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Abstract. The use of supervised learning techniques for fitting weights
and/or generator functions of weighted quasi-arithmetic means – a spe-
cial class of idempotent and nondecreasing aggregation functions – to
empirical data has already been considered in a number of papers. Never-
theless, there are still some important issues that have not been discussed
in the literature yet. In the second part of this two-part contribution we
deal with a quite common situation in which we have inputs coming from
different sources, describing a similar phenomenon, but which have not
been properly normalized. In such a case, idempotent and nondecreasing
functions cannot be used to aggregate them unless proper pre-processing
is performed. The proposed idempotization method, based on the notion
of B-splines, allows for an automatic calibration of independent variables.
The introduced technique is applied in an R source code plagiarism de-
tection system.
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1 Introduction

Idempotent aggregation functions – mappings like F : [0, 1]n → [0, 1] being non-
decreasing in each variable and fulfilling F(x, . . . , x) = x for all x ∈ [0, 1] – have
numerous applications, including areas like decision making, pattern recognition,
and data analysis, compare, e.g., [8,11].

For a fixed n ≥ 2, let w ∈ [0, 1]n be a weighting vector, i.e., one with∑n
i=1 wi = 1. In the first unit [1] of this two-part contribution we dealt with two

important practical issues concerning supervised learning of weights of weighted
quasi-arithmetic means with a known continuous and strictly monotone gener-
ator ϕ : [0, 1]→ R̄, that is idempotent aggregation functions given for arbitrary
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x ∈ [0, 1]n by the formula:

WQAMeanϕ,w(x) = ϕ−1

(
n∑
i=1

wiϕ(xi)

)
.

First of all, we observed that most often researchers considered an approximate
version of weight learning tasks and relied on a linearization of input variables,
compare, e.g., [7]. Therefore, we discussed possible implementations of the exact
fitting procedure and identified some cases where linearization leads to solutions
of significantly worse quality in terms of the squared error between the desired
and generated outputs. Secondly, we noted that the computed models may overfit
a training data set and perform weakly on test and validation samples. Thus,
some regularization methods were proposed to overcome this limitation. We
indicated that due to the typical constraints on the weighting vector (nonnegative
coefficients summing up to 1), not all the regularization techniques known from
machine learning [13] can be applied, but – on the other hand – we may consider
new, quite different ones instead.

Assume that we are givenm ≥ n input vectors in a form X = [x(1), . . . ,x(m)] ∈
[0, 1]n×m together with m desired output values Y = [y(1), . . . , y(m)] ∈ [0, 1]1×m.
For simplicity, we shall focus only on fitting weighted arithmetic means to (X,Y)
using the least squared error criterion, noting that the key ideas presented fur-
ther on can be extrapolated to other settings. And so, we aim to:

minimize

m∑
j=1

(
n∑
i=1

wix
(j)
i − y

(j)

)2

w.r.t. w,

under the constraints that 1Tw = 1 and w ≥ 0, compare, e.g., [5].
However, let us presume that the input values represent m measurements of

the same phenomenon done via n different methods which output numeric values
that cannot be directly compared: each of them is defined up to a strictly in-
creasing and continuous transformation and a proper input data idempotization
scheme has to be applied prior to fitting a model.

Example 1. In the R [15] language plagiarism detection system described in [2,3],
the similarity of a source code chunk pair is assessed via n = 4 diverse methods.
Each of them reflects quite different ideas behind what plagiarism really is in its
nature:

– x
(j)
1 – is based on the so-called program dependence graphs (PDGs),

– x
(j)
2 – simply computes the Levenshtein distance between source texts,

– x
(j)
3 – determines the longest common subsequence of two corresponding

token strings,

– x
(j)
4 – compares the number of common R function calls.

Each of the four variables is a real number in [0, 1], but the way they have
been mapped to the unit interval is quite arbitrary – in fact, initially, we should
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treat them as values on an ordinal – and not interval – scale. Most common
machine learning methods (e.g., regression and classification) should work quite
well on such data, but the construction of aggregation functions does not make
much sense on raw inputs of this kind. However, if appropriate strictly monotone
transformations ϕ1, . . . , ϕ4 : [0, 1] → [0, 1] were determined, we would have the

values normalized in such a way that they can be compared to each other (x
(j)
1 =

0.5 would denote the same similarity level as x
(j)
2 = 0.5, hence we could expect

– by idempotence – the aggregated similarity to be equal to 0.5 too). Moreover
– by nondecreasingness – we could be sure that any increase of a similarity
level never leads to a decrease in the aggregated similarity – a constraint not
guaranteed by any classical machine learning method.

Therefore, in this part of the contribution, we deal with the problem which
aims to construct an idempotized model for a given data set, that is we are going
to:

minimize

m∑
j=1

(
n∑
i=1

wix̃
(j)
i − y

(j)

)2

w.r.t. w,

under the standard constraints on a weighting vector w, where x̃
(j)
i = ϕi(x

(j)
i ) for

some automatically generated monotone and continuous ϕ1, . . . , ϕn : [0, 1]n →
[0, 1]. This enables us to develop idempotent aggregation functions-based re-
gression (and, as a by-product, binary classification) models [13], which – by
construction – fulfill some desired algebraic properties, and hence posses a bet-
ter, more intuitive interpretation than classical approaches on data sets similar
to the one in Example 1.

The paper is set out as follows. In the next section we recall the notion
of B-splines, which we shall use for modeling the ϕi functions. Section 3 dis-
cusses the proposed idempotization and aggregation function fitting procedure,
together with some key implementation details. Note that in order to increase
its performance on test samples, the model employs a regularization term which
we discussed in the first part of this contribution [1]. Section 4 discusses the
results of an experimental study conducted on the aforementioned plagiarism
detection system data. Finally, Section 5 summarizes the paper and indicates
future research directions.

2 B-splines

In a quasi-arithmetic mean fitting task, Beliakov et al. [4,6,9,10] rely on the
notion of B-splines to model an unknown generator function.

Let p ≥ 1 and t = (t1, . . . , tk) be an increasingly ordered knot vector of length
k for some k ≥ 0 such that 0 < ti < ti+1 < 1 for all i = 1, . . . , k. For simplicity,
we presume that ti = 0 for i < 1 and ti = 1 whenever i > k.
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(b) p = 3, k = 2

Fig. 1. Exemplary B-spline basis functions Nt
j−p,p(x) as a function of x, j = 1, ....., p+

k + 1; t is a vector of equidistant knots, k is the number of the internal knots, while p
is the polynomial degree.

Definition 1. B-spline basis functions for j = 0, . . . , p and x ∈ [0, 1] are defined
recursively as:

N t
i,j(x) =

{
1 if x ∈ [ti−1, ti[,
0 otherwise,

(j = 0)

N t
i,j(x) =

x− ti−1

ti+j−1 − ti−1
N t
i,j−1(x) +

ti+j − x
ti+j − ti

N t
i+1,j−1(x), (j > 0)

with convention ·/0 = 0.

Note that a vector of equidistant knots is a quite common setting. Figure 1
depicts exemplary B-spline basis functions.

Additionally, let v ∈ [0, 1]η be a vector of control points, where η = p+k+ 1.

Definition 2. A function Bt
v : [0, 1]→ [0, 1] given by:

Bt
v(x) =

η∑
i=1

viN
t
i−p,p(x) (1)

is called a nonperiodic B-spline of degree p based on a knot vector t and generated
by a control points vector v, see, e.g., [16].

In particular, for p = 1 we get a piecewise linear function interpolating
(0, v1), (t1, v2), . . . , (tk, vη−1), (1, vη). On the other hand, for p = 3 we get a
cubic B-spline.
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3 Proposed Idempotization Method

The proposed idempotization and weighted arithmetic mean fitting task seeks
an OMA operator-like [14] function:

Fϕ,w(x) =

n∑
i=1

wiϕi(xi),

that minimizes the total squared differences between Y and Fϕ,w(X). Here, w
stands for a weighting vector and ϕ1, . . . , ϕn : [0, 1] → [0, 1] are some strictly
increasing continuous bijections.

Of course, as there are uncountably many functions that can be used in the
model we are looking for, we should restrict the feature space in order to make
the task solvable on a computer. In our case, for a fixed p and a knot vector t of
length k, we assume that ϕi – used to normalize the i-th variable, i = 1, . . . , n –
is a nonperiodic B-spline:

ϕi(x) =

η∑
j=1

ciN
t
j−p,p(x)

for some vector of η = p+ k+ 1 control points c ordered increasingly. Note that
the condition 0 = c1 < c2 < · · · < cη−1 < cη = 1 guarantees that ϕi is strictly
increasing, continuous, and onto [0, 1].

Therefore, the feasible set consists of functions:

Fc,w(x) =

n∑
i=1

wix̃i =

n∑
i=1

wi

η∑
j=1

c
(i)
j N t

j−p,p(xi),

where w1, . . . , wn ≥ 0,
∑n
i=1 wi = 1, c

(i)
1 = 0, c

(i)
η = 1, c

(i)
2 − c

(i)
1 > 0, . . . ,

c
(i)
η −c(i)η−1 > 0 for all i = 1, . . . , n. Please observe that Fc,w is an idempotent and

nondecreasing in each variable function of each x̃(j) = (ϕ1(x
(j)
1 ), . . . , ϕn(x

(j)
n )).

Also, as in the first part of our contribution [1], we would like to prevent
overfitting to the training data set, so we should consider some form of the
model regularization.

To sum up, for some fixed Tiknohov regularization coefficient λw ∈ R, in this
paper we are interested in the following optimization task:

minimize

m∑
l=1

 n∑
i=1

wi

η∑
j=1

c
(i)
j N t

j−p,p

(
x
(l)
i

)− y(l)
2

+ λw

n∑
i=1

w2
i w.r.t. w, c,

under the above-mentioned constraints.

As far as computer implementation is concerned, we can rewrite the above
equation in terms of a bi-level minimization procedure. The inner-level part, for
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a fixed w, optimizes for c and in fact can be written in the form of a standard
quadratic programming task (with linear constraints, note that we may pre-
compute the values of B-spline basis functions for each element in X and store
them for further reference). The outer-level component, optimizing for w, can be
solved via some non-linear solver – in our case we propose to rely on the CMA-
ES [12] algorithm and logarithmic barrier functions that enable us to ensure that
the constraints on w are met.

4 Experimental Results

In this section we apply the proposed method on the data set from Example 1,
that is, four different similarity measures for each (unordered) pair of R functions
in the benchmark data set discussed in [2,3]. The number of unique observations
equals to m = 30628. The benchmark data set is of the following form:

j 1 2 3 4 5 6 7 8 . . .

x
(j)
1 0.82 0.58 0.15 0.37 0.17 0.22 0.69 0.87 . . .

x
(j)
2 0.73 0.41 0.25 0.26 0.02 0.13 0.90 0.70 . . .

x
(j)
3 0.63 0.84 0.38 0.40 0.11 0.46 0.72 0.83 . . .

x
(j)
4 0.92 0.75 0.48 0.39 0.12 0.28 0.80 0.92 . . .

y(j) 1.00 0.75 0.50 0.25 0.00 0.25 0.75 1.00 . . .

The meaning of the four variables has been explained in Example 1. The
output variable, y, is a value in the set {0.0, 0.25, 0.5, 0.75, 1.0} and reflects an
expert’s assessment of a similarity degree originally provided on a linguistic scale,
one of “totally dissimilar”, “dissimilar”, “hard to say”, “similar”, or “very sim-
ilar”. We can conceive the y variable as a kind of censored data – it would of
course be impossible for an expert to provide a precise similarity degree assess-
ment in a form of a real number in the [0, 1] interval. At a design stage, an
(ordered) linguistic scale seemed a much more user-friendly choice.

We may observe that, as far as raw data are concerned, there is no weighted
arithmetic mean which returns the value of 1.00 for input values like (0.82, 0.73,
0.63, 0.92) or (0.87, 0.70, 0.83, 0.92).

We split the data set into two parts: 80% randomly chosen observations are
used for training, while the remaining 20% is left for testing purposes. Let us
verify the usefulness of the proposed method in the two following scenarios:

– we treat the fitted function as a regression model which describes the rela-
tionship between the explanatory variables and the dependent variable,

– we partition the range of the predicted y into intervals and label the values
in y according to which interval they fall; as a result, we obtain a binary
classifier.

For simplicity, we assume that the B-splines’ knots are equidistant.
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In the first scenario, we are simply interested in the sum of squared differ-
ences (denoted with d22) between the predicted and desired ys. For the sake of
comparison, we chose a classical linear regression model (to recall, there are no
constraints on the form of coefficients in its case).

In the second case, we marked the y values greater or equal to 0.5 as cases
of plagiarism (class 1) and the other ones as non-suspicious ones (class 2). In
order to be able to use the considered regression models in such a task (i.e.,
the proposed method as well as linear regression), after finding the optimal fit
we also seek for the parameter α that splits the predicted y range into two
subintervals in such a way that the two naturally obtained classes maximize the
F -measure on the training data set. To recall, the F -measure is the harmonic
mean of precision and recall. These two classifiers are compared with logistic
regression and the random forest algorithm.

The sum-of-squares error and the F -measure are negatively correlated, al-
though the correspondence between them is not a monotone function. There are
cases, where increasing d22 leads to an increase in the F -measure and oppositely.

Firstly, let us study the influence of the B-splines degrees and the number
of internal knots used on the model performance. We examined the polynomials
with corresponding parameters ranging from p = 1 and k = 1 up to p = 5 and
k = 5 (25 cases in total). Surprisingly, it turns out that the impact is relatively
small. What is more, we observe that higher degree polynomials may also lead
to a decreased model performance. The difference between the minimal and the
maximal F -measure value is equal to ca. 0.02. For the d22 error, the model of the
lowest quality has been obtained for p = 1, k = 1. As can be seen in Figure 2,
fitted polynomials of higher degrees of course have shapes similar to those of
lower degrees.

Moreover, let us consider the effect of using the λw regularization coefficient.
The F -measure and the d22 error as a function of λw is depicted in Figure 3
(p = 3, k = 1 was used for F -measure and p = 1, k = 4 for d22 error). The
highest value of the F -measure was obtained for p = 3, k = 1, λw = 33, while
the smallest d22 error – for p = 1, k = 4, λw = 30.

Table 1 summarizes the performance measures of the four considered algo-
rithms. The proposed method gives a higher F -measure than linear and logistic
regression as well as a lower d22 error than linear regression. Even though we
get a lower F -measure than in the random forest case, please note that our
method comes with important algebraic properties of the resulting aggregation
function (such as idempotence and nondecreasingness in each variable), as well
as a nice model interpretability. The random forest algorithm does not posses
such advantages.

Finally, let us study the impact of introducing idempotization to a weighted
arithmetic mean-based model, by comparing the performance of the model on
the raw data set and on the version transformed with optimal B-splines. Table 2
summarizes the model quality measures for a fixed λw equal to 0. We observe
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that relying on a single feature does not lead to particularly good performance.
The same happens if the weighting vector is optimized for but the idempotization
scheme is not applied at all. Therefore, there is a positive impact of both factors.
Similar observations can be done for other λw coefficients.

5 Conclusion

We have discussed a supervised learning method for weights of weighted arith-
metic means in cases where data come from an ordinal scale and they have to
be properly mapped to the [0, 1] interval prior to computing an optimal fit.

The introduced method has been applied on a real-world data set consisting
of data on similarity degrees of pairs of R functions. It has many advantages:

– determining the ϕi functions enables us to normalize the input values so that
they become mutually comparable and easily interpretable to the plagiarism
detection system’s users; other machine learning methods can be applied on
the transformed sample too;

– the fitted weighted arithmetic mean serves as a regression model for our
data and explains the relationship between the individual similarity degrees
and the aggregated similarity assessment; as the weights are by definition
nonnegative and they sum up to one, we have a clear intuition of which of
the four methods has the highest impact;

– the fitted model fulfills two important properties: it is idempotent and non-
decreasing in each variable; thus, its behavior is much more natural and
understandable to end-users;

– the obtained regression model can be easily transformed in such a way that
it is suitable for using in, e.g., binary classification tasks.

Let us note that the introduced method can be easily extended to the case
of fitting arbitrary weighted quasi-arithmetic means, with or without known
generator functions.

For future work, inspecting different regularization schemes could lead to
models of increased quality. In particular, one may think of introducing a regu-
larization component for the vector of control points, e.g., for some λc ∈ R, of

the form λc
∑n
i=1

∑η
j=2

(
c
(i)
j − c

(i)
j−1

)2
.
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Table 2. Performance measures as functions of different weighting vectors; p = 3,
k = 1, λw = 0, with and without idempotization.

w1 w2 w3 w4 accuracy precision recall F d22 idempot.

1 0 0 0 0.992 0.848 0.693 0.763 186.30 Yes
0 1 0 0 0.995 0.927 0.787 0.851 208.74 Yes
0 0 1 0 0.994 0.803 0.853 0.828 316.04 Yes
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0.27 0.06 0.38 0.29 0.996 0.952 0.800 0.870 137.34 No
0.41 0.12 0.07 0.40 0.997 0.919 0.907 0.913 107.69 Yes
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Fig. 2. Best B-splines of different degrees fit to the training sample.
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Fig. 3. F -measure and squared error as a function of the λw regularization coefficient.
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