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Abstract

The discrete Choquet integral with respect to various types of fuzzy mea-
sures serves as an important aggregation function which accounts for mutual
dependencies between the inputs. The Choquet integral can be used as an
objective (or constraint) in optimisation problems, and the type of fuzzy
measure used determines its complexity. This paper examines the class of
antibuoyant fuzzy measures, which restrict the supermodular (convex) mea-
sures and satisfy the Pigou–Dalton progressive transfers principle. We de-
termine subsets of extreme points of the set of antibuoyant fuzzy measures,
whose convex combinations form a basis of three proposed algorithms for
random generation of fuzzy measures from that class, and also for fitting
fuzzy measures to empirical data or solving best approximation problems.
Potential applications of the proposed methods are envisaged in social wel-
fare, ecology, and optimisation.
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1. Introduction1

Fuzzy measures and integrals represent powerful tools for multiple crite-2

ria decision making, single and multiobjective optimisation and other areas3

in which explicit models of interaction between the variables or parameters is4
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important [8, 18]. Fuzzy measure values reflect relative contributions of not5

just individual variables but their subsets (called coalitions). Their signifi-6

cant modelling capacity comes at the cost of exponentially many parameters7

and even more relations between those parameters in the form of linear con-8

straints.9

Prominent classes of fuzzy measures include sub- and super-modular mea-10

sures, belief and plausibility measures, possibility and necessity measures,11

k-additive, p-symmetric, maxitive and minitive fuzzy measures and many12

alike. In this paper we focus on buoyant and antibuoyant fuzzy measures,13

which narrow down the classes of sub- and super-modular fuzzy measures14

[5, 6] and satisfy an important economic principle of regressive (progressive)15

transfers, also known as the Pigou–Dalton principle [14], see also [3]. An16

important consequence of this principle arises in mathematical optimisation:17

if an (anti)buoyant fuzzy measure is used to define an optimisation objective18

subject to linear constraints, the optimum is guaranteed to lie within one19

particular canonical simplex (out of n! simplices) of the simplicial partition20

of the domain [0, 1]n [1, 5].21

Construction and identification of various classes of fuzzy measures, in22

particular their random generation and/or fitting to the available data, is23

one problem arising from applications [4, 12, 16, 19]. For this it is impor-24

tant to find a suitable representation of fuzzy measures of a given class, so25

that the number of parameters and constraints is reduced. For the classes of26

(anti)buoyant fuzzy measures, as well as sub- and super-modular measures,27

the number of linear constraints is larger than those needed for simple mono-28

tonicity, which makes the task of learning such fuzzy measures from data not29

readily scalable.30

The {0, 1}-fuzzy measures have been studied by Combarro et al. [13, 25]31

as defining vertices of the convex polytope of fuzzy measures and for the32

purposes of random generation of fuzzy measures in learning contexts. Some33

subsets, such as k-additive fuzzy measures (k > 2) do not have vertices34

coinciding with vertices for general fuzzy measures and the convex polytopes35

are much more complex than the larger fuzzy measure set. The {0, 1}-fuzzy36

measures can be identified by their ‘minimum sets’, i.e., sets A such that37

ν(B) = 0 for all B ⊂ A and ν(B) = 1 for all B ⊇ A [25, 29].38

If a particular subset of fuzzy measures is a polytope, then it can be de-39

fined as the set of all convex combinations of the vertices of that polytope.40

Therefore, the elements of that subset can be represented through the coeffi-41

cients that correspond to the vertices, which is useful for learning the suitable42
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elements from data or their random generation. This approach was taken in43

[13] in the context of k-additive fuzzy measures.44

In the case of 2-additive fuzzy measures, all the vertices of that polytope45

are {0, 1}-fuzzy measures, but the sets of 3-additive and larger fuzzy measures46

involve many other vertices. Nevertheless, in learning and random generation47

thereof, it makes sense to identify and use a restricted subset of vertices, with48

the purpose of reducing the number of defining parameters and constraints,49

i.e., by using a suitable simplification.50

In this paper we follow a similar approach, relying on the fact that convex51

combinations of (anti)buoyant fuzzy measures remain in that class. Hence52

we construct various subsets of vertices of (anti)buoyant fuzzy measures and53

use their convex combinations as possible representations of those objects.54

Because of the duality between these two classes, we focus on the antibuoy-55

ant fuzzy measures. Analogously to reducing the number of parameters in56

regression, the reduced subsets of vertices limit the modelling capacity of the57

chosen subsets. On the other hand, the requirements of monotonicity and58

antibuoyancy are satisfied automatically and need not be enforced through59

(a large) number of additional constraints.60

Some vertices of the antibuoyant set of fuzzy measures can be identi-61

fied analogously to {0, 1}-measures, by setting the values at certain subsets62

to 0, and then determining the consequent maximum values of the fuzzy63

measure subject to antibuoyancy. It turns out that such fuzzy measures are64

p-symmetric and defined by (|A1|+1)×(|A2|+1)×· · ·×(|Ap|+1) values, with65

{A1, . . . , Ap} denoting the partition into sets of indifference (see Definition 666

below). Some of these can be generated automatically. In particular, algo-67

rithms will be presented for single minimum sets and two or more singletons,68

which result in there being two sets of indifference, A and N \ A.69

There are three contributions in this paper. Firstly, we construct subsets70

of vertices of antibuoyant fuzzy measures based on their desired cardinalities.71

Secondly, we study the behaviour of the randomly generated fuzzy measures72

based on convex combinations of these vertices. We propose three methods73

for generation of the antibuoyant measures: a) a method based on linear74

extensions, b) a method based on generating vertices randomly from the75

minimal sets, and c) a specific combination of these methods. Lastly, we76

formulate and solve the antibuoyant fuzzy measure learning problem from77

either empirical data or as an approximation to another more general fuzzy78

measure.79

The paper is structured as follows. In Section 2 we provide the basic80
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definitions needed for the rest of the paper. In Section 3, we determine spe-81

cific vertices of the polytope of antibuoyant fuzzy measures and their subsets.82

Section 4 treats in detail a method of random generation of antibuoyant fuzzy83

measures. Learning of antibuoyant fuzzy measures is considered in Section 5,84

which is followed by a discussion and conclusions.85

2. Preliminaries86

We focus on the learning of fuzzy measures satisfying antibuoyancy, which87

in turn are used to define the parameters of a Choquet integral.88

2.1. Fuzzy measures and the Choquet integral89

The Choquet integral [10] has received a great deal of attention in recent90

research, particularly for analysis and prediction tasks, e.g., see [15, 22, 23,91

28, 30]. As an averaging function, it has been shown to offer similar versatil-92

ity in modelling to neural networks and other machine learning techniques,93

while at the same time having a structure that offers both reliability and94

interpretability [4, 21].95

The parameters of the Choquet integral are given by an associated fuzzy96

measure.97

Definition 1. Let N = {1, 2, . . . , n}. A discrete fuzzy measure, or capacity,98

is a set function µ : 2N → [0, 1] satisfying monotonicity with respect to set99

inclusion, i.e., µ(A) ≤ µ(B) whenever A ⊂ B and with boundary conditions100

µ(∅) = 0 and µ(N) = 1.101

For any given input vector and fuzzy measure, the Choquet integral as-102

sociates weights according to the relative ordering of the inputs. Following103

[8, 18], we will use the concept of the discrete derivative to describe this.104

Definition 2. Let µ be a set function on N and A ⊆ N \{i}. The derivative105

of µ at A with respect to i is106

∆i µ(A ∪ {i}) = µ(A ∪ {i})− µ(A).

This allows us to express the calculation of the Choquet integral of a107

given vector x ∈ Rn
+ in the following way.108
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Definition 3. For a given fuzzy measure µ, the discrete Choquet integral109

Cµ : Rn
+ → R+ is given by110

Cµ(x) =
n∑

i=1

x(i) ∆(i) µ(Hi),

where x(1) ≤ · · · ≤ x(n) denotes an increasing permutation of the inputs and111

Hi = {(i), (i+ 1), . . . , (n)} is the set of corresponding indices from (i) up to112

(n).113

2.2. Classes of simplified fuzzy measures114

As evident from the preceding definitions, one of the challenges for the115

Choquet integral in practice is the exponentially increasing number of pa-116

rameters required to define the fuzzy measure, which is equal to 2n − 2 once117

we assume µ(∅) = 0 and µ(N) = 1. In response to this, special classes118

of fuzzy measure have been introduced that reduce the number of parame-119

ters required, or simplify the fitting problem in other ways. We present the120

definitions for k-additive and p-symmetric fuzzy measures here, which hold121

particular importance for some results and concepts that we will explore in122

subsequent sections.123

The class of k-additive fuzzy measures was introduced in [17, 24]. The124

most straightforward definition is based on the Möbius representation for125

fuzzy measures.126

Definition 4. For a fuzzy measure µ, its Möbius representation is given for127

each set A ⊆ N by,128

Mµ(A) =
∑
B⊆A

(−1)|A\B|µ(B).

In terms of the Möbius representation of a fuzzy measure, the Choquet129

integral can be calculated as a linear combination of the fuzzy measure values130

and a transformed dataset based on taking the minimum across all subsets,131

i.e., we have132

Cµ(x) =
∑
A⊆N

Mµ(A)min
i∈A

xi. (1)

The idea of k-additivity can be simply expressed as follows.133
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Definition 5. A fuzzy measure is said to be k-additive when for all A ⊆ N134

such that |A| > k, it holds that Mµ(A) = 0.135

This effectively reduces the number of unknowns from 2n − 2 to136

k∑
i=1

n!

i!(n− i)!
.

When k = 1, we have the case of additive fuzzy measures, which in turn137

results in the Choquet integral being equivalent to the weighted arithmetic138

mean, i.e.,139

WAM(x) =
n∑

i=1

wixi,

with all wi ≥ 0 and
n∑

i=1

wi = 1. The corresponding fuzzy measure will have140

singleton values µ({i}) = wi. With k = n we recover the case of general141

fuzzy measures.142

The class of p-symmetric fuzzy measures was introduced in [26]. These143

fuzzy measures rely on a partition of the inputs into distinct groupings re-144

ferred to as subsets of indifference.145

Definition 6. Given a subset A ⊆ N , we say that A is a set of indifference if146

and only if for all B1, B2 ⊂ A with |B1| = |B2| and every C ⊂ N\A it holds147

µ(B1 ∪ C) = µ(B2 ∪ C).148

From this, the definition of p-symmetric fuzzy measures can be given as149

follows.150

Definition 7. A fuzzy measure is said to be p-symmetric if and only if the151

coarsest partition of the universal set into sets of indifference is {A1, . . . , Ap}152

with Ai ̸= ∅ for all i ∈ {1, . . . , p}.153

The case of p = 1 corresponds with symmetric fuzzy measures where154

|A| = |B| implies µ(A) = µ(B) and which coincide with the ordered weighted155

averaging (OWA) operators [32]. This is usually expressed as156

OWA(x) =
n∑

i=1

wix(i),
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with the weights w = (w1, . . . , wn) being non-negative and summing to 1 as157

they do for the WAM, however here x(i) denotes a reordering of the inputs158

such that x(1) ≥ x(2) ≥ · · · ≥ x(n) (i.e., the opposite interpretation of the159

notation when used for the Choquet integral).160

For p-symmetric fuzzy measures, once the partition is known, the values161

assigned to each subset of N depend only on the number of members from162

each of the sets Ai and hence the number of unknowns reduces to (|A1| +163

1)× . . .× (|Ap|+ 1)− 2.164

2.3. Antibuoyant fuzzy measures165

The buoyancy property for fuzzy measures was proposed in [5] and applied166

to welfare and ecology problems in [6], and to discrete optimisation in [1].167

The buoyancy definition for OWA operators [33] requires the weighting vector168

to be non-increasing.169

Definition 8. An OWA operator is said to be a buoyancy measure if its170

weighting vector w satisfies the additional condition that wi ≥ wj for all171

i < j.172

This results in the largest weight being applied to the largest input and173

so on. We refer to such weight vectors w as buoyant and adopt the term174

antibuoyant where wi ≤ wj. For fuzzy measures, this property is required175

of all effective weighting vectors that can result from the different relative176

orderings of the input vector.177

As in [5], we adopt the notation wσ for these resulting vectors, i.e.,178

wσ = (∆(n) µ(Hn),∆(n−1) µ(Hn−1), . . . ,∆(1) µ(H1)

= (µ({(1)}), µ({(1), (2)})− µ({(1)}), . . . , µ(N)− µ(N\{(n)})

We can then define buoyant and antibuoyant fuzzy measures as follows.179

Definition 9. A fuzzy measure µ is buoyant if all ordered weighting vectors180

wσ associated with µ are buoyant. A fuzzy measure is antibuoyant if all181

ordered weighting vectors are antibuoyant.182

Example 1. For N = {1, 2, 3}, the fuzzy measure with values µ({1}) = 0.5,183

µ({2}) = 0.45, µ({3}) = 0.8, µ({1, 2}) = 0.75, µ({1, 3}) = µ({2, 3}) = 0.9,184

and µ({1, 2, 3}) = 1 is buoyant. The 3! potential weighting vectors wσ de-185

pending on the input ordering are: (0.5, 0.25, 0.25), (0.5, 0.4, 0.1), (0.45, 0.3, 0.25),186

(0.45, 0.45, 0.1), and (0.8, 0.1, 0.1) (twice).187
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Note that µ({3}) > µ({1, 2}) even though the cardinality is lower, i.e.,188

buoyant and antibuoyant fuzzy measures are not necessarily balanced.189

From hereon, we will be concerned with the antibuoyant case, where190

smaller weights are applied to larger inputs, since such weighting vectors are191

most important when considering the measures of diversity satisfying the192

Pigou–Dalton principle [14] often applied in economics [27] and ecology [31].193

In the welfare setting, the Pigou–Dalton principle requires that any re-194

distribution of wealth from a richer to poorer individual should increase195

overall measures of welfare (or decrease measures of inequality). For an196

input vector x1 ≥ x2 ≥ · · · ≥ xn, we can say that a function f satisfies197

the Pigou–Dalton principle if for all xi − h ≥ xj + h, h > 0 it holds that198

f(x1, . . . , xi, . . . , xj, . . . , xn) ≤ f(x1, . . . , xi − h, . . . , xj + h, . . . , xn). It is also199

referred to as the progressive transfers principle.200

We remark that while antibuoyancy is related to the convexity/concavity201

of the resulting Choquet integral, it is a stricter requirement since a Choquet202

integral can be concave (defined by a supermodular fuzzy measure [7, 10])203

without its associated fuzzy measure being antibuoyant [5]. The duals of204

buoyant fuzzy measures are antibuoyant and vice versa.205

2.4. Learning antibuoyant fuzzy measures206

The standard data-fitting problem with the Choquet integral assumes we
have a dataset consisting ofM input/output pairs (xm, ym) form = 1, . . . ,M .
We then aim to learn the values of a fuzzy measure µ such that the overall
difference between the actual outputs ym and predicted outputs Cµ(x

m) is
minimised. If the criteria for closeness is based on the least absolute devia-
tion, we have the objective [8]

Minimiseµ

M∑
m=1

|Cµ(x
m)− ym|.

For implementation, among other methods, this can be expressed as a lin-207

ear program by learning the Möbius values of the fuzzy measure and fitting208

to transformed input vectors with arguments min
i∈A

xi and arranged in cardi-209

nality ordering. The residuals are broken into their positive and negative210

components such that Cµ(x
m)− ym = r+m− r−m and |Cµ(x

m)− ym| = r+m+ r−m211

(see, e.g., [8]). Linear constraints are then imposed so that the fuzzy measure212

is monotone and satisfies the boundary condition µ(N) = 1.213
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For antibuoyant fuzzy measures, antibuoyancy requires constraints of the214

form215 ∑
B⊆A∪{i,j}
{i,j}⊆B

Mµ(B) ≥
∑

B⊆A∪{i}
i∈B

Mµ(B)−
∑

B⊆A∪{j}
j∈B

Mµ(B), (2)

for all i, j ∈ N and all A ⊆ N \ {i, j}.216

These constraints make the monotonicity constraints redundant, however217

many more are required.218

{1} {2} {3} {4}

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}

∅

Figure 1: Hasse Diagram for a fuzzy measure with n = 4

For illustration, consider the Hasse diagram in Fig. 1. Edges map to219

the discrete derivatives and hence the potential weights associated with each220

variable. In the case of general fuzzy measures, we merely require that each221

of these weights is non-negative and so the number of edges in the Hasse222

diagram corresponds with the number of weights.223

For antibuoyancy however, we need to look at pairs of adjacent edges224

between subsequent levels. At each level, there are

(
n
i

)
subsets, each with225 (

i
i− 1

)
= i edges leading to subsets below. Hence, the number of antibuoy-226

ancy constraints, which require comparison of adjacent edges at different227

levels, will be:228
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n∑
i=2

(
n
i

)
i(i− 1) =

n∑
i=2

n!

(i− 2)!(n− i)!
. (3)

For comparison, the number of monotonicity constraints is229

n∑
i=1

(
n
i

)
i =

n∑
i=1

n!

(i− 1)!(n− i)!
.

Table 1 shows the number of variables, monotonicity constraints and an-230

tibuoyancy constraints for each n = 2, . . . , 10. While the growth in the231

number of unknowns with increasing n is a challenge often cited, clearly the232

number of monotonicity constraints is also a problem for general fuzzy mea-233

sures and requiring the fuzzy measure to be antibuoyant exacerbates this234

problem further.235

Table 1: Number of variables, monotonicity and antibuoyancy constraints required when
fitting fuzzy measures to data

n variables monotonicity antibuoyancy
2 2 4 2
3 6 12 12
4 14 32 48
5 30 80 160
6 62 192 480
7 126 448 1344
8 254 1024 3584
9 510 2304 9216
10 1022 5120 23040

The following methods are hence targeted toward the learning of a suit-236

ably rich but simplified class of antibuoyant fuzzy measures such that the237

fitting problem is reduced.238

3. Vertices of the antibuoyant fuzzy measures polytope239

A key result that applies to general fuzzy measures as well as some spe-240

cial families is that they are closed under convex combinations. As observed241
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in, e.g., [25], this can be particularly useful in learning or random genera-242

tion since the result of any convex combination or weighted mean of fuzzy243

measures need not be checked to ensure properties such as monotonicity244

and boundary conditions are satisfied. Of interest then is understanding the245

extreme points or vertices of such sets, which define polytopes in a (2n− 2)-246

dimensional space or some subspace thereof. While previous studies [13, 25]247

have highlighted that the growth in the vertices presents a significant chal-248

lenge, there remains the potential for particular vertices and subsets of ver-249

tices to be useful both when it comes to learning particular types of fuzzy250

measures as well as for random generation.251

3.1. Vertices defining the polytope of general fuzzy measures252

Works such as [25, 29] have established that the vertices of the polytope253

defining the set of general fuzzy measures correspond with the set of {0, 1}-254

fuzzy measures, i.e., fuzzy measures whose sets are assigned a value of either255

0 or 1. As soon as one subset has a value of 1, all supersets will also be256

fixed at 1, so it has been shown that such fuzzy measures can be identified257

according to their minimum sets (by themselves or in combination), defined258

in [25] as sets A such that259

µ(A) = 1

µ(B) = 1,∀B ⊇ A

µ(C) = 0, ∀C ⊂ A.

The set of {0, 1}-fuzzy measures for n = 3 is shown in Table 2 along with260

the minimal sets defining them.261

Unfortunately, the number of vertices follows the sequence of the Dedekind262

numbers, 1, 4, 18, 166, 7579, 7828352, 2414682040996, 5.6×1022 [13] making it263

impossible to list or store the fuzzy measures even for modest values of n.264

Some fuzzy measure families can be expressed as convex sets defined by265

subsets of the {0, 1}-vertices. Some notable examples include:266

• additive fuzzy measures — defined by the vertices with a singleton as
the minimal set, i.e., for each i = 1, . . . , n,

µ(A) =

{
1, A ∋ i
0, otherwise.
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Table 2: List of all {0, 1}-fuzzy measures for n = 3 and their minimal sets

label {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3} minimal sets

u1 0 0 0 0 0 0 1 {1, 2, 3}
u2 0 0 0 0 0 1 1 {2, 3}
u3 0 0 0 0 1 0 1 {1, 3}
u4 0 0 0 0 1 1 1 {1, 3}, {2, 3}
u5 0 0 0 1 0 0 1 {1, 2}
u6 0 0 0 1 0 1 1 {1, 2}, {2, 3}
u7 0 0 0 1 1 0 1 {1, 2}, {1, 3}
u8 0 0 0 1 1 1 1 {1, 2}, {1, 3}, {2, 3}
u9 0 0 1 0 1 1 1 {3}
u10 0 0 1 1 1 1 1 {3}, {1, 2}
u11 0 1 0 1 0 1 1 {2}
u12 0 1 0 1 1 1 1 {2}, {1, 3}
u13 0 1 1 1 1 1 1 {2}, {3}
u14 1 0 0 1 1 0 1 {1}
u15 1 0 0 1 1 1 1 {1}, {2, 3}
u16 1 0 1 1 1 1 1 {1}, {3}
u17 1 1 0 1 1 1 1 {1}, {2}
u18 1 1 1 1 1 1 1 {1}, {2}, {3}

• symmetric fuzzy measures — defined by the symmetric {0, 1}-fuzzy
measures, i.e., for each i = 1, . . . , n,

µ(A) =

{
1, |A| ≥ i
0, otherwise.

Recall that Choquet integrals defined with respect to additive fuzzy mea-267

sures result in the WAM and when defined with respect to symmetric fuzzy268

measures, the Choquet integral is equivalent to the OWA.269

From Table 2, the vertices for n = 3 would be u9, u11, and u14 for additive270

fuzzy measures and u1, u8, and u18 for symmetric fuzzy measures. Another271

example is the set of belief measures, defined by the set of vertices that only272

have a single subset as their minimal subsets.273

Special classes such as the k-additive fuzzy measures are actually much274

more complex in their structure, having vertices that are not {0, 1}-fuzzy275

measures and growing at an even faster pace than the Dedekind numbers.276

However, while this is the case for k ≥ 3, the 2-additive case does allow277
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representation from a subset of the {0, 1}-fuzzy measure vertices. The set278

is comprised of the singleton and pair minimal sets, as well as the pairs of279

singletons. For n = 3, this would be vertices u2, u3, u5, u9, u11, u13, u14, u16, u17280

shown in Table 2. The number of such vertices for any given n is281

n+ 2

(
n
2

)
= n+ n(n− 1) = n2.

For purposes of learning, this is n(n − 1)/2 higher than the number of282

variables that would be required in the standard approach to learning 2-283

additive fuzzy measures using Möbius values, however there is an advantage284

in that we can do away with the monotonicity constraints.285

We let U = {µ1, . . . , µu} denote the subset of fuzzy measure vertices286

we wish to use, with |U| = u. Then, any convex combination of the fuzzy287

measures in U is given by288

µ =
u∑

i=1

ciµ
i

with
u∑

i=1

ci = 1 and ci ≥ 0 the set of coefficients.289

Hence, when it comes to fitting, rather than our variables being the indi-290

vidual weights of the fuzzy measure, we transform the data such that the ci291

are our decision variables, i.e., we have292

∑
A⊆N

(
u∑

i=1

ciµ
i(A)

)
min
j∈A

xj =
u∑

i=1

ci

(∑
A⊆N

µi(A)min
j∈A

xj

)
,

which is linear in c.293

Any subset of the {0, 1}-fuzzy measure vertices (or indeed any finite set294

of fuzzy measures) can hence be used as an approximation of the best-fitting295

fuzzy measure within the resulting convex set. We can arbitrarily choose any296

number of vectors to include in U, obtaining access to the full set of fuzzy297

measures once we have all vertices.298

While this approach may not be particularly advantageous when it comes299

to fitting general fuzzy measures, we will see that for antibuoyant fuzzy mea-300

sures we can use subsets of vertices to drastically reduce the difficulty of the301

fitting problem, albeit for simplified classes of antibuoyant fuzzy measures.302
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3.2. Antibuoyant vertices based on the {0, 1} vertices303

Evidently, the {0, 1}-fuzzy measures are not generally antibuoyant and so304

the vertices of the antibuoyant set would also be expected, like the k-additive305

fuzzy measures, to form a much more complex structure. However, just as306

the concept of minimal sets is used to identify the {0, 1}-fuzzy measures,307

we can use an approach based on zero-valued sets and p-symmetric fuzzy308

measures.309

Given µ(A) = 0 (or multiple sets A1, A2, . . . , etc.) and µ(B) > 0,∀B ⊃ A,310

we can set the µ(B) values to the largest values possible subject to antibuoy-311

ancy. Take the following example.312

Example 2. Let µ({1}) = 0 with all other values non-zero. The largest pos-313

sible assignment for supersets of {1} is such that we would obtain a weighted314

mean of the first two arguments, hence we have µ({1, 2}) = µ({1, 3}) = 1/2315

and µ({1, 2, 3}) = 1. From this, the maximum value that can be assigned316

to µ({2}) and µ({3}), based on being subsets of the previously determined317

pairs, is 1/4. This leaves us lastly to assign the value of µ({2, 3}), whose only318

superset is {1, 2, 3}, and whose subsets will weight 1/4 to the largest input.319

The largest value it can take is hence (1 + 1/4)/2 = 5/8.320

By proceeding in this way, we obtain fuzzy measures at the extremes of321

the antibuoyant set.322

Proposition 1. Fuzzy measures with all non-zero sets assigned the maximum323

values subject to the antibuoyancy condition are vertices of the antibuoyant324

fuzzy measures polytope.325

Proof. A fuzzy measure is a vertex if it cannot be obtained as a convex326

combination of two or more other vertices. We can first note that with327

the antibuoyancy condition, increases to any set µ(A) will never result in328

a decrease to permissible values of µ(B) for any B ⊃ A, as this would be329

equivalent to redistributing weight from smaller to larger inputs resulting in330

a violation of the Pigou–Dalton principle. This means we can contain our331

focus to local pairs A ⊂ B with |A| = |B| − 1. We hence consider two cases,332

(i) µ(A) = 0 < µ(B) and (ii) 0 < µ(A) < µ(B) and show that a convex333

combination µ = c1µ
1 + c2µ

2 with µ1 and µ2 distinct from µ cannot exist.334

Case (i). Clearly if µ1(A) > 0 or µ2(A) > 0 then µ(A) = 0 cannot be335

obtained as a convex combination. Further, if µ(A) = µ1(A) = µ2(A) = 0,336

then it is not possible for µ1(B) > µ(B) or µ2(B) > µ(B) because this would337
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imply that µ(B) is not set to the maximum value subject to antibuoyancy.338

We can also note that non-zero subsets of B do not affect the maximum value339

µ(B) can take if µ(A) = 0.340

Case (ii). Let us assume µ1(A) < µ(A) and hence µ2(A) > µ(A). This341

means that subsets C ⊂ A must also have a higher value associated with342

them in µ2 than in µ, otherwise µ(A) has not been assigned the maximum343

allowable value, which in turn means that either there is a set C ⊂ A such344

that µ(C) = 0 and µ2(C) > 0, or that one of the non-zero subsets is not set to345

its maximum in µ. Hence, µ cannot be obtained from a convex combination346

that involves µ2 unless c2 = 0.347

There will be a correspondence between each of these and the {0, 1}-fuzzy348

measures, i.e., they will have the same zero-valued sets, however it should be349

noted that this will by no means capture all of the antibuoyant vertices. For350

instance, in the previous example, assigning µ({2, 3}) = 1/2 (which is the351

minimum and not the maximum value once other values are set) is also an352

extreme point of the antibuoyant set, since it cannot be obtained by convex353

combinations of any other vertices.354

The aim is not to be able to exhaustively list all of the antibuoyant ver-355

tices, since, as is the case with k-additive and general fuzzy measures, this356

would be met with prohibitively high storage space required for implemen-357

tation. Rather, we aim to be able to quickly identify specific vertices that358

can then be used as vectors in U as described previously for fitting. In par-359

ticular, we might aim to find vertices analogous to those used to form the360

set of additive fuzzy measures, symmetric fuzzy measures or 2-additive fuzzy361

measures.362

3.3. Algorithmic generation of antibuoyant vertices based on zero-valued sets363

and p-symmetric fuzzy measures364

As it happens, vertices generated in the manner as described in Example 2365

are particular instances of p-symmetric fuzzy measures.366

Let us assume we have an antibuoyant fuzzy measure corresponding with367

one of the {0, 1}-fuzzy measures such that µ(A) = 0 and non-zero for all368

subsets B such that B ̸⊆ A. Then, there will be two sets of indifference, A369

and N\A. This means there will be (|A| + 1)(n− |A| + 1) values that need370

to be assigned, which can be achieved according to the following algorithm.371

The algorithm sets up the (n − |A| + 1) × (|A| + 1) matrix holding the372

values of the p-symmetric fuzzy measure. The columns correspond with the373
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Algorithm 1 Generation of a p-symmetric antibuoyant vertex

Input n,A ▷ A is the largest zero-set
Output µ

a← |A|
b← n− a
Initialise (b+ 1)× (a+ 1) matrix P , with Pi,j = 0, ∀i, j
for i = 2, 3, . . . , b+ 1 do

Pi,a+1 ← (i− 1)/b ▷ Values assigned to supersets of A
end for
for j = a, a− 1, . . . , 1 do

for i = 2, 3, . . . , b+ 1 do
Pi,j ← (Pi−1,j + Pi,j+1)/2 ▷ Mean of entries to the right and above

end for
end for
for B ⊆ N do

i← |B \ A|+ 1
j ← |B ∩ A|+ 1
µ(B)← Pi,j

end for
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number of elements from the zero-valued set A, while rows correspond with374

the number of elements from the non-zero set. The entries across the first row375

(subsets of A) will all be zero, and then values are assigned to the supersets of376

A so that the weights along this simplex will be equally distributed between377

the smallest (n−|A|) inputs. The algorithm then proceeds along the matrix,378

top to bottom and right to left, assigning the mean of the upper and right379

entries.380

Here is an example of how the algorithm is applied.381

Example 3. Let A = {1, 2, 3} for n = 5. Then we have a (2 + 1)× (3 + 1)382

matrix P . Results from the following steps are shown in Figure 2.383

Step 1) We know that all subsets B ⊆ A will satisfy µ(B) = 0.384

Step 2) We then fill down the last column with an arithmetic sequence385

ending in 1.386

Step 1)

0 1 2 3
0 0 0 0 0
1
2

Step 2)

0 1 2 3
0 0 0 0 0
1 1/2
2 1

Step 3)

0 1 2 3
0 0 0 0 0
1 1/4 1/2
2 5/8 1

Step 4)

0 1 2 3
0 0 0 0 0
1 1/16 1/8 1/4 1/2
2 7/32 3/8 5/8 1

Figure 2: Calculation of the entries in the matrix P from Example 3

Step 3) Starting on the second row and the second last column (the cell387

corresponding with 2 elements from A and 1 element not from A), we assign388

the average of the cell to the right and above.389

Step 4) This continues until we complete the entire matrix.390

After the matrix is obtained, the corresponding fuzzy measure values are391

determined based on how many of the elements come from A and how many392

come from N\A.393

Note that after the zero-valued subsets are assigned, this process ensures394

the subset values will be as large as possible and hence will produce a fuzzy395
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measure that sits at the extreme of the antibuoyant set, i.e., a vertex. Taking396

the average of the cells above and right results in subsequent weights from397

the associated simplex having values wk = Pi,j−Pi−1,j = Pi,j+1−Pi,j = wk−1.398

Hence the effective weight for the larger input wk, or the value assigned to399

the subset of lower cardinality, will be as large as possible. Then, due to400

the averaging property, we also know that these weights will be between401

the weights resulting from values already assigned that result from adding402

the elements in the reverse ordering, i.e., Pi−1,j+1 − Pi−1,j ≤ wk = wk−1 ≤403

Pi,j+1−Pi−1,j+1. The antibuoyancy property can be seen to be satisfied since404

the wk resulting from proceeding right from an entry Pi,j will be guaranteed405

to be lower or equal to the next step going down from Pi,j+1, since Pi,j+1 −406

Pi−1,j+1 ≤ Pi+1,j+1 − Pi,j+1.407

This process allows us to create antibuoyant fuzzy measures correspond-408

ing with the {0, 1}-fuzzy measures with singleton minimum sets and which409

form the vertices of the additive fuzzy measures, i.e., the minimum set {1}410

would correspond with the defining zero-set being A = N\{i}. In fact, note411

for these that n − |A| = 1 and hence the matrix will only have two rows,412

with the non-zero entries simply being 1/2|A|+1−j or µ(B) = 1/2n−|B| for all413

B ⊇ {i}.414

We emphasise that these fuzzy measures are not themselves additive, but415

rather give the extreme case of assigning as much value as possible to a416

single variable, whilst maintaining the antibuoyancy property. For a chosen417

{i} being the non-zero singleton set, we can observe that the corresponding418

input will always be assigned as much weight as possible in weight vectors419

resulting from µ. We have420

µ(A)− µ(A\{i}) > µ(A)− µ(A\{j}),

for all A ⊇ {i, j}, i ̸= j, since it will always hold that µ(A\{i}) = 0 and421

µ(A\{j}) > 0.422

It is informative to look at the Shapley values associated with such fuzzy423

measures. Shapley values (see, e.g., [8, 18, 20]) are often used to interpret424

and understand the overall behaviour of fuzzy measures, giving an idea of425

the average importance or weight assigned to a particular input depending426

on the relative order. The calculation in standard representation is427

ϕ(i) =
∑

A⊆N\{i}

(n− |A| − 1)!|A|!
n!

[µ(A ∪ {i})− µ(A)],
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which we see averages the discrete derivatives involving i across the fuzzy428

measure. Table 3 gives the ratio of importance as measured by the Shapley429

value ϕ(i) for the antibuoyant vertices generated from zero-sets N\{1} for430

n = 2, . . . , 5.431

Table 3: Maximum importance allocation to a single input subject to antibuoyancy

n Ratio of Shapley values
2 3:1
3 14:5:5
4 45:17:17:17
5 124:49:49:49:49

These ratios help show the maximum diversity that can be achieved when432

distributing importance amongst the variables for the class of antibuoyant433

fuzzy measures.434

The vertices with minimal sets defined by pairs of singletons can also be435

found using Algorithm 1. In this case, the defining zero-set will be A =436

N\({i} ∪ {j}). Example 3 above gives one such instance.437

Note that for an analogue of 2-additive fuzzy measures, we require min-438

imum sets made up from the singletons, pairs of singletons, and each of the439

pairs by themselves. While the singletons and pairs of singletons can be440

generated using Algorithm 1, generating vertices based on pairs will proceed441

slightly differently. We still obtain two sets of indifference, with A = N\{i, j}442

being our zero-set and {i, j} corresponding with the minimum set. We then443

proceed in a similar fashion, except that now both of the first two rows of the444

matrix are pre-filled with zeros. This is because we only have value assigned445

once both i and j are in the set. These antibuoyant fuzzy measures are hence446

also fairly simple, with supersets B ⊇ A having value µ(B) = 1/2n−|B|.447

There are, of course, many other types of vertices, some of which would448

correspond with combinations of minimum sets and zero-sets, however we will449

not consider these here. With the exception of combinations of singletons,450

such fuzzy measures would often require more than two sets of indifference,451

and hence we no longer have the option of averaging the pairs of adjacent cells452

in the matrix P . While noting this, we will see that the p-symmetric fuzzy453

measures that can be easily generated using Algorithm 1 might be sufficiently454

useful for contributing importance to certain variables, and in combination455

with the symmetric antibuoyant fuzzy measures may be adequate for suitable456

approximations determined by the set of fuzzy measures in U.457
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4. Random generation of antibuoyant fuzzy measures458

In [6], some basic random generation methods for antibuoyant and buoy-459

ant fuzzy measures were proposed. One approach consisted of taking random460

values within each cardinality and then using those values to determine sub-461

sequent intervals as cardinality is increased. This can only produce balanced462

fuzzy measures, i.e., fuzzy measures such that if |A| > |B|, then µ(A) ≥ µ(B),463

and so an augmentation method was suggested whereby convex combination464

with extreme measures, such as those corresponding with only supersets of465

the singletons being non-zero, were taken.466

Here we propose some further options, in particular by adapting the linear467

extension approach such as the one that has been used for general fuzzy468

measures in [2, 9, 11, 12].469

4.1. Linear extensions for fuzzy measures470

Fuzzy measures define a partial order over all subsets of N . There are471

many complete orders compatible with this partial order, and of course, any472

completely defined fuzzy measure (with distinct values) will be associated473

with one of these orderings.474

The main steps of linear extension approaches to generating random fuzzy475

measures is to, first, determine a random linear extension compatible with the476

partial order, and then assign values based on a sorted uniform distribution477

on [0, 1]2
n−2 with the value of µ(N) set to 1, or alternatively the values can478

be generated on [0, 1]2
n−1 and then normalised.479

An important aspect of such approaches is the probabilities with which480

the linear extensions are generated, so that they converge towards a uniform481

distribution, which in turn makes them suitable for experimentation without482

bias concerns.483

4.2. Algorithm for generating random values484

Any antibuoyant fuzzy measure will also be associated with a linear ex-485

tension of the fuzzy measure, and indeed, for any linear extension, there will486

be a number of potential random assignments of antibuoyant fuzzy measure487

values.488

However, while the monotonicity requirements are satisfied with any489

sorted vector of values assigned to the linear extension, there are further490

requirements when it comes to antibuoyancy. The approach we take starts491

with the linear extension, and then assigns values in order, storing the weights492
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corresponding with the edges into each subset in the corresponding Hasse di-493

agram and using this to set the minimum value. Algorithm 2 is given, with494

L denoting the linear extension, i.e., with each Li a given set and Li ≺ Li+1495

consistent with the partial ordering. The vector d is intended to be calcu-496

lated from a sorted randomly generated vector r with di = ri − ri−1 and497

r0 = 0 by convention.498

Algorithm 2 Random generation of an antibuoyant fuzzy measure

Input L,d ▷ A linear extension for a given n and a vector of differences
Output µ

Initialise µ(A)← 0, edgesInto(A)← 0, for all A
for i = 1, 2, . . . , 2n − 1 do

A← Li

minVal(A)← max

{
max
B⊆N

µ(B),max
B⊆A

(µ(B) + edgesInto(B))

}
µ(A)← minVal(A) + di
if |A| = 1 then

edgesInto(A)← µ(A)
else

edgesInto(A)← µ(A)− min
B⊂A,|B|=|A|−1

µ(B)

end if
end for
µ(A)← µ(A)/µ(N), for all A

As well as being capable of generating random antibuoyant fuzzy mea-499

sures corresponding with linear extensions, the same algorithm can also be500

used to generate vertices of the antibuoyant set, by setting d such that all501

values are zero except one di, which is set to 1. Once normalised, this gives502

the fuzzy measure on the given simplex corresponding with the linear exten-503

sion, with all sets L1, . . . , Li−1 assigned a zero value, and all Li+1, . . . , N are504

minimised subject to Li.505

Of course due to the closure of antibuoyant fuzzy measures, it is always506

possible to use a number of different random generation methods and then507

take a convex combination.508
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4.3. Balanced and unbalanced antibuoyant fuzzy measures509

The random generation method described tends toward generating fuzzy510

measure values with minimum-like behaviour and the majority of weight511

allocated to higher subsets. This is due to there being more jumps required512

whenever a subset is preceded by a subset of higher cardinality in the linear513

extension.514

For n = 3, subject to permutations or relabelling of the inputs, there are515

only two unique linear extensions, i.e.,516

{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3},

and517

{1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}.

The first type will always result in balanced fuzzy measures, and hence we518

would expect these to be distributed around the distribution of symmetric519

antibuoyant fuzzy measures. We make the observation that if µ({1}) = t then520

µ({1, 2} ≥ 2t and µ({1, 2, 3}) ≥ 3t. On the other hand, if µ({1}) = t in the521

unbalanced extension, then µ({1, 2}) ≥ 2t, µ({1, 3}) ≥ 4t (since µ({3}) ≥ 2t)522

and µ({1, 2, 3}) ≥ 7t since µ({1, 3})− µ({1}) ≥ 3t.523

This discrepancy is further exacerbated for n = 4. For balanced fuzzy524

measures, we have µ({1}) = t → µ({1, 2, 3, 4}) ≥ 4t, while in the extreme525

case of the linear extension corresponding with the binary order of subsets,526

µ({1}) = t → µ({1, 2, 3, 4}) ≥ 100t. Even if only one of the pairs is out of527

order, i.e., we have {3, 4} out of position such that528

{1}, . . . , {2, 4}, {1, 2, 3}, {3, 4}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4},

then just with this change it follows that µ({1}) = t→ µ({1, 2, 3, 4}) ≥ 8t.529

We therefore may wish to do some adjustment so that the value distribu-530

tion is not so extreme. We can take convex combinations of our generated531

fuzzy measure with other symmetric fuzzy measures. This is appropriate if532

we want the distribution of our randomly generated values to be closer to533

resembling the distribution of symmetric antibuoyant fuzzy measures. The534

additive symmetric fuzzy measure is one option that should disrupt the dif-535

ference in values between subsets as little as possible. Coefficients can be536

selected at random, or we can employ fitting so that the overall behaviour537

22



is targeted towards a specific fuzzy measure. For example, we can follow538

the steps in Algorithm 3, which supposes a randomly generated antibuoyant539

fuzzy measure µr and a randomly generated antibuoyant weight vector w.540

Algorithm 3 Random generation of an antibuoyant fuzzy measure with
cardinality index adjustment

Input µr,w ▷ A randomly generated fuzzy measure using Algorithm 2 and
random weight vector
Output µ

Initialise µs ▷ This will hold the values of a symmetric antibuoyant
fuzzy measure
Sort w in such a way that w1 ≤ w2 ≤ · · · ≤ wn

for i = 1, 2, . . . , n do

µ(A)←
i∑

j=1

wj, for all |A| = i

end for
c1, c2 ← argmin

c1,c2
∥µs − (c1µ

a + c2µ
r)∥

µ← (c1µ
a + c2µ

r)

The values of c1, c2 are found using linear fitting as will be described in541

the next section, with U consisting of a randomly generated fuzzy measure542

along with the additive and symmetric fuzzy measure µa, and the target543

fuzzy measure being µs, which is determined randomly. The aim here is544

toward ensuring that the antibuoyant fuzzy measures generated are uniform545

in their associated cardinality indices and not as extreme.546

5. Learning experiments547

Different choices for the set of fuzzy measures in U will clearly affect the548

modelling capability and fitting complexity. The two main aims for our exper-549

imentation here are, firstly, to compare different choices of U when it comes550

to modelling accuracy, and secondly, to assess whether or not the approach551

of fitting convex combinations of antibuoyant vertices provides adequate per-552

formance for applications. We hence perform two sets of experiments toward553

these aims.554
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5.1. Fitting experiments 1: fitting to random fuzzy measures555

In the first set of experiments, we generate a random antibuoyant fuzzy556

measure and try to learn the values directly using different subsets of an-557

tibuoyant fuzzy measure vertices. In this case, given the randomly generated558

antibuoyant fuzzy measure µr and the set of antibuoyant vertices in U, we559

optimise the following with respect to c:560

Minimise
∑
A⊆N

(n− |A|)!|A|!
n!

∣∣∣∣∣µr(A)−
u∑

i=1

ciµ
i(A)

∣∣∣∣∣ (4)

s.t.
u∑

i=1

ci = 1

ci ≥ 0, ∀i.

The coefficient of the absolute differences scales the absolute differences561

between target and fitted fuzzy measure values according to the number562

of subsets for each cardinality. Our main aim is to compare the relative563

performance of different set choices for U, which are summarised in Table 4.564

As noted previously, antibuoyant fuzzy measures randomly generated us-565

ing the linear extension method in Algorithm 2 tend to have very low values566

for smaller subsets. To understand some of the bias associated with the dif-567

ferent choices of U, we generated the random fuzzy measures µr using two568

approaches with 100 experiments each. The first approach used Algorithm569

2 as is, and then in the second approach we augmented each of those mea-570

sures by taking a weighted average of the generated µr and the additive and571

symmetric fuzzy measure. The augmented fuzzy measures hence moderate572

the extreme tendency of weighting toward the subsets of larger cardinality,573

but will obviously favour any U that includes the additive symmetric fuzzy574

measure (i.e., sym and add+sym).575

Results for the 100 randomly generated antibuoyant fuzzy measures using576

the standard approach are shown in Table 5 while results for the augmented577

fuzzy measures are shown in Table 6.578

Values in the tables are rounded to three decimal places with the mean re-579

sult of the 100 experiments in each case summarised along with the standard580

deviation. The tables are split between random and non-random methods,581

with bold denoting the best overall performance across all 8 choices of U.582
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Table 4: Sets of antibuoyant vertices to construct U

name |U| description of vertices included

add n analogue of vertices resulting in the WAM,
i.e., Algorithm 1 with A = N \ {i}, i =
1, . . . , n

sym n analogue of vertices resulting in the OWA,
i.e., µ(A) = 0 if |A| < i and µ(A) = (|A| −
i+ 1)/(n− i+ 1) otherwise, i = 1, . . . , n

add+sym 2n analogues of both WAM and OWA included

2add n2 analogue of the 2-additive vertices, i.e., Al-
gorithm 1 with A = N \ {i}, i = 1, . . . , n (as
with add), A = N \ {i, j} for all pairs, and
vertices with only sets A ⊇ {i, j} having a
non-zero value and set to maximum (see de-
scription in Section 3.3)

rand1 n or n2 random set of vertices generated using Algo-
rithm 1 with the zero-set A chosen randomly
each time (for n = 3 only the six non-empty
sets A ⊂ N are used instead of using n2)

rand2 n or n2 random set of vertices generated using Al-
gorithm 2 with a randomly generated linear
extension and d = (0, . . . , 0, 1, 0, . . . , 0) with
di = 1 in a random position

The values themselves represent the objective given in (4), and so should be583

considered taking the value of n into account.584

For fuzzy measures generated using the linear extension approach in Al-585

gorithm 2, the 2add set performed the best overall for lower values of n, but586

was outperformed by the add+sym set for n > 6. It was also outperformed587

by the rand2 approach with |U| = n2 (matching the number of variables588

used). A reasonable explanation as to why we see these results is the ten-589
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Table 5: Antibuoyant fuzzy measures generated using the linear extension method – mean
(sd) weighted accuracy fitting to 100 random µr

Subsets of vertices defining particular classes
n add sym add+sym 2add

3 0.133 (0.071) 0.105 (0.045) 0.037 (0.019) 0.023 (0.020)
4 0.160 (0.069) 0.141 (0.048) 0.071 (0.023) 0.045 (0.020)
5 0.181 (0.065) 0.141 (0.040) 0.107 (0.026) 0.082 (0.032)
6 0.223 (0.066) 0.156 (0.038) 0.140 (0.034) 0.115 (0.034)
7 0.264 (0.063) 0.147 (0.035) 0.143 (0.034) 0.151 (0.033)
8 0.328 (0.075) 0.157 (0.029) 0.156 (0.029) 0.185 (0.044)

Subsets of vertices chosen randomly

random vertices method 1 random vertices method 2
n |U | = n |U | = n2 |U | = n |U | = n2

3 0.123 (0.074) 0.035 (0.023) 0.176 (0.082) 0.073 (0.047)
4 0.193 (0.089) 0.061 (0.026) 0.179 (0.073) 0.093 (0.041)
5 0.292 (0.126) 0.142 (0.049) 0.190 (0.067) 0.114 (0.036)
6 0.479 (0.177) 0.265 (0.080) 0.166 (0.045) 0.101 (0.027)
7 0.602 (0.207) 0.340 (0.090) 0.152 (0.036) 0.097 (0.021)
8 0.784 (0.295) 0.424 (0.117) 0.147 (0.030) 0.093 (0.019)

dency of the linear extension method to generate fuzzy measures that tend590

more toward minimum-like behaviour, and hence which have less variability591

between subsets of the same cardinality. These antibuoyant fuzzy measures592

are therefore closer to being symmetric, which is why both sym and add+sym593

exhibit good performance for larger n. The performance of the rand2 set on594

the other hand can be put down to the random vertices being generated in595

the same way as the random fuzzy measure, which makes them more likely596

to exhibit similar overall behaviour.597

When it comes to the second round of experiments where the random598

fuzzy measures are augmented by mixing with the symmetric and additive599

fuzzy measure, the add+sym set produced the best overall results, achiev-600

ing slightly better results than the sym set. This is not surprising since,601

as mentioned, U in the case of both sym and add+sym includes the addi-602

tive symmetric fuzzy measure. It is worthy to observe here that 2add now603

has better performance compared to the rand2 method (although somewhat604

worse than the sym sets). This further supports the presumption with the605

first set of 100 experiments that the rand2 performance was due to the sim-606
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Table 6: Antibuoyant fuzzy measures generated using augmented method – mean (sd)
weighted accuracy fitting to 100 random µr

Subsets of vertices defining particular classes
n add sym add+sym 2add

3 0.235 (0.096) 0.079 (0.038) 0.027 (0.014) 0.041 (0.032)
4 0.321 (0.137) 0.109 (0.043) 0.054 (0.020) 0.100 (0.057)
5 0.377 (0.189) 0.106 (0.035) 0.079 (0.023) 0.166 (0.092)
6 0.427 (0.213) 0.113 (0.033) 0.096 (0.027) 0.241 (0.108)
7 0.474 (0.256) 0.111 (0.033) 0.105 (0.031) 0.306 (0.153)
8 0.633 (0.342) 0.113 (0.031) 0.112 (0.031) 0.456 (0.222)

Subsets of vertices chosen randomly

random vertices method 1 random vertices method 2
n |U | = n |U | = n2 |U | = n |U | = n2

3 0.123 (0.072) 0.045 (0.030) 0.194 (0.091) 0.070 (0.052)
4 0.145 (0.066) 0.051 (0.019) 0.243 (0.135) 0.113 (0.064)
5 0.209 (0.089) 0.095 (0.030) 0.364 (0.161) 0.246 (0.125)
6 0.276 (0.092) 0.164 (0.046) 0.493 (0.188) 0.414 (0.174)
7 0.394 (0.130) 0.231 (0.066) 0.593 (0.285) 0.516 (0.268)
8 0.516 (0.179) 0.306 (0.078) 0.798 (0.383) 0.726 (0.366)

ilar way in which the fuzzy measures included were generated. The rand1607

has improved performance in this case, generating vertices that are likely to608

have more deviation between subsets of the same cardinality and less-close609

to symmetric fuzzy measures.610

Before moving to the second set of experiments, it is worth noting that611

even the seemingly high values for n = 8 for some choices of U should be612

interpreted in context. Recall that these are weighted sums across the entire613

fuzzy measure, and so even the worst performance of 0.798 only reflects an614

average difference for each cardinality to be around 0.1, or alternatively can615

be compared to the difference between the minimum fuzzy measure and the616

additive symmetric fuzzy measure, which would be 3.5.617

5.2. Fitting experiments 2: fitting to random data sets618

The aim of the second set of experiments is to compare the performance619

for each choice of U against the general fitting approach with constraints.620

Using the latter approach would clearly always be able to identify the ran-621

domly generated µr perfectly when fitting direct to the fuzzy measure values,622
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and so for the comparison we use the same µr from the previous experiments623

to generate random datasets and then add noise.624

First, n-dimensional vectors xm,m = 1, . . . , 100, are randomly generated625

from a multivariate uniform distribution on [0, 1]n, and then random noise626

δ with mean 0 and standard deviation 0.05 is added to the outputs so that627

ym = Cµr(xm) + δm. We generate 2× 2n data observations for each dataset628

so that there are at least two times as many data points as variables, and629

when adding noise, we limit ym so that it lies between 0 and 1. We then630

compare the fitting accuracy of the vertex-based methods with the general631

fitting subject to constraints approach. Here the optimisation problem being632

solved for the different U is633

Minimise
1

100

100∑
m=1

∣∣∣∣∣ym −
u∑

i=1

ciCµi(xm)

∣∣∣∣∣ (5)

s.t.
u∑

i=1

ci = 1

ci ≥ 0, ∀i.

The general fitting approach fits with respect to the fuzzy measure values634

as decision variables with constraints of the form given in (2). The objective635

in both cases is minimising the sum of positive and negative residual compo-636

nents r+m+ r−m. The results for the same fuzzy measures (generated using the637

linear extension as well as the augmented version) are shown in Tables 7 and638

8. The best performing of the 8 choices for U are bolded, and the results639

for the general fitting with constraints approach are reproduced as the last640

column in both tables as the baseline measure. Results in this case represent641

the sum of absolute residuals, so can be interpreted against the number of642

data which is 2× 2n (although note that the standard deviation is based on643

the distribution of the total objective sums).644

In terms of comparing the different choices of U, the results and differ-645

ences for these experiments are consistent with those when fitting directly to646

the fuzzy measures. The 2add analogue works best for lower values of n when647

the linear extension method is used and add+sym gives good performance648

in both cases (although it has an advantage in the augmented case).649

It can be observed that the best non-random methods are within about650

10% of the error achieved by general fitting with constraints. Thus, depend-651

ing on the reduction of variables desired, choices of U that either combine652
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Table 7: Antibuoyant fuzzy measures generated using the linear extension method – mean
(sd) accuracy fitting to 100 random µr

Subsets of vertices defining particular classes
n add sym add+sym 2add general

3 0.735 (0.218) 0.698 (0.200) 0.546 (0.117) 0.533 (0.123) 0.497 (0.121)
4 1.484 (0.291) 1.488 (0.288) 1.210 (0.202) 1.156 (0.193) 1.064 (0.184)
5 2.837 (0.466) 2.840 (0.318) 2.515 (0.252) 2.395 (0.261) 2.181 (0.227)
6 5.997 (0.776) 5.740 (0.452) 5.290 (0.379) 5.042 (0.378) 4.599 (0.351)
7 12.368 (1.412) 11.205 (0.575) 10.635 (0.544) 10.421 (0.589) 9.404 (0.435)
8 25.933 (2.599) 21.909 (0.944) 21.166 (0.808) 21.563 (1.317) 19.023 (0.583)

Subsets of vertices chosen randomly

random vertices method 1 random vertices method 2 general
n |U | = n |U | = n2 |U | = n |U | = n2

3 0.758 (0.226) 0.554 (0.123) 0.833 (0.261) 0.601 (0.155) 0.497 (0.121)
4 1.677 (0.495) 1.197 (0.214) 1.649 (0.343) 1.275 (0.221) 1.064 (0.184)
5 4.090 (1.209) 2.710 (0.376) 2.968 (0.511) 2.552 (0.296) 2.181 (0.227)
6 9.886 (3.010) 6.517 (0.976) 5.769 (0.584) 5.173 (0.406) 4.599 (0.351)
7 21.048 (6.481) 13.971 (2.108) 11.007 (0.550) 10.311 (0.520) 9.404 (0.435)
8 47.469 (13.042) 31.053 (5.505) 21.571 (1.119) 20.330 (0.728) 19.023 (0.583)

the sym and add vertices, or even the sym and 2add vertices, seem quite653

capable of giving good modelling performance. This is despite requiring far654

fewer variables and only requiring a single monotonicity constraint in fitting.655

6. Discussion656

Addressing the complexity of the fitting problem when modelling with657

fuzzy measures and the Choquet integral is a key challenge for practical im-658

plementation and broader uptake in the research community. A number of659

useful simplifications have been introduced to reduce the number of variables660

required and complexity of the fitting problem, however if a new concept such661

as antibuoyancy cannot be expressed or contained to these reduced and sim-662

plified representations, it puts us back at square one. While requiring even663

more fitting constraints in the general approach, in the above we have demon-664

strated that there are useful strategies allowing the modelling and analysis of665

data with antibuoyant fuzzy measures. While such fuzzy measures seem to666

form a relatively narrow sub-class, we know that the antibuoyancy property,667
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Table 8: Antibuoyant fuzzy measures generated using augmented method – mean (sd)
weighted accuracy fitting to 100 random µr

Subsets of vertices defining particular classes
n add sym add+sym 2add general

3 0.922 (0.313) 0.641 (0.158) 0.532 (0.112) 0.540 (0.142) 0.486 (0.122)
4 2.028 (0.628) 1.313 (0.217) 1.134 (0.156) 1.216 (0.222) 1.016 (0.156)
5 4.362 (1.476) 2.707 (0.297) 2.444 (0.268) 2.775 (0.609) 2.192 (0.266)
6 8.568 (2.950) 5.388 (0.432) 5.040 (0.363) 5.813 (1.119) 4.582 (0.336)
7 17.111 (6.352) 10.802 (0.629) 10.333 (0.533) 12.292 (2.823) 9.565 (0.516)
8 38.872 (16.383) 21.410 (0.848) 20.691 (0.726) 28.193 (9.023) 19.473 (0.728)

Subsets of vertices chosen randomly

random vertices method 1 random vertices method 2 general
n |U | = n |U | = n2 |U | = n |U | = n2

3 0.697 (0.181) 0.553 (0.136) 0.834 (0.296) 0.607 (0.159) 0.486 (0.122)
4 1.437 (0.323) 1.112 (0.158) 1.646 (0.454) 1.325 (0.255) 1.016 (0.156)
5 3.073 (0.716) 2.471 (0.296) 4.205 (1.411) 3.379 (1.047) 2.192 (0.266)
6 6.442 (1.515) 5.247 (0.520) 9.228 (3.039) 7.902 (2.492) 4.582 (0.336)
7 13.677 (3.583) 11.376 (1.709) 20.072 (7.925) 17.718 (6.573) 9.565 (0.516)
8 28.466 (9.303) 22.557 (2.659) 46.832 (19.402) 42.615 (18.205) 19.473 (0.728)

or equivalently the Pigou–Dalton principle, make these very attractive for668

a wide variety of applications in domains including economics, ecology, and669

even bibliometrics [4, 16].670

The results of experiments conducted here have shown that, in terms671

of fitting performance, the symmetric class of antibuoyant fuzzy measures672

are already capable of fitting to datasets where antibuoyancy is assumed,673

however whether stemming from desirability or practical observation, there674

may be a need for non-symmetric behaviour to be incorporated. For this,675

we have proposed the use of vertices analogous to those that define the sets676

of additive and 2-additive fuzzy measures, respectively. Allowing convex677

combination with these vertices allows a richer behaviour where not only the678

size of the inputs but also the importance of the variables to which they679

pertain is taken into account.680

Depending on how much it is desired that the size of the fitting problem681

be reduced, we would hence recommend to firstly incorporate the symmetric682

vertices, and then incorporate more of the vertices from our other choices of683

U. For n = 8, we note that even combining the sym and 2add sets would684
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still reduce the number of unknown variables from 254 to 72 and only require685

one monotonicity constraint.686

7. Conclusion687

We examined three problems associated with the class of antibuoyant688

fuzzy measures that are related to the Pigou–Dalton progressive transfers689

principle and which represent a subset of supermodular fuzzy measures.690

Firstly, we established a subset of extreme points of antibuoyant fuzzy mea-691

sures, analogous to the {0, 1}-fuzzy measures, which can be used to define a692

sufficiently rich class of antibuoyant measures through convex combinations.693

Secondly, we proposed three methods for efficient random generation of an-694

tibuoyant fuzzy measures of that subclass, which will be useful in performing695

simulation studies involving non-additive but convex aggregation of inputs.696

Thirdly, we also formulated and proposed algorithms for fitting antibuoyant697

fuzzy measures to either a set of empirical values, or to a more general fuzzy698

measure. The latter serves the purpose of finding the best approximation699

of a given fuzzy measure by an element of a particular subclass, which pro-700

vides a reasonable simplification that satisfies some stipulated conditions. In701

the context of supermodularity and antibuoyancy, these conditions represent702

types of convexity, and convexity plays an extremely important role in op-703

timisation problems. In particular, optimising a piecewise linear objective704

expressed as the Choquet integral (and hence accounting for interactions be-705

tween the variables), general fuzzy measures lead to a difficult multiextremal706

problem, supermodular fuzzy measures lead to a convex problem that can be707

expressed through (a large) linear programming problem, while antibuoyant708

fuzzy measures lead to a much smaller linear program that allows solution in709

polynomial time. Of course, by duality we obtain the corresponding results710

for buoyant fuzzy measures.711
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