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Abstract

In this paper the relationship between symmetric minitive, maxitive, and
modular aggregation operators is considered. It is shown that the intersection
between any two of the three discussed classes is the same. Moreover, the
intersection is explicitly characterized.

It turns out that the intersection contains families of aggregation opera-
tors such as OWMax, OWMin, and many generalizations of the widely-known
Hirsch’s h-index, often applied in scientific quality control.
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1. Introduction

Aggregation operators consist of functions used to combine multiple nu-
meric values into a single one, in some way representative of the whole input.
They may be applied in many areas of human activity, e.g. in statistics,
engineering, operational research, quality control, image processing, pattern
recognition, webometrics, and scientometrics. For example, in scientific qual-
ity control at an individual level, we are often interested in assessing authors
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of scholarly publications by means of the number of citations received by
each of his/her papers or by using some other measures of their quality, see
e.g. [11].

From now on let I = [a, b] denote any closed interval of the extended real
line, R̄ = [−∞,∞]. Note that in many practical applications we set I = [0, 1]
or I = [0,∞], cf. [9] and [1], respectively. The set of all vectors of arbitrary
length with elements in I, i.e.

⋃∞

n=1 I
n, is denoted by I

1,2,....
Let E(I) denote the set of all aggregation operators in I

1,2,..., i.e. E(I) = {F :
I
1,2,... → I}. Please note that the aggregation (averaging) functions, cf. [1,

14, 15, 13], most commonly appearing in the literature, form a particular
subclass of E(I). We require each such function F to be nondecreasing in
each variable and to fulfill two boundary conditions: F(a, a, . . . , a) = a and
F(b, b, . . . , b) = b. Also observe that typically the aggregation (averaging)
functions are considered for a fixed-length input vectors (for other approaches
see e.g. [3, 4, 8, 12, 19, 21]).

In this paper, however, we focus our attention on aggregation operators
that are only nondecreasing (in each variable) and, additionally, symmet-
ric (i.e. which do not depend on the order of elements’ presentation). The
boundary conditions are omitted in our framework, as in some applications
they are too restrictive [9, 8]. Even though, note each aggregation operator F

is a function into I, therefore there is an implicit assumption that inf F ≥ a,
and sup F ≤ b.

Definition 1. We say that F ∈ E(I) is symmetric, denoted F ∈ P(sym), if

(∀n ∈ N) (∀x,y ∈ I
n) x ∼= y =⇒ F(x) = F(y),

where x ∼= y if and only if there exists a permutation σ of [n] := {1, 2, . . . , n}
such that x = (yσ(1), . . . , yσ(n))

Definition 2. We say that F ∈ E(I) is nondecreasing, denoted F ∈ P(nd), if

(∀n ∈ N) (∀x,y ∈ I
n) x ≤ y =⇒ F(x) ≤ F(y),

where x ≤ y if and only if (∀i ∈ [n]) xi ≤ yi.

In the theory of aggregation we are often interested in aggregation oper-
ators which fulfill a number of desirable properties. Among most basic ones
we may find e.g. maxitivity, minitivity, additivity, see [13], or modularity
[20, 17]. In this paper we study the relationship between the symmetrized
versions of these properties.
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1.1. Notational Convention

If not stated otherwise explicitly we assume that n, m ∈ N. Arithmetic
and lattice operations on vectors of the same length, e.g. +, −, ∨ (maximum),
∧ (minimum), are always performed element-wise. Let x(i) denote the ith
order statistic of x ∈ I

n.
For each x ∈ I

n and y ∈ I
m, (x,y) denotes the concatenation of the

vectors, i.e. (x1, . . . , xn, y1, . . . , ym) ∈ I
n+m. A vector (x, x, . . . , x) ∈ I

n is
denoted briefly by (n ∗ x).

If f, g : I → I, then f � g (g dominates f) if and only if (∀x ∈ I) f(x) ≤
g(x).

Additionally, 1 denotes the indicator function.

In the next section we present and characterize three very interesting
classes of symmetric aggregation operators, with which we are concerned in
this paper.

2. Symmetric Maxitive, Minitive, and Modular Aggregation Op-

erators

2.1. Definitions

Let us first recall the notion of a triangle of functions [10, 7]:

Definition 3. A triangle of functions is a sequence △ = (fi,n : I → I)i∈[n],n∈N.

Note that such an object is similar to a triangle of coefficients, (ci,n ∈
R̄)i∈[n],n∈N, considered e.g. in [4, 8, 19].

Quasi-S- and quasi-L-statistics were introduced in [10].

Definition 4. A quasi-S-statistic generated by a triangle of functions △
is a function qS△ ∈ E(I) defined for any (x1, . . . , xn) ∈ I

1,2,... as qS△(x) =
∨n

i=1 fi,n(x(n−i+1)).

Quasi-S-statistics generalize the well-known OWMax operators [5] for
which we have fi,n(x) = x ∧ ci,n, ci,n ∈ I, and (∀n)

∨n
i=1 ci,n = b.

Definition 5. Let △ = (fi,n)i∈[n],n∈N be a triangle of functions such that
(∀n)

∑n
i=1 inf fi,n ≥ a, and

∑n
i=1 sup fi,n ≤ b. Then the quasi-L-statistic

generated by △ is a function qL△ ∈ E(I) defined for any (x1, . . . , xn) ∈ I
1,2,...

as qL△(x) =
∑n

i=1 fi,n(x(n−i+1)).
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Note that e.g. the condition (∀n)
∑n

i=1 inf fi,n ≥ a is important for a < 0.
The class of quasi-L-statistics includes the OWA operators [26] (for 0 ∈ I)
for which it holds fi,n(x) = ci,nx, ci,n ∈ [0, 1], (∀n)

∑n
i=1 ci,n = 1, and the

OMA operators [20] with (∀n)
∑n

i=1 fi,n = id.

Let us introduce another interesting class of aggregation operators.

Definition 6. A quasi-I-statistic generated by a triangle of functions △ is an
aggregation operator qI△, for which we have qI△(x) =

∧n
i=1 fi,n(x(n−i+1)),

where (x1, . . . , xn) ∈ I
1,2,....

This class of functions generalizes the OWMin operators [5], for which
we have fi,n(x) = x ∨ ci,n, where ci,n ∈ I, and (∀n)

∧n
i=1 ci,n = a. However,

observe that for each OWMax operator there exists an equivalent OWMin
operator, and inversely [13].

The name L-statistics (linear combination of order statistics or, some-
times, linear combination of a function of order statistics) probably first
appeared in [2] in the field of probability. Moreover, please note that ∨
and ∧ denotes the maximum (Supremum) and, respectively, the minimum
(I nfimum) operator, hence the other names.

It may easily be shown that the restriction of quasi-S-statistics and quasi-
I-statistics to I

n (for any n) generalizes Sugeno integrals (cf. [13]) of x ∈ I
n

with respect to any monotonic symmetric set function ξ : 2[n] → I. Addi-
tionally, it should be noted that e.g. for I = [0,∞] the restriction of quasi-L-
statistics to I

n (for any n) generalizes Choquet integrals (cf. [13]) of x ∈ I
n

with respect to any symmetric capacity µ : 2[n] → I.

2.2. Monotonicity

Obviously, we have qS△, qL△, qI△ ∈ P(sym) for any △. Let us check when
each introduced function is nondecreasing. Additionally, the three lemmas
below state that, without loss of generality, each triangle of functions may in
such case have some simplified form.

Lemma 7. Let I = [a, b] and △ = (fi,n)i∈[n],n∈N. Then qS△ ∈ P(nd) if and
only if there exists ▽ = (gi,n)i∈[n],n∈N satisfying the following conditions:

(i) (∀n) (∀i ∈ [n]) gi,n is nondecreasing,

(ii) (∀n) (∀i ∈ [n]) gi,n(a) = gn,n(a),

(iii) (∀n) g1,n � · · · � gn,n,
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such that qS△ = qS
▽
.

Proof. (=⇒) Let us fix n. Let dn := qS△(n ∗ a) =
∨n

i=1 fi,n(a). Therefore, as
qS△ ∈ P(nd), for all x ∈ I

n it holds qS△(x) ≥ dn ≥ a. As a consequence,

qS△(x) =
n
∨

i=1

fi,n(x(n−i+1)) =
n
∨

i=1

(

fi,n(x(n−i+1)) ∨ dn

)

.

Note that, as qS△ is nondecreasing, we have (∀x ∈ I
n) (∀i ∈ [n]) qS△(x) ≥

qS△(i∗x(n−i+1), (n− i)∗a) because (x(n), . . . , x(1)) ≥ (i∗x(n−i+1), (n− i)∗a).
We therefore have qS△(x) ≥ fj,n(x(n−i+1)), where 1 ≤ j ≤ i ≤ n. However, by
definition, for each x there exists k ∈ [n] for which qS△(x) = fk,n(x(n−k+1)).
Thus,

qS△(x) = qS△(1 ∗ x(n), (n − 1) ∗ a)

∨ qS△(2 ∗ x(n−1), (n − 2) ∗ a)

. . .

∨ qS△(n ∗ x(1), (n − n) ∗ a).

This implies

qS△(x) =
n
∨

i=1

(

i
∨

j=1

fj,n(x(n−i+1)) ∨ dn

)

.

We may set gi,n(x) :=
∨i

j=1 fj,n(x) ∨ dn for all i ∈ [n]. We see that g1,n �
· · · � gn,n and g1,n(a) = · · · = gn,n(a) = dn.

Let us show that each gi,n is nondecreasing. Assume otherwise. Let
there exist i and a ≤ x < y ≤ b such that gi,n(x) > gi,n(y). We have
qS

▽
(i∗x, (n−i)∗a) = gi,n(x) > qS

▽
(i∗y, (n−i)∗a) = gi,n(y), a contradiction.

(⇐=) Trivial.

In the next lemma we assume that a = 0, because otherwise the resulting
form of a triangle of functions becomes very complicated. In this case for
each △ = (fi,n)i∈[n],n∈N we have, by Definition 5, (∀n)

∑n
i=1 inf fi,n ≥ 0.

Lemma 8. Let I = [0, b] and △ = (fi,n)i∈[n],n∈N such
∑n

i=1 sup fi,n ≤ b.
Then qL△ ∈ P(nd) if and only if there exists ▽ = (gi,n)i∈[n],n∈N satisfying the
following conditions:

(i) (∀n) (∀i ∈ [n]) gi,n is nondecreasing,
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(ii) (∀n)
∑n

i=1 gi,n(b) ≤ b,

(iii) (∀n) (∀i > 1) gi,n(0) = 0,

such that qL△ = qL
▽
.

Proof. (=⇒) We may obviously set g1,1 := f1,1 as 0 � f1,1 � b and f1,1 is
nondecreasing.

Fix n > 1. Let dn := qL△(n ∗ 0) and set g1,n(x) := qL△(x, (n − 1) ∗ 0).
Thus, g1,n(0) = dn ≥ 0. Moreover, let us set (∀i > 1) gi,n(0) = 0.

Consider any x ∈ I
n. We have:

qL
▽
(x(n), x(n−1), (n − 2) ∗ 0) = g1,n(x(n)) + g2,n(x(n−1)),

and therefore:

g2,n(x(n−1)) = qL△(x(n), x(n−1), (n − 2) ∗ 0) − g1,n(x(n))

= qL△(x(n), x(n−1), (n − 2) ∗ 0) − qL△(x(n), (n − 1) ∗ 0)

= f2,n(x(n−1)) − f2,n(0) ≥ 0.

By considering consecutive elements of x (in a nonincreasing order) we get
the following:

g1,n(x) = qL△(x, (n − 1) ∗ 0) = f1,n(x) +

n
∑

i=2

fi,n(0),

g2,n(x) = f2,n(x) − f2,n(0),

. . .

gn,n(x) = fn,n(x) − fn,n(0),

which gives qL△ = qL
▽
, and

∑n
i=1 gi,n(b) ≤ b.

We will show that each gi,n is nondecreasing. Assume otherwise. Let
there exist i and 0 ≤ x < y ≤ b such that gi,n(x) > gi,n(y). We have
qL

▽
((i − 1) ∗ y, x, (n − i) ∗ 0) − qL

▽
(i ∗ y, (n − i) ∗ 0) = gi,n(x) − gi,n(y) > 0,

a contradiction, because qL△ is nondecreasing.

(⇐=) Trivial.

Lemma 9. Let I = [a, b] and △ = (fi,n)i∈[n],n∈N. Then qI△ ∈ P(nd) if and
only if there exists ▽ = (gi,n)i∈[n],n∈N satisfying the following conditions:

(i) (∀n) (∀i ∈ [n]) gi,n is nondecreasing,
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(ii) (∀n) (∀i ∈ [n]) gi,n(b) = g1,n(b),
(iii) (∀n) g1,n � · · · � gn,n,

such that qI△ = qI
▽
.

Proof. (=⇒) Let us fix n. Let en := qI△(n ∗ b) =
∧n

i=1 fi,n(b). Therefore, as
qI△ ∈ P(nd), for all x ∈ I

n it holds qI△(x) ≤ en ≤ b. As a consequence,

qI△(x) =
n
∧

i=1

fi,n(x(n−i+1)) =
n
∧

i=1

(

fi,n(x(n−i+1)) ∧ en

)

.

Please note that, as qI△ is nondecreasing, we have (∀x ∈ I
n) (∀i ∈ [n])

qI△(x) ≤ qI△((i − 1) ∗ b, (n − i + 1) ∗ x(n−1+1)) because (x(n), . . . , x(1)) ≤
((i− 1) ∗ b, (n − i + 1) ∗ x(n−i+1)). We therefore have qI△(x) ≤ fj,n(x(n−i+1)),
where 1 ≤ i ≤ j ≤ n. However, by definition, for each x there exists k ∈ [n]
for which qI△(x) = fk,n(x(n−k+1)). Thus,

qI△(x) = qI△((n − 1) ∗ b, 1 ∗ x(1))

∧ qI△((n − 2) ∗ b, 2 ∗ x(2))

. . .

∧ qI△((n − n) ∗ b, n ∗ x(n)).

Consequently,

qI△(x) =

n
∧

i=1

(

n
∧

j=i

fj,n(x(n−i+1)) ∧ en

)

.

Therefore we may set gi,n(x) :=
∧n

j=i fj,n(x) ∧ en for all i ∈ [n]. We see that
g1,n � · · · � gn,n and g1,n(b) = · · · = gn,n(b) = en.

We will show that each gi,n is nondecreasing. Assume otherwise. Let
there exist i and a ≤ x < y ≤ b such that gi,n(x) > gi,n(y). We have
qI

▽
((n− i)∗b, i∗x) = gi,n(x) > qI

▽
((n− i)∗b, i∗y) = gi,n(y), a contradiction.

(⇐=) Trivial.

2.3. Characterizations

Let us introduce the two following vector operations ([10], see also [13]).

The symmetric maximum is defined for any x,y ∈ I
n as x

S
∨ y = (x(1) ∨

y(1), . . . , x(n)∨y(n)), and the symmetric minimum as x
S
∧ y = (x(1)∧y(1), . . . , x(n)∧

y(n)). These operations are called symmetric because for any u ∼= x and

v ∼= y we have x
S
∨ y = u

S
∨ v and x

S
∧ y = u

S
∧ v.
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Definition 10. Let F ∈ E(I). Then F is symmetric maxitive (denoted F ∈

P(smax)) whenever (∀n) (∀x,y ∈ I
n) F(x

S
∨ y) = F(x) ∨ F(y).

Definition 11. Let F ∈ E(I). Then F is symmetric minitive (denoted F ∈

P(smin)) if (∀n) (∀x,y ∈ I
n) F(x

S
∧ y) = F(x) ∧ F(y).

Modularity was discussed in [1, 20, 17]. Let us propose its symmetrized
version.

Definition 12. Let F ∈ E(I). Then F is symmetric modular (denoted F ∈

P(smod)) whenever (∀n) (∀x,y ∈ I
n) F(x

S
∨ y) + F(x

S
∧ y) = F(x) + F(y).

It may be shown easily that P(smax),P(smin),P(smod) ⊆ P(sym)∩P(nd). More-
over, each symmetric modular aggregation operator is also symmetric addi-
tive (cf. [10, 13]).

Let us now present characterizations of nondecreasing quasi-S-, quasi-I-,
and quasi-L-statistics. The following proposition (without proof) was stated
in [10].

Proposition 13. Let I = [a, b] and F ∈ E(I). Then F ∈ P(smax) if and only
if F is a nondecreasing quasi-S-statistic.

Proof. (=⇒) Fix n and let x ∈ I
n. We have F(x) = F((n ∗ x(1), 0 ∗ a)∨ ((n−

1) ∗ x(2), 1 ∗ a) ∨ · · · ∨ (1 ∗ x(n), (n− 1) ∗ a)) =
∨n

i=1 F(i ∗ x(n−i+1), (n− i) ∗ a),
and therefore may set fi,n(x) = F(i ∗ x, (n − i) ∗ a). Note that (∀i ∈ [i])
fi,n(a) = fn,n(a) and, as F is nondecreasing, each fi,n is also nondecreasing.
Also, f1,n � · · · � fn,n (cf. Lemma 7).

(⇐=) Fix n and let x,y ∈ I
n. Let △ be such that qS△ ∈ P(nd) (of the form

given in Lemma 7). We have qS△(x
S
∨ y) =

∨n
i=1 fi,n(x(n−i+1) ∨ y(n−i+1)) =

∨n
i=1

(

fi,n(x(n−i+1))∨ fi,n(y(n−i+1))
)

=
∨n

i=1 fi,n(x(n−i+1))∨
∨n

i=1 fi,n(y(n−i+1)) =
qS△(x) ∨ qS△(y), which completes the proof.

Proposition 14. Let I = [a, b] and F ∈ E(I). Then F ∈ P(smin) if and only
if F is a nondecreasing quasi-I-statistic.

Proof. (=⇒) Fix n and let x ∈ I
n. We have F(x) = F((0∗b, n∗x(n))∧(1∗b, (n−

1)∗x(n−1))∧· · ·∧((n−1)∗b, 1∗x(1))) =
∧n

i=1 F((i−1)∗b, (n−i+1)∗x(n−i+1)),
and therefore we may set fi,n(x) = F((i − 1) ∗ b, (n − i + 1) ∗ x(n−i+1)). Note
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that (∀i ∈ [i]) fi,n(b) = fn,n(b) and, as F is nondecreasing, each fi,n is also
nondecreasing. Also, f1,n � · · · � fn,n (cf. Lemma 9).

(⇐=) Trivial (analogous to the above proof).

OMA operators were introduced in [20]. However, no proof was given for
their characterization (the authors discussed modular [1] operators and then
made their symmetrization). Also note that OMAs are idempotent and were
originally discussed in the case I = [0, 1]. Our result is thus more general.

Proposition 15. Let I = [0, b] and F ∈ E(I). Then F ∈ P(smod) if and only
if F is a nondecreasing quasi-L-statistic.

Proof. (=⇒) It is easily seen that if F ∈ P(smod), then the following inclusion-
exclusion-like principle holds, i.e. for any given n and all x1, . . . ,xk ∈ I

n we
have

F(x1

S
∨ · · ·

S
∨ xk) =

∑

1≤i1≤k

F(xi1) −
∑

1≤i1<i2≤k

F(xi1

S
∧ xi2)

+
∑

1≤i1<i2<i3≤k

F(xi1

S
∧ xi2

S
∧ xi3) − . . .

+(−1)k−1F(x1

S
∧ · · ·

S
∧ xk).

Let x ∈ I
n. Set x[i,j] := (i ∗ x(n−j+1), (n − i) ∗ 0), for i, j ∈ [n]. We have:

x ≃
(

x[1,1]
S
∨ · · ·

S
∨ x[n,n]

)

.

For any i, i′, j, j′ ∈ [n] it holds
(

x[i,j]
S
∧ x[i′,j′]

)

∼= x[i∧i′,j∨j′]. Therefore,

F(x) =
∑

1≤i1≤n

F(x[i1,i1]) −
∑

1≤i1<i2≤n

F(x[i1,i2])

+
∑

1≤i1<i2<i3≤n

F(x[i1,i3]) − . . .

+(−1)n−1F(x[1,n])

=

n
∑

i=1

fi,n(x(n−1+1)),
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where

f1,n(x) = F(1 ∗ x(n), (n − 1) ∗ 0),

f2,n(x) = F(2 ∗ x(n−1), (n − 2) ∗ 0) − F(1 ∗ x(n−1), (n − 1) ∗ 0),

f3,n(x) = F(3 ∗ x(n−2), (n − 3) ∗ 0) − F(1 ∗ x(n−2), (n − 1) ∗ 0)

−F(2 ∗ x(n−2), (n − 2) ∗ 0) + F(1 ∗ x(n−2), (n − 1) ∗ 0)

= F(3 ∗ x(n−2), (n − 3) ∗ 0) − F(2 ∗ x(n−2), (n − 2) ∗ 0),

. . .

fn,n(x) = F(n ∗ x(1), 0 ∗ 0) − F((n − 1) ∗ x(1), 1 ∗ 0),

and hence F is a quasi-L-statistic. Note that as F is nondecreasing then each
fi,n is nondecreasing. We also have (∀i > 1) fi,n(0) = 0, and

∑n
i=1 fi,n(b) ≤ b

(cf. Lemma 8).

(⇐=) Fix n and let x,y ∈ I
n. Let △ be such that qL△ ∈ P(nd) (of the form

given in Lemma 8). We have qL△(x
S
∨ y)+qL△(x

S
∧ y) =

∑n
i=1 fi,n(x(n−i+1)∨

y(n−i+1))+
∑n

i=1 fi,n(x(n−i+1)∧y(n−i+1)) =
∑n

i=1

(

fi,n(x(n−i+1))+fi,n(y(n−i+1))
)

=
qL△(x) + qL△(y).

Let us explore the relationship between the three presented classes of
aggregation operators.

3. On the Relationship Between the Three Classes

Let us first find for which quasi-S-statistic there exists an equivalent quasi-
L-statistic. The following result was presented in [10] (for I = [0,∞]), how-
ever, only sketch of its proof was given there.

Proposition 16. Let I = [0, b] and △ = (fi,n)i∈[n],n∈N such that (∀n) f1,n �
· · · � fn,n, (∀i ∈ [n]) fi,n is nondecreasing, and fi,n(0) = fn,n(0) ≥ 0. Then
qS△ is a quasi-L-statistic if and only if (∀n) (∀i ∈ [n]) fi,n(x) = wn(x)∧ci,n for
some nondecreasing functions w1, w2, · · · : I → I and a triangle of coefficients
(ci,n)i∈[n],n∈N such that 0 ≤ wn(0) ≤ c1,n ≤ · · · ≤ cn,n ≤ b.

Proof. (⇐=) Let us fix n. Let u(x) =
∨n

i=1 wn(x(n−i+1))∧ci,n for x ∈ I
n, where

wn is a nondecreasing function, and wn(0) ≤ c1,n ≤ · · · ≤ cn,n. Obviously,
u is nondecreasing and u(x) ≥ wn(0).

10



Consider any x ∈ I
n. Moreover, let ui = u(x(n), . . . , x(n−i+1), (n − i) ∗ 0)

for i ∈ [n]. It is clear that un = qS△|In(x). We have the following.

u1 = wn(x(n)) ∧ c1,n,

u2 = wn(x(n)) ∧ c1,n

+1(−∞,wn(x(n−1))](c1,n)
((

wn(x(n−1)) ∧ c2,n

)

− c1,n

)

,

u3 = wn(x(n)) ∧ c1,n

+1(−∞,wn(x(n−1))](c1,n)
((

wn(x(n−1)) ∧ c2,n

)

− c1,n

)

+1(−∞,wn(x(n−2))](c2,n)
((

wn(x(n−2)) ∧ c3,n

)

− c2,n

)

,

...

un = wn(x(n)) ∧ c1,n

+

n−1
∑

i=1

1(−∞,wn(x(n−i))](ci,n)
((

wn(x(n−i)) ∧ ci+1,n

)

− ci,n

)

.

Now if we generalize the above discussion to any n, we conclude that
a quasi-S-statistic qS△ determined by the expression on the right side of
the theorem’s statement is equivalent to a quasi-L-statistic qL

▽
, for which

▽ = (gi,n)i∈[n],n∈N if defined as follows.

gi,n(x) = 1(−∞,wn(x)](ci−1,n) ((wn(x) ∧ ci,n) − ci−1,n) ,

where n = 1, 2, . . . , i ∈ [n], and, for brevity, c0,n := 0. Also note that gi,n � 0.

(=⇒) Without loss of generality (cf. Lemma 8), let ▽ = (gi,n : i ≤ n) be such
that (∀n) (∀i ∈ [n]) gi,n is nondecreasing, g1,n � 0, gi,n(0) = 0 if i > 1, and
∑n

j=1 gj,n(b) ≤ b.
Fix n > 1, otherwise we obviously set g1,n := f1,n. Let dn := qS△(n ∗ 0) =

f1,n(0) = · · · = fn,n(0). We are going to determine ▽ such that qS△ = qL
▽
,

i.e. to find for which f1,n, . . . , fn,n, g1,n, . . . , gn,n the equality

n
∨

i=1

fi,n(x(n−i+1)) =

n
∑

i=1

gi,n(x(n−i+1))

holds for all x ∈ I
n.

We have g1,n(0) = dn because qS△(n ∗ 0) = qL
▽
(n ∗ 0) = dn.

11



Now consider any x ∈ I
n. We have:

qS△(x(n), (n − 1) ∗ 0) = f1,n(x(n)) ∨
n
∨

i=2

fi,n(0)

= f1,n(x(n)),

qL
▽
(x(n), (n − 1) ∗ 0) = g1,n(x(n)) +

n
∑

i=2

gi,n(0)

= g1,n(x(n)),

therefore we must set g1,n := f1,n (however we do not know the possible form
of f1,n yet).

Next,

qS△(x(n), x(n−1), (n − 2) ∗ 0) = f1,n(x(n)) ∨ f2,n(x(n−1)),

qL
▽
(x(n), x(n−1), (n − 2) ∗ 0) = g1,n(x(n)) + g2,n(x(n−1)).

We therefore look for all solutions (f1,n, f2,n) to a functional equation

f1,n(x(n)) ∨ f2,n(x(n−1)) = g1,n(x(n)) + g2,n(x(n−1)),

which is equivalent to

f1,n(x(n)) ∨ f2,n(x(n−1)) = f1,n(x(n)) + g2,n(x(n−1)). (1)

Recall that f1,n � f2,n. Let y1 := inf{y : f1,n(y) < f2,n(y)} (if it does not exist
we obviously have f2,n = f1,n and g2,n ≡ 0).

Note that if x(n−1) < y1, then

qS△(x(n), x(n−1), (n − 2) ∗ 0) = f1,n(x(n)),

and g2,n(x(n−1)) = 0.
As g2,n may be discontinuous at y1, we shall consider 2 cases.

(i) g2,n(y1) > 0, or

(ii) g2,n(y1) = 0.

Please bear in mind that (∀z > y1) g2,n(z) > 0, as g2,n is nondecreasing.
(i) If x(n) ≥ x(n−1) ≥ y1, then (1) may be written as

f2,n(x(n−1)) = f1,n(x(n)) + g2,n(x(n−1)).
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This is because g2,n(x(n−1)) > 0 implies that

f1,n(y1) ≤ f1,n(x(n)) ≤ f1,n(∞) < f2,n(y1) ≤ f2,n(x(n−1)).

We therefore have g2,n(x(n−1)) = f2,n(x(n−1)) − f1,n(x(n)) and, as g2,n may not
be dependent on x(n), it must hold (∀z > y1) f1,n(z) = f1,n(y1).

Thus f1,n must be of the following form:

f1,n(x) =

{

f2,n(x) for x < y1,
c1,n for x ≥ y1,

(2)

for some f2,n(y1) > c1,n ≥ f2,n(y−
1 ), where f2,n(y−

1 ) = limx→y−

1
f2,n(x) (limit as

x approaches y1 from the left).
(ii) If x(n) ≥ x(n−1) > y1 (in this case both f1,n and f2,n may also be

continuous at y1), then (1) may be written as

f2,n(x(n−1)) = f1,n(x(n)) + g2,n(x(n−1)).

This is because g2,n(x(n−1)) > 0 and g2,n(y1) = 0 implies that

f1,n(y1) = f2,n(y1) ≤ f1,n(x(n)) ≤ f1,n(∞) < f2,n(x(n−1)).

It must therefore hold (∀z > y1) f1,n(z) = f1,n(y+
1 ) > f1,n(y1).

Thus f1,n must be of the following form:

f1,n(x) =

{

f2,n(x) for x ≤ y1,
c1,n for x > y1,

(3)

for some f2,n(y+
1 ) > c1,n ≥ f2,n(y1), where f2,n(y+

1 ) = limx→y+
1

f2,n(x).

Note that the both equations (2) and (3) may be written in a simpler
form f1,n(x) = f2,n(x) ∧ c1,n, and, as a consequence, we may set g2,n(x) :=
1(−∞,f2,n(x)](c1,n) (f2,n(x) − c1,n).

Next we look for all solutions to a functional equation

qS△(x(n), x(n−1), x(n−2), (n − 3) ∗ 0) = qL△(x(n), x(n−1), x(n−2), (n − 3) ∗ 0),

which is equivalent to

f1,n(x(n)) ∨ f2,n(x(n−1)) ∨ f3,n(x(n−2)) = g1,n(x(n)) + g2,n(x(n−1)) + g3,n(x(n−2)),
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and, consequently, to

(f2,n(x(n)) ∧ c1,n) ∨ f2,n(x(n−1)) ∨ f3,n(x(n−2))

= (f2,n(x(n)) ∧ c1,n)

+1(−∞,f2,n(x(n−1))](c1,n)
(

f2,n(x(n−1)) − c1,n

)

+g3,n(x(n−2)). (4)

It holds f2,n � f3,n. Let us take y2 := inf{y : f2,n(y) < f3,n(y)} (if it exists,
otherwise we have f3,n = f2,n). We certainly have y2 ≥ y1.

Please note that if x(n−2) < y2 then

qS△(x(n), x(n−1), x(n−2), (n − 3) ∗ 0) = qS△(x(n), x(n−1), (n − 2) ∗ 0),

which implies g3,n(x(n−2)) = 0.
As g3,n may be discontinuous at y2, we shall consider 2 cases.

(i’) g3,n(y2) > 0, or

(ii’) g3,n(y2) = 0.

Of course, (∀z > y2) g3,n(z) > 0, as g3,n is nondecreasing.
In either case (i’) for x(n) ≥ x(n−1) ≥ x(n−2) ≥ y1 or case (ii’) for x(n) ≥

x(n−1) ≥ x(n−2) > y1, (4) may be written as

f3,n(x(n−2)) = c1,n + f2,n(x(n−1)) − c1,n + g3,n(x(n−2))

= f2,n(x(n−1)) + g3,n(x(n−2)).

Requiring that g3,n be independent of x(n−1), we get f2,n(x) = f3,n(x) ∧ c2,n,
for some c2,n ≥ c1,n.

By applying a similar reasoning to the remaining elements of x, we get
dn ≤ c1,1 ≤ c2,n ≤ · · · ≤ cn,n, and fi+1,n(x) = fi,n(x) ∧ ci,n for i ∈ [n −
1]. We may set wn := fn,n and thus, as fn,n is nondecreasing, the proof is
complete.

Next let us find the relation between quasi-S- and quasi-I-statistics.

Proposition 17. Let I = [a, b] and △ = (fi,n)i∈[n],n∈N such that (∀n) f1,n �
· · · � fn,n, (∀i ∈ [n]) fi,n is nondecreasing, and fi,n(a) = fn,n(a). Then qS△

is a quasi-I-statistic if and only if (∀n) (∀i ∈ [n]) fi,n(x) = wn(x) ∧ ci,n for
some nondecreasing functions w1, w2, · · · : I → I, and a triangle of coefficients
(ci,n)i∈[n],n∈N such that a ≤ wn(a) ≤ c1,n ≤ · · · ≤ cn,n ≤ b.
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Proof. Without loss of generality (see Lemma 9), let ▽ = (gi,n)i∈[n],n∈N be
such that (∀n) (∀i ∈ [n]) gi,n is nondecreasing, gi,n(b) = g1,n(b), and g1,n �
· · · � gn,n.

(⇐=) Let us fix n. Additionally, let fi,n be such that fi,n(x) = wn(x)∧ci,n,
where wn : I → I is nondecreasing and a ≤ wn(a) ≤ c1,n ≤ · · · ≤ cn,n ≤
b. What is more, we temporarily assume (with no loss in generality) that
wn(x) := wn(x) ∧ cn,n.

For all y ∈ I we have qS△(n ∗ y) = wn(y) ∧ cn,n, and therefore qS△ = qI
▽

if and only if

qS△(n ∗ y) = fn,n(y) = wn(y) ∧ cn,n = g1,n(y).

Consider any x ∈ I
n. It holds:

qS△(x(n), (n − 1) ∗ a) = wn(x(n)) ∧ c1,n

= g1,n(x(n)) ∧ g2,n(a)

= wn(x(n)) ∧ g2,n(a),

and thus g2,n(a) = c1,n.
If wn(x(n)) ∧ c1,n ≥ wn(x(n−1)) ∧ c2,n, that is whenever wn(x(n−1)) ≤ c1,n,

we have
qS△(x(n), x(n−1), (n − 2) ∗ a) = wn(x(n)) ∧ c1,n,

and otherwise

qS△(x(n), x(n−1), (n − 2) ∗ a) = wn(x(n−1)) ∧ c2,n.

Please note that

qI
▽
(x(n), x(n−1), (n − 2) ∗ a) = g1,n(x(n)) ∧ g2,n(x(n−1)) ∧ g3,n(a)

= wn(x(n)) ∧ g2,n(x(n−1)) ∧ g3,n(a).

As qI
▽
(b, (n − 1) ∗ y) = g2,n(y) for wn(y) > c1,n, the above implies that:

g2,n(y) =

{

c1,n if wn(y) ≤ c1,n,
wn(y) otherwise,

and g3,n(a) = c2,n.
By applying similar reasoning for the remaining elements of x we ap-

proach the solution:

gi,n(y) = (wn(y) ∨ ci−1,n) ∧ cn,n,
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where, for brevity, c0,n := a. Hence, qS△ of the assumed form is indeed
equivalent to some quasi-I-statistic.

(=⇒) Fix n. Assume that qS△ = qI
▽
. Note for any x ∈ I we have:

qS△(n ∗ x, 0 ∗ a) = fn,n(x) = g1,n(x),
qS△((n − 1) ∗ x, 1 ∗ a) = fn−1,n(x) = g1,n(x) ∧ gn,n(a),

. . . . . .
qS△(1 ∗ x, (n − 1) ∗ a) = f1,n(x) = g1,n(x) ∧ g2,n(a),

hence we fi,n must be such that fi,n(x) = wn(x)∧ ci,n for some nondecreasing
function wn : I → I and a ≤ c1,n ≤ · · · ≤ cn,n ≤ b. Clearly, a triangle of
functions defined in such way fulfills the assumptions of the proposition and
the proof is complete.

Lastly, we find the relation between quasi-L- and quasi-I-statistics. Again,
we assume I = [0, b].

Proposition 18. Let I = [0, b] and △ = (fi,n)i∈[n],n∈N such that (∀n) (∀i ∈
[n]) fi,n is nondecreasing, f1,n � 0, (∀j > 1) fi,n(0) = 0, and

∑n
j=1 fj,n(b) ≤

b. Then qL△ is a quasi-I-statistic if and only if (∀n) (∀i ∈ [n]) fi,n(x) =
1(−∞,wn(x)](ci−1,n) ((wn(x) ∧ ci,n) − ci−1,n) for some nondecreasing functions
w1, w2, · · · : I → I and a triangle of coefficients (ci,n)i∈[n],n∈N such that 0 ≤
wn(0) ≤ c1,n ≤ · · · ≤ cn,n ≤ b, with convention c0,n = 0.

Proof. Without loss of generality (cf. Lemma 9), let ▽ = (gi,n)i∈[n],n∈N be a
triangle of functions such that (∀n) (∀i ∈ [n]) gi,n is nondecreasing, gi,n(b) =
g1,n(b), g1,n � · · · � gn,n.

(⇐=) Let each fi,n be of the assumed form. From the proofs of Props.
17, 16 we instantly approach the formula

gi,n(x) = (wn(x) ∨ ci−1,n) ∧ cn,n,

where, for brevity, c0,n := wn(0), for which we have qL△ = qI
▽
.

(=⇒) Fix n. We check when qL△ = qI
▽
.
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We have for all x ∈ I:

qL△(x, (n − 1) ∗ 0) = f1,n(x)
= g1,n(x) ∧ g2,n(0),

qL△(b, x, (n − 2) ∗ 0) = f1,n(b) + f2,n(x)
= g1,n(b) ∧ g2,n(x) ∧ g3,n(0),
= g2,n(x) ∧ g3,n(0),

qL△(b, b, x, (n − 3) ∗ 0) = f1,n(b) + f2,n(b) + f3,n(x)
= g1,n(b) ∧ g2,n(b) ∧ g3,n(x) ∧ g4,n(0),
= g3,n(x) ∧ g4,n(0),
. . .

which implies that:

f1,n(x) = g1,n(x) ∧ g2,n(0),
f2,n(x) = g2,n(x) ∧ g3,n(0) − g1,n(b) ∧ g2,n(0)

= g2,n(x) ∧ g3,n(0) − g2,n(0),
f3,n(x) = g3,n(x) ∧ g4,n(0) − g1,n(b) ∧ g2,n(0) − g2,n(b) ∧ g3,n(0) + g2,n(0)

= g3,n(x) ∧ g4,n(0) − g3,n(0),

and so forth. Note that for all i ∈ [n] we may write the above as

fi,n(x) = 1(−∞,wn(x)](ci−1,n) ((wn(x) ∧ ci,n) − ci−1,n)

for some nondecreasing function wn : I → I and real constants c0,n = 0,
cj,n = gi−1,n(0) (j ∈ [n − 1]), cn,n = g1,n(b), which completes the proof.

We are now ready to present main results of this paper. They follow
directly from Props. 16, 17, and 18.

The first theorem is illustrated in Fig. 1.

Theorem 19. Let I = [0, b]. Then P(smax) ∩ P(smin) = P(smax) ∩ P(smod) =
P(smin) ∩ P(smod) = P(smax) ∩ P(smod) ∩ P(smin).

Please note that the above theorem can also be proved in an alternative
way, using Props. 13, 14, 15, i.e. the characterizations of the functions. How-
ever, these 3 propositions do not specify the form of quasi-S/L-/I-statistics
that lie in P(smax) ∩ P(smod) ∩ P(smin).
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smax

sminsmod

Figure 1: The intersection of the 3 classes of aggregation operators (see Theorem 19).

Alternative proof. Let F ∈ P(smax) ∩ P(smin) and (∀n) (∀x,y ∈ I
n), then we

have F(x
S
∨ y) + F(x

S
∧ y) = F(x) ∨ F(y) + F(x) ∧ F(y) = F(x) + F(y), which

implies F ∈ P(smod).

If F ∈ P(smax) ∩ P(smod), then (∀n) (∀x,y ∈ I
n) it holds F(x

S
∧ y) =

F(x) + F(y) − F(x) ∨ F(y) = F(x) ∧ F(y), which gives F ∈ P(smin).
On the other hand, whenever F ∈ P(smin)∩P(smod), then (∀n) (∀x,y ∈ I

n)

it holds F(x
S
∨ y) = F(x) + F(y) − F(x) ∧ F(y) = F(x) ∨ F(y), which implies

F ∈ P(smax).
Therefore we have P(smax) ∩ P(smin) ⊆ P(smod), P(smax) ∩ P(smod) ⊆ P(smin),

and P(smin) ∩ P(smod) ⊆ P(smax), which gives P(smax) ∩ P(smin) = P(smax) ∩
P(smod) = P(smin) ∩ P(smod) and the proof is complete.

Theorem 20. Let I = [0, b]. Given nondecreasing functions w1, w2, · · · : I →
I and a triangle of coefficients (ci,n)i∈[n],n∈N such that 0 ≤ wn(0) ≤ c1,n ≤
· · · ≤ cn,n ≤ b, we have for all (x1, . . . , xn) ∈ I

1,2,...:

n
∨

i=1

wn(x(n−i+1)) ∧ ci,n =
n
∧

i=1

(wn(x(n−i+1)) ∨ ci−1,n) ∧ cn,n

=

n
∑

i=1

((

wn(x(n−i+1)) ∨ ci−1,n

)

∧ ci,n − ci−1,n

)

.

with convention c0,n = 0.

For example, in case of OWMax and OWMin operators generated by a
triangle of coefficients △ = (ci,n)i∈[n],n∈N such that (∀n) cn,n = b, we have
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wn(x) = x, where x ∈ I (thus, each OWMax and OWMin operator is sym-
metric minitive, maxitive, and modular). On the other hand, it is easily seen
that if b > 0, then any OWA operator (which is of course, by definition,
modular) is neither maxitive nor minitive.

4. Applications

The discussed aggregation operators have many valuable applications.
For example, in the so-called Producers Assessment Problem [9, 8] we focus
ourselves on construction of a class of mappings that project the space of
arbitrary-sized real-numbered vectors of individual goods’ quality measures
into a single number that reflects both (a) general quality of the goods and
(b) their producer’s overall productivity. Among many interesting instances
of the Producers Assessment Problem we have the issue of measuring an
author’s scientific merit by means of e.g. the number of citations received
by his/her publications (for other approaches see e.g. [11]). In this case we
assume that I = [0,∞].

The first quality component may simply be represented by nondecreas-
ing, symmetric aggregations operators. However, the second one needs some
additional assumptions. It has been widely accepted that we should require
that an output of any new product does not result in a decrease the pro-
ducer’s valuation. This behavior is assured by the following property.

Definition 21. We say that F ∈ E(I) is arity-monotonic, denoted F ∈ P(am),
if

(∀x,y ∈ I
1,2,...) F(x) ≤ F(x,y).

An aggregation operator useful in the Producers Assessment Problem (a
so-called generalized impact function) is therefore any function in P(sym) ∩
P(nd) ∩ P(am), see [9, 8], cf. also [7, 24].

Hirsch’s h-index [16, 23], is the most widely-known tool that may be
applied in this domain. It is an impact function defined as H(x1, . . . , xn) =
max{0, 1, . . . , n : x(n−i+1) ≥ i}, where, for brevity of notation, x(n+1) := x(n).
It has been shown in [9] that such an aggregation operator is generated by
nondecreasing functions wn(x) = ⌊x⌋ and the triangle of coefficients for which
we have ci,n = i, i ∈ [n].

Scientometricians considered many generalizations of the h-index. For
example, the hα-index [18], where α ≥ 1, is an impact function defined as
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Hα(x1, . . . , xn) = max{0, 1, . . . , n : x(n−i+1) ≥ iα} (we obtain such aggrega-
tion function by setting (∀n) wn(x) = ⌊x1/α⌋ and ci,n = i, i ∈ [n]). On the
other hand, hβ-index [6, 25, 11], where β > 0, is defined as Hβ(x1, . . . , xn) =
max{0, 1, . . . , n : x(n−i+1) ≥ βiα}, which may be obtained by setting (∀n)
wn(x) = ⌊x/β⌋ and ci,n = i, i ∈ [n].

It is easily seen, that for F ∈ P(smax)∩P(smin)∩P(smod) we have F ∈ P(am) if
and only if F is generated by nondecreasing functions such that w1 � w2 � . . .
and a triangle of coefficients (ci,n)i∈[n],n∈N such that 0 ≤ wn(0) ≤ c1,n ≤ · · · ≤
cn,n ≤ b, which fulfills ci,n ≤ ci,n+1. This result may of course be used to
construct new interesting aggregation operators.

5. Conclusions

In this paper we have examined the intersections between three classes
of important aggregation operators. It turns out that all functions fulfilling
any two chosen properties automatically has the remaining one.

We also observed that many influential aggregation operators used in
e.g. scientometrics or webometrics are symmetric minitive, maxitive, and,
simultaneously, modular. Also please note that our result serves as their
natural, intuitive generalization.
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