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AbstratTwo broad lasses of sienti� impat indies are proposed andtheir properties � both theoretial and pratial � are disussed.These new lasses were obtained as a geometri generalization of thewell-known tools applied in sientometri, like Hirsh's h-index, Woeg-inger's w -index and the Kosmulski's Maxprod. It is shown how to ap-ply the suggested indies for estimation of the shape of the itationfuntion or the total number of itations of an individual. Addition-ally, a new e�ient and simple O(log n) algorithm for omputing the
h-index is given.Keywords: Hirsh's h-index, itation analysis, sienti� impat indies.1 IntrodutionReently we observe a gradually inreasing interest in developing objetivemethods for haraterizing produtivity and quality of a sienti� researh.Sientometriians propose di�erent numerial measures to quantify the re-searh output and its impat both for individual sientists and for researhteams, institutions et. Suh tools ould be used in deiding upon grantalloation, employment, soiety membership or hair eletions.Traditional measures, suh as the total number of papers or itations, thehighest itation ount of a paper, mean number of itations et., have beenbroadly ritiized. To ompensate some of their drawbaks Jorge Hirsh [14℄proposed an index to assess both the produtivity and impat of a sientist.His so-alled h-index is informally de�ned as follows: An individual has index

h if h of his/her n papers have at least h itations eah, and the other n− hpapers have no more than h itations eah.The h-index quikly reeived muh attention in the aademi ommunityand beame very popular. Many authors disussed its properties and restri-tions, e.g. [1, 13, 21, 17, 5℄. There were also attempts to apply the h-index notonly for individuals' results but for entire journals or disiplines as well (see,e.g., [2, 25, 15, 6, 23, 8, 20℄). Moreover, some systemati theoretial attemptsto model the index behavior were also performed (e.g. [12, 3, 7, 22, 11, 27℄).Later many modi�ations of the h-index were proposed. For example,Egghe [9, 10℄ suggested the g oe�ient, whih is more sensitive to highlyited papers. On the other hand, the Kosmulski h(2)-index [18℄ orrelatesbetter with the maximal number of itations than the h-index and is moreappropriate in the �elds in whih typial number of itations per artileis high (e.g. in biology, hemistry and physis). Other indiators inlude2



orretions for self-itations and o-authorship [4℄, e�ets of aging of papers[16, 24℄ and �eld-spei� normalization [25℄.In the present paper we observe that some of the well-known indies ofsienti� impat have a simple and lear geometri interpretation onnetedwith the notion of metri in appropriate spae. Therefore, using di�erentmetris we obtain other indies. Moreover, through the appropriate hoie ofthe metri we may onstrut an indiator whih possesses desirable proper-ties. It should be stressed that the suggested method for onstruting indiesof sienti� impat is universal, as we do not make any assumptions on thedistribution of itations.The paper is organized as follows: �rst we establish some basi de�nitionswhih are used throughout the paper. In Se. 3 we propose the lass of one-parameter rp-indies whih might be pereived as generalizations of the h-index. Then (Se. 4) we disuss their properties and give a formal method ofdetermining their value. Se. 5 deals with the two-parameter generalizations,alled lp-indies, whih ould be used to avoid some problems met for one-parameter indies.2 Citation funtionFrom now on N0 = N ∪ {0} denotes the set of all natural numbers and zero,while R
+
0 = R

+ ∪ {0} stands for the set of all nonnegative real numbers.Let us assume that an individual has published exatly n ∈ N papers.Eah list of n published papers generates an ordered itation sequene C =
(c1, c2, . . . , cn) suh that ci ≥ cj for 1 ≤ i < j ≤ n, where ci ∈ N0 is thenumber of unique itations reeived by the i-th artile. The total number ofitations of the sientist equals ζC =

∑n

i=1 ci.The following funtion, based on the itation sequene, will be useful.De�nition 1. A itation funtion based on a itation sequene C is a map-ping πC : R
+
0 → R

+
0 given by

πC(x) =

{

ci if x ∈ [i − 1, i) , i = 1, 2, . . . , n,
0 if x ≥ n.

(1)An exemplary itation funtion for sequene C = (5, 4, 3, 3, 3, 1) is de-pited in Fig. 1.The itation funtion has some obvious but interesting properties givenin the lemma below.Lemma 2. Given a itation funtion πC based on a itation sequene C =
(c1, c2, . . . , cn) the following holds: 3



πC(x)

x
1

1Figure 1: Citation funtion for C = (5, 4, 3, 3, 3, 1).(i) πC is noninreasing.(ii) πC is a step funtion with steps loated at x ∈ N.(iii) ∀x ∈ R
+
0 πC(x) ∈ N0.(iv) limx→∞ πC(x) = 0.(v) ∫

∞

0
πC(x) dx =

∑n

i=1 ci = ζC < ∞.The proof is straightforward.De�nition 3. Consider a funtion f : R
+
0 → R

+
0 . We say that the itationfuntion πC dominates the funtion f (denoted πC � f) if πC(x) ≥ f(x) forevery x ∈ R

+
0 .A set of all funtions f : R

+
0 → R

+
0 dominated by the itation funtion

πC will be denoted by LπC
.In next setions we onsider some families of funtions dominated bythe itation funtion whih seem to be useful both in haraterizing somewell-known itation indies and in de�ning another ones.3 The rp-indiesReently Woeginger [27℄ notied that �the h-index maximizes the volumeof a saled opied of an ℓ∞ unit ball under the urve, while the w-indexmaximizes the volume of a saled opied of an ℓ1 unit ball under the urve�.Let us formalize and generalize this interesting remark.
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Denotation 4. Given an arbitrary real number 1 ≤ p < ∞ and any realnumber r ≥ 0 let sp,r : R
+
0 → R

+
0 denote a funtion

sp,r(x) =

{

(rp − xp)
1

p for x ∈ [0, r) ,
0 for x ≥ r.

(2)Moreover, for p = ∞ we have
s∞,r(x) =

{

r for x ∈ [0, r) ,
0 for x ≥ r.

(3)Example of sp,r for p = 1, 2 and ∞ is shown in Fig. 2. It is easily seenthat for x ∈ [0, r) the graph sp,r(x) determines a part of an ℓp-sphere (irle)with radius r. This is the reason why sp,r is further on alled the p-spherefuntion of radius r.
sp,r(x)

x

r

r

p = ∞

p = 2

p = 1

Figure 2: s1,r, s2,r, s∞,r.One may easily see that the following lemma holds.Lemma 5. For any given x ≥ 0 and �xed radius r ≥ 0, a sphere funtion
sp,r(x) is nondereasing with respet to p.Let us now ombine the p-sphere funtions with the itation funtions.De�nition 6. A maximal p-radius of a itation funtion πC is the greatestnumber r ≥ 0, for whih πC still dominates sp,r, i.e.

rp(πC) := max {r : πC � sp,r} . (4)For abbreviation, the p-sphere funtion of maximal p-radius sp,rp(πC) willbe denoted by Sp,πC
(or even Sp) and alled the maximal p-sphere funtionfor πC .Here are some properties of maximal p-radius and maximal p-sphere fun-tions. These properties will be useful later on for alulating indies of si-enti� impat. 5



Lemma 7. For any given p ≥ 1 and a itation funtion πC based on a ita-tion sequene C = (c1, c2, . . . , cn), the following properties hold:(i) rp(πC) ≤ n.(ii) rp(πC) ≤ c1.(iii) If p < ∞ then {x < n : Sp(x) = πC(x)} ⊂ N0.(iv) If p = ∞ then {x < n : Sp(x) = πC(x)} ∩ N0 6= ∅.The proof is left to the reader.Now we will show that the maximal p-radius is a generalization of Hirsh's
h and Woeginger's w indies.Proposition 8. For any itation sequene C = (c1, c2, . . . , cn)

r∞(πC) = h, (5)where h is the h-index of an individual.Proof. By the de�nition of the h-index
h = max{k ∈ N : ci ≥ k for i = 1, 2, . . . , k} (6)

= max{k ∈ N : ck ≥ k}.Assume that c1 > 0. Otherwise trivially r∞(πC) = 0 = h.Now we should notie that r∞(πC) ∈ N. Conversely, let r∞(πC) = r 6∈ N0.But then either πC has a step at r or πC(x) = r for some x, whih ontraditsLemma 2, or we an �nd a number r′ > r suh that πC � s∞,r′, whih deniesthe de�nition of the maximal ∞-radius.Hene by applying (4), (3) and (1) we get
r∞(πC) = max {k ∈ N : πC � s∞,k}

= max
{

k ∈ N : πC(k−) ≥ k
}

= max {k ∈ N : ck ≥ k} = h,whih proves the proposition.Proposition 9. For any itation sequene C = (c1, c2, . . . , cn)

r1(πC) = w, (7)where w is the w-index of an individual.6



Proof. By the de�nition of the w-index [27℄
w = max {k ∈ N : ci ≥ k − i + 1 for i = 1, 2, . . . , k} . (8)Let us again assume that c1 > 0. By Lemma 7 there exists j ∈ N0,

j < n for whih S1(j) = πC(j). S1(x) = r1(πC) − x for every x ∈ [0, n) and
S1(j) = cj+1 ∈ N. Thus we have r1(πC) − j = cj+1. It implies that r1(π) isalso an integer. Sine r1(πC) is the maximal 1-radius of πC then

r1(πC) = max {k ∈ N : k − (i − 1) ≤ πC(i − 1) for i = 1, 2, . . . , k}
= max {k ∈ N : k − i + 1 ≤ ci for i = 1, 2, . . . , k} = w,and the proof is omplete.As it was shown above, for p = 1 and p = ∞ the maximal p-radius rp(πC)of a itation funtion πC redues to well-known measures of sienti� impat.However p = 1 and p = ∞ are just boundaries of the set of all possible valuesthat p an take. Therefore, for any other 1 < p < ∞ we may also obtainandidates for sienti� impat indies.It an be shown that the following sine qua non onditions for beinga sienti� impat index hold. These onditions are similar to those proposedby Woeginger. Note that he de�ned the index as a funtion into N0. We haveextended the lass of aeptable funtions.Theorem 10. For any p ≥ 1, the maximal p-radius is a mapping from theset of all possible itation funtions into R

+
0 satisfying(i) If πC(x) = 0 for every x ∈ R

+
0 then rp(πC) = 0.(ii) Given any two itation funtions πC and πC′, if πC � πC′ then rp(πC) ≥

rp(πC′).Thus through this simple onstrution we obtain an in�nite lass of si-enti� impat indies. Realling our geometri intuitions, the rp-index har-aterizes the radius of a maximal ℓp-sphere (irle) that is dominated by
πC .One may ask a natural question about the relationship between indiesorresponding to di�erent ℓp-spheres. It is given by the following lemma.Lemma 11. For any 1 ≤ p ≤ q and for eah itation funtion πC we have

rq(πC) ≤ rp(πC) ≤ 2rq(πC). (9)7



Sketh of the proof. The �rst inequality follows easily from Lemma 5. Woeg-inger [27℄ showed the right inequality for p = 1 and q = ∞. As a onsequene,the inequality is valid for any 1 ≤ p ≤ q.It is worth noting that rp(πC) for p < ∞ satis�es the same Woeginger'saxioms as the w-index, i.e. A2, B, C, D [27℄ and T1 [26℄. However, asmentioned above, we de�ne indies on the larger domain than Woeginger.For pratial appliations, a proedure for determining the value of si-enti� impat index for any itation sequene should be omputationallye�etive. Happily, the following proposition holds. Note the onstrutiveproof.Proposition 12. Given an ordered itation sequene C = (c1, c2, . . . , cn) the
rp(πC)-index of sienti� impat an be omputed in linear time with respetto n.Proof. By Lemma 7 it follows immediately that one should onsider onlya �nite number of points of πC to determine rp(πC). More preisely, onlyelements c1, c2, . . . , cn of the itation sequene C are required for the om-putation. The pseudoode of the algorithm is given (see Fig. 3). Below weprove its orretness.Input: p ≥ 1; C = (c1, c2, . . . , cn), suh that ci ≥ cj for 1 ≤ i < j ≤ nResult: rp(πC)1 r := n;2 for i = 1, 2, . . . , n do3 if sp,r(i − 1) > ci then4 if p = ∞ then5 r := max {i − 1, ci};6 else7 r := ((i − 1)p + cp

i )
1

p ;8 return r as the result;Figure 3: Algorithm for omputing rp(πC).The algorithm starts with the initial andidate for the output radius
r := r0 = n (as rp(πC) ≤ n by property (i) of Lemma 7). Then it examineseah onseutive element of the sequene C and redues the value of r ifneessary.Consider the next andidate for the output radius r := ri at the i-thiteration. If sp,r(i − 1) ≤ ci = πC(i − 1) then the radius r does not have8



to be adjusted. Otherwise we �nd r′ suh that sp,r′(i − 1) = ci. There aretwo ases: If p = ∞ then sp,r is not ontinuous and r′ is hosen to be themaximal value of the pair i − 1 and ci, as πC an be bounded here eitherby the number of papers or by the number of itations. If p < ∞ then r′is alulated by solving (2) for r. Sine r′ < r and cj > ci for j < i hene
r := r′ is a new andidate for the output radius.After n iterations r is the maximal p-radius of πC . Thus we obtain rp(πC)in linear time with respet to n whih is our assertion.It is worth noting that the value of r∞ (i.e. the h-index) an be determinedeven faster. Please note again the onstrutive proof of the proposition.Proposition 13. Given an ordered itation sequene C = (c1, c2, . . . , cn),
r∞(πC) an be omputed in logarithmi time with respet to n.Informal proof. As previously stated omputation is based on the values
c1, c2, . . . , cn. Here we additionally make use of the fat that ci ≥ cj for
1 ≤ i < j ≤ n.The pseudoode of the algorithm is given below (see Fig. 4). It is a mod-i�ation of the binary searh (binary hop) algorithm. We now prove itsorretness.Input: C = (c1, c2, . . . , cn), suh that ci ≥ cj for 1 ≤ i < j ≤ nResult: r∞(πC)1 L := 1;2 R := n;3 repeat4 d := ⌈R−L

2
⌉;5 M := L + d;6 if cM = M or L = R then7 return M as the result;8 else if cM < M then9 R := M − 1;10 else11 L := M ;Figure 4: Algorithm for omputing r∞(πC) (the h-index).The algorithm uses an interval of sequene indies [L, R], whih inludesthe value we look for. We start with the whole itation sequene, i.e. [1, n].On every iteration we onsider an element M lying in the middle of the in-terval. If cM = M or L = R, then we stop. Otherwise, we redue the interval9



either to [L, M − 1] or [M, R] basing on the knowledge whether the resultmay be larger than M or not. This is beause if cM < M then r∞(πC) < M ,while if cM ≥ M then r∞(πC) ≥ M . The proedure is onvergent, beausethe size of the interval is always redued by ≥ 1.As the bounding interval is halved in eah iteration the running time ofthe algorithm is O(log2 n), so the proposition holds.4 DisussionAlthough Hirsh [14℄ states that, empirially, the total number of itations
ζC is proportional to h2, it is lear that without any assumptions on theitations distribution none of the rp-indies of sienti� impat an estimate
ζC properly. Indeed, onsider a trivial ase when C = (c1). Then (∀p ≥
1) rp(πC) = 1 but ζC = c1 an be arbitrary.Let us reall that by Lemma 2 the total number of itations is equal tothe area below the itation funtion. Therefore, let us examine the relationbetween ζC and the area below the p-sphere funtion.Lemma 14. For any given p ≥ 1 and a itation funtion πC based on a i-tation sequene C = (c1, c2, . . . , cn), the following properties hold.(i) ∫

∞

0
sp,r(x) dx ≤ ζC for any sp,r ∈ LπC

.(ii) ∫

∞

0
Sp(x) dx = max

{∫

∞

0
sp,r(x) dx : sp,r ∈ LπC

}.(iii) If p < ∞ then ∫

∞

0
Sp(x) dx = r2

p(πC) 1
p
B

(

1
p
, 1 + 1

p

), where B(·, ·) isthe Euler beta funtion.(iv) limp→∞

∫

∞

0
Sp(x) dx = r2

∞
(πC).Proof. If sp,r ∈ LπC

then, by de�nition, ∫

∞

0
sp,r(x)dx ≤

∫

∞

0
πC(x) dx = ζC .Property (ii) follows diretly from the de�nition of the maximal p-radius.Now, let us onsider the integral ∫

∞

0
Sp(x) dx for any p < ∞. Let r =

rp(πC). We get
∫

∞

0

Sp(x) dx =

∫ r

0

(rp − xp)
1

p dx.By substituting t =
(

x
r

)p we obtain
∫ r

0

(rp − xp)
1

p dx =
r2

p

∫ 1

0

t
1

p
−1(1 − t)

1

p dt

=
r2
p(πC)

p
B

(

1

p
, 1 +

1

p

)

,10



whih proves (iii). Point (iv) follows from the limit properties of beta fun-tion.The lemma shows that the area below the maximal p-sphere funtionis the best estimate of ζC among all p-sphere funtions dominated by theitation funtion under study. Moreover, this estimate is proportional tothe square of the rp-index, whih oinides with the intuition of Hirsh. Inpartiular, we get r2
∞(πC) for the h-index, 1

2
r2
1(πC) for the w-index, π

4
r2
2(πC)for the index orresponding to ℓ2-sphere, et. Unfortunately, rp(πC) givesonly the lower bound of the total number of itations.Generally, the problem whih p is generally the best to estimate ζC isnontrivial. Our results suggest that p ≃ 2 performs well for many ad hoitation sequenes. We state that r2-index is worth of deeper analysis in thefuture. Why? Consider the following intuition. One of the drawbaks of w(i.e. rp for p = 1) is that it an inlude in its �ore� too many publiationswith low number of itations. On the other hand, h (i.e. rp for p = ∞) isvery rigid and in�exible. A paper either has su�ient number of itationsor it is ompletely left out of the �ore�. What is more, the atual value ofitations for elements belonging to the �ore� is unimportant. Hene it seemsthat by using 1 < p < ∞ we an obtain an index whih is more tolerant forpaper lose to the �ore� (but not too tolerant) and index whih pays moreattention to papers with signi�antly high number of itations.Another drawbak of all one-dimensional indies is that they do not tellanything about the shape of the original itation funtion. They annotanswer suh natural questions like: Has the itation funtion a long tail?Is it �at or peaked? To illustrate the problem better let us onsider thefollowing example.ExampleLet us onsider three authors whose itation sequenes are given in Table 1.Id itations

C1 61, 59, 58, 51, 49, 49, 33, 32, 30, 30, 28, 28, 24, 24, 24, 23, 23, 23, 23, 23, 23,22, 22, 17, 17, 17, 17, 17, 14, 14, 14, 14, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2,2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
C2 29, 29, 28, 27, 27, 27, 26, 26, 26, 26, 25, 25, 24, 24, 24, 24, 23, 23, 23, 23, 22,22, 22, 22, 22, 22, 21, 21, 21, 21, 21, 21, 21, 21, 21, 20, 20, 20, 20, 20, 20, 20,20, 20, 20, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 18, 18, 18, 18, 16,14, 14, 12, 12, 12, 12, 12, 12, 12, 12, 11, 11, 9, 9, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 7,6, 6, 5, 5, 3, 3, 3, 2, 1, 1, 1, 1
C3 99, 96, 95, 81, 78, 75, 69, 63, 57, 56, 51, 48, 43, 43, 40, 37, 31, 27, 26, 24, 24,23, 21, 20, 18, 18, 17, 16, 16, 10, 9, 4, 3, 2, 1, 1Table 1: Citation sequenes under study.11



The orresponding itation funtions are depited in Fig. 5a.Given itation sequenes were hosen so that h = 22 for eah author.However, it is easily seen that these itation funtions di�er signi�antly inshape. For C2 we get a long tail and we ould all him a �hard-worker� ora �big produer� (Nomenlature by [19℄ and [8℄), beause he published 100artiles, of whih over than 60 gained about 20 itations. Hene it is seenthat the h-index ignores more than half of his publiations.Quite di�erent situation represents author C3. He wrote not too manypapers but some of them were very famous. This type is alled a �genie� /�perfetionist� / �seletive sientist�.On the other hand, C1 represents a �typial� author.The results of an analysis are shown in Table 2. It is seen that theonsidered rp(πC)-indies annot e�etively disriminate atual di�erenesbetween these three authors. Similarly, an attempt to estimate the numberof publiations on the basis of those indies are not satisfatory. The numberof itations is underestimated from 1.5 to 4 times. Fig. 6a shows estimatednumber of itations as a funtion of p.Id n r1 r2 r∞ ζCi

∫

S1

∫

S2

∫

S∞

C1 60 35 26.83 22 957 612.5 565.5 484
C2 100 29 26.68 22 1651 420.5 559.2 484
C3 36 35 30 22 1342 612.5 706.9 484Table 2: rp-indies for itation sequenes under study.In next setion we propose a wider lass of indies that may eliminate orat least redue some of the drawbaks of rp-indies.5 The lp-indiesIt is evident that some of the drawbaks of the rp-indies desribed above areaused by symmetry of the p-sphere funtions sp. Therefore, here we de�neanother lass of funtions and orresponding indies whih have the abilityof being muh more adaptative to the itation funtion.Denotation 15. Given an arbitrary 1 ≤ p < ∞, a ≥ 0 and b ≥ 0, let

ep,a,b : R
+
0 → R

+
0 denote a funtion
ep,a,b(x) =

{

(

bp −
(

b
a
x
)p) 1

p for x ∈ [0, a) ,
0 for x ≥ a.

(10)12
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(a) (b)Figure 5: Citation funtions for exemplary sequenes from Table 1 and max-imal (a) p-spheres S1, S2, S∞ and (b) p-ellipses E1, E2, E∞.13



∫

Sp,πC1
(x) dx

p
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(a) (b)Figure 6: Estimated number of itations for exemplary sequenes from Table1 as a funtion of p. 14



Moreover, for p = ∞ we have
e∞,a,b(x) =

{

b for x ∈ [0, a) ,
0 for x ≥ a.

(11)We see that ep,a,b(x) = sp,b(
b
a
x) for every x. Intuitively, for x ∈ [0, a),the graph ep,a,b(x) determines a part of an ℓp-ellipse with semi-axes a and b.Therefore ep,a,b is further on alled the p-ellipse funtion of size a and b.Next we de�ne a term analogous to the maximal p-radius rp(πC).De�nition 16. A maximal p-size of a itation funtion πC , denoted lp(πC),is a pair (a, b), a, b ≥ 0, whih maximizes the area under ep,a,b and for whih

πC still dominates ep,a,b.Please note that suh de�nition is not strit, beause there may exist
k > 1 pairs satisfying the above ondition. There are several possibilities toavoid this ambiguity. Seleting (a, b) suh that b

a
is the losest to 1 tries toresemble the behavior of rp(πC), as in this ase equiaxial (or almost equiaxial)ellipse funtions would be preferred. Another way is to hoose the ⌈k

2
⌉-th pairin the sequene ordered by the �rst oordinate (the median). This ase ismore sensitive to shape of itation funtion. Please refer to the disussionbelow for further details.For brevity, the p-ellipse funtion of maximal p-size ep,lp(πC) will be de-noted by Ep,πC

(or even Ep) and alled the maximal p-ellipse funtion for
πC .Here are some basi properties of maximal p-size and maximal p-ellipsefuntions.Lemma 17. Given p ≥ 1 and a itation funtion πC based on a itation se-quene C = (c1, c2, . . . , cn), let lp(πC) = (a, b). Then the following propertieshold.(i) a ≤ n.(ii) b ≤ c1.(iii) If p < ∞ then {x < n : Ep(x) = πC(x)} ⊂ N0.(iv) If p = ∞ then {x < n : Ep(x) = πC(x)} ∩ N0 6= ∅.The proof is left to the reader.It is easy to see that for any itation funtion πC

∫

∞

0

Sp(x) dx ≤
∫

∞

0

Ep(x) dx ≤
∫

∞

0

πC(x) dx, (12)15



so by using lp we get a better estimate of ζC than using rp. Moreover, in thisase, we are able to give an upper bound of the total number of itations.Proposition 18. For any given p ≥ 1 and a itation funtion πC basedon the itation sequene C = (c1, c2, . . . , cn), let (a, b) = lp(πC). Then thefollowing properties hold:(i) If p < ∞ then ∫

∞

0
Ep(x) dx = a b 1

p
B

(

1
p
, 1 + 1

p

), where B(·, ·) is theEuler beta funtion.(ii) limp→∞

∫

∞

0
Ep dx = a b.(iii) If p = ∞ then

∫

∞

0
πC(x) dx ≤ (ln n + 1)

∫

∞

0
Ep(x) dx

≤ (ln a b + 1)
∫

∞

0
Ep(x) dx.(iv) ∫

∞

0
Ep(x) dx ≤ 2

∫

∞

0
E∞(x) dx for any 1 ≤ p < ∞.Proof. The proof of (i), (ii) and (iv) is similar to that of Lemma 11 and 14.Consider property (iii). Of ourse, ∫

∞

0
E∞(x) dx = ab. As (a, b) maxi-mizes the area of e∞,a,b ∈ LπC

we have c1 ≤ a b. Indeed, if it does not holdwe would have πC � e∞,1,c1 and ∫

∞

0
e∞,1,c1(x) dx >

∫

∞

0
e∞,a,b(x) dx and weget a ontradition. Similarly we may show that

c2 ≤ a b/2,
c3 ≤ a b/3,...
cn ≤ a b/n.Then

∫

∞

0
πC(x) dx =

∑n

i=1 ci

≤ a b
∑n

i=1
1
i

≤ a b (ln n + 1) .Thus we have proved the �rst inequality. Sine n an not be larger than ab,otherwise for (n, 1) we ould get a better dominating funtion (in sense ofarea), so (ln n + 1) ≤ (ln ab + 1) and the proposition follows.Considering omputational aspets of lp the problem is generally moredi�ult than in the preeding ase. To determine the value of the maximal
p-size we need two values (to de�ne an unique ellipse). For p = ∞ thealgorithm has linear omplexity and is very easy to implement.16



Unfortunately, for �nite p the upper bound of the omputational om-plexity is O(n3) (O(n2) pairs, O(n) hek for every pair). The routine isompliated and will not be inluded here. The possibility of its improve-ment is an interesting open problem.Let us now go bak for a moment to our example.Example (ont.)Let us onsider again itation sequenes given in Table 1. The orrespondingitation funtions together with p-ellipses are shown in Fig. 5b. The resultsof further analysis inluding p-sizes an be found in Table 3 and Fig. 6b.We an see that lp is a better estimate of ζC than rp, espeially for C2.Even though l∞ performane was the worst of the studied oe�ients in thisexample, it has an important advantage: a lear and intuitive interpretation.As using the h-index one an state only that the seond author has 22 paperswith at least 22 itations eah, applying l∞ we an say that the most repre-sentative sample of his papers onsists of 62 artiles that reeived at least 18itations eah.Please note, that the quotient b/a an be thought as a measure of typeof the distribution. For p = ∞ in ase of C1 it equals about 0.96, for C2 it is
0.29 and for C3 3.07.Id n l1 l2 l∞ ζC

∫

E1

∫

E2

∫

E∞

C1 60 (34.9,36.6) (30.3,26.1) (23,22) 957 637.9 621.6 506
C2 100 (99.7,27.3) (77.1,22.3) (62,18) 1651 1359.5 1350.9 1116
C3 36 (25.4,81.4) (19.4,54.7) (14,43) 1342 1035.3 834.2 602Table 3: Maximal p-sizes of itation sequenes under study.It is worth noting that lp(πC) an be onsidered as a generalization ofKosmulski's Maxprod index.Proposition 19. For any itation sequene C = (c1, c2, . . . , cn) let (a, b) =

l∞(πC). Then
a b = m, (13)where m is the, so alled, individual's Maxprod-index [19℄.Proof. By the de�nition of the Maxprod -index

m = max{i · ci : i = 1, 2, . . . , n}. (14)Assume c1 > 0. Otherwise trivially a b = 0 = m. We have ∫

∞

0
e∞,a,b(x) dx =

a b, e∞,a,b ∈ LπC
and (a, b) maximizes the area under e∞,a,b. Then Lemma 17and (11) gives immediately a b = m. 17



As the maximal p-size is a two-dimensional measure, it annot be useddiretly as an index of sienti� impat. Although not reommended, dueto loss of information, the maximal p-size an be projeted into one dimen-sion. We suggest here either using mean length of the axes, eg. l
(1)
p :=

(a + b)/2, or �normalized� diagonal length of the ellipse bounding retangle
l
(2)
p :=

√
a2 + b2/

√
2. Both measures in ase p = ∞ give more redit to some(probably important and in�uential) ontributions of �atypial� authors likethose represented by C2 and C3 (see Table 4) than the h-index.Id r∞ l∞ l

(1)
∞ l

(2)
∞

C1 22 (23,22) 22.5 22.5
C2 22 (62,18) 40 45.7
C3 22 (14,43) 28.5 32Table 4: Maximal sizes of studied itation sequenes projeted to one-dimension.It an be easily proved that the projeted measures ful�ll requirementsfor sienti� impat indies given in Theorem 10.Theorem 20. For any given itation funtion πC and an arbitrary p ≥ 1,

l
(1)
p (πC) and l

(2)
p (πC) are indies of sienti� impat.6 ConlusionsIn this paper we proposed a geometri approah to onstrution of sien-ti� impat indies. Using suggested method we have obtained two familiesof indies desribed by one or two parameters, respetively. It was shownthat some well-known indies, like Hirsh's h-index, Woeginger's w-index orKosmulski's Maxprod-index are partiular members of the proposed families.The geometrial bakground of our indies might be useful in possibleappliations beause one may hoose a partiular index basing on its leargeometri properties.Our general method for onstruting sienti� impat indies was supple-mented by pratial e�etive algorithms for omputing some of these indies.Referenes1. Philip Ball. Index aims for fair ranking of sientists. Nature, 436:900,2005. 18
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