\n",
"\n",
"\n",
"\n",
"# Introduction to Electron Energy-Loss Spectroscopy\n",
"\n",
"\n",
"[Download](https://raw.githubusercontent.com/gduscher/MSE672-Introduction-to-TEM/main/Spectroscopy/CH4_01-Introduction.ipynb)\n",
"\n",
"part of \n",
"\n",
" **[MSE672: Introduction to Transmission Electron Microscopy](../_MSE672_Intro_TEM.ipynb)**\n",
"\n",
"by Gerd Duscher, Spring 2024\n",
"\n",
"Microscopy Facilities \n",
"Institute of Advanced Materials & Manufacturing \n",
"Materials Science & Engineering \n",
"The University of Tennessee, Knoxville\n",
"\n",
"Background and methods to analysis and quantification of data acquired with transmission electron microscopes.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Preliminaries\n",
"### Check Installed Packages"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"installing pyTEMlib\n",
"done\n"
]
}
],
"source": [
"import sys\n",
"import importlib.metadata\n",
"def test_package(package_name):\n",
" \"\"\"Test if package exists and returns version or -1\"\"\"\n",
" try:\n",
" version = importlib.metadata.version(package_name)\n",
" except importlib.metadata.PackageNotFoundError:\n",
" version = '-1'\n",
" return version\n",
"\n",
"if test_package('pyTEMlib') < '0.2024.2.3':\n",
" print('installing pyTEMlib')\n",
" !{sys.executable} -m pip install --upgrade pyTEMlib -q\n",
"\n",
"print('done')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Import all relevant libraries\n",
"\n",
"Please note that the EELS_tools package from pyTEMlib is essential."
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"pyTEM version: 0.2024.02.2\n"
]
}
],
"source": [
"import sys\n",
"%matplotlib ipympl\n",
"if 'google.colab' in sys.modules:\n",
" from google.colab import output\n",
" from google.colab import drive\n",
" output.enable_custom_widget_manager()\n",
"\n",
"import matplotlib.pylab as plt\n",
"import numpy as np\n",
" \n",
"# Import libraries from the book\n",
"import pyTEMlib\n",
"from pyTEMlib import file_tools # File input/ output library\n",
"from pyTEMlib import eels_tools \n",
"\n",
"# For archiving reasons it is a good idea to print the version numbers out at this point\n",
"print('pyTEM version: ',pyTEMlib.__version__)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"\n",
"### Parts of an EELS Spectrum:\n",
"\n",
"\n",
"![EELS spectrum](images/EELS.jpg \"Title\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"**No energy transfer**\n",
"\n",
"The zero--loss peak is caused by electrons of the acceleration energy which apparently did not loose any energy (or only a tiny amount in a quasi--elastic scattering). \n",
"\n",
"**Little energy transfer: 1-70 eV**\n",
"\n",
"The valence--loss region shows intraband, interband, and plasmon transitions.\n",
"\n",
"**High energy transfer: above 70eV**\n",
"\n",
"The core--loss region contains excitation from the atom core levels into the conduction band appear as saw tooth like edges.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Inelastic Excitation\n",
"Energy is transfered to an atom in ground state and after a while (femto seconds) this atoms will change its electron levels and shell occupations and becomes an excited atom.\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"After some time (femto seconds to minutes) this atoms falls back to the ground state and after a little while longer (femto seconds), the atom emits this energy either in form of photons (in the light and X-ray spectrum) or Auger electron. \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"So we have two obervable processes:\n",
"\n",
"**energy transfer to the atom in ground state**\n",
"- primary energy transfer\n",
" - electron energy-loss spectroscopy\n",
"\n",
"**excited atom emitting energy**\n",
"- secondary processes\n",
" - electron energy-loss spectroscopy\n",
" - Auger spectroscopy\n",
" - energy-dispersive X-ray spectroscopy\n",
" - Cathodoluminescence\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### EELS Spectrometer\n",
"\n",
"We use a magnetic field to bend the electron beam (here 90$^{\\rm o}$) which acts like a prism for light and separates the electrons by spead (kinetic energy). The faster electrons will get bent less. \n",
"\n",
"\n",
"\n",
"With such a prism for electrons we can determine the energy lost in the sample. \n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### EELS and STEM\n",
"\n",
"The advantage of EELS in STEM mode is that we get a HAADF signal and the bright field signal is analysed with EELS spectroscopy. So we get spatially resolved image and chemical information simultaneously.\n",
"\n",
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load an EELS Spectrum\n"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"# ---- Input ------\n",
"load_example = True\n",
"# -----------------\n",
"if not load_example:\n",
" if 'google.colab' in sys.modules:\n",
" drive.mount(\"/content/drive\")\n",
"\n",
" fileWidget = file_tools.FileWidget()"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d80f69329a3444b2b18299091cf8bc80",
"version_major": 2,
"version_minor": 0
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHu0lEQVR4nO3dd3xUVf7/8fdNmwQSAoHQA4LSIVTRoCILCAIi6oouFqooGlHEigUWRbO41p8FBSlfBQQsiAqCKBAQZGmyNBdBQ1FApJdASDLn90eYIZMJZKjDnft6Ph55MHPunTufmZsHvDnnnnMtY4wRAAAAHCMs2AUAAADgwiIAAgAAOAwBEAAAwGEIgAAAAA5DAAQAAHAYAiAAAIDDEAABAAAchgAIAADgMARAAAAAhyEAAgAAOAwBEAAAwGEIgAAAAA5DAAQAAHAYAiAAAIDDEAABAAAchgAIAADgMARAAAAAhyEAAgAAOAwBEAAAwGEIgAAAAA5DAAQAAHAYAiAAAIDDEAABAAAchgAIAADgMARAwObGjRsny7JO+jNv3jxJ0iWXXHLSfVq1auV3vGXLlp3yfbdu3aoHHnhANWvWVExMjBISEtSgQQP17dtXW7du9dl31qxZuuqqqxQTE6P4+Hh17txZa9euLfS43333nVJSUlSsWDGVKVNGPXv21M6dO8/qOzoXZs6cqU6dOikxMVEul0tJSUnq0aOH1q1bd8rXNWnSRJZl6ZVXXrlAlZ57l1xyiXr27Hlar1m5cqU6deqkKlWqeH8/UlJSNH78+PNTJIDTEhHsAgCcG2PHjlXt2rX92uvWret9fNVVVxUaREqUKHFa7/X777+rSZMmKlmypB599FHVqlVL+/fv17p16zRlyhT99ttvSkpKkiRNmzZNN998s7p06aLPPvtM+/fv19ChQ3XNNddo6dKluvTSS73HTU9PV4cOHdSpUydNmzZNO3fu1JNPPqk2bdpo2bJlcrlcp1XnufLEE0/o3//+t66//nq9++67KleunH755Re99tpratKkiSZOnKhbbrnF73UrV67UTz/9JEkaPXq0HnvssQtd+jkxderU0/4d2bdvn5KSktStWzdVqlRJhw8f1oQJE3T33Xdr06ZNevbZZ89TtQACYgDY2tixY40ks3Tp0lPuV7VqVdOpU6dzcrzBgwcbSea3334rdHtubq73ca1atUxycrJxu93etk2bNpmoqChzxx13+Lzu8ssvN3Xr1jXZ2dnetoULFxpJ5t133y2y9vNh4sSJRpK5//77/bYdOnTING3a1BQrVsz8+uuvfttTU1ONJNOpUycjySxcuPBClHxRu+KKK0xSUlKwywAcjyFgAKdt9+7dCgsLU9myZQvdHhYW5t1v/fr16tChgyzL8m6vWrWq6tevry+++EK5ubmSpD/++ENLly7V3XffrYiIE4MTLVq0UM2aNTV16lRvm2eYes6cOerbt69Kly6tEiVKqHv37jp8+LB27Nih2267TSVLllSFChX02GOPKTs72/v6efPm+QyPe2zatEmWZWncuHHethdffFGlSpUqtOe0ePHieuutt5SZmanXX3/dZ9vRo0c1ceJENW3a1LttzJgxhX5fY8aMUcOGDRUdHa2EhATdfPPN+vnnn3326dmzp2JjY7Vx40Z17NhRsbGxSkpK0qOPPqqsrCyffYcOHaorrrhCCQkJKlGihJo0aaLRo0fLGOPd54cfflBkZKRfr6Tnux09erS3reAQsNvt1rBhw1SrVi3FxMSoZMmSSk5O1ptvvlno58uvTJkyPucXQHAQAIEQkZubq5ycHJ8fT7jyMMb47ZOTk+MTDAKRkpIit9utW265RbNmzdKBAwcK3e/YsWOSVOjQrcvlUmZmpn799VdJ0po1ayRJycnJfvsmJyd7t+d3zz33KD4+XpMmTdKzzz6riRMnqm/fvurUqZMaNmyoTz/9VD169NCrr76qt95667Q+oyRt375da9euVbt27VSsWLFC90lJSVHZsmU1e/Zsn/bPP/9ce/fuVe/evVWjRg1dffXVmjx5sg4dOuSzX1pamvr06aN69erp888/15tvvqlVq1YpJSVFGzZs8Nk3OztbN954o9q0aaNp06apd+/eev311zV8+HCf/TZt2qT77rtPU6ZM0eeff65bbrlF/fv31wsvvODd5+qrr9awYcP06quv6ssvv5QkrV27VqmpqbrrrrvUp0+fk34vL7/8sv75z3+qW7dumj59uiZPnqw+ffpo3759fvu63W7l5OTor7/+0rvvvqtZs2bpySefPOmxAVwgQe6BBHCWPEO2hf2Eh4d796tatepJ93vhhRf8jneqIWC3223uu+8+ExYWZiQZy7JMnTp1zCOPPGIyMjK8++Xm5pqEhATTpk0bn9fv3bvXxMXFGUlm0aJFxhhjJkyYYCSZH3/80e/97r33XhMVFeVXY//+/X32u+mmm4wk89prr/m0N2rUyDRp0sT7fO7cuUaSmTt3rs9+GRkZRpIZO3asMcaYxYsXG0nmqaeeOul3YUzesGZMTIxPW+vWrU10dLTZu3evT82jR4/2+R5iYmJMx44dfV67ZcsW43K5fIbIe/ToYSSZKVOm+OzbsWNHU6tWrZPWlpuba7Kzs83zzz9vSpcu7TMU73a7TceOHU3JkiXNmjVrTN26dU3t2rXNoUOHfI5RtWpV06NHD+/zG264wTRq1OiU34nHfffd5/09i4qKCtpQPgBf9AACIeLDDz/U0qVLfX7+85//+Oxz9dVX++2zdOnSU/b2FMayLL333nv67bff9O6776pXr17Kzs7W66+/rnr16ik9PV1S3lBwamqqvv/+e73wwgvauXOnNm7cqLvuukuZmZnefQoe+2TvWdANN9zg87xOnTqSpE6dOvm1b968+bQ+4+kwxvjUl5GRoblz5+qWW25RyZIlJUldu3ZVXFyczzDwjz/+qCNHjvjNsE1KSlLr1q31/fff+7RblqXOnTv7tCUnJ/t9tjlz5qht27aKj49XeHi4IiMjNXjwYO3evdtnRrVlWfrwww8VFxenZs2aKSMjQ1OmTFHx4sVP+XmbN2+u//73v3rggQdO2QMsSU8//bSWLl2q6dOnq3fv3nrwwQdtPSMaCBVciAGEiDp16qhZs2an3Cc+Pr7IfU5H1apVdf/993ufT5kyRd26ddPjjz+uJUuWSJIGDx6sQ4cOadiwYRo8eLCkvIDWq1cvffDBB6pUqZIkqXTp0pLyrhssaM+ePUpISPBrL9gWFRV10vajR4+e9uerUqWKpLxAdyqbN2/2znqW8q7pM8bo1ltv9RkWvfHGGzVhwgT973//U+3atb2ftUKFCn7HrFixot+wcrFixRQdHe3T5nK5fD7bkiVL1K5dO7Vq1UqjRo1S5cqVFRUVpS+++EIvvviijhw54vP60qVL68Ybb9Q777yjm2++WQ0aNDjlZ5WkQYMGqXjx4ho/frzee+89hYeHq2XLlho+fLjf71eVKlW832PHjh29r+/Ro4cSExOLfC8A5wc9gADOmdtuu83ver2IiAi99tpr2r17t1atWqVt27bp66+/1pYtW1StWjVVrlxZklS/fn1J0urVq/2Ou3r1au/2c8ETogpOnti1a5fP8woVKqhevXr69ttvvT2WBf3444/6888/dd1110nKu+bNM4nklltuUalSpbw/EyZMkHRiMogn9G7fvt3vuNu2bVOZMmVO+7NNmjRJkZGR+vrrr3XbbbepRYsWpwz9s2fP1ogRI9S8eXNNnTpVn332WZHvERERoYEDB2rFihXas2ePPv74Y23dulXt27c/6ffk0bx5c+Xk5Oi333477c8G4NwhAAI4bYUFFkk6dOiQtm7dqooVK/pti42NVYMGDVShQgWtWLFC33//vR5++GHv9kqVKql58+YaP368z+SVxYsXa/369YWus3emLrnkEknSqlWrfNo9kyHye+aZZ7R3795C1/A7fPiwHnroIRUrVkyPPPKIpLxFr3///XelpqZq7ty5fj/16tXThx9+qJycHKWkpCgmJsZvceTff/9dc+bMUZs2bU77s1mWpYiICIWHh3vbjhw5oo8++shv3+3bt+uuu+7Stddeq0WLFunGG29Unz59iuzxzK9kyZK69dZblZqaqj179mjTpk2n3H/u3LkKCwtT9erVA34PAOceQ8BAiFizZo1ycnL82i+99FLvUNu+ffu0ePFiv31cLpcaN27s0zZnzpxC/zHv2LGjXnzxRS1cuFC33367GjVqpJiYGGVkZOjtt9/W7t279e9//9u7/7x587R06VIlJyfLGKMlS5Zo+PDhuv766/Xggw/6HHv48OG67rrr1LVrVz3wwAPauXOnnnrqKdWvX1+9evU6k6+lUOXLl1fbtm2VlpamUqVKqWrVqvr+++/1+eef++3brVs3rVixQq+88oo2bdqk3r17q1y5clq/fr1ef/11/frrr5o4caI30IwePVoRERF6+umnCw3C9913nx566CFNnz5dXbp00XPPPaenn35a3bt3V7du3bR7924NHTpU0dHRGjJkyGl/tk6dOum1117THXfcoXvvvVe7d+/WK6+84jcTOzc3V926dZNlWZo4caLCw8M1btw4NWrUSLfffrt++OEH75B6QZ07d1b9+vXVrFkzJSYmavPmzXrjjTdUtWpV1ahRQ5J07733qkSJEmrevLnKlSunXbt26ZNPPtHkyZP1+OOPM/wLBFuQJ6EAOEunmgUsyYwaNcoYc+pZwJUqVQr4eBkZGWbx4sUmNTXVNGzY0CQkJJjw8HCTmJhorr/+ejNjxgyf+hYuXGiuuOIKU6JECeNyuUz9+vXNK6+8Yo4dO1bo5/n222/NlVdeaaKjo01CQoLp3r27+fPPPwv9zAVnKg8ZMsRIMn/99ZdPe48ePUzx4sV92rZv325uvfVWk5CQYOLj481dd91lli1b5jMLOL8ZM2aYjh07mtKlS5vIyEhTqVIlc/fdd5u1a9d69/nrr79MVFSUuemmm05ytk7M/O3cubO37YMPPjDJyckmKirKxMfHmy5duvgc92SfIf9nzm/MmDGmVq1axuVymerVq5u0tDQzevRo7/kzxphnnnnGhIWFme+//97ntYsWLTIRERHm4Ycf9rYVnAX86quvmhYtWpgyZcqYqKgoU6VKFdOnTx+zadMmnxquueYaU6ZMGRMREWFKlixprr32WvPRRx+d9LsBcOFYxpzmAmAAAACwNa4BBAAAcBgCIAAAgMMQAAEAAByGAAgAAOAwBEAAAACHIQCeI/Pnz1fnzp1VsWJFWZalL7744rSPMWvWLF155ZWKi4tTYmKi/v73v5/WgqwAAACBIACeI4cPH1bDhg319ttvn9Hrf/vtN3Xp0kWtW7fWypUrNWvWLO3ateuc3v0AAABAklgH8DywLEtTp07VTTfd5G07duyYnn32WU2YMEH79u1T/fr1NXz4cLVq1UqS9Omnn6pbt27KyspSWFheLv/qq6/UpUsXZWVlKTIyMgifBAAAhCJ6AC+QXr16aeHChZo0aZJWrVqlrl276vrrr9eGDRskSc2aNVN4eLjGjh2r3Nxc7d+/Xx999JHatWtH+AMAAOcUPYDnQcEewF9//VU1atTQ77//7nNv0LZt26p58+Z66aWXJOVdR9i1a1ft3r1bubm5SklJ0YwZM1SyZMkgfAoAABCq6AG8AFasWCFjjGrWrKnY2FjvT3p6un799VdJ0o4dO3TPPfeoR48eWrp0qdLT0xUVFaVbb71VZHQAAHAuRQS7ACdwu90KDw/X8uXLFR4e7rMtNjZWkvTOO++oRIkSevnll73bxo8fr6SkJP3nP//RlVdeeUFrBgAAoYsAeAE0btxYubm52rlzp6655ppC98nMzPQLh57nbrf7vNcIAACcgyHgc+TQoUNauXKlVq5cKUnKyMjQypUrtWXLFtWsWVN33nmnunfvrs8//1wZGRlaunSphg8frhkzZkiSOnXqpKVLl+r555/Xhg0btGLFCvXq1UtVq1ZV48aNg/jJAABAqGESyDkyb948/e1vf/Nr79Gjh8aNG6fs7GwNGzZMH374of744w+VLl1aKSkpGjp0qBo0aCBJmjRpkl5++WX98ssvKlasmFJSUjR8+HDVrl37Qn8cAAAQwgiAAAAADsMQMAAAgMMQAAEAAByGAAgAAOAwLANzFtxut7Zt26a4uDhZlhXscgAAQACMMTp48KAqVqyosDBn9oURAM/Ctm3blJSUFOwyAADAGdi6dasqV64c7DKCggB4FuLi4iTl/QKVKFEiyNUAAIBAHDhwQElJSd5/x52IAHgWPMO+JUqUIAACAGAzTr58y5kD3wAAAA5GAAQAAHAYAiAAAIDDEAABAAAchgAIAADgMARAAAAAhyEAAgAAOAwBEAAAwGEIgAAAAA5DAAQAAHAYAiAAAIDDEAABAAAchgCIgB3KytFLM37Wmj/2B7sUAABwFgiACNiQaWs1cv5vuumdhcEuBQAAnAUCIAI2e90OSVKO2wS5EgAAcDYIgAjYwaycYJcAAADOAQIgAmYFuwAAAHBOEAARMMsiAgIAEAoIgAgY8Q8AgNBAAAQAAHAYAiACxggwAAChgQCIgFkMAgMAEBIIgAgc+Q8AgJBAAAQAAHAYAiAAAIDDEAARMEaAAQAIDQRABIxZwAAAhAYCIAAAgMMQABEwloEBACA0EAARMIaAAQAIDQRABIz8BwBAaCAAHpeWlibLsjRgwIBglwIAAHBeEQAlLV26VCNHjlRycnKwS7moWYwBAwAQEhwfAA8dOqQ777xTo0aNUqlSpYJdDgAAwHnn+ACYmpqqTp06qW3btkXum5WVpQMHDvj8OAn9fwAAhIaIYBcQTJMmTdKKFSu0dOnSgPZPS0vT0KFDz3NVAAAA55djewC3bt2qhx9+WOPHj1d0dHRArxk0aJD279/v/dm6det5rvIiQxcgAAAhwbE9gMuXL9fOnTvVtGlTb1tubq7mz5+vt99+W1lZWQoPD/d5jcvlksvlutClXjTIfwAAhAbHBsA2bdpo9erVPm29evVS7dq19eSTT/qFPzALGACAUOHYABgXF6f69ev7tBUvXlylS5f2awcAAAgljr0GEKePDkAAAEKDY3sACzNv3rxgl3BRI/8BABAa6AEEAABwGAIgAACAwxAAETBmAQMAEBoIgAgY8Q8AgNBAAAQAAHAYAiAAAIDDEAABAAAchgCIgDEHBACA0EAABAAAcBgCIAJmTLArAAAA5wIBEAAAwGEIgAAAAA5DAAQAAHAYAiACxixgAABCAwEQAADAYQiAAAAADkMABAAAcBgCIAAAgMMQABEwFoIGACA0EAABAAAchgCIgLEMDAAAoYEACAAA4DAEQAAAAIchAOKMGGaEAABgWwRAnBHyHwAA9kUAxBkh/wEAYF8EQJwRhoABALAvAiDOiJv8BwCAbREAcUYMg8AAANgWARBnhBFgAADsiwAIAADgMARAnBF6AAEAsC8CIM4I1wACAGBfBECcBsv7iFnAAADYFwEQZ4R1AAEAsC8CIM4I8Q8AAPsiAOI0nIh9dAACAGBfBECcGQIgAAC2RQDEGWEWMAAA9kUAxBlhCBgAAPsiAOI05F8GhgQIAIBdEQBxGkwhjwAAgN0QABGw/J1+dAACAGBfBEAEzPg8JgECAGBXBEAEzOfuH+Q/AABsiwCIgJmTPAYAAPZCAETA3G7uBAIAQCggACJg+TMfy8AAAGBfBEAEjksAAQAICQRABMznGkB6AAEAsC0CIAKWP/SR/wAAsC8CIAJG5gMAIDQQABEw7gQCAEBoIAAiYPnv/sEsYAAA7IsAiIBxIxAAAEIDARAB8x0CJgICAGBXBEAELP8QMPEPAAD7IgAiYEwCAQAgNBAAETBzimcAAMA+CIAIGAtBAwAQGgiACFj+zOcmAAIAYFsEQATMdxkYEiAAAHZFAMQZYQgYAAD7IgAiIAXX/SMAAgBgXwRABKTgNX8MAQMAYF8EQASEHkAAAEIHARABIe8BABA6HBsAR4wYoeTkZJUoUUIlSpRQSkqKvvnmm2CXddEq2OPnpgsQAADbcmwArFy5sv71r39p2bJlWrZsmVq3bq0uXbpo7dq1wS7tolTwmj/yHwAA9hUR7AKCpXPnzj7PX3zxRY0YMUKLFy9WvXr1glTVxatg4CP/AQBgX44NgPnl5ubqk08+0eHDh5WSkhLscmyh4KQQAABgH44OgKtXr1ZKSoqOHj2q2NhYTZ06VXXr1j3p/llZWcrKyvI+P3DgwIUo86JADyAAAKHDsdcASlKtWrW0cuVKLV68WPfff7969OihdevWnXT/tLQ0xcfHe3+SkpIuYLXBxTWAAACEDsswlufVtm1bXXrppXr//fcL3V5YD2BSUpL279+vEiVKXKgyg+JQVo7qD5nlff5pvxQ1uyQhiBUBAHBmDhw4oPj4eEf8+30yjh4CLsgY4xPwCnK5XHK5XBewoouH30LQQaoDAACcPccGwKefflodOnRQUlKSDh48qEmTJmnevHmaOXNmsEu7KBUMfPQbAwBgX44NgH/++afuvvtubd++XfHx8UpOTtbMmTN13XXXBbu0i5LfJBASIAAAtuXYADh69Ohgl2AvzAIGACBkOHoWMALHLGAAAEIHARAB8V8HkAQIAIBd2W4IOCsrS0uWLNGmTZuUmZmpxMRENW7cWNWqVQt2aSGNSSAAAIQO2wTARYsW6a233tIXX3yhY8eOqWTJkoqJidGePXuUlZWl6tWr695771W/fv0UFxcX7HJDjt8yMARAAABsyxZDwF26dNGtt96qSpUqadasWTp48KB2796t33//XZmZmdqwYYOeffZZff/996pZs6Zmz54d7JJDjl8PIEPAAADYli16ANu1a6dPPvlEUVFRhW6vXr26qlevrh49emjt2rXatm3bBa4w9LnpAQQAIGTYIgCmpqYGvG+9evVUr16981iNQ7EMDAAAIcMWQ8D5bd26Vb///rv3+ZIlSzRgwACNHDkyiFWFPv9JIERAAADsynYB8I477tDcuXMlSTt27NB1112nJUuW6Omnn9bzzz8f5OpCl/8yMAAAwK5sFwDXrFmj5s2bS5KmTJmi+vXra9GiRZo4caLGjRsX3OJCmP9C0ERAAADsynYBMDs7Wy6XS5L03Xff6cYbb5Qk1a5dW9u3bw9maSHN/17AwakDAACcPdsFwHr16um9997TggULNHv2bF1//fWSpG3btql06dJBri50sRA0AAChw3YBcPjw4Xr//ffVqlUrdevWTQ0bNpQkffnll96hYZx7fgtBB6kOAABw9myxDEx+rVq10q5du3TgwAGVKlXK237vvfeqePHiQawstPkPARMBAQCwK9v1ALZu3VoHDx70CX+SlJCQoNtvvz1IVYU+ZgEDABA6bBcA582bp2PHjvm1Hz16VAsWLAhCRc7ALGAAAEKHbYaAV61a5X28bt067dixw/s8NzdXM2fOVKVKlYJRmiMwCxgAgNBhmwDYqFEjWZYly7LUunVrv+0xMTF66623glCZM/jNAg5KFQAA4FywTQDMyMiQMUbVq1fXkiVLlJiY6N0WFRWlsmXLKjw8PIgVhja/WcAkQAAAbMs2AbBq1aqSJLfbHeRKnMm/B5AECACAXdkmAOb3yy+/aN68edq5c6dfIBw8eHCQqgptXAMIAEDosF0AHDVqlO6//36VKVNG5cuXl2VZ3m2WZREAzxsWggYAIFTYLgAOGzZML774op588slgl+IoLAQNAEDosN06gHv37lXXrl2DXYbjuBkCBgAgZNguAHbt2lXffvttsMtwHL+FoBkEBgDAtmw3BHzZZZfpueee0+LFi9WgQQNFRkb6bH/ooYeCVFloYxIIAAChw3YBcOTIkYqNjVV6errS09N9tlmWRQA8TwiAAACEDtsFwIyMjGCX4Ej+Q8AAAMCubHcNIIKDWcAAAIQO2/UA9u7d+5Tbx4wZc4EqcTbyHwAA9mW7ALh3716f59nZ2VqzZo327dun1q1bB6mq0OfXA8ggMAAAtmW7ADh16lS/NrfbrQceeEDVq1cPQkXO4HcNIPkPAADbColrAMPCwvTII4/o9ddfD3YpIctvIejglAEAAM6BkAiAkvTrr78qJycn2GWErIKTPugBBADAvmw3BDxw4ECf58YYbd++XdOnT1ePHj2CVFXoK5j3uAYQAAD7sl0A/Omnn3yeh4WFKTExUa+++mqRM4Rx5gr2+BUcEgYAAPZhuwA4d+7cYJfgUNwKBACAUGG7AOjx119/af369bIsSzVr1lRiYmKwSwpp/svAAAAAu7LdJJDDhw+rd+/eqlChglq2bKlrrrlGFStWVJ8+fZSZmRns8kKW3zWAJEAAAGzLdgFw4MCBSk9P11dffaV9+/Zp3759mjZtmtLT0/Xoo48Gu7yQxa3gAAAIHbYbAv7ss8/06aefqlWrVt62jh07KiYmRrfddptGjBgRvOJCmN8yMEGqAwAAnD3b9QBmZmaqXLlyfu1ly5ZlCPg88lsImgQIAIBt2S4ApqSkaMiQITp69Ki37ciRIxo6dKhSUlKCWFloK7jun5sECACAbdluCPjNN9/U9ddfr8qVK6thw4ayLEsrV65UdHS0Zs2aFezyQhd5DwCAkGG7AFi/fn1t2LBB48eP1//+9z8ZY/SPf/xDd955p2JiYoJdXshiFjAAAKHDdgFQkmJiYtS3b99gl+Eo/usAkgABALAr210DmJaWpjFjxvi1jxkzRsOHDw9CRc5QMPDRAwgAgH3ZLgC+//77ql27tl97vXr19N577wWhImfgTiAAAIQO2wXAHTt2qEKFCn7tiYmJ2r59exAqcgauAQQAIHTYLgAmJSVp4cKFfu0LFy5UxYoVg1CRMxRc9oVlYAAAsC/bTQK55557NGDAAGVnZ6t169aSpO+//15PPPEEt4I7n8h7AACEDNsFwCeeeEJ79uzRAw88oGPHjkmSoqOj9eSTT2rQoEFBri50+U8CIRECAGBXtguAlmVp+PDheu655/Tzzz8rJiZGNWrUkMvlCnZpIc3t9n1O/gMAwL5sFwA9YmNjdfnllwe7DMfwmwQSlCoAAMC5YItJIP369dPWrVsD2nfy5MmaMGHCea7IeQoO+dIDCACAfdmiBzAxMVH169dXixYtdOONN6pZs2aqWLGioqOjtXfvXq1bt04//PCDJk2apEqVKmnkyJHBLjnkFMx7zAIGAMC+bBEAX3jhBfXv31+jR4/We++9pzVr1vhsj4uLU9u2bfXBBx+oXbt2QaoytPn1AAapDgAAcPZsEQAlqWzZsho0aJAGDRqkffv2afPmzTpy5IjKlCmjSy+9VJZlBbvEkObX4UcPIAAAtmWbAJhfyZIlVbJkyWCX4ShMAgEAIHTYYhIIgs/vXsAkQAAAbIsAiIAUnPRRcGFoAABgHwRABIRLAAEACB0EQASk4CxgNwEQAADbsl0A/Oc//6nNmzcHuwzHYwgYAAD7sl0A/Oqrr3TppZeqTZs2mjhxoo4ePRrskhzBb+Fn8h8AALZluwC4fPlyrVixQsnJyXrkkUdUoUIF3X///Vq6dGmwSwtp5D8AAEKH7QKgJCUnJ+v111/XH3/8oTFjxuiPP/7QVVddpQYNGujNN9/U/v37g11iyPFfBoYICACAXdkyAHq43W4dO3ZMWVlZMsYoISFBI0aMUFJSkiZPnhzs8kIKs4ABAAgdtgyAy5cv14MPPqgKFSrokUceUePGjfXzzz8rPT1d//vf/zRkyBA99NBDpzxGWlqaLr/8csXFxals2bK66aabtH79+gv0CezHfx1AAABgV7YLgMnJybryyiuVkZGh0aNHa+vWrfrXv/6lyy67zLtP9+7d9ddff53yOOnp6UpNTdXixYs1e/Zs5eTkqF27djp8+PD5/gj2VCDx+U0KAQAAtmG7ewF37dpVvXv3VqVKlU66T2Jiotxu9ymPM3PmTJ/nY8eOVdmyZbV8+XK1bNnynNQaSgou+0L+AwDAvmzXA2iMUalSpfzajxw5oueff/6Mj+uZOJKQkHDSfbKysnTgwAGfH6dg4WcAAEKH7QLg0KFDdejQIb/2zMxMDR069IyOaYzRwIEDdfXVV6t+/fon3S8tLU3x8fHen6SkpDN6PztiFjAAAKHDdgHQGCPLsvza//vf/56y9+5UHnzwQa1atUoff/zxKfcbNGiQ9u/f7/3ZunXrGb2fHfkNAQepDgAAcPZscw1gqVKlZFmWLMtSzZo1fUJgbm6uDh06pH79+p32cfv3768vv/xS8+fPV+XKlU+5r8vlksvlOu33CAX+PYDBqQMAAJw92wTAN954Q8YY9e7dW0OHDlV8fLx3W1RUlC655BKlpKQEfDxjjPr376+pU6dq3rx5qlat2vkoO2QUHPLlXsAAANiXbQJgjx49JEnVqlVTixYtFBkZeVbHS01N1cSJEzVt2jTFxcVpx44dkqT4+HjFxMScdb2hpmDcY1IIAAD2ZYsAeODAAZUoUUKS1LhxYx05ckRHjhwpdF/PfkUZMWKEJKlVq1Y+7WPHjlXPnj3PuNZQxRAwAAChwxYBsFSpUtq+fbvKli2rkiVLFjoJxDM5JDc3N6BjMov19Ph/X3x/AADYlS0C4Jw5c7wzfOfOnRvkapyp4JAv+RkAAPuyRQC89tprC32MC8ev/48ACACAbdluHcCZM2fqhx9+8D5/55131KhRI91xxx3au3dvECsLbcwCBgAgdNguAD7++OPeW7CtXr1aAwcOVMeOHfXbb79p4MCBQa7OOZgFDACAfdliCDi/jIwM1a1bV5L02WefqXPnznrppZe0YsUKdezYMcjVhS53wR5AAiAAALZlux7AqKgoZWZmSpK+++47tWvXTpKUkJDg7RnEuee3DAxDwAAA2JbtegCvvvpqDRw4UFdddZWWLFmiyZMnS5J++eWXIm/lhjPnF/fIfwAA2JbtegDffvttRURE6NNPP9WIESNUqVIlSdI333yj66+/PsjVhS7/HkAAAGBXtusBrFKlir7++mu/9tdffz0I1TiH/zWAREAAAOzKdgFQktxutzZu3KidO3fK7Xb7bGvZsmWQqnIW4h8AAPZluwC4ePFi3XHHHdq8ebNfL9Tp3AoOp6fgd80yMAAA2JftAmC/fv3UrFkzTZ8+XRUqVCj0vsA49/xvBUcCBADArmwXADds2KBPP/1Ul112WbBLcRQmgQAAEDpsNwv4iiuu0MaNG4NdhuP4rftHAgQAwLZs1wPYv39/Pfroo9qxY4caNGigyMhIn+3JyclBqiy0sRA0AAChw3YB8O9//7skqXfv3t42y7JkjGESyHnkuebPsvLCIJcAAgBgX7YLgBkZGcEuwZE8eS/cspRjDAEQAAAbs10ArFq1arBLcCRP4AsLsyS38VsYGgAA2IftJoFI0kcffaSrrrpKFStW1ObNmyVJb7zxhqZNmxbkykKX55q/MMvzHAAA2JXtAuCIESM0cOBAdezYUfv27fNe81eyZEm98cYbwS0uhHnWAQw7vu4iHYAAANiX7QLgW2+9pVGjRumZZ55ReHi4t71Zs2ZavXp1ECsLbaZAAKQPEAAA+7JdAMzIyFDjxo392l0ulw4fPhyEipzBbwiY/AcAgG3ZLgBWq1ZNK1eu9Gv/5ptvVLdu3QtfkFPknwQi+v8AALAz280Cfvzxx5WamqqjR4/KGKMlS5bo448/Vlpamj744INglxeyPLN+w48PATMLGAAA+7JdAOzVq5dycnL0xBNPKDMzU3fccYcqVaqkN998U//4xz+CXV7I8uQ9i0kgAADYnu0CoCT17dtXffv21a5du+R2u1W2bNlglxTyvAtBh/k+BwAA9mO7awBbt26tffv2SZLKlCnjDX8HDhxQ69atg1hZaPMM+Z5YBoYICACAXdkuAM6bN0/Hjh3zaz969KgWLFgQhIqcwX8ZGAAAYFe2GQJetWqV9/G6deu0Y8cO7/Pc3FzNnDlTlSpVCkZpjmKxDAwAALZnmwDYqFEjWZYly7IKHeqNiYnRW2+9FYTKnMEz5BvuXQaGBAgAgF3ZJgBmZGTIGKPq1atryZIlSkxM9G6LiopS2bJlfe4MgnPLcys47zIw7iAWAwAAzoptAmDVqlUlSW6SR1B4evy8Q8D0AAIAYFu2CYD5/fLLL5o3b5527tzpFwgHDx4cpKpCW8FJIFwDCACAfdkuAI4aNUr333+/ypQpo/Lly3sXJpbyFikmAJ4fJ9YB5FZwAADYne0C4LBhw/Tiiy/qySefDHYpjuKZBGKdGAMGAAA2Zbt1APfu3auuXbsGuwzHOTEEfPw5CRAAANuyXQDs2rWrvv3222CX4TieAOgdAib/AQBgW7YbAr7sssv03HPPafHixWrQoIEiIyN9tj/00ENBqiy0eXr8PJNA3CRAAABsy3YBcOTIkYqNjVV6errS09N9tlmWRQA8T9x+Q8AAAMCubBcAMzIygl2CI7EMDAAAocN21wAiOAoOAZP/AACwL1v0AA4cOFAvvPCCihcvroEDB55y39dee+0CVeUwnh5Az38Z6AIEAMC2bBEAf/rpJ2VnZ3sfn0z+RaFxbnkmfZyYBBLMagAAwNmwRQCcO3duoY9x4fjfCYQECACAXXENIAJScB3AArdgBgAANkIAREA8Q8DhrAMIAIDtEQARkIJDwARAAADsiwCIwBQcAib/AQBgWwRABMQz6YMeQAAA7I8AiIB4Jn1EeCeBEAABALArAiAC4r0TCEPAAADYHgEQAfEuA8MsYAAAbI8AiIB44l5EOEPAAADYHQEQATGm4CSQYFYDAADOBgEQAWEIGACA0EEAREA8cS+MZWAAALA9AiAC4hkCjmAIGAAA2yMAIiBu751Awo4/JwECAGBXBEAExF2gBzCXLkAAAGyLAIiAeDr8PMvA0AEIAIB9EQAREE+PX2Q4Q8AAANgdARABYQgYAIDQQQBEQNwFFoKmAxAAAPsiACIgng4/hoABALA/AiAC4h0CPj4JJJcACACAbREAERC3ZxLI8XUAjTmxODQAALAXAiAC4i6wDIzEdYAAANiVowPg/Pnz1blzZ1WsWFGWZemLL74IdkkXLc+s34jwE78yDAMDAGBPjg6Ahw8fVsOGDfX2228Hu5SLXsFlYPK3AQAAe4kIdgHB1KFDB3Xo0CHYZdhCYQGQ/AcAgD05ugcQgSu4DIzEYtAAANiVo3sAT1dWVpaysrK8zw8cOBDEai4szyzgcIaAAQCwPXoAT0NaWpri4+O9P0lJScEu6YIpuA5gXluwqgEAAGeDAHgaBg0apP3793t/tm7dGuySLpjChoBZBxAAAHtiCPg0uFwuuVyuYJcRFN5lYPINAXMNIAAA9uToAHjo0CFt3LjR+zwjI0MrV65UQkKCqlSpEsTKLj6e3j7fawCDVQ0AADgbjg6Ay5Yt09/+9jfv84EDB0qSevTooXHjxgWpqouTZ9HnMMtSmJUX/hgCBgDAnhwdAFu1akWICZCnty/MshQeZsmda7gTCAAANsUkEAQk/zIwlpU3DMwQMAAA9kQAREDc3iHgvB/pRCgEAAD2QgBEQDxZz7IshXt7AAmAAADYEQEQAck/BBzGEDAAALZGAERA8g8BW5ZvGwAAsBcCIALiswzM8YsAuQYQAAB7IgAiIN5lYMLyXwMYxIIAAMAZIwAiIN5rAK38y8CQAAEAsCMCIAJS2DIw3AsYAAB7IgCiSMYY3yHg4wmQDkAAAOyJAIgi5Q96efcCZggYAAA7IwCiSPmDXt41gHmPuRcwAAD2RABEkfIHPStM+YaACYAAANgRARBFyp/zwvMNAee6g1QQAAA4KwRAFCn/bN8w68QkEGYBAwBgTwRAFCn/NYCWJUUQAAEAsDUCIIrkzjfUG55vGZhsN2PAAADYEQEQRcrfAxhmWYoIz/u1yc2lBxAAADsiAKJIvgHwxBBwDkPAAADYEgEQRfIsA2NZkmVZ+QIgQ8AAANgRARBF8nQAhh9f/iUinEkgAADYGQEQRfIEPc/6f+Fheb82OVwDCACALREAUSTPNYDHc58iGQIGAMDWCIAokifnnegBZBIIAAB2RgBEkTw9gFwDCABAaCAAokj5ZwFLUsTxseBsrgEEAMCWCIAokmeyR+TxBaBP3AqOawABALAjAiCKlJ2bF/Q81/5xDSAAAPZGAESRPEHP2wMYzjIwAADYGQEQRco53gPomfzBreAAALA3AiCK5Jns4Ql+J2YBcw0gAAB2RABEkTwLPhecBMIQMAAA9kQARJE8Qc/T8+e9FRxDwAAA2BIBEEXyzAL2rP8XyULQAADYGgEQRToxC9h3GRhPMAQAAPZCAESRCvYAnlgImh5AAADsiACIInmCnncZmHCuAQQAwM4IgCjSyW4Fl8MQMAAAtkQARJGy3Z4hYBaCBgAgFBAAUaSCPYDh3AoOAABbIwCiSNkFbgXnisj7tTnGEDAAALZEAESRPEO9nlnAngCYlZMbtJoAAMCZIwCiSJ7JHpHeHsBwSVJWNj2AAADYEQEQRcoucCs4V6SnB5AACACAHREAUaQct+9C0AwBAwBgbwRAFOnELOACQ8D0AAIAYEsEQBTpxBBwgR5ArgEEAMCWCIAokmcIOPL4AtDRkQwBAwBgZwRAFCnbOwvY0wPIEDAAAHZGAESRMo/l9fTFROUFvxOTQAiAAADYEQEQRTriFwDz/sx1G+8agQAAwD4IgCjSkey8AFjMEwAjT/za0AsIAID9EABRJG8PYGReAIwKJwACAGBnBEAUyXMNYPTxABgWZnlD4NFsZgIDAGA3BEAU6ah3CDjC2+a5HjDzWE5QagIAAGeOAIgiZRYYApakWFdeGDyURQ8gAAB2QwBEkTyTQDy9fpJU3HW8BzCLHkAAAOyGAIgiFVwGRjoxHHyIAAgAgO0QAHFKObluHTu+1l9hQ8CHuQYQAADbIQDilA4ePRHwPMO++R9zDSAAAPZDAMQp7T58TJIU54rw3gFEkop7egAZAgYAwHYIgDilPccDYEJslE97LAEQAADbIgDilPYczpIkJRQvPADmHyIGAAD2QADEKXmGgEsXCICeQOjZDgAA7IMAiFP662BeD2CZWJdPe2Jc3vNdx7cDAAD7IADilDJ2HZYkVS1d3KfdEwh3HSIAIjiMMVq7bb9+2LCLe1IDwGmKKHoXONlvf+UFwOqJBEBcPI5m5+rRKf/V9NXbJUkV46M14q6maphUMriFAYBN0AOIk8rKydUvfx6UJNUoG+uzzTMEvDczW5ksBo0LaP+RbHUfs0TTV29XeJilksUitW3/UXUbtVg/bNgV7PIAwBYcHwDfffddVatWTdHR0WratKkWLFgQ7JIuGss37VVWjluJcS5VK+PbA5hQPMrbC/jz9oPBKA8OtH3/Ed3+/o9akrFHca4Ije9zhX54srWuvqyMMo/lqufYJfrwx00yxgS7VAC4qDk6AE6ePFkDBgzQM888o59++knXXHONOnTooC1btgS7tIvCx0u3SpL+VitRlmX5ba9fqYQkaUnGngtaF5xnz+FjenfeRrV7bb7+t+OgEuNcmnxfilIuLa1YV4RG92ymGxtWVI7baPC0teo2arHm/O9PZR+/jSEAwJdlHPxf5SuuuEJNmjTRiBEjvG116tTRTTfdpLS0tCJff+DAAcXHx2v//v0qUaLE+Sz1gnK7jf7vx00a+tU6SdLX/a9W/Urxfvt9vGSLBn2+WtGRYbq1aWU1qVJKFUvGqFSxKBWLCldURJgiw8MUGW4pMjxMUeFhCgvzD5J2ZIyR20i5biMjozDLUphlyZJkWSo0MIcCY4yMkYwkt/fx8T/zPXYbI6O8Nvk8z/vejPIO4jlOrtvoUFaODh3N0cGjOdqbeUxb9xzR5j2HteHPQ1qzbb88f1M1Siqp//ePxqpSuphfbR8syNC/v12vYzkn7l+dXDlel5QursqlYlQuPlpxrgjFRkco1hWhmKhwRYTl/Y5GhIcpMizvz4hwS5FhYfKcRsuS8s6u57Gn3cr3+EQbgItbqP77fTocGwCPHTumYsWK6ZNPPtHNN9/sbX/44Ye1cuVKpaen+70mKytLWVknJj0cOHBASUlJ5/wX6JvV2zVjzQ7v84KnyO+EmYJPTzQUPLt+z2WUk2uUlePWsRy3snJytX3/Ue08vrzLfddW16AOdQqtMysnV91HL9F/TqMHMDzMUrhlybLyHucFp3yPTxIQC/8tLfxX92S/0YU1m3xBxfPYE0zyhxVv6HEb5R4PPqdiWfJ+Nk9I8DwPO54gLElhYSe25eUGz2uUL1Bax0Olb5tffcb387gL+WyeP93uE5/VZz/lHVP5Huc/ZjDVr1RCPVtU082NKyn8FP+R+H1vpsb8sElf/vcP7ToU3HUqTxUWvc/y/eENkTp1iAwkY+bfxRNKrUI2WgX2yX/8Ux7Dp46iXutpO/l+hQXn/E2BHONkdSqA/XzeK1/Y968p3/ufRZ06xfdZ6Dk5RZ2Fn0///QKt88Tzot4/sP1U2PufRp2dGlRUp+QKOpcIgA6eBbxr1y7l5uaqXLlyPu3lypXTjh07Cn1NWlqahg4det5rW//nQX31323n/X1OJc4VoYfb1lCfq6uddB9XRLgm9r1S6b/s1IINu7R22wHtOpilvZnHdDTbrexct3Lcvqkh122Ue5LgFkqMkXKNUd7iJKH/eU+XJxh5gm+YZSnWFaG46LzeufiYSFUuWUxVShdTlYRiuvySBJWPjw7o2JVLFdPgznX1bKc62vjXIa3+fb/+2HdEv+/N1J8HsnQ4KyevtzErR0eO5Xp/T3NyjbLd7nMadD3/cfA+8d167t4ICGE1y8VJOrcBEA4OgB4F/9dpjDnpEM6gQYM0cOBA73NPD+C5dm3NRMXHRPrWWWCfgjX6/c/tFBsLHisy3JIrIm/INio8THHREWqYVFLRkeFF1hoeZql17XJqXbtcodvd7rx/VLNzjY7l5IVCz5Cf2318+M8YGWOU684LiCfr3Sj0f+Mn6Sk56TFOuq/lDSX5e+x8hgCtvN7LsDDl/Xm8x9KyTvSyuQv5023MieHS48GwsJ7H/Pu4j4cFT1thvXlh+er2GX7WiR5DS3n1WgU/X4EA5vOaAp//+Nv49D6GeXqwrII9k8d7OPPVkr8X9EIOj4eFWapZLu74Px6By3Ubbyj06/00nj9O9AJ7NxmT7/GJ/ZRvP592+QZET0//6QTQk/d2+48C5N/V+16FHquo157iPfLtmP8znqruwvYr+J34tvkc6RSvzf9+J/+8+T+HTvfz+uzn/x4K+LvyPcbJPkfAnzfA77RgTSd97bn4vIW836nqzN+YXLmkX804e44NgGXKlFF4eLhfb9/OnTv9egU9XC6XXC5XodvOpcZVSqlxlVLn/X0uhLAwS66wcLkiJJ3/rw44a+FhlsLDiv7PDwDYmWNnAUdFRalp06aaPXu2T/vs2bPVokWLIFUFAABw/jm2B1CSBg4cqLvvvlvNmjVTSkqKRo4cqS1btqhfv37BLg0AAOC8cXQAvP3227V79249//zz2r59u+rXr68ZM2aoatWqwS4NAADgvHHsMjDnAtPIAQCwH/79dvA1gAAAAE5FAAQAAHAYAiAAAIDDEAABAAAchgAIAADgMARAAAAAhyEAAgAAOAwBEAAAwGEIgAAAAA7j6FvBnS3PTVQOHDgQ5EoAAECgPP9uO/lmaATAs3Dw4EFJUlJSUpArAQAAp+vgwYOKj48PdhlBwb2Az4Lb7da2bdsUFxcny7KCXc4Fc+DAASUlJWnr1q2OvYei3XDO7InzZj+cM3swxujgwYOqWLGiwsKceTUcPYBnISwsTJUrVw52GUFTokQJ/oKzGc6ZPXHe7IdzdvFzas+fhzNjLwAAgIMRAAEAAByGAIjT5nK5NGTIELlcrmCXggBxzuyJ82Y/nDPYBZNAAAAAHIYeQAAAAIchAAIAADgMARAAAMBhCIAAAAAOQwDEaXn33XdVrVo1RUdHq2nTplqwYEGwS0I+8+fPV+fOnVWxYkVZlqUvvvjCZ7sxRv/85z9VsWJFxcTEqFWrVlq7dm1wioUkKS0tTZdffrni4uJUtmxZ3XTTTVq/fr3PPpy3i8+IESOUnJzsXfA5JSVF33zzjXc75wwXOwIgAjZ58mQNGDBAzzzzjH766Sddc8016tChg7Zs2RLs0nDc4cOH1bBhQ7399tuFbn/55Zf12muv6e2339bSpUtVvnx5XXfddd77WuPCS09PV2pqqhYvXqzZs2crJydH7dq10+HDh737cN4uPpUrV9a//vUvLVu2TMuWLVPr1q3VpUsXb8jjnOGiZ4AANW/e3PTr18+nrXbt2uapp54KUkU4FUlm6tSp3udut9uUL1/e/Otf//K2HT161MTHx5v33nsvCBWiMDt37jSSTHp6ujGG82YnpUqVMh988AHnDLZADyACcuzYMS1fvlzt2rXzaW/Xrp0WLVoUpKpwOjIyMrRjxw6fc+hyuXTttddyDi8i+/fvlyQlJCRI4rzZQW5uriZNmqTDhw8rJSWFcwZbIAAiILt27VJubq7KlSvn016uXDnt2LEjSFXhdHjOE+fw4mWM0cCBA3X11Verfv36kjhvF7PVq1crNjZWLpdL/fr109SpU1W3bl3OGWwhItgFwF4sy/J5bozxa8PFjXN48XrwwQe1atUq/fDDD37bOG8Xn1q1amnlypXat2+fPvvsM/Xo0UPp6ene7ZwzXMzoAURAypQpo/DwcL//ve7cudPvf7m4OJUvX16SOIcXqf79++vLL7/U3LlzVblyZW875+3iFRUVpcsuu0zNmjVTWlqaGjZsqDfffJNzBlsgACIgUVFRatq0qWbPnu3TPnv2bLVo0SJIVeF0VKtWTeXLl/c5h8eOHVN6ejrnMIiMMXrwwQf1+eefa86cOapWrZrPds6bfRhjlJWVxTmDLTAEjIANHDhQd999t5o1a6aUlBSNHDlSW7ZsUb9+/YJdGo47dOiQNm7c6H2ekZGhlStXKiEhQVWqVNGAAQP00ksvqUaNGqpRo4ZeeuklFStWTHfccUcQq3a21NRUTZw4UdOmTVNcXJy31yg+Pl4xMTGyLIvzdhF6+umn1aFDByUlJengwYOaNGmS5s2bp5kzZ3LOYA9BnIEMG3rnnXdM1apVTVRUlGnSpIl3qQpcHObOnWsk+f306NHDGJO3pMiQIUNM+fLljcvlMi1btjSrV68ObtEOV9j5kmTGjh3r3YfzdvHp3bu39+/CxMRE06ZNG/Ptt996t3POcLGzjDEmSNkTAAAAQcA1gAAAAA5DAAQAAHAYAiAAAIDDEAABAAAchgAIAADgMARAAAAAhyEAAgAAOAwBEAAKaNWqlQYMGBC099+9e7fKli2rTZs2ndPjrl69WpUrV9bhw4fP6XEB2A8BEAAuMmlpaercubMuueSSgPbv3Lmz2rZtW+i2H3/8UZZlacWKFWrQoIGaN2+u119//RxWC8COCIAAbCk7OzvYJZwXR44c0ejRo3XPPfcE/Jo+ffpozpw52rx5s9+2MWPGqFGjRmrSpIkkqVevXhoxYoRyc3PPWc0A7IcACOCsGGP08ssvq3r16oqJiVHDhg316aeferfPmzdPlmXp+++/V7NmzVSsWDG1aNFC69ev9znOV199paZNmyo6OlrVq1fX0KFDlZOT491uWZbee+89denSRcWLF9ewYcMkScOGDVPZsmUVFxene+65R0899ZQaNWokSZo/f74iIyO1Y8cOn/d69NFH1bJly4A/4969e9W9e3eVKlVKxYoVU4cOHbRhwwbv9s2bN6tz584qVaqUihcvrnr16mnGjBne1955551KTExUTEyMatSoobFjx570vb755htFREQoJSXFp33dunXq2LGjYmNjVa5cOd19993atWuXJOmGG25Q2bJlNW7cOJ/XZGZmavLkyerTp4+3rX379tq9e7fS09MD/vwAQg8BEMBZefbZZzV27FiNGDFCa9eu1SOPPKK77rrLL2A888wzevXVV7Vs2TJFRESod+/e3m2zZs3SXXfdpYceekjr1q3T+++/r3HjxunFF1/0OcaQIUPUpUsXrV69Wr1799aECRP04osvavjw4Vq+fLmqVKmiESNGePdv2bKlqlevro8++sjblpOTo/Hjx6tXr14Bf8aePXtq2bJl+vLLL/Xjjz/KGKOOHTt6eyFTU1OVlZWl+fPna/Xq1Ro+fLhiY2MlSc8995zWrVunb775Rj///LNGjBihMmXKnPS95s+fr2bNmvm0bd++Xddee60aNWqkZcuWaebMmfrzzz912223SZIiIiLUvXt3jRs3Tvlv7/7JJ5/o2LFjuvPOO71tUVFRatiwoRYsWBDw5wcQggwAnKFDhw6Z6Ohos2jRIp/2Pn36mG7duhljjJk7d66RZL777jvv9unTpxtJ5siRI8YYY6655hrz0ksv+Rzjo48+MhUqVPA+l2QGDBjgs88VV1xhUlNTfdquuuoq07BhQ+/z4cOHmzp16niff/HFFyY2NtYcOnTopJ/r2muvNQ8//LAxxphffvnFSDILFy70bt+1a5eJiYkxU6ZMMcYY06BBA/PPf/6z0GN17tzZ9OrV66TvVVCXLl1M7969fdqee+45065dO5+2rVu3Gklm/fr1xhhjfv75ZyPJzJkzx7tPy5Ytvechv5tvvtn07Nkz4JoAhB56AAGcsXXr1uno0aO67rrrFBsb6/358MMP9euvv/rsm5yc7H1coUIFSdLOnTslScuXL9fzzz/vc4y+fftq+/btyszM9L6uYM/Y+vXr1bx5c5+2gs979uypjRs3avHixZLyrom77bbbVLx4cS1YsMDnPSdMmOD3GX/++WdFREToiiuu8LaVLl1atWrV0s8//yxJeuihhzRs2DBdddVVGjJkiFatWuXd9/7779ekSZPUqFEjPfHEE1q0aNEpv9MjR44oOjrap2358uWaO3euT621a9eWJO/3XLt2bbVo0UJjxozxti9YsMCnp9UjJibG53sF4DwRwS4AgH253W5J0vTp01WpUiWfbS6Xy+d5ZGSk97FlWT6vd7vdGjp0qG655Ra/98gfhooXL+633XMsD5NvCFSSypYtq86dO2vs2LGqXr26ZsyYoXnz5knKC5QrV6707luuXDm/4xc8Xv52z3vfc889at++vaZPn65vv/1WaWlpevXVV9W/f3916NBBmzdv1vTp0/Xdd9+pTZs2Sk1N1SuvvFLoccuUKaO9e/f6tLndbnXu3FnDhw/3298TpqW8ySAPPvig3nnnHY0dO1ZVq1ZVmzZt/F6zZ88eXXrppYW+PwBnoAcQwBmrW7euXC6XtmzZossuu8znJykpKeDjNGnSROvXr/c7xmWXXaawsJP/NVWrVi0tWbLEp23ZsmV++91zzz2aNGmS3n//fV166aW66qqrJOX1hOV/r7i4uEI/Y05Ojv7zn/9423bv3q1ffvlFderU8bYlJSWpX79++vzzz/Xoo49q1KhR3m2JiYnq2bOnxo8frzfeeEMjR4486Wdq3Lix1q1b5/f9rF27Vpdcconf95M/FN92220KDw/XxIkT9X//93/q1auXX0CWpDVr1qhx48YnrQFA6KMHEMAZi4uL02OPPaZHHnlEbrdbV199tQ4cOKBFixYpNjZWPXr0COg4gwcP1g033KCkpCR17dpVYWFhWrVqlVavXu2d7VuY/v37q2/fvmrWrJlatGihyZMna9WqVapevbrPfu3bt1d8fLyGDRum559//rQ+Y40aNdSlSxf17dtX77//vuLi4vTUU0+pUqVK6tKliyRpwIAB6tChg2rWrKm9e/dqzpw53nA4ePBgNW3aVPXq1VNWVpa+/vprn+BYUPv27TVo0CDt3btXpUqVkpQ3yWTUqFHq1q2bHn/8cZUpU0YbN27UpEmTNGrUKIWHh0uSYmNjdfvtt+vpp5/W/v371bNnT7/jb9q0SX/88cdJ1w0E4Az0AAI4Ky+88IIGDx6stLQ01alTR+3bt9dXX32latWqBXyM9u3b6+uvv9bs2bN1+eWX68orr9Rrr72mqlWrnvJ1d955pwYNGqTHHntMTZo0UUZGhnr27Ol3DV1YWJh69uyp3Nxcde/e/bQ/49ixY9W0aVPdcMMNSklJkTFGM2bM8A5r5+bmKjU1VXXq1NH111+vWrVq6d1335WUN+t20KBBSk5OVsuWLRUeHq5Jkyad9L0aNGigZs2aacqUKd62ihUrauHChcrNzVX79u1Vv359Pfzww4qPj/frIe3Tp4/27t2rtm3bqkqVKn7H//jjj9WuXbsiv1sAoc0yJ7vABQBs6LrrrlP58uV9ln6RpL59++rPP//Ul19+GaTKAjdjxgw99thjWrNmzSmHwE9XVlaWatSooY8//tg7DA7AmRgCBmBbmZmZeu+999S+fXuFh4fr448/1nfffafZs2d799m/f7+WLl2qCRMmaNq0aUGsNnAdO3bUhg0b9Mcff5zWtZRF2bx5s5555hnCHwB6AAHY15EjR9S5c2etWLFCWVlZqlWrlp599lmf2cStWrXSkiVLdN9993EPXAA4jgAIAADgMEwCAQAAcBgCIAAAgMMQAAEAAByGAAgAAOAwBEAAAACHIQACAAA4DAEQAADAYQiAAAAADkMABAAAcJj/D6DhvpGQ1qi9AAAAAElFTkSuQmCC",
"text/html": [
"\n",
"