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Abstract

We introduce several new sport team rating models based upon the gradient de-
scent algorithm. More precisely, the models can be formulated by maximising
the likelihood of match results observed using a single step of this optimisa-
tion heuristic. The framework proposed, inspired by the prominent Elo rating
system, yields an iterative version of the ordinal logistic regression as well as
different variants of the Poisson regression-based models. This construction
makes the update equations easy to interpret as well as adjusts ratings once
new match results are observed. Thus, it naturally handles temporal changes
in team strength. Moreover, a study of association football data indicates that
the new models yield more accurate forecasts and are less computationally de-
manding than corresponding methods that jointly optimise likelihood for the
whole set of matches.

Keywords: rating systems, association football, match outcome forecasting,
gradient descent, Poisson regression, ordinal logistic regression, Elo rating
system

1. Introduction

Sport team rating models have numerous applications, including forecast-
ing match outcomes, providing team seedings for tournaments and qualifying
rounds, scheduling tournaments, creating interesting match-ups, or even grant-
ing players work permits at the international level. They also provide contes-5

tants with a measure of their progress and overall strength. The recent surge
of e-sports has made rating systems even more important – these settings are
much more computationally demanding as they typically involve a large number
of contestants. This further justifies efforts to design accurate and scalable rat-
ing models. Moreover, the widening critique of black-box modelling has made10

interpretability and transparency all the more important.
In this paper we look at the design and evaluation of intuitive and inter-

pretable rating systems illustrated by the example of the most popular sport
in the world – association football (football for short, sometimes referred to
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as soccer). As a workhorse for designing such systems, we shall use a popular15

optimisation heuristic – the gradient (or steepest) descent algorithm (Nocedal
& Wright, 2006). This simple approach lays the groundwork for building inter-
pretable rating systems that can be easily adjusted once new match results are
observed. Different models can be formulated by maximising the likelihood of
match results observed using a single step of gradient descent algorithm.20

As for evaluations of different team rating models, it is widely accepted that
they should be compared on the basis of their accuracy in forecasting match
outcomes (Barrow et al., 2013; Boshnakov et al., 2017; Lasek et al., 2013; Ley
et al., 2019). The models are also often compared to the predictions derived
from bookmaker odds. We follow these practices in evaluating the models pro-25

posed. We shall demonstrate that the new ratings we derive using the gradient
descent approach are easily updated and are more accurate in predicting future
match outcomes than their counterparts estimated jointly on the whole sample
of results.

The Elo rating system is the most prominent example of an iterative rat-30

ing scheme (Elo, 1961, 1978). It has a transparent interpretation and a simple
rating update rule. Its elegant formulation, accuracy and interpretability con-
tributes to its popularity and accounts for its frequent deployment for various
sports (Stefani, 2011). Many extensions of this classic model have been pro-
posed (Glickman, 1999; Herbrich et al., 2006). It has also been employed to35

assess areas as diverse as educational systems (Pelánek, 2016), vulnerabilities
in information security (Pieters et al., 2012) and dominance hierarchies within
animal colonies (Pörschmann et al., 2010). In this paper, we re-express the Elo
model as a special case of the general approach to deriving rating models based
on the gradient descent algorithm.40

More recently, iterative update schemes for rating models were proposed
in a paper by Koopman & Lit (2019), where, in the domain of econometric
time series modelling, they are referred to as score-driven models (Creal et al.,
2013). These models define a rating update equation as an autoregressive pro-
cess with an extension to account for the derivative of the predictive likelihood45

with respect to the ratings modelled. While these ideas are similar, we propose
to directly use an existing and well-founded optimisation heuristic to minimise
some predefined loss functions.

Another example of an iterative rating scheme is the pi-rating model pro-
posed in (Constantinou & Fenton, 2013; Constantinou et al., 2012) for football.50

This model decomposes a team’s strength into home and away ratings and pro-
vides the rating update equations after each match as well. Its formulation is
slightly more involved than that of the Elo rating model. The prediction func-
tion used in this model is based on a non-parametric estimate of the observed
results’ frequency based on the discrepancy of the ratings between the com-55

peting teams. On the other hand, the Elo model and other models studied in
this paper offer a simple way to generate predictions, which provides a strong
advantage especially for applying the model in practical settings.

In a different context, Moulton (2014) used a version of the gradient descent
algorithm (Adagrad – an extension of the basic gradient descent by Duchi et al.,60

2011) to build a rating system for an online multiplayer video game. This ap-
proach can also be viewed as fitting the general framework of using the gradient
descent algorithm for optimising the log-likelihood function. However, the ex-
act problem setting is slightly different as the goal is to rate individual players
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based on their team’s score, just as the TrueSkill rating system does (Herbrich65

et al., 2006).
This paper is structured as follows. In Section 2 we introduce the iterative

rating models (including the theoretical underpinnings of the Elo model). In
Section 3 we describe a computational experiment for evaluating their qual-
ity. The final section summarises the results and concludes the paper. The70

implementation of all the proposed rating systems and all the steps required
to reproduce the results are available online at https://github.com/janekl/
iterative-rating-systems.

2. Iterative rating systems

2.1. The Elo rating system75

The Elo rating system (Elo, 1961, 1978) is amongst the most popular meth-
ods for rating teams as well as players. There exist a few implementations of the
Elo system for different sports that include discipline-specific tweaks, which we
will discuss in greater detail below. We begin, however, by describing the Elo
model in the most basic setting, along with the notation used throughout the80

paper.

Let r
(k−1)
i , i = 1, 2, . . . , n, denote the ratings for a set of n teams after a

total of k − 1 matches have been played. The ratings are initialised with some
default value.1 If a team does not play in match k, its rating does not change,

r
(k)
i = r

(k−1)
i . Otherwise, the ratings of the teams competing against each other85

are updated in an iterative manner after the match as follows.
Assume that we wish to generate the ratings after match k that happens

between a home team i and an away team j.2 The Elo rating system provides
a simple update rule for the teams’ ratings. First, the model forecasts the pos-

sible match outcome based on the current team ratings r
(k−1)
i and r

(k−1)
j that

are up to date for match k−1. This forecast is formulated in terms of the prob-
ability of the home team winning the match. It is computed using the logistic
function applied on the difference between the current team rating estimates

P(O(k)
ij = 1) =

1

1 + exp
�
−r

(k−1)
i + r

(k−1)
j

� , (1)

where O
(k)
ij is a random variable standing for match outcome. In the following

discussion of the Elo model we denote this probability as p
(k)
ij . Once the actual

match result o
(k)
ij ∈ {0, 0.5, 1} is available, where 1 denotes a win for team i,

0.5 – a draw and 0 – a victory for team j, the ratings are revised according to

1Typically r
(0)
i = 1500 for each i in the versions of the Elo model. However, the default

value can be chosen arbitrarily as only the relative differences between the ratings actually
matter.

2The distinction between the home and away teams is important in sport as a host of a
match typically has an edge over the visitors (see, e.g., Neave & Wolfson (2003) or Swartz &
Arce (2014) for an analysis of this effect). In an iterative model, this can be accounted for,
e.g., by adding a constant value h > 0 to the home team rating (Sismanis, 2010).

3



the following rules

r
(k)
i = r

(k−1)
i +K ·

�
o
(k)
ij − p

(k)
ij

�
,

r
(k)
j = r

(k−1)
j −K ·

�
o
(k)
ij − p

(k)
ij

�
,

(2)

where K is a scaling constant (and referred to as the K-factor). In particular,
the magnitude of the updates is the same for both teams in absolute terms.

Interpretation. One of the most appealing features of the Elo rating system
is that it offers an intuitive and plausible interpretation of the update rules.90

Namely, if the model’s probability estimate p
(k)
ij is lower than the actual match

result o
(k)
ij for team i, then the ratings are adjusted upward. The team performed

better than expected, so its rating should be increased. Moreover, the higher
the discrepancy between the actual result of the game and the predicted re-
sult, the greater the rating increase will be. An analogous effect is observed95

when team i falls short of expectations. If the actual result observed is lower
than the one predicted, then its rating is decreased accordingly. This works
analogously for team j.

Elo model as the gradient descent method for optimising a log-likelihood. It turns
out the Elo rating system can be formulated as a special case of the stochastic100

gradient descent algorithm. Although this has been observed elsewhere (e.g.,
Pelánek 2016), in our view, it has not been recognised as widely as it should be,
given the ubiquity of applications and deployments of the Elo model. We shall
therefore introduce the derivations here in some detail. They will also serve as
a basis for the introduction of the new models further on.105

Generally, for a given set of matchesM, the goal is to estimate the individual
team ratings r = (r1, r2, . . . , rn). For now, the superscript denoting the match
index is not used. We assume that the ratings are static and are to be estimated
jointly for the entire sample of matches M. Yet, we shall see that by applying
the gradient descent iterations according to the order in which the matches110

take place, the update equations (2) will emerge naturally and the ratings will
become dynamically revised after each consecutive match.

The probability of the outcome of a match k played between teams i and j
is modelled using the logistic function, just like in the original formulation:

p
(k)
ij =

1

1 + exp(−ri + rj)
. (3)

The negative log-likelihood of the observed results is defined as:

L(r|M) = −
�

(i,j,k)∈M

�
o
(k)
ij log p

(k)
ij +

�
1− o

(k)
ij

�
log(1− p

(k)
ij )

�
, (4)

Note that the above is nothing more than the case where match results are ex-
pressed by means of the binary – win or loss – logistic regression outcome model
where the team ratings r = (r1, r2, . . . , rn) are the parameters to be estimated.115

Possible ties are not explicitly handled (this will be discussed in greater detail
below). As such, we are describing a convex optimisation problem (Boyd &
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Vandenberghe, 2004) and we may use the gradient descent (amongst others) to
effectively minimise such an objective function to find the desired ratings.

In order to apply the gradient descent scheme so as to optimise the loss
function specified, we need to compute the derivatives with respect to the rating
parameters. Note that the objective function can be decomposed as the sum of
losses for individual matches,

L(r|M) =
�

(i,j,k)∈M
l
(k)
ij (r).

Taking the partial derivative with respect to ri of a single term yields

∂l
(k)
ij

∂ri
= p

(k)
ij − o

(k)
ij (5)

and analogously for rj . The stochastic gradient descent algorithm operates
iteratively to find a local minimum of a function. In each step, a coordinate-wise
move in the counter-gradient direction (steepest descent) is performed. Let us
assume that the current estimate of team i’s strength from the previous iteration

of the algorithm is r
(k−1)
i . Then the update rule for the rating parameters is

r
(k)
i = r

(k−1)
i − γ ·

∂l
(k)
ij

∂ri
= r

(k−1)
i − γ ·

�
p
(k)
ij − o

(k)
ij

�
, (6)

where γ > 0 is the learning rate in the gradient descent algorithm and the pre-120

dicted match result p
(k)
ij in Eq. (3) is evaluated using the previous rating values

r
(k−1)
i and r

(k−1)
j , just as Eq. (1) does. If we choose the iterations of the al-

gorithm to correspond with the consecutive matches as they appear over time,
we will get the rating updates in the Elo rating system given by Eq. (2) with
K = γ. Thus, the Elo model has a theoretical background as a single scan over125

the dataset of matches in the order given by the dates they appear.
Presenting the Elo rating rating system in this setting also helps one to

recognise more clearly how the possible ties are handled. Namely, from the log-
likelihood function optimised by the Elo model given by Eq. (4), we conclude
that a draw is considered a “half-win, half-loss”. More precisely, a draw enters
the likelihood function for the results observed as the geometric mean of team i’s

win and loss probabilities. This can be seen by plugging in o
(k)
ij = 1

2 and
exponentiating a single component in Eq. (4):

exp

�
1

2
log p

(k)
ij +

1

2
log(1− p

(k)
ij )

�
=

�
p
(k)
ij ·

�
1− p

(k)
ij

�
. (7)

This convention was later proposed by Glickman (1999) in the context of sport
rating models. As demonstrated, it is an implicit assumption behind the Elo
rating system itself.

Implementing the Elo model for football. An example adaptation of the Elo130

model for football was proposed by Hvattum & Arntzen (2010). The authors
propose the following tweaks. First, to account for the fact that the Elo rating
system does not provide the probability of a draw, we can rely on the differences
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in ratings as covariates to an ordinal logistic regression model, which is used as
a second-level model once the rating differences are computed.135

Second, there are some differences in the way the K-factor (learning rate)
is formulated. The authors suggest that the K-factor could be amplified by
the difference in the goals scored by the teams

K = K(i, j, k) = K0 · (1 + |g(k)i − g
(k)
j |)λg , (8)

where |g(k)i − g
(k)
j | denotes the absolute goal difference in a match k between

teams i and j, where K0 > 0 and λg > 0 are additional parameters. Strictly
speaking, this modification is a heuristic approach for adapting the learning
rate discussed above. The larger the goal difference, the greater the update to
the current team ratings.140

Finally, setting the initial values for the ratings r
(0)
i corresponds to choosing

prior ratings in the Elo model. The prediction and update equations remain the
same as in the original formulation – in fact, the authors divided the difference
in ratings by 400 and used exponentiation with base 10 in Eq. (1) but it is just
a question of scaling the ratings.145

We shall later compare this model to other approaches in the computational
experiments section. Other implementations of the Elo model for football in-
clude, e.g., (EloRatings.net, 2020) or both official FIFA men and women world
ranking implementations (FIFA.com, 2020).

2.2. Ordinal logistic regression model150

We shall now turn to the second team rating system, focusing on the ordinal
logistic regression (Aitchison & Silvey, 1957; Koning, 2000). We first formulate
the base version of the model and next discuss how the model’s parameters can
be obtained by an application of the gradient descent method.

As before, let r = (r1, r2, . . . , rn) denote the ratings for a set of n teams.
Again, the superscript to denote the current rating estimates for a given match
will appear as a by-product of the gradient descent optimisation steps. Denote
with

Δij = ri − rj + h

the difference in the ratings of a home team i and a team j, corrected for the155

home team advantage parameter h > 0. In the general setting, we assume
that there is a latent variable εij functioning as a random variable that follows
the logistic distribution with mean zero and scale one. It yields a noisy version
of the true rating difference Δ∗

ij = Δij + εij which we observe in reality up to
a certain interval.160

The idea behind the model is that we test whether Δ∗
ij falls into a specified

interval, corresponding to the match outcome in the following way

O
(k)
ij =





1 for Δ∗
ij ∈ (c,∞),

0.5 for Δ∗
ij ∈ [−c, c],

0 for Δ∗
ij ∈ (−∞,−c),

(9)

where c > 0 is an intercept governing the draw margin. The probabilities of the
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match outcomes are given by

P(O(k)
ij = 1) = 1− 1

1 + exp(−c+Δij)
,

P(O(k)
ij = 0.5) =

1

1 + exp(−c+Δij)
− 1

1 + exp(c+Δij)
, (10)

P(O(k)
ij = 0) =

1

1 + exp(c+Δij)
,

The parameter estimation procedure is again based on the maximum like-
lihood principle. Given the outcome model, we can construct a loss function
L(r, h, c|M,λ), defined as the negative penalised log-likelihood for the match
results observed (Tutz & Gertheiss, 2016). The penalty introduced is L2 regu-
larisation on the team rating parameters:

L(r, h, c|M,λ) = −
�

(i,j,k)∈M
logP

�
O

(k)
ij = o

(k)
ij |r, h, c

�
+

λ

2
· �r�22, (11)

where P
�
O

(k)
ij = o

(k)
ij |r, h, c

�
denotes the probability attributed by the model

to the actual result of a match. The use of regularisation for match outcome
prediction models is generally advised because the uncertainty factor is relatively
large in this domain. It usually helps to provide more accurate forecasts (Groll
et al., 2015; Lasek & Gagolewski, 2018).165

The parameters of the model are found by minimising the above function or,
equivalently, maximising the penalised log-likelihood of the results with respect
to r, h, and c. The choice of regularisation parameter λ is discussed later. In
addition to preventing overfitting, regularisation ensures that the parameters
are identifiable. According to the model formulation given by Eq. (10), any170

shift in the rating parameters by a constant yields the same probabilities (as
their differences remain equal).

Finally, it is worth noting how this model is connected to the Elo rating
system. If c = 0 in Eq. (10), the probability of a draw becomes zero. This brings
us back to the binary logistic regression considered in the previous section.175

Rating updates. Let us now derive a method to iteratively estimate the model
parameters using the gradient descent approach. To obtain the update equa-
tions, the partial derivatives of L with respect to the model parameters are
needed. We shall focus only on optimising the ratings, considering parameters c
and h as fixed. These parameters can be estimated by grid or random search as
discussed in Section 3. To provide the iterative updates for the likelihood func-
tion given in Eq. (11), it is useful to first obtain the derivatives of the logarithm
of probability functions (Eq. 10):

∂ logP(O(k)
ij = 1)

∂ri
= 1− P(O(k)

ij = 1),

∂ logP(O(k)
ij = 0.5)

∂ri
= P(O(k)

ij = 0)− P(O(k)
ij = 1), (12)

∂ logP(O(k)
ij = 0)

∂ri
= P(O(k)

ij = 0)− 1,
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and symmetrically for the derivatives for the other team j. These derivatives
have a simple closed form, unlike for the related model in the case of the probit
link function in (Koopman & Lit, 2019).

Next, we introduce the update equations for the model. As in the presenta-
tion of the Elo model above, a single step of the gradient descent algorithm is
performed for an individual match and all the steps are in line with the order in
which matches are played over time. Additionally, we add the L2 regularisation
component to each update. Hence, the update equations take the form

r
(k)
i =





r
(k−1)
i − γ ·

�
P
�
O

(k)
ij = 1

�
− 1 + λr

(k−1)
i

�
for o

(k)
ij = 1,

r
(k−1)
i − γ ·

�
P
�
O

(k)
ij = 1

�
− P

�
O

(k)
ij = 0

�
+ λr

(k−1)
i

�
for o

(k)
ij = 0.5,

r
(k−1)
i − γ ·

�
1− P

�
O

(k)
ij = 0

�
+ λr

(k−1)
i

�
for o

(k)
ij = 0.

(13)
and symmetrically for team j. We note that the match outcome probabili-

ties, denoted with P
�
O

(k)
ij = 1

�
and P

�
O

(k)
ij = 0

�
above, are evaluated using180

the previous rating estimates r
(k−1)
i .

Interpretation. The update equations can be interpreted intuitively as follows.
For simplicity, we assume λ = 0. First, if a home team win is observed, the home
team rating update is proportional to the confidence in this event measured by

the difference 1−P
�
O

(k)
ij = 1

�
. The more unexpected this result is, the greater185

the decrease in team i’s rating. The opposite holds if the away team wins. On
the other hand, in the case of a draw, both the home and away team ratings
are changed so that the rating of the team expected to win based on the ex-

pression P
�
O

(k)
ij = 1

�
− P

�
O

(k)
ij = 0

�
is decreased and the rating of the other

team is increased. Finally, the regularisation component equal to λr
(k−1)
i acts190

as the rating decay by shrinking it, regardless of the actual match result.

2.3. Poisson regression model

Another popular model is based on the assumption that the number of goals
scored by each team in a match is a Poisson-distributed random variable. In
the basic setup, Maher (1982) suggests modelling of the goals scored under195

the independence assumption. This was one of the first approaches specifically
crafted for football and it serves as a basis for more complex models including
(Crowder et al. 2002; Dixon & Coles 1997; Groll et al. 2015; Karlis & Ntzoufras
2003; Kharrat 2016; Koopman & Lit 2015; Rue & Salvesen 2000). The Maher
model in introduced in greater detail below.200

Assume that in match k of a competition team i (home) plays against

team j (away). Let G
(k)
i and G

(k)
j be random variables for the goals scored

by team i and j, respectively. Assuming that these random variables are inde-
pendent and that they follow the Poisson distributions with expected values of
µi and µj , respectively, the probability of the match outcome being x-y is:

P
�
G

(k)
i = x,G

(k)
j = y|µi, µj

�
=

µx
i

x!
exp(−µi) ·

µy
j

y!
exp(−µj).
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If we assume a log-linear model for the underlying parameters (i.e., goal scoring
rates), then we can write

log(µi) = c+ h+ ai − dj ,

log(µj) = c+ aj − di,

where c is an intercept and ai, aj and di, dj stand for attack and defence ratings
of teams i and j, respectively. Hence, as opposed to the previously discussed
settings, this model describes the strength of each team using two parameters.205

Parameter h is introduced to capture the home field advantage.
Again, the model parameters can be estimated by maximising the likelihood.

Let r = (a,d) = (a1, a2, . . . , an, d1, d2, . . . , dn) be the team strength parameters
and denote with L(r, h, c|M,λ) the loss function, which is the negative penalised
log-likelihood of the results observed in dataset M:210

L(r, h, c|M,λ) = −
�

(i,j,k)∈M

�
logP

�
G

(k)
i = g

(k)
i |r, h, c

�
(14)

+ logP
�
G

(k)
j = g

(k)
j |r, h, c

��

+λ ·
��r�22

2
− ρ · a�d

�
,

where the observed match outcome between teams i and j in the k-th round is

g
(k)
i to g

(k)
j (in terms of goals scored). The third term is the extension proposed

in (Lasek & Gagolewski, 2018) with ρ ∈ [−1, 1] being a correlation between the
attack and defence ratings. We note that the regularisation term also enables
the identification of the model parameters here.215

Rating updates. For the Poisson model we can adopt analogous ideas so as to
arrive at the iterative version of the model that constitutes a standalone rating
system. To obtain the update equations, we consider the parameters c, h and
λ as fixed, focusing on the attack and defence ratings as the parameters over
which we optimise the likelihood.220

In a single step of the gradient descent algorithm for optimising the loss
function given by Eq. (14), for single match at round k between the teams i

and j, ending in score g
(k)
i to g

(k)
j , assuming that the current team strength

estimates are a
(k−1)
i , d

(k−1)
i and a

(k−1)
j , d

(k−1)
j , we arrive at the following update

equations

a
(k)
i = a

(k−1)
i − γ ·

��
µ
(k)
i − g

(k)
i

�
+ λ ·

�
a
(k−1)
i − ρd

(k−1)
i

��
,

d
(k)
i = d

(k−1)
i − γ ·

��
g
(k)
j − µ

(k)
j

�
+ λ ·

�
d
(k−1)
i − ρa

(k−1)
i

��
.

(15)

where log(µ
(k)
i ) = c+ h+ a

(k−1)
i − d

(k−1)
j and log(µ

(k)
j ) = c+ a

(k−1)
j − d

(k−1)
i .

Interpretation. In this case as well, the rating update equations allow for an in-

tuitive interpretation. Recall that µ
(k)
i and µ

(k)
j are the pre-match average goal

9



scoring rates – the means of the corresponding Poisson variables computed for
the rating estimates in the previous iteration k − 1. Now, for λ = 0, if team i225

scored more goals in match k than would be expected based on parameter µ
(k)
i

– which also depends on the opponent’s defence rating – then its attack rating
increases accordingly. Analogously, if this team concedes fewer goals than ex-

pected from the overall goal scoring rate of its opponent, µ
(k)
j , then its defence

rating increases. Moreover, the greater the differences, the larger the updates.230

Finally, the regularisation component in the update equations push the attack
and defence ratings towards zero. Correlation ρ causes the ratings to remain
close to each other. Intuitively, strong teams tend to feature both a strong
attack and solid defence, while the converse is true for weak teams.

From goals to the final score. As the approach introduced takes into account
the number of goals the teams score, we can convert it to a full-time three-way
outcome by writing

P(O(k)
ij = 1) = P(Z(k)

ij > 0) = 1− F(k)
ij (0),

P(O(k)
ij = 0.5) = P(Z(k)

ij = 0) = F(k)
ij (0)− F(k)

ij (−1),

P(O(k)
ij = 0) = P(Z(k)

ij < 0) = F(k)
ij (−1)

(16)

for the random variable Z
(k)
ij = G

(k)
i −G

(k)
j , which follows a Skellam distribution235

with parameters (µi, µj) and F(k)
ij as its cumulative distribution function. While

this function does not lead to as simple an analytical form as that of the Elo or
the ordinal logistic regression models, it can be easily computed numerically.

2.4. One-parameter Poisson regression model

Maher (1982) studied various simplifications or extensions of the Poisson240

model. However, the two-parameter version is the more frequently of those
cited in the literature. The last model studied is a version of the above where
the attack and defence strengths are reduced to a single parameter, just as in
(Ley et al., 2019). As we demonstrate in the next section, it is not only elegantly
simple, but also yields quite accurate forecasts.245

The parameters of the corresponding Poisson variables in that model are
assumed to have the following form

log(µi) = c+ h+ ri − rj ,

log(µj) = c+ rj − ri.
(17)

Here we assume that the attack and defence strengths of each team are equal,
ai = di. The objective function is defined analogously as in the previous model
(Eq. 14). The prediction function remains the same as described in Eq. (16).

We note that this model is, in a way, a marginal case of the correlated Pois-
son regression model presented above for highly correlated attack and defence
strengths. Rewriting the penalty term in Eq. (14) with ρ = 1 yields

λ ·
��r�22

2
− ρ · a�d

�
=

λ

2

n�

i=1

(ai − di)
2.
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If the regularisation parameter λ is set to some large-enough value, then setting
ai = di cancels the penalty out and the one-parameter model is obtained. How-250

ever, this is a rather theoretical argument. In practice, setting a large λ and
ρ = 1 results in convergence problems due to numerical stability issues.

Rating updates. Applying the gradient descent approach, the rating update
equation becomes

r
(k)
i = r

(k−1)
i − γ ·

��
µ
(k)
i − µ

(k)
j

�
−

�
g
(k)
i − g

(k)
j

�
+ λr

(k−1)
i

�
, (18)

and analogously for team j.

Interpretation. This model can also be interpreted intuitively, based on the ex-

pected (pre-match) and observed win margin, µ
(k)
i −µ

(k)
j and g

(k)
i −g

(k)
j , respec-255

tively. Assuming λ = 0, if the expected margin exceeds the observed margin,
team i’s rating is adjusted downwards. We note that analogous margin-based
models inspired by the Elo rating system can be found in the literature, though
with scant theoretical foundations behind them (see, e.g., Carbone et al., 2016
or Kovalchik, 2020). This formulation is again a natural consequence of applying260

the gradient descent algorithm to estimate a model’s parameters.

3. Experiments

In this section we consider computational experiments for validating the
efficacy of the different models introduced above.

3.1. Data and validation procedure265

To evaluate the models quantitatively, we estimate them and generate pre-
dictions for top-level divisions for the five strongest football leagues in the world:
English, French, German, Italian, and Spanish. The data are available for down-
load at http://www.football-data.co.uk/. Following the well-established
methodology, see, e.g., (Barrow et al., 2013; Boshnakov et al., 2017; Lasek et al.,270

2013; Ley et al., 2019), we employ a sliding window procedure for generating
the predictions for consecutive match days. More precisely, each prediction is
generated using the whole set of preceding matches up to a given date. Once the
predictions are obtained for a given set of matches, the training set is extended
to keep the ratings up-to-date. For the iterative model versions, this boils down275

to updating ratings once the new match results are observed.
We follow a standard protocol of training/validation/test data split. The sea-

sons 2009/10–2011/12 are used only as training data for the rating systems and
provide an initial sample to build a model. The three next seasons 2012/13–
2014/15 are used as a validation set to choose the models’ optimal parame-280

ter values. Finally, the last four seasons are used as the test set to measure
the models’ performance – from 2015/16 to 2018/19. This makes up a total of
7304 matches across the five leagues in the test set for evaluation.
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3.2. Model setup

The Elo model parameters are again set to their default values from the orig-285

inal formulation (Hvattum & Arntzen, 2010). We only focus on the goal-based
version of the model which was shown by the authors to perform best. We
denote it with Elog.

Further, as for the baseline results, we shall provide the predictions for the
ordinal logistic (OLR) and Poisson regression-based models. We also introduce290

sample weights in the likelihood functions in Eq. (11) and Eq. (14) for the mod-
els that estimate ratings using the whole sample of matches. More precisely, the
samples (matches) are weighted according to how long ago a given match was
played. To this end, we use exponential weighting wk = exp(−b · τk), where τk
stands for how many days ago match k was played (relative to ratings estima-295

tion date) and b ≥ 0 is a decay parameter. This is a standard method applied
to account for the recency of matches (Boshnakov et al., 2017; Dixon & Coles,
1997; Koopman & Lit, 2019; Ley et al., 2019). While there exist a variety of
methods for accounting for time in prediction models – including autoregressive
modelling of team strengths (Crowder et al., 2002), rating teams based on ex-300

ponential weighted moving average processes (Cattelan et al., 2013), and time
varying team strength models based on interpolation (Baker & McHale) – we
use exponential weighting here as it is well-founded and widely applied in the
recent literature.

The optimal parameter values are determined using the grid search. More305

precisely, possible values for parameter b are between 0 and 0.006 with a step
of 0.001 and for regularisation from 0 to 15 with a step of 0.25. Additionally,
correlation parameter for ρ between 0 and 0.95 with a step of 0.05 is considered
(the case of 0.99 is also studied). The models jointly optimising the likelihood
function for the whole sample of matches are estimated using the BFGS algo-310

rithm (Nocedal & Wright, 2006).
As for the iterative models, different approaches require different parameters

to be specified, including c, h, λ and, specifically for the attack-defence version
of the Poisson model, correlation parameter ρ. Moreover, all the models require
the learning rate to be set. In the case of the Poisson regression-based models,315

c is searched for among values 0, 0.0001, 0.0002, 0.001, 0.002, 0.004, 0.01, 0.02,
0.1, and 0.2. Parameter h is searched for from 0.2 to 0.4 with a step of 0.05.
Possible values of regularisation λ are 0.00001, 0.00002, 0.00005, 0.0001, 0.0002,
0.0005, 0.001, 0.002, and 0.01. As for correlation ρ, its values are searched for
from 0 to 1 with a step of 0.05. In the case of iterative OLR model, h is searched320

for from 0.2 to 0.5 with a step 0.05, c from 0.4 to 0.7 with a step of 0.05 and
learning rate γ is chosen among 0.001, 0.005, 0.01, 0.02, 0.04, 0.06, 0.08, and
0.1. Finally, the regularisation parameter is selected from among 0.0001, 0.0002,
0.0005, 0.001, 0.002, 0.005, 0.01, and 0.02.

These parameter combinations produce a large grid of parameter settings.325

To keep the computation time at a reasonable level, we randomly choose only
250 parameter settings sampled without replacement from all the combinations
from the parameter grid determined by their possible values. Parameters are
optimised globally for all the leagues.

To assign the rating parameters initial values, a simple strategy is employed:330

assign the initial value of the rating parameters across all teams to zero. For the
Elo model, this value can be chosen arbitrarily, as only the relative differences in
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the ratings matter. For the other iterative approaches, zero is a natural choice
that allows the impact of any regularisation to be diminished in the initial
estimation phase. Finally, all league newcomers are also assigned the rating of335

zero. For the other methods, we assigned ratings equal to the averages across
all the teams. In practice, zero is close to the ratings average since all iterative
model versions yield the updates – ignoring the regularisation component – that
sum up to zero.

To optimise a model’s parameters, a single target (validation) metric is340

needed. For this purpose we choose the logarithmic loss described in the next
section.

3.3. Evaluation metrics

The prediction results presented in the next section are evaluated according
to logarithmic loss, ranked probability score, Brier score and accuracy. These345

metrics are popular for evaluating a model’s predictive power (Constantinou
& Fenton, 2012; Goddard, 2005; Hvattum & Arntzen, 2010; Koopman & Lit,
2019; Ley et al., 2019; Peeters, 2018). We now recall how they are defined.
Let p = (p1, p2, p3) denote the three-way match outcome probabilities obtained
from a given model with p1 + p2 + p3 = 1, pi ≥ 0. Further, let q = (q1, q2, q3)350

denote the vector indicating the true outcome of a match with q1 + q2 + q3 = 1,
qi ∈ {0, 1}. For example, if the home team wins a match, q1 = 1 and q2 = q3 = 0.
For simplicity, the metrics are described for a single match. These metrics
are computed and averaged to obtain aggregate performance over a dataset of
matches.355

Logarithmic loss. Logarithmic loss, or logloss for short, is computed as

−
3�

i=1

qi · log (pi) . (19)

In the maximum likelihood setting, logloss (subject to regularisation) is the cri-
terion directly optimised by many prediction models – including the ordinal
logistic regression considered here. We choose this metric as the target one
when optimising a model’s parameters.

Ranked probability score. The ranked probability score, or RPS for short, is
computed as

1

2

2�

i=1




i�

j=1

pj −
i�

j=1

qj




2

. (20)

Again, the normalisation accounts for the number of outcomes (minus one).360

Unlike the other metrics, this one accounts for the ordinal nature of the results.

Brier score. Brier score, or quadratic loss, is computed with the following for-
mula

1

3

3�

i=1

(pi − qi)
2
. (21)
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Accuracy. This metric is defined as the proportion of correctly predicted results.
In the case of a single match it equals

� (argmax(p) = argmax(q)) . (22)

Here, the argmax function for a vector returns the index with the highest value
among all coordinates of the vector. However, as it is not a strictly proper
metric (Gneiting & Raftery, 2007), it is included in the comparison only for the
intuitive interpretation it offers.365

To provide a context for the metrics considered, we also report the results of
two extra baselines: the observed results’ frequency in a particular league and
the predictions derived from bookmaker odds in a decimal format by inverting
and normalising them. Analogously to the previous studies for comparing the
differences in the forecasting ability of the match prediction models (Hvattum370

& Arntzen, 2010; Peeters, 2018), the significance of the differences between the
methods is determined by using the paired t-test with a significance level of
0.05. Due to the special role of logloss in experimental setup as a validation
criterion, the tests are applied and p-values are reported for this metric while
the other metrics are used for extra evaluation and to provide background.375

3.4. Results

Table 1 presents the aggregate statistics for the test season predictions for
all the metrics considered. The base models are denoted with OLR for the
ordinal logistic regression, PR1 and PR2 for one- and two-parameter Poisson
regression-based models, respectively. Their iterative versions are denoted with380

superscript I. By analysing the pairwise differences in the predictions, we found
that the most accurate predictions are obtained by the iterative version of the
one-parameter Poisson model – PRI

1. Applying the t-test for the differences in
logloss values for Elog and PRI

1 models we conclude that the latter is significantly
more accurate in predicting match results (p-value = 0.036).385

Table 1: Aggregate prediction statistics for the test seasons. The iterative models outperform
their static variants.

Model Section Logloss RPS Brier Accuracy

Elog Sec. 2.1 0.9726 0.1973 0.1928 0.5307
OLR Sec. 2.2 0.9759 0.1983 0.1936 0.5272
OLRI Sec. 2.2 0.9739 0.1978 0.1932 0.5297
PR1 Sec. 2.4 0.9763 0.1983 0.1936 0.5334
PRI

1 Sec. 2.4 0.9708 0.1968 0.1925 0.5352
PR2 Sec. 2.3 0.9764 0.1983 0.1936 0.5326
PRI

2 Sec. 2.3 0.9721 0.1969 0.1928 0.5344
Betting odds – 0.9568 0.1924 0.1893 0.5427
Class frequency – 1.0631 0.2278 0.2141 0.4577

Interestingly, the iterative versions of the regression-based rating models –
OLRI , PRI

1, and PRI
2 – perform better than their respective counterparts –
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OLR, PR1, and PR2 estimated using the BFGS algorithm on a whole sample
of matches, even when the result weighting is applied. In the case of the Pois-
son regression-based approaches, we do observe a statistically significant im-390

provement (p-values < 0.001 and 0.004 for the one- and two-parameter model
versions, respectively). For the OLR models, the difference is however not sig-
nificant (p = 0.071).

Finally, the iterative Poisson regression-based models turn out to be more
accurate than both the Elo- and the ordinal logistic regression-based approaches.395

We conclude that goal-based modelling provides better predictions than that
based solely on the three-way match outcome. This confirms the results from
previous studies on this issue (see, e.g., Hvattum & Arntzen, 2010; Koopman &
Lit, 2019; Ley et al., 2019).

The prediction quality in terms of logloss for individual leagues is presented400

in Table 2. The predictions based on the iterative Poisson models are unani-
mously more accurate for all the leagues. This additionally confirms the superior
performance of these models.

Table 2: Model performance according to logloss for individual leagues for the test seasons.

league Elog OLR OLRI PR1 PRI
1 PR2 PRI

2

England 0.9574 0.9633 0.9615 0.9644 0.9545 0.9642 0.9551
France 1.0003 1.0040 1.0013 1.0029 1.0000 1.0026 0.9980
Germany 0.9974 0.9988 0.9980 0.9966 0.9952 0.9970 0.9979
Italy 0.9455 0.9496 0.9475 0.9541 0.9446 0.9550 0.9491
Spain 0.9674 0.9682 0.9659 0.9672 0.9645 0.9674 0.9652

3.5. Optimal parameter values

We now focus on the technical details of the optimal parameter setting found405

by optimising the predictions based on logloss. The detailed parameter specifi-
cation is presented in Table 3. In the case of the iterative Poisson-based models,
parameters c = 0.02 and h = 0.3 mean that for equally rated teams the pre-
diction function yields ca. (0.45, 0.27, 0.28). In the case of the OLRI model, for
c = 0.6 and h = 0.4 we obtain (0.45, 0.28, 0.27). This is in line with the result410

frequencies observed in real-world data.
The correlation parameter in the model regularisation component ρ equals

0.9 and 1.0 for the base two-parameter Poisson model and its iterative ver-
sion, respectively. This is a relatively large value which partially explains why
the model performance is close to the one-parameter variant as the attack and415

defence ratings are highly correlated. In a way, the model converges to its sim-
pler version with no loss in accuracy. We argue that predicting match results
is a difficult task and any form of model regularisation (e.g., by restricting the
parameter space) proves useful in reducing the error metrics.

Finally, the optimised value for parameter b equals 0.002 and is the same for420

all the three base models that employ it. For these models, parameters c and
h are not reported in Table 3 as they are recalculated for each day for which
the predictions are to be generated. On average, they are close to the values
reported for their iterative variants.
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Table 3: Optimised parameter values for different models.

Model c h γ λ b ρ

Elog 10 – 10 – – –
OLR – – – 1.25 0.002 –
OLRI 0.6 0.4 0.08 0.0002 – –
PR1 – – – 2.5 0.002 –
PRI

1 0.02 0.3 0.01 0.0001 – –
PR2 – – – 13 0.002 0.9
PRI

2 0.02 0.3 0.02 0.0005 – 1.0

3.6. Iterative model updates with momentum425

In the iterative model formulations we considered a basic version of the gra-
dient descent algorithm. There are many extensions of this method including
momentum updates that accumulate the gradients using exponential smoothing
(see, e.g., Goh 2017). Intuitively, momentum results in higher rating updates
for the teams in consecutive runs of wins and, conversely, larger decreases for430

the teams with a record of consecutive losses. This has a natural interpretation
in sports.

In the follow-up experiments, we have extended the iterative model versions
so that they are based on gradient descent with momentum. However, there are
no significant improvements over the base models with no momentum parame-435

ter. Moreover, the optimised values of the momentum term weights were close
to zero, so these model versions effectively reduce to the standard gradient de-
scent updates studied here. We have therefore not included the detailed results
here as the performance of the models is virtually identical.

These results are in line with the conclusions from other empirical studies.440

In particular, the question whether the runs of results might reveal anything of
substance about the next game has been considered, for example, by Dobson
& Goddard (2003) or Goddard (2006) who all concluded that there is a zero or
even negative momentum effect. On the other hand, Heuer & Rubner (2009)
found that teams on a losing streak are more likely to lose the next match.445

As for a winning streak, the authors observed either no effect or even a slight
decrease in the probability of winning the next match.

3.7. Team ratings in time

It could be interesting to see how the team ratings evolve in time for the best
performing model, PRI

1. Figure 1 presents the ratings for the “Big Six” Pre-450

mier League teams: Arsenal, Chelsea, Liverpool, Manchester City, Manchester
United, and Tottenham.

We observe that the highest rated team at the end of the 2016/17 season
was not Chelsea (the actual champions) but Tottenham (the runners-up). It is
noteworthy that their rating improved substantially after two large-margin away455

wins at the end of the season – 6-1 and 7-1 – respectively, against Leicester and
Hull. This shows some vulnerability of the model to outliers. However, clipping
the goals scored (as in Rue & Salvesen 2000) at different values did not improve
the predictions.
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Figure 1: Ratings for selected English Premier League teams over the 2016/17–2018/19 sea-
sons.

In the 2017/18 season, Manchester City dominated the league with an im-460

pressive 100 points tally. Their dominance is reflected in their unanimously
superior rating at the end of this season. We also observe a steady growth in
time of the strength scores of Liverpool and Manchester City while the ratings
of other teams appear to decline from the middle of 2017/18 season. These
two teams were also locked in very close ratings at the end of the 2018/19 sea-465

son, which saw them vie for the title until the very last round. Ultimately,
Manchester City took the title.

4. Conclusions

In this paper, the plausible features of the Elo model as a fast, analytically
tractable and interpretable rating system have been successfully translated to470

other prominent rating systems. In recognising it as a special case of the gradient
descent algorithm, we have discussed its theoretical underpinnings. The pro-
posed ordinal logistic and Poisson regression-based rating systems are derived
in an analogous way and also boast the appealing features that made the Elo
model popular in various application scenarios in sports and beyond.475

In the computational experiments presented here, the iterative rating sys-
tems based on the Poisson regression proved significantly more accurate. In
particular, the iterative version of the one-parameter Poisson model (Ley et al.,
2019) proposed here turns out to have more predictive power than the Elo rating
system. Hence, this model rates teams more accurately. Interestingly, exten-480

sive parameter search allows us to conclude that the two-parameter Poisson
model (which uses attack and defence ratings to describe a team) converges to
its simpler version via high correlation ρ between the ratings. While the for-
mer approach has been extensively studied, we believe that these results should
contribute to a greater popularity of the latter model as it turns out to be485

more accurate. In the case of the ordinal logistic regression, the iterative model
version provides better forecasting accuracy, albeit not significantly.
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The proposed framework based on the (stochastic) gradient descent algo-
rithm for maximising the log-likelihood function is a simple and effective method
for devising team rating systems in an online fashion. The Poisson model di-490

rectly uses the information on the number of goals scored, rather than, as in
the Elo model (subject to some modifications included in the K-factor), only
the final match result. In our application, the goals-based Poisson model pro-
duced better results than the variations of the Elo rating system presented here.

We argue that there are two main reasons why the iterative approaches495

work better than optimising jointly the whole sample of matches. First, itera-
tive approaches consider temporal adjustments naturally. Unlike their whole-
batch counterparts, they do not require result weighting, and the recency of the
matches is reflected by the recency of the updates. Hence, they may be better
at adapting to the true (latent) teams’ shape. Second, a model which jointly500

optimises a sample of matches may be prone to overfitting to the whole sample,
even if temporal weighting and regularisation is applied. Overall, the iterative
approaches appear to be better at estimating the up-to-date team ratings.

The rating systems based on the gradient descent algorithm can be com-
puted quickly. In terms of a dataset of k matches played by n teams, the it-505

erative models presented in this work are of O(k) time complexity. They also
have minimal memory requirements of O(n) as only the team ratings need to
be stored. By construction, it is easy to revise the ratings using a new set of
matches. On the other hand, the complexity of estimating the ratings using,
e.g., the BFGS algorithm (or any other mathematical programming solver) is,510

in general, of a higher order of magnitude. Moreover, updating the ratings
when new data arrive requires that such an algorithm recompute all ratings
from scratch. The benefits of building a rating system using the gradient de-
scent algorithm are evident, particularly in large-scale scenarios (in e-sports, for
example). Yet another advantage is that this method provides transparent and515

interpretable update rules.
As for using other variants of the gradient descent algorithm for optimis-

ing a given loss function (e.g., RPS or Brier score), it is a worthwhile research
area which may lead to new and interesting models. Moreover, the theoretical
links between the base optimisation routines such as the gradient descent and520

the score-driven models proposed in the econometric literature (Creal et al.,
2013; Koopman & Lit, 2019) merit deeper investigation. This will lead to bet-
ter understanding of the advances in both areas and to a unification of their
concepts.

The models presented here are evaluated for the club competitions for the525

domestic football league championships. They can also be applied for rating
teams at the international level. This opens up interesting research issues such
as the study of effects of setting weights for different matches (e.g., a friendly
or a world cup match). Such a model may constitute an interesting alternative
to the Elo rating system implementations for international football. Poisson530

regression or ordinal logistic regression-based methods seem more appropriate
for modelling football scores as these approaches explicitly include draws and,
in the former case, directly model the number of goals scored.

18



References

Aitchison, J., & Silvey, S. (1957). The generalization of probit analysis to the535

case of multiple responses. Biometrika, 44 , 131–140.

Baker, R. D., & McHale, I. G. (). Time varying ratings in association football:
the all-time greatest team is.. Journal of the Royal Statistical Society: Series
A (Statistics in Society), 178 , 481–492.

Barrow, D., Drayer, I., Elliott, P., Gaut, G., & Osting, B. (2013). Ranking540

rankings: An empirical comparison of the predictive power of sports ranking
methods. Journal of Quantitative Analysis in Sports , 9 , 187–202.

Boshnakov, G., Kharrat, T., & McHale, I. G. (2017). A bivariate Weibull count
model for forecasting association football scores. International Journal of
Forecasting , 33 , 458–466.545

Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. New York, NY,
USA: Cambridge University Press.

Carbone, J., Corke, T., & Moisiadis, F. (2016). The rugby league prediction
model: Using an Elo-based approach to predict the outcome of National
Rugby League (NRL) matches. International Educational Scientific Research550

Journal , 2 , 26–30.

Cattelan, M., Varin, C., & Firth, D. (2013). Dynamic Bradley–Terry modelling
of sports tournaments. Journal of the Royal Statistical Society: Series C
(Applied Statistics), 62 , 135–150.

Constantinou, A., & Fenton, N. E. (2012). Solving the problem of inadequate555

scoring rules for assessing probabilistic football forecast models. Journal of
Quantitative Analysis in Sports , 8 , –.

Constantinou, A. C., & Fenton, N. E. (2013). Determining the level of ability
of football teams by dynamic ratings based on the relative discrepancies in
scores between adversaries. Journal of Quantitative Analysis in Sports , 9 ,560

37–50.

Constantinou, A. C., Fenton, N. E., & Neil, M. (2012). pi-football: A
Bayesian network model for forecasting association football match outcomes.
Knowledge-Based Systems, 36 , 322–339.

Creal, D., Koopman, S. J., & Lucas, A. (2013). Generalized autoregressive score565

models with applications. Journal of Applied Econometrics, 28 , 777–795.

Crowder, M., Dixon, M., Ledford, A., & Robinson, M. (2002). Dynamic mod-
elling and prediction of English football league matches for betting. Journal
of the Royal Statistical Society: Series D (The Statistician), 51 , 157–168.

Dixon, M. J., & Coles, S. G. (1997). Modelling association football scores and570

inefficiencies in the football betting market. Journal of the Royal Statistical
Society: Series C (Applied Statistics), 46 , 265–280.

19



Dobson, S., & Goddard, J. (2003). Persistence in sequences of football match
results: A Monte Carlo analysis. European Journal of Operational Research,
148 , 247–256.575

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for
online learning and stochastic optimization. Journal of Machine Learning
Resesearch, 12 , 2121–2159.

Elo, A. (1961). The new U.S.C.F. rating system. Chess Life, 16 , 160–161.

Elo, A. (1978). The Rating of Chessplayers, Past and Present . New York, NY,580

USA: Arco Pub.

EloRatings.net (2020). The World Football Elo Rating System. http://www.

eloratings.net. Last access date: 5 August 2020.

FIFA.com (2020). Ranking procedure. https://www.fifa.com/

fifa-world-ranking/procedure. Last access date: 5 August 2020.585

Glickman, M. E. (1999). Parameter estimation in large dynamic paired com-
parison experiments. Applied Statistics, 48 , 377–394.

Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring rules, prediction,
and estimation. Journal of the American Statistical Association, 102 , 359–
378.590

Goddard, J. (2005). Regression models for forecasting goals and match results
in association football. International Journal of Forecasting , 21 , 331–340.

Goddard, J. (2006). Who wins the football? Significance, 3 , 16–19.

Goh, G. (2017). Why momentum really works. Distill , .

Groll, A., Schauberger, G., & Tutz, G. (2015). Prediction of major international595

soccer tournaments based on team-specific regularized Poisson regression: An
application to the FIFA World Cup 2014. Journal of Quantitative Analysis
in Sports , 11 , 97–115.

Herbrich, R., Minka, T., & Graepel, T. (2006). Trueskill�: A Bayesian skill
rating system. In Proceedings of the 19th International Conference on Neural600

Information Processing Systems NIPS’06 (pp. 569–576). Cambridge, MA,
USA: MIT Press.

Heuer, A., & Rubner, O. (2009). Fitness, chance, and myths: an objective view
on soccer results. European Physical Journal B , 67 , 445–458.

Hvattum, L. M., & Arntzen, H. (2010). Using Elo ratings for match result605

prediction in association football. International Journal of Forecasting , 26 ,
460–470.

Karlis, D., & Ntzoufras, I. (2003). Analysis of sports data by using bivari-
ate Poisson models. Journal of the Royal Statistical Society: Series D (The
Statistician), 52 , 381–393.610

Kharrat, T. (2016). A Journey Across Football Modelling with Application to
Algorithmic Trading . Ph.D. thesis University of Manchester.

20



Koning, R. H. (2000). Balance in competition in Dutch soccer. Journal of the
Royal Statistical Society: Series C (The Statistician), 49 , 419–431.

Koopman, S. J., & Lit, R. (2015). A dynamic bivariate Poisson model for615

analysing and forecasting match results in the English Premier League. Jour-
nal of the Royal Statistical Society: Series A (Statistics in Society), 178 ,
167–186.

Koopman, S. J., & Lit, R. (2019). Forecasting football match results in national
league competitions using score-driven time series models. International Jour-620

nal of Forecasting , 35 , 797–809.

Kovalchik, S. (2020). Extension of the Elo rating system to margin of
victory. International Journal of Forecasting , 36 , 1329–1341. URL: http:
//www.sciencedirect.com/science/article/pii/S0169207020300157.
doi:https://doi.org/10.1016/j.ijforecast.2020.01.006.625

Lasek, J., & Gagolewski, M. (2018). The efficacy of league formats in ranking
teams. Statistical Modelling , 18 , 411–435.
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