--- title: "Evolution CA" output: flexdashboard::flex_dashboard: orientation: columns horizontal_layout: fill --- ```{r setup, include=FALSE} library(flexdashboard) load("../donnees/ca/ca.RData") # Attention, chemin spécifique dans mon organisation de fichiers colDpt = "orange" colPrv = "rosybrown" colMois = "turquoise" conv <- function(v) return(iconv(as.character(v), from = "UTF-8", to = "UTF-8")) ``` # Synthèse ## Column {data-width=650} ### Evolution mois par mois ```{r} d = setNames(aggregate(ca / 1000000 ~ mois_no, ca_tout, sum), c("mois", "ca")) par(mar = c(4, 4, 0, 0) + .1) plot(ca ~ mois, d, type = "b", xlab = "Mois", ylab = "Chiffre d'affaires (M€)") abline(h = mean(d$ca), lty = 3, col = "gray50") ``` ## Column {data-width=350} ### Comparaison mois par mois (en k€) ```{r} d = aggregate(cbind(ca2003, ca2004, evolution) ~ mois + mois_numero, ca_evol, sum) d = subset(d, select = -mois_numero) names(d) = c("Mois", "2003", "2004", "Evolution") d$Mois = conv(d$Mois) knitr::kable(d, digits = 0) ``` ### Augmentation entre 2003 et 2004 ```{r} d = aggregate(ca ~ annee, ca_tout, sum) v = paste(round((d$ca[2] / d$ca[1] - 1) * 100, 2), "%") valueBox(v, icon = "fa-arrow-circle-up", color = "green") ``` # Détails {data-orientation=rows} ## Ligne 1 ### Départements ```{r} evol.dpt = aggregate(cbind(ca2003, ca2004, evolution) / 1000 ~ departement, ca_evol, sum) names(evol.dpt) = c("Département", "2003", "2004", "Evolution") evol.dpt$Département = conv(evol.dpt$Département) knitr::kable(evol.dpt, digits = 0) ``` ### Provenance ```{r} evol.prov = aggregate(cbind(ca2003, ca2004, evolution) / 1000 ~ provenance, ca_evol, sum) names(evol.prov) = c("Provenance", "2003", "2004", "Evolution") evol.prov$Provenance = conv(evol.prov$Provenance) knitr::kable(evol.prov, digits = 0) ``` ## Ligne 2 ### Nombre de département en hausse ```{r} gauge(sum(evol.dpt$Evolution > 0), 0, nrow(evol.dpt), sectors = gaugeSectors(colors = colDpt)) ``` ### Département avec la plus grosse évolution ```{r} valueBox(evol.dpt$Département[which.max(evol.dpt$Evolution)], icon = "fa-level-up", color = colDpt) ``` ### Nombre de provenance en hausse ```{r} gauge(sum(evol.prov$Evolution > 0), 0, nrow(evol.prov), sectors = gaugeSectors(colors = colPrv)) ``` ### Provenance avec la plus grosse évolution ```{r} valueBox(evol.prov$Provenance[which.max(evol.prov$Evolution)], icon = "fa-level-up", color = colPrv) ``` # Performance {data-orientation=rows} ## Ligne Département {data-height=200} ### Meilleur département ```{r} dpt = aggregate(ca ~ departement, ca_tout, sum) dpt.tri = dpt[order(dpt$ca, decreasing = TRUE),] dpt.tri$departement = conv(dpt.tri$departement) valueBox(dpt.tri$departement[1], icon = "ion-podium", color = colDpt) ``` ### Part de `r dpt.tri$departement[1]` ```{r} gauge(dpt.tri$ca[1], 0, sum(dpt.tri$ca), sectors = gaugeSectors(colors = colDpt), abbreviateDecimals = 0, symbol = "€") ``` ### TOP 3 ```{r} knitr::kable(head(dpt.tri, 3), row.names = FALSE) ``` ## Ligne Provenance {data-height=200} ### Meilleure provenance ```{r} prv = aggregate(ca ~ provenance, ca_tout, sum) prv.tri = prv[order(prv$ca, decreasing = TRUE),] prv.tri$provenance = conv(prv.tri$provenance) valueBox(prv.tri$provenance[1], color = colPrv, icon = "ion-podium") ``` ### Part de `r prv.tri$provenance[1]` ```{r} gauge(prv.tri$ca[1], 0, sum(prv.tri$ca), sectors = gaugeSectors(colors = colPrv), abbreviateDecimals = 0, symbol = "€") ``` ### TOP 3 ```{r} knitr::kable(head(prv.tri, 3), row.names = FALSE) ``` ## Ligne Mois {data-height=200} ### Meilleur mois ```{r} mois = aggregate(ca ~ mois + mois_numero + annee, ca_tout, sum) mois.tri = mois[order(mois$ca, decreasing = TRUE),] mois.tri$mois = conv(mois.tri$mois) valueBox(paste(mois.tri$mois[1], mois.tri$annee[1]), icon = "ion-podium", color = colMois) ``` ### Part de `r paste(mois.tri$mois[1], mois.tri$annee[1])` ```{r} gauge(mois.tri$ca[1], 0, sum(mois.tri$ca), sectors = gaugeSectors(colors = colMois), abbreviateDecimals = 0, symbol = "€") ``` ### TOP3 ```{r} knitr::kable(head(mois.tri[-2], 3), row.names = FALSE) ```