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Abstract. Sugeno integral-based confidence intervals for the theoretical
h-index of a fixed-length sequence of i.i.d. random variables are derived.
They are compared with other estimators of such a distribution char-
acteristic in a Pareto i.i.d. model. It turns out that in the first case we
obtain much wider intervals. It seems to be due to the fact that a Sugeno
integral, which may be applied on any ordinal scale, is known to ignore
too much information from cardinal-scale data being aggregated.

1 Introduction

Let X = (X4,...,X,) be a sequence of i.i.d. random variables with a common
monotone strictly increasing c.d.f. F' with support I = [0,00). The theoretical
h-index, cf. [11], $,, = H,(X) € (0,n) is a solution to:

1—F(9,) = Hn/n.

The theoretical h-index is a sample-size dependent location characteristic of
a probability distribution. For example, if X follows a Pareto/Lomax distribution
with F(z) =1—-1/(1 + ), then $,, = (v4n+ 1 —1)/2.

Among estimators of £),, we find the generalized Hirsch [12] index:

>

2(X) = \/ X(n—it1) N = max {min{X(n)7 1},... ,min{X(l),n}} ,
i=1

where X(;) denotes the ith smallest value in X. Statistic T, is an OWMax [3,4]
(and thus an OMS3 [7]) operator corresponding to the Sugeno [14] integral of X
with respect to the counting measure, see also [10,15]. What is important, it has
already been shown (see [9] for the proof) that h,(X)/n is an asymptotically
unbiased estimator of £, /n.

It is well-known that the h-index, originally defined for a sample with el-
ements in Ny, has many fruitful applications, for example in bibliometrics [6],
quality engineering [5] and information sciences [13]. However, still little is known
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on the stochastic properties of such a measure. In [9,11] the properties of En and
other Sugeno integrals in an i.i.d. setting are considered, while in e.g. [1] its
behavior in a more complex model is investigated. Moreover, in [8] a statistical
test for the difference of h-indices in two Pareto-distributed random samples
of equal lengths is derived and it turns out that such a tool has a very weak
discriminatory power.

In this contribution we are interested in constructing Sugeno integral-based
confidence intervals for the theoretical h-index, which is done in the section to
follow. In Sec. 3 we provide some numeric examples for the Pareto distribution
family. The obtained estimates are compared with different ones. It turns out
that the h,-based intervals are very wide, which is probably due to the fact that
a Sugeno integral is known to ignore too much information from data. Finally,
Sec. 4 concludes the paper.

2 Derivation of Sugeno integral-based confidence
intervals

Fix n. Let © = (0,n) be a parameter space that induces an identifiable statistical
model (I, {Pry : € ©})™ in which for X ~ Pry we have § = 9,,(X) for all § € O,
i.e. such that the theoretical h-index of X is equal to the value of parameter 6.

Definition 1. Let a € [0,1]. A random interval (6(X),0(X)) is called an (1 —
a)-confidence interval for parameter 0 if:

(Ve ®) Pryg((X)<0<6(X)>1-oa.

Of course, here we are interested in constructing the smallest confidence
intervals which bounds are determined solely by the observed value of h,,. Addi-
tionally, we will assume a kind of symmetry of the intervals. The lower bound,
0(X), will be defined via the smallest function d,, : (0,n) — (0,7n) such that for
all 6 € (0,n) it holds

Pry (MX) < da(e)) >1-a/2.

Given the observed random sample realization x and h = h, (x), the lower bound
will be determined by calculating d_!(h) = sup{@ : d,(0) < h}. Thanks to such
a setting we will have Prg(d; ! (hny (X)) < 6) > 1 — a/2.

On the other hand, the upper bound shall be given by the greatest function
go such that

Pro (An(X) 2 ga(6)) =1 - /2,
which is equivalent to Pry (ﬁn(X) < Ga (9)) < /2. This will provide us with
Pra(0 < g5 ' (hn(X))) > 1 — a/2.
By [9, Lemma 2] we have:

Pro(hn(X) < h) =Z(Pro(X < h)in— |h],|h] +1),
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where Z(p; a, b) denotes the incomplete beta function of p with parameters a, b.
We see that the c.d.f. of h,, can be discontinuous even for continuous c.d.f. of X.
Therefore,

0(x) =d*(h) =sup{0:Z (Pro(X < h);n— |h], k] +1)>1—a/2},
and
0(x) =g (h) =inf{0: T (Pro(X <h);n— |hl],|h] +1) <a/2}.

Unfortunately, in most cases the confidence interval bounds can only be calcu-
lated numerically.

3 Numerical examples

For the sake of illustration let us consider the Pareto distribution family, P(k),
with scale parameter k£ > 0. Such a distribution is sometimes used, cf. [11], in
modeling empirical phenomena in the application scope of the h-index.

The cumulative distribution function of X ~ P(k) is defined by:

1
F(z)=1 T (x> 0).
We have EX =1/(k — 1) for £ > 1 and supp X = [0, c0).

In order to guarantee that this family of distributions fits our statistical
model’s assumptions, we should introduce the following reparametrization. Let
(k) = 9,(X) for X ~ P(k). Such a function may easily be calculated nu-
merically with very good accuracy using some nonlinear root finding algorithm.
Thus, we may consider P’(8) = P(91(0)), 8 € (0,n).

Figures 1 and 2 depict the 95%-confidence intervals bounds for n =10 and
25, respectively. Note that the bounds are not continuous functions of h,: they
have jumps in points from the set {1,...,n — 1}. For example, for n = 10 and
observed value of h, = 5, we obtain an interval (3.341,7.779). On the other
hand, for h, = 5~ we get (2.840,7.021).

We should also keep in mind that even though the obtained intervals are the
smallest possible (at a confidence level of 95%), in fact the true probability of
covering a theoretical h-index may sometimes be greater that 95%. This phe-
nomenon, depicted in Figures 3 and 4, is of course consistent with the provided
definition of a confidence interval. A similar behavior is observed e.g. for the
Neyman-Clopper-Pearson (beta distribution-based, see [2]) confidence intervals
for the probability of success in a Bernoulli experiment, cf. [16].
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Fig. 1. Bounds for the Sugeno integral-based 95%-confidence intervals for the theore-
tical h-index; Pareto distribution family; n = 10.
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Fig. 2. Bounds for the Sugeno integral-based 95%-confidence intervals for the theore-
tical h-index; Pareto distribution family; n = 25.
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Fig. 3. Actual coverage of the true £, by Sugeno integral-based 95%-confidence inter-
vals; Pareto distribution family; n = 10.
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Fig. 4. Actual coverage of the true £, by Sugeno integral-based 95%-confidence inter-
vals; Pareto distribution family; n = 25.
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Comparison to other estimates. It might easily be shown that for (X1,...,X,)
iid. P(k) the statistic

(X)) = (n—1)/ > log(1 + X;)
=1

is an unbiased and consistent estimator of k. What is more, Y ; log(1 + X;) ~
I'(n, k).
We may thus try using b} = 9, (k) as an estimator of £),,. Numerical results

indicate that ﬁ; /n may only be asymptotically unbiased estimator of $,,/n. By
the above-mentioned fact, if (X7,...,X,) i.i.d. P'(9(k)), then

~ n—1
Pr g(k)(h;kL(X) S h) =1- Gn,k <19_1(h)> ’
where Gy, 1 is the c.d.f. of the gamma distribution I'(n, k). This time, such an
estimator has a continuous distribution.

A h}-based (1 — a)-confidence interval may be derived in a manner similar
(but much simpler due to continuity) to the previously considered one. It is a
random interval (0% (X),8" (X)) such that §*(X) = d;*"(h) and 8" (X) = g5 1" (h)
for which it holds

Pr 1) (hy(X) < h) = a/2,
Pr iy (hy(X) < h) =1-a/2.

Again, these equations may be solved numerically with a nonlinear root finder.
This time we obtain a confidence interval which is exactly at a confidence level
of 1 —a for each 0.

Figure 5 depicts h’-based 95%-confidence interval bounds for n = 25. We
observe that they are of smaller length than those presented in Figure 2. More-
over, interval lengths for different sample sizes are given in Figure 6. We note
that h} are better quality estimates than the Sugeno integral-based ones.

4 Conclusions

In this paper we derived Sugeno integral-based confidence intervals for the the-
oretical h-index, which is a location-type characteristic of a probability distri-
bution. Large widths of the Sugeno integral-based intervals for a sample from
the Pareto distribution family may possibly be due to the fact that this ag-
gregation method is known not to utilize “full information” in input data. For
example, for n = 6, h,(x) = 3 is obtained for x = (3,3,3,0,0,0) as well as for
x = (00, 00,00, 3, 3,3).

Taking into account the close relationship between confidence intervals and
statistical hypothesis tests, the presented results are consistent with conclusions
of [8]: the nature of Sugeno integral allows its application on any ordinal scale,
but the prize we are paying for its robustness is the lack of good performance
for cardinal scales.
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Fig. 5. Bounds for the ﬁ;—based 95%-confidence intervals for the theoretical h-index;
Pareto distribution family; n = 25.
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Fig. 6. Maximal widths of Sugeno integral- and %;‘L—based 95-% confidence intervals for
the theoretical h-index as a function of sample size n; Pareto distribution family.



