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Abstract This article is a second part of the contribution on the analysis of the
recently-proposed class of symmetric maxitive, minitive and modular aggregation
operators. Recent results (Gagolewski, Mesiar, 2012) indicated some unstable be-
havior of the generalized h-index, which is a particular instance of OM3, in case of
input data transformation. The study was performed on a small, carefully selected
real-world data set. Here we conduct some experiments to examine this phenomena
more extensively.
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1 Introduction

In the first part of our contribution on OM3 aggregation operators, see [4], we car-
ried out their axiomatic analysis under arity-dependence. Our motivation was that
in many applications the “classical” assumption about fixed length of input vectors
being aggregated, cf. [3, 14], is too restrictive. For example, in the Producer As-
sessment Problem (PAP), cf. [10], we wish to evaluate a set of producers according
to their productivity and — simultaneously — the quality of the items they create.
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In Table 1 we list some typical instances of such situation, see also e.g. [6, 11]. It
is easily seen that the number of artifacts varies from producer to producer. Thus,
our main aim was to determine conditions required for the OM3 operators to poses
some desirable properties such as zero- and F-insensitivity, or F+sensitivity.

Table 1 Typical instances of the Producer Assessment Problem (PAP).

Producer Products Rating method

Scientist Scientific articles Number of citations

Scientific institute Scientists The h-index

Web server Web pages Number of targeting web-links
R package author R packages Number of dependencies
Artist Paintings Auction price

The mentioned class of aggregation operators was of our interest, because these
are the only functions which are symmetric modular, minitive, and — at the same
time — maxitive, see [7]. To recall, given a closed interval of the extended real line
I =[0,b] (possibly with b = o), the OM3 operators are defined as follows. Note that
we assume that the reader is familiar with notation convention introduced in [4].

Definition 1. A sequence of nondecreasing functions w = (wy,wa,...), w; : I —
I, and a triangle of coefficients /A = (cm)ie[n]ﬂeN, cin € 1 such that (Vn) ci, <
2 <o < enpny 0 S wp(0) < c1, and wy, (D) = ¢y, generates a nondecreasing
OM3 operator M w € & (nq) such that for x € I" we have:

n n

Maw(x) = \/ Wn('x<n*l-+l)) NCip = /\(Wn(x(nfiﬂ)) Veit,n) ACnn

i=1 i=1

|
(agE

((Wn(-x(nfiJrl)) Vci—l,n) N€Cin— Ci—l,n) .
1

Please note that this class includes i.a. the well-known A-index [15], all order
statistics, and OWMax/OWMin operators [5].

In the second part of our contribution we perform a simulation study of OM3 oper-
ators. Recently, it was noted in [11] that the generalized h-index (which is also an
OM3 operator) exhibits a very unstable behavior upon some simple input elements’
tranformations. The study was performed on a small-sized, but carefully selected
bibliometric data set. We therefore pose a question: does this undesirable behavior
is also observed in a large-scale study?

The paper is organized as follows. In Sec. 2 we present some theoretical results
connecting the issue of ranking of vectors using OM3 operators. The simulation
results, concerning both fixed- and variable-length scenarios, are discussed in Sec. 3.
Finally, Sec. 4 concludes the paper.
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2 Theoretical results

We are going to analyze the correlation/association between rankings naturally cre-
ated by aggregation with OM3 operators to assess their “global” change caused by
vector “calibration”. This is because precise values of OM3 operators applied to
variously transformed input vectors are rather meaningless. Such approach is often
encountered in many domains in which aggregation operators are applied. For ex-
ample, in scientometrics, we sometimes wish to order a set of authors according to
the value of some citation-based quality measure, just to indicate a potential group
of prominent scientists.

Keeping this in mind, let us present some theoretical results that may be useful
when it comes to comparing OM3 operators’ values. From now on we assume that
I=[0,c9].

First of all, it turns out that — as far as the ranking problem is concerned — we
may assume with no loss in generality that A is of the following, very simple form.

Proposition 1 Let Mp w € P(ng) N P(a0) (see [4]) such that Maw(xr, ... xn) =
Vi, w(x<,H- 4 1)) Aci, where w is strictly increasing and ¢y < ¢y < .... Then there
exist increasing functions f,w' : 1 — 1 for which for all x € "% it holds Ma w(x) =
f (Mv.w’(x)) =f ( =1 (W/(x(nfiJrl)) A l))

Proof. Let f be a piecewise linear continuous function such that fori =1,2,... we
have f(i) = ¢;. It is obvious that f is a strictly increasing function, since the se-
quence (c¢;);en is strictly increasing, and onto I. Hence, there exists its (also strictly
increasing) inverse, f~!, for which we have f~!(c;) = i. Thus, f~! (M w(x)) =

i (F Wiy ) A () = Vis) ((F 1 ow) (x(uois1)) A) forany x € T2,
We may therefore set w' = f~! ow, which completes the proof. O

Moreover, please note that for My, (x) = Vi ew(x(,—it1)) A i, where w: T — 1
is increasing, w(eo) < oo, we may easily show that the following results hold.

Remark 1 For any x € I", x(,) < oo, we have lim,_,5+ Mew (x) ~ MAX(w(x)).
Remark 2 For any x € I, x1) > 0, it holds lim—;ec Mew (X) = 1.

Therefore, we see that, intuitively, the rankings generated by some zero-insensitive
OM3 operators “fall somewhere between” those generated by two very simple func-
tions, one concerning only the producer’s ability to output artifacts of high quality,
and the other reflecting solely his/her productivity.

3 Simulation study

We conducted simulation studies to assess the impact of input vector calibration
on the output values of OM3 operators. We considered the following classes of
functions:
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MC(X) = Vf’ 1 CX(n—i+1) N,
Mclog( ) V ICIOg(1+x( ))/\i’
Mlogc( )ZVz:IIOg(1+Cx( - ))/\i’

where ¢ € R is a scaling parameter. Note that the scaling operation is often per-

formed on real-world data. For example, in scientometrics one may be interested in

“normalizing” citations so that they reflect various characteristics of different fields

(e.g. a citation in mathematics may be “worth” more than in biology), cf. [1]. The

use of the logarithm is motivated by the fact that in most instances of the Producers

Assessment Problem we encounter heavily-tailed and skewed data distributions.
Additionally, we considered four reference aggregation operators:

MAX(x) = X(),
generalized h-index given by HIRSCH(x) = /i x(—it1) Ai, cf. [9],
MED(x) (sample median),

Zlog(x) = Xity (log (1 +X(—i+1)))-

Note that the first and the second function belongs to OM3. Moreover, as it was men-
tioned in [4], MAX is the only OM3 operator satisfying properties &g and &gy
(and Z(40)). HIRSCH, on the other hand, fulfills &g (which implies &(4)). For
¢ € R, such that ¢ < 1, M, fulfills 3”(1:0), but when ¢ > 1, then it belongs only to
P (0)- Operators Mcjog and Myog, satisfy &(,0).

Spearman’s rank correlation coefficient. The effect of input vector calibration
was evaluated by measuring the correlation between rankings created by OM3 val-
ues calculated for different scaling parameters. To assess the strength of correlation,
we used Spearman’s correlation coefficient, which is a rank-based measure of as-
sociation between two vectors. Technically, it is defined as the Pearson correlation
coefficient between the ranks of elements. However, unlike Pearson’s r, which gives
good results only when there is linear dependency, Spearman’s p gives sensible
results when y is a monotonic transformation of x. What is more, since it is a non-
parametric measure, it releases us from assumptions about variables’ distribution.
In this paragraph we recall the definition of Spearman’s p and its basic properties.

Definition 2. Let ((x1,y1),...,(xn,y,)) be a two-dimensional sample and let R; =
r(x;) and S; = r(y;) denote the ranks of x; and y;, respectively, i.e. x; = x(g;) and
Yi = ¥(s;)- Then Spearman’s rank correlation coefficient is given by

(R~ %)(s—i) |
ﬁ (R — 512 X (Si— 251 )2

Spearman’s p takes its values in [—1, 1] and represents the degree of correlation
between x and y. In particular, the closer Spearman’s p is either to 1 or —1, the
stronger the correlation between x and y is. The sign of the Spearman correlation
indicates the direction of association between x and y. Moreover, in the context of
probability, when variables are independent, the distribution of p not only does not
depend on the joint probability distribution of (x,y), but also it holds Ep(x,y) = 0.
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Experimental data. Input vectors were generated from type II Pareto (Lomax)
distribution family, P2(k,s) (where s > 0 and k > 0), given by density function
flx)= ﬁ, for x € I=[0,0]. This class of heavy-tailed, right-skewed distribu-
tions is often used in e.g. scientometrical modeling (where sometimes & € [1,2] and
s = 1 is assumed), see e.g. [2, 12, 13]. In this setting, a Pareto distribution describes
a producer’s ability to produce artifacts of various quality measures. Therefore, our
knowledge of the producer’s skills are given solely by k and s here.

For the sake of simplicity, we assumed that s = 1. The shape parameter k was ran-
domly generated for every vector from the uniform distribution on interval (1,2),
i.e. k ~ U(1,2), or the P2(1,1) distribution shifted by one, i.e. k ~ P2(1,1) + 1.
These model a population of producers of different abilities. Additionally, we con-
sidered the cases of producers of equal skills, with k£ equal to 1, 1.5, or 2. The
calibration parameters ¢ were taken from [0.001, 10000].

We considered three simulation scenarios. In the first one, input vectors’ length
n was the same for all vectors. In the second one, we will examine the correlation
for vectors of equal lengths and their expanded versions (cf. the arity-monotonicity
property from [4]). In the last scenario, for each vector we generated their lengths
randomly. In each step, MC = 100000 Monte Carlo samples were generated. The
computations were performed with the agop package [8] for R.

3.1 Vectors of fixed lengths

First we analyzed fixed input vectors’ lengths which were set to n = 25,100,250,
and 1000 elements. Please note that this may be interpreted as an evaluation of
producers of the same productivity.
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Fig. 1 The effect of adding small values to the calibration parameter.
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Let us examine the sensitivity of OM3-generated rankings to vectors calibration.
We calculated Spearman’s rank correlation for (M (x1),M.,5(x1)),- .., (Mc(Xpmc),
M., s(Xpmc)), and the same for the other operators. Two plots in Fig. 1 depict some
exemplary, but representative results concerning, respectively, the functions Mg
and Mo forn =25,k ~U(1,2).

We note that for small J, the value of p(M., M, ) if relatively high (> 0.9 for
n =25). However, in most of the analyzed cases we observe a decrease in correlation
strength for ¢ ~ 0.4, which may indicate some sort of ranking instability. Therefore,
as far as applications are concerned, the scaling parameters should be chosen with
care.

Let us now consider the correlation between M, Miyg., and Mo, and the ref-
erence rankings, i.e. those generated by MAX, MED, HIRSCH, and Xlog. Two ex-
emplary cases are depicted in Fig. 2. Please note the log scale for ¢ on the x axis.
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(@) Mg :n=25k~U(1,2) (b) Mioge :n =25,k ~U(1,2)

Fig. 2 Spearman’s rank correlation coefficient between OM3 and the reference rankings.

Obviously, in each case for small ¢ we get the same ranking as for the MAX func-
tion (see Remark 1). On the other hand, as ¢ approaches o, the OM3 rankings are
uncorrelated with the reference ones (see Remark 2, e.g MAX and n are independent
random variables). Also note that M; = HIRSH.

In all the analyzed cases we observed quite similar behavior of the four func-
tions. Interestingly, with each of the three OM3 classes we can obtain, with a good
accuracy, the reference, MAX-, HIRSCH-, MED-, and Xlog-based rankings. This
may indicate, of course as far as the Paretian model and fixed n is concerned, that
the OM3 aggregation operators may be sufficiently comprehensive in some appli-
cations. What is more, we observed that for k ~ U(1,2) or k ~ P2(1,1)+ 1 the
correlations are higher then for fixed k. Likewise, when vectors’ lengths increase,
the correlations also increase. Let us now investigate the influence of shape param-
eter’s and vectors’ lengths n selection deeper.
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How does k affect the rankings? As we can see in Fig. 3, the correlation be-
tween OM3- and HIRSCH-based rankings is greater in a case of k ~ U(1,2) and
k~ P2(1,1)+ 1, i.e. when k was generated randomly for each vector (producers
of diverse characteristics), than in case of fixed k (producers of uniform abilities).
What is more, the results obtained for k = 1, 1.5, and 2 are quite similar.

We see that in the HIRSCH case we observe that small change in the calibration
parameter in the neighborhood of 1 causes noticeable decrease of the degree of
correlation — cf. also [11].
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Fig. 3 Spearman’s rank correlation coefficient between OM3- and, respectively, MAX- and
HIRSCH-based rankings for different k generation methods.

How does n affect the rankings? In Fig. 4 we depict the case of producers of
different productivity. For HIRSCH we observe that for randomly generated &, the
bigger n is, the larger correlations we get. However, for fixed k the behavior is more
complicated. For small ¢ we notice larger p for smaller n.
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Fig. 4 Spearman’s p between OM3- and, respectively, MAX- and HIRSCH-based rankings for
different n.
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3.2 Vector expansion

In the next scenario we represent the case in which we have a set of producers
with ng = 25 artifacts. They are assessed with different OM3 operators. Then, to
each vector describing the producer, we add new elements. Of course, according
to the arity-monotonicity property, their valuation does not decrease (cf. [4]). The
number of added elements, An, was independently generated for each producer
from the heavy-tailed |P2(1,1)+ 1] distribution and the shifted Poisson distribu-
tion Pois(5) 4+ 1 (VarAn = 5). Moreover, An = 25 was also considered.

In Fig. 5 we presented a typical output. First of all, there is no substantial in-
fluence of the An distribution in the analyzed cases. Here, of course, as ¢ — oo,
p — 0 (n and An are independent). For small and moderate values of ¢ the correla-
tion between original and extended vectors’ valuations are high, but yet not perfect.
Thus, the productivity of a producer indeed affects also his/her valuation with OM3
operators.
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Fig. 5 Spearman’s rank correlation coefficient between OM3-ranked original vectors and their
expanded versions.

For An = 25 the correlation is lower, but much more insensitive to the value
of the calibration coefficient. Note that the default ranking method for tied (equal)
observations in R’s cor () function uses averaging, therefore for ¢ — oo we get
p — 0.5 for fixed An.

3.3 Vectors of random lengths

In the last scenario let us examine a set of producers of random productivity. We
considered n ~ |P2(1,1)4+ 1], n ~ Pois(5)+ 1, and n ~ [U[1,500]|.
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Fig. 6ab depicts the correlation between OM3 and reference-based rankings in
the first two cases. Note that the density functions of these distributions are decreas-
ing. Therefore, there is a relatively large probability of obtaining small values of n:
forn~ |P2(1,1)+ 1] we have Medn = 1 and for n ~ Pois(5)+ 1 we get Medn = 6.

Fig. 6¢ depicts the n ~ |U[1,500] | and the fixed k case. It may be shown that if
(X1,...,X,) iid. P2(k,1) then ¥, := Y} | log(X;+ 1) ~ I"(n,1/k) and EY,, = n/k.
This explains a high degree of correlation between Xlog and M, for ¢ — oo.
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Fig. 6 Spearman’s rank correlation coefficient between OM3 and references operators.

While describing the results instantiated in Fig. 2 (fixed n) we noted that OM3
class is quite flexible in terms of approximating the two reference aggregation op-
erators, not mentioned in Remark 1 and 2. From Fig. 6abc we may deduce that for
variable n such a nice property does not hold. Moreover, by comparing Fig. 6¢ and
Fig. 6d we may observe that the influence of varying » is significant.

Additionally, in Fig. 7 (cf. Fig. 4) we observe that the method for generating n if
of substantial influence.
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Fig. 7 Spearman’s p between OM3- operators and, respectively, MAX- and HIRSCH-based rank-
ings for different n generation methods.

4 Conclusions

The main aim of our simulation study was to assess the behavior of some OM3 oper-
ators under various transformations of the input data. We focused our investigation
on input vectors calibration, since we have shown that, as far as the ranking problem
is concerned, the form of the coefficients’ triangle may be fixed.

To evaluate the impact of data scaling we examined the correlations between
OM3-based rankings for different scaling parameters. Moreover, we paid special
attention to some popular operators such as the generalized h-index, sample max-
imum and sample median. In our study we considered input vectors of fixed and
random lengths. Moreover, we examined the correlation for vectors of equal lengths
and their expanded versions.

First of all, we noted that a choice of the scaling parameter has a significant im-
pact on OM3 operators. Hence, in practical applications we should be very careful
while selecting an appropriate aggregation method. The issue of automated gener-
ation of w definitely should be investigated much more deeply. Thus, we leave this
for our future research.

What is more, we observed high sensitivity of the operators to the formulation of
the model describing real-world phenomena being considered.
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