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Take	home	message:	
Bioinforma)cs	is	a	li.le	bit	like	
learning	to	walk	on	a	slack	line:	You	
will	fall	and	encounter	errors	all	the	
)me.	This	is	not	because	you	are	not	
clever	enough.	Falling	is	all	part	the	
fun.	You	just	get	up	and	try	again.	



Gene@c	
code	

Purkinje	cells	

Mouse		
(Maryann	Martone	
CCDB/NCMIR/UC	San	Diego)	

Pigeon		
(drawing:	San@ago	Ramón	y	Cajal)	
	

Different	Genomic	Code 					=>					Similar	phenotype	
	



Purkinje	cell	 Hair	cell	

T	cell	(blue)	 Ovum	and	sperms		

Smooth	Muscle	Fibroblast	Cells	

Same	Genomic	Code				=>					Very	Different	Phenotype	
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Epigene@cs	

Ou,	H.	D.	et	al.	ChromEMT:	visualizing	
3D	chroma@n	structure	and	
compac@on	in	interphase	and	mito@c	
cells.	Science	(2017)		
	
	



Epigene@cs	
	
	
	

Epigene)cs	
	
R.	Holliday	(1990):			
“…	mechanisms	that	impart		
temporal	and	spa)al	control	on	
the	ac@vi@es	of	all	those	gene	
required	for	the	development	of	a	
complex	organisms	from	zygote	
to	the	adult	…”	
	
A.Riggs	(1996):		
“…	mito@cally	and/or	meio@cally	
heritable	changes	in	gene	
func)on	that	cannot	be	explained	
by	changes	in	DNA	sequence….”	
	
A.Bird	(2007):		
“the	structural	adapta@on	of	
chromosomal	regions	so	as	to	
register,	signal	or	perpetuate	
altered	ac@vity	states	”	
	



Epigene@cs	

•  DNA	modifica@ons			
(mC,	hmC)	

	
•  ATP-dependent	

Chroma@n	remodeling	
	
	
•  Histone	Modifica)ons	

	
h_ps://www.diagenode.com/en/categories/histone-an@bodies	



Histone	Modifica@ons	

h_p://www.merckmillipore.com/IE/en/life-science-research/genomic-analysis/Epigene@cs-and-Nuclear-Func@on/Histone-Modifica@on/73yb.qB.U9cAAAFOBtA1lTAF,nav?ReferrerURL=h_ps%3A
%2F%2Fwww.google.co.uk%2F&bd=1	

H3K4me3	

Acetyla@on	
	

Methyla@on	
	

Dimethyla@on	
	

Trimethyla@on	
	

Phosphoryla@on	



Genome	

H3K4me3	
ACAGTGAAGGATCGACAGTGAAGGATCGAAAGCTAGCCAGTAAGCTAGCCAGTACAGTGAAGCTAGCCAGT



ACAGTGAAGGATCGACAGTGAAGGATCGAAAGCTAGCCAGTAAGCTAGCCAGTACAGTGAAGCTAGCCAGT

H3K4me3	

Genome	

Weiner	et	al.	Mol	Cell,	2015	



H3K4me3	

Histone		
modifica@ons	

ACAGTGAAGGATCGACAGTGAAGGATCGAAAGCTAGCCAGTAAGCTAGCCAGTACAGTGAAGCTAGCCAGT

Genome	

Weiner	et	al.	Mol	Cell,	2015	



Histone	Writers	

SnapShot: 
Histone-Modifying Enzymes 
Tony Kouzarides
The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK

802 Cell 128, February 23, 2007 ©2007 Elsevier Inc. DOI 10.1016/j.cell.2007.02.018

See online version for legend and references.

SnapShot: 
Histone-Modifying Enzymes 
Tony Kouzarides
The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK

802 Cell 128, February 23, 2007 ©2007 Elsevier Inc. DOI 10.1016/j.cell.2007.02.018

See online version for legend and references.

Kouzarides,	Cell.	2007	



Readers	of	Histone	Marks	

Kouzarides,	Chroma)n	Modifica)ons	and	Their	Func)on,	Cell	2007		
	



Histone	Modifica@ons	Correlate	with	
Transcrip@on	Ac@vity	

Li	et	al.,	The	Role	of	Chroma@n	during	Transcrip@on,	Cell,2007	



Histone	Code	?	

Expression	/	Transcrip@on	Output	

Histone	Modifica@on	Pa_erns	



Histone	Code	?	
Complexity	of	Input	:			
	
•  H3	contains	19	Lysines,		
•  can	be	mono-,	di-,	tri-methylated	
	
4^19	=	280	billion	different	Lysine	pa_erns	
⇒ Huge	“Alphabet”	

	



Histone	Code	?	
Complexity	of	Input	:			
	
•  H3	contains	19	Lysines,		
•  can	be	mono-,	di-,	tri-methylated	
	
4^19	=	280	billion	different	Lysine	pa_erns	
⇒ Huge	“Alphabet”	
Cross-talk	between	neighboring	nucleosomes		
(poten@ally	forming	“words”)	
⇒ Further	increase	in	complexity	?	



Histone	Code	?	

Complexity	of	Response:		
	
•  Heterochroma@n	vs	Euchroma@n	
•  Promoter	vs	Enhancer	
•  Ac@va@on	vs	Repression	vs	Bivalent	
	

Complexity	of	Input	:			
	
•  H3	contains	19	Lysines,		
•  can	be	mono-,	di-,	tri-methylated	
	
⇒ 4^19	=	280	billion	different	Lysine	pa_erns	



Talk	Outline	

Understanding	the	Complexity	of	Histone	Modifica)ons	
	
1.   ChIP	-	Seq		Analysis	
2.   Detec)ng	Differen)al	Modified	Regions	
3.   Iden)fying	Chroma)n	States	
4.   Data	Integra)on	

Future	Direc)ons	
	
1.   From	Correla)on	to	Causality	
2.   Single-Cell	ChIP-Seq	
3.   Time	Course	Data	

	



ChIP-Seq	

DNA

DNA fragmentation

cross-linking

Enrichment with 
specific antibody

(ChIP-)

sequencing
(-seq)

alignment

ChIP-Seq

to determine

- position of histone modifications

- stability of mark

DNA
ACGCGATCAGGGCGACGCGATCAGAGCTAACGGTGCAACGGGTAC enriched region:

‘peak’

mark strength
N = 9 counts 



ChIP-Seq	
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ChIP-Seq	Computa@onal	Pipeline	

Experimental	Planning	

Quality	Control	(fastqc)	

Alignment		

Quality	Control	



ChIP-Seq	Analysis	

Detec@ng	Enriched	Regions		
Presence	/	Absence		
(Binary	signal	:	1/0)	



ChIP-Seq	Analysis	

Detec@ng	Enriched	Regions		
Presence	/	Absence		
(Binary	signal	:	1/0)	

Quan@fying	Enrichments	
Sum	of	Counts		
(Count	Signal:	N)	to

ta
l c

ou
nt

s



ChIP-Seq	Analysis	

Detec@ng	Enriched	Regions		
Presence	/	Absence		
(Binary	signal	:	1/0)	

Quan@fying	Enrichments	
Sum	of	Counts		
(Count	Signal:	N)	to

ta
l c

ou
nt

s

Shape	Analysis	
Distribu@on	of	Reads		
(Complex	Signal:	NL)	



Peak	Alignment	and	Clustering		

12039000 12043000

| uc001atn.4

48779000 48783000

|uc003gyh.1 |||

8020000 8024000

| uc001aou.4

H3K4me3

chr 1

chr 1

chr 4

•  shape	of	epigenomic	pa_erns	
mark	func@onal	features	
(promoters,	enhancers	)	

	
•  epigenomic	marks	have	local	

varia@on,	which	may	be	
irrelevant	for	their	func@on		

•  discovery	and	characteriza@on	
of	chroma@n	signatures	
provides	informa@on	about	
loca@on	and	ac@vity	of	specific	
genomic	regulatory	features.		
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ChIP-Seq H3K4me3
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Barski,	Cell	2007	



Peak	Alignment	and	Clustering		

12039000 12043000

| uc001atn.4

48779000 48783000

|uc003gyh.1 |||

8020000 8024000

| uc001aou.4

H3K4me3

chr 1
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chr 4

•  shape	of	epigenomic	pa_erns	
mark	func@onal	features	
(promoters,	enhancers	)	

	
•  epigenomic	marks	have	local	

varia@on,	which	may	be	
irrelevant	for	their	func@on		

•  Can	with	classify	these	three	
peaks	as	the	same	pa_ern?	

	=>	Dynamic	Genome	Warping	(DGW)	



Analogy:	speech	recogni@on		

time in seconds

time in seconds time in seconds

time in seconds

PLoS  B B B   B  iology

PLoS Biology
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Büchel	et	al.	,	PLoS	Biology	2004	

Dynamic	Time	Warping	(DTW)	



Peak	Alignment	Using	DGW	
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	=>	Dynamic	Genome	Warping	(DGW)	

Lukauskas,	et	al.	2016	



Results:	DGW	aligns	genomic	landmarks		
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Talk	Outline	

Understanding	the	Complexity	of	Histone	Modifica)ons	
	
1.   ChIP	-	Seq		Analysis	
2.   Detec)ng	Differen)al	Modified	Regions	
3.   Data	Integra)on	
4.   Iden)fying	Chroma)n	States	

Future	Direc)ons	
	
1.   From	Correla)on	to	Causality	
2.   Single-Cell	ChIP-Seq	
3.   Time	Course	Data	

	



Detec@ng	Differen@al	Modified	Regions	

Comparing	sets	of	enriched	regions	
Presence/absence	of	mark	(DiffBind)	

Comparing	average	levels	of	
modifica@on	(Diqind)	

Comparing	Shape	of	Modifica@on	
(MMDiff)	



H3K4me3	at	selected	promoters		
in	mES	cells	

Sub-structure	of	binding	peaks	are	remarkably	conserved	between	experiments.	
	
	
	



H3K4me3	at	selected	promoters		
in	mES	cells	

Sub-structure	of	binding	peaks	are	remarkably	conserved	between	experiments.	
	
Is	there	biological	func)on	encoded	in	the	shape	of	the	peak?	
	
How	are	they	established?	
	
=>	Loss	of	func)on	experiment.	
	
	



H3K4me3	loss	in	a	Cfp1	mutant	

The	mark	is	not	lost	in	a	homogenous	way.	
Some	parts	are	not	affected.	
	
Computa)onal	Challenge:		
Detect	Differences	in	Shapes	of	Peaks	rather	than	intensity	

Standard	approach:		
extract	a	summary	sta@s@c		(total	counts)		
Univariate	test	(e.g.	nega@ve	binomial)	
	

⇒ Low	power	

Our	Idea:	
Sequencing	itself	is	a	form	of	sampling	an	
unknown	distribu)on	on	the	genome	
Number	of	drawn	samples	is	iden@cal	to	the	
number	of	reads	observed	in	a	peak	
	
=>	Greatly	increased	power	



Re-formulate	the	test	ques@on		

Suppose	for	a	peak	we	are	given	
•  n	observa@ons	(i.e.	reads)	in	data	set	s	(disease)	

	Xs		=	x1s,	...,	xns	
	
•  m	observa@ons	in	data	set	sʹ	(control)	

	Xs’		=	x1s’,	...,	xms’	
	
where	xs,	xs’	random	variables	drawn	i.i.d.	from	unknown	
probability	distribu@ons	p	and	p’		
	

Can	we	decide	whether	p	=	pʹ	?			



MMDiff	
•  MMD:	Maximum	Mean	Discrepancy	

•  Kernel-based	non-parametric	test		(Gre_on	et	al.,	2008,	2012)		
	
•  retains	higher	order	informa@on	within	the	tes@ng	procedure	

	
Define	feature	map,	which	maps	the	distribu@ons	into	a	high	dimensional	
reproducing	Kernel	Hilbert	Space	(RKHS)	

In	this	space,	two	distribu@ons	are	iden@cal	if	and	only	if	their	kernel	means	
are	iden@cal	

Distance	between	means	is	a	good	quan@ta@ve	measure	for	difference	
between	two	distribu@ons		

concept	
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1.   ChIP	-	Seq		Analysis	
2.   Detec)ng	Differen)al	Modified	Regions	
3.   Data	Integra)on	
4.   Iden)fying	Chroma)n	States	

Future	Direc)ons	
	
1.   From	Correla)on	to	Causality	
2.   Single-Cell	ChIP-Seq	
3.   Time	Course	Data	

	



Complexity	of	Input	:			
	
•  H3	contains	19	Lysines,		
•  can	be	mono-,	di-,	tri-methylated	
	
⇒ 4^19	=	280	billion	different	Lysine	pa_erns	

Kouzarides,	Chroma)n	Modifica)ons	and	Their	Func)on,	Cell	2007		

⇒  Individual	marks	are	not	independent	

⇒ Reduc@on	in	Complexity	

Cross-talk	between	different	histone	
modifica@ons	



Epigenomic	Crosstalk	
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Epigenomic	Crosstalk	
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Epigenomic	Crosstalk	

Wang	et	al.,	Combinatorial	pa_erns	of	histone	acetyla@ons	and	methyla@ons	in	the	human	genome,	Nat	Genet.	2008	



Gene-Specific	Associa@ons	among	Histone	
Modifica@ons	
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