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The random generation of fuzzy measures under complex linear constraints holds significance 
in various fields, including optimization solutions, machine learning, decision making, and 
property investigation. However, most existing random generation methods primarily focus 
on addressing the monotonicity and normalization conditions inherent in the construction of 
fuzzy measures, rather than the linear constraints that are crucial for representing special 
families of fuzzy measures and additional preference information. In this paper, we present two 
categories of methods to address the generation of linearly constrained fuzzy measures using 
linear programming models. These methods enable a comprehensive exploration and coverage 
of the entire feasible convex domain. The first category involves randomly selecting a subset 
and assigning measure values within the allowable range under given linear constraints. The 
second category utilizes convex combinations of constrained extreme fuzzy measures and vertex 
fuzzy measures. Then we employ some indices of fuzzy measures, objective functions, and 
distances to domain boundaries to evaluate the coverage performance of these methods across 
the entire feasible domain. We further provide enhancement techniques to improve the coverage 
ratios. Finally, we discuss and demonstrate potential applications of these generation methods in 
practical scenarios.

1. Introduction

Fuzzy measures and fuzzy integrals have been established as useful tools for representing interaction among multiple items or 
criteria and for aggregating the interdependent multiple sources information. [8,27]. Although nonadditivity and nonmodularity 
commonly exist among different types of fuzzy measures, most of these flexible constraints can still be represented into linear forms. 
Firstly, the normalization conditions and monotonicity requirements with respect to set inclusion for defining normal fuzzy measures 
can be rewritten as a bunch of linear constraints. Secondly, some special types of fuzzy measures can be identified through a set of 
linear, 0-1 or even integer constraints, like the 𝑘-additive fuzzy measures [13], 𝑝-symmetric fuzzy measures [21], 𝑘-maxitive and 
minitive fuzzy measures [23], 𝑘-interactive fuzzy measure and so on. Thirdly, fuzzy measures have many equivalent representations 
– Möbius representation [7], the Shapley and interaction indices [17], the nonadditivity and nonmodularity indices [29] – all of 
which can be obtained through invertible linear transformations. Furthermore, the comparison between fuzzy integrals including at 
least Choquet integrals [8] and Sugeno integrals [27] of given alternatives can be constructed as linear conditions.
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All of the constraints mentioned above will ultimately constitute a convex domain of feasible fuzzy measures, providing us with 
an arena to explore various optimization problems, find pattern and knowledge through machine learning, evaluate and compare 
alternatives under multiple criteria decision environment and investigate the properties and connections among measures, integral 
as well as their indices.

Compared to traditional optimization methods, random generation has some advantages in exploring entire domain space, over-

coming local optima, computing efficiency and adaptability. We can broadly classify these methods of random fuzzy measure 
generation into two general approaches: random-node based methods and extreme measures based methods. The former meth-

ods randomly choose a subset and then randomly identify a value in its feasible range, which will be between the maximum value 
assigned to its proper subsets and the minimum of its supersets [9,10,18]. The latter methods involve the random generation of fuzzy 
measures through the utilization of randomized convex combinations of extreme fuzzy measures. This approach often preserves cru-

cial properties across subsequent generations, making it highly valuable in generic algorithms and other machine learning techniques 
[4,9].

However, most existing random generation methods only consider the first type of conditions mentioned above, namely the 
boundary and monotonicity conditions on fuzzy measures. As a result, random-node based methods and extreme measures based 
methods cannot be directly used for more complex linear constraints. This is because, on the one hand, the feasible range of a 
subset’s measure is no longer entirely determined by the minimum of its supersets’ measures and the maximum of its proper subsets’ 
measures. On the other hand, the extreme fuzzy measures may not always belong to the linearly constrained feasible domain, let 
alone their convex combinations.

In this paper, a key contribution is the extension of these two primary methods for random generation of fuzzy measures using 
linear programming techniques, which can effectively incorporate various linear constraints mentioned above. For the random-

node based methods, linear programming models are adopted to further refine the close intervals over which fuzzy measure value 
of selected subsets can be taken. For the extreme measures methods, linear programming models are applied to determine the 
constrained extreme fuzzy measures satisfying all the linear constraints while pursuing the maximum or minimum measure values. 
Instead of attempting to find all possible extreme fuzzy measures, known as the Dedekind numbers [14], which can quickly become 
a time-consuming and unattainable task, even for just a few variables, we randomly select a relatively small number of extreme fuzzy 
measures in each loop and ensure to efficiently generate fuzzy measures without sacrificing much accuracy.

Furthermore, by utilizing the convexity property of linear programming models and convex combination operation, we propose 
a third approach for generating fuzzy measures, called the vertices measures based method. The vertex measures refer to the fuzzy 
measures that lie on the intersection of two or more boundary facets of the feasible convex domain. These fuzzy measures can be 
obtained by randomly selecting a few linear constraints and minimizing their deviation variables through a multiple goal linear 
programming model. It should be mentioned that these vertex measures are not necessarily the basic solutions in the convex domain, 
and therefore the computation cost of checking the linear independence among the selected constraints can be omitted. Furthermore, 
these vertex fuzzy measures have the advantage of generating approximate solutions around the optimal fuzzy measures for linear 
objective functions.

Another key contribution of this paper is to establish performance evaluation methods for the generated fuzzy measures to cover 
the entire feasible domain. We utilize three types of techniques to describe the coverage. The first technique uses different types of 
indices of fuzzy measures, such as orness index [12], entropy value [20], and even integral value of a typical alternative [8]. The 
second technique considers the objective function of the optimization model used in identifying fuzzy measures, such as least-squares 
methods [15,16,24], least absolute deviation methods [1], maximum split methods [22,24], maximum entropy methods [19,20], and 
compromise principle [32]. The third technique adopts the distances of fuzzy measures to the boundaries of the feasible domain, 
which can be obtained from multiple goals linear programming models. All the ranges of these distances, indices, and objective 
functions under the linear constraints can provide direct and distinct ways to evaluate the coverage of generated fuzzy measures.

The paper is organized as follows. Following the introduction, Section 2 provides the necessary background knowledge on fuzzy 
measures, including linear transformations, the Choquet integral, and the linear constraints relevant to the mentioned indices. 
Section 3 focuses on convex combinations and presents three types of linear programming-based random generation methods for 
fuzzy measures. The coverage performance evaluation of the generated fuzzy measures is discussed in Section 4. Several examples 
are used to demonstrate the random generation algorithms in Section 5. Section 6 introduces approaches for enhancing the coverage 
ratios. Furthermore, we list some potential applications of the proposed methods. Finally, the paper concludes in Section 8.

2. Preliminaries

Let 𝑁 = {1, 2, … , 𝑛}, 𝑛 ⩾ 2, be the set of elements, (𝑁) be the power set of 𝑁 , and |𝑆| be the cardinality of subset 𝑆 ⊆𝑁 .

Definition 1. [8] A fuzzy measure on 𝑁 is a set function 𝜇 ∶ (𝑁) → [0, 1] such that (i) 𝜇(∅) = 0, 𝜇(𝑁) = 1; (ii) ∀𝐴, 𝐵 ⊆𝑁 , 𝐴 ⊆ 𝐵

implies 𝜇(𝐴) ⩽ 𝜇(𝐵).

The value of 𝜇(𝐴) reflects the importance of subset 𝐴 in the decision context.

The interaction phenomenon between multiple elements is conventionally described by means of the simultaneous interaction 
2

indices [17], including the Möbius representation [7] and Shapley importance and interaction index [13].
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Definition 2. [7] Let 𝜇 be a fuzzy measure on 𝑁 , the Möbius representation for each set is given by

𝑚𝜇(𝐴) =
∑
𝐵⊆𝐴

(−1)|𝐴∖𝐵|𝜇(𝐵),𝐴 ⊆𝑁.

Möbius representation can also be referred to as the internal simultaneous interaction index for each coalition.

Definition 3. [17] Let 𝜇 be a fuzzy measure on 𝑁 , its Shapley importance and interaction index is defined as

𝐼𝜇(𝐴) =
∑

𝐵⊆𝑁∖𝐴

1
(|𝑁|− |𝐴|+ 1)

(|𝑁|−|𝐴||𝐵| ) ∑
𝐶⊆𝐴

(−1)|𝐴∖𝐶|𝜇(𝐶 ∪𝐵),𝐴 ⊆𝑁.

Generally speaking, 𝐼𝜇({𝑖}) is regarded as the overall importance of 𝑖 ∈𝑁 , and 𝐼𝜇(𝐴), |𝐴| ⩾ 2 provide the simultaneous interac-

tion indices for each subset 𝐴, involving both the internal and external subsets.

The above two indices can rightly be considered as alternative representations of 𝜇, defined as they are by invertible one-to-one 
linear mappings (see [4,14]).

Certain restrictions and construction methods lead to different types of fuzzy measures, sometimes reflecting decision-maker 
preferences on the aggregation behavior. We make particular mention of the 𝑘-additive [13], 𝑝-symmetric [25], 𝑘-tolerant and -
intolerant [21], and 𝑘-maxitive and -minitive fuzzy measures [6]. Each offers a reduction in the number of variables required to 
completely define the fuzzy measure values. For example, 𝑘-additive fuzzy measures are defined as follows.

Definition 4. [13] Let 𝑘 ∈ {1, ..., 𝑛}, a fuzzy measure 𝜇 on 𝑁 is said to be 𝑘-additive if its Möbius representation satisfies 𝑚𝜇(𝐴) = 0
for all 𝐴 ⊆𝑁 such that |𝐴| > 𝑘 and there exists at least one subset 𝐴 of 𝑘 elements such that 𝑚𝜇(𝐴) ≠ 0.

It is hence defined by a combination of linear constraints in Möbius representation or equivalent linear constraints in other 
representations.

The Choquet integral is a widely studied fuzzy integral that can be used to aggregate a vector of inputs according to the importance 
and interaction information contained in the defining fuzzy measure.

Definition 5. [28] Let 𝐱 be a real-valued vector function on 𝑁 , 𝐱: = (𝑥1, … , 𝑥𝑛) ∈ [0, 1]𝑛. The Choquet integral of 𝐱 with respect to 
a fuzzy measure 𝜇 on 𝑁 is defined as

𝐶𝜇(𝐱) =
𝑛∑
𝑖=1

[𝑥(𝑖) − 𝑥(𝑖−1)]𝜇(𝑁(𝑖)) =
𝑛∑
𝑖=1

[𝜇(𝑁(𝑖)) − 𝜇(𝑁(𝑖+1))]𝑥(𝑖) (1)

where the parentheses used for indices represent a permutation on 𝑁 such that 𝑥(1) ⩽⋯ ⩽ 𝑥(𝑛), 𝑥(0) = 0, 𝑁(𝑖) = {(𝑖), … , (𝑛)}, and 
𝑁(𝑛+1) = ∅.

If 𝐱 is fixed, the Choquet integral amounts to a linear combination of the fuzzy measure values.

The orness index [12] associated with an aggregation function describes the tendency toward max-like behavior. In the case of 
the Choquet integral, orness can be calculated directly from the fuzzy measure values.

Definition 6. [21] The orness index of fuzzy measure 𝜇 is given by

𝑜𝑟𝑛𝑒𝑠𝑠(𝜇) =
∑
𝐴⊂𝑁

(𝑛− |𝐴|)!|𝐴|!
𝑛!(𝑛− 1)

𝜇(𝐴). (2)

Besides the orness index, another famous index used to describe the fuzzy measure behavior is entropy.

Definition 7. [20] The entropy of a fuzzy measure 𝜇 on 𝑁 is given by

𝐸(𝜇) =
𝑛∑
𝑖=1

∑
𝐴⊆𝑁∖{𝑖}

(|𝑁|− |𝐴|− 1)!|𝐴|!|𝑁|! ℎ (𝜇(𝐴 ∪ {𝑖}) − 𝜇(𝐴)) , (3)

where ℎ(𝑥) = −𝑥 ln(𝑥) if 𝑥 > 0 and 0 if 𝑥 = 0.

Maximum entropy is obtained for any 𝑛 if the fuzzy measure is symmetric and additive, at which point it collapses to the 
arithmetic mean [5,32].

For a fixed 𝑁 we use  to denote the set of valid fuzzy measures, which forms a convex polytope on [0, 1]2𝑛−2. Most existing 
random fuzzy measure generation methods only involve restrictions that model the monotonicity conditions [2,3], i.e.,
3

𝜇(𝐵 ∪ {𝑖}) − 𝜇(𝐵) ⩾ 0,∀𝑖 ∈𝑁,∀𝐵 ⊆𝑁∖𝑖, (4)
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however in practical applications some additional preference information may further be considered. We use the following conven-

tional comparison and interval forms to represent additional constraints on criteria and alternatives [4,15]:

• the overall importance of element 𝑖 is at least as great as that of 𝑗:

𝐼𝜇({𝑖}) − 𝐼𝜇({𝑗}) ⩾ 0,

• the comprehensive interaction of coalition {𝑖, 𝑗} is positive or negative:

𝛿 ⩽ 𝐼𝜇({𝑖, 𝑗}) ⩽ 1 or − 1 ⩽ 𝐼𝜇({𝑖, 𝑗}) ⩽ −𝛿,

• the comprehensive interaction of subset 𝐴 is greater than that of 𝐵:

𝐼𝜇(𝐴) − 𝐼𝜇(𝐵) ⩾ 𝛿,

• alternative 𝐚 is as good as 𝐛:

(𝐚) − (𝐛) ⩽ 𝛿 and (𝐚) − (𝐛) ⩾ −𝛿,

• the fuzzy measure should be 2-additive:

𝑚𝜇(𝐴) = 0, |𝐴| > 2,

where 𝛿 is a small positive threshold, e.g., 0.05.

All of the above constraints are linear and constitute a convex feasible range if they are compatible. Otherwise, some multiple goal 
linear programming based methods and strategies can aid to recognize the existing contradictions and adjust them into a consistent 
case [30].

3. Linear programming extended random generation methods

In this section, we aim to extend the existing approaches of random generation of fuzzy measures, such as the random node-

based and extreme measures-based methods, to deal with more complex linear constraints. Specifically, we propose to use linear 
programming techniques and convex combinations of fuzzy measures to efficiently generate ones that satisfy a larger set of linear 
constraints beyond just the boundary and monotonicity conditions.

3.1. Update random node-based methods by linear programming models

A straightforward approach to generating a random fuzzy measure on 𝑁 is to first randomly select a subset (node) from 𝑁 and 
then identify a random value within its allowable range [9,18]. This approach under normalization and monotonicity conditions is 
shown in Algorithm 1.

Algorithm 1: Random node-based generation methods under normalization and monotonicity conditions.

Input: 𝑘 and 𝑁 .

for 𝑘 in 1 ∶ 𝑘 do
𝜇𝑘(𝑁) = 1 and 𝜇𝑘(∅) = 0.

Let + denote all the nonempty proper subsets of 𝑁 ,

Let − = {∅, 𝑁},

for 𝑖 in 1 ∶ (2𝑛 − 2) do
Randomly choose a subset 𝐴 ∈ + ,

Calculate 𝐿𝐴 =max𝐵⊂𝐴,𝐵∈− 𝜇𝑘(𝐵),
Calculate 𝑈𝐴 =min𝐶⊃𝐴,𝐶∈− 𝜇𝑘(𝐶),
Set 𝜇𝑘(𝐴) to a random value in [𝐿𝐴, 𝑈𝐴],
Set + = + ⧵𝐴, − = − ∪𝐴.

end

Store 𝜇𝑘 , as the 𝑘-th row of matrix U.

end

Return matrix U
𝑘×2𝑁 of 𝑘 fuzzy measures.

The normalization or boundary conditions can be relatively trivial by setting the measure values of the empty set and the universal 
set as 0 and 1, respectively. The main challenge is to ensure the monotonicity condition with respect to any set inclusion. This is 
achieved by searching for the allowance interval [𝐿𝐴, 𝑈𝐴] under the predefined measure values of all sets in −.

For convenience, we denote the boundary and monotonicity conditions as  and additional linear constraints as . In this 
subsection, we extend Algorithm 1 into a more general form to deal with any linear constraints within , see Algorithm 2. Given 
that the conditions of  and  are linear, and if they are compatible, the joint feasible domain must be a convex region. Methods for 
4

inconsistency checking and improvement can be found in [30,31]. This convexity ensures that the allowable range of 𝜇(𝐴) is always 
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Algorithm 2: Linear programming updated random node generation method.

Input: 𝑘 and 𝑁 .

for 𝑘 in 1 ∶ 𝑘 do
𝜇𝑘(𝑁) = 1 and 𝜇𝑘(∅) = 0.

Let  denote all the nonempty proper subsets of 𝑁 ,

for i in 1 ∶ (2𝑛 − 2) do
Randomly choose a subset 𝐴 ∈  ,

Calculate 𝐿𝐴 =min𝜇𝑘(𝐴) s.t.  and ,

Calculate 𝑈𝐴 =max𝜇𝑘(𝐴) s.t.  and ,

Set 𝜇𝑘(𝐴) to a random value 𝑟 in [𝐿𝐴, 𝑈𝐴],
Set  =  ⧵𝐴, and add constraint, 𝜇𝑘(𝐴) = 𝑟, into .

end

Store 𝜇𝑘 , as the 𝑘-th row of matrix U.

end

Return matrix U
𝑘×2𝑁 of 𝑘 fuzzy measures.

a closed interval. This means that there is still some degree of randomness’ freedom in generating measure values by using linear 
programming models.

The extension of Algorithm 1 to Algorithm 2 with  ≠ ∅, allows for the incorporation of additional linear constraints, making it 
more flexible and applicable to a wider range of scenarios. Furthermore, the maintenance of linearity and convexity ensures that the 
Algorithm 2 can be directly used with any linear equivalent representation of fuzzy measures, such as the Möbius representation, the 
Shapley interaction index, nonadditivity index, and nonmodularity index, which is a significant advantage in terms of applicability.

3.2. Convex combination and constrained extreme fuzzy measures

The feasible range determined by a set of linear constraints is a convex set, and hence convex combinations of feasible solutions 
will also be feasible. The convex combination of fuzzy measures 𝜇1, ..., 𝜇𝑡, 𝑡 > 1, is defined as [9]:

𝜆1𝜇1 +⋯+ 𝜆𝑡𝜇𝑡,

𝑡∑
𝑖=1

𝜆𝑖 = 1, 𝜆𝑖 ⩾ 0. (5)

This formula allows any feasible fuzzy measure to serve as the parent measure for generating new fuzzy measures between them. 
However, one of the ultimate goals of a random generation method is to cover the entire feasible range as much as possible. In this 
context, the use of extreme fuzzy measures, which usually correspond to the boundary points of the polytope of fuzzy measures, can 
provide a more significant coverage ratio of the feasible domain.

Only under the boundary and monotonicity conditions, the extreme values of 𝜇(𝐴) can reach 0 and 1 in two opposite directions 
and one basic fact is that any fuzzy measure is a convex combination of 0-1 valued extreme fuzzy measures [14]. The following 
theorem provides a possible convex combination of 0-1 valued measures for a fuzzy measure.

Theorem 1. A fuzzy measure 𝜇 on 𝑁 is a convex combination of |{𝜇(𝐴), 𝐴 ⊆𝑁, 𝜇(𝐴) > 0}| extreme fuzzy measures on 𝑁 .

Proof. A straightforward way to illustrate this is via a relation ≺ on (𝑁) corresponding with increasing fuzzy measure values, i.e., 
𝐴 ≺ 𝐵 if 𝜇(𝐴) < 𝜇(𝐵), and the following construction. Let 𝑥(𝑖), 𝑖 = 1, … 𝑘 denote the 𝑘 non-zero unique fuzzy measure values in the 
increasing order. For a fuzzy measure 𝜇, we use 𝜇(𝑖) to denote the extreme fuzzy measure corresponding with 𝑥(𝑖), such that there is 
some 𝜇(𝐵) = 𝑥(𝑖) and 𝜇(𝑖)(𝐴) = 0 for all 𝐴 ≺ 𝐵 and 1 otherwise. Then 𝜇 =

∑𝑘

𝑖=1 𝜆𝑖𝜇(𝑖), with 𝑥(𝑖) =
∑𝑖

𝑗=1 𝜆𝑗 . □

The number of extreme fuzzy measures that take only 0 or 1 as their values are given by 𝑀(𝑛) − 2, where 𝑀(𝑛) is a Dedekind 
number that grows exponentially with 𝑛 [2,10,11,14]. As 𝑛 becomes large, it becomes computationally impractical to generate all 
such extreme points. Fortunately, Theorem 1 suggests that any fuzzy measure can be expressed as a convex combination of different 
extreme fuzzy measures, making it unnecessary to loop through all extreme fuzzy measures when using random generation methods.

Let us consider the case where 𝜇(𝐴) = 1. Based on the monotonicity condition of set inclusion, we can obtain the following 
necessary condition:

𝜇(𝐵) = 1,∀𝐵 ∩𝐴 =𝐴. (6)

In another extreme case, we can assume that any part of the subset 𝐴 can result in the belonging coalition having a fuzzy measure 
value of 1. In other words, we can have:

𝜇(𝐵) = 1,∀𝐵 ∩𝐴 ≠ ∅. (7)

These two cases correspond to the necessity and possibility measure focused on 𝐴 [26], which are considered as the fundamental 
5

types of extreme measures in random generation methods.
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More generally, if the linear constraints include more than the boundary and monotonicity conditions, the extreme values of 𝜇(𝐴)
may not necessarily be 0 or 1. However, drawing inspiration from Eqs. (6) and (7), we can formulate the following two linear models 
to generate constrained extreme fuzzy measures:

max
∑

∀𝐵∩𝐴=𝐴
𝜇(𝐵) −

∑
∀𝐵∩𝐴≠𝐴

𝜇(𝐵)

s.t.  and .

(8)

max
∑

∀𝐵∩𝐴≠∅
𝜇(𝐵) −

∑
∀𝐵∩𝐴=∅

𝜇(𝐵)

s.t.  and .

(9)

For convenience, we can refer to the optimal solutions of the above models (8) and (9) as the constrained necessity measure and the 
constrained possibility measure, respectively. It is obvious that if  = ∅, the constrained necessity and possibility measures are just 
the 0-1 valued necessity and possibility measures. Based convex combinations of these constrained extreme fuzzy measure, we can 
have the following Algorithm 3.1

Algorithm 3: Random generation method of constrained extreme fuzzy measures and convex combination.

Input: 𝑘 and 𝑁 .

for any nonempty subset 𝐴 in 𝑁 do
Get the constrained necessity and possibility measures by Models (8) and (9),

Store these two measures as two rows in the matrix V.
end

for 𝑘 in 1 ∶ 𝑘 do
Randomly select 𝑡, 2 ⩽ 𝑡 ⩽ |V|, extreme fuzzy measures in V, denoted 𝑣1, ..., 𝑣𝑡 .
Randomly generate 𝑡 positive numbers 𝜆1, ..., 𝜆𝑡 with their sum equal to 1.1

Set 𝜇𝑘 = 𝜆1𝑣1 +⋯ + 𝜆𝑡𝑣𝑡 , and store 𝜇𝑘 as the 𝑘-th row of U.

end

Return matrix V
𝑘×2𝑁 and U

𝑘×2𝑁 of 2 × 𝑘 fuzzy measures.

Equations (8) and (9) suggest that the constrained extreme measures are designed to achieve the upper and lower limits of measure 
values for subsets. From the perspective of linear constraints other than measure values, there is another category of extreme fuzzy 
measures that exist at the intersection of certain facets of the feasible domain, referred to as vertex fuzzy measures. This category of 
extreme fuzzy measures can lead to the development of another set of random generation methods.

3.3. Vertex fuzzy measures based random generation

Taking the fuzzy measure values of 2𝑛 subsets as variables, the normalization, monotonicity, and additional linear constraints can 
be universally represented in matrix form as:

A(𝜇(∅), 𝜇({1}), ..., 𝜇(𝑁)))T = (⩾,⩽)b, (10)

where A = [𝑎𝑖𝑗 ]𝑞×2𝑛 is a coefficient matrix, 𝑞 is the total number of constraints, and b𝑞×1 = (𝑏1, ..., 𝑏𝑞)T is the right-hand side vector.

We further categorize all constraints into three types based on their direction of inequality as 𝑄=, 𝑄⩾, and 𝑄⩽. By introducing 
deviation variables, we can formulate a multiple goals linear program to obtain the vertex fuzzy measures of Eq. (10):

min𝑧 =
∑
𝑖∈𝑄′

𝑑𝑖

𝑠.𝑡. 𝑎𝑖0𝜇(∅) + 𝑎𝑖1𝜇({1}) +⋯+ 𝑎𝑖2𝑛𝜇(𝑁) = 𝑏𝑖, 𝑖 ∈𝑄=,

𝑎𝑖0𝜇(∅) + 𝑎𝑖1𝜇({1}) +⋯+ 𝑎𝑖2𝑛𝜇(𝑁) − 𝑑𝑖 = 𝑏𝑖, 𝑖 ∈𝑄⩾,

𝑎𝑖0𝜇(∅) + 𝑎𝑖1𝜇({1}) +⋯+ 𝑎𝑖2𝑛𝜇(𝑁) + 𝑑𝑖 = 𝑏𝑖, 𝑖 ∈𝑄⩽,

(11)

where 𝑑𝑖 are the positive or negative deviation variables, 𝑑𝑖 ⩾ 0, and 𝑄′ ⊆ {1, ..., 𝑞} is a randomly selected subset of the constraints 
index set, |𝑄′| ⩾ 2. If the deviation variable is zero, then the corresponding constraint will be strict. Taking into account that all the 
original linear constraints are compatible (they can be redundant but without any contradictions), the optimal solution of the above 
model must reach the boundary facet and will result in vertex fuzzy measures (the optimal objective function value will not be zero 
if some redundant constraints exist). Then, utilizing convex combinations, we construct Algorithm 4.

In this section, we present three categories of generation methods for fuzzy measures. Our subsequent objective is to evaluate the 
quality of the generated results. To achieve this, we introduce the concept of coverage of the feasible domain.

1 Here, we can generate 𝑡 − 1 values with a uniform distribution in the range of [0, 1]. These values can be sorted in ascending order as 𝜆′ , ⋯ , 𝜆′ . Subsequently, 
6

1 𝑡−1
we define 𝜆1 = 𝜆′1 , 𝜆2 = 𝜆1 − 𝜆′1 , ⋯, and 𝜆𝑡 = 1 − 𝜆′

𝑡−1 .
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Algorithm 4: Random generation method of vertex fuzzy measures and convex combination.

Input: 𝑘, 𝑙 and 𝑁 .

for 𝑙 in 1 ∶ 𝑙 do
Randomly select a subset of the constraints index set, denoted 𝑄′,

Construct the linear program according to (11) and denote the optimal fuzzy measure obtained as 𝜇𝑙 ,

Store 𝜇𝑙 as the 𝑙-th row of V.

end

for 𝑘 in 1 ∶ 𝑘 do
Randomly select 𝑡 extreme fuzzy measure in V, denoted 𝑣1 , ..., 𝑣𝑡
Randomly generate 𝑡 positive numbers 𝜆1, ..., 𝜆𝑡 with their sum equal to 1.1

Set 𝜇𝑘 = 𝜆1𝑣1 +⋯ + 𝑣𝑡𝜆𝑡 , and store 𝜇𝑘 as the 𝑘-th row of U

end

Return matrix V
𝑙×2𝑁 of 𝑙 fuzzy measures and U

𝑘×2𝑁 of 𝑘 fuzzy measures.

4. Evaluating coverage performance of generated fuzzy measures

The coverage of a set of fuzzy measures can be quantified as the proportion of the feasible domain that is covered by the generated 
fuzzy measures. A high coverage ratio of the generated measures is indicative of a comprehensive representation of the entire feasible 
domain, rather than a limited and skewed portion of it. Given the high dimensionality and complex shape of the feasible domain 
with at least 2𝑛 variables and a large number of monotonicity and additional linear constraints, it can be challenging to obtain a 
comprehensive understanding of the domain range. Therefore, we can employ certain indices to probe the range of the domain and 
obtain insights into the coverage ratio. Here, we utilize three types of indices to calculate the coverage ratio: the indices of the fuzzy 
measure, the objective function of the fuzzy measure identification model, and the distance to the boundaries of the feasible domain.

4.1. Measuring coverage by indices of fuzzy measure

The first type includes all indices of the fuzzy measure. These indices can be calculated from linear combinations of the fuzzy 
measure values, such as the orness index (see Eq. (2)), the Shapley interaction index (see Definition 3), and the Choquet integral 
output for a given alternative (see Definition 5), as well as some nonlinear representation such as entropy (see Eq. (3)). It should be 
noted that the fuzzy measure values of any subset except the empty set and the universal set can be taken to measure the coverage.

Only with boundary and monotonicity conditions, the range of orness is [0, 1], the range of entropy is [0, ln(𝑛)], the range of the 
Choquet integral output for a given 𝐱 is [min𝑖 𝑥, max𝑖 𝑥], the range of fuzzy measure value of a subset can be [0, 1]. With the addition 
of additional linear constraints, the feasible domain remains convex, and the above indices typically have close ranges.

4.2. Measuring coverage by the objective functions of identification models

The identification method obtains the desired fuzzy measures according to an objective function, which may include minimizing 
or maximizing the indices of fuzzy measures such as orness, entropy, or interaction indices. In some models, the objective function 
may be more complex by involving the Choquet integral values of given alternatives [4,15,32].

• Minimum deviations between integral values and desired values

min𝑧 =
∑
𝐱∈𝐿

(𝐶𝜇(𝐱) − 𝑦(𝐱))2

s.t.  and .

(12)

where 𝐿 is the set of all alternatives, 𝑦(𝐱) is the expected overall evaluation of each 𝐱 ∈ 𝐿, the objective is to minimize the 
squared distance between the Choquet integral evaluations and the expected overall evaluations across alternatives in 𝐿.

• Maximum split among integral values

max𝑧 = 𝜖

s.t.  and ,

𝐶𝜇(𝐱) −𝐶𝜇(𝐱′) ⩾ 𝜖 if 𝐱 ≻ 𝐱′ ∈𝑂(𝐿).

(13)

The above model maximizes the distances among all neighbor alternatives in the given order 𝑂(𝐿).
• Maximize the sum of integral values

max𝑧 =
∑
𝐱∈𝐿

𝐶𝜇(𝐱)

s.t.  and .

(14)

The above objective function actually stems from the compromise principle for identifying fuzzy measures [32], which aims to 
7

give each alternative an equal chance to reach its highest potential evaluation.
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Table 1

Experimental results of coverage ratios on four elements of Algorithm 1 or 2.

Min. 1st Qu. Median Mean 3rd Qu. Max. sd.

Orness 0.702 0.715 0.720 0.720 0.726 0.737 0.010

Entropy 0.604 0.611 0.618 0.618 0.626 0.633 0.009

Choquet Integral 0.909 0.920 0.928 0.926 0.933 0.935 0.009

Distance (1) 0.881 0.885 0.895 0.891 0.896 0.899 0.007

Distance (2) 0.879 0.886 0.892 0.891 0.894 0.907 0.009

Distance (3) 0.877 0.888 0.895 0.895 0.902 0.909 0.010

4.3. Measuring coverage by distances to boundaries of feasible domain

Each constraint, if not redundant, can form a boundary facet of the feasible domain. To calculate the coverage ratio, we first need 
to obtain the maximum and minimum distances to each constraint. If a constraint is in 𝑄=, then the distance of any fuzzy measure 
to it will be zero. For constraints in 𝑄⩾ and 𝑄⩽, we can use the following formula to calculate the range of distances:

min(max)𝑧 = 𝑑𝑖

s.t.  and ,

𝑎𝑖0𝜇(∅) + 𝑎𝑖1𝜇({1}) +⋯+ 𝑎𝑖2𝑛𝜇(𝑁) − 𝑑𝑖 = 𝑏𝑖, if 𝑖 ∈𝑄⩾,

𝑎𝑖0𝜇(∅) + 𝑎𝑖1𝜇({1}) +⋯+ 𝑎𝑖2𝑛𝜇(𝑁) + 𝑑𝑖 = 𝑏𝑖, if 𝑖 ∈𝑄⩽,

(15)

For any given fuzzy measure 𝜇, we just use

𝑑
𝜇

𝑖
= |𝑎𝑖0𝜇(∅) + 𝑎𝑖1𝜇({1}) +⋯+ 𝑎𝑖2𝑛𝜇(𝑁) − 𝑏𝑖| (16)

to calculate its distance to the constraint.

4.4. Indices granularity based coverage ratio

As discussed above, a single index used for evaluating coverage, denoted as 𝑧, should lie within a closed interval [𝐿𝑧, 𝑈𝑧] under a 
set of linear constraints. We can divide this close interval into a given number of equal sub-intervals, such as 𝑏 =1000, and calculate 
the coverage ratio as the ratio of sub-intervals occupied by the generated fuzzy measures out of the total number of sub-intervals, 
denoted as 𝑟𝑏. It is important to note that the number of generated fuzzy measures should be substantially greater than the number 
of sub-intervals, as a smaller number of generated measures may result in the coverage ratio never reaching 1.

5. Experimental results

In this section, we use two illustrative examples to show the coverage ratios of the proposed random generation methods.

5.1. Random generation only with boundary and monotonicity conditions

Considering the universal set as 𝑁 = {1, 2, 3, 4}, we first investigate the random node-based random generation method, Algo-

rithm 1, which is equivalent to Algorithm 2 when subject only to boundary and monotonicity conditions. To conduct our analysis, 
we set the number of generated fuzzy measures, denoted as 𝑘, to 5000. Table 1 presents statistical data for coverage ratios obtained 
from 10 independent algorithm runs. In the table and forthcoming, Min., 1st Qu., Median, Mean, 3rd Qu., Max., and sd. represent 
minimum, first quartile, median, mean, third quartile, maximum, and standard deviation of the 10 coverage ratios, respectively. 
The coverage ratios are calculated based on the orness, entropy, Choquet integral of the input vector (0.25, 0.5, 0.75, 1), and the 
distances to three chosen boundary conditions, corresponding to the second to seventh rows in Table 1 respectively. In this case, the 
ranges of these indices are as follows: [0, 1] for orness index, [0, ln(4)] for entropy, [0.25, 1] for Choquet integral, and [0, 1] for the 
distances. Additionally, it’s worth noting that the coverage ratio calculation is based on 1000 breaks, i.e., 𝑏 = 1000.

The random node-based generation method is commonly used as a benchmark for performance comparison. In this study, we use 
the median of coverage ratio as the main indicator.

Algorithm 3 utilizes convex combinations of extreme fuzzy measures, specifically the 30 0-1 possibility or necessity measures. 
Table 2 displays the coverage ratios obtained from generating 5000 fuzzy measures for 𝑡 = 2, 3 in 10 independent runs. For 𝑡 = 2, the 
medians of the coverage ratios for orness and Choquet integral of the input vector (0.25, 0.5, 0.75, 1) exceed those in Table 1. For 
𝑡 = 3, the medians of the coverage ratios for orness, entropy, and Choquet integral are higher than those in Table 1. Additionally, 
when 𝑡 = 3, the coverage ratios for the three distances reach their peak values in Table 2.

Algorithm 4 generates fuzzy measures using convex combinations of vertex fuzzy measures obtained through linear programming. 
Table 3 displays the results for various parameters, specifically |𝑄′| ∼ 0.6 × 24 = 10, 𝑙 = 100, 150, and 𝑡 = 2, 3. Each row still corre-

sponds to the coverage ratios of generating 5000 fuzzy measures in 10 independent runs. Among these cases, when 𝑙 = 150 and 𝑡 = 3, 
8

all the coverage ratios exceed the benchmark values. In the case of 𝑙 = 150, 𝑡 = 3, four coverage ratios outperform their respective 
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Table 2

Experimental results of coverage ratios on four elements of Algorithm 3.

Min. 1st Qu. Median Mean 3rd Qu. Max. sd.

𝑡 = 2 Orness 0.913 0.919 0.924 0.924 0.930 0.938 0.008

Entropy 0.487 0.493 0.494 0.493 0.495 0.497 0.003

Choquet Integral 0.960 0.963 0.969 0.969 0.974 0.980 0.007

Distance (1) 0.754 0.761 0.769 0.770 0.774 0.793 0.012

Distance (2) 0.760 0.764 0.772 0.773 0.780 0.788 0.009

Distance (3) 0.760 0.762 0.774 0.773 0.781 0.788 0.011

𝑡 = 3 Orness 0.834 0.838 0.847 0.845 0.852 0.855 0.008

Entropy 0.626 0.628 0.639 0.637 0.643 0.648 0.009

Choquet Integral 0.962 0.966 0.968 0.968 0.971 0.975 0.004

Distance (1) 0.812 0.813 0.821 0.822 0.829 0.836 0.009

Distance (2) 0.817 0.819 0.826 0.825 0.828 0.833 0.006

Distance (3) 0.805 0.811 0.817 0.816 0.820 0.828 0.007

Table 3

Experimental results of coverage ratios on four elements of Algorithm 4.

Min. 1st Qu. Median Mean 3rd Qu. Max. sd.

𝑙 = 100, 𝑡 = 2 Orness 0.878 0.900 0.907 0.910 0.925 0.947 0.021

Entropy 0.491 0.494 0.496 0.495 0.497 0.498 0.002

Choquet Integral 0.946 0.950 0.958 0.956 0.961 0.962 0.006

Distance (1) 0.780 0.791 0.808 0.812 0.822 0.873 0.027

Distance (2) 0.779 0.791 0.814 0.812 0.836 0.843 0.026

Distance (3) 0.785 0.801 0.805 0.810 0.819 0.839 0.017

𝑙 = 100, 𝑡 = 3 Orness 0.795 0.829 0.837 0.835 0.843 0.855 0.018

Entropy 0.623 0.627 0.629 0.632 0.637 0.649 0.008

Choquet Integral 0.897 0.929 0.942 0.939 0.953 0.961 0.019

Distance (1) 0.835 0.870 0.879 0.884 0.904 0.929 0.029

Distance (2) 0.821 0.854 0.872 0.870 0.882 0.908 0.027

Distance (3) 0.858 0.877 0.899 0.895 0.913 0.937 0.026

𝑙 = 150, 𝑡 = 2 Orness 0.866 0.890 0.895 0.896 0.907 0.914 0.015

Entropy 0.494 0.495 0.495 0.495 0.496 0.497 0.001

Choquet Integral 0.942 0.952 0.956 0.955 0.960 0.970 0.008

Distance (1) 0.804 0.823 0.836 0.835 0.847 0.863 0.018

Distance (2) 0.790 0.806 0.823 0.818 0.825 0.850 0.018

Distance (3) 0.804 0.825 0.837 0.834 0.845 0.849 0.015

𝑙 = 150, 𝑡 = 3 Orness 0.800 0.807 0.809 0.813 0.815 0.841 0.013

Entropy 0.612 0.623 0.627 0.627 0.629 0.650 0.010

Choquet Integral 0.929 0.939 0.943 0.941 0.945 0.950 0.007

Distance (1) 0.865 0.882 0.899 0.897 0.912 0.924 0.021

Distance (2) 0.859 0.887 0.902 0.896 0.909 0.913 0.018

Distance (3) 0.860 0.890 0.895 0.892 0.898 0.911 0.015

Table 4

Scores of 7 alternatives on 5 criteria.

1 2 3 4 5

a 0.90 0.55 0.55 0.55 0.90

b 0.90 0.55 0.90 0.55 0.55

c 0.55 0.55 0.90 0.55 0.90

d 0.90 0.90 0.55 0.55 0.55

e 0.55 0.55 0.90 0.90 0.55

f 0.55 0.55 0.90 0.55 0.55

g 0.55 0.55 0.55 0.55 0.90

benchmarks, while the 𝑙 = 100, 𝑡 = 2 case demonstrates two surpassing values, and the 𝑙 = 150, 𝑡 = 2 case has one surpassing value, 
as indicated in bold font.

5.2. Random generation with additional linear constraints

In this subsection, we adapt the example in [15] to demonstrate the coverage of our random generation methods. Suppose 7 
9

alternatives have partial evaluations on five criteria 𝑁 = {1, 2, 3, 4, 5}, as shown in Table 4.
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Table 5

Experimental results of coverage ratios with additional constraints.

Min. 1st Qu. Median Mean 3rd Qu. Max. sd.

Algorithm 2 Deviations 0.910 0.930 0.940 0.939 0.947 0.970 0.016

Split 0.270 0.290 0.315 0.333 0.373 0.430 0.055

Sum 0.930 0.940 0.960 0.959 0.978 0.990 0.021

Distance (1) 0.870 0.880 0.890 0.894 0.898 0.940 0.021

Distance (2) 0.720 0.752 0.765 0.760 0.770 0.780 0.017

Distance (3) 0.850 0.885 0.900 0.897 0.918 0.920 0.024

Algorithm 3, 𝑡 = 3 Deviations 0.940 0.952 0.960 0.961 0.970 0.980 0.012

Split 0.180 0.217 0.245 0.244 0.275 0.290 0.036

Sum 0.920 0.920 0.920 0.923 0.927 0.930 0.005

Distance (1) 0.610 0.610 0.620 0.627 0.628 0.700 0.028

Distance (2) 0.460 0.480 0.480 0.489 0.497 0.530 0.022

Distance (3) 0.630 0.660 0.680 0.670 0.680 0.690 0.018

Algorithm 3, 𝑡 = 5 Deviations 0.910 0.940 0.940 0.940 0.950 0.950 0.012

Split 0.460 0.470 0.480 0.487 0.497 0.530 0.023

Sum 0.880 0.883 0.890 0.891 0.900 0.900 0.009

Distance (1) 0.490 0.490 0.500 0.508 0.525 0.550 0.021

Distance (2) 0.370 0.390 0.390 0.396 0.407 0.430 0.017

Distance (3) 0.550 0.560 0.570 0.573 0.580 0.600 0.017

Algorithm 4, 𝑙 = 150, 𝑡 = 3 Deviations 0.770 0.782 0.795 0.799 0.810 0.840 0.021

Split 0.070 0.092 0.115 0.117 0.148 0.150 0.030

Sum 0.910 0.950 0.950 0.951 0.968 0.980 0.022

Distance (1) 0.780 0.812 0.830 0.833 0.858 0.880 0.032

Distance (2) 0.510 0.530 0.545 0.548 0.560 0.600 0.028

Distance (3) 0.630 0.670 0.695 0.705 0.737 0.800 0.052

Algorithm 4, 𝑙 = 150, 𝑡 = 5 Deviations 0.720 0.763 0.770 0.772 0.788 0.810 0.028

Split 0.180 0.227 0.255 0.253 0.288 0.300 0.039

Sum 0.910 0.923 0.940 0.938 0.950 0.970 0.020

Distance (1) 0.770 0.805 0.825 0.819 0.830 0.850 0.023

Distance (2) 0.510 0.545 0.575 0.564 0.588 0.590 0.028

Distance (3) 0.660 0.672 0.700 0.703 0.720 0.770 0.035

Some additional constraints about the importances and interactions among criteria are given as:

− 0.01 ⩽ 𝐼𝜇({1}) − 𝐼𝜇({2}),⩽ 𝐼𝜇({3}) − 𝐼𝜇({4}) ⩽ 0.01,

𝐼𝜇({1,2}), 𝐼𝜇({3,4}) ⩽ −0.05,

𝐼𝜇({1,3}), 𝐼𝜇({1,4}), 𝐼𝜇({1,5}), 𝐼𝜇({2,3}), 𝐼𝜇({2,4}),

𝐼𝜇({2,5}), 𝐼𝜇({3,4}), 𝐼𝜇({4,5}) ⩾ 0.05.

(17)

Let’s further consider the utilization of 3-additive measures:

𝑚𝜇(𝐴) = 0, |𝐴| > 3,𝐴 ⊆𝑁. (18)

In this case, we can analyze the coverage based on the objective function indices of identification models. Specifically, for the 
minimum deviation method, we need the expected overall evaluations of 7 alternatives, which are as follows: 0.697, 0.672, 0.647, 
0.622, 0.597, 0.572, and 0.55. For the maximum split methods, we need the expected order of 7 alternatives which can be given as: 
𝑎 ≻ 𝑏 ≻ 𝑐 ≻ 𝑑 ≻ 𝑒 ≻ 𝑓 ≻ 𝑔. Hence we can set up the following constraints:

𝜇(𝑎)−𝜇(𝑏) ⩾ 0.001,

𝜇(𝑏)−𝜇(𝑐) ⩾ 0.001,

⋯

𝜇(𝑓 )−𝜇(𝑔) ⩾ 0.001.

(19)

By combining boundary and monotonicity constraints on 𝑁 , along with the additional conditions specified in Eqs. (17), (18) and 
(19), we conducted 10 independent runs of Algorithms 2, 3, and 4 respectively to generate 1000 fuzzy measures.

Table 5 shows the statistical information of the coverage ratios about 100 breaks obtained from the different objective functions. 
According to Eqs. (12), (13), (14) and (15), we can have the range of deviation between Choquet integrals and expected values is 
[0.009, 0.222], the range of split among 7 alternatives is [0.001, 0.023], the ranges of the sum of Choquet integrals of 7 alternatives are

[3.871, 4.701], and the ranges of selected distances (1), (2) and (3) are [0.000, 0.349], [0.000, 0.791] and [0.006, 0.935], respectively. 
10

The coverage ratios are calculated using these indices with 100 breaks.
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Table 6

Enhancement by increasing the number of generated fuzzy measures.

Min. 1st Qu. Median Mean 3rd Qu. Max. sd.

Algorithm 4, 𝑙 = 150, 𝑡 = 5 Deviations 0.710 0.770 0.785 0.781 0.800 0.840 0.037

2000 measures Split 0.260 0.293 0.310 0.304 0.320 0.340 0.025

Sum 0.880 0.930 0.945 0.935 0.958 0.960 0.029

Distance (1) 0.810 0.820 0.835 0.832 0.840 0.860 0.015

Distance (2) 0.530 0.560 0.580 0.575 0.590 0.610 0.025

Distance (3) 0.670 0.683 0.710 0.717 0.755 0.770 0.038

Table 7

Enhancement through convex combination of generated fuzzy measures.

Min. 1st Qu. Median Mean 3rd Qu. Max. sd.

Algorithm 3, 𝑡 = 3, 𝑡 = 3 Deviations 0.970 0.970 0.980 0.977 0.980 0.990 0.007

Split 0.510 0.532 0.545 0.551 0.570 0.600 0.028

Sum 0.910 0.920 0.920 0.923 0.930 0.930 0.007

Distance (1) 0.580 0.620 0.635 0.630 0.648 0.660 0.026

Distance (2) 0.460 0.480 0.485 0.484 0.490 0.500 0.013

Distance (3) 0.670 0.672 0.680 0.678 0.680 0.690 0.006

Algorithm 3, 𝑡 = 5, 𝑡 = 5 Deviations 0.920 0.940 0.960 0.956 0.970 0.980 0.020

Split 0.540 0.560 0.580 0.577 0.595 0.610 0.025

Sum 0.860 0.883 0.890 0.889 0.898 0.910 0.016

Distance (1) 0.470 0.492 0.510 0.506 0.525 0.530 0.021

Distance (2) 0.360 0.383 0.390 0.398 0.410 0.450 0.027

Distance (3) 0.560 0.570 0.580 0.577 0.580 0.590 0.009

Similarly, we use the medians of the coverage ratios obtained from Algorithm 2 as benchmarks. For Algorithm 3, the case with 
𝑡 = 3 achieves a coverage ratio of 0.960, surpassing the benchmark in the deviation index. In addition, the case with 𝑡 = 5 matches the 
benchmark with a coverage ratio of 0.940 in the deviation index and outperforms in the split index with a coverage ratio of 0.480. 
For Algorithm 4, the cases with 𝑙 = 150 and 𝑡 = 3, as well as 𝑡 = 5, have similar coverage ratios of 0.950 and 0.940, respectively, in 
the sum index.

The coverage ratios presented in the above tables indicate that while some ratios exceed 0.90, there are still ratios below 0.5. It 
is worth noting that no single algorithm consistently outperforms others in all indices. This highlights the importance of analyzing 
and improving the coverage ratio after generating fuzzy measures, which will be the main focus of the upcoming section.

6. Further enhancement of coverage ratio

The low coverage values may be a consequence of the inherent characteristics of the index being used. For example, the split 
index mentioned in Eq. (13) can be represented as:

𝜖 =min(𝐶𝜇(𝑎) −𝐶𝜇(𝑏),𝐶𝜇(𝑏) −𝐶𝜇(𝑐),⋯ ,𝐶𝜇(𝑓 ) −𝐶𝜇(𝑔)), (20)

where the min function highlights the smallest difference among Choquet integrals, which can result in an uneven distribution of 
the output values. Moreover, even for a linear index such as the distance of a fuzzy measure to a given boundary, as shown in Eq. 
(16), there can still be an uneven possibility in obtaining its values due to the irregularity of the feasible domain. These uneven 
distributions make it more challenging to achieve certain index values, ultimately resulting in low coverage ratios.

Another factor contributing to the low coverage ratios may be the contradiction between the random generation methods and the 
indices used for evaluation. For example, the extreme and vertex measures often have small entropy values close to zero. This poses 
a challenge for algorithms such as 3 and 4 to generate fuzzy measures with larger entropy values, see e.g., the results in Tables 2 and 
3.

Once we obtain low coverage ratios, there are several approaches available to enhance these index values. A direct approach to 
enhance the coverage ratios is to increase the number of generated fuzzy measures. For instance, by doubling the generation number 
of Algorithm 4 for 𝑙 = 150, 𝑡 = 5 to 2000 fuzzy measures, we observe an improvement in the coverage ratios, see Table 6 and the last 
section of Table 5.

Another approach to generate additional fuzzy measures is through the use of the convex combination method described in Eq. 
(5). Table 7 presents the results of applying this method to further generate 1000 fuzzy measures. Comparing these results with the 
second and third sections of Table 5, we can observe the improvements in the coverage ratios.

The third approach is to combine the results of different algorithms. Table 8 demonstrates three combinations of Algorithms 2, 3, 
and 4. It can be seen that the coverage ratio, as indicated by the sum of Choquet integrals, can reach 1, and several values outperform 
the benchmarks.

The final approach involves generating additional fuzzy measures to fill the unoccupied breaks of index values using optimiza-
11

tion models. This approach is specifically suitable for linear index-based coverage ratios. For example, if the orness index has an 
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Table 8

Enhancement by collecting results from different algorithms.

Min. 1st Qu. Median Mean 3rd Qu. Max. sd.

Algorithm 3, 𝑡 = 3 Deviations 0.960 0.960 0.960 0.964 0.970 0.970 0.005

plus with Split 0.220 0.275 0.300 0.286 0.300 0.320 0.031

Algorithm 4, 𝑙 = 150, 𝑡 = 3 Sum 1.000 1.000 1.000 1.000 1.000 1.000 0.000

Distance (1) 0.790 0.805 0.830 0.826 0.840 0.860 0.023

Distance (2) 0.630 0.640 0.650 0.656 0.660 0.720 0.025

Distance (3) 0.830 0.840 0.845 0.846 0.850 0.870 0.013

Algorithm 3, 𝑡 = 5 Deviations 0.940 0.950 0.960 0.960 0.968 0.980 0.013

plus with Split 0.440 0.470 0.480 0.481 0.497 0.510 0.023

Algorithm 4, 𝑙 = 150, 𝑡 = 5 Sum 0.990 1.000 1.000 0.998 1.000 1.000 0.004

Distance (1) 0.800 0.830 0.835 0.843 0.858 0.890 0.028

Distance (2) 0.560 0.562 0.590 0.596 0.608 0.660 0.028

Distance (3) 0.760 0.790 0.795 0.797 0.815 0.820 0.019

Algorithm 2 Deviations 0.940 0.960 0.960 0.961 0.970 0.970 0.010

plus with Split 0.430 0.447 0.485 0.481 0.500 0.560 0.039

Algorithm 3, 𝑡 = 3 Sum 0.970 0.973 0.980 0.982 0.987 1.000 0.011

Distance (1) 0.850 0.880 0.890 0.894 0.922 0.940 0.032

Distance (2) 0.730 0.772 0.785 0.779 0.790 0.800 0.021

Distance (3) 0.860 0.875 0.900 0.898 0.920 0.930 0.025

Table 9

Enhancement by makeup the unoccupied breaks of indices for Algorithm 1.

Min. 1st Qu. Median Mean 3rd Qu. Max. sd.

Orness Makeup Orness 1.000 1.000 1.000 1.000 1.000 1.000 0.000

Entropy 0.903 0.906 0.908 0.909 0.913 0.914 0.004

Choquet Integral 0.950 0.954 0.954 0.957 0.960 0.968 0.005

Distance (1) 0.893 0.902 0.903 0.904 0.909 0.913 0.006

Distance (2) 0.894 0.898 0.905 0.906 0.913 0.919 0.009

Distance (3) 0.895 0.897 0.901 0.904 0.912 0.919 0.009

Choquet integral Makeup Orness 0.837 0.846 0.849 0.850 0.857 0.859 0.007

Entropy 0.874 0.882 0.888 0.885 0.889 0.893 0.007

Choquet Integral 1.000 1.000 1.000 1.000 1.000 1.000 0.000

Distance (1) 0.878 0.893 0.897 0.895 0.899 0.906 0.009

Distance (2) 0.887 0.892 0.899 0.898 0.904 0.908 0.007

Distance (3) 0.881 0.891 0.898 0.894 0.900 0.901 0.007

unoccupied break [𝑎, 𝑏], we can use the following model to generate a fuzzy measure with an orness value equal to a random value 
𝑐 ∈ [𝑎, 𝑏]:

min𝑧 = 𝑑+ + 𝑑−

s.t.  and ,

𝑜𝑟𝑛𝑒𝑠𝑠(𝜇) − 𝑑+ + 𝑑− = 𝑐.

(21)

Due to the convexity of the feasible domain, the optimal objective function in the above model should always be 0. Table 9

demonstrates the enhancements achieved through orness and Choquet integral for Algorithm 1 in generating fuzzy measures for 
𝑁 = {1, 2, 3, 4} under normalization and monotonicity conditions, providing a comparison with the results from Table 1.

With these random generation algorithms and coverage ratio improvement approaches, we can investigate some applications in 
the next section.

7. Possible applications of random generation methods

First, let’s consider the optimization of a non-linear function known as the Rastrigin function, represented as:

𝑓 (𝜇) = 202𝑛 +
∑
𝐴⊆𝑁

(
𝜇(𝐴)2 − 20cos(2𝜋𝜇(𝐴))

)
,

where 𝑁 = {1, 2, 3, 4}. The Rastrigin function is commonly used as a benchmark function in optimization algorithms and is known for 
its multimodal and highly rugged landscape, with many local minima and a single global minimum at the points where all variables 
12

are zero.
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Table 10

Results of optimization solutions of Rastrigin function.

Min. 1st Qu. Median Mean 3rd Qu. Max. sd.

1000 measures by Algorithm 2 Maximum 227.755 231.292 235.813 237.876 241.283 260.130 9.370

Minimum 8.131 9.013 10.548 11.768 14.291 18.333 3.593

5000 measures by Algorithm 2 Maximum 240.366 245.356 249.561 250.211 252.406 265.398 7.223

Minimum 5.570 8.118 8.463 8.229 8.820 9.232 1.030

5000 measures by Algorithm 2 Maximum 244.518 250.312 251.068 253.538 257.108 271.229 8.075

and orness based improvement Minimum 1.000 1.000 1.000 1.000 1.000 1.001 0.000

Table 11

Results of machine learning using Minkowski distances.

Min. 1st Qu. Median Mean 3rd Qu. Max. sd.

𝑝 = 1 Maximum deviation 0.486 0.486 0.486 0.486 0.486 0.486 0.000

Minimum deviation 0.024 0.034 0.038 0.036 0.040 0.041 0.005

𝑝 = 2 Maximum deviation 0.222 0.222 0.222 0.222 0.222 0.222 0.000

Minimum deviation 0.011 0.017 0.021 0.020 0.022 0.024 0.004

𝑝 = 3 Maximum deviation 0.178 0.178 0.178 0.178 0.178 0.178 0.000

Minimum deviation 0.008 0.015 0.017 0.016 0.018 0.020 0.003

Table 12

Different orderings of 7 alternatives and their fre-

quencies.

No. Ordering Frequency

1 𝑒 ≺ 𝑓 ≺ 𝑔 ≺ 𝑐 ≺ 𝑑 ≺ 𝑎 ≺ 𝑏 108/1062

2 𝑑 ≺ 𝑔 ≺ 𝑎 ≺ 𝑒 ≺ 𝑓 ≺ 𝑐 ≺ 𝑏 72/1062

3 𝑔 ≺ 𝑑 ≺ 𝑎 ≺ 𝑒 ≺ 𝑓 ≺ 𝑐 ≺ 𝑏 56/1062

4 𝑎 ≺ 𝑐 ≺ 𝑑 ≺ 𝑒 ≺ 𝑓 ≺ 𝑔 ≺ 𝑏 46/1062

5 𝑑 ≺ 𝑔 ≺ 𝑎 ≺ 𝑓 ≺ 𝑒 ≺ 𝑐 ≺ 𝑏 45/1062

6 𝑔 ≺ 𝑑 ≺ 𝑎 ≺ 𝑓 ≺ 𝑒 ≺ 𝑐 ≺ 𝑏 44/1062

7 𝑑 ≺ 𝑒 ≺ 𝑓 ≺ 𝑏 ≺ 𝑔 ≺ 𝑎 ≺ 𝑐 30/1062

8 𝑒 ≺ 𝑓 ≺ 𝑔 ≺ 𝑐 ≺ 𝑑 ≺ 𝑏 ≺ 𝑎 29/1062

9 𝑑 ≺ 𝑔 ≺ 𝑎 ≺ 𝑓 ≺ 𝑒 ≺ 𝑏 ≺ 𝑐 20/1062

10 𝑔 ≺ 𝑒 ≺ 𝑓 ≺ 𝑐 ≺ 𝑑 ≺ 𝑎 ≺ 𝑏 25/1062

By using Algorithm 2 and orness based coverage ratio improvement approach 10 times, we have the following results of minimum 
of maximum values in Table 10. One can figure out that the combination of generation of 5000 measures and orness based coverage 
ration improvement approach can reach the global minimum value of 1 with the solution as: 𝜇(𝑁) = 1 and 𝜇(𝐴) = 0, 𝐴 ⊂𝑁 .

Second, let’s examine an application in machine learning. Specifically, in subsection 5.2, we address the task of measuring the 
deviation between Choquet integrals and the expected values of 7 alternatives, which is a typical machine learning problem. The 
deviation as shown in Eq. (12) is basically the euclidean distance or a type of Minkowski distance:

𝑑(𝑥, 𝑦) =

(
𝑛∑
𝑖=1

|𝑥𝑖 − 𝑦𝑖|𝑝
) 1

𝑝

,

where 𝑝 is a positive parameter, set to 1 for Manhattan distance and 2 for Euclidean distance. Table 11 shows the deviations obtained 
by using Minkowski distances with 𝑝 = 1, 2, 3 with Algorithm 3 (𝑡 = 3) and orness based coverage ratio improvement approach.

Third, we investigate the decision analysis situation. Still the example in subsection 5.2, if remove the constraint Eq. (19) and only 
consider boundary and monotonicity constraints and Eqs. (17) and (18), we have the different ordering of 7 alternatives, Table 12

shows the top 10 relationships and their frequencies by using Algorithm 3 (𝑡 = 3) and orness based coverage ratio improvement 
approach (total 1062 fuzzy measures).

Finally, we provide a small example to illustrate a property investigation problem. We focus on the interaction indices of the 1062 
fuzzy measures mentioned earlier and specifically investigate the indices of subsets consisting of three criteria. It is worth noting that 
subsets of other cardinalities are all constrained, as indicated in Eqs. (17) and (18). In Table 13, we present the interaction indices 
of all subsets with three criteria. Interestingly, we observe that subsets {1, 2, 3}, {1, 2, 4}, {2, 3, 4} and {3, 4, 5} all exhibit negative 
interaction values, even without any explicit constraints on them. This observation prompts further investigations and analyses of 
13

their properties, which can be explored by establishing optimization models.
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Table 13

Results of interaction indices of subsets with three criteria.

Subsets Min. 1st Qu. Median Mean 3rd Qu. Max. sd.

{1,2,3} -0.570 -0.104 -0.081 -0.089 -0.048 0.000 0.071

{1,2,4} -0.570 -0.100 -0.079 -0.091 -0.050 0.000 0.072

{1,2,5} -0.680 -0.100 -0.062 -0.087 -0.026 0.113 0.101

{1,3,4} -0.315 -0.104 -0.076 -0.065 -0.042 0.570 0.089

{1,3,5} -0.315 -0.027 0.032 0.056 0.128 0.490 0.130

{1,4,5} -0.315 0.005 0.061 0.080 0.155 0.528 0.130

{2,3,4} -0.670 -0.111 -0.082 -0.100 -0.051 0.000 0.084

{2,3,5} -0.255 0.015 0.078 0.103 0.182 0.528 0.124

{2,4,5} -0.315 -0.017 0.037 0.073 0.157 0.528 0.135

{3,4,5} -0.680 -0.149 -0.071 -0.116 -0.032 0.000 0.128

8. Conclusions

In this research, we have introduced three distinct approaches, namely random-node based topological sorting, convex combina-

tion of constrained extreme measures, and vertex measures, to facilitate the random generation of fuzzy measures under complex 
linear constraints. By evaluating coverage ratios, which encompass fuzzy measure indices, objective functions, and distances to 
boundaries, we have empirically demonstrated the effectiveness of these random generation methods in exploring the convex feasi-

ble domain. Furthermore, we have improved the coverage performance of these methods by incorporating four different coverage 
ratio improvement approaches. The integration of random generation techniques with these enhancement strategies has the potential 
to find applications in diverse domains, such as optimization solutions, machine learning, and multiple criteria decision analyses. 
The upcoming research tasks may prioritize the practical implementation of these methods within specific optimization and decision 
analysis contexts. Furthermore, additional investigation is required to explore the adaptation of these techniques and approaches for 
addressing nonlinear and convex situations.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

The work was supported by the Australian Research Council Discovery project DP210100227.

References

[1] G. Beliakov, Construction of aggregation functions from data using linear programming, Fuzzy Sets Syst. 160 (2009) 65–75.

[2] G. Beliakov, On random generation of supermodular capacities, IEEE Trans. Fuzzy Syst. 30 (2022) 293–296.

[3] G. Beliakov, F.J. Cabrerizo, E. Herrera-Viedma, J.Z. Wu, Random generation of k-interactive capacities, Fuzzy Sets Syst. 430 (2022) 48–55.

[4] G. Beliakov, S. James, J.Z. Wu, Discrete Fuzzy Measures: Computational Aspects, Springer, Cham, Switzerland, 2019.

[5] G. Beliakov, J.Z. Wu, Learning fuzzy measures from data: simplifications and optimisation strategies, Inf. Sci. 494 (2019) 100–113.

[6] T. Calvo, B. De Baets, Aggregation operators defined by k-order additive/maxitive fuzzy measures, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 6 (1998) 
533–550.

[7] A. Chateauneuf, J.Y. Jaffray, Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion, Math. Soc. Sci. 
17 (1989) 263–283.

[8] G. Choquet, Theory of capacities, Ann. Inst. Fourier 5 (1954) 131–295.

[9] E. Combarro, P. Miranda, Identification of fuzzy measures from sample data with genetic algorithms, Comput. Oper. Res. 33 (2006) 3046–3066.

[10] E.F. Combarro, I. Díaz, P. Miranda, On random generation of fuzzy measures, Fuzzy Sets Syst. 228 (2013) 64–77.

[11] E.F. Combarro, J.H. de Saracho, I. Díaz, Minimals plus: an improved algorithm for the random generation of linear extensions of partially ordered sets, Inf. Sci. 
501 (2019) 50–67.

[12] J. Dujmovic, Two integrals related to means, Univ. Beogr. Publ. Elektroteh. Fak. (1973) 231–232.

[13] M. Grabisch, k-Order additive discrete fuzzy measures and their representation, Fuzzy Sets Syst. 92 (1997) 167–189.

[14] M. Grabisch, Set Functions, Games and Capacities in Decision Making, Springer, Berlin, New York, 2016.

[15] M. Grabisch, I. Kojadinovic, P. Meyer, A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: applications of 
the Kappalab R package, Eur. J. Oper. Res. 186 (2008) 766–785.

[16] M. Grabisch, C. Labreuche, A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid, Ann. Oper. Res. 175 (2010) 247–286.

[17] M. Grabisch, M. Roubens, Probabilistic interactions among players of a cooperative game, in: M. Machina, B. Munier (Eds.), Beliefs, Interactions and Preferences 
in Decision Making, Springer, Heidelberg, New York, 1999, pp. 205–216.

[18] T.C. Havens, A.J. Pinar, Generating random fuzzy (capacity) measures for data fusion simulations, in: 2017 IEEE Symposium Series on Computational Intelligence 
14

(SSCI), IEEE, 2017, pp. 1–8.

http://refhub.elsevier.com/S0020-0255(23)01666-3/bib246290130F92B2A6261FEE6E2B1DB6C7s1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bib287FEA3FD8F40BF6E05C4C977998F77Ds1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bib849A98B065384294FB2752E0A0A074EEs1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bibFB67B58A06B488D14D3CA34600A99CADs1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bib928796E9D2F397618E0F281A913D78CBs1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bibC636C04ED4ABAF8D7E2BFC4052506FECs1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bibC636C04ED4ABAF8D7E2BFC4052506FECs1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bib5D46272779D2067A59EB297D1B90DB2As1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bib5D46272779D2067A59EB297D1B90DB2As1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bibFCAAC176B1B616A292D55ACA7BF5FC12s1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bib9B30748B5700C67B1F11B41E3000A978s1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bib82178E22C4EA7D2C4D40957972DA2C16s1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bibC0AA5801A0CE0F253E6306A7F944D3FAs1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bibC0AA5801A0CE0F253E6306A7F944D3FAs1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bib1DE574F2A196CB808767A82BC3CF7405s1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bib0FF89529C53554D34CC130DD3347D0ACs1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bib906C42FE7D232F5A8C61AC9C68F1F087s1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bibFFD2116DD4267987521F443D5A452612s1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bibFFD2116DD4267987521F443D5A452612s1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bib247695A1539415DC3E2319FA38413E77s1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bib6E4A92EB4B05EBE9074AB8624F39A1B4s1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bib6E4A92EB4B05EBE9074AB8624F39A1B4s1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bibCC6ED44F1E39B58AC8DC905C0689A337s1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bibCC6ED44F1E39B58AC8DC905C0689A337s1


Information Sciences 659 (2024) 120080J.-Z. Wu, G. Beliakov, S. James et al.

[19] I. Kojadinovic, Minimum variance capacity identification, Eur. J. Oper. Res. 177 (2007) 498–514.

[20] J.L. Marichal, Entropy of discrete Choquet capacities, Eur. J. Oper. Res. 137 (2002) 612–624.

[21] J.L. Marichal, k-Intolerant capacities and Choquet integrals, Eur. J. Oper. Res. 177 (2007) 1453–1468.

[22] J.L. Marichal, M. Roubens, Determination of weights of interacting criteria from a reference set, Eur. J. Oper. Res. 124 (2000) 641–650.

[23] R. Mesiar, A. Kolesárová, k-Maxitive aggregation functions, Fuzzy Sets Syst. 346 (2018) 127–137.

[24] P. Meyer, M. Roubens, Choice, ranking and sorting in fuzzy multiple criteria decision aid, in: J. Figueira, S. Greco, M. Ehrogott (Eds.), Multiple Criteria Decision 
Analysis: State of the Art Surveys, Springer, New York, 2005, pp. 471–503.

[25] P. Miranda, M. Grabisch, P. Gil, p-Symmetric fuzzy measures, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10 (2002) 105–123.

[26] T. Murofushi, M. Sugeno, An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy measure, Fuzzy Sets Syst. 29 (1989) 
201–227.

[27] M. Sugeno, Theory of Fuzzy Integrals and Its Applications, Ph.D. thesis, Tokyo Institute of Technology, 1974.

[28] Z. Wang, G.J. Klir, Generalized Measure Theory, Springer Science & Business Media, New York, 2010.

[29] J.Z. Wu, G. Beliakov, Nonadditivity index and capacity identification method in the context of multicriteria decision making, Inf. Sci. 467 (2018) 398–406.

[30] J.Z. Wu, G. Beliakov, Nonadditive robust ordinal regression with nonadditivity index and multiple goal linear programming, Int. J. Intell. Syst. 34 (2019) 
1732–1752.

[31] J.Z. Wu, L. Huang, R.J. Xi, Y.P. Zhou, Multiple goal linear programming-based decision preference inconsistency recognition and adjustment strategies, Infor-

mation 10 (2019) 223.

[32] J.Z. Wu, Q. Zhang, Q. Du, Z. Dong, Compromise principle based methods of identifying capacities in the framework of multicriteria decision analysis, Fuzzy Sets 
15

Syst. 246 (2014) 91–106.

http://refhub.elsevier.com/S0020-0255(23)01666-3/bib386BF1745A7DAB32649061CB1D59D1D9s1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bibC9B1E6E782641E4B1A911AF043839ED1s1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bib7588E7FF0B0A81491CDD7C7C8E233486s1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bibCE1060254765521A96841D20DEEF3DF0s1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bib16E62D49272D540298BE18165968D094s1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bib628D410999DABE705F6606DC4F9277AFs1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bib628D410999DABE705F6606DC4F9277AFs1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bibA23E7E0604A4E37AE69322BEF6EABEA1s1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bib462190757E82C79B756A2E95B7FF4E3Fs1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bib462190757E82C79B756A2E95B7FF4E3Fs1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bibCFE60D6B6B04D14108ABBECE3CA75CE9s1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bib0EEF89ED4B466587B7DEBA00B1480BD4s1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bib2DABE97C85871F917193D67D63C171AAs1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bib4559B37C454B5329BF55C08E8E18C1E5s1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bib4559B37C454B5329BF55C08E8E18C1E5s1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bib32475237EEDDB46D0100B7BE0371A7B5s1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bib32475237EEDDB46D0100B7BE0371A7B5s1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bibC99445ED2F1D11E2BD5BF644F8DBE290s1
http://refhub.elsevier.com/S0020-0255(23)01666-3/bibC99445ED2F1D11E2BD5BF644F8DBE290s1

	Random generation of linearly constrained fuzzy measures and domain coverage performance evaluation
	1 Introduction
	2 Preliminaries
	3 Linear programming extended random generation methods
	3.1 Update random node-based methods by linear programming models
	3.2 Convex combination and constrained extreme fuzzy measures
	3.3 Vertex fuzzy measures based random generation

	4 Evaluating coverage performance of generated fuzzy measures
	4.1 Measuring coverage by indices of fuzzy measure
	4.2 Measuring coverage by the objective functions of identification models
	4.3 Measuring coverage by distances to boundaries of feasible domain
	4.4 Indices granularity based coverage ratio

	5 Experimental results
	5.1 Random generation only with boundary and monotonicity conditions
	5.2 Random generation with additional linear constraints

	6 Further enhancement of coverage ratio
	7 Possible applications of random generation methods
	8 Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


