
The gem5
Standard Library

A presentation by

Bobby R. Bruce

What is the standard library for?

gem5 Config file

When done without the library you must define every
part of your simulation.

This allows for maximum flexibility but can mean
creating 100s of lines of Python to create even a basic
simulation.

What is the standard library for?

gem5 Config file

The stdlib is a library which allows for users to quickly create systems with
pre-built components.

The stdlib's module architecture allows for components (e.g. a memory
system or a cache hierarchy setup) to be quickly swapped in and out

without radical redesign.

stdlib

The stdlib modular metaphor

Processor

Board

Memory Cache Hierarchy

SingleChannelDDR
3_1600

SingleChannelDDR
4_2400

...

Simple Processor

SwitchableProcessor

...

No Cache

PrivateL1PrivateL2

MesiTwoLevel

...

The modular architecture

Where to find stuff: The directory structure

Where to find stuff : Importing in a script

Getting started: Creating a "Hello World" in the
stdlib

materials/using-gem5/02-stdlib/hello-world.py

Getting started: Creating a "Hello World" in the
stdlib

Getting started: Creating a "Hello World" in the
stdlib

gem5 Resources

• gem5 resources is a repository providing resources that are known to be compatible with
gem5.

• These resources are not necessary for the compilation or running gem5 but may aid users in
running simulations. E.g.: disk images, kernels, applications, cross-compilers, etc.

• Resources are held on gem5's Google Cloud Bucket, and sources for these resources are found
at: https://gem5.googlesource.com/public/gem5-resources/

• The stdlib can be used to automatically obtain and use these resources.

• https://resources.gem5.org/resources.json

https://gem5.googlesource.com/public/gem5-resources/
https://resources.gem5.org/resources.json

Looking up gem5 Resources

https://resources.gem5.org/resources.json

This is all machine-reachable for now. We're working on a web-portal.

https://resources.gem5.org/resources.json

Obtaining Resources in the stdlib

materials/using-gem5/02-stdlib/obtaining-resources.py

> gem5-x86 materials/using-gem5/02-stdlib/obtaining-resources.py

Obtaining Resources in the stdlib

The stdlib will use the cached resources if already downloaded.
Run the script twice and see for yourself.

Using a Custom Resource

You don't need to use the gem5 resources

You can specify a local resources (e.g., your own disk image)

Getting started: Creating a "Hello World" in the
stdlib

`set_se_binary_workload` is used to run a board in Syscall Emulation mode, with a single binary

Back to "materials/using-gem5/02-stdlib/hello-world.py", add the
following:

Getting started: Creating a "Hello World" in the
stdlib

Append the following:

Getting started: Creating a "Hello World" in the
stdlib

Getting started: Creating a "Hello World" in the
stdlib

Save the file!!!

> gem5-x86 materials/using-gem5/02-stdlib/hello-world.py

More detailed output

Look into the more the ”gem5/m5out” directory

• The “config” files detail your
system configuration (various
formats, ”config.ini” most
human-readable.

• The stats.txt shows the various
simulation statistics.

• In Full-System simulations the
terminal output can be found in
this directory.

More detailed output

Look into the more the ”gem5/m5out/stats.txt” file

Extending our design

Remember: gem5 is modular!

In general, you can replace components with components of the same type.

Let's add a real cache implementation to our design!

Extending our design

Save the file again.

> gem5-x86 materials/using-gem5/02-stdlib/hello-world.py

Extending our design

Check the output in “m5out/stats.txt” and see how the Simulated Seconds
and Simulated Ticks varies when using and not using a cache.

An X86 full-system simulation

"materials/using-gem5/02-stdlib/x86-full-system.py”

An X86 full-system simulation

This adds a check for the gem5 binary parsing the script. In this case:

1. The binary supports the X86 ISA.
2. The binary supports the MESI Two Level coherence protocol.

An X86 full-system simulation

An X86 full-system simulation

The SimpleSwitchingProcessor allows for different types
of cores to be swapped during a simulation with

`processor.switch()`.

This can be useful when wanting to switch to and from a
detailed form of simulation.

An X86 full-system simulation

As usual, we add the components to the board, in this
case an `X86Board`.

An X86 full-system simulation

The 'set_kernel_disk_workload` function is used to run a full system
workload.

You must specify the `kernel` resource to use and the `disk_image`
resource.

In this case we can set the command to run on boot.

The Simulator Module

During a simulation you can have
"Exit Events".

In this example there are two. These
exit the simulation loop and return to
the Python Script.

The Simulator Module is used to handle these events. Let’s play with
some examples to see how.

SimulationPython Config Script

The Simulator Module

Setup

simulator.run()

simulator.run()

Workload Part 1

Exit Event

Workload Part 2

Exit EventEnd of Config

Do stuff

The Simulator Module

Go to “materials/using-gem5/02-stdlib/simulator-use.py”

This is a pretty normal looking
script but we are running this
“m5-exit-example” binary. Let’s
look into it

The Simulator Module

Go to “materials/using-gem5/02-stdlib/m5-exit-example/m5-exit-example.c”

The Simulator Module

Go back to “materials/using-gem5/02-stdlib/simulator-use.py”

> gem5-x86 materials/using-gem5/02-stdlib/simulator-use.py

The Simulator Module

> gem5-x86 materials/using-gem5/02-stdlib/simulator-use.py

Let’s be a bit cleverer…

The Simulator Module

Here we’re only covering the “Exit” type exit event, but there are
other types.

You can override different types for different things.

The Simulator module has default behavior for each (see
“gem5/src/python/gem5/simulate/exit_event_generators.py”)

• ExitEvent.EXIT
• ExitEvent.CHECKPOINT
• ExitEvent.FAIL
• ExitEvent.SWITCHCPU
• ExitEvent.WORKBEGIN
• ExitEvent.WORKEND
• ExitEvent.USER_INTERRUPT
• ExitEvent.MAX_TICK

The Simulator Module

Note: This is module is still
considered to be in Beta. The

API may change in future
versions of gem5

An X86 full-system simulation

Let’s go back to “materials/using-gem5/02-stdlib/x86-full-system.py”

An X86 full-system simulation

Warning: This will take a long time
to complete execution.

Cntl+C to exit this.

> gem5-x86 materials/using-gem5/02-stdlib/x86-full-system.py

We’re done! You now have a full-system simulation!

Extending the library

Extending the library
Open “materials/using-gem5/02-stdlib/unique_cache_hierarchy/

unique_cache_hierarchy.py”

Extending the library

Complete the constructor and declare the mem-side and cpu-side ports

Extending the library

Next, open ”materials/using-gem5/02-
stdlib/unique_cache_hierarchy/l1cache.py”

Extending the library

Let’s extend the “Cache” SimObject to customize it for our purposes

Important note:

SimObject member variables are special. You can only set
SimObject variables. Code like `self.custom_variable =7`
will cause an error.

If you want create a non-SimObject variable, the variable
name must have a preceding underscore:

`self._custom_variable = 7`

Extending the library
Go back to

“materials/using-gem5/02-stdlib/unique_cache_hierarchy/unique_cache_hierarchy.py”

Extending the library

Extending the library

Try adding this cache hierarchy to
your “hello-world.py” example.

It can be done via a standard Python
import.

Create your own cache!!

“src/python/gem5/components/cachehierarchies/classic” contains the code for a Private L1 Cache
Hierarchy and a PL1/PL2 Cache Hierarchy. It may be helpful to reference them.

As a challenge, create your own gem5 Private L1 Shared L2 Cache hierarchy.

Once done, modify your “hello-world.py” program to see the performance
difference of using the Private L1 with a Private L2 Cache hierarchy vs a Private

L1 with a Shared L2 Cache.

Core

Core L1

L1

L2XBar MembusL2

Helpful: ̀ from m5.objects import L2XBar`

Feel free to
be creative

	Slide 1: The gem5 Standard Library
	Slide 2
	Slide 3
	Slide 4: The stdlib modular metaphor
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

