{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 3 向量正交" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## 3.1 正交子向量\n", "\n", "### 3.1.1正交性\n", "向量x,y,如果$x^{T}y=x_1y_1+x_2y_2+\\cdots+x_ny_n=0$,则称之为两个向量正交(orthogonal) \n", "### 3.1.2 四个基本空间关系\n", "秩r的$m \\times n$矩阵,其行空间$\\dim C(A^T)=r$和零空间$\\dim N(A)=n-r$同属于$R^{n}$空间,而列空间$\\dim C(A)=r$和左零空间$\\dim N(A^T)=m-r$同属于$R^{m}$空间。 \n", "+ Ax=0 \n", "$\\begin{bmatrix}row_1 \\\\ row_2 \\\\ \\vdots \\\\ row_m \\end{bmatrix} [x]=0 \\Rightarrow \\begin{cases}row_1[x]=0 \\\\ row_2[x]=0 \\\\ \\vdots \\\\row_m[x]=0 \\end{cases}$ \n", "\n", "表明**行空间**与**零空间**将$R^{n}$拆分成两个正交的子空间;同理**列空间**与**左零空间**将$R^{m}$拆分成两个正交的子空间。" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3.2 投影矩阵" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 3.2.1向量投影\n", "向量$\\mathbf{b}$投影到向量$\\mathbf{a}$上,那么投影的向量为$\\mathbf{p}=x\\mathbf{a}$,那么剩余的向量$\\mathbf{e}=\\mathbf{b}-x\\mathbf{a}$,由投影关系可知 $\\mathbf{e} \\bot \\mathbf{a}$ \n", "\n", "所以: \n", "$a^{T}e=a^{T}(b-p)=a^{T}(b-xa)=0 \\Rightarrow x=\\frac{a^{T}b}{a^{T}a}$ 投影后的向量$\\mathbf{p}=a\\frac{a^{T}b}{a^{T}a}$,由此可知,投影向量为$P=\\frac{aa^{T}}{a^{T}a}$ \n", "\n", "*性质*\n", "+ $p=p^T$ \n", "$(p^T)^T=\\frac{(aa^T)^T}{a^Ta}=\\frac{aa^T}{a^Ta}=p$ \n", "+ $P=p^2$ \n", "如果对一个向量作一次投影后再作一次投影,那么结果不变。" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 3.2.2 空间投影 \n", "对于方程Ax=b不一定有解,但是向量Ax一定在A的列空间中,所以可以将b投影到A的列空间中,将$Ax=b$转换为$Ax=p$。 \n", "$p=Ax \\Rightarrow e=b-Ax \\Rightarrow A^{T}e=A^{T}(b-Ax)=0 \\Rightarrow A^{T}Ax=A^{T}b$ \n", "\n", "**所以** \n", "+ $\\hat{x} = (A^TA)^{-1}A^Tb$ \n", "+ $P=A\\hat{x}=A(A^TA)^{-1}A^Tb$ \n", "+ 投影矩阵 \n", "$P=A(A^TA)^{-1}A^T$ \n", "\n", "如果A的各个列向量线性无关,则$A^TA$可逆" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 3.3 正交矩阵和Gram-schmit正交化" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 3.3.1 标准正交向量\n", "$q_i^{T}q_j=\\begin{cases}0 & i \\ne j \\\\ 1 & i = j \\end{cases}$ \n", "将标准正交向量放入到矩阵中 \n", "$Q=\\Bigg[ q_1q_2\\ldots q_n \\Bigg]$ \n", "所以\n", "$$Q^TQ=\\Bigg[q_1^Tq_2^T\\ldots q_n^T \\Bigg]\\Bigg[ q_1q_2\\ldots q_n \\Bigg] = \\begin{bmatrix}1 & 0 & \\cdots & 0 \\\\ 0 & 1 & \\cdots & 0 \\\\ \\vdots & \\vdots & \\ddots & \\vdots \\\\ 0 & 0 & \\ldots & 1\\end{bmatrix} = I$$ 将$Q$称之为**标准正交矩阵**。若$Q$为方阵,则$Q^{T}=Q^{-1}$" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "### 3.3.2 Gram-schmit 正交化" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "若干线性无关向量 $a,b,c,\\cdots$,求解出正交向量 $A,B,C,\\cdots$\n", "+ 确定A向量 \n", "令 $A=a$ \n", "+ 确定B向量 \n", "取 $b$ 在A上的法向量即为向量B,通过投影一章可知,法向量$e$等于$b-p$,其中$p$为$b$在$A$上的投影。所以$B=b-p=b-\\frac{A^Tb}{A^TA}A$ \n", "+ 确定C向量 \n", "$C$向量为分别垂直于$A$和$B$向量的法向量,用$c$向量分别减去$c$在$A$和$B$上的投影,可得到$C=c-\\frac{A^Tc}{A^TA}A-\\frac{B^Tc}{B^TB}B$ \n", "+ $\\ldots$ \n", "剩下的同理" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 1 }