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Abstract

Question-and-answer (Q&A) sites improve access to information and ease transfer of

knowledge. In recent years, they have grown in popularity and importance, enabling

research on behavioural patterns of their users. We study the dynamics related to the

casting of 7M votes across a sample of 700k posts on Stack Overflow, a large community

of professional software developers. We employ log-Gaussian mixture modelling and

Markov chains to formulate a simple yet elegant description of the considered

phenomena. We indicate that the inter-event times can naturally be clustered into 3

typical time scales: those which occur within hours, weeks, and months and show how

the events become rarer and rarer as time passes. It turns out that the posts’ popularity

in a short period after publication is a weak predictor of its overall success, contrary to

what was observed, e.g., in case of YouTube clips. Nonetheless, the sleeping beauties

sometimes awake and can receive bursts of votes following each other relatively quickly.

Keywords: clustering, inter-event times, log-normal mixtures, Q&A networks,

Stack Overflow, burstiness
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Time to vote: Temporal clustering of user activity on Stack Overflow

Introduction

Stack Exchange (https://stackexchange.com) is very popular platform hosting

many question-and-answer (Q&A) sites, where people come together to learn and share

their knowledge. The spectrum of topics covered is very wide, including philosophy,

computer science, astronomy, home improvement, personal finance, pets, and

photography. Stack Exchange users play two different roles: they can ask new questions

or answer questions already posed. Every question and answer published therein can be

voted for (Up-Vote) or against (Down-Vote) by other registered users. Based on those

positive and negative votes, one can assess their quality.

Such scores enable the convenient identification of the most common problems

(relative to the site’s topic) and the most effective solutions thereto. Users looking for a

solution to an issue they find puzzling want to find a similar question (identifying

similarity is often non-trivial, see (Mondal & Roy, 2022)) asked by someone else in the

past and use the best answers given to it.

Usually, the top-rated content (displayed at the top of the results list) is checked

first, therefore there is a strong preferential (rich and richer) component governing the

popularity growth. Furthermore, some items can be interacted with in a random

(accidental) order, for instance when they appear in the results of external search

engines. Also, the results can be sorted with respect to the creation date, therefore

newer items might be slightly more popular. These mechanisms governing the

accumulation of votes’ distribution is similar to those displayed in many other domains,

e.g., when describing citations to scientific papers; compare (Janosov et al., 2020; Liu

et al., 2021; Siudem et al., 2020).

Different aspects of the Stack Exchange Network community’s contribution and

activity have been of interest to a significant group of researchers. For a comprehensive

list of publications based on the Stack Exchange data, please refer to (Vasilescu et al.,

2020).

The majority of studies take a data mining or machine learning approach to

https://stackexchange.com
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Figure 1 . 5 randomly selected posts on Stack Overflow and the dynamics of the

evolution of their popularity. Each vertical line represents one vote. We note that there

is no particular structure, however, the system alternates between periods of low and

high frequency events: they frequently occur in bursts, compare also (Karsai et al.,

2018).

answer a variety of questions about their users and their behaviour (e.g., regarding the

behaviour of novice software engineers (Chatterjee et al., 2020), gender differences (May

et al., 2019), improving answer rates by gamification (Papoutsoglou et al., 2020; Zhou

et al., 2020), how knowledge is generated and shared (Tausczik & Huang, 2020)). Some

papers are interested in the modelling of the structure of the Stack Exchange network

(e.g., (Moutidis & Williams, 2021)) or mechanisms governing its dynamics (e.g.,

describing the effects of negative votes (Geras et al., 2020) or predicting the emergence

of highly cited (Zhao et al., 2021) or obsolete (Zhang et al., 2021) posts).

Our attention is drawn to the largest and the most popular community, Stack

Overflow (https://stackoverflow.com), which as of 2022-01-19 features ca. 22M

https://stackoverflow.com
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questions, 32M answers, and has 16M registered users. It is used on a daily basis by

software professionals, researchers, and students, for instance to get answers to

questions such as “how do I do X in language Y?” or “why the result of F is Z?”.

In this paper we are interested in modelling the network’s evolution over time and

revealing the temporal landscape of the dynamics governing the posts’ popularity. Even

though, at first glance, the vote accumulation process seems to be quite unstructured

(see Figure 1), we shall uncover some hidden patterns in the studied dataset.

Ultimately, our goal is to tackle the question “what is the time until the next vote?”

and “how does it depend on the post’s popularity so far?”.

While investigating time-varying phenomena and attempting to capture

regularities therein, the inter-event time distribution (the distribution of time duration

between two consecutive events) is an important trace of latent mechanisms generating

the considered processes (Karsai et al., 2018). The accumulating of attention by items

which are elements of complex evolving systems (e.g., papers receiving citations in

scientific communities (Egghe, 2009; Nadarajah & Kotz, 2008) or posts being retweeted

on microblogging platforms (Gao et al., 2015)) is a matter often investigated in the

literature. Most authors name such processes bursty (starting from (Goh & Barabási,

2008), where the so-called burstiness parameter is introduced), compare monographs

(Jo & Hiraoka, 2019) and (Karsai et al., 2018). They occur when short periods of very

intensive activity is followed by long periods of inactivity (see Figure 1 again). Such

phenomena are widely observed in various communication processes (Karsai et al.,

2018) in particular in exchanging e-mails (Barabasi, 2005), phone calls (W. Wang et al.,

2015), conflicts between Wikipedia editors (Yasseri et al., 2012), GitHub users activity

(Yan et al., 2017), Youtube and Ding content popularity growth (Szabo & Huberman,

2010), paper updating intervals on arXiv (Jo et al., 2012), paper processing times in

academic journals (Hartonen, 2013), to name a few. Bursty processes are not limited

only to human behaviour; they were observed in brain activity (Thompson et al., 2017)

communication events on supercomputer systems (Chen et al., 2019), BGP routing

anomalies (Moriano et al., 2021), and in the description of the temporal networks
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(Cencetti et al., 2021; Zou et al., 2021), especially in the context of epidemic contagions

and diffusion of information (Unicomb et al., 2021).

Inter-event time distributions of various activities are usually reported to follow

mostly exponential or heavy-tailed (e.g., power-law) distributions. To the best of our

knowledge there are no results concerning inter-event time distributions of Stack

Exchange users’ activity. As it will turn out below, we have indicated that such

processes follow mixtures of log-normal distributions. It seems as a novel observation,

however there were some findings of log-normal distributions in waiting times related to

the Physica A journal contents (Mryglod et al., 2012) or mixtures of exponential

distributions in an Office data set (Okada et al., 2020). However, studies rarely take

into account whether it is the 1st, 2nd, or n-th event in a series. Initial popularity was

considered in (Szabo & Huberman, 2010) and different types of nonhomogeneous

stochastic processes were employed in (Rizoiu et al., 2018). However, most relevant to

our study is the reinforcement dynamics with memory model (Karsai et al., 2012). The

main difference between their and our approach is that our model is data-driven and

not postulated a priori: we shall observe two or three (log-normal) temporal clusters in

the data.

The remainder of the paper is organised as follows. In the next section we describe

the data set used in our research and note that the distribution of inter-event times is

naturally multimodal. Then we analyse the burstiness and memory coefficients of the

times between the casting of consecutive votes. Following this is a section devoted to

the modelling of the inter-event time distributions and their evolution over time.

Data and Their Structure

We have obtained the Stack Overflow data dump dated 2021-03-01 from

https://archive.org/details/stackexchange. From the Posts.xml file (uncompressed size

of 82 GiB), we have gathered data on all 920,231 answers (PostTypeId=2, to which we

will refer in the sequel as “posts”) created in 2009 (the portal premiered in mid-2008,

hence 2009 was the first complete calendar year).

https://archive.org/details/stackexchange
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Unfortunately, the data dumps do not feature the precise time when the user

votes were cast: for privacy reasons, only calendar date (and not date-time) is included

therein. Courtesy of the Stack Overflow Academic Partnership Program, we have

obtained an unabridged version of the Votes.xml dataset (a 15 GiB file), from which

we have extracted 6,982,687 Up-Votes (VoteTypeId=2) and 147,007 Down-Votes

(VoteTypeId=3). The total number of answers that received at least 1 vote (of any

kind: Up or Down) was 695,831. Note that, nevertheless, our results can be reproduced

to some extent using the publicly available dataset.

Figure 2 . Number of posts with a given number of votes (for answers with no more

than 100 votes); Down-Votes in red, Up-Votes in blue, sum thereof in grey; note the

logarithmic log scale on both axes and that the grey plotting characters are virtually

indistinguishable from the blue ones.

Let us take a closer look at the introduced data, especially in the context of vote

accumulation dynamics. Figure 2 depicts the number of posts with a given number of

Down- and Up-votes. The latter are significantly more abundant (147,007 vs 6,982,687,
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Figure 3 . Times between consecutive votes, in seconds (up to 100 first votes for each

post, altogether). The red bars represent the Down-Votes, blue bars give the Up-Votes,

and grey ones present total vote counts. The Up-Votes and total vote count histograms

are bimodal, indicating that fitting a mixture of 2 or more bell-shaped distributions (on

the log scale) might be worth considering.

respectively). As usual with such kinds of processes, e.g., (Clauset et al., 2009), the

counts follow a power-law distribution: a straight line can naturally be fitted on the

log-log scale. To back up the hypothesis that data follow the Zipf distribution (which is

a discrete distribution governed by the power law), we have performed the chi-squared

goodness-of-fit test. Indeed, for the Up-Votes, the p-value was equal to 0.239

(χ2 = 9900) when testing that data are Zipfian with exponent s = 0.9528 (the

maximum likelihood estimator). For the Down-votes, we have the p-value of 0.2667

(χ2 = 7600) and s = 1.9439.

For the sake of robustness, unless explicitly stated otherwise, we will restrict our
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analysis only to the first 100 votes for each post, as smaller samples are naturally more

prone to variability. Still, there are only 10 posts which have received 100 Down-votes,

hence in the further analysis we will restrict ourselves to Up-Votes only. Notably, recent

findings (Geras et al., 2020) suggest that Down-votes do not change the dynamics of

post score significantly anyway.

Furthermore, Figure 3 gives the distribution of times between the consecutive

votes. The shape of the histogram for the Up-Votes is bimodal, with the modes

corresponding to every ∼ 1/4 hour and every ∼ 2 months. Hence, below we shall

consider modelling it with a mixture of at least two or more bell-curved distributions on

the log-scale. Note that bibliometric data are often assumed (Shen et al., 2014;

D. Wang et al., 2013) to follow Poisson processes, but in our case most runs of the

Kolmogorov–Smirnov tests for each post strongly advise against the hypotheses that the

times are exponentially distributed.

Actually, ca. 30% of the Up-Votes are received on the first day since a post’s

creation, and then the cumulative popularity increases rather steadily.

Burstiness and Memory

The inter-event time distribution is not a sufficient descriptor of event burstiness

by itself, because there might be significant dependencies between consecutively cast

votes. In such a case, we say that the processes are not memoryless.

Let us consider two memory-adjusted tools to quantify the level of burstiness in

data sets (or appropriate models) (Karsai et al., 2018): the burstiness parameter B and

the memory coefficient M (Goh & Barabási, 2008).

Let us represent an event sequence with n events as an ordered list T = (T1, T2,

. . . , Tn−1, Tn) where Tk denotes the timing of the k-th event; in our case, the appearance

of an Up-Vote in seconds. Further, we define the inter-event times as τk = Tk − Tk−1,

where by convention T0 is the time of the publication of a given post.

With Pk(τ) let us denote the probability that a post which already received k

votes gains the next vote in τ seconds. We observe that considering different k values
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Figure 4 . Evolution of the inter-event time distributions, Pk (to be read rowwisely):

time to wait for the k-th vote in seconds, on a logarithmic scale. The more votes a post

has, the longer, on average, one has to wait for the next event of this kind.

(Figure 4) reveals some non-trivial dynamics that are otherwise unrevealed in the

aggregated perspective (Figure 3). For every k, Pk(τ) resembles a mixture of a few

bell-shaped curves (note the log scale on the Ox axis though), whose contributions

change in time. For small k, the bulk of probability mass is in the first cluster,

representing short-time effects. Later on, it is transferred to the long-term group. We

shall engage in a modelling task featuring a mixture of Gaussians in the sequel.

Firstly, let us consider the burstiness parameter B, which for a given vector of

τ = (τ1, . . . , τn) of inter-event times and k ≤ n is defined as
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Figure 5 . Distributions of the burstiness and memory coefficients as a function of k,

i.e., when we consider the times between the first k events. The orange orange squares

represent the medians over all posts and the blue bands span between the 1st and 3rd

quartiles. The black line gives the global mean computed over all k ∈ [10, 100].

Bτ (k) = sd(τ1, . . . , τk)− avg(τ1, . . . , τk)
sd(τ1, . . . , τk) + avg(τ1, . . . , τk) , (1)

where avg(τ1, . . . , τk) and sd(τ1, . . . , τk) denote the arithmetic mean and the standard

deviation, respectively, of the first k inter-event times. This parameter has a very

natural interpretation: B = 1 indicates the most bursty process, B = 0 represents a

random (Poissonian) one, and B = −1 corresponds to a completely regular (periodic)

realisation. However, it was noted in (Kim & Jo, 2016) that the parameter B can be

misleading for small sample sizes, hence we will also consider its corrected version:

Aτ (k) =
√
k + 1rk −

√
k − 1

(
√
k + 1− 2)rk +

√
k − 1

, rk = sd(τ1, . . . , τk)
avg(τ1, . . . , τk) . (2)

Furthermore, the memory coefficient M was introduced in (Goh & Barabási,

2008). It is given by

Mτ (k) = 1
k − 1

k−1∑
i=1

(τi − avg(τ1, . . . , τk−1))(τi+1 − avg(τ2, . . . , τk))
sd(τ1, . . . , τk−1) sd(τ2, . . . , τk) . (3)

M varies in the range [−1, 1]. When it is positive, a short inter-event time tends to be

followed by another short one, and long inter-event times repeat one after another. In

contrast, when it has a negative value, long inter-event times are followed by short ones

and vice versa.
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In Figure 5 we depict the change in the median of the A, B, and M coefficients as

a function of k – the cut-off threshold. For each fixed k, the width of the corresponding

blue band (a vertical line segment) gives the interquartile range of the observed

coefficients (based on Aτ i
(k), Bτ i

(k),Mτ i
(k) corresponding to the inter-even times of

each post τ i).

The computed coefficients are typical of human-generated processes (compare

(Goh & Barabási, 2008; Karsai et al., 2018)). All the coefficients stabilise at k ≈ 20. In

particular, many vectors have high M for small k, which indicates that there are either

bursts of votes appearing quickly or slowly one after another. For k ≈ 20 the median M

stabilises at ≈ 0.2, which indicates that there is only a weak, yet positive correlation

between the interval lengths.

Inter-Event Time Modelling

Fitting Log-Normal Mixtures

From Figure 4 we see that the inter-event distributions might be approximated by

a mixture of bell-shaped curves on the log scale. Let us thus perform data modelling via

a convex combination of log-normal distributions.

A mixture of m normal distributions N (·;µj, σj), j = 1, . . . ,m, where µj is the

expected value and σj is the standard deviation, is defined by the following density

function:

P (x) =
m∑

j=1
αj N (x;µj, σj), (4)

where αj ∈ (0, 1) is the share (weight) of j-th component in the whole mixture,∑m
j=1 αj = 1.

Notably, if τk is a random variable representing the time between the (k − 1)-th

and the k-th event whose logarithm follows a mixture of normal distributions, then τk

follows the same mixture of log-normal distributions with the corresponding parameters.

We apply the standard expectation-maximisation-type algorithm, see, e.g.,

(Robert & Casella, 2004), to identify the maximum likelihood estimators of the
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Figure 6 . BIC scores for the first, second, and third inter-vote times, respectively, as a

function of the number of components in the mixture. Clearly, m = 3 gives a good

balance between the model complexity and accuracy.

αj, µj, σj parameters based on logarithmically transformed data.

The selection of the number of components in the mixture, m, is guided by the

Bayesian Information Criterion (BIC) (Schwarz, 1978), which takes into account the

trade-off between the number of parameters (3m− 1) and goodness of fit (which

naturally gets better as m increases). Figure 6 gives the BIC scores for τ1, τ2, and τ3

(where the distributions’ multimodality is most evident). Data suggest that m = 3

mixture components should be chosen.

Figure 7 depicts the fitted mixtures for different inter-event times τk. For the

first-ever votes (k = 1, the subplot denoted as P1(τ)), the first (blue) cluster dominates

(with α(1)
1 ≈ 0.44, µ(1)

1 ≈ 5.78, σ(1)
1 ≈ 1.32). Let us note the orders of magnitude of the

time scales in each cluster:

exp(µ(1)
1 ) ≈ 325 s ≈ 5.4minutes,

exp(µ(1)
2 ) ≈ 1.8 · 104 s ≈ 5.0 hours,

exp(µ(1)
3 ) ≈ 4.3 · 107 s ≈ 1.4 years.

In other words, the first cluster (blue) is comprised of the votes cast just few

minutes after a post’s publication (note that the author themself can Up-vote their own

answer), the second (orange) component corresponds to a few hours, while the third

(green) represents long-term effects measured in years.

Further, for k > 1, the maximum weight is assigned to the third (green) mixture
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Figure 7 . The fitted mixtures of m = 3 log-normal distributions. The discovered

clusters correspond to short (hours), medium (days), and long (months) wait times. As

time passes, the latter effects start to dominate: even for high-valued posts, most votes

are accumulated slowly.

component (e.g., for k = 4 we get α(4)
3 ≈ 0.41, µ(4)

3 ≈ 17.43, σ(4)
3 ≈ 0.94).

As i increases, the clusters evolve, see Figure 8 for an illustration of the change in

the estimated mixture parameters. Once ca. 20 votes are cast, the models stabilise at:

α
(∞)
1 ≈ 0.04, µ

(∞)
1 ≈ 9.1, σ

(∞)
1 ≈ 2.7, exp

(
µ

(∞)
1

)
≈ 2.5 hours,

α
(∞)
2 ≈ 0.29, µ

(∞)
2 ≈ 12.9, σ

(∞)
2 ≈ 1.5, exp

(
µ

(∞)
2

)
≈ 4.5 days,

α
(∞)
3 ≈ 0.67, µ

(∞)
3 ≈ 14.5, σ

(∞)
3 ≈ 1.1, exp

(
µ

(∞)
3

)
≈ 22.1 days.

(5)

This suggest that in the long run, there are three typical time scales: hours (1, blue),

weeks (2, orange), and months (3, green). However, the third (long-term) group is
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Figure 8 . Evolution of the fitted parameters of the mixtures of m = 3 log-Gaussians,

row-wisely: the component weights/importances α(k)
i , standard deviations σ(k)

i ,

expected values µ(k)
i on the linear and logarithmic scale as a function vote number k for

each cluster i = 1, 2, 3. Colour coding is consistent with that in Figure 7. The process

stabilises as k grows. The importance of the short-term effects’ cluster decreases over

time, but is never negligible.

allocated twice as much weight as the second one and the first component has the

smallest share (only few posts are still active, but they are non-negligible; in fact – they

are amongst the most interesting ones). Further, let us stress that the observations are

in fact log-normally distributed, which implies they are heavy-tailed and thus extreme

events (very long waiting times) are likely to occur.

Modelling Vote Dynamics

Above we have identified the temporal clusters for each time step separately. Let

us now combine them so that we can arrive at a model for the votes’ dynamics in a
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form of a three-state Markov chain. In such a model, the system is able to switch

between clusters as time passes. For a similar dynamical aggregation for diffusion on

networks of networks, see (Siudem & Hołyst, 2019); for journal citations, refer to

(Delbianco et al., 2020); and for burstiness phenomena (in the case of two states), see

(Karsai et al., 2012). In particular, as opposed to the latter, in our case we derive the

model directly from data, with minimal a priori assumptions: namely, we only

presuppose that there the post memory is of size ≤ 1.

In order to introduce the said model, let us define two values x1.5 and x2.5 which

correspond to the points where the probability density functions of the fitted Gaussians

intersect, i.e., points which fulfil the equality

αi√
2πσi

exp
[
−(xi+0.5 − µi)2

2σ2
i

]
= αi+1√

2πσi+1
exp

[
−(xi+0.5 − µi+1)2

2σ2
i+1

]
,

for i ∈ {1, 2}. For example, in the top-left part of Figure 7 we have x1.5 ' 2400 (where

the blue and the orange curves meet) and x2.5 ' 4.3 · 106 (where the orange and green

densities coincide). For brevity of notation, let us also assume x0.5 = −∞ and x3.5 =∞.

This way, we can say than an observable x belongs to the i-th (i = 1, 2, 3) cluster,

whenever x ∈ (xi−0.5, xi+0.5).

Now we can model the dynamics of the cluster change over time, i.e., modelling

the probabilities p(k)
j,i of moving to cluster j from being in the i-th cluster at time step k.

For instance, p(1)
3,2 denotes the probability that, after the first (k = 1) vote being a

medium-term (cluster i = 2) one, the wait time for the next vote will be much longer

(cluster j = 3).

The estimated probabilities for k = 1, . . . , 6 are depicted in Figure 9. Here, the

vertex sizes are proportional to the number of corresponding posts. The sizes are of

course decreasing, which is in line with our previous observations (see Figure 2).

Also, Figure 10 gives a snapshot of the transition probabilities for further events.

This time, the vertex sizes are constants and the arrow sizes are scaled so that the

out-flow from each node is preserved, as otherwise the picture would be illegible.

Considering the transition matrices as a function of k we observed that they tend
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Figure 9 . The aggregated dynamics of few first votes: vertex colours correspond to the

temporal cluster IDs (waiting times for 1st, 2nd, . . . votes: short in blue, medium in

orange and long ones in green), and their sizes are proportional to the number of posts.

Arrow sizes are proportional to the transition probabilities p(k)
j,i (e.g., an arrow from

orange 1 to green 2 represents p(1)
3,2). Transitions from long to short waiting times are

much less likely than vice versa.

Figure 10 . The normalised aggregated dynamics for later votes: this time, arrow sizes

are scaled so that the flow from every node is constant. Note the dominating tendency

to stay inside the blue (short-term) and green (long-term) clusters and to transition

from the orange (medium-term) to the green ones.



TIME TO VOTE 18

to stabilise. We can summarise such inter-event time dynamics by the Markovian

transition matrix

P = (pj,i) =


0.41 0.05 0.02

0.24 0.35 0.23

0.35 0.60 0.75

 , (6)

where, as above, the entry in the j-th row and the i-th column gives the probability of

transition from i to j.

Our observations are summarised in the next section.

Conclusions

This work introduces new insights with regards to human activity dynamics. We

modelled the probability distributions of the random variables reflecting the temporal

characteristics of the vote accumulation processes. Whilst exploring real-word data

related to Stack Overflow user activity, we discovered three temporal clusters. The first

cluster is comprised of the votes that appear almost immediately one after another; its

relative size diminishes in time but does not become negligible. The second group

represents the medium-term effects (measured in days). The third cluster groups all the

rare events.

Importantly, the temporal structure of vote accumulation on Stack Overflow

deviates from the simple Poisson processes. We observed the varying character of the

inter-event time distribution and the dependence of its parameters upon whether it is

an early or a late vote in the sequence.

Computing the eigenvector corresponding to eigenvalue 1 of the aggregated event

transition probability matrix P (Eq. (6)) we get the ergodic distribution of the

discussed Markov chain, which, once normalised, gives

(0.04, 0.26, 0.70)T

which means that, in the long run, the system on average chooses the first cluster in

4%, second in 26% and third in 70% of the cases (also compare the α∞i coefficients in

Eq. (5)). Hence, the system most of the time has long breaks.
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However, the probability of transition from a long- to a short-term cluster is not

negligible: the so-called sleeping beauties (e.g., (Burrell, 2002, 2005; Egghe et al., 2011))

are expected to awake occasionally, although the data at hand did not allow us to

identify any predictors why it might be so – it is an interesting topic for further

research. Moreover, we noted that votes frequently arrive in bursts – short next-vote

wait times tend to be followed by another immediate events.

Also, due to the above, we find that predicting whether a post will be successful

or not based on its activity in its infancy cannot be done accurately (unlike in the case

of YouTube and Ding (Szabo & Huberman, 2010)) without supplementary information,

e.g., with regards to its thematic category, authorship, etc. In the future, we shall

investigate to what extent such additions improve the predictive power.

The above requires extra attention when identifying the post’s score with its

substantive value. In our previous paper (Geras et al., 2020), we pointed out that

negative votes are not so much a (negative) measure of quality. With this, however, one

can notice that due to the bursty nature of the phenomena considered, high vote counts

may be due to a short-lived popularity peak and not to the objective value of the

answer or question.
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