{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np \n", "from TRIOMA.tools.Circuit import Circuit\n", "from TRIOMA.tools.Extractors.PAV import Component,Fluid,Membrane, Geometry\n", "import TRIOMA.tools.correlations as corr\n", "import TRIOMA.tools.materials as materials\n", "import matplotlib.pyplot as plt\n", "from scipy.interpolate import griddata\n", "import matplotlib.colors as colors\n", "from matplotlib.colors import LogNorm\n", "import matplotlib.lines as mlines\n", "from TRIOMA.tools.BreedingBlanket import BreedingBlanket" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This analysis is a sweep on two parameters and the analytical efficiency value from it. First we define the d_hyd_v, the first sweep vector. This is going to be sweeped against all others (otherwise the analysis would be very long if we sweep all vectors against each other). Then we define a vector of vectors to sweep. A str_v_vec is used in the \"update_attribute\" method to indicate which attribute is going to be updated, corresponding with the vector that is sweeped in the loop. The Fluid_v_bool vector is used in this code to check if the update attribute must be used for the Component class or the Component.fluid class. The same happens for the solid_v_bool. Color vectors will be used after for plotting contours. Eff_v_vec is used then to store the results." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "##Define sweep vectors\n", "color_vector = [\"red\", \"blue\", \"green\", \"yellow\", \"purple\", \"orange\"]\n", "N_vec=50\n", "# d_hyd_v=np.logspace(np.log10(2.5E-2/2),np.log10(2.5E-2*2),N_vec)\n", "d_hyd_v=np.linspace(9.2E-3,2.5E-2*2,N_vec)\n", "n_pipes_vec=np.linspace(2000,8000,N_vec)\n", "# str_v_vec=['T','U0','Solubility','c_in',\"thick\",\"K_S\",\"k_d\",\"k_r\"]\n", "variables={'d_Hyd':'Hydraulic Diameter [m]','n_pipes':'Number of Pipes'}\n", "# variables = {'T' : 'Temperature [K]', 'U0' : 'Velocity [m/s]', 'Solubility' : 'Solubility [mol/m^3]', 'c_in' : 'Concentration [mol/m^3]', 'thick' : 'Thickness [m]', 'K_S' : 'Partition Coefficient', 'k_d' : 'Desorption Rate [1/s]', 'k_r' : 'Reaction Rate [1/s]'}\n", "c_in_vec=np.logspace(-6,-1,N_vec)\n", "D_vec=np.logspace(-10,-8,N_vec)\n", "thick_vec=np.logspace(-3,-1,N_vec)\n", "K_S_vec=np.logspace(-3,-1,N_vec)\n", "k_d_vec=np.logspace(2,6,N_vec)\n", "k_r_vec=np.logspace(2,6,N_vec)\n", "solubility_vec=np.logspace(-3,-1,N_vec)\n", "# v_vec=np.array([T_vec, U0_vec, solubility_vec, c_in_vec, thick_vec, K_S_vec])\n", "v_vec=np.array([d_hyd_v])\n", "eff_v_vec=np.array([])\n", "fluid_v_bool=np.array([True , False , True ,False,False,False,False,False,False])\n", "solid_v_bool=np.array([False, False, False,False,True ,True ,True ,True ,True ])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here variables for the Breeding Blanket class are defined. " ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "#Define other HX constraints\n", "\n", "T_hot_prim=900\n", "T_hot_sec=838\n", "T_cold_prim=800\n", "T_cold_sec=581\n", "T_sec_ave=(T_hot_sec+T_cold_sec)/2\n", "rho_sec=2263.628-0.636*T_sec_ave\n", "mu_sec=0.075439-2.77E-4*(T_sec_ave-273.15)+3.49E-7*(T_sec_ave-273.15)**2-1.474E-10*(T_sec_ave-273.15)**3\n", "k_sec=0.45\n", "cp_sec=1396.044+0.172*(T_sec_ave)\n", "N_HX=2\n", "Q=0.625E9\n", "m_in_sec=Q/(cp_sec*(T_hot_sec-T_cold_sec))\n", "n_pipes_HX=4000" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Empty arrays to store results with the append method are defined, and the double sweep takes place. In each iteration, the same component is defined and then one attribute is changed according to the sweep. Then color map plots are displayed, with additional isovariable contours. " ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2025.386635865169 indicates laminar flow\n", "1999.6958495144274 indicates laminar flow\n", "1966.3947921021054 indicates laminar flow\n", "2011.2210722639497 indicates laminar flow\n", "1976.574129286256 indicates laminar flow\n", "1943.1006839621323 indicates laminar flow\n", "1910.7421093067626 indicates laminar flow\n", "2026.9254445700262 indicates laminar flow\n", "1990.7620030191872 indicates laminar flow\n", "1955.866363853016 indicates laminar flow\n", "1922.173006461864 indicates laminar flow\n", "1889.620848623725 indicates laminar flow\n", "1858.1528769405215 indicates laminar flow\n", "2009.1299047501614 indicates laminar flow\n", "1972.6327987333282 indicates laminar flow\n", "1937.4380207954594 indicates laminar flow\n", "1903.4770862498099 indicates laminar flow\n", "1870.6862295030637 indicates laminar flow\n", "1839.0060044641607 indicates laminar flow\n", "1808.3809248796147 indicates laminar flow\n", "1993.6029094797493 indicates laminar flow\n", "1956.7178202784182 indicates laminar flow\n", "1921.172812679416 indicates laminar flow\n", "1886.8961593834038 indicates laminar flow\n", "1853.8211622606843 indicates laminar flow\n", "1821.8857191682016 indicates laminar flow\n", "1791.0319347824873 indicates laminar flow\n", "1761.205770317538 indicates laminar flow\n", "2019.037792130242 indicates laminar flow\n", "1980.2467100437316 indicates laminar flow\n", "1942.9180897472131 indicates laminar flow\n", "1906.9707570510013 indicates laminar flow\n", "1872.3294360858713 indicates laminar flow\n", "1838.9242231278936 indicates laminar flow\n", "1806.6901157625314 indicates laminar flow\n", "1775.5665907147727 indicates laminar flow\n", "1745.4972245761528 indicates laminar flow\n", "1716.4293524281093 indicates laminar flow\n", "2008.320014355422 indicates laminar flow\n", "1968.9790038956078 indicates laminar flow\n", "1931.1496841748785 indicates laminar flow\n", "1894.7465668609186 indicates laminar flow\n", "1859.6904903472578 indicates laminar flow\n", "1825.908045108536 indicates laminar flow\n", "1793.3310605710037 indicates laminar flow\n", "1761.8961459502373 indicates laminar flow\n", "1731.5442785482908 indicates laminar flow\n", "1702.2204338841823 indicates laminar flow\n", "1673.8732527811312 indicates laminar flow\n", "1999.686179368856 indicates laminar flow\n", "1959.7316269113394 indicates laminar flow\n", "1921.3424150916817 indicates laminar flow\n", "1884.428320848067 indicates laminar flow\n", "1848.9059241142834 indicates laminar flow\n", "1814.697978484017 indicates laminar flow\n", "1781.7328504688132 indicates laminar flow\n", "1749.9440187829955 indicates laminar flow\n", "1719.2696262901509 indicates laminar flow\n", "1689.6520782608318 indicates laminar flow\n", "1661.0376814515005 indicates laminar flow\n", "1633.3763192461035 indicates laminar flow\n", "1993.0840314886989 indicates laminar flow\n", "1952.4494979664419 indicates laminar flow\n", "1913.4387538346937 indicates laminar flow\n", "1875.9563737903036 indicates laminar flow\n", "1839.9142660248842 indicates laminar flow\n", "1805.2309810249697 indicates laminar flow\n", "1771.831097102505 indicates laminar flow\n", "1739.6446728986841 indicates laminar flow\n", "1708.6067584967832 indicates laminar flow\n", "1678.656957952588 indicates laminar flow\n", "1649.7390370420724 indicates laminar flow\n", "1621.8005708660319 indicates laminar flow\n", "1594.7926266654874 indicates laminar flow\n", "1988.4740642560405 indicates laminar flow\n", "1947.0897846081903 indicates laminar flow\n", "1907.3929710902944 indicates laminar flow\n", "1869.2824749000467 indicates laminar flow\n", "1832.6650728566817 indicates laminar flow\n", "1797.4547060396947 indicates laminar flow\n", "1763.5718045397782 indicates laminar flow\n", "1730.9426871693704 indicates laminar flow\n", "1699.499026601022 indicates laminar flow\n", "1669.177371762242 indicates laminar flow\n", "1639.9187204613747 indicates laminar flow\n", "1611.6681361872552 indicates laminar flow\n", "1584.3744038460468 indicates laminar flow\n", "1557.9897198962838 indicates laminar flow\n", "2029.9104362659905 indicates laminar flow\n", "1985.8289237049662 indicates laminar flow\n", "1943.6212658141746 indicates laminar flow\n", "1903.1704661583808 indicates laminar flow\n", "1864.3690694867532 indicates laminar flow\n", "1827.1182085489181 indicates laminar flow\n", "1791.3267629426207 indicates laminar flow\n", "1756.9106149260172 indicates laminar flow\n", "1723.791989399783 indicates laminar flow\n", "1691.898867158031 indicates laminar flow\n", "1661.1644620912243 indicates laminar flow\n", "1631.526754354071 indicates laminar flow\n", "1602.928072631419 indicates laminar flow\n", "1575.3147195815277 indicates laminar flow\n", "1548.6366353382407 indicates laminar flow\n", "1522.847094635465 indicates laminar flow\n", "1985.1330001718875 indicates laminar flow\n", "1942.0238739173565 indicates laminar flow\n", "1900.7472673035677 indicates laminar flow\n", "1861.1887646990044 indicates laminar flow\n", "1823.2432811892513 indicates laminar flow\n", "1786.814130419162 indicates laminar flow\n", "1751.8122019953564 indicates laminar flow\n", "1718.1552337144135 indicates laminar flow\n", "1685.7671661041993 indicates laminar flow\n", "1654.5775686177801 indicates laminar flow\n", "1624.5211283686237 indicates laminar flow\n", "1595.5371935962605 indicates laminar flow\n", "1567.569365146902 indicates laminar flow\n", "1540.5651301789937 indicates laminar flow\n", "1514.4755330881326 indicates laminar flow\n", "1489.2548793126236 indicates laminar flow\n", "1986.382197194703 indicates laminar flow\n", "1942.2884030458758 indicates laminar flow\n", "1900.1096895882056 indicates laminar flow\n", "1859.723944987664 indicates laminar flow\n", "1821.0192230148539 indicates laminar flow\n", "1783.8927067750947 indicates laminar flow\n", "1748.2497966691083 indicates laminar flow\n", "1714.0033055494139 indicates laminar flow\n", "1681.0727466558294 indicates laminar flow\n", "1649.3837020875624 indicates laminar flow\n", "1618.8672613814256 indicates laminar flow\n", "1589.4595212815314 indicates laminar flow\n", "1561.101139058212 indicates laminar flow\n", "1533.7369328056022 indicates laminar flow\n", "1507.315523052829 indicates laminar flow\n", "1481.7890107912667 indicates laminar flow\n", "1457.112687672783 indicates laminar flow\n", "1989.5838710862101 indicates laminar flow\n", "1944.4163761272089 indicates laminar flow\n", "1901.254141009695 indicates laminar flow\n", "1859.9665271321162 indicates laminar flow\n", "1820.4340024879243 indicates laminar flow\n", "1782.546985908906 indicates laminar flow\n", "1746.204832688297 indicates laminar flow\n", "1711.3149418099017 indicates laminar flow\n", "1677.7919681082292 indicates laminar flow\n", "1645.5571252476082 indicates laminar flow\n", "1614.5375675364166 indicates laminar flow\n", "1584.6658403663248 indicates laminar flow\n", "1555.8793905502312 indicates laminar flow\n", "1528.120129078109 indicates laminar flow\n", "1501.3340398590049 indicates laminar flow\n", "1475.4708289038253 indicates laminar flow\n", "1450.4836091548316 indicates laminar flow\n", "1426.328616806457 indicates laminar flow\n", "1994.7569395123305 indicates laminar flow\n", "1948.4200668568403 indicates laminar flow\n", "1904.1870717935424 indicates laminar flow\n", "1861.9178484370807 indicates laminar flow\n", "1821.4844610535201 indicates laminar flow\n", "1782.769850712312 indicates laminar flow\n", "1745.666703441825 indicates laminar flow\n", "1710.0764568395737 indicates laminar flow\n", "1675.9084257724555 indicates laminar flow\n", "1643.0790308370242 indicates laminar flow\n", "1611.511115759726 indicates laminar flow\n", "1581.13334200118 indicates laminar flow\n", "1551.8796505656421 indicates laminar flow\n", "1523.6887824698815 indicates laminar flow\n", "1496.5038505454581 indicates laminar flow\n", "1470.2719562757152 indicates laminar flow\n", "1444.9438462368491 indicates laminar flow\n", "1420.4736034481796 indicates laminar flow\n", "1396.8183695621851 indicates laminar flow\n", "2001.9321620773048 indicates laminar flow\n", "1954.3226772249186 indicates laminar flow\n", "1908.925065501634 indicates laminar flow\n", "1865.5886852031329 indicates laminar flow\n", "1824.1762704282207 indicates laminar flow\n", "1784.562478734868 indicates laminar flow\n", "1746.6326240086842 indicates laminar flow\n", "1710.2815675612478 indicates laminar flow\n", "1675.412744876609 indicates laminar flow\n", "1641.9373090338247 indicates laminar flow\n", "1609.7733748065443 indicates laminar flow\n", "1578.8453498997317 indicates laminar flow\n", "1549.0833418254806 indicates laminar flow\n", "1520.422630621744 indicates laminar flow\n", "1492.8031990414381 indicates laminar flow\n", "1466.1693130344015 indicates laminar flow\n", "1440.4691463512072 indicates laminar flow\n", "1415.654443948265 indicates laminar flow\n", "1391.6802195945004 indicates laminar flow\n", "1368.5044836926816 indicates laminar flow\n", "2011.1526007237205 indicates laminar flow\n", "1962.1586754135174 indicates laminar flow\n", "1915.4950743661454 indicates laminar flow\n", "1870.9994019486214 indicates laminar flow\n", "1828.5240093381701 indicates laminar flow\n", "1787.9343577707068 indicates laminar flow\n", "1749.107595051394 indicates laminar flow\n", "1711.9313135979157 indicates laminar flow\n", "1676.302463569965 indicates laminar flow\n", "1642.1263989519089 indicates laminar flow\n", "1609.3160379934175 indicates laminar flow\n", "1577.7911223269439 indicates laminar flow\n", "1547.477561491128 indicates laminar flow\n", "1518.3068515905375 indicates laminar flow\n", "1490.2155584901861 indicates laminar flow\n", "1463.1448573386285 indicates laminar flow\n", "1437.0401213847115 indicates laminar flow\n", "1411.850554039594 indicates laminar flow\n", "1387.5288589691602 indicates laminar flow\n", "1364.0309437085168 indicates laminar flow\n", "1341.3156528908403 indicates laminar flow\n", "2022.4742729121756 indicates laminar flow\n", "1971.9743033070247 indicates laminar flow\n", "1923.9348051132542 indicates laminar flow\n", "1878.1802352551165 indicates laminar flow\n", "1834.551361650921 indicates laminar flow\n", "1792.90341175366 indicates laminar flow\n", "1753.1044676842646 indicates laminar flow\n", "1715.034070472471 indicates laminar flow\n", "1678.5820022940604 indicates laminar flow\n", "1643.6472207731472 indicates laminar flow\n", "1610.1369236476505 indicates laminar flow\n", "1577.9657255649745 indicates laminar flow\n", "1547.0549316322633 indicates laminar flow\n", "1517.331894708833 indicates laminar flow\n", "1488.7294453907218 indicates laminar flow\n", "1461.1853852728452 indicates laminar flow\n", "1434.6420354424213 indicates laminar flow\n", "1409.0458333057886 indicates laminar flow\n", "1384.3469718180436 indicates laminar flow\n", "1360.4990760022283 indicates laminar flow\n", "1337.4589123375717 indicates laminar flow\n", "1315.1861271851744 indicates laminar flow\n", "1983.8282676972929 indicates laminar flow\n", "1934.2932656642151 indicates laminar flow\n", "1887.17171966523 indicates laminar flow\n", "1842.2914409508787 indicates laminar flow\n", "1799.496240090712 indicates laminar flow\n", "1758.644110892125 indicates laminar flow\n", "1719.6056561998516 indicates laminar flow\n", "1682.2627188073918 indicates laminar flow\n", "1646.5071869636001 indicates laminar flow\n", "1612.2399490386283 indicates laminar flow\n", "1579.3699760620266 indicates laminar flow\n", "1547.8135142484464 indicates laminar flow\n", "1517.493372429099 indicates laminar flow\n", "1488.3382916252247 indicates laminar flow\n", "1460.282385924657 indicates laminar flow\n", "1433.264645426867 indicates laminar flow\n", "1407.2284933639037 indicates laminar flow\n", "1382.1213906311557 indicates laminar flow\n", "1357.8944819106923 indicates laminar flow\n", "1334.5022783716124 indicates laminar flow\n", "1311.902372611376 indicates laminar flow\n", "1290.0551820797252 indicates laminar flow\n", "1997.792634738817 indicates laminar flow\n", "1946.6314876779684 indicates laminar flow\n", "1898.0252669330112 indicates laminar flow\n", "1851.7872499215068 indicates laminar flow\n", "1807.7484764330495 indicates laminar flow\n", "1765.7556855890111 indicates laminar flow\n", "1725.6695338128977 indicates laminar flow\n", "1687.3630501461041 indicates laminar flow\n", "1650.720292829753 indicates laminar flow\n", "1615.6351772080325 indicates laminar flow\n", "1582.010449994154 indicates laminar flow\n", "1549.7567890108635 indicates laminar flow\n", "1518.7920108562878 indicates laminar flow\n", "1489.0403716960532 indicates laminar flow\n", "1460.4319486572515 indicates laminar flow\n", "1432.9020911885693 indicates laminar flow\n", "1406.390933325113 indicates laminar flow\n", "1380.8429591133304 indicates laminar flow\n", "1356.2066145568215 indicates laminar flow\n", "1332.433960374867 indicates laminar flow\n", "1309.4803606521446 indicates laminar flow\n", "1287.3042031249129 indicates laminar flow\n", "1265.86664741573 indicates laminar flow\n", "2013.9539535849813 indicates laminar flow\n", "1961.0234451423973 indicates laminar flow\n", "1910.803914285123 indicates laminar flow\n", "1863.0922865600112 indicates laminar flow\n", "1817.7052759965713 indicates laminar flow\n", "1774.4770320815212 indicates laminar flow\n", "1733.2571146886003 indicates laminar flow\n", "1693.9087448470164 indicates laminar flow\n", "1656.307288486974 indicates laminar flow\n", "1620.338937746997 indicates laminar flow\n", "1585.8995604496029 indicates laminar flow\n", "1552.8936932457957 indicates laminar flow\n", "1521.2336579247742 indicates laminar flow\n", "1490.8387836626139 indicates laminar flow\n", "1461.6347206832427 indicates laminar flow\n", "1433.552833037793 indicates laminar flow\n", "1406.5296600623997 indicates laminar flow\n", "1380.506437619743 indicates laminar flow\n", "1355.4286715222875 indicates laminar flow\n", "1331.245756620193 indicates laminar flow\n", "1307.9106359507896 indicates laminar flow\n", "1285.3794951186699 indicates laminar flow\n", "1263.6114877299756 indicates laminar flow\n", "1242.5684882608398 indicates laminar flow\n", "1977.557195387662 indicates laminar flow\n", "1925.5832623988595 indicates laminar flow\n", "1876.2713134245482 indicates laminar flow\n", "1829.4219440318177 indicates laminar flow\n", "1784.8551806472356 indicates laminar flow\n", "1742.4081700559516 indicates laminar flow\n", "1701.9331909291677 indicates laminar flow\n", "1663.295936205203 indicates laminar flow\n", "1626.3740242372091 indicates laminar flow\n", "1591.055703932292 indicates laminar flow\n", "1557.2387250197905 indicates laminar flow\n", "1524.829349391956 indicates laminar flow\n", "1493.741483383965 indicates laminar flow\n", "1463.8959140783497 indicates laminar flow\n", "1435.2196353696902 indicates laminar flow\n", "1407.6452517178332 indicates laminar flow\n", "1381.1104493383805 indicates laminar flow\n", "1355.5575260964947 indicates laminar flow\n", "1330.9329726393546 indicates laminar flow\n", "1307.1870983680208 indicates laminar flow\n", "1284.2736967468595 indicates laminar flow\n", "1262.1497452068866 indicates laminar flow\n", "1240.7751355420844 indicates laminar flow\n", "1220.1124312440777 indicates laminar flow\n", "1996.3362763048347 indicates laminar flow\n", "1942.452629789065 indicates laminar flow\n", "1891.40131099533 indicates laminar flow\n", "1842.9647220619825 indicates laminar flow\n", "1796.9469982797737 indicates laminar flow\n", "1753.1713608724326 indicates laminar flow\n", "1711.4778475105797 indicates laminar flow\n", "1671.7213591375255 indicates laminar flow\n", "1633.7699728406137 indicates laminar flow\n", "1597.5034794282644 indicates laminar flow\n", "1562.8121115547956 indicates laminar flow\n", "1529.595434043108 indicates laminar flow\n", "1497.7613727755308 indicates laminar flow\n", "1467.225362377149 indicates laminar flow\n", "1437.9095960769591 indicates laminar flow\n", "1409.7423637359088 indicates laminar flow\n", "1382.6574661843806 indicates laminar flow\n", "1356.5936957998294 indicates laminar flow\n", "1331.4943747456696 indicates laminar flow\n", "1307.3069435392476 indicates laminar flow\n", "1283.982593663263 indicates laminar flow\n", "1261.475938816442 indicates laminar flow\n", "1239.7447201440425 indicates laminar flow\n", "1218.7495414200357 indicates laminar flow\n", "1198.4536306894488 indicates laminar flow\n", "2017.4814026141096 indicates laminar flow\n", "1961.5164575320755 indicates laminar flow\n", "1908.5726420601857 indicates laminar flow\n", "1858.4117532454113 indicates laminar flow\n", "1810.8199885376453 indicates laminar flow\n", "1765.6048994725686 indicates laminar flow\n", "1722.592790624658 indicates laminar flow\n", "1681.6264897051626 indicates laminar flow\n", "1642.5634284548944 indicates laminar flow\n", "1605.2739849422303 indicates laminar flow\n", "1569.6400466475388 indicates laminar flow\n", "1535.5537607718632 indicates laminar flow\n", "1502.916443914449 indicates laminar flow\n", "1471.6376279015387 indicates laminar flow\n", "1441.6342223356871 indicates laminar flow\n", "1412.829777540733 indicates laminar flow\n", "1385.1538341358637 indicates laminar flow\n", "1358.5413475881412 indicates laminar flow\n", "1332.9321778498322 indicates laminar flow\n", "1308.270635651268 indicates laminar flow\n", "1284.5050782449584 indicates laminar flow\n", "1261.58754842495 indicates laminar flow\n", "1239.473451511504 indicates laminar flow\n", "1218.1212657229253 indicates laminar flow\n", "1197.492281976663 indicates laminar flow\n", "1177.5503696890516 indicates laminar flow\n", "1982.896007140725 indicates laminar flow\n", "1927.8904611172402 indicates laminar flow\n", "1875.8542539105824 indicates laminar flow\n", "1826.5532660469182 indicates laminar flow\n", "1779.7773601627143 indicates laminar flow\n", "1735.3373869101815 indicates laminar flow\n", "1693.0626284996638 indicates laminar flow\n", "1652.7986070245024 indicates laminar flow\n", "1614.4051982528104 indicates laminar flow\n", "1577.7550023432207 indicates laminar flow\n", "1542.7319315621523 indicates laminar flow\n", "1509.2299820157743 indicates laminar flow\n", "1477.1521620187727 indicates laminar flow\n", "1446.4095542803698 indicates laminar flow\n", "1416.9204928099323 indicates laminar flow\n", "1388.6098384971774 indicates laminar flow\n", "1361.4083398363916 indicates laminar flow\n", "1335.2520673437732 indicates laminar flow\n", "1310.0819119438352 indicates laminar flow\n", "1285.8431390401033 indicates laminar flow\n", "1262.4849911893307 indicates laminar flow\n", "1239.960333309094 indicates laminar flow\n", "1218.2253351998781 indicates laminar flow\n", "1197.2391868819607 indicates laminar flow\n", "1176.9638428570631 indicates laminar flow\n", "1157.3637919229536 indicates laminar flow\n", "2006.7314054607712 indicates laminar flow\n", "1949.4764115147577 indicates laminar flow\n", "1895.3979252557133 indicates laminar flow\n", "1844.2387327772583 indicates laminar flow\n", "1795.7686604393864 indicates laminar flow\n", "1749.7811125195224 indicates laminar flow\n", "1706.0901275802348 indicates laminar flow\n", "1664.5278650979842 indicates laminar flow\n", "1624.9424507263373 indicates laminar flow\n", "1587.1961218777635 indicates laminar flow\n", "1551.1636258992341 indicates laminar flow\n", "1516.7308315920038 indicates laminar flow\n", "1483.793521644722 indicates laminar flow\n", "1452.2563390634 indicates laminar flow\n", "1422.0318651632847 indicates laminar flow\n", "1393.039810346844 indicates laminar flow\n", "1365.2063018932927 indicates laminar flow\n", "1338.4632554571265 indicates laminar flow\n", "1312.7478190177546 indicates laminar flow\n", "1288.0018797200628 indicates laminar flow\n", "1264.1716254607759 indicates laminar flow\n", "1241.2071542591732 indicates laminar flow\n", "1219.0621254443342 indicates laminar flow\n", "1197.6934475279704 indicates laminar flow\n", "1177.0609983390066 indicates laminar flow\n", "1157.1273735954273 indicates laminar flow\n", "1137.8576605984092 indicates laminar flow\n", "1973.470663933797 indicates laminar flow\n", "1917.1646477879935 indicates laminar flow\n", "1863.9824900304804 indicates laminar flow\n", "1813.6712399687951 indicates laminar flow\n", "1766.0045389956392 indicates laminar flow\n", "1720.7792156269336 indicates laminar flow\n", "1677.8123906590151 indicates laminar flow\n", "1636.939005455476 indicates laminar flow\n", "1598.0097029242434 indicates laminar flow\n", "1560.88900383559 indicates laminar flow\n", "1525.4537315473128 indicates laminar flow\n", "1491.5916465379928 indicates laminar flow\n", "1459.2002588550301 indicates laminar flow\n", "1428.1857920071006 indicates laminar flow\n", "1398.462276237926 indicates laminar flow\n", "1369.9507527167855 indicates laminar flow\n", "1342.57857313263 indicates laminar flow\n", "1316.2787816097712 indicates laminar flow\n", "1290.9895678738137 indicates laminar flow\n", "1266.6537822661387 indicates laminar flow\n", "1243.2185045967854 indicates laminar flow\n", "1220.6346599896842 indicates laminar flow\n", "1198.8566758513339 indicates laminar flow\n", "1177.8421749170093 indicates laminar flow\n", "1157.5517000239954 indicates laminar flow\n", "1137.9484668507516 indicates laminar flow\n", "1118.9981413619716 indicates laminar flow\n", "2000.0343635410343 indicates laminar flow\n", "1941.2945118044415 indicates laminar flow\n", "1885.9065285305805 indicates laminar flow\n", "1833.591471171288 indicates laminar flow\n", "1784.1005132301736 indicates laminar flow\n", "1737.2109867294062 indicates laminar flow\n", "1692.723032763451 indicates laminar flow\n", "1650.4567538547926 indicates laminar flow\n", "1610.2497825404412 indicates laminar flow\n", "1571.9551968983044 indicates laminar flow\n", "1535.4397265991404 indicates laminar flow\n", "1500.5822033155632 indicates laminar flow\n", "1467.2722175183517 indicates laminar flow\n", "1435.4089502867416 indicates laminar flow\n", "1404.9001540939414 indicates laminar flow\n", "1375.6612608644818 indicates laminar flow\n", "1347.6145991398814 indicates laminar flow\n", "1320.6887050924242 indicates laminar flow\n", "1294.8177145183074 indicates laminar flow\n", "1269.9408249193496 indicates laminar flow\n", "1246.0018184248431 indicates laminar flow\n", "1222.9486376740115 indicates laminar flow\n", "1200.733007924635 indicates laminar flow\n", "1179.3100996146275 indicates laminar flow\n", "1158.6382264129277 indicates laminar flow\n", "1138.6785744801261 indicates laminar flow\n", "1119.3949592390547 indicates laminar flow\n", "1100.7536064484611 indicates laminar flow\n", "2029.3525706031476 indicates laminar flow\n", "1967.948250756953 indicates laminar flow\n", "1910.1507495829803 indicates laminar flow\n", "1855.6513435808924 indicates laminar flow\n", "1804.1755652166685 indicates laminar flow\n", "1755.4785798628448 indicates laminar flow\n", "1709.341291755138 indicates laminar flow\n", "1665.5670482806154 indicates laminar flow\n", "1623.9788380175496 indicates laminar flow\n", "1584.4168983285624 indicates laminar flow\n", "1546.7366643277433 indicates laminar flow\n", "1510.807003712523 indicates laminar flow\n", "1476.5086920324263 indicates laminar flow\n", "1443.7330910341002 indicates laminar flow\n", "1412.380999212623 indicates laminar flow\n", "1382.3616489480494 indicates laminar flow\n", "1353.5918288720038 indicates laminar flow\n", "1325.9951135921829 indicates laminar flow\n", "1299.5011857593909 indicates laminar flow\n", "1274.045237814805 indicates laminar flow\n", "1249.567442701392 indicates laminar flow\n", "1226.0124844394181 indicates laminar flow\n", "1203.3291408129312 indicates laminar flow\n", "1181.4699115408175 indicates laminar flow\n", "1160.3906862518259 indicates laminar flow\n", "1140.0504473795654 indicates laminar flow\n", "1120.411003766541 indicates laminar flow\n", "1101.4367513368238 indicates laminar flow\n", "1083.0944576819086 indicates laminar flow\n", "1997.3101615936241 indicates laminar flow\n", "1936.8753836397382 indicates laminar flow\n", "1879.9904745895647 indicates laminar flow\n", "1826.3515855243515 indicates laminar flow\n", "1775.6885826079845 indicates laminar flow\n", "1727.760497022905 indicates laminar flow\n", "1682.3516924116352 indicates laminar flow\n", "1639.2686212024996 indicates laminar flow\n", "1598.3370668909567 indicates laminar flow\n", "1559.3997894075849 indicates laminar flow\n", "1522.3145064699365 indicates laminar flow\n", "1486.9521562854832 indicates laminar flow\n", "1453.195396895072 indicates laminar flow\n", "1420.9373053861932 indicates laminar flow\n", "1390.080246593476 indicates laminar flow\n", "1360.5348860699223 indicates laminar flow\n", "1332.2193263108666 indicates laminar flow\n", "1305.058348640727 indicates laminar flow\n", "1278.9827459842422 indicates laminar flow\n", "1253.9287340598346 indicates laminar flow\n", "1229.837430448212 indicates laminar flow\n", "1206.654392579848 indicates laminar flow\n", "1184.3292070106218 indicates laminar flow\n", "1162.8151234638567 indicates laminar flow\n", "1142.0687280478496 indicates laminar flow\n", "1122.0496508419933 indicates laminar flow\n", "1102.7203037070692 indicates laminar flow\n", "1084.0456447367685 indicates laminar flow\n", "1065.9929662448258 indicates laminar flow\n", "2029.5916183364654 indicates laminar flow\n", "1966.2638896517544 indicates laminar flow\n", "1906.7685123914523 indicates laminar flow\n", "1850.767824725478 indicates laminar flow\n", "1797.9627007752686 indicates laminar flow\n", "1748.0872056762537 indicates laminar flow\n", "1700.9041162401654 indicates laminar flow\n", "1656.2011479700038 indicates laminar flow\n", "1613.7877618055702 indicates laminar flow\n", "1573.49244927089 indicates laminar flow\n", "1535.1604144427004 indicates laminar flow\n", "1498.651586680248 indicates laminar flow\n", "1463.838910332859 indicates laminar flow\n", "1430.6068674096562 indicates laminar flow\n", "1398.8501970123145 indicates laminar flow\n", "1368.4727816205207 indicates laminar flow\n", "1339.3866754056232 indicates laminar flow\n", "1311.5112538811643 indicates laminar flow\n", "1284.7724675737727 indicates laminar flow\n", "1259.1021851658347 indicates laminar flow\n", "1234.4376138412879 indicates laminar flow\n", "1210.7207864516079 indicates laminar flow\n", "1187.8981066848248 indicates laminar flow\n", "1165.9199447254823 indicates laminar flow\n", "1144.7402769851444 indicates laminar flow\n", "1124.3163643994376 indicates laminar flow\n", "1104.6084645594751 indicates laminar flow\n", "1085.579573597633 indicates laminar flow\n", "1067.1951943004458 indicates laminar flow\n", "1049.4231273912792 indicates laminar flow\n", "1998.526440504785 indicates laminar flow\n", "1936.1680137897376 indicates laminar flow\n", "1877.5832800589296 indicates laminar flow\n", "1822.439745775598 indicates laminar flow\n", "1770.442863518504 indicates laminar flow\n", "1721.3307688546786 indicates laminar flow\n", "1674.86986956302 indicates laminar flow\n", "1630.8511303990342 indicates laminar flow\n", "1589.0869287167088 indicates laminar flow\n", "1549.4083811698047 indicates laminar flow\n", "1511.6630611604137 indicates laminar flow\n", "1475.713041986163 indicates laminar flow\n", "1441.4332127257235 indicates laminar flow\n", "1408.7098235207327 indicates laminar flow\n", "1377.439224609065 indicates laminar flow\n", "1347.526769656941 indicates laminar flow\n", "1318.8858589453325 indicates laminar flow\n", "1291.4371020360443 indicates laminar flow\n", "1265.107582866011 indicates laminar flow\n", "1239.8302129439085 indicates laminar flow\n", "1215.5431605682068 indicates laminar flow\n", "1192.1893458426546 indicates laminar flow\n", "1169.7159928069955 indicates laminar flow\n", "1148.0742312858067 indicates laminar flow\n", "1127.2187421333308 indicates laminar flow\n", "1107.1074404545482 indicates laminar flow\n", "1087.7011921427486 indicates laminar flow\n", "1068.9635597160366 indicates laminar flow\n", "1050.8605739795205 indicates laminar flow\n", "1033.3605285026372 indicates laminar flow\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\Gabriele\\AppData\\Local\\Temp\\ipykernel_23112\\89788373.py:87: UserWarning: Log scale: values of z <= 0 have been masked\n", " contour1=plt.contour(X, Y, Z, levels=np.linspace(np.nanmin(Z), np.nanmax(Z), 7), norm=LogNorm(), colors=color_vector[0])\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnsAAAHRCAYAAAASW3+CAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnQWcFOUfxp/dvU7g6O7ubpRQBEElBBRQsLBA8a/Y3YmFAVgYKCopIBh0Snc3R3NdG/P/PO87szu7dwdXcPV+cdzZmXdnZ/dmZ575pUXTNA0KhUKhUCgUiiKJNb93QKFQKBQKhUJx5VBiT6FQKBQKhaIIo8SeQqFQKBQKRRFGiT2FQqFQKBSKIowSewqFQqFQKBRFGCX2FAqFQqFQKIowSuwpFAqFQqFQFGGU2FMoFAqFQqEowiixp1AoFAqFQlGEUWJPoVAoFAqFogijxJ5CoVAoFApFEUaJPYVCoVAoFIoijBJ7CoVCoVAoFEUYJfYUCoVCoVAoijBK7CkUCoVCoVAUYYq92Fu5ciWaNGkCf39/3HzzzZkuUxQ8LBYLZs2aVWC3Z+bvv/9GgwYN4HQ6cbXYuXMnKleujMTExKv2noqixdSpU3Hddddl6zVDhw7Fe++9d8X2SaG4Wjz33HO499573c+vueYaPPLII1fkvT7//HP069cPV4piL/bGjx+P5s2b49ChQ/jmm28yXebLu+++i7Jly4rJ98S2du1atGrVCg6H46p8BkXeEB0djRtuuEHMHz58WIi/zZs358m2n3jiCTz77LOw2Wx5sr0aNWrgr7/+uuSYhg0bon379nj//ffz5D2LInfeeWeBvKF78cUXxTkoP0lJSREXuxdeeCFbr+Nx/tprryE2NvaK7VtROwZ5ruEUEBCA2rVr4+WXXy4W1w/jPGtM4eHhaNSoER588EHs27cvX/ft1KlT+PDDD/HMM89clfcbPXo0Nm7ciOXLl1+R7Rd7sXfgwAF0795dWEBKlCiR6TIzW7duxfPPP4/p06fjp59+Eie3bdu2iXX8gY4ZM0aodD8/v6v+eRQ5p3z58ggMDMzz7a5YsUIcUwMHDsyT7fH4u3jxIrp163bZsaNGjcJnn31WLC4civSkpaXl+LW//vorIiIi0KlTp2y9rnHjxqhVqxa+//77HL93caN3797iZpMC57HHHhNi/5133snzv+mVIrf7xBtXfv4tW7bg9ddfx65du9CsWTPhEblS73k5pkyZgo4dO6JatWq4kmiaJs7PFPq33XYbPvroowIm9jQNoHvoak983yzicrnwxhtvCCtIcHCwOHh4AjPfUZw/f14oas7TipfRMl92796Npk2bCkHYo0cPMc9lhD/Qrl27ok2bNsgX+P04EvNnyuLf5ssvv0TFihXF38fMTTfdJL53g9mzZ6Nly5YICgpCzZo18dJLL11StFBw82/Cv3VUVJQwvyckJHiN+eqrr8SdI0VdhQoV8NBDD2XoxuUxQ1q0aCGW03y/bNky4drnHZ8ZmvW7dOmS6X7xpqBXr17ic/habrg/VatWRVhYGB544AHh5n377beF8KTVmBYSX/i98OLAfTly5Igw/ZcsWRKhoaHis82fP989lu974cIFLF26FFcTnsDSEtPyZeJ75xT+nceOHSsssaVKlRJ/B/6tDHgyHjJkiNdr7HY7Spcuje++++6y5x2yZMkScUzxQta6dWuEhISIi8qePXvEep5zeKzzwmdYPIzz0NGjR8XvhMcLhditt96K06dPpzuueKHi+/OY437x95Camuq137Rojhgx4pLHra9bib8/fj+8CeY2J0yYgDvuuCOddZSv4+vzk/y6RGXzMiXg+YjHGoXF/fffj549e2LOnDle1meeC3jerFevnlh+7Ngx8ffn34LHKo8LXtfMx1nbtm3FeYFjKNp5viA8tq699lphSeNxRE/Uf//9l6lVeeLEiahevbr7eU73KTN4LPHz8zzP11D8tWvXDnfddZc79CWjYzs7v4kvvvgCVapUEb83jrmc5Tmj49/4DfC6ERkZKX73tH6bzznTpk0Tv2t+t/xMPGecOXPG6+/C3/SCBQvE986/PQ0ChO/Hv3tycjLympybnpKSgLAwXHV48Q4NzdJQnnB5d0krW506dcTFevjw4ShTpgw6d+4s7iR4kNJkzhM4/zi8iJqX8Q/qC+P59u7dKw4y/pE5z7tZWm++/vprbNiwAfmGMwn4JR/+LuTWBMDv8n+bwYMH4+GHH8a///4rxDKhIFm4cKFbqNCUPXLkSHGXQyHF79aIncjIrcS4tOuvvx4dOnTA+vXrxY/r7rvvFj9K40JJCxdd9G+++aZw1/LHzvjMjFi3bp04UfKkQwHFuy6evHgy4o/58ccfd1/of/jhByHQMoOfhT94X/iZ+IPn5+b8oEGDcPDgQdStW1eIs1WrVgnxyxM/T3wGPBnwcxC6O3iHy2ObJ3XG6fGkZ8D95omO+2B811cDe5Idb4S9gfzgqYSnEBAakOPXf/vtt+L7ZTjG6tWrxYWNF0oK59tvv10cv7yJML7nP//8E0lJSbjlllsue94xW2PpHmIICJfTG8C/NY9Hnne2b98ujgvDVc/zEEWkcVHj8cGLDv/+HM8LiMH+/fvx22+/4ffffxdhA9wHCjQeN9x3wt/HH3/8gUWLFmX6PfAC5CsG33rrLXG88zzHGFS6uXiDROFghr8dCgEKzCthLS/Il6hsXqYyhDcJNDoY8MaAQmbx4sXu845xvuNvm16kV199VVy/aPm3Wq1CjN1zzz3C+8RzBM9pFBmExzFvZHlO5DHCcBXePGaH7O4Tz0VZhfs/btw48Zvi9ZTHU0bHdnZ+E7/88gvmzp2LuLg4ISJ5c81jOSN4PeK5lKIto/MDX8/vkwKZ1yXesPO7Nr6HV155RegI/s54LuE5xHwTTp588kkRDsZrCm/WCd+Pn4HnHt545iVF1s/IkwzNwTxZ8uAj/FJ5AqPC50mXqpsHP0+knCe8YPou84UnOW6bJ3/j5M5lvCjzos+TP+8m+OPhyZCWPoUHHtgUWz/++KNbgNDywbsk46JBywZ/DLQaGH87/oBocclI7HFbjDGiFYN/Q/LJJ5+IOyVeoMqVKydOPHSR8CRikJkFlhdg8x2nAX/kvNAZYo8nD74v7xQzg3fTvPv1hScqWvZ4k8H4On52Wnd4UuDJjicL7jtFsSH2Tpw4IU6cRmwhbzjoHuYNiPE9+cL3Nu7oFZeHlnrjGKNQ4nHECxt/77yY8fiaOXOmWwjx2Ovfv7/4O2blvGNAMWQ857Het29fcSzxQs+LFy+W5mOPF1VarxlLTAsF4fHOmxHe4BjHMi/sXG4cw4Q3GzxuDbFHMcoLVGYXlJiYGHEz5Hvcfvzxx3jqqafcwpbfje9FjPB13A9awa+0G6woQeMBjzVeQ3hDbMBjjhYtQzDx78fzB5cZAo5/X1rUKHIoGvj3u/HGG4VLnfAaZcDzBs9h9evXdx/n2SW7+5TdRB9j32gZNMSe77Gd1d9Ein5tqFSpkvs45u+NN1sZXecNQ05G522+zwcffCA+I8/RfH8+N8Se2TvF3z4NFtwP8w0ioUHJ0BAGtDpSe1yJ83XOxV5IiLx9udrwfbMAlTzvtn2/TB4svKPJLbwT52RW+zzZ8wTPA4AH2vHjx0VmGg/Eq3Z3awuRFrb8gO+dRXhnyR/HpEmTxHfDOyx+VxQ5hpuBVg6zG5PmfP5o+Xflj8KMEeNhCD1CawxPPhRQ/GGePHky19Yt3qExRnPNmjUi+YFWQwo98/v6QpO82YVrQLcIjxkDClLerRrfgbHM7AKgdYZWaSOWlBYbun1ooeHNBoUfxYoZigd+Z1cT/xB/YWHLD/jeucH3+6O73/gbUIDx783jlWKPFmW61Q2XZXbOO+b34XsQvg9FWEbwGOeFxrioEd4k8FjgOuPCRnFlFnqEvzWu580CL3g8bo3EgIww3Ejm45bige4x48JLeLzSFeUbksFjjlzt464gXKKM984O8+bNE0KAViF+lxTn5vAB3syZLWM8P/JYM58/CM+P9BJQWPHvy5sTHos8N/C4NY4zWpvo+aCXgut4E2CIwqyS3X3KLoZr1HyM+h7bWf1NVK1a1S30CK/TxrUhI7GX0fFvwPO+eZ+4LYpGXp/4e6Alkn87fh+MrTZ+GxSQ3DeDjKyGV/J8nXOxxw+bGzv1FcaI1aKrwvxHJnktvM6dOycsUXTX0PxKNxzvlDjxx0s3r2F5ueLw75IFV2p+Q4sbf8z8+/AHSbM/747Mfz9+pwMGDEj32ox+gJfDuPjkFsbRcd95x8q4Ebphze6CjKDFkj96X3zdJjyBZLTMfCGl2KMVyYAnbJ7QDZccrcw88ZitAnRJZPdEnltEZmEuXKn5yeX+BrxRoUWOwoyWBR5bdFVl97xjfh/j4uErmnJCRjceFJq8GaJ1g0Jgx44dYh8zgxZt7lNGx21W4DFHfEXn1aSAX6K8oFWfLlWKJ1qTfJP7fP+mPM4osjNyQxrfOc9RvBlkOMDPP/8sblJ5vFKsUIxQUPIY4DmMlmzesNBiy5tN37hXXsd8yck+ZQeKNXP8dEbveaUoXbq0eOTxn519N8KJOPF74Gsp8vjcN6Eks8/C386V+N0UWTcuFTRPrvyis5K1mBseffRRMTF7lxY98w+D/verWVutsEDBRiHHHwTvBmkNZTKGAed518UyBFmBLgpaK/hjM35EtAwa7lDebdKSRheJb3xRRhh3rBn97Siwhg0bJv7eFFGXy1bkhZbxH7mFJ1O6dHlRMMO7WsPSTBfb5MmTvcQe478YD6jIG5hMwe+cF1BeKGkVMYRbXp13ePz5Hns8xhkAz8mwZPC4osvVbDHIDB63DLSndY/WHLM1JKP35za5fcP9RvcSLc08xxmhKdxHlovwDejnMcffh3HRVFwanrOyeq4zzo88/njzybi5S517OPG8QAsUQw4o9giNEpx47eL5jOKQYo9Cg+53Cj7jJiQrJaiyuk9ZgTc9dH9S6F3KE5fV38TRo0eFZ8dwy9IzY1wbMoLndX4GbovfkRkadMxwWzTs0KrHRE3GWjIu3NgfI/ElK9ACSktoXngfi03pFV7c//e//4kDmS5Wfok8KdFXz+d5Be+UaLljUCihlYp/cF4EmHXKAyCzA6q4QwsJ7ywZt8Z5MyxtQysErXu0QvAuj3eevDvNbFsUkIzx44WGooiCh642XqAI72Zp9eJJhCUOjOMhI3jCosWGd8V0XZkzt3iXxhMBYwBZ2uRycLyRbZUbuC888Ziz4pgJzPgehgrw8/Bzm2NzGO9iXNwVeQetIkzA4O/ffOzm1XmHf2P+TXmRpeeAsYD8G9JDwPfjNhkgziQmisrMXEK++8zQEt4MmOOKsnPc8jdF6zFd17wZY/wrrR++7mBa6rMbo6XIOjwGKKSZnMDvmscKPQy05PFvzOcUeEwwYvwXrf485/HcQBclE9c4nut4U0wBb5w3GMd59uxZEX/O4/fTTz8V17Pc7tOloECiwGSCGr0XPNZ5fLOo96Vqk2b1NxGkXxvoWuW+cZ/o1s4sLp9CkNvO6LxN4Ug3OI9/Jr/wt23EgdNdzBslLjM+C2PNswr3jXF+V8QToxVhXC6XNnHiRK1evXqav7+/VqZMGe3666/Xli5d6h4TGRmpff31116vy2hZRiQlJWl169bVNm3a5LV88uTJWrly5bSqVatq8+bNy8NPVLRwOp1ahQoV6C/QDhw4kG79woULtY4dO2rBwcFaRESE1rZtW+3LL790r+frZs6c6X6+detW7dprr9WCgoK0UqVKaffcc48WHx/vtc3PP//cfTzwvR9++OFMt8e/Y5UqVTSr1ap169bNazvPPfecZrPZtJMnT172c54/f17s0+7du93LXnjhBa1Zs2Ze4+644w7tpptu8lrG9x03bpyYHz58uPbMM894rX/ooYe0WrVqaYGBgeL4HjFihHbu3Dn3+tdff10c84qM8f3Ozd+3AddznJmdO3eK46VatWriPJOd886///4rXnvx4kX3a3gO4bJDhw6J5ykpKdrAgQO1EiVKiOXG+ejIkSNa//79tdDQUC08PFwbPHiwdurUqUseV2Z4fPC3we1fjh07dojfXkxMjHuZ3W4Xxxx/jyVLltQmTJgg9mHo0KHuMcnJyeIcunr16su+hyLj331W1kdHR2sjR47USpcuLX7/NWvWFOe82NhYcUzcfPPN4hwXEBAgjtPnn39enHNTU1PF34vnNq6rWLGi+Jvy72bw2WefifU8zvger732mthGbvYpI3i88/g2ppCQEK1BgwbaAw88oO3bt89rbGbHdlZ/E5MmTRKflefiQYMGaRcuXNAuxfz587VKlSqJ78x8fuC+jRkzxv0bePrpp73OAT/++KNWvXp18fk7dOigzZkzR3w2Qydk9Ps3uO6667Q33nhDuxJY+L+8l5AKRdGGWbm8+zVqYV0OZr4x5Z8ZmTmB4QC0UPIO2xwgfykYI0L3Al032S2MqyiaMEGJmYpZLdxKFzXdc7QSZeZuo0WIVhLDgsEwA2YrX6qsi0JxtaBHZ9asWdnuhkRpxCoIhpv7SkMPFuvE0lOYUcm33FJk3bgKxZWA7lya9imgzHFxl4M11ZhJltMAfAbt8qSTnWLddDc8/fTTSugphKuVAoxuNSPkJCuwSLy5XATdfnQD84LEkhPMBKe7zlxHkvGLmYVHKBSFBYvFIkKxrlb3Idb9ZejSlRB6RFn2FIpswHgWxoXcd999XtnDCkVBhjGAFHys9s+YwpzCQHiWSGJcLC8dLCbPYHRVS1RR1Cx7RQ0l9hQKhUKhUCiKMMqNq1AoFAqFQlGEUWJPoVAoFAqFogijxJ5CoVAoFApFEUaJPYVCoVAoFIoijBJ7CoVCoVAoFEUYJfYUCoVCoVAoijBK7CkUCoVCoVAUYZTYUygUCoVCoSjCKLGnUCgUCoVCUYRRYk+hUCgUCoWiCKPEnkKhUCgUCkURRok9hUKhUCgUiiKMEnsKhUKhUCgURRgl9hQKhUKhUCiKMErsKRQKhUKhUBRhlNhTKBQKhUKhKMIosadQKBQKhUJRhFFiT6FQKBQKhaIIo8SeQqFQKBQKRRFGiT2FQqFQKBSKIowSewqFQqFQKBRFGCX2FAqFQqFQKIowSuwpFAqFQqFQFGGU2FMoFAqFQqEowiixp1AoFAqFQlGEUWJPoVAoFAqFogijxJ5CoVAoFApFEUaJPYVCoVAoFIoijBJ7CoVCoVAoFEUYJfYUCoVCoVAoijBK7CkUCoVCoVAUYZTYUygUCoVCoSjCKLGnUCgUCoVCUYRRYk+hUCgUCoWiCKPEnkKhUCgUCkURRok9hUKhUCgUiiKMEnsKhUKhUCgURRgl9hQKhUKhUCiKMErs5RKn04nnnnsONWrUQHBwMGrVqoVXXnkFmqa5x3D++eefR4UKFcSYnj17Yt++fV7buXDhAm6//XZERESgRIkSuOuuu5CQkOA1ZuvWrejSpQuCgoJQpUoVvP3221ftcyoUCoVCUdivx77ceeedsFgs6aZGjRq5x8THx+ORRx5BtWrVxHY7duyI9evXIzPGjBkjtjFx4kQUGDRFrnjttde0qKgobd68edqhQ4e0GTNmaGFhYdqHH37oHvPmm29qkZGR2qxZs7QtW7Zo/fv312rUqKElJye7x/Tu3Vtr1qyZtmbNGm358uVa7dq1tWHDhrnXx8bGauXKldNuv/12bfv27dpPP/2kBQcHa1988cVV/8wKhUKhUBTG67EvMTExWnR0tHs6duyYVqpUKe2FF15wj7n11lu1hg0bakuXLtX27dsn1kVERGjHjx9Pt73ff/9dXMsrVqyoffDBB1pBQYm9XNK3b19t9OjRXssGDBggRBlxuVxa+fLltXfeecfr4AoMDBSCjezcuZO3Hdr69evdYxYsWKBZLBbtxIkT4vmkSZO0kiVLaqmpqe4xEyZM0OrVq3fFP6NCoVAoFIX9epwVZs6cKa69hw8fFs+TkpI0m80mBKSZli1bas8884zXMoq/SpUqCYNMtWrVCpTYU27cXEJz7t9//429e/eK51u2bMGKFStwww03iOeHDh3CqVOnhOvWIDIyEu3atcPq1avFcz7Sddu6dWv3GI63Wq1Yu3ate0zXrl0REBDgHnP99ddjz549uHjxYob7lpqairi4OPcUGxuLs2fPXtKkrVAoFApFXpCSkuJ1DcrJxOuW7zJe23JyPc4KU6dOFddfumyJw+EQ7mGGT5mhO5fbNnC5XBgxYgQef/xxLxdwQcEvv3egsPPkk0+Kg69+/fqw2WzioHjttddE/B2h0CPlypXzeh2fG+v4WLZsWa/1fn5+KFWqlNcYxiH4bsNYV7JkyXT79sYbb+Cll15Kt5w/HsYGKhQKhUJxpYRejWphOHXGmavthIWFpYtff+GFF/Diiy9m+3p8OU6ePIkFCxbgxx9/dC8LDw9Hhw4dROxfgwYNxHX3p59+EgaY2rVru8e99dZb4ro9duxYFESU2Mslv/zyC3744QdxcFDNb968WQRyVqxYEXfccUe+7ttTTz2F8ePHu5/zR8DEDoVCoVAoriRpaWlC6B3aUA0R4TlzIsbFu1Cj1REcO3bMy0ARGBh4Ra7H3377rfCy3XzzzV7Lp02bhtGjR6NSpUpCRLZs2RLDhg3Dhg0bxHo+fvjhh9i4caNIzCiIKLGXS2iy5d3E0KFDxfMmTZrgyJEjwqrGg6t8+fJi+enTp0U2rgGfN2/eXMxzzJkzZ7y2S9MxM3SN1/ORrzFjPDfG+MIfRGY/CoVCoVAorjQUejkVe+5tRERkyRt1uevxpWB401dffSVcseZwKcKs3qVLlyIxMVEYTXgtHzJkCGrWrCnWL1++XFzDq1at6n4NrYqPPfaYyMg9fPgw8hsVs5dLkpKSRGydGSp/+u8JXa8UY4wjMODBwlg8moYJH2NiYtx3CeSff/4R22BsnzFm2bJlsNvt7jGLFy9GvXr1MnThKhQKhUKR3zg1V66mvLweXwqKuf3794uyZ5kRGhoqhB7j5P/880/cdNNNYjkFIkuj0ZJoTLQmUnxyXEFAWfZySb9+/URMABU9zcabNm3C+++/L0y+hCZdmpFfffVV1KlTR4g/1gHigWCYihkH0Lt3b9xzzz34/PPPhaB76KGHxN0Jx5HbbrtNxN/xQJwwYQK2b98uzMYffPBBvn5+hUKhUCgywwVNTDl9bV5ej43wphMnTuC7776Db2IGjSuNGzeGLxRstPzRuEJBSBHHuMBRo0aJ9VFRUWIy4+/vLww9fE1BQIm9XPLxxx8L8fbAAw8IMy7F2X333SeKKBs88cQTwvx77733Cgte586dsXDhQq/sHsYZUOD16NFD3JkMHDgQH330kVcG76JFi/Dggw+iVatWKF26tHgPblOhuCTMvuadrc2Wq83EHIlBWLkw+AX5nDZ27QLq1+edjddYv13bEda7c67eU6FQFG5c4l/OX5vX1+Po6GgcPXo0XdLib7/9JgwoGcH1FInHjx8XiZO8PlNUUtAVFiysv5LfO6G4OtB9TNGY02zczz4Dfv8dGDYMMN0ogVnu4/ttQUjgYfzywofAwH8yfP3Zs8A770hN8NZbufkkAJOlvvoK6NMHMOWgePPbb3Kne/UCJkzwWhV3Ig6zR81GQGgAhswcggLDpglA9J9AuylAlKcUT46ZOhV49135Jd1zT443c3jpYfwy8BfU6VMHN397sycI+csvgQceAN57Dxg3Tiy6eOgivm31MQIunsYdL9VA6PP/y/3nUCgUhfJ6c3JP5VwlaFSsd1xVkMgDlGVPkSkHDwLnzgHMLi9VCmjTBmCFGN8SQixH9E3DJ1Bq4GIgpUSm22P2PMVecHDuxR7fkzG4bdte5gMwVrJSpXSr7Il2HFx8EIERBSyBJXanuJ+FPS5vtscajLt3S9F7991e1rfs4HK4kBKTgosHLsKR4oB/sH5HGx/PSGQpJuvWBW64AZpTg8uhwQkbnC+8DJQNY/+gvPk8CoWiUOHUNDHl9LWKvEGJPUWmsDTRmjXAzJkAwwtZ89lU99kNE34DY5KARzXgk08z3R4FIzVBaGju961TJzldkuRk+ehTDJOElQ/DLdNugdW/gOUodZsNWPJwnxhT8uyzwKZNAHs5XlIdZyzyYg7HoGaPmsICWuPaGh6hR/gHpRuXFsQhQ1j9G6UaNcId6x9EwKQPEP5RvLT8lS4NDBqUd59LoVAUCq5mzJ4icwrYlU5RkKhcWVrQfJKbMibZDpyjsArJdEhkpPT2vfxynu7m5cUeTYk+0KLXdHhTNB6SPhg3X8lLoUcYNHzrrXL+88+z99rvvsPGZnfi0/qfYMlLS1CvXz0EhHlKEpzbc05aCidNArp1k1a+G29klW9E1SuN8ImvAvfdJ2IGz932MFyLPRnpCoWieEDB5szhpMRe3qHEniJTZswAWB6of3/5nGX9li8Htm5NP/azE/3xCD7A/vNXpwwMrfuMFVy0iMU7sy/2CjwuO81qebOt+++Xj9OnS7duVvjjD2EVPLEzDi6nhuDZP7O8vHv1th+3YVKjSVj9/mqANakYH1mrljxguneXBwuF4Kef4kDnOzDZPgp/9PkU2n//5c1nUigUCkWWUWJPkWVmzwa6dgWeey79uq/O9ceHeAS79i0Cjv2e6TYcDk+YV25p0YL9gQGfxKosiT17sh0n1p/Aqc2yHV2BYsUQYEYEcGZJ3myvfXugaVP5fXz77WWH2zdtQ9LQUTjrikL/ShswEt+g9aYvRcZt2hdfI+l8Ei4cuCBi885sPyN7LdOCyHpSNAfTrUvBx4wcmw1pD41HGgJw0REO5w39gOPH8+ZzKRSKQuPGzemkyBuU2FNkGdZuZsFwnxa9gttCZ2NCwzdRo8Qs4OyqTLdRpgyroQN79uRuX2g0athQJov4tE30kJKSqdhjosGUtlMw7bppKHhYAGcKcG5NHm3OIt2rxNS4OzPOfDgdHybcjWkYgT9PNEINHIYNLuyIr4q/xs3F9Jumo17/ehg6eyj6T+nvycylZe/ff2VCzM6dwJ13ChNsgyFNMXzmQNzebDv8KpSRWT4KhaJYJWjkdFLkDUrsKTKFhppbbgFefVU+HzwYOHAAmDgx/dhHgz7Dm1WeQuMqO4DEzFvDVK8uYwBPnMj9/jHfYPt2QO86l57UVPmYQcs4i9WCEtVLILJKJAocpWVnFZxbnTfb4wlzzhw5f+21lx1e8Y2H0KGdE6mWYDTFNhm42bMnYtpfj42u5oioHIFyTcsJwcfv0Qumbi9cKL/z+fNlFjB14M1NYFu8EPjpJ+H2XTxhMXbP2p03n0+hUBRYXLmcFHmDysZVZEp0NDBrlscbekloRTPa+yYcynQYr//0+Pm0HrwyXELslWlYBuMOybpwBVfsrQHYLii3SRurV0tVTAsnU6wvg6VCBVyz5i10iEtFYNjL7gydamuO4+bDMWg4uKFXs+/ki8lIOpuEqLp6BXlWoGdtnUceAR57TCr8G26QZt0yZXDon0NY9fYqYcB8cOeDKF2/dO4+n0KhUCguibLsKTKFpU2YaOlTjzhjUlORdtYf5+NLXdKyV6HCVRJ6+j5lJvYKNCWbA7YgIO0CELc399tj4WPCwoQlMq+D6IuoQWhKxa7cvjIaD20Mq82zbMeMHXg76m3Mu2+e94sffhi47jp5E9C3r4zhW7dOrKrSsQo6P9UZHR7roISeQlHEyWkmrjEp8gYl9hSZUqeOTOQ0e/7YOYOl2lin18ycpJ4IPJ6Gfu/NlSIlr4oCXwLmAVBH0NVcpMSeLQAo1TpvXLnMvv35Zzl/BVrrlW9WHjwf07qnuUwnZopEpnPTskd1v2QJ0K6dqLXnd+IIerzeA73e7uUenpaYJhJmFApF0cKp5W5S5A1K7CmyxcaNMlaOFTbcOJ0o7TotZs8l6MH3CYcz1R6s8Wtut5ZTqCfoFl68WIalZSr2MjAlHlt9DD/1/wn/PJtxa7ciE7f3ww/SutakiRRbOSB6U7TIvnU5XUKUMQM3PjperCtVpxTGnxiPMZvHpI/fYyYOW7Xt2yeTNej6ZYkW7ssnn7hdwU67E7/e+iu+7vK1iuNTKIoYKmavYKBi9hSXhJ43NqBo0ABgz2cma7BsSsuWpkGpqWiN/3AWpRH1ZVUg3gYkRwMlm6bbnp8f8Nprcp6JHrlpd8is4C++kEmgFHvpOoFdwrIXezQWe+fuRWqcPqagUa4HEL8XKNMxd9tZulQ+sj9wDlqlsawKRVjVTlVxZPkRBJcKFoktZRuXxY2f3ygEW3jFcPf4Za8tQ63raqFSG1OLuqpVga+/llY+9s/95x/p5qX4bNNGlHBhJ5OSVcNx8ou5qH/ib+DBB3P3uRUKhULhxqKJIlmK4tSYOqtNpV0uUSZNcOaMjK/PkJgYWZdFvMlxILQsYDW11PLhqadk6Bi7aIV7dELew7osLAFCceGThXrx4EWRKBBSJgT1b6qPIgvj9djFgn8fWtiYHZNN1n+2Hv888w9K1iyJtPg08d3dve5uVGhRwWscrX7vlnsXzlQnRq8cjUpt0/ckFqqcvfeYHcwD4fXXxWJaDbU/F8HW9wZZuuXYsRz38VUoFAXnerNxZzmEhefMiZgQ70LLhqezfM1SZI4Se8WI7Io9ZuGyll1SEnDw4CV62rJbQvnyHoVYUC7SNP3R38wGvzl0YRZ6DDMs25489BDw8cc52gwtoEnnkoTLlYkb4RXSq/S0hDTMuWuOiN8bvnB4ereuwfffAyNGyKzdbdu8Dzg2UKbbmcu5XqFQFOrrzX87cif2WjdSYi8vUDF7ikxhpY5Dh6SWM4Qe6+wtW+YTs6f3K/vGdhfGjrOIuL6rBUUoY/a4n+mgSiUhmffrLdDwPizxCHBhU863QdOsURiRNe927MjRZijwaNkrzZ63JqHncrgQfzIeKbEpom/uwOkDMXTWULfQ473k+b3nvTfGMiwMuGQ5GPOBFBwMrds1iEUkMM8nu1ehUBRKnLDkalLkDUrsKbLF22/LnvfTpqUXe79gsDAcbZoxBVg+6JIt0+gWjo3N/f4w2YMVPmbOzJ7YizsRJxINEs8mosByZDowuzrw30O52w5d2ExZppVv/PhMsllyxi+DfsH7ld7H9unbxXORdGEB5t47Fwf/Poi/n/4bnzX9DPsX7ve8iK7kzp3l/Ny57sWp8an4cH1HfIhxSJ7hWa5QKAovSuwVDJTYU2SLihWBevU8IXpmsTco6A88+VgcmoR8CRyfBbjsGW5j1CigXDlg8uS8KQ/D0Lx0LmZhFdOFXAb+5zUT1+CzJp9h5dsrUWCJaisfL6wHHFmpbH0J3nlHZiUvWiRTmPOIsAphsNgsSI1NBf77D/joI+yZuQsbJ2/E7FGzcW7XORHDx2xeL/r1Syf2AsMD4V8qAla4cGbj8bxps6JQKBQKJfYUmUOX7U03yUQKgxdekDX2GP7lK/ZGh8/AG++EoW3dbYDmlC7IDChdWob1GVosN7z0kvQGMgchXSauYcHKoDeuX6CfSM4ILpl+XYEhrCYQVF6KZgq+3MCU5TFj5DwzY/OI6969Ds+mPotOT3SS6n33bpQ5sx0t722Jtg+1xeAZgzFs7jC0fVAXrr5ij/X3WI9HZ/CsYXii7RJUw1Hgm2/ybD8VCkX+4NIsuZoUeYMSe4pMYVgVkyZ5zb2k589c4oStvShSSPyBDIez9Ar1IYXjFcNw4Wbixu3+anc8fuZxdHm6CwosVMRG6RW2TsstcXqha7YvywWnt53Gwb8Oili9gNAAT0eNPn1EmnW523uh3xf9hAC0+dtQ98a66TdC8zATMOx22ZNPp2yjsgh4WFfu772XN75+hUKRbyg3bsFAiT3FJVub8XpLg80lxZ5u2aPY4+yJ5DbyeULGYo/ai/X2rihGQ1++EQsEFlbyqrgys6QXLPCIslyw4csNmNZrGtZ+tNZ7Bc3ALKWi1+jZPXs39szZg8QziaK7xvl95xF7zCTe2L6NTJ/uvZ1hw0Rhx9iLLuCDD3K1rwqFIn9xwpqrSZE3qG9SkSkspsx4/ttv97RI3bNHtigbODC9ZW+PVlcY9xqPnnRJsZfXmo77wxIxrNiRzrKXgQu30Iq93CRWbNok06rDwjzJETkkpHQISjcofcm+tqzFx64Y02+ajlObT2HBuAX4pO4nWP+pyR09ZIh8/OsvuW86dN38En63SNQ4++63wAWfeD+FQqFQZAsl9hTZhvH9f/+dXuxVDJVWm+TUACSmhGQq9s6eBR5/PG+aJFCQLl8u++R6lYMxLHuZlF1hYsZvt/2GQ/9mVLOlAFGqlSxQnXI60xjILGEkZfTsmWH7uOxwzQvX4MGdD6L5nc0vKQjbj2+Puv3qomavmijXpBxsgTZReNlN7dqy/iGtjkb/Xp6U/KyisLIGCw4mlpUt1xQKRaFEy0W8Hl+ryBtUuzTFJWGJFCZFsqlB2bKy8xXduszKdbco09244cEOMb502l+wLEvJNIOUpVd4/aa18KOPPF06cgLff+pUWYu3SpUMxF4mlr0jS49g3/x9QogUaGxBQLM3gdAqQGD2u1+4ySMXbnbq8vV8o6eos8dyLE1HNEXzUc1FDJ8XNBuvXStr+Ywd617c462euLaHBWUeegn4cLtss8YUboVCUajITeyditnLO5RlT3FJ7rlHNmD49VePdrr7bqkZ3I0yTAkaDNeyVOgB3JoMdP8zw21yzKOPAm++KYVfbhk8GOjRw6fCymXEXqsxrXD9xOtRuV1lFHgajAeqDgb8c9hbjpYzCirCLyoPiN4UjZkjZopuGe63cbpEPF/yBc8yUXcPgH+wv5fQczfuoSuXcZUs28L2afryqDpRKPPAYNE7V7jk2WItPj5P9l2hUFw9nJo1V5Mib1DfpOKS1K0rEzVYjzdTfIsX0+1oy9xVyGv7++9LVy5j/K4IRgBfJmKvXr96aD+uPco0zKzhbxGCJlTji86DVnZMtph1xyxs/X4r/n7K48+n0Jt33zwxXaoL46avNmF6/+miBZswFzMLiFD907pHcWrs69SpiImoiunrayFpzZZc77tCoVAUR5TYU1wSXn9PngQeftizjD3q//lH1uHzFXtMrOT1muuvFjExsmWa4an0EnsM6ivsUDidXgJsfxWw59C6xeKG5Ny5XO8OW6H1m9wP1bpWEyVsDNguzT/UH1W7VM30tbQE/vnon9g7by+2fKeLNx4wn38uxd0nn0jTsX53oTVujF+rjsceZx388WV0rvddoVBcXVywwCVKpedkUm7cvEKJPcUlySiejvXx6A10x9SbxN6ff0K0TFs35x9gcRfgxB+Z6pfoaJ+kihyyfr1smfbYY1kXexcPXUTM4Rg4UvPAj3yloQhaMxrY+hxwdlXOtsEWZeS8T5/aHEL3951L7xSJGAaNhzTGhAsT0G5sO7f71hcWsR6xeATaPNQGbR7US/QQVsX+9ltphWTRZ8YPuFxiOzf9fJsQkHS7KxSKwoWqs1cwUGJPkaMWZfXrm2LkTG3JWAaFoVcd6qwCzq4AYmXPVF8++0wmeTDuPi/2p0EDWaM3q2Lv++u+x4c1PsTJ/06iUFC2q3w8uyx3Yi8PLHuZYQuwielyVGpbCX0+7uMWhIz12zVzF7Thw2XNPUPw0ZysacLVTmEZUSniiu27QqG4MqiYvYKBysZVXBaKN7plJ04EOnSQzzm5MVn2Bg2CmLAlFdjBWnsZm+7YQIHXdCOPIjewIcTOnT4LLyP2WAbEL9gPfkF+hUfsHfoWOLMsd27cPLLs5QQWVF78v8WiyHJ4pXBU7lAZtXrVwuZvN2PF6ytEKZd+UwbC+t13wIgRwKRJskzMe+/BYhR6BHB05VH899l/6PN8KwSlxfuofIVCoVD4UkiudIr8ZPNmYN06YMcOKfbSkVEB47Aa8jHhYIbb7NpVGgSvWEidoSIzeYMHtpsa/hYGynaTj+fXypI2ftksFh0R4d0yLR9gnB5j+mj92/bDNjEN+HEAQqJC4B/ij4ptKop4QFGOhWKdsXu8w2A9n6++EkkmqfGpIrmDGb+lN/+FrnunAE8+CTz9dNGIz1QoimTMXs7csSpmL+9QYk9xWf73P2D0aKCtTy/7jMqcsOQeJ3+/GhD5n0kZFwJmB7Mr2sXMcC2zY0RRgP2GgysCySeB82uActdm7/Xm/sX5RMu7WqLFqBbYv3A/QsuGinjJEtVLoMmwJmhxVwsERZrE2l13ybRtCr4ffwS2bxdJHIEdOmDonKFY+foydLRsAnbYgVdeAX75Rcb8sUizQqEoMLhy0fbMhVx0DVJ4oRziisvCZAzWsqtWTT5nZ6vevaV1zrfMyaefAuHhwF1PtJbLEo/mrs1XFqFbmd68n37SFyQkyEev4nuFGMa3Gda900uz//rL1B28GtCiR7d5/Zvr45Zpt2DwL4NRpYOshG0WekeWHcGmrzfBPvg2mWLNitlbtwIdOwL33ouqDcIw7I/h8Js7E5gxQxRbnr2nHnZ0HePT2kWhUOQ3KmavYKC+SUW2YRgVs27ZpkwYjExCwiiRZg1glqYFcCYDqWcz3M733wO33iqv17mFmb10Mx896iP2MrDsOe1OzBw5E3PvnQt7sh2F0pVbCMVeVlnxxgrMGT0Hy15dJtu77d4NjBolV7J9CwM+v/lGPh80CPs/XoDNaInf0vrjQp/h8uBUKBQKhRsl9hSXhSF5jNkzaudFRspkyblzZZKFOT6O2bUcP3mKDQipIqfUjJMCNm2SQm9VDquJmHnkEVlrj+Fel3Pj2pPs2DptKzZO3phpiZACSZUBwPXrgW5zi6zYYzHm6t2ro2TNksK1KyhTBolvfYxz0xYAjRrJjGKKP2bvJiai5i3N0PreFujb9BhKpZ0C+vf39AJWKBT5Ss5r7MlJkTeomD3FZaFhhaFQ5ctLCxoF3p13mgaY3LgMs+IkuOkQK/Bmul12wGLP3U6dcr+PzZv7LLiEG5fuxF7v9BJWvayUCikwBJWR0xXoKFJQoPju9HgndPxfRyx7ZRmWvLgEre5rBaufVWTgXvvip+hiWwU895yM5du2DdZ//kHfL/oDab2BoTHAzJny4OLdSefO+f2RFIpijVOziCmnr1XkDUrsKS4L6+HVqCF72jL8Lp0xzBASvsH/lxB6pEsXOV0RDMue0cLNBPu0UkwUKy7h1i4osN4esdqsQvSJlmv8T9OQEJ0g2rRVal8F6PmUFHGMAdi2DbjpJuCvv6SQ/flnJPcfgpMLt6AWA0iV2FMo8hVnLhI0nCpBI89QYk9xWWjRO+hTQeXECVnbrnJloIFdj3sLCBAu3A8/lH3tmSCZUQeOKwEzgBlDuHcvcP/9hceSlW1idwO73pHz7adm/XUXL8rHkiVRUGGB6686fSWKLt+16i50fKwjWo9pLcR5YEQgzu0+h4TTCVj5zkp0fKwzLLTcMWmDcQB33CEKMsefTcHExTTzNsbj879EkMNhMjUrFApF8USdBRU57pnLNqYTJgBvGmLP318kb7z+ujQksVpGs2aXFmjss8vrMWPucwN3gbH8hEWdy1wiRo0lP5LOJonabsGlCpkY1OzAwa8AWwjQ9nPA6p89sVeiBAoqsUdjoTk1dxwle+1yMgirEIZvu38rrHyOFAeOrz6OGz75EaVG3SSDP+vVQ/grryCqXhQse3YjNg4IWrNGWfcUinzEpVnFlLPXKsteXqHEniJHsD0ZJ6EdTGKPRhQKQJZfKVfu0tugFa5JE6BsWVnOJTcwNK97d1k7mEKzzCU6aJzadApTO0xFiRolMO5gHvRru5pENgICSgFpF4ALG4HSWagrRzUdH1/gLXsNBjTAo8cfFQk0XujVt2ndu+bFa7Dhiw2I3hCN/Qv2Y+bFyhg9ZQostOy99Zaoy3fX6rsR+Ml7gN94GX+gUCjyDeXGLRgosafIEsyyZfbs228D7dsDDzwgJ8FUj9gjzz6bwQZ8g/0Sj6JM0mpERgxEaGjeHIZeJdYuYdlj6RWrv7XwtErzjYMs2wU4Phs4szRrYi8mxjNfgC17jNVL1//2t9+A224Ts5a6ddGqQQO0uKE+kpq2hz2xJvpM6gNLnSiALdZ4ALzyCgKnTJEdNRQKRb7jykWihV7JS5EHqLxmRZag0GNMnLuOnRmTZS8dx+cAFzZ4hJ5hltccKHfhPcQc2pIuHjBPyCxpBEC1LtXwXNpzha9lmkEZvZo1xV52XLg0txam+DX28WUtHaMtC+MCZsyA9bVXEDakLzp0DxJW2u0/bwdeflm+hvX3EhLSWwcVCoWiGKPEniJLvPSS7E6RYcs0U4KGwalTwIoVgGvL88CSvsCBrwFnqhR9Lqds/1W6vRSCeYzQk4Zl7xIdNEQf1sKI0SrtzHLA5SgSyRlk1bursObDNUg4Zcocpo8/A3YEt8Kvr+/Fr0N/FbF87ruQiAjhMnq/8vvCVe/elkKhyBdUnb2CQSG6zVfkJ9dm0IqViRCMu5udXB41cNLLstewodQYJ/++HRVC/gYubgROzAWavQ5E1peD/COA+H15to/79gH9+kkj0MFLlF4p9JRsBgSUBNIuSrF8OVeu4cYtwC5co3NG8oVk1OheA2Hlw6RVljXzWGKFwo/ZPiyo2KwZqlSsB2erb0VplrPbzqD6pFfkRh59FKd2XUTKxRSc33ceIWWK4N9foShE5KbtmWqXlncosafIMWxXSoF1LLQcavhY9phdS+terL0KKpSuD7SaCOx4E1g+AKjcHwipKoTe79vG4IdXgQcflAkWuSEqCtizR84nw4XgTMTe0ZVHse3HbajQogJa3t0ShTJuj9a92F1AmikerxBb9lhjjx0zYg7FoER1kyht1Qo4cEDMst4ea+0xti9c09DjjR7Y8u0WNDv7l6wDxNYuY8eiUmQkHhmTjAun42Ddtxeor99cKBSKq44LFjHl9LWKvEGJPUWWu2hQM9Sq5fGsTZwo6+g1uXmzXGCy7K1cqbdSi20OrHxdLmz0pGz5tedD4Mh0oMpA/LL0Wvz+u6yOkVuxRy3D0mvVK6QisIEes5eB2Du99TT+m/SfyP4slGKPdPyJrUCyNrYQiD0KuF5v98p0fVpiGubdN09Y6np/0FuUZ2k/rj3a1DgH280srAjgnXek4HO5EDljCiIZ8/fYgKv3IRQKhaKAomykuaR69eriwuM7PUhTlcgTSBHzUVFRCAsLw8CBA3Hap87I0aNH0bdvX4SEhKBs2bJ4/PHH4WC5DBNLlixBy5YtERgYiNq1a+MboxH8VWL8eFm/dsECz7I+fYDrrwdK2s/IBSbLnhB6JKIeUG2o50URdYE2nwK9lgH1x2HkSODjjz018nIDwwHpbq5RNhFWI2U/g2zciq0rotsL3dBgUAMUWrIq9AqRG/dSHF1xFNt+2Ia1E9fi9Hb993PgAGwjh8sgzXvvBe65Ry7fsgUahR5dvxkGmSoUiqvtxs3ppMgblGUvl6xfvx5Op9P9fPv27ejVqxcGDx4snj/66KP4448/MGPGDERGRuKhhx7CgAEDsJKmL/4QnE4h9MqXL49Vq1YhOjoaI0eOhL+/P15ndWIAhw4dEmPGjBmDH374AX///TfuvvtuVKhQAddTbV0FaDCpUwcoVcpnhcvFD5F5Ni4VWJ37AWcKYAvylGDRXGK+T58r0GKDbTwIM08z2KdKbSqJqUjgTANcKTL+MTNiYz1/xAIMXbmM22t5T0uElfNu61brulqIqBKBuGNxQvSVe6OcLLfCz9a6NfDRR2LcqS2nsO5/yxCFTmhT8hQC0vX2UygUhafOnhJ7eYX6JnNJmTJlhFAzpnnz5qFWrVro1q0bYmNjMXXqVLz//vvo3r07WrVqha+//lqIujWs7A9g0aJF2LlzJ77//ns0b94cN9xwA1555RV8+umnSGOmAYDPP/8cNWrUwHvvvYcGDRoIwTho0CB88MEHV+1zMhOXyRhMgDA4dw5YPN+OpeiazorGMCvq3SFDABz8xpN1S5FnxJ1Z817ocR8/n+qP2WBcYBEPzt/xBvBrCWDX+5cel5qaaYHpgsSChxfg3+f+xYzBM3Dwr4OY2nEqZo+a7V7f59M+qNqlKto80MY705oBonqJndL1SuPQfhf+Qi9sOlZamqR5Q6JQKPIFl2bJ1aTIG5TYy0MozijaRo8eLVy5GzZsgN1uR0+Tj7J+/fqoWrUqVq9eLZ7zsUmTJihnajdBa11cXBx27NjhHmPehjHG2EZmpKamiu2Yp7yE8XHX9QvEs3g1nZjg9fXXX4F58wCtQl8gWLekmQWe5hLj2DKN7U3zgiVLgPtfLIfJuCfTvrip8alIiUkRxZULNYGlAWcycPqfS4/TbxrMbvaCSLtx7UQZlbYPtRVWPrZDY79cwt9TvX71MGrZKERW0S2UVarIx+PH3dtgoezeH/dBn5FRaIP1MkZg6FBP3UWFQqEohig3bh4ya9YsxMTE4M477xTPT506hYCAAJTwiZWisOM6Y4xZ6BnrjXWXGkPxlpycjOBMRM0bb7yBl1gg7wpRvTrQqJ4dtffsl5kapoK9vA5/+CFQqRKghdcVhjwkRwO73gMq9gai2gP+YYiNAapVc0HTrKIrVm6NcazOcWOni+i8cnmmYu/vp//G+k/Wo8uzXdD9lVxmheQn5fR9P78GcCQCfpnUFMygDmJBhFa5sQfGwj/YH0nnkjD418Hembm+VK6cTuyRev3rAZyuLwXwt8i+udHRwOzZGcQhKBSKKwlr5eXUHavq7OUd6pvMQ+iypRu2YsWKKAg89dRTwpVsTMdoQsshmzdLF+6oUZ5ljH3fPv8YvsbodMKKRr6xY4GBA03JGrYQmYXLVl+rbgcO/YASfodRqpQVNWtKt3BuadcOmPvKZkzA25mKPUeKTH4plO3SzLAwNUvYuOzAWRkDeknLXkYxlfkAS6iYsSfb3cso9EhI6RA0HNgQFVpWwKw7ZmHr91vhcvi4Y82WvYwapt92G5zzFmCO/0CcX7EL6NQJOHz4Sn0shUKRAS7NmqtJkTcU8qtdweHIkSP466+/8DvriOgwho+uXVr7zNY9ZuNynTFm3bp1XtsysnXNY3wzePk8IiIiU6seYeYup7yAYV90yRrXVzdGp4rLxYOx00NApEzSaPQMYAsEdrwOS8ppnFkZBGuN24CAPMoWvURfXNLvy37o80kf4Ros1HD/y3eXMZF05Va4rsC7cRPPJmLZq8sQezgWNXvVROX2lYWY6/pcVzQe2jjd+K3TtmLLd1vExGLL4RXDPSt5U8XvgAfnv/9mWLvn78VObLI3wTG/Knhg94ewsLEzW7vUrn2lP6pCoRBJFhYx5fS1irxByeY8gokXLJvCrFkDJmQwq5bZswZ79uwRpVY6dOggnvNx27ZtOHNGL18CYPHixULINWQbCn2MeRvGGGMbVwNm4rKM2fTpWRd7NLisXQucOMEjTb+vCKslu2ZYbEDlAcDJP2Dd8BBwcmHe7WxSkii8Yg8yCQMTFHl+gX6wBVyBTOD8cuWe8j4+vChI3UQ04MjSIzj07yH89/l/oqXZ2Z1nkZagC1IfLDYLavSogZ5v93QLvTPbz0hLIMXrdbrA5eMLLwDx8V6v7/R4J1Fqp+fkwbA0acy7JGmiNsrRKBQKRTHAovn6VBTZxuVyiWzZYcOG4c033/Rad//992P+/PmiLh4F3MMPPyyWMyPXKL3CLFy6ft9++20RnzdixAhRWsVceqVx48aiXh+TP/755x+MHTtWlHTJTukVxvix/AtdutyXvODRW0/grxkX8E7Fieh9YqrXumHDpDhk0vAjty4A9nwks3LZ5otiL6gsUKYLUKoVUHUgEFotT/bpnm578f2yKvi00WcYvX08ijRJJ4BZjF2zAIPOyzZqvnTrBixbBvz8s2w9ls8wOWbLtC2ivEqVjlWwftJ6dH22K/xDMnYzM5HG5i+FecyRGHxU6yOUbVwWo5aPQqDVAdx3H/DDD3Jw6dKMX+APz23ZpfvX6meVcXtt2sB5Ihq263oCf/zhFWeqUCjyDuN689LanggKy9nvLCXBgRfa/ZWn16ziirLs5QF039JaRyHmC8uj3HjjjaKYcteuXYVL1uzqtdlsolwLH2mpGz58uKiz9/LLL7vHUEhS2NGa16xZM1GCZcqUKVetxt6lOHrSD9vRBPtRO8P4+WrVdO8h3bgR9WWrtHLXAENTgJuPAp1+wJx94zFwZDXRkSMv8HOlIQXBOOTw9TlL1n2yDoufWIzT27xd44WSkEpAzVFAc++bjIJcVDmoRBDaPdwOjW5thIjKEejxeo9MhR4xhB6J3hgtrLKM6QsMD5TlV6ZNg8a7irp1ZeDnY49JN+0XXwAOhxR6pEIFxHzxMyZbxmD7ohOij65CobiyOE2u3OxPirxCWfaKEbm17LF6Bau9nDwJ3H67XLbmneWIe+IVNG3hh/Ib519+I45k4OImoExHd829jz62YNw4i6jL98svyDVHn/kCjtffQuXbuiHgh6/TrWf9Npb1GDJzCOrfXAz6plJxHz0qfepFoKPE+X3nsWnqJlTpVAXVulSDLdCGya0no/GQhuhQdj/833hFfl5y443Soqm7sJe8uARLX1qKEriIh/AJbJ9+BDzwQP5+IIWiCF9vnl1zHYLCcpYclpJgx6vtFynLXh6gLHuKLLNvn4yBHzNGGEwE7auexHVYjPKReuzepaC48wuWQo+wHovFimuvteCTTwC9w1yuqRpwCjVxCAG0/GRA0+FN0eGxDihVp5iU4SgEvXGzCl26JWuUxJZvt2B6/+ki3m/79O3icePUzbCOHiUra7PuD+NImVXEg/bCBfF6JoJ0+F8H3PlEWdhoN2DK+OLF+f2xFAqF4oqiAlYUWYb5Ij16yPmzZ4VXzFOsNivdGUSxvfQ0aSKnPG+XlklCgrsDQ1Ei+ZRM0qCLnK5dA7ayM5IWCni7tKxAq9zhJYeFVe/CvguIqhuFf5//F01HNkXdG+vqSTc2KeJatZLJGLRoDhjAdjWwBgTguneuA7RewMldwPffy/pAHNOgEPdKVigKKLnpcat64+Yd6ptUZBnWTf7rLzkJoUeNEWfHYvTET+e8O3wQetKYD2BKUL4qaIlJmIK78PjqAcjjpiEFl5VDgdXDgRPzvJebv4ACErOXU5xpTmycvBHHVh5Dk9uaYMyWMSJ2L3pDNLZ+txV7Zu1xj72w/wLSmreRLVXCw4GlS6VJ2ohaYcmWyZNxvPmNmBZ/M+z9BqgMXYXiCqDBAlcOJ75WkTcosafIFRcuWoQbd8SGR9yuXQOW+GPzggULdAPgsVnAlueAJO+OB4SVZ1gqzVSBJsdYkpPwPF7Gu2s6Y/fu9OvTEtPSF+gt7JTXxfYpH5dkbKzH8loA6uzlBlrt7tt0H7q/1t0r1vLGL27EbfNvQ9/P5V0Fs3snNZ6EpS8vBZo2lTF7rOz99dfAW2+5X+e0+eO3C91xELWw7EAlYPhw1UdXobhClr2cToq8QX2TilxRPuACmmArelXcgYQE73Vly0Jk2LJLleiisf0VYMerwPn16bYzaJAMraLVMNckJ2M4vsfYLpsyNGa9X/F9vOL/igj0L3Jij8WVXc70Yq+QunCZP3Z+r+fvxFp7dMPbk/QWcIDI6q1zQx2ZncuPWi0SzlQnzu44C82lATfcAHz0kRzMsizffefO8u3/zc1odF1FdA5cL0uxsFafQqHIM1yaJVeTIm9QYk+RLRj61LgxsF7Xa7a0ZGxFMyzo+2k6YUVP2bhxMmxKGJVK6IF5MdvSbZfbrFVLhpjlmqQkvI0J+HD4elGNwxe25zK35ioSlGoN+EfIGobMdi4CYi96UzQ+rv0xJreZ7LX8z0f/xBsRb2DpK0szfF3dvnVx57I7MWzuMFis+sWC2T9GqRX2/NPLH9W4tgYG/XkPAqd8Kte9+irw229X8mMpFArFVUclaCiynZG7Y4dHQ4hWVSQrbdlKNJWPMVvTrfr0UykO8zRBI5N2aU/GPCkEH+u9FRnYoaTctbLvMF25Ua0LvdgrWbMk4o7Hibg8WviM9nbCBa8BJarLuwt23wgI83ZRsyRLOt59V34fX30l+uaK1i5RUXIdXbibNgHvvw/cdZcs2ZJHrQYViuKME1Yx5fS1irxBfZOKbMFrIVuLssVoVsQes3ZXrgS2Ut9F6tmOcZ5AeoM8bVOrt3DTgkPE+/vCAr4hUSGw2orY4V8ug7g9I0GjEIq9oMggjPhrBB7a+5BXH+Nbpt2C/53+n4jbo/D7uO7H+Lb7t4g7EZcuNvPkhpNiEjCW4MsvgVKl5HEr+vhJTm89jTcml8Zk3CMFodEGUKFQ5Arlxi0YFLGrneJK06sX0KkTEBamL0hNxY8YhibfPoZHHkk//ttvgc6dgbffZsBVHbkw4YC7oPIVITkZB1EDocNvFq7hYlM2vILeJ/bsKlm82mzZK0QFSc/u8vTKpYUuIDR9Yklo2VARo3di3QkkRCeIfrlcZoYCjsWWf731V++UckM4mlqlJZ1PQlp8GtIQIMcUQnGsUBREXLDmalLkDcqNq8gdqamwwx/bz5ZH+R3pV1etKmPxhLeMvW/ZE9eZDCSfBELY09XjeWVXjmPHpCUwVx605GRUxEmkpFnB1qnnz8uWqWLVxWSsemcVAiMC0fnJzihSUEx3+hko21UWry6kbtxpPachPjoe96y7BxVbV7zkWPbWHXd4HM7vOe/VVo3wbxxeKRxhFYw7Ex0jbdwk9qp0qIKH5vSCs//N0vKXp6ZmhUKhyF+U2FNkCwonijFWqLj5Zin2emExFo7+BXWfvTXdeNbZ4yTxB0JrAAn7gfj9XmKP4XULF8oSLfSu1ayZi51MTkYQUnHg182o3K8F/E15GElnk7DijRUIjCyCYo8CpZrP36CQuXFT4/SwAACl6+sK/TKUqFZCTL6UbVQW44+PT/+CDMSeX5AfosL43meB0qq4skKRVzg1i5hy+lpF3qDEniJbMPbupptkz3lD7FVENCo2jQZqZGEDnX4E/EsAYdW9Fus1bkVGL0u25Aq9q0eNWlahL80EhAeg3bh2sPoXE/dAIbPs0Ro3/sR4JJ1LSpd0kZG7t0yDMtl/kwzEnuDcOUSjAspbrLBwjO96hUKRbXITe6di9vKOYnLFU+QVNWoAHTsCzZrpC7LTLo1EtQEi6gDW9GVPmBDJJEh3POAVyMYNrxCO3hN7y5ZZRZXdE4G/ewCJRwplzB5hBm78yXj82PdH7J23V/TENbPzt534rMlnWPLiEpGpmxEUjBmuMzJwN2/2WnzyQhCm4G78tLMZ7I1byCrfCoUiV2iaFa4cTnytIm9Q36QiW1SvLt24v/yiL0hMFA+LDtYWtWrp5vWFblxm757UkyKvKLy469WdtxwtKWrofvwxihfHfpXFlaP/LHSWPTPrPl2HffP34ad+P+G1oNdExq25HZrm1BB71KgB5A1F3nc9v8OUtlNwZodPW5Zhw+QjS7CYOBdWDRZ/P/j7AX57trvby/kKTYVCoShsKD+FIk+saPd/2w4HT0shSMufmdWrgePH5VSx9EVg7yTZMq3tZ17j2JqUbmJWyGAGb45gSQ29MvPek2F4802gQwfg4YflatFRwUK3cRF2D1ToDZxdCZxc4On3Wgj74ra8q6XolBF3LA67ftsl2qUZdJ7QGeWalEOt62tl+LdkwgY7b7CoMq25XrCo8nvvyY4Z7M+nxw00vb0pyjUth4gwFyxr+wHNmyP2WKywIDYY0AD9JvcreuV6FIorjBMWMeX0tYq8QYk9Re7QLXtdmsSidrOwDOsYf/CBDH+qXZvPrMDWZ+WK5m8AAR4Rwh66rHXbtavsW58jTD3bmrcNwEMPyfaoBrtm7sKMQTNQ/drquOOfO1AkqXgDsPU54NTfQHyVQl1UufcHvYVATziVAEeKd/PlOn30Uj4mOJYCj8kdjxx5BNEbohFcyuegbNQIaNNGtoH5/ntgvCeJgwJSUGOoeNg9azdSY1Nx8eBFJfQUihzA++ucx+zl+e4UW5TYU2Sb/v2BXbuAX38Fmuli75sXDgGdK2U4nn1vPUTKLFxa9mJ3AmU8ZkCKQZZpqaLrkxyh7w9VZ536tnQuXEeyFAxF+sJdsgUQWAZIPQuUPFtoxZ6BsM5V9LHO+eBIdeD3238XZVb6fNxHLAstE4ravcUdRnpo3aPYmzIFGDFCxpzSpGxM7O9nsaDtg21RoUWF9LF/jFcwYv8UCkWmGPF3OX2tIm9Q36Qi27AW3v798tHdaSAkJOsbiGwkH2O3ey2msYXbpbElxxiWvVDvArsGDQc3FN0XBvw4AEUWixWocL2cr144EzSyy/E1x4Wrd/0n65ESqycNXQrG7fEY4V0L3bj8fpgZxOOYwq9BA5EebrGnoWrnql7t17bd/SH2Vu4OrFlzZT+UQqFQ5BFK7Cly1DKNcXjXXsueVLLTgbCEZMLFizKWb+1aX7G3K+93zsjE1cUeDTLR0bJtG/EL9BOdFmj1KdJUlNYt1E8rFmKPxZW7PNtFtFZjm7XLwhjGuXOBOuldwYI9e4B775UZSW+95U502Tt3D36fGoPfUvriwo0jgaNH8/iTKBRFCxcsuZqyQ/Xq1UUMr+/04IMPZjj+999/R+vWrVGiRAmEhoaiefPmmDZtmteYhIQEPPTQQ6hcuTKCg4PRsGFDfP755+71Fy5cwMMPP4x69eqJ9VWrVsXYsWMR624gXzBQYk+RbSjymF0r9JTdLpYtXhcpQqFE7T0f5s2TCRfPPKMviGwoH+nGzWsMS6MePDhmDFCxIvDFFyhesHWaLRQ4rwdrhF/aDVrYYfeM7q90R1SdzF2rLMUisniNQCAeyBR1LB/E44YhAPHxImkj9rl3oVWqDJw6BTz5pIwteO891OpdGzW6VUXrMkdQ4vx+WSuISR4KheKSRZVzOmWH9evXIzo62j0tXiz7hA8ePDjD8aVKlcIzzzyD1atXY+vWrRg1apSY/vzzT/eY8ePHY+HChfj++++xa9cuPPLII0L8zZkzR6w/efKkmN59911s374d33zzjRh/1113oSChxJ4id+iWvcBQP+zcCWzblnFtPnbEqFBBXxChi7249GLvww+Bli2BSZNyadnT3co0zDAE68IFufjQv4ew/PXlOPTPIRRpAqOALjuBd3m2tWTq1i6q7J69GzMGz/CKtWMJl4/rfIxlry5zL3PaXdj0405sn82OLiG4eNaO9TMO46tvrJgUNgFnXpssEzooAv/3P9imfYvbF41Er/Wvw1qurDzgmVEkYhoUCoUvOa2xl5NYvzJlyqB8+fLuad68eahVqxa6deuW4fhrrrkGt9xyCxo0aCDGjRs3Dk2bNsWKFSvcY1atWoU77rhDjKXl8N5770WzZs2wbt06sb5x48b47bff0K9fP7GN7t2747XXXsPcuXPhMAq4FwCU2FPkSN/RA8bqFVqatOy1aOYS7c7++iv9eFr1DhwA3NbxSL0dVfIpwO7JniV0t27aJEuw5IXYY8kVLqLrmexfuB//PPMP9v6xF0WeRL31GGPRinKpGR9Ye49CjzX6nGmeGnmVO1aG1c+KCi2Nuw7gzPYzmDN6Dla9vUpk+05qNAnzH5yPlJgUJJxJRImxI+XB+KyeQT5mDGzrVgPVqomUca1yFSzbUxZJHXpIK6FCochz4uLivKZUlti6DGlpacIaN3r06CyV2uKN4d9//409e/agK2/gdDp27CiseCdOnBBj/v33X+zduxfXXZd5YX66cCMiIuBXgLrwFJw9URQaaCyhu5b9cW9HKZTHaYSX9MP19bO4AZZb6bsLCKsJ2ALSxc23betdLiU33TN8u3FUbF0RzUc3R+V2nr68RRZao0ilYMCZlu67LqpEVo1E38/6YumLS4XrNqKSjFdk15Reb/XysvZdPHQRlTtURo0eNWALtCEwPBAVW1XE9R9cLzJ83S3bXnoJ2L1bpqBff73MIrrlFvxz04dY8elWbD9xBmPadYB1xs9Ar1759dEVigKHiL3LaekVPWavik+JhhdeeAEvvvjiJV87a9YsxMTE4M4777zkOAqzSpUqCQFps9kwadIk9DL9hj/++GNhzWPMHsWb1WrF5MmTvQShmXPnzuGVV14RrylIKLGnyDaBgUDfvkCgnxOOmfohlFGBvUsRmbEypMeMU65Lr2Titmw0uJGYigUMEH4SQJMzwNnlQPkeKC6wIDMn3xIunMw0HNhQTIRZvC6HC0dXHMXkNpNxz3/3iOXn953Hzhk7Edn7CTSlgGY8z4ABwBtvoOn9o7F97iF0DtgK6/6LwA038EoE8K6/fv1CXfJGocgLtBwkWphfS44dOyYsZQaBvAhdhqlTp+KGG25ARQZtX4Lw8HBs3rxZJGLQsscYvZo1awq3rSH21qxZI6x71apVw7Jly0TCB7fbs2dPr23R6ti3b1+RxHE5MXq1UW5cRY5gbOqMr+JRGSfkgqAgbNggqlWIR1/YtoylVejqvaJkIPY++ki2bPvvPxQv2D3DaF934o983pmCAztrLPrfIqx8Z6XX8iXPL4F/qD/8gv0QWi4Up7eeFssZ30nX/76/j8psI6Mdy1NPocw7T+CBzfei6fYfgTvuEN1b0p5/VWYw1auXHx9PoShQ0KqXm4lQ6Jmny4m9I0eO4K+//sLdd9992f2zWq2oXbu2yMR97LHHMGjQILzxxhtiXXJyMp5++mm8//77IiaP8XxMzhgyZIhIyDATHx+P3r17C/E4c+ZM+Pun7/+enyixp8h95ivjIfz9RcYrLdeM5/OF9fMottxhTRc2AavvBDY9nm7skiXSS2Z4ZHMk9kx1/2iImTEjYxFa5C17m/X5k/PyeWcKDqe3ncbq91Zj3Ufr3Jm5yReTRS9etmYb/udwjD0wFi1GtRDr6t5YF1Z/K7o93022gvnoI5x97kPssjaC/dsf4H9zX1nf8euvYf/4c3wT/jA2R3aTtfoUCsVV5+uvv0bZsmWFlS27uFwud0yg3W4XEwWhGbp7Oc5s0WMMX0BAgLAABrFWZwFDuXEVOYclKwwXrsUiLHcnTsguGL6MHQsMHw60aqUvsMcCh74FwmoBLd7xGjtwoMyebdYMaNIk95Y9hmz06CETRZiRyYzc/lP6o/HQxijyYo91q11WIH4fELcXiKiL4sSJ9Sew8s2VaDCwAZrcJg+mun3rounwpmgwqIGI37PQzeRwodMTnXBu9zmvAsprJq6BPdmOezfcK1qwGWyIr4u1rsEoZz2D+5ZNgoWWvPnzsTOiPaLjT2FRVB80+PV+XN7ZpFAUba52Bw2KMIo9ZtD6JkiMHDlSxOcZljs+ss4es2gp8ObPny/q7H32mezbTisiM3kff/xxUUOPbtylS5fiu+++E9Y+s9BLSkoSCSFGEomRHUxhWBBQYk+RI77+GnjxmUrog0n4LFAW0LvnHjllRJcuPguMWnsJBwFHEuDnscR17OgxGmabDMSeucTS+vhU2BPtKBb9tenG5fcYWwEoeQI4+UexEnvMxJ11xyyc23UOiWcS3WLPL8gPt0y7xWssi2z3eN07ppEJGn9N+Etsh3X83H1zOb5sKMIrh+PiRT+4omrARtP1E0+g6W+/4+R/J9HynpYIjCratQ0Viqxgdsfm5LXZhe7bo0ePiixcX44ePeplpUtMTMQDDzyA48ePCzFXv359IdjopjWYPn06nnrqKdx+++2igDIFH0urjGERVwAbN27EWr1jAN3BZg4dOiTKtRQElNhT5AgmNB6NDsARVMteqzQD9m4NLA2knpPFlaNau1dl5AbOaQcNXwbPGIzUuFRxsS7yGBXck+pJsce4vfqPorhgC7Dhge0PiJp7lyq2nBks19D1ua6IqByBMo3KeK3r8GgHHFt1DPvm7YPj09dgu/M20S+XCSA3fHRDHn4KhaJwk5NOGObXZhda2dL1stZZwhghE6+++qqYLgXr9dFSmBlM5Mjs/QoSSuwpcgRDIdZ8vhlVxtwNBF9eOLG2JGtQHj4sy6uIukclmgCn/wVitnmJvVyRQcwef4es30fjS9u2xaBVmq/Y05oD+Ac4sxSwxwH+Rbt1mhmKrwa3NMixWOz6bMblFSw2Cyq0qCAmm+t4zjLSFQqF4iqhEjQUOaJcOaBdzbOoiGj3RY5GNVabYIa8b3IFu6p16gTcfrswgEgi9YA8ir28IgPLHsUeLel8f4rNYoMh9kJrAg3+B3T6EbAWj1p77pZoV2r7Tg11+taBPcmOTX/pB7QelH105VEseWkJ9sxVRZYVirzIxlXkHmXZU+RZH1o+sGsU9VZ0tHeiBte1aycNbkxcLM1Yd1r2SKy32GPbtZEj5Xy2y6VkYNljiAb73TOEbfkXO3C+aoKI3wqJyoH7uTCKPdZ680mCKeosf2M5tv+0HR3Gd0CL0TKrNiccX3NcxPhF1YuCf7CnlMKOX3aIeEBSvrINbUxi78iyI6Kgc/NRzVGvnyq/oijeXO2YPUXGKLGnyDFzVpTCIYzF7X6HQe1GzyzbpZUqBVStmn78mjU+C4TYs8gEDRPh4bJMChOp6P7NVseZTIoqG9t7q+Q8HI1JQa1etYqX2CtG0Nq29KWlIsOW8Zkn1p0QrdOqdKoi/u5ZhUkd31zzDZypTozZMgblmnoSNFiKhYdunT51UE07DBz3iD26dluNaYUqHbyr/isUxREl9goGSuwpcszj05pgLzqjadoTuFZf1qFDNjZQqhVwa4JXJi6pVImtbqRl0Ke8UY7FniEYGw5uiNTYVASXKgbxVb5ij+7yYzOByv2BkozjK5rQEnfX6rsQVj4MYeXC8Pczf4vet8yQzY7Yoyu41nW1EHskNl2CRu3ra4tEjLYPtZVNoueLmg9yXe/aYlIoFIqCghJ7ihxzQ8OjaH5qJ8JDPM3ms4XVT06+i63ATTddmWzcfl/2Q7HBV+zteAM48hPgTCrSYo9JGexva0DBFn8iHjV71nQvO7PjDErWLOnlmvWFYnHo7KFIiUmB1eZ918GbBSH0iFEpn4GpPjBLj6VYKrWplAefTKEofCjLXsFAJWgocszEm/7FzxiK1hVOmNrUAFOmsDZR+vGLF8uWaUY83hUhE8seizSPGCGTNApBlvyVEXuV+svH47NRnKjZoyYGfD8AjW6VPZEPLz2Mrzp+hV+H/Cpcvb6Yyygwazy4ZHorMGvwsY2aeL0h9tLSvMa4nC7MvWcuprSbgt2zduf9B1MoCgGaqfxKdqficqq+Giixp8g5eksZmPoUMjaOhZU/+CD9cHq5mHCx2WjhRY7PARZ3Sdc2jWVSpk0D/vknb8ReWJgUoKtWySSSIg+Fh9HhxBB7FXsDFj8gbrfsplFMoeWPhZIZz8fuGL7MGDwDX3X+Sgi6zFjzwRp81+M7vBHxBlIdtgwte3wflm+hYEw4lZD3H0ShKASobNyCgRJ7ipyjiwkt0NMHsFEj4MYbgW7d0g9v3RqYPRv44QfTQiZnnF0BnFnhNXbOHGkB/PLLbOwPLTKZuHEDAoB3Xk7GyJBfMb3rpyg2Vj3CWjgkoARQTo+uPD4TxZXK7Spj5D8jMXzhcASGezc0i4+Ox67fduHYymM4temUe3nciTgvYVj7htrCzdv5qc4ILKuL6eXLgUWL3GMo8hjXN2r5KLQek0d1JBUKhSIHKLGnyDFbDkWgCo6iwa8vu5fVqyc7YLz9dvrxUVFA//4+/W6N2DGWX9E8LrWmTVmZXD5mS3wazakziNm7/eYE1EzaAcTr1r+iDOvMGKnN5t6MVW4plq5cw626+v3VmFh9ouiKwUQOXyjgmMhR98a6qNy+sljGmL0PKn8gSq0YLl5m5o4/OR7dnusmD2rWFaLAvuEG4IUX3AUdrX5WVOnoycqltTDxbDE4/hQKHWXZKxgosafIMeFaHI6jCo7El8p5HFx4HcAWDDgSgfgD7sU9ewL//gs8/XQ2tsUCfgYZtHArVasUHtrzEO5cdieKjWWvRAnv5Ubc3rk1QLLHclUcoFuVsXMJ0Qn477OMCzjSGscknmFzh7mXHV1xVDzS2sdED2Oc6AJjFJFcuhS46y55s/Hyy0CNGkCDBsCjjwILF4qalMkXk/H99d/jh94/IC3BO75PoSiqKLFXMFBiT5FjqthOYi3aYu8jn6VbR/FnGNnMbN0q3bi7jXh1q81TXDnGHMyXA4x4PdY7M1uzdOwuGw7ERGHdobIoNpY93xp7IZWAUm1kyzT2JC6i0ALHRIyZI2e6hZXhVu0/tT+ufcUoFnR5aOWjFY83CrQIZgjjVidPBr79FujcWR5/PMgnTpTWvrJlkfLrPJzdeRbn950XjwpFcUCJvYKBEnuKHOOfmoC2WI8q5e2ioLLB8OHSe/jLL+lf8/rrcv181iXzdeVe3JyhaHQ6c5ecYbBvn/S28f2LfEauIfZ8LXukywxgwBmgfHcUVQ78eQDTek7D1mlbsfWHre7l5ZuXFx01fEupXI7wCuEICAvItFvH580+x5bvt8pA0+XLkXb4JN4r8Sq+LvcUHJWqCatzybEjcdvL9TF65WhUaqtKsSgUiquHEnuKnGMkQ/g0gKdFj7rruN4f3kyrVjIWj7113ZRolqHYGzdOduOgsSQvxF5p6wWUK5mKBtWS3EOLnWWPhFYDbEW7Ry6LGj8W/Rg6P90ZVTtn0M4lD2Gm7emtp3F6y2n3svNnnEiIceCsowT8Du8H+vUTMaWVHr0V5fatdI87tuoY4k9K17BCURTRNEuuJkXeoMSeIuckJ2MFOmHiitZYv96zmCFLe/cCDz+c/iWPPy5j8W6/3bSwZDMguBIQ5O1eZas0apYDnlC+rMXssc5KBpzfdhL3X3wTY6JmZDak6MfsmaF50150S4KElA5Bj9d6oGyjK+u2bzGqBYbNG4YSNUrg3+f/Ff10f7/9d2EJHPjjQNm+5eefZZo6k4gGDRLuXSZ+/DLwF3za4FPR0k2hKIrktMaeMSnyBtVBQ5FzkpPxNUbhq5/a4pWGsmAyqZ3dTlGlOwK3pDcDjh8PjBkD1PQ0Prg0hrkuEyUXViEMDQY2SNf6qti5ccmJP4ANY4GodkCnH6/qrhU16BqOqhuFj+t+LBI4mIhx8dBF+AX6ieVu6/fMmcDYscBnn4nEjeQtRxFZpQFSYlO9+u4qFEUJ1UGjYKDEniLnpKSgE1YioVNv1K+fixgkc8CfCfbGzRaGZS8TN271btXFVCy4nGUvoBSQcBBIPQc404qcW/fA4gPYPXM3KrWrhOZ3XPnWcH7Bfuj9YW+s+2gder3dS7RoY8mVkChTVjgtfJ9+KjN1n3gCJb/5AKN7XYf4jye6y8AwsWT79O2i20d24woVioJIbtyxyo2bd6izSR5w4sQJDB8+HFFRUQgODkaTJk3wH1tF6PAE/vzzz6NChQpifc+ePbGP2QImLly4gNtvvx0REREoUaIE7rrrLiSYS4mITNat6NKlC4KCglClShW8nVExu6tJcjJG42v8/PwO4Zkyh/IxMfGllzL2HLJlWZky/N4y2KYrfUeDLHOZmD2ybBnQvr30pBVry17pdkBwBcAeB5zObpuSgg/j51he5eCig1fl/Zjp23BgQ9y59E7Rb7dev3reQk/n2JrjmPRtKH5s8Y7IGrcuXoTI69rLXoIAdv2+C7/f9jtmjpgJzVXUs4gUCsXVQln2csnFixfRqVMnXHvttViwYAHKlCkjhFzJkiXdYyjKPvroI3z77beoUaMGnnvuOVx//fXYuXOnEG6EQi86OhqLFy+G3W7HqFGjcO+99+LHH6WLLS4uDtddd50Qip9//jm2bduG0aNHC2HIcflCcrJ81D+DWdAZu8QkC7PeoBEvOho4d07G4lUyDIIHv4W2+QmgbC246leAw3kGaa40/DyrF/YcqII77/kJQeFJSNMssMMGu8sCh8UfqZofHJoNds0flY8eBrufHsUWrDo0DGkuP6S5rHCCY/zg0qzYe6IO1q4dj12HY/Dqztdhd2pwwganWG8R8w6XVcxr8IPdpdd6tgQgzemCBgssCIDd5RR3nVYEINXlBDQrbPBHitMJKyzwt/oj2eGARbMiyBqABLsdFg0I8wtCfFqauAGI8A9Bkj0NdpcLEf5BsDtcSLLbEernL15zMSUZ/hYrogJDcSE5CWlOJ8oGh8LudCEmJRlhfoEoGRSM0/EJcLpcqBgegbQ0J84mJuKFHTvRCsDknXvxx9TvUSkyAgFWG45eiIXVAtSKikKf5Gboimgs+ec9nG9YGX2b1EeQf9E4JdToUQPdXuyG0vVKo0ChAWd3nIWjVklg0yZg1ChgzRoZzLp5MzSnJgoxl6xVUtQFVCgKO8qNWzAoGmf2fOStt94SVravv/7avYyCzoAX9YkTJ+LZZ5/FTTfdJJZ99913KFeuHGbNmoWhQ4di165dWLhwIdavX4/W7CkG4OOPP0afPn3w7rvvomLFivjhhx+QlpaGr776CgEBAWjUqBE2b96M999/P//FXnCwKI9ilLajYW3IEJlJ69MuVMDsWnbwYrcNAw3RsKScgXYxFklp5eDSXEiCE8+9/ABOnaqI5l3nonHz/UjS/EGDR5IWADv84dAsSHYFCoEZlSizGhMD03A85bxYluoKgAM28RrHZ5URNiMB/XtPQeCofTiWdBKpTn8h8FyaJsbSluLULEh1yp8GhZ/daXPPOzXOa3Lepc87bXC6aCTX4HLxxGbMW+FyypOV5rKISczzBOae5xtaAHFSY3FCCywuKzTKSi4zys5oXA7swlmxjxSOFqfFM84F7DjJ2m2aGOu8cFG8bFtyKnZGn8Wuk57Xcey2o6dxJqQaulYBmrpWo8vshZi84j98e+cglIso/NkrFVpUEFNBg/GiIxaPwIKxC7BpVTKaz54NS/nywJYtwtRN921UvSgVw6coMig3bsFAuXFzyZw5c4RAGzx4MMqWLYsWLVpgMn2YOocOHcKpU6eERc4gMjIS7dq1w+rVq8VzPtJCZwg9wvFWqxVr1651j+natasQega0Du7Zs0dYFzMiNTVVWATNU56SnIxUBKBq/2aipqy5Hev06cCkSdJd60uXLkCzZh6DoOa6AM3yjXySkArN5UIqXHBAQ+++f+CWIT8hOCRJCD1qlVT4ww5a4iCEnvismj9sybKKc3Kg/I7stPrBKgRVsisAlos2BJ3TUKfSVpSqdRJ2lx+c+vo0l9y2ZhJ6vKs0hB4FnBR6EMJOCj1j3mq6g5XzFHZS6OklBDIQelwnhZ7+VBd6Yo1Z6NGaaPLoiXkaE3U7o9xxkyh0AuEpUojHBwZL/SffzWvsuqTaiHGGoJRfIlqHHMSxizEY9/O8HBwIiqwSFBkksnDP7TqHOXfNwd8fbAXatpUrFywQD+WblXd356Ard849c3Bk2ZH83G2FIsdouSiorMRe3lFsxd6xY8dw3FQIbt26dXjkkUfw5ZdfZms7Bw8exGeffYY6dergzz//xP3334+xY8cKly2h0CO05Jnhc2MdHykUzfj5+aFUqVJeYzLahvk9fHnjjTeEsDQmWiDzlORkBCINiSk2Ydk7diyH20maAQRp0Pys0mKVmCbEHpnwwgt46Z3/oUbdfULaCDGm+QvpQjFHNN2165ciX+MItollaWI9XbO0lFmRNvo8Lnx/GEm3xMmqI0K8GSn+/ClY4NDFmph3med1y5su8NzzTs88rXre8xJD6OlyS3/kZzGG68tp/TOUmHu5R8y5t6gPcQs9lz6vr+NcOEt8CLEnFbVb6ImxElo8F8fL7iW9w7fA6dKw+Xg0th4v/G3UXA6XyIpNvqBbnwsQDQY0QI83e6DnWz3RekxroG9fucKr0rhk/aT12DRlE3688ccC+VkUCkXhoNiKvdtuuw3/suCbLpZ69eolBN8zzzyDl1koLou4XC60bNkSr7/+urDq0aV6zz33iLi6/Oapp55CbGyse6LAzTOEuUxefP799YJItmjYMP0Qo+6yGVoAf/pJJiaKcWkrhbnKpXcosMR7+oY6dMEjRZgmhBlFH3HqwoxijmP8dMuePciq12cyj9OglXUgtb4dcZYI7F3YEcdXNjXFhRhCziPS6IY1RJl8z0vPS0wWPJMA88x73st7ufFq83OPOc/r/tanDZ37NbrVj6+K0C17cUHBXq/1vU+eE9cK02M6YF5cS/HcZrFg9UHZC7Ywc+jfQ3i71Nv49tqsVuS+ejAWr/OEzuj0RCeUqFYC6NNHrli0CNi+3Wssu300HNQQfSf1RXAp7+LlCkVhQHpMcjjl984XIYqt2Nu+fTva6u6TX375BY0bN8aqVatEbNw33+guxSzADNuGPiqnQYMGOHpUXjDLMx6H2YGnPdX1jefGOj6eOXPGa73D4RAZuuYxGW3D/B6+BAYGiuxe85RnMBhPb37btKUfKlYErKajiWKOLdO8iifrnD1LsS2qT+jWLemvNMSeX6In0M/4sScmZJZh65EvfklyO/Zg71BU3xPG8dVNseS5+7F7eq9LfsTsn2hy53Iwi7bcjLW4XAhLTRXz8UGXFgjrk2vjxdODsSFZL2ZIL3MR6SVHUWWxFQI3UIsWQNOmMpucqeJMytJ/W/4h/hj0yyA0HS5vTBSKwoYqqlwwKLZijxmvFEPkr7/+Qv/+/cV8/fr1RVZsVmEmLuPmzOzduxfVqlVzJ2tQjP3999/u9YydYyxehw4dxHM+xsTEYMOGDe4x//zzj7AaMrbPGLNs2TKx3wbM3K1Xr55X5u9VT87IoF0a4S7x2pVR94vKlWXLNJY/SaMRL4CxihZYwuXfwy/B8xlPH6+Ebi02o2+7dXr2qyfozMaMBeGglY8BCVLspYXZvMeJ9RbYloUh9I8wlClzFOWa7UFUw0NivVUEwcmTis3qETpyuSYyiHV7nT7v2bYxb/ENiHM/95n3RM+lG0MXrtuN63OO85Jf+ljPOtO8BQhPTYVVF2y07JlfezkZR1dui6oVUdip1asWnrM/h1HLR6HAw7sknh8Y18sfDe+QmL30zjvizsiI3yNJ55Mw/ebpOL3N+8ZPoSioqHZpBYNiK/aYzUpX6/Lly4Vo6t27t1h+8uRJUS8vqzz66KNYs2aNcOPu379flEph3N+DDz4o1vNEzVjAV199VSRzsGTKyJEjRYbtzTff7LYE8v3p/qUreeXKlXjooYdEpi7HGW5nJmew/t6OHTvw888/48MPP8R4tpnID/SYMKqcI6cC2f1JJGQYdO4M7N4NrzZqBkzMoAedYY1Cb/vThci6JEFwRAbCGRmEAP3QrFzuFOJiSiApMQwXzpaGxaIhEA4x3p+ZCLooY6qFfwKXA6lhfmKcXK/BTxeFgVNLI+KFCqiYdgY3T30VbR74VReLIhrQNJZo8LdKkUhsGczzGmyzeXyqZtFoNY23uAWkEXhnEohmwWfVEy7Ei+D9GlMeh/Gr1bzWeUSikZyR7O8Pe4CfZ1O+23EvdqFF8CGMLz0PfhYNLSoXvCzWnFr2AkILSbHo0qVlgsZzz0mT+P790vTNO6Nhw+QPRtOw+PHF2DN7j2jHpurwKRSKrGItziVTvvjiC1xzzTUYNmwYmjE9VM+uNdy7WaFNmzaYOXMmfvrpJ+EKfuWVV0SpFdbNM3jiiSfw8MMPi3g+jmexZJZaMWrsEbqPaVXs0aOHKLnSuXNnr2QRJlgsWrRIZPe2atUKjz32mCjUnO9lV4KCcOCghd2fhOAzYMcyGid04+mlSWVRXyssYYHQWlRCas1IBIF164DQQDtmL+yFNbvqokq5k/ItLWnMxRXiivNymR0BiVL8WcLkRTDAYhdWP4qqYGsqnE2T4OiQAGsZ+ZoAK9dTdGkItEprIucDrLqItLrgb8zDpVsSKer43uZ53cpnMUQjX6vpgk9frgs+zlPUSTSaHT3zFg2avi3x6P51crl7lJw3Cz7Tr5ivi0hNclv1hLgzhwGax+qP/C4/qzQF90b9g5ZBB/Dv3qtTiFjhTdzpJOzvOJJ3nLIqObPzafpmanv37kL09XqrB2r2rIkBPwxQdfgUhYKcZuLmpj6fIj3Fts4eRd65c+eES9XsBqV4CglJX/n+Utx4441iygxa95j0canED2beGgWUM6Np06bCElkgMIm9Bg2AgQPTJ2hkBRGa5NgrIjvSNIf4roI1f9gtToSyTh5caNZgN9JcQAqVimZHmsWGUKSIgsoWqz8sLk2UYwlIlJY9LRwIs6QgGf4ItqSJMi2Uh/jfUaRp/rBqNgTqJVb8HBo0f6cYQ8HIDF2eXwKtGuwum7DiUaClOa2wanKe5Vxsushjxi7H0G3KeUPwMRuXAo8lnUWihxBoso6eJ5NCn6fgE8ZHi0fwMTNXiERZQ08KPt1SaBgNKdwMwyK/Gk0T64zkDMbr0ZvLl3nle4ixnuf87H8nNMHAyHXoHbEFc7fsQuda1RAWlBWlXjDZ+v1WnPzvJOr1r4ca3T11LwsyX3X6CrFHYtHn0z5o88DdwN13Axs3Arzpo/j7+WeExMZixI/fedU0ctqdsPm77xoUigKFkWyR09cq8oZia9kjvDgyTo4Wvvh4WZCXrtLsir1iiSH2QkJQoQLw66+Ar5ZlJYlnnwVWrEj/cloBWW2GnipYmHwhA+NSNDvi7Mk4n5SEi5oDZ1zARZcN51yBOO8MQqwrGOdc4YjVQnHOGYGLzjDEuEJxwRkOW6I8M1wMDEWcKwSxzjAkasGIdcgpwRWMi/YQxDuCsPH3Xvim52dY+tZoJDqDkOQMQIoWgERHAJKd/kh1+SPJHoAUhz/SnH5IcQSIWnycT3Wws4afqMGXauejnLc7WFxZTg7OO2xwuWxwOazQWE+PxZJZqsU9bwEceq09ikCnrLMnJs4byxmr6LIIrchJeKcdsqiyhaLSeBSFly2ITJR/m9jgYCH+xCQNh+K17uemv8fCeGnZ7hW2FUt27kfXN7/ET2u2oLByYNEBrP1wLU5ukNbgwkDjYY3FY50+dTwLW7YEmNn/888y/mHhQqB5c9n3jzGtW0/jk3qf4PCSw/m12wrFJVExewWDYmvZO3LkiIiTY9Ysiw+z9Ep4eLhw7/J5QSidUqAxaqpcQhjPmAEwsZnXKMbwmWFPeGblMjTJEnQ9tLRl8IMNWnQsQvZcRHCpQJxpXBJ+0LD/UA0smHMTrCGpGDzqGxFjRvsZY/LYKs2mx9z5JevZuCE2vUCLPs7qQpreyYIxeSzjEhCcgtTYcMQeriBdsnrBZD+OdcmfBS12staeRVjxGCJFy6MsnkL3L+P2NN165pk34vl4MyHmrZqn1h7VmqjNZ47X0zNA9NeIdxBvYqrVpz+KJXy5u+CyJ16Pr2OVmQhdiItMXLFNj7Dz2o6JNYl1EOsMRhm/eLQKPoj/kmrjlbn/ICTQHze1yIHJNp+pd1M9hFcKR5UOeVxb8grS842eaD+uPcLKZ9DBhNlMjIu49VYZDHvttaL59NKNdRBzKAar3l2F6tdUz4/dVigUhYBia9kbN26c6FjB7hPBpmzSW265xStzVpF1scfCyiK7VqdXL+D++2XokS90+9JDNW0as3lvBKyVYLX4AyEyoD5Qz8hlA7MTx6pg0nuPY95PQ0wJGhYEWFiFT8bcieZputhzBEt3KteLLFzG28GJ8JtrovSgqrCes6FSu+3o990L6P7xB6JXrJHRa3PH3WlC+Ek47+5bpidoGMs9855MXk+MXobVkM0JGuZfoP4ad+KFqZqy8PAa4yzpEzTMpVgMNy4te+lK/ekeZV+EKzdeWpZuiNzsXj5x0UrRd7ew0XBgQyGeqnauisJEhkLPoEkTmfE0cqSMf3juOdwS8xU63N8MN38rk70uBd29G6duxNYftuLMdu9STwrFlUJZ9goGxVbsMfaN/WrN7cdI9erVcYIVghXZEnujR9MFDkyZ4hnCWnrM0NUTnb2g65flxZh4aLEEw1LqO2iWCASGhwphYktzIcSuCSHWqO5u9B/0CwbcOl0kE/hbXKJzBwVdmDVZJFkEOhww9JhfiCy9TItegEWOC0UqbEcCYTsciMCANARFJqJ8g8MIDubn4FjRWE0IsECbXReRQKCfjAPkfnCMnPeIPCZi+Nn0xBCLRwhy3qpn6opyLaZ5mDJ43f5VPUHDLfhoJbSZAlasmvTo6gY/3RApx9JyyPEirk9DRIqeoBEcIo2DPlWVxevNdZv1t5kf10I8Xh+xRYhjcjouAVuPFf6OGkUGZj59+y2OP/cFplnvxOx/I9Dh98cREp15Ug2txSfWncDnTT/Hrl93ifkZt87A2V3spaxQXFlUgkbBoNiKPdawc9IU5QNbqNGdq8hizJ5uFaXmo7EhpzrZ4lcF9qCbkUzhEsJ2aEBQPAWYFRXLn8Eb7z2Kkfd9IUqsGOVSZOSvRXTK9U+RQoykBdG169Ldl/znEl02Ur7fi4TJh+AKc4ntCLesnmnLk4p0w2qi4wa3z/VsjUY3L+dp8+N22WVDjIcmW6cxpo5jRLszKfTEvJFwQW2nt1KTiRH6cvEZTCY7rz65jK0zzHKmxA4xTteHhtvXtI4xeYYbV3TPMOlKsR+mMn+6MVPqTAewNr4OzjvCRJu5ygHn3a+LS5EFmgsTrEdnT7LrrvSiR3L7a3HQVR2JIWVw4rQf8OSTmY49uuIoFoxdIFzbty+4HTd8eAOa39kcK99cWWS/H0XBIcfdM3KR2KFIT7GN2bvuuutEiRSjvAljrlgS5YUXXhClTxTZs+w984ycfNr3ih/r+fPMNvbusEH+/BP47z/gppuAxo0Bq38NpMIOe7gfApPscManIrZEkNAkzLxN1WxCZMVpFJgWJLv8RX9Xl2aFJU6eFRz+FsT7hQixlehiNqkFaS4b0pjy2siJJCZLwF9s59jW+ohe2xAl6h1FVPtdcqzTqrdmsyCVCRa6nzTNafP04XXJnrr8bA4Rf6e3ZdPj+3z74Yp5w49qZN26+9qaRByTLNx9cg0Pbsb9b728wy4fN64h9ijEdbHnPdaD2wstNKQNtx0ci+P2UkJOG1QpFYnCxqSGk5B4JhFjto5BuSY+B2URgJnGpMa9vVB/4mfAgr0Au/ZU9XZbxx6LxW/DfkPr+1uj6zNd3csDIwMRXDrYq2CzQqEouhRby957770nihez1VlKSoooWmy4cJmkocieZY9uWU5mQUdLH2vFskpERhY/9sZltq5RTcY/sI+wnjn1ThqB8XYE6KYpfziRGM/CymXEvKeoskyeCEiSlj17qBRidLvKzhkslOyx4Lrr5lmA6NWNsG3yTTixtLm+1nDPZlZIWbphGddnxNwZXTbkNk2dNUydOOS8b7FkA5MflUZC07xvgWXvdch4nQWINFn2MmqMa27ja3p3wTF7aS+hVyIkCDXLlEJhIy1BBo8G6sdSUSP2aKx4tJYvI9vR8Mf21VcZlqCpdX0tL6F3bNUxLH1pKSq3q3xV91lRPJEWupzG7OX33hcdiq1lr3LlytiyZQumT5+OrVu3Cqseu1OwGLI5YUOR82xcCj9a9C5cAI4dA6r4JEZef71cX7u2fO6wr6fzFM5wf4/Y01xg6ePvvxqNd19+CdffMhNPvvc4HFqwiCvzg0NY98KSZUcPR4gNtPfZYUOQ1YFEV4AUg3GAtiICtggnHO3ThAys3GIXEvpEoXzrXaKQMrNwRTyekeVrofvXJax7Rrk7TReELidzgFk4GXCJTF/veVpMjHQLGbQnu3qL5XqNPeE2Zu9WoT/14sjCFay/nskiPOGJhA+5A551pk5r1LdOzzqjg4Zb7OkNxd2ZvGI7ev09Ckfjuelvw+82wpaM2GTgXEIiSodl1pu4YPJk3JPCjcveskWRfpP7ocGABqjduzZQ7T5gyRIZMMu7J6a66/A7KFXbI9YP/nUQS19eivaPtEejWxvl094rihO5SbRQCRp5R7EVe8TPzw/Dhw/P790oEpY9tuylpe7wYXYn8XTO+OcfadkzNQtxo3eUc+NI20gphZRQF/zLhcAR7g9/CxAKJ6pWOi7GXDhTRiRohEEWTQZYNNkfgUl62ZVQm+iWYdP8kQo/hFrTkOLyQ8BxG/yeqQRX+TQ45h8Qrt3K7XagYtudQuQ5ZeESsZyJHdRjdpcVATanKL/C6EEmYtBVS9HH5XZ93s8m4/igz9OFzOVWm+HO1TtlUFTRjWqla5dP9BItulgTastPL6jskgJPxFT5FFF2iz/dvSvWmQRfhK/Y8xF47mLMXCBDDmXtPp3u4dvxYsVfsDGpBh45Ngq7Tp5Fl7qFS+xZbdYia9UjFPXueny33CJN6DSfs5XNu++6f4DstjHvvnkiyzf+RDw2fLkBHca1RZMR0potYj6VK1dxBfH1HmT3tYq8oViLvT179uDjjz/Grl273D1q2ZOWbcsUWbTs6WKPxgTG7HHxAw8AdevK1b7WvEsiTFQaXDYLTtaLEJokmUWKWVu22wos2NIMweFJiHcFCXHGQsi04NEKF5ooXY+pwX5IcAWJmLwkFwu3WJHmsiItwIqQdgmwl3CJoslcz5g/XuYo2lJdrM3Hrho2kaBhxOyJVBANSHFwvUgLEXF9QhpqQJrDM+8Qwk7uh9PumXcJD7Mplk+P3xMJE3r9P7FMCD65XhRUNldqMSfwshCzMW+8znjutHjH7JnXGQWZDfTiyp69k5y0l0RpvwR0C9slsp1tqi1XwYbCjj11x40DPvlEFlxmN55GjVC9W3Vc9+512Dd/n7Dy3fRcU9R4fQQs7acBZTsJoZcan4q0+DTs/WMvgiKDlMVPoSiCFFux99tvv2Ho0KGi1l6HDh3EsjVr1qBJkybCtTuQheAUWbbsUaOwTS/Lr2TXCx4XB4SGMmavG5Lj33e3ixVJrMx4hQWBQSlwBDKb1SLctlIvWeAUZjELrPruOIIZqSeKqIjqenyExQpXbQcSPj+GFKcfNF3MyYp6FqTGhSLVEYDAEonSRaonUPAziV7zFrpxmYEr3lS3Acrl5nlPCCzf0yPqLLSeCbFmFEs2F1U2LYcpKUN4fr1FljuGT7fMeYfjeeL7IpM9pVdM7+CzLf1/Pp00yO6UijiQUg61gk7j+sidaFalAgoT8SfjsfKdlcKa1XmCTzXvosrYsUCNGsBddwFbtwLs782euv36oe6NdcUkGDIEOHwI2pSpsHTqhJjDMdgweQPO7zmPlIspCAgPwLYftmHo7KH5/YkURQTlxi0YFNsEjSeeeAJPPfUUVq9ejffff19Mq1atwtNPPy3WKS5Ds2bAgAGy0KvOBx9IF67ZmnfokDQ6vPRS+k3QGsZ4vchI4MABarLy7nV0QgUk2FHiolRxdLTSaWouliwfZamToGRZhNkZpPePdY/TRKKGdKyynp6nJh4TPDZ+NAizek/EwRnX6MkcGRdMzjRxw+aZt5qWW21ZLKrsLp6cPilDr5zn6a5hSsJwv0rXmMa6QEcaghwOT1Flq/dYQ2em244XFvyh19zrG7kBwf6FK+4t7ngc1k5ci/8m/YdiRb9+Uuj17ClN7DffDHz2mXs1CynPCx+GtBdeheXLL4TQWzNxDVJiUtB0YB2MfLMBhs4aipTYFOyZuydfP4qiCPpxczop8oRiK/aio6MxkpXofWAMH9cpLgMtCL/9Bgy9tAWAZVdefVX2cveFYoc1YsnBg4A95Q+3AglJcKDyxvMovycGwmlrAVbMvR5vP/E6Ni/tIJIw6F0Ms8rEjKCUNHeCRrBVzvtbHEIk8rXBVhZKZiatCwFWKQwp9sIryMKyaeciPIWUbZ7iyQFGIWWrS++iwULP7LThKapsZOpyuWi9pnf1sOiCT8wbxjxRONkjIkWBZUMMssag1VMc2TBxup8br/Ja56nkQoyCyg6rFfGBQV7r3OLQ8+5eZwD3O2jA/Fgp9tqE7MGug9tQmAgtG4pOT3ZCy3tboriRHBAJ19x5iB92D465KsqYigkTxJ1V2cZl0W58JzjHjQf8/UVWriPFgQY31UN9bRcwZgzinnkLfkF+iKxS+MrtKAoouemeoSx7eUaxdeNec801ootGbSMVVGfFihXo0qVLvu1XYYdGpZgYGS9O+PXSvcsYPtlD1nv8778DUVHSupcUd0HPA3UhOcQPJVjmxKEhONUBLdCCTevaYf6MwYgqcxZtu63Q481sCLWkIEBvlUbLHi2AgZY0pMFftlTTNDjml0H4lHKwd0mEa+xZBFjsYn3dPitQs/cqWMPsIsnCLnrT2sTr7JpNuHUpCllbj0LOz6rBIeL7GM3nFG5k0S3D6hQZurL0MgsyyzGi84W5F67RvsKQViIdVr+F5ThDnLlMwfMm165XwobhhjU2ZdFQItGcnKG/l5G5q0+aOUFDx7xL5GhqGWxNqoqmIUexaN4rWNHkfxjRpSVCAgq+la9E9RKiVVpxZNYds7B33l4AldCs+T2osvkF4O23gTNngMmTUaZhGTHOkerAmg/WoPFtjVHzOp4DawPr1uHYuz/D2ulBBJUIcpewCQjz7jKkUCgKH8VW7PXv3x8TJkzAhg0b0L59e3fM3owZM/DSSy9hzpw5XmMVl4cthVlOhZ7dTZvkshIlgC++yPw1NWt65q02+n/prgXsViA1zB9B8XY441y4WDoQrXsuQViZC6jXYSNitRAkOYV9TyRUOBNixDYSQwIR5wqWCRpOT1Fl6+lghBwIhqOeA4nOQJmg4QwAQphJCyQ7AtIVVWYhZd02hxSH/KnwbpNjfIsqc95pKrDscnji90Q5Fq+iynJe1JAyhKBv4WSfosrmLhmeselfZ07OEEt8iirT8Gj2Kps7bPgyN6aVEHu9wtbitkWr8ff2/fhmzGCEBKqLf0EkPjoeR1cedT9v/OZtQHRV4O67gW++kTWQGMcXHCxctyGlQ9BhbFsx1j5jFnb/sgt/RwzCtXe2FoI5+WIyVr61EsFRwej0eKd8/GSKwkxuOmGoOnt5R7EVew/QvcFK+5MmiSmjdYSWlYzaqinSU748BQ9wUhb3zzYBwf2QGPsCrJYU0ANqiL2Q+DT4l3aiXbflaNdtBRJcASJJgy5WhytQFDkOSJTuVmeY1auoMqUj6+YlXx8HR/1U2CONAsh6mzTa8YTikVY5Gy13eoYslzPTlzBmjyVYjKLKTr1mHl23ou2axWi3ZiRlsE2aEcvna90zf2ojDs9juRPCjUY+I1PXFK/nWZe+qDLXlTCSM2jZ830/kzvXSNDwWeXF/JgWqBRwAfPOt4JL07D75Fl8ungNHr/RU6C3IELXJLEFSstscSG8QjjGHhiLw0sOo16/erCwhqOltixmycQM3sAyceOZZxA2eDDCyofihxuno06TQMR+OR17grqgx8Qb0eT2pmJ7rFFYtXNVzBwxE8Elg9Hy7uLnFlfkHpWgUTAo1r1xszIpoZd16tWTpb4yCnlk7F5Gy0+fBt54Q5ZtsVojEBr5olgeBCtS9eLKoQlpMn5OT8gItsiYPIo5o1duUJKMw3OEWkU8H5eZY+/8y6fC0TYJqJukF1DRRK08cmJ5U2x+dQSO/9VaCDybxRObZyR2MC5PL54iBKGE7tuM50Vsnj4vXa6mHmeGhhOxd6ZxbiOfHGfE6Wm+68zeYPlFuNcZmbgxISFeMXrudzHF+rlr8GUUB60BF51heOf4TdidLDstUPD9unYbUu2ePsQFkdXvr8Zrwa+J+nLFDYqyBrc0gNWPNyb6H5+eCfYmpJl9+3Zg2DBhUr+p/WlUqh+G81NmIrRdE9z863C30DPwC/ZDeMVwUbZFocgRRuxdTidFnlBsxZ4i72GtvYoV0/fAffNNGcNHQecLkwaffprt62THp6DQ4QgIe1Ra0CKkuzAkgZ00nAi0OBBkscPPoiHckiKKKzMZg8vdlr1Qq0jG4DIKtxAbu+IyKcOBQItdWPSCrHb4sTCLxYUgmwMxe6ri6J/tceG/uiLOLsDqkoWVKRKtHCfFW4Afk0L0eZvLPc9CyiIJg4kbpnmr17yRpKELN1oBjYothuAziiMbljxm2RoC0qeyi5gXWbim1wk3rhR7sUbZFV9BZxRxNidoZHQW0Gvy+Z5qE1PTcComHgWZ1LhU8egfWvDjC68Waa3a4/een2FZ9xelpY99dMeMwTXfjcYNI0qjw8/jULlzdTGW1uW0xDTs/HUnFj++GK2G10e7YaZ4C4VCUegoVm7cjz76CPfeey+CgoLE/KUYy7pVComRWZGaCuzbJ2vssTBeRITMrrhMYT2jNzsTNzJaN2KETOTg5rkp/8BrcSruPdiCbShhs8Dm1KAlaEgM9RfxdClagHDPsjNGmsYiyDZYE6UoSgwOEG5eTS+a7NKssGtWOLaEw3LBD2m1HHBUcInlSU4/4fos12EHWKe4dIt9SHXKGECLu6iyjIYTRZVFDT4g1WHxFFi2e5ZLI7BeVNnhU2DZUE3mxAjRUcNkepMVZTxFleFVcNCDaZxX3J0GRCaleNy4esHlzGL0LL7bdaYzPgpahh7EoKg1+P18W/yXWBsB/gX7tNHj9R7o8rRKsjLDDFtLUCD+ZUebH/9GgwPzgOefl3F8QUGwlCiBxDOJIpPZ5XBh24/bROmatnc1RovKZ0UZF9fTz8La94b8/iiKQoaK2SsYFOyzdh7zwQcfiN63FHuczwxevJXYM0Ghx0C8adOA5cvlfEKCVGZMbvnf/4A6snXT/PnA4sVA9+6y7JfRzYkWvIw0oc0GfPed97LAgCawWNgkLREna5ZASoANKcH+oi0af/vsmqG582HlvC1Jqpa0ED93UWWKQL2iHQK+L43AxRFw/u8s4obEu1/Px6hGhxFa/4R4PbtgUFByOa2ADtGb1uJdbFkXekbhZSNOz5QG4RaAnqLK+nojI9d4iTFjzq41iiqbkzI8W05fVNlt/LMgUi+9EhcUIjeZSeFkd1Fl825YAb0MoRd9S25E/1KyZt0xv+YoH6nXyymgsJVcYETRbZWW0/Zx4ZXDEVU3ClFNKwLDngWqV5d3WszWbdsW8753wBZgRZ0b6wqh1/HxjmhyWxN5F+PvD9fjE5B86BTONeuOiMoRKFmjZH5/LEVhQPVLKxAUK7F3iBV+M5hXZIHXXgNiY1mNWhZUpoo4e1am2jKhhUkudeqIfuwTJ0qXrCH2sttRQ6Jb6soHIYmWO02DTXPCabGC6RkprgBREiVV8xMu0WMxNfAruqKC32rxOuFqtTqQ6vIXclCrnAZH42RYyqWZ1jtFX1xRH8+drOF5f8bpyWxbY14mcTBZgy3WPAkdcp7ua/bFFfKSAk9Y5/Qet0KLmuugyJsKofuEKtRFnN7fVqwzjfPqqGFOtNALJVtd3tm4oqCyrisZ+ud2GevP3dvRxeqlEjZmX2iNIaVXoWfkVnwRp7cqURQKki8kizIqPAavfelaMdkCdD8++4Jv3ixjKJ55BgOWr8a3/X7D7FGzMWr5KFTpoFdH1zScKNsce9o/gX3PbkN4exvO7L6AwTMGo1KbSvn6+RQFH5WgUTBQMXt6jIqoX6bInBUrZHXkrl1lUTy6cGvVklaBlBTg3DkxrEcPaejr3Tt7m09M9GTxpqZtg6ZJCxXFV5DonAGEWlKxYmFP7NvYBIHWNFks2ZIqhEmptIv4CcOw53QThOjLmIXrb7FLkTPuOBK+OwRHj3gE6kWVud5PT/pgLkfs7ipIPF4GQTZZgJmWvQBTkocsqiyza43uGiy2bNPHGPF5xrzsqKHP+xk1UGTtPTfuAsuyqLKxjskZmjt5Q3/uTs6QxZc96zzJHJ6YPY/YM86XvkXpMyqybO6wYYzdmlQNB1PKivjHltZVWLnnMAoy6yetx5IXl+DcHnlMFld4Tvvhhh/wY98fkXg2UYg8t9AzGD9ePu7dC/+pX2D43CEoWbMkzu897x5ydO1J/Pf5f3AcOobujc7gtvnD0Xtib/zz9D+ir65CoSj4FGuxN3XqVDRu3Fi4dTlxfsqUKfm9WwWT1q2Br78GduyQBVoZgEdLH617VGoUf5B19t55B7jBJ7Rn8mTg9tuBlSvTb5o929lJ48475XMN0vpG4pw2hJ5PQeXDsbC5NPz8+b145q4vMP+7oUhNCBBi0M/lROXUaFyLf7HveEMp0kDBxk4XbJcmg9xk5i4D5WjSdoi7Rr6eZZy3ThqIpfc8iSOzOonlFIKyArE+L6xjsmAza/QRblta8ujydZnuQuVyKaY4r9+hUqC5W14YBZFlmRZZVFnvqasXVRaWPD1Zwzzvrqtn1EyWu6ln40rLW3xwsFxnjsnzteAZ64zt6M+NTF+PY9qCORdai7l+Jf/DmC9nYcj7P2D/qYIppjZN3YSlLy3Fhf0s0l18Yezd6a2nsX/hfpzZdsa9fN6YeVg8YbGoy4cyssiyMO/eeiuCokJx5883IHntNqTNnAfHdz9i75NfI2TFIjTVtqDOgMbSbK+5EJRyEYEqCUaRFVSrtHynWLlxzTz//POiH+7DDz+MDh06iGXsk/voo4/i6NGjePnll/N7FwsWTJl9+GHZe7NaNSAgAIiLA+bNA8aNc8fsZcaiRcCvv0rN2MmnPis3R6gbib8ft0ULhFOIjQr7YxBgd+FYiUj0uGU2lv3VC8dPVsEr93+Mmx+ZjOpNdsGW6EQA0nDsXF3UdwUKcRXnpHXLIlyudNdynkkZdNdqRlFlWEScXnDNUwiIjAc9tan6WCZoyIIrFqSJZA0p2qQLV85L1y6x6MLPmPekyop4PXcqLK/C7ma3UuAZosotzDyFlY2iyu5YPvHGJuGmJ10Y6wyxF2vE7JmSeT3b9OBbVNlsaDQz72IrPFJxPtqGH0D5gIvYc9KCER/9jF/G344qpUugIMGuEJXaVUKp2qVQnLH52zDgxwGo2KoiIqtGuvsGb5yyEZpTQ9PhTRFuvygHs/8xY/hOnkT4vcPQfsNGWEIeRfRRO3Ztj8RNw6qg/NiHgUqV4HAC0RuiUTLpBFw9esHy83RYyuqiUaHwQblxCwbFVux99tlnmDx5Moax5pSpU0bTpk2FAFRizwe6bJl98c8/wMaNQFqaLKz30ktAuXJeQxnPzcoOZcvKpF3Cr5lC79pr02+6TRsp9IwWa362KIQF90NC8lwEWl1IDA9EwIVkRMSnoEK1YyhT/jRGPPEhFv08AF899QzqttqCY0mbsQXN0O7GBe7ECfbGtWt+8GOJlQcrw5Johev5M0iqJnvgsvQKM29p3avSew2q9FktrHfsuCH2w+rSRSITSWT8nqeosnwPxvI5dfEniyobhZRdevs0Jgxo0MxFlQVG7zhTlJzRxsw0zojfc8+bYvvc40zFmI3euEbpFRnP5zvWsxteMXqXKLJ8yl4Sa+Nro134ftwU9R++jO6F5DQ7Jv+1Di8PvQ4FiY6PdczvXSgwsOaembAKYRjy+xAcXXEU5ZqUk21viFEzqXJlujxgYRxu1aqI6dQLVcP2ouqkm8Qx5kx1YNW7q7D9l50Y9PMjsP7zI9C/H/DLL560e4XCjErQKBAUW7Fnt9vRmurDh1atWsHBBq+K9LAqcrt2MtWWMCOXFgEf+LUy7nvhQunWJQMGZL5ZGgkNoWdQpsTLSE3bDJfjMJLD/VHyQjJKJSShTqOd+OyVp0U+7HVDfkerXsuwcMoQbEdj3ITZSG57EMmWQKRq/qIGn9NpE4Y0v92BsMb4wc/FQswuvQOHHSm07jEuMMCBVKfsZ+und86w6gWWRWkXC+vqWUS3DNk1Q6R9yO4Y4s5VT5aQGRfSGytcuxSIfJELGkWhmDeseyyqbNGFm7lxsK7G6I8WXmeZ5OGet3iEoVErT3iaNRdKJHli9szpIO5HdxKI/nam7RjJHrT2ubts6LtDZl9og7L+sThnDxfPnS4N8zbswnODesDfzycWTFHgcDldIiu3Xv96YhKwojkx34U1bQr89hswcCCi6p7EvvmlsW/+PtFiLXpTNPbO2YtBI4JRoUUFaM3Hw8If+/79SuwpFAWYYhuzN2LECGHd8+XLL78U5VkUPvz3H/DCC8Bjj8kTOzP4Bg0CJkyQMXsmDC8vQ/tyip+tNKqU+wN2BMIeIe9JwuNTUblsNHreNAeBdllguXSpc7hzxEf4FYMx0vYtbEGy0wa7bNByF2ZNFgWW7e8cQfIHR2CpmIpAUWCZBZIhkjEYk2cUWKaEo0XP3+qUSRkWzsuxLJ7MdRRFfJRFleVyWvKEBrPKJA0xLwop60kaonixqVGtuXOGXkhZYJ73LXhsFEfWjILLnlUslBzksCNA7/gSF6IXVdateyYPs17U2ZME7GXmM23XK2fJBcw72wr9tz+J38/JXtLE7nQhPqXgBOnzu3Gkqps1M2d3ncXc++ZiaoepopaeG8bcGpY934rntNb/+y/KVg/BLW+3x9qJq7Hvj724sPc8bvqmPyqs/h1ax06wMGmLN4F6+IBCkR5LLidFXlBsLXtGgsaiRYvQnrXiAKxdu1bE640cORLjjSw1QMT2FWvsduDxx2WqLfub3XEH0KSJFH7ffy/j+T780D2cdfOYcOHbSYPXlj17gMaNAZMWEbCbE40JjOfj5onNWhIuW1WcCzuEqriAgDQnUpKsuPHBb5AMfyQ72RjND6EJspBwWqgfLjhZn88qrG2JriC53GWDvSUFgAOJzgBRBoVFlVOcrMWmiRg8u8uG44ta49Dv3VCq3U7UGPEXUh1+7np6jNkzBFCa0889b8TsyaLKHuuW0yHLsYj4Pc4bysorfs+w6ulZEeYad4zlM+LtuM6tE/V59zpPn9ySSfKC67BakeAf6BUHaDTvMN7DHe9nei7Kw5iLKpuey+Hp7w0D/GwIDwosUKVG3in9jsg6fTrxadE2rLgTGB6IAwsPIPZoLBY9tgg3f3eztA6Hh8sfKi30DMvwhVb7559HLQCVSqUgzlYCn/X5A4eXHMET5+fBek1XWShz4ECgZ8/8+GiKwoBy4xYIiq3Y2759O1q2lI29Dxw4IB5Lly4tJq4zKE6N1DOFFwMqtWeflVa88uU9abV063bx7lagJ+amo1Ej2Tt39WpZi9nMli0yY5dvZYg9EuLfGBfsR5AUGoDQxDSUTExBbIAUdGyXxqLHgUlSsdhDbKK9mVPUzpO9czmO1jlZbMUiXsOuG1xv1NZj+zWudySGIHZnDfiFUTxaZA09EY/HbFvpruXxkNm8J2ZPZtgahZTTxezpY7wwFVU24vfcXTQyqIjsVStPJ9Ltwg3xHLeZjM3oeboCzLp72JcAix09Sm7D8tgGqFyuaoFy4Rqt0ijylNCTsADyiL9G4Nzuc/APNoVd8G6MN238QfIH2LBhptsIPHMUJV4fi9r1b4dWrTKsyYkyKevWW3E2LRKlZ8+GZd06mcRlZFwpFESJvQJBsRV7//77b37vQuGBAo/lFghF3803e9bFx2e5anL9+nIzF/UEQDMMGWL3Jj0x2k2y/Yh4TAiXYi8iMRWBpRyITQnFiUPVEF7xPPyTY8UYe7BNlFHhRJFHd22SKwDWVCBoTTAc7CDWMgV2Pd7O38Y4PX93D9yy7Xeg+XPfIKTucVkwmQkcIoqPVkbGPEk1JBI39ALLVtNyzjuNQsqiKLIpFs9c2dgcSOdOyhDBgF7xe6J2npGF646tM29b35RNijKjxl5McIgn5k5/L/dzmeTsU5DZu+iyeeN6CKKXLpxc93O0DD+Elw8Pwp/nS8DpcsHma8bNJ0pUK4EJFycgLSEDS1UxJqpOlJjSwQLpFHuM3aN1jzcMdMkaj8TPDxabDQGN6+L29ZPgCmwD3DMP2L0bCeeS8OW1P6Os9RyGJ32BYJrmldhTKAocxVbsKbKJUS+FVj2a4Ayo3BigZ4J6kEm6tOJNn+7JO1iwIMN8DndGLidfUhyHhfY4USkS0RUiEB8UJCx2Hz36OmBz4bbHPkFQomx15gph3TwNQVa7LJ9iAUKsaUg5G4rgcVWhBbtwfsU+BLvXuxBoswu3LK1/kZXOIqTCeXd5FQesCLA5hYuXesxfz8jldsVyMW8RMXtOfblNnzdi9igERYKGTe+o4U6F1YvjUeCJnTdi+UyZtobA07yTMtzjxDpdtNlYdkVvlUbxLVq0ZZB0kcF7iE361NxzCzzdGy22pQ/5O6aJEHu3lFmLGec6YsQH0zG8W0v0blkPVuPz5BNMZGHHCE6KLECxR7Zt8xS6vAzWObPlzODBOHGKN0uArVolBLUc6Gmbo1AYmCu75+S1ijxBiT3F5alQAWApGprlaMEJ0i+kfM7uGY8+6jWcqxnCx9VsncaXk8yE3qWwWYLh0hIRHxAMO6wiC9euWfHkpPFIdvkLl6xlizRFpYT5izIoqRpte1Yki5p6VlEmxdEwGVqAhhQKN/a+FTF7fnoPXQvShECzwOmyiO3TmkZhx9eTNGGxkz1x7Q7pthXL7fq8iN+jmJJCz0HDkj7GZdeteeKJKWbPFHtnjqcTOE35sKI2X/pxRlydIdS83LjGtk0iTbhzzXX0ROFm7+deLhfTe5pPuXPPt8Yjlf5Ak9BjqBt0EjuPAU9NW4B/tx/AmyNvKDBWPkUWYDIa78J408Y6SbxRYEAtHzmJg9kBzeHE0eM27DgQhJ419iNg4RxgxgzUi43FuC1fIdkZCEt9mVLPmxMmgoSVK9g9lBVXB96Q5rRBlWpslXcosae4PAzCjsrABcSLOuus+JSwCQyUibsszp+dvrj0IjGBg2VYDIEYFtgCF5MXiz64aZofHEyQ0PxFrB0dtmkIgC1enhFSw9gXg/0y/GTBY00WUHZWdiJ+Gl2zdLlyGxR7FHmyUDJj7lzC9AYkny2BM5vrwj8iCREt9+ndMqTQ857n1qTQM+L0RAFlY7m7Hy7naRnTxwi3qCl+Tx/jXfhO74XrTqE1JWTo67yKH+vrIpNlokpcULC3iMugjIrbxWsusize0/tFvkWXyUVHGP6NaYzrSm0R1r13Dt8ili/atBcta1bCsK7NkV9Eb4zGnrl7ULZxWTQcmHkMmkKHSRqzdUvdpdA0zK79MS4evIiqL76GxqOHS0vgokUI7XMNQufMYdSzGLrmgzVY/tpyDPxpIGrVtQElSshJUTxRMXsFAnULrsgdhw/LQss+MP7u/vu9z/GnTrHkTeaenttukyW+6Po1cDhjxKNF01DmYhya7T2OOqdZ08UiSqw4U/0RkOhwZ+OyjAoj2ug6ZcyeSK4QeaTSbMUyKmJ7Ik6PJjKLO1mD688sb4qdr43A8Zmd3f1vjTg9Y95q88zbzMvd/WpZcsVksvNVWuYWGOZfoDvPwYj20/vh6uPcHTQ8TTW81hluXFr23OdIk3HQM9a0zlRI2Wu73nuajt/OthOP/aL+Ewkbxua+X7IxX/tMH197HEtfXIptP2zLt30o7NAq99uw3/Bdj+/cf0ve1LS8tyWaj2qOEjVL4PfZNhz5aDZ+CblTVGISiVrz5olafjt/3Smyos9tOQH07SvjM0xJb4pi6sbN6aTIE4qV2GP27UU9O4AdMpJ0t5cii2R0ET9yBNi0KUsvp8WPlVrYYc2nNJ+AyYCRkTI23CDJvks80psUmZqCchcSUO5iPJwJ/hh73Uzc32oxXBekgdoRJgsYs5gyBV+A1YkgzuvLGHkna+vJ4H1ZT4/iTwo/isKSDY+gRMNDCK9zXLxngE2KQ75OikM5b4g8Cjw/m1zO92G9Pfe8LgpFToYhEIXgcpkElmiQq4s/veCysdwtGGkM1ETChvjHR691PCdq7gQNFlR2r8sgA9fofevTpldO5jOCb9KwqWflmri6OJlaEpF+yehZaqt79fHzsYhPzr+6e2UalEGrMa1Q63oWDFHkBNYp3D59Ow79c0hY6TRpxkanJzqJbOfvun8nxPS0B9ZgV1J1/IjbEBtvZQsiWBcuwB3/3IH+U/ujbb+yMr2eapDp96yvlBnHjwMrVly9D6lQFDOKldjbtWsXEnWV8dJLLyGBJyJF1jEyLcwdRrp1k/X2fGBtX+pAxn0blCwJvPWWCPURnmFfWNmFWtyrvqtFDkzW/HA2XMYARSYkIzQ0AfExkXDa/XHylMz+c4TZhAWQ7lZRVkUYxTQELA9B8J01EfpJaSFY6XZlVJ9cr5dgEeVTNETWP4J2kz5AnVHzhbblclHCRSQ4yHnRB15PU2WMIOfZLcO8nIkZYp7CTBgNPfOe5XwDk5oyt0AzXqPHQAmXrmHYE+OYrasnaOhJG27LXkiIFIDmxAujjp5Jcxrr3F5lw6VrStIwxno2oicWu6yYdbatWNQw9JjX3zE/Y/aqX1MdN352I1rfl747jiJrnNnmqYa+7NVl7gPg7I6z2PXbLtgT7bjxyxtRvkV53Prbrah9Qx3433qLPBjvvRd+qYloMboFLEy/37ABzmt7YkFiV8TfNNxTxNm3jueSJcCYMTKzS1GkMO5nczop8oZiFbPXvHlzjBo1Cp07dxYX0HfffRdhLCqaAc/TD6nwdteuWgWcPy9FH2P46HPlCT0D5cZzOlul0Vq3Y4dn+RNPZP4WPkm9ghJB1+J80lxRHy8mJAQOqwX+ThdsyRoen/oIwspeQKP3pIsoMSQQSa5AEdtHQcWyKxRo1lPBCN4SCktJJmj4i364XJ/iZMaITNAQ2bm87mgssCxr67HGnhGnR1HH+D8x75SxfnLebYqDy9SmQgg6t+/UFLNH9F66crnJPesWZhZPMWUD8zg9ls7is66kkaARFOqJ6fMRbIbA836t52196+qZDIj6PnnmfzndCX+eb47DKZ7eyJWiIhAalMEfUlFoKNOoDK6feD2OrTyGyKqR7mSkiCoRCK8UDpfDJcRcy7tbinUNBjQAkgcCG1dIKx4DdpmZRUqXxj8tHsO6f9ficGp13Pf3v7CyOLsZZm4NHy57b0+bBrAvLwN+FUUDFbNXIChWYu+bb77BCy+8gHnz5omT1IIFC+Dnl/4r4Dol9kyw4CrTa6na2EaJ2XrHjkkBOHq0NMUZGbo6NWvKczi/XqM8SE4oHzEK55PmiH62tLzFhgcjKjYJUQmJqNtku+iSEZBsFFW2uhM5REyemLfB1TEese+cgLOkU7hiZWkUowcuM3zNBZZZgJliUANS/IBApx6bp8GlizSWVzE6Z9Cd63TJeatpjCykbBSpM2VfGJWLxSBprROWO3ctPVNcnileSpZS0ceZXK9Gf1uuM/riXqRlzxB0mfS+Nd7DvR3PHppXXfI5EzU4mXHpLr/87v+qyF2twvbj2ovJjNVmgSvNgcSzydj8zl9oOaGXZyVDBz79VN7hffwxMGqUu6xL6wfbYc/cfehxYzlYX7vP+82MDP9Jk6QbgGJPCb2ihSq9UiAoVmKvXr16mK5H/1utVvz9998oW7Zsfu9WwWfKFJkiu3at93KWXRk8GPjhB+Cuu7xW1aola7Jm5K69FDQKLF8OvP22TPINC2yKWlHv4sD5xxCqpSEmTIq9svHxOFS2DIKtqfBPlGLPEWoV8XSMz0t2BcDf4hCuWkclO6wVLyLVFSByIAKsdqS5/EW8nubyE1m9gTaHtPRZgJhVDbHj3aGIaHgYjV75Gg6XTYg6yhha+yjq2NqWIo/zmnDtyuXQ50VtPT0L13deEy/WC9jxQe+UwTg8WU5FL8LMD6MXUhYaTy/xIoot2yzCCudO3rUAJZJkiEJMqOxFZ17nLqzsk+ArevYa7lwRW+hxJ4vzrKlGn9iWSTzqiwSl/OKR6AxE9MV4EbMXHpw/LdR+GfAL9v+5Hzd+cSOa35F/WcFFDpcLAaOG47Gzv+I8ohD61JvAtgHyt29w3XWiX3bir/MRNGQYbN99A7Rti5I1S+L+HQ/A5m/LWOgtXAi88w77Uqavqq5QFEPOnTsn2rc6nU60adMGFYzyFLmg2N4Cu1wuJfSyCmMbK1VKv5zWPN6FZ5C4IQqt5qCLFov5s7nJVhnzLygddgvCQm6F3eKH5HBZrC8qPhFpcUFY/N1gvLv3afmeoRr8kSasc0GWNNEBg9Y9dtBlW7NAS5qw4LHwMjNIuY/M3rVZZAwixR/XB5aMhz02DAkHKorlVjjFR2QCB8dTBVG02SgWhbFOg9UixwhjnbuCsfR7yjg+kw9Uj9nzFFbWBZ0Rl2d02zBl8gqXrrhBZvyeZzPmzZbQY/YuhoR6boh9zXb6W5pj8tyz5s4Z5t01FmdSzuWRKnOxqMXL6FN6oxyfj9m4ZZuUReX2lRFWXtV4y1Mo6n79VfzNS+M8gpECzJqVftwHH2CW/634fE93nGg3QMTwMfTDLPSSzifhtw7v4BRjA/ftAx58UMb9mjvzKIoOWi6nYsZvv/2G2rVri7wCeiJr1aqFr7/+OtfbLVaWPV/YE3fixIkicYM0bNgQ48aNE1+uwgRdM3PnAl98IeP0WHyV9bnodmEWBmum5BFsrcnwna5dvZeXCu6K4wlzcCosAg0sp5HiH4D45BB8/coERsvhNbyI2NBQJLhChOuWAivRxdgxC5z7guGICYCzih2JJTlaxuwlGzF7LlPMnsuKgFrRaPnJhwiofkp01+AYdssw4vTSHPLCJWr5mWL2ZKs0Oe8yzYt4PT32TyZJeBdLzjBmz12dxZJunFEc2WjEwfkAhxNhqTILNi4wxBNr5xOj5xXr50720DGSPUzPvWL2MgmYvugIFe7xQWVXY0Vaj3yz6pHur3bPt/cusjCp7amn5Pybb8qYOjbAZthAYiKcAUHYOGUjmt/ZHCnWSJwMr4+UmGQEuZJlt53ff5evY8gHPSrj56Hxmik402M+ytVKgoWFnVmzL7NYj4MHgZgYllO4qh9bkUeomL1LwkRRc+4ARd66detQt25d8fyPP/7APffcI/INckOxtez9+eefQtzxS23atKmYaDZt1KgRFi9enN+7V7AYOlS6aL75RhbPo8u2SxeZPvv000DPnhm+jDf+t9wCfPRR+nV798pcDzM0CLEG38iRQPXq3utsFumadPjZML91Q/zTqC5Klr2Idv3+xPiwd0Vx5bQwm3DdEiNmj2eL4G9LodQ9VRA0P1yUY5HFkGnVk7X1aPWT3WZlHJ8twIGIBkcQEMT6cfICJEut6POijIrcBmP5jOXSjasLsnTz4hOaFJo+L7ScZvo1emL25Mj044zsWXf+hwUI1616LotFFFV2nyNzU1fPd30G48nss22FWG4cdgyNQo65A/oVRYR335W9D/mjHDcO4IXJiNE9cwabv96M+Q/Mx1cdv0JYhTA8fGAcbp01DFFLZwKNG4sf+v573kTq3Q+KH3nPif2wo+8TaFA5ARYmdFBIZpIoJ0QeK63TQsj+vYrCh7LsXZJWrVphtqmwOfMIzpzxZMSfPn0aARllL2aTYmvZe/LJJ/Hoo4/iTd5x+iyfMGECevUyBR8rgDvukBPv8uPiZAwfMzDY9iITmL9BwUd37tix3uuoEenBYc1VCkJeEy7VbeNCyhp3U1fWxxPdai0WjH3/WQxosxlBcMARwgLJ7I2bhhRXgCi6LFqjRTngrJ4KV5RDiDa6de0uP+G2dTn9hUBij1zG7BnFmClerBYX/KxOEbPH7fI5t8dHzWIR83TZilA6MS+LOYtSLHr8HkuUyJg9zRSzZ9Hj4vS4PKc5Ls/k5jXF7LEjhyeWTq5ze4utHhduXFAQnP5Wdzyf2Dd9c5oh/oztGJVtzLF/mSR0mJNB3Ov1v02MPQyLLzTDjaU34JqgRXjlx24Y2q056lSSHRUUhZhz52QALWHdJEPkMVGLVv3oaASXKoHIapFodmczIfTZl7hev3qMkgY2bkTcSx/gl9diUeXrYxhe41UEP/ccBsxjjO9dwIABQPfu2P3EVwirGI7KbSt5W/hYlf2GG+QJgjeZbLztc85WKAq74enBBx8UCaSffvopPvzwQwwZMkTE6zkcDpFfwHW5pdha9ui6vcsnqYCMHj0aO3fuzJd9KtAwmJrQhctgUaOWGqvjM1s3A2jwo1XPXIaPJbUIPY60SvfvD7z+uozNZs1VhgfS6keRqHslBRocwo3JvUiDPwJhR4gzRQg6I0HDGuaSzy0uBFtk7F4guzuMP46UWXth6XdeiERa/AKsaULABVgd8LMwpg8IsjpEnB+Xa+dDceT7njgytbe78DJj/WyiQwc/vgtWq1Ncl4QQ1OfdhZUNNWTUQBECzVQPxfzLk5Ve3LXzpDLztvAZ40TMnr5tcwHkEimJ7u4ZXtY/Y6w5McOqe5KNu2ajzp4pZs9tgDQXXva5yxbP9WUzTnUUj72jNuHvdWtx6+vT8Onclfkav6fIA+LjZaYVMcc4N2okH6dPR8NBDfHQnofQ5v426V/v74+EW4ZD8w9AIkKR/PybspaecVz8/jvinn8bf46Yhl87vo8jy496XmuM4YmgShXg889lJw4KPkXhQXXQuCTVq1cXrtpbb70V3bp1w+bNm7F//37hYfzrr79w9OhR9OnTB7ml2Iq9MmXKiC/VFy5TiRs+vPce8MorUpHxhMs2GFRjzM69cEHG72UAb8YZg2dOsKMxkDAmjwWUWVj/yy+lS3fgQODxx2XnJVr76L0xiAxoKgQfD1i704YO2w6j94ZdSEnwh8tuwwHUxIXQcMQ4QxDrDEaCKwgXnaFI0IKR4AxGnCNIlGmJswcjwRGIZEcg4h1Boi5fsjNALGNdPsbxcUpKCMOhr/vgxMwuSLMHIM3hjzSnDXanH9IcfqL0CuvtMX6PGbrMzHU4rKLWHrNxuc7lsELjI+vyMbbPZZPxe2JeP5E5ZQ9cJmBYHMywpTVPrue81SUneqet+nMuN56L1zosKBUvL8gxIaHCckdd6S6c7DIVKdXX0fAo1ov394g7q/FaY7x5LK+9TtM60996c0J17E2sgGCbHTeWWS+WTVm4DnPXXtkbJyUmrzA1agD36eVS+GM27taMOzjG5J06Bb9AP9gCbDj07yEcWX7EaxMVW1XEPRvvx32vV0MIkoAXX5TlmvS/nX/71mjV1h8dqxxHldamc69h4WPrHY796Sfp7jXKZam/faFAFVXOGsOGDcP69euxZcsWXHPNNSKJlLWBg3zKmuWUYiv2GPB477334q233sLy5cvFRJfufffdJ9ZllRdffFG4LsxTfRYa1klJSREm2qioKBGEOXDgQOGDN0Pl3rdvX4SEhAih+fjjjwvzrZklS5aIdm+BgYEiUycvzLpZ5skngZUrgWXLZPsL1sR67TV5EWAsTyZiLzNDAXM9mBPD68SNN8okvKNHgSFDZNJv27aMY/BuqVYu9Hr4W1ng1Qo/mwv+Tidsmgbn5pIIRzxaYQNSg2WdPd+YPRmbRzz9cEW8HdLH7NF6R0KqnEG569ejyqg/oTms7pg9YcnTY/A8MXvwic2Tlj9TKq3ng/jG7BlxecTmO847Ls87ts87ns9ddoU1EM2hLtmJ2cskJs+83uu5Fxb8fKqTmLupLEv0yDIyXy9af0UFGX9viWcTcXrbaTjt3hWhlRDMI/hbZxF1WtVYS49ce628i2P5Jd4EsnPisiP4se+P+KbrNzix7oTXJso2LgvLU0+6x4r4O97ZaRqCSwaj8z8vofmGKbAG+AvXr/blZJy8+zloEyZIVy/vCnlzyYLM9C5QdNKtnFFHDkWxjdm73PXYF7vdLlqnMimToqpZs2ZYyFJAPpY3321y4nU9O9f5SzF//ny89957+O+//zBlyhS8/fbbuP3224UWSDYs67mk2MbsPffccwgPDxdf8FN6plnFihXFwTLWN8DsMjCpg+ZWA3OhZsYF0kQ7Y8YMREZG4qGHHsKAAQOwkuJJtBVzCqFXvnx5rFq1CtHR0Rg5ciT8/f3xOv2bAA4dOiTGjBkzBj/88IOoD3j33XeL2jvXM1P2SsMT7dSp0pXiCzOXLxFsx+Odwo7D+HJeGz75RHqCGfpHT3qpUrKCCxP8GArIm37fGH+bNRDNy36MDf9n7zrgo6jW79mW3gud0HtvUsSKFQVUULH3/qzPLs/37O1vwV6wY8OuqAhKE6nSe+8hEBJC+mbL/H/fLbN3ZmdTIJBo5vhbMzP3zp3ZJdk9+33fOd/eaxGNCuxPSkBirhcD4kP92IoOZCCxUT5L3Xo1D7NXoW4ZUQ+0QGyhCwfu2g+tlQ9uhwN+zc1SuNRRg1gJ99kTZsxObqzc5d7PWL0ePYg4OEWdHq/Z44peVscntlk9nvDCI4LncIZq9kQXNV4Hp9bsiW2zlx6zbDHV5RnmqR58TgdSykp025UwI2WLmj09Y6vU7PF7C42rXtCV1ezJnZ/290OcswI/7KN0HqfP2/YewL6CYjROrf4Xgppg57ydWPzmYrZNdWMDbhmAhMa82P+PJ//AoDsGISre7uhxWKA/UCJnJJIgI0ySy8s/VPq2RgSwZUuknXkBel3RC3nr89BsALctUnFg6wF4LroOuVuBNq/cxTMGVPtHpI/8L9OT+JsCFfROnYo12jBsa9cUg+8+HY42rTm5JKInUwT0IU4RRhKNHKZS0cY/B5V9Hpsxbtw4TJw4Ee+88w4jhVQ/d+6557LP4j59+rA5FG2jz2mJVatWsZr+88ljtpqf85Xh3//+N7uHk046Ca+//jquvPJKxk+WLFmCxx57jN3Hiy++iDOpdvUw4NDsr78oonATKEBV8w8kIoffffedZUr44MGDLF386aefYsyYMezYunXr0KVLF8ybNw+DBg1iXTzOPvtsZGdnozG98YEypW8ykUhubi5T4dA2/SLRL5nE2LFjUVBQEPYtpDIUFhayX0S6ryRiVtXF0qX8Dd9M9qhu7z//4SneCKB0LGV8qXaPskCEzZt5+Q+V7lBGJ5IQzwp7SmZiUc5tyMrNQ+8t2TjojMHBizKRlr4Xn845hlz2GNEjCxXqpEFkz3FyTzj2e1D4+WaUd/CztKtfc8EXdLE2aJQcpn2yYKGOGnSMWqjxdmm8ZRqtR+lZilex40HeEo3G5Dadw1qmETlSt0X/XP5NleaKOhbZ/1Z+gxXzubVKaL6eztDnmSxZNOCeX37CDbOm44PBx+GJs841zFctWgyBRZN9ix6AlBYs6rnyuNV8Gbw0pXYlJj9yNZpnJONI4KNTPkKbYW2Q0joFy95bxgjfaf93GhMJvNXnLVy74FqWXrRRCzW71BGD3oPI84usUugXmXpjkwu6bH59660I3nc/nHH8C2CgIoAfr/8RA24egM9GfoboxGjERGu4bsc4HuanfrhvvGG8VlkZ8k8egz3rC7HpnLtx+ounIyZZpLLoQ5cUX9KQmVICFPkj4klvNjbqDeTnTdYzj8MZe2ipyGBZOXbcN67an1mVfR5bgQI8Dz30kCFKR1G52NhYRsCscMcdd7AuXBs3bmRfzqvzOV8ZKBo4depUpsrNz89n8zdQ4boAaQgo40jZx8NBg03jqiCSdyhET4L+0emXpm3btiz0SmlZwuLFi1mY+BTFmoS+PWRlZbFfAgL97NGjh070CBStoz+U1aKpLM1R15Bz5BqR4PV62Trq45BA33BateJvruqDUAnRI1BvXIrqyVo9Au3Ty02iupoQPUJm7CB4tQTsTExn+4mBcmTF7ERFohuFGtXrxaEoEIOyYDQKA3EoCcai+KG9KPhfDkobO1Dsi0FpIBregId1fCjXoth2qT8K3qAH5X4Pylh9ngdevwclBxOQv7oNq9kjckj1gl6fm/30qTV7mhN+H9XnERF0IeDjdXoaq9OTNXq07wD8FM0jsse3HdS+jSKA5po9qteTRE+t7WN1f8p+wIFUkfMuiI3nJE6pyeNza1izp2Sc5XboPpT5tJZyPRUkfImN8qBR6pExOPaV+VC8pxjHPXAcelzUA5dNuwzlB8ox85GZ8JX62A3ZRK+WQH/vpKYiSGsqCvWSqorKOuiPmopwH30UzuOG8h65AGY9OgvLP1yOSWMmYeBtA+FxB3Hhvpc50aN6Dan0VREbi7R5P6Hr6M4YtfdtZpCuQzq13303FVgDWVnAsbx8wEb9hHzvOKSHWMP8OUafbTX9PLYCrWOuiSOiN2fOHMv5FRUVjASSkFNaTFXnc74yxMfHs+wdYefOnWH3QxZxh0v0CDbZO0wMHDiQ1c9RhO2NN95g/2jHHXccixbm5OSwyFwK2QcoIGJHYwT6qRI9OS7HKptDv/SV5fOfeuop9s1KPlpapWFrCjJSpdq9an5zevxx/r5PX+DNiBRdp7/jM87g7+OkzlXhdLgBhxsl0dEojo5mKlp0BCN7rCZPr9mDXrOnnViIsrOLoCUGqqzZI1sXDg3+/AT8NfoRrPn3jXD4nCF/PjFHKnH1e1Nq7lSfvfCaPVjX7Kl/jTWu2ePWKwUizXVUavYizO+btBkf9hiPf7f+Hm6XE275xaCW4T3o1e8p6Of/JmO+GIP8Dfn47f7f4IlVvmHYOHxIOypKkcmEEJVwkPcmqamoFSXV9i1Zwg2QJ03CMbcegzYnt8FZr5+FoZdk4Zri8UjK3czN2X/5pdJ6XwcV9ZLdU3Y2f1NQ3+vofKrfo5Qytduh+hAb/1g1Ln12qZ9l9NlW089jK1DQ5IUXXmAEkQQRpID95ptvWDmVFShqSBk1SrVKVOdzvjLQc6HSLSKopMal1O2RgE32DhOUR6fcPZky0y8OFVrSL8OkSZPq+tZYLSKFmOWDvjUcNsg8j1I39EZbDRyKvy6J74hL0u2K5iY6Cit2wKfxN/Z9iTxitKd1EzyU+zQ+v/8eVkPH7FbAW6KxxCvz3uMqQrJOoYgTgWr2iOQxbz2XYsbs4oQxJuMgPKlFiGpUAH9+Ilsb0nZFEDjmocegCc89sa9IyRzmbT3YRNtaGHGT5xvMkxWCx332lH1nSKBxgAQaJtNl3TpFtVGR4y7TXNN+GOk0r63uC1C34Z5J2zGy8SJo3gJc+tRn+GHuavj8RgHF4cLhcqDTyE4o2FYAp9vJBBr089yPz8WmKZtQll87hc02BKhmjn6/yPCVCJ0KiriRwor+cIcO5ZG7Cy9Ewr+uwmXj+6Jj3wQ4TjkFnl1bAeoMMHUqLw2pChdcAG+zNgBFWtSSFfqwJQd2eh966SWSMtb+87VRb0CfXepnmayzP9zP4/Hjx6NDhw4sEkeEjWrtqFMFedtZ4d1332XXIGJWW6DoIz0/Mlbetm0bRo0ahSMBm+zVMojdU5sT8skh0QWFfemXTQWpdGiMQD/Nqh25X9UcqmGgkHMkkHKX5qiPw4aUyMpC6SMEsmOh2layb1GhMWUD+e05sD05DXlFcXBtC+C9nJuw5MdhCJZ4WPRO9saNqfAhemk0ojZGIdbpY1E56qIR5fSJfrnksxfg28Jnj9S7US5+bMAHT2PAh08jtnkeG2M+e0yFG4RL8dljhsoiokfCDEZyVW893QdFHHcpxE7kajmRUyOBYt/sx6d7+IVeFWmqTGlcnZhZkDJ2zNwbV45JXz3Vo0997c3XtfLh04CFBztgc0ljxLkqMKLxIqzbsRf/+3AqbnjhK5R5hXVHLSA2LZYJMGQfXNl/lY5fMeMKDLqz8loZG4fwLUz6fZFQwwotWvDm1vRhTH8E1E+XonBU70chfurCQZFBU6bCClPvnoqnk5/GByd8AH9qBhduSDUwlaQQ8aR1aG2CXX7+j1Xjmj/H6LOtpp/HVqBaO4rWlZSUYPv27azWjtS0lAI2g8ZJ+EHiSBXV+ZyvClS3N2DAgLDoYG2iQZI9yq8PGzaMhW6PRJ876rlLSlkquCRVLalnJdavX89qCAYL8zn6uXLlSkN7FAol0y805erlHHUNOUeucVRxCGSPWmnS+/1iLpqsFqg8aMiQcKFvkicLTvCetttSM7Fxc2M0WpGL6zqMxwVPPI+iYAwO+uOYtx71bC3Zk4ioq9oj9uq2KAkIn70A99ZTffbCa/bcrJYvEB1g3TbKfR54A262LWv2yGvP5+ciD6rT8/t5zR7V6JHHHqvJI3EG+eqJWjyNftKYrNljXnlOOEhIwraleKNmNXspes1enKGGjmWygxFq9rQqavYUIYb03ENlvnz6v5IDX+wZyrbGNp0DjTUEBlZs2YMXvpqF2oLT5UR8o3jsXbEXq75YhY0/b0T2X9kozilGUvMk9Lu+X61dy4ZSl0FRvJ9+4ulTK1B9BjkJkNk6mWcSCaNOHFT3S0SwmuUkQ+4eAle0i5H3iqwOvFbwiy9YtI/VhVAdk3iPZLDb9KGhW69U9nlcGahOrnnz5szy7Ouvv7aMrr3//vvMGo2cMVRU53O+PqBBWq/QP8yKSG9UNcTdd9+NESNGoFWrVkxR+9///hcul4sZJFJtAXXpuOuuu5CWlsYI3K233sp+AaRC57TTTmOk7rLLLmPeOpTjJzk4qYPktxeyXHn11Vdx7733ssLQ6dOns7A0KXT/DmSPUrErV5KqiPvnSVEdOSbQP8MPP/CuSNUCD5mxTarJk90zbun/HKad05WpZ0mgIX32AkEgkOVFICbks0ekjkXnHEEmrOABM14RR5E/ElzI+j0ifQTaJoEGgbz1SLkrPfeY6lZE9ZgYw7TNmFVA8V6R72Diw4m1Q6PnxGxNlM4ZquUJa8mmzBM2LLxIWInsxYvInnyVRLsz/QBbR2/YYZxrsa/fQ4R9w3wFk/f1x62tf0JW7H4cm7YOf+bTv42GH+auwa3nDEVS/OEbhRZlF2Hpe0uxZ/Eepvos3V/KUrnJLZPR78Z+6HBmB/6a2SSg9tCpEydwlBYbP55bMkVCjx4sssdIH5lrUv1dDeqGKWJ79Z9XI61dGrcaQhwwfTo3V6Y0Gn2AU6RQKnNt1EscjjlyTc+r7POYQLVxROpkzd+CBQuwe/duZl5MP0nNS7V79Fmrgo4R2bviiivCrFyq8zlfH9Bg/0IuvfRSln8/XOzatYv9InXq1Im1O6Fw7Pz581l4mED+OGStQnLu448/noV1qQBUgn4RScZNP+mXg+6LfiHJ6FGiTZs2jNhRNI9MH8kbkIwXj4rHXi2QvXHjeCCARBcSFBwgkkdfzhVHGR3UcpdKdMiDVc3OFFXsQBBcnUcELbqsAmgGxDSpYPV5VFcX6+RKLWqdhtZeFH2/GUWfb2HHKEUrRRxqzR5vicZr6iiFS3CKtO3WV0Zh1Q13wL+X24eotXlOZdtQm6eH5MRxZ9U1e6wWT6n5q27NXpzfiyjhA3Ug3lSzx1qshfbVNY3rivSuq/IavbCaPXW+8rRIDf19zkC2e0mL2foQ1e2t3RGKYh8O1ny9BnuW7MGQe4dgzKQxuGrOVUyR23FER/z59J9Y+81am+gdCdxxB//5ySc8nVoVKM1KbwKHIBBL75AuiB7gLfTi++t/wqZGg6GdfDLQpQtvnWYTPRvV/DzesWOHQXxBZsgUXKGAC/nrEREkJa45nSrbllGwxQpVfc7XBzTIyB6BwrXvvfce+0ekMCzJn1WQQqc6+JwUaFWEh6m5MT0igb6FUCFpZaD2KUvJ766ucQhkL5KWg0RHRPo6dAgfoy/rFC2nnxdfTHURciT04e3V3EhPLQGeA5oWFqJkVzpydjZHm8Er4UQ5yoNUp1cBn+Zi/nsxtB3kZsrOIFFGF6vTI289P1yIcgTYNpGpKJefpWopole6qRnKdzZC2boWSG2azyJ/rH+uI8C899RtSfjIYoVF94ipUrSOESWxzfKfwmcP4jg7TcyjNdgYN2nWv93ygCM3NWamzXwNmcL1ut0oc0cZo3C0LhE+cR5bVaxjiPgpPJPGmZmzEgE0p1TMvXOZabOayg0Cn+46Dhc1n41BqRvQPj4bm0p4UXNt8a+cZTloe2pbtBwcIhFx6XHoe21f5G3Iw/51+2vnQjaMoH7YRLBIIUtCjNqoBa4G1n67FsveX4Zd83fh5tU386ghKYGpwwfVUUlbFhv1C4eTjq3heVV9Hs+cOdOwT+pX8rGrCpSBq8ySuDqf89UBuWuUlpayCGFtf1FtsGSPDIqp/RhBNTAk2NGAapC9mhrkWYCyOpFAVkNkGE6cUnVVSIpqhWhnCrxBXgzr3eEB+gEHKjLx8Gmfw+n2474FY+F0B1ASpM4J3ASZUrcE6pIRoHie5mA9cGmczJCpHo9A5sk8jeuAj+rvNAeaXTydbcd13cG6afio5o7BYdgOkH+e2A7Stgh/MW89fVtJ1dIx8taTFEl0yGP7uqmxOJdq5eSLIPvdirG0Ip7CzY9LYMdE4JJDbOueeeo6sqZPQtGTyH1DGsVqXN1XNCiEHG8a3tl+GjaVNMGWEs7WqQtJ11ZVF+dXB1lDs7D+u/WspqtJ7yasUwapcekJ5m/KZxE+G0cAJJOnb2FUZlJFLVRtommfpuh/U39kdM7g79HUMjIvD3k3Poj0t94CXnnF9txr4GTv74zx48fj/vvvZ2IPUgZ3796dpZfpQV00KKtnDkrVBA2W7M2gQmEbNYc0vqvBLx19Lsyfz2v2Lr8ciKpm96rJk8OPkc9ep5SxWJH/FkvTOnM0IAfIarwLyal5iG9yACV5yUhqkscidcE/khH/RRrKentRdEUBq9kLiJo9SulSJI9TuyCrnGPHRAiNFLckwkgduI6JMIw1e86wbV6/p9TskTCD7VDYK0LNnqkWj4kvDPVxoubMVGtHkGOpZfzf5IDJY0/W7OkRRKnKDUauuQur4ZO3Wt35pvG3tyulBuL5kCI3IbZ6arrK0P3C7kyMsfrz1dgybQsr5tcCGrb+vpURvc6jIvfEtHEY2MJLItCmzVFNoTbu2Zj59en4/ntsvv1lTHy9EP2WLsZZQ4fCQb571DO3Fq0xbPx9avb+znj66adZrT55+FH3LOoCQo+33nqLqYSpbpBUwkT+DsXarcGSPQmSZJNah/LsZGNiF3TXfhqXXk6q16OMD4mTunXjx/1+iqryjkdqPV9V6Jp6GQoqNmFH8W+IKfYBawBHE2Dqp/0xM6sz/BS1C0bB4/AjsNMNz5wEBGODIFtNEmWQ/16FRhYtfgQDHgQdDuazR+pbiBQuCTMoPUuEj8gc/WSBuKCL1eyxDCopaNVtsl3RKHXLU7gUxmPpXJ1kif65ht64GlfnsvRpKJ2rpml5/1uKwglBB+uNK3vUaiFD5dg40xhnXez6qiZEFVqI3rhyXSno0M81rUX1hnpvXfM4LPbF05Qb9Npszs5DZsrhR4Y9cR7WPYOEGjnLc5hAgxS6Jzx8AhKbHZlevDZYs+4Q2atLuN3YkU79S2fD3a0THGt+AqjF1bffctWwrC20YeNvAOrmcfPNN+u2L9QrV4KifZSNpH65y0nwdAhosGQvLy+PFXBShI/IHdmw0ItMqprU1FQmgrBRO2lcIhhUt0echAieBHVXIuJH41TnHWlJSuOqHWQounds48exrzwbnuKVAHWVOxloW5qLP9GOddiIdXjhhQfaoIPw/i8AX5Mgq9mjfrluxnh88FGdnlqz5/SzNK6mb7u4ebIzgKJNzVG4thUSem2Gu3EBi+IhGEAQztA21eyxbV6zx8UMsk5PjfCpETeSBdN8MY/q62hbjerJiJ5aeyfFEkEgtZRH9vKJgKssS36jNtfkiQicnnJl11TGTTV5VudbfVsPaxQi9ol0X9pyJs5qvBhXLLkd0cIPrzZAhsq5a3KZwXJml0zEZcaxvrg2jiCkKKM6pshHGCc9ehLan9EemV0zgU1juSULeTzZX9jrD5ROGId0bgPBhRdeiEWLFll6/FFal8rOZOnZoaDBkr0777yTWbCQwoYaFqsvOEmobbJXe2lcAn3ZNoMEUtRSkzos5eaGkz2yHiQz/t27uehOVbwTCcqM7Qd3yWcsjUu8IqO8BKCacXcMiyCRn57WGgi0KmViDQRjUB5wMbsVGvcGaUEHcTOUs/o9itw5RLqW1+zxFK0D298/A4WLOqP5DZORfOYiESlzwB9QavZoWxwP8k5toTo97pbMt+U5ei2ew1RfJwieWttnqr0z1OwVi8heXLzBu5nN12v/Qufp64hrGnybAzWo2TNdi+2b1mOX0JwY2WQRWsXl4pymC9Gt9T2oDWz4aQNWfrISAW8ApXmlTK3pjnGzWr6h9w9ltXw2jgB8whhbbXh9NLF5M2+dJhzXWw4RAp3+/YGFC1H47pdIumRE3dybjXDYNXvVQosWLZhVDIkzTpWtCWsRDZbsTZ06Fb/++it7gVVQ6xRyyrZx5AUaBPK1jvQlPCMDIJU8RQQp3av6p7Jb8ecjqtgPFAN5rnhEFzvw+W0PYf2Wbrjph5sR7fajPOjhliwIsq4bUc4gygJcNctr9ih6B32cMqz8oyyUwqXtpF5bEPS74U4tErV8/Di1TiNDZX1bHKcUrCZTtSI6V2XNnkipSt892QuXRffMfnlKzV6oVVp4zR5T1oq0q0zh6gSuKt+9atTkhfnyqevpc5yYuPMEPNTpK1zUYhben/wnRp/UDxmHmcqd9cgs9L+xP1PkJjZNZP1xSZgx74V5+OnmnzD609G6bYeNWgT5IhGqW3xbG6BfqnfeQemt9+HXipNQgSic9+e/4RkyQJ9CZP/H63/Emq/W4yytvbWpNqk1qV8p+QW2b899+uqKtDYQ2DV71VcSb9myhVmqkQl0//79dYEGPciC7XDQYMketUeJo3Y7JuTn51e7FUuDxCFG9iQYEVA+fyvLtlDtN5mS0/txo0bh40UVe3VT5aUpLVGYFYPVq/qipCAZuRtao0m3zdB2RMFfHoWYxhUoS+B1eGS3QlE98tBjQTPNJWr23KJ+z8fq94gneJgFixtNR/+BxufNEUpd4mVBFsljaV4SgsiaPRJ6CDLJ06OiTo+ld/lxzR2q0wsZLgs7FUEMpZeejO5xDz5ZzxeqjSPINC5F9kQA0ZByNdThyddd8cpT07cqqZTpWsO/nzou//3kHJGlDksHA/hpb3/c3OYXNIs5gO2LJuCsn5bggmG9cceFJ8B1CEX+FSUVKNpdhD5XU82WeCndTjTq3gij3huF8W3H20TvSH/hO5rvk2SmfMMNmI6zsAK90Ah7EfxlCqCQPRLoeA96mUiHxBwSW6dvxezHZ6P9me1x7C9v8y4e+kku3tmD/J9IEWYyzLVh42iBOmnJ2jyqyyNxxqxZs/Dyyy+jsLAQAeGleqhosL/Zxx13HD766CM8RmZvInpCahfqYqEWRtqoncgepWlJhLFtG0/PVtcS65hjIo8lenlrMMLqzGZArANjHn0BMSklaNR+MzTqjftKY7h+T0HJ/TnwjznIPPcccLE6Mh/ccGoa0TZG+Ei8wUrsNCczXpbpXLeTtnnql6KEkvAR0ZNKXIrDSSUuEThmvcKYFHiLNAZRy8eUt8JLT1Pq9GQtHoHV0CkdNgSzUv3yZFQwTfyb5MUnGIKHal0eI2GqClekVsz7cq653s+cilGJnJ4iNp+v/Ft5g1H4YvdQ3NjmV1yWNRPTcnrji2lLWQTzrotORI2hAS2Pbcn6p3Y5rwvrtkAf9gRqnxaTbNftHTFIF3SKjh0tDBwIXHYZ+n78GzahA87Bt4g+5m3DFHe0Gxf/fDFyluagad+QJczuhbuxbcY23kOZzDtTU1mf3rlrU5Hpy0abLVvhpsJgm+gdGdhp3GojUm1ebWQbG+xvN5E66o/7119/MTZN7VFWr17NInt//vlnXd/ePy6yR7XcZL1C76nk3CCNlEmJe801APWQXrSoZrfSEZwJBtwOlEe7oWlOtD1pMSMW5KVX6o9BbBzgSPejLNGJCi0KFdTPVtTskecei8WJbem5R4pbgl/x3AsE+FiQ+uKWRsEZT1066AsC9+yT23pojSJwUoAh21NIqDV7svZO7ktvPZbCUI6bau30ej4W2SuJXLNnInXWtX/KfNN+VTV65nHzeiq+3D0EV2TNQJekXRiYtgEL8jth0u9LcfnwAchIrtnvU1RCFIY+MBTz/m8elkxYwogeRfYKdxQy0cbpL9ZBd5mGgiVL+M/DKBavMejL5UcfodmrhbiDOhN4OwNnnx02jb60q0SP0PX8rohvHI/krGRg2Gjg3/9GWX4ZpmU8y8bv+noIEqN41x0bRwCHkcZtaGSvssYLh4sGS/bIsJDMlKnnbGJiImuYfN555zGfm6qaJjdoHGJkjyJ5lCWhjkmq2Cg5mVrR8G0SYdC+Wfj34Yfc7cHc1KRVgEcWfPHUCSOAlJJidD6wB9tiMrAquTlT1JY8wlvjVDABhpNH6USalTz3KqimjyxWLPrksto8UbPncgJ7vxuMPR+ehrRTF6PRNVNEnR71+XXo20GxzbpWyG4ZivcJfRixlKzMgao+eM7Ka/akpQnP9IoxOPTIHlPjOiqp2ZPXUNYJ5XOrUcNnta9G8czrqdA0FPgT8e3uQbg4azaubP07I3vUL3fG4o04/+TeOBST3XM+PAebp25m9it+rx+dRnRiNXy2fdIRAhXR0oN+2Xv2PPrXp24dV15Zo1Ooty49VPhKfehzTR8U7SpC4nmhYvjCXYVIanF0OoI0GNiRvXqBBkv2ZAPjhx56qK5vo8HU7Fm1TSNyR9ZYRAAtSigZIbntNr794INctCHhKuQkx58YC48jiA5Fe3HM3u1Yt7UfFuSfhQGXT0aM08dEGrxOj0ziXIh1+Vgkz8361fpQwVqoBeELUhMLJ/PfYylchwNRbh98fjfbjkk/CM0bhfKtTeFyBRAIkOceDNtOVwBBue0OIki1eaxuTrFgoXCYEHLodiqCjUlvPU6kKH0rSB8tIyOEiu0KnRwm0JDty+QLZRZ3qARTSbvKcbar7su1zCliWaMn5wvSF1ovlH5mSwU0fLL9BKR4SvDx9hP1jhrFpYcWVaEUNkXzOgw39tujlLhuW2OjdrFiBf/ZseMh1+3WBcoPlmP+vd+iZddEtLvlDEboRr4z0jBn3+p9eHfQu+hzbR+c9txpvBuLDRv/EDRosnfgwAG8++67WLt2LdunZshXXXUVkz7bqILsJdaeae0ll0Qeo8tQmpd644a1JhR+XzFpLVlrtK2J6RiCLbjtyfdQXJ6IVkOXIrVdNouRUeqWeJQvANE1Q4M3yFO4JKrwaeJPgbQTJKQgEhkgTsSjgHReQp9N6PjqeLib5QkFLkX16P+cuPEIX2ibpWNZ6lRT6vcUhqS2TiOQB6HM3AaEQtdUv8cvyn/QkcTSMnioRQlrlxbP/fLkoKmdGYvYqWlXxVvPqi4vzFbF/Pqb56vH5Xx2P8Ismj5QvSn47+qLQ08lqKF5pimcWwMEA0FmpMwuG+Qq6Ny1uSg/UM4sWGzUMtat4z/N0vh6jEB2DiZ0fhl5RdG4Eu8BjxRRs1Mc6H8q9mZ2R7vz+zKDbhJyVBRXYN+KfZX2QbVRQ9iRvXqBBkv2Zs+ejREjRrDoHkmcCaR6efTRR/Hjjz+yjho2KiF7h2C9kp8P/PgjT9fKaF11MGFChAFaiOhVchqCcGFnTBrKPW6M7PsD1sc25WKMKSlwe50oOb4CWqKGAJzsOPPIC5KmltfcyVZotO8XxI+2A+I4oyqxPsS02s9sV1h9nshbSs897qPHfzKuJecwYieNleV2iMjxwwqxE+cYWqeptXYUNRSijzQR1SuJioLP7THW6Im5qjBDJ2L6vSj7CB831PCJ+ZZrW57vYB1FDOuHgSJw1FKP0uDVj8TJTjdkpkwkj1K4VKBPKNhagJLcEpvsHUmydzTFGYeDL7+E8+ZbkFF0MvLQGVGJ0cCBHcAXX2D2F+VYhl1oc+vHuPzOdAy8+GKk/DAWLQe3hKsWjb8bOmzrlfqBBkv2qDaPDJTfeOMNuIQ0lKTN1K6ExkgGbcMEan9BCotDJHukyKVyG0rX/utfobaa5KM3cyYXa5ABfrUhyF55vJMZI9OH/9aEDHxyy6WYkdkRUxt1Q2k77gXmCbpF94wAS9USx6G2aGSmTJG7KFa/J1qkObg61+ng3nua8N/j29x/T3rr8XK8UM1eQK3TY1AlraJmT6Z06Z1MtE5jaUensi1q+2Qal0gNH5OpUh4tU1O4SsY0lGpVNB5sU/fyE7V/ii2L6sOnj5v25VOJeL5aE0hTlfZqKpVrFpOHq9v8xpTPD73mwKtpc3DZWf0xelivaqVfac6W37Zg489k1MgFG/GN4llxfsezO9bgl8jGIZG9zn+DvsMvvYTAnXdjHzKw09mG/TKnblkCbFgB/PwzDow/yDw6HUWFwKOvkWoPnebOBTJC9SQLX1vI7Hxan9C6Tp+KDRuHC2dD7on773//Wyd6BNqm7hk0ZqOSqB7hEOp1qFvGyScDV10V4owEsmIhRwSK9qnt1Mym/evXW6dxA0zJyUnZpsRMdqxj8V64HBrinBXME4/q8KIdPkbmYlx+ZqjMt30spet2Bpmgg2iGx0nzA4y8uF18HhN0uILw70/CnvdPw943z2LH6MHapTECosHlDnK/PRqjvreMIPGaOymBZR55UsZK20rwkG1LAYao2zOMiZo4Iln0UJW4fHVFOCG39TVN64jrs3EJ2jfIcY2ZZstx9V1ECVqKF4X3BTZlZFKiSjCq+UKMaLYQTWPykZNXiOc+mo4XJioeaJVgxcQVTIVbXlDOFiZ15cbJG/HNJd9gztNzEKg4PE8qG1X0xSVD4nqOYH4BvsW5+ASX4YTTojD81eGITo8HhgxhvXP7vnkdupzVGn1vPIaLTcrLsf/hl/XfnV3zd2HKbVPw2dmfIW9jXl0/HRs2DgsNNrJHPjZUq9fJlI6gY7169aqz+/pbKHHJj+oQDFXpNDJJNiMri9tokUF4URG3wVJBhvekPKfSNBrX++SKyF5ManM4sY/55W1IaEJUAE3LDqIsLwYVCQ5GRkikQfCydmkuRgxL/W6WMiWbFjpOnMQXVKxX/FTTx1laBUubOhD0u7D/2+MAVwCZV02F5g6xU78vlNrlPnsCAYVpiTo9XdRAnytyqkJ0WQpXradTuAtFymSqNuBwYW3jpticwV2nWVpVZVWyDlCmUky2LGwteQvs3pR9Jf0Scdy0b7R24d6BZv5HWFOYhQV5HTAwfSMuazMDz60ZzY5PmrYMZwzpgm7tmlZJ9npf2Rvdx/KWWarZ8sTTJqLZgGZoOyy8x6SNwwAVqFLvQgLJ6us5Km67G3lvPoOyXAfSp3yCdmmbELj0bfz14SrWeaXnJT3Zg2HRQHx3zJNYPrk1Rr09D73/NRRNejdBqxNaIaNLRpia10YNYNfs1Qs0KLK3QirJQFGk23D77bezKN6gQYPYsfnz5+O1117D008/XYd3+Tcge8zio/aUjpT+nD8/8njjxlyoQVE/8pbU+bmI7HlSM9EjpTtWFPyO8igPcqKTMOY/kzF33bE4/+P/ILPzNkbu6H2DiTREKIsyo37RpJvLNPgxn6Am3FZFdMxwcuGGp3EB0kf9iaisXHacp3GFybKLeuIKk2VmvSJNlgXhkycIsHSlnuGVLdGUOj0tfJ60T5EkbU6nzpjTvrPR/kQlaGYlrtkqRUVV/6Q1HaeaOoMs2Ij3tp7CyN7IFgvwweZTkOtNhsvpwLczVlRJ9vzlfp7aNiEqPoqpKOmnjVrG3r38j5D+MP4G9lQxGQm4YuNDyP7v22j72nbg082Y8Rvw576O2PTzJlzyS0gZti82C8vBid+eSX8wskd9li/5+RLm4Wgruw8dds1e/UCDInvUX47VQilKKzJTNuPiiy9m9Xw2KiF7hwF6+SlCR5ZZ1QG9z1IJJSlyDe+5IrJHC53a5DrsK9+GPeUbMbHNQGSnJjASlrchC426bGMWLGVBD6u384CsVdwsVUu+eMSvKM1LNXu8fo9vU3rWpQWYSIOoIq/hc6LZNb8wqxWK+tHvEv99ImIT1MkfpXIprMUIn0zjmur0uPWKsq3XyIl6PWHDotbzsZmiNs5R5ZggnSLiZ25vxn4oNXWsXs9c0yctVuS5ldX8wTgun1NY+zSxv+RAOyzNb4s+aVtwRdvf8X9rz2Pq3G3Z+VX+Tgy6cxBWfLQCuxfsZq2x4jLjEJ0YjZxlOewiic1rTy1uQ4CKagnNmv1tuk1QJ5W2L90GjOwOnH8+Uvetgxtt0Dt2HeD16hmKzK6N0GeAG2sXFaNzcSgoQIRPgv7O5z43F72u6IWExrXTG7zBwCZtdY6/x19sLWGrrDexUWe2K7NmAaNG8fq9xYvDxylVa9Uq1TKQIMlecjKiXXG4vM0zeG3dXShwb8dZ97wFZ6IX0elFzGqFftVjyVNPsBuHMyj89QIsuueHC1Ek3iACR/56Tj9L57pY/Z2fKXB58pfEG044nUGmNKV2aSx6RbSLIoQ0Xwvw1mmMeAUFyVO99gTJU82UFa89VqcniZxkXOIc3T5FIVphY6rXnvR0NnnpseOShMl15Lju4SfGZUDQFD2U+4ZrKeP6+eq1ZdRRtIp7Z9NpeP2YNzGq5Xx8tOVkZs0SF1N1VK7zqM4I+oJY//16rP5iNTPJJWPltPZpGPHOCCS3PHQ7FxsRQK1vCIfZkL1OcPLJ0FatxvKeL8K/34Nt3y5EN3Jh+PBD5Ma0ZF8WRiTOwhmYjeDAmy2X+OPJPzBj3Aws+2AZblh6g67+tlEF7DRuvUCD+m2tjZYjDRoUjjtEJa4EReeIo5EGRhIRAqlxSbhBpUCzZ1dzMYXsEdzOKDRN6II9BTmIa7Mf5X43/H4nyh1RKC+NQvJ7yTh4A5E/l9IuDcZ2aUGyYeF/FrTN1bUO1nWD5jHLloADvvxElK5qg9gB6+Bwc/bFfPZEiIx10pDt0mQPXKmSkCldvcZNsWGR7dIYcTPPC0XGnJHGzC3M9DXFz6rapZl0DUJ7Ennc3C4tYFovrM2b0RpmcX57Pbp3cZtZeGndKDROq96Xia5jurJHwBdA0B+EJ5bXZdo4wmSPvqn9DeFo2gTHvHIZCm75HoOxAVi1Cb4BQ/BF6v0o16IxMn87OrqCwP13Wp7f/cLuWPL2Egy6Y5BN9Gz87dCgf2Ozs7MxZ84c7Nu3D0FhTKvW9NmoPY89CfqcoJQs9cZVU7LE17ZtMwp+VZSV8Q4ay5cDU6ZQw2iF7KWksB/eQi+yP9oPpzMFnR27cIxvI1Y1aYLZHdogeocLcbPi4L6pAH7W4UK2SyO7Fcqsasz7mLZlozKeHeVhKWa3EuB2K3R86x03I1AUh6ynJiCq3Z5qtEsztaBAzdulhUyO5YhxTE29sjHDmqG0KxE01UrF0B5NrekzBgPD9y3apxnX4zYz+vVkFNFgxeLAmxvPwID0jfh8G/e2JGVuTUCeaLYv2lHA5s1/a7JHIEFP53M7w114PXDzzSj56jd484oQRCkmYSyapflwcUpjSA2YCooa37zmZkM9aPbibKR3TEf0HTdzI9G77waOPfaoPqf6Drtmr36gwZK9Dz74ADfccAOioqKQnp5uKMClbZvs1W6rNAkq9eluFFAydOnCU7yRjPlJgUs9cg8cAFavBvr0CY/sUbujg49ocJ2SiH372uOHPT2RX5KG2PRypJT44c8IMKIW46qANxDF2qVprH7PJer0XAhQOtflQwVF+hwOeFzUS5c89xDadgLxPbbAm5MGrTyKpXQpbct4l7INdxCaX03nivw0WbLogg2ZCxXsR22XRilhEcFj3nwsHUIXEQISP+W8XYYxvfZOSaEyqxdFpCFLB1Wipr+nKucaiJu8RXUt2QxEXsvUTo2RXqVU0UD4ZLoZwLID7dhDoszrQ01Akb3CnYWITYtFTIrVx7SNWsE/gOwRWFQuM5MZLrve/AQlN22gr2psLNg4A9FJkZ0GVKJH3Vs+H/U5KooqMDZlI1rv+IM3AH/rLZ6msEUdHHYat16gwZK9//znP3j44YfxwAMPwGlVJGYjchq3FlulqWSusqYl9L756KP80rrrQ0GBgeyV5ZUhqqMLJffvQWlpOTaNOxc/LzkbfUZORs+0RYiay9uJUc0d1d75RbqWLJbJcJn89AJakAkyaNsX1Hg7NYfGUrcs2ket1QIuNP/3V6y2jtXmCbrEo3r8DT7I0pmyXRp7BiEWxBei/LHRxE6xYWGtv8QO2xbmdjdN/x0Ho2Px2aAh0FgoMTSm26OIHUa+1DXlN2ylpk6/uvrtW55rbrUWoebPalxfT7mGnjpWzgv/ONTQNK1mhO3g9oN4pcMrzFj5gaIHanSujRpA+o9SWP4fgoqTz0CnMwMo27ADJ13bDkkXnFFt5W3hrkIWUU5ulYyUl14CHrqF2wr8/DMnezYY7Mhe/UCDJXulpaUYO3asTfSOchqXQObIn3zC1biU9aguqOuGgV2YInuUZkm6yIMDdKvNPDhu2DS0aLEbzoHbkH8gCs4k6pHrZhE8VocXdOrt0vgxXr8n26XRcem5R/PUFmm0TyEqmhNqlxZqkcb4jozksfCW8numkyhFpKHU7akkUW+dJmrlTlm9Gq5gEMdv2IDfunbHjM5dcTA6Poy46SuKlmbygLlmLqxdWtD63IjjgcrGHXAQoTWROnMdoES35O24vfMPyPG3wQ8z2uOUwZ2qJdagfqbuWDdiUu2o3hH929+z5x8R2VNBKdgLf76c1XySZU9NkNIqhaV16VxSgmPOHOq5yZt921E9G/UMDZbpXHPNNfjyyy/r+jYaJNkjr7zHHgPeecd4nEpe6L3yvvuqsQi14KC2GgrZy+icgeD5RUAKZyBthi3Gkxc+hFGtpsJ3ZiH2PbaftUKjjhnEeNxOPo8id9FimyJ68jhZrdCD1+kxeidq83h6UoapNJ9onab/NSmKCBniEl9RmdJWnad/3QoxMNk9Q86jfdnlgojey6eehk2NGuHMlctxx9SfMXDrRiSUl4U6ZCjaDVlXpz/UbhbSSkXdN42zNK06btoPW8/ULSOse4bpflREu3zolboNJ6XPxrsfT8LZN7+J6Qs2VPmrQOa3D5U+hNs226UXRzyFm5YW7nr+D0BNiZ4EiYIY0SO4XNgxYDS8sbYS3ADtMB82agUNNrL31FNP4eyzz8aUKVPQo0cPeDxGJd8LL7xQZ/f2T7ZeIVC93dVXUxcT43HySL79doD+KYgMMhGGAoqgkYjjr7+A0cce5LyCIrMJ5KnHbUqiglFwLouFVuDGSndn9CzJQ7v0PEQ388ERRalZN6JdfmaxQrV6RPIowkc1ddFkqBxwMrJHSVuK6lHrtACL8DnhcgVZ5I+0PG53APu+G4K8b4ci9awFSD1nLieCbhHdo4gW54B8X+Y0Wc2deEKiNo/9Faq+e4p/HiN+sobPxU+f0aUrZnbuij5bt2Hswnl45IevsKBNe3xyzLHY0LiZQQOiEzpppSLWYYIOzdTPVu6r51OmWO3KwYQnxnG2rIVxs/w34T1+FRsYYTVjTtEsyW+PxXnt0C99M67uOA3PrDgf/3l5MlLGnY++Xaru2GCLNI4g/oEp3NoG9Wr+9OxPWX/mS6dcWmntH8PGjQ3j9bRr9uoFGjTZ+/XXX/V2aWaBho0jZ6pMtdHvvht+nJxxLrqId8ggv1Mz2aNuTd26cWXuup9Lwf7lKBfspBo84MCWA4id0AyeJYVAsRP5hY3xVUUTRCdXIGaMB8WnkTDDxX33NAdKSZVLVXjUWzXAW6f5yW5FhNF8AdrmNXk+P6Vr+Ta1UWOxParxK0hA6ZosJI+ca2iRxur3RLiLkz++rbYcU21T+BNUfgf1c7jJMs1LKi1FvNfLW6L5g1ia1RrLWrZBy9w8XD/nd3z4wZsYcu+jxlSqQswc5rZrFrYtZosXQxo3aNxX6/pUKxfDen5TGle0eosUR3l9w5l4d/CrOLvlQny2+QTsLGuM97+Zj74P1f/2XA2C7P0NeuLWFUgcRJG++EbxrKzAgJ9+4uINeoOj4mTKTFAR8m+/8WNPPXVILSj/DrBr9uoHGizZe/755/Hee+/hyiuvrOtbaXBp3Eggjv3pp5UreY85hutECrJLDbYrhIWvLkTCgTS4byhDaet8VJB/32OnIOfnTui1exGiWmxAoAsZJPNcpMfJe+GqDijMbkW8wVBmh3nnyXZpAaWNWtCBxMFrENVqLzxts/n9U+RNzGHWK7riVv8ftyOppF2aKrAIvTA8gkYU9MNjjxPpVaqHo34eDuzMSMd/R16Ax4efZ/GimqJ8wnpF3zePV/oPVOlu+AH2wnLrFXWOqsw1QNOwqqA1ZuV0wwlNVuP6zr/gocVX4K/VO1BUUo7EeOuavLXfrsWmKZvQ7tR2zHfPxhGATfaqRLP+zXDNvGuQ0iZFjzKXF5QzgVXUwr/gevNNoGdPBAYfC9/+Yjhen4DoW64D1qyxa/xsHHE02Jq96OhoHGv7IR116xUV+/eHPkOqixkzeOeNgS12G+r1CNQ6a+DNg3DDqPsRlxAPd0wARccVY35cf1R43HDnOVlNXrTTz+a7HQH2IFBql2r5HKJ1GoG2o1yifs+pwa1sk++eO60Y8d23wx0j51PqVVO2OcthHTbIrJXtCOsVAbJNCdWzKXV7DqrTU+Y5NBTEx+KzwUNEJjjI1LhBJ3X8oDWCqHC72ZgQ54rzTDV8wgpFL4lR58r7U841j8saPPPabF+X5OoVe6F11KPq/dA5SvtC+ud4a92ZLF1+ctOV6Ji0ix0vK49sx7Jz7k5mdrtz3s6Ic2wcJmyyVy1Q3bBquPzDNT/g2fRnsSO1N/DII0D//tj480Y80/I1TDx9IveRooCDOY1BoD7Esi757wy7Zq9eoMGSvdtvvx2vvPJKXd/G3wsm9evh4IsveDqXavfMoAzHhgh1+foXYGm7ohSLtxnWBoteW4TSuX5c6RkH774YdOi9GDd+eT0yMrOBFB+zXKHYmtvBCRqZKZO7HqVlXSTIoG2NJXdF31siheSRJxxTqD+u3iuWrFfkfWlCictJm1TlcpsSveltyH6FESBew8eFHaI2T4LVyYnz6e40oM/2bbjij9kshRt0uQxjzIZFLGPwxVM4pqGuTp0r6u7Mb6xqT1tzJI7tq9Yr5kgdI3FiUw1wWr15M4sYjRE9mrO1uAl+3U1GisDIrAVwu5xITY5DJHQ4swNOfOREtD/dJiJHDHbNXo1RfrAcW6eLFp29egIPPwwMGKB/uWlUtIlsIYDjjrNegIggKXvPPx/4/nv8bWGTvXqBBpvGXbhwIaZPn47JkyejW7duYQKNb775ps7urd6CFBS1RPbIRJlA73Uq1q4FevTgGhBS50bKbmgHONlzKGncY249BjMensEIX1R6FGKKMuCocCB6XhxiztqNxBY5WB5owdqlEa2g+j1pvcLbpXHrlYog/10gUietV0ikQX1wme1K0KG3TvPlJaJwdk9mrpx6/qwQyZO1erqlihLO0gmYhfWKZmG9IojagC1bccvvv+HYjRvwZ/tOmNyzL/ITEsL87PQaPbFrSNuKmrlINXaSwBn895TXndULGv4hTOdXZtWiXMO8pnnOuxtOw/x9nfFbdm8WtXz4pZ9w6rGdcPyA9nC7jUKMNie3YQ8bRwhUJLuLR1jtyF71EZMcg3vz7uU+mcIIndBpeHuMqxgHx403AJ4TgGbNsHfFXvboeWlPPokIIb3PUl0fefe9/jp3nf8bCgftmr36gQZL9lJSUnDeeRY1TjaqjuzVgqkyCS2IO5qXatuWEzzi3nl5QEZG+LnkVzrl60vwAyZggEI84zPjcfYbZyN3bS7WLFkN3zovtBgN3S5diMvL/8T6ksZYldyMiS7oPYRStETyKCoXxVqncTNlsmchkQaXYQTZ/yl1SwbKFElziXo8ljwtiUX+p8PgiPIh5dw5glkp/cdkzIuF38RPJ9Xb8fMdLi6+4OfwfCc7rhQSsgigy4FmBw7goyFDsTstDSevWY2u2bsxs1MXLGzdDgdiE0W00VQXV0X7tNA1xFzTubqyVo6bWrMZxx0s9Wxoh6aur7wkof3wlmqE3aUZ7CExe9FGzFq4EW1apuPl/5yP9JTaKSWwUQPbFfpbI+sVG9UGkTyV6LFjUR7ueDR7FjB+PIr2FOPjUz9Gyb4SuGPcvO6U/rhat+YndO4MDBkCXHcdJ90tWvA+xWQdNnYsV7bZsFEFGizZe//99+v6Fv6+NXukgD1MUBbSijOSII3sVZo1ixzV27sXyClKwEIcgwEpxogsKXKLc4qR1DgRPo8XweQAfl13At5/6zE0T9uF5Gd/wUFnHCN8VKUX4+Lt0oht0OXIhsXtDMKpcesVaqlGET5K/pLdCkX3mPWKizptOBDdai8Sj1uB6PbZLHrn8PAULpNhUJ0esSf6QW/49G2dqUAEgZPWK/TOzzpdVG69klpagu/79mMq3FXNW+D8hQtw/ezpOGHDOnzV9xgsadmWEyZaX0bthNWKVOU6lOuFET4aF9YqlVmtsGXVfr7quCBvBmsXC8JouB+noNTG9tSh3wlnBTKiCpFdmoEdu/Nx/3Pf4+3HL9JV89TJgLpnkNWF+YPVRi2ALEII5obWNmoOImvSioC+yQ4fjgRNQ/eLumP7rK2sFEUH/QFR3R598/3jD07yyNiaftIbKBG+Cy7gpSz/+U/97clrW6/UCzRYsmej/qlxJZo3r3ycSl8einkefb99D0i+Vz++/sf1WPXZKngLvSjdX4qMvObwxVfA3yYac9YORaPUfXiw+D1MT+jESFhZgKdzKSVb7ufWK0TgfCyqZ7Re8RM5Um1YRKqWLFYa/es7th2g434lhatbrygqW/opVbq69Ykj3PaECKPJoqXJwYPwutzs+OrGLbBmRAs0yz+Ay+bNwScTXsP519+B1c1aGlOnStrW0nrFnMY1Wa9UasUSNs6JqUG3YWXtolqvUIrLIo0r0SNlG57o/xEOlCfgqpl3MLK9euMerNq4Bz06NmNzJgyagKLdRbjur+vQrB8/ZqMWYdfr1R6o7ISI2scf82+t//oXHE8/jdNfPB2+Eh/70qJ/S6IHzaXa8mee4Q+qcSFQNI968BLIlHTaNE729G9Y9Qd2Grd+oMGSvTZt2lTqp7eFvjXZCKGiIqQMqyWyt3w5f/+iCJ9836oOBg0CELuESqD1+kEieLMfnY0BtwxA21PbspTuopx5+GT6B0j5KA13d38Cl1z6FYpKSzE9obOwXtFY6pZlTIUPMnuPFVEol8F6hQif2HYpNiwu4aknt6XXHotmhexWdCh2K6FUrRgXKdLwU/i86V26YUdGJht0Bnkkck9aGp49cyTeOX4YiqItrEloTUnwRBQvTKihX6j6/wbW54uIpjoudSmm+7G0XjFDA7YXZyLGVYGOKdk4veUSTNnZn/1bzF+6VSd7AS9/grFpsTV8AjZqHNmzcXig985x4/hj6VJei0fm46+9hqj+/YGBA9nf0aaP5qLs1XfR1bUOrmZNgIkTUd5nEIq3FyMm2Y+EeI1bE4wcyd+QqK6Pon5Nm/LUCB3Tm4jXMezIXr1AgyV7d9xxh2Hf5/Nh6dKlrKPGPffcU2f3VW9B5nYStUT2yDj5s8+4KpcsqCTBoVq+++/nPXTpC6tl+2KpxhVkjyJ5RPh6X9lbnzIoayjKhpfiy9afovFVjdG95WqUl7mRgDIUI5alaDXwNG6Uy4+KgJsJNsh6hTptMEJIaV5W10eEj1K3ZN9CHnxB1lWD6v2ons9fGo2ytVmIbpcNR2wFV+eSDQubQ6lUygULokfpXb8z1D5NEiK9Zo66ThiJGa314bFDUe4hiwYNQTev++MvWRAHyA5HKc7TlbTmdUzeemq3Da2Kc0P3J8ZF2ldGB7n1ilHFq9cMqiphdU1YrKn8Mxd64/HxhpNxc7efcUOXXzB9dy/4tCj4KNQqcE/uPfCX++GKsjtoHBHYZO/IgFoJyZ6RZCBKb3QOB0peeAvN/30nVqMbcr98AU3GcLXuxk9X4ptLvmGp3stfHwT873+sjq+w51A4zhyFRCJ6BPoGTW+oVBhNc8aMqcMnaaO+wN2QrVes8Nprr+Ev6sdlw5rsxcVxd+NaAGUknniCv+ep2Qe6xHvvcTJIAVYrAeCf21vgD9yH4YWtQfo1KmxOa5+GP5/7k5nrUpTHFe3CAAzB5tU7sTl5I/a745HhL0Gvsl1YENuWR/XIcoU86jQ3s16h+6DULUWomMWKxi1ZfKTcFayF1Licm2lcoasB2Y9cDu+WZsj81zeIH7wWWkAyVKrhU03uQkINVldH1iuScMkuG2xeSNDASFQQKI+OUrpYCELI5jmZwbJGzEtRy+q2d+Z9eT1VuaHW6YnywjBrlUhWK3K+eV+qhA0me5F/H/Q1FdsF2p+0+Tic12YumsQV4MJ2s/HxxmFIS45HMEhEm1+V/v1tHCFIH6SOHev6Tv65ILInEN+jLcr79kbbbfsQO/VLoIVHpDNI4RvFVL7s32LJEgQfeRR/PfcX/vhtD64auANZx2YBBw5w4kjWLWTbcu+9wJNP8mhfXcCO7NULODT2SWJDTd/27t0bhdJm5B8Eek7Jyck4ePAgkmoqslixAujVC2jcGMjJwZHG+PE84jd8uKFJho4Lkn7Bl0Vn4unrN+O+t9rpvSkXjF+AuEZx8MR5WLF+3vo87M7JxvobdqLFHiB6XRJ6Xj4ZH6Qdy6xXyFKFWa/4OVmgba9iw6JbrwQpjcu3SaAhrVcohUvkL2/iMJTM74Lk8/5A4vGrhEBCRO9om9n6iTCX7LJB+9zuj48JwhVeDycUu1TfxhQUPBVKqVzy10sqKcWgzRsxrVsvyzo7QwcL1XqF5ojrG0jWodbssZo/LbwG0GQLYxBiaBY1e+ZzAJzeYjH+2/8zlPiiccHU+1kNX0ZyPEYP74OxI/sjOsome0esTlcqqcgLSfG1tHGEQTV9JOZYsgS48UbgxBND3lQCpZN/R/7V9+Ab52j8a9cDcFLbH7Loe28BKr78Hr2nPMX/jk47Dfjqq1pxUqjp503Xm5+Ey6rEpBoIeMux5vUHD+0zy4YB9jukCV999RXSbHuBcEjye5TeLCIEXnWchmkUbkT37v31Y21PaYvmA5tj89TNKN5TjGAgiM6jOmN6mzlYvHEPHrvleZZDHHGpFx6UIsrpR3nAwxgWddAgkkfpV48zwFK7ZMPCTZQpdRuE00FiDp665WE10TFDcyHtwplIvfh3nqMUYzJWxVO6wlOPKW55nV4k6xW2R8E/xXqFqUyJmEoWxBSs/I09qbwMnffuwVQie4bzDOYvulJXKnEZyJtZVeaKW4lozWK2XlGVvUqK1rCvXC/sflT1roU9jDxn6q4+LKrXOXU3ruo8DS8uOxf5BSX47K0/sPaJ+Rg+tj+Ov29o7f0C2jCKM9LTbaJ3tEFfrB98kG9TvTT5HZJYg9qrXX890K4d4r6eiLjBLXHzF/fBSe8lAvPeXondC6JReP6rOOGne4GpUzlhnDjx6As47MhevUCDJXt9+vQxCDQowJmTk4Pc3Fy8TkWzNo6YobIKev8ioQZZ+J1+evXPu7bidVyLF4GR2wz/htGJ0eg62tgfNX7bEniSi9Hi+GWITiuEM+BElMOHCrhZ6zQ/2bA4nYiCn6dlRQaWavIohcvStXCymj2HxlO3RARlDMvpDEKL5pYrlFpkJJClWcW7HOtvJkgas1ghQkOpWZEOpuuxqZpoLeYI2fIJstU8Px+xFRXY1KgJI0YZxQdxzJYtKIqOxZKsNnh52Bn8poXbi6GWTnBIg12KosTVCZopmqan1k32KroXn9KBg1u3cI2yedxcoyfTvPpF1Lo9xeKFnaPX/znx6qoRePW4N5HkKdMpY2xRALHLSjG3dLFN9o5kCrdTp7q+k4YNsl+hx9tvA7/9Bnz4ISdu5BU7bBgvY6CUA3150jT2xTexWSK6/u9k4PbewAknAJMmcfJItXw2GhwaLNk755xzDPtOpxOZmZk48cQT0ZlMLG1Yk71aDqWTiOzkk7mTAInIoHAACiosWsR9Qw0iDSrmo4cF+aRonpNktLSGcK73r/Eheq8Hxz/zBvPRo6gdiTFKAx69g0aFYsNCYwQ/pW5F1wxS5crUrbpNaVzOV/g243Y+N0B9dEUHDW69otqtEBWUKV1555zg6elLlqoNUa8zly1nPzdnNkWbfftw8fy56L99K+K95ZjWpQdePukM+GUtpWg7Jq9n6HoRlnY17qs1f2EpV/o7UaxbJGFUCaIhJeswpYnlOZV15ZDnmOYQlu5vj4t/uwfbCxvpJLA0wYnNXTyISuft7SpT2Ns4BNj1evUPp5zCH4GAsQ5PvEnS38DJj5+snJBJxei8OLoOiJ5tvVI/0GDJ3n//+9+6voW/F45QGrdvX6BRI/4eRO4ush84eYlSiSBF/vr1MwUWZCcPlshNROleWoN/0FNalD70AxUBXZ15YNMBRBV54O3qQ6JWjitz56Krdw+ub3YpioPRLM3Klba8awZP3ZIwQ5aPkRBAWqwYt1kJndguX9MKee+fAXejA2j076/EHcrwmCJ/VXOZegSOonoioidTpmKHiGHLA/lY16QZu5fRSxbCpQVx0XW3wBMI4rkvP8HJ61fj1269DCbG/Hr6XYR3tBBpWb17hcW5MiPtiLBvnM+jmSyzLYfUNHGEDhr6k5avGJ3jt7Zn2V7UmNf5if2SJCe2JNEvTQAVFX5ERxtNtm3UEtmzlbj1DzURXNxwA+oMdhq3XqDBkj0bh6jGreXIHgXmSO9hDshQxmLwYN47V3o56yC1GYBnY/6D+9NcrBTl9dcd2DZzG3sE/UF44j2IbxSPpn2bInVUGkpyKPUHlDs8SN0TREy0hj7lO7Ewtg2L6pENiwMBFsmjmj36SalbaqlG0UDiY6xrBqlsHZqyTf56GiN/rqQy+LIz4D+QANAYWayIbhoaMUeWluQ1e1xhq7RSkt0u1Jo3JT2aVlKMwnhe5Nx6fy4+GnIcvFFR8GpAcUwsgkq9Dl9fRN1EBw1DRwslxRvWEcNslSLJopKSNUT0zPOplpAiqiphFIRP7ptbqOlpZpVUkvONLl5B6CbEB0ej2AKMbj8Hb686k7e2I2scU89cG7UA8j8i2GncvyWoo9DqSauR2TUTnUZ2qjvTZZu01TkaHNmjdG1VqR4a91NoycZR6Z4R6Z+DSlMsxwTZa5OYB60c2LEDWPX5Kqz9Zi07HpseC22fhi3TtuCPx/9A6xvaIHicxn7bf7/jTny6cAK+ueNcHJO2DnOjqcWYBi+pcSmSp1EXDZG6DcoOGhRplF0zwDposN8hmu8LRbjczfYh8/avENN1B2dPsibOYL2ipHTVzhoypavasCjnNCk4iPt/nIxzFy3GoC2b8NGg4/R5jQ8WYG+CSGcrtXgMkmTJVIp6PXNK1Xyuss/mSHsWVTEctOigoY6bv9Urz0ueI2vzDGsa7ku0jBPnUO/iN056FY3jDmJPbiYm7zgGMSnRcIv0vY1aAr3uNtn7W2PVF6sw/cHpaD8kE53eu4+3aJswoa5vy0YdoMGRvW+//Tbi2Lx58/Dyyy8jSIWuNqwje0dQjWv+0hmRk5MFBNWxNVuOPSuAJk2AD09ejAE3D+BNxBWU5Zdh4pkT0aFFG2zusB3xTfPgcAawNbcNri3/RYS1OEnQ6/AEwaOgmy8Y6o5BhA+ys0bQuoNGfH+e9qI6QJ3U0RPRI2chxa3+pUOkatWIGxtTumnceOVVyNqfj8YHD7JOGjtT0rmtihaE1+PB3qQUI2lT0raGqJrDGMUz19jpr73V604HTUKLKjtoqK3RlGMGqPviHikVHAkUyftk/Um4q893aLrQg5MWl2JtLz8qfH5EeRrcW9qRw759vGSCfgGtzC5t1Ht0Oa8Lts/ajq79YoAnv+cmpnfeeVRr9+yavfqBBvfOOGrUqLBj69evx/33348ff/wRl1xyCR599NE6ubeGar1CQoyLLuKXkIEEFVK5qZM/EdlLyIhBQhPoLbModWsGM1d2u3BpxwvxcfwklFz/Hfr86wtcvf99JAW96F+xHQui24Q6aDgchq4ZlMalNC/rmuEKwh8QXTOEJQtts7o9lpLlYSwyVDZ20KA0rvDXo+fgVjpoUPpYkEWqd2MkjylxNd0WhU7an5iIvPjEEJET5souTcOdF1yGkijhY2WhxJXKVqEjCavLUzteGPZFe05DPZ3ajcNUjijVxOYOGtJxBhHq9qzWJJ5sdY5c9/stgzCyzXxoPp669UXZwoxah/xjJPVUzKH5pNmoW2R0ysClUy7lf1jTBnDF29ChwI8/8p9HA3bNXr1Ag857ZGdn47rrrkOPHj1Y2nbZsmX48MMP0Yre3A4RTz/9NPvAVtuxlZeX45ZbbkF6ejoSEhIwevRo7CXDTAU7duzAWWedhbi4ODRq1Ii1bDOnkmfOnIm+ffsiOjoa7du3xwcffICjBimKqGXrFQKZJ1PTEqoFF0E7HRdcwMfJDD6sVZri+9X/pv5Y/sFyzH58NtZ8vYbV7u1etBuL3ljEjEYbt2yE/3W9H8npHjjiApgX34add0LpRtZBg6J6zEtPbDtYNw3e5YLsVxiRYdE+OsaJBavFk9E7lq7lTKp4Tnfse/lc+HPptRJzZJ9clqbkoSu2IluUi0AMUTOWDuVsS9bE6ZE0pYOGz+kKET19LASjgbHSQUOuKWvmxJg6ZCBbpjdsdRl9XL+ocr5mPc/q276+pik4aDWHonvjl4/CpfdNxP3vP47U7vvx07SV2Jv7zzNDrzOsW8d/dulS13di43BB36CmTIF/4BD+/nnqqcB33x2dS2uH97BRO2iQZI/cuO+77z5GmFavXo3ff/+dRfW6d+9+WOsuWrQIb731Fnr2pAZeIdx5551s/S+//BKzZs1iJPM88kcSCAQCjOhVVFRg7ty5jHASkXv44Yf1OVu3bmVzTjrpJEZKiUxee+21+PXXX/F3J3u05A8/8ECCuVsGZZLy8oCFC5WDIrJHk8lc/tprgc/X9ET7M9sje1E2/nrjL0wfNx1fj/0aG37cgBETRiCxaSIj4WWBACqCbsyK5TVIg8q2wBHUWC9cv0YdNZwsqkfKXLbNflKrNLJcoZ9ORvaCmot5v1Edn0a2LcJMmaJ6RTP6oHRRF5QtbycUDSKqx1iVCFsx4Qapb0XnDPkfEU1mxCwFHSIYp4siHEj0luOSeX/i1NUrDUbIkqxRNFB/s6Q/ciGmUNuyyX0ZITQTOp2gqfdgtlYJG6d+vUZxh1xXJW36/cgPAotUsko85fNTr0tYmtse03f2RHSUH7f0+hYvvjUNF1z7Fp548Wd4vVRMaeOwYNfr/aOw+rc9GL/tXKzocwVFIICrrqrrW7JxFNHg0rjPPvssnnnmGTRp0gSfffaZZVr3UFBcXMxSwO+88w4ef/xxA7F899138emnn+JkMpQD8P7776NLly6YP38+Bg0ahKlTp2LNmjX47bff0LhxY9au7bHHHmOE9H//+x+ioqLw5ptvok2bNnj++efZGnT+nDlz8OKLL+L0mrgRHypkNO0IkD3CiBHWx6mlIylzDfxZIXsUCaSOQllZwJPbe6P3lb2Z7UrAF0BUvPBxURBEEPsWdsai766Ft20f9BzzM8htL8rlgzfg4R00RBqXonguhwbqAEZ2K1QfF2RpWTJX5ka/LAKo5yI5Q0k8cTlium5DTJcd7Jo8pSsieiw9yz1d9M4YYjtEdLiFieyuoStzRe1diwN5eOTHr5GbkIjfuvYwpFLZvZi6Yugmx6Z12CnKXJWc6Slfc4cNs3WLer6wopHj/MmY0rqk/mW1hnINUaCndtBQGJ0+RzwBsx3LayvOxpCma9EncwtOaLESs3b2xLSZa1Ba6sUTD51bg99AGxEjezbZ+9uDshTLPliG4r0lKLj5SqCfh6dMjsrF7TRufUCDI3tUmxcbG8uiehRBo4cVvvnmmxqtS2lairydcsopBrK3ePFi+Hw+dlyCTJuzsrKYIITIHv2kVDIRPQkicDfddBOLPFK3D5qjriHnqOliM7xeL3tIHHeo/IYAAJBPSURBVFa/X0mwjnLLpCFDKrmXtDTWH/yee4DjjgvVe5G/nvTYMyMrrik25KRjzx+98eHBBAy5ei8zVnYEHax9GkXzNIeL1fD5WK0eG2VdNlxUX+cIMMsVVquHAK/bY8yFTJR5942EE1YIyxSRz2QkL9Q1g6sWxJhI48pt3nXD1CZNsWKhN+1G4t8xV9RP6sRLeVM1dMVQxkLrhHfQCEufRuqYEWFcrQNU3+AN3eMIzJtQbJtbc5vPkXMshB3OgIa0P+Pw8par0PjkTViwh5OSoKbhjwWbsG5jDjp3EEWdNmoOO437jwF9Ybrg6wvw15t/oc9VfYDkE0LG9Ef62rZAo16gwZG9yy+/vNZd9j///HMsWbKEpXHNoBZsFJlLMeUnidjRmJyjEj05Lscqm0MErqysjBFYM5566ik88sgjtfAMjzzZo+V/+omnbKvqi6sX9qWmMieYZ59FWBeNrdO3IiYlhvnsyY4ahLOanYDlA39E5+t+QEq/jfAG3YyUlYuuGbRNJI9br1AXDU4aSX0bFDV5QdO2rNULUoRLbPMUrBBeMFsVp9FiRaQ9Ddt6jZv4/VS7W+jpUQcyi7gNzv6ExNCYmlpVzzN3waiig4YhpapVvbZ53LBPJJC7UhvGw5S2VZ1j8RwJUV4NLbb7UbKjGSZktgu9bsxv1oHfZq+1yd6hgtJ8W7fybbuj0D8CnlgPBt85OHTgaIlu7MhevUCDI3u1LWrYuXMnbr/9dkybNg0x9Uyx9sADD+Cuu+7S94kYtmzZ8vBq9sxFdbWE3Fzgssv4+89NN4U6aRD++AOYMQM491ygR4+qiaf3oBcTT5vItsd5x7FUpMTxmf2xsOtKzG08lbeS9GsYVL4Z+5xJ+MvdytBNw6mobumnBqrTo+gevQPRonybjssUJo/mcWFHxZamCJZGI6b7NhEaEyEwPVqnpmoVJa5gOhTVMxgsi3mZxTyytz8hKTRm6oqhn6d0vYDVXHPK13SuQTlrNW5YLzwly+abOmiowbzKz+E9hhEhjUv8eVNnD5ysH7EUzQSRGFWGIl88Cou4kbaNQ8DGjfwfiso2qMWNDRs2/tZokAKN2gSlafft28dUsm63mz1IhEF+fbRN0TcSXhTImjcBUuNS3SCBfprVuXK/qjlJSUmWUT0CqXZpXH0cEqgHI/UyI5BP0xEAdWOiLDURvZIS49iLL1J7O0DXoihpXAJ9Jq1dy71Cadvv9aNRj0ZI75gels51OZy4u/NVuKDlmYwfXFy6EA8W/IoLS/5CtMvPJBdE9tzOAOMY1FnD7Qzy9LArCCdL5Rq3na4gS+XybSJ9GkoXd0LOY1cg/1Oeene4iOQFQ3916m3xQCJP4XI/Z32e1HfI+jn6mSnSuPuShA2OJF2S0ynnyX1D/lWuKTiSPlfuS+GwTDGb9vV7kuvp4yJnbJD0mu5F6lTUfxTDOZzoMtsauaa8jimt44t2YFtHD7Z0imLDrZL24o1TX8PjQz9i5xUVl2PHrjzjL5ONmqVwKapn9xu2URuRvUN92KgVNLjIXm1j2LBhWLlypeHYVVddxerySGBBkTSPx8MUv2S5In39yGplMPUDA7UFG4wnnniCkUayXSFQpJDIWdeuXfU5P//8s+E6NEeuccRTOhIRiOXhgj5Ppk2zHhs+nHNMFtUzpXEJRA6pj67PB5x4Ivm/JuKmFTdFvBYRviGpA/Di95vw0vqBGHvs5Rjg3Y4YnxdliGfiDILaQSMQCHXWYKlbwVzoeCiNK1mMA7Fdt8MZX4aoFrkIlnvgdEtVhAOQjjpKSpedxSxaxDbNU1Om/tB2pjC4zo1PMnbFkGSI1LiRUq1iHVYmaEgpC6jnwmLcX8nabJw/AVmGqN43lHS0zhdl1w39CdDrI3sCy3N4lw2VDzKVhynVW+6PQtvkHMS4fTi11RJMmw/MnbsJXTo1xW03DEPXzs3Mvwo2qlLi2ilcG4cJu2avfsAme4eJxMTEMMuW+Ph45qknj19zzTUsnZqWlsYI3K233spIGokzCKeddhojdZdddhlTC1N93rhx45jog6JzhBtvvBGvvvoq7r33Xlx99dWYPn06Jk2ahJ+o0O1Io0xJh9VBqpqsVeihw5TGpbq9007jnNQUQI2IbfuKsfiOW1nYaW6vZzAkYTWGlW/AN3F9WFqQ++7pnIKpcWXXDC544NuG40x4II7He9Fi/Mssoqd305DZRpYK5YpbFq1TO1yoIgdVRav0l80sEgKNhCTr88ypVhVVqGsN17Tat0jzhsZ5SlYfR3gfXMN8+WKaU7R0j36TOldNJ4tjrgregzdAXtoOB/aWpuKjNcNwfc8puLn3T5i3qwtKvLFYvzEHt937GcY/exG62YSverCVuDZqC3bNXr2AncY9CiB7lLPPPptF9o4//niWklXVvi6XC5MnT2Y/iQReeumlTEiidvIg2xUidhTN69WrF7NgmTBhwtGxXZGt0iiq5zqyzeYpakPmyhE71pGCrLTUkMYlTJ7Me+n271+967RrGo/UvhvR6MSlmOrgIcMzvKsZkaBOGZTKpXo8SuFS7R6zZHFTapdvUwqXwGr83Hwue1C6VhjIOTyi9o6lZ5Xmr2TLR/PYAkpK15CO1cLSuKwLB5G9YhHZS+Y1e8ZUKl+DBSHV9UNBR30d/Vz1XYDOVQmiktaV+4Zxbi+o7DvC07zmNK66L89RMrnMSFq9RxEQNd6XA1lb/Tjx1zJ0Whny1Pti3fHYXpiJ9NhiXNeL5/2DQQ2BYBDj3/hNWcBGpbCVuDZs/KNgR/aOAKjThQoSbrz22mvsEQnUtcOcpjXjxBNPxNKlS3HUUVx8xPviSqLSti2wbRuwalV4+0bK3hZvOYgsGRGK4Pm3YfIGzH9xPlqf1BrHjzveco7b6Uaf595i2yv9SfDnOtDVl4PmvgPYggy2PqVr/SJ162fRMGcodSv66FI5o2REoTSuSFeKThfB4ig4iBB6AtD04+FpXJniNKdxGZRmKhl6Glf8e5jVt0LNGramaR2Z8g39AxgNlI3KYaOy13o81AUkYhrYfD90jjCBDr0OphSt+bpsXQ1uHz/Jp3TJI3PsF/46F+NPfhujOszHlM39sC6vJSN8FOHbtmM/WmdlKBezEQb6N1Fr9mzYOAw4NIrAH1qI7lDPsxEOO7Jno/qRPcqXHkEQf2vdmitxKbqn4qWXgPR04OHHo0KqYMqhmkAd5vZtyGfWK/tW7Yt4rX3lB0JZYVc8FkfxFnmnetfqilGeAuXtypwUfSKzY2GwLGkHHZehLaZ01ZUEnDLtf3c4dt5xO0qXduCkxcENQlgdC0t7qi+AaVsuJVObFFyt8CKhgvtjUa9cmSrV9RfKGnoKVIVYR5+gnMuikOophh2LtWQaV9/nO3q9nrg3qPvqfHGOvGd5OanXUM8JgxPY2C0Kvw+PxbYOxp7IS/e2w5StfVlE9r5BX8HtDDHcnL12O7UqsXs3L4SlKD59+7Jh43BgCzTqBWyyZ6NqkPkdgdjWEcbEiWQRw21WVHTsyH/uzQlGvJcrr+QcMDu5K8775DzWLzcSkj3x+ra/JBq/Onkqt3mwAB6Xkrp1BRjdYyldUt0KMkJqXIJU4MptlsZlO0SsNLiSi1lOtWJ7k1A4zCn/8tRt65SqIf3qBDJElLXM40FxTHRYatTqvLA0qpqJN6lr1fLCsLWELYq6L89XU7LmNLCZ0PLrid7AYk3DGmYSLK+L8Dmay4GgW7kgsXENeO2vs3GgPB7lAQ+So0XanzWAOTICo38UZFSvfXujB5ING4cAuzdu/YCdxrVRr8he8+bWx6nTHHnxZcydA4wy1utJUJ0fBSTW7U7CBQ9L6a41Wsc3Qau4xvj5wVOxd2ZvFDz4AVYMbYI9jmT4hQEyZRNJfEG8glK3JNqgd5+An8egmHBUqFNZLRsFkDRj+jLxlCVIGLISnsZCOaKqZ01KWnWbrEOYOtc0T6Zw91MKV/jysWs5KllTfdNUx8xzlTSuYVxneqFOGQY1rr4v0q+GlKzp27lUvCjnGPrpVjeNGzZHpJDFsUJvPG6beiN2FWUwn0R5D7ExxiigDQvYKVwbNv5xsCN7NqrG/v1HjexFAomAMzLCbVdUPPAAr/V76KGq16MU6g3tR8CdWMoib4W7mmKPM4XV5VG6logd/UdEgW0LBS49KI2rpnRlWzSWxpUmciwP6YA7pRiepgWhlITMWcptxh+VPKZm0VFDUb2mC3FGPqXUJdkRbXn1NcT6qvpVDknxa+iA3tLXkGI1p4D1fa2ytK5IZ5tTwYY5JjJolaJVXqKIcADt11Sg3doKRJWH/P3U5XYUNgoRPTGw107jVg0yrSTY4gwbtQE7jVsvYJM9G1VD+pkcoe4ZZrz1FvfWmz3bYlCSPQviSZ9NJOrIXZWD3Yt2o7xA8Qe0wMD0rnh+XBpOnPQk2l42DS7qg+vQkOkoglvjylvqkStJktvFw3U8jRvaJlNluU1CDL5Df13KNrNgERfW+4Vxla7eD1dlSex8keZUUp1SibtP6YtrVswK7Qg/z5zilWsrUFOo5p/ynti+aAKi35MkUSaTZEMamD1f0/XUNLJmul/5IlWSxpVzWm7zo/UmP+uRK19cg2Gz2Ihy+XB9719wfuc/sGNnHvbtswlfpbDJno1ahJ3GrR+wyZ6NqiE6NkRSv9Y2qD3aL78A06cbj69ZA1z+wcm4Eu9bpnElptw+BROOmYBNv26q8loX9u+Ka/oPQQXrhwvcVzQF3+e/gUH+rSyiR2pcIn2UIuamyryhSJBtU0pX9sOlnryhbb03LpEPrxP5E09F9kPXI1gSxdmQjJIJXz6CxkiL2CYjYRZd5ClM8p2jMWmoTK3SpNDDnIpV3yBlilQnZHJfTdFaMT1zCleuZ5HSDV1b1C6a07h0/+o3dZOtjpoali3jLOfo0UlugLi1vQc72rhRERU6h71Wpud0XMvVuKT7TFzb51d8+8mXGHvZG3jw4a+Ru18Ij2yE/6ERbLJnozZgR/bqBWyyZ6P6ZO9Q263VEJdfDowfD1x0kfE4kayPV/bGlzgfvmRr+4zly4Fv9wzCqtRjEZdRvdZupYEKlr71B10oRTTcCOJs70rWmVVN4xLBo5QtkQ1pveIkzzwRymJZTEn2RBqXHY8Konx9S/j3p6B0RXuFzIi0p0gZUy/cUD0b758r12WPYKhVGqvZU2xSqkzjKvv6G6i81QgpX32uVt196zSuOXBZ3TSuAeY3facD2zt4mCJXc/N/E6niNT+mb+uFxXvas84adw/5mkUGFy7cjH/d/jEKCkLiDRsici7bMto1ezZqAXZkr37AJns2qoY0MY4PKViPJKgbxm23hZv3U4r24a5f4VucC0e6dWRv8WLghw2dkd3lFLQdVj3biOLt6dj0wmhsfuk8TI7hwo4TfBuRrhUbUrdutz+UuhUp2rA0rsuYxpVp1pQxM5H5r68Q12cjS+mGlLk8jcv+k71xxTl6f1iZxnQAjUT3jH0K8TaYGiv7lmlcszpWSX1q5nOVWjc9jauocc3jMr0q07h6r93K0sjVSuPKVLd4nWTK1pAONqZxjZ8RDvzf/PNQ7vegb9MtGNFxIQJBDfvzijHp64Wmm2vgkCncli2PuK+mDRs2jh5ssmej+u3S6qBVmgoSQzzS9E2chmlwN7Ime8OGAVdfDdx6a/XX7Z3QCfumHIP90/tgfaApVrqasejeSO8KPXVLKdqgktIlw2UZbWRRPhb5C6VxNSWlS+nZuB5bEddrC5xRFaE0LltYuRElbcrUuLKthDRKVvviUqs0qQVR1L1k2sx4kYzaqWuarhExRasEJ80wpIjNY2JNQyTRnAq2+KYelsa1SP3qc8Q8Z4UGNwkzVNNVdR3TNfYUpWHCUt5t5qYBP6FJQj4zWp788/IQwbQRSuGKntw2bBw27DRuvYBN9mxUn+xRu7SjBLKT+/VXYNasCDYwEWr2WrUC3n0XGDu2+tc66ZgEnHL9RnR8+GPmmfd1dB92/NyKZazXLSdzDiWNG1Ljsm01jStDYwZlroORMNY9w1CTJixcZBpXjkVQ49K2jOzlJiZZpmb5PVikcVGDNK7Vusr8yONSXWydxtUnVpXGVdTFOnEzvek3ygmwVmm9F3CDaSs1rg7xD/X16iFYntMasZ4K3HvsV5SkR1FROXw+tY1IA4ddr2fjCMBO4dY9bLJno97V7BEmTADOOAN45hnjcS0vHyvQAy/82g3lFmJbUuB+ePKHmDR6EhM5VAfEE6a82Q63jG7K+txOj+6EYkSjRbAAQ7BZn2NU44anbs3bUFO6Lg3+AwkonN4HJUs7Cu5iTOMaUqwWaVwiJ9J6ZV9SKMUm06ChJySOqyng2krjmlOu4h2Z3b9M4wp1rx5APIQ0bqRz5H25/XyeL8oROY2rRuzY74ITz/55Psp8HnRM342s5FxGsD/55E8sXbLNjvCpaVw7smejtsD8Nw/jYaNWYJsq26gaBw8eVTUu4cQTees0MvE3ID8fZ2Ae9oxvht4judmyitK8UmybsQ3lsSlwf+fAeedV73ouhxP/6jQcy/N3Y2nBVkyJ7oox3qUY4V2BeXHtmHkyM1UmBS6L5IUUuJKJ8G3OUlgUTzInZgDsQNnyDjjwxSmIbrcL8X02iAifosYVCly2rWlwmtK4qSUl8ASDCDocyIsXaVzFcJifZ3R2UVmXIeUrD6jcS434yXSoaa2wNC6bFzJK1qN+akTOnMZV15HblLaVZ1VC0mVEcVdrD3a3cOt82rC2eoLJfDm7KB2PzboIWw40xd6SVPaCffrpfEz8eC6ystLx+BNj0Lx5ZKV3g4nsmRtT27Bh428Nm+zZqJdkr1cvYOtW08GKCjhKijEaX2PTsBvgcIS3ciIF7qnvjMFx13dFcDSQnQ00bVq9a1I/3jWTeqC8zwF8njoAmx2Z+MHVk9XnUQSI263wqJ2s2SMjZUr1mrf5JBi2Y3tuQsn8bojvv1YQoJAalyJjer2amsZVCE7jgzzCeiAuHn4mA1bSqfI8c6pVbOvr0FMImEidieQZ1lXXUq8jLiaJnprWNadtw/YNa4TbrKhzQq+fucCQMXSQY04ohUxk2bSWBW+ct0uJWlF3FD9vg7drVz7uvOMTvPvetUhMjG2YEfydO/m2nca1UUs4nJSsncqtPdhpXBv1zlTZQFos6vVecd6BX6a6cdJJ4VNikmMw5Npu6NvPgb59gZyc6l/z2muBuS8NwsEFnbHFlYnPoweg1B0thANgPXMdlfTDDU/jyifDt91pRWhy/0QknrRMUeNS0E9hY2oal86XnM8JNCrmZG9vUjJP8Vr0v2WrKmnRsLStxb5qgizPMaRgVaNiNa1rvpY812SqbE7JGlS04rmpa4adw8KVpjlWKl+nI+zaVmur6Nd0A87uvIBtk2AjP78Yv/yyAg0Sq1fzn82aWXaosWHjkGALNOoF7MiejarFGV5RBF9HHwBUm8eEwLJtG90HSXMrwdy5gKeGbVDPOQfYUrYbnjROqiiYJCN4fjI8hlDj+lk8i8+hKJk5pUs1ePI4DdG5IioolaacZSlRNy2U7uUqVlNv3ADQRERY9yYlhVqsyTUlzG+QinGyZRrXUFwXIW1rYILq+Ur61mo99d7Mc9R7MPe9tXqTN6WcW633wePTkN3SjfIE1rPO2KfXdH2r7w5dMrbj/05/D76AC+tzW2JTXjO2zPTfV+OCCwaiwZK97t3r+k5s/IPAjM6Dh36ujdqBHdmzUb0ULoWqqB/rUcTKldzXlVK6BiUua5LLSSCpdlUU7irkrdJya94d4a67gBGvTkXKYN4InjyOz/Ctwael72JAcAer2WN1e7Ifrkzdip65XGkrHlJZyxhWiLQxQ+aAE2Wr2sKXl8xToSI8xoyBJclSzyGq4nSgkUjjMtsVc7pVScXKWruIilo1bau+CYgoneFcVREbth9SwJrHdah9e+VlTGndsHPMqlpFpSzRbKcfrTf7Ee1V8tdKYxL9WCRoGtbmtsScbV3hcQXw0EmfI8ZdwYYOHhTq84YGaixNsOv1bNj4x8EmezYqh2RTZKhcRTStttGiBa+j27hR8DwZ2cvMxP3386wy9dFVsWLiCtYqbfpDvNcaRWp8vupfs3VCJsXv9P2B2lb0CGbjUv9CuITygaJ7oTSuBif1wxX8Tqoj6DhL40rmJYyUqTYv75MzsO+N81A8p5cxHamkfpm6lY4zZSs/t1GxiOxR7aSaXjWncZ0hRay+ZqS0rpirQ9yPmqYNVpampXFlPk9Lm9ZT07ZEds2pVXGOStLCU7TGdPGuNm7saONCWZzTmMZluwozlMMGPz5RZxgAnv/jXOwvSUJWyn7cPGgyG3a5nA2b7PXgxuI2bNQK7DRuvUADfVezUW2UlBzV7hkqKFv7++9Abi6Qnk4hrVw+kJGBJk14dpk6ZqhwRbuQ1DIJCc0S8MQTYPPef7/61zyvZX/4fU6UbWvMsqoTXcew48MC69A4cJBnZQMOBJkQw4GAX25zNa1MG7I0Lkvlip9SuKEBcT03wplQCkd0BR+TqQo9xaukN+WbXQBoVChsVxKTw8b0fWlIbF5TRuvEXL2nrnp95Xx1X4/0qevLtLPcl+Pq+vpzV15g5TUyrKmmX1naW03rhqdod7Z2Y0OXKFREC/FGIAj4qYGxEGmwc+S+eKHEMUdAg5PS5BQJ9sbjqZnns4jtWZ3/wvGtV8LfUH33KJROsNO4Nv4B7dKefvppliG54447Is754IMPRKvF0CPG1DzgyiuvDJtzBvmCKViyZAlOPfVUpKSkID09Hddffz2KzWmnOoZN9mxUL417FD32VJAIgxE9Uxr34ou5S8QnnxjnD75zMO7ccSeGPTGMdbfYtw+YMaP61/PuaIJ1F/8Hmx66iqVXN7kaYYGzNVzQcL5/CeMmFODUTZVZP9uQebJxOzyNSwwjtudmtHj8LaScOZ+nOeXF1ZSrblAcyrU2LuT/FvvIUFlNfTIDZ2UNdcyQ1zQZFsueu+rcCPua5b7DeHnT+VLMUnmK1rSmvEdzOraacxDhPOVSxjkAlu1ph8+XH8+27xz6HRLdediTXcAEGw0G9IdCD4KtxLXxN/fZW7RoEd566y307NmzyrlJSUnYs2eP/ti+fXvYHCJ36pzPPvtMH8vOzsYpp5yC9u3bY8GCBZgyZQpWr17NSGJ9gi3QsFE5JMHSGVf9uJdGjcAeleHyy4ETTgAGD67+JTp2BDxOF2I9UQjkpcCTeQBfRfXBwPJtGBNcgtdxAnwOFzNfZuINijiRCwrZs1DClVKW+ra0UhEpWRbFcsDhobQu9V8LpU0pEse4IDtftEujtCQdFfMaFXGyl5PE07jsfVBTUrXUok3UERJPYdE9OcbWFByU7ErkXDP7kSlZGd2jtWSkTo6r6RUnWdIolififD2yKBmWFIiwFC2JT0K3HnZNmiNsVOQ9sxStuA5F5twBwOfiIhZ9HWG/YmBy4p8gZC8TmqOvTd/w/zoFfZtvQufM3eifMR+XjXWjSdMUjL14MM4a2SdUQ/lPT+G2bXvUa3Nt2KhNUETtkksuwTvvvIPHH3+8yvkOhwNNKAVUCaKjoyPOmTx5MjweD1577TU4RanTm2++yYjmpk2bGAmsD7AjezbqNdmjD+R33gGL5OVleyttlWYGmTIT2YsKt+OLCJq7YoUD+XujkNjID5/fhWnOrshDHBppxTjBv5GlcSl9SwSP9cD1CzKlpG6ZqbJM47J0plL8JuYTfDnJ0CpEu7VgaIwpcZV5rooAMkRaYB+RPXNqVmQeGamh8wKmVK3VXKu0rrw+e/GVfXVcT+tS+lTx2VPnyxdUuU95DlPnoZJzZBpX76+rAX5+Hs1P3R/ECb+UYeAsr2Fdw73IY+o6VsfEv09Ac+HJ6Rfi8ekXYtKK49jUnJwCvPT8L3jztd/QYFK4dr2ejXqYxi0sLDQ8vNIhwgK33HILzjrrLBZtqy45bNWqFVq2bIlRo0axqJwZM2fORKNGjdCpUyfcdNNNyJOfi5QN8noRFRWlEz1CrGgtOmfOHNQX2GTPRvXSuHVku0IBlRdeAChq/ueWJgayt20bcOedwHXXheb/eP2PrFXavlUiJXUIaNOGXzfOFcVquXwON7528365lwYWiGiQImWVUZ9IElYh3GCqWkUgse+Nc5H9+LXwbmoZerLiRJa9Vf46G5UUwqlpqHC5kEf1k2pa0+yxZ05xqtlcJW2snmsWb6j7jojjjvBxYXKsCjgqdVMxr6nco2a6jgRZrshWaVZzqpPaNRwT2F2YgRmbpfQ7NOHrSQuxbm02/tEg36GJE4Gbb67rO7HxT0MtCDSIiCUnJ+uPp556yvJSn3/+OaufizRuBpG39957D99//z0mTpyIYDCIIUOGYNeuXYYU7kcffYTff/8dzzzzDGbNmoUzzzwTAaoTAnVxOhk5OTl47rnnUFFRgQMHDuB+UhACLOVbX2CncW3Uu+4ZZtxwA/d17vStSDVlZrIfpLJ96SUejXv5Zfo2BWz+dTMO7jiIY+87ls0hTcd77/HGAK++WrPrDm3cHl9uW8JSqp+7BzBV7oeuQZwvkOpWsBVmcMwiczz9yI+GtmWeUXMGeXRPEBxXShEL53mzGyG28w6eupWpX7UGTyOPvQMhQ2UH+f3Jlmyh1K3+5qikUtXyQbkmU6zKb81qmlWmNU37eprZZOfC7lcQTD3lCtN8ZT3+fPjrorTVDdXtSWGFsoYKebv7mrsxvYkTLr86GKG2R7aUU+exTicR/tGFUjc5pgTXDZqCt+ediRJ/PH6evBSduzTDPxatWvGHDRv1sIPGzp07WW2dmlY1g+bcfvvtmDZtWpjIIhIGDx7MHhJE9Lp06cLq/R577DF2bOzYsfp4jx49WHq2Xbt2LNo3bNgwdOvWDR9++CHuuusuPPDAA3C5XLjtttvQuHFjQ7SvrmGTPRtVt1AiJCbW2S3oYqqJSwwpZSqFuPtuoF+/UHDttOdPQ/HeYqS245FIivbTlywaf+SR6mejKXX8xStnoPB4DcmnLEG2IxlXeHjBLU/fyh64si6PCzZkSwm2rataRUqWvXlRfy6+nXL6QqSeMQ/OxFJ+XKpf2TlqutWBpgdC3TPYG6CailVTumJMFSMY1K9irv4WpK4TYT/iWlbj6r7DQmkr0rj6GmH3y2vz9P6+Vuewl1RplcYG6HWVRDvyeZbPUZkvf4479XP0ab4VqbElGPfLpdi+Vdj+2LBh46iDiJ5K9qywePFi7Nu3D32pdZIARd9mz56NV199laVbiYhVBqq969OnD6u1i4S2bdsiIyODzSGyR7j44ovZY+/evYiPj2d1gC+88AKbW19gkz0blaOoqE7VuAbIOgkR2aPP9+eeM07pOqZrmFcfZaZIYOiuwW87CRPXrfRgQKMTUXbqMh5Go+4ZmpNF9cjOQwvybWaozKJYGud61AWDtp2KOoAidgEhPGDbgCu1UI8IEphwQSgKWLRMF11oaFzIW9btSU7hY8TWROROj4rJKJsi1oBprkOdKyOC0i7Gat1K1gobN68nM9Pq9VTxhRxX12Q9gpUoocU5jMSRYENT1hH3U9m1+O8MpXt53Z5+nliTQViyvDF3OF459y0MbLUBF/b+A9+tHYa7bvoQxwxujzNG9EZK6tG3IrJh42+Jw1DV1uQ8Il4rZe2pwFVXXYXOnTvjvvvuq5LoSXJIawwfPjziHErxUs1eU4um6xTNI1BqmKKLZMdSX2CTPRuVQ3oF1bFCL+D1Y7GvN5KwB51FB43q4rXXan49EoQQURwxIgml0bfitF9fgcMRRKZ2EGN9i1GAOHzoHBQifCyCJQvpgnqHDT3PSWAkQ6n1UxSrQZ8TDlLoCvcWVQ1L200PFoSUuKYUryQ6ampUplZ1RqMSIUNBXOhctYhNj7qZ15LjyrYcV0mkeU5oX2FxcrISYuPN4iTtU8QXyjlZW/2IKtewt5kLxQnOsDmRztOPqc9RHhMpZHlsS15TvDrnbPz7xO9w1TG/YU1OS6xc7sOqFbvw6Ud/4skXLkL3nqLW8u8OJreWruA2bNS/NG51kJiYiO4mj0iKspHvXXdx/PLLL0fz5s31mr5HH30UgwYNYorZgoICVndH1ivXUqN0Id545JFHMHr0aKbG3bx5M+699142//TTT9evQ5FDSgEnJCSwNPI999zDfP7Id6++oP4klG3UT9Sxz57EfQ+5MbBkBl6+fnWYGjc7m9fl5eyoYK3SCrZxYnQ4IJHGFVfwSzWPS4E/6EAg4MIA/w7cGpyJG4Oz4QlwUqeR0lZ+eWXb4iEVuMHQNiMzUgFL234X9k88AzvG3YRAYXy4clbMk31xSYlrlbp1KgpTslXRt+U6prn6vqqWpc97uY58mNYy7jsM+zLCaEjj0vUEUWTHpepY1a9ESqsqUM9pvCuA1pv8iClW2WeovYa6jmUaN1i9CMIv6/ph6vrerHPKg6d+iZTYYhZNLC/34aF/f4bCwrK/P8kjUF2RTfRs1GOBRm1hx44dBtEEiSmuu+46VqdH0TxS+s6dOxddu/IMEUUDV6xYgZEjR6Jjx4645ppr0K9fP/zxxx+GusGFCxeyKB7V9L399tus5o/q9uoT7MiejcqhdK2oSxx3HPDuu4AnRi3U4qAvWGQT9sr/CpH3vwmsXu+2TcY/tNJSks8D9DdMliw1AfNhik1CTlkhfnV0RQ6S0ASFGI6V+M7Rl7EZ5rOnizCEgMJFHRyEtJTapclOG+QPJztquAOo2JcGrTwapavbImnQSl3EIf3wCI11jz2exjWkbqWvXkgzYojwMXWrGkVU7OgMylyLc81pWHUtlkZVxxWypQfxrK5nPse8pjJHnqNHF4nct3ThYKoDJUnKL4JyccsIpwqRejaApdzNEx14+Y+R6Ji5G63TcnH/qV/hwR8vRzDoRFmpD79OXobzL66BiWN9AjmS//QTMGsWVzYdeyxAKSe7L66NfxBIRFHZ/osvvsgekUAWKr/++muV1yG1bn2HHdmz8bcge2edxVvjjh8fPkblFcccA0S5gqxVWnLLcOXwZZfxNT79tPrXrKjg86+5Bjg/qy/rmRtwuvCJYwAbv0qbx8QEPGVLwgI6KggdSw0qMlWR4mUmybpilteOpY6YjSa3f4qEY1bqKV9RIqjPaywiezKNq5I03TxZHNA3RRTNQOgsGZ4x4sbv06iWNWRbq9hXs7VhqWET1GOyzs7qHHVedhsPNnaL4n1x1W//UuBSxTUtI3sRumWU+6Pw6LSLUObzoEnSAaTGFev/vosXbsHfEsuXA9dfD2zZwp3HqcsAfQjeeit9atX13dn4h6Gu2qXZMMKO7NmIDGILe/fy7araVRxhVCauePppmYVqBIy703IOBS0WLapZi1/KblEknnQhP40diDaJq7CtOA9fuPrjFv8sdEc2BmIr5gXbiTOkMlduK1RFTycKzSnr/ECRMQdi2+0KU+qy58OIiwOOYBCNihQ1Lm1oEVKhso5PbSQRKW0qywqD5muGIoSGtZQ0L9/nYTSr+SrC3rDVfaXukJFfdhETIZPXMSxqTvFwYq23gpP/N59nvn5V0DTsyMvEuMmXYXNuE5RUcLNUQlFhOf6W+PJLYNAg4P/+D/D7+R8XydZ//pl7GJHN0qhRdX2XNv4pYP2wD5G1NaSWhUcYdmTPRmTk5/PwFqFZ/fEYo88nFdUpN6LoHLU8vP326l+HPgNJyUvWLZ3bReHTE6/AiJY9cMARj6+d3GT5evwBp1spSBN/UaTGZalbeZxShzKyRwEp6S1C86VIjKV7Q5EyLtbQkFpSjKhAAEGHA7nUF1cqWNV5qtBMeOMhglFyxLnifqSeRB9Xs6WUMlbHSRVr2DetZ17fyvyYrWmqvzNFH+ka7LoBDR6vOOgyp6BN9yKvr5bkqdfXU7/h1xMTOOkMAit2tzEQPacjEDr/7waqNfJ4jN+i6Ni553IfI0rx2rDxD6zZa8iwyZ6NyJCFrKRSsDCxPCoF5PKhadi6FRg6lFzPrRX5NE1mnc2gz7ZDqUF/9FGAhFtkl5QaHYeH+5yBgN+JCdpQBODASdiA9gER/RTEQG5TXZ65ZZnakgxKa7NgeRQO/DoQe94YzQx/dS89RYmbm5AIv9MVuo58DZQWaFDOC92HkhJR58pzdT/AcDFHWDs1wzhvY6aPR2qXpu5LAoVIa4i2Z0Eh7GBr0DG+TvKBII7/tQyDp5dbePxZtEsLu3++Plnn6NcPBNlrJIUroXmmVmviRRrVYx5ePf8txLj/ppG9Sy4Bpk3jPyltO3s2QC2iSOk0bx7QS+kiYsOGjX8E7DSujcrN5gjCO+iow+Q+3mzddOz5qxO2eJtj40agY8fQ2JQpwNjRPrSMz8dX7xag04hOlT6tQ81KR7voT8aB7cjAD+iFMs2NEkQr9Xk0S3i5MeLAPff01KSMtEnCJS1YnEEcnNkPWnkMvFtbIKbdLuZZR2nTprJeL5nL+KXDi072aF4g3GdPX19JxYb53qniCAtPPtb+TE37GsYdLHppUNMaPPNCvn6h/VC6VV+D/AWFV5+q6oWFN55slVYRFaJg+nmyc4fFeaG1QzcUOk+oOgypcelHY7gCEqNKcVH/2UiPL8bIgrdw9rEF6NW/DUZfPBh9B9YfA9VKQd9cZszgKdvp0/m3JAqXUx/PG2/kNQ82bNQSZHLjUM+1UTuwyZ6NyCBFhGJifFRx4YWkk+fXJmZ2zDGIfvxx/HD5v5F4y+XIakdWMC7D59fBUg/8pfHI27I9Isk76SSwCCHV4Yle1VWCPvOppp1u58yz5UHg3xhDVXdCHau0QhPCC91zRMpRpcmygRTxuj1ntB8pp8+DK7YcUVl7DSnQptQrjpG95LB6NlWRy0idaX1Gaii1KsYMhE9V7Jrbl0Vqf1aNdml6PZ2VIlZMCilmxb6pPZruBSjPEcht4sb0s1xwEekz8DHNQMv0qJ3500L0cDOkYMkgW6kdNFzTQPiAIm8cHvvlQvzfue/jxI6rsDGnKb5ZEMRfczfhuttPxZhLh+BvAeqIQ/UJ1GCa6nIpck/+RfTTtmGx8Tc0VbZROew0ro2qO1aYfO2OCkpKeFpp4EAe4fvsM3Y/3b5+FFl90rmSUEGHDsCkl7MxdfxatDvZuscn8UbyiKYyxCWi81p1QEGQPn14j95Sn1+JjEkxgSgok4VlbNsJ+JXjzGePzjL67DEBhniknLAUif3WwunxhTzugkCTQhHZS0wJ+dipvnqU8hRpSDX9q8tDxDoGnzvTOqwEUBJJ1WtPPTfMl8/os6efr+4Lnz013erwq35+jtC+8pobhRZGkQl1JvFTZM8UiTN4/ElYefiJom/D9Srx3nOYHmv2tMKbc85kY1cP/Q39Wq5n2++Mn4ZN6+tP43NLTJoErF3Lt6mjQLt2XGlPNbnUT9QmejZqGbYat37AJns2qjZUrgsXcIoy/Pe/PNLw9tuccWVlcQJKaSdidwroM+r8W5thyG0D0LiHddqZ5nzzDQ9Ykq1YdUF1gtQZhwSMvqIopEYbQ4JdnNl40TEJqY5iUfglxRZa+DaM2yTA0P9jrCt0TlAELpuImr09Kck8YGYhmpCtdaUHX2h9o0BCPdfsWqKfbzFXzjGsTRExp/U4X4+/W5P4Qv7HxhSBCIuwGdYMXVtf0+K6DKrQg+7F9FzUOYa1KMJqgkG0Usk8iR+WD8DPq/oyw+UHhn+F1ul74XQ58OOXi1Cv8cwzoYj93LnA6NHAuHHAQw+FfYGyYcPGPwc22bMRGSJ9yKwYjjYodUsGetSb9557gD//BMp4x4LffuMq2T/+qPmyJDasKXeNiuIp3G+/pSCIA5d26AsnRZKIJAQ1PINvcK5zGa7Bn6GCM8Vbj+c81W3FZy9UDsbTun4XSlZ0QO6kU/UeubJ7xt4kceNqBlJGpUxqUnkpQ2pURszUuYqtndoJQ5+r7iuvicrRJNE0pIHZD8lAlTSxSWFnWNNUU2geJ7Tc4kP7tT4kHAwV54WtoR6zWstS3VND2weHE6/+PhzLd7ZGfHQFHj3nU8S4yrB6+U7UWwQCQFwcdygnPPggNRQFbrmFR/nIikX8jdmwUWs4FAWuxXuFjcODTfZsRMaBA/xnaurRvzZ9IDdpAvznP5ydkZuyMHb+/DMNb7wBfPedOl3D7oW78fR/S3DcUA1Llx45n7/rugxCh6QMTvgcDrwWPJEdv9w5D0nB8lB4Tao7DWE3AnnnCSc41mJCpj4dQLkbuZ+fgaJFPeDd1gxOzRGK7AmyJ51CdPKi1PHp3nkKETK3Jwubq67DXkzjfhiJU8Nt5lo/E1kziy3YIbOHnpnUmc9R5jTeHUDrzX7ElKlGgqEXxXB5q2PK8zOcXt0PFUkUgxoCQTce+/EC7MxPx/dLB6K0Ihq7tu3HyEGP4d9Xv4s/pq2uX/YsZDS5bBmP4NFPujf61nTCCcArr/AvVNUtZLVho5pgyvfDeNioHdgCDRv1k+xJJkIsi1JMFMbbyaMm54/REBPrwMiRoem+Uh8mDJyAz3EB1qELfvyR19lZgZYi7ti3Lw9u1PQlKS+PxhenXoYXVszCh+sXY5qzC9ZrjdDJsQ+Xu+fi1cAwTiVcsk5PiDOk7YjSPYOneHltGaVxHQkVSBq6lCl4PemF0BAM1eylCjUue31MkTq5Bg868aVV9a9JYavPVdZh0Tr59U8RelDWXCdDomlFaJw6h2iRCR+JIUhtq1xftoFT1bC0hkoyVXGzOmcPa5XmREmi0yBCkUWC7DWUEQFxLwaxh1kebHWPpnnmqCZZtcjzSbBx08Qb4Qt4RCpZg9frx5rlO7Fq6Q4MH90Ptz00gpP6ugbVvg4ZwotPqWj1+ONDY6TEpTIJGzZqG6ol1aGca6NWYJM9G/WT7JHH3/vv8ygEWb8MGMDFGl4vTj8zGqfz+ngd3kIvklsl49j8lbj16c4YOTLyhyulZL/+mluL1YTsUfDj7ruBq64C3nwzBnf2OAEfrFkCDS685jgJL7u+wNXOP/GefyhKtWjuOUeQogm5rb6BSf89Rs4o4geknzlHF1qkFZUgWrhI74tNCkuF6qIJGa1TriVTuYZ9xZ+P7Vc212rf7JGn7ivPR4iDWQTM4FUXtqbFGor4hJ8jPO8A7G4lzIBpXXGM1+wJbzzDOhZrmy1WIt1DpHnma9AXDSJ67KADcZ5y9M/aiNnreY/Zn79ejF4D2uLE07ujzkE1DF98wWtxSZKeRIp2hezZ/no2bPxjYZM9G1WrcdPTj+51SYzx1ltAQgKvMVq5EvjlF+6MTGmnK64IOyWxaSLu2HZHtZY/+2zggQeAMWN0J45qoUsXruRdz8WXSPBEId4dgxK/Fz8Ge+JO529o48jDJa4FeCdwvB5B0wUapMhlkTZux0L/sYhSILTNU7whv7ymBznh3puYBL/HzYNNpvI/mapkxEecZ/DdU73vRMDKUYXPHqpYS93Xz5fr6abNZCtjTJuavfrYLamRN/kPwtI3oZZy0i+PTaX0joiU6k0w5P8M1zJF5+TaamRPiVga/PiU9QzHrOYJxLrL8eLYd9E6IxeOH4BZ67uxe/ju03n1g+xRXR6VRNCjVatQSprq9Ijo9ehR13do4x+Iw0nH2mnc2oNds2ej/pE9KsYjtS0RPjJ+/eEHnnaiAvIPPuBhOfCgH6VrawrSmzz5JE/j1iS7Rh59K1ZwLkpwOZ24sENPuBxOaA4nXg/w2r3rXbMRo1XordEYdIYmIFunSZGE0tdVlvZ5d2dgz5yhbMqe5JRQyzD1/U/WzMk2bSLqJ8sEw+rv1FSsQowMc9V9ZS21rk3fF09B981T5ysX1U811++pP/X8NPe9Y6ROLk63HdDg9iqdL9TnpOzrRExap6gfNoJE6hFS031Z/ToYjlUyr8wfgyXbuLHy3cO/Q7fmO9hz2LA6G4UFpQj41dYldQDWrYSsg+STEM+C6vSoVVr79nV6ezb+odAO82GjVmCTPRuV98atC7JHLI6iDBSJUEEqQvIDKy3FqlXcImzsWKqhM06jnu6TJwOvvVa7t0W3Yw5+3Nx9EBrFJjDC943WF0uCWXjTfwKC5EkSoDozwd709CkvIiN/uTDFqojqscBTeRR2v34xFi0fjfkYhOyUVIO3nupnx85U2piZHFzC5kYSaMgIm2FfekPLifp4KCSqj8tp5jdoE0EyCkbE66DMUUUl6pop+UEcP60Mx8wW/+AWQg/jSfQ6c3KoP2hf8dmTr5elQKO6x9hx3uz9nZmn4s+NnRDlDuB/536BFqn7EQgEcMHxT2LM0Cfw1rM/oyCvGHUCeo2oBla+VrLJdE4O8NVXdXNPNhqOqfKhPmzUCmyyZ8MalK8kB+K6MFW+7TYexbvrLu53QvVEFNmbNYuLNNq2RbduQOvWrLEGawCw5us1mDR6Eha/s5jV4o0YAdx7L+OFEUFdMahmb9Ommt8iiRZ8PiAjNh7fDb8Mp7fsiABcODdwEyYEj4PX4eZpXBG1k9uyoI0dk3+BktMK8QJLtcZUIKHvGgxIn44EFGN3alrIC06mQmXETJ4nofrjSUGGwjUNf/UmHz5+b8ZxIRxW1lbegJ0Oi3F1n1KwpnH1fizXCEVB9WwrdWajHrr0qxntMKyrWZwnQQbMzNe6krUNx9Sol9U88zX5SaKeUWMk/5nJ52FtdnMkxZbh8TGfIiWW/x2VlVbg+8/m4baL30BebhGOOihC/vHHoT8KKTGn1jJC/GTDho1/JmyyZ6NycQZ9wB1tU2Xy/nriCb5NeVoyVX7sMeDaa3nvzkGD2G1R7RylVKn8KGdpDtZ+sxY5y3KYCpdMk6++mjfiiATqFvXUU7ypQE1AmWUimp9+yvcbxyXixePOhkaBkoASqZPiC3WbmAfNkwpXdk5IWMEidDQWBDJH/YbHGt+BHliFbOqLaxZ5SMZB89UxsYY+zyTQMHSrkHPlueq9yXNlNE8KFPRxSgtyomMWaJhFEgaBhsgkRlxDKHNl5E0+j31N3ZgxPBar+kUb1g1d27SOuN8wsYelQINHEUKikWD1hRzsNQnRP6/fg/9+MxbZB1LRNKUAj47+AtGeCv7UAhry9hWxCN9RBXlVUvSOfuGJ9L30Ev8joS9W1GT6zjuP7v3YaDCwO2jUD9hk7zDxxhtvoGfPnkhKSmKPwYMH4xcSEwiUl5fjlltuQXp6OhISEjB69GjspVCUgh07duCss85CXFwcGjVqhHvuuQd+mWIRmDlzJvr27Yvo6Gi0b98eH1Dt2tEyVCbLhqMJuh41Yydnf/owIpL38MPAxo3AxRfr6V0yO5bofG5nDH9tOLqdT0XxPBhI6tnK2vpecglw3nlcpFgTFBbyQIjq8xftcsNJ6gRRsHaGczW+in0DySjVo2marNsjEYP4j21Ljz3ZV0wXRzjQvICT7t0paXqwiUXOTF0xpEiDbYvImb6vRqjMqVt2L8Zz9VOkAEO9jhiH1Tj7t1P3Td0x5IXFHM3khWfZUUOeIzvTOR3wUUDKaRV5M59njMSp1zOcp5xrmblVU0lWkT2LP4+DZfF46KuLcbA0FmkJRUhPCKVuA4Eg5vy2GgX5lXwTqU3Q/f/6K/D007ze9fbbuVk5mSlTEeq77x6d+7DRMGGncesFbDXuYaJFixZ4+umn0aFDB/ah8OGHH2LUqFFYunQpunXrhjvvvBM//fQTvvzySyQnJ+Nf//oXzjvvPPxJBqbsjT/AiF6TJk0wd+5c7NmzB5dffjk8Hg+eJBUByCVhK5tz44034pNPPsHvv/+Oa6+9Fk2bNsXpp59+ZCN7ddE9g0B/5JQ+VlPIFG0hEqyyPJFxTurUDM36NavRJS69lD9qChIDUzBk1CjlHgIBBPVeqhru8ExDF2cOro+ajee8ZwqlKlfhsqcn2Y4UaNCGjLDpYxqaFRxAPlIxb8dwBDvsYGtY1bPpogjFd47djlQrqOIK1Z9OsxZkmAukdQ4m1cBa5YINzvPETTCWZlK56ieGpMFsDanEVU41PwfrOaZ15DHlRFW0Yb4N62NKpFAXeFjMi/B5lF2QjnFfXYz84njkFSYaxoKBIHZv34+UtHgccVAJBHWkoXpXVnuQwc3KCaRSIi8hIn42bBwBsEzCIfrlHep5NsJhR/YOEyNGjMDw4cMZ2evYsSOeeOIJFsGbP38+Dh48iHfffRcvvPACTj75ZPTr1w/vv/8+I3U0Tpg6dSrWrFmDiRMnonfv3jjzzDPx2GOP4bXXXkMFsRiQp9ubaNOmDZ5//nl06dKFEcYxY8bgxRdfPHJPTPbPFF0r6kw5SASP2jzJaOM77ximUVaKbjGSGIPq8bZtq91ba9kSuOAC3rZXwu10wqlLF5x4wXca277K8ycyUMI7ZjCix4vadAGFQqwYOVK6acRWVCC5tAy9sQyrZp+H0vVtOMmyIE+6eENG7swCDSuBhBqSU4iV4d4MggvOKK0FG0rU0CzYUK7P7lFNKwtX5zDipa4hrtNmow/t11QgtjhYY4FGxLVrckxJAVd6XWX+hpxm2K8QvSbJ4ksUyEnIqiHvESJ7pGaSYgzVuoj+po62AMuGDRtHHTbZq0VQlO7zzz9HSUkJS+cuXrwYPp8Pp5xyij6nc+fOyMrKwrx589g+/ezRowcak3GwAEXrCgsLsZqUBmKOuoacI9eIBK/Xy9ZRH9VGbi7/WVke9EincqmAnH5KVS5FJUwfruQLSxmpGb+UI39TPgK+kL0FBS/IwYW0HpWBPGa/+eYwb9fhwKmt2ut/UFMDXbE80ALxjgrcFP07/0tzhgQauiBBSbvq2yLS1/RgAVwIYrTrS0Q12QeHO2BIl6oiDIPogcbkjSgpX13Moe6rAhGxbxBLmAUbZjFF2LhJ8MG6WhivH3qOEda0SrU6gSa7/Gi1xY9or2C1zsiiCgndrqaytasQe4QfI38/hfVZ8T2ZggoG9eFjO63D29e9hfMGLGD7/kDg6LRTo3qF//2Pb5MxOSmXJOgX3zZTtnEkYadx6wVsslcLWLlyJYvmUT0dpVq//fZbdO3aFTk5OYiKikKKSeBAxI7GCPRTJXpyXI5VNofIW1kljcufeuopljqWj5YUkqrvZI+YF9XnkeqClINEeKldGoXwKLVMpsoKKMJGQdKTVr2CVzq8gv3rRERSfK4RT6QlI4GEiS1aAKNHA2vW1OxWSaBx8sn8+oSbew3i0SS258CzXp5iv8wzDy20/FDqVOmawbbN4gqWInWgeT6PAl2V/gqybv4E8e2385UVEYZB2CHHpMgibM2QQIPfYej6lgILuZZZoFGZIEPel9xXOmiE3U+kNUUELXSOBvg07Gzlxo7WLpTGOnjLsoBJVGG1jlU3juoKLyIKOZT7osizVaqJCTyMUcXmqfnMkuX6Yb/h9J7LcNdFb+Gcvv/Fc/dNwtYN/G/9iICMyZs2DT0H1aOIwtNnmtrR2LBRm9AO82GjVmCTvVpAp06dsGzZMixYsAA33XQTrrjiCpaarWs88MADLJUsHztrYq9AdgwEE8k84qAWaZR3ffRRYNo04JFHgA0bgNmzuRJ37VrDdOKixxyjITYlGp54D+IzQzVQp53GOStxxso+B8ksuWvX0FOuLkiHQ2rgiRP5fu/Mpnj95FFMrEGYo3XEbH8HRDsCuCdOiHZENwhdFCHNkKnSz6GJLhrc3qT5Qe5zmJuWoFut8DFj9Iy2tUhjiiDCDFWwoe6rgoywtQxiCnP9nWlcsCJZT6i/d4eJJkwCDXHM8D7vAna1dmNT1yh4ZfpcjbzpBYrqzZmELGr6OWyeTMErsDpG/Y4rexeV0QiL9O6k+YPx1YJBbPu2M37GcV3WosLrx8yfV+C281/D4j834ohDvS/qSEN/X0OHHvnr2miwkKbmh/qwUTuwyV4tgKJ3pJClmjyKpvXq1Qvjx49noguquyuQylYBUuPSGIF+mtW5cr+qOaT+jSX3+wigSKNUCctHtSGZz9GO7FGRHZknU10R1SySod6XX3Jm1akTFTmGnUIF+7dtug0PFj+IhCYJ+nHScVSnrS9F6Mik+UTeAKPaIO5JGhpytZA4s3VHLLzoZrgFS3q64kwENQdGeZahvXOvHjHSqUlQdrSQViLiwzgItBCm1rtTUvk5QQeK17aDvyhWV8vqogwJGVWz6HohDnOo3Eh01NA7eEi9gxIRCxuvRKRg6KBhynYaMqrKvn5NeY7SkUNO0K9rIlLG+zClfjSHzgONUTvzPEXEob+WkY8ZEKxuysmBCTNOxi/LesPl1HDvOT+gf7vNTKwR8Afx1J2fobyM1+keFVCJxNFW2ttoeLDTuPUC9l/6EUAwGGT1ckT+SFVL6lmJ9evXM6sVqukj0E9KA+9TwkrTpk1jxIxSwXKOuoacI9c4ogKNo032iNQmioL27du5GkKCTPMo52oClfJRgIIMliOVJVK6NtL7BrXgrUnbNAmyKaMeu5RxVpEcHYNmcUlwBJxYE2iJlytOwZXFV2NzgEdJmemKJCB0YeHNx4iOTPE6QmRvVyq3XcmZNBx7PhuJg4t4jZVO5IRAw8DAVJJlFkCYXwdVBWxBEEMLGW1SzPMleTOcL5S7hssqvXnNHTTUew4t4YDbr/FaPQNBU36Y7k2/F+qta3jKIUFI6H5Cqdkw/YW5Zi/CMXU+fw0shCHiZl+ZcgZmrekCjyuIcWO+Qa/W21hEs6S4HLN/WYkjitdf547jZFZuw4aNBgOb7NVCqnT27NnYtm0bI220T554l1xyCauTu+aaa3DXXXdhxowZTLBx1VVXMZI2aBBP55x22mmM1F122WVYvnw5fv31V4wbN45581FkjkB1gFu2bMG9996LdevW4fXXX8ekSZOYrcsRJ3tHW6l3663Ac8+xLhno2RNYuBD44gtuakdpaHIzNoF0HBSdW7QI+NnCq/a66zhnXcDr4iOCyqxqS7k7tktPXWn7kvc0zAx2MQkX+A8W0XMpQga90wbQooCTPWqVRuQioftGOGPL4YzyhQkh1FSuGjJjnFIRXeipW6u5NKisq6dp9XGentSqO5+tz+fzVGtoXI8USgsVk4jCsE/fOXICOO73cvReVBFRjKFfU4U5nEhwEgW0PtcQTdQjlHKCSLGbjykkUH0O+rhu28J/BoMOPPfDCMzf0B7RHj+Gdl6nnzbt27/wzXuzsWzepiMj3qDSCOoluHVr7a9tw4YVRK3wIT3swF6twfbZO0xQRI588cgfj8gdGSwTYTuVTIEBZo/idDqZmTJF+0hFS2RNwuVyYfLkyazWj0hgfHw8q/l7lGrWBMh2hbz6iNxRepi8/SZMmHDkPPbqUqBBKdy33uLtMYYP5ync997j6V3qotG7d9gp22ZsxamJezHmwnScemoHy6gePSgTLDh2GNat43XqlDnesSO8LW9lIJJJ1i+PPx4KPF7arTc+X7sS2cWFCFCaTwgo0hylKAzEsNZqespSigOkeEFEs2Rkb2dqOhtL6LQR8Xdtgcvj58IJlWCo3STMIgtzpwlVeCB78Up+EjBZq5htUswdKczzpWhEv1bIF1C/nrImi3/RmiYCZbCOofKyCn6PrFVaRAEF//Zq+Hww9wWWIotK0tD6fiRGaIZVajdCmlj+9PtdePLrc3F67+X4aXFffWzVoq1Ys2grgkENzVql44Hxl6B91+aoNdAvK2HAgNpb04aNSnA4tXd2zV7twaEdFe2/jfoAUu8SISWxRpX1e5RKpd64JI4g/5K6hFQNRsDCVxfil1t/QZfRXXDBVxeEja9cCZBomT7fIqVr6RLkOUvWfuRoIzLo1QLV+lHbXmr4QXxUYm9JMe6Z8Qtm79rOSMLF7nm4P/ZnPFs6HJ+UDwmlbsW3WFWtGldRgZUPP8DW6fvQEyim2kyFuBlIotjnrdYccBBTUkkO/TS3LDMoZk3kUJ2vKCukAtVhNd/Q7sxEsEiRa7o+3WtValjjORocPg1OEr+6FcKnzpHXCmuZFr52GOEzt3Vjx/hNhR0z36vVMXnc/PZqdc8CTkcQjRMPYE8+V+87XQ7ExEbh1e9uR9OsWoiwZ2cDzZvzOj2qd4g/CobONtDQP29O7n0/3K7I79+VwR/wYvqyp6v3mWWjUthpXBvWzIeIXl2aKquohOgRWp/UmrVK631VeNSP0KMHr+errC6PLkHaD3K7qQnRI9xxB3D55bwUSkXj+AR8dPb5yPTEM8JBnnlJznLcGfcrEh3CMke1YZEEzgE0F1G9wpgYFBHRU1Ma5migsFPxF8cjZ8owFK5tH7oJMa6LVc2pEUnM1FSL+TpqL1yxliURhGm+OMcY6RP3o+9bROgEOQydI65LfnyVEb0I1itVEj1lnvmaxkek9UzH2L0EakT0XA4/7j3ne7x47cdo1ShX76NbXubDV+/ORq2ASiIIJHqyiZ4NGw0KNtmzEY68PP6Tcpkmj8CjDmorRx0AKA8bAY26NcKAmwegxUkdWXnfyy8f2qWoR24l4uaIOOcc4MMPOaG0gsfpZL55n5cPxiZ/I6Q7S3BL7O/cboVyoKKYX69T04DmBYo4Q45JEYHDJHwQxMqTUIK4Ntux5+fTwueqmUmTGEGPhIl5DotzDePyNqVAI3Tb+j4/JoieWfxgvh8FsjeubCOsnmOYI44ZSKPB9sXiPNMxw7Ur6XmrCksM92Bh7xK6FxOlM92zfr44Hu32o0nKQSTHleHJyychK5PXzJJS9/fvFtdO/Z4sWiUDShs2jhZsNW69gE32bEQWZ1Bf2kORqdYmxo7lLIy8UaoA9XSn6eTBbPaapqwVKXbJU09k5yoFKXxrCzFuD/vphwtPlPDw31Wxf6C1a59eLMfe0kRUj9BCGCrvTkkLiRuERYquQiXiQGlb2nEABas7IX9BP7iTilFRkBw2V0zToZNFVUAhofS+1a1UFGWCvi9Jm9V8hR0aRA3qPRgvabBVUc/puLIC7df54CknYhyaExJUSHpZvWuF7WvVPMaOm5S21fk8ks+LRTrN52so9UZh3CcXYPOeRkhLKMGzV36GNo25Qt9b5mOkr9bIXqRvJTZsHAkED/Nho1Zgkz0b9cd2xQxiZaKLiN4BwAJ7V+5lrdL69wkwMkeC3vJy4xzy3KNWwjNncn/mSKD6PtLWHEpTAbpVavRBAg8VndIz9A/3mb7OmFHRGVGOAP4b/50uWpDRL0pfOjUHWhwIRfYIsh+u5BYHl3TnETinhrIdzbHj4zHInzsAyT3WoNUlkxCVwtuGyEidLqIwKU7luH4NJWIoI3QhixcT7THNN6yvQiGFclynZhFUtWa7luY7AqxVmppiVlO9+r0aFjESR/WYIWoo16vqGOvja7ZyUaerL6TVBD4eFtEUx4tLo/HARxdiQ3ZjJMeX4ZkrP0fHZnsYAXa5D7OPLqWVpTgjkkrJho0jANtUuX7AVuPaiEz26rpej9LJpJioopPHpPMmMbJ35awrMX26yfROICaGiycoWFmZEDE5GfjtN/55TZZ/NWkgQnV75GxBUUVFTI2x3XpiymbZHcGBR4rPwZDU53BC9HqcEr0Kv5X30BkAj4ppOtkj2xUdgkMQcfPuzcDur86GK7YMpVuzkNR1PVJ6r4QnqShE5tRIm/TiU6N8qr+ebPxAm9RxQ63N08dFREoSPLm+aT67llT4KueL2fx+9EigZkkS5RpczKFhcxc3oks1VEQb08j6ORb+ewYVifqZQZFU84eIvKfKjtGO0wlN6Xcbuq6sTVQIX9g1Qi+E4XwZGgVQVBaLBz+6EI9e8hW6tszGk5d/gXEfj8FlQx5BQlIcThzZB2eMHYRk6qpSE1DnGarDJVPJmhal2rBh428PO7Jno/7YrpixZ0/oPig0FwHUJo21SmtcedE5RfyoJ3xltelZWbxjGzm91LRT3DXXcCJJWWcVx2e1wpntOujEZ3sgAxNKT4Rfc6I9pXIVUQRToGpASyHQ2JGaYVTIivHME/9E6ZYsBIrjkXXpl8g4dj4nenQScRLZE1Y9T9yPftxU4Ca5CJ2r7ocif47QuBqJVOerkUL5Apj2mRLXJOqQkUe9ZlC5huZyYkdrDzZ1iTJEzQzXEfemv5bsYWEVU13rlUjHzDUAktSFFx+iWrAghSXlMRj38flYua0F3K4gYjw+7N9zENvW78GHz/+CG057Fjs2GTvqVAnZwLl//5r5Ctmwcbiwa/bqBezIno360yrNyiqiihQu4cZlN7KfMlpDP5Yv52bL3bvX/LJXXnkI9wrggguACy8MP04kafzpZ+GVRfPxxl8L4XcG8VrpyfihvDc2BppxI2VS5dLnvosTnRYHuEhmZzpP47IxEUGjbWesD2lDF6JkQ1t4Uoo52SABKA2TibKM3DnEVzqhgGXcQkbiJEET4wzqufK67EUN7QfViBrVEaoKXhlFVFO/xOT09RzQ3BojfHrUjK6p+vOx1G6orZzD8jq8l7Ahgsh62ZqUtaweUlHpquRKnqjeoxRXKMdCEUpxXOMJW50sKgLhSitcledlPK4WPvIVyrxR+M/EMaxub90u8tnjEW4tqKGooBT/u2YCJsx4gHl4Vgu2OMNGXeFwSJtN9moNdmTPRuTIXqNG9YPskTdYNSCL+6lfbZ8+Rs87CRL1UrcNq7HDRWVaFo/LhbsGHYuLu/ZiRKcsGI0NgaacYAgfOEnYEktLkSIUJjuThb+aiFrpxCsApA/+C560AwiWe6CpJsvMb8+4ph6hE0XPOlmR15fRMH8lHnxy7cr2ZURR39fYmow8smvxfa2yNUx2LJ7yIKJKeUQu0hz9WiZvPt63NtwqRW8vJ++JRQA1ZQ73zjPUASofWub1DNeQx82IFAGUvXVN1/D6PJzoif2sRvsxoONWJtbYsyMPf80Kdd6oErY4w0ZdwY7s1QvYZM9G5MhefSF7VUT2zDjjDO6bRw/zewW1Q6NULtXUydJEK9C8m28+tCgfKXmp8YeVgPj09u1Z6Iv3x+XihE6ePbgn8ScWqaK/yKx8HtXLTUhEuUhfqzYoMspHaDZiGhzRPhbN06FakChzVRgyuKoViWqLooSv+D6/P5kxNZ/LI6uiJo/+k4zOZRJRqPenma8p/sGUe87a4sdx08vRYZ3PKG5wVmJtos+xYODm+2HRUIfFMYv1rSJpLkdk6xW1fpJFC8NPt7xHdS1NQ0ZyEZ686hs8fOkPOKEnJ3kfvzAFL9z9Kb54dRry93JBjiWoVm/1ar5tizNs2GiQsNO4NupvGlfW7FVC9rb/sR3znp+HFoNbYOh9Q9mxvn25uILEFmZQbfqoUbzrWmUZsJIS4I03eCr46aeBJk2qf9t33QW8+ioXbJD/norBLVuiR6PGWJO7DwFNQ5JWiq/SX0a8swJrKprj59Leer0eU+LKujklYqWLG6SAQDUxVoQesjZPVcOaFatW2/q58iTxU66lrxOmP5D1a0o0zaSarYx0sn8OWkNE4yTcfp429UarpitKKlqep15XwioyoJ6nH7OYRxE/81pm2xSreaytnOocXYWpstW11XsPBnGgKA4rtrTESb3X4d7zf0FibDkmLwC2rtrFCPJHz/+M68adg3OuOSF8HVLhUqSyZUveJsaGjaMJxVLqkM61USuwI3s26n9kr5IPqNw1uVj//Xrs/HOn4bPWiuhJfPcd8L//cWVuJFCTAWp/NmVKzV+Gyy7j53TsGD5GhGjCOeegQzpPzxZqcZhQfCLbfjjlOySiDFnC1HpHWnrI6kOSPraIhcmyLP1iUUOjMbJu1kxQUp9m0apeDmcyVQ67jmlfrqenONX1TNdTaY26HyKyUvkRmrO+RxRmnBmDXa3Ed1NJXlXjZROpq1RvYTZsVm5AixBxC0UlLT61LE2VLY6J6J75dYDLtICavhKCkEDQhee+OgM/zO/FvqTcMnIGLj5pHgKBAOujS9023nrkW8z+cWlkccbgweFjNmwcYdjWK/UDNtmz8beO7LU6vhXOeuMs9L1ONJM3gYJkBQWHdnmq6xs2rPIIoBWoLGrnTm7ubIXM+Hj8eMmluKYPv+c3SoZhsy8Tma4i3JP6s57G3ZlKhFCkF3VbFhPpE2PeAynY+e1Z2D83VJNlmCuhpjlVUYWyr2sFTOMGE2VzZE/J6YZMlUPE1CqqGDpDzXQ6rMepVRqlS5Vr6upe9r/QecaoncWWKuqIcD98nhbxmAFhgguH9TFxftjrEEnha2q5RkT+jR9PwsTfeSr2slPm48YRs3gvZIFPx/8abitDzZ4JdgrXRl3ArtmrF7DJng0jKiqAA7x7Q429R+pAoJHZJRP9b+yPTiM6hY09/DBPv77zTvh59B7y11/AJ5/giKASpxgGl9OJ9qnpzLbEH3Tj4YIx7PhF8fPQNW4X296ekWFoN6ana/UnIX4SNyj3IKXbWmQcuyA8jGbOMmqR12FRL4XUqRuGukF1X5mopnf1ZUXqkvNBE8XS1xT1fopS1nyOwexZeV0sPw70ujnNFNUL1eYd6jHjkwu9IFaRwrB70jdV1hohx2V53IFPpg/G6z+exPZGHbsc5x23RB/dviEH+3blG68pyZ4d2bNho8HCJns2rJW45MVVWZ7zSIOiGjKyd4h1RsQRSSxBrXWtxInkiUciDHNrtZrA3KnDjKVLI3fsSIiO0knZgor2+LJkAJwODV1GZAMensaV4goZODNH5CQdiG6Wi/hOW0IcQ/5lKyEslaQZYklKT1w5HrqoWc0RgQSyaaYLKdez6mHLCZsgeWI9M72JKtfQbbEX7UicYcF99AikSjhVZasSGQ2FLE23KeYZon2CLIYdoz1V6axewzzPDGnbIlXFqgWMFSJFNTQNP87rhWc+Ox3rdjTGz/N7GIbLy5Ref2QYSUokUiuRRN2GjaMNppI/jIeNWoEt0LBhBCkbCFR0VtP8ZW2nkql7BpHOStK4OctzEBUfheSsZLiijGax1Cd3yBCgh/GzUE+1du7MhRqU5o2NrfktEokkm5evvrIeJ4sXUv6S1x/17TUHajqqHUo04OmCkTgpei0ymhYDJwLb0jJ1cYNBLEE70j5EEhnVF8/vQLA8Cq4YbygiqPI+c6TPfA0ZQdMjhCKdKcQTBjNjc5RQWV9Ps1pcL+SPZ2FKrKwZWxpEk+wAymMc2NLBY3kdlVqFGzqbLVqMLc/UeWHHBCkLpaTp+Ss96+R64phhHjMFNL8uoXsxlPXVJFWl1/JpmLm8M2av6IigLrfWkBhbht++nI/k1Hh0HdAOXVbN4dchM2UifDZsHG3YPnv1AjbZsxGZ7NUldvFUJsvDVuL4/8U5X6BgWwGu/vNqtBzS0jBGIg0rokcgHkvWKIfTTIBUv5Tx/uEHYOTI8PHhw4HUVH4P5H6RmGgc75CRjn7Nm2NpdjaCmoaDWhxe2XYqHpn/LYr/iEL+CbzVh8EAWWEVYebIGlC6ozn2TBmGmEb70eLsnw0RQZ1gyXUkb6l2ezQ+IWJ7NGW+Whenm0ErkUC95k+xTFEJn1zTG+PAxi5uaDJdqr73q/vSUNvcQs18jnwOZoJZ3XZp5o4X8pjaQo2da5FgjtQuLWJrNRPkPStzQ0QPOP/4vzBq6HL8992D2JqdyYQb4xwLcSwNHsv+b8NGHeBwau9ssldbsNO4NqzFGXVdr7d7d7UMlVmrtDgPEppW3iuUgoSyza5EdYkepYJVT74//wQ++4xv33kn8NJL1uelpADbt/MIn5noSTx1xqlIjI6Gi0zdNAdyNqYBvwDbUzPh0JyhVmT0P6VOjX4axgSZckV7UZGfhpLtLREoi9bTpeZoHFtHpjNN7c5CkT3OytTWZbL1mjrf0E5NPV8sRybS6n0bag9N50jI8YpYJ3a2i8Ku1u7w9331Oqa6Pn1tq64WooWaZcTNYn3DMXNaSRC1MGpX3fSToaOHiURazY1QiOlx+XBSn/VITyrBszd9i97tt7PjLXM3s5+lPa0FTDZs2GgYsMmeDevIXl2TPRnZq4Ls3bzqZjxQ/ABSWqdEnPPii0CrVsDkyZHLFInARQJ55T33XGifbomsW8ghpVcvICkp9LKZEYnkSbRNT8P3V1yC87rz5vStDvCaye3pGYh2VeDYeNElgT7n1fo9ajEm/3ppjIirA4imiN6on9D+uvfhivXy+ZxHhq+jRAjVfV1wwEyUHUZTZtpW2ZNi7cJtU1QFhxgXpFrT25yZxQyOyGsqx4xzLIQRYm0DrK7ltDgmV9IjjSEDZH3JSKbIorbPfF1LmI/XNLKnpr0Vkujzu3HPm2OwbFMLxMX48Oi1P+G8QcuQ5ediq1+3R7ohGzaOMGw1br2ATfZsGJGTc0hdK+qyVRpFlCz9z5Sl6GFVWzd3LtCiBa/vM0f+JE46Cfj119B+69a8/OmWW4DTT+f6kaq4MRFD8vezQovkZDx15mlIj4pBq1weQsxploLvmz6PtxtPQI/oHeFtzwKKWbE6BiCp40a4PRUhUYLazss0V7ZP46+jss/GyRxYM5oiq/1pYTFftiyTc5R2cLoowWilZ6gD1J+PUGzEFQeZSCN8jkW7NObLZXpxrUyWw+aYjaBD7dLC5lmZvJpTuJXBfG2rtHCkDzkrUqjsl5RH4+F3R+L3vzrC5dJw3flzgcuBHZ5kfPXFUnz0zI/47IWfsXE5j/rZsHFUYAs06gVssmfDmuz9TSJ71cH11wNffw1MmBA+1q8fr+0jwibFv2a0a8f7x5PJMoGcLCii98QTvFvG669XnZGm5gXnn8/bsEXCJf16o3UeJ3vrE5pira853I4gnmv0KWKcFXqbL70OT43WqWMUuRJ/2eW5maI9W+g88zrmiKHhXYEie45KInvm+aYoHds1KIpD0TEt0jUUaXC3JV4M/a0MGblBMUerPLJnfkeLFEWsRpRQsmPdJqUmkT2JsIid9fnVRhWt1Xx+J/7vs2H44OeB/NjpQMydAeTvLcCkl6dg4v/9hNtOexr3nvMCDuYVV/+6NmwcKkisdDgPG7UCm+zZMELmI2vSH+xIkj1iSRGw8ZeN+HzU51jwsmjyHgEdOgDnnQfExISPUYSOlLJkxVLJpfDgg9zFgkQZFOkjcSORwGuvrfqpEF8dOpQLNUQnNEtcPbAvOhzghsrbMzLxv9zR2OtPQtuofbgn7UdjhEyJqIVFz0RdXfbUU7D540tRsLZzaExG9tR9c+2fIZJnipaJtfWooRphtIq4mddXomNqZC9MREH3qKiIy6LpOkr6Uj9HaV9G9xqsRmRPjXRa3bM+rxrRPoEwCmZKs8qH3oauMlPlylCN1mp0hS9+74edryQD5cDyVWRd5EDAH0SQ2rgBWL1wMx668GUE/OKXwYYNG/9o2GpcG/UzskctKAiUY42AvSv2Yv0P6xGdXH1LCTVII1EdXks1fxMnclJIdi3xXChbbXzxBRdsVBbESQgGEX8gX6/ZO6jF4/7ci/B+07dwacqfmFHaDXOKOvNSOKdCpGR0TipzRU2aJ4Vah2jw5nO/RF2JS5G9gLIvzjV8/dP3HdwXTnIMWlukktlTkeeqggsp+4XFvbHoGCdcskSQRavUa9AcFyd8C4fGwBkkHz6TWsJhIlNsXYqwhRM+2VpOX9t8feWeDccizjPLmi00gzJ6aKHwrTKVW9kvLL1WEXr2qqQxWvOhyfwiYAPwqXOAHs11uwLwB1yM9G1euRMLpq7EkOG9ra9tw0ZtwLZeqRewI3s2rMleXUb26A+8GpG9DsM74Kw3z0LPy3pWa9nvv+fp2EhCDVLdLl8e+Xy3mztY1JToEciCpcps3ebN3BA4JQUjjz+ekZY/Szvh44KhbPipRp8j1VUc8tUTka9I9XzpfZai/WUfo8mxf4bGLKKA8lx9naoie+aavQi1dIgU2VPvlV1TEDS9xlDM0a1bBHOyuI7BZoWiVupzEY+wWj9zZDFiZM/qmPL81IidObqn1x2aYHmsCqKnXitSFNB0vHPFXngQRG5BPHKcXCWUEFeO1+/5Emcfu0q/kZnfLrJez4aN2oJds1cvYJM9G8ZWaTLPWJeRPVIzyNYUldTsNe7RGP1v6I92p7ar1rJz5gCLFlnX2G3dCrRpA5xwAvfEqwqMWxxCBozO+fzzCOrd9ev5zw4dcNGAXjpR+b+8s7GpojEauQtxf+YPPFIlauUs6/CE+tbpCSCmUZ6xRk6p0YNljZ65Ji+8Zq/SGj4LZa28Nz0aJpTDVjV7Dim4Mdf1VVJnpw87Q+epAzzbG153p3OpSDV7YfdgrNmTt2TJ4SMOWEQ6atIurZpze1RwgdOqqGbcVFLTcPrAdWjZuAC3jJmDO8fOhMftx+7NEWTkNmzUFmw1br2ATfZshCAZiMdTt63SZAqXjJ1r0fWf1LOPPQa8/751mjYujl9u7drK1/nyS94VY9Kkmt8DddS46CJuBxOR7HXujNbpqbjpOF5kX65F4a49l2FWcWc8n3sWj4KpEThzHZ7SoUJG1vxlMShY08UQBdSjbiJVaa22NUXdAlVE9oQa17C+X1Xn8qidwazYSmkbBDL3BNB9aQUa7/aHR8qsonHy2ipYnZyS7qUImMn3T43WVR3ZMx2LhIiRPYtoXXUie5Udszje3cfJ3kpPU33s6xm98M73gxEIOnDawPX4v1u/h+/AFvzrpMdw91nP4ts3fkPxwdKqnpkNGzb+hrDJno3wFG5dt0qTZK8yxQRpOObvQv6mfAT91StwJ8sUUtRaZajp6VInjB07eM/cykBzyXfvwgtRY1x8MefRlg1KJNnr1In9uP3EwXjkrGFIi4vFel8zXL/neuT6kxnToAiWHsyJENnjdWaA3xuNjR9eiV1Tz0Dp3sZsrn6qXEt/clWrcStX55oUq6ZIoozaOSpV4/I1kguCaLwngMSDweopaM3XFvOs1jacp9beaVXMMx9TYYjW1YLy9hAjex7Nz9K4hJUU2Qs9KXwzsxfGvXkWDhbHoGNWLp676TPElc7Hqnkb8fa4L3DNgHHYtlYYmtuwURuQYqVDetT1zf9zYJM9GyFI75G69tgjxiXDbRFAooH3j38fr3R4BUXZRbVyWeqVW51A4ujRvBXaofDhESN4Vw2ybKmK7BExGtuvJ54ddTocFB1TonfHx61BHLyVqnHZZ3wQcEd7kdhmK2IycvXonC46UGrqIM8NmOrpqqjZM6hzzdG1aqpxrSJ7+5q4sLGzG/sbuw4jsmdRsxcpiiefB3s9axjZs1De1qg+T9xrbUT2Ovv2IhoB5DvjsMuZHDZ12YbmuO2F0di4MwPJCeV46l+/YHDPbWyJovxiPDTmJfgqIphO2rBRU9hp3HoBm+zZCDcyri9kr5LInrfIy7pmRCVEIaFJ5a3SzFi4ELjqqshCDcJm3mWqWjV4NXk/ogBMgtXt0iKS7HXsaBhKiBZtz8TjX+lT8FarCXi42dehfKTJK4/1o2UX5I+mJ01Hu4s/QVzTvXpkL1INn/Sqk3VwZl+9sEifOp8ZXKtP2HRv1fLZ43MKU53Y0caDgnQXj9odUmTPdL+Kz16V9XkCVj571f4nN/9yVFbHZ141YmTP4kNQmdvTyyNzKz3NQkpf0/x9eQm4e/woTFvQAfsL4rFyEw93Uz/dvD0F+OOHxTiw7yCKC+y0ro3DBLMsOoyHjVqBTfZshEf2asHI+EhH9mKSY3Drhltxf+H9cEVVs8mtAHWy+OAD4IUXrDUqJ54ItG8f4l6RQD1vu3YFpk/HIWHZMuDttxVRSkFByBhQQZuMNLiUD/P5pR0Q0BwYlfIXLkidZ6nGNdTzBQGXxwcnDQYtIntqJM/CZ89YkxfqlWs5P6IaV/jhKdGxiNdQFbv6GtXroFHtyF4Eha5xnkKSZL1fsIapK/NakRS6hsioVP1GiOzJw+b7E+glxBnLKYWrexMqa4up3goXnp94Am7/v5EoLpUmlBqaZhzEi7e8j4va34ExWbfgrlOfwMJfK5Gp27Bho97DJns2jK0eCNROoi5BeU5CVlaVUytrkxYJN97IhRLPPBM+FhXFe92SRmX+/MrXofENG4BXXqnxLWD1aqBPHy4aIbNmtpCMZsbGGuamxMXgrJ6d9T/Wv0rb4aXc4Wz7oabfomfcdh6tk4pWcz2fqa6uYH0X5P41wDKyxwJf5hq8CJE8ff3KIm5sfc2yd27Iuy88akeOeUkHAvB4Q1E1RlCtFLRhx9Qet9XsoGFR6xcWWVPv3XzcjJr8Wtbod9hirkL0oqhez8drb5dHVeNLmwYUFMXpu2cMXo+3x32N4UOW6Yx43aLNePj8l/DTuzNqcJ82bAjYadx6AZvs2Qgne3Ud2ZNkr5LI3uGAOCQZJEcSYjz/PCdgV1xR+Tp3382FGh9/XPN76NaN1/1RCzVWJyjJnqjXM+P+M05AVnoqnIJwTNh/MqYd7IEoZwAvZX2AVBSHFK5q5EpE1iRJKs1uhp3TzkDOgiHw5qVb1NRZq2sjRv6qqqUzR+nEeoL/Gev8lAhUfKGGAfMrMPAPYcGjRvbkOTKCaaizixD5UhHBe8/okxfyzzM/N55INalqw65RxYeUWZVb7XGtUsLYpSKH+evtd8Yj25kUgRuGRwMlenTIgccdxE3nL8B/bpiB+FgvS+0SXrt7IvL2HKj8edmwYYZN9uoF7A4aNuoX2fN6Q+nkSiJ7i15fhE1TNqHHJT3Q/cLutXoLpixqRNDtEeE7VFA6mSKIDOvWWdbrSaTGx+KL68fig7lL8M4fi+BHEA/suQjtYvaibfQ+PNd6Iq7fcj00zck/92Vpl4j0MSKoAfHNs5HSaS1i0vbDk3LA2OFCBN70c4nsMENjpcWYYdy0LyOtDkHMNGM3DLlL84k/GAJsqjzX4YA7qKE8xgGvFMyI0jOHRYcLAwwyX+WwvraITqoeiWItasNpjtix18C0FuvSoefBxfmWNXRViyn0J2WeSufLVK68TjU++HpW8L/hFdJfT7RHC7uFCCaRz310AtZvy8B15y3EsX12oH1WHp5573is2dwYwWAQ7//vKzTJSofT5USfk7qj8zHtDim6bqMBgX1ZOETSZpsq1xpssmejRi3Kjjhk5wxqZJuZGXna/F3Y8OMGtBxSuT3L4WD//tCtWIoqLOr9KA1cXehEj7BmDf9JRYARkBQbg9uGDUGiJwrP/fIHShGDO7Zdic87vIQhiRswJGED/izqbBmtI17E3jY1IOuUKSF+oUbq5EH9XNHGTO7LcUWvwKNknPnISJ5UDUdUyAp+aXgbN0XaClJcmHuSy0C2wqJsSu9c8zpqTaKxd69pXz2unsfIVjD8GIK6h6Hu3yeLyFUCqBCz0L2YIhWVRNiM9XjKnCo+/HoJssdSuJKNm9evlDQ68MPs7li7ORMPXDsTzTKL8Ny/p+DTn3rhs196Ytonc+ASL8qHj3yNjv3a4r9f3I6M5nXoy2nDho0qYadxbXCUloYEAnVJ9tR6vUoiBgNuHsBapbU/o32t38K0acDgwUDPnryEbsKEyudv3AiMHAlccMGhXY9e9gf/OBMLcEylZE/i3H7dkBDtYX+8myua4KGdY3HntivwZ3Hn0CRTlwihkTD48MnxYNClE0HjuaLWLqw2Th2XCU0tNN/cZUL9ZxTMJ1gV8ZC1dgpZCZtprsczDulRMfW2GUFjZMWUKpI1gep9VfeY+oR0MsxnGKOXkertIqluLeZG+pvQNMQEKtDJt4/trvA0j9xzt7JInHg9Nm5Px7+eGIHf57eFy6nh4rOWo01z6q7jQMAfREBEDHM3rcN7N9wE/6K7geJtkde10WChacHDetioHdiRPRtG2xVqI0EKhXper9diUAv2qE0UFvI6vVWrgFtvBV57jWeU580D7rgj8nmUEfvpJ/4ZSrdf01LDh+7z4/WCm/AHumN25w5V1vanxMfizSvPxY0ffItSrw9TC3obIlMMarROqdmTPnJ0uLwgGbtnDUNUfBFanTSNkzolsicXNKRALSN74ZEzQ12bem/yfszpSlhE5PRzRIRRnSMubnjOgtjo0bhI5yl2DkbSZriD8HvS90zRPvmBZK51NCNSpE1/nZQXtqZROYeDdc1wI8h64ea4kyKniNVrWF1HpHhLy6Pw3AfH4681zZGRUorNOzNMBZvAQzfOxJ59Cche70PWnmFAt4eAdldb36ONhgn2jfIQ07F2zV6twY7s2TB2z6D2EnVZg7NNRAeoUe1RKhGUAc3ERCA5GTj9dOC224BXX+X1e9TLtiozZuq3SwrbQ9GUPDB6A/piMe6Lf63aPYn7tm6OX++5BucP6MEPiAhWY3cBnmv9EZLcJVBZieEtU+z7y+JRvCsLBZs7wVucYAyByXPVUjplEV6TxyeqfW3lvpLYNawRdj9qTZqyRvelXnRbWoHYEllMaLo95Zg5cmZIm6r3rx8LRd30e5A/1ZSp6Z7UxQznRiJTlscipWyVvnNq9LGqNSWCQfQWKdxlqgo30mclEV5zGpmJacJr+WYsbIcvp/bgkVsx1ekIYuzwVYiPrcDz7w/B+A/6Av3GAwdFOYINGxK2QKNewCZ7Noxkr5pk44iTPeptFgG+Uh+2ztiK/M2UVjo8vPce8Mgjoc/Sl18G/viDR/lOPZUrZsmEuSrccENEIW2VaJG/An+hP87utVMIIqoHEm2MHtCdR9JY9E7DC60/wpmpy/BC24/gYa0wQlEyM9WIb5qN5sdPR6cxExEdX8yOSc7Bo1YW54pInqRVsnuG1bgWiS2JOjz1HH2aIFuZ+4JonMPvn62ndEwLf/83fjDo6yiXNz53q9SmcS69loYUrJ7itvj3MR+zqs0z58AN56tvwyJ0aiLB+joq4VPXdToVstcizCrG8FSZIMXird/KbsZ8nohiNskswXEDtuPNz/uz/ezNOdiyeCWKN0xGzrbciGvYaICwTZXrBWyyZ8OYxq1r25WtW6ske7lrc/HRyR/h/aHvH/blqNaOTJFJXEEgGxS69MqVfP/xx4EuXfi4PFYVDh6s4U2sWcM/k+lCNcxcNEtNUj7PHXh05xiUBqIwKGkjHsz6WhcRyOyr+lFOJCqj2wpEpRboY1Itq0bmZLBLDfhZRe50gmiOuIkT1MigZmltErqvVb2jsLGTG94YhYDIdUKLmCJrjpAKWFmzEpoVglWaSYpLDAbVEeapkPcrTYzN92tGBGWspULXKuKhaUj2l6Cdf7/RX0+jOsrwZdhrb/UhWkkkhc7RWDSQ75914gbkF8Ri+TreeSM/5yAOLhyPTz6NxeWdbsd/Rj6JfTvzQgtU2JYtNmzUJWyyZ8Oogq1rsleNyJ6/3I/0Tunscbigp0sRvJtu4t56H33EU7v9ecCCqXCpbo8cUSi9Wy5s3yKBooSkb6E6v2pDKHG1Ll3xzTdAv35AbjWDI2kJcRjWo70eXNpQ3gz3bL0MQc2B8zPn4/Ims9hxPUolI1gKaZIkzPv/7Z0HeBTl1sdPGoEkEFoCoSQQEiAGCBARolcUUKqCoB+CSlcpoqACipcrYkEsgNi4iBhUEAsX5dKUqpfela6AhACBIKGl1/me/7s7szOzs5td2CS76/k9z5DM7DvvnHmz7Jw99VooZaXJBbUtD329QmalNOkSMDTtycyvWyxm2qQFJUxNbd3z8aFLEX50pnGAKn5NJ5UpAE9riVNNrFzLx6AunlGxZL11Tm8VkwMOjRQwWxY4czKHPmnD+tq2rGzkGD4+ilXvlH9NuupnLpKsKMlmhV+tyDkRqmFSDuHiNSmIPj4SxUReppU/W8oEdUk6SUXFPrT7QD1xr7vXHaHxHafStVN7iQ68TLT5/4h2jSIqMMdMMH8f2I3rFrCyx2hblDnQtaLMKCy01Pqzo+xF3hFJY4+NpaE/D3XJZadONcXrjRlD9OqrpiQNUeiYLOGDskdBrpBir3pNVpaplZrDICMEhqBbWghL4v79pmLNjjLhvo4UGlRF0Vd+uRZP757tLX5/vsEK6lzdZJJUKx56a1dWWn06unQQpWzsRcV5laxi12ykFJjmUBdEFjdiPlW1ac7X6xxGn+f6OniGY1QqnGL1MjhPHYtnFCwuYtUMjtlroabZdOPU19Wfb4TRcVuxgDbOb5NvKpu0r1JDnfXU9MeR1D9LjBs6K9nUhrJYFkOSfOi3Y3UoNspkuatZPYcG9TlIv+yMEskaYkxJMWWcv0xH/vMB0dkfiNp/QlSpBtGGTkRXHTSRM14BLMI3szGugbNxGYf70ZaLDPjPjcJ2SBQpJ6DovfeeybhpVHUGtfPWrCFq0sQkWmmKY48eRP36OXjx3FxT7RYi8ktoIWIG164leuEFx+VvUDOUljwzkGav2kJrD/whSp98cbEjRQX+RQ+Hb6MZTRbTsKNP0ZHshibtDu3U1EWOkYQdfoEqBWdRQEgmlZT4kz/lW8XtkVy2RZXdCw1TFBmWM2z1AXJmJUyTIWvW/hRXr27OkOsS+RZLlB3kQ8X+ZmcxNFl1dwxzIWRc1+JCNgf46TVLA3nEK8Ia6KMp0CzZK9osj4VLszS3sFGQpCKSbMaUzZA2SqQ4OlaSKLFAVvZ0b2BbBZ9tlGSRH66Wv5Wxsr3rYH0aM3AP3dYyjTKEO7cOrd0SLax+JpFM52z76ThlnymkmX1fotDwUHrlxXBqGHmAgqubE4sY70f55nej5zKugJU9RqvsobBcRfHnnxarXgVkBNsrL4j2Zo6A5XNqCdE5Aw/YmjWJIiLoH/WI/vEPchoofDMH9aL1vzWlZxeuFJrGjNN9qX7gZaoTcJUu5Ve1WNrUSg1+KSby9SummPu+o4AqWValVLQlRfTt0nQKkWTwuoFZUKMHaaxgPtTojwIKTy+hP+IC6GyUv/E85utq57FhDTNI6FB0Qvm6mnIxBlZCFbZ0OE2konGwnHXihvqnI2MNLB2RRVeodkk2FZAfHQqIsD7HaG57x/VuX4PxJ07XoudmdKN2Lc/RydTqlHGlCvn6FlNJiclZ1DDiOiW2OE9t4y9QbNRlmj4hgw4fr0VZZ67Son/Np75zulF4Q5RyYRimPGA3LmMKEJezcSsyZu/kSdPPGPuFkv/zyH9oSe8llH4wvUzEyMy05KsYsXOnJaHDHkVFli5oNpGzPlq2NFRwL5pq5DpM55YxFFc/THQ5KCY/mnBiMA09NpYuFlcXr2tCxxTrnOlYQHC2Ju5N0Svk8DFZl9EVXbaKp/PV7Wti37RlVDTf+s1KX1ElH8oLJMpB6Jm9uB1YBO0thj57VXVMa/wzywRLn5H7VSOrPvlEpRCpXcW24vNszOnQWBvHE/NTlRZpBT7+FhmcLapsz8Jog10H6lHG1SBqWPcajR+6myLCMsXxLkkpVC88iz5b2ooGPH0fnUmrRnXDcmhOcmta9t8wmjniY6euw3gwcqLSjW6MS2BljzFlA0Dhw4d9RZZekZU9+EvtDVt7UrRKk8rgg+C//zXF6I0da/z60KFEHTqY6uqVZqREB46OHS11/OzF61ELbX/fjAyiBx80zXHZiQozvr4+9NETD1DjOqbklZziypRZGKRY2+6ufoiq+eYIDyUQoViKC9WssJQQXfitHZ1c94DJvaouyizvix2zlU6TIWuxkskKovp1JW5QjVxaxayjHGsRQNs6VabLtf3Mr1s+9E1zqpRDZQ6LJc3HwCplZQG0Qhevpkk/Vimcqlp++nM1ySKSqdWadTJLKUqgwbU0rxlwa76pEPleVbye5R5sXE+uYaPa7JdksT6srHFJCZ05X43mftWWrmebgl2RrIE5U86YvmRs3N6QAgOKRQZvSYlE+9YfpLPHzT2wGe9Gjvm8oY2VPVfByh5jSjcF4eFE/v4V78a1o+zhAdNvUT/q+XFPqhnj+n6cMCqidAoaicAypwcuVj8/S99cey5h+TmKYssOWfZUBAebkkFwHZSGcYaw0BD6bsJjNGdEb41Ltm/YDno/7jN6/5ZPKdA3XxxTVzWRTXj5maF0fn8Hun42mq6mxqiKJFsw7ZvGy7Y5dbav+iDOL9ErhUoGrqq8i4FypMTPkbGVT+gzOnOlup+uekbDudU3pD8mYgSt4+NsnWuZ2FDN05xvWOBY77Z1INYusKSQWhaYzNC7KxkkV9lyESOzVncNCV/4bJZkMb4d9fjcvADKzjE1h06/FESxjS9TZL0rVC0kn9q2SKdaNXKpoNBPWZtju0yxqox3gy/lN7MxroFj9hhLBmxFl12RlT073TNgfSiLfrgyaE2Llmf15AokOoYNI7rrLlNnDXsgqWPpUtM8NWo4oOzpLHtIBFm82KR7w7rnLP5+vtSpRRMKCQigrPxCcexwdiRdL6pCbaql0HtxyTTuyAgqoACrJIzA0GsUeft60eS2euQJbQyfUcCaJgFCn9ShP8G0r1f8rJIo9Cm85twLeaj2F9V5VsqNzvWqUhztJnaojmkVOwMFzDxOo6zKvwgtV5XooJfR6JgtmfQy+PhQQsFZCkCLNL+qdM4vVDeFD0m2XLNywovRPTmLgSVy3ZZoKiz0pWeH7xE/s7ID6NOvTV9okMRRp3YOpZ0wh44wDFPmsGXvJnnzzTepXbt2VLVqVQoPD6cHHniAfv/9d82YvLw8euqpp6hWrVoUEhJCDz74IKWna+PNUlNTqVevXhQUFCTmmThxIhXpTEs///wztW3blgIDAykmJoYWLlzo2uQMexkKZQ0eGLKyFx1dcXKQbUUPwKpXmqKnTuqwq+hduWJRtHXKHmjb9sYUPTVdEmIU/et4Vj0ac+QJU9HlGn/QjOZfkj+yM2SzmmqrGXuUajc9rOhgmmQKNWa3rTr5Q6OnWSVwWLJeNXOadyLOFFHi1jxqcEpnVrVKsoV1SieSjWQQzWaOA7JS4PTtbW0dM8Ko9qC6xItS8sWGW8qmtc/4cur5bss11aXcAxeuzmVrKoJsoNDZioMsNaHDhrVRXlyz6w1lV1DiZdOOSBo/rRPNXZRAr33QgQ7+HiZOSYj7ixbOXEO31/ucqMDZCuSMx3HDLlzz5gRz586lVq1aUbVq1cSWlJREa1BKwQaHDx8Wz+NGjRqJL0fvoSyDHWbMmCHGjVc1S09JSRHHjLbvvvuO3AVW9m6SX375RShyO3bsoHXr1lFhYSF17dqVsrPNvUmJ6Nlnn6UVK1aIPzzGp6WlUT9VbY7i4mKh6BUUFNC2bdvo888/F4rcyy+/rIw5deqUGNOpUyf69ddfxZvt8ccfp59++sl1XSvKqR+tIfBXokdZKXL8deQv0Sot64KpvVdZglg59Me19QyE99tRfRst16wKLctWPdQ2RFNeO+BaiCd0lkc7JSr19/BcPpTdiJ45OoLyS/ypU61D9ErTJeTjY4ovk+O2FOMc7tsXOoUfXf6zubJvSdiQTBYidUKG+WTFUKeK99LvK6jmCLleQqHXJArM18XQ6T2jIr7M4IaNfLX68+R7k+zMpTpmsdbZcCeL8jMG5zuCvbg6o7G6fTleb1egQV1KuWSKUYcPydmkEFsKYomNtmqWLh1/plZXsnRBwi0Xyc+XKCZ4NdHK5kSnv+HYLC+mPN24DRo0EArZ3r17ac+ePdS5c2fq06ePUOqMyMnJoejoaHFO3VLKfe3evZvmzZsnlEk1DRs2pPPnz2u2adOmCcNOD9ThchNY2btJfvzxRxo6dCjFx8dTQkKCUNJgpcObDVy7do0WLFhAs2bNEm+8xMRESk5OFkodFESwdu1aOnLkCC1atIhat24t3iCvvfYaffTRR0IBBP/+97+pcePGNHPmTIqLi6OxY8fSQw89RLNnz3ZdYkRFWtTMteaEdbFKFZvD9n26T7RK2/butjIVB100YJl7+mmiDRvIMEsWFr7hw0svtLxoEVH79kSjRuk6Y/32m+lnKea7P/4w9d0dONDkYnaGZg3C6K1hvYRbVzzKS4j2XI2lCUeHUmGJL/UK30eTon8goa4oQfuW+Dup2Id+X/0wndrcky6nNLUkYEjalmJGCRqmfQNXqFFsnPmc1Mb+dLBNAKXX9dPqaap2a7atjJZrGVkNtZZBlSUSBZWVlmhqa5z+egbxe6LatoHlq7QsW70rV49R2RXd2EZFGVSnJIvyyU9k4hpfT3W/6gxHg2sqNQftya2y4Nmyumg6dRjw+dIWNHF6R7peEEGUd4Fo6wCijfcSZZm75zDeRTla9u6//37q2bMnxcbGUtOmTemNN94QStcO87NWD7xy77zzDg0YMEB4zGyRlZVFjz76KM2fP59q6Nw1fn5+QlFUb99//z31799fXNtd4Jg9FwPlDtRE3TRkyO3dK6x999xzjzKmefPmFBkZSdu3b6cOHTqIny1btqQ6qkzYbt260ejRo8U3kjZt2ogx6jnkMWpzsp78/Hyx6WW7LlvQZNALDNoIlD39a+UF5EQ/slq17MoQUC+A6txZh0KahVjfh4vp04do61ZTizT9pRBT17mzyeKGzFl7oiCpA58P8NSiwg2KOAvwQYB03Xbt7E6AtwXyN7BEuJZd17AB7ZvUpW+e/z9atu0Qfblxr/j8/CU9ml4seoimxn5LGTm+VFiQJxIuRC9d1ecrFKyqdQ9TPipqSNepOD9PPO+VIebx0GGV8izClSuRUC+VkiTyfJZ9JW5PvqZEVORPlF3LPLhQrRRaFELlHCPFUp21q+5vqz9PncRhdEw+17AXr04R049T1sGqBYfSckwz2Mi9K9zUNlyt5nmLSwpoY6UGVED+lC2OFVgrXUZ9d1VzWI23laBR7MR48Zr9TMo9h2vQ8nNvUZ/OR4mOzSI6u4uoRSFRSQV9/vyNQQiSUkC7DCjCf2TpJs41eGZBMbOnnMkeM3jT4GVLSkqimwHeO3jW8Ax+HW2O7IBnPrxvMNa4FRLjMoqLi6VevXpJd9xxh3Js8eLFUqVKlazGtmvXTpo0aZL4/YknnpC6du2qeT07O1s8flavXi32Y2NjpenTp2vGrFq1SozJyckxlGfq1KkG0Vi88cYbb7zxZtouXrwolQW5ublS3bp1b1q+kJAQq2N4ttniwIEDUnBwsOTn5yeFhoaK56QjREVFSbNnz7Y6vmTJEqlFixbifsBdd90ljRs3zuY8o0ePluLi4iR3gy17LgTa/6FDh2jLli3kDkyePJmee+45Zb+kpIQuX74sEkWMvsnh2xPiD86cOSOCWz0JT5bd0+X3ZNk9XX5Plt3T5fdk2dXyV0LpgDKgcuXKItZcDkW6UZS2hirsWfWaNWsmLGvwZC1dupSGDBkiYuVvQakFJ8Hfdty4cSIeH/dTGrm5ufTVV1/Rv/71L3I3WNlzEYihW7lyJf3vf/8TQaIy8N/jzX716lWqXt1UYBQgG1cOCMXPXYjgVyFn66rH6DN4sY8PmSo2YtyMTN1qGWwhZzJ5Ip4su6fL78mye7r8niy7p8vvybKDsnThQkFyRElyJVBeUa0CIEYeiRVz5swRyRXOApfsxYsXRRUMtXsYz/kPP/xQhEkhZk8GyiWSPgYPHkzuBido3CT41gFFDwGZGzduFEkUavBmCwgIoA2qKH+UZkEShxxHgJ8HDx4UbyoZfJPAB4j8bQRj1HPIY242FoFhGIZhvBV4tPJVsevO0KVLF/FshqVQ3m699VaRrIHf1YoeQDJm7969KSzMVGbInWDLngtctzDbLl++XAS6XjD3mA0NDRUWN/wcMWKEcKciaQMK3NNPPy2UNCRnAJRqgVI3aNAgevvtt8UcU6ZMEXPLlrlRo0aJbxKTJk2i4cOHC8Xy22+/pVWrVlXo/TMMwzCMu4QuoZoFEiAzMzPFsxn1aX8ylyiDxa1+/fqiPi6A1w2VMOTfz507J5Q4ZNHCOohnegtdDdTg4GARCqU/fuLECWHxW716NbklFR006OnYCipNTk5WxiCwc8yYMVKNGjWkoKAgqW/fvtL58+c186SkpEg9evSQqlSpItWuXVt6/vnnpcLCQs2YTZs2Sa1btxYJH9HR0ZpruIK8vDwR+IqfnoYny+7p8nuy7J4uvyfL7unye7Ls3iC/EcOHDxeJFnhGhoWFSV26dJHWrl2rvI7kiiFDhij7p06dMnx+Y5wtbCVoTJ48WWrYsKFI1HRHfPBPRSucDMMwDMMwTNnAMXsMwzAMwzBeDCt7DMMwDMMwXgwrewzDMAzDMF4MK3sMwzAMwzBeDCt7XgR68TVq1EgUsWzfvr1VoWY96BuIPr0Yj968+pTxZcuWibIwcscNpKTrycvLEyViMAbp6g8++KBV8Wd3lf3uu+8Wr6k3lLi5EVwpP3opv/DCC+I40vzr1asnSgakpaVp5kA3FNR7QjkfFMtGiR807PYE2XE9/drPmDHDadldLT945ZVXxOuQH03P0Q9z586dbr/2jsruzmuvBv8XIdt7773nEWvviOzuvPZDhw61kq179+5lsvZMBVDR6cCMa/j6669Fuvlnn30mHT58WPTbrV69upSenm44fuvWraJ34Ntvvy0dOXJEmjJlihQQECAdPHhQGfPFF19I06ZNk+bPny/S0ffv3281z6hRo0S6+YYNG6Q9e/ZIHTp0kG6//XaPkB0p9LgWyuDI27Vr15ySvSzkv3r1qnTPPfdI33zzjXTs2DFp+/bt0m233SYlJiZq5unevbuUkJAg7dixQ9q8ebMUExMjDRw40CNkR3mEV199VbP2WVlZTsleFvLL/azXrVsnnTx5Ujp06JA0YsQIqVq1apoeou649o7K7s5rL7Ns2TKxvvXq1bPqV+qua++I7O689ihJgrVVy3b58mWXrz1TMbCy5yXggfrUU08p+6j1gw+bN99803B8//79pV69emmOtW/fXho5cqTVWLkWkV5hwoMdHxjfffedcuzo0aNiLB7y7iy7Iw2t3UF+mV27don7OH36tNjHBzb2d+/erYxZs2aN5OPjI507d86tZbfXdNxZykN+fAGA/OvXr/e4tdfL7glrf/bsWal+/fpCWdXL6u5rb092d197KHt9+vSxeU1XrT1TMbAb1wtA5W/08IPLRsbX11fsb9++3fAcHFePB926dbM53ghcE2479TxwE6B6uaPzVJTsMosXL6batWuLauiovo6+hs5QXvKjqTfcKnJvY4zF72jdI4M5cW29287dZJeB+wpu9jZt2tA777xDRUVFDsldnvLjGp988onohJOQkOBRa28ku7uvPVpboZPQxIkTKT4+3nAOd1370mR397UH6DYRHh5OzZo1o9GjR1NGRoZL156pOLhdmhdw6dIl0Zy5Tp06muPYP3bsmOE5aMlmNF5u9+YIGIum0/qHuDPzVJTs4JFHHqGoqCgRV3bgwAERa4a+xYj3c5TykB9xkZBt4MCBSsN1jMWHshp/f3/Rks+d1t5IdvDMM8+I5uKQd9u2bULRPn/+PM2aNcsh2cta/pUrV9KAAQOE8h8RESH6UONLgSesvT3Z3X3t33rrLbGWkNHWHO669qXJ7u5rj/i8fv36if7uJ0+epJdeekm0HoOShx6wrlh7puJgZY/52/Lkk08qvyNgGQ9GNL7GB12TJk3IHYDltH///gi3oLlz55InYU929IqWadWqlfjSMHLkSNGzUu4HXZF06tRJJPXgwTp//nxxH7Be6B927khpsrvr2sNaNWfOHNq3b5+wBHsSjsrurmsP8AVB/XkI+fA5CGsfPhcZz4bduF4AvrXjm5c+Cxb7devWNTwHx50Zb2sOuBSuXr16w/NUlOxGIKNNbmjtKGUpv6wsnT59Wlhn1JYxjL148aJmPNxByJZzh7W3J7uttYf8KSkpDsle1vIjmxWN0Dt06EALFiwQFgz89IS1tye7O6/95s2bxboiDAQyY8P75/nnnxdZp+689o7I7s5rb0R0dLS4lvx56Iq1ZyoOVva8AHw7TExMpA0bNmjiR7CflJRkeA6Oq8cDPJRtjTcC1wwICNDMAzdoamqqw/NUlOxGyOVZYOFzlLKSX1aWjh8/TuvXrxcxPvo5oGTDoiCzceNGcW1ZaXVX2W2tPWJ/nLGcled7B/Pm5+e7/dqXJrs7rz3i3RBOAXnkDSEWiIH76aef3HrtHZHdndfeiLNnz4qYPfnz0BVrz1QgFZQYwrgYpOIHBgZKCxcuFFlTTz75pEjFv3Dhgnh90KBB0osvvqhJxff395feffddkUE7depUq1T8jIwMkcW6atUqkYWFa2AfKfnq0iuRkZHSxo0bRemVpKQksbm77CdOnBAlECAzMnaXL18uRUdHSx07dqzwtS8oKJB69+4tNWjQQPr11181pRDy8/M1ZRDatGkj7dy5U9qyZYsUGxt7QyUoylv2bdu2iYxEvI4SIYsWLZLCwsKkwYMHV/jaowzG5MmTRTZ5SkqKeH8MGzZMXAMZlu689o7I7s5rb4RR9qo7rr0jsrvz2mdmZkoTJkwQ7x18HiJ7u23btmJt8/LyXLr2TMXAyp4X8cEHHwjFC/WXkJqPWkjqMiNIrVfz7bffSk2bNhXj4+PjhWKkJjk5WShK+g0fFDK5ubnSmDFjpBo1akhBQUFS3759Ncqgu8qempoqFLuaNWuKD03Ui5o4ceIN1dlztfxyuRijbdOmTRqFFh+0ISEhopYaHuz40HZ32ffu3SvKPoSGhkqVK1eW4uLipOnTp2seKhUlP97PeA+jjAVej4iIEMoryseocce1d0R2d157R5U9d1x7R2R357XPycmRunbtKpRPKIGQHbX7ZOXR1WvPlD8++KciLYsMwzAMwzBM2cExewzDMAzDMF4MK3sMwzAMwzBeDCt7DMMwDMMwXgwrewzDMAzDMF4MK3sMwzAMwzBeDCt7DMMwDMMwXgwrewzDMAzDMF4MK3sMw2hAn040c5fbx5XntdB0Hfv6fss3w8KFC6l69erK/iuvvEKtW7emvwPoy4r1dMWa3n333cpc5fHeYBjGdbCyxzAeyNChQ+mBBx6wOl4WylJ5cvvtt9P58+cpNDS0zK4xYcIEqz6hFQX+Vj/88EOZXuPVV191yZouW7aMdu3a5TK5GIYpP/zL8VoMw3gBaLpTXFxM/v6u//hAk/e6detSWRISEiI2b6KwsJACAgIMX6tatapL1rRmzZp0/fr1m56HYZjyhy17DOOlZGdnU7Vq1Wjp0qWa47AkBQcHU2ZmptiHtaZNmzZUuXJluvXWW2n//v2G1sI1a9ZQYmIiBQYG0pYtW+jkyZPUp08fqlOnjlCe2rVrR+vXry/VcgWXKlyrRhhZJrdu3SpciEFBQVSjRg3q1q0bXblyxeZ9Y+7IyEgxvm/fvpSRkaF5Xe/G3b17N917771Uu3ZtYf266667aN++fVb3MW/ePLrvvvvEvHFxcbR9+3Y6ceKEkA3rCask1kTN8uXLqW3btmJto6Ojadq0aVRUVKS4WAFkxPzyfmnnyfLMnTuXevfuLa79xhtv2FwPo/XB32DlypXUrFkzcT8PPfQQ5eTk0Oeffy7kwDo/88wzQqlnGMbzYWWPYbwUKAEDBgyg5ORkzXHs4+EOi09WVpZQYG655Rbau3evUITg5jTixRdfpBkzZtDRo0epVatW4tyePXsKlygUxO7du9P9999PqampLrsHxIZ16dJFyAflCkomrmFLCdm5cyeNGDGCxo4dK87t1KkTvf7663avAaV3yJAhYu4dO3ZQbGysuC9ZGZZ57bXXaPDgwWLe5s2b0yOPPEIjR46kyZMn0549e4TFE9eV2bx5sxg/btw4OnLkiFAWoWjJihmUTPnvATervF/aeTL4W0FRPHjwIA0fPtypdYVi9/7779PXX39NP/74o1CyMdfq1avF9uWXX4rr6r8oMAzjoUgMw3gcQ4YMkfz8/KTg4GDNVrlyZQn/ra9cuSLG7dy5U4xLS0sT++np6ZK/v7/0888/i/158+ZJtWrVknJzc5W5586dK+bYv3+/2N+0aZPY/+GHH0qVKz4+Xvrggw+UfZz3/fffa8aEhoZKycnJ4vdTp04ZXkuWf+DAgdIdd9zh8LpgfM+ePTXHHn74YXFNmalTp0oJCQk25yguLpaqVq0qrVixQnMfU6ZMUfa3b98uji1YsEA5tmTJErH+Ml26dJGmT5+umfvLL7+UIiIi7K6Po+eNHz9eKo2oqChp9uzZmmNYe5x/4sQJ5djIkSOloKAgKTMzUznWrVs3cVyN/u/FMIxnwJY9hvFQYLWClUm9ffrpp5oxt912G8XHxwv3HFi0aBFFRUVRx44dxb5spYO7UCYpKcnwenDxqoFlD1ZAuDThFoQrF/OVhWXPUXD99u3ba47Zuh+Z9PR0euKJJ4RFD25cuL5xb/r7wDrJwHUNWrZsqTmWl5enxLX99ttvIjlCjhHEhuvAigfLmi0cPU//93AGuG6bNGmikR3uW3UsI45dvHjxhq/BMIz7wAkaDOPBbtqYmBjNsbNnz1qNe/zxx+mjjz4Sbli4DIcNGyZivm7kemqg6K1bt47effddIUeVKlWEe7igoEAZg+uYDFHaZAJHwZxlDVy4iOubM2eOUIQRkwgFUX0fQJ0AIa+f0bGSkhLxEwojYu369etndU21cq3H0fP0fw9n0CdzQHajY/K9MAzj2bCyxzBezmOPPUaTJk0SMVqIAYNyIwOrHOKzYJGSFQnErTkCEidQAgaxXrKSgrp5asLCwoRFSub48eN2rVp6YE1DTCCUH0fA/SBuT01p94P7+Pjjj0WcHjhz5gxdunSJbhYkWPz+++9WCrkaKFj6+ENHzmMYhnEGduMyjJeDzEpYiSZOnEhdu3alBg0aKK8hyQAWHLgJoQgiOB+WOkeA2xO11+BqhesRc+ktQZ07d6YPP/xQJHAgiWHUqFE2S4QYgeQHJC6MGTOGDhw4QMeOHRNZqLaUMWSQIuEA9wDFEtfGfmn3AYUXLmAoio8++qhLLIovv/wyffHFF0JRPXz4sJgfCRFTpkxRxsB1CmX2woULSoaxI+cxDMM4Ayt7DPM3ABmqcEvqszYRo7VixQqR0YnyK//85z/prbfecmjOWbNmCUUSJUeQIYuSKLBKqZk5cyY1bNiQ7rzzTqEMwvWLeDFHadq0Ka1du1Yok4g/hHsVZUls1fjr0KEDzZ8/X7hkExISxLmlKUkLFiwQihZkHzRokFAYw8PD6WbBeqC8CWRAWRrINnv2bOEqVq8PXOFYI6y/o+cxDMM4gw+yNJw6g2EYjwOWq2effZbS0tJE4WLm7wEsh+PHjxebK4CbvnHjxsJS+3dpOccw3gBb9hjGi0F8HAr9oj4easKxovf344UXXhAW3GvXrt3UPD169BCZ3QzDeB5s2WMYLwaFd1GMF6VW4P70tjZhjH1Onz6tZD+jE4ev741/vz937hzl5uaK39GhhL84MIznwMoewzAMwzCMF8NuXIZhGIZhGC+GlT2GYRiGYRgvhpU9hmEYhmEYL4aVPYZhGIZhGC+GlT2GYRiGYRgvhpU9hmEYhmEYL4aVPYZhGIZhGC+GlT2GYRiGYRgvhpU9hmEYhmEY8l7+H8YqFAPXOY0SAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from matplotlib import contour\n", "\n", "\n", "for j,vec in enumerate(v_vec):\n", " eff_v=np.array([])\n", " var_str=list(variables.keys())[j]\n", " T=800\n", " res_vec=np.array([])\n", " d_hyd_v_res=np.array([])\n", " n_pipes_v_res=np.array([])\n", " deltap_vec=np.array([])\n", " L_vec=np.array([])\n", " U0_v=np.array([])\n", " inv_v=np.array([])\n", " res_vec=np.array([])\n", " power_v=np.array([])\n", " for n_pipes in n_pipes_vec:\n", " for i,d_hyd in enumerate(d_hyd_v):\n", " mat=materials.Flibe(T)\n", " flibe=Fluid(T=T, Solubility=mat.Solubility, MS=False,D=mat.D, d_Hyd=d_hyd ,mu=mat.mu,rho=mat.rho,U0=1,k=mat.k,\n", " cp=mat.cp)\n", " BB=BreedingBlanket(Q=Q,TBR=1.08,T_out=T_hot_prim,T_in=T_cold_prim,fluid=flibe, c_in=1E-10 )\n", " BB.get_flowrate()\n", " BB.get_cout()\n", " c0=BB.c_out\n", " Steel = Membrane( T=T,\n", " D=1E-6,\n", " # D=1E-4,\n", " thick=2.1E-3,\n", " K_S=4.41E-3,\n", " k_d=1E6,\n", " k_r=1E6,k=21)\n", " Steel_HX = Membrane( T=T,\n", " D=1E-9,\n", " # D=1E-4,\n", " thick=2.1E-3,\n", " K_S=4.41E-3,\n", " k_d=1E6,\n", " k_r=1E6,k=21)\n", " geom_PAV=Geometry(thick=2.1E-3, D=d_hyd,L=15,n_pipes=n_pipes)\n", " geom_HX=Geometry(thick=2.1E-3, D=2.5E-2, L=10, n_pipes=n_pipes_HX)\n", " PAV = Component(c_in=c0, geometry=geom_PAV, fluid=flibe, membrane=Steel)\n", " PAV.fluid.update_attribute('U0',BB.m_coolant/(PAV.fluid.rho*PAV.geometry.n_pipes*PAV.fluid.d_Hyd**2/4)/N_HX)\n", " Q_HX=Q/n_pipes_HX/N_HX\n", " flibe_HX=Fluid(T=T, Solubility=mat.Solubility, MS=False,D=mat.D, d_Hyd=2.5E-2 ,mu=mat.mu,rho=mat.rho,U0=2.5,k=mat.k,cp=mat.cp)\n", " HX=Component(c_in=1, fluid=flibe_HX, membrane=Steel_HX, geometry=geom_HX)\n", " # PAV.get_adimensionals()\n", " d_h_sec=2.5E-2 \n", " V_sec=m_in_sec/(rho_sec*d_h_sec**2*np.pi/4)/N_HX/n_pipes_HX\n", " Re_sec=corr.Re(rho=rho_sec,u=V_sec,mu=mu_sec,L=d_h_sec)\n", " Pr_sec=corr.Pr(c_p=cp_sec,mu=mu_sec,k=k_sec)\n", " h_coeff_sec=corr.get_h_from_Nu(corr.Nu_DittusBoelter(Re_sec, Pr_sec), k_sec,d_h_sec)\n", " R_sec=1/h_coeff_sec\n", " U = HX.get_global_HX_coeff(R_conv_sec=R_sec)\n", " L= corr.get_length_HX(corr.get_deltaTML(T_hot_prim, T_cold_prim, T_cold_sec, T_hot_sec), HX.fluid.d_Hyd, HX.U, Q_HX)\n", " HX.geometry.update_attribute('L',L)\n", " FC=Circuit(components=[BB,PAV, HX],closed=True)\n", " FC.solve_circuit()\n", " out_flux=(PAV.c_in*(1-PAV.eff)*PAV.fluid.U0*PAV.fluid.d_Hyd**2/4)\n", " eff_v=np.append(eff_v, PAV.eff)\n", " d_hyd_v_res=np.append(d_hyd_v_res, d_hyd)\n", " n_pipes_v_res=np.append(n_pipes_v_res, n_pipes)\n", " res_vec=np.append(res_vec, PAV.eff)\n", " L_vec=np.append(L_vec, L)\n", " U0_v=np.append(U0_v, PAV.fluid.U0)\n", " PAV.get_pumping_power() \n", " PAV.get_pressure_drop()\n", " deltap_vec=np.append(deltap_vec, PAV.delta_p/1E5)\n", " FC.get_inventory(flag_an=True)\n", " power_v=np.append(power_v, PAV.pumping_power)\n", " inv_v=np.append(inv_v, FC.inv*9)\n", " eff_v_vec=np.append(eff_v_vec, eff_v)\n", " plt.figure(j)\n", " plt.xlabel('Hydraulic diameter [m]')\n", " plt.ylabel('Number of pipes')\n", " x = np.logspace(np.log10(min(d_hyd_v_res[:])), np.log10(max(d_hyd_v_res[:])), num=100)\n", " y = np.logspace(np.log10(min(n_pipes_v_res[:])), np.log10(max(n_pipes_v_res[:])), num=100)\n", " X, Y = np.meshgrid(x, y)\n", " Z = griddata((d_hyd_v_res, n_pipes_v_res), (res_vec)*100, (X, Y), method='cubic')\n", " dZdX, dZdY = np.gradient(Z, x, y, edge_order=2)\n", " ZL=griddata((d_hyd_v_res, n_pipes_v_res), L_vec, (X, Y), method='cubic')\n", " Z_U0=griddata((d_hyd_v_res, n_pipes_v_res), U0_v, (X, Y), method='cubic')\n", " Zpower=griddata((d_hyd_v_res, n_pipes_v_res), power_v, (X, Y), method='cubic')\n", " Zinv=griddata((d_hyd_v_res, n_pipes_v_res), inv_v, (X, Y), method='cubic')\n", " Z_deltap=griddata((d_hyd_v_res, n_pipes_v_res), deltap_vec, (X, Y), method='cubic')\n", " Z_npipes=griddata((d_hyd_v_res, n_pipes_v_res), n_pipes_v_res, (X, Y), method='cubic')\n", " contour1=plt.contour(X, Y, Z, levels=np.linspace(np.nanmin(Z), np.nanmax(Z), 7), norm=LogNorm(), colors=color_vector[0])\n", " contour3=plt.contour(X, Y, Z_U0, levels=np.linspace(0.8, 2.4, 2), colors=color_vector[5], linestyles='dashed')\n", " # contour7=plt.contour(X, Y, Zpower, levels=np.linspace(1E5, 1E6, 2), colors=color_vector[1], linestyles='dotted')\n", " contour8=plt.contour(X, Y, Zinv, levels=[1E-3,2E-3,1E-2,1E-1,1], colors=color_vector[4], linestyles='dotted')\n", " contour4=plt.contour(X, Y, Z_deltap, levels=np.linspace(1, 5, 5), colors=color_vector[1], linestyles='dotted')\n", " ## add mask for a range of values\n", " mask = (Z_U0 > 2.4) | (Z_U0 < 0.8) | (Zpower > 0.8E6) | (Z_npipes < 2000) | (Z_npipes > 6000) |(Z_deltap>3E5)\n", " Z[mask] = np.nan\n", " scatter=plt.scatter(X,Y, c=Z ) #,norm=colors.LogNorm() \n", " plt.clabel(contour1, inline=True, fontsize=8)\n", " plt.clabel(contour3, inline=True, fontsize=8)\n", " # plt.clabel(contour7, inline=True, fontsize=8)\n", " plt.clabel(contour8, inline=True, fontsize=8)\n", " plt.clabel(contour4, inline=True, fontsize=8)\n", " if scatter:\n", " if np.nanmin(scatter.get_array()) < np.nanmax(scatter.get_array()):\n", " cbar = plt.colorbar(scatter, ticks=np.linspace(np.nanmin(scatter.get_array()), np.nanmax(scatter.get_array()), 5)) # Show color scale for scatter with 5 ticks\n", " cbar.set_label(r'$\\eta$ %')\n", " else:\n", " print(\"Cannot create colorbar: data does not have a valid range of values.\")\n", " line1 = mlines.Line2D([], [], color=color_vector[0], markersize=15, label='eff %')\n", " line3 = mlines.Line2D([], [], color=color_vector[5], markersize=15, label='velocity (m/s)')\n", " # line7= mlines.Line2D([], [], color=color_vector[1], markersize=15, label='Pumping Power (W)')\n", " line8= mlines.Line2D([], [], color=color_vector[4], markersize=15, label='Inventory (g) ')\n", " line9= mlines.Line2D([], [], color=color_vector[1], markersize=15, label='Pressure Drop (bar) ')\n", " plt.legend(handles=[line1, line3, line8,line9], bbox_to_anchor=(0.5, 1.15), loc='center', ncol=4, frameon=False)\n", " plt.gca().spines['top'].set_visible(False)\n", " plt.gca().spines['right'].set_visible(False)\n", " plt.tight_layout()\n", " plt.savefig('feasibility_map_.png', dpi=300)\n", " \n", " plt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "testenv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.11" } }, "nbformat": 4, "nbformat_minor": 2 }