

Rev. 3.1

Revision record

Version	Date	Revision Content
1.0	2018 - 1 -24	Initial version
2.0	2018 - 6 -10	Update ad9371 Module to version 2.0
3.0	2018 - 9	Update ad9371 Module to version 3.0
3.1	2020 - 11 - 23	Update software version VIVADO2018.3

Table of Contents

able of Contents	3
. Introduction	4
2. FH7000 HDL reference design	5
2.1 FPGA Hardware Engineering Structure	6
2.2 CPU Customized	7
2.3 JESD204 Authorisation	7
2.4 JESD 204 Customize	0
2.5 FPGA Engineering Data Flow1	D
B. Bare metal applications	1
3.1 Software engineering1	1
3.2 GPIO configuration1	1
3.3 Configuring Clock Chips1	2
3.4 AD9371 initial configuration1	2
3.5 AD9371 Modification after initialization1	6
3.6 Running reference routines1	6
. Customized sampling rate \ldots \ldots 1	8

1. Introduction

This document mainly introduces the development process of FH7000 module FPGA, including the following parts:

FPGA generates DDS signal source internally, FPGA JESD204B interface, customized ARM processor based on ZYNQ, and AD9371 configuration. It can achieve the function of sending and receiving single tone signals and can use chip scope to observe the received signals and export them to MATLAB for analysis.

Furthermore, the RF sub board contains an integrated VCO reference clock generation IC selected from TI's LMK04828, which can generate various reference clocks for AD9371 and FPGA JESD204B using a 48MHz reference clock. The FPGA development process allows for user defined sampling clocks, which can be flexibly used in various communication scenarios.

Through this reference routine, users can understand the hardware composition and programming architecture of this system. For FPGA developers, they can use this FPGA project for secondary development to achieve AD9371 airport baseband data transmission.

V3 provides the overall configuration of PS (ZYNQ processor part), PL (ZYNQ logic part), and AD9371. It can output a single tone signal of a specified frequency through FPGA DDS ipCore and obtain the received waveform through chip scope. Finally, an interface is provided to configure LMK04828 and customize the sampling rate, allowing users to customize the required sampling rate as needed. Based on this project, users who develop FPGA baseband algorithms can use it for secondary development.

Users can use this development firmware to directly complete:

- 1. AD9371 Configuration
- 2. Initialization of JESD204B
- 3. DDS ipcore transmitting IQ data
- 4. Customization of sampling rates

2. RMFC7000 HDL reference design

HDL reference design is an embedded system built around ARM, NIOS-II, or Microblaze processor cores. The functional block diagram is shown below. The digital interface of the device mainly consists of GTX/GTH/GTY high-speed transceivers, and the PL calls the JESD204B IP core and AD9371 for data communication. The SPI interface is used to configure the AD9371 chip and LMK04828 clock chip. In addition, bare metal software programs are provided to support hardware system testing and verification, and AD9371 initialization parameter modification instructions are also provided, which will be explained in the next chapter.

Figure 1 FH7000-HDL Reference Design Block Diagram

Digital interface

The digital interface includes 4 transmitting, 2 receiving, and 2 observation channels

DDS

The DDS IP core generates and sends test data (single tone signal/single frequency signal), and the

phase can be configured by the PS; Control and SPI interface.

The device control signal is controlled by the GPIO module; SPI interface is used to configure AD9371 and LMK04828 clock chips;

2.1 FPGA Hardware Engineering Structure

The FPGA project was built using VIVADO 2018.3, and the main project file structure is as follows:

.Xil
rfmc7000_axu9eg_adaloop.cache
rfmc7000_axu9eg_adaloop.hw
rfmc7000_axu9eg_adaloop.ip_user_files
rfmc7000_axu9eg_adaloop.runs
rfmc7000_axu9eg_adaloop.sdk
rfmc7000_axu9eg_adaloop.sim
rfmc7000_axu9eg_adaloop.srcs
rfmc7000_axu9eg_adaloop.xpr

Figure 2 Hardware Engineering Catalog

The main file structure includes run project compilation and generation files, sdk bare metal software engineering, src design source files including HDL code, FPGA constraints, and xpr being the VIVADO project name. Open DeepRed in VIVADO_ FMC9371_ Adaloop.xpr can open the project as shown in the following figure:

Figure 4 VIVADO Hardware Engineering

Click open block design, open block design. This includes customization of CPUs and peripherals. As shown in the following figure:

Figure 5 Customization of CPU and Peripheral Devices

Note: Different carrier cards may correspond with different CPU peripherals. In actual use, please customize with your own carrier cards.

2.2 CPU Customized

Double click on each module to see the parameter settings in the module, and double click on processing_ System7_ You can see the customization of the CPU, and users can modify it based on their actual usage of the card. If you do secondary development, it can be used as a reference.

SPIO is used to configure the AD9371 and LMK04828 clock chips, I2C1 selects EMI reserved read/write eeprom, UARTO is used for serial port modulation, and GPIO controls the switch IO of AD9371.

The interface between PS and PL selects GP for registration of transferring and configuration of each IP. The clock output from PS to PL enables FCLK_ CLKO, FCLK_ CLKO clock 100MHz is used for GP interface communication, and DMA transmission is not involved in this reference design, so the HP interface is not used. FCLK_ Reset0_ N is used to reset the entire PL system and AXI bus.

2.3 JESD204 Authorization

JESD204B link and configuration, AD9371 adopts the JESD204B protocol and communicates through GTX high-speed serial transceivers. Xilinx provides a complete JESD204B solution, including two parts: JESD204 and JESD204 HPY. JESD204 requires an additional license from Xilinx to use, and JESD204 PHY is included in the VIVADO authorization. Users can register on the xilinx website and receive a free three-month license trial for free. You can also contact We3 Sales for purchase (phone number 010-62670519, QQ120631932). The methods for free trial are as follows:

- 1 Enter: https://www.xilinx.com/support/licensing_solution_center.html
- 2 Choose: Access Product Licensing Site
- 3 Improve user information, next step
- 4 Enter: Access Product Licensing Site, click "Search Now"

Create New Licenses	Manage Licenses	
Have a Voucher to Rede	em? ? XXX	Evaluation and No Charge Cores ?
enter voucher code	Redeem Now	cores catalog and add specific cores to Search Now table below

Create a New License File

Create a new license file by making your product selections from the table below.?

Certificate Based Licenses

	Product	Туре	License	Available Seats	Status	Subscriptio End Date	n
0	SDSoC Environment, 60 Day Evaluation License	Certificate - Evaluation	Node	1/1	Current	60 days	~
1	Model Composer : 90-day Evaluation License	Certificate - Evaluation	Node	1/1	Current	90 days	
	Vivado Design Suite (No ISE): 30-Day Evaluation License	Certificate - Evaluation	Node	1/1	Current	30 days	
1	Vivado Design Suite: HL WebPACK 2015 and Earlier License	Certificate - No Charge	Node	1/1	Current	None	
1	ISE WebPACK License	Certificate - No Charge	Node	1/1	Current	None	
1	PetaLinux Tools License	Certificate - Evaluation	Node	1/1	Current	365 days	

Figure 6 Authorization Center

- 5 Find JESD and join
- 6 Generate a license by adding a PC network card MAC to download the license
- 7. Copy the downloaded license to the. Xilinx directory
- 8 Click on tools report IP status in VIVADO to see the status of each IP and whether it is authorized.

Add Evaluation and No Charge IP Cores		×
Search: jesd ×		
Product 👞	Category	License Type
Category: Communication and Networking (1 Ite	m)	-
LogiCORE, JESD204, Evaluation License	Communication and Networking	Certificate
e		
1		
		-
4		•
		Add

Figure 7 Search JESD204

+

Certificate Based Licenses

	Product	Туре	License	Available Seats	Status	Subscriptio End Date	n
	SDSoC Environment, 60 Day Evaluation License	Certificate - Evaluation	Node	1/1	Current	60 days	*
	Model Composer : 90-day Evaluation License	Certificate - Evaluation	Node	1/1	Current	90 days	
	Vivado Design Suite (No ISE): 30-Day Evaluation License	Certificate - Evaluation	Node	1/1	Current	30 days	
	Vivado Design Suite: HL WebPACK 2015 and Earlier License	Certificate - No Charge	Node	1/1	Current	None	
	ISE WebPACK License	Certificate - No Charge	Node	1/1	Current	None	
[77]	PetaLinux Tools License	Certificate - Evaluation	Node	1/1	Current	365 days	
E	Vivado HLS Evaluation License	Certificate - Evaluation	Node	1/1	Current	30 days	
	LogiCORE, JESD204, Evaluation License	Certificate - Evaluation	Node / Flo		Current	120 days	

Generate Node-Locked License

Figure 8 Generate License

Product	Туре	Status	Subscription Activate End Date Seats
LogiCORE, JESD204, Evaluation License	Certificate - Evaluation	Current	

Figure 9 Download license

SO Up-to-dates Hide All								
Source File	IP ^1	Recommendation	Change Log	IP Name	Current Version	Recommended Version	License	Current Part
🛱 🖬 🙏 system_top (26)								
<pre>system_top_jesd204_phy_0_0_gt</pre>	Up-to-date	No changes required	More info	7 Series FPGAs Transceivers Wizard	3.6 (Rev. 5)	3.6 (Rev. 5)	Included	xc7z035ffg676-2
gradient system_top_jesd204_phy_0_1 (1)	1.5	1.00						
<pre>ultiple system_top_jesd204_phy_0_1_gt</pre>	Up-to-date	No changes required	More info	7 Series FPGAs Transceivers Wizard	3.6 (Rev. 5)	3.6 (Rev. 5)	Included	xe7z035ffg676-2
- 🕼 /jesd204b_orx_rst	Up-to-date	No changes required	More info	Processor System Reset	5.0 (Rev. 10)	5.0 (Rev. 10)	Included	xc7z035ffg676-2
jesd204_phy_1	Up-to-date	No changes required		JESD204 PHY	3.2 (Rev. 1)	3.2 (Rev. 1)	Included	xc7z035ffg676-2
<pre> /processing_system7_0_axi_periph1</pre>	Up-to-date	No changes required	More info	AXI Interconnect	2.1 (Rev. 12)	2.1 (Rev. 12)	Included	xc7z035ffg676-2
- 🕼 /axi_litev3_0	Up-to-date	No changes required		axi_litev3_v1_0	1.0 (Rev. 2)	1.0 (Rev. 2)	Included	xc7z035ffg676-2
- J /bufg_rxoutclk1	Up-to-date	No changes required	More info	Utility Buffer	2.1 (Rev. 6)	2.1 (Rev. 6)	Included	xc7z035ffg676-2
<pre> /processing_system7_0</pre>	Up-to-date	No changes required	More info	ZYNQ7 Processing System	5.5 (Rev. 3)	5.5 (Rev. 3)	Included	xc7z035ffg676-2
/pldma_mwr	Up-to-date	No changes required		pldma_mwr_v2_1	2.1 (Rev. 11)	2.1 (Rev. 11)	Included	xc7z035ffg676-2
- ↓ /c_shift_ram_0	Up-to-date	No changes required	More info	RAM-based Shift Register	12.0 (Rev. 10)	12.0 (Rev. 10)	Included	xc7z035ffg676-2
- J /bufg_txoutclk	Up-to-date	No changes required	More info	Utility Buffer	2.1 (Rev. 6)	2.1 (Rev. 6)	Included	xc7z035ffg676-2
/pldna_mrd	Up-to-date	No changes required		pldma_mrd_v2_1	2.1 (Rev. 14)	2.1 (Rev. 14)	Included	xc7z035ffg676-2
↓jesd204_phy_0	Up-to-date	No changes required	More info	JESD204 PHY	3.2 (Rev. 1)	3.2 (Rev. 1)	Included	xc7z035ffg676-2
- J: /xlconcat_0	Up-to-date	No changes required	More info	Concat	2.1 (Rev. 2)	2.1 (Rev. 2)	Included	xc7z035ffg676-2
<pre></pre>	Up-to-date	No changes required	More info	Processor System Reset	5.0 (Rev. 10)	5.0 (Rev. 10)	Included	xc7z035ffg676-2
↓jesd204b_tx_rst	Up-to-date	No changes required	More info	Processor System Reset	5.0 (Rev. 10)	5.0 (Rev. 10)	Included	xc7z035ffg676-2
- JF /jesd204_rx	Up-to-date	No changes required	More info	JESD204	7.1 (Rev. 1)	7.1 (Rev. 1)	Design Linking	xc7z035ffg676-2
<pre>JF /processing_system/_U_axi_periph</pre>	Up-to-date	No changes required	More into	AAI Interconnect	2.1 (Rev. 12)	2.1 (Nev. 12)	Included	xc/zubbiig0/0-2
<pre> /processing_system7_0_axi_periph2</pre>	Up-to-date	No changes required	More info	AXI Interconnect	2.1 (Rev. 12)	2.1 (Rev. 12)	Included	xc7z035ffg676-2
<pre></pre>	Up-to-date	No changes required	More info	Processor System Reset	5.0 (Rev. 10)	5.0 (Rev. 10)	Included	xc7z035ffg676-2
/util_vector_logic_0	Up-to-date	No changes required	More info	Utility Vector Logic	2.0 (Rev. 2)	2.0 (Rev. 2)	Included	xc7z035ffg676-2
- J /bufg_rxoutclk	Up-to-date	No changes required	More info	Utility Buffer	2.1 (Rev. 6)	2.1 (Rev. 6)	Included	xc7z035ffg676-2
- DF /xlconstant_0	Up-to-date	No changes required	More info	Constant	1.1 (Rev. 2)	1.1 (Rev. 2)	Included	xc7z035ffg676-2
l⊈F /jesd204_tx	Up-to-date	No changes required	More info	JESD204	7.1 (Rev. 1)	7.1 (Rev. 1)	Design Linking	xc7z035ffg676-2
↓ /jesd204_orx	Up-to-date	No changes required	More info	JESD204	7.1 (Rev. 1)	7.1 (Rev. 1)	Design Linking	xc7z035ffg676-2
/jesd204b_rx_rst	Up-to-date	No changes required	More info	Processor System Reset	5.0 (Rev. 10)	5.0 (Rev. 10)	Included	xc7z035ffg676-2
- 🖵 dds1	Up-to-date	No changes required	More info	DDS Compiler	6.0 (Rev. 13)	6.0 (Rev. 13)	Included	xc7z035ffg676-2
- 1 fifo_32to64	Up-to-date	No changes required	More info	FIFO Generator	13.1 (Rev. 3)	13.1 (Rev. 3)	Included	xc7z035ffg676-2
□ I fifo_64to32	Up-to-date	No changes required	More info	FIFO Generator	13.1 (Rev. 3)	13.1 (Rev. 3)	Included	xc7z035ffg676-2
- I ila_0	Up-to-date	No changes required	More info	ILA (Integrated Logic Analyzer)	6.2 (Rev. 1)	6.2 (Rev. 1)	Included	xc7z035ffg676-2

Figure 10 IP Unauthorized Status (Design Linking

ource File		IP ^1	Recommendation	Change Log	IP Name	Current Version	Recommended Version	License	Current Part
h sustan tan (26)			Onen Plack Desim						
E-E system ton jasd204 nhy 0 0 (1)	H		Open block besign						
system ton jesd204 nhy 0.0 st	Н	IIn=to=doto	No obongos require	More infe	7 Series FPGAs Transceivers Wigerd	3.6 (Rev. 5)	3.6 (Rev. 5)	Included	xc7z035ff@61
System ton jasd204 nhy 0 1 (1)	H	op to date	no changes requires	More mro	· burres mons manser as straig	0.0 (10	o. o (act. o)	Included	Act 100011go
system ton jesd204 phy 0 1 st	Н	IIn=to=date	No changes require	More info	7 Series FPGAs Transceivers Wizard	3.6 (Rev. 5)	3.6 (Rev. 5)	Included	xc7z035ffe6
/iesd204h orx rst	H	Un-to-date	No changes require	More info	Processor System Reset	5.0 (Rev. 10)	5.0 (Rev. 10)	Included	xc7z035ffe6
/iesd204 nhv 1	Н	Un-to-date	No changes require	More info	TESD204 PHY	3.2 (Rev. 1)	3.2 (Rev. 1)	Included	xc7z035ffe6
/processing system7 0 axi periph1	H	Un=to=date	No changes required	More info	AXI Interconnect	2 1 (Rev. 12)	2 1 (Rev 12)	Included	xc7z035ffe6
/axi litev3 0	Н	Un-to-date	No changes required	1	axi litev3 v1 0	1.0 (Rev. 2)	1.0 (Rev. 2)	Included	xc7z035ffe6
/bufg rxoutclk1	П	Un-to-date	No changes require	More info	Utility Buffer	2.1 (Rev. 6)	2.1 (Rev. 6)	Included	xc7z035ffe6
/processing system7 0	H	Un=to=date	No changes require	More info	ZYN07 Processing System	5.5 (Rev. 3)	5.5 (Rev. 3)	Included	xc7z035ffe6
- O- /pldma mwr	H	Un-to-date	No changes require	1	pldma mwr v2 1	2.1 (Rev. 11)	2.1 (Rev. 11)	Included	xc7z035ffe6
/c shift ram 0	Н	Un=to=date	No changes require	More info	RAM-based Shift Register	12.0 (Rev. 10)	12.0 (Rev. 10)	Included	xc7z035ffg6
Jufg txoutclk	Π	Up-to-date	No changes require	More info	Utility Buffer	2.1 (Rev. 6)	2.1 (Rev. 6)	Included	xc7z035ffgf
- [/pldma mrd	Ē	Up-to-date	No changes require	1	pldna mrd v2 1	2.1 (Rev. 14)	2.1 (Rev. 14)	Included	xc7z035ffet
/iesd204 phy 0	Ē	Un-to-date	No changes require	More info	TESD204 PHY	3.2 (Rev. 1)	3.2 (Rev. 1)	Included	xc7z035ffet
/xlconcat_0	Ē	Up-to-date	No changes require	More info	Concat	2.1 (Rev. 2)	2.1 (Rev. 2)	Included	xc7z035ffgf
/rst_processing_system7_0_50M	Ē	Up-to-date	No changes require	More info	Processor System Reset	5.0 (Rev. 10)	5.0 (Rev. 10)	Included	xc7z035ffgt
/jesd204b_tx_rst	Ē	Up-to-date	No changes require	More info	Processor System Reset	5.0 (Rev. 10)	5.0 (Rev. 10)	Included	xc7z035ffgt
/jesd204 rx	Π	Up-to-date	No changes require	More info	JESD204	7.1 (Rev. 1)	7.1 (Rev. 1)	Hardware Evaluation	xc7z035ffg
I /processing system7 0 axi periph	Ē	Up-to-date	No changes require	More info	AXI Interconnect	2.1 (Rev. 12)	2.1 (Rev. 12)	Included	xc7z035ffgt
/processing_system7_0_axi_periph2	Π	Up-to-date	No changes require	More info	AXI Interconnect	2.1 (Rev. 12)	2.1 (Rev. 12)	Included	xc7z035ffgt
/rst_processing_system7_0_200M	Π	Up-to-date	No changes require	More info	Processor System Reset	5.0 (Rev. 10)	5.0 (Rev. 10)	Included	xc7z035ffgf
/util_vector_logic_0	Π	Up-to-date	No changes require	More info	Utility Vector Logic	2.0 (Rev. 2)	2.0 (Rev. 2)	Included	xc7z035ffgt
- J /bufg_rxoutclk		Up-to-date	No changes require	More info	Utility Buffer	2.1 (Rev. 6)	2.1 (Rev. 6)	Included	xc7z035ffgf
/xlconstant_0		Up-to-date	No changes required	More info	Constant	1.1 (Rev. 2)	1.1 (Rev. 2)	Included	xc7z035ffgf
-⊈ /jesd204_tx		Up-to-date	No changes require	More info	JESD204	7.1 (Rev. 1)	7.1 (Rev. 1)	Hardware Evaluation	cc7z035ffgt
- ↓ jesd204_orx		Up-to-date	No changes required	More info	JESD204	7.1 (Rev. 1)	7.1 (Rev. 1)	Hardware Evaluation	ce7z035ffgf
↓ /jesd204b_rx_rst		Up-to-date	No changes require	More info	Processor System Reset	5.0 (Rev. 10)	5.0 (Rev. 10)	Included	xc7z035ffgt
🖟 dds1		Up-to-date	No changes required	More info	DDS Compiler	6.0 (Rev. 13)	6.0 (Rev. 13)	Included	xc7z035ffgf
<pre>↓ fifo_32to64</pre>		Up-to-date	No changes require	More info	FIFO Generator	13.1 (Rev. 3)	13.1 (Rev. 3)	Included	xc7z035ffg6
		Up-to-date	No changes required	More info	FIFO Generator	13.1 (Rev. 3)	13.1 (Rev. 3)	Included	xc7z035ffg6
· @ ila_0		Up-to-date	No changes require	More info	ILA (Integrated Logic Analyzer)	6.2 (Rev. 1)	6.2 (Rev. 1)	Included	xc7z035ffg6

Figure 11 IP Authorized Status (Hardware Evaluation)

2.4 JESD 204 Customize

JESD204 is two IP cores, JESD204 and JESD204 PHY. Each port requires a JESD204 IP, which is used to generate or process JESD204 frame formats, TX, RX, and ORX. JESD204 PHY implements the GTX physical layer, which correctly configures the phase-locked loop settings at all levels of GTX hardware based online speed. The connection relationship is shown in the following figure.

Figure 12 JESD204 Block Diagram

Use four lane sending channels for the TX end, two lane receiving channels for the RX end, and two receiving channels for the ORX end. When the sampling rate is 122.88MHz, txoutclk is 61.44MHz, and rxoutclk is 122.88MHz.

2.5 FPGA Engineering Data Flow

The sending direction is generated by the DDS module for IQ data on the tx end, and the driving clock

adopts a 122.88MHz rxoutclk. Two channels of IQ data enter fifo separately_ 32to64 converts two channels of IQ data into 64 bit width for Jesd204_ Transport_ Layer module, clock using txoutclk, 61.44MHz, via jesd204_ Transport_ The layer module is converted to the axistream data stream required

for JESD204, with a clock of txoutclk and 61.44MHz.

Enter data into fifo separately_ 32to64 converts two channels of IQ data into 64 bit width for Jesd204_ Transport_ Layer module, clock using txoutclk, 61.44MHz, via jesd204_ Transport_ The layer module is converted to the axistream data stream required for JESD204, with a clock of txoutclk and 61.44MHz.

Receiving direction, rx end axi_ Stream data output from JESD204, rx end rx_ TData width 64 bits, clock rxoutclk, 122.88MHz. Orx end orx_ TData width 64 bits, clock rxoutclk. Rx end data through jesd204_ Transport_ The layer module converts 16 bit IQ data streams and displays them through chipscope

The data flow diagram is shown in the following figure:

3. Bare metal applications

This chapter includes verifying FPGA hardware engineering, GPIO configuration, AD9371 configuration, and register interaction on bare metal.

3.1 Software engineering

Selecting File launch SDK in the VIVADO project will automatically open the software SDK in the project directory. Provided the following engineering:

Adrv9371 Test generates single tone signals of different frequencies through software configuration of DDS ipcore phase. After configuring AD9371, start to send the single tone signal. Simultaneously start receiving and analyzing data through chipscope. The top-level file is headless. c. The architecture of this file is derived from the NO-OS software program provided by ADI, which has been optimized and modified by Visorai. The NO OS source program can refer to the ADI website link: https://wiki.analog.com/resources/eval/user-guides/mykonos/no-os-setup

3.2 GPIO configuration

First, execute the platform_Init (void) sets the direction of GPIO and initializes it. Afterwards, set the following

IO to the specified level. Secondly, perform external attenuator attenuation setting and DDS output phase

stepping. The receiver attenuator is set to maximum attenuation, and the transmission attenuation is set to no

attenuation. For the sake of uniformity in the program, it is named Gain. O corresponds to a gain of OdB with full attenuation, and 63 corresponds to a maximum gain of 31.5dB without attenuation. DDS phase stepping phase, output baseband signal

Assume rxclkout=122.88MHz, Output baseband $\int_{t}^{00} \frac{122.88 \ 128}{2^{12}} \ 3.84MHz$, 3.84MHz, 0

3.2 Configuring Clock Chips

The hardware did not use AD9528 but instead used TI's LMK04828, which is also controlled through the SPI bus.

3.3 AD9371 initial configuration

Initializing AD9371, a user-defined file was used to initialize AD9371. In this project, 122p88. c

122p88. h.

These three files are generated by AD9371 Receiver Evaluation Software. This software can be downloaded at the following link:

http://www.analog.com/cn/license/licensing-agreement/transceiver-evaluation-software.html

The NO-OS program can be found at the following link:

https://wiki.analog.com/resources/eval/user-guides/mykonos/no-os-setup

After opening the AD9371 Receiver Evaluation Software, click on 'connect' and it will prompt that the hardware is not connected. Next, users can customize the working parameters of AD9371. The device clock defaults to 122.88MHz. JESD204B rate calculation method,

- Sending end=sampling rate * bit width/number of channels =122.88MHz*80/4=2457.6Mbps
- Receiving end=sampling rate * bit width/number of channels =122.88MHz*80/2=4915.2Mbps
- > ORX reception=sampling rate * bit width/number of channels=122.88MHz*40/2=2457.6Mbps
- Finally, export the C language file and add it to software engineering.

Figure	13	Customized	AD9371
inguie	тэ	customizeu	AD3311

Initialization Calibration	Run
Rx QEC	
Tx QEC	
nternal Tx LOL	
External Tx LOL	
External Init Attn	0.00

Tracking Calibration	Run
Rx1 QEC	
Rx2 QEC	
Tx1 LOL	
Tx2 LOL	
Tx1 QEC	
Tx2 QEC	

Figure 14 Calibration Selectio

	JESD Configuration	
	Use External SYS	SREF
x Framer		
LaneBate (MHz)	4915.2	
(#Lanes)	2	
K	32	
M	4	Lane2
F	4	Lane3
x Deframer		
LaneRate (MHz)	2457.6	✓ Lane0
L(#Lanes)	4	☑ Lane1
к	32	÷ [] 1 ma2
M	4	
		✓ Lane 3
F	2	
F	2	Scrambling
F	2	Scrambling
	2	Scrambling
F	2	Scrambling
F rx Framer	2	Scrambling
F rx Framer LaneRate (MHz)	2 2457.6	Scrambling
F rx Framer _aneRate (MHz) _(#Lanes)	2 2457.6 2	Scrambling C Relink on SYSREF
F rx Framer .aneRate (MHz) (#Lanes) K	2 2457.6 2 32	Scrambling Scrambling Relink on SYSREF Lane0 Lane1 Signal Lane2
F rx Framer LaneRate (MHz) .(#Lanes) K M	2 2457.6 2 32 2	Scrambling Scrambling Relink on SYSREF
F nx Framer LaneRate (MHz) .(#Lanes) C V	2 2457.6 2 32 2 2 2	Scrambling Scrambling Relink on SYSREF Lane0 Lane1 Lane2 Lane3
F nx Framer LaneRate (MHz) .(#Lanes) K M	2 2457.6 2 32 2 2 2	Scrambling Scrambling Scrambling Lane0 Lane1 Lane1 Lane2 Lane3 Scrambling

Figure 16 Receive Channel Bandwidth

The default receiving channel AGC's agcgainUpdateCounter is 0 and changed to 4096. Otherwise, an error will be reported when initializing AD9371.

```
static mykonosAgcCfg_t rxAgcConfig =
{
    255,
              /* agcRx1MaxGainIndex */ 195,
                                                /*
    agcRx1MinGainIndex */ 255,/*
    agcRx2MaxGainIndex */ 195,
                                        /*
    agcRx2MinGainIndex: */ 255,
                                        /*
                                        /*
    agcObsRxMaxGainIndex */ 203,
    agcObsRxMinGainIndex */ 1,/* agcObsRxSelect
    */
              /* agcPeakThresholdMode */
    1,
              /* agcLowThsPreventGainIncrease */
    1,
    //*FIXME*agcGainUpdateCounter=0/ 4096, /*
    agcGainUpdateCounter */ 4, /*
    agcSlowLoopSettlingDelay */ 2, /*
    agcPeakWaitTime*/
    1, /* agcResetOnRxEnable */
    0, /* agcEnableSyncPulseForGainCounter */ &rxPeakAgc,
    &rxPwrAgc};
static mykonosAgcCfg_t obsRxAgcConfig =
{
              /* agcRx1MaxGainIndex */ 195,
                                                /*
    255,
    agcRx1MinGainIndex */ 255,/*
    agcRx2MaxGainIndex */ 195,
    agcRx2MinGainIndex: */ 255,
                                        /*
                                       /*
    agcObsRxMaxGainIndex */ 203,
    agcObsRxMinGainIndex */ 1,/* agcObsRxSelect
```


3.4 AD9371 Modification after initialization

Configure the receive gain function:

```
if((mykError=MYKONOS setRx1ManualGain(&mykDevice,200))!=MYKONOS ERR OK)
{
         errorString = getMykonosErrorMessage(mykError);
         goto error;
    }
    if((mykError=MYKONOS_setRx2ManualGain(&mykDevice,200))!=MYKONOS_ERR_OK)
{
         errorString = getMykonosErrorMessage(mykError);
         goto error;
    }
    Configure Send Attenuation Function:
    if ((mykError = MYKONOS setTx1Attenuation(&mykDevice, 10000)) !=
MYKONOS_ERR_OK) {//range=0~41950
         errorString = getMykonosErrorMessage(mykError);
         goto error;
    }
    if ((mykError = MYKONOS _setTx2Attenuation(&mykDevice, 30000)) !=
MYKONOS ERR OK) {//range=0~41950
```

```
errorString = getMykonosErrorMessage(mykError);
goto error;
```

```
}
```

Configuring the transceiver frequency point function: The change of the transceiver frequency point is quite complex, please refer to the RF PLL FREQUENCY CHANGE PROCESS section in the AD9371-User Guide UG-992 document. Instantiate as a function in the test program. The configuration speed is faster within the frequency range of 100MHz, and it will be recalibrated if it exceeds 100MHz.

change_rfpll(mykDevice.rx->rxPllLoFrequency_Hz, *RX_PLL*,2800e6); change_rfpll(mykDevice.tx->txPllLoFrequency_Hz, *TX_PLL*,2000e6);

3.5 Running reference routines

AD9371 provides a self loopback testing program for testing.

Using a loopback RF cable to loop back TX and RX, you can see the results of loopback through RF.

Figure 18 RF Loop Back Test

You can select waveform export and use third-party software for analysis.

Export IL	A waveform data in CSV. VCD or native format. Native format files	
can be im	ported using 'Import ILA Data' command from File menu.	1
<u>I</u> LA Core:	hw_ila_data_1 👻	
<u>F</u> ormat:	CSV -	
Fi <u>l</u> e:	E:/code/yunsdr_9371/ad9371/adaloop_y450/iladata.csv	

Figure 19 ILA Data Export

For example, using MATLAB for analysis.

```
m = csvread('E:\code\yunsdr_9371\ad9371\adaloop_y450\iladata.csv', 1, 0);
data(:,1)=m(:, 9)+1i*m(:, 8);
data(:,2)=m(:, 11)+1i*m(:, 10);
subplot(231);plot(real(data(:,1)));hold on;plot(imag(data(:,1))); subplot(232);plot(data(:,1));axis equal;
subplot(233);pwelch(data(:,1),[],[],122.88e6,'centered','psd');
subplot(234);plot(real(data(:,2)));hold on;plot(imag(data(:,2))); subplot(235);plot(data(:,2));axis equal;
subplot(236);pwelch(data(:,2),[],[],122.88e6,'centered','psd');
```


Figure 20 Analysis Results of Matlab Data

4 Customized sampling rate

Customization of sampling rates can be divided into two situations: the customization of sampling rates existing in the AD9371 development and evaluation software (MYK), and the customization of special sampling rates. The existing sampling rates of the AD9371 evaluation software are shown in the following figure:

Figure 21 MYK Device Clock List