ACSL by Example

Towards a Formally Verified Standard Library

Version 22.0.0
for
Frama-C 22.0 (Titanium)
November 2020

Jens Gerlach

Former Authors

Malte Brodmann, Jochen Burghardt,
Andreas Carben Robert Clausecker,
Denis Efremov, Liangliang Gu
Kerstin Hartig, Timon Lapawczyk
Hans Werner Pohl, Tim Sikatzki
Juan Soto, Kim Véllinger

\

~Z Fraunhofer

FOKUS

This report was partially funded by the VESSEDIA projectE]

The research leading to these results has received funding from the STANCE project within European
Union’s Seventh Framework Programme [FP7/2007-2013] under grant agreement number 31775 3E]

This body of work was completed within the Device-Sort project, which was supported by the Programme
Inter Carnot Fraunhofer from BMBF (Grant 01SF0804) and ANRE]

This document is hosted at

https://github.com/fraunhoferfokus/acsl-by-example

From there, you can also download the source code of all algorithms discussed here, their contracts, and the
employed predicate definitions and lemmas. All examples are developed and proved with the Frama-C/WP
1] pluginﬂ We recommend using the GitHub issue tracker

https://github.com/fraunhoferfokus/acsl-by—example/issues

to report suggestions or errors. Alternatively, you can email them also to

jens.gerlach@fokus.fraunhofer.de

©0Ele

Except where otherwise noted, this work is licensed under
https://creativecommons.org/licenses/by-nc—-sa/4.0

I'The project VESSEDIA has received funding from the European Union’s Horizon 2020 research and innovation programme
under grant agreement No 731453. Project duration: 2017-2019, see https://vessedia.eu

ZProject duration: 2012-2016, see http://www.stance-project.eu

3Project duration: 2009-2012

4There is also full support for the Frama-C/AstraVer plugin which is developed at ISP RAS and can be installed with the
instruction available on https://forge.ispras.ru/projects/astraver/wiki

https://github.com/fraunhoferfokus/acsl-by-example
https://github.com/fraunhoferfokus/acsl-by-example/issues
https://creativecommons.org/licenses/by-nc-sa/4.0
https://vessedia.eu
http://www.stance-project.eu
https://forge.ispras.ru/projects/astraver/wiki

1. Changes
For changes in previous versions we refer to Appendix [Bon Page[259]

1.1. New in Version 22.0.0 (Titanium, November 2020)

This release is intended for Frama-C [2| v22.1] issued in November 2020. We are also using for this release
the Why3 platform [3| v1.3.3] and the provers listed in the following table.

Prover Type Version | Reference
Alt-Ergo | automatic 2.3.3 [4]]
CVC4 | automatic 1.7 1151
Z3 automatic 4.8.6 1)
Coq interactive | 8.12.1 171

Table 1.1.: Information on automatic and interactive theorem provers

Note that all automatic provers use the Why3 interface. However, the interactive prover Coq still relies on
the native interface provided by Frama-C/WP.

New examples
None.
Improvements
Updated to Coq 8.12.1.

Open issues

e The contract of algorithm merge does not handle the reordering of the involved arrays.

Contents

i Changes|

(1.1 New in Version 22.0.0 (Titanium, November 2020)]

B3 The Hoare calculus|

[3.1 The assignmentrule|.
[3.2 Thesequencerulel e

Nonmutating and simple search algorithms|

@

Non-mutating algorithms|

[@d.1 The findalgorithm|
(4.2 The find2 algorithm—reuse of specificationelements|
(4.3 The find3 algorithm—using a logic function|.
(@44 The find _if_notalgorithm|.
[@4.5 The find first_ofalgonithm|
(4.6 The adjacent_findalgorithm|
(4.7 The equal and mismatchalgorithms|
(4.8 The searchalgorithm|.
4.9 The search_nalgorithm| oo L
[4.10 The find_endalgonthm| o Lo
[@4.11 The count algorithm|.
[@4.12 The countz2 algorithm|o

Maximum and minimum algorithms|

[5.1 Anote onrelational operators|.
[5.2 Predicates for bounds and extrema of arrays|
[5.3 The clamp algorithm|.
[5.4 The auxiliary function make_pair| e
[5.5 Themax_element algorithm|.,

13

15
16
16
17

19
21
23
23
24
25
27

29

31
32
34
36
41
45
48
50
53
56
60
63
67

5.6 Themax_element algorithm with predicates|
5.7 Themax_seqgalgorithm|
5.8 Themin_element algorithm|. L
3.9 Theminmax_element algonthm|,

3

Binary search algorithms)

6.1 The lower_ boundalgorithm|. oL
6.2 The upper_boundalgorithm|. L
6.3 The equal_rangealgorithm|. o oo
6.4 Thebinary_searchalgorithm| 0.

Mutating and numeric algorithms|

Mutating algorithms|

7.1 ~The predicate Unchanged]|. e
(72 The £fillalgorithm|
7.3 The swapalgorithm|
/.4 The swap_rangesalgorithm|. L.
7.5 The copyalgorithm|
7.6 The copy_backwardalgornithm| 0 L.
{77 The reverse_copyalgorithm|
7.8 The reversealgonthm| o o
[7.9 'The rotate_copyalgorithm|. oL oL
[7/.10 The rotatealgorithm|.
[7.11 The replace_copyalgorithm|
/.12 The replacealgorithm|
[7.13 The remove_copy algorithm (basic contract)l
[7.14 The remove_copy2 algorithm (number of copied elements)]
[7.15 The remove_copy3 algorithm (final contract),
[7.16 The remove algorithm|
[7.17 The shufflealgorithm|
[7.18 Verifying a random number generator] L.

Numeric algorithms|

8.1 Theiotaalgorithm|
8.2 The accumulatealgorithm|.
[8.3 The inner_product algorithm| 0L
8.4 Thepartial_sumalgorithm|. o
8.5 The adjacent_differencealgonthm|
[8.6 Inverting partial_sumand adjacent_difference|l.

[[V_Sorting algorithms]

9

Heap Algorithms|

9.1 Basicheapconcepts|. L
[9.2 Representation of heap concepts m ACSL|
9.3 The auxiliary functions heap_parent and heap_child|
9.4 The is_heap_untilalgorithm|
9.5 The is_heapalgorithm| o
9.6 Reorderings and fluctuations|o oL

85
88
90
92
96

99

101
102
104
105
106
108
110
112
114
115
116
118
120
121
123
126
133
135
140

143
144
146
150
153
156
160

163

165
167
170
172
173
175
176

9.7 The push_heapalgonthm| 0.
9.8 The pop_heapalgorithm| L L
9.9 The make_heapalgorithm| o 0 o
[9.10 The sort_heapalgonthm| L.

A0

Sorting Algorithms|

(10.1 The is_sortedalgonthm|
(10.2 The partial_sortalgorithm|
(10.3 The bubble_sort algorithm|. L.
[10.4 The selection_sortalgorithm|,
(10.5 The insertion_sort algorithm|
[10.6 The heap_sort algorithm|
(10.7 The merge algorithm|.

WV Verificaii rd |

ik

The stack data type|

\l

Appendices|

[A——"Results of formal verification with Frama-Cl

[A.1 Verification settings| e e e e e
[A.2 Verification results (sequential)| oo oL oo
[A.3 Verification results (parallel)]

Changes in previous releases|

(B.1 New in Version 21.1.1 (Scandium, September 2020)|.
(B.2 New in Version 21.1.0 (Scandium, July 2020)|
[B.3 New in Version 20.0.2 (Calctum, April 2020)(.
[B.4 New in Version 20.0.1 (Calcium, March 2020)[.
[B.5 New 1n Version 20.0.0 (Calcium, December 2019)(.
[B.6 New in Version 19.1.0 (Potassium, October 2019)[.
[B.7 New 1n Version 19.0.0 (Potasstum, June 2019)|
[B.8 New in Version 18.0.0 (Argon, December 2018)|
[B.9 New 1n Version 17.1.0 (Chlorine, July 2018)|
(B.10 New 1n Version 16.1.1 (Sulfur, March2018)[.
[B.11 New in Version 16.1.0 (Sulfur, December 2017)]
(B.12 New 1in Version 15.1.2 (Phosphorus, October 2017)[.
(B.13 New 1n Version 15.1.1 (Phosphorus, September 2017)(.
[B.14 New 1n Version 15.1.0 (Phosphorus, June 2017)
[B.15 New 1n Version 14.1.1 (Silicon, April 2017),
[B.16 New 1n Version 14.1.0 (Silicon, January 2017)[.
(B.17 New 1n Version 13.1.1 (Alumintum, November 2016)|

219

221
222
223
226
228
230
232
243

247

249
249
250
254

[B.18 New 1n Version 13.1.0 (Aluminium, August 2016).
[B.19 New 1n Version 12.1.0 (Magnesium, February 2016)(.
IB.20 New 1n Version 11.1.1 (Sodium, June 2015),
IB.21 New in Version 11.1.0 (Sodium, March 2015)
[B.22 New 1n Version 10.1.1 (Neon, January 2015)|.
[B.23 New 1n Version 10.1.0 (Neon, September 2014)
[B.24 New 1n Version 9.3.1 (Fluorine, not published)].
IB.25 New 1n Version 9.3.0 (Fluorine, December 2013)[.
[B.26 New 1n Version 8.1.0 (Oxygen, notpublished)|
B.2"/ New 1n Version /.1.1 (Nitrogen, August 2012)[.
[B.28 New 1n Version 7.1.0 (Nitrogen, December 2011)(.
[B.29 New 1n Version 6.1.0 (Carbon, not published)]
[B.30 New 1n Version 5.1.1 (Boron, February 2011)[.
[B.31 New 1n Version 5.1.0 (Boron, May 2010).
[B.32 New 1n Version 4.2.2 (Beryllium, May 2010)]
[B.33 New 1n Version 4.2.1 (Beryllium, April 2010)(.
[B.34 New 1n Version 4.2.0 (Beryllium, January 2010)[.

lIndex of examples|

281

283

289

List of Figures

4.1 Some simple examples for find|. o o oo 32
420 A simple example for find_first_of|. 45
.24 A simple example for adjacent_find|. 0oL 48
|4.33 Searching the first occurrence of b[0. .p—1] mal0..n=1]|. 53
|4.37 Searching the first occurrence a given constant sequence ma[O..n-1]|. 56
4.41 Finding the last occurrence b [0. .p—-1] ma[0..n-17|. 60
6.4 Some examples for lower_bound|. oo 88
6.7 Some examples for upper_bound|. L L Lo 90
[6.10 Some examples for equal_range|. oo oo e . 92
[6.15 Some examples for binary_search| 96
[7.10 Effectsof copy|. e 108
[/.11 Possible overlap of copy ranges| L L o 108
[7.14 Possible overlap of copy_backwardranges|, 110
[7.18 Sketch of predicate Reverse| 112
[7.23 Effectsof rotate copyv|« e 115
[726 Effectsof rotatel 116
[7.29 Effectsof replace| e 118
[/.36 Effects of remove_copy]| e 121
[7.43 Partitioning the input of remove_copy| 126
[75T Effectsof removel 133
[754 Effectsof shufflel 135
9.1 Overview on heap algorithms| 165
9.2 Tree representation of the multiset X| o 0oL 168
9.3 Underlying arrayof aheap| 168
9.4 An alternative representation of the multiset X| oo 0oL 169
9.5 Underlying array of the alternative representation| 169
[9.20 Example heap before the call of push_heap|. 181
[9.21 Example heap after the call of push_heap|. 181
[9.23 Heap after the prologue of push_heap|. 183
[9.24 Heap after the main act of push_heap|. oL 184
[9.25 Heap after the epilogue of push_heap|. 185
[9.27 Heap before the call of pop_heap| o oo oL 187
[9.28 Heap after the call of pop_heap| L. 187
[9.30 Heap after the prologue of pop_heap| L. 189
[9.31 Heap after the first iteration of of pop_heap|. 190
[9.32 Heap after the second iteration of pop_heap|. oL 190
[9.33 Heap after the third iteration of pop_heap|. 191
[9.34 Heap after the epilogue of pop_heap|. Lo 191
[9.35 Array before the call of make_heap| o oo oL 192
[9.38 Array after the call of sort_heap| Lo Lo 194

10

[10.3 Effectsof partial sort| e e 200
[10.7 Aniteration of partial_sort| e 202
[(10.12 An 1teration of selection SOrt|. v v i v v i i e e 208
[10.15 Aniteration of insertion sort!|. 210
(IT.T Pushandpoponastackl. 221
(11.2 Methodology Overview| i 222
[(1T.4 Interpreting the data structure stack| 226
(11.9 Exampleof twoequalstacks| o oL 231
(1T.10 Methodology for the verification of well-definition| 232
[A.1 Verification pipeline of automatic and interactive theorem provers| 250
[A.12 Parallel execution of theorem provers|., 254

List of Tables

[1.1 Information on automatic and interactive theorem provers| 3
[3.1 Some ACSL formulasyntax|. L 19
[7.35 Properties of remove_copy|o 121
|A.2 Results for non-mutating algorithms| o o oL 250
|A.3 Results for maximum and minimum algorithms| 251
|A.4 Results for binary search algorithms| o 0oL 251
|A.5 Results for mutating algorithms|. 0 L. 251
|A.6 Results for numeric algorithms| o L L 252
|A.7 Results for heap algorithms| 0 o L 252
|A.8 Results for algorithms related tosorting| 252

Results for kfunctions| 253
(A.10__Results for the well-definition of the stack functionsl. 253
[AJT Resultsfor stackaxiomsl v ¢ v vt vt 253
|A.13 Results for non-mutating algorithms| L. 254
|A.14 Results for maximum and minimum algorithms| 255
|A.15 Results for binary search algorithms| 255
|A.16 Results for mutating algorithms|. oo o oo 255
|A.17 Results for numeric algorithms| 256
|IA.18 Results for heap algorithms| 256
|A.19 Results for algorithms related to sorting| 256
[A.20 Results for stack functions| L Lo 257
[A21 Results for the well-definition of the stack functions|. 257
[A22 Resultsfor stackaxioms| 257
[B.1 Information on automatic and interactive theorem provers| 259
[B.2 Information on automatic and interactive theorem provers| 261
B.3 Information on automatic and interactive theorem provers| 262
[B.4 Information on automatic and interactive theorem provers| 263
[B.5 Information on automatic and interactive theorem provers| 264
[B.6 Information on automatic and interactive theorem provers| 266

11

Part I.

Basics

13

2. Introduction

This report provides various examples for the formal specification, implementation, and deductive veri-
fication of C programs using the ANSI/ISO-C Specification Language (ACSL [8]]) and the Frama-C/WP
plug-in [1] of Frama-C [2] (Framework for Modular Analysis of C programs).

We have chosen our examples from the C++ Standard Library whose initial version is still known as the
Standard Template Library (STL). The C++ Standard Library contains a broad collection of generic algo-
rithms that work not only on C arrays but also on more elaborate container data structures. For the purposes
of this document we have selected representative algorithms, and converted their implementation from C++
function templates to C functions that work on arrays of type int.

We will continue to extend and refine this report by describing additional STL algorithms and data struc-
tures. Thus, step by step, this document will evolve from an ACSL tutorial to a report on a formally
specified and deductively verified Standard Library for ANSI/ISO-C. Moreover, as ACSL is extended to a
C++ specification language, our work may be extended to a deductively verified C++ Standard Library.

We encourage you to check vigilantly whether our formal specifications capture the essence of the informal
description of the STL algorithms. We appreciate your feedbackﬂ and hope that this document helps foster
the adoption of deductive verification techniques.

Acknowledgement

Many members from the Frama-C community provided valuable input and comments during the course of
the development of this document. In particular, we wish to thank our project partners Patrick Baudin, Allan
Blanchard, Loic Correnson, Zaynah Dargaye, Florent Kirchner, Virgile Prevosto, and Armand Puccetti from
CEA LISTEI and Pascal Cuoq from TrustInSof

We also like to express our gratitude to Claude Marché (LRI/INRIAﬂ and Yannick Moy (AdaCoref] for
their helpful comments and detailed suggestions for improvement. Finally, we would like to thank Aaron
Rocha who sent us valuable improvement suggestions and error reports.

SWe suggest GitHub’s issue tracker: https://github.com/fraunhoferfokus/acsl-by-example/issues
Shttp://www—1list.cea.fr/en

"http://trust-in-soft.com

fhttps://www.lri.fr/index_en.php?lang=EN

g1'1ttp ://www.adacore.com

15

https://github.com/fraunhoferfokus/acsl-by-example/issues
http://www-list.cea.fr/en
http://trust-in-soft.com
https://www.lri.fr/index_en.php?lang=EN
http://www.adacore.com

2.1. Frama-C

The Framework for Modular Analyses of C, Frama-C [2], is a suite of software tools dedicated to the
analysis of C source code. Its development efforts are conducted and coordinated at two French public
institutions: CEA LIST [9], a laboratory of applied research on software-intensive technologies, and INRIA
Saclay [10], the French National Institute for Research in Computer Science and Control in collaboration
with LRI [11]], the Laboratory for Computer Science at Université Paris-Sud.

ACSL (ANSI/ISO-C Specification Language) [8] is a formal language to express behavioral properties of
C programs. This language can specify a wide range of functional properties by adding annotations to the
code. It allows to create function contracts containing preconditions and postconditions. It is possible to
define type and global invariants as well as logic specifications, such as predicates, lemmas, axioms or logic
functions. Furthermore, ACSL allows statement annotations such as assertions or loop annotations.

Within Frama-C, the Frama-C/WP plug-in [[1] enables deductive verification of C programs that have been
annotated with ACSL. The Frama-C/WP plug-in uses Hoare-style weakest precondition computations to
formally prove ACSL properties of C code. Verification conditions are generated and submitted to external
automatic theorem provers or interactive proof assistants.

The Verification Group at Fraunhofer FOKUS [12] see the great potential for deductive verification using
ACSL. However, we recognize that for a novice there are challenges to overcome in order to effectively use
the Frama-C/WP plug-in for deductive verification. In order to help users gain confidence, we have written
this tutorial that demonstrates how to write annotations for existing C programs. This document provides
several examples featuring a variety of annotated functions using ACSL. For an in-depth understanding
of ACSL, we strongly recommend users to read the official Frama-C introductory tutorial [|13]] first. The
principles presented in this paper are also documented in the ACSL reference document [|14]].

2.2. Structure of this document

The functions presented in this document were selected from the C++ Standard Library. The original C++ im-
plementation was stripped from its generic implementation and mapped to C arrays of type value_type.

Chapter 3| provides a short introduction into the Hoare Calculus. For a better understanding of Frama-C/WP
and the theory behind it, we also recommend Allan Blanchard’s ACSL tutorial [|15]].

We have grouped various standard algorithms in chapters as follows:

e non-mutating algorithms (Chapter [))

e maximum/minimum algorithms (Chapter [5))

e binary search algorithms (Chapter [6])

e mutating algorithms (Chapter (/)

e numeric algorithms (Chapter [8)

e heap algorithms (Chapter [J)

e sorting algorithms and well-known classical implementations of sorting algorithms (Chapter [I0)
The order of these chapters reflects their increasing complexity.

Using the example of a stack, we tackle in Chapter 11| the problem of how a data type and its associated C
functions can be specified with ACSL and automatically verified with Frama-C.

16

Finally, Appendix |Allists for each example the results of verification with Frama-C.

2.3. Types, arrays, ranges and valid indices

In order to keep algorithms and specifications as general as possible, we use abstract type names on almost
all occasions. We currently defined the following types:

typedef int wvalue_type;
typedef unsigned int size_type;

typedef int bool;

Programmers who know the types associated with C++ Standard Library containers will not be surprised that
value_type refers to the type of values in an array whereas size_type will be used for the indices of
an array.

This approach allows one to modify, say, an algorithm working on an int array to work on a char array
by changing only one line of code, viz. the typedef of value_type. Moreover, we believe in better
readability as it becomes clear whether a variable is used as an index or as a memory for a copy of an array
element, just by looking at its type.

The latter reason also applies to the use of bool. To denote values of that type, we defined the identifiers
false and true to be 0 and 1, respectively. While any non-zero value is accepted to denote t rue in ACSL
like in C the algorithms shown in this tutorial will always produce 1 for true. Due to the above definitions,
the ACSL truth-value constant \ false and \true can be used interchangeably with our false and true,
respectively, in ACSL clauses, but not in C code.

2.3.1. Array and ranges

The C Standard describes an array as a “contiguously allocated nonempty set of objects” [[16] §6.2.5.20]. If
n is a constant integer expression with a value greater than zero, then

int aln];

describes an array of type int. In particular, for each i that is greater than or equal to 0 and less than n,
we can dereference the pointer a+1.

Let the following prototype represent a function, whose first argument is the address to a range and whose
second argument is the length of this range.

void example (value_typex a, size type n);

To be very precise, we have to use the term range instead of array. This is due to the fact, that functions
may be called with empty ranges, i.e., withn == 0. Empty arrays, however, are not permitted according
to the definition stated above. Nevertheless, we often use the term array and range interchangeably.

17

2.3.2. Specification of valid ranges in ACSL

The following ACSL fragment expresses the precondition that the function example expects that for
each i,suchthat 0 <= i < n, the pointer a+1i may be safely dereferenced.

/%@
requires 0 <= n;
requires \valid(a + (0.. n-1));
*/
void example (value_type* a, size_type n);

In this case we refer to each index 1 with 0 <= 1 < n as avalid index of a.

ACSL’s built-in predicates \valid(a + (0.. n)) and \valid_read(a + (0.. n)) refer to
all addresses a+i where 0 <= i <= n. However, the array notation int a[n] of the C programming
language refers only to the elements a+i where i satisfies 0 <= i < n. Users of ACSL must therefore
use the range notation a+ (0. . n-1) in order to express a valid array of length n.

18

3. The Hoare calculus

In 1969, C.A.R. Hoare introduced a calculus for formal reasoning about properties of imperative programs
[17], which became known as “Hoare Calculus”.

The basic notion is

//@ assert P;
Q;
//@ assert R;

where P and R denote logical expressions and Q denotes a source-code fragment. Informally, this means

If P holds before the execution of O, then R will hold after the execution.

Usually, P and R are called precondition and postcondition of Q, respectively. The syntax for logical
expressions is described in [[14, §2.2] in full detail. For the purposes of this tutorial, the notions shown in
Table are sufficient. Note that they closely resemble the logical and relational operators in C.

] ACSL syntax \ Name Reading ‘
1P negation P is not true
P && Q conjunction P is true and Q is true
P ||l OQ disjunction P is true or Q is true
P ==> Q implication if P is true, then Q is true
P <==> Q equivalence if, and only if, P is true, then Q is true
X <y ==z relation chain x is less than y and y is equal to z
\forall int x; P (x) | universal quantifier | P (x) is true for every int value of x
\exists int x; P (x) | existential quantifier | P (x) is true for some int value of x

Table 3.1.: Some ACSL formula syntax

Here we show three example source-code fragments and annotations.

i i i_assert x%2==1 If x has an odd value before execution of the
//@ assert x % 2 == 0 ; code ++x then x has an even value thereafter.
//@ assert 0 <= x <= y; If the value of x is in the range {0, ..., y} before
+4x; execution of the same code, then x’s value is in
//€ assert 0 <= x <=y + 1; the range {0, ...,y + 1} after execution.

19

//Q@ assert true; .)
while (--x != 0) Under any circumstances, the value of x is zero

sum += al[x]; after execution of the loop code.
//Q assert x == 0;

Any C programmer will confirm that these properties are ValidF;G] The examples were chosen to demonstrate
also the following issues:

For a given code fragment, there does not exist one fixed pre- or postcondition. Rather, the choice
of formulas depends on the actual property to be verified, which comes from the application context.
The first two examples share the same code fragment, but have different pre- and postconditions.

The postcondition need not be the most restricting possible formula that can be derived. In the second
example, it is not an error that we stated only that 0 <= x although we know thateven 1 <= x.

In particular, pre- and postconditions need not contain all variables appearing in the code fragment.
Neither sum nor a [] is referenced in the formulas of the loop example.

We can use the predicate true to denote the absence of a properly restricting precondition, as we did
before the while loop.

It is not possible to express by pre- and postconditions that a given piece of code will always termi-
nate. The loop example only states that if the loop terminates, then x == 0 will hold. In fact, if x
has a negative value on entry, the loop will run forever. However, if the loop terminates, x == 0
will hold, and that is what the loop example claims.

Usually, termination issues are dealt with separately from correctness issues. Termination proofs
may, however, refer to properties stated (and verified) using the Hoare Calculus.

Hoare provided the rules shown in Listing[3.2]to[3.12]in order to reason about programs. We will comment
on them in the following sections.

10We leave the important issues of overflow aside for a moment.

20

3.1. The assignment rule

We start with the rule that is probably the least intuitive of all Hoare-Calculus rules, viz. the assignment
rule. It is depicted in Listing[3.2] where

P{x > e}

denotes the result of substituting each occurrence of the variable x in the predicate P by the expression e.

//Q assert P {x |-—> e};
X = e;
//Q@ assert P;

Listing 3.2: The assignment rule

For example, if P is the predicate

x > 0 && al[2xx] ==

then P {x — y + 1} is the predicate

y+1l > 0 && al[2x(y+tl)] == 0

Hence, we get Listing[3.3|as an example instance of the assignment rule. Note that parentheses are required
in the index expression to get the correct 2+ (y+1) rather than the faulty 2«y+1.

//@ assert y+1 > 0 && a2+ (y+1)] == 0;
x = y+1l;
//@ assert x > 0 && a[2+x] == 0;

Listing 3.3: An assignment rule example instance

Note that after a substitution several different predicates P may result in the same predicate P {x + e}. For
example, after applying the substitution P {x — y + 1} each of the following four predicates

x > 0 && al[2+*x] = 0
x > 0 && al[2x(y+1l)] == 0
y+1l > 0 && al[2xx] == 0
y+1 > 0 && a[2«(y+1)] == 0
turns into
y+1l > 0 && al[2x(y+1l)] == 0

For this reason, the same precondition and statement may result in several different postconditions (All four
above expressions are valid postconditions in Listing for example). However, given a postcondition
and a statement, there is only one precondition that corresponds.

21

22

When first confronted with Hoare’s assignment rule, most people are tempted to think of a simpler and
more intuitive alternative, shown in Listing [3.4]

//Q assert P;
X = e;

//Q@ assert P s&&

X == g;

Listing 3.4: Simpler, but faulty assignment rule

Listings show some example instances of this faulty rule.

//@ assert y > 0;
X yv+1;
//@ assert y > 0 && x == y+1;

Listing 3.5: An example instance of the faulty rule from Listing

While Listing[3.5|happens to be ok, Listing[3.6|and[3.7]lead to postconditions that are obviously nonsensical
formulas.

//@ assert true;
X x+1;

//@ assert x == x+1;

Listing 3.6: An example instance of the faulty rule from Listing

The reason is that in the assignment in Listing[3.6]the left-hand side variable x also appears in the right-hand
side expression e, while the assignment in Listing [3.7|just destroys the property from its precondition.

//Q@ assert x < 0;
x 5;

//Q@ assert x < 0 && x == 5;

Listing 3.7: An example instance of the faulty rule from Listing

Note that the correct example Listing[3.5|can as well be obtained as an instance of the correct rule from List-
ing [3.2] since replacing x by y+1 in its postcondition yields y > 0 && y+1
which is logically equivalent to just y > 0.

y+1 as precondition,

3.2. The sequence rule

The sequence rule, shown in Listing [3.8] combines two code fragments Q and S into a single one Q ; S.
Note that the postcondition for O must be identical to the precondition of S. This just reflects the sequential
execution (“first do Q, then do S”) on a formal level. Thanks to this rule, we may “annotate” a program
with interspersed formulas, as it is done in Frama-C.

//@ assert P; //@ assert R; //@ assert P;
Q; and Si ~> Qi S;
//Q assert R; //Q assert T; //Q assert T;

Listing 3.8: The sequence rule

3.3. The implication rule

The implication rule, shown in Listing[3.9] allows us at any time to sharpen a precondition P and to weaken
a postcondition R. More precisely, if we know that P’ ==> P and R ==> R’ then the we can replace the
left contract in of Listing[3.9)by the right one.

//Q assert P; //Q assert P’;
Q; ~ Qi
//@ assert R; //@ assert R’;

Listing 3.9: The implication rule

23

3.4. The choice rule

The choice rule, depicted in Listing[3.10] is needed to verify conditional statements of the form

if (¢) x;
else Y;

Both the then and else branch must establish the same postcondition, viz. S. The implication rule can
be used to weaken differing postconditions S1 of a then-branch and S2 of an else-branch into a unified
postcondition S1 | | S2, if necessary. In each branch, we may use what we know about the condition
C. For example, in the else-branch, we may use that C is false. If the else-branch is missing, it can be
considered as consisting of an empty sequence, having the postcondition P && !C.

t P;
//@ assert P && Cj //@ assert P &s& !C; //@ asser
X; d Y. if (C) X;
, an ! el else Y;
t S t s;
/€ msser [/€ asser //@ assert S;

Listing 3.10: The choice rule

Listing [3.11]shows an example application of the choice rule.

//@ assert 0 <= i < n; // given precondition
if (1 < n-1) {
//Q assert 0 <= i < n - 1; // using that i < n-1 holds in this branch
//Q@ assert 1 <= i+l < n; // by the implication rule
i = 1i+1;
//@ assert 1 <= i < n; // by the assignment rule
//@ assert 0 <= i < n; // weakened by the implication rule
} else {
//@ assert 0 <= i == n-1 < n; // using that ! (i < n-1) holds in else part
//@ assert 0 == 0 && 0 < n; // weakened by the implication rule
i = 0;
//Q@ assert i == 0 && 0 < n; // by the assignment rule
//@ assert 0 <= i < n; // weakened by the implication rule
}
//@ assert 0 <= i < n; // by the choice rule from both branches

Listing 3.11: An example application of the choice rule

The variable i may be used as an index into a ring buffer int a[n]. The shown code fragment just
advances the index i appropriately. We verified that i remains a valid index into a [] provided it was valid
before. Note the use of the implication rule to establish preconditions for the assignment rule as needed,
and to unify the postconditions of the then and else branches, as required by the choice rule.

24

3.5. The loop rule

The loop rule, shown in Listing [3.12] is used to verify a while loop. This requires to find an appropriate
formula, P, which is preserved by each execution of the loop body. P is also called a loop invariant.

//@ assert P;

//@ assert P && B; while (B) {
S; ~> S;
//@ assert P; }

//@ assert !B && P;

Listing 3.12: The loop rule

To find it requires some intuition in many cases; for this reason, automatic theorem provers usually have
problems with this task.

As said above, the loop rule does not guarantee that the loop will always eventually terminate. It merely
assures us that, if the loop has terminated, the postcondition holds. To emphasize this, the properties
verifiable with the Hoare Calculus are usually called “partial correctness” properties, while properties that
include program termination are called “total correctness” properties.

As an example application, let us consider an abstract ring-buffer. Listing [3.13] shows a verification proof
for the index i lying always within the valid range [0..n-1] during, and after, the loop. It uses the proof
from Listing[3.1T]as a sub-part.

//Q@ assert 0 < nj; // given precondition
int 1 = 0;
//@ assert 0 <= i < n; // by the assignment rule

while (!'done) {
//@ assert 0 <= i < n && !done; // may be assumed by the loop rule

al[i] = getchar();

//@ assert 0 <= i < n && !done; // required property of getchar

//Q@ assert 0 <= i < n; // weakened by the implication rule
i = (i < n-1) 2 i+1 : 0;

//Q@ assert 0 <= i < n; // follows by the choice rule

process(a, i, &done);

//@ assert 0 <= i < n; // required property of process
}
//@ assert 0 <= i < n; // by the loop rule

Listing 3.13: An abstract ring buffer loop

25

To reuse the proof from Listing [3.11] we had to drop the conjunct ! done, since we didn’t consider it in
Listing [3.T1] In general, we may not infer

//@ assert P && S; //@ assert P;
Qi from Qi
//Q@ assert R && S; //Q assert R;

since the code fragment Q may just destroy the property S.
This is obvious for Q being the fragment from Listing[3.11] and S beinge.g. i != 0.

Suppose for a moment that process had been implemented in a way such that it refuses to set done to
true unless it is false at entry. In this case, we would really need that ! done still holds after execution
of Listing [3.TT] We would have to do the proof again, looping-through an additional conjunct ! done.

We have similar problems to carry the property 0 <= 1 < n && !doneand 0 <= i < n over the
statementa [1] = getchar () and process(a, 1, &done),respectively. We need to specify that
neither getchar nor process is allowed to alter the value of i or n. In ACSL, there is a particular
language construct assigns for that purpose, which is introduced in §7.3|on Page[I05]

In our example, the loop invariant can be established between any two statements of the loop body. How-
ever, this need not be the case in general. The loop rule only requires the invariant holds before the loop
and at the end of the loop body. For example, process could well change the value of 1EI and even n
intermediately, as long as it re-establishes the property 0 <= i < n immediately prior to returning.

The loop invariant, 0 <= i < n, is established by the proof in Listing [3.11] also after termination of the
loop. Thus, e.g.,afinala[i] = ’\0’ after the loop would be guaranteed not to lead to a bounds violation.

Even if we would need the property 0 <= i < n to hold only immediately before the assignment a [1]

= getchar (), for example since process’s body didn’t use a or i, we would still have to establish
0 <= 1 < nasaloop invariant by the loop rule, since there is no other way to obtain any property inside
a loop body. Apart from this formal reason it is obvious that 0 <= i < n wouldn’t hold during the
second loop iteration unless we re-established it at the end of the first one, and that is just what the while
rule requires.

""We would have to change the call to process (a, &i, &done) and the implementation of process appropriately. In this
case we couldn’t rely on the above-mentioned assigns clause for process.

26

3.6. Derived rules

The above rules do not cover all kinds of statements allowed in C. However, missing C-statements can be
rewritten into a form that is semantically equivalent and covered by the Hoare rules.

For example, if the expression E doesn’t have side-effects, then

switch (E) {
case El1: Ql1; break;
case En: On; break;
default: Q0; break;

is semantically equivalent to

if (E == E1) {
Q1;

} else ... if (E == En) {
onj;

} else {
Q0;

}

While the if-else form is usually slower in terms of execution speed on a real computer, this doesn’t
matter for verification purposes, which are separate from execution issues.

Similarly, a loop statement of the form

for (P; Q; R) {
S;

can be re-expressed as

and so on.

It is then possible to derive a Hoare rule for each kind of statement not previously discussed, by applying the
classical rules to the corresponding re-expressed code fragment. However, we do not present these derived
rules here.

Although procedures cannot be re-expressed in the above way if they are (directly or mutually) recursive,
it is still possible to derive Hoare rules for them. This requires the finding of appropriate “procedure
invariants” similar to loop invariants. Non-recursive procedures can, of course, just be inlined to make the
classical Hoare rules applicable.

Note that goto cannot be rewritten in the above way; in fact, programs containing goto statements cannot
be verified with the Hoare Calculus. See [18]] for a similar calculus that can deal with arbitrary flowcharts,
and hence arbitrary jumps. In fact, Hoare’s work was based on that calculus. Later calculi inspired from
Hoare’s work have been designed to re-integrate support for arbitrary jumps. However, in this tutorial, we
will not discuss example programs containing a goto.

27

Part Il.

Nonmutating and simple search
algorithms

29

4.

Non-mutating algorithms

In this chapter, we consider non-mutating algorithms of the C++ Standard Library [19] §28.5]. These algo-
rithms neither change their arguments nor any objects outside their scope. This requirement can be formally
expressed with the following assigns clause:

assigns \nothing;

Each algorithm in this chapter therefore uses this assigns clause in its specification.

The specifications of these algorithms are not very complex. Nevertheless, we have tried to arrange them so
that the earlier examples are simpler than the later ones. Each algorithm works on one-dimensional arrays.

find in §4.T] provides sequential or linear search and returns the smallest index at which a given
value occurs in a given range. In a user-defined ACSL predicate is introduced in order to
simplify the reuse of various specification elements. We refer to the simplified version as £ind2.
We provide in a third specification of £ind (called £ind3) that relies on a user-defined ACSL
function that expresses the ideas of linear search on the logic level.

find_if_not in §4.4]is a small variation of £ind that searches the first occurrence where a given
value does not occur.

find_first_of in §4.5|provides similar to £ind a sequential search. However, unlike £ind it
does not search for a particular value, but for an arbitrary member of a set.

adjacent_find in §4.6 can be used to find equal neighbors in an array.

equal and mismatch in are useful for comparing two ranges element-by-element and identi-
fying where they differ.

search and search_n in §4.8 and §4.9|find a subsequence that is identical to a given sequence
when compared element-by-element and returns the position of the first occurrence.

count in §4.TT|returns the number of occurrences of a given value in a range. Here we will explicitly
define a logic function for elements counting and show that the implementation comply with it.

count?2 in contains different specification for the count function. In this case an inductive
predicate defined for elements counting. The section allows one to compare different approaches of
writing specifications and demonstrates the ACSL inductive predicates.

31

4.1. The £ind algorithm

The find algorithm in the C++ Standard Library [19, §28.5.5] implements sequential search for general
sequences. We have modified the generic implementation, which relies heavily on C+ templates, to that of
arange of type value_type. The signature now reads:

size_type find(const value_typex a, size_type n, value_type v);
The function f£ind returns the least valid index i of a where the condition a[1] == wv holds. If no such

index exists then find returns the length n of the array.

As an example, we consider in Figure i.1| an array. The arrows indicate which indices will be returned by
find for a given value. Note that the index 9 points one past end of the array. Values that are not contained
in the array are colored in gray.

w
N
N
Ul
w
=
Ul
=
N

3
A

e @

Figure 4.1.: Some simple examples for £ind

4.1.1. Formal specification of £ind

The following listing shows our first attempt specify £ind [4.2]].

/*@
requires \valid_read(a + (0..n-1));
assigns \nothing;
ensures 0 <= \result <= nj;

behavior some:
assumes \exists integer i; 0 <= i < n && al[i] == v;
assigns \nothing;
ensures 0 <= \result < nj;
ensures al[\result] == v;
ensures \forall integer i; 0 <= i < \result ==> al[i] != v;

behavior none:

assumes \forall integer i; 0 <= i < n ==> a[i] != v;
assigns \nothing;
ensures \result == n;

complete behaviors;
disjoint behaviors;
*/
size_type
find (const value_typex a, size_ type n, value_type v);

Listing 4.2: Formal specification of £ind

32

The requires-clause indicates that n is non-negative and that the pointer a points to n contiguously
allocated objects of type value_type (see §2.3). The assigns-clause indicates that £ind (as a non-
mutating algorithm), does not modify any memory location outside its scope (see Page [3T).

Generally, we only know that find returns a non-negative index that is less or equal the length of the array.
However, once we assume more specific situations, we can also make more precise statements about the
returned valued. This is the reason why we have subdivided the specification of £ind into two behaviors
(named some and none).

e The behavior some applies if the sought-after value is contained in the array. We express this condi-
tion by using the assumes-clause. The next line expresses that if the assumptions of the behavior
are satisfied then £ind will return a valid index. The algorithm also ensures that the returned (valid)
index i, a[i] == v holds. Therefore we define this property in the second postcondition of be-
havior some. Finally, it is important to express that £ind returns the smallest index i for which
al[i] == v holds (see last postcondition of behavior some).

e The behavior none covers the case that the sought-after value is not contained in the array (see
assumes-clause of behavior none in in the contract of f ind [4.2]]. In this case, £ind must return
the length n of the range a.

Note that the formula in the as sume s-clause of the behavior some is the negation of the as sumes-clause
of the behavior none. Therefore, we can express that these two behaviors are complete and disjoint.

4.1.2. Implementation of £ind

The noteworthy elements of our implementation of £ind [4.3]] are the loop annotations. The first loop
invariant is needed to prove that accesses to a only occur with valid indices. The second loop invariant is
needed for the proof of the postconditions of the behavior some in the contract of £ind [4.2]. It expresses
that for each iteration the sought-after value is not yet found up to that iteration step. Finally, the loop
variant n—1 is needed to generate correct verification conditions for the termination of the loop.

size_type
find (const value_typex a, size_type n, value_type v)

{

/@
loop invariant 0 <= i <= n;
loop invariant \forall integer k; 0 <= k < i ==> alk] != v;

loop assigns i;
loop variant n-i;

*/
for (size_type i = Ou; i < n; i++) {
if (a[i] == v) {
return i;
}
}
return n;

Listing 4.3: Implementation of £ind

33

4.2. The £ind2 algorithm—reuse of specification elements

In this section we specify £ind in a slightly different way. Our approach is motivated by a considerable
number of closely related ACSL formulas in the contract £ind [4.2]] and the implementation £ind [4.3].

\exists integer i; 0 <= 1 < n && alil == v;
\forall integer i; 0 <= i < \result ==> ali] != v;
\forall integer i; 0 <= 1 < n ==> ali] != v;
\forall integer k; 0 <= k < 1 ==> alk] !'= v;

Note that the first formula is the negation of the third one.

4.2.1. The predicates SomeEqual and NoneEqual

In order to be more explicit about the commonalities of these formulas we define a predicate, called
SomeEqual [4.4], which describes the situation that there is a valid index i where a [1] equals v.

/%@
axiomatic SomeNone

{

predicate

SomeEqual{A} (value_typex a, integer m, integer n, value_type v) =
\exists integer i; m <= i < n && al[i] == v;

predicate

SomeEqual{A} (value_typex a, integer n, value_type v) =
SomeEqual (a, 0, n, v);

predicate

NoneEqual (value_typex a, integer m, integer n, value_type v) =
\forall integer i; m <= i < n ==> al[i] != v;

predicate

NoneEqual (value_typex a, integer n, value_type v) =
NoneEqual (a, 0, n, Vv);

lemma NotSomeEqual_NoneEqual:
\forall value_type *a, v, integer m, n;
!'SomeEqual (a, m, n, V) ==> NoneEqual(a, m, n, v);

lemma NoneEqual_ NotSomeEqual:
\forall value_type *a, v, integer m, n;
NoneEqual (a, m, n, V) ==> |!SomeEqual(a, m, n, v);

*/

Listing 4.4: The logic definition(s) SomeNone

We first remark that the SomeEqual, its negation NoneEqual and the lemmas Not SomeEqual_NoneEqual

and NoneEqual_NotSomeEqual are encapsulated in the axiomatic block SomeNone [4.4]. This is a
feeble attempt to establish some modularization for the various predicates, logic functions and lemmas. We
say feeble because axiomatic blocks are, in contrast to ACSL modules, not name spaces. ACSL modules,
however, are not yet implemented by Frama-C.

34

We also remark that both predicates come in overloaded versions. The first of theses versions is a definition
for array sections while the second definition is for the case of complete arrays.

Note that we have provided a label, viz. A, to the predicate SomeEqual. Its purposes to express that the
evaluation of the predicate depends on a memory state, viz. the contents of a[0..n—1]. In general, we
have to write

\exists integer i; 0 <= i < n && \at(al[i]l,A) == v;

in order to express that we refer to the value a [1] in the program state A. However, ACSL allows to
abbreviate \at (a[i],A) bya[i] if, asin SomeEqual or NoneEqual, the label A is the only available
label. In particular, we have omitted the label in the overloaded versions for complete arrays.

4.2.2. Formal specification of £ind2

With the predicates SomeEqual [4.4] and NoneEqual [4.4] we are able to encapsulate all uses of the
universal and existential quantifiers in both the specification and implementation of £ind2.

As a result, the revised contract £ind?2 [@l is more concise than that of £ind [@l In particular, it
can be seen immediately that the conditions in the assumes clauses of the two behaviors some and none
are mutually exclusive since one is the literal negation of the other. Moreover, the requirement that £ind
returns the smallest index can also be expressed using the NoneEqual [{.4]] predicate, as depicted with
the last postcondition of behavior some.

/%@
requires valid: \valid_read(a + (0..n-1));
assigns \nothing;
ensures result: 0 <= \result <= nj;

behavior some:

assumes SomeEqual (a, n, Vv);
assigns \nothing;

ensures bound: 0 <= \result < n;

ensures result: a[\result] == v;

ensures first: NoneEqual(a, \result, v);

behavior none:

assumes NoneEqual (a, n, Vv);
assigns \nothing;
ensures result: \result == n;

complete behaviors;
disjoint behaviors;
*/
size_type
find2 (const value_typex a, size_type n, value_type v);

Listing 4.5: Formal specification of £ind?2

We also enriched the specification of £ind by user-defined names (sometimes called labels, too, the dis-
tinction to program state identifiers being obvious) to refer to the requires and ensures clauses. We
highly recommend this practice in particular for more complex annotations. For example, Frama-C can be
instructed to verify only clauses with a given name.

35

4.2.3. Implementation of £ind2

The predicate NoneEqual is also used in the loop annotation inside the implementation of £ind2 [4.6].
Note that, as in the case of the specification, we use labels to name individual annotations.

size_ type
find2 (const value_typex a, size_type n, value_type v)
{
/%@
loop invariant bound: 0 <= 1 <= n;
loop invariant not_found: NoneEqual(a, i, v);
loop assigns 1i;
loop variant n-i;
*/
for (size_type i = Ou; 1 < n; i++) |
if (a[i] == v) {
return i;
}
}

return n;
}

Listing 4.6: Implementation of £ind?2

4.3. The £ind3 algorithm—using a logic function

In this section we specify linear search yet another way. This requires more preparing work but results in a
more concise function contract.

4.3.1. The logic function Find

We start with a recursive definition of the ACSL function Find. Due to the considerable number of associ-
ated lemmas of the function Find we split its definition into several listings. Note that Find comes as two
overloaded functions. While the first version is defined for array sections the latter is intend for complete
arrays.

The listings start with lemmas which express elementary properties directly related to an incremental in-
crease of the array a [0. .n—1]. The latter lemmas are somewhat more higher-level and will be useful
for the verification of £ind3. It will be there that we also reuse the predicates SomeEqual [{.4land
NoneEqual [4.4]]. At the end of this section we will also discuss in what sense the contracts of £ind2
and £ind3 are equivalent.

36

/%@
axiomatic Find
{
logic integer
Find(value_typex a, integer m, integer n, value_type v) =
(n <= m) ?
0 : ((0 <= Find(a, m, n-1, v) < n-m-1) ?
Find(a, m, n-1, v) : ((a[n-1] == v) ? n-m-1 : n-m));

logic integer
Find(value_typex a, integer n, value_type v) = Find(a, 0, n,

lemma Find_ Empty:
\forall value_type *a, v, integer m, n;
n <=m ==> Find(a, m, n, v) == 0;

lemma Find_Hit:
\forall value_type *a, v, integer m, n;

m <= n ==>
Find(a, m, n, v) < n-m ==>
Find(a, m, n+l, v) == Find(a, m, n, Vv);

lemma Find MissHit:
\forall value_type *a, v, integer m, n;

m <= n ==>
aln] == v ==>
Find(a, m, n, V) == n-m ==>
Find(a, m, n+l, v) == n-m;

lemma Find_MissMiss:
\forall value_type x*a, v, integer m, n;

m <= n ==>
aln] !'= v ==>
Find(a, m, n, V) == n-m ==>
Find(a, m, n+l, v) == (n+l)-m;

lemma Find_Lower:
\forall value_type *a, v, integer m, n;
0 <= Find(a, m, n, v);

lemma Find_Upper:
\forall value_type *a, v, integer m, n;
m <= n ==> Find(a, m, n, v) <= n-m;

lemma Find_ WeaklyIncreasing:
\forall value_type xa, v, integer m, n;
m <= n ==> Find(a, m, n, v) <= Find(a, m, n+l, v);

lemma Find_Increasing:
\forall value_type *a, v, integer k, m, n;
m <= k <= n ==>
Find(a, m, k, v) <= Find(a, m, n, Vv);

lemma Find_Extend:
\forall value_type *xa, v, integer k, m, n;

m <= k < n ==>
alk] == v ==>
Find(a, m, k, v) == k-m ==>
Find(a, m, n, v) == k-m;

Listing 4.7: The logic function Find (1)

37

lemma Find_Limit:
\forall value_type xa, v, integer k, m, n;
m <=k < n ==>
alk] == v ==>
Find(a, m, n, v) <= k-m;

lemma Find_NoneEqual:
\forall value_type *a, v, integer m, n;

m <= n ==>
NoneEqual(a, m, n, v) ==>
Find(a, m, n, v) == n-m;

lemma Find_SomeEqual:
\forall value_type xa, v, integer k, m, n;

m <= k < n ==>
alk] == v ==>
NoneEqual (a, m, k, v) ==>
Find(a, m, n, v) == k-m;

lemma Find_ResultNoneEqual:
\forall value_type *a, v, integer m, n;
m <= n ==> NoneEqual(a, m, m + Find(a, m, n, v), Vv);

lemma Find_ResultEqual:
\forall value_type *a, v, integer m, n;
0 <= Find(a, m, n, v) < n-m ==>
alm + Find(a, m, n, v)] == v;

*/

Listing 4.8: The logic function Find (2)

4.3.2. Formal specification of £ind3

Using the logic function Find we can now give a third specification of linear search. The contract of
find3 [4.9] is considerably shorter than that of £ind2 [4.5]]. Of course, we had to put much more effort
into the definition of the ACSL function Find [4.7]].

/%@
requires valid: \valid_read(a + (0..n-1));
assigns \nothing;
ensures result: 0 <= \result <= nj;
ensures result: \result == Find(a, n, Vv);
x/
size_type
find3 (const value_typex a, size_type n, value_type v);

Listing 4.9: Formal specification of £ind3

38

4.3.3. Implementation of £ind3

The following listing shows the implementation of £ind3 [4.10]. In order to achieve a complete verifica-
tion we had to add the assertion found.

size_type
find3 (const value_typex a, size_type n, value_type v)
{

/*@
loop invariant bound: 0 <=1 <= n;
loop invariant not_found: Find(a, 1, v) == 1i;

loop assigns i;
loop variant n-i;

*/
for (size_type i = Ou; 1 < n; i++) {
if (a[i] == v) {
//@ assert found: Find(a, n, v) == i;

return i;
}

return n;

Listing 4.10: Implementation of £ind3

A question that remains is in what sense the contract of £ind2 [4.5] is equivalent to the one of £ind3 [£.9].
We will answer this question in the following section.

4.3.4. The equivalence of £ind2 and £ind3

We consider the contracts of £ind2 [{.5]] and £ind3 [A4.9]] as equivalent if each one is sufficient to verify
the other. To this end we introduce yet another two examples £ind4 and £ind5.

The implementation of £ind4 [A.11] consists just of a call to £ind3.

size_type
find4 (const value_typex a, size_type n, value_ type v)
{

return find3(a, n, Vv);

}

Listing 4.11: Implementation of £ind4

39

The contract of £ind4 [A.12]], however, is the same as the one of £ind2 [£.3]].

/%@
requires valid: \valid_read(a + (0..n-1));
assigns \nothing;
ensures result: 0 <= \result <= n;

behavior some:

assumes SomeEqual (a, n, V);
assigns \nothing;

ensures bound: 0 <= \result < n;
ensures result: a[\result] == v;

ensures first: NoneEqual (a, \result, v);

behavior none:

assumes NoneEqual (a, n, Vv);
assigns \nothing;
ensures result: \result == n;

complete behaviors;
disjoint behaviors;
*/
size_type
find4 (const value_typex a, size_type n, value_type V) ;

Listing 4.12: Formal specification of £ind4

Analogously, the implementation of £ind5 [4.13] is simply a call to £ind?2.

size_type
find5 (const value_typex a, size_type n, value_type V)
{

return find2(a, n, v);

Listing 4.13: Implementation of £ind5

On the other hand, the contract of £ind5 [4.14]| is the same as the one of £ind3 [4.9]. The verification of
the functions £ind4 and £ind5 (cf. Table[A.2)) then shows the equivalence of the respective contracts of

find2 [@3] and £ind3 [E.9].

/*@
requires valid: \valid_read(a + (0..n-1));
assigns \nothing;
ensures result: 0 <= \result <= n;
ensures result: \result == Find(a, n, Vv);
*/
size_type
find5 (const value_typex a, size_type n, value_type V) ;

Listing 4.14: Formal specification of £ind5

40

4.4. The £find_if_ not algorithm

Many algorithms in the C++ standard library can be parameterized not only by the type of sequence but also
using so-called function objects. One example is the £ind_1if_not algorithm that accepts a predicate

function object P. The algorithm then returns the first position i in the input sequence where P(i) does not
hold.

While function objects could be emulated in C with pointers to functions, we will not follow this road here.
The main reason is that function pointers are, so far, only supported momentarily by Frama-C. Moreover,
there is as of now no support for parameterized ACSL predicates. For these reasons our implementation
of find_1if_not only returns the first position in an array where a given value does not occur. The
signature, thus, reads

size_type find_if_not (const value_typex a, size_type n, value_type v);

On the one hand, this is not a very exciting addition to our collections of verified algorithms. It gives us,
however, an opportunity to introduce the predicates A11Equal [4.13]] and SomeNotEqual [{.15] and
more importantly the logic function FindNotEqual [{.16] that will later play an essential role in the
specification of the algorithm remove_copy, or more precisely, its variant remove_copy3 [[7.48].

/%@
axiomatic AllSomeNot

{

predicate

AllEqual (value_type* a, integer m, integer n, value_type v) =
\forall integer i; m <= i < n ==> al[i] == v;

predicate

AllEqual (value_type* a, integer m, integer n) =
AllEqual(a, m, n, a[m]);

predicate
AllEqual (value_typex a, integer n, value_type v) =
AllEqual(a, 0, n, v);

predicate

SomeNotEqual{A} (value_typex a, integer m, integer n, value_type v) =
\exists integer i; m <= i < n && al[i] !'= v;

predicate

SomeNotEqual {A} (value_type* a, integer n, value_type v) =
SomeNotEqual(a, 0, n, v);

lemma NotAllEqual_SomeNotEqual:
\forall value_type *a, v, integer m, n;
'AllEqual (a, m, n, v) ==> SomeNotEqual(a, m, n, v);

lemma SomeNotEqual_ NotAllEqual:
\forall value_type xa, v, integer m, n;

SomeNotEqual (a, m, n, V) ==> 'AllEqual(a, m, n, Vv);

*/

Listing 4.15: The logic definition(s) A11SomeNot

41

The predicate A11Equal expresses that each member of the array section

a[m..n-1] equals v. We also introduce the predicate SomeNotEgual which is the negation of A11Equal
. Both predicates complement the predicates SomeEqual || and NoneEqual ||

There are two additional overloaded versions of A11Equal. The first version uses the value a [m] as v.
The second version is just a shortcut when the first index m equals 0.

4.4.1. The logic function FindNotEqual

The definition of the overloaded logic function FindNotEqual is shown in Listings .16 and @.17} This
function is very similar to Find [4.7]] except that it finds the first element in a sequence that differs from a

given value. Note that in lemma FindNotEqual_Unchanged we are using the predicate Unchanged
|| that will be defined in a later chapter.

/%@
axiomatic FindNotEqual
{
logic integer
FindNotEqual (value_typex a, integer m, integer n, wvalue_type v) =
(n <=m) ?
0 : ((0 <= FindNotEqual(a, m, n-1, v) < n-m-1) *?
FindNotEqual(a, m, n-1, v) : ((a[n-1] != v) ? n-m-1 : n-m));

logic integer
FindNotEqual (value_type* a, integer n, value_type v) =
FindNotEqual (a, 0, n, Vv);

lemma FindNotEqual_ Empty:
\forall value_type *a, v, integer m, n;

n <= m ==> FindNotEqual(a, m, n, v) == 0;
lemma FindNotEqual_ Hit:
\forall value_type *a, v, integer m, n;
m <= n ==>
FindNotEqual (a, m, n, v) < n-m ==>
FindNotEqual (a, m, n+l, v) == FindNotEqual(a, m, n, Vv);

lemma FindNotEqual_ MissHit:
\forall value_type *a, v, integer m, n;

m <= n ==>
aln] !'=v ==>
FindNotEqual (a, m, n, V) == n-m ==>
FindNotEqual (a, m, n+l, v) == n-m;

lemma FindNotEqual_MissMiss:
\forall value_type *a, v, integer m, n;

m <= n ==>
aln] == v ==>
FindNotEqual (a, m, n, V) == n-m ==>
FindNotEqual (a, m, n+l, v) == (n+l)-m;

lemma FindNotEqual_Lower:
\forall value_type *a, v, integer m, n;
0 <= FindNotEqual(a, m, n, Vv);

Listing 4.16: The logic function FindNotEqual (1)

42

lemma FindNotEqual_Upper:
\forall value_type *a, v, integer m, n;
m <= n ==> FindNotEqual(a, m, n, v) <= n-m;

lemma FindNotEqual_Unchanged{K,L}:
\forall value_type *a, v, integer m, n;
Unchanged{K,L} (a, m, n) ==>
FindNotEqual{K} (a, m, n, v) == FindNotEqual{L}(a, m, n, v);

lemma FindNotEqual_ WeaklyIncreasing:
\forall value_type *a, v, integer m, n;
m <= n ==> FindNotEqual(a, m, n, v) <= FindNotEqual(a, m, n+l, v);

lemma FindNotEqual_Extend:
\forall value_type *a, v, integer k, m, n;

m <= k < n ==>
alk] !'= v ==>
FindNotEqual (a, m, k, v) == k-m ==>
FindNotEqual(a, m, n, v) == k-m;

lemma FindNotEqual_Increasing:
\forall value_type *a, v, integer k, m, n;
m <= k <= n ==> FindNotEqual(a, m, k, v) <= FindNotEqual (a, m, n,

lemma FindNotEqual_ Limit:
\forall value_type *a, v, integer k, m, n;
m <=k < n ==>
alk] !'=s v ==>
FindNotEqual (a, m, n, v) <= k-m;

lemma FindNotEqual_ AllEqual:
\forall value_type *a, v, integer m, n;

m <= n ==>
AllEqual(a, m, n, V) ==>
FindNotEqual (a, m, n, v) == n-m;

lemma FindNotEqual_SomeNotEqual:
\forall value_type *a, v, integer k, m, n;

m <= k < n ==>
alk] !'= v ==>
AllEqual(a, m, k, v) ==>
FindNotEqual(a, m, n, v) == k-m;

lemma FindNotEqual_ResultAllEqual:
\forall value_type *a, v, integer m, n;
m <= n ==> AllEqual(a, m, m + FindNotEqual(a, m, n, v), Vv);

lemma FindNotEqual_ResultNotEqual:
\forall value_type xa, v, integer m, n;
0 <= FindNotEqual(a, m, n, v) < n-m ==>
a[m + FindNotEqual(a, m, n, v)] != v;

*/

Listing 4.17: The logic function FindNotEqual (2)

4.4.2. Formal specification of £ind_if not

The contract of find_if_not [4.18]] is, unsurprisingly, very similar to that of £ind3 [{4.9]]. The only
difference is that we replaced Find [4.7] by FindNotEqual [£.16].

/*@
requires valid: \valid_read(a + (0..n-1));
assigns \nothing;
ensures result: 0 <= \result <= n;
ensures result: \result == FindNotEqual(a, n, v);
*/
size_ type
find_if_not (const value_type* a, size_type n, value_type v);

Listing 4.18: Formal specification of find_if_not

4.4.3. Implementation of find_if not

The implementation of find_if_not [4.19] also has a lot of similarities with of £ind3 [4.10]. Here
again we have replaced Find by FindNotEqual and, of course, we check in the loop body that the value
a[1] differs from the given value v.

size_type
find_if_ not (const value_typex a, size_type n, value_type v)
{

/%@
loop invariant bound: 0 <=1 <= n;
loop invariant not_found: FindNotEqual(a, i, v) == 1i;

loop assigns i;
loop variant n-i;

*/
for (size_type i = Ou; 1 < n; i++) |
if (a[i] !'= v) {
//@ assert found: FindNotEqual(a, n, v) == i;
return i;
}
}
return n;

}

Listing 4.19: Implementation of find_if_not

44

4.5. The find_first_of algorithm

The find_first_of algorithm [[19] §28.5.7] is closely related to £ind (see §4.T]and §4.2).

size_ type
find_first_of (const value_typex a, size_type m,
const value_typex b, size_type n);

Like £ind, it performs a sequential search. However, while £ind searches for a particular value, the
function find_first_of returns the least index i such that a [i] is equal to one of the values b [O. .
n-17.

0 1 2 3 4 5 6 7 8 9
1

0 1 2

5 0 4

Figure 4.20.: A simple example for find_first_of

As an example, we consider in Figure #.20]two arrays. The arrow indicates the smallest index where one
of the elements of the three-element array occurs.

4.5.1. The predicate HasValueOf

Similar to our approach in §4.2] we define a predicate HasValueOf [4.21]] that formalizes the fact that
there are valid indices 1 and j of the respective arrays a and b suchthat a[1i] == b[j] holds. We have
chosen to reuse the predicate SomeEqual [4.4]] to define HasValueOf.

/%@
axiomatic HasValueOf
{
predicate
HasValueOf{A} (value_type* a, integer m, value_typex b, integer n) =
\exists integer i; 0 <= 1 < m && SomeEqual{A} (b, n, alil);

*/

Listing 4.21: The logic definition(s) HasValueOf

45

4.5.2. Formal specification of find_first_of

The following listing shows the formal specification of find_first_of. The function contract uses the
predicates HasValueOf [4.21]] and SomeEqual [#4.4]] thereby making it very similar the specification of

find2 [A3].

/%@
requires valid: \valid_read(a + (0..m=1));
requires valid: \valid_read(b + (0..n-1));
assigns \nothing;
ensures result: 0 <= \result <= m;

behavior found:
assumes HasValueOf (a, m, b, n);
assigns \nothing;
ensures bound: 0 <= \result < m;
ensures result: SomeEqual (b, n, a[\result]);
ensures first: 'HasValueOf (a, \result, b, n);

behavior not_found:

assumes 'HasValueOf (a, m, b, n);
assigns \nothing;
ensures result: \result == m;

complete behaviors;
disjoint behaviors;
*/
size_type
find_first_of (const value_typex a, size_type m,
const value_typex b, size_type n);

Listing 4.22: Formal specification of find_first_of

46

4.5.3. Implementation of £ind_first_of

Our implementation of find_first_of [4.23] calls £ind2 [4.5]], thereby emphasizing reuse. Besides,

leading to a more concise implementation, we also have to write fewer loop annotations.

size_type
find_first_of (const value_typex a, size_type m,
const value_typex b, size_type n)

/@
loop invariant bound: 0 <=1 <=m;
loop invariant not_found: !HasValueOf(a, i, b,
loop assigns i;
loop variant m-i;
x/
for (size_type i = Ou; i < m; i++) |
if (find2(b, n, ali]) < n) {
return i;

return m;

Listing 4.23: Implementation of find_first_of

47

4.6. The adjacent_find algorithm

The adjacent_find algorithm of the C++ Standard Library [19] §28.5.8]
size_type adjacent_find(const value_typex a, size_type n);
returns the smallest valid index 1, such that i+1 is also a valid index and such that
ali] == ali+1]

holds. The adjacent_find algorithm returns n if no such index exists.

The arrow in Figure 4.24]indicates the smallest index where two adjacent elements are equal.

318|892 44|31

0 1 2 3 4 5 6 7 8 9
4

Figure 4.24.: A simple example for adjacent_find

4.6.1. The predicate HasEqualNeighbors

As in the case of other search algorithms, we first define a predicate HasEqualNeighbors [4.25] that
captures the essence of finding two adjacent indices at which the array holds equal values.

/%@
axiomatic HasEqualNeighbors

{

predicate
HasEqualNeighbors{L} (value_type* a, integer n) =
\exists integer i; 0 <= 1 < n-1 && al[i] == al[i+l];

*/

Listing 4.25: The predicate HasEqualNeighbors

4.6.2. Formal specification of adjacent_find

We use the predicate HasEqualNeighbors [4.25] to define the formal specification of ad jacent_find [4.26].

48

/%@
requires valid:
assigns
ensures result:

behavior some:
assumes
assigns
ensures result:

ensures first:

behavior none:
assumes
assigns
ensures result:

complete behaviors;
disjoint behaviors;
*/
size_type

ensures adjacent:

\valid_read(a + (0..n-1));
\nothing;
0 <= \result <= nj;

HasEqualNeighbors(a, n);

\nothing;
0 <= \result < n-1;
a[\result] == a[\result+1];

'HasEqualNeighbors (a, \result);

'HasEqualNeighbors (a, n);
\nothing;
\result == n;

adjacent_find (const value_typex a, size_type n);

Listing 4.26: Formal specification of adjacent_find

4.6.3. Implementation of adjacent_find

In the implementation of adjacent_find we check whether the array contains at least two el-
ements. Otherwise, there is no point in looking for adjacent neighbors. Note the use of the predicate
HasEqualNeighbors [4.25]] in the loop invariant to match the similar postcondition of behavior some.

size_type
{
if (1u < n) {
/*@

loop assigns i;

*/

return i;

loop variant n-i;

adjacent_find(const value_typex a, size_type n)

loop invariant bound: 0 <= i < nj;
loop invariant none: 'HasEqualNeighbors (a, 1i+1);

for (size_type i = Ou; i + 1lu < n; ++1i) {
if (a[i] == ali + 1ul) {

Listing 4.27: Implementation of adjacent_find

49

4.7. The equal and mismatch algorithms

The algorithms equal [[19} §28.5.11] and mismatch [19, §28.5.10] of the C++ Standard Library compare
two generic sequences. For our purposes we have modified the generic implementation to that of an array
of type value_type. The signatures read

bool equal (const value_typer a, size_type n, const value_typex Db);

size_type mismatch (const value_typex a, size_type n, const value_typex b);
The function equal returns true if and only if a[i] == b[i] holds foreach 0 <= i < n. Other-
wise, equal returns false.

The mismatch algorithm is slightly more general than the negation of equal: it returns the smallest
index where the two ranges a and b differ. If no such index exists, that is, if both ranges are equal, then
mismatch returns the (common) length n of the two ranges.

4.7.1. The Equal predicate
The fact that two arrays a[0]..a[n-1] and b[0]..b[n-1] are equal when compared element by
element, is a property we might need again in other specifications, as it describes a very basic property.

The motto don’t repeat yourself is not just good programming practicel]z] It is also true for concise and
easy to understand specifications. We will therefore introduce specification elements that we can apply to
the equal algorithm as well as to other specifications and implementations with the described property.

We start with introducing several overloaded versions of the predicate Equal [4.28].

/%@
axiomatic Equal

{

predicate

Equal{K,L} (value_typex a, integer m, integer n, value_typex b) =
\forall integer i; m <= i < n ==> \at(al[i],K) == \at(b[i],L);

predicate

Equal{K, L} (value_typex a, integer n, value_typex b) =
Equal{K,L}(a, 0, n, b);

predicate
Equal{K,L} (value_typex a, integer m, integer n,

value_type* b, integer p) = Equal{K,L} (a+m, n-m, b+p);
predicate

Equal{K,L} (value_typex a, integer m, integer n, integer p) =
Equal{K,L}(a, m, n, a, p);

*/

Listing 4.28: The logic definition(s) Equal

The letters K and L in the definition of Equal are so-called labelsE-I that refer to program states in which
theranges a[..] andb [. .] are evaluated. Frama-C defines several standard labels, e.g. 01d and Post,

2Compare http://en.wikipedia.org/wiki/Don’ t_repeat_yourself
13Labels are used in C to name the target of the gofo jump statement.

50

http://en.wikipedia.org/wiki/Don't_repeat_yourself

a programmer can use to refer to the pre-state or post-state, respectively, of a function. For more details on
labels we refer to the ACSL specification |14} §2.6.9].

4.7.2. Formal specification of equal and mismatch

Using predicate Equal [4.2§] we can formulate the specification of equal [4.29]] using the predefined
label Here. When used in an ensures clause, the label Here refers to the post-state of a function.
Note that the equivalence is needed in the ensures clause. Putting an equality instead is not legal in ACSL,
because Equal is a predicate, not a function.

/*@
requires valid: \valid_read(a + (0..n-1));
requires valid: \valid_read(b + (0..n-1));

assigns \nothing;

ensures result: \result <==> Equal{Here,Here} (a, n, b);
*/
bool

equal (const value_typer a, size_type n, const value_typex Db);

Listing 4.29: Formal specification of equal

The formal specification of mismatch [4.30] is more complex than that of equal [4.29] because the
return value of mismatch provides more information than just reporting whether the two arrays are equal.

/*@
requires valid: \valid_read(a + (0..n-1));
requires valid: \valid_read(b + (0..n-1));
assigns \nothing;
ensures result: 0 <= \result <= n;

behavior all_equal:

assumes Equal{Here,Here} (a, n, b);
assigns \nothing;
ensures result: \result == n;

behavior some_not_equal:

assumes 'Equal {Here, Here} (a, n, Db);
assigns \nothing;

ensures bound: 0 <= \result < n;

ensures result: a[\result] != b[\result];
ensures first: Equal{Here,Here} (a, \result, b);

complete behaviors;
disjoint behaviors;
*/
size_type
mismatch (const value_typex a, size_ type n, const value_typex Db);

Listing 4.30: Formal specification of mismatch

On the other hand, the specification is conceptually quite similar to that of £ind2 [4.5]. While f£ind2
returns the smallest index i where a[i] == v holds, mismatch finds the smallest index a[1] !=

b[i]. Note in particular the use of Equal in the specification of mismatch. As in the specifica-
tion of £ind2 the completeness and disjointness of mi smatch’s behaviors is quite obvious, because the
assumes clauses of all_equal and some_not_equal are negations of each other.

51

4.7.3. Implementation of equal and mismatch

The implementation of equal [4.31]] consists of a simple call of mismatch.

bool
equal (const value_typex a, size_type n, const value_typex Db)
{
return mismatch(a, n, b) == n;
}

Listing 4.31: Implementation of equal

The implementation of mismatch [4.32]] has been enriched with some loop annotations to support the
deductive verification.

size_type
mismatch (const value_typex a, size_type n, const value_typex Db)

{

/%@
loop invariant bound: 0 <= i <= nj;
loop invariant equal: Equal{Here,Here}(a, i, b);

loop assigns i;
loop variant n-i;

*/
for (size type i = Ou; i < n; i++) {
if (a[i] '= b[i]) {
return i;
}
}
return n;

Listing 4.32: Implementation of mismatch

We use again the predicate Equal [4.2§]] in order to express that all indices k that are less than the current
index 1 satisfy the condition a [k] == Db [k]. This is necessary to prove that mi smatch indeed returns
the smallest index where the two ranges differ.

52

4.8. The search algorithm

The search algorithm in the C++ Standard Library §28.5.13] finds a subsequence that is identical
to a given sequence when compared element-by-element. For our purposes we have modified the generic
implementation to that of an array of type value_type. The signature now reads:

size_type search(const value_typex a, size_type n,
const value_typex b, size_type p);

The function search returns the first index s of the array a where the condition a [s+k] == b[k]
holds for each index k with 0 <= k < p (see Figure[d.33). If no such index exists, then search returns
the length n of the array a.

Figure 4.33.: Searching the first occurrence of b[0. .p-1] ina[0..n-1]

4.8.1. The predicate HasSubRange

Our specification of search starts with introducing the predicate HasSubRange [4.34]. This predicate
formalizes, using the predicate Equal [4.2§], that the sequence a contains a subsequence which equal the
sequence b. Of course, in order to contain a subsequence of length p, a must be at least that large; this is
expressed by lemma HasSubRange_Sizes.

/*@
axiomatic HasSubRange
{
predicate
HasSubRange{L} (value_typex* a, integer m, integer n, value_typex b, integer p) =
\exists integer k; (m <= k <= n-p) && Equal{L,L} (a+tk, p, b);

predicate
HasSubRange{L} (value_typex a, integer n, value_typex b, integer p) =
HasSubRange{L} (a, 0, n, b, p);

lemma HasSubRange_Sizes:
\forall value_type *a, *b, integer m, n, p;
HasSubRange(a, m, n, b, p) ==> p <= n-m;

*/

Listing 4.34: The logic definition(s) HasSubRange

53

4.8.2. Formal specification of search

The following listing shows the specification of search [4.35].

/%@
requires valid: \valid_read(a + (0..n-1));
requires valid: \valid_read(b + (0..p-1));
assigns \nothing;
ensures result: 0 <= \result <= n;

behavior has_match:
assumes HasSubRange (a, n, b, p);
assigns \nothing;
ensures bound: 0 <= \result <= n-p;
ensures result: Equal{Here,Here} (a+\result, p, b);
ensures first: 'HasSubRange (a, \result+p-1, b, p);

behavior no_match:

assumes !'HasSubRange (a, n, b, p);
assigns \nothing;
ensures result: \result == n;

complete behaviors;
disjoint behaviors;
*/
size_type
search (const value_typex a, size_ type n,
const value_typex b, size_type p);

Listing 4.35: Formal specification of search

Conceptually, the specification of search is very similar to that of £ind [4.2]. We therefore use again
two behaviors to capture the essential aspects of search.

e The behavior has_match applies if the sequence a contains a subsequence identical to b. We
express this condition with assumes using the predicate HasSubRange [4.34].

The ensures clause bound of behavior has_match indicates that the returned index value must be
in the range [0. .n—p]. The clause result expresses that search returns an index where a copy
of b can be found in a. Clause first indicates that the least index with that property is returned,
i.e.that b can’tbe foundina [0. .\result+p-2].

o The behavior no_match covers the case that there is no subsequence a that equals b. In this case,
search must return the length n of the range a. If the ranges a or b are empty then the return value
will be 0.

The formula in the assumes clause of the behavior has_match is the negation of the assumes clause of
the behavior no_mat ch. Therefore, we can express that these two behaviors are complete and disjoint.

54

4.8.3. Implementation of search

The implementation of search [4.36] is relatively easy to understand, but needs an order of magnitude of

n+p operations. In contrast, the sophisticated algorithm from [20] needs only n+p operations

The loop invariant not__found is needed for the proof of the postconditions of the behavior has_match
in the contract of search [4.33]. It expresses that the subsequence b has not been found up to the current
iteration step. Neitherp == 0 norn == 0 need to be handled separately, not even for efficiency reasons:
in the former case, equal (a+i, p, b) will succeed in the first iteration, while in the latter, p > n

will apply.

size_type

search (const value_typex a, size_type n,
const value_typex b, size_type p)

{

if (p <= n) {
/%@
loop invariant bound: i <= n-p+l;

loop assigns i;
loop variant n-i;
x/
for (size type i = Ou; i <= n - p; ++1i) {
if (equal(a + i, p, b)) {
//Q@ assert has_match: HasSubRange(a, n, b, p);
return i;

}

//Q assert no_match: !HasSubRange(a, n, b, p);
return n;

loop invariant not_found: !HasSubRange(a, p+i-1, b, p);

Listing 4.36: Implementation of search

14 The efficiency question has been also discussed by the C++ standardization committee, see http: //www.open-std.org/

Jjtcl/sc22/wg2l/docs/papers/2014/n3905.html

55

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3905.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3905.html

4.9. The search_n algorithm

The search_n algorithm in the C+ Standard Library [19, §28.5.13] finds the first place where a given
value starts to occur a given number of times in a given sequence. For our purposes we have modified the
generic implementation to that of an array of type value_type. The signature now reads:

size_ type
search_n (const value_typex a, size_type n, size_type p, value_type Vv);

Note the similarity to the signature of search (§4.8). The only difference is that v now is a single value
rather than an array.

Figure 4.37.: Searching the first occurrence a given constant sequence ina[0..n-1]

The function search_n returns the first index s of the array a where the condition a [s+k] == v holds
for each index k with 0 <= k < p (see Figure [#.37). If no such index exists, then search_n returns
the length n of the array a.

4.9.1. The predicate HasConstantSubRange

Our specification of search_n starts with introducing the predicate HasConstant SubRange [{.3§].

/%@
axiomatic HasConstantSubRange
{
predicate
HasConstantSubRange{L} (value_typex a, integer m, integer n, value_type v,
integer p) =
\exists integer k; m <= k <= n-p && AllEqual(a, k, k+p, v);

predicate
HasConstantSubRange{L} (value_type* a, integer n, value_type v, integer p) =
HasConstantSubRange(a, 0, n, v, p);

lemma HasConstantSubRange_Sizes:
\forall value_type *a, v, integer n, p;

HasConstantSubRange(a, n, v, p) ==> p <= n;

*/

Listing 4.38: The logic definition(s) HasConstant SubRange

56

This predicate formalizes that the sequence a of length n contains a subsequence of p times the value v. It
thereby reuses the predicate A11Equal [B.15].

Similar to predicate HasSubRange [4.34], in order to contain p repetitions, the size of the array a [0. .
n—-1] must be at least that large; this is what lemma HasConstant SubRange_Sizes || says.

4.9.2. Formal specification of search_n

Like for search [4.33]], our specification of search_n [4.39] is very similar to that of £ind2 [4.5]].

/%@
requires valid: \valid_read(a + (0..n-1));
assigns \nothing;
ensures result: 0 <= \result <= n;

behavior has_match:

assumes HasConstantSubRange (a, n, v, p);

assigns \nothing;

ensures result: 0 <= \result <= n-p;

ensures match: AllEqual (a, \result, \result+p, v);

ensures first: !'HasConstantSubRange (a, \result+p-1, v, p);

behavior no_match:

assumes !HasConstantSubRange(a, n, v, p);
assigns \nothing;
ensures result: \result == n;

complete behaviors;
disjoint behaviors;
x/
size_type
search_n (const value_typex a, size_type n, value_type v, size_type p);

Listing 4.39: Formal specification of search_n

We again use two behaviors to capture the essential aspects of search_n.

e The behavior has_match applies if the sequence a contains an n-fold repetition of b. We ex-
press this condition with assumes by using the predicate HasConstantSubRange [4.3§]. The
result ensures clause of behavior has_match indicates that the return value must be in the
range [0..n—-p]. The match ensures clause expresses that the return value of search_n ac-
tually points to an index where b can be found p or more times in a. The £irst ensures clause
expresses that the minimal index with this property is returned.

e The behavior no_match covers the case that there is no matching subsequence in sequence a. In
this case, search_n must return the length n of the range a.

57

size_type

search_n (const value_typex a, size type n, value_type v, size_type p)

{
if (Ou < p) {
if (p <= n) {

size_type start = 0Ou;

/%@
loop invariant match: AllEqual (a, start, i, v);
loop invariant start: 0 < start ==> a[start-1] != v;
loop invariant bound: start <= 1 + 1 <= start + p;

loop invariant not_found: !HasConstantSubRange(a, i, v,
loop assigns i, start;
loop variant n - i;
x/
for (size_type i = Ou; i < n; ++1i) {
if (a[i] '= v) {
start = 1 + 1lu;
//@ assert not_found: !HasConstantSubRange(a, i+1, v,
}
else {
//@ assert match: al[i] == v;
//Q@ assert match: AllEqual (a, start, i+l, v);
if (p == i + 1u - start) {
//@ assert bound: start + p == 1 + 1;
//@ assert match: AllEqual (a, start, start+p, v);

P

pP);

//@ assert match: \exists integer k; 0 <= k <= n-p && AllEqual (a, k,

r V)i
//@ assert match: HasConstantSubRange(a, n, v, p);
return start;
}
else {
//Q@ assert bound: i + 1 < start + p;
continue;

//@ assert not_found: !HasConstantSubRange(a, i+l, v, p);

//@ assert not_found: !HasConstantSubRange(a, n, v, p);
return n;

}

else {
//@ assert not_found: n < p;
//@ assert not_found: !HasConstantSubRange(a, n, v, p);
return n;

}
else {
//@ assert bound: p == 0;
//Q@ assert match: AllEqual(a, 0, 0, v);
//@ assert match: HasConstantSubRange(a, n, v, 0);
return Ou;

k+p

Listing 4.40: Implementation of search_n

58

4.9.3. Implementation of search_n

Although the specification of search_n [4.39] strongly resembles that of search [4.35], their imple-
mentations differ significantly. The implementation of search_n [4.40] has a time complexity of O(n),
whereas the implementation of search [4.36] employs an easy, but a non-optimal algorithm needing
O(n - p) time.

Our implementation maintains in the variable st art the beginning of the most recent consecutive range of
values v. The loop invariant not_found states that we didn’t find an p-fold repetition of b up to now; if
we find one, we terminate the loop, returning st art. We handle the boundary casesn < pandp == 0
in explicit else branches. We found this easier when trying to ensure a verification by automatic provers.

59

4.10. The £ind_end algorithm

The £ind_end algorithm in the C++ Standard Library §28.5.6] searches for the last subsequence that
is identical to a given sequence when compared element-by-element. For our purposes we have modified
the generic implementation to that of an array of type value_type. The signature now reads:

size_type
find_end (const value_typex a, size_type n, const value_typex b, size_type p);

The function £ind_end returns the greatest index s of the array a where the condition a [s+k] == Db|[
k1 holds for each index k with 0 <= k < p (see Figure . If no such index exists, then find_end
returns the length n of the array a. One has to remark the special case p == 0. In this case the last position
of the empty string is found (the length n) and returned.

Figure 4.41.: Finding the last occurrence b [0..p-1]ina[0..n-1]

60

4.10.1. Formal specification of £ind_end

The following listing shows the specification of £ind_end [4.42]]. Conceptually, the specification of the
function £ind_end is very similar to that of £ind2 [4.5]. We therefore use again behaviors to capture
the essential aspects of £ind_end. It is quite clear that these behaviors are complete and disjoint.

The behavior has_match applies if the sequence a contains a subsequence identical to b. We express

this condition with assumes using the predicate HasSubRange [4.34]. The ensures clause bound

indicates that the return value must be in the range 0. . n—p. The clause result of behavior has_match
expresses that £ind_end returns an index where b can be found in a. Finally, the clause 1ast indicates

that the sequence a does not contain b beginning at a position larger than \result.

The behavior no_match covers the case that there is no subsequence of a that equals b. In this case,
find_end must return the length n of the range a.

behavior has_match:

assigns \nothing;

behavior no_match:

complete behaviors;
disjoint behaviors;
*/
size_type
find_end (const value_typex* a,
const value_typex Db,

/%@
requires valid: \valid_read(a + (0..n-1));
requires valid: \valid_read(b + (0..p-1));
assigns \nothing;
ensures result: 0 <= \result <= n;

assumes HasSubRange (a, n, b, p);

ensures bound: 0 <= \result <= n-p;
ensures result: Equal{Here,Here} (a + \result, p, b);
ensures last: !'HasSubRange (a, \result + 1, n, b, p);

assumes 'HasSubRange (a, n, b, p);
assigns \nothing;
ensures result: \result == n;

size_type n,
size_type p);

Listing 4.42: Formal specification of find_end

61

4.10.2. Implementation of £ind_end

Our implementation of £ind_end [4.43] is similar to the one of search [{.36].

size_type
find_end (const value_typex a, size_type n,
const value_type* b, size_type p)
{
size_type r = n;

if ((Ou < p) && (p <= n)) {
/*@

loop invariant bound r<=n-p || r==n;

loop invariant not_found: r == n ==> !HasSubRange(a, p+i-1, b, p);

loop invariant found: r < n ==> Equal{Here,Here} (a+r, p, b);

loop invariant last: r < n ==> !HasSubRange(a, r+l, i+p-1, b, p);

loop assigns i, r;
loop variant n - i;
x/
for (size type i = Ou; 1 <= n - p; ++1i) {
if (equal(a + i, p, b)) {
r = 1i;

}

return r;

Listing 4.43: Implementation of find_end

We maintain in the variable r the prospective value to be returned, according to the current knowledge.
Initially, it is set to n, meaning “no occurrence of b found yet”. Whenever an occurrence is found, r is
updated to its starting position.

The invariant bound states that r either still has the value n or has a value up to n—p. For the former
case, invariant not_ found indicates that no occurrence of b has been found. For the latter case, the
loop invariant found indicates that an occurrence b [0. .p—1] at r has indeed been found. The invariant
last, on the other hand states that none was found affer the index r.

62

4.11. The count algorithm

The count algorithm in the C+ Standard Library 19, §28.5.9] counts the frequency of occurrences for a
particular element in a sequence. For our purposes we have modified the generic implementation to that of
arrays of type value_type. The signature now reads:

size_type
count (const value_typex a, size_type n, value_type Vv);

Informally, the function returns the number of occurrences of v in the array a.

4.11.1. The logic function Count

When trying to specify count we are faced with the situation that ACSL does not provide a definition of
counting a value in an arrayE] We therefore start with an axiomatic definition of logic function Count that
captures the basic intuitive features of counting on an array section. The expression Count (a, m, n, v)
returns the number of occurrences of vina[m], ...,a[n-1].

The specification of count will then be fairly short because it employs our logic function Count whose
(considerably) longer definition is given in the Listings and '}

e The ACSL keyword axiomatic is used to structure the specification and gather the logic function
Count and related lemmas. Note that the interval bounds m and n and the return value for Count
are of type integer.

e The logic functions Count is recursively defined. It consist of two checks: whether the range is
empty and for the value of the "current" element in the array. The recursion goes down on the range
length. We also provide an overloaded version of Count that accepts only the length of an array,
thus relieving the use the supply the argument m = 0 for the case of a complete array.

e Lemma Count_Empty [4.44]] covers the cases of empty ranges.

e Lemmas Count_Hit [#.44] and Count_Miss [4.44]] reduce counting of a range of length n — m
to a range of length n —m — 1.

e Lemmas Count_One [4.44] and Count_Single [4.44] built on on top of Count_Hit and
Count_Miss. Using them simplifies several Coq proofs. They also slightly change the induction
scheme fromn—-1—-nton - n+1.

5This statement is not quite true because the ACSL documentation lists numof as one of several higher order logic constructions
[14] §2.6.7]. However, these extended quantifiers are mentioned only as experimental features.
!6This definition of Count is a generalization of the logic function nb_occ of the ACSL specification [[14].

63

/%@

{

axiomatic Count

logic integer
Count (value_typex a, integer m, integer n, value_type v) =
n<=m?©?22O0 : Count(a, m, n-1, v) + (a[n-1] == v 2 1 : 0);

logic integer
Count (value_typex a, integer n, value_type v) = Count(a, 0, n, v);

lemma Count_Empty:
\forall value_type *a, v, integer m, n;
n <=m ==> Count(a, m, n, v) == 0;

lemma Count_Hit:
\forall value_type *a, v, integer n, m;

m < n ==>
aln-1] == v ==>
Count (a, m, n, v) == Count(a, m, n-1, v) + 1;

lemma Count_Miss:
\forall value_type *a, v, integer n, m;

m < n ==>
aln-1] !'= v ==>
Count (a, m, n, v) == Count(a, m, n-1, v);

lemma Count_One:
\forall value_type *a, v, integer m, n;
m <= n ==> Count(a, m, nt+l, v) == Count(a, m, n, v) + Count(a, n, n+tl, Vv);

lemma Count_Single{K,L}:
\forall value_type *a, b, v, integer m, n;
\at (a[m],K) == \at (b[n],L) ==>
Count{K} (a, m, m+l, v) == Count{L} (b, n, ntl, v);

lemma Count_Equal{K,L}:
\forall value_type x*a, v, integer m, n, p;

0 <=m <= n ==>
Equal{K,L}(a, m, n, p) ==>
Count{K} (a, m, n, v) == Count{L}(a, p, p + (n—m), Vv);

lemma Count_Unchanged{K,L}:
\forall value_type *a, v, integer m, n;
Unchanged{K,L} (a, m, n) ==> Count{K}(a, m, n, v) == Count{L}(a, m, n, v);

64

Listing 4.44: The logic function Count (1)

The logic function Count depends only on the set a [m..n-1] of memory locations. Lemma
Count_Unchanged [#.44]] makes this claim explicit by ensuring that Count produces the same
result if the values a[0. .n—1] do not change between two program states indicated by the labels K
and L. We use here predicate Unchanged [[7.I]] to express the premise.

Lemma Count_Equal [4.44] is a generalization of lemma Count_Unchanged for the case of
comparing Count on two arrays.

Lemmas Count_Union [A.44] and Count_Cut [4.44] allow to deal with partitions of arrays.

*/

lemma Count_Union:
\forall value_type *a, v, integer k, m, n;
0 <=k <=m <=n ==>
Count (a, k, n, v) == Count(a, k, m, v) + Count(a, m, n, Vv);

lemma Count_Cut:
\forall value_type *a, v, integer k, m, n;
0 <=k <=m < n ==> Count(a, k, n, v) ==
Count (a, k, m, v) + Count(a, m, m+l, v) + Count(a, m+l, n, Vv);

lemma Count_Single_Bounds:
\forall value_type *a, v, integer n;
0 <= Count (a, n, n+l, v) <= 1;

lemma Count_Bounds:
\forall value_type x*a, v, integer m, n;
0 <=m<=n ==> 0 <= Count(a, m, n, v) <= n-m;

lemma Count_Increasing:
\forall value_type *a, v, integer m, n, p;
m <= n <= p ==> Count(a, m, n, v) <= Count(a, m, p, V);

lemma Count_Single_Shift:
\forall value_type *a, v, integer n;
0 <= n ==> Count(a+n, 0, 1, v) == Count(a, n, n+l, v);

lemma Count_Shift:
\forall value_type x*a, v, integer m, n;
0 <=m ==> 0<=n ==> Count(a+m, 0, n, v) == Count(a, m, m+n, Vv);

Listing 4.45: The logic function Count (2)

Lemmas Count_Single_Bounds [#.44] and Count_Bounds [#.44] express lower and upper
bounds of Count. Lemma Count_Increasing [#.44] states that Count is a monotonically
increasing.

Finally, lemmas Count_Single_Shift [4.44] and Count_shift [4.44] state that Count is
invariant under array shifts.

We mention here also lemma Count_SomeEqual [4.46] which brings together properties of Count

and Find [4.7].

/%@

{

*/

axiomatic CountFind

lemma Count_SomeEqual:
\forall value_type x*a, v, integer m, n;
0 <=m < n ==>
0 < Count(a, m, n, V) ==>
SomeEqual (a, m, n, Vv);

Listing 4.46: The logic definition(s) CountFind

65

4.11.2. Formal specification of count

In the contract of count we use the logic function Count [#.44]] Note that our specification also
states that the result of count is non-negative and less than or equal the size of the array.

/*@
requires valid: \valid_read(a + (0..n-1));
assigns \nothing;
ensures bound: 0 <= \result <= n;
ensures count: \result == Count(a, n, v);
*/
size_ type
count (const value_typex a, size_type n, value_type v);

Listing 4.47: Formal specification of count

4.11.3. Implementation of count

The following listing shows a possible implementation of count [4.4§]l. Note that we refer to the logic
function Count in one of the loop invariants.

size_ type
count (const value_typex a, size_type n, value_type v)
{

size_type counted = Ou;

/@
loop invariant bound: 0 <= i <= n;
loop invariant bound: 0 <= counted <= i;
loop invariant count: counted == Count(a, i, v);
loop assigns i, counted;
loop variant n-i;
*/
for (size_type i = Ou; 1 < n; ++i) {
if (a[i] == v) {
counted++;

}

return counted;

Listing 4.48: Implementation of count

66

4.12. The count2 algorithm

In this section, we specify the count algorithm in a different way, namely using the inductively defined
predicate Count Ind [4.49] from the following listing.

/%@
inductive CountInd{L} (value_type xa, integer n, value_type v, integer sum)
{
case Nil{L}:
\forall value_type *a, v, integer n;
n <= 0 ==> CountInd{L}(a, n, v, 0);

case Hit{L}:
\forall value_type *a, v, integer n, sum;
0 <n && a[n-1] == v && CountInd{L}(a, n-1, v, sum) ==>
CountInd{L} (a, n, v, sum + 1);

case Miss{L}:
\forall value_type *a, v, integer n, sum;
0 <n && al[n-1] '= v §&& CountInd{L}(a, n-1, v, sum) ==>
CountInd{L} (a, n, v, sum);

*/

Listing 4.49: Inductive definition Count Ind

The definition consists of three cases.
e The N1il case states for arrays of negative pf zero length, the predicate only holds is sum is zero.

e The Hit and Miss define CountInd for arrays a[0..n-1] of size n referring to the array a
[0..n—-2] and the value a [n—-11].

We remark that the cases are very similar to the lemmas Count_Empty [4.44]l, Count_Hit [4.44] and
Count_Miss [#.44], except we have use the additional argument sum to refer to the number of counted
elements since Count Ind is a predicate.

We have intentionally used the scheme n — 1 = n instead of n = n + 1. In this particular case, it allows
theorem provers to match loop indices with premises without additional hints to prove loop invariants.

4.12.1. Additional lemmas for the inductive predicate

The lemmas of Count IndImplicit [4.50]] complement the lemmas of Count [4.44]|. They demonstrate
how existing lemmas can be rewritten for an inductive predicate. These lemmas are not required to prove
the count function, but we provide them to complete the illustrative example of how inductive predicates
could be utilized in the specifications.

The inductive definition is the “complete” definition which means that the predicate does not hold for cases
outside of its domain of definition. We state this property explicitly through lemma Count Ind_Inverse

in the following listing. Frama-C does not automatically generate this kind of property. The rea-
son for not adding such a corresponding axiom apparently is that it “could confuse first-order theorem
provers”E]

"https://stackoverflow.com/a/32457870

67

https://stackoverflow.com/a/32457870

/%@
axiomatic CountIndImplicit
{
lemma CountInd_Empty{L}:
\forall value_type *a, v, integer n;
n <= 0 ==> CountInd(a, n, v, 0);

lemma CountInd_Hit{L}:
\forall value_type *a, v, integer n, sum;

0 < n ==>
aln-1] == ==>
CountInd(a, n-1, v, sum) ==>
CountInd(a, n, v, sum+l);

lemma CountInd_Miss{L}:
\forall value_type *a, v, integer n, sum;

0 < n ==>
aln-1] '= v ==>
CountInd(a, n-1, v, sum) ==>
CountInd(a, n, v, sum);

lemma CountInd_Unchanged{K,L}:
\forall value_type xa, v, integer n, sum;
Unchanged{K,L} (a, n) ==>
(CountInd{K} (a, n, v, sum) <==> CountInd{L} (a, n, v, sum));

*/

Listing 4.50: The logic definition(s) Count IndImplicit

There is also the lemma Count Ind_NonNegative [4.31]] which states that the lower bound for the
number of the counted elements is zero. The relation between the inductive definition Count Ind and the
explicit definition of Count [4.44] is expressed by lemma Count Ind_Count [4.31]].

/@
axiomatic CountIndLemmas
{
lemma CountInd_Inverse:
\forall value_type *a, v, integer n, sum;

CountInd(a, n, v, sum) ==>
(n <= 0 && sum == 0) ||
(0 < n && a[n-1] !'= v && CountInd(a, n-1, v, sum)) ||
(0 < n && a[n-1] == v && CountInd(a, n-1, v, sum-1));

lemma CountInd_NonNegative{L}:
\forall value_type *a, v, integer n, sum;
CountInd(a, n, v, sum) ==> (0 <= sum;

lemma CountInd_Count{L}:
\forall value_type *a, v, integer n;

CountInd(a, n, v, Count(a, n, v));

*/

Listing 4.51: The logic definition(s) Count IndLemmas

68

4.12.2. Specification of count2

The following listing contains the contracts of count2 [4.52]. It shows the use of the inductive predicate

CountInd [4.49].

/%@
requires valid: \valid_read(a + (0..n-1));
assigns \nothing;
ensures bound: 0 <= \result <= n;
ensures count: CountInd(a, n, v, \result);
x/
size_type
count?2 (const value_typex a, size_type n, value_type V) ;

Listing 4.52: Formal specification of count2

4.12.3. Implementation of count2

The only difference between the implementation of count 2 [4.53]] and the implementation of count [4.48]]
is that we have to supply the value counted as an argument of the predicate Count Ind [4.49].

size_type
count?2 (const value_typex a, size_type n, value_type v)
{

size_type counted = Ou;

/%@
loop invariant bound: 0 <= i <= n;
loop invariant bound: 0 <= counted <= i;
loop invariant count: CountInd(a, i, v, counted);
loop assigns i, counted;
loop variant n-i;
*/
for (size_type i = Ou; i < n; ++i) {
if (a[i] == v) {
counted++;
//@ assert count: CountInd(a, i+l, v, counted);

}

return counted;

Listing 4.53: Implementation of count?2

69

5. Maximum and minimum algorithms

In this chapter we discuss the formal specification of algorithms in the C++ Standard Library [[19] §28.7.8]
that compute the maximum or minimum values of their arguments. As the algorithms in Chapter[d] they also
do not modify any memory locations outside their scope. The most important new feature of the algorithms
in this chapter is that they compare values using binary operators such as <.

We consider in this chapter the following algorithms.

e We discuss some properties of relations operators in §5.1]

e We introduce in §5.2]various predicates that describe basic order properties for arrays whose elements
are of value_type.

e clamp, which is discussed in §5.3] is a very simple algorithms that “clamps” (or “clips”) a value
between a pair of boundary values.

e max_element returns an index to a maximum element in a range. Similar to £ind it also returns
the smallest of all possible indices. This algorithm is discussed in §5.5] In §5.6] we introduce an
alternative specification max_element2 which relies on user-defined predicates.

e max_seqin is very similar to max_element and will serve as an example of modular verifi-
cation. It returns the maximum value itself rather than an index to it.

e min_element in can be used to find the smallest element in an array.

e minmax_element in §5.9)is used to find simultaneously the smallest and largest element in a given
range. This algorithms relies on the auxiliary function make_pair (§5.4).

First, however, we discuss in §5.1] general properties that must be satisfied by the relational operators.

5.1. A note on relational operators

Note that in order to compare values, algorithms in the C++ Standard Library [19, §28.7.8] usually rely
solely on the less than operator < or special function objects. To be precise, the operator < must be a partial
order[®| which means that the following rules must hold.

irreflexivity Vx :(x < Xx)
asymmetry Vx,y :x<y = —(y<x)
transitivity VX, 9,2 X<yAY<Z = x<Z

If you wish to check that the operator < of our value_t ypem satisfies these properties one can formulate
the lemmas of Less [J5.1]] and verify them with Frama-C.

8Seehttp://en.wikipedia.org/wiki/Partially_ordered_set

9See

71

http://en.wikipedia.org/wiki/Partially_ordered_set

/%@
axiomatic Less

{
lemma Less_Irreflexivity:
\forall value_type a; !(a < a);

lemma Less_Antisymmetry:
\forall value_type a, b; (a < b) ==> ! (b < a);

lemma Less_Transitivity:
\forall value_type a, b, c; (a < b) && (b < c) ==> (a < c);

lemma Greater_Less:
\forall value_type a, b; (a > b) <==> (b < a);

lemma LessOrEqual_Less:
\forall value_type a, b; (a <= Db) <==> '(b < a);

lemma GreaterOrEqual_Less:
\forall value_type a, b; (a >= Db) <==> !l (a < b);

*/

Listing 5.1: The logic definition(s) Less

It is of course possible to specify and implement the algorithms of this chapter by only using opera-
tor <. For example, a <= b can be writtenas a < b || a == Db, or, for our particular ordering on
value_type, as ! (b < a). Listing Less []3;1']] therefor also contains lemmas on representing the
operator >, <=, and >= through operator <.

5.2. Predicates for bounds and extrema of arrays

We define in the following listing the predicates MaxElement [5.2]] and MinElement [[5.2] that we will
use for the specification of various algorithms. We will discuss these predicates in more detail in §5.6]and

£.8

/%@
axiomatic ArrayExtrema

{

predicate
MaxElement {L} (value_type* a, integer n, integer max) =
0 <= max < n && UpperBound(a, n, al[max]);

predicate
MinElement {L} (value_type* a, integer n, integer min) =
0 <= min < n && LowerBound(a, n, a[min]);

*/

Listing 5.2: The logic definition(s) ArrayExtrema

72

The aforementioned predicates rely on the predicates LowerBound [5.3]] and UpperBound [5.3]] which
are shown in the following listing together with the related predicates StrictUpperBound [5.3]] and
StrictLowerBound [3.3].

/%@
axiomatic ArrayBounds

{

predicate

LowerBound{L} (value_type* a, integer m, integer n, value_type v) =
\forall integer i; m <= 1 < n ==> v <= al[i];

predicate

LowerBound{L} (value_type* a, integer n, value_type v) =
LowerBound{L} (a, 0, n, v);

predicate

StrictLowerBound{L} (value_type* a, integer m, integer n, value_type v) =
\forall integer i; m <= i < n ==> v < a[il;

predicate

StrictLowerBound{L} (value_type* a, integer n, wvalue_type v) =
StrictLowerBound{L} (a, 0, n, Vv);

predicate

UpperBound{L} (value_type*r a, integer m, integer n, wvalue_type v) =
\forall integer i; m <= i < n ==> al[i] <= v;

predicate

UpperBound{L} (value_type* a, integer n, value_type v) =
UpperBound{L} (a, 0, n, v);

predicate

StrictUpperBound{L} (value_typex a, integer m, integer n, value_type v) =
\forall integer i; m <= i < n ==> al[i] < v;

predicate

StrictUpperBound{L} (value_type* a, integer n, wvalue_type v) =
StrictUpperBound{L} (a, 0, n, v);

*/

Listing 5.3: The logic definition(s) ArrayBounds

These predicates concisely express the comparison of the elements in an array (segment) with a given value.
We will heavily rely on these predicates both in this chapter and in Chapter [6]

73

5.3. The clamp algorithm

The clamp algorithm in the C+ Standard Library [19, §28.7.9] “clamps” a value between a pair of bound-

ary values. The signature of our version of c1lamp reads:

value_type clamp (value_type v,

The function c1lamp returns v if the value is greater than 1 ower and smaller than upper. Otherwise, if v
is smaller than 1ower, then 1ower is returned. Finally, if v is greater than upper, upper is the returned.

value_type lower,

5.3.1. Formal specification of clamp

The following listing contains the specification of clamp [5.4]. Note that we require that 1ower must be

less or equal than upper.

ensures bound:

behavior lower_bound:

assumes v < lower;
assigns \nothing;
ensures result: \result ==

behavior between:

assumes lower <= v
assigns \nothing;
ensures result: \result ==

behavior upper_bound:

assumes upper < Vv;
assigns \nothing;
ensures result: \result ==

complete behaviors;
disjoint behaviors;
*/
value_type
clamp (value_type v,

value_type

/@
requires bound: lower < upper;
assigns \nothing;

lower <= \result <= upper;

lower;

<= upper;

Vi

upper;

lower, value_type upper);

Listing 5.4: Formal specification of clamp

74

value_type upper) ;

5.3.2. Implementation of clamp

The implementation of clamp [5.5]] can be verified without any additional annotations.

value_type
clamp (value_type v, value_type lower, value_type upper)
{

return (v < lower) ? lower : (upper < Vv) ? upper : Vv;

Listing 5.5: Implementation of clamp

5.4. The auxiliary function make_pair

In order to be able to specify functions that work on pairs of indices we introduce in the following listing
the type size_type_pair.

struct size_type_pair {
size_type first;
size_type second;

bi

typedef struct size_type_pair size_type_pair;

Listing 5.6: The type size_type_pair

We will also use the auxiliary function make_pair which turns two indices £irst and second into an
object of size_type_pair. The specification and implementation of make_pair [5.7] is shown here.

/%@
assigns \nothing;
ensures result: \result.first == first;
ensures result: \result.second == second;
x/

static inline

size_type_pair

make_pair (size_type first, size_type second)
{

size_type_pair pair;

pair.first = first;
pair.second = second;

return pair;

Listing 5.7: Formal specification of make_pair

75

5.5. The max_element algorithm

The max_element algorithm in the C+ Standard Library [[19} §28.7.8] searches the maximum of a general
sequence. The signature of our version of max_element reads:

size_type max_element (const value_typex a, size_type n);
The function finds the largest element in the range a [0 . . n—1]. More precisely, it returns the unique valid
index i such that:

1. for each index k with 0 <= k < nthe condition a[k] <= a[i] holds and

2. foreachindex k with 0 <= k < 1 thecondition a[k] < a[i] holds.

The return value of max_element is n if and only if there is no maximum, which can only occur if
n == 0.

5.5.1. Formal specification of max_element

The following listings shows the formal specification of max_element [5.§]. Note that we have sub-
divided the specification of max_element into the two behaviors empty and not_empty. The be-
havior empty contains the specification for the case that the range contains no elements. The behavior
not_empty applies if the range has a positive length.

The ensures clause max of behavior not_empty indicates that the returned valid index k refers to a
maximum value of the array. The postcondition £irst expresses that k is indeed the first occurrence of a
maximum value in the array.

/*@
requires valid: \valid_read(a + (0..n-1));
assigns \nothing;
ensures result: 0 <= \result <= n;

behavior empty:

assumes n == 0;
assigns \nothing;
ensures result: \result == 0;

behavior not_empty:

assumes 0 < n;

assigns \nothing;

ensures result: 0 <= \result < n;

ensures upper: \forall integer i; 0 <= 1 < n ==> a[i] <= a[\result];
ensures first: \forall integer i; 0 <= 1 < \result ==> a[i] < al[\result];

complete behaviors;
disjoint behaviors;
*/
size_ type
max_element (const value_typex a, size_type n);

Listing 5.8: Formal specification of max_element

76

5.5.2. Implementation of max_element

In our description, we concentrate on the loop annotations of the implementation of max_element [5.9].

size_type
max_element (const value_typex a, size_type n)
{
if (Ou < n) {
size_type max = 0u;

/%@
loop invariant bound: 0 <= i <= n;
loop invariant max: 0 <= max < n;
loop invariant upper: \forall integer k; 0 <= k < i ==> alk] <=
loop invariant first: \forall integer k; 0 <= k < max ==> alk] <

loop assigns max, i;
loop variant n-i;
*/
for (size_type i = lu; 1 < n; i++) {
if (almax] < aflil) |
max = ij;

}

return max;
}

return n;

al[max];
a[max];

Listing 5.9: Implementation of max_element

The loop invariant max is needed to prove the postcondition result of the behavior not_empty of
max_element [[5.§]]. Using loop invariant upper we prove the postcondition upper of the behavior
not_empty of max_element [5.8]]. Finally, the postcondition first of this behavior can be verified

with the loop invariant first.

77

5.6. The max_element algorithm with predicates

In this section we present another specification of the max_element algorithm. The main difference is
that we employ the predicate UpperBound [5.3]] which basically expresses that a given value is greater
or equal than all elements of a given array. Closely related to the predicate UpperBound is the predicate
StrictUpperBound [5.3].

We also employ the predicate MaxElement [[5.2]]. This predicate states that the element at a given index
max is an upper bound of the sequence a [0. .n—1], and, by construction, a member of that sequence.

5.6.1. Formal specification of max_element2

The formal specification of max_element2 [5.10] is shown in the following listing. Note that we also
use the predicate StrictUpperBound [5.3] in order to express that max_element2 returns the first
maximum positionina[0..n-1].

/*@
requires valid: \valid_read(a + (0..n-1));
assigns \nothing;
ensures result: 0 <= \result <= n;

behavior empty:

assumes n == 0;
assigns \nothing;
ensures result: \result == 0;

behavior not_empty:

assumes 0 < n;

assigns \nothing;

ensures result: 0 <= \result < n;

ensures max: MaxElement (a, n, \result);

ensures first: StrictUpperBound(a, \result, al[\result]);

complete behaviors;
disjoint behaviors;
*/
size_type
max_element?2 (const value_typex a, size_type n);

Listing 5.10: Formal specification of max_element?2

78

5.6.2. Implementation of max_element2

The implementation of max_element2 [5.11]] is of course very similar to that of max_element [5.9]—
except that the loop invariants now also use the above mentioned predicates.

size_type

{
if (Ou <

/=@
loop
loop
loop
loop
loop
loop

*/

return n;

n) {

size_type max = 0u;

invariant bound:

invariant max:

invariant upper:
invariant first:

assigns max, 1i;
variant n-i;

for (size_type i = Ou;
if (a[max] < alil) {
max = 1ij;

return max;

max_element2 (const value_typex a, size_type n)

0 <=1 <= n;

0 <= max < nj;

UpperBound(a, i, almax]);
StrictUpperBound(a, max, almax]);

i < n; i++) |

Listing 5.11: Implementation of max_element?2

79

5.7. The max_seq algorithm

In this section we consider the function max_seq [13, Ch. 3]) which is very similar to the function
max_element [5.8]. The main difference between max_seq and max_element is that max_seq
returns the maximum value (not just the index of it). Therefore, it requires a non-empty range as an argu-
ment.

Of course, max_seq can easily be implemented using max_element?2 [[5.11]]. Moreover, relying only on
the formal specification of max_element2 [5.10], we are also able to deductively verify the correctness
of this implementation. Thus, we have a simple example of modular verification in the following sense:

Any implementation of max_element?2 that is separately proven to implement the contract
max_element?2 makes max_ seq behave correctly. Once the contracts have been de-
fined, the function max_element2 could be implemented in parallel, or just after max_seq,
without affecting the verification of max_sedq.

5.7.1. Formal specification of max_seq

The following listing shows the formal specification of max_seq [5.12]].

/*@
requires 0 < n;
requires \valid_read(p + (0..n-1));
assigns \nothing;
ensures \forall integer i; 0 <= i <= n-1 ==> \result >= pl[i];
ensures \exists integer e; 0 <= e <= n-1 && \result == ple];
%/
value_type
max_seq (const value_typex p, size_type n);

Listing 5.12: Formal specification of max_seq

Using the first requires-clause we express that max_ seq needs a non-empty range as input. Our post-
conditions formalize that max_ seq indeed returns the maximum value of the range.

5.7.2. Implementation of max_seq

The implementation of max_seq [5.13]] consists of a simple call to max_element2 [5.11]. Since
max_sed requires a non-empty range the call of max_element?2 returns an index to a maximum value
in the range. The fact that max_element2 returns the smallest index is of no importance in this context.

value_type
max_seq (const value_typex p, size_type n)
{

return p[max_element2 (p, n)]l;

}

Listing 5.13: Implementation of max_seq

80

5.8. The min_element algorithm

The min_element algorithm in the C++ Standard Library [[19] §28.7.8] searches the minimum in a general
sequence. The signature of our version of min_element reads:

size_type min_element (const value_typex a, size_type n);

The function min_element finds the smallest element in the range a[0..n-1]. More precisely, it
returns the unique valid index i such that a [i] is minimal among the values a[0], ..., a[n-1],and i
is the first position with that property. The return value of min_element isnifandonlyifn == 0.

We use the predicate LowerBound [5.3] that basically expresses that a given value is less or equal than
all elements of a given array (section). Closely related to the predicate LowerBound is the predicate
StrictLowerBound [5.3]]. We also use the predicate MinElement [[5.2]] which states that the element
at a given index min is a lower bound of the sequence a[0..n—-1], and, by construction, a member of
that sequence.

5.8.1. Formal specification of min_element

The following listing contains the specification of min_element [[5.14]]. Note that we also use the predi-
cate StrictLowerBound [5.3] in order to express that min_element returns the first minimum posi-
tionina[0..n-1].

/%@
requires valid: \valid_read(a + (0..n-1));
assigns \nothing;
ensures result: 0 <= \result <= n;

behavior empty:
assumes n == 0;
assigns \nothing;
ensures result: \result == 0;

behavior not_empty:

assumes 0 < n;

assigns \nothing;

ensures result: 0 <= \result < n;

ensures min: MinElement (a, n, \result);

ensures first: StrictLowerBound(a, \result, a[\result]);

complete behaviors;
disjoint behaviors;
*/
size_type
min_element (const value_type* a, size_type n);

Listing 5.14: Formal specification of min_element

81

5.8.2. Implementation of min_element

The implementation of min_element [5.15] uses the predicates LowerBound [5.3]| and St rict LowerBound
|| in its loop annotations.

size_type
min_element (const value_type* a, size_type n)
{

if (Ou < n) {

size_type min = Ou;
/%@
loop invariant bound: 0 <= i <= n;
loop invariant min: 0 <= min < n;
loop invariant lower: LowerBound(a, i, al[min]);
loop invariant first: StrictLowerBound(a, min, al[min]);

loop assigns min, i;
loop variant n-i;
x/
for (size_type i = Ou; i < n; i++) {
if (a[i] < a[min]) {
min = i;

return min;

return n;

Listing 5.15: Implementation of min_element

82

5.9. The minmax_element algorithm

The minmax_element algorithm in the C++ Standard Library [19, §28.7.8] searches both the minimum
and the maximum in a sequence. The signature of our version of min_element reads:

size_type_pair minmax_element (const value_typex a, size_type n);

Note that minmax_element returns a pair of indices (see §5.4). This pair contains the first position
where the minimum occurs in the sequence a [0 . .n—1] and the /ast position where maximum occurs.

The properties of the index for the minimum value are the same as the properties of min_element [5.14].
However, the properties of the index that marks the maximum element, are slightly different from the prop-
erties of max_element [5.§]. The max_element algorithm returns the position of the first occurrence
of the maximum element if it occurs multiple times in the sequence. The minmax_element algorithm
returns the position of the last occurrence of the maximum element.

5.9.1. Formal specification of minmax_element

The following listing shows the acsl specification of minmax_element [[5.16]. Note that we use the
predicates StrictLowerBound [5.3]] and StrictUpperBound [5.3] in order to express that the al-
gorithm returns the positions of both the first minimum and the last maximum. We also use the predicates
MinElement [5.2]] and MaxElement [5.2]]. Thus reflects of course the use of this predicates for the
algorithms min_element [5.14] and max_element [5.§].

/%@
requires valid: \valid_read(a + (0..n-1));
assigns \nothing;
ensures result: 0 <= \result.first <= n;
ensures result: 0 <= \result.second <= n;

behavior empty:

assumes 0 == n;

assigns \nothing;

ensures result: \result.first == 0;
ensures result: \result.second == 0;

behavior not_empty:

assumes 0 < n;

assigns \nothing;

ensures result: 0 <= \result.first < n;

ensures result: 0 <= \result.second < n;

ensures min: MinElement (a, n, \result.first);

ensures first: StrictLowerBound(a, \result.first, a[\result.first]);
ensures max: MaxElement (a, n, \result.second);

ensures last: StrictUpperBound(a, \result.second+l, n, a[\result.second]);

x/
size_type_pair
minmax_element (const value_type* a, size_type n);

Listing 5.16: Formal specification of minmax_element

The specification is similar to the specifications of min_element and max_element. The only differ-
ence lies in the postcondition 1ast. Here the postcondition states that after the position of the maximum

83

element there is no value greater or equal the maximum element. This differs from the specification of
max_element, where the first occurrence of the maximum value has to be returned.

5.9.2. Implementation of minmax_element

The implementation of minmax_element [5.17] uses the auxiliary function make_pair [5.7] to con-
struct a pair of indices. We will focus on the loop invariant 1ast, because it is the only loop invariant that
differs from the implementations of min_element [5.15]] and max_element [5.9].

size_type_pair
minmax_element (const value_typex a, size_type n)
{
if (Ou < n) {
size_type min = Ou;
size_type max = 0Ou;

/%@
loop invariant bound: 0 <= 1 <= n;
loop invariant min: 0 <= min < n;
loop invariant max: 0 <= max < nj;
loop invariant lower: LowerBound(a, i, al[min]);

loop invariant upper: UpperBound(a, i, almax]);

loop invariant first: StrictLowerBound(a, min, a[min]);

loop invariant last: StrictUpperBound(a, max+l, 1, a[max]);
loop assigns min, max, i;

loop variant n-i;
x/
for (size_type i = Ou; i < n; i++) {
if (ali] >= almax]) {
max = 1ij;

if (ali] < almin]) {
min = i;

return make_pair (min, max);

return make_pair(n, n);

Listing 5.17: Implementation of minmax_element

As already mentioned we had to alter the range for the predicate St rictUpperBound [5.3]] to fit into the
property of returning the last maximum position that occurred.

84

6. Binary search algorithms

In this chapter, we consider the four binary search algorithms of the C+ Standard Library [[19 §28.7.3],
namely

e lower_boundin §6.1]

e upper_bound in §6.2]
e two variants for the implementation of equal_range in §6.3|

e two variants for the formal specification of binary_search in §6.4]

As in the case of the of maximum/minimum algorithms from Chapter|[5|the binary search algorithms primar-
ily use the less-than operator < (and the derived operators <=, > and >=) to determine whether a particular
value is contained in an increasing range. Thus, different to the £ind algorithm in §4.1] the equality
operator == will play only a supporting part in the specification of binary search.

In order to make the specifications of the binary search algorithms more compact and (arguably) more
readable we re-use the predicates LowerBound [5.3]], St rict LowerBound [5.3]], UpperBound [5.3],
and StrictUpperBound [5.3].

All binary search algorithms require that their input array is arranged in increasing order. The following
listing shows two versions of predicate Increasing [6.1]. The first one defines when a section of an
array is in increasing order. The second version uses the first one to express that the whole array is in
increasing order.

/%@
axiomatic Increasing

{

predicate
Increasing{L} (value_type* a, integer m, integer n) =
\forall integer i, j; m <= 1 < j < n ==> ali] <= aljl;
predicate
Increasing{L} (value_type* a, integer n) = Increasing{L}(a, 0, n);

}
*/

Listing 6.1: The logic definition(s) Increasing

There is also the overloaded predicate WeaklyIncreasing [[6.2] that we will user for the verification of
other algorithms.

85

/%@
axiomatic WeaklyIncreasing

{

predicate
WeaklyIncreasing{L} (value_type* a, integer m, integer n) =
\forall integer i; m <= 1 < n-1 ==> al[i] <= al[i+l];
predicate
WeaklyIncreasing{L} (value_typex a, integer n) = WeaklyIncreasing{L} (a, 0, n);

*/

Listing 6.2: The logic definition(s) WeaklyIncreasing

Users inexperienced in formal verification often have a blind spot at the difference between Increasing

and WeaklyIncreasing. Both versions are logically equivalent, and proving that Increasing
implies WeaklyIncreasing is even trivial. However, proving the converse direction is not, and re-
quires an induction on the array size n, employing the transitivity of <= in the induction step. Hu-
mans are trained to perform such inductions unnoticed, but none of the automated provers supported by
Frama-C is able to perform induction. The following Listing contains several lemmas on the relationship
of WeaklyIncreasingand Increasing.

/*@
axiomatic IncreasingLemmas
{
lemma Increasing_WeaklyIncreasing{L}:
\forall value_typex a, integer m, n;
0 <=m <= n ==>
Increasing(a, m, n) ==>
WeaklyIncreasing(a, m, n);

lemma WeaklyIncreasing_Increasing{L}:
\forall value_typex a, integer m, n;
0 <= m <= n ==>
WeaklyIncreasing(a, m, n) ==>
Increasing(a, m, n);

lemma Increasing_Shift{L}:
\forall value_type *a, integer 1, r;
0 <=1<=r ==>
Increasing{L} (a, 1, r) ==>
Increasing{L} (a+l, r-1);

lemma Increasing_Equal{K,L}:

\forall value_typex a, integer m, n, p;
Increasing{K} (a, m, n) ==>
Equal{K,L}(a, m, n, mt+p) ==>
Increasing{L} (a, m+p, n+p);

*/

Listing 6.3: The logic definition(s) IncreasingLemmas

86

We usually exploit the relationship of the predicates Increasing and WeaklyIncreasing in the
following way:

e We use the predicate Increasing in the preconditions and postconditions of function contracts.

e The WeaklyIncreasing is employed for assertions and loop invariants whenever we have to
verify that an algorithm (typically a sorting algorithm) produces an increasing array.

e Finally, to conclude that a weakly increasing array is in fact increasing we rely on lemma
WeaklyIncreasing_Increasing [6.3] .

87

6.1. The lower_bound algorithm

The lower_bound algorithm is one of the four binary search algorithms of the C+ Standard Library [19,
§28.7.3.1]. For our purposes we have modified the generic implementation to that of an array of type
value_type. The signature now reads:

size_type
lower_bound (const value_typex a, size_type n, value_type Vv);

As with the other binary search algorithms 1ower_bound requires that its input array is in increasing
order. The index 1D, that lower_bound returns satisfies the inequality

0<1lb<n (6.1)

and has the following properties for a valid index k of the array under consideration

0<k<l1b = alk] <v (6.2)
lb<k<n = v < alk] (6.3)

Conditions and imply that v can only occur in the array section a [1b..n-1]. In this sense
lower_bound returns a lower bound for the potential indices.

As an example, we consider in Figure[6.4]an increasingly ordered array. The arrows indicate which indices
will be returned by lower_bound for a given value. Note that the index 9 points one past end of the
array. Values that are not contained in the array are colored in gray.

2 3 3 3 8 8 |11 |14 | 14

0 1 2 3 4 5 6 7 8 9
Loy ' , Z

© © © © @

Figure 6.4.: Some examples for Lower_bound

Figure [6.4] also clarifies that care must be taken when interpreting the return value of lower_bound. An
important difference to the algorithms in Chapter [4] is that a return value of lower_bound that is less
than n does not necessarily implies a [1b] == wv. We can only be sure that v <= a[1lb] holds.

6.1.1. Formal specification of lower_bound

The specification of 1ower_bound [[6.5] is shown in the following listing. The preconditions increasing
expresses that the array values need to be in increasing order. The postconditions reflect the conditions
listed above and can be expressed using the predicates LowerBound [5.3]] and StrictUpperBound

[5.3].

e Condition becomes postcondition result

88

e Condition (6.2) becomes postcondition left

e Condition (6.3) becomes postcondition right

/%@
requires valid: \valid_read(a + (0..n-1));
requires increasing: Increasing(a, n);
assigns \nothing;
ensures result: 0 <= \result <= nj;
ensures left: StrictUpperBound(a, 0, \result, v);
ensures right: LowerBound (a, \result, n, v);
x/
size_type
lower_bound (const value_typex a, size_type n, value_type vV);

Listing 6.5: Formal specification of 1ower_bound

6.1.2. Implementation of lower_bound

The following listing shows our implementation of lower_bound [6.6]. Each iteration step narrows
down the range that contains the sought-after result. The loop invariants express that in each iteration step
all indices less than the temporary left bound 1eft contain values that are less than v and all indices not
less than the temporary right bound right contain values that are greater or equal than v. The expression
to compute middle is slightly more complex than the naive (left+right) /2, but it avoids potential
overflows.

size_type
lower_bound (const value_typex a, size_ type n, value_type v)
{

size_type left = Ou;

size_type right

n;

}
else

const size type middle

if (a[middle] < v) {
left = middle + 1lu;

{

right = middle;

/*@
loop invariant bound: 0 <= left <= right <= n;
loop invariant left: StrictUpperBound(a, 0, left, v);
loop invariant right: LowerBound(a, right, n, v);
loop assigns left, right;
loop variant right - left;
*/
while (left < right) {

= left + (right - left) / 2u;

return left;

Listing 6.6: Implementation of 1lower_bound

89

6.2. The upper_bound algorithm

The upper_bound algorithm of the C++ Standard Library [[19, §28.7.3.2] is a variant of binary search and
closely related to Lower_bound [[6.5]]. The signature reads:

size_type
upper_bound (const value_typex a, size_type n, value_type v)

As with the other binary search algorithms, upper_bound requires that its input array is in increasing
order. The index ub returned by upper_bound satisfies the inequality

O0<ub<n (6.4)

and is involved in the following implications for a valid index k of the array under consideration

0<k<ub = alk] € v (6.5)
ub<k<n = v < alk] (6.6)

Conditions (6.5) and (6.6) imply that v can only occur in the array section a [0. .ub-1]. In this sense
upper_bound returns a upper bound for the potential indices where v can occur. It also means that the
searched-for value v can never be located at the index ub.

Figure [6.7] is a variant of Figure [6.4] for the case of upper_bound and the same example array. The
arrows indicate which indices will be returned by upper_bound for a given value. Note how, compared
to Figure only the arrows from values that are present in the array change their target index.

2 3 3 3 8 8 |11 |14 | 14

0 1 2 3 4 5 6 7 8 9
! AT ‘ ‘

® & ®© @ @

Figure 6.7.: Some examples for upper_bound

6.2.1. Formal specification of upper_bound

The following listing shows the specification of upper_bound [[6.8]] which is quite similar to the speci-
fication of lower_bound [[6.5]]. The precondition increasing expresses that the array values need to
be in increasing order.

The postconditions reflect the conditions listed above and can be expressed using predicates UpperBound

and StrictLowerBound , namely,

e Condition (6.4) becomes postcondition result
e Condition (6.5)) becomes postcondition 1eft

e Condition (6.6) becomes postcondition right

90

’

n, v);

/%@
requires valid: \valid_read(a + (0..n-1));
requires increasing: Increasing(a, n);
assigns \nothing;
ensures result: 0 <= \result <= nj;
ensures left: UpperBound (a, 0, \result, v);
ensures right: StrictLowerBound(a, \result,
x/
size_type
upper_bound (const value_type* a, size_type n, value_type V) ;

Listing 6.8: Formal specification of upper_bound

6.2.2. Implementation of upper_bound

Our implementation of upper_bound [[6.9] is shown in the following listing. The loop invariants express
that for each iteration step all indices less than the temporary left bound 1eft contain values not greater

than v and all indices not less than the temporary right bound right contain values greater than v.

size_type

{
size_type left = Ou;
size_type right = n;

loop assigns left, right;
loop variant right - left;
*/
while (left < right) {
const size_type middle = left + (right - left)

if (a[middle] <= v) {
left = middle + 1lu;
}
else {
right = middle;

return right;

/%@
loop invariant bound: 0 <= left <= right <= n;
loop invariant left: UpperBound(a, 0, left, wv);
loop invariant right: StrictlLowerBound(a, right, n,

/ 2u;

upper_bound (const value_typex a, size_type n, value_type v)

Listing 6.9: Implementation of upper_bound

91

6.3. The equal_range algorithm

The equal_range algorithm is one of the four binary search algorithms of the C+ Standard Library [19,
§28.7.3.3]. As with the other binary search algorithms equal_range requires that its input array is in
increasing order. The specification of equal_range states that it combines the results of the algorithms
lower_bound [6.5] and upper_bound [[6.§].

For our purposes we have modified equal_range to take an array of type value_type. Moreover,
instead of a pair of iterators, our version returns a pair of indices. To be more precise, the return type of
equal_range is the struct size_type_pair from Listing[5.6] Thus, the signature of equal_range
now reads:

size_type_pair
equal_range (const value_typex a, size_type n, value_type V);

Figure [6.10] combines Figure [6.4] with Figure in order visualize the behavior of equal_range for
select test cases. The two types of arrows — and --» represent the respective fields first and second of
the return value. For values that are not contained in the array, the two arrows point to the same index. More
generally, if equal_range returns the pair (1b, ub), then the difference ub — 1b is equal to the number of
occurrences of the argument v in the array.

Figure 6.10.: Some examples for equal_range

We will provide two implementations of equal_range and verify both of them. The first implementation
equal_range [6.12]] just straightforwardly calls lower_bound [6.3]] and upper_bound [[6.8] and
simply returns the pair of their respective results. The second implementation equal_range2 [6.13],
which is more elaborate, follows the original C++ code by attempting to minimize duplicate computations.
Let (1b, ub) be the return value equal_range, then the conditions (6.1)—(6.6) can be merged into the
inequality

0<lb<ub<n (6.7)

and the following three implications for a valid index k of the array under consideration

0<k<l1b = alk] <v (6.8)
lIb<k<ub = alk] =v (6.9)
ub<k<n = alk] > v (6.10)

Here are some justifications for these conditions.

e Conditions (6.8)) and (6.10) are just the Conditions (6.2) and (6.6), respectively.

e The Inequality follows from the Inequalities and and the following considerations:
If ub were less than 1b, then according to (6.8) we would have a[ub] < v. One the other hand, we
know from (6.10) that opposite inequality v < a[ub] holds. Therefore, we have 1b < ub.

92

e Condition (6.9) follows from the combination of (6.3) and (6.5)) and the fact that < is a total order on
the integers.

6.3.1. Formal specification of equal_range

The following listing show the specification of equal_range [[6.11]] (and of equal_range2).

/*@
requires valid: \valid_read(a + (0..n-1));
requires increasing: Increasing(a, n);
assigns \nothing;
ensures result: 0 <= \result.first <= \result.second <= n;
ensures left: StrictUpperBound(a, 0, \result.first, v);
ensures middle: AllEqual (a, \result.first, \result.second, Vv);
ensures right: StrictLowerBound(a, \result.second, n, Vv);
*/

size_type_pair

equal_range (const value_typex a, size_type n, value_type Vv);

Listing 6.11: Formal specification of equal_range

The precondition increasing expresses that the array values need to be in increasing order.

The postconditions reflect the conditions listed above and can be expressed using the already introduced
predicates Al1Equal [4.15]], StrictUpperBound [5.3] and StrictLowerBound [[5.3].

e Condition becomes postcondition result
e Condition (6.8) becomes postcondition left
e Condition (6.9) becomes postcondition middle

e Condition (6.10) becomes postcondition right

6.3.2. Implementation of equal_range

Our first implementation of equal_range [[6.12] is shown in the following listing. We just call the two
functions lower_bound [[6.5]] and upper_bound [[6.§8] and return their respective results as a pair.

size_type_pair
equal_range (const value_typex a, size_type n, value_type V)
{

size_type first = lower_bound(a, n, v);
size type second = upper_bound(a, n, Vv);
//@ assert aux: second < n ==> v < al[second];

return make_pair (first, second);

Listing 6.12: Implementation of equal_range

In a very early version of this document we had proven the similar assertion first <= second with
the interactive theorem prover Coq. After reviewing this proof we formulated the new assertion aux that
uses a fact from the postcondition of upper_bound [[6.§]. The benefit of this reformulation is that both
the assertion aux and the postcondition first <= second can now be verified automatically.

93

6.3.3. Implementation of equal_range2

The first implementation of equal_range [6.12] does more work than needed. In the following listing
equal_range2 [[6.13]] we show that it is possible to perform as much range reduction as possible before
calling upper_bound [6.8]] and 1ower_bound [[6.5]] on the reduced ranges.

size_type_pair
equal_range?2 (const value_typex a, size_type n, value_type v)
{

size_type first = Ou;

size_type middle = Ou;

size_type last = n;

/%@
loop invariant bounds: 0 <= first <= last <= n;
loop invariant left: StrictUpperBound(a, 0, first, v);
loop invariant right: StrictLowerBound(a, last, n, v);
loop assigns first, last, middle;
loop variant last - first;

*/

while (last > first) {
middle = first + (last - first) / 2u;

if (a[middle] < v) {
first = middle + 1lu;

}

else if (v < a[middle]) {
last = middle;

}

else {
break;

if (first < last) {
//@ assert increasing: Increasing(a, first, middle);
size_type left = first + lower_bound(a + first, middle - first, v);
//@ assert middle: LowerBound(a, left, middle, v);
//Q@ assert left: StrictUpperBound(a, first, left, v);
++middle;
//Q@ assert increasing: Increasing(a, middle, last);
size_type right = middle + upper_bound(a + middle, last - middle, v);
//@ assert middle: UpperBound(a, middle, right, v);
//Q@ assert right: StrictLowerBound(a, right, last, v);
//@ assert middle: AllEqual (a, left, right, v);
return make_pair (left, right);
}
else {
return make_pair (first, first);

Listing 6.13: Implementation of equal_range?2

Due to the higher code complexity of the second implementation, additional assertions had to be inserted
in order to ensure that Frama-C/WP is able to verify the correctness of the code. All of these assertions are
related to pointer arithmetic and shifting base pointers. They fall into three groups and are briefly discussed
below. In order to enable the automatic verification of these properties we added the following collection
of ArrayBoundsShift [6.14].

94

/%@
axiomatic ArrayBoundsShift
{
lemma LowerBound_Shift{L}:
\forall value_type xa, val, integer b, c, d;
LowerBound{L} (a+b, c, d, val) ==>
LowerBound{L} (a, ctb, d+b, wval);

lemma StrictLowerBound_Shift{L}:
\forall value_type *a, val, integer b, c, d;
StrictLowerBound{L} (a+b, c, d, val) ==>
StrictLowerBound{L} (a, c+tb, d+b, wval);

lemma UpperBound_Shift{L}:
\forall value_type *a, val, integer b, c;
UpperBound{L} (a+b, 0, c-b, wval) ==>
UpperBound{L} (a, b, c, val);

lemma StrictUpperBound_Shift{L}:
\forall value_type xa, val, integer b, c;
StrictUpperBound{L} (a+tb, 0, c-b, wval) ==>
StrictUpperBound{L} (a, b, c, val);

*/

Listing 6.14: The logic definition(s) ArrayBoundsShift

The increasing properties

Both lower_bound [[6.5] and upper_bound [[6.8] expect that they operate on increasingly ordered
arrays. This is of course also true for equal_range [6.11]l, however, inside our second implementation
we need a more specific formulation, namely,

Increasing(a + middle, last - middle)

With the three-argument form of predicate Increasing [[6.1]] we can formulate out an intermediate step.
This enables the provers to verify the preconditions of the call to lower_bound [6.5]] automatically. A
similar assertion is present before the call to upper_bound [[6.§]].

The strict and constant properties

Part of the post conditions of equal_range [[6.I1]] is that v is both a strict upper and a strict lower bound.
However, the calls to 1ower_bound and upper_bound only give us

StrictUpperBound(a + first, 0, left - first, v)

StrictLowerBound(a + middle, right - middle, last - middle, v)

which is not enough to reach the desired post conditions automatically. One intermediate step for each of
the assertions was sufficient to guide the prover to the desired result.

Conceptually similar to the st rict properties the constant properties guide the prover towards

LowerBound(a, left, n, V)

95

UpperBound(a, 0, right, wv)

Combining these properties allow the postcondition middle to be derived automatically.

6.4. The binary_ search algorithm

The binary_search algorithm is one of the four binary search algorithms of the C++ Standard Library
[19] §28.7.3.4]. For our purposes we have modified the generic implementation to that of an array of type
value_type. The signature now reads:

bool binary_search (const value_typex a, size_type n, value_type V);

Again, binary_search requires that its input array is in increasing order. It will return true if there

exists anindex i in a suchthata[i] == v holdsF_G]
2 3 3 3 8 8 11 14 14
0 1 2 3 4 5 6 7 8 9

\’ ;"ﬁ‘w"\,y | /y»*“%\’ f’.,w,,\'
(5) {11 (17

Figure 6.15.: Some examples for binary_search

In Figure [6.15] we do not need to use arrows to visualize the effects of binary_search. The colors
orange and grey of the sought-after values indicate whether the algorithm returns true or false, respectively.

6.4.1. Formal specification of binary_ search and binary_search2

The ACSL specification of binary_search [[6.16] is shown in the following listing.

/%@
requires valid: \valid_read(a + (0..n-1));
requires increasing: Increasing(a, n);
assigns \nothing;
ensures result: \result <==> \exists integer i; 0 <= i < n && al[i] == v;
x/
bool
binary_search (const value_typex a, size_type n, value_type V);

Listing 6.16: Formal specification of binary_search

Note that instead of the somewhat lengthy existential quantification of binary_search [6.16] we can
use our previously introduced predicate SomeEqual [#4.4] in order to achieve the following more concise
formal specification binary_search2 [[6.17].

20To be more precise: The C++ Standard Library requires that (a[i] <= v)&& (v <= a[i]) holds. For our definition of
value_type (see §[2;3'p this means that v equals a [1].

96

/%@
requires valid: \valid_read(a + (0..n-1));
requires increasing: Increasing(a, n);
assigns \nothing;
ensures result: \result <==> SomeEqual (a, n, Vv);
*/
bool
binary_search? (const value_typex a, size_type n, value_type V);

Listing 6.17: Formal specification of binary_search?2

It is interesting to compare the specification of binary_search [6.16] with that of £ind2 [4.5]. Both
algorithms allow to determine whether a value is contained in an array. The fact that the C++ Standard
Library requires that £ind has linear complexity whereas binary_search must have a logarithmic
complexity can currently not be expressed with ACSL.

6.4.2. Implementation of binary_ search

Our implementation binary_search2 [[6.18] first calls lower_bound [[6.5]. Remember that if the
latter returns an index 0 <= 1 < n, then we can be sure that v <= a[1i] holds.

bool
binary_search? (const value_typex a, size_type n, value_type V)
{

const size_type i = lower_bound(a, n, v);

return (i < n) && (ali] <= v);

Listing 6.18: Implementation of binary_search?

97

Part lll.

Mutating and numeric algorithms

99

7. Mutating algorithms

Let us now turn our attention to another class of algorithms, viz. mutating algorithms of the C++ Standard
Library [[19, §28.6], i.e., algorithms that change one or more ranges. In Frama-C, you can explicitly specify
that, e.g., entries in an array a may be modified by a function £, by including the following assigns clause
into the £’s specification:

assigns a[0..length-1];

The expression 1length-1 refers to the value of length when f is entered, see [[14, §2.3.2]. Below are
the algorithms we will discuss in this chapter.

e In order to allow for a finer control of which parts of an array, we introduce in the auxiliary
predicate Unchanged.

e £i11 in §7.2)initializes each element of an array by a given fixed value.
e swap in §7.3|exchanges two values.

e swap_ranges in §7.4exchanges the contents of the arrays of equal length, element by element. We
use this example to present “modular verification”, as swap_ ranges reuses the verified properties
of swap.

e copy in §7.5|copies a source array to a destination array.

e copy_backwardin also copies a source array to a destination array. This version, however,
uses another separation condition than copy.

e reverse_copy and reverse in §7.7]and §7.8] respectively, reverse an array. Whereas reverse_copy
copies the result to a separate destination array, the reverse algorithm works in place.

e rotate_copy in rotates a source array by m positions and copies the results to a destination
array.

e rotate in §7.10|rotates in place a source array by m positions.

e replace_copy and replace in and respectively, substitute each occurrence of a
value by a given new value. Whereas replace_copy copies the result to a separate array, the
replace algorithm works in place.

e remove_copy and remove in filter all occurrences of a given value from an array.
Whereas remove_ copy copies the result to a separate array, the remove algorithm works in place.
Note that we provide altogether three versions of how to specify remove_copy. This shall help the
reader to understand that finding appropriate contracts is an iterative process and that it is usually a
good idea to not strive for a “complete” contract right from the beginning.

e shuffle in §7.17/randomly reorders the elements of an array thereby relying on the simple random
number generator random_number in §7.1§]

101

7.1. The predicate Unchanged

Many of the algorithms in this section iterate sequentially over one or several sequences. For the verification
of such algorithms it is often important to express that a section of an array, or the complete array, have
remained unchanged. As this cannot always be expressed by an assigns clause, we introduce in the
following listing the overloaded predicate Unchanged [[7.I]]. The expression Unchanged{X, L} (a,m,
n) is true if the range a [m. .n—1] in state K is element-wise equal to that range in state L.

/%@
axiomatic Unchanged

{

predicate
Unchanged{K, L} (value_type* a, integer m, integer n) =
\forall integer i; m <= i < n ==> \at(a[i],K) == \at(al[i],L);
predicate
Unchanged{K, L} (value_typex a, integer n) = Unchanged{K,L} (a, 0, n);

*/

Listing 7.1: The logic definition(s) Unchanged

In some situations we use the predicate ArrayUpdate, which relies on the predicate Unchanged and
the the logic function At [[7.49]], to concisely describe which parts of an array have changed or remained
unchanged when updating an individual array element.

/%@
axiomatic ArrayUpdate

{

predicate
ArrayUpdate{K,L} (value_type* a, integer n, integer i, value_type v) =
0 <=1 <n &&
Unchanged{K,L} (a, 0, 1i) &&
Unchanged{K,L} (a, i+1, n) &&
At{K}(a, i) !'= v &&
At{L} (a, 1) == v;

lemma ArrayUpdate_Shrink{K,L}:
\forall value_type *a, v, integer n, i;
0 <=1 < n-1 ==>
ArrayUpdate{K,L} (a, n, i, v) ==>
ArrayUpdate{K,L} (a, n-1, i, v);

lemma ArrayUpdate_UpperBound{K,L}:
\forall value_type x*a, v, w, integer n, 1i;

ArrayUpdate{K, L} (a, n, i, v) ==>
v <= w ==>
UpperBound{K} (a, n, w) ==>

UpperBound{L} (a, n, w);

*/

Listing 7.2: The logic definition(s) ArrayUpdate

102

In the following listing we show a few lemmas for Unchanged [[7.]]] that we need for the verification of
various algorithms.

/%@
axiomatic UnchangedLemmas
{
lemma Unchanged_Shrink{K,L}:
\forall value_type *a, integer m, n, p, qg;
m <= p <= g <=n ==>
Unchanged{K,L} (a, m, n) ==>
Unchanged{K,L} (a, p, 9);

lemma Unchanged_Extend{K,L}:
\forall value_type *a, integer n;
Unchanged{K, L} (a, n) ==>
\at (a[n],K) == \at(a[n],L) ==>
Unchanged{K, L} (a, n+1l);

lemma Unchanged_Shift{K,L}:
\forall value_type *a, integer p, g, r;
Unchanged{K,L} (a+p, g, r) ==> Unchanged{K,L} (a, ptg, ptr);

lemma Unchanged_Symmetric{K,L}:
\forall value_type *a, integer m, n;
Unchanged{K,L} (a, m, n) ==>
Unchanged{L,K} (a, m, n);

lemma Unchanged_Transitive{K,L,M}:
\forall value_type *a, integer m, n;
Unchanged{K,L} (a, m, n) ==>
Unchanged{L,M} (a, m, n) ==>
Unchanged{K,M} (a, m, n);

*/

Listing 7.3: The logic definition(s) UnchangedLemmas

e Lemma Unchanged_sShrink [[7.3] states that if the range a [m..n-1] does not change when
going from state K to state I, then a[p..g—1] does not change either, provided the latter is a
subrange of the former, i.e. provided 0 < m < p < g < n holds.

e Lemma Unchanged_Extend [[7.3]] expresses the simple fact that “unchangedness” is an inductive
property.
e Lemma Unchanged_shift [7.3] states how Unchanged behaves under pointer additions.

e Lemmas Unchanged_Symmetric [[7.3]] and Unchanged_Transitive [[7.3] express respec-
tively the symmetry and transitivity of Unchanged with respect to program states.

103

7.2. The £i11 algorithm

The £111 algorithm in the C++ Standard Library [[19) §28.6.6] initializes general sequences with a particular
value. The signature of our modified variant reads:

void fill (value_type* a, size_type n, value_type V);

7.2.1. Formal specification of £i11

The following listing shows the formal specification of £i11 [7.4]. We can express the postcondition of
£i11 simply by using the overloaded predicate A11Equal [4.15]].

/*@
requires valid: \valid(a + (0..n-1));
assigns al0..n-17;
ensures constant: AllEqual(a, n, v);

x/

void

fill (value_type* a, size_type n, value_type V);

Listing 7.4: Formal specification of £111

The assigns-clauses formalize that £111 modifies only the entries of the range a [0. .n-11]. In general,
when more than one assigns clause appears in a function’s specification, it is permitted to modify any of the
referenced memory locations. However, if no assigns clause appears at all, the function is free to modify
any memory location, see [[14}, §2.3.2]. To forbid a function to do any modifications outside its scope, a
clause assigns \nothing; must be used, as we practised in the example specifications in Chapter 4]

7.2.2. Implementation of £i11

The implementation of £111 [[7.5]] comes with the loop invariant constant expresses that for each itera-
tion the array is filled with the value of v up to the index i of the iteration. Note that we use here again the
predicate A11Equal [4.15]].

void
fill (value_type* a, size_type n, value_type v)
{
/%@
loop invariant bound: 0 <= 1i <= n;
loop invariant constant: AllEqual(a, i, v);
loop assigns i, a[0..n-1];
loop variant n-i;
x/
for (size type i = Ou; i < n; ++i) {
alil] = v;

}

Listing 7.5: Implementation of £i11

104

7.3. The swap algorithm

The swap algorithm [19, §28.6.3] in the C+ Standard Library exchanges the contents of two variables. Sim-
ilarly, the iter_swap algorithm [19, §28.6.3] exchanges the contents referenced by two pointers. Since
C and hence ACSL, does not support an & type constructor (“declarator’’), we will present an algorithm that
processes pointers and refer to it as swap.

7.3.1. Formal specification of swap

The contract of swap is shown in the following listing. The preconditions state that both pointer
arguments of swap must be dereferenceable.

/%@
requires valid: \valid(p);
requires valid: \valid(q);
assigns *pP;
assigns *q;
ensures exchange: *p == \old(*q);
ensures exchange: *g == \old(*p);
x/
void
swap (value_typex p, value_typex q);

Listing 7.6: Formal specification of swap
Upon termination of swap the entries must be mutually exchanged. The expression \old (xp) refers to

the value of xp before swap has be called. By default, a postcondition refers the values after the functions
has been terminated.

7.3.2. Implementation of swap

The following listing shows the straight-forward implementation of swap [[7.7]. No interspersed ACSL
annotations are needed achieve a verification by Frama-C/WP.

void
swap (value_typex p, value_typex q)
{

value_type save = *p;
*p = xq;
*q = savej;

}

Listing 7.7: Implementation of swap

105

7.4. The swap_ranges algorithm

The swap_ranges algorithm in the C++ Standard Library [[19, §28.6.3] exchanges the contents of two
expressed ranges element-wise. After translating C++ reference types and iterators to C, our version of the
original signature reads:

void swap_ranges (value_typex a, size_type n, value_type* b);

We do not return a value since it would equal n, anyway.

7.4.1. Formal specification of swap_ranges

The following listing shows a specification for the swap_ranges algorithm.

/=@

requires valid: \valid(a + (0..n-1));
requires valid: \valid(b + (0..n-1));
requires sep: \separated(a+(0..n-1), b+ (0..n-1));
assigns al0..n-17;
assigns b[0..n-17;
ensures equal: Equal{0Old, Here} (a, n, b);
ensures equal: Equal{0Old, Here} (b, n, a);
x/
void

swap_ranges (value_typex a, size_type n, value_typex b);

Listing 7.8: Formal specification of swap_ranges

The swap_ranges algorithm works correctly only if a and b do not overlap. Because of that fact we use
the clause sep to tell Frama-C that a and b must not overlap.

With the assigns-clause we postulate that the swap_ranges algorithm alters the elements contained
in two distinct ranges, modifying the corresponding elements and nothing else.

The postconditions of swap_ranges specify that the content of each element in its post-state must equal
the pre-state of its counterpart. We can use the predicate Equal [4.28] together with the label 01d and
Here to express the postcondition of swap_ranges. In our specification, for example, we specify that
the array a in the memory state that corresponds to the label Here is equal to the array b at the label 01d.
Since we are specifying a postcondition Here refers to the post-state of swap_ranges whereas O1d
refers to the pre-state.

106

7.4.2. Implementation of swap_ranges

The implementation of swap_ranges together with the necessary loop annotations is shown in the
following listing. Unsurprisingly, we are repeatedly calling swap [[7.6].

void
swap_ranges (value_typex a, size_type n, value_typex b)
{
/%@
loop invariant bound: 0 <= i <= n;
loop invariant equal: Equal{Pre,Here} (a, i, b);
loop invariant equal: Equal{Pre,Here} (b, 1, a);

loop invariant unchanged: Unchanged{Pre,Here} (a, i, n);
loop invariant unchanged: Unchanged{Pre, Here} (b, i, n);

loop assigns i, a[0..n-1], b[0..n-1];
loop variant n-i;

x/

for (size_type i = Ou; 1 < n; ++i) {
swap(a + i, b + 1);

}

Listing 7.9: Implementation of swap_ranges

For the postcondition swap_ranges to hold, our loop invariants must ensure that at each iteration
all of the corresponding elements that have already been visited are swapped.

Note that there are two additional loop invariants which claim that all the elements that have not visited
yet equal their original values. This annotation allows us to prove the postconditions of swap_ranges
despite the fact that the loop assigns is coarser than it should be. The predicate Unchanged is used
to express this property.

107

7.5. The copy algorithm

The copy algorithm in the C+ Standard Library §28.6.1] implements a duplication algorithm for
general sequences. For our purposes we have modified the generic implementation to that of a range of
type value_type. The signature now reads:

void copy (const value_typex a, size_type n, value_type* Db);

Informally, the function copies every element from the source range a [0. .n—1] to the destination range b
[0..n-11], as shown in Figure

Figure 7.10.: Effects of copy

7.5.1. Formal specification of copy

Figure[7.10jmight suggest that the ranges a [0 . .n-1] and b [0. .n-1] must not overlap. However, since
the informal specification requires that elements are copied in the order of increasing indices only a weaker
condition is necessary. To be more specific, it is required that the pointer b does not refer to elements of
a[0..n-1] as shown in the example in Figure [7.T1]

alo. .4]

b[@..4]

order of copy =3

Figure 7.11.: Possible overlap of copy ranges
The specification of copy is shown in the following listing. The copy algorithm expects that the ranges

a and b are valid for reading and writing, respectively. Note the precondition sep that expresses the
previously discussed non-overlapping property.

108

/%@
requires valid: \valid_read(a + (0..n-1));
requires valid: \valid(b + (0..n-1));
requires sep: \separated(a + (0..n-1), b);
assigns b[0..n-1];
ensures equal: Equal{0Old, Here} (a, n, b);
*/
void
copy (const value_typex a, const size_type n, value_typex b);

Listing 7.12: Formal specification of copy

Again, we can use the Equal [4.2§] predicate to express that the array a equals b after copy has been
called. Nothing else must be altered. To state this we use the assigns-clause.

7.5.2. Implementation of copy

The following listing shows an implementation of the copy function.

void
copy (const value_typex a, size_type n, value_typex Db)
{
/%@
loop invariant bound: 0 <=1 <= n;
loop invariant equal: Equal{Pre, Here} (a, i, b);
loop invariant unchanged: Unchanged{Pre,Here} (a, i, n);
loop assigns i, b[0..n-17];
loop variant n-i;
*/
for (size_type i = Ou; 1 < n; ++i) {
b[i] = alil;

Listing 7.13: Implementation of copy

For the postcondition equal to be true, we must ensure that for every index i, the value a [1] must not
yet have been changed before it is copied to b [1]. We express this by using the Unchanged predicateErI

The assigns clause ensures that nothing but the range b [0. .n—1] and the loop variable i is modified.
Keep in mind, however, that parts of the source range a [0 . . n—1] might change due to its potential overlap
with the destination range.

2 Alternatively, this could also be expressed by changing the 1oop assigns clause to i, b[0..i-1]; however, Frama-C

doesn’t yet support Loop assigns clauses containing the loop variable.

109

7.6. The copy_backward algorithm

The copy_backward algorithm in the C++ Standard Library [19, §28.6.1] implements another duplication
algorithm for general sequences. For our purposes we have modified the generic implementation to that of
arange of type value_type. The signature now reads:

void copy_backward (const value_type+ a, size_type n, value_typex Db);

The main reason for the existence of copy_lbackward is to allow copying when the start of the destination
range a[0..n—1] is contained in the source range b [0..n-1]. In this case, copy can’t be employed
since its precondition sep is violated, as can be seen in the contract of copy [[7.12].

The informal specification of copy_lbackward states that copying starts at the end of the source range.
For this to work, however, the pointer b+n must not be contained in the source range. Note that the order of
operation (or procedure) calls cannot be specified in ACSLEZI A similar remark about order of operations
tacitly applied to earlier functions as well, e.g. to copy, where the C++ order was prescribed by confining
the signature to a ForwardIterator.

Figure gives an example where copy_backward, but nor copy, can be applied.

4 1 1 4 2

!

b[@..4]

alo. .4]

<& order of copy

Figure 7.14.: Possible overlap of copy_backward ranges

Note that in the original signature the argument b refers to one past the end of the destination range. Here,
however, it refers to its start. The reason for this change is that in C+ copy_backward is defined for
bidirectional iterators which do not provide random access operations such as adding or subtracting an
index. Since our C version works on pointers we do not consider it as necessary to use the one past the end
pointer.

7.6.1. Formal specification of copy_backward

The specification of copy_backward is shown in the following listing. The copy_backward algo-
rithm expects that the ranges a[0..n-1] and b[0..n-1] are valid for reading and writing, respec-
tively. Precondition sep formalizes the constraints on the overlap of the source and destination ranges as
discussed at the beginning of this section.

22The Aorai specification language and the corresponding Frama-C plugin are provided to specify and verify temporal properties
of code; however, they are beyond the scope of this tutorial.

110

/*@
requires valid: \valid_read(a + (0..n-1));
requires valid: \valid(b + (0..n-1));

requires sep: \separated(a + (0..n-1), b + n);
assigns b[0..n-1];
ensures equal: Equal{0Old, Here} (a, n, b);

*/

void

copy_backward (const value_typex a, size_type n, value_typex b);

Listing 7.15: Formal specification of copy_backward

The function copy_backward assigns the elements from the source range a to the destination range b,
modifying the memory of the elements pointed to by b. Again, we can use the Equal [4.28] predicate to
express that the array a equals b after copy_backward has been called.

7.6.2. Implementation of copy_backward

The following listing shows an implementation of the copy_backward function.

void
copy_backward (const value_typex a, size_type n, value_typex b)
{

/%@
loop invariant bound: 0 <=1 <= n;
loop invariant equal: Equal{Pre,Here} (a, i, n, b);

loop invariant unchanged: Unchanged{Pre,Here} (a, 1);
loop assigns i, b[0..n-1];
loop variant i;

*/
for (size_type i = n; i > Ou; —-i) {
b[i - 1u] = al[i - 1lul;

Listing 7.16: Implementation of copy_backward

We have loop invariants similar to copy, stating the loop variable’s range (bound) and the area that has
already been copied in each cycle (equal).

111

7.7. The reverse_copy algorithm

The reverse_copy algorithm of the C+ Standard Library [19, §28.6.10] inverts the order of elements
in a sequence. reverse_copy does not change the input sequence, and copies its result to the out-
put sequence. For our purposes we have modified the generic implementation to that of a range of type
value_type. The signature now reads:

void reverse_copy (const value_typex a, size_type n, value_type* b);
Informally, reverse_copy copies the elements from the array a into array b such that the copy is a

reverse of the original array. In order to concisely formalize these conditions we define in the following
listing the predicate Reverse [[7.17] (see also Figure [7.18).

/%@
axiomatic Reverse

{

predicate
Reverse({K,L} (value_type* a, integer n, value_typex b) =
\forall integer i; 0 <= 1 < n ==> \at(ali],K) == \at(b[n-1-i], L);
predicate
Reverse{K,L} (value_typex a, integer m, integer n,
value_typex b, integer p) = Reverse{K,L} (atm, n-m, b+p);
predicate

Reverse({K, L} (value_typex a, integer m, integer n, value_typex b) =
Reverse{K,L}(a, m, n, b, m);

predicate
Reverse{K,L} (value_typer a, integer m, integer n, integer p) =
Reverse({K,L} (a, m, n, a, p);

predicate
Reverse{K,L} (value_typex a, integer m, integer n) =
Reverse{K,L}(a, m, n, m);

predicate
Reverse({K, L} (value_typex a, integer n) = Reverse{K,L}(a, 0, n);

*/

Listing 7.17: The logic definition(s) Reverse

We also define several overloaded variants of Reverse that provide default values for some of the param-
eters. These overloaded versions enable us to write later more concise ACSL annotations.

Figure 7.18.: Sketch of predicate Reverse

112

7.7.1. Formal specification of reverse_copy

The specification of reverse_copy is shown in the following listing We use the second version
of predicate Reverse [[7.17] in order to formulate the postcondition of reverse_copy.

/%@
requires valid: \valid_read(a + (0..n-1));
requires valid: \valid(b + (0..n-1));
requires sep: \separated(a + (0..n-1), b + (0..n-1));
assigns b[0..(n=-1)71;
ensures reverse: Reverse{0ld, Here} (a, n, b);
ensures unchanged: Unchanged{01ld, Here} (a, n);
*/
void
reverse_copy (const value_type+ a, size_type n, value_typex D);

Listing 7.19: Formal specification of reverse_copy

7.7.2. Implementation of reverse_copy

The implementation of reverse_copy [[7.20] is shown in the following listing. For the postcondition to
be true, we must ensure that for every element i, the comparison b[1] == a[n-1-1i] holds. This is
formalized by the loop invariant reverse where we employ the first version of Reverse [[7.17].

void
reverse_copy (const value_typex a, size_type n, value_typex Db)
{
/@
loop invariant bound: 0 <=1 <= n;
loop invariant reverse: Reverse{Here,Pre} (b, 0, i, a, n-i);
loop assigns i, b[0..n-1];
loop variant n-i;
x/
for (size_type i = Ou; i < n; ++i) {
b[i] = a[n - 1u - i];

Listing 7.20: Implementation of reverse_copy

113

7.8. The reverse algorithm

The reverse algorithm of the C++ Standard Library [[19, §28.6.10] inverts the order of elements within a
sequence. The signature of our version of reverse reads.

void reverse (value_type* a, size_type n);

7.8.1. Formal specification of reverse

The specification for the reverse [[7.21]] function is shown in the following listing.

/*@
requires valid: \valid(a + (0..n-1));
assigns al0..n-17;
ensures reverse: Reverse{0ld,Here} (a, n);
x/
void
reverse (value_type* a, size_type n);

Listing 7.21: Formal specification of reverse

7.8.2. Implementation of reverse

Since the implementation of reverse [[7.22] operates in place we use swap [[7.6] in order to exchange
the elements of the first half of the array with the corresponding elements of the second half. We reuse the
predicates Reverse [[7.I7] and Unchanged [[7.1] in order to write concise loop invariants.

void
reverse (value_typex* a,

{

size_type n)

const size type half

n / 2u;

//@ assert half:
//Q@ assert half:
/*@

loop invariant bound: 0 <= i <= half <= n-i;
loop invariant left: Reverse{Pre, Here} (a, 0, 1, n-i);
loop invariant middle: Unchanged{Pre,Here} (a, i, n-1i);
loop invariant right: Reverse{Pre, Here} (a, n-i, n, 0);
loop assigns i, a[0..n-1];
loop variant half - i;

*/

for (size_type i = Ou; i < half; ++i) {
swap (&al[i], &aln - 1lu - i]l);

half <= n - half;
2+xhalf <= n <= 2xhalf + 1;

114

Listing 7.22: Implementation of reverse

7.9. The rotate_copy algorithm

The rotate_copy algorithm of the C++ Standard Library §28.6.11] copies, in a particular way, the
elements of one sequence of length n into a separate sequence. More precisely,

o the first m elements of the first sequence become the last m elements of the second sequence, and

o the last n — m elements of the first sequence become the first n — m elements of the second sequence.

Figure [7.23]illustrates the effects of rotate_copy by highlighting how the initial and final segments of
the array a [0 . .n—-1] are mapped to corresponding subranges of the array b [0. .n—-117.

0 m-1 m n-1

0 n-m-1 n-m n-1

Figure 7.23.: Effects of rotate_copy

For our purposes we have modified the generic implementation to that of a range of type value_type.
The signature now reads:

void rotate_copy (const value_type* a, size_type m, size_type n, value_type* Db);

7.9.1. Formal specification of rotate_copy

The specification of rotate_copy is shown in the following listing. Note that we require explicitly that
both ranges do not overlap and that we are only able to read from the range a [0..n-1].

/%@
requires bound: 0 <= m <= n;
requires valid: \valid_read(a + (0..n-1));
requires valid: \valid(b + (0..n-1));
requires sep: \separated(a + (0..n-1), b + (0..n-1));
assigns b[0..(n-1)1;
ensures left: Equal{0ld, Here} (a, 0, m, b, n-m);
ensures right: Equal{0Old,Here} (a, m, n-m, b, 0);
ensures unchanged: Unchanged{01ld, Here} (a, n);

*/

void

rotate_copy (const value_typex a, size_type m, size_type n, value_typex Db);

Listing 7.24: Formal specification of rotate_copy

115

7.9.2. Implementation of rotate_copy

The following listing shows an implementation of the rotate_copy function. The implementation sim-
ply calls the function copy twice.

void
rotate_copy (const value_typex a, size_type m, size_type n, value_typex b)
{

copy(a, m, b+ (n -m));

copy(a + m, n — m, b);

}

Listing 7.25: Implementation of rotate_copy

7.10. The rotate algorithm

The algorithm rotate is an in-place variant of the algorithm rotate_copy [7.24]. We have modified

the generic specification of rotate [19] §28.6.11] such that it refers to a range of objects of value_type.
The signature now reads:

size_type rotate (const value_typex a, size_type m, size_type n);

7.10.1. Formal specification of rotate

Figure [7.26] shows informally the behavior of rotate. The figure is of course very similar to the one for

rotate_copy (see Figure[7.23). The notable difference is that rotate operates in place of the array
alf0..n-17.

Pre a

Post a

0 n-m-1 n-m n-1

Figure 7.26.: Effects of rotate

The specification of rotate is shown in the following listing.

116

/*@
requires valid: \valid(a + (0..n-1));
requires bound: m <= n;

assigns al0..n-17;

ensures result: \result == n-m;

ensures left: Equal{0Old, Here} (a, 0, m, n-m);

ensures right: Equal{Old,Here}(a, m, n, 0);
*/

size_type
rotate (value_typer a, size_type m, size_type n);

Listing 7.27: Formal specification of rotate

7.10.2. Implementation of rotate

The following listing shows an implementation of the rotate function together with several ACSL an-
notations. Actually, there are several ways to implement rotate. We have chosen a particularly simple
one that is derived from an implementation of std: : rotate for bidirectional iterators [|19} §27.2.6] and
which essentially consists of several calls to the algorithm reverse [7.21]|.

Note the statement contract of the final call of reverse [[7.21]]. Here we use both the labels Pre and 01d
which refer to the pre-states of reverse and the function rotate itself, respectively.

size_type

rotate (value_type* a, size_type m, size_type n)

{
// if one subrange is empty, then nothings needs to be done
if ((Ou < m) && (m < n)) A

}

return n - m;
}

reverse (a, m) ;

reverse(a + m, n — m);

/*@
requires left: Reverse{Pre, Here} (a, 0, m, 0);
requires right: Reverse{Pre,Here}(a, m, n, m);
assigns al0..n-17;
ensures left: Reverse{0ld, Here} (a, 0, m, n-m);
ensures right: Reverse{0ld, Here} (a, m, n, 0);

x/

reverse(a, n);

//Q assert left: Equal{Pre, Here}(a, 0, m, n-m);

//@ assert right: Equal{Pre,Here}(a, m, n, 0);

Listing 7.28: Implementation of rotate

117

7.11. The replace_copy algorithm

The replace_copy algorithm of the C++ Standard Library §28.6.5] substitutes specific elements
from general sequences. Here, the general implementation has been altered to process value_type
ranges. The new signature reads:

size_type replace_copy (const value_typex a, size_type n, value_typex Db,
value_type v, value_type w);

The replace_copy algorithm copies the elements from the range a [0..n] torange b[0..n], sub-

stituting every occurrence of v by w. The return value is the length of the range. As the length of the range
is already a parameter of the function this return value does not contain new information.

Figure 7.29.: Effects of replace

Figure [7.29] shows the behavior of replace_copy at hand of an example where all occurrences of the
value 3ina[0..n-1] are replaced with the value2inb [0..n-1].

7.11.1. The predicate Replace

We start with defining in the following listing the predicate Replace [[7.30] that describes the intended
relationship between the input array a [0 . . n—1] and the output array b [0 . . n—1]. Note the introduction
of local bindings \1et ai = ...and\let bi = ... inthedefinition of Replace (see [14] §2.2]).

/%@
axiomatic Replace
{
predicate
Replace({K, L} (value_typex a, integer n, value_typex b,
value_type v, value_type w) =
\forall integer i; 0 <= 1 < n ==>
\let ai = \at(al[i],K);
\let bi = \at(b[i],L);
(ali == v ==> Dbl == w) && (ai !'= v ==> Dbi == ai) ;

predicate
Replace({K, L} (value_typex a, integer n, value_type v, value_type w) =
Replace{K,L} (a, n, a, v, w);

*/

Listing 7.30: The logic definition(s) Replace

118

This listing also contains a second, overloaded version of Replace which we will use for the specification
of the related in-place algorithm replace [[7.33].

7.11.2. Formal specification of replace_copy

Using predicate Replace the specification of replace_copy [[7.31] is as simple as shown in the fol-
lowing listing. Note that we also require that the input range a [0. .n—1] and output range b [0. .n-1]
do not overlap.

/%@
requires valid: \valid_read(a + (0..n-1));
requires valid: \valid(b + (0..n-1));
requires sep: \separated(a + (0..n-1), b + (0..n-1));
assigns b[0..n-1];
ensures result: \result == n;
ensures replace: Replace{0ld, Here} (a, n, b, v, w);
ensures unchanged: Unchanged{Old, Here} (a, n);
*/
size_type
replace_copy (const value_typex a, size_type n, value_typex b,
value_type v, wvalue_type w);

Listing 7.31: Formal specification of replace_copy

7.11.3. Implementation of replace_copy

The implementation (including loop annotations) of replace_copy [[7.32] is shown in the following list-
ing. Note how the structure of the loop annotations resembles the specification of replace_copy [[7.31].

size_type
replace_copy (const value_typex a, size_type n, value_type* b, value_type v,
value_type w)

{

/%@
loop invariant bounds: 0 <= 1i <= n;
loop invariant replace: Replace{Pre,Here} (a, i, b, v, w);

loop assigns i, b[0..n-1];
loop variant n-i;

*/

for (size_type i = Ou; 1 < n; ++i) {
b[i] = (a[i] == v 2?2 w : al[il);

}

return n;

Listing 7.32: Implementation of replace_copy

119

7.12. The replace algorithm

The replace algorithm of the C++ Standard Library [19, §28.6.5] substitutes specific values in a general
sequence. Here, the general implementation has been altered to process value_type ranges. The new
signature reads

void replace (value_type* a, size_type n, value_type v, value_type w);

The replace algorithm substitutes all elements from the range a [0. .n—-1] that equal v by w.

7.12.1. Formal specification of replace

Using the second predicate Replace [[7.30] the specification of replace [[7.33]] can be expressed as in
the following listing.

/%@
requires valid: \valid(a + (0..n-1));
assigns al0..n-17;
ensures replace: Replace{Old,Here}(a, n, v, w);
*/
void
replace (value_typex a, size_type n, value_type v, value_type w);

Listing 7.33: Formal specification of replace

7.12.2. Implementation of replace

The implementation of replace [7.34] is shown in the following listing. The loop invariant unchanged
expresses that when entering iteration i the elements a [1..n—1] have not yet changed.

void
replace (value_typex a, size_type n, value_type v, value_type w)
{

/*@
loop invariant bounds: 0 <=1 <= n;
loop invariant replace: Replace{Pre,Here} (a, i, v, w);

loop invariant unchanged: Unchanged{Pre,Here} (a, i, n);
loop assigns i, a[0..n-1];
loop variant n-i;
*/
for (size_type i = Ou; 1 < n; ++i) {
if (a[i] == v) {

ali] = w;

Listing 7.34: Implementation of replace

120

7.13. The remove_copy algorithm (basic contract)

The remove_copy algorithm of the C+ Standard Library [[19, §28.6.8] copies all elements of a sequence
other than a given value. Here, the general implementation has been altered to process value_type
ranges. The new signature reads:

size_type
remove_copy (const value_typex a, size_type n, value_typex b, value_type V);

The requirements of remove_copy are:

Requirements Description

Remove Copy Size The output range has to fit in all the elements of the input range,
except the ones that equal the value v by remove_copy.
Remove Copy Separated | The input range and the output range do not overlap

Remove Copy Elements The remove_copy algorithm copies elements that are not
equal to v from range a[0..n-1] to the range b[0..\
result-1].

Remove Copy Stability The algorithm is stable, that is, the relative order of the elements
in b is the same as in a.
Remove Copy Return The return value is the length of the resulting range.

Remove Copy Complexity | The algorithm takes n comparisons in every case.

Table 7.35.: Properties of remove_copy

Figure shows an example of how remove_copy is supposed to copy elements that differ from 4
from the input range to the output range.

a 4 3 2 4 4 3 4 5 1 4 6
3 2 3 5 1 6
b

Figure 7.36.: Effects of remove_copy

7.13.1. Formal specification of remove_copy

The following listing shows our first attempt to specify remove_copy. In postcondition discard we use
of the predicate NoneEqual [4.4] to show that the value v does not occur in the range b [0 . . \result].

121

/%@

requires valid: \valid_read(a + (0..n-1));

requires valid: \valid(b + (0..n-1));

requires sep: \separated(a + (0..n-1), b + (0..n-1));
assigns b[0..n-17;

ensures bound: 0 <= \result <= nj;

ensures discard: NoneEqual (b, \result, v);

ensures unchanged: Unchanged{0Old,Here} (a, n);
ensures unchanged: Unchanged{0ld,Here} (b, \result, n);
x/
size_type
remove_copy (const value_type *a, size_type n, value_type xb, value_type v);

Listing 7.37: Formal specification of remove_copy

One shortcoming of this specification is that the postcondition bound only makes very general and not
very precise statements about the number of copied elements. We will address this problem in the contract
of remove_copy?2 [@]] A more serious shortcoming is, however, that we haven’t specified what the
relationship between the elements of the input range a [0. .n—1] and the output range b [0. . \result
—11] looks like. This problem will be tackled in the contract of remove_copy3 [[7.48].

7.13.2. Implementation of remove_copy

An implementation of remove_copy is shown in the following listing.

size_ type
remove_copy (const value_type *a, size_type n, value_type xb, value_type v)
{

size_type k = Ou;

/%@
loop invariant bound: 0 <=k <= 1 <= n;
loop invariant discard: NoneEqual (b, k, v);

loop invariant unchanged: Unchanged{Pre,Here} (b, k, n);
loop assigns k, i, b[0..n-11];
loop variant n-i;

*/
for (size_type i = Ou; 1 < n; ++1i) {
if (af[i] !'= v) {
blk++] = ali];
}
}
return k;

Listing 7.38: Implementation of remove_copy

Here we also need to add another loop invariant discard which basically checks if v occursinb [0. . k]
for each iteration of the loop.

122

7.14. The remove_copy2 algorithm (humber of copied elements)

In this section we improve the contract of remove_copy [[7.37] by formally specifying the number \
result of elements copied by remove_copy.

The number of copied elements equals of course the number of elements in the input range a [0. .n—1]
that are different from v. One can formally describe this number by relying on the logic function Count
[4.44].

logic integer
CountNotEqual (value_type* a, integer n, value_type v) = n - Count(a, n, v);

In fact, we have used this kind of definition in earlier version of this document. We have found it, however,
worthwhile to provide a separate definition of CountNotEqual and express the relationship with Count
as a lemma. This definition is shown in the Listings and

/%@
axiomatic CountNotEqual
{
logic integer
CountNotEqual (value_type* a, integer m, integer n, value_type v) =
n <=m ? 0 : CountNotEqual(a, m, n-1, v) + (a[n-1] == v 2 0 : 1);

logic integer
CountNotEqual (value_type* a, integer n, value_type v) =
CountNotEqual (a, 0, n, v);

lemma CountNotEqual_Empty:
\forall value_type *a, v, integer m, n;
n <= m ==> CountNotEqual(a, m, n, v) == 0;

lemma CountNotEqual_ Hit:
\forall value_type *a, v, integer m, n;

m <= n ==>
aln] '= v ==>
CountNotEqual (a, m, n+l, v) == CountNotEqual(a, m, n, v) + 1;

lemma CountNotEqual_ Miss:
\forall value_type *a, v, integer m, n;

m <= n ==>
aln] == v ==>
CountNotEqual (a, m, n+l, v) == CountNotEqual(a, m, n, Vv);

lemma CountNotEqual_Lower:
\forall value_type *a, v, integer m, n;
m <= n ==> 0 <= CountNotEqual(a, m, n, Vv);

lemma CountNotEqual_Upper:
\forall value_type *a, v, integer m, n;
m <= n ==> CountNotEqual(a, m, n, v) <= n-m;

Listing 7.39: The logic function CountNotEqual (1)

123

The above mentioned relationship with Count [4.44] is expressed as lemma CountNotEqual_Count

|| in the following listing.

lemma CountNotEqual_WeaklyIncreasing:
\forall value_type *a, v, integer m, n;
m <= n ==> CountNotEqual(a, m, n, v) <= CountNotEqual(a, m, n+l, v);

lemma CountNotEqual_Increasing:
\forall value_type xa, v, integer k, m, n;
m <= k <= n ==> CountNotEqual(a, m, k, v) <= CountNotEqual(a, m, n, v);

lemma CountNotEqual_Unchanged{K,L}:
\forall value_type *a, v, integer m, n;
Unchanged{K,L} (a, m, n) ==>
CountNotEqual{K} (a, m, n, v) == CountNotEqual{L}(a, m, n, v);

lemma CountNotEqual_Count:
\forall value_type *a, v, integer m, n;
m <= n ==> CountNotEqual(a, m, n, v) == n - m - Count(a, m, n, Vv);

lemma CountNotEqual_Union:
\forall value_type *a, v, integer k, m, n;
0 <=k <=m<=n ==>
CountNotEqual (a, k, n, v) ==
CountNotEqual (a, k, m, v) + CountNotEqual(a, m, n, v);

*/

Listing 7.40: The logic function CountNotEqual (2)

7.14.1. Formal specification of remove_copy2

We extend our formal specification by using CountNotEqual [[7.39]] and add the new postcondition
s1ize, which states that the returning value of remove_copy2 equals CountNotEqual. The following
listing shows the formal specification of remove_copy2 [7.41]].

/*@
requires valid: \valid_read(a + (0..n-1));
requires valid: \valid(b + (0..n-1));
requires sep: \separated(a + (0..n-1), b + (0..n-1));
assigns b[0..n-1];
ensures size: \result == CountNotEqual (a, n, V);
ensures bound: 0 <= \result <= nj;
ensures discard: NoneEqual (b, \result, v);

ensures unchanged: Unchanged{Old,Here} (a, n);
ensures unchanged: Unchanged{0ld,Here} (b, \result, n);
*/
size_type
remove_copy?2 (const value_typex a, size_type n, value_typex b, value_type Vv);

Listing 7.41: Formal specification of remove_copy?2

124

7.14.2. Implementation of remove_copy2

The following listing shows the implementation of our extended of remove_copy2. Here we added the
loop invariant size which corresponds to the postcondition in remove_copy?2 [[7.41]l. In order to ensure

that the loop invariant size can be verified we have added the assertions size and unchanged.

size_type
remove_copy?2 (const value_typex a, size_type n, value_typex b, value_type v)
{

size_type k = Ou;

/%@
loop invariant size: k == CountNotEqual (a, i, Vv);
loop invariant bound: 0 <= k <= 1 <= n;
loop invariant discard: NoneEqual (b, k, v);

loop invariant unchanged: Unchanged{Pre,Here} (b, k, n);
loop assigns k, i, b[0..n-1];
loop variant n-i;

*/
for (size_type i = Ou; 1 < n; ++i) {
if (a[i] !'= v) {
blk++] = al[i];
//Q assert unchanged: Unchanged{LoopCurrent, Here} (a, n);
//@ assert size: k == CountNotEqual(a, 0, i+1l, v);
}
}
return k;

Listing 7.42: Implementation of remove_copy?2

While we now can precisely speak of the number of copied elements, it is still not possible to say something
about the exact relationship between the elements of range a [0. .n—1] and range b[0. .n-1]. We will

address this question the contract of remove_copy3 [[7.4§].

125

7.15. The remove_copy3 algorithm (final contract)

In this section we extend the contracts of remove_copy and remove_copy?2 by introduc-
ing a logic function, which describes the relationship between the elements of input range a [0. .n-1] and
the output range b [0. .\result—-1]. Note that we have shown in the previous section that \result
equals CountNotEqual (a, n, V).

7.15.1. A closer look on the properties of remove_copy

Figure [7.43] shows a modified version of the Figure We left out the indices of values that were not
copied into the target array. Furthermore we have added a dashed arrow which points to the index that
corresponds to the one past the end location of the input and output range.

1 2 5 7 8 10 11

a 4 3 2 4 4 3 4 5 1 4 6

Figure 7.43.: Partitioning the input of remove_copy

These arrows between the indices of the array b and array a define the following sequence p of seven
indices. The index of the one past the end is underlined. p = (1,2,5,7,8,10,11)

More generally, we refer to the sequence p as partitioning sequence of remove_copy forthe arraya [0. .
n—1]. For the length of a partitioning sequence m we get the following strictly monotone increasing
sequence:

0<py<..<pm=n (7.1)

and the open index intervals

(Pispis1) Vi:0<i<m
mark consecutive ranges of the value v in the source array, that is,

alk] = v Yk : pi <k < pit1 (7.2)
Additionally, the half open interval

[0.P0)

also marks another consecutive range of the value v in the source array:

alk] = v Vk:0<k< pg (7.3)

126

Another observation is that

alpil #v Vi:0<i<m (7.4)
holds. Finally, we have

alpi] = bli] Vi:0<i<m (7.5
which, together with the inequality (7.4) states, that the target does not contain the value v

bli]l #v Vi:0<i<m

7.15.2. More lemmas on CountNotEqual

Our formalization the properties of §7.15.1|relies on the logic function CountNotEqual [[7.39]. We also
rely on the logic function FindNotEqual [4.16] and the lemmas of CountFindNotEqual [7.44]] in
the following listing that provide more facts about CountNotEqual and FindNotEqual.

/%@
axiomatic CountFindNotEqual
{
lemma CountNotEqual AllEqual:
\forall value_type xa, v, integer m, n;

0 <=m <= n ==>
AllEqual(a, m, n, V) ==>
CountNotEqual (a, m, n, v) == 0;

lemma CountNotEqual_SomeNotEqual:
\forall value_type xa, v, integer m, n;
0 <=m < n ==>
0 < CountNotEqual(a, m, n, v) ==>
SomeNotEqual (a, m, n, v);

lemma CountNotEqual_ FindNotEqual:
\forall value_type xa, v, integer m, n;
0 <=m < n ==>
0 < CountNotEqual(a, m, n, V) ==>
FindNotEqual (a, m, n, v) < n-m;

lemma CountNotEqual_Zero:
\forall value_type xa, v, integer m, n;
0 <=m < n ==>
CountNotEqual (a, m, m + FindNotEqual(a, m, n, v), v) == 0;

lemma CountNotEqual_Decrement:
\forall value_type x*a, v, integer m, n;

0 <=m<n ==>
CountNotEqual (a, m + FindNotEqual(a, m, n, v), n, v) ==
CountNotEqual(a, 0, n, v) - CountNotEqual(a, 0, m, Vv);

*/

Listing 7.44: The logic definition(s) CountFindNotEqual

127

7.15.3. Formalizing the properties of the partitions

The function RemovePartition, whose axiomatic definition is given in Listings [7.45] and [7.46] defines
the partitioning sequence p from §7.15.1]

/*@
axiomatic RemovePartition
{
logic integer
RemovePartition (value_typex a, integer n, value_type v, integer p) =
\let ¢ = CountNotEqual(a, n, v);
\let x = RemovePartition(a, n, v, p-1) + 1;
p<0?2-1://0<=p
(n <=07?20://0<n
p < c ? x + FindNotEqual(a, x, n, v) : n
)

lemma RemovePartition_Empty:
\forall value_type *a, v, integer n, p;
n <=0 <=p ==>
RemovePartition(a, n, v, p) == 0;

lemma RemovePartition_Left:
\forall value_type *a, v, integer n, p;
p < 0 ==> RemovePartition(a, n, v, p) == -1;

lemma RemovePartition_Right:
\forall value_type *a, v, integer n, p;
0 <= n ==>
CountNotEqual (a, n, v) <= p ==> RemovePartition(a, n, v, p) == n;

lemma RemovePartition_ Next:
\forall value_type *a, v, integer n, p;
\let x = RemovePartition(a, n, v, p-1) + 1;

0 <= n ==>
0 <= p < CountNotEqual (a, n, V) ==>
RemovePartition(a, n, v, p) == x + FindNotEqual(a, x, n, Vv);

lemma RemovePartition_Lower:
\forall value_type *a, v, integer i, n, p;
0 < n ==>
0 <= p < CountNotEqual (a, n, v) ==>
0 <= RemovePartition(a, n, v, p);

lemma RemovePartition_Core:
\forall value_type *a, v, integer i, n, p;

\let R = RemovePartition(a, n, v, p);

0 < n ==>

0 <= p < CountNotEqual (a, n, V) ==>

(R < n &&

alR] !'= v &&

CountNotEqual (a, R, n, v) == CountNotEqual(a, 0, n, v) - p);

lemma RemovePartition_Upper:
\forall value_type *a, v, integer i, n, p;
0 < n ==>
0 <= p < CountNotEqual (a, n, v) ==>
RemovePartition(a, n, v, p) < n;

Listing 7.45: The logic function RemovePartition (1)

128

Before we begin to relate the various lemmas to the formulas from §7.15.1| we want to remind the reader
that logic functions (and predicates) must be total that is they must be defined for all possible argument
values.

lemma RemovePartition_NotEqual:
\forall value_type *a, v, integer n, p;

0 < n ==>
0 <= p < CountNotEqual (a, n, V) ==>
a[RemovePartition(a, n, v, p)] != v;

lemma RemovePartition_Count:
\forall value_type *a, v, integer n, p;

0 <n ==>

0 <= p < CountNotEqual (a, n, V) ==>

CountNotEqual (a, RemovePartition(a, n, v, p), n, v) ==
CountNotEqual(a, 0, n, v) - p;

lemma RemovePartition_StrictlyWeakIncreasing:
\forall value_type x*a, v, integer n, p;
0 < n ==>
0 < p < CountNotEqual(a, n, v) ==>
RemovePartition(a, n, v, p-1) < RemovePartition(a, n, v, p);

lemma RemovePartition_Segment:
\forall value_type *a, v, integer i, n, p;

0 <n ==>
0 <=p ==>
p + 1 < CountNotEqual(a, n, V) ==>

AllEqual (a, RemovePartition(a, n, v, p) + 1,
RemovePartition(a, n, v, p+l), Vv);

lemma RemovePartition_Extend:
\forall value_type *a, v, integer n, p;

0 < n ==>
0 <= p < CountNotEqual (a, n, V) ==>
RemovePartition(a, n, v, p) == RemovePartition(a, n+l, v, p);

lemma RemovePartition_Unchanged{K,L}:
\forall value_type *a, v, integer n, p;
Unchanged{K,L} (a, n) ==>
RemovePartition{K} (a, n, v, p) == RemovePartition{L} (a, n, v, p);

*/

Listing 7.46: The logic function RemovePartition (2)

The lemmas for RemovePartition are related to the properties of §7.15.1]in the following way.

e Property (7.1) is expressed by the lemmas RemovePartition_Empty,RemovePartition_Left

RemovePartition_Right, and RemovePartition_StrictlyWeakIncreasing
e Properties (7.2)) and (7.3) are described by lemmas RemovePartition_Segment.
e Property (7.4) is expressed by lemma RemovePartition NotEqual.

e Property (7.5) is formulated using the predicate Remove [[7.47].

129

We would like to point out lemma RemovePartition_Core which subsumes the statements of the
subsequent lemmas RemovePartition_Upper, RemovePartition_NotEqual,

and RemovePartition_Count. While these three lemmas add nothing new we have kept them because
they correspond directly to individual properties of §7.15.1] The question may arise why there is the lemma
RemovePartition_Core in the first place. The answer is that we found the individual properties so
intertwined that we were not able to verify them separately but only their joint embodiment.

7.15.4. The predicate Remove

The predicate Remove [[7.47] primarily serves in order to improve the readability of our specification
remove_copy3 [748]. As mentioned before this predicate encapsulates the Property (7.3)) from §7.15.1]
Note that Remove [[7.47] also contains an overloaded version of Remove which will be used for the
specification of the in-place variant remove of remove_copy.

/*@
axiomatic Remove

{

predicate
Remove{K,L} (value_typer a, integer n, integer i, value_typex b, value_type v) =
\forall integer k; 0 <= k < CountNotEqual{K} (a, i, V) ==>
\let j = RemovePartition{K} (a, n, v, k);
\at (b[k],L) == \at(al[jl,K);
predicate

Remove{K,L} (value_typer a, integer n, value_typex b, value_type v) =
Remove{K, L} (a, n, n, b, v);

predicate
Remove{K, L} (value_typex a, integer n, integer i, value_type v) =
\forall integer k; 0 <= k < CountNotEqual{K} (a, i, v) ==>
\let j = RemovePartition{K} (a, n, v, k);
\at (a[k],L) == \at(al[jl,K);
predicate

Remove{K, L} (value_type*r a, integer n, value_type Vv) =
Remove{K,L} (a, n, n, v);

*/

Listing 7.47: The logic definition(s) Remove

130

7.15.5. Formal specification of remove_copy3

The following listing shows the formal specification of remove_copy [[7.37]]. The additional postcondi-
tion remove makes use of the predicate Remove [[7.47]] which we have just described. Furthermore, we
have again the postcondition unchanged which states that the source array a [0 . . n—1] does not change.

/*@
requires valid: \valid_read(a + (0..n-1));
requires valid: \valid(b + (0..n-1));
requires sep: \separated(a + (0..n-1), b + (0..n-1));
assigns b[0..n-17;
ensures size: \result == CountNotEqual{0Old} (a, n, v);
ensures bound: 0 <= \result <= nj;
ensures remove: Remove {0Old, Here} (a, n, b, v);
ensures discard: NoneEqual (b, \result, v);

ensures unchanged: Unchanged{Old, Here} (a, n);
ensures unchanged: Unchanged{0Old, Here} (b, \result, n);
*/
size_type
remove_copy3 (const value_typex a, size_type n, value_typex b, value_type v);

Listing 7.48: Formal specification of remove_copy3

7.15.6. Implementation of remove_copy3

We discuss now some aspects of the implementation of remove_copy3 [[7.50]. We introduce the loop
invariant mapping. This invariant states that the variable i will always be smaller or equal to the result
of RemovePartition(a, n, v, k). We alsoadd the assertion mapping to our implementation as
stepping stone for the provers to verify the correctness of this loop invariant.

Somewhat surprisingly, in order to reduce excessive verification times we had to add an else-branch to our
implementation that besides the assertion unchanged is empty.

Regarding the assertion update, one might wonder why we do not simply write \at (a[i], Pre).
However, this expression would be wrong because the index i would then be interpreted as \at (i, Pre)
which doesn’t makes sense for a local variable. Frama-C/WP consequently rejects this expression with the
following error message.

Warning: unbound logic variable i. Ignoring code annotation

131

We could explicitly refer to the current value of i by using the subexpression \at (i, Here) inside the
assertion update. We felt, however, tow introduce the predicate At [[7.49] to simplify the comparison of
array elements in programme states where the particular index variable isn’t visible.

/*@
axiomatic At

{

logic value_type At{L} (value_typex x, integer i) = \at(x[1],L);

*/

Listing 7.49: The logic definition(s) At

The second argument At is interpreted at the programme point here it appears, that is, Here. Using this
auxiliary logic function the assertion update is arguably more readable.

size_ type
remove_copy3 (const value_typex a, size_type n, value_typex b, value_type V)
{
size_type k = Ou;
/%@
loop invariant size: k == CountNotEqual{Pre} (a,i,v);
loop invariant bound: 0 <= k <= 1 <= n;
loop invariant remove: Remove{Pre, Here} (a, n, i, b, v);
loop invariant discard: NoneEqual (b, k, v);
loop invariant interval: RemovePartition{Pre} (a, n, v, k-1) <= 1i;
loop invariant interval: i <= RemovePartition{Pre} (a, n, v, k);
loop invariant unchanged: Unchanged{Pre,Here} (a, n);
loop invariant unchanged: Unchanged{Pre,Here} (b, k, n);
loop assigns k, i, b[0..n-1];
loop variant n-ij;
x/
for (size type i = Ou; i < n; ++i) {
if (a[i] != v) {
blk++] = ali]l;
//@ assert size: k == CountNotEqual{Pre} (a, i+l, v);
//Q@ assert update: b[k-1] == At{Pre}(a, 1i);
//@ assert interval: i == RemovePartition{Pre}(a, n, v, k-1);
//@ assert remove: Remove{Pre, Here} (a, n, i, b, v);
//Q@ assert remove: Remove {Pre, Here} (a, n, i+1l, b, v);
//@ assert unchanged: Unchanged{Pre,Here} (a, n);
//@ assert unchanged: Unchanged{Pre,Here} (b, k, n);
}
else {
//@ assert unchanged: Unchanged{Pre, Here} (a, n);
}
//Q@ assert unchanged: Unchanged{Pre, Here} (a, n);
}
return k;
}

Listing 7.50: Implementation of remove_copy3

132

7.16. The remove algorithm

The C+ Standard Library also contains a function remove 28.6.8] performing the same operation as
remove_copy as an in-place algorithm. Its signature is very similar to that of remove_copy, except
that there is no need for an output array.

size_type remove (value_typex a, size_type n, value_type Vv);

Figure[7.51]shows how remove is supposed to remove all occurrences of the given value 4 from a range.

\old(a[@. .n-17)

al@. .n-1]

Figure 7.51.: Effects of remove

7.16.1. Formal specification of remove

The following listing shows a formal specification of the function remove [[7.52]]. Our specification is very
similar to the one of remove_copy3 [[7.48] except that we using a version of Remove [[7.47] that takes
only one pointer argument.

/%@
requires valid: \valid(a + (0..n-1));
assigns al0..n-11;
ensures size: \result == CountNotEqual{0Old} (a, n, v);
ensures bound: 0 <= \result <= nj;
ensures remove: Remove {0ld, Here} (a, n, Vv);
ensures discard: NoneEqual (a, \result, v);
ensures unchanged: Unchanged{0Old, Here} (a, \result, n);
*/
size_type
remove (value_typex a, size_type n, wvalue_type V);

Listing 7.52: Formal specification of remove

133

7.16.2. Implementation of remove

In the following listing we show our implementation of remove [[7.53] together with the additional loop an-
notations. Again, the annotations are very similar to those of the implementation of remove_copy3 [[7.50].

size_ type
remove (value_typex a, size_type n, wvalue_type V)
{

size_type k = Ou;

/%@
loop invariant size: k == CountNotEqual{Pre} (a,i,v);
loop invariant bound: 0 <= k <= 1 <= n;
loop invariant remove: Remove{Pre, Here} (a, n, i, v);
loop invariant discard: NoneEqual (a, k, Vv);
loop invariant interval: RemovePartition{Pre} (a, n, v, k-1) <= 1i;
loop invariant interval: i <= RemovePartition{Pre} (a, n, v, k);
loop invariant unchanged: Unchanged{Pre, Here} (a, k, n);
loop invariant unchanged: alk] == At{Pre} (a, k);

loop assigns k, i, al[0..n-1];
loop variant n-ij;

x/
for (size_type i = Ou; 1 < n; ++i) {
if (a[i] !'= v) {
alk++] = alil;
//Q@ assert size: k == CountNotEqual{Pre} (a, 0, i+1l, v);
//Q assert update: alk-1] == At{Pre} (a, 1i);
//@ assert interval: i == RemovePartition{Pre} (a, n, v, k-1);
//@ assert remove: Remove {Pre, Here} (a, n, i, v);
//@ assert remove: Remove{Pre, Here} (a, n, i+l, v);
}
}
return k;

Listing 7.53: Implementation of remove

Also note the use of the predicate At [[7.49] in the loop invariant unchanged and the assertion update.

134

7.17. The shuffle algorithm

The shuffle algorithm in the C+ Standard Library §28.6.13] randomly rearranges the elements of a
given range, that is, it randomly picks one of its possible orderings. For our purposes we have modified the
generic implementation to that of a range of type value_type. The signature now reads:

void shuffle (value_typex a, size_type n, unsigned shortx rand);

The argument rand holds the state of a simple random number generator that is used in the implementation
of shuffle.

Figure [7.54] illustrates an example run of shuffle. In this figure, the values 1, 2, 3, and 4 occur twice,
once, once, and three times, respectively, both before and after the shuffle run. This expresses that the
range has been reordered.

Pre a

Post a

Figure 7.54.: Effects of shuffle

135

7.17.1. The predicate MultisetReorder

The shuffle algorithm is the first example in this document where we have to specify a rearrangement or
reordering of the elements of a given range. We say that an array has been reordered between two states if
the number of each element in the array remains unchanged. In other words, reordering leaves the multise
of elements in the range unchanged.

We use the predicate MultisetReorder [[7.53]] to formally describe this property. This predicate, which
is given in two overloaded versions, relies on the logic function Count [4.44]]. We list here several lemma
with basic properties of Mult isetReorder. We will use these lemmas during the verification of various
algorithms.

/*@
axiomatic MultisetReorder
{
predicate
MultisetReorder{K, L} (value_typex a, integer m, integer n) =
\forall value_type v;
Count{K} (a, m, n, v) == Count{L}(a, m, n, Vv);

predicate
MultisetReorder{K, L} (value_typex a, integer n) =
MultisetReorder{K,L} (a, 0, n);

lemma Unchanged_MultisetReorder{K,L}:
\forall value_type *a, integer k, n;
Unchanged{K,L} (a, k, n) ==> MultisetReorder{K,L} (a, k, n);

lemma MultisetReorder_DisjointUnion{K,L}:
\forall value_type *a, integer i, k, n;

0 <=1 <=k <=n ==>
MultisetReorder{K,L} (a, i, k) ==>
MultisetReorder{K,L} (a, k, n) ==>

MultisetReorder{K,L} (a, i, n);

lemma MultisetReorder_Symmetric{K,L}:
\forall value_type *a, integer m, n;
MultisetReorder{K,L} (a, m, n) ==> MultisetReorder{L,K} (a, m, n);

lemma MultisetReorder_Transitive{K,L,M}:
\forall value_type *a, integer m, n;
MultisetReorder{K,L} (a, m, n) ==>
MultisetReorder{L,M} (a, m, n) ==>
MultisetReorder{K,M} (a, m, n);

*/

Listing 7.55: The logic definition(s) MultisetReorder

BSeelhttp://en.wikipedia.org/wiki/Multiset

136

http://en.wikipedia.org/wiki/Multiset

7.17.2. Formal specification of shuffle

In the specification of the shuffle algorithm we demand that the range a [0. .n—1] is valid for
reading and writing. We use the predicate MultisetReorder to express that the contents of a
[0..n-1] is just permuted, i.e., the number of occurrences of each of its members remains unchanged.
The array rand contains a seed for the random number generator used to randomize the shuffle. By
specifying that the function assigns to rand we capture that the function may return a different permutation
every time.

Note that our specification only states that the resulting range is a reordering of the input range; nothing
more and nothing less. Ideally, we would also specify that sequence of reorderings obtained by repeated
calls of shuffle is required to be random. The informal specification [19, §28.6.13] of shuffle states
that that each possible permutation of those elements has equal probability of appearance. However, ACSL
does currently not support the specification of temporal properties related to repeated call results.

/%@
requires valid: \valid(a + (0..n-1));
requires valid: \valid(seed + (0..2));
requires sep: \separated(a + (0..n-1), seed + (0..2));
assigns al0..n-11;
assigns seed[0..2];
ensures reorder: MultisetReorder{0Old,Here} (a,n);
*/
void
shuffle (value_typex a, size_type n, unsigned shortx seed);

Listing 7.56: Formal specification of shuffle

More generally speaking, it is not trivial to capture the notion of randomness in a mathematically precise
way. As a typical example, we refer to a paper [21}, p.6—8], which just gives four statistical tests indicating
the randomness of the permutations computed with their algorithm. From a theoretical point of view, a
sequence of permutations can be called “random” if its Kolmogorov complexity exceeds a certain measure,
however, this property is undecidable [22].

137

7.17.3. Implementation of shuffle

The following listing shows our implementation of the function shuffle [[7.57]. It repeatedly calls the
function swap to transpose (randomly) selected elements. For details of out source of randomness
we refer to the function random_number [[7.60].

void
shuffle (value_type* a, size type n, unsigned shortx seed)
{

if (Ou < n) {

/%@
loop invariant bounds: 1 <=1 <= n;
loop invariant reorder: MultisetReorder{Pre, Here} (a, 0, 1);

loop invariant unchanged: Unchanged{Pre,Here} (a, i, n);
loop assigns i, af[0..n-1], seed[0..2];
loop variant n - i;
*/
for (size_type i = 1lu; i < n; ++1i) {
size_type k = random_number (seed, i) + 1lu;

//Q assert less: 0 <= k <= i;

if (k < 1) {
swap (&alk], &alil);
//@ assert swapped: ArraySwap{LoopCurrent,Here} (a, k, i, n);
//@ assert reorder: MultisetReorder{LoopCurrent,Here} (a, i+1l);
//Q@ assert reorder: MultisetReorder{Pre,Here} (a, i+1);

}

else {
//Q@ assert unchanged: Unchanged{LoopCurrent,Here} (a, i+1);
//@ assert reorder: MultisetReorder{Pre,Here} (a, i+l);

}

//Q@ assert reorder: MultisetReorder{Pre,Here} (a, i+l);

Listing 7.57: Implementation of shuffle

The loop invariants reorder and unchanged of shuffle are necessary for the verification of the
postcondition reorder: in the ith loop cycle, the subrange a[0..i-1] has been reordered, while
the remaining subrange a[i..n-11] is yet unchanged. We also formulate several auxiliary assertions
reorder which use the the predefined label LoopCurrent, to guide the automatic verification the loop
invariant reorder. Please not the empty else-branch hat only contains an assertion reorder. We
introduced this assertion to support the verification of the reorder property.

138

In addition, we rely on the predicate ArraySwap [[7.58] rather than the literal postcondition of swap [[7.6]],
since this leads to to more concise annotations and better a performance of the automatic provers.

/%@
axiomatic ArraySwap

{

predicate
ArraySwap{K, L} (value_typex a, integer i, integer k, integer n) =
0 <=1 < k <n &&
At{K} (a, 1) == At{L}(a, k) &&
At{K} (a, k) == At{L}(a, 1) &&
Unchanged{K,L} (a, O, i) &&
Unchanged{K,L} (a, i+1l, k) &&
Unchanged{K,L} (a, k+1, n);

*/

Listing 7.58: The logic definition(s) ArraySwap

The lemma MultisetSwap_Middle states that swapping the elements a[i] and a[k] is a
particular kind of reordering on the range a [1. .k].

/*@
axiomatic MultisetSwap
{
lemma MultisetSwap_Middle{K,L}:
\forall value_typex a, integer i, k, n;
ArraySwap{K,L} (a, 1, k, n) ==> MultisetReorder{K,L} (a, i, k+1);

lemma MultisetSwap_FrontMiddle{K,L}:
\forall value_typex a, integer i, k, n;
ArraySwap{K,L} (a, i, k, n) ==> MultisetReorder{K,L} (a, 0, k+1);

*/

Listing 7.59: The logic definition(s) Multiset Swap

139

7.18. Verifying a random number generator

We describe in this section random_number which implements a simple random-number gener-
ator. As in the case of shuffle itself, we do not formulate precise properties of randomness and
only require its result to be in the specified range [0..n-1]. Again, the assigns clause to the array
state models the dependency on an additional state.

Note that in the following listing, we also provide the rather simple specification of the function random_init
that is called to initialize the state of the random generator.

/%@
requires pos: 0 < nj;
requires valid: \valid(state + (0..2));
assigns state[0..2];
ensures result: 0 <= \result < n;
*/

size_type
random_number (unsigned short~ state, size_type n);

/*@
requires \valid(state + (0..2));

assigns state[0..2];
*/
void
random_init (unsigned shortx state);

Listing 7.60: Formal specification of random_number

The implementations of random_number and random_init are shown in the following listing. Inter-
nally, we rely on a custom implementation of the POSIX.1 random number generator 1 rand48 ()@ This
random number generator is a linear congruence generator with a 48 bit state and the iteration procedure

Xp+1 = ax, + ¢ mod 248 (7.6)

where a = 25214903917 and ¢ = 11 are relatively prime integers.

As a part of the iteration procedure in Equation (7.6) an unsigned overflow may occur. This does not affect
the result as we are only interested in its lowest 48 bits. However, as one of the options we use, ~warn-—
unsigned-overflow, causes Frama-C/WP assert the absence of unsigned overflow this algorithm does
not verify under the same options used for the other algorithms. As an exception, we have therefore decided
to disable ~warn-unsigned-overflow for this function as the unsigned overflow is both benign and
well-defined (cf. [16, §6.2.5, 9]).

2See http://pubs.opengroup.org/onlinepubs/9699919799/functions/lrand48.html

140

http://pubs.opengroup.org/onlinepubs/9699919799/functions/lrand48.html

// see IEEE 1003.1-2008, 2016 Edition for specification
/%@
requires valid: \valid(seed + (0..2));
assigns seed[0..2];
ensures lower: 0 <= \result;
ensures upper: \result <= Ox7fffffff;
*/
static long
my_lrand48 (unsigned short+ seed)
{
unsigned long long state = (unsigned long long) seed[0] << 32
| (unsigned long long) seed[1l] << 16
| (unsigned long long)seed[2];
state = (0x5deece66dull *= state + Oxbull) % (lull << 48);
//Q assert lower: state < (lull << 48);
long result = state / (lull << 17);
//Q@ assert lower: 0 <= result;

seed[0u] = state >> 32 & Oxffff;
seed[lu] = state >> 16 & Oxffff;
seed[2u] = state >> 8 & Oxffff;

return result;

size_type
random_number (unsigned short+ state, size_type n)
{

return my_lrand48 (state) % n;

void
random_init (unsigned shortx state)
{

state[0] = 0x243f;
state[l] = 0x6a88;
state[2] = 0x85a3;

Listing 7.61: Implementation of random_number

Note that we use the custom acsl lemma RandomNumberModulo [[7.62] from the following listing to
support the verification of some assertions.

/%@
axiomatic C_Bit
{
lemma RandomNumberModulo:
\forall unsigned long long a;
(a $ (1lull << 48)) < (lull << 48);

*/

Listing 7.62: The logic definition(s) C_Bit

141

8. Numeric algorithms

The algorithms that we considered so far only compared, read or copied values in sequences. In this chap-
ter, we consider so-called numeric algorithms of the C++ Standard Library [19, §29.8] that use arithmetic
operations on value_type to combine the elements of sequences.

#define VALUE_TYPE_MAX INT_MAX
#define VALUE_TYPE_MIN INT_MIN

Listing 8.1: Limits of value_type

In order to refer to potential arithmetic overflows we introduce the two constants shown in Listing[8.Twhich
refer to the numeric limits of value_type (see also §2.3).

We consider the following algorithms.

iota writes sequentially increasing values into a range (§8.1)

accumulate computes the sum of the elements in a range (§8.2))

inner_product computes the inner product of two ranges (§8.3)
partial_sumcomputes the sequence of partial sums of a range (§8.4)
adjacent_difference computes the differences of adjacent elements in a range (§8.5)

Finally, in we show that under appropriate preconditions the algorithms partial_sum and
adjacent_difference are inverse to each other.

The formal specifications of these algorithms raise new questions. In particular, we now have to deal with
arithmetic overflows in value_type.

143

8.1. The iota algorithm

The iota algorithm in the C+ Standard Library [[19, §29.8.12] assigns sequentially increasing values to a
range, where the initial value is user-defined. Our version of the original signature reads:

void iota(value_type* a, size_type n, value_type V);

Starting at v, the function assigns consecutive integers to the elements of the range a. When specifying
iota we must be careful to deal with possible overflows of the argument v.

8.1.1. Formal specification of iota

The specification of iota relies on the logic function IotaGenerate [8.2] that is defined in the follow-
ing listing.

/%@
axiomatic IotaGenerate

{

predicate
IotaGenerate (value_typex a, integer n, value type v) =
\forall integer i; 0 <= 1 < n ==> al[i] == v+i;

*/

Listing 8.2: The logic definition(s) TotaGenerate

The specification of iota is shown in the following listing. It uses the logic function TotaGenerate
|| in order to express the postcondition increment.

/%@
requires valid: \valid(a + (0..n-1));
requires limit: v + n <= VALUE_TYPE_MAX;
assigns al0..n-17;
ensures increment: IotaGenerate(a, n, Vv);

*/

void

iota(value_typex a, size_type n, wvalue_type V);

Listing 8.3: Formal specification of 1iota

The specification of iota refers to VALUE_TYPE_MAX which is the maximum value of the underlying
integer type (see Listing[8.T)). In order to avoid integer overflows the sum v+n must not be greater than the
constant VALUE_TYPE_MAX.

144

8.1.2. Implementation of iota

The following listing shows an implementation of the 1ot a function.

void
iota(value_typex a, size_type n, wvalue_type V)
{

/@
loop invariant bound: 0 <=1 <= n;
loop invariant limit: v == \at (v, Pre) + 1i;

loop invariant increment: IotaGenerate(a, i, \at(v, Pre));

loop assigns i, v, a[0..n-1];
loop variant n-i;

x/

for (size_type i = Ou; i < n; ++i) {
alil = v++;

Listing 8.4: Implementation of iota
The loop invariant increment describes that in each iteration of the loop the current value v is equal to the

sum of the value v in state of function entry and the loop index i. We have to refer here to \at (v, Pre)
which is the value on entering iota.

145

8.2. The accumulate algorithm

The accumulate algorithm in the C++ Standard Library [19] §29.8.2] computes the sum of an given initial
value and the elements in a range. Our version of the original signature reads:

value_type
accumulate (const value_typex a, size_type n, value_type init);

n—-1

The result of accumulate shall equal the value init + Z ali]. This implies that accumulate will
i=0

return init for an empty range.

8.2.1. The logic function Accumulate

As in the case of count [#.47] we specify accumulate by first defining the logic function Accumulate
|| that formally defines the summation of elements in an array.

/%@
axiomatic Accumulate
{
logic integer
Accumulate{L} (value_typex a, integer n, integer init) =
n <= 0 ? init : Accumulate(a, n-1, init) + a[n-1];

predicate
AccumulateBounds{L} (value_typex a, integer n, value_type init) =
\forall integer i; 0 <= i <= n ==>

VALUE_TYPE_MIN <= Accumulate(a, i, init) <= VALUE_TYPE_MAX;

lemma Accumulate_Init:
\forall value_type *a, init, integer n;
n <= 0 ==> Accumulate(a, n, init) == init;

lemma Accumulate_Unchanged{K,L}:
\forall value_type *a, init, integer n;
Unchanged{K, L} (a, n) ==>
Accumulate{K} (a, n, init) == Accumulate{L} (a, n, init);

lemma Accumulate_Unchanged_Shrink{K,L}:
\forall value_type *a, init, integer m, n;

0 <=m <= n ==>
Unchanged{K, L} (a, n) ==>
Accumulate{K} (a, m, init) == Accumulate{L} (a, m, init);

lemma AccumulateBounds_Unchanged{K,L}:
\forall value_type *a, init, integer n;
Unchanged{K, L} (a, n) ==>
AccumulateBounds{K} (a, n, init) ==>
AccumulateBounds{L} (a, n, init);

*/

Listing 8.5: The logic definition(s) Accumulate

146

With this definition the following equation holds for n > 0

n-1
Accumulate(a,n,init) = init + Z a[il 8.1)
i=0
The predicate AccumulateBounds [B.5]] that we will subsequently use in order to compactly express

requirements that exclude numeric overflows while accumulating value. This predicate states that for 0 <
i < n the partial sums

init + Z a[k] (8.2)
k=0

do not overflow. If one of them did, one couldn’t guarantee that the result of C implementation of accumulate
equals the mathematical description of Accumulate.

8.2.2. AccumulateDefault—a variant of Accumulate

The following listing shows another version of Accumulate [B.3]], called AccumulateDefault [8.6].

/%@
axiomatic AccumulateDefault
{
logic integer
AccumulateDefault{L} (value_type* a, integer n) =
Accumulate (a, n, (value_type) (0));

predicate
AccumulateDefaultBounds{L} (value_typex a, integer n) =
AccumulateBounds (a, n, (value_type) (0));

lemma AccumulateDefault_Unchanged{K,L}:
\forall value_type *a, integer n;

0 <= n ==>
Unchanged{K, L} (a, n) ==>
AccumulateDefault {K} (a, n) == AccumulateDefault{L} (a, n);

lemma AccumulateDefault_Zero{L}:
\forall value_typex a; AccumulateDefault (a, 0) == 0;

lemma AccumulateDefault_One{L}:
\forall value_typex a; AccumulateDefault(a, 1) == al[0];

lemma AccumulateDefault_Next{L}:
\forall value_typex a, integer n;
0 <= n ==>
AccumulateDefault (a, n+l) == AccumulateDefault (a, n) + al[n];

lemma AccumulateDefaultBounds_Shrink{L}:
\forall value_typex a, integer m, n;
0 <=m <= n ==>
AccumulateDefaultBounds (a, n) ==> AccumulateDefaultBounds (a, m);

*/

Listing 8.6: The logic definition(s) AccumulateDefault

147

The function AccumulateDefault uses a [0] as default value of init. Thus, for AccumulateDefault
we have

n-1
AccumulateDefault(a,n) = Z ali] (8.3)
i=0

We will use this version for the specification of the algorithm partial_sum [8.I3]].

This listing also includes additional properties of observable AccumulateDefault behavior, here given
as a lemmas. It also contains the predicate AccumulateDefaultBounds [8.6] with corresponding
numeric limits for the predicate AccumulateDefault.

8.2.3. Formal specification of accumulate

Using the logic function Accumulate and the predicate AccumulateBounds, the specification of
accumulate is then as simple as shown in the following listing.

/%@
requires valid: \valid_read(a + (0..n-1));
requires bounds: AccumulateBounds(a, n, init);

assigns \nothing;

ensures result: \result == Accumulate(a, n, init);
x/
value_type

accumulate (const value_type* a, size_type n, value_type init);

Listing 8.7: Formal specification of accumulate

148

8.2.4. Implementation of accumulate

The following listing shows an implementation of the accumulate function with corresponding loop

annotations.

value_type
accumulate (const value_typex a, size_type n, value_type init)

{

/@
loop invariant index: 0 <= 1i <= n;
loop invariant partial: init == Accumulate(a, i, \at(init,Pre));

loop assigns i, init;
loop variant n-i;
*/
for (size_type i = Ou; i < n; ++i) {

init = init + ali];

}

return init;

//@ assert rte_help: init + a[i] == Accumulate(a, i+1l, \at(init,Pre));

Listing 8.8: Implementation of accumulate

Note that loop invariant partial claims that in the i-th iteration step result equals the accumulated
value of Equation (8.2). This depends on the property bounds of accumulate [8.7] which expresses

that there is no numeric overflow when updating the variable init.

149

8.3. The inner_product algorithm

The inner_product algorithm in the C+ Standard Library [19, §29.8.4] computes the inner produc
of two ranges. Our version of the original signature reads:

value_type
inner_product (const value_typex a, const value_typex b,
size_type n, value_type init);

The result of inner_product equals the value
n-1
init+) alil-bli]
i=0

thus, inner_product will return init for empty ranges.

8.3.1. The logic function InnerProduct

As in the case of accumulate [8.7] we specify inner_product by defining in the following listing
the logic function InnerProduct that formally expresses the summation of the element-wise product of
two arrays.

Predicate ProductBounds [[8.9]] expresses that for 0 < i < n the products
ali] - b[i] (8.4)
do not overflow. Predicate InnerProductBounds [8.9], on the other hand, states that for 0 < i < n the

following sums do not overflow. cc

init + Z a[k] - b[k] (8.5)
k=0

Otherwise, one cannot guarantee that the result of our implementation of inner_product [8.11]] equals
the mathematical description of InnerProduct. Finally, Lemma InnerProduct_Unchanged [B.9]
states that the result of the InnerProduct only depends on the valuesof a[0. .n-1] andb[0..n-1].

5 Also referred to as dot product, seelhttp://en.wikipedia.org/wiki/Dot_product

150

http://en.wikipedia.org/wiki/Dot_product

/%@
axiomatic InnerProduct
{
logic integer
InnerProduct{L} (value_typex a, value_typex b, integer n,
value_type init) =

n <= 0 ? init : InnerProduct(a, b, n-1, init) 4+ (a[n-1] * b[n-11);
predicate
ProductBounds (value_typex a, value_typex b, integer n) =

\forall integer i; 0 <= i < n ==>

VALUE_TYPE MIN <= a[i] * b[i] <= VALUE_TYPE MAX;

predicate
InnerProductBounds (value_typex a, value_typex b, integer n,
value_type init) =
\forall integer i; 0 <= i <= n ==>
VALUE_TYPE_MIN <= InnerProduct (a, b, i, init) <= VALUE_TYPE_MAX;

lemma InnerProduct_Unchanged{K,L}:
\forall value_type *a, b, init, integer n;

Unchanged{K, L} (a, n) ==>
Unchanged({K, L} (b, n) ==>
InnerProduct{K} (a, b, n, init) == InnerProduct{L}(a, b, n, init);

*/

Listing 8.9: The logic definition(s) InnerProduct

8.3.2. Formal specification of inner_product

Using the logic function InnerProduct [8.9]], we specify inner_product as shown in the following
listing. Note that we needn’t require that a and b are separated.

/%@
requires valid: \valid_read(a + (0..n-1));
requires valid: \valid_read(b + (0..n-1));
requires bounds: ProductBounds (a, b, n);
requires bounds: InnerProductBounds (a, b, n, init);
assigns \nothing;
ensures result: \result == InnerProduct (a, b, n, init);

ensures unchanged: Unchanged{Old, Here} (a, n);
ensures unchanged: Unchanged{0Old,Here} (b, n);
*/
value_type
inner_product (const value_typex a, const value_typex b, size_type n,
value_type init);

Listing 8.10: Formal specification of inner_product

151

8.3.3. Implementation of inner_product

The following listing shows an implementation of inner_product with corresponding loop annotations.

value_type
inner_product (const value_typex a, const value_typex b, size_ type n,
value_type init)
{
/@

loop invariant index: 0 <= i <= n;
loop invariant inner: init == InnerProduct(a, b, i, \at(init,Pre));
loop assigns i, init;
loop variant n-i;

x/
for (size_type i = Ou; i < n; ++i) {
/*@
assert rte_help: init + a[i] * b[i] ==
InnerProduct (a, b, i+1, \at (init,Pre));
*/
init = init + a[i] = b[i];

}

return init;

Listing 8.11: Implementation of inner_product

Note that the loop invariant i nner claims that in the i-th iteration step the current value of init equals the
accumulated value of Equation (8.5). This depends of course on the properties bounds in the contract of
inner_product [8.I0], which express that there is no arithmetic overflow when computing the updates
of the variable init.

152

8.4. The partial_sum algorithm

The partial_sumalgorithm in the C++ Standard Library [[19, §29.8.6] computes the sum of a given initial
value and the elements in a range. Our version of the original signature reads:

size_type
partial_sum(const value_typex a, size_ type n, value_typex Db);

After executing the function partial_sumthe array b [0..n—-1] holds the following values
i
bli] = > alk] (8.6)
k=0
for 0 < i < n. Equations (8.6) and (8:3) suggest that we define in the following listing the ACSL predicate
PartialSum by using the logic function AccumulateDefault [8.6].

/%@
axiomatic PartialSum

{

predicate
PartialSum{L} (value_type* a, integer n, value_typex b) =
\forall integer i; 0 <= i1 < n ==> Db[i] == AccumulateDefault (a, i+1);

lemma PartialSum_Section{K}:
\forall value_type *a, b, integer m, n;
0 <=m <=n ==>
PartialSum{K} (a, n, Db) ==>
PartialSum{K} (a, m, b);

lemma PartialSum_Step{L}:
\forall value_type *a, b, integer n;

0 <= n ==>
PartialSum(a, n, b) ==>
b[n] == AccumulateDefault (a, nt+l) ==>

PartialSum(a, n+l, b);

lemma PartialSum_Unchanged{K,L}:
\forall value_type *a, b, integer n;

0 <= n ==>

PartialSum{K} (a, n, b) ==>
Unchanged{K, L} (a, n) ==>
Unchanged{K, L} (b, n) ==>

PartialSum{L} (a, n, b);
lemma PartialSum_One{L}:
\forall value_type *a, b, integer n;

b[0] == AccumulateDefault (a, 1) ==> PartialSum(a, 1, b);

*/

Listing 8.12: The logic definition(s) PartialSum

153

8.4.1. Formal specification of partial_ sum

The specification of partial_sum [8.13]] demands that the arrays a[0..n-1] and b[0..n-1] are
separated, that is, they do not overlap. Note that is a stricter requirement than in the case of the original C++
version of partial_sum, which allows that a equals b, thus allowing the computation of partial sums in
place.

/%@
requires valid: \valid_read(a + (0..n-1));
requires valid: \valid(b + (0..n-1));
requires sep: \separated(a + (0..n-1), b + (0..n-1));
requires bounds: AccumulateDefaultBounds (a, n);
assigns b[0..n-1];
ensures result: \result == n;

ensures partialsum: PartialSum(a, n, b);
ensures unchanged: Unchanged{0Old, Here} (a, n);
*/
size_ type
partial_sum(const value_typex a, size_type n, value_typex Db);

Listing 8.13: Formal specification of partial_sum

154

8.4.2. Implementation of partial_sum

The following listing shows an implementation of partial_sum with corresponding loop annotations.

size_type

{
if (Ou < n) {

//@ assert limits:
b[0u] = a[0ul;
//@ assert unchanged:
//@ assert limits:
//Q@ assert accumulate:
//@ assert partialsum:

/*@
loop invariant bound:

loop assigns i, b[l..
loop variant n - i;

*/

//@ assert unchanged:
//@ assert unchanged:
//@ assert partialsum:
//Q@ assert limits:

return n;

partial_sum(const value_typex a, size_type n, value_typex b)

AccumulateDefaultBounds (a, n);

Unchanged{Pre, Here} (a, n);
AccumulateDefaultBounds (a, n);
b[0] == AccumulateDefault (a, 1);
PartialSum(a, 1, b);

1 <=1 <= n;

loop invariant unchanged: Unchanged{Pre,Here} (a, n);

loop invariant accumulate: b[i-1] == AccumulateDefault (a,
loop invariant limits:
loop invariant partialsum: PartialSum(a, 1i, b);

AccumulateDefaultBounds (a, n);

n-1];

for (size_type i = 1lu; i < n; ++i) {
b[i] = b[i - 1ul] + alil;

Unchanged{LoopCurrent, Here} (b, 1);
Unchanged{LoopCurrent, Here} (a, n);
b[i] == AccumulateDefault (a, i+1);
AccumulateDefaultBounds (a, n);

i);

Listing 8.14: Implementation of partial_sum

155

8.5. The adjacent_difference algorithm

The adjacent_difference algorithm in the C+ Standard Library [[19, §29.8.11] computes the differ-

ences of adjacent elements in a range. Our version of the original signature reads:

size_type
adjacent_difference (const value_ typex a, size_type n, value_typex Db);

After executing the function ad jacent_differencethearrayb[0. .n—-1] holds the following values

b[0] = a[0]
b[1] = a[1] — a[0]

b[n—-1]=a[n—-1]-a[n-2]
(8.7)

8.5.1. The predicate AdjacentDifference
We start with the definition of the logic function Di f ference whose definition is shown in the following

listing.

/%@
axiomatic Difference

{
logic integer

Difference{L} (value_type* a, integer n) =

n <=0 ? a[0] : a[n] - aln-17;
lemma Difference_Zero{L}:
\forall value_type *a; Difference(a, 0) == a[0];
lemma Difference_Next{L}:
\forall value_type *a, integer n;
Difference(a, n) == a[n] - al[n-1];

0 < n ==>

lemma Difference_Unchanged{K,L}:
\forall value_type *a, integer n;

Unchanged{K,L} (a, n+1)

== Difference{L} (a, n);

0 <= n ==> ==>
Difference{K} (a, n)

*/

Listing 8.15: The logic definition(s) Difference

156

Building on top of Difference we now introduce the predicate AdjacentDifference. We also
provide the predicate AdjacentDifferenceBounds that captures conditions that prevent numeric
overflows while computing differences of the forma[i] - a[i-1].

/%@
axiomatic AdjacentDifference

{

predicate
AdjacentDifference{L} (value_typex a, integer n, value_typex b) =
\forall integer i; 0 <= 1 < n ==> Db[i] == Difference(a, 1i);
predicate
AdjacentDifferenceBounds (value_type* a, integer n) =
\forall integer i; 1 <=1 < n ==>

VALUE_TYPE_MIN <= Difference(a, 1) <= VALUE_TYPE_MAX;

lemma AdjacentDifference_Step{K,L}:
\forall value_type *a, xb, integer n;

AdjacentDifference{K} (a, n, b) ==>
Unchanged{K, L} (b, n) ==>
Unchanged{K, L} (a, n+1) ==>
\at (b[n],L) == Difference{L}(a, n) ==>

AdjacentDifference{L} (a, n+l, Db);

lemma AdjacentDifference_Section{K}:
\forall value_type *a, b, integer m, n;
0 <= m <=n ==>
AdjacentDifference{K} (a, n, b) ==>
AdjacentDifference{K} (a, m, b);

*/

Listing 8.16: The logic definition(s) AdjacentDifference

Lemmas AdjacentDifference_Step [B.16] and AdjacentDifference_Section [B.16] will
help us later in the verification of ad jacent_difference_inv [§.22].

157

8.5.2. Formal specification of adjacent_difference

Using the predicates AdjacentDifference [8.16] and AdjacentDifferenceBounds [8.16] we
can provide in the following listing a concise formal specification of adjacent_difference. Asin
the case of the specification of partial_sum [8.I3]] we require that the arrays a [0. .n-1] and b [O0. .
n-11] are separated.

/*@
requires valid: \valid_read(a + (0..n-1));
requires valid: \valid(b + (0..n-1));
requires sep: \separated(a + (0..n-1), b + (0..n-1));
requires bounds: AdjacentDifferenceBounds (a, n);
assigns b[0..n-1];
ensures result: \result == n;
ensures difference: AdjacentDifference(a, n, b);
ensures unchanged: Unchanged{0Old, Here} (a, n);
x/
size_type
adjacent_difference (const value_typex a, size_type n, value_typex Db);

Listing 8.17: Formal specification of adjacent_difference

158

8.5.3. Implementation of adjacent_difference
The following listing shows an implementation of adjacent_difference with corresponding loop
annotations. In order to achieve the verification of the loop invariant di f ference we rely on

e the assertions bound and difference

e thelemmas AdjacentDifference_Step [B.16] and AdjacentDifference_Section [8.16]

e a statement contract with the two postconditions labeled as step

size_ type
adjacent_difference (const value_typex a, size_type n, value_typex Db)
{
if (Ou < n) ¢{
b[Ou] = a[0u];

/%@
loop invariant index: 1 <=1 <= n;
loop invariant unchanged: Unchanged{Pre, Here} (a, n);
loop invariant difference: AdjacentDifference(a, i, b);
loop assigns i, b[l..n-1];
loop variant n - i;
*/
for (size_type i = 1lu; i < n; ++i) {
//@ assert bound: VALUE_TYPE_MIN <= Difference(a, i) <= VALUE_TYPE_MAX;
/%@
assigns Db[i];
ensures step: Unchanged{Old, Here} (b, 1i);
ensures step: b[i] == Difference(a, 1i);
*/
bli] = ali] - al[i - 1lul;
//@ assert difference: AdjacentDifference(a, i+1, b);

return n;

Listing 8.18: Implementation of adjacent_difference

159

8.6. Inverting partial_sumand adjacent_difference

In this section we show that under appropriate preconditions the algorithms partial_sum and
adjacent_difference are inverse to each other.
8.6.1. Inverting partial_sum

Let a[0..n-1] and b[0..n-1] be the respective input and output of partial_sum. We have in
other words

b[0] = a[0]
b[1] = a[0] + a[1]

b[n—1] =a[0] +a[l]+...+a[n—1]

If we apply now the algorithm adjacent_difference to b[0..n-11], then we find for its output
a’[0..n-1]

a’[0] = b[0] = al0]
a’[1] = b[1] = b[0] = a[l]
a'ln-1]1=blr-1]-b[n-2] = a[rn-1]

Before we start show the ACSL lemmas of our claim, we present the predicate DefaultBounds [8.19]
in order to express that the values in the input (and output!) array a [0. .n—1] do not overflow.

/*@
axiomatic DefaultBounds

{

predicate
DefaultBounds{L} (value_type* a, integer n) =
\forall integer i; 0 <= i < n ==>

VALUE_TYPE_MIN <= a[i] <= VALUE_TYPE_MAX;

*/

Listing 8.19: The logic definition(s) DefaultBounds

Lemma PartialSum_Inverse from the following listing expresses as ACSL lemmas that the algo-
rithms partial_sumand adjacent_difference are inverse to each other.

160

/%@
axiomatic NumericInverse
{
lemma PartialSum_Inverse:
\forall value_type =*a,
0 <= n
PartialSum(a, n, b)
AdjacentDifference (b,

*b, integer
==>
==>

n, a);

n;

lemma AdjacentDifference_Inverse:
\forall value_type xa, xb, integer n;
0 <= n ==>
AdjacentDifference(a, n, b) ==>
PartialSum (b, n, a);

lemma AdjacentDifference_InverseBounds:
\forall value_type xa, xb, integer n;

0 <= n ==>
DefaultBounds (a, n) ==>
AdjacentDifference(a, n, b) ==>

AccumulateDefaultBounds (b, n);

*/

Listing 8.20: The logic definition(s) NumericInverse

The following listing now shows C function partial_sum_inv (both the contract and the implementa-
tion). This function calls first partial_sum and then adjacent_difference.

/*@
requires valid:
requires valid:
requires sep:

\valid(a + (0..n-1));
\valid(b + (0..n-1));
\separated(a + (0..n-1), b + (0..n-1));

requires bounds: AccumulateDefaultBounds (a, n);
requires bounds: DefaultBounds (a, n);
assigns al0..n-11, b[0..n-17;
ensures unchanged: Unchanged{Pre,Here} (a, n);
*/
void

partial_sum_inv(value_type* a, size_type n, value_typex Db)
{

partial_sum(a, n, b);

adjacent_difference (b, n, a);

Listing 8.21: Implementation of partial_sum_inv

The contract of partial_sum_inv formulates preconditions that shall guarantee that during the compu-
tation neither arithmetic overflows (property bounds) nor unintended aliasing of arrays (property sep) oc-
cur. Under these precondition, Frama-C shall verify that the final call to ad jacent_difference [§.17]
just restores the original contents of a [0 . .n—1] that we supplied for the initial call to partial_sum [8.I3].

161

8.6.2. Inverting adjacent_difference

After executing the function adjacent_difference on the input array a [0. .n—1] the output
array b [0..n-11] holds the following values

b[0] = a[0]
b[1] = a[1] — a[0]

b[n—-1]=a[n—-1]-a[n-2]

If we call now partial_sum with the array b [0 . .n-11] as input, then we obtain for its output a’ [0. .

n—-1]
a’[0] = b[0] = a[0]
a’[1]1 =b[0] + b[1] = a[l]
a'[n—1]1= b[0]+b[1]+...+b[r-1] = a[n-1]

which means that applying partial_sum [8.I3]] on the output of adjacent_difference produces
the original input. Lemma AdjacentDifference_Inverse [8.20] expresses this property as a lemma.

The function ad jacent_difference_inv [8.27] first calls ad jacent_difference and then

partial_sum. The contract of this function formulates preconditions that shall guarantee that during

the computation neither arithmetic overflows (property bound) nor unintended aliasing of arrays (prop-

erty sep) occur. In order to improve the automatic verification of adjacent_difference_inv we

alsouse lemma Unchanged_Transitive [@] LemmaAdjacentDifference_InverseBounds
|| simplifies the verification of the precondition bounds of partial_sum.

/*@
requires size: 0 <= n;
requires valid: \valid(a + (0..n-1));
requires valid: \valid(b + (0..n-1));
requires sep: \separated(a + (0..n-1), b + (0..n-1));
requires bounds: DefaultBounds (a, n);
requires bounds: AdjacentDifferenceBounds (a, n);
assigns al0..n-11, b[0..n-117;
ensures unchanged: Unchanged{0Old,Here} (a, n);
x/
void
adjacent_difference_inv (value_typex a, size_type n, value_typex b)
{
adjacent_difference(a, n, b);
partial_sum(b, n, a);
}

Listing 8.22: Implementation of adjacent_difference_inv

162

Part IV.

Sorting algorithms

163

9. Heap Algorithms

The heap algorithms of the C++ Standard Library 28.7.7] were already part of ACSL by Example from
2010-2012. In this chapter we re-introduce them and discuss—based on the bachelor thesis of one of the
authors—the verification efforts in some detail [23]].

The C++ standarﬂ introduces the concept of a heap as follows:

1. A heap is a particular organization of elements in a range between two random access iterators
[a,Db) . Its two key properties are:

a) There is no element greater than *a in the range and

b) xa may be removed by pop_heap (), or a new element added by push_heap (), in
O(log(N)) time.

2. These properties make heaps useful as priority queues.

3. make_heap () converts a range into a heap and sort_heap () turns a heap into an increasing
sequence.

Figure 0.1] gives an overview on the five heap algorithms by means of an example. Algorithms, which in a
typical implementation are in a caller-callee relation, have the same color.

Lo [z]l]ls 0o Lo e ve] o]l o
make_heap l
pop_heap

v

push_heap

< 15)

sort_heap l

0 1 2 3 4 5 6 7 8 9
N 0 Y 1 A A N B R K

Figure 9.1.: Overview on heap algorithms

%Seehttp://www.open-std.org/Jjtcl/sc22/wg2l/docs/papers/2011/n3242.pdf

165

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf

Roughly speaking, the algorithms from Figure [9.1| have the following behavior.

In §9.1] we briefly recapitulate basic heap concepts.
In we show how these heap concepts can be described in ACSL.
In §0.3| we verify two auxiliary heap functions.

The algorithms is_heap_until and is_heap from §9.4] and §9.5 allow to test at run time
whether a given array is arranged as a heap

The algorithm push_heap from §9.7 adds an element to a given heap in such a way that resulting
array is again a heap

The algorithm pop_heap from §9.8] on the other hand, removes an element from a given heap in
such a way that the resulting array is again a heap

The algorithm make_heap from §0.9|rearranges a given array into a heap.

Finally, the algorithm sort_heap from §9.10sorts a heap into an increasing range.

In we present in more detail how heaps are defined. The ACSL logic functions and predicate that
formalize the basic heap properties of heaps are introduced in §9.2]

166

9.1. Basic heap concepts

The description of heaps at the beginning of this chapter is of course fairly vague. It outlines only the most
important properties of various operations but does not clearly state what specific and verifiable properties
a range must satisfy such that it may be called a heap.

A more detailed description can be found in the Apache C++ Standard Library User’s Guide:E]

A heap is a binary tree in which every node is larger than the values associated with either
child. A heap and a binary tree, for that matter, can be very efficiently stored in a vector, by
placing the children of node i at positions 2i + 1 and 2i + 2.

We have, in other words, the following basic relations between indices of a heap:

left child for index i child; : i 2i+ 1 9.1
right child for index i child; : i+ 2i+2 9.2)
and
. . . i1
parent index for index i parent : i — — 9.3)

These function are related through the following two equations that hold for all integers i. Note that in
ACSL integer division rounds towards zero (cf. [[14, §2.2.4]).

parent(child; (7)) = i 9.4)
parent(child(i)) = i 9.5)

In order to given an example for the usefulness of heaps we consider the following multiset of integers X.

X=1{2,3,3,3,6,7,8,8,9,11,13, 14} 9.6)

?’See http://stdcxx.apache.org/doc/stdlibug/14-7.html

167

http://stdcxx.apache.org/doc/stdlibug/14-7.html

Figure 0.2 shows how the multiset from Equation (9.6) can, according to the parent-child relations of a
heap, be represented as a tree.

Figure 9.2.: Tree representation of the multiset X

The numbers outside the nodes in Figure 0.2]are the indices at which the respective node value is stored in
the underlying array of a heap (cf. Figure 0.3).

2 =--=a /Jé:’ S~ SS
T~ s~ \:(' \\\ N \\\
A N V4 A W A A
14113 (11| 6 (8 | 9|3 |3 |2 |3]|8]|7
N AN N 7 X <
Seo__-7 S« S - P ,

I~

Figure 9.3.: Underlying array of a heap

168

It is important to understand that there can be various representations of a multiset as a heap. Figure 9.4
for example, arranges the elements of the multiset X as a heap in a different tree.

Figure 9.4.: An alternative representation of the multiset X

Figure [9.5|then shows the underlying array that corresponds to the tree in Figure[9.4]

Figure 9.5.: Underlying array of the alternative representation

169

9.2. Representation of heap concepts in ACSL

The following listing shows three logic functions HeapLeft, HeapRight and HeapParent that cor-
respond to the definitions (9.1)), (9.2) and (9.3), respectively. This listing also contains a number of ACSL
lemma that state among other things that

e the HeapParent function satisfies the equations (9.4) and (9.5) and

e the function HeapParent is the left inverse to the HeapLeft and HeapRight functions@

/%@
axiomatic HeapNodes

{

logic integer Heapleft (integer i) = 2xi + 1;
logic integer HeapRight (integer i) = 2xi + 2;
logic integer HeapParent (integer i) = (i-1) / 2;
lemma HeapParent_Zero{L}: HeapParent (0) == 0O;

lemma Heap_ParentLeft:
\forall integer p; 0 <= p ==> HeapParent (Heapleft (p)) == p;

lemma Heap_ParentRight:
\forall integer p; 0 <= p ==> HeapParent (HeapRight (p)) == p;

lemma Heap_ParentChild:
\forall integer c, p;
0 < ¢ ==> HeapParent (c) == p ==>
(c == HeapLeft(p) || ¢ == HeapRight (p));

lemma Heap_Childs:
\forall integer a, b;
0<a ==> 0<Db ==>
HeapParent (a) == HeapParent (b) ==>
(a ==Db || atl == Db || a == b+l);

lemma Heap_ParentBounds:
\forall integer c; 0 < ¢ ==> 0 <= HeapParent (c) < c;

lemma Heap_ChildBounds:
\forall integer p; 0 <= p ==> p < Heapleft (p) < HeapRight (p);

*/

Listing 9.6: The logic definition(s) HeapNodes

28See Section Left and right inverses at http://en.wikipedia.org/wiki/Inverse_function

170

http://en.wikipedia.org/wiki/Inverse_function

On top of these basic definitions we introduce the predicate Heap [9.7]l. The fact that element at index 0 of
a (maximum) heap, is always the largest element of the heap is express by Lemma Heap_Maximum [0.7]
using the predicate MaxElement [5.2]].

/%@
axiomatic Heap

{

predicate
Heap{Ll} (value_typex a, integer n) =
\forall integer i; 0 < i < n ==> a[i] <= a[HeapParent (i)];

lemma Heap_ Maximum{L}
\forall value_typex a, integer n;
0 <n ==> Heap(a, n) ==> MaxElement(a, n, 0);

lemma Heap_Shrink{L}:
\forall value_type *a, integer m, n;
0 <= m <= n ==> Heap(a, n) ==> Heap(a, m);

lemma Heap_Unchanged{K,L}:
\forall value_type xa, integer n;

0 <= n ==> Unchanged{K,L}(a, n) ==> Heap{K}(a, n) ==> Heap{L}(a, n);
predicate
HeapCompatible{L} (value_typex a, integer n, integer m, value_type v) =
(0 <=m < n) &&
(0 <= HeapParent (m) ==> v <= a[HeapParent(m)]) &&
(HeapLeft (m) < n ==> a[HeapLeft (m)] <= v) &&
(HeapRight (m) < n ==> a[HeapRight (m)] <= v);

lemma HeapCompatible_Update{K,L}:
\forall value_type *a, v, integer m, n;

0 <=m<n ==>
Heap{K} (a, n) ==>
HeapCompatible{K} (a, n, m, v) ==>
ArrayUpdate{K, L} (a, n, m, V) ==>

Heap{L} (a, n);

*/

Listing 9.7: The logic definition(s) Heap
The lemmas Heap_Shrink and Heap_Unchanged formulate simple rules to “transfer” the heap prop-
erty from an array to a related (sub-)array.

The predicate HeapCompat ible expresses under which conditions the changing of an individual heap el-
ement does maintain the heap property. This predicate together with lemma HeapCompatible_Update
will be useful in the verification of the algorithms push_heap [0.22] and pop_heap [0.29].

171

9.3. The auxiliary functions heap_parent and heap_child

This section features the two auxiliary heap functions We start with the function heap_parent [9.§]
which is in principle the C counterpart of the ACSL function HeapParent [0.6]. We say in principle
because our definition avoids the border case of the parent node of 0.

/%@
assigns \nothing;
ensures parent: \result == HeapParent (child);
*/
static inline size_type
heap_parent (size_type child)
{
return (Ou < child) ? (child - 1u) / 2u : Ou;

Listing 9.8: Formal specification of heap_parent

Neither do we provide exact C-counterparts for the logic functions HeapLeft and HeapRight
Iml . In fact, we have encountered only one situation (in the implementation of pop_heap), where
such functions would have been useful. However, what we really need in pop_heap is to determine for a
given index p a child index ¢ where the maximum of the respective values a [HeapLeft (p)] and
a[HeapRight (p)] resides. This computation is performed by the function heap_child [@]]

/%@
requires bounds: 0 <= p < n;
requires valid: \valid(a + (0..n-1));
assigns \nothing;
ensures bounds: p < \result <= n;
ensures parent: \result < n ==> ©p == HeapParent (\result);
ensures parent: \result < n-1 ==> HeapLeft (p) < n-1;
ensures parent: \result < n-1 ==> HeapRight (p) < n;
ensures left: HeapLeft (p) < n ==> \result < n;
ensures right: HeapRight (p) < n ==> \result < n;
ensures max: HeapLeft (p) < n ==> a[HeapLeft (p)] <= a[\result];
ensures max: HeapRight (p) < n ==> a[HeapRight(p)] <= a[\result];
ensures none: \result == n ==> n <= Heapleft (p);
ensures none: \result == n ==> n <= HeapRight (p);
*/
size_ type
heap_child(const value_typex a, size_ type n, size_type p);

Listing 9.9: Formal specification of heap_child

172

Note that in the implementation of heap_child [0.10] we explicitly handle the case that the computation
of child indices could overflow. If this occurs, the function heap_ chi1d returns n.

size_type
heap_child(const value_typex a, size_type n, size_type p)
{
if (p + lu <=n - p - 1u) {
const size_type left 2u * p + 1lu;
const size_type right = left + 1lu;

if (right < n) {
// case of two children: select child with maximum value
return a[right] <= a[left] ? left : right;
}
else {
// at most one child that comes before n-1 can exist
return left;
}
}
else {
return n;
}

Listing 9.10: Implementation of heap_child

9.4. The is_heap_until algorithm

The is_heap_until algorithm of the C+ Standard Library 19} §28.7.7.5] works on generic sequences.

For our purposes we have modified the generic implementation to that of an array of type value_type.
The signature now reads:

size_type is_heap_until (const value_typex a, int n);

The algorithm is_heap_until returns the largest range of an array, beginning at the first position,
where it still satisfies the heap properties we have semi-formally described in the beginning of this chapter.
In particular, is_heap_until will return the size of the array, called with the array argument from

Figure[9.3]

173

9.4.1. Formal specification of is_heap_until

The specification of is_heap_until is shown in the following listing. The index \ result returned by
is_heap_until indicates that the array a [0. .\result—-1] is a heap. In addition the postcondition
last states, that for all indices greater than or equal to i the predicate Heap is not satisfied.

/*@
requires valid: \valid_read(a + (0..n-1));
assigns \nothing;
ensures bound: 0 <= \result <= n;
ensures heap: Heap (a, \result);
ensures last: \forall integer i; \result < i <= n ==> !Heap(a, 1);
*/
size_type
is_heap_until (const value_typex a, size_type n);

Listing 9.11: Formal specification of 1s_heap_until

9.4.2. Implementation of is_heap_until

The following listing shows one way to implement the function is_heap_until.

size_type
is_heap_until (const value_typex a, size_type n)
{

size_type parent = Ou;

/%@
loop invariant bound: 0 <= parent < child <= n+l;
loop invariant parent: parent == HeapParent (child);
loop invariant heap: Heap (a, child);
loop invariant not_heap: a[parent] < a[child] ==> \forall integer i; child < i

<= n ==> !Heap(a, 1);

loop assigns child, parent;
loop variant n - child;
*/
for (size_type child = 1lu; child < n; ++child) {
if (a[parent] < a[child]) {
return child;
}

if ((child % 2u) == 0u) {
++parent;
}
}

return n;

Listing 9.12: Implementation of is_heap_until

The algorithms starts at the index 1, which is the smallest index, where a child node of the heap might
reside. The algorithms checks for each (child) index whether the value at the corresponding parent index is
greater than or equal to the value at the child index. If the value at a parent index is smaller than the value

174

at a (child) index, 1s_heap_until returns the (child) index. Otherwise, if the algorithm iterates through
the whole array, the size of the array is returned.

9.5. The is_heap algorithm

The is_heap algorithm of the C+ Standard Library [[19, §28.7.7.5] works on generic sequences. For our
purposes we have modified the generic implementation to that of an array of type value_type. The
signature now reads:

bool is_heap (const value_typex a, int n);
The algorithm is_heap checks whether a given array satisfies the heap properties we have semi-formally

described in the beginning of this chapter. In particular, is_heap will return true called with the array
argument from Figure[0.3]

9.5.1. Formal specification of is_heap

The specification of is_heap is shown in the following listing. The function returns true if and only if
the input array satisfies the predicate Heap [.7].

/%@
requires valid: \valid_read(a +(0..n-1));
assigns \nothing;
ensures heap: \result <==> Heap(a, n);
*/
bool
is_heap (const value_typex a, size_type n);

Listing 9.13: Formal specification of is_heap

9.5.2. Implementation of is_heap

Our implementation of is_heap in the following listing utilizes the function is_heap_until [9.11].

bool
is_heap (const value_typex a, size_type n)
{
return is_heap_until(a, n) == n;
}

Listing 9.14: Implementation of is_heap

175

9.6. Reorderings and fluctuations

One particular challenge posed by heap algorithms is that while temporarily causing small fluctuations in
the number of values within an array they essentially only reorder it, that is they leave the multiset of
its values unchanged. In this section we will introduce various predicates that will help us mastering this
challenge.

9.6.1. Formalizing small fluctuations

The predicate Mult i set Add in the following listing expresses that the number of occurrences of a specific
element in an array has increased by one between two program points K and L.

/%@
axiomatic MultisetOperations

{

predicate

MultisetAdd{K, L} (value_typex a, integer n, value_type v) =
Count{L} (a, 0, n, v) == Count{K}(a, 0, n, v) + 1;

predicate

MultisetMinus{K, L} (value_type* a, integer n, value_type v) =
MultisetAdd{L,K} (a, n, v);

predicate
MultisetRetain{K, L} (value_typex a, integer n, value_type v) =
Count{K} (a, 0, n, v) == Count{L} (a, 0, n, Vv);

lemma MultisetAdd_Distinct{K,L}:
\forall value_type *a, v, integer m, n;

0 <=m < n ==>
At{K}(a, m) !'= v ==>
At{L}(a, m) == v ==>
MultisetReorder{K,L} (a, 0, m) ==>
MultisetReorder{K, L} (a, m+l, n) ==>

MultisetAdd{K,L} (a, n, Vv);

lemma MultisetMinus_Distinct{K,L}:
\forall value_type *a, v, integer m, n;

0 <=m < n ==>
At{K}(a, m) == v ==>
At{L}(a, m) != v ==>
MultisetReorder{K,L} (a, 0, m) ==>
MultisetReorder{K, L} (a, m+l, n) ==>

MultisetMinus{K, L} (a, n, v);

lemma MultisetRetain_Distinct{K,L}:
\forall value_type *a, v, integer m, n;

0 <=m<n ==>
At{K}(a, m) != v ==>
At{L}(a, m) != v ==>
MultisetReorder{K,L} (a, 0, m) ==>
MultisetReorder{K, L} (a, m+l, n) ==>

MultisetRetain{K, L} (a, n, v);

*/

Listing 9.15: The logic definition(s) Mult isetOperations

176

The predicate MultisetMinus, on the other hand, expresses that the number of occurrences of a spe-
cific element in an array has decreased by one between two program points K and L. Note that we have
defined MultisetMinus by calling MultisetAdd with the labels reversed. Finally, the predicate
MultisetRetain expresses that a the number of occurrences of a given value does not change between
two program points. In order to guide the automatic provers, we also provide some lemmas that formalize
conditions under which the respective predicates hold.

Using the predicate MultisetReorder [[7.55] and the logic function At [[7.49] we also formulate a few
simple lemmas that describe when the predicates from Listing MultisetOperations [9.13] hold.

9.6.2. Simple properties of fluctuations

The predicate MultisetRetainRest [0.16] uses MultisetRetain [0.15] in order to express that
all values of an array, except the two given values u and v, occur as often in program point K and program
point L.

The lemmas in this listing express conditions under which small fluctuations—expressed by the predicates
MultisetAdd [0.I3] and MultisetMinus [9.I5]—in the number of occurrences between three pro-
gram points even with each other.

/%@
axiomatic MultisetRetainRest
{
predicate
MultisetRetainRest{K, L} (value_typex a, integer n, value_type v, value_type w) =
\forall value_type x;
X !l=v ==> x !=w ==> MultisetRetain{K,L} (a, n, x);

lemma Multiset_AddMinusRetain{K,L,M}:
\forall value_type *a, u, integer n;
MultisetAdd{K, L} (a, n, u) ==>
MultisetMinus{L,M} (a, n, u) ==>
MultisetRetain{K,M} (a, n, u);

lemma Multiset_MinusAddRetain{K,L,M}:
\forall value_type *a, u, integer n;
MultisetMinus{K, L} (a, n, u) ==>
MultisetAdd{L,M} (a, n, u) ==>
MultisetRetain{K,M} (a, n, u);

lemma Multiset_AddMinusRetainReorder{K,L,M}:
\forall value_type *a, u, v, integer n;

u l=v ==>
MultisetAdd{K, L} (a, n, u) ==>
MultisetMinus{K, L} (a, n, v) ==>
MultisetRetainRest{K,L} (a, n, u, v) ==>
MultisetAdd{L,M} (a, n, V) ==>
MultisetMinus{L,M} (a, n, u) ==>
MultisetRetainRest{L,M} (a, n, v, u) ==>

MultisetReorder{K,M} (a, n);

*/

Listing 9.16: The logic definition(s) MultisetRetainRest

177

9.6.3. Combining fluctuations

Small fluctuations are so prevalent in the central heap algorithms push_heap [9.22]] and pop_heap [0.29]
that it is worthwhile to introduce another predicate to concisely capture this feature. We refer to this predi-
cate as MultisetParity [09.17] because it describes the situation where the number of occurrences

o of the first of two given values increases by one
e while that of the second value decreases by one

o and the remaining values retain their respective number of occurrences.

With this predicate we can formulate several lemmas that describe useful combinations of reorderings
and fluctuations. For example, lemma MultisetParity_MultisetReorder [0.I7] describes the
situation where two fluctuation cancel each other and consequently establish a reordering of an array.

/%@
axiomatic MultisetParity

{

predicate
MultisetParity{K, L} (value_typex a, integer n, value_type u, value_type v) =
MultisetAdd{K,L} (a, n, u) &&

MultisetMinus{K, L} (a, n, v) &&
MultisetRetainRest{K,L} (a, n, u, v);

lemma MultisetParity_UnchangedFirst{K,L,M}:
\forall value_type *a, u, v, integer n;

u l=v ==>
Unchanged{K,L} (a, n) ==>
MultisetParity{L,M} (a, n, u, v) ==>

MultisetParity{K,M} (a, n, u, v);

lemma MultisetParity_UnchangedSecond{K,L,M}:
\forall value_type *a, u, v, integer n;

u !'=v ==>
MultisetParity({K,L}(a, n, u, v) ==>
Unchanged{L,M} (a, n) ==>

MultisetParity({K,M} (a, n, u, Vv);

lemma MultisetParity_MultisetReorder{K,L,M}:
\forall value_type *a, u, v, integer n;

u l=v ==>
MultisetParity{K,L} (a, n, u, v) ==>
MultisetParity{L,M} (a, n, v, u) ==>

MultisetReorder{K,M} (a, n);

lemma MultisetParity_Combined{K,L,M}:
\forall value_type #*a, u, v, w, integer n;

u l=v ==>
u !'=w ==>
v !'=w ==>
MultisetParity{K,L} (a, n, u, v) ==>
MultisetParity{L,M} (a, n, w, u) ==>

MultisetParity{X,M} (a, n, w, Vv);

*/

Listing 9.17: The logic definition(s) MultisetParity

178

9.6.4. How do fluctuations arise?

The simplest way to creation a small fluctuation is to update an array element with a different value. Thus,
similar to the predicate ArrayUpdate we introduce predicate MultisetUpdate [9.18]] which
in turn relies on MultisetParity [0.17]. Lemma ArrayUpdate_MultisetUpdate [9.18]] then
formalizes the claim that updating an array element with a different value creates a small fluctuation.

/%@
axiomatic MultisetUpdate
{
predicate
MultisetUpdate({K, L} (value_typex a, integer n, integer i, value_type v) =
\let u = At{K}(a, 1);

u l=v &&
0 <=1 <n &&
MultisetReorder{K, L} (a, 0, i) &&

MultisetReorder{K, L} (a, i+1l, n) &&
MultisetParity{K,L}(a, n, v, u);

lemma ArrayUpdate_MultisetUpdate{K,L}:
\forall value_type xa, v, integer n, i;

ArrayUpdate{K, L} (a, n, i, v) ==> MultisetUpdate{K,L} (a, n, i, v);

*/

Listing 9.18: The logic definition(s) Mult isetUpdate

179

9.7. The push_heap algorithm

The push_heap algorithm assumes that the first n — 1 elements of an array of length n form already a
heap and adds to it the element a [n—-1].

Whereas in the C+ Standard Library [19, §28.7.7.1] push_heap works on a range of random access
iterators, our version operates on an array of value_type. We therefore use the following signature for
push_heap

void push_heap (value_typex a, size_type n);

The push_heap algorithm expects that n is greater or equal than 1. It also assumes that the array
a[0..n-2] forms a heap. The algorithms then rearranges the array a [0. .n—11] such that the resulting
array is a heap. In this sense the algorithm pushes the element a [n—1] on the given heap.

9.7.1. Formal specification of push_heap

The following listing shows our specification of push_heap. Note that the post condition reorder
states that push_heap is not allowed to change the number of occurrences of an array element. Without
this post condition, an implementation that assigns O to each array element would satisfy the post condition
heap—surely not what a user of the algorithm has in mind.

/%@
requires nonempty: 0 < n;
requires valid: \valid(a + (0..n-1));
requires heap: Heap (a, n-1);
assigns al0..n-1];
ensures heap: Heap (a, n);
ensures reorder: MultisetReorder{0Old, Here} (a, n);
x/
void
push_heap (value_typex a, size_type n);

Listing 9.19: Formal specification of push_heap

Pushing an element on a heap usually rearranges several elements of the array (cf. Figures[9.20]and [9.21].
We therefore must be able express that push_heap only reorders the elements of the array. We re-use the
predicate MultisetReorder [[7.55] to formally describe this property.

9.7.2. Implementation of push_heap

The following two figures illustrate how push_heap affects an array, which is shown as a tree with blue
and grey nodes, representing heap and non-heap nodes, respectively. Figure [0.20] shows the heap from
Figure [9.2]together with the additional element 12 that is to be pushed on the heap. To be quite clear about
it: the new element 12 is the last element of the array and not yet part of the heap.

180

Figure 9.20.: Example heap before the call of push_heap

Figure 0.21] shows the array after the call of push_heap. We can see that now all nodes are colored in
blue, i.e., they are part of the heap. The dashed nodes highlight which heap nodes have changed during the
function call. The element to be pushed into the heap is now at its correct position. The arrows indicate the
cyclic reordering of array elements to achieve the desired result.

0

Figure 9.21.: Example heap after the call of push_heap

Verifying our implementation of push_heap [0.27] is a non-trivial undertaking. In order to better structure
our discussion we refer to the central loop of the algorithm as the main act and the parts before and after it
as prologue and epilogue.

We can establish the heap property of push_heap [9.19] already in the prologue. The reorder prop-
erty, however, only holds at the function boundaries and is violated while push_heap manipulates the
array. To be more precise: We loose the reorder property in the prologue and formally capture and
maintain a slightly more general property in the main act. From this we will recover the reorder prop-
erty in the epilogue.

We will illustrate the changes to the underlying array after each stage by figures of the array in tree form,
based on the push_heap example from Figure [0.20]

181

void
push_heap (value_typex a, size_type n)
{
if (lu < n) { // otherwise nothings needs to be done
size_type ¢ = n - 1lu;
size_type p = heap_parent (c);
//Q@ assert parent: p == HeapParent (c);

if (alp] < alcl) {
const value_type v = alc]l;
alcl = alpl;
//@ assert update: ArrayUpdate{Pre,Here} (a, n, c, alpl);
//@ assert heap: Heap (a, n);
//Q@ assert reorder: MultisetParity{Pre,Here}(a, n, alpl, Vv);

/%@
loop invariant bound: 0 <= ¢c < n-1;
loop invariant heap: Heap(a, n);
loop invariant less: alc] < v;
loop invariant parent: p == HeapParent (c);
loop invariant reorder: MultisetParity{Pre,Here} (a, n, alcl,
loop invariant unchanged: Unchanged{Pre,Here} (a, c);
loop assigns c, p, al0..n-171;
loop variant c;
*/
for (¢ = p, p = heap_parent (c)
c = p, p = heap_parent (c)
//@ ghost value_type ac = a
if (alc] < alpl) {
alcl = alpl;
//@ assert update: ArrayUpdate{LoopCurrent, Here} (a, n, c,
//Q assert update: MultisetUpdate{LoopCurrent, Here} (a, n,
//@ assert bound: 0 <= c < n;
//Q assert less: ac < alc] < v;

//@ ghost Epilogue: ;

//@ assert heap: 0 == c || v <= a[HeapParent (c)];

//@ ghost wvalue_type ac = alc];

//Q@ assert update: ac == At{Epilogue} (a, c) < v;

//Q@ assert reorder: MultisetParity{Pre, Here} (a, n, ac, Vv);
alc] = v;

//@ assert update: ArrayUpdate{Epilogue, Here} (a, n, c, V);
//@ assert heap: HeapCompatible(a, n, c, V);

//Q@ assert heap: Heap(a, n);

//@ assert update: MultisetUpdate{Epilogue,Here} (a, n, c, Vv);
//@ assert reorder: MultisetParity{Epilogue,Here} (a, n, v, ac);
//@ assert reorder: MultisetReorder{Pre,Here} (a, n);

v);

alpl);

Cy

//Q assert reorder: MultisetParity{Pre,Here} (a, n, alcl, v);

alpl);

Listing 9.22: Implementation of push_heap

182

Prologue

In the prologue we check whether the initial heap is nonempty, initialize some variables, and also check
by comparing with the parent node whether a [c], which is the value to be pushed on the heap and which
is the last element of the array, is by chance already at the right place. If not we set aside this value in
the variable v and assign the parent value a [p] to a[c]. Note that this assignment only occurs if the
respective values differ. This allows us to formally describe the effect of the assignment using the predicate
ArrayUpdate [[7.2]]. Figure [9.23| highlights the main effects of the prologue. Here and in the following
figures we highlight the currently active node.

Figure 9.23.: Heap after the prologue of push_heap

At this point we have achieved several things.
1. The array a[0. .n-1] is now a heap.
2. Regarding their respective number of occurences in the array a [0. .n—1]
o the original value a [c] occurs one time less
o the original value a [p] occurs one time more
e whereas all other values have not changed their number of occurences.

The first observation is expressed in the assertion heap whereas the small fluctuation of array elements
described in the second observation is expressed by using the predicate MultisetParity in the
assertion reorder.

Main act
In the main act, we start at the parent location, which is now stored in the variable ¢ (child). Compared to
the pre-state of push_heap at the beginning of the main act the array a [0. .n-1]

e contains the value v one time less

e contains the value a [c] one time more

e whereas all other values have not changed their number of occurences.

Now, as long as the index c is not yet the root of the heap and its consequently existing parent value a [p]
is less than v, we haven’t found yet an index ¢ where we could insert v without violating the heap property.

183

In the loop body we proceed as follows.

o Ifa[c] islessthan a [p] we copy the latter value on the former. Note that this assignment preserves
the heap property of the array. The value a [p] now occurs one time more than in the pre-state
whereas the now overwritten value a [c] occurs as often as in the pre-state. The value v continues
to occur one time less. We then proceed to the next iteration by setting c to p.

The verification of tracking the number of occurences happens in smaller steps than just described. It
relies on the predicates ArrayUpdate [7.2]] and MultisetUpdate [[0.I§]] which we can apply in
this guarded assignment. Lemma MultisetParity_Combined [9.I7] also plays an important
role here.

e Otherwise, since c is a child of p, we can conclude that a [c] equals a [p] and we continue with
the next iteration after setting c to p.

This means that at the begin of the next iteration again the following conditions hold. Compared to the
pre-state of push_heap the array a[0. .n-1]

e contains the value v one time less
e contains the value a [c] one time more

o whereas all other values have not changed their number of occurences.

Figure [9.24] shows the our example heap after the main act. For this particular heap, only one iteration is
performed until a node is reached whose parent value a [p] is greater or equal than v. Note that assignments
which have previously occurred are marked with dashed arrows.

0

Figure 9.24.: Heap after the main act of push_heap

184

Epilogue

At this point, we have arrived at an index c where the assignment of the value v preserves the heap property.
We express this formally using the predicate HeapCompatible [9.7].

Moreover, this assignment also corrects the imbalance in the number of occurences of the values a [c] and
v and consequently establishes the desired property reorder of push_heap. The verification that this
correction leads to a proper reordering relies on lemmaMultisetParity_MultisetReorder [0.17].

Figure [9.25| shows the final assignment and highlights the completion of the cycle depicted in Figure [0.23]
The figure also makes clear that the value v acts like an additional element in this assignment cycle.

0

Figure 9.25.: Heap after the epilogue of push_heap

185

9.8. The pop_heap algorithm

The algorithm pop_heap moves the first element of the heap, which holds the heap’s largest value, and
places it at the the end of the underlying sequence. Whereas in the C+ Standard Library [[19, §28.7.7.2]
pop_heap works on a range of random access iterators, our version operates on an array of value_type.
We therefore use the following signature for pop_heap

void pop_heap (value_typex a, size_type n);

The pop_heap algorithm expects that n is greater or equal than 1 and that the array a [0. .n-1] forms
a heap. The algorithms then rearranges the array a [0..n—-1] such that the resulting array satisfies the
following properties.

e a[n-1] = \old(a[0]), thatis, the largest element of the original heap is transferred to the end
of the array.

e the subarray a [0. .n-2] is a heap

In this sense the algorithm pops the largest element from a heap.

9.8.1. Formal specification of pop_heap

Based on the above semi-formal description we propose the following function contract for pop_heap [9.26].

/%@
requires bounds: 0 < n;
requires valid: \valid(a + (0..n-1));
requires heap: Heap (a, n);
assigns al0..n-11;
ensures heap: Heap(a, n-1);
ensures result: a[n-1] == \old(al[0]);
ensures max: MaxElement (a, n, n-1);
ensures reorder: MultisetReorder{0Old, Here} (a, n);
*/
void
pop_heap (value_typex a, size_type n);

Listing 9.26: Formal specification of pop_heap

9.8.2. Implementation of pop_heap

In an abstract sense pop_heap is quite similar to push_heap. In push_heap we started at the last
array element and climbed from there up the tree until we would find a node where to insert the new value
into the heap. Every time we had reached the next parent node we moved its value down to where we had
just come from.

With pop_heap its the other way round. We start at the root of the tree and descend from there by selecting
an appropriate child. Every time we lift the value of the selected child to the node where just are. We repeat
this process until we find a node where we can insert the last array element into the heap. Once this is done,
we can safely place the maximum element (that is the the original root node) at the last element of the array.

186

The following two figures illustrate how pop_heap affects an array, which is shown again as a tree with
blue and grey nodes, representing heap and non-heap nodes, respectively. Figure is in fact the same
figure as Figure[9.2]

Figure 9.27.: Heap before the call of pop_heap

Figure 0.28] on the other hand, shows the heap after the call of pop_heap together with arrows that
indicate how our implementation moves around elements in the underlying array. We can see that the first
element of the original array, where the maximum of the heap resides, is now the last element of the array.
Furthermore, the last array element is not part of the heap anymore. The dashed nodes highlight which
heap nodes have changed during the call to pop_heap. The arrows indicate the cyclic reordering of array
elements to achieve the desired result.

Figure 9.28.: Heap after the call of pop_heap

As in the case of push_heap [[9.22]] we will subdivide the discussion of the implementation of pop_heap [9.29]
into a prologue, main act, and epilogue.

187

void

{

//@
//@
//@
//@

/*@

*/

//e
//e
//@
//e

//@
//e
//e
//@
//e

for
//Q@ assert max:
//Q assert heap:
if (a[c]

alp]

if (1lu < n)
//@ assert max:
if (a[n - 1u]

size_type p =

const value_type v =

aln - 1lul = alpl;
assert max:

pop_heap (value_typex* a,

{

size_type n)

MaxElement (a, n, 0);

< al[0ul])
Ou;

assert update:
assert heap:
assert reorder:

loop
loop
loop
loop
loop
loop
loop
loop
loop
loop
loop
loop
loop
loop

(;

size_type c =

invariant boun
invariant pare
invariant chil
invariant chil
invariant chil
invariant chil
invariant unch

invariant upda
invariant max:
invariant reor
invariant heap
invariant heap

assigns
variant

c < n -

< alpl) A

alpl] = alcl;

//@
//@
//@
//@
//@
//@
//@

assert
assert
assert
assert
assert
assert
assert

update:
update:
update:
update:

unchan
compat
reorde

ghost Epilogue: ;

assert
assert
assert

= vy

assert
assert
assert
assert
assert max:

child:
parent:
compatible:

update:
update:
reorder:
heap:

{ // otherwise a[0] == a[n-1] and nothing to be done
aln - 1lu]l;

a[n-1] == alpl;

ArrayUpdate{Pre, Here} (a, n, n-1, alpl);
Heap(a, n-1);
MultisetParity{Pre, Here} (a, n, alpl, v);

heap_child(a, n - 1lu, p);

ArrayUpdate{LoopCurrent, Here} (a, n, p, alcl);
ArrayUpdate{LoopCurrent, Here} (a, n-1, p, alcl)
MultisetUpdate{LoopCurrent,Here} (a, n, p, alcl
alc] == At{LoopCurrent} (a, c);

ged: Unchanged{LoopEntry,Here} (a, pt+l, n);

ible: HeapCompatible(a, n-1, p, alpl);

r: MultisetParity{Pre,Here} (a, n, alcl, v);

c == n-1 | alc] <= v;
p < n-1 && v < alpl;
HeapCompatible (a, n-1, p, Vv);

ArrayUpdate{Epilogue, Here} (a, n, p, V);
MultisetUpdate{Epilogue, Here} (a, n, p, Vv);
MultisetReorder{Pre, Here} (a, n);

Heap (a, n-1);

UpperBound(a, n, a[n-11);

)

ds: 0 <= p < c <= n-1;
nt: c < n-1 ==> p == HeapParent (c);
d: ¢ < n-1 ==> Heapleft (p) < n-1;
d: c == n-1 ==> n-1 <= HeaplLeft (p);
d: HeapLeft (p) < n-1 ==> a[HeaplLeft (p)] <= alc];
d: HeapRight (p) < n-1 ==> a[HeapRight(p)] <= alc
anged: Unchanged{LoopEntry,Here} (a, p, n);
te: al[pl] == a[HeapParent (p)];
UpperBound(a, n, aln-1]);
der: MultisetParity{Pre,Here} (a, n, alpl, Vv);
: v < alpl;
: Heap(a, n-1);
p, ¢, al0..n-2];
n - p;
lu && v < afcl]; p = ¢, ¢ = heap_child(a, n - 1lu, p)) {
alp] <=

’

188

Listing 9.29: Implementation of pop_heap

9.8.3. Prologue

In the prologue we check whether the initial heap contains at least two elements, initialize some variables,
and also check whether the last array element is by chance equal to the maximum element of the heap,
which resides at the index p == 0 of the array. If this is not the case, then we set aside for future reference
the last array element in the variable v. Finally we copy the value a [p] to its final destination at the
end of the array. Note that this assignment only occurs if the respective values differ. This allows us, as
in the case of push_heap [9.22]], to formally describe the effect of the assignment using the predicate

ArrayUpdate [[7.2]].

Figure highlights the main effects of the prologue at the hand of our exemplary heap. Note that we
have highlighted the root of the heap as the currently active node.

Figure 9.30.: Heap after the prologue of pop_heap

9.8.4. Main act

In the main act, we start at a child node c of the prologue’s index p. This means that compared to the
pre-state of pop_heap at the beginning of the main act the array a [0. .n-1]

e contains the value v one time less
e contains the value a [p] one time more
e whereas all other values have not change their number of occurences.

Moreover, the maximum element of the original heap is now at the end of the array and we can only
guarantee that the first n — 1 array elements got a heap. These observations are necessary reason for our
loop invariants.

To be more precise, when we talk in the context of pop_heap of a child node we usually mean one of the
possibly two children where the maximum of the values resides. We do this because copying that larger
value to its parent node guarantees that the resulting tree is still a heap. We compute the maximum child of
a node using the function heap_child [9.9].

Now, as long as the index c is not yet the index of the last array element of the heap and its value a [c] is
less than v, we haven’t found yet an index where we could insert v without violating the heap property.

189

In the loop body we proceed as follows.

o If a[c] isless than a [p] we copy the former value on the latter. As mentioned above, using the

index c of the maximum child maintains heap property of the array. We use here the predicate
HeapCompatible [0.7] to express that the insertion of the new value a [p] maintains the heap
property of the array.

The value a [c] now occurs one time more than in the pre-state whereas the now overwritten value
a [p] occurs as often as in the pre-state of pop_heap. The value v continues to occur one time less
than in the pre-state. We then proceed to the next iteration by setting p to ¢ and computing the next
maximum child node.

As in the case of push_heap [0.22] the verification of the correct number of occurences of the
involved values relies on the predicates ArrayUpdate [[7.2] and MultisetUpdate [9.18]] and
onlemmaMultisetParity_Combined [9.17].

Otherwise, the array being a heap, we can conclude that a [c] equals a [p] and we continue with
the next iteration after setting p to ¢ and computing the corresponding new maximum child node.

The following three figures depict how the main act of pop_heap modifies step by step our example heap.
In each step we highlight the currently active node c.

190

Figure 9.32.: Heap after the second iteration of pop_heap

Note that in the final step no value is actually copied as the involved nodes hold the same value.

Figure 9.33.: Heap after the third iteration of pop_heap

We finally remark that in the main act the the last array element is never modified. Thus, the root element
of the original element is still safely stored there.

9.8.5. Epilogue

After leaving the loop, we know that value v can be the inserted in the array at the index p without violating
the heap property of the first n — 1 elements. Moreover, compared to the pre-state of pop_heap the array
al[0..n—-1] still

e contains the value v one time less
e contains the value a [p] one time more
e whereas all other values have not change their number of occurences.

In other words, assigning the value v to a [p] cancels this imbalance and establishes that pop_heap only
reorders the array elements.

Figure 9.34.: Heap after the epilogue of pop_heap

In Figure we have marked the value v as the currently active node despite not being an array element.

191

9.9. The make_heap algorithm

Whereas in the C+ Standard Library [19} §28.7.7.3] make_heap works on a pair of generic random access
iterators, our version operators on a range of value_type. Thus the signature of make_heap reads

void make_heap (value_type* a, size_type n);

The function make_heap rearranges the elements of the given array a [0. .n—11] such that they form a
heap.

As an examples we look at the array in Figure [0.35] The elements of this array do not form a heap, as
indicated by the grey colouring. Executing the make_heap algorithm on this array rearranges its elements
so that they form a heap as shown in Figure[9.3]

Figure 9.35.: Array before the call of make_heap

9.9.1. Formal specification of make_heap

The following listing shows the specification of make_heap.

/%@
requires valid: \valid(a + (0..n-1));
assigns al0..n-11];
ensures heap: Heap(a, n);
ensures reorder: MultisetReorder{0Old,Here} (a, n);
x/
void
make_heap (value_typex a, size_type n);

Listing 9.36: Formal specification of make_heap

Like with push_heap the formal specification of make_heap must ensure that the resulting array is a
heap of size n and contains the same multiset of elements as in the pre-state of the function. These properties
are expressed by the heap and reorder postconditions respectively. The reorder postcondition uses
the predicate MultisetReorder [[7.55] to ensure that make_heap only rearranges the array elements.

192

9.9.2. Implementation of make_heap

The implementation of make_heap, shown in the next listing, is straightforward. From low to high the
array’s elements are pushed to the growing heap. We used 1 < n as loop condition, rather than the more

tempting 1 <= n, in order to admit also n == SIZE_TYPE_MAX; as a consequence, we had to call
push_heap [9.19] with i+1. The iteration starts at i+1 == 2, because an array with length one is a
heap already.

void

make_heap (value_typex a, size_type n)
{
if (Ou < n) ¢{

/*@
loop invariant bounds: 1 <=1 <= n;
loop invariant heap: Heap(a, 1i);
loop invariant reorder: MultisetReorder{Pre, Here} (a, n);

loop invariant unchanged: Unchanged{Pre,Here} (a, i+1, n);
loop assigns i, al0..n-17];
loop variant n - i;
x/
for (size_type i = 1lu; 1 < n; ++i) |
push_heap(a, i + 1lu);

//Q assert reorder: MultisetReorder{LoopCurrent,Here} (a, i+1);
//Q assert unchanged: Unchanged{LoopCurrent,Here} (a, i+1, n);
//Q@ assert reorder: MultisetReorder{LoopCurrent, Here} (a, n);

}

//Q@ assert reorder: MultisetReorder{Pre, Here} (a, n);

}

//Q@ assert heap: Heap(a, n);
}

Listing 9.37: Implementation of make_heap
Since the loop statement consists just of a call to push_heap [[9.19]] we obtain the both loop invariants
heap and reorder by simply lifting them from the contract of push_heap.

The postcondition of push_heap only specifies the multiset of elements from index O to i. We therefore
also have to specify that the elements from index i+1 to n—1 are only reordered. This property can be
derived from the unchanged property of push_heap.

193

9.10. The sort_heap algorithm

Whereas in the C++ Standard Library [19 §28.7.7.4] sort_heap works on a range of random access
iterators, our version operates on an array of value_type. We therefore use the following signature for
sort_heap

void sort_heap (value_type* a, size_type n);

The function sort_heap rearranges the elements of a given heap a [0. .n—1] in increasing order. Thus,
applying sort_heap to the heap in Figure [9.3| produces the increasing array in Figure 0.3§]

2 3 3 3 6 7 8 8 9 | 11 (13| 14

Figure 9.38.: Array after the call of sort_heap

9.10.1. Formal specification of sort_heap

The following listing shows our specification of sort_heap. The formal specification of sort_heap
must ensure that the resulting array is increasing. Furthermore the multiset contained by the array must be
the same as in the pre-state of the function. The postconditions increasing and reorder express these
properties, respectively. The specification effort is relatively simple because we can reuse

/%@
requires valid: \valid(a + (0..n-1));
requires heap: Heap(a, n);
assigns al0..n-17;
ensures reorder: MultisetReorder{0ld, Here} (a, n);
ensures increasing: Increasing(a, n);
x/
void
sort_heap (value_type* a, size_type n);

Listing 9.39: Formal specification of sort_heap

194

9.10.2. Implementation of sort_heap

The implementation of sort_heap is relatively simple because it relies on pop_heap [9.26]] performing
essential work. Our implementation of sort_heap repeatedly calls pop_heap to extract the maximum
of the shrinking heap and adding it to the part of the array that is already in increasing order. The loop
invariants of sort_heap describe the content of the array in two parts. The first 1 elements form a heap
and are described by the heap invariant. The last n—1 elements are already arranged in increasing order.

As already mentioned in the introduction of Chapter[6] we use the predicate WeaklyIncreasing [6.2]
for the loop annotation increasing. Thus, after leaving the loop we have in fact “only” shown that
WeaklyIncreasing (a, n) holds. In order to derive from this fact the final assertion increasing
that uses the predicate Increasing [6.I] we rely on lemma WeaklyIncreasing_Increasing

6.3].

void
sort_heap (value_typex a, size_type n)

{

/%@
loop invariant bound: 0 <= 1 <= n;
loop invariant heap: Heap(a, 1i);
loop invariant lower: LowerBound(a, i, n, afl0]);
loop invariant reorder: MultisetReorder{Pre, Here} (a, 0, n);
loop invariant increasing: WeaklyIncreasing(a, i, n);

loop assigns i, a[0..n-1];
loop variant i;

*/
for (size_type i = n; i > 1lu; --i) {
/@
requires heap: Heap(a, 1i);
assigns a[0..i-1];
ensures heap: Heap(a, i-1);
ensures max: ali-1] == \old(a[0]);
ensures max: MaxElement (a, 1, i-1);
ensures reorder: MultisetReorder{0ld,Here} (a, 0, 1i);
ensures reorder: Unchanged{0Old,Here} (a, i, n);
x/

pop_heap(a, 1i);
//@ assert lower: LowerBound(a, i, n, al[i-1]);

}

//@ assert increasing: Increasing(a, n);

}

Listing 9.40: Implementation of sort_heap

To verify the property reorder we rely on the lemmas MultisetReorder [[7.55] that express that the
properties

e MultisetReorder{K,L} (a, 0, i) and

e Unchanged{0Old, Here} (a, i, n)

imply the desired loop invariant MultisetReorder{K, L} (a, 0, n).

195

10. Sorting Algorithms

Many issues in computer science can be exemplified in the field of sorting algorithms; see e.g. [24] for
a famous textbook. Therefore we arrange some of the most common classic sorting algorithms. In this
chapter, we present algorithms of the C++ Standard Library [19, §28.7.1] that are related to the task of
sorting a linear array.

Following [25]], we have also used (C rephrasings of) functions from the C++ Standard Library as far as
possible to implement the different algorithmic approaches.

e is_sorted in §I0.1]is an algorithm that checks if a given array is already in increasing order.

e partial_sort in §I0.2]rearranges a given array into two parts. All elements in the first part are
less or equal than those of the second part. Moreover, while the first part is sorted, the order of
elements in the second part is unspecified.

e bubble_sort in §10.3|describes a simple, well-known and sorting algorithmE;]
e selection_sort in §10.4|presents the classic selection sort algorithmm
e insertion_sort in §10.5/the also well-known insertion sort algorithmE]

e heap_sort in §10.6 describes the quite efficient heap sort, which relies on the algorithms presented

in Chapter @@
e merge in §10.7|the merge algorithm from merge sort

While heap_sort achieves a run-time complexity upper bound of O(n - log(n)) due to the efficiency of
the heap data structure, both selection_sort and insertion_sort need O(nz) in the average case,
and also in the worst case.

Note that the sort algorithm from the C++ Standard Library is not handled here because it typically relies
on introspection sort which is sophisticated mix of various classic algorithrnsFE] In future releases we plan
to handle the more algorithms related sorting.

PSeelhttps://en.wikipedia.org/wiki/Bubble_sort
0See https://en.wikipedia.org/wiki/Selection_sort
MSeehttps://en.wikipedia.org/wiki/Insertion_sort
#Seelhttps://en.wikipedia.org/wiki/Heapsort
$Seelhttps://en.wikipedia.org/wiki/Merge_sort
¥Seehttps://en.wikipedia.org/wiki/Introsort

197

https://en.wikipedia.org/wiki/Bubble_sort
https://en.wikipedia.org/wiki/Selection_sort
https://en.wikipedia.org/wiki/Insertion_sort
https://en.wikipedia.org/wiki/Heapsort
https://en.wikipedia.org/wiki/Merge_sort
https://en.wikipedia.org/wiki/Introsort

The sorting algorithms in this chapter essentially share the following contract; it is their implementations
that differ fundamentally.

/*@
requires valid: \valid(a + (0..n-1));

assigns a[0..n-1];

ensures increasing: Increasing(a, n);

ensures reorder: MultisetReorder{0ld, Here} (a, n);
*/
void xxx_sort (value_typex a, size_type n);

As mentioned in the introduction of Chapter [6l we use the predicate Increasing [[6.1] in the contracts
of our sorting algorithms but often resort to the simpler predicate WeaklyIncreasing [[6.2]] in the loop

invariants and assertions. In order to conclude that the desired postcondition Increasing (a, n) holds,
we rely on lemma WeaklyIncreasing_Increasing [6.3].

10.1. The is_sorted algorithm

Our version of the is_sorted algorithm compared to the C++ Standard Library [19, §28.7.1.5] has the
signature

bool is_sorted(const value_typex a, size_type n);

It returns true if the given array is in increasing order, and false otherwise.

10.1.1. Formal specification of is_sorted

The following listing shows the acsl specification of is_sorted. In the contract, we use the predicate
Increasing [6.0]], which states that any array element is always less or equal to any other element right
of it. We’ll use an easier-to-handle predicate in the implementation of is_sorted [10.2].

/%@
requires valid: \valid_read(a + (0..n-1));
assigns \nothing;
ensures result: \result <==> Increasing(a, n);
x/
bool
is_sorted(const value_typex a, size_type n);

Listing 10.1: Formal specification of is_sorted

198

10.1.2. Implementation of is_sorted

The implementation of is_sorted is shown in the next Listing. As usual, is_sorted doesn’t compare
every array element to all that are right to it, but only to the immediately adjacent one, which is of course
more efficient. For this, we use the predicate WeaklyIncreasing [6.2] in the loop invariant of the
implementation.

bool
is_sorted(const value_typex a, size_type n)
{
if (Ou < n) {
/%@
loop invariant increasing: WeaklyIncreasing(a, i+1l);
loop assigns i;

loop variant n - i;
*/
for (size_type i = Ou; 1 < n - 1lu; ++i) {
if (a[i] > ali + 1ul) {

return false;
}

}

return true;
}

Listing 10.2: Implementation of is_sorted

Since our implementation uses WeaklyIncreasing in its loop invariant, and follows the same principle
in its code, its verification is straight-forward—except for the final reasoning that WeaklyIncreasing
(a,n) implies Increasing(a,n).

We have the lemma WeaklyIncreasing_Increasing [[6.3] for that step, which needs to be proven
manually with Coqg. The converse lemma Increasing_WeaklyIncreasing is proven automat-
ically, but isn’t actually needed to verify our is_sorted implementation. Alternatively, we could have
dragged the predicate Increasing along the loop, which happens to cause no particular problems in this
case.

199

10.2. The partial_sort algorithm

Our version of the partial_sort algorithm compared to the C++ Standard Library [19, §28.7.1.3] has
the signature

void partial_sort (value_typex a, size_type m, size_type n);

The algorithm reorders the given array a in such a way that it represents a partition: each member of the left
part a[0..m—-1] is less or equal to each member of the right part a [m. .n-1]. Moreover, the algorithm
sorts the left part in increasing order. The order of elements in the right part, however, is unspecified.
Figure [10.3|uses a bar chart to depict a typical result of a call partial_sort (a, m, n). In the post-
state, the left and the right part is colored in green and orange, respectively.

R Dmﬂmmmﬂﬂmﬂ

\ \\: / l / njl_l

\

N | ’\\ \\/ /// |
\ /J’ N o)\/// / |
\\ | ~ / |
LN \Kﬂ\ |
VNS RN / |
[N e / \\L |

\ v N /) |
\/ \l\ / |
I'x / |

\ s I
| |

7

bost a0..n-1] ﬁﬁﬁmDU\DD

Figure 10.3.: Effects of partial_sort

10.2.1. The predicate Partition

We start by introducing the new predicate Partition [[I0.4]] which formalizes the partitioning property.

/%@
axiomatic Partition

{

predicate
Partition{L} (value_typex a, integer m, integer n) =
\forall integer i, k; 0 <= i <m <= k < n ==> ali] <= alk];

*/

Listing 10.4: The logic definition(s) Partition

200

The lemmas in the following listing are used in proofs of properties and annotations related to the loop

invariants upper, lower, and partition of partial_sort.

/%@
axiomatic PartitionLemmas

{

*/

lemma MultisetReorder_SomeEqual{K,L}:
\forall value_type *a, integer n, i;

0 <=1 < n ==>
MultisetReorder{K,L} (a, n) ==>

SomeEqual{K} (a, n, \at(al[il,L));

lemma MultisetReorder_LowerBound{K,L}:
\forall value_typex a, integer n, value_type v;

0 <=n ==>
MultisetReorder{K,L} (a, n) ==>
LowerBound{K} (a, n, v) ==>

LowerBound{L} (a, n, v);

lemma MultisetReorder_UpperBound{K,L}:
\forall value_typex a, integer n, value_type v;

0 <= n ==>
MultisetReorder{K,L} (a, n) ==>
UpperBound{K} (a, n, V) ==>

UpperBound{L} (a, n, Vv);

lemma MultisetReorder_PartitionLowerBound{K,L}:
\forall value_typex a, integer m, n;

0 <m <= n ==>
MultisetReorder{K,L} (a, 0, m) ==>
Partition{K} (a, m, n) ==>
Unchanged{K, L} (a, m, n) ==>

LowerBound{L} (a, m, n, \at(a[O0],L));

Listing 10.5: The logic definition(s) PartitionLemmas

Lemma MultisetReorder_SomeEqual states that a value a [1] taken from a range a[0. .n
—1] after some reordering must have been in that range already before reordering. It is used to prove
the subsequent lemmas.

Lemma MultisetReorder_LowerBound informally says that a lower bound v of a range a
[0..n-1] keeps its property even after the range is reordered.

Dually, lemma MultisetReorder_UpperBound says that reordering a range doesn’t affect any
of its upper bounds.

LemmaMultisetReorder_ PartitionLowerBound describes a more particular situation: if
each element in a[0..m—-1] is known to be a less or equal than element a [m. .n—-1] and the
former range is reordered while the latter is kept untouched, then a [0] will still be a lower bound
of a[m..n—-1]. We employ this lemma to infer that, after push_heap [@] was called, the new
heap maximum a [0], is a lower bound of a [m. .1i],

The proof of MultisetReorder_SomeEqual [I0.5] relies on the lemma Count_SomeEqual [4.46].
We also rely on the lemma MultisetSwap_Middle [[7.59] in order to verify that the loop invariant
reorder is preserved.

201

10.2.2. Formal specification of partial_sort

The formal specification of the partial_sort function is shown in the following listing. It uses the just
introduced predicate Partition and reuses the previously defined predicates Increasing [[6.1]] and
MultisetReorder [[7.53].

/%@
requires valid: \valid(a + (0..n-1));
requires split: 0 <= m <= nj;
assigns al0..n-17;
ensures reorder: MultisetReorder{0ld, Here} (a, n);
ensures partition: Partition(a, m, n);
ensures increasing: Increasing(a, m);
*/
void
partial_sort (value_typex a, size_type m, size_type n);

Listing 10.6: Formal specification of partial_sort

10.2.3. Implementation of partial_sort

Our implementation of partial_sort is shown the next listing. It initially calls make_heap [9.36]
to rearrange the left part a[0..m-1] into a heap. After that, it scans the right part, from left to right,
for elements that are too small; each such element is exchanged for the left part’s maximum, by applying
pop_heap [0.26] and push_heap [0.19] appropriately. When the scan is done, the smallest elements
are collected in the left part. We finally convert it from a heap into an increasingly ordered range, by

sort_heap (9.10).
B []

0 "~ m-1 m i n-1
™ pop_heap

I | [[

s L swap

1]

push_heap
(I e [

Figure 10.7.: An iteration of partial_sort

202

In the scan loop, we maintain as invariants
o that the left part is a heap (invariant heap);

o thatits maximal element, a [0], is a “separating element” between the left part a [0. .m—1] and the
right part a [m. .1-11, i.e., an upper bound of the left (invariant upper) and a lower bound of the
right part (invariant 1ower), respectively;

e thata[i..m—-1] is yet unchanged (invariant unchanged); and
e that only permutation operations have been appliedto a[0..i-1] (invariant reorder).

In order to preserve the loop invariants after i is incremented, nothing has to be done if a [0] happens
to be also a lower bound for a [1]. Otherwise, let us follow the algorithm through the then part code,
depicting the intermediate states in Figure The elements considered so far are shown colored similar
to Figure [10.3} in particular the heap part is shown in green.

The overlaid transparent red shape indicates the ranges to which Partition applies, in each state. The
figure assumes the initial contents of a [0] and a [1] to be 9 and 5, for sake of generality, let us call them
p and g, respectively.

After pop_heap and swap, we have pata[i], and g at a [m—1]. At that point we know
1. g < p<alk] foreachm < k < i, since p was a lower bound for a [m. .i-17;
2. g<p=alil;

3. aljl £p<alk] foreach0 < j<m-1andeachm < k < i, since this held on loop entry, and we
didn’t more than reordering inside the parts; and

4. a[j] £ p=ali] since p was the heap maximum on loop entry.

203

void
partial_sort (value_typex a, size_type m, size_type n)
{
if (m > Ou) {
make_heap(a, m);
//@ assert reorder: Unchanged{Pre,Here} (a, m, n);
/*@
loop invariant bound: m <= i <= n;
loop invariant heap: Heap(a, m);
loop invariant upper: UpperBound(a, 0, m, af[0]);
loop invariant lower: LowerBound(a, m, i, al[0]);
loop invariant reorder: MultisetReorder{Pre, Here} (a, 1);
loop invariant unchanged: Unchanged{Pre,Here} (a, i, n);
loop assigns i, a[0..n-1];
loop variant n-i;
x/
for (size_type i = m; 1 < n; ++1i) {
if (ali] < alOu]) |
/*@
assigns al0..m-17];
ensures heap: Heap(a, m-1);
ensures max: a[m-1] == \old(a[0]);
ensures max: MaxElement (a, m, m-1);
ensures reorder: MultisetReorder{0ld, Here} (a, m);
ensures unchanged: Unchanged{0Old, Here} (a, m, 1i);
ensures unchanged: Unchanged{0Old, Here} (a, m, n);
*/
pop_heap (a, m);
//Q assert lower: al0] <= a[m-1];
//@ assert lower: ali] < a[m-1];
//@ assert lower: LowerBound(a, m, i, a[m-1]);
//Q@ assert upper: UpperBound(a, 0, m-1, a[0]);
//@ assert upper: UpperBound(a, 0, m, alm-11);
//@ assert partition: Partition(a, m, 1i);
//Q@ assert reorder: MultisetReorder{Pre, Here} (a, 1i);
//@ assert unchanged: Unchanged{Pre,Here} (a, i, n);

Listing 10.8: Implementation of partial_sort (1)

Altogether, we have a[j] < p<al[k] foreachO < j<mandeachm <k <i+ 1. Thatis, Partition
(a,m, i+1) holds, although we cannot name a separating element of a here.

After calling push_heap, which just performs some more reorderings of the left part, this property is
preserved. We can’t and we needn’t tell which position ¢ is moved to; the former is indicated in Figure[10.3]
by the vague grey triangle. Moreover, we now know again that a [0] has become an upper bound of the
left part, and hence a separating element between a[0. .m—1] and a [m. . 1]; that is, the loop invariants
upper and lower have been re-established. These two invariants together are eventually used to prove
the property partition of the contract.

Compared to its size, the algorithm makes a lot of procedure calls; in this respect it is closer to real-life
software than most other algorithms of this tutorial. Therefore, we use it to illustrate a methodical point:
For almost every procedure call, we give the callee’s contract, tailored to its actual parameters, as a statement
contract of the call. For example, everything we know from the pop_heap contract, instantiated to the
particular situation, is documented in the first statement contract. In contrast, we use assert clauses to
indicate intermediate reasoning to obtain subsequently needed properties.

204

//@ ghost Before: ;

//Q@ assert reorder: MultisetReorder{Pre,Here} (a, 1i+1);
swap(a + m - 1lu, a + 1i);
//@ assert swapped: ArraySwap{Before, Here} (a, m-1, i, n);
//Q@ assert unchanged: Unchanged{Before,Here} (a, m-1);
//Q assert reorder: MultisetReorder{Before, Here} (a, m-1, i+1);
//Q@ assert reorder: MultisetReorder{Before, Here} (a, 1i+1);
//Q@ assert reorder: MultisetReorder{Pre, Here} (a, 1i+1);
//@ assert unchanged: Unchanged{Pre,Here} (a, i+1, n);
//@ assert lower: alm-1] < a[il;
//Q assert partition: Partition(a, m, i+1);
//Q assert upper: UpperBound(a, 0, m-1, a[0]);
/%@
assigns al0..m-11];
ensures heap: Heap (a, m);
ensures reorder: MultisetReorder{0ld, Here} (a, m);
ensures unchanged: Unchanged{0Old, Here} (a, m, i+1);
ensures unchanged: Unchanged{0ld, Here} (a, i+1, n);
x/
push_heap(a, m);
//Q@ assert reorder: MultisetReorder{Pre, Here} (a, i+1);
//Q assert upper: UpperBound(a, 0, m, alol]);
//@ assert lower: LowerBound(a, m, i+1l, al[0]);

//@ assert partition: Partition(a, m, n);

/%@
assigns al0..m-17;
ensures reorder: MultisetReorder{0ld, Here} (a, m);
ensures unchanged: Unchanged{0Old, Here} (a, m, n);
ensures increasing: Increasing(a, m);

x/

sort_heap(a, m);

//@ assert reorder: MultisetReorder{Pre, Here} (a, n);

//@ assert partition: Partition(a, m, n);

Listing 10.9: The Implementation of partial_sort (2)

Our implementation has a worst-case time complexity of O((n + m) - log m). On the other hand, an imple-
mentation that ignores m and just sorts a [0 . .n—1] also satisfies the contract of partial_sort [10.6],
and may have O(n - log n) complexity. Some arithmetic shows that partial_sort performs better than

plain sort if, and only if, logm < . log (ﬁ), that is, if n is sufficiently larger than m.
m m

205

10.3. The bubble_sort algorithm

The bubble_sort algorithm traverses the given array a [0..n—-1] from left to right, maintaining a
right-adjusted, constantly growing range a [n—1..n-1] that is already in increasing order. We achieve
this range by iterating through the array and swapping two adjacent elements, if their respective value are
in the wrong order.

10.3.1. Formal specification of bubble_sort

The following listing shows our (generic sorting) contract for bubble_sort.

/%@
requires valid: \valid(a + (0..n-1));
assigns al0..n-11;
ensures increasing: Increasing(a, n);
ensures reorder: MultisetReorder{0Old, Here} (a, n);
*/
void
bubble_sort (value_typex a, size_type n);

Listing 10.10: Formal specification of bubble_sort

10.3.2. Implementation of bubble_sort

Our implementation of bubble_sort is shown in the next listing. As it is typical for bubble_sort,
the implementation uses two nested loops.

We first discuss the verification of the fact that bubble_sort produces an increasing array. For this we
introduce for the outer loop the invariant increasing. This loop annotation states that the subrange
a[n-i+1..n-1] isinincreasing order. An important ingredient on the verification of the increasing
property is the claim that the first element a [n-1+1] of the already sorted subrange is an upper bound
of all elements left of it. This claim is encoded in the loop invariant upper of the outer bound. In order
to support this claim up we exploit the fact that the index j of the inner loop points to the maximum
element of the subrange a [0. . 7]. We formalize this last property in the loop invariant max.

Note that the loop invariants increasing and upper occur also in the inner loop. This shall “assure”
the outer loop that the inner loop really preserves these properties.

206

void
bubble_sort (value_typex a, size_type n)
{

if (0 < n) {

/@
loop invariant bound: 1 <=1 <= n;
loop invariant increasing: WeaklyIncreasing(a, n-i+l, n);
loop invariant upper: 1 < i1 ==> UpperBound(a, n-i+l, a[n-i+1]);
loop invariant reorder: MultisetReorder{Pre, Here} (a, n);

loop assigns i, a[0..n-1];
loop variant n-i;

%/
for (size_type i = 1lu; i < n; ++i) {
/%@
loop invariant bound: 0 <= j <= n-i;
loop invariant increasing: WeaklyIncreasing(a, n-i+l, n);
loop invariant upper: 1 < i ==> UpperBound(a, n-i+l, a[n-i+1]);
loop invariant max: MaxElement (a, j+1, 7J);
loop invariant reorder: MultisetReorder{LoopEntry,Here} (a, J+1);
loop invariant reorder: Unchanged{LoopEntry, Here} (a, j+1, n);
loop assigns j, al0..n-17;
loop variant n-7j;
*/
for (size_type j = Ou; j < n - 1i; ++3) {
if (al[j] > alj + 1ul) {
//Q@ assert max: MaxElement (a, Jj+1, J);
//Q@ assert reorder: MultisetReorder{LoopEntry, Here} (a, 0, Jj+1);
//@ assert reorder: MultisetReorder{LoopEntry,Here} (a, 0, j+2);
swap (&al[Jj]l, &alj + 1lul);
//Q@ assert max: MaxElement (a, Jj+2, J+1);
//@ assert swap: ArraySwap{LoopCurrent, Here} (a, Jj, J+1, n);
//@ assert unchanged: Unchanged{LoopCurrent,Here} (a, 7J);
//Q@ assert reorder: alj+tl] == At{LoopCurrent} (a, 7Jj);
//@ assert reorder: aljl == At{LoopCurrent} (a, J+1);
//Q assert reorder: MultisetReorder{LoopCurrent, Here} (a, J, Jj+2);

//Q assert increasing: Increasing(a, n);

Listing 10.11: Implementation of bubble_sort

We now discuss briefly the verification of the postcondition reorder. In each iteration of the outer loop
various elements of the not yet sorted subrange a [0 . .n-1] are swapped with their respective neighbour.
More specifically, we know for the iteration j of the inner loop that while subrange a [0. . j] has been
rearranged, the subrange a[j+1..n-1] has not been modified yet. Together this ensures that the loop
invariant reorder holds for the outer loop.

207

10.4. The selection_sort algorithm

Our version of the selection_sort algorithm has the signature

void selection_sort (value_typex* a, size_type n);

The selection_sort algorithm sorts an array in increasing order, left to right, by selecting in each step
the minimum element of the remaining segment and swaps it with its first element. This implies that each
member of the increasingly ordered initial segment is less or equal than each member of the remaining
segment.

Figure 10.12.: An iteration of selection_sort

Figure shows a typical situation in an example run. The algorithm will swap the 28 at position i
with the 9 at position min to extend the increasingly ordered initial segment one field to the right.

10.4.1. Formal specification of selection_sort

The following listing shows the specification of selection_sort.

/%@
requires valid: \valid(a + (0..n-1));
assigns al0..n-17;
ensures reorder: MultisetReorder{0ld, Here} (a, n);
ensures increasing: Increasing(a, n);
x/
void
selection_sort (value_typex a, size_type n);

Listing 10.13: Formal specification of selection_sort

208

10.4.2. Implementation of selection_sort

The implementation of selection_sort is shown in the next listing. We use min_element [5.14] to
find the minimum element of the remaining array segment.

void
selection_sort (value_typexr a, size_type n)

{

/%@
loop invariant bound: 0 <=1 <= n;
loop invariant reorder: MultisetReorder{Pre, Here} (a, n);
loop invariant increasing: WeaklyIncreasing(a, 1i);
loop invariant increasing: 0 < i ==> LowerBound(a, i, n, al[i-11);
loop assigns i, al[0..n-1];
loop variant n - ij;
x/

for (size_type i = Ou; 1 < n; ++i) {
const size_type sel = i + min_element(a + i, n - 1i);

if (i < sel) {
/%@
assigns alsel]l, alil;
ensures swapped: ArraySwap{0Old,Here} (a, i, sel, n);
x/
swap(a + sel, a + 1i);

}

//@ assert reorder: MultisetReorder{LoopCurrent,Here} (a, n);
//@ assert reorder: MultisetReorder{Pre,Here} (a, n);

}

//@ assert increasing: Increasing(a, n);

Listing 10.14: Implementation of selection_sort

The loop invariants increasing and 1ower establish that the initial segmenta [0. .1~-1] is in increas-
ing order and, respectively, state that a[1i—1] is a lower bound of the remaining segment a[i..n—-1].
Since the min_element call uses an address offset, we had to employ again the shift lemmas from the
collection ArrayBoundsShift [[6.14].

The loop invariant reorder, on the other hand, states that the multiset of values in the array a are only
rearranged during the algorithm. While this is intuitively most obvious (as the call to the swap
routine, is the only code that modifies a), it took considerable effort to prove it formally; including a
statement contract that captures the effects of calling swap.

The main reason for introducing the statement contract is that it fransforms the postcondition of the call
to swap into the hypotheses for the lemma MultisetSwap_Middle [7.59]]. This lemma, which
relies on the lemmas about MultisetReorder [[7.53], captures the fact that swapping two elements of
an array is a reordering.

209

10.5. The insertion_sort algorithm

Like selection_sort, the algorithm insertion_sort traverses the given array a [0. .n—-1] left
to right, maintaining a left-adjusted, constantly increasing range a [0. .i—1] that is already in increasing
order.

Unlike selection_sort, however, insertion_sort adds a[i] to the initial segment in the ith
step (see Figure [I0.15)). It determines the (rightmost) appropriate position to insert a[i] by a call to
upper_bound [[6.8]] and then uses rotate [[7.27] to perform a circular shift to establish the insertion.

Figure 10.15.: An iteration of insertion_sort

10.5.1. Formal specification of insertion_sort

The following listing shows our (generic sorting) contract for insertion_sort.

/%@
requires valid: \valid(a + (0..n-1));
assigns al0..n-17;
ensures reorder: MultisetReorder{0ld, Here} (a, n);
ensures increasing: Increasing(a, n);
x/
void
insertion_sort (value_typex a, size_type n);

Listing 10.16: Formal specification of insertion_sort

210

10.5.2. Implementation of insertion_sort

The implementation of insertion_sort is shown in the next listing. We used an ACSL statement
contract to specify those aspects of the rot at e contract that are needed here. Properties related to the result
of insertion_sort being in increasing order are labelled increasing. Properties related to the
rearrangement of elements are labelled reorder and, whenever their order isn’t changed, unchanged.

void
insertion_sort (value_typex a, size_type n)

{

/*@
loop invariant bound: 0 <= 1 <= n;
loop invariant reorder: MultisetReorder{Pre, Here} (a, 0, 1i);
loop invariant unchanged: Unchanged{Pre,Here} (a, i, n);
loop invariant increasing: WeaklyIncreasing(a, 1i);
loop assigns i, al[0..n-1];
loop variant n - i;
x/

for (size_type i = Ou; 1 < n; ++i) {
const size type k = upper_bound(a, i, alil);
//@ assert bound: 0 <= k <= 1;
/*@
requires increasing: UpperBound(a, k, al[il);
requires increasing: StrictLowerBound(a, k, i, alil);
requires increasing: WeaklyIncreasing(a, k, 1);

assigns alk..i];

ensures unchanged: Unchanged{0ld, Here} (a, 0, k);
ensures unchanged: Unchanged{0Old, Here} (a, i+1l, n);
ensures reorder: Equal{0Old, Here} (a, k, i, k+1);
ensures reorder: Equal{0Old, Here} (a, i, i+1, k);
ensures increasing: WeaklyIncreasing(a, 0, k);

*/

//@ assert increasing: UpperBound(a, k, al[il]);

rotate(a + k, 1 - k, 1 - k + 1u);

//@ assert increasing: UpperBound(a, k, alk]);

//Q assert increasing: StrictLowerBound(a, k+1, i+1, al[k]);
//@ assert increasing: WeaklyIncreasing(a, k+1, 1i+1);

//Q assert increasing: WeaklyIncreasing(a, i+1);

//@ assert reorder: MultisetReorder{LoopCurrent, Here} (a, 0, k);
//Q assert reorder: MultisetReorder{LoopCurrent, Here} (a, k, 1i+1);
//Q assert reorder: MultisetReorder{LoopCurrent, Here} (a, 0, i+l);
//@ assert reorder: MultisetReorder{Pre, Here} (a, i+1);

//Q assert increasing: Increasing(a, n);

Listing 10.17: Implementation of insertion_sort

When we originally implemented and verified rotate, we hadn’t yet in mind to use that function inside
of insertion_sort. Consequently, the properties needed for the latter aren’t directly provided by the
former. One approach to solve this problem is to add the new properties to the contract of rotate [[7.27]
and repeat its verification proof. However, if rotate is assumed to be part of a pre-verified library, this
approach isn’t feasible, since rot at e’s implementation may not be available for re-verification. Therefore,
we used another approach, viz. to prove that rotate’s original specification implies all the properties
we need in insertion_sort. This is another use of the Hoare calculus’ implication rule (§3.3). We
used several lemmas, shown below, to make the necessary implications explicit, and to help the provers to
establish them. Some of them needed manual proofs by induction.

211

Lemma Increasing_Equal [[6.3]] in the following listing assumes an ordered range a [m. .n-1] and
claims that every (elementwise) equal range range a [m+p..n+p—-1] is ordered, too. It is needed to
establish that the call to rotate [[7.27] preserves the order of those elements that are shifted upwards (cf.

Figure [10.13).
Similarly, lemma Count_Equal [4.44] says that two elementwise equal ranges a [m. .n-1] and a [p. .
p+n-m-1] will result in the same occurrence count, for each value v. This lemma is useful in the proof

of the lemma CircularsShift_MultisetReorder [[I0.I8] (discussed below), since the predicate
MultisetReorder [[7.53] is defined via the logic function Count [#.44].

Lemma CircularShift_StrictLowerBound [[I0.I8] in the next listing is used to prove that the
range a [k..1-1] having a [i] as strict lower bound before our call to rotate ensures that it has a [k]
as such a bound after the call. Note that this lemma reflects that rotate is uses as a circular shift at the
call site. Similarly, lemma CircularShift_MultisetReorder establishes that a circular shift just
reorders the range it is applied to.

/*@
axiomatic CircularShiftLemmas
{
lemma CircularShift_StrictLowerBound{K,L}:
\forall value_typex a, integer m, n;

StrictLowerBound{K} (a, m, n, \at(a[n],K)) ==>
Equal{K,L}(a, m, n, m+l) ==>
Equal{K,L} (a, n, n+l, m) ==>

StrictLowerBound{L} (a, m+1l, n+1l, \at(a[m],L));

lemma CircularShift_MultisetReorder{K,L}:
\forall value_typex a, integer m, n;

0 <=m <= n ==>
Equal{K,L}(a, m, n, m+l) ==>
Equal{K,L} (a, n, n+l, m) ==>

MultisetReorder{K,L} (a, m, n+l);

*/

Listing 10.18: The logic definition(s) CircularShiftLemmas

212

10.6. The heap_sort algorithm

The heap_sort algorithm has the signature

void heap_sort (value_typex a, size_type n);

It relies upon the heap algorithms discussed in Chapter [9 to efficiently transform the array into increasing

order.

10.6.1. Formal specification of heap_sort

The following Listing shows the specification of heap_sort.

/%@
requires valid: \valid(a + (0..n-1));
assigns al0..n-17;
ensures reorder: MultisetReorder{0ld, Here} (a, n);
ensures increasing: Increasing(a, n);
*/
void
heap_sort (value_typex a, size_type n);

Listing 10.19: Formal specification of heap_sort

10.6.2. Implementation of heap_sort

The implementation of heap_sort, shown in the next listing is straightforward. Given the input array
al0..n-1], we use make_heap [9.36] to arrange it into a heap; after that, we call sort_heap [9.39]
to sort this heap into increasing order.

void
heap_sort (value_typex a, size_type n)
{

make_heap (a, n);

sort_heap(a, n);

}

Listing 10.20: Implementation of heap_sort

213

10.7. The merge algorithm

Our version of the merge algorithm from the C+ standard library [19} 28.7.5] has the following signature.

void

merge (const value_typex a, size_type n,
const value_typex b, size_type m,
value_typex result);

The merge algorithm is a part of the merge sort algorithm. It operates on the second step to merge two
increasingly ordered sub-arrays into a new one. The algorithm merges two increasingly ordered arrays a
[0..n-1]and b [0..m-11], respectively. The merged values are stored in the output array that starts at
result which must be able to hold m + n values of both input arrays.

10.7.1. Formal specification of merge

The following listing shows the specification of merge. The specification expects the input arrays of
the proper size and in increasing order and the output array of enough size to contain all the input elements.
The input arrays should not overlap with the output array. In the current edition of this guide, we prove only
that the resulting array is in increasing order. Future editions will contain additional postconditions stating
that the result array consists of reordered input elements and the stability of the algorithm, i.e., the same
elements of the input arrays preserve their order in the output array.

/*@
requires bound: m + n <= SIZE_TYPE_MAX;
requires valid: \valid_read(a + (0..m-1));
requires valid: \valid_read(b + (0..n-1));
requires valid: \valid(c + (0..m+n-1));
requires sep: \separated(a + (0..m-1), c + (0..m+n-1));
requires sep: \separated(b + (0..n-1), c + (0..m+n-1));
requires increasing: Increasing(a, m);
requires increasing: Increasing (b, n);
assigns c[0O .. m+tn-1];
ensures increasing: Increasing(c, m + n);
ensures unchanged: Unchanged{0Old, Here} (a, m);
ensures unchanged: Unchanged{0Old, Here} (b, n);
x/
void
merge (const value_typex a, size_type m,
const value_typex b, size_type n, value_typex c);

Listing 10.21: Formal specification of merge

10.7.2. More Lemmas on WeaklyIncreasing

We introduce in the following listing several lemmas about WeaklyIncreasing [[6.2] that are helpful
for the verification of merge.

e Lemma WeaklyIncreasing_Shrink [10.22] allows to restrict the property weakly increasing
onto a sub-array.

e Lemma WeaklyIncreasing_AddElement [[I0.22] defines the way a weakly increasing array
can be constructed.

214

e Lemma WeaklyIncreasing_shift [[I0.22] is used to handle pointer arithmetic with respect to
the WeaklyIncreasing property.

e LemmasWeaklyIncreasing_Unchanged [[10.22] and WeaklyIncreasing_Equal [10.22]
state that if an array is weakly increasing, then another array (or the same array at another program
point), whose elements are in a one-to-one correspondence with the original array, is also weakly
increasing.

e Lemma WeaklyIncreasing_Join [[[0.22] defines the conditions that two consequent weakly
increasing ranges can be viewed as merged weakly increasing range.

/%@
axiomatic WeaklyIncreasinglLemmas
{
lemma WeaklyIncreasing_Shrink{L}:
\forall value_type *a, integer m, n, p, qg;
m <= p <= g <= n ==>
WeaklyIncreasing(a, m, n) ==>
WeaklyIncreasing(a, p, 9d9);

lemma WeaklyIncreasing_AddElement{L}:
\forall value_type x*a, integer n;

1 <n ==>
a[n-2] <= a[n-1] ==>
WeaklyIncreasing(a, n-1) ==>

WeaklyIncreasing(a, n);

lemma WeaklyIncreasing_ Shift{L}:
\forall value_type *a, integer m, n;
WeaklyIncreasing(a + m, 0, n) <==>
WeaklyIncreasing(a, m, n + m);

lemma WeaklyIncreasing_Equal{K,L}:

\forall value_type x*a, xb, integer m, n;
Equal{K,L} (a, m, n, b) ==>
WeaklyIncreasing{K} (a, m, n) ==>
WeaklyIncreasing{L} (b, m, n);

lemma WeaklyIncreasing_Unchanged{K,L}:
\forall value_type xa, integer m, n;
WeaklyIncreasing{K} (a, m, n) ==>
Unchanged{K,L} (a, m, n) ==>
WeaklyIncreasing{L} (a, m, n);

lemma WeaklyIncreasing_Join{L}:
\forall value_type x*a, integer m, n;

0 <m<n ==>
WeaklyIncreasing(a, m) ==>
WeaklyIncreasing(a, m, n) ==>
a[m-1] <= a[m] ==>

WeaklyIncreasing(a, n);

*/

Listing 10.22: The logic definition(s) WeaklyIncreasingLemmas

215

10.7.3. Implementation of merge

The implementation of merge, shown in the next listings is straightforward. The algorithm operates by
traversing both input arrays. On each iteration it writes the smaller of both elements into the result array,
thus constructing an increasingly ordered array. If the algorithm reaches the end of one of the input arrays,
it just copies the rest elements of the other array to the result array. The listing contains a number of
assertions to trigger an application of lemmas by the provers. The while loop traverses the input arrays
and constructs, in accordance with WeaklyIncreasing_AddElement [[10.22], the resulting weakly
increasing array. After the loop, the algorithm copies the remaining elements to the resulting array.

void
merge (const value_typex a, size_type m,
const value_typex b, size_type n, value_typex c)

{

//Q assert increasing: WeaklyIncreasing(a, 0, m);

size_type i = O;

size_type j = O;

size_type x = 0;

if (0 <m || 0 < n) {

/%@ loop invariant index: 0 <=1 <=m;
loop invariant index: 0 <= Jj <= n;
loop invariant index: x == i+73;
loop invariant index: 0 <= x <= m+n-1;
loop invariant upper: i <m ==> UpperBound(c, 0, x, alil);
loop invariant upper: j < n ==> UpperBound(c, 0, x, b[]J]);
loop invariant increasing: WeaklyIncreasing(c, x);
loop assigns i, j, x, c[0 .. m+n-1];
loop variant (m+tn) - (i+3);

x/
while (i < m && 7 < n) {
if (ali] < blj]) |

clx++] = al[i++];

//@ assert increasing: WeaklyIncreasing(c, 0, x);

//Q assert upper: i <m ==> UpperBound(c, 0, x, alil);
}
else {

clx++] = b[j++];

//@ assert increasing: WeaklyIncreasing(c, 0, x);

//@ assert upper: j < n ==> UpperBound(c, 0, x, b[j]);

}

//@ assert increasing: WeaklyIncreasing(c, 0, x);

Listing 10.23: Implementation of merge (1)

We also use the following lemmas to support the verification of several properties.

e Lemma WeaklyIncreasing_ Equal [[10.22] is used to show that the copied elements from one
of the input arrays preserve the WeaklyIncreasing property.

e Lemma WeaklyIncreasing_Join [[10.27] is used to extend the WeaklyIncreasing prop-
erty of the two sub-ranges of the resulting array over the whole range. In order to deal with pointer
arithmetic we employ Lemma WeaklyIncreasing_Shift.

e Finally, Lemma WeaklyIncreasing_Increasing [6.3]] is used to prove the output array is in
increasing order.

216

//@ ghost Epilogue: ;
//@ assert index: x == 1i+7;
//@ assert index: i=m "~ J == n;
//@ assert index: i< m "~ < n;
//@ assert increasing: WeaklyIncreasing(c, 0, x);
//@ assert unchanged: Unchanged{Pre, Here} (a, 0, m);
//@ assert increasing: WeaklyIncreasing(a, 0, m);
if (1 < m) {
//Q assert upper: 0 < x ==> c[x-1] <= a[il;
//Q assert increasing: WeaklyIncreasing(a, i, m);
//@ assert increasing: WeaklyIncreasing(a+i, 0, m-1i);
/*@
assigns clx..x+m-1-17;
ensures equal: Equal{Epilogue, Here} (a+i, m-1i, c+x);
x/
copy(a + i, m - i, ¢c + x);
//@ assert equal: c[x] == At{Epilogue} (a, 1i);
//Q@ assert equal: a[i] == At{Epilogue}(a, 1i);
//@ assert equal: clx] == alil;
//@ assert equal: Equal{Epilogue, Here} (a+i, m-1i, c+x);
//@ assert increasing: WeaklyIncreasing(c+x, 0, m-1i);
//@ assert index: m-i+x == m+n;
//Q assert increasing: WeaklyIncreasing(c, x, m+n);
}
else {
//Q assert upper: 0 < x ==> cl[x-1] <= Db[jl;
//Q@ assert unchanged: Unchanged{Pre, Here} (b, 0, n);
//@ assert increasing: WeaklyIncreasing(b, 0, n);
//@ assert increasing: WeaklylIncreasing(b+j, 0, n-7J);
/%@
assigns c[x..x+tn-3j-11;
ensures equal: Equal{Epilogue, Here} (b+j, n-j, c+x);
x/
copy(b + j, n - J, c + x);
//Q@ assert equal: c[x] == At{Epilogue} (b, J);
//@ assert equal: b[j] == At{Epilogue} (b, 7J);
//@ assert equal: clx] == bl[jl;
//Q assert equal: Equal{Epilogue, Here} (b+7j, n-j, c+x);
//Q@ assert increasing: WeaklyIncreasing(c+x, 0, n-7j);
//Q@ assert index: n-j+x == m+n;
//@ assert increasing: WeaklyIncreasing(c, x, m+n);
}
//Q assert unchanged: Unchanged{Epilogue, Here} (c, 0, x);
//@ assert increasing: WeaklyIncreasing(c, 0, x);
//@ assert increasing: WeaklyIncreasing(c, x, m+n);
//Q@ assert increasing: 0 < x ==> c[x-1] <= c[x];
//@ assert increasing: 0 < x ==> WeaklyIncreasing(c, x—-1, m+n);
//@ assert increasing: WeaklyIncreasing(c, 0, m+n);

Listing 10.24: The Implementation of merge (2)

217

Part V.

Verification of data structures

219

11. The stack data type

So far we have used the ACSL specification language for the task of specifying and verifying one single C
function at a time. However, in practice we are also faced with the task to implement a family of functions,
usually around some sophisticated data structure, which have to obey certain rules of interdependence. In
this kind of task, we are not only interested in the properties of a single function but also in properties
describing how several function play together.

The C++ Standard Library provides a generic container adaptor stack [19, §26.6.6] whose signature and
behavior we try to follow as far as our C implementation it allows. For a more detailed discussion of our
approach to the formal verification of stack we refer to Kim Voéllinger’s thesis [26].

A stack is a data type that can hold objects and has the property that, if an object a is pushed on a stack
before object b, then a can only be removed (popped) after b. A stack is, in other words, a first-in, last-out
data type (see Figure [[L.T)). The top function of a stack returns the last element that has been pushed on a
stack.

push pop

Figure 11.1.: Push and pop on a stack

We consider only stacks that have a finite capacity, that is, that can only hold a maximum number ¢ of
elements that is constant throughout their lifetime. This restriction allows us to define a stack without
relying on dynamic memory allocation. When a stack is created or initialized, it contains no elements,
i.e., its size is 0. The function push and pop increases and decreases the size of a stack by at most one,
respectively.

221

11.1. Methodology overview

Figure[11.2] gives an overview of our methodology to specify and verify abstract data types (verification of
one axiom shown only).

-full(s) = pop(push(s, v)) = s

/*e
Implementation Specification requires s = t;
> requires !Full(s);
of pop of pop —a
ensures s = t;
*/
void

. e e axiom pop of push(Stack* s, Stack* t, value type v
Implementation | | Specification |—* _pop_of_push(! ! —type V)

of push of push

stack_push(s, v);
stack_pop(s);

Figure 11.2.: Methodology Overview

What we will basically do is:
1. specify axioms about how the stack functions should interact with each other (§11.2),

2. define a basic implementation of C data structures (only one in our example, viz.
struct Stack; see §I1.3) and some invariants the instances of them have to obey (§11.4),

3. provide for each stack function an ACSL contract and a C implementation (§11.6)),

4. verify each function against its contract (§I1.6),

5. transform the axioms into ACSL-annotated C code (§11.7), and

6. verify that code, using access function contracts and data-type invariants as necessary (§11.7).

provides an ACSL-predicate deciding whether two instances of a struct Stack are considered to
be equal (indication by “~” in Figure [I1.2)), while gives a corresponding C implementation. The
issue of an appropriate definition of equality of data instances is familiar to any C programmer who had
to replace a faulty comparison if (s1 == s2) by the correct if (strcmp (sl,s2)== 0) tocompare
two strings char xs1, »s2 for equality.

222

11.2. Stack axioms

To specify the interplay of the stack access functions, we use a set of axiom@ all but one of them having

the form of a conditional equation.

Let V denote an arbitrary type. We denote by S . the type of stacks with capacity ¢ > 0 of elements of type

V. The aforementioned functions then have the following signatures.

it : S, —» S,
push: S, XV —> S,
pop:S.—Se
top: S, —V,

size : S, — N.

With B denoting the boolean type we will also define two auxiliary functions

empty : S, — B,
full: S. — B.

To qualify as a stack these functions must satisfy the following rules which are also referred to as stack

axioms.

11.2.1. Stack initialization

After a stack has been initialized its size is 0.

size(init(s)) = 0.

The auxiliary functions empty and full are defined as follows
empty(s), iff size(s) = 0,
full(s), iff size(s) = c.
We expect that for every stack s the following condition holds

0 < size(s) < c.

(11.1)

(11.2)
(11.3)

(11.4)

3There is an analogy in geometry: Euclid (e.g. [27]) invented the use of axioms there, but still kept definitions of point, line,
plane, etc. Hilbert [28]] recognized that the latter are not only unformalizable, but also unnecessary, and dropped them, keeping

only the formal descriptions of relations between them.

223

11.2.2. Adding an element to a stack

To push an element v on a stack the stack must not be full. If an element has been pushed on an eligible
stack, its size increases by 1

size(push(s, v)) = size(s) + 1, if —full(s). (11.5)
Moreover, the element pushed on a stack is the top element of the resulting stack

top(push(s, v)) = v, if —full(s). (11.6)

11.2.3. Removing an element from a stack

An element can only be removed from a non-empty stack. If an element has been removed from an eligible
stack the stack size decreases by 1

size(pop(s)) = size(s) — 1, if —empty(s). (11.7)

If an element is pushed on a stack and immediately afterwards an element is removed from the resulting
stack then the final stack is equal to the original stack

pop(push(s,v)) = s, if —full(s). (11.8)

Conversely, if an element is removed from a non-empty stack and if afterwards the top element of the
original stack is pushed on the new stack then the resulting stack is equal to the original stack.

push(pop(s), top(s)) = s, if —empty(s). (11.9)

224

11.2.4. A note on exception handling

We don’t impose a requirement on push (s, v) if s is a full stack, nor on pop (s) or top (s) if s is
an empty stack. Specifying the behavior in such exceptional situations is a problem by its own; a variety of
approaches is discussed in the literature. We won’t elaborate further on this issue, but only give an example
to warn about “innocent-looking” exception specifications that may lead to undesired results.

If we’d introduce an additional error value err in the element type V and require top (s) = errif sis
empty, we’d be faced with the problem of specifying the behavior of push (s, err). At first glance, it
would seem a good idea to have err just been ignored by push, i.e. to require

push(s, err) = s. (11.10)

However, we then could derive for any non-full and non-empty stack s, that

size(s) = size(pop(push(s, err))) by [I1.§]
= size(pop(s)) as assumed in[T1.10]
= size(s) — 1 by [T1.7]

i.e. no such stacks could exist, or all int values would be equal.

225

11.3. The structure stack and its associated functions

We now introduce one possible C implementation of the above axioms. It is centred around the C structure

stack shown in the following listing.

struct Stack
{

value_typex obj;

size_type capacity;

size_type size;

}i

typedef struct Stack Stack;

Listing 11.3: Definition of type stack

This struct holds an array ob j of positive length called capacity. The capacity of a stack is the maximum
number of elements this stack can hold. The field size indicates the number elements that are currently in
the stack. See also Figure [IT.4] which attempts to interpret this definition according to Figure [IT.1]

obj[size-1]

capacity

obj [1]

obj [0]

top

size

Figure 11.4.: Interpreting the data structure stack

226

Based on the stack functions from §I1.2] we declare in the next listing the following functions as part of
our stack data type.

void stack_init (Stack* s, value_type* a, size_type n);
bool stack_equal (const Stackx s, const Stackx t);
size_type stack_size (const Stackx s);

bool stack_empty (const Stacksx s);

bool stack_full (const Stackx s);

value_type stack_top(const Stackx s);

void stack_push (Stack* s, value_type V);

void stack_pop (Stackx* s);

Listing 11.5: Declaration of functions of type stack

Most of these functions directly correspond to methods of the C++ std: :stack template class [19,
§26.6.6.1]. The function stack_equal corresponds to the comparison operator ==, whereas one use
of stack_init is to bring a stack into a well-defined initial state. The function stack_full has
no counterpart in std: : stack. This reflects the fact that we avoid dynamic memory allocation, while
std: :stack does not.

227

11.4. Stack invariants

Not every possible instance of type stack is considered a valid one, e.g., with our definition of stack in
Listing[IT.3] stack s = {{0,0,0,0},4,5} is not. In the following listing, we present basic logic
functions and predicates that we will use throughout this chapter In particular, we define the predicate
StackInvariant [[I1.6] that discriminates valid and invalid instances.

/%@
axiomatic StackInvariant

{
logic integer
StackCapacity{L} (Stack* s) = s—->capacity;

logic integer
StackSize{L} (Stack* s) = s—->size;

logic value_type~x
StackStorage{L} (Stack* s) = s->obj;

logic integer

StackTop{L} (Stackx s) = s->obj[s->size-1];

predicate

StackEmpty{L} (Stack* s) = StackSize(s) == 0;

predicate

StackFull{L} (Stackx* s) = StackSize(s) == StackCapacity(s);
predicate

StackInvariant{L} (Stack* s) =
0 < StackCapacity(s) &&
0 <= StackSize(s) <= StackCapacity(s) &&
\valid(StackStorage(s) + (0..StackCapacity(s)-1)) &&
\separated (s, StackStorage(s) + (0..StackCapacity(s)-1));

*/

Listing 11.6: The logic definition(s) StackInvariant

We start, with the auxiliary logic function StackCapacity, StackSize and StackStorage which
we can use in specifications to refer to the fields capacity, size and obj of stack, respectively. This
listing also contains the logic function St ackTop which defines the array element with index size - 1
as the top place of a stack.

The reader can consider this as an attempt to hide implementation details from the specification. We inten-
tionally use here integer as a return value of these logic functions. Inaccurate use of logic functions with
bounded types in axioms with arithmetic operations may lead to inconsistencies.

We also introduce the predicates StackEmpty [I1.6] and StackFull [I1.6] that express the concepts
of empty and full stacks by referring to a stack’s size and capacity (see Equations (I11.2)) and (T1.3)).

There are some obvious invariants that must be fulfilled by every valid object of type stack:

o The stack capacity shall be strictly greater than zero (an empty stack is ok but a stack that cannot hold
anything is not useful).

o The pointer ob j shall refer to an array of length capacity.

o The number of elements size of a stack the must be non-negative and not greater than its capacity.

228

These invariants are all formalized in the predicate StackInvariant [I1.6].

Note how the use of the previously defined logic functions and predicates allows us to define the stack
invariant without directly referring to the fields of stack.

We sometimes wish to express that there is no memory aliasing between two stacks. If there were aliasing,
then modifying one stack could modify the other stack in unexpected ways. In order to express that there is
no aliasing between two stacks, we define the predicate StackSeparated in the next listing.

/%@
axiomatic StackUtility
{
predicate
StackSeparated(Stackx s, Stackx t) =
\separated (s, s—->obj + (0..s->capacity-1),
t, t->obj + (0..t->capacity-1));

predicate

StackUnchanged{K, L} (Stack* s) =
StackSize{K} (s) == StackSize{L} (s) &&
StackStorage{K} (s) == StackStorage{L} (s) &&
StackCapacity{K} (s) == StackCapacity{L} (s) &&

Unchanged{K, L} (StackStorage{K} (s), StackSize{K} (s));

*/

Listing 11.7: The logic definition(s) StackUtility

This listing also contains the predicate StackUnchanged [[T1.7] that we will use to describe cases that
the contents of a stack hasn’t changed.

229

11.5. Equality of stacks

Defining equality of instances of non-trivial data types, in particular in object-oriented languages, is not an
easy task. The book Programming in Scala [29, Chapter 28] devotes to this topic a whole chapter of more
than twenty pages. In the following two sections we give a few hints how ACSL and Frama-C can help to
correctly define equality for a simple data type.

We consider two stacks as equal if they have the same size and if they contain the same objects. To be
more precise, let s and t two pointers of type stack, then we define the predicate StackEqual as in
the following listing.

/%@
axiomatic StackEquality

{

predicate
StackEqual{S,T} (Stack* s, Stackx t) =
StackSize{S} (s) == StackSize{T} (t) &&

Equal{S, T} (StackStorage{S} (s), StackSize{S} (s), StackStorage{T} (t));

lemma StackEqual_Reflexive{S}
\forall Stack=* s; StackEqual{S,S} (s, s);

lemma StackEqual_Symmetric{S, T}
\forall Stack =*s, =*t;
StackEqual{S, T} (s, t) ==> StackEqual{T,S} (t, s);

lemma StackEqual_Transitive{S,T,U}:
\forall Stack =s, =t, =u;
StackEqual{S,T} (s, t) ==>
StackEqual{T,U} (t, u) ==>
StackEqual{sS,U} (s, u);

*/

Listing 11.8: The logic definition(s) StackEquality

Our use of labels in this listing makes the specification somewhat hard to read (in particular in the last line
where we reuse the predicate Equal [4.28]]. However, this definition of StackEqual will allow us later
to compare the same stack object at different points of a program. The logical expression StackEqual
{A, B} (s, t) reads informally as: The stack object s at program point A equals the stack object =t at
program point B.

The reader might wonder why we exclude the capacity of a stack into the definition of stack equality. This
approach can be motivated with the behavior of the method capacity of the class std: :vector<T>.
There, equal instances of type std: : vector<T> may very well have different capacitiesFE]

If equal stacks can have different capacities then, according to our definition of the predicate StackFull
|| we can have to equal stacks where one is full and the other one is not.

A finer, but very important point in our specification of equality of stacks is that the elements of the arrays
s—>ob7j and t->obj are compared only up to s—>size and not up to s—>capacity. Thus the two
stacks s and t in Figure[IT.9are considered equal although there is are obvious differences in their internal
arrays.

%See http://www.cplusplus.com/reference/vector/vector/capacity

230

http://www.cplusplus.com/reference/vector/vector/capacity

Stack s capacity = 6 Stack t capacity =5

size=3 size =3

4 | 2 (17 |12 | -3 | 4 4 | 2 (17| 8 | 4

Figure 11.9.: Example of two equal stacks

If we define an equality relation (=) of objects for a data type such as stack, we have to make sure that
the following rules hold.

reflexivity VseS§ :s=ys, (11.11a)
symmetry Vs,t€S 1s=t = t=ys, (11.11b)
transitivity Vs,tb,tueS :s=tANt=u = s=u. (11.11c)

Any relation that satisfies the conditions (I1.T1) is referred to as an equivalence relation. The mathematical
set of all instances that are considered equal to some given instance s is called the equivalence class of s
with respect to that relation.

Our formalization of StackEquality [I1.8] shows these three rules for the relation StackEquals; it
can be automatically verified that they are a consequence of the definition of StackEqual.

The two stacks in Figure [[1.9] show that an equivalence class of StackEqual can contain more than
one element The stacks s and t in Figure are also referred to as two representatives of the same
equivalence class. In such a situation, the question arises whether a function that is defined on a set with an
equivalence relation can be defined in such a way that its definition is independent of the chosen represen-
tatives@ We ask, in other words, whether the function is well-defined on the set of all equivalence classes
of the relation StackE qualF_q] The question of well-definition will play an important role when verifying
the functions of the st ack (see §11.6).

37This is a common situation in mathematics. For example, the equivalence class of the rational number % contains infinitely many
elements, viz. 1,2, L. ...
3This is why mathematicians know that 1 + 2 equals - + 2

¥Seehttp://en.wikipedia.org/wiki/Well-definition,

231

http://en.wikipedia.org/wiki/Well-definition

11.6. Verification of stack functions

In this section we verify the functions

e stack_equal (§IL.6.1)

e stack_init (§11.6.2)

e stack_size (§I1.6.3)

e stack_full (§11.6.4)

e stack_empty (§I1.6.5)

e stack_top (§11.6.6)

e stack_push (§11.6.7)

e stack_pop (§I1.6.8)

of the data type stack. To be more precise, we provide for each of function stack_foo:

e an ACSL specification of stack_foo

e a C implementation of stack_foo

e a C function stack_f oo_wd@ accompanied by a an ACSL contract that expresses that the imple-
mentation of stack_foo is well-defined. Figure [I1.10]shows our methodology for the verification
of well-definition in the pop example, (=) again indicating the user-defined st ack equality.

s = t;
!Empty(s);

s = t;

/*@
requires
requires

Specification . ensures
Ll */
of pop

void stack pop wd(Stack *s, Stack *t)

{
stack _pop(s);
stack pop(t);

}

Figure 11.10.: Methodology for the verification of well-definition

Note that the specifications of the various functions will explicitly refer to the internal state of stack. In

we will show that the interplay of these functions satisfy the stack axioms from §I1.2]

40The suffix _wd stands for well definition

232

11.6.1. The function stack_equal

The function stack_equal in the following listing is the runtime counterpart for the StackEqual
[11.8]] predicate. Note that this specifications explicitly refers to valid stacks.

/%@
requires valid: \valid(s) && StackInvariant (s);
requires valid: \valid(t) && StackInvariant (t);
assigns \nothing;
ensures equal: \result == <==> StackEqual{Here, Here} (s, t);
ensures not_equal: \result == <==> !StackEqual{Here, Here} (s, t);
*/
bool
stack_equal (const Stackx s, const Stack=* t);

Listing 11.11: Formal specification of stack_equal

The implementation of stack_equal in the next listing compares two stacks according to the same rules
of predicate StackEqual.

bool
stack_equal (const Stackx s, const Stackx* t)
{
return (s->size == t->size) && equal (s->obj, s->size, t->obj);

}

Listing 11.12: Implementation of stack_equal

233

11.6.2. The function stack_init

The following listing shows the specification of stack_init. Note that our specification of the post-
conditions contains a redundancy because a stack is empty if and only if its size is zero.

/%@
requires valid: \valid(s);
requires capacity: 0 < capacity;
requires storage: \valid(storage + (0..capacity-1));
requires sep: \separated(s, storage + (0..capacity-1));
assigns s—->o0bj, s—->capacity, s->size;
ensures valid: \valid(s);
ensures capacity: StackCapacity(s) == capacity;
ensures storage: StackStorage (s) == storage;
ensures invariant: StackInvariant(s);
ensures empty: StackEmpty (s) ;
*/
void
stack_init (Stack* s, wvalue_typex storage, size_type capacity);

Listing 11.13: Formal specification of stack_init

The next listing shows the implementation of stack_init. It simply initializes obj and capacity
with the respective value of the array and sets the field size to zero.

void
stack_init (Stack* s, walue_typex storage, size_type capacity)
{

s—>obj = storage;
s—>capacity = capacity;
s—>size = Ou;

Listing 11.14: Implementation of stack_init

234

11.6.3. The function stack_ size

The function stack_size is the runtime version of the logic function StackSize [[I1.6]. The specifi-
cation of stack_size in the following listing simply states that stack_size produces the same result
as StackSize.

/%@
requires valid: \valid(s) && StackInvariant(s);
assigns \nothing;
ensures size: \result == StackSize(s);

*/

size_type

stack_size (const Stackx s);

Listing 11.15: Formal specification of stack_size

As in the definition of the logic function StackSize the implementation of stack_size in the next
listing simply returns the field size.

size_type
stack_size (const Stackx s)
{
return s->size;
}

Listing 11.16: Implementation of stack_size

The next listing shows our check whether stack_size is well-defined. Since stack_size neither
modifies the state of its st ack argument nor that of any global variable we only check whether it produces
the same result for equal stacks. Note that we simply may use operator == to compare integers since we
didn’t introduce a nontrivial equivalence relation on that data type.

/%@
requires valid: \valid(s) && StackInvariant (s);
requires valid: \valid(t) && StackInvariant (t);

requires equal: StackEqual {Here, Here} (s, t);
assigns \nothing;
ensures equal: \result;

*/

bool

stack_size_wd(const Stack* s, const Stackx* t)

{
return stack_size(s) == stack_size(t);
}

Listing 11.17: Implementation of stack_size_wd

235

11.6.4. The function stack_ full

The function stack_full is the runtime version of the predicate StackFull [[I1.6].

/*@
requires valid: \valid(s) && StackInvariant (s);
assigns \nothing;
ensures full: \result == 1 <==> StackFull(s);
ensures not_full: \result == 0 <==> !StackFull(s);
*/
bool
stack_full (const Stackx* s);

Listing 11.18: Formal specification of stack_full

As in the definition of the predicate StackFull the implementation of stack_full in the next listing
simply checks whether the size of the stack equals its capacity.

bool
stack_full (const Stackx s)
{

return stack_size(s) == s->capacity;

}

Listing 11.19: Implementation of stack_full

Note that with our definition of stack equality (§11.5)) there can be equal stack with different capacities.
As a consequence, there can are equal stacks where one is full while the other is not. In other words,
stack_full is not well-defined!

236

11.6.5. The function stack_empty

The function stack_empty is the runtime version of the predicate StackEmpty [T1.6].

/%@
requires valid: \valid(s) && StackInvariant (s);
assigns \nothing;
ensures empty: \result == <==> StackEmpty(s);
ensures not_empty: \result == 0 <==> !StackEmpty(s);
*/
bool
stack_empty (const Stackx s);

Listing 11.20: Formal specification of stack_empty

As in the definition of the predicate StackEmpty the implementation of stack_empty in the next
listing simply checks whether the size of the stack is zero.

bool
stack_empty (const Stackx s)

{
return stack_size(s) == 0u;
}

Listing 11.21: Implementation of stack_empty

The following listing shows our check whether stack_empty is well-defined.

/%@
requires valid: \valid(s) && StackInvariant (s);
requires valid: \valid(t) && StackInvariant (t);
requires equal: StackEqual{Here,Here} (s, t);

assigns \nothing;
ensures equal: \result;
*/
bool

stack_empty_wd (const Stackx s, const Stackx t)

{
return stack_empty(s) == stack_empty(t);
}

Listing 11.22: Implementation of stack_empty_wd

237

11.6.6. The function stack_top

The function st ack_top is the runtime version of the logic function StackTop [[IL.6]. The specification
of stack_top in the following listing simply states that for non-empty stacks stack_top produces the
same result as StackTop which in turn just returns the element obj[size-1] of stack.

/*@
requires valid: \valid(s) && StackInvariant (s);
assigns \nothing;
ensures top: !'StackEmpty (s) ==> \result == StackTop (s);
*/
value_type
stack_top (const Stackx s);

Listing 11.23: Formal specification of stack_top

For a non-empty stack the implementation of stack_top in the next listing simply returns the element
obj[size—-1]. Note that our implementation of stack_top does not crash when it is applied to an
empty stack. In this case we return the first element of the internal, non-empty array ob j. This is consistent
with our specification of st ack_top which only refers to non-empty stacks.

value_type
stack_top (const Stackx s)
{
if (!stack_empty(s)) {
return s->obj[s->size - 1lu]l;
}
else {
return s->obj[0u];
}

Listing 11.24: Implementation of stack_top

The next listing shows our check whether st ack_top is well-defined. Since our axioms in §@] did not
impose any behavior on the behavior of stack_top for empty stacks, we prove the well-definition of
stack_top only for nonempty stacks.

/*@
requires valid: \valid(s) && StackInvariant (s) && !StackEmpty(s);
requires valid: \valid(t) && StackInvariant (t) && !StackEmpty(t);

requires equal: StackEqual {Here, Here} (s, t);
assigns \nothing;
ensures equal: \result;

*/

bool

stack_top_wd (const Stack* s, const Stackx t)
{

return stack_top(s) == stack_top(t);
}

Listing 11.25: Implementation of stack_top_wd

238

11.6.7. The function stack_push

The following listing shows the specification of the function stack_push. In accordance with Ax-
iom (T1.3), stack_push is supposed to increase the number of elements of a non-full stack by one.
The specification also demands that the value that is pushed on a non-full stack becomes the top element of
the resulting stack (see Axiom (I1.6)).

/%@
requires valid: \valid(s) && StackInvariant (s);
assigns s—>size, s->obj[s—->size];

behavior full:

assumes StackFull (s);

assigns \nothing;

ensures valid: \valid(s) && StackInvariant (s);
ensures full: StackFull (s);

ensures unchanged: StackUnchanged{0Old, Here} (s);

behavior not_full:

assumes !'StackFull (s);

assigns s—>size;

assigns s—>obj[s->size];

ensures valid: \valid(s) && StackInvariant (s);

ensures size: StackSize (s) == StackSize{0ld} (s) + 1;
ensures top: StackTop(s) == v;

ensures storage: StackStorage (s) == StackStorage{Old} (s);
ensures capacity: StackCapacity(s) == StackCapacity{0ld} (s);

ensures not_empty: !StackEmpty(s);
ensures unchanged: Unchanged{0Old,Here} (StackStorage(s), StackSize{0ld} (s));

complete behaviors;
disjoint behaviors;
*/
void
stack_push (Stackx s, wvalue_type V) ;

Listing 11.26: Formal specification of stack_push

The implementation of stack_push is shown in the next listing. It checks whether its argument is a
non-full stack in which case it increases the field size by one but only after it has assigned the function
argument to the element obj [size].

void
stack_push (Stackx s, wvalue_type v)
{
if (!stack_full(s)) {
//@ assert not_full: s->size < s—>capacity;
s=>obj[s—->size++] = v;

Listing 11.27: Implementation of stack_push

The following listing shows our formalization of the well-definition for stack_push. The function
stack_push does not return a value but rather modifies its argument. For the well-definition of stack_push
we therefore check whether it turns equal stacks into equal stacks.

239

/%@

requires valid: \valid(s) && StackInvariant (s);
requires valid: \valid(t) && StackInvariant (t);
requires equal: StackEqual {Here, Here} (s, t);
requires not_full: !StackFull (s) && !StackFull(t);
requires sep: StackSeparated(s, t);
assigns s—->size, s->obj[s->size];
assigns t->size, t->objlt->size];
ensures valid: StackInvariant (s) && StackInvariant (t);
ensures equal: StackEqual {Here, Here} (s, t);

*/

void

stack_push_wd(Stackx s, Stackx t, value_type v)
{

stack_push (s, v);

stack_push(t, v);

//@ assert top: StackTop (s) == v;
//@ assert top: StackTop (t) == v;
//Q@ assert equal: Equal{Here, Here} (StackStorage(s), StackSize{Pre} (s),

StackStorage (t));

Listing 11.28: Implementation of stack_push_wd

However, equality of the stack arguments is not sufficient for a proof that stack_push is well-defined.
We must also ensure that there is no aliasing between the two stacks. Otherwise modifying one stack could
modify the other stack in unexpected ways. In order to express that there is no aliasing between two stacks,
we use the predicate StackSeparated [I1.7].

In order to achieve an automatic verification of stack_push_wd [I1.28] we have added the assertions
top and equal and introduced the lemma StackPush_Equal [[[1.29] in the following listing.

/%@
axiomatic StackLemmas
{
lemma StackPush_Equal{K,L}:
\forall Stack =*s, =*t;

StackEqual{K,K} (s, t) ==>
StackSize{L} (s) == StackSize{K} (s) + 1 ==>
StackSize{L} (s) == StackSize{L} (t) ==>
StackTop{L} (s) == StackTop{L} (t) ==>

Equal{L,L} (StackStorage{L} (s),
StackSize{K} (s),
StackStorage{L} (t)) ==>
StackEqual{L,L} (s, t);

*/

Listing 11.29: The logic definition(s) StackLemmas

240

11.6.8. The function stack_pop

The following listing shows the specification of the function st ack_pop. In accordance with Axiom (T1.7),
stack_pop is supposed to reduce the number of elements in a non-empty stack by one. In addition to
the requirements imposed by the axioms, our specification demands that st ack_pop changes no memory
location if it is applied to an empty stack.

/%@
requires valid: \valid(s) && StackInvariant (s);
assigns s—->size;

ensures valid: \valid(s) && StackInvariant (s);

behavior empty:

assumes StackEmpty (s) ;
assigns \nothing;
ensures empty: StackEmpty (s);

ensures unchanged: StackUnchanged{0Old, Here} (s);

behavior not_empty:

assumes !'StackEmpty (s);

assigns s—>size;

ensures size: StackSize(s) == StackSize{0ld} (s) - 1;
ensures full: !'StackFull (s);

ensures storage: StackStorage (s) == StackStorage{0Old} (s);
ensures capacity: StackCapacity(s) == StackCapacity{01ld} (s);

ensures unchanged: Unchanged{0Old,Here} (StackStorage(s), StackSize(s));

complete behaviors;
disjoint behaviors;
*/
void
stack_pop (Stack* s);

Listing 11.30: Formal specification of stack_pop

The implementation of stack_pop is shown in the next listing. It checks whether its argument is a
non-empty stack in which case it decreases the field size by one.

void
stack_pop (Stack* s)
{
if (!stack_empty(s)) {
—-—s—->size;

Listing 11.31: Implementation of stack_pop

241

The next listing shows our check whether stack_pop is well-defined. As in the case of stack_push
we use the predicate StackSeparated [[I1.7] in order to express that there is no aliasing between the
two stack arguments.

/*@
requires valid: \valid(s) && StackInvariant (s);
requires valid: \valid(t) && StackInvariant (t);
requires equal: StackEqual{Here,Here} (s, t);

requires sep: StackSeparated(s, t);

assigns s—>size;

assigns t->size;

ensures valid: StackInvariant (s);

ensures valid: StackInvariant (t);

ensures equal: StackEqual {Here, Here} (s, t);
x/
void

stack_pop_wd (Stackx s, Stack* t)
{

stack_pop (s);

stack_pop (t);

Listing 11.32: Implementation of stack_pop_wd

242

11.7. Verification of stack axioms

In this section we show that the stack functions defined in satisfy the stack Axioms of

The annotated code has been obtained from the axioms in a fully systematical way. In order to transform a
condition equation p — s = f:

e Generate a clause requires p.

Generate a clause requires x1 == ... == xn for each variable x with n occurrences in s
and .

Change the i-th occurrence of x to x1 in s and ¢.

Translate both terms s and ¢ to reversed polish notation.

Generate a clause ensures yl1 == y2, where y1 and y2 denote the value corresponding to the
translated s and ¢, respectively.

This makes it easy to implement a tool that does the translation automatically, but yields a slightly longer
contract in our example.

11.7.1. Resetting a stack

Our formulation in ACSL /C of the axiom in Equation (T1.1]) is shown in the following listing.

/%@
requires valid: \valid(s);
requires valid: \valid(a + (0..n-1));

requires sep: \separated(s, a + (0..n-1));
requires pos: 0 < nj;
assigns s—>0bj, s—->capacity, s->size;
ensures size: \result == 0;
ensures valid: StackInvariant (s);

*/

size_type
axiom_size_of_init (Stackx s, value_typex a, size_type n)
{

stack_init (s, a, n);

return stack_size(s);

}

Listing 11.33: Implementation of axiom_size_of_init

243

11.7.2. Adding an element to a stack

Axioms (I1.5) and (T1.6) describe the behavior of a stack when an element is added.

/%@
requires valid: \valid(s) && StackInvariant (s);
requires not_full: !StackFull(s);
assigns s->size, s->obj[s->size];
ensures size: \result == StackSize{0ld} (s) + 1;
ensures valid: StackInvariant (s);

x/

size_type
axiom_size_of_push(Stackx s, value_type v)
{

stack_push (s, v);

return stack_size(s);

Listing 11.34: Implementation of axiom_size_of_push

Except for the assigns clauses, the ACSL specification refers only to encapsulating logic functions and
predicates defined in If ACSL would provide a means to define encapsulating logic functions re-
turning also sets of memory locations, the expressions in assigns clauses would not need to refer to the
details of our stack implementation As an alternative, assigns clauses could be omitted, as long as
the proofs are only used to convince a human reader.

/*@
requires valid: \valid(s) && StackInvariant (s);
requires not_full: !StackFull (s);
assigns s->size, s->obj[s->size];
ensures top: \result == v;

x/

value_type
axiom_top_of_push(Stackx s, value_type V)
{

stack_push (s, v);

return stack_top(s);

}

Listing 11.35: Implementation of axiom_top_of_push

“Tn 14} §2.3.4], a powerful sublanguage to build memory location set expressions is defined. We will explore its capabilities in
a later version.

244

11.7.3. Removing an element from a stack

This section shows the Listings for Axioms[T1.7}[TT.8]and[TT.9|which describe the behavior of a stack when
an element is removed.

/%@
requires valid: \valid(s) && StackInvariant (s);
requires empty: !'StackEmpty (s) ;
assigns s->size;
ensures size: \result == StackSize{0ld} (s) - 1;
*/

size_type
axiom_size_of_pop(Stackx* s)
{

stack_pop (s);

return stack_size(s);

Listing 11.36: Implementation of axiom_size_of_pop

/%@
requires valid: \valid(s) && StackInvariant (s);
requires not_full: !StackFull(s);
assigns s->size, s->obj[s->size];
ensures equal: StackEqual {0ld, Here} (s, s);

*/

void

axiom_pop_of_push(Stack* s, wvalue_type V)
{

stack_push (s, v);

stack_pop(s);

Listing 11.37: Implementation of axiom_pop_of_push

/*@
requires valid: \valid(s) && StackInvariant (s);
requires not_empty: !StackEmpty(s);
assigns s—>size, s->obj[s->size-1];
ensures equal: StackEqual{0Old, Here} (s, s);

*/

void

axiom_push_of_pop_top (Stackx s)

{
const value_type v = stack_top(s);
stack_pop(s);
stack_push (s, v);

Listing 11.38: Implementation of axiom_push_of_pop_top

245

Part VI.

Appendices

247

A. Results of formal verification with Frama-C

In this chapter we introduce the formal verification tools used in this tutorial. We will afterwards present to
what extent the examples from Chapters @HIT|could be deductively verified.

Within Frama-C, the Frama-C/WP plug-in [1] enables deductive verification of C programs that have been
annotated with the ANSI/ISO-C Specification Language (ACSL) [[8]. The Frama-C/WP plug-in uses weak-
est precondition computations to generate proof obligations. To formally prove the ACSL properties, these
proof obligations can be submitted to external automatic theorem provers or interactive proof assistants.
For the precise settings for Frama-C/WP we employed in this release we refer to Chapter I}

In §A.2]and §A.3| we show detailed verification results for different scenarios how the provers are called.

A.1. Verification settings

Here are the most important options of Frama-C that we used in for almost all functions@

—pp—annot

—no—-unicode

—wp

-wp—-rte

—-wp—model Typed
-warn-unsigned-overflow
-warn-unsigned-downcast
-wp—-timeout 1
-wp-cog-timeout 5

Note that we use a relative small timeout value for the provers. For a couple of algorithms, however, we
had to use a larger timeout.

For the precise versions of the employed provers we refer to Table[I.T|on Page[3]

“For the my_1lrand48 () function in shuffle, the option -warn-unsigned-overflow is disabled as explained in

AL

249

A.2. Verification results (sequential)

In the sequential verification scenario each proof obligation is processed by a set of automatic and interac-
tive theorem provers that are arranged as a pipeFf] This means that each prover passes on to the next prover
only those proof obligations that it could not verify. This verification pipeline is shown in Figure[A.T]

o N
e

¥ N (S

_—

N /
N 4

Figure A.1.: Verification pipeline of automatic and interactive theorem provers

For each algorithm we list in the following tables the number of generated verification conditions (VC), the
percentage of proven verification conditions, and the number of VC proven by each prover. The value zero
is indicated by an empty cell. The tables show that all verification conditions could be verified. Please note
that the number of proven verification conditions do not reflect on the quality/strength of the individual
provers. The reason for that is that we “pipe” each verification condition sequentially through a list of

provers (see Figure[A.T).

Algorithm Verification Individual Provers
Conditions QD AE Z3 C4 CQ

find 41| | 25/25 (100%) | 16 9

find2 42 | 27/27 (100%) | 14 13 :

find3 43 | 31/31 (100%) | 8 19 4

finda 434 | 33/33 (100%) | 11 18 4

find5 $434 | 22/22 (100%) | 5 13 4

find_if_not 4 | 37/37 (100%) | 8 23 6

find first _of §45 |41/41 (100%) | 30 11

adjacent_find §4.6] |28/28 (100%) | 16 12

mismatch 471 |26/26 (100%) | 16 10

equal 471 7/ 7 (100%)| 6 1

search §48 | 44/44 (100%) | 32 12

search_n 49 |93/93 (100%) | 61 32

find_end §410) | 34/34 (100%) | 21 13 - - -

count 411 | 34/34 (100%) | 7 20 - - 7

count?2 $412 | 42742 (100%)| 7 25 - - 10

Table A.2.: Results for non-mutating algorithms

438equential processing is achieved by passing the option —wp-par 1 to Frama-C/WP.

250

Algorithm

Verification

Individual Provers

Conditions QD AE Z7Z3 C4 CQ
clamp 28/28 (100%) | 22 6
make_pair 4/ 4 (100%) | 4 .
max_element 30/30 (100%) | 19 11
max_element?2 30/30 (100%) | 18 12
max_seq 8/ 8 (100%) | 5 3
min_element 30/30 (100%) | 18 12
minmax_element 60/60 (100%) | 43 17

Table A.3.: Results for maximum and minimum algorithms

Algorithm Verification Individual Provers
Conditions QD AE Z3 C4 CQ

lower_bound 19/19 (100%) | 5 14

upper_bound 19/19 (100%) | 7 12

equal_range 22/22 (100%) | 17 5 . .
equal_range?2 70/70 (100%) | 24 39 . . 7
binary_search 10/10 (100%) | 8 2
binary_search? 12/12 (100%) | 8 4

Table A.4.: Results for binary search algorithms

Algorithm Verification Individual Provers
Conditions QD AE Z3 C4 CQ

fill §7.2 15/ 15 (100%) | 6 9

swap §7.3 8/ 8 (100%)| 5 3

swap_ranges §ﬁ 23/ 23 (100%) | 8 15

copy §75 | 16/ 16 (100%) | 6 10

copy_backward §ﬁ 17/ 17 (100%) | 7 10

reverse_Ccopy §ﬁ 18/ 18 (100%) | 5 13

reverse §7.8 24/ 24 (100%) | 5 19

rotate_copy §79 | 17/ 17 (100%) | 5 12

rotate §7.10/| 24/ 24 (100%) | 10 14

replace_copy §7.11 19/ 19 (100%) | 7 12

replace §7.12 16/ 16 (100%) | 6 10

remove_copy §7.13 24/ 24 (100%) | 9 15 . . .

remove_copy2 §7.14{ | 75/ 75 (100%) | 10 46 . 1 18

remove_copy3 §7.15/| 109/109 (100%) | 12 74 23

remove §7.16| | 104/104 (100%) | 10 70 . . 24

shuffle §7.17/| 56/ 56 (100%) | 13 34 . . 9

random_number §7.18| 33/ 33 (100%) | 19 14

Table A.5.: Results for mutating algorithms

251

Verification Individual Provers

Algorithm Conditions | QD AE 73 C4 CQ
iota 17/17 (100%) | 9 8 .
accumulate 23/23 (100%) | 6 15 . . 2
inner_product 25/25 (100%) | 6 17 . . 2
partial_sum 56/56 (100%) | 16 38 . . 2
adjacent_difference 35/35 (100%) | 11 24 . . .
partial_sum_inv 39/39 (100%) | 8 28 . . 3
adjacent_difference_inv 39/39 (100%) | 8 28 . . 3

Table A.6.: Results for numeric algorithms

Algorithm Verification Individual Provers
Conditions QD AE Z3 C4 CQ
heap_parent §9.3 11/ 11 (100%) | 3 8 .
heap_child §9.3! 38/ 38 (100%) | 7 30 - . 1
is_heap_until §94 | 34/ 34 100%)| 6 27 - - 1
is_heap §9.5! 19/ 19 (100%) | 5 13 . . 1
push_heap §9.7] | 117/117 (100%) | 31 73 1 1 11
pop_heap §ﬁ 134/134 (100%) | 35 86 . 2 11
make_heap §9.9 64/ 64 (100%) | 17 38 - . 9
sort_heap §9.100 | 73/ 73 (100%) | 17 44 . . 12
Table A.7.: Results for heap algorithms
Algorithm Verification Individual Provers
Conditions QD AE Z3 C4 CQ

is_sorted §10.1 18/ 18 (100%) | 7 8 . . 3
partial_sort §10.2| | 146/146 (100%) | 39 88 . . 19
bubble_sort §10.3]| 85/ 85 (100%) | 22 51 . . 12
selection_sort §104|| 67/ 67 (100%) | 15 36 . . 16
insertion_sort §10.5 81/ 81 (100%) | 18 50 . . 13
heap_sort §10.6/ | 45/ 45 (100%) | 8 28 . . 9
merge §10.7 | 111/111 (100%) | 30 72 3 1 5

Table A.8.: Results for algorithms related to sorting

252

Algorithm Verification Individual Provers
Conditions QD AE Z3 C4 CQ

stack_equal §11.6.1)| 18/18 (100%) | 7 11

stack_init §11.6.2/ | 14/14 (100%) | 4 10

stack_size §11.6.3[| 6/ 6 (100%) | 1 5

stack_full §11.6.4 | 11/11 (100%) | 5 6

stack_empty §11.6.5/| 10/10 (100%) | 5 5

stack_top §11.6.6| | 16/16 (100%) | 6 10

stack_push §11.6.7/ | 41/41 (100%) | 25 16

stack_pop §11.6.8| | 29/29 (100%) | 17 12

Table A.9.: Results for stack functions
Algorithm Verification Individual Provers
Conditions QD AE Z3 C4 CQ

stack_size_wd §11.6.3] | 12/12 (100%) | 8 4
stack_empty_wd §11.6.5(| 12/12 (100%) | 8 4
stack_top_wd §11.6.6/| 12/12 (100%) | 8 4
stack_push_wd §11.6.7[| 15/15 (100%) | 3 12
stack_pop_wd §11.6.8 | 12/12 (100%) 6 6

Table A.10.: Results for the well-definition of the st ack functions

Algorithm

axiom_size_of_init §
axiom_size_of_push §
axiom_top_of_push 81
axiom_size_of_pop §
axiom_pop_of_push N
axiom_push_of_pop_top §

Verification Individual Provers
Conditions QD AE Z3 C4 CQ

11.7.1{ | 15/15 (100%) | 11 4

11.7.20 | 12/12 (100%) | 9 3

1.7.2/| 11/11 (100%) | 8 3

11.7.3[| 11/11 (100%) | 8 3

11.7.3[| 10/10 (100%) | 6 4

11.7.3[| 15/15 (100%) | 9 6

Table A.11.: Results for stack axioms

253

A.3. Verification results (parallel)

In the parallel verification scenario each proof obligation is first passed to Frama-C/WP’s built-in simplifier
Qed. If Qed cannot discharge a proof obligation it is submitted in parallel to all the other provers from
Table Figure depicts this arrangement of provers. This arrangement of theorem provers makes
it a little bit easier to quantify their strength.

AN
" Frama-C/Wp
l’% Why3 \\t—»\k Qed

| -

% y

' 1
J P “
| |
| |
L i
L y

Figure A.12.: Parallel execution of theorem provers

Note that in this scenario we used Frama-C/WP only for the generation and simplification of the proof
obligations. For the parallel execution we developed our own (shell) scripts that pass the proof obligations
directly through Why3 to the individual provers.

Algorithm Verification Individual Provers
Conditions QD AE Z3 C4 CQ
find 4.1 25/25 (100%) | 16 9 9 9 1
find2 4.2 27/27 (100%) | 14 13 6 13 1
find3 §E 31/31 (100%) | 8 19 13 19 5
find4 $4.3.4|33/33 (100%) | 11 18 7 18 4
find5 §4.3.4{|22/22 (100%) | 5 13 7 13 4
find_if_not 4.4 37/37 (100%) | 8 23 15 23 7
find_first_of §E 41/41 (100%) | 30 11 5 11 1
adjacent_find §4.6] |28/28 (100%) | 16 12 8 12 2
mismatch 4.7 26/26 (100%) | 16 10 7 10 1
equal 7 | 7/7 100%) | 6 1 1 1 -
search 4.8 44/44 (100%) | 32 12 9 12 1
search_n §E 93/93 (100%) | 61 32 25 27 5
find_end §4.100 | 34/34 (100%) | 21 13 7 13 1
count S4.11| | 34/34 (100%) | 7 20 16 20 8
count? S4.120 | 42/42 (100%) | 7 25 22 24 11

Table A.13.: Results for non-mutating algorithms

#We did not include the interactive theorem prover Coq in this setting.

254

Algorithm Verification Individual Provers
Conditions QD AE Z7Z3 C4 CQ
clamp 28/28 (100%) | 22 6 6 6 3
make_pair 4/ 4 (100%) | 4
max_element 30/30 (100%) | 19 11 11 11 3
max_element?2 30/30 (100%) | 18 12 9 12 1
max_seq 8/ 8 (100%) | 5 3 3 3 .
min_element 30/30 (100%) | 18 12 9 12 1
minmax_element 60/60 (100%) | 43 17 13 17 1
Table A.14.: Results for maximum and minimum algorithms
Algorithm Verification Individual Provers
Conditions QD AE Z3 C4 CQ
lower_bound 19/19 (100%) | 5 14 11 14 1
upper_bound 19/19 (100%) | 7 12 10 12
equal_range 22/22 (100%) | 17 5 2 5 .
equal_range?2 70/70 (100%) | 24 39 23 39 12
binary_search 10/10 (100%) | 8 2 1 2
binary_search? 12/12 (100%) | 8 4 1 4

Table A.15.: Results for binary search algorithms

Algorithm Verification Individual Provers

Conditions QD AE Z3 C4 CQ
fill §7.2 15/ 15 (100%) | 6 9 6 9 1
swap §7.3 8/ 8 (100%)| 5 3 3 3 .
swap_ranges §ﬁ 23/ 23 (100%) | 8 15 11 15 1
copy §75 | 16/ 16 (100%)| 6 10 8 10 1
copy_backward §ﬁ 17/ 17 (100%) | 7 10 7 10 1
reverse_copy §.7] | 18/ 18 (100%) | 5 13 11 13 2
reverse §ﬁ 24/ 24 (100%) | 5 19 15 19 2
rotate_copy §ﬁ 17/ 17 (100%) | 5 12 10 12
rotate §7.10/ | 24/ 24 (100%) | 10 14 6 13 .
replace_copy §7.11 19/ 19 (100%) | 7 12 10 12 1
replace §7.12(| 16/ 16 (100%) | 6 10 8 10 1
remove_copy §7.13|| 24/ 24 (100%) | 9 15 10 15 .
remove_copy2 §7.14[| 75/ 75 (100%) | 10 46 33 45 18
remove_copy3 §7.15/| 109/109 (100%) | 12 74 53 72 24
remove §7.16/ | 104/104 (100%) | 10 70 50 67 25
shuffle §7.17|| 56/ 56 (100%) | 13 34 24 35 9
random_number §7.18/| 33/ 33 (100%) | 19 14 13 14 1

Table A.16.: Results for mutating algorithms

255

Verification Individual Provers

Algorithm Conditions | QD AE 73 C4 CQ
iota 17/17 (100%) | 9 8 7 8
accumulate 23/23 (100%) | 6 15 11 15

25/25 (100%) | 6 17 15 17
56/56 (100%) | 16 38 24 35
35/35 (100%) | 11 24 21 24
39/39 (100%) | 8 28 16 28
39/39 (100%) | 8 28 16 28

inner_product
partial_sum
adjacent_difference
partial_sum_inv

AN — A~ WA

adjacent_difference_inv

Table A.17.: Results for numeric algorithms

Algorithm Verification Individual Provers
g Conditions QD AE Z3 C4 CQ
heap_parent §9.3 11/ 11 (100%) | 3 8 8 8 1
heap_child §9.3 38/ 38 (100%) | 7 30 27 30 2
is_heap_until §9.4 34/ 34 (100%) | 6 27 23 26 5
is_heap §9.5 19/ 19 (100%) | 5 13 10 13 2
push_heap §9.7| | 117/117 (100%) | 31 73 50 77 14
pop_heap §9.8| | 134/134 (100%) | 35 86 58 90 16
make_heap §9.9 64/ 64 (100%) | 17 38 30 39 10
sort_heap §9.10[| 73/ 73 (100%) | 17 44 33 45 18
Table A.18.: Results for heap algorithms
Algorithm Verification Individual Provers

Conditions QD AE Z3 C4 CQ

10.1) | 18/ 18 (100%) | 7 8 5 8 4
10.2] | 146/146 (100%) | 39 88 56 88 22
103[| 85/ 8 (100%) | 22 51 39 46 18
104/ | 67/ 67 (100%) | 15 36 33 35 17
10.5(| 81/ 81 (100%) | 18 50 31 46 16
10.6/ | 45/ 45 (100%) | 8 28 22 29 10
107} 111/111 (100%) | 30 72 43 72 17

is_sorted
partial_sort
bubble_sort
selection_sort
insertion_sort
heap_sort
merge

LR LR LN U

Table A.19.: Results for algorithms related to sorting

256

Algorithm Verification Individual Provers
Conditions QD AE Z3 C4 CQ
stack_equal §11.6.1)| 18/18 (100%) | 7 117 11
stack_init §11.6.2/ | 14/14 (100%) | 4 10 8 10 .
stack_size §11.6.3/| 6/ 6 (100%) | 1 5 3 5 1
stack_full §11.6.4 | 11/11 (100%) | 5 6 4 6
stack_empty §11.6.5(| 10/10 (100%) | 5 5 3 5 .
stack_top §11.6.6/ | 16/16 (100%) | 6 10 8 10 1
stack_push §11.6.7/ | 41/41 (100%) | 25 16 14 16
stack_pop §11.6.8/ | 29/29 (100%) | 17 12 10 12
Table A.20.: Results for st ack functions
Algorithm Verification Individual Provers
Conditions QD AE Z3 C4 CQ
stack_size_wd §11.6.31| 12/12 (100%) | 8 4 2 4
stack_empty_wd §11.6.5(| 12/12 (100%) | 8 4 2 4
stack_top_wd §11.6.6/| 12/12 (100%) | 8 4 1 4
stack_push_wd §11.6.7[| 15/15 (100%) | 3 12 6 11
stack_pop_wd §11.6.8/| 12/12 (100%) | 6 6 3 6

Table A.21.: Results for the well-definition of the st ack functions

Algorithm

Verification
Conditions

Individual Provers

QD AE 73 C4 CQ

axiom_size_of init

axiom_size_of_ push
axiom_top_of_push
axiom_size_of_ pop
axiom_pop_of_push
axiom_push_of_ pop_top

11.7.1

11.7.2

11.7.2

11.7.3

11.7.3

§
§
§
§
§
§

11.7.3

15/15 (100%)
12/12 (100%)
11/11 (100%)
11/11 (100%)
10/10 (100%)
15/15 (100%)

[u—
[um—

O O\ 0 0 \O

Table A.22.: Results for stack axioms

1

AN AW W WA
AN ===
AN AW W WA

257

B. Changes in previous releases

This chapter describes the changes in previous versions of this document. For the most recent changes we
refer to Chapter I}

The version numbers of this document are related to the versioning of Frama-C [2]]. The versions of
Frama-C are named consecutively after the elements of the periodic table. Therefore, our version number-
ing (X.Y.Z) are constructed as follows:

X the major number of our tutorial is the atomic numbe of the chemical element after which Frama-C
is named.

Y the Frama-C subrelease number

Z the subrelease number of this tutorial

B.1. New in Version 21.1.1 (Scandium, September 2020)

This release is intended for Frama-C [2} v21.1] issued in June 2020. We are also using for this release the
Why3 platform [3| v1.3.3] and the provers listed in the following table.

Prover Type Version | Reference
Alt-Ergo | automatic 2.3.3 [4]]
CVvC4 automatic 1.7 [15]
Z3 automatic 4.8.6 1)
Coq interactive | 8.9.1 (71

Table B.1.: Information on automatic and interactive theorem provers

Note that all automatic provers use the Why3 interface. However, the interactive prover Coq still relies on
the native interface provided by Frama-C/WP.

New examples
None.
Improvements
e general changes
— disable CVCS3 and switch back to Z3 4.8.6
— refactor Coq proofs

— reduce general timeout to 1s (Coq timeout 5s)

$Seehttp://en.wikipedia.org/wiki/Atomic_number

259

http://en.wikipedia.org/wiki/Atomic_number

e improve loop invariants of remove_copy3 and remove to reduce timeout

e add lemma AdjacentDifference_InverseBounds to reduce timeout of
adjacent_difference_inv robust

e add lemmas Count_Single, Count_Single_Bounds, Count_Single_Shift and
Count_Cut

e heap algorithms

— rework push_heap and add more assertions to reduce timeout

rework pop_heap and finally verify property reorder

— add predicates ArrayUpdate, MultisetParity, MultisetUpdate and support-
ing lemmas

— remove predicate PushHeapAdjust and accompanying lemmas

— rename heap_child_max to heap_child and improve both contract and implemen-
tation

— add lemma HeapParent_Zero

e sorting and reordering

rework contract and annotations of merge

— no need more for option ~wp-split

— add lemma WeaklyIncreasing_Shrink

— add lemma WeaklyIncreasing_Unchanged

— add more annotations to bubble_sort to reduce timeout

— add lemma MultisetSwap_FrontMiddle
Open issues
o The contract of algorithm merge does not handle the reordering of the involved arrays.

Renaming of ACSL definitions

We sometimes rename predicates, logic functions or lemmas in order to make them more precise or
make the naming more consistent.

e rename suffix _Read to _Unchanged in names of lemmas

Old name New name

EqualRanges Equal

Equal_Increasing Increasing_Equal

Equal_Count Count_Equal

MultisetUnchanged MultisetReorder
MultisetUnchanged_Union | MultisetReorder_DisjointUnion
Reorder_ Match MultisetReorder_SomeEqual
Reorder_ LowerBound MultisetReorder LowerBound
Reorder_ LowerBounds MultisetReorder PartitionlLowerBound
Reorder_ UpperBound MultisetReorder_UpperBound
SwappedInside ArraySwap

SwappedInside_Reorder MultisetSwap_Middle

260

B.2. New in Version 21.1.0 (Scandium, July 2020)

This release is intended for Frama-C [2| v21.1] issued in June 2020. We are also using for this release the
Why3 platform [3], v1.3.1] and the provers listed in the following table.

Prover Type Version | Reference
Alt-Ergo | automatic 232 [4]]
CvC4 automatic 1.7 1151
CVC3 automatic 2.4.1 1301
Z3 automatic 4.8.8 (el
Coq interactive 8.9.1 1171

Table B.2.: Information on automatic and interactive theorem provers

Note that all automatic provers use the Why3 interface. However, the interactive prover Coq still relies on
the native interface provided by Frama-C/WP.

New examples

None.

Improvements

Improve many code annotations in order to maintain the verification rate and to reduce timeout

values.

Use predicate WeaklyIncreasing instead of Increasing in the assertions and invariants
of sorting algorithms. This allows the removal of lemma IncreasingUpperBound.

Add Coq to parallel verification

Replace an ACSL lemma on integer division by a Coq lemma in driver.

remove_copy and remove

— Remove logic helper function NextNotEqual for RemovePartition which served

as a workaround in Frama-C 20.

— Remove lemma RemovePartition_StrictlyIncreasing.

— Make the definition of predicate Remove more flexible.

— Remove lemma Remove_Update.

heap algorithms

— Simplify definition of predicates MultisetRetainRest and MultisetMinus.

— Add predicate PushHeapAdjust.

— Add lemmas PushHeapAdjust_Init and PushHeapAdjust_Finish.

— Rename lemma MultisetPushHeapRetain to PushHeapAdjust_Retain.

— Add predicate HeapCompatible and lemmas Heap_Shrink, Heap_Unchanged

and Heap_Update.

— Improve annotations of push_heap and pop_heap.

261

— Remove predicate HeapChildMax and simplify the contract of heap_child_max.
e Remove lemma SwappedInside_Preserve which was of limited usefulness.

e Addlemmas Accumulate_Init,AccumulateBounds_Readand Accumulate_ Read_Shrink
, which were suggested by Allan Blanchard, in to simplify the verification of partial_sum
and adjacent_difference_inv.

e Add lemmas Unchanged_Symmetric and MultisetUnchanged_Symmetric.
Open issues The following algorithms and/or lemmas are not completely verified

e pop_heap

e merge

B.3. New in Version 20.0.2 (Calcium, April 2020)

This release is intended for Frama-C [2} v20.0] issued in December 2019. We are also using for this release
the Why3 platform [J3 v1.2.1] and the provers listed in the following table.

Prover Type Version | Reference
Alt-Ergo | automatic 2.3.2 (4]
CVC4 | automatic 1.6 (5]
CVvC3 automatic 2.4.1 [130]
Z3 automatic 4.8.6 (61
Coq interactive 8.9.1 7]

Table B.3.: Information on automatic and interactive theorem provers

Note that all automatic provers use the Why3 interface. However, the interactive prover Coq still relies on
the native interface provided by Frama-C/WP.

New examples

e Add examples £ind4 and £ind5 that verify the equivalence of the contracts of £ind2 and
find3.

o Addexample find_if_not.

Improvements

e Add indices for examples and logic definitions.

e Re-add results of running all provers in parallel. Thanks to Allan Blanchard for explaining how
Frama-C/WP’s session mechanism can be used in the implementation.

e Fix a ghost label in partial_sort. Thanks to Virgile Prevosto for pointing out stricter
checks in upcoming releases of Frama-C.

e Reduce very long verification times of several examples.
— Add assertion unchanged to empty else branch of remove_copy3.

— Add assertion reorder to empty else branch of shuffle.

262

— Rewrite assertion update of remove.
— Add another assertion heap to push_heap.

e Remove chapter on unique_copy because on its reliance on axioms. Moreover, the main
ideas are already extensively discussed in the sections on remove_copy and remove.

o Verify properties of operator < within example clamp.
e Improve admitted Coq proof of Reorder_Match.

o Fix misplaced arrow in figure of equal_range algorithm
Open issues The following algorithms and/or lemmas are not completely verified

e pop_heap (property reorder)
e merge (property reorder)

e Reorder_ Match

B.4. New in Version 20.0.1 (Calcium, March 2020)

This release is intended for Frama-C [2}, v20.0] issued in December 2019. We are also using for this release
the Why3 platform [3], v1.2.1] and the provers listed in the following table.

Prover Type Version | Reference
Alt-Ergo | automatic 2.3.1 [4]]
CVC4 | automatic 1.6 (51
CV(Cs automatic 2.4.1 [130]
Z3 automatic 4.8.6 (o[
Coq interactive 8.9.1 1171

Table B.4.: Information on automatic and interactive theorem provers

Note that all automatic provers use the Why3 interface. However, the interactive prover Coq still relies on
the native interface provided by Frama-C/WP.

New examples
e add a third version of £ind that is specified using the new logic function Find

Improvements

e improve text in many places
e improve specification of remove_copy and remove

— provide an explicit definition of RemovePartition that allows to replace axioms by
lemmas

— rename predicate ConstantRange to A11Equal and add its negation SomeNotEqual

— add logic functions CountNotEqual and FindNotEqual

263

o place all logic definitions in axiomat ic blocks to better control generated names

o make names of ACSL predicates, functions and lemmas more uniform and place them together
in files where appropriate

e among the renamed ACSL entities are

rename predicate HasValue to SomeEqual and add its negation NoneEqual

rename lemma HasValueImpliesPositiveCount to SomeEqualCount

rename lemma PositiveCountImpliesHasValue to Count_SomeEqual

rename RotatePreservesStrictLowerBoundtoCircularShift_StrictLowerBound

rename RotateImpliesMultisetUnchangedtoCircularShiftMultisetUnchanged

Open issues
The following algorithms and/or lemmas are not completely verified
e pop_heap

e Reorder_ Match

B.5. New in Version 20.0.0 (Calcium, December 2019)

Aside from the above-mentioned version of Frama-C we are using for this release the Why3 platform [3|
v1.2.1] and the provers listed in the following table. Note that all automatic provers are use the Why3
interface. In other words, we do not use anymore the native interface for Alt-Ergo.

Prover Type Version | Reference
Alt-Ergo | automatic 2.3.0 [4]]
CVC4 | automatic 1.6 (51
CVvC3 automatic 2.4.1 [130]
Z3 automatic 4.8.6 (el
Coq interactive 8.9.1 7]

Table B.5.: Information on automatic and interactive theorem provers

New examples
e add bubble_sort

Improvements

e remove Why3 and Alt-Ergo lemmas from driver
e switch from memory model *Typed+Ref’ to "Typed’
o the E theorem prover is not yet supported by this version of Frama-C

e no results on parallel verification are reported in this release

264

e rewrite random_shuffleto shuffle
— adapt signature of random_number
— add auxiliary function random_init
e replace, where applicable, ghost labels by loop labels or statement labels

e remove lemma SwapImpliesMultisetUnchanged by using predicate SwappedInside
and its related lemmas

e improve specification and verification rate of numeric algorithms

resolve overloaded version of Accumulate into AccumulateDefault

resolve overloaded version of AccumulateBounds into AccumulateDefaultBounds

improve definition of predicate PartialSum

add lemmas Difference Zeroand Difference_ Next

add predicate DefaultBounds

e add assigns in behaviors of maxmin and non-mutating algorithms
— find, find2, find_first_of,adjacent_find,mismatch, search, find_end
— max_element,max_element2,min_element, minmax_element

e rename predicate Sorted to Increasing; also rename related logic names

rename EqualRangesPreservesSortedm— EqualRangesPreservesIncreasing

— rename SortedUpperBound — IncreasingUpperBound

— rename WeaklySortedAddElement i WeaklyIncreasingAddElement

— rename WeaklySortedShift —» WeaklyIncreasingShift

— rename EqualRangesWeaklySorted = EqualRangesWeaklyIncreasing
— rename WeaklySortedJoin = WeaklyIncreasingJoin

— rename WeaklySortedLemmas — WeaklyIncreasingLemmas

— rename SortedIFFWeaklySorted IncreasingIFFWeaklyIncreasing

— rename SortedImpliesWeaklySortedr IncreasingImpliesWeaklyIncreasing

— rename WeaklySortedImpliesSorted WeaklyIncreasingImpliesIncreasing

— rename WeaklySorted — WeaklyIncreasing

rename SortedShift — Increasing_Shift

e remove lemma SortedDownIsHeap

Open issues

The following algorithms and/or lemmas are not completely verified

265

adjacent_difference_inv
pop_heap
random_number

ReorderImpliesMatch

B.6. New in Version 19.1.0 (Potassium, October 2019)

This release is intended for Frama-C 19.1 (Potassium), issued in September 2019. [2]

Aside from the above-mentioned version of Frama-C we are using for this release the Why3 platform [3}
v1.2.0] and the provers listed in the following table. Note that all automatic provers are use the Why3
interface. In other words, we do not use anymore the native interface for Alt-Ergo.

Prover Type Version | Reference
Alt-Ergo | automatic 2.3.0 4]
CVC4 | automatic 1.6 (5]
CV(Cs3 automatic 2.4.1 [1301
Z3 automatic 4.8.6 (el
E automatic 2.3 [131]
Coq interactive 8.9.1 (7]

Table B.6.: Information on automatic and interactive theorem provers

Improvements

Rename arguments of search and £ind_end and improve also the description of these al-
gorithms.

Rename and reorder arguments of search_n, make the verification more robust and improve
its description.

Make verification of property size of remove_copy2 more robust.

Explain role of lemma RemoveImpliesNotHasValue in remove_copy3 and remove.
Simplify definition of RemoveSize and RemovePartition.

Make verification of property reorder of partial_sort more robust.

Strengthen precondition of replace_copy.

Rename lemma random_number_modulo into RandomNumberModulo.

Differentiate between properties unique and solitary for unique_copy examples.
Simplify the implementation of i s_heap by calling the new function is_heap_until.
Replace remaining instances of label Pre in contracts by O1d.

Unify use of Unchanged predicate for mutating algorithms.

New examples

266

Add the algorithm clamp which “clips” a value between a pair of boundary values.

Add the algorithm minmax_element and improve description of other algorithms related to
finding minimum and maximum values.

Add new example is_heap_until that generalizes is_heap.

The following examples are not new since they were implicitly used as helper functions for
other examples. They are now explicitly listed as examples.

make_pair

random_number

heap_parent

heap_child_max (formerly known as heap_maximum_child

Open issues

The following algorithms and/or lemmas are not completely verified

e adjacent_difference_inv
e partial_sum_inv
e pop_heap

e ReorderImpliesMatch

B.7. New in Version 19.0.0 (Potassium, June 2019)

e Structure of document
— The document is now structured into several parts.
— The chapter on classic sorting algorithms has been merged into the chapter on sorting.
— The various variants of unique_copy are now grouped into a separate chapter.

¢ Fix various inconsistencies

— Change the return types of the logic functions Accumulate, Difference, Capacity,
Size, Top from bounded one (e.g., value_type, size_type) to integer. A combination
of bounded type for a logic function with an arithmetic operations in the logical definitions
may lead to inconsistency. This fixes the inconsistencies in the accumulate, stack and
stack_wd examples.

— Fix an inconsistency in DifferenceRead axiom: restriction on the array size added to
premises.

e Various improvements

— An important change is the rewriting of the implicit, axiomatic definitions of Accumulate,
Count, Difference, InnerProduct and UniqueSize logic functions to explicit, re-
cursive ones. Accordingly, all axioms in the respective examples have been rewritten as lemmas.

— Generalize CountSectionMonotonic, UnchangedSection lemmas: remove restric-
tion on lower bound for the range.

267

Fix typo in postcondition of £ind.

Rewrite specifications of remove_copy and remove examples.

Rename predicate RemoveCount to RemoveSize.

Gather all versions of MultisetRetainRest in section on push_heap.

Add another figure to highlight simple contract for unique_copy.

Adapt Coq proofs to the fact that the Z scope is not available by default.

o New examples
— Add count2 example with an inductive predicate instead of a logic function in count.
— Add merge example.

o Infrastructure

— Travis-CI configuration for the GitHub repository added as an illustrative example of how the
verification results could be reproduced.

— Add support for Frama-C/AstraVer plugin.

B.8. New in Version 18.0.0 (Argon, December 2018)

e Replace the links to the (now abandoned) original site of Standard Template Library (STL) by refer-
ences to the C++ standard.

e Add new algorithm unique_copy (two versions).
e Add another assertion half for reverse.

o Add two overloaded versions of predicate ConstantRange and use them for the algorithms £111
and unique_copy, respectively.

B.9. New in Version 17.1.0 (Chlorine, July 2018)

The exact version number of Frama-C originally was Chlorine-20180502. This version number was
changed in October 2018 to 17.1

o Slightly change the definition of predicate HasEqualNeighbors and its use in the specification
of adjacent_find.

e Remove the algorithm remove and the more elaborate version of remove_copy. We are currently
working on new specifications of these algorithms.

e Adapt some Coq proofs related to the logic function Count in order to reflect changes in output of
Frama-C/WP.

e Remove table on ACSL lemmas that had to be proved by Cog.

268

B.10. New in Version 16.1.1 (Sulfur, March 2018)

fix several errors reported by Aaron Rocha, including,
— fix an error in figure for upper_bound algorithms
e fix merging of contracts in second version of binary_search
e improve and justify the ret ain annotations of in the implementation of remove

o Alt-Ergo is now directly called in the parallel setting (instead of going through Why3) to be compati-
ble with the sequential setting

e add a third assertion reorder in the random_shuffle body to keep verification rate at 100%
after prover upgrade

B.11. New in Version 16.1.0 (Sulfur, December 2017)

e special thanks to Aaron Rocha who provided various improvements for Chapters 4] [5] and [6)]
e improve some mutating algorithms
— add more assertions to reverse to reduce reliance on CVC3
— improve structure and ACSL annotations of remove_copy and remove
% add overloaded version of predicate Mult isetRetainRest
% add lemma HasValueImpliesPositiveCount
% add lemma PositiveCountImpliesHasValue
% remove lemma HasValueShiftInversion
% remove lemma HasValueCountInversion
— add custom lemma random_number_modulo for random_shuffle

e add new Chapter[I0 with more algorithms related to sorting

— add algorithm is_sorted including predicate WeaklyIncreasing
% add lemma IncreasingImpliesWeaklyIncreasing
% add lemma WeaklyIncreasingImpliesIncreasing
— add algorithm partial_sort including predicate Partition
* add lemma ReorderImpliesMatch
% add lemma ReorderPreservesUpperBound
% add lemma ReorderPreservesLowerBound
% add lemma PartialReorderPreservesLowerBounds
% add lemma SwappedInside
% add lemma SwappedInsideMultisetUnchanged

% add lemma SwappedInsidePreservesMultisetUnchanged

269

e improve various lemmas
— rename lemma SortedUp to IncreasingUpperBound
— generalize lemma UnchangedSection

— refactor lemma HeapBounds into C_Division_Two

B.12. New in Version 15.1.2 (Phosphorus, October 2017)

o fix several typos reported by seniorlackey@github (thanks a lot!)
o add a new chapter on classic sorting algorithms which comprises
— selection_sort including lemma SwapImpliesMultisetUnchanged
— insertion_sort including lemmas
% RotatePreservesStrictLowerBound
* RotateImpliesMultisetUnchanged
% EqualRangesPreserveslIncreasing
*+ EqualRangesPreservesCount
— heap_sort

e heap algorithms

remove length requirements in pop_heap, sort_heap, make_heap, and heap_sort

% introduce SIZE_TYPE_MAX to catch border cases in ACSL and C

improve description of pop_heap
% add predicate HeapChildMax
x provide the auxiliary function heap_child_max

x the postcondition reorder is still not verified

improve description of push_heap

other, minor improvements
% add auxiliary function heap_parent
x add predicate SortedDown and lemma SortedDownIsHeap
% add lemmas HeapParentChild and HeapChilds

% add lemmas HeapParentBounds and HeapChildBounds

B.13. New in Version 15.1.1 (Phosphorus, September 2017)

o add ensures clause to default behavior of the following algorithms

— find, find_first_of,adjacent_find, mismatch,
search, search_n, find_end

270

— max_element,min_element
e rewrite axiomatic definitions to ensure disjoint guards which is better suited for E-ACSL

— concerns the axiomatic definitions of Count, Accumulate, InnerProduct and
Difference

— some Coq proofs related to Count had to be adapted as well

e shorten names of some auxiliary algorithms
— adjacent_difference_inverse — adjacent_difference_inv
— partial_sum_inverse = partial_sum_inv

e heap algorithms

fix a typo in Figure[0.3|

fix a typo in Figure [9.38

explain that there can be multiple representations of an array as a heap

add a version of pop_heap that is, however, not completely verified

B.14. New in Version 15.1.0 (Phosphorus, June 2017)

e The verification results are now part of the appendix.
e Fix an error in the specification of the well-definition of stack_size.

e This release of Frama-C/WP could not discharge some of our assertions of push_heap. We there-
fore have completely rewritten the annotations and also tweaked the implementation of push_heap.
We also added some new predicates and lemmas to maintain a concise specification that can easily
be verified by automatic provers.

add predicate MultisetAdd and lemma MultisetAdd_Distinct

add predicate MultisetMinus and lemma MultisetMinus_Distinct

add predicate MultisetRetain and lemma MultisetPushHeapRetain

provide an additional version of predicate MultisetRetainRest

and lemma MultisetPushHeapClosure

B.15. New in Version 14.1.1 (Silicon, April 2017)

e changes in verification infrastructure

— add verification results for the case where each proof obligation is submitted to all automatic
theorem provers

e changes in algorithms
— simplify loop invariants of search_n and improve description

— rename predicate CountOneHit to CountHit

271

— rename predicate CountOneMiss to CountMiss

— rewrite predicates EqualRanges and Reverse in order to simplify the task for automatic
theorem provers

— remove lemmas on Reverse that were necessary for rot ate but are not needed anymore

— rename predicate Valid (Stack*) to Invariant (Stackx) and
remove \valid from Invariant (Stackx)

— add a simple random number generator to random_shuffle and verify it
fix an inconsistency in the axioms for Count (thanks to Denis Efremov for reporting this issue)
— add more guards to axioms CountSectionHit and CountSectionMiss
— add corresponding guards to lemmas
%+ CountSectionOne, CountHit, CountMiss and CountOne
* RemoveCountHit and RemoveCountMiss

— add lemma Unchanged_Shift and add more assertions to remove in order to simplify the
task for automatic theorem provers

B.16. New in Version 14.1.0 (Silicon, January 2017)

use label 01d instead of Pre in function contracts

add algorithm rotate

rewrite definition of predicates EqualRanges and Reverse and provide more overloaded versions
add figures for algorithms rotate and replace_copy

update figure for predicate Reverse

update Coq proofs and add a table with more information on the ACSL lemmas that had to be verified
with Coq

B.17. New in Version 13.1.1 (Aluminium, November 2016)

272

improve layout of tables of verification results
use two additional automatic theorem provers (CVC3 and E)

non-mutating algorithms

add algorithm find_end

add definition of predicate HasSubRange on subranges

add definition of predicate EqualRanges on subranges

rename lemma HasSubRange_fit_size to HasSubRangeSize

rename lemma HasConstantSubRange_fit_size to HasSubRangeSize

rename logic function Count Section to Count (using overloading in ACSL)

— add lemma HasValueCountInversion
— add lemma HasValueShiftInversion
— add lemma Count_Shift

e mutating algorithms

add algorithm copy_backward

relax precondition on separation of copy, replace_copy and remove_copy

provide a more sophisticated implementation of remove

re-introduce a second version of remove_ copy that also specifies the stability of the algorithm

add algorithm random_shuffle

B.18. New in Version 13.1.0 (Aluminium, August 2016)

The most notable changes of this version are the re-introduction of heap algorithms in Chapter[0] This new
description of heap algorithms is based to a large extend on the bachelor thesis of one of the authors [[23]].

e provide names (“labels”) for more ACSL annotations
e non-mutating algorithms
— reorder and improve description in chapter on non-mutating algorithms
— add more figures to describe algorithms
— add non-mutating algorithm search_n
— rewrite logic function Count with new logic function Count Section
— move lemmas Count_Bounds and CountMonotonic to separate files
— use integer instead of size_type in HasSubRange
— change index computation in HasEqualNeighbors
e maximum and minimum algorithms
— isolate predicate ConstantRange from predicates on lower and upper bounds
— fix typo in precondition of first version of max_element
e binary search algorithms
— add version Sorted for subranges
— add second (more efficient) version of equal_range

% add lemmas SortedShift, LowerBound_Shift, StrictLowerBound_Shift,
UpperBound_Shift and StrictUpperBound_Shift to support the automatic veri-
fication of this version of equal_range

— add figures to binary search algorithms and improve description
e mutating algorithms

— greatly reduce the number of assertions needed to verify the first version remove_copy

273

— temporarily remove the second version of remove_copy which also specified the stability of
the algorithm

— add remove, an in-place variant of remove_copy
— rename predicate RetainAllButOne to MultisetRetainRest

e re-introduce chapter on heap algorithms

includes the heap algorithms is_heap, push_heap, make_heap and sort_heap

for pop_heap only a function contract is provided in this version

add lemma SortedUp to support verification of sort_heap

add several lemmas to combine the predicates Unchanged and MultisetUnchanged

B.19. New in Version 12.1.0 (Magnesium, February 2016)

A main goal of this release is to reduce the number of proof obligations that cannot be verified automatically
and therefore must be tackled by an interactive theorem prover such as Coq. To this end, we analyzed the
proof obligations (often using Coq) and devised additional assertions or ACSL lemmas to guide the auto-
matic provers. Often we succeeded in enabling automatic provers to discharge the concerned obligations.
Specifically, whereas the previous version 11.1.1 of ACSL by Example listed nine proof obligations that
could only be discharged with Coq, the document at hand (version 12.1.0) only counts five such obliga-
tions. Moreover, all these remaining proof obligations are associated to ACSL lemmas, which are usually
easier to tackle with Coq than proof obligations directly related to the C code. The reason for this is that
ACSL lemmas usually have a much smaller set of hypotheses.

Adding assertions and lemmas also helps to alleviate a problem in Frama-C/WP Magnesium and Sodium
where prover processes are not properly terminated@ Left-over “zombie processes” lead to a deterioration
of machine performance which sometimes results in unpredictable verification results.

e mutating algorithms

simplify annotations of replace_copy and add new algorithm replace

% add predicate Replace to write more compact post conditions and loops invariants

add several lemmas for predicate Unchanged and use predicate Unchanged in postcondi-
tions of mutating and numeric algorithms

simplify annotations of reverse
% rename Reversed to Reverse (again) and provide another overloaded version

x add figure to support description of the Reverse predicate

changes regarding remove_copy
% rename PreserveCount to RetainAllButOne
% rename StableRemove to RemoveMapping

* add statement contracts for both versions of remove_copy such that only ACSL lemmas
require Coq proofs

4Seehttps://bts.frama-c.com/view.php?id=2154

274

https://bts.frama-c.com/view.php?id=2154

e numeric algorithms

define limits VALUE_TYPE_MIN and VALUE_TYPE_MAX
simplify specification of iota by using new logic function Iota
simplify implementation of accumulate

% add overloaded predicates AccumulateBounds

% add lemmas AccumulateDefaultO, AccumulateDefaultl,
AccumulateDefaultNext, and AccumulateDefault Read

simplify implementation of inner_product
% add predicates ProductBounds and InnerProductBounds
enable automatic verification of partial_sum

* add lemmas PartialSumSection,PartialSumUnchanged,PartialSum_Step

>

and PartialSumStep?2 to automatically discharge loop invariants
enable automatic verification of adjacent_difference
% add logic function Difference and predicate Ad jacentDifference
% add predicate AdjacentDifferenceBounds

% add lemmas AdjacentDifference_StepandAdjacentDifference_Section
to automatically discharge proof obligation

add two auxiliary functions partial_sum_inverse and
adjacent_difference_inverse in order to verify that partial_sum
and adjacent_difference are inverse to each other

% add lemmas PartialSumInverse and AdjacentDifferenceInverse to sup-
port the automatic verification of the auxiliary functions

e stack functions

add lemma StackPush_Equal to enable the automatic verification of the well-definition of
stack_push

B.20. New in Version 11.1.1 (Sodium, June 2015)

e add Chapter on numeric algorithms

move iota algorithm to numeric algorithms (§8.1))
add accumulate algorithm (§8.2)

add inner_product algorithm (§8.3)

add partial_sum algorithm (§8.4)

add adjacent_difference algorithm (§8.5)

275

B.21. New in Version 11.1.0 (Sodium, March 2015)

Use built-in predicates \valid and \valid_read instead of valid_range.

Simplify loop invariants of find_first_of.

Replace two loop invariants of remove_copy by ACSL lemmas.

e Rename several predicates

IsEqual — EqualRanges.

IsMaximum — MaxElement.

IsMinimumt MinElement.

Reverse — Reversed.

IsSorted > Sorted.

e Several changes for stack:

Rename stack functions from foo_stack to stack_foo.

Equality of stacks now ignores the capacity field. This is similar to how equality for objects
of type std: :vector<T> is defined. As a consequence stack_full is not well-defined
any more. Other stack functions are not effected.

Remove all assertions from stack functions (including in axioms).

Describe predicate Separated in text.

B.22. New in Version 10.1.1 (Neon, January 2015)

e use option —-wp—split to create simpler (but more) proof obligations
o simplify definition of predicate Count

e add new predicates for lower and upper bounds of ranges and use it in

max_element

min_element

lower_ bound

upper_bound

equal_range
- fill

e use a new auxiliary assertion in equal_range to enable the complete automatic verification of this
algorithm

e add predicate Unchanged and use it to simplify the specification of several algorithms
- swap_ranges
- reverse

- remove_copy

276

— stack_push and stack_push_wd
— stack_pop and stack_pop_wd
e add predicate Reverse and use it for more concise specifications of
- reverse_copy
- reverse

e several changes in the two versions of remove_copy

— use predicate HasValue instead of logic function Count
— add predicate PreserveCount

— reformulate logic function RemoveCount

— add predicate StableRemove

— add predicate RemoveCountMonotonic

add predicate RemoveCount Jump

e use overloading in ACSL to create shorter logic names for stack

e remove unnecessary labels in several stack functions

B.23. New in Version 10.1.0 (Neon, September 2014)

e remove additional labels in the assumes clauses of some stack function that were necessary due to
an error in Oxygen

e provide a second version of remove_copy in order to explain the specification of the stability of
the algorithms

e coarsen loop assigns of mutating algorithms

e temporarily remove the unique_copy algorithm

B.24. New in Version 9.3.1 (Fluorine, not published)

e specify bounds of the return value of count and fix reads clause of Count predicate
e use an auxiliary function make_pair in the implementation of equal_range

e provide more precise loop assigns clauses for the mutating algorithms

simplify implementation of £i11

removed the ensures \valid (p) clause in specification of swap

simplify implementation of swap_ranges

simplify implementation of copy

fix implementation of reverse_copy after discovering an undefined behavior

new implementation of reverse that uses a simple for-loop

277

— simplify implementation of replace_copy
— refactor specification and simplify implementation of remove_copy

e remove work-around with Pre-label in assumes clauses of stack_push and stack_pop

B.25. New in Version 9.3.0 (Fluorine, December 2013)

o adjustments for Fluorine release of Frama-C
e swap now ensures that its pointer arguments are valid after the function has been called
e change definition of size_type to unsigned int

e change implementation of the iota algorithm . The content of the field a is calculated by increasing
the value val instead of sum val+i.

e change implementation of £111.

o The specification/implementation of stack has been revised by Kim Véllinger [26] and now has a
much better verification rate.

B.26. New in Version 8.1.0 (Oxygen, not published)

simplified specification and loop annotations of replace_copy

add binary search variant equal_range

greatly simplified specification of remove_copy by using the logic function Count

remove chapter on heap operations

B.27. New in Version 7.1.1 (Nitrogen, August 2012)

e improvements with respect to several suggestions and comments of Yannick Moy, e.g., specification
refinements of remove_copy, reverse_copy and iota

e restricted verification of algorithms to Frama-C/WP with Alt-Ergo

e replaced deprecated \valid_range by \valid

o fixed inconsistencies in the description of the st ack data type

e binary search algorithms can now be proven without additional axioms for integer division

e changed axioms into lemmas to document that provability is expected, even if not currently granted

e adopted new Fraunhofer logo and contact email

B.28. New in Version 7.1.0 (Nitrogen, December 2011)

e changed to Frama-C Nitrogen

278

e changed to Why 2.30
o discussed both plug-ins Frama-C/WP and Jessie

e removed swap_values algorithm

B.29. New in Version 6.1.0 (Carbon, not published)

e changed definition of stack

e renamed reset_stackto init_stack

B.30. New in Version 5.1.1 (Boron, February 2011)

o prepared algorithms for checking by the new Frama-C/WP plug-in of Frama-C
e changed to Alt-Ergo Version 0.92, Z3 Version 2.11 and Why 2.27

e added List of user-defined predicates and logic functions

o added remarks on the relation of logical values in C and ACSL

e rewrote section on equal and mismatch

e used a simpler logical function to count elements in an array

e added search algorithm

e added chapter to unite the maximum/minimum algorithms

e added chapter for the new 1lower_bound, upper_bound and binary_search algorithms
e added swap_values algorithm

e used IsEqual predicate for swap_ranges and copy

e added reverse_copy and reverse algorithms

e added rotate_copy algorithm

e added unique_copy algorithm

e added chapter on specification of the data type stack

B.31. New in Version 5.1.0 (Boron, May 2010)

e adaption to Frama-C Boron and Why 2.26 releases

e changed from the - jessie-no-regions command-line option to using the pragma
SeparationPolicy (value)

B.32. New in Version 4.2.2 (Beryllium, May 2010)

e changed to latest version of CVC3 2.2

279

e added additional remarks to our implementation of find_first_of
e changed size_type (int)to integer in all specifications

e removed castsin f111 and iota

e renamed is_valid_range as IsValidRange

e renamed has_value as HasValue

e renamed predicate all_equal as IsEqual

e extended timeout to 30 sec.

B.33. New in Version 4.2.1 (Beryllium, April 2010)

e added alternative specification of remove_copy algorithm that uses ghost variables
e added Chapter on heap operations
o added mismatch algorithm

e moved algorithms adjacent_find and min_element from the appendix to chapter on non-
mutating algorithms

e added typedefs size_type and value_type and used them in all algorithms

e renamed is_valid_int_rangeas is_valid_range

B.34. New in Version 4.2.0 (Beryllium, January 2010)

e complete rewrite of pre-release

e adaption to Frama-C Beryllium 2 release

280

Bibliography

(1]
(2]
(3]
[4]

(5]

[6]
[7]
[8]
[9]

[10]

WP Plug-in. http://frama-c.com/wp.html.
Frama-C Software Analyzers. http://frama-c.com, 2018.
Why — Where Programs Meet Provers. http://why3.1ri.fr} 2018.

Sylvain Conchon, Evelyne Contejean, and Johannes Kanig. The Alt-Ergo SMT Solver. http:
//alt-ergo.lri.fr, 2018.

Clark Barrett and Cesare Tinelli. Homepage of CVC4. |http://cvcd.cs.stanford.edu/
web/), 2018.

Microsoft Research. The Z3 Theorem Prover. https://github.com/Z3Prover/z3, 2018.
The Coq Consortium. The Coq Proof Assistant. https://cog.inria. fr} 2018.
ANSI/ISO C Specification Language. http://frama-c.com/acsl.html, 2018.

CEA LIST, Laboratory of Applied Research on Software-Intensive Technologies. http://
www—1list.cea.fr/gb/index_gb.htm.

INRIA-Saclay, French National Institute for Research in Computer Science and Control . http:
//www.inria.fr/saclay/!

LRI, Laboratory for Computer Science at Université Paris-Sud. http://www.lri.fr/.

Fraunhofer-Institut fiir Offene Kommunikationssysteme (FOKUS). http://www.fokus.
fraunhofer.de.

Virgile Prevosto. ACSL Mini-Tutorial. http://frama-c.com/download/
acsl-tutorial.pdf.

Patrick Baudin, Pascal Cuoq, Jean-Christophe Filliatre, Claude Marché, Benjamin Monate, Yannick
Moy, and Virgile Prevosto. ACSL 1.13 Implementation in Argon 18.0. https://frama-c.com/
download/acsl—-implementation—18.0-Argon.pdf, 2018.

Allan Blanchard. Introduction to C Program Proof using Frama-C and its wp plugin. http://
allan—-blanchard.fr/publis/frama-c-wp—tutorial—-en.pdf, December 2017.

Programming languages — C, Committee Draft. http://www.open-std.org/JIC1/SC22/
WG1l4/www/docs/nl1362.pdf, 2009.

C.A.R. Hoare. An axiomatic basis for computer programming. Communications of the ACM, 12:576—
583, 1969.

Robert W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor, Proc. Symposium
on Applied Mathematics, volume 19 of Mathematical Aspects of Computer Science, pages 19-32,
Providence, RI, 1967. American Mathematical Society.

Richard Smith. Working Draft, Standard for Programming Language C++. http://www.
open-std.org/Jjtcl/sc22/wg2l/docs/papers/2017/n4659.pdf, 2017. publicly
available draft of C++ 17 standard.

281

http://frama-c.com/wp.html
http://frama-c.com
http://why3.lri.fr
http://alt-ergo.lri.fr
http://alt-ergo.lri.fr
http://cvc4.cs.stanford.edu/web/
http://cvc4.cs.stanford.edu/web/
https://github.com/Z3Prover/z3
https://coq.inria.fr
http://frama-c.com/acsl.html
http://www-list.cea.fr/gb/index_gb.htm
http://www-list.cea.fr/gb/index_gb.htm
http://www.inria.fr/saclay/
http://www.inria.fr/saclay/
http://www.lri.fr/
http://www.fokus.fraunhofer.de
http://www.fokus.fraunhofer.de
http://frama-c.com/download/acsl-tutorial.pdf
http://frama-c.com/download/acsl-tutorial.pdf
https://frama-c.com/download/acsl-implementation-18.0-Argon.pdf
https://frama-c.com/download/acsl-implementation-18.0-Argon.pdf
http://allan-blanchard.fr/publis/frama-c-wp-tutorial-en.pdf
http://allan-blanchard.fr/publis/frama-c-wp-tutorial-en.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1362.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1362.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]
[29]
[30]

[31]

282

Donald E. Knuth, James H. Morris, and Vaughan R. Pratt. Fast pattern matching in strings. SIAM J
Comput, 6(2):323-350, Jun 1977.

Lincoln E. Moses and Robert V. Oakford. Tables of Randon Permutations. Stanford University Press,
1963.

Ming Li and Paul Vitanyi. An Introduction to Kolmogorov Complexity and Its Applications. Graduate
texts in computer science. Springer, New York, 1997.

Timon Lapawczyk. Formale Verifikation von Heap-Algorithmen mit Frama-C. bachelor thesis,
Humboldt-Universitit zu Berlin, July 2016.

D.E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming. Addison-Wesley,
1973.

Sellibitze. How to Implement Classic Sorting Algorithms in Mod-
ern Cr+, https://stackoverflow.com/questions/24650626/
how-to-implement-classic-sorting—algorithms—-in-modern-c, Aug 2014.

Kim Vollinger. Einsatz des Beweisassistenten Coq zur deduktiven Programmveri-
fikation. Diplomarbeit, Humboldt-Universitit zu Berlin, August 2013. https:
//www2.informatik.hu-berlin.de/top/_media/www/mitarbeiter/
diplomarbeit-kim—-voellinger.pdfl

Richard Fitzpatrick J.L. Heiberg. Euclid’s Elements of Geometry. http://farside.ph.
utexas.edu/euclid.html, Austin/TX, 2008.

David Hilbert. Grundlagen der Geometrie. B.G.Teubner, Stuttgart, 1968.
Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala. Artima, 2008.

Clark Barrett and Cesare Tinelli. Homepage of CVC3. http://www.cs.nyu.edu/acsys/
cvc3/, 2010.

Stephan Schulz. The E Theorem Prover. https://wwwlehre.dhbw-stuttgart.de/
~sschulz/E/E.html, 2018.

https://stackoverflow.com/questions/24650626/how-to-implement-classic-sorting-algorithms-in-modern-c
https://stackoverflow.com/questions/24650626/how-to-implement-classic-sorting-algorithms-in-modern-c
https://www2.informatik.hu-berlin.de/top/_media/www/mitarbeiter/diplomarbeit-kim-voellinger.pdf
https://www2.informatik.hu-berlin.de/top/_media/www/mitarbeiter/diplomarbeit-kim-voellinger.pdf
https://www2.informatik.hu-berlin.de/top/_media/www/mitarbeiter/diplomarbeit-kim-voellinger.pdf
http://farside.ph.utexas.edu/euclid.html
http://farside.ph.utexas.edu/euclid.html
http://www.cs.nyu.edu/acsys/cvc3/
http://www.cs.nyu.edu/acsys/cvc3/
https://wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html
https://wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html

Index of ACSL definitions

Caveat: This index has been automatically generated from the ACSL /C sources. For the time being it
mentions only the page where an ACSL definition is first included in the text. Moreover, if a listing had
to be split, then the page number refers to the first part of the listing even if the specific ACSL definition
appears in the second part.

A

A CCUMU LA ottt ettt ettt ettt e e e e e e e e e e [146] [147]
ACCUMULATE _TNIT ottt ettt et e ettt e [146]
Accumulate _Unchanged ...ttt e [146]
Accumulate_Unchanged Shrink i i i i et ﬂlgl
ACCUMULAEEBOUNGS ittt ettt et et ettt e et ettt e ettt et [146] [147)
AccumulateBounds_Unchangedottt ittt @
ACCUMULAtEDEFAULE L\ttt ittt ettt ettt e e e e e e e [[47][153]
AccumulateDefault NEXE ...ttt ettt e e e [147]
ACcUMULAtEDETAULL _ONE oottt [147]
AccumulateDefault_Unchanged ... e e it e e et i ea e @]
AccumulateDefallt 2 e T O it m
AccumulateDefaultBOUNGS ...ttt ettt ettt et et e e e [147] [148]
AccumulateDefaultBounds_SHTink ...t [147]
AdFacentDIfEEIENCE ittt ittt [137} [158]
AdJacentDifferenCe_TNVEISE ..ttt ettt et et ettt a e eeeenen, [161}[162]
AdjacentDifference_InverseBOUNGASouuirerernininaretneaaneeneanannn. [[61][162]
AdjacentDifference_SeCTioni.iuiir it 1537139
AdFACent DI ffereNCE_STD t .\ttt ittt et e 137139
AdJacentDIifferenCeBOUNAS . .utu ittt ettt et [137} [158]
ALIEGUAL ittt et e et 41157, 03] [104]
ALLSOMENOL .ttt ettt ettt e e e e e e e e e 41l
AT TAYBOUNAS &t tttttt ettt ettt ettt ettt e e e e e e e e 73]
ArrayBoUNASShI Fh oottt e e e 4] 93] 209]
ATTAYEXETOMA ittt ettt ettt e e et et e e e e e e e [72]
AT LAY SWAD « ettt ettt ettt et e et e e e e [139]
AT rayUPdat e ottt [T02] [179] 1831, [134] [189] [190
ArrayUpdate MultisetUpdate ..ttt et et et ettt et m
ArrayUpdate _Shrink ..ot [102]
ArrayUpdate _UpperBoOUndttt ettt et et ettt e e e m
P [102] [T32] 134} [T77]
Cc

O = 1 A [141]
CircularShift MUltiSELREOTAET ..ttt e 212
CircularShift_StricCtLoWeTrBOUNGututt ettt ettt et et e e e e 217
CircUlarShl L emMmMas ottt ettt et e e e e e e e 212
COUME ettt ettt et ettt e e e e e e [64H68] [123], [124] [136} [212]

283

COUNT_BOUNAS e ttttttt ettt et et et e e ettt e e e e e e e e ettt [64] [63]
COUNT CUL ottt et et e e e e e e e e e e e e e [64]

COUNE _EMDE Y+ttt ittt ettt et e e e et e e et et e e e e [63] 64} [67]
COUNT _EQUAL t ittt ettt ettt et e e e ettt e e e e e e e 641 212]
COUNT HA L ottt ittt et e e e e [63] [64] [67]
COUNE_TNCTEASITIG + ettt ittt e ettt e e ettt e et e e et e 64l [63]
COUNE _MA S+ttt ettt ettt e et et e e e e e e (63 [64] [67]
OB oL @) Y= (63 [64]

COUNE S A FE ottt ettt ettt e ettt 64} [63]
COUNE _SANGLE ottt ettt et ettt e [63] [64]
CoUNt_Single BOUNGS . ..uuutrtttt et e et e e e e [64] [63]
CoUunt_SAingle Shaft oottt [64] [63]
CoOUNt_SOMEEGUAL ..ttt ettt ettt et e et e e e e e [63] 201]
CoUNt_UNCRANGEA .ttt ettt et e e e e e e e e [64]
COUNT_UNIOM + ettt [64]
(0 36 0 e 1 o ¥ 63
CoUNtFINANOTEGUAL ..ttt ettt ettt et et e ettt et 127
COUNMETIIA t ottt ettt ettt ettt e e et e e et et e e e e ettt e 671 691
COUNEINA COUNL t vttt ittt e e e e e e e i [68]
COUNEINA_EIMPE Y ettt ettt et et et e e e e e e e e e e e e e [68]
COUNE INA Hat ottt ittt e e e e e e e (63
COUNETINA _TNVETSE t vt ttttttt et e e et et et e e ettt et et et e e e e e et e e e 67 [68]
COUNETINA ML S8 ottt e e et e e e e e e e e e e [68]
CountInd_NONNEGALIVE .ttt ettt ettt e et e e 63
CountINA_UNCRANGEA .. urt ettt e e e e e (63
CountInNAIMPLIiCit ouuitttt ettt e e 67163
COUNE INALEIMIMAS + ettt ittt ettt tteee et ettt ee e ettt ee e e ettt tee et teae e tiiiaeeeeennns 68
COUNENOLEGUAL 1ttt ittt ettt e ettt e ettt 123} (124} [127]
CountNOtEQUALl_ALLIEQUAL ttnttrt ettt ettt e e e e e e e e [127]
COUNENOLEQUAL_COUNT .ttt ittt ettt e ettt e e e e e e n 123} [124]
CoUNtNOLtEQUAL_DECTEMENE 'ttt ittt ettt ettt et e e e e e e e e
COUNENOEEQUAL_EMPEY .\ttt ettt ettt et e e e e e e e e e e e e e e 123
CountNotEqual_ FindNOLEQUAL ...utntitt ittt et e et et e e e 127
CoUNENOEEQUAL_HIT ottt e e e e e e e e 123
CoUuntNOtEQUAL_INCLEASIING .ttt it ettt et et e et et et e e e e e e 123
COUNENOLEQUAL_LOWET .\ttt ettt ettt e e e e e e e e e e e e e e e e e 123
COUNENOLEQUAL_MISS .+ ut ettt et ettt e e et e e e et e e e e e e e e 123
CountNotEqual_ SomeNOTEQUAL . ..utrttnt ittt et et e e e e [127]
CountNotEqual_Unchanged ... e et e et e ettt ea e @
CoUNENOEEQUAL_ UNdOn ottt ittt ettt et et e e e e 123
COUNENOLEQUAL_UPPET vttt ettt et et e e e e e et e e e e 123
CountNotEqual WeaklylnCreasSiig ettt et et ettt et e eiae e @
COUNENOLEQUAL_ZETO .+ttt ittt et ettt et et e e et e e e e e e [127]
D

Dl AU L BOUNA S t ittt ettt ettt ettt ettt e e e e e e e 1160
Dl e ENIC ottt 1156
DI ffETENCE NEXE t ottt e e et e e e e e e [136]
Difference_UNChangediuerine o e e e 136
DA f T ENCE. _ZiETO vttt e e e e e e e e e e e [156]

284

13 361 18 [50H53} [T06} [TO9} [TT1] 230
F

120 oY 37, B8] 2] [F4] [63)
1 1o T N 014 A 37
e o I 0 g 3 o U 37
1 oY T I 37
Find TN CrEasSing oottt ittt e e e e e e
e oY I e 1 37
FANA LOWET ot ttt ettt 37
FANA MISSHIT ettt et e e e 37
F AN MISSMI SO vttt ettt e e e e e e e e e 37
FAnd NONEEGQUAL ...ttt ettt et e ettt e e e e e e e e e 37
Find_ REeSULEEQUAL ..ttt ettt et e e e e e e e e e e e e 37
Find ReSULENONEEQUAL ...ttt ettt ettt ettt et e 37
FAnd_SOMEEGQUAL ...ttt ettt e e e e e e e e 37
1 TS oY LU o) 1= <N P 37
Find_WeaklyInCrEasSing .. ettt et e e e e e e e e e 37
FINANOTLEGQUAL .« .ttt ettt et ettt e e e et e e e e e 41l 42| 44 [127]
FindNotEQUAl ALLEQUAL ..ttt ettt e e e e e e e e 42
FindNOLEQUAL BTttt ittt ettt e e e e e e e e 42
FAindNOtEQUALl_EXTENA .« .ttt ettt e ettt e e e e e e e e e e e 42
FAnANOTEQUAL_HAt .ottt ittt ettt e e et e A2
FindNotEQUAl_ INCLEASING ...uturnt ittt e e e e e e e e e 42
FindNOotEQUALl_ LAMIit .ottt e e e e e e e e A2
FINANOLEQUAL_LOWET .ttt ettt et et et et e e ettt e e et 42
FindNOtEQUALl MISSHIT . uttrtrtt it e e e e e e A2
FindNOLEQUAL_MISSMISS L ututtttttttt ettt et ettt e e e e e 42
FindNotEqual ResULtALLIEQUAL ...ttt e e e e e 42
FindNotEqual_ ResUltNOLEQUAL .. .uttt ittt et et e et e e e 42
FindNotEqual_ SomeNOTEGUAL . ..utrtrtt ettt et e e e e e e e e et e 42
FindNotEqUal UnChanged ...t e 42
FAinANOtEQUAL_UDDET .ttt ettt et e e e e e e e e e e e e e 42
FindNotEquUal WeaklylnCrea S img ettt ettt ettt et ittt et A2
G

GL AL ET . LESS vttt ettt et e e e 72
GreaterOTrEQUAL _LiESS \ut ittt et e e e e e e 72
H

HasCONSTANTSUDRANGE .ttt ettt et et ettt e e ettt e e et 56l [57]
HasConstant SUDRANGE_SIZES t\uiuirtt ettt ettt ettt eeeen 56,57
HasSEQUAINEIGRDOTS « ittt ittt ettt ettt ettt 43 @9
HASSUDRANGE ot ttett ittt te ettt et e e et et e e ettt e e ettt e B3| B4, 57, [61]
HaSSUDRANGE _SIZES t .ttt ettt e ettt et ettt 33
2 R T D =Y P 453] 46|
5 LS P [[71] [T74} [T75]
Heap_ ChildBOUNGAS . .uurnt ettt e e e e e e e e e e e e e e [T70]
Heap Chalads tutiti it e e e
HEAP_ MaXAIUIN .\ttt ettt e e et e e e e e e e e e e e e e e e e e [I71]
Heap ParentBOUNGS . .uvtrtttt ittt et et e

285

Heap ParentChd ld ottt et e et et e et e et e et et et e e e e e 1770

Heap Parent el ittt et e e e 170
Heap Parent RIGht ... e 170
HE A ST AN ettt e [T77]
Heap_UNChangedttt et e e e e e e e e e e
HeapComPatible ...ttt ettt et e et e [T71)[183][190]
HeapCompatible Upaate .ttt e e e e [I71]
2 LT o= [[70,[T72)
Y= o)1 o Y K== PP 170
HEAPPATENET .« ittt ettt et ettt et e e et e e e e e e [[70,[T72)
R YCN o) =T a0 o N o /1 =% o N 170
HEAPRIGRET ottt et et [T70L[T72
|

B sTeh et oY R= B oV S [831 05} [193] [198] 202]
INCreasing_EQUAL ...t e 36| 212
INCreasing Shaft oo e [8q
Increasing WeaklyInCreaSing ...ttt et ettt 36 [199]
INCreasSinNgLEmMMas . .uuu ittt ittt ettt ettt e @
B oY o TSp = e Ye L b o 1311
INNerProduct_UNChAngediuei ittt [130, 15T
INNETPTrOAUCEBOUNGAS .ttt tttt et ettt et et et et e e et ettt e e e et eeaeeeanas [T50} [131]
Yoo T 1=Y o 1= o o =S 144
L

LT = [711[72)
LeSS_ANtASYMMELIY ottt ettt et ettt e e e e e e e 72
LesSS _TrreflexXivaity turtt e 72
Less _TransSitivaity oot 72
LESSOTEQUAL LiESS ittt ettt et ettt e e 72
LOWETBOUINA .ttt ttttet ettt ettt e e e e e ettt e e e et [73] 811 [82} B3] [88]
LOWETBOUNA SHhI FE ottt et e e e e e e e e e e e p3
M

MAXELEIMETIET © vttt ittt et et e et ettt e e e e e e et [721[78] 83} [T7]]
1100 o 0T o [72, B11[33]

Multiset AdAMiNUSRETAIN ..ttt e ettt 177
Multiset AddMinUSREtalnNREO T AT it e e e e e e e e m
Multiset MIinUSAAAREE AL vttt e e e e e e e e e
MULELSEEAGG + vttt ittt ettt ettt et et et [I76 [T77
MULtiSetAAd _DiStanCh ittt ettt ettt e e e e e [176]
MULE L SEEMANUS &ttt ittt ettt et et e ettt et e e e e e (176} [T77]
MULEISEEMINUS. DISEINCE ottt ettt e e e e e e e e e e e e e [176]
MULEISEEOPETAEIONS Lttt ettt ettt e e e [I76,[T77)
MULE L SO P AT Ity ottt ettt ettt e et e e [T78][T79} [183]
MultisetParity COmMDINEdiuiuiuin ittt [T78] [184} [T90
MultisetParity MUltiSELREOTAET . .vuirir ettt [T78][183]
MultisetParity UnchangedFEirSt ...t e e e [I7§]
MultisetParity UnchangedSeCond . .ottt i e et [178]
MULtiSEtREOTACT « ittt [136] [137] [177] [180] [192] [193] [202] 209 212]
MultisetReorder_ DisJointUnion ..ottt it e e e it m
MultisetReorder LOWETBOUNGA ...t e i [207]

286

MultisetReorder PartitionLowerBOUNAeutn ettt eennaaaeananns 207]

MultisetReorder SOmMEEQUAL ...ttt ittt ettt ettt ettt et i it EQH
MultisetReorder SYMmMETIIC ..tutuiu ittt [136]
MultisetReorder TranSiiive . e e e e e e e EEQ
MultisetReorder_UpPerBOUNG ...ttt ittt et et e et [201]
MULE L SEEREEAIN 1ttt ittt ettt e e e [176} [177]
MultisetRetain_ DISTINCE 1ttt ettt ettt e e e e e [176]
MULEISEEREEAINREST ottt ittt ettt e e e e e e e 177
MULE L SEESWAD « vttt ettt ettt ettt e e e e e e e e [139]
MultisetSwap FrontMiddle e e [139]

MUltisSetSWap_ MiddLle ...ttt e e e [139] 20T} 209
MULE L SEEUDAAEE ottt ittt ettt e et e e [T79] [184] [T90]

N

NONEEGUAL ettt ettt e et ettt e e e e e e e e e e B4H36l 42] [121]
NoneEqual_NoOtSOMEEGUALu ittt ettt ettt e e e e e e e e e e e e e 4]
NotAllEqual_ _SomeNOLEGUAL ..ttt ettt ettt e e 41
NotSomeEqual_ NoneEqual e e i e et et ettt et Eﬂ
NUME L C IV L S vttt ettt ettt e e e e e e e [161]
P

PaTtaal SUM ottt ittt ettt e e e 133
PArtialSUM _TNVEESE . uurrttee et e e e e e e e e e e e e e e [161]
PArTialSUM_OME .ttt ettt et e ettt e e e e e e ettt 133
PArtialSUM _SECE IO unte ettt ettt e e e e e e e [133]
PArtialSUML_STED t .ttt ettt ettt et e 133
PartialSum_UncChangediuinen e e e [133]
= T i s I3 o YA 200)
PArtitiONLEMMES .. utttt ettt et et e e e e e e e e 201
PrOAUCEBOUNAS .ttt ettt ettt et et ettt e e e e e et e e e e e (150} [T31]
R

RandomNUMDETMOAULO ...ttt ettt et et e et e e e e e e e e e e e e 141
RETMOVE v ettt ettt ettt et ettt e e e e e e e e e e e e e e e e [129H131] [133]
REMOVE P AT T A L L 0N ottt e e e e e e e e 28]
REMOVEP AT T LI 10T COTE + ettt e et e e e e e e e e e e e e e [128]
REMOVEPATTIT 10N, COUNT ottt ettt e e e e e e e e e e e e e e e i [128]
REMOVEP ATt It 10N EIMPEY « vttt ettt et e e e e e e e [128]
RemMOVEPArtition, EXTENA o' uue ettt e e e e e e [128]
REMOVEP AT T I 10T LTt ottt e et e e e e e e e e e e e e e e [128]
REMOVEP AT T I 10N LIOWET vt vttt ettt e e e e e e e e e e e e e e e e i [128]
REMOVEP AT T I 10T NEXE .+ttt ettt et e e e e e e e e e e e e e e e [128]
RemovePartition NOTEQUAL ...ttt e e e e e e e e e e [128]
RemMOVePartition RIGNT .ttt e e [128]
ReMOVEP ATt 1ti0N_ SEOMENT ...ttt ittt et [128]
RemovePartition_ StrictlyWeaklnCreasSing ...ttt ittt [128]
RemovePartition_Unchangedo.initt ittt it ittt e e EZE
REMOVEP ATt At A 0N DD Or ottt ittt ettt e e e [128]
RO LA G ettt ettt ettt e e e e e e e [I18][120
ROV S ottt ittt e ettt e e e ettt e e e e 124114

287

S
SOMEEGUAL + vttt ittt ettt e e e e e e e [34136] [42] [43] 46} 6]

SOMENOIIE .ttt ittt ettt et et e e e e e e 34
SOMENOLEGUAL + .\ttt ittt et ettt e e ettt e e et e e e e e e e e %81
SomeNOtEQUAl_NOtALLEGUAL .ttt ettt ettt e et et et e et et e e %81
St ACKCAPAC I Y« et ettt ettt 22§
ST ACKEMDE Y+ttt ettt ettt ettt e e e et [228] 237
ST ACKEGUAL + ettt ittt et ettt e et ettt e 230,233
StACKEQUAL _RET L eIV ittt ittt ettt e ettt e et 230)
StACKEQUA L SYMME T T d C ettt ettt et ettt et ettt e e e 230
StackEQUAl _TransS it adve ittt ettt e e e 230
SEACKEQUALIEY t ottt ittt ettt et e [230] 23T1]

ST ACKE UL L ittt et e ettt e [228] 2301 236]
SEACKINVATIANE « .\ttt ettt et e e ettt e e e et et [228] 229

S A KR L OIMIMA S .+ttt ettt et et e e e e e e 240
SEACKPUS B gUA L ittt e et e e 40)

STACKSEPATAEEA .ttt ittt ettt e [229, 240} 242)
S A CK S d Z ottt ettt e e e e e 228} 235]

o o) =8 o =Y 1= P 223
S = Te) i o) o O [228] 23]
STACKUNCRANGEA .« .\ttt ittt ettt ettt e e e et e et 229
S o) U2 e e i 229
SELICELOWETBOUNGA « 1ttt ettt ettt et et e e e e et e [73] BTH83} [83] 00} 03]
StrictLoWerBoOUNA Shift .ottt e e e e e e e p3
SELICtUPPEIBOUNA .ttt et ettt et et [731[78} [83H851 88l O3]
StrictUpperBoUnd _Shift ...ttt e e p3
U

UNCRhanged .ottt e e 2] [64] 102} [T03] [1071 [114]
Unchanged_EXTend ...ttt et e e e e e [T03]
Unchanged _MuUltiSet REO I AET ittt ittt ittt ettt et et ettt ettt @
Unchanged _Shift ..o e [T03]
Unchanged . Shrank ..t e [T03]
Unchanged SYMMET LI C .ottt ettt e e e e e e e e e [T03]
Unchanged _Transitive tuuu ettt ettt ettt [103][T62)
UNChanGEALEMINAS « ..ttt et ettt et ettt e e et et et e e e et e e [103]
UPPETBOUNG .« ettt ettt ettt et e e e e e et e e e e e [73] 78] 83}, 00
UPPerBoUNG S ft ottt e p3
w

WeaklyInCTEaSing vttt e et e e e e [831[86} [195] 198} [T99] 214]
WeaklyIncreasing AAAELEMENTuttin ettt 2141216
WeaklyIncreasing EQUAL ...ttt e e e e 213 216
WeaklyIncreasing INCTeasing ...vuevetiriit i 361 [87}[195] [198], [199] 216]
WeaklyTnCTreasing _JOIM ... u ettt ettt ettt 213 216
WeaklyIncreasing Shift ...t 213
WeaklyIncreasing ShIInk ... ouou ettt [214] 215
WeaklyIncreasing UnNChanged ...ttt ettt i i it i |2_1_3|
WeaklyInCreasingLemMas ... ettt et ettt e e et e et e ettt m

288

Index of examples

Caveat: This index has been automatically generated from the ACSL /C sources. For the time being it
mentions only a few of the pages where a C function occurs in the text. Moreover, if a listing had to be
split, then a page number might refer only to the first part of the listing.

A

A CUMU LA & ottt ittt ittt ettt e e ettt e e e e e e L48H150)
adjacent _differencCe .ot [T58] [T39][T61] [162]
adjacent _differenCe _dNV ..ottt [137,[162]
AdJACENE _FANA ottt e 438 49|
AX 1 OM POP . Of PUSH ottt ettt e 243
AX10M PUSH . Of PO L 0D t ettt ettt ettt e e 243
AXIOM _S1Z6 OF ANAt ottt 243
AX I OM S I 20 O POt ittt ettt 243
AXIOM . SIZE Of PUSI ottt 244
AX I OM L OP O PUSI ottt ittt 244
B

DMy SEATCI Lttt ettt e e 06, 07|
DA NA LY SEATCIN ittt ettt 96 07|
o1l o) =S - e ¥ o o 206} 207
C

oY <20 P [109} [TT0]

COPY_DBCKWATA 1\ttt ettt ettt et ettt et e e e e [I17]
COUIME. ettt ettt et e e ettt e e et e e e e e e [66] [69] [146]
COUIIE 2 ittt ettt et et e e e e e e e 69)
E

EOUAL Lttt 51152
EQUAL_TANTE .« ettt ettt ettt e e e e 02193

EAUAL_TANGE2 ettt ettt et et et e 02 04
F
0 104l

i 15 o Vo R B233 54

5 Lo o Y N 40|
S oo I =3 oV K [61] [62]
AN Fa TSt O ottt 46l [47)
0o Lo N T o o X oA 44

289

H
hea A La ottt [T72}[173] [189]

JSY=T) ST < 1= B =Y o X o 172
o= T=] T A 213
|

10 0 XSl o o e T 16 s A 150H152)
B o F=ToR o ok o) o =Y b v P 210 217]
< o= T [[44] [T45]
R Y=Y) < Y

18 NEaD UNE A L ottt [[74 [T73]
BN =T Yo b ax ot =Y H A [T98] [T99]

L
LOWET_DOUNA ettt ettt ettt e e e et [88H90, 021931 P7]
M
TN ST oY==« S [T92] [193], 202} 213]

(IEC N S < Y- ol [73134)
MAX_ELEMENT « .ttt ittt ettt ettt e e e e [76L[77}, [791 801 B3] [84]

MAX . L OMENIE 2 ottt ettt e e '/ 8H30
10T STV PP 80

0L 1 [214] 216
R I ST SN =Y 11T o P [81H84] 209

MINMAX_ ELEMEINIT ottt ettt e et e e e e e e e e e e e e e B384
M SIMAE CRl ettt ettt e e e e e e e 1152
P

PaATE LAl SO ottt ittt e e e e e 2024205
PATEIal SUM © ettt e e [148] [154] [153] [158] [T61] [162]
PATTial SUM NV ottt e [T61]
POP A ottt [T71] [172][178] [186] [187] [189L [193] 202]
PUSHh_NEaD t ittt [T71] [T78] [T30HT82] [187] [139] [T90] [193] 201l 202]
R

FANAOM_NUMDET .\ttt ettt ettt e ettt e e e ettt e ettt [T38] [T40} [14T]
TEIMOVE ettt ettt ettt e e e et e e e e e e e e e e e e [130} [T33] [134]

LEMOVE__COPY vt vttt ettt e et e e e e e e e e e e e [122][123] [126] [T3T]
TEMOVE_COPY2 «ttetet et ete et e e ettt e e e et e e e ettt e [122] [T24H126]
LEMOVE_COPY 3 tttttt et ettt et e e e e e e e AT} (122} [125] [T30H134]
ety o 3 = 7= [TT9} [T20]
P LA T COPY + vttt ettt ettt et e e e e [TT9]
TOVETSE t ottt ettt et e et ettt e e e e e e [TT4} 117
L OVETSE_COPY vt ettt ettt e e e e e e e [T3]

e) o= [[T7 210H212)
O A B COPY « ettt ettt ettt e [[T3] [TT6]

S

S AT O ettt et e 541551571 591 [62]
Y= 5t o HE o Y B7 39
TSN R =Yot ult e} o M= Yo b ax v [208] 209
3 o = [137][138] [140]

290

S a2 DAL T Ly PO ottt [73]

Y B A o oY= SO [194] 193] 213]

ST ACK MDY ettt ettt e e e e 237
ST ACK EMPE Y WA ottt 237
ST ACK EQUAL ittt 233
ST ACK FUL L ottt e e e e e e 236]
ST ACK AMAE ottt 234
ST A K DO+ttt ettt 247]
ST K POD WA ettt e 2472
ST ACK PUS N ottt 239
ST ACK PUS I WA« ettt e e 240]
ST A CK S L Z t ittt ittt et 233
STACK S1ZE WA ettt ettt e e 233
S ACK L OD ettt ettt et 238
ST ACK L OD WA ettt e e 23§
SWAD + e et v ettt e et e [T03] [TO7] [114] [138] [T39] [209]
= < T ot o Yo 1= [106] [T07]
U

UDPPET_DOUNA .ttt ittt ettt e e e et e e e e e e e [90H93] 210

291

	Changes
	New in Version 22.0.0 (Titanium, November 2020)

	Basics
	Introduction
	Frama-C
	Structure of this document
	Types, arrays, ranges and valid indices

	The Hoare calculus
	The assignment rule
	The sequence rule
	The implication rule
	The choice rule
	The loop rule
	Derived rules

	Nonmutating and simple search algorithms
	Non-mutating algorithms
	The find algorithm
	The find2 algorithm—reuse of specification elements
	The find3 algorithm—using a logic function
	The findifnot algorithm
	The findfirstof algorithm
	The adjacentfind algorithm
	The equal and mismatch algorithms
	The search algorithm
	The searchn algorithm
	The findend algorithm
	The count algorithm
	The count2 algorithm

	Maximum and minimum algorithms
	A note on relational operators
	Predicates for bounds and extrema of arrays
	The clamp algorithm
	The auxiliary function makepair
	The maxelement algorithm
	The maxelement algorithm with predicates
	The maxseq algorithm
	The minelement algorithm
	The minmaxelement algorithm

	Binary search algorithms
	The lowerbound algorithm
	The upperbound algorithm
	The equalrange algorithm
	The binarysearch algorithm

	Mutating and numeric algorithms
	Mutating algorithms
	The predicate Unchanged
	The fill algorithm
	The swap algorithm
	The swapranges algorithm
	The copy algorithm
	The copybackward algorithm
	The reversecopy algorithm
	The reverse algorithm
	The rotatecopy algorithm
	The rotate algorithm
	The replacecopy algorithm
	The replace algorithm
	The removecopy algorithm (basic contract)
	The removecopy2 algorithm (number of copied elements)
	The removecopy3 algorithm (final contract)
	The remove algorithm
	The shuffle algorithm
	Verifying a random number generator

	Numeric algorithms
	The iota algorithm
	The accumulate algorithm
	The innerproduct algorithm
	The partialsum algorithm
	The adjacentdifference algorithm
	Inverting partialsum and adjacentdifference

	Sorting algorithms
	Heap Algorithms
	Basic heap concepts
	Representation of heap concepts in ACSL
	The auxiliary functions heapparent and heapchild
	The isheapuntil algorithm
	The isheap algorithm
	Reorderings and fluctuations
	The pushheap algorithm
	The popheap algorithm
	The makeheap algorithm
	The sortheap algorithm

	Sorting Algorithms
	The issorted algorithm
	The partialsort algorithm
	The bubblesort algorithm
	The selectionsort algorithm
	The insertionsort algorithm
	The heapsort algorithm
	The merge algorithm

	Verification of data structures
	The stack data type
	Methodology overview
	Stack axioms
	The structure stack and its associated functions
	Stack invariants
	Equality of stacks
	Verification of stack functions
	Verification of stack axioms

	Appendices
	Results of formal verification with Frama-C
	Verification settings
	Verification results (sequential)
	Verification results (parallel)

	Changes in previous releases
	New in Version 21.1.1 (Scandium, September 2020)
	New in Version 21.1.0 (Scandium, July 2020)
	New in Version 20.0.2 (Calcium, April 2020)
	New in Version 20.0.1 (Calcium, March 2020)
	New in Version 20.0.0 (Calcium, December 2019)
	New in Version 19.1.0 (Potassium, October 2019)
	New in Version 19.0.0 (Potassium, June 2019)
	New in Version 18.0.0 (Argon, December 2018)
	New in Version 17.1.0 (Chlorine, July 2018)
	New in Version 16.1.1 (Sulfur, March 2018)
	New in Version 16.1.0 (Sulfur, December 2017)
	New in Version 15.1.2 (Phosphorus, October 2017)
	New in Version 15.1.1 (Phosphorus, September 2017)
	New in Version 15.1.0 (Phosphorus, June 2017)
	New in Version 14.1.1 (Silicon, April 2017)
	New in Version 14.1.0 (Silicon, January 2017)
	New in Version 13.1.1 (Aluminium, November 2016)
	New in Version 13.1.0 (Aluminium, August 2016)
	New in Version 12.1.0 (Magnesium, February 2016)
	New in Version 11.1.1 (Sodium, June 2015)
	New in Version 11.1.0 (Sodium, March 2015)
	New in Version 10.1.1 (Neon, January 2015)
	New in Version 10.1.0 (Neon, September 2014)
	New in Version 9.3.1 (Fluorine, not published)
	New in Version 9.3.0 (Fluorine, December 2013)
	New in Version 8.1.0 (Oxygen, not published)
	New in Version 7.1.1 (Nitrogen, August 2012)
	New in Version 7.1.0 (Nitrogen, December 2011)
	New in Version 6.1.0 (Carbon, not published)
	New in Version 5.1.1 (Boron, February 2011)
	New in Version 5.1.0 (Boron, May 2010)
	New in Version 4.2.2 (Beryllium, May 2010)
	New in Version 4.2.1 (Beryllium, April 2010)
	New in Version 4.2.0 (Beryllium, January 2010)

	Bibliography
	Index of ACSL definitions
	Index of examples

