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Abstra
tTwo broad 
lasses of s
ienti�
 impa
t indi
es are proposed andtheir properties � both theoreti
al and pra
ti
al � are dis
ussed.These new 
lasses were obtained as a geometri
 generalization of thewell-known tools applied in s
ientometri
, like Hirs
h's h-index, Woeg-inger's w -index and the Kosmulski's Maxprod. It is shown how to ap-ply the suggested indi
es for estimation of the shape of the 
itationfun
tion or the total number of 
itations of an individual. Addition-ally, a new e�
ient and simple O(log n) algorithm for 
omputing the
h-index is given.Keywords: Hirs
h's h-index, 
itation analysis, s
ienti�
 impa
t indi
es.1 Introdu
tionRe
ently we observe a gradually in
reasing interest in developing obje
tivemethods for 
hara
terizing produ
tivity and quality of a s
ienti�
 resear
h.S
ientometri
ians propose di�erent numeri
al measures to quantify the re-sear
h output and its impa
t both for individual s
ientists and for resear
hteams, institutions et
. Su
h tools 
ould be used in de
iding upon grantallo
ation, employment, so
iety membership or 
hair ele
tions.Traditional measures, su
h as the total number of papers or 
itations, thehighest 
itation 
ount of a paper, mean number of 
itations et
., have beenbroadly 
riti
ized. To 
ompensate some of their drawba
ks Jorge Hirs
h [14℄proposed an index to assess both the produ
tivity and impa
t of a s
ientist.His so-
alled h-index is informally de�ned as follows: An individual has index

h if h of his/her n papers have at least h 
itations ea
h, and the other n− hpapers have no more than h 
itations ea
h.The h-index qui
kly re
eived mu
h attention in the a
ademi
 
ommunityand be
ame very popular. Many authors dis
ussed its properties and restri
-tions, e.g. [1, 13, 21, 17, 5℄. There were also attempts to apply the h-index notonly for individuals' results but for entire journals or dis
iplines as well (see,e.g., [2, 25, 15, 6, 23, 8, 20℄). Moreover, some systemati
 theoreti
al attemptsto model the index behavior were also performed (e.g. [12, 3, 7, 22, 11, 27℄).Later many modi�
ations of the h-index were proposed. For example,Egghe [9, 10℄ suggested the g 
oe�
ient, whi
h is more sensitive to highly
ited papers. On the other hand, the Kosmulski h(2)-index [18℄ 
orrelatesbetter with the maximal number of 
itations than the h-index and is moreappropriate in the �elds in whi
h typi
al number of 
itations per arti
leis high (e.g. in biology, 
hemistry and physi
s). Other indi
ators in
lude2




orre
tions for self-
itations and 
o-authorship [4℄, e�e
ts of aging of papers[16, 24℄ and �eld-spe
i�
 normalization [25℄.In the present paper we observe that some of the well-known indi
es ofs
ienti�
 impa
t have a simple and 
lear geometri
 interpretation 
onne
tedwith the notion of metri
 in appropriate spa
e. Therefore, using di�erentmetri
s we obtain other indi
es. Moreover, through the appropriate 
hoi
e ofthe metri
 we may 
onstru
t an indi
ator whi
h possesses desirable proper-ties. It should be stressed that the suggested method for 
onstru
ting indi
esof s
ienti�
 impa
t is universal, as we do not make any assumptions on thedistribution of 
itations.The paper is organized as follows: �rst we establish some basi
 de�nitionswhi
h are used throughout the paper. In Se
. 3 we propose the 
lass of one-parameter rp-indi
es whi
h might be per
eived as generalizations of the h-index. Then (Se
. 4) we dis
uss their properties and give a formal method ofdetermining their value. Se
. 5 deals with the two-parameter generalizations,
alled lp-indi
es, whi
h 
ould be used to avoid some problems met for one-parameter indi
es.2 Citation fun
tionFrom now on N0 = N ∪ {0} denotes the set of all natural numbers and zero,while R
+
0 = R

+ ∪ {0} stands for the set of all nonnegative real numbers.Let us assume that an individual has published exa
tly n ∈ N papers.Ea
h list of n published papers generates an ordered 
itation sequen
e C =
(c1, c2, . . . , cn) su
h that ci ≥ cj for 1 ≤ i < j ≤ n, where ci ∈ N0 is thenumber of unique 
itations re
eived by the i-th arti
le. The total number of
itations of the s
ientist equals ζC =

∑n

i=1 ci.The following fun
tion, based on the 
itation sequen
e, will be useful.De�nition 1. A 
itation fun
tion based on a 
itation sequen
e C is a map-ping πC : R
+
0 → R

+
0 given by

πC(x) =

{

ci if x ∈ [i − 1, i) , i = 1, 2, . . . , n,
0 if x ≥ n.

(1)An exemplary 
itation fun
tion for sequen
e C = (5, 4, 3, 3, 3, 1) is de-pi
ted in Fig. 1.The 
itation fun
tion has some obvious but interesting properties givenin the lemma below.Lemma 2. Given a 
itation fun
tion πC based on a 
itation sequen
e C =
(c1, c2, . . . , cn) the following holds: 3



πC(x)

x
1

1Figure 1: Citation fun
tion for C = (5, 4, 3, 3, 3, 1).(i) πC is nonin
reasing.(ii) πC is a step fun
tion with steps lo
ated at x ∈ N.(iii) ∀x ∈ R
+
0 πC(x) ∈ N0.(iv) limx→∞ πC(x) = 0.(v) ∫

∞

0
πC(x) dx =

∑n

i=1 ci = ζC < ∞.The proof is straightforward.De�nition 3. Consider a fun
tion f : R
+
0 → R

+
0 . We say that the 
itationfun
tion πC dominates the fun
tion f (denoted πC � f) if πC(x) ≥ f(x) forevery x ∈ R

+
0 .A set of all fun
tions f : R

+
0 → R

+
0 dominated by the 
itation fun
tion

πC will be denoted by LπC
.In next se
tions we 
onsider some families of fun
tions dominated bythe 
itation fun
tion whi
h seem to be useful both in 
hara
terizing somewell-known 
itation indi
es and in de�ning another ones.3 The rp-indi
esRe
ently Woeginger [27℄ noti
ed that �the h-index maximizes the volumeof a s
aled 
opied of an ℓ∞ unit ball under the 
urve, while the w-indexmaximizes the volume of a s
aled 
opied of an ℓ1 unit ball under the 
urve�.Let us formalize and generalize this interesting remark.
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Denotation 4. Given an arbitrary real number 1 ≤ p < ∞ and any realnumber r ≥ 0 let sp,r : R
+
0 → R

+
0 denote a fun
tion

sp,r(x) =

{

(rp − xp)
1

p for x ∈ [0, r) ,
0 for x ≥ r.

(2)Moreover, for p = ∞ we have
s∞,r(x) =

{

r for x ∈ [0, r) ,
0 for x ≥ r.

(3)Example of sp,r for p = 1, 2 and ∞ is shown in Fig. 2. It is easily seenthat for x ∈ [0, r) the graph sp,r(x) determines a part of an ℓp-sphere (
ir
le)with radius r. This is the reason why sp,r is further on 
alled the p-spherefun
tion of radius r.
sp,r(x)

x

r

r

p = ∞

p = 2

p = 1

Figure 2: s1,r, s2,r, s∞,r.One may easily see that the following lemma holds.Lemma 5. For any given x ≥ 0 and �xed radius r ≥ 0, a sphere fun
tion
sp,r(x) is nonde
reasing with respe
t to p.Let us now 
ombine the p-sphere fun
tions with the 
itation fun
tions.De�nition 6. A maximal p-radius of a 
itation fun
tion πC is the greatestnumber r ≥ 0, for whi
h πC still dominates sp,r, i.e.

rp(πC) := max {r : πC � sp,r} . (4)For abbreviation, the p-sphere fun
tion of maximal p-radius sp,rp(πC) willbe denoted by Sp,πC
(or even Sp) and 
alled the maximal p-sphere fun
tionfor πC .Here are some properties of maximal p-radius and maximal p-sphere fun
-tions. These properties will be useful later on for 
al
ulating indi
es of s
i-enti�
 impa
t. 5



Lemma 7. For any given p ≥ 1 and a 
itation fun
tion πC based on a 
ita-tion sequen
e C = (c1, c2, . . . , cn), the following properties hold:(i) rp(πC) ≤ n.(ii) rp(πC) ≤ c1.(iii) If p < ∞ then {x < n : Sp(x) = πC(x)} ⊂ N0.(iv) If p = ∞ then {x < n : Sp(x) = πC(x)} ∩ N0 6= ∅.The proof is left to the reader.Now we will show that the maximal p-radius is a generalization of Hirs
h's
h and Woeginger's w indi
es.Proposition 8. For any 
itation sequen
e C = (c1, c2, . . . , cn)

r∞(πC) = h, (5)where h is the h-index of an individual.Proof. By the de�nition of the h-index
h = max{k ∈ N : ci ≥ k for i = 1, 2, . . . , k} (6)

= max{k ∈ N : ck ≥ k}.Assume that c1 > 0. Otherwise trivially r∞(πC) = 0 = h.Now we should noti
e that r∞(πC) ∈ N. Conversely, let r∞(πC) = r 6∈ N0.But then either πC has a step at r or πC(x) = r for some x, whi
h 
ontradi
tsLemma 2, or we 
an �nd a number r′ > r su
h that πC � s∞,r′, whi
h deniesthe de�nition of the maximal ∞-radius.Hen
e by applying (4), (3) and (1) we get
r∞(πC) = max {k ∈ N : πC � s∞,k}

= max
{

k ∈ N : πC(k−) ≥ k
}

= max {k ∈ N : ck ≥ k} = h,whi
h proves the proposition.Proposition 9. For any 
itation sequen
e C = (c1, c2, . . . , cn)

r1(πC) = w, (7)where w is the w-index of an individual.6



Proof. By the de�nition of the w-index [27℄
w = max {k ∈ N : ci ≥ k − i + 1 for i = 1, 2, . . . , k} . (8)Let us again assume that c1 > 0. By Lemma 7 there exists j ∈ N0,

j < n for whi
h S1(j) = πC(j). S1(x) = r1(πC) − x for every x ∈ [0, n) and
S1(j) = cj+1 ∈ N. Thus we have r1(πC) − j = cj+1. It implies that r1(π) isalso an integer. Sin
e r1(πC) is the maximal 1-radius of πC then

r1(πC) = max {k ∈ N : k − (i − 1) ≤ πC(i − 1) for i = 1, 2, . . . , k}
= max {k ∈ N : k − i + 1 ≤ ci for i = 1, 2, . . . , k} = w,and the proof is 
omplete.As it was shown above, for p = 1 and p = ∞ the maximal p-radius rp(πC)of a 
itation fun
tion πC redu
es to well-known measures of s
ienti�
 impa
t.However p = 1 and p = ∞ are just boundaries of the set of all possible valuesthat p 
an take. Therefore, for any other 1 < p < ∞ we may also obtain
andidates for s
ienti�
 impa
t indi
es.It 
an be shown that the following sine qua non 
onditions for beinga s
ienti�
 impa
t index hold. These 
onditions are similar to those proposedby Woeginger. Note that he de�ned the index as a fun
tion into N0. We haveextended the 
lass of a

eptable fun
tions.Theorem 10. For any p ≥ 1, the maximal p-radius is a mapping from theset of all possible 
itation fun
tions into R

+
0 satisfying(i) If πC(x) = 0 for every x ∈ R

+
0 then rp(πC) = 0.(ii) Given any two 
itation fun
tions πC and πC′, if πC � πC′ then rp(πC) ≥

rp(πC′).Thus through this simple 
onstru
tion we obtain an in�nite 
lass of s
i-enti�
 impa
t indi
es. Re
alling our geometri
 intuitions, the rp-index 
har-a
terizes the radius of a maximal ℓp-sphere (
ir
le) that is dominated by
πC .One may ask a natural question about the relationship between indi
es
orresponding to di�erent ℓp-spheres. It is given by the following lemma.Lemma 11. For any 1 ≤ p ≤ q and for ea
h 
itation fun
tion πC we have

rq(πC) ≤ rp(πC) ≤ 2rq(πC). (9)7



Sket
h of the proof. The �rst inequality follows easily from Lemma 5. Woeg-inger [27℄ showed the right inequality for p = 1 and q = ∞. As a 
onsequen
e,the inequality is valid for any 1 ≤ p ≤ q.It is worth noting that rp(πC) for p < ∞ satis�es the same Woeginger'saxioms as the w-index, i.e. A2, B, C, D [27℄ and T1 [26℄. However, asmentioned above, we de�ne indi
es on the larger domain than Woeginger.For pra
ti
al appli
ations, a pro
edure for determining the value of s
i-enti�
 impa
t index for any 
itation sequen
e should be 
omputationallye�e
tive. Happily, the following proposition holds. Note the 
onstru
tiveproof.Proposition 12. Given an ordered 
itation sequen
e C = (c1, c2, . . . , cn) the
rp(πC)-index of s
ienti�
 impa
t 
an be 
omputed in linear time with respe
tto n.Proof. By Lemma 7 it follows immediately that one should 
onsider onlya �nite number of points of πC to determine rp(πC). More pre
isely, onlyelements c1, c2, . . . , cn of the 
itation sequen
e C are required for the 
om-putation. The pseudo
ode of the algorithm is given (see Fig. 3). Below weprove its 
orre
tness.Input: p ≥ 1; C = (c1, c2, . . . , cn), su
h that ci ≥ cj for 1 ≤ i < j ≤ nResult: rp(πC)1 r := n;2 for i = 1, 2, . . . , n do3 if sp,r(i − 1) > ci then4 if p = ∞ then5 r := max {i − 1, ci};6 else7 r := ((i − 1)p + cp

i )
1

p ;8 return r as the result;Figure 3: Algorithm for 
omputing rp(πC).The algorithm starts with the initial 
andidate for the output radius
r := r0 = n (as rp(πC) ≤ n by property (i) of Lemma 7). Then it examinesea
h 
onse
utive element of the sequen
e C and redu
es the value of r ifne
essary.Consider the next 
andidate for the output radius r := ri at the i-thiteration. If sp,r(i − 1) ≤ ci = πC(i − 1) then the radius r does not have8



to be adjusted. Otherwise we �nd r′ su
h that sp,r′(i − 1) = ci. There aretwo 
ases: If p = ∞ then sp,r is not 
ontinuous and r′ is 
hosen to be themaximal value of the pair i − 1 and ci, as πC 
an be bounded here eitherby the number of papers or by the number of 
itations. If p < ∞ then r′is 
al
ulated by solving (2) for r. Sin
e r′ < r and cj > ci for j < i hen
e
r := r′ is a new 
andidate for the output radius.After n iterations r is the maximal p-radius of πC . Thus we obtain rp(πC)in linear time with respe
t to n whi
h is our assertion.It is worth noting that the value of r∞ (i.e. the h-index) 
an be determinedeven faster. Please note again the 
onstru
tive proof of the proposition.Proposition 13. Given an ordered 
itation sequen
e C = (c1, c2, . . . , cn),
r∞(πC) 
an be 
omputed in logarithmi
 time with respe
t to n.Informal proof. As previously stated 
omputation is based on the values
c1, c2, . . . , cn. Here we additionally make use of the fa
t that ci ≥ cj for
1 ≤ i < j ≤ n.The pseudo
ode of the algorithm is given below (see Fig. 4). It is a mod-i�
ation of the binary sear
h (binary 
hop) algorithm. We now prove its
orre
tness.Input: C = (c1, c2, . . . , cn), su
h that ci ≥ cj for 1 ≤ i < j ≤ nResult: r∞(πC)1 L := 1;2 R := n;3 repeat4 d := ⌈R−L

2
⌉;5 M := L + d;6 if cM = M or L = R then7 return M as the result;8 else if cM < M then9 R := M − 1;10 else11 L := M ;Figure 4: Algorithm for 
omputing r∞(πC) (the h-index).The algorithm uses an interval of sequen
e indi
es [L, R], whi
h in
ludesthe value we look for. We start with the whole 
itation sequen
e, i.e. [1, n].On every iteration we 
onsider an element M lying in the middle of the in-terval. If cM = M or L = R, then we stop. Otherwise, we redu
e the interval9



either to [L, M − 1] or [M, R] basing on the knowledge whether the resultmay be larger than M or not. This is be
ause if cM < M then r∞(πC) < M ,while if cM ≥ M then r∞(πC) ≥ M . The pro
edure is 
onvergent, be
ausethe size of the interval is always redu
ed by ≥ 1.As the bounding interval is halved in ea
h iteration the running time ofthe algorithm is O(log2 n), so the proposition holds.4 Dis
ussionAlthough Hirs
h [14℄ states that, empiri
ally, the total number of 
itations
ζC is proportional to h2, it is 
lear that without any assumptions on the
itations distribution none of the rp-indi
es of s
ienti�
 impa
t 
an estimate
ζC properly. Indeed, 
onsider a trivial 
ase when C = (c1). Then (∀p ≥
1) rp(πC) = 1 but ζC = c1 
an be arbitrary.Let us re
all that by Lemma 2 the total number of 
itations is equal tothe area below the 
itation fun
tion. Therefore, let us examine the relationbetween ζC and the area below the p-sphere fun
tion.Lemma 14. For any given p ≥ 1 and a 
itation fun
tion πC based on a 
i-tation sequen
e C = (c1, c2, . . . , cn), the following properties hold.(i) ∫

∞

0
sp,r(x) dx ≤ ζC for any sp,r ∈ LπC

.(ii) ∫

∞

0
Sp(x) dx = max

{∫

∞

0
sp,r(x) dx : sp,r ∈ LπC

}.(iii) If p < ∞ then ∫

∞

0
Sp(x) dx = r2

p(πC) 1
p
B

(

1
p
, 1 + 1

p

), where B(·, ·) isthe Euler beta fun
tion.(iv) limp→∞

∫

∞

0
Sp(x) dx = r2

∞
(πC).Proof. If sp,r ∈ LπC

then, by de�nition, ∫

∞

0
sp,r(x)dx ≤

∫

∞

0
πC(x) dx = ζC .Property (ii) follows dire
tly from the de�nition of the maximal p-radius.Now, let us 
onsider the integral ∫

∞

0
Sp(x) dx for any p < ∞. Let r =

rp(πC). We get
∫

∞

0

Sp(x) dx =

∫ r

0

(rp − xp)
1

p dx.By substituting t =
(

x
r

)p we obtain
∫ r

0

(rp − xp)
1

p dx =
r2

p

∫ 1

0

t
1

p
−1(1 − t)

1

p dt

=
r2
p(πC)

p
B

(

1

p
, 1 +

1

p

)

,10



whi
h proves (iii). Point (iv) follows from the limit properties of beta fun
-tion.The lemma shows that the area below the maximal p-sphere fun
tionis the best estimate of ζC among all p-sphere fun
tions dominated by the
itation fun
tion under study. Moreover, this estimate is proportional tothe square of the rp-index, whi
h 
oin
ides with the intuition of Hirs
h. Inparti
ular, we get r2
∞(πC) for the h-index, 1

2
r2
1(πC) for the w-index, π

4
r2
2(πC)for the index 
orresponding to ℓ2-sphere, et
. Unfortunately, rp(πC) givesonly the lower bound of the total number of 
itations.Generally, the problem whi
h p is generally the best to estimate ζC isnontrivial. Our results suggest that p ≃ 2 performs well for many ad ho

itation sequen
es. We state that r2-index is worth of deeper analysis in thefuture. Why? Consider the following intuition. One of the drawba
ks of w(i.e. rp for p = 1) is that it 
an in
lude in its �
ore� too many publi
ationswith low number of 
itations. On the other hand, h (i.e. rp for p = ∞) isvery rigid and in�exible. A paper either has su�
ient number of 
itationsor it is 
ompletely left out of the �
ore�. What is more, the a
tual value of
itations for elements belonging to the �
ore� is unimportant. Hen
e it seemsthat by using 1 < p < ∞ we 
an obtain an index whi
h is more tolerant forpaper 
lose to the �
ore� (but not too tolerant) and index whi
h pays moreattention to papers with signi�
antly high number of 
itations.Another drawba
k of all one-dimensional indi
es is that they do not tellanything about the shape of the original 
itation fun
tion. They 
annotanswer su
h natural questions like: Has the 
itation fun
tion a long tail?Is it �at or peaked? To illustrate the problem better let us 
onsider thefollowing example.ExampleLet us 
onsider three authors whose 
itation sequen
es are given in Table 1.Id 
itations

C1 61, 59, 58, 51, 49, 49, 33, 32, 30, 30, 28, 28, 24, 24, 24, 23, 23, 23, 23, 23, 23,22, 22, 17, 17, 17, 17, 17, 14, 14, 14, 14, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2,2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
C2 29, 29, 28, 27, 27, 27, 26, 26, 26, 26, 25, 25, 24, 24, 24, 24, 23, 23, 23, 23, 22,22, 22, 22, 22, 22, 21, 21, 21, 21, 21, 21, 21, 21, 21, 20, 20, 20, 20, 20, 20, 20,20, 20, 20, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 18, 18, 18, 18, 16,14, 14, 12, 12, 12, 12, 12, 12, 12, 12, 11, 11, 9, 9, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 7,6, 6, 5, 5, 3, 3, 3, 2, 1, 1, 1, 1
C3 99, 96, 95, 81, 78, 75, 69, 63, 57, 56, 51, 48, 43, 43, 40, 37, 31, 27, 26, 24, 24,23, 21, 20, 18, 18, 17, 16, 16, 10, 9, 4, 3, 2, 1, 1Table 1: Citation sequen
es under study.11



The 
orresponding 
itation fun
tions are depi
ted in Fig. 5a.Given 
itation sequen
es were 
hosen so that h = 22 for ea
h author.However, it is easily seen that these 
itation fun
tions di�er signi�
antly inshape. For C2 we get a long tail and we 
ould 
all him a �hard-worker� ora �big produ
er� (Nomen
lature by [19℄ and [8℄), be
ause he published 100arti
les, of whi
h over than 60 gained about 20 
itations. Hen
e it is seenthat the h-index ignores more than half of his publi
ations.Quite di�erent situation represents author C3. He wrote not too manypapers but some of them were very famous. This type is 
alled a �genie� /�perfe
tionist� / �sele
tive s
ientist�.On the other hand, C1 represents a �typi
al� author.The results of an analysis are shown in Table 2. It is seen that the
onsidered rp(πC)-indi
es 
annot e�e
tively dis
riminate a
tual di�eren
esbetween these three authors. Similarly, an attempt to estimate the numberof publi
ations on the basis of those indi
es are not satisfa
tory. The numberof 
itations is underestimated from 1.5 to 4 times. Fig. 6a shows estimatednumber of 
itations as a fun
tion of p.Id n r1 r2 r∞ ζCi

∫

S1

∫

S2

∫

S∞

C1 60 35 26.83 22 957 612.5 565.5 484
C2 100 29 26.68 22 1651 420.5 559.2 484
C3 36 35 30 22 1342 612.5 706.9 484Table 2: rp-indi
es for 
itation sequen
es under study.In next se
tion we propose a wider 
lass of indi
es that may eliminate orat least redu
e some of the drawba
ks of rp-indi
es.5 The lp-indi
esIt is evident that some of the drawba
ks of the rp-indi
es des
ribed above are
aused by symmetry of the p-sphere fun
tions sp. Therefore, here we de�neanother 
lass of fun
tions and 
orresponding indi
es whi
h have the abilityof being mu
h more adaptative to the 
itation fun
tion.Denotation 15. Given an arbitrary 1 ≤ p < ∞, a ≥ 0 and b ≥ 0, let

ep,a,b : R
+
0 → R

+
0 denote a fun
tion
ep,a,b(x) =

{

(

bp −
(

b
a
x
)p) 1

p for x ∈ [0, a) ,
0 for x ≥ a.

(10)12
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(a) (b)Figure 5: Citation fun
tions for exemplary sequen
es from Table 1 and max-imal (a) p-spheres S1, S2, S∞ and (b) p-ellipses E1, E2, E∞.13
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(a) (b)Figure 6: Estimated number of 
itations for exemplary sequen
es from Table1 as a fun
tion of p. 14



Moreover, for p = ∞ we have
e∞,a,b(x) =

{

b for x ∈ [0, a) ,
0 for x ≥ a.

(11)We see that ep,a,b(x) = sp,b(
b
a
x) for every x. Intuitively, for x ∈ [0, a),the graph ep,a,b(x) determines a part of an ℓp-ellipse with semi-axes a and b.Therefore ep,a,b is further on 
alled the p-ellipse fun
tion of size a and b.Next we de�ne a term analogous to the maximal p-radius rp(πC).De�nition 16. A maximal p-size of a 
itation fun
tion πC , denoted lp(πC),is a pair (a, b), a, b ≥ 0, whi
h maximizes the area under ep,a,b and for whi
h

πC still dominates ep,a,b.Please note that su
h de�nition is not stri
t, be
ause there may exist
k > 1 pairs satisfying the above 
ondition. There are several possibilities toavoid this ambiguity. Sele
ting (a, b) su
h that b

a
is the 
losest to 1 tries toresemble the behavior of rp(πC), as in this 
ase equiaxial (or almost equiaxial)ellipse fun
tions would be preferred. Another way is to 
hoose the ⌈k

2
⌉-th pairin the sequen
e ordered by the �rst 
oordinate (the median). This 
ase ismore sensitive to shape of 
itation fun
tion. Please refer to the dis
ussionbelow for further details.For brevity, the p-ellipse fun
tion of maximal p-size ep,lp(πC) will be de-noted by Ep,πC

(or even Ep) and 
alled the maximal p-ellipse fun
tion for
πC .Here are some basi
 properties of maximal p-size and maximal p-ellipsefun
tions.Lemma 17. Given p ≥ 1 and a 
itation fun
tion πC based on a 
itation se-quen
e C = (c1, c2, . . . , cn), let lp(πC) = (a, b). Then the following propertieshold.(i) a ≤ n.(ii) b ≤ c1.(iii) If p < ∞ then {x < n : Ep(x) = πC(x)} ⊂ N0.(iv) If p = ∞ then {x < n : Ep(x) = πC(x)} ∩ N0 6= ∅.The proof is left to the reader.It is easy to see that for any 
itation fun
tion πC

∫

∞

0

Sp(x) dx ≤
∫

∞

0

Ep(x) dx ≤
∫

∞

0

πC(x) dx, (12)15



so by using lp we get a better estimate of ζC than using rp. Moreover, in this
ase, we are able to give an upper bound of the total number of 
itations.Proposition 18. For any given p ≥ 1 and a 
itation fun
tion πC basedon the 
itation sequen
e C = (c1, c2, . . . , cn), let (a, b) = lp(πC). Then thefollowing properties hold:(i) If p < ∞ then ∫

∞

0
Ep(x) dx = a b 1

p
B

(

1
p
, 1 + 1

p

), where B(·, ·) is theEuler beta fun
tion.(ii) limp→∞

∫

∞

0
Ep dx = a b.(iii) If p = ∞ then

∫

∞

0
πC(x) dx ≤ (ln n + 1)

∫

∞

0
Ep(x) dx

≤ (ln a b + 1)
∫

∞

0
Ep(x) dx.(iv) ∫

∞

0
Ep(x) dx ≤ 2

∫

∞

0
E∞(x) dx for any 1 ≤ p < ∞.Proof. The proof of (i), (ii) and (iv) is similar to that of Lemma 11 and 14.Consider property (iii). Of 
ourse, ∫

∞

0
E∞(x) dx = ab. As (a, b) maxi-mizes the area of e∞,a,b ∈ LπC

we have c1 ≤ a b. Indeed, if it does not holdwe would have πC � e∞,1,c1 and ∫

∞

0
e∞,1,c1(x) dx >

∫

∞

0
e∞,a,b(x) dx and weget a 
ontradi
tion. Similarly we may show that

c2 ≤ a b/2,
c3 ≤ a b/3,...
cn ≤ a b/n.Then

∫

∞

0
πC(x) dx =

∑n

i=1 ci

≤ a b
∑n

i=1
1
i

≤ a b (ln n + 1) .Thus we have proved the �rst inequality. Sin
e n 
an not be larger than ab,otherwise for (n, 1) we 
ould get a better dominating fun
tion (in sense ofarea), so (ln n + 1) ≤ (ln ab + 1) and the proposition follows.Considering 
omputational aspe
ts of lp the problem is generally moredi�
ult than in the pre
eding 
ase. To determine the value of the maximal
p-size we need two values (to de�ne an unique ellipse). For p = ∞ thealgorithm has linear 
omplexity and is very easy to implement.16



Unfortunately, for �nite p the upper bound of the 
omputational 
om-plexity is O(n3) (O(n2) pairs, O(n) 
he
k for every pair). The routine is
ompli
ated and will not be in
luded here. The possibility of its improve-ment is an interesting open problem.Let us now go ba
k for a moment to our example.Example (
ont.)Let us 
onsider again 
itation sequen
es given in Table 1. The 
orresponding
itation fun
tions together with p-ellipses are shown in Fig. 5b. The resultsof further analysis in
luding p-sizes 
an be found in Table 3 and Fig. 6b.We 
an see that lp is a better estimate of ζC than rp, espe
ially for C2.Even though l∞ performan
e was the worst of the studied 
oe�
ients in thisexample, it has an important advantage: a 
lear and intuitive interpretation.As using the h-index one 
an state only that the se
ond author has 22 paperswith at least 22 
itations ea
h, applying l∞ we 
an say that the most repre-sentative sample of his papers 
onsists of 62 arti
les that re
eived at least 18
itations ea
h.Please note, that the quotient b/a 
an be thought as a measure of typeof the distribution. For p = ∞ in 
ase of C1 it equals about 0.96, for C2 it is
0.29 and for C3 3.07.Id n l1 l2 l∞ ζC

∫

E1

∫

E2

∫

E∞

C1 60 (34.9,36.6) (30.3,26.1) (23,22) 957 637.9 621.6 506
C2 100 (99.7,27.3) (77.1,22.3) (62,18) 1651 1359.5 1350.9 1116
C3 36 (25.4,81.4) (19.4,54.7) (14,43) 1342 1035.3 834.2 602Table 3: Maximal p-sizes of 
itation sequen
es under study.It is worth noting that lp(πC) 
an be 
onsidered as a generalization ofKosmulski's Maxprod index.Proposition 19. For any 
itation sequen
e C = (c1, c2, . . . , cn) let (a, b) =

l∞(πC). Then
a b = m, (13)where m is the, so 
alled, individual's Maxprod-index [19℄.Proof. By the de�nition of the Maxprod -index

m = max{i · ci : i = 1, 2, . . . , n}. (14)Assume c1 > 0. Otherwise trivially a b = 0 = m. We have ∫

∞

0
e∞,a,b(x) dx =

a b, e∞,a,b ∈ LπC
and (a, b) maximizes the area under e∞,a,b. Then Lemma 17and (11) gives immediately a b = m. 17



As the maximal p-size is a two-dimensional measure, it 
annot be useddire
tly as an index of s
ienti�
 impa
t. Although not re
ommended, dueto loss of information, the maximal p-size 
an be proje
ted into one dimen-sion. We suggest here either using mean length of the axes, eg. l
(1)
p :=

(a + b)/2, or �normalized� diagonal length of the ellipse bounding re
tangle
l
(2)
p :=

√
a2 + b2/

√
2. Both measures in 
ase p = ∞ give more 
redit to some(probably important and in�uential) 
ontributions of �atypi
al� authors likethose represented by C2 and C3 (see Table 4) than the h-index.Id r∞ l∞ l

(1)
∞ l

(2)
∞

C1 22 (23,22) 22.5 22.5
C2 22 (62,18) 40 45.7
C3 22 (14,43) 28.5 32Table 4: Maximal sizes of studied 
itation sequen
es proje
ted to one-dimension.It 
an be easily proved that the proje
ted measures ful�ll requirementsfor s
ienti�
 impa
t indi
es given in Theorem 10.Theorem 20. For any given 
itation fun
tion πC and an arbitrary p ≥ 1,

l
(1)
p (πC) and l

(2)
p (πC) are indi
es of s
ienti�
 impa
t.6 Con
lusionsIn this paper we proposed a geometri
 approa
h to 
onstru
tion of s
ien-ti�
 impa
t indi
es. Using suggested method we have obtained two familiesof indi
es des
ribed by one or two parameters, respe
tively. It was shownthat some well-known indi
es, like Hirs
h's h-index, Woeginger's w-index orKosmulski's Maxprod-index are parti
ular members of the proposed families.The geometri
al ba
kground of our indi
es might be useful in possibleappli
ations be
ause one may 
hoose a parti
ular index basing on its 
leargeometri
 properties.Our general method for 
onstru
ting s
ienti�
 impa
t indi
es was supple-mented by pra
ti
al e�e
tive algorithms for 
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