An Introduction to Building
Electronics Projects with Arduino

Reto Trappitsch

Fall semester 2021

Contents

Preface 1
Acronyms 2
0. Introduction 3
0.1. Basic Physics to Remember 000 3
0.2. Analog and Digital 4
0.2.1. Analog-to-Digital Conversion 5

0.2.2. Digital-to-Analog Conversion 6

0.3. Arduino 6
0.3.1. Programming an Arduino 7

0.3.2. TinkerCAD 10

1. Blink 11
1.1. Light-emitting diodes (LEDs) 11
1.1.1. Internal light-emitting diode (LED) 11

1.1.2. External LEDo 12

1.1.3. Dimming an light-emitting diode (LED) 13

1.1.4. Multiple light-emitting diodes (LEDs) 14

1.2 Buttons 15

2. Display 17
2.1. Seven-segment displays Lo 17
2.2. Adafruit four-digit, seven-segment display with backpack 19
2.2.1. Assembly 19

2.2.2. Controlling the display from Arduino 20

3. Temperature sensor 22
3.1. Thermistor 22
3.1.1. Voltage divider 22

3.1.2. Using a thermistor with an analog-to-digital converter (ADC) . . 23

3.1.3. Determining the temperature 24

3.2. Reading the temperature with the Arduino 25

Contents

4. Thermoelectric cooling element 28
4.1. Components and their Physics 28
4.1.1. The Peltier effecto 28
4.1.2. MOSFET 29

4.2. Implementing a metal-oxide-semiconductor field-effect transistor (MOSFET)
controlled Peltier cooler L 31
5. Sample cooling stage 33
5.1. Read the temperature 35
5.2. Imtegrate the display Lo 35
5.3. Set mode for the temperature 36
5.4. Thermoelectric cooler 37
5.5. Status light-emitting diode (LED) 37
5.6. Run independent of a computer Lo 37
5.7 Testing L 38
6. Further improvements 39
6.1. Rigidsetup 39
6.1.1. Soldering a fixed setup L. 39
6.1.2. Case 39
6.1.3. Printed circuit board (PCB) development 40
6.2. Proportional control oo 40
6.2.1. Proportional-integral-derivative (PID) controller 41
6.2.2. Proportional controller for our cooler 41
6.3. Heating and cooling 42
6.4. Datarecording 43
6.4.1. Record data on storage medium 43
6.4.2. Datainthecloud oL 43
6.4.3. Data recording via serial and python 43
Appendices 47
A. Arduino Micro Pinout 48
B. Bill of materials (BOM) 49
C. Open source design tools 50
C.1. Calculators 50
C.2. Designing 50
C.3. Virtual Hardware 50
D. Full wiring diagram 51

i

Preface

The notes are structured into 6 chapters. The first chapter mainly describes basics that
you likely already know from your introduction to Physics classes. Subsequently, we
will discuss one chapter per workshop session. The notes are prepared as we go, and
you can always find the latest version, but also solutions to the examples in the form of
code examples, on GitHub. If you find typos, errors, or other issues please let me know.
The most recent copy of the IXTEX files and figures can also be found on GitHub.

The lecture notes contain clickable links in dark blue. Furthermore, boxes throughout
the text discuss are used for the following contents:

Background information on topics that do not necessarily fit into the text
but are important to keep in mind will be given in a box like this.

Think about it more! These boxes will challenge you to think a problem
* through for yourself and go into more detail.

(> Exercise 0 Exercises are given in these boxes. Flex your coding muscles
and practize what you've learned.

? Question 0 Questions will be given in these boxes. They should solidify
H your background knowledge.

This workshop was first designed for interested students at the Materials Research
Science and Engineering Center (MRSEC) at Brandeis University in fall 2021. Support
is provided by the Brandeis NSF MRSEC, DMR-2011486.

- N . National Science Foundation

e MATERIALS RESEARCH SCIENCE AND
(" ENGINEERING CENTERS

e

https://github.com/galactic-forensics/workshop_arduino_electronics
https://github.com/galactic-forensics/workshop_arduino_electronics
https://www.brandeis.edu/mrsec/
https://www.brandeis.edu/mrsec/
https://www.brandeis.edu/mrsec/

Acronyms

AC alternating current

ADC analog-to-digital converter
AWG american wire gauge
BOM bill of materials

CAD computer-aided design
CSV comma separated values
DAC digital-to-analog converter
DC direct current

I2C inter-integrated circuits

I/O input / output

IDE integrated development environment

loT internet of things

LED light-emitting diode

MOSFET metal-oxide-semiconductor field-effect transistor

MRSEC Materials Research Science and Engineering Center

PCB printed circuit board

PID proportional-integral-derivative

PWM pulse width modulation

SQUID Simplifying Quantitive Imaging Development and Deployment

TEC thermoelectric cooler

0. Introduction

Scientific research that focuses on experiments and measurements has rapidly grown in
the recent past, mainly thanks to significant improvements in engineering, instrument
availability, and computing power. While many companies provide state-of-the-art re-
search instrumentation and setups, cutting-edge scientific discovery often still thrives
from home-built setups.

In addition to scientific instrument development and availability, the consumer /
hobby marked has seen a huge increase in home-made electronics.! This development
has especially been facilitated by products such as Arduinos and Raspberry Pis, as well
as the huge maker community. Automation of research experiments can often benefit
from such existing, low-cost products in order to significantly enhance an experiment
or measurement. Furthermore, complete low-cost instruments enabling frugal research
have also been developed based on such platforms, see, e.g., the Simplifying Quantitive
Imaging Development and Deployment (SQUID) project.

In this workshop, we will develop a temperature regulation system in order to cool
a sample. We will read the temperature using a thermistor, use buttons to control the
set point, use a display to show the displayed and set temperature, and finally drive a
thermoelectric cooler in order to achieve sample cooling.

0.1. Basic Physics to Remember

Building electronics is not just fun because you can hold your final product in your hand
and play with it, but also since it is a direct application of basic physics. Remember
your introductory classes!

Ohm’s law Throughout this workshop, you will encounter Ohm’s law very frequently.
This law states the current I through a conductor with resistivity R is directly propor-
tional to the voltage U across the conductor. We can write this as:

U
I== (0.1)

U=RI (0.2)

IFor example, have a look at this article in the New York Times. Looking at the images clearly shows
a 3D printed case as well as a standard Arduino cloud interface.

https://www.arduino.cc/
https://www.raspberrypi.org/
https://squid-imaging.org/
https://squid-imaging.org/
https://en.wikipedia.org/wiki/Ohm's_law
https://www.nytimes.com/2021/10/10/health/coronavirus-ventilation-carbon-dioxide.html

0. Introduction

Remember this relationship for when you design your circuits.

Maximum current Arduino pins, as we will discover later, can supply 5V
‘ to, e.g., an light-emitting diode (LED). Since an LED is a diode, it’s resis-
tance (if connected properly) is close to zero (see also Wikipedia). Therefore,
applying a 5V voltage would result in an infinite current across this com-
ponent. How would you add a resistor to limit the potential current to a
maximum of 10 mA?

Electric power If a current flows through a resistor, electric energy is transferred.
The energy per time that is used in this resistor is the electric power P, which can be

calculated as
P=UI (0.3)

Often, electric power is dissipated as heat. For example, an incandescent light bulb
creates light (and heat!) by applying a voltage to a filament that is generally made
of tungsten. The filament heats up and emits light. All electronic components have a
maximum power rating, also often expressed as a maximum current rating.

Maximum power versus maximum current Assume you have a compo-
f nent that that consumes at most 5 W of power at a current of 1 A. What
is the maximum voltage that you can apply? What is the resistance of this
element at the maximum voltage?

0% Electronic components and symbols You are probably already familiar
a with basic electronic components such as resistors, capacitors, etc., and
their symbols. We will discuss various components during this workshop. A
good overview of components to refresh your memories can be found here on
Wikipedia. Standard electronic symbols, which are really useful for drawing
circuit diagrams, can be found here.

0.2. Analog and Digital

If you turn on a radio, and it is too loud, you can use the volume knob, which is
nothing else than an adjustable potentiometer, in order to regulate the volume of the
sound. This volume can be adjusted over a whole range of settings. The potentiometer
adopts linearly depending on its position, giving you an analog control over the volume.
Mapping the volume from 0 (quiet) to 1 (loud), you can reach any value in between.
Digital signals on the other hand are either on or off. An Arduino generally has many
digital input / output (I/O) pins which can be either high (5V) or low (grounded). If

https://en.wikipedia.org/wiki/Light-emitting_diode
https://en.wikipedia.org/wiki/Electric_power
https://en.wikipedia.org/wiki/Incandescent_light_bulb
https://en.wikipedia.org/wiki/Electronic_component
https://en.wikipedia.org/wiki/Electronic_component
https://en.wikipedia.org/wiki/Electronic_symbol

0. Introduction

1111 A
1110 A
1101 A
1100 A
1011 A
1010 A
1001 A
1000 A
01114
0110 A
0101 4
0100 4
0011 4
0010 4
0001 A Uer =10V
0000 +

0 2 4 6 8 10
Applied voltage (V)

ADC Level

Figure 1.: A 4bit ADC with given levels. The reference voltage is 10'V.

you connect a 3.3 V battery to an input pin, of course via a resistor in order to not
exceed the current maximum, the switch would either tell you that it is high or low,
depending on the threshold that are actually set in order to determine this. Any kind
of microprocessor only understands digital signals.

0.2.1. Analog-to-Digital Conversion

In order to measure as signal from a sensor, e.g., a photodetector or a temperature
sensor as we will use later, a device called an analog-to-digital converter (ADC) can be
used. Above we mentioned that any kind of microprocessor only understands digital
signals. The same is also true for an ADC. While a digital 1/O pin has two levels (high
/ on or low / off), an ADC generally has many more levels in between. The resolution
of an ADC is generally expressed in bits.

00, Bit For any microprocessor, the two possible states (high and low) can be
a expressed as 1 and 0. Binary numbers (base 2) are therefore the ideal repre-
sentation to express different states. A digital /O pin has 1bit resolution,
which means it can either be 1 or 0. Higher resolution means that more bits
are available to set states. For two bits, i.e., a binary number with with two
digits, the possible states are 00, 01, 10, 11. This means that 2 bit resolution
has a total of four steps. For n bits, the number of available steps are 2.

0. Introduction

Figure 1 shows the levels of a 4bit ADC in binary as a function of the voltage that
would be measured. The reference voltage here is U,y = 10 V. This reference voltage is
the voltage that the ADC can measure at most, i.e., the voltage that it will return when
the ADC level is 1111.

Knowing the resolution n of an ADC, we can easily calculate the minimum voltage
difference that can be determined as

Uref

n .

AU =

(0.4)

For the given example above in Figure 1, the minimum voltage would thus be AU =
0.625 V. Anything smaller voltage difference requires a higher resolution ADC.

0.2.2. Digital-to-Analog Conversion

Of course, we sometimes require the opposite of an ADC and need to convert digital
signal into the analog world. The device that allows for this transformation is a digital-
to-analog converter (DAC). A true DAC takes a digital signal and returns an analog
voltage by dividing a reference voltage as many times as necessary. The same resolution
limitations as for an ADC also apply to a DAC. For example, a 4bit DAC with a
reference voltage of 10V can only increase the analog output in steps of 0.625V.

Pulse width modulation (PWM) An interesting way to have a pseudo DAC is to
use a process called pulse width modulation (PWM). Figure 2 shows a schematic of
this process for a 5V pin. The digital pin is rapidly turned on and off. If it is at 5V for
50% of the time, a 50% duty cycle, the effective, smoothed-out voltage that can be seen
by a “slow” component would be 2.5V. Depending on the duty cycle, a pseudo-analog
output can therefore be created. A great example to use PWM is to have a dimmable
LED. LEDs generally have only two states, on and off, i.e., is the voltage is high enough
to light them, they are bright and otherwise dark. Using PWM however, we can turn
an LED on and off in rapid succession such that it looks to the human eye as if the light
source itself was dimmed.

Analog output with PWM Can you come up with a way to create a smooth
analog output from a PWM pin? Think about how your cellphone charger
turns alternating current (AC) into direct current (DC).

0.3. Arduino

For this class, we will be using an Arduino Micro. You can find more information and
various alternative Arduino boards for all kinds of projects on the Arduino website.

https://www.arduino.cc

0. Introduction

5 mEmEmEmEmEmEmEmeiEzezss
— 0.6
0.2
4_
= 3-L- A R-RHHE R F A H-H -
()
(=)
3
g 2]
1 =t et L o e e e L b e e e e e
0 - ! — — ! — — ! — — L
0 2 4 6 8 10

Cycle

Figure 2.: PWM cycles and average voltage for two different duty cycles.

In Appendix A, a schematic of the Arduino Micro board is given. This pinout diagram
specifies what all the various pins on the board mean and what they are used for. It is
a very handy reference for when you develop your project.

0.3.1. Programming an Arduino

The easiest way to program an Arduino is by using the integrated development envi-
ronment (IDE) for Arduino that can be found here. The website also has installation
guides on how to install the IDE and Arduino driver on your computer, depending on
your operating system. Please see this documentation or look at it at least briefly, since

it will help you with troubleshooting in case your computer does not find the Arduino
board.

The Arduino IDE is very useful when you are starting to learn how to program your
Arduino. Under “File”, “Examples” you can find eleven categories that give you many
well-explained example snippets of code for various applications. We will make a lot of
use of these examples, especially during the first few chapters of this workshop. The
IDE also allows you to verify your code, i.e., check if it contains any errors (check button
in the toolbar) and to upload your code to the Arduino itself (right arrow button in the
toolbar). In order to upload your code to the Arduino board, make sure that you have the
correct board selected. Go to “Tools”, “Board” to select “Arduino Micro”. Furthermore,
you need to select the port on which your board is connected to the computer. To do

https://www.arduino.cc/en/software

0. Introduction

S0, go to “Tools”, “Port” to select the correct one. Now you are ready to begin uploading
example code or your own code.

Programming language overview To program your Arduino, the code must be writ-
ten in C++. There are many great introductions online that can help you to get started,
see also the background information box below. Therefore, we will only discuss very
briefly the most important rules here. These will help you to avoid the most common
mistakes.

Commands and instructions are case sensitive

Variables must be declared. If you need an integer for example and assign it the
value three, you can do this by declaring the variable as int myVar = 3;

All command lines must be terminated by a semi colon ;
Functions, loops, etc. get surrounded by curly brackets

It is up to the user to make the code look readable. If you want, you can write
everything into one line since line endings and function endings are defined by the
above stated rules.

Line comments are preceeded with // while block comments use the following
structure:

/ *
My comments in a block...

*/

In general, the minimum file structure for your Arduino code should look similar to

the following.

// variable declarations, load libraries

void setup() {

¥

// setup code

void loop () {

}

// main code that repeats

0. Introduction

On the very top of your code, put variable declaration and initialization if required and
load the necessary libraries. The setup function is the part that runs once when you
boot up your Arduino. The loop function will then run repeatedly and, ideally, until
you unplug or reset the Arduino. We will see later how to fill these standard functions.
In addition, you can of course write your own functions with any names of your choosing,
just make sure they do not collide in naming with these default functions.

00, Numbers To understand variable declarations in C++ better, we need to
a remind ourselves how numbers are stored in a computer’s / microprocessor’s
memory. One of the most important types of numbers are integers, declared
in C++ as int. In the Arduino Micro, an integers is 16 bit in size. This
means that 16 positions are available in binary. Integers with a sign can
therefore go from —2'° to 2!° — 1; the first bit is reserved for the sign. An
unsigned int on the other hand goes from 0 to 2!¢ — 1. Integers of type
long have 32 bit available.

Decimal point numbers are represented by floats, which can take values
from —3.4028235 x 103 to 3.4028235 x 10%. They require 32 bits of memory
to be stored.

You can find more information on different variable types in the respective
Arduino reference section.

Debugging When code does not do the thing we expect it to, it is often difficult to
exactly see why it does not work. While the Arduino IDE catches many bugs, it cannot
catch logic errors. If you simply code a script on your computer, you might debug it by
printing out values to the screen. The same can be done with the Arduino. Unless you
have a screen connected to the Arduino, you have to send the values to print via the se-
rial connection to your computer for displaying. The statement Serial.begin(9600) ;
should go into your setup routine. This begins the serial communication to your com-
puter with a baud rate of 9600. Inside your main loop, you can then use the following
print statements to write to your computer:

e Serial.print("Hello"); prints "Hello " without a line break.

e Serial.println("World!"); prints "World!" on the same line as the print before
and then starts a new line.

To see these printed values, click in the Arduino IDE on “Tools” and then select “Serial
Monitor”. Note that you can also send commands from the computer to the Arduino
via Serial. More information can be found here.

https://www.arduino.cc/reference/en/#variables
https://www.arduino.cc/reference/en/#variables
https://en.wikipedia.org/wiki/Baud
https://www.arduino.cc/reference/en/language/functions/communication/serial/

0. Introduction

00, Help with programming your Arduino To find further information on how
a to program for Arduino and get yourself started with C++, see the following
links:

e Starters guide for programming for Arduino
e Programming reference specifically for Arduino

Libraries in Arduino

Glossary of commonly used terms
e User forum

Note that many components that we use come with detailed instructions
and guides. For example, if you buy components from Adafruit, these parts
generally come with a guide for Arduino, etc.

More Help As with so many things in life these days, more help is generally just one
search on the internet away. There are many forums, articles, etc., on the web that
discuss building electronics with Arduino. The hope is that this workshop helps you
to discover the vast possibilities and gives you the right keywords to search your way
through.

0.3.2. TinkerCAD

If you want to play with a virtual Arduino, give TinkerCAD a try. On its website you
can simulate an Arduino, add components, write code, and then run the setup like in
real life. It is a great tool to plan a project and start experimenting with setups, e.g.,
while you are waiting for components to ship.

10

https://www.als.lib.wi.us/site/wp-content/uploads/2018/05/arduino-starter-kit-manual.pdf
https://www.arduino.cc/reference/en/
https://www.arduino.cc/reference/en/libraries/
https://www.arduino.cc/glossary/en/
https://forum.arduino.cc/
https://adafru.it
https://www.duckduckgo.com
https://www.tinkercad.com/

1. Blink

Like programming tutorials start with a “Hello World!” program, electronics tutorials
generally start with a blink example. In this chapter you will learn how to write to and
read from digital I/O pins.

1.1. LEDs

1.1.1. Internal LED

Arduinos with a built-in LED allow the user to program and use this LED. Therefore,
all the hardware you need is the Arduino and a USB cable in order to connect it to
your computer. Feel free to plug the Arduino into a breadboard as shown in Figure 1.1.
The internal LED in Figure 1.1 can be seen just on the right side of the label that says

W LR

E +HH .“;‘.‘“P‘.‘:'v

Figure 1.1.: Arduino micro plugged into a breadboard. On the left the USB connection
is visible. On the right of the label where it says “Arduino”, the internal LED can be
seen.

“Arduino”. In addition, you can see a button on the right-hand side of the board (the
reset button) as well as two more LEDs on the left side of this button. These additional
LEDs cannot be accessed by the user and are reserved for the system.

11

1. Blink

If you start the IDE and load the basic example “Blink”, you will get some code that
will control the LED. The following exercises will use this simple example and slowly
extend it.

Exercise 0 Open the example blink file and read the comments. What is
<l ’ done in the setup? What does the variable LED_BUILTIN stand for? Study
the loop: What will happen when you upload the code to your Arduino?
Do so and see if your assumptions were correct. Modify the timings of the
program such that the LED blinks at a different rate.

1.1.2. External LED

We can also connect an external LED to a digital I/O pin. To use a pin as an output
pin, i.e., to set its level by software, we have to define the pinMode to be in QUTPUT
mode. Furthermore, connecting an LED to a pin and simply driving it can be bad for
the LED, since it has, by itself, no resistance. Looking at equation (0.2) we can see
that in such a case the current should become infinity, which might destroy the I/O
pin. Fortunately, Arduinos have an internal resistor that prevent this from happening.
However, the LED might still get too much current, which might significantly reduce its
lifetime. You can either add a resistor or use an LED with an internal one, as we are
doing here (Figure 1.2).

Figure 1.2.: Arduino with one LED connected.

12

1. Blink

Exercise 1 Draw a wiring diagram to connect your own LED to a Arduino
<I > output pin. Where do the anode and cathode of the LED connect to?
Attach your LED to the arduino and modify the simple blink experiment to
use your LED instead of the built-in one. If you have trouble figuring out
how to connect the LED, study Figure 1.2 and remember that every electric
circiut must be completed.

1.1.3. Dimming an LED

As we have discussed above, LEDs cannot be dimmed in the traditional way, i.e., by
using a potentiometer to lower the voltage. However, we can use a PWM output in
order to only have the LED on for a certain amount of time. This will result in our
brain perceiving the LED as dimmed. We have already described the PWM outputs
above in Section 0.2.2, see also Figure 2. In order to identify a PWM output, look at
the pinout (Appendix A). Digital pins indicated with ~ are the ones that can be used
in this fashion, e.g., pin 3.

Exercise 2 Connect your LED to a PWM output pin. From the Arduino
<l) IDE, load the basic example named “Fade”.

1. Read the setup and loop functions. How is the pin output set and
what is different from how the pin was set in the previous exercise?

2. Modify the fade amount to 7 and run it again. At the brigthest point,
the LED briefly blinks. Why?

3. Can you rewrite the routine in order to prevent it from blinking at the
highest point? An if statement might be useful.

The void loop() function acts as an endless loop. The most commonly used looping
structures are while and for loops. In fact, the loop function iself underneath is a
while(true) loop.

(,) Exercise 3 Inside the void loop() function, write a for loop to replace

the ramp. Ensure that your loop does not blink, even if you select various
fade amounts.

13

https://www.arduino.cc/reference/en/language/structure/control-structure/if/
https://www.arduino.cc/reference/en/language/structure/control-structure/while/
https://www.arduino.cc/reference/en/language/structure/control-structure/for/

1. Blink

Figure 1.3.: An Arduino with two LEDs connected.

9 Question 0

e How does integer division in C++ work?

e How can you do a division in C++ and round the result to the nearest
integer?

e What is a boolean variable and how do you compare two booleans,
e.g., in an if statement?

e How would you flip the state of a boolean variable?

1.1.4. Multiple LEDs

Since you have more than one pin available, multiple LEDs can be set up. An example
of a test setup is shown in Figure 1.3 This can be especially useful if you want to display
the status of your setup using different colored LEDs.

Subfunctions in C+ Sometimes it is useful to put some of your code into external
functions, i.e., not to write them into the main loop. For example, you can write a
function as following:

void myFunction(bool toggle) {
// your code here...

3

You can then call this function from the main loop by calling myFunction(true) ; if
you want to assign the value true to the variable toggle.

14

Figure 1.4.: TinkerCAD simulation of Arduino with a button and LED connected.

‘ > Exercise 4 Setup two LEDs, a red and a green one. Write a program that
switches between blinking the red and green LEDs. Write a subroutine that
takes a boolean variable as an input and, depending on the value of this

input variable, turns either the red or the green LED on (and the other one
off).

1.2. Buttons

Most devices that allow for user interactions contain some buttons. We can use the
digital I/O pins in order to connect a button. Figure 1.4 shows a TinkerCAD simulation
of an Arduino with a button and an LED connected. Here, we connect the button on
one side to the 5V output of the Arduino and the other side via a 1 k{2 resistor to ground
and simultaneously to a digital I/O pin. The resistor limits the current to 5mA, see
equation (0.2). In the setup routine, we need to set the pinMode to INPUT, since we
want to read the value that is connected to the pin. If the button is unpressed, the pin
is on the same electrical potential as ground and therefore in a low state. If the button
is pressed however, the pin is at 5V and thus in a high state. In the loop you can, e.g.,
read the state of the button connected to buttonPin as:

int buttonState = digitalRead(buttonPin);

if (buttonState == HIGH) {
// the button is pressed
} else {

// the button is not pressed

15

https://www.tinkercad.com/things/5VP2mIHUOxB
https://www.tinkercad.com

<[>

1. Blink

Exercise 5 Connect a button and an LED to your Arduino and write a
program that turns the LED on while the button is pressed. Then adjust
your routine such that, whenever you press the button, the LED is turned
on for 3s and then turns off after the time has elapsed.

Adding time In the second part of the above exercise, you have (most likely)
written your program such that if the button is pressed while the LED is
on, nothing happens. The light will still turn off once the set time elapses
after the initial button press. Can you come up with code that would allow
you to reset the countdown when pressing the button again, i.e., add time
to the timer?

16

2. Display

In order to display the temperature of our sample cooling setup, we will connect a
display to our Arduino. Displays come in many shapes and forms, form the monitor you
might be reading this on to simple LED seven-segment displays. An overview of various
displays that are ready to be deployed on Arduino can, e.g., be found here. For our
specific case, a simple seven-segment display will do the trick to display the temperature.

2.1. Seven-segment displays

;

Cmoom >
:
o X®)

Figure 2.1.: Seven-segment display: photo (left) and schematic (right). Credit: Peter
Halasz (left) and Uln2003 (right) via Wikipedia. License: CC by SA-3.0 (left), Public
domain — CCO (right)

As displayed in Figure 2.1, seven-segment displays contain seven individual segments
that allow us to display any number and even some letters. In addition, they usually
contain a decimal point. The right-hand figure shows the schematic and typical labeling
of a seven-segment display. Each segment is its own LED and we could drive these LEDs
by using multiple I/O pins. However, in order display multiple numbers, the number
of 1/O pins that we would use up would very fast become too extensive. Figure 2.1
shows that the seven-segment display has five pins on top and, not shown here, also five
connectors on the bottom. For each seven-segment display you could look up the wiring
diagram and notice that each segment has its own connection and that they have a total
of two common grounds.

Chips such as a 74HCH95 that allow us to convert serial into parallel data allow us
to effectively control multiple outputs, as required for such a display, while only using

17

https://www.arduino.cc/reference//en/libraries/category/display/
https://en.wikipedia.org/wiki/Seven-segment_display#/media/File:Seven_segment_01_Pengo.jpg
https://en.wikipedia.org/wiki/Seven-segment_display#/media/File:Seven_segment_01_Pengo.jpg
https://en.wikipedia.org/wiki/Seven-segment_display#/media/File:7_Segment_Display_with_Labeled_Segments.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://en.wikipedia.org/wiki/Seven-segment_display#/media/File:7_Segment_Display_with_Labeled_Segments.svg
https://en.wikipedia.org/wiki/Seven-segment_display#/media/File:7_Segment_Display_with_Labeled_Segments.svg

1 % Q1 vCC %
2 51 Q2 Qo0 [
3 <193 DS k5
4 = Q4 OF |5
5 <125 STCP [
6 ~1 Q6 SHCP L&
7 <197 MR o=
8 —{ GND Q7 |~
74HC595

Figure 2.2.: Schematic and pin names of a 74HC595 chip. Credit: Freenove, License:
CC BY-NC-SA 3.0

a a few pins. Figure 2.2 shows a schematic and pin names of such a chip. Note the
notch on the top of the schematic that each chip contains in order to provide you with
a reference on the pin assignments. You can in fact find various versions of this chip
from different manufacturers, e.g., the data sheet for the Texas Instruments version can
be found here. Generally, the pins have the following purposes:

Pin name Pin number Description

Q0 - Q7 1-7, 15 Parallel data output
GND 8 Ground

Q7 9 Serial data output
MR 10 Remove shift register
SH CP 11 Serial shift clock

ST CP 12 Parallel update output
OE 13 Enable output

DS 14 Serial data input

As indicated by the names, the parallel data output pins are the eight pins that can
be connected to the individual LEDs of a seven-segment system. The GND pin provides
the ground connection of the chip. The serial data output (Q7’) can be used to connect
another 74HC595 chip in series. The MR and SH CP take care of clearing the shift
register and timing when a shift happens. The ST CT triggers an update in the parallel
output and the OE pin enables this output. Finally, the DS pin is where the serial input
is given.

Want do build your own seven segment display driver? Detailed in-
f structions on how to use a 74HCH95 chip to drive a seven segment display
can be found online, e.g., on in chapter 15 of this tutorial. Building such
a driver is outside the scope of our workshop, however, it might be useful
for you to read and understand the shifting itself and how it works. Please
have a look at the mentioned tutorial.

18

https://github.com/Freenove/Freenove_Ultimate_Starter_Kit
https://www.creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
https://www.ti.com/lit/ds/symlink/sn74hc595.pdf?ts=1636228778140&ref_url=https%253A%252F%252Fwww.google.com%252F
https://github.com/Freenove/Freenove_Ultimate_Starter_Kit/blob/master/Tutorial.pdf

2. Display

2.2. Adafruit four-digit, seven-segment display with
backpack

As described above, we could build our own driver for a seven-segment display. However,
it seems to be fairly cumbersome to develop such a driver, especially since low-cost,
pre-fabricated displays with communication “backpacks” exist. Here, we will use an
Adafruit four-digit, seven-segment display that communicates with the Arduino via the
inter-integrated circuits (I*C) communications protocol.

YR I2C protocol 1°C is a single ended, synchronous, multi-controller /multi-
a target, single bus communication protocol and is ideally suited for integrated
microelectronics. The following figure shows the configuration with one
microcontroller and three selected devices. (Credit: Tim Mathias, License:

CC BY-SA 4.0)
vdd
' SDA
1)) T—sct
1@ ADC DAC 1(®
Controller | | Target| | Target| | Target

The microcontroller connects to each device via a data (SDA) and a clock
line (SCL). Furthermore, power (Vdd) and ground (GND) are connected
as well; to light our LEDs we need power. The clock defines the timing
of commands, i.e., triggers sending / receiving and the data line sends the
required commands. More details on the I?C communication protocol can
be found on Wikipedia.

2.2.1. Assembly

The four-digit, seven-segment display package requires assembly by soldering. Figure 2.3
shows the individual components of the display that need to be soldered together. On
the top left is the display itself. The backpack is shown on the bottom and the header
pins, which allow us to connect the display to the breadboard, are shown on the top
right. If you have never soldered before, please review the this video that will show you
some best practices. Generally, remember to:

e Avoid excessive amounts of solder

e Ensure good contact between your component and the printed circuit board (PCB)

19

https://www.adafruit.com/product/1002
https://en.wikipedia.org/wiki/I%C2%B2C#/media/File:I2C_controller-target.svg
https://creativecommons.org/licenses/by-sa/4.0/
https://en.wikipedia.org/wiki/I%C2%B2C
https://www.youtube.com/watch?v=AqvHogekDI4

2. Display

s SRPONE
0000
= AR

Figure 2.3.: Parts of the four-digit, seven-segment display.

e Double check your parts orientation

Types of soldering The two types of soldering generally referred to are
through hole and surface mount soldering. In this workshop we will only
perform through-hole soldering, i.e., we will stick the leads / pins through
the PCB and solder from the other side in order to ensure a connection. Sur-
face mount soldering mounts components on top of PCBs. A great tutorial
video for this type can be found here.

One of the great features when using components and kits from Adafruit is that they
have very detailed instructions. All instructions for the four-digit, seven-segment display
can be found here.

<f>

Exercise 6 Assemble the display kit by following the Adafruit as-
sembly instructions. Double, then triple check the orientation of
the display prior to soldering; it is difficult to remove the display
after soldering and resolder it in the correct orientation. (In fact,
I experienced this last part the hard way. Right after I wrote

(= mae | Suit | of |cluplay | [oielehy !

I soldered the display onto the PCB the wrong way around. . .)

2.2.2. Controlling the display from Arduino

As for the assembly, Adafruit has detailed instructions on how to connect and control
the display. In fact, they even provide an Arduino library that allows us to easily control
the display (this was one of the reasons for choosing this display to start with). This
tutorial goes in detail through the setup for Arduino, including a how-to for installing

20

https://www.youtube.com/watch?v=f9fbqks3BS8
https://learn.adafruit.com/adafruit-led-backpack/0-dot-56-seven-segment-backpack
https://learn.adafruit.com/adafruit-led-backpack/0-dot-56-seven-segment-backpack-assembly
https://learn.adafruit.com/adafruit-led-backpack/0-dot-56-seven-segment-backpack-assembly
https://learn.adafruit.com/adafruit-led-backpack/0-dot-56-seven-segment-backpack-arduino-setup
https://learn.adafruit.com/adafruit-led-backpack/0-dot-56-seven-segment-backpack-arduino-setup

2. Display

the libraries. For reference, Figure 2.4 shows an image of the display connected to the

Arduino.

Figure 2.4.: The display connected to the Arduino Micro on a breadboard.

<[>

<f>

Exercise 7 Go through the Adafruit tutorial to connect the display to your
Arduino. Then ensure that it works as expected by running the example
script that Adafruit provides. Various different ways are given in the tuto-
rial. Make sure you understand the different ways of controlling the display.
Feel free to modify the example and display your own values.

Exercise 8 For our final setup we want the display to display the current
temperature (2 digits plus +/- sign) and the set point if this is changed by
pressing a button. Write a subroutine that takes two input arguments and
allows you display the following values: " ,-9", " 20", "s-10". The last ex-
ample is for displaying the setpoint with an additional s in front of it (which
is equal to 5). Hint: Your subroutine might start with something like this:
void dispTemp(int temperature, bool setPoint) {...}

21

https://learn.adafruit.com/adafruit-led-backpack/0-dot-56-seven-segment-backpack-arduino-setup

3. Temperature sensor

Temperature is generally measured with a thermocouple. In these devices, two metals
are brought together that, due to the Seebeck effect, create a temperature-dependent
voltage between them. The voltages produced generally are very low and therefore
require amplification before they can be read in by an ADC. Such an amplifier for a
K-type thermocouple can, e.g., be found here. In this specific case, the amplification
circuit would allow us to read temperatures from -250°C to +750°C, i.e., a total range

of 1000°C.

7 Question 1 The Arduino Micro that we are using contains eight 10 bit

H ADCs. Why is it very difficult to get a precise reading of the thermocouple
described above using such an ADC? What would you need to implement
/ improve the precision?

3.1. Thermistor

While regular thermocouples have a very wide range, this range is not required for our
setup. Here we are therefore using a thermistor, which is simply a resistor that is highly
temperature dependent.

3.1.1. Voltage divider

In order to understand how we can determine the value of a thermistor with an Arduino,
we first need to review how voltage dividers work. Figure 3.1 shows a schematic of a
voltage divider built of two resistors with values R; and R,. The current flows from V;,

Vin
Rl RQ

Vout
Figure 3.1.: A resistive voltage divider. After Krishnavedala via Wikipedia, CCO.

22

https://en.wikipedia.org/wiki/Thermoelectric_effect
https://www.adafruit.com/product/1778
https://en.wikipedia.org/wiki/Voltage_divider#/media/File:Resistive_divider2.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en

3. Temperature sensor

to ground. We can calculate the voltage measured between V,; and ground as following.

Rtot — Rl + RQ (31)
Vi
Lot = 3.2
ot Rtot ()
Vout = Ralio (3.3)
Ry

V;)u = V;n 3.4
’ R+ R, (3:4)

In equation (3.1) we first calculate the total resistance of the setup. Plugging this result
into equation (0.2), we can calculate the total current flowing, equation (3.2). Since
Vous 18 measured over Ry, we can simply calculate the voltage over this element as in
equation (3.3), which when simplified results in equation (3.4). More details, as well as
more general voltage divider setups, can be found on Wikipedia.

3.1.2. Using a thermistor with an ADC

In order to determine the resistance of a thermistor and thus to determine the temper-
ature, we can use above described voltage divider setup. For example, we could use a
reference resistance R,.r instead of R; in Figure 3.1 and replace Ry with the thermistor
that has a resistance Riperm. Connecting Vi to an ADC, we can then determine the
thermistor resistance by solving equation 3.4 for Ry = Riperm. We can thus write

Rref
Rtherm = Vb 1

. (3.5)
Vour — 1

For an ADC with nbit resolution, we furthermore know that the measured value x

relates to the voltage as

T+ Vief ADC
o —1 7

where Viee apc is the reference voltage of the ADC. Plugging equation (3.6) into (3.5)

results in

V;)ut = (36)

Rref
Rinerm = m (3.7)

z-Vief, ADC
If the reference voltage of the ADC and the reference voltage of our voltage divider
setup are the same, we can further simplify the equation to

o Rref
Riherm = 5o

-1 (3-8)

xT

23

https://en.wikipedia.org/wiki/Voltage_divider

3. Temperature sensor

3.1.3. Determining the temperature

Knowing the resistance Rinerm Of the resistor, we can determine the temperature by
looking up the correct value in a lookup table, see the comma separated values (CSV)
file on GitHub.

The temperature can also be calculated using the Steinhard-Hall equation, which is
a model for the resistance of a semiconductor at different temperatures. This model
states that the temperature T' and resistance Riperm depend on each other as

1
T:a—l—blnR—kc(lnR)g. (3.9)

Here, a, b, and ¢ are constants. Doing a curve fit of this equation to the lookup table
for the thermistor, we can determine the constants as ¢ = 2.78522 x 10 3K™!, b =
2.41846 x 107* In(kQ)~!, and ¢ = 8.31227 x 1077 In(kQ) 3.

A simplified version of above equation, the so-called B-parameter equation (see Wikipedia)
assumes that the constants are a = 1/Ty — (1/B)In Ry, b = 1/B, and ¢ = 0. We can
therefore rewrite equation (3.9) as

1 1 1 R

—=—+—=In| —). 3.10

T T, B (RO) (3.10)
Here, Ty, = 298.15 K is room temperature and Ry = 10k{) the resistance at Ty. The
parameter B for our thermistor is B = 3950 K.

200 4 —— Lookup table
Steinhard-Hall
—-—=- B-parameter equation
150 A
o
¢ 1004
2
©
()
[oX
€ 501
(0]
l_
0 -
_50 -

0 50 100 150 200 250
Resistance (kQ)

Figure 3.2.: Temperature as a function of resistance for Adafruit 3950 N'TC thermistor

24

https://github.com/galactic-forensics/workshop_arduino_electronics/blob/main/figures/03_temperature/thermistor_lookup_table_adafruit_372.csv
https://en.wikipedia.org/wiki/Steinhart%E2%80%93Hart_equation
https://en.wikipedia.org/wiki/Thermistor
https://www.adafruit.com/product/372
https://www.adafruit.com/product/372

3. Temperature sensor

Figure 3.2 shows the temperature determined using the lookup table in compari-
son with fitting the Steinhard-Hall equation (3.9) and the B-parameter equation (3.10)
results. While the B-parameter equation gets close to the real values, it still has a sig-
nificant offset. The Steinhard-Hall fit to the lookup table on the other hand seems to
be a fairly good match.

?

?

Question 2 How will you determine the temperature? The lookup table has
the most precision, however, what would you do with a resistance that is in
between two values in the table? Our setup will have an actual temperature
range between around 25°C and -20°C. How well do the methods compare
in this range?

Question 3 The Arduino Micro has a 10bit ADC on board. Assuming a
reference resistor R..s = 10k(2, calculate the smallest temperature difference
that you would be able to determine with this ADC in the above defined
temperature range.

3.2. Reading the temperature with the Arduino

We will now use the thermistor in order to measure the room temperature. With above
introduction, you should be ready to build the setup by yourself. However, there are also
detailed instructions available on Adafruit’s website on how to set this up correctly. Note
however the uncertainties in the different approaches for determining the temperature
shown in Figure 3.2.

<[>

Exercise 9 Connect the thermistor using the provided reference resis-
tor to your Arduino and measure the voltage on any of the analog in-
put pins (ADCI0] through ADC|7| in Figure A). If you connect your
input to sensorPin = AO;, you can read the ADC value by calling
sensorValue = analogRead(sensorPin);. Read the resistance value out
using the serial monitor. If you have trouble reading from the ADC, check
out the Arduino example under “Analog”, “AnalogInput”. Note: Make sure
that the reference voltage of the ADC is the same voltage as the one you
are using for Vi,.

int sensorPin = AO; In above exercise, the ADC pin was initialized as an
integer with the value A0. Why does this not throw an error?

25

https://learn.adafruit.com/thermistor/using-a-thermistor

3. 'Temperature sensor

Figure 3.3.: Temperature reading via thermistor and shown using the the four-digit,
seven-segment display.

Exercise 10 In Section 3.1.3 we have discussed various approaches of deter-
<I) mining the temperature. Implement your solution from above’s question in
order to calculate the temperature and print it out using the serial monitor.
How precise are your readings? Does your room temperature measurement
make sense?

Exercise 11 Instead of printing the temperature via the serial monitor, dis-
<I) play the temperature on the four-digit, seven-segment display that you have
controlled in Chapter 2. Be concious about the environment and recycle —
even your code!

Figure 3.3 shows the final setup after the last exercise. Note that your setup might
of course look slightly different.

Your temperature readings might be varying a lot from measurement to measurement.
The reason for this is electronic noise. There are two ways of reducing the effects of
such noise: (1) For your result use the average of several measurements. (2) The 5V
line of the Arduino is fairly unfiltered and depends on the power supply you are using.
The 3.3V Arduino line (see Figure A) on the other hand is fairly stable, and it would
therefore be advantageous to use this line for ADC measurements. To do so, switch your
Vin to use the 3.3V line. You can provide this line to the ADC as a reference voltage.
To do so, also connect the AREF pin to the same 3.3V line.

26

3. Temperature sensor

() Exercise 12 Using above methods of averaging and using the 3.3V as your
measurement and reference voltage, determine if your temperature measure-
ments improve.

Finally, as Physicists we know that an ice-water mixture at standard pressure and
temperature (we are close to the ocean, so let’s assume that’s given) is by definition at
0°C. The thermistor that you have is waterproof, and you can therefore submerge in
such a “calibration solution”.

Exercise 13 Determine the temperature of an ice-water mixture using your

<l) code. How precise is your determination of the temperature? If you are off
by several degrees, there might be an error in your temperature measurement
capability and your code might need correction.

27

4. Thermoelectric cooling element

The final part that we need to implement in order to build a sample cooling system
is the actual cooling element. As a cooling element, we will use a Peltier cooler from
Adafruit, which is mounted onto a heat sink and fan assembly.

4.1. Components and their Physics
4.1.1. The Peltier effect

Thermoelectric coolers make use of the so-called Peltier effect in order to create a heat
flux between two different types of materials. This means that heat flows from one
element to the other, i.e., that one side gets cold and the other one hot. The Peltier
effect was discovered in 1834 by French Physicist Jean Charles Athanase Peltier. In
principle, it works similar to a thermocouple, which we discussed above. Figure 4.1
shows a schematic on how the Peltier effect is used to create a thermoelectric cooler.
Here, an n- and a p-doped semiconductor are brought together. If we simply measure
the voltage across the two metals, we can use the setup as a thermocouple. (Note that
this is different from a thermistor, see introduction to Chapter 3.) If we power the setup

?@ i

Figure 4.1.: The Peltier effect acting on a thermoelectric cooler. Credit: Ken Brazier
via Wikipedia, License: CC BY-SA 4.0

28

https://www.adafruit.com/product/1335
https://en.wikipedia.org/wiki/Jean_Charles_Athanase_Peltier
https://en.wikipedia.org/wiki/File:Thermoelectric_Cooler_Diagram.svg
https://en.wikipedia.org/wiki/File:Thermoelectric_Cooler_Diagram.svg
https://creativecommons.org/licenses/by-sa/4.0/

4. Thermoelectric cooling element

Source Gate Drain

depletion region

Figure 4.2.: A cross-section through an nMOSFE'T. See text for a detailed description.
Credit: Wikipedia, License: CC BY-SA 3.0.

with a DC voltage, a heat flow is generated. The heat flow per unit time is given as
Q = (I, — 10,,)I. (4.1)

Here, II,, and II, are the Peltier coefficients of the two semiconductors and [is the
current. Not that the amount of heat flow is directly proportional to the current.

A typical thermoelectric cooler contains many semiconductor junctions added together
in series. Furthermore, in order to achieve efficient cooling on one side, the heat from
the hot side needs to be removed. This is generally done by mounting the hot side on a
heat sink. In our case, the heat sink is connected to a fan which helps to remove heat
faster.

4.1.2. MOSFET

The Peltier cooler that we will be using draws 5A of current at 12V. The voltage
and especially the current are too high for any Arduino pin. We therefore need to
implement a switch that we can turn on and off via an Arduino pin and that can handle
high currents in order to drive the cooling element. One type of switch that can drive
our circuit is a metal-oxide-semiconductor field-effect transistor (MOSFET).

9 Question 4 One issue of driving the cooler directly from the Arduino is
H the that the pins only put out 5V. At this voltage, what current would
be drawn by the Peltier cooler? Compare this current with the maximum
current that an Arduino pin can supply. What would happen if you try to
drive the cooler off a 5V pin?

MOSFETS are ideal devices to use as high-current switches that can be rapidly turned
on and off by simply using an Arduino pin. Figure 4.2 shows the inner workings of

29

https://en.wikipedia.org/wiki/MOSFET#/media/File:MOSFET_functioning_body.svg
https://creativecommons.org/licenses/by-sa/3.0/

4. Thermoelectric cooling element

< G

N

Figure 4.3.: Schematic with pin assignments of the nMOSFET we are using here (left)
and electrical symbol of a nMOSFET (right). Note the diode connecting the source (S)
to the drain (D). The gate is labeled G. (Right image credit: ErikBuer via Wikipedia,
license: CC BY-SA 4.0.)

S

an n-type MOSFET, also often referred to as an NMOS. The source and drain on an
nMOSFET are n-type materials, i.e., they contain a surplus of electrons and are therefore
electron donors. These two channels are inside a p-type substrate which lacks electrons
and is therefore an electron acceptor. When simply applying a voltage in between source
and drain, the p-type material in between does not allow a current to flow. However, by
applying a positive voltage to the gate, electrons are attracted to the gate area, which
creates a conductive band allowing current to flow in between the source and the drain.

MOSFETSs can have wildly different specifications. For Arduino electronics, we want
to utilize the ones for which the gate switches when applying a low voltage of only 5V.
Furthermore, we need a MOSFET that can at least handle 5 A of current. At high
currents, MOSFETSs can get hot and might need to be mounted to a cooling element
themselves. In our case however, the MOSFET can be air-cooled up to a current of
~15 A, therefore, a cooling element will not be necessary at the 5 A used here.

Since MOSFETSs allow for rapid switching, they can also be driven from PWM pins.
This allows you to regulate the current to the cooler and therefore to cool it more and
less efficiently.

Some applications for MOSFETs Using MOSFETSs allows you to rapidly
f switch various voltages and work with high currents. Furthermore, the
high-frequency switching allows you to control the current by connecting
the gate to a PWM pin. For example, MOSFETSs are frequently used as
motor drivers. In order to have a motor run backwards it is often required
to have a setup that can switch polarities. To enable this, an H-bridge can
be used.

30

https://en.wikipedia.org/wiki/Electronic_symbol#/media/File:Enh_N_channel_Mosfet.svg
https://creativecommons.org/licenses/by-sa/4.0/
https://en.wikipedia.org/wiki/H-bridge

4. Thermoelectric cooling element

4.2. Implementing a MOSFET controlled Peltier
cooler

Figure 4.3 shows a schematic (left) and the electrical symbol (right) of the nMOSFET
that we are using here. The data sheet can be found here. As shown in the electrical
symbol, this nMOSFET has an additional diode in between the source and the drain.
This means that current can flow between the source and then drain even when we do
not apply a gate voltage. For the nMOSFET to actually work as a switch, we need to
set it up such that, when switched, the current flows from the drain to the source.

? Question 5 With above mentioned considerations in mind, draw a circuit

H diagram that allows you to control the 12V power supply to drive the ther-
moelectric cooler from a 5V Arduino pin. In which part of your circuit
diagram will the full 5 A current flow when the gate is activated? Make
sure that the 5V from the gate is connected to ground via a 10k resistor,
such that it is not floating when turned off (remember that an Arduino I/0
pin configured as an ouptut cannot be used as a voltage sink). Also make
sure that the 12V power supply and your Arduino share a common ground!
If no common ground is established, the gate will be floating, which could
damage the MOSFET by overheating it.

If you are having trouble with this exercise, a mock setup can be found on Tinker-
CAD. The thermoelectric cooler is here represented by a 2.4) resistor. If you run the
simulation, it will slowly increase the voltage every three seconds. The voltage and
current applied to the “cooler” are displayed on a volt and ampere meter, respectively.

Exercise 14 Now implement the above wiring diagram in real life. Before
(> you connect the 12V to the actual power supply, make sure that:

e You did not connect 12V to any Arduino I/O pins
e The full 5 A current does not flow through the breadboard at any point

Double check this carefuflly since, if not connected properly, you might
destroy the Arduino and / or the breadboard. Also connect the fan of
the thermoelectric cooler to the 12V, however, connect it such that it is
permanently on when the 12V are connected.

As mentioned above, the breadboard cannot handle 5 A of current since the leads are
too small. Small wires have a higher resistance per unit length compared to wires with
larger diameters and therefore get hotter when a given amount of current flows through

31

https://cdn-shop.adafruit.com/datasheets/irlb8721pbf.pdf
https://www.tinkercad.com/things/559YKkQD8tB
https://www.tinkercad.com/things/559YKkQD8tB

4. Thermoelectric cooling element

them. We thus have to use appropriate wiring. In the US, wire sizes are standardized
and given in units of american wire gauge (AWG). The lower the number in AWG,
the thicker is the wire we are dealing with. Tables such as these ones show how much
current can be carried by any given wire. As you can see, a 20 AWG wire can carry 5 A
and would therefore be sufficient to be used for the Peltier cooler.

<f>

<[>

<[>

Exercise 15 Turn on the thermoelectric cooler with different PWM outputs
on the gate and verify (1) that the cooler actually gets cold and (2) that the
voltage applied across the cooler is what you would expect from your PWM
output level. Control the cooler from a subroutine that allows you to easily
set the power level from the main loop.

Exercise 16 Using Kapton tape, stick the thermistor on the surface of the
thermoelectric cooler. First measure the room temperature and then the
lowest temperature that the Peltier element can reach for varying control
levels. To record the temperature you can either display it on the seven-
segment display or print it out via serial.

Exercise 17 Now that you have an idea on how cool the Peltier element can
get, set it to maximum cooling and turn off the cooling fan. What happens
to the temperature and why?

32

https://en.wikipedia.org/wiki/American_wire_gauge

5. Sample cooling stage

Over the last few chapters, we have slowly gone through all the individual components
that we need in order to assemble a complete sample cooling stage with feedback control.
Let us now take this knowledge and assemble the whole project. Figure 5.1 shows an
image of a complete setup. In the end, our setup should be able to do the following:

e Run independent of a computer

e Have two LEDs: A green one indicating that the thermocouple is within the
specified temperature range and a red LED showing the PWM output to the
MOSFET that drives the cooler

e A display showing the current temperature or the set temperature, depending on
the mode the device is in

e Buttons to enter / exit the set mode and additional buttons to increase / decrease
the set temperature

o MOSFET PWM control to drive the thermoelectric cooler

Figure 5.1.: Complete setup of the sample cooling stage, set to 15 °C.

33

5. Sample cooling stage

0% Breadboard power busses We use 5V and 12V power for various compo-
a nents. It is recommended that you wire both power buses on the breadboard,
one with 5V from the Arduino and one with 12V from the DC power sup-
ply. For the 12V bus: Be careful to ground it through the DC power supply
and do not connect any Arduino pin other than the VIN and ground pins
(see Figure A). Before you connect even these pins, read Section 5.6.

The following sketch gives one potential setup for implementing the full controller. A
template Arduino ino file with this content can be found on GitHub.

// Load libraries

// Adafruit Display initialization

// Variables and Pins for temperature measurement
// Variables for set temperature

// Thermoelectric cooler variables and Pins

// Button pins to set temperature

// LED Pins and temperature happiness range

void setup() {
// Initialize Adafruit display
// Initialize pin modes for buttons, PWM for cooler, LEDs

void getTemperature () {
// Read thermistor, calculate and store temperature

void setDisplay(int valueToSet, bool setpoint=false) {
// Set the display with a value to set (integer)
// Additionaly display ’S’ if we are in set mode

void setMode () A
// Check if we are in set mode and adjust display
// If in set mode, adjust set point if called for

void controlTEC() {
// Control the termoelectric cooler.

34

https://github.com/galactic-forensics/workshop_arduino_electronics/blob/main/templates/full_project_template/full_project_template.ino

5. Sample cooling stage

void checkTemperatureOk () {
// I1f temperature in given range, turn green LED on

}

void loop () {
// Your main loop to hang everything together

¥

In the following chapters, we will slowly expand this template until the controller is
working. For all the individual subroutines you should already have existing code from
the previous exercises. Recycle your code when adequate! You can also initialize the
serial console in order to print to the screen when necessary. Note that the following
chapters all build on the above template and on each other.

5.1. Read the temperature

As a first step, we want to read the resistance of the thermocouple and then transform
the read value into a temperature in °C. You should already be familiar with this task
from Chapter 3. Make sure that your temperature reading is stable, i.e., average a few
measurements for the best results.

Exercise 18 Define an overall global variable currentTemperature. Then
<I> re-use your previous code and put it into void getTemperature() {...}
such that this subroutine, when called, writes the current temperature to
the variable you just defined. Then read the current temperature and print
it to the serial console from the main loop.

5.2. Integrate the display

In the next step, we will integrate the display. Make sure that you load the required
Adafruit libraries. You have already controlled the display in Chapter 2. You can
integrate a way to display the set point already, however, we won’t use this integration
for now.

35

5. Sample cooling stage

Exercise 19 Integrate the display. Re-use your previous routine to display

<I) the current temperature in steps of whole degrees. You should also allow
the void setDisplay (int valueToSet, bool setpoint=false){...}
to take two variables, the temperature as an integer to directly display
it and a boolean variable. If this boolean is true, the display should write
an s (a 5) into the first digit to indicate that we are in set mode (see next
Section). After reading the temperature in the main loop, display it on the
display.
Hint: It might be useful to round the temperature before displaying the
floating point number as an integer. Otherwise, the displayed temperature
will be rounded incorrectly when it is high, since C++ simply cuts off every-
thing after the decimal point when converting a float to an int.

5.3. Set mode for the temperature

Since we want to use our setup independent of a computer, we want to allow the user to
change the set temperature. You can use various interfaces for this. I am using a three
button setup. The buttons do the following:

e setModeButton: Enter / exit (toggle) the set-mode
e plusButton: Increase the temperature if in set mode
e minusButton: Decrease the temperature if in set mode

Furthermore, you should also set reasonable upper and lower limits that the user can-
not exceed. Such limits could, e.g., be 25°C for the upper level (approximately room
temperature) and -10°C for the lower level. Think of these levels as limits to prevent
the user from setting insane, unreachable set points.

Exercise 20 Implement the set mode. Pressing the setModeButton should

<I) toggle a boolean that allows you to decide if the set mode is on or not. If
the set mode is on, the display should display the setpoint temperature.
Pressing this button again will deactivate the set mode and display the
current temperature again.
If in set mode, the plus and minus buttons should in- and decrase the set
point, respectively. Check for button presses in the void setMode() {...}
routine. Make sure that the button presses cannot happen too fast, e.g.,
include a delay after each press to allow for user interaction time (typically
a few hundred milliseconds).

36

5. Sample cooling stage

5.4. Thermoelectric cooler

Now that we have the set mode as well as the temperature reading established, we can
implement the thermoelectric cooler. As a first step, we won’t go into control theory and
use simple on/off logic. The next chapter outlines further and fancier implementations
of this control. Therefore, make sure that you already connect the cooler control to an
[/O pin that is capable of PWM output. For now, we will simply turn the cooler on if
the temperature set point is below the actual temperature, and turn it off otherwise.

Exercise 21 Implement the thermoelectric cooler to turn it on and off,
<I) depending on the setpoint and current temperature comparison (see above).
Implement this comparison in the void controlTEC() {...} subroutine
and call this subroutine from your main loop. Connect a red LED to the
MOSFET control pin, this LED will then tell you if the cooler is on or off.

5.5. Status LED

Finally, we are going to incorporate a green LED that will allow us to see at once if the
system is at temperature or not. Let us, e.g., define a temperature range of +0.5°C in
which we would call the achieved temperature acceptable.

Exercise 22 Set up a green LED. This LED will be controlled in the routine
<I> void checkTemperatureOk() {...}. In this routine, compare the current
temperature to the set point and turn the LED on when you are inside your
defined happiness zone, otherwise turn it off. Note: the function abs()
might come in handy: it takes the absolute value of a given number.

5.6. Run independent of a computer

So far, we have always powered the Arduino from the 5V that come from the USB
connection from the computer. However, most boards also have a VIN pin. This allows us
to connect an external power source and not use the computer at all. The recommended
voltage on the VIN pin is 7-12V and the maximum voltage 6-20 V.

Since we have a 12V power supply to drive the thermoelectric cooler, we can use
the same power source to drive the Arduino. Since we are using a 5 A power supply,
we won’t have the full current that can be used by the cooler anymore, however, the
Arduino only uses very little power, so this should not matter too much. Otherwise, we
could always replace the power supply with one that has a higher current rating.

37

5. Sample cooling stage

Exercise 23 Connect an Arduino ground pin to ground (the negative side

<I> of the 12V supply) and the VIN pin to the 12 V. Be careful not to mix up
the pins, you might destroy your Arduino otherwise! Your setup should run
now without a computer connection. If you need to restart the Arduino for
any reason, you can use the reset button that is onboard.

5.7. Testing

If all went well, your setup might look similar to the one shown in Figure 3.3. Congrat-
ulations!

Finally, before you want to use your temperature controller, you might want to test
it for stability. Does it really fulfill your requirements or do you need to adjust the
capabilities? Some test ideas are outlined in the following list:

e How stable is your set temperature over the long run? Does the green LED stay
lit once it reaches the desired temperature?

e How about changing the “load”? Put a glass of water on the cooler and submerge
the thermistor to measure the water temperature. You have now added a ballast.
Does the temperature stay constant once the set point is reached?

e Narrow the temperature range that you decide is acceptable and check if your
setup can hold this narrower range

e Interface test: Give the device to a friend and check if the interface is intuitive
e Is your setup feasible / can it be used in a production scenario?

For many of these tests you might actually realize that your setup still needs improve-
ments. These improvements are likely in design, setup, and integration of the cooling
control. The next chapter gives you an outlook on where to go from here, i.e., what else
you might want to think about if you really want to use this setup in your lab.

38

6. Further improvements

By now, you have developed a Peltier cooler and can control its set temperature using a
few buttons. This project has hopefully also given you a look into how to build scientific
setups with Arduino. We elaborated on digital and analog I/O pins in order to control
and read all kinds of different sensors and devices. In this last chapter, we will now
discuss possible further developments for this project in order to direct the interested
reader on what could be done next.

6.1. Rigid setup

The breadboard setup is great for testing and quickly rearranging cables, however, it is
not well suited for regular use once you have finished developing your project. If you
want to use the developed setup further, several steps can be taken to make it more
rigid.

6.1.1. Soldering a fixed setup

To have a more robust setup, it is often worth to solder the components onto a board.
One possibility on how to solder the components into place is to use a perma-proto
board, see here for one example. These boards work similar to the bread board that
you used, however, you have to solder all the connections in place. Alternatively, you
could use a perfboard, which simply has holes and no lines connected. There are various
versions available for these components, and it is ultimately up to you to choose what
you prefer.

Figure 6.1 shows an image of the setup that we developed soldered onto an Adafruit
perma-proto board. The Arduino and the display in this case are not soldered in place.
We rather soldered female headers for these components to plug in. This allows us to
easily remove these parts if required.

6.1.2. Case

To have a lab setup that is used actively, it is often useful to not only solder the setup that
we want to use regularly, but also to put it in some type of enclosure. Many enclosures

39

https://www.adafruit.com/product/571
https://en.wikipedia.org/wiki/Perfboard

6. Further improvements

Figure 6.1.: The assembled project with a 3d printed case. Parts unplugged (left) and
the assembled project running (right). Most of the cables run underneath the protoboard
and are hidden from view.

are feasible and possible. For example, you could purchase an existing enclosure and
simply adopt it for your needs.

Another possibility is to print an enclosure for your setup using a 3D printer. For
example, you could design a case using computer-aided design (CAD) software such
as FreeCAD. An example for a simple enclosure that keeps the bottom of our setup
enclosed is shown in Figure 6.1. The FreeCAD and associated files can be found on
GitHub. Great resources on campus can also be found in the Brandeis Maker Lab.

6.1.3. PCB development

Today, there are suppliers that produce small quantities of PCBs for low prices. It can
therefore be worth if your project needs to be duplicated multiple times to design and
manufacture a PCB for it. Many hints on how to do so can be found online, e.g., here.
Tools to design PCBs are, e.g., KiICAD and EasyEDA. A great resource on campus to
consult is the Brandeis Automation Lab.

6.2. Proportional control

When fully assembled, we have seen that our simple implementation was already capable
of keeping the Peltier element within 0.5°C of the set temperature when the thermistor
was directly stuck onto the cooling element. This was already achieved when simply
turning the controller on and off. However, we have also demonstrated that we can in
fact drive the cooler by setting the PWM accordingly.

40

https://en.wikipedia.org/wiki/3D_printing
https://www.freecad.org/
https://github.com/galactic-forensics/workshop_arduino_electronics/tree/main/3d_files
https://www.brandeis.edu/library/research-technology-innovation/makerlab.html
https://maker.pro/arduino/projects/7-tips-for-beginners-about-how-to-design-a-pcb-1
https://www.kicad.org/
https://easyeda.com/
https://www.brandeis.edu/library/research-technology-innovation/automation.html

6. Further improvements

r(t) e(t)

Plant y(t)
Pr?:brc! eé'.s >

Figure 6.2.: PID control block diagram in a feedback loop. Credit: Arturo Urquizo,
License: CC BY-SA 3.0.

6.2.1. Proportional-integral-derivative (PID) controller

A PID controller corrects a given system, e.g., our cooler, based on proportional (P),
integral (I), and derivative (D) terms. Figure 6.2 shows a block diagram of the control
loop for a PID controller. The set point is denoted r(t), the achieved point y(¢). The
“plant / process” in this diagram would be our thermoelectric cooler. From the set point
and current value, an error e(t) is calculated. Using this error in multiple terms, here
all three PID terms, a response u(t) is calculated. The overall control function takes the
form

de(t)

dt

—D

u(t) = K et +K/ 7)dr + Kad (6.1)

Here, the constants K, K;, and K, are posmve constants that have to be determined
for every system.

In PID, the first term (P) will make a proportional response, e.g., if the error e(t) is
large, a large correction will be made. The second term (I) integrates all errors that
were calculated so far and therefore creates a memory effect. The last term (D) is best
described as a prediction value. A much more detailed explanation of PID control theory
can be found on Wikipedia.

6.2.2. Proportional controller for our cooler

Let us try and implement a proportional feedback for our cooler. Since we can only
cool, we can only apply the proportional part when our sample is too warm, otherwise,
we will continue to simply turn the Peltier element off and let it warm up by itself. We
can apply the proportionality by in- and decreasing the PWM output.

First, let us define K, in units of K~'. At full power, we will drive the PWM at 100%.
This level will proportionally drop with lower values of e(t). Since we cannot drive the

41

https://en.wikipedia.org/wiki/File:PID_en.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://en.wikipedia.org/wiki/PID_controller

6. Further improvements

Figure 6.3.: Schematic of an H-bridge. The “H” shape is laying on the side in this
Figure. If the MOSFETs labeled A1 and A2 are closed, the current will flow along arrow
14 through device D. If the MOSFETs labeled B1 and B2 are closed, the current will
flow along arrow Ig. The nMOSFET drawing is adopted from ErikBuer via Wikipedia,
license: CC BY-SA 4.0.

gate of the MOSFET with more than 100%, we will automatically generate a control
function that contains a step in it. For a given K, and a given temperature difference
AT, we can calculate the response u(t) (from 0 to 1) as:

K,AT, AT <-L
u(t) = 1 AT < (6.2)
J Kp

An example implementation for K, = 2.0 K™ and our thermoelectric cooler can be
found on GitHub. Note that we only had to adopt the void controlTEC() routine.

6.3. Heating and cooling

The Peltier effect (Section 4.1.1) and thus the thermoelectric cooler can be run in either
direction. This means that if we would reverse the polarity of the applied voltage and
therefore reverse the current flow, the side that has so far been used as a cooler would
start to heat up and the other side would cool down. This also allows us to actively
drive the thermoelectric cooler as a heater.

So far, we used one nMOSFET in order to drive the cooler, see Chapter 4. Adding
three more nMOSFETSs, we could build a so-called H-bridge. Figure 6.3 shows a

42

https://en.wikipedia.org/wiki/Electronic_symbol#/media/File:Enh_N_channel_Mosfet.svg
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/galactic-forensics/workshop_arduino_electronics/tree/main/further_examples/p_control
https://en.wikipedia.org/wiki/H-bridge

6. Further improvements

schematic drawing of an H-bridge. Note that the “H” is laying on its side, the two
vertical bars represented by the two nMOSFETSs and the horizontal bar with the de-
vice D in the middle. If we apply voltage to the gates of the nMOSFETs Al and A2,
the current will flow in direction I4 through the device D. If we, on the other hand,
apply voltage to the gates for nMOSFETs B1 and B2, the current flows in the reverse
direction, as indicated by arrow Ip.

H-bridges are typically used to drive DC motors since the reversal allows us to drive the
motor in either direction. You can also find assembled H-bridges online, e.g., here. Make
sure that the current rating is appropriate for your application and that you understand
how the H-bridge works. For example, the circuit shown in Figure 6.3 would allow you
to short the circuit by opening Al and B2 or B1 and A2. Such shorts should generally
be avoided in order to not damage the components.

6.4. Data recording

6.4.1. Record data on storage medium

Various possibilities exist to log data using an Arduino. For example, you could use a
data logging shield, i.e., an extension board, that allows you to plug an SD card into
the Arduino and record data on it. Libraries to record data as well as examples can be
found on the web, e.g., here.

6.4.2. Data in the cloud

Certain types of Arduino boards that have web capabilities can also be used in combi-
nation with the Arduino internet of things (IoT) cloud. This allows you to connect your
setup to the internet and record measurement points online. A free plan allows you to
test out the Arduino IoT cloud.

6.4.3. Data recording via serial and python

Another, interesting option is to use the serial interface that Arduino comes with by de-
fault and read out the serial commands. Below are example files, full, working examples
can be found on GitHub.

Arduino setup We have so far used the serial protocol in order to print information
from the Arduino to the serial console. Let us set up an Arduino with an LED connected
to ledPin. We also store a float result = 23.5, which is the thing we want to print
via serial when asked for it. In the setup, we therefore want to put the following code:

43

https://www.electronics-lab.com/project/5-amp-h-bridge-dc-motor-driver-using-mc33886/
https://www.arrow.com/en/products/1141/adafruit-industries
https://www.arrow.com/en/research-and-events/articles/data-logging-with-arduino-tutorial
https://docs.arduino.cc/cloud/iot-cloud
https://github.com/galactic-forensics/workshop_arduino_electronics/tree/main/further_examples/data_logger

6. Further improvements

void setup() {
pinMode (ledPin, OUTPUT);
Serial .begin (9600) ;

}

Here, we first set up the LED as an output, and then initialize the serial interface with
a baud rate of 9600 bits per second, see here for more information.

Let us assume that we have set up a function called blink_led () to blink the LED.
We can then set up the main loop code as following:

void loop () {
char inByte; // where to store the read data

if (Serial.available() > 0) {
inByte = Serial.read();

if (inByte == ’77’) {
Serial.println(result);
blink_led ();

}

by

Here, we first initialize a variable for one single character. We then ask if Serial data
are available and if they are, we read each character into inByte. It is important. If
this character is equal to 7, we print the defined result back to the serial console and
blink the LED, otherwise we do nothing.

Two things that you should notice here: (1) If you send one question mark from the
Arduino serial console, and it is set up to send a newline at the end, you in fact send
two characters, a question mark and a newline character. However, the program only
responds to the question mark and all other characters are ignored. (2) Note that we
send the result using the Serial.println() command, i.e., we print a newline character
at the end of our return. Assuming there are no other newline characters in the result,
we can use this line termination scheme to later determine where the result has in fact
terminated. This will come in handy further down.

Querying the serial interface with Python While the Arduino serial console is great
for debugging, it is not made to record and log data on a regular basis. However, we do
not need to communicate with the Arduino serial console via the Arduino IDE but can
use any console that can communicate (send and receive commands) via serial in order
to build our data logger. Below example shows one very simple way of communicating

44

https://www.arduino.cc/en/Serial.Begin

6. Further improvements

with the Arduino via the Python serial interface. Here, we use the pySeriall! library
for communication. The following code presents a very simple python script to get and
print the result:

import serial
PORT = "/dev/ttyACM1"
dev = serial.Serial (PORT, 9600)

dev.write(b"?")
result = dev.readline ()

print (result)

We first import the pySerial package. We then define the PORT where the Arduino can
be found. On a Unix based system, the ports are in the same form as the above example.
On Windows however, you would look for something like COM3. We then assign a variable
dev to the device and use the pySerial package to open communication with the serial
port. To query the temperature, we have to send a question mark to the Arduino. We
can do so using the write command and send a question mark that has been encoded
to binary, i.e., b"?". We then read the next line that came back from the device,
store it as a result, and then print this stored value. Note that the dev.readline()
command works only if you send a newline command from the Arduino, e.g., by using
Serial.println().

Once you run this program, which can be found here on GitHub, you will see that (1)
the LED blinks when the program runs and (2) that the string b>23.50\r\n’ is returned.
The returned string is of course also binary encoded and, in order to get a regular string
as you are used to, you would have to decode this binary string. Furthermore, you might
want to strip the carriage return (\r) and newline (\n) characters at the end of the line.
You could clean up the result string as following:

result = float(result.decode("utf-8").rstrip())

This decodes the result, strips the empty characters on the right side of the string, and
then converts it to a float.

We can of course also extend this simplest possible example into an actual data logger.
A simple example how this could be achieved in Python can be found on GitHub with
the filename data_logger.py. The python file is extensively commented and records a
given set of measurements with defined intervals in between and saves them as a CSV
file. The important part to remember is the following: The serial interface allows you to
easily control and drive the Arduino from your computer. If you adjust your firmware

!The pySerial interface can be installed as: pip install pyserial

45

https://www.python.org/
https://pyserial.readthedocs.io/en/latest/pyserial.html
https://github.com/galactic-forensics/workshop_arduino_electronics/blob/main/further_examples/data_logger/simple_query.py
https://github.com/galactic-forensics/workshop_arduino_electronics/blob/main/further_examples/data_logger/data_logger.py

6. Further improvements

accordingly, you will be able to interact with your Arduino by other means than just the
Arduino IDE, e.g., via Python. This can be extremely useful for further development
and data recording.

46

Appendices

47

A. Arduino Micro Pinout

ARDUINO
MICRO
b7 | 015 3
e)
[P [IOE 015
B BT
|_PF2 BN 021
I BT
s @ - D
GOEN D
D oomx | Poe
[PB3 | oir0/oia]
P51 [Sox 015 Lo To/copr | Pee
e | Pos
. Ground . Internal Pin . Digital Pin . Microcontroller’'s Port
. Power . SWD Pin [:‘ Analog Pin
Moo [other Pin befaut

org/licenses/by-sa/4.0/ or send a letter to Creative
Commons, PO Box 1866, Mountain View, CA 94042, USA

48

B. Bill of materials (BOM)

The following table states all components used in this workshop. It assumed that sol-
dering stations and supplies are provided.

Component Supplier Article # Amount Cost total
Arduino Micro Digikey A000053 1 $20.70
USB Cable Digikey 102-5943-ND 1 $2.55
Breadboard Adafruit 239 1 $5.95
Breadboard wires Adafruit 153 1 $4.95
LED red Digikey 516-1339-ND 1 $0.81
LED green Digikey ~ 516-1334-ND 1 $0.78
Buttons Adafruit 367 1 $2.50
Resistors 1k Adafruit 4294 1 $0.75
Resistors 10k Adafruit 2784 1 $0.75
Display Adafruit 1002 1 $10.95
Thermistor Adafruit 372 1 $4.00
Thermoelectric cooler (TEC) Adafruit 1335 1 $34.95
MOSFET Adafruit 355 1 $1.75
12V power supply Adafruit 352 1 $24.95
Power jack adapter Adafruit 368 1 $2.00
Total cost: $118.34

49

https://www.digikey.com/en/products/detail/arduino/A000053/4486332
https://www.digikey.com/en/products/detail/cui-devices/CBL-UA-MUB-1/9838595?s=N4IgTCBcDaIIwAYwFoCsBOALAZmQOQBEQBdAXyA
https://www.adafruit.com/product/239
https://www.adafruit.com/product/153
https://www.digikey.com/en/products/detail/broadcom-limited/HLMP-3600/637603?s=N4IgTCBcDaIKwEYBsBaBBmdBOFA5AIiALoC%2BQA
https://www.digikey.com/en/products/detail/broadcom-limited/HLMP-3962/637598?s=N4IgTCBcDaIKwEYBsBaBBmdAWFA5AIiALoC%2BQA
https://www.adafruit.com/product/367
https://www.adafruit.com/product/4294
https://www.adafruit.com/product/2784
https://www.adafruit.com/product/1002
https://www.adafruit.com/product/372
https://www.adafruit.com/product/1335
https://www.adafruit.com/product/355
https://www.adafruit.com/product/352
https://www.adafruit.com/product/368

C. Open source design tools

C.1. Calculators

e Heat sink calculator to determine if you need a heat sink or not. https:
//daycounter.com/Calculators/Heat-Sink-Temperature-Calculator.phtml

C.2. Designing

e EasyEDAOnline designer for PCBs with large library of components and direct
ordering possibilities. https://easyeda.com/

e Fritzing Makes electronics design accessible. Easy and simple interface to draw
some of your own setups, quick to get started with. Suppliers such as Adafruit have
Fritzing libraries with components that you can import. https://fritzing.org/

e KiCad Cross-platform electronics design suite. https://www.kicad.org/

C.3. Virtual Hardware

e TinkerCAD Electronic playground from Autodesk. Allows you to virtually set up
electronic components and write / test code for them. https://www.tinkercad.com/

20

https://daycounter.com/Calculators/Heat-Sink-Temperature-Calculator.phtml
https://daycounter.com/Calculators/Heat-Sink-Temperature-Calculator.phtml
https://easyeda.com/
https://fritzing.org/
https://www.kicad.org/
https://www.tinkercad.com/

D. Full wiring diagram

GND

R1 R2 R3 R&

RS R6
10k 1k 1k 1k 1k 1k
N N
ZS LEDL LED2 B_set B_plus B_minus
green red Ada 367 Ada 367 Ada 367

P P P

S 2 B2 3 2 3
hda:355 (N 1
1rRLBE721PBF \E[/ h
~
N
PeltierFan Ada:1335
Fan Peltier_Element
e
’
]
- <9
T o
Ada:368
ol et ool of] o |
0092855880328 8
EESS \!}Qm%ﬂ\}oo EREE
S 332 “.5 Dg§ 33 g Ada:878
3
g 3 3 A000053 2233 | 7segBackpack
odm o dam Arduino_Micro
SAIRAN =
w Loooa88s B aw
2¥S o Iovedndzza g
ThMd<<as<a<<<<I<ZZ+XxO>SO00
m‘ m‘ O‘H N‘ m‘ ¢‘ m‘ \u‘ r\J(mJ(m o‘ H‘ N‘ mH
b= S RN RN EN BN VRSN S R RS P S 4
Thermistor R7
Ada 372 Lok

[,

Figure D.1.: Full wiring diagram of the final project. All KiCAD files can be found
on GitHub.

o1

https://www.kicad.org/
https://github.com/galactic-forensics/workshop_arduino_electronics/tree/main/kicad

	Preface
	Acronyms
	0 Introduction
	0.1 Basic Physics to Remember
	0.2 Analog and Digital
	0.2.1 Analog-to-Digital Conversion
	0.2.2 Digital-to-Analog Conversion

	0.3 Arduino
	0.3.1 Programming an Arduino
	0.3.2 TinkerCAD

	1 Blink
	1.1 LEDs
	1.1.1 Internal LED
	1.1.2 External LED
	1.1.3 Dimming an LED
	1.1.4 Multiple LEDs

	1.2 Buttons

	2 Display
	2.1 Seven-segment displays
	2.2 Adafruit four-digit, seven-segment display with backpack
	2.2.1 Assembly
	2.2.2 Controlling the display from Arduino

	3 Temperature sensor
	3.1 Thermistor
	3.1.1 Voltage divider
	3.1.2 Using a thermistor with an ADC
	3.1.3 Determining the temperature

	3.2 Reading the temperature with the Arduino

	4 Thermoelectric cooling element
	4.1 Components and their Physics
	4.1.1 The Peltier effect
	4.1.2 MOSFET

	4.2 Implementing a MOSFET controlled Peltier cooler

	5 Sample cooling stage
	5.1 Read the temperature
	5.2 Integrate the display
	5.3 Set mode for the temperature
	5.4 Thermoelectric cooler
	5.5 Status LED
	5.6 Run independent of a computer
	5.7 Testing

	6 Further improvements
	6.1 Rigid setup
	6.1.1 Soldering a fixed setup
	6.1.2 Case
	6.1.3 PCB development

	6.2 Proportional control
	6.2.1 PID controller
	6.2.2 Proportional controller for our cooler

	6.3 Heating and cooling
	6.4 Data recording
	6.4.1 Record data on storage medium
	6.4.2 Data in the cloud
	6.4.3 Data recording via serial and python

	Appendices
	A Arduino Micro Pinout
	B bom
	C Open source design tools
	C.1 Calculators
	C.2 Designing
	C.3 Virtual Hardware

	D Full wiring diagram

