Simulating a two dimensional particle in
a square quantum box with CUDA

George Zakhour
August 30, 2013

Contents

[1 Background, Motive and Experiment| 4
2 Expected Output| 4
[3__The mathematics of a particle in a box| 5
BI Tnonedimensionl . . .« « v v vttt 5
13.1.1 Finding the Wave Function from Schrodinger’s Equation|. 5

3.1.2 Energy at each quantum leveln| 5

13.1.3 Probability function of the position|. 6

B2 Intwo dimensions o 6
13.2.1 The time-independent solution| 6

13.2.2 Energy in two dimensions| 6

13.2.3 Probability function of the positionl. 7

3.3 Generalizing the time-independent solution| 7
3.4 Generalizing the probability function| 7

4 Implementation| 8
i DSIS| .« . . e e e e e e e 8
F2 Conventionsl 8

.3 Brightness and Color mapping] 8
[E3T Brightness. 8

4.3.2 Tint and Colorl 9

4.4 Next set of probabilities| L. 10
4.5 GUI, Command line Ul and User Configuration| 11
6_API 13
Bl _Structures« oot 13
b.1.1 particlel 13

B2 Global Variables) 13
B3 Functiond 14
float max(float *numbers, int N)[. 14

void next_probabilities(float t, int N, float *probabilities)] 14

void create_particle(particle *p, int N, foat mass)|. 14

float probability(particle *p, float x, float y)|. 15

float max_probability(particle *p)|. 15

void initGL(int *argc, char Mau"gv] P 15

void display()| 15

void key(unsigned char k, int x, int y)| 16

void free_resources()| 16

void createVBO(GLUint *buffer, cudaGraphicsResource |

H!resource, unsigned int flags)[.o 16

5.3.11 void launch kernel(uchard *pos)| 16

5.3.12 void runCuda(cudaGraphicsResource **resource)| 17

5.3.13 void run(int argc, char *>argv)| 17

5.3.14 void usage(char®™ program name)| 17

5.3.15 void clear row(int y)| 17

5.3.16 void cmd_display()f Lo 17

5.3.17 void init_curses()| L 18

b4 CUDAKerneld 19
[5.4.1 __global__void cuda_max(float *numbers, int N, float *par- |
tialMax)|. 19

.42 _global__ void cuda_probability_to_map(float *probabili- |

ties, It 1, Hoat *map)| . - .« - 19

F’).4.3 __global__ void cuda_probability(float *p, in N, float x, |

float y, float *probability)| 19

F.4.4 __global__ void kernel(uchard *ptr, float *probabilities, int |

[N, float max_proba)l 20
E5 CUDA Device Funcliond oo oo 21
5.5.1 __device__ float cuda_probability_ld_device(int n, float x)[. 21

|:’>.5.2 __device__ float cuda_probability_ld_device(float *proba- |

bilities, int n, float x, loat y)| 21

F).5.3 __device__ float energy(float mass, int n)| 21

5.5.4 __device float highest_energy(float mass, int n)| 22
[6Results| 23
[6.1 Screenshots L 23
6.2 Benefitsl oo 23

F Code I —GNUG [Public | 25

1 Background, Motive and Experiment

The particle in a box problem is one of the first problems given to undergraduate
students in a course about quantum mechanics. It showcases how the energy
of particles is quantized and it highlights the probabilistic nature of quantum
mechanics, especially with the idea that the particle is not located in a fixed
position but it has a likelihood of existing at any point in space.

The particle in a box is an experiment in which a particle is stuck inside a
box and cannot escape. The energy outside this box is co while it is 0 inside.
The particle thus moves inside the box of dimensions LxL.

Trying to imagine how these probabilities are scattered in the box is hard and
one can’t do without a simulation of the physical properties of the particle (po-
sition, energy and momentum).

In this simulation I try to simulate the ”particle in a box” problem to display
the probabilities of the position and the energy of the particle at each state.

2 Expected Output

Searching online, I have found a Youtube video that simulates the particle in
a boxﬂ but lacks essential information on the state of the system, for example
the dimensions of the box and the energy levels of the particle at each frame.
Although lacking these essential variables I will base my results on the video.

Figure 1: A screenshot of a ”particle in a box” simulation found on Youtube

I Particle in a Box - Youtube http://www.youtube.com/watch?v=jevKmFfcaxF

3 The mathematics of a particle in a box

3.1 In one dimension
3.1.1 Finding the Wave Function from Schrodinger’s Equation

The time dependent Schrodinger equation is given as:

<—h2v2 + v) U(z,t) = ih%\lf(a:,t) (1)

2m

The time independent Schrodinger equation, which can be found from [1]is given
as:

2m

<_h2v2 + V) ®(z) = E®(x) (2)
Where ¥ is the wave equation. In terms of @, ¥ is denoted as:
W(x,t) = e {E/MP () (3)
Assuming the following is a solution to (2)):
®(x) = Acos(kx) + Bsin(kx) (4)

And given these two conditions that arise from the experiment:

We plug them in the and find the following;:
220)
k= %#m (nis the energy level)

To find the value of B we need to normalize the equation.
The probability of finding the particle inside [0; L] is 1 because it cannot escape.

L
/O |®|%dz = 1 (6)

L
B2/O sin? (%mc) de =1 (7)

And thus B = \/%

Finally we get the solution to the time independent Schrodinger equation

2 ...n
d(x) = \/;sm(Lmn) (8)

3.1.2 Energy at each quantum level n

We note the following

P 5o (@)2q> 9)

92

If we replace the results in we find:

B, = h2n2n2
2mL2
Or simply:
E, =n’E,
K252
B = T
2mL2

3.1.3 Probability function of the position
The probability of finding the particle between a and b is the following:

{f;’ |®|2dz if a,b € [0, L]

10
0 otherwise (10)

If we wish to find the position inside a box of width € and center a we would
integrate between a — €/2 and a + €/2 where both ends are between 0 and L
The integration will lead to the following:

€ 1 2nm 2nm
Plz)=—=4 — |[sin| —(a —¢/2) | —sin [— 2
(z) L+2n7r [bln(7 (a—¢/)) bln(7 (a+¢/)>}
Which can be reduced more to the following form:
€ 1 . /nm 2nm
Px) = T = -sin (TE) cos (La:>
3.2 In two dimensions
3.2.1 The time-independent solution
This time we suppose the solution is
O(z,y) = X(2)Y (y) (11)

X(z) = Acos(kyx) + Bsin(k,x)
Y(y) = Ccos(kyy) + Dsin(kyy)

Plugging in and doing similar operations as we get the following
solution:

O(z,y) = %sin (%x) sin (%y) (12)

3.2.2 Energy in two dimensions

Doing the same steps as we find that the energy has become:

h2r2

Or simply:
Epnym, = (n2+n2) E1y
h2mr2
Evi= 2mL?

3.2.3 Probability function of the position

Similar to section to find the probability of finding the particle inside the
box of size exe we integrate the wave function inside a box of center (x,y) and

width e.
y+e/2 z+e/2)
Pag)= [[ety Pdady
y—e/2 Jax—e/2

After evaluating the integral we get the following function:

P(a,y) = 73 p(z)) (14

(@) =e— L cos 2N . (noﬂr)
pla) =€ —naﬂ 7 « | sin —Le

3.3 Generalizing the time-independent solution

The equation that we have found so far depends on two quantum numbers n,
and n, and describes the particle for these energy levels only. However the final
time-independent equation is a combination of many of these equations. The
final time-independent equation is:

O(z,y) =D n®n,m, (2,y) (15)

Where the constant ¢, is the square root of the probability of getting the equa-
tion ®,,, ,, that describes the particle in the box.

3.4 Generalizing the probability function

Since we have a more general wave function we need to have a more general
probability function for the position. The new definition is generated from
integrating ® between a — €/2 and a + €/2. The result is:

P(z,y) =Y _cp Pul,y)

n

4 Implementation

4.1 Synopsis

This simulation will display the probability of finding the particle in sub-boxes
in the box as well as display the energy in the sub-box of width e. Each frame
displays the particle with a new set of probabilities for each energy level.

The probability of the position will be visualized by the intensity of the color.
The brighter the color, the higher the probability.

The energy however will be visualized using the standard colors assigned to
energies; lower energies have blue-shades while high energies have red-shades.

4.2 Conventions

Some of the conventions adopted throughout the code are

e words in functions, structs and variable names are separated by an _ (un-
derscore)

e CUDA kernels start with the keyword cuda..
For example cuda_probability

e CUDA device functions start with cuda_ and end with _device.
For example cuda_probability_ld_device

e Tiny mathematical and physical constants, such as i are expressed as
floating numbers without their orders.
For example i = 1.054 - 10734 is defined as #define HBAR 1.054

4.3 Brightness and Color mapping
4.3.1 Brightness

The intensity of the colors denote the probability of finding the particle. Since
probabilities are always between 0 and 1, converting them to intensities is just
a matter of mapping the probabilities from [0, 1] to [0, 255].

However € is a small number, so the probability is always small; usually less
than 0.1%. Therefore we need to find the highest probability in the space and
remap from [0, max] to [0,255]. At first a bruteforce solution was adopted ex-
ploiting my GPU to find maximums using reduction. But the process of finding
the highest probability of a particle with 10 energy levels inside a box divided
into 262,144 boxes took around 28ms.

A new solution needed to be adopted, going over the mathematics again, a so-
lution came out:

For p(a) to be maximal

€ 1 . (noﬂr) <2na7r)
sin 17 € cos «

needs to be maximal. And this is achieved when cosx = —1 which is possible
since 0 < z < 27. Therefore the highest probability for one energy level is:

€ 1 . ngm
7 + e s1n(—L €)

Following similar analysis we can deduce that the highest probability (denoted
by m) is close to, but not exactly:

m = Mg.My

UPDATE After implementing and testing the algorithm the uncertainty in
the algorithm has proved to be overwhelming and the probabilities’ range was
no longer [0,1] but much smaller. Therefore a fallback was needed.

The approach followed was the bruteforce solution described above where we
compute the probabilities at each pixel and search for the largest. However to
make the searching faster a reduction algorithm was adopted. The algorithm
creates a much smaller array in which it stores the maximum of a chunk of the
original array. Then on the CPU we loop over the results (which are usually
32) and pick the maximum of these. The following illustration describes how
the maximum reduction algorithm works for a sub-array. The fact that this

Figure 2: Finding the maximum element in an array using reduction

algorithm was used adds a restriction to the dimensions of the window. The
height and the width of the window need to be a power of 2 for this algorithm to
work effectively. No solution has been made up yet to generalize the dimensions
of the window.

4.3.2 Tint and Color

The tint in the color represents the energy of the particle. Red is the highest
energy and blue is the lowest. If we can map the energy in an interval between 0

and 1 we can easily get the RGB values. The following equation can be applied

Ry 955E
Gay| = P(z,y) 20
Bay 255(1 — E)

Where P(z,y) is the probability of finding the particle at (z,y) and between 0
and 1. And F is the energy remapped between 0 and 1.

The problem of remapping the energy is easy to solve. Through mathemati-
cal analysis we can show that the highest energy we can find is

h2m2

2mIL?

Emaz = (nznaxm + n?naacy)
And therefore we can remap any energy we find to a value in the interval [0, 1]
and find the corresponding RGB values.

4.4 Next set of probabilities

Every frame in the animation consists of a new set of probabilities close to the
ones of the previous frame. A problem came up and it is how to generate a
new set of probabilities close to the ones in the previous frame given a time
parameter to insure the smooth animation between the frames.

The model adopted to insure the smoothness and the continuity in the proba-
bilities consists of multiple sine waves where the period of one is 10 times more
than its neighbor and so on. If plotted, the model looks like the following: (the
sines were stretched vertically for a better visualization) After finding the values

Figure 3: Plotting z(t) = 10|sin (%t)], y(t) = 10|sin(Lt)], 2(t) =
10|sin (I—T?t)|

of each sine wave at a time t we can normalize the answers so that their sum is
1. Bellow is a table representing some values normalized.

10

Time b'¢ y Z
0.1 0.0091 | 0.0915 | 0.8994
0.2 0.0096 | 0.0957 | 0.8947
0.3 0.0104 | 0.1035 | 0.8861
0.4 0.0116 | 0.1159 | 0.8725
0.5 0.0136 | 0.1350 | 0.8515
0.6 0.0166 | 0.1648 | 0.8186
0.7 0.0215 | 0.2135 | 0.7649
0.8 0.0304 | 0.3006 | 0.6690
0.9 0.0490 | 0.4834 | 0.4675
1.0 0.0824 | 0.8102 | 0.1074
1.1 0.0479 | 0.4698 | 0.4822
1.2 0.0368 | 0.3590 | 0.6042
1.3 0.0322 | 0.3134 | 0.6544
1.4 0.0309 | 0.2987 | 0.6704
1.5 0.0317 | 0.3053 | 0.6630
1.6 0.0347 | 0.3324 | 0.6329
1.7 0.0405 | 0.3859 | 0.5736
1.8 0.0509 | 0.4818 | 0.4673
1.9 0.0701 | 0.6595 | 0.2704
2.0 0.0859 | 0.8022 | 0.1119

Table 1: Values from z(t), y(t) and z(t) at different times

A general formula can be deduced to find the equation of the nth wave.

sin <1O;nt)‘ (16)

4.5 GUI, Command line UI and User Configuration

P,(t) =

The GUI is simple; it consists of a window where the simulation is drawn on as
described in The user can control the simulation using keystrokes listed
bellow.

Increase the time offset (Animation runs faster)
, | Decrease the time offset (Animation runs slower)
n | Go back one frame
m | Go forward one frame
SPACE | Toggle pausing
0 | Reset the animation (t = 0)
ESC | Quit the simulation

As well, the user can control the number of wave functions that are being sim-
ulated using command line arguments as follow

pbox n

Where n is the number of wave functions the user wishes to simulate.

UDPATE A command line Ul is used to display in an ordered fashion the
state of the simulation (time, energy levels, average time per frame and the

11

increment used by the animation), as well it displays the probabilities for each
wave function and keyboard shortcuts and how to use the application.

The command line Ul was built using the curses library available on Linux,
and in the latest release of Xcode but unavailable directly on Windows?}

This is a screenshot of the command line UL

t
it

Figure 4: Command-Line UI

2PDCurses is an alternative suggested by many http://pdcurses.sourceforge.net/. The
author did not test it!

12

5 API

5.1 Structures
5.1.1 particle
Members

e float mass

The mass of the particle.

e int energy_levels

The number of energy levels the particle has, i.e. the number of wave
functions that describe the particle.

e float #*particles

The probabilities of each wave function. The length of the array this
variable points to should be energy_levels.

5.2 Global Variables
The program uses these global variables

e cudaGraphicsResource *resource
- The graphics resource that is linked to the OpenGL environment.

e GLuint buffer
- The buffer used by OpenGL.

e float INCREASE_TIME
- The time offset used to increase the time between the frames.

e particle p
- The particle that the program is about.

e float t
- The current time (set as the offset).

e int frames
- The number of frames.

o float total_time
- The total time.

e int PAUSE
- Whether the animation is paused.

e WINDOW* window
- The window variable used by ncurses library.

e int ncols, nrows
- The number of cols and rows in the window variable.

13

5.3 Functions

5.3.1 float max(float *numbers, int N)

This function finds the maximum number in an array of numbers using reduc-
tion as described in 4311

Parameters
float *numbers
- A pointer of the array to find the maximum of.
int N
- The length of numbers. Should be a power of 2.

Returns
float, the maximum number in the array.

5.3.2 void next_probabilities(float t, int N, float *probabilities)

This function generates a new set of probabilities as described in

Parameters
float t
- The time parameter required in the algorithm.
int N
- the number of parameters to generate, i.e. the length of the next parame-
ter.
float *probabilities
- The array to write the new probabilities to.

5.3.3 void create_particle(particle *p, int N, float mass)

This function creates a new particle.

Parameters
particle *p
- The particle to store the new particle in.
int N
- The number of wave functions (energy levels) that describe the particle.
float mass
- The mass of the particle

14

5.3.4 float probability(particle *p, float x, float y)

This function finds the probability of finding a particle inside a box of center
(z,y) and of width and height e.

Parameters
particle *p
- The particle to act on
float x
- The x-coordinate of the particle
float y
- The y-coordinate of the particle

Returns
float, the probability of finding the particle at (z,y)

5.3.5 float max_probability(particle *p)

This function finds the highest probability of existing at a position (z,y) in the
space, i.e. inside the box. The function is used to later on map the probabilities
from [0, max] to [0, 255] for color-brightness purposes. The algorithm adopted
is described in 371

Parameters
particle *p
- The particle to find the highest probability of existing

Returns
float, the highest probability to exist.

5.3.6 void initGL(int *argc, char **argv)
This function initializes the OpenGL environment.
Parameters
int *argc

- The length of the next parameter.

char **argv
- The parameters supplied to the OpenGL environment.

5.3.7 void display()

This function takes care of drawing the output on the canvas on every iteration.
As well it prints out the current time, the average time per frame in milliseconds

15

and the offset that is used to increase the time.

5.3.8 void key(unsigned char k, int x, int y)

This function manages the keystrokes in the canvas.

Parameters
unsigned char k
- The character pressed.
int x
- The x-coordinate where the character is pressed.
int y
- The y-coordinate where the character is pressed.

5.3.9 void free_resources()

This function is used to clean after closing the window, i.e. free the resources.

5.3.10 void createVBO(GLUint *buffer, cudaGraphicsResource **re-
source, unsigned int flags)

This function initializes the buffer and the resources that are used by OpenGL.

Parameters
GLuint xbuffer

- The buffer used by OpenGL.
cudaGraphicsResource **resource

- The CUDA resource to link to the buffer
unsigned int flags

- The flags used by OpenGL.

5.3.11 void launch_kernel(uchar4 *pos)

This function launches the kernel that fills the CUDA resource which will be
used to draw on the canvas.

Parameters

uchar4 *pos
- The array of pixel data

16

5.3.12 void runCuda(cudaGraphicsResource **resource)

This function creates the resources for the kernel and launches it.

Parameters
cudaGraphicsResource **resource

- The CUDA resource.

5.3.13 void run(int argc, char **argv)

This function runs everything, i.e. initializes the environment, selects a valid
GPU card, creates the resources and launches the GUI.

Parameters
int argc the length of the next parameter.
char **argc the parameters used by the OpenGL environment.

5.3.14 void usage(char* program_name)

This function prints out the help message.

Parameters
char* program_name
- The name of the program to run

5.3.15 void clear_row(int y)

This function uses the ncuses library to clear a row, i.e. to fill it with empty
characters with the background attitude.

Parameters

int y
- The row number to clear.

5.3.16 void cmd_display()

This function creates and fills the Command line Ul using the ncurses library.

17

5.3.17 void init_curses()

This function initiates the curses environment and fills the variables window,
nrows, ncols, creates the colors for the background and text messages.

18

5.4 CUDA Kernels

5.4.1 __global__ void cuda_max(float *numbers, int N, float *partial-
Max)

This kernel finds the maximum in buckets (sub-array) of the numbers array and
fills the partialMax array using the reduction method described in [£.3.1]

Parameters
float *numbers
- The numbers to find the maximum of.
int N
- The length of the array of numbers.
float *partialMax
- The list containing the maximum of the buckets.

5.4.2 __global__void cuda_probability_to_map(float *probabilities, int
n, float *map)

This kernel maps the coordinate array to the probability array.

Parameters
float *probabilities
- The probability set of each wave function.
int n
- The number of wave functions.
float *map
- The array that will be filled with probabilities

5.4.3 __global__ void cuda_probability(float *p, in N, float x, float y,
float *probability)

This kernel finds the probability of finding the particle in a certain position.

Parameters
float *p
- The probability set of each wave function.
int N
- The number of energy levels.
float x
- The x-coordinate of the particle.
float y
- The y-coordinate of the particle.

19

float *probability
- The variable to write the probability to.

5.4.4 __global__ void kernel(uchar4 *ptr, float *probabilities, int N,
float max_proba)

This kernel fills the pixel array with the corresponding colors to display them.

Parameters
uchar4 *ptr
- The array of pixels
float *probabilities
- The array of probabilities of each wave function.
int N
- The number of wave functions.
gloat max_proba
- The highest probability in the space.

20

5.5 CUDA Device Functions

5.5.1 __device__ float cuda_probability_1d_device(int n, float x)

This function finds the probability of finding the particle in one dimension at
the position x and at the energy level n.

Parameters
int n

- The energy level of the particle
float x

- The position of the particle

Returns
float, the probability.

5.5.2 __device__float cuda_probability_1d_device(float *probabilities,
int n, float x, float y)

This function finds the probability of finding the particle at a fixed position
given a set of probabilities, the number of energy levels and the position.

Parameters
float *probability

- The probability of each energy level.
int n

- The number of energy levels.
float x

- The x-coordinate of the particle.
float y

- The y-coordinate of the particle.

Returns
float, the probability.

5.5.3 __device__ float energy(float mass, int n)

This function finds the energy of the particle at a precise energy level.

Parameters
float mass
- The mass of the particle.
int n
- The energy level the particle is at.

21

Returns
float, the energy at the energy level n.

5.5.4 __device float highest_energy(float mass, int n)

This function finds the highest energy the particle can reach. This function is
used for color mapping described in

Parameters
float mass
- The mass of the particle.
int n
- The highest energy level the particle can reach.

Returns
float, the highest energy

22

6 Results

6.1 Screenshots

These are some screenshots taken from the simulation. Only 5 wave functions
are illustrated.

1 2 3
4 5 6

From observing the screenshots we can generate a table that encapsulates the
wave functions most visible.

Screenshot | 1 | 2 | 3 | 4 | 5
1| x| x
2| x| x| X X
3 X | X | X
4 X | X X
5 X X
6 | X X

6.2 Benefits

Thanks to this simulation the problem of the Particle in a box is now much
clearer to me, and I was able to understand more about the topic.

It helped me visualize another related problem as well, which is Heisenberg’s

Uncertainty Principle described mathematically as 6,0, > % As described in
section the more intense the color at a pixel is, the higher the probability.

23

The higher the quantum number is, the larger the energy, and since the energy
is directly related to the momentum of the particle we should expect a large
uncertainty in the position of the particle. That is perfectly illustrated in this
simulation, as the graphics become red the higher the energy is and we can
see numerous bright spots on the canvas, meaning there is a high probability
for the particle to exist in many positions, therefore agreeing with Heisenberg’s
Uncertainty Principle.

24

7 Code License: GNU General Public License
Copyright (C) 2013 George Zakhour

This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along
with this program. If not, see http://www.gnu.org/licenses/.

25

	Background, Motive and Experiment
	Expected Output
	The mathematics of a particle in a box
	In one dimension
	Finding the Wave Function from Schrodinger's Equation
	Energy at each quantum level n
	Probability function of the position

	In two dimensions
	The time-independent solution
	Energy in two dimensions
	Probability function of the position

	Generalizing the time-independent solution
	Generalizing the probability function

	Implementation
	Synopsis
	Conventions
	Brightness and Color mapping
	Brightness
	Tint and Color

	Next set of probabilities
	GUI, Command line UI and User Configuration

	API
	Structures
	particle

	Global Variables
	Functions
	float max(float *numbers, int N)
	void next_probabilities(float t, int N, float *probabilities)
	void create_particle(particle *p, int N, float mass)
	float probability(particle *p, float x, float y)
	float max_probability(particle *p)
	void initGL(int *argc, char **argv)
	void display()
	void key(unsigned char k, int x, int y)
	void free_resources()
	void createVBO(GLUint *buffer, cudaGraphicsResource **resource, unsigned int flags)
	void launch_kernel(uchar4 *pos)
	void runCuda(cudaGraphicsResource **resource)
	void run(int argc, char **argv)
	void usage(char* program_name)
	void clear_row(int y)
	void cmd_display()
	void init_curses()

	CUDA Kernels
	__global__ void cuda_max(float *numbers, int N, float *partialMax)
	__global__ void cuda_probability_to_map(float *probabilities, int n, float *map)
	__global__ void cuda_probability(float *p, in N, float x, float y, float *probability)
	__global__ void kernel(uchar4 *ptr, float *probabilities, int N, float max_proba)

	CUDA Device Functions
	__device__ float cuda_probability_1d_device(int n, float x)
	__device__ float cuda_probability_1d_device(float *probabilities, int n, float x, float y)
	__device__ float energy(float mass, int n)
	__device float highest_energy(float mass, int n)

	Results
	Screenshots
	Benefits

	Code License: GNU General Public License

