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1. Introduction

When making decisions based on sets of numerical data, as data ana-
lysts we will usually be interested in summaries that help us identify trends,
central tendency, spread, etc., and which can be used to make objective
comparisons. Classical operators such as the arithmetic mean and median
have been recognized as special cases of much broader families of aggregation
functions, which have been studied in depth in the areas of decision-making
and fuzzy systems [7, 27, 35]. However, in many contexts there is also the
need for a more dedicated study of summaries that indicate the variation or
spread of data [23]. In particular, we have measures which evaluate the level
of income inequality in economics [4, 20, 26], the evenness of species distri-
butions in ecology [2, 32, 34|, and disagreement between experts in group
decision making [3, 8, 17, 1, 24].

Traffic analysis is a topic of interest across various research fields, with
the core problems of understanding, modelling, predicting and reducing traf-
fic congestion being useful not only in terms of efficient infrastructure and
logistics, but also in terms of environmental impact. Traffic and network sim-
ulation has been useful in understanding different theories on flow (e.g. [29])
and also in predicting the impact of certain control measures, e.g. charging
for entering central business zones [37]. Real data is either obtained from
stationary sensors (cameras, vehicle detectors etc.,) [19, 39, 41] or, more
recently, from GPS trajectories based on devices embedded in vehicles (espe-
cially vehicles such as taxis [36], where privacy concerns are not considered
as relevant).

Decision makers and most real-time automated systems in traffic man-
agement rely on traffic volume data (e.g. see [31]) that counts the number
of cars passing through an intersection over a given time interval (although
across some freeway networks there may also be average speeds available
[19]). Rather than volume, road users, council decision makers and traffic
managers will usually be interested in the level of congestion experienced
across a given region or large network. Whereas volume can be measured
objectively, the notion of congestion is somewhat more difficult to define. It
has been approached as a binary classification task in [39], i.e. where an
intersection is considered to be congested when the volume exceeds a certain
threshold, while in [21] an expert system was proposed that distinguishes
between incidents and congestion. We are interested in developing reliable
indices of congestion given over a continuous scale so that the impact of po-
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tential improvements to the network, e.g. from road work, new highways,
changes to traffic light sequences etc., can be measured. By being able to
objectively measure congestion in a way that reflects the road-user experi-
ence (i.e. traffic jams and slower travel speeds), decision makers can then
consider how best to reduce congestion.

Periods of high volume certainly will often correspond with drivers ex-
periencing high levels of congestion, however in terms of the number of cars
passing through an intersection, low counts can also be indicative of high
congestion. While in [39] congestion prediction problem was approached as
one of feature selection in the presence of correlated variables, intuitively we
can recognize that the function behavior we are interested in is one whose
output can tell us when, in a local area of the network, large intersections
have counts below their capacity while other intersections are all busier than
normal. For this we turn to inequality, spread and consensus functions, all
of which provide summaries of a dataset’s variation, although from slightly
different perspectives.

In this contribution, we will consider weighted versions of these indices
and functions toward their practical application in measuring congestion and
more broadly for decision making applications. As an illustrative example
of their use, we will use a subset of traffic data obtained from Brisbane
City Council (in Australia) measuring the volume of traffic passing through
various intersections over 5-minute intervals.

We will organize our contribution according to the following structure. In
the Preliminaries section, we will give the necessary background and formulas
for aggregation functions, inequality functions, spread measures, and consen-
sus measures. In Section 3, we formulate the linear programming approaches
required for fitting our simple congestion metrics to data. In Section 4, we
use the traffic volume and median velocities for learning weights and measur-
ing congestion across a subset of the network. We look at the performance
of each measure in terms of Spearman correlation [33] both in fitting and
for use in prediction. In Section 5, we will provide some discussion and out-
line some avenues for future research, before providing concluding remarks
in Section 6.

2. Preliminaries

We consider the topics of aggregation, inequality, spread and consensus in
the context of measuring traffic congestion, where inputs will usually relate
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to a set of intersection volumes, however these are of course also relevant to
multi-criteria evaluation and decision making in general.

2.1. Aggregation functions

Aggregation functions [7, 27, 35], which include statistics such as the
arithmetic mean and median, are useful for summarizing sets of inputs with
a single value. We will be concerned primarily with non-negative inputs.

Definition 1. For a given positive real interval [0,b] and a firedn € N\ {1},
an aggregation function A : [0,b]" — [0,b] is a function non-decreasing in
each argument and satisfying A(0,...,0) =0 and A(b,...,b) =b.

Typical examples include the arithmetic mean, i.e. the sum of inputs di-
vided by n, and the median, which is the central input (or mean of the central
two inputs) when the input vector is ordered in ascending or descending or-
der. Both are examples of averaging aggregation functions, which for all
x € [0,b]" satisfy

min(x) < A(x) < max(x).

In the context of congestion, averaging aggregation functions can be in-
terpreted as measures of the volume of traffic per intersection. The property
of idempotency ensures that A(a, a,...,a) = a for all a, so that if the volume
were the same for each intersection at a given time ¢, the output would be
that volume.

Some families of aggregation functions can be defined with respect to a
weighting vector so that certain inputs have a higher influence on the function
output.

Definition 2. A vector w = (w1, ..., w,) is called a weighting vector if w; €

[0,1] for each j=1,...,n and lej =1.
J:

With respect to w, we have the weighted arithmetic mean, given by
WAM,, (x) = Z w;;.
j=1

The WAM allocates importance to inputs according to their source, i.e.
in measuring traffic volume it may be that certain intersections are more
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important for influencing congestion than others. In some applications, it is
useful to assign weight based on the relative size of the inputs, e.g. being
able to weight busy intersections higher or lower than quiet intersections.
For this we use the ordered weighted averaging operator [38], given by

OWAW(X) = ijx(j),
j=1

where (.) indicates a non-increasing permutation of the inputs, xny > 29 >

Special cases of the OWA operator, depending on the weighting vector w
include:

1.

)

Arithmetic mean where all the weights are equal, i.e. all w; =
Mazimum function for w = (1,0, ...,0);
Minimum function for w = (0, ...,0, 1);

Median function for w; = 0 for all i # h, wy, =1 if n = 2h — 1 is odd, and
w; =0 for all i # h,h + 1, w, = wpy1 = 0.5 if n = 2h is even.

While average volume is useful for measuring periods of high-volume, it
may not correspond well with times where congestion is so high that the flow
of traffic, and therefore the volume passing through each intersection, starts
to decrease. We have the following concepts which relate to the distribution
and variation of inputs.

2.2. Inequality indices

Inequality indices have mainly been studied in the context of economic
inequality [5, 18, 22] as well as having applications in ecology for measuring
biodiversity and ecological evenness [11, 13, 32, 34].

A key property that characterizes inequality indices is satisfaction of the
Pigou-Dalton principle [20], also referred to as the progressive transfers prin-
ciple.

Definition 3. For a set of inputs x fized for all arguments except x; > x;, a
function f satisfies the Pigou-Dalton or progressive transfers principle if for
all v —h > x4 > - >x;_1 > x; +h,h >0 it holds that

flor, ooy my, o xy) > flo,.oo,x—hy oo+ hy oo xy).

5
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It ensures that if proportional input is transferred from a higher to a
lower input, the output of the function will not increase. Inequality is hence
at its highest when a single input is the only value above zero, and at its
lowest when all inputs are equal. In an economic context, high inequality
corresponds with a single individual holding 100% of the wealth, while in
ecology high inequality (low evenness) indicates a single species dominating
in terms of abundance.

Intuitively this is appealing for measuring traffic congestion because when
traffic congestion is low, we expect a few busy intersections to experience high
volume with cars freely passing through, while smaller intersections remain
quiet. At times of peak congestion, smaller intersections become busier,
and the traffic passing through larger intersections starts to decrease. We
can even think of strategies for navigating through peak hour traffic, where
we might avoid a busy intersection and use an alternative route that goes
through (usually) quieter intersections if the traffic seems blocked up.

We will define inequality functions in terms of the cumulative sum [9]:

n
cumsum(x) = (xl,:cl + T, ..., E a;j> ,
i=1

and the space Q where

QZ{(Ql,-..,C]n)E [071]nQ122qn>ZQZ:1}
=1

We assume x # (0,0,...,0) and clearly, for any x € [0,5]", it will hold that
1

Definition 4. An inequality index is a function | : Q — [0,1] such that:
for all q,q" € Q, if cumsum(q) < cumsum(q’), then I(q) < I(q'), with
infgeo I(q) = 0 and supyeol(q) = 1.

The supremum for an inequality index is obtained for (1,0,0,...,0) while
the infimum occurs at (1/n,...,1/n). Note that each [ satisfies the Pigou-
Dalton principle. Of course, indices are often defined on spaces other than
Q and in such cases may result in outputs over a different range.

One of the most prevalent inequality indices used is the Gini index [26],

O = S AN AM ZZ\x il

7,1]1
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Over Q it is expressed [40]:

n n

Gla)= 5= DDl — gl

i=1 j=1

An interesting family of inequality indices was proposed in [5] in terms of
a dual composition of welfare functions. A welfare function is an aggregation
function W : [0,6]" — [0, b] that satisfies Schur-concavity, which means that
the function increases if input is proportionally transferred from higher to
lower inputs. This property can be ensured by using OWA functions with
respect to weighting vectors satisfying 0 < w; < wy < -+ < wy,.

Let W2 denote the dual of the welfare function Wy, i.e. the OWA with
the same weights in reverse order. Then, the following will be an inequality
function.

The Gini index G(x) corresponds with weights w; =

(1)

2n+1-2i
n2
We also make mention of the Simpson domination index [32], which is

given by
S(a) =) 4,
j=1

where ¢; is the proportional held by the i-th input. It represents inequality in
terms of dominance, however we note that it can also be seen as a variation
on the weighted arithmetic mean, where each w; is equal to g;.

As well as inequality functions being intuitively appealing, we may also
find it useful to consider spread measures, a broader class of functions based
on input differences, for measuring congestion.

2.3. Spread measures

The concept of spread measures and their relationship to aggregation
functions was formalized in [23]. We first denote the vector of iterated dif-
ferences

diff(x) = (20) = 22 @) = @)+ 1) = L))

Note that diff(x) is a vector of n — 1 components.
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Definition 5. An (absolute) symmetric spread measure is a function V :
0,b]™ — [0, 0] such that for each x,x’ if it holds that diff(x) < diff(x’), then
V(x) < V(X'), and which satisfies infxcpppn V(x) = 0.

The latter condition is equivalent to stating that V(a,a,...,a) = 0 for all
a € [0,0].

Spread measures, which include the statistical standard deviation and
range, can hence be constructed from aggregation functions on the vector of
iterated differences d = (41, ...,0,_1) = diff(x).

2.4. Consensus measures

In the context of decision making, consensus measures are usually defined
as functions satisfying unanimity (all inputs the same results in the highest
output), anonymity and neutrality (symmetry with respect to the experts
and alternatives) [16, 25]. Another property that is often desired and distin-
guishes consensus measures from other types of variation-based functions is
that of maximum dissension, i.e. that when inputs are partitioned into two
groups at extreme ends of the scale, the function meets its minimum. We
can compare this to inequality, where the partition of extreme evaluations
is not equal. Associated with this property is monotonicity with respect to
the majority [8], where consensus should increase if the distance between a
majority of inputs and another is reduced. We will consider the negation of
one such function, so that it instead models ‘disagreement’ and can be inter-
preted consistently with inequality and spread. It is based on the distance
between each input and the median.

Cons(x) = Z w; |z; — Med(x)] .
i=1

Such a function is also evidently a spread measure, since it will be shift-
invariant and increasing with respect to increases to the iterated differences.

3. Learning spread measure and inequality weights from compari-
son data

To use weighted functions for assessing the level of congestion, we need a
way of choosing the appropriate weights. Functions such as the Gini index
are formulated with respect to fixed (equal) weights, however in our context
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it is likely the case that some intersections will have a higher influence on
the level of congestion, e.g. due to the topology of the road network.

We assume datasets consisting of m X n matrices, where each row x; =
(Tk1s T2, - - - k) denotes the number of cars passing through each of the n
intersections over the k-th time interval. For weighted aggregation functions,
along with the observed inputs xj, ideally we also have observed outputs
yr, k =1,...,m and we can determine weights by minimization of the least
absolute deviation (LAD) of residuals [6, 15].

For a function f,, dependent on w and with W the set of potential weight-
ing vectors, we have

Minimize | fw(xi) = x|, (2)
k=1

weWw

subject to any desired constraints.

In our context, congestion cannot be observed directly, and so we instead
have to rely on the estimated median velocity over the network at each time
step. Although it makes sense for the median velocity to be correlated nega-
tively with congestion, it might not be the case that changes in velocity are
commensurate with changes in our approximation fy (xx) and so we consider
approaches based on finding functions that attempt to satisfy fy(x) > fw(x')
whenever the velocity corresponding with x is lower than that at x” (see e.g.
[10, 12]). In other words, we aim to define functions that maintain the relative
ordering according to observed pairs of outputs.

For each x;, we denote the median velocity over the entire network by
and construct a set of comparisons P C {(a,b) : a,b € {1,...,m}} such that
(a,b) € P indicates that we desire fy(x,) > fw(Xp). For some indices, this
will correspond with y, > v, e.g. when we have low inequality we expect
the median velocity to be lower, whereas for other indices it will be when
Yo < Up, €.g. when the volume increases we expect the median velocity to
decrease. We use median velocity since it is the best indicator of congestion
available to us, however we note that the approaches set out below could
similarly be adopted if we employed some other measure of congestion, e.g.
observations from traffic cameras where experts assess the congestion as being
low, medium, very high etc.
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3.1. Weighted congestion indices based on aggregation

We will formulate the required constraints for approximating a weighted
arithmetic mean from comparison data. Since a weighted mean of traffic
volumes can be interpreted as volume per intersection, we expect that in-
creases to our WAM should correspond with decreases in velocity, i.e. for
each y, < yp, we want it to hold that WAM,(x,) > WAMy(x;). We hence
include the constraint

wl(xa,l - xb,l) + w2(xa,2 - xb,?) +-+ wn(xa,n - xb,n) - T;:b + T;b =&

where ¢ is the minimum difference required, r:’b indicates the extent to which
WAM,, (x,) is greater than WAMy, (x;) and 7, is how much the desired con-
straint is violated. The ¢ sets a minimum value upon which WAM,, (x,) is
deemed greater (so that we do not obtain a function that favors giving a con-
stant output). In our objective function, we then aim to minimize the r_,
and maximize the rzb to get as much separation as possible. We construct
a set of comparisons P such that (a,b) € P indicates y, < yp. Depending on
the dataset, in practice we can use the set of all m(m —1)/2 comparisons, or
construct a smaller set to reduce the number of constraints. In the case of
congestion, we would not necessarily assume that a low speed at 9:30 in the
morning would be associated with the same traffic features that cause a low
speed at 18:30 in the evening, and so we instead focus on changes in veloc-
ity between consecutive intervals, i.e. if the the median velocity decreases,
then we predict the average volume to have increased, while if the velocity
increases we predict the volume to have decreased.

Along with conditions that ensure w is a weighting vector, we hence
obtain the following.

Maximize Z Tab = Mg
wew (a.b)EP
s.t. WAM,, (x4) = WAMy, (x3) — 73, + 7, = &,Y(a,b) € P,

dwi=1, w;=0,j=1,....n

=1
TabsTap = 0,Y(a,b) € P. (3)

The value X is a penalty parameter and can be used to control how much
we allow violated pairwise judgements to be compensated for by high satisfac-
tion (i.e. high values of r;,) of others. Removing r,, altogether (or making

10
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A very high) would mean we focus only on limiting the violations whereas
here we attempt to make |WAMy,(x,) — WAMy (x;)| as large as possible if
(a,b) € P.

We can similarly formulate the problem for congestion evaluations based
on OWA functions. We need only to reorder each of the input vectors so that
they are in decreasing order.

3.2. Weighted congestion indices based on inequality

Weights for the inequality measures of the form given by Eq. (1) can
be learned from data using essentially the same method as for aggregation
functions. However, rather than fitting to the terms xy, ;, we fit to u; ; where

and hence we will have the constraints of the form
+ -
w1 (Ua,1 — Up1) + W2 (Ua2 — Up2) + + Wn(Uan — Ton) — Ty + 7T, =€

for each (a,b) € P. We remind that (.) in the index of z, (;) denotes the inputs
being arranged in descending order for each time index in the calculation of
Uk,

The weights applied to each term wy ; will then correspond with the w;
associated with the dual of the welfare function. Since welfare functions
require increasing weights, the dual weights are required to be decreasing,
and so we need to add constraints,

W; > W41, j=1...,n—1.

In the case of inequality indices based on welfare functions, we assume
that decreases in median velocity correspond with decreases in median ve-
locity, i.e. that congestion increases when the inequality is reduced. For each
Ya > yp we therefore will have (a,b) € P.

3.3. Weighted congestion indices based on spread measures

Spread measures will have the same expected relationship between inputs
and outputs, with decreases to velocity also decreasing the spread. We will
consider spread measures constructed from aggregations of the iterated dif-
ferences vector and from the set of n(n—1)/2 absolute differences as observed
in functions like the Gini index.

11
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In the former case, we have a vector of (n — 1) arguments and we replace
xy,; terms with J; ; in the LP formulation. We can consider WAM,,(8) where
d = diff(x) (with the inputs ordered decreasingly before calculating the dif-
ferences), v = (vy,vs, ..., v,_1), then for each y, > y, we will have (a,b) € P
and add the constraint

U1(5a,1 - 5b,1) + Uz(5a,2 — (5b,2) + -+ Unfl(da,nfl - (5b,n71) - TIb T =€

In this case there will be no special conditions on the weights, although
if we want our spread measures to strictly increase for increasing & we can
add constraints ensuring v; > 0. In interpreting v, high weights allocated
to lower j indicate that the function is more affected by changes to the high
inputs while high weights for higher j indicate that the function changes
more with respect to low inputs.

As a different kind of spread measure, we can consider input vectors
consisting of all absolute differences |zj; — xy,;|, and hence find weights W, ;
such that our congestion is measured by

n n
> 2 Wiglei = .

i=1 j=1

The weight fitting procedure here is no different than that applied to the
case of v, however we will be fitting to n(n—1)/2 weights rather than (n—1).
It can be considered as a weighted version of the Gini index, with high weights
being indicative of either one or both of the corresponding intersections being
important in influencing congestion.

With considerably more weights, the function will be more flexible and
this then comes with the potential to overfit the data, so this needs to be
taken into account when analysing the weighting vectors that result from the
fitting process.

3.4. Weighted congestion indices based on disagreement

Lastly we will consider learning weighted functions of disagreement (based
on consensus measures). Once again, we expect the disagreement to be
high when congestion is low, since this represents the case of half of the
intersections being busy and half having fewer cars passing through. In this
case, we transform the inputs by calculating their distance to the median
output, so that we have

nk,j = \xm — Med(xk)|.

12
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We then fit to w, so that for each y, > y, we have (a,b) € P and the
constraint

W1 (N1 — Mo1) + Wa(Na2 — M2) + -+ + Wn(Nan — M) — TIb T T =€

The weights are then interpreted with respect to the j-th input, with high
weights indicating that changes to z; affect the output more.

4. Evaluation of various metrics on the Brisbane traffic dataset

We obtained volumetric data (number of cars passing through an intersec-
tion over a 5-minute interval observed using vehicle detecting road sensors)
and median velocity data (extracted from blue-tooth GPS data for a sample
of 3000 cars over the entire network) from the Brisbane City Council for 8
weekdays from September 5 to September 142, 2016. We are interested in il-
lustrating how our methods could be applied, and so we consider 5 randomly
chosen geographical regions over which we want measure the local congestion
and apply our methods.

The intersections selected are shown in Fig. 1(b), grouped into regions
(chosen arbitrarily and based on rectangular bounds in terms of GPS co-
ordinates) consisting of 33, 60, 42, 51 and 43 intersections respectively with
varying density and proximity to the city center.

The median velocity we used as a proxy for congestion was obtained based
on travel times and distances for the same period. It is worth noting that
this gives the estimated median velocity over the entire network, and so the
smaller regions we have may or may not have volumes that are representative
of the entire network and consistent with the changes observed in the velocity
data®.

Fig. 2(a) gives an example of the velocity time series data in km/h over
a whole day. We can see high variability, particularly at night time (each
time index indicates a 5 minute period), due in part to the low number of
cars in the network over these times. For our experiments we smoothed the

2We restricted our selection to these particular days due to reliability of the velocity
data and to avoid using weekends and school holidays, which are likely to have less extreme
congestion peaks.

3All code used for fitting experiments and individual results are available from
http://aggregationfunctions.wordpress.com, while datasets used can be obtained by con-
tacting the authors. All techniques were implemented in R [30].

13
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Figure 1: Roadmap of Brisbane city with all intersections collecting traffic volume data
(a) and the five regions we used for our fitting experiments (b). In the five regions there
are 33, 60, 42, 51 and 43 intersections respectively. Maps were created using ggmap [28]
in R.

data by taking the median of the previous 12 time steps and using only the
157 data points between 6:30 and 19:30 (shown in Fig. 2(b)). We used this
time window because we are mainly interested in observing the periods of
high congestion. We opt for the median over the mean to avoid influence of
outliers and use the previous 12 time-steps rather than basing our calculation
at the center so that our functions could theoretically be used at each step (in
real time) when evaluating congestion for new unobserved instances. Using
12 time-steps does mean that if a drastic change in congestion occurred, it
might not be noticed until up to half an hour has passed, however using
‘smoother’ data is preferable for us since we are not looking to model the
median velocity curve exactly, and furthermore for our comparison-based
fitting technique we desire differences between time-steps to be reliable.

We applied the same smoothing technique to the traffic volume count
data for each of the intersections and used the same time window. We
then applied the fitting techniques for the weighted arithmetic mean (WAM),
weighted inequality indices based on welfare functions (ly,), weighted spread
measures (V), and weighted disagreement functions based on consensus mea-
sures (Cons) to each of the following:
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Figure 2: Unsmoothed data over a whole day (a) and data smoothed using the median
of the previous 12 time-steps over time indices 78 to 234 (corresponding with 6:30am to
7:30pm) shown in (b).

1. Inputs zy ; indicating the (smoothed) number of cars passing through
intersection j at the k-th time index;

2. Proportional inputs q obtained by using qx; = 2k /> 1y Tki- Bach
input then represents the proportion of cars in a given region passing
through that intersection;

3. Relative inputs scaled to [0, 1] by dividing through by the largest ob-
served xy ; for each j, i.e. so that each input represents the percentage
of maximum capacity the intersection is experiencing in terms of vol-
ume;

4. Proportional values obtained from the relative inputs.

In order to obtain the set of comparisons P, we used the data in sequence
and considered only each pair of neighboring time-steps. Each fitting exercise
hence used 156 constraints in addition to any required by the weighting vec-
tors. We used the value of A = 5 to strike a balance between over-enforcing
the correspondence between changes in median velocity and increases or de-
creases in the function, and allowing for violations to be compensated for by
higher differences at other times). We set the value of € to 0.00001, which
we also set as the numerical threshold when requiring weight inequalities
w; > wjq; to be satisfied. We did not use the weighted Gini-based spread

15



Please cite this paper as: Beliakov G., Gagolewski M., James S., Pace S., Pastorello N., Thilliez E., Vasa R.,
Measuring traffic congestion: An approach based on learning weighted inequality, spread and aggregation
indices from comparison data, Applied Soft Computing 67, 2018, pp. 910-919.
doi:10.1016/j.as0c.2017.07.014

measures since the number of parameters would be in excess of 10 times the
number of training instances and hence not likely to give reliable results.

To evaluate the performance of each of our weighted congestion metrics,
we use the Spearman correlation coefficient p with the smoothed median ve-
locity since it gives us, intuitively, the degree to which one variable can be
expressed as a strictly increasing (positive coefficient) or decreasing (nega-
tive coefficient) transform of the other. It is worth noting that the fitting
approach does not necessarily optimize for this value due to the ability of
high differences for some pairs to compensate for violations of the ordering
elsewhere.

4.1. Awerage fitting performance over all days

For the following tables and results, we recall the following abbreviations
and notation:

reg The region as indicated in Fig.1(b).
WAM  Weighted traffic volume

lw Weighted inequality index

Vv Weighted spread

Cons Weighted disagreement
volume Raw volume

Columns marked q indicate the same index applied to proportional values.

We note that as all methods are linear (in fact the the same fitting func-
tion is used, only with different transformations of the data based on the
desired type of index), the implementation is quite fast and scales with the
number of sensors and constraints. For example, for the weighted mean on
region 1 (33 sensors) the fitting for one day (157 instances) takes approxi-
mately a tenth of a second when run on a 2.7GHz processor with 8 GB of
RAM.

Table 1 gives the average performance for each of the functions and input-
type combinations over the different regions we used. Each value represents
the average Spearman correlation over the 8 days, i.e. the arithmetic mean of
the p statistic calculated each day. For a day with 157 time steps considered
as is the case here, Spearman values will be statistically significant (i.e. the
correlation is different from 0) at a 0.05 significance level whenever |p| is
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above approximately 0.16, so these averages can be interpreted with this in
mind?.

For WAM, this value is expected to be negative, since we anticipate con-
gestion to increase with volume and for this to reduce the median speed
experienced across the network. This was the only function fit with this
assumption, i.e. in determining the order of (a,b) when including the com-
parison pair in P. On the other hand, note that for the weighted arithmetic
mean of proportional inputs WAM(q), we anticipated the function to behave
as a re-weighted version of the Simpsons’s index and hence expect a positive
correlation with velocity.

Table 1: Average p over 8 days for functions fit using median velocity comparison data.

Standard count data

reg WAM  (q) lw (q) Vv (q) Cons (q)  volume
1 -0.748 0.412 -0.590 0.410 -0.281 0.458 -0.140 0.482 -0.731
2 -0.749 0.701 -0.693 0.680 -0.170 0.598 0.186 0.655 -0.710
3 -0.728 0.689 -0.690 0.713 0.271 0.668 0.013 0.726 -0.763
4 -0.760 0.592 -0.662 0.320 0.198 0.631 0.257 0.709 -0.738
5 -0.697 0.640 -0.493 0.630 -0.056 0.599 0.011 0.620 -0.658
avg -0.736 0.607 -0.626 0.550 -0.008 0.591 0.066 0.638 -0.720
Counts transformed relative to highest volume over each day
reg  WAM () lw (q) \ (q)  Cons (q)  volume
1 -0.751 0.452 0.282 0.601 0.441 0.670 0.356 0.613 -0.731
2 -0.758 0.691 0476 0.644 0.571 0.672 0.488 0.655 -0.710
3 -0.735  0.699 0.669 0.742 0.668 0.731 0.729 0.770 -0.763
4 -0.769 0.686 0.501 0.664 0.620 0.702 0.697 0.751 -0.738
5 -0.724 0.674 0.357 0.691 0.550 0.678 0.570 0.700 -0.658
avg -0.747 0.640 0457 0.668 0.570 0.690 0.568 0.698 -0.720

* Bold denotes best performing for each region (across both standard and

relative-transformed inputs).

While some reasonably high correlations are observed for each of the
spread indices, overall the best results were obtained for raw volume and
weighted volume (WAM(x)). In some cases with the raw data, a negative

4Statistical significance for Spearman correlation values can be calculated using
cor.test() in R and is based on the algorithm in [14].
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correlation was observed for some of the congestion indices, which is not
overly surprising since in such cases high differences for the transformed
input would occur at times where the volume is highest. To some degree,
such of these indices hence incorporate both volume and spread, although
the fitting procedure is optimized toward increases to velocity corresponding
with increases in spread.

We can suggest that it is neither volume nor spread alone that may charac-
terize congestion, but rather some combination of the two. Very low volume,
experienced at every intersection, will obviously correspond with low conges-
tion but also with high equality amongst the inputs. On the other hand, it is
likely that even when the data is high in terms of inequality, if the volume is
very high, it is still possible that it may indicate a period of high congestion.

Table 2 observes the effect of providing an ‘adjusted’ volume based on the
level of congestion in a way that the output is still high if volume is high, but
that it is decreased if the spread or inequality is high. For a given inequality or
spread function F, we divide volume by (140.5F). This adjusted volume is not
optimized for, and so of course there would be alternative constructions that
provide better results. We hence include these results only to demonstrate
the potential for such a combined index.

For WAM(x), the index was calculated by dividing volume by (1 — 0.5F)
while for the rest volume was divided by (1+0.5F) where F is the fitted index
presumed to positively correlate with median velocity. We see that in most
cases this improved the value of Spearman’s p. Best results were usually
obtained where the function F originally had achieved reasonable results in
fitting or prediction by itself. Fig. 3 provides a visual of this adjusted index,
with depictions of the time-series for median velocity, volume, a fitted spread
index and the adjusted measure for Region 3 on the 12th of September.

A negative correlation exists between velocity (a) and volume (b), which
in this case is p = —0.698. The correlation between spread (calculated from
proportional values of relative volume) and the median velocity is positive
with p = 0.712 and when the volume is adjusted by spread the Spearman
correlation becomes —0.758.

4.2. Using weighted functions for predicting congestion

We now turn to the question of whether these indices can be used beyond
the training data for prediction. Table 3 gives the average performance of
each of the functions and input-type combinations when using the same day
of the previous week for learning the weighting vector and then using this for
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Table 2: Average Spearman correlation over 8 days for functions fit using median velocity
comparison data using an adjusted volume index.

Standard count data

reg  WAM (q) ' (a) \Y (a) Cons (q)  volume
1 -0.747 -0.743 -0.727 -0.757 -0.756 -0.771 -0.729 -0.757 -0.731
2 -0730 -0.746 -0.720 -0.712 -0.745 -0.751 -0.694 -0.739 -0.710
3 -0.754 -0.788 -0.734 -0.766 -0.744 -0.769 -0.715 -0.764 -0.763
4  -0.747 -0.747 -0.544 -0.734 -0.754 -0.784 -0.711 -0.765 -0.738
5 -0.677 -0.712 -0.645 -0.698 -0.644 -0.687 -0.703 -0.708 -0.658

avg -0.731 -0.747 -0.674 -0.733 -0.729 -0.753 -0.711 -0.747 -0.720

Counts transformed relative to highest volume over each day

reg  WAM (q) lw (q) \Y (a) Cons (q)  volume
1 -0.749 -0.742 -0.705 -0.722 -0.727 -0.739 -0.734 -0.742 -0.731
2 -0.740 -0.749 -0.686 -0.699 -0.702 -0.702 -0.707 -0.715 -0.710
3  -0757 -0.785 -0.762 -0.767 -0.769 -0.776 -0.776 -0.77, -0.763
4 -0.750 -0.757 -0.714 -0.730 -0.746 -0.748 -0.765 -0.760 -0.738
5 -0.690 -0.719 -0.722 -0.704 -0.705 -0.695 -0.725 -0.709 -0.658
avg -0.737 -0.750 -0.718 -0.724 -0.730 -0.732 -0.741 -0.740 -0.720

* Bold denotes best performing for each region (if better than previously obtained best
result in Table 1) and italics indicates improvement (or equal) over best result in Table 1.

predicting the congestion based on the intersection traffic volumes at each
time-step. Once again, all functions except WAM(x) were fit assuming a
positive correlation with median velocity.

Overall, volume and weighted volume produce the best results, however
we once again can look at the performance of adjusted volume indices, which
we provide in Table 4.

We again observe improvements in almost all cases, with the best re-
sults on average being achieved using an inequality index based on welfare
functions of relative volume. This is interesting given its lower absolute corre-
lation when used alone, although perhaps this is because it captures aspect of
the data that are less correlated with volume and therefore is less redundant
when used with the volume index.
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Figure 3: Comparison of smoothed time series data for velocity, volume, weighted spread
(using proportions calculated from relative volume) and an adjusted volume index.

4.8. Using weighted spread measures over aggregated regions

From the performance of using volume alone, we can observe that the
traffic experienced in Region 5 appears to have less influence on the median
velocity experienced throughout the entire network, while Region 3 is perhaps
a key area influencing congestion. It is then possible that poorer performance
of some of the congestion indices could be due to one or other of the regions
not being highly correlated with the congestion experienced across the entire
system.
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Table 3: Average Spearman correlation over 3 days when predicting congestion from the
same day the previous week.

Standard count data

reg WAM  (q) lw (q) \Y (a) Cons  (q) volume
1 -0.704 0.294 -0.539 0.486 -0.376 0.313 -0.250 0.408 -0.707
2  -0.678 0.497 -0.655 0.661 -0.358 0.437 0.020 0.617 -0.666
3  -0.693 0.734 -0.625 0.719 0.004 0.533 -0.021 0.740 -0.718
4 -0.648 0470 -0.609 0.221 -0.059 0.387 0.035 0.497 -0.662
5 -0.592 0.578 -0.438 0.567 -0.210 0.388 -0.073 0.550 -0.579

avg -0.663 0.515 -0.573 0.531 -0.200 0.411 -0.058 0.562 -0.666

Counts transformed relative to highest volume over each day

reg  WAM (a) lw (q) Vv (q) Cons  (q) volume
-0.711 0.378 0.296 0.697 0.512 0.659 -0.100 0.568 -0.707
-0.693 0.523 0.501 0.636 0.527 0.623 0.419 0.615 -0.666
-0.705 0.726 0.473 0.744 0.569 0.673 0.182 0.642 -0.718
-0.645 0.537 0.431 0.597 0.528 0.564 0.572 0.652 -0.662
-0.612  0.567 0.247 0.692 0.542 0.620 0.217 0.519 -0.579
avg -0.673 0.546 0.389 0.673 0.536 0.628 0.258 0.599 -0.666

T W N

* Bold denotes best performing for each region (across both standard and
relative-transformed inputs).

We now investigate whether congestion can still be evaluated by treating
each region as if it were a large intersection, i.e. by considering the total
volume across each of the regions. In this sense, we are less likely to have
‘major’ and ‘minor’ intersections and of course fewer variables and less flexible
functions, however at this level we may be able to capture behavior that is
more consistent with the (non-localized) velocity data.

Table 5 gives the results for predicting the congestion based on the same
day of the previous week, averaged over the three days. For these exper-
iments, since we deal with fewer variables, we also take into account the
weighted Gini index, as it now becomes a function of just 10 variables.

The first row gives the value of p for the training data (from the same
day of the previous week), the second gives the value for the test data, and
the third provides the output for the adjusted index (using the same method
of combining velocity with the congestion indices).

We observe similar trends here as with predicting based on each region,
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Table 4: Average Spearman correlation over 3 days when predicting congestion from the
same day the previous week using an adjusted volume index.

Standard count data

reg  WAM (a) lw (a) Vv (q) Cons (a) volume
1 -0.704 -0.672 -0.723 -0.736 -0.652 -0.737 -0.651 -0.705 -0.707
2 -0.669 -0.676 -0.684 -0.668 -0.646 -0.654 -0.644 -0.696 -0.666
3  -0706 -0.752 -0.750 -0.7/6 -0.667 -0.706 -0.726 -0.743  -0.718
4 -0.650 -0.659 -0.451 -0.660 -0.556 -0.631 -0.592 -0.643 -0.662
5 -0.578 -0.604 -0.616 -0.605 -0.544 -0.555 -0.652 -0.597 -0.579

avg -0.662 -0.673 -0.645 -0.683 -0.613 -0.657 -0.653 -0.677 -0.666

Counts transformed relative to highest volume over each day

reg  WAM (q) lw (a) \ (q) Cons (q)  volume
1 -0.706 -0.683 -0.713 -0.730 -0.737 -0.721 -0.707 -0.713 -0.707
2  -0678 -0.661 -0.669 -0.670 -0.664 -0.658 -0.666 -0.663 -0.666
3 -0716 -0.760 -0.766 -0.746 -0.719 -0.732 -0.744 -0.759 -0.718
4  -0.647 -0.634 -0.652 -0.660 -0.690 -0.681 -0.667 -0.662 -0.662
5 -0.587 -0.620 -0.677 -0.639 -0.622 -0.624 -0.666 -0.638 -0.579

avg -0.667 -0.672 -0.695 -0.689 -0.686 -0.683 -0.690 -0.687 -0.666

* Bold denotes best performing for each region (if better than previously obtained best
result in Table 1) and italics indicates improvement (or equal) over best result in Table 1.

with the mean performing best on its own while the remaining indices can
be used in conjunction with volume to boost the fitting correlation. We
also note improved correlations with the median velocity in combining the
volumes for each region.

5. Discussion and future work

Here we have proposed methods for learning weighted spread and inequal-
ity indices and validated their potential using a small real-world dataset. In
the process, a number of potential improvements that could increase the
performance have been identified, although we note that the best functions
and parameters to use will vary from dataset to dataset, and that the learn-
ing mechanism may need to be adjusted depending on the observed ‘true’
evaluations of congestion.

In our case, median velocity data across the entire network was used,
however ideally if we want to be able to measure congestion at the level of

22



Please cite this paper as: Beliakov G., Gagolewski M., James S., Pace S., Pastorello N., Thilliez E., Vasa R.,
Measuring traffic congestion: An approach based on learning weighted inequality, spread and aggregation
indices from comparison data, Applied Soft Computing 67, 2018, pp. 910-919.
doi:10.1016/j.as0c.2017.07.014

Table 5: Average Spearman correlation over 3 days when predicting congestion from the
same day the previous week, where index is calculated based on all 5 regions. Predicting
from volume alone would have a correlation of p = —0.781.

Standard count data

WAM (a) lw (a) \ (q) Cons (q) Gini (a)

Fitting -0.825 0.422 -0.748 -0.008 -0.746  0.209 -0.137 0.426 -0.714  0.443

Prediction -0.743  0.453  -0.607 0.176 -0.594 0.379 -0.378 0.399 -0.617 0.512
Adjusted -0.770  -0.764 -0.852 -0.853 -0.849 -0.829 -0.766 -0.790 -0.795 -0.817

Counts transformed relative to highest volume over each day

WAM (a) lw (a) Vv (a) Cons () Gini (a)

Fitting -0.819  0.422 -0.048 0.256  -0.001  0.278 0.107 0.379 0.076 0.342

Prediction -0.764  0.480 0.005 0.194 0.007 0.231 0.121 0.338 0.085 0.303
Adjusted -0.781 -0.778 -0.721 -0.753 -0.720 -0.755 -0.765 -0.788 -0.753 -0.794

*Bold denotes best prediction result overall.

small regions, we would want data that reflects the traffic status at this local
level. Some of our results concerning which metrics performed best could
certainly be influenced by this. We also did not experiment with the size or
geographical position of regions other than differences in our five example
regions.

Since our training data was not exact, we opted for constraints based on
consecutive time-steps, however in some cases it may be better to use ordering
constraints based on a total ordering of the data, e.g. such that y; > yo >
-+« >y, and then we have P = {(1,2),(2,3),(3,4),...,(m—1,m)}. We can
also use all m(m — 1)/2 pairwise comparisons. Although in general we would
not assume linear correlation or commensurability, it may also be possible to
perform numerical fitting based on a transformation of the observed output.

We found that since volume was a fairly robust predictor of congestion,
an adjusted index based on inequality and volume could provide better per-
formance than any of the indices alone. Other constructions that allow for
more or less influence of volume could also be used, and such parameters
could be learned from data using 2-step optimization techniques. The idea
of incorporating both volume and spread then gives rise to the potential for
density-based averages, which could be explored in a future work. It should
also be noted that the traffic volume data itself can be over-estimated, since
large trucks etc., can be counted as multiple cars.

Lastly, we highlight that having reliable indices for objectively measur-
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ing traffic congestion is crucial for then being able to take steps to reduce
it. In real time analysis, measurements across the network can be used
to assist traffic monitoring decisions, e.g. changing light sequences, and to
inform road-users about the current state of traffic. For retrospective analy-
sis, congestion measurements can be used to evaluate the impact of different
strategies or decisions, e.g. in planning for new roads, conducting roadworks,
co-ordinating public transport systems and so on.

6. Conclusion

We investigated a practical application of inequality and spread mea-
sures and proposed methods for learning the weights of such functions from
comparison data. We investigated the performance of such techniques when
modeling congestion based on counts of traffic passing through multiple inter-
sections throughout a city’s road network. We found that although volume
and weighted volume were, in general, more reliable than inequality indices,
metrics that combined the two provided even better performance.
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