHBWQ6xfvx6pqakIDQ195jcxiYiI6NXAcFZDrFu3TtslEBERkQbwCwFEREREMsJwRkRERCQjDGdEREREMsJHaZDWqJQ5gCjUdhlERESl6ehBoW/84uWqYtcMZ0RERETywWFNIiIiIhlhOCMiIiKSEYYzIiIiIhlhOCMiIiKSEb4hgLSiuLgYubm52i6DiIioWjVq1Ai6us+/NsZwRlqRm5uLlStXarsMIiKiavXBBx/A2Pj5j+jgozRIK3jljIiIaqPyXDljOCMiIiKSEX4hgIiIiEhGGM6IiIiIZIThjIiIiEhGGM6IiIiIZIThjIiIiEhGGM6IiIiIZIThjIiIiEhGGM6o0pRKJebNm4fu3bujd+/e+P7778tcNiUlBT4+PrC1tcXIkSNx/vx5tfm7du3CoEGDYGtri7fffht37tyR5gkhsGLFCjg7O6N79+5YunQpVCpVlfX1Iprqu6ioCCtXroSrqyscHBwwadIkpKenS/PPnj2Ljh07qv0MHz68Snsri6Z6Li4uho2NTam+Sh5IXFPP9d/7Lfn55ptvAMjrXAMV67vE6dOn0b9//1LT4+Pj8frrr8PW1ha+vr64du2a2vyNGzeib9++sLe3x5w5c/Dw4UNNtVFhmuz73//+NwYPHgx7e3v4+Pjg7Nmz0rysrKxS57tbt26abKVCNNm3u7t7qd4uXrwozZfL+dZUz66urs/83Z4zZw6AlzjXgqiSFi5cKLy8vERSUpL49ddfhb29vdi5c2ep5fLz80Xv3r3FokWLxOXLl0VISIhwcnISeXl5QgghEhMThbW1tdi+fbu4ePGiGD9+vJg8ebK0/tq1a0WfPn3EiRMnRHx8vOjTp49YvXp1tfX5d5rqOzw8XLi4uIgjR46I9PR0ERgYKPr37y/y8/OFEEJs27ZNjBw5Uty6dUv6uXv3brX2WkJTPV+9elV07NhR3LhxQ62v4uJiIUTNPddP93rr1i2xatUq0b17d/Hnn38KIeR1roUof98lUlJSRK9evYSLi4va9Js3bwo7OzsREREh0tLSREBAgPD09BQqlUoIIcTevXuFg4OD2Ldvnzh//rzw8vIS8+bNq9LenkdTfe/YsUM4ODiI3bt3i6tXr4rQ0FBhb28vMjMzhRBCHDt2TPTq1UvtfN++fbtKe3seTfVdUFAgOnfuLM6cOaPWW2FhoRBCXudbUz3fuXNHrdcdO3aIrl27iqSkJCFE5c81wxlVSn5+vrC2thbHjh2TpoWHh4s33nij1LKRkZGif//+0j/IxcXFYtCgQWLbtm1CCCE+/vhjMWvWLGn5mzdvig4dOoirV68KIYTo16+ftKwQT/7h69u3b5X09SKa7HvgwIFiy5Yt0vIFBQXCzs5OHDp0SAghxBdffCECAwOrsp1y0WTP+/btEwMGDChzXzX1XD8tMzNT2Nvbix07dkjT5HKuhahY30IIsWXLFmFnZydef/31Uv9x/etf/1Jb7+HDh8Le3l7a9ptvvim++uoraf6pU6eElZWVePDggSZbKhdN9j1x4kQRGhqqNm3w4MHixx9/FEIIsWHDBjF+/HgNd1A5muz74sWLokuXLkKpVD5zXbmcb032/LSHDx+Kfv36ifDwcGlaZc81hzWpUlJSUqBUKuHo6ChNc3R0RFJSEoqKitSWTUxMhIODg/QuMR0dHTg4OCAhIUGa3717d2n5Fi1aoFWrVkhISEBWVhb++usvtcvAjo6OyMzMxF9//VWVLT6TJvsODg7GwIEDpeV1dXUhhIBSqQQAXL58Ge3atavqll5Ikz2np6eX2VNNPtdPCw8Px2uvvYZhw4ZJ0+RyroGK9Q0AcXFx+PLLLzFp0qRS8/7+u12vXj107doVCQkJUKlUSEpKUptvZ2cHlUqlNgxWXTTZd0BAAMaMGVNqekFBAYCae77T09PRunVr6OnplZonp/OtyZ6f9u9//xs6OjqYMmWKNK2y55rhjColOzsbRkZGMDAwkKY1bdoUhYWFuHv3bqllmzVrpjatSZMmyMrKAgDcunWrzPnZ2dkAoDa/adOmAIDMzEzNNVROmuzb2dlZ6gUAIiMjUVRUBFtbWwBP/qFLSkrC0KFD0b9/f8yfPx95eXlV1VqZNNnz5cuXkZ+fj3HjxqFPnz6YOnUqrly5Iq0L1MxzXeLWrVuIiorCu+++Cx0dHWm6XM41ULG+AeDrr7/GoEGDytxWWcclNzcXBQUFavPr1KkDY2Nj2Z9v4Pl929nZwdzcXPp8+PBhXL16VQom6enp+PPPPzFy5Ei4uLhg5syZpf6uVBdN9n358mUoFAq89dZb6N27N8aPH4/ExEQAkNX51mTPJZRKJdauXYupU6eqbbey55rhjCrl0aNH0NfXV5tW8rnkys+Lli1Z7vHjx2XOf/z4sdq2n7ef6qDJvp925swZLF26FNOmTYOpqSny8/Px119/obi4GEuWLEFISAjOnj2LWbNmabijF9Nkz+np6bh//z78/f3x7bffwsDAABMmTEBeXl6tONc//fQTzM3N0bdvX2manM41ULG+K7utsn63n55f3TTZ99P++OMPBAYGYsSIEejatSuAJ78HDx8+xNy5c7FixQpkZWVh6tSpz7xqU9U02Xd6ejpyc3Px5ptvIiIiAu3bt8fEiRNx48YNWZ3vqjjXu3fvBgB4e3urTa/sua5TqSqo1jMwMCj1l7jkc7169cq1bN26dV84/+lfmJJL5WXtpzposu8SJ06cwNtvv40BAwbA398fAFC/fn2cOnUK9evXh0KhAAAsWbIEo0aNws2bN9GyZUuN9vU8muz5xx9/hEqlgqGhIQBg+fLl6NevH/bv3w9LS0tp+Zp6rnfv3o0RI0aoXTWT07kGKtZ3ZbdlbGwsXV0oz3GrDprsu0RqaiomT54MS0tLBAcHS9P3798PPT096d+3sLAw9OnTBwkJCWrDftVBk30vX74cBQUFaNCgAQDg888/x9mzZ7Fjxw68+eabatt+el/Vfb6r4lzv3r0b7u7updav7LnmlTOqlObNmyM3N1ftL3h2djb09fVhZGRUatmSIasSt2/fhqmpqTT/9u3bz5zfvHlz6fPT+wEgrV+dNNk3ABw6dAhTp05Fv379sGzZMumeJQBo1KiR9J81ALRv3x4Aqn34Q5M9GxgYSMGs5HPr1q2RlZVV4891ZmYmUlNTnzk8IpdzDVSs7/Jsq6zjUhLQnj7fRUVFyMnJKTUUWh002TcAJCUlwdfXF+3atUNERITaUFf9+vXVrtw0adIExsbGr/z51tPTk4IZ8OTeS0tLS9y6dUtW51vT51qpVCI+Pv6Zv9uVPdcMZ1QpnTt3hp6entoNz2fOnEHXrl1Rp476BVlbW1skJCRACAHgybOsEhISYGdnJ80/c+aMtPxff/2Fmzdvws7ODs2bN0fLli3V5p85cwbNmjVDixYtqrLFZ9Jk34mJiXjvvffg4eGB0NBQtfXPnz8Pe3t7tV/g5ORkKBQKWFhYVGWLpWiq56KiIri4uCAmJkZaPj8/H9euXYOlpWWNPtcAcO7cOTRt2lS6QlhCTucaqFjfL2Jra6v2fK9Hjx4hOTkZdnZ20NXVhbW1tdr5PnfuHBQKBTp37vzyjVSQJvu+fv063nrrLXTp0gURERGoX7++NO/27dtwdHTEuXPnpGmZmZm4d+9eqb8b1UGTfY8ePRoRERHS5+LiYly6dAmWlpayOt+a7BkALl26hIKCArUvGAAvea4r/P1Oov83b948MWTIEJGYmCj27dsnHBwcRExMjBDiyXOdHj16JIQQIi8vTzg5OYkFCxaItLQ0sWjRIuHs7Cw9A+rs2bOia9euYuvWrSIlJUX4+vqKt956S9rP6tWrRe/evUVcXJw4ceKEcHFxEREREdXf8P/TRN/FxcXC09NTeHt7i8zMTLVn4Dx69EgUFBQId3d3MWXKFJGamipOnjwpPDw8xNy5c1/ZnoUQIigoSLi5uYmTJ0+KS5cuiRkzZoghQ4ZIz0Gqiee6xNdffy0mTJhQah9yO9dClL/vp23fvr3UYwauX78urK2txbfffivS0tLEzJkzhZeXl/TIkZ07dwo7Ozuxd+9ecf78eTF06FDx2WefVXl/ZdFU31OmTBH9+/cXGRkZar/bJY+M8PX1FSNHjhQXLlwQ58+fFz4+PsLPz6/qGyyDpvoOCwsTPXr0EAcPHhTp6eli3rx5wsnJSeTm5goh5HW+NdVzyXQ3N7dn7qey55rhjCrt4cOHYvbs2cLOzk707t1brFmzRprXoUMHsX37dulzYmKiGDFihLCyshKjRo2SHtBXIioqSvTv31/Y2dmJd955R9y5c0eaV1RUJBYvXiy6desmevToIZYsWSL9464Nmuj70qVLokOHDs/8KXk2VkZGhpg+fbpwdHQUPXr0EAsXLhQFBQXV2+z/09S5zs/PF8HBwaJ3797C1tZWzJgxQ3oQqxA181yXmD9/vnjvvfeeuR85nWshKtZ3ibL+4zp48KBwd3cXNjY2wtfXV1y7dk1t/urVq4Wzs7NwdHQUQUFBz/xPsbpoou+8vLwyf7dLnvF1584dMWvWLNGjRw/h4OAgPv74Y5GTk1P1DZZBU+e7qKhIrFy5UvTr109YW1uL8ePHi5SUFLVl5HK+Nfl3fPXq1WLkyJHP3E9lz7WOEP9/HZ6IiIiItI73nBERERHJCMMZERERkYwwnBERERHJCMMZERERkYwwnBERERHJCMMZERERkYwwnBERERHJCMMZERERkYwwnBERERHJCMMZERERkYwwnBERERHJCMMZERERkYwwnBFRrXb48GGMHDka//ynD+Li4tTmzZ//Gc6dS3zu+uvWrYe///vPnDd69Bjs3r2nzOVUKhU+/XQuRowYiWvXMkqtn5BwDv37u6r9eHh4wt//ffz+++/l6i8t7TLOnz+vtr2iIlW51n1ZPj5jsXNnTKnpp0+fQf/+rtVSA9GrqI62CyAi0pbi4mKEhn6F997zhxDFWLLkS/z3v9HQ0dFBWtplPHiQDzs72yrb//LlX+HcuUT8619fwcKiTZnLRUZuha6uAgDw8GE+1q5dh6CgT7Bly2Y0aNDgufuYN28+xo8fBxsbG43WTkRVh1fOiKjWysnJQW5uLvr374f+/fsjNzcXOTk5AID16zdg0qQJVbbv1asjcODAb1i6dDH+8Y9/PHdZE5PGaNLkyY+5uTn8/f2Rl5eHhIRzL9yPEEJTJRNRNeGVMyKqtYyMjPB/7dx7UNVlGsDx7+EAHo4XZr0kwwFtAE+iaM2GVKCWB5blJC2pwbiOq5CTKRiKxnpLVuQqlzatDNE6NtaOgjutC2RTW8g1pM0LV0vNOOCdkZHbiMPh7B9Hj4tgbbituD2ffzjz/n7v+z7zY+bMc573/b0qlYpvrA2VfwAAB/hJREFUvz2F2dyDSqVixIgRfPPNt3R1Xf/Zqk05ObkcOPBXUlKS8PLy+sn9lUpLFc3e3o7MzD9z+fIltm5NtV7fuTObhoYGOjo6uXTpEhkZmVRX1xAU9FsACgry2bv3Q9rb25k5cwZr1qxhyBB7AMrLv8RgMNDQYMTJyYkXXwznmWeeAWDlyhgef/zXVFfXUFVVhbOzMy+//BJPPvnkPT2Pw4eLMBj2cP78eR566CEWLlyAXq8HoL29nTfffIvS0jLs7e3x8/MlMnI5arWaY8eOk5SUzPTpfnz22T944YV5zJ79LBkZr1NTU4NSqcTPz5fo6GjUaod7ilGI/yWpnAkhfrGUSiVLl75EdPRKVq1aTVRUJEqlEoNhD4sXL/5Z5vz00095550s5s2bi7e390/u39raSlZWFo6OjkyaNJmAAB1ff32UtrY26z1FRUX4++tISIhnzJgxREYu55VXoqzXCwuLSEtLJTExgeLiEgoKLPvCjh49SlzcnwgMDOTdd3fx3HOzSUhIor6+3tr3ww//gk43i+zsLMaNcyU9PROTaeB72FpaWkhMTCI0dB57977PwoULSE/PtO7BS0tL59q1a2zf/gapqSk0NjaSmrrV2r+5uZnOzk6ys7MICgpi27bt2Noq2bnzHTIy0qmtreODDz4YcHxC3A9SORNC/KLNnTvnZkVJgVrtQH19PSZTN56enqSlZfDVV1/drL68go3Nvf2eNRqNpKdnMmWKF/n5BcybN5cxY8b8aL/g4OcAyxJlV1cXGo2GuLhNDB8+jKlTpzJy5EhKS0vR6/WcPHmSq1db8PX1xcHBARsbG9Rqda+9aatWRfPwww/j5gbe3o9z5swZAD766G/MmDGd0NAXAHB1daWu7iT79u0nPn4zAE884YNeHwTAokV/YMmSl2hubmbs2LEDeibNzc10d3czevRonJyc0Ov1jB07lpEjf8W5c+coKSnl4MGPGDFiBADr169j/vwFXL582TrG/Pnz0Wg0AFy8eBE3NzecnJyws7MjISEehUIxoNiEuF8kORNC/OKp1WrrZ4PhfcLDwykqOsz333/P3r3vExOzmsOHi9DpZvXpa2tri9nc0++4ZrMZW9vbX7Otra3ExKwkMDCQiIglZGa+Tmpqyo/Gl52dhY2NEhsbBUOHDsXR0dF6TaFQoNPNorCwCL1ezxdfFOLr+xQODndfxnN2drZ+Hjp0GDdu3ACgocFIcPDsXvd6eU0mLy+/375q9VAAuru7+53H8mz67nkzm3usS7MeHh4EBPizbt0GnJ2d8fV9iqCgIIYPH051dQ1ms5mwsPl9xmhsbLImy05OTtb2iIgI4uO3UFZWjre3N08/PYNZs/r+34QYzCQ5E0KIm24dTzF58iQ+//xzHn10KiqViscee4y6urp+k7Nhw4bR0dHZp91sNtPe3t6rYuXp6UlISAgAa9bEEBu7lkOHPrFWou7G2VmDra3yrtf9/f05cCCStrY2ioqKiY5e8YPj3Xrz83aslr/29vZ97u3pMdHTczv5/Pdk887+d7I8m44+7W1tt5+LQqHgtdc2EhYWSllZOeXl5Rw8+HeSkxMxmUyoVCp2797VZ4xRo0Zy8uQ3feKePt2P3Nz9lJaWcuRIJampaVRW/pP169f2H6QQg5DsORNCiJvee28P4eGWvWYKhcJa9TGZTHd969Hd3Y2mpiauXbvWq/306TN0dXXh4eFubbtVLQKYNm0agYG/4a233ubKlSv3FPeECR5oNBr278+ho6MDHx8f67WfsqQ3fvy4XvvLAGpr63B1dR1QXO7ubv2ex1ZbW8uECR6ApVr39ts70Gq1RESEs2tXNlOmTKGkpJRx41y5fv06PT0mXFw0uLhYli537NhBZ2ffhBhg9+53uXLlCsHBwSQkbCE29lUKCwsHFL8Q94skZ0IIAVRVVWFnZ8ukSZ4APPKIloqKCs6ePUtlZaW1/U5eXl64u7sTF7eZmpoaLly4QEVFBUlJyQQEBPzgnrKoqEjs7OzIyMi85/j9/XXk5OQyc+ZM7OzsrO0ODg4YjUZaW1t/dIzQ0FCKi0vIzT1AU1MTubkHKC4uYc6ckAHF9PzzIXz5ZQUGwx4aGxs5e/YsOTm5FBR8TFhYGGCpruXl5WMw7OHChQscO3aM7777Dq1Wy/jx4/Hx8SE5OYW6unpOnz5DSkoKLS0tjBo1qt85jUYj27Zt59SpUxiNRoqLi9FqtQOKX4j7RZIzIYTAcoL/raoZgE6nw83NjRUropk4caL1OIk72djYkJaWikajYfPmeBYtCueNN7bj5+fL2rWxPzino6MjK1ZEceRIJR9/fOie4tfpZnHjxg38/XufvD9nzvPk5eX/RwngxImPsGnTRvLy8omIWMKhQ5+weXPcgN4qBdBqtaSnb+X48RMsWxbJ8uVRFBYeJi5uEz4+0wDL8uSWLfGUlZWzeHEESUnJhIT8jtmznwVgw4b1uLi4EBv7R1auXMXo0aNJTEy865wxMZZ7Vq9+laVLl2Eymdi0aeOA4hfiflGY5YRCIYR44J04cYItWxLJydnXa/lUCPHgkRcChBDiAXb16lWqqqrZt28fen2QJGZC/B+QZU0hhHiAdXZ2snVrGkOGqFiw4Pf3OxwhxH+BLGsKIYQQQgwiUjkTQgghhBhEJDkTQgghhBhEJDkTQgghhBhEJDkTQgghhBhEJDkTQgghhBhEJDkTQgghhBhE/gX8I29AH84QtwAAAABJRU5ErkJggg==\n", "text/plain": [ "| \n", " | Gender | \n", "Median Salary | \n", "
|---|---|---|
| 0 | \n", "Man | \n", "47000.0 | \n", "
| 1 | \n", "Non-binary | \n", "45000.0 | \n", "
| 2 | \n", "Woman | \n", "37000.0 | \n", "