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Abstract
We investigate the application of the Ordered Weighted Averaging (OWA)
data fusion operator in agglomerative hierarchical clustering. The exam-
ined setting generalises the well-known single, complete and average linkage
schemes. It allows to embody expert knowledge in the cluster merge process
and to provide a much wider range of possible linkages. We analyse various
families of weighting functions on numerous benchmark data sets in order to
assess their influence on the resulting cluster structure. Moreover, we inspect
the correction for the inequality of cluster size distribution – similar to the
one in the Genie algorithm. Our results demonstrate that by robustifying the
procedure with the Genie correction, we can obtain a significant performance
boost in terms of clustering quality. This is particularly beneficial in the case
of the linkages based on the closest distances between clusters, including the
single linkage and its “smoothed” counterparts. To explain this behaviour,
we propose a new linkage process called three-stage OWA which yields further
improvements. This way we confirm the intuition that hierarchical cluster
analysis should rather take into account a few nearest neighbours of each
point, instead of trying to adapt to their non-local neighbourhood.
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1. Introduction

Cluster analysis has numerous fruitful applications in various fields, such
as pattern recognition, image processing, data mining, bioinformatics etc.,
see, e.g., [7, 8, 22, 23, 30, 33, 37, 40, 41]. It is worth pointing out that
this is by far one of the most important unsupervised learning techniques.
Generally speaking, clustering aims to automatically discover the “hidden
structure" of a given data set in the form of a partition of its elements. Its
purpose is to create sets of objects in such a way that entities allocated to
one group, called a cluster, are similar, while objects in distinct groups differ
as much as possible from each other (with respect to some criteria), see, e.g.,
[12, 16, 17]).

Hierarchical methods are amongst the most useful clustering procedures.
More precisely, agglomerative algorithms (e.g., [3, 13, 26–28]) provide a sim-
ple and intuitively appealing way to perform data segmentation without im-
posing any overly restrictive assumptions on the universe of discourse. At the
same time, they generate a quite detailed representation of the underlying
structure of a data set in the form of a hierarchy of nested partitions. In
this setting, initially each cluster consists of only one data point. Then, in
each step of the procedure, the “closest” clusters (with respect to a chosen
measure) are merged. In order to evaluate the distance between two groups,
some extension of a pairwise dissimilarity measure, called linkage, is used.
The most commonly applied linkage schemes are typically put under the
umbrella of the recursive Lance and Williams formula (see [19, 25]), which
provides a general framework that includes the well-known single, complete
and average linkages.

However, there exists a lesser-known generalisation of the aforementioned
linkage functions – the ones that are constructed by applying the Ordered
Weighted Averaging (OWA) [35] data fusion operator (based on a convex
combination of order statistics). The use of the OWA-based linkage was
initially introduced in [36] and re-invented in [29]. Because of the incorpo-
ration of the weights into the cluster merge procedure, OWA-based linkage
allows one to interpolate between the extreme cases of the single, average
and complete linkages. However, it has not yet been thoroughly evaluated.
In particular, we claim that it would be interesting to know whether this
approach leads to partitions that reflect the true underlying cluster structure
better.

In [5, 6] we performed a preliminary study on this issue, i.e., we estab-
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lished an experimental framework that allows to evaluate the use of various
OWA-based linkages. Moreover, we investigated the utilisation of the Genie
algorithm-inspired correction [10] for the inequality of the cluster size dis-
tribution. The obtained results were promising, especially when the Genie
correction was applied. Taking this into account, this paper gives a much
more in-depth analysis of this method. What is more, we introduce var-
ious modifications and extensions of the OWA-based linkage, including a
new three-stage procedure that outperforms state-of-the-art clustering algo-
rithms.

The paper is organised as follows. In Section 2 we recall the OWA-based
linkage scheme as well as review different generators of OWA weights. In Sec-
tion 3 we recall the main ideas behind the Genie clustering algorithm. Next,
in Section 4 we evaluate its performance on a comprehensive set of bench-
mark data, discuss the best performing weighting strategies and investigate
the effects of introducing the Genie correction. In Section 5 we introduce
a new three-stage OWA-based clustering procedure that improves clustering
quality even further. Finally, in Section 6 we conclude the paper.

2. OWA-based linkage

Let us start with a brief summary of some well-known facts concerning
hierarchical clustering. We will follow the notation used in [6]. Let X =
{x(1), x(2), . . . , x(n)} be the input data set. Moreover, let d : X × X → [0, ∞]
denote a pairwise dissimilarity measure, e.g., the Euclidean distance. The l-
partition of X is defined as C = {C1, . . . , Cl}, where ∅ �= Cu ⊂ X , Cu∩Cv = ∅
for u �= v and �l

u=1 Cu = X . As it was stated above, hierarchical clustering
algorithms form a whole hierarchy of nested partitions, i.e., C∗ = {C(0), C(1),

. . . , C(m)}, such that m < n, C(j) = {C
(j)
1 , . . . , C(j)

nj
} is an nj-partition of X ,

nj > nj+1 and it holds that (∀j = 0, . . . , m − 1) (∀C (j)
u ∈ C(j)) (∃C(j+1)

v ∈
C(j+1)) such that C(j)

u ⊆ C(j+1)
v and (∀z �= v) C(j)

u ∩ C(j+1)
z = ∅. Note that by

“cutting” the hierarchy at any chosen level, a well-defined partition for the
required number of clusters can be obtained. Therefore, by using hierarchical
techniques one can get a better insight into the underlying structure of input
data.

Figure 1 presents the most straightforward (naïve) approach to the gen-
eral agglomerative hierarchical clustering. The procedure goes as follows.
Initially each cluster is a singleton, i.e., C(0) = {C

(0)
1 , . . . , C(0)

n }, C
(0)
i = {x(i)},
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1: C(0) = {C
(0)
1 , . . . , C(0)

n }, C
(0)
i = {x(i)};

2: for j = 1, . . . ., n − 1 do
3: (u, v) = arg min

(u,v),u<v
d∗(C(j−1)

u , C(j−1)
v );

4: C(j)
u = C(j−1)

u ∪ C(j−1)
v ;

5: C
(j)
i = C

(j−1)
i for u �= i < v;

6: C
(j)
i = C

(j−1)
i+1 for i > v;

7: end for

Figure 1: A general agglomerative hierarchical clustering algorithm

i = 1, . . . , n. Proceeding from the (j − 1)-th to the j-th step, the algorithm
merges clusters C(j−1)

u and C(j−1)
v with u < v such that:

(u, v) = arg min
(u,v),u<v

d∗(C(j−1)
u , C(j−1)

v ),

where d∗ : 2X × 2X → [0, ∞] denotes a chosen linkage function. In result we
obtain C

(j)
i = C

(j−1)
i for u �= i < v, C(j)

u = C(j−1)
u ∪ C(j−1)

v , and C
(j)
i = C

(j−1)
i+1

for i > v.
Intuitively, a linkage is an extension of a pairwise dissimilarity measure

d that allows to quantify the dissimilarity between whole sets of points, for
which it holds d∗({x(a)}, {x(b)}) = d(x(a), x(b)) for all a, b. Amongst the
noteworthy linkages we find:

• the single linkage:

d∗
MIN(Cu, Cv) = min

u∈Cu,v∈Cv

d(u, v),

• the complete linkage:

d∗
MAX(Cu, Cv) = max

u∈Cu,v∈Cv

d(u, v),

• the average linkage:

d∗
AMean(Cu, Cv) = 1

|Cu||Cv|
�

u∈Cu,v∈Cv

d(u, v).
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The above linkages can be expressed both in terms of the Lance and Williams
formula [19, 25] and OWA operators [35]. Let us now formally introduce the
definition of an OWA operator and the corresponding OWA-based linkage
[29, 36].

Definition 1. For any vector w = (w1, w2, . . . , wz) ∈ [0, 1] such that �z
i=1 wi =

1, the z-ary ordered weighted averaging operator OWAw : [0, ∞]z → [0, ∞],
associated with w is given by:

OWAw(d1, d2, . . . , dz) =
z�

i=1
wid(i),

where d(i) denotes the i-th greatest value, i.e., d(1) ≥ d(2) ≥ · · · ≥ d(z).

In the case of a clustering procedure, we shall be interested in conceiving
OWA operators as extended aggregation functions, i.e., defined for any num-
ber of arguments. Recall that to define a fixed-arity OWA we need z weights.
To define an extended OWA, we will follow the convention introduced in
[4, 24] and consider a whole weighting triangle, � = (wi,z ∈ [0, 1], z ∈ N, i =
1, . . . , z : (∀z) �z

i=1 wi,z = 1), which can be graphically represented as:

w1,1
w1,2 w2,2
w1,3 w2,3 w3,3

... ... ... . . .

Here, the z-th row, whose elements sum to 1, gives the weights used when
aggregating z-ary sequences. However, this time, z may vary freely from
sequence to sequence the OWA operator is applied on.

Definition 2. An extended OWA operator, OWA� : �∞
z=1[0, ∞]z → [0, ∞],

for a given weighting triangle � = (wi,z ∈ [0, 1], z ∈ N, i = 1, . . . , z :
(∀z) �z

i=1 wi,z = 1), is defined as:

OWA�(d1, d2, . . . , dz) =
z�

i=1
wi,zd(i)

for any d1, d2, . . . , dz ∈ [0, ∞] and any z.

The above allows us to formalise the definition of an OWA operator-based
linkage.
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Definition 3. The for a given weighting triangle �, the OWA�-based linkage
is given by:

d∗
OWA�(Cu, Cv) = OWA�(d1, d2, . . . , dz),

where Cu = {u(1), . . . , u(|Cu|)} and Cv = {v(1), . . . , v(|Cv |)} are some point
sets, z = |Cu||Cv|, and

di+|Cu|(j−1) = d(u(i), v(j)),

for all i = 1, . . . , |Cu| and j = 1, . . . , |Cv| giving the distances between all the
pairs of points from the two sets.

It is easily seen that for weights like wi,z = 1
z

for all i we obtain the
average linkage, wz,z = 1 and wi,z = 0 for i < z gives us the single linkage
scheme, and w1,z = 1, wi,z = 0, i > 1 yields the complete linkage.

The crucial question is how to generate new weighting triangles in a sys-
tematic manner. In this paper we adopt the setting proposed in [18, 35] (see
also [1, 14]) which includes:

(a) wi,z = ci�z

j=1 cj
, where a sequence (c1, c2, . . . ) is such that ci ≥ 0 for all

i = 1, 2, . . . and c1 > 0, see, e.g., [18];
(b) wi,z = w

�
i
z

�
− w

�
i−1

z

�
, where w : [0, 1] → [0, 1] is a nondecreasing

function with w(0) = 0 and w(1) = 1, see, e.g., [35];
(c) wi,z = cz−i+1�z

j=1 cj
, where a sequence (c1, c2, . . . ) is such that ci ≥ 0 for all

i = 1, 2, . . . and cz > 0;
(d) wi,z = w

�
z−i+1

z

�
− w

�
z−i−1

z

�
, where w : [0, 1] → [0, 1] is a nondecreasing

function with w(1) = 0 and w(0) = 1.

A number of noteworthy weighting scenarios shall be reviewed in Section 4.

3. Genie correction

In [10] we have introduced the Genie algorithm – a single linkage-based
method which robustifies the cluster merge process so as to prevent the forma-
tion of size-unbalanced groups and whose reference implementations are in-
cluded in R package genie (https://cran.r-project.org/web/packages/
genie/) and Python package genieclust (https://pypi.org/project/
genieclust/). Intuitively, if the inequity of the distribution of the cluster
sizes at some step of the procedure exceeds a chosen threshold, the merging

6



of the smallest point group is enforced. In order to assess the degree of the
cluster size imbalance, the notion of an inequality index G is incorporated.
Here, we assume G is the Gini-index.

Definition 4. The Gini-index of a given sample is given by:

G(c1, . . . , cl) =
�l−1

i=1
�l

j=i+1 |ci − cj|
(n − 1) �l

i=1 ci

.

Note that G(c, c, . . . , c) = 0 (balanced sample) and that G is bounded
from above by 1.

Fix a threshold g ∈ (0, 1]. Genie modifies Line 3 of the algorithm pre-
sented in Figure 1 as follows. Proceeding from the (j − 1)-th to the j-th step
of the clustering procedure, j = 1, . . . , n − 1, merge clusters C (j−1)

u , C(j−1)
v

such that:

1. if G(c1, . . . , cn−j+1) ≤ g, where ci = |C(j−1)
i |, apply the standard linkage

criterion:
(u, v) = arg min

u<v
d∗

�
C(j−1)

u , C(j−1)
v

�
;

2. otherwise, enforce the merging of a cluster of the smallest size:

(u, v) = arg min
u<v;

cu=c(n−j+1) or
cv=c(n−j+1)

d∗
�
C(j−1)

u , C(j−1)
v

�
.

Please note that for g = 1.0 the original Genie algorithm is equivalent to
the single linkage method, because it was built under the assumption that
d∗ = d∗

MIN. It turns out that the performance of the Genie algorithm is sig-
nificantly better than not only that of the standard hierarchical clustering
routines, but also other segmentation algorithms, see [10] and below. The
possible application of the Genie correction to other linkages was studied
in [11] in case of the nearest centroid-based functions. A preliminary in-
vestigation of the potential benefits that this procedure may bring to the
OWA-based linkages (d∗ = d∗

OWA) was performed in [6]. This investigation
shall be significantly extended below.
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4. Benchmark data analysis

In this section we identify the OWA weight generation schemes that yield
the best overall clustering quality. Note that the papers where the OWA-
based linkages were originally introduced [29, 36] did not discuss this issue
at all. Additionally here we shall answer the question whether the Genie
correction brings any benefits to the clustering procedure.

4.1. Experiment setting
The numerical experiments are aligned within the framework of the so-

called “external clustering evaluation”. We considered a suite of 51 bench-
mark data sets that were often used in the literature to assess and com-
pare the performance of various clustering procedures, see [6, 9–11, 15, 32].
The data sets consist of balanced or imbalanced groups of points in Rd and
differ with respect to dimensionality d and the number of input points n,
see Table 1. All data sets are available at https://gitlab.com/cenka/
Clustering.

Moreover, each data set is equipped with a sequence of reference labels,
i.e., a vector assigning each point to its true cluster that has been indicated
by external experts. We assume that the number of clusters to detect, K, is
known in advance, as this parameter is defined by the labels set. Also note
that throughout this paper, the pairwise distance function is set to be the
squared Euclidean distance. No feature selection/engineering/transformation
is applied on data.

In order to measure the degree of concordance between a partition gen-
erated by a clustering algorithm and the true (reference, expert-provided)
labels, we shall rely on the widely applied notion of the Adjusted Rand-index
(AR-index, see [20]).

Definition 5. The AR-index between two K-partitions C = {C1, . . . , CK}
and C � = {C �

1, . . . , C �
K} of the set X of cardinality n is defined as:

AR-index(C, C �) =
�

n
2

� �K
u=1

�K
v=1

�
mu,v

2

�
− �K

u=1

�
mu,·

2

� �K
v=1

�
m·,v

2

�

1
2

�
n
2

�� �K
u=1

�
mu,·

2

�
+ �K

v=1

�
m·,v

2

��
− �K

u=1

�
mu,·

2

� �K
v=1

�
m·,v

2

� ,

where mu,v = |Cu ∩ C �
v|, mu,· = �K

v=1 mu,v, and m·,v = �K
u=1 mu,v.
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Table 1: Basic properties of benchmark data sets considered: the number of points n, data
set dimensionality d and the true number of clusters K.

n d K n d K

iris5 105 4 3 iris 150 4 3
flame 240 2 2 pathbased 300 2 3
spiral 312 2 3 jain 373 2 2
Compound 399 2 6 R15 600 2 15
Aggregation 788 2 7 g2-2-100 2048 2 2
g2-16-100 2048 16 2 g2-64-100 2048 64 2
a1 3000 2 20 D31 3100 2 31
s1 5000 2 15 s2 5000 2 15
s3 5000 2 15 s4 5000 2 15
a2 5250 2 35 unbalance 6500 2 8
a3 7500 2 50 Hepta 212 3 7
Lsun 400 2 3 Tetra 400 3 4
Target 770 2 6 TwoDiamonds 800 2 2
Atom 800 3 2 Chainlink 1000 3 2
WingNut 1016 2 2 GolfBall 4002 3 1
EngyTime 4096 2 2 Wine 178 13 3
Norm-density 200 2 2 sonar 208 60 2
Glass 214 9 3 Line-uneven 250 2 2
SwirlDots 250 2 2 SPECT 267 22 2
SwirlDots-outlier 280 2 2 SwirlDots-noisy 300 2 2
haberman 306 3 2 ecoli 336 7 8
Ionosphere 351 34 2 wdbc 569 30 2
BreastCancer 683 9 2 pimaDiabetes-norm 768 8 2
Parabolic 1000 2 2 Ring 1000 2 2
Square 1000 2 2 XOR 1000 2 2
Ring-outliers 1030 2 3 Ring-noisy 1050 2 2
segmentation 2310 19 7
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It is important to note that the AR-index has expected value equal to 0
in the case of two random (uniformly-distributed) partitions and is bounded
from above by 1 in the case of a perfect agreement. We should stress that
the reference labels are not taken into account during the clustering process,
therefore the procedure is fully unsupervised. These are referred to only
during the evaluation stage.

4.2. Weighting triangles
As the main focus of this work is on assessing the practical utility of OWA-

based linkages, we must consider a very wide range of weighting triangles.
Let us note that in [29] only one weighting triangle � was actually used,
namely:

wi,z = ϕ(i; µz, σz)
�z

j=1 ϕ(j; µz, σz) ,

where ϕ(·; µz, σz) denotes the probability density function of the normal dis-
tribution N(µz, σz):

ϕ(i; µz, σz) = 1�
2πσ2

z

exp
�

−(i − µz)2

2σ2
z

�
, (1)

µz = z+1
2 and σz =

�
1
z

�z
i=1(i − µz)2, see [34].

Tables 2 and 3 provide the complete list of the weighting triangles we
have studied. We were interested in weights that interpolate around/between
the single and complete linkages, sample quartiles, various means and some
mixtures of the above. The settings for the weighting triangle generation
were as follows:

• σz in each use of ϕ was set to z/3 as well as z/9;

• p in the trimmed and Winsorised means was set to 0.25;

• (a, b) in the Yager step function was set to (0, 0.5), (0.5, 1) as well as
(0.3, 0.7).

Note that the scenarios 1–16 were also included in our preliminary study [6],
but were analysed on a much more limited benchmark data sample.
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Table 2: OWA�-based linkages studied (part I)

Alias Weighting triangle
(� = (wi,z ∈ [0, 1], z ∈ N, i = 1, . . . , z))

1 AMean (average) wi,z = 1
z

2 MIN (single) wz,z = 1
wi,z = 0 for i < z

3 MAX (complete) w1,z = 1
wi,z = 0 for i > z

4 Q2 (median) w(z+1)/2,z = 1 for z = 2k + 1
wz/2,z = wz/2+1,z = 0.5 for z = 2k

5 Q1 (first quartile) Median taken over the lower half of the vector sorted
nondecreasingly (without median)

6 Q3 (third quartile) Median taken over the upper half of the vector sorted
nondecreasingly (without median)

7 Norm [34] wi,z = ϕ(i;µz ,σz)�z

j=1 ϕ(j;µz ,σz)

µz = z+1
2 , σz =

�
1
z

�z
i=1(i − µz)2

8 smoothMINσz wi,z = ϕ(i;z,σz)�z

j=1 ϕ(j;z,σz)

9 smoothMAXσz wi,z = ϕ(i;1,σz)�z

j=1 ϕ(j;1,σz)
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Table 3: OWA�-based linkages (part II)

Alias Weighting triangle
(� = (wi,z ∈ [0, 1], z ∈ N, i = 1, . . . , z))

10 smoothMIN&MAXσz vi = max
�

ϕ(i; 1, σz), ϕ(i; z, σz)
�

wi,z = vi�z

j=1 vj

11 smoothQ3σz wi,z = ϕ(i; 1
4 z,σz)�z

j=1 ϕ(j; 1
4 z,σz)

12 smoothQ1σz wi,z = ϕ(i; 3
4 z,σz)�z

j=1 ϕ(j; 3
4 z,σz)

13 smoothQ1&Q3σz vi = max
�

ϕ(i; 3z
4 , σz), ϕ(i; z

4 , σz)
�

wi,z = vi�z

i=1 vi

14 TriMeanp wi,z = 1
z−2k for i = k + 1, . . . , z − k

wi,z = 0 otherwise, k = �pz�

15 WinMeanp wi,z = 1
z for i = k + 2, . . . , z − k − 1

wi,z = (k+1)
z for i = k + 1, z − k

wi,z = 0 otherwise, k = �pz�

16 Yager-step(a,b) [35] wi,z = Q
�

i
z ; a, b

�
− Q

�
i−1

z ; a, b
�

Q(x; a, b) =





0 x < a
x−a
b−a a ≤ x ≤ b

1 x > b
0 ≤ a < b ≤ 1

17 � ArMINk [38] wi,z = 1
min{k,z} for i ≥ max{0, z − k + 1},

wi,z = 0 for i < max{0, z − k + 1}

18 � smoothMINδ wi,z =





ϕ(i;z,δ)�z

j=1 ϕ(i;z,δ) for i ≥ 3δ,

0 for i < 3δ
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AMean �����

Amean �����

TriMean0.25 �����

TriMean0.25 �����
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Yager�step(0.3−0.7) �����

Yager�step(0.3−0.7) �����

��� ��� ��� ��� ��� ���

MAX �����

MAX �����

smoothMAXz/9 �����

smoothMAXz/9 �����

MIN �����

MIN �����

smoothMINz/9 �����

smoothMINz/9 �����

smoothMIN&MAXz/9 �����

smoothMIN&MAXz/9 �����

Q1 �����

Q1 �����

smoothQ1z/3 �����

smoothQ1z/3 �����

Q2 �����

Q2 �����

Norm �����
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Q3 �����

Q3 �����

smoothQ3z/3 �����

smoothQ3z/3 �����

smoothQ1&Q3z/9 �����
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Q2 �����

Q3 �����

MAX �����

smoothQ1&Q3z/9 �����

TriMean0.25 �����

WinMean0.25 �����

Yager�step(0.3−0.7) �����

smoothQ1z/3 �����

smoothQ3z/3 �����

smoothMAXz/9 �����

Norm �����

Amean �����

smoothMIN&MAXz/9 �����

Q1 �����

smoothMINz/9 �����

MIN �����

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

Figure 2: Three groups of box-and-whisker plots for the AR-index distribution for each
OWA linkage scenario with (g < 1.0; grey) and without (g = 1.0; white) the Genie
correction. The arrows are included to emphasise the rate of the increment of the median
AR-index that is observed when we robustify the procedure with the Genie correction.
The bar plot in the bottom-right part represents the total number of benchmark sets
for which an indicated OWA-based linkage is the winner (the best threshold g is given
in parentheses). The original Genie algorithm (MIN-based) outperforms all the other
methods.

4.3. Experiment results
Let us proceed with an empirical validation of the discussed OWA-based

linkages. Each box-and-whisker plot in Figure 2 summarises the distribution
of the 51 AR-indexes between the set of true (reference) labels and the clus-
tering generated by applying a specific OWA-based linkage. To recall, the
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higher the AR-index, the more similar the obtained clustering to the expert-
provided one. The considered schemes cover scenarios 1–16 grouped into
three categories: averages, extreme values (single linkage MIN and complete
linkage MAX and their “smoothed“ counterparts) and also the quartiles and
the functions interpolating around them. For each scenario, we consider two
cases:

• without the Genie correction (denoted with (1.0)) — white boxes,

• with the Gini-index threshold g ∈ {0.1, 0.2, 0.3, . . . , 0.9} selected so
that the median of the AR-index on all data sets was maximised (the
optimal g is reported in round brackets) — grey boxes.

The red dotted line corresponds to the highest median AR-index obtained in
this experiment.

Lack of Genie correction leads to low clustering quality. First of all, note
that when the Genie correction is not applied (i.e., g = 1.0), all the results
are far from satisfactory – the best median, equal to 0.456, is obtained using
smoothMAXz/9. Moreover, it is easily seen that most AR-index distributions
are similar to each other – with the exception of the single linkage scheme,
which has subpar performance, e.g., the median of the AR-index is as low as
0.013.

To confirm this observation, we have compared the partitions generated
by different methods with each other. Figure 3 gives the medians of the AR-
indexes computed between label vectors outputted by each pair of linkages
(directly, with no reference to the true label set). Indeed, only the single
linkage (and, to a much lesser extent, the complete linkage) yields much
different partitions.

Genie correction significantly improves the results. It turns out that by intro-
ducing the Genie correction we obtain significant improvements in clustering
quality for all the considered weighting schemes. The arrows in Figure 2 were
introduced to emphasise the increases in values of the medians. Surprisingly,
the single linkage MIN with g = 0.5 (i.e., the original Genie algorithm) now
yields the best results, with median AR-index of 0.782. The second best
median (0.670) is obtained for its smoothed version, smoothMINz/9.
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Figure 3: The similarity between the OWA-based linkages in terms of the medians of
AR-indexes computed between each pair of label vectors generated by all the weighting
scenarios. Here, no Genie correction used, i.e., g = 1.0. The higher the aggregated AR-
index, the more similar the outputs generated by different linkages to each other. The
single linkage (MIN) significantly differs from the other OWA-based weighting schemes.

Nearest neighbours provide more meaningful information. The bar plot in
the bottom-right part of Figure 2 presents the total number of times each
weighting scenario led to the maximal overall agreement with the reference
labels (the comparison between the AR-indexes assumed the indexes are
rounded to 3 decimal places). The original Genie algorithm (based on single
linkage, MIN) achieves the best agreement with the reference labels on 23
data sets, while smoothMINz/9 is the second best (it tops in 11 of the cases).
In other words, the most expert-concordant partitions are obtained when
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using the single linkage and/or its smoothed version together with the Genie
correction.

In order to investigate this more thoroughly, let us take into account two
additional weighting triangle generation schemes – scenarios 17–18 (denoted
with � in Table 3). Thanks to this we may focus on the weighting triangles
that interpolate around the single linkage – the new scenarios are based on
few nearest neighbours of each data point. For ArMINk and smoothMINδ,
the median AR-indexes are maximised for k = 10 and δ = 2, respectively.

Figure 6 gives the box plots for the AR-index distributions and the num-
ber of cases where each scenario is a winner (for now, the reader is kindly
asked to ignore the two presented cases of the OWA3 scheme which shall be
discussed in the next section as well as the results for the other algorithms).
It turns out that the distributions are quite similar (smoothMIN2 yields a bet-
ter 1st quartile of the AR-index). We have performed the Wilcoxon (paired)
signed rank test with the null hypothesis: pairwise differences in the AR-
indexes between the 4 best linkages (MIN(0.5), ArMIN10(0.5), smoothMIN2(0.4),
and smoothMINz/9(0.5)) are symmetric around 0. The differences were found
to be statistically insignificant (at significance level α = 0.05) in each case
(the only p-value < 0.1 was obtained for MIN(0.5) vs. smoothMIN2(0.4),
p = 0.074). Hence, we would rather be opting for the use of the original Ge-
nie algorithm (MIN(0.5)) as it allows for an efficient implementation based
upon a minimum spanning tree of the pairwise similarity matrix, see [10].

Optimal threshold g. Let us also more closely examine the impact the choice
of the threshold g has on the clustering performance. Figure 4 depicts the
median values of the AR-indexes for all the considered weighting scenarios
and thresholds g. Once again we observe a significant increase in clustering
quality when the Genie correction is applied on the nearest neighbours-based
linkages, especially for MIN, smoothMINδ and ArMINk. The top median AR-
index corresponds to g ∈ [0.4, 0.5]. Also note that we have identified that
the robustified algorithm is quite stable with respect to small changes of g –
modifying the threshold slightly does not change its behaviour drastically.
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Figure 4: Median of the AR-indexes for different weighting scenarios and the Gini-index
thresholds g ∈ {0.1, 0.2, . . . , 1.0}.

5. Three-stage OWA-based linkage, OWA3

We have noted that the best clustering quality is obtained by considering
the closest neighbours of each data point and applying the Genie correction
for the cluster size inequality. In order to verify whether we can improve the
results even further, let us now introduce a modification of the OWA-based
linkage that – instead of aggregating all the pairwise distances anonymously –
first, for each point separately, summarises the distances to their own nearest
neighbours and then combines the intermediate aggregates (see Figure 5 for
an illustration). This way, we will be able to link the clusters based on, e.g.,

17



the averaged distance to all the points’ nearest neighbours or the farthest of
all the 5th nearest neighbours.

Figure 5: The original OWA-based linkage (left) aggregates all the pairwise distances
anonymously. On the other hand, the new three-stage procedure (right) summarises the
information on each point’s aggregated nearest neighbours data.

5.1. Method definition
Let us formalise the aforementioned idea. The new aggregation process

will be divided into three phases:

d∗(C(j−1)
a , C

(j−1)
b ) = A3


A2


A1

�
d(x(l), y(i)) : y(i) ∈ C

(j−1)
b

�
: x(l) ∈ C(j−1)

a


,

A2


A1

�
d(x(l), y(i)) : x(l) ∈ C(j−1)

a

�
: y(i) ∈ C

(j−1)
b





,

where A1 : [0, ∞]1,2,... → [0, ∞] and A2 : [0, ∞]1,2,... → [0, ∞] are extended
OWA functions, and A3 is a binary OWA operator, i.e., A3 : [0, ∞]2 → [0, ∞].

The above dissimilarity degree fusion process, from now on called OWA3,
can be re-written as follows. Let y(i) ∈ C

(j−1)
b , i = 1, 2, . . . , nb and x(l) ∈

C(j−1)
a , l = 1, 2, . . . , na, where nb = |C(j−1)

b | and na = |C(j−1)
a |.
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(1) Step 1. For each x(l) ∈ C(j−1)
a from the first cluster, function A1 is

used to aggregate all the dissimilarities between x(l) and the points in
the second cluster, i.e.:

∀x(l) ∈ C(j−1)
a : ηl = A1

�
d(x(l), y(1)), . . . , d(x(l), y(cb))

�
.

The same procedure is applied for each point in the second cluster:

∀y(i) ∈ C
(j−1)
b : γi = A1

�
d(x(1), y(i)), . . . , d(x(ca), y(i))

�
.

(2) Step 2. Function A2 is used to summarise the aggregated dissimilarities
η = (η1, . . . , ηca) and γ = (γ1, . . . , γcb

), i.e.:

η̃ = A2(η1, . . . , ηca),

γ̃ = A2(γ1, . . . , γcb
).

(3) Step 3. Finally, A3 is applied on η̃ and γ̃ to obtain the fused inter-cluster
distance, i.e.:

d∗(C(j−1)
a , C

(j−1)
b ) := A3(η̃, γ̃).

It is easily seen that the above scheme includes the single linkage (all
three aggregation functions set to MIN), average (AMean) and complete
(Max) linkages.

5.2. Experiment results
Taking into account the results obtained in previous section, let us per-

form some experiments concerning the new three stage OWA-based linkage.
The functions A1 and A2 will be chosen amongst the nearest neighbours-based
OWA operators, namely, ArMINk, smoothMINδ, smoothMINσz and MIN. In
this case we consider various combinations of their underlying parameters.
Then the binary A3 function will be either AMean, MAX or MIN.

Table 4 gives the median AR-indexes for parameter sets maximising this
measure. Again, we note that the Genie correction provides a significant
boost in the observed clustering quality. The best results are observed for the
OWA triples (smoothMINz/10, ArMIN5, MIN) and (ArMIN5, smoothMINz/10,
MIN). These scenarios are denoted as OWA3

17 and OWA3
19, respectively.

Figure 6 presents the box-and-whiskers plots for the AR-index distribu-
tions for each ”winning” strategy. We note that the new three-stage proce-
dure outperforms the other methods.
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Table 4: Medians of the AR-indexes for the new three-stage OWA-based linkages with (g)
and without (1.0) the Genie correction.

A1 A2 A3 Med (1.0) Med (g)
OWA3

1 ArMIN5 ArMIN10 AMean 0.040 0.832 (0.5)
OWA3

2 smoothMINz/50 smoothMINz/15 AMean 0.343 0.856 (0.6)
OWA3

3 smoothMIN15 smoothMIN2 AMean 0.043 0.784 (0.5)
OWA3

4 smoothMINz/15 MIN AMean 0.377 0.847 (0.6)
OWA3

5 smoothMIN5 MIN AMean 0.057 0.806 (0.4)
OWA3

6 ArMIN15 MIN AMean 0.042 0.779 (0.5)
OWA3

7 smoothMINz/15 ArMIN10 AMean 0.148 0.864 (0.6)
OWA3

8 smoothMIN5 ArMIN5 AMean 0.057 0.806 (0.5)
OWA3

9 ArMIN2 smoothMINz/20 AMean 0.148 0.830 (0.2)
OWA3

10 ArMIN5 smoothMIN5 AMean 0.040 0.814 (0.5)
OWA3

11 ArMIN5 ArMIN2 MIN 0.097 0.818 (0.2)
OWA3

12 smoothMINz/20 smoothMINz/50 MIN 0.349 0.885 (0.5)
OWA3

13 smoothMIN5 smoothMIN5 MIN 0.040 0.785 (0.5)
OWA3

14 smoothMINz/15 MIN MIN 0.349 0.848 (0.6)
OWA3

15 smoothMIN5 MIN MIN 0.057 0.779 (0.2)
OWA3

16 ArMIN10 MIN MIN 0.040 0.779 (0.5)
OWA3

17 smoothMINz/10 ArMIN5 MIN 0.416 0.896 (0.6)
OWA3

18 smoothMIN5 ArMIN10 MIN 0.040 0.798 (0.5)
OWA3

19 ArMIN5 smoothMINz/10 MIN 0.306 0.896 (0.6)
OWA3

20 ArMIN5 smoothMIN5 MIN 0.057 0.819 (0.5)
OWA3

21 ArMIN5 ArMIN5 MAX 0.018 0.783 (0.5)
OWA3

22 smoothMINz/20 smoothMINz/50 MAX 0.217 0.853 (0.6)
OWA3

23 smoothMIN5 smoothMIN5 MAX 0.040 0.787 (0.5)
OWA3

24 smoothMINz/50 MIN MAX 0.057 0.791 (0.5)
OWA3

25 smoothMIN10 MIN MAX 0.043 0.774 (0.5)
OWA3

26 ArMIN2 MIN MAX 0.040 0.779 (0.2)
OWA3

27 smoothMINz/20 ArMIN2 MAX 0.148 0.834 (0.4)
OWA3

28 smoothMIN2 ArMIN2 MAX 0.124 0.825 (0.5)
OWA3

29 ArMIN5 smoothMINz/15 MAX 0.059 0.787 (0.4)
OWA3

30 ArMIN5 smoothMIN5 MAX 0.018 0.814 (0.5)
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Figure 6: Box plots of the AR-index distributions for the best weighting triangles and
thresholds g in the standard OWA-based linkage as well as its new, three stage version
(denoted with OWA3

17 and OWA3
19) and some other state-of-the art clustering algorithms.

The bar plot on the right side represents the total number of benchmark sets for which an
indicated weighting scenario and threshold g is the winner.
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5.3. A comparison with other state-of-the art clustering algorithms
Figure 6 also gives the AR-indexes for the clustering algorithms available

in the scikit-learn package (which allow specifying the number of clusters K
in advance) for Python, see http://scikit-learn.org:

• K-means – the classical algorithm [21] as implemented in sklearn.clu-
ster.KMeans(),

• Spectral clustering – see [31], sklearn.cluster.SpectralClustering()
with default parameters,

• BIRCH – proposed in [39], sklearn.cluster.Birch(threshold=t)
with t = 0.1 or t = 0.5.

Yet, these methods are left far behind the new algorithms robustified by
means of the Genie correction.

Note that despite the fact that the OWA triples (smoothMINz/10, ArMIN5,
MIN) and (ArMIN5, smoothMINz/10, MIN) yield the best results, it is the
original Genie algorithm (MIN-based) that allows for the most efficient com-
puter implementation – it can be computed in O(n

√
n) time provided that a

minimum spanning tree of the pairwise distance graph (which can be found
by performing not more than n(n − 1)/2 pairwise distance computations) is
given.

6. Conclusions

First of all, the investigation carried out in this paper shows that the
use of the OWA linkages allows to obtain high quality partitions within the
hierarchical clustering framework. However, this is true only when the Genie
correction for the inequality of cluster sizes is applied. In each case the
Genie correction leads to a significant improvement in clustering quality. We
confirmed the intuition that agglomerative algorithms should rather take into
account a few nearest neighbours of each of the points under consideration,
instead of trying to adapt to their non-local context.

Secondly, in terms of the median agreement with reference labels, the
new three-stage OWA-based linkage yields the best results. Nevertheless,
the number of parameters required by this procedure is high and thus tuning
them up might be difficult. On the other hand, the original Genie (single
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linkage-based) algorithm, due to its simplicity, has a very efficient computer
implementation (see R package genie, https://cran.r-project.org/web/
packages/genie/, and Python package genieclust, https://pypi.org/
project/genieclust/). Yet, we note that all the near-neighbour approaches
can benefit from using spatial search data structures such as kd-trees or vp-
trees in the case of low-dimensional data sets or approximate algorithms in
high-dimensional ones.

Finally, our analysis was based on the Euclidean distance between the
points. For future research, it could be interesting to incorporate other met-
rics (also featuring variable weighting and selection), for example OWA-based
ones that have already been investigated in the context of k-means clustering
in [2].
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