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Abstract

Research in aggregation theory is nowadays still mostly focused on algorithms
to summarize tuples consisting of observations in some real interval or of di-
verse general ordered structures. Of course, in practice of information processing
many other data types between these two extreme cases are worth inspecting. This
contribution deals with the aggregation of lists of data points in R? for arbitrary
d > 1. Even though particular functions aiming to summarize multidimensional
data have been discussed by researchers in data analysis, computational statis-
tics and geometry, there is clearly a need to provide a comprehensive and unified
model in which their properties like equivariances to geometric transformations,
internality, and monotonicity may be studied at an appropriate level of general-
ity. The proposed penalty-based approach serves as a common framework for
all idempotent information aggregation methods, including componentwise func-
tions, pairwise distance minimizers, and data depth-based medians. It also allows
for deriving many new practically useful tools.

Keywords: multidimensional data aggregation, penalty functions, data depth,
centroid, median

1. Introduction

Aggregation theory [5, 9, 32, 38] focuses on a formal analysis of functions
that, given a set of objects of the same kind, output a single item which is (in
some sense) representative of all the inputs. Till very recently, functions like
F:I" — Ifor some I = [a,b] and n > 2, fulfilling key application-specific
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properties like nondecreasingness, internality, conjunctivity, etc., were the most
common objects of interest in this field. It is important to stress that particular ag-
gregation functions were of course known long before aggregation theory became
a genuine branch of applied mathematics and information science. In particular,
means or averaging functions [5, 11] — that is functions that are at least idempo-
tent — include the famous arithmetic mean, median, quasi-arithmetic means, and
OWA [74] operators, to name just a few. However, the emergence of this domain
allowed to seek common patterns bracketing diverse ways to handle information
overload as well as understand data aggregation processes much better. Apart
from aggregation on bounded posets, e.g., [21, 44, 56], from quite recently, we
finally start to observe a growing interest in aggregation of and on other practi-
cally useful structures, see, e.g., the papers [58, 60] concerning the problem of
combining rankings.

In this paper we are interested in functions that aim to aggregate a sequence
of n numeric lists XV, ..., x" e R for a fixed d > 1. Each such F : (RY)" — R?
can be written as:

(1 (n)

I e .
n
X X, )
FIl 72 ... 72 =77 | (1)
xill) xi,") Va

Equivalently, we may conceive F as a function acting on a d X n matrix like:

X1

X2
X =[xV x® ... x™] =

X4

Note that in data analysis, X € R? = R%! is typically called an observation —
it designates an object or experimental unit (e.g., a person, autonomous vehicle,
spatial location). On the other hand, x; € R denotes the j-th variable or feature
(such as temperature, weight, or velocity).

The concept of a penalty function based on data in the real line, i.e., with
d = 1, was first introduced by Yager [73], and then extended in numerous works,
see, e.g., [8, 15, 16, 75]; in particular, [13] gives the most recent summary to-
gether with a critical historical overview. Its aim is to measure the amount of
“disagreement” between the inputs and the output being computed. Such a frame-
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work provides a very appealing way to define new means: it can be shown that
minimizers of some penalty coincide with the class of idempotent functions [13].

Our aim here is to propose a penalty-based framework for idempotent func-
tions that act on observations in R for an arbitrary d > 1, significantly extending
our previous preliminary studies [32, 33]. In the next section the notion of a
penalty function generalizing the classical one is proposed. Basic desired prop-
erties of penalty-based mappings are discussed in Sect. 3. In Sect. 4, 5, and 6
we present three noteworthy classes of aggregation methods, respectively: com-
ponentwise extensions of unidimensional functions, those constructed upon pair-
wise distances between observations, and those defined by means of the notion of
data depth. Section 7 concludes the paper and discusses some concepts which are
frequently considered in classical aggregation theory, but in the extended setting
are difficult to maintain. This includes, among others, the notion of monotonicity
and orness measures.

2. Penalty-based framework

Given an arbitrary x € R, with (d = x) we denote a d-tuple (x, x, ..., x) € R?,
Binary operations like +, —,-, /, A (minimum), and V (maximum) on vectors of
equal lengths d are applied elementwise and thus output a vector of length d too.
On the other hand, if one of the operands is a scalar, then it is extended to a vector
of length d in such a way that, e.g., X+ = X+ (d ). If A € R™" is a matrix with
d rows and n columns and t € R?, then by, e.g., A+t wemean A+[tt --- t],ie.,t
is treated as a column vector. Moreover, A+t = A+ (d=xt) = A+[(dxt) --- (dx*1)].
Finally, for some n € N we denote with [n] the set {1,2,...,n} and with || - ||, the
LP-norm on RY.

Having established the notation convention used throughout the paper, let us
introduce the notion of a penalty function relative to given x, ... x® € R¢,

Definition 1. We call P : R? x (R?)" — [0, oo] a penalty function, whenever:

(a) P(y;x,...,x") =0if and only if xX* = y for all i € [n];

(b) for every fixed xV, ..., x® € R the minimum set of P(-;xV, ..., x™), i.e.,
{y e R? : P(y;xV,...,x") = infyga P(y;x, ... ,x(”))}, is nonempty,
bounded, and convex.

In the d = 1 case we of course allow for the minimum set of P(-; X) to be
either a singleton or a real interval. Therefore, we can say that the above definition
generalizes the classical one (as given in [8]; see also [13]).



Please cite this paper as: Gagolewski M., Penalty-based aggregation of multidimensional data, Fuzzy Sets and
Systems 325, 2017, pp. 4-20. doi:10.1016/j.fss.2016.12.009.

In order to be able to generate data aggregation methods based on the notion of
a penalty function, let us denote with CoG(M) = (my, ..., m,) the center of gravity
(centroid, geometric center) of a nonempty, bounded, and convex set M C R“. For
instance, if M is full-dimensional, then m; = fM x; dx/ fM dx. In particular, it is
worth noting that centroids of convex polytopes are quite convenient to compute
numerically for small d (this, however, depends on their representation, see [30,
59]), and that for d = 1 it holds CoG([a, b]) = (a + b)/2, a < b. Moreover, it
always holds CoG(M) € M.

Definition 2. Given a penalty function P : RYx(R9)" — [0, oo], the corresponding
P-based function is defined as:

Fx®,...,x™) = arg” min P(y; x o x™),
yeRd

where arg” minycge P(y; X) := CoG ({y eRY: P(y;X) = infy cpe P(Y'; X)}) denotes
the center of gravity of the minimum set of P(-; X).

Let us indicate some results which will be useful in the sequel. First of all, we
should point out that penalty functions are defined up to — among others — some
strictly increasing transforms.

Lemma 3. Let P : RYx (RY)" — [0, o] be a penalty function. Associate with each
X € (RY" a strictly increasing bijection px : [0, c0] — [0, co] and define P’ : RY x
(RYy* — [0, 00] in such a way that for any y, X it holds P'(y;X) = ¢x(P(y; X)).
Then P’ is also a penalty function and the P-based function is equivalent to the
P’-based one.

Proof. The satisfaction of condition (a) in Def. 1 is evident. Thus, now fix X €
(RYy". We have ¢x (infy P(y;X)) = infy ¢x (P(y; X)). Therefore, {y : P(y; X) =

infy P(y:X)f = [y : x(P(y:X)) = infy ox(P(y': X)), O

What is more, we shall see that some penalty functions can easily be obtained
by studying mappings which are — among others — convex with respect to y. Ob-
serve that, by definition, for any penalty function P and all X € (R9)", the effective
domain of P(-; X), that is {y e RY: P(y;X) < 00}, is not empty. As its codomain
does not include —co, each P(-; X) > 0 is what we call in convex analysis a proper
function, see [49, 61]. Yet, we should keep in mind that this time we act on an
unbounded domain, whilst when aggregating unidimensional data one typically
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assumes that all observations are in a bounded real interval, e.g., [0, 1] or [—1, 1].
Therefore, apart from convexity, we need some additional, but very natural, con-
ditions. An exemplary set of such properties is given in the following lemma.

Lemma 4. Let P : R? x (RY)" — [0, o] be such that P(y;x"",...,x™) = 0 if and
only if X =y for all i € [n]. For every X € (RY)" if:

e P(-;X) is convex;

o P(y;X) < ooforally € RY

o limyy e P(y; X) = oco;
then P is a penalty function.

Proof. Fix X € (RY)". By [49, Corollary 2.1.3], P(-; X) is everywhere continu-
ous and hence surely lower semicontinuous. By [49, Theorem 4.1.3], the mini-
mum set of P(-; X) is not empty and based on [61, Theorem 4.6] — convex. As
infy P(y; X) < oo and limyy_,., P(y; X) = oo, we conclude that it must be bounded
too, which completes the proof. [

3. Desired properties

3.1. Idempotence

It is straightforward to see that each P-based function F is idempotent, i.e.,
such that for all x € R it holds F(x,...,x) = x. What is more, just like in the
d = 1 case (see [13]), we have the following much stronger result.

Theorem 5. F : (RY)y" — R? is a P-based function for some penalty P : R? x
(RYy* — [0, 0o] if and only if it is idempotent.

Proof. (=) Follows from condition (a) in Def. 1 and the fact that CoG({x}) = x.

(<) Assume that F is idempotent and consider P : RY x (R%)" — [0, co] defined
forany y, X as P(y; X) = |[F(X)=ylL+|[V(X)|l», where V : (R%)" — [0, co]¢ denotes
the componentwise extension of the sample variance, V(x\V,...,x") = v with
n’v; = 2ie1 Zik=j (xgj) - xgk))z for all i € [d]. For every fixed X, the minimum set of
P(-;X) is the singleton {F(X)}, with infy P(y; X) = [[VX)|>. As VP, ..., x") =
0 if and only if x¥ = x® for all j, k € [n] we have that P(y; X) = 0 if and only if
y = x\ for all j € [n], and the proof is complete. O

On a side note, the ||[V(X)||, term (which was inspired by the one in [13]) could
be used to relax the assumption about P in Lemma 4.

5
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3.2. Equivariances to transforms

As noted in [33], researchers in data analysis, computational statistics and ge-
ometry — fields from which most well-known multidimensional idempotent ag-
gregation tools originate — are typically interested in properties that deal with
equivariances to different geometrical transformations, see, e.g., [66]. Intuitively,
equivariance means that by transforming a data set we obtain an aggregated value
which follows the same transformation'.

For instance, one frequently applies various transformations at the data cleans-
ing or data wrangling step. In particular, standardization involves translation by a
vector of componentwise means and scaling by the reciprocal of the square root
of componentwise variances. On the other hand, principal component analysis
(PCA) relies on some data set rotation.

Before we present some general results which deal with such types of behav-
ior, we should emphasize that the center of gravity of a given set is equivariant to
affine transformations.

Lemma 6. Given a convex set M C R?, for all matrices A € R™? of full rank and
t € R? it holds CoG(AM +t) = CoG({Ax + t : x € M}) = ACoG(M) + t.

Proof. Assume that CoG(M) = (my, ...,my) and CoG(M") = (m], ..., m)), where
the convex set M’ = AM + t. We shall only prove that the lemma holds for a
full-dimensional M, as a similar reasoning is required in cases in which M lies on
a d’-dimensional hyperplane for some d’ < d. We have:

S xidxi---dxa [, 1det(A)] (2 ayjx; + ) doxy - dxg

m;, =
[, dxi - dx [, 1det(A)| dx; - - - dxg
1 x;idxy---dx 1
= Zaiij ! ! d+ti:Za,~jmj+ti.
= fM dx;---dxy =
Thus, CoG(AM + t) = ACoG(M) + t, and the lemma follows. OJ

Proposition 7. Let a penalty function P : R? x (RY)* — [0, co] be such that for
all matrices A € R™? of full rank and t € R? there exists a strictly increasing

'On the other hand, in our case invariance would mean that the aggregated value is insensitive
to transformations of a particular kind. Note that the term equivariance is frequently used in data
analysis literature (e.g., [66]), whereas aggregation theory (e.g., [38]) would refer to the very same
property as an invariance. Yet, in this paper we need a clear distinction between these two.

6
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bijection gay : [0,00] — [0, 0] such that for every'y € RY and X € (RY)"
it holds ooy (P(Ay + t; AX +t)) = P(y; X). Then the P-based function is affine
equivariant, i.e., F(AX +t) = AF(X) + t.

Proof. Take any A, t, and X. By Lemma 3 and the fact that affine transforms of
convex sets preserve convexity, we have:

t+AFX) =t+ Aarg” miI} P(y;X)=t+ Aarg” mig oAt (P(Ay + t; AX + t))
yeR yeR:

= t+ Aarg" min P(Ay + t; AX + t) = arg” min P(y; AX + t) = F(t + AX).
yeR? yeR4

]

Remark 8. The above proposition also works if we restrict ourselves to some
specific families of affine transforms, including:

e translation equivariance — for all t € RY, F(X + t) = F(X) + t;
e uniform-scale equivariance — for all s > 0, F(sX) = sF(X);
e d-scale equivariance — for all s €]0, co[“, F(sX) = sF(X);

e orthogonal equivariance — for all orthogonal matrices O € R™?, F(OX) =
OF(X);

as well as their combinations.

Note that the class of orthogonal transformations consists of all rotations around
the point 0 € RY (whenever det O = 1), reflections against the axes, and their
compositions. Each affine equivariant function is also equivariant to all similarity
transforms, that is uniform-scale, translation, and orthogonal transformations.

3.3. Various internalities

As far as unidimensional functions are concerned, some authors (see, e.g.,
[5, 11]) require a stronger version of idempotence in order to call F an averaging
function or a mean. Namely, internality* states that a function’s output value must
lie “somewhere in-between” the input values. According to [38], already Cauchy
in 1821 considered under a name mean an internal function; similarly, Gini in the
1950s needed only this very property when discussing various means; see [5].

2Internality, see [38, Definition 2.53], is sometimes referred to as compensativity.

7
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In the d = 1 case, internality is defined by requiring for any X that F(X) €
[ AV x(ll), Vi lx(l’)] [Min(x;), Max(x;)]. For arbitrary d > 1, this property can be
generalized in a componentwise manner. First, let us introduce the notion of the
bounding box of X:

BB(X) = [/n\ x(ll)’vx(ll)} XV\ lez)’\n/xg)]
i=1 i=1 i=1 i=1

Definition 9. We call F : (R?)" — R? a BB-internal function, whenever F(X) €
BB(X) for all X € (R%)".

However, unidimensional internality can also be generalized as follows. De-
note with CH(X) the convex hull of a point set X, i.e., the set generated by all
convex combinations of observations in X:

CHX) = {Z wix? s (wy, ..., w,) €[0,1]", Zwi = 1}_
i=1 i=1

Definition 10. We call F : (R?)" — R? a CH-internal function, whenever F(X) €
CH(X) for all X € (R9)".

As for d = 1 it holds that CH(X) = BB(X) is the smallest real interval that con-
tains all the points in X, BB- and CH-internality are both indeed generalizations
of the ordinary one. Moreover, for arbitrary d, it is easily seen that CH-internality
(which is particularly appealing in data analysis) implies BB-internality, which
in turn implies idempotence. Interestingly, under rotation equivariance, BB- and
CH-internality coincide.

Lemma 11. Let F : (RY)" — RY be rotation equivariant and such that for any
X € (RY" it holds F(X) € BB(X). Then F(X) € CH(X).

Proof. Fix X € (R?)" and let R denote the set of all d-dimensional rotation matri-
ces. It is well-known that the convex hull of a set of points may be expressed as
an intersection of appropriately constructed closed halfspaces, see [29]. In fact, as
any bounding box can be written as an intersection of some 2d closed halfspaces
and we may always find R € R such that an arbitrarily chosen face of CH(X) is
a subset of some face of R"'BB(RX), we have CH(X) = (Nrex R"'BB(RX). For
any R € R, by rotation equivariance and bounding-box internality, we have that
F(X) = R'F(RX) € R™!BB(RX). Thus, F(X) € CH(X), which is precisely the
assertion of the proposition. [
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3.4. Other

Apart from idempotence, internalities, and equivariances we should point out
a few other properties that may be desirable in certain applications. First of all,
the classical symmetry is easily generalizable to a case of d > 1: we say that F
obeys such a property, whenever for all xV, ... ,x® € R? and every permutation
o of the set [n] it holds that F(x", ..., x®) = F(x“D, ..., x7™). The same is true
as far as, e.g., continuity is concerned.

We should point out that orthogonal equivariance implies different kinds of
symmetries too — one with respect to a permutation of rows of an input matrix
(the original one refers to arbitrary rearrangements of columns) and one about the
point 0.

On the other hand, in Sect. 7.1 we shall provide a few remarks about mono-
tonicity, which is very frequently assumed when d = 1, but — as we will see
— is problematic for d > 1. Until then, we shall say that F is componentwise-
nondecreasing, whenever for all X, X’ € (R%)" and any j € [d], if for every i € [n]
it holds x < ", then F(X); < F(X');.

In the three consecutive sections we review different noteworthy classes of
idempotent functions.

4. Componentwise extensions of unidimensional functions

The first class of penalty-based functions studied in this paper consists of com-
ponentwise3 extensions of d classical, unidimensional functions — each of them is
applied on a separate data dimension (variable). Here is how we can combine d
classical penalty functions in order to obtain one that acts on R,

Proposition 12. Let A : [0, o]¢ — [0, 00] be a function that is strictly increasing
in each variable and fulfills A(d = 0) = 0. For any d unidimensional penalty
functions Py,..., P, : R x (R")" — [0, col, the mapping P : R? x (R?)" — [0, oo]
given by:

1 1 1
Py;x . x ™) = AP, Paas LX)

3Such functions are referred to as of decomposable type in [44].
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is a penalty function. Moreover, denoting the P;-based unidimensional function
with F; : R" = R, i € [d], the corresponding P-based function is such that:

1
Fied”, .
FxP, ..., x") = :

1) (n)
Fa(x,’,...,x,")

Proof. By strict increasingness of A, P(y;xV,...,x™) = 0 if and only if for all
i € [d] it holds Pi(y;x\",...,x") = 0; by Def. 1 in the d = 1 case, this is
equivalent to stating that y = x for every j € [n].

For any fixed X € (R9Y)", let M; € R be the minimum set of P;(:;X;), i €
[d], and M € R? the minimum set of P(-;X). First of all, we shall show that
infycps P(y; X) = AGnfy g Pi(y1:X1),...,infy cr Py(ys: Xq)). Assume otherwise:
givenu € [0, co]? such that infycgs P(y; X) = A(uy, ... ., uy) and v; = infyep Pi(yi; X;),
let A(uy,...,ug) < A(vy,...,vy). Due to the strict increasingness of A, we have
that for some k € [d] it holds u; < v,. However, this would imply that i, <
inf, e Pr(Vi; Xi), a contradiction.

Now for any yy,...,y; with y; € M;, i € [d], we clearly have that (yi,...,
ya) € M. Moreover, given any y* € M, for all i it holds y; € M;. Therefore,
M = M, x---x M,. As, by Def. 1, each M, is either a singleton or a real inter-
val, M is obviously a hyperrectangle (which is a particular nonempty, bounded,
and convex set) and therefore P is a penalty function. In this case it holds that
CoG(M) = (CoG(M,),...,CoG(M,)). Thus, we have that F(x",... x") =
(Fi1(xy),...,F4(x4)), which completes the proof. [

Here, the resulting idempotent function does not depend on the actual choice
of A. Therefore, from now on we can call it a (Py, ..., P;)-based function or even
simpler — a componentwise one.

Example 13. Among noteworthy instances of the discussed mappings we find:
e the componentwise extension of the median defined as:
Median (x{",....x{") Median (x;)
CwMedian(x?, ..., x") = : = : ,
Median (x;‘), e xﬁl”)) Median (x,;)
where Median(ul, ce ,u,,) = (l/l'_(n+1)/2J + ur(,m)/z])/Z. As Median is a P;-

based function with, e.g., P;(y;; X;) = Z;le |fo) —yil, i € [d], we may obtain

CwMedian by considering, e.g., P(y; X) = le ;’-:1 |x§j) -yl

10
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e the componentwise extension of the arithmetic mean generated by, e.g., a
penalty function P(y; X) = 34, 3" l(xl@ - ).

i=1 &4j

More generally, componentwise weighted medians and arithmetic means may eas-
ily be introduced.

In the componentwise setting, some of the already known results on unidi-
mensional penalty-based functions, see, e.g., [6-8, 10, 12, 14-16, 51, 71, 75] can
be extrapolated to our extended framework. Nevertheless, we should be careful,
as many of the facts in classical aggregation theory are limited to tuples with ele-
ments in [0, 1] or [0, co[ — in our case we did not introduce such limits on the input
elements’ domain as they do not get along well with geometric transformations
listed above.

For instance, it is known (see, e.g., [15, 51]) that a weighted quasi-arithmetic
mean with a continuous and strictly-monotone generator function ¢ : R — R and
a weighting vector w € [0, 1]", 37, w; = 1, that is:

i=1

is a P,-based function with, e.g., Pi(y;X;) = X1, w,-(go(x(li)) — ¢(y))>. We note that
some of the “classical” generators [11] are only valid whenever aggregated values
are nonnegative. In particular, this is how we may extend the well-known results

showed in [54]:

o If o(x) = exp(yx) for some y # 0, we obtain an exponential mean. Expo-
nential means and the arithmetic mean are the only translation equivariant
quasi-arithmetic means.

o If p(x) = sign(x)|x|” for some p # 0 (a signed power function), then we get
a power mean. Power means are the only scale equivariant quasi-arithmetic
means (originally, Nagumo’s result includes the geometric mean too, but
this function is not valid for elements generally in R).

Taking these facts into account, we may easily obtain componentwise extensions
of weighted quasi-arithmetic means that are translation or d-scale equivariant. If
we require both types of equivariances, we must restrict ourselves to componen-
twise extensions of weighted arithmetic means (or consider, e.g., weighted medi-
ans).

11
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Let us also note that in the componentwise setting, d-scale equivariance is
equivalent to the uniform-scale one. Moreover, if we are interested in component-
wise and — among others — orthogonal equivariant functions, then we are restricted
to aggregation methods based on weighted arithmetic means.

Proposition 14. A BB-internal and continuous componentwise function is orthog-
onal equivariant if and only if it is a componentwise extension of a weighted arith-
metic mean.

Proof. (<) Obvious.

(=) Let us express F(X) as (F(x;), ..., F4(x;)). By the definition of orthogonal
equivariance, we have that:

d d d

(€8 | _ ) ®
Fi Zoi,jxj ""’Zoiijjn = ZOLJFJ'(XJ' ,.“,xjn ).

j=1 j=1 j=1

holds for all orthogonal O € R4, j € [d], as well as X € (R?)".

First of all, let us note that the set of all orthogonal matrices includes those
which permute coordinate axes, i.e., which are formed by permuting the rows
of the identity matrix. Hence, for arbitrary i € [d], considering (0;,...,0,4) =
(1,0,...,0), for every permutation o of the set [d], we conclude that:

(1) ™Y _ . (+D (n)
Fi(xj ber s X )— Fj(xj b X ),
necessarily holds for all i, j € [d] and X. Hence, under our assumptions, F must be
a componentwise extension of a single unidimensional, internal, and continuous
function F;.

Take any i € [d] and consider X such that x;k) =O0forall k € [n] and j # i.

Orthogonal equivariance implies that:
1 1
Fl (0,;,-)65 ), ey Oi’,'xgn)) = Oi,iFl ()Cf ), ey Xﬁn)) s

1

holds for every o;; € [-1, 1] (recall that rows and columns of an orthogonal matrix
are orthogonal unit vectors) and all xl(l), ... ,xﬁ").
Next, again for some fixed i € [d], we consider an orthogonal matrix O such

thato;; = 1/ Vd for all J € [d]. From the equivariance of our interest and the fact
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that 1/ Vd € [-1,1], we have:

d d d
Fl{zxg”/\/ﬁ,...,zx?/«/a] = ZFl(xy),...,x;"))/«/E
j=1

=1 =1

d
_ ZFl(xg”/\/Z,...,x;")/«/E).
j=1

Denoting with yy‘) = xj.k) / Vd, we have that:

d d d
1 n 1 n
Fl[zy;n...,zyy) - SR,
J=1 J=1 J=1

which implies that F; is necessarily additive. Together with continuity, by [38,
Proposition 2.116], we have that F;(x) = >\, ¢;x; with ¢y, ..., ¢, € R. Taking into
account the internality condition, we have that ;" , ¢; = 1 (because F(x, ..., x) =
Y, cx =x)and cy,...,c, € [0, 1] (from the fact that F,(0,...,0, x;,0,...,0) =
cix; € [0, x;]). Thus, F; is a weighted arithmetic mean. OJ

Hence, the only symmetric, BB-internal, continuous, and orthogonal equivari-
ant componentwise function is formed by extending the (unweighted) arithmetic
mean.

On a side note, there exist various orthogonalization methods, i.e., transforma-
tions that make a given function orthogonal equivariant, compare the notion of the
orthomedian [40] as well as the idea of the singular value decomposition-based or-
thogonalization [32, 33]. Unfortunately, results of such transformations typically
lead to functions that are no longer componentwise ones. Moreover, similarly to
orthogonalization, affinitization of a function can be applied if needed. Its special
case for a componentwise extension of the Median function was first proposed in
[18], see also [53].

Concerning componentwise-nondecreasingness, we have what follows.
Proposition 15. F : (RY)" — R? is componentwise-nondecreasing if and only if

it is a componentwise extension of some d nondecreasing in each variable unidi-
mensional functions.

Proof. (<) Straightforward.
(=) Let us express F(X) as (F;(X), ..., F;(X)) with F,...,F; : (RY)" — R. For

an arbitrary i € [d], we shall show that F; is in fact only a function of xgl), R xE") .

13
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For any fixed xl(.l), e xl(.") and each X', X" with x; = x] = x”, the definition of
componentwise-nondecreasingness immediately implies that F;(X") = Fy(X") =:
IEi(xgl), cees xl(.")). Moreover, F; is clearly nondecreasing in each variable, and the
proof is complete. O

Also please notice that in Proposition 14, if we consider componentwise-
nondecreasingness together with idempotence instead of BB-internality and conti-
nuity, then by [38, Proposition 2.116] we will reach exactly the same conclusion as
in the original setting. Componentwise-nondecreasingness with orthogonal equiv-
ariance implies nondecreasingness in each possible direction, but in the case of
idempotent functions this can only be obtained when we apply a componentwise
extension of a weighted arithmetic mean.

5. Distance-based penalties and corresponding functions

In the case of componentwise functions, there are no interactions between the
variables. This can be undesirable in certain applications. Thus, let us investi-
gate a second noteworthy class of penalty functions which is formed by a proper
aggregation of distances from a point y to each observation in X.

Here, by the term distance [22] on R? we mean a function d : RxR? — [0, oo[
for which it holds at least that d(y, x) = 0 if and only if x = y and d(y, x) = d(X,y)
for all x,y € RY. If a distance fulfills the triangle inequality, it is called a metric.

Definition 16. Let d be an arbitrary distance on R?. Given a function D : [0, co["—
[0, oo] that is nondecreasing in each variable and such that D(d) = O if and only if
d = 0, we shall call:

P(y;xV,...,x") = D (b(y,x"), ..., by, x)) 2)

a distance-based penalty function, whenever for each X € (R?)" the minimum set
of P(-; X) is nonempty, bounded, and convex.

Clearly, not all distances as well as aggregation functions D lead to proper
penalties: this is the case, e.g., of the sums of Hamming metrics. Here we shall be
interested in a particularly well-behaving class of distances generated by a norm
(note that if d is convex and fulfills the triangle inequality, it must be generated by
some norm, see [41, 72] for a proof).

Proposition 17. Take any norm || - || : RY — [0, o[ and let d(y,x) = |ly — x|,
X,y € R Ifa function D : [0, co["— [0, o0] enjoys the following properties:

14
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e nondecreasingness in each variable;

D(d) = 0 if and only if d = 0;

e convexity;

D(d) < oo forall d € [0, co[";

limygj—.e0 D(d) = e0;
then P(y;xV, ..., x™) =D (b(y, xD), ... o(y, x(”))) is a penalty function.

Proof. Condition (a) in Def. 1 is straightforward. By homogeneity of a norm,
we have that limyy_e d(y,x?) = oo for any fixed x”. Convexity of d(-,x) as
well as convexity and nondecreasingness of D immediately imply the convexity
of P(-;X). By applying Lemma 4, we approach the desired conclusion about the
minimum set of P. ]

Typical choices of D include:
e D(d) = V., d; (the maximum);

e D) = Y, wid;, where wy,...,w, > 0 and Y\, w; = 1 (weighted arith-
metic means strictly increasing in each variable);

and their generalizations:

e D) = >, widy withO < w; <--- <w, < land ), w; = 1 (convex
OWA operators);

e convex weighted quasi-arithmetic means with strictly positive weights, e.g.,
p-power means with p > 1 and exponential means.

Here are a few examples of distance-based functions.

Example 18. If D(d},...,d,) = /2, ﬁdlz (the quadratic mean) and d(y, x) =
lly — x||» (the Euclidean metric), then the corresponding function is known as the
centroid, which is exactly the aforementioned componentwise extension of the
arithmetic mean, CwAMean. More generally, a weighted quadratic mean leads to

a componentwise extension of a weighted arithmetic mean.
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If D(d,,....d)) = Y., %d,- (the arithmetic mean) and d(y,x) = |ly — x||; (the
Manhattan metric), then in turn we get the Manhattan 1-median, which corre-
sponds to the componentwise median, CwMedian.

On the other hand, with D(d,...,d,) = /i, d; (the sample maximum) and
(y,X) = |ly — X/l (the Chebyshev metric) we obtain the Chebyshev I-center,
which is the componentwise extension of the midrange, F(x) = (Max(x)+Min(x))/2,
1.e., it is the center of the points’ bounding rectangle.

Example 19. Let D(d,, .. .,d,) = Y-, 1d; (arithmetic mean) and d(y, X) = |ly—x|),
(the Euclidean metric). Here, the corresponding function is known as the Eu-
clidean I-median, geometric median, spatial median, mediancenter, L'-median,
Fermat-Weber, or Torricelli point. In the unidimensional case, it is equivalent to
the sample median and thus the minimizer of the penalty might not be unique.
However, for d > 2 and X such that it is not concentrated on a line, the minimum
set of the corresponding distance-based penalty function is always a singleton
[52].

A weighted spatial median can be considered too, i.e., with D being a weighted
arithmetic mean: 1mediany(X) = arg* minycgs Y7, w; [ly — x?||,. Unfortunately,
the analytic solution is only known in trivial cases like those in which one weight
is equal to 1. Yet, it may be shown, see [69], that a weighted 1-median is a point

y such that:
) = 2
lly - X(’)Ilz ly - X(’)“z

This equation stands for a basis of the iterative Weiszfeld (Vazsonyi) algorithm
[70] which in practice is frequently applied in order to compute this function.

Example 20. Let D(d,, . ..,d,) = \/_, d; (the sample maximum) and again d(y, X) =
|ly —x||» (the Euclidean metric). The corresponding function — giving the center of
the smallest ball enclosing all input points — is called the Euclidean 1-center, see
[67]. Notably, such an aggregation tool is used in many real-world applications,
see, e.g., [36], which include: pattern recognition (finding reference points), com-
putational biology (protein analysis), graphics (ray tracing, culling, object colli-
sion detection), and nearest neighbor search. What is more, for d = 2 we have
an important operational research application, known as the facility location prob-
lem, which aims to seek the location of the distribution center that minimizes the
distance to a customer that is situated farthest away.

It may be shown that the Euclidean 1-center can be expressedasy = Y7, vix?,
where v is the solution to the quadratic programming task minimize v’ X? Xv —

16



Please cite this paper as: Gagolewski M., Penalty-based aggregation of multidimensional data, Fuzzy Sets and
Systems 325, 2017, pp. 4-20. doi:10.1016/j.fss.2016.12.009.

(diag(X"X))"v w.r.t. v subject to 17v = 1 and v > 0, see [37].

The following regularities concerning equivariances to geometrical transfor-
mations may be observed in the case of norm-generated distances.

Proposition 21. Take any norm |- || and function D fulfilling assumptions listed in
Proposition 17. Denote with P the corresponding distance-based penalty function
and with F the P-based idempotent function. Then:

(a) F is translation equivariant;

(b) if D is homogeneous, then F is uniform-scale equivariant;

(c) if || - || is the Euclidean norm, then F is orthogonal equivariant;

(d) if D is strictly increasing in each variable as well as for any x,x’ € R? such
that if x; > x; > 0 or x. < x; < 0 for all i € [d] and additionally x;. >x; >0
or x;. < x; £ 0 for some j it holds ||x|| < |IX||, then F is BB-internal.

Proof. Fix X € (R9)".
(a) For all t we have P(y + ;X + ) = D (lly =t = xV + ..., [ly - t = x + ¢]}) =

P(y; X). By Proposition 7 and Remark 8, this implies that F is translation equiv-
ariant.

(b) As each norm is absolutely homogeneous, for all s > 0 we have P(sy; sX) =
D(slly = x|, ..., slly —=x®]|) = s*P(y; X) for some a. Applying Proposition 7 and
Remark 8, we have that F is uniform-scale equivariant.

(c) In this case we have that |ly — x|| = /(y — x)7(y — x). If O € R¥“, then ||Oy —

Ox|| = /(Oy - Ox)"(Oy - Ox) = +/(y —x)’O7O(y - x). If O is orthogonal,
then O = 07!, and so P(Oy; OX) = P(y; X). Hence, F is orthogonal equivariant.

(d) Assume otherwise, let y be in the minimum set of D(|ly — xV|, ..., |ly — x*|)),
but y ¢ BB(X). Take y’ with:

=[]

J=1 J=1
for i € [d]. Obviously, y’ € BB(X). Moreover, for all i € [d] and j € [n] it holds
that xgj)—yi > xgj)—y; >0or xfj)—yi < xfj)—ylf < Oandify! # y;, then the inequality
is strict. This implies D(|ly —xV||,.. ., |ly = x™|) > D(ly’ — x|, ..., |ly’ = x™|])),
a contradiction. Thus, F(X) € BB(X). ]
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In particular, among scale equivariant (and hence homogeneous) D functions,
we have power means (see above). Moreover, all L” norms, p > 1, fulfill condition
(d). From this and Lemma 11 we can imply that if D is strictly increasing, then
for the Euclidean norm we surely obtain a CH-internal function.

Remark 22. Distance-based penalty minimizers can be applied in some clus-
tering and prototype-based classification algorithms. For instance, a general-
ized k-means algorithm (see, e.g., [17, 45]) aims to find k > 2 cluster centers
u®, ., u® € R? that partition input data points into k disjoint groups. The i-th
point’s membership to one of the clusters, c(i) € [k], is expressed in terms of its
proximity to a cluster center. This algorithm aims to minimize the total distance
between all input points and their corresponding cluster centers:

minimize Z d(x?, p“Py  wurt. ¢ : [n] = [k] (onto),

i€[n]

where: _ _
ﬂ(t) — arg* nel]g} D{b(y, X(./)) 2 j€[nl,c(j) =i} 3)
y

for some extended (defined for any arity) aggregation function D and distance d.
Moreover, we may similarly consider hierarchical clustering procedures based on
a generalized centroid linkage criterion, see, e.g., [35].

Remark 23. Some authors (see, e.g., [44, 56, 57]) define internality as:
F, ..., x") e x, ... x"}. 4)

If a function fulfilling this property is needed, we may restrict the search domain
ambiguous, but then we may return the input vector minimizing the penalty and,
€.g., having the smallest index) instead of arg” minycg« P(y; X). For instance, if we
take P generated by D being the arithmetic mean and d being the Euclidean metric,
such a function is called the medoid — it can be used as a crude approximation of
the 1-median.

6. Data depth-based penalties and corresponding medians

The purpose of the notion of data depth is to measure of how “deep” or “cen-
tral” a point y is with respect to a point cloud X. It may be used, e.g., to visualize
(mostly bivariate) data sets [48], detect outliers, compute statistical hypotheses
tests [20, 46], design control charts, and even support decision making [65].
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It is assumed that the depth of a point y € R relative to X € (R)" is quantified
via a bounded from above function depth : R? x (R%)" — [0, b] for some b > 0.
Zuo and Serfling in [77] list some desirable properties that this notion should
fulfill, namely, for any X and y they require conditions like:

(zs1) affine invariance: for all A € R¥ of full rank and t € R:

depth(Ay + t; AX + t) = depth(y; X);

(zs2) monotonicity relative to the deepest point: if depth(y; X) = sup, depth(y; X),
then for all z and « € [0, 1] it holds:

depth(z; X) < depth(ay + (1 — @)z; X);

(zs3) vanishing at infinity: limy_., depth(y; X) = 0.

For the purpose of our discussion, we propose the following set of sine qua non
requirements. Then we shall relate the above ones to those discussed in Sect. 3.

Definition 24. A depth measure bounded from above by b > 0 is a function
depth : R x (R%)" — [0, b] such that:

(a) depth(y;xV,...,x™) = b if and only if y = x?) for all i € [n];

(b) for any X € (R)", the set {y € R? : depth(y; X) = supy,.z. depth(y: X)} is
nonempty, bounded, and convex.

Based on this definition, we may introduce the notion of a depth-based penalty.

Proposition 25. Let depth : R? x (RY)" — [0,b] be a depth measure bounded
from above by b. Then P given for anyy,X by P(y;X) = b/depth(y; X) — 1 is a
penalty function.

Clearly, in the spirit of Lemma 3, we may transform both the depth function
as well as P by some strictly increasing bijection and obtain another well-defined
depths and penalty measures.

Of course, if depth is affine invariant (compare (zs1)), then the corresponding
idempotent function (referred to as a depth-based median in the literature) is affine
equivariant (by Proposition 7). Conditions (zs2) and (zs3), on the other hand, are
clearly connected to, e.g., those in Lemma 4.

Let us indicate a few exemplary depths.
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Example 26. The halfplane location depth [68] of y relative to X is defined as
the smallest number of points in X contained in any closed halfhyperplane with
boundary line through y. In other words, it is a depth measure bounded from
above by n such that:

tdepth(y;x",...,x") =  min “z cu’x? > uTy}‘.
ueRq |Jul|=1
In the d = 1 case, the Tukey depth is related to the observations’ ranking. The
sample minimum and maximum are the points of depth 1, the median is of depth
n/2 (the “deepest” value), and the first and the third quartiles are of depth n/4. As
noted in [24], one can define trimmed means by, say, averaging points of depth
> n/10.

It is easily seen that the set of all points of depth > ¢ (a §-depth contour), for
any given 6 > 0, is either empty or is a convex polytope. What is more, a point
outside the convex hull of X is always of depth O [63]. The Tukey depth is affine
equivariant, see [24, Lemma 2.1].

The Tukey median, TkMedian, is defined as the center of gravity of the deep-
est Tukey depth region. For d = 1, the Tukey median generalizes the concept
of the median. Thus, in higher dimensions this function can be thought of as a
multidimensional median. For algorithms to compute the Tukey depth and the
corresponding median see [3, 19, 62-64].

Example 27. The Liu simplical depth [47] of y € R? with respect to X € (R%)" is
a depth measure bounded from above by ( dil) defined as:

sdepth(y;x",...,.x") =

{{il,‘-',idﬂ}: I<ij<--<igg<n
andy € CH (x(i‘), .. .,X(i"”)) }|

In the bivariate case the Liu depth is given as the number of triangles formed by
any three elements in X that contain y. It is easily seen that the Liu depth is affine
invariant.

The simplical median is defined similarly to the Tukey median — as a point
with the greatest simplical depth or the center of gravity of the deepest Liu depth
region. For appropriate algorithms refer to [3, 4, 62].

Example 28. The convex hull peeling depth (see [28]; according to [42] the idea
was proposed by Tukey) is determined by consecutively computing a convex hull
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of a set of points and removing values lying on its boundary. The corresponding
median may be constructed by computing the center of gravity of the “last” convex
hull. According to [2], convex hull peeling may be done in O(nlog” n) time for
d=2.

Numerous other depths may be found in the literature, e.g., the Oja depth
[55], the L' depth [69], projection depth [76], perihedral depth [26], Delaunay
depth [1, 39], zonoid data depth [27], and many others, see [48] for a review.

7. Final remarks

We presented a penalty-based model which is a common framework for all
the idempotent multidimensional aggregation methods. What is more, some re-
sults can be easily generalized to the case of aggregation in vector spaces (e.g.,
in Sect. 5 — normed vector spaces). Please note that further functions may be ob-
tained, e.g., by compositions of mappings. For instance, given G : (RY)* — R?
and Fy,...,Fr : (RY" — R? which are idempotent, CH-, BB-internal, transla-
tion, uniform-scale, orthogonal, affine equivariant etc., then an idempotent func-
tion given by F(X) = G(F(X), ..., F«(X)) is also, respectively, idempotent, CH-,
BB-internal, and so forth.

Within the new framework, the properties of idempotent aggregation tools
(means, averaging functions) may be studied at an appropriate level of generality.
In this contribution we mostly put an emphasis on the properties that have a clear
geometrical interpretation: those that deal with equivariances to particular trans-
formations or different notions of internality. Yet, we should stress that some of
the multidimensional functions — especially those listed in Sec. 6 — can be much
more difficult to study formally, as they might not be defined with closed-form
analytic formulas (compare, e.g., the notion of the convex-hull peeling-based me-
dian).

What is more, let us mention that idempotent aggregation methods (means)
can be supplemented with an appropriate spread or dispersion measure, see [34,
43, 50] which can summarize a quite different aspect of a given data sample.

7.1. Notes on monotonicity

Aggregation theory very often assumes a kind of monotonicity with respect to
the inputs. Such an assumption is not only quite natural in the d = 1 case, but
also useful in deriving new facts. Nevertheless, in the multidimensional case, this
notion is somehow problematic.
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We have indicated that componentwise-nondecreasingness inevitably leads to
componentwise functions (see Proposition 15), which are unable to take into ac-
count any possible dependencies between data dimensions.

Therefore, we may consider another natural generalization of the unidimen-
sional monotonicity — a product lattice extension of the ordinary < on R. We shall
say that F is <;-nondecreasing, whenever for every X and X’ if for all i € [n] it
holds x? <; x'?, then F(X) <, F(X’), where, e.g., x <, x’? if and only if for all
J € [d] we have xi.i) < x;.(i). Clearly, if F is componentwise-nondecreasing, then it
is <;-nondecreasing.

However, as far as some practical applications are concerned, this kind of
monotonicity may cause a function to behave in an undesirable fashion: an incre-
ment on one of the variables can yield an increment on all the output dimensions.
Moreover, if combined with, e.g., orthogonal equivariance, we get what follows.

Proposition 29. Let F : (RY)" — R? be equivariant to reflections. Then F is
<q-nondecreasing if and only if F is componentwise-nondecreasing.

Proof. (&) Direct.

(=) For an arbitrary j € [d], let us take any X, X’ € (R)" such that x i <n X;- and
x; = x; forall [d] 5 k # j. Denote withy = F(X) and y’ = F(X"). Asforall i € [n]
itholds x” <, x'®, by <;-nondecreasingness we surely have that y, <, y,, k € [d].
However, by Proposition 15 we must show that y, = y; for all kK # j. Consider a
reflection matrix R € R with r,, = 0 foru # v, ri, = =1 fork # j,and rj; = 1.
As for all i € [n] it holds Rx? <; Rx"” and F is reflection equivariant, we have
RF(X) <; RF(X"). Therefore, for every k # j we have —y, <, —y; and y; <, y; at
the same time, QED. O]

Based on results given in Sect. 4, the only orthogonal equivariant, <;-non-
decreasing, and idempotent functions are componentwise extensions of some weigh-
ted arithmetic mean.

One could thus think of relaxing the above requirements and assume that if
x) <, x'@ forall i € [n], then we expect that F(X) #, F(X’) (note that <, is merely
a partial order). But this is not the case of, e.g., the Euclidean 1-median. For
instance, take d = 2, n = 3, and xV = [0, 0]7, x® = [1,-5]7, x® = [20, 1]". We
have 1median,,(xV, x@®,x®) ~ [1.961, —2.305]”. However, when we take x'® =
x® + [1980, 1]7, then we get 1median,,(xV,x?,x’®) ~ [1.946,-3.351]7 <,
[1.961,-2.305]".

If monotonicity of some sort is necessary, we can, however, extend the con-
cept of weak-nondecreasingness, see [71]. We say that a function F : (RY)" — R?
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is weakly-monotone, whenever F(X + t) >, F(X) for any t >, 0 and X € (R9)".
Surely, every translation equivariant function is weakly-monotone, but the con-
verse is not necessarily true.

7.2. Choosing a function

There are various ways that can aid in choosing a function for practical use.
One of them may be based on the set of useful properties that an aggregation
method should fulfill, such as a particular type of equivariance. Another idea is to
rely on a function’s numerical characteristics.

In the unidimensional case and under the assumption that x(li) eI =[0,1],
i € [n], notions like orness and andness are often considered, see [25, 31]. Un-
fortunately, they cannot be easily generalized to functions like F : (I¢)" — I¢
when d > 1. A possible idea to overcome this limitation would be to consider,
e.g., a quite different measure based on a properly normalized expected Euclidean
distance between the outputs generated by F and the boundary of the I¢ set under
the assumption that input data are independent and uniformly distributed on I¢.
Alternatively, taking into account the fact that if X ~ U(I?), then E X = (d * 0.5),
we may consider a mean squared error-like measure E ||F(X}, ..., X,) — (d* O.S)ll%.
Nevertheless, these characteristics will only work if I is bounded.

We can also consider the notion of a breakdown value [23] which is meant to
serve as a measure of a function’s robustness to the presence of potential out-
liers. Its aim is to express “the smallest amount of contamination which can
cause the estimator to give an arbitrarily bad answer”. Formally, breakval(F) =
infxeay er(X) € [%, 1], where:

er(X) = min {@ : osup  |IFX) — F(Y )l = oo} ,

me[n] n YmG(Rd)n

where the supremum is over all possible data sets Y,, obtained from X in such
a way that exactly m points are replaced with arbitrary values. In particular, for
translation equivariant functions we have that breakval(F) < 0.5, see [23].
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