{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "%matplotlib inline" ] }, { "cell_type": "raw", "metadata": {}, "source": [ "
\n", "
\n", "
\n", "
\n",
    "# BEGIN QUESTION\n",
    "name: q3\n",
    "manual: true\n",
    "
\n", "
\n", "
\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Question 3.** Graph the function $f(x) = \\arctan \\left ( e^x \\right )$." ] }, { "cell_type": "raw", "metadata": { "tags": [] }, "source": [ "
\n", "
\n", "
\n", "
\n",
    "# BEGIN SOLUTION\n",
    "
\n", "
\n", "
\n", "
" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEYCAYAAACz2+rVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXxddZ3/8dfnZm3TdE260IXuQClI21CwiBYBLagwKiKoIyjaUQYfOo6OOCr4w5lxlBEdR4RBYVxGAdmkwxQrCoVh6ZJCoXubbqSlbbY2XdMk935+f5yTeAlJm7S55y55Px+P+8hZvvfcz/3m3Pu55/s953zN3REREQGIpTsAERHJHEoKIiLSTklBRETaKSmIiEg7JQUREWmnpCAiIu2UFEREpJ2SgoiItFNSkIxnZuVm9pSZ7TWz+8zsu2b2pW4+d5mZnZnqGNOth3VSGNZLsZl90MzuCpf3ibqSYzNd0SyZzszuAIrd/UYzKwdWApPd/Ug3nns18FF3/3Cq4+wJM9sGfMbd/9QL2+pRnYTP+RtgFlAGXO3urZlaVxItHSlINrgEeCicvh5Y2N0vP2ABcJGZjUxFYJ0xs/yoXit0PT2rE4AXgRuAG929NVwWeV1J5lFSkIwVNnM0AmcB/2Nmq4DLgGeTynzfzH6fNH+7mf3ZzAoB3L0JWAG8txfiudnMNpvZATNba2YfTFq3zcy+ZmavAYfMLN/MxprZo2ZWa2b1ZvaTsOyvgXHhezpoZv/Qze1/xcxeM7NGM3vQzIrD1W+qk6TnfDbcTqOZPWlmw8PlZcCPgG8Bn2gr35t1JVnM3fXQI2MfwDRgT9J8LXBu0vwwoBGYAXwOWAUM6rCNHwN3dLLtJ4B9XTye6KT8R4BTCH5MfRQ4BIwK120jaMIZC/QD8oBXgR8CJUAx8I6kbW0DLunh9peF64cC64DPdVYn4bJ/JPiCnwwUAj8H7gGKgIUEibYAWA6UHK+u9Og7j6gPc0V66hyCL9c2g4EDbTPuXm9mPwR+CQwi+OJt7LCNA8Cojht29/f3JBB3fyhp9kEz+zowG3g8XPZjd68GMLO3E3yBf9X/0jzzfC9s/41w+/9DUDfQoU7CI4JvADPcvSpcdi/wU3c/Clye9Drndgij07qSvkPNR5LpOiaFvUBphzKvEPzy/Xrbl3IHpQS//k+KmX3SzFaa2T4z2wdMJ+iobZP82mOB7UkJoTe2vztp+jAwIJzuWCcXExwRLEva1h8IjqiOp1fqSrKXkoJkurfx5qTwGjC1bcbMzgLuIjhS+HQX2zijwzbanvtk2Kbf2ePJDmVPBX4G3AQMc/fBwGrAkooln8pXDYw7Rqfzm0776+b2u/KmOiFoXnrM3QcnPQa5+9xubKvTupK+Q0lBMl3HpLAQeBeAmY0G/oegL+FG4Cwzm5v85LAzdhbwVMcNu/tl7j6gi8dlHYqXEHyR14bb/RTBL/muLAN2Af9qZiXhNQEXJK3fA0w8ie0na6+T0MsEZxHNDLc10MyuNLNjJphj1ZX0HUoKkrHCUyOHAOuTFv8KuNzMBhF8Gd7h7gvc/TBwO/DPHTbzAWBxW1v8iXL3tcAPgJcIvtDPAl44Rvl4+NqTgdeBHQSdx22+C3wzbN75Sk+330FbnfQLX/sl4DbgETM7CKwF5rn78S5K6pW6kuymi9ck65jZvwA17v6jbpRdCtzg7qtTH1n69KROjrGNPlFXcmxKCiIi0k7NRyIi0k5JQURE2ikpiIhIu6y+ormsrMzHjx+f7jBERLLKihUr6ty9vLN1WZ0Uxo8fT2VlZbrDEBHJKma2vat1aj4SEZF2kSSFcLSsGjPr8vxnM5sb3vdljZm95TbAIiKSelEdKfwCmNfVSjMbDPwUuMLdzyS4hbCIiEQskqTg7s8BDcco8jHgUXd/PSxfE0VcIiLyZpnSpzAVGGJmi81shZl9Mt0BiYj0RZly9lE+wd0ZLyYYteolM1vi7hs7FjSz+cB8gHHjxkUapIhIrsuUI4UdwCJ3P+TudcBzBLdMfgt3v8fdK9y9ory809NsRUTkBGXKkcLjwE/CAUkKgfMIxrYVESGRcI62JmhuTXC0NU5zPJhuiTst8QQt8QStCac17sQTTksiQTzuxD2YjyechIePBMTD8YgTTrgcSJr38C/B4mBZOA3g/GVdGw+fF6xPXp40nbSmq3uRdnmL0g5PqBg/lHdO7f0fxpEkBTO7H5gLlJnZDuBWgkHDcfe73X2dmf2BYASpBPBz3b5XJDe4OweOtlJ74Cj1B5tpOBQ8Go+00Hikhf1NLRxoauVgUwuHjsY5eLSVIy1xDoV/j7YkaI4n0v02MkLyMEmfe9ek7E0K7n5tN8rcTjBIiohkmcbDLWypO8i2+kNsqzvMzn1H2Ln3CG80HmHP/iaaWjr/Ui/IMwb1K2BgcQElRfkMKMrnlMHF9CvMp39BHv0K8yguyKO4IEZRfh5F+TEK82MU5gV/C/JiFOQZBXkx8vOMvFgwnRcz8mPBfF7MyDMjFjNiZsQMYhYsN4M8MzAwwmUEX75mwXojKG9hmY7j17Ut/8t02/K/FLQO5emkTKbIlOYjEckSuxubWFm9l5XVjazfvZ/1uw6we39T+3ozGDmwmFMG9+PsMYMZObCI4aXFlJcWUTagiCElBQzpX8iQ/oUUF8Qy8ouxL1NSEJFj2rO/iec31fFCVR0vbalnV2OQAArzYkwaPoA5k4Zx2shSJpYPYEJZCWOH9qMoPy/NUcuJUlIQkbfYWneIJ1fv4slVu1m1sxGAoSWFvH3SMCpOHcKMcUM4Y1SpvvxzkJKCiABwuLmVJ17dxW+Xvc7K6n0AnDN2MF+bdzrvnFrGGSMHEoupqSfXKSmI9HE1+5u457ktPLi8mgNHW5k8fADffN8ZXH7WKE4Z3C/d4UnElBRE+qjdjU3ctbiK+5dXE0847z97FH99/qnMOnWIOn/7MCUFkT6muTXBvc9v5T+e3kRza4IPzxzDjRdN4tRhJekOTTKAkoJIH/Li5jq++dhqttQd4tJpI/jW+6Yxblj/dIclGURJQaQPaIknuOOpjdz97GZOHdqf//rUuVx02vB0hyUZSElBJMdVNxzmC/e/wsrqfVw7exy3vH8a/Qp1Kql0TklBJIet2N7ADb+sJJ5w7vzYTN539qh0hyQZTklBJEf9YfVuvvjAK4waVMwvPz1bHcnSLUoKIjnov5ds51uPr+ZtYwZz73UVDBtQlO6QJEsoKYjkmN9VVvPN36/m4tOH85OPzVT/gfSIkoJIDlm0Zjc3P/IaF04p46efmKl7E0mPZcpwnCJykl6squMLv32Ft40dzH/+9SwlBDkhSgoiOWBr3SH+5tcrmFBWwn9dfy79C9UIICcmkqRgZveZWY2ZHXOITTM718xazeyqKOISyQVNLXE+/98ryMsz7r2+gsH9C9MdkmSxqI4UfgHMO1YBM8sDvgf8MYqARHLFrY+vYf3uA/zwo+cwZohuWSEnJ5Kk4O7PAQ3HKfYF4BGgJvURieSGhyqrebCymi+8e7JuWyG9IiP6FMxsNPBB4K5ulJ1vZpVmVllbW5v64EQy1Pb6Q3zr8dXMmTSML10yNd3hSI7IiKQA/Aj4mrsnjlfQ3e9x9wp3rygvL48gNJHM4+588/eryY/FuOPqc8jTiGjSSzLlFIUK4IFwYI8y4HIza3X336c3LJHM9PuVO/m/TXXcduWZjBxUnO5wJIdkRFJw9wlt02b2C+AJJQSRzu091Mx3nljHjHGD+fh5p6Y7HMkxkSQFM7sfmAuUmdkO4FagAMDd744iBpFc8c8L17H/SAvf/dBZajaSXhdJUnD3a3tQ9voUhiKS1V55fS8Pr9jBjXMncfrIgekOR3JQpnQ0i0g33L5oA8NKCrnxosnpDkVylJKCSJZ4flMdL26u528vmsyAoozoDpQcpKQgkgXcndsXrWf04H58/Pxx6Q5HcpiSgkgWWLRmD6/uaOSLl0zR3U8lpZQURDJcPOH84I8bmFRewodmjE53OJLjlBREMtyiNbvZVHOQv7t0Kvl5+shKamkPE8lw9z6/lXFD+3PZ9FHpDkX6ACUFkQy2snofK7bv5fo543WhmkRCSUEkg937/FZKi/K5+tyx6Q5F+gglBZEM9ca+IyxctYtrZo/VdQkSGSUFkQz1y5e24e5cN2d8ukORPkRJQSQDHW5u5f6lr3PZ9FEaYlMipaQgkoGeeHUX+5ta+dQF49MdivQxSgoiGejhFTuYWF7CrFOHpDsU6WOUFEQyzLa6Qyzb1sBHZo0lHI1QJDJKCiIZ5pGXdxAz+KBuaSFpEElSMLP7zKzGzFZ3sf7jZvaama0ysxfN7G1RxCWSaRIJ55EVO7hwSrnGXpa0iOpI4RfAvGOs3wq8y93PAr4D3BNFUCKZ5qUt9bzR2MRVs8akOxTpo6IajvM5Mxt/jPUvJs0uAfSJkD7pocpqSovzuXTaiHSHIn1UJvYp3AA82dVKM5tvZpVmVllbWxthWCKptb+phT+s2c0VbzuF4gKNmSDpkVFJwcwuIkgKX+uqjLvf4+4V7l5RXl4eXXAiKbZo9W6aWhJ8WE1HkkYZc0MVMzsb+DlwmbvXpzsekag9uXo3owf3Y8bYwekORfqwjDhSMLNxwKPAX7v7xnTHIxK1A00tPL+pjnnTR+raBEmrSI4UzOx+YC5QZmY7gFuBAgB3vxu4BRgG/DT8QLS6e0UUsYlkgqfX19AcT3DZ9JHpDkX6uKjOPrr2OOs/A3wmilhEMtGTq3YzvLSImeN0WwtJr4xoPhLpyw43t7J4Yw3zpo8kptHVJM2UFETSbPGGWppaEsxT05FkACUFkTR7cvVuhpUUMnv80HSHIqKkIJJOTS1xnl63h/ecOYL8PH0cJf20F4qk0fOb6jjUHGfe9FHpDkUEUFIQSas/r69hQFE+b584LN2hiABKCiJp4+48u6GGd0wuozBfH0XJDNoTRdJk456DvNHYxEWn6x5ekjmUFETS5JkNNQC8a+rwNEci8hdKCiJp8sz6Gs4YNVAjrElGUVIQSYP9TS2s2L6Xi05T05FkFiUFkTR4YVMdrQnnotPVdCSZRUlBJA2e2VDDwOJ8jZ0gGUdJQSRi7s7iDbVcOLVcVzFLxtEeKRKxtbv2U3PgKBedpqYjyTxKCiIRW7yhFoB3Ti1LcyQibxVJUjCz+8ysxsxWd7HezOzHZlZlZq+Z2cwo4hJJhxeq6jh9ZCnDS3UqqmSeqI4UfgHMO8b6y4Ap4WM+cFcEMYlErqklTuX2vVwwWUcJkpkiSQru/hzQcIwiVwK/8sASYLCZ6baRknNWbN9Lc2uCCybrBniSmTKlT2E0UJ00vyNc9hZmNt/MKs2ssra2NpLgRHrLC1V15MeM2ROUFCQzZUpS6DZ3v8fdK9y9orxcV4NKdnlhcz3njB3MgKL8dIci0qlMSQo7gbFJ82PCZSI5o/FIC6t27GOO+hMkg2VKUlgAfDI8C+l8oNHdd6U7KJHetHRLPQmHCyap6UgyVyTHsGZ2PzAXKDOzHcCtQAGAu98NLAQuB6qAw8CnoohLJEovbq6nX0EeM8YNSXcoIl2KJCm4+7XHWe/A30YRi0i6PF9Vx7kThmqUNclo2jtFIrBnfxNVNQfVdCQZT0lBJAIvbq4D0EVrkvGUFEQi8NLmegb1K2DaqIHpDkXkmJQURCKwZEsD500YSixm6Q5F5JiUFERSbFfjEV5vOMx5E9WfIJlPSUEkxZZuCW77dd6EoWmOROT4lBREUmzp1npKi/M5Q/0JkgWUFERSbMmWBmaPH0qe+hMkCygpiKRQzf4mttYd4nz1J0iWUFIQSaElW8P+hInqT5DsoKQgkkJLt9QzoChf1ydI1lBSEEmhJVvqqRg/hPw8fdQkO2hPFUmR2gNH2Vyr/gTJLkoKIimybKuuT5Ds0+OkYGYlZpaXimBEcsnSrfX0L8xj+uhB6Q5FpNuOmxTMLGZmHzOz/zWzGmA9sMvM1prZ7WY2OfVhimSfZVsbmHXqEArUnyBZpDt76zPAJODrwEh3H+vuw4F3AEuA75nZJ463ETObZ2YbzKzKzG7uZP04M3vGzF4xs9fM7PIevheRjLHvcDPrdx9Q05Fkne6MvHaJu7d0XOjuDcAjwCNmVnCsDYTNTXcClwI7gOVmtsDd1yYV+ybwO3e/y8ymEQzROb57b0MksyzftheA2RPUySzZ5bhHCm0Jwcz+3cw6vU6/s6TRwWygyt23uHsz8ABwZcfNAG0ncw8C3jhebCKZatnWegrzY5w9Rv0Jkl160th5AFhgZiUAZvZeM3uhm88dDVQnze8IlyX7NvAJM9tBcJTwhc42ZGbzzazSzCpra2t7EL5IdJZtbeCcsYMpLtA5GZJdup0U3P2bwP3A4jAZfBl4S9/ASbgW+IW7jwEuB35tZm+Jz93vcfcKd68oLy/vxZcX6R0Hj7ay+o396k+QrNSdPgUAzOxi4LPAIWAU8Gl339DNp+8ExibNjwmXJbsBmAfg7i+ZWTFQBtR0N0aRTPDy9r3EE85sJQXJQj1pPvoG8C13nwtcBTxoZu/u5nOXA1PMbIKZFQLXAAs6lHkduBjAzM4AigG1D0nWWba1gbyYMXPckHSHItJj3T5ScPd3J02vMrPLCM4+mtON57aa2U3AIiAPuM/d15jZbUCluy8A/h74mZn9HUGn8/Xu7j17OyLpt2xrA9NHD6KkqNsfL5GMcdy91syssy9nd98VNil1WaZD+YUEHcjJy25Jml4LXNDdwEUyUVNLnJXV+7j+gvHpDkXkhHSn+ehpM/uCmY1LXhg2A73dzH4JXJeS6ESyzKvV+2iOJ5g9Xv0Jkp26c3y7CYgDj5nZKGAfQXt/HvBH4Efu/krqQhTJHsu2NmAG5yopSJbqTlI4193nm9lngHFAOXDE3felNjSR7LN0awOnjShlUP9jXuQvkrG603z0ZzN7CRgBfBI4BTiS0qhEslBza4IV2/dq/ATJasc9UnD3r5jZJIIb400ArgDONLNmYLW7fzTFMYpkhVU793GkJa6L1iSrdeucOXffbGaXuPvGtmVmNgCYnrLIRLLMki3BoDq6aE2yWU+uU9jYYf4gwa2zRYSgP2HqiAEMG1CU7lBETphG/xDpBS3xBCu2NXCebpUtWU5JQaQXrN7ZyKHmuDqZJespKYj0gqVb1Z8guUFJQaQXLN1Sz6TyEspL1Z8g2U1JQeQktcYTLN+m6xMkNygpiJyktbv2c/BoK+cpKUgOUFIQOUlLw+sTzld/guQAJQWRk7RkSz0Ty0oYPrA43aGInDQlBZGT0BpPsGxrg5qOJGdElhTMbJ6ZbTCzKjO7uYsyV5vZWjNbY2a/jSo2kRP12s5GDhxt5R2Ty9IdikiviGS8QDPLA+4ELgV2AMvNbEE42lpbmSnA14EL3H2vmQ2PIjaRk/FiVR0Ab5+kIwXJDVEdKcwGqtx9i7s3Aw8AV3Yo81ngTnffC+DuNRHFJnLCnq+qY9qogQwtKUx3KCK9IqqkMBqoTprfES5LNhWYamYvmNkSM5vX2YbMbL6ZVZpZZW1tbYrCFTm+I81xXt6+jwsm6yhBckcmdTTnA1OAucC1wM/MbHDHQu5+j7tXuHtFeXl5xCGK/EXl9gaa4wnmqD9BckhUSWEnMDZpfky4LNkOYIG7t7j7VmAjQZIQyUgvVNWTHzNmazxmySFRJYXlwBQzm2BmhcA1wIIOZX5PcJSAmZURNCdtiSg+kR57cXMdM8YNpqQokvM1RCIRSVJw91bgJmARsA74nbuvMbPbzOyKsNgioN7M1hIM/flVd6+PIj6Rnmo83MKqnY3MmaSmI8ktkf3EcfeFwMIOy25Jmnbgy+FDJKO9tKUed7hA/QmSYzKpo1kka7y4uY7+hXmcM/Yt50KIZDUlBZET8HxVHbMnDKUwXx8hyS3ao0V66PX6w2ypPcS7puqUaMk9SgoiPbR4Y3Cx/dzTdCcWyT1KCiI99Mz6GsYP68+EspJ0hyLS65QURHqgqSXOi5vrdZQgOUtJQaQHlmyp52hrgrmnqT9BcpOSgkgPLN5QS3FBjPM1qI7kKCUFkW5yd55eX8OcSWUUF+SlOxyRlFBSEOmmrXWHeL3hsJqOJKcpKYh00+INwfgdc6eqk1lyl5KCSDc9s6GGSeUljBvWP92hiKSMkoJINxxoamHplgYu0qmokuOUFES64en1NTTHE8ybPjLdoYiklJKCSDcsXLWL4aVFzBw3JN2hiKSUkoLIcRxubuXZjbXMmz6SWMzSHY5ISkWWFMxsnpltMLMqM7v5GOU+bGZuZhVRxSZyLIs31NLUoqYj6RsiSQpmlgfcCVwGTAOuNbNpnZQrBb4ILI0iLpHueHL1boaVFDJ7/NB0hyKSclEdKcwGqtx9i7s3Aw8AV3ZS7jvA94CmiOISOaamljhPr9vDe84cQX6eWlsl90W1l48GqpPmd4TL2pnZTGCsu/9vRDGJHNf/barjUHOcedNHpTsUkUhkxE8fM4sBdwB/342y882s0swqa2trUx+c9GlPrt7FoH4FzJmkG+BJ3xBVUtgJjE2aHxMua1MKTAcWm9k24HxgQWedze5+j7tXuHtFebnuQSOpc7Q1zp/W7uGSM0ZQoKYj6SOi2tOXA1PMbIKZFQLXAAvaVrp7o7uXuft4dx8PLAGucPfKiOITeYs/ra1hf1MrfzXjlHSHIhKZSJKCu7cCNwGLgHXA79x9jZndZmZXRBGDSE89vKKaUYOKmTOpLN2hiEQmP6oXcveFwMIOy27pouzcKGIS6UrN/iae3VjL5+dOIk8XrEkfooZSkU489spOEg4fnjkm3aGIREpJQaQDd+ehFTuYdeoQJpYPSHc4IpFSUhDp4NUdjVTVHOSqWTpKkL5HSUGkg4dXVFNcEON9Z+uCNel7lBREkjS1xFmw8g3mnTmSgcUF6Q5HJHJKCiJJHn15J/ubWrlm9rh0hyKSFkoKIiF3574XtnLmKQM5b4LuiCp9k5KCSOjZjbVU1RzkhndMwEzXJkjfpKQgErr3+a0MLy3i/WfrthbSdykpiAAbdh/g/zbVcd2c8RTm62MhfZf2fhHgvue3UlwQ42PqYJY+TklB+ryaA008tnInH5o5hiElhekORyStlBSkz7vz6SriCWf+hRPTHYpI2ikpSJ9W3XCY3y57nasrxjK+rCTd4YiknZKC9Gk//NNGYmZ88eIp6Q5FJCMoKUiftXHPAR57ZSfXzRnPyEHF6Q5HJCMoKUif9YM/bqCkMJ/PvWtSukMRyRiRJQUzm2dmG8ysysxu7mT9l81srZm9ZmZ/NrNTo4pN+p7l2xpYtGYPn71wIkN1xpFIu0iSgpnlAXcClwHTgGvNbFqHYq8AFe5+NvAw8P0oYpO+52hrnK8/uorRg/vxmQsnpDsckYwS1ZHCbKDK3be4ezPwAHBlcgF3f8bdD4ezSwCNcCIp8Z/PbqGq5iD/9FfTKSmKbJhykawQVVIYDVQnze8Il3XlBuDJzlaY2XwzqzSzytra2l4MUfqCzbUH+cnTVbz/7FFcdPrwdIcjknEyrqPZzD4BVAC3d7be3e9x9wp3rygvL482OMlq7s4/PrqK4oIYt3ygY+uliABEdey8ExibND8mXPYmZnYJ8A3gXe5+NKLYpI/4rxe2sXRrA9/90FkML9UpqCKdiepIYTkwxcwmmFkhcA2wILmAmc0A/hO4wt1rIopL+oiXX9/Lvyxcx6XTRnDNuWOP/wSRPiqSpODurcBNwCJgHfA7d19jZreZ2RVhsduBAcBDZrbSzBZ0sTmRHmk41MxNv3mZUYOL+bePvE0D6IgcQ2SnXrj7QmBhh2W3JE1fElUs0nckEs6XHlxJ3aFmHv38HAb1K0h3SCIZLeM6mkV6i7vzLwvX8dzGWm79wDSmjx6U7pBEMp6SguSsny7ezM+f38r1c8Zr8ByRblJSkJz030u2c/uiDXxwxmhuef809SOIdJOSguSc31VW863HV3Px6cP5/lVnE4spIYh0l67xl5zh7vzH01Xc8dRGLpxSxp0fn0lBnn73iPSEkoLkhNZ4gm89vpr7l1XzoRmj+dcPn01hvhKCSE8pKUjW29V4hC89sJKlWxu4ce4kvvre09SHIHKClBQkqz21dg9fffhVmlsT/NtH3sZVs3RzXZGToaQgWan+4FG+/4cNPFhZzZmnDOTH185gUvmAdIclkvWUFCSrxBPOb5Zu598WbeBwc5y/eedEvvyeqRTl56U7NJGcoKQgWaE1nuCJ13bxk2eqqKo5yJxJw/h/V5zJlBGl6Q5NJKcoKUhGO3i0lcdX7uRnz21hW/1hThtRyl0fn8m86SPVmSySAkoKknHcnVeq9/FQ5Q4WrNzJoeY400cP5O5PzOI900boYjSRFFJSkIzQ3Jpgxfa9/HHtbhat3s0bjU0UF8T4wNmncO1545gxdrCODEQioKQgadHUEmf1zkZefn0vL26uZ+mWBo60xCnMj/HOKeV85b2nccm0EQws1q2uRaKkpCAplUg4bzQeYWvdITbsPsD63QdYv3s/63cdoDXhAEwsL+HqijFcMLmMOZPLGFCk3VIkXSL79JnZPODfgTzg5+7+rx3WFwG/AmYB9cBH3X1bVPFJz7XEE+w93EzDoWZq9h+l5sBR9uxv4o19R9i57wg79x5he8NhmlsT7c8pLy3i9JGlzH/nRGaMG8I5YwdTXlqUxnchIskiSQpmlgfcCVwK7ACWm9kCd1+bVOwGYK+7Tzaza4DvAR+NIr5c4O60Jpx4wkm0TceDv62JBK1xpyWeoDXhNLcmaI4ngr/h42hrgqaWOE2tcY40B49DzXGONLdy4GgrB5taOXi0lcYjLe2PA02tncYypH8Bo4f0Y0JZCRedPpzxw0oYX9afqSNKKRugBCCSyaI6UpgNVLn7FgAzewC4EkhOClcC3w6nHwZ+Ymbm7t7bwTy7sZbvPLG203VdvZx3MZO8vONzHWhb5Phfpv3Nz2kr11YmaFVxEh6sb/sbrAvmg7/BdDzR61UEQGFejH6FeZQW5zOgKHiMHFjM1BGlDOpXwNCSQoaUFDK0fyHDBxYxvLSI4aXF9CvUhWQi2SqqpDAaqE6a3wGc1/xOzSgAAAfKSURBVFUZd281s0ZgGFCXXMjM5gPzAcaNO7HRtAYU5XPasS566uIkl+TFyWfCvHn5W5/TVtaSChvWXtbC5xlGLBauNYgZxMzatxGzYHlezNrL58UgzwwzIz9mxGJGXiyYzm+bzouRHzMK8mLhwyjIj1GUF6MwP0ZRfh5FBTGK8/MoLohRXJhH/4I88nXbaZE+J+t69Nz9HuAegIqKihP6iTzr1CHMOnVIr8YlIpILovopuBMYmzQ/JlzWaRkzywcGEXQ4i4hIRKJKCsuBKWY2wcwKgWuABR3KLACuC6evAp5ORX+CiIh0LZLmo7CP4CZgEcEpqfe5+xozuw2odPcFwL3Ar82sCmggSBwiIhKhyPoU3H0hsLDDsluSppuAj0QVj4iIvJVOLxERkXZKCiIi0k5JQURE2ikpiIhIO8vmsz7NrBbYfoJPL6PD1dIZIlPjgsyNTXH1jOLqmVyM61R3L+9sRVYnhZNhZpXuXpHuODrK1Lggc2NTXD2juHqmr8Wl5iMREWmnpCAiIu36clK4J90BdCFT44LMjU1x9Yzi6pk+FVef7VMQEZG36stHCiIi0oGSgoiItMvppGBmHzGzNWaWMLOKDuu+bmZVZrbBzN7bxfMnmNnSsNyD4W2/ezvGB81sZfjYZmYruyi3zcxWheUqezuOTl7v22a2Mym2y7soNy+swyozuzmCuG43s/Vm9pqZPWZmg7soF0l9He/9m1lR+D+uCvel8amKJek1x5rZM2a2Ntz/v9hJmblm1pj0/72ls22lKL5j/m8s8OOwzl4zs5kRxHRaUl2sNLP9ZvalDmUiqTMzu8/MasxsddKyoWb2lJltCv92OkqYmV0XltlkZtd1Vua4grF/c/MBnAGcBiwGKpKWTwNeBYqACcBmIK+T5/8OuCacvhv4fIrj/QFwSxfrtgFlEdbdt4GvHKdMXlh3E4HCsE6npTiu9wD54fT3gO+lq7668/6BG4G7w+lrgAcj+N+NAmaG06XAxk7imgs8EdX+1JP/DXA58CTBSLXnA0sjji8P2E1wgVfkdQa8E5gJrE5a9n3g5nD65s72e2AosCX8OyScHtLT18/pIwV3X+fuGzpZdSXwgLsfdfetQBUwO7mABQMrvxt4OFz0S+CvUhVr+HpXA/en6jVSYDZQ5e5b3L0ZeICgblPG3f/o7q3h7BKCUfzSpTvv/0qCfQeCfelis44jefcud9/l7i+H0weAdQRjoGeLK4FfeWAJMNjMRkX4+hcDm939RO+WcFLc/TmCMWWSJe9HXX0XvRd4yt0b3H0v8BQwr6evn9NJ4RhGA9VJ8zt464dmGLAv6QuoszK96UJgj7tv6mK9A380sxVmNj+FcSS7KTx8v6+Lw9Xu1GMqfZrgF2Vnoqiv7rz/9jLhvtRIsG9FImyumgEs7WT1283sVTN70szOjComjv+/Sfd+dQ1d/zhLV52NcPdd4fRuYEQnZXql3iIbZCdVzOxPwMhOVn3D3R+POp7OdDPGazn2UcI73H2nmQ0HnjKz9eEvipTEBdwFfIfgA/wdgqatT5/M6/VGXG31ZWbfAFqB33SxmV6vr2xjZgOAR4Avufv+DqtfJmgeORj2F/0emBJRaBn7vwn7Da8Avt7J6nTWWTt3dzNL2bUEWZ8U3P2SE3jaTmBs0vyYcFmyeoLD1vzwF15nZXolRjPLBz4EzDrGNnaGf2vM7DGCpouT+iB1t+7M7GfAE52s6k499npcZnY98H7gYg8bUzvZRq/XVye68/7byuwI/8+DCPatlDKzAoKE8Bt3f7Tj+uQk4e4LzeynZlbm7im/8Vs3/jcp2a+66TLgZXff03FFOusM2GNmo9x9V9iUVtNJmZ0E/R5txhD0p/ZIX20+WgBcE54ZMoEg2y9LLhB+2TwDXBUuug5I1ZHHJcB6d9/R2UozKzGz0rZpgs7W1Z2V7S0d2nA/2MXrLQemWHCWViHBYfeCFMc1D/gH4Ap3P9xFmajqqzvvfwHBvgPBvvR0V4mst4R9FvcC69z9ji7KjGzr2zCz2QTfBVEkq+78bxYAnwzPQjofaExqOkm1Lo/Y01VnoeT9qKvvokXAe8xsSNjc+55wWc+kuic9nQ+CL7MdwFFgD7Aoad03CM4c2QBclrR8IXBKOD2RIFlUAQ8BRSmK8xfA5zosOwVYmBTHq+FjDUEzSqrr7tfAKuC1cIcc1TGucP5ygrNbNkcUVxVBu+nK8HF3x7iirK/O3j9wG0HSAigO952qcF+aGEEdvYOg2e+1pHq6HPhc234G3BTWzasEHfZzUh3Xsf43HWIz4M6wTleRdOZgimMrIfiSH5S0LPI6I0hKu4CW8PvrBoJ+qD8Dm4A/AUPDshXAz5Oe++lwX6sCPnUir6/bXIiISLu+2nwkIiKdUFIQEZF2SgoiItJOSUFERNopKYiISDslBRERaaekICIi7ZQURHqRBeMYXBpO/5OZ/Ue6YxLpiay/95FIhrkVuC282dsMgpuriWQNXdEs0svM7FlgADDXg/EMRLKGmo9EepGZnUUw8lmzEoJkIyUFkV4S3ln2NwSjZB0M7+gqklWUFER6gZn1Bx4F/t7d1xEMTHRreqMS6Tn1KYiISDsdKYiISDslBRERaaekICIi7ZQURESknZKCiIi0U1IQEZF2SgoiItLu/wPpNP6LXGjUsQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "f = lambda x: np.arctan(np.exp(x))\n", "xs = np.linspace(-10, 10, 100)\n", "ys = f(xs)\n", "\n", "plt.plot(xs, ys)\n", "plt.xlabel(\"$x$\")\n", "plt.ylabel(\"$f(x)$\")\n", "plt.title(r\"$f(x) = \\arctan \\left ( e^x \\right )$\");" ] }, { "cell_type": "raw", "metadata": {}, "source": [ "
\n", "
\n", "
\n", "
\n",
    "# END SOLUTION\n",
    "
\n", "
\n", "
\n", "
" ] }, { "cell_type": "raw", "metadata": {}, "source": [ "
\n", "
\n", "
\n", "
\n",
    "# END QUESTION\n",
    "
\n", "
\n", "
\n", "
" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.7" } }, "nbformat": 4, "nbformat_minor": 4 }