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Abstract

Two broad classes of scientific impact indices are proposed and
their properties — both theoretical and practical — are discussed.
These new classes were obtained as a geometric generalization of the
well-known tools applied in scientometric, like Hirsch’s h-index, Woeg-
inger’s w-index and the Kosmulski’s Mazprod. 1t is shown how to ap-
ply the suggested indices for estimation of the shape of the citation
function or the total number of citations of an individual. Addition-
ally, a new efficient and simple O(logn) algorithm for computing the
h-index is given.

Keywords: Hirsch’s h-index, citation analysis, scientific impact indices.

1 Introduction

Recently we observe a gradually increasing interest in developing objective
methods for characterizing productivity and quality of a scientific research.
Scientometricians propose different numerical measures to quantify the re-
search output and its impact both for individual scientists and for research
teams, institutions etc. Such tools could be used in deciding upon grant
allocation, employment, society membership or chair elections.

Traditional measures, such as the total number of papers or citations, the
highest citation count of a paper, mean number of citations etc., have been
broadly criticized. To compensate some of their drawbacks Jorge Hirsch [T4]
proposed an index to assess both the productivity and impact of a scientist.
His so-called h-index is informally defined as follows: An individual has index
h if h of his/her n papers have at least h citations each, and the other n —h
papers have no more than h citations each.

The h-index quickly received much attention in the academic community
and became very popular. Many authors discussed its properties and restric-
tions, e.g. [, M3, 211 7, B]. There were also attempts to apply the h-index not
only for individuals’ results but for entire journals or disciplines as well (see,
e.g., |2, 25, M5, 6, 23, 8, 20]). Moreover, some systematic theoretical attempts
to model the index behavior were also performed (e.g. |12, Bl [, 22, [T, 27]).

Later many modifications of the hA-index were proposed. For example,
Egghe [9, 10| suggested the g coefficient, which is more sensitive to highly
cited papers. On the other hand, the Kosmulski h(2)-index [I8] correlates
better with the maximal number of citations than the h-index and is more
appropriate in the fields in which typical number of citations per article
is high (e.g. in biology, chemistry and physics). Other indicators include



corrections for self-citations and co-authorship [, effects of aging of papers
IT6, 24] and field-specific normalization [25].

In the present paper we observe that some of the well-known indices of
scientific impact have a simple and clear geometric interpretation connected
with the notion of metric in appropriate space. Therefore, using different
metrics we obtain other indices. Moreover, through the appropriate choice of
the metric we may construct an indicator which possesses desirable proper-
ties. It should be stressed that the suggested method for constructing indices
of scientific impact is universal, as we do not make any assumptions on the
distribution of citations.

The paper is organized as follows: first we establish some basic definitions
which are used throughout the paper. In Sec. 3 we propose the class of one-
parameter 7,-indices which might be perceived as generalizations of the h-
index. Then (Sec. 4) we discuss their properties and give a formal method of
determining their value. Sec. 5 deals with the two-parameter generalizations,
called [,-indices, which could be used to avoid some problems met for one-
parameter indices.

2 Citation function

From now on Ny = N U {0} denotes the set of all natural numbers and zero,
while Rf = R* U {0} stands for the set of all nonnegative real numbers.

Let us assume that an individual has published exactly n € N papers.
Each list of n published papers generates an ordered citation sequence C' =
(c1,¢2,...,¢,) such that ¢; > ¢; for 1 < i < j < n, where ¢; € Ny is the
number of unique citations received by the i-th article. The total number of
citations of the scientist equals (o = > 1" | ¢;.

The following function, based on the citation sequence, will be useful.

Definition 1. A citation function based on a citation sequence C'is a map-
ping ¢ : Ry — Ry given by

¢ it xrepi—14), +1=1,2,....,n,

An exemplary citation function for sequence C' = (5,4,3,3,3,1) is de-
picted in Fig. [

The citation function has some obvious but interesting properties given
in the lemma below.

Lemma 2. Given a citation function wo based on a citation sequence C' =
(c1,C9,...,¢pn) the following holds:
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Figure 1: Citation function for C' = (5,4, 3,3,3,1).

(i) mo is nonincreasing.
(ii) wo is a step function with steps located at x € N.
(iii) VYo € Ry mo(x) € No.
(iv) lim, o mc(z) = 0.
() [ mole) de = Yy e = o < .
The proof is straightforward.

Definition 3. Consider a function f : Rf — RJ. We say that the citation
function ¢ dominates the function f (denoted mo = f) if mo(x) > f(x) for
every z € R{.

A set of all functions f : Ry — R dominated by the citation function
mc will be denoted by L.

In next sections we consider some families of functions dominated by
the citation function which seem to be useful both in characterizing some
well-known citation indices and in defining another ones.

3 The ry,-indices

Recently Woeginger [27] noticed that “the h-index maximizes the volume
of a scaled copied of an ¢*° unit ball under the curve, while the w-index
maximizes the volume of a scaled copied of an ¢! unit ball under the curve”.
Let us formalize and generalize this interesting remark.



Denotation 4. Given an arbitrary real number 1 < p < co and any real
number r > 0 let s,, : R — R} denote a function

_ ) (P = xp)% for z€0,r),
5par(2) { 0 for = >r. 2)

Moreover, for p = oo we have

o for ze|0,r),
Soor(¥) = { 0 for z>r. (3)

Example of s,, for p = 1, 2 and oo is shown in Fig. It is easily seen
that for x € [0,r) the graph s, ,(z) determines a part of an ¢P-sphere (circle)
with radius r. This is the reason why s,, is further on called the p-sphere
function of radius r.

Sp,r(2) o
p =00
’r",
—p=2
—pr=1
xr

Figure 2: s1,, S2.,, Soor-

One may easily see that the following lemma holds.

Lemma 5. For any given x > 0 and fized radius v > 0, a sphere function
Spr() is nondecreasing with respect to p.

Let us now combine the p-sphere functions with the citation functions.

Definition 6. A maximal p-radius of a citation function 7 is the greatest
number r > 0, for which ¢ still dominates s, ., i.e.

rp(me) i=max{r: mc = sp,}. (4)

For abbreviation, the p-sphere function of maximal p-radius s, (x.) Will
be denoted by S, .. (or even S,) and called the mazimal p-sphere function
for mc.

Here are some properties of maximal p-radius and maximal p-sphere func-
tions. These properties will be useful later on for calculating indices of sci-
entific impact.



Lemma 7. For any given p > 1 and a citation function w¢c based on a cita-
tion sequence C' = (c1, ¢y, ..., Cy), the following properties hold:

(i) rp(mc) < n.

(ii) rp(mc) < ci.
(iii) If p < oo then {x <n: Sy(z) =mc(x)} C No.
(iv) If p= oo then {x <n: Sy(x) =mc(x)} NNy # 0.

The proof is left to the reader.

Now we will show that the maximal p-radius is a generalization of Hirsch’s
h and Woeginger’s w indices.

Proposition 8. For any citation sequence C = (c1,¢a,...,¢y)
roo(ﬂ—C) = ha (5)
where h is the h-index of an individual.

Proof. By the definition of the h-index

h = max{keN: ¢ >kfori=1,2... k} (6)
= max{k € N: ¢; > k}.
Assume that ¢; > 0. Otherwise trivially ro(7¢) = 0 = h.
Now we should notice that ro,(7¢) € N. Conversely, let ro(mc) = 7 & Np.
But then either ¢ has a step at 7 or m¢(z) = r for some x, which contradicts

Lemma[ or we can find a number r’ > r such that 7¢ > s 7, which denies
the definition of the maximal oco-radius.

Hence by applying @), [B) and () we get

roo(me) = max{k € N: 7c = Soo i}
= max{k€eN: mc(k™) >k}
max{k € N: ¢ >k} =h,

which proves the proposition. O

Proposition 9. For any citation sequence C = (c1,¢a,...,¢y)
Tl(ﬁC) = w, (7)

where w 1s the w-index of an individual.



Proof. By the definition of the w-index [27]
w = max{ke€N: ¢ >k—i+1fori=1,2,...,k}. (8)

Let us again assume that ¢; > 0. By Lemma [1 there exists j € Np,
j < n for which S1(j) = nc(j). Si(z) = ri(me) — @ for every = € [0,n) and
S1(j) = ¢j41 € N. Thus we have ri(m¢) — j = ¢j+1. It implies that ry(7) is
also an integer. Since ri(m¢) is the maximal 1-radius of 7 then

ri(me) = max{keN: k—(i—1)<me(i—1)fori=1,2,...,k}
= max{keN: k—i+1<c¢fori=1,2... .k} =w,

and the proof is complete. O

As it was shown above, for p = 1 and p = oo the maximal p-radius r,(7¢)
of a citation function 7o reduces to well-known measures of scientific impact.
However p = 1 and p = oo are just boundaries of the set of all possible values
that p can take. Therefore, for any other 1 < p < oo we may also obtain
candidates for scientific impact indices.

It can be shown that the following sine qua non conditions for being
a scientific impact index hold. These conditions are similar to those proposed
by Woeginger. Note that he defined the index as a function into Ny. We have
extended the class of acceptable functions.

Theorem 10. For any p > 1, the maximal p-radius is a mapping from the
set of all possible citation functions into RS satisfying

(i) If mo(x) = 0 for every x € R{ then r,(7¢) = 0.

(it) Given any two citation functions t¢ and wer, if 1o = wer then ry(we) >
Tp(ﬂ'cl).

Thus through this simple construction we obtain an infinite class of sci-
entific impact indices. Recalling our geometric intuitions, the r,-index char-
acterizes the radius of a maximal ¢(P-sphere (circle) that is dominated by
TC.

One may ask a natural question about the relationship between indices
corresponding to different (P-spheres. It is given by the following lemma.

Lemma 11. For any 1 < p < q and for each citation function 7o we have

rq(me) < rp(mo) < 2rg(mo). (9)



Sketch of the proof. The first inequality follows easily from LemmaBl Woeg-
inger [27] showed the right inequality for p = 1 and ¢ = co. As a consequence,
the inequality is valid for any 1 < p < gq. O

It is worth noting that 7,(m¢) for p < oo satisfies the same Woeginger’s
axioms as the w-index, i.e. A2, B, C, D [27] and T1 [26]. However, as
mentioned above, we define indices on the larger domain than Woeginger.

For practical applications, a procedure for determining the value of sci-
entific impact index for any citation sequence should be computationally
effective. Happily, the following proposition holds. Note the constructive
proof.

Proposition 12. Given an ordered citation sequence C' = (c1,¢a, ..., ¢y,) the
rp(me)-indes of scientific impact can be computed in linear time with respect
to n.

Proof. By Lemma [0 it follows immediately that one should consider only
a finite number of points of 7 to determine r,(mc). More precisely, only
elements ¢y, co, ..., c, of the citation sequence C' are required for the com-
putation. The pseudocode of the algorithm is given (see Fig. B). Below we
prove its correctness.

Input: p > 1; C = (c1,¢2,...,¢,), such that ¢; > ¢; for 1 <i<j<n
Result: r,(m¢)

ri=n;
fori=1,2,...,ndo
if s,,.(1 —1) > ¢; then
if p = oo then
r:=max{i—1,¢};
else
ri= (=1 + &)

return r as the result;

0~ O U = W N =

Figure 3: Algorithm for computing 7,(7¢).

The algorithm starts with the initial candidate for the output radius
r:=r19=mn (as rp(mc) < n by property (i) of Lemma[d). Then it examines
each consecutive element of the sequence C' and reduces the value of r if
necessary.

Consider the next candidate for the output radius r := r; at the i-th
iteration. If s,,(i — 1) < ¢; = mo(i — 1) then the radius r does not have
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to be adjusted. Otherwise we find 7’ such that s,,/(i — 1) = ¢;. There are
two cases: If p = oo then s,, is not continuous and 7’ is chosen to be the
maximal value of the pair ¢ — 1 and ¢;, as m¢ can be bounded here either
by the number of papers or by the number of citations. If p < oo then 7’/
is calculated by solving (@) for r. Since " < r and ¢; > ¢; for j < i hence
r:= 1’ is a new candidate for the output radius.

After n iterations r is the maximal p-radius of 7. Thus we obtain r,(7¢)
in linear time with respect to n which is our assertion. O

It is worth noting that the value of 7, (i.e. the h-index) can be determined
even faster. Please note again the constructive proof of the proposition.

Proposition 13. Given an ordered citation sequence C' = (c1,¢a,...,¢y),
Too(Te) can be computed in logarithmic time with respect to n.

Informal proof. As previously stated computation is based on the values
c1,C2,...,Cp. Here we additionally make use of the fact that ¢; > ¢; for
1<i<g<n

The pseudocode of the algorithm is given below (see Fig. H). It is a mod-
ification of the binary search (binary chop) algorithm. We now prove its
correctness.

Input: C = (c1,¢2,...,¢,), such that ¢; > ¢;for 1 <i<j<n
Result: 7 (7¢)

L:=1;
R :=n;
repeat
d = [fFE];
M :=L+d;
if cpy = M or L = R then
return M as the result;
else if ¢;; < M then
R:=M-1;
else
L = M,

© 00 N O Ut = W N

[
jen)

—
—

Figure 4: Algorithm for computing 7 (7¢) (the h-index).

The algorithm uses an interval of sequence indices [L, R], which includes
the value we look for. We start with the whole citation sequence, i.e. [1,n].
On every iteration we consider an element M lying in the middle of the in-
terval. If ¢y = M or L = R, then we stop. Otherwise, we reduce the interval



either to [L, M — 1] or [M, R] basing on the knowledge whether the result
may be larger than M or not. This is because if ¢)y < M then ro(7¢) < M,
while if ¢y > M then ro(me) > M. The procedure is convergent, because
the size of the interval is always reduced by > 1.

As the bounding interval is halved in each iteration the running time of
the algorithm is O(log,n), so the proposition holds. a

4 Discussion

Although Hirsch [T4] states that, empirically, the total number of citations
(¢ is proportional to h?, it is clear that without any assumptions on the
citations distribution none of the rp-indices of scientific impact can estimate
(¢ properly. Indeed, consider a trivial case when C' = (¢;). Then (Vp >
1) rp(m¢) = 1 but (¢ = ¢; can be arbitrary.

Let us recall that by Lemma [ the total number of citations is equal to
the area below the citation function. Therefore, let us examine the relation
between (¢ and the area below the p-sphere function.

Lemma 14. For any given p > 1 and a citation function mc based on a ci-
tation sequence C' = (¢y, ¢, ..., ¢y), the following properties hold.

(i) fo Spr(z)dx < (o for any s,, € Ly,
(”) fO p dx_ma’x{fo Spr( )d:l? SpﬂnEL,rc}.

(1i1) If p < oo then fo p(x)de =1 ( o) i1p (%,1—1— %), where B(-,+) is
the Euler beta function.
(iv) limy oo [° Sp(x) da = 12 (7c).

Proof. If s,, € Lx, then, by definition, [~ s,,(z)dz < [*mc(z)de = (c.
Property (%i) follows directly from the definition of the maximal p-radius.
Now, let us consider the integral [;°S,(z)dx for any p < co. Let r =

rp(me). We get N )
/ Sp(x) dr = / (rf? — xp)% dx.
0 0

T

By substituting t = (;)p we obtain

r 2 1
/O(Tp—xp)%dx _ %/O B =t

10



which proves (iii). Point (iv) follows from the limit properties of beta func-
tion. O

The lemma shows that the area below the maximal p-sphere function
is the best estimate of (¢ among all p-sphere functions dominated by the
citation function under study. Moreover, this estimate is proportional to
the square of the rp-index, which coincides with the intuition of Hirsch. In
particular, we get 72 (7¢) for the h-index, 3 rf(m¢) for the w-index, I r3(m¢)
for the index corresponding to ¢*-sphere, etc. Unfortunately, r,(m¢c) gives
only the lower bound of the total number of citations.

Generally, the problem which p is generally the best to estimate (¢ is
nontrivial. Our results suggest that p ~ 2 performs well for many ad hoc
citation sequences. We state that ro-index is worth of deeper analysis in the
future. Why? Consider the following intuition. One of the drawbacks of w
(i.e. 7, for p = 1) is that it can include in its “core” too many publications
with low number of citations. On the other hand, h (i.e. r, for p = 00) is
very rigid and inflexible. A paper either has sufficient number of citations
or it is completely left out of the “core”. What is more, the actual value of
citations for elements belonging to the “core” is unimportant. Hence it seems
that by using 1 < p < oo we can obtain an index which is more tolerant for
paper close to the “core” (but not too tolerant) and index which pays more
attention to papers with significantly high number of citations.

Another drawback of all one-dimensional indices is that they do not tell
anything about the shape of the original citation function. They cannot
answer such natural questions like: Has the citation function a long tail?
Is it flat or peaked? To illustrate the problem better let us consider the
following example.

Example
Let us consider three authors whose citation sequences are given in Table [[I

| Id | citations |
C, | 61, 59, 58, 51, 49, 49. 33, 32, 30, 30, 28, 28, 24, 24, 24, 23, 23, 23, 23, 23, 23,
992,22, 17, 17, 17, 17, 17, 14, 14, 14, 14, 3, 3, 3,3, 3, 3, 3, 3, 3,2, 2, 2, 2, 2, 2,
2,2,1,1,1,1,1,1,1,1,1, 1, 1

Cy | 29, 29, 28, 27, 27, 27, 26, 26, 26, 26, 25, 25, 24, 24, 24, 24, 23, 23, 23, 23, 22,
992, 22, 22, 22, 22, 21, 21, 21, 21, 21, 21, 21, 21, 21, 20, 20, 20, 20, 20, 20, 20,
20, 20, 20, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 18, 18, 18, 18, 16,
14, 14, 12, 12, 12, 12, 12, 12, 12, 12, 11, 11,9, 9,9, 9, 8,8, 8, 8, 7, 7. 7, 7, 7
6,6,553,33,21,1,1, 1

Cs | 99, 96, 95, 81, 78, 75, 69, 63, 57, 56, 51, 48, 43, 43, 40, 37, 31, 27, 26, 24, 24,
23, 21, 20, 18, 18, 17, 16, 16, 10, 9, 4, 3, 2, 1, 1

Table 1: Citation sequences under study.
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The corresponding citation functions are depicted in Fig. Bh.

Given citation sequences were chosen so that h = 22 for each author.
However, it is easily seen that these citation functions differ significantly in
shape. For Cy we get a long tail and we could call him a “hard-worker” or
a “big producer” (Nomenclature by [I9] and [8]), because he published 100
articles, of which over than 60 gained about 20 citations. Hence it is seen
that the h-index ignores more than half of his publications.

Quite different situation represents author C3. He wrote not too many
papers but some of them were very famous. This type is called a “genie” /
“perfectionist” / “selective scientist”.

On the other hand, C] represents a “typical” author.

The results of an analysis are shown in Table Pl It is seen that the
considered 7,(m¢)-indices cannot effectively discriminate actual differences
between these three authors. Similarly, an attempt to estimate the number
of publications on the basis of those indices are not satisfactory. The number
of citations is underestimated from 1.5 to 4 times. Fig. Ba shows estimated
number of citations as a function of p.

[d] nlnfre Jre] Gof JS[ [S:][S]
Cr | 6035268322 | 957 | 6125 | 5655 | 484
Co | 100 | 29 | 26.68 | 22 | 1651 | 420.5 | 559.2 | 484
Cs | 363530 |22 | 1342|6125 | 706.9 | 484

Table 2: r,-indices for citation sequences under study.

In next section we propose a wider class of indices that may eliminate or
at least reduce some of the drawbacks of 7,-indices.

5 The [,-indices

It is evident that some of the drawbacks of the r,-indices described above are
caused by symmetry of the p-sphere functions s,. Therefore, here we define
another class of functions and corresponding indices which have the ability
of being much more adaptative to the citation function.

Denotation 15. Given an arbitrary 1 < p < oo, a > 0 and b > 0, let
epap i Ry — Ry denote a function

ep,a,b(x) — { (bp — (gx)p) for = c [O,CL), (10)

3=

0 for = > a.

12
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Figure 5: Citation functions for exemplary sequences from Table [l and max-
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[ Sy, () [ By d

660 | 660 |
620 | 620 |
580 + 580 |
540 + 540 |
500 + 500 |
i i i i i i p 1 1 1 1 1 1 p
1 2 3 4 5 6 1 2 3 4 5 6
J Spre, (w) da | Epre, da
1400 + 1400 + /\
1200 1 1200 1
1000 1 1000 1
800 + 800 |
600 | 600 |
ﬁ p i i i i i i p
1 2 3 4 5 6 1 2 3 4 5 6
J Spome, () dx | Epre, (x) dx
1075 ¢ 1075 4
950 + 050 |
825 | 825 |
700 + 700 |
575 1 k sos 1
— p p

[ 23 45 6
(@ (b)

Figure 6: Estimated number of citations for exemplary sequences from Table
M as a function of p.
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Moreover, for p = oo we have

b for x€l0,a),
eoo,a,b(x) :{ 0 for = Z[G ) (11)

We see that e,q4(z) = s,p(2x) for every z. Intuitively, for z € [0,a),
the graph e, () determines a part of an ¢P-ellipse with semi-axes a and b.
Therefore e, 4 is further on called the p-ellipse function of size a and b.

Next we define a term analogous to the maximal p-radius 7,(7¢).

Definition 16. A mazimal p-size of a citation function 7¢, denoted ,(7¢),
is a pair (a,b), a,b > 0, which maximizes the area under e, ,; and for which
mc still dominates e 4.

Please note that such definition is not strict, because there may exist
k > 1 pairs satisfying the above condition. There are several possibilities to
avoid this ambiguity. Selecting (a,b) such that 2 is the closest to 1 tries to
resemble the behavior of r,(7¢), as in this case equiaxial (or almost equiaxial)
ellipse functions would be preferred. Another way is to choose the [g}—th pair
in the sequence ordered by the first coordinate (the median). This case is
more sensitive to shape of citation function. Please refer to the discussion
below for further details.

For brevity, the p-ellipse function of maximal p-size e, () will be de-
noted by E, ., (or even E,) and called the mazimal p-ellipse function for
-

Here are some basic properties of maximal p-size and maximal p-ellipse
functions.

Lemma 17. Given p > 1 and a citation function w¢ based on a citation se-
quence C' = (c1,¢a, ..., Cpn), let L,(me) = (a,b). Then the following properties
hold.

(i) a <n.
(11) b < c.
(iii) If p < oo then {x <n: E,(x) =mc(z)} CNo.
(iv) If p= o0 then {x <n: E,(x) =mc(x)} NNy # 0.
The proof is left to the reader.

It is easy to see that for any citation function 7¢
/ Sp(z) de < / E,(x)dx < / o(z) de, (12)
0 0 0

15



so by using [, we get a better estimate of (¢ than using r,. Moreover, in this
case, we are able to give an upper bound of the total number of citations.

Proposition 18. For any given p > 1 and a citation function ¢ based
on the citation sequence C = (c1,¢a,...,¢p), let (a,b) = l(mc). Then the
following properties hold:

(i) If p < oo then [ Ey(x)dr = ab%B (%,1—4—%), where B(-,-) is the

Euler beta function.
(it) limy_.o [~ Epdx = ab.
(111) If p = oo then

foooﬂc(x)dx < (Inn+1) f
< (lnab+1) ( )
() [ Epy(x)de <2 [° Ex(x)dx for any 1 < p < oo.

Proof. The proof of (i), (ii) and (iv) is similar to that of Lemma [T and

Consider property (iii). Of course, [~ Eo(x)dx = ab. As (a,b) maxi-
mizes the area of ex qp € Ly, we have ¢; < ab Indeed, if it does not hold
we would have 7 = € 1.0 and 157 oo (x) dz > [ e ap(2) dz and we
get a contradiction. Similarly we may show that

o < ab/2,

c3 < ab/3,

¢ < ab/n.

Then - .
Jo me()da D iey Ci

abzz 1 7
ab(lnn+1).

IAIA I

Thus we have proved the first inequality. Since n can not be larger than ab,
otherwise for (n,1) we could get a better dominating function (in sense of
area), so (Inn + 1) < (Inab+ 1) and the proposition follows. O

Considering computational aspects of [, the problem is generally more
difficult than in the preceding case. To determine the value of the maximal
p-size we need two values (to define an unique ellipse). For p = oo the
algorithm has linear complexity and is very easy to implement.

16



Unfortunately, for finite p the upper bound of the computational com-
plexity is O(n?) (O(n?) pairs, O(n) check for every pair). The routine is
complicated and will not be included here. The possibility of its improve-
ment is an interesting open problem.

Let us now go back for a moment to our example.

Example (cont.)
Let us consider again citation sequences given in Table[ll The corresponding
citation functions together with p-ellipses are shown in Fig. @b. The results
of further analysis including p-sizes can be found in Table B and Fig. Bb.

We can see that [, is a better estimate of (¢ than r,, especially for Cs.
Even though [, performance was the worst of the studied coefficients in this
example, it has an important advantage: a clear and intuitive interpretation.
As using the h-index one can state only that the second author has 22 papers
with at least 22 citations each, applying [, we can say that the most repre-
sentative sample of his papers consists of 62 articles that received at least 18
citations each.

Please note, that the quotient b/a can be thought as a measure of type
of the distribution. For p = oo in case of (] it equals about 0.96, for C} it is
0.29 and for C5 3.07.

[Id ]| n[h | o (s | G| JE] [E][Bs]
Cy | 60] (34.9,36.6) | (30.3,26.1) | (23,22) | 957 | 637.9 | 621.6 | 506
Cy | 100 | (99.7,27.3) | (77.1,22.3) | (62,18) | 1651 | 1359.5 | 1350.9 | 1116
Cs | 36| (25.4,81.4) | (19.4,54.7) | (14,43) | 1342 | 1035.3 | 834.2 | 602

Table 3: Maximal p-sizes of citation sequences under study.

It is worth noting that [,(7¢) can be considered as a generalization of
Kosmulski’s Mazprod index.

Proposition 19. For any citation sequence C' = (c¢y,¢a, ..., ¢p) let (a,b) =
lo(mc). Then
ab=m, (13)

where m. is the, so called, individual’s Mazprod-index [19].
Proof. By the definition of the Mazprod-index
m = max{i-¢: i=12,...,n}. (14)

Assume ¢; > 0. Otherwise trivially ab = 0 = m. We have fooo Coo.ap(T) dr =
ab, eocap € Ly, and (a,b) maximizes the area under e 4. Then Lemma [[7
and ([[I)) gives immediately ab = m. O
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As the maximal p-size is a two-dimensional measure, it cannot be used
directly as an index of scientific impact. Although not recommended, due
to loss of information, the maximal p-size can be projected into one dimen-
sion. We suggest here either using mean length of the axes, eg. ll()l) =

(a 4 b)/2, or “normalized” diagonal length of the ellipse bounding rectangle
ll(f) = +a? + bz/\/i Both measures in case p = oo give more credit to some
(probably important and influential) contributions of “atypical” authors like
those represented by Cy and C (see Table Hl) than the h-index.

l1d [ro | 1 [0 2]
Cr | 22 [ (2322) [ 225 | 225
Cy | 22 | (62,18) | 40 | 45.7
Cs | 22 | (14,43) | 285 | 32

Table 4: Maximal sizes of studied citation sequences projected to one-
dimension.

It can be easily proved that the projected measures fulfill requirements
for scientific impact indices given in Theorem

Theorem 20. For any given citation function w¢ and an arbitrary p > 1,
(1) 2) . .
ly” (me) and 1y’ (7o) are indices of scientific impact.

6 Conclusions

In this paper we proposed a geometric approach to construction of scien-
tific impact indices. Using suggested method we have obtained two families
of indices described by one or two parameters, respectively. It was shown
that some well-known indices, like Hirsch’s h-index, Woeginger’s w-index or
Kosmulski’s Maxprod-index are particular members of the proposed families.

The geometrical background of our indices might be useful in possible
applications because one may choose a particular index basing on its clear
geometric properties.

Our general method for constructing scientific impact indices was supple-
mented by practical effective algorithms for computing some of these indices.
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