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Abstract

The constrained ordered weighted averaging (OWA) aggregation problem
arises when we aim to maximize or minimize a convex combination of order
statistics under linear inequality constraints that act on the variables with
respect to their original sources. The standalone approach to optimizing
the OWA under constraints is to consider all permutations of the inputs,
which becomes quickly infeasible when there are more than a few variables,
however in certain cases we can take advantage of the relationships amongst
the constraints and the corresponding solution structures. For example, we
can consider a land-use allocation satisfaction problem with an auxiliary aim
of balancing land-types, whereby the response curves for each species are
non-decreasing with respect to the land-types. This results in comonotone
constraints, which allow us to drastically reduce the complexity of the prob-
lem.

In this paper, we show that if we have an arbitrary number of constraints
that are comonotone (i.e., they share the same ordering permutation of the
coefficients), then the optimal solution occurs for decreasing components of
the solution. After investigating the form of the solution in some special cases
and providing theoretical results that shed light on the form of the solution,
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we detail practical approaches to solving and give real-world examples.
Keywords: Multiple criteria evaluation; Ordered weighted averaging;
Constrained OWA aggregation; Ecology; Work allocation

1. Introduction

Yager in [24] introduced the so called ordered weighted averaging op-
erators (OWA for short) which have useful modeling applications in e.g.,
decision making, portfolio optimization and risk analysis (see [7], [15], [21]
and [24]-[27] among others). It is also worth mentioning that OWA opera-
tors are important examples of data aggregation functions, (see, e.g., [3], [9],
[10]-[12]). While the optimization of OWA weights in the context of data-
fitting has been well studied (see [1], [8], [13], [22], or the very recent survey
given in paper [16]), another problem that arises is the need to optimize an
OWA-based objective function with respect to linear constraints, which was
first posed in [23], referred to as the constrained OWA aggregation problem.
The solution therein involved mixed integer linear programming, which may
not be computationally feasible in most real-world contexts.

In [4], the authors developed an analytical expression of the optimal so-
lution for maximizing the objective function in the case of a single constraint
and equal coefficients, which was generalized in [5] to the case of arbitrary
coefficients. The idea works in the case of minimization too, as it was proved
in [6]. In all these papers the idea was to construct the dual of a linear
program such that the optimal value of this dual problem coincides with the
optimal value of the initial constraint OWA aggregation problem. As we
mentioned in our previous work too, the dual seems to be a useful tool in
order to obtain the solution of such problems, see for example papers [19]
and [20], where the case of decreasing weights is investigated. Other papers
where optimization of various types of OWA are investigated are, for example
[17], [18], [26]. The goal of the present paper is to advance the study of the
constrained OWA aggregation problem, by showing that in the case of an
arbitrary number of comonotone constraints, the problem can be expressed
by means of a tractable linear program.

The paper is organized as follows. In Section 2 we present the basic theory
relevant to the constrained OWA aggregation problem as well as some general
results when we have multiple comonotone constraints. More precisely, the
optimal solution of such problems can be deduced from the optimal solution
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of some linear programs where the components of the variable are decreas-
ing. In Section 3, first we briefly recall the very recent results from papers
[5] and [6], where the case of a single constraint was investigated. Then,
we describe the constraint OWA aggregation problem in the case when we
have 2 comonotone constraints to give insight into the form of the solution.
In Section 4, we reformulate the LP problem to improve computation per-
formance in the case of large datasets with multiple comonotone constraints
and provide some application examples in ecology and work allocation. The
paper ends with conclusions summarizing the present work and discussing
some issues regarding the case when we have mixed constraints.

2. The constrained OWA aggregation problem with comonotone
constraints

Suppose we have positive weights w1, . . . , wn such that w1 + · · ·+wn = 1
and define a mapping F : Rn → R,

F (x1, . . . , xn) =
n∑
i=1

wiyi,

where yi is the i-th largest element of the sample x1, . . . , xn. Then consider a
matrix A of type (m,n) with real entries and a vector b ∈ Rm. A constrained
maximum OWA aggregation problem corresponding to the above data, is the
problem (see [23])

maxF (x1, . . . , xn) subject to Ax ≤ b, x ≥ 0. (1)

In this paper, we will investigate two problems where the only particu-
larity is that the coefficients in the constraints can be rearranged to satisfy
certain monotonicity properties. The maximization problem is

maxF (x1, . . . , xn) ,
αi1x1 + · · ·+ αinxn ≤ 1, i = 1,m

x ≥ 0, αij > 0,
(2)

and, there exists a permutation σ ∈ Sn such that

αiσ1 ≤ αiσ2 ≤ · · · ≤ αiσn , i = 1,m. (3)

Here Sn denotes the set of all permutations of {1, . . . , n} and for some σ ∈ Sn,
we use the notation σk for the value σ(k), for any k ∈ {1, . . . , n}. From now
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on, we will say that the constraints in problem (2) are comonotone whenever
condition (3) is satisfied. The minimization problem is

minF (x1, . . . , xn) ,
αi1x1 + · · ·+ αinxn ≥ 1, i = 1,m

x ≥ 0, αij > 0,
(4)

and, again, there exists σ ∈ Sn such that

αiσ1 ≥ αiσ2 ≥ · · · ≥ αiσn , i = 1,m. (5)

We easily notice that condition (3) is satisfied if and only if condition (5) is
satisfied (of course, for a different permutation), which means that in problem
(4) too, the constraints are comonotone.

We need a property that was used in [5] too. If a1 ≤ · · · ≤ an and
b1 ≥ · · · ≥ bn then for any σ ∈ Sn we have

a1b1 + · · ·+ anbn ≤ a1bσ1 + · · ·+ anbσn . (6)

Now, suppose that (x∗
1, . . . , x

∗
n) is a solution of (2) in the special case when 0 <

αi1 ≤ ··· ≤ αin, i = 1,m. Obviously, we have F (x∗
1, . . . , x

∗
n) = F (y∗

1, . . . , y
∗
n),

where for any i ∈ {1, . . . , n}, y∗
i is the i-th largest element between x∗

1, . . . , x
∗
n.

On the other hand, taking into account the inequality (6), it follows that

αi1y
∗
1 + · · ·+ αiny

∗
n

≤ αi1x
∗
1 + · · ·+ αinx

∗
n ≤ 1,

i = 1,m.

Therefore, we have
F (x∗

1, . . . , x
∗
n)

≤ maxw1x1 + · · ·+ wnxn ,
αi1x1 + · · ·+ αinxn ≤ 1, i = 1,m,

x1 ≥ · · · ≥ xn ≥ 0.

But one can easily check that the converse inequality also holds since (y∗
1, . . . , y

∗
n)

is a feasible solution for problem (2). Therefore, any solution of problem
maxw1x1 + · · ·+ wnxn ,

αi1x1 + · · ·+ αinxn ≤ 1, i = 1,m
x1 ≥ · · · ≥ xn ≥ 0,

(7)
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is a solution of problem (2) too. Actually, any solution of (2) is obtained by
permuting the components of a solution of problem (7). In the case of a single
constraint, in paper [5] the result was even stronger because generalizing with
respect to any permutation, the two problems had the same solution. In our
case it is possible that a permuted solution of problem (7) would not satisfy
one of the constraints of problem (2). This is so because in the case of a
single constraint it is not hard at all to prove that the solution must satisfy
the constraint with equality. Therefore, in general, the solution set of problem
(7) is included in the solution set of problem (2) and this is the first main
result of this contribution.

Theorem 1. Consider problems (2) and (7) (of course with the same coef-
ficients αij in both problems) in the special case when 0 < αi1 ≤ · · · ≤ αin,
i = 1,m (that is, we can take σ the identity permutation). Then any solution
of problem (7) is a solution of problem (2). In addition, both problems have
nonempty sets of solutions.

Proof. Obviously, what remains to be proved is that problem (7) has a
nonempty solution set. But this is immediate since the feasible set of problem
(7) is compact in Rn and the objective function is linear.

What is more, there exists an important case when both problems have
exactly the same solution set.

Theorem 2. Consider problems (2) and (7) in the special case when αi1 <
αi2 < · · · < αin, i = 1,m. Then both problems have the same solution set
which in addition is nonempty.

Proof. We already explained why the solution sets are nonempty. We also
know that any solution of problem (7) is a solution of problem (2). It only
remains to prove that any solution of problem (2) is a solution of problem
(7) too. By way of contradiction, suppose that (x∗

1, . . . , x
∗
n) is a solution of

problem (2) but not a solution of problem (7). It means that there exist
j1, j2 ∈ {1, . . . , n}, j1 < j2, such that x∗

j1 < x∗
j2 . We start by constructing

(t∗1, . . . , t∗n), where t∗j = x∗
j for any i ∈ {1, . . . , n} \ {j1, j2}, t∗j1 = x∗

j2 and
t∗j2 = x∗

j1 . By simple calculation we obtain

n∑
j=1

αijx
∗
j −

n∑
j=1

αijt
∗
j = (αj1 − αj2)

(
x∗
j1 − x

∗
j2

)
> 0, i = 1,m.
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If the components of (t∗1, . . . , t∗n) are not in decreasing order then we continue
to switch places for components that obstruct this property. After a finite
number of iterations we will arrive to a vector, say (y∗

1, . . . , y
∗
n) which has its

components in decreasing order. At every iteration we will obtain the same
type of inequalities as above. By transitivity, we get that

n∑
j=1

αijx
∗
j −

n∑
j=1

αijy
∗
j > 0, i = 1,m.

Thus,
n∑
j=1

αijy
∗
j < 1, i = 1,m.

However, obviously (y∗
1, . . . , y

∗
n) is a permutation of (x∗

1, . . . , x
∗
n) and this im-

plies that F (x∗
1, . . . , x

∗
n) = F (y∗

1, . . . , y
∗
n). This, together with the fact that

(y∗
1, . . . , y

∗
n) satisfies the constraints of problem (7), means that (y∗

1, . . . , y
∗
n)

is a solution of problem (7). Now, we can choose ε > 0 sufficiently small,
such that

n∑
j=1

αij
(
y∗
j + ε

)
< 1, i = 1,m. Therefore, (y∗

1 + ε, . . . , y∗
n + ε) is

a feasible solution for problem (7). Now, clearly we have F (y∗
1, . . . , y

∗
n) <

F (y∗
1 + ε, . . . , y∗

n + ε) and this contradicts the fact that (y∗
1, . . . , y

∗
n) is a solu-

tion of problem (7). In conclusion, we obtain that (x∗
1, . . . , x

∗
n) is a solution

of problem (7) too. The proof is complete.
Now, we can easily extend the conclusions of the last two theorems to the

general form of problem (2).

Theorem 3. Consider problem (2) and suppose that σ ∈ Sn is such that
0 < αiσ1 ≤ αiσ2 ≤ · · · ≤ αiσn, i = 1,m. Furthermore, consider problem

maxw1x1 + · · ·+ wnxn ,
αiσ1x1 + · · ·+ αiσnxn ≤ 1, i = 1,m

x1 ≥ · · · ≥ xn ≥ 0.
(8)

Then both problems (2) and (8) have nonempty solutions sets. Moreover, if
(x∗

1, . . . , x
∗
n) is a solution of problem (8) then (x∗

σ−1
1
, . . . , x∗

σ−1
n

) is a solution
of problem (2) (here, σ−1 denotes the inverse of σ). In the more restrictive
case when 0 < αiσ1 < αiσ2 < · · · < αiσn, i = 1,m, (x∗

1, . . . , x
∗
n) is a solution

of problem (8) if and only if (x∗
σ−1

1
, . . . , x∗

σ−1
n

) is a solution of problem (2).
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From Theorem 3, it follows that in order to solve problem (2) in the case
when the coefficients can be rearranged in nondecreasing order by the same
permutation in each constraint (i. e., the constraints are comonotone), then
it suffices to solve the linear programming problem (8).

In the case of the minimization problem (4) we obtain similar results. The
proofs are very much the same as in the case of the maximization problem.
This time we will use the fact that if a1 ≥ a2 ≥ ··· ≥ an and b1 ≥ b2 ≥ ··· ≥ bn,
then

n∑
i=1

aibi ≥
n∑
i=1

aibτi
for any τ ∈ Sn. Following this, all the reasoning is

the same as for the maximization problem.
Theorem 4. Consider problem (4) and suppose that σ ∈ Sn is such that
αiσ1 ≥ αiσ2 ≥ · · · ≥ αiσn > 0, i = 1,m. Furthermore, consider problem

minw1x1 + · · ·+ wnxn ,
αiσ1x1 + · · ·+ αiσnxn ≥ 1, i = 1,m,

x1 ≥ · · · ≥ xn ≥ 0.
(9)

Then both problems (4) and (9) have nonempty solutions sets. Moreover, if
(x∗

1, . . . , x
∗
n) is a solution of problem (9) then (x∗

σ−1
1
, . . . , x∗

σ−1
n

) is a solution
of problem (2) (here, σ−1 denotes the inverse of σ). In the more restrictive
case when 0 < αiσ1 < αiσ2 < · · · < αiσn, i = 1,m, (x∗

1, . . . , x
∗
n) is a solution

of problem (9) if and only if (x∗
σ−1

1
, . . . , x∗

σ−1
n

) is a solution of problem (4).

Proof. As we said earlier, the reasoning is almost identical to the case of
the maximization problem. There is only one point where the proof differs,
namely, the non-emptiness of the solution sets, as this time the feasible set is
unbounded. However, one can easily notice that the solution set of problem
(9) is actually the projection of the null vector onto the feasible set with
respect to the norm (x1, . . . , xn) = w1 |x1| + · · · + wn |xn|. As this feasible
set is closed and convex in Rn, it is well-known that this projection set is
nonempty. Therefore, the solution set of problem (9) is nonempty. This
easily implies that the solution set of problem (4) is nonempty too.

3. Analytical solution for special cases

In this section, first we recall the results obtained in [5] and [6] where
the case of a single constraint is investigated. Then we extend the results to
the case when we have two comonotone constraints. In this case too, we will
obtain an analytical representation of the solution and this representation
depends on an index from a derived linear program.
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3.1. Constrained OWA with a single constraint
Let us return for a moment to the general form of a constrained OWA ag-

gregation problem given in (1). A difficult task is to find an exact analytical
solution to this problem. Yager used a method based on mixed integer linear
programming, which employs the use of auxiliary variables and therefore,
may not always be feasible. In the special case where we have the single con-
straint x1+· · ·+xn = 1, the first analytical solution for the constrained OWA
aggregation problem is given in paper [4]. This result has been generalized
recently in paper [5] where the coefficients in the constraint are arbitrary.
This problem can be formulated as

maxF (x1, . . . , xn) subject to α1x1 + · · ·+ αnxn ≤ 1, x ≥ 0. (10)

Let us recall this result in the case when we can provide a nontrivial solution
(these cases were solved in Propositions 1-2 in [5]). In what follows, Sn
denotes the set of permutations of the set {1, . . . , n}.

Theorem 5. Consider problem (10). Then:
(i) if there exists i0 ∈ {1, . . . , n} such that αi0 ≤ 0, then F is un-

bounded on the feasible set and its supremum over the feasible set is ∞;
(ii) if αi > 0, i ∈ {1, . . . , n}, then taking (any) σ ∈ Sn with the

property that ασ1 ≤ ασ2 ≤ · · · ≤ ασn, and k∗ ∈ {1, . . . , n}, such that

w1 + · · ·+ wk∗

ασ1 + · · ·+ ασk∗
= max

{
w1 + · · ·+ wk
ασ1 + · · ·+ ασk

: k ∈ {1, . . . , n}
}
,

then (x∗
1, . . . , x

∗
n) is an optimal solution of problem (10), where

x∗
σ1 = · · · = x∗

σk∗ = 1
ασ1 + · · ·+ ασk∗

,

x∗
σk∗+1

= · · · = x∗
σn

= 0.

In particular, if 0 < α1 ≤ α2 ≤ · · · ≤ αn, and k∗ ∈ {1, . . . , n} is such that

w1 + · · ·+ wk∗

ασ1 + · · ·+ ασk∗
= max

{
w1 + · · ·+ wk
ασ1 + · · ·+ ασk

: k ∈ {1, . . . , n}
}
,

then (x∗
1, . . . , x

∗
n) is a solution of (10), where

x∗
1 = · · · = x∗

k∗ = 1
α1 + · · ·+ αk∗

,

x∗
k∗+1 = · · · = x∗

n = 0.
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Although, in paper [24] the maximum of the OWA operators is investi-
gated, optimizing with respect to the minimum is also an important problem.
Here, the general form is

minF (x1, . . . , xn) subject to Ax ≤ b, x ≥ 0.

In the case of a single constraint, the most interesting problem is

minF (x1, . . . , xn) subject to α1x1 + · · ·+ αnxn ≥ 1, x ≥ 0. (11)

In the remaining cases one can easily prove that the problem is trivial with
the solution (0, . . . , 0). For problem (11), an analogue of Theorem 5 can be
found in the recent paper [6].

Theorem 6. (see [6], Theorem 2) Consider problem (11). If αi > 0, i ∈
{1, . . . , n}, then taking σ ∈ Sn with the property that ασ1 ≥ ασ2 ≥ · · · ≥ ασn,
and k∗ ∈ {1, . . . , n}, such that

w1 + · · ·+ wk∗

ασ1 + · · ·+ ασk∗
= min

{
w1 + · · ·+ wk
ασ1 + · · ·+ ασk

: k ∈ {1, . . . , n}
}
,

then (x∗
1, . . . , x

∗
n) is an optimal solution of problem (11), where

x∗
σ1 = · · · = x∗

σk∗ = 1
ασ1 + · · ·+ ασk∗

,

x∗
σk∗+1

= · · · = x∗
σn

= 0.

In particular, if α1 ≥ α2 ≥ · · · ≥ αn, and k∗ ∈ {1, . . . , n} is such that

w1 + · · ·+ wk∗

α1 + · · ·+ αk∗
= min

{
w1 + · · ·+ wk
α1 + · · ·+ αk

: k ∈ {1, . . . , n}
}
,

then (x∗
1, . . . , x

∗
n) is a solution of (11), where

x∗
1 = · · · = x∗

k∗ = 1
α1 + · · ·+ αk∗

,

x∗
k∗+1 = · · · = x∗

n = 0.
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3.2. Constrained OWA aggregation with two comonotone constraints
In Section 2, considering the case of comonotone coefficients, we proved

that a solution of problem (2) can be obtained by solving a linear program.
The same is true in the case of the minimization problem. In the next section
we will present an algorithm that finds this solution faster than the classical
methods available on various mathematical packages. Still, it is important to
have an indication of how the solution depends on the weights and coefficients
when studying the stability of the solution set. In the case of one constraint,
the problem is completely solved (see Theorems 5 and 6). In this section we
will investigate the case of two constraints. We will see that the problem is
more complex in this case. Besides the weights and coefficients, the solution
also depends on some indices corresponding to some constraints in the dual
problem. An interesting special case is when in one constraint all coefficients
are equal and in the second constraint the coefficients are arbitrary. The
method we will use here may not be easily generalizable to the case of more
than two constraints.

In what follows, we are interested in the study of the problem
maxF (x1, . . . , xn) ,

α1x1 + · · ·+ αnxn ≤ 1,
β1x1 + · · ·+ βnxn ≤ 1,

x ≥ 0.

(12)

First, we consider the case when 0 < α1 ≤ α2 ≤ · · · ≤ αn and 0 < β1 ≤ β2 ≤
· · · ≤ βn. By Theorem 1 it follows that any solution of problem

maxw1x1 + · · ·+ wnxn ,
α1x1 + · · ·+ αnxn ≤ 1,
β1x1 + · · ·+ βnxn ≤ 1
x1 ≥ · · · ≥ xn ≥ 0,

(13)

is a solution of problem (12). What is more, both problems have nonempty
solution sets. It means that it suffices to investigate problem (13).
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For that, first, we need the dual of problem (13). This dual problem is

min t1 + t2,
α1t1 + β1t2 − t3 ≥ ω1,

α2t1 + β2t2 + t3 − t4 ≥ ω2,
α3t1 + β3t2 + t4 − t5 ≥ ω3,

·
·
·

αn−1t1 + βn−1t2 + tn − tn+1 ≥ ωn−1,
αnt1 + βnt2 + tn+1 ≥ ωn

t1 ≥ 0, t2 ≥ 0, · · ·, tn+1 ≥ 0.

(14)

If we find a solution for this problem then we can use it to find a solution of
problem (13). Let us consider now problem

min t1 + t2,
α1t1 + β1t2 ≥ w1,

(α1 + α2) t1 + (β1 + β2) t2 ≥ w1 + w2,
·
·(

k∑
i=1

αi

)
· t1 +

(
k∑
i=1

βi

)
· t2 ≥

k∑
i=1

wi,

·
·(

n∑
i=1

αi

)
· t1 +

(
n∑
i=1

βi

)
· t2 ≥

n∑
i=1

wi,

t1 ≥ 0, t2 ≥ 0.

(15)

Suppose that
(
t∗1, t

∗
2, . . . , t

∗
n+1

)
is a solution of problem (14). It is immediate

that (t∗1, t∗2) is a feasible solution for problem (15). Indeed, if we sum up the
first k constraints in problem (14), k = 1, n, we get(

k∑
i=1

αi

)
· t∗1 +

(
k∑
i=1

βi

)
· t∗2 − t∗k+2 ≥

k∑
i=1

wi, k = 1, n− 1

and (
n∑
i=1

αi

)
· t∗1 +

(
n∑
i=1

βi

)
· t∗2 ≥

n∑
i=1

wi.
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This implies that indeed (t∗1, t∗2) is a feasible solution for problem (15). Now,
suppose that (t1, t2) is a solution of problem (15). If we replace (t1, t2) with
(t1, t2) in the constraints of problem (14) and if we consider the special case
of equality in these constraints, after simple calculations, this system of equa-
tions gives the solution

t∗1 = t1, t
∗
2 = t2,

t∗k =
(
k−2∑
i=1

αi

)
· t1 +

(
k−2∑
i=1

βi

)
· t2 −

k−2∑
i=1

wi, k = 3, n+ 1. (16)

As (t1, t2) is feasible for problem (15), it is immediate that
(
t∗1, . . . , t

∗
n+1

)
is feasible for problem (14). Summarizing, considering only the first two
components of the feasible solutions of problems (14) and (15), we obtain
the same sets. As the objective functions of both problems depend only on
the first two components, and have the same values, it means that for both
problems we have the same minimal value. We will see a little later that
this minimum value is finite in our setting. Moreover, having the solution
of one problem leads to a simple construction for the solution of the second
problem.

In order to find a solution for problem (15), we need to investigate a
problem given as 

min t1 + t2,
ak · t1 + bk · t2 ≥ 1, k = 1, n,

t1 ≥ 0, t2 ≥ 0.
(17)

It will suffice to consider only the case when ak > 0 and bk > 0, for all
k ∈ {1, . . . , n}. If we denote

ak =

k∑
i=1

αi

k∑
i=1

wi

and bk =

k∑
i=1

βi

k∑
i=1

wi

, k = 1, n. (18)

problem (15) becomes exactly problem (17). Therefore, solving problem (17)
will result in solving problem (15) as well. To continue our investigation,
we need some concepts that are well-known in linear programming. Let
us denote with Ck constraint number k of problem (17), k = 1, n. Then,
we denote with U the feasible region of problem (15). Next, for some k ∈
{1, . . . , n} let Ik = {1, . . . , n} \ {k} and

Uk = {(t1, t2) ∈ [0,∞)× [0,∞) : ai · t1 + bi · t2 ≥ 1, i ∈ Ik} .
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In other words, Uk is the feasible region of any optimization problem which
keeps all the constraints from problem (17) except for constraint Ck. The
constraint Ck is called redundant if U = Uk as the solution set of any opti-
mization problem with feasible region U coincides with the solution set of the
optimization problem that has the same objective function and all the con-
straints except for Ck. This means that constraint Ck can be removed when
solving the given problem. The constraint Ck is called strongly redundant if
it is redundant and

akt1 + bkt2 > 1, for all (t1, t2) ∈ U .

Therefore, Ck is strongly redundant if and only if the segment which corre-
sponds to the solutions of the equation akt1 + bkt2 = 1, t1 ≥ 0, t2 ≥ 0, does
not intersect U . A redundant constraint which is not strongly redundant is
called weakly redundant. The constraint Ck is called binding if there ex-
ists at least one optimal point which satisfies this constraint with equality.
It means, that the segment corresponding to the equation akt1 + bkt2 = 1,
t1 ≥ 0, t2 ≥ 0, contains an optimal point of the problem. Note that it is
possible for a weakly redundant constraint to be binding as well. All these
concepts were discussed with respect to our problem (17) but of course they
can be defined accordingly for any kind of optimization problem.

We need the following auxiliary result.

Lemma 7. Consider problem (17) in the case when ak > 0 and bk > 0, for
all k ∈ {1, . . . , n}. Suppose that k1, k2 ∈ {1, . . . , n} are such that ak1 ≥ bk1

and ak2 ≤ bk2. If (t∗1, t∗2) is a solution of the system{
ak1t1 + bk1t2 = 1,
ak2t1 + bk2t2 = 1,

and if (t∗1, t∗2) is feasible for problem (17), then (t∗1, t∗2) is an optimal solution
for problem (17).

Proof. Let f be the objective function, that is, f(t1, t2) = t1 + t2. In what
follows, as usual, we denote with [(a, b) , (c, d)] the closed segment with end-
points (a, b) and (c, d) in R2. We notice that (t∗1, t∗2) ∈ [(1/a1, 0) , (0, 1/b1)] ∩
[(1/a2, 0) , (0, 1/b2)]. Then, we have f (1/a1, 0) ≤ f(0, 1/b1) which by the
linearity of f implies that f (1/a1, 0) ≤ f(t1, t2) ≤ f(0, 1/b1), for all (t1, t2) ∈
[(1/a1, 0) , (0, 1/b1)]. In particular, we get f (t∗1, t∗2) ≤ f(0, 1/b1). Again,

13



by the linearity of f it follows that f (t∗1, t∗2) ≤ f (t1, t2), for all (t1, t2) ∈
[(t∗1, t∗2) , (0, 1/b1)]. By similar reasoning we get that f (t∗1, t∗2) ≤ f (t1, t2), for
all (t1, t2) ∈ [(t∗1, t∗2) , (0, 1/a2)]. Now, let us choose (t1, t2) arbitrary in the
feasible region. It is clear that either [(0, 0), (t1, t2)] ∩ [(t∗1, t∗2) , (0, 1/b1)] 6= ∅,
or [(0, 0), (t1, t2)] ∩ [(t∗1, t∗2) , (0, 1/a2)] 6= ∅. Without any loss of general-
ity (the other case has identical reasoning) suppose that [(0, 0), (t1, t2)] ∩
[(t∗1, t∗2) , (0, 1/b1)] 6= ∅ and let (u1, u2) be the intersection point. As t1 ≥ 0
and t2 ≥ 0, it is immediate that f(u1, u2) ≤ f(t1, t2). On the other hand,
we also have f(u1, u2) ≥ f (t∗1, t∗2), hence, we get f (t∗1, t∗2) ≤ f(t1, t2). In
conclusion, (t∗1, t∗2) is an optimal point of problem (17).

Now, we can approach a formula to compute the solution of problem (12)
in the case when 0 < α1 ≤ α2 ≤ · · · ≤ αn and 0 < β1 ≤ β2 ≤ · · · ≤ βn.

Let ak∗ = min {a1, . . . , an} and bk∗∗ = min {b1, . . . , bn}, where a1 , . . . , an
and b1, . . . , bn are given in (18). In order to obtain the solution of problem
(12), we need a discussion split in four cases which are not necessarily disjoint.

Case 1) ak∗ ≥ bk∗ . In this case, taking into account Theorem 5, first, we
get that (x∗

1, . . . , x
∗
n) is a solution of (10), where

x∗
1 = · · · = x∗

k∗ = 1
α1 + · · ·+ αk∗

,

x∗
k∗+1 = · · · = x∗

n = 0.

But as ak∗ ≥ bk∗ , we immediately get that (x∗
1, . . . , x

∗
n) is a feasible solution for

problem (12). As the feasible region of problem (12) is included in the feasible
region of problem (10), we get that (x∗

1, . . . , x
∗
n) is a solution of problem (12).

In addition, w1+···+wk∗
α1+···+αk∗

is the optimal value of problem (12).
Case 2) bk∗∗ ≥ ak∗∗ . By similar reasoning as above, we obtain (x∗

1, . . . , x
∗
n)

as a solution of (12), where

x∗
1 = · · · = x∗

k∗∗ = 1
β1 + · · ·+ βk∗∗

,

x∗
k∗∗+1 = · · · = x∗

n = 0.

In addition, w1+···+wk∗∗
β1+···+βk∗∗

is the optimal value of problem (12).
Case 3) Suppose that in problem (17) there exists a binding constraint

Ck0 such that ak0 = bk0 . Obviously, in this case the minimum value for the
objective function of problem (17) coincides with the minimum value for the

14



objective function of problem
t1 + t2 → min ,
ak0t1 + ak0t2 ≥ 1,
t1 ≥ 0, t2 ≥ 0.

(19)

The dual of the above problem is
x→ max ,
ak0x ≤ 1,
x ≥ 0.

The solution of this problem is

x∗ = 1
ak0

= w1 + · · ·+ wk0

α1 + · · ·+ αk0

.

We observe that (x∗
1, . . . , x

∗
n), where

x∗
1 = · · · = x∗

k0 ,

= 1
α1 + · · ·+ αk0

,

x∗
k0+1 = · · · = x∗

n = 0,

is a feasible solution for problem (12) (here, it is important that ak0 = bk0).
Let us prove that actually (x∗

1, . . . , x
∗
n) is an optimal solution for problem

(12). As already mentioned earlier, the minimum value for the objective
function in the dual problem of (12), that is, problem (14), coincides with
the minimum value of the objective function in problem (19). This minimum
value is w1+···+wk0

α1+···+αk0
. From the duality theorem, it means that for any feasible

solution of problem (12), x = (x1, . . . , xn) we have

F (x1, . . . , xn) ≤ w1 + · · ·+ wk0

α1 + · · ·+ αk0

.

On the other hand, we have

F (x∗
1, . . . , x

∗
n) = w1 + · · ·+ wk0

α1 + · · ·+ αk0

.

Hence, as (x∗
1, . . . , x

∗
n) belongs to the feasible region of problem (12), it follows

that (x∗
1, . . . , x

∗
n) is an optimal solution of problem (12) and w1+···+wk0

α1+···+αk0
is the

optimal value of problem (12).
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Case 4) This case is the more complex one. Therefore, we will apply
it only when any of the previous three cases is not applicable. Hence, in
this case we have that ak∗ < bk∗ , ak∗∗ > bk∗∗ and, there exists an optimal
solution of problem (17), (t∗1, t∗2), for which there does not exist a constraint
Ck, k ∈ {1, . . . , n}, with ak = bk, such that (t∗1, t∗2) satisfies Ck with equality.
In this case it is not hard at all to prove that there are two constraints Ck1

and Ck2 such that ak1 > bk1 , ak2 < bk2 and such that (t∗1, t∗2) is the unique
solution of the system {

ak1t1 + bk1t2 = 1,
ak2t1 + bk2t2 = 1.

This implies that (t∗1, t∗2) is the unique solution of the problem
t1 + t2 → min ,
ak1t1 + bk1t2 ≥ 1,
ak2t1 + bk2t2 ≥ 1,
t1 ≥ 0, t2 ≥ 0.

(20)

Without any loss of generality suppose that k1 < k2. By simple calculation,
using (18), we have

t∗1 =

(
k1∑
i=1

wi

)
·
(

k2∑
i=k1+1

βi

)
−
(

k2∑
i=k1+1

wi

)
·
(
k1∑
i=1

βi

)
(
k1∑
i=1

αi

)
·
(

k2∑
i=k1+1

βi

)
−
(

k2∑
i=k1+1

αi

)
·
(
k1∑
i=1

βi

) (21)

and

t∗2 =

(
k2∑

i=k1+1
wi

)
·
(
k1∑
i=1

αi

)
−
(
k1∑
i=1

wi

)
·
(

k2∑
i=k1+1

αi

)
(
k1∑
i=1

αi

)
·
(

k2∑
i=k1+1

βi

)
−
(

k2∑
i=k1+1

αi

)
·
(
k1∑
i=1

βi

) . (22)

This results in the optimal value of problem (20) being

t∗1 + t∗2 =

(
k1∑
i=1

wi

)
·
(

k2∑
i=k1+1

(βi − αi)
)

+
(

k2∑
i=k1+1

wi

)
·
(
k1∑
i=1

(αi − βi)
)

(
k1∑
i=1

αi

)
·
(

k2∑
i=k1+1

βi

)
−
(

k2∑
i=k1+1

αi

)
·
(
k1∑
i=1

βi

) . (23)

The optimal value from above coincides with the optimal value of problem
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

t1 + t2 → min ,(
k1∑
i=1

αi

)
t1 +

(
k1∑
i=1

βi

)
t2 − t3 ≥

k1∑
i=1

wi,(
k2∑

i=k1+1
αi

)
t1 +

(
k2∑

i=k1+1
βi

)
t2 + t3 ≥

k2∑
i=k1+1

wi,

t1 ≥ 0, t2 ≥ 0, t3 ≥ 0.

(24)

Indeed, these two problems are special cases of problems (14) and (15). The
dual of this later problem is

(
k1∑
i=1

wi

)
u+

(
k2∑

i=k1+1
wi

)
v → max ,(

k1∑
i=1

αi

)
u+

(
k2∑

i=k1+1
αi

)
v ≤ 1,(

k1∑
i=1

βi

)
u+

(
k2∑

i=k1+1
βi

)
v ≤ 1,

u ≥ v ≥ 0.

(25)

Recall, we assumed that ak1 > bk1 and ak2 < bk2 . This implies that
k1∑
i=1

αi >

k1∑
i=1

βi and
k2∑
i=1

αi <
k2∑
i=1

βi. It also means that
k2∑

i=k1+1
αi <

k2∑
i=k1+1

βi. The solution
of the system 

(
k1∑
i=1

αi

)
u+

(
k2∑

i=k1+1
αi

)
v = 1,(

k1∑
i=1

βi

)
u+

(
k2∑

i=k1+1
βi

)
v = 1,

is

u∗ =

k2∑
i=k1+1

(βi − αi)(
k1∑
i=1

αi

)
·
(

k2∑
i=k1+1

βi

)
−
(
k1∑
i=1

βi

)
·
(

k2∑
i=k1+1

αi

) ,

v∗ =

k1∑
i=1

(αi − βi)(
k1∑
i=1

αi

)
·
(

k2∑
i=k1+1

βi

)
−
(
k1∑
i=1

βi

)
·
(

k2∑
i=k1+1

αi

) .
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The hypotheses imply that the denominators in the expressions of u∗ and v∗

are strictly greater than 0. From here, it is immediate that u∗ > v∗ > 0.
Hence, (u∗, v∗) belongs to the feasible region of problem (25). Let us prove
that (u∗, v∗) is actually the optimal solution of problem (25). As problem
(25) is the dual of problem (24) and the optimal value of this later problem
coincides with the optimal value of problem (20), it suffices to prove that the
objective function of problem (25) applied in (u∗, v∗) will give us the optimal
value of problem (20), that is, the value of t∗1 + t∗2 in (23). The objective
function of problem (25) applied in (u∗, v∗) gives k1∑

i=1
wi

u∗
+

 k2∑
i=k1+1

wi

 v∗

=

(
k1∑
i=1

wi

)
·
(

k2∑
i=k1+1

(βi − αi)
)

+
(

k2∑
i=k1+1

wi

)
·
(
k1∑
i=1

(αi − βi)
)

(
k1∑
i=1

αi

)
·
(

k2∑
i=k1+1

βi

)
−
(
k1∑
i=1

βi

)
·
(

k2∑
i=k1+1

αi

)
= t∗1 + t∗2.

It necessarily follows that (u∗, v∗) is an optimal solution for problem (25).
Now, we observe that x = (x∗

1, . . . , x
∗
n), where

x∗
1 = x∗

2 = · · · = x∗
k1 = u∗,

x∗
k1+1 = · · · = x∗

k2 = v∗,
x∗
k2+1 = · · · = x∗

n = 0,

is a feasible solution for problem (12). Moreover, the optimal value of this
problem is t∗1 + t∗2. Hence, reasoning as in the previous Case 3), we get that
(x∗

1, . . . , x
∗
n) is an optimal solution of problem (12). In addition, the optimal

value of this problem is t∗1 + t∗2.
The above discussion covers all possible cases for problem (12). It can be

summarized in the following theorem.

Theorem 8. Consider problem (12) in the special case when 0 < α1 ≤
α2 ≤ · · · ≤ αn and 0 < β1 ≤ β2 ≤ · · · ≤ βn. Then consider problem
(17) where ak and bk are obtained using the substitutions given in (18),
k = 1, n. Furthermore, take l = arg min {ak : k ∈ {1, . . . , n}} and p =
arg min {bk : k ∈ {1, . . . , n}}. We have the following cases (not necessarily
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distinct but covering all possible scenarios) in obtaining the optimal solution
and the optimal value of problem (12).

i) If al ≥ bl then (x∗
1, . . . , x

∗
n) is a solution of problem (12), where

x∗
1 = · · · = x∗

l = 1
α1 + · · ·+ αl

,

x∗
l+1 = · · · = x∗

n = 0.

In addition, w1+···+wl

α1+···+αl
is the optimal value of problem (12).

ii) If ap ≤ bp then (x∗
1, . . . , x

∗
n) is a solution of problem (12), where

x∗
1 = · · · = x∗

p = 1
β1 + · · ·+ βp

,

x∗
p+1 = · · · = x∗

n = 0.

In addition, w1+···+wp

β1+···+βp
is the optimal value of problem (12).

iii) If in problem (17) there exists a binding constraint Ck0 such that
ak0 = bk0 then (x∗

1, . . . , x
∗
n) is a solution of problem (12), where

x∗
1 = · · · = x∗

k0,

= 1
α1 + · · ·+ αk0

,

x∗
k0+1 = · · · = x∗

n = 0.

In addition, w1+···+wk0
α1+···+αk0

is the optimal value of problem (12).
iv) If in problem (17) the optimal solution satisfies with equality the con-

straints Ck1 and Ck2, where k1 < k2 and (ak1 − bk1) · (ak2 − bk2) < 0, then
(x∗

1, . . . , x
∗
n) is a solution of problem (12), where

x∗
i =

k2∑
i=k1+1

(βi − αi)(
k1∑
i=1

αi

)
·
(

k2∑
i=k1+1

βi

)
−
(
k1∑
i=1

βi

)
·
(

k2∑
i=k1+1

αi

) , i = 1, k1

x∗
i =

k1∑
i=1

(αi − βi)(
k1∑
i=1

αi

)
·
(

k2∑
i=k1+1

βi

)
−
(
k1∑
i=1

βi

)
·
(

k2∑
i=k1+1

αi

) , i = k1 + 1, k2,

x∗
k2+1 = · · · = x∗

n = 0.
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In addition, the optimal value of problem (12) is equal to the value of t∗1 + t∗2
computed in (23).

Next, we generalize the result in Theorem 8. This time, the monotonicity
assumption for the coefficients in the constraints does not necessarily hold.
But, we suppose that there exists a permutation σ ∈ Sn such that 0 < ασ1 ≤
ασ2 ≤ · · · ≤ ασn and 0 < βσ1 ≤ βσ2 ≤ · · · ≤ βσn . In such cases, the solution
of problem (12) will be easily obtained by using an auxiliary problem which
satisfies the hypotheses in Theorem 8.

Theorem 9. Consider problem (12) and suppose that there exists a permu-
tation σ ∈ Sn such that 0 < ασ1 ≤ ασ2 ≤ · · · ≤ ασn and 0 < βσ1 ≤ βσ2 ≤
· · · ≤ βσn. Then consider the problem with the same objective function as in
problem (12) and with the constraints

ασ1x1 + ασ2x2 + · · ·+ ασnxn ≤ 1,
βσ1x1 + βσ2x2 + · · ·+ βσnxn ≤ 1,

x ≥ 0.

If (u∗
1, . . . , u

∗
n) is a solution of this auxiliary problem, then (x∗

1, . . . , x
∗
n) is a

solution of problem (12), where x∗
i = u∗

σ−1
i

, i = 1, n. Here, σ−1 denotes the
inverse of σ.

From Theorem 9 we easily obtain the following corollary in which we
assume that in the first constraint all coefficients are equal.

Theorem 10. Consider problem (12) in the special case when 0 < α1 =
α2 = · · · = αn = α. Let σ ∈ Sn be any permutation such that 0 < βσ1 ≤
βσ2 ≤ · · · ≤ βσn. Then consider the problem with the same objective function
as in problem (12) and with the constraints

αx1 + αx2 + · · ·+ αxn ≤ 1,
βσ1x1 + βσ2x2 + · · ·+ βσnxn ≤ 1,

x ≥ 0.

If (u∗
1, . . . , u

∗
n) is a solution of this auxiliary problem, then (x∗

1, . . . , x
∗
n) is a

solution of problem (12), where x∗
i = u∗

σ−1
i

, i = 1, n. Here, σ−1 denotes the
inverse of σ.

20



Consider now the minimization problem
minF (x1, . . . , xn) ,

α1x1 + · · ·+ αnxn ≤ 1,
β1x1 + · · ·+ βnxn ≤ 1,

x ≥ 0

(26)

in the special case when α1 ≥ α2 ≥ · · · ≥ αn > 0 and β1 ≥ β2 ≥ · · · ≥
βn > 0. Obviously, the reasoning is very much the same as in the case of
the maximization problem. The dual has the same objective function but
needs to be maximized and the constraints are the same but with reversed
inequalities. Therefore, we can easily construct an analogue for (17), which
is 

max t1 + t2,
ak · t1 + bk · t2 ≤ 1, k = 1, n,

t1 ≥ 0, t2 ≥ 0,
(27)

where ak and bk are given in (18), i = 1, n. Taking into account all these
facts, we easily deduce analogue results (therefore, we omit the proofs) for
the minimization problem.

Theorem 11. Consider problem (26) in the special case when α1 ≥ α2 ≥
· · · ≥ αn > 0 and β1 ≥ β2 ≥ · · · ≥ βn > 0. Then consider problem
(27) where ak and bk are obtained using the substitutions given in (18),
k = 1, n. Furthermore, take l = arg max {ak : k ∈ {1, . . . , n}} and p =
arg max {bk : k ∈ {1, . . . , n}}. We have the following cases (not necessarily
distinct but covering all possible scenarios) in obtaining the optimal solution
and the optimal value of problem (26).

i) If al ≤ bl then (x∗
1, . . . , x

∗
n) is a solution of problem (26), where

x∗
1 = · · · = x∗

l = 1
α1 + · · ·+ αl

,

x∗
l+1 = · · · = x∗

n = 0.

In addition, w1+···+wl

α1+···+αl
is the optimal value of problem (26).

ii) If ap ≥ bp then (x∗
1, . . . , x

∗
n) is a solution of problem (26), where

x∗
1 = · · · = x∗

p = 1
β1 + · · ·+ βp

,

x∗
p+1 = · · · = x∗

n = 0.
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In addition, w1+···+wp

β1+···+βp
is the optimal value of problem (26).

iii) If in problem (27) there exists a binding constraint Ck0 such that
ak0 = bk0 then (x∗

1, . . . , x
∗
n) is a solution of problem (26), where

x∗
1 = · · · = x∗

k0,

= 1
α1 + · · ·+ αk0

,

x∗
k0+1 = · · · = x∗

n = 0.

In addition, w1+···+wk0
α1+···+αk0

is the optimal value of problem (26).
iv) If in problem (17) the optimal solution satisfies with equality the con-

straints Ck1 and Ck2, where k1 < k2 and (ak1 − bk1) · (ak2 − bk2) < 0, then
(x∗

1, . . . , x
∗
n) is a solution of problem (26), where

x∗
i =

k2∑
i=k1+1

(βi − αi)(
k1∑
i=1

αi

)
·
(

k2∑
i=k1+1

βi

)
−
(
k1∑
i=1

βi

)
·
(

k2∑
i=k1+1

αi

) , i = 1, k1

x∗
i =

k1∑
i=1

(αi − βi)(
k1∑
i=1

αi

)
·
(

k2∑
i=k1+1

βi

)
−
(
k1∑
i=1

βi

)
·
(

k2∑
i=k1+1

αi

) , i = k1 + 1, k2,

x∗
k2+1 = · · · = x∗

n = 0.

In addition, the optimal value of problem (26) is equal to the value of t∗1 + t∗2
computed in (23).

Theorem 12. Consider problem (26) and suppose that there exists a per-
mutation σ ∈ Sn such that ασ1 ≥ ασ2 ≥ · · · ≥ ασn > 0 and βσ1 ≥ βσ2 ≥ · · · ≥
βσn > 0. Then consider the problem with the same objective function as in
problem (26) and with the constraints

ασ1x1 + ασ2x2 + · · ·+ ασnxn ≥ 1,
βσ1x1 + βσ2x2 + · · ·+ βσnxn ≥ 1,

x ≥ 0.

If (u∗
1, . . . , u

∗
n) is a solution of this auxiliary problem, then (x∗

1, . . . , x
∗
n) is a

solution of problem (26), where x∗
i = u∗

σ−1
i

, i = 1, n. Here, σ−1 denotes the
inverse of σ.
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Theorem 13. Consider problem (26) in the special case when 0 < α1 =
α2 = · · · = αn = α. Let σ ∈ Sn be any permutation such that βσ1 ≥ βσ2 ≥
· · · ≥ βσn > 0. Then consider the problem with the same objective function
as in problem (26) and with the constraints

αx1 + αx2 + · · ·+ αxn ≥ 1,
βσ1x1 + βσ2x2 + · · ·+ βσnxn ≥ 1,

x ≥ 0.

If (u∗
1, . . . , u

∗
n) is a solution of this auxiliary problem, then (x∗

1, . . . , x
∗
n) is a

solution of problem (26), where x∗
i = u∗

σ−1
i

, i = 1, n. Here, σ−1 denotes the
inverse of σ.

4. Implementation and applications

Here we show that the size of the constraints array can be reduced by
representing the OWA function in terms of the iterated differences of the
ordered variables, and then present some example applications in worker
allocation and ecology.

4.1. Solving the LP for large n
It turns out that using a generic LP solver on the problem formulated

as in Eq. (8) directly makes the process of finding the solution quite time
consuming. For solvers where the decision variables are assumed to be non-
negative, we can avoid the n − 1 constraints that induce the ordering on x
by instead expressing the objective and constraints in terms of cumulative
sums.

We let w(c)
j =

j∑
k=1

wk and α(c)
i,j =

j∑
k=1

αi,k for all i, j and let δj denote the

differences in x such that x1 =
n∑
j=1

δj, x2 =
n∑
j=2

δj, . . . , xn = δn, or alternatively
δj = xj − xj+1 with xn+1 = 0 by convention. Our fitting problem then
becomes,

Maximize
n∑
j=1

w
(c)
j δj

s.t.
n∑
j=1

α
(c)
i,j δj ≤ 1, i = 1, . . . ,m
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As an indication of the run-time saving, we implemented the above with
lpSolve in R (100 runs with n = 10000, 2 constraints, coefficients generated
from a uniform distribution). Solving Eq. (8) with sparse coefficients matrix
had a mean of 1.33 s, median of 0.174 s and maximum of 11.13 s, while
solving via the iterated differences had a mean of 0.014 s, median of 0.012 s
and maximum of 0.092 s.

4.2. Example application in ecology
In ecology we can consider the problem of proportioning land-use accord-

ing to different categories where each category may affect species differently.
For example, in desert areas, regular burning of different regions can encour-
age species diversity. Let xj represent the proportion of land with fire-age
j and ai,j represent the occurrence of species i in areas with fire-age j. We
want to allocate the proportions xj such that the abundance of each species
is above a minimum threshold and at the same time maximize diversity of
fire-ages. Our measure for unevenness of fire ages can be given by OWA(x)
with w = (1, 1/2, 1/4, 1/8). Higher weight allocated to high proportions
means that unevenness will be highest in such cases.

Suppose for 3 species we have the following constraints

0.1x1 + 0.4x2 + 0.7x3 + 0.8x4 ≥ 0.4
0.3x1 + 0.5x2 + 0.8x3 + 0.9x4 ≥ 0.3
0.2x1 + 0.6x2 + 0.7x3 + 0.8x4 ≥ 0.6

The interpretation of comonotonicity here is that each species occurs more
frequently for older fire ages.

We add the additional constraints (also comonotone) to ensure that our
xi values add to 1.

x1 + x2 + x3 + x4 ≥ 1
−x1 − x2 − x3 − x4 ≥ −1

In order to minimize the value of our OWA, we can use the LP, reordering
the inputs in this case so that aσ(1) ≥ aσ(2) ≥ · · · ≥ aσ(n) and solve. We obtain
an objective of 0.491666 with a vector of x = (4/15, 4/15, 4/15, 1/5). If we
were to ensure that the second species stayed above 0.7 instead, the optimal
allocation would be x = (0.31, 0.31, 0.31, 0.07).
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4.3. Example application in work allocation
There may be situations where the ordering induced by the OWA ob-

jective induces the same ordering across the constraints, i.e. an OWA with
respect to OWA constraints. This reduces to a simpler problem where we do
not need to worry about comonotonicity of the constraints.

For example, integrals with respect to non-additive measures have been
proposed as suitable for modeling worker output. In the case of the Choquet
integral, the fuzzy measure can be interpreted as representing the rate of
production for each combination of workers and the Choquet integral output
represents the total production with respect to the hours worked by each
worker x. Now suppose that we want to minimize the inequality of hours
allocated subject to ensuring we meet minimum production targets.

Inequality of hours can be represented by the difference in OWAs, or by
a single OWA where the weights are allowed to be negative, see, e.g., [2].
For example the Gini index when n = 3 corresponds with a weighting vector
w = (2/9, 0,−2/9) when the inputs are normalized by dividing through by
their sum.

In such a case, we would have the following optimization problem.

Minimize OWA(x)
s.t. Ch(x) ≥ y

n∑
i=1

xi = 1

In this case, we assume a given number of hours that we allocate to
available shifts, and assume any worker could work any of the shifts, however
we need to ensure that the production targets are met regardless.

Suppose we have 3 workers and their production per day when working
together in teams is modeled by the monotone non-additive measure µ, where
µ(A,B,C) = 1 (all three workers together results in 1 unit of production
per day), µ(A,B) = 0.6 (workers A and B can produce 0.6 units per day),
µ(A,C) = 0.5, µ(B,C) = 0.9, µ(A) = 0.5, µ(B) = µ(C) = 0.4., µ(∅) = 0.

Under the condition that all workers begin at the same time and once
someone finishes working, they cannot return, we obtain constraints with
respect to the required production y. For example, if the maximum number of
hours is allocated to worker A and the minimum to worker C, the production
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will be

µ(A)x(1) + (µ(A,B)− µ(A))x(2) + (µ(A,B,C)− µ(A,B))x(3).

Each of the potential orderings will result in the following set of constraints

0.5x(1) + 0.1x(2) + 0.4x(3) ≥ y
0.5x(1) + 0x(2) + 0.5x(3) ≥ y

0.4x(1) + 0.2x(2) + 0.3x(3) ≥ y
0.4x(1) + 0.5x(2) + 0.1x(3) ≥ y
0.4x(1) + 0.1x(2) + 0.5x(3) ≥ y
0.4x(1) + 0.5x(2) + 0.1x(3) ≥ y

If the production target is less than 1/3, then clearly (due to idempo-
tency), the optimal shift allocation will be (1/3, 1/3, 1/3), however higher
production targets may not allow this to be achieved. If the production
target is 0.35, then inequality is minimized with the shift allocation x =
(1/2, 1/4, 1/4), while if the production target is 0.37 then the best allocation
is x = (0.7, 0.15, 0.15) and if the production target is 0.4 then this can only
be ensured by allocating all hours to one person.

Of course we could also have an objective function that minimizes cost,
e.g. where the person who works the longest gets paid more or less than the
other workers.

5. Conclusions

In this paper we investigated the constrained OWA aggregation problem
when we have multiple constraints such that the coefficients can be rear-
ranged in nondecreasing order via the same permutation. This includes the
case of equality constraints with equal coefficients. Analyzing Theorem 8,
we obtained an analytical form of the optimal solution in the case of two
constraints. For more general cases, we can observe the following.

Inapplicability for more general problems. By means of a simple counter-
example, we can show that the ordering assumption for maximizing the OWA
does not apply if we have ≥-type constraints (with the same coefficient or-
dering).

For w = (3, 2, 1), α1 = (0.66, 0.69, 0.92) and α2 = (0.02, 0.70, 0.98) and
the constraints
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0.66x1 + 0.69x2 + 0.92x3 ≤ 0.66
0.02x1 + 0.70x2 + 0.98x3 ≥ 0.30

then the optimal solution is not achieved for x1 ≥ x2 ≥ x3, which would
give x = (0.581, 0.172, 0.172) but instead for x2 being the largest value and
x = (0, 0.957, 0). The objective achieved with the former ordering is 0.376
while we obtain 0.478 when only using x2.

Non-comonotone Constraints. The optimal x does not necessarily have an
ordering that corresponds with one of the inequalities. For example

6x1 + 4x2 + 2x3 ≤ 1
2x1 + 4x2 + 6x3 ≤ 1

will have an optimal ordering, either starting with 2 (which would have
solution x2 = 1/4 if the first objective weight is large enough, or starting
with 1, 3 or 3, 1 if the second weight is larger than the first.

Note that neither of these solutions have x2 in the middle.
However, if the solution with respect to a single constraint is 1/(

k∑
i=1

ak)
and ak is greater than all other bk, ck etc. Then this will be the optimal
solution (so there is a chance that we can find it by checking the orderings
induced by each of the constraints.
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