
TABLE OF CONTENTS
1 A little bit of history
2 F# and .NET
3 F# and .NET core
4 F# Vs < X >
5 In the Industry
6 To sum it up : standout features
7 Some code
8 Computation Expressions

9 Active Patterns

10 Web : "Full Stack"
11 Thanks for your attention
12 References

1 A LITTLE BIT OF HISTORY
()Syme, 2019

Robin Milner, father of ML
language

Robin Milner, father of ML
language

Bill Gates, (very) successful
businessman

When both worlds collide...

When both worlds collide...

Kidding aside,

Année Recherche "Corporate"

1973 ML, le Lisp « typé »

1975 Microso�

1995 Java

1997 Standard ML

1998 Don Syme @ Microso� Research

2002
.NET (

)

2005 F#

Kennedy and Syme,
2001

2 F# AND .NET
F# is seen like THE functional language by MS on .NET
.NET and F# co-evoluted



3 F# AND .NET CORE
.NET Reboot
100% cross platform (Mac/Windows/Linux + x86/ARM)
OSS



4 F# VS < X >



PROS
Stable : no breaking changes in the language, good binary
compatibility over the years

Coherent : There is a straight and streamlined way to code in
f#, hassle-free and no "zillions of ways to do the same thing",
enforced by crystal clear guidelines, documentations and IDEs

Open : biggest core dev are MS, but active, open contributions
from the community, RFC proposals and so on...

fully interoperable : thought and conceived for interoperability
from the ground up. interop is F#'s DNA. 

CONS
Functionnalities (not on par with more pure FP focused
languages like Haskell or Scala, no HKT)

No "killer app" like Spark for Scala

Poor academic coverage, especially in some countries where
MS' reputation doesn't bode well with "research"



5 IN THE INDUSTRY
MS, of course (Cloud/Azyre and internal products)
Jet.com
Genetec
Bank/Trading
Mobile dev (Xamarin)



6 TO SUM IT UP : STANDOUT
FEATURES

Type providers
Computation expressions
Active Patterns



7 SOME CODE



TYPE PROVIDERS
()

Following slides courtesy of

Syme, Battocchi et al., 2012

official MS doc



https://docs.microsoft.com/en-us/dotnet/fsharp/tutorials/type-providers/

An F# type provider is a component that provides types, properties,
and methods for use in your program. Type Providers generate what
are known as Provided Types, which are generated by the F# compiler
and are based on an external data source.



For example, an F# Type Provider for SQL can generate types
representing tables and columns in a relational database. In fact, this
is what the SQLProvider Type Provider does.



Provided Types depend on input parameters to a Type Provider. Such
input can be a sample data source (such as a JSON schema file), a URL
pointing directly to an external service, or a connection string to a
data source.



A Type Provider can also ensure that groups of types are only
expanded on demand; that is, they are expanded if the types are
actually referenced by your program. This allows for the direct, on-
demand integration of large-scale information spaces such as online
data markets in a strongly typed way.



GENERATIVE TYPE PROVIDERS

Generative Type Providers produce types that can be written as .NET
types into the assembly in which they are produced. This allows them
to be consumed from code in other assemblies. This means that the
typed representation of the data source must generally be one that is
feasible to represent with .NET types.



ERASING TYPE PROVIDERS

Erasing Type Providers produce types that can only be consumed in
the assembly or project they are generated from. The types are
ephemeral; that is, they are not written into an assembly and cannot
be consumed by code in other assemblies. They can contain delayed
members, allowing you to use provided types from a potentially
infinite information space. They are useful for using a small subset of a
large and interconnected data source.



COMMONLY USED TYPE PROVIDERS



COMMONLY USED TYPE PROVIDERS

FSharp.Data includes Type Providers for JSON, XML, CSV, and
HTML document formats and resources.



COMMONLY USED TYPE PROVIDERS

FSharp.Data includes Type Providers for JSON, XML, CSV, and
HTML document formats and resources.

SQLProvider provides strongly-typed access to relation databases
through object mapping and F# LINQ queries against these data
sources.



TYPE PROVIDERS I : THE GOOD OLD CSV...



In [4]:  open FSharp.Data

type Gbpusd = CsvProvider<const(__SOURCE_DIRECTORY__ + "/data/gbpusd.csv")>



In [5]: 

In [7]: 

Out[5]: seq ["06/23/2016"]

// Get the day where the rate lost more than 10% for the pound sterling
let gbpusd = Gbpusd.GetSample().Rows
gbpusd
|> Seq.pairwise
|> Seq.filter (fun (before, after) -> before.GbpUsd - after.GbpUsd > 0.1M)
|> Seq.map (fun (before,_) -> before.Date.ToShortDateString())

open Deedle

let titanic = Frame.ReadCsv(__SOURCE_DIRECTORY__ + "/data/titanic.csv")

▾



In [51]: 

In [9]: 

// Get the survival rate by class
let byClass =
 titanic
 |> Frame.groupRowsByString "Pclass"
 |> Frame.getCol "Survived" :> Series<(string * int),bool>
 |> Series.applyLevel fst (Series.values >> (Seq.countBy id) >> series)
 |> Frame.ofRows
 |> Frame.sortRowsByKey
 |> Frame.indexColsWith ["Died"; "Survived"]

byClass?Total <- byClass?Died + byClass?Survived

▾

▾



In [51]: 

In [9]: 

In [10]: 

Out[10]:
Died (%) Survived (%)

1 37 63

2 53 47

// Get the survival rate by class
let byClass =
 titanic
 |> Frame.groupRowsByString "Pclass"
 |> Frame.getCol "Survived" :> Series<(string * int),bool>
 |> Series.applyLevel fst (Series.values >> (Seq.countBy id) >> series)
 |> Frame.ofRows
 |> Frame.sortRowsByKey
 |> Frame.indexColsWith ["Died"; "Survived"]

byClass?Total <- byClass?Died + byClass?Survived

frame ["Died (%)" => round (byClass?Died / byClass?Total * 100.0)
 "Survived (%)" => round (byClass?Survived / byClass?Total * 100.0)]

▾

▾

▾



TYPE PROVIDER II : OPEN DATA



In [11]: 

Out[11]: FSharp.Data.Runtime.WorldBank.WorldBankData

open XPlot.Plotly

let wb = WorldBankData.GetDataContext()
wb



In [12]: 

Out[12]:

1960 1970 1980 1990 2000 2010

300k

350k

400k

450k

500k

// Get the yearly CO2 emissions for France, Germany and USA
wb.Countries.France.Indicators.``CO2 emissions (kt)``
|> Chart.Line

▾



TYPE PROVIDERS III : JSON



"http://api.openweathermap.org/data/2.5/forecast/d
q=Prague&mode=json&units=metric&cnt=10&APPID=cb63a

{
 "city": {
 "id": 3067696,
 "name": "Prague",
 "coord": {
 "lon": 14.4213,
 "lat": 50.0875
 },
[...]



In [13]:  type W = JsonProvider<"http://api.openweathermap.org/data/2.5/forecast/daily?q=P

let getTemps city =
 let w = W.Load("http://api.openweathermap.org/data/2.5/forecast/daily?q=" + ci
 [for d in w.List -> d.Temp.Day]

let cities = ["Paris";"Lyon";"Marseille"]

▾

▾



In [14]: 

Out[14]:

0 2 4 6 8
0

5

10

15

20

Paris
Lyon
Marseille

// Display a temperature barplot for cities
cities
|> Seq.map (getTemps >> Seq.indexed)
|> Chart.Column
|> Chart.WithLabels cities

▾



TYPE PROVIDERS III : SQL



In [15]:  [<Literal>]
let ConnectionString =
 "Data Source=" +
 __SOURCE_DIRECTORY__ + @"/data/northwindEF.db;" +
 "Version=3;foreign keys=true"

[<Literal>]
let ResolutionPath = __SOURCE_DIRECTORY__ + @"/local"

open FSharp.Data.Sql

type Sql = SqlDataProvider<
 Common.DatabaseProviderTypes.SQLITE,
 SQLiteLibrary = Common.SQLiteLibrary.SystemDataSQLite,
 ConnectionString = ConnectionString,
 ResolutionPath = ResolutionPath,
 CaseSensitivityChange = Common.CaseSensitivityChange.ORIGINAL>

let db = Sql.GetDataContext()

▾

▾



In [16]: 

Out[16]: ["Maria Anders"; "Ana Trujillo"; "Antonio Moreno"; "Thomas Hardy";
 "Christina Berglund"; "Hanna Moos"; "Frédérique Citeaux"; "Martín Somme
r";
 "Laurence Lebihan"; "Elizabeth Lincoln"; "Victoria Ashworth";
 "Patricio Simpson"; "Francisco Chang"; "Yang Wang"; "Pedro Afonso";
 "Elizabeth Brown"; "Sven Ottlieb"; "Janine Labrune"; "Ann Devon";
 "Roland Mendel"; "Aria Cruz"; "Diego Roel"; "Martine Rancé"; "Maria Lars
son";
 "Peter Franken"; "Carine Schmitt"; "Paolo Accorti"; "Lino Rodriguez";
 "Eduardo Saavedra"; "José Pedro Freyre"; "André Fonseca"; "Howard Snyde
r";
 "Manuel Pereira"; "Mario Pontes"; "Carlos Hernández"; "Yoshi Latimer";
 "Patricia McKenna"; "Helen Bennett"; "Philip Cramer"; "Daniel Tonini";
 "Annette Roulet"; "Yoshi Tannamuri"; "John Steel"; "Renate Messner";
 "Jaime Yorres"; "Carlos González"; "Felipe Izquierdo"; "Fran Wilson";
 "Giovanni Rovelli"; "Catherine Dewey"; "Jean Fresnière"; "Alexander Feue
r";
 "Simon Crowther"; "Yvonne Moncada"; "Rene Phillips"; "Henriette Pfalzhei
m";
 "Marie Bertrand"; "Guillermo Fernández"; "Georg Pipps"; "Isabel de Castr

// clients name list
db.Main.Customers
|> Seq.map (fun c -> c.ContactName)
|> Seq.toList

▾



TYPE PROVIDER IV : R (!)



In [18]:  #I "./local/RProvider/bin"
#r "DynamicInterop.dll"
#r "RDotNet.dll"
#r "RDotNet.FSharp.dll"
#r "RProvider.dll"
#r "RProvider.Runtime.dll"
open RDotNet
open RProvider
open RProvider.``base``
open RProvider.stats
open RProvider.graphics
open RProvider.svglite
open RProvider.grDevices



In [19]:  // little utility function to display R plot in the notebook
open System.IO
let plotR (f : Lazy<SymbolicExpression>) = // f est une fonction de plot non éva
 let path = Path.GetTempFileName()
 R.png(path) |> ignore
 f.Force() |> ignore
 R.dev_off() |> ignore
 let output = Util.Image path
 File.Delete(path)
 output

▾



In [20]: 

Out[20]:

Microsoft R Open 3.5.2

let data = [for x in 0. .. 0.1 .. 10. -> x * cos x]
lazy (R.plot data) |> plotR

▾



In [21]: 

Out[21]:

lazy ([for y in 2000 .. 2010 -> wb.Countries.France.Indicators.``GDP (current
 |> R.barplot)
|> plotR

▾



In [22]:  let sample = query {
 for c in wb.Countries do
 where (c.Indicators.``Population, total``.[2010] > 100000000.)
 select c.Indicators } |> Seq.toArray

▾

▾



In [22]: 

In [23]: 

let sample = query {
 for c in wb.Countries do
 where (c.Indicators.``Population, total``.[2010] > 100000000.)
 select c.Indicators } |> Seq.toArray

let growth = [for c in sample -> c.``GDP growth (annual %)``.[2010]]
let gender = [for c in sample -> c.``Employment to population ratio, 15+, femal
let youth = [for c in sample -> c.``Population ages 0-14 (% of total population
let pollution = [for c in sample -> c.``CO2 emissions (kg per PPP $ of GDP)``.

▾

▾

▾
▾
▾
▾



In [24]: 

Out[24]:

// Transform those 4 columns into a dataframe and display in R
lazy(namedParams [
 "Growth", growth
 "Gender", gender
 "Youth", youth
 "Pollution", pollution]
 |> R.data_frame
 |> R.plot)
|> plotR

▾
▾



8 COMPUTATION EXPRESSIONS
Monadically yours... ()Petricek and Syme, 2014



Computation expressions in F# provide a
convenient syntax for writing computations that
can be sequenced and combined using control
flow constructs and bindings. Depending on the
kind of computation expression, they can be
thought of as a way to express monads, monoids,
monad transformers, and applicative functors.



Source :

However, unlike other languages (such as do-
notation in Haskell), they are not tied to a single
abstraction, and do not rely on macros or other
forms of metaprogramming to accomplish a
convenient and context-sensitive syntax.

https://docs.microso�.com/en-us/dotnet/fsharp/language-
reference/computation-expressions



https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/computation-expressions

COMPUTATION EXPRESSIONS I : FROM
PIPES TO Seq



COMPUTATION EXPRESSIONS I : FROM
PIPES TO Seq
In [25]:  // Get the infinity sequence of natural numbers

let naturals =
 let rec nat k =
 seq {
 yield k
 yield! nat (k + 1)
 }
 nat 0

▾

▾



COMPUTATION EXPRESSIONS I : FROM
PIPES TO Seq
In [25]: 

In [27]: 

0
1

// Get the infinity sequence of natural numbers
let naturals =
 let rec nat k =
 seq {
 yield k
 yield! nat (k + 1)
 }
 nat 0

naturals
|> Seq.map (fun x -> x * x)
|> Seq.take 10
|> Seq.iter (printfn "%d")

▾

▾



COMPUTATION EXPRESSIONS II : LINQ OR
THE SQL "MONAD"



In [28]: 

Out[28]: Pays Nombre

USA 13

France 11

Germany 11

Brazil 9

UK 7

open System.Linq
type ComptePays = { Pays : string; Nombre : int }

// Return the top five countries with the most clients, ordered by clients numbe
query {
 for c in db.Main.Customers do
 groupBy c.Country into y
 sortByDescending (y.Count())
 take 5
 select { Pays = y.Key ; Nombre = y.Count() }
} |> Util.Table

▾

▾

▾



COMPUTATION EXPRESSIONS III : ASYNC



In [30]:  open System.Net
open Microsoft.FSharp.Control.WebExtensions

let urlList = ["Microsoft.com", "http://www.microsoft.com/"
 "MSDN", "http://msdn.microsoft.com/"
 "Bing", "http://www.bing.com"
]

▾



In [31]:  let fetchAsync(name, url:string) =
 async {
 try
 let uri = System.Uri(url)
 let webClient = new WebClient()
 let! html = webClient.AsyncDownloadString(uri)
 printfn "Read %d characters for %s" html.Length name
 with
 | ex -> printfn "%s" (ex.Message);
 }

▾



In [32]: 

Read 117495 characters for Bing
Read 160799 characters for Microsoft.com
Read 39690 characters for MSDN

// do a runAll() function which launchs all of those urls asynchronously
let runAll() =
 urlList
 |> Seq.map fetchAsync
 |> Async.Parallel
 |> Async.RunSynchronously
 |> ignore

runAll()

▾



CUSTOM COMPUTATION EXPRESSIONS I :
MAYBE MONAD



In [33]:  type Maybe() =
 member __.Bind(p, rest) =
 match p with
 | None -> None
 | Some a -> rest a

 member __.Return(p) =
 Some p

let maybe = Maybe()



In [34]: 

Out[34]: <fun:it@4-13> : (int -> (int -> FSharpOption`1))

let tryDecr x n =
 printfn "Conditionally decrementing %A by %A" x n
 if x > n then Some (x - n) else None
tryDecr



In [35]: 

Out[35]: <fun:it@7-14> : (int -> FSharpOption`1)

let maybeDecr x = maybe {
 let! y = tryDecr x 10
 let! z = tryDecr y 30
 let! t = tryDecr z 50
 return t
 }
maybeDecr

▾



In [36]: 

Conditionally decrementing 100 by 10
Conditionally decrementing 90 by 30
Conditionally decrementing 60 by 50
Some 10
Conditionally decrementing 50 by 10
Conditionally decrementing 40 by 30
Conditionally decrementing 10 by 50
<null>
Conditionally decrementing 30 by 10
Conditionally decrementing 20 by 30
<null>

maybeDecr 100 |> printfn "%A"
maybeDecr 50 |> printfn "%A"
maybeDecr 30 |> printfn "%A"



CUSTOM COMPUTATION EXPRESSIONS II :
Eventually



Encapsulates a computation as a series of steps that can be
evaluated one step at a time.
Encodes the error state of the expression as evaluated so far
with a discriminated union type, OkOrException



In [37]:  type Eventually<'T> =
 | Done of 'T
 | NotYetDone of (unit -> Eventually<'T>)

module Eventually =
 // The bind for the computations. Append 'func' to the
 // computation.
 let rec bind func expr =
 match expr with
 | Done value -> func value
 | NotYetDone work -> NotYetDone (fun () -> bind func (work()))

 // Return the final value wrapped in the Eventually type.
 let result value = Done value

 type OkOrException<'T> =
 | Ok of 'T
 | Exception of System.Exception

 // The catch for the computations. Stitch try/with throughout
 // the computation, and return the overall result as an OkOrException.
 let rec catch expr =
 match expr with

| Done value -> result (Ok value) 

In [38]:  // Loop from 1 to 2 and display " x = i " (for i = 1,2) and then return addition
// Try 1,2 and 4 steps

let step x = Eventually.step x

▾



In [39]:  let comp = eventually {
 for x in 1..2 do
 printfn " x = %d" x
 return 3 + 4 }

▾



In [39]: 

In [40]: 

Out[40]: NotYetDone <fun:bind@11>

let comp = eventually {
 for x in 1..2 do
 printfn " x = %d" x
 return 3 + 4 }

// returns "NotYetDone <closure>"
comp |> step

▾

▾



In [39]: 

In [40]: 

In [41]: 

Out[40]: NotYetDone <fun:bind@11>

Out[41]: NotYetDone <fun:bind@11>

 x = 1

let comp = eventually {
 for x in 1..2 do
 printfn " x = %d" x
 return 3 + 4 }

// returns "NotYetDone <closure>"
comp |> step

// prints "x = 1"
// returns "NotYetDone <closure>"
comp |> step |> step

▾

▾

▾



In [42]: 

Out[42]: Done 7

 x = 1
 x = 2

// prints "x = 1"
// prints "x = 2"
// returns "Done 7"
comp |> step |> step |> step |> step

▾



9 ACTIVE PATTERNS
()Syme, Neverov et al., 2007



Source :

Active patterns enable you to define named
partitions that subdivide input data, so that you
can use these names in a pattern matching
expression just as you would for a discriminated
union. You can use active patterns to decompose
data in a customized manner for each partition.

https://docs.microso�.com/en-us/dotnet/fsharp/language-
reference/active-patterns



https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/active-patterns

ACTIVE PATTERNS I : "NORMAL" CASE



In [43]: 

7 is odd
11 is odd
32 is even

let (|Even|Odd|) input = if input % 2 = 0 then Even else Odd

let TestNumber input =
 match input with
 | Even -> printfn "%d is even" input
 | Odd -> printfn "%d is odd" input

TestNumber 7
TestNumber 11
TestNumber 32



In [44]:  open System.Drawing

let (|RGB|) (col : Color) =
 (col.R, col.G, col.B)

let (|HSB|) (col : Color) =
 (col.GetHue(), col.GetSaturation(), col.GetBrightness())

let printRGB (col: Color) =
 match col with
 | RGB(r, g, b) -> printfn " Red: %d Green: %d Blue: %d" r g b

let printHSB (col: Color) =
 match col with
 | HSB(h, s, b) -> printfn " Hue: %f Saturation: %f Brightness: %f" h s b

let printAll col colorString =
 printfn "%s" colorString
 printRGB col
 printHSB col



In [45]: 

Red
 Red: 255 Green: 0 Blue: 0
 Hue: 0.000000 Saturation: 1.000000 Brightness: 0.500000
Black
 Red: 0 Green: 0 Blue: 0
 Hue: 0.000000 Saturation: 0.000000 Brightness: 0.000000
White
 Red: 255 Green: 255 Blue: 255
 Hue: 0.000000 Saturation: 0.000000 Brightness: 1.000000
Gray
 Red: 128 Green: 128 Blue: 128
 Hue: 0.000000 Saturation: 0.000000 Brightness: 0.501961
BlanchedAlmond
 Red: 255 Green: 235 Blue: 205
 Hue: 36.000000 Saturation: 1.000000 Brightness: 0.901961

printAll Color.Red "Red"
printAll Color.Black "Black"
printAll Color.White "White"
printAll Color.Gray "Gray"
printAll Color.BlanchedAlmond "BlanchedAlmond"



ACTIVE PATTERNS II : PARTIAL



In [46]:  let (|Integer|_|) (str: string) =
 let mutable intvalue = 0
 if System.Int32.TryParse(str, &intvalue) then Some(intvalue)
 else None

let (|Float|_|) (str: string) =
 let mutable floatvalue = 0.0
 if System.Double.TryParse(str, &floatvalue) then Some(floatvalue)
 else None

let parseNumeric str =
 match str with
 | Integer i -> printfn "%d : Integer" i
 | Float f -> printfn "%f : Floating point" f
 | _ -> printfn "%s : Not matched." str



In [47]: 

1.100000 : Floating point
0 : Integer
0.000000 : Floating point
10 : Integer
Something else : Not matched.

parseNumeric "1.1"
parseNumeric "0"
parseNumeric "0.0"
parseNumeric "10"
parseNumeric "Something else"



Sometimes, you need to partition only part of the input space. In that
case, you write a set of partial patterns each of which match some
inputs but fail to match other inputs. Active patterns that do not
always produce a value are called partial active patterns; they have a
return value that is an option type. To define a partial active pattern,
you use a wildcard character (_) at the end of the list of patterns inside
the banana clips. The following code illustrates the use of a partial
active pattern.



ACTIVE PATTERNS III : PARAMETRIZED



In [48]:  open System.Text.RegularExpressions

// ParseRegex parses a regular expression and returns a list of the strings that
// the regular expression.
// List.tail is called to eliminate the first element in the list, which is the
// since only the matches for each group are wanted.
let (|ParseRegex|_|) regex str =
 let m = Regex(regex).Match(str)
 if m.Success
 then Some (List.tail [for x in m.Groups -> x.Value])
 else None

▾



Active patterns always take at least one argument for the item being
matched, but they may take additional arguments as well, in which
case the name parameterized active pattern applies.



Active patterns always take at least one argument for the item being
matched, but they may take additional arguments as well, in which
case the name parameterized active pattern applies.

Additional arguments allow a general pattern to be specialized. For
example, active patterns that use regular expressions to parse strings
o�en include the regular expression as an extra parameter, as in the
following code, which also uses the partial active pattern Integer
defined in the previous code example.



In this example, strings that use regular expressions for various date
formats are given to customize the general ParseRegex active pattern.
The Integer active pattern is used to convert the matched strings into
integers that can be passed to the DateTime constructor.



In [49]:  // Three different date formats are demonstrated here. The first matches two-
// digit dates and the second matches full dates. This code assumes that if a tw
// date is provided, it is an abbreviation, not a year in the first century.
let parseDate str =
 match str with
 | ParseRegex "(\d{1,2})/(\d{1,2})/(\d{1,2})$" [Integer m; Integer d; Intege
 -> new System.DateTime(y + 2000, m, d)
 | ParseRegex "(\d{1,2})/(\d{1,2})/(\d{3,4})" [Integer m; Integer d; Integer
 -> new System.DateTime(y, m, d)
 | ParseRegex "(\d{1,4})-(\d{1,2})-(\d{1,2})" [Integer y; Integer m; Integer
 -> new System.DateTime(y, m, d)
 | _ -> new System.DateTime()

▾

▾

▾

▾



In [50]: 

12/22/2008 00:00:00 01/01/2009 00:00:00 01/15/2008 00:00:00 12/28/1995 0
0:00:00

let dt1 = parseDate "12/22/08"
let dt2 = parseDate "1/1/2009"
let dt3 = parseDate "2008-1-15"
let dt4 = parseDate "1995-12-28"

printfn "%s %s %s %s" (dt1.ToString()) (dt2.ToString()) (dt3.ToString()) (dt4.To



10 WEB : "FULL STACK"



SAFE Stack
WebSharper



FABLE : STATE OF THE ART JS TRANSPILER
()Nunez and Fahad, 2016



FABLE : STATE OF THE ART JS TRANSPILER
()Nunez and Fahad, 2016

With all the goodies from FP + static typing



FABLE : STATE OF THE ART JS TRANSPILER
()Nunez and Fahad, 2016

With all the goodies from FP + static typing

Clean JS output, with recent standards (ES2015+)



FABLE : STATE OF THE ART JS TRANSPILER
()Nunez and Fahad, 2016

With all the goodies from FP + static typing

Clean JS output, with recent standards (ES2015+)

Easy interop with JS ecosystem (npm/yarn)



FABLE : STATE OF THE ART JS TRANSPILER
()Nunez and Fahad, 2016

With all the goodies from FP + static typing

Clean JS output, with recent standards (ES2015+)

Easy interop with JS ecosystem (npm/yarn)

Almost all FSharp "core", efficient pruning on the source code



SAFE-STACK



SAFE-STACK

Almost "isomorphic" Client-Server programming model



SAFE-STACK

Almost "isomorphic" Client-Server programming model

Based on
Model/View/Update from
elm



SAFE-STACK

Almost "isomorphic" Client-Server programming model

Based on
Model/View/Update from
elm

Model — the state of your
application
Update — a way to update
your state
View — a way to view your
state as HTML



FRP with React (HMR support and so on.)



Hot Module Replacement (HMR) allows to update the UI of an
application while it is running, without a full reload. In SAFE stack
apps, this can dramatically speed up the development for web and
mobile GUIs, since there is no need to "stop" and "reload" and
application. Instead, you can make changes to your views and have
them immediately update in the browser, without the need to restart
the application.



11 THANKS FOR YOUR ATTENTION



12 REFERENCES
() Syme Don, ``_The Early History of F# (HOPL IV-second dra�)_'', , vol. , number , pp. , 2019.

() A. Kennedy and D. Syme, ``_Design and implementation of generics for the. net common language runtime_'',
ACM SigPlan Notices, 2001.

() Syme Don, Battocchi Keith, Takeda Kenji et al., ``_Strongly-typed language support for internet-scale
information sources_'', Technical Report MSR-TR-2012--101, Microso� Research, vol. , number , pp. , 2012.

() T. Petricek and D. Syme, ``_The F# computation expression zoo_'', International Symposium on Practical Aspects
of Declarative Languages, 2014.

() D. Syme, G. Neverov and J. Margetson, ``_Extensible pattern matching via a lightweight language extension_'',
ACM SIGPLAN Notices, 2007.

() Alfonso Garcia-Caro Nunez and Suhaib Fahad, ``_Mastering F#_'', 2016.

Syme, 2019 online

Kennedy and Syme, 2001

Syme, Battocchi et al., 2012

Petricek and Syme, 2014

Syme, Neverov et al., 2007

Nunez and Fahad, 2016



https://fsharp.org/history/hopl-draft-3b.pdf

