{ "cells": [ { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# JuliaとJupyterのすすめ\n", "\n", "* Author: 黒木 玄\n", "* Date: 2019-03-16~2019-06-30\n", "* Repository: [https://github.com/genkuroki/msfd28](https://github.com/genkuroki/msfd28)\n", "\n", "**注意:** 筆者は「ライトユーザー」なので深い話はできない.\n", "\n", "このファイルは以下の研究会のために準備された:\n", "\n", "* [数学ソフトウェアとフリードキュメント XXVIII](http://www.mathlibre.org/msfd/28-ja.html)\n", "* 2019年3月16日(土) 13:00–18:00\n", "* 東京工業大学 大岡山キャンパス 本館1階H116講義室\n", "\n", "この文書は以下の場所で閲覧できる:\n", "\n", "* [https://nbviewer.jupyter.org/github/genkuroki/msfd28/blob/master/msfd28genkuroki.ipynb](https://nbviewer.jupyter.org/github/genkuroki/msfd28/blob/master/msfd28genkuroki.ipynb)\n", "\n", "私によるJulia+Jupyterの環境構築の最近の記録については次のメモを参照せよ:\n", "\n", "* [Julia v1.1.0 の Windows 8.1 へのインストール](https://nbviewer.jupyter.org/github/genkuroki/msfd28/blob/master/install.ipynb)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "-" }, "toc": true }, "source": [ "

目次

\n", "
" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "using Plots -> 6.497952 seconds (10.35 M allocations: 547.218 MiB, 5.71% gc time)\n" ] }, { "data": { "image/svg+xml": [ "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "-4\n", "\n", "\n", "-2\n", "\n", "\n", "0\n", "\n", "\n", "2\n", "\n", "\n", "4\n", "\n", "\n", "-1.0\n", "\n", "\n", "-0.5\n", "\n", "\n", "0.0\n", "\n", "\n", "0.5\n", "\n", "\n", "1.0\n", "\n", "\n", "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "plot(sin) -> 25.666761 seconds (56.63 M allocations: 2.761 GiB, 6.50% gc time)\n", "\n", "using PyPlot -> 7.997156 seconds (14.13 M allocations: 696.137 MiB, 5.28% gc time)\n", "\n", "using DifferentialEquations -> 13.710626 seconds (35.83 M allocations: 2.302 GiB, 8.87% gc time)\n", "\n", "R version 3.5.3 (2019-03-11) -- \"Great Truth\"\n", "Copyright (C) 2019 The R Foundation for Statistical Computing\n", "Platform: x86_64-w64-mingw32/x64 (64-bit)\n", "\n", "R is free software and comes with ABSOLUTELY NO WARRANTY.\n", "You are welcome to redistribute it under certain conditions.\n", "Type 'license()' or 'licence()' for distribution details.\n", "\n", "R is a collaborative project with many contributors.\n", "Type 'contributors()' for more information and\n", "'citation()' on how to cite R or R packages in publications.\n", "\n", "Type 'demo()' for some demos, 'help()' for on-line help, or\n", "'help.start()' for an HTML browser interface to help.\n", "Type 'q()' to quit R.\n", "\n" ] }, { "data": { "text/plain": [ "showimg (generic function with 1 method)" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "print(\"using Plots ->\")\n", "@time using Plots\n", "gr(legend=false); ENV[\"PLOTS_TEST\"] = \"true\"\n", "\n", "print(\"\\nplot(sin) ->\")\n", "@time plot(sin, size=(300, 160)) |> display # コンパイル\n", "\n", "print(\"\\nusing PyPlot ->\")\n", "@time using PyPlot: PyPlot, plt\n", "\n", "print(\"\\nusing DifferentialEquations ->\")\n", "@time using DifferentialEquations\n", "\n", "using Base64\n", "using Combinatorics\n", "using Distributed\n", "using Distributions\n", "using Libdl\n", "using LinearAlgebra\n", "using Optim\n", "using Primes\n", "using ProgressMeter\n", "using Random: seed!\n", "using RCall\n", "using SpecialFunctions\n", "using Statistics\n", "using SymPy: SymPy, sympy, Sym, @vars, @syms, simplify, oo, PI\n", "\n", "ldisp(x...) = display(\"text/html\", raw\"$$\" * prod(x) * raw\"$$\")\n", "\n", "showimg(mime, fn) = open(fn) do f\n", " base64 = base64encode(f)\n", " display(\"text/html\", \"\"\"\"\"\")\n", "end" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "パッケージの読み込みと最初の実行時のコンパイルにそれなりに時間が採られることに注意.\n", "\n", "Jupyter notebook では最初のセルで最初のコンパイルが実行されるようにしておき, そのセルを実行してから, プログラムのコードの入力を始めると時間の節約になる." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Jupyterノートブック\n", "\n", "* このファイルはJupyterノートブックの実例になっている.\n", "\n", "* JupyterではJulia, Python, R, Rubyなどのプログラミング言語のノートブックを作れる.\n", "\n", "* ノートブックにはブラウザ経由でアクセスする.\n", "\n", "* ノートブックには以下をまとめることができる:\n", "\n", " * プログラムのコード\n", " * その実行結果(グラフのプロットを含む)\n", " * 整形された数式を含む説明(markdown)\n", "\n", "* Jupterノートブックの表示にGitHubなどが対応している([nbviewer](https://nbviewer.jupyter.org/)が非常に便利).\n", "\n", "* 試行錯誤に向いている.\n", "\n", "* 数百行程度のプログラミングにはこれで十分.\n", "\n", "* [Nbextensions](https://www.google.com/search?q=nbextensions)の[Gist-it](https://www.google.com/search?q=nbextensions+Gist-it)を使えば, ワンタッチでノートブックをGitHub Gistに保存してバージョン管理できる.\n", "\n", "* Nbextensionsの[RISE](https://www.google.com/search?q=nbextensions+RISE)を使えば, Jupyterノートブックでプレゼン可能.\n", "\n", "* nbviewerのView as Slidesボタンもプレゼン可能([例](https://nbviewer.jupyter.org/github/genkuroki/msfd28/blob/master/Weave/%E3%83%86%E3%82%B9%E3%83%88.ipynb?flush_cache=true)→[Slides](https://nbviewer.jupyter.org/format/slides/github/genkuroki/msfd28/blob/master/Weave/%E3%83%86%E3%82%B9%E3%83%88.ipynb?flush_cache=true#/)).\n", "\n", "[Jupyter](https://jupyter.org/)はPythonのライブラリの1つ.\n", "\n", "[Anaconda](https://www.anaconda.com/)を入れればJupyterも使えるようになっている.\n", "\n", "**追記(2019-05-26):** [Free Wolfram Engine](https://www.wolfram.com/engine/) が公開された. それとJupyterを組み合わせると「無料でMathematicaを使用」のような状態になる(実際にはJupyter側の対応が未成熟なので制限がある). 詳しくは\n", "\n", "* [Free Wolfram EngineをJupyterで使う方法](https://nbviewer.jupyter.org/github/genkuroki/msfd28/blob/master/Free%20Wolfram%20Engine.ipynb)\n", "\n", "を参照して欲しい." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "**追記(2019-06-30):** Jupyterという名前の由来については\n", "\n", "* Fernando Perez, Project Jupyter, [Slide](https://speakerdeck.com/fperez/project-jupyter) の [p.6](https://speakerdeck.com/fperez/project-jupyter?slide=6)\n", "\n", "を参照せよ(以下に画像として引用).\n", "\n", "\n", "\n", "このように, Jupyter という名前は **open languages of science** である Julia, Python, R に着想を得ているが, それらの先頭部分を繋げたものではないと書かれており, **すべてのプログラミング言語** を平等に扱うことが宣言されている. だから, Jupyterを一部のプログラミング言語(特にPython)専用の環境であるかのような印象を広めることは, Jupyterの作者たちの意向に反している. さらに **open science** を強調していることにも注目せよ." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Python 2.7だと小2開発者に馬鹿にされるので注意\n", "\n", "* [小2開発者「なんだ2.xか。3じゃないのか」](https://twitter.com/monotarosamurai/status/778846894575357952)\n", "\n", "\n", "\n", "**注意:** この節はジョークのつもりで入れた." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### 整形された数式を含む説明の例\n", "\n", "パラメーター $w$ 付きの $y$ に関する確率密度函数 $p(y|w)$ と**事前分布**と呼ばれる $w$ に関する確率密度函数 $\\varphi(w)$ とサンプル $Y_1,\\ldots,Y_n$ から得られるベイズ推測法における予測分布 $p^*(y)$ は以下のように定義される:\n", "\n", "$$\n", "p^*(y) = \n", "\\frac{Z(Y_1,\\ldots,Y_n,y|\\varphi)}{Z(Y_1,\\ldots,Y_n|\\varphi)} =\n", "Z(y|\\psi).\n", "$$\n", "\n", "ここで\n", "\n", "$$\n", "\\begin{aligned}\n", "&\n", "Z(y_1,\\ldots,y_n|\\varphi) = \\int \\prod_{k=1}^n p(Y_k|w)\\cdot\\varphi(w)\\,dw,\n", "\\\\ &\n", "\\psi(w) = \\frac{\\prod_{k=1}^n p(Y_k|w)\\cdot\\varphi(w)}{\\int \\prod_{k=1}^n p(Y_k|w)\\cdot\\varphi(w)\\,dw}.\n", "\\end{aligned}\n", "$$\n", "\n", "$Z(y_1,\\ldots,y_n|\\varphi)$ は**分配函数**と呼ばれ, $Z(Y_1,\\ldots,Y_n|\\varphi)$ は**周辺尤度**と呼ばれ, $\\psi(w)$ は**事後分布**と呼ばれる." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Julia言語\n", "\n", "[Julia言語](https://github.com/JuliaLang/julia)は最新のプログラミング言語.\n", "\n", "* [v1.0.0](https://github.com/JuliaLang/julia/releases/tag/v1.0.0)になったのは2018年8月. (2019-03-15現在は[v1.1.0](https://github.com/JuliaLang/julia/releases/tag/v1.1.0))\n", "\n", "* 無料. オープンソース.\n", "\n", "* [JuliaBox](https://juliabox.com/)を使えばブラウザさえあれば使える.\n", "\n", "* スクリプト言語のように気軽に使える.\n", "\n", "* 計算が速い. \n", "\n", "* 私の場合には(個人差あり!), Cで書いてgccでコンパイルするよりも速いことが多い.\n", "\n", "* [GNU Octave](https://www.gnu.org/software/octave/)や[scilab](https://www.scilab.org/)のような[MATLAB](https://jp.mathworks.com/)クローンのユーザーにはJulia言語に引っ越しすることを強く勧める.\n", "\n", "* [Python](https://www.python.org/), [R](https://www.r-project.org/), [Ruby](https://www.ruby-lang.org/ja/)などとは共存して行くことになるだろう.\n", "\n", "私によるWindows環境でのJulia言語環境の作り方の記録:\n", "\n", "* [WindowsへのJulia言語のインストール](https://nbviewer.jupyter.org/gist/genkuroki/81de23edcae631a995e19a2ecf946a4f?flush_cache=true)\n", "\n", "私によるJulia言語の使用例のギャラリー:\n", "\n", "* [twitterにおける長大なスレッド](https://twitter.com/genkuroki/status/974473336724967424)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### v1.0がリリースされてから急激に人気が高まる\n", "\n", "* [Newsletter January 2019 (04 Jan 2019 | Julia Computing)](https://juliacomputing.com/blog/2019/01/04/january-newsletter.html)\n", "\n", "**Heaviside函数**の成分が追加されたのは2018年8月頃すなわちv1.0がリリースされたときである.\n", "\n", "" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "### Just-in-time でコンパイル\n", "\n", "Julia言語では\n", "\n", "* 函数を実行したときに, \n", "\n", "* 与えられた引数の型情報を使って, \n", "\n", "* その函数をネイティブコードにコンパイルしてから実行する.\n", "\n", "こういう仕組みなので高速に計算したいコードは函数の中に入れなければいけない.\n", "\n", "最初の実行時にはコンパイルにも時間が取られることに注意.\n", "\n", "以下は円周率のモンテカルロ計算で比較." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 1.418559 seconds (40.00 M allocations: 762.914 MiB, 10.46% gc time)\n" ] }, { "data": { "text/plain": [ "3.1410228" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "### 函数にせずに実行\n", "\n", "@time begin\n", " L = 10^7\n", " c = 0\n", " for i in 1:L\n", " global c\n", " c += ifelse(rand()^2+rand()^2 ≤ 1, 1, 0)\n", " end\n", " 4c/L\n", "end" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 0.047364 seconds (36.00 k allocations: 1.967 MiB)\n" ] }, { "data": { "text/plain": [ "3.141308" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "### 函数にして実行\n", "\n", "function simpi(L=10^7)\n", " c = 0\n", " for i in 1:L\n", " c += ifelse(rand()^2+rand()^2 ≤ 1, 1, 0)\n", " end\n", " 4c/L\n", "end\n", "simpi(10^5) # simpi(::Int64)がコンパイルされる\n", "\n", "@time simpi()" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "-" } }, "source": [ "実行コードを函数の中に入れるだけで数十倍計算が速くなった.\n", "\n", "Julia言語では各函数が引数の型情報に基いて just-in-time でコンパイルされる." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### gccとの比較\n", "\n", "円周率のモンテカルロ計算(1億回)で比較." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Julia Version 1.1.0\n", "Commit 80516ca202 (2019-01-21 21:24 UTC)\n", "Platform Info:\n", " OS: Windows (x86_64-w64-mingw32)\n", " CPU: Intel(R) Core(TM) i7-4770HQ CPU @ 2.20GHz\n", " WORD_SIZE: 64\n", " LIBM: libopenlibm\n", " LLVM: libLLVM-6.0.1 (ORCJIT, haswell)\n", "Environment:\n", " JULIA_CMDSTAN_HOME = C:\\CmdStan\n", " JULIA_NUM_THREADS = 4\n", " JULIA_PKGDIR = C:\\JuliaPkg\n" ] } ], "source": [ "versioninfo()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "gcc (Rev3, Built by MSYS2 project) 6.3.0\r\n", "Copyright (C) 2016 Free Software Foundation, Inc.\r\n", "This is free software; see the source for copying conditions. There is NO\r\n", "warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.\r\n", "\r\n" ] } ], "source": [ "run(`gcc --version`); # ほとんど使っていないのでバージョンが古い" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 2.537506 seconds (1.94 k allocations: 116.293 KiB)\n" ] }, { "data": { "text/plain": [ "3.14153524" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "### gcc\n", "\n", "C_code= raw\"\"\"\n", "#include \n", "#include \n", "\n", "double simpi(unsigned long n){\n", " double x,y;\n", " srand((unsigned)time(NULL));\n", " double R = (double) RAND_MAX;\n", " unsigned long count = 0;\n", " for(unsigned long j=0; j < n; j++){\n", " x = ((double) rand())/R;\n", " y = ((double) rand())/R;\n", " if(x*x + y*y <= 1){\n", " count++;\n", " }\n", " }\n", " return ((double) 4.0)*((double) count)/((double) n);\n", "}\n", "\"\"\"\n", "\n", "filename = tempname()\n", "filenamedl = filename * \".\" * Libdl.dlext\n", "\n", "open(`gcc -Wall -O3 -march=native -xc -shared -o $filenamedl -`, \"w\") do f\n", " print(f, C_code)\n", "end\n", "\n", "## run(`ls -l $filenamedl`);\n", "\n", "const simpi_gcc_rand_lib = filename\n", "simpi_gcc_rand(n::Int64) = ccall((:simpi, simpi_gcc_rand_lib), Float64, (Int64,), n)\n", "simpi_gcc_rand(10^5)\n", "\n", "@time simpi_gcc_rand(10^8)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 0.392231 seconds (6 allocations: 192 bytes)\n" ] }, { "data": { "text/plain": [ "3.14148068" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "### Julia\n", "\n", "@time simpi(10^8)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "-" } }, "source": [ "gccの側が圧倒的に遅い. Juliaの方が計算が数倍速い.\n", "\n", "これはgccのデフォルトの `rand()` が遅いから.\n", "\n", "そもそもgccの `rand()` は擬似乱数の質の点でモンテカルロシミュレーションには向かない.\n", "\n", "Julia言語は [dSFMT](http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index-jp.html)(Double precision SIMD-oriented Fast Mersenne Twister) をデフォルトの擬似乱数発生器として使っている.\n", "\n", "gccの側でもdSFMTを使えば, Julia言語より少し速くなる.\n", "\n", "**注意:** [MT19937](http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/mt19937ar.html) より [dSFMT](http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index-jp.html) の方が擬似乱数の質も上でかつ擬似乱数の発生速度も約3倍程速い([検証用コード](https://nbviewer.jupyter.org/gist/genkuroki/7f1a9970cf3fbb206d87e37771938321)). この点に MT19937 (所謂メルセンヌツイスター)の使用者は注意した方がよい. ライブラリ選択に関するこの手の問題は無数にあるので, 私程度の知識と実力だと gcc を使った場合よりも Julia を使った場合の方が計算が速くなることが多い. Julia言語は信頼できてかつ高速なライブラリの寄せ集めにもなっている.\n", "\n", "以下で円周率のモンテカルロ計算(10億回)で比較." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 2.928520 seconds (1.41 k allocations: 84.691 KiB)\n" ] }, { "data": { "text/plain": [ "3.14162012" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "### gcc with dSFMT\n", "\n", "## Download http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/dSFMT-src-2.2.3.tar.gz\n", "##\n", "## Extract\n", "## dSFMT-src-2.2.3/dSFMT.h\n", "## dSFMT-src-2.2.3/dSFMT.c\n", "\n", "C_code= raw\"\"\"\n", "#include \n", "#include \n", "#include \n", "#define HAVE_SSE2\n", "#define DSFMT_MEXP 521\n", "#include \"dSFMT-src-2.2.3/dSFMT.h\"\n", "#include \"dSFMT-src-2.2.3/dSFMT.c\"\n", "\n", "double simpi(unsigned long n){\n", " srand((unsigned)time(NULL));\n", " dsfmt_t dsfmt;\n", " dsfmt_init_gen_rand(&dsfmt, rand());\n", " unsigned long count = 0;\n", " double x,y;\n", " for(unsigned long j = 0; j < n; j++){\n", " x = dsfmt_genrand_close_open(&dsfmt);\n", " y = dsfmt_genrand_close_open(&dsfmt);\n", " if(x*x + y*y <= 1){\n", " count++;\n", " }\n", " }\n", " return ((double)4.0)*((double)count)/((double)n);\n", "}\n", "\"\"\"\n", "\n", "filename = tempname()\n", "filenamedl = filename * \".\" * Libdl.dlext\n", "\n", "open(`gcc -Wall -O3 -march=native -xc -shared -o $filenamedl -`, \"w\") do f\n", " print(f, C_code)\n", "end\n", "\n", "## run(`ls -l $filenamedl`);\n", "\n", "const simpi_gcc_dSFMT_lib = filename\n", "simpi_gcc_dSFMT(n::Int64) = ccall((:simpi, simpi_gcc_dSFMT_lib), Float64, (Int64,), n)\n", "simpi_gcc_dSFMT(10^5)\n", "\n", "@time simpi_gcc_dSFMT(10^9)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 3.835884 seconds (6 allocations: 192 bytes)\n" ] }, { "data": { "text/plain": [ "3.141565032" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "### Julia\n", "\n", "@time simpi(10^9)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "-" } }, "source": [ "**まとめ**\n", "\n", "* gccを使った方が確かに計算は速くなったが, そのためには適切なライブラリの選定とダウンロードと使用が必要になった.\n", "\n", "* 上の例ではその作業は簡単だったが, もっと実戦的な例では非常に面倒なことになる.\n", "\n", "* Julia言語では多数の優れたライブラリがデフォルトで使えるようになっている.\n", "\n", "* Julia言語を使うとストレスが大幅に減る!" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## グルー言語としてのJulia\n", "\n", "Julia言語は複数のプログラミング言語の「貼り合わせ」に使える**グルー言語**(糊言語)でもある.\n", "\n", "以上を見ればわかるように\n", "\n", "* Juliaではgccでコンパイルされた函数を簡単に使える.\n", "\n", "この他にも\n", "\n", "* Fortranの函数も使える.\n", "\n", "* Pythonとの連携は極めて密([PyCall.jl](https://github.com/JuliaPy/PyCall.jl)).\n", "\n", " * matplotlibを使える([PyPlot.jl](https://github.com/JuliaPy/PyPlot.jl)).\n", " * sympyを使える([SymPy.jl](https://github.com/JuliaPy/SymPy.jl)).\n", "\n", "* Rとも連携([RCall.jl](https://github.com/JuliaInterop/RCall.jl)).\n", "\n", "* ……(以下略)\n", "\n", "JuliaとPythonとRとのあいだのフレンドリーな連携がすでに行われているので, 今後も Julia, Python, R の3つは互いに影響を与えながら発展して行くものと期待される.\n", "\n", "**注意(2019-05-04更新):** C++との連携も可能である([Cxx.jl](https://github.com/JuliaInterop/Cxx.jl)). ただし, 2019-05-04の時点でWindows対応は初期段階に過ぎず, 使える機能と使えない機能がある. Windows環境であっても, g++でコンパイルして作ったshared libraryをJuliaで利用することができ, Julia内から直接C++を使用することもある 程度可能である. 詳しくは次のリンク先を参照:\n", "\n", "* [Test of Cxx.jl on Windows 8.1.ipynb](https://gist.github.com/genkuroki/17acb6126cbfeedfaf84830e1d99531b)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Pythonのmatplotlibの利用\n", "\n", "一般にグラフのプロットの仕方の学習コストは高い.\n", "\n", "Pythonに慣れている人はmatplotlibをほぼそのままJuliaでも利用できる.\n", "\n", "Julia言語におけるプトッロのためのライブラリとして次の2つがおすすめ:\n", "\n", "* [PyPlot.jl](https://github.com/JuliaPy/PyPlot.jl) で matplotlib を使う(機能が豊富).\n", "\n", "* [Plot.jl](https://github.com/JuliaPlots/Plots.jl) を [gr() バックエンド](http://docs.juliaplots.org/latest/examples/gr/)で使う(プロットが速い).\n", "\n", "私は片方に統一したりせずに両方を使っている. [Plot.jl](https://github.com/JuliaPlots/Plots.jl) を [pyplot() バックエンド](http://docs.juliaplots.org/latest/examples/pyplot/)で使うこともよくある. それら以外にも\n", "\n", "* [Makie.jl](https://github.com/JuliaPlots/Makie.jl)\n", "\n", "も安定して使用可能にできる環境ならば便利なようである." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "#### Riemannのゼータ函数の絶対値のクリティカルストリップでのプロット" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsUAAADHCAYAAADxnC46AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsfXmYVMXV/tvMdM8GwyoMIJsoIqiIuDAiiCISF4ILisSg5sOfGv0SjVlJ5FP8YjTm+RKMURITDdEYRQUhKkZxQVxQogJRUVFER1llGcAZYHpm7u+P7tt9bt1T2+3uGdB6n6dnbtetW3Vu1alTp845VR3zPM+Dg4ODg4ODg4ODw9cYbVqbAAcHBwcHBwcHB4fWhlOKHRwcHBwcHBwcvvZwSrGDg4ODg4ODg8PXHk4pdnBwcHBwcHBw+NrDKcUODg4ODg4ODg5fezil2MHBwcHBwcHB4WsPpxQ7ODg4ODg4ODh87eGUYgcHBwcHBwcHh689nFLs4ODg4ODg4ODwtYdTih0cHPZ5zJ49G7FYDJ988klB61mzZg1KSkqwdOlS62dvvPFGxGIxbNmyZZ+gxwQLFy7EjTfemJeyxowZgyuvvDIvZZnAb29bJJNJ9O/fHzNnzgzdu+eee9CzZ0/U1dUZP+Pg4PDVgVOKHRwcHNL40Y9+hLFjx6K6urq1SQFQeHoWLlyIGTNm5FzOggUL8Morr2D69Ol5oMoMl112WaTFQjwex//8z//gpptuwtatWwP3LrnkElRUVOC2224zfsbBweGrA6cUOzg4OAB47733MH/+fHzve99rbVIA7Hv0qPCrX/0K55xzDnr27JmX8kaPHo1LL71UmefAAw/E8OHDI5U/efJkxGIx/OlPfwqkFxcX44orrsDtt9+O+vp6o2ccHBy+OnBKsYODw36Je++9F0OGDEFpaSk6deqEc845B++9914o35///GcMGDAAJSUlGDRoEP7xj3/g0ksvRd++fQP5Zs2ahaqqKowdOzaQvmjRIkyYMAEHHnggSktLcfDBB+OKK66Qhkl89tlnOPfcc1FZWYn27dvj29/+Nr744otAnueffx6jR49G586dUVZWht69e+O8884LKGIcPYsXL0YsFmM/4vvMmTMH1dXVqKioQNu2bTFu3DgsX748c//SSy/FnXfeCQCBcvwQlTvvvBOjRo1C165dUVFRgSOOOAK33XYbkslkoJ7ly5dj2bJlmDJlSibN8zycccYZ6Ny5M2pqajLp9fX1GDx4MA477LBQiIItxPCJqVOnolOnTiFlFgBOOeUUDB48OPM9kUhg0qRJuPvuu+F5XiDvRRddhJ07d+Khhx4KpKuecXBw+GrAKcUODg77HW655RZMnToVgwcPxrx583D77bfjP//5D6qrq/Hhhx9m8t199924/PLLceSRR2LevHm4/vrrMWPGDCxevDhU5pNPPolRo0ahTZugWFyzZg2qq6sxa9YsPPPMM/if//kfvP766zjxxBNDCiIAnHPOOTj44IPx6KOP4sYbb8T8+fMxbty4TN5PPvkEZ555JhKJBO69917861//wq233oqKigo0NDQo6Tn66KOxdOnSwOe+++5DPB4PKH2/+tWvMHnyZAwaNAgPP/ww7r//fuzatQsjR47EqlWrAADTp0/HxIkTASBQXvfu3TPv/a1vfQv3338/nnjiCUydOhW/+c1vcMUVVwTe94knnkBRURFGjRqVSYvFYrj//vtRXl6OCy64IPPuV111FdauXYuHH34YFRUVih62xzXXXIPt27fjH//4RyB91apVeOGFF3D11VcH0kePHo1PP/0U77zzTiC9qqoKAwcOxJNPPhmqQ/aMg4PDVwSeg4ODwz6Ov/71rx4Ab+3atd727du9srIy74wzzgjkqamp8UpKSrxvfetbnud5XlNTk1dVVeUdf/zxgXyffvqpF4/HvT59+mTSNm3a5AHwbr31ViUdzc3NXjKZ9D799FMPgLdgwYLMvRtuuMED4P3gBz8IPPPAAw94ALy///3vnud53qOPPuoB8FasWCGtx5SeTZs2eQcddJA3ePBgb/v27Zl2KC4u9r73ve8F8u7atcurqqryLrjggkza1Vdf7ZlMA01NTV4ymfTuu+8+r6ioyNu2bVvm3umnn+4NHDiQfe7ll1/2iouLvWuvvda79957PQDeX/7yl0Aev03pZ9SoUd7FF18cSqfw25vipJNO8o466qhA2ne/+12vsrLS27VrVyD9ww8/9AB4s2bNCtF90UUXed26dQulq55xcHDY/+EsxQ4ODvsVli5dit27d4diTnv16oVTTjkFzz33HADggw8+wMaNG3HBBRcE8vXu3RsjRowIpK1fvx4A0LVr11B9mzdvxpVXXolevXqhuLgY8Xgcffr0AQA2XOOiiy4KfL/gggtQXFyMF154AQBw1FFHIZFI4PLLL8ff/vY3fPzxx6EyVPT4qKurw5lnnok9e/bgqaeeQocOHQAATz/9NBobG3HxxRejsbEx8yktLcVJJ53EWsk5LF++HN/85jfRuXNnFBUVIR6P4+KLL0ZTUxNWr14doFVG54gRI3DzzTdj5syZ+O53v4tvf/vbmDp1aiDPiy++iHg8HvgsWbIkYwGnH93pI9dccw1WrFiBV155BQCwc+dO3H///bjkkkvQtm3bQF6f5nXr1oXK6dq1KzZv3ozGxkbjZxwcHPZ/FLc2AQ4ODg428Hf/+25+ih49emDRokWBfN26dQvl69atG9auXZv5vnv3bgBAaWlpIF9zczNOO+00rF+/HtOnT8cRRxyBiooKNDc3Y/jw4ZnnKKqqqgLfi4uL0blz5ww9/fv3x7PPPovbbrsNV199Nerq6nDQQQfh+9//Pq655holPT4aGxsxceJErF69GkuWLEGvXr0y9zZt2gQAOPbYY9lnxfAQDjU1NRg5ciQOPfRQ3H777ejbty9KS0uxbNkyXH311YH33r17N9vGPi666CJMnz4de/fuxY9//OPQ/WHDhuHf//53IO2KK65Ajx49cMMNNwTSe/TooaR7woQJ6Nu3L+68806MGDECs2fPRl1dXSh0Asi2LdeHpaWl8DwPe/bsCSjTqmccHBz2fzil2MHBYb9C586dAQAbNmwI3Vu/fj26dOkSyOcriRQbN24MfPef2bZtWyD9nXfewcqVKzF79mxccsklmfSPPvpISt/GjRsDpzA0NjZi69atGXoAYOTIkRg5ciSamprwxhtv4I477sC1116Lbt264cILL5TS4+Pyyy/Hc889h4ULF2LIkCHsuzz66KMZi7Yt5s+fj7q6OsybNy9QxooVK0J5u3TpIqWzqakJF110ETp27IiSkhJMnToVr7zyChKJRCZPu3btcMwxxwSea9euHTp37hxK16FNmza4+uqr8fOf/xz/93//h7vuugtjxozBoYceGsrr0+y3l3ivpKQkZF1WPePg4LD/w4VPODg47Feorq5GWVkZ/v73vwfSP//8czz//PMYM2YMAODQQw9FVVUVHn744UC+mpoavPrqq4G0Pn36oKysDGvWrAmk+6cblJSUBNJVx3I98MADge8PP/wwGhsbMXr06FDeoqIiHH/88ZlTIN566y0lPQBw/fXX469//Sv+8pe/4NRTTw3dHzduHIqLi7FmzRocc8wx7MeH/16i5ZN7b8/z8Oc//zlU38CBA9kQEAC44YYb8NJLL+GBBx7AnDlzsHLlStZanE9cdtllSCQSuOiii/DBBx/gv//7v9l8Ps2DBg1i78nSZc84ODjs/3CWYgcHh/0KHTp0wPTp0/Hzn/8cF198MSZPnoytW7dixowZKC0tzbjc27RpgxkzZuCKK67AxIkT8V//9V+ora3FjBkz0L1790AYQSKRQHV1NV577bVAXQMHDkT//v3xs5/9DJ7noVOnTnj88cczIRoc5s2bh+LiYowdOxbvvvsupk+fjiFDhmRim//4xz/i+eefx5lnnonevXtjz549uPfeewEgo+TK6HnkkUdw8803Y+LEiRgwYEDgfklJCYYOHYq+ffvipptuwi9+8Qt8/PHH+MY3voGOHTti06ZNWLZsGSoqKjI/2HHEEUcAAH7961/j9NNPR1FREY488kiMHTsWiUQCkydPxk9+8hPs2bMHs2bNwvbt20PvO3r0aNx7771YvXo1BgwYkElftGgRbrnlFkyfPj2zULnlllvwox/9CKNHj8Y555yj6ubI6NChAy6++GLMmjULffr0wfjx49l8r732WujUDCAVMrNs2bJQ7LPqGQcHh68IWnmjn4ODg4MW9PQJH3/5y1+8I4880kskEl779u29CRMmeO+++27o2bvvvts7+OCDvUQi4Q0YMMC79957vQkTJnhDhw4N5Lvnnnu8oqIib/369YH0VatWeWPHjvXatWvndezY0Tv//PO9mpoaD4B3ww03ZPL5pyG8+eab3vjx4722bdt67dq18yZPnuxt2rQpk2/p0qXeOeec4/Xp08crKSnxOnfu7J100kneP//5Ty09fh3ch56m4XmeN3/+fO/kk0/2KisrvZKSEq9Pnz7exIkTvWeffTaTZ+/evd5ll13mHXDAAV4sFgu08eOPP+4NGTLEKy0t9Xr27On9+Mc/9p566ikPgPfCCy9kytixY4fXtm1b77bbbsukrV+/3uvatat3yimneE1NTZn05uZmb/z48V6HDh0CfSnipJNO8i655BLpfdoWHBYvXqw9vWPkyJHe+PHjQ+nPPfdcph9Nn3FwcPhqIOZ57hRyBweHrw9qa2sxYMAAnH322bj77rsz6Xv27EHv3r3xwx/+ED/96U9bkcJ9kx4Vvve97+G5557Du+++G/hBjdbCD3/4Q8yaNQufffZZIJbbx5o1a3DIIYfg6aefDv1Yy5QpU/Dxxx9nTrAwecbBweGrAacUOzg4fGWxceNG3HzzzTj55JPRuXNnfPrpp/jd736H999/H2+88UbgBy+A1K/I3Xjjjfj444/z/uMSUbCv0SPDpk2bMGDAANxzzz2ZHwRpDbz22mtYvXo1rrjiClxxxRWYOXMmm+873/kOPv/881AYzJo1a3DYYYfh+eefx4knnmj0jIODw1cHLqbYwcHhK4uSkhJ88sknuOqqq7Bt2zaUl5dj+PDh+OMf/xhSiIHUqQ61tbX4+OOPM/G2rYl9jR4ZunXrhgceeICNOW5JVFdXo7y8HGeddRZ++ctfsnkaGxvRv39/TJs2LXSvpqYGf/jDH0IKseoZBweHrw6cpdjBwcHBwcHBweFrj1Y9km3JkiUYP348evTogVgshvnz52ufefHFFzFs2DCUlpbioIMOwh//+MdQnrlz52LQoEEoKSnBoEGD8NhjjxWCfAcHBwcHBwcHh68IWlUprqurw5AhQ/CHP/zBKP/atWtxxhlnYOTIkVi+fDl+/vOf4/vf/z7mzp2bybN06VJMmjQJU6ZMwcqVKzFlyhRccMEFeP311wv1Gg4ODg4ODg4ODvs59pnwiVgshsceewxnn322NM9Pf/pT/POf/8R7772XSbvyyiuxcuVKLF26FAAwadIk7Ny5E0899VQmj39O54MPPli4F3BwcHBwcHBwcNhvsV9ttFu6dClOO+20QNq4ceNwzz33IJlMIh6PY+nSpfjBD34QyiPbhQwAe/fuxd69ezPfm5ubsW3bNnTu3HmfOF7IwcHBwcHBwcEhCM/zsGvXLvTo0SPwg0xRsV8pxRs3bkS3bt0Cad26dUNjYyO2bNmC7t27S/Ns3LhRWu4tt9yS+YUnBwcHBwcHBweH/QefffYZDjzwwJzL2a+UYgAhy60f/UHTuTwqi++0adNw3XXXZb7v2LEDvXv3xuLPgLaVZnQlmbQGJq1RyOvnoWlJ8j3JpDUA2E2u60ke/7ou/b+epNUD2JG+riXptQAa0T79rT2AA8g1AHQB0IGklTFvtpuU/kX6/xbhekumtC6kNFoy0t/963JyXZH+7qf7p7bGSVo5SYuTa5o31pj+QjtIbHDVtQ3ikrQ4kycBeMXZ6vw+pH1P+3c3uaZ9XJu+3oFgf/tp4R4BdqAYwX6nre6DUkFLrE0/1RjoQ7GkcpIu9lUife1zVgJ8E+kgjhP/uhHB9qS877+R31Y7wL0d0BjgRtqJSZI7VQrl8QMk1xy/i7zP8XuMG/Ci0JAJFh1UjU47hb5+efbaKw/KHv8/x5P0+gsE+dL/v57cbwzII9oyPkRp59eSum4vPEWGXeZaNiH6IoM2LVdbtia/Fo5O2nFb0nfrM3zRHdmRSPmlC8KSWSUrM3KOCgjZhMLxBk2TybEEuWb4ARVAQ3GWDCA8vig/yGYO8Tn/dfyq/datQHDWAtRtxJFM+QJCGhCev8Wpg/IFbXpRHtP3AoJjIChrZLyT+l+M+oC89eVEGbnm3k/sUo41xNrE9q9HkI180H6gPNwj/b8LUnzu36d8Tfst4fMwrVho3J31QK8LgHbt2iEf2K+U4qqqqpDFd/PmzSguLs78apEsj2g9pigpKUFJSUkovWMl0K6SV25FmCrF4hzFDTZuoDUg21lFSP2uK5DaKdlErhuF52gdxeln/by+oyH1TIzc8XP5KgpVK9siqCj5b9mMoITkagzXUIywEEoA8HujlFBRhqDwowPef44qv0QuByhTKsVcmnhtC1H60O90RhaU4tJ0ch2p3m/FGPhdsh4APxBoL4A9pBq/aspHZClJSixFtlWLmSebCXW7MqXQErj+pf1QQkoQFy0+vWIzmUAcJ/51EsFx4l8nyH36HOVan11SuWkb+fBLK8lQ3YgkmtOpIo/7T8r4ui257kCu/TJiPqF1hFBREeaUYhNB5oPTCBKSa0KcV54lif732zDblilyfF4tQVh6FCHI71mpUIRs69EprAzItDrl/PpMGZQ/i5hr2YToy9tm8DI0O47i5Bvl8iJk0UyeTL11EvWZFJFf/LcW+cT/T/mlklxnFk/0BblJRlSKfT7hBp3IFwnJNSHQV4p9EpoR5AdKht9alB+o1KFjmMpEv9fpmKcky+YTKndE/hNlEEWS5OWmDsovlCM5OdxE/mf5iFJdhOCo8J9ImUVkfF2MoPQW51nx3WRmQ5lc9J+hhoc4Sac0iXWXINsPdMHfFoCv2lYCSPg87Cc2Ics8sSDR+Qp1bdXTJ2xRXV0d+jWhZ555Bscccwzi8bgyzwknnBC5XpMJWTT+mT7XmmiA6TwpexNflPjiQ/zkjlza0KdMC1HhFZfKMoW4QfJpIeSvlVUl+mkJxf3CwpYHKMVcem7g+JyOAXskYMarsUayoOPg86rIgxxfJpmP+IwpLPJGHc9B8sTlEtd64d6WDeP8SiwZKJ2UZ8IQ6TSVY1L6G4RrXwmm11xeXVlieRYw4XlaNCei8w1xNOdaThSe4qcbWSmpGmTdZypXRNjkl02dKtGiglV7FWiubVVL8ZdffomPPvoo833t2rVYsWIFOnXqhN69e2PatGlYt24d7rvvPgCpkyb+8Ic/4LrrrsP/+3//D0uXLsU999wTOFXimmuuwahRo/DrX/8aEyZMwIIFC/Dss8/i5ZdfzolWn1FaUOdpJagUYP+/zsGkSpOj8OqVAvlUAhoQbBpqVvC/W7xsAvxEKRabGxLCNdfH3P0sok5UNkJY5vLT5Zfl8+uuk9wPdjWneMlKzNZow1pGISMmbilVw8juyfhSpU0y4NrUTxPd3iqo+1Ymb/I3GqLLeplcpNf1TN79DCK/+A0mpMUFLSNqD4nGbfEekF8ZpKKTu5df3YCqs3pDhF93eehOsET+6WC6Sjyor+MozHJFUayt1m2AVlWK33jjDZx88smZ735c7yWXXILZs2djw4YNqKmpydzv168fFi5ciB/84Ae488470aNHD/z+97/Heeedl8lzwgkn4KGHHsL111+P6dOno3///pgzZw6OP/74vNCcb+U4ank+A1P9K3+8oXK0yAZrHfOcmKewMFIobJAP65nNnEd9/xLk2tfmFpe48F/1VP450BSiIM9NmdHV4tcgpoXztVhL6CqShQPpyjMZQEzeWCMyPMwpwrbgLcScs9uHbHljj9xlvUoOhq3Ypgs8ei3rppBHIVc+4ZRfnZlXfM4CNiGLOhGbj7FIX0O3wLZcQxpif1k8pd6yAUnWgh3VQNCSaFWlePTo0VAdkzx79uxQ2kknnYS33npLWe7EiRMxceLEXMlzcHBwcHBwcHD4mmC/2mi3P0DnQCigg6HA0LkEbR1QZjXJSizYKlIVP5yvsjmrSzrdt/DEi3NfVevaKFy+mRVUnzd35DtyOY58h8nqwoyis4zxuxZakNh4O0zNdpGhc/r6RNDtuvmv3b7JdfTkPn7EwKcMVMTaxgHbehCYfLmETfjFihvQ/fsmllwg2v4ELq1wQ08Xpki/m7+NrO1l3hBTfm8I5M7SQ+3EtnJQycMyJsgjnFIcEaZu2q9OLDKnjlLxoHJpytJ0d4IwiejU1RFrRO4BaDYQ44sjwmZSjjb56JTe/Ecxc5BO8BpEV1psIMasytrMbLxH4V8lZJVyjaJzkdvEvVNdVFNsbqC8SK9VvnqaNxm6w+XWUcA1M9/0qqVdfkYphZR2WTCoD5sQG8oXMk3KElEek7F61ANWKPIt3WiMvarsMO0yE1AuAUlZiLLWpO3UeYLLhbyGSqiMVV+lmOL9HbkqvLIVp2ywFnbCV1l6TTZhRd99n0/IpkUlVJuUVJ2bS/CYgX6Zj0hdk4jgcG5ZH+cvajvfluBCIdVWXBvQRSC3MOTKsUegXUx5kTuBwoQYmSIsKyuPxli7/hcXJ4WNabeLUxflIGf58/OJ9wso4XUvoFs42cg0bpNxBHBbOjj9PdeTInxEMbpwFmoqBaJHuMsW3NwgbXn/c9CuJJOP0f0qrQmnFBcALWO1UiP6oJRN7CqBDgRXr9S9kzub60poqRV/BjbWFCDshrY8faLloVN+o9pz5bXY5NO5SilF+fXQyKbQlgkhyUA8YksFnZVQll90AqnoEHhdPG2AZhGli3nLibKEk0Gi4rkvQU9XXueLXI6HVCnIJnxB8yfIpr/i7GM2vcSxsGi3yLXtdPSIMsV0jk/A1q7L8XhhDBP5A2dASWZCKHSbSGVvwR4/SfnahU/su8jXjnfdQOO8VtSp7X9XlRENsonHdkIyXy60+IrRRmGwKS8Pcotz2cpaOwG7hVC2XJmFS7ZA4gW1ySSRC2QKMjdn0/qSwnV0B6TuRIF4gB5TyByl+w0YBTkf78LLVRO1el9oSXGccHSrR4SJsqZVk2RKLqdc2C74OYhBvnkCfxJJ8I7JuLORQbIQG44vZVElOvA0m59c0roQuS/PmqrJot+FT+yfaK3YYvuVKoXMOixzre8Lzo8cYRo6kU9w9UhGpmxhlL+DqPxaOGeiukFkd02XSi0Je3c9EFRBuGVJsM0KvB+E34QCmJ1ZzHWW6PY2bSRNXtkte2nBtT1VUfLjmcodsuWqylmfNW/kW7ELIJ8yTSRUQxTnvbQd+9y54UkkWefJ/rmhnYJbKkd/K90yzMagJo/Oz9Ic5Rg2WkIALag47Ve/aOfg4ODg4ODg4OBQCDhLcSuACyKwCcEQQyYKD9HCwcXzyYLtWw5Gka5RA9CiNji3W9vAIkd/BKF1IPYhtR7LQmjkpdjWarvppVBx/PIxaRJ7bwaVvdm/jjVC/XI2v2in2rrPvVIuG0pzQJBMmQtZZ0UzI5Ljt9x5SedZgCQtGpQlmYRF+FBNRKpDaGgIDfVaVGjqlpAhpgU95WLb5t5bIkepDN/cPSrebfcoIvOMLPqeCwTLUpqM+P6c3NT7BHWlpWjikBf5LPOI5QlOKc4TuPCIAkTYKJG/+lTCWxU+oXsuhdb4VRtp0H4uEJ+38WkaxBxTXVrn2vLv53ZYj2pjBxX1LeOizqfOlb9pk7aRKtavgKPfNgbUh82ZSyrlRyxbWOSJG6vyB05hkC2fzLlHF5UsixIwC1nSGQ6y33XdYzXqdLGWMuOAjogoR0z6ZVryg5q1g+3qK4W2c4vpq+QjgCF6uJC4ALAvQXfPVFqF81Da6BvWR4pEDNDL8ajuSJI8wCnFClA1r1DKbaHLzw2yUyQ4SzFF4UxIKpVEVrOWGm6gye6J92XpojWYEpKns4vzC1FEikqHuOiRWTTksLW8cJSJeVUbXoDoTgGTmLnw6M1vTOs+xyIqMAoyVR51EkNXbBAyJSF3uaOLfxa9e+aLUMovdCda/pQcwGDxrzLF2kJ8jg4HBfOajBK52OUUsGTOepGMHtl8wtHH8Yg9R3IjRbX4tiu1MJCNxdR3Eyu29RxdQDil2BD7tvLakpC5zjnlKL/KsW1p1pYVHaL8JNo+rNmElT+Z0uv/j6ra5A/c9iSA99zmHzJ+502qBZcVIj/KdhhxfGtyxI3Y2LLZ3vK0AZ3iKb9L+U/mzcg/b9rxlDhOOMOCRmu0pM3ojU0swD50USgy2aZxJJnQyeXhNteplMaWnKMLG8rIzbP6IMGWkM7ZPpH1Q3QqtCOjwB3slGJL6JRjMTaYsyXl+/g2Oo+p8tqVLKZxE484QLn0wqNgQqClpKvK7ABe8NI00VqVe+tzCx8xfCK3WvJrU5XDdGyY06JzaXLtZQ5lLLzND3KoqrYli9P5LfQ6O4uqCqpFG1dr/hF90cVb0eRhIPyTqrSCjieDcK8AVD8yKMCU7nDMbbYE05NeVIsIsUdMQg+SwrXuOdW7hpV/jjfMB57Mw2bShbpwPT43vc7SHzXemYW4eNOFCUWAU4ojorAWKbWRpuWgc5eXC/dbXFTnH/n4/VDxOZVBUbLRDg1gRye3KJOtz20CXuRWLVn4BFdLNJhM+rpaRIuxqh6bRVRwIpZZK201hmxp3LXW3mITrGfzE740Txx6b4fkxzsy3w1mF/MWkymVFchG95p7q4wtrDlBNBSoOT2vMp7GY3L8QpUJGx4R5RXH+qLnQFGmfR/IFMVoMK1fF7JFyzJxnOiXQCqPLOfFiwYqN3UGBHkJMkOBmi7tcrAACq8J3JFsDg4ODg4ODg4OX3s4S3ErQmZt5tKp4aYwlKi+U4grQy6QLLcwChtqZPlCz1ALSb5Od9fFZaqwz8ccq8InotvZbCwo+bTk5S/2TxU+IQsyqqkpAAAgAElEQVSp4EtoMZhuFhWNb/Ym9cAzusdzsxLK4nZVz5lzQL7C3IL84J9NVoeCcUE+f9pZt3GYpluE09hGYPAncMlmCbvobx1N3CvZ8EZ+otzzYxVXlUrfyURW8vfpWMy+tc0pqNK24n6dpUBwSnEOkA1DE1cuB91z9qLdBroIKs6NLl7ba3iyJ/I5ZbA7silU8Zg2m5TofdGdCAQ70OAF6dFW0VxbtuD6tUJyn3uuMFA5xFV7glTdlLtKT9uI3wAW6Rgig/QMZHyr40/bc4pNFGjN0Nctk3URGuHSdIs1ux5WBQbZjzlZmAQnK20iPcPtZBybbzNpcC9ssojXxBFz8oxC1wLymGJ9CIrNzGTDOTbGKvvgqtzlbe4BFiY1cEYBu10jxsYQcW5OAtDN75ZwSnEeILP4tlTdLfMLiCqBDgC1UA9B/QDJh+CKbHg1aUSbTo4WZhoZkRWrDES7gThZi16BcMm5jIEo3gD6ndvImr+xIbMEm8WvtohskJ1EoUuT5RF1TS6fYaeJ2aL7j6LFLuogi+3OHSKP0IVmrfQpkw3TWqWSesQ4yDxm+TinmMaC5oH5eQuxTF5Fr5BbcIi1+jXQBZNYcwKmZ1hzoDVxCyYT+3ZLQ2cwywEt+PPOPpxS3EKgkzdngWgpxdp+tUr/+/Cth+VM3ui1mYATGSZ5IyHfA5KzthjMgIVd+OjUad1Gu5YRzFFryb93hY6JcuaeziaqhvieGetaLhujCgXZSqRFVgG0H3IP6zGpCcjFaixazkSFJ09068IgZH2j84hx5HExfqqyLX7Zjgfvnqf9zrnqc1mUySSezkPl1xH91BXOE+Vf5yZbcln4hd9b5wHJQRzI+DaPCy4Orb7R7q677kK/fv1QWlqKYcOG4aWXXpLmvfTSSxGLxUKfwYMHZ/LMnj2bzbNnz56WeJ0AChUuqhKfceGT31p9pueu40K6Tpkyr5W7poguJhjIBlrUAZjn5/x3LWwf0z7k+lfsYzVoSVxNMkqiUF5YyNog99oLYGPJgjvOLcl8xGe4ciwQazQIXbKCjBcr0p9CSVyeCrOc4lMyuVmQH+fKwqZwjh/ERZlMibaUd3Y9Js49fr+bjxZOQc4l7teEflNJGWw6Ub6Upz/5k/xiSXazNpdDNl+Ys0YCGrnByamv0i/azZkzB9deey3uuusujBgxAn/6059w+umnY9WqVejdu3co/+23345bb701872xsRFDhgzB+eefH8hXWVmJDz74IJBWWlpamJdIg64SW+I5DiYB8jSv+V1xhZ6mencboKyCyaMrt/CmJCklNlH/OuiCv1XIY3iFWET+xCWQNe/EkbV75Ff9lLkp863iUOHPuTf5+kS+lrkKuby5QVsSd2ann67icdXCT2URFE1k1OWlYQnOHmrXWiKX+N9lR7LJezMX2MjYIB3i25pTomojyoVWCxDKI7kcyaYqH8jqcyQtIWgdsuJ4g6CfW/RS2o872ROcLZp+T0qudb+uyX1XUyXKYLEENa/bWsTpMDfXM2nbi0e0ptJ1ZSkV8K/bkWy//e1vMXXqVFx22WU47LDDMHPmTPTq1QuzZs1i87dv3x5VVVWZzxtvvIHt27fjO9/5TiBfLBYL5KuqqmqJ13FwcHBwcHBwcNhP0WqW4oaGBrz55pv42c9+Fkg/7bTT8OqrrxqVcc899+DUU09Fnz59Aulffvkl+vTpg6amJhx11FH43//9XwwdOlRazt69e7F3797M9507dwIIrmBaayNdrjAJPzB7mqalV4ZJAIn0uqoomhUkGl0RyuE6kD/rR285sd2MIlqFTTar0HqKzW3s0ftbZsmi9lXZtZoOk3QdZT7E2kwORvDL0OU1o4S+t2/B4TYg6t/Uui2iCKGW/vEOBrltPBJL8v/7VinOYm8GFV/Re/aWYW6cVCBIs2jlM7P2Gb+hbLObTXiYLqZYHFBUvmkaMJrMl3kCgm76qFDRJMpV3ck2XFnRQkXE2qMFe0T1X5nVxPF7vfHTUsg2gObrSFUJWk0p3rJlC5qamtCtW7dAerdu3bBx40bt8xs2bMBTTz2Ff/zjH4H0gQMHYvbs2TjiiCOwc+dO3H777RgxYgRWrlyJQw45hC3rlltuwYwZM5T1mSrHJgMmX6ESJvREL1kEYfzdaUWYznSVshijwlFkjHydLGETuxTlHGJT12TBQV1i1DVGQykocic6ah9TD75PScssYGksI98ueQllahD+iwVH5W3VTiH/vk23UgVMs7EqOrdwYSoVUGtvdq5lG9qUbl+2RtWi06wE7joAGT9EOTmHSxP97LI8BYNMUcyttKj3KWzmZHm5HI9TZVN+aomYk9JEr227R51fXJSGa5GJq0hsItsbkUe0+ukTsVgs8N3zvFAah9mzZ6NDhw44++yzA+nDhw/H8OHDM99HjBiBo48+GnfccQd+//vfs2VNmzYN1113Xeb7zp070atXLzavreVYnLTFeybH7+jqK3ykriDM6QSYpHnUVo+WQF7lcb4blJs0xBhNanRMI9YI7Uj1s+dmkaPCTYzdU4lbPV25IldLhzjO/PK4KOkwD3GWkDjClmK9mmQSdW/8rrLNcVFPpJApwrpgSbrdnnsu4s89B+c7sYc4Xo3mrbJRjOxFAqVTjLnMDyKNDbp4MbEk0/smpCsUa9s3zxZFRwddcdHjQPXQWXFNlisyfuXy5b4I5GN1c+Uh2RrYzPbDqduifLSnL25OQMHQakpxly5dUFRUFLIKb968OWQ9FuF5Hu69915MmTIFiYRaJLRp0wbHHnssPvzwQ2mekpISlJSUmBOPwlqkOGW55SxgMhDG9zUvqoF1zm34U9BhL6PCpLZIO99VP2wQBbofRFC5ppkX5Nbk+XFNi7VwVlCZ69IeukADWyehavGZX1AO5MInQO6rS6Dgclu1rMnpEbbhEyrLn6Ul2WS5rC+OKr9+21NLsUpytAZEBUZlt4s2jgJPiS5mzstgY0mW/aKd7BlqnTG01Ngts8XFULgU2WEEJuNLVT+9Z7JxzATmFliRb/JviqfDndpm9HOLaEChIz3L4w0CI4hvxLa9buFWIGHfahvtEokEhg0bhkWLFgXSFy1ahBNOOEH57IsvvoiPPvoIU6dO1dbjeR5WrFiB7t2750QvB5liFlU91D1XqHL1Twof34RTByKFxB2y+VOSTak0Rr5cLknJJ18wLE8nzH0xatcb4pP0Olr/mqgrXKlcXKVt7QkohK8xaM0V4Nsj91pY+BOErfuwkCtpru6GcLqsn3JzesvaXv2UTQ26ms1L8mmrQPAYMXt+0eaW8YONbOL4jKbJyrI4qk30K5q3AB1/9Cg+s1JseY4rVRV6Q9XYaHKLK6UcwSPZzMAvGwoByss+nZTH8wiZvMkjWjV84rrrrsOUKVNwzDHHoLq6GnfffTdqampw5ZVXAkiFNaxbtw733Xdf4Ll77rkHxx9/PA4//PBQmTNmzMDw4cNxyCGHYOfOnfj973+PFStW4M4772yRd2pptLwFOR60FPs839QGKMrN3iWzGHLXHJR2OtWvN4kNqIvZtHUxilbhCLHDfnbd4theJeNs79QaUUHSZDHFapjkjmpd8b9ztlqaHqUuNQWcpbgFJgHA3kJiU4aKR1WWQ8NNd2IWnRGAJ060FNMgGPP219n1Rd4yh8wXQN3gYsB1XFpPblJVAqpM2MSo224SzvkHOyhJdMzRRVBuZh/6X7yWQeX8iw5aM+VxKo/twhS59xJrAfJldBX7xH7ZmwDswnkKgFZViidNmoStW7fipptuwoYNG3D44Ydj4cKFmdMkNmzYgJqamsAzO3bswNy5c3H77bezZdbW1uLyyy/Hxo0b0b59ewwdOhRLlizBcccdV/D3cXBwcHBwcHBw2D/R6hvtrrrqKlx11VXsvdmzZ4fS2rdvj/p6+Y8n/u53v8Pvfve7fJFnBBNrLV2RcRYIG4svjfkpDFS2iUR2WVmH4IuVtezmK2Pk62SJKDu4TcwOqs3zQIq2Fh2p1CJDLTOcJdkOuW6Yi/pcbuOF2ljoRh+/bXzXiY1fg98uY2Xz4kIp/HTVC6t4nYt153iZCjLZj3fkVUjJWkn88Q575B4hL4NIp+12rnBpIgIjUbSwcZZgWZ/k82eexV1bFeQaZhuHeXAerOB1Lic/iOkyvjCZ6+vJdTSZJ/KOD7sQChVk0krc+60vhZOJFUKeCMLA5Geev4qnT3yV0fKhDVGHi45Kogw0tcmOeKoUJwGU5UaFqnZT5FXhzodPidvWK+7aiC6RMjB1sarbkpsG0sKtqQ1QFC18IgpsnW+2yq+5SsJFBvrpvjucWzjkDutfKONg4xqXPSt7JYuFn70KqCuFTr6mWxf5hYhprYB+75m6RtU5xfq6jWCj9NqUQftatklYFsPk5yfRI3FJVv2GNqqA0dLkLSVrYdM9Dlwa10Q20XFmvOOXIv56Xz7KVtfKhViEc4nXIo/LA6DE68iGgALAKcV5QlSLVD5jejh5pdo9GmnwNJBCaxGUBBGmvKiTpBHtURpV1oEm6TYvY2NJJqDNHXXBZaYIpmvyz6ROIn0Wtbo009eRqQUm6o2N1UZVju39oFWEnttM7ULRytbys63lj8I0Ll7U/mwEhGi9IZBZBvUTrwguptjf2OOny1wtdkhEekpXIo1Bzy0GNufFP+2nQvzMswV0C6YsSTLrqd4eK1sMmUfnBhHFMWK20KcUmS4A7Jb2+fXUyrxn9Bx3NX2hu9xpKdxgLJCC7JTi/RSi8bHFavRPnUD6v3/dQKkSntEgikWQPmcto3O1msjuyRRkUQG23awSJ1ZDjXKRHxDBS70CldwmF31J+YSMw2RrDLr/S7UXzJwHqVrSIX3tDwJ6JJH5GeRKqHiV24ntp0c5kUKm8Mjy0xWaaueRsNlKNkGbj2diKd5dCpTl7sFQ8YRoHfabQ/+bXVRJp9btJMIKQ7ABOTucDBnZIDuSzcRboNuMabKzTBcjSJXwSJoHbcP8n/ks9oRq0WY6hUT3HVGrq6gUc9f8XZU1VpyiAvYtCUXqO1QptvX1MXXIPBbiIs6FT7QcaLfaDAJON6KeJZOybAahSkFOIGgtthugzDqaMmUtwmGVYv4AzI8Fz1XMhVzPKisbd/yQCiaDMKIluHVBiU13bOBManM7ld6mbH7P5H7LgE5x5UBTaeoyE1aidwiavGckS46J29yWb3VnaVsg9yJEBTOtMNSD7GWwa73cFkf8c+EmJla0pnapy6I9iHKSi9GYslF6ZVBZ5eiqQLUCjVq3FpylWLRKqiu0MaZEMdiYKsLmVmPxXfNr6wXkrWZmgyYyMWMooH2iL3ffkO8pOKXYEFFXiiqoGFFMjxiqHioj+g89pNm2AUHroV9g0q/BnBaLWkPXurwB5GsTXa4dwE0mJstymSVO8hjXZnaRaKQUGiqTUQLt7B9RYsdsF0acYYrWnf/Y/orsL652jhZTrO0bk8VaLj8qI0KMbde9iswMT+dIP19x9nbuSGR5cTuAzjR8QvkUCx1NspB/O8TJfsBS5abk/Ks8DKhxwybu3NTLpWmoaF4+GlLQgaTnzlU284xPiQjTzfZmddCBRN9VLxl1iyebhbmZvqALn5DXw9Ij21THpRXgnOJW+/EOBwcHBwcHBwcHh30FzlIcEfnfiCG3dpnebxHQmOJaZBexbEyxHVrEQmID2w1NsjK4ZtG5pjWWOhP3U/T2JBYZ3xq6HVmaDY/e04GzFJi4iGntUcegnaWKi3ytSLUJIFiKo0H7JLf5RAZVrLvqeZkVMKpV2dBaCMnjcsSDYT0BD4b2SaP6bJ05WYiNRdz9tdlLlJn5cGTjPJDOWXxtN9Lp8tAKdcHy1LNFj2TjrH4wG/PhO2Kcrd1WTa4e8Z6KP1WsTT2yol3XnEOBbNw8sV2W8QNNJv9N3088YVFGEQ/aJx2ENK5mOQJhj1F+OCsPcEpxDpDFG7ek8ho1rMJ++k6/LT19YjOyYyBARH4jhKK40QFEaxgbLUv3q2C5gjniiAquwsZhpV3SdAHkh82UMdktEZV2mWDXhTPauATltNFphig5/qRVpt8Fbw3TDXOiGzFqqIVJ7KifL2In2rqqw7kTQb70ryvtS/RhukiyD5Ahaqy/iGoAWUiZg+OsUFquR7LpTtlRvbzuSDbNK8valv9FOzGkgC+PK9d0YWSaR8xL1wTyX1TQgciaWpJcZseBNrVFMzBQeqhSXJjY5wAKpGA5pbiFIFtE+7BhShrCZ4LcBygZhKKlOGJMca6ILBqo8mCyKUW3K1tWBxeISJnAlni/TmbE2sSKm0VdEhXSn8hpX3fmic9FVOs4J5+clUB4LJjzUzrX7jbZycr/z1pxzKz6lDardjQ5Qkt3X6aJ6BqdU4IkO8ZN7KJWyqbf5ptpnXZcYqMI+5DFrBvV5tOcpKXyKhrnm8grTOQgB8ovqtMpmLOJKUwUU7WqS5ViffyqDpxdk6ZRC6ZXrFPe9XXQ7+pFOIJKcXf1ysIkbt5E1srWNzytfq5yspnUrk8y9YiLe45H3ekT+z4KEUoRFbkrwDKkGVy0FPdENr0FYBwmINIT5YgqXZkmeaNuSpH5tjSwVqpkaEpbP7nwCXsVMnNts8HS5j10Xpv8sWe6pnqk+B8A+opUSJ+ys1jJ3OG2k4BuLHDH5ajyi/kof+ZhR7BWSaDhEwaLtdYFURhYpThaaaxHTOY5MAkDMw0Vi5P7Mh6QHcmmOnPWCAnwlmI7271YoqoU7gd0Yo0pxdikDlHmJYT/6lLSK4paMV0N2YJKtTinxjq7cCGKiqxM7B48npKjUbtQjmKQygOcUlxAUPmhygODfCbQeTzVMKSAWoo3Q7AURw7KCMFY+TW5b/JqhYpfohY32WQii+O0aE7ZYoibRINp3IvHg8fuAcAXMDJHc0Jf9hoq2rh8XFlRu8jEcpmCRArXITsBZCatoCpvY+GLxLsyZVe2I9vmhBXqjpJttTe1JAtQLRC4fOwdv83XgfClzH6XzNyVKSUqZalBks8uDITQ3EBrUD+pa+LQ07keyRbVs0CftRyk5ooiKXx3aTbJIKSAkzH5sMBzwySKIzD7JIXgrcukWbWUcd7oyjAJn8goxbxFW1aWtA5ZvLx/j57HnSc4pThPkFmqCl1fi2+6SyIj3Mu2AbsDgj4aVCvYlgvISMM2Jk9nZdPVYyk9fctFojhbhMwrkJPdzC90M/kf0U3NIV/9Ki4qZV5cWwOmPBAifacOKYXMv1Y8ZQurn3f2kWssaRRwgdx0YxWB7MdnorVYnF+Y25cSgglfmsamB9DUJjuWKjJ/jOgyCTWwhn+clX8dtQwKOilpvBpUjlHoVdt0JV+Q5N7BtjRz+QfvcQtv6aavRPaeV2w+F9vJPCJrvhDT7cuWGRY4oxxdYpjxXLr0pnZZmTgk4i/aUb5spY127kg2BwcHBwcHBweHrz2cpbiFYRNSIcLkJBzTsiKDxBT3BPCR79qxOH2ikJF/2iNd8gnT2Myo/jVqTZaZQg2LsoYYPhFwU+cfuncwva8yXqnKMt/YlL5LLcW1srzKElh6ArTl68c7VHwqgjakyg0uu0f9yb4Bj1iPTax2esQlfBnN/2BjZYt8XBUNt+nAP2ny/mzYD2dZk1ncTDxeKp7KJUbPIiZe3ifpSjeTpN7m1lMVyUZ7U/w0hRwWxzM3vmm6difCZlqImltl9XFPyvLZT5uM90xz1AgNZYoMd/rE/gFx051KYW3pDXoiI9rJNPJkehLqB+CjQPiE1bRmlCbUHEiLpAyauA11E4RtbKYOql3crYJEln5/8lkH8t7mLS8qm6ZPqoRmoUKVrJo+CWBt+jqjFOtLMN0EEwJ3jqzIh5SvozYOtxDzkRDyUeEmi4sHQicQ6JyqXLskxRz+YnwthMWaGYfZLMJkw53vbUnuJLIKg8H+C9NxIv05ex1Zsrhz25N1uGdF4jVHstnJcUYpNoiz5XgqJ2NC+p1iAOLFgaRAfbnZEdIUrgMZQ9Fkby6gMdjKpVwdsjIR5WxuXR0A+Phh2UZQd/pEy0JcdQGFDWnRTfaFiiMOzn8aqUiYcACARYGNdoWH8epfpjBwyPUMT90zPoHcxiXRIsdJVpNNTWnoFj5yMSVpBF/hCykf5tBtptQphzJrh8yCJxsnMouNHYhVZDWy14rSODlijHydL6vKExWc90IX2yzMOJE3PfltvlqsM0wAZ50TYbbtTR6bHqSf6bQGZBW5wEY7veUvchuZbraULaJ07hXZAKPlxcEfy5a+Hyf8YGY9TOdYZ5SZPsGCkwOZhQa3EBUftEBkWROwFHNcrBcS9ClOnoryU+GYTIPRVmuRlYlNpUBR+CndRmplm4v3CwSnFFvCxoJg038mYRWy52zPRwRyXEWmJ6ShgHDMkA6F1ZylQsfGskuhG6C5IKoLkkwmUrd7GrrNFSb1+BN5n2bgUymjJTP1mSqb4n0bF7auXM7YScdJArb6PfPidUD3banLDXkMK0nQ6kzCHvLB2yECwIdPmJxLywky8t1G7sh5KBs+cfBe4KOIGx2j8KrKeK5EEsAn6euesgx6sMq7iTXNBio+EwcSl0eWbrGxjwsvSGbuIKUUBxRFM5goyAHoaG1ARovi9hmKNmzKc1w4QzJQIVkAVAhpzLP+f5NFoFiSybpWDmIoeDed1ADyI09J9l2t5iEuBMj3dkTZmKyAU4pzgCo0QpXX5jlZWbJnc3IJZaChLM2UxwEoa05d79aWyc/CnHCggsRamcsVNp2iUyzEMqnF2GQ2pYqGzDWZA5Qk+DSnlY8BAD5tIW9AFMgWoqKRXga5ki556Qbg+PTl/O18Fvu6FDCJ+aTKh6qvTLwmnElU9GjEmWuOHkkx3Lg3BlmYf8TWow5gzSWOWA1F7s/T/+PIngPOWNPMLKaS6mTVc8f3icoqoJd/nOcLCPe/haywM9DoFUVuscNdS/cRcMq7zJQal5+sYgqpSPd5JBA+EQ3meybCbWXsVUsCXd5PXW6ph9Uvn2bK1oU3tsAc1OqnT9x1113o168fSktLMWzYMLz00kvSvIsXL0YsFgt93n///UC+uXPnYtCgQSgpKcGgQYPw2GOPFfo19gnImDmvaEDquK564AisRwW0v97ZsqDnFkaNN9KVoTsbMer5iRFdQ7n1s6aRtqc+AyKWzvGkil7/fkK45vLkm7+tyk0CpyH1yTZh8EmuLNWEI7VU6UISxGvxeZonn+5HjjZVGAdzj2tz0UqY6n+B8LrU52T/lsF7UZ6S0aGLTo1DT3MW5IUbgC57U59gPGyQPm6hEJnf/XYx4QFRSZZ9xLz0eVoHl06fS19zew6M3nMzUouMz8Ub8vAZDrTNY41MjDbXXhJek/GFCR1KfI7UsWxfIK0oJ5lPCia8K6NXNEZx9CrHRx1wFlIfXRvRskzlrcg7GQU6zyEV1krxs88+K733pz/9yaqsOXPm4Nprr8UvfvELLF++HCNHjsTpp5+Ompoa5XMffPABNmzYkPkccsghmXtLly7FpEmTMGXKFKxcuRJTpkzBBRdcgNdff92KNgcHBwcHBwcHh68PrJXiM888Ez/84Q/R0JBVz7/44guMHz8e06ZNsyrrt7/9LaZOnYrLLrsMhx12GGbOnIlevXph1qxZyue6du2KqqqqzKeoKOuDmjlzJsaOHYtp06Zh4MCBmDZtGsaMGYOZM2favagFZCsdE7eQft+svM4WCSdQYrXCQiIu67KQ0a2z4ohpkdrOt5zQVaapNTnXVanMwqJuLitrt86qZNteZXtTn74y2ixokqXb8DHHBzRNZmFOIMgvCSbNCklgClIfXbvY1BM3KE+kwyjuUeY+5w1OcmuijaWR3ksjl77m6jvXoBxZ25v2i4mFmSVOQNf0J3iEn51QCVm0RasZLVZPUhg6Ukw8ZCI0vBVJvm9Gqh0zbWnWjnkLx6NzB1O1zAtEeY6TXRwq9yLjsZNBVoeV3NEgvJlUeOkG4HtIfVT0hcsSrPSUn0Xe2RfDJ5YsWYLHH38cxx57LN599108+eSTOPzww/Hll19i5cqVxuU0NDTgzTffxGmnnRZIP+200/Dqq68qnx06dCi6d++OMWPG4IUXXgjcW7p0aajMcePGKcvcu3cvdu7cGfjYIt9KquimUzG2ivHNJ/xoGl9LK/XccywNtpNCjsqoFKoYP5PYThFpOmONvJJHIfKPKq+MKP/5rlJCk4G8psLYduNF1Pu6EAY7BBmiLRajLRaTZjOT3rLNN8rq6AQh4+UGJp+uXO6eqNzqxoYqvIPhY5nb1EompMvuBirXzYMQdfXIFmw2sZkiytMffx9GENmGkinh1m5mXT6dUcCEj7gyZIo6Rfo5EyWV5Ys6OW06mceFCQTK52jXjT0DyPglWH940FTQ+iOCtofYPpwspnnVYRVBoo7GYhyNxUKJQd7m6pMUp0aBFGTr0PDjjz8ey5cvx5VXXolhw4ahubkZv/zlL/HjH/8YsVjMuJwtW7agqakJ3bp1C6R369YNGzduZJ/p3r077r77bgwbNgx79+7F/fffjzFjxmDx4sUYNWoUAGDjxo1WZQLALbfcghkzZoTSn3hkIsrK4zjz3Ll46bkx2LmjA7p03Yyhxy3DoifOAgAcefSbaG4uwjsrjgIAjJmwAG++PALbt3ZB+07bcNSoJXhh/tkAgAFHrkRxPIl33zwGAHDCmU/i3TeGYfumKpRW7sDg0xZh2aMTAQBVg99FSdtdWPP6cADAweP+hc/fOQJ163qiTUUdup/1OD6dcyGaAJQc+j7iXbZi1ysj0ASg6NRnEVt9CGI1fVBashc4dx4OmDMJnZrb4Iv+H+HLnuswYMlJSAJYMXox+tX0Qq+PD0VjcRMeOX8VzpvbG4mGNvikTzPW9G/CmOc/BfAEXj5xGLpuW4sBo1enGmhNd5w4YQFKyuuxuvZArNraH+OeeQHAJiyt7oz2O3omJtkAACAASURBVIowaNVAAMAj56/BuH+dicpdldhdtQG7jl6OgQvPQAJA07H/RmxPCdq8fSQAwDtnHrYvPhmN2ztid5cvUF69FB8+/k0UATh06HIAQM3yoSgCMGb8P7FsaTW2bDkAndtvx+jqF/DYk+cCTcARB/0HpYm9+PfbxwLNwBlHL8RbHw3Fxu3d0a50J77R/2k88vb5gAcM6rgK7Ut2YOnn1QCA03o9jVVbBuHz+l4oL6rHhKoFePCzyal+bLsaXUs24+WtJwLNwCmdn8Oa+v74dHdfJNo04Lxec/HI5+ej0SvGQRVr0LvsMyzeMhpoA4zq9iLW1ffEmi8PRptYMyYNmoN5752LvU0l6N3xUwzo/iGe/eBUoA0w4rBXsGVXZ3ywaSAQAyaNfQhPvDgedbsr0LPXOhx65Nt49ulvoAnAwce/ht1ftsOH7w5GEsDAiY9i3TNj8eXO9oh32wjvmDfhPXkmOgL4ctgbaJOMY/R/hmAYgPlnz8eoJYPQaVsnbOnciFdOTGLCyw8CAFYddhSamtpg07C3MPkL4ImuZ+G45/6DrpsbUNseeG5MG5w371QAwMeHv4n25bvRb9lxKANQc/pTaL9yCBLre8BruwvxMxZi+8OTAACxge+hqdN2bH71BBQBGDR2ETa/fyh2fNYb8bLdOPHs+XjloQvheTH0PORDdK3agJUvpcb4cSe/gPWf9MXna/uhKJ7EKRMfxfOPTkRTMo6u/daic99P8PYLJ8MD0H/kEuzY2B0bPjwETTEPh174ED6bfzb27C5DSa8aNA38AHsXjUUJgLYnvIqibR3R/v3D0BfAqxfMwTcXnoGKL3tgfY9tWDmkDU5/6i0AwLKGA/D24ZvxzhGbMbnDBszdcS7GLHwTHXaUY3PXJiw7rgwTnkjxS93Rb6K0uQhlK45CI4DGCQuw7eUR2LK1C8o6bUOXUUvwdFpGDDtyJeLJJN58+xggCZx52JN445Nh2LStCpXFO3Ban0V4dG1KRgwuexdtvV14fddwoAkYl/gX3kkegXXJnqjw6nBWm8cxp/FCIAYc6r2PLo1b8UrRCKAYOLXpWaxucwhqYn1Qgr04t3Ee5hRPQjPaoH/zR+iJdVgSOwkAMNpbjBqvFz7e2x/FyUacX/4I5u46Dw27EuiT+AT9O6zB85vHAABO7PEyNm/ritVbBgDFwOTjH8SClyegvrEcB3b7DIcduwoLnxkHAOhbvRRbd7TH5lWDsAeAd/4jaPzXOHTbVYlk1QaUHr0c5yw8AwDw2rGbULKnCUe+XQRgIeaVfgsnd16MByevwak767C0ohrffPBVAE1YPtQDUImhy6sAdMez4x/FMUur0WvLAWjuuB2fjH4BfR87F8UAdh3xHyRK96Ldv48FADSdsRBFbw1Fm43d4bXbieQ3nkbFI+ejBEDDoFWItd+BPktTMuLj055G/1WD0OHzXjikvB6vTFiAyQ9OBNAOqwesx+aubXDiy6mDW587bBMOql6DTn0/Rd+GBB7FeTh/7iMobkpizUFt8Fnv9jh1cYpfdox6EaXreiK+5mDsadOM+KQ5WDvvXGzeW4LevT9FrwEf4qVnU2NuxJBXsKWmMz74fCCQBCYNfAhPrB6PuvoK9Cxeh8PbvY2nN34D8IDjS1/Dl7vb4d2mwYAHTMSjeCY2FjuL26Nb40Yck3wTT5adCTQDw/a+gWQ8jv+UDAEAnF03H0vKRmFbcSd0bt6CExtewYKyCUAMOMpbgTbNTXjry2EAgLPaP4Fl24/D5mRXtC+txZjK5zBv9XlAEXB41dso37Uby149DgDwjQlPYfnKIdiyvgea2+5CxRkLse7hSWgDoPPA97C303aMf/UEAMBTY3fg0Pc/Re/PdmD3MVsxf83ZuPCIhxB7cCs+POQAbKiqx0kvTUZHAB+d/ALKP+mLkrX90BRPAhMfxbpHJ2JLMo4d/dbigL6f4N8vnIxiAMNHLkHtxu746P1DEIt5uPCshzD/6bOxe3cZeh1Qg4F9P8Ci18em5uwjX8W2nR3xfs1hAIALxs3BwufPwJd17dCj53oMOWIlnlx0OpoAHHncMmyrL8Pqd44AAPQ+dy52PDcGjTs6INZ1M0qPW4b2T5yFcgCfH/0mDmkuwmErUtt3F0xowIiXn0GXrVuwe1xnPP3SKJw9YT7wsIeVR+5BMg4c8+YgAMCTZ67EMW8chw6bqlBUuQPJ0xahy6MTUQKgzeB3EWu7C7teH456AB3H/QtfvnME9q7riXhFHarOehzr5lwIACg99H0kumzF9rQeUZLWIzrW9IFXshfrzp2H6jmT0Ka5Dcr7f4R1PdfhpCWDAWzA4tGV6LXldTw4+R0UN8YAjMZ5c4uRaIjhkz5Ho7L/Ozj4+TEoA9Bw4svYvbkr/rM6tVPlkMkPYsGCCajfXY4D23+GQaWr8MzqcUASqC5dih2N7bFqR+pdz294BP+KjcOuNpWoqtiAo/csx6MdxwJ4FPlCzPM8z/aht956C9/61rfQ2NiI9evX48ILL8Qdd9yBigrzLVfr169Hz5498eqrr6K6ujqTfvPNN+P+++8PbZ6TYfz48YjFYvjnP/8JAEgkEvjb3/6GyZMnZ/I88MADmDp1Kvbs2cOWsXfvXuzduzfzfefOnejVqxfW7QAqK41fKQOZEYe7n5TcFzdg0rQ6Ib2OpNNrILUnzr/ejqy3qRbZ/R5fAKhL/cwSUucF+duq/FjtoQBGpy6frQKuTF16axajRzp9w2wAl/jt+2T6/yvIntGyGvH0mUQ9kT2VKONSBHAASfOp6YDsRj56XSFcA0CikbysvyHQv05KroGwdQwkXeYO1EG2S0G8L5rMKsj9BEmLC/crgIb0krYO2X5V9TGQ2si8Ln29FtljJZMYDGBE+tuZwEffBAAUp1ngFgA/fiB9+1vvA3g4/eUVACsAAB2wGf3SqT3Jf78vab9WCNfi69HXN7EmJYX/QKrr6DHa/nWtcA2k2om2kX8G/Wr4bQOktnVdkLr8x0hsvSh12flH6du/eR/Anekvz6BrunUHpz9A6gdvaNsAKb73x0DHRmTdpPXkug5ZfuYGvCg0OH6nkFnwZDwqplUI98tJOh2wfpp/3RHYnuZbWZt/kv6/GsDy9HUtBgM4M/3tv4FLegEAau4Des9OJ1/yNoJ8CQDvokN6FPREtp07COSJvBYHL6dpk9ci2z3+mErR7svPY5HedgTUXIiD+6QuPyoBsMc3F/8y/f8xdEiPo+NICQOQDl1CWG4CQOwLBAe8fy1OBuJ58nQSsTl9AuD5QhzEPg+UI8wPHZER9t4BWRn1Cfi+933BtTgZwC9SX04aky134XMAbkuT9gxOTCfTMdc3fd01W3VgPmnbiOAEC8i9IaJAonIaKbnM8cgXCP4WEn1XIPW+tRmqLwBwPQCgONYGje3SyTubAfw6/cWfZ5dhQJrAvgjyCJ1HBTIDryKKD0o/pdmn1Z/VU3PGd1KXL07F0tGpy+otADpfl85zN0akS/RP7DkKQR7v6Mu2dQhOWnRi8wkSlJudDUD7h4AdO3agMorCJsA6fOLWW29FdXU1xo4di3feeQf//ve/sXz5chx55JFYunSpcTldunRBUVFRyIK7efPmkKVXheHDh+PDDz/MfK+qqrIus6SkBJWVlYHPvoxIMZBW0Pj2Mz6Uw7PyVhsMKXdj5jv0RAnR5SfzuNqky+oR88p2MnMuazGPBjKXmLGrXkJ0Y7vUZzWtxMB3Loupk9GRa/iErNyoeXiQjqgA7kXqw7dLNq/uXaXjmVugiScBQMiTFPLqyuXuicp1RJ40cW9TmIdiNWQUr8dogcojE8I0cDSZpMnK4NOycQKZBWlXSquPJDtuVW5uLWRhLzrZJoYKiGEDXHiBeK0KqyDX9LQHVchKIlNw+kF/hdAzSDDXRqrxHmhX0/aSzQGSkBBZKIIa2YHX2AnEesTFUSWN5L/YtjI6VeDjodN0JFLq+q+B9CI523hc6IZUpnPzoYz/VOE/EWGtFN9+++2YP38+7rjjDpSWlmLw4MFYtmwZzj33XIwePdq4nEQigWHDhmHRokWB9EWLFuGEE04wLmf58uXo3r175nt1dXWozGeeecaqzBCtsBNKUZS8fCi64qAoiPIcR2ZCeg1d/NPZBHAcnIUq/pm7p4uXZdvbRCGleaOFVOuhWiOoBrNG8PrCV6dI0mtRSQ22qTB7+Y2eNqm9C5CO4DV5paArMGT1mo4DSnt4cmGkdBx4BqkPOqY/giJmolSpFg6hqrl7PlS8TfPkk8dNFQZRqSLgxi/9Hu6D9Cctg54GiGWSbyjal1zZ4qJRphyr+ipYDjNbJ4DdValPSrnhtE09/HqkG5MoCRDum1Sjy6OTWSbGBIEHzeU7EdQ9kTL5HhAuUBzD4r3I8yO3YJTMHTo5KMqbrDymhaavffdST4CbbWWQLbxt5w06dsIgDdABeAKpT3aeMBQ6HI9G9dLmCOuY4rfffhtdunQJpMXjcfzmN7/BWWedZVXWddddhylTpuCYY45BdXU17r77btTU1ODKK1P++WnTpmHdunW47777AKROlujbty8GDx6MhoYG/P3vf8fcuXMxd+7cTJnXXHMNRo0ahV//+teYMGECFixYgGeffRYvv/yy7as6ODg4ODg4ODh8TWCtFIsKMcVJJ51kVdakSZOwdetW3HTTTdiwYQMOP/xwLFy4EH36pIKvNmzYEDizuKGhAT/60Y+wbt06lJWVYfDgwXjyySdxxhlnZPKccMIJeOihh3D99ddj+vTp6N+/P+bMmYPjjz8+VL8O3GqSfrcxuvjPNSAYx7PvQLbEF64TyAQlLQOysU4h97EaUa3YyudMrGU2MIm149LFJXVSSG+AWQP49ceZMhTV2cAnI/QafqHp4MXVnyHSr7TILIC6/NQyoQo14Lo8LrnnP1tHru3ajpgyKoDMMruC3g9fW1mlbN2BJnltLC4cj+p4nAq1hIamBkhnHZVVPUhIMhMsuQwQ2j8ZzhsBpnKemx+yNRJ6yhEMbA14HlLfOd7XgvOImT5HrZ4caFkcA4vPUX7RNT99ffIzyfr3TltK+9HM2ZeRhbTIys2ki1bgYLFByOR3+rlYIzLvpJJdaiSRCZ7t247wOBUQ2XeWyTNV/bI2aVDcozyaopLQUwE0jkrfKNoF2pCiLFfRHADHR6ITOs+KVKv/zPNVV12Fq666ir03e/bswPef/OQn+MlPfqItc+LEiZg4cWI+yFOCKrpREVVBps/JlACaDwhPzuaDVCg5PUCXA9lIfrYws7AJUxQ+lhr5UUhop9jWnWPsgYnbTg4yK/hCuGfq35a1YCchE+6XxflxSq8txDFI1w9UQRHTdU7IIG2MX7oC2D0wneSPAUFCaydiTb7QRGCjaEQJzaH34si+tkwB0A1I/3lhMcVNhipXb7Cw9HV6sbalFwSFIQxuIpYpCCYxldz6NNiHEmOCvwu1A6VVVI7D9bHjhAuVEKvlhqhpmI0IyguyBXqDJt1inSLGwmYLShfWk96guwbVypa8zyxB24gpiC7AuTo5XgzLmvQ7HQjyM88yTT1ch4yXde+dQHYvG+U/+aIlTU8HpPbkA+kSwnRKxxflVRWfFCLEUUCrK8VfBSQgV0ijLmI45ikUP4QFuoIb48gM0NVAViGIkzwWpilV3BeYe1qYTAA2ZegM6DJwE4cqDQhb2ejKR2wIgQbTlT1NCz4jNJxgKUY/SCyi2e+5KLomyojJfbHLVQtGMZ/eckEkdgdkt093pfd58xvXLkZWJBXhJp4MkzwcTBZo3EqEmpnKSZpkojNfwAmmTV/uHA5BYRCVTHkDmvIqpUNsQvUCh/BD0R6gZ2nqugOQVTt4ekwXVJKhGAZnUeb6RDdQRCspXWmK+QC5d4l0pbnMSCKznO1L0+szBZrsSaH1BOKyIVyrxg4nw6kQKg4miY9wiAcKo5ZiWpB49pRi4SSULd4TvSHcdCMzHmTLIn1S2QwM9rep1YLOC7KYcZGOEFQLOxJ2nU84pThPMLUayxRoCpkyzXkzqUFHVZ5Jmhykxjgygm41kN5gBKtZ3VZh4vJH2ijhkyNOBjYuR1vIlAuVFc6EhgQR6JJRbFI0b+FKZh/2zy/qC4kLT90o4qRg+rqmioFNl3AKqRk9or8OqbbwlWKJpThSiIatkDfhXVPFCVDzqiyvzGqseQ+ZQqm3wCazcqcvBL40s6KpFATxvihvOd4JK/D+f/+6PqsUd0x/D+Xl6Y1sILBZ0JsunsQJh646Ze5LujgS6xJAx0y4nYmieCB9KiuPdAtzZRtGMYDQ9yaLRJ3nQ04nnZTS79oTSqVYxssqGSqC6iXi+FN7WuhidTMwoCpEp4nSHnglVVhPnhVgDk4pLjConODuiYZCoEU8BAx01l3iBkxPSFtKEDzs00LbjKqoc3nosT4Z2CgCsvuc9UAE94oyqy43aZjQJJNY5HbY7sRDXi2dwJMpyxYAdE1P5PWQxG4iQ5xsApfVySmNMkuPrCxxfMkMViqvL1cfrzQTid0BgjscCPaCnPdVVpMAROuIaQyozMNq6+HQNZis0TXg+lsWYhOszH+puuxirR+yCrLIw+n/OkVYroSH08Qm5GKKgyA09+yUuuyY/h64nwzQI2vSTDonm2TySsYPHEzkpC0/aMqkPMDxRjaNKIqd6W8OZBUwWf9pF8S6cBR6XxaXpREsNh6JwMHkB9KHs1ZxShR9J9liQHxvka+p0U23oAj2ib/AqwX6VWWv032lM2op20XF2z5fc/N/DnBKcZ5hYgnOFTLrsM3EL4cm6CyO7Mr/QEjCJ/hyo9NkCBvFVYZ85BVdjDrIVky0PMPG008sMJp8M4LOV4qTkMRuRuN2lWWOg+l9mdKim+vl8XLi0+nrsmagZ9pVKFHKOKuQ3LpoULUBWVbPA+HJnj5nM2C5UApalqWVMEwS9U40ZNu8JwRLvW7lIJarvy8LH5Ur05QGn466rHWzPP0d9L+cDqWVTWxPG+VXZ7uQ8YasLmrV4QYkdy2pm+cBYinO/OwLEFQU1V6gUBvqLOQcfTL5TpQ131ATL5YvAsV+jQcqJO/ak1bCh09wsPGmynR7cY4I8yAdc7WE1mz4hNzIkEKsEUF+UPFGC1iKrc8pdnBwcHBwcHBwcPiqwVmK9xFwBpZ8lSv7Ll+9iUs1Qhn9Cc+eyFps4jQfF1Mnp49za+rjCyUwsZ7lWoaJNYaLGeaW4iqrg8oaQa0xxfzGCDvLvGjOS1spunbK3pbugJY3tGglMaXJyIUMc8OYSIsuxi1otWTaBbVZd3ggfEJPkbINVGESUWPsxDy2Hg5ZHTSWknspyXO+FS1BZh+zcCq/wPpsm/dENtRHsnlN5p43k4VhfvO/iycLZMvhzF4k5KOC0prNq3OBB2iWbTyiabowAApdHpM4JFmIl4aPuZhVMT0F+lvnmxFoW2KV5EJaOA9NgEydFZvel7lqNcJNFmojj0dP88gB9D79ze5stbI4Yq5tOV4XQ6Mpj8vqCdGJWqBoY/aahE+Iz0lDxkwgOmJc+MS+Dy42mHqT8hE7TN3Cpi5i3iVliobsg74ifAAkMcVq2NedR3BuQ1PlOUqH6RQNlWTgXNJMWTbCRbVICgdrIdu/DQDK9pD74WAv2WJG1t+ccNYpR7KJRTcf03mMi8GmQlq+EBPc4f6CoWgXc78hMOmp4lcTkMTFcy+SKjr4X8xDdTEK28Wcjke5+7J6udhAqNpaTKMLsTqgksa815I8wcEtUzB1/Kl7JfE5vomowlCfPaWkIv09UHpSySPSOkwWTrJ8Nkozvc9NOGKD0W7gTqDQyF5+zMjCJ4InHagWvKG+1r27bCGqWgQSDTNRzPehnDY6uNN8XbaL5AqHT8jKs5kXaNgnHfqqGOUsnX7uWqR/yDx9nd1rojJ8hRZwXPSRQfhVvuCUYgPo5oR8lC2WZWF40YJb9dmVThg/jqyQ6wrhnGKRc4Pcroun1ClPYhprNZGlmQh7EbYWFh8yC4puJ0MeoLe2yKxi9AWJRaYDzVNP7mf7NcqrcEJSBdP7YjfFJek6yBcLxCpyQK/sNQDZhJUTcl2wmSpJgN6DIfNe0PLo7Kr5sReZYsotJsKadbrNu1YhGJ8rb38T74OOl6nCwOUPexbIIspX5FFPaOZne5nCzR4hxoFTKFTPmTl+wqtL7hmxkcVXFMrn4m/5fqCems0kPWs9lVmEOfknXYjq5hORCcQKJZB5zYL/iTeEfdfwRjuxXG7PCG0DjtdVxjVVHHRIJmYWK7Xw5wuZUSAyOL7OI5xSrIDOxC9TaH3Q+cEGsue4CZ4aEfMDzoRAJGwcWUWpK7JW48AEmF+KKJSDylYxKFReW6VX54pTKSNMdh8mFvmgcGOUP9+6lQCCLl8zpUOcjEybxciFzFKhLhNIiWredRlOC1tviFUkY8GhSnHYOiJOSKo2kiozMmurSQPILMoidBYwqhABvLuKq7dckl4sV2Lo/2wlRMH027xz1+w1EzOgUoTVClg4X7bUcHqQnxiPC6U54ALP5tV5Ttj3EPnCROn1IbOCqmAq22R9L9ajqC/cHjJLcXDcqeReiHTOKkmrkynIKn4nk7JIj0reUDmRFEO1MuA32uWqdFI9QuU1C/dJA7LGku3IdniwTyA8F2gXceqh8o9TRSga4MIn9kXYKKb5V2LD5QNm1uFIA6msGahI78/sgOwYKAdMfXmyFTO9H1XJCyDqSjKKS02WR7S+AWELi0wR4dK5kAoLqAUoVf7SnFPZnE5rg7B1K3WtUyx1yq3ORawqS1yYcsZNP53rElqObvIKTspUyeHc92ZWxwxUcb4yiMqxaoIX8+vKlFkEOdriwrX44tw62xCUR5IBBZNa0fxJuV5ZAZU1soWJzkMnvp4q9CIZ6AhqRaMKTzbukltEyeqIPInoFlyyOkxWotRqQwemqNBIvHg01ICzSlYAqAuNOYD2O6fQSdszF0tjxJhiSpNKbqZ4x+drcQEQlMMyS7jI7+pFZxYybxulL1tGEsmA8l5BrrOWYt4qrqhUhTw740Q4pThP0FmNOYgWYdMyZN4b0ZDj560n12YKsCi9GoLXFeQQ+sCPd6j8dQ3swNXBWhE2sXSIE7TpgIwyCE2sb7r6KKMw+WONyIxklYDkIHdPC0dGVVaAtxRnG8Wmr5TWUgam98Uu0qXLFOTgNWUUaq303ZrbSVo2ltWHaB1WvovMOhUVNsq2brGWtMgr5mfSxclS5NWwvGIsxahAtv2pshmOKRZJVHkLKLh1rfgcX4eo/FKLdjCmmPMg+OmBMjmrv4lnwVR2afoMEAli8thYkoX34SyJQUWMt55WkLyi4qY0BKiskrLFAlsQgu2dLivWCMQlWpbIM8G+psovfdds/DTlHR8yPrKZe6l+IRuj8UBev+FqSe38RjuWJhO+lc3VSeTdUuyOZHNwcHBwcHBwcPjaw1mKCwx/haQz/hQ6rIKrj/ue1JoKkkB52lLcAVlvSdEe6AOA7GjyIbOgKDedmEVyqO/bblDxIfPhU/eijVmVuiMl4MJlrNz3Uv87DQ3gNtrxVgidC08HmXUBCG6Q8RgJxm0Y4awc4jM6F2QyYEGvRbZtaLvUh+iXWWkCllEdD9PuES0rque47ybWY84dlRDymrp7KA0RreApcshJDgFLMRc+EXan++UAcvkn5gPkzVIPoQ8R5PFg+EQdshZtykdhF7jMo2fU3DZeL5OQFlUIjYw/eEeSfFpIf5f1CQ2fqA3Er/qo04YEcOXmNOFyz2qEm0wGsXG2IVnjI2tBVllwxXTxnopcmVNAHv9P5V84br4C6nES8mTo5JvEy5AvOKU4z2gp5ZYL35LxSHTXNOMPQh3QsV3qshbCr0mpJGF+oJQ7NoqrbRk25doqvTYClusSzS5/Cp2gTIHb5NGA4KQe7msbHYlzj4rXXLnijnH/u0fCR+gaJOpGV+57UhwHbExx2G0PxbUWKn4UJxJuYpFNNjqY8DD1sapc9RKlXJzMubjD4ORLNWuqFHMb7cKbfHRKl/8qIsRIEVl54XSq2FBFXkwPh2LwihKCTQDhOuoiSnxWpYiogvNlIV6cnGLkmCzUJZimD58QFTAuNIelQ2xbVdgJ1/lcXH0DAudx++DeNRw+4b9jcAEgC5tQkabLKzMg0PzcQj+RoQkQwzx0Y5uFTHWQLeCSAJpkhUWDU4pbCNRizDGiDDqFNxfIJ2dV4FoyK9yopZj94YKgqVUm8DglRKcctRh0FmQZZJvqgOCLyOIxRUscVUC4vGQky1f0QYj9kPUS0EPyqUWLpmVnEE7I6qykKlo46M7xFZVjH5zVmKZzCpiYnqVNbAPxp3qz7SJTtFRW9UwVNo4Wkzwm1mSRKJO8nFDj6q2Q0KBBWMHhNtrVgmt/SrQ+9lcd426qMPj/+Th9quTwlmKdQs6uUThRzYFbmHB8pusnulgSy6QTG1UQ/c3YFhY+OgdUBP5zCli9UgET+z8jS3KZVLl21ggxsY85nuMXVDRWN3tUWwXznMibKmXZxIosM6L491Ndax/nHbim/OJ/F69NPA55glOKCwAbpVcWXiGmy6wVopdTJq/E+7L0JMudgnD3hRz9dTtQ97reNGGq4ForwiYhDzpXrm26jh6ZIgvJPR8yiwwDKqzqhTQKUVBSa20yIG1EQSdutMsu3XWrf50VQ/aMNK9stxNTB21COjbqIYfcUkffW9xpDYhKsey9jZQbETJHjJjHL8vUwiy7R83sMh7lLINUQabKkH9N6o41Zq1osomTtxTTM1ypUpxtJE4honVoJ2pJmkxB5hdRdBxRRb4ewZAPudVcLFtqFebSbBx3JnLTJ0LGF7KFO1cew6viuBP7MGyV9HPUseNVqoBy0xO30U5U1ihU4SRC25sYJPz/2WKpYYLyS3jhLb6nbIGgGl8yj7Ns/PCWYhq8V8cq7bRvWEOHbWhYtwnz6gAAIABJREFUA5yluLUgdiAXy5gvpKx26vuyUFbZ4l28VntGVebRZOpYNiB1NBv7E7fRXOuyPFKhEiUsQjbQVIJbVZeJxUCcRGTWYZlvNolwh1FFwwBmlnfaf6KgaxCueQ6VhR5wdcs8ByICY0/mjEhk83rMzweLj8msSGpQdZq6w6myEw6f0I27wPuJE7GKx00UGV0eFc+JDaLKK/OCcNBYCzjFKPWfO8khIaRn218sQwWV5bhByOffkx13GfQscOE2YUuxaBVXeXgC4JQEDqbeAp0lR+QLrt9l7lADJV26GIDfl8n0Y7wCxi2mOaWMq9sKsgmYyUd/1lxldQ3STuWtGD4RDA3SWaBlEJ/hImRoPtkiMJu7NnDt56lgaAr0kei1kNnlIFwXyFLc6qdP3HXXXejXrx9KS0sxbNgwvPTSS9K88+bNw9ixY3HAAQegsrIS1dXVePrppwN5Zs+ejVgsFvrs2bNHUqocscbsx+aeD5mlTnbfVIDnC359QYYVNUGfY/2PP1jrUgpx0Z70Jruk5pMV9lEGsEhzAJRMmsa9kg5RFG0uXaZoc/VxeVVKjhjzxkwsKqsTdz8r3Pw+9q99C1e9kNaQ+XB8JK+DhyxkJgP63lHua2jgaPffKfscfe865kPTw+VwC4ZMGscD4kTAvaPBe4fKlvGnCc/p8qrqZxR+2kYyCyngtxMtyLee1ZJryqPZ5/wPVxenUHD9xPFOQvPh6fVp9vkkdV/GI347xJGea2g7clZOChW/iLJSxn/ih76WKGNldKjKJvfpXMq1ZwWoczLb7/5GrjiyCpjY3yw9uo849enkuqy90qB9LONL//3iIdnrf7LyRlYGVx8ni8RnOP5TjZlwnwTpy76LZJxz6gWFyjZH8+RZOW5VpXjOnDm49tpr8Ytf/ALLly/HyJEjcfrpp6OmpobNv2TJEowdOxYLFy7Em2++iZNPPhnjx4/H8uXLA/kqKyuxYcOGwKe0tLQlXsnBwcHBwcHBwWE/RKuGT/z2t7/F1KlTcdlllwEAZs6ciaeffhqzZs3CLbfcEso/c+bMwPdf/epXWLBgAR5//HEM/f/tnX+MFtX1/98P7LPLD5VP8QeLETbYUluCWgVb0EaNP7DWNEhRSTSKVWkM2Kj8pabGX4lo0ypSf6dGQ9qCaSzVtrRlm+paK02EhtbUpLHfYDEEQsDCwlp2n92d7x+7d54zZ865986zz+MD7Hklm53nzp07d+6ce++555yZOeecNL1UKqG9vb2xlSdwl+1ngeSJ1xZMxd2H3M9Fl2Mknm88fR0SfchFr6/0O9Zi/lla0VNi3Y4a9AZJ/infRdGYTSl+UyBvXdPhLlvxHotuaioPlUKu6lgvQWoZk9Dc+MO448ot4SbXtmma7NLsIXv8D9rp5UXgc3FrlmVuxfOVpeUpIyyjbj/1vdLjQudQkO7J0H8aitBD9uRDfEJeutA+ejx3JfvkiKdVMrIhvZKtJy1X8u4EZUWy+Lptmid2zAp5HfoQ596j9ZhItuk+fr4+pB+6kNrAWVIBYD975VfooTO1PfvY/1ik9pRuFu2LLKxL8jzQ8biSG4MB/vU+918KwSjikeXdXSqD/pbuSU8mtKPifSMIAH1sk+SDe7rovjrTNKW4r68PW7duxT333JNJX7BgAd59992oMgYHB3Hw4EFMnjw5k37o0CF0dHRgYGAAX/nKV/DII49klOZGoD39HlJYHXReaSTRg20OOnq4q6GTUwX5ESbrpwudOy7uNYA24EJI94U/FElvNFSxVkgVSOXtCzHKX/a+8ZjiCiSl2Kf88f3aIB1U5H2hMFxDYZN2K8smnVOqg1xXOmJTpbj6dTLJFalNCuk5eZiEpvT6KCqzoZjIIqttGkOqnVu6pkq2jXzhJdlFGx13AGlRoi3U6H3wKU9Q0nhXDCs2tM5UO6w+YOf+a/KStosmG7WMS3S4jpEdeqHauErlhd5Ml58+A6GM0/S+8bErq/xWC5gA+b6qsqUpwlzZ0haXtHDpeGURQusmFUWveeixZv4GoKHticJxkhwB+XENkOWeQ80jPiW7FfS2VsdE+m5i6V7m7ocW/qNVjOYZFPKNgKYpxXv37sXAwACmTJmSSZ8yZQp2794dVcaPfvQj9PT04LrrrkvTvvSlL+GVV17BmWeeie7ubjz11FO44IIL8Pe//x0zZ84Uy+nt7UVvb2/6u7u7u4YrGiLGauwEIkYJlsYWSpmlc4Gn9j26zcuonocHe7k0aUKiZ5dehxQerWOUXmn8SePrYvFNANrgFxOXHGOeDyhuQQVFOh8deIk1Rht4pWrxAVT3DLi0/Mc71Amc4PMKhNJzVQvtVwri1g/aJ8C2eV7ap7IfkHBHVJWymIlKvLUx16dZAUNoFmUOTY/xZkj7aV+iOiB9R61wfsk6xduwapGqIP9Bg+zJY6yuIW+Vg+uG1Psg1TmrAEhvn6jWc2Imr1yXDFKMMK2oNj7QPKFyfd4JXwU1zwHf76mzT7mlMvA5ZMWMtqNP+ct5n2pZgAL6ZMxhCrJPLvMLNflNG77jfOfwGSp86xytPwLZh+iG3rxYSbfpq/T4cWV6Ui6rkgxrC+wKjh2l2FEqlTK/kyTJpUmsW7cODz74IF5//XWccsopafq8efMwb9689PcFF1yAc889Fz/+8Y+xZs0asaxVq1bhoYceqvEK4tCMLkXSNasXPaaItTnGC1Y9I5VgqhTT17BJS/DsJOUIWgcVvAqFNrDXw+JWNK+mMEhp0mCqKSgFGkubaCVloJw5qWQpLkOyFGtVkizUWv2k+pT6kRU5R8hyQ/KWgNQdyw9z2X2vr3Pp1CqStfyVyfZQaZoiTMvjdcjJaqzsahZmzaJYZHCIdZO7c0jySS2EytDgs8zSRRadkPMLc//rqiSLYag/SPVx8OUiz5OVa5qb9qnsRzu4QiRet3YvY8YsSZmudZGllUkX/dqqQjtWSJMUMGeVnIDsm0El5c+RURp9nhifLYijKcDuOFpp4RBJFul9n5ipUHasyb63OW6cl/At1KX2zHtusguV/0O1CegnDPgYmv4vYqByfAbu9KYpxSeddBLGjh2bswrv2bMnZz3mvPrqq7j11lvxi1/8Apdddpk375gxY3Deeefhww8/VPPce++9WLlyZfq7u7sb06ZNi7gKGS2UIpYhi1Tt+zlcAfAjmRj4SOJKoja3/CdWuQTzjsGRBoegha3RhKwmMcf7lN56XZQQtwbh1Fp7+idwlyMf08kHZJ9S4bOGjbgZItozZlHp8unWEekVddU07tp020FLYIz7sFZZjHFDOnyTPaeI0hwoLyQ7WS8EVYrpGJQNX6HH8/J82/R4IM6KRtNcWdkPG1B5qfYvyeLG65M5h68tY8JwYjxesZOPtlqgeXwWPrcdCJ+QPgJBHQ9lJY86d0htVnTxKLWR1B+IrYi+lxuQLeFZZbQyfCrq382/F55fsyQ7muWdXk6rsE3PLFmKy8guTqj1XrJkZ/5TNUEbo3Q7W1XGjxVLcWtrK+bMmYPOzk4sWrQoTe/s7MTChQvV49atW4dbbrkF69atw1VXXRU8T5Ik2LZtG84880w1T1tbG9ra2opdQAMoElZBF+WhyV46B+84sqVM88XllSN5FK4eF1KE60aRkIcYV6J0XFH4JBJjHS6z9DLLI41Q0BcUlJBFqpILl3GVpl6B6n31Kb2aBaIwRSwE9D6Rj0NIHuCYeuqWP7DtrGsztBjIWK80pEkhJLfc2syJ9XCEFhp9Qt6sIPmpyLHwWrtVYxe1hXlPznoWkk++7fN6SPXj8qMpKJVcuE31ITGtrNy5NRmQFAaOpExLCmHEPVPvr6RV0TpJn6Nn1+S7b9wlD7Ltc/Fnxhyf8iu1UZHFI+0DSpuGxkp6fdmHCvPp2jX72kKrOl/rUMdPkfAJul8Kn1A9vZp1PmJBXW+aGj6xcuVK3HjjjZg7dy7mz5+PF198ETt27MDtt98OYMiCu3PnTqxduxbAkEJ800034amnnsK8efNSK/P48eMxadIkAMBDDz2EefPmYebMmeju7saaNWuwbds2PPPMM825SMMwDMMwDOOIp6lK8ZIlS7Bv3z48/PDD2LVrF2bPno2NGzeio6MDALBr167MO4tfeOEF9Pf3Y8WKFVixYkWavnTpUrzyyisAgP379+O73/0udu/ejUmTJuGcc87B22+/ja9+9av1qXQBt7f00B1fhTUqREYKmfC5EmlaRVyOuZpS1zqQdQn6fcCaRSZkPVTdzb6H5zhyREc1LeSaLmpVjnUta9Zhbm3RXJZ8P6OIO7lq6Kmgel//L03VHmgKWdo0C5hkxUgth0VjHiXXCfS3ckhoXhSXnnWHS32gkrESajIu3kLJERNjtZO2KaG247HrNK/mHneEPB/0OMVdTk8txSvK7Um/npl9gM3nOtfL0/uHq3Js6A23pmWtfW5P/mGpGGsfgPCDdnTb53rmxIYPUJcLbyzNczCB7desgZXs6xQleaCuepDtsrAttW2ufxUZYyhSHtoftLAM4bPmmiU2+2DpENwqrpVF90PYJ/2m0Fssje/0P32eVrLql9k2wJ4Z0ZDuiTSWJIFyCtL0B+2WL1+O5cuXi/ucout46623guU9+eSTePLJJ+tQM0Io3q8OcaHc4xILdwvzwbtmdzUAffTQwir4CFOtWVApIOjhHIFji7oUJWLyFsmjKbYxN6gvIk8NaIpD9TT0vmbj2applbRqsXFr/JyU4CXGKohKQT6lQzpMc5FX5728Uqw98KMpY6nCHjsJF1Fy+LEU7Ri2oFDd43w/HYRCoRv8eBILL8mK1p6ViPAVfhwgi0fMopyKlxQloCkoWUW+qhTzMABfXKgoJzHbCKSHFkkSvng9bZEUCtcRzqm56l170buvvX2C/vd9eTZFCqcoYvSoCPvYdKkudpCVAS1UhD5gGCPj0vkkxZkv/KTyqFzSurn69LD6S4vRzOLEp+jy9M/gATtH05XiIxotAFzK52CdpR4P3flOx/P6FrB0m3cMml7JKbVcgmUrWXabHyfXSY2f89S94RSJsQvBFY1a4FZjl0ZvyTClfmRegO+Q2puml8EncHcv6XSjP9DEzxeDt1l8ExK9J6EOUqDtQ0ps1vJH5b0nt1+bhFS0eOCQQkGPD1hja17MxRzjuw/UcqgozVo/l+7JRGTjLCWvhbTY8Y15sfeKX6q0mNIV+Wr/4ZYz33EpkpLgU46F8UG1jMZaSum9jF0k8f0++RxOb23J3xMqAxNIcdq9FMcjn32H11NrkzLk+rvKaf0Bumy7/z4F1KW3snTfAtwn17wutD3pLabveZGMCbw+blt6O0haD77Ij30eQsp7rFmKRyPS6oz3MZqHw63DtRI/71EJ7kHVpU7fTSy9p7iKOtALv6VjoyliNSm6+qx1tconEb4U961yOJI1gpbBHmbxDYZ8kKuejs4W0jup9a/Y8XvMlcqQsiK2he+ecgux1rYt2eanj2m5/yFFX7f8DVWCD/7adWesJdI1QUjXJotYC3psuquczyLokISLKgQThP08b6ValOROpml0kpWU4onIl6HdB8A/rtB99PLp2OtTuN1/alFzbnBJ1rKyxcot4mb2eQFiiJEnKiMUTSnU+qzLq3gZJCv8ROGwkKW4TOvKFfLQYkBLo23A24Nfu+Dh0cZMKeSAFiE9aBczxgL59uTW8zLRBuktkcZIqc60KXlfzNUpZhFWJJSsjphSXG8Uy2ARi3ErwmOYpAPEHiOlZzsMV2652YFaEX1ftKt4J56i9QSYK9Gn3PJO5OtcmuWCD96hc1BiL5wrcVL5VCAiypVCF6Q0vr/6m95jGhBYffuEVPZIDOJB92as8scV4jIpX3jDgYY2aVHrjVNyfB8OcATbSLOiFZE7rT9IbuFQPXwWQV4uNzNJ56F1i1TQ+GQqWex7SMgEVZrERQjk++C7b1KazyrJLXn7yTatg/SuWelaM0hKgjZGaQpFKCKOn4+jrQpofioPfchrTRNZ/YX68b4GZEMHNFd9dhyrpgUVXn/0X977RNtAUvoVC7kb51qFmGluHaZKMV1nSoqpZhGW8mTGWtLH6fMX0nHSeSYi+04ikHRpXEzR2kh3LuePczJuluKjgFpckPBbh4uWoa0WeT4/0uzMrYg+X5T+4FFISZM6ebA5Y9ztIWLyFs3DVy2+iUVCcsfRtDKyumtA+dMUPnpPqg9b0s9b5L/cxichyb0myaJq0YgZHH2uS97uZGGh1cP91yyUklWEfrRXe/WQNlFlXIja9fjSpf2aNS7GEiYJiZTOj6cDlq9z+pR4QQmS7gl/mGq/kId/7tf9l+4Dn6g1xVeqvjuOvmRNstRR5ZfKC7cIumtSlW3feMP7SVHPgFReaL/mQdDkwZVJx6hAeA+3fvI0/p5i33hTpmVrlukiY43WBlI/oosCUl65xS/vPmU01lIseV9ydaPbrfnLoIsPafHIFXmQ/Zps586vLeC0+xO6ZyNkTGOKNQzDMAzDMIyjB7MUNxHJ81JLGZIBkuJWZz1sW7PSyv7XUPgE/aKd39ygWs6OFDS3Wb1WpkqITc5FJ6FZmAN1k6yk3HpPV/OVTCyx+1+VgZD1V6u+eq99IhMKY6HpPld/ZPiE5rbnVhF+K7jFJibOT6xnKOwgpj0omhVZ+h1jIuX7eXhPyLqjyKrPks8tZDwcwf2Ptb5RfBZjKY3ed8nCLJ2PjpQx9cxY+LSQB45mZZPGMBqmE2Ndpheq9bUi8kCPEa5PGkuoS15z1UuvLFPPx+HtoY39fNLlebgXT2nnIuETIOkuD30LhTYGUTKvuxTqk+YDxI8eSV4X6vWgziUtfCKtk89Kr8V/Q/hdgYVPHFUIyo/07mIgO45IlAP7Y2iF/KnnfIhCPgxC3ubhE3kJllxARSmkNMfEY/oGv1rxKbS+UInQxOPS6cjkoyIPkBRNEaaTT49HA/O59ji5CT5QtxRtoIxBGuzL2Xg+qqC4emoKER3opQmHDv5uouKKj7gA9Q3+2nVo+7lc11IezVOks0rhPXy/9jWz4fPRmO+QC5lOxGDpknsXyn7f2MS9/zQyIKS8awsqWrb0SjatzpmKSAuamPCJ2FCcogqyFibmG+u0OjN54G/R4X1RUtak8ajUD/m6tIWmVOdQGj1hxPWFFkZURmhRE5CXKW18yS3GfYtqZlGjbe/rX3SxR5+r1cKBxPfQ0zrFxLf3CWl1xJTioigTrkqN8cWSXiWFadG89Q+xkRTeHmTFnz5oJynTeTRFKqTMpVVx/0MWCN/vUH56rpj9WrpkSdAsDb66SQJRILZKm7Tp/mw6Xfi41J60DCmeDcgPmlo9KOKDH7QKMdZ6OiFLbcra0G3yt1C4ojTLCw2L5Pqj9rlZqZoqvsm5yAQd2q/JLh1MqCbog1sDqZUQGGo0qd/SsvuGFitSVVxR2UWbnB5ULMn+0IKRptFLkrp3SLHhxkNJsVFlJ/a+c8XBd1wf5P6lnUNThLXxTZKH0Gee6W8iD9JiiHbnCcguLnJjEL9WbRHB28O32JCEisu9dFwght6NLzQ+nr5+jspUaOFH94kPMisxxTQ/NSDQc0qx8mD5pIdIC8UOS3M8b8/BsRgyFQ8KtagNU4pjiJl4ClhW6JsopHmnjPApQ4qwtmiVlCOanwpw9ThaSh+qqgRP55LbpypPFF/TiRY2jVqtJL4yiijD2rmLLIikgTVmP6kn/SqUr834BCJNPj2CNuP7SIV0Dt9+qf4j2s8nJOGkmkyFFBTN8hfzvlC6nfsYQ8xETYm1+mll+I6XLEehjict2nznV9JDljNJPoHsvZLe6iCVwc8bWsxRpLFVq6ekuLQi/wEG7biMlVPyAHAHneYhKNK/Qko4bSTNOiPJg2bQkMJDKnkFjD5gqVklxTb3nEO8jlBbaOl04pRWUXyMZp4RPk5ICwBp4afJb07efUq/Av+yIO+jNI2/p5imp/skO1soRIKSu3+tGFKKD3sOKoYpxT5iBhOaFyikHDeCWOOOdEyeUDAazUPTq/slhUibnIrXTyBmQAsRYwGupTzJCud+O7RVUkhZpucSlu7SAEqL4wNy9TTVivjeBerSJSUALA/PGyVmlJhQFbePai3uOGGxoFl26Slou0ivRvK9mzNTdqwcFVF+NcVam/hjzu1rWwj73XGSDMcMH6xY3oaSpZgrx5JiHdqW0LxyvGwpjcoDrafU10RrGj2/pvCGFFet/0jDtTZmhjxegKwg8/FKWsBrfZ6UxccYqijS7L7Ffe46KJpyrtWTonmjpH3K4lfyMmjyDiWPK0dbXKVooSKSdZ8d7DMKUCcQtSirr2TTFidaOlfkPwNMKa43mtU4wl3udhW5/1SW6Vik5ZXOR/dRAa4EpRbIftXL7+vQrDS8PqEJK1elIkhuwxhrQIyLkRKrycdYkiWZ4tYIqq0NEyqWT+q+AZm7f0PWPKlcb31C1gEtH/+tnYReAEG6Tb5JRnv4xe3XFoHi+bTBX1KEtHChmIVfyHJM0ayAfB/dH1q0RXpwfOEM3G1M3bdUViVFSpI/vu2TUd/aQJMfXmd6DHX3R/UjSYHUhmPNs1DEUuxTpl0FpePoYihWDrT+XMn3JT6WSB4Cmq6+0z40lmuKWJGJVrNOkbLLHksxXVDRqvCHCoFsnDFvI++n5LncCIaaUj8yYSySQi71GVWetfsgtbl0r2ja4NjhkutrKbZXshmGYRiGYRijHrMUN4LIUArtTRSNJGTJkuHmVfqYi2ZN1i1nHN/56XHep4hDaUUsJbH4jpEsKLXEa2rl+hpNCBPQLJ+SHNCYR2oAjAoNYOfjiLG1MYwkLtxVSLB+aK/J0iwvmtXK/Ze2eZ5ol2ARmfU5c2LL43kk74SDWwupZYxf30SlbiyvzzKoWQkp0nhT1DvG97lqaiFHvDv6PC60+0uyI9ZZczNLcHnw3W/N8+Czjkp5BOtipmGkevhc5CQvfTYCYLGpJCuPX02rpIXpSO1ZxBNI5V1qC816z/pobPhERUmXxiVuQfd6mmLG1HLWoi3VeUI2O4Ch+0AfGsxZrH3W+xirdlqj+mNKcSOR3EiKu5yqlxTttvt0LpqmKS3S+d35qvm1ADStx2d7mzbRSB27LhQNcYgpQyqzFgWal+kLWnRoEw5PK+hO1xRhbTJ3xU4Q9vOBkt9zaSDNIdVfCnPheSm0E2jxfkK6S+KvKtRklbYL1xfoBKEpdCI83i80oWpxplrZRdKltpNCv7g73bdY60N25pQg1xxSiqmCyfNLCkNIYaVoCzxpPcCVldD5HDTMQ3q/bkbpj3H1U7nQxqtQqFgRpUQal4Bs/J/UkNIiiabzeg5vU/c9bfvgfZWmJt/CgY832mJBM2pIfYC2BbtmaQGnvYubNh197aM7Th1rfNdH08pQZUd6cJvKqmaDyBgC+NilzVmaqiHdv/RM9XvzBGBK8RELXXT69mshlZqC7XuBvNuu9mltVAkFPebrE7Om0yasQutBn9WjljJi0vk+zcImTRTSwokfpyka2uRUqZ6Otz9XiDWlQ/p0B53IuczwaoYWOxkrBq+/ROx+bXCn6cT6IV2fL95Uai/aLiGFKHPd9bpm/ltLd/j6RS3eDC6LrgyqCEtWITaU0NdAuSrELr4A/cl89T6QvFIeDalZNLmQ1rB88STVs0wPCnkAJHyxs7ysIv2Q55EWSnQVQWWDTlquATRLMdmm7UlFiiqK0v3OZdR+u3pI25oXUppo6fVpAkX6qCTv2hisLbqkNLed8cRFW1/1a2kVPI98rUvrn4mb9xlwfLIo3bvBsexs9cWU4kYjjaBk4qGvZ0M1OVqf40aa0JimWcbCiqc0ytGS8uYIPkBJVknAL9q5evlWkTFIVhOp8wHhySJGeZYUV6qgxWj8krUhpEh70BRkaWCVLkWyyPE82iQlVjtkNfLld0jmO4pv8QFdKeHXKrlvJaWZK3Sq9cb9Dq05QwqRNvGHJnhNVrWJX0JTgmL6p3TdyoM9tG2ld6PSdG2xoy3cuGhoxj4qRlITcQVbMpBrbmi6LSo0IVuEJiOa0sHz8LI1NI8BbSSf7MTWx1mKSfGalZ5aWMUvt0nt5Vmg5eqmybC26tGUP+EelgVLOB9rQNK5YiouBFz5mhWenD9FuxayKXkQKyyN10m0FPehmAyrMtkKsxQ3iyIDRY3wuaQeUOtwbH7e6Sqqf9c32sRZDgs1W+geaCtfn4LlK2MkeWje0IK26IDL0/og+tq0r0JJp+CDGJ/MqQLgs5767ic9dy6eONYKH1KUNW2GliNYaXgfkWSXhkzQKmmfM5UWhOqHSiRiFJgYWeTlxC7mYhdulcg87r+m5AmWQSpz9I0T1EpIq8wXZdoCXFJM6XFgadJalF6KpoTTy9aUOF6fjBIhLaD4/5D1TUJSkuh5fUiKMC+HXmxocSRNLUQeWof7zMQWuar8PcWi8qdZKqW2i/Hk+PZx7T3SkKN5orh8Rr+LW2nPQp4Bcv9CXxmk6RmvDX/XNq8bx+d8rgD5UdaU4s+eogOFNLJKSk2dkJTp0KLdN4E7qsfxoUjRNIQeLykXXHmKncg+M7RBo9bVCr/3mrlJq4fW3JLFRjIvEGIUWslSHGtJBdvm9zpzqb7JMsblKcEnbKlTCHAlSWsjzXIppYn9SxvofRMBIF8/l1NpAuTniUVazPHjuWXZpfH7yhdtASVMGzOktqVIn+H2yS09By+PdzltfcqbSDuf9qBd6HV+QWsmz6ulhxS9ooqSlFfqX7TO9P2O2rShKchAJqZV66OttE7aQqyIJVJrC2mCpcfQ/sCfWmb1kMYJugCn5K4V+TFKDZsIyYA2ZpBrcUYEl1Xr1hlvTh+qVgfJUqwt0NS5t7EaQdNfyfbss89ixowZGDduHObMmYM///nP3vxdXV2YM2cOxo0bh9NPPx3PP/98Ls9rr72GWbNmoa2tDbNmzcKGDRt+1sOyAAARaUlEQVQaVX3DMAzDMAzjGKCpluJXX30Vd911F5599llccMEFeOGFF3DllVfigw8+wPTp03P5t2/fjm9+85tYtmwZfvrTn+Ivf/kLli9fjpNPPhmLFy8GAGzevBlLlizBI488gkWLFmHDhg247rrr8M477+BrX/tasQqGVuYjxWclHEZbE2nVKgf2h5CtxnR5TaORqWOx2lg+a5p0vlB9MtAVf4z1TCLkziuC1tAhb0ERz0GMe5rWh1gmWpm7i1Yt1iLKj/PFy/oux3sJPktBzD2NbUdX3nD+MhkBJVnVXJNaeEUR2Q/KH3cx1uLuLmo11qyAgGwRk47T6uH+SwGJZKyN8UhIsbqS3KpeCqXKWpp2qS6delZo3KV0nBSilguf0Kyc/MR8HNTiNDm1utN5HsmETrclbxb9DJpiPZWs29zCTofQNByl31M23+ZtxPuX1s9oXEwZ+T7o6yeCdZTKgruOTxEej9SxRrr+ItZxelLqGK7k5VbzBNIPiohOZM16z8crLqPpQ3bubGUcU+ETTzzxBG699VbcdtttAIDVq1fjD3/4A5577jmsWrUql//555/H9OnTsXr1agDAl7/8ZWzZsgU//OEPU6V49erVuPzyy3HvvfcCAO699150dXVh9erVWLdu3WdzYb5YPMktifw7i6lMSmghEaE5UlJgeDXz7nAuwdK0UJVmzZ0upRcixvWnpUkTAM0bUhyKDiqhcBqJWPe0+01Hpsgwj5i2pxO0NKlrykrItZc5v7ao0YhRIN0JiixUeL1YVu1a+SndMSHZz4VKuP/SZBGC54t1s/vK9y3WeJkhd7m0spKu322zemmy5XMtZxRL5McdTVaDCxiBmL6hKe/SA4G5sAnpRDH3zrcvxnWeUTwExgxUtyU5o32QXphWh9jwCWTjyqV+Jy4GtDAjrZ+EFp3UmCUtEJgiGVIE6fMNkqzS02gLv8y4I12ftAiKmW9ovj6gNGwTa52QvyRuQBHHeqkt+H3wGr6kJWV9aZpS3NfXh61bt+Kee+7JpC9YsADvvvuueMzmzZuxYMGCTNoVV1yBl156CZVKBeVyGZs3b8bdd9+dy+MU6c+UCEuwBNdxQnmlfkv7bIxFRJrMs1Wno5w0SudHGK4Qaef3rXyBAh95KKI0a2jKdK3l0fzaTdEWUdKs61Na+DGV7MDJi9IUBtr+NAxQy8vL5eeQ9qt1jlHspHtC20c7kSDCqWx54hXF2GD45VazvBey3GrKsjSBxCg7IVnms3BI5mi6ZBnU6hFIp0qCJqvamCZZsrRtelyRmGKaLikodFtqfq6ci3XT7jVfUPBFlKYQSZWXlKOQQkzzVAb0hZFPX4lRiIT6lT7NKmOOjDxI/YSfT0LqlzEWdMkSTvNTz0igP09sqYbe8oUflRP+kCa9/hK1lGvtrAmldo2C8YUmSXPERFQVaHyK/D2JWfRFLQZbAQxoO2uiaUrx3r17MTAwgClTpmTSp0yZgt27d4vH7N69W8zf39+PvXv3YurUqWoerUwA6O3tRW9vb/r7wIEDAIDug4UuyU9IM23NWopD/Vra/hTVTkXT/je83Y+qo6EXWfmskDwu0NzlbQHQn+ZuAeAGzgFyZG+63UL20qD1hJTr6nQc8u/E5WcYdIpLD6rRG/RiaZrb7iMn0QajwAoewFCDgOzTkBRYH/RGuPwJSR9Eta/ThqT9v0TO7RqXljEAJMN5usnpqIy4yxuE3wlVYr/pvXRl0IeM3TnoveyGci8ryN43lyZNZKHVItd2pNF7EMDh4e3h9uxrqSb1Dv+56lRIVuk2uOvrR7UtqJHjIIBxw9ulgwAODf/YP/z/AKqy2j18gKuI1kmBoTZz2wPIyguVI95mWhv2ku0y+e3akMrkGLL9P1Qbhr/r0eEGhYMkbwnVWbSF5Bne/78J1SpQcdDuQxuysuiq405xiJxiEFUr7gDyCxx3Oxy0yWj/oXLi/lOxpbfH1XkMssON++/k72A/gE+Gf/wXVTnpJpmcDNFXcVB56Ee1cQaRbUhgqAPTMSMZQ36ELDnDJxwcA/QN5strIecbi2oHcYNIK7KDvrsp41BtpFaSTiaUpD/dTC87M0fsx1B/ctsY/k23Y+YLwD/W0BtHZRgYGmfcNY8h9QGqbSDIe9KfHYO06A/XtO7ww6geN0iv6QCywsr7pk8Jdh2Bhrr0IjduJi3ZvuK2xwA47K77EwzJsasTkB3n+pC9J66QQXLuQScYtOHGAhhA93BlksQJ4Mho+tsnSqXsdJskSS4tlJ+nFy1z1apVeOihh3Lp076i13v08Sn7r3OA/P9/jaqOYRiGUSfokviwmiuH00PoKvCQktcwasbJ50FUteks+/btw6RJk0Z8pqYpxSeddBLGjh2bs+Du2bMnZ+l1tLe3i/lbWlpw4oknevNoZQJDcccrV65Mf+/fvx8dHR3YsWNHXRrZyNPd3Y1p06bh448/xgknnNDs6hxzWPs2HmvjxmNt3FisfRuPtXFjOXDgAKZPn47JkyfXpbymKcWtra2YM2cOOjs7sWjRojS9s7MTCxcuFI+ZP38+fv3rX2fSNm3ahLlz56JcLqd5Ojs7M3HFmzZtwvnnn6/Wpa2tDW1tbbn0SZMmmRA3mBNOOMHauIFY+zYea+PGY23cWKx9G4+1cWMZM6Y+bxhuavjEypUrceONN2Lu3LmYP38+XnzxRezYsQO33347gCEL7s6dO7F27VoAwO23346nn34aK1euxLJly7B582a89NJLmbdK3Hnnnbjwwgvx+OOPY+HChXj99dfxxz/+Ee+8805TrtEwDMMwDMM48mmqUrxkyRLs27cPDz/8MHbt2oXZs2dj48aN6OjoAADs2rULO3bsSPPPmDEDGzduxN13341nnnkGp556KtasWZO+jg0Azj//fKxfvx7f//73cf/99+Pzn/88Xn311eLvKDYMwzAMwzBGDU1/0G758uVYvny5uO+VV17JpV100UX429/+5i3zmmuuwTXXXFNzndra2vDAAw+IIRVGfbA2bizWvo3H2rjxWBs3FmvfxmNt3Fjq3b6lpF7vsTAMwzAMwzCMo5T6RCYbhmEYhmEYxlGMKcWGYRiGYRjGqMeUYsMwDMMwDGPUY0qxYRiGYRiGMeoZ1Urx22+/jW9961s49dRTUSqV8Ktf/SqzP0kSPPjggzj11FMxfvx4XHzxxfjnP//ZpNoenYTa+Oabb0apVMr8zZs3r0m1PfpYtWoVzjvvPBx//PE45ZRTcPXVV+Nf//pXJo/Jce3EtK/J8Mh47rnncNZZZ6UfN5g/fz5+97vfpftNfkdGqH1NfuvPqlWrUCqVcNddd6VpJsf1Q2rfesnxqFaKe3p6cPbZZ+Ppp58W9//gBz/AE088gaeffhrvvfce2tvbcfnll+PgQfnb20aeUBsDwDe+8Q3s2rUr/du4ceNnWMOjm66uLqxYsQJ//etf0dnZif7+fixYsAA9PT1pHpPj2olpX8BkeCScdtppeOyxx7BlyxZs2bIFl1xyCRYuXJgqDCa/IyPUvoDJbz1577338OKLL+Kss87KpJsc1wetfYE6yXFiJEmSJACSDRs2pL8HBweT9vb25LHHHkvTDh8+nEyaNCl5/vnnm1HFox7exkmSJEuXLk0WLlzYpBode+zZsycBkHR1dSVJYnJcb3j7JonJcCP43Oc+l/zkJz8x+W0Qrn2TxOS3nhw8eDCZOXNm0tnZmVx00UXJnXfemSSJjcP1QmvfJKmfHI9qS7GP7du3Y/fu3ViwYEGa1tbWhosuugjvvvtuE2t27PHWW2/hlFNOwRe/+EUsW7YMe/bsaXaVjloOHDgAAJg8eTIAk+N6w9vXYTJcHwYGBrB+/Xr09PRg/vz5Jr91hrevw+S3PqxYsQJXXXUVLrvssky6yXF90NrXUQ85bvoX7Y5Udu/eDQCYMmVKJn3KlCn4z3/+04wqHZNceeWVuPbaa9HR0YHt27fj/vvvxyWXXIKtW7faF4AKkiQJVq5cia9//euYPXs2AJPjeiK1L2AyXA/ef/99zJ8/H4cPH8Zxxx2HDRs2YNasWanCYPI7MrT2BUx+68X69euxdetWbNmyJbfPxuGR42tfoH5ybEpxgFKplPmdJEkuzaidJUuWpNuzZ8/G3Llz0dHRgd/+9rf49re/3cSaHX3ccccd+Mc//oF33nknt8/keORo7WsyPHLOOOMMbNu2Dfv378drr72GpUuXoqurK91v8jsytPadNWuWyW8d+Pjjj3HnnXdi06ZNGDdunJrP5Lg2Ytq3XnJs4RMK7e3tAKorPMeePXtyqz2jfkydOhUdHR348MMPm12Vo4rvfe97eOONN/Dmm2/itNNOS9NNjuuD1r4SJsPFaW1txRe+8AXMnTsXq1atwtlnn42nnnrK5LdOaO0rYfJbnK1bt2LPnj2YM2cOWlpa0NLSgq6uLqxZswYtLS2prJoc10aofQcGBnLH1CrHphQrzJgxA+3t7ejs7EzT+vr60NXVhfPPP7+JNTu22bdvHz7++GNMnTq12VU5KkiSBHfccQd++ctf4k9/+hNmzJiR2W9yPDJC7SthMjxykiRBb2+vyW+DcO0rYfJbnEsvvRTvv/8+tm3blv7NnTsXN9xwA7Zt24bTTz/d5HgEhNp37NixuWNqleNRHT5x6NAh/Pvf/05/b9++Hdu2bcPkyZMxffp03HXXXXj00Ucxc+ZMzJw5E48++igmTJiA66+/vom1PrrwtfHkyZPx4IMPYvHixZg6dSo++ugj3HfffTjppJOwaNGiJtb66GHFihX4+c9/jtdffx3HH398aomYNGkSxo8fn77L0eS4NkLte+jQIZPhEXLffffhyiuvxLRp03Dw4EGsX78eb731Fn7/+9+b/NYBX/ua/NaH448/PvOcAQBMnDgRJ554Yppuclw7ofatqxyP+P0VRzFvvvlmAiD3t3Tp0iRJhl6j8sADDyTt7e1JW1tbcuGFFybvv/9+cyt9lOFr408//TRZsGBBcvLJJyflcjmZPn16snTp0mTHjh3NrvZRg9S2AJKXX345zWNyXDuh9jUZHjm33HJL0tHRkbS2tiYnn3xycumllyabNm1K95v8jgxf+5r8Ng7+yjCT4/pC27eeclxKkiSpSXU3DMMwDMMwjGMEiyk2DMMwDMMwRj2mFBuGYRiGYRijHlOKDcMwDMMwjFGPKcWGYRiGYRjGqMeUYsMwDMMwDGPUY0qxYRiGYRiGMeoxpdgwDMMwDMMY9ZhSbBiGYRiGYYx6TCk2DMMwDMMwRj2mFBuGYRiGYRijHlOKDcMwjmHWrl2LE088Eb29vZn0xYsX46abbmpSrQzDMI48TCk2DMM4hrn22msxMDCAN954I03bu3cvfvOb3+A73/lOE2tmGIZxZGFKsWEYxjHM+PHjcf311+Pll19O0372s5/htNNOw8UXX9y8ihmGYRxhmFJsGIZxjLNs2TJs2rQJO3fuBAC8/PLLuPnmm1EqlZpcM8MwjCOHUpIkSbMrYRiGYTSWOXPm4JprrsEVV1yB8847Dx999BGmTZvW7GoZhmEcMbQ0uwKGYRhG47ntttvw5JNPYufOnbjssstMITYMw2CYpdgwDGMU0N3djalTp6K/vx9r167FkiVLml0lwzCMIwqLKTYMwxgFnHDCCVi8eDGOO+44XH311c2ujmEYxhGHKcWGYRijhF27duGGG25AW1tbs6tiGIZxxGHhE4ZhGMc4n3zyCTZt2oQbbrgBH3zwAc4444xmV8kwDOOIwx60MwzDOMY599xz8d///hePP/64KcSGYRgKZik2DMMwDMMwRj0WU2wYhmEYhmGMekwpNgzDMAzDMEY9phQbhmEYhmEYox5Tig3DMAzDMIxRjynFhmEYhmEYxqjHlGLDMAzDMAxj1GNKsWEYhmEYhjHqMaXYMAzDMAzDGPWYUmwYhmEYhmGMev4/vHD2QhXhSwIAAAAASUVORK5CYII=", "text/plain": [ "PyPlot.Figure(PyObject
)" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " 0.692026 seconds (1.49 M allocations: 75.519 MiB, 5.28% gc time)\n" ] } ], "source": [ "f(s) = max(min(log(abs(zeta(s))), 2), -4)\n", "x = range(0, 1, length=100)\n", "y = range(10, 45, length=400)\n", "s = @. x + im*y'\n", "@time w = f.(s)\n", "plt.figure(figsize=(8,1.5))\n", "plt.pcolormesh(imag(s), real(s), w, cmap=\"gist_rainbow_r\")\n", "plt.hlines(0.5, minimum(y), maximum(y), colors=\"grey\", lw=0.5, linestyles=\"dashed\")\n", "plt.xlabel(\"y\")\n", "plt.ylabel(\"x\")\n", "plt.title(\"log(abs(zeta(x+iy)))\");" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Pythonのsympyの利用\n", "\n", "Pythonで書かれたsympyという数式処理系をJuliaでも利用できる.\n", "\n", "私によるJuliaにおけるSymPyの利用例\n", "\n", "* [Julia言語のSymPy.jlで変分ベイズの例題を理解する](https://nbviewer.jupyter.org/gist/genkuroki/6031437023d79ae7f84e21f27dcd516e)\n", "\n", "* [正規分布の共役事前分布関連の公式のSymPyによる導出](https://nbviewer.jupyter.org/gist/genkuroki/89fc7435bf2c031a2f11c280e89b23ff)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/html": [ "$$\\int_{0}^{\\infty} e^{- a x^{r}}\\, dx = a^{- \\frac{1}{r}} \\Gamma\\left(1 + \\frac{1}{r}\\right)$$" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "@vars a r positive=true\n", "@vars x real=true\n", "I = sympy.Integral(exp(-a*x^r), (x,0,oo))\n", "sol = simplify(I.doit())\n", "ldisp(sympy.latex(I), \" = \", sympy.latex(sol))" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "数値計算用のコードの出力をSymPyを使って数式で表示できる!" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/plain": [ "(1.618033988749895, 1.618033988749895)" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "### これは x² = ax + b を満たす x の連分数展開\n", "\n", "function f(a, b, x, n)\n", " s = a + b/x\n", " for i in n:-1:1\n", " s = a+b/s\n", " end\n", " s\n", "end\n", "\n", "### 連分数で x² = x + 1 の解 x (黄金分割比)を数値計算\n", "\n", "f(1,1,1,37), (1+√5)/2" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/html": [ "$$f(a,b,x,0) = a + \\frac{b}{x}$$" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "$$f(a,b,x,1) = a + \\frac{b}{a + \\frac{b}{x}}$$" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "$$f(a,b,x,2) = a + \\frac{b}{a + \\frac{b}{a + \\frac{b}{x}}}$$" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "$$f(a,b,x,3) = a + \\frac{b}{a + \\frac{b}{a + \\frac{b}{a + \\frac{b}{x}}}}$$" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "### SymPyを使えば連分数を整形して表示できる.\n", "\n", "@vars a b x\n", "for n in 0:3\n", " ldisp(\"f(a,b,x,$n) = \", sympy.latex(f(a, b, x, n)))\n", "end" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Rとの連携\n", "\n", "* [私によるRCall.jlのテスト](https://nbviewer.jupyter.org/gist/genkuroki/c72aa29f24156e46c7564852e4f36c9a?flush_cache=true)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "'data.frame':\t150 obs. of 5 variables:\n", " $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...\n", " $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...\n", " $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...\n", " $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...\n", " $ Species : Factor w/ 3 levels \"setosa\",\"versicolor\",..: 1 1 1 1 1 1 1 1 1 1 ...\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbAAAAFoCAMAAAAB/V5aAAABDlBMVEUAAAAAADoAAGYAOpAAZmYAZrYAujgzMzM6AAA6ADo6AGY6Ojo6OmY6OpA6ZmY6ZrY6kNtNTU1NTW5NTY5NbqtNjshhnP9mAABmADpmAGZmOgBmOmZmOpBmZgBmZjpmZmZmtttmtv9uTU1uTY5ubqtujshuq6tuq+R/f3+OTU2OTY6ObquOjk2OjsiOq+SOyP+QOgCQOjqQOmaQZjqQkDqQ2/+rbk2rbo6r5P+2ZgC2Zjq2kDq2/7a2///Ijk3Ijm7Ijo7I///bkDrbtmbb25Db2//b/7bb/9vb///kq27kq47k/8jk///r6+vy8vL4dm3/tmb/yI7/25D/29v/5Kv//7b//8j//9v//+T////ccoORAAASTElEQVR4nO2dD3vbthHGGWdO0z9Z5SyNm7bbqqyb3XVJ3G3O7K5OWi3b4qxdZM2yw+//RQaCokSCOAAkQAhHv/fkkUXq9BLgLyChw4HIchgry7ZdAFg3AzBmBmDMDMCYmR7Y5Vc/idd3z/fun8jtn01m/nQIr3TFSq/owN49f1AAu3pS7YhcYb5iWwJ2/odvCmCXj/cKcO+9996QJYB1Mh2wy6/+I4FdHOSXT+WeyP9D+Yptp4Wd7+3tHZRvLw4ArLtXbGDi7iVb2Pmz/OIZgHX32gow8U/0Ej/JAay7V3xgqkWuMF8xAGMmBmDMxACMmRiAMRO76cAODw8HPySAhfM6fPtWTwzAkgQmeBHEAAzAQnrdWGDykghgbIAVfQ7cwzgBQy+RGzB2YgDGTAzAmIkBGDMxAGMmBmDMxACMmRiAMRMDMGZiAMZMDMCYiQEYMzEAYyYGYMzEUgEGS8bQwkbZwiJXmK/YTQNGjTAPeEgA8/Ai8xCHO2RgsZsFjE5rG+yQocUAbOBDhha7YcDIPMTBDhla7GYBo/MQhztkYLEbBgy9RG7A8DsMwOKKARgzMQBjJgZgzMRGC8xvWgqAxQbmOXkZwCID850LC2AAFtRrfMA8Jy8DWGRgvpOXASw2MPQSuQHz80pXDMCYiQEYMzEAYyYGYMzEAExaq08JYIqtF8tJ4jHo7cgjgDVttVjOxUH+IoGFBjSBLABr2mqxnDcncimPbS+WswK21TKkY6bFcl6eJLH2iibyiBbWsGqxnDdpANNEHgFMsatvErqHoZfoBAyL5fT3ig9MtcgV5isGYMzEAIyZGIAxE7sxwKp+IIDxALaOFgIYC2CbaCGAAVhUsZsCbB0tBDAWwDbRQgDjAQy9RG7AunmlKwZgzMQAjJkYgDETAzBmYuMDZnnWjaKV7Ap9asGavdwRAbM9EVE5Lamu43z48GGjYOvtsQGzPmCveVpSXRZY8GkQ22wDGIBtF5jtiYhNYKmu43woL4GHmu2xAbM+EbF1a0/0HqYUTImFjggYeoncgAXxSlcMwJiJpQIMloyhhY2yhUWuMF+x8QFTulfVJkacEwWmRAerTeQlJgpMCTZVm0hzAzB3LwAzeCnRwWoTeYmpAlODcNUm8hJTBYZeIjdgQbzSFQMwZmIAxkwMwJiJARgzMQBjJsYIGDGar/bbg5yWIYGFyErgAIzI+WxFd50qHMitj5iaItrrkAyAESmE7WChU4UDufUQUzMO+x0SwPq5ARhdSCLnsx3ddapwILc+wJQU0X6HZACMyvlsRXedKhzIrdc9LETuKgdg6CXWvFgAc6tKGK90xQCMmRiAMRMDMGZiAMZMbDzAlN6ipU/pdl7CeI0AWPX4c/H3/kkYYEpM0RJ5dDwvYbxGAOzioFjFI8+vnlR7fKuihKgsgSzX8xLGawTARNv624/i9fLxXrHKUYDFcqr1bprAKC+YwbTArr6Wl0TR0i6fyh2+//eUmKIl8uj6HzmM1yhaWLVITrDFcpSYoiXy6HhewniNANj5sxJU8TfUYjnoJQ4ITPQOH2CxHA+v2MDaFrnCfMUoYPMsy6aaE7u49xrAtilGAFt8cJYv3j/uyAbAhhejgJUNafHRZ9mubG7idXE32zkTH8it66MsmwBYfDHqkngq4ORFI7s+mhb0TqfLT4/z2e7i3iu5Nd/Nl4/OugGbicuslO0HjHqYj7JJ9BK7TTeyzFlqFsxqcTody33ZnvLZpLifZZOy0S3u/aPculs0uk7ACuKk2QuphgHNs89Jb7efCHfuNLRXeU6tlMKkgIkWMVkBk2jWwFagBDJdr8QAzNQirYVUw4Dmycy0t9OP8Dt36sSqzLR2hlo6wObiylVcDMtLonwtGsj89qt7r+TWTGA7dbqJ1S6JBsDWQgJY3at9Aov7zcTQ6RA3uey2Uw9/BWy5n2U+9zA1DGiefU57u4W5Cl417TKVsJ1SmBCw0rr/6iKBWcxeSPKRj81NIpbYbVK6bWZ78+xZjSkweQ+jbmQOhUQvcePlTcUOrPjhVhhxHY1cYb5iEWOJfr3EsBXmKxYNmG+nI2yF+YrFjNafim79nPi5HbnCfMUoYP9VLAAw305HyArzFYsITPzcFi1ssE6H4ywWr3Ns6SWGmJfi5hUFmLyNUT+2vaviOtfZB5gllhhk9rKbVxxgJvOtivPUWQ9gltBUmMmwbl4RgC0ffb8/YC8RwIID2ydQBQLmOtfZB5g5lhhm9rKbFwXs7VsS2P9cg1abXuI+2b7C5yV6nhbiHmaOJQaZvezmRQArLi8EsOUXnYGV0Ab74YxeogaYaCQ7Z+Ll9utZtnt9JP7KPYu72S1yNLkGzDBMHawqYbzSFet2SZxN8+t/ipf5RLSw2SSfTeQecXmkBycrYJIz5QRgw3Q6xEm/dXwq+nq7Ath3x/niY7mniMTbgDmm7MB6GtlLnE9kY6pamNwj0J26tDBDPzHy/1C+Yt1a2Cwr72HZ5PqovIfJPfMs+y2Z31G7hxmuipErzFcscqRjcbdDL3Hd6cobm37zUsynRTmkxc3x2TzE8HW3kjW94gA77fY7bBMVzOubnrOXjadlk49odisjGkTsUM1iJJIcu5VM8YoATFwOTWmMmnpvgkx5bdN39rLptNTS24xuZQyKCEWpSXFEzly3kqleEYCtzH08DMAM5e+PoyswyjSnZRMVzGubvrOXjSQ2+YhmN8mLiB2qWYxEkmO3kqle7RM4VAtzB1YLzeX1Tc/Zy+abU/OQFjdLSYgCB4k4RgDWIwkHvUTSKwIwizkU0q0qYbzSFYsJzHN+WMgK8xWLCGz56bGcCAhg/l4UsDt3rMDmE/17DbBHZ7MJ0tyCeBHAil8QXVqYGdj1t8fzXQAL4uUKbPnF6+s/lyOY8w93vi/i7/PJ9ZH4IyPB8r38qEZlcw+b3/73ETWT3aGQxHwUx45dt9Pi2JnM9bvVzS1eEr87XnycyxFMcTOSg5fi3SSf78qxlvmk/NO4Tw219kprMnM8YOtwYK7frW5usdMhR8PkCKbAJAcvV+NjcjRTjowVf/TAvBJJiUmwSgAr1GlxCU2pXkrQqba5RWDLzz8/K9MBSipF+xLvFvf+Xm9hemB+qdoAVvdyBpaf7pYtpaBSDl5ORIuTWQKbe5gemN9kCGLWshJxDHVaXGKJqpcSJaxtMv0dJp860P93mBqDawX0It7DDrUkyKAhU2DGaKJDIdFL3HhFAWa0YFUJ45WuWExgool9+S2RcBq5wnzFKGDhrN5LPJ1SD5KIXGG+YjHvYY/OTqcITQXxigJMtrDhpsyme465AjPON6qXqTVSq6+K0ku0jDgrHTvLaLB5SJkqKPWtXOutWrNkZq84wDZWW3ul/VTtdgKiFpgSS7TkJR4206GqTfODEckUQsW7EqO+lWu025bXRS1eMYAt96er55xu1l4Rf1+oz63X5LPpgCmhKUua2ybXLK9vmp+zR2ekNb0rMfJbeVubQmE9dDxgp9MikFjdw8q1V96cyAUHGmuvKKuoULLKIis27/Kkqpvq7vI05c2zRmpW3pWY8VuKtkXU4qWxEtPDhzpgm1jh6p124LKy2nSj2aSKJa7WXnl50l7KQ5OAqG1hzViiJS9xkxyY1zfND0akUwgV70qM+lbe1qbajvXQxhZWYA7VwgSpa/Gred2tl6DeaIBp8vn097BmLJFM92uKbjoAppzBVpzSqGn9Vq7zblmjZBYvV2DliPN8Ioebb/1mOi8e4LweddbPnF0/fm9aPAx/JoO/1dorunsYeokevcTWJVGOOK+GmwWC1bvVqLN+5mx1Dyse6nx9VN7CsPaKpxcFrNXpkOPLks93xxWp4o8EpZ85i+Dv1kecV5iK5QYqYHLU+S/ambMAtvURZ8lnuZ99uAEmR531M2cBLI3QlGxhLigALA1g5sduANhQYtuJJboBs3TrfSrsOHeJ6LdTvxG6lUz7a81qEQcwuwIbJkXUGPxdH7rcrXq1ppk3xbqVrOfKO+kCGyjj0BT8XR+63K16tWctN8S6lazvQi4ABmChgA2TImoK/m4OLXerXu1p5g2xbiXru/JOusAGTcS0RGKJwHLrW02xbiVrfYs9MPQSaa00gfWqShivdMUAjJkYgDETAzBmYgDGTOymAus3qu+WQUCIEUb0hbumCIwcmBIVpHI/1RiikmdqDEQ6loyYut45kXTcwJQgE5X7qYaklDxTY1zLsWTETOjuiaQABmApAWtGBcncTzWGqOSZmgKRjiUjpq53TyQdN7CeuZ/WbzW03UpGREzJ+OQNBYZeIjdgbMUAjJlYKsBgyRha2ChbWOQK8xUbLTBzL4uaZmT5NjHi3K1kIbzGB4zMFcx1H6uROypKqM4rB7BQFaZTz3LNx2ogiAo6teaVA1ioCgMYN2BkrmCu+ViN3JFRQnVeOYAFq7AlFqd8rHpbooRKXmK3kgXxGh8w9BK5AfPzSlcMwJiJARgzMQBjJgZgzMRuGjCiO2gZcfYr2AC93BsDTA0SKpOZFTHLAy6HBIa8xPI0KDEnZW6sImZ5wKVzwfpEapDmVp4HAGMGTAkSKpOZFTHLAy6dC9YrFoq8xNWJ0AYNLXmJngUbIBZ6Y4Chl8gNGH6HAVhcMQBjJgZgzMQAjJkYf2Dq7A9zz46aj+J2SMs8om5iPl6xgV19vferYimPd8/37p/4AVPnCJsfXkg9AdHtkJZHHHYT8/KKDez8WX5eLDRw9aTa07cq6pRT87PwqAfquR3S8sS8bmJ+XrGBCbsoVoS4fLz34CdlsZxupq4qoyx/o3ori+R0W5PGcfEc7qYHdvWNAFUs5XH5VG73/b+nzhE2P7yQegKi2yEtjzjsJubnFR3Y1R9/XL1rL5bTrSrqHGFz/I+atex2yJZ3K5o01nvY5e9KXsWiOe3FcrpVBb3ECMBe7O3tHWCxnP5esYG1LXKF+YoBGDMxAGMmBmDMxPgDI54kY/O2GIANBWwTO3SpsHWZFJdDdvUCsJrVYocOFbavuuFwyM5eAFYzAOMGbBM7dAFmXSbF4ZCdvQCsbmos0WzWTEOXQ3b1ArCGoZfIDNggXumKARgzMQBjJgZgzMQAjJkYB2BuPbuQXtTZs4w4dxPz8Uoa2GY9Z5O5RQn9YomtbwOYxmrLAxvMLejkF5pqfxvANAZgGq+kgW3WczaYW5TQL5bY/jaA6cwt/hfS62fqHmbOS+wm5uWVNDD0EtteaQPD77CWF4CxEUsFGCwZQwsbZQuLXGG+YgDGTAzAtGZ5Sno3MQAb3EuZXm5ZeSfMMQGsv5cyvdyykEvMkgGY1gCMG7Dm9HLLyjsxSwZgelOivJ6zzQFseC/0EpkBS1cMwJiJARgzMQBjJgZgzMQAjJkYgDETAzBmYgDGTAzAmIkBGDMxAGMmBmDMxACMmRiAMRMDMGZiAMZMbDzAgj5ECsCaVlssJ9Rj0F2nmwNYH2DVYjkXB/kL34UGSnOevQxgfYDlq8Vy3pzIpTw8FsupzLxIDqyDmRbLeXnivfbKypynm6OF9QK2WiznTTBgztPNAawPsGqxnHD3MPQSBwWGxXI8vWIDa1vkCvMVAzBmYgDGTAzAmIkBGDMxAGMmBmDMxACMmRiAMRNLBVgA8474sxALWjCtARiA6S3ZcwxgsCENwJgZgDEzAGNmcYC9e753/ySg2IOfQomdF4O1gbSCFoyyOMCungQUK7LwngXU++HHQEIXB2ELprU4wC4fB/y/98Ofgv5HvgjVwMYETFTl8mkosRfPAp7kgA2suL4GLBdh0Tod4c6xOMMBgV3+PpjU+UGZMT2oxQEmrhQXwS4WQcVCsi8K9kkwNcKi9RLD1SRsZyzgXaeaRDKo4XcYMwMwZgZgzAzAmBmAMTMAY2ZpA5tnWTbV7F/ce7160djyi9fURyOwpIEtPjjLF+8faz4wARP7AWw7Vp130dB288VHn4nXfCbf14CVH/5yv/hwnu389cuj7Par0neMljSw/DTbOSvJnE5FU7s+mor3y0dnNWCrDz84E7uXnx4v9wsX4Ss2t136QSxtYOKGtL9zVtzJsklBZjbJF3ezW8c1YOsPr789XsGTl0Sxue2yD2KpAxPXwMlcXt1KYPOdoh3VgVUfAtj2TdDJi8tgeTGUr4LPvNHC1ldKQWhzSQSw7disuNw1Oh3L/ewXBZN/iRvZ3azYP1/1QgpCotPx6+ly//YrANu+uXXVx8ppbaMCJppf0SBHbXyAwaQBGDMDMGYGYMwMwJjZ/wEUHJm96l8/qwAAAABJRU5ErkJggg==" }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "RObject{VecSxp}\n" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "R\"\"\"\n", "library(ggplot2)\n", "str(iris)\n", "\"\"\";\n", "\n", "R\"\"\"\n", "p <- ggplot(iris, aes(x=Sepal.Length, y=Sepal.Width))\n", "p + geom_point(colour=\"gray50\", size=3) + geom_point(aes(colour=Species))\n", "\"\"\"" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "**Julia側のデータをR側で分析**" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/plain": [ "RObject{VecSxp}\n", "\n", "Call:\n", "lm(formula = y ~ X - 1)\n", "\n", "Residuals:\n", " Min 1Q Median 3Q Max \n", "-2.5326 -0.5529 -0.1147 0.3792 2.3786 \n", "\n", "Coefficients:\n", " Estimate Std. Error t value Pr(>|t|) \n", "X1 2.08503 0.08504 24.52 <2e-16 ***\n", "X2 3.09001 0.08537 36.20 <2e-16 ***\n", "---\n", "Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n", "\n", "Residual standard error: 0.9142 on 98 degrees of freedom\n", "Multiple R-squared: 0.9473,\tAdjusted R-squared: 0.9463 \n", "F-statistic: 881.6 on 2 and 98 DF, p-value: < 2.2e-16\n", "\n" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "n = 100\n", "X = randn(n,2)\n", "b = [2.0, 3.0]\n", "y = X * b + randn(n,1)\n", "\n", "@rput y\n", "@rput X\n", "\n", "R\"mod <- lm(y ~ X-1)\"\n", "R\"summary(mod)\"" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## ギャラリー" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "-" } }, "source": [ "### Plots.jlによるアニメーション\n", "\n", "以下のようにして簡単かつそれなりに短時間でアニメーションも作成できる.\n", "\n", "* [Sarcone's dynamic Muller-Lyer illusion](https://www.giannisarcone.com/wp/blog/2018/03/17/dynamic-muller-lyer-illusion/)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/plain": [ "circle! (generic function with 2 methods)" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 線分を描く函数\n", "segment(A, B; color=\"black\", kwargs...) = plot([A[1], B[1]], [A[2], B[2]]; color=color, kwargs...)\n", "segment!(A, B; color=\"black\", kwargs...) = plot!([A[1], B[1]], [A[2], B[2]]; color=color, kwargs...)\n", "segment!(p, A, B; color=\"black\", kwargs...) = plot!(p, [A[1], B[1]], [A[2], B[2]]; color=color, kwargs...)\n", "\n", "# 円周を描く函数\n", "function circle(O, r; a=0, b=2π, color=\"black\", kwargs...)\n", " t = linspace(a, b, 1001)\n", " x(t) = O[1] + r*cos(t)\n", " y(t) = O[1] + r*sin(t)\n", " plot(x.(t), y.(t); color=color, kwargs...)\n", "end\n", "function circle!(O, r; a=0, b=2π, color=\"black\", kwargs...)\n", " t = linspace(a, b, 1001)\n", " x(t) = O[1] + r*cos(t)\n", " y(t) = O[2] + r*sin(t)\n", " plot!(x.(t), y.(t); color=color, kwargs...)\n", "end\n", "function circle!(p, O, r; a=0, b=2π, color=\"black\", kwargs...)\n", " t = linspace(a, b, 1001)\n", " x(t) = O[1] + r*cos(t)\n", " y(t) = O[1] + r*sin(t)\n", " plot!(p, x.(t), y.(t); color=color, kwargs...)\n", "end" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/plain": [ "MLIanim (generic function with 1 method)" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "function MLIanim()\n", " lw = 1.0 # 太さ\n", " A, B, C, D = [1.5, 0], [3.5, 0], [5.5, 0], [7.5, 0]\n", " N = 9\n", " θ₀ = 2π/(2N)\n", " R = [\n", " cos(θ₀) -sin(θ₀)\n", " sin(θ₀) cos(θ₀)\n", " ]\n", " V(θ) = [cos(θ), sin(θ)]\n", " r = 1.55*2π/(2N)\n", "\n", " aa = [0.5:0.025:1.5; 1.475:-0.025:0.525]\n", " prog = Progress(length(aa),1)\n", " anim = @animate for a in aa\n", " θ = a*2π/4\n", " p = plot(xlim=(-9, 9), ylim=(-9, 9))\n", " plot!(grid=false, legend=false, xaxis=false, yaxis=false)\n", " for k in 1:10\n", " RR = R^(2k-1)\n", " segment!(RR*A, RR*B, lw=lw, color=:black)\n", " segment!(RR*B, RR*C, lw=lw, color=:blue)\n", " segment!(RR*C, RR*D, lw=lw, color=:red)\n", " segment!(RR*A, RR*(A+r*V(θ)), lw=lw, color=:black)\n", " segment!(RR*A, RR*(A+r*V(-θ)), lw=lw, color=:black)\n", " segment!(RR*B, RR*(B+1.5r*V(π-θ)), lw=lw, color=:black)\n", " segment!(RR*B, RR*(B+1.5r*V(π+θ)), lw=lw, color=:black)\n", " segment!(RR*C, RR*(C+2.0r*V(θ)), lw=lw, color=:black)\n", " segment!(RR*C, RR*(C+2.0r*V(-θ)), lw=lw, color=:black)\n", " segment!(RR*D, RR*(D+2.5r*V(π-θ)), lw=lw, color=:black)\n", " segment!(RR*D, RR*(D+2.5r*V(π+θ)), lw=lw, color=:black)\n", " end\n", " plot(p, size=(500, 500))\n", " next!(prog)\n", " end\n", " anim\n", "end" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "**アニメーション**" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "\u001b[32mProgress: 100%|█████████████████████████████████████████| Time: 0:00:28\u001b[39m\n", "┌ Info: Saved animation to \n", "│ fn = C:\\Users\\genkuroki\\OneDrive\\msfd28\\dynamic_Muller-Lyer.gif\n", "└ @ Plots C:\\Users\\genkuroki\\.julia\\packages\\Plots\\47Tik\\src\\animation.jl:90\n" ] }, { "data": { "text/html": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "anim = MLIanim()\n", "gifname = \"dynamic_Muller-Lyer.gif\"\n", "gif(anim, gifname, fps = 15)\n", "sleep(0.1)\n", "showimg(\"image/gif\", gifname)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### 特異モデルに近い場合の尤度函数\n", "\n", "* [混合正規分布モデルの尤度函数](https://nbviewer.jupyter.org/gist/genkuroki/3e385f7dfdf61e92d3e2458cf2494f1c)\n", "* 渡辺澄夫, ベイズ統計の理論と方法, コロナ社 (2012) の第1.4節\n", "\n", "確率モデル(パラメーター $a,b$ 付きの $y$ に関する確率分布):\n", "\n", "$$\n", "\\begin{aligned}\n", "&\n", "p(y|a,b) = a N(y) + (1-a)N(y-b), \n", "\\\\ &\n", "N(y) = \\frac{1}{\\sqrt{2\\pi}}e^{-x^2/2}.\n", "\\end{aligned}\n", "$$\n", "\n", "サンプルを生成する真のモデル: $p(y|a_0, b_0)$.\n", "\n", "$a_0=1$ または $b_0=0$ のとき上の確率モデルは特異モデルになる.\n", "\n", "以下では特異モデルになってしまう $b_0=0$ に近い $(a_0,b_0)=(0.5, 0.1)$ の場合の尤度函数をプロットしてみる." ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/plain": [ "plot_lik (generic function with 1 method)" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mixnormal(a,b) = MixtureModel([Normal(0,1), Normal(b,1)], [a, 1-a])\n", "lpdf(a, b, y) = log(a+(1-a)*exp(b*y-b^2/2)) - y^2/2 - log(2π)/2\n", "loglik(a, b, Y) = sum(lpdf(a, b, Y[i]) for i in 1:lastindex(Y))\n", "\n", "function plot_lik(a₀, b₀, n; seed = 4649, bmin=-1.0, bmax=1.0)\n", " seed!(seed)\n", " Y = rand(mixnormal(a₀, b₀), n)\n", " L = 201\n", " a = range(0, 1, length=L)\n", " b = range(bmin, bmax, length=L)\n", " f(a, b) = loglik(a, b, Y)\n", " z = f.(a', b)\n", " zmax, k = findmax(z)\n", " #i, j = (k - 1) ÷ L + 1, mod1(k, L) # for Julia v0.6\n", " j, i = k.I\n", " z .= exp.(z .- zmax)\n", "\n", " sleep(0.1)\n", " plt.figure(figsize=(5,5))\n", " plt.pcolormesh(a, b, z, cmap=\"CMRmap\")\n", " plt.scatter([a₀], [b₀], label=\"true\", color=\"cyan\")\n", " plt.scatter([a[i]], [b[j]], label=\"MLE\", color=\"red\")\n", " plt.legend()\n", " plt.xlim(0,1)\n", " plt.xlabel(\"a\")\n", " plt.ylabel(\"b\")\n", " plt.title(\"\\$a_0 = $a₀, b_0 = $b₀, n = $n\\$\")\n", "end" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "#### サンプルサイズ 512 の場合\n", "\n", "尤度函数は特異点集合 $a=1$ または $b=0$ に沿って拡がった形になっている.\n", "\n", "最尤法(MLE)によるパラメーターの推定値が真の値 $(a_0,b_0)=(0.5,0.1)$ とは全然違う値になっている." ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAHWCAYAAAC41crsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXmcFsWd/z/d/VwzPPPMAAMDKCAxREXkcFCuSGJEEI0iiUoSQ9zEIyZmI7LZKK4XYiDuqgEP8CIhrj+RGEQ0YhSTiBLQKAqb9URXA0GGS2GYgZl5jv79UVX9dFd3Pd3PNQd8374ea6q6uvqYYWo+9T1KM03TBEEQBEEQnRK9o2+AIAiCIAg1NFETBEEQRCeGJmqCIAiC6MTQRE0QBEEQnRiaqAmCIAiiE0MTNUEQBEF0YmiiJgiCIIhODE3UBEEQBNGJoYmaIAiCIDoxNFETBEEQRCeGJmqCIAiC6MTQRE0QJaKpqQkzZ85Ev379EIvFMGLECDz++OOBzn3ppZegaZrn59VXXy3oXgzDwB133JH3ueWmmPd04MAB/PznP8ekSZPQq1cvaJqGW265pbw3XAby+X4HfeY///nP+MEPfoDjjz8e3bp1w1FHHYWpU6di48aN7fRURLkIdfQNEMThwje+8Q28/vrr+OUvf4kvfelLeOyxx/Dtb38bmUwG3/nOdwKNMW/ePJx++umOtqFDh+Z9Lxs3bkQmk8Ho0aPzPrfcFPOe9u7diwcffBDDhw/H+eefj4cffrid7ro8BPl+B33mxYsXY+/evbj66qsxZMgQ7N69G3feeSfGjBmD559/Hl/72tfK9hxEmTEJgiiaZ5991gRgPvbYY472M8880+zXr5+ZSqVynv+Xv/zFBGA+8cQTJbmfO+64wzQMw2xubi7JeKWi2PeUyWTMTCZjmqZp7t692wRg3nzzzeW63bKRz/c76DPv3LnT1XbgwAGzrq7OPOOMM4q+Z6LjoKVvosvxt7/9DdOnT8cxxxyDiooK9O7dG9OmTcNHH33UYfe0cuVKxONxXHjhhY7273//+/j000/x2muvtev9vP766xg6dCjWr1+P0047Dd26dcMXv/hF3Hfffe16HzLFviexPFwqvva1r+H000/H2rVrMXHiRMTjcfTp0we33nprya5RLEGfuXfv3q62eDyOIUOGYNu2beW4NaKdoIma6HJs2rQJw4cPx8KFC/H888/jV7/6FT744AN84xvfKGg80zSRSqUCfVT87//+L0444QSEQk5r0rBhw6zjQbjqqqsQCoWQSCQwefJkrFu3rqBneuONN7Bnzx5cf/31+MlPfoInn3wSJ5xwAn7yk5/gqaeeKmjMzvSeSsWmTZvwySef4JprrsEll1yCp59+GhMmTMDNN9+MtWvXep5TivcgKNX3W8X+/fvx5ptv4sQTTyzpuEQ708GKniCKIp1Om8lk0nz44YdNAObnn39umqZp7tq1yzz77LPNyspKc/DgweYLL7ygHEMsQwb5fPzxx55jDB482Jw8ebKr/dNPPzUBmPPmzcv5HG+++aZ59dVXmytXrjRffvll89e//rV5wgknmIZhmH/84x+DvxDTND/77DMTgHniiSeaBw8etNqbm5vNHj16mNOnT7fautp7slPs0vdHH31kAjDr6+vNlpYWq/2f//ynCcBctGiR53mleA+Ffr/zfeaLL77YDIVC5htvvBGoP9E5IWcyokthmiZWrFiBRYsW4b333kNDQwNM0wQA6LqOiooKAEyp9OnTB7t378aLL76Iiy66CB9++CF69uzpGrO+vh6vv/56oOv369dPeSzX8qTf0uXIkSMxcuRIq37aaadh2rRpOOmkk/Dzn/8ckydPDnR/AFPTADB37lzrfQBAZWUlBg8ejJ07d1ptXe09lZI333wTAHDrrbciGo1a7Xv37gWgfoZSvIdSfr9V3Hjjjfh//+//4Z577kF9fX3R4xEdB03URJfiiiuuwNKlS/HDH/4QP/3pT9GrVy9Eo1FcdtllOHToEKLRKJqamvDUU0/ho48+QmVlJc477zwMHz4cq1atwg9+8APXmPF4HCNGjAh0fXnJVtCzZ0/rF7ydzz77DADQo0ePPJ6SUVNTg69//eu4//77cejQIcekm4s33ngD3bp1w3nnnec61tDQgAkTJgDAYfOeCuXNN99ENBrFxIkTXe0AHBOpnVK8By8K/X57MWfOHNx22234xS9+gZ/85CcFj0N0DshGTXQZ3n//fTz88MOYN28e7r33Xpx//vkYP348jjnmGLz99tsYNWoUAGDLli2Ix+Po37+/de5JJ52Et99+23PctWvXIhwOB/p88sknnmOcdNJJePfdd112yb///e8ACguxAmCtFuSjNN944w307t0bhmE42tevX49//OMfOOeccwAcXu+pEDZu3Ihhw4YhEok42t944w3U1tZiwIABnueV4j2oKOT7LTNnzhzccsstuOWWW3D99dcXPA7ReSBFTXQZ/vGPfwAAhgwZ4mi/+uqrkUqlrIm6qakJiUTC0SeRSGDPnj2e45ZiKXPatGl46KGHsGLFCkyfPt1q/+1vf4t+/foVFM/8+eef4w9/+ANGjBiBWCwW+LzXX38du3btwr59+1BTUwMASKVSuPbaa3H88cfjm9/8JoDD5z0VyltvvYULLrjA1b5x48acS8WlMgHIFPr9tjN37lzccsstuOGGG3DzzTcXNAbR+aCJmugyDB8+HJWVlbjxxhuhaRoOHTqEhx56CB9++CEAWBN1PB5HY2Oj49zGxkbE43HPcauqqqxzC2XKlCk488wz8aMf/QiNjY344he/iGXLluGPf/wjHn30UYe6Xbt2Lc444wzcdNNNuOmmmwAA3/nOdzBgwACMGjUKtbW12LJlC+68807s3LkTS5cudV1P0zR85StfwUsvveRo3717N7Zt24Zjjz0WF1xwAX72s5+hpaUFCxcuxN///nesW7fOWo7tiu8JAJ577jk0NzfjwIEDAIB33nkHv//97wEAZ599NiorK62+qve0bds27N692/U8qVQKmzdvxqxZs5TPUIr3kO/3O8gz33nnnbjppptw1lln4ZxzznFlOBszZkxR90x0IB3ry0YQ+fGHP/zBPP74481oNGoOGTLEXLhwoXnbbbeZuq6bBw4cME2TJXkIh8Pmtm3brPO++tWvmkuWLCnrvR04cMD86U9/avbp08eMRCLmsGHDzGXLlrn6Ca9hu+fu/PnzzREjRpjV1dWmYRhmr169zGnTppl/+9vfPK8DwPzWt77lOiYSirz66qvm5ZdfbiYSCTORSJgXXHCB+cEHH7jG6WrvyTRNc+DAgYG8rHO9p6eeesoEYG7evNnRvnnzZhOA+eSTT5bkWVXk8/02zWDP/JWvfCWnBzrRddFMkxtFCOIw4sILL0R1dTXuuece/OlPf8KMGTOwZcsW1NbWdvStFc3q1avx9a9/HZs3b8ZJJ51U1Fj0ngii80NL38RhyaJFi3DJJZegZ8+eOOqoo7B8+fLDYvIBgL/85S/41re+VZLJh94TQXR+SFETBEEQRCeGwrMIgiAIohPTpSbql19+Geeeey769esHTdMC5Sxeu3Yt6uvrEYvF8IUvfAH333+/q8+KFSswZMgQRKNRDBkyBCtXrizH7RMEQRBE3nSpibq5uRnDhw/HvffeG6j/xx9/jLPPPhunnXYa3nrrLVx//fX46U9/ihUrVlh9NmzYgOnTp2PGjBnYvHkzZsyYgYsuuqjddzsiCIIgCC+6rI1a0zSsXLkS559/vrLPtddei6effhrvvvuu1XbllVdi8+bN2LBhAwBg+vTpaGxsxHPPPWf1Oeuss9C9e3csW7asfA9AEARBEAE4rL2+N2zYgEmTJjnaJk+ejCVLliCZTCIcDmPDhg245pprXH0WLFigHLe1tRWtra1WPZPJ4LPPPkPPnj3bdVMBgiAIovNgmiYOHDiAfv36QddLt2B9WE/UDQ0NqKurc7TV1dUhlUphz5496Nu3r7JPQ0ODctz58+djzpw5ZblngiAIomuzbds2HH300SUb77CeqAF3cnvTI+m9V59cynj27NmOFIP79+9XJvAnCILo2jg3d9E0Nm3oeshR1zSDt7M85YYR43W2hWg4XM3bWYraSKQHL9mWqhGjJ2KoAgBUgOWo74buAIAqfq26ENt5rXeI7bZ2dIht2TrA2M7K0KcAgP5hVrZ0PwgASFa1sDLOVkIz0SQrQxl27xkNeordv3GIbdISPsDuO7qPpaQ92MTud0tyIADgw9QxAICtKZbP/dNkb7SlD+HRLT9GVVWV/BKL4rCeqPv06eNSxrt27UIoFLL221X1kVW2nWg06ti/liAI4nBDTMDquuYodZ1NcIYRcdRDoW68HuP1OC/ZhjDhMJ+otQRifIIWE3WUl9XGIQBATYgtJ9eG2QTbK8R2YTsqxCbi/iE2MVd2Y8eNqjQAIBln9RQv0xEm2MwQd9HKAEYb+zrExVy4jT1XLKzz+2UTedwMs2uYbA6Imey5IhlnjvlS0qW8vvNl7NixWLNmjaPthRdewKhRoxAOh3P2GTduXLvdJ0EQBEGo6FKKuqmpydopCWDhV5s2bUKPHj0wYMAAzJ49G9u3b8cjjzwCgHl433vvvZg1axYuv/xybNiwAUuWLHF4c1999dWYMGECbr/9dkydOhWrVq3Ciy++iHXr1rX78xEEQXR23EveuUt5KTyrqHmpsfYwYgiBq3JeVnBlWqkzxRzXuWLWuMLWG3l7s6NMxvjSdoQp7jSvp3ldtEPnqwIpwNQ7bwBUl1LUb7zxBkaOHImRI0cCAGbNmoWRI0daW+Dt2LEDW7dutfoPGjQIq1evxksvvYQRI0Zg7ty5uPvuu639eAFg3LhxePzxx/Gb3/wGw4YNw9KlS7F8+fJ23ReXIAiCIFR02TjqzkRjYyOqq6s7+jYIgiDyRtM01NTUoKqqCpqmediinc5kQlELG7RYmM3apqO8XukoszZp5iAWibDNXyIaU9ZRxG3OZOz3aY3eBgDoaewDAPQKfQ4A6GcwJ7KjQsy/qH9oBwCgKsqOt9UwxS2cyFKVbJx0lClpMyxNexlAb2PPGWoWzmRM6Uf3VwAAmpp7QjNNbN1TBbQl8UHyCwCAT1JHAQD+meyDtvRB/Pq972P//v1IJBIoFV1q6ZsgCIIoHb169cKPfvQjjBo1CqFQSOEEpXKMcjqTZfvJ7bpUN3idl6I/dGi8ry5KTZzBJnVD405iYBNuSGPOYnt5/TN+3DQy/Fa405hY1pZvVSB27Qagmfxght9Xht2LmdFhAjCa2pBe9hywxeOVlAmaqAmCII5AQqEQ7rzzTgwaNAixWIy3qr2Vs3O4PNvpjrqm6Y5StMu2bTFhW5MyDGhSW0iakEUZ1ZjNOay18TLJb0V4c/MJ25q4eXsOZ2xNTNRp5wStp1iZzoRgAthVk8b+b0+BdvsrMFtT6gFLCE3UBEEQRyB9+/ZFbW2tbZL2w1s5ywraPVGLulDSUtw1sqUmltH5OaIMaWxCDPNrRPgEHOFjRPgEDkNMzKyfySW5a6L2UNTWRC2eg0/YOj8pze+lJhLGgW4VCFXHkNzVhPaAJmqCIIgjEF3XA8X7uvvIE7TcDum4c8KGbanbXrJFcD458nVoa6mbl0JR62ClwUuNz7IZoailJW9rgtZVz2taS99+aOyC7Zouukt5fRMEQRDEkQYpaoIgiCOeIOrQT1l726az7YazLp/vcCZL8jLjKIWClpW25Symy85jkhOZfOseKlqob783koaBNAxkzPLrXVLUBEEQBNGJoYmaIAjiiMZbO2qWHdb7o2nCPq3DOZWwuqYZXEXrjk9WOfNxrP90GMjAQAa6Zjo+ol18zvrexbh23lxoWgaaloGpm+yjsQ/4x9QBUwesmxW34XocDaaW2ytcoDJlp00d6TKpa1r6JgiCIAomDeCteCX2RsKoTaZwcnObtN9W+2OaJtLpNAyjo++kNJCiJgiCIAIgy1Adf66pwdeHfgk//NIgXH/M0bhi8DE4Z8gg/Lkmbilyoaw1TWcfm4KWPzoy0CX1bCADQ0tbnx9d/zO8/PrruOe//xv6ccOgHzcMv31yFULHjsDzr/wVo8+9GPFjx+KV19/CZTPn4ILv/8wm+jX82w134sxpP2TPoAEmTNxx329x3NipqD72y6if/C2sePbFjnvNHpCiJgiCIPLmzzUJ/Pug/q72XeEQfjawL+74x05MbDxY8uv+1/U34KNP/g8nDh6MOdf8CADwv//H0oTNnnc3bv+PmThmUD/UJOKBxrt5/iI89exfcM/86/DFQf3x1w2b8C8zb0TvpT3wldGjSn7/hUATNUEQxBGGpoVcOb2zx/wTm6QB/NfRfcUJjvNNTYNmmvjPfrU4vXE7QnB6eWuKuo4MdO7FbZXcyztkK3tWVSISCaOyIoq6OraX9btb2a6KN//sh5j41VPhMBVr0j3aHqe5qQULH3gMzz+xGGNOPgkAcOzRA/DX1zfhocdW0ERNEARBtC+qyTl73D7pqhObvBXvhl2RsHIcU9OwMxLCW/EKnHqQJyXxCMeylwZSMKwwLJHgRIRhpR2lNYyU4OTk4ScwhzCR2ESViYy3vbvl/9DS0oqzp1/lONSWTGLEkOOdz6R82vJDEzVBEASRF3vCwaaO3SEDQNq3X6noVlnhqOuaDnl/yGQym587k2F/CDz16AL0690LAKDxzTgq9KCpVcsPTdQEQRBHLEF2y3Ivgdcmg21G0SuVCbTkDbDlbveSN7tONlUoOx6OhJDOpGHqYpcsfkFdYx8u/2t7dcfb73/kWPr+n7c/QDjEpr4TjvsCotEItm1vwITRJ7OhRI7vlMpjnDnTpaEj1U7+7TRREwRBEHkxsukgerclsTscgumR81ozTdQl0zi5uQ3QSj+ZHXNUP7y2+e/4ZNuniHerQMbMePb76pdH4a57H8Gjy/+A0aOGYdkTz+Ltdz/CiJOOAwBUxbvhmh/PwL/ffBcyqQzGnToCB/Y349WN/4OqWDd875vnlfzeC4HCswiCIA5zcjmPsePq5CbZxCairiGkafj59l3sXGltWdSvbTiAkCMcS/xn8I/uSHJi/4Q09hEhWSH+EYlNZl0xA4ahY9jEC9B35ERs3d7ALw4ROQbowKQzxuP6f7sM189ZiPFnfhcHmg/i4unniIcGNOCW2T/C9bMux3/euxTDv3ohvj7jX/Hsi6/gmP5HwTmoNxkeVFZONNOUV/CJfGlsbER1dXVH3wZBEIQnXpP0wIEDsXjxfaitrZU8vb23r8xuV5nN3f2n6jj+66je2GlzLOvTlsLPd+zDmQdEvu7sftNs1JCjHobYwjKFMN/OMsL3l45qrbxk+07DYEvgZoiVGcO53zT49pZWKe7dY1tLVvIv0ib7wL30LcpUmt13YzqEbbsa8Pad69G6swnbksz7fXuyN9rSB/Hb9y/B/v37kUgkUCpo6ZsgCOIwRR2CFbJtkuE4Av8JOrvpxhn7m3F64za82S2GvZEIapNpjDqUhgG3VzckG7UBKRRLy/japjPyphtWqTlL1QRtf0wgO2HnFs0dDk3UBEEQRMEYAE5pboF2kE2uuk7TSqmhN0oQBHGEoLZTq+On3aVi20p5e0tJUWe9vPnSsqWas7HTISleWtSzCtq5raWV2EQVNy0ra3nJOy+yg7e3vZicyQiCIAiiE0OKmiAI4jBDVs5yXddDfIna7uENCC9v8TU7V5S6VBelpKxd8dJCQTvjpg056xjSjlShbExv27Tpsk3DWVfZqGVl7Tig0MmK5nJuaylDipogCIIgOjGkqAmCIA4T/HJ5C0cvu9e329NbVtBO23NW3xmOuqyg3TZqfpaVfcxZiphp8TVgV9BO27RbOUulnwR1KW67bO587t+kqAmCIAiiE0OKmiAIoouTK1464Ai20ltBywrbVSq8vLO7Y8kKWuyQlY2dFvHTWds0Tw0q26Zl5SyLfShs1EXk9zKlUtAedmpS1ARBEATRiaGJmiAI4jBDzu0tvLxFu7BRM5u07sjnLfJ+uz86V88GAIOfb9hyeOv846zrMNmH744l8nnr/BPi3t4hbqM2tDRMI8M/JvvwHN9id6zLrr4F0T6jcNW/z8vumMV3zfrXf5uHaM0IXPbjGwFNw2U/ugkXfGcmV9fcBm9zdP/SyHMQratHtN8piPY7BZEB9YgMqMfti3+d1ybU5cz5TUvfBEEQROGk06h88zVEdu9GqlcdDp08DjDKv/1j/6Pq8MSTz+OO2/4NFd3YPtQtLa343e//iAH9++Y11s3XXokffHsqAEBLscm2OlpV2hsuApqoCYIguihB4qXt7c5SxFEDdjt01svbu8zapDVUvbgafX95I8I7d1jXTNb1w67rfomDE8/nZ0kZyCTbtGGLnda4DVodN62LB8WIYSfg439sx1PP/gXf5jtiPfXMn3H00X0w6Jij4d5gRAM0Po6klOPduqFPr1rWM83jvZNOdWxKBm+Wmbx99qOmpW+CIAgib6peXI3+sy5HyDZJA0Bo1w70m3UJur34dNnv4XvfOQ+/fWyVVV/66FO45Lvnl/267Q1N1ARBEF0Mv/2ls5nHvM/zjqN2buYs1HX2Y7NLZ4C+v7wRMGWdCWs/6t63XwsjnYShZfiH26CR5lnImJd3yLHfdIZ/hE06wz/CDg3HrHXxt8/B+lc34ZNt2/GPf36KDa9uwne+9XX7Awd6n/9x293oMXgCegyegO7Hfxndj/8yXnr1DfY+TEgKXINptm+sNS19EwRBEHnR7c3XHMvdMpppItSwHbE31yN16tiy3Udtz+6YMunLePSxZ2CaJqZMPg21PbvnPc6sH38PMy5gy+c6X/o+urZPSe+1GGiiJgiC6CLkGy/tbZsGDCMGw4hCqGh7Pm85t7fIQGbl9IaG0O5dge43vHsHTNvuWIAtblpz7j2d0ZmXNwCYhshExgdy7TfNP7qGS2acj5n/fjsAYOGd/wFoOtyrBODtac/77NmjBl8c1J9dgjuTaSnZ/txxGctooiYIgiDyItWrLlC/dMB+xTD5zPFItiUBAJMmji/79ToCmqgJgiA6OUGVdG4vb69c39kYaT4isjm8nbtiWTnAoeHQyWOQrOuH0K4dlk3ajqlpSNf1Q7J+NMIu7+6Uo9T58YxhqnN6W7cgKWroMAwdm99gjmtGKGQ7nlXAjY1N2Pw/7wEmV9QZoHtNAgP6seXtpuZmNOzawy7FFXU81A2JqriVu9x6NoghdGTM8sVO2+lyzmSLFi3CoEGDEIvFUF9fj1deeUXZ91/+5V88A/dPPPFEq8/SpUs9+7S0tLTH4xAEQShROY0FS2iS/bCl7hh0PfvRtKhtEw67A5kzwUk2sYme/Rhh7LxuHgA2KdsR9cZr58IwtGxiEy2FkJaynMosBzIrqUnGldhE+bHCrXRA05GoTiBRnYDL20zTAU3D2ldex6njL8SpX/4W+0z4Fm6dv9jqNuf2+zFw5BQMHDkF/U+ZjP6nTMa1/7nA+VzIK/9JSelSinr58uWYOXMmFi1ahPHjx+OBBx7AlClT8M4772DAgAGu/gsXLsQvf/lLq55KpTB8+HBceOGFjn6JRALvv/++oy0Wi5XnIQiCIA4Dmiaei+13/QZ1v7we4Z2fWu3pun747NpfIHXmlLJd++H75+Y8/vvH7832fWBetr/Jc4enRWnig7eeZfUUm4aFotaT7RMjHYQuNVHfdddduPTSS3HZZZcBABYsWIDnn38eixcvxvz58139q6urUV1dbdWfeuopfP755/j+97/v6KdpGvr06TwefgRBHNmUaqk7iDOZPclJNkWo03nMWfKJDDoOTpyKf5x+HireXI/I7h1I96pDqv4UwDCsJe+s05hz6Vvjy9wZ4TjGU4XyB+MlV+uG7EzGJ1E5OYsQ91b4VAbOA/nTUSraTpeZqNva2rBx40Zcd911jvZJkyZh/fr1gcZYsmQJJk6ciIEDBzram5qaMHDgQKTTaYwYMQJz587FyJEjleO0traitbXVqjc2NubxJARBEIcRhoFDp5yGpJiItVQH39DhR5exUe/ZswfpdBp1dU4vwrq6OjQ0NPiev2PHDjz33HOWGhccf/zxWLp0KZ5++mksW7YMsVgM48ePx5YtW5RjzZ8/31Lr1dXV6N+/f2EPRRAEEQA/m7TcT2WbdtYjyIZmCduuerMN8Z8mfYQN2kpoIhKcIAVDJDWxJTYJ849nchNDYx9xO7bNNthHV3zEriL8RMvZzJ5GNCCmZlPkWdu0CY1/GOXchEOmy0zUAk12XDBNV5sXS5cuRU1NDc4/35lebsyYMfjud7+L4cOH47TTTsPvfvc7fOlLX8I999yjHGv27NnYv3+/9dm2bVthD0MQBEEQPnSZpe/a2loYhuFSz7t27XKpbBnTNPHrX/8aM2bMQCQSydlX13WccsopORV1NBpFNBoNfvMEQRAB8UsNmuscrzAsZztzkjWMGDRN/C6026gN26Yb2c03nHVho2baUmyyYW26AadtOqw5w7EyetYmzUpbchM5sYllkxY2aJVtmvezQsXEcWGj9sHM7tcRmAw7IU3hWVkikQjq6+uxZs0aR/uaNWswbty4nOeuXbsWH374IS699FLf65imiU2bNqFv3/y2SSMIguhKfPZZE5LJNEzTO1sX4U3KzCCTziB1MNlu1+wyihoAZs2ahRkzZmDUqFEYO3YsHnzwQWzduhVXXnklALYkvX37djzyyCOO85YsWYLRo0dj6NChrjHnzJmDMWPGYPDgwWhsbMTdd9+NTZs24b777muXZyIIggC8lbSskOV2WSmLftk6K0OhuKNuGHG0tQF/+tO7OPfcGLp3N6BpYQAZy83ZtFlj2f95+JKlUtkEb4qEJaLkyjltsoksJZzLeJkR52X4uFyZQtMA2Q9N3IJs3hTyV5O9usXNy2XGeTwtlwC/fWhWmJZ4fFZvM9MwTeDz5oM4+N6nSDU7J+o09LKp6y41UU+fPh179+7Frbfeih07dmDo0KFYvXq15cW9Y8cObN261XHO/v37sWLFCixcuNBzzH379uGKK65AQ0MDqqurMXLkSLz88ss49dQCwA7QAAAgAElEQVRTy/48BEEQHcmKFW8AACZOPAnhsAFd062lbSiWvIVPkFjq1vnEm10C9w7LEhnIxFI35L2mhRMZ68xvQQ7Hcu6frdwdy3T+kZGdsNPOupioM6bVVUvz587wa/BNOlIIwTRNHNrfhsZn3gTMGu9rlwHNND3yvxF50djY6IjXJgiCCEoxStoeF836O0vRbhhMUQtlHQ7XOMp4vCdqamKI6hWIoBIArDIKdk6Ml9V6MwCgxmBhqT2M/QCAnsY+AMBRIeZHdJSxk5esnqxh57V2P+gozWo+IdZEgCpuN0+EWcnvD5EqXk+wkj+XNYELxEScbuMluyaSB1jZspeVzfz4fh5muz8J7XN2buyzbuy597LSPMCuvTV5FJDJ4OPd1UA6g49TRwMAGlK1VtmWPojH3r8Y+/fvRyKRQKnoUoqaIAiCKD0tLWk0NDQjAhMxrlajfHqI8fXoCrEEbvAc3Qab7GKhQwCAeKiJHQ+xCdsI7ebH2XaYeoZNlqbO+4VZaUb4RF0RAyr4RJ0Rjm6HnKXGJ1i9ktcVE7XJJ2B+TWAfb+e7fqX58TaeKvpQK7Qmdm5kH5uYY3tZmdnH/ljQk9yBOF2F9oYmaoIgiA4gny0r/ZS0n8IWdaGohcIWZRgxqwzxr2VlXaWzyTJhsAm2O1fUQlnX6Xs8y3QVU87JBDs/FWeTpBnnDxfn6jkeAir5s4ervMsQn6B1PpErFXUrciLs4plsXct4L6OnTXaNNM/YlkL7pxbtMl7fBEEQBHEkQoqaIAiiHQmipP1yeMtKWlbOsre3rKAtW7XGFGrYpqJlJd2NO3tVcyVdzZeuhbLuqX8OAOht7HGUsQqmtFu5gk6KMsHVbpwvJQtFXRkCxGZIEW6blhW1UcFLRR6LFFPv0CXVm/EJQcvAUtRyqVLSGbP9dC4paoIgCILoxJCiJgiCaAfy2REr6C5YKu9uX29v3Wmbtqto4d1doTHVWq0zR6wEV9LCJl3LlXSdsddRCu/vNq6g2xItjhJx/ryWbdqmqC0lHXeWQkmHfJzI5HYZ0S9jukoRjpVV1CIsyzlmWlLS7aGsSVETBEEQRCeGFDVBEEQZKWRv6aDx0qq6SkmHdLdNWi7F1wn9AC+dNulq3t7T8LZNp6pZ7LLw8hal5eWd4B7bQlkLT+9oz6yiDlVJpeTtLdugRdy0aFflS7d5ectlVlFz/Sp5gctKuj0hRU0QBEEQnRhS1ARBECUk1+5X9uO5so7lq6Rl725RtxS1wbJkeSloexlF3BUvLby9u+s8XprbovsZLHlIb14PVbJ+LZJNOpXgObET3KNbtk1X8Axe4Sp13HSI26h1ydvbsk37eHXLG494KGpLQcte31xJC+/vbEle3wRBEARBgBQ1QRBEScjXFi0f91LUhSppyyYd4iW3Sauyjol83lV60so4JhS08PLuxZWzbJPuHv4MANAi2aSTlpe3LfOYvV7JVbKwS0dq3PHTQkkbkre3amtOn9UMTyXNS7846o6EFDVBEARBdGJIURMEQRRBKZW0KEulpHN5dwNZJS2yjyX0Jss2LUo5Xlq2TbfWMAUtx0ubCa5EhZe37O1tV9KilG3Ulpe3ZJsW7zbDs5wJb28htE2+mbTISOaKn4arlJW0wMr1LZUZy3ZNcdQEQRAEcURDipogCKIASq2k7fm781XS2bq3kpbrQklXcptvNbdHdzcaLdt0b+MzXjJbdF++v7Soy7tiCZt0JsFVa0LaW1rYpr2UNMBUtGWTZqWmO3OaC0yumE0thZyYKkWdv43az1adMfWyZSmjiZogCCIPyjlBs/NieU/QVmpQH2cxOT1oQtqqsrvRiO7GfgDZCVksddfJYVjSkneyhi9DizAsa6lbCsOK9mSlV7pQnuBE58+VfaeidE7MJiTkJW9Xu/dErWV0V8ITK/GJREc4l9HSN0EQBEF0YkhREwRB5CBoAhOBvEWl3E+oZLmffbk7XyUd0Vhd5TQmlHQU3QAACd0ZgtXdpqzrrDAsZzhWtwrmVNZa41zybuN1JLjDl7zU7RWGZS9t6UKzSlq15C2+8lnytk4QS96i5O1CUad4Q0ZzJTwRy9gpaZtLUWa4zqVNOQiCIAjiCIcUNUEQhAfFKmn11pROBe2V3MQv/Eq0CyXtZ5sWSrq70ehdWg5key2nsX68rI0wRd0qwq+4bVqEZVkKWrZJizCsGLdJy7ZpKbmJbsSh8+03xbuRyWR4EhXV1CWHY8mlUNApZ5iWntLdTmQi/EoqOwJS1ARBEATRiSFFTRAEIeGlpotJYGLvn7VRO23VQiUbRqxkiUyEbdraWEOhqHtZyUx2Wl7efUK7AWS9u4Vtuk1sW5ngNl05DEvUY71ZGa1lpUpJh6r5e4jbVhlkRZ3i7exdmbK7t0pJp1ud9Rxe33qK6VZRqsKy0u2Y6ERAipogCIIgOjGkqAmCOOLJZY8uVkl7xUnb22UPb12P2RR07kQmfkq6xmjmpVNB9zT2AQDqDKaahYruZ+xC3xD72lLQUpmu4YbdGsnL21LSXDHHfGzSNiXN3kfcQ0kzXAra1cHPNq1IdMJt1lom5IqfdqUO7cDNOUhREwRBEEQnhhQ1QRBHLIUoaVV8tEpBB1XSdru0rKRVqUADK2lpy8panh5UKGmhovsaO5GqZudmlTSzSadqeOyypaSlzTZUmcekUg/34M9b43gPuh5Xpwo1FXHT8naXfrbplFQKG3VKd8VRyzZqlbLO0KYcBEEQBHFkQ4qaIIgjhnxiowv16vZT0F42aQAOu3TYYOo05GOTljOOCe9uWUn3DAmbtDN/t1DSImYaiSZXnHQ2h7espEW8NM/VHZXipSVvby2U4M8bl0rnewmCpbAtxdzG63I7v3crflouhde3Znl7izhqOROZS0m3Y1w1KWqCIAiC6MSQoiYI4rCn0Cxj9mPFZBoD3ApauQOWHrds0SpFLStpVXy0UNYuJS1lHzMSbMes1ppD2VzeNTwLmLBJ10g26Ti7F8TqeMnjpiVvby3cnT9njVSq83pnbdLetmmXopZ3zRIKO5Pb61t4eOspw5WZrM1kKwZyRjKVks5AL5u9mhQ1QRAEQXRiSFETBHHYUYyCFsdV3t35enWLumoHLCv7mJ7N2+0XJ23tJ617K2kRJ+3y7uYKun9oB7t2/AAAW/axHs3Z3bDkOGlRr+JlBVfSCi/voErayzat8vJ2eYGrlLTVLpS1t9e3xu3SyGgOdQ1kvbwFrl2zKDMZQRAEQRAAKWqCIA4jSqGkRVmsV7dKSbts05o7RlqlpCs1puoShvd+0t0tm7Qz45js3W0p6R4sZrq1hy12uodkk3YpaZHDW/LyFrZpHyWda4csoZRVOb19lbTw8k7zekrad1oqhXrWU7qlrjOmd65v1e5Z7ZHzmxQ1QRAEQXRiSFETBNFlKZWClut2Ra3K1S17e/t5dbuUtOTR7aWohZLupjNlWC1lGJP3k87uguWtpIV3t90mDcBml464lbSwUQslrfLy5ko6FKrlz+nc8Uu2SWffvSizdmm3jVryAnfFT4u61C7vPy1nJMtkY6flfahTioxkQkG35/7UXU5RL1q0CIMGDUIsFkN9fT1eeeUVZd+XXnoJmqa5Pu+9956j34oVKzBkyBBEo1EMGTIEK1euLPdjEARBEEQgupSiXr58OWbOnIlFixZh/PjxeOCBBzBlyhS88847GDBggPK8999/H4lEwqr36tXL+nrDhg2YPn065s6di2nTpmHlypW46KKLsG7dOowePbqsz0MQRH7kq6AFhWQZkxW0Kj66EK9uIBsjLSvrKOLW11V6EgCQ0L33kxbKurdtP2lWOr28kWDnt/ZgylneGctS0T2ibiVd2ZeVMYWXt4+SdtukvXOmM3u006tbVbpt0q3OdlFX2qidXt9ayrDs1SnJJt2Ru2YJupSivuuuu3DppZfisssuwwknnIAFCxagf//+WLx4cc7zevfujT59+lgfw8i++AULFuDMM8/E7Nmzcfzxx2P27Nk444wzsGDBgnI/DkEQBEH40mUUdVtbGzZu3IjrrrvO0T5p0iSsX78+57kjR45ES0sLhgwZghtuuAGnn366dWzDhg245pprHP0nT56cc6JubW1Fa2urVW9sbMznUQiCyJNSenPnarfbo1W2aD+btJ9Xt/+e0t2snN1CSSd4PevlzWzNQjn3VuTwzu6EJfJ3cyXdg9VdWcdqov5KWsrlHVRJe2UgA3LsjGU7lsm0OErL61t4d8sKW2mj5vtPp5g92pHf28pIxt5FWs71zW3V7ZnjW9BlJuo9e/YgnU6jrq7O0V5XV4eGhgbPc/r27YsHH3wQ9fX1aG1txX//93/jjDPOwEsvvYQJEyYAABoaGvIaEwDmz5+POXPmFPlEBEHkopAtKFXH891IQ9NCvkvcqiVveUONoBN0TGMTZEJv9JiYnYlM5IlZ1PuEWFiWvLSd3WBDpAWNSKVtubtkE7Q8Ueeebkwz5UodqkxwopqgU/wPkDyWvAE2YYtJ2+VE5grXciY8aY+Ju8tM1AJN0xx10zRdbYLjjjsOxx13nFUfO3Ystm3bhjvuuMOaqPMdEwBmz56NWbNmWfXGxkb0798/r+cgCIIgiCB0mYm6trYWhmG4lO6uXbtcijgXY8aMwaOPPmrV+/Tpk/eY0WgU0Wg08DUJgvCnIxS0KnmJfek73yXuECK8VIdfAbYkJjoLKarWmVpO6E0upzGRClQ4jdXpTEGLJe6aKGtvSTDF3GYpammrSq+lbsCZzCSgkpYVtSo1qGr7Sq8QLLfzWIujzCpo2WmMK2mhrNukzThciU74919sxGHblMOtoJ1L4CrSpl42dd1lnMkikQjq6+uxZs0aR/uaNWswbty4wOO89dZb6Nu3r1UfO3asa8wXXnghrzEJgiAIolx0GUUNALNmzcKMGTMwatQojB07Fg8++CC2bt2KK6+8EgBbkt6+fTseeeQRAMyj+5hjjsGJJ56ItrY2PProo1ixYgVWrFhhjXn11VdjwoQJuP322zF16lSsWrUKL774ItatW9chz0gQRwqFhFoVEmaV63iu9J9+iUtCOlPGBlfQQW3REVQAAOI6U73CcUyEWlXrTa6wK6GgZdt0rIL1a5Vs0UJRpxNcWdZwVStvVZngW1XaN9jwSWSiUtJqm7Tq++y2Q6ucxywnMlU4lip1qFDWbbKNOmubBkTCE/a1cCZT2aqzKUbbT+d2qYl6+vTp2Lt3L2699Vbs2LEDQ4cOxerVqzFw4EAAwI4dO7B161arf1tbG372s59h+/btqKiowIknnohnn30WZ599ttVn3LhxePzxx3HDDTfgxhtvxLHHHovly5dTDDVBEATRKdBMU057TuRLY2MjqqurO/o2CKJTUw4FrWqXQ6r80oHKyjoUiisVtRxuJRS1yhYtygruoCo8uqt17xCsHsZ+l4Ku48paJDDR4s7EJUlumxb1DM9F4tqiUtTjkpKO2Tba4Epai/Tizy8raO/UoOL9qBKaCGT7czrNnjuTaUImw75Opfbwktnt00meuKV1r1SyfjjEVhjQzOuNXFnvEyVT3No+prAj+yp4yf0F9lUAjez+d6TZO/k0zd7JrjR7/p1p9l4+T7Pf9Z9nmHf/vjQr96fjSKYP4vdbLsT+/fsdSbaKpcvYqAmCIAjiSKRLLX0TBNF1KEW6z3wVdL5pP3MlMZFTf6ps0WqbtLctWlbQQlnbPbtlRd0rxI61JUTikkOOuvDuNmu4Z7Jlg5YUdTe+8mdtTSnZo6O10Aq2SeeOl1bFSNvrbts0ezfKlKHC2zvNU6EK7+623PHTumyjThmWTVq2Tack7+/2jJ8WkKImCIIgiE4MKWqCIIrCTzn79Qtihy5UQats0X7ZxUJ6pUtBhyRbtCpOWmxJGedx0SpbdLV+AEDW/txT/xwAU9GirVsFa7PioyUFnUyI+GjZmzvsrFcyleyloFnJ6nq4h9Im7VbSIm7a26NeoEoR6hUzLStqU3h7p4RiFgr6kHe7rKRFnXt/6yn2XmRlrWW0bOpQOY66A729BaSoCYIgCKITQ4qaIIi8KFRB55tNzP51sQraL8uYpahtKjpofLTI0S1s0aJU2aK762xDDdmj266oxbaUQkknJUWdruFKMcHjo2UFLeo+ClqURrgnfx+1LiUtlLMq81hQJa3astKuon0zkVk5vQ8625Vx004btd7Gfz4s27Ru1VtN9s5ccdSSbbojIEVNEARBEJ0YUtQEQeSkFN7bXv38PLp1PaRUbUEVtMoGLStoOT93CBGXgpbr3XSm7uK2HN2szhW1LS4aAGq5YnYoZ2QVdTzKxmlLtCApbNGSojYTwqtbxEVLClrERwsFLeftjtQ46obl2S1io2ttClooavFOnTZpVQ5vGdm727I/S+o5k2nJxlTzMmuDlm3UUruc21tS1q5MZFLdTIdcub0tW7XpzPEt26rT7eD9TYqaIAiCIDoxpKgJgrAIYn8ulYIOko+7VArasklrTntzrtho2atb7HIV5zZmKz5aVtK6UNJi72immGslJS3aM92YomyxqWihqFOJJHt5CR+v7gqeBcu145VQ1t55u7NZxkQ9Htgm7Z4+ctukZSXtFTNt2abTkne3rKCtfae5jVry7paVtdEmvL3lHN8iv3dYaZuW96HuCEhREwRBEEQnhhQ1QRyBFBP7HFQ5y/V8d7Sy7wmtUtR+XtwG/xWnUtCq2OgwYlZu7rjezEvJq1vhzd3TcNqie3JlLbKNiR2v2uLMxu1lj7Zs0XHh1S0p6jh/x0IxV4hc3dyrW7JF6+Ee/L3ICtodIy1nHMvaooP9zMhKWs5E5lbWTVa7v21aip+2bNGSt7ekrGUlbcVPp7J2aKGk27j3t5yZTNimVZnJMtCRgaZ4K8VBipogCIIgOjGkqAniMKbYrGFA4bZn+XxVDHSuna689olmpSKzmOTFrbJBq3a8Eiq6Um9x2ZxlJV3FlbbKm1soaWGrFjHQh7hyTnFFbcVGi72j42G3crYyjHVjpSIe2lLSvLTHR7P35B8jrVLS/rthuTONAe683aIuPLztu2e5bNKybTp5gNe5bbpFVtLOUsRNG22Go26PnwaAVkRcStrl/a3w8m6P+GpS1ARBEATRiSFFTRCHEeXKu+11Tr6250I8uFW7W4V0poR1/ivMKw4acCvpkFS3K2ggq5q76QdRJSnqaoOpuRqd2ZhlJS1s07I390GumJOWTZrbouPcw9mKgbbZo+OiTbJFy17ckoJWe3UHzzbmtwuWwM8GrVLS2bqzNNPNNsXMlXVS2KxFe0DbtFDUKW9vb4MrazPNyjYz7FLSIlOZqMu0Z6YyUtQEQRAE0YkhRU0QXYigitmvfz6e24Uq51y2Z6922YPbMGJZW7TmtDnLijmoN3dMEztbMWUmlHQ3j5ho4e0tbM0qBS3qWiX33hbKOS7ycwsFzdrNBPcMjlfwkr/ruC02WsRFS97bqroequbvML+dr7zs0cF3wQpqm/ZW0q4sZMkDHrZoRdy0yzYtZyJj79hlo5a8ve126Vb+MyMr6Yy0e1ZH5PymiZogOin5TMqlmJDtdXu7amLO/pIPtmGGaolbmawEEZdTmJ+TmFzGdJYwJM63lKzUnEvccmlf3hYTs1jqlifocIxN5EkpzMqq8zIT55NJXEpSIk/QFbw92lO9tB1wiVuekN0TtZyaNdhyN5BrU43cS9yy81g6zf4AciQ3EUvcaWnCFmUL/2NBXvJucS6FZydo4TwmnMmcS+AiyUkrIh7bWzo346BNOQiCIAiC8IQUNUF0MMWk7RSUQjnbxwmSxlOlrFVKWRlipVjWNmyK2j/lJ9ukIusUxlRvhZ5bQcshVnb1LJSzaJMV9CFpiVu0p+Nc9VkOYVGprnAUs6tm0RauchwT4VaqMCu3ovbeUENW0Ll+vvyWttVhWB7hV7AraQ/VLJzHZCeyVp5KVVbQ0hK41uZc8tYs5zHn0rdwIstubZlNISo7lQms8CxFWU5ooiYIgjjSSKeBV/4KNOwC+vYFJnwVMLy9m4mOhyZqgigzpXAAkxWzqm/QECrVcS/1XKxytkKrFCFVuezPsqKWncKyCpql76zws0HrzhArS0EbbkUtnMNEYpJDlcyRyV9BVzrrlZItOspVsiJJCSI11tdaiDmVyQrazxYtFHO2blPST66ENnMW8M9/wuLoo4GFC4FvfMNqCqqk3YrZ2xYtSjPNViZc9mcvZ7I2br922aJlJzLZNm3w0mmjlp3IhIpuMyPZsCzIm3N4pwxtT8hGTRAEcaTw5ErgwunOSRoAtm8HLrgAePLJjrkvIiekqAmiSEoVMiUoJOmIXM83hCqX3Tlf5WwpaEkpq5S0HFJlT1ritj1z5czrai9uptpk5exW0vscdZGkJBlvQcpS0AovbkspB1TQKg9uuQxVBU5UkpctOp1mStrkW0DaMU1A04CZM2Gedw5gGJZiVm2moVbS+zzLTIp97zyVtCjb9jnbhGIW3t4BbdPZUihrtbc3wNSzFZZlOlOFujbfULSnoZfNXk2KmiAI4kjglXVuJW3HNIFt21g/olNBipogAlCKmGZBIfbmfLy0vcqgsc5eaT1LpZyDJikRsc+VWgsquYIWCUlkBS2UtkjzqVTOkld3ZZj1Fyq5RVLPqcq2bIISJlJtSjnmrOeroMNxZz3E+hs29Zyvgg4UF92wC0EwP90KmC2uhCUq7+6scvZW1C4lLVSzlRbUViYlL29ZQctx1LzdaGHvXrZN65KNOpVyJjVps5VW/LSrdMZRt4eXtwwpaoIgiCOBvn0D9utT3vsg8oYUNUGg4xWzve6lmgu1Nee7EYZXOk8R56xSygZv91POcrtdOQOw1HOFVc9uNSls0lWS7blK81HS3AadqcgqZQBojjvrKcmjG5UhIB7Jfg0AlTx8qVKyRZdAQQNO9eznze23FaXnz+hppzHv7u3bPe3UpqYBR/VDZvzJQKalgIxjeSppUbeXbez7Yinog5JtWvL+1tr4dpUK27QuxVEftHl5y6XcJtuiVdtbtoc3OClqgiCIIwHDYCFYAHMcs2HyeuZX8ymeuhNCipo4rMnXIzvIeeVQzLmOB8kOVqhydmUJ478S7OrZz+bs58XtVs5MUdmVM+DOIlapHcoq54Be3JEIO1co5BaXYnYq6UwlV2qyB3dlyG2DFrm4LaVc5VPnSlpS0FmVrN4wQ1bMspJW5eb23Zpy2nnAE8uBmddA++f27IGj+iHzq/nITD0TpkJB+3l5W0o7qJKWs5C1HXLbol02aqeyDrXwn18pt7essK1MZHB7e4vS/jUAJPnPvZzruyPiqWmiJgiCOJL4xjSY550N85W/Aju2A337wPzyqUxJ88mZ6FzQRE10acodw+x1XlDlLI+pUsHyeV6q2U8xB84WprA357I/+9uemc02q4xZNqmY5rY5A3DZnSs11t9LPVdp3kpaeG3LNuZmqS6XLpVcqfDgrgwBMa6uQwrlrFLUQkEbTuWs9uB2bznpVtDiZyWALdqGvDWllWVMTwJfOdUWI30ISDPPbj8lrVLUZop9b1zx0SolLeqt/PjBFHCQe3sfVChpycvbskULb+8Woayd8dMHM+w9HpLKNkeub2cctWWb7gQW4o6/A4IgCIIglJCiJjodhdiVS+WJrWr3UtRB82bnmy3MSzUXqpj9lLNc97JDCwUd0ZiaEco4qnFbs5QlzFLWUr2SK23ZU1tlf67SmtXKOZbybBelWcmdpSyF3I2VMUNqDznb7epYYWt2KWqDKW+VzTmIggacdmeVN7dA9XOrUtCAnF3MO393JtMUwDbtjJu2FLMq45hKUduVNMDs0i4btbPUW4RyDnuWQW3TonTk+ua7ZiWFsoa3srbiqU1nvZyQoiYIgiCITgwpaqLd6EgPbFW7X65se7ufbdkv+1fQ7GBe7eVUzPZ6hIfpCDUc1VtRyW3NUY2pVdlLWyhpK9aZ25WFUpbzbqsUtfDYTseYnTJV2YYmrpDTCgVtKWdLKUs2Z1lBx6TY51xqOSz14cpZD1WzMrBi9lfQ9nb7r2XVz5paOQuCKmh3/m6//aQtr25rP2nhvR1QUYsdsQ5Kqvlgyh03LeKlW3g8tJWBLJSzFPHTsm26TcpIJjKUpWBYKlv27pbrlJksAIsWLcKgQYMQi8VQX1+PV155Rdn3ySefxJlnnolevXohkUhg7NixeP755x19li5dCk3TXJ+WFvJ+JAiCIDqeLqWoly9fjpkzZ2LRokUYP348HnjgAUyZMgXvvPMOBgwY4Or/8ssv48wzz8S8efNQU1OD3/zmNzj33HPx2muvYeTIkVa/RCKB999/33FuLBaThyMkyqGQAbVK9jrXTzmrPLBV/XKp5Vw7THmN4eeRrbQ7S2rZ7nntFefM2nNnCculmAEgph2Q2rl61lpy7FTFlTNXyFVWXVLQkrIWWcLsyhkAmqR6OpbMemu7lLFCOQvFLNojFaxU2ZcVqhnhKpvt2em9Le/17M637Z09TFbQ7p85f09ueY9ooZzde0cHU9Be9miVos4qaEkxpw95t8tx1K6sY1I+74MpV0Yy/iOHEFfSIcsmHXKUsve3yOl90GTv3Msm7SzD2V2zFLZoWUm3h21a0KUm6rvuuguXXnopLrvsMgDAggUL8Pzzz2Px4sWYP3++q/+CBQsc9Xnz5mHVqlV45plnHBO1pmno04fy2xIEQRCdjy4zUbe1tWHjxo247rrrHO2TJk3C+vXrA42RyWRw4MAB9OjRw9He1NSEgQMHIp1OY8SIEZg7d65jIpdpbW1Fa2urVW9sbMzjSTonharjIOfmUsi5zg/ieS1fwy8bWL4e2PZ+Kpuzn605l1K21+X2XLHMKtuz8MzO2pMP8bq3nVnUVaq5QjvkUsqyl7asrI2It2I+KOzMHsoZsGUJE6o4ZgAx7q3tUs6Sgg6qnI0KZ5M0q54AACAASURBVD1U6Wi3Zw9z25hz25qDKmdZQQvsP7tum7PAWzlnrEQlzrqfgs6lqM00+766bNEpSVlbXt8KW7VrJyxhk/bIQiYr6YP834CknFVe3kiy9kMm+37aFTNgU9jCRm1T2sLbW+XlLVBlJsuYetmylnUZG/WePXuQTqdRV1fnaK+rq0NDQ0OgMe688040NzfjoosustqOP/54LF26FE8//TSWLVuGWCyG8ePHY8uWLcpx5s+fj+rqauvTv3//wh6KIAiCIHzoMopaoMnJ5E3T1ebFsmXLcMstt2DVqlXo3bu31T5mzBiMGTPGqo8fPx4nn3wy7rnnHtx9992eY82ePRuzZs2y6o2NjZ1msi5GGQc9v1hPa1V7EJXsZ1MuNFbZr13XY+o82kUo5Vx1u3oWtmWhgLMlUy2yQvZTzkIdZ+veduYqvdlXMQuP7FaFUpZLlyqujHi3x0LZr6N8xyqhgFXe2vJxYXOWlLOuiHW2259VSjnozlV+ClpGtjvb2/xs0LKyzkdBO/qnm2z7Q3Pbs1DQcrvKu1scV+Xpdnl2Z+sqJa2KlzYk23Uz9+4WyjlbygqblcL+nIJhKeekycZ2KWtJLaclG3Y56TITdW1tLQzDcKnnXbt2uVS2zPLly3HppZfiiSeewMSJE3P21XUdp5xySk5FHY1GEY1Gg988QRAEQRRIl5moI5EI6uvrsWbNGkybNs1qX7NmDaZOnao8b9myZfjBD36AZcuW4ZxzzvG9jmma2LRpE0466aSS3HcxlNNuLCjEflxormv5uJ89OYii9ttNKt8c2VZ/j3jloMo535jmkMb2Blap5ajellXIkle23B7jXtxC/Yp22fPa77gZzapioYRbJRtzYMVs2Zxj3scjurOf3d4csnlhA1kbs1+75LEte2qr6nb1rIp3F782s4oajuPqf3squzPDrpZV3t2FxEXnqmcsj26bepa9uWWbtNLLW62Uc5fCLq17eHV7ZyCz+nGbdUuGCSe1gnbGTbu9wMMum7TLNq1obw+6zEQNALNmzcKMGTMwatQojB07Fg8++CC2bt2KK6+8EgBbkt6+fTseeeQRAGyS/t73voeFCxdizJgxlhqvqKhAdTVLWjBnzhyMGTMGgwcPRmNjI+6++25s2rQJ9913X9H325HL0H5jFLscbT8WdMJVHQ/q6GVPpemXNMQ1IfN/XKrl6CDL1sEnYvbLQEymYf5LVtRjkmOX33J1VGvznYAr+MYW8tK1vLQtlq0zEfZLUp50m1yTbwrpCJ8kYsLZS56I+bJ0JOBEHOJL3UGWq+UJOFTh6KMZzNlMnVwkd+hU9mfM6+fGbynbid+/V+UGGR6Tsnsp23tiVk3UqqVul4NYmoe/2SdhMTGLPvJSt2gXiUvEhMy3nnRvSZl7oranBTXacqcIlSfybBgW+7nIOpE5nceUE7dIcmLq1pK3vKTdEdtaynSpiXr69OnYu3cvbr31VuzYsQNDhw7F6tWrMXDgQADAjh07sHXrVqv/Aw88gFQqhauuugpXXXWV1X7JJZdg6dKlAIB9+/bhiiuuQENDA6qrqzFy5Ei8/PLLOPXUU9v12QiCIAjCC800TbOjb6Kr09jYyBW6AZbZLL+/f0qx/KxqD7oMLdfzSfyhOjdoIpCgiUI0LWQtSWuSQvZz4CrU0cuuktUK2VsZh7WUoy7UbbY/U7fuFJxNrnY/Je1y8OKK2Qp94qo4LS1fZ9ulZWu7Cra+lpWy3JfXQ1KolEINyw5ern56VLmEHTS5iF/IVK7NL/z+LanwS+/pv5ydCqyc/ZzGLPWb4eGksoOYvLydPqhW0LKTmKWgFYpaPi61u1RzW8i15C2cxlRK+oDJfi5EitADJlthEQq6KSPqsZztrWYErZmI9bW9bJHqcj+hxFvNCJLpZjzz4fnYv38/EokESkXHa3qCIAiCIJR0qaXvzo5hxByhYqW2DwsKsRPL5xajivN16MrXbpzLnlyogpaVssqBK6wleb1Zak9l+0qOXH4KuVLYjyW7sWjPJhlpdrQLu3QqlnQpX6GYDyoUs2VX5qXacUuERlU4j0ds6ll8LWzLxShkr/N4u5dd2S8kqthQqXxUsyoJidvGLAiWnMQrtMpPObvqwvac4TZnoZDluqyOvZS1n4KWbc5+7WJjjTb2sxVq4d8z2R5tU9S6vNmGj5KWFbNob7U24XDaplPgqUa5Gk6aIST5z4SVOlTenEOxrSVtc0kQBEEQRzikqEuIYXSDpukF24XlejEJQApJkelsV9uRVYpY2I1lVatqL87zmv1lLOzAsj04Wz+kaHeqY9nuLIc9VWiHlErZ3sdRl2zOoRAPeeJqWKWS23h7i80zO2MpZNZmCgEp24ktxSwrZF3RP4BalpWyEc2rrgW0H3upY7d3dshxjr9Hdn52Zi/VrFLK8nG/ZCT5pPtUKmfL9szVbro1dz1fZZ1qyyrjoAraqjtt0lobW12Uk5NYW1FaG2lk7dBebYA9/MqpmIWSVnl7i3ZRl5W1XTULxSwnPPEL12oPSFETBEEQRCeGFHUJiUbroGmGVS90owi/fkzVeitglVJ2HfdRwyqvag26r/JV2ZjleGOD24n8VHHYpopDvC2mUsiu9tx24wi3SQdRx7LtWLYDqzytmyUFLVSxy46sVL16NlmIrJBDCsUc5j9LfmpYHNcj6rr4WpzL63IMs3cscvDYZS87sr+tGVbfIKg3uxAET9+Z7wYZeW09Kby0VTZnPyWtUtYuJc2DfuzqWKWUfdpF+k95owxDUskqRW20GdbXWiv7GZNTgqoUsipeWrZRi3522zQAJBFy2ablUiDX2wNS1ARBEATRiSFFXUIqKgZA18MlsxfnUsFC8eajhPNpz6WaVUpYlLLqDXElKtuBg9aFgo2iLW9FHOXHVfZjhIX69Va5QiWbobRlMz5YjDIGgIhQu2FFP2E31rJ12YacSwHb6yr7sXWcl7qklm324vyyeQEqz2v5uCCXWg6ekyBYek6/uld2sHw3xPDbatI6X/QXKtke6yy+FpnD/Ly5/eoivWcqgEr27SO8uIUN2q2M7XU9pUvH1YpaeHUHVc6WdzdfrZNt17KylpV0ymaPdtmmpVK1+YY99Wi57NakqAmCIAiiE0OKuoRUVZ0Ew4gp7b9+6jcfu3H+ntXBVLBQsWGFt3RYS7nswiGFjVlWu/nWhfqN2DywhTIO697xwnYFbK+L40lebw2JdoUqtqtZgKldlz1YbL0YkdqFIlbYk0MB1a5dHcvKV45NVtiRwX0mVJ7XfmqYKeqQ57FiY5SDqGU/m3KpYpu91HLwLSW9bc8uO7O4F6GS5Xzbdvuzl8rOVbdydossYVwFyzZoL5s04FTRXm3IxkEbbeznXkvxOGiFDVpL6Y66paBThqOOJPfUzsRcythPKQetJ7miTkqKWqjhpBly2aSVm3L4KOxyQIqaIAiCIDoxpKhLSC0GIYSKou3DImuWUKoG2F+0dvWbVb6trmOA2yvarZhlD2uRkYuVESmO2F6PFKmYLbtwiD2X7A2dkdSuvX5AoYRNPpYZ4YpBpWZddaGKo/79VYpYtveKjFsK+29QO7HVTzNctmM/O7GsblXxyEF2iJL7utu9637ko5b9lLHcz89DW1bDXh7aSqUszpFVbybt3e6lmL362VWyyjadFspYsiOnvFVwIXVhe84qYp45TqGI860LBZ2Nec7GQOerlGUbtLBtt1oKmpdwe3kDNhs1dLdNugO3tZTp+DsgCIIgCEIJKeoScmwojohRaalWQ2N/pYaE6gXLxxvcTqxWvbKqjcK5Q5OoR6z4Yqf3s59yVqlfM5RW2oFFXVbKzbx+QChnayyFClbadjWb/VeUMXVfrzH91HAu9Sv3ETHzqnN1w7s/r6vsw97qtzD7cNCsd6pfBfmoZD97sRs/z+vgscuqfl47U7HSu91hV5Ztyipbs59SzrdfOu2vkIWt2e+4bJuW7c4pt3qWbcuiLntvi7psq5brZpr191LQrMyqYlkRW8cUtmuvMYDgStpuq5YVtGyLdh2nzGQEQRAEQQCkqEvKVyv/hkoj6lKxKvWrUrNBzhN5o2V1mlGoWrsi9jqe5PU2xThmhP8lHtL8VatL3Yq44Uju81ztvG5Xt/nYdYtp91LDkhIOmmErf69puPoX70Fd2D91pjSDKeV892FWeWY723MrY5Xt2VK9pmQ3ltWwdbzV3e7V5tU3qFI2c6tbh4qW+/jVVbZq3k+o3KwqjjjrKaGGdV/lLJ8j26KTGXbeQUkNy+rXy84sK2iVYlb1c2Uck5S0SiUnzZB1rko5ZxRe3qr2UkKKmiAIgiA6MaSoS8iFNU8jEdKV6lWleoP2O8jrTaFM1r4bEvZdhRoNqlpFlqwg54k28WeeTwyv0h4sVKCqv5fKVdmHxVjyOSVTueq804JivaNzqeKgtuJ87cF+53spai8lnAaw3uiOnVoMvTPNGJvaDQNJz/552Z2FKhVqVJRpRbvKA1t1nqyG7e1+fS3lLB7Dx44cVB1nzACK2kcxp0Sss9O+rLIn21Wy6hxZSQvlfEihbtOm4dmeSx2r+qR5Hgg/W7S8A5ZskxZKWrZdZ8ysjVru68r13Y7x0wKaqAmCKIpnwn1xXcUwfKpXWG390gcx7+DrODe5rQPvjCAOD2iiLiG7vvwJDsVsNlxdqNCAalf8oWa1h6XjdlWrudsAwOCKUqVmg6hWILdyVZ2jUsjycU26R6XtV53pyq+vqp9fez7ez/nGDfuRj9d0MZ7Uudq91G0uW/Oz0WNxaeWpMKVRdugV+H58Ah76/Hc4+9A7/EShfoWHtayG29zHZUXsZ2POV0m7soWJ46ZbzWZ8FLJ1XNEvqPK2KWo/paxleL5tm43Z3l8+X/RXqWS7jVrLcPVZIuWsUsX2dllli2Oygs7AqZxlNZy0xUd79ZPzeicRctmvZdu07OXdnrtokY2aIIiCSEPDf8S/yiZpTXMcM3n9psRZSENzn0wQRGBIUZeSMX2BbrpatarsqioFKqta+/Fcx+xj+6lf+XzNedxLiZYqZrcQT+ZC9yEupfpVq1FBfvHEwbylC1XKAfvJXtL2UqGA10eOwQ6jyvOZADZZfxqqxmvpCMYdfCe4XdmueuVr+ylluyIGnCoVUKtjr+NKJZ1nuzS2ULNZNSzUb9hqlxWxu29p2kWMs1CRrWbEUsaiTaVuVe1BlDMApKx6VpnL1w6qoNOS+vVT1BnJVp0xdZeXt8o2rYqfTpt62ezXNFGXkqOmAFUR9eQpKGKSdLfnN0n6TXSFTZb5HS8twdJQmqZ3u6p/7n75TZruep6TJ+A9gdr7yJNcKfspJtSdNT0RhJ2tB4DP/x7AEYyfYJ/ggk6wXud6nZfPhO06xgqRJARiGVmeFDPOZWh5eRqu/s7laMdEndELGstrAgb8J9UUDN8JWjXhqs7zmpABuCblNIzAE2+pj2egKydzv8Qm7ZH4hJa+CYIoiLrk3mD92naX+U4I4vCGFHUJiVTXI1KV9XxVK8v8wnPyUajtqWaLU6W5jvuPm2+yjbxVsHy+XVna2+x9ZbXq6hdQ3XqNXyrFrFKzQRS1pEJH73offQdch4ZYX5ia+29+zcyg76FPMfq9ZwFk3OpXoVgd6ld1TKWofY4HVcPIaB7HdMe5LkWsUL9eitl5bac69lLUsqOTrJBVqjXocbtaznWskLFlxS0vZ9sVbK6lacc5cl1O+1nAOCol7Xet9oAUNUEQBWEgg7nv3QCATcp2RP3W//kPa/c3giAKgxR1CdG0btD1ypKPa6VF9CRftZpfez422sBjyI5LVruPYgXyV62q8wpRx4WqWOv8UtiJxfMobK8qhVlof7ut1qM8+5PleGhnC2788n9hR/xo61H7Nm3HrS/9G87+aJW/vVhxD1pG91WvsjIOqmL9xtFTesmv4U5fyc5r8bD1+qlXP3uwfA2/cez9vGzH+YzhUqQ+atfer1jl7Kd6c43rd+2OhCZqgiCK4uz/W4XJHz+D1/qMw87Kvqhr2oHRn66DkU77n0wQhC80UZeQVOpTJJOxwDZapdK06jkUp0qtCTJB1WrAcXIpS/lc1bWDKGava3peu0i7sKqfSll6tQVVra7z/c7zOK4cM+A9FNjPrmpzKcYw0vjKlnW2dg1aJuzoJwisVANeO/BYefTL2EJtLAWZhyrN1U+Qq38xitheF+RzryqFLMhX3WafN5gNuBxj+9273/0EuYdy0vGaniAIgiAIJaSoS0h69ytIHwpnG/yUpFX3UXu5xguigHPeS54qOIMcSjGg6gt8nkINep7rPLWosf3O91OnPtew1J3VL7fKc5yTo4+z3bu/u59/f7++6n5S/zyeV5ynsusKSqFeneNlr5OvOi3VPRVzDa/nsKOy5dqP+9p3Pc6xH5fvwe88e3tQxey6J0V7IecHPdc6TttcEgRBEMSRDSnqUvLhBqBS81eWVt1HxeU6T3Wua6xCrxng/GLORXBlJrcXdq7uPM+6J/9riXq+5/rZZnNdS24v9F3J9yyrgqCKDfBXhrnOLfb8znDtbJ/c70weW3W+6h7s6SyzfXy+jz6K0W8ch324wDFKdS+efYu8p3zGy3es9oAUNUEQBEF0YkhRl5DIX1sQiWoB1Jm3MgO8VZDfeLnHDDZG8Hss7ViF3mNQpWjVA6ofgayCyjFmvuOVY0z5uNe45RizkHG9+uQ7piBfted1jp/yCjq213l+CjDo2KprBOmn3Hyi0OcO0C/o/RdzDUf/AN/nXJtwtBekqAmCIAiiE0OKuoS0bBqJcCik/Cte4KXWAPVfaF7jeakNv3NKdW2/eyjVtXONl++1C72HUj5/Oe4hqNJwj5mfcin0nHLdS6Eqp5B78Xs+1f0HPd/rnsoxpmP8At6tdW4Z760c3z/H+cU8dzsqaJkup6gXLVqEQYMGIRaLob6+Hq+88krO/mvXrkV9fT1isRi+8IUv4P7773f1WbFiBYYMGYJoNIohQ4Zg5cqV5bp9giAIgsiLLqWoly9fjpkzZ2LRokUYP348HnjgAUyZMgXvvPMOBgwY4Or/8ccf4+yzz8bll1+ORx99FH/961/x4x//GL169cI3v/lNAMCGDRswffp0zJ07F9OmTcPKlStx0UUXYd26dRg9enRe9/e75nMQM2LK44V6C/r9leh5rQL/+ivGo7HQvzgLuWYh78RxzQLutSOuCRT5PemAey7WK7YY5VL0tYs4v9jdlDri315Jrt1B/y4cY3Tgz5zA5P+VA800zaJGFqdrmreDUCkZPXo0Tj75ZCxevNhqO+GEE3D++edj/vz5rv7XXnstnn76abz77rtW25VXXonNmzdjw4YNAIDp06ejsbERzz33nNXnrLPOQvfu3bFs2bJA99XY2Ijq6mrMOekXNFG30zVpog4GTdR5Xpsm6vyvTRM1ADZRJ9PNeP6jc7F//34kEomixxQUrKiXLFmCX/3qV9iyZQsAYPDgwZg5cyYuu+yykt2cnba2NmzcuBHXXXedo33SpElYv3695zkbNmzApEmTHG2TJ0/GkiVLkEwmEQ6HsWHDBlxzzTWuPgsWLFDeS2trK1pbW616Y2MjAGD9wWEIG93yei6CIAiioymPEi4VBf0ZceONN+Lqq6/GueeeiyeeeAJPPPEEzj33XFxzzTW44YYbSn2PAIA9e/YgnU6jrq7O0V5XV4eGhgbPcxoaGjz7p1Ip7NmzJ2cf1ZgAMH/+fFRXV1uf/v37F/JIBEEQBOFLQYp68eLFeOihh/Dtb3/bajvvvPMwbNgw/Ou//ituu+22kt2gjLzEbppmzmV3r/5ye75jzp49G7NmzbLqjY2N6N+/P3bhAxio8H8IH7Qy+PiVcsxy3F+px9U7+Tss9Xid8d5K+T0o1fN1xnfemd51Ke6ls4xRqnHK8bskXwqaqNPpNEaNGuVqr6+vRyrlvaVjsdTW1sIwDJfS3bVrl0sRC/r06ePZPxQKoWfPnjn7qMYEgGg0img0WshjEARBEEReFDRRf/e738XixYtx1113OdoffPBBXHzxxSW5MZlIJIL6+nqsWbMG06ZNs9rXrFmDqVOnep4zduxYPPPMM462F154AaNGjUI4HLb6rFmzxmGnfuGFFzBu3Li873Fv8n3o6YhV1/XCXAA0Lf/zCjmnva9Z6F+mhfxVnO85+fTPd+x8n7uc91KO/uV6vnK8h6D9gjxTqa8ZpF8p77/U1/TrV4qfpXzvxXRtOBB8HNEnoxijPZV24N+09qVeTdPw8MMP44UXXsCYMWMAAK+++iq2bduG733ve6W/S9s9zJgxA6NGjcLYsWPx4IMPYuvWrbjyyisBsCXp7du345FHHgHAPLzvvfdezJo1C5dffjk2bNiAJUuWOLy5r776akyYMAG33347pk6dilWrVuHFF1/EunXryvYcBEEQBBGUwBP1W2+95ajX19cDAD766CMAQK9evdCrVy+8/fbbJbw9J9OnT8fevXtx6623YseOHRg6dChWr16NgQMHAgB27NiBrVu3Wv0HDRqE1atX45prrsF9992Hfv364e6777ZiqAFg3LhxePzxx3HDDTfgxhtvxLHHHovly5fnHUMNAE1NHxSkogs5p1AF3R7n5a2083j+oGPnew9B+gcdM+jzlPJZSjVWKZRkuY8DxSsv1fFc5/mNWeg9FXLNQu+lkPfSXvegQXdp13yvLa4pK2m5vzie63n9xhBKuz2UddFx1EQ2jrqy8gvQNL1DlqFLcS5Qnkmz2PPK8UdCKSfTUv/xEKSf3/37jVHMcd/Jvgz3Vuj9duSEVchEVepr5nt+kHsI+lxBr+HVr9DnCHoPucYv9Dl06GWLo+54dzaCIAiCIJR0qRSinZ1kch80LQ8HmCLVbznGKtQBrph7aA9Htq60HF+MmhWUU3EXrG4LuCfVWKW+h2KuXayaL0ZJl1N5qsZOFzGm3z1nHbiCjen3/KLuXraW7yk45QpPzQUpaoIgCILoxJCiLiGpVLMjUUox6rRQilXW6bR3e2dR/+1pgy/0up3RZh10rHIoaUE+atbvWL7t+V47iMIOeq1ilLncFlRBusbJQ5kWqpyD3lsutZzv85kuxex08JKdxmRHMfme2LnI2Td7bbVDWqkhRU0QBEEQnRhS1CXENFMAsoo6nS5PlrbcyqU817TTXisF5VDxGe/cBWW5l/a0ixe7ElIK7/ZC7eKlVNSlUM6qdpe6DXitQhS1SpXL32a/awVV5BkPRa2qBxkj1ziq8+3hWSrbsu6jjLOrAc52MUoQFSzuQaWsVc+X4f+VA1LUBEEQBNGJIUVdUtI4EqLS810pKFwZF746ICsSttpRHKVS+Kpxcqn9zuDl7jdmJlM+O3lQtS6vLJRCSSvVrc+1gl7Da3wxdt6K2cc+ngkwnp+dOPP/27v34Kiqww/g380m2RA0i7LmJZFHi4AGkccEEuqIioFWzFSrkIam2sGodRAjUiVjK4/pT0YcdXz2waBYGwujbVodMTUgUBAChIfKYyITQchIADHZBIG89vz+SO6SvXvv3kd2995Nvh9nZ3Pvnnv33Dv8fqffPeeeo5J29STmruOV9/c8Vu3cwX3SysfJP1dL2KGoJWu5aPRVM1ETERHZGBN1DApHOowEtQRhRX3VUn/vUrG+69BKf0bvh8MRb/oe6r1eKc1bMQucnj5qtV8bovE8tdovBeEaBS4/v5n+8Uv3yVwC77lfLXWr9XebTdxKnxtNzOp90qETtjwth6JVlqO+iYiI+jkmagobK5O+3nQXjTrK03zv+7aD66x3hLjW9crrpuf+SMfovZdC9L7vOtwzrckTupGZyYw+J631a0WotKyWiNXOqTd5hzqP9LfmsSr7tfqoRYikrZaA5Uk7XIm5ZzkrZhzTy741IyIiIiZq6huimeaNJuRI1M3s8+DBAuumJ6mrXY/RMQpG0rxWKo/EM97q19O7Z7v1JPDeju5WS8x6zmP02HAmba1+bGmEtd6ErVUuDpfqbCR9K9UtkpioiYiIbIyJmsigSKV3I0k93HW4lKJ6c96uY832n4e6fq2yWqld+ykA/eMAjD6brTeBh+qblu/X6qMOR+JWGhHec1u6Lr1JW6jVtUfK1ZuE5cz0SXdtd/+bRbzqOax8flrCRE1ERGRjTNRENmHl7Gm9+e7gEdXmzhVnIDZI9dW6Xq1yoZK6+uh95X59tXPp3d8zeZvt7+5N37S8nNHErHacZjLvcR6zfc3yck6Npk2ennvO4y395fSfM/Tq1ZyZjIiIqJ9joibqQ8LVdx2N/vJwJHG9KTwcCVzts0gkb7X0KX2X/Dvk55afUy31ys+v1E+uNzGrHadVvmcdhezYUKO0u7aVdXbfF4dGwr407/il1Ky1Wpa0QpYzijmXiZqIiMjGmKiJKIiZlBzJ58vVzq03haulWTP09nurJe/g44JHy2sl41D920rfoZ16O4LOo9bHHFwXefLuUDxOb8LuyedP1t3bsqQs77tWS85Swlb7vGd6lv5W66tWWws7kpioiYiIbIyJmojCwsyqYNE6txXJW42xxB26D1rtnPJtrb7tnseppWx5ApZ/h9o84kYSttYz2E5HIkIxkpyBwH5n+QhwteQsdD+1HT5M1ERERDbGRE1EljCyUle4z22mz1tttHI0BM/trm8WOK2krZR6tVJ7cMJW/i61hB1qpL5Wmc7ud+mcRvukpRHbSs9PQ5aY5clZq09awKfwzHV4sKEmItvS2xhGYiCb0Z/P9TbkagPCzDDbgEuUfiLXaoDlxxptuENNiKJWxulMUqx/p6PrXe9P3fKBYj0fy5I/dnWpbOjHsTjhCRERUT/HRE1EMc/sT91mzmn2UTGtgWqRTNpGpmeVyAeg9TZha9U1VLnOzovdZaRzBiZstWQd+qdu5cey1AaPyd+jOfEJEzUREZGNMVETUZ8XzsQd7oFqoZJ2uFK2Vl+2xvTCOwAAH9NJREFUnilWjSbs4O/WfkxLq0/60rmkhB1YTjgCs6fPP41r93fJEnXPVCxPyo4o9D3rZX0NiIiISBUTNRH1e6ESa7hGlBtJ2mb7s/Um8EuPTMkXDtG/gInefnC1R8J60yd9aRnPwPpLj2/JJ0YJfuQqeL88Oav1SVuRbpmoiYiIbIyJmogoBKMJORznCU66oZ/RDmfC1juNqlZS1tt3rWcCFLU+aSl5y/u05Yt5qKXinvsdQak79HPTkZrcRAkTNRERkY0xURMRmRCppG11wu7tM9hGjzeSrOV90pLgZT+7tqVkrZaWe6ZjtT5p+UjxoO+OQrKOmUTd2NiI4uJiuN1uuN1uFBcXo6mpSbV8e3s7nnrqKYwdOxYDBw5EZmYmfv3rX+Pbb78NKDdt2jQ4HI6AV2FhYaQvh4iISJeYSdRFRUWor69HZWUlAODBBx9EcXExPvzwQ8Xy58+fx969e/GHP/wB48aNQ2NjI0pLS1FQUICampqAsiUlJVi+fLl/e8CAAZG7ECLq0/QkZL3H6x0pbkXC1tv/rScxS+W0yqh9l3Q/5P3j/uMcoefvFvBpjuq2om9aEhMN9eHDh1FZWYnq6mpMnjwZALBq1Srk5uaitrYWo0aNCjrG7XajqqoqYN+rr76KnJwcHD9+HNdcc41/f3JyMtLT0yN7EURERCbExE/fO3bsgNvt9jfSADBlyhS43W5s375d93m8Xi8cDgcGDRoUsL+8vBwejwfXX389Fi1ahJaWlpDnaW1tRXNzc8CLiEiJEB2Kr3Ae6/N1BLy0zhNqv1oZ+Xep1U3tpec4rTKdnRfR2XnR8PG+7v+EyivgXukoE20xkagbGhqQmpoatD81NRUNDQ26znHx4kUsXrwYRUVFSElJ8e+fO3cuhg8fjvT0dBw4cABlZWX4/PPPg9J4TytWrMCyZcuMXwgREZFBljbUS5cu1Wzwdu/eDQBwOBxBnwkhFPfLtbe3o7CwED6fD2+88UbAZyUlJf6/s7OzMXLkSEyaNAl79+7FhAkTFM9XVlaGhQsX+rebm5uRlZWlWQ8iIklv+rK1ju1NH7bxvmdj/d9GRnmrldHsk5Y9w+3/tUClr9qhMOpbLtTKW5FmaUM9f/58zRHWw4YNwxdffIFTp04FfXbmzBmkpaWFPL69vR2zZ8/G0aNH8emnnwakaSUTJkxAQkICjhw5otpQu1wuuFyukOchIiIKB0sbao/HA4/Ho1kuNzcXXq8Xu3btQk5ODgBg586d8Hq9yMvLUz1OaqSPHDmCTZs2YfDgwZrfdfDgQbS3tyMjI0P/hRAR9ZKe0d5ax/Z2lLjDEa+ZjOXbZp+7NpOs1b5b/ny1dL1B+1Weq1brqwaCZzNTGx3eVT4yKTsmBpONGTMGM2fORElJCaqrq1FdXY2SkhLMmjUrYMT36NGjUVFRAQDo6OjAPffcg5qaGpSXl6OzsxMNDQ1oaGhAW1sbAKCurg7Lly9HTU0Njh07hvXr1+Pee+/F+PHjMXXqVEuulYiIqKeYGEwGdI3MXrBgAfLz8wEABQUFeO211wLK1NbWwuv1AgDq6+vxwQcfAABuvPHGgHKbNm3CtGnTkJiYiI0bN+Lll1/GuXPnkJWVhTvuuANLliyB0+mMwlUREQUz23+t97hLfbzqfddaSVptW95/rNXnHcmZyfT2VQd8l8qMZFaO/HYIIYRl395HNDc3w+12W10NIuqjjP4Urvc4eUMd6lij29K51crJ3+Pi4lU/k96lxTe09kuLd0j7pW1/+e5lMOO6s2o8Ev1/S+9O/3ui4na87D0O8ejo/AEb6n4Br9erOR7KiJhJ1ERE/VWkEnaovmujSTocybq3M5M5nfI+7MC+atVfGBRXz4Litnx/NNapjok+aiIiov6KiZqIKMb0NmGH6rsONSJc6bvVmEnWav3Ves+l1VcdalUto0k6mthQExHFOK0GWK28pOdxWgPN5N+h1ZBrNbLK9Qo9QYvWY1nyiVDkP4GHGlSm1mBbOZiMP30TERHZGBM1EVEfEc6fxNUGmoU7WRstE+o75Ilc7advf7nu0d+A/olNrGCHOhAREZEKJmoioj7KTN+13klS9CZrvfuVvxPd3xlcz56fqz2WJe1XPb/C5CZqfdGXEnb0+6yZqImIiGyMiZqIqI8zkqz1LvChN1lL1BbUUJpkJVjoc6tOFSp/LEtl9Dcc8aZHe0cjWTNRExER2RgTNRFRP2FkVHi4krXa+YKTtZ7vCtwvHyWutdyl6sQoPSY8sfJ5aTVM1ERERDbGRE1E1E/p6bvubbLW2u55Hq1FOdRGeWudW2uKUZ8jPii1yhO2lYmbiZqIiMjGmKiJiPo5K5O1xMia26rJWDYHuNrc4Up92tFcttIoO9WFiIiIZJioiYgIQOiZyXqWAczPIx6qH1ltJjI5vX3Vms9P96yjdKysL1pK2E55HVT2RwITNRERkY0xURMRkZ/exBxq9DZgfj1rpc8k+lfs0jefeM/9vZ2BrOtZbBGyjFlM1ERERDbGRE1EREEilazVjuuZbpXmAZeX6aI8glzeJ63Vdx0X1+Ffm1rreWk+R01EREQBmKiJiEhVuJO13lHggcdC49zKn6sn6OC6qz0/bYeEzURNRERkY0zURESkyejz0735DonWGteXKPdBqzVxanN/A/oTcjT7qpmoiYiIbIyJmoiIdDO67rRET1+11jzi0kxkWp9rzUimNDOZf5+0xrW/zzowOUdzRjIJG2oiIgo7sw12z30StYU81D43Or2prrIWPJYl4U/fRERENsZETUREhkVicJnZc8oHj8l/4tZ6TMvn6+ia9ASAcIR+HMsKTNREREQ2xkRNRESmhXNwmdbjWGrLYErHqQ06kw8qUzu/Yv1tkKyZqImIiGyMiZqIiHrNbLLubVml8vI+aa2k3vPxLK3HsuRTinIKUSIion6OiZqIiCzTs69abwKW+qrlfdF6R3+rnVcJ+6iJiIgopJhpqBsbG1FcXAy32w23243i4mI0NTWFPOb++++Hw+EIeE2ZMiWgTGtrKx599FF4PB4MHDgQBQUFqK+vj+SlEBH1WQHTcZr43My55OV8vg5/UtdzXvl5jMxYFg0x01AXFRVh//79qKysRGVlJfbv34/i4mLN42bOnImTJ0/6X+vXrw/4vLS0FBUVFVi7di22bduGc+fOYdasWejs7IzUpRAREekWE33Uhw8fRmVlJaqrqzF58mQAwKpVq5Cbm4va2lqMGjVK9ViXy4X09HTFz7xeL1avXo133nkH06dPBwD8/e9/R1ZWFjZs2IAZM2YoHtfa2orW1lb/dnNzs9lLIyIiSLODmZuzW6LVx600I1nP7YBjbNA3LYmJRL1jxw643W5/Iw0AU6ZMgdvtxvbt20Meu3nzZqSmpuLaa69FSUkJTp8+7f9sz549aG9vR35+vn9fZmYmsrOzQ553xYoV/p/g3W43srKyenF1RERE6mKioW5oaEBqamrQ/tTUVDQ0NKge99Of/hTl5eX49NNP8cILL2D37t249dZb/Wm4oaEBiYmJuOKKKwKOS0tLC3nesrIyeL1e/+vEiRMmr4yIqG8KZ1+1/BjppdYXrdXfrNRHLZ0rqL+7+z8he0WTpT99L126FMuWLQtZZvfu3QAAh8MR9JkQQnG/ZM6cOf6/s7OzMWnSJAwdOhQfffQR7r77btXjtM7rcrngcrlC1puIiCgcLG2o58+fj8LCwpBlhg0bhi+++AKnTp0K+uzMmTNIS0vT/X0ZGRkYOnQojhw5AgBIT09HW1sbGhsbA1L16dOnkZeXp/u8RESkzEh/s3z+b73nUFu/Wu1zrf2Adh+1/PNIJm1LG2qPxwOPx6NZLjc3F16vF7t27UJOTg4AYOfOnfB6vYYa1LNnz+LEiRPIyMgAAEycOBEJCQmoqqrC7NmzAQAnT57EgQMHsHLlShNXREREFF4x0Uc9ZswYzJw5EyUlJaiurkZ1dTVKSkowa9asgBHfo0ePRkVFBQDg3LlzWLRoEXbs2IFjx45h8+bNuPPOO+HxeHDXXXcBANxuN+bNm4cnnngCGzduxL59+/CrX/0KY8eO9Y8CJyKiyAnVV93bZ5rlfdhqfdd2fX5aEhOPZwFAeXk5FixY4B+hXVBQgNdeey2gTG1tLbxeLwDA6XTiyy+/xN/+9jc0NTUhIyMDt9xyC9atW4fLL7/cf8xLL72E+Ph4zJ49GxcuXMBtt92GNWvWwOl0Ru/iiIiIVDiEEMLqSsS65uZmuN1uq6tBRGR7av3MSvulvmr5Z9K2/N3pTArYjotLCtivth0ffxmczsv8fwNAgjOlqywSu7bRVTYRyarbHZ3n8WndbHi9XqSkpIS6DYbExE/fRERE/VXM/PRNRER9lxAdvV7LWmtdarUZypRI60/LO0GVRntHGhM1ERGRjTFRExFR1JidxzsS39EzYcfFKa9ZbQdM1ERERDbGRE1ERLYgT8JaM5UFU27SpPM4HMbTstQHbUXftIQNNRERRZ2Zn8C1jpEaZKcz9HKZ8oZeabIT/7YjUXf9IoU/fRMREdkYEzUREfUpRgeT9XQplascE+UlLgEmaiIiIltjoiYiIlvRO6hM73nU3nUd64h+gpZjoiYiIrIxJmoiIrJMb0Z/q9N3rktJvUMzbVvRNy1hoiYiIrIxJmoiIupT1J6n1rMYh+7viGLCZqImIiKyMSZqIiKynNIyl70d/W1kZjL589P+PmtZcpYn6WgkayZqIiIiG2OiJiKimGZ26UylEd5c5pKIiIgMYaImIqKYJE/SwWk4cL+RmcnkojnKW46JmoiIyMaYqImIyBa0Rmn3du7vUN+ruh61DTBRExER2RgTNRER9UnyGcrk9Iz6trJvWsJETUREZGNM1ERE1C/0Zs5vaYYy+Xs0MFETERHZGBM1ERHZit7R3/L9cvLnq9WO8/k6EBcn65v2GRv17ev+LxKYqImIiGyMiZqIiGKS1vPUl5K2/qZO9Xlqh+HqhQ0baiIi6hd6M4WolfjTNxERkY0xURMRkS2ZXb5STm3ik54JWytlqz2WFY3HtJioiYiIbIyJmoiIYorex7TMJHEpfdupH5uJmoiIyMZipqFubGxEcXEx3G433G43iouL0dTUFPIYh8Oh+Hr++ef9ZaZNmxb0eWFhYaQvh4iIIkxP33M0ztFbMfPTd1FREerr61FZWQkAePDBB1FcXIwPP/xQ9ZiTJ08GbH/88ceYN28efvGLXwTsLykpwfLly/3bAwYMCGPNiYiIzIuJhvrw4cOorKxEdXU1Jk+eDABYtWoVcnNzUVtbi1GjRikel56eHrD9n//8B7fccgtGjBgRsD85OTmoLBERxQatiU8kas9Rm0nNXJRDZseOHXC73f5GGgCmTJkCt9uN7du36zrHqVOn8NFHH2HevHlBn5WXl8Pj8eD666/HokWL0NLSEvJcra2taG5uDngRERFFQkwk6oaGBqSmpgbtT01NRUNDg65zvP3227j88stx9913B+yfO3cuhg8fjvT0dBw4cABlZWX4/PPPUVVVpXquFStWYNmyZcYugoiITOnt89RqU4kqLXepmrqjmKDlLE3US5cuVR3wJb1qamoAdA0MkxNCKO5X8uabb2Lu3LlISkoK2F9SUoLp06cjOzsbhYWFeP/997Fhwwbs3btX9VxlZWXwer3+14kTJwxcNRERkX6WJur58+drjrAeNmwYvvjiC5w6dSroszNnziAtLU3ze7Zu3Yra2lqsW7dOs+yECROQkJCAI0eOYMKECYplXC4XXC6X5rmIiChywjVzmZ7v8G9bkKwtbag9Hg88Ho9mudzcXHi9XuzatQs5OTkAgJ07d8Lr9SIvL0/z+NWrV2PixIkYN26cZtmDBw+ivb0dGRkZ2hdAREQUYTExmGzMmDGYOXMmSkpKUF1djerqapSUlGDWrFkBI75Hjx6NioqKgGObm5vx3nvv4YEHHgg6b11dHZYvX46amhocO3YM69evx7333ovx48dj6tSpEb8uIiKKHp+vAz5fR9AobyE6/J/ZUUw01EDXyOyxY8ciPz8f+fn5uOGGG/DOO+8ElKmtrYXX6w3Yt3btWggh8Mtf/jLonImJidi4cSNmzJiBUaNGYcGCBcjPz8eGDRvgdDojej1ERER6OIQQwupKxLrm5ma43W6rq0FE1Kep9UXL90vPU0v74+KSAradzqSA/fHxl8HpvMz/NwAkJAwCACQmdnXPJjq7t5EMAHDhsqD3js7z2FxXCK/Xi5SUFPMXKhMziZqIiKg/YkNNREQxwey823aYr7s32FATERHZWEzMTEZERBQpoRK3f6Yy2fPTnOubiIiIADBRExFRjDM6Q1lv+qutSNZM1ERERDbGRE1ERP2CfBUtpWSttnqWlZioiYgopuh93CrWH8uSsKEmIiKyMf70TUREfYq0uIY0lajWYDOfrwNxccrJWzqXz4LlLSVM1ERERDbGRE1ERP2KlJIdDvXBZHZa8pKJmoiIyMbYUBMRUZ+gNco7VkeBs6EmIiKyMfZRExFRv6ZnUQ6JNPqbi3IQERERACZqIiKKUUYX4wjHd8ER8a8KwkRNRERkY0zURETUr4RaeEN6ftpOo8OZqImIiGyMiZqIiPqkS3N+d21Hsi9bwBexkeBM1ERERDbGRE1ERP2akeeorcBETUREZGNM1ERE1KeoPV+t57lrrWQtHIH90NGYoYyJmoiIyMaYqImIKKZFYoYyO/RNS5ioiYiIbIyJmoiI+hUpLcufszbCx9WziIiICGCiJiKifk6IDn+6djqDP7MaEzUREZGNMVETERF1C7WyllXYUBMRUZ926Wdt802evwGP4iAyCX/6JiIisrGYaaj/7//+D3l5eUhOTsagQYN0HSOEwNKlS5GZmYkBAwZg2rRpOHjwYECZ1tZWPProo/B4PBg4cCAKCgpQX18fiUsgIiILyRff6LkdamEOq8VMQ93W1oZ7770Xv/3tb3Ufs3LlSrz44ot47bXXsHv3bqSnp+P2229HS0uLv0xpaSkqKiqwdu1abNu2DefOncOsWbPQ2dkZicsgIiIyxCGEEFZXwog1a9agtLQUTU1NIcsJIZCZmYnS0lI89dRTALrSc1paGp577jk89NBD8Hq9uOqqq/DOO+9gzpw5AIBvv/0WWVlZWL9+PWbMmKGrTs3NzXC73b27MCIiCgv5VKLSdlyc9J4UsD8+/jL/voSEQYrvLld617vzSgBAElIAAAO635OQgo7O89hSVwSv14uUlJSwXU/MJGqjjh49ioaGBuTn5/v3uVwu3Hzzzdi+fTsAYM+ePWhvbw8ok5mZiezsbH8ZJa2trWhubva/vF5v5C6EiIgMEUJovHwKr87uV0f3c9Xt3a+27lcrfL5WdHZe7H5dQGfnBXT4X+fR4Tvv//5w6rOjvhsaGgAAaWlpAfvT0tLwzTff+MskJibiiiuuCCojHa9kxYoVWLZsWZhrTERE4RHYdSlE13ZnZ2v3+w8Bn7e1nQ7rt589ezasv7Ja2lAvXbpUs8HbvXs3Jk2aZPo7HA5HwLYQImifnFaZsrIyLFy40L/d1NSEoUOH4vjx4/wJXKfm5mZkZWXhxIkTYf2JqK/jfTOO98wc3jfjvF4vrrnmGlx55ZVhPa+lDfX8+fNRWFgYssywYcNMnTs9vas/oaGhARkZGf79p0+f9qfs9PR0tLW1obGxMSBVnz59Gnl5earndrlccLlcQfvdbjf/QRuUkpLCe2YC75txvGfm8L4ZF2dmlY8QLG2oPR4PPB5PRM49fPhwpKeno6qqCuPHjwfQNXJ8y5YteO655wAAEydOREJCAqqqqjB79mwAwMmTJ3HgwAGsXLkyIvUiIiIyImb6qI8fP47vv/8ex48fR2dnJ/bv3w8A+PGPf4zLLrsMADB69GisWLECd911FxwOB0pLS/Hss89i5MiRGDlyJJ599lkkJyejqKgIQFcCnjdvHp544gkMHjwYV155JRYtWoSxY8di+vTpll0rERGRJGYa6meeeQZvv/22f1tKyZs2bcK0adMAALW1tQEjsJ988klcuHABjzzyCBobGzF58mR88sknuPzyy/1lXnrpJcTHx2P27Nm4cOECbrvtNqxZswZO+RIqIbhcLixZskTx53BSxntmDu+bcbxn5vC+GRepexZzz1ETERH1J332OWoiIqK+gA01ERGRjbGhJiIisjE21ERERDbGhlqnN954A8OHD0dSUhImTpyIrVu3hiy/ZcsWTJw4EUlJSRgxYgT+/Oc/R6mm9mHknv3rX//C7bffjquuugopKSnIzc3Ff//73yjW1j6M/luTfPbZZ4iPj8eNN94Y4Rraj9F71traiqeffhpDhw6Fy+XCj370I7z55ptRqq19GL1v5eXlGDduHJKTk5GRkYHf/OY3OHv2bJRqa73//e9/uPPOO5GZmQmHw4F///vfmseEpS0QpGnt2rUiISFBrFq1Shw6dEg89thjYuDAgeKbb75RLP/111+L5ORk8dhjj4lDhw6JVatWiYSEBPH+++9HuebWMXrPHnvsMfHcc8+JXbt2ia+++kqUlZWJhIQEsXfv3ijX3FpG75ukqalJjBgxQuTn54tx48ZFqbb2YOaeFRQUiMmTJ4uqqipx9OhRsXPnTvHZZ59FsdbWM3rftm7dKuLi4sTLL78svv76a7F161Zx/fXXi5///OdRrrl11q9fL55++mnxz3/+UwAQFRUVIcuHqy1gQ61DTk6OePjhhwP2jR49WixevFix/JNPPilGjx4dsO+hhx4SU6ZMiVgd7cboPVNy3XXXiWXLloW7arZm9r7NmTNH/P73vxdLlizpdw210Xv28ccfC7fbLc6ePRuN6tmW0fv2/PPPixEjRgTse+WVV8SQIUMiVkc709NQh6st4E/fGtra2rBnz56ApTABID8/X3UpzB07dgSVnzFjBmpqatDe3h6xutqFmXsm5/P50NLSEvbJ7e3M7H176623UFdXhyVLlkS6irZj5p598MEHmDRpElauXImrr74a1157LRYtWoQLFy5Eo8q2YOa+5eXlob6+HuvXr4cQAqdOncL777+PO+64IxpVjknhagtiZmYyq3z33Xfo7OxUXC5TbSnMhoYGxfIdHR347rvvAhYJ6YvM3DO5F154AT/88IN/Dvb+wMx9O3LkCBYvXoytW7ciPr7//Z+zmXv29ddfY9u2bUhKSkJFRQW+++47PPLII/j+++/7TT+1mfuWl5eH8vJyzJkzBxcvXkRHRwcKCgrw6quvRqPKMSlcbQETtU5Gl8tUKq+0vy8zs8QoAPzjH//A0qVLsW7dOqSmpkaqeral9751dnaiqKgIy5Ytw7XXXhut6tmSkX9rPp8PDocD5eXlyMnJwc9+9jO8+OKLWLNmTb9K1YCx+3bo0CEsWLAAzzzzDPbs2YPKykocPXoUDz/8cDSqGrPC0Rb0v/8JbpDH44HT6Qz6X5k9l8uUS09PVywfHx+PwYMHR6yudmHmnknWrVuHefPm4b333ut3C6MYvW8tLS2oqanBvn37MH/+fABdjZAQAvHx8fjkk09w6623RqXuVjHzby0jIwNXX311wNrxY8aMgRAC9fX1GDlyZETrbAdm7tuKFSswdepU/O53vwMA3HDDDRg4cCBuuukm/PGPf+zzvxSaEa62gIlaQ2JiIiZOnIiqqqqA/VVVVaprVufm5gaV/+STTzBp0iQkJCRErK52YeaeAV1J+v7778e7777bL/u9jN63lJQUfPnll9i/f7//9fDDD2PUqFHYv38/Jk+eHK2qW8bMv7WpU6fi22+/xblz5/z7vvrqK8TFxWHIkCERra9dmLlv58+fD1pnWVq8SHDJCEVhawsMDT3rp6THGFavXi0OHTokSktLxcCBA8WxY8eEEEIsXrxYFBcX+8tLQ/Iff/xxcejQIbF69ep++3iW3nv27rvvivj4ePH666+LkydP+l9NTU1WXYIljN43uf446tvoPWtpaRFDhgwR99xzjzh48KDYsmWLGDlypHjggQesugRLGL1vb731loiPjxdvvPGGqKurE9u2bROTJk0SOTk5Vl1C1LW0tIh9+/aJffv2CQDixRdfFPv27fM/0haptoANtU6vv/66GDp0qEhMTBQTJkwQW7Zs8X923333iZtvvjmg/ObNm8X48eNFYmKiGDZsmPjTn/4U5Rpbz8g9u/nmmwWAoNd9990X/YpbzOi/tZ76Y0MthPF7dvjwYTF9+nQxYMAAMWTIELFw4UJx/vz5KNfaekbv2yuvvCKuu+46MWDAAJGRkSHmzp0r6uvro1xr62zatCnk/5+KVFvAZS6JiIhsjH3URERENsaGmoiIyMbYUBMREdkYG2oiIiIbY0NNRERkY2yoiYiIbIwNNRERkY2xoSYiIrIxNtREREQ2xoaaiIjIxthQExER2RgbaiLqlcrKSvzkJz/BoEGDMHjwYMyaNQt1dXVWV4uoz2BDTUS98sMPP2DhwoXYvXs3Nm7ciLi4ONx1113w+XxWV42oT+DqWUQUVmfOnEFqaiq+/PJLZGdnW10dopjHRE1EvVJXV4eioiKMGDECKSkpGD58OADg+PHjFteMqG+It7oCRBTb7rzzTmRlZWHVqlXIzMyEz+dDdnY22trarK4aUZ/AhpqITDt79iwOHz6Mv/zlL7jpppsAANu2bbO4VkR9CxtqIjLtiiuuwODBg/HXv/4VGRkZOH78OBYvXmx1tYj6FPZRE5FpcXFxWLt2Lfbs2YPs7Gw8/vjjeP75562uFlGfwlHfRERENsZETUREZGNsqImIiGyMDTUREZGNsaEmIiKyMTbURERENsaGmoiIyMbYUBMREdkYG2oiIiIbY0NNRERkY2yoiYiIbIwNNRERkY39P59bcoqeYHG7AAAAAElFTkSuQmCC", "text/plain": [ "PyPlot.Figure(PyObject
)" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " 2.259230 seconds (2.65 M allocations: 130.699 MiB, 3.25% gc time)\n" ] } ], "source": [ "@time plot_lik(0.5, 0.1, 2^9);" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "#### サンプルサイズ 4096 の場合\n", "\n", "さらにサンプルサイズを8倍に増やしても, 尤度函数は特異点集合 $a=1$ または $b=0$ に沿って拡がった形のままである.\n", "\n", "やはり, 最尤法(MLE)によるパラメーターの推定値が真の値 $(a_0,b_0)=(0.5,0.1)$ とは全然違う値になっている.\n", "\n", "サンプルサイズを $2^{18}=262144$ まで増やしても, 尤度函数は特異点集合に沿って広がったままで, 最尤法の結果も真の値に近付かないことを数値的に確認できる." ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAHWCAYAAAC41crsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvXt8VMX9//865+xmN/dAQhJQQKR44SY0oAS+UlsVqvVaW/FStK2i9KNWpf6KtPVT0H5E+1GLN1QqLR/1I1KLKFZUsCJqwaoofKxatVQNYmIMQi5ALrs7vz/OzNk9s3uyu8luSOD17GM7mTlz5sxZkMlr3pcxhBAChBBCCOmVmPt7AoQQQgjxhgs1IYQQ0ovhQk0IIYT0YrhQE0IIIb0YLtSEEEJIL4YLNSGEENKL4UJNCCGE9GK4UBNCCCG9GC7UhBBCSC+GCzUhhBDSi+FCTQghhPRiuFAT0gVaWlpwzTXXYNCgQQgGgxg3bhwee+yxlO596aWXYBhGws9rr73WpblYloXbbrst7XuzTXe+p+bmZvz85z/HtGnTMGDAABiGgfnz52d3wj3Agw8+CMMwUFBQkPB6qt/Z66+/junTp6OwsBAFBQX45je/ib/97W+ez3311Vdx6qmnol+/fsjNzcWIESNw0003Zey9SPbw7e8JENIX+e53v4s33ngDt9xyC4444gg8+uijOP/88xGJRHDBBRekNMbNN9+Mb37zm6620aNHpz2XzZs3IxKJ4Ljjjkv73mzTne9p586dWLJkCY455hicddZZePDBB3to1tljx44duO666zBo0CA0NjYm7JPKd/bGG29g6tSpOPbYY/Hwww9DCIHf/va3OPHEE7F+/XpUV1e7xnz00Ucxc+ZMnHvuuXjooYdQUFCAbdu24fPPP8/6O5MMIAghafHMM88IAOLRRx91tZ988sli0KBBIhQKdXr/+vXrBQDx+OOPZ2Q+t912m7AsS+zZsycj42WK7n5PkUhERCIRIYQQX375pQAgfv3rX2druj3CaaedJk4//XRx8cUXi/z8/LjrqX5n06dPFxUVFa4/86amJlFWViYmT57suvezzz4T+fn54ic/+UkW3oj0BNz6Jr2a119/HTNmzMBhhx2G3NxclJeX4+yzz8a2bdv225xWrVqFgoICfP/733e1/+hHP8Lnn3+Ov//97z06nzfeeAOjR4/Gxo0bcfzxxyM/Px9f+9rXcO+99/boPHS6+z0pc0Cm+Na3voVvfvOb2LBhA0466SQUFBSgsrISN954Y8ae0RmPPPIINmzYgMWLF3v2SfU7+9vf/oYTTjgBeXl5Tp/CwkJMnToVGzduRG1trdP+4IMPYs+ePZg7d26G34j0FFyoSa9my5YtOOaYY3DnnXfi+eefx+9+9zt8+OGH+O53v9ul8YQQCIVCKX28+Mc//oGjjz4aPp/bcjR27FjneipcccUV8Pl8KCoqwvTp0/Hqq6926Z3efPNNNDQ04Be/+AWuvPJKPPHEEzj66KNx5ZVX4sknn+zSmL3pe8oUW7ZswSeffIJrr70WF198MVavXo2pU6fi17/+NTZs2JDwnkx8DwBQX1+Pa665BrfccgsOPfRQz36pfmft7e0IBAJx96u2d955x2l7+eWX0b9/f/zzn//EuHHj4PP5UF5ejtmzZ6OpqanTeZNewn5W9ISkTDgcFh0dHeLBBx8UAMSuXbuEEELU19eLU089VeTl5YkRI0aItWvXeo6htp1T+Xz88ccJxxgxYoSYPn16XPvnn38uAIibb7650/d46623xNVXXy1WrVolXn75ZfGHP/xBHH300cKyLPHcc8+l/oUIIb766isBQIwaNUrs3bvXad+zZ4/o37+/mDFjhtPW176nWLq79b1t2zYBQFRVVYnW1lan/bPPPhMAxOLFixPel4nvQQghzjnnHDF58mRnK99r6zvV72zcuHHiiCOOEOFw2OnT0dEhDj/88Lit8yOPPFIEg0FRWFgobr75ZrF+/Xrx29/+VuTm5oopU6Y4cyK9FzqTkV6LEAIrV67E4sWL8c9//hN1dXUQQgAATNNEbm4uAFuZVlZW4ssvv8QLL7yAc889F//6179QWloaN2ZVVRXeeOONlJ4/aNAgz2udbckm264dP348xo8f79SPP/54nH322RgzZgx+/vOfY/r06SnND7DVNADcdNNNzvcBAHl5eRgxYgS++OILp62vfU+Z5K233gIA3HjjjS4lunPnTgDe75CJ72HlypV4+umn8fbbb6f0zql8Z1dddRUuueQSXHnllfjlL3+JSCSCBQsW4NNPPwVg//ehiEQiaG1txa9//Wtcf/31AIATTjgBOTk5uOaaa/DXv/4VJ510UkrvSPYPXKhJr+Wyyy7DsmXLcPnll+OnP/0pBgwYgEAggEsvvRT79u1DIBBAS0sLnnzySWzbtg15eXk444wzcMwxx+Cpp57Cj3/847gxCwoKMG7cuJSer28/KkpLS51/4GP56quvAAD9+/dP4y1tSkpKcNppp+H+++/Hvn37XItuZ7z55pvIz8/HGWecEXetrq4OU6dOBYAD5nvqKm+99RYCgUDcgqQW8NhfnGLp7vfQ0tKCK664AldddRUGDRqE3bt3A7C3rgFg9+7d8Pv9yM/PB5D6d/bjH/8YX375JX7zm9/gvvvuAwBUV1fjuuuuw6233opDDjnEube0tBQfffRR3C+Ap5xyCq655hq89dZbXKh7ObRRk17JBx98gAcffBA333wz7rnnHpx11lmYMmUKDjvsMLz77ruYMGECAOCjjz5CQUEBBg8e7Nw7ZswYvPvuuwnH3bBhA/x+f0qfTz75JOEYY8aMwfvvvx9nl1R2wa6EWAFwdgvSUZpvvvkmysvLYVmWq33jxo349NNP8Z3vfAfAgfU9dYXNmzdj7NixyMnJcbW/+eabKCsrw5AhQxLe193voaGhAV988QVuv/129OvXz/ksX74ce/bsQb9+/XDhhRc6/dP5zubOnYuGhga88847+OSTT7Bx40bs2rUL+fn5qKqqcvop+7ZO7O4U6d1QUZNeidrCGzlypKv96quvRigUchbqlpYWFBUVufoUFRWhoaEh4biZ2Mo8++yz8fvf/x4rV67EjBkznPb/+Z//waBBg7oUz7xr1y785S9/wbhx4xAMBlO+74033kB9fT12796NkpISAEAoFMLcuXNx1FFH4ZxzzgFw4HxPXeXtt9/G9773vbj2zZs3uxY1ne5+D5WVlVi/fn1c+y233IINGzbg2WefRVlZmdOe7ncWCAScxbumpgYrVqzArFmzXDsy55xzDpYsWYJnn33WtXOwZs0aAMCkSZNSej+yH9m/JnJCElNXVyfy8vLE+PHjxTPPPCP+/Oc/i+nTp4vhw4cLAOLll18WQtiOWf369XPde+WVV4o5c+ZkdX4nn3yy6Nevn1iyZIl48cUXxaxZswQA8cgjj7j6vfTSS8KyLLFgwQKn7fzzzxdz584Vjz/+uFi/fr1YsmSJOPLII4XP5xPr1q2LexYA8Y1vfCOuvb6+XgAQw4cPFyeeeKJ49tlnxapVq8QJJ5wgiouLxTvvvOP07YvfkxBCrFmzRjz++OPiD3/4gwAgvv/974vHH39cPP7443Fx417fU01NjQAgli5d6mrv6OgQubm54pe//GVmXjYNvJzJhEjtO3vnnXfE/PnzxV/+8hexbt06cdttt4mysjIxYcIE0dzcHDfm6aefLgKBgLjpppvEunXrxMKFC0UwGBSnnXZa1t6RZA4u1KTX8pe//EUcddRRIhAIiJEjR4o777xT/OY3vxGmaTr/GDU3Nwu/3y+2b9/u3HfCCSfE/aOcaZqbm8VPf/pTUVlZKXJycsTYsWPF8uXL4/opr+FYb+WFCxeKcePGieLiYmFZlhgwYIA4++yzxeuvv57wOQDEeeedF3dNJcd47bXXxKxZs0RRUZEoKioS3/ve98SHH34YN05f+56EEGLo0KEpeVl39j09+eSTAoDYunWrq33r1q0CgHjiiScy8q7p0NlCncp39sEHH4ipU6eK/v37i5ycHPG1r31N/OpXvxItLS0Jx9y7d6+YO3euGDx4sPD5fGLIkCFi3rx5Lg940nsxhJCGCkL6KN///vdRXFyMu+++G3/9618xc+ZMfPTRR64txb7KmjVrcNppp2Hr1q0YM2ZMt8bi90RI34Q2atLnWbx4MS6++GKUlpbikEMOwYoVKw6IxQcA1q9fj/POOy8jiw+/J0L6JlTUhBBCSC+GfvmEEEJIL6ZPLdQvv/wyTj/9dAwaNAiGYaSUx3jDhg2oqqpCMBjE4Ycfjvvvvz+uz8qVKzFy5EgEAgGMHDkSq1atysb0CSGEkLTpUwv1nj17cMwxx+Cee+5Jqf/HH3+MU089Fccffzzefvtt/OIXv8BPf/pTrFy50umzadMmzJgxAzNnzsTWrVudM1t7+gQkQgghJBF91kZtGAZWrVqFs846y7PP3LlzsXr1arz//vtO2+zZs7F161Zs2rQJADBjxgw0NTXh2Wefdfp8+9vfdrIHEUIIIfuTA9rre9OmTZg2bZqrbfr06Vi6dCk6Ojrg9/uxadMmXHvttXF9Fi1a5DluW1sb2tranHokEsFXX32F0tLSHj1ogBBCSO9BCIHm5mYMGjQoo6lZD+iFuq6uDhUVFa62iooKhEIhNDQ0YODAgZ596urqPMdduHAhFixYkJU5E0II6dts376903PH0+WAXqiB+AMORIKDDxL16UwZz5s3D3PmzHHqjY2Nnkn9CSGE9E4Mwz7y1O8vRn7+4QCAsv7fAgAcjmoAwA9LVgMAqr/+KACgbZrMxV96mF1+8TEAoGA10NwhcNSfd6GwsDCj8zygF+rKyso4ZVxfXw+fz+ecwevVR1fZsQQCAdeZtoQQQvoeSpCZZg4sqwAAkGPZh9fkG/aCXO7vsOsFEft6gTypTpWN9hiFPhOIRFzjZoo+5fWdLtXV1Vi3bp2rbe3atZgwYQL8fn+nfSZPntxj8ySEEEK86FOKuqWlBf/617+c+scff4wtW7agf//+GDJkCObNm4cdO3bgoYceAmB7eN9zzz2YM2cOZs2ahU2bNmHp0qUub+6rr74aU6dOxa233oozzzwTTz31FF544QW8+uqrPf5+hBBCso9h2EufaUZLy7IVtA/2meV5ZisAoNBoAQBEcuQZ4T5N30ayHzjVpxT1m2++ifHjxztnqs6ZMwfjx4/Hf/7nfwIAamtrUVNT4/QfNmwY1qxZg5deegnjxo3DTTfdhLvuuss5oxcAJk+ejMceewx//OMfMXbsWCxbtgwrVqzo0bNyCSGEEC/6bBx1b6KpqQnFxcX7exqEEJI2hmGgpKQEhYWFB014qVLUlmX7GuXklKGg4CgAwID8YwEAoyz7wJofFtkJsgonvQoIAXOiAROtQOFge7BPPwIAFD3pR1NHBIP+1IDGxkYUFRVlbL59auubEEJI5hgwYAB+8pOfYMKECfD5fAfNQh3Ffl/DsGCa9pa3JZ3IcgzbWSxkXgIAaAxeAAgBkbMXRXvuQQ729tgsuVATQshBiM/nw+23345hw4YhGAzu7+n0MGqBVr+Y+ODz5do/GfkAgFx5rczaZXcp2AsI4KsOoAlXoX/kNphoc2zURsSAEcnOLzpcqAkh5CBk4MCBKCsrOwgX6VjUgm3CkAraNO2IIJ9hu3AFVYYxuVr2z/ejpbkAkUgxTNT3yCy5UBNCyEGIaZoH4Va3TnShVr7VhmwzYcdEW7IMm0bMLQaE8sWOZH+WfcrrmxBCCDnYoKImhBBykBKbSlpmGpP61YQdN20aUlEbsffE7ET0gI2aipoQQgjpxXChJoQQ0qe4/PLLcfvtt3fhTk0Nq1bDdK6p/5lGxFbThpAfw/6oYSJh+RFARMCImDAi2VlSufVNCCGky4QBbCksRIPfj7KODoxrboaV9K7sIoRAOByGz3dgLHFU1IQQQrrEiyUlOGPsWMw+8kj86vDDMfvII3HG2LF4saQka8+cP38+3nrrLTz22GOYOHEiJk6ciKeffhoTJ07Epk2bcNFFF2Hy5MnYsmUL5s+fj+uuu851/+23347LL79cerwbEAJYtmwpTjllCiZOHIEzzzkez699GiYiMBGBMAWEKTQxrtmos5zv+8D4dYMQQkiP8mJJCeYOHx7XXu/3Y+7w4bh12zZ8a/fujD/3uuuuQ01NDYYPH47LL78cAPDvf/8bAHD33Xfj6quvxiGHHIKCgoKUxlu8+B689NKLuOGGhRgyZBi2bn4b/9+8yzCk9H8xeWJ1xuffFbhQE0IISYswgNuHDLEreiy2YQBC4I7Bg/GN3bszvg1eUFAAv9+PYDCIsjI7H/enn34KwLZdp3OgUmvrPjz66MNYsuQhVH39eADA1waPwua3X8PDf3oY/2/icbZ9GkispoFoHHXEsD9ZgAs1IYSQtNhSWIj6nBzvDoaBLwIBbCksRFVzc4/N6+ijj06jt4F///tjtLW1YfbsH8W0GujoaMfYo0fBZ9hb3/YFw3UvRARAmClECSGE9D4a/P6M9ssUubm5rrppmtAPiAyFQs7PkYgth++++/cYNPBwAEAO7BO1KoJt2ZxqWnChJoQQkhZlHR0Z7Zcufr/fWWQ7o1+/fti2bZur7cMPP4DP5wdg4PDDv4acnBzU1dWi+riTAAC5sHcKSq1dAMIQSbe+s39SNBdqQgghaTGuuRnl7e2o9/vjbdQAIAQq2tsxLkvb3gMHDsQ//vEPfP7558jLy/NctCdMmICHH34YzzzzDMaMGYNnn30O27Ztw5FH2mdP5+fnY+bMH+K22/4LBnLw9a8fh1BLKzZv+TsqCgxccNY5WZl/ujA8ixBCSFpYAH5WU2NXtK1lVZ+zfXvW4ql/8IMfwLIsnHvuuTj55JNRV1eXsF91dTUuueQS3HXX3bj44ouxd+8efOc735FXDRiGgf/4j5/issuuwoMP3oXTz/h/+OHsc/Dihucw7NBD7AM5TGF/YhOeAADCgIhNeJI9G7Uh9A18kjZNTU0oLi7e39MghJCUGTp0KO6//37Hc7orvFhSgtuHDHE5llW0tWHO9u1ZCc3qOu4F1DDszWR1pKVl5cFv2udQ58mc32WmfQ51IL8RABAptHVtq/ChpqYeRfv+C35RC/zD9jgvXVOKpo4IBqzZgcbGRhQVFWVs9tz6JoQQ0iW+tXs3vrF7d6/LTOZF9FhPd2kYFgznMA55vKURBoB4G7WQP4hIVFGDXt+EEEJ6KRbQoyFYByNcqAkhhBxUOGdrGMpNy4QhJbMJW0lbKpOJqXt9ayR3Pu82dCYjhBBCejFU1IQQQg4SvGzUZtRGLW3SylYdThg/bQAiZH8cG7UJI0vqmoqaEEII6cVQURNCCDlIiFfSds1I4PWtKWrdRh1xe31n81AOKmpCCCGkF0NFTQgh5ABFV7iaknYpahvl7S1M5fXtuIi7hxJht6LOIlTUhBBCSC+GCzUhhJA+xfz58zFx4kQsXLgw7tott9yCiRMnYv78+U7f6677mcxKpn9MnHLKVIwaU4kRY4oxYkwxBow6FANGHYpbliy1z6KOy/GtEZvrWzAzGSGEkN5GOIzCLVvgb2hAR1kZmseNA6zsJxGtqKjA2rVrce211yIYDAIA2trasHbtWlRWVqY11lVXzMWF3/sxAKDYbAIAHNIv1NktPQoXakIIIV2i5MUXMeT225FTX++0tZeXo+ZnP8Pub30rq88+6qijsGPHDqxfvx6nnHIKAGD9+vWoqKjAIYcckvCeaEayaI5vwEB+fgEq5OEk/S37gJG8wG4IiBhHcX0DWnl9Z/KtEsOtb0IIIWlT8uKLGD53LvwxizQA+OvrMXzuXJS8+GLW53D66afj6aefduqrV6/G6aefnvXn9jRcqAkhhKRHOIwht98OwMuvGhh8xx1AOJzVaZx66qnYunUrPv/8c9TW1uL//u//cOqppyboGW+bjn6A2393E0YdOwSjjh2CQVWjMKhqFF56/Q15DjXiXxKwlXQEPXIeNbe+CSGEpEXhli2u7W4dA0Dgiy9QuGULmquqsjaPkpISTJkyBc888wyEEJgyZQpKSkrSHufHP7wSF5x9nj2mYduoDz8sL6Nz7Q5cqAkhhKSFv6Eho/26wxlnnIH//u//BgD8/Oc/j7mSSOsnjqPu368Uw4ccZv9s7QYA+POapY3aIzWZVNI8j5oQQkivo0M6XmWqX3eorq5GR0cHAGDSpElZf97+gAs1IYSQtGgeNw7t5eXw19cnNN8KAO0VFXaoVpaxLAt/+tOfnJ9jMQwDhgG0tLTggw8+gGn6ZHsAxcUlGHzo1wAAe/bsQUNDHQAgYtqKOq80gqLCAu8Yak1RZ5M+50y2ePFiDBs2DMFgEFVVVXjllVc8+/7whz+Uf1Duz6hRo5w+y5YtS9intbW1J16HEEL6HpaFmp/9DIC9KMei6tvnzOmReGoAKCgoQEFBgef1zZvfxIUXnofzz/8ezj//ezjvvNNx332LnMShd917M8adMBbjThiLIVOnYsjUqZi38C7pTGa4PwohXIu1fcxldra+DSFE9n8dyBArVqzAzJkzsXjxYkyZMgUPPPAAHnzwQbz33nsYMmRIXP/Gxkbs27fPqYdCIRxzzDG46qqrnKw1y5Ytw9VXX40PPvjAdW86AfNNTU0oLi7u2ksRQsh+YOjQobj//vtR1o3t6URx1G0VFdg+Z07W46g7R9mi1cJpK2nT9AMALCvXbjXt0o88FJktAIAB1lcAgHCBvXaIPLnxnGPHV7e2CdTU1KPoy+vgD38GvPklAGDgiyPQFAqj+JVtaGxsRFFRUcbepk9tfd9xxx245JJLcOmllwIAFi1ahOeffx733XdfwlRyxcXFrgX0ySefxK5du/CjH/3I1c8wjLQz2RBCyMHO7m99C7u/8Y39kpksNdSCLWuOE5klr0aPtlSHcRjqUA61xjv7zqpBHWup1HS25h6lzyzU7e3t2Lx5M66//npX+7Rp07Bx48aUxli6dClOOukkDB061NXe0tKCoUOHIhwOY9y4cbjpppswfvx4z3Ha2trQ1tbm1JuamtJ4E0IIOYCwrKyGYJE+ZKNuaGhAOBxGRUWFq72iogJ1dXVJ76+trcWzzz7rqHHFUUcdhWXLlmH16tVYvnw5gsEgpkyZgo8++shzrIULFzpqvbi4GIMHD+7aSxFCCMkgenYSPcGJu27Ij4UILCMMywhDmMI+jMM05BGXiTKeiLiEJxFhIiKys6T2mYVaYWgeeEKIuLZELFu2DCUlJTjrrLNc7ZMmTcIPfvADHHPMMTj++OPxpz/9CUcccQTuvvtuz7HmzZuHxsZG57N9+/auvQwhhBCShD6z9V1WVgbLsuLUc319fZzK1hFC4A9/+ANmzpyJHOkQ4IVpmpg4cWKnijoQCCAQCKQ+eUII6WUIIdCHfInTwohLUpI40Yny+jaNCCzIdKemSHQrdFVtiIjj7Q0AYWEinKXvs88o6pycHFRVVWHdunWu9nXr1mHy5Mmd3rthwwb861//wiWXXJL0OUIIbNmyBQMHDuzWfAkhpDezc+dOtLe37+9p9Dk6OgSECMOItPTYM/uMogaAOXPmYObMmZgwYQKqq6uxZMkS1NTUYPbs2QDsLekdO3bgoYcect23dOlSHHfccRg9enTcmAsWLMCkSZMwYsQINDU14a677sKWLVtw77339sg7EULI/mDPnj1YvXo1zj///C7lx+7deEV326WI2GdNR2B7fwsjhJBh/9KyT9hu3GF1HHWHLEMRCCHQ8NUe+MLvwQw12uNlKXY6lj61UM+YMQM7d+7EjTfeiNraWowePRpr1qxxvLhra2tRU1PjuqexsRErV67EnXfemXDM3bt347LLLkNdXR2Ki4sxfvx4vPzyyzj22GOz/j6EELI/+eMf/wjAzpedk5OTkr9P30Df6pbhWIYdR23K0oJdBoww8kw7yZXPZ5ciIBd3v9x4Nn12kpPwbpREVsOI+2Uge/SphCe9FSY8IYT0ZfLy8lBWVtZnF2rDUKlB7QXZsmwfIp+vEAAQCNh5MvLzRwAAinPs1KEDMBwAUBX8EKfkbbCvHfF/AIDWsXJpHNLfLoMDYSAMK7wdBsLAZ58AAMw37fDc4o1HoykURsXf3ju4E54QQgjJPHv37o3bjexLRBdqu7SsIADA77e39INBWxUXFpYDAPYF7KxjKrnJ3rx9sArsDGM5FXYUT7hNLtRCppM2VBKX7J6xnQgu1IQQQg4o1IJtmkFX6fPZ+cD9sOt5pr3oFph7UWLayjgUlEZpFSFkahE+EblQ98BhHIo+4/VNCCGEHIxQURNCCDkgiB5j6VbUSklblltRF5h7AQBFZoujqL90FHVQDqqUtZa/XCpqdWJWWFgIZ0lkU1ETQgghvRgqakIIIX0S3YlMdyZTClu3TecgD0BUUZeauxDJtQ9aigSlDTpHKmhdSQtlo5Zz6IE4aipqQgghpBdDRU0IIeSAIF5ZJ7ZNRxX1LgBAidmEUJ5Mp5onl8UclehE8/oWbq9vJ9d3NFt4xqGiJoQQQnoxVNSEEEL6NF7e3spWrduoda9vl6IOSpu0T+pYw8tGLV28aaMmhBBCDm6oqAkhhPQpvLy9U7VRF5p2CtFi0z6qstTaFVXUyjbtl8ujrqgVWhx1CBZCiXt2GypqQgghpBdDRU0IIaRPo8dPRzORuW3Sevx0kVTUJWYTWhwbtVwWLY+MZELqZsZRE0IIIQSgoiaEENJHUMpZoXt7x+f4to+5jFfUOwHYGckAwB/cE+P1LeOmVfy0eqajpPU4ammjFiYiItK9F/SACzUhhJA+hZfzmH4IhyrVAq3KYutTALYTGQCE8toh8mS4lZM6VG59K2eysJ1i1AnPCtmLshHJ/jLKrW9CCCGkF0NFTQghpE+hb3krp7G4BCemOywr37RVsXIiU1vfHQVt0UQnKjzL0lKHKjwSntgpRLNzziUVNSGEENKLoaImhBDSq9Ft0V7tyQ7hUEq62GoGAJRauwHYNmonLEuVuo1aO96S4VmEEEIIAUBFTQghpI/h5e2t26h1b+8i6wsAQJm0TfeXirohrz16vKW+ux/oAAAgAElEQVQlFbRKeKLj2Kbd4VlhYSEsaKMmhBBCDjqoqAkhhPRKkiU4ifPy9ssEJ1aR3S5t1LmG7cFdHOft3QpA2aill7cvTz5cWx61+GldUWcTKmpCCCGkF0NFTQghpFfjZZPWS+XtrWzSQdh15e1dZEWPtQTgpA0VBYjGUVu58qH6YRx6/LRS1LbeZRw1IYQQcpBCRU0IIaRXkcw2repeNmqfHj9tNQIA+plNAIByyz6Uo6NA5u8OWvEZyXRFrVBx1CF3ZrJsQkVNCCGE9GKoqAkhhPRKkp2S5WQgU97epttGHUA+AKDY3AEAKLcaAETjp3cqRZ3nS56RzDnmMnEcdQgWQrRRE0IIIQcfVNSEEEJ6BanGTevnTuu5vZW3d7H08i6xdNt0qyyVos4HfFJJq4xkpjqHWnl7e3l900ZNCCGEHNRQURNCCOlVJLNNxylpaaOOy+1t2qdkFctS5fhuL7IVtciT6jhoAf5C+2dTeX3L5VHsk2XizGSKsDAREdnRvlTUhBBCSC+GipoQQsh+J9Y+napt2lHShl0PSNt0nmFnF+tn2d7eFdI2rby+W5VtusBvl3m+GNu0x6lZnpnJaKOOY/HixRg2bBiCwSCqqqrwyiuvePZ96aWXYBhG3Oef//ynq9/KlSsxcuRIBAIBjBw5EqtWrcr2axBCCCEp0acW6hUrVuCaa67BL3/5S7z99ts4/vjjccopp6CmpqbT+z744APU1tY6nxEjRjjXNm3ahBkzZmDmzJnYunUrZs6ciXPPPRd///vfs/06hBBCYjAMX6cfywrKTwEsqwB+fwn8/hLkIA85yEMABQigAEVmC4rMFpRYTSixmlBuNaDcaoAvrwW+vBaECtoQKmizlbSKobby7I9pRT2+AVtJx34isD8hAYQEjIgJI2LKXN+0UeOOO+7AJZdcgksvvRRHH300Fi1ahMGDB+O+++7r9L7y8nJUVlY6H8uK/iEsWrQIJ598MubNm4ejjjoK8+bNw4knnohFixZl+3UIIYSQpPSZhbq9vR2bN2/GtGnTXO3Tpk3Dxo0bO713/PjxGDhwIE488USsX7/edW3Tpk1xY06fPr3TMdva2tDU1OT6EEIISZ9YxWya9sdLQetK2m8WwG8WxCnqflYT+llN6G81or/ViHJrJ8qtnego2md/ClrtWGqlqHNy7XOofXm217cZsDOTxeb7DrfZn1AECEUcJY2IkfV8333GmayhoQHhcBgVFRWu9oqKCtTV1SW8Z+DAgViyZAmqqqrQ1taGhx9+GCeeeCJeeuklTJ06FQBQV1eX1pgAsHDhQixYsKCbb0QIIQcvenKT2Lb4VKF26aQK1cKxlBNZvmk7ePWTCU4qTNt5bJD1BQCgPZETGSC3vJOkDo1zJrMXZ+VMFhYWwkKd2JFZ+sxCrTAM928uQoi4NsWRRx6JI4880qlXV1dj+/btuO2225yFOt0xAWDevHmYM2eOU29qasLgwYPTeg9CCCEkFfrMQl1WVgbLsuKUbn19fZwi7oxJkybhkUceceqVlZVpjxkIBBAIBFJ+JiGEkMTEHl3pFY6lEps4YVlWEYCoklYpQ9Uxlipl6EBfvX1fnp1KtEUmOkGBXPqUovYXRsOzFEJLHerU5bw1RZ1N+oyNOicnB1VVVVi3bp2rfd26dZg8eXLK47z99tsYOHCgU6+uro4bc+3atWmNSQghhGSLPqOoAWDOnDmYOXMmJkyYgOrqaixZsgQ1NTWYPXs2AHtLeseOHXjooYcA2B7dhx12GEaNGoX29nY88sgjWLlyJVauXOmMefXVV2Pq1Km49dZbceaZZ+Kpp57CCy+8gFdffXW/vCMhhBzIdHbwhlLQnolNcsoARJV0fIIT2xZdIRObKBt1R9E+V4kCW5EjIG3VvtyY1KExDmRATOpQaZuWKUTNkK1ze0JR96mFesaMGdi5cyduvPFG1NbWYvTo0VizZg2GDh0KAKitrXXFVLe3t+O6667Djh07kJubi1GjRuGZZ57Bqaee6vSZPHkyHnvsMfzqV7/CDTfcgOHDh2PFihU47rjjevz9CCGEEB1DCJGdk64PIpqamlBcXLy/p0EIIb0WXUknskd7Kehg8FAAQF5wCACgEOUAgGIMAgAc6rNV79E5/wYATAi+AwA4IfgaAKB5hO2HtPeIPfbDD5cHcFRKX6SCw4BAqZyYVNQh+yAP7K21y6/ssfGJ3e7/0FbWJf+sBAC8t+sYtIQ6MOX1NWhsbERRUVEK30pq9BkbNSGEEHIw0qe2vgkhhPRtYr28Y+uJbdTuuGndNp0LWxmXWp8AAMp89jGWKm46VGwr6PaSvfbDE3l7A7aNWvf6VujHW4bccdTZTnYCUFETQgghvRoqakIIIVkjPttYvJIGbA9v3Ubt2Kott6IOwrb/qgxkZdZuAFElPdiy7crtMm46VNRhT6bAVurIlerZb49npwyVy6HKRKbip8Mym5lKOuYcb+n2+g7BQgjZyUxGRU0IIYT0YqioCSGEZJxEubxj2/U83qYZdDKQJYubjtqma2SpbNN2JrJAfiMAoMmxTfvdZY49Piw7VzjMnKi3t1LQQstI5tioVRx1zy2fVNSEEEJIL4aKmhBCSMbwipfWbdNKScfm8daVdI6hK2nbNl3qs23S5b6vAESV9KE+aZuWSrq9RGYiK5LKWSlqx9tbtlsJzm5wcnu3y1K4St1GHRYmwiI72peKmhBCCOnFUFETQgjpNsmUtB4jnSift6Ooff0BxCvpAsNWvqXWl7K0bdODpZIuzrVzezdLJS2KpN25SCrpoFTQSlFbuXKyWn5vIP48ao84ap6eRQghhBzkUFETQgjpMukqaWWbVko61tNb9/JWSjoXttIulfHS5ZZtm1ZKWrdNtylv7yIZL617e6v4aWWbNnPivbyVkg5LG3XIbaOOnp5ll2FYiDCOmhBCCDn4oKImhBCSNql6d3t5eavS8fDOKUPAtBVvUFPSJaadWUx5eVf6bFu0ykDm2Kb720o6IoWzo6jzpC06Ufy0QlfUSkmHlfe3+zxqZZuOZMnTOxYqakIIIaQXQ0VNCCEkZVJV0okyjwHwPHM64CuLsUkrL+98AEC573MAwACpqA/zfeYq2/rbp2Q5tukSqZSLNNu0T4ufVt7ephXN5e0VPx1yl45tmoqaEEIIObihoiaEEJKUrippr/zdehlEUZxteoD07lZKWvfyDhTaXuDNUlFH+suYZmWbzpde3Y63t1TUyjatvL5FKMY23RZtA+JyfCslreKow7BVeVhYCIvseH1zoSaEEOJJphZovQwEKgHAtd2d54Rh2Yulch4b6LMTnOhb3nvLWgAAbf3Vlrd0GlNb3oFSu3S2vlXKULlQq61vEYouzLozWUhzIpNhWSo8KywSJEvJMNz6JoQQQnoxVNSEEELi6K6S9nQaU0raiA/FKjJtJVwhncdUGJaupNtLmwEArVJRi/5yrsqJrEAq56BU1HrKUDPBIRwR3YlMKWp36tBoohN761vqbYRhIYxw/LgZgIqaEEII6cVQURNCCHFINSWoVyIT3RatK+mgaR+4oZR0Pux6oVGISl8dgKiSHubbDgD4mu9TAEBRoX2cZYtU0h39pertb4dxOU5kQc027ShqqaQd27RS0eEEqUOlU5mHM1ls6tBsQ0VNCCGE9GKoqAkh5CAnVkXrijrZ4RqqnqqSVp7dSknnox8AoNJXj0N8tmIe6tsBABjut5X04ICtrPdIJa1s0+gvFXKJLPOL7TJgPzua4ETZpnVv75i0ocomHdZt1FqiE2WjlmVIKuoQLOfnTENFTQghhPRiqKgJIeQgJZE92utQjWTe3UpB63HS3kraLpU9epCv3kloMtxfY5fSNr2vvFmWTQAAUSaVq1LUxfacECy3y4Du7a0O4dC9vaVqFuGobTpOSbtt1LrXN1OIEkIIIQc5VNSEEHKQ4OXRrTBNX8qHanilBvWKk9aV9EDfTgDAIX5pl/Z/7tikj/T9GwAQLmsEEFXUoTKpbsukQu4vlXSuh5J2UoYGXO8r9CxkkbaYTGQyy1m7vNbu5fXtTiGaTaioCSGEkF4MFTUhhBzgpJplzLZRB13XdFu0qnvZpFXu7nglrby7bZu0UtKD/bZd+gj/v3GE/2P7WaV2n72VtqJuL2+1J+4oaeXlLb27gxWy1OKnpW1avVNUSWtlJJwgI5luo9a8viPuXN9hYWbNXk1FTQghhPRiqKgJIeQAIxVbdGx7bLYxpZx1m7RnnLRPlrD7Ke9udVRloWHbiStljPQgX9QmDdhK2i4/RkE/W13vrbS9u1vL7eMrUSbjoMukTbrYVudxtmmfO6e3nkVNIfQTsiLtUdu0U+pK2lbOphZHTRs1IYQQcpBDRU0IIX2cdBV0Z57dXl7dcUraVMrZbZNWilqdhKXyd6usY9FYadvDe6T/X/b9/eodJa3ipVGe6y5LZE7v3IF2qWzTyiYtS1POPV5Ja97eqgztjclMpnl7S+9vU7NNK69vhX16FjOTEUIIIQcdVNSEENLH0JWi3u6loPUTr3Q7tGkG4xS0zyfjoXNse7CyRXvZpEst+9Qp/UzpaP5uO+uYipWOeng3YV+lHS8dp6T7yTJ/sF3mSiUdcHt5R5W02zYtRKssNUWt7NGxNmonflr1UedQ22rZ0DKTZSu/dyx9TlEvXrwYw4YNQzAYRFVVFV555RXPvk888QROPvlkDBgwAEVFRaiursbzzz/v6rNs2TIYhhH3aW1tzfarEEIIIUnpU4p6xYoVuOaaa7B48WJMmTIFDzzwAE455RS89957GDJkSFz/l19+GSeffDJuvvlmlJSU4I9//CNOP/10/P3vf8f48eOdfkVFRfjggw9c9waDway/DyGEpEJXbdBeClpX0rF26bj4aGmLVgo63iZtn1hV7vsKQFRB62dKK5u0yt8dLt8NANgr7dGtlXuiClp5d5fKuGlHSWte3kpJ+4rle7lt046CVuhnTUdispGFlaJ2e3srZW2EbJu7slWLsP2Mnsj13acW6jvuuAOXXHIJLr30UgDAokWL8Pzzz+O+++7DwoUL4/ovWrTIVb/55pvx1FNP4emnn3Yt1IZhoLKyMruTJ4QQQrpAn1mo29vbsXnzZlx//fWu9mnTpmHjxo0pjRGJRNDc3Iz+/fu72ltaWjB06FCEw2GMGzcON910k2sh12lra0NbW5tTb2pqSuNNCCHEm0T250wpaP3kq6gdOpptLMdyK2gvJd3PtJVmue8zAMAAqagH+r4EABwm27/mc58prfJ2Kw/vjnKpasvyokq6v/1MR0nnDbJLpaRl6aWkdYR+MlZ4n10qu3R4HxCSbZ42ahU/Hc1EBkTjqMPCQuRg9/puaGhAOBxGRUWFq72iogJ1dXUpjXH77bdjz549OPfcc522o446CsuWLcPq1auxfPlyBINBTJkyBR999JHnOAsXLkRxcbHzGTx4cNdeihBCCElCn1HUCsNwx64JIeLaErF8+XLMnz8fTz31FMrLy532SZMmYdKkSU59ypQp+PrXv467774bd911V8Kx5s2bhzlz5jj1pqYmLtaEkC7RkwraM8uYz95lzEGeo6CVclZKusCw82uXWrZtWdmklZJW8dG6ks4rtE/JailXMdK2og7LNN0ojzkJq5/KOCbjpJV3tzpnWtqkLb9U1B5KWiloVUYi0jk4IndClY06Vlk7cdPu0mh3K2n91CyV6zub9JmFuqysDJZlxann+vr6OJWts2LFClxyySV4/PHHcdJJJ3Xa1zRNTJw4sVNFHQgEEAjoB5ATQgghmafPLNQ5OTmoqqrCunXrcPbZZzvt69atw5lnnul53/Lly/HjH/8Yy5cvx3e+852kzxFCYMuWLRgzZkxG5k0IIUDy2GdF7JnQXqVS2Kl4ccfWEylowG2PjippO292qc9W0KWWbXsut9ze3UpBq3KI346Xbi1rAQA0K69uWXfs0I49WoqewgFRW3QwsXe3JWO6lZJW760TVdSaklZ26DgbtbeiVrZpq92d63ufyLFvVco6i5nJ+sxCDQBz5szBzJkzMWHCBFRXV2PJkiWoqanB7NmzAdhb0jt27MBDDz0EwF6kL7roItx5552YNGmSo8Zzc3NRXGw7ISxYsACTJk3CiBEj0NTUhLvuugtbtmzBvffeu39ekhDSp0lnQU503TB8cVvaXik/vY6gjFuYpYOYWpgTLdCAvc3d37K3pkstOzGJWqjLLXsLW9/iHmzZ9ZxiewFvlguyWphDZXLh6y/Tf6oFusRe6ByHsWB5TPiVvS9u+PvJ91ILtPo+9IQm7oVZbXU7W95h7cCNjmZ3e/s+oFU6nGnOZGa7/YuEs/UtS5XopCcSnvSphXrGjBnYuXMnbrzxRtTW1mL06NFYs2YNhg4dCgCora1FTU2N0/+BBx5AKBTCFVdcgSuuuMJpv/jii7Fs2TIAwO7du3HZZZehrq4OxcXFGD9+PF5++WUce+yxPfpuhBBCSCIMIYTY35Po6zQ1NTkKnRBycJAJ5ZyotKxgwsMyYkt9i1ul+XScxIzEylnVlYNYALbK7WfZ29Ol1u44BT3Ich+moZR0Xr6toJVybutvH0nZ3l9uK+tb20pBF8ntbLW9HZsOVAu7iippt9NYMiUdDtvvEOmw54h2u442+52w7wtZ2u+E5t3AV3J7XJUN9liBr+zvKNhQ4Cp3tg4AAGwP29v1n4QOxd5wG2ZufgCNjY0oKrK/40zQZ8KzCCGEkIORPrX1TQghPYWXYva6rodQ6f2ShVTFtuu2ZtUnLkGJVJx+2NeT2aALTDu0qNi0VXCp9YUsbcVZ5tuFQbJN2Z6VklYKWinnJlmqelQ5y2Ql/aWiLpLhV3qoVa475Ar+fo6CVjsEui06XkknDsOKhKXjmm6TVmVIq7eG7Y/6GYDZ7nOXnuFZ2de7VNSEEEJIL4aKmhBy0NKZau6urVlX2OnYneO8ty3b3unzUM6qDDoK2rarFlu2siyR9uZ+prRFSzt0mbkLQFQ1D7S+cGzSgUK7T6tS0CW2OnUUtLI59y+Udamoi6WSVoo5qB1J6RFyZVkljoLWdxm8lDSgKemIVNJO+JWmnFWpbNaxKrrV7e1ttefI0n28pTqMo10Lz8omVNSEEEJIL4aKmhBywNJVO3PstVQVczLlnHLss1ng2JxTVdCFpq0gowraVshKQfezGgFEPbgH+upl3bZHV8qDNNpK9qJdKufd/e2yo0R6QSvFXFLkrhfK0ktBKxu0R/pPVVpWQcyfh/7nlsQmLZW0CMkDkhwFrWzVmpJul4p7r1TmreHocZYy9Npsd8dNW+1KSfvljNwpRMPCzJq9moqaEEII6cVQURNC+hzpKmVFOp7ZXjZmL69tve6lmJ0jJqVa1ssc5Dk/R+OfcwFEFXOR9NoukopYV84V0iZdbtlpPh0lLfsbBdLeLNXzLmV/LtkHUSL1W5GtHFEic0QUSZt0gfTqltnD9AMzOrNB29+P25Nd9+wG4m3QXgraiZcO2e8dZ4P2KmOVtKo73t4yVahU0LqN2rFNa8dcZhMqakIIIaQXQ0VNCOlVpOOJrUg3hjmVYyN1Ba3HNCezOUftzDmuurIve9mf88ywE+dcZNq2Y11JO0dNSsWssohVmA2udl057ymyFWl7kW2jDZfIPNxKLRflx/wsFbXurR1UdamolZL2Fcr3Vwo63gYtO9pzM+L/zKJK2l0Py7hoTyWdTEGrcl+7Xe7tkKVS1lFFbbXaNndLU9bqMA5lm1bKOtQDh3JQURNCCCG9GCpqQkhWSGZHTtavMw9sr/Zkntj68ZBe9mafr8Db1ixtqpamlDuzOQNRBZ1n2spNqeYC01aFRaZ9PGSR1YJiU51gZStBpZRLLTvuWSnofn47W1i7VModsmyWilm1iyI7m5ajkgtyZV3ZnWV7sMQz3jmaQUwq5068t4Go7Vn/rnViPbmjtmiloLXc3apd5fDWbdIql7eupFtlhjKloPe6s5ChNQyr1f4OrLiMZHr8tN2PmckIIYQQAoCKmhCShEwq40T9OlPJqdiSY+u6/Tjar8DVrqtlp25E1bCumJWt2eehmHMNW7XmmbYKLDBtFVdkfuGuS3uz8tQukaWyK5eauxwlrRRzR4Edy6wUckjWv1S25gKpFHWFXFDorufLmGddLQdj6tLWrJSz10lWyZRzKgraXbYmsEW7bdJxmcZ05awr6n0yrrpFs0lrpbHXiCrqVuXt7VbW+yL2++m26Z6AipoQQgjpxVBRE3IQ0B1VrCtir77J7MjJ1HEilexlW/byvI6ry3/iLEcNu1Wyl2r2IxjN/mXaakwp4jxDKeadstwOIKqUC007F7ZSyiqfdqkqLXfdyLNVsVLJHQWtjoKul2WkQHpnO0pZlfnuep787r3sy5qd2SljPLa9vLX1eGf1Z5B8GUktq1gk0po8Pjouw5hXnLTMR66Us1LUHsra1xqMUdSJlXWb/LvRJm3U8bZqy8lSlmmoqAkhhJBeDBU1Ib2UVFVwKn27YyfWx0ikhIVpIjJlIkTFAJj1X8G3aYujVlO1JydSy8mUsSr1dm+PbNtGq+zIubKMquRGWdY6Clr1UQq4RLMtq1LZlVU9ki89sQukXTmvXdZtlfyVUst50vM4VhU7PwejbQCQJxW0Frscp5T1umXvDnjFOMdmCdP/HPS4Z4V+opXC+2Qr6YEulCe32x4dibQgHJKKWJ1+pduik2Uec+KkNSXt1DUlvTfHKdXP+jnUHREvb293mU24UBNCukXH6Sei7dbrIQ6tdNqMHV8g/xd3IecvL+/HmRFyYMCFmpBuko7yTaV/IptwqgpYr6ebsUtXvYbh61QR7ztlIlqWXBs3XzGwHC1//A0qr/pfFL2wDUBU7Zrynx2veqwq9vK4zpEe1rlSCccr5D2y3bYj52v2ZRWnrKviWPuyUtB5flvxKUXsVSql/EWeVG2OCtZLpZbz3O0BZTcuiFfMuk3ZUcp2PLTKp63HNOvqON5D29tTW/8746WcY722gXjlnMgWDcTYocMxZ0jr50brCjrZKVhOxrGwu11T1rFKGrDt0T5pm/Zp8dR7hP0dK29v/Rzq2DLCzGSEkN6EMA003nixXTEN90VZb/jlaRD6NUJIWlBRkwOSdFVuKvd5eT973Zuu6tXbE6laRSLlm2hMrwxcKduJ4fNUwHuPHYraQaXxX4TCNBAaVILiCSej/+tfOXbjgGHJ0laiSgUHVd1Ryc3IlbmulRJWfQsNt2e1UsIFmsd1odHiqptBt704HOxw1WPLJnmtSVfEQctdz5OxycE89/U4D2uZ61pXyb4893UrD4Zl26J1z2uvk6e87MrROmT/zmOcgc7inNOzPXvZokVYemQrtRxrj9aVdEg7V7pN1lu1eOjWcKd1Y68AAPj2yh2aGCWt6o6XtyxbI/af615h36O8vdu086h7Ip6aCzXJGtlYLBWphgyl297Z4tnV9JWpLqKdLaaeC6z6B9lxtnLX9cXVa5tZb486Z/kRMO3FSy2kaoHdPrAUHyA5Y4d8jonvv+ssrtHF1h3OlGjxVQuvCCReWFU9HAy52kOqX9AOa2oIeiy2caVabIuAHJlm02v72addVwuuapcOXPqiG11Uvbenk21Nxy+4qf63lmz7OuQssHoYVbKtbL3uuSCH9iZuT7RQt9vmhGiqT20h1kttoTZb7T9Xq9W91e3TQrDshVouwCG7z1655a3KfXFb4NK5TEQP68jWos2tb0JIl8j7cl9K/YobWrI8E0IObKio+yhdVatdHaezbd901Wqyfp05QKWbTEPv15nTVKLxYlWvl6p1xkyibr3ak6lgH3LilbBhb+UFNJXrlKa7HlXDe2QpHaWkug0YtnJR6jYarrQHeYa9IOuKOO/jvXi9fgxqywZAmPG/8xuRCA7ZWYsFLfNgHRGJV7+yHsmRRxnKulK3e4IW9jjbyF4KWF2XqTNz+tmls53sdrqKU726GjZzonUnpClxqkyvbej4vx/pqeKu/Letb0vr7VFVnHz7OlUF7SjmsFTI4XZ3PaSFWCVrb98HtHsoZa92rTTa7b+HPnVUpbOdrSczcTuOme0Wwu32Pc3C/nNtidg7Ie3alrdKfOKEZ/XA1jcVNSGkS1iRCH5z1+8Aw16UYzEiEcAAbvvDfFgi4jECISQVqKgziGEEYBjxHq7pOiGlcj1ddep1PdW0j7Ht3orA/cx0QoBS6WeaQZjyd0tDlroq9WpPV9UmavfB/o3ab9hqRKnVZHWlbv1SxQTMNnndVhRRtWu3645Teca+aJtUt6quFLDeru5Vtl1HtebYyiMcp2bV9VBcu8ix1buuakM5Jr6Nrfj9i9txw3G3orbgUCgGtn6OG9/9FaYe/Qwaj5F6ICidrmQokVKsjppNpHrNQPTn2HusHHdd9kumdpM5XUX/Dga7rIBT/W9TD3eKbY+/1nkaTv26lyrWQ6l0x69IpBVCjalsx+E2d13ZmJMpaaefVm+TOyft8hc4pZbbI/EKWvXxaLccRSx9NtotrV3uRMUo50TtrZGAY4tWSlo5ke3VbNPKJt0TSlrBhZoQ0i1O/XQ1ptf8BX8ffDy+yK1ARagex325CVYOw7IIyQRcqDNIcfGYhAkDuqo8O7O/putxbBkynaOHIjW1urqeSKnq17quau3fSJUC1UtdofqMUIwqdavU+Hv2aXX7t3hdcQbgDhFS9tgcp39UqeY6Y9rXVN3nkx7IUq1GHFUq1ausC1/EVddVrn6fS8nmmNGfgWjdJz1OZb3JKRP3g1/+HVSqNtYmC0RVrRWI1tXPel9Vt3JgAZis1K81DDjiuE6SbPgStidSufF/nzvfjdH/SUu2Y6STSthSsvb4cCZF52FPsd7WXorZKyQqmZJ21G5EqWOpgiOyVGo30h6voL0UtX5vh3zfkFLKCRRzovaQiNa1a0a7/cteVAlL27OmjGmnIOsAACAASURBVKNHUsr2kKXd53Pdpzy7mxzP7qCjmHUlrY63VLZp1a/N8fpWqURNR21nGtqoCSGEkF4MFXUGGV16JXxWXpxyTKZWlQevCfu3SV1Z+lQ9Rj2aRiSuLdV7Y8uAjGVVKjFHKlClKHXFGUC700dXlvoYSr3qY8Iv7aNSYTpKUtaFTynRcFzd65prrAiQswMwm4FIPxPtw4x4ReqT27JKaerKU6/7TEe1hmTbHkuO5dhL8911U1OiKShT131GzPjaWEYSdeqlQJNdT6RQu2urTVXNdu+fo66pXa9kHrGqtrM+iUvdHpyaOo5td+zESrUKqT6VulXtXgpZ76er4M6UdVgp3Yi7bE9Sj1XGndW1+w2pfq12C0ZIpe8Mxl2LrZsh+W+qUtJeddk/mrzErZpj1bGKk44eYymvSSWtK2s9hWg24UJNDiiC7wNFzwFWk2qJIFwMNJ0FtI7lBhIhpO/BhTqDrDrylyjym3HKMFqXqi+uPb1+8Bkupee0xdZVfmW9PWk9SbsJb4UoFaGQimmPaf+Guscqlv0SKMXO2pXyih1fb1P3GD4E17yLklseA+Qv7gqzCSh5KIzmP1yGjtOPtbt3IbZVV6NRUvM16Kr91F3v/D/ZTMXXJ8LLRusVu+tVj4/pdY+TyMabvqpNHC+cznUvZeyoUaVyVT2i6u3db/dSvvozHY9rDxWsIuP0dl3dxtZT6ZOgPU7thpQKthWqETG0dtPV3whZCe6N75PoGeooyjZNBSubsa6O23XVLPxxh214Ket2zTYdilHW4SxZkykxyIFBOIKiG9YAAtB9jaVlAfm/egwIM6aXENK3oKLOII13XYlIYRDpKqyoZ3bqSiyZR7nXHGLH6Ow+vV+ienLbY/qetalcT8hLLwG1v/YeUwDWjl0ofe9w4IQT0h4+kZpMVWF69U/Vfho7Zqoexl7KM/mzkqvZrqrauOvKDqtUYlwZiqpOoalPR91m6LpuCxaheBWr24n1dqU4I5ry1FVtRO+X4D6vezyfodpTu08p06jKlYo1Yjoq1ogo1Sp3r+L6GknHsq9r/Tu5T92jFLJSt/ukqnXUq6aUdRXs2I+l6vVS2KpfCFacUk53zGxCRU0ODGprM9uPEEJ6CVTUGaSs7DIUFRU59XQVV7L7Eqmc5Pd23i+5IktUT1fVdT63dJVmont9ef9EMZKzK/g3dNR/kfwZ+lxFOF5BOdc81Ftcv3DX+3v1TXcuXZlDsr5KxelKMa5MtZ/WPyNjdqFfimMpFQhdMcaVafRzfra6P1aa/ZL1iajMXFqGLqU01dcTq1Y76x/bL5U+nY2l6M6z9TFSnUNEmM53k2n6nKJevHgxhg0bhmAwiKqqKrzyyiud9t+wYQOqqqoQDAZx+OGH4/7774/rs3LlSowcORKBQAAjR47EqlWrsjV9kiVC1UcgPKgfhEcyLGEA4UEl6Jh0eM9OjBBCukmfUtQrVqzANddcg8WLF2PKlCl44IEHcMopp+C9997DkCFD4vp//PHHOPXUUzFr1iw88sgj+Nvf/ob/+I//wIABA3DOOecAADZt2oQZM2bgpptuwtlnn41Vq1bh3HPPxauvvorjjjsurfl98dLR2Jsf87uP+g085TqSXBepXevu2MnuT/veJHPpyjgJxmw6KYKSh2yn79j1Wsj/a/pmE8L/8/OuzTHmuqM+nGvu3w6MtOupj5fJsdIer5vv1Z259eh7Ai5l5GWD1ONnvVSdQj+r2EvBZWKsTMyxs/l1dcxUx90f7+91lnSy+WZLRcdiCCFE8m7eqNsTHUaRaY477jh8/etfx3333ee0HX300TjrrLOwcOHCuP5z587F6tWr8f777ztts2fPxtatW7Fp0yYAwIwZM9DU1IRnn33W6fPtb38b/fr1w/Lly1OaV1NTE4qLi/HBk+Uo5EK93xZqAAi+E0HRU2FYjdFL4WKg6TQTraONTu7nQp10vB58T73OhZoLdTpjet2X7YV6X7gV1239LzQ2NrrMoN2ly4p66dKl+N3vfoePPvoIADBixAhcc801uPTSSzM2uVja29uxefNmXH/99a72adOmYePGjQnv2bRpE6ZNm+Zqmz59OpYuXYqOjg74/X5s2rQJ1157bVyfRYsWec6lra0NbW1tTr2pyc6u8fSvZyHXCnrdRnoI4/AIBrZ8iryOZuz1F6K2YCjE+ybwfvJ7CSGkt9GlhfqGG27A7373O1x11VWorq4GAGfB++STT/Cb3/wmo5MEgIaGBoTDYVRUVLjaKyoqUFdXl/Ceurq6hP1DoRAaGhowcOBAzz5eYwLAwoULsWDBgi6+Cck2wjDxeeGw/T0NQgjJCF1aqO+77z78/ve/x/nnn++0nXHGGRg7diyuuuqqrCzUCn2LXQjR6bZ7ov56e7pjzps3D3PmzHHqTU1NGDx4MBY3t8OykpsAksUJmyn4+BlJ+iS7nolxUplnd5+R7Hqye73mmI1ndnUu3Rk33Xu6Mod0n5HuszP5fqk+24hLi2NjGfF2GdPDVmMm6AsAlld/j3b9mYn6pfqsVJ/h1T/Rc1J9n5TnmEK/7nxXiZ6RyveU7J5U+kWy5J/dpYU6HA5jwoQJce1VVVUIhToPPeoqZWVlsCwrTunW19fHKWJFZWVlwv4+nw+lpaWd9vEaEwACgQACgUBXXoMQQghJiy4t1D/4wQ9w33334Y477nC1L1myBBdeeGFGJqaTk5ODqqoqrFu3DmeffbbTvm7dOpx55pkJ76mursbTTz/talu7di0mTJgAv9/v9Fm3bp3LTr127VpMnjw57Tl+9tn/wDCiv1F1Ne+yOls6Hbr6rHTvS6V/qmOm+p6ZeGZ3ryeaa1fH7Mp9Xt9Vus9I9SSrVN6328+IU7ne9VQVdDpjJqzHOAZ5jeXcI1IbM+k4Ce6Lnume2vyj7Vanc0h+f2fPtnchlKr1UtRe6jWd+7zu8VKzSa9rz9DnYBkRmCK1vs7cVLvhflY2SPlf6ditXsMw8OCDD2Lt2rWYNGkSAOC1117D9u3bcdFFF2V+ljFzmDlzJiZMmIDq6mosWbIENTU1mD17NgB7S3rHjh146KGHANge3vfccw/mzJmDWbNmYdOmTVi6dKnLm/vqq6/G1KlTceutt+LMM8/EU089hRdeeAGvvvpq1t6DEEIISZWUF+q3337bVa+qqgIAbNu2DQAwYMAADBgwAO+++24Gp+dmxowZ2LlzJ2688UbU1tZi9OjRWLNmDYYOHQoAqK2tRU1NjdN/2LBhWLNmDa699lrce++9GDRoEO666y4nhhoAJk+ejMceewy/+tWvcMMNN2D48OFYsWJF2jHUANDevrNHwtQySTZPW1J0ZYcgGd2dd1fuz8buA5Da95OtHYNM7iR0t70rKj5ZPdlORDq57PWx0j39LB1lnUwRJ1PGyZ7lNY4Z82yv0hQe10XiZ0bnrtS+33POumr3GbYpVVe3Xko7WT+/HC/uPhFxfvbLTHxez1DXHTcHFblpZM9G3e04ahKNoyb7n574xaOn59CdX3T2p2mjK78EeN2XqV8OvBbbRPV0fwlIdcH2GifRsz0X/QT3JLpP/yUhlYXeq6/XLwPx7Z0/Uy8tdYBQgl8SYq8lbu98YdcXZs+6EYEf0Z9jr6l2/RmJ+reGW3H91gUZj6POzvJPCCGEkIyw/+UHIRnE+yCUvjuHSAIflZ7cOejus9LdEdifzoOZ2H73au/K1rmuoL3uTVV5J1Pgpul9hK6XOjc11Zuu0o693/QYU1fW6rrTLtS2vGoPyP52AipHHWtlh1LLIoKQbPPJNpVxLCIdhP36AUdy61tthUfAQzkIIYSQgxIqakL6ID25c5Dus3TVFg53f67ZDnVU44fD3teS3ZusPVWbfCp28nTVeTK7eGyZTI0nUuHuetBdT6LALZeidt/j1deMK3XV7lbcIam024WttH1Gjiztv5tBox1hOYZfU9I6jnMZOu+XSaioCSGEkF4MFTUhJKNkQ+17jZlM7aar5tNR7snUevzOQmrP6kxRez077VCxTrzGkynmVJW1rrCTKW8LPk8bdDJl7aW0Lae0FXRE1sNClbLdMB27dcRoR2d4JXbJJlTUhBBCSC+GipoQ0mfJtHpX46WirL3UevTe1ObWmTL3mkckkp4neqox3515nHdVUTuK2Qp63BdV3NGfZZnE9pxMUfukkg4j5Kqr60Kq4rDwISKveaGUtEo1qhS1snOHYTp27kxDRU0IIYT0YqioCSFEoye96nVl7la77mtKtaZrs09HgevKWNnWu6qko+MksVFbwbhrugp32pPYolU9oilp4Ryo4VbUPuSgXShF7VbWsWlGgWg8dVh6ezux01nMHk1FTQghhPRiqKgJISSDdFWNK9XY2f2dq28gVQXemaJWmfBSjcHuquLWvcHDYV+cklYqXG+PaLZsx5s7iS06IkvRiT1aKWvH3h2RKt1UNmm73clIFqOsmZmMEEIIOQihoiaEkF5AOko8FfUNRBW4l/JOpLj1sfV7heg8NltvV/bxeEXdKsuoHdowWuU9iW3Tqj2Zwo61PcfWvUrXvKV+dZS1nEOHUEpaqneppMO0URNCCCEHN1TUhBDSx0impONVcOL+iRW3t9pONHZUgXeutHVFrfpHItHneal5ywpp7W7lbVkF7n5KWTtZxDqPkXbNW8tNrvKEdzhZzdze3o6NGiYijKMmhBBCDj6oqAkh5AAjE4o70TnoAGBq8s7Llq0r52Te45FI1OtbH1NX0so2rdqjpVtZw5JzNLxt0s584075Uoo6DwDQYbiVdUcPLp9U1IQQQkgvhoqaEEIOMlLJbObVJ1WlrY8Tn6nM3W6aPqev8hTXFbZe123XXnNXNms4DtruyRownSxmKhbb1OoR3TYty2zl946FipoQQgjpxVBRE0IIAZBYRafqQa4r7VQVtiIcDnnGZOse4spGrRMKqWe75+iTw6lWw4xX1LqNWs8X3iFyZana45U1T88ihBBCDkKoqAkhhHiS6klder/uKOzova2ua16ng0Vt2DLXt1LQ2tSddmc8pYbbY7y93XnDo6Wd1Fwp6TBt1IQQQggBqKgJIYR0gWQZy7qqsGPv1WOwndzekVZtLPezlZL2UtZqvJAlx4cZ4+XdLktli86RpbJVu+OoY73AIyI7Cb+5UBNCCOk2mVi4vRzNFOGwOsij84NCos/wJayHQi2u54RN03Ee07e8I3Gl3y7VAs2tb0IIIeTghoqaEEJIxklVYUdTiIY8DwLR0Z3NVCIUpbgV4bAeAubeSneUtd/nOJiZWlhWVFnbDw3J7W3HqQxRZc1DOQghhJCDECpqQgghWcfL/hyrntNxOHP3dytrlRhFHeKhiKYv1Q8EaUXEcjuNeZf2Q1V4Vk9ARU0IIYT0YqioCSGE9Bid2a4T2a2B9JW1F/FKWins1qid27CVdXLvby2FqDCdnzMNFTUhhBDSi6GiJoQQst9IZLvurrI2DPfxl9HjM1tl6bZVm2Zr9JpKquJhmxbKRg1LtjOOmhBCCDmooaImhBCy3xEilFKsNZBcWesKWhH1+ta9xFudtrDVuW1atYdEwK73gPd3n1HUu3btwsyZM1FcXIzi4mLMnDkTu3fv9uzf0dGBuXPnYsyYMcjPz8egQYNw0UUX4fPPP3f1O+GEE2AYhutz3nnnZft1CCGEkJToMwv1BRdcgC1btuC5557Dc889hy1btmDmzJme/ffu3Yu33noLN9xwA9566y088cQT+PDDD3HGGWfE9Z01axZqa2udzwMPPJDNVyGEEJIAIUIJs5Lp7ZFICJFIyGnXP+GwrZCTtUcirfITimsTiEAgEvO/ECIIOe1hYdqe3nB/skGf2Pp+//338dxzz+G1117DcccdBwD4/e9/j+rqanzwwQc48sgj4+4pLi7GunXrXG133303jj32WNTU1GDIkCFOe15eHiorK7P7EoQQQkgX6BOKetOmTSguLnYWaQCYNGkSiouLsXHjxpTHaWxshGEYKCkpcbX/7//+L8rKyjBq1Chcd911aG5u7nSctrY2NDU1uT6EEEIyQ6aUtdd1pZqVwo4q6xi1Df1j/084H/t/YZhOvu9s0ScUdV1dHcrLy+Pay8vLUVdXl9IYra2tuP7663HBBRegqKjIab/wwgsxbNgwVFZW4h//+AfmzZuHrVu3xqnxWBYuXIgFCxak/yKEEEJImuxXRT1//vw4Ry798+abbwIADCP+QG4hRMJ2nY6ODpx33nmIRCJYvHix69qsWbNw0kknYfTo0TjvvPPw5z//GS+88ALeeustz/HmzZuHxsbG/7+9ew+OqjzjOP7L5rIhlKzANiQIEmiBoPHCZYCEOqJioBUZtYIUm9EOprUOIip1YOwIOK1UGHW0am0ZBKuxMNKmtSOmRgQKSrgJVYGJTAQhLQFEsgHFkGTf/hF2zW6y2YvZ7Nns98Oc2ezZ9yzveY0+Pue9eY+jR4+GeecAgGBCzayDXR8s026dXXsPNam5TVbdNsP2iGZmHdOMes6cOUFHWOfm5urDDz/U8ePH23x28uRJ9evXr8PrGxsbNWPGDB06dEjvvvuuTzbdnlGjRik1NVUHDx7UqFGj2i1jt9tlt9s7/B4AADpDTAO10+mU0+kMWq6goEAul0s7duzQ2LFjJUnbt2+Xy+VSYWFhwOs8QfrgwYPauHGj+vbtG/Tv2rdvnxobG5WTkxP6jQAAoibQzlseweZXf7ObVqAVy5pa/fy172dJviuS+a9QFq31vVuLi8FkI0aM0JQpU1RSUqLKykpVVlaqpKREU6dO9RnxnZeXp7KyMklSU1OTbrvtNu3atUulpaVqbm5WbW2tamtrdf78eUlSdXW1HnvsMe3atUuHDx/W+vXrNX36dI0cOVITJkyIyb0CANBaXAwmk1pGZs+dO1dFRUWSpGnTpum5557zKVNVVSWXyyVJqqmp0RtvvCFJuuqqq3zKbdy4URMnTlRaWpo2bNigZ555RmfPntXAgQN14403atGiRUpOTu6CuwIAhMo/sw515TL/DNrz2nqFsjaZtHft74yWshdWJDP+GXWrXbSilV3HTaDu06ePXn311Q7LGGO8P+fm5vq8b8/AgQO1efPmTqkfAADREDeBGgAAKXhmHah8oL7qlvnTF/ajbvbNrNtm0L7nWesbAIAER0YNAOhWwu2r9sytbn3Ou5tWSvuZ9Te7a6VeeN9N51EDABCpznoE3rIAit8jb/8pXJ6ybQI2j74BAEhoZNQAgLgWKLN2X1jhM5RH4G2mZQVY+MR/MJlHNKdnkVEDAGBhZNQAgITi31dtszW1OffN64XM2ubbN80SogAAQBIZNQCgmwi1r9p/VHh707PaZNjBlhCVzftzZyOjBgDAwsioAQAJpaNR3wFf/ba5dLOEKAAAkMioAQDdTKAVyjz9zcnJ/n3YTbLZOs6o/Vck++a1410aOwMZNQAAFkZGDQDo1kJZEzxgJt1mhbL2VyZrlk1uJUWl/mTUAABYGBk1AKBbCnU3Lc+r1N7KZH6ZdbL/PGrfzDoayKgBALAwMmoAQELwX6ms9ejvoPOog4z+ZvcsAAASFBk1ACAhte7Dbr2TVuvP/Nf89u+b9h/9HQ1k1AAAWBgZNQCgWwt19Hd75wKt+d3eLlrsngUAQAIiowYAJJT2Rn+HOurbP5PuCmTUAABYGBk1ACChtTeP2n9lsmB91M3GFrW9qQnUAICEEGxQWXtlgy14whKiAAAkODJqAEDC83/k7b/wif8jcHcS07MAAIDIqAEACar1NK3WG3R0VNb7msQSogAAQGTUAIAEE8ro71AXPvFolk3N9FEDAJB4yKgBAAkv5CVEAy4lmhy1upFRAwBgYXETqE+fPq3i4mI5HA45HA4VFxerrq6uw2vuuusuJSUl+Rzjx4/3KdPQ0KD77rtPTqdTPXv21LRp01RTUxPNWwEAxAm3u0lud5N3mVHve7l9DrexyR2lJUTjJlDPmjVLe/fuVXl5ucrLy7V3714VFxcHvW7KlCk6duyY91i/fr3P5/PmzVNZWZnWrFmjrVu36uzZs5o6daqam5ujdSsAAIQsLvqoDxw4oPLyclVWVmrcuHGSpBUrVqigoEBVVVUaPnx4wGvtdruys7Pb/czlcmnlypV65ZVXNGnSJEnSq6++qoEDB+qdd97R5MmT272uoaFBDQ0N3vf19fWR3hoAIMZaMuWWn5OSfFcia69sa6z1fcG2bdvkcDi8QVqSxo8fL4fDoffff7/Dazdt2qSsrCwNGzZMJSUlOnHihPez3bt3q7GxUUVFRd5z/fv3V35+foffu3TpUu8jeIfDoYEDB36LuwMAILC4CNS1tbXKyspqcz4rK0u1tbUBr/vhD3+o0tJSvfvuu3ryySe1c+dOXXfddd5suLa2Vmlpaerdu7fPdf369evwexcuXCiXy+U9jh49GuGdAQBipfX2lsHKtOmrvvCnK8T00ffixYu1ZMmSDsvs3LlTkpSUlNTmM2NMu+c9br/9du/P+fn5GjNmjAYNGqQ333xTt956a8Drgn2v3W6X3W7vsN4AAHSGmAbqOXPmaObMmR2Wyc3N1Ycffqjjx4+3+ezkyZPq169fyH9fTk6OBg0apIMHD0qSsrOzdf78eZ0+fdonqz5x4oQKCwtD/l4AQPcS7jzqaO6eFdNA7XQ65XQ6g5YrKCiQy+XSjh07NHbsWEnS9u3b5XK5wgqop06d0tGjR5WTkyNJGj16tFJTU1VRUaEZM2ZIko4dO6aPP/5Yy5Yti+COAADoXHHRRz1ixAhNmTJFJSUlqqysVGVlpUpKSjR16lSfEd95eXkqKyuTJJ09e1bz58/Xtm3bdPjwYW3atEk33XSTnE6nbrnlFkmSw+HQ7Nmz9dBDD2nDhg3as2ePfvrTn+ryyy/3jgIHACSOQP3W/uf951FHU1xMz5Kk0tJSzZ071ztCe9q0aXruued8ylRVVcnlckmSkpOT9dFHH+nPf/6z6urqlJOTo2uvvVZr165Vr169vNc8/fTTSklJ0YwZM3Tu3Dldf/31Wr16tZKTo7ccHAAAoUoyxphYVyLe1dfXy+FwxLoaAIAItN5FKzk5XZJks7W8pqZeJEmy21vW48jIyJUk9crIkyT10SWSpEtsfdXY/JXWHZwul8ulzMzMTqtfXDz6BgAgUcXNo28AAKLBmKaAe1P7j/b2rFgW7X7p1sioAQCwMDJqAAAu8GTMnjW/Pdpk1u3Oow68UNa3QUYNAICFkVEDABCA/y5asdg9i0ANAEAQgQK2SWoJ1M2yqTlKD6l59A0AgIWRUQMA4CfophyeR+DRGT/mg4waAAALI6MGAOCCbwaLhbYAind6lrHJbeijBgAg4ZBRAwASnidDDraUqHcJUdN1S4mSUQMAYGFk1AAABOC/wEmbz32WEKWPGgCAhENGDQCAH09ftO1COhtou8uuQEYNAICFkVEDABCAfx91oO0um41NzcyjBgAg8ZBRAwAQRMDMmnnUAAAkNjJqAABCFGhetbnwJxrIqAEAsDAyagAALgiUMfvPm6aPGgAASCKjBgAgoGDzqL9Z69vtnVPd2cioAQCwMDJqAACCiMUa3x5k1AAAWBgZNQAAYfJk1p4+aiN31EaAE6gBAAjAE5CTk1veB9qUI5p49A0AgIWRUQMAEESghVC6Ahk1AAAWRkYNAECIAi140vLKgicAACScuAnUp0+fVnFxsRwOhxwOh4qLi1VXV9fhNUlJSe0ey5cv95aZOHFim89nzpwZ7dsBAMQxY5pajihOy/KIm0ffs2bNUk1NjcrLyyVJP//5z1VcXKx//vOfAa85duyYz/u33npLs2fP1o9//GOf8yUlJXrssce873v06NGJNQcAIHJxEagPHDig8vJyVVZWaty4cZKkFStWqKCgQFVVVRo+fHi712VnZ/u8/8c//qFrr71WQ4YM8TmfkZHRpiwAIHF5+qCTklJ83gca/d2SWZuo1CUuHn1v27ZNDofDG6Qlafz48XI4HHr//fdD+o7jx4/rzTff1OzZs9t8VlpaKqfTqcsuu0zz58/XmTNnOvyuhoYG1dfX+xwAAERDXGTUtbW1ysrKanM+KytLtbW1IX3Hyy+/rF69eunWW2/1OX/HHXdo8ODBys7O1scff6yFCxfqP//5jyoqKgJ+19KlS7VkyZLwbgIA0G34j/qOpphm1IsXLw444Mtz7Nq1S1LLwDB/xph2z7fnpZde0h133KH09HSf8yUlJZo0aZLy8/M1c+ZMrVu3Tu+8844++OCDgN+1cOFCuVwu73H06NEw7hoAgNDFNKOeM2dO0BHWubm5+vDDD3X8+PE2n508eVL9+vUL+vds2bJFVVVVWrt2bdCyo0aNUmpqqg4ePKhRo0a1W8Zut8tutwf9LgBAfAu2Ilm335TD6XTK6XQGLVdQUCCXy6UdO3Zo7NixkqTt27fL5XKpsLAw6PUrV67U6NGjdeWVVwYtu2/fPjU2NionJyf4DQAAEGVxMZhsxIgRmjJlikpKSlRZWanKykqVlJRo6tSpPiO+8/LyVFZW5nNtfX29Xn/9dd19991tvre6ulqPPfaYdu3apcOHD2v9+vWaPn26Ro4cqQkTJkT9vgAA8cE7b/rC4XY3eXfWira4CNRSy8jsyy+/XEVFRSoqKtIVV1yhV155xadMVVWVXC6Xz7k1a9bIGKOf/OQnbb4zLS1NGzZs0OTJkzV8+HDNnTtXRUVFeuedd5Ts2dMMAIAYSjLGRGfiVwKpr6+Xw+GIdTUAAJ3MM486ObllIHJaWkt3bUbG9yVJffr8QJJ0iUapqfkrbaqeKZfLpczMzE6rQ9xk1AAAJKK4mEcNAIAVePql26xUFtpM4YiQUQMAYGFk1AAAhMl/fnU051GTUQMAYGFk1AAARIg+agAAEhwZNQAAQQQc7X1Bt13rGwCAeBZs047OwKNvAAAsjIwapbZi/wAADGlJREFUAIAAPBmzZylR//PeV6ZnAQCQmMioAQAIUVf0SfsjowYAwMLIqAEACJNnupZ32hZ91AAAJCYyagAAgohF37QHGTUAABZGRg0AQIjaLB164b37wp9oIKMGAMDCyKgBAAhTV/ZZk1EDAGBhZNQAAESItb4BAEhwZNQAAITJf/esaCKjBgDAwsioAQAIUaAMmj5qAAASFBk1AABhoo8aAABIIlADAPCttfRRm6h8N4EaAAALo48aAIAIud30UQMAkNDIqAEACCLQPtTe91GcR02gBgAgRP6PupmeBQBAgoubQP3b3/5WhYWFysjI0EUXXRTSNcYYLV68WP3791ePHj00ceJE7du3z6dMQ0OD7rvvPjmdTvXs2VPTpk1TTU1NNG4BANBNuS/8iYa4CdTnz5/X9OnT9ctf/jLka5YtW6annnpKzz33nHbu3Kns7GzdcMMNOnPmjLfMvHnzVFZWpjVr1mjr1q06e/aspk6dqubm5mjcBgAA4TFxZtWqVcbhcAQt53a7TXZ2tvnd737nPff1118bh8NhXnzxRWOMMXV1dSY1NdWsWbPGW+a///2vsdlspry8POQ6uVwuI4mDg4ODo5sfNlu6sdnSTXr6AJOePsBkZ99ssrNvNuOHvWTGfO95I8m4XK4wolpwcZNRh+vQoUOqra1VUVGR95zdbtc111yj999/X5K0e/duNTY2+pTp37+/8vPzvWXa09DQoPr6eu/hcrmidyMAAMswxlw43DLGLbe7UW53o5qaz6nZfc5bpjN121HftbW1kqR+/fr5nO/Xr58+++wzb5m0tDT17t27TRnP9e1ZunSplixZ0sk1BgBYnTENkqSGhv9Jkk6c8Ly+6S1z6tQpORyOTvs7YxqoFy9eHDTg7dy5U2PGjIn470hKSvJ5b4xpc85fsDILFy7Ugw8+6H1fV1enQYMG6ciRI536D6c7q6+v18CBA3X06FFlZmbGujpxg3YLH20WGdotfC6XS5dccon69OnTqd8b00A9Z84czZw5s8Myubm5EX13dna2pJasOScnx3v+xIkT3iw7Oztb58+f1+nTp32y6hMnTqiwsDDgd9vtdtnt9jbnHQ4Hv9BhyszMpM0iQLuFjzaLDO0WPputc3uVYxqonU6nnE5nVL578ODBys7OVkVFhUaOHCmpZeT45s2b9cQTT0iSRo8erdTUVFVUVGjGjBmSpGPHjunjjz/WsmXLolIvAADCETd91EeOHNEXX3yhI0eOqLm5WXv37pUkff/739d3vvMdSVJeXp6WLl2qW265RUlJSZo3b54ef/xxDR06VEOHDtXjjz+ujIwMzZo1S1JLBjx79mw99NBD6tu3r/r06aP58+fr8ssv16RJk2J2rwAAeMRNoH700Uf18ssve997suSNGzdq4sSJkqSqqiqfEdgPP/ywzp07p3vvvVenT5/WuHHj9Pbbb6tXr17eMk8//bRSUlI0Y8YMnTt3Ttdff71Wr16t5OTkkOtmt9u1aNGidh+Ho320WWRot/DRZpGh3cIXrTZLMp09jhwAAHSabjuPGgCA7oBADQCAhRGoAQCwMAI1AAAWRqAO0QsvvKDBgwcrPT1do0eP1pYtWzosv3nzZo0ePVrp6ekaMmSIXnzxxS6qqXWE02Z/+9vfdMMNN+i73/2uMjMzVVBQoH/9619dWFvrCPd3zeO9995TSkqKrrrqqijX0HrCbbOGhgY98sgjGjRokOx2u773ve/ppZde6qLaWke47VZaWqorr7xSGRkZysnJ0c9+9jOdOnWqi2obe//+97910003qX///kpKStLf//73oNd0Sizo1C0+uqk1a9aY1NRUs2LFCrN//35z//33m549e5rPPvus3fKffvqpycjIMPfff7/Zv3+/WbFihUlNTTXr1q3r4prHTrhtdv/995snnnjC7Nixw3zyySdm4cKFJjU11XzwwQddXPPYCrfdPOrq6syQIUNMUVGRufLKK7uottYQSZtNmzbNjBs3zlRUVJhDhw6Z7du3m/fee68Lax174bbbli1bjM1mM88884z59NNPzZYtW8xll11mbr755i6ueeysX7/ePPLII+avf/2rkWTKyso6LN9ZsYBAHYKxY8eae+65x+dcXl6eWbBgQbvlH374YZOXl+dz7he/+IUZP3581OpoNeG2WXsuvfRSs2TJks6umqVF2m633367+fWvf20WLVqUcIE63DZ76623jMPhMKdOneqK6llWuO22fPlyM2TIEJ9zzz77rBkwYEDU6mhloQTqzooFPPoO4vz589q9e7fPVpiSVFRUFHArzG3btrUpP3nyZO3atUuNjY1Rq6tVRNJm/txut86cOdPpi9tbWaTttmrVKlVXV2vRokXRrqLlRNJmb7zxhsaMGaNly5bp4osv1rBhwzR//nydO3euK6psCZG0W2FhoWpqarR+/XoZY3T8+HGtW7dON954Y1dUOS51ViyIm5XJYuXzzz9Xc3Nzu9tlBtoKs7a2tt3yTU1N+vzzz302CemOImkzf08++aS+/PJL7xrsiSCSdjt48KAWLFigLVu2KCUl8f51jqTNPv30U23dulXp6ekqKyvT559/rnvvvVdffPFFwvRTR9JuhYWFKi0t1e23366vv/5aTU1NmjZtmn7/+993RZXjUmfFAjLqEIW7XWZ75ds7351FssWoJP3lL3/R4sWLtXbtWmVlZUWrepYVars1Nzdr1qxZWrJkiYYNG9ZV1bOkcH7X3G63kpKSVFpaqrFjx+pHP/qRnnrqKa1evTqhsmopvHbbv3+/5s6dq0cffVS7d+9WeXm5Dh06pHvuuacrqhq3OiMWJN7/gofJ6XQqOTm5zf9ltt4u0192dna75VNSUtS3b9+o1dUqImkzj7Vr12r27Nl6/fXXE25jlHDb7cyZM9q1a5f27NmjOXPmSGoJQsYYpaSk6O2339Z1113XJXWPlUh+13JycnTxxRf77B0/YsQIGWNUU1OjoUOHRrXOVhBJuy1dulQTJkzQr371K0nSFVdcoZ49e+rqq6/Wb37zm27/pDASnRULyKiDSEtL0+jRo1VRUeFzvqKiIuCe1QUFBW3Kv/322xozZoxSU1OjVleriKTNpJZM+q677tJrr72WkP1e4bZbZmamPvroI+3du9d73HPPPRo+fLj27t2rcePGdVXVYyaS37UJEybof//7n86ePes998knn8hms2nAgAFRra9VRNJuX331VZt9lj2bFxm2jGhXp8WCsIaeJSjPNIaVK1ea/fv3m3nz5pmePXuaw4cPG2OMWbBggSkuLvaW9wzJf+CBB8z+/fvNypUrE3Z6Vqht9tprr5mUlBTz/PPPm2PHjnmPurq6WN1CTITbbv4ScdR3uG125swZM2DAAHPbbbeZffv2mc2bN5uhQ4eau+++O1a3EBPhttuqVatMSkqKeeGFF0x1dbXZunWrGTNmjBk7dmysbqHLnTlzxuzZs8fs2bPHSDJPPfWU2bNnj3dKW7RiAYE6RM8//7wZNGiQSUtLM6NGjTKbN2/2fnbnnXeaa665xqf8pk2bzMiRI01aWprJzc01f/jDH7q4xrEXTptdc801RlKb48477+z6isdYuL9rrSVioDYm/DY7cOCAmTRpkunRo4cZMGCAefDBB81XX33VxbWOvXDb7dlnnzWXXnqp6dGjh8nJyTF33HGHqamp6eJax87GjRs7/O9UtGIB21wCAGBh9FEDAGBhBGoAACyMQA0AgIURqAEAsDACNQAAFkagBgDAwgjUAABYGIEaAAALI1ADAGBhBGoAACyMQA0AgIURqAF8K+Xl5frBD36giy66SH379tXUqVNVXV0d62oB3QaBGsC38uWXX+rBBx/Uzp07tWHDBtlsNt1yyy1yu92xrhrQLbB7FoBOdfLkSWVlZemjjz5Sfn5+rKsDxD0yagDfSnV1tWbNmqUhQ4YoMzNTgwcPliQdOXIkxjUDuoeUWFcAQHy76aabNHDgQK1YsUL9+/eX2+1Wfn6+zp8/H+uqAd0CgRpAxE6dOqUDBw7oj3/8o66++mpJ0tatW2NcK6B7IVADiFjv3r3Vt29f/elPf1JOTo6OHDmiBQsWxLpaQLdCHzWAiNlsNq1Zs0a7d+9Wfn6+HnjgAS1fvjzW1QK6FUZ9AwBgYWTUAABYGIEaAAALI1ADAGBhBGoAACyMQA0AgIURqAEAsDACNQAAFkagBgDAwgjUAABYGIEaAAALI1ADAGBh/wctDzONXr5UvQAAAABJRU5ErkJggg==", "text/plain": [ "PyPlot.Figure(PyObject
)" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " 8.352434 seconds (96.16 k allocations: 3.204 MiB)\n" ] } ], "source": [ "@time plot_lik(0.5, 0.1, 2^12);" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### 数行でランダムウォークをプロットできる\n", "\n", "* [須山敦志『ベイズ推論による機械学習』図2.1(p.48)の再現](https://nbviewer.jupyter.org/gist/genkuroki/bc6642a646620b59833ed14de3a823da)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "-" } }, "source": [ "### Bernoulli試行のShannon情報量の推定" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "image/svg+xml": [ "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "0\n", "\n", "\n", "250\n", "\n", "\n", "500\n", "\n", "\n", "750\n", "\n", "\n", "1000\n", "\n", "\n", "0.4\n", "\n", "\n", "0.6\n", "\n", "\n", "0.8\n", "\n", "\n", "1.0\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "### Shannon情報量の収束の様子\n", "seed!(2019)\n", "ber = Bernoulli(1/3)\n", "S = entropy(ber)\n", "nmax, ntrials = 2^10, 5\n", "n = 1:nmax\n", "a = cumsum(rand(ber, nmax, ntrials), dims=1)./n\n", "y = @. -(a*log(ber.p) + (1-a)*log(1-ber.p))\n", "plot(size=(500, 300), y)\n", "hline!([S], color=:black, ls=:dash)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "#### 3次元のランダムウォークのプロット" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "scrolled": false, "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAFICAYAAADNrP1lAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXl4nGW5/z+zZzLZ931rm7RpS9t0oTsgUFkEQfSguB/1iCju/A6KgqIi4BEBDyh6FERBURbZRKjYFmhpaelK0yXNzGSbbJPMktnX3x/hnc4kk2WSmSSlz+e6erWdzMz7ZJb3+b73/b3vWxYOh8MIBAKBQCA4a5HP9gIEAoFAIBDMLkIMCAQCgUBwliPEgEAgEAgEZzlCDAgEAoFAcJYjxIBAIBAIBGc5QgwIBAKBQHCWI8SAQCAQCARnOUIMCAQCgUBwliPEgEAgEAgEZzlCDAgEAoFAcJYjxIBAIBAIBGc5QgwIBAKBQHCWI8SAQCAQCARnOUIMCAQCgUBwliPEgEAgEAgEZzlCDAgEAoFAcJYjxIBAIBAIBGc5QgwIBAKBQHCWI8SAQCAQCARnOUIMCAQCgUBwliPEgEAgEAgEZzlCDAgEAoFAcJYjxIBAIBAIBGc5QgwIBAKBQHCWI8SAQCAQCARnOUIMCAQCgUBwliPEgEAgEAgEZzlCDAgEAoFAcJajnO0FCATvNcLhMOFwmEAggEwmQyaToVAokMlks700gUAgiIsQAwJBkgiHw4RCIYLBIMFgEI/HQzgcjggCuVyOQqFAoVAgl8sjf6SfCwQCwWwhxIBAME0kERAIBAiFQhEBIJfHZuEkoRAOhwEiIkCKHEhiYaRQEAgEglQjxIBAMEXC4TDBYJBAIBCzwcvl8oggkG6L91jp73A4jN/vj9wmPUYSCSMFgogmCASCZCPEgECQINGpgFAoFHOFP1kmEgrRvgO/349MJosIjFAoxNDQEAUFBWMKBYFAIEgEIQYEgkkQvTlLoX4pCpDszXcsYSFFDtxuN0eOHGHjxo34fL4YYSFSDgKBYCoIMSAQjMNIU2AqRcBESMdTKBQAKJXKyBqlv0emHKKFgjAwCgSCsRBiQCCIg+QHkFIB4XB4Tm2cI/0F0X+PvJ/0ZyIDo0g5CARnL0IMCARRjGcKnCsk6k2YrIFxZERBGBgFgrMHIQYEAk6bAnt7e3E6nVRVVc3pDS86MjAVpmJgjH7syJSDdJuIJggEZyZCDAjOWuKZAh0OBxaLhZqamtle3phIm210+WKyn3+iaEK8lMPAwAA6nY7MzExhYBQIzjCEGBCcdcRrEiRtVgqFYtpX3RJSOWCyma1NdaxogvQ7dnZ2UlpaSlpa2pg9E8YSCUIoCASzixADgrOGyZgC5XI5oVBo2scKBAL09vaiUqnQ6XSo1eqkb3ipigwkSvQa5HJ5pMoBRqccpNukxwkDo0AwNxBiQPCeJxFT4HSv5r1eL21tbbS3t6PRaCIzChQKBTqdjvT09Ji/09LSEjYnnkkbZKIGRum2aA+CMDAKBKlHiAHBe5boVMBkOwVONTLgcDgwGo2YTCby8/NpampCp9NF1uFyuXC5XDidToaGhujt7cXlchEOh0lPTx8lEtLT0yP9BMYiFSmImSLZBkYhEgSC6SHEgOA9xcgmQRKTDTknKgYsFgsGgwGz2UxpaSnr168nIyMjpvmPQqEgMzOTzMzMUWt1u90xQsFiseB0OgkEAmg0GnQ6XUQcSEIh+vFzjWRsxFM1MIoOjALB1BFiQPCeYCxTICRelz/RJhsOh+nr68NgMOBwOKisrKSxsZG0tLSE1iyTySKb/Mjn9/v9OJ3OiEjo7+/H6XTi9XojOfmTJ0+SkZERk3KYzQ0v1eJkIgPjWEOfent7ycnJISMjQ6QcBIIxEGJAcEaT7CZB40UGQqEQJpMJg8FAIBCgpqaGlStXolKpxl1fohuNTCZDrVajVqvJzc2N+VkgEGBoaIgDBw6gUqmw2WyYTCbcbneMuIhOOWi12glTDmcyE6UcOjs7UavVpKWljfqcCAOjQDCMEAOCMxLJBxDv5D4d4kUG/H4/7e3ttLe3o1KpqK2tpaysbFa6EiqVSrKysgCoqamJCJFQKBRJOUgRBbPZjMvlIhgMotVq4/oSxhMy7wWkz4NSqRxV5SD9PdLAKD1uvOZKIpogeK8hxIDgjCHaVJaIKTARoiMDbrebtrY2Ojo6yMrKYvHixRQWFs6ZTSBatMjl8oi/oLCwMOY+Pp8vJuUgdVn0+XyR0seRvgSNRjOl33OuvDbRxIvOJGpgHPkYYWAUvNcQYkAw55muKTAR5HI5gUCAw4cP09PTQ2FhIatXryYnJyepx5kOiXogNBoNGo2GvLy8mJ/5/f5R5sXOzk7cbjcKhWLMlMNcmtMwGRJN1YxnYJQEmDAwCt5rCDEgmLMkyxQ42WMNDg7S0tJCIBBAoVCwYcOGGPf+XGO6hj2VSkV2djbZ2dkxt48shXQ6nfT19UVKIcdKOczF6gZIXnOmRHomjNWBURgYBXMVIQYEc45oU+DRo0cpLCykqKgoJVekoVCI3t5eDAYDbrebkpIS7HY7ixcvTvqxkkWqNw65XE5GRgYZGRkxt4fDYTweT4xQMJlMuFyuSC8Ag8GA1WqNiSqkovtiIkjppFQxlZ4JUlmp0+mkuLhYGBgFs44QA4I5Q3QqQLqycrvdo5rOJINgMEhnZydGo5FwOExtbS3l5eX4fD46Ozun/fwzcbU301fiMpkMrVaLVqslPz8/5md+v599+/aRk5MTGVrU3t6Ox+NBqVTGTTlMpfviVJjNts3jRRMkMVVUVITf78fn88UIC5FyEMwkQgwIZpV4kwOj869yuTzGJzBdfD5fpF2wVqulvr6e4uLiyKYkhXjnSt//eEjrmktheZVKhVKpJC8vL8bAGAwGR3Vf7Onpwe12T6v7YiLMxfdSig5IG73EeCkHYWAUpBIhBgSzwmRNgckaHORyuTAajXR2dpKbm8vy5cvJy8sbdeKURMFc3ECimYtriydOJtN9Uap0GBwcxOVyEQgESEtLiysS1Gr1lNY1F1+vUCg0KjIy2ZTDRAZGkXIQJIoQA4IZJVFToEKhmJYYsNlsGAwGent7KSkpYe3atZE6/Xgk86r7vZYmSCbRDZIKCgoit8frviiZF71eLyqVasyUw1iv95kkBsYj0aFPI4WCMDAKxkOIAcGMMNVOgVOJDITDYcxmMwaDAZvNRkVFBZs3b0ar1U74WGk9oVBo2qHqVG7Wk2mbPBsko+nTeN0Xo1MOk+2++F4RA2MxFQNj9GMlUaBUKmMaK4lowtmFEAOClBKdCphKk6BEPAOhUIju7m4MBgM+n4/q6mqWL1+eUGg5WgzMZc7Gk7TUfXFkZCe6++JHHztJn3OQNSUKdPIAoVCY0nQZnn3NLCjJimmwNNvdF5MlBsZjMtEE6Tvq8/kij/H5fLhcLgoLC4WB8SxBiAFB0hnLFDiVk4hCoZhQDAQCATo6Omhra0Mul0faBU/lyn4umvPGYq6tcbbWE9198dWvF2J1+bl/u5GlZRlYnB6UgwZaXWqeeG2Ar60YwuVy4fP5UKvVcX0JU+2+mCgzIQbGYqxogvQe2u12Ojo6yMnJGbNnwlgiQQiFMxMhBgRJY6QpcDoiQEIul8f0jI/G4/FE2gXrdDoWLVpEUVHRtE5G0sksGZEBv99PMBhEo9FM+7lGIk64Y5OTrkImg1tfbHn3FiUXN8i5/n0NNNUOpx6k7ouSN2E2ui/OphgYC+lzFQqF4s5ziBb60m3S44SB8cxGiAHBtJH8AFIqQDIFJuMqIV6awOFwYDQaMZlM5Ofns3Llykh9ezKYbgWD0+nEYDBgMpkIhUIxV6DRm8t0m/HMtcgApFak+IMhVAp55G+JAacPly9IZe6wJyQQCnOi10lNvpaqnDSuKuhnzbr5ZOtOi7Jkd1+M3jQnSygUmvVUxVjE88wkamCUbhMGxjMDIQYEUybZ44PjEV1NYLFYMBgMmM1mSktLWb9+/agueclgqua86MqF0tJS1qxZg0KhwOPxRK5A4zXjkUSCtLGM54yPXuPZhMXlZ/Mv3gTggvp8LltcxCWNhRzvcfD9F07wjffVUpmr5fG9Xfz0lVbS1QpcviBef4hnHHKCpVYuWVw84XEm031Rei+juy9qNJoxSyHHeq/mYmRAIhgMTnptyTAwip4Js48QA4KEma4pMBFkMhlut5vdu3fjcDiorKyksbGRtLS0pB9LIpHIgDTTQK/XY7VaYyoXAoEAgUAAjUYz6gpUasYjXX2OdMZHbyrSv0eGqedaZCDZ63H5ggRCYYKhMLe+cIJLFxeikst47kgf204OcNMzx9g8P4/jvU7+++/HsbqHQ9dbFhWwpDST+YU65uerad7/Fod6nKys8lKYObWUzXjdFyWz3XiCb+R7mZaWNufFQDIaPyViYBRDn2YXIQYEkyKZpsDJEAwGMZlMtLa24vf7qa+vZ9WqVVMKxybKZCID4XCYvr4+9Ho9LpeLqqoqli1bFlO5MN7rMlYznpFhaofDEROmljaVYDDI4OAgcrkcrVab1I59c4VvPtXMTr0l5rarlxVzbVMpT+zvBuC1U4Mc/u4mXjlu5tUTZl462s9dVy0iHA7zdruNYz1OnjHKqaxM3XwCqRRy5GTLaMHncrki3RddLhcwLDpdLhfBYDBl3RenSrLEwFhMZGCcaOiTFI1Rq9UimpAkhBgQjEt0k6Bjx45RXV2NVqtN2ZfO7/fT3t5OW1sbarWa4uJi7HY7tbW1ST/WWIwXGQiFQphMJgwGA4FAgJqaGiorK5MmUsYLU0d37DObzfT09NDW1kYwGESr1Y7yJEw1lz1X+OHl9fzH7/Yz6PKzoS6X61aV8VrrIDeeV8MT+7t54D8W8+1njrHHaOX9iwpZUZFFRXYagWCI1XfvBODnH1zAldUhtlw0f8bXP1H3xaNHj5KWlobX601Z98WpIhkIZ5rJphyam5spKiqiuLg4cn9hYJweZ+6ZQpBSRvoBwuEwJpOJsrIy0tPTk348t9sdaRecnZ3N0qVLKSgooK+vD5vNlvTjjUc8MRAIBCKDjeRyOXV1dZSVlY0b5pVet2QwsmNfZ2cnCxcuJDs7G6/XG9Oxz2Qy4XQ6IymKkSJBp9OlzLg20Ql3f4eNw112lldkUV+UQbp67KvPdoubQdewEW2n3sLlS4q45f3zkclkHLllMwB7btrA797s4ESfkxO9Dr5yXg1m53C9/IIiHRvrstnTP7c2Aem9VCqVFBQUUFpaCgx/XkamHOJ1XxwpEibjMUmUYDA4o+JjMkRfgEjrU6lU4xoYox830psQHdkUQkGIAcEIxjMFTrc1cDzsdjsGg4Genh6Ki4tZs2ZNTH49WbMJEiE6TTBysNHChQspLi6e9ZNH9BVUWloaaWlpMbns6La+0RuL0+kcVWOfrAqH8YTPE2+buGpZCSq5jBeO9PHzVw0AHPjOJpTy4eN1Wt28dLSfVVXZKOQyHt3TycZ5ubzRamF5RRbffe4E62pzKciITcV8fn0V+ztsfHBpMTnpKjqtbs4pz+SyxUVxuw++fKyfHruXTfPyqM3Xztp7OXK0skwmQ6PRoNFoxuy+KL2X43VflN7P9PT0KXsSUp0mmC6BQCASuUjUwDjyMcLAOIwQAwKAmHkBY5kCFQpFpL54OkSb7iwWC+Xl5WzcuBGdTjfqvsmeWjgZ5HI5Ho+HY8eO0dnZSU5OzpiDjWaT8Tbf8dr6RtfYO53OpFU4jMeQN8Al//sWyyuyuGJpMSde1XP5kiJW3/UG+2/eyG0vnuSZQ71jPv5gpx2AC+7bzZ6bNoyKKDRVnhaQXVYPmRol5y3IIxwOxqzb7PBxqNPOx1aV8fqpQe7e2sqvP7Z0yr/XdEik5fVkui9KQsFsNke8CGOVQk4UGZrrYiAYDE4qjTGegVH6/oxnYNTr9Tz33HPceuutc+q7nwqEGDiLmezkQInJdAMcj1AoRG9vLwaDAbfbHdd0F++YMxkZcDgcuN3uSE5yZKRirjCdE9NYNfaJVjhIA4LiXX06vAG+9Jd3+OjKMs5bkMf7FxVy3zYj/zphRqmQsaw8ixff6QPgnDteH3Oti4ozONbrYF5BOhvm5ZKdpqJvyEtN/tipqp2tFn7+oUXoNEqGhoZiXqu/7e/mU+eWU5KVxsqqbNz+2Ws7PTIyMBWiuy9Gj44Oh8N4vd4YkSCZFyfTfXGui4FAIDCt9U22Z0JzczNPPvkkt91225SPdaYgxMBZSKKTAyWmKgYCgQBdXV0YjUYAampqKC8vn5Syn6k0gdVqRa/XYzabUSqV1NfXz6hpcSoku5RvuhUOfr8fq9WKWq1Gq9XyiTXlPPxmBzc/ezzm+f7Z3D/pNR3rdQDQanbRah524T/0Rhu+YOzvHp1uWFeXy26jlQsbCkalCfyhEFqVgnA4zGN7u7jlkgUA6M0uBpw+VlfHVgSkklSWFkanj/Ly8mJ+Npnui263m4GBgcj/k919cTpI0ctUGBxHphzsdvuoyNp7FSEGziKm2yQoUTEwMt9eX19PcXFxQieVVKYJRk43rKysZPPmzRw5ciQpBrtUhhWn2hhpKiRS4dDX10dHRwfBYJAsrZbvrtKh05WjSdNy/bMdbJqfR78jwMvH4guC+iIdf/t8E4NOPxfctxuAdbU59A0Nb9Q1+Vr+2dzPwU47+ToVYWDQ6cfpDZCtHX7PVlVl84N/tLCuNpdBp49jFlAaLChkMgYcfn79ejs6jYLa/HQOdNioyE3jgw/t49kvrkrp6ziS2eozMF5kSHo/T5w4gdfrxWAwxHRfjPYjzFbFinQ+mInjWq3WORkZTAVCDJwFjJwXAGOHycZjsmLA6XRiNBrp6uoiLy9vWvl2KU2QzDG04XCYnp4e9Ho9Ho+HmpqamOmGM7nRTpW5kL8cWeHQ1dVFQ0MDOTk5oyocrFYra/O8mLu70KoU1OcqOGkZ/VmSy2DZHa+z7WtrWVebwyWNhbzU3E/fkBe5DD6wpIjrVpWN+/urFHI+vqqMX+4wcqDNwvp8Gf5AiJZBNzIZbDtppsvm5ZrlJWiUcu7fbgTA5vZz/r1v8o8b1oxb5ZAs5lrTIYVCERF9LS0t1NXVRQYVJbv74nQIBAJJ73Q6FlarVUQGBGc2YzUJmo5DdiIxYLVaMRgM9Pf3U1JSwtq1a0cZnhJF+sInQwxIjYwMBgOhUIja2loqKipG5R6TlZpI9YY9VwXLWBUOTU1h9H1DXPV/B0lThnjg0gKcLje72l0owgGO2RQ09zoBIlGBNw3WyOMdviAb73mTB69dwqb5saHvkTSWZtJYmklP/wD6lhOsX5CPts3K/+4wcvsHGrjpmWNc0ljITr2F//nQIp54u5tPPXoIgHN/tpOvnl/DFzZUJfuliWGuiYFooj0DiXRfNJvNcc2o0X9LfUqmiuQXmAlBbLPZRGRAcGaSqCkwEeKJgXA4TH9/PwaDAbvdTkVFBZs2bUKr1U7rWBLSyTKRXukjCQQCkUZGKpWKefPmUVpaOubzJdOnkKoT1lyIDMRjvHXJZDKqCzM58J1N3L/dwEmPkuvWNBDINvN2m5X1xTI+lA5p+KlK9+NyOnF7vHjDSn5zXM6Ha4KcNGm4/R8neO4LyydV4aBWnL6CXFaeRWGGmpueOQbAFx4/AsAjuztHPe7+7Ub0ZhdrqnO4allqSknPFDEwHlPtvhgtDhLtvhhdVphqbDYb9fX1M3Ks2UaIgfcIUzUFJkK0GAiFQnR3d2MwGPD5fFRXV9PU1JT0ZjbSyWEqm7PX6414FjIyMli8eDGFhYWTGgI0V6+6o5lra5xoPR0WN/+7w0hBhppQGF5u7ue+bUa+fWEdt11eH/d9CQaDdJptbPJ3k5Wu4fvrhuvtd+/ePakKh+iIklop54UvreYd0xCDLj+LSzMjEYhoMjQKzluQz5sGCy+808etL57k8Hc3JVUQSJG7uSgGpPPHdNz645lRR6YcRnZfjCcSoiuOJltWmAxsNtsoofNeRYiBM5yZmBwooVAoIqYio9GIQqGgtraWsrKylJUhSSfgRMSAy+XCYDDQ1dVFfn4+TU1N5ObmTvpkPhuNjhJlrkYGxsIfDPHffz/Orz66JGL0k25/+mAPt7/UwtXLSvjMHw/x58+u4O12G+0WN4/tNQHwx08vY17F6XDtZCscYPhK0uFwRJrw3Lm1labKbHYbrZGmRtE4vMFI2aPE954/wY3n11CSlcZug4WiTA3pagWFGWoU8sTfC+nzNVfFAKRmbXK5PMZnIpFI90VpQJrb7U5J98VorFarEAOCuU2yTIGTxePxYLFYsFgsuN1uGhsbKSoqSvmmJAmbyRgXh4aG0Ov19PT0TMuzICIDU2fk50FvdnHnK6fod/jI16n55B8O8quPLqU8Z3jqpEohZ3lFFluPm/n4IwcB+M5zJ9CpFfz+E+fw5c01/OilFr7x5DG2fX1t5HknqnCIniDo9/t5++23I014FmYqWFvgp64oC52uEJmqng6rj6PdDj7SVIo/GMLs8FGUqcHtD7Luf3bx3JE+TvQ6USpkHO0eLne8pLGQr11QQ0VO4imxuSwGpO/aTPYZSLT7otfrjUSH4vkSptN9MRqbzSYMhIK5RypMgRPhcDgwGAx0d3eTnp5OdnY2a9eunfiBSWSixkODg4MYDAYGBgYoLy9n06ZN05qfkKzIQCgUwuv1puTq5UwRLG8aLBzstPMfTWVsnJfLkrJMtKrTm0wgFOaPb3XR3ONgSWkmt162gAVFukjPAJVCzt1XL5r08aIrHAC0Wi3t7e0U1jZy0zPNHOt1AX7+etzDhVUDfKj69JjpBTodLS2OyIYSCip4ZHcXAD++oh6lXM5ug4Wy7DS2HjejUyvYeszMZ9dVJvy6SO/dXBUDM+XWnwwjuy8qlUocDgeLFi2asPtivJTDZFOZ4XBYVBMI5hbRpkCv18uOHTvYvHlzykp3wuEwFoslssGWlZWxfv16rFYrJpMp6cebiHibs2Rc1Ov1OBwOqqqqWLJkCRrN1ObVRyOTyaYlBoLBIB0dHRgMBrxeL0qlMnIiysjIiJyYpG5vU13jXCOeOFlbk8Od/hA79YMUZKhYUZmN2x9kt8FK35AXhzeIwxvgy5uree5wL7v0FhaVZMR59qkRCoXod4f51UsteIPw76+ey292dvDV82vITFPGneHQ29sbmeGgHFLx2y06cjU2dDod6zYUotPp+PoFNTz0Rjt722w0FOtYXzd+dcNIpKvvufg+nindB1PVfTEaERkQzAnimQKVSmVMVCDZx5PaBTudTiorK1m8eDFpacMhXYfDMeNzAiC28VAoFIr0CPD5fNTU1LBy5cqkGhen2ugoevxyWloaCxcuJDMzM1Jz73Q6R3V7iza+SX8mKxLOhMjAvEId+/57I2t/tpOfv2rg568auGZ5CU8d7Im536snBvjaBTX857qKST+3wxugfdBNY2nmmPfZ0+7ge6+5ATcA77t/D5lpSm65ZHik8UQzHFaOM8Ph4sJ0tnaGeXqvkYbscEIzHCTz4FwUA4nMTJgNJjIQJtJ9cXBwcFT3RY1GwxNPPEFDQwMqlSruzJTp8NOf/pSnn36a48ePo9VqWb9+PXfddRcNDQ2R+4TDYX74wx/ym9/8BovFwrnnnssDDzzA4sWLk7qWaIQYmINMZApM1sAgiWAwGGkXHAqFqK6uprKyctQXbrqzCaaK9Pu2tbVhMBiQyWTU1tZSXl6ekpOWXC6PGYE6ET6fD6PRSHt7O5mZmZHxy5IpSq1Wj3JVj5wDIEVdXC7XKJEgXb1IG83b7TaODwYpL0/2bz594m1uGqWct2/eyLI7XmdhsQ67J8Dq6mwsLj+fPrcCuUzGLc+f4M/7TOxrs3HrZQsoy06b8FjBUJhrf38AAKVcxvsbC1lYrOPjq8uRyWS4fUG+t/V0JOvuqxayaX4easXkwt+TmeFQWTT8/rW0tCQ0w+G9UFY4WwQCgSmnASfTfdFkMnHs2DFefPFF7HY7CxcuZP78+SxatIiFCxdy8803T6t/yo4dO/jyl7/M6tWrCQQC3HLLLWzZsoXm5uaI8Lj77ru55557eOSRR6ivr+fHP/4xF198MSdOnBh1LkkWQgzMIaJNgWNNDoThnFkyxIDP56Ojo4O2tjbUavWk6u9nWgxIs8mPHDmCVquloaEh4ZbGiTJZz4DH48FgMNDZ2Ulubi5NTU0xVyLjXbmPVXolnZTiDQuSy+X4FFru3OsjWxVicdlwq9RUO6qTgVwm4w+fWsbDb3Zwx5UNvN46yL9PDHDVshIArjynmHA4zLEeByabB7kMijPHj5Bka1UcuWUzHn+Q1Xfv5MV3+njxHfjfHW28ryGfLI2Sr6wtYEWOlzUrVyTtd5nuDIdoc9tcFAXT6ekxE0x3SFE8orsvFhUV8fTTT9PS0sLatWtpbm7m5MmTHDt2jGPHjk07FfnPf/4z5v8PP/wwRUVFvP3222zevJlwOMy9997LLbfcwoc+9CEA/vCHP1BcXMzjjz/OF7/4xWkdfyyEGJhlxjIFjhdCnG5kwOVy0dbWRmdnJ9nZ2ZEr2Yk2FClFMRN4PB6MRiMdHR0AVFVVUV8fvxY92UxkznO5XOj1ekwmE4WFhUmdbBh9UopG2mhMA3b6dpzixjXw0J4+Cg70cGEFqLXpZGfoyMjISFqnt0SZKG2RoVGyvWWQ+7cbuemiOi5eWIgvEGKP0cq+dhv+4LAA8wfDnOp3cs81jeSmT5z+SVMp+K8NVfxmZzsA3kCIz62rpKE4g87OTgYGBqb/y02CyVY4OJ1O7HY7gUCA7du3R4xuI3PYM93zX+JMiAzMxGtjsVjIzc1l3rx5zJ8/n8suuywlx7HZbACRCwmDwUBPTw9btmyJ3Eej0XDeeeexa9cuIQbea4zsFDgZESAx1ciA3W6PfNCKi4sT3sRmIk3gdDoxGAyYTCYKCgpYtWoVLS0t6HS6GdvYxooMSKWLvb29lJSUsH79+lEn/lSuKSMjg/qMDD6x2k1lvo3vLy7hwKCCPreXdrODTr0LndzJyoIgOTIPcrlsVLhap9Px0gkbh7uGWFKWyZaXZSrRAAAgAElEQVRFBTF1/8lk28kBWs1OrK4AwXAYGcMRgKVlmbzvvj1ctLAAlULGuTU5fGlTFWlRVQaP7unE4Q1MSgwAfH5DZUQMAJgdPhqKk9PGerqMrHCA4QqYEydOsGLFihjzoslkwul0Rioc4qWLkt3YayRzXQzMVNOhmWg4FA6H+eY3v8nGjRtZsmQJAD09w36a4uLimPsWFxfT1taWsrUIMTDDSH6A6HbBkgCY7EkrkSv0cDjMwMAABoMBi8USaRc8lZybJAZScYK12Wzo9Xr6+vooLS2N2WgnKi1MNiMjA9La+vv7KS8vZ+PGjdMqXZwK4XCY11stDHkCBEJh7tnn5s7LQly+pIz/29XO8cEAVbnZaNVybtvdRXlOOr//6EKUQW8kZN3T08NzLR6eb5dzcZWCv3cPcPtLLQDMy9fy5BeaUCoUvGmwkKtVsXCarv79HTa2LCzgukcOcmFDPv5gmNdODbLthJkhb5DvvH8e8qjPkdXl5xN/OEjboJvynDQ+vKJ00sfSqhR8bFUZf9437BE41e9ifV3unO7yJ5fL485wmKjCIdoNHy0UklVdNNcNhKlIE8RDmliYSjH5la98hcOHD/PGG2+M+tnI46Za2AoxMEPEMwVO1U08mciA5Lo3GAx4PB6qq6tZtmxZTFvPRIluDZyML2M4HGZwcBC9Xo/VaqWiooLNmzePmmsw0x0BJW/E4OAgra2tWK3WyHhjqbJippHJZGiUMvQOL25/EIVcxm/eGmCNRcXn11dxYUMBV/56HwAfX13GY3tNvP/Xh8jQKHjz2xto7Xfy+xNttDoVXL1UR3mmgoagj6+vBuuQC6vDyRuvv056ejrPG+D5Ux6uWJTDdavLaCzPG7Whnuh1UFeQjupdM97BThs3vBZm+alT/PGzTRzrcWB3B/jbgW5guFpAYsgbZEGRjv/5lx6AMMOdCHO0Kn5yZQNLyzJjRMJkKc9OIytNid0T4LrVZRFRN9uRgXiM5xWYqMLBNU6Fw0jzYiIVDhJngmdgpiIDqSwrvPHGG3nuued47bXXqKg4XUVTUjLso+np6aG09LQg7uvrGxUtSCZCDKSYyZoCE2E8MRAIBOjs7MRoNCKTyaipqYk7mW8qSM8x3TBidAmjy+WiqqpqXKEyk8bFcDgcMe7t378/KSJqKmuA0VcG59bkcm7N8Mnp0KFD/PadADV5Wjosbgadfn7+oUV86+ljkRa+MNxa97YXTrKwJIOtx80A6AeGy+yubSqlqq6KZekqlPJhn4bT6WSxp59tbV4uKXHz+I53sHghO03FhfMymF+chU6n48m3B9nX6eBUvytmjQdNDgKhMH/a20WGWsGSsky+sKEKhzeY1P4B8Ti3JgeXP8iXNlVHbjsTxcB4TKbCIbo6RTKejqyrj1fhEP1cczkyMFNpAikykGzC4TA33ngjzzzzDNu3b6e2tjbm57W1tZSUlLB161ZWrBg2vvp8Pnbs2MFdd92V9PVICDGQAqZiCkyEeAZCr9dLe3s77e3tKXPdR08QnAqhUCgyQjgQCERGCE/0xZ6JNIEkUPR6PU6nE7VazYYNG2bFxHWoa4hP/uEg1zaV8sT+bn54+QI+tDw2ZC6TydCq5Fz3bgvfH32gnpN9w+N/r1tVRpfVw45TgwA8fagHDg2X+NXkaTnx7v2e2N/NE/u7ee76VaSrFLzVNkRztwPDQJAfXbmIzQsL2LQuzJ/famdHywDffNXGonwn325Ssl7rwquDMrWSAp2aQZ+cTXkOzl/ZyF6jhUGnj1svXYw/GCJDMzOv4cKSDFrNLh7f28V1q4frLt9rYmAsEqlw6O3tjTs9UBIJMxWGnwqhUGjG0hiSgTDZfPnLX+bxxx/n2WefJTMzM+IRyM7Ojph+v/71r3PHHXewYMECFixYwB133EF6ejrXXXdd0tcjIcRAEhlrcmCy2wVHewacTidGo5Guri7y8vJYvnw5eXl5KTkBymSyKZkIpWiFwWBAqVRGhhtN9mSYyjSBNH1Rr9cTDAapqalBrVbT1taWFCEwlVD18oosLl5YgNsfpKkyi9tebOG2F1u4elkxOo0Sg9nFTr0VgM3z83jt1CDff+EkGqWcVVXZPL7vdGRgZVU2d1zZQN+Qj33tVu7bZow51n0fbuS7z55g8/w8njnUQygc5tLFRXzjqWb23LSBXXoLHbYAVQVZqNVqfMEwOTV1rC5MZ63Hw5p79gIeALYb5fR7mmmxwicXajh57Cg6nQ5nVMg61eHny5cU8cyhHp460M01K0rPGjEwFmNVOEjTA6N9CQMDA5FWvkqlErfbPWcqHCSki6CZWIfdbqeoqCjpz/urX/0KgPPPPz/m9ocffpjPfOYzAPy///f/cLvd3HDDDZGmQ6+88krKegyAEANJYaQfQBIBqfqyK5VKhoaGOHDgAP39/ZSUlLBu3bqUflAkEhEDPp8vMkI4PT2dRYsWUVyc+Gz4VKQJpEZLUhOjurq6iEDp6+tLWne/qW5G91zTGPn380d6+e5zJ+i2e8nRhtipt1CglWN2h3jt1CAb6nLZqbfw2+uWMq9Qx/aTA+w2WpDJZGw7OcD7//etMY9TnpPGFzZU8nrrIDdsrmZlVTYObxCVXMa5P9sJQF1BOtc2lfL3Qz38/YurIkOGtFotR27ZzLOHezjW46Ctw8Svm+Xs+caqUXltl8tFKBQas4wuGVd6ZoePrDQlVy8r4ccvtUTE+dksBsYienrgyFa+hw8fRqVSkZGRMarCIS0tLa55MdUVDhIzOTfBarXGdAVMFpM5t8hkMn7wgx/wgx/8IOnHHwshBqbBTI4Plo7X399PZ2dnxBS4adOmUYa7VDIZMeB2uzEajXR2dpKTkzPtaEUyOy4GAgE6OjowGo2oVCrq6+spKSmJWdt0ZxNMRDgc5g97Orn33wa+cn4Nn1tXOe5ro1YOf552G6yR28zuEMtL0phXksMPLq9n6U9eY3lFFvs77Lx2apCbLqqjOGu4OYo/GOKpAz385OVTo577+8+fpLE0g20tAzx5oIf7P7KYC+rzWVSSwafOreBrTx6lMlfLh1eUUpOv5aWjffQMefn46nJq84crKq5cWszJPifzsuGu/1gx5oja6LbMTqeTwcFBnE5nzFCZkZtMIiLh74d6uG+7kf/aUIVhwEUwfPakCZKFFMXMzMyksvL0AKbZrnCQkFIYM/Genk1zCUCIgSkRnQpIlilwouOZTCaMRiN+v5+cnBw0Gg0LFy5MyfHGYzwx4HA4IiOEi4qKktaMJxlpAp/PF5kbkJ6ezuLFiyksLIz7nqUyLWF2+AiHw/z8VQMA920zsu3EAOeUZ7FlUQErKmNfr+0nB7hvmyHucx3s8dBYIecd0xD/taGKH710ihWVWfzoivqYyYCn+l2jhMAn1pTzp7e6ONbr4Fjv8Ejez62v5Kt/O0pFThqdVk/kvvs77Dx7uJcfXr6ATfPz0GkUvHS0H6vbzyfXlFOcqeHbF9bx62c7ueNf7VzTVM7q6tj67Oh+8SPL6EaKBIvFkrBIcPmC/OvEsEFS6jeglJ+Z1QSzTTwD4WxXOEjMVCUBCDEgGIPoJkFOp5O9e/eycePGlA4b8fv9kXbB0bn2vr4+9Hp9So45EfHEgNVqRa/XYzabKSsrY8OGDUkd7jGdzdnr9UbmBmRnZ08qSpGs8cDxjnHBfbtj/v/fF8/jeK8Di9vPT/55inPKs9BpFARCw+mm6MqA0iwN3XZv5P/Xr87j13tNLCnL5KplxVTmxo8QyWWwujqbtTW5HDHZufKcYlRyORaXH32/KyIG8tJVfG59Jb/b1RH3eW57sWXUbY/u6eJvn2tiYUkGjbnw8aYq7nujZ5QYGIvxRILP54sRCV1dXTHh6miBsL83wJrqbG7eMo9P/uEQ37qwNvI8c3HTPdPEwHiMV+EQ3XVxOhUO0c85E2IgHA4LMSCIJZ4pUKFQ4Ha7U3bVEd2KNzMzc9RV7Ey2BR5JdOMhs9mMXq/HbrentA5/Kp4Bt9sdmRuQn5/PqlWrJv3FTmZkIPrzsbN1kHPKMjlsGorcdtfW1pj7S07/p7+wkgVFOsJhIobAaCGwskSFacjPefPzqMtPH1MIANy7zcCQJ8CGulzqCtLZ32Fjt9HKb69bSqZGycq7hhue/OxfkxeYz1+/ijtfaeWGzdVU558+tn7AQ4/dSygcTrhXwIleB/VFukiUTaPRoNFoRs17GCkSTCYTxnYnBkuIX7QOv1YKj5XubiVer3dG02iTZa6KFEheaaFCoSArK2vUUJ/JVjiM9JXI5fIZrXSwWq0p70A4lxBiYAzG8wNIJ/hkh6yGhoYi7YKlVrzxNrBkDSqaCnK5nMHBQYxGIx6Ph5qaGpqamlJqIEqktNDhcGAwGOju7qaoqIi1a9cmPGEsVWmCpqpsagrS+cOnlzPo9HHh/Xtifn5RQwH/OmFGKZdx/V+O8KVN1QRDYRpLMrh2ZSlPH+zltx9filaloLm5Ga1WO6pGOR4/u3oRbxmtLCzJwOUP8se3ugB4ZHcnJVkaPrGmnIsXFrC4NJPLHnyLDywp5tE9nQRCY0dHrni3wdFOvYU/fGoZTZXZWLzwlceO8buPnzOlpkG/e7ODXXoLz31xFbe+cJILGwq4enlJzH3GEglNTWGcbg8//EcLfzo/i7Swl+7ubmw2G+FwmL6+PjIyMkbltWfLHR8KhWbdmT8Wqe4zkEiFg9lsjjGfSn6e7u7uyHuYirWKyIBg1LwAYJQfQC6Xo1Ao8Pv9074SDofDWCwWDAYDAwMDlJWVTdjzfjbEgOS+t1iGXeoLFixIWjOjiZjM5my322PaGU8nVZGsNEEgEMBsNkcc2FqVgutWlnHnK6dQyeWjcvMfW1XG7R+o58HX2+ixeXnojXYuaijgj59ejlopH9VrYLKkqxV87cnmUbc/srsz8u9nD/XgCYTwB8P8/s3hNMH1G6v4zNoKNCoFD+ww8n9jpA8+/eghjtyymRx1mH99aQU3Pn2Kez/SOKkxxC5fkLZBN1W5aQw6/djcAc67dziVsuPUIO0WNx5/CGSQoVaQr1Oj0yhYXpEVEw25e6ueP+3t4hOry8kvKqYiZ/hnzc3NqNVq8vPzI5tMT08PTqcTv98/qv//TImEuVrlALPXjni8CgfJV9LR0YHb7U55hcPQ0BDBYFCIgbONsZoEjWcKVKlU09qQo7vwOZ1OqqqqWLJkyaTGY6ZyRsBIJN+C0WhErVaTlZVFXl4e1dXVEz84SYyXJrBYLOj1egYGBiJzF6YbFp5uZMDv99Pe3o7RaIyIxmAwGDlhXVevY9Cv4k97PXxxQyWfPLeC3+3qoMfuZU1NDv998Tz+ut/EyqpsPv5uW92RJCJY5DIZh767iXu3GXj4zdMC4KKGAi5ZXMi3nz7GkPf067tlUQGvHDPz6zfa+cfRPipztWxZVMDNW+Zx5yut8Q7B+v/ZyfJcGQX2Tn76wYYxhUA4HEZvdrHLYME44Oav+7tjfv6BJUW8dLSP4Lu/2pAnwPcuXUA4HMbhDbLLYEEpk3HvNgPfeF8tFTlajvc4+NPe4WjHn/Z28Z/rKmKOp1Qqyc3NHXVij043uFwuenp6cLlc+Hw+NBoN6enpkWiC9HeyImBz3TMwl9YW7SuxWq2RpmojKxycTmfSKhysVisymUykCc42AoFAzMY+GVOgSqXC7/cnfCzpCttoNBIKhSLtghO5EpHum0ozjWS86+joICMjgyVLllBYWMixY8dmdE4AjE4TSMOX9Ho9NpstISE1GaYaGZD6KrS1tZGZmck555wT6f0QvfE4HA56+vupywzzxN52WttNFGaqCaV76euTodPpeK1lkOp8LXe+0kpBhpovbKia1u9kcfmxOP088sllyGXQY/dSkKGmoXg4ArW0LBOb28+62lzeaB3kksZC/n3CzDUrSmkfdEeiEh9fXU6v3cv9O4x02zyYrB66bF6GvEFe75FBj5m9HQ7+++J5nLcg1qh55yun6LB4cPmCVOdpefpgz6h1bj1uJhgmUhp5YUMBn/njId5ut0UqICReOWaO+7sWZp7+HIyXmx/PHR+9wfT19WEwGCIbTLxIQqIiYa6KASk9Olc7EEZ7BpJZ4aDT6dBoNJHPq81mIysra86+DqlAiAFia5ETmRyYSGRAKm1rb29Ho9Ewf/58SkpKpnRCkARAKspsXC4XBoOBrq4u8vPzWblyZcwXbSbGGI9EulKXcr96vR6Xy0V1dTUrVqxIul9BLpdHokWT+Tz4fD4MBkOkYqGpqYm8vLyI2Q2Iccx3WNzsN3aiHxq+Kl5aU8SF1WqcTidtbW3DJzArPHpq+LOxrETDwbYBfnZVQyRvmqhgydGqKMxQc8Rk5xNrKlhRKcMfDPHga218fn0l/7erg6bKLD6/oYrvXbqADoub7DQldfnpZKgVHOqys6x82HtRnKXhJ1c0YHH5yUob/vztbbPyhceP8KUN5bgCMu54+RQ3/m3Y8LikNJP1dbl0WjzMK0gnJ13FjpYB4q3+iqVFPHmgJ66ZseVdc+VIavK1+AIhTLbh4/1ln4mPrioDptZnQKVSkZOTM+qqMJ5IiL4KHXkFmpGRMeZnc66KAUl0z9VNUBrtPBFjVTgEAoEY86JU4eByuVAoFJhMJv7+979TWFhIbm4uLS0t1NXVpTxt9OCDD/Kzn/2M7u5uFi9ezL333sumTZtSesyRCDHA8Ac/0SvByUYGXC5XpF1wdnY2S5cupaCgYFrhfaktcDJ9A3a7PWJeHK+joUKhiGxwM4VMJsPn87Fz5078fj81NTVUVlam7AsqnaQnyp16vV4MBgMdHR3k5uZOumLhzldaufXSBfiDIf5+uJed7S50Oh3XrmzkjpdPsbSsigc+mTmcIzXbaTMPsafDyY+eeouLKyBDl04wGESj0WA2myMlWeN9phRyGV+9oJZDXXZue/Ek1zaV8u2nj9Ft97KhLpfvbJnHr99o54pf7eWjq8pIVym48fwasrUqfIEQP/jHSZzeIOlqBSVZGu54+RTbTg6MOs6vdg5fuX/q3HL2Gm20mp280z3EO93DFRTSvIR4KOXD619QpIu78e8xWkfdBmB8d/CSxE9ePsVFCwsoyFAnNZU2nkiIvgrt7+/H6XTi9XpRqVRxIwlCDEyN6UZDlUrluBUOWq2WmpoaDh06hNlsZunSpQA0NDSwadMmHnjggWmtPx5PPPEEX//613nwwQfZsGEDDz30EJdeeinNzc1UVU0vIpgIsnCy+q6ewUhVA4lw+PBhdDod8+bNi/tzm82GwWCgt7eX4uJiamtrkzoBa9u2baxYsWJaOS3JvKjX6xkcHKSiooKamhrS09PHfIzBYMBms7F8+fIpH3eyhEIhurq6aG1txePx0NjYSHl5ecpPVH6/n1dffZWLLroo7onH4/Gg1+sjZYvz58+P+95GRwaiN6SnDnTT0u9Eo1Tg9AYwDrpjNrorzynmm++rJV+nJhgKYxxw0efw0dLrYHuLmf9anY9iqDfSmtXlciGTyWI2m4yMjFGhT4BAKMw/m/v4zrMnAPj0uRWsrMomQ6PAHwxzx8un+NKmai5fMtyTfV+7lReO9DHo8qNWyNk0P5fdBiu3XraA2//Rwgvv9EWe+5raEB9cvwS7f7gN8lNx0gAA37qwNtJ0KVFq87X857pKfruznXaLB7kMpKKHK88pJhwO8/yRvpjHPHxNFasW1kzpeNMhEAjERBKkP16vd3jQlFZLbm7uqHTDbBoLPR4Pu3bt4oILLpiTBsf9+/dTWloaM9o3FTz66KP89a9/5dVXX8VgMNDc3IzT6UzJoKBzzz2XpqamyMwCgEWLFnHVVVfx05/+NOnHGwsRGWDyqYFo4kUGpFy2wWDAarVSXl7Opk2bxt1cp8p0wvVSW2O9Xo/D4aCqqoqlS5cmZF5MJcFgMGJaVCgUVFZW0traOmMqOToyEE10CqWwsHBSZYvxwvkrKrN5ZE9nzBVtWbaGQaefWy9bwFtGK+e/66hfXpHFFUuKKM7SkJ2uYm/7EHvbh3js6iICYRlNixsiVzXSZmO32+nu7o40d4nebD739y4+uLSIJz/fxM3PHidDo+C8BXn8ZZ+JDquHTfPz2N4ywM3PHo+s66UvryEYCtPc4+DJ/d20D7p5/nAvr7cOUpqlIVurpCJHy1MnzJjlJspy03nqYA93XNnAJY2FNN35RszvPxUhcN78PHacGuSC+gK+/8LJyO3R1Y/Hehx875L5WF0BBpw+mnuGmyl99ql29txUSbp6Zq92lUrlmKHqffv2kZubi0KhiMlnq1SqUblsnU6X9La+YyGZB+eiEICZ60Ao9RhQKpWRyYGpwOfz8fbbb3PzzTfH3L5lyxZ27dqVkmOOhRADU0SpVOLxDJeFhUIhenp6MBgMkZkBy5YtQ61Wp/T4iUYzpPpcg8GA3++nurqaVatWJfTlSqUYkFz4bW1tpKWlsXDhQoqLi3G73Zw6NbqvfqoYKQacTid6vZ7u7m6Ki4unPRQqL101KrQt5bt/8OJJbrusHl8whFIh50CHjQGXn6uXl0Q21cWlGfzkdQvNZj+HG+vHrdt2uVw4HA52tAzwzGudXFIR5qFdXTy0q4umIgV7Wrp54LU2AJ78z2U8caCXfzb3s2leHq+3DmKyefm/nR18aHkJy8qzOKcsk+eO9PK954c35OJMDT12L8d7h8P6b7XbuSo3nTSlnOZuB9tbRqcSpoKUXpDKHgF2fWs9mWmnP7v72q38+vU2Gksz+cc7Tm55/3zq5cNpL0kIPL63i3e6h1DIZPzoiskNoekf8vLqiQGMgy5u3jKfYz0OCjPUFGRM7futVCqRyWTk5+fHzG+Q8tnRsxs6OjpiTG+pFglz2TwIM9eB0GazzUglgdlsJhgMUlxcHHN7cXFxZLTxTCHEwBRRqVTY7XaMRiNGoxGZTEZtbe2MhLEhMTEQDAYjI4TlcnmkrfFU1pkKMeDz+SItgzMzM0f5KiRD30zlWaXjOp1OTp48GfFRTNT/YbLkpKv4zNqKmDp/iXuuaeSR3Z3cvGUe9UU6LC4/Dm+Qfzb3R+5ztHv4inddRRpHTENolHLqCtJRKWJfG0kkpOt0nDwwxFFzgAGfhgwNfHZ1CUazg32djsj9P/z7Q5F/v946yIJ8DS0DXn65w8gvdxhHrfX8BXmoFHLWVOdwrNeBd8jCpSuqWFaVx5/3mXjt1ACrq3O4fEkRL74TG7r/xOpy/KEQT7zdzY8+UB9ztT9ZbnvxJGuqc7h2ZSkymYymymyu31TNm3oLFy8q4Ccvn+KKeSpW+ly4O7votLqxugN8eEUJ204OcNfWVgacPr64oYp5hfF7UrxltPK1J4/y6KeW85OXT/HYXhM6tYKXv7Im4fVGE++zPFY+W2rrK5VAWiwWOjs7cbvdKJXKuJGEkemhyTLXxcBMdSCc6e6DI9+r2ZipIcQAiacJvF4vAwMDmM1mfD5f5Ap2Jt+8yRgI/X5/pNRNqs0dOaFvKsdNlhjweDyRlsG5ubkRF368Y8LMObCHhobNbvv27aO8vJyNGzcmPdXzrQvr+M91lXzgV3tZX5dLXroKhVzGv46b2ddu48P/tx+Ac8ozOdw1NOrxmWo5b3Z6KDvYE8nNf/X8mrgliHKZjKVlmfx1fzc9di8XLyyg2xnkpksbyU1X0WFxc9mDe0c9rmXgdPvjYi30uuHCWi1ZWjW+sJzmPjeGATerq7PpsXupUsPP/t0OtHPzlnn0O3x8eXM1KoWcOz84PFTrHdMQ6WoFdQXDr2dpVtqUhAAMlyFuPW7mJy+f4qcfbCBXq+L6v7wTc5/nW/0sKA3y3Ilubr+8ntdODfLZPx6O/HxpWSYdFk9cMRAIhTEOurh4YQHFWRpuuqiOAx12PtJUQrZ2ehUsiXyWx2rrGwwGYyIJVquVrq4u3G43CoUibiRhIpEwWw2HJstMRgbKy8tTfpyCggIUCsWoKEBfX9+oaEGqEWIgARwOB0ajEZPJREZGBlqtlrVr185Kfm28yED0bIPs7GyWLVtGfn5+UtaZjCoGl8uFXq/HZDJRWFg44XTDsXL4ycZut9Pa2kp/fz8ymYyVK1fGhHGTTW66ip3fWh9zm1RhIHG4a4iybA0mm5f7P7KYfe1WHt3TxZIiNSU6OU8d7KGpMouWPif3bzdy/3YjAH/5zxU0FGdEHPrnlGfxzffVcs+/DWw9Plyf/+SB4RPQPdcsinv1LnHBgjzKMhU8tr+fVw1ufn2xAp/HToPCzz0DSva22fjK6mwOtQ/3lv/G+dVc2ljI/duNNN35Bvd9uJFN84ejCEvKYtMrn1tfyefWD4/Ktbn9bLznzSm9lpIhUuKmi+r46/5u2gbdqBRyTvW7uO6Rg6Me95XzqllfN1qAHu6yY7J5eaPVwraTA+Tp1HxhfSVrqnN4bG8XQ94gWxZOvSooGcJWoVCQmZk5KmU1UiTYbLaY8rno0kcpqiBVo8y1hkPRSFNiZ0oMJNPwPRZqtZqVK1eydetWrr766sjtW7du5YMf/GDKjx+NEANMHBmwWCwYjUb6+/sjZXc+n4933nln1ow28YYVRYuVgoICVq9enfRQVyJzAkYyNDSEXq+nt7d33PLFkUgnp1R5FaxWK62trQwMDEQGLu3cuTOlng+A2144SXa6El8gFOnl3zc0umzTZPOSppTz1b8d5bHPLCc3XcWelh6eOTG8+e7vsI96zEd/fwCAjfNyeaPVMu46vvnUsVG3Veam8ZEVpRzotFOZm8ZbUdUO12910FSZxY8un8/V5wX401td/P7gIHlqGasK4Rfb2/jF9mEfwm+vKKbXZuW7f+/m/Y3FXLSoKO4aeu1etGoFxZlqeuO8Boki9Sn4RpOK9zfkkJGZyTOHeka9Vl/88ztU5qbx4LVLyEpTkpuuYuVdb+APnnYm1hUMeyCMA24Wl2Vy+wfq2dEyyBpEsyYAACAASURBVPeeP8Hyimw+0pS4sz2Vg4rGEgkjjaaSSIieIiiXy/H7/ZMuWZ1JpIuQmYhczORcgm9+85t88pOfZNWqVaxbt47f/OY3tLe3c/3118/I8SWEGHiXka5vyXFvMBgiU/miW93a7fZZGxYEsZEBm82GXq+nv7+f0tLSpOW24zGVNEH0+qYSdpcGRCU7MmCxWDh16hRWq3VUF8NkHm+s/N9/bazivm0GctNV+ENhnjrYHbMJSVTnaXH7gngcPj7+7tXthxszeOCSfDasaORgp53bX2rhgvp8PrqyjE6rm06Lh++/cDKuUBhJpkYR04748+srcfqCNBTruG51OY/u6UStjN249nfY+d4Lp/j8+kq+fHEjZn8Lpb4udtlzgOG0xo8vKuHUgJuH3rZj9YbZ1TrI4WMnuXBeJraQhnnFWWRlZpKens5Fv4wd2rS4NIMfXl4fSZdMlV/s93PJijAZGiX7O+x89fwaXj81yIHO06+L1eXnq387imHATUORLuY9uGZ5Cf842sc55ZksfjeqIZPJOL8+n/V1uay86w2q8tI4tyaxjWM2+gxMZDR1Op10d3cTCoVobW0dVbIaHU2Qml/NJIFAIHIuSDUz6Rm49tprGRgY4Pbbb6e7u5slS5bwj3/8Y0ZbvoMQA6MIhUKYTCYMBgOBQIDq6uq4U/mk0sLZMHrA8KZst9vZu3cvVqs1aX35J3PcycxFkHoYtLa2RtY3nRHHydqcw+Ewg4ODtLa2Yrfbqaqqilv5kaxhRdHHPeeO1wH4xTWNrK7OpjwnjbuvXgTAq8fN/OVtU9zHtg26R93mDUCWWoZCLmNlVTbPfnFV5GclWRrCYSurqrK5sKGAfzb3c6hrtCj4j6ZSOq0eduljIwfSQCKFXIZhwE1Bhhq9eTgKcfvl9fQOefnzPhMHOu18+a9HgeGwfI41zObCHC5oKODnrxr43r9i86B2v4yHj4V4vc/NqQEbF1UNckVlgHAwwMhT0dFux7SFgMQOwxAbF5Zx34cbGfIGkMtjP7dD3iBD3uHX+MSIZkeSH+OBHW3UFaRTknX686tWyjn83U08sruTk31OPrG6fFLngpk0w06GaJEgVS4sWbKEUCiE2+2OaaMtjRqWyWRxjYupFAmSXyDV59twOIzVao3rX0oVN9xwAzfccMOMHS8eQgy8SyAQiJjtlEplxHE/1hd2JuYDxEMacNTZ2YnX66Wuri7lZYzRSCG6sX7vcDiM2WymtbUVh8ORtDLL6RoXR66rpqZm3FbGyY5E3PzscS5qKCA/Q8U3nmrmvPl5pGsUfGRFKcFQGMOAixs2V1OTp+XB19ooztKM2XHvhs3V6E1mjvT7GKv10+rqHH7/iWw6LB4e29tFTb6W/9pQRZpKzo6WQZ493BsZEtRQpBu1CQKROQB5OhU1eelka5X8++QAXTYPgy4/ZdkaKnO1/OKaRjI0CrZtO8n7V5eh0WhYXZXDRx8+EHdtpwaG0wBtHg1f2zlaCMggbqviRFlVlc2+dht3/LuLw2vrcPmCUxYYh01DXPzLtzjwnU0RHwbvrlOtlFOUqeburXq+dVFd5OfeQAiNcvT5QxKZc0UMRBNdTRDdoyKaqYiEtLS0af++M1VJAMOR37NpSBEIMRDh4MGDBAIBFi9eTGFh4YTqU9oI/X7/jIgBKWKh1+sJhULk5OTg8/lS1gxjLKKd/dFIIkWv1+PxeKipqWHlypVJmxsw1c1ZSvdIYc+amppJ9VZIthj48RUNPLK7k06Lh3W1OSyryOL+7UZ6bF7ydWrydSrkchkPSjX/X1jJDX85wltttpjnaSjScf3GKg6f8PPYwUF++vIpHt9n4uYt87huVeyEQ5lMRlWelruvWsh1jxzku8/FmuwAGksy+MHl9SwqycDuCXD31lbWVOdwxDTEX9428dDHlvDFP7/DoHN0622TzYvJ5uXKX+/j4oX59HfLcRcM8NN/GbG5J06hxWs5/Ln1lfxujFHJ0WSrweaDBXlqWgZHewxq8rXsaz/92j36Vhd7DMPi6mdXL+KmZ0b7JACaKrNQKeSjhNhn11Xw8JudPHOwB4vLz6DLx5AnwHNH+qjN13LrZQv4wNIi7nz5FHK5jD/vG47yfHRlGR9eURIZCAWnvztzUQxMJmIxkUiQeltI8xtcLhfhcHjMSMJkX4eZajjk8/lwuVwzGhmYCwgx8C4rVqxI6Mspk8mm1PgnUQKBQKQbn1KppK6ujrKyssgktZlGeo0CgQBqtTrSyEiv1xMMBiNzA5Kt4BPdnCVx0traitfrpba2NqF5BslOE6gUcr6woYpum4chbxCVQsaFDQV88KF9fO2CGt5XX0BtvpZza3L4+pPNrLrrdNe+eQXptL4bpj/R56TpzjcIRFrvmTh/QT53vtLKeQvyqMiJTRP5AiH2tFm5elkx1Xnp3Lvt9Gfm9584h9XVp69+stKU/PiKBjz+4fU19wzF9C7YeuO5mGweDnfZ2am3sNtg5aGPLWF9XR6hUIiXX+0gJ13FLz+ymCFPIJJCmAy3XbaAAacvko6YCJsPrmjIoDYTqjOC7OwK4A6eFkJVGTKaSnN5p9PCSSv8T9Tgo+8+d5yPry7jsb2n0zJqhQxfMDymx0Ia/Xz7Sy0ArKnO5pzyLLbeeC7FmWpcviA6jRKVQo5aIeO7758PQGu/k7+83Y3TF+A/mkpZXpEd+RzPFWNeNNPpMxAtEgoLCyO3h0IhPB5PTEvm/v7+hEXCTEVhrdZhISgiA2cpKpUq4TD0VMcYTwZpHG57ezvp6ek0NjZSVFQUOYEke1DRZPn/7L13eFPn/f7/0pa8ZFvee5thsAEDZhsSAgSySUMmpEmaNKNN0jZpm0/TpGnSJM1smj1oZrObTUIKJAQwZm88Je8tS7a11/n9ISRbtgEbbJff9eW+Li5s+eico6PznOd+3uO+fSZJPrVAnU6HSCTyk5TRWu0MlQwIgkBLSwvV1dU4nU4yMjJISkoa9gNuNAoWAeLVSvrWnh+8b77/5y8Ptg5q61vdb4JMjwryr6qL0sPJjgliRpqaf5U0MCczkrmZEcgkYjZXdfL90Xaump7IjbNDeH9XE3csSPMLCP38HW+/fXG2huQIJfcszkTbYeHVrXVcWhDH26u9SYiXr8yjqcvOh7ubyI0LwWh1sV1nZFGOhs1VnfxY2YlSJsbZKWJOGmg7LBxs6uGZlRO48+Mj/vP+xZwUZqaF88wmHQ+tyEEkEvFTdSdbqzt58BvvJJsdM7j4z2D4rsrM1dMTGZeu4b5L4lj4bCnjY5T8ab4GHBZajGbmhbgQicQc7lHw6iHvWHW6Bd7d2cQv56Ww/mgH1R0WHP0KN2USEeEqGe0mB+fmRqGUifnqUBu3zU/limkJRAT1Rrycbg9FT2xj+29nkx0dFLCvzOhgpqWEUdlmYXyctwDxTI4MuN3uEU85+joVgoKCAkiCIAgB6Qaz2UxHRwdmszmAJPj+N5vNY1Y8qFQqR73+6kzDWTJwGpBKpSNOBqxWq1//Pjw8nIKCAiIjIwesIsYiKjEYfMfctWsXCoWC7OzsU7ZiHg7EYvEJyVr/CIWPBJzqeY1EZMBoNKLVahGJRP4CrRO1a63d3sD4uBCo6xpkb95Q9dQkNXkJofzq/b3cnK+iQxrNA8cm0l/MSeHVrXU8tK6SEIWEwpRwfrc4028z7LP1DVdJ0emtrCpMIFgu4bP9Lej0Fq751z5sTjdvXJtPZZuZZzbqsDjczM6I4OL8OKRiEW+WNvD6tnq23D3LL7zjdHu4/6tydjWKebvqKP++fgqXTfFSntLfzeG3nx6lMFXNZQVxlOiM5MYGk6oJQioWka5Rsb9PZf/xbIoHg0Qs4u5zMgAvAbl3cSbXzPAKxXRZnVz1VAkxKikSqYz4UBkQOFbfK60lSCbmtzNDeaI0UNjJ6RZoN3nTD/8t7/C//vzmWp7fXMuiHA0bK/Ts/+M8ZBIxF02OpeiJbWREBaHtsDA7I4JguYTleTE0ddm5ozjNvw+Px+O3oT7TMJYKhL76gsFIQv9Igl6vx2QyIQgC27dvHxBJ8LVFjgR8nQRn4vczmjhLBo7hVM2KRmpC7unpQafT+fXvTybEM5jOwGjC4XD4fQM8Hg/p6elkZmaO2YA5nr6Bz9lQq/WGgTMzM0ckQnE6kYG+LYs+QtK3yKq/eVBISAgKVRA3zU5m8fhoHr4glyc3aAfIFa8taSCsWEqH2cF9C2L4++YWdrcYWTkljo/3tnglhGOCsbs8VLSZ0emt/FilZ1qymoggGQnhSgRBoNFop6zVxIoXd/Lc5RNZMSkGmUSM2yOwXWfk+R9riAiSER0qp7zVzJEWE9t0BiJUMl7aUsd/fjEtQIHvpZ/quHZGIrbOVl6+ZgoZMb397UFyCS+syvP/vnRCNEsneB/8y57fQYPRRmSfVfbSCdEB0ssngtXpYe5T20iNUBGqlDIzLZzNVZ3Mz4r01x0Y7OC0OmnuGUjauxwiuhzCACJwIviKLTces29e9cZeguQSfl6UxG/PyWDe017RJF+HRrfNxWtXTw7Yx5nUSdAfZ4ICoc/RUaVSBYh+VVVVYbfbiY2NDSAJFosFj8eDSqUKiCT4fh7u5zEajWMiOHSm4SwZOA2MRJrAYDCg0+no6OggISGBuXPnDijMGQy+yMBotzba7Xa/b4BaraagoIAjR44QFhY2psy5f2TA7Xb7SYBEIiErK4v4+PgRe8ieChnwtSx2dXX5uyj6q7r17ek2mUwYjUbqGxq4ZZOXVN7fWsvkxDAuzwmmpFpFebuVwhQ1P5+VzK0fHOLZYwqDPiilYoLl3mF8tMXEXYvSuW9JFnKpGIkIjjSbeOS7Ku4/P5suq4vKNjNlrWbyEkLZ19DNHR8d5nfnZuBwebC7PNhcHnrsLoIVEnZWGLmkII4VeV5Z1J21Rl4vqScxPLA9VCKG5i4bwTKBpH5/q2wz8/zmGh65cNwA18B1t81g0sOb8fSJwOyoHbyD4njosro4YPVO5luPTcB9uyPyNQIow9hVP/QJP0mtwOZ002EZSPRVgo1bpoaSHh3Cizs6SYtQsu5oB41GGy3dXvnmn02N58dKPa09DgYbImcyGTiTFQjdbjcKhYKoqKgAkiAIAna7PSCSYDAYMJvNuN1uP0noH0k4HknwmRSdjQz8P4pT+eJPNVTva3PTarX+XvcJEyYMqwd/tFsbfemKhoYGNBoNhYWFfkWusY5KQG9kwGdvrNPpkMlkI+K3MBiGkybo7OykqqqK7u5uUlNTKSgo8HdR9L8/+vZ099Ue3zfTzWPfVfBdg5m/lLTy4JxgNBIrTxW5CFKacHbUALBinJpFuRosJhNPbGlnRX48dxSn8WapN4rwi/cOsnRCNLGhCtzHzv/amYn8WNnJoaYePILAQytykEnEXFWYwJ+/ruCaGYl4BKjRWyhrNVHZJqLT7OQvK3IDJv68hFAunxLPzhoj87M1/tcvK4jnze31LIgLvF4Wh5u3ShvYVKFn5t+3BvxNKhb5lfs23TkLqViERxB4bH017+0aXG9hqOjbJrmrXcSibCn/ujafN0rqee5nE7E43Nz47gEON5uYmRZOvcFKU5edW+el8srWOhq67IPu99fzEjnc1M1Le3rwCSvVGOw8NxfCQmV8oZPSZgXB5WBRTiQf7W1lcsJAi+sznQz8ryMDx4PL5RrUZl0kEqFUKlEqlWg0vfflcEhCUFAQHo+HsLCws5GBsxg+hlsz0Nfq2G63H1fQaCjwDdiRbrcxmUz+dEVMTAxFRUUDDFL+F2QA8BMopVLJ+PHjR9UcaiiRgf4kYDDdgqESColEwm0Ls9hUoSdIpefxnUbMDrjngkLKm4z8bUM9yzJVWC0W7v68t6bAoO+gokrgwXMT2NVsx+4Wce/izAH2un/9tpL/WxrYhpocoeKNa/IRBIHbPzjEoeYeFmRr+NPSLJSy3glBEAR0eivrDrdxTm4U2g4Lnx9o4aLJcQDEhin4zTnp/Phjnf89ZruLR9ZX88t5KfyqOI3bPzzM78/L5Jb3D2FxuHF5BEprjDy7cgJSsZd4Ff19K1bnyBdtbqw0sLHSGzW46OVdJKqVHG428fvzMjFYnESHyGnqamNLdSfF2RrGxQXzzx9rB+zn7d1thB9LaayalsCU5DBEgocpySrMZjNXh/omHSP1RjsXp8uYqzZQUeHwp4OCg4PPkoFTxHAXPiciCQ6HI4AkNDU1sXbtWt5++22io6ORyWTce++9TJw4kQkTJjB+/PghRWyHg5qaGh566CE2btxIS0sLCQkJXHPNNdx3330BRZx1dXXcdtttbNy4EZVKxVVXXcUTTzwx4oWeZ8nAMZxqzYDVOlAdrj98IW1fK+BIWB2LxWLEYvGI1Sx0d3ej1Wppa2sjPj6eOXPmHPfmP1kx30jCJwbV3t6OTCYjLy9vSDoQp4sTRQaGQgJOhgajlW8OtaMJlvmL7dQqGRfnx5EYrmRThZ7USBXbarqZnhLJRzfF8H1ZBx0mJ9TV8/KF8cjtXcTExGA2m0kWmxCpzHxXD5WHumk5Fn1oskp4ZUcHmTEhTHp4Mz/cWYQmuPch0mFy8Nn+FhLUSrZqDXxxoJUvjhklnTc+ivVHOwLO+6UtdWy+axYv/VTLRYGpcP91A9hZ20VZi4llz/e6IV731v6AbVMiVHTbXOjNDuoN1lEhAv1Ro7dSo/eO2UfXVwf8LU6tYP3RjoCCwb7otDjptHjJ//u7m3h/dxPXFyUxO1ODyy2nyxVEu0NNm8SBJdSJ3WEmJibC32+v0+lwOBzIZDI8Hg+VlZUBoeu+E12n2UFLt50J8Sf37hhJnMlkYKREh0QiEQqFAoVCEaAlMGXKFH73u9/x2GOPodVqMRqNvPrqqxw+fJiVK1fyyiuvnPax+6KsrAyPx8PLL79MVlYWhw4d4qabbsJsNvPEE08A3u9j+fLlREdHs2XLFvR6PatXr0YQBJ577rkRPZ+zZOA0cLLIgNPp9GsEyOXyEa+8H4kVusFgQKvVotfrhyxpPJI2xseD0+mkpqaG2tpaQkND0Wg0BAcHExMzuNHNSGOwyIBer/fLGJ9MwXAw2Jxuvjvazkd7WmjusvHoxeP4+TsH+G95B39ckkWCWslHe5p5dat3ha2QitmuM/L491qyY4K5JD+WKwvjsbvcpEQo0estpKT0WhYXCgLx1e18caAFseDEam9lR5Mdox12N3jD2q21VZhDQvBIlcRFhiGTSJCIRXy0t3nA+fYlAknhSqRiETWdVuY/XcKFkwK/h/7EqThHw9ysSJY9v8OfS++PHyr1/FDpLcS7fEo8T182gQe+qRiSYNFo4EizibgwBXKJiDqD7YTbzs6IYJvWwNrtDazd3kCiWsFvz80kKVzJlGQ1UrEIg8VJYr9WSafTSUNDA01NTf5Iodlsxul0olQqsYlV1FmkGJ1iXt+lZ/c9s+mwuEhQn5qM93BxJhQQHg+jLTokFotJTU1FJBIxb948Hn30UaA3kjDSWLp0KUuXLvX/npGRQXl5OS+++KKfDKxfv54jR45QX19PQoK3G+jJJ59kzZo1PPzwwwOitqeDs2TgNHC8AkJf0V19fT2hoaGjtpo9nZoFvV6PVqulq6trgEnPUI47WmTA4XD4SYBarWbKlClERkZSXl4+oiJAJ0NfMqDX66mqqqKnp4e0tDQETQYfVXaSrG8hJlSBJkROVLCcuDAFCtngD9K1JfU8tbFX8OeB87P9ff5bqg2c/4J3Bb14XBQ2l/e4189KYlFOFF8ebOWv31bx+Pda8hPDkIhF/HF9MzdM7CfjKxJRlBVDUZZ3onZ7BLZpDdz6wSH/Nlf8pwO1Qs+sWBHf1nmYEwcSqZRFaUq0RjdXTIllR4OFQ80mf2sdQIPRxrIJ0X6ZZJ3eit7sCIgy9IcgCGiCZcclAz6kRaq4ZV4KBouTv67IparDzLObak74ntGAWMRJz/W88VHEhCpQScUsnxjDfV+WkxEVRL3Byos/1fLJTdP82/ZP1YD3maFSqVAqleTm5vpf94Wt125vJEbhJl1h44JUuHXtFm8Kabp6yAVwp4MzuYBwrBQIu7q6mDhxov93XyRhLNDV1RUQrSgpKSEvL89PBACWLFmC3W5n9+7dLFy4cMSOfZYMHMNItBZaLBa/RoBGo2HatGmjaoM5XDIgCAJtbW1otVosFssph7hHIzJgt9vR6XTU19cTERERULAI+K1VxxIWi4XS0lI/Cdhp1qASRZAYrqK2s4F/ldRx64J0cmNDKGvuoanLhsPtwXcniUQiksIVXF4Qy7ysSL442Mq8zEjCg2TIJGJ+vLMItUrGQ+sq/YY435f1rsb/8Hk50CshvDwvhse/17J4XBRiEXxVbadD3sylBYMXUErEIuZlRfLxjVNZ+doeHjg/mw3len6q7uTbOi+x2toCMcGwaqKSyRo76UIzCVF2fpYgZ22FFKtbjFolY0utmXV9Wv4ONvWwoayDn01LGHBcH2QSMe//fCot3XYW93Ml7IuaTivn/KMUiQjyEsLY39hNaqRqUIOmwfCX5Tnc/3XFkLYdDL7ugzqDjacuG8+cjEh21Bj5+nAb0SFySnQGXlw1iX/vasLh9vg9G3yYGB/ChzdM5dlNQ1MEHaxmQC6XI5fLSYmzkZ8YhtPtYXtXI6W1bSzICGVdHXxf1czUaDHnJzrxeLwFcL46hJHot/cZKJ2pkYGxVCD8X6gPVldX89xzz/Hkk0/6X2tpaQkoNAaIiIhALpfT0jJQoOx0cJYM9MFwhWZ8aQJfvr21tZW4uDhmzZo1wEt8NDBUFUJBEPyCPE6n0y8ZfKoDayRrFWw2m58EaDQapk+fPuhAHKs6BZ+rYXt7u1/B0FfkWSQzcvUbu7hzUSa7jrXAfXOolS8PtPDnFeO4emayfz91nRZue/8AE+NCkIoEDjaZuG1+Gia7i4/3tvhdBNcUJfmJwMnw9aE23l6dj1gk4okNWv46N4iH1lfzwZ5mPrxh6nHflxsbwkWTYzFaXYQqJXx+cyEZUUF0WZ3MfaqENrOLOpuC3FgNB2wufjY9ho1HW5iVbiNfA49u0aOSgNUNGiUUJSqIC1MSK3dgMpkC7KgHIyWxoXJmpoVTWmNk8bgonG6BqclhZEYF8eC6Stp6vBEIt4D/ugyVCACnRQTAWwuQHKGk3mDj7k+OsvcP8yjO0VCco/G7TR5p7uGuRekA/PacDB5aV8m0FG/F+aSEUP70VTmxoUNbPQqCEDBh99hcrHl7P5MSQpFJxDz+fXVA/URGbBg9NhfxER5qbR5mz52Jx+UMMAoarN++b9HiUDwAfOPrTCUDY2VU1H91Plw88MADPPjggyfcZufOnRQW9jqNNjU1sXTpUi6//HJuvPHGgG0HG1Oj0VJ+lgycIgRBwGKxYLfb2b59uz/f3vfBONo4WbjeJ8ij0+kQBGFEChd9x7XbTxxOPRmsVitarZbGxkaio6MH7Vroi+OJDo0UfCTAlw4ICQkhOjqarKws/zbTUtS8eFU+BouTTXfNZU+9kaRwFeWtJu759BBPrZzErAzvQyRereTFK/Mx2RyYbQ4unBxHt83FUxu0/HFJJle84XX08wkLTU4M5UDj8XvhZRIRTrfAX9ZVcd64KOakBLO71cmWu2dhG0Lh3V8vyKXeYGXllDi/YJBaJeO6mYlsrTbw2YFWwFs4+MJP3kr6V66axFObavjZzAymp6q56OXdTE8NZ9WkUN7Z006Kso3dnbX+CQigtraWsLCwADtbu8tDdIic88ZHsalCz7+uzSciSMbOWiOz0yOOHft/h77pEICl/yxlVWECl0+JJ0guYWGOhl/3kVX+9KZp3LM4k1e21hGmlJKmCeLPy7IH6CgcD/0jA3KpmF8Xp7GnoZsfKvTEhSmICJL5fRLuXuRVWRQEga8Pt/H0phruWJCGRqMZUCU/mHJff3nf/iTBN6mcyWTAZ5s+2pEBQRD8OgOnittvv51Vq1adcJu0tDT/z01NTSxcuJBZs2YNKFKMi4ujtDQwqmYwGHA6nQMiBqcLkTCWidgzHE6n86QTjs8FT6vV0tPTg9vtpri4eFgaASOF/fv3ExoaSkZGRsDrvl78mpoaJBIJGRkZIyrIU1NTg8FgYMqUKcN+r8ViQavV0tTURExMDJmZmUOKotTW1qLX65k69fgr4FNBXxLgszZOSUlBp9PhdDoDcoc7awxcs3Y3c7M0TElSI5OI2FvfxYtX5R+XpbvdbpxOp//aGy1O/v7fauZlaQiSS7jtg0NkxwQHyPCOjwvhweU5vLuzkc/7TJTLJkazdHw0BouTbZUtrEz3MHFSPvWdViYmDD8StbPWyPdlHVw3MxGpWMSj66vZUK5nckIowQoJJbpeAaCs6CAMFid6s5Od98zxtx76JiCj0ciRI0eJiYn2682LRCJ2GhS8dcSb3lFKxVw7PZ6KDitPXzYBmUTMV4da+XB3M3sbBjcI+l9gKBbK185IRCkVs2ZWsl/u2Qen24PB4iSmX6SgvcdOj93Nnoo6avUmfnNBIcfDT1WdNBhtfHe0neuLkljQR9eh3mDltg8OMTE+lMumxJEUriImVI742D3oi2a8tCqPOZmRg3oA+P71tRxWKBTU1dVRVFQUQBLOBDgcDrZs2UJxcfGo1jQIgkBqairr169n+vTpo3YcHxobG1m4cCHTpk3jnXfeGUDE1q1bx4oVK2hoaCA+3tt19MEHH7B69Wra2tpGtIDwLBnogxORAZ/2vW+SSEtLIz4+nh9++IFzzjlnxKx6h4PDhw8jk8nIyckB8JsH1dbWolQqycjIGJVe/Pr6elpbWwPCXCeDyWRCq9XS0tJCXFwcGRkZhISEnPyNfY7Z0tIyYgN0MBKQmprqX3lUVVVhtVqZNGnSCfdTqutk3eE2/m9ZDlLJwIdUfzLQH/saurj2zf0kqBU09RO72fabBsS7tgAAIABJREFU2fxQqef+ryr8LoWvXDWJ/+xvYd3h3vx9VnQQz66cSErk8IxVFjxdQqfF6U8bgHfCEotFKKVi1m5vIDlC6dcT+NOX5dR2Wll7bT4SsYguq5MSnYEDjT1MTQzhyfVlrJ6bSUFSODq9mXmpwRi7TXx3tB2Jx8GTO3oJz82TFSzOCafTJeOub5qIDVWg1Q89NTCaWJEXg4A3LXMi9DWZ6gujxckVb+zhsYvHU5DU+7De19DFSz/V+ZUSL54ci0cQuHxqPJMTw/yTOcBLP3k9EHy4b0mW31sCwGBxsre+C4/gbVNt6bbj8ghkRgUzJyOCf+9uotvq5OELxw04P0EQeHqTjopWM09emOEnBl1dXXR2dvp9E/qr9p3IV2O04avfGcmCucHgdrvRaDSUl5cHRAVHA01NTSxYsICUlBTeeuutACIQFxfnP5+CggJiY2P5+9//TmdnJ2vWrOHiiy8+21o4mhjsJne5XDQ0NFBTU4NYLPaH2sVisT9v43Q6/ydkwFcz4KvAr6urIyQkhEmTJhEVFTVqg3Y4BYQ9PT1UV1fT1tbml1s+lVTKSKUJfJ0UVVVVmM1m0tLSmDZt2oDw41DrR2amR7L+SBudfVaCN7y1BwE4d1wMF02ORjzIfpxuD+/tbOKJDV5PhYU5GtQqGS9sruXJS8fzm0+PIpeK+bGy008Efr0wjVnpEcxKj+Duogi+3lvLFYum8fWhNlat3cu238we8nX45481/p7517bVUZiiZn6Whug+q9nb5qfy0Z5mHvve24//2YFWLiuIw+Z0U2+w8dq2evY3dtPSbedt71Xj2R9qMdm1XDg5lmUTY9nX6uCZ7YYBx3/5gJ2X+0Q9fERgXKSEuanBvLb3+JGCgqQw9o1iJOGrk5AAgO/vmHHcv4UHyZifpeGnqk7aeuwUpqi59YNDXDgpll11Xcgl4HDjT498cbCNuDAFCWoFL185CaVMwqyMCLZUG7hsShwZUUFkaIJweQSkYu+YjgiSsSi3V5K32+bi/V1Nfn8GX5GjTm/lveu9ETyLw81Xh1o50mxi3ZF2frprFnKp2K8n0tXVhclkYvbs2X7JbLPZTHd3N83NzVit1gG+Gr6Ug1wuH1WSMFadBN3d3Xg8ntOqGRgq1q9fT1VVFVVVVSQlJQX8zffskUgkfP3119x6663MmTMnQHRopHE2MtAHLpfLP8n1NeZRqVTHXWVv2LCB6dOnj2i4ZqgoKyujvb0dm81GREQEGRkZY3ITt7a2Ul1dzezZx598uru7qa6upr29ncTERDIyMk7LEtSn3Dhr1qxTev9gJKBvJKA/dDodXV1dFBQUnHC/Fa0m/rGpmt8uziZBrUQuFdPeY2fuEz8RopBQnK3hoeVZSKVS6jqtdFqcdFmdbNMaBsjuFmdr/H33PqycEkeJ1sBr10wmKbz3+rW2tlJfXz+s6Exf/OWbSqxON78qTuOaf+3jwsmxvHbM3Adg7x/m+SeevqhsM/OHz8v8kr//tzSLK6Yl0KA3cc8HuzhoGJkQ7tQYCXvaBhLOuBAp01PVqIMUvLPz9GSLh4OHVuTwp68CCxWvL0rijuI0ZINEhH73n6PcNCeFw809tPXYOdxsYlOFfsB2PvxpaRabqzp54tLxdJgdbKky8PB3VYC3VkUpFbNVa+DOhencMDt5wPt9qQEfFFIxdpeHJy8dT43e6retBrhgUgxLx0cHSEqDV0yrvLz8uGPM56thMpkCUg1WqxWpVDpoJGGkSILBYKCsrOyUx/9QUVNTQ0FBAXa7fUzIx5mE/7c+7RBgs9n8GgFqtZr8/Hw0Gs1xb+iRMCsaLnx598bGRuRy+UkdDkcaJ4oMGI1Gqqur0ev1JCcnM3/+/BGppzjVboLBSEBhYeFJB/pQjYpyYkO4ZX46W6v0NBhtHGrqZkeNdyX89OWTuOmdfXx1qI0Xrsjj9ZJ6dh+zJ75pdjL/uHwiv/roMNdMT8TqdA/aVfDx3hZmpYez7Pmd3DY/lWtnJBKsOL1ha7a7+OpQKxdMiuXez8q4+5wMfv95WcA2U/72E2+vzqcgKfC+yowO8hOBmBA5K/K8mgYxoXKuz/Gwn2QONPb4awDWFCUNcF/sj9+ck45SKmHdkTZ/0dxgRACgxeTiy8PHn1RPFYvHRQW0dfbH/V9V8NtzM3jiv1r/az7BIYArCxP45nAb3902gy8PtvHtkXa+PdLOrfNTuXF2Mg9/653Y+5ooAfz1ghzsLg/lrWZyY0Oo0Xv1Cjb2IQ6z0sP98sjPbNJx3vgokiMCibVIJGLP7+cy9dEtgDfSJJeK+c2nRwO2iw2Vo5RKBhABOLn6YF9fjf7v60sSOjs7qa+vx2az+UlC/xbI4UrpjlUngdFoJCws7IwsohxtnCUDfdDU1MT+/fuJjo4+botbf5yq8M+poKenJ6CFMTMzE4PBMOamGoORAYPBQHV1NQaDgeTk5GGJGA31mMNJE/QnAenp6aSkpAyZ7Q+nzTQvIYy8hDAeXlfO0ZYe/rA0h9RIFYl9VvI+4Z/leTHU6C28uq2eZ1ZOAOCdnY2D7teHCfGhZEQFsU1rwOHy8KuF6cNug/XhzdIGdB0WrE4PH+7xqg4OVrz3f0uzBiXAYpGITb8uIkwpZW9DF8/9WINaJSNICj9qxdx4TjhV7Rb/9icjAgBPbtDx6lWTuH9ZNnd9coR4tdJvATxWOBERAG9BYV8i0B//PhblKXpiW8DrL2yu5YXNtbx+9WQeWJ5Da7edF78/yJ4WJ7cUZ7JsQq8Y2YayDla/vZ+LJwdWiff3STj/hZ3cuziTa2YkBrwuk4h5e3U+nWanP4WwKFvDnZ8c4Y9LspCKRTR22bhzYfqgn+FUpYglEgmhoaEDCoFdLldAuqGjo4Pa2lrsdjsymWxQknC8dOtYCg79LzQGzgScJQN9oNFomD179rAK28YiMtDV1YVWq6W9vT0g797S0kJ7+9C830cSPjLgK8Lra9s7efLkETfQgKGv1H2OkFVVVVgslmGTgOEery/uW5bLXedkcbipm4/2NNJxrGUtJVzOtGQ1expN/qK0a2YksqG8gxtnJ/PatnpUMvFxtfn/vauJS/PjuHxqPHnHugZONfQ6LVnNW6UNLJ3g7UqwONwcbApsaYwJkXPFCcSEfMp6M9MimJkWQb3ByrX/2ofeImbn+4cDtl2UoyEiSHZSLQWlTEJGVBCvXz2ZT/e3jDoZmBir4mibFc8YJUlvePeA/+fF6Qp+OzeKlLiQgO9xUa6GF4PziA1V8PvzMvloTzNavQVBgNzYYP78daV/28e+r0YuFXH5lPiAffSP5JwzLoobZidzpLkHk93N3y8df9xzHGkDJalUSlhY2IAUqsvlCkgztLW1YTabcTgcyOXyQUnCWAoOqdXqM6qTYqxwlgz0gUqlGvYNN1znwuHAN9EajUaSkpIGhNzHwiNgMPhEh0pLS/2V+KeiZDjcY55och4pEjDU4x0PQXIJ09MiOFKv5x1dO8FSgfsLRXSZWjjoEsMxfcL+KnY+InDFtHg+2N3rE7AiL4YdtUZ/9GB6qprXr/Y6BJ1KZMDqdJOfGEZUiByDxYnV6ab0d3NweQSe+6GGLqsTl0cYlqhJcoSK9bdN46sNW6hVpPFGSQNzMiKYkRbO4nFR6M1OPtnXQmqkiuQIJVuqAyf64mwN1765D4CLJsdS109w6M6F6TwzRHW/oeJwq5WlSR5abWIMDjE5UQrWa8emm+F7nZ3vdc2A93u+dX4qV0yNp6LNTFF6r+qmT93RIwj8UKHnnTUFXPfmPtI1QdR2WnloXRUPrfOmH/58fjaX5Mch6Vfn8dn+Fsx2N3kJoSckeDB2JkVSqRS1Wj0goul0OgNIQl/fBolEgkQi8Zs7hYSEEBQUNOIEwWAwjKpq7JmMs2TgNNFfkvh04ZvUfDoGqamp5OfnD7raHssUhe/c2tvbqaysRBAEoqOjh5R/Hwkcr2ZgpEmAD6cahu/u7qaqqop4awfTE9XUW8S8XAE76+yclxtBVffxV7zjNLIAIgC9le3f3zETqVjEgcZuHv6uitX5p5Yamp4azvTUgWFQp9tDZlQQZoebGr2FHbVGZqYN/aEoCALhCri4OI3ri5IJVkj8hXVJ4UruWpROqELK85trAPjFnBTyk8J4dpMOtUrKX1bk4HR5aOmxc6TFxL2LM9lT38X3ZR0jTgR8+LZBzPpf5PHVwVY+PNA5KscYCnyphHsWZ1CUHoHZ7mL1W/sDagv6ojBVjSZYxo7aLoqzI0mPCuK/ZR18ebCV8yfGkK4JIl6tQCkVkxkVxMd7W2gwWhEEr1aFT3SqP/7XjoUymYzw8PABYXqHw0FFRQV2u31Qc6f+nQ2n49vQ1dU15mnXMwVnyUAfnEpoaKQiA4Ig0NrailarxWazkZqa6pfBPdGxx4IM9D+3lJQUP1EZq4rb/jUD/UlARkbGaUks98dwIwM9PT1UVVXR3t5OcnIykVlT+PztA7g8AmKRd8X7+SBKe8FyCWaHl+SU6QfeR1dNUJIbE8L28gZK6m2kRwfT1uPg/De8BX+zqw/y8pUn1kIYCmQSsb+PvW9lel+BoaEiPCjwnhWJRPx8VjIf7mkiRCFlTVES181M4s6Pj3BubhS/nJ8asP2vitOxONy8UVLPqeCygjgmxIewp0bPlOButMSysUI/qAnR7Z/peHdNAWFqrxmUDwlhcpq6j6V5QsXU9Qy8F1ZOiuDjgydOZyydEM23R4aWytumNdBgsCEAr109GbFYNEDQqLXbzo+VeqxOD2+vTue7o+1Eh8i5Y0EaErGIf21v4In/akmJVDEhPgRBgOKcSATB235Y1mo6Lsn7X5OB40Eul/sNnjIzM4FeJ8G+kYSmpibMZjMulytAkrnvv5OlQYxG49nIwFmcGmQyGWbz4Ax+KPCJGWm1Wtxut983YCiD0qczMBo61eAdcC0tLVRXV+N0OklPTyc5ORmRSERVVdWY5fEAv66D2+32iwVZrVb/OY30eQw1MmAymaiqqqKtrS0glfOXr8sYHx/KwcZuPAKEKqRcX5REbJiCHyr1bNcZ+eiGqfzfl+XHXQECvHfERn6HG5nIw65WN2vc7VydouL6rFBMJhMTJiRgt9tHtM9bJBIxPi6Eoy0mHvu+mj+fnzMi+/3Z1AScboFH11fzxcE2KtvMhCgklLWYyI0N9p9/U5eNl3+q4+L8WF7dOjxCkBUdhEwiZn5WJK9uqWW7043edvwWxIo2M9Mf3zrgdR8RAAYlAsBJiQAQQARump3Mq9sGfh5fG+A/Lp+ITm9lf0O3n1BZnW5kEjEivMZTSpmYfY3d/Ko4jbgwJQVJYby7s5GDTT1MTVZz3cwknt6o48Y5yZw3Pvqk59cXfU2KajutbKroYE3RwDbG/wVcLldAQbLPSVChUAS0U/tIQt/2R4PBgNlsHuDbMJi5U1dX11kycBanhlONDLjdbr9vgEgkChAzGs6xffsaycmwP0HJyMgY4GkgEonGtF7BN1GUlpZis9lGjQT4cLLIgNlsprq6mpaWFhISEpg3bx4qlQqn28Om8nYigmQ8fulEntlQRUuXjZRIFYvHRfHkht6K9JvfP4jd6eHLWwq54KVd/td33TsXQRCwuzz88v1DLJ4QzdulDYCbq86ZisRlo729HY/HQ0VFhb/P21d05Wv/Cg4OPuXr8+ENU7E63by8pW5Y7zsZIbl6eiKX5MextqSeCJWULw+28eVBbyrk4Qty2dfQzZbqTqamqIdNBACq2i1UtVto6rLR0uNkTrwYmyzU39I5HPjMi0YKr26rJy1SSU1n7z7/tCyLlVPieWaTDplETGSQjCMtPdz7mZG2Hge7+pz3e2sK+GRfC3cvyiAqRM6+hm7e29nIuiPtJKgV3DY/jW8Ot3HdzEQWj4sa7BSoajcTHSIfNFXgdrv9kUiFVMymCj0eAX4+639PCIbaTdCXJPT3bbDb7QEkoa9vwyeffEJjYyNut5vY2FjKy8vJzMwck8WO3W5n5syZ7N+/n7179wZom9TV1XHbbbexcePGAMGh0SjSPksG+mAkbIxPBpfL5fcNkMlkZGdnExcXd0pVvCNNBjweD01NTWi1WgRBIDMzk4SEhEHPbayKF311ClVV3hBuTEwMaWlpoz5Ij0cGLBYL1dXVNDc3Ex8fz9y5c9lWa2LHnjZq9BYcbg/njo/m5nnpyKVinrl8Eg6Hg9313bxRUo9bEJgQF+rX5ldIvdd2Vno4P5+VzB+/KGdvfRdF6RHsqe/iYFMPVe1mrE4PSqmYVW8d5rnLJ5IUH093dzezZs3C7XYHONi1tbWh0+lwOBz+nGpfojBUm9uXt9Txn30thCmlXD4lntB+IWtBEOi2udCbnQjuoRPiILmE2xaksV1nYEftQZ67fCJ3fHSY+7702jVPS1GTrhm+QFV8mIKXrpxEmkaFWCSirLaZSl0tkuj4UyIDI0kEfOhLBAB0zXrWmiysLWlCrZRhsDj507JsPtzdzMPfVfGLOSm8stVLyK76l7fIMilCiSDAhZNikUlEvLgqj6nJXq+M+74sp8Fow2x3U5AUxpyMCL+qpN7s4PLX9uDyCFxWEEeD0cZfL8ghLkxJc5eNR7YYmBgbxDhzCyEKKSqZhEajjUXPbmdifCi3zk/F5nSj01u4JH9w2+zRwuk+40QiEUqlEqVSSVRUL1HyeWvYbDa2bdvGxo0bqaysJD8/H0EQGDduHI888gjLly8fiY8xKO655x4SEhLYv39/wOtut5vly5cTHR3Nli1b0Ov1rF69GkEQRlyKGM6SgQE4VRvjk6GvomFQUBATJ04kOjr6tAaUWCz2V/afTk+/x+OhoaEBrVaLWCwmMzPzpMZGo00G+pIAXySgu7ubpKSkMWHr/e8Dq9VKdXU1TU1NxMXFMWfOHL+Mq1JmZV9DF0eae5iWEk5Zs4kZqRHIpb3X73iFez68cpW3Q+C722fQafbeT7MzIpmaHMae+m5CFBJSI1VIRN68cH6snAxRr2TpYC1cvpyqyWTCZDIFhEuDgoICCMJguvN3LkznzoXp1HVa+ccPNb2KhH3+C1VKiQqWYzTb2K0V44htZ+nEmBNe23qDlbUlDWRGB/H1L6fzr+0NPHrROP74RRkeAXbXdSGTDD4utv5mNm6PwP1fVQSoNZ6Tq+HpyyYEnL8mSEpPsITpE2P4bH8LJTojkxNDeXblRFweD4uf23HC8xwLvLPPAHjTDb5CyQO17dR2uShKDUVv9tY59I1SqGQS3t3ZyLQUNbMyInjs+2oig2SkRqr409Is2k0Olk2Modvm4vODrXSYHHgESItU8clN07jo5V3+Vs9//FDD9UXJvLqtjlkJMrY023nnwEBL6H0NXfxQoWft9nou69fOOBYYLdEhkUiESqVi2bJlLFu2jJKSEh555BGuvvpqqqurOXz4MLm5uSN+XB/WrVvH+vXr+eSTT1i3bl3A39avX8+RI0eor68nIcFbz/Pkk0+yZs0aHn744RFXvT1LBk4TJ4sM2O12v2+AWq2moKCAyMjIERtMp1NE6HM31Ol0yGQycnNziYsbGuMfSTLg9gh0mLwPvWC5BEu3IYAEpKSkIJFIqKioGLPUhC8yYLPZqK6uprGxkdjY2EF1KOZmaZib1cdVrtPCfZ8f4blV+cM+rkwiJjasl9i9ctVkxCL48mArb+9o5OL8OOLDFOzWdfBhlYvO0BYunDS4GZVcLkculwfkQH0rIV+41GQy0draisVi8SvM9Y8kpESquG9pFg6XJ4Dg9IXNZiPTqWNnU88JyYBHEHhhcy33n5+N6lhh4qrCBKxONzvumYvR4mRfYzf/2dfC+ROj2ao1sGpaAnFhCh78ppJff3Q4IHQOMDU5jOV5Mby2rZ6b5qQEfFbfdVmRF0uJzojF4eb1kvoBrZ1jifQw0PXTeUoKV9BgtKNRSdjbYuea8XJmRfXgdBooXqDCJZUTGRaBKiiYwx0ubpydjMXhpjhbQ73Bxuf7W8iICkKrt3CwqYeXttSx+965jI8LQSoWcc9nR/3CSNNT1eys9V5DX5omQa1gXR+jrBCFhAlxIdwyL5XffHqU5XkxuAWB62YmcfuCtLG6VH6MheiQIAj+AkKJREJOTo7fBG400Nrayk033cRnn302qF9LSUkJeXl5fiIAsGTJEux2O7t37x5x06azZKAfhhsZOJ7okNVqRafT0dDQgEajobCwcFQKU3xFhMOBL1Wh0+lQKBSMHz9+2O6GI0UG/r2zgR8rOihMDeenilZyg+0URbv83QF9VwO+jgKb082uWiMz0iI42NTN1OSRFwlxuVy4XC42b95MTEzMkMSo2nrsxIQqiA1TEhE8Mjk9Xxrh0oJ40jRBKKRinG4PM1JCkVv1vLKljtyYEMbFDU0oy7cSUqlUREf3Fph5PJ6AVINer/erxcnl8oA6hMHatwRBQNsNQtCJx05Fq5noUDm3/Psgl+TH4XB7qO20snhcNJur9Nz9iVc+V62S0mX13tefH2hlcmIo189KYmO5t9/+mmMh83sXZ/LSllqq2i28sLmWt0ob+N25mSzIjmRvo4lSnZP8KR5e3eYNtftqCgCuKkzgvV1NAZOjD8XZGpxuj99hcCTRnwgANBi9E7FEKgHc/HzxFKJC5Njt9oDvxdTeSJTZzH90sLEpkJh9vLeFCXEhHGkxATDtsS3MzYwgJULFlCQ1kxPC0JsdtPYEdlVs/+1stukM/mufFR1EUriSEIWU9Uc7+PHOIh74upLb56cSrJD6n4//f0oTDBVjVUAoCAJr1qzhlltuobCwkJqamgHbtLS0EBsbqEYZERGBXC6npeXEIl6ngrNk4DQhlUpxu91+9S6TyYROp6O5uZmYmBiKiopG1cTId/yhwOVyUVtbS01NDUFBQeTl5Z1yqmKkyMCUZDUdhi4+2aFF2+XBGK3g3pULMDs8uAUR9XoLpbpOVk5N9K/WJWIRN7y9FwClTMys9EgevGB8wIr6VGG329FqtdTX1+PxeJgzZ45fZlUQBJxuYdDVcWu3nflP/sR7NxRic7qJCRk5KWYfpib39j8bQwSUXSJ+c9nx3fOGA7FYPKikrE8IxhdJ8LVvud1uVCqVnyDI5XJeK5ewcNyJiWlVh5m1JQ1Eh8j501cVTE0Ow2BxkhMTzJ++7A1Pr5qWwLs7G7liWgJyiYgXf+otZPQRAcDvqPjCMbvfWRkRvLqtjppOC69u9Uoh32JxouzznalkYm80yuzg7kXpXDcziYK/9Zr8ACSoFdyzOJOnNmrxCHDN9EQe+KaC7TojWdFBAZLLI4m2Hm8Xw6J/lPLoReNYmKNBo9EMKIZrUNSypECgqdPMkRYzEsEFbiffNniJwKW5QZjdYpIjZVg9Ao1GKxwb598cs79ekRdDvFpB0RPbeHdNAVfkSPmgwuUnTDPTwrn//GxEIhG/nJ/CExu0KKUS3IJATKicG2enMBYQBGHMvAlOlww88MADPPjggyfcZufOnWzbto3u7m7+8Ic/nHDbwZ7No9U9dpYM9MNwL7Kv+tZgMFBfX09bWxvx8fEBOeXRxFDSBE6nk9raWmprawkODmby5MmnbXF8umSgorWH90u0tHcacLndnJerwSJS8lZpAxP+sonJiWGkaYL44oCXAf9sWiJ6u4glL+7FYO39vN6q5w42PfkTX95aRE7s0KWk+8LhcKDT6airqyMyMpL8/Hz27dsXMDle96897KgxcOX0JIwWJy6Ph6dWTkIuFfPcJu+kdNXru7hwchxrZo3ug/JURZGGi8GEYPpXZvtSDb/Pd/NFXSufbOyiy61g8ThNgMUteMP1yyfG0G5y8EOlnvPGRbPipZ2sLWkgLkzB7QvSSIpQejX8V+VRkKTGIwiYHW7eKm1k2cRoHC4PG8q99QIzUtXkxobwn/0tJKqVbCjrwOEWqGq3MDc1mFVZcN2b+2jssnNZQRy/nJfKNq2BZzbpWH+0gxmp4dTovRN7dIgcu8vDzLRwQhRSzA43181I4rHvq/nP/hZW5MWwXWdkLHxeP7+5EIPFyd2fHGGr1sC5uVFcNT0BlUzC9hoDz27qJUd/Pj+bB7+pBHoJz6flPrJiYlWGm5QwCaHBKqpMUh5fmsA93zaxt76LjRXesXT1MYIll4hwuL0f8J8/m+jXmIgLUwa0mP7tu15NhtGGx+NBEIRRjwxYrVZsNttpOb/efvvtrFq16oTbpKWl8de//pXt27cPqPUqLCzk6quv5s033yQuLo7S0tKAvxsMBpxO54CIwUjgrIVxP/S1MR4KDAYDpaWliMVikpKSSE9PPy2r3uFi9+7dREdHk5IycPJxOBz+eoWwsDAyMzNHrF5hz549aDQaUlNTT75xHwiCwONfHyRJ0sXWBgdqdRjnTU5le42R2ZmRbKvupLnLxk1z00iJVPHejgae2VjNJQXx6Nta2dzkYWFOFJsqvMYyr1xTwILsKHpsLh75tpxHLpowrM/nu0a1tbVERESQnZ2NWq3GarXy448/smTJEv/+uqxOnt1YzeLxMax5c8+g+/vNuVn8Yl6a/3ePx4PD4RhRzXfwKh0eOHCAuXPnAvDUBi2/Wpg+qO3wWMBqtVJSUkLahAIe/28NW2tNXJytYFmSG5vNhkwmG5BqWPjCfqQSMZZjoktpGhUqmQSjxYnN5eHiybH8cn4q/9hUg0cQEPC6Iz67qcZ/3MhgGSJAbz5xEW/f8PnNc1N4fVs9giAQJJfw2MXj/UZSfZEdE8zNc1NwewS2VHf6WyCzooNYnhfD26WNKKRiHr14HEeaTXxf1u53XRwK4sIUfHPrdPRmJztqjNz3ZbnfoyI+TMHCHA1XFiYEtJ36sKYoiSC5hDe3N/hFq06GRRkh5EZI+OBwN522Ez/2LyuI4/7zs6lqt+B0e/hoTzOxoQqyYoKYlBDK69sauG9p1pA/6+nA4XCwZcsWiouLR3wgsW0KAAAgAElEQVQc9UVzczO5ublYLJZRf4bX1dXR3d17rzQ1NbFkyRI+/vhjZs6cSVJSEuvWrWPFihU0NDQQHx8PwAcffMDq1atpa2sb8YjzWTLQD263+6QrbZ8jnlarpaurC0EQmDJlSkAOdqywb98+wsLCyMjI8L/Wt2gxPDycrKysEc+D7d+/n9DQ0IDjngiCINDW1kbJgQru3eLNWV4zIwmLw82n+wIleGekRQACL15ZgNPjYcGTW1g8PoZIl57vG0U0dzu4eV4atxdnsOyfJTQYvJry189K4dN9TRSlR1LeamJSYhi3LkgnNTJogGa70+mkpqaGmpqaQa+R3W5n06ZNnHfeeQEPoB8qOthY1s7kpDBWTk3kro8OsqGsHbvL24YYopCwZlYK546LYW1JLfmJYcxMDSMlcmCB0Omgu7ub/fv3M2/ePABWv7UPs93Nk5dNIDXSq3cgFYsGECOz3YXDLRCqlI4IcXB5BHpsLhQ4KS0tpbi4mI/3tvCXdV5TnZ33zEEqEgJSDb7/369wc80EBcqgYEJDgqm3SPiuysyyibG8s6sJh8vDnvpuLiuI44HlOQiCQHO3nds+OERrj4Mem4uVU+L4eO/J86civBX5dQYbOTHBRIfIUckk/Lf8xG6FEKgS6cPCHA1bqjtxugVUMjFBcgmTEsL4oVLPMysnMD4uhGXP7xiSEdKcjAiWTIhmRmo4Xx1q5Z8/1vqFiPqiOFtDaY0Bq9PDA+dnU2+0YXG4UcrEvL+r6bhGV33xt4tyWZQTxStb63h9Wz050Uoq2m2Mj5JxtCOQUCklkBgmA7GYar2deZkR7KztwubycGl+HOeNj6IwNdxf1zJasFgs7Nixg+Li4lE9TllZGcXFxfT09Iwq6RgMNTU1pKenB+gMuN1uCgoKiI2N5e9//zudnZ2sWbOGiy++eFRaC8+SgX44ERnwTWharRaLxUJqaiopKSls376dCRMmBPSvjhUOHTqEQqEgOzsbm82GTqejvr4ejUZDZmbmqNlx9j3uieC7ZlVVVTgcDqzBcWxudPOffb3h/4pWE/saBu8Dvzg/nlSNir31XWyu1PObBQlkJERRp7fSYXYQJJdwqLGbTRUdBMklxIQq/GHfRblRbCzvYEZaBHaXm/19rHpz1DAuSs4ti3LJSIxBJBKxs8ZAXJiC5MggnE4nGzZs4Nxzzw0ITzrdHm5+dx9bq3u17G8vTuefPwzUzxeJ8IeUL5wUw31Ls5FLxUOahA839ZAUoTyujnxPTw/79u1j3rx5uDwC931Rhs3pocPs4NL8OOoMNuLCFFxZ2FuJLAgCN713kNIaI89cNoFzjiNMM1SU1hi48d2DAHx102QO7d/LVmu8fwUN8MUthaRrBhIhQRDYcLSVDWXtTImVMSHcTY/JjNViYXc76CwyLp8YRptDxuEOF/csziRYpaS1xx7QEnhlYQIeQcBocaGUif2Sz4nhShalKXl7n3HQc5eKRXx041QueWW3/7WYEDltJseAbd9enc+XB9tYMj6aG949gFQswuURePzicdzzWRkqmZjzJ8aQEqni6Y3e++CNayaTFK7kvH+OfPvilYUJXDsjkV11XTy5QctdC9MxWJwYrE70ZqffGTMxXEmjMVDXYHleDBFBMjrNDv520TjEIhE3vLMfkUhEaY33WuXFB3Oo2UxhgorLchU0dFp4fr+Duya5SY1Q8fgeF5dMCOf5HZ2EKSU8tCLXb5k8GuhPfEcLJSUlrFmzhsbGxjFvnRyMDIA3gnDrrbcOEB0aSXt4H86SgX4YjAwIguBX5HM6nX7JYN8kUVJSQnp6OnFxcWN+vmVlZX5Xr4aGBqKjo8nMzBzVokWAo0e9lcfjxw9uierzM6iursbhcJCRkUFSUhISiQRBEKjttHKkuZvM6BBy++T5XW4PP1bq8QgCdZ1WHl9fSUSQV4wF4NNrs5mYlYrd6aapy4ZULOL9XY0kqJVcPbNXKa2spYc3ttXy+f4TrxrvWJhBl9WJIMDbpfU8uTKPYLkEq8PFgQMHuGbpHJI0vednsrm444MDbNP2kgGVTMyyibEDIhx9zxtgflYkm6s6SVAruHF2CpdP9Yb+XB6B5i4bSeFK9jV0s73G2FsQlx7OlYWJLMzRBOy7p6eHvXv3Mn/+/N5r5xH489cVIAh8cbCN5AglD63IZVqK2v+dPPhNJZ/sayE/MYz7lmYx/lgXwsmKkgRBYEu1gS6bk+JsDSEKKQaLk/lPlwy6fWSwjE6zk9eunnRCw6OmLhtL+kyYN89JpqPHhkzkZmGKnFCRnfKWHr6rcRAkEyOTyRDE0gCHwfFxITQYrCzKjWJBdqS/Kn4kkRapoqbTSnF2JD9UdlKUHs52XS/RUMm8JG9CfCgqmSRAA2GoyI4JZmJcCJ8N4mEB3qiTyd4boehbyPjCFXlMS1Hz7ZE2ajttA3wdZqaF89oxt0vwuhnub+zm2hlJAOyuM6KrLGf1edOJjfDeE/d9Ucae+m7euGYyz2+u5fMDrZyfq+aKiSHIXBau+qK30yI1TMSvZ4STG68OKCodiUm1s7OT8vJyZs2addr7OhHWrVvHAw88wJEjR0b1OGcqzhYQ9kPfm9fj8fglgz0ez6CyvDC6NsYngsViobOzk+7ubuLi4pg1a9aAavDRgkQiGfQzn4gE+CASiUjTBJE2yIrR7RHIjA7m1S015CV4CY3B4iRercBhd9B5bHKtN1hZ/vx2/rAkm5RIFSunJgbs59KXd+AeJEYbGyKj1eTkqulJSMQiJCIR87OjyI4O5osDzazdVse1M5NIUCsJkQp8tr+ZTqsbqViEAGzXdlJxzEsgOUJFvcGK1enhznMyGR8fysPreivil02MpdPs4Nsjbf42NoCmLju1nVYajTb0Zoe/eMuHpROiefnKPJLCVXx1qBWTPZCc/vPHGl7eUsf8eJAkdjIuLgRNsBypWMT1RUn87j9Hj10jG2ve3s89izOYEBeKw+1hQ3kHj108jnCVlJ+9vodL8mP9PfrjY0OwuzxIJSJiQhXMSA0nXaPC7vJwySu7aTc50ATLqGgzY3V4iFcruHF2Mq/10dtfNS2BNUVJJIYr+fJg6wnD5D02F0v+uYM5GRH+Fr6Xt9ZzVWECdy7K4WiLiZs/PEx2dBC/WJTLeI0Um8XbZnd1roRukxmDxcm/tWbkItAbuwnxKHnqokzu/txb0JmulpCfGnXcCbYv5mZGBNgrT04M5UBjDwA1x2yVf6j0ksDtOiOJ4UqmJYcxKSEMo9XJ85tr/atriQjuW5rtT5cMBZVtZl5alcdDF3hFbiY9vBmAB5dnc8GkWGQSMbOe2IrJ7mZNURKtPXY+vWkajV02fqjo5FcfHcblEZicGMqvitNoMNiYlqLmvi/LKa0x8td1lf502bQUNZlRwdz+4SE++0UhyepofjKWoQn1WqQ73d7anB8qO7n1g0NUtVvQBMtYNTONKce6Wv7ibuH+r733e223wN3/NbBmko3Z0Y1YrVZkMlmAm6Dv5+FanY9lW+H/q46FcDYyMAA+oRmfZLBEIiEjI+OEinz79u1DrVaTnp4+JudoMpnQarW0tLQQEhKCTCZj+vTpY3JsH6qrqzGbzUye7F1t+EhAVVUVTqdzUBIwFBxu6ubSl/8/9t47vsry/v9/nj1ysvfeIQRCAmGFJUNABfdCq+Io1Traaq2jah2tVetsaVGrVVGpWmcVlA2yIYxAAoTsnZN5krP3+f1xck5ysgiQUD+/L6/HIw9G7nOu+9z3fa7rdb3H6+XeKeanhDA5IYh75iRR3mqgorSEH2qcXD89lTlpoWw91YbD6WJRVn+RG4fDwVubivnb3h6jmL2/m41KLuG5dSVsK21j9+/m0Kqz8Ny6Ejae9HWWU0iEPDzeynWXzEUul6Mz21lbpGZcjD+3rz7MFROiCVJI2HiyhVmp7urjk2odB6p7dosxgXIau3rCtIvHhhOkEPPZ4Z4IQrhKyh35cfxlU6X3mN9dnEK4vxRhL2Jqtjl4c2ctVoc7L7zhRAutehv5yUFMjAukRW9hYWYY+cnBCAQC7vusmB3lPdGLgXLQ4F60VPKenv7eiA2UYXO6cDohI9KPPafpuQ+RuTA6RHy0PJfkMOVpc8l2p4ur/3mQrCiVt93Ng1A/CblxAews7/BWtwPcmBfN5IRAJsUHctmqggE/k7/ExWM5TkL8JAiFQr6ukzMrNZgnN/SQlsFSApsfmMZDX55AIRWxv7qTZXkxnFTrOdWsx9xnrGlJQd7F/0zwULaDeTOn4XC6eG9vHU9emo7GaKO02UBMkJyMCHcXksPp8ql1aTdYmfvGPgCCFGKeujQdg8XhXZB749rcKK/KILiJzcfLcxEIBGQ/v4OXrx5LWriSYKWEUD+pV4533rx57K3S8O6eOh/thSsnRPL7xWkope7vs8vl4s8bKvj0kJvgxgfL+fC2XNYVt7B8elw/iWzP3y0WCzKZbECSMNhc0dTURFNTE5MmTTrja30meOutt9i6dWs/JcD/V3CBDPSBXq9n586dyOVyUlJShiXGU1xcjFQqHVW1KnCHhisrK2lubiYmJoaUlBTa29tRq9XnnQxUV1ej0WjIzc09ZxLwt60V3t1vrcZETKCcNQfcPeLv3TaRmanuEHlhYSF+Kn/KzCoe/LxowPfa/8hsutrcTov1JgmvHLZisbvY9OsZgxbxGSx2Cmo62XiihcVZEWREqnh3VzVTxTXMnj2bCo2d6/55+txvcpiSVp3FJ5SbGiigosv3KxaiENFhGrgC/L45ifxjRw2pYUo+XJ7rtbB9Zl0pC8aEMTvNTTwMBgM79hYgih3HorHhOJwu1p9o5bH/lnDDpGgEgNMFjy5KZeupNkL8JPx8TRE35kUTH6TgwwP13p52gEcWppAd48+tq9366Ft+NQ2ZWEi9xkxxk46vCtV0mWw0dFl4ZGEK3x1rYWpSEHqLnS8L1Ty5MJFgXRXVshRW/ljNDZOieerSoetJnC4XThdMfGEnQQoxnb0IyZrbcymo6aKpy0xWtIqrc6KY/fperHYnuXEBHKrtYlpSMDt71W5EBci4ODOMjw80MC0xgClhDlL87JgEMt4r1PW7D4MhOkDGt/dMxmxz8sqWSpwul7cO4tGFqVwxIZIVa45R0WZk5Q3jeOjLEz73fDiYmRJMuEpKcZOOr38xeViv0ZntLHvvMNdPiubtXbXeMd+7ZQLp4X7M7pWy+eG+KRyo7uTpdT2RiY+W55IR4ccLG8pZW9zCG9dl0W6wUtVuQm+yINA1s2h6DttK271RrH/cMI456aFUthlZU9DAmAg/4kMU/OLfPd+/6clB/HZ+yrCErzy6FX0LSnvbDvcmCEqlkoaGBjQajXfjMVp46aWXqKio4JNPPhnVcX6quEAG+sDpdKJWq8+oBe/UqVM4HA6ysrJG5Zy0Wi0VFRW0trYSGxtLcnKyV76yqamJmpoapk+fPipjD4ba2lpqa929zjabjdTU1AFTKL1htTs5VOtWDvTseLQmG2/uqOLhhenMf30Xaq2FcdH+HG/Ssfa+6by3u4ZwfxkPXZxGUVERCoWCmIRkXttczuUTorh7TSEao425GaFMihBzoraF6zKkFJpCCPD356KMMBKCFQhPU7RntDp4Zu1Jnros02vIs2nTJvLz8xFKFaz4+AgHa858FzgQkgJFRCtc7FX37DQvT1eyr9FKq8G9IMYGypCIhbxy9VjGRKrQW+ysKWhAa7Zz69Q4/EV2CgoKvBXWeosdlUyM1mxnT6WGjw7UU9VuYun4CKQiIRNi/ZmdFuKVAPbgVLOefxc04sJFXJCCFr2FNr0VvcXBq9eMZeX2asx2J/891sxTl6bx5/XlOFzuiEar3sq9sxPZU6WhpsNIsMhGXloMKrmI9/fWe8e4NjeK3y5I8V5XT81IncY8YEvf2WBhZhjX5kbxz9211GvMBCjEXBQnITVIyJFOOZ8f8a3nSAwUo9bbGWgNn52k4vklaTSboEVvo7HLwoaTrYyJ9CPUT4pEJCA5VMknBxt9FAqfWJzGgZpOtGb7sCMG05KCeOum7GF3dhxt0LK2qIVPDzWy6sbx3PtZMddPjObzI00Ddj0MheRQBU9dmk5uXAAmg57lHxbSbBGzcEwYCqmQNQWNbPv1dMJUbo0IvcXOV4Vq9lZpCFZKfApF/3BpurcG5kzhsR3uG0Xw+GiIxWJEIhExMTFekqBQKEa8yO/xxx/H6XSyatWqEX3f/yu4QAYGgMViOf1BvVBRUYFerycn58y16IdCV1cX5eXltLe3Ex8fT3JyMnK53OeY1tZWTp065e03H2140gElJSVYLBbGjh1LXFzcsFpxvjnaxKNfHT+rcf9yzThSRe1uadyIBF7ZVIZQKOC7Yz2h0PxoIeVaIa0GO7fnJ/DY4vQzmjCatRbe2FLOs5ePRSoWsnnzZqZNm4a/vz8Gi50pL/44YB1CbwgAF6CSCtFbexZ7uVjIi1dmeiv4u0w2bn7/CLXd5jOzExQ0aa2Udzr482Q7emSIpQpy4gMJCvD37pI0Rhur9zcQIhcQb64ia3I+b+2sxWh18Jere4o5bQ4nBouDIOXp87NPfFvCt0Ut3DI1FpfLxZJxEWTHuus1DlR3cteaYwD85apMAhViPj3URHGjjla9lXHRKnJiA4j0E7LjeB2H2oZ/vRO6W/2Gg6QQBbNSQ/i4oIE3l43nl5/6kogrJkSiM9vZVtq/cE8kAEef27ZgTCjFjTqadf1TBTdlStnXYCEr2EVJl4iKLhciAVybHcJl4yK5/ZP+BYpLx0cwLtqf8lYDi7PCyU8OpqHTTKBCzFs7a4kOlFHeamDDiVZ0fRjIb+Ylc9eMwW2Cfyxr50/rywmUi8mJC2BMhB85cQHc+2kxN02JYU5aKNe+c4hpSUE4XS6KGnT8YlYCf9tePcQV7UHvmg0Pfj0vyUdh8HdfnyQ+WE5yqJKkEAWh3WQwJ9atILm7soOl40dWCMfjo1FWVobVakWhUKDX6zEajQgEgn5RBI+41dmShHvvvZf4+Hj+/Oc/j+jn+L+CC2RgAFit1jNSd6utraW1tZW8vLwRGV+j0VBRUYFGo/GSgMFaSTQaDUePHh31HlyXy4Va7Q6/2+12wsLC6OrqYubMmcN+j++OqXn4y5HZCQ6G8TEB3DMniaIGLRa7c0BC8POPjvDWzTmIRf0JTIlax9+3V9Kmt7IwTMs1c/Nos4oJUkh4d3cNYqGAd3fX9HtdfrQIu8PBhIRQ/nWwnS/vnkp0gJznfziFVATPLskYVFr0/X31vL61in/fnktItwPgR/vriPUTUNluZFKok5OtZhbF4Z30itqcbDjZyvjUOI7U63nikjSfroyzhdPl4rnvy/jl7ESvvPNJtZ4b/uUWWfrrdVnMSQ9l1qt7vLvQqyZEInA5CLa2Ig1P5K1d7ojRi1dmMictBH+5mE6jzSeMfa4I85PSZvBdyP1lIp+Fdn6yghlxcv60c+BaBz+piPzkYG6eEsOdHx8b8JjcGCWFjYNLD3tIX1aUHx8un4hUJOCjAw1UtBr5qruTJTcugEcudofROzs7+WD7SfzCY5kYH0hObAAWu5Pg05A2m8PJmoIGb6FoVbsRncWB1e7kP901KDNTgsmJDWB3pYZWvYW8hECsdhcVbQYf+WShAK6fFM1nh5oGHEsuFrI4Kxx/mZjkMAU3TIrhmncOseb2XDaXtPH7b09xy5RYrA7naVNBI4GSkhIkEgmpqamAO3prMpl8ogh6vR6TyYRYLB6QJAynaPHmm29m9uzZPPLII6P9kX6SuEAGBsCZkoGRCNW7XC46OjqoqKigq6uLxMREkpKSvDKug0Gr1XLgwAEuvvjisx77dOfVmwR4agI6Ojo4ceKET2vbcPH4N8f5qjtsOy7Gn+ONuhE73+zYAJJDlSSGKjFY7Nw1M5Gwbp8AdZeZYw1aHvjsGJEBMi7pVXi4el/dgO/32IIETrXb+Lq7bTA2SM47t0wkOlDOaxtO8NHBnir1q3OimJcZzo+l7Xx5pJEJsQEca9By8JEZSMWiIXcsxY06bnrf7begkonY/MA0/GRiqtqNPPp1CQ/OT2LNgXpsdjtRSgESpwWXzYRCBE6hmO2NAv56aaSPyt/ZCqfozHZe2FjOipkJJIUovNLHv//2FPfMTiQmUMakF3f1e90l8S7iExJ4Z7fvtZwQ68/K68dx0Rv7uDw7wie8fC7obVgkFwv7FfgNB9t/M51l7x0hNUxJUqiCNQWNfPOLPHQWOx8daGDjycFFie6dEkRjp4lvytyRxL/Phk6XksJ2IXq7kIRQJe8daGbtL6dwuK6L0hYDZpMJvbaTW+dNICv6zDp/nC4Xz68vZ0yEH3WdZuwOF+0GK48sTOW7omZe69Y4iA2UERkg43CdltW35ZAe7se+ag3bStvJjgngzxvKmZ4cxEtXZvL0urKzaoP04JYpsQiFcNWEKNIjRkd+/fjx46hUqtOqnTocDoxGYz9xq95mW30LF3unNZcsWcKtt97KihUrRuVz/NRxobVwBHAuNsIeNcOKigp0Oh2JiYnk5uaelgT0HtvhcIy4ecVgJMCzwJyLN8HM1FCClVIaOk2sP97Cc5e7xU9e21JOh8FGfkoI2TEB/HNX9Rm972/mp3LNxBj+tbsalVTEL2YlAW4ScMnKPT4KbXfNSCQpTEmgXEJskBy11sLYKH+mJgcTpJBw2d/du9j9NVpiQtw7bolIwLSkYHQ6HbsOHWOaXM+BMBmn2tw71K+PqvnjlVnMSg11C9Bscbe3Tf7LHu+4q24cj95ip0lrQWO08cBFSUjFQsZGqbzh7N8vTsNDRZNDlSzKCiPET8pfrhnH8xvKuWtmAgKnjZ37DpKZnUu71shHpypxOp0+RkJKpdI78Xl+ZDLZaZ8Tf7mYX89NZvOpNj7cX09auB9Lx0cQqBCTECxHIBDwsykxPLYojYpWA/d+Vkxjl4X1dQIiNM0IcNcUeKr1jzXoWLXTHU0ZKSIAvoZFZ0MEAOa+sY8piYGIhALEQiFp4Uqu+uchHr44hY0n24Y0JVpV4FsXcP9OyI128espSoQ2I3q9mlem2qk9eYQklYpxyX44nTLa28VefYczgVAgGHQnfkd+PHfkx9Oqs7Dgb/tp6LYjXv7hUQIVYi5KC+GXsxPRWxwEKsTsq+qkodPMyhvG4XS5ePn742wt09Bo8N0EPXlJGn9aX87LV49lbVEzP/bqUAGwOpwkBir4z+GmUZMnHq5JkUgkGtJsy/OjVqsxGAzYbDbkcjlr1qxBKnU7RGq1WqxW67Dn33PBunXreO655zh27Bh+fn7MmTOHr776yvv72tpa7rvvvn6CQ6N1bhciAwPAZrPhdA5/cuns7OTIkSNn5C/tcrlobW2loqICo9FIUlISCQkJZ9yDa7Va2bp1KwsXLhwRVy8PCSgvL8fhcPQjAR5otVoKCgpYsGDBOY33h+9OcklWBAdrOvnnrmpsDhfhKinXTopBIhSycnvlad/j6txoogLklKh1bCtt4+2f5XL3mkIWZIZz70XJXPt2/04AiUjAWzfn0mmyUdNupLNbeEglE7O5pIWyFgMZQQJKO11kRKoobdaz8toxiA0tPLSpA5OjZ0FdNjmWTw82AO40RUWrfkBp2OnJQVyTE0VMkJzoABnHGnQopSLe2FbFSbW+X+72xrxoLDYnBTWdaC0OrsmJYk5aCGsKGkgNlTOeGubNm4dAIOCTg41etcHeRkKeH4PBgNFoRCQS9SMIfn5+Q/Zxl7YYWFfcgs3h5JGF7lDt+3vraOgyMz0pmBkpwbz1YwXri5u4ZnISYSopyaFK8hICufuTIp65LB2z3clz35dxy9RYvjmq9vbrnw2W5cV4W9pGE89cls7KH6tP63sAbpGlxxelsXhsjwGYpzCu9061s7MTs9mMUChEqVT282sYKaGeneUd7KvWsKdSw/Jpceyu1HDVhEhmpg5swtPQ0EBbWxs5OTm8tLGCqUlB/Opz3/oej/Njb+J1Y15PuuG5JRlcMSGyn/T3ueLQoUPExsaOqKiby+XCZrOh1+tZvXo1hw8fZt++fWi1Wmw2GxkZGYwfP54XX3xxVFrGv/zyS1asWMGf//xn5s+fj8vloqioiOuuuw7okSIODw/n1Vdfpb29neXLl3PNNdeMihQxXCADA+JMyYBer2fv3r0sXLjwtMd65HkrKiowm80kJyf7qBmeKZxOJxs3bmTevHnnJFHpUVmsqKjA4XB4uwMGCzUbDAZ27drF4sWLz3rMyjYDWpOdNoOF5FA/tp5qparNyOUTooj0l+EwdrK7qIK3j1npGKKmMy5Y4fUnGAiz0kLZVd7OjJQQLh0XiUgkYG56GKGq/gxbY7Ty8sZy5o0J4/5Pj/HcJYn8YX0NU2OkxErN2KX+uKRK1hb39MVfMSGKb4+p+dnUOHZXdOAvF3PDpFj2VXWQGx/IkqxQ/v5jDd8ca8ZodXj707f9ejofHqjnnlmJ/GtPHVqzHa3ZxoHqrn758CsnRPLtsWZ6f1lvTXPw8PUXDTsd0DuM2pskWK1W5HK5D0E4pLZxvMXM8mlxhPsP/Fw5nC72V2vYcKKNr46qyQ2FKZnx/Gpu/8nT00Fw7TuHfHQD/pforRC580G3up3eamfVjhry4gO5JjeKf+2p469DFOJ5VAFX35bjYzE9GJqammhsbCQzM7Nfe50n592XIJyOrI0Eamtr6erqIjs7G3DfW4HAHY3wKFeeajaQHKaguFFHVbuJMRF+ZEWrmJYUjM3hZH91JxqjjZeuyhxURvtscODAAVJSUkZV7t3lcpGQkMDGjRuJjIykqKiI4uJi7rrrrhH3nLHb7SQlJfHss89y1113DXiMx6Sorq6OmBg3yf/000+5/fbbR8WkCC6kCQbE2dgYOxwOnE7noBNz77C7zWbzkoBz3c0LhUIEAgF2u/2syGhDCfoAACAASURBVMCZkgAPPLLCQ33m0+Fkk46HvnAXFN42PZ4b82L5+Uw/WltbKS8rwWw2M3d8CssWxfKHtacQ2MxMCrUTlZDGL9b0hIidThfLp8fzw/EWWnT9WcOucndOdE9lB+/ckkuT1oJM0v+czTYH/jIxf74qi++OqZEI4Q/r3eHtA41WMiP9uSg+nFlpoawtbiXCX0aLzsK3x9RcNj6ShGAFa7p9EYoa3D4Ipc16tp9q5b45iXzRXSdx75xEKtuMrNpRg0wiRCISUNdp4vLxkTy/vqwfEfj+3in8+2Cjlwh8f+8U/rG9is3VrSxq0JIbPzz/icHCqJ7dq+envb0dmd7A6v1CVu9v4OIkOctyw0iPDvKxIxYJBcxICWFGSggPXxTNkSNHyJoUS3W7EaVUhJ9UhFLqrpV4a1etV2J5JHDjpGgf8aazQW+p6N7FjatvyyE1TMmWU+1DEoHfLkhmdmoIXxxRD4sIAN5WOU/uOiKip27FI9TjIQgtLS1UVVX5kLXeOW+lUjlihjoOh8NnLuq9uxcIBDyzJIOCmk4+P9zEG9eNIyVMidnmwOpwebUwrsoZHTn24aYJzgVOpxOtVktYWBiJiYkkJiaydOnSURnr8OHDNDQ0IBQKmThxImq1mtzcXF555RXGjRsHuCXux48f7yUCAIsXL8ZisXDo0KEzikIPFxfIwAjAw9ptNlu/BdmjW+BZbAeTND7X8c+0ZuFsSUDvMcE9iZzthLQkO4p5Y8J5fUs5C8aE44+R/245SoDQQnJyMgkJCd7r9MDcFFZtOUmSv4BpGWE8tCAVoVDAiu66AIBgpZRJCYFMSw7B7nDyr901vNadt/dg3HNbff49PTmYUD8poSoppc16HpiXSma4jDW7y5gY6qRKL6LV5F6GS5oNlDQbeHtnNQBjIlVe8vHEpRkEK6U0dpmpajeSGKLk68JGKtoMlLUafML/H+6v5945iUSopHywv55XNlfyw/FWLs2KIC8hkIaiFt6+KZsJse5FWyUT8+jCVC7JCue7omY+O9REcpiCaQoH2THnLj8tlUoJCQnx8XF3Op28l9DGY2vLsSPk6c2N/HJ8E/8ptZEdJmJxmgqx3I8vTpnpMLu4c6p7Idh6qo3D9VoyIvz4/HATf71+HOnhSh8i4NmRZ8f4U91dFX+m+OxwE5dnR/Dc0jFMfGHnoMflRskpVA+vfdGD5R8ePe0xSSEK9lZ18u6eOrpMdq6fFE1K2OmdKZ1O56CbDZFIREBAQL9dX99Ug0ajQa/Xuy2Yu1MNvVM/w6kL6Yu+ZGAgTEkMYkpiD/GUS0TIRy4AMCjsdvuoR0Y87rO9vwOjhcpKd+rzmWee4bXXXiMpKYlXX32Viy66iNLSUkJCQlCr1URG+rZqBgcHI5VKUatP79J5NrhABgbAmX6RRCIRQqHQZ3fuKeaqrKzE5XJ5ScBoWGN6igiHg94koLffwpmel+d4h8NxxnUOnvMobTEQGygjTiVg5fqjNOgczEwJ5Nmrp/X78seHKInyl1HcaiK8zcDs9FCe/q6EZZPjvGI2Y6JU3hB0WYthQFW42/MT+GCvu/VNIhJw2fhICuu7yIhQUdGiR2FUs3d3HY9OD8NkEtEmDsMi8mNstD9PfXuSE006fntxGq9uLufaSTFcNj6Sf/xYRWOnmce/OcFNU+KYEBfIb7/oaaHs7R4XHSDjhkkxzEhxm/fMSQ/tvp4CZqUGozFa+baohXaDFZXM9xrkxAaQ093/b7PZ2Lmzv1PiSEEoFKJQKLh8QjSXj4/gqn8e4sl9MCk+iPSkIAq7TEyTO2np1LOrwc72Co90bTkA67r/tbeygy+ONHm9Geamh5AS5sd7e+soOscuku+KWviuqIU/XDq4B4CHCMQFyanvPDNSMBQ8XgVz00MJVIi9RECttRDpP3je/2wiaQORNZfLhclk8hIEvV6PWq3GZDL51IX0/nOo76nT6Rz13ffZwOVynRdvgs7OTm/k7GzxzDPP8Oyzzw55TEFBgTcF/cQTT3DttdcC8P777xMXF8fnn3/O3XffDQy8Do10oXhvXCADIwSJROKtNaivr6eqqgqBQEBqauqQvgYjgeFEBvqSgNTUVGJiYs76vDzpibPtKHh3dw2vbCpHJIAAKUyMVbEoN4rlM5IGfc01E8L41/Z29lVqUEqFqLUWVv1Yhd3pZHFWJNOTQ1i5rZLZaaEopCKfbgSFRMgt0+K5e3YyB6o1GK0O7E4X64qbqW4zcKqhg0iJGZPBxdSpUwkMDKSgoIBJ0Uri4twmSJ/cNRmhQIBULGR6SjBZUf6IRUKWjI/kuncKKG3Ws6O7TSs3LtBryyzALUrTbrBy8ZgwCmo62VnegcXuZGl2BJPiAylq0PH8+nIuz47ko+W5jB/mjn80Sn7MNgdmm5PkULcR01W9bH4P12k5XKcd8HXzYlxsa3RPVPfniNEYLHx3qIqxYRIsiHl6fhQLsyKRK5TsqeygpNlAiFKCWCgY0CdguHjuhzI+vC2Hwnotd+S7xXuMVgfPf32Ib8vNPH/5GJ747hQAjy1KJTcugGXvHTnr8a7NjeLO/HhUMhEiocCbH7c7XdzzSRHv/myCV7WvL84lrdYbAoEApVKJUqn0yWn3ba9ra2ujpqbGxxOgL0kQCoXnzQzoTOF0OnG5XOclMhAYGHhO9+b+++9n2bJlQx6TlJSETucmwb0Va2UyGSkpKV5V16ioKPbv3+/zWo1Gg81m6xcxGCn89O7+TwBnw7xEIhENDQ0UFhYiFovJyMggKirqvPhiD0UGPGmK8vJyXC7XOZOAvuOeDRl4df0J/rm3kXuy4JLcROrtKgpqtRyu1xJWpOai9DBU8v6PpkIqZkG8kNndtqtJoX58drCeRVkR1GuMfHu0ie1lbTR0mogK8E3XmGxOVsxKQme2MzUpmOXTE2jWGnlh3Qm6jFaadXAcAS/ckkNgtwCMUCj0KSSV95LynRDbkyOWSURcPymG538oZWl2JHfMSGRslD9rDtTx/A+l3D3LreT29VE1/9hRw1U5UdwzOwF/uZjn15ezs7yDow1aVi0b782/ng6j+Vy9uqUKuUSIyeZgbKRqyF773tjWKEAsFGB3uvi0XEibQcSeX03k3d21/PeEhh/K1Ty7VU2AxIXW5j7/iZESFmSEsKXSwJYyDfMyQgdUETwdbvvwKEVPuDUv1FoLf9teRZy/+xn3EAGAFzdWDPj6YKWEmEAZLTorrUMQk1umxpKfFMSmkjbaDVZvHYfF5uTzI01MTw6iTW8ddTIwGIZqr+udamhsbESv1+N0OlEoFDgcDvz83PU6KpUKuVx+Xuau08Ezr4121KKzs/OcHQvDwsKGVeSYl5eHTCbzUY612WxUV1d7tRTy8/N5/vnnaWpqIjraLfO8ceNGZDLZiInb9cUFMnCOsNvt1NXVYTKZaG1tJTMzc1jmRiMJkUjUjww4nU5vJGCkSUDvcc+EDOw71cDft5ZToHYXbpkC4jjQIWN8rIK7Zgbz4oYynllbgtZs56u7pzKu28K4rsPIF0caaerQc7LeyrR8JwIBGKx2Hr8kg80lrXx6sB5/uYRmrQWlVDSgbLBEJKSkuROxEHYVVRBmaybNX8S9s9MRyfzoMtv55SeFXJ0Tw3WTYrxiO8PBbdMTuG1696Jf2Mhvvyimut3IkvGR/PtgIyfVem+u/L29dV6/+YcXpKA1u+9ds9YybDLgwUhFBkrUel7bWsneqk4CFWIC5GIeX5RGeoSSAIWYP/5Q7j1WKGBQa2J79y+mJAZisTt5cn0tKrmYT38+GX+ZmOmv7PESAYD99Sa2VLl9DDKDXOyvHJoI9JYWVkiE/HpeMhkRftR0mLA5nLy+tQqxUMDji9J44b/uiIan4l8hEQ7Y8uk577yEQGQiITvKOzjVbVPdFx8faODjAw28tWw8M1N7JIT/9EMZObEB7Kvq5NH/lvDlirwB/QZGmwwMBolEQnBwMMHBwd7/692C6jEaq6ysxGg0IhQK+wn09C4ePV/w1CSN9jXr7OwkKCjovMzbAQEB3HPPPTz99NPEx8eTmJjIyy+/DMD1118PwKJFi8jKyuLWW2/l5ZdfpqOjg4cffpgVK1aMSicBXCADZw273U5tbS1VVVXeIp64uLgR7YUdLnrv0M8HCfDAE148HTweCz8c7yBAqeKK7GC+LWrhm6NqZGIRLToLl42P5NmlmQQoJMx5dSevbCrntwvTuPlfB7l+Ugy/vCgZp8XI7L+18dsvighVyfikoL7fWDfkxbL1VCtPL8nkhFrH4Vp3qH5maggrt1WQ5u+guKKRYoT8/tJMnp0TyaNfn+DJy6IJ8ZMSEyjnpn8d5ECNBkwm7sk/88hHdKCc++Ymc3m2+1mw2Wy4XC50Fgfrils42qDlpskxfHaokcYuM3KJiKtzIimo6cRkczAmUnVa+9/evewjgap2I3ur3CI6XSY7XSa710To5skxPL4olQ0nW7luYjQ1HSbe7pYcHgibHpjKwpX9tR0896I39Db3+Y+PVlHcpGf5pFBWH3YTgp+NEfLvUw6WZwqRyWR02MRMiA2gsstJs8HBxLhAlnVrK0xJDHJfY7Odp5dkIBYKmB0r5rtyC3aHi6In5mBzOBEJBT7W0MebdPz68+PkxAVQWK/lvjlJ3Dwllr1VGqYlBbHsvSNE+Es53qT36am/p9sbISlUwWd3TmJOWgjXT4rmiyNqfr84dciagZ9Kbl4gECCXy5HL5dTW1hIdHU10dDROp9Mn1dDR0UFdXR1msxmpVDpgqmG0PtP56CSAHjJwvvDyyy8jFou59dZbMZlMTJs2ja1bt3rJmkgkYt26ddx7773MnDnTR3RotHCBDAyAodihzWajpqaGmpoa/Pz8mDBhAmFhYRw7duys8+fnCrFYjM1mo6Gh4byQgN7jDvWZtVot5eXltLW1kZCQgEUlZXtRC9OS3CH8LpMdcO+Kvy9uJsJfhr9cTFq4H69fn80He2t54aosZqaGEqSU8ElRA2kBsPGku8f/6SWZtBss7KvS0NBp4otfTEUhEfHwwjTe3lntXXyEAohQgKW9gTC5kOsnJ2AUKHjnUAfBJ3WsK25mXXGPrPCv56egMdooaLRT1mYmLfXMrsv0ZN9CLw8C5GIuGxdOUqiClzdV0tRlptNk4/LsSL4+2syYCD1SsZCfdSvrvX3TeGakDFzdPNI7mEvHRdCis/LGtirv7v6j5bncurqQKyZEcriuiwfnJ5Mb5w6l/nJ2Irm9qvhFArhtjICHrp3NodouJicEcrC2yysT/O2xnuubExuAWmtmQmwAr12bhc5sZ+HK/SgkQu67OJPbZzt49vsy1pxqZ3pSEPNzIwmR2DCbjOj1XQRL9dx/QECQXcOvSuq4bEwQk5NDUalUXDEhkm+OqrluYjRRfkLW3JjEniaX95oJ+1y3cdH+bP7VdEpbDPzq8+McbdBS1Kjl7lmJmGwOtzhUo44rJ0Ty5CXp2Owur+cAQHW7iVe3VKK32Pn+uPu5XJgZxtSkgRcWp9N5VgW3o43e3QRCodDbmdAbdrvdp/VRrVb72A/3JQhKpfKcn9Pz0UkA558MSCQSXnnllSEX94SEBNauXXvezukCGRgmrFarlwQEBASQm5vrY3PsWZDPNzymHWq1GqlUSkpKyqiTAA8GSxPodDrKy8tpbW0lPj6eOXPmIJfLuVTYxpioAC4eG8HFb+xmdlooY6P8+eeuajIiVd4qf4CpL/5IfLC7gC3cX0qESsZJtY7Xpjv4zV73pGVzONlV3sG/75qMUOCe7PdWdnD76sM+5+N0wdfFHfxxUSzbOiA/PIBv99VR32kiLyGIl67Owk8mZvPJVuo7Tfx1ayUXpYdyY5aKYPm5XUeXy4Ver0cikSCTyTBYHXxxpAmFVEiQUkKL3kqon5SZKcHozHbKWw0szAxjU0kbRuvpha9GsoBw+fQ4lk+P49J/HKC+08ytqwvJiPBj9b56xCIBy/Lcu/DSFgP7qjTcf1Eif//R3TLocMH7JS42/r1HChcGlgl+Zkk6aeE9Ovb+cjH7fjeT4kYdr26pxGBxcNeMeP52fRa1GjP/OdyI0wUulwi5JISkkFiglH+fsnNpupy1JRoqmtpJVZhZeUJMrR7+uqWCp6YISQu0026wozXbefCL49wzO9GnPU5vsfOvPXWY7U5MNgerdtQwOSGQy7MjiQmUs+aOiZhtDqb8ZTdmm5M/XJbuQwYA1hW3sPu3M7xkwOPyODs1hDvy43zG+1+lCU6H4UQsxGIxgYGBPrn1gVQW29raMBrdehuDpRqGSxLOV2GjVqv1SaH8v4gLCoSDwGNjbLFYqK6upra2lqCgIFJTUwfsRS0tLcVms3lFI0YbvVsXrVYrKpWKqVOnnteJ5uDBg0RGRhIf786denKPLS0txMXFkZKS0s9y2YNd5e3Ua0wsm+IuBtSZ7Ux+YTvh3daoAHMzwrg4M5wnv3Vbxt43J4FYYyUbtVHYnS6vmBBA4RPzUEjdk5nL5aKqoZmVm0vQWxwkRAbTYRPzx8uzsDqcHG/S8drmck40Ddzatvr2Saz6sYr9VW5tgF/OSWZqUhC58UEopcMPWXZ0dFBaWopWq8XpdHrNUlQqFZ0OKV+c0LHuhG+O/OnL0smMVHGsQcvNU2IHfW+Xy8W2bduYOXPmOSlPDgSH08UvPy1CLhF5i/lumRrLQ/OT2VupAYGA+z4b2n1SJhZi6SYCv5iZwD93+6YVVl4/jvQIP2KDBn4+PNhyqo3ffHHijM5/7W2pFNZ1ojC3IRNBk97BxkYJEomEer2Thy+KIchfRaCfgn/treOBuUlEBbjPY0dZO/f9p0eG943rslgwJozvipr5/bc9hYizU0O4eUoMMYFyVu+rRyYRcmd+HAtXHiA2UMadM+Kx2l1sL2vnnzdneyMSxcXFBAQEkJCQwE8Je/bsYezYsSO2IHo2KQOpLEokkgFTDQMt+k1NTTQ1NTFp0qQROa/B8Jvf/IagoCBeffXVUR3np4wLZGAQaLVaKisrqa+vJyQkhNTU1CHDSJWVlWi1WnJzc0f1vHqTAIDU1FSvwcZoj90XR44cITg4mPDwcCoqKlCr1cTGxpKSkoJCoTjt6z/eX8c/fqwkNcyPqEA53x0bWkxjbKSKhWGdXLVwNtvLOthZ3s62U+5K9z9dMZbr82Jpb2+nrKzM3XutjKHBIuPro2oWjg3nnjnJPjKph2s7eXlTGUarg6xof66dGMvkxCAO1miobDUyXtlFmcbOlno40aSjrlvyeG5GGG//bPBrrdVqKS0tRaPRkJSURGxsLC6Xq58U8I9Vet4/JSA9SEB+vJImowC9XUBMkILyNjNX50Ry7cToAcfwkIEZM2YMSrjOBVXtRnaUdbBkfASPfnOSAzU9+f6H5ifT2GVhelIQ7++r5+qcSJ75vowoJah7efosHhuOXCLkv71SBL1xR34cRqsDSbeVdJiflAmx/j47aQ9cLhedJjuH67r4zRcnmJ8RyhvXZZH30i5sDhd35MdR3W4i1E/C05dlAO6e7sTERJSqAPJfP8BlGf58X9pDALNDXCxOlqGxS2mzChGLJQSr5EjEItRaCwqJiJy4AC4bF+FzLnana8DiwOHg2LFjhISEEBcXd1avHy3s3LmTnJycUStO86CvyqLnu+AxDepLEDo6Oujs7GTChAmjel533nknEyZM4KmnnhrVcX7KuEAGBoDL5WLLli2oVCpSUlKG1XJSV1dHc3MzkydPHpVz8pCAioqKfvoFoz32YDh8+LCX/cfExJCSkoJSeXoVtt6Y9fIObyTATybC0EsoqLdYjwcTQpxkJcf5GNUU/2E+Bp2WsrIyurq68AuP5+ff1GN3unh0UTqNXWbKWvTsq9Jw6tn+Vs/qLjPfHO0uDJuTTIlaxzu7qtF0atld5yYAA72uLwwGA2VlZbS0tJCQkEBKSopXf2IgsRCXy0VLp57bPi6mUWvj0ekq5E4zDV0WdA4xC1JVhAf5e6MJfeVnt27dSn5+/rCI19nguncODVpVP5J4eEEKr2ypZGFmGOOi/blrRvyQxz/7fSkzU0Ko1Zi4Y3ocO8s7KKzXUt1hYlNJGw/OTyY5VElHXRmTxiQh8w/C4XSxrriF7Bh/xkSqeGFDORNjlEiwES134C8wY+xjd9v7Z6SkfwsLC4mIiPCRmf0pYPv27UyZMgU/v9GxIT4d+qYaPH965JtDQ0PPWWVxKFxzzTVceeWV3H///SP2nv/XcKFmYAAIBAJmzJhxRlWso1Uz0JcEpKWl9RMxOhcL5bOByWSioqKClpYWVCoVM2fOPOtJ5KVrxvHi+lJKWwxeIpAR4UdGpIonLh1D/l92AG5XuAfnp7Ll4AlcLheBCjFdJjt/vSaDY4VH6Ojo8No/SyQS3lSGsuLjQl7aWMb1k2KYGB/EsQYtT393knB/GXPSQ71aAVGBcu6Zk0yn0cbbO6po7DJT2WbkRFOP+dGeinZmpIYO+BnMZjOf7SzmrQINFyWrWJybTWp6JBKRcMicvkAgIDLYnw0P5HtFkALkYp9CLb1eT0NDg3di7D0hgrugdbTIQG8isDAzjPljQnn8v6eGeMXwcP9Fieyt6uRQd4HnK1vcUa5fz0smMeT0n2VZXoy3ql8gEDAnPdSr5AjQ1GWmTmPmsNZJ8eE2vigq9f5OLBTw4lWZvHptVr/3hR6724GufW+XQc/PmboM/hRrBjweI//LLofBVBZLSkqwWq0olUqvyqLRaPT6O5yJyuJQON8FhD9FXCADg0AikZyRc6FEIhnRBbkvCUhPTycqKmrAiWQgnYHRgNlspqKigoaGBiIjI4mNjfV+Kc8WM1NDefHqcdz83kHM3T3gpS0GSlsMbDzZyrgYf8RCAX+6Ios9Fe0UdQgoNXZ0dyLAXzed4vWl8dQLIwmPi0AikVCi1vHu7h4t/M8PN5IUqmRSQhAGq4NPt1WSP0CV/nfHmlhb3MzkhCB+NjWOhqZmpkaLmZab7a2w98DpdNHSZeBwSSUVdWqmpoTz9NKx/Le4DZtLxJP/Pcmt0+MZF+0WfzmdjGjvWoTBCrXMZrN3kerqci+kBw8eHLWd7Jrbc6loNfL3HdXsLO9gU8nA4kO9awJumxZLq95KvcZMWrgSk83J+hOtPsd7ig79ZSLunpXIwrFhRAf03+l9VdjEgjFh/RzwxkSq+NmUGI41DFzzER0oJzpQjlMtJD09mqevGA+4ayFqOkwMtXZLJBKCgoJ8Foa+116n09HU1ORdlPraQatUqkEX1p8iGfDMcz+VlkcPBAIBAoEAlUrlYyN8OpXFvoZOHpXFweByuejq6rpABv7XJ/D/F3jCweeKgUhAdHT0kAvJaEcGzGazt34iIiKCGTNmoFKpKCsr8xZangvGxQRw9Mn5VLYZuHRlj3uc1e7keLd+/eWr9vGLWUnkhcPGegu/Gu9kfFIUJUYln5TZEAv17K7qJNRPSoif1Fv85xGcqW43cmNeLO0GKx8sn8S6IjUbjjd7hYVcgMsFi7Mi0JntfHtMjdFoYkKoH0KhAGmvHHG7zsTvvyzEYdKzUy1gblooU0MTMWstJIf5seFECytmJbKjrJ0tJ1u4fXosMtG5hTQFAgEKhQKFQuGVn92+fTt5eXk4nc7TRhF672SHiwh/KWKhgDeXZXPtO4e8bYJ90bs40OmEpeMiuO8/x0/rPSAWCXlvbx3BSglLsyPofYUsdiefH1ZTpzFTWK/lYG0X6RF+fLXCrb6WGu5HavjQJLQvARMJBcMyE+qLga499M9/Nzc3e/PffVvtVCoVCoXiJ0kGPB1BP7XzArxti71xtiqLfe9Hb5XFrq6u82JS9FPGBTIwCM40H3WuC7LT6aShoYHKykqEQuGwSEDvsUdD48BisVBZWUldXR3h4eHk5+f7fAHPVIHwdEgJ8yM6UEZT18AEw+014L4eR0yh3DdlAhf1+r3ObMdscxDuL0MpEbG1tI16jQm9xch3904nI1KFw+nC3C3sc7Cmkx1lbSikIgIVEsZG+ZMV7U+Ev4z1x5t56Iti7vnBDD9sZl5GGGOjVGQF2vnsYD2XpSt5/6QSMLG9XMP1k+NJDfNj04kWNpe00qIz8/I149Fb7Dy/vpz5GSHYnFDXYeKuGfFYHS4kov5972cKoVCIv7//aaMI9fX1XtGY4UYRVu2oYUpikHdRv3JCJEqpiPf39Rd78uDjgga0ZhspYUoq24yDHgfwt+vHkRPrz47yDqa/vJsDj8zy/u4/hxt58tI0xkX78+WRJoKVEp68JA2zzYFcIqLTaGP263t58pI0bswbOP8+mqYuMLDL4GCtdgaDwXsu9fX1mEwm7/X/X+sO/JTJwJm0Fg6msmg2m/tZQ3tUFv/4xz8SHR2NXC6ntLSUjIyMYUkKny1KS0v53e9+x+7du7FarWRnZ/OnP/3Jx5K4traW++67j61bt/qIDY22+uMFMjBC8KQVhmMF2hvnQgI88BCRkZr8rFYrVVVV1NbWEhoayvTp0wesMh6KDBitDqx2J0HK4U90JWrdoETAg4wgKO2E3Pj+LVD+cjH+cjE7y9t57nt3bvula8aBy8Xlq/aREqZkbkYYMrEImVhIcpiSP14xFoFAgMZopUSt5/09NazeV8ekhEDeuToBq1HLfRs62VbaxrbSnjD5zqaehS4t3I8StZ4P9tZSUNNJkEJCdKCct3dW8/OZiTy31C2ZfLxRz7aydv66vRpwK/s16yy8cd3ZtaMOdq8H28kOtxZBpVJR2GLjaIOOr4/2dAJIxULsThc3TY7hk4ONPmOKhODoDhp8W9Qy5HnPSAlmT6WGW1cX+vz/o9+cJDZITk5sAOEqKf851MTNUwS06q3cNi2O333t7mqYkhjIe7fkcP9FbmGgN7ZVcf9FSf0q/F0u13lf4AQCATKZDJlMRmhoTx2DR9XvyJEjSCQSOjo6qK2tVX6TnwAAIABJREFU7RfaHumCxeHAM2f9FLwI+uJcFQh7fxd6L/KeaNqyZcs4duwYOp2Op556ijvuuIPIyEiys7NZu3btiLftLlmyhIyMDO9C/8Ybb7B06VIqKiqIiorC4XCwZMkSwsPD2bVrF+3t7SxfvhyXy8XKlStH9Fz64gIZGARnExmA4T+8HhJQUVGBSCQ6KxLQe+yRKAKyWq1UV1dTU1NDSEiI171vMAxFBg7WaFjxcSHv3TaRGSkhw/pcVodvCPrRWaG8tKudrDAxyRGBrDvRTqlbMZeV2yu5ZFwEaRE9Kmlmm7tN7ZGvinlkUTobT7RwVY67NW9maiizXtnJnHT4zYL+koLBSilTk4LZU9HBssmx3HtRCq+vL+Lr4+4Bg2Rwx9RobsxP5w/fnaTTZCMrOoAP9tZS3mrgzR1VXD4hihWzk/CTinE4nby+pQKnywUuF/PTQwhSSGjoMlPd7i5M/PfBRt6+Kfu012UonEkz0GC1CJ6OEJ1O540iNGvMTA+WkBcqY1FGEPuaHIhFTkL8FcQHK/nZlFiWvlngfR+HE3LDBFyWl8qJJh1KqYh/9yEMHuyp1Az4/x7RHnBbPU+IDWDDiVbe2VPHV4VqmrQWZqQEEx8k54UN5VS1G7l2YjQmm5HL3yzg0nHh3D493uvvMNqRgTOBR9VPIBAQFxfnvQd9Cxbr6+sxGAwjVrA4HPyviweHwmgpEAqFQgICAvj5z39OY2MjH3zwAU1NTVgsFoqLiyktLR1xItDW1kZ5eTnvvfeet1XyxRdfZNWqVRw/fpyoqCg2btzIiRMnqKur83acvPrqq9x+++08//zzo9r6eYEMjBCEQiEikQibzTbkQ9SXBIwZM+ac3Q09X+QzjUp44HHMqq6uJigoiMmTJw9LfERndfHJCSP3bNrGFROieXppJgDNWjMrPnbv+gqqO9l2qg2bw8mVOdFMShi8SKe8V/X6A+MhO8jOpl/m8l2Jlr9tc1ecJwUIyIwJYn2JhiX/2MfkxCAemJdCoFzC7asP02ly1238ZWMZC8eG83VhI5dkRRLuL+PUsxfjHMxhB3cCIi8xiA3Hm5nzqltq9/FcJ9LQOJ7d0sjrO5t4fWeT9/jkMD/unJHIgswwYoMUvPljFRqjjYwIFSu3VbLmjjxcLidWqxWn00lsgARcLlbkx/J1UQtteht3f1JEmJ+Urb+edsbPwJkYKQ31HgNZ4U7tE0WYGWKgrsOIvdVJYZOce4sGro/ZcqqNe2YnkBcfSKfJ5rPA98YjC1Oo05j7RRg8aNJayI0HrcXOvXMSWbWjhtevzaJWY+LO/HhcLhdHG3RsK233mj61623ozPafJBnwoG/NwHAKFrVa7aAFiyPhDeAxA/op4nwoEHZ2dno7EWQyGTNmzGDGjBkjPk5oaChjx47lww8/ZNKkSchkMt5++20iIyO9ToR79+5l/PjxPq2nixcvxmKxcOjQIZ90wkjjAhkYBGe7Qx+siNDpdFJfX09lZeWIkQAPhEIhAoEAu91+Rnklu93uJQEBAQHk5eWdURGNyQ7rKm1E+MvQGG1kPrOZBWPCeejiNG6dFs9H++v4vljNxl/PxOl08eaOKipaDVyf119Zz+FwkCg18FAO1Jul3LxgPApVIMtXHyI+WMHeR+bQZbJx53v7OFSn47bp8aSE+fHfo018d0yN2eYkLzGIRxal8/tvTnCotpNNJ1uZGB9Eu8FKnFTRfa0Gv95CoYCccBGKGD2z/MAmCyJa7mDatCyWzRrLc9+f4sqcKJa9exBw+yksGhtBYHda4LkrxrKvqoPHvj5OVZuRldsqWDEzHkl35CY6SMyzl6Xxw4lW5qWHEB8kZ0pCABkRfthsNu999DwTp5ugR3OhGyiKMLlXFCEzpp1vT3aSoLQTJ7fSYRUTqXCQEi9j+UduOd5Fme46C4PFTq3GrRdxRXYEUrGQv2yqHHTsTQ9MpazFyEm1ng6j1asU2WGwEigX8+7uWjaWtHFSrQfgg1tz8JeLyYjwLSj8v0AGBsJwChb1ej3Nzc1UVFT4FCz2JggKhWJYn/9sNxHnA+fDqEij0RAYGDjqz4pAIGDTpk1ceeWV+Pv7IxQKiYyMZP369V4yqFariYyM9HldcHAwUqkUtXpoUbZzxQUyMIIYqL2wNwkQi8UjSgI8EAgEZ1TAaLfbqampobq6GpVKxcSJE33ym0Phyjf38cSlY5iaFExiqJJVcyUU2qPZeLKF/OQQOk02Lvt7T0dATYeJMU9v5j8rpnDf3BTe/LGKyjYDKWHuidvpdFJXV0dlZSVVBjG1rjCUQQrePdhOfLCRxy/J4IO9tZxq1tPYZUZrBb3Nzof76rxj3JAXyzUTe5j0bdPjuWVaHA9+Xsyrm8u5dFwkDqcL0RBEQKt1ixZ1dHSQlJREXl4eLS0t1NW5xxEKBdw0Jc7HKVFntvPUZWN8ZJCnJAQSekk6L2woY25GKH/dXs2NebG06a20G6y06a3IJVKeuiwOQffnd7lc3p++7awecuD56buQnE/NsN5RhIXh4cyf5GJTSRufHWqgqtXAFYmQLYb3FimoajcSLmvGL94PpZ8fxzsD+Py4zltPkBnpx+vXuXv991Ro+ON6t0Xy4rHhRAXIadFZuSonklA/KSabA5WsZ6q6+G/7aNZZWZgZRqiflC2n2vjdxSn9zvf/KhkYDMMtWGxtbcVgMHhtiPu2PfYtWPypkgGXy3VeIgOetsKzfVaeeeYZnn322SGPKSgoIC8vj3vvvZeIiAh27tyJQqHg3XffZenSpRQUFBAd7U5pDnQe5+NZvkAGBsG5RgbOBwnojeFoDdjtdu/Cq1QqycnJITQ0dFjntPCvu0kN8+PmKXE8u7aEFbMSyY2UsK7KTn6Ogvljwjip1nPNxBiiu6WFxUIBCzLD2XCihRveKSDCX8b9c5PZfqoNiRAERg3l5eWIxWKUUSk011j405J03thagdZk59XN5ejMdtbeN52adiO//8ZXoz42SM7WB2cNeL4Pfl7MA3NT+LGsjXmv7+K26fFIRUJ+tyjde0yz1oKf0EZFRQXNzc3Ex8eTnZ3tja4IhUKfxXlMpIpnlmbiJxXx7u4aip6aj1Qs9C7kNruDqjYDKWFKVDIxPxxvZWpiMHsrNYSppISrpIyN8qeh08Sz35fx4PwUQvx6IjmesZxOp8/f+5KE3tEDz7H/izCvSCjgkqxwnC4XJ+vbMXW1s0ktw2ANwSUMRu2EBeFKFC4zYx16ytt6RJxKmg08+sVR0sP9uConisLHZvJlYTN/31HDxwca+Nv2Kky2ns/879tzyY51L4KbfzV9WOf3UyMDnns4kvfqdAWLHpLQ3t4+YC++SqXCZDL9JNMEnmf/fKQJzkVj4P7772fZsmVDHpOUlMTWrVtZu3YtGo3GS+hWrVrFpk2bWL16NY899hhRUVHs37/f57UajQabzdYvYjDSuEAGRhASiQSr1Uptbe15IwEeDBUZcDgcXhKgUCi8tsuDnZPL5WJflYYxkSpC/KS8vrmc2g4TtR0mb0X9o1/3LMxXzpIR4S8jPliJze6kRefuCLA7XWw40VNZHqgQs7eygx+Ot/DGljLumyDmtSN2Fo4NZsvmMgoen8vXhU2E+Ul5cEEajV1mGjpNfFJQT35KCIVPzGP97kPsbxEikCp4ZHE6A+GScZEUPBbCG1srWDLevbuclhxMfYfJ+/k6tAZuf/8gISIbj8+LZvbs2bhEUg7UdlJQo2FCbCDZIcJ+O3WAtO5wdPYft3L0ibmIhe6J62i9lltXF/KzqbFkRfuztriZBxekeLX3PWO7cGvb12lMPmTAMyH3nZh7EwLPTrC2tha73e5ND8HpowgjiYO1nby/t56EEAVOpwun3cXRNhevXBxJQreKoFpr4eujatr1DhZkxnP9JCX3z45n5bYKEgOETI0U0KLR8tWeE7zSBXVGARozvLSpot94FsfwBcA8+H+BDAyGwWyI+/bi19fXo9PpcLlcHDhwoF9XyWgULA4Xnud6tKMWXV1dw5KcHwxhYWHDakf0ODn2vf+9Nx35+fk8//zzNDU1eSMFGzduRCaTeesKRgsXyMAIwel0YrFYKC8vRy6Xk5mZSWRk5Hn7Ig2kNeBwOLzRCZlMxvjx4wkPDz/tOX16sAGzzcGh2k40BivBSilz0kM5UK0hKVSJzmz38Qz4xRp3seDS7CjWFg2e1yprMVDT5i4SVEhFxCRnMKWjkU0n3UVmf9lQxsy0EBaNdRvDvHBVFkKBwKc9MSlIgsJPztjURIKVg9dHBPx/7J13fFvl2f6/2pYlect7W96Js4ezEwJhr0JZpaS8BQKhpQU6SJmlUFp+UFpaOoAWyiijFCiEFRJGErLJcBwPee9tydr794eiE8nbiZ2E9831+fgDsY7PeaSj8zz3c9/XfV1KGfedn099r9Xvsvcvfx371x/rSYuUkqF0Udcv4sJlGUyblofP5+Pnbx/hnYPtFCdr2FrTy3l5kRTKhqbhqzvNlN23gqe31HGwxcAb+9rIjlPxh8/rAXhld6tw7Fd1/cxIiWBnQz8Hm424vD7So5V8rzRdWDTHQvDk0dTURENDA5GRkYKWfHCpYaJlhuPFnLRIjFY32+r6UCukaFVy4tIl/G5LPXFqOfMzIzm7QMutSzNwebxsrurltX1trMqP5d4Lj0kB5wNLFvi5CNe+WEaffWhr6fVFYUQ5e+josI+77S7weZxOwUCgpHMqd+HD9eI3NDRgNBpJTk4WCIttbW1DHAYni7A4XrjdbsRi8ZR/XgaD4aTYF5eWlhIdHc0NN9zA/fffj1Kp5Nlnn6W+vp4LLrgAgHPOOYeioiKuv/56Hn/8cfr6+rj77ru56aabptxE6kwwMALGO4kElwM8Hg8xMTHMmjXrpE9CwZmBwJhqa2uRyWQUFRURHx8/6pj6LE5Kf/slF05PZIkuhmvmhbqq3fvuERZkRnPetAR+/vbwlrKDAwGxCN69dQGWASNHaupJDnMTmZhOvS2MP3xWx5c1fSEyvK/va6W2x8IPXy8D4L7z8zm7MB6fz4fJ7kbfbWF3m4tzCiLIiB1bSU4kEpEdpyI7TkVmTBiVDW2k0kOzU06/KA5dlpz1Z/kd7io7zEjEIp64YhoWh5tnvqjn/SN9xOo8wudT32OhzWjnjX2tbK7sprHPRkWnmfx4tRAIDMatR4OQp6+axo9X5+Bye1EpJvbYeb1e2tvbqa2tRaFQMGPGjBGJnoOzCGMFCSNlI8aCSCTirII4ziqIw+n2crCuna96fEdLJBKyYsNp6LWSGRuOTCLm3CItJSkalDIJO+v72dVg4LmvjvE+rpiVSG3fsUAgK1bJk5cVoA3zYjKZhrTdjaWuGFh4T6dg4GRmBiaCgL22VqsdlbDY0dGB2WwWVAGPl7A4XpwMvgBw0qSI4+Li+Oijj/jFL37BqlWrBMv7d999lxkzZgD+LMjGjRu57bbbWLx4cYjo0FTjTDAwCkZr3QredctkMgoKChgYGMDpdJ6SCSjAV2hubqa2thapVEphYeG4sxMxKjlPX1WCJkzKjFR/yszm9NDcb2Pj4Q4W62JZlB3DizuaRjyHVi1nVlokh1oHuHVZFg+8X8lFz+zi+jy4blEO6enpSCQSilweluXGEaeW871/7g85x95Gg/D/f9laj8nupsVg49OKbkpSI1idMjG1Ra/XS1NTE/31tXxcLUYqV7FmWhIblmQKx7y6u4U+i5MHLyxALvVP1Okx4Wwpb2NTUycVH1QRqZSSHKnglx9UY3N5MTv8JYetNX3cWJrO7SuykEvFbKro5sf/Psy95+XRbXby7sEO+q1Ont3WxA9ePwzAtfNSkEnExITLSIhQcMG0hGHJjT6fj+7ubmpqavB6veTl5Y15PwMLTfDOLbAIeTyeIQHCcFyEiWYR5FIx2bFheBIlLFyYSVWnmcv+to9nr53Oun+VMeDwYLIfK2EtzYlha22f8O84lRy1QsrmHy7gxpcPMTc9EoVUjC7Br3Y5nC5CYIEyGAzDqisG3DNPJ1NWr9cbwvc4XTASgXAswmLgZ6KExfFiqjQGBsNgMJCZmTnl1wGYO3cuH3/88ajHpKen8/7775+U8QTjTDAwQQwOAoIXXJvNJtSFTia8Xi92u52enh7kcjl5eXnjFjDaUdfHlqpubE4Pbx9ox+318cAFBVR2mthW08uaongWZsfwcXkXDT1WWg121hTFC1yAcKmPNcWJvH2wk26zk5+uyeOpTZXE2ltJU0OzGRbPmU5Wlp/R/6sPqnhpV/OoY1qUHYPD7SU/Qc1Vc1O4/70KXlw7m/wENQUPbuadq8dOrwc8HgIExcWzpxOdJeLJzbW8vLuZl3Y1c3ZhPDPTIukxO2gz2kMMbEqzYyiMEbN/fzdLl+YIC6jJ4ebRo8z3AP6xowmLM4XsuHDuePMwMomIsrYBIhRSrpmXwoflnUjFIi6dkcg7Bzt4dY+/jHDpjET03RYunD6UGGQwGNDr9VitVrKzs0lJSTnuHeV4uQjDkRUBITAYb8vj0583sDg7mjf3t9NndfH8dSX8/vMGdjX4A71AILDrJ4v5z4EOfrOplk0V3dx1Vjbv3zpv1HMHdzTEx8cLv3e73SELVFubX79gx44dJ+zRMFk4HX0JwD+njXfBHg9h0Ww2D0tYDA4QxlPqORltheDvJDoZZYLTHWeCgVEQnBkIDgLkcvmwu+7JMisaL3w+H+3t7dTU1OB0OomMjGTOnDnjnnDaDHbe2t/G45cX88a+Vt782j+BPrSxUjjm7181sSgnlpSoMD443EFxckQIKdDqFoVI1q5+ajsAn1SKcHrg6atK+PuOZtb9y5/6X7c0k8P3r6LdaGd7bR8Pvn/sWgD3rMlFq1Hw30Md3Hd+Pj0WJyq5lKygssClr7WyKt+B1wc/WpVDYdIxvwSfz0dnZyd6vZ5Wk4d+WRyXzMzhlX2t2F1ebl+RzaJsP7nwhoVpvF/WidnhxuH2Mu2XW6h6aLVwHvCrMu7fv18wRlmSoebWpRn8eesxV8Qva/r4subYTveLOxcTpZTh9npp7rOTFh1Gq8HOOYXxvF/WKTggvnOwg8xYJe1GBylRYQCYzWZqamoES+ZZs2ZN2e5opCzCcGWGwdmYwVmEwO8AnrqymH/uamFPo4GP1s8nRiXnuetKhL812lz88YtGfruplhkpEXz98yXIJGJquy2oFVISIiau/CaVSkPEe1wuF1u3bmXu3LlCJmGkLMLJkgA+nYOBsLCwEzrHRAiLZrMZn883bBYhmLB4MjMD/9cdC+FMMDAmBgcBo9Xfp9o9MACfz0dHR4eQPs7JycFqteJ0Oic02SRFKsjVqnhpVzMr87UkRCi4cHoiRpuLf399TBnu+y/tJzVaicXh5u0D7fz4rBxuXpKJSAQfbNrMIUc8hRonImsff68No7LHSWacim/NSqbL5CArLhyr08PhtgHqe608/EEVa0vTWV2gFYIBrVrOgxcWsP61Q8J1xWIR8RoF/7M4gwferyQ9RsnqHBWf1lrIjFWhCZNw6V/8bTiZseFcPSOWeE83Spz8vTaMPS0OoIOntvm5DEtyYpieEsGBFiPfXZjGA+9X8tfrZgps/yevmBayECqVSmbPni3UrBsaGrBYLBSLRPx9jYrX9D50WhXP7Aq19u0acBCllCEV+/0PsoKc8i4qSeDhiwpwebxsq+3jB68fJk4tE5wh29vbSUlJYfHixZMuhzoeDBcgQGiQMBxh0WKx4PP5hA6HtQtSuGF+8rA7u0iljF+cqwNgX5ORRz6qITdeRbxGzhOf1nHL0gwuLTkx8m0gmFOpVGg0mlGzCBPhIpwIAmWC0w1TKUc8knlQQLwqYKTV2toqEBYDwYHT6RQC0anMEJwsAuHpDpHvdCqqnWZoaGigsrISuVyOTqcbk4TX29tLeXk5y5Ytm5LxBHa9NTU1uN1ucnJyhPRxfX09RqORmTNnTvi8+5sNfHC4E4VUzGUzk3l5VzOv7mnhuvmpLNXFsiLP3zbTZrTz8q5m5mVGsypfi9VqZfv27X6p3ZQUcnJyUCqVVHWa+deeFg61GClvN3HDwjTOm5ZARkw4T22u5fV9rSzKjuHO1Tp+/VE1+5oMQ8Z04fREFmRGU5ikYXpKBB6vjx6zE0tPK9tqenlkuxGVQsLy3DjcLhef6/twHs1u67Qq1i3L4rGPq1ldoGV5XhzFSRqcbi89Fid//qKeL/S9AJxXnMASXQwXTU9EJhEJi93gXW8AgXRoa7eBX3zUSEmsiIpuBzNjPCxOC+PmLf7M0ItX65ierkWhUAjn8Pl8/GNHM90mBx4fvHuwg5mpGlr7zCyJc3B+sZacnBxUqtGteU8UBpuLv37ZgA+wuTxcNcffCjlRBD6Lmpoaent7yc7OJikpaUidfjxcBH2XhT2NBgw2F9OSI9hc2UO2NpxzC7XHlSlwOBxs376dlStXjmsBHsxFCPxMZhahv7+fioqKKZG6PREcOHAArVZLSspQZdCTicGExZ6eHhwOBz6fj/Dw8CGBWrAF8fHC5/Mxbdo0XnjhBVatWjVJ7+SbiTOZgVEgkUjGxcQPYKoyAz6fj66uLqEckJOTQ2pqashkNB7RoZEQqZThdHv5585mnt12LP19+4psXtjRRHmbiS6zAxGQEKFgZlI45eXltLa2IhaLKS4uJjX1WPdBQJwHoLbbQlq0ErlUTHO/jdf3tVKYqGZnfR/PfFFHVLiMcLkEl8fLmzfNx+xws7fRwOWzkhmwu9hW08unFV2sKtCSEROOTSwmM1LMjYvS2VLZhdRu5IMae8j7efxbxbg8Pn5yto76XisfHu5kU0UXadFK/ra1AZvLy5KcGLbV9gE+fvFuBQ9vrGLPz5YMqY8PhsXp5e+7u2jss3Gk20leciJXL4liY1kH1+ak8H6ymcc+b2fjvnr+uqWaEq2YRRkaIiIi0Gg0fLskhvDwcNxeHy3d/RQr+5mXoyQ/K4uSwsmdjHc39LPxcCfhstBdVW2PlcY+K7cty+KedytoNzq4cVE6C7PGvztyuVzU1dXR0tJCYmIiixcvJiwsbIhY0khchMEBQk6cktwgOeFluhia+mw882UjNyxMJUEjJ1w+fme9ie5xxstFOJEswulcJjgdFAgHExbFYjEej4fMzMyQexBsQTxc2+NECYtnygR+nAkGRkFSUtKEmOsBzsBk9TcHs8ntdjvZ2dmkpaUN++AebyDyw9cPsamiixsWprPpjkUkRYbx+Cd6cuP9gkNXz02ltsfCUl0sTqeTLw9UcffLXzEvXcP1KxZx6NChUR++HO2xCT4tWklKVJigKb+lyp9eX6qLpbx9gEv/souy+1YxL9O/KCVEKMiNV9PcZ+VAywBb9b20dPfxSbWBeJWJG3VOcjNSmFegoW3AxdaaXg63DXDZX3aHjGFFXhxXzE7m9qASxLajJLYPy/38B7vbS1mbiWv/4e9uCJdL+PLOxXxa2U2vxcnHR7ox2Fw09dlCzn1ecTxKmYSaHhtrni3np2fnkJkcz4Zzc3G53Xx4qJV/VnZTEmcmX92Py+5fSP7bKGKBVsw8XQKJiYloNBPfmY+F4mQNbx/o4NZlaSRGHKsJWxxu/uflg4LN87baPrw+H3/4rI5Xbxxd2CRYPjoyMpL58+eHjH28ZMXx6CKkRim4Z00O/9jRgtvro9PkYE2hlkXZ0Tg9XpSykRewwDN4os/hYC5C4Nzj6WgYnEU4EwxMDG63WzAPOl7CYiBAGCmT4/F4MJlME/Jk+d+KM2WCUeDxeCa0wDqdTrZs2cLq1atPiPji8/kEu0ubzUZWVpbQljcSurq60Ov1LF68+LivOxJcLhf19fWCtbFOp2N7s51d9X0sijAwPTcjxGUrgLf2txGnlrM0x/8Qtxrt1HSZWffqQcAvJ/zkFdN59KMq+iwu7j5bx7nFI0tu2u12Dhw8yN/2Gfm6V4LN7SMjRkljn43vlabTY3Hy3qEOdFoVl8xIwunx0mdx8sruFu4+W8f/21Qz4rmHw3fmp/Ly7pZRj5GKRRy6dwXdJgev7Wvjz182APDtOclcOzeFsrYBv4zzP77mmplxdPT04fJ4WZQVxeIMNWazGZPJhMPhICwsTCAqBn5OJBW6t9GAxeHm44pu1i/PJCXK34VR32PljX2tyKVivj0nmZteOUhqlJK7VueQn6Ae9lyB7JRerxcst8ejujYaBssvB6aikQIEjw++qOljd6OR1/e1Mzstgt99q4gYlZzX9rah1cg5K98/JqvVyu7du1mxYsUJjXEiGJxFCBDnAlkEqVSKzWajsLDwlHU0DIedO3eSl5d32i2Ihw8fRqPRkJGRMe6/CRAWgz//4QiL4eHh2Gw2lEol2dnZGAyGE1IhHIxHHnmEjRs3cuDAAeRyOQbD0FJoU1MT69evZ8uWLSF6AsHfi7KyMm6//XZ2795NTEwMt9xyC/fdd9+UcE/OZAYmEYEA4HhZsD6fj76+PvR6PRaLRQgCxnOuqShRvHewDaXLiLuvlZioiBBr4/MjI1mYFc0Db+6kydXL94dpZcyMDefa5/dy4XS/JHBylD8VvPXupWjVx1jDxUkRLMiKRiEdftcUSEk3NTWhVqv5nxkq/r54MRaHm8NtA/zpi3puXuonNC7JiaEoKQKlTIxELOa57Q0A/L9NNWTFhvsVCQchQaNgWW4sb37dhlwixnlU+nasQAD8kst/+KyOdUsz6TE7+e6CVP65q4U39rXxxj4/CXN2qprpWglLND1klWShjk0kThPK3nY6nQJR0WQy0dXVhdlsQSSWEBmhDgkQRlKA8/p8NPbaqO+1squhnw8Od6IJk/KvG+fwzJcNeH0+ZGIx3WYnSpmYi2ck8p8DHSRoFJxXHD9iIGAwGKiursZms6HT6UhOTp40t83g/wrvY4Qsgs/rZXNlDw9foMPudPNuWTfLn9rJuiVp7GyVbANfAAAgAElEQVQwcqBlgGlJGv5146xToj44Vhaho6MDj8dDZWXlKetoGA6na2bgeESHRiMsBgIEo9FIWVkZ11xzDZGRkURFRfHAAw8wY8YMSkpKKCoqQqkcnzroSHA6nVx55ZWUlpby/PPPD/veLrjgArRaLdu2baO3t5cbbrgBn8/H008/DfhbHs8++2xWrlzJnj17qK6uZu3atahUKu66664TGt9wOBMMjIKJTiZisRiJRILL5Zpwq04gCDCbzWRmZjJ37twJPQiTGQx4PB6ampq4+z9+jfiZyWqmp0XySU8X5xTBy7uakYpFxKrliEViPqgy8sL+rTx15XRmpkUK7Py3vm7jjZvmCSJGQ67j9VH00Ga0GjlSiYjCxNBUecBdsb6+XkhJ2+12amv941IppCzIiiFSKePnb5cLpMA1RfFEKWWYHW42Hva3Pd6+PJM9jQYhGPheaRr/2OHXO+g0Ofj4SBdrirREKWXsrO+n3ejA6fHy7HUzWJgVTXO/jT9+Xs8H5V0syIxiV4OBX11cwL3/reQvWxv5y9ZGrpufQlOfjbToMJr77WTHKrlzjoLXDvUTHxfBvIXTUSuHJ8PJ5XJiY2OFVGifxcktrx6ivN3EeXkSrA4Daao+tFIH0TIPMRol2ugIIUCQhYWz8ImdADx2aSF3rc7hnjW5HGwx8petjYgBsUiE0+MlIkzKvMwo9jUZOb84nmW6GB7+sJrydhMXTEtgZmoEIpFIIAd2d/eQmJpGSm4xUSrFcS2yFqcbqViEQjr2ojNSy+PBlgE+ONLDrLQI3i3rFl77yzb/fcyICaO6y4zL5cLpcuHynnrmfjAXweVy4fV6mTlz5inraBgOHo/ntCxfTJbOwHB8kOnTp9PU1MQ777zDww8/jNvt5oUXXqCsrIyEhAQqKipO6JoBF8MXXnhh2Nc/+eQTjhw5QnNzs5BVfeKJJ1i7di2PPPIIERERvPLKK9jtdl544QVBTr66uponn3ySO++8c9KD3TPBwCRjOBvj0dDf73fuMxqNZGZmMnv27ONS7DoRAmEAXq+XxqZm3ttby5/KjqVqD7SZMbt8pEUruf4f+yhO0vDS9+agUkg5eNCOS6KkTxzFd/6xj5mpkSzNjeX7izOYnR45al1XIhYJff2DxxFQUlQqlSEWy06nU+Bx/OXLeloNfnngcLmEW5Zm8tetDXx8pItr56USo5Jx8BfLsDk9/OjNckH0BhACAYCVeXFcMM0fQLy5v421pWmESSXc824FP3+ngje+P4crnt2L1em/rtnh/69CKuaGBal8e04KFzyzK8STICNSSl2vjXi1mj98d9G4g0Ofz4fb6yNGJeexSwvZeLiTvwRpGhz95Hj5mnTCxU7u+6SFfR3+DoZZcZAUIWdPVQvz40Gj0VCSEjFiMBaAye7m91dOI1Yl54PyLt490IbNYsJkMqNSqYiKSkbdKkHT24vJ7qa83SRwLr5XmsaM1AjmZ0YTpQz93vZanGyv7UOrllPTbeVAixGt2r+oBaYxH/7syszUSFYXxBE2wvdFLBYzKz2KJ68o5s5/lw95/fIZCcxJi6CszcQvP6zhnaPBwrcslXy/NJWECMWEhJOmAsGcgcnkIpwoTtfMwFTrDERFRZGWlkZERARPP/20oCszXEp/srFjxw6mTZsWUl5ds2YNDoeDffv2sXLlSnbs2MHy5ctDWozXrFnDPffcQ0NDA1lZWZM6pjPBwCg4URvj0WAwGKipqaG/v5/MzExmzpx53LKdgesGUqsTnSACan36mhpeqPDik4dzw8JoXtzZTMUDZ/Hy7mYe+bCamm4LMSoZCpmY32+pxeuDrh4LWTFu4uLCuLgkkXvOzaPP4uShjZUopBIyx+EhEIDP5xNUAyUSCcXFxUM6OSQSiVBTPqtAy/PbG/nbdTN54P0KfyDww0VIRJAcqRA+D7VCyvPXz2RTZTdeH0MWk8+qe3B5vCzVxZAapeRLfR8/X6Pj3XXzeGFnM2f9fkfI8eXtJgoT1XzdZORfe1vJilNRlKTm8hmJ/OqoOqH66K28d5uVd6aFYXG6UcnHftya++389O0jHGodAOAnZ+cMe9wndXZMDjczshL550059FscPLlJz6X54Si8NhobGzGb/URNjUaDWn2s1KBWq0MmWU2YFE2YFK/Xy5xoJ9H9HUSmRJKbO29MYqPD7eFA8wAv7WrBaHORn6DmytnJvLa3lVaDnTajXSBpAsxOi+TrZiNvfH8O05L9rHGvz8e+RgNPbq6j1WDnx2dlo9MO3155blE8/0huoqzNBMDLa2fxs3cq+M/BTv4TJH4VwFsHu9jTNMA7N80aUzhpqgMEn8836jVORkfDYARKMf8XgwE45lgYLJx1MjQHOjo6hlgSR0dHI5fL6ejoEI4ZLJMc+JuOjo4zwcDpjrEyA0ajUVCYS09Pp6SkZFJSgMF8hfGeb7B4UV5uLi8sP1YPvqE0HbFYxHcXpnP9gjS6TA4a+2y0G+1cXOK3ZX7x0/08urUX6OemJRl4fT508WoevaSIdw91jOosGDyOADnN4/GMWpcOtvvMjVfz8MWFvL63lZKUSD778fQhmvvBu8FzCuN5YUcTV85Owmhzs7/ZSLfZSeLRPvbnv2riZ+fkcudZ2cLfPHJxIb+6qIAt1T2Ct0CUUkZFh1noinhwo5+Vf6S9hguzZVw+L4tXDvRR3tNDdZeFhb/dSrxGwRPfKg5pnxsOEUopEWHHHsvHh7HzBajpttBisDMvIwqRSITTC181mlAoFNx3/jTgGOPaZDJhMpno7u6mrq4Op9NJeHh4SJBgt9tpaGhAKpVSUlISwtweDQqphAVZ0Sw42pb45OZafv2xHpPdzU/OzkEmEROnlvPSLj//wuL0cNnMRL793D6e/84MSrNjEItEVHSY8eFjV0M/F/95N+uWZlDVaeaJbxUPyRa8/v25uL1e7vtvFTNSI5meHEGCSsrXreaQ484p1B7NXEQKn8dowkkBBL4zk51FON50/FRmEQLv/XQMBk6GUVF/f/+42woffPBBIf0/Evbs2cPcuXPHdb7h5rfBXJfBx0ylAdeZYGCSMZIk8cDAgCDOkpaWxrRp0yZVYS4wgY0nGAi0LOr1elwuV4h4UTAC7HPwf/kSIsJIiAhNdy/KUPPvBClZeYV894V9gk7B+uVZzD9aa3d5vGx45wjl7Sa+vGtpiIhMb2+vQE7LyckhLS1t1AlTIpGE7PBkEjHXzU/l6rnJeDyeUQWDAK6ck8z22j7ajQ7WFGk5pzCeqk4zVzy7F4C73irnrrf8x759yzzyE9SIRCIOtgwI5zDYRs78vF/n4v26ai6YFs/qgjg+rexhwO5GKZNwyV9287srijHZ3djdXjxeH21GOz4fLMiKYl5GFJFhUiEFPxq+qusHYMHRNswopYySlAjuWHVstxAsERvwRge/IE8gQOjr66O+vl5QoQsPDxfEXgJkxYksYHeszEYk8vMTwP9dm5sexd5GAxUdZn59SSEFiWqW58by07ePsCo/jrtW59BlcvCLc/NYUxjPodYB/vh5PdOSNfx1ayN3rMoech2pWMyvLy3EarVyYaqDRpmJr1v918yLV7G6QIvN5SEviBQ5EfnlqbCCHiszMBFMVhbhdLBVHg4BNcupDlKMRuO4MwG33347V1999ajHjNfwKDExkV27doX8rr+/H5fLJez+ExMThSxBAF1d/izb4KzCZOBMMDAKjrdMEJwZMJlMR0lY3aSlpbFs2bIpkZkViURjkgh9Ph+9vb3o9XpsNtuougXjRWBxViukrMrXEq9RcO95+YhEsLmym0c+rA45/p53ytFp/VKjzZ19dJpd/P6SLDIyMpBIJLT029BqFKPWjgMT9WBRm8Dro903lVzKOYXxIb+LDpcN20aYGavE4nTzeXUv8zOieG77yI6Ng6FVK0iKVHDZjCSyteEYrC6u+fvX/Pjf5dx/fh6FiWoqOszCjnmszoVjIkmhePPrNsFT4vX/mUNE2NilJoVCgcfjobW1VeCqpKWlYbPZhCAhoCHv9XqHlBg0Gs2IJa3B7osikYizC7Wsyo/jQIuRgkT/4txncdFrcbHxcBcfH+lmwO7GaHfj9vj44cosSrOj+ePn9Xx0pAuDzcWstEhWF2j5x44mcrQqVufFUF9fT1NTE0lJScwuXsjjB/2Ta023he8uTOPymUlDxjcYo7k8jiWcFPj78WYRTobOwESzCIH7WFdXd0o7GgYjEPCfjDLBeDMDcXFxJ9xOG0BpaSmPPPII7e3tQqD+ySefoFAomDNnjnDMhg0bcDqdwgbvk08+ITk5eUpcFs8EA2NgNBvj4RDIDAQMZ7q6ukhNTWXZsmUnbAYyFgbvmoPR399PdXU1ZrN5Qi2LE7lmaXYM1Z1mUqP9GYWkyND3e8mMRIwWB4kYSFEOcMmiVN7Ue3i7zoulooZX97SwMi+OhAgFS3WxrB60aMOxYCDYjhcYMRMwHiRFhrHh3Fw2nJsLwJF2E1c8u5dZj37JgswoGnptdJoc/HBlFtfNjOXTvZX8u8JMpEbFgFvC180DQ84pk4i4fkEa4Bf5+eEbhzkrP86/+1fK+N4/DwiGRcNBo5BicvgDu/0blgks/Kue20tZm4nocBn91mMZimU6v+/CWAhWDkxKSgrxQJDL5cPaBQcChICwi91uH6KJoFarR/Wzl4hFzEk/NuleNSeZX35QLZAypydrCJdLuGeN/x4kRYbxp6tLhHHsbzby9Of17G00cLipB2V3hV+/Pi6P9JwkHv1IP+SzOl5MpnBScBbhVIkOjZZF6Orqorq6GrfbPaKJ0KlwegzMKVOdGTAYDOMuiU0ETU1N9PX10dTUhMfj4cCBAwDodDrUajXnnHMORUVFXH/99Tz++OP09fVx9913c9NNNwkKjNdeey0PPfQQa9euZcOGDej1eh599FHuv//+M2WCbwK8Xi+9vb00NTWRkpLC0qVLT7hndbwYLjNgNBrR6/UCUfF4uxVGQnAwMCc9ii/1PXxwuINzCuMpSFBzUUkitd0WjrSbePegP+VlsigoTkvlp4X5zCwWYXZ40IRJ+brZwGfVflXC1/a2suOny3C4vei7zOi0ahIj5Dg8Pmxuv29EQOJ3Mt8PQFGShtuWZfLG123sajDwo1XZPLWljvaOTu55vY746Ai+tTCXzDg1qdFKtGo5f9/RzMbDnaRHK/mkoptntzdRkKjhrII45FIx/7xhFpFBbPvziuNxebwcah3g+hf2DxlDIBAAmPXolwDcWJpGWZuJD9YvICNGSVWnn9AZFS5DLhl9kfF6vTQ1NQltmgsWLBjiMDcYwYtIcFoy4GcfCBK6urqwWCxIJJIhWQS1Wj1kQrc43dzzzrHWrZKUCDJjlexpNPDUljqW58aikktIjgpDrZAiEomYnR5FptrLEnUXZd1uPu6JIt6tZn9LDx9XG1mYFc2vLi4QyhNTgbGyCGMJJwVKeKeLEqFUKhXkewsK/PLhp6qjYTDcbjdisXjKPyej0Uh29tAy1Ini/vvv58UXXxT+PWvWLAA+++wzVqxYgUQiYePGjdx2220sXrw4RHQogMjISDZt2sT69esFjZc777yTO++8c9LHC2cUCMdEoDd4LFitVmpra2lra0OhUDB//nzCw8fPpJ8M7Ny5k4yMDJKSkoTyRE9PD+np6WRlZU1JZN/e3k5DQwOlpaWAfzLZXtvHpoouzA4PBfFK/t/metJUPpotoRP1d+ansiJfy866PtKilfx1awNtxmM+AwuzooVWtoVZ0eys7+e6ecl09RmZp4X0MDsOhwOlUolG49f/V6vVREREhFihHg98Ph9zH9uKzeVherycnHA78zJjOGt2Hh9XG3G4vWjVcpr6bDT22VhbmoZOq+KjI13IJWJW5MWys76fj490cW5RPKXZoepuD7xfxcbDncxJjyReo6DNYOemJRnc+NKBIWO5cnayUAoIk4pZmR/HE98qBuCt/e1sPNzJrLRILp+ZJFghB7+PgLmVRCIhLy9vSnZCXq8Xi8UiBAiBH4/HI5AV+zwKtjQ4kMtlbCzvEbgXadFKbl6SQWaskh+9eZh7z8vD7PDQ2GelY8DB+2WdrJsVznS1VchqicViBuwuNpZ1IZeK+dassUsCJxPBWQSPx0NzczNNTU2C4VkAJ7ujYTD6+vqorq5m4cKFox43nLriVGYRAsJAS5YsOaHzjIVLL72Uyy+/nPXr10/pdb4JOJMZOEHYbDYhCEhMTESn09Hb23vSAwHw71gsFgsHDx6ks7OT1NRUli5dOqXlicGlCZFIRFS4jG6Tg81VPXwh8wEikuMiabYMcOuyLPRdZu5crSNSKeXHb5axu2FoX69CKuaaean86fN6AHbW+wlzr+xpY056JI/uNHLXWdlcuzQBy9Fdanuvke+/1MADs90kauRDpH3Dw8PHHSB4vV5e/3YqX1c1Eh+tYGbRdA52uSjrdFDVaebVPa0hx//nQDtXzUkmXC7huwvSEItELMqOoTQrmkc+0qPVKNBpVexu6Pe38ikkWJ0ettb0EauScXFJIk9tqSM/QUVVpyXk3LevyOTmJRnc9toh0qOVfFjeRXS4DKlYxLzMKAoS1Fw1J5m39rcLDHyJWCQoB9rtdnJyciZNOXA4iMVi4XMOwOfzhZAVD9X18eYhE+kqH9fliFmQEUFkxDHhJJ9UzpKcWA40G2kfcPDYxXnM/s12AP6y/6hy5NZ6rphl55p5KShlEq6Zd2qd9kaCWCwWFEWrqqqQSCTMnDmT6OjoMbsZTmaAMF6NgZOti3AyOglgYgTC/+04kxkYA263e9g6vM1mo66ujtbWVhISEtDpdKhUKjo7O6mtrT3pNqU2m41du3bhcDhC7ISnGr29vRw+fJjly5cD/oe4sbGRCn0d/6qTsqcjtGzx+29PD/EfuPutw7x3KJQxC36WfF6Cipd2tSARQXrM8FLCAD9elU3HgAO1QsK/9rYSq5Lz/Ldz8TiOtdWZzWZEIlFIGjuQyh6c9m1vb6e2tha5XE5eXh6//6qbL/Q9ZMWG873SdD6r7uH1fW2oFRLMDg/5CSrevmX+iJ+R3eXhb9sasTk9bK7qocVg59FLCkiNUtJlcnD+NP/nse7Vg7g8Ps4qiCM/QU2rwc6eRgPhcom/ZVOr4qo5KVR1mnl5dwvRShmv7GnB5vIvJtlx4Txwfh7F8Qr0ej29vb1kZmYK5MxTCafby4Z3K3B7fXx6VO8hUS1lVqKMy7PAbvUHQIGF4/n9A1yYbMMhVbPfpOarRhN1PaH3/6z8OG5fkTWijPKphMVioaqqioGBAcFldKRAbDAXIZggG4zBwcFkBAkdHR20trYKpLXJwGRkEbq6umhsbGTevHmTNq7B8Pl8zJkzh9///vecf/75U3adbwrOBANjYHAwYLfbBQJWfHy8QAgJYPDiONUIHo9CoUCr1VJUVHRSrg3+yHrfvn2sWLGClpYWamtrMXpkvN8iZ2v9UGJdAP+9baEwifdbnSz8jb8u/t5tC3jvUAdGmwuZWESPxclHR7pHPE8wXl47i7wENbXdFl7f18a3ZyczM+1Yj3mg535gYACz2czAwAAej0eYoMRiMX19fsZ+bm4ukTFxfPfFA5S3+wVuIsKkDNjd3LIkg3cOdvDbywqZnR7Fvf+txO728JvLikat3XebHajkUta/dohF2THctGSoAcuqp76iY8ABwOOXF5GrVZGjVQ1h6ft8PqwuD3sbjdz573JuXpLO1bMT6GhpEsiBOTk5U9K5Mhkw2d3sbuzno/JuNh7u5Bfn6rikKJr29naaW1r43UEf02JE9Ni87OsRE6MUU5IYjiZcwZuH/LLT8zOi2N1o4E9XTWdl/uSwvE8Ubreburo6mpubhaD8eDgtI/ozjBAgHG8WobW1le7ubmbOnDnhMU4Eg7MIgZ+RsghGo5Guri6h1j5VY9LpdPz3v/8ds0zyfwFngoExEAgGHA6H8JBrtVp0Ot2w6mwDAwPs2bOHs846a0rH5XQ6hdaquLg4dDodLS0tiEQigQx0MjAwMMCOHTsICwtDLBaj0+n47dZu2gcc7G82jvh30eEy3rttIVqNf7Hy+Xxc9/e9LMqO5ubF6YhEIg60DPD8V80CqTBOLafH7BzxnMGLgsfr48WdzTjcXr6/OF3wSwiGz+fDbrfT0dFBc3MzTqdTkHUe8Cq4b5c/CAyTirC7fXxnfgoWpweVXMrLu1t4+KICLpmRwE0vH+Tu1TqKktQn3RzH6/Nx/3uVJClcFMl7iYyMJC8vb0xy4OkEj9dHZ98AXS319Pf3k52dTWpqKr1WN2qpD6vFHEJYtFgsyGQylCo1JsJIj4skKS5qwpoIkwmfz0d7ezt6vZ7w8HAKCgqmxJZ6IlmE8cgvNzU1YTQamT59+qSPdTwYLYsgkUiIi4ubso4Gr9eLVqvl0KFDJ3XOPF1xJhgYA1arFb1eT3NzM7Gxseh0OqH1Y6Tjv/zyS9asWTMlC4PL5aKhoYGGhgaio6P9O9ij7WB6vR6Hw8G0adMm/bqDERAuqqqqwmKxCDrbgUmnutPMRc/sHPM8b940j2nJGrxeL063B5nEP4GZHR6e3d44od5+8DPu1y3LRK3w1xsPtw3w7ef2kRmrZJkulhaDnT9e5Z/4LBYLer2evr4+MjIyyMjIEOSkn99Wx8cVvVT1OHhutQKr1YpUKvVzD1RqvvVGm3DN5Mgw1i3N4IrZQ22cpxIBcmBVdTVupMwszp8ScuBUIrjVMTk5mZycnDEnfI/HIwQHwUFCQBNhcClosrtNBsNoNFJVVYXdbicvL4+EhISTGhSeSBahvr4em812UrOJY8Hn8wmmbVFRUWNmEY63o8FsNpOcnExnZ2cIqfP/Ks4QCMdAX18fFouF+fPnj8vvOjDxTDYBxu12C61harU6xE44gMkwKxoPAgxkq9VKRkYGer2epKQkxGIxDb3WEBvg0SATi7jy2T2kRoXx1k1zONJhxu2FNqOdig5/B8GMlAgOto5cbhiMv+9o5l97W/lg/UISIhR8cLiL1/5nDq0GO9tr+zDaXNR2GDikb2BHbS/vN4mZnxFFgcuLqKYeqUSMSi7hD1uPLfZVolS+uzJFWHh6DKHjCRc5+eJwIwfqO/hPuT8bsvfny/DhG5cfwfGgv78fvV6P3W4nV6cjaRgL6dMZXq+X1tZWamtr0Wg0zJ8/f9w7aYlEQmRk5KiaCP39/TQ1NQmaCIMDhNE0EcYLp9NJTU0N7e3tZGRkkJWVdUq4GeMRThqJsOhwOBCJRHg8nlNq4hSMQLCiVqtD2v6GU1cM+G+Eh4eHBAjjCQIDhkTjFR36344zwcAYSE5ORqvVjvv4QADgcrkmJRgItCXV1dWhVCqZMWMGsbGxw05kUql0RNGhyUBAs8BgMJCV5VcNFIlEgqeARCKhutPMLz+opNs0cjo/AJfXh0IqpsVgZ8Hj20Ne2/PzpajkUhZkRiOXimkz2PnW3/YKQcZDF+azt9HAx0e6hwQehYkanvuqkZ+do+O9sk6sLg/TkzVcNzeRB987wkV/C/T1+ye93Y1GrpidwoXTE9jd0M8D71eFnO/xTbXIJWLmZUSRm5KCTR7NtGQrD12QT2I4bHivitlJMv592EiUHAxO+MEL2/wWz1I5qwviWJqfOCn1e4vFIshany7kwImit7eXqqoqfD4fxcXFxMXFnfDCPJImgsvlCiGR9vT0YDabQ7ofAovHcJoIw8Hr9Qr8mOjoaEpLS09J99BoGEs4KVD27OzsJD8//5SbOA2G2+0e8rwcT0dDQFJ7uCyCwWBAo9GclK6FbwLOlAnGgNfrHZcLYTA+/fRTFixYcEI1w+Cdk0wmIzc3F61WO+qk2dbWRnNzMwsWLDju6w4Hs9mMXq+nu7tb2AEFUrk+n4+PP/6Y5cuXC90LRpsLi8NDjErGe4c6SIoM4wevHxLU5s4t0o6bFBiplCIVi1iqi2VGagQPbawmLVrJdfNSkEvF/PKDan56dg6/3VTLpTMScbq9fFDeRXJkGJt+uJDPq3tZ/3oZceESeqzHJrzceBX6rtAWvvkZUfzhqml4vD7+trWRF3cNLxH8wxVZ9NtcrFvqJwB+98X9zEmP4rZlmWjVcsqa+/j0SAcX6cJ4bncXZZ0OZsS4OS9raLvjeHeoTqdT6F453cmBI8FisVBdXY3BYBCksE+VlXCwJkIg4+NyuVCpVENcHoM/5+BAJj8/f9LkaU8WfD4fra2t1NTUEBkZSX5+vtB6PB7hpJMVIBw+fJiIiAjS09OP6+9dLhcWi2UIFwH8EvGvvvoqSUlJbNq0ib17907qfXzkkUfYuHEjBw4cQC6XD7FEPnjwII899hjbtm2jp6eHzMxM1q1bxx133BFyXFlZGbfffju7d+8mJiaGW265hfvuu2/KMoBnQqIxcDwf/EhmReNBsI2vWCwmPz+fxMTEcY1jLG+CicJmswlp0JSUlGEllUUi0RCtgUilTFDbu3JOCj6fjz0/W0qP2cGz25u4Z00uT14hotvkYPnvvuL6BakYrC4+rewBfEKr3Fn5cWjCpJjsbh68IB99l4Wbl2RwzdwU3F4fb+xrJVIp5bV9bVwxK4mNh7tYtzSDy2cmUZTsD8QKIlz8cbmE12vglkvymKU71mv/aWU3P3zjsDDu3Y0GFv52Gw9ekE9iZBif3lHKox/p2VLlJzA+d90MFmZHc7BlgI+O+DX1r5qTzH9unodUfEwOuSQ9ln/u6eCSV5t45urp/CYvDrfbHSLGE9ihBqv2BRQVg4lwgcxQfX09UVFR41IOPN0QzAtISUmhuLj4pErbDsZ4NBEGBgZobW3FZrMhl8sJDw/H6XRit9tJS0sjOzv7G7ejHBgYoKKiAqfTSVFR0ZA6+WTLL58ITtSkSCaTjZhFqKmpITk5mf3799PZ2YlWqyU5OZkZM2Zw8cUXs27duhMau+hHOP0AACAASURBVNPp5Morr6S0tJTnn39+yOv79u1Dq9Xy8ssvk5aWxldffcXNN9+MRCLh9ttvB/z36uyzz2blypXs2bOH6upq1q5di0ql4q677jqh8Y2EM5mBMeDz+XA6x055B2P79u3k5uZOiJQSIIPp9Xq8Xi+6o3XgiTxYk9XW6HQ6qa2tpbm5OURDYSRs2bKFOXPmhNRwX9/bQn2PlQuKtbQa7Zx1lOX/py8aKErWcFa+31Vu1VNfYbQNDWDyE9TMTotEKhFx2YwkweBmMC58Zhd1PVakYhFur494jZwtd5QKNfWAK2OMNp5ffVjDTUvSyYg5ltI1O9y8faAdmeRoKWJ2Elanh99+UoPR7iYvXkVTn40DR10LF2RG8aNV2fRaXNz+ehkSkYjLZiby7/3t/O3aEhZkRfPUljqqO80kRoZR1WnmmatLiFMPXfyCd6gDAwPCLjXQ7iiTyTCZTMhkMvLy8r5xJKfBvID8/PxvXCDjcDiEgFipVArCXsCwmhWnY4Dgcrmoqamhra3thLkNw8kvT0XL4969e0lLS5sSd74AXnnlFV555RXee+89ysrKOHjwIJGRkVx//fWTcv4XXniBH/3oR0MyA8Nh/fr1VFRUsGXLFgD+/Oc/c88999DZ2Slkph577DGefvppoWtssnH6fXNPM0x1ZiDAyq+pqcHhcAgCJcfre34inAG32019fT0NDQ3ExMRQWlo6rlKHRCLBZHNyqLuXfY0GTHYXTX1Wvqzp4x87/N0A356dRFFSBKvytVz5nN8uWCWXYDlaOnj4ogLK2gZwe3z88qJ8QWO+pd/Gk5vruPe8XKxOD0q5hHC5hDCpv+vg/dsW0Gdx8vN3KvjZOTq0Cg/79+9nYGCArKysEFfGe8/L5Xdb6vD5IEYlIzdeRUlKhGAoFIzEiDDC5W6um5dKdLiM+9+vYmd9P7saDLy2t415mVE8ekkBG96tRCrxj/XmVw9x4fQEfD4oTo5gcXY0opJElLLh72XwDjU52d+JECwfbLPZUCqVuFwuDh48KMguB/8oFIrTkjjY09NDdXX1pPICTiZ8Pp9g4iOXy5k3b54Q7Pp8PkGzwmQy0d3dTV1dHU6nc8g9UqvVhIWFnZL3Hmh3rK6uJiIigoULF44a1I8H4zVxGsnlcbzCSSdDgdBgMBAZGUlUVBRLly5l6dKlU3q90WA0GomJOSZZvmPHDpYvXx5SolqzZg333HMPDQ0NZGVlDXeaE8KZYGAcmKhzYaA9bSwE7IStVuuk2AlLpVJ2tLlZ6vGG9NW7PV6ko4jheDwempqaBBvT4ToVRoNEIuFHb+u5bWUua0tTUcsleL1eRCIRr+5p5ZU9rTxwQT7l7SY2V3WzJCeG6HAZXSYHnSYHDb02VAoJPztHh3KQdXFqtBKtRs5vPqlhWnIENpcHq9ODw+UhcEfEIhG/ODsDY3stDd3dpKenU1JSMoRNHCY75orXa3Gi77Lw0q4WwmUSbihNo7rTzIGWAS6bmciPVmWz8qmv+Ky6h9SoMKLC/ee6dVkms1IjqO2x0mKwATA/M5qIMBkHmo1EKWXYXR66TA5UCilFSePnjYxGDnQ6nSEp7I6ODiwWi0CSOl7Z5clGMC/gRALbUwmz2UxVVRVmsxmdTjdExlkkEqFSqVCpVCQmJgq/D75HJpOJjo4OrFYrEolkyD2aak0Ek8lEZWUlNpuNwsJC4uPjp/Q7MVJHw0hlhuAgYbgswomWCcaD00WKeMeOHbzxxhts3LhR+F1HR8cQm+JAlqSjo+NMMPBNgUwmG7V2H0hhB3avgf72E4VUKuWfejH//OUWfrAym6W6WKLDZfz0P+W8cuPcISp2gTRuTU0NCoWCkpKSCe/gvF4fOzu8hMmkiPESLvUHTgHBk6vmpvD2wQ7OeXonP1qVTavBzk/O1pERo2Tmo18A8MsL8zm3aOQU+PLcWIqSNEQph7YKBYh1NWX7SExMZPHixePyYohVyYnNkrMwK5qabguPfqTH7HCzdmEaC3+7LeTYFoOdFoPfQOkHK/wP4RKdv5//liWZPP15HcVJEUxL1rC6QEu3ycEbX7cNWxoYDsHkwOTk5BBb4QDkcjmxsbEhOgIejydk8WlsbBy37PJkw+VyUVtbS2tr62nBCzgeBL+H1NTUYQPK0TDSPQomK7a2toaUggbfoxP9zIL5Genp6cyePfuUdZsMFyDA2FkEt9stzJ9T2fIYyAyMBw8++CAPPfTQqMfs2bOHuXPnTmgM5eXlXHLJJdx///2cffbZIa8NnoeD7dqnAmeCgSnASJmBgYGBEJGbWbNmTbqd8PoiDxl5xSzM0bKlqpuyYXr0fT4fHR0d6PV+D/iCgoJxkxQHn6fVYKXNAtdnO4lzd9PR4SAiIgKVSoVIJEImEfPWzfN48tNant3WyOz0SN471MFzXzVRnKShY8DOm1+3sSArmrTo4b0UFg1y/INjuguBksaJEOt0WhW/vDCf+l4rG96t5N1184jXKCh93B8U5GjDqe22skwXw1v72zh/WgJKmYTPqnr4oqaXH63KJjr82CSu1ShYv3zsyP1EyYESiWQISSpYdtlkMgk8lIB7YLCz42QI8gS32Y3XGvl0QzDDXqPRTOp7kEgkREREhAiVBZQvh9NEUCgUx9VxEnimq6urUavVp/V9GCmL4PV66erqQq/Xo1arUSqVU9ryaDQa0el04zr29ttv5+qrrx71mME7+bFw5MgRVq1axU033cS9994b8lpiYiIdHaGeLV1dXQBTxqM4EwyMAxMtE8hkMmw2m/Dv4Na89PR0pk+fPiW7JolEQpcNlkUrSIhQkBkbzoPvVwKw8XAHF01PFGq5LpdLSIGO94F64L0K9F0W9jUZSIpUcNWcZLoGHNx2dhFytxWz2UxbWxvV1dV4PJ6QRefGubHcsTITiUTiT/W7PEK3QHS4nOTI8bXJBbIZAd2FWbNmTUqqTyQSkRUbzh0rs3h9XxtikYgbS9O4aUkGD22sJkwqIV6j4L73qrjvPb8Owa8uLuCB8/OOK4jq6OigpqYGmUxGSUnJpCkHisVioac6KSlJuF7w4mMwGGhubhYEeQYvPuOtcQe+SwDTp0//xrXZgX93WFlZicvloqioaMz23cmASCRCqVSiVCpDSKEBTQRB3CpIE2G0TI/ZbKayshKr1Up+fv5JV0CcDDgcDiorKzEajeTl5ZGUlCTMucGlhZE6GgKZyIlkEYxG47gzA3FxcZP6/S4vL2fVqlXccMMNPPLII0NeLy0tZcOGDTidTmGt+OSTT0hOTp5w0DFenAkGpgCBzIDVaqWmpoaOjo4RW/MmE7XdFt6sl2AOa0FXb+LD8k7htZ+8VY6lvZ54qY2cnByBn/DEphreL+vg4hmJXDsvlXjNyIQ0EXCg2cg5hVrSosNYnR9HVpzq6PHHFuRgNbiBgQG6u7upra0N6eO+vigCjQY0GuW4dqcBQldNTQ0AhYWFkz5xi0QiSrNjKM2OwWR3ownzPx5PXlEsHHPv+Xl0mxz8bVsTS3UxE75+f38/1dXVOBwOoWPkVC8+gZ+uri4sFsuQGndERESIWIvZbKa6uhqj0fiN5QU4HA70ej2dnZ1Cqe5UizfJZDJiYmJCiGSBjpNAgBAgl7pcLkHoyGazodVqmTNnzinlixwPvF6vwFdKSEhg0aJFwuIX/D7Gy0UIxlhZBIPBMCWcgaamJvr6+mhqasLj8XDgwAEAwdSuvLyclStXcs4553DnnXcKGQCJRCII3F177bU89NBDrF27lg0bNqDX63n00Ue5//77p+z+nmktHAdGsjEeCQFGvsvlEgRiplqhzOP18a2/7mKa2sr3Vk3jl5ua+Z/FGfzpsxoUPgc1vU6mJ6n59sJsVubHIz7KHzDb3dz57zK+0Pdy12od3WYHbo+P4mQNF0xLRCn3P4Q+n4/7/nuE7Lhwzi3UEh8xdPe48XAn+QlqcuKGTkjBfdyBNjqTyYTdbg9hYAcyCcE1876+PkF6NycnZ0LZjKlCv9XJ7zbXcf8FeUjHGIvL48VptwkloqysLNLT00/54jMcgnX/g0V5AvazgTKEVqslLy/vpNhkTyaCF5+4uDhyc3O/ke8hUNaQSqWoVCpsNhtWq1UglAZnEo5Xu3+qYTAYqKiowOfzUVhYeEIL80gtjxBq4hQcHCxevJiHH36Yyy+//MTeyCCsXbuWF198ccjvP/vsM1asWDEi/yAjI4OGhgbh32VlZaxfv57du3cTHR3NunXrzgQDpxrjDQYCEp9NTU1IJBIWLlx40ut2X27dygedakxOH5ur+gi+uWEyMXbXsej58plJXFSSSFWnme8tyvC3OZqd/PYTPe8d6uCTHy4iLToMg9XBTa8c4rUbZ1PbbeWjI10Y7W5iwmXMz4xmeoqGpzbXCYp9B3+xfFiXwOEwmCVvMpmESS08PByHw4HD4TgthV6OtJt4fV8rRUkaLpuRhFw69D07nU5W/2EHPVYvZ2crOdTtoTQ7hnvPyyNcfvoFA8PB4/FQX19PY2MjCoUCuVyOzWbD6XQSHh4+JItwuhIHe3p6qKqqEsS8gnfg3xRYLBYqKysxm83k5eWFcH2CCaXBAR0wxMBJrVZPuYHTSAjWPcjKyiIzM3PKgpWRsgibN2/mmmuu4U9/+hO33HLLlFz7m4YzwcA44PF4Ru0OCLYTjo2NJT4+npqaGlasWHHyBnkU27dvRyaTYTAYSE5O5jvvdPHsd2ah1Sj4wWsHqR4kwQtw1dwUXt/bKvy7JCWCJbpYnvmiPuS46ckaHru0iKw4f5aj1+Jkb6OBH/+7XDhmz8+WolKc2IJtMpmEXXQgoxJo0QpkDoJbtE51WvRgi5HX97VxzdwUpqf4iWKDyYEftYfx0l5/OvCu1Tk88WktH/9g4YikydMBPp9P4AWIRCLy8vJC6qbBin2BYC6g2Df4Pk2GMdDxwmq1UlVVhcFgQKfTkZKSclrulEeDx+MRNhopKSnk5OSMu7wWIJQGBwgOh0PIyAUHCVOpiSC4bFZVodFoKCgoOOmeDl1dXfzsZz/jo48+4tZbb+Wee+4ZN2/gfzvOBAPjwEjBgNvtFuyEIyMjyc3NJSoqCpPJxK5du1i9evVJG2OgPa2+voGf7JZSmhXN9aUZtPTbuXZ+KgAflXdyxxtlIX/3+Z1LqO228OTmGvIT1KzIjePz6h7+c6Cdv3+nhI2Hu5ieEsGDG6spSlJzpN2MVi3n8plJ5CWo0GlVvLizhV0N/bQa7MxMjeCWJRksz5s42cblclFfXy8oH+bk5Agp3OHS14FdT3B5ITC5nezJ3uP18euP9cxNj0SndtHeVC8oB8rCIxCJwOn2suSJY4ZM312Qys+P6h6cbgjwAgYGBsjJyRn3AjpYdjmwCAULLJ2s+xQQ0WpqaiIpKQmdTnfaZi1GQrD4kUKhoLCw8IQ8TwIIzsgFnqvBfJFgA6cTvU9Wq5XKykpMJtMpITl6vV5efvllNmzYwLJly/jDH/5w3L4H/1txJhgYBwabFQ0W6cnNzQ1JOdpsNr744gvWrFkz5V/4QEBSX19PdHQ0Xq+X2Dgtm1rgd5truWRGIpFKGS39NmQSManRSp7f3ij8/Yc/KCU7ToXP58Pj9XLVc3s53Gb6/+ydeXhU5dnG78kkM5ns+74nM5MNyAKyqYgU0E+stIq2tnzyVUGroggorggSREAQikZCKWJpRVu1WhAV3JACQggBQpJZsu8rSWZJZn+/P9JzODMTwiSZJYPnd11zKZOT5J1Mcs59nvd57tvse1SsnT3431YlDpe1I9SPh9/kx0DWoYa0XYVpycG4Z/dZ6I0Ef7wlEbeLw5EVY/sJi3kXTYkqW0541P41swdBqVTSkwyWIsHRe/SdXd34/IwUFZ068P0CERMaiPyEIDzy94sAgJtTQ9DSp0FNVz/9Ob9ID0Nvvx57f58z5DaDs2F6HsTFxSElJcUu44fMWXvm++Tr62sl5Mb6/ZijswKBAGKx2Gy0z11Qq9WQSqVQKBQQCoVW5kf2xtITwdIe27KKYIuwMplMqK+vR01NDWJiYpCWlub07Qm5XI6nn34acrkcO3fuxL333uvyauJ4hBUDNkCJAZPJRMcJ8/l8CIXCIU16DAYDvvnmG8yZM8dhv/jUBbS6uhq+vr4QiUQICQlBWVkZBAIBPT+rN5rg6cHB+z81YtNXMhT8MgPlrUocLL6ayHdmzS20a+DWb6pxuUWF8419Vt/z+MoZCPcbegTQaCL4uLQFM1NCEGdj6ZsKZaqurgaPx4NQKBzziJ3lJAN1UtPpdGYmL/aaswcGT9rM5kCOfziSwvzQ069DSUMfutU6fHm5AzxPD1S0KnGl/6qwnJcRjtY+DVLCfHFnVgRuFdpnxHCkMH+3g4KCIBKJxmxdOxzUuKOlkGOWr0dju6xQKCCVSjEwMAChUDgq/wxXw+zRcNUFlMJyLJUSCAMDA1aeCFREMPXz7unpQWVlJTgcDjIyMsz8MJyBTqfDzp07sWXLFixevBhvvPGG09fgToyfbqxxDGWsQnXvUolf1zrJUHeger3e7n/EJpOJTjX08vLChAkTzEbsuFyu2ZYG1cgXFzw40vjyvyutvubUzScwMyUYJ2t68NzcVHxQ3GJ1zHcrpl9TCAAA14ODB/JjbXoN1F40FcokEonsVjYcKtfeMpHOcs6eEgZ6rgAnGzWICvIB38sDYb48TIq79n6ipXPgzTffDB6Ph6mbT0CpNSAnLgDPzU2DzmDC2frBsJIAb09MiPFH2X+rLzenhkDWoQYBwU+1PZiZGmLlFOlILPsC7Ol5MBzMcUemicpQlr5qtRpeXl60iKP8K5gXHp1ORwcKJSQkIDc3d1w1m9pKZ2cnJBIJeDweJk+e7PL97OHGUpnbdl1dXVCr1bRVs8FgwMDAAOLi4mzub7AXhBAUFxdj+fLlMBqN+PLLL3HLLbe4nSh0NmxlwAaoHoDU1FSb58K//fZbTJkyxW7lSWaqISHkmjPqMpkMOp0O2dnZZs//evcZlLcqUbH2dgzojfj3pVZ8dqEVPf0GCHgekLZfbSwMEnihd+Dq3SuXw8GFl2bZ5SLV29sLuVwOtVqNlJSUYWfUe/p1Zs5+9kan0+EfxfW43KyARqtDfa8W0p7BPwc/Lw78+FysnhWD2ZkxZo1V1DZRXV0dgoKCIBQKraZGMl/7fvC/0X7IiQvEB8VXGzQX5UVjalIwZolC4ctz3QWL8uBXKpUj6gtwNlS/CLOKQGXT+/n5gcPhQKlUwt/f32576s5mYGCANt2hmhzd7eJlNBpRX1+Puro68Hg88Pl8qNVq2hPBsorgiJAthUKB1157Dfv378dzzz2HF154wcram2VoWDFgA9Sd5Uh+cY8fP47s7Gy7lL2pu2hbUg1ramqgVCoxadKkIb+W0Wikx2so1y5g8MLb2KNBXXc/Pj7fguQwH6xfkD6mtTNhhvAkJibalMew+pNynGvoxeHHp8KP74mDxc2o7e6HWmfAwolRmJI0srnkUzVX0NgzgANnmlDT1Y8/3pKIO7Ii8Y/zzejtNyA7xh+bj1ZhUowv4vy5MOj1SPYzINNPQzdWeXh4QKFQwMvLC+np6fT7++mFVvxU24Ml0+KRGu6DBYVn0dyrwWxRGL6XddFruHtCJI5c7oCRENyZFYF+nRFJIf/dVuFwMEcchsmJ5qXMAb2RTmm0B1REdUtLi936ApyNyWRCa2srqqurYTQa4e3tDa1WC4PBYHXhsXV/2xVQF9Da2lq3bXIEBv++KysraRdEqnJKRcBb9ov09/fT1R7LkK3RCFJCCL744gusWrUKycnJ2L17NzIzMx3wSm9cWDFgI1qtdkTHnzp1CqmpqWPykabc6lQqFVJSUmwyqmloaEBnZyfy8/Pp54YTAUNR06XGrh9qEeXPp30KDCaCRXkxEEeOzDdBq9Wiuroara2tiImJQUpKynWV+oufV8JgIrgpMQg7v69Ft1qHTfdk4KuKDrz724kwmgg+KW1FdZcay29Lht91Rhn7BvQo/LEOogg/5MYHwJfniXm7TiM+WIDpKcGo7uzH3RMikRTqg0NlbZiREoLvpF1YlBeD3PhAlDb0wkPTi762BhgMBiiMXuhS6zBgAIinAC0aLtKj/HFPTix2nWzD2rvEAIA/fV+DtHBf/O1sEyYnBuHXOdFICh0cpWpXaPHSvytxqqYHoghffPbYTdAZTfiirB1HKzsR4uuFIIEXlkyLx2MHL2HJ9HjcPSFquJd5XZh9AcHBwRAKhQ7tC3AUAwODBk5dXV3034WHh4eVsRVVTRir7bKj6OrqgkQigaenJ9LT091yP9toNNITVbGxsUhLS7Npe+Z65laWVYThxGpbWxtWr16N77//Hm+88QaWLl06Litc4x1WDNiITqcbUT5BcXExoqOjERcXN+LvpVQqIZPJcOXKFSQlJSEpKcnmO7eWlhY0NjZi6tSpVolgTPctW6nr7sfekw3w9/bEryZFQWSjGNDr9aivr0d9fT3CwsKQlpZm84VHrTVg41dy+PK5OF3TgzsyIzA1KQjCSD+cqOpGh0KLK/16NPVocEzSidRwH+TGBUJjMEHWrkKnSoeefj0KfpmO1DAf/On7Wmy8Jx1RAVetoAkheHDfeVxsVmD5bck4Lu/Gpf+GOoX58ZAYIkBJw9UmyrwwgsdvjsNNmSl4+uMK/E9WBHgcI7hGLfgmDfjGwVnuU60mfFTtAQ8P4N6sYPxmcgySIoOHfP8IIdhytAo6I8Gzc1Ph/d/45ic+vISYIG/UdfXjZE0P7suNxpLp8UgJG92FmxCCzs5OyGQycLlciEQip/QF2BvmXXRkZCSEQqFNJWBL2+WhxuicFS0MDIoZ6u87LS0NcXFxbrclAAw6g1ZWVoLL5SIzM3PMW6KUJ4KlSNBqtWZirqOjAyEhIUhJScGBAwfwyiuv4Be/+AV27tyJmJgYO726nx+sGLCRkYqB0tJSBAcHjyhUor+/n/ZLpxz3RrrfRXmXT5s2bUwigOLFzytH5JZHNVsyxy5H0wSlM5jw8iEJDpcN5is8NC0enh4c1HSp8epdYgT7eMGL64FHP7iIE1VX6M/jcT0QH+KN6s5+FP5mAvISAvGtpAvlrUp0q3X4uqIT6VF+2Pu7SQjx5eEHWRc+v9SGrys6ERfkTUcVM5kW5415E2KhNXLQ1DsAgScXK3+RanUcIQSt3QqsOyLHrAQ+0v11UKlUtFMfc4QuICCAFgiXmhX496U2eHpwEOzjhQ6lDq/8j2jEP7OhoITleO8LGA6mmLHXXfRQY3RKpZK+M7Ucd7RHMyI1ZldbW4uIiAiIRCK33BLQ6XSQyWTo6OigxYwjf6d0Op2ZQNi0aRMOHToEHo8Hk8mEX/ziF/jVr36F3NxcZGVlsT0Co4QVAzZCjRbayuXLl+nxw+uh0WjoHHVq33A0fumEEHR3d6O0tBTx8fF0dOpIyqFfV3QgPliAlDAfXGxS4P8ODIZsUF4Dw33vtrY2VFdXg8vlIi0tbcixy5FQ0tCLxftL8bubYtGvM2LD3enwsPh6OoMJB842QRThC18eF0crO3GorB3ZMf4I9+Oj4JeDfQ/NvRr84cAFNPYMpkkGeHvit5NjkRTqgzN1PVh+WzKiAvjQ6g34trQKX19uxTfNHBQ9kI5bxNGjfg3A4FYJs/nNsnRNXXh8fP2gMXnAm8cdc2Mhs7s+Pj4eycnJbtcXAJg3OTq6sY7p1sd8DGW7bJmfcT26u7shkUjg4eGB9PR0hwTkOBoq6lkulyMkJARisdihwWtDodVqsW3bNuzcuRO//vWvMW3aNEilUly8eBEXLlzAp59+itmzhz9XsQwNKwZsZKRiQCKR0AEc14JpY0yFpowmy4CZ2qXX69Ha2kpfdNRqNR1eQl10hhMIfzvbhIPFzZgtCkVmtD9UWiPC/Hi4XXxtR8Hu7m7I5XLo9foRTVxcj94BPWZs/Q8AYI44DLsemGDT573xtRxr5qXhuX9VIMyXR2cmUGRF+2PHomx4cIDTtT345cRIcDkctLW1Yde3MgR5c7G/4uo0RemLt4LvaV/DIqp0zRQJzPeK+X6NxMqXCuKhTKjctS9Ar9ejpqYGTU1NI7LfdQSWtsvM/AxLYyvL90qj0UAmk6G7u9ttEx6BQVFWWVkJjUaD9PR0Ol3PWRBCcPr0aSxfvhxeXl4oKirCtGnTzH7WzJ4olpHDigEbGakYqK6uhlqtxsSJE60+ZjAY6HJhYGAgRCLRqErpTBFAvY2W2wHM8BKFQkELBE9PT/pEFhAQAJOnAEYPTzz/mQTnG/vwtyW5SI/yx7n63msa4SgUCsjlcigUCiQnJ9OxyGPlXH0vGnsGkJcQiDvfPoOiByfiljTb9rjf+rYa751uxL7FOWjqHcCLn0sAAKG+XuhW64f8nNxYX4RyNQj0ItB4+eP3M1Kh0hphNBFMSw52mjOgwWCgy6GUSFCpVNeNFAZunL4AyoiqqqoKfn5+EIvFTg/7sgXqvbIcd6Rsl/38/KDT6dDV1YXw8HCIxWK3LF8zMxHi4+ORmprq9LTN3t5erF27FgcPHsSLL76IZ5991i23V8Y7rBiwkZHGGNfX16Orq8usq5/q5q6uroZAIBj1CZuZvmU0GkfcE8Cc237mUD0quswvko/kBWLv+T54cICZqSHY/duJZl+7v78f1dXV6OjoQEJCwogaHG1B1q7C7hP1MBECtdYADoeDxFABvq7oRJdKZ3bsdyummzUGUvP94kg/ZMf4Q9auQlmLEr/KiUJ8sADtCi0i/fm4e2IkBgYG8O15OXaW9CMuwBP7/jcPfJ7nsOZKzsZkMpntl1IXHwC0OPDy8kJ3dzf6+/shFArdckYdAPr6+iCRSKDT6SASiYY19hqPULbLbW1taGpqovt1TCaTVYe8vdwvHQk17cDj8Vzi30AIweeff47Vq1cjPT0du3fvhkhk9VVRPAAAIABJREFUn14aFmtYMWAjIxUDll39zPxxkUhk5ho4EkY6Jjgcfzx4Ccfl3df8eIIfQa8WeOt2P4QEBcLHxwe9vb1ob29HdHQ0UlNT7b5n2NyrwdcVHXjzm2r6OV8eF2qd+c++4Jfp+F7aBa4HBzsWZUNnMCHn9eMAAE8PDtYtEENvNKHoRD14nh6ID/LGo7ckIT8hEHq9np6zj42NRUpKCuDhOS6yAWyBEAK1Wo2enh40NTXRd6RDNb/5+/uPeyc+rVaLqqoqtLW10dMzzr77tAdarRYymQydnZ30yCOHw6HtfJlVhLHaLjv6dUilUnR3d7ts2qG5uRkrV67EqVOnsHXrVixZsoQt/zsYVgzYyPVijC3p6OiAVCqFUCikbXeFQuGo99PtKQIo/n2pDc9/Zm1PbMnGedGI4fRBoRgcvfPw8DDrPxjrSNap6iv429kmeHI5+EbSdc3jLA18mLa+twlDkRAiwF8t+gPSwn2x+8GJ4HI4CBJw0dI0GIgUEhLitvvpzL4A6nUIBAIrr3+FQmHW/MYUCeOhzEq9jpqaGoSGhkIkEo2qcdbVUBM01dXV9Ou4nkgeyoiHabvsiphuQghtux4WFgaRSOT0rQ2j0Yg///nPWL9+PRYsWIDt27ePyauFxXZYMWAjIxUDdXV1kEql4PF4Y2ocYooAAPRJYawnh36dEZPf+JH+tx+fi9vFYfj3pXaz4169PQomRTtSw3zoMUFmUiD1X0KI2Z52QECAlUDYfaIOf/q+FrOEoYgN8kagtycmJwbhmKQTH56zzkNg4svj4vc3xeGjkhbcJgrForwY/PN8C+7LjYbRRFDd1Y/fTB7MRihrVuAvpxqQGu6LIIEnNn1dhZvifZHI68f/pAmsUibdBcu+ALFYfN3XYTnJoFQqMTAwYDa3TYkEZ96Vdnd3QyqVAgDEYrFb9jcAg/vZlZWVMJlMZo6Uo+F6Md2WRjz2rJ4olUpUVFRAr9cjIyPDJe9HeXk5li9fjvb2drzzzju48847XV4l+TnBigEbsYwxvha9vb2QyWTo6+uDyWTCnDlzRlWmtYdhkK10qrS42KRAS68G+39qRJviqtvitCgPDHC88cEjN13ze1MjWVSDIjOilnnB8fXzh47DwwfnWvB/0xOg1hmweH8p2hRanHv+Vrz7Yx1a+jQQRvjiT9/XIjqQjzBfHn33DwxWBzbcLUaILw9GE8EHxU04UXUFbz8wwazMTwhBRasKP8lb8cWlVkh6TPD25OD7Z2YgUOD6u+KRolQqIZVKoVarab+A0f4uXGuSwcvLy6riM5JJBlvo7++HTCZDT0+PW3fX63Q62hMkOTkZiYmJDnkd1JaQpUDQ6/VD9iGMtOJjMBhQXV2NpqYmJCYmIjk52elbNAMDA9iyZQt27dqFxx57DOvXr3fLfAl3hxUDNnI9MaBUKiGXy2nv/ejoaJw8eRLz5s0b0UmCOSHgaBEwFN1XruDoOSk2/KTBn+6Ox09tJnxQ3HxdnwFLqChhZgVBoVDAaDTiksIbKhMPnjweOFwempQG3CYKwy8nRmL9FzI8Pz8NKz8ux6maHrOvmRzqg3//8SabApNUKhXkcjl6e3uRnJyMRr0vvqzowhOzkhAb5D6laKadc0JCApKTkx3SA2A5dcKcZKBSAq81yWDr16died3Zg59ZSg8JCXHJ1oZlCiez4sOMFabes2uNEVNbmd7e3sjIyHD61AYhBCdOnMBTTz0FPz8/FBUVYfLkyWw1wEWwYsBGriUG+vv76eYnKq6Tz+fDaDTi2LFjuP3222066TGnAwghThcBSqUSVVVVOHixB5cVPOiJB7RGgq+enAauB+wyZ8/MsFcoFOhTKNDcrcA/5SbMjOOjoo+LO9JDEBzgh39L+hDux8dfTjWYfY2Pl05GZvS17xqYITxUc6A7XnSoZMTa2lqEhoZCKBTCx8fHqWuguuOZgo7yj/fz8zO74FyrbE2lbcpkMnh7e0MsFrs8lne09PX1obKyEgaDAenp6QgLu7b3hiuw1XaZz+ejoaEBfX19EAqFiImJcfoF+MqVK3j55ZfxySefYO3atVixYsW4n6640WHFgI1Q6VsU1B1bU1MToqKikJaWZnayJoTg6NGjuOWWW4Y9idviFeBIBgYGUFNTQ4uZ5ORknK5X4o8HLwEANv8qY8wBOZYUHq/F28frzJ57bV48soIJFEolPqtUoL7PCC8vT9wp9EfZFSAnPgg5SWFIDPMDj2t9V8q8eLpzcyAhBB0dHZDL5fTkyXjqb2BuCTErCUajkS5bUwKBw+FALpfTI4/2MqNyNkw3R3ebdmCOpioUCnR3d2NgYNCF07LiYy/b5eut55NPPsFzzz2HSZMm4d1330VqqrW1N4vzYcWAjVBiQK/X0+VO6o7tWvtb3333HfLz84e8E3K1CKBeR2NjIyIiIswskAkhOFl9Bcs+GBQE/3gkH1nR/nZfm8FkwvfSbqSF+yI5bFAw9fTrECTwglarxXcVLTgm6cYdiRwIjP3QarVmHv/UCayrqwtVVVXg8/kQiURuafUKDJo4SaVS9Pf3Iy0tzSV3bKOBqvhQF5y+vj709vbCZDLB09MTISEhdFPpeJlksAXmSHBgYCDEYrHTqzP2gqpqGI1GpKenQyAQWG0L2cN2eTjq6+uxcuVKlJSUYPv27XjwwQfdsl/kRmV8DyCPIwghqKmpQU1NDQICAjBlypTrhqV4enpaTSBQF36qJ8BeY4K2YjQa0djYSLsfTpkyxSptjMPhIDd+UMB8umwKiut78PmlNhACxAZ5IyrAG+F+PGTH+NNJe6PB08MDczOu2pr+VNuDzy62oqpTjYpWFX53Uywevk2MY5WdCPWNxP03hdNmSX19faivr4dOpwOHw4G/vz8iIiJgMpmg0+nc5oIDmM/ZJyQkIDc3d9x7AzDhcDgQCATw9vam97KDg4ORnJxM9yIoFAo0NzfT+9qWoU3jYb6eiUKhQGVlJXQ6HTIzMxEREeHqJY0KylOjubkZSUlJSE5Opi/APj4+ZmN7ln0ILS0tZrbLzIePj4/N75fBYMC7776LgoIC3HvvvaioqBh3WywsbGXAZgghOHfuHGJiYmz+RT59+jSSk5MRFRVFfw17ewXYCmXzWl1dDR6PB6FQOOz4ECEEHUodIgP4Zs+1KrSo7+5HbXc/LjUr8OjNSfRd/Vg5VNaGsmYlsmP8MTkxCLu+r8Xnl9qQGCLAy3eK8IO8C8/+Ig06TT+kMhl6e/uQmDAYyMTc26ZG55h3owEBAeNOIFj2BbjrnD0A9PT0QCKRwGg0QiwWXzOkynJfm7LHZk4yjOaCYy/0ej2qqqrQ0tLisu56e0BtN0kkEvj5+SE9PX1U22ZMi2xm3whlu2w57mhpkX3p0iU8+eST6Ovrw+7duzFnzpxxJfpYrsKKgREw0hjj4uJiREdHIzY21iFeAbZACEFXVxdtfJSWlobIyMgxfe+vKzrwzMfleGRmAhQaA9bdJbbjiq9iNBHcu6cYD89MwN0TolBa343fvT+4dRHs7YFFeTFY8QvrVEi9Xm/lg9Df3292R0oJBVf4xVMnaplMBi8vL4jFYrfd2tBoNJDL5ejs7Bz1iB1zkmGoCw5TJIzF3Go4CCFobW2FTCZDQEAAxGKxW/acAIN9QJWVlVAoFBCLxYiKirLruYZqLLVsVjQajejt7cWHH36IrKwsNDc341//+heeeuoprF271m1/nj8XWDEwAkYaVnThwgX4+/sjMTHRJWOCvb29kMvlUKvVSElJsetM94/ybvzlVAOK63ux+7cTrxlmNBambTkBhWZwm8XLA9CbAFGIJ2RXDHjrvixcaFLgsVsSESi4fhcy846UEghUSqBlBcGRJWtmX4A7N9Uxqxrh4eEQCoV2taa2nGSgHiOZZLAVpVIJiUSCgYEBiMVit8tEoDCZTKivr0dNTQ2io6MhFAqd1qFP9Y1IJBLs2rULFy9eRH19PQYGBpCUlIScnBzMnz8fjz32mFPW8+OPP2Lr1q0oKSlBa2sr/vWvf2HhwoVm612/fj327NmDnp4eTJ06Fe+88w6ysrLoY7RaLVavXo2DBw9iYGAAc+bMQWFhIeLi4pzyGpyN+2xMuhHUNgCfz6f3gv39/REYGEg3vTmycUatVqOqqgrd3d0O24O+VRiKW9JC8MXlDjx28BLefmDCsDHH16N3QI+qDjUmJ17twzj+zAyckdTjdGUDbkscdA6U9XEwKS4An5a2wkQIFBqDTWLAy8sLISEhZp35BoPBTCC0t7ePOPLZVjQaDaqrq9HW1obExES36wugoCpNUqkUnp6eyM3NdUhVg1mGZn7v/v5+s/erqqoKBoPBzICHet+u9/NlxiQnJCQgLy/PLbcEgKtOiACQn59/3X4me8PhcKBWq1FYWIgjR47gtddeo7cHLly4gAsXLozIwXWsqNVqTJo0Cf/3f/+He++91+rjW7Zswfbt27F//36IRCIUFBRg7ty5kEql9O/cihUrcOjQIXz44YcIDQ3FqlWrsGDBApSUlLjt78lwsJWBEXC9yoClYRBwtSmHmq2nxrCosR7qYQ+BwDSoiYmJQUpKilPK4P++1AZfPhdzxKPLOFdo9DhyuQNflXdgz+8mgefpge7u7kETJ7UO33b6ITzYHwYjwacXWnFi1Uz48R1zIbU18tlWdz6j0Yj6+nrU1dUhLCyMzhFwR9RqNaRSKRQKBdLS0sZFOiJzkoFZ9aGCgCwbFXk8HgghaGtrg0wmG9cxybag1+shl8vR2tqKlJQUhzkhDofJZMKHH36I559/HtOmTcPbb7+NpKQkp65hODgcjlllgBCCmJgYrFixAmvWrAEweO6MjIzE5s2b8eijj6Kvrw/h4eE4cOAAHnjgAQCD4XPx8fE4cuQI5s+f77LX4yjc79bEhQxnx2s5Jkg1B/r4+Jh17TKd+ai7G7lcTlv3MgWCrfujBoMBdXV1aGhoQGhoKKZNm+bU/bm+AQNa+jQI9PbChFh/mwyKtAYjvirvRKdKiy8ud0DarsLjtyZh+zEpOrp6oBjQ4o6sSPzqNjHuYqhwIyHgcIAvLrdDazDh1znRdn0tXC4XQUFBZndWzMhnpVKJ2tpa2p3PsoJANb1RZjtyuRxeXl4Ou4N2BgaDATU1NWhsbERsbCwmTJgwbgxiqEkGgUBg1vGv0+nMthioSQZKDJhMJsTFxSE+Pt7uyZvOgClo/P39MWPGDJeIzJqaGqxYsQKXL1/GO++8g0WLFo37ccHa2lq0tbVh3rx59HN8Ph+zZs3CqVOn8Oijj6KkpAR6vd7smJiYGGRnZ+PUqVOsGGAxZzReAUyBwJwyYAqE1tZWSKVSen/0WgKBSkurqamBr6/vNT0NHM3iqXGo7eqHtEOFbd/UQODlgXsmRSElzFyQ1F/pR9GJevQNGMzSBym+udyMK/067LgzClmiVBw414ZDlzuwcNLVC/5DU+Pxyr+l+Kqiw2GNi5ZwuVwEBgaa/WwpMxfqgtPQ0ACVSkW/vzqdDgaDwaG+9Y6GaqqTy+Xw9fXFTTfd5Dae8TweD2FhYfTkj8FgQFVVFZqamhAUFAQej4euri7U19fTSYHMKoIrJhlsRa1WQyKRQKVSIT093SU9Dnq9Hm+//TY2bdqE3/72t/jHP/4xrsyxhqOtrQ0ArNIQIyMjUV9fTx/D4/GsBHxkZCT9+TcarBgYAdQfnL29Aq4lEJjhPy0tLbRA8Pf3B5fLhVKphKenJzIzMxEeHu7Sk1dymA+Sw3xwR2YEevp1+PxiG97/qQkTY/1xrLITP1ZdAQA8MSsJGVGe0BqMyIz2x96Tg3bDyzIIjrcTdGk4+P2/2gFcTU+sbFMBAA6cacIL89Ow/b4s+B3i4te59nVGHAlUjDPTo6G/v5/Ogffz8wOfz0dNTQ1qa2ut9rMd1RVvL/r6+iCVSqHRaCAWi8c8geIqmHbIAoEA06ZNM9sSsKz61NfXQ6lUmvUsjJf3zGQyoa6uDrW1tYiNjcXEiROdXqEhhOD8+fN48sknodFocPjwYcyaNcstfzcs10zZwA+HLce4K6wYGCFDeQU44gTB4XDg6+sLX19fREdH09+7paUFNTU10Ov14PP50Gq1KCsrG3KLwVW/tME+PCyZngBCCCrbVEgJ84XWYEJ0oDeMJoLyViVe/R8RuJpeJBs98FkdB12ewfj7skz48IbeYpi1/SRevycdm76qwumaHiSECOA5Ti6mln0BM2fOpEu2JpPJzL63ubnZ5shnV0Cl8VGNju46Zw+Y30GLRKIhR+yuVfWhRucosyTqPfP19bVywHTGz+fKlSuorKwEl8vF5MmTXVIBVKlU2LBhA/7yl79g1apVeOmll9xyi4W64Wpra6PPrcBgcBNVLYiKioJOp0NPT49ZdaCjowMzZsxw7oKdBCsGRsBrr70GAMjNzUVeXh5CQ0OddsFVKBSQy+VQKBRITk5GfHw8uFwuHXFKVRCampqgVCppVz6mQHB26ZPD4dChQvsW52BAb4IPj4sj5+sw/+0zmBvPwQDXD506A/j9Jvz1TCMeuyVpyK+17i4xVn1SDo3BhNr/mh7lJQRiXobrnOGYfQE8Hg95eXlWXdweHh7w8/Mzuxu1rPpQ8+2Wkc/U/ztDIJhMJjQ2NqKmpgbBwcGYPn2621rvGo1G1NTUoKGhYVR30MyqQExMDADzSQalUomOjg5UV1fDYDCYWWRTD3vdset0OshkMnR0dCA1NRXx8fFOF4yEEHz99dd45plnEBcXh7NnzyI7O9upa7AnlBHcsWPHkJubC2Dw53z8+HFs3rwZwOBEhpeXF44dO4b7778fANDa2orLly9jy5YtLlu7I2GnCUZAYWEhvv32W5SWlqK2thZJSUm0MMjLy0NOTg4CAwPtnv9eXV2Njo4OJCQkICkp6bonGubdKPUYDwJBpVJBJpOhur0P/2r0xoU2DQBg4aQoLLs5EUmhtl98CCHQm8iQoUXOgFlGT0tLG7NfgGXfCDMAiDlX74i70e7ubkilUgCAWCwe1plyPMM0c+Lz+cjIyHBojwMVJWxpcEVNMliKupFM9lBVQLlcjqCgIIjFYpc0CLa3t2PNmjU4evQoNm7ciMcee8wtKkUqlQpVVVUABm/etm/fjtmzZyMkJAQJCQnYvHkzNm3ahPfeew9CoRCvv/46fvjhB7PRwj/+8Y84fPgw9u/fj5CQEKxevRrd3d3saCHLVahZ65KSEpw7dw7nzp3D+fPn0djYiLS0NOTm5tIiIScnB35+fiO+UOh0OtTU1KC5uRlRUVFITU0dU0mOaeJCPSxd3qiHLSNzI4E58kglI0o7NQj28UJcsHuN2Wk0GlRVVaG9vd3hCXaWkc/UBYeaq2eWq6k+kpEwMDAAmUyGK1euICUlxSV3nfaCOfYoEolcauak0+nMxIFCoaAzGSwrP0P5V6hUKlRWVmJgYIBuEHQ2JpMJf/vb3/Diiy/itttuw86dOxEfH+/0dYyWH374AbNnz7Z6/qGHHsL+/ftp06GioiIz0yFmxUOj0eDZZ5/FBx98YGY65E4/h5HAigE7QY36UOKgpKQE58+fR1tbG8RisZlAmDRp0jUvuMz95+DgYAiFQofNQA8lEJRKJbhcrpUr32gEgtFoRF1dHZ3wmJaW5raWpMzXEh4ebpby6EwsEwKp/+p0uiEFwlDGO9Rrqauro+O3XWHLbA+MRiOdIhoTE4O0tLRxM/bIRK/XmzUqUg6YlH8F1aDY19dHz7Onpqa6xJhKLpfjqaeeQlVVFXbt2oVf/epXN2zTHMtVWDHgQAghaGpqMhMIJSUl6OnpQUZGhplAEIlE2LNnD3Q6HebOnQuhUOiSuXTmyByzgsAUCNTjWq58zFAkb29viEQipzui2QtK5MnlcvD5fIjF4nH3WqhyNdMoiSpXW+5nU1UaHo+H9PR0lzSi2YvOzk5IJBLweDxkZGRYpW+Od6hJBqVSic7OTnR3d9NNyZZmSc5oLtXpdNixYwe2bt2K//3f/8WmTZvG3e86i+NgxYCTMZlMaGhoQHFxMS0Szpw5A4PBgKCgINx22224+eabkZeXh8zMTHh5eblclZtMJitXPpVKBU9PT6vgH7VaTZso2SMUyZX09vZCJpNBo9FAKBTaPfDF0TAFQk9PD3p7e2EymcDj8RAUFGRW/RlviY7DMTAwAIlEgr6+vnHjhDhatFotZDIZurq6kJaWhpiYGLNGRUrYmUwm2nOE2ahojy0qQgjOnj2L5cuXgxCCoqIizJw5021/piyjgxUDLkQul2Px4sWor6/H448/jqSkJFy4cAElJSUoLS2FVqvFhAkTzJoUxWIxPD09Xf6HypzPVigU6O3tRX9/P4DBnPSIiAg6i2G8ZdVfDyqJr6Ojw+F9AY6GmWcfFxeHuLg4qz4Ed4p8rq+vR21tLaKjo5GWljbu1mgrVNWwqqqKjq++Vk+Q5SQDJRL0ej2dycAUCSPZJlEoFFi3bh0OHDiANWvWYM2aNW67ZcQyNlgx4EJ6e3uxe/duLF++3Gov3Wg0Qi6X0xWE8+fPo7S0FIQQTJw40WqLwVUXK8s8hPDwcLOueJVKRScDWkYHjzeBwNxLj4iIsHsSnzMhhKC5uRlVVVXw9/cf1n9/vEc+A0BXVxckEgk8PT2RkZHh1tsbSqUSlZWV0Gq1yMjIoF0SR4LlJAP10Gg09CQDUyRYvm+EEHzxxRdYuXIlUlNTsXv3bmRkZNjrJbK4IawYcCMMBgMkEomZQLh48SI8PT0xadIk5OTk0BWE1NRUh+4xWjYHCoXCIefSqeAfZg+CZXSwqy80zL4Ad+9xAAZFpkQigcFggEgkGpU75XiJfGZOPKSlpSEuLm7ciUhbMRqNqK6uRmNjIxISEpCSkmJ3EW85yUAJOx6Ph7Nnz6KlpQVCoRDffPMNzpw5g82bN+ORRx5x2ykSFvvBigE3hhACvV6P8vJyFBcX0w2KZWVlEAgEyM3NNRMI9vDIp5oDq6qqIBAIRnXhvJZAoEavnCkQent7IZVKodVq3bIvgAlz7JHKRLDnxcYy8pl637y8vKwEwlgjn00mE70lEBkZCaFQ6LZbAsDVZkc+n4/MzEynpiRS79vnn3+ODz/8kI5VDwwMpM8NixYtwk033eS0NVmybt06rF+/3uw5Zg4ANQq4Z88es1HArKwsVyz3hoR1IHRjOBwOeDwevWUAXC0fXrp0iZ5g2LZtG8rLyxEQEGC2vZCXl4fY2FibBUJ3dzftlDcWv/qhkgGpExZ1kWlrazMrVTMf9rgoDAwMoKqqCp2dnUhMTHTrvgCqKbWmpoa2Q3bE9oanpyeCg4PNplwsI587OzvHFPkMDP6eSSQSeHh4uHXaIzAo0KRSKa5cuQKhUOiSZkdPT0+0tbXh73//OxobG7F7927MnTsX5eXlKC0tpUegXU1WVha++eYb+t/Mv8ctW7Zg+/bt2L9/P0QiEQoKCjB37lwzkyCWscFWBn4GUO52Fy5cMBtxrKysRFhYmJVAsLw7bm1tRWtrK/r6+pxqTmMwGKwMd/r7+8fU7MacS4+MjERaWprb9gUAg3ecMpkMHh4eEIvF4yI5zjL8hzmeeq3IZ2DwwimTydDd3Y3U1FTExcW5bfmaEILGxkZUVVUhIiICIpHIJZUNjUaDbdu24a233sIjjzyCgoKCcTmCuW7dOnz22We4cOGC1ccIIYiJicGKFSuwZs0aAIO9SpGRkdi8eTMeffRRZy/3hoQVAz9TqEyD8+fPmwkEmUyG6Oho5ObmIi0tDeXl5bh48SIOHz4MsVjsckMXai+bucVg2Q1PPZhrpeJ4q6qq4O3tDbFY7NZNaGq1GjKZDL29vfR43Xi+cFpGPlMCgbLIBgYtnkNDQ5GRkeHWAk2hUKCiogJGoxHp6ekusXcmhODUqVNYvnw5+Hw+ioqKMHXq1HG7BbZu3Tps3boVgYGB4PP5mDp1Kl5//XWkpKSgpqYGqampOH/+PF0BBYB77rkHQUFBeP/991248hsHVgyw0BBCoFAocPLkSbz11lv44YcfEB8fD6VSCV9fX7P+g5ycHAQHB4+LkwvVDW9p/yoQCGhRcOXKFRiNRohEIrf2PjAYDKitrUVDQwNiYmKQmprqtnvpJpOJNqcymUzg8/kYGBgAAKsthvGQ6Hg9DAYDqqur0dTU5NKR1N7eXrzyyiv46KOP8NJLL2HVqlXj/nfkyy+/RH9/P0QiEdrb21FQUACJRILy8nJIpVLMnDkTzc3NdHAUACxbtgz19fX4+uuvXbjyGwe2Z4CFhsPhIDAwEAUFBQCA48ePY/r06ejp6UFJSQndpPjee++hrq4OKSkpZtsLkyZNQkBAgNMvtF5eXggNDTW7A9PpdOjq6kJ9fT1tkGQwGFBVVYWOjg6zC42rqx22wJx4EAgEmDJlyrgs99oKZbbT2dmJlJQUJCQkwMPDw+0in4GrAUlSqRQ+Pj6YNm2aS2y3CSH47LPPsHr1amRmZqK0tBRCodDp6xgNd955J/3/EyZMwPTp05Gamor3338f06ZNAwCr8wohxG1F/XiErQywWNHU1DRsoxMhBJ2dnfT2AjXm2NzcDKFQaJXD4Ovr69Q/WoPBQI89MvsCdDqdWfVAoVBAo9GYWfZSFxpXeMJfC4VCAalUioGBAbefeDCZTGhqakJ1dfV1zXYoLCOfqYZFV0Y+UzDdEF0ZkNTY2IjVq1fj1KlTePPNN/HQQw+NC6E0FubOnYu0tDQ8++yz7DaBE2DFAItdoPbkLXMYOjs7kZ6ebiYQJk6cOObRs+HWIJfL4ePjA5FIdN2+AEogMB9MT39mBcHZAkGn06Gqqgqtra1ISEhAcnLyuBIpI6W3txeVlZUwmUxj3kt3ZeQzYD7B4crRR6PRiD179mD9+vX45S9/ie3bt7sk5dDeaLVapKamYtmyZXjllVcQExODZ555Bs899xyAwb+WTcR+AAAbyklEQVSNiIgItoHQjrBigMVhUHeBlEkSleTY19dHBzVRWwzZ2dng8XijFgg9PT2QSqXQ6/UQCoVj6gugnN0sQ3+oVECmQHDEnjDz7pnKsh/K0Mld0Ol0kMvlZv4HjrhrvV7ks2UfwmjfO0rUEEKQkZHhstHHy5cvY/ny5ejs7MQ777yDO+64w20rRqtXr8bdd9+NhIQEdHR0oKCgAMePH0dZWRkSExOxefNmbNq0Ce+99x6EQiFef/11/PDDD+xooR1hxQCLUzGZTKirqzMTCKWlpejv70dWVpaZQMjIyLhuUNPAwADkcjm6urqQnJyMhIQEh1ygLQWCZWywvQTClStXIJVKYTKZIBaLR2VVO15g+u+HhIRAJBI5PfbZHpHPFHq9HlVVVWhpaUFKSorDRM31GBgYwBtvvIF33nkHjz/+ONatW+dUEyNH8Jvf/AY//vgjurq6EB4ejmnTpmHDhg3IzMwEcNV0qKioyMx0KDs728Urv3FgxQCLyzGZTKiqqrLKYdDr9XRQU25uLvLz8yEWi8HlctHb24svv/wSkZGRiIqKQlpamlPtjJne8MwHdRfKFAi2lKmZoobZUOeu9PX1obKyEgaDAenp6eNK1Nga+cwUCG1tbZDJZPD390d6erpLKjWEEJw4cQLLly9HQEAAioqKkJ+f77bVAJbxBSsGWMYlRqMRUqnUTCBQhiRxcXHo6OhAcnIyCgsLkZWVNS7cA0cjEJhJfNTeszunxjH7HBxhiexImME/1H81Gg0tyiIiIhAdHe2SRMfu7m68/PLL+PTTT/Hqq69ixYoVbt0/wjL+YMUAi1tACMH333+PJ554Al1dXZg5cyZaWlpQVlYGHo+HnJwcMx+E5OTkcXFnPdw+NjXh4OnpidTUVERHR4+LNY8GZkpiYGCg2/c5UNtZNTU1CA0Nhb+/P9RqtVXkM7MPwRECwWQy4eOPP8Zzzz2HvLw8FBYWIiUlxe7fh4WFFQMsbgEhBHPmzMG8efOwYsUKeHt7gxACnU6Hy5cvm00wlJWVwdfX18pm2Vk2yteDirBVqVQICgqizZ6oTnjLCsJ4WPNwKBQKVFZWQqfTIT09HeHh4a5e0pjo6elBZWUlOBwOMjIyrIK4nBX5XFdXh5UrV+L8+fN466238Nvf/nbc/y6wuC+sGGBxG2wxGaHuxJlBTSUlJSgvL0dwcLCVQIiJiXHanqter0dNTQ2ampoQFxeHlJQU2vBouFE5yyTH8WK2w2yoS0xMRHJysttsCQwFc+phpH0b9ox8NhgMKCwsxMaNG3Hfffdh69at46rnguXGhBUDDkImk+HZZ5/FyZMnodPpMGHCBBQUFGD27Nn0MQ0NDXjiiSfw3XffQSAQ4MEHH8Sbb7457q1D3Q3KtMYyqEkikSAiIsJKIERERNhVIDBjn/38/CAWi23q/rYUCNSDEGJVQXCmQKD8HGQyGQICAiAWi13iuGcvmK8nMDAQ6enpdpl6sDXymcPhICwsDBwOBxcvXsSTTz4JlUqFd999F7fffjvbIMjiFFgx4CCEQiFEIhE2bdoEgUCAHTt2YP/+/aiurkZUVBSMRiNycnIQHh6Obdu2obu7Gw899BB+/etfY9euXa5e/g0PIQQqlYp2UKQEQlVVFWJjY836D3JzcxEaGjqqk3Jvby+kUil0Oh1EItGYhYalGx91F0rZ9TIFgo+Pj90FglKphEQigUajscvrcTVqtRqVlZXo7++HWCx2+OuxjHxWKBRYs2YNZDIZ4uLiIJfLcdddd6GgoABZWVnj+mdbWFiIrVu3orW1FVlZWdixYwduueUWVy+LZZSwYsABULOyP/74I/3HoVQqERAQgG+++QZz5szBl19+iQULFqCxsZEO3/jwww+xZMkS2jufxbkQQtDX12eWw3D+/HnU1NQgKSnJKqgpKCjomidrrVZLl5wdHVozlEBQKBQAMOQWw2guMMwtjoSEBKSkpLj1loDRaERdXR3q6uoQFxeH1NRUl3TnE0Jw5MgRvP766/Dy8kJ8fDzq6+tx6dIl+Pj4YM+ePbj//vudvq7r8dFHH2Hx4sUoLCzEzJkzUVRUhL1796KiogIJCQmuXh7LKGDFgAMghCArKwszZ87Ejh07wOfzsWPHDrz55puQSCQICgrC2rVr8fnnn+PixYv05/X09CAkJATfffed2XYCi+sghKCrq4uOeqbGHBsaGpCamkpvL+Tm5iInJwdeXl7YvHkzsrKyIBKJXGK0Q61brVZbVRCoyGDLCsJwORTUjL2fnx/S09PdeksAGBzTk0gk4HK5yMzMdJnw7uzsxPPPP48vvvgCGzZswBNPPEELEp1Oh/LyckRGRpol9Y0Xpk6diry8PLz77rv0cxkZGVi4cCE2bdrkwpWxjBZ2UNUBcDgcHDt2DPfccw8dnBIZGYmvvvqK7kxua2tDZGSk2ecFBweDx+Ohra3NFctmGQIOh4Pw8HDMnz8f8+fPBzB4gWxvb6fFwalTp/D222+jpaUFQUFB8PX1xe9//3vExcXBZDK5JF2Nw+HAz88Pfn5+9MWEmQioUCjQ2Ng4rEBQq9WQSCR0Cd2do5+BwQusTCZDR0cH0tLSEB8f75LXYzKZcPDgQbzwwguYPn06bbnLhMfjmYXyjCd0Oh1KSkrw/PPPmz0/b948nDp1ykWrYhkrrBgYAevWrcP69euHPaa4uBj5+fl4/PHHERERgRMnTkAgEGDv3r1YsGABiouLER0dDcA6khNgYzndAQ6Hg6ioKCxYsAALFixAXV0dVqxYgR9++AH33XcfwsPDUVpain379uHKlSt0DgNVRZgwYcJ1O8odgYeHx5ACgVlBaGhogEqlAiEEhBAEBAQgNTXVrbetKA8EuVyOkJAQzJgx47pJiY6iuroaTz/9NCorK1FYWIj77rtvXEyGjISuri4YjUarm5nIyEj2RsaNYcXACHjyySfxm9/8ZthjkpKS8N133+Hw4cPo6emhT6KFhYU4duwY3n//fTz//POIiorCmTNnzD63p6cHer3e6o+MZXzT2dmJiIgIyOVysxl7k8mExsZG2kXxyJEjKCgogFKpRGZmptkEQ2Zm5piCmkaLh4cHHf0bExOD9vZ2SKVS8Hg8REREQKfToampCZWVleByuVZjcgKBYFyLV5VKhcrKSmg0GmRnZ7vMA0Gv12PXrl1444038OCDD+KTTz5xWcCRvbB839kbGfeGFQMjICwszKZ53/7+fgCwUvweHh4wmUwAgOnTp2Pjxo1obW2lKwVHjx4Fn89Hfn6+nVfO4kimTJmCKVOmWD3v4eGBxMREJCYm4r777gMwKBBqa2tpgfDpp5/ilVdeoS9WTIGQnp4OT09Pp5xgqS0BlUoFkUiEqKgos+9rMpmgUqnoCkJdXR1UKpWZQKAejoinHilGoxE1NTVoaGhAfHw88vLyXNLwSAhBSUkJnnzySeh0Ohw+fBizZs1y+c9nLISFhYHL5VpVATo6OtgbGTeGbSB0AF1dXUhPT8esWbOwdu1aCAQC/PnPf8bOnTtRXFyMSZMm0aOFkZGR2Lp1K65cuYIlS5Zg4cKFDh0t/OKLL/Daa6/h0qVL8PX1xa233opPP/2U/jjrfeB8jEbjkEFNRqMREydONNtiEIlEdu16Z140Y2NjkZqaShshXQ+TyWQ1JqdSqeDp6WnlxOdMgdDV1QWJRAIej4eMjAyXRdwqlUps2LAB+/btw+rVq/Hiiy+6bHvC3kydOhX5+fkoLCykn8vMzMQ999zDNhC6KawYcBDnzp3DSy+9hHPnzkGv1yMrKwtr167FnXfeSR/T0NCAxx9/3OrC66igmk8++QRLly7F66+/jttvvx2EEJSVldF3raz3wfjBYDBAIpGYCYSLFy+Cy+Vi0qRJZgIhNTV1xHe9hBB0dHRAJpOBz+fb7aJpNBrNKgiU0Q4lEJgPe/dNaDQayGQydHd3Iy0tDXFxcS65AyeE4KuvvsLKlSsRHx+P3bt333BRu9Ro4e7duzF9+nTs2bMHf/7zn1FeXm7VDMniHrBi4GeCwWBAUlIS1q9fj4cffnjIY1jvg/ELIQR6vR7l5eVmRkllZWXw9va2CmpKSkq6ZmOaWq2GVCqFQqGASCRCdHS00412VCoVeDye1RTDaAQCIQRNTU2oqqpCWFgYRCKRy5If29ra8Nxzz+Gbb77Bpk2bsGzZMrf2YxiOwsJCbNmyBa2trcjOzsZbb72FW2+91dXLYhklrBj4mXD27FlMnToV+/btw5/+9Ce0tbUhJycHb775JrKysgCA9T5wM6jI5LKyMjMXxcuXL8Pf39/MAyEvLw9BQUFYt24dcnJyMGXKFKSlpdm8JWBvKIFgWUFgevnbEvZDhSTp9XpkZGQgNDTUia/iKiaTCX/961/x0ksv4fbbb8fOnTsRFxfnkrWwsIwGtoHwZ0JNTQ2AwfHI7du3IykpCdu2bcOsWbMgk8kQEhLCeh+4GRwOB97e3mYNjFSewcWLF2mBsGnTJlRUVEAgECA8PBxeXl4ICQlBYGCgw6sC14LL5SIoKMgsEdDSy7+9vR1qtRp8Pt+qgsDlclFdXY2mpiaXhyTJZDI89dRTqKmpwb59+7Bw4UK3bhBk+XnCigE3x1bvA2qK4aWXXsK9994LAHjvvfcQFxeHf/7zn3j00UcBsN4H7g6Hw4GPjw+mT5+O6dOno7GxEU888QSam5vx8MMPIyoqCqWlpXj11VchlUoRHR1t1n+Qk5PjsrwBT09PBAcHm43cUQKBqh60tbXR0zqenp6IjY1FUFAQjEaj08WAVqulnUUfeughHDp0CIGBgU5dAwuLvWDFgJtjq/eBUqkEMNjxS8Hn85GSkoKGhgYAYL0PbkAMBgNiY2Mhk8nMxmIJIVAqlTh//jydw/DRRx9BLpcjISHBKqgpODjY5QJBo9FAIpFAp9MhNjYWPB4PSqUSUqkU/f398Pb2tvJBcMQUDCEEZ86cwfLly8HhcHD06FHMmDGDFcwsbg3bM/AzQaFQICIiAu+88w7dQKjX6xEXF4cNGzZg2bJldANhU1MT7X3w0Ucf4aGHHmIbCH8GEELQ29trFdRUW1uL5ORkMw+EnJwcBAQEOOUCSJk3VVdXIyIiAiKRyOoir9frrXoQBgYGzAQC9RhLn0RfXx/WrVuHv/3tb3j++eexZs0aduyW5YaAFQM/I1asWIGPP/4Y+/btQ2JiIrZu3YpDhw5BIpEgODjYZd4HFFqtFlOnTsXFixdRWlqKnJwc+mOs/4FrIISgs7PTKqipqakJaWlpVlsMo01FvBZ9fX2orKyE0WhERkYGQkJCbP5cvV5vFtJECQSBQGBVQbieQCCE4PDhw1i5ciWEQiF2796N9PT0sb48FpZxAysGfkbo9Xq88MILOHDgAAYGBjB16lTs2LGDniYAnO99wOTpp5+GXC7Hl19+aSYGWP+D8QWVZEiJA2qKoaOjA2Kx2EwgTJw4cVSWxXq9HtXV1WhubkZSUhKSk5Pt4uGv0+msKggajcZMIFBBTZRBUGtrK1auXIkTJ05gy5Yt+MMf/uB2eQIsLNeDFQMs44Ivv/wSK1euxCeffIKsrCwzMcD6H4x/qFl/yiSJ2mLo6elBZmamWQ9Cdnb2Nf0EKDMkiUTitMhknU5nVUEoKChAbW0tEhISUFpaiunTp6OoqAhCodChaxkrSUlJqK+vN3tuzZo1eOONN+h/s1U2lqFgxQCLy2lvb0d+fj4+++wzhIWFITk52UwMsP4H7onJZEJ9fb2ZQCgtLYVKpUJWVpZVUFN1dTWKioqwcOFCiMViq3wEZ3L8+HFs2bIF3d3d8PHxQVNTE1paWiASifDCCy/goYcecsm6rkdSUhIefvhhLF26lH6OSqoE2Coby7VhpwlYXAohBEuWLMFjjz2GyZMno66uzuoY1v/APfHw8EBycjKSk5Nx//33AxgUCNXV1bRA+Oc//4kXX3wR/f394HK5mDx5MiZNmoSwsDCEh4eDy+U6VRBoNBq8+eab2LFjB5YtW4YNGzbQNs1tbW0oKSlBbGys09YzGvz9/REVFTXkx44ePYqKigqzKtu2bduwZMkSbNy4ka2y/YxhxQCLQ7DV/+DUqVNQKBR44YUXhj2W9T+4MfDw8IBQKIRQKMSDDz6IkydP4tFHH4VOp8P9998PhUKBgwcPYs2aNSCEYOLEiWYuikKh0CF+AoQQnDx5EsuXL4dAIMD333+Pm266yez3KyoqCnfddZfdv7e92bx5MzZs2ID4+HgsWrQIzz77LL0FcPr0aWRnZ9NCAADmz58PrVaLkpIStsr2M4YVAywOwVb/g4KCAvz0009WDYqTJ0/G7373O7z//vus/8ENzE8//YTFixdj5cqVdEc/IcQqqGnv3r24ePEivLy8rHIYUlJSxtTQ19PTg1deeQX/+Mc/8PLLL2PVqlUus2keK08//TTy8vIQHByMs2fP4oUXXkBtbS327t0LgK2ysQwDYWFxIfX19aSsrIx+fP311wQA+fjjj0ljYyMhhJAjR44QDw8P0tLSQn/ehx9+SPh8Punr63PIumpra8kf/vAHkpSURLy9vUlKSgpZu3Yt0Wq1VutfsGAB8fHxIaGhoWT58uVWx7CMHZPJRLRaLSkpKSFFRUVk2bJlJD8/n/B4PBIYGEhmz55NnnnmGXLgwAFSXl5OlEolUavVwz6USiU5cOAAiYqKInPmzCFyudzVL3NIXn31VQJg2EdxcfGQn/vxxx8TAKSrq4sQQsjSpUvJvHnzrI7z8vIiBw8edOjrYBnfsJUBFpeSkJBg9m+q0Sk1NZUOepk3bx4yMzOxePFi2v9g9erVWLp0qcP2OCUSCUwmE4qKipCWlobLly9j6dKlUKvVePPNNwEMNmPdddddCA8Px3/+8x+6GYsQwjZj2RkOhwMej0dXA4CrQU2XLl2iGxS3bt2KiooKBAYGmo045uXlISYmhq4gNDQ0YNWqVThz5gy2bduGxYsXj9txQVurbEMxbdo0AEBVVRVCQ0PZKhvLtXG1GmFhYVJbW0sAkNLSUrPn6+vryV133UUEAgEJCQkhTz75JNFoNE5d25YtW0hycjL9b6pi0dzcTD938OBBh1YsWIbHZDIRlUpF/vOf/5AdO3aQxYsXk8zMTOLh4UEiIyPJ/Pnzydy5c4mvry/5/e9/T9rb2129ZIdy6NAhAoDU19cTQlxTZWNxD9jRQhYWG3n55Zfx1Vdf4dy5cwDYkUd3gRAClUpF5zAUFRXh2WefxdKlS2+oBtTTp0/jp59+wuzZsxEYGIji4mI888wzmDx5Mj7//HMAcLnLKMv4hd0mYGGxgerqauzatQvbtm2jn2ObsdwDDocDf39/zJo1C7NmzcLq1atdvSSHwOfz8dFHH2H9+vXQarVITEzE0qVL8dxzz9HHcLlcfPHFF3j88ccxc+ZMM9Mhlp83rBhg+Vlh68jj5MmT6X+3tLTgjjvuwKJFi/DII4+YHcuOPLKMF/Ly8vDTTz9d97iEhAQcPnzYCSticSdYMcDys2KkzVgtLS2YPXs2pk+fjj179pgdxzZjsbCw3CiwYoDlZ0VYWBjCwsJsOra5uRmzZ89Gfn4+3nvvPatu8+nTp2Pjxo1obW2lI5+PHj0KPp+P/Px8u6+dhYWFxVGwDYQsLEPQ0tKCWbNmISEhAX/961/NXO8oq1e2GYuFheVGYXwO1rKwuJijR4+iqqoK3333HeLi4hAdHU0/KKhmLG9vb8ycORP3338/Fi5c6LRmrMLCQiQnJ8Pb2xv5+fk4ceKEU74vCwvLjQdbGWBhcUM++ugjLF68GIWFhZg5cyaKioqwd+9eVFRUWBk5sbCwsFwPVgywsLghU6dORV5eHt599136uYyMDCxcuBCbNm1y4cpYWFjcEXabgIXFzdDpdCgpKcG8efPMnp83bx5OnTrlolWxUGzcuBEzZsyAj48PgoKChjymoaEBd999N3x9fREWFoannnoKOp3O7JiysjLMmjULAoEAsbGxeO2118Deu7E4CnaagIXFzejq6oLRaLQaX4yMjGTNjsYBOp0OixYtwvTp0/GXv/zF6uO2ZFooFArMnTsXs2fPRnFxMWQyGZYsWQJfX1+sWrXK2S+J5WcAKwZYWNwUS2Mj1uxofECZWu3fv3/Ijx89ehQVFRVobGxETEwMAGDbtm1YsmQJNm7ciICAAPz973+HRqPB/v37wefzkZ2dDZlMhu3bt2PlypXs+8xid9htAhYWNyMsLAxcLteqCtDR0cGaHbkBp0+fRnZ2Ni0EAGD+/PnQarUoKSmhj5k1axb4fL7ZMS0tLairq3P2kll+BrBigIXFzeDxeMjPz8exY8fMnj927BhmzJjholWx2IotmRZDHUP9m90KYnEErBhgYXFDVq5cib1792Lfvn2orKzEM888g4aGBjz22GNOXcemTZswZcoU+Pv7IyIiAgsXLoRUKjU7hhCCdevWISYmBgKBALfddhvKy8udus6xsm7dOnA4nGEfVJqlLdiSaTHUNtC1PpeFZaywPQMsLG7IAw88gO7ubrz22mtobW1FdnY2jhw5gsTERKeu4/jx43jiiScwZcoUGAwGvPTSS5g3bx4qKirg6+sLANiyZQu2b9+O/fv3QyQSoaCgAHPnzoVUKoW/v79T1ztaRpppMRy2ZFpERUUNuQ0EgN0KYnEMhIWFhcVOdHR0EADk+PHjhBBCTCYTiYqKIm+88QZ9jEajIYGBgWT37t2uWqZTeO+990hgYKDV80eOHCEeHh7/3979u6YORXEA/zqFCP6cRETI4FJ0EAQHBf07AgUXF40gobPgEvwHLDi1XYqToriJFcW9obiXOoibBLpUqLdDMQ95zzf4rC0v38+W3DucbId7Ts4Vy+XSftdut4UkScKyLCGEENfX18Lv94u3tzd7T6PREOFwWGy3268PnhyHZQIiOhnLsgAAwWAQAPD8/IzVarU3E0GSJORyuf92JsJisYBpmlgsFnh/f4dpmjBNE6+vrwA+50FcXFzg8vISj4+PGI1GuLq6QrFYhNfrBQCoqgpJklAoFDCfz9HtdmEYBv8koC/DMgERnYQQArquI5vNIh6PA/jV7PanZriXl5ezx3gOtVoNd3d39nMymQQAjMdj5PN5+06LUqmETCYDWZahqurenRY+nw/D4RDlchmpVAqBQAC6rkPX9bN/DzkDkwEiOglN0/D09ITZbPbbmpNmItze3h6cMbATjUYxGAz+uieRSGA6nZ4wMqLDWCYgon9WqVTQ7/cxHo8RiUTs97vrnjkTgehnYzJAREcTQkDTNHQ6HTw8PEBRlL11RVEQCoX2ZiJsNhtMJhPORCD6QVgmIKKjlctl3N/fo9frwePx2CcAPp8PsizD5XKhWq3CMAzEYjHEYjEYhgG32w1VVb85eiLa4RXGRHS0Q3X/m5sbFAoFAJ+nB/V6Ha1WC+v1Gul0Gs1m024yJKLvx2SAiIjI4dgzQERE5HBMBoiIiByOyQAREZHDMRkgIiJyuA/IeZs4W8Fs7wAAAABJRU5ErkJggg==", "text/plain": [ "PyPlot.Figure(PyObject
)" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "seed!(181818)\n", "X = cumsum(randn(2^14,3), dims=1)\n", "fig = plt.figure(figsize=(6.4,4))\n", "ax = fig.add_subplot(111, projection=\"3d\")\n", "ax.plot(X[:,1], X[:,2], X[:,3], lw=0.4);" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Diffusion-limited aggregation\n", "\n", "* [Diffusion-limited aggregation](https://nbviewer.jupyter.org/gist/genkuroki/10f4e48332671e8a27e0e8b0e6c0062a)" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/plain": [ "DLAseries (generic function with 1 method)" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "function randbdr(m, n)\n", " k = rand(1:m+n-1)\n", " if k ≤ m\n", " return k, 1\n", " else\n", " return 1, k-m+1\n", " end\n", "end\n", "\n", "function istouching(s, i, j)\n", " m, n = size(s)\n", " s[i,j] ≠ 0 && return true\n", " s[ifelse(i+1>m, 1, i+1), j] ≠ 0 && return true\n", " s[ifelse(i-1<1, m, i-1), j] ≠ 0 && return true\n", " s[i, ifelse(j+1>n, 1, j+1)] ≠ 0 && return true\n", " s[i, ifelse(j-1<1, n, j-1)] ≠ 0 && return true\n", " false\n", "end\n", " \n", "function DLA_update!(s, c)\n", " m, n = size(s)\n", " i, j = randbdr(m, n)\n", " while !istouching(s, i, j)\n", " if rand() < 0.5\n", " i = ifelse(rand() < 0.5, ifelse(i+1>m, 1, i+1), ifelse(i-1<1, m, i-1))\n", " else\n", " j = ifelse(rand() < 0.5, ifelse(j+1>n, 1, j+1), ifelse(j-1<1, n, j-1))\n", " end\n", " end\n", " s[i,j] = c\n", " return s\n", "end\n", "\n", "function DLA(n, niters; seed=2019)\n", " seed!(seed)\n", " s = zeros(Int8, n, n)\n", " s[n÷2+1, n÷2+1] = 10\n", " for k in 1:niters\n", " c = mod(k÷(niters÷2^3), 10)+1\n", " DLA_update!(s, c)\n", " end\n", " s\n", "end\n", "\n", "function DLAseries(n, niters; nframes=200, seed=2019)\n", " seed!(seed)\n", " skip = niters ÷ nframes\n", " N = niters ÷ skip\n", " S = zeros(Int8, n, n, N+1)\n", " s = zeros(Int8, n, n)\n", " s[n÷2+1, n÷2+1] = 10\n", " t = 1\n", " S[:,:,t] = copy(s)\n", " for k in 1:niters\n", " c = mod(k÷(niters÷2^3), 10)+1\n", " DLA_update!(s, c)\n", " if mod(k, skip) == 0\n", " t += 1\n", " S[:,:,t] = copy(s)\n", " end\n", " end\n", " S\n", "end" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "**静止画**" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 0.816951 seconds (187.79 k allocations: 9.366 MiB)\n", " 0.848865 seconds (1.35 M allocations: 68.544 MiB, 4.69% gc time)\n" ] }, { "data": { "image/svg+xml": [ "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "50\n", "\n", "\n", "100\n", "\n", "\n", "150\n", "\n", "\n", "200\n", "\n", "\n", "50\n", "\n", "\n", "100\n", "\n", "\n", "150\n", "\n", "\n", "200\n", "\n", "\n", "\n", "\n", "\n" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "@time s = DLA(200, 4000)\n", "@time heatmap(s, size=(400,400), color=:thermal)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "**アニメーション**" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 1.008966 seconds (411.49 k allocations: 36.116 MiB, 2.15% gc time)\n", " 10.554831 seconds (95.93 M allocations: 2.667 GiB, 11.78% gc time)\n", " 1.367437 seconds (5.65 k allocations: 326.979 KiB)\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "┌ Info: Saved animation to \n", "│ fn = C:\\Users\\genkuroki\\OneDrive\\msfd28\\DLA.gif\n", "└ @ Plots C:\\Users\\genkuroki\\.julia\\packages\\Plots\\47Tik\\src\\animation.jl:90\n" ] }, { "data": { "text/html": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "@time S = DLAseries(200, 4000)\n", "L = size(S,3)\n", "@time anim = @animate for i in [1:2:L; L-1:-2:2]\n", " heatmap(S[:,:,i], size=(400,400), color=:thermal)\n", "end\n", "\n", "gifname = \"DLA.gif\"\n", "@time gif(anim, gifname)\n", "sleep(0.1)\n", "showimg(\"image/gif\", gifname)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### 離散および連続オープン戸田格子\n", "\n", "DifferentialEquations.jl という微分方程式を数値的に解くための巨大パッケージがある.\n", "\n", "以下ではそのパッケージを利用して, 以下のハミルトニアンで与えられる連続オープン戸田格子を数値的に解いてみよう:\n", "\n", "$$\n", "H(p,q) =\n", "\\frac{1}{2}\\sum_{i=1}^n p_i^2 +\n", "\\sum_{i=1}^{n-1}\\exp(q_{i+1}-q_i).\n", "$$\n", "\n", "次の行列 $L$ を連続オープン戸田格子の $L$-operator と呼ぶ:\n", "\n", "$$\n", "L = \\begin{bmatrix}\n", "p_1 & b_1 & & \\\\\n", "b_1 & p_2 & \\ddots & \\\\\n", " & \\ddots & \\ddots & b_{n-1} \\\\\n", " & & b_{n-1} & p_n \\\\\n", "\\end{bmatrix},\n", "\\quad\n", "b_i = e^{(q_{i+1}-q_i)/2}.\n", "$$\n", "\n", "正値実対称行列 $X$ に対して, 対角成分が正の上三角行列 $C$ で $X = C^T C$ を満たすものが唯一存在する. $X$ に対して $CC^T$ を対応させる離散時間発展を離散オープン戸田格子と呼ぶ.\n", "\n", "$X = \\exp(L)$ によって, 連続オープン戸田格子の連続的時間発展は離散時間において離散オープン戸田格子の離散時間発展に一致することが知られている." ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [], "source": [ "sol2p(sol) = [sol.u[i][j] for i in 1:length(sol.u), j in 1:length(sol.u[1])÷2]\n", "sol2q(sol) = [sol.u[i][j] for i in 1:length(sol.u), j in length(sol.u[1])÷2+1:length(sol.u[1])]\n", "sol2tqp(sol) = (sol.t, sol2q(sol), sol2p(sol))\n", "\n", "function H_opentoda(p, q, param=Float64[])\n", " sum(p.^2)/2 + sum(exp.(q[2:end] .- q[1:end-1]))\n", "end\n", "\n", "function solve_opentoda(q₀, p₀; integrator=Yoshida6(), Δt=0.01, t₁=10.0)\n", " prob = HamiltonianProblem(H_opentoda, p₀, q₀, (0.0, t₁))\n", " solve(prob, integrator, dt=Δt)\n", "end\n", "\n", "function solve_discopentoda(X₀; t₁=10)\n", " solX = Array{typeof(X₀),1}(undef, t₁+1)\n", " solX[1] = X₀\n", " for k in 2:t₁+1\n", " C = cholesky(solX[k-1])\n", " solX[k] = C.U*C.L\n", " end\n", " return solX\n", "end\n", "\n", "function Bmat(L)\n", " B = -one(L)\n", " B[1:end-1, 2:end] -= @view B[1:end-1, 1:end-1]\n", " B[end,:] = ones(size(B)[2])\n", " return B\n", "end\n", "\n", "function L2q(L)\n", " n = size(L)[1]\n", " qq = zeros(eltype(L), n)\n", " for i in 1:n-1\n", " qq[i] = 2log(L[i,i+1])\n", " end\n", " q = Bmat(L)\\qq\n", "end\n", "L2qp(L) = (L2q(L), diag(L))\n", "\n", "function qp2L(q, p)\n", " L = Matrix(Diagonal(p))\n", " for i in 1:length(q)-1\n", " L[i,i+1] = L[i+1,i] = exp(0.5*(q[i+1]-q[i]))\n", " end\n", " return L\n", "end\n", "\n", "X2qp(X) = L2qp(log(X))\n", "qp2X(q,p) = exp(qp2L(q,p))\n", "\n", "solX2q(solX) = [X2qp(solX[i])[1][j] for i in eachindex(solX), j in 1:size(solX[1])[1]]\n", "solX2p(solX) = [X2qp(solX[i])[2][j] for i in eachindex(solX), j in 1:size(solX[1])[1]]\n", "solX2qp(solX) = (solX2q(solX), solX2p(solX));" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/plain": [ "plot_opentoda (generic function with 1 method)" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "colorlist = [\n", " \"#1f77b4\", \"#ff7f0e\", \"#2ca02c\", \"#d62728\", \"#9467bd\",\n", " \"#8c564b\", \"#e377c2\", \"#7f7f7f\", \"#bcbd22\", \"#17becf\",\n", "]\n", "cc(k) = colorlist[mod1(k, length(colorlist))]\n", "\n", "function plot_opentoda(q₀, p₀; t₁=10)\n", " q₀₀ = q₀ .- mean(q₀)\n", " d = length(p₀)\n", " \n", " sol = solve_opentoda(q₀₀, p₀, t₁=Float64(t₁))\n", " t, q, p = sol2tqp(sol)\n", " \n", " X₀ = qp2X(q₀₀, p₀)\n", " solX = solve_discopentoda(X₀, t₁=t₁)\n", " qX, pX = solX2qp(solX)\n", " \n", " P1 = plot(legend=false)\n", " for j in 1:d\n", " plot!(t, q[:,j], color=cc(j), lw=1)\n", " scatter!(0:t₁, qX[:,j], color=cc(j), markersize=2)\n", " end\n", " xlabel!(\"t\")\n", " ylabel!(\"q\")\n", " title!(\"discrete and continuous open Toda: q_i\", titlefontsize=10)\n", "\n", " P2 = plot(legend=false)\n", " for j in 1:d\n", " plot!(t, p[:,j], color=cc(j), lw=1)\n", " scatter!(0:t₁, pX[:,j], color=cc(j), markersize=2)\n", " end\n", " xlabel!(\"t\")\n", " ylabel!(\"p\")\n", " title!(\"discrete and continuous open Toda: p_i\", titlefontsize=10)\n", " \n", " plot(P1, P2, size=(700, 300))\n", "end" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "離散オープン戸田格子の離散的時間発展は連続的オープン戸田格子の連続的時間発展と離散時間においてぴったり一致する!" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "image/svg+xml": [ "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "0.0\n", "\n", "\n", "2.5\n", "\n", "\n", "5.0\n", "\n", "\n", "7.5\n", "\n", "\n", "10.0\n", "\n", "\n", "-15\n", "\n", "\n", "-10\n", "\n", "\n", "-5\n", "\n", "\n", "0\n", "\n", "\n", "5\n", "\n", "\n", "10\n", "\n", "\n", "15\n", "\n", "\n", "discrete and continuous open Toda: q_i\n", "\n", "\n", "t\n", "\n", "\n", "q\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "0.0\n", "\n", "\n", "2.5\n", "\n", "\n", "5.0\n", "\n", "\n", "7.5\n", "\n", "\n", "10.0\n", "\n", "\n", "-2\n", "\n", "\n", "-1\n", "\n", "\n", "0\n", "\n", "\n", "1\n", "\n", "\n", "2\n", "\n", "\n", "discrete and continuous open Toda: p_i\n", "\n", "\n", "t\n", "\n", "\n", "p\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "q₀ = Float64[4, 3, 2, 1]\n", "p₀ = Float64[-2, -1, 1, 2]\n", "plot_opentoda(q₀, p₀)" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "image/svg+xml": [ "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "0.0\n", "\n", "\n", "2.5\n", "\n", "\n", "5.0\n", "\n", "\n", "7.5\n", "\n", "\n", "10.0\n", "\n", "\n", "-30\n", "\n", "\n", "-20\n", "\n", "\n", "-10\n", "\n", "\n", "0\n", "\n", "\n", "10\n", "\n", "\n", "20\n", "\n", "\n", "30\n", "\n", "\n", "discrete and continuous open Toda: q_i\n", "\n", "\n", "t\n", "\n", "\n", "q\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "0.0\n", "\n", "\n", "2.5\n", "\n", "\n", "5.0\n", "\n", "\n", "7.5\n", "\n", "\n", "10.0\n", "\n", "\n", "-2\n", "\n", "\n", "0\n", "\n", "\n", "2\n", "\n", "\n", "4\n", "\n", "\n", "discrete and continuous open Toda: p_i\n", "\n", "\n", "t\n", "\n", "\n", "p\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "q₀ = Float64[5, 2, 4, 1]\n", "p₀ = Float64[-3, -2, 1, 4]\n", "plot_opentoda(q₀, p₀)" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "image/svg+xml": [ "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "0.0\n", "\n", "\n", "2.5\n", "\n", "\n", "5.0\n", "\n", "\n", "7.5\n", "\n", "\n", "10.0\n", "\n", "\n", "-60\n", "\n", "\n", "-40\n", "\n", "\n", "-20\n", "\n", "\n", "0\n", "\n", "\n", "20\n", "\n", "\n", "40\n", "\n", "\n", "60\n", "\n", "\n", "discrete and continuous open Toda: q_i\n", "\n", "\n", "t\n", "\n", "\n", "q\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "0.0\n", "\n", "\n", "2.5\n", "\n", "\n", "5.0\n", "\n", "\n", "7.5\n", "\n", "\n", "10.0\n", "\n", "\n", "-6\n", "\n", "\n", "-3\n", "\n", "\n", "0\n", "\n", "\n", "3\n", "\n", "\n", "6\n", "\n", "\n", "discrete and continuous open Toda: p_i\n", "\n", "\n", "t\n", "\n", "\n", "p\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "q₀ = Float64[10, 2, 6, 1]\n", "p₀ = Float64[-3, -2, 1, 4]\n", "plot_opentoda(q₀, p₀)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### ランダム行列\n", "\n", "固有値問題の例としてランダム行列を扱ってみよう." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "-" } }, "source": [ "#### Circular law\n", "\n", "* [Circular law - Wikipedia](https://en.wikipedia.org/wiki/Circular_law)\n", "\n", "$n$ 次実正方行列 $X$ のすべての成分は独立同分布な確率変数であり, 各々の平均は0で分散は $1/n$ であると仮定する. \n", "\n", "このとき, $X$ の固有値達の複素平面上での分布は $n\\to\\infty$ で単位円盤上の一様分布に近付く." ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAF0CAYAAADFBoWOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvXl4FNeVPvxWdbckFm0gEAi0sYhFLGowGIQRtjDCEG+ADZNMnAleQfM5dohtcJ7Ek9iJMXZCsGciBPkcM8lkHOwAXiYiSCAjASLGhhZiESBEawEJowYJLSCpu6p+fzRVVFfXcqu6RQtT7/PwcFVdyz3n3nvOveeecy7FcRwHEyZMmDBxR4IOdQVMmDBhwkToYCoBEyZMmLiDYSoBEyZMmLiDYSoBEyZMmLiDYSoBEyZMmLiDYSoBEyZMmLiDYSoBEyZMmLiDYSoBEyZMmLiDYSoBEyZMmLiDYSoBE7cNKioqsHz5cqSmpiIiIgL9+/fHlClT8Pbbb+PKlSvCfffeey/uvffekNTxF7/4BSiKuiXf2rJlCyiKQk1NzS35nolvJ6yhroAJEyT4wx/+gNzcXIwZMwYvv/wyxo8fD7fbja+//hr5+fk4ePAgduzYAQDIy8sLcW1NmLh9YCoBE70eBw8exMqVKzFv3jx88sknCA8PF36bN28efvKTn+Af//iHcG38+PGa72QYBh6Px+ddvRHXrl1D3759Q10NE99imOYgE70eb775JiiKwubNm2WFdlhYGB5++GHhb6k5qKamBhRF4e2338avfvUrpKamIjw8HF988QUAoKWlBT/5yU8wYsQIhIeHY/DgwVi4cCFOnToFANi7dy8oisLevXt9vsu/d8uWLar137p1K3JycjB06FD06dMH48aNw5o1a9DR0eFz3w9/+EP0798fx44dQ05ODiIjIzF37lwdnAKKiorwyCOPYPjw4YiIiMCoUaPw3HPPweVyCfecOHECFEXh448/Fq4dPnwYFEUhPT3d530PP/wwpk6dqqsOJm4vmCsBE70aDMOguLgYU6dORWJiYkDveu+995CWlobf/OY3iIqKwujRo9HW1oZ77rkHNTU1WL16Ne6++260t7ejtLQUjY2NGDt2bMA0VFVVYeHChXjxxRfRr18/nDp1CuvWrcOhQ4dQXFzsc293dzcefvhhPPfcc1izZg08Ho+ub1VXV2PmzJl4+umnER0djZqaGqxfvx733HMPjh07BpvNhvT0dAwdOhS7d+/G448/DgDYvXs3+vTpg5MnT6KhoQEJCQnweDwoKSnBihUrAuaBid4LUwmY6NVwuVy4du0aUlNTA35XREQEdu3aBZvNJlx74403cOLECRQVFeH+++8Xri9evDjg7/H42c9+JpQ5jsOsWbMwbtw4zJkzBxUVFZg0aZLwu9vtxmuvvYbly5cb+pZYYHMch8zMTNx7771ITk7Gzp07hRXT3LlzsXv3buHe3bt34/vf/z7+9re/Yffu3fjBD36AQ4cOobW11YcvJr59MM1BJu4YPPzwwz4KAAB27tyJtLS0HhV0586dw/e+9z0MGTIEFosFNpsNc+bMAQBUVlb63b9kyRLD37p06RJWrFiBxMREWK1W2Gw2JCcn+31r7ty5OHfuHJxOJzo7O7F//3488MADuO+++1BUVATAqxjCw8Nxzz33GK6Pid4PcyVgolcjLi4Offv2hdPpDPhdQ4cO9bvW1NSEpKSkgN+thPb2dsyePRsRERH41a9+hbS0NPTt2xf19fVYvHgxrl+/7nN/3759ERUVZehbLMsiJycHDQ0N+PnPf46JEyeiX79+YFkWM2bM8PkWr/R2796N1NRUuN1uZGdn45tvvsEbb7wh/DZr1iz06dPHIPUmbgeYSsBEr4bFYsHcuXOxc+dOnD9/HsOHDzf8Ljn//UGDBuH8+fOqz0VERAAAurq6fK6LN1uVUFxcjIaGBuzdu1eY/QPezWjSOpLi+PHjOHr0KLZs2YJ/+7d/E66fPXvW797hw4cjLS0Nu3fvRkpKCu666y7ExMRg7ty5yM3NxZdffol//vOf+OUvf2m4PiZuD5jmIBO9Hq+++io4jsMzzzyD7u5uv9/dbjc+//xzQ+9esGABzpw547dBK0ZKSgoAb7CaGJ999pnm+3mhLvVq2rRpk86aakPvt+6//34UFxejqKgI8+bNAwCkpaUhKSkJr732Gtxut7kfcAfAXAmY6PWYOXMmNm7ciNzcXEydOhUrV65Eeno63G43HA4HNm/ejAkTJuChhx7S/e4XX3wRW7duxSOPPII1a9Zg+vTpuH79OkpKSvDggw/ivvvuw5AhQ3D//fdj7dq1iI2NRXJyMvbs2YPt27drvj8zMxOxsbFYsWIF/uM//gM2mw1/+ctfcPToUSOsUMXYsWMxcuRIrFmzBhzHYcCAAfj8888FG78Uc+fORV5eHlwuFzZs2OBz/YMPPkBsbKzpHnoHwFwJmLgt8Mwzz+Drr7/G1KlTsW7dOuTk5ODRRx/Fhx9+iO9973vYvHmzofdGRkZi//79eOqpp7B582Z85zvfwTPPPIPTp08jISFBuO/Pf/4z5s6di9WrV+Pxxx/HhQsX8OGHH2q+f+DAgfj73/+Ovn374vvf/z6efPJJ9O/fH1u3bjVUXzXYbDZ8/vnnSEtLw3PPPYfvfve7uHTpko8XkBjZ2dmgaRr9+vXDzJkzhev87P++++4DTZsi4tsOiuM4LtSVMGHChAkToYGp5k2YMGHiDoapBEyYMGHiDoapBEyYMGHiDoapBEyYMGHiDoapBEyYMGHiDoapBEyYMGHiDsYdGSzGsiwaGhoQGRl5y44CNGHChImeBMdxaGtrQ0JCgq74jjtSCTQ0NAScm96ECRMmeiPq6+t15di6I5VAZGQkAC+zjGZs9Hg8OHDgAGbNmgWr9Y5kox9MnvjD5Ik/TJ7II1C+tLa2IjExUZBvpLgjI4ZbW1sRHR2Nq1evBpS21+VyIS4uzgytvwGTJ/4weeIPkyfyCJQvRuWaqQQMKgETJkyY6E0wKtdMNWwQbrcbu3btgtvtDnVVeg1MnvjD5Ik/TJ7II1R8MZWAQVgsFkybNg0WiyXUVek1MHniD5Mn/jB5Io9Q8cXclTEImqYxYMCAUFejV8HkiT9MnvjD5Ik8QsUXcyVgEG63G3//+9/NJa0IJk/8YfLEHyZP5BEqvpgbwwY3hvnADDPg7CZMnvjD5Ik/TJ7II1C+9MqN4dLSUjz00ENISEgARVH45JNPNJ8pKSnB1KlTERERgREjRiA/P9/vnm3btmH8+PEIDw/H+PHjsWPHjp6oviooikJUVJTZiUUweeIPkyf+MHkij1DxpUeVQEdHByZPnoz/+q//Irrf6XRi4cKFmD17NhwOB37605/iRz/6EbZt2ybcc/DgQSxbtgxPPPEEjh49iieeeAJLly7Fl19+2VNkyMLtduPTTz81l7QimDzxh8kTf5g8kUeo+HLLzEEURWHHjh149NFHFe9ZvXo1PvvsM1RWVgrXVqxYgaNHj+LgwYMAgGXLlqG1tRU7d+4U7nnggQcQGxtLdOYrEDxzUGdnJyIiIswZzQ2YPPGHyRN/mDyRR6B86ZXmIL04ePAgcnJyfK7Nnz8fX3/9taAdle4pKyu7ZfXkYYa8++PbwBNHXTO2HzkPR11zUN73beBJsGHyRB6h4EuvUgIXL15EfHy8z7X4+Hh4PB64XC7Vey5evKj43q6uLrS2tvr8AwCGYYT/5coej8enzLKsUO7u7kZBQQE6OzuF626326fML7L4MsdxfmUAPmWWZX3KHo9HtcwwjE85EJrkynpocrvdKCgogMfjuW1peqvgJBblHcCr28qxKO8A3io4GVA7dXZ2oqCgAF1dXfB4PF4Fc7gOh2tcIWunUPc9j8eDgoICdHd3f2toCkY78ePn+vXrhmkygl6lBAD4LYN4Jomvy92jtnxau3YtoqOjhX98BtHjx48DACorKwUTVEVFBaqqqgAADocDTqcTAHDo0CHU19cDAMrKyuByubBw4UIcPHhQUFDFxcVoaWkBABQWFqKtrQ0ABGXBd36PxyMIBwBoa2tDYWEhAKClpQXFxcUAAJfLhdLSUgBAY2OjsNqpr6/HoUOHAHj3URwOBwCgqqoKFRUVhmlqbGwE4N3QN0IT3xmtVuttS9OH/zyHcAvw9nQG4Rbgw3+eC6idHA4HFi5ciPPnz+PDghIsyitD4cFyfFxYhrd2VuqiyVHXjP8r2ouDx84G1E6h7ntWqxVxcXFC2wSj74WaJnE7GaXJ4/Fg3rx5KCoqMkST2kRYDb1qTyArKwt2ux3vvvuucG3Hjh1YunQprl27BpvNhqSkJPz4xz/Gj3/8Y+Ge3/3ud9iwYQNqa2tl39vV1YWuri7hbz7b3pUrVxAbGytocovF4lP2eDygKEoo0zQNmqaF693d3bBarbBYLKBpGm6326dstVpBUZRQBryzAnHZZrOB4zihzLIsGIYRyizLwmq1KpYZhgHHcUJZjg5SmuTKemjiOA4dHR3o37+/D323C03bv67FT/52DByAcAvQxQAUgN8+NhGL70r2aydH7WXUNnchZWBfTBoWJUsTP7M8ebED//KHf8LNUrBQHGgKcLMUtq+YgcmJMZo0/abwDPJLnQijOXg44NmskXhp3mhD7RTqvkfTNNrb29G3b1/VNrudaArGeLJYLOjs7ITVaoXNZtNNU0tLC2JjY2/vPYGZM2eiqKjI51phYSHuuusugSlK92RmZiq+Nzw8HFFRUT7/AAjh2RaLRbbMC3i+zGf24zsOr5n56zabzafMr074MkVRfmUAPmWapn3KfAdXKlssFp9yIDTJlfXQxDAMiouLhYERCpqONbThk/IGOOqaddOUOjgKHCgAFLoY7/8cKKQOjvJrp7d3ncaSTYew6qOjWLzxIH5TVCVLE+Dtn7WXO+Bmvd9hOEoo11y5TkRTfql3ttnNUmA5Cvkl53Csoe227HsejwfFxcWC+SIYfS/UNKnRQUoTwzAoKioS6DFCkxH0qBJob29HeXk5ysvLAXiXWuXl5airqwMAvPrqq/jBD34g3L9ixQrU1tZi1apVqKysxB//+Ee8//77eOmll4R7XnjhBRQWFmLdunU4deoU1q1bh927d+PFF1/sSVL8YLPZ8MgjjwiNYSL0PHlrZyUW5ZVh1UdHsSjPa27RA3tSLFbMGeFzbeWcEbAnxfpcc9Q1I7/knM+1/JJzshvJPE94RSJFalw/zXo5XR26rvd2hLqf9FaEii89qgS+/vpr2O122O12AMCqVatgt9vx2muvAfDa5XiFAACpqakoKCjA3r17kZGRgTfeeAPvvfcelixZItyTmZmJv/71r/jggw8wadIkbNmyBVu3bsXdd9/dk6T4geM4tLa24hZZ024LhJInegSzGtYsGIcduZlYv3QyduRmYvWCcX736BHKPE8yEmOIFIwc9lU1yV53M6xuL6Zgez4ZgTl25BEqvphpIwzGCbjdbhQWFiInJ8ec0dxAKHmy/ch5rProqN/19UsnY/EU8qP21OCoa4bT1QE3w2L1tmN+v+/IzfQT6lKe8O9IjetHpAAcdc1YlOfv/jx6cD9UXbqpdFbMGYE1MgpLjLd2VvooSpJnegLm2JFHoHwxD5XRAfNQmW8flISlnGAmfZ9YWEsFaEZiNMrrrwp/r5wzQnbVECiUlJsc1GgNNn9M9D4YlWtmxIZBsCyLlpYWxMTEmEfk3UAoecLb88WCmje36J19SwX+InsCdjgafO4pr7+KdUsmwmahFd/rqGuGs6kdCX1ZhPWNRM3la8R14EGyZ8DD6epQfLeaCetWKwFz7MgjVHwxlYBBMAyDr776CtnZ2WZHvoFQ82TNgnGYnz5EdQavZQKR21uQKgAeNgutaGrivxtOc/hpBoM3yy3ouuERtGLOCL96KkFOuS22J2C7TJ3UFIbSb0rX9SpOPQh1P+mtCBVfTHOQaQ761kKPCYQXerWXO/DunrNE71cypSh9Vwkktnkt8xSJOYr0GTXF2ZPKwURgMM1Btxgsy8LlciEuLs6czdxAMHgSTCFDagKRCj05SE1Cap494u/S4JAWzeHMVQos5KPa80vOYX76EM0Vgfh3uVWPHMT8JHlGyctqfvoQ7DpxMSgby+bYkUeo+GIqAYNgWRbHjx9HVlaW2ZFvIFCeBNt7hcQEIif0pOBnzD+YmaIoQMXCVvx+Kw08msJi/TELulVSuxixzUsVgxRK/FR7Rklx7j19SVE56K23OXbkESq+mErAIKxWK7Kzs0NdjV6FQHiiNgM1uiJQ2yzmoST0Xpg7CskD+/kIfCWhKyds+e92sxTeOqo9zPRsAEsht3oyyk+99TCivMyxI49Q8cVUAgbBsiwaGxsxdOhQczZzA4HwpKe8V3gTyN7TlwAA944Z7PO7ktC7d8xgYj9+OWG7IzfTa3ppake89Tr6xAxEzeXrSI3r52dWIQ0ak4PSbF8roE1pRaOkOO8dM1h2r8SI8jLHjjxCxRdTCRgEy7Korq5GfHy82ZFvIBCekJpujOwXiIXuu3vO+piZSFYLalATtounDMfEhEiUlZVhUvoITEkeKHxTaps3QpvabF+Jn/uqmnziDuRMbkp7B3r4pEaPOXbkESq+mN5BpndQj4BEqOnxeDG6X0DqIWRUwQQjCMsobVpR0tL3KrmW6qkrCZ96S2TynQbTO+gWg2VZ1NfXIzEx0ZzN3ADPkw9PdAhZLwF5IaAkKORmoEoz3nArrWm2ITUzaW2yKkFrJaHVTwLZC9FaPUn56XR1yCoBPSY3LT6R0GOOHXmEii+mEjAIlmVx4cIFDBs2zOzIN8CyLE5V1+KP+1sBkTukVAhoCQqpkFES5O/uOetn3pFCb5CUEai5Xmr1E6O2e4DMlEWi3IzyQm5VQKJ0zbEjj1DxxVQCBmG1WlXPMLgTYbVa0REzAt2sv4lCLATU3BDlhJ6WkFKbOStF3BrdiFUyhygJW61+EojtHiCPF+DrKMcLvj308ERpJUeidM2xI49Q8cVUAgbBMAycTidSU1OFQyXudDAMg4FsMywUB4bzDYwSCwElQSH2PtHavJVCzaSxZsE4fNPaKQR7bXc0YHBUBLHw5KHH1s0ri5QBfRDlaVbsJ6RpIbQUHakAFyuNfVVN2O5oEL6VPXYQns8erfkurZWc1urEHDvyCBVfTCVgEBzHobm5GSkpKaGuSq+Ao64Zzktt6N/Rimdnp2JjaY3wm5yJQkuoS4We2NVTr6uio67ZL/9Pfsm5gHMKKQlmsbKw0Rxem9FHtp/wimJ++hBdtnutzVmt3/lr0k3l4lNNKD7VpMkLLZOP1uqEHztXrTGovdJppqC4gVDJFFMJGITVasW0adNCXY1eAf8Z8gDsyM1UFURiQaGUr0dp87bLw+py6SQ5gUtrM5Z0g1mqLNwshZ+XdWJCRptwv1ysAIkHTWpcP83VCOlqRY0nWrxQM/mIFZBScj2r1Yo9rv7I3/alZj3vJIRKpphKwCAYhkFVVRVGjx59Ry9pxULPQnGYN4zFH0qrBV91NXszL9Qddc26ZvdaAWCk75FCzaREusEsFa48T/5rzxnsOe1S/LZ0Y1zOpMLfp/ScntWKFk/UeKFUPznFJrciOFJzGTXVVbBQtGA2DDQ6/NuAUMkUUwkEgOvXr4e6CiGHT7I0CogJ8/7/3p4qfHH65rGIajM9IwFbagFgJO+Xg5pgJK2j9B08T7ZVNQEKCeR4iAWvnEll+5Hzss/xG+q1l8mjrrV4ohWkJ60fAL94CSWTW42rQ+gnjChKKRRnG/Q2hEKmmMFiZrBYQNCTNvmFuaNU/fqVcuDIXTMSoCV+l1zqhhydWTlJg6Wyxw5C8Sn5c4L11l9PimqS9zrqmv0UtpEgPdIT0Hbker1f9LafmcJaG+bxkjoQDCXAMAwqKysxbty4O9ocBNwUFFaKw4NJLNr7xGP3KWXTB6n9V0kABes8YTWlYCTHv9xvKQP6oKXBiWc/vwgPp7wSyB47CH/84XTNOpOkvRZDLNBJ6mtU2ZIqqPVLJ+ORyUPx3wX78WZZm8ATtfMQ7pQI5EBlihkxbCJkEEwDTW2I6bqEmIRUVSVAYv81kheHv046axTvSch9KzWuH5ZNS5J9Vksw8e9mGAaV7RF4RuIxJcXz2aMVfxODZENdLgMqaX3FUIvn0Gte4sG30fTUgfho4gTUXLmuufIKdnZZE74wlYBBWCwWTJgwIdTV6DW4KUS8QjMQv37+d6Xri6cMV7TPG5k1Kn1r9bZjcLo6/J7XI5j4fjJhApAzIUHwzyc9oEYOWhvqCTF9fFZEwU4r/e6es+jysJqJ56SrK3GQHj92pqSo09qbzkbuaYRKpphKwCAYhkFFRQUmTZp0x5uDeIh5Eohfv9rvbobF9iPn/XzrtWb0agfCq9VFTljqEUxinvDCe/GU4aoH1JBCafYtVV5GBana7F5JiYhXFPakWNkgvZdz0ojHzq1I+9FbECqZYiqBANCnT59QV6HXQcwTo379/LNSAZSRGI3V244Jf0tn+WozeqVnlL4lhlRY6hVMPE+kZqpgzGT5VA1iGgFfIR2IIF2zYBzCrTRRHIcUSkF6OeMGoy/h2DHiOXY7IxQypcezFOXl5SE1NRURERGYOnUq9u3bp3jvD3/4Q1AU5fcvPT1duGfLli2y93R2dvY0KT6wWCwYO3bst3YV4KhrxvYj5+Goaya6DijzZM2CcdiRm4n1SydjR26m4gag9N3i59YtmYjy+qs+9+eXnPOpB4lQ45+R+9a6JRNln5G+lxdMYigJJp4n7xSewaK8Mqz66CgW5ZXhrZ2VsjQbgc0iP4zFMRpa9VWrh1IcBkmsgRxqrlzXNXZI+8/tjlDJlB5dCWzduhUvvvgi8vLyMGvWLGzatAkLFizAyZMnkZTkv+H27rvv4q233hL+9ng8mDx5Mh5//HGf+6KionD69GmfaxERET1DhAI8Hg8cDgfsdjus1m/XgkrJrq5lb1fjidbMV+08XDUfefFslHRzUimGYdm0JDhdHUSzTtLEbR6PB8UHvsT7+5ohzawqNpWI66EXJDN9tfqSbBobmY0r1St5QAS++uororFDEoH8bUGoZEqPfmn9+vV46qmn8PTTTwMANmzYgF27dmHjxo1Yu3at3/3R0dGIjo4W/v7kk0/Q3NyM5cuX+9xHURSGDBnSk1XXBEVRiI2NBUWpBwDdblCzq2ttLhrlCYl3DqlJQyzs3AzrZyYB4KMA+G/xZxPozcoJ+M64paAoCh2IACvjiC1nKiH1epGalkiEtJwiJt001sMX8ffkkuPVXr6GgVSEZj+5U1xDeYRKpvSYEuju7sbhw4exZs0an+s5OTkoKyMLeHn//fdx//33Izk52ed6e3s7kpOTwTAMMjIy8MYbb8Butwet7iSwWCwYNWrULf3mrYDSEv5ofYvi/bxAMMoTEu8cPbNRsbCTzuyVArekZxOQCDkSIWWxWJCSOgIMd1HzfXx9tb6t50Aeku+R1kNpNafmkquWtXRFk1U1C+ud5hoaKpnSY3sCLpcLDMMgPj7e53p8fDwuXtQeEI2Njdi5c6ewiuAxduxYbNmyBZ999hk+/PBDREREYNasWaiqqlJ8V1dXF1pbW33+Ad7deP5/ubLH4/EpsywrlLu7u1FWVobOzk7hutvt9inzcXh8meM4vzIAnzLLsj5lj8ejWmYYxqesl6YjNZex/ch5HHa6wLIsUuP6IYzmQMNb9/Ab5cmJMQi3cKD46zfKKQP7CjS53W7s378fHo9HF02pcf1goTiE0d53WygOthvlP5RW43CNN+bg5Zw0bF8xA+uXTsa2FXfjpZw0zXZ6Zf4Yrz35sQnYvnImns8eLdAkpoMvbyqpxpHaK5rtdKT2Cj7YVw0AoOGte37JORypvexDX2dnJ66fr0Tu7GSBJgvFITvNe96wleJgpbzXbTSHlAF9FNsGAA47Xdhc6v0u3075Jedw2NmEycOjsXjKcEwY2p+476UM7ItwCyfQEX6jjikD+xL1vXUFJ7Aorwwvf1yOpfkH8NbOSr++N2lYFFLj+uH/jl4Q2nnlOA/+e/9ZOOqa/dqMZVk4XR2y7eR0dfTq8SSlQ1pWkxFutxsHDhzA9evXDdNkBD2+MSxd2nAcR7Tc2bJlC2JiYvDoo4/6XJ8xYwa+//3vY/LkyZg9ezY++ugjpKWl4T//8z8V37V27VrB1BQdHY3ExEQAwPHjxwEAlZWVqKz0btRVVFQICsXhcMDp9B6TeOjQIdTX1wMAysrKcOnSJQwbNgwHDhyAy+UVUsXFxWhp8c6YCwsL0dbmzRxZUFCAzs5OeDweFBQUwOPxoLOzEwUFBQCAtrY2FBYWAgBaWlpQXFwMwKtIS0tLAXiVIr+Cqq+vx6FDhwAATqcTDocDAFBVVYWKigpimrYWfIG3t3s3K/cdOICNO7+GPSkWv5phQVq0t3P+NIPBC7MTsGxaEtZO5xB/w3nh7ekM/r+sJExMiERBQQGO1Ljw+ZFaXL58GTRN66LJnhSLl2fF4ckx3k48ewiHfx3lLc8bxqLu7CmBprD2RiyeMhx0c70PTfsdJ7H9yHnsKS3zaafGxkbYk2IR01qN4X08sCfF4td3U0jq76Xj9SmMD01RYUBNU5tmO9U0XMJPM7yDPy2aw6qJ3nJNfYNPOx05cgTDhg3DorRwvHJXmEDTYM8lZCRG48EkFg8meWn92cx+6NvpXaV8WFCC9z71tk1RaRk2F3jbu/5UOSbFettm1URGaKf6E18Z6nujYq1YO937jqT+3vZeOWcEhvfxaPa9/Y6TuH6xWqBpSYrXC6zkS4df33O6OvCvo1jMHsKB4YDoMMA+0CvUy8rKcPDYWWw/ch6Fe76Ay+VCalw//DSD8Wun1Lh+vXY8SWVEY2MjAKC0tJRIRnR3d2Po0KEoLCw0RBPJ5FoOPZY2oru7G3379sXHH3+MRYsWCddfeOEFlJeXo6SkRPFZjuOQlpaGBx98EL/73e80v/XMM8/g/Pnz2Llzp+zvXV1d6OrqEv5ubW1FYmIirly5gtjYWEGTWywWn7LH4wFFUUKZpmnQNK1YdrvdsFgsQtm0rhLIAAAgAElEQVRqtYKiKKEMeGcF4rLNZgPHcUKZZVkwDCOUWZaF1WpVLDMMA47jhLIcHXI0VVxoxbL8A2A4gOEohNEcPBywbeUsTEyIRMWFVtRcvobk2HDYkwcKNB1raBOuT0mJAwC8s/ME8kprQAEIswDL7xmJ1Q+M1aTpSO1l1DS1I3VwFCYPj8bHX9Vi9Y6TsFAcaMqbhtlCcfjouRmYmhKnSNO6ghPYvM8p0PHkPSOwZuF41XY61tCGkjNNyN9bhW4G4EAh3MKhmwHeWjwRNhpIGRQJe1KsbDsdqb2C724qQxdLgQYHKw10sxS2r5yBScOi/drpSM1lLNt8UKCJp2/d4nRvDMOgSEwa5g31r7jQiqX5B8CK2obhgL+tnAWWYfD45n+C5duMBVhQ2PbcdNiTB+Lo+atwXmpFyqBITEke4Nf3jjW0ocbVgeQBEZiaOkig6XhjO5xN7cJ1kr63/XAdVm+r8KNp/eMT8UjGMJ92UqOp8HgDNu1zCjTx7fd2wQnklzrB3mibJ2eNwOqF43vleOoNMqKlpQWxsbG9J21EWFgYpk6diqKiIh8lUFRUhEceeUT12ZKSEpw9exZPPfWU5nc4jkN5eTkmTpR37wOA8PBwhIeH+13nXbHELlnisniHXlr2eDzYv38/MjMzhfNAbTabcI+eMkVRQpnvLKRlpbpr0eR0daCbvbki48u8LXhK8gBMSR4AMWw2m991R10z8kprAVCw0RxWjmOQt6/ax3YrV3clu7bzSifyS84J2SWfzRqJqTeUjZiOigutwuavNx0DJdCRX+rE/AlDfWzH4vYT0yGOYehiKG8swvbjfvUCfNtpSvIALJ89Evkl58CCQjfr3aOYkjxQeJamabAsi9LSUhzpHAT3DR4zHCXQZ7Na/bxenK4O4V5p2yyeMhzPZnm/y19fOWcEpqYO0tyj+O3us7K/22w2P3s/Sd9LHRQpS1PqoEihrfh2So3rh6du8CuM5pA7nkH3AK/9W6n9XlmYjnk3oqzF+w0k4+l4Y7vfcz05nkjLanX3eDwoKytDZmamYC3RKyOMoEe9g1atWoUnnngCd911F2bOnInNmzejrq4OK1asAAC8+uqruHDhAv70pz/5PPf+++/j7rvvlg2h/uUvf4kZM2Zg9OjRaG1txXvvvYfy8nL8/ve/70lS/EDTNEaOHHnbHpQdrEhM8caihwP2NtDwcOobnGqbfiQbnCRJ1EjTCmh5E6lFHJPUlaZpHGuLwHv7qyGXSlqO31ptI62zzUJj61d1QTtrgBRam/VySmlHbiacTe2It17HzImj8Em5/wlqwM32MxJUd7t6FYVKpvSoEli2bBkuX76M119/HY2NjZgwYQIKCgoEb5/GxkbU1dX5PHP16lVs27YN7777ruw7W1pa8Oyzz+LixYuIjo6G3W5HaWkppk/XzsAYTNA0jWHDht3Sb+oBScbIRfaEgHLYAL4Ci+UolF+h/K5LoeWRojbw5YSZVr20oBWLoBZxrCWkjp6/inf2yZ8loObdpOUJZU+K9cvNIweep4Hk4CH1/pFmIFVSOounJgrXgp0W4nb2KgqVTOnxiITc3Fzk5ubK/rZlyxa/a9HR0bh27Zri+373u98R7RP0NDwe78ZZVlZWrwsWU5sJSX9bZE/A7NGDiN0K5VIf8AIrjPZukLZGe5f524+cl30v6cCXEz4kR0UaTStAGnGsR6A4L7VizWQP1h+z+JjfXpg7Cj+eN0bxOa1Vhl5laFTYqvUltUAuNaUzMSFSGDtKsQRqsRdquJ0TzoVKpvQu6XUbgaZpTJgwodeZg9RmQnxZjB2OBvxgZkpAfvE3U0m3Y0h4N0rrunxyyxuJQFX6lpLQWrdkomqSOBKQRhzzgobEJz9lUCQ2F9HwSLz3tI7E5Ouj9G69ytBI1K9aX9I6f0FN6YjHjqOuGWnxkUL7+cUSSN6rlSb8dk44FyqZYioBg6BpGoMHaw/kWw21mZDaMyQmAbVlNv/PUdeM/FL/Ywb1RKBqfUtOmCnl/dcLkojjfVVNPofaqNmcpyQPwL0Zo3BKQfgaPTHLiDLUG1Cmdp5AICYXfuzIrUrVoqhJbP23c8K5UMkUUwkYhNvtRnFxMbKzs312+UMNIzMhklkSyTLb7XajtuIgwmkOXayvDfy9PVX4YLnvvo10pssLRK2zco1Gx5JCLeJ4sT1BmKXykG7Aiuvldrthp+uw7bnpqG3u0nXQi1YdjShDPRutSv1if5X8gUHivqDWXyYM7Y9dRbvxwX4G4r0SqQIQPwP4r2KVFE9P94+eQqhkiqkEDMJisWDatGm9Louo1kzI6CxJSSDUXu6Ao64Z9qRYWCwWDBmZDvd++Xw9/H1yIPH4EdfBiNeIGKQzcKlAcbo6/JQA4BVUciaSV+aPwbRp0xATE4OpqTeX+cHYwJTzEpLy2OhKg39uTlocSs74Cv3DdfIpRMTtozYZsVgs6I5NhZv1T0+t9IxeW3+g/SMUCJVMMZWAQdA0jQEDBmjfGAKoeWyI7a9yZhglgaFkL5fm3JkxLhn3jv1GNj+P0oAl2eQM5pJe7wycRKC4GVZFqPv3k2BtYMp5CZFmfVUCiUKW5mCS815Sm3CkDosHi2q/90pNQvwmsZuRT4lwO9j6SREqmWIqAYNwu90oLCxETk5OrzIH8ZAKLjmBIPboIBEYaqeF5Zecw7yxcbh48hD+fc50WSWgNGCVBKLcWbmkUFJoWjNwrZmzknBTzOl/qRUNx8r8+okes52Wu6/RrK9yIPU6ej57NJ7PHq3KK6XJiNvtRsOxMuRmJd8INPSCP2yeP3VNukksxe1i6ydFqGSKqQQMwmq1Yvbs2b3OPVQOJIKPVGCo+ZzXXunE/bNnIzIyUpfZSUkg3jtmsKFBrqbQ1GbgWh4vPOSEm9KhMG4WuF+mnyi5Rkrp1VLOgWR9VfpdC1KvIzXIraL4sbMwMhLzJgzzUxL8/+LNdznkpIc2nXywESqZ0vslWC8FRVG68nOECo66Znz8db3sb0YDiRRnsYP6CzzRm5c/WB4dWgpN7exiPTNnqXBTMpet3n4cThVlIncGr9gPX6tOSvRMTozB/x7yb3ejZzsHwwWXh3jsKJnaSJQR3z9J9j1IgidDvYkcKpnSu5zcbyO43W58+umnQkrX3oi3dlZiUV6ZrDAAjAcS8QJPjJVzRmDC0P4+PLEneQ9VJxlY0qMkR8dHEh25KD0WUctFVqnuWkc0kkDuiMpwC4dx3Wdw2OlvHlM6g5eUFkCZnmXTkoiPwBTDnhSLRfYE2feRtqUU0jYiGTsktv7UuH5CH5ce2ymG2j0kz98qhEqmmCsBg7BarcjJyem15iAt226ggURyM/0jtVfADJ2IYw1tfsnnSKC2ySkHOVPJfAUTgdZRi0oKhySKWQypMulmgNcOW/AfwzsxNdX3Xq0VmJHT1MT10rMa4+naV9Xko5gW2RMCOtNXro1WPzBWc+worax4rLyh4LRWSnqDJ0OZYiJUMqV3SrDbBL1VAQDKAuZ70xPx+F2JfsFK89OHaAoMuZQRvj7v1Qi3AF0MsGLOSN1Ju0jMH3wd1Mw3Ro5aJFGEJJvnUgHNAehkgBQDieL0KGclswqJZ5OaN5CeiHIplNozZ3w8OJZB7RUXUgf1V3y3VIkBvlHaJOdO91TwZE8hFDKl90qxXg7+QIuFCxeG1DtIaWaqJGDECkCPC6FWDpn8knMIt3gPZnnlkEVReKvNSLVmxqTZQ5Vm+lrfDySKmYdUcPM8mZgQ6fc9EiHf04FPJN5ARoWiUnvmf3EG34n9Bq8esqCLoVT7nZyy5kGyUuqp4MmeQKhkiqkEDMJqtWLhwoUhXQ2oCWYtAaPHI0jrXn6wdzHAK4cs6PKeuaEovJUGvdqAJXVddDOskLiOd4HVo+z0blTKCUix4E4Z2BcTEyIV+wmJkCeZzRvd3CTZ8zAqFJWeKzzlQonlZj8xaoIhUaK7TvifthWM4MmeQKhkiqkEAoD4BKBbDRIhriZg9Ag1Uts1BSDCghsndSkLb7VVgtKgVFr6i5GRGO2X9nl++pCg2H21FJScm6M9KRYcx6Gzs1PT/k1SFyVBH0j6CS0BT5JkTk+AYfbYQfji1CWffgKQrzak39O7egN8XUt7W4qJUMgUUwkYhMfjQWFhYcjMQaRCXEnA6Fkmk9quP9hfjdenes1BT96jLrzVVgk7cjP9BqWW66LSgTDhVmWvHz0DXkmg/elgjc9GqlQAB6ufKAl6I+knpIJULl7hHoL04noCDMV2/QNVl4R+wq8GSFYbSt+T9nHSHFQ8SJVwTyNUMsVUAgZhs9k0j8nsSQSaMlfvpqMe2/Vf7drCW2uVIM1Pr1QHPmEayUpB7vt6fMd5Gt/bU4UvTjfJRkVLBbDNZkOSPQufH/uGeMNd7nclPmltfErfqyRI9c6G9QYYiq8tv2ckXtBpgiH9nt4cVErfCsXKIFQyxVQCBsFxHNra2hAZGSmcB3orYcStUwo9g5/k3ozEGIyMsSAy8uYmqFo9Sbw7SOugFnUsPkeY/76aK6rWDPeL0/7CX6n+bxWcxCdfncM3172H2UvfRTKbVhP0SnTLpbvWMo0FYy+BZIW1+oGxuG9EJC60c6reQWJhTPK9YOSgCuXRlKGSKaYSMAiPx4N9+/bdsjwfajPTvacvASA7qEQKPYNf616Px4O9JaXwDJ2I1MFRmnsTRlYzaq6QSsrGnhTrZ5IQH3oDkPuO69lI3fpVHT44cA6vT2Hw2hGv6YMkXUdqnO+Zxmp8UjLnyKW7DpZpTEwj6XUxPB4PXGeP4iGVsSN31oDW9wLNQRXqoylvtUzhYSoBg7DZbPjOd75zS76lNjsRz2jF2TwDhVTpkCyRf7v7LPIPUACO+9VTTngHYzUjhtpKQfx9tRWIErQCuHjw9b/ZZhRWf+U7zLTSdcidaazGJ+lkQC+UaFJrcy2vGzXIjR3xtwD5E/C0zsQ2moNK7x5CT+FWyhQxTCVgECzLoqWlBTExMT16HNytjHhUihrNSIxGef1V4W85ReOoa8bmkmqk9Afq2gEWlKrLKT/gjfr0K4FkZROI7zjJRqq4zWhwSBLxRPwuklkzz0MtcxzJofNKpjE5fpHEhUgh9rpRa0Pp2JF+674xg2TrP3v0ICHDKKk3kl7zjxxuVdzArZIpUphKwCAYhsFXX32F7OzsHm2wQCMeSQWq2mAQKwBAXtE4XR2w0cDyNAZvllvQxfrXRe47Yg8Ptd+DCTVhQZKvSEsgi9tGyhOtdB1y4Hkop+Acdc2yxz1KoWQa07sRrbaCIY0LEY+do+ev+n1Lac9FHKmuBL2pMgLdQwgmbpVMkcJUAgZhs9kwf/78Hv+OkVnrvqomLJ4ynFigkgZiiSH1PkmN64culsJ/HPHtUuJ6BjOldaBQEhaBut4CvjSLebJuyUS/4x9JzjRWamutWaySLVxLkAaS04ikDcVjR+lbWofWqIF0nyvQPYRg41bJFClMJWAQLMvC5XIhLi6uR7W23Gwxe+wg4Te5w7l3OBowY8RAYoFKstkphZz3yYqsVOw9Wo0zVymwoPwGrpZwMeJxEmzTUaCut/x7+TajwSEtmsN9k0cqnv8rrofT1UFkziBR3EbPY1CiVXyUaCAeX+Kxo/St57NHY376EBytb8HkxBjNs5ONwOgeQk/hVskUKUwlYBAsy+L48ePIysrq8QaT808vPtWEFXNGYPboQbIHdOs5VERLwA2KDENTW7fwt5L3ybbn7sYkywV0Dkzz8Q7S+o6WjZx0Jqy0V6FHSQRrs1qY4V9qRcTlM4hPGyykswiGOUNLcQdixlAyU0mPEjXq8SUeO0r8Fu9x/O+heiEnVDARbMeEQHErZYoYphIwCKvViuzs7Fv6TamtNL/knF/+eh56DhXRsk03tXX7HCridMkftl7b3InF8+cp1l9r0OkZlCRmB6P7C8FIJSAon8FR2NU0HPmbviSuRyCb2y/MHRWUmazWUaJKsQVabSjwZZRdSI8gF1Ws5MLb0wKaU/mtp4PIQiFTgFugBPLy8vDOO++gsbER6enp2LBhA2bPni177969e3Hffff5Xa+srMTYsWOFv7dt24af//znqK6uxsiRI/HrX/8aixYt6jEa5MCyLBobGzF06NCgaW21TqY087NZaMVIWlLTAnBzIH78db2s8rBZaL8oXilSBvbBhQsXVHmiJWDXLBiH1Lh+mmYALdNRoPsLpHZlOYiVD01xmBTLgaYosBylux5q9ZNr9x/PG2P4nXLfMGKiU2pjni88T2ZMGIk1C8cL39Jy4d17+pLPNwMVynr6yK1wWOgJmUKCHlUCW7duxYsvvoi8vDzMmjULmzZtwoIFC3Dy5EkkJSnb+E6fPu1zzNqgQTddxg4ePIhly5bhjTfewKJFi7Bjxw4sXboU+/fvx913392T5PiAZVlUV1cjPj4+KA2m1cnUltmLpwwnPlREK+EXAM0VhJIAmjQsGmVlJzR5It2EVfIeEpsBpPXWMjsEEtEqhR5hIxUsVgq4N4HFyRYLukXTzGD4npOuWAIRlkb3SKRKVMwXnid5+89h/oShxGbDd/ecRZeHxZoF44IilEn7yK1yWAi2TCEFxXGc2gooINx9992YMmUKNm7cKFwbN24cHn30Uaxdu9bvfn4l0NzcjJiYGNl3Llu2DK2trdi5c6dw7YEHHkBsbCw+/PBDonq1trYiOjoaV69e7RXnBDvqmv2WvwCwIzdT1b0S0Nf5SQeO9L6Vc0bIni5lVLioJUOT44N085u/X/oesb8+4G9SAG7y1KjrrBa/tx85r3lAurgeYijVKRAhrsZr0neS9ge1uirx5YW5o2RXL2qeT+uWTJT1opLjqRpIxh1/RrfcxGj90smaq+NbCaNyrcdWAt3d3Th8+DDWrFnjcz0nJwdlZf6MF8Nut6OzsxPjx4/Hz372Mx8T0cGDB/HjH//Y5/758+djw4YNiu/r6upCV1eX8HdraysAr1+u+H+LxeJT9ng8oChKKNM0DZqm4fF4AEAwfVitVtA0DbfbDYvFIpStVisoihLKgG+qWI/HA5vNBmdTO8ItHLoYCjQ42Giva6GzqV3IRc+yLOaNHYT8knOwUBwsFNDNUvhDaTXmjRuEqSlxinQwDIOj9S3ILzkHG82B5QCGo/DHfdXIGTcYU1IG+tD30rzRyBkfj5rL15AcGw578kAA8KMpIzEGGYkx8Hg84DgOLMuitrYWKSkpoChKoI9lWTAMA5vNhiO1V/DHfdUAKNAUByt147SpcYNR42r31pniQFOAm6VgoTj839ELAChYKe98Jb/kHOaNG4SXc9JubL62YX+1C9sdDfi/oxfAcMAzWSOxMisFm/Y5wXIUwmgOs9O8K8q3C04gv9QJFhTCLRyWzxqBNQvH+7XTsYY2bBJOS6NAgcMH+6sxP30IJg+PFmhiWRYsy8JqtSJlYB+E0Ry6b9Q9jOYweSBwxOXNHeRmKeRmpWDSsCifvvdO4Rm8v69aaJuVWSl4af5YvFN4Bn/cVw1GdP3lB8YJ/ZBvM7m+V17fgg/2V4OC19YdbgHyS6rxTet1FFQ0CDStzErBKwsn+LSTmKZX5o/BvLGDUNvciZQBfTBpeLRQd47jYLVawTAMfrPrFDaW1gjt9HTWSLyckwbAO7vn+x4AzBjM4qsmCu/uOYtut8ePpjULxiHCwuG94nNCO3lTT1M4Xn8FFDiBpi7Gm8bceakV9iRv+m65viemiWVZTEyIxCJ7Aj4rvyCMp9ysFOEAoHUFJ/D/73fCzd7sex6OEuhIjeunKiPkymoygqZp1NfXY+jQoQgLC/OREaQ0GUGPrTlcLhcYhkF8fLzP9fj4eFy86B9yDgBDhw7F5s2bsW3bNmzfvh1jxozB3LlzUVpaKtxz8eJFXe8EgLVr1yI6Olr4l5iYCAA4ftyb3qCyshKVld4DpisqKlBVVQUAcDgccDqdAIBDhw6hvt47GygrK0NjYyMuXLiAffv2weVyAQCKi4vR0uL1yiksLERbWxsAoKCgAJ2dncLJQR6PB52dnSgoKAAADOtP4fUpXmGQ1B/4aYa3PCS8W6C9sbER9afKAQDTBnF4coy3wWcP4VB/5gQAoKqqChUVFbI01TqrAQD/OorF7CHeDv3kGBa1db40AUDhni9Qc74RqXH94DpzhJima9eu4dixY2BZFm1tbSgsLAQAtLS0oLi4GABQc74RqyZ66ZsUyyF3vLdcW1ePfq21Ak3/OspL37xhLJakeMsPJrF4MMlbrjt7ClVVVbAnxaJ/Rz2uXLwg0DRtEIf8knOYZPsGf/6XNNw3ZhBWTWRwofESFuWVIb79LJL6e/vG61MYfPKV93B3KU01TW2ICvOeDAYA8X289ztdHT40uVwuoZ3irZ345Qyb0E7L01hkDOSQJaJp2sBun3Yq+dKB/JJzWJLCYt4w7z3XL1ZjR6n3Ok8TAIRfOYuDx7wbtaWlpfjnSSe2HzmPXUW7/drJ6erA29MZRIXdPOEs3AIUn2jwoSn5ejUcdc2KNB08dhb1p8qRGtcPA6l2HDp0CADgdDrhcDjgqGvGn/9xEM3nq33aKb/kHL44+LXQTq/N6IPZQ7wTmIWJHKYr0MSPp1GeWp92iu/jLd9lqfWjKSoMsFzwjg+lviemqbGxER8X7MEOR4MwnhbZE7A4LVygyXmuWrbv8e2068RFTRkhpUlNRly7dg3nz5/HP/7xDz8ZQUKTmgxUQ4+ZgxoaGjBs2DCUlZVh5syZwvVf//rX+POf/4xTp04Rveehhx4CRVH47LPPAABhYWH47//+b3z3u98V7vnLX/6Cp556Cp2dnbLvkFsJJCYm4sqVK4iNjTW0EtCr5dVWAhzH4Z2dJ5BXWiusBJ6cPRIvzx/jo+UdtVewZNOXPisBC8Xho+dmEK0EFuf/02clEEZz+OuzM31WAm/vOo0/7quGh/WmOcjNSsFLN2ZpemlSWgn8y6YydLM3VwLdLIXtK2Zg0vBo/KaoCn8orRZWAkvsQ/HZ0Qa/2di2FXcjIzEWFosF27+uw8vbKgSa+Fnz+scmIGVQfyze+E+E0ZxAUzjNwc2Xb8wwf7s0Aw9NjPdbCSzZWIYw0UogzAL89blZiisBvnysoQ1/+7oOH39dL7QTT9P6xyfikYxhQtt8Wn4Bqz4+5tM2NprD0rsS8ZdD531oCqM5vLVkMhZPTcS6ghPYxK9oaA7L7/Fd0ZTXt+BfNh0QDm8Rz5qlNK1dkoFHMxL8aPpNURU2l1YL7bQiKxUv5aT5zf7F9Inbaf1jE/GIfZgwhv6zuArvFp9TpEk6nn5bVIX8UqfQTivmjMSq+0fduH7Oj6bl94zE6gfGas6aj9Rexr9sOii0jUXSDz+ruIiXPy6XpUncTuJ+2NMyQoumlpYWxMbG6jYH9dhKIC4uDhaLxU87Xbp0yW8mr4YZM2YIM3MAGDJkiO53hoeHIyoqyucf4BWQ/P9yZavV6lPmN2usVis4jsPZs2dBUZRw3Waz+ZT5dLB8maIooVxe34LPj30DR10zKIrCKwsnYEduJn6zNAN/XTELqxd4BS/fGWiaxtTUOKyYMwIMR6Gb9b772ayRmJoSJ0tHxYVWbD9yHhUXWjElZSBWzBkBN0uBueGl8tTskZiSMlCgiQ/h72YpIc9NXmkNjp6/KtBRXt+C7UfO43hjux9NvDmIYRgf+miaFrIiTkkegCdnjwQAsDfoWDlnBKakDITVasWaBePwt5WzsO6xDOzIzcRvl01B+jDv/pCHo+DhKGQkRmNqSpxAa+rgSIGmbhF9qYOjUHP5unCdp6lLXGYocKC85gpJ21AUhefmjEQX472XA4Un7xkJe1KsD03SdrJarbAnxeKxu5LAcMC9Q70zSPeNNksdFOnTTqmDIoXf+bq7WQox/cL9aOpmKaQO6g9HXTM2ltb40JRf6oSjrlmgw54Ui+X3jAQHCgCFLobCXcmx4G6UeZq6GC/9UpqONbQhv+Sc0E4AkF/qxLEG7+y14kIrNpbWAPAKRJ4+vp34thGPoXvHDoGF4pAZf3PuydPE3yMeQ2sWjseO3EysXZKB7bneccFfX7dk0g06KIGO/JJzKK9v8aFDrp1qLl8XaBKPp5or12G1WpEa10+RJnE71V7pVJQRcmU1GcFvDNM07TO2APiU1fqeEfTYnkBYWBimTp2KoqIiH/fNoqIiXQcnOBwODB06VPh75syZKCoq8tkXKCwsRGZmZnAqTgiO49Dc3IyUlBTdz5KekCQHUo8QI4eHBJoThufJtjNdgnCQu0+rHmI+OOqa/XIXlddfFSJX+fsDCfoR36t10hkAoqAvvl7Pzk7F9YvVOPANBYaTr5dc/TMSo/H7L6oV60p6FoM00PDrWv8gQiVeGY3wVnsvKU+kz8j9brMYT42t5fWkFTuj9R4jCESmBIIedRFdtWoVnnjiCdx1112YOXMmNm/ejLq6OqxYsQIA8Oqrr+LChQv405/+BADYsGEDUlJSkJ6eju7ubvzP//wPtm3bhm3btgnvfOGFF5CVlYV169bhkUcewaeffordu3dj//79PUmKH6xWK6ZNm6b7uWC4m2kpC61vKD0bSE4Y3ivEjXhsLPU/5lFKH6kfPqkbn5JiUVIQOTL3ap10ppVZU06prV6YDkddAiZlqCttkhxC4txDel035ZKyaQWWGY3w1novKU+0YNR9lW8rrdTU0jbZdeKi4XxGJDAqUwL+bk++fNmyZbh8+TJef/11NDY2YsKECSgoKEBycjIA7+ZMXV2dcH93dzdeeuklXLhwAX369EF6ejr+/ve/Y+HChcI9mZmZ+Otf/4qf/exn+PnPf46RI0di69attzRGAPB6RlRVVWH06NHCcpAEwfRfD/Y31GbUajNPPsTfQnGYN4yFhaKF5TLpt5WgZ6ArKRY1BSGtoxz460oKQu2UMoZh0OfaN3hksnY/4bFnKBcAACAASURBVOuvxOuj9S1Ii48U7iNd/SjRlTxQXQBrfcNowJqUJ0ZdY42sAOUOq5mtcp6yPSnWr33vGzMIP5o7OuhRw0ZlSqDo8Yjh3Nxc5Obmyv62ZcsWn79feeUVvPLKK5rvfOyxx/DYY48Fo3oB4fr167qfCUaCsp78ht6cMG7mZn56mgJiwrz/MxJ3A1L6pAPfyECXEx4kKw81vikJUrk0ztKVj95+olSP/z3k9VfnlQypabAn+gPp70rgeaK0uiLNC5UWH+mT0kTvCnmHowE/mJmiGmgnl+r6R3NHE9GpF0ZkSqAwcwcZhMVigd1u1/1coPZrLZAudbXqSGK3XjlnhI9d1s1S+Os5/xkM6beVBr4eQWM0kjQYfBODX/kY6Sda9mipaY9kbyKQPqf1DaXflWbyPE/Ujtc0khdKK3DLyAr5VqzceRiVKYHCVAIGwTAMKisrMW7cON1LN6OzJ63lsZ6lrpEoVKU0FDysFIcHk1j8Xx2N5+4dheaObuI0wCT7GFr1NLrfQsI3JUF675jBfgnWgJuzbKP9RCuXk14hND99iHDGcKAJ5kj6jpoy5nni7JJ3Y1TKgMvnDjLazkZWRLdi5c4jEJkSCEwlECKQbozy0Jrh6lnqBpJ3RVpvOeE4efhNzxa5NMByQiQYMy6j5xGo8U3rKEwAQV3ZyfGGNBusEqTt3eVhfTbD9UwGSM00JEI6ZaA8DUoZcPncQWnxkbLPBbLnFcxnbjeYSsAgLBYLJkyYEPB7SAYhyaAKZTIsqRfFJ9uUvYOUhEgwZlxG3qHGN6UNXzm7uFLmUz39RIk3gQghtfZW29AWPy92jyXpO1p9UcwT0gy44u8ppU/Xs8ex9/QlAN5VEekzPZlGGgieTNELUwkYBMMwqKiowKRJkwwv3Uhn5CQCnlQA9pSN054Ui0nDovDZFwdhozkhyEb6XTUhEuiMy8g7SDa85eoqhlLmU4C8n6gJa73n5orvC2RDm/QAeGnf0eqLYp4o0bZmwTiEW2lZU5tS+nTSviJWfuJDctSgd+VuBMGQKUZgKoEA0KdPH8PP6pmRkwh4UgGod7as130vJrIfWM7fpqvmYcMLkWDMuPS+g2TDW66uPEjakaSfaPGGRAjJTSrmpw/R/Lbc95S8YuQg7TskfVHMEyXalPZb9lU14XfL7Ib31YK9Eg4mApEpRmEqAYOwWCw+B93ohZ4ZOamAJxGAembLet33LBYL7rvbjmeuRBiejUsFgpENbNJNZDVbv3jDW6muAJnpg6SfBGoOUxNuRja0legiPQBebSOalCf2JOUztPk9G72C+1Z6++hFoDLFKEwlYBAejwcOhwN2+81j8tSg91AU6XPz04cQzXxIBgaJsjDivjcxIRIOhwMvzbPL2sj1mmt66jQntbQdPIK1siLtJ0rfA8jSVKgJNyMb2kp0PZ89Gs9nj9blpSbeiAb0jR2lM7TlhDbJhEGPstU7AQn0pDO9MiVYMJWAQVAUhdjYWCEBlBqMbvj15JF2WspCSaioHWA/aVgUYmNj8dvC00LuIKmNXM9pWD2xbNfzXqMrq8X2BIF/PE9I+on0e7tOXPQ59ESp/R11zai9LN9e4lw4eujTUoKBtJuesUMqtEnHCqly1zv2gjFW9fAlmDCVgEFYLBaMGjVK8z6jG35Kz4VbaZ/ltdrsI5CZiZthZa+rHWBvsVjQFjYQG0vVDwknWa2obWgGMtvSaw7Qu7LaV9WE7Y4GbL8xe9UrDPjvkSortRO45ISbXES2En1G9miU+Pvenip8sHw6APKxA5AJbbVVq1yMitaxq/zz0vcpTUCCNWHRw5dgwlQCBuHxeHDo0CFMnz5ddelmdMNP6bl395wVPBoAKM4+SOIKlAa3kmDROsDe4/GgtrJcOFlLjl5SKM0AxXZsPTRpvVePK6pSWgoAfkco/nFfNezhTZiblalriU+irOSED6CcwM3IbFWv3V2Jj1+cbhIyv5KOHR5Gs9+u3nbML0aFh5guo15QWt/X2+f18iVYMJWAQdA0jWHDhmnm8DYqdLR+V/Kh5r1BlGYmAIS0wjyk2TDl3i3OYKk0KGmaxsBB8WA4/+fV6FESqlqpfEniD6TQuy8hhdp35IQBwwHXrFG6c72T9Bsl4SOXGO5WecXYk2L9No/F9bUnxRKPHel79Sp2QJvGQLygjF5XghG+BAO39mvfItA0jeTkZM0G44WOGCRCR+45EjhdHapL8kV5ZX6dPL/knOANo/Ss1GXSnhSLxVOG+9BB0zRmTxmPZ7JG+tyrtfm7KK8Mqz46ikV5ZXhrZ6U6gRI4XR2KAk7s4eOoa8b2I+fhqGvGmgXjsCM3E+uXTsaO3EzFQ9Ol0PqO3KBnOAopKfL9RFwnOWSP9Z2RSvmoR/iozVaDATEtz2fLJ1fj66U1drT4Ir0PgOpYUaNRzQtKDLU+rHeMK9FHKlOCDXMlYBAejwdlZWXIzNRe5hv1fxdHN8q588khNa4f/nSwRvY3pRkOcHOWFsishufJS/MyfSKIbRba5xAYHmqzU76shdS4fkL0pxJNJN5AJCAx7UlXGblZKWirOQZPgm8/UVtRyJkn5FIX61nVGGlX0v0muchjtXqpjR3SFZ3cfeuWTJQ9h8FIbiAlLyglngR62BOgT6YEE6YSMAiapjFy5EhirW3Ep1n8XJeH9RtUHHwFZfbYQTjzTZusS91dyTGyp0rxEHuRGDWXiHliT/LPwy4d0IHOTlfOGeH3DSlNJGYQ0g10EkEqFQaTh0ejsbHRp5/oVX5qqYtJhU8w3XPVNqP5+u/IzZStl6OuGc6mdsRHDwFN04Y2ZJX4tyM3M+i5gdQ24aXKWbypL+fWq9UX9cqUYMFUAgbB2+/0Qk7gkMy4lOIExEcHFp9qkrXFAsCsUXGKSkDtRCU9K5ej56/C6eKQylwFoD2gjcxOxbnjAfi4UMrRpHUMo57NUlJBKlX40n5iRPlp+cVrpVEGguOey5e14HR1+JkLpbzO2H/J5+hQ0g1ZIzERPF1GZvGOumbZNBtfnG7CF6ebiB0ytFaSRmVKoDCVgEF4PB6UlpYiKyuLeOkm10EA4x4+PNTMPDzuHTPYbzWRPXYQns+WPyFJa1YjR9sf91Vj1UQGa/5mwT1p8om5+HTA/DfUhKpScjEeSgL+hbmjhNOt1BSNkc1SvQpSrp8YUX5G/OKNHq4TjP0DuaBHvr5hNIdVExmsP9YC4KYXGemGrBb/5Gg0cjSo3HNyIHHIIDG1GpEpwYCpBAyCpmlMmDCBeOmmJHCkIO1QPEgGJi9Y7UmxugQYqRLiaaMBfFJDw8NCcUXCpwMmCR7TyoGvNKjEmSHtSbHISIz2mXFmJEYTrRLkoDf2Qq6fqCk/uY1xUr94rUNXSOMVAvV2kVsdifuph73ZT6RQS0sh5r0es4/RTKpKnnJyIFnFaU169MqUYMFUAgZB0zQGD9ZOQ8tDzyxK7V5psJTSwFQ6co90b4I0WE1cXxYUTl29ObO7b8wg2dkdSfCYVuoB/jmSQCKxAgCA8vqrcNQ16xZ2RgSrUj9RCliSEzo5kiRwWmYFPSscUvdcrRVajsbkQsxTaT8RQ2lDVo73O3IziRSyWuChGp8CWfko/aY26dErU4IFUwkYhNvtRnFxMbKzs2Gz2TTv1+MzrHavXLCUltnECEiC1XgByNc3nObw0wwGb5Zb0MVS+NHc0Zg0PFrWs0lrtq0UASpVbEYDiXibNemM0qifvVo/kSo/0qAjLeVF+h41pabGV6XfSDdg+X7yuWsAvq5rFe5R2pBV4z3JXohef30tT7mpyTE4LNpf01KQWntGPPTKlGDBVAIGYbFYMG3aNOK830qzK6mHj1qHkoIfCD1x6AVJsJr46McVc0Zgc0k1PjhjgZv1pUMtW6Uc1CJAeYgFltrqRktgkvLOaFTosYY2dEQl41hDG6YkD1C8j6SuPJT6EuDdJ1FK+SF+D4lSU+Mr6YpSDIHXTe1I6MviiTGJN5wJeob34roayaSq9NzqBeMCdhWVg16ZEiyYSsAgaJrGgAHqg1oKpQ5CMuOqvdyhOqM2MijVIDcAlL6tRpuaaUFpIJHM3EijXUlMRiS8M2In951pV6ue+UxaVx5ayeak+yDS9wQr1YEUWnsm/DWnqwNHz1/tMd5LYfRoULV+HUwFCRiTKcEAxXEcd8u/GmK0trYiOjoaV69eRVSU/GHXWnC73SgsLEROTs4tWbo56ppl3SF35GYGVfjLfVcpWE36bTWeSIWDln2dxCtj/dLJROYAue8bwaO/3++3wfzJv9+j+L1FeWUIt3B4fQqD145Y0MXctIOr7SfoPchHqW8o7QupPRNIfyLZM3lrZyU+2F8t8GT5PSOJNqyl71bzbNOLYPSNYCBQmWJUrplKwKAS4DgObW1tiIyMvGWpX6UDgV+a9gS0hLbct0l5QiqA+Dq4GVY2ElRLYAWSYVX6u16huf3Ieaz66CgocIjvA3xzHeBAET0rBzUBy39LCi0lKadoSb2IjPCHv0fKE1I+OOqaVfNeqdXvdkCgMsWoXOtxc1BeXh7eeecdNDY2Ij09HRs2bMDs2bNl792+fTs2btyI8vJydHV1IT09Hb/4xS8wf/584Z4tW7Zg+fLlfs9ev34dERERPUaHFBRFETM6WB3yVh14rSRwtL5NyhNSU4R4We10+WcuBZQPXNET8Sp1C5QTNGnxkUR15sGbKjhQuHhd9lFi04uW/V7JLLKvqklVCcxPH2Jos1uOfyT8eW9PFQB/nugxQcnlvdJKr21UsQULpO/VI1OCiR5VAlu3bsWLL76IvLw8zJo1C5s2bcKCBQtw8uRJJCX5e6+UlpZi3rx5ePPNNxETE4MPPvgADz30EL788kvY7XbhvqioKJw+fdrn2VupAADv0q2goAALFy5UXboZDepRQrBt/1JoCRwtTxgSnhix8ZIcuCLOV6Qn4lXJZ1z8+7olE3XVedeJiwCAcAuHt6czeOWQrzlIi14xSHIWaR3DaOS9clDqH1r8cdQ1CwJcyhPphrURTy/xaiNYiq0nT7GTA+n4CTZ6VAmsX78eTz31FJ5++mkAwIYNG7Br1y5s3LgRa9eu9bt/w4YNPn+/+eab+PTTT/H555/7KAGKojBkiL4DtIMNq9WKnJwc1cg+I0E9WpuHRqBHyQSyYSjlidJ39WyAisELPCW+au0haMVfqD1vs9CG3Em7GeC1wxZ0M7736ElfTaI09RzDqOe9cu+TA6/0xBDTKH5OzJPssYMUx4JUYJLUVy0mQK9i4ycNRlcHehUSiUzpCfTY17q7u3H48GGsWbPG53pOTg7KyuTzvUjBsiza2tr8dszb29uRnJwMhmGQkZGBN954w0dJSNHV1YWuri7h79ZWr28ywzA+/1ssFp+yx+MBRVFCmaZp0DQtXLdarfB4PLBYLKBpGm6326fsbGoH4J35dDMAByDcAjib2pGRGIMjNS7kl5wDBQ5hFqCLofCp4wIKjl5AF0thRVYqXspJg9VqBcuyYFnWr8wwDDiOw7GGNjib2pA8sC+mpsQJdLxTeAbv76sGy3nTGq/MSsFL88fK0kTT3k3EMJqDh/UG9YTTHNysd6C53W5YrVZQFCWUAW+4u9VqBcdx4LeY3io4iQ8OnEMXQ4EGhxVZqXhlYbpQ9zULxiFn/GDUNLUjdXAUJg+PFt7D08SXpW3jdHXARnMCTeJyGM2BEZU9HMDeKKcM7AuKukkTC0poG7l26mK8SQ3CLF76F9mHYd7YONQ2dyFlYF9MTIgU+qm4bZyXvP3LQnGwUBw6GQo0xeH5+0YiKS4SKQP6YHJiDHHfm5gQiRVZqcgvdQo0PZc1EhMTIsGyrDcFcWw4aHA+NHGgkBwbLrQJz1++bE+KxYqsVJ92WpmVCntSrGJ/SxnQRzg0yEJxoCnAzVIoOX0JNtpbtlLe7+WkDxFoSo3rJ2ongOG8zz6fPRoejwcVF64iv+ScT9/7YF81csbHY0ryALjdbmQkxmDFnBH4YH+10E7/npWCjMQYcBwHj8eD1Lh+PuOJBgcbfSNS3c3IjidnU5ssTb8vPoOSM00CTc/MTsXqhekCTRUXWuG81IaUuH6YkjLQbzzx4186npxN7bAnxfqNJ4vFAovFArfbLawEPB4PbDabQJ/NZgPLsmAYRiiL28kIeiw+2eVygWEYxMfH+1yPj4/HxYv+swY5/Pa3v0VHRweWLl0qXBs7diy2bNmCzz77DB9++CEiIiIwa9YsVFVVKb5n7dq1iI6OFv4lJiYCAI4fPw4AqKysRGWlN1y/oqJCeJfD4YDT6QQAHDp0CPX13mMVy8rKcOHCBRQUFKC0tBQulwsAUFxcjJYWbxBJYWEhhvX3Lv/fns4gKswrWN6eziB5QAQ6OztxvsKrDOP7AK9P8XaspP7ATzO85b1Hq1G45wsAQGNjo6A86+vrcejQIQCA0+nEhwUlWJRXhsKD5fi40JuTv7KyEiVfOpBfcg5LUljMG+btINcvVmO/46QsTY2Njdh14iJWTWSQFu0dyD/NYPDC7ATYk2JRWFiItrY2AEBBQQE6Ozvh8XhQUFAAj8eD9vZ2FBUV4UiNC598dc6Hpvj2s3DUNcPlcqG0tBSOumbU1DegT3M17EmxfjQ5HA4AQFVVFSoqKnzaKTWunw9N/zqKxewh3vo+OYbFtEHecu54BpNiveVfzbBgeB+v4Pv13RSS+nv7xutTGPxo9nDcO2awXzuFW4CoMG/ZnhSLtrY2XDx5CIunDEdKpLe9AQg08e3Up7kaADBtEIenx7J4ezqD+xI4jA+/gsX/j713D6+iOvfHP7MvCcglF3IBQi6bECAYLkkAIUJQlCBoVUCltV97jloR4qm2aAv26U3P16PY1lZtufm11lZFq8CpnhMUajQBAkYhEO7EsHMBEskmVwIJe8/M749hhtmz11qzZvYOp7/z5PM8PExmz8xa71rvet+13vWu980bhet6WkJoMuO971w/CGuWTMQvpruwZkEqVi3IDuI938n9eGL2SI2m5IHKTPx0dUVIP/X09KCkpERpo1mj8OsZyibyO/8yEZOcp4k0qbw3TLiAX86IBgDMHi7ju2MkzB2fiHkpEpZkKP1xR5qEO9IkeH3dGk25aXH4xYyBmD1cRrQTeG6qhJ/cOAy5aXGoqKhAXaOyijHyXt3Zc9p46urqwuoF2XhxuojfLp6AzY/egLH+2iCactPi8IPZoyyNp0ThAh4aJwXRBACuC98E0dRUX4uqhjZUV1fjjZIKLFpbgerqA3jl78qYM46nZNclIk0jr5OCaFLH04ULF7Bt2zZs27YtpJ+6urqwfft2AEB7ezuR93jlqhF95h109uxZpKSkoKKiAjNnztTuP/fcc/jrX/+K48ePM9/ftGkTvv/97+Pvf/87br31VupzkiQhLy8PhYWFeOWVV4jPkFYCqampaG1tRVxcnO2VgKp5aSsBl8uFNR8fD5m5PLXgegDA/joflmyoJM5ceiXl+jf3TIQnaSi8LReQHj8Q+Z6EIO2/v+48lm7cA79hFrNl+QzUne/GyvcPhcya1yyZhMX5aSE0VZ/pwOJ1e0NmLpseLdBmY2YrgZ6eHnx87DyefP9gCE3P3zMFd08ZiV9/fAzryuvgEGS4BOCh2Zn4yfxxIasb2krA6XRiTckRbNzpZa4E1iyaALfLBU/iYEwcOUSj1e/349DZLtSdv4j0uGjkZSRAEAS8WHIY68rrtJXAjVmJ+LebszBx5BBLszFJkvCbHTV4rbwWTkGGIAh4uCADK+ePZ9LEmmH+ZvvJoJXAssJMPDUvK4gmp9OpHL4614mMxCFBfabvJ/XaKk3aajP+OjicTm3l6XA4cc+63RrvqSuB91fciEkpQ4PGU/XpDtSdv4jUWDfyMhKv3g+T94w0vbzjGH5f6iWOp8VT00PoU3lSHUOzxyah7MS5EJpevHcK0uMH4L4Ne0N4b/OjNyA3PT5oPP3hs1rsOnlOo+mxwgw8eVt2kIzQrwQCgQAA2FoJtLe3Iy4u7p/HOyghIQFOpzNEO507dy5kdWDEe++9h4cffhjvv/8+UwEAygGLadOmMVcC0dHRiI6ODrmvnszTn9DTX+ttc8ZrWZZx+fJlDBgwQHPn0m/mqNcsr5p8T6JmZ+69YpKQIKBXunq9s7YVKz84rL2j2knVIFN1rZfgv5LPV5QFiFdUel3rJXgSFXOFX5fv1y8J2n0jTXXnlZmLPj9wrySg7vxF5KXHE+kzXguCAL8oQYYQQpNflHDwdAfWldcp92UBl+VQOymtP/TXqxZej6KckUEbxevLTml1XzFnNJbe4AEJbrcbeenxISd4f7IwB/NyUqg2YEEQNFpV4Uu71p+OTY1xY2pmssYnLPpIdvH51w/H+nJlVaDSZ2wztV7GzXuzPuOl6cVPTjDt9Y8UZmq/B2SBuOfhcrmQlzEMuenx6Onp0b7vcrmQlz4sZM/lodmZWh/x8J6epjnjR+D3pd6Q8eRJGkqkz8hPgBIEUR1PAVlpd0/CIHh93RCv/K0fW/VtPcj3KN/8zY4aHS0CMTGQse6yLEMURaJM4e0nO+gzJRAVFYX8/Hzs2LEDixYt0u7v2LEDd911F/W9TZs24aGHHsKmTZtw++23m5YjyzIOHDiAiRPJ3gl9hUAggO3bt3Pt5LO8avRKYt3nX6Pm3NWNraykQSGbfcbBz9oss7oBG+7JTLVN3ClTiL+7nY6InlTVt2tumrUIqTzfDBe5aXHIGTFYMcOkm/MJK2gfCUavGCsHzKyAZ4PTivuyyiejJhWgvq1Xez6SLtB2nA+MfW/1fb0nlLG9WImBVFiRKZFEn25Dr1y5Eg888ACmTp2KmTNnYuPGjWhoaMDy5csBAE8//TTOnDmDv/zlLwAUBfC9730PL7/8MmbMmKGtIgYOHIiYmBgAwDPPPIMZM2YgKysLnZ2deOWVV3DgwAH88Y9/7EtSQuB2u5nKzApUxtIrANLfKvSD34zZ9SkqgeAwy6R6hJOEXW0TWm5Y3kiLRvAKsnAEOG8ZVoWqnk/M3rUStRK42mY0r5pIuSezFLf6v/o+b5scixqLJzZUhtQtkkpYr1RYaU553rcSZdXuRCeSMsUK+lQJLF26FOfPn8ezzz6LpqYm5OTkoKSkBOnp6QCUzZmGhgbt+Q0bNiAQCOCxxx7DY489pt3/l3/5F/z5z38GoGyKLFu2DM3NzYiJiUFubi7Ky8sxffr0viQlBPrTfQca28OevYQTttZsBqX3fzdGADUKgXBmY2qbqF4cVkIR08rpK/9t3jLMcuma1UVtk7W7TmsmHdq7NEVISgikj79Ei7hq1T2ZRg/rMJr+pDJv3+yvb8V/VtZCwNVT1Pq6hbt6Mb5vp99U0JQSa5zYXVH/T0QhAPrDRoQdO+iIkI615fXafbtCinbs3ngIiCd2O893txYXhDU4SDDGPgknbINZ3QH7/tu8ZbDyF+ufY5lk/H4/tn38CX68FyGHxUjhEkjhOYoMs1n992khI+6fnop3KhtD7quhJKyGwTDWa3HuSGwhnEvgCQGx5at6+OsPhMRTeum+yTj5TVdYPEk6d0M6P0ELURKp8zmsMCu0sv6nYgf1RxG1CbfbjZETC/CYYSDxRrc0grbEXLUgG9+bmcE8KcsaJK+WkjfMzRJq8MDIzG63G7fffjtX7lueZT9tdcQbP4ZVV7MyzA6P6d/PTaMHxHO73djqS0KvGJpch2Qe4DkZrW9T2uxycmosUQmoz1s1WRjr5fV1E5UAz96OJ2koFn0QKnpYJ71ph/KM8YuM75MUgLGefbHapK0UWGWp4+dao18J2IQkSfCe+UY7oKMHz4YdCbR0imYnZVmDhJbmkQbeDVoSM/9k/ji8uu0AXt55VmuTcAYUTcDxxI8xq6sxIY5deBLYuYplWYb3zDk4gBA+oZVtpb9pk4el09KI8ZZ4HApo4FHcPO0pyzIyBstouBDcJmfbyUGWSDxpJX4Rq548bWx3lWBsL7OyJElCe3s7YmNjr2mKyWubzPJ/EURRRFSbF25CC+o37BatrcDKvx3EorUVxPyxKtRn1cxdpGP4Zht0vPfnjk+kbhDzDGIaM7//ZT1iuxuD2mR92SnqRrEZVAGnx9zxicRnabTS6qrWiVSGmnDEDKpQZbV/XUsXHhwrhvCJPlwCDbz9unpBNrYWF+Cl+yZja3GBZnag3QfodPMKuXDep7UJDUaepPUpLZnOotyR1HqatbGVMWwGs7JEUcSXX36pnRe5VuhfCdiE2+3GHQsX4LAQavuzOmvnfdbq7I12X43DbtcTSPU0MuLTEz5sPxrKUnbcP1UYl9UAOYk9jVYes4eVhCOk/Riz9ieZPn4wl+0uyPNdPWizdNbs3cxzzGwGvHpBNjwJg3CwsR2TU2O5U5rSzEGsDXA9aH1Ki+9kNKnyjim7wehooJVVf75b81rSR0y+VuhXAjYhSRJ8Ph9+Mn8cUYBYsblaCa3MEtzGQUt6fnHuSFPhZ3f5G3edG+NjJJzsEIKW+eGaXMz8t/U0GcErSEnCkjeXLqtfJEnCk7OT8budzVqbsJStse3DcdnlAc1zjDdBjPrMO5WN8Pq6uUx/nxxuCuETla7cNPPzHqw+XZw3KsQt9L0vG6jJdVhtvGX/aWI5r5bW4E//at0bkVQWoMvbXejBQ1MTkJCQcE3NQf1KwCYkScLhw4dRWFhIFCA8eV5Z92j3rW44rV6QjW86e7QNsi1VZ5E0dAA1Py/P4KflZr0vfxTyo5rws70iLl8h34rA4wWLJh5FGGlBqtaJ1C+SJOH6gZ14/9EZqG/rYdJqN4+DCqvtGY57qd1ZclVDG/606xRWTpTw0iGnxidF11+NCmy292DWp7lpoW6hKkj8TGtj2rgsPd7Cdd6A1B/61ZdxDP1p1ylMcp5B0S039yuBf2boO3bu3LnEZ2ipEWnCx6qgsrLhBIR6HnVffgAAIABJREFUSIRrlqLVN9+TgHzPAmRNMRdG4XhkVDW0EWnSKwb9N+2efbBaR5LwcrlcGp/kk6NYaDSx2p7UV3p6aOEmWKs82gr0YGM78b5+ZWr3QJTX143LkoAXDrpC7ludCND6lNSWKmi8T2rj3LQ43DwuMcQRQV9fmuJl8Q5tH+myJKAnMft/Tyjp/43Qd6xDkPHkrCSsWDA1SGvTGHDNkolMmynJ9k3LmmWE1Y1h9TerZik9w5MGoSRJaGpqwuRRI0xng+HYWmn1ZCk7Hs+WSNZRhdomI0aMgMPhsOyqyuMZQ/KFX192KkQIqff175Fg5l5qvKY9Q/vdIciYFCejuk2ApIvJYxW0PjU7eGlF4Tx+SxZRCXgSBlEFPQ/vkOh1CDKSnRe18ODXCv1KgBPGjnUJgL+tCVX1rcj3JGj3WZtWZlCZ2uoM1IrpifUba2DT6qQfTJIkoba2FsnJyUo0S8rM2+4s0qye4XyT9F4kvqdvE1YQNl6hasUXXg/SxGRr1VniYUQz91IgvMRAj872ILr1axxtd+KyzE7OY8dcyKOIzKAvm0QnQM9Qx8M7pPZbPtsDsaMZkjS6Xwn8M8LYsZclAb8/7ELahJ6gZT6PBwALVmegPKYn3sFKG9hqHczq5HK5UFhYGJEMUSwBQNvwJh1eIglRHsFiZ6ZL+rbaJjzmHp5+shJehAezsxKJnjM8JjS7ZrZVC69HVcNIpE2gvxeOuZC2AQvwKSriSqu4IIhO2qaxfiVvhPH+tcoZboZ+JcAJYwc6BRnTEmVkxA8Mum/qAWDCzFZmoLymJyvMRnqWxfDGlcDuA8fxWvkpQOcdxHvAyWyT26yeSUMHMIWoFcFidaZL+7YkSWhsbITXR44Fw+OqqgdNwNDCI5hBv4FuBI8JjWe/IuS3li4kChdw95TxxBkv70SIVQ4peByPoGWttH63NFe7xxL0VnhH334qr6SmpvavBP4ZYexYpwB8a8wATBoVE/IsywPAzK5sZQZqxfRkxSZufJbbVFHfilMNp+EUoMVh19dV/02WeyrvSshYT6ubhWZ9was8WV42bkHGoM56pHsmEN/lcVU1/m7mC7+zpiVEIayYMxoywK3U7IKlaNXfohwyHhon4c2DnXjslnG2zIU8Cp3WlnaS2W+tOovvzcwI2hsjmdKsKHQjJEnCmTNnkJKS0q8E/llhpWNpHgAA265sZRZhd3OOhnASwwcPytBZL+8Bp3Bt8VY3C82+y6M8ad9etfmQdr18TkvEXFXNzi+QAsoVXVF2feVuqr7D8lJTf7ssCVh/zAngPP5xosKyuTCcTXu7pkpA6Wej6+mi3JGYnZVINVta6V+Xy4WCggLu5yOFfiVgEWrHiqKIr7/+Gh6PJyg7lB5WhLSZ5w2tLuEIFithknlm2U5BxuzhMnY2C1rmJUCx16uC0mw5H+6eCg2RVpi831Db5LXyWnyw4saIJk2xo+x4BJNdezyvl5qRT6yaC+0qdN5YTDTTGinAnX6FEC5EUYTX62XKlL5AvxKwCVmW0dbWhoyMDOozvEKax/OGhkj5wBtBOx/AEjwOAcgYImP3N0qay/unp+KSX8SWqrPapq3ZiVSzPZW54xO1sBdWQIrFFK45hOVBokLfJl5fNxbnjbJdJs/sPFxlF84sm7dsI58A/OZCs3LsmHqMZau2f6Oph+bhZ9cDzQgemdIX6FcCNuFyuTBt2jTT58yEdCSiGFq1fbIO0+hh1WXTLwn488mrM5jJqbFBJhGVNrMTqaw9ldLjLSg93mL5cBmJXv0pVasgKTHVg8QvShrd+jYxE8SsfuadnYe7OgzHHGdWtvqbkU8AurlQXyezlYLZataKgvzd0twQryk7GfOsmNV4ZUqk0a8EbEIURdTU1CArK8t06cZagpsNOrtLc9Z7vG6GvLNHdVC+Vl6LeSkSdpxxYFlhJnXmxHMilbWnAljzFomUz7++HJoSU2P9q372TkHW2uSTI83U8syym1mZnYfjehjuSoJVtvrbH0tPwnXhG+w444BISUoPsNuEdLjSmCTHqpnJCOO4tfq+1bFrRaZEEv1KIAxcukSOf24FZktbO0tzs/d4BrRVU8nqBdmYl52Ihq+P45E7xiM/I4E6c+I5kUr62wheb5FI7wfwKJX51w/H+rJTcAhAbJRiAqH1nVl/2XUwsKPg7KwkSPGaWPXa8MBUfLbnKxTNGAFP0hDqKpbHfq9em7kxq3Wcf/3wsPZlwvUYM0uhGQmZYhX9SsAmnE4ncnNzmc/wLAVZg47XP5/0O+s9Wpk8aStZNOVnJCA/Y5YpbTwnUmnv68HrLRKuiYRWLuu+2gd+ScC7p5xB963aqsM9XGcVJEFnJ0YO7R2n04lbZ93ArINVxWfntLtd8ChYVv1pZisemdIX6FcCNiGKIo4dO4bs7Gzi0s3K4LAaxdDMU4ZHaLCymOlhxYOI1CY0gTI2eQjWLJloeohHfd+YUtKqt0gkT2fyKBW1rV2CjDvSJPxXgwMBWSD2jVl/mZXHI+R4lQQpNaidGDksXjEbOzxtYgStjdQ6GevoSRhk6QCZVb6h1ZOVQnNSylDTdukL9CuBPoCdwUGaXZh5ytjdHDQO6t6AxGWTNYLXa0RPG0mg0PIQ699/48HpxJyy6kYsCVYPYgH8A54nF8PyOaPx/8prtXfCiSIbzuE63pkwLRIp7fs05Ws1fzWpze2s3qycdg8+w0FfGfC2HW8Ic5aH0aQU/uTwkUS/ErAJp9OJnJwc4m+RGhyA/dPH4Z7IteNBxGoTK2XTwFImU1JjcKCxQ/vbjrnH+E0zd1SjUiEJjPdX3AivrxszpyqhC2grOJ6VinHlw7NfEE5/ry87pa0WSd+3uqei1knPJ1Y2f3l5RC0L4Nv3sbtXo4KVy4O0CibBkzDIdPz0FfqVgE2Ioojq6mpMmjQpZOlmd3DQEMnNQd7v2PEgYrWJlbJp0M/8jYPzQGMHl3lJ/x0z5WjFHZUmMOZlJ6LrTA3+755u+CXlAB1rBceqN22mToLaL5HubxX15+kRNmlJh9Q6qXwixaVa2vzlAamNWPtKKuzs1QDmp6StrHDMxk9foV8JhIGBAwcS79M62mxwsBApDxfe7/B+1+j2SGsTK2WTYGaaApSYSWamJdqszao7qhG098tPtuBEfRck+eqM2srqRwVL2LDMJpHob9IJWr1J0hhhEzCPXDtw4EAcPX+RWF6kXXe3FhcEBZMznl0B7Gf8o/X7q6U1QbmweVc4rPHTV+jzKEVr166Fx+PBgAEDkJ+fj507dzKfLysrQ35+PgYMGIDRo0dj/fr1Ic9s3rwZEyZMQHR0NCZMmICtW7f2VfWpcDqdGD9+PFVjr16Qja3FBXjpvsnYWlyAVbrTsHrwmi3CedfOd0jPLSYkIVlfdkpb4pq1iV0aeE1TPIexSEKiqqGNyx3VVtmCAx+fdgaF0eD5Hm/5Xl83kddUhNPfgCLs1bwDT9wyJuR3tT2NJ6FZdVL5xJM4hEhTX7nuLs4bhaXT0rh5kKftaHXVKwAgeJyo3za2mdn46Sv06Urgvffeww9/+EOsXbsWN954IzZs2IAFCxbg6NGjSEtLC3ne6/Vi4cKFeOSRR/DWW29h9+7dKC4uRmJiIpYsWQIA2LNnD5YuXYp///d/x6JFi7B161bcd9992LVrF264ge12FkkEAgFUVVUhNzcXLpeLurml2gHVLGFmMXhYG42k8LgqY/G4dn5+4hwAcPtKG+vq9XUTY/Z/fuIcvL5upMcPgNTihSPRg/pWcj5dO3ZeHoHJk8u4/jxdSHgSBmHu+MSQwavCONh5NwILs4aho/EE3v7aoZmDSN/Tf5MU+tjsPAmrPWl8Q+sb0v7T1qqzRCUA0GfuRlOORp8/gOiOeqSOvZ6YF4Jkm+fhF14HAZ5T/KQxRyvfyDc0PjJb4agyhTV++gKCLMuy+WP2cMMNNyAvLw/r1q3T7mVnZ+Puu+/G888/H/L8qlWr8OGHH+LYsWPaveXLl+PgwYPYs2cPAGDp0qXo7OzEtm3btGduu+02xMXFYdOmTVz16uzsRExMDDo6OjB0qL0deX2wp19vP0nd3ArHMwMA8V2WaYT0fdLzdnylqxraQk5l6uEUZHx7fDTePd6rzXzD9clmlTtnbALumpLCHCw8ZiSjuSM1biAa264e2lFDNdO+yXL/FUURr2/7Amt2t2ptYvweq54sXiKFh46Ep8uW/aeJkUifuGUM0Zy5tbjAVFjpy9YHkHukMJOaG9pKnVnJlYxtzVtPVnmkZ28el4jHb8kCEHp6GTBvJxKvWBk/duVan5mDLl++jH379qGoqCjoflFRESoqyIJkz549Ic/Pnz8fX331Ffx+P/MZ2jcBoLe3F52dnUH/AKXR1f9J14FAIOhakiTtWhAEjBkzBgca2rCxTHEDjHbIcEDG+rJT2Odtwf76VsXDwilDgAxAxhu7arG/vhWyLGs07a9vxRu7lG84ICPaoXxjY1ktohyKjnYIMv60sxbvfdmA18qv3ncKMty669d31qKqoU2jo6qhDa/vrIVTUJ5xO2Q4BbWOviCaSNd+v1+7zhkxGMsLlTRqepqincr/kgx8cFJRAMKV++vLTmF/fatGqyRJCAQCzGtRFIOuJ6UMxaLckXAJMlw6OnbVtMCTMAgTRw4h9tM+rw8br7hoRl3pG30/AcC9ucPxn1VngmhqbLuINYsm4KV7J2HLiplYeasyA5ZlGfu8LVhfdkrrJwDYWFaLfV4fAGDyqBjcOUmx90uSBFmWseyOArz/6Ey8dM9EbC0uwFNFY4P4bX/deawvO6X1Da2fVi/IxuZHb8BL907C1uIC3Do+kcp76tzO7/dDlmUdj8nMvvH7/fAkDIIDchDvRTlk3DQuCcsLPUG8V1yYoSk72ngy0ifKAiq+UYTc+rJT+O+DZ+C4QneUQ8bGMoWH93lbrtJ3pW/09KljaH99KzaU1V7hQ2j0rVkyET+eP46b96oa2vBaeS1zPLH6bHfNOciS4m69ojAjiKYVhR7kpsUFjSe1b9Trg6c78B+7WqE4ZCn0vrFLKV8vL9R+ItFhB32mBHw+H0RRRHJyctD95ORkNDeHRnQEgObmZuLzgUAAPp+P+QztmwDw/PPPIyYmRvuXmpoKADh8+DAA4NixY9rqo7q6GjU1NQCAqqoqeL1eAEBlZSUaG5VQBxUVFThz5gwqKirQeHQfxsYoHfnTKSLSBitlNh7ai7rm8wCAF6eLGBoFRDuV67qWLvT09KCkpAQAUNd8Hs/mKQyWNlj5DgCMjZGxcqJyPSlORvEEEQcb2zEtUUnKAQCzh8v47hjlel6KhCUZEry+bo0mr68bSzIkzEtRnvnuGAmzhyv1bTx5KIimpqYmAEB5ebnW3qWlpWhvV2L9bN++HcWzRmHNkol4cbqI/zN1hEZTtBNIGCDjxekiohwykgdCo6nu7DmUlpYCUPiivLwcANDU1KQp78bGRlRWVgJQzIJVVVUAgJqaGlRXV2N2ViLuSJNwR5pCh0qT19dN7afG4wcwKU6hdeVEUeun/5gh4Dd3jcHW4gLcOPAskq/sxen7aUBzNb41aTiykwZq/dTV1YXGQ3uJ/dR4dB+Rpi+++AIVFRUYfPk8UuVvkJsWp9Gk8l597ckgmlj91N14FDcMdyA3LY7Je11dXQCAkpIS9PT0oK6lS+unoVEKrSrvbd++HQDQ3t6O0tJS5KbF4bYx1wXx3o+nCMhNi8N3rh+EFwqvw/3TU7GmaDhuTrwY1E8qTfrxVO+tDaIpyiHjl3kiZiYptBZPEEP6yevrRuORLzWans0TtX46XV2Bnp4eBAIBlJSUoK6lK4gmlffcTodGEw/veX3dpuOJRhMAPDROQn2D0k8zB5/HX789Fi/dNxm/nxONB6cqeciN40nfT3XN51GcLYb0k9fXja6urpB+MtLEkoEs9Jk56OzZs0hJSUFFRQVmzpyp3X/uuefw17/+FcePHw95Z+zYsXjwwQfx9NNPa/d2796NWbNmoampCcOHD0dUVBTefPNNfOc739Geefvtt/Hwww+jp6eHWJfe3l709vZqf3d2diI1NRWtra2Ii4vTNLzT6Qy6Vmf86rXD4YDD4dA075kzZ9ASGIj7XquEBAHRDhl+CZAgYPOj0yE4nFi8bg+inTIui4AMRcBsWqYsCwOBANxuN/bXt+I7GyvQKwpwQIbbAfRKyrXLoSThcAgyXALw74sm4adbquEUlPtOQYZDUMITqNd/W36jdvCk+kwn7lu/G5IMiLIAt0PWrjc/egNy0+M1mvT0qdd+vx9Op1O7/u2OGqwv94bQ1Csqp2NnJMnYc84BSQainECvKGDLipmYOHII3G43JEmCJElwuVzUa1EUIcuydq3Sce+63QCAgI6OD1bciIkjhxD7aZ/Xh3s37oUkC4hyyAhc6Zs1iybA7XLBkzgYkhjAPRu+gAwhiKY1i66H2+VCxpWVhtvtVmbUdT4s2VAZ0k/vPzoD+Z6EEJoCgQCamprgE69DfesleJKGaH2j8tvBxnYsXr83qG94+mmf14d7N+wl8l5eRgIEQYDf79f2rBQeU1L+0PpGFEUcbrqAJWt3h/Dee8tvxCeHm/CnXac03ls224NVC6+njiESfQAwI0nCly0CLksOpW9kBPXT5uIbIYkB3LvhC4U+rW+u0gcoK79DZ7uwZF2FRpMAGVFO4Nm7J+He/FEQRZGL9w6d7cI963YzxxOrz6IcMt5dNhN5GcMQCARQfaYDdecvIT1ugNZ/xvHkcrm0fqo+3YFfb61AdauAiwFB66d3H70RU1JjNXmh9pORpvb2dsTFxf3zmIMSEhLgdDpDtNO5c+dCZvIqhg8fTnze5XJh2LBhzGdo3wSA6OhoDB06NOgfAG0X3ul0Eq9dLlfQtZryzeVyweVyIT09HVMzk7BsTiYARSBIUKIi5nsSkZcej+VzRqNXFCBDACDgoVmZyEuPhyAIcLvdAIC89Hg8OEv5hgQBvZLyjWVzMnH5ymaiJAt4eHYmlk5LwyOFV++LsqBtOIqygO/PztQO5DidTuSmxeHh2ZmajdEvCVrkxnxPQhBNpGu3261dH266gPXlyoxbT1OvqPwfkB24EBUPUVZ+6xWVcvLS4zVaHQ4HXC4X89rpdAZdO51OfHKkGQFZQEBHx11TUuD1dePQ2S5iP+V7ErCsUGnXy1f6ZkpqDFZtPYqV71dj0doK7Djuw6Nq/12haUpqrPbM4nV78Nt/KHZwQRCQ70nE8jmjtX4CgEfnZCLfowilg6c78GF1M6oa2uBwOBAVFYVNRy9iycZKrPzgEBatrcCvt58M4re8jGFYPme01jesfjp0tgv/eeAsqhraFPoovCcIgtZ/giDoeIzdN263G15fNyQIQbx3WRKUw47l3iDeW1deh6qGNuoYItEnygJ2f+PEZcmBFXNG46HZmZCu0H1ZEvDoHIWH8z2JV+m70jd6+tQxlJcej0fnZF7hQ2j0rdp8CC9+coKb93LT4vBIYSZzPLH67OHZmcjLUOTUb3bUYPG6vVj5t4NYsuELvPjJiZDxpPaNep3vScCU7CxcDDi0fnpollK+Xl6o/USiww76fGM4Pz8fa9eu1e5NmDABd911F3Vj+KOPPsLRo0e1eytWrMCBAweCNoa7urq0JToALFiwALGxsdd0YzgQCKCiogIFBQVU7yAVtHAHVr2DaM8C1ryDbhqXxPWOEawNw/Rhg5AeNwDdjUcxKHUC6tvo3g1WY7GYbUgD7A00vdcNyUd8a7GS0s/r60ZtywX88bNa4jNmfUXaVJw3PhE7d+/G2qNOTXiSvmesJ+nQGyuGD2/gP56k67T2pm0Mv3TfZNPzGUF18PsR3VqL1PFTkO9JCOFNu95B733ZQO1fK9+0wp+kdgXsbQyrMsVs/NBgV671qYvoypUr8cADD2Dq1KmYOXMmNm7ciIaGBixfvhwA8PTTT+PMmTP4y1/+AkDxBPrDH/6AlStX4pFHHsGePXvw+uuvBwn3J554AoWFhVizZg3uuusu/P3vf8c//vEP7Nq1qy9JCYHD4UBmZqamfUknG60E46J9g+Zmp/+m+hwL+u9Y8YDQl0dzU1QHriRJaIrKxIgR8cj3kGcldiI68riIsg5gqbSzorIuzhsVEtfJ+Iz+26R+IYZdcAooO+tAwDDVIrkLsk7H8oQw0IeT0MNKvCa1v0lJ1MM57KjWS+OTpiiMGBHPFceK99Qwb+YvMx5kjTlS3Yx8c/O4RK56GKHKFNb46Qv0qRJYunQpzp8/j2effRZNTU3IyclBSUkJ0tPTASibMw0NDdrzHo8HJSUl+NGPfoQ//vGPGDlyJF555RXtjAAAFBQU4N1338XPfvYz/PznP0dmZibee++9a3pGAFA6LCUlhfq71WBcPEweiZC4VuL3kMojCQf1PbM2sRs7iFfImA0yM197liup7cNkgoADraED2k5oEdp9VsTOcPpbn0RdLYvV/0bQhKfKJ+HGkjKC54Sv1TLNxhzpe/potzz1U2E2fvoKfR42ori4GMXFxcTf/vznP4fcmzNnDvbv38/85j333IN77rknEtWzjUAggPLychQWFmo2ORV2gnHZOTVrZ8DwxpKhlafHotyRQT7YrDaxUrYRpINYJJgNMtqBLtYqQf+MnbILxwxDyqVT+NleUTMH2TnpbSc0cW4af8wpUn+rSdSNSkavHGjmTZbwVPmkfWgmV914wepfngODpJU87+rLCOOBMWOfk9rMbPz0FfpjB9mEw+FATk4OcTPGakgAnnAH738VmolLLcvKTIw3lgwPDaqQ0K8EaG1ipWwSjCc3jYJJjR2vnszmPQVt1i5rlkzE0mmhp9uNoAkgweGAa1ga/v3uwXC7nLZPgdK+b2YCCbe/SZFv9f1uZ8Wr8snpS2TxYzdsBEDuX54Dg6QyeRQora4/mJuFH8zNIq6EaArSbPz0FfqVgE04HA4kJSURf2PZznsDEnGmQoMZA9PKojEaa7bE810j9AOC1SZA+EnQ9bba3LS4EKWg34xjmcpoey+0LGi8ICmqxev2BNWJtYFqJfwDT2hiFl12+1uFKiDtrHhVPkmCeaA5O04ExvYxUwA0HuRRoDztq9+rMVtdsMZPX6FfCdiE3+9HaWkp5s6dq7lrqWAxhlF4sbyAzBiYxrxmjMYbu96qCYbVJirsxA6iebao/6zEzLcqZHnqRYsXtb7sFKIdMn46RcR/HHCGZXtmlWc3IY0etO+wNoPtrnj1fMKqm9U9MNLzY5PJQepUjzZWP/MqUBoNVurj9XUjZ8Rg0/HTF+hXAjbhdDoxbdo0ZhRRGnMbZ6JWwxvfPz0V905NpTIvzzLWzKOERAPJBKN/j9YmpGBrqqA0M9/wxNThoZdXoPB6oph9T62TXwLeOOmEXwqtk4pws4PxCnkzukiB5tSyrKzezFa8Rj4h1c3qHhjt+TVLJlLryNPPvBMDIw1W6+NJGGQqU/oK/UrAJhwOB+Lj45nP8Aw8FrPTlqMsBQDwLWNptlzazFa9Zg2Ig6c74PVdhCdBMBVevDNf2kpELxDM6I20FwrP99SyJQiouxBaJz3MlBhPebzKywy5aaEuj7ScAXZWvIAyduovCPi87ixVsFp1IqA973Y6iJFKWZMfI+y0rZX66BWkmUzpC/QrAZvw+/3Yvn07ioqKwlq6sZh9cd4oWzZ0s2UsTaiEM1N+YdsxvLGrFs/mifj2ZicenJVJ3SD0JAziEspm5gZVIJjRa9criVWu2fdy0+KwKHckSqrP4Nk8Eb/Y79ROfxphpsQiXX8WWAqHtJ9hZcWrfn9d6QncMuQb/GK/E72iQOQ1q04ErPuL80ZpddxZ04ItVWe1kOh23azNVga89dF/I1IyxSr6lYBNuFwuzJ49O2xXLjOmtmNDN3sv3MNXRqiCQwDwu8NOXBbZG4QHG9uJ941CzWyzUv87i95wvJKsvOcXJc289cmRZmytOqu1ycJJI6khjc2UmJ36W91QVWFH4ZBMISwbvwAZ1QMVPgHIvMZjjzeWw3pe/d944t3MxGTF9dXYJmb1MZYZKZliFf1KwCYEQeA+mm124tCM2c2Wo7Tv096L1OEr/XOAErOl+ZLJwwAmp8bincpQl1fjoR7S4SQVtOxYvJuepOQlvCB9b0pqDDFkgdomW6ua8L2Z5CTzgPmM2sqKMJxDheEqTFZoC/U+iU9IvGZn05g1YbKi4CJx2NPqBM6KTIkk+pWATfj9fpSUlGDhwoXMpRvPgKS5/vEwj50BTxIqJPAOfPW5aKcSSvonlU4tmBfphOnSaWnw+rqpQo12cpUn7g0NqxdkByUv2VJ1FklDB9hOeGPcRCUpACC4TXgOxdlREnqEu/9hVeHwlq0XwCQ+IfEaK24Wi0Y7JhoeOuwc9rSyn8ArUyKNfiVgESpjZgy7DkVFRcylm5UBqWcWXsEezoC36vmjp502U91QVotf7Lu6zFddC40nTEnls/YrjIfS7KCqoS1kRRHO5jBgHpMIAC6L0NrEk2CeCpKnPIDeFzybzGbl2zVBssrWC1p9mwBkXmONAbt7JLwK7pVPa6jfIKH+fDcxXadVuFwuU5nSF+hXAhYQzJhKVqUfL7ie+Gw4p3x5BXu4G4Z6ocLy5gDMFdPqBdkompCM8hPN+H0pnxAnzZL6ahO0LzdXWSsmGUCPCCwvHM2M8WMFrL5gzXatrBrteMSwytYLYLVNbh6fiB/MHUucbLDGQCRPnpPKpsX+Ibm+Aspk5+VPv45IKtVrrQCAPswn8L8NRsaMdgLj/LXYX+cLefaFbcewaG0F0e4NsJmVJax4v0NbWm/Zf5p6whRQBv7ivFHcg9L4rYkjh8BzqQbRBDdnUv1JdQrXJk2j0+53edtNzQmtYsUVt8qX7lGysN2ancjVhmblsfpCv49ixF/21HGVHw5o7aBf/enbZMN384iKxmwMmJXtAMrgAAAgAElEQVRjhLFNaXzOKnvu+ETkpsVpNDxxy5iQZ4ztycM7eqiZ0tSkVdcK/SsBThiZo1cEflLpxPOjepDvuXrf7ilfFVaEFWl5O3d8aBhbq/sGRpMB7yza5XJh1KQC9O75wrT+4Ya1INXTLEy3VVu3lXajzTCnpMYiMHkkPqomp/6zeqCN1hevltYEBSwzgrS5rv8ezfYeSa80QOmHKamx2D/sOnxU3QxP4uCQZ3jGAI/JqqqhLaRdzHifVvYP5mYF0WA2Juzs1blcLixcuLDfHPTPCiNzCAAGOIEMw327p3xVWBVW6mB45dMafHaiBaXHlX8krwwVLFs4zSuCBNKAmTB8MJYXjtYykJHqH4mwFqTNYzObvxVbt539FpoJJRAIhPCJCqsH2mhCiqUAWNhZ0xLkNmnlMJ9ab9YBQxLWbDuGTXtPofOy4ilEiufPMwZY5dBOmvP0IalsIDg4IUtRWeEdffupKST7lcA/KYzMEeUEns0XMXFkcCwQGnNMTo2N2GyKBKMdk+SVoYfV8AU8AyMQCGD79u14cuFCzM8ZEZarHmuA0zaPeejktXVHag9BbZOFCxdG5EAbbfXHowSMinJx7kjt0JQKK4f57Mx2qxra8MbuUzrvIPK37W5Oq2WwVuNmfUhymiAFJ7QaltxYrrH9igvTMc5f2+8d9M+McAKvrdp8CF5ftyUzTKS9MvSwGr6Ad2DcddddpmaEcO3+PIfdjN+0atqI1AEzt9uNu+66C0DkDrQZvwOYrwRWzBmNVQuy8b2ZGdp7Xl93iBIA+A7z2fVM8/q60SsKeGKPK+S+lZm+Wgc7hyF5+lAtm0Wn1bDkxnMwxu+uLa/H1uLCa6oAgH4lYBkqc8iyjM7OTgwZMkRLFq1i9YJseBIGhfiOWzXD8KR8NFuaWjEvmTGv2cAompCMzw834NWdp68koSfTYcc+z1NPWtarSJ2lsJMMRpZldHV1aXxCE2xWyzN+h/RukUksKBp4DvPZXSl5EgZBgIzkgcA3l6DxiVXlasdDCuDfX1JBcxdV6SS1J09fktpPgAxvkw9TUmNDZEpfol8J2EQgEMDOnTtRVFSEw00XQhiIN98pEH7KR9bSFADmXz9cO+hijJ5o5ei9ngYSyk80I6WnHlFOZZnPoiOc5X5uWhxR4BtnumYzObMyIxFaWuWT4ROmo76t15Z/fji+/aw60/rb7DAfYH+llJsWhxWFGUi/VHsldpD109s8fWo0kc0dn4gfzM2yNAFjuYua0cninaqGNmKGsygn4Dp3AoFARr856P8PcLvduP3226kMFCkzDO+GKm9Mc30ibztH7wElRg4JTZ1+/P4rclpJ2uyXZ/CTvID0CkCf5tL4TStty7thTHqO1pZutxuHHKPx2IbKkN9IMNa/r337af3N4+Vjd6X0k4U5+NF7fvSK5NPbZn3B6lNS0vfHb8kKeo93TJm5i5qB1B+sJFEPzcrEnWGeM7CDfiVgE5IkofJEIzaW1QK4unTTz0giZYZRYSbQjEzHYnD1mvSbmTChrXKGD41GxmAZDReUEMo0OqyAxwuIdaKYp215w11PSY3BgcaOkOdY7SzLMj7eVwsHrrYJ70rErpeJFeVmFtfKbAPVkzAIBxvbMTk1ljsL2/76VlTVnCG2Cc+BOlqfkvItf3aiBbHXuYN4hvf0MY+7qBXQNqyfuGUMbhqXhMmjYtDa2orY2NhrmmKy/7CYTYiiiObaI3ATWlBlLO1wzH2TsbW4wDSKpB5WUgDS7tMY/JVPaywdSuMtrzBrGP5tohDUJnbs6CqsegGRYNa2NEH73pcNIff1CkB9ThWitDrVtXThwbFiCJ+8WmoemoC3j9TDiSv/dhCL1lbghW3HmPfN3uPFC9uOYdXmQ3inshGrNh/ifp/WJqR8xqQDbbQ+pU1OSK7D6jd59tOM5djlZ1p/pg9TyhJFEV9++SVEUbT1fbvoXwnYhNvtRvqkmejdVRHym56xeJfo6vL78xPnACi2eyOsLsFpDP7ZiRbclsPv+89bj3xPIvI9tyMz1358HD3seAGRYCesNs1DhlRHM+W86IPQYVZ6vIUab0afTpP1XfVZkuA0c/O0s1eiXzWoz1t5X6t/0lBim9BAMidaybfM+qbZmArXVZXXgQNQZMr8+fO5vx8p9CsBm5AkCSkD/Fhe6GEejLIC/VJYH4tEz0xWmDI3LY7qQ26W4cgMpHpIkgSfz4fJoxK0QWmWPpIFq15ALNCUMetcBy3sh/F9liCRJAlLc4bi/cMdQSYygC+EsdEExeNlApi7eVr17jHW6+ZxoSfTWe/rIcsyxsdIONkhBLXJyNiBxOdpfWTsU1I/kM5CGL/Js/9hlX/tOHCo4ychIeGamoP6lYBNSJKEw4cP46miQubBKF7QZmb68MdAcHgF4/ukOvxgbhZRCXgS6BmOeGEcHGqbFBYW4sVPTjBtuzwbsTThSvICsgsrHjIsgUwTJJIkYU5iD7Y6gMuGib1RuJF44EBjB9YsmQi306GF0tavIKwqMfV5K6ZFUr3ses0Aijno7gwJLx1yBrVJuBMTgNwPSUMHhHX6mAY7oa5ZCkc/fq6lEhBkWZb76uNtbW14/PHH8eGHHwIA7rzzTrz66quIjY0lPu/3+/Gzn/0MJSUlOHXqFGJiYnDrrbfihRdewMiRV4Ni3XTTTSgrKwt6d+nSpXj33Xe56tXZ2YmYmBh0dHT8jyRxIGHL/tMhWY9o2FpcYMmD5EfvVRHdKWkIJ9yx+r7+IJmx3uHGMuoL8G6s2q2LkWZSH9B44KX7JuPkN13UNqN926xMnjqx6mVcZZrxlQoz/uiL/o70N1k8zOpHUorOSMGuXOvTlcD999+P06dP4+OPPwYALFu2DA888AA++ugj4vMXL17E/v378fOf/xyTJ09GW1sbfvjDH+LOO+/EV199FfTsI488gmeffVb7e+BA8lKyryBJEpqamjBixIiIaG0rHjRWTm6y3ClJCCcrldom3hayLVs1QVi1Jdt1JbUCWhkkk4OVb6tt8pP540xXXVa8XvRtZtfNk9e0yPKS+cHcLMttPnlUDH48OxG/3XUOkqyYg8xSL9qFnifsCGAST/VVqOtIyxRe9JkSOHbsGD7++GPs3bsXN9xwAwDgtddew8yZM3HixAmMGzcu5J2YmBjs2LEj6N6rr76K6dOno6GhAWlpV13QrrvuOgwfTt7cvBaQJAm1tbVITk4Ou8NURstKGoSac1dttca/VfCe3ARCBS7LnTLcrFRqm6SnTiD+roYqoNU3nOV4pGL1Rxp6PjETbjTTFM/BQ14lZvV3Vr30ZQP8SliSJEwc0oP3l81AfVuP5YNxvAhnQsN6n8dVmye6rxGRlClW0GdKYM+ePYiJidEUAADMmDEDMTExqKioICoBEjo6OiAIQogJ6e2338Zbb72F5ORkLFiwAL/85S8xZMgQ4jd6e3vR29ur/d3Z2QkAmiuW+r/T6Qy6DgQCEARBu3Y4HHA4HNp1YWEhAoEAJEmCw+GA3++H0+nUrl0uFwRBwD5vC+pbe5CRMAgTRw7RogQGAgH89h9fY0NZLaKcQK8owAEZbgfQKwmoPXcB9+SOwAdVzXAIMlwC8PDsTEweFaNFG8yIHwi3Q4ZfEuAUZDgEwC8JyIgfCG9LFwDA7ZAhyYAoC3A7ZHhbupCbFhdCk7flAgAgyiEjICk+3NEOGd6WC8hNiwuiSb1W6XC5XHA6nZg5cyYON12AADmEJgDIGHYdohwyLkuCRtPlK/VVvyOKImRZ1q5JfbOm5Ag27vRqNEkyAAiIcsgQZUV5zRufiNz0+KA+Y/WT3+/HobNdqPN1Iz1+APIyEjT63G43ZFnWriVJgiiK2rUkSXC5XEHX++vOo853AZ6MiRAEIYg+Ek2iKOLHRWOV2fm5LmQkDEJexjDs8/rgFGSIskJfQAYkWUB63IAQ3jt4ugPec53ISByCvPR4Yj/ZoempeVlKvVq6kB5/HfI9CUH9tKbkCP7fLi/8kgCXIOOR2R6sWnh9yHiqPt2ButZLSE+dgNz0eOR7HNoYevGTE/jTzlqN94oLM/DUbdnEfjKjaX+dD+vLTgWNp41ltZg3PhH5ngRinx0626XQN+w6OBxOvFZeC7cDGk3/r7wW868fjvT4AVp/6MeWvj+empeFoglJ+MNntdh18hw+P34OpcdbTGmaPXs2AoEAVCu91X6ygz5TN83NzUhKCnVzTEpKQnMzOba6ET09PVi9ejXuv//+IBvXd7/7XWzatAmff/45fv7zn2Pz5s1YvHgx9TvPP/88YmJitH+pqakAgMOHDwNQVi3Hjik+ztXV1aipUXy4q6qq4PUqnj+VlZVobFQ22ioqKnD27FnU19ejrKwMPp+SWKa0tBTt7YpXxvbt29HV1YUXth3D6eoKPPP3g/jOxgotaURPTw9KSkqwvuwUkgcCz+YpgyVtMPDTKcr12BgZswb7sLW4AL+5PR0v33wdVi3IRmNjIyorlROoQwNt+MUMxRQ2L0XCkgwJK+aMRtSFJsT2Ku6mSzIkzEtRGOS7YyQMkzuINCW7lOzfKyeKGBujMOFPp4gYeZ0URBMAlJSUoKenJygRxsWLF1FSUgJvSxeRJq+vG6MGBvB/ZyhZZybFySieIGLFnNEYJlzQaPJ6vaiqqgIA1NTUoLq6Oqifqhra0Ha6Noim2cOV+j40TsK0ROX668P78J8VR1DV0Iby8vKgfqo80Ygt+09j28efBNH04OsVeHrLQZyursCjb36Br2q/QUlJCQCgq6sL27dvBwC0t7ejtLQUAODz+VBeXg4AaGpqQkWF4nP/4pYK1Bw5gDUf7MLrJXuZNOl5LzctDqnyNxgaUFwee5tO4sc3KgqpeIKISXEyVswZjQ5vdRBNr247gEVrK+CvP4DiPyt1IPWTyntWacpNi0N+gozeppOoamjDh7sOoHT3F8rs/VQtlmQo/XFHmoSm+lpUNbQFjadNJWV45e8V+PH7B/Dl3t3YWPKFxnt7Dn2N9WWngngv+cLXqDzRyMV7RpoaqvcG8R6gjKfGo/uCaAKAxsZGvFfyGRatrcCHuw7io9IKvPJpjTaeVJruSJPg9XXD0daIpwtignhvxZzR6G06GTSeLrWfR+nxFm6aLl68CK/Xa7ufeOWqEZY3hn/1q1/hmWeeYT7z5ZdfYvv27XjzzTdx4sSJoN+ysrLw8MMPY/Xq1cxv+P1+3HvvvWhoaMDnn3/O3OjYt28fpk6din379iEvLy/kd9JKIDU1Fa2trYiLi7O1EpAkCV999RXy8vIQFRVFnGEeOtuFxev2INop47KopBqMdgKblikbYFv3NWDlB4eJs+ZeSbl+/9EZ1JmLftasn8XkZyRodPx6+0m8vrNWm60UF2bgyfnjqasb42ws2iHjwVmjsXrhBNPZWCAQwBdffIGBKeNxz4a9ITS9u/xGTB4Vo826Pj/+DQTImDN+uHafZyXw94NNWPXBgaDVjXqtrgSMs+YVhRn48ZUZ2IslR7C+3KvQ55Tx4I2jMT9nBL69YXdQP/WKylnwFYUZ+MnCHG2GWd/Wi4xh12HiyCHE2VhVfSuWbPgCTkHGAKeMB7JkvHlSwK/unAi3W1m9TU6NJa4EWLz3/r7TONTYiomj4rB0enpQ/+3ztuDeDV9oNCl0CNj86PSgFQ1t1mxGk/761x8fw7ryOm3lOSsrCeUnz2mrUJegiJQX752CuyaPAABUn+nEfet3Q5IBpwA8PE7En0868M6jszBx5BB8eLAJK9+vDlmFPr9kMhbnp3KvrN1uN14oOYo3dp/iHk/7687j2xv34LJhNa2/Vml6f8WNmJQyVKNJv2IzjicrNPn9fgDKxCwvLw8DBgwI6SezlUB7ezvi4uL6fmP43/7t3/Dtb3+b+UxGRgaqq6vxzTffhPzW0tKC5ORk5vt+vx/33XcfvF4vSktLTQnKy8uD2+1GTU0NUQlER0cjOjo65L7T6Qz633itT+5Aui4oKAj6nj7ok9vtRt35iwAUQaiiVwTqzl9EXno8PEkKXTIELeCaBAG9V1Z1j87JRL5HGcAqcxmv1foabbvqfdbmH4mm+dcPD441JAlYX+7F/JwRQe8aaVX/nzVrllZ39TsSBDw0+6oN2eFwBNnwf196KsheS+sP9dqTMAh+6Wqb6q8vU67XldehKEfxMFtbXgc11EevqNAX7XaG9BOgKIS15fWYl5NC3Xcw9k19Ww8ARRF1BwSsv3KQdtXWIyHv8vJekH268gy85y8G2bfr23o1n3s9HfVtvcj3KH+T+mzNx8e5aFKvD57uwLryOo0+UVbdRZVrAAjIVyODqjR5fd1aP4kysO6YS7ufmxYHT+JgAMF91isJ2n21viw7v9vtVva1yr1Q+5dnPNW1XtLKVWkCgDnjkjTvp4AshLiWGsecsc94adJf33jjjdBDvS8IgnZN6xu7+wiWlUBCQgISEhJMn5s5cyY6OjpQWVmJ6dOnAwC++OILdHR0hAhPPVQFUFNTg88++wzDhg0zLevIkSPw+/0YMWIEPyFhQhRFeL1eeDyeoMGrB09oZtLhlllZiRF1j7PibRHOxq2+TcyiKIazAU3bqFRDJ9ef78bLn37NTRsPaCENSHXW97tTkDF7uIydzQJEmRxjygw87WXHI8VOP7CCqhnPo3xypJlYP32b7Kxp0fL9mp0R4KkvrX5P3DIGP5pH3oeMtPeTCh6a9OCRKX2BPtsYzs7Oxm233YZHHnkEGzZsAKC4iN5xxx1Bm8Ljx4/H888/j0WLFiEQCOCee+7B/v378V//9V9KfJ4rdq74+HhERUWhtrYWb7/9NhYuXIiEhAQcPXoUTz75JHJzc0O0aF9ClmW0tbUhIyOD+gwPE4RzLL0vYNe9DQhtE5rysatoeE5Oq37mJCXAouGmcUnoDYS6YpqBVGd9vzsEIGOIjN3fXJ1hst6llWFW9idHQu3BZget7PQDrQ3nXz88RAkYAxKqJ731baL3VjMbCzz1pdWPFIZFBa/3kx1YGd88MqUv0KfnBN5++208/vjjKCoqAqAcFvvDH/4Q9MyJEyfQ0aFsVJ4+fVo7WDZlypSg5z777DPcdNNNiIqKwqeffoqXX34ZFy5cQGpqKm6//Xb88pe/vLba0+XCtGnTTJ/jzUbGy2h9fXCKNSDMyuZtEzuKhpWY3goN6ruk33LT4oLyNet/v2lckiXFoprV/JKAP5+0tlLkfU69T4tOWUTJDc37XRLCcWOdnZWIrVVnQ9qEx9WVt75WZ98q+nIyxju+ecdPpNGnSiA+Ph5vvfUW8xn9vnRGRgbM9qlTU1NDTgv/T0AURdTU1CArK8tU+UTq8Eu4fs+8IA0InrJZbWIneY0+kJpVswVrULN+y02LwxsPTicqPCvCRZ21OgUZ81Ik7DjjCDIHWQmHYNZedldWdlYPgLXgbXoBrV4b28TKQcmbxyWGKGi7h+CMiOQhNTuwIlMiif7YQWHg0qVLlt+xO5MP145uFeqAqGpow+92nOAq+0BjGxpO+9A9IAH5GVf3jewkr2El31BhJuT0g5qUvzncQ1Ss6Yoq2BwCEBul/C/KV2PH85q91OdogpcVbdQvStQAfnZXDyqM7cOj2NVnXt9Zq7XJskI+ZWjkB1amMFL9WLgWYUl4YUemhIt+JWATTqcTubm5lt5hpbGjMaH6GykdHXBVEPYFI5sJYr0QDnr2H19wJVyhDVSagDKCdwYZiRWUVSWsF4rvnlJmdSvmjKZuTvLUVd9eZtFGp6TGBOW4NtIcyZPbKnhm4PpUp3+7ja0MVZDavvR4i+XkLqQxwsMbtNARZmPW6li0I1MigX4lYBOiKOLYsWPIzs7mWrpZjRIK8M2GPQmD+sRMxCOIjTZplyDjjjQJ/9Xg0ASkHWHD48XDa07hEd48g9YOHasXZKMoOwn1tSeRnjkWeRlsTzdeRcMTbVSvAEjf4bGv2xF0rBm4yqcqn2z3BwCgT9qeVraK5XNGh7hDA6HtRMps13HJH7QJzhqzVsaiVZkSKfQrgWsEGiOTsh7R0j8aseJK1iMSI3sSBsHtdNheGZgJYl6bNE9iFN7fVCFnFumThw5VgPAOWrteU5NTYxF1YQiyU0Mj5xrrzSvsaM+5nQ4szhuFLftPm37HzHzDahc7go6kuF7b6dXOHLC+wwqsx5OvgqZc1RWJEfrVNSn2lhGsMduXJttIoV8J2ITT6UROTg7381ajhNLwxC1jkD5skMb4tAHPMgXwgFZfkk1bfTYgC/jP+qszmJ01LcRBYzaLpwkoUg5bM4HEEt5WTDx2vU5ofEKbmZKg+tLz0MTzuwqa+cZObmqzSYeep418QirDuH9jbHszcxetbB6o7WTlPdazRiVOm7RYlSmRQr8SsAlRFFFdXY1JkyZxLd1IjMyT9cgImgBmQS/YeO2VNKFHsmnrN/yWZEjYXOfAtyanEGlbs2RiiDBnbYSy0m2yUiuqZeSmxRHt5SwFSjMz2PE6IfEJS8gas6YBoZFfzRSSFYVFMt+YRaYlwUwg6/nU7ZA1PtGf9gaU3MskU4u+7XnMXbSy9SCdDdG3k5WJG+/KljVpsSpTIoV+JRAGrOYwsJr1iHcgG93mSPD6ukPCHph5WFgRepr921uL+4oyUdd6iagEjP7krEFBS7epp4mEVZsPwevr1jamjQniDzR2oKqhzbafvL5sHkVg5BOWkFV96Um/8bq5sn7nmQSEc2AQIAtkvWKSZKD9Mq5Efg2G2YEzHuVN8gQzOxtC298wvkcC75jlWXle67woQL8SsA2n04nx48dbfs8487Lizw4gyAZKcpubf/3wkFkSQE5MUnq8BaXHW0w9IniTceRlDNM2PwWHud94uGYHllDi2ZhenDfKsonHqj2cxCd2hCzpN5WXaLmcjbzGW3ezlQSPYFTbXc/XRn7OIExKSKlQjQqQ1X40Gs3OhujrTBuDRvMmaRLFKsdsz8euTAkX/UrAJgKBAKqqqpCbmxsUOIoG1gyMx6f5L3vqQjKEGWeMqtscaZCSDgapMPOI4N1T0LcJj0kiEmYHlkDSK08j1PtWVjtWvHfU700cOSSET6wKWZZi4u0rqy6uvJMTkmkGUPYx9CkW9Se81TZ5al5uyCSHlg9bD1r7GVNwGmmkjTOzNlTfW5w3ipnb2mziZMaLVmVKpNCvBGxCEATExcVBEATTZ+0KVZaLKMlkACiCj+T6RhpcxvdoHhG8Hg76NqlqaMPY5CFUjx4gMmaHrcUF8CQMIgoi1ulkIHhVxWPW4fHeCcnbW5iBJWND+cSKkDUml1dhpa/suFmy2kX/m9fXbbrXpa+Xnk+MZfAqQGP7fXKkmcgDZjSarUaN/WNXkajvsuizIlMiiX4lYBNOpxNjxowxfc6uUOU9MGWEJ4GewpG1d2DmEfH5iXOmHg5qm5AGBGlmFCmzw9JpaSGCSP8dksDQJzrnVcpmSovUZ0oI6wLiRp+ZkDVLmWlFsIercFkwtq/X103cD9KbPWhjx8rKTG8OY/EJi0ZaG9I2qEmwMsZZ9PHKlEjj2iWy/F+GQCCAiooKBAIB5nN2TB48vwOKSUgPVfDRmP7xW7KwtbgAN49LJL4H0AfMy59+jRe2KYHxX9h2DIvWVmDl3w5i0doK7X4gEMAnpeX4087aoHfXl52ixpZZvSAbW4sL8NJ9k7G1uACrbLqymn1HXc6r9eGtn/Eby6+sIlSYnZeIcsioP3bAlE+MoAkWfT1pfVV/vjuEHrO6hwu1fXPT4rCzhj3RMBs7+m+pUPc9SP3EGitmNNLakLRBTeMRq2OcRB/AL1Mijf6VgE04HA6kpKSYJnKwOwMz+33FnNFYtSCbaKM0m2HTAqTR3lWhbszSZj2TR8XgomsoRLkz5F2rZgeelZBZkg8Swj19yprJkfpMlIFhidYTh/PUk9ZXL3/6NdGb6lqELa9qaCOaKhfnjtTK4x07KuyeBSG5IxtBakPeDWqz8q2usqy2S6TQrwRswuFwID093fQ5M4FsRRiTEs7QBJ/ZgGcJzNULshHtchBDJx9sbCe+ow6QjIx0iPKZkN95wxHov0eC8bCcVURiwNKUltfXHbJhv6wwE7Pz+Fc3ZkHhaAe+Pj9xLqS/aK6aZmY9Un1425vWb7Oyrq4+eceOWr6ZqYU2xlgKgJWbAuDboFbB4wTBAyvtEkn0KwGbUJduBQUFpjv5NIFsNsMJd+bGEvRmg5sWP39yaizeqWwMue9JGIRAIICuukNYUZgRFA6ANxyB8XskmEXgNIPVAcsjBEnxZWZfUdYTRw5BeXk5F5+YBYVjHfgyWznYCZ5mx6GBR8laGTu8KzcrY4UnN4VVoR6JVZaVdokk+pWATTgcDmRmZnIv3UgzMJ7NJP17kYoUGo4nA2sTVpIkZGZmouJg8OEs9UzQtQjTwAPeAcsbYdJIk/6Er9omZnxiFhTOrM+t+s6bBU+z6jWjgqffrIwdKys3HnMgLw/aEeo85bNgVaZECv1KwCZU+51dWLVNW/EHN1veh+vJQLvvcDhwTrwO68sPEL/PQzNPCslIwMwswttOZjTx8gntO2pQOB56aK6wJDrMgqeF4zVjFvLDytixm/iGBivjLlyhbhXhyhS76FcCNhEIBFBeXo7CwkJbSzcrMxxegcSjKKwqH9pAIN0PBAKoP1SJKIeMy4aYMDwHt6ykkGTB6oqJVO7Y5CHEZ62cXgX4+SQSexUkpUkLsWBWDyteM6QJBCvkh7FNaP1llvjGzsq4L11lw0W4MsUu+l1EbcLhcCAnJ8f20s2Kyx6PCxqPSyHQd4OgqqENHx5sgn9oCgKEPU39wS099PmL7bpu6kFzX2XVm1Qu78asWT/y8onZd1guksbv6N0PWXsrrPJI9Zk7Pti1WIWRP836Ut8mrP5SVxKk8qz2s4rctDiqa/X/NMKVKXbRvxKwCYfDgaSk0MiWVsBr7uAR3Lwz/CFvybwAACAASURBVL6wtYduaMZSNzRpNIfrugnYO5jHMsPwnDRWafIkDMLBxnZMTo0N8kqxwid2HQhYYPV3bho9eBqpPgCf1wyPiSwpKYnZX8aDcnrYyTmt4oVtx0LCr/CcTbkWKSgjIVPsoF8J2ITf70dpaSnmzp0Lt9tt+X0rAdp4BLeVGX4kbe36gRztkPHTKSL+40A71iyZRN3QJJmSIrFCsaNIWOUuzhvFddJYL6TfqWyE19etCWmrfGJ0BPj8xDnbAk+FWfA01neMv/NMIMz6Um2T7mHkYGkkmvXlGSPRqjCbMJht4tPQF5n7SAhXpthFvxKwCafTiWnTptmK+22HqXj8/knnClTBGKlNL1Y2LL8EvHHSCb8EnG2/hPRh1nzvw12h2FEkPO3GMlexDs/lpsXZ5hMr+Z15YFxx2VX8PBMIs75U26Suy1rZT9wyBj+aN45qEjObMNiZJIQTS8sqwpEp4aBfCdiEw+FAfHy85ffCYSozwW0Me7ul6qwWwyUSsxezbFgSBNRdUK71Zwx4y2YJGJ7luF1FwtNuNAFidnjODp9Yye/Mi3Bms6T4/Fba1NhnapvEx5NXFrQzKqqXkd1+tjNJiISZkhd2ZUq46FcCNuH3+7F9+3YUFRVZWrr1NVOp39CH8QWszV5IApelvNQBGe2U8WyeiF/sd6JXFEKes+trbUWA2U2mYtZuNEHBOjwH2OMTs7hRPCfO9Qhn4sF7VsKKqUnfJrT+MhPyvJFW9bC6WgbY+Y0jDbsyJVz0qRJoa2vD448/jg8//BAAcOedd+LVV19FbGxo0m0V//qv/4o333wz6N4NN9yAvXv3an/39vbiqaeewqZNm3Dp0iXccsstWLt2LUaN4kt+Egm4XC7Mnj3bsivXtXBRC0fR0AY965vagGy5gLO+NlwWG2yVTYIdAWYUPrxKhEUjLQGNWQRTK3xiFjLCmN85XLre/0pRXuEoDzsrDGObkJQFr9nJLNKqEVZXyyTFAQRnr4sU7MqUsMvty4/ff//9OH36ND7++GMAwLJly/DAAw/go48+Yr5322234Y033tD+joqKCvr9hz/8IT766CO8++67GDZsGJ588knccccd2Ldv3zWzpwmCgKFDh1p+LxK2b7PZn11Fwxr0Zt+8ajsfjN98Rp8ZW4UVhWZlBeNJCE2Mbkaj1cNzgMInte0ivF+fsXQ62RgyYu74xCAFYEU50uh6p7IR71Q22lKKrH2SaJeDGd6Dt03MzE52VzhWVstqXozHbs7EHz8LjY4byb0BuzIlXPSZEjh27Bg+/vhj7N27FzfccAMA4LXXXsPMmTNx4sQJjBsXmrBcRXR0NIYPH078raOjA6+//jr++te/4tZbbwUAvPXWW0hNTcU//vEPzJ8/P/LEEOD3+1FSUoKFCxdaXrqF450TbvIKlgKxMxPWf8Pv96OhqhzFhZlYW15PfQ5gKzL9b7wKzeoKhpQYndZugHkCGtr9F0sOY5y/Fk9XKiYy3tATasiIT440a2lA9alAra72WLkkrCoP9T6tDrQopip42kQPGq+wzhGYjSme9jPbnOctixfhyJRw0GdKYM+ePYiJidEUAADMmDEDMTExqKioYCqBzz//HElJSYiNjcWcOXPw3HPPaf6z+/btg9/vR1FRkfb8yJEjkZOTg4qKimumBFwuF4qKimwv3UhCo69DPtgNyWs2E1ahtsmdAwZgXk4K9TlWPUjB2MxgZwVDejY3LTQPrt0ENKp757ryOgyNcuKyGFqWCppAOtt+iXpC165yzB4+BMeaQ91yaGETWIrfrG1pM2ueNqHVn+SWawRPn5u1H29Sp0iaccOVKXbRZ0fTmpubiQcfkpKS0NxMz3e7YMECvP322ygtLcVvf/tbfPnll5g7dy56e3u170ZFRSEuLphhkpOTqd/t7e1FZ2dn0D8AEEVR+590HQgEgq4lSQq6drlcQff9fn/QtSzLQdeyLIdcA4Asy3ix5DAWra3AU387gG+v340Xth2DJElagglJkuA9p9TbKciIcsjatfdcF5GOSSlDsThvFCalDMX+uvNYX3YKbocMp6C8+6edtdhfd16jafKoGCyfMxpRDhmOK2HfHivMwORRMRodU1JjsThvFHJGDCbSpNI8JTUW35qYjNw0JYiaSuv++lYt6YzjCh3ry05hf9157PP6sL7sFJyCDPcV+j48cEa7dgkyXFfq7j3XpdHqPdel0RSlo897rhOyLOHmcYlBNEXrr50yBMiKLf4KHWrdZVnGhrJaRDuVZwXIeGNXLaoa2oJoMvbTmpIjWLS2An8orYHbIaNHVGhV6fC2dAX1U0b8QAAI6hu3QwZkKYSmKIcMb8sF5KbFYUVhRhBNKwo9yE2L0+ioamjDG7tqIUAGICPaKeNYcyeEK9cqTdFOGZ6EQUSaVi/IxpYVM/DSPTnYWlyAH88fp9E6KWUoVhRmaHxo1k+BQACfH2+GDECUZTgMNKnPqGNon7cFG8tqg/ppfdkpvPeFFxvKajWaAFmjY8Wc0ZiSGhtEB6mfJo+KCap7lEN5d1LKUAQCAXh93VSa1H5aMWc0Jo4cwpQRxmszGeF0Oqkywowm9btWYVkJ/OpXv4IgCMx/X331FQAQc2XKsszMobl06VLcfvvtyMnJwbe+9S1s27YNJ0+exH//938z68X67vPPP4+YmBjtX2pqKgDg8OHDABTT1bFjyrHz6upq1NTUAACqqqrg9XoBAJWVlWhsVGzdFRUVOHPmDEpKSlBeXg6fzwcAKC0tRXu74jK4fft2dHUpwrmkpAQ9PT0IBAIoKSlBIBBAT08PSkpKlG+fPIP0Swqzpw0GfjpFxPqyU9h71Ivy8nIAQFNTEwa2Kc9MS5Tx0Dilw2cPlzG4W6lXTU0NqquriTTVe5V3vztGwuzhCuM9NE5CfcNVmpqamrB6QTZ+Pycav/mWB1uLCzDJeZqbpgsXLmDHjh1KSOmuLmzfvh0A0N7ejtLSUgBA3ekmrJyoDJpJcTKKJyjX9Q2NaDx5SKPpu2MU+ualSFiSoVzfkSbhjjTlemhPk9ZPg7sbg2ialqhcX2g8imffq8BnJ1qwcqKIe3NisGbJRPx0ioi0wQpvPJsnInmgMqMz0lTX0oWhUcCL05U6Jg9Unvf6uoNo8vl8Wj/tOfQ1olu/1vrp++MlvDhdxM0jr9IUFzgf1E9RF5qwfM5oLMmQMC9FeeYXMwYiLz4QQlPxBBHJrkvK9wd8g7f+TzZeum8yfjvLiUdmDA/qJ6+vGy9OFzE0Coh2KnREO4EF2cOCaHp+uozctDgqTcmuHiRcrEduWhwaGxtRWVkJAPB6vZibeBFbiwvw81mxpv20qaQMB499jWgn8NxUCQXJoTTpx1PjkS9D+gkABjRXh9Ck9tOqBdlU3tPT1NTUhJmDz2NrcQGeLkzEMzMHoOj64fB6vaiqqoInYRCV95ZkSHh86iCsWpDNlBFNTU0hNLFkxIULF7Bt2zZs27YtREbw0MSaXLMgyKoq4oTP59MIoiEjIwPvvPMOVq5cqRGsIjY2Fr/73e/w4IMPcpeZlZWF73//+1i1ahVKS0txyy23oLW1NWg1MHnyZNx999145plnQt7v7e3VVhIA0NnZidTUVO0bqiZ3Op1B14FAAIIgaNcOhwMOh0O7r2pep9MJh8MBv98fdO1yuSAIgnYNKLMC/bXb7caWfY14estB9IoCHJDhdgC9koCX7p2EOyePgMvlgiRJkCQJP958CB8eOAOnAFyWBBQXZmBl0Ti4XC4qHaIo4mBjOxav3wu3Q4YkA6IsIMoh491lM5GXMSyEvuoznag7fxHpcdHITR9GpOnQ2S7U+bqRHj8AeRkJkGUZPT09GDhwYBB9kiRBFEW43W78f+29eXxURbr//zm9JGEJTaATkkBIhwABDUsSQRIlIEhYdETwKzoyXFwuOvC9oygOovP6KvqbGYUrMP50FJ3LKDPiV+4IjNdrxKABwjXI2gHCGrGzAIkQyIZAku5T3z8653D69Nl7C6TerxcvTk6fpeqpquepU/XUUwerLuHh90vRxjIwMQSWjnxs/vU4EELwwPt7YGYITAzQzjIwMwT3j07CJmcd3xNbkJ+O5wuGAgAOn22G63wL/ud0PTY7axFlIvAQYObo/vjvQ2fhJgDbkVc3C2xadAe2lZ/D2hIXWDCINhM8fscgvDDjFr9yOnKuBQ+8V4ooM9DqYcCAIMoMfPrUHRg1wMbniSsbi8WCzQdqsGzTIbR1pN3MeDsnbpbAxDBoZxkszHfg+anD/MrpQGU9qi5eQVp8LEYkx4JhGPx70Sn8dddpeDrKbFG+A89PG86XE1dmUnWvrKYRD7//Hdo83nDe0Wag1QNsXpgHwnpQ1dAKR9/uGJEc61dOwjyxLAtn1SVUNVyDo083jBxg4+sbIYQ/fvPrE3ivpFK2nOas/a6j7gE9rQRX3YCHmGTztHGPCy9uOcqXkzcfDFbMugXLthz1yRMD4LOnbkdOWjwIIZJ1T5wnlmXx5rYK/KXkNN+eFuY7sKSjPa0oPIr/+B8X2lmGz5ObMHwb+mzhHXw5SekIqWMlHcE9AwA/J8DlQ0ueGhsbERcXh6amJl0TzLoHn+x2O+x2u+p1ubm5aGpqwt69ezF27FgAwJ49e9DU1IS8vDzN77t48SJqamqQlJQEAMjJyYHVasW2bdswZ84cAF6rXl5ejpUrV0o+Izo6GtHR0X7nOU8ioUeR8Fg4Nic+JoSgra0NMTEx/BeIcDJHz3FafE/er54Fg9aOr7q0+J78e00mE1Z+fbIj7gkDD/GOly+dcSsA//kELh/C8+Lx3SfGpyPb0dcvf29uq5AchxWmfdU3P/hd88K0YbwsGIbhr+caAABkp/bB4+PTsXbnj2AJgzbiHWfm0sGl0dPRNXkyPx0vTB+OX+Wqb4oi3MzFVe+72TkX1dRV/zOWzrgVUzKT/Z4nLpvs1D54akI6/w4CBo/f6RscTpy/tPie/Ls8hAFLvL3UZg8DD/Ge924+n+xTTgCQ47AjxwEflOZh5CJwcvnIGhiHx+68nv5WT4esU70LknLSfN8lzIfweOXXJyXrg7jdvDDjVhRIyJWTe3uHXBgQmBmvbLhVwMI8AcKyZTrS7v1/4YRBeOj2NLguXcPanT+i1XM9TTlp3gB3cnVPfHzoTBP/Dq6+CcuGy88/9tf4rAVpF9QlcXmoHSvpAkIIPB6PpE7RmicjhGwGYvjw4Zg2bRoWLFiA999/H4DXRfTee+/1mRQeNmwYXn/9dcyaNQuXL1/G8uXL8cADDyApKQmVlZV46aWXYLfbMWvWLACAzWbDE088gSVLlqBv377o06cPnn/+eYwYMYL3FgoHbrcbRUVFQZnJ1+I2qhT3RM5XWmpSbcuiPEWvHC2xauQmYqcMs+PM4VJVmUy9NZGPZy92JZQLxiaeSDcaB0bs0qqGXk8ucVlGmYHXcjxYutfMKyxAn1eJXFq1eIoFGidKrxumXFqFE6hCmYj3GpB7J+C7Z3Aw4l9p8RDi/ldaEBgsgqlT9BDSaegNGzbg6aef5j157rvvPrzzzjs+15w8eRJNTV5/aLPZjCNHjuBvf/sbGhsbkZSUhLvuugsbN25EbOz1+O5r1qyBxWLBnDlz+MViH330UVhjblitVsycOTNoz1Or1HIVVk5pK8W0kQpYp+YOt+PkeT5tcmmpamjFbBWZiN/T6mZlF3aJg7EJUWvAga7HkAqVoBXxatZnBO6oHMEI3a3VR19v+oXv4BaUidESrE0sP648Wj0MntltkV35rBTZVYjRfHFo9bAKxtoeLQRbp2glpEagT58++PjjjxWvEU5JdOvWDV9//bXqc2NiYvD222/j7bffDjiNRiGEoKWlBbGxsYoT3XpQqtR6l6mrxbQRosUdThjLRc5t09G3O5qbm2VlotarDMYCKOF5o73FYESN5N7lunAZc7Pt+OTgBRBcH9LQo0ClMOqjrxW1TkGavYdsOuXkJ1xZ3r8ng7FD+0teL1e/gt3zzhoY57cob3SKTVLmodzljiMUOkULdFMZg7jdbuzatYufyAklb3x13GdxEwcXbEuKUSnSoTmkGpJarBoxW5znJDfmGJEcix07S7DlQLVkpEel3ruW34VwvTNxGqR83YWbrKgR7M1tXtx8CCPNdXggKwmr54zClkV5ivHrtW6WosVHX2+aOdQ6BQsnDOLXT4jTqSa/rIFx+MXIRNT/cAhut1t2WC8cG784qxt8DADgXaQnJze9dUkv4dQpQmgAOYNYrVbcc889IX+P2violJLQEtNGiJEe1vgh8fiXXIf/YrTvGABe11u9i9H0hrsIRe8sGAH+hGXW6mHwwj4LgDrMzVX/AtD6JSQ1RCFGOISnRzZyMnhkbAoevM3rXi1cQCdMpxb5CduO3PVNV9t9/tblwqiRcEYI1UK4dIoY+iVgEJZlcenSJcMLNLSiND6qtgfrsunDsWVRnmoPVKpXrQanWLiekbO6AR/sPA1Hz+sLscS9UbXeu9bevTjtRntnUls2BntzGxMILxO5MAdcOpTCIEjBle8zkwdL/v7Wtz/o3n4RkM/rg7elIGug/Cb0nMFRe6aw7chdL7VS2uiXjRxKEUK1bOUZbMKlU8TQLwGDeDwefjVzKPcEVWpUWr0b9HjB7Dh5XjKWuxApxeyq/xlWE/DYUA/+WGbm3VzFvSqp3rtwbDkcY6+A8qb2WsaJlcbthWUmlMlb3/6AVjfr83WkJT6NMJSB+J1c+ba6/bdcFCKee1GLzmkkXAT3PLVJVGHbkbp+0rB4yW0stfbQtW4FKfXu0Sk2ybhS4SBcOkWM7sViNwPNzc2w2Wy6F1VECrGiWDhhkHe1YnWD32c5AGxZlBeQ8pR6X4GKYjaalnBt3SdEKa2A/1AH95uW9Qly10g9Sy4dQriy1hPXv+riz5KGfPWcUTj1U4tmeSspU3F6ZmclY/VDWZruVXsXIF8GABSfa6Q+CUN4S829BdqewoVRvUa/BAzCsizq6+tht9tDbrXlesdZA+MwKyvZZ+PsYEygKb1PjqyBcfh1fhp2HDqNU00MWDCavGCMhAJWIhDPGqUJcqXwyVuc5/gyEHrCRFtMePvbCgy1EV4mwmfJve+ZyYOR2reHz5eSlrUbwsirUkZA7wbtSl+Ry6YPx0/N1/h8b3aeQ0KvGF7hKt0r1XbE10t9TajtHRBIaOmsgXHYfPCM5O/hmiMIp04RQo2AQViWRXl5OfLz88NSYFKN6o2vjvsYgFlZyYqeJ4G+T43nC4ZipPksrvUdirSEXj73SynnYE/MKfUCjYSnlvpNzZNKqHQmZiTgve0VuN/BYvURM9q4leAqE+FiP381OUnlW0qJGt2gXQpndYNP3QO0G3CWZbHfeUiynnCIOyKA/GS0Wn3SOkEejPmgQAi3TuGgRsAgFosFkyZNitj7ja6YlXqO1s92tWstFgtmTJ3id15OORtpdHJpUOoFSvUglcatlX7Tsl5DuGDt8fHpeEPmWVoXISnJSS7fWxblSc69yD1HL4EYcG9YkjbIeZFxCDsiWnrpcvnQut+11vIIFZHSKdQIGIRlWdTW1iIpKSmsVpsjGL1oPeOnWq49WHURlTXn4EhJRnaqNxaQ2ie6nkanlAa9K6qllCSH3HCYlklcwFcZLZ2agfHJZvzk7oa0+J5+edO6jaKcnJSUo9hrSuk5esfw9Rhw8Xj/ByWnMboPweEGBixhNH1BaHmfFrdZtXeFyzFBikjpFGoEDMKyLE6fPo1+/fpFxAgE+umqZ/xU616zf911Gotu8WBZYRUeH5+uaQcsNW8h4Zi3XHgMq9mke0W1lJIUIh4Ok3PHnTDUjp2nrkfVFRsxlmXhaarDfXl5spuFaBl6k1NOwVhboWWiWyrNWgy4+Nl3ZcTDwgATk1kcazSjrcMtRa3zovV9wvzJTZBreVckJoIjpVOoETCIxWJBfn5+xN6vtVHI9fD0fEmoXXtdQTL4U7m3SnFGQmsPTq63rWebSLFrJ7eiWkoR6B0CkXv/zNH9sfjuobI9Ry31RI9Lo/h3I0MYwudoneiWQq3XLPVs7xaX1+sJh5bykHufVJwirl5Klf2uigs+8bP0fgWFikjpFGoEDMKyLGpqapCSkhKRLwFAvREqDZ/o6UGqXcspSDNDMCaeYN8Fb9hkrretVUkFuk0kty+veAN5PUpSTiGo+cbLGV9Hn27oy1yWrSd6XD/llFQgQxh6JrqlUOo1yz178jA7fr50nq8nesbdxe9Tkl/WQH/vOcB37iwSLspyREqnUCNgEJZlcfbsWfTv3z9iRgCQb4RaokxqVY5q13IK0swAo/sSHKz3xmfnzmtVUkpfHFLGRAqr2YTZ2QP4Vbh6FqCpKRSt8hI+J8pE8Mq4aDwkUU+0DrNpUVJGhzC0GFej3lpyz140IR31rlbM6ZUq6x2kBS3yGz8k3s8IANfrWrBdlAMhUjqFGgGDWCwWXZvjhButUSbFbnic4tQzgSlUkGuPe8N5ixWkFiWl9sUhDtEstbAnzd5DcTUwh7h3rUWhaDEm4ue0sQx+V9qGW0a3BDDMJp+mQNEymWrURVLOcOak2YE0bcMe4klloey1DGkGuuI+nERKp1AjYBCPxwOXy4W0tLSw7mOgFS1RJjllovWzWGqyVBjuoWB4AqqqKpGa6uB3CtODlt62MA1SAfK4vMnlFZDuXQ/tFwspxApBzZiJ4/+YGYLxiQSuC/5GQOswm1qaAGXXWbUvIKFx21VxwafnPDsrOSCFKGU4tbYdJW+sX08YhKkdMbLEqHkMqQ0/hWtdgJhI6RRqBAxCCEFDQwMcDkekkyKJlh5eID1OKUX6/JQh8FxgMXKAzVCandUNGNovVnJcXwopBaPmTy6X1xUPjJC8T49CkFJaJgZwxBKk9u3ud73WYTa1NMkZcD3j3Zxx4yZM5VYCG0FsOLW0HbVw1lz91OsxJF4BH8l1AWIipVOoETCIxWLBmDFjIp0MRdSCwhnpcQLKY7FCmejxupBSWFI7oIkRKxijvWur2RTQBLKc0mpnGXRLGoIch/S+3EpbbWpRUkqus0aGkuRWAnOuuMHwoNHSdtQmrLlrtM73yH3BRXJdgJhI6RRqBAzi8XhQUVGBIUOGdMrhIA6u8oujTBrpcXLIGo0LLeh25ScMGTIE/150SnMvVG0NgJ7GGUjvenb2AMMTyHLDSc9MGoTpAxl4PB6/eqK21SZgfNtRPTvLaXme0ciaUh0BYds5fLZZlzeWEM7V0+ikOEeg9weLSOkUagQC4OrVq5FOgizixieeVOX2I+AagB43zqqL0ooitW93XG24iLIafcNLwVY8WiexOcShHNR6ynqGk/KHxuNqg/8+vXo3kJFLk5yyHJXS29Dm6FqUL5dOwHhEz6tXr+LNr0/gvZJKv9+5uivl3inESJiUzk4kdAo1AgYxm83IysqKdDIkUfKOkYvEqOWzWGmibuGEQd4hD4cdj3+0V/IauV6oHsVj1J9cSCj86uWGkziZaH2OXs8UOaOmZ2c5tedJ8XZxhU/Mf90RPfs68N5G/4BwwsikwPXVy0ZX/95IREqnUCNgEI/Hg+PHj2P48OGdajhIqfFxx1K/cUpTaQxcSjE8M3kwP5bt8Xiwc48TJSfPA/DfKFtO2WtVPMFs8HqGALRGIJUaTpKrJ8GKWKk0mW7U2Anv+7zsrE9YDA6pnb+0RPR01f+Mkf17obLiBCwMgZv41hO5hV1pdunw2HLy6iyrgPUQKZ1CjcBNhlLjU7pHraHI3Z/a17eRifeG5Zg0LF6zp4/SGgCOUDZy4bP1RiCVMy6HahpReemqzwrjQD1TtEymK7n1Kr2L+03KAOSk9saBKv85B63++QBg62aVfbfUc/WsPO9Mq4BvBKgRMIjZbEZmZmakk+GHkR6mlt6nlueazWY4hgyDe5v/rlC/mTTE75xczBdAeg2Akp9/sDw81CKFrt2pHIFUjNlsxn/XmLF25/c+6dU6BCeHkcl0vcpRzvDfOdguaQTE/vlK23ROyrsN/9rkmx4546Jn5Xk4FtiFikjpFGoEDOLxeHD48GGMHDmyUw0HqfUwjfY+1Z7rrG6A63wLel2rxcJ8h8+En5bokmKFpBQsTKqRB6Pnp+abzqEWgVTIgcp6NNZUwGoyoZ1l+PSm2XvgoTEDDXum6J1MN6Ic5Qz/xIwERW8z7n1CAwB4Yzs5qxswsn8vHD58GL8tGImptyby8wtSBkDvyvPOtgpYD5HSKSE1Ag0NDXj66afxX//1XwCA++67D2+//TZ69+4tew/D+I8lA8DKlSvx29/+FgAwceJE7Ny50+f3hx56CJ9++mmQUq6Nbt26hfV9WlHqMekJFaH1uZxCNzMEU/qzSBvUE1sW5emKLimlkKQavBb/caM9Py3PBvSN21ddvILGNoAV7eT9wqYjvJ+7HFo3s5dDKAcjylHJ8GcNjJP1NuOeK/e+kf17+bQdqU3lhXNNegjWXEukiIROCakReOSRR3DmzBls3boVAPDkk09i3rx5+OKLL2Tvqa2t9fn7q6++whNPPIEHHnjA5/yCBQvw2muv8X+HW3hmsxnDhg0L6zv1oNRj4n4zMnYqNcbMPcNDGGw9YwbOVKIgM1l2sVcgvTWtjVlPz0+40bgaUj1epeGJtPhYr0wkUDJWWsrmroz4jtDM8nByMKoc1dxt5bzN5J7b7mHx+aFapNn7wWw2a55r0kow5loiRaR0SsiMwPHjx7F161Z8//33uP322wEAf/nLX5Cbm4uTJ08iIyND8r7ERN94IJ9//jnuuusuDBo0yOd89+7d/a4NJ263G06nE1lZWbKbhXRmgjV2KmzEVhPB3MEsNvxgUlTCagpJSbFq9STSaizEylZqT4ICGSWoRVGPSI7F/5cXg9e+v8oPBwmRiwOkVDbi904aFo+ptyYqTqYHohzlOhR6d40bnWLD9m+bEAAAIABJREFUC5uO8PWkKDEdBZnJku8MpOfemVYB6yFSOiVkb9q9ezdsNhtvAABg3LhxsNlsKC0tlTUCQn766Sd8+eWXWL9+vd9vGzZswMcff4x+/fph+vTpeOWVVxAbK71qMxQwDIO4uDjZ4avOjpYIlloCkgkbK0uAyhYGLFFuxEoKSYtiFTdycW9Uq3KTUmJyexIYHdJiGAa5t6Ti94kWvLD5qF8apOSk5uElfm/xiQv4zaQhqkpeSTka8bZSq0NyHl9cPdlV4UJBZrL6XJMBZW50riWSREqnhMwI1NXVISEhwe98QkIC6urqND1j/fr1iI2NxezZs33Oz507F2lpaUhMTER5eTlefPFFHDp0CNu2bZN8TmtrK1pbW/m/m5ubAXgnYoT/m81mn2O32w2GYfhjk8kEk8nEHw8ePBhutxssy8JkMqG9vR1ms5k/tlgsYBiGPwa81l54bLVaQQjhj1mWhcfj4Y9ZloXFYpE99ng8IITwx1L5kMpTmr0HokwEHuIdxokyEbg7lPeKwqN4v8QFFgyiTQSP3TkIy2bcgpWF5XivpBIEDKLNBI/dMQgvTB+ORfmpeLekEiwBdp9n8GR+Okan9EZ7e7tsnpZNH46CWxJQeeEy0hJ6YdQAGzbucfFzCybGG3fnLyWnMWV4PHIcdp98jOzfCyP794LZbMaI5FgUDE9A5aWrSI2LQVZqH16+4jLjyubIuRZ8duAMos0EbR7weWrzAFYTg1+M6AeLxeJTNsJj14XLiDYRtLIMTCCwmLxho10XLmNEcixfToQQDB48GGkeDyrrf8Z7JZV8/v51fDoIy2LzgWqkxcdiZP9eALxlYDURsIKy4fZncJ1vhokhYLkyYwEWDFznm7F0aoZX6Z5vhiM+Ftmpffzq3uiU3hid0htutxuAN2jZv391FO+WVMEEAqsJeGx8OpZOzVCte44+3WA1EbSzjE+ZOfp048NkcOX0+aFanzyV/uRti676n/H8lCHeunDRt/xWFh7FWq4edtS3ZTNu6ZTtSU5HSNU9JR2Rnp7OX28kT0bQvXPB8uXLwTCM4r/9+/cDkJ7kJYRotnR//etfMXfuXMTExPicX7BgAe6++25kZmbi4YcfxmeffYZvvvkGBw8elHzO66+/DpvNxv9LSUkBAJSXlwPwDl0dP34cAHD48GFUVFQAAJxOJ1wuFwBg7969qKnxLsMvLS3F2bNnUVpaip07d6K+3utLXVxcjMZGr4dDUVERWlpaAACFhYW4du0a3G43CgsL4Xa7ce3aNRQWFgIAWlpaUFRUBABobGxEcXExAKC+vh4lJSUAvHMlpaVe18uamhrs3etdletyueB0OgEAFRUVOHz4sKY8ZQ2MwyvjojEm3jtjuegWD56/02u0bU0/YKjNe/6l0R5sPfgjNu6rRurV0+jXMfWycqwH//f7H3Gwsh4Z7aex6anbsWpWBlaO9WDJlCGa8tTPcg32K1XIGhiHDwr3wnXC21Mcn+gdLgCAKf1ZVP9wgs/Tzj1ObD54Btt37/fJUy93A2ZnD0Br7SmfcqqtrYWzugH//fW3+P6Ytyw/LyzCc38vxSd7a/BatscnT72igNQ+MarllNydxUujvcpgqI3guRGejjxd9SmnPXv2oLS0FKdPn0ZWj0Y8M3kw/s+dvfHejHgQAH/76juU7C3DrHdL8XFhCSoqKpA1MA4vj+uG8YneMng8g8Vv77Aja2AcujWcxsg47/nnRnj4coo6fwyNjY3IGhiH6J/KMTjOoqnu7T11FqlXTwMABvb0lvfanT/i+2Mu1brXy92Al8d148vpAQeLhRMGIepyrV/dS7P3wNzBLMYnEu9GO9ke5CawSLP3QGlpKfpZrmF29gA0uQ6jvr4ezuoG9Lv8Awb29JbNa9ke/HPfj3BWN3TK9gT46whufrOkpESTjrh8+TK+++47w3nS2rkWwxBCiPpl16mvr+czJIfD4cAnn3yC5557js8wR+/evbFmzRo89thjis/YtWsX8vPzUVZWhlGjRileSwhBdHQ0/v73v+Ohhx7y+13qSyAlJQWXLl1CXFycISsPAGfPnkVSUhIsFssN9yXAHR8+0+TTg/5n2Tks+6yM72FGmwjaWeDhsQOx6UC1X6951YOj8IuRiXy6qqqq4HA4wDCM5jwdOdeC//XedzAz3t60sFdpZgj+86lxyHHYsaLwKP6yywU3YWA1EfzrnWl4YcatiuX0ZtEprC1x8b3mmVn9UXjoLNq5/Im+BB6/YxCWTh+uqZze3Hoc75ZU8l8CT4xPx29FPWi3243a2lp8Wt6C//iuks/T/aOTsMlZBwvjbX5cnjY+mYtsR1/JspHL01MT0vHc3YMN1b3NB2rw4uZDaPUw/JdAK8tg9YMjcd+oJE1178i5FrgutCC1b3e/Lzbh8YrCo/hgl1dhjktgMXJoOl6451bJXvM/y87hxc/K/Mpp1ZzR/FdaZ2xPgXwJmEwm1NTUICkpCVFRUbrz1NjYiLi4ODQ1NaFXr16KOlOI7uEgu90Ou106LK6Q3NxcNDU1Ye/evRg7diwAYM+ePWhqatK0e866deuQk5OjagAA4OjRo2hvb0dSUpLk79HR0YiOjvY7z/niCn1yhcfCyRmp49TUVJ/nWa1WQ8cMw/DHXGXReiyXdq15ynb0Rbbjeh7S7D3QJpjAbO04Fgcka/V4z6fF9+TTbjabfSbwtebJVf8zPMS7JSUAn+Mn89OR47DDWd3QsfbA+952lsF7JV4vJOHYrzB/R861YG2JV+lwefKGJRDkryMfj4xNwYO3pUjOh8iV09IZt2JKZrLfmLUwf1FRUbjE9MJ7u8r593oIg01Ob69NGDahnWVQeekqsh3SZcPlb9mMWzA1M0lyDYX4nFrdS4vvycuABYPWjhGFtPievCy5chI/n6tX4vF3cd3j7ivITEaBhLyk2laavQdf94TllGbv0anbk9qxWtrFewnozZMRQjYnMHz4cEybNg0LFizA+++/D8DrInrvvff6TAoPGzYMr7/+OmbNmsWfa25uxj/+8Q+sWrXK77mnT5/Ghg0bMGPGDNjtdhw7dgxLlixBVlYW7rjjjlBlxw+3243S0lLk5eXdkN5BcshN2moJSGZUJnKTyCseGIGHxgwEYGyXLblop1JwBkCv26zaBKTb7UbV0QOIMhEf4yqHVq8Y8XuNbliv1WvIaCgGuc2HSktL4U6Wryc3squnUSKlU0L6pg0bNuDpp59GQUEBAO9isXfeecfnmpMnT6KpyXdl4aeffgpCCH75y1/6PTMqKgrffvst3nrrLVy+fBkpKSm455578Morr4R1lZ3JZEJ6enpEN5kPFXJeJGqud0oy0ev2yRkeNR9+tV22pBCHKOaUi163WS2eKyaTCfHJA+EmpzSnQy+BblivVq5G3Ynl7iu4JUFT27lRXT2NEimdontO4GagubkZNptN99gZxRhae5FiparFh/8FUfjiWe/6xy0Swt0jpcDXbDspGaly9ZxRfgvf9PaMxdcrpUMvmw+ewXP/eUg23XJy2bIoT9M71Z4f7PukuBGjgoYbo3rt5hnHCDNutxslJSXIz8+/qYaDAkEsE2d1A3acPG9o8xQ9PvwcckNGz0wejNS+PfyGQZSGU4SIvzb09Iw5mTw/JV92n9tAlZraV1Kg8XS0foVp/T01LgbFxcWa205XiQoaKZ1CtZdBTCYTMjMzb8rhIKMIZaI2LGN0m0Or2cT3IpUWrglRi0GjFDhOaohGj1KVqyfB6tnKyTmQ7UP1Pl+Or4/6uywunDAIWal9UN9DW9u5kaOC6iVSOoUaAYOYTCbJxXBdGU4mWqJxGu1FcufleodGJhOVviCeneK/sl2PUuVkomQUgx319H/flY70+J6Gtg/V8nzhhL3UPdwcjtS9Bbcm6mo7N3JUUL1ESqdQI2CQ9vZ2FBcXY9KkST6uXl0VbyjpZkSdP4a2hFsUrzW6zaGWCVw9k4lqk84TM6QbpB6l2t7ejq+3fYMP/8cDqd3WhGnXG/BOzvvpz9tP88da9y6Q+jJR+hqTQsukvKv+Z2Qm9URxcTHsQ7NR1dCqWE43elRQPURKp1AjYBCz2YwxY8Z0qr0EIgXX+E0gGNgTyB5yUfI6tfDAYkUkp7jUeodKAc/k4g1JTTorKWWtStXRtzva4tLQzvpPOAt5u7gCf310rOI1gDZFK0RoYKTk4qxuwP//bYVPNFK1SKBS57XuxZBm7wGz2YwT7ni89f4esB2GUe5rqCu5ikZKp1AjYBCTyYQ+ffpEOhkRR9j4WTCovAxUOmsl3R+lhlY45IZ3pBSXkd6hmvJUm3TmkNoNTe1ds7KSeWUnR/GJCz7x+OXerccAcMgNncjJRCkSqJwC1rIXg/BLbs2uWgi/jJS+hrqKq2ikdAo1AgZpb29HUVERCgoKuvRwkLDxR5sJXsv24OWDZowfEo9/yXVoHpbRM/mnt3eoVXkKJ52l0LogS3hNtJlgnKUa5qwB+MypHNtFrKzFBkfN+0nL3sxy6ZRLi9bIo0oL/sSG1XW+GSvGuPHyQTO/Elgq/0JuxKigeomUTqFGwCAWiwXjx4/v8u6hwsbf5gHWlJvR5oFiT1mMkcm/qbcmItriHZtW8/4Jxo5hWg2V+F2cTJbem4C5uYP8wirLvV9uH2UphPlXW9Utl06ltEiVo1T65Bb8iXHEx2LRl956IvfOrkikdErX1mABwDAMXWgG3145AYO6q97GD6hvW6l3NTCHWAG1ullFI6BFuaiNM2s1VOJ3cTJJi+/po0yVlLWSwQlkzwAhSjJRk4Vc+rYsylPccpIjO7UP7h+b3iXG+fUQKZ1CjYBB2tvbUVhYiBkzZnTp4SBAoHjON8N8tgwnicdnharUsImW1cBSk5h6Fp9xyA0fye0YJoXWeQjxu6LNBCvHepCZ1NPnOqW9npUMjhYlr/YFxhlf8bzNpGHx+M2kIYZdal31P2N29gDZLSc52tvbMbztFDY9lafqHdSViJROoWEjDFpeQgiuXbuGmJiYG3Z3sWBDCMH+0z9hzn/sBxFNhApDFMiFMVCamFWb2FULRcAZEEB9+EgOudAPcu/jvIOGJ3RTrCdSE8lC5cyhNcyDnjzMykrG+CHxuhSxUhgKAKohKmjbkSZQudCwERGgq88HSFHT2AqpXoVw2ETLamAhgS4+0zt8JIee7Rm5f1wceDmk8rbFeU5XcDmtq4/l3vUvuQ5d8lCamN988IzkPeJhM9p2pImEXGhJGITb1YgOB13H7XbDfLYM0WYzWhUm/fS6eKpNYur1DAok7IDWSVJu+EOtnsjlTat3lZ64OsFcfStnELWULW070kRKLjTwjUEsFgtmzJhBezQCOJk8dscgn/NiJc31JKWucVY3YPPBM3BWN/C/ySmWZyYPxpZFebJDMoD6pu2BImdkuPSr1RMlpZk1MA6zswfoNnBC2QnlGYzVt8LnSaVPqWw5aNuRJlJyoaUQAMKt7She3G43Xpg+XHLnKyFSPUmlBWNSww9Ki884tCo+owHdtPSupeqJ8H1GV8SqvVurG6fa6mrud61fHVomr2nbkSYScqETwwYnhql3kD+ByERLzHujivrZjU6/8XXh10MgoYrVJkk5j6kBI697wkh5zxhZEWt0ghaA4rvk1igEsieBENp2pAlULnRiOMxYrVbMnDkz0snoVAQiEy09aiOrRt/46riPAZiVley3EU0gcwZyXym+it4C7N4r+wzufXo3WjE6QWtkiIlbmCf1PL1lQtuONJGSCzUCBiGEoKWlBbGxsdTNrYNAZBKKaJFavGHkjM+Ok+c1beQOSPv8c71mBgT9ugE/XYWf26wQo6GRA5mglUuHHoyUD2070kRKLnRi2CButxu7du1SdP/ragQiEy0TinrRMiksp8Te+vYHPPefhzDr3VK88dVxvPHVccx6t9TnnDj9XA9b+PwoM/BspgdRKoEhAzF2eiZoAfhNvGtJx8SMhKCVD2070kRKLnROgIZ+6FQEcy9ZrXvr6g3PLPcctffKobToTAktslIKny0396G0KI7u9dt5MarXqBEwaARYlkVjYyN69+5Nt5jsoDPKROsqX+FGLVKbzUuhtEpZvMdC9WXw4aT1hqwQpk/Nk0rpfj0Tu6FU9p2xnnQGApULnRgOMx6PB/v27cOkSZNoRe6gM8hE68Y0YrhJZ2d1g2YjoDSEI4ynFHX+GJKG3+YXJ0erctUSVkJtMlvvQrFQhm7uDPWkMxIpudAvATocdNMQiKun0nMWThgEAgQUgM4oeoaWlL5M9H4JUG486JdAmGFZFvX19bDb7bQ300EkZRLM8BByXw/Cc18frVONlAoELhM93jpKXyZK7qThhrYdaSIll5C+6Q9/+APy8vLQvXt39O7dW9M9hBAsX74cycnJ6NatGyZOnIijR4/6XNPa2orf/OY3sNvt6NGjB+677z6cOSPtFx0qWJZFeXk5WFY6Fn5XJJIyCXZ4CDmPG66nrRaugUMsE6mwGEpo9RrSotCXTR+OLYvysHrOKNVwG6GEth1pIiWXkH4JtLW14cEHH0Rubi7WrVun6Z6VK1di9erV+OijjzB06FD8/ve/x5QpU3Dy5EnExsYCABYvXowvvvgCn376Kfr27YslS5bg3nvvxYEDB8K2SbPFYsGkSZPC8q4bhUjKJJjrDNQmRfWMrwtlYmS4KmtgHO7KiPfZCJ6D21ZSz3BUKMf6tULbjjSRkktIvwReffVVPPvssxgxYoSm6wkh+NOf/oTf/e53mD17NjIzM7F+/XpcuXIFn3zyCQCgqakJ69atw6pVq3D33XcjKysLH3/8MY4cOYJvvvkmlNnxgWVZnD17lvZmBERSJsFaZ6C2HgDQZ3A4mRysuqj560HM05OHSJ6fmJGguPq3s0LbjjSRkkunGpBzuVyoq6tDQUEBfy46OhoTJkxAaal3/PXAgQNob2/3uSY5ORmZmZn8NeGAZVmcPn2aVmQBkZZJoMMdWqJyAvoMDieTyguXJd+pZbgqFAvpIkmk60lnJVJy6VQTw3V1dQCAfv36+Zzv168fqqqq+GuioqIQFxfndw13v5jW1la0trbyfzc3NwPwumQJ/zebzT7HbrcbDMPwxyaTCSaTiT/Oz8+H2+0Gy7IwmUxob2+H2Wzmjy0WCxiG4Y8B3yiBbrcbVquV33jEarWCZVl4PB7+mGVZWCwW2WOPxwNCCH8slQ89eRIf68mT2WxGbm4uLBZLxPI0IjkWowbYDOXJdb4ZDAgIgGgz0OoBGHiDwAk3iLFarVg6NQNThtlR1dAKR9/uGNnf640hzhMA5Ofn42DlRVhNBO0sAzNDYGKAdpaBo083eDwe1XJaOjWDdzl1xPdEdmpfw+UU6bpnsViQl5fHT34Go+5FOk/Bak/jx4+H2+0G57SpN09G0P0lsHz5cjAMo/hv//79hhLDIY6bQQhRjaWhdM3rr78Om83G/0tJSQEAlJeXAwCOHz+O48e9n/2HDx9GRUUFAMDpdMLlcgEA9u7di5qaGgBAaWkpzp07h6qqKuzcuRP19fUAgOLiYjQ2NgIAioqK0NLSAgAoLCzEtWvX+E0j3G43rl27hsLCQgBAS0sLioqKAACNjY0oLi4GANTX16OkpAQAUFtby3/p1NTUYO9eb0Ayl8sFp9MJAKioqMDhw4cN56m2thYAUFJSYihPV65cQWFhIViWvSHzZD5bhl5RXgOwcqwH0WagV5T3vFQ51Z86iNnZAzCgm1sxT1VVVYhtv4SXx3UDAEzpz+IBB4uFEwYh6nKt5jxlDYyD/UoV+lmuBVROka57LMuipKSE79gFo+5FOk/CcjKapytXrsDlchnOk1wnWA3d6wTq6+v5DMnhcDgQExPD//3RRx9h8eLFfObl+PHHH5Geno6DBw8iKyuLPz9z5kz07t0b69evR3FxMSZPnoxLly75fA2MGjUK999/P1599VW/50p9CaSkpPDPMGLlWZbF/v37kZ2djaioqC7bcxHmye12Y8+ePRg3bhz//BstT6u2VWBtyY/8l8DC/EF4bsoQw+XU1taGgwcPIicnB2azGUfOtcB1oQWpfbsjx2GPSDlFuu4RQrBnzx6MGTMGUVFRN0WeglFOgNeQZGdn8/pTT54aGxsRFxenf/0TCQMffvghsdlsqtexLEsSExPJihUr+HOtra3EZrORtWvXEkIIaWxsJFarlWzcuJG/5ty5c8RkMpGtW7dqSk9TUxMBQJqamnTmhNIVOFh1iWw6UEMOVl2KdFIoFM0Y1WshnRiurq5GWVkZqqur4fF4UFZWhrKyMly+fH2SbNiwYdiyZQsA7zDQ4sWL8cc//hFbtmxBeXk5Hn30UXTv3h2PPPIIAMBms+GJJ57AkiVL8O2338LpdOJXv/oVRowYgbvvvjuU2fHB4/Hghx9+4HsFlJtHJmrbOurhZpFJMKEykSZScgnpxPDLL7+M9evX839zQzzbt2/HxIkTAQAnT55EU1MTf83SpUtx9epVLFq0CA0NDbj99ttRVFTErxEAgDVr1sBisWDOnDm4evUqJk+ejI8++ihsawQA7xxEQ0MDHA5H2N7Z2aEy8YfKxB8qE2kiJRcaO4jGDqJQKDcBRvVap1oncCPh8Xhw4sQJ+kkrgMrEHyoTf6hMpImUXKgRCICrV69GOgmdDioTf6hM/KEykSYScqHDQXQ4iEKh3ATQ4aAw4/F4UF5eTj9pBVCZ+ENl4g+ViTSRkgs1AhQKhdKFocNBdDiIQqHcBNCdxXTA2T0ukJwRuE+3zMzMsK5P6MxQmfhDZeIPlYk0gcqF02d6+/Vd0ghwQZu4QHIUCoVys9DS0gKbzab5+i45HMSyLM6dO4fY2FjV6KRycEHoampq6JBSB1Qm/lCZ+ENlIk2gciGEoKWlBcnJybr2KO6SXwImkwkDBgwIyrN69epFK7IIKhN/qEz8oTKRJhC56PkC4KDeQRQKhdKFoUaAQqFQujDm5cuXL490Im5UzGYzJk6cyG9qQaEykYLKxB8qE2kiIZcuOTFMoVAoFC90OIhCoVC6MNQIUCgUSheGGgEKhULpwlAjQKFQKF0YagR08Ic//AF5eXno3r07evfurekeQgiWL1+O5ORkdOvWDRMnTsTRo0dDnNLw0dDQgHnz5sFms8Fms2HevHlobGxUvOfRRx8FwzA+/8aNGxemFAefd999F2lpaYiJiUFOTg527dqleP3OnTuRk5ODmJgYDBo0CGvXrg1TSsOHHpns2LHDrz4wDIMTJ06EMcWhpaSkBL/4xS+QnJwMhmHwz3/+U/WecNUTagR00NbWhgcffBALFy7UfM/KlSuxevVqvPPOO9i3bx8SExMxZcoUPn7Rjc4jjzyCsrIybN26FVu3bkVZWRnmzZunet+0adNQW1vL/yssLAxDaoPPxo0bsXjxYvzud7+D0+nE+PHjMX36dFRXV0te73K5MGPGDIwfPx5OpxMvvfQSnn76aWzatCnMKQ8demXCcfLkSZ86MWTIkDClOPT8/PPPGDVqFN555x1N14e1nhCKbj788ENis9lUr2NZliQmJpI33niDP3ft2jVis9nI2rVrQ5nEsHDs2DECgHz//ff8ud27dxMA5MSJE7L3zZ8/n8ycOTMcSQw5Y8eOJb/+9a99zg0bNowsW7ZM8vqlS5eSYcOG+Zx76qmnyLhx40KWxnCjVybbt28nAEhDQ0M4khdxAJAtW7YoXhPOekK/BEKIy+VCXV0dCgoK+HPR0dGYMGECSktLI5iy4LB7927YbDbcfvvt/Llx48bBZrOp5m/Hjh1ISEjA0KFDsWDBApw/fz7UyQ06bW1tOHDggE/5AkBBQYFs/nfv3u13/dSpU7F//360t7eHLK3hwohMOLKyspCUlITJkydj+/btoUxmpyec9YQagRBSV1cHAOjXr5/P+X79+vG/3cjU1dUhISHB73xCQoJi/qZPn44NGzaguLgYq1atwr59+zBp0iS0traGMrlBp76+Hh6PR1f51tXVSV7vdrtRX18fsrSGCyMySUpKwgcffIBNmzZh8+bNyMjIwOTJk1FSUhKOJHdKwllPuvya7eXLl+PVV19VvGbfvn247bbbDL9DHK6aEGI4hHU40CoTwD9vgHr+HnroIf44MzMTt912G1JTU/Hll19i9uzZBlMdOfSWr9T1UudvZPTIJCMjAxkZGfzfubm5qKmpwZtvvon8/PyQprMzE6560uWNwL/927/h4YcfVrzG4XAYenZiYiIAr1VPSkriz58/f97PyncmtMrk8OHD+Omnn/x+u3Dhgq78JSUlITU1FRUVFbrTGknsdjvMZrNfD1epfBMTEyWvt1gs6Nu3b8jSGi6MyESKcePG4eOPPw528m4YwllPurwRsNvtsNvtIXl2WloaEhMTsW3bNmRlZQHwjpnu3LkTK1asCMk7g4FWmeTm5qKpqQl79+7F2LFjAQB79uxBU1MT8vLyNL/v4sWLqKmp8TGUNwJRUVHIycnBtm3bMGvWLP78tm3bMHPmTMl7cnNz8cUXX/icKyoqwm233Qar1RrS9IYDIzKRwul03nD1IZiEtZ4Efar5Jqaqqoo4nU7y6quvkp49exKn00mcTidpaWnhr8nIyCCbN2/m/37jjTeIzWYjmzdvJkeOHCG//OUvSVJSEmlubo5EFoLOtGnTyMiRI8nu3bvJ7t27yYgRI8i9997rc41QJi0tLWTJkiWktLSUuFwusn37dpKbm0v69+9/Q8rk008/JVarlaxbt44cO3aMLF68mPTo0YNUVlYSQghZtmwZmTdvHn/9jz/+SLp3706effZZcuzYMbJu3TpitVrJZ599FqksBB29MlmzZg3ZsmULOXXqFCkvLyfLli0jAMimTZsilYWg09LSwusLAGT16tXE6XSSqqoqQkhk6wk1AjqYP38+AeD3b/v27fw1AMiHH37I/82yLHnllVdIYmJjC7irAAABEElEQVQiiY6OJvn5+eTIkSPhT3yIuHjxIpk7dy6JjY0lsbGxZO7cuX6ufkKZXLlyhRQUFJD4+HhitVrJwIEDyfz580l1dXUEUh8c/vznP5PU1FQSFRVFsrOzyc6dO/nf5s+fTyZMmOBz/Y4dO0hWVhaJiooiDoeDvPfee2FOcejRI5MVK1aQ9PR0EhMTQ+Li4sidd95JvvzyywikOnRwbrDif/PnzyeERLae0FDSFAqF0oWhLqIUCoXShaFGgEKhULow1AhQKBRKF4YaAQqFQunCUCNAoVAoXRhqBCgUCqULQ40AhUKhdGGoEaBQKJQuDDUCFAqF0oWhRoBCoVC6MNQIUCgUSheGGgEKhULpwvw/NklxtuViBr0AAAAASUVORK5CYII=", "text/plain": [ "PyPlot.Figure(PyObject
)" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " 2.326280 seconds (227.59 k allocations: 44.454 MiB, 0.31% gc time)\n" ] } ], "source": [ "n = 2^10\n", "seed!(2018)\n", "X = randn(n,n)/√n # すべての成分が平均0, 分散1/nの正規分布に従う\n", "@time λ, U = eigen(X)\n", "\n", "plt.figure(figsize=(4, 4))\n", "plt.scatter(real(λ), imag(λ), s=10.0)\n", "plt.grid(ls=\":\")\n", "plt.title(\"Circular law\");" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAF0CAYAAADFBoWOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsfXlUFFf2/6e6ugEXQBRUUDYXXMAFjBpRMWrE0SxGTXQm32RmTMaonPOdJGa+0eQkmZlkZlyyTJKZQXQm3/jLLBnjKMnkOxBRiaBigkIjLkRRm0XAaCsIEoHuqvr90VZZVV1rLzbE+pzj8VH96tW7971373v33XcfwTAMAwMGDBgwcFfCFOgKGDBgwICBwMFQAgYMGDBwF8NQAgYMGDBwF8NQAgYMGDBwF8NQAgYMGDBwF8NQAgYMGDBwF8NQAgYMGDBwF8NQAgYMGDBwF8NQAgYMGDBwF8NQAgZ6DCorK7FixQokJiYiJCQEffv2RVpaGjZv3oxr165x+e677z7cd999Aanjr371KxAEcUe+tX37dhAEgZqamjvyPQPfT5gDXQEDBrTgz3/+M7KysjBq1Cj8z//8D8aOHQuHw4Fjx44hJycHR44cQW5uLgAgOzs7wLU1YKDnwFACBro9jhw5gjVr1mDevHn49NNPERwczP02b948vPDCC/jiiy+4Z2PHjlUtk6IoOJ1OQVndEd999x169+4d6GoY+B7DMAcZ6Pb43e9+B4IgsG3bNkmhHRQUhIcffpj7W2wOqqmpAUEQ2Lx5M37zm98gMTERwcHB+PLLLwEALS0teOGFFzBs2DAEBwdj4MCBWLhwIb755hsAwIEDB0AQBA4cOCD4Llvu9u3bFeu/Y8cOZGZmIjo6Gr169cKYMWOwfv16tLe3C/L99Kc/Rd++fXHixAlkZmYiNDQUc+fO1cEpYO/evVi0aBGGDh2KkJAQjBgxAqtWrYLdbufynDp1CgRBYOfOndyzsrIyEASB5ORkQXkPP/wwJk2apKsOBnoWjJWAgW4NiqJQWFiISZMmITY21quy3n//fSQlJeGtt95CWFgYRo4ciba2NsyYMQM1NTVYt24dpk6dihs3bqC4uBhNTU0YPXq01zRUV1dj4cKFeO6559CnTx9888032LRpE0pLS1FYWCjI29XVhYcffhirVq3C+vXr4XQ6dX3r/PnzmDZtGn72s58hPDwcNTU1eOeddzBjxgycOHECFosFycnJiI6Oxr59+/DYY48BAPbt24devXrh9OnTaGxsRExMDJxOJ4qKirB69WqveWCg+8JQAga6Nex2O7777jskJiZ6XVZISAj27NkDi8XCPXvjjTdw6tQp7N27F/fffz/3fMmSJV5/j8Urr7zCpRmGwfTp0zFmzBjMmjULlZWVGD9+PPe7w+HAa6+9hhUrVnj0Lb7AZhgG6enpuO+++xAfH4/8/HxuxTR37lzs27ePy7tv3z488cQT+Ne//oV9+/bhxz/+MUpLS9Ha2irgi4HvHwxzkIG7Bg8//LBAAQBAfn4+kpKS/CroLly4gMcffxyDBw8GSZKwWCyYNWsWAKCqqsot/9KlSz3+1uXLl7F69WrExsbCbDbDYrEgPj7e7Vtz587FhQsXYLPZ0NHRgUOHDuEHP/gBZs+ejb179wJwKYbg4GDMmDHD4/oY6P4wVgIGujUiIyPRu3dv2Gw2r8uKjo52e3blyhXExcV5XbYcbty4gZkzZyIkJAS/+c1vkJSUhN69e6O+vh5LlizBzZs3Bfl79+6NsLAwj75F0zQyMzPR2NiIV199FePGjUOfPn1A0zTuvfdewbdYpbdv3z4kJibC4XBgzpw5+Pbbb/HGG29wv02fPh29evXykHoDPQGGEjDQrUGSJObOnYv8/HxcvHgRQ4cO9bgsKf/9qKgoXLx4UfG9kJAQAEBnZ6fgOX+zVQ6FhYVobGzEgQMHuNk/4NqM1lpHrTh58iSOHz+O7du34yc/+Qn3/Ny5c255hw4diqSkJOzbtw8JCQm455570K9fP8ydOxdZWVn4+uuv8dVXX+HXv/61x/Ux0DNgmIMMdHu89NJLYBgGK1euRFdXl9vvDocDn3/+uUdlL1iwAGfPnnXboOUjISEBgOuwGh///ve/VctnhbrYq2nr1q06a6oOvd+6//77UVhYiL1792LevHkAgKSkJMTFxeG1116Dw+Ew9gPuAhgrAQPdHtOmTcOWLVuQlZWFSZMmYc2aNUhOTobD4YDVasW2bduQkpKChx56SHfZzz33HHbs2IFFixZh/fr1mDJlCm7evImioiI8+OCDmD17NgYPHoz7778fGzZsQEREBOLj47F//37s3r1btfz09HRERERg9erV+OUvfwmLxYK///3vOH78uCesUMTo0aMxfPhwrF+/HgzDoH///vj88885G78Yc+fORXZ2Nux2O959913B8w8//BARERGGe+hdAGMlYKBHYOXKlTh27BgmTZqETZs2ITMzE4888gg+/vhjPP7449i2bZtH5YaGhuLQoUN4+umnsW3bNjzwwANYuXIlzpw5g5iYGC7fX//6V8ydOxfr1q3DY489hoaGBnz88ceq5Q8YMAD/+c9/0Lt3bzzxxBN46qmn0LdvX+zYscOj+irBYrHg888/R1JSElatWoUf/ehHuHz5ssALiI85c+bAZDKhT58+mDZtGvecnf3Pnj0bJpMhIr7vIBiGYQJdCQMGDBgwEBgYat6AAQMG7mIYSsCAAQMG7mIYSsCAAQMG7mIYSsCAAQMG7mIYSsCAAQMG7mIYSsCAAQMG7mLclYfFaJpGY2MjQkND79hVgAYMGDDgTzAMg7a2NsTExOg633FXKoHGxkavY9MbMGDAQHdEfX29rhhbd6USCA0NBeBilqcRG1k4nU4cPnwY06dPh9l8V7JTAIMf7jB44g6DJ+7wlietra2IjY3l5JtW3JUnhltbWxEeHo7r1697rQRomobdbkdkZKRxxB4GP6Rg8MQdBk/c4S1PPJVrhhLwUgkYMGDAQHeAp3LNUMFewuFwYM+ePXA4HIGuSreAwQ93GDxxh8ETdwSKJ4YS8BIkSWLy5MkgSTLQVekWMPjhDoMn7jB44o5A8cTYkfESJpMJ/fv3D3Q1ug0MfrjD4Ik7DJ64I1A8MVYCXsLhcOA///mPsay9BYMf7jB44g6DJ+4IFE+MjWEvN4bZAxrGwTMXDH64w+CJOwyeuMNbnnTLjeHi4mI89NBDiImJAUEQ+PTTT1XfKSoqwqRJkxASEoJhw4YhJyfHLc+uXbswduxYBAcHY+zYscjNzfVH9TWBIAiEhYUZHfkWDH64w+CJOwyeuCNQPPGrEmhvb8eECRPwxz/+UVN+m82GhQsXYubMmbBarXj55Zfx85//HLt27eLyHDlyBMuXL8eTTz6J48eP48knn8SyZcvw9ddf+4sMRTgcDnz22WfGsvYWDH64w+CJOwyeuCNQPLlj5iCCIJCbm4tHHnlENs+6devw73//G1VVVdyz1atX4/jx4zhy5AgAYPny5WhtbUV+fj6X5wc/+AEiIiI03fkK+N4c1NHRgZCQEGNWA4MfUjB44g6DJ+7wlifd0hykF0eOHEFmZqbg2fz583Hs2DFOO8rlKSkpkS23s7MTra2tgn8AQFEU979U2ul0CtI0TUum2dN9DoeDe+5wOMDqVzbNMIxbGoAgTdO0IO10OhXTFEUJ0r6iiU+HXprMZvP3jiZv24kgCJ/TVGazY3dZPax1zT2y77Hjpju1U6D7HkmSXtHkCbqVErh06RIGDRokeDZo0CA4nU7Y7XbFPJcuXZItd8OGDQgPD+f+scHjTp48CQCoqqriVh+VlZWorq4GAFitVthsNgBAaWkp6uvrAQAlJSVoamoC4Nr3+OKLL+B0OlFYWIiWlhYAQEFBAdra2gAAeXl56OjogNPpRF5eHpxOJzo6OpCXlwcAaGtrQ0FBAQCgpaUFhYWFAAC73Y7i4mIAQFNTE6fo6uvrUVpaCsBlQrNarQCA6upqVFZW+oQmlt96acrPz0deXh5aWlq+NzTJtdOevfuwu/wivjptU6TJ6XRiz549KC8v102Tta4Z/7f/IA5XfCOgaWN+FY5+dRjbCiqwOLsEn+UV9Li+x44bf7dTT+l7N27cQH5+PvLz8z2iSUkGKqFbmYOSkpKwYsUKvPTSS9yzw4cPY8aMGWhqasLgwYMRFBSE//f//h9+9KMfcXn+/ve/4+mnn0ZHR4dkuZ2dnejs7OT+ZgMtXbt2DREREZwmJ0lSkHY6nSAIgkubTCaYTCZBmtXsQUFBcDqdIEmSe242m0EQBJcGXLMCftpisYBhGC5N0zQoiuLSNE3DbDbLpimKAsMwXFqKDr00ienTQ5PD4eDK59PRk2mSaqeNeafx4aEL6KQJmMBgVUYi1i1MlqSJJEl0dnaCJElYLBbNNL1dcAZbimsQZGJAMcDKjOH4xbyRqGy4jiVbvkKQiYGTBmgQCDYx+HhVOtLi+/eIvscfNxRF+a2delLfY8sAAIvFopumlpYWRERE6DYHdavDYoMHD3bTZpcvX4bZbMaAAQMU84hXB3wEBwcjODjY7Tl7Mo9/Qo+f5kfyU0qzyodtOL1pgiC4NNtZtKbl6u4tTZ7QwaY7OjpgNpu/VzQBt9vJWteMnGIbAJfdlgaBLcU1yEyJQWpchBtN7NKerYMWmk40tmFLcQ0AoIt2fSen6ALmJw9GzdWbgucA0EkTqLn6HQiCgM3ejsTIPkiNi+jWfY8dN/5qp0DQpJZWqjvDMKAoSrAnoJcmT9CtzEHTpk3D3r17Bc8KCgpwzz33cAyQy5Oenn7H6smH0+lEQUEBp8HvdtwN/LDZ23U9l+KJta4Zu8svwlrXrPsbiZF9JH87WH0Fi7NLsPaT41icXYKN+VWS+boD7oZ+oheB4olfVwI3btzAuXPnuL9tNhsqKirQv39/xMXF4aWXXkJDQwM++ugjAC5PoD/+8Y9Yu3YtVq5ciSNHjuCDDz4QeP08++yzyMjIwKZNm7Bo0SJ89tln2LdvHw4dOuRPUmRhsViwaNGigHy7O+L7xA9rXbNgVs1CTgjLPRfzZGN+FXKKLnB/r541DOsXjBF800FJb/KxdVk9a5igjCWpMdhtbRTkZVcO/Lp3F3yf+omvECie+FUJHDt2DLNnz+b+Xrt2LQDgJz/5CbZv346mpibU1dVxvycmJiIvLw/PP/88/vSnPyEmJgbvv/8+li5dyuVJT0/HP//5T7zyyit49dVXMXz4cOzYsQNTp071JymyME4+CvF94YeSoJYTwnLClmEYlJ5tQMMNBg6aEbwH3BbWe05dEvw2MTYcFfXXub/XzBrGfWP9gjGYnzyYU1I2e7ubEgBcK4fuqAS+L/3ElwgUT4ywEV6eE3A4HCgoKEBmZqbAxne3oifxQ26mb61rxuJsd5fj3Kx0Qb7nd1iRyxO8fEXBx+a8k4i/eR6vlZPopKQH97NzR+C9/efcnm9aOg4W0uRWRylatNS5u6An9ZM7BW954qlc61Ybwz0RFosFDzzwQKCr0W3QU/ihNNNXssezAtVa1yxQAIC0+cVa14zs4lqoDbVL16U92yykCUvS5O+L5Ssy8eqEv3Lobugp/eROIlA8MZSAl6BpGi0tLejXr59xTR56Bj+sdc2yJpnUuAhNNn85RXHgzGXB6sJmb4cJDOL6AnU3XJ5EYkyMDceOYxdVvymGlCLLzUqXXN10N/SEfnKnESieGNz3EhRF4ejRo5zv8N2OnsAPOQG+85jr9C1r8+djzugowd9ywvm9/ecE3jmJkX1gMQErkihYeKNt09JxeGfZBGxaOk5g9+dDaSYvp8gAYEnaUK8VgJr3krfl9IR+cqcRKJ4YewLGHcPdGnJ2e2/ek7Ofs2BNQ9a6Zry/vxpfnrni9hvgPhOXQm5WutuG75pZw7DuVhm7yy9i7SfH3d57du4IPD9vlGy5cu+9s2yCovlIC5RMZYEox4A2GHsCAQJN07Db7YiMjDSWtfAtPzwVImrvSXn38MGahgAIFAD/t9S4CIGHTu3VdsmNXZu9HS/OH4WM2CBc6gxCYlRfTe6m940aqEijXjdVrVAzlYnzKilapXKMceOOQPHE4L6XoGkaJ0+e9Dh40/cNvuKHnBBRM09ofW/9gjHIzUrH41NiJcux2ds1HQpLjYvAkrShskI7MbIPaJpGx+VaPDwh2k1YSpme1tz6W8kcI/eet2YgrQfhNuZXKR5MUyvHGDfuCBRPjJWAlzCbzZgzZ06gq9Ft4Ct+aPHQ8fY99u9/lNa75VeaUUv9JrW64AtlJZ6Iff73nLokMFfJrYDE76kpAC2mNS0rDC2rBbVyjHHjjkDxxFgJeAmaptHQ0GDMaG7BV/w4WH1F8rmauUMppIIUlGbUemfb7OrinWUTkJuVjszkwdhdfhHltVdVecKuKADoWgGx76kpALWZO788NZq1rpCUyjHGjTsCxRNjJeAlaJrG+fPnMWjQIMO2CXd+eLKxK+WDDyifymWRGheBxakxbu/nWhvx42kJku8rzaj1zrZZ5cHflwgyMfj1vRY8tlC9j3i6AlKCHjs/oE6z1v0IpXKMceOOQPHEUAJewmw2IyMjI9DV6Dbg88PTjV05QThjZJTkczFmjoySVCJKgpQV3np/k4JY6HbRBF4qcWL0xDbVcvyx4euJYlHjh9aDaXLlGOPGHYHiiaEEvARN06ivr0dsbKwxo8Ftflxl+uqaffJXDN4KQrl8ckHZlKDmASP1m1jokgSDyVEMbFfUlYAeAasVvuQHC6lZvp5VnzFu3BEonhhKwEuwdrwhQ4YYnRm3+XEpaIjk71KzT6kVgxZBKCd05FxA1+06AZu9XbOvutJKRuk3sdAlCWDiAAbx/Xtr+q5YwAIuTyFPTwH7ih9S5bL10bvqM8aNOwLFE+OwmHFYzC/QGtBMKR8A2ZmlFqGz42gd1u06oVoHvfUHoEqbuH78A2J6oCXstFbl4A0/lKDW1p4e+DOgD8ZhsQCBoijYbDYkJiYKbhy6W8HyY3xioqbZvJK9Ws7rRetGp4WUnk3tPOZyCfXU1VQO/LhB/Nl8Qv9eCHM2g6Ioro/wBSNbrlQ0U61hp7Xst3xxUvoOWnFgPDWBLc6jxCu5esqNm7tZYQRKlhhKwEswDIPm5mYkJCQEuirdAnx+sILwwJnLAKRPwXpi/9e60SlXxj9K6/GP0npFwelJvfgnhtmyU+Mi4HQ6YbVe4PqIUrgJLdFMD5y5rGu/BXAJV/HpZzFNUqsOsd1fLo8UHBQtW89xMaFu4+ZuDzMRKFliGOO8hNlsxuTJkwX3iN7NEPNjz6lLeG//Oby3/5ysf7o4OJvaRqhWAS3lq86Hmv+9nvMDSmXzeSI1u5d7T47OQ9V2yed8pSEO3CanUOaMjuJMNlICm3+24PkdVtmgdVK8kluJ2eztbv3E0xPi3ycESpYYkstLUBSF6upqjBw50jAHQciPyoZWxRmreOY3e1QUfj53pM88aKx1zUgaFIpNS8fheH2L5MlgJTdJrecHlOIGpcZFCHiiZE4Svyd35qGsrkXyPbUZvRT+e85I7ptqkHK7Zd+V8xaSq6d43PjjfERPQ6BkiaEEfICbN28GugrdCiw/1OzqYgXx5Zkr+Plcl1BSsw2rHWgSC8LFqTGSdRGHQxCXp+X8gLWuWVIJ8MtmeaLFzZWfR+7Mw5zRUSj85rZ5h1WCSvsISorTm3MI7LtiXikpa4qiBOPGXwHxehoCIUsMJeAlSJJEampqoKvRbcDnh9LA9mQzUQw5AS0lCHOtjW6zar4Q9MYerbYy4fNELYKpeEUjx8P/njMS/z1npJvSUuKrkuJUqxcLJR5KQe6b4nHjj/MRPQ2BkiWGEvASFEWhqqoKY8aMMcxBEPJDTrDsOXXJo81ErQJBThDOHBmFH09LcBNIesMqSEFO2FnrmmG70oZ+nZcxa2oqSJKUPAcgt6JRE456QzoorWykAtlJublK8VAJUt+UGjdqq7vvu+dQoGSJoQQMqMKbwTc/ebAu84TSZqLWb8sJwtqrLhrEl674yh4tFnbs6sJMMHgwjsbRll5YtzBZMq8ns2m5Ongzo+bXKzUuQvK7esNo6IFc2Xe755A/YSgBL0GSJFJSUgJdDb9B7+AT80OveUJpM1Er5FYgrJeSmAat9mg9IST4qwsnQ+DTWhKorUFminoQPDmavF2VeAJPBL6WSYPcuJF61xcrtZ6AQMkSQwl4CYqiUFlZifHjx3/vzEGeDD4xP/SaJ3xlG+afURBv2opp0PJNvSEkkgaFcn9bTAyWJtDYVWO6Y94u3szWvVn5aT3hPH5ImNu4kXv3bvEcCpQsMZSAD9CrV69AV8EraA2Exn+uNPjE/JDzZJGDr2ayaqdZ5Vw+9ZzcZdPi3zYtHcf9TTNAS5fr/+7u7eJNmAo9J5zXZCRg0bBemt69mzyHAiFL/H5YLDs7G4mJiQgJCcGkSZNw8OBB2bw//elPQRCE27/k5GQuz/bt2yXzdHR0+JsUSZAkidGjR/fYVYDSZSOeDD4+P9iyWQUwe1QUcrPSNcXQSY3TdlmKGvTQIPdNJUUi95uFNHEHqCiGwBcXSTyTMVyVHvEhrzsJpQNbWi6leX9/tWS5UiectxTX4GbvQdy4UVPW/rhKs7shULLEryuBHTt24LnnnkN2djamT5+OrVu3YsGCBTh9+jTi4uLc8r/33nvYuHEj97fT6cSECRPw2GOPCfKFhYXhzJkzgmchISH+IUIFrpAAVqSmpva4U8Nq5h5PTDMsP0xRiYrnAPTW09NVgZ6DZd5eoiL+bUnaUNfq4nIb+rbXY850Zdq93fyU2peQW9noWflpCVOhFJZCChYTg9pvKjEuZjrMZrMqj325z9FdEShZ4tcvvfPOO3j66afxs5/9DADw7rvvYs+ePdiyZQs2bNjglj88PBzh4eHc359++imam5uxYsUKQT6CIDB4sLSL4Z0GQRCIiIgAQRCBropuaDGV6B18LD8qr36nWjYLJQHsC68QvQfLxN9QUyRqLpzjh4TBZutS7CPebn6KaZgYG46K+utuNOkJga0GflsqhaW4b9RAt30ZmgEi+vfneKLEY37/EHt2fZ8QKFniNyXQ1dWFsrIyrF+/XvA8MzMTJSXuYWel8MEHH+D+++9HfHy84PmNGzcQHx8PiqIwceJEvPHGGwE7sEWSJEaMGBGQb3sLPTF4tM68WH60afTyUbNB+8orRM/BMqlveHIFpUC5yfQRNk/tVflZuBYTkpgGvgJgaUqM7OPRyk9KiAPCtlQ61CZV7jMZwzHrHqEyl+Lj3eQaGihZ4jclYLfbQVEUBg0aJHg+aNAgXLokHdKWj6amJuTn5+Mf//iH4Pno0aOxfft2jBs3Dq2trXjvvfcwffp0HD9+HCNHSi+3Ozs70dnZyf3d2toKwLUbz/+fJElB2ul0giAILm0ymWAymQTpjo4OlJWVYerUqWAYBiRJwmQyweFwwGw2gyAILg24lnz8tMViAcMwXJqmaVAUxaVpmobZbJZNUxQFhmG4tBQdcjSNiwnF6oxE5BTbEGRi4GSAVRnDMS4mFDRNc3SwNJXZrqD2WgcSo/oiJbqvJE0dHR2wWq2YPHkysjLikV1cCxMYWEzAUzOHY8LQcC5/ee1V/O/B8wAIkAQDknAJpcwxAzF+aDhs9naQBAMTAThoAmbCdfWFzd6O8UPCNLVTZcN11Fy9ifiIEKTG93ejyXa5FQQYMCAQTDLoogAGgO1yKybG9hO008TYfqApJ2z2djAMg3ExoVw7jYsJRWpcBGiahtPpxFt7q/Hn4vMgb03qfjk1CI/+YBaCg4O59niz4Cz+Unze9Q2GgMXEgGZcewhs+r3953Dx2g1MHxGFxKhQjIsJdeuHNns7gk0MHDRAC+gQ0nSy/hpcT4EgEuikCBBgYLvcytX9hftHuATxlRuI798LkxIjQdM01mQkYEtxDddOT88cjvFDwri2HD8kjMvDttPKjOGgaQq7y+owP3kw5o2JQu3V75AYFYoxA3vh8OHDmDp1KgBwNI2LCcWEoeFcf9tW5OofLB05RRcwb3Qk0hIiu914kpMR/DS/74llBACUlpYiLS2NM2/rpckT+H1jWLy0YRhG03Jn+/bt6NevHx555BHB83vvvRdPPPEEJkyYgJkzZ+KTTz5BUlIS/vCHP8iWtWHDBs7UFB4ejtjYWADAyZMnAQBVVVWoqnJtdFVWVqK62rXBZbVaYbPZALgap77eFYCspKQETU1NAIDDhw8jLCwMJpMJhYWFaGlxBfcqKChAW1sbACAvLw8dHR1wOp3Iy8uD0+lER0cH8vLyAABtbW0oKCgAALS0tKCwsBCAS5EWFxcDcClFdgVVX1+P0tJSAIDNZoPVagUAVFdXo7KyUhdNP0rug9ysdGyeGYK//jAJ6xaMQXFxMex2V6RKlqaN+VU4V16Czf/n2hgU01ReY0fuURsKCgpAhfTD52UXMJqqQW5WOt5aNAJvzyCxbsEYAU019Y3IGusaUJOjGDw1ytWJa2trYLVakRjZB/OG0Fia4Hr+YByNB+NoJEb2QWVlJYqPVWJ3+UUUHv5asp125u3H6ztcm5lHvzqMP+WXC2gCAHPTCQy65ZCxeQqFsCAgmATIhgq3dvp93nGcK3eVt/avJfgsr0CynfZ+WYycogscTRQDnLV3oOjIUa6dvjxyDDlFFziaAGBpAo15Q1zp/xpBY+ZglzCN6mjAJ0Uuvu/M28/1PbadEiP74OWJFOL6uuh4PY2SpOkeshbBJBAW5HoOAIN6uXjA73upcRGYERuM67ZKjqZpfa+62nLBUPzh/jCsWzDGre9lRnchNysdb94/ANseGgwGwM6CEhQcqcDi7BKcrjyO8eFdSI2LQHl5OXr16gWTySQYT/y+V3/qqCRNFytLuu14kpIRUuMJcJcRXV1diI6ORkFBgUc0aZlcS8FvN4t1dXWhd+/e2LlzJxYvXsw9f/bZZ1FRUYGioiLZdxmGQVJSEh588EH8/ve/V/3WypUrcfHiReTn50v+LrUSiI2NxbVr1xAREXFHtHx3XAlopelEYxuWbDniNsP8+BnXzVFv5p9CdnFVIDDhAAAgAElEQVSN2wwziARWzBiOF+ePkqSpvPYqfrj1CLro2yuBLprA7tX3YvzQcJjNZmzKO4W/HLJxK4FnZibixYXJ2JR3CtsO2rhZ889mJGLdwmSu7scvXsfynMNwMgDNEK6VDg3sypqOlOi+gnZ6e281coptHH2rM4Zh7byRgnY62XQDS7IPc/Sxq5t/rp6OCUPDBW3zaXk91v7rpIAmkmDw5tLxWHJPHCiKwmfWBqz91wlu1syuBOaOHogvTl8RrAqCTAwoXvqfq6YhLX6AoJ02551CTrGNWwmMjQmHtb7Vjaa391Zja/EFjo41GYlYO2+kz/ve8foWLMn5ym11s+OZaUhLGKCp75XZruCxrV+7rW52rZryvVwJeCsjWlpaEBER0X1uFgsKCsKkSZOwd+9egRLYu3cvFi1apPhuUVERzp07h6efflr1OwzDoKKiAuPGjZPNExwcjODgYLfnrCsW3yWLn+bv0MulAeDQoUNIT0+HxWLhnulJEwTBpdnOojUtV3dvaGLj3rO22Zpbm7yd1O0VXCdFoObqdyAIAtnFtQAIMHC1x3MpTmSfJtFJEW72dX7d0+IH4KmZw5FTdAEUQ4BiXDbotIQB3HfWLUxGZkqMm9fLluIaAK76OGgCW4qFp3Ft9nZ00bfry6bFG9MWiwXrF47F/JRo2Y1ji8XiMgGBQKdr/IMGgU76dnn8tkkc6BqALE1BJgZZYynED+jNtUfiQNdhMidzu44OmsDsMYPxxekrcEjUnU3XXL2JtHhhm724MBnzJPgkpkmJVr19r7KhVbIckiRRc+0mRxOfvpprN5GW4PqbHTdy/XBSYhSemeXqH2zfWzNrGCYl3r5/oqeMJ6X6smmn04mSkhKkp6dz1hK9NHkCv3oHrV27Fk8++STuueceTJs2Ddu2bUNdXR1Wr14NAHjppZfQ0NCAjz76SPDeBx98gKlTp0oeof71r3+Ne++9FyNHjkRrayvef/99VFRU4E9/+pM/SZGFyWTC8OHDe/Rl2WJhoScMs9grxMkABxpNcPLWl57G7Gch3tTV4tWk161TbfNbrTwxD/kboU4GCIqIRmp8f8H3pDZhl0+Og83erhjNUysNcjSp0arFJVdtw1aNX1rHzd3gGsoiULLEr0pg+fLluHr1Kl5//XU0NTUhJSUFeXl5nLdPU1MT6urqBO9cv34du3btwnvvvSdZZktLC5555hlcunQJ4eHhSE1NRXFxMaZMmeJPUmRhMpkwZMiQgHzbF5AS+OL49WphmPmgGQIV14R7Pmquh3pDHMiV56Bub4ypuXXqPXugVJ6cQFQTXnJ5+M8PVl9x4zsA7C6/6JdIm1q8cbR4VKnxX8+48SYEBlvfnqBEAiVL/LYn0J3R2tqK8PBw3bYzKTidThQXFyMjI6NHHhZbnK3NXfedZRO4mb94MPEFR5CJwdpxFN45QaKLJrjww1LfVgtBoPS73D29YqElVY43bodSB7KkeJiblc59z+l0omD/l+gYkITEgWFeBWRTumvBF4fN1GgBgBUflkoeDHtn2QQ3P35rXbPgjmk+T+7EuOlJLqbe8sRTudazpFY3hMlkQkpKSo80B2m5UpAFK/TUZrQJA3qjo60ZG5OCkBjVV5MAFw9Mud/5wnD9gjFIjOyDdbtOCMqWmpFqjQOkdKpW7sCSFtPUWwVnceB4B85ePwEahOzsWulOAbYOemMY+eIeBj4tWi6s54OvtPgRXPnjxl8z9Z4WfTRQssRQAl7CZDJh4MCBga6GZvAHnJxZRe/tUYBY2PaXzac2MOV+/7a1Q1AncaROPg6cuSwrVOQE3fv7q/HhCpdJUevpW0DbXkFOsQ18b2yxINI6W1W7rlPuNy0Cz1rXLHtgjU+j0slgKdOUUlsPHDhQM+2eKIqeFn00ULLEUAJewuFwoLCwEHPmzBHs9ndHSA04sd12SWoMZoyMwr3DBsBCmnQNOmtdM2yXWxF0+TTmz7tfkh9qA1Pud/E+hThSJx/8061aNyy/PHOFC9qm5fSt1vhK7EGulydS+F0FiU6Rl5Ke2aqnMYzUIGdaE9OiVB57YT0fSm2dEt0Xe/buw4eHKLBeXoA07Z6adHpa9NFAyRJDCXgJkiQxefLkbh9FVE7Y5GalCzYhd1sbsfuWwF09a5hkrBYlO7sJDOL6AidRjfULx7q9qzYw9QxQNlKnkieNlHlIHNqahR7zmNb4SomRfeCggQ/PknDwDnSydOqZrXoTw0gOUv0CAJ6dO0Jgw9daBz6U2vpEYxsqOwbAQV92+11sfvLUpKOnrt0BgZIlhhLwEiaTCf37y5s/uguUhA0r6Nd+clzwm9ZZGf8KSRoEam4AOcU2zE+JlhQiSuamPafcTz0uSY3hFBMfgkidt+LvSMW4EQvU/54zUlIJ6FFAWuMrpcZFcL7uLPj06p2tehLDSAly/SJ+gPz7Wr8jJ4SFm9vu0QO0mJ/kTDriCUpPcjENlCwxlICXcDgcKCgoQGZmZrc2B6kJG62bglKzsmDzbXt3MMng9TQKr5WTkgN1Y36VQAEsTo3hvIfkZqVPTkvAwLAQxUidrGlFLdAZm1/PjFq8J6B3NvnC/SMw1nkezuhxbt5BnsxWlVwm9bhTat0H8OY7YiEMAIuzSwT9hH8IUezGq6d+cmYjb11M7xQCJUsMJeAlzGYzZs6c2e3dQ9WEjZYZqRZzSRcF/P4kiS5K+o5esZDPtTbix9MSFPcDdh6rx2P3xGo6VKZVoOqdUeu5X1gMs9mM+2ZlIDQ0FBX1LW4+/lpmq1o3RrXm07MP4C34QnjFh64YPfx+AgCPT4nFY/fEym6Wq9Wvp3kCSSFQsqR7S64eAIIgvD5rcKegJGy0CFA5RXHfqIHodNLIKboABgQu3ZQeqKy/uBjsikGu/H+U1uMfpfWaNgT1ClS5+PTi2aPcbFLLpiXbR7S4vnr6DT35lPYBYvr1goV0uW36Wnjy3UvZfsKCrwD07lMA2s1G3fngWKBkiaEEvITD4UBeXh4WLlzY7cxBUh1eaWmsZQYspyhS4yJu3aLVCrKhAgvvF8ZFV5rZscJfqnw+9GwIyuXxVBCLwR6C0jL7ZPvIh6UkxJ4wUq6v4sNuat/QUxdAXmCeaLiu6FnlrQDlfzeYZLB5CoUXS0mkDBWuAnceq5d8X2mf4mC1+tmF7n5wLFCyxFACXsJsNiMzM7PbmYM87fB8Aao3HEJqXAQmxvZDR/JAAT/kZnaA+4qBLX/nMdfsXwxvfLz1nEFQ4pWSQpOqo9lsBhU9Dl3Uabe8Uq6v/DMTcgKR/YbeugDyKzrxZjm/Lnr6k5yy4H+3iwJeK3OZg8pqW1BW2yJLg1q9rXXNbnwEXA4FvvAyulMIlCzpXpKrh6I7KQAts0ItMzot9w/LQcwPuZnns3NH4Pl5o9yes2VLKQFvfLz1nEGQEw5KCk2pjvFRodAan8Vmb3cLDyH1DU/rAsDNTVbNbVarAFVSFvyVHgOg49ZlN1qgtE8h164zRkap5ulu5qJAyJLuI716KNiLLbqDOUjLrFAp9ow4r1wZSoNDih9Kewly8IePtx4FIken2ua4VB2dTicuVpYgK2P4rbDbLsi5vjooWrEd2W/sLr+ouy7iPjJ7VBR+Ptd10EvObVaPAFVTFtxK8pbZ8MVSkgvPLQXxhjEfrMDmBw4U110qLZcn0OaiQMkSQwl4CbPZjIULFwZ8NaBlViglXDw9nSo3Y5Lih6cC3Rsfb7n9EKkT0nJnEKQg91xp05LlycNmM+alDBHUS8r11UJKx44RC0S9dZHqI1+euYKfz5W+B1itjcTf16osWLNh+YDe6DzytWz5AGQVgFpoD3Hd1ejrDuaiQMkSQwn4APybgAIFLTNUOeGi93Sq2oxJih+eCnRPfLyV6idVD6UzCFL1keKLlFmLD5YnYnrkNuOlIBaIeuuiJqTl2kirgtCrOMcO7ovVGcNuxVZyh1w7SAnsivrr2LR0nGKoE6U+2F3iDAVClhhKwEs4nU4UFBQE3BykZVYoJ1z0nE5VOjB236iBSInuK8kPX9ta5crzZEanV0Hpza/WR6TcUX1x3kEMuXY+WH2Fc5WVU7pSh77E5x301JvlyQsLFwpuOgOgSoucwLaQJixJGwprXbPsfQty9HWHOEOBkiXGfQI9xMcfUBak1rpm/KGwWmDXlYrlL54ly8X7l8Pu8otu4SX4kLKj+trWqlSeXP3YWPee1uVObBgqha/21hTG4vkdVklPGvGdAUpQ46G/eaVEg9yelye3pekdG4GGcZ9AgMAwDNra2hAaGsrdC+oPKA08uc0+rTNHPYNWbWa0teg8Zg8LxZSkISAIwue2VrXylGZ0ntbFWyWmpY8ohTzQA7W6zhwZJSlAtZo9dhytU+WhFhOeFE+0eq3JuYOydRHXTasLcKDjDN0pWSJGz7sJpZvB6XTi4MGDcDqdfvuGnPCy1jXLbvax7+0uv+hmBkqNi8CStKGcfX9xdgnWfnIci7NLsDG/SrEu7JJfDkEk0HTGyvHDkxj4cvXWUp5U/ViThKd1keL9jqN1Mm+4Q62PKLWvHijVleWnN2aPjflVbpf4sNATgRVw54nWfqjkDqrHBViKt4F2D70TskQKxkrAS1gsFjzwwAN+/YYnwuv9/dWCG6A8vStWCuyM6cCZy24B2zopAvETp6u6h8o99/YCc2tdM5IGhUpuEnri8STH43W7TsBmb9e0ImD7iJyQ8dWmpFJdWUjdIeFNyGkWem3n/HHj7zsVpCDmbaDdQ4E7I0ukYCgBL0HTNFpaWtCvXz+/XQsn18EdFI3GlpuSv4mvAJQaVN4coGGX/GzMIBZrMhIR35cBTdM4fvE6bPZ2zTeVabl1TKk8qYHMjw3kiceTknDRataiaRp/yK/AewcbQd8KG6HndjKt0JI/p0h4h4S3IacBdSXC7z9sWQkDeiMhFOjXr58uJai2+eyJC3B3cA8F7owskYKhBLwERVE4evQo5syZ47eGk+r4E2PDZZfmSqc/+Z3aFwdoxHbUlOi+KCwsxHFqKLKLa7h8i1NjMHNklEdeH1KH3MTlaR3Iejye2HeV4hmxPFXctK+9in7t9bCYSHTSt8tPjOzDrVb0zM7lvqVWV36dWXOgVsj1lU1Lx2H55DjZ9+QOMAabGPx2KoFFCzN1K0G9EWDVXIDl+h0/ZMedMBPdCVkiBUMJeAmLxYL58+f7/Tv8zu2gaEkFwLqDAvKnP/lwHdoRHrKZGBuu+wCNeCNw4JgpyM4uEbzHDxktB6UVj7ge4vL0zib1rIjkLrVn66ymKGubO/HLcvehJjbT5Gal6/ZgUVLKcv3EE7dHuRm4nAKQC1/CopMm8IsjwPDUG7pcS/n1UTrLoaYY+FCLXsuHP81Ed0qWiGEoAS9B0zTsdjsiIyP9rr3Zzi0XLoAfZVHLoLLWNbvdn1tRf50LI+yJrZqmadjqG2ECw5k++O+x/8v5cEvVW8shN29MKlreXT45DjZ7u1vdAPW4OgkDemN0OI2z1wk3nojfkQttDcgr5cTIPgJhzBeCUnX2dDar1XtGLXwJAJjAICmcge3KDU7R+tMzR01paFlBAf41E91JWcKHoQS8BE3TOHnyJDIyMnzecFqiMfLBf65lUKkJeU8EK03TCLnRCLMJ6BKFdDlYfUXgwy81q9JzgpZfD09mk3rflaqbnEJmTQmpcREYPyQMTyWb8cpXlBtP+FDbCPZkk9rXwlXN/VNL+BIAMJuARxJoxPfvpblsf4AdY/OTBytGr+XDX6eI/SlLlOB3JZCdnY0333wTTU1NSE5OxrvvvouZM2dK5j1w4ABmz57t9ryqqgqjR4/m/t61axdeffVVnD9/HsOHD8dvf/tbLF682G80KMFsNmPOnDk+L1drNEYWUkJLbVCpCXlPBKvZbMbC+fNQSQvrL7VBJzerEtdbqh5LUmMEbqGAdwJPz725WhSy+CKcZQ8vwMiJzV6ZaTzdpJbrB/5widTqKtpFE7jeLwmTEiN98l1PIDXGHrsnVlUJ+OsUsb9kiep3/Vn4jh078NxzzyE7OxvTp0/H1q1bsWDBApw+fRpxcfKbSWfOnBGceIuKuh0S9siRI1i+fDneeOMNLF68GLm5uVi2bBkOHTqEqVOn+pMcSdA0jaamJkRHR/tMe+uKxujFINYi5PV+h+XHi/NHCd6z2dslvTS0zqr49ThYfQW7rY1ceWIFqZcXWm4ak4OaKSGn6AIyxw7EIHMHJgyN9spMo3WTWgv85RKpFr6ErWfCgF4YZO5Aee1V1Fy96dNT0VrflxtjSjz29dWbfPhDlmiBX8NGTJ06FWlpadiyZQv3bMyYMXjkkUewYcMGt/zsSqC5uRn9+vWTLHP58uVobW1Ffn4+9+wHP/gBIiIi8PHHH2uqly/DRjidTpSUlCA9Pd1ngZ/UQh/4GlIufJ4OLjl+WOuasVi0WQwoR9+Uq6tUOXrCHvChJAz1CBr2AhipWeQ7j6Yg8rtaSZ6wKwOlwGdi7DhaJ7mS0MoDX/JQikdawi84nU7szNuPX37lQBctdJv11XWbSlAbY74cE1rhrSzpdmEjurq6UFZWhvXr1wueZ2ZmoqTEvQPykZqaio6ODowdOxavvPKKwER05MgRPP/884L88+fPx7vvvuu7yuuA2WxGRkaGT8u808Gs2NmzLwaXHD/kZrHv7T+H9/af0/wtX0Z7VJoNar13gQX7bcmLcAaGITVOmid6vwO4Nqk/Lq2T9epSgxwP399fjQ9XTNFUBiAvjLWsHk80tuGlEif0XLep9xpNJWgxhYpNkv6GP2SJFvhtzWG320FRFAYNGiR4PmjQIFy6dEnynejoaGzbtg27du3C7t27MWrUKMydOxfFxcVcnkuXLukqEwA6OzvR2toq+Ae4/HLZ/6XSTqdTkKZp2i3d1dWFmpoa0DQNh8PBPXc4HGAXWWyaYRi3NABBmqZppET3xepZw2ACgyCTq4w1GYkYFxMKACivuYrdx2phrWsGRVHcMXM5OiiKcr1TfhFlNXZJmspsdmwrPg8ACDIxMIFBTtEFlNmu6KKps7MTtbW1oChKQJPD4cD6BWOwe800PDfH5VVjIm7T9+fi8yiz2bn6ytGUcGsj0WJiQBIMl2afy7UTP+1wOFBeew07j9UjmGRA3Lrfik0f+OZbfHjoPFzXoTMIJl28KK+95kYTm3Y6nS5Fl5HI0UQSDLIyEjBhaDhsNhu6uroENFnrmvGX4vMw8+j4c/F5WOuaFfteee1VVNRf59oJAKoaWlBee03QNta6Zuw+Vovy2muCdkoY0BvBpOs9lj4AKDpzGWW2KwKarHXN2F1Wz7UN//mfi8/DwqP1g4PnuT45fkgYlqQNxfghYZLjyfZtC9IHUiBv9QHTLR7853gDR1OwicG2IleZm/NOYkn2Yby3/xyvzdi6u7yM5MaTuJ1ceWhBO7FphpdHaTzpkRHivic3niiKQk1NDTo7O1VlhBRNbLl64XfDkzgQEsMwssGRRo0ahZUrVyItLQ3Tpk1DdnY2HnjgAbz11lselwkAGzZsQHh4OPcvNjYWAHDy5EkAro3nqipXrJLKykpUV1cDAKxWK2w2V6zz0tJS1Ne7ZnklJSVoamoCABw8eJBTAoWFhWhpcd2VWlBQgLa2NgBAXl4eOjo6uJuDnE4nOjo6kJeXBwBoa2tDQUEBAKClpQWFhYVYv2AM/vbEGGyebkFuVjqemBCOkhJXTJXNu0tw9pQrxsoH+V/DarUCAKqrq1FZWelG09/yirHt/w5j7SfH8Xmh6x0xTfXfVGB8hKtDrh1HISncla4/dVSRpvIaO/Ly8lBeY0dHRwe++OILNDQ0oLW11Y0mABjay4kEhyvuzvgIBlljXQNochSD+rMuE4fNZpOlKehGE1bPGoalCTTmDXF1+tfu7YUwZ7NiOxUXF8Nudwmyz/IKsPavJfhHaT1eT6Mw6JaDyuYpFMKCAAI0Nk+hEEwCYUGu5wBQc+kq8r/Yg93lF1F6pp6jyW63cxOVJyeE473ZvfHOsgnYND8GSeRlWGuv4fz582402ezteDCOxoNxLjpYmmz2dsW+V1Pf6NZOL0+kUNN4mWun3+e5+gfZUIEVH5TgzfxTXN8bM7AXR9OgXsDraa50XF9Xe7M07c7bi8XZJfhofwUOHj6MjflVqK+vR2lpKWz2dswczOC/RrjqPm8IjaUJNHYeq0fR11bV8dS7tQ4Z0QxIAsgaS0n2vZcnUojrCxw4cxnxN8+7tVMwCa6dYsMtiuNJ3E419Y2CvvfUKBcdtbU1quNJr4zg9z0lGfHdd9/h4sWL+OKLLzTJCDFNShNhJfhtT6Crqwu9e/fGzp07BZ47zz77LCoqKlBUVKSpnN/+9rf429/+xjVAXFwcnn/+eYFJ6Pe//z3effdd1NbWSpbR2dmJzs5O7u/W1lbExsbi2rVriIiI4DQ5SZKCtNPpBEEQXNpkMsFkMsmmHQ4HSJLk0mazGQRBcGlAeGmE0+mExWIBwzBcmqZpUBTFpWmahtlsBk3TsNZew9KtX4MkXIOniyZAEgw+WXUvJiVEStJR2dCKZTmHQTMAxRCwmBjQDPCvNdMxLiaUq3uZzY7Htn0FmiEQZGLgpAEaBHatmoLU+AGSNL29txo5xRcQTAKdFLA6YxhemDeSo6m8xo7a5k4kDOiNcTGhHE0sHSaCgZlPxzP3wkSSsF1pQ/yA3rI0kSSJsho7aq9+h8SoUIyLCdXcTscvXscPcw7DcYu+YJJBF+Wa8weTDJ6aPgzzkgfjR9tK0Em5jBVBpCsm0uLUaORVNqKTImACg9UZiXhxYbJbO9E0jbf2VuPPxee5dlqTkYAXMke5Lp3ntc1jWw67+oJE28jRVNlwHUu2fCVop2ATg49XpSMtvj/KbFfw6NavOZq6bt3lu2vVVKQluLxxymvsWLq1FAQYjj4TGOxcNRWTEqNQXnsNP9xagi6aELTT7tX3YvzQcJxobMOjWw7DRACOW+3Hps0Eg5UzE7FuYbLieHqr4Cxyim0uOhjgkYlD8H/HGwQ0OWjgv+eORM6BakE7sTQFk8AD42MwY0QU4vuHYFJilKbxVF57FT/ceoTre6SIPn47ifsev/1sl9uQENkHaQkDAi4jWlpaEBERoXtPwG8rgaCgIEyaNAl79+4VPN+7dy/S09M1l2O1WhEdHc39PW3aNLcyCwoKFMsMDg5GWFiY4B/galD2f6m02WwWpNkde36aIAhcuHCBaxT2ucVi4VYnbJogCLc0WwabNplMgjTbGUwmE2qbOwC4hDm7mUYxBGqvdcjSYbO3w0EToBhXfjZts7cL6JiUGIlnMoYDcA0GGgTWzBqGSYlRkjSdbLpx60YoAp0UAYBATrENJxpace7cOWzOP42lW0ux9pPjWLLlCN7ed46jY1JiJFbPGgaaR8czGcOx95srrkiSO09gac7X2JhfJds2kxIisWRSHFLjIjS104nGNnxa0YgDZy6jk759aKuTIsCAwONTYvHPVdOxbuFYpMX3x4oZw+EylrjoW5Iag1xr0y1aXUIqu7gG1rpmt3Y60diGnKILXDuRBIOq6guovHido6OyoRU2ezsemjgETl7bPJMxXJWmtPgBWD1rGNdOAPDUzOFIi+8PwHVCmRHRBxCobe7k+t6kxCisnjWMow8AVs0ajkmJLk+8mqvfcW3Db6eaaze5G9JWZgyHg9cP2bSTIbDlFm/YNrPWNePflZdQ2dDK9flHk4Kwe/W92PjoROxaMx3vLE/FUzOH324bmsCqWcNx36iBPDpu0/Ts3JFYOH4IdlubsHZnJZZuLcXG/CpN4yktfgCemjlcMJ7WzBqGtIQBXB65vkeSJN4sOOvqq/86gSU5X2FjfpVs3+OnlWQETdM4f/48TCaTxzLCE/jVRXTt2rV48skncc8992DatGnYtm0b6urqsHr1agDASy+9hIaGBnz00UcAgHfffRcJCQlITk5GV1cX/va3v2HXrl3YtWsXV+azzz6LjIwMbNq0CYsWLcJnn32Gffv24dChQ/4kRRYMw6C5uRkJCQl++4aeC7W1/ib1XI87qNzmYo29HX3bv8VfDjVDvOmn5OIKwM1jJafo9o1l/FAWeu9C0HKCVXx1o7h+elxcxbwxEUBCKIMaezvSEga41UdLXCUxlNpKa5t7Wwb7vpxXFMsbqQ3kX8wbiebmZqSmJiAtYYBqnaRcme8bNVCyz8xPHsx9X4mnnrpZ+yvg3J2QJVLwqxJYvnw5rl69itdffx1NTU1ISUlBXl4e4uPjAQBNTU2oq7sdl72rqwu/+MUv0NDQgF69eiE5ORn/+c9/sHDhQi5Peno6/vnPf+KVV17Bq6++iuHDh2PHjh0BOSMAuLT85MmT/Va+3gu1xdB64Euvr7yskBgYCps9Hg66xe03scDke2DInbzlew8BUOSF1nDZYsjxUMuZAyk+iJ85aALbz5LIvT9Usj5a4ipJQa5+eg75KZWhJfqroleUykU+cuNGqk56TmuLb9hT8rjy5FyJLz3U+PC3LJH9rr8/kJWVhaysLMnftm/fLvj7xRdfxIsvvqha5qOPPopHH33UF9XzGhRFobq6GiNHjuSWi55CapYrHkBaLtQWQ23G44lrqJygGT8kDC1NNSAJhjNBsfBkxcJCSpCL4x7pCZf97NwRiB/QRzMP5egF1O/aJQkGL6eHY/yQMHx2vEmyfF+HIvD2MOHG/CqBAlicGiN71aKS0pET1LYrbej13be6xo3W09ri4Im+jvfjLxduX8oSPTBiB/kAN29Kx/TXAylBnDQoVDIve6G2VqjdTax1aSsuR0rQlNXY0dLWjkcmRmOX9ba3AisUvA2DrAat4bL1HFBjIaZ3z6lLAnME36zDzxvfPwSm5nrF+tRebecC9/kKnsxyAek+obZakVM6cvTGD+iNm81XddeND6k+Mym+H8pq1Veh3kIcrt1XJ6/Cl+0AACAASURBVIl9IUv0wlACXoIkSaSmpnpVhpwg3rR0nGR+ub0BKajN8rUubZXuwJU+KXrdzdatNQyy1I1lWiEVLlssKOaMjhK/Jgux0mL/yQnKXFEoC46Ht7xyPD00p7b34cs4QJ6aO6SUjpxZaVJCJMcTb7B+wRjBATMpBQAoz9L18E7Pfd564QtZ4gmMO4a9BEVROHnyJOc2phdsuAEpWEiT5H2+63adUL0LmC1bSrnwo3JqWdpqKYfNYyYYPBJPwUwwyLU2ql7cInX/8fPzRkneEyx+NjE23C2P1GBcv2AMcrPSMXuUS/gX3vJCUuOh0r23aoHS+LSJ+whbn2fnjlB8T0s9tPwuB7m7nNX6hNId0GLImZX0jhu5b8pdPM+H0ixdD++U7vNWqqNWeCtLPIWxEggg1LxW2E1aqQtNtNg5tczotGwiailHKQ8AWUUnN7uUMy9IhZkW55Gb2Wm5cpOFmplMi/1XaeacGqftvgYtV2564qniaZRaqffk9h6UzErjhwj92JVm40p19WbPRy/vlNrLk/Af3QWGEvASJEkiJSVF93tqXit8Qax0qQr7v1RnlzMbiZ97evMS/zmbdjIEPq29vaklvkNAqQwWSp5KUjFdtJit9Jo41PJr2cNgaZPrI1r4qlYPT0w3nkaplXtPr4Bm68byRC2InyfKWGrPR6xo9PJO7ltSN995shntqSzxFoY5yEtQFAWr1ap7CSfXAR+fEovcrHSBJ4Zc5ztYfUVxKSunPKSep8ZFyN47ywo8PsSrBTaPxcTgh8MoWEzMrQNW8kt1qWW6p6YNQNlspcejw1rXjNqr0u0j9pPPzUrHO8smYHFqjCAfnza5PqKFr2r19sRTRW3Vxq8fv09ouSuAb85SqhvLk7Iau6KZUK2uWngISPcrvbyT+5baJE0rPJUl3sJYCfgAvXr1Us8kglxHEx9aAuQvVVG7pMWXrmxaXA7XLxiDzDEDUWs7j2WZw1Fz7abkAavHp8RK0untIRwlgbEkbaii2YudJR6sviKruJakxki2DSssfzwtQZY/cn1EbsbN/1vtQh29F/942i+09hul1RJbN4qi0KtXL5y++p1iGXoOrXniAaeXd57efKcVnsgSb2EoAS9BkqTg1jOt0Dt4PTnB6omAUKuz2rtpCQO4E6CESXpwSCkAtu5S0OrepyYw5ISFlhPFALDb2oiBYSG6Dx6p9RF5D6vbphG1C3XUFLSaYvHFpTYstAholic3VQSoUl2lPLekoNSvPDlPIV4Z+WqceSpLvIWhBLyE0+mE1WpFamqq7osg9HZALUJYT2gAf4DPDzn3QLk6eLty0TIYxTzUeicuC09svVr7iJaVkHh/hf+7kgeMkmLxJlyFeENU6zWnfJ6orXSk6qrngKNav9IyrvjwJT/58EaWeANDCXgJgiAQERGhGMpaCWodUM/hKrG5wpNrE731N+fzQ8+pUzma9M6o9A5GvXZb9h09ddLaRwKxCexJG/PfS42L8Ej48XmiZaXD/6Zes6Fav9J7g5xWfuodS97KEk9hKAEvQZIkRoxw9/f2BdQCjYkPyvDNFZ6EgvDFzWIsPzyNkaNHiCspSC2DTmkDWAl6bb1a+8id3gTWowCUBJonykTMEy0rHX7dpaBEk1ZToFqf9/ZwpRL8KUuUYCgBL+F0OlFaWoopU6b4dAmn5UTq/OTBbpuYOUUXkBjZR/cGq68iI7L8uBQ0RPJ3NeGjdfbk7d3ASvsAS1JjMOOWstVi7lBDmc2O+rMnEJs0DpMSIxWVl5L57E5uAvOhJtA8WT06nU7sLy5Be1j8res3ta90PKVJiylQrc97c7hSbSz5S5aowVACXsJkMmHIkCEex/KWg5YTqcFm6W8er5c+Oq8kgL2ZMfKFwISh4RgyZAhCmL6SeZUGqtbZk7d3A8vtA0hdeu+puYNP05+Lz2NyFIOjB77CuKH9ZCOfajGf6TV37TnlftuUHkWmJtA8XT2+VXAWFd9cx9ErJ0AxBDepkYKWUCCeKGdP+ryWb3s6lvwlS9RgKAEvYTKZuNDYvoQn7mUsJsT2kw3tq/d7aoe55IRuPKRjwAPuUTfZMrXOnuQGmdZLyOXejx8gLVQ9tZ3fponAV5dddl65yKdsmg9PQ0y7f1+ITBlhy3+P74UmBfa5JzNea13zrQuJTG7veSrcxdcjalmdeLqi8MXhSin4S5aowVACXsLpdKKkpATp6emySzi9G09sXjV3vPtGDUSnk3YbNMsnx8Fmb9c1mLTOrtTcKf/34HlMMDdh3uwM1aibek6X8qFXQfrKnKAXLE1BJtddytmnSe6GLql8cmVosTVL9TFPZqRS+1BSUFMQUi6c/N+leKLVZdNXqxNvVhRKEwNPy9UiS/wBQwl4CZPJhOHDh8su4fQsl6Xy5malSx5iYjuVnLlifvJgzlykNWyyJ4duxHAywM1et6+kZOvo6fF/qedyg+y+UQMlo4/6y5yghtuhNIADjSY4ZW7z1rpCk+Mh3zkAuN3H9Co7uX0ouX2Kj47UyJav1O8TI/tI8kSry6bSSlDrapCFv1yoPSlXTZb4C4YS8BKsHU8KemP1y+VdkjZU8USqeNCIB2Cnk9bsLaPUabW4U9IMAUdwuFtHVps16hHM1rpmJA0KlbxcR2sZd+L8BJ+mimuu2a7SzXBqLr9yPJRyDmD7mJ5b5eQ8pWaOjHLre3LRO5fcWjmouVE+kzHcY5dNOSWmFH5czc7vjWunHPSaEZVkiT9hKAEv4XQ6UVxcjIyMDLclnJ7luJa8WjqVP6JKstBiLgkyMWg+Z8WmK21YtzBZ9V09x//l6sk/A6FHuHtj69cqJNYvGIN5o6NQf7oMsWMnKXoHKbn8AvrMVWy/0XurnBSkTuTK9dcZI6M09eVfzBuJ8aaL6BiQxHkHSdVHqh9KKTc1aOWd3o1uX97joCRL/AlDCXgJk8mElJQUySWcnuW4r+zUvjxQlBjZB8snx3HP5GaWCZG3Q107aeDTGhPOXrchMyVGoMC8NcFoVXCeCnct8Ogqzvj+iO2TisjI/or1k5pdi+kT32glFUMKEPYbpe+pCVK5NvKkv/J/M5lMuCd1AiIjI7mxo2cCw1dutVfbFVcBWvuZ3gmUL87V8KEkS/wJQwl4CZPJhIEDB0r+pkfwpcbpC7EgB18eKFq36wS3WcdC7cJvGgS+uX57o0880/XmrmNfHXzyFEpCgq2HFF1KfYQPJfrEXlj8G60GhoV4pFzlvqclFr9a31br91I80du+/P0mKSUg5fIrhlZPKD3mW0/7otZ+4msYSsBLOBwOFBYWYs6cObBYLG6/azVP6A2xIAe1wSm1fFVSEFpm2vz3g00MXp5I4XcVpOymriceH4ArdLYUPPXq0buUlxMS7++vFlxYI1Zean2EhRwdUvHqvzxzBT+fOxKAZ/sbSqelfeFIwP/NQdGwkCbBHcpSPPHmEJhUn39+3ijF9/R4QonhjwmJ1n7iaxhKwEuQJInJkyeDJEnZPGrmCU9DLMjBkyPyYjMDH+KOLRW9kR2EDhr48CyJp2boW8VocTeU24j0hEeeLOXlhJHajWVsHznR2Iaaq9/JCmo5YaYUr17PfhELtX2APacuaS5L6bupcRGy50ikxo0c/YD02RIWSo4CctDrCSWGP9yMtcgSf8BQAl7CZDKhf//+XpWhZVahd9Yq5fGgxb1QCvyOLSc8vfW2URtUShuReuHNUl6sLOWUJ7/tTCYTtn39rRvfpPjli3j1Sn1Fyz6At2YNpW/xy5YaN3rOlgDqjgJykOtPrCfUgTOXAbhWRVLwxR6XGL6QJZ7AUAJewuFwoKCgAJmZmR4v4dQEoC82oLS6F4ohNiWpuf6lRPdFQUEBUqL18UNqUPFn+b6aeVnrmnXfdwy4twFrkwcgqQT49SqzXUHid2cRTJLopFz7JTlF8tcyihW4HoHj6b6KGHrMGkqHwuTKZvuJ0rg5+22bYn/Tcv+yJ6d6+auX9/afkx1vShMfT7yGfCFLPIGhBLyE2WzGzJkzdbt0ab3kw5tZK/8beoSl3MaglhWLp/wAlF0kfTHzUjOD6DlExdrktdSr9loHfn+SRJfCrYFqbeqLk7RKNIrhrUul2hWdcv1Ei8sq29/0bKSLBbmS6UnPeONvTrMmK7VvyykIb8aON/D717Kzs/Hmm2+iqakJycnJePfddzFz5kzJvLt378aWLVtQUVGBzs5OJCcn41e/+hXmz5/P5dm+fTtWrFjh9u7NmzcREhLiNzrkQBAEwsLCFPOIG13PpRRqsVv0eNpouaISkN8Y1DIbJwgC51so2M416DYLqblIajU5SQ0yNTOIkkJRU35qp7MTo/ri0k31GPFqs281u7/WsybifqB0gE0JnpgY+WWLx43WC37Y/qZnI11KkKt5uvGhZ5UoBv/bSis1LbLEH/CrEtixYweee+45ZGdnY/r06di6dSsWLFiA06dPIy4uzi1/cXEx5s2bh9/97nfo168fPvzwQzz00EP4+uuvkZqayuULCwvDmTNnBO8GQgEAriVcXl4eFi5cKLmEk/JAUBJ0WpetB6uvCGKvi0MpSw2C3Kx0t04vdi8U3+rEh5ZZ7+a8kxjlOI+XSl2mDz2mKzkhxppvWP4oCSi5QSZXttx9x3woKT8tp7NTovvivWlOvFh62xwkhdqr7QIPGj68CYgmLlfLvcZaoMfEKHbXlBo3WkxVWkJra9lIZyGebGmZ6PB5BbivHOS+LZWXP/bVZIm/QDAMIxPRxHtMnToVaWlp2LJlC/dszJgxeOSRR7BhwwZNZSQnJ2P58uV47bXXALhWAs899xxaWqTDJWtBa2srwsPDcf36da81L8Mw6OjoQEhIiNuNQNa6ZsGmlhLeWTZBdkNLLGjkZvC5WencbEZ8OYfSN+QuWVcK5SxnB12SfRhhQUBrF8CAENRLDWr80nJ6U+r93Kx0AJD9TUvdxG2wZtYwZCYP1lQm20eqLt/kvIPEJgM+tGx+ao0/pVSut9hxtI47JKgGcd+T4gkg3UZqXj/i/qjUD9RWzOJVEeBqa9ZdW2pvSOwdJgU2BpjSuFSSJVrgqVzz29G0rq4ulJWVITMzU/A8MzMTJSXaBCNN02hra3PbMb9x4wbi4+MxdOhQPPjgg7BarYrldHZ2orW1VfAPACiK4v6XSjudTkGapmnJNHvCz+FwoLz2GnaXX0SZ7QpsV24AAIJJBgQYAAyCSdf/BJcGCDCIjwjmaHY4HFza6XQCAEwEgyCTK//1m11cmiQYWG6lbVfaQFGUy+ZKMDATrucWEwOSYFyBuyRoSo2LQHxECD6raADgCv1gAoOcogsos13haHU4HGAYBqlxEXho3CBMjO0HhmG457YrNxBEMuigwKMVsF25IUmTOD0uJhSrZw0T0MRP/6X4PMprrsq2k83uik5J3qI7yMTARDCw2dtdZWckutrjFn1rZg1DSnRfsPMglg4+TWx6/YIx2L1mGt55NAW5Wen4n/mjYLvs6kcm3G4bE8Fwz/n0EQSBcTGhWJI2FOOHhOF/MpOQm5WO5+YMc2unnKILKKuxg6IoWOua8b8Hzwto2lZ8Hta6ZkE/dDgcoGka6xeMwa5VU/DsnOFufe/DQ+dRXnuNowmAIC3X96TSG/Or8PLuSrd2WpIao7nv/aHwHJZsKcH6f1Vg6ZbD2HPqEtZkJMB0KzB0sInBmoxELJ8cx/U3qXaaGNsPi1OHICXadYfFxNh+yMqI59om2ORq6wlDwwV0lNnsyCm6AJI3tk5cbHGjKTN5MCiKQnnNVeQUXeBoAoBD1ZcFbSPuewCQlZGACUPDkRjZh+t7/LZJjOzD0USSpBt9etrJE/hNCdjtrk48aNAgwfNBgwbh0iX3iy6k8Pbbb6O9vR3Lli3jno0ePRrbt2/Hv//9b3z88ccICQnB9OnTUV1dLVvOhg0bEB4ezv2LjY0FAJw8eRIAUFVVhaqqKgBAZWUlV5bVaoXNZgMAlJaWor7eZZYoKSlBU1MTAJcJ64svvoDT6cRneQVY+9cSrP3kOM6Vl6DsvGtWvXkKhbAgIJh0pR9NjUZYkCsNAD+fORSXTpcCAFpaWlBYWMjxsGD/l8gpuoDxEa7QuwDQfu0ynhrlavCZgxn81whXOsJ5FZWVlUiNi8DL6aF4MM71fGkCjZfTw12zJBma6r+pwPgIV+dcO45CUrgrXX/qKLfqKigoQFtbGwAgLy8PHR0dKK+xIy8vD+U1dsSGW7B5Co3NUyjE9gVeT7s14DtuCGgqLi6Gta4Zn5acwt4vi13fqa9HaWkp1i8Yg/9dGo+XpriU4rwhNJYmuOh4MI5GqbUS1rpmyXZKjOyDp0bRmBx1a/CNpTA+wjXIiouLkREXjGfnjsDv7iXwj5+Mw7oFYyRpcjqdyMvLg9PpREdHB/Ly8gAAIyLMCP72JFLjItDS0oKgy6cBAEnhDNaOc9E6PoJBr+bzApqcTif27NmD8vJyAEB1dTXXTvFki6Cd5g1xpevPnoLNZoPN3i5Jk83ejuLiYtjtdgBAYWEh106XTpciPpyU7Hs1V9oENLW1taGgoEDQ96x1zfj0SBUK9n8JAGhqasLeL4uxu/wiDld8g/3FJcgpuiDoe/OG0Ng4ux/eWZ6qqe/tLy7BKOcFBJO3acopuoBxZCP+9sQYvLNsAt6eQWLlvYNl+55cO7W1tSGZqUVuVjreWjQCb88gsW7BGHx12ob/27Mf1rpmNDU1of6bCgDA5ChGcjyxfc9mb0dVVRVqz591a6f/GkHjqfG9AYBrpyWpMXhjmgXrMwYhNysd94R8C7vdjtS4CPx2KoG4W/ctvZ5G4eczhyI1LgJ5eXm4ceMG8vPzkZ+fL0mTuJ3+P3vvHl5Fde6Pf2Zm7wSE3G+QkGSHcCcBEm5yCxYlCFqRi3Jqj+dUrQj01LbaFtuv9uI5Hi/t8futnmLAY+lFRVSg1jZYVJSg4aJJIFwCxLBzARJJICEBSdh7Zn5/TGYye/ZaM2tmdjjnd558noeHyeyZNetd613vu9a73vW++vEEgFmuGtFv5qBz584hIyMD5eXlmDVrlnb/qaeewp/+9CecOHHC9P0tW7bg29/+Nt555x3ccsst1OckSUJhYSGKiorwwgsvEJ/p6elBT0+P9ndnZycyMzNx8eJFJCQkaLMTQRBCroPBIDiO0655ngfP8yHX6gzsWMsVfGNjOQKSEjohWpBxTQTuLMhAafVZXBOVxBffKfLhh4snoqqxHfWtXchJjcWUzHgEg0F4vV5IkgRRFLXrP1c24ZG3j4LnZHg44JrEQeBkTMuKx4GGSxA4GTwHfHteLn5YPCaEjsNNHai/eBXZiYMwJTPBlKYKfxvu2rQfkswhipcR7KVj20MzUJCdpNHq8XjAcRwCgQD+4/1alJQpA7lHBNYUjQQvi3ilvAHXRBlRAocekQMPGWuKcvDjJRMhSRJ+9V4NXiqr12i6f14ufrxoLCRJgsfjgSiKONTUjhUlBzT6AhKnzS6DMoe1RT78cNG4MJqeLT2GTXv9EHvpeGDuSKxfMgHPlh7DxjK/0je8jPvmjsRjSyaE0aR6ZgSDwZBrr9cLWZZD+unX79VgQ1k9eMjw8ErfrC3KwaPFY+DxeCBJEiRJgiAI6OnpgSAI8Hq9ITy29WA9/s+OowjKHLy8DEkGRJnDs8smYuW0TFSf7cSqkk8h9t6P4mUEZWDb2jnIT48J4UNBELTrI+e6sPylfRofylAUwZbVikmElab75+UCsozffXJa472vjUnGBycvhPSNwMn41YpJWD4ti4n3tn9Wj8ffOYKvghyieCXctiRzeH5lHu4szCTSpPZThb8VDRe74Usegvz0GMt+EkUR//HBF9i0p07rpzVFOVg4PhUrNio8JujGlp4mngPeXDMHkzJicbipA8tL9of0k5eXsXX1LHA8D//5TnxSdwHbq5q1flpdlIsfLhwNnudx+Mwl+M93IiABXo+A7IRoFPqSNd5T2wiAtidgRpN6rY6bjo4OJCQk2DYH9dvGcHJyMgRBCNNO58+fD1sdGLF161Y88MADeOutt0wVAKAcsJg+fbrpSiA6OhrR0dFh99WTefoTevprvauW2XV3dzfq266gR5cwRN0AJIXhBYDC7EQUZveZudROVwe1ep2TqnSmJHO41quuRZnDgYZLYYnnjbQV+pJQ6AulmUbH1JxkLbyvmuRj7fyRmJrTdxjraPPl0A2xMj8ADj29ro8lZX5sXzsL2UmD8difT2htIIHDhrJ6LMxTjuW/VFYfQhPphO1UX7K26Sf20h2U+9r3pbJ6LUCdno71SyaiOC89zEasfFN5v0fiUFLmx6K84SHtpvaB0cas3uc4Trs+fOYSNqh0gMO13pV4cd5wrT5qX6pLe/W+nse8Ho9GV0DHP16vB4IgoCArAffP6wu7fE3iiN47+o1Er9eLwuzEsE3T++eO1HiOlaa+95W6iTKHD05e0K5FHU/mpMZo9Fnxni81Fl6eA9dLk4qc1FiN/400Aeb7IySaVOGrvNPXT2r/G3nMSNPqor62LvQlhbXpt+flotCXpP39yNuKdUGlSeVtktuofo9EFfSiKIbsCdBo0ssI/bUT9JsSiIqKwtSpU/H+++9j2bJl2v33338fS5cupb63ZcsW3H///diyZQtuu+02y+/IsoxDhw4hPz8/IvW2i2AwiF27diF70mzi76QwvHZA8oBQ4Tb9oBFmLpjGwbdgHPmkbn1rFwZ9eQxRgqApBxVm3h8kzw21Pm993kRMl2kVWMzqu6T3WTdhWcusamyH/3wnhLOHiF4fkQqxTYLd91gPkgHhJ6Wt3EqNijU/PQZPThV7PabYy3ByZsasrxZNHEYcW7Tgc2ZtSvsOa6IbVZZcb++gfnURfeSRR3Dvvfdi2rRpmDVrFjZt2oTGxkasWbMGAPCTn/wEZ8+exR//+EcAigL4p3/6J/zmN7/BjTfeqK0iBg8ejLi4OADAL3/5S9x4440YPXo0Ojs78cILL+DQoUP47W9/25+kUOH1ejWl1l/Zqh5bPB7RHp4YKdFuwCqrkAI0rx8jE9PiDOWkxgKpRejZF775b3YAKSCSN7XUetjNmczyXE7yEEt3P9oJVBbhHapQPKiJ+oIpNj6Jb8wmEmZ9amcCYudA4XcXjMZ3F4xmUjA0xbp06VJkFbC7pjoN2mbWV7QyafmmAXqb2j29bqy3XpZcT/SrEli1ahUuXLiAJ598Es3NzcjLy0NpaamWTLm5uRmNjY3a8xs3bkQwGMR3vvMdfOc739Hu//M//zN+//vfA1A2RVavXo2WlhbExcWhoKAAZWVlmDFjRn+SQoUsy+jq6kJMTIyrw0xWYE2daAazWa7Zb7SBYnSPWzt/JKZkxqOrqwtrinJ6zUV9v6m0klY2pLDVKtyeFqa9b1yi01Y3tBOoVtFa1d84yEgbDGzcU2cZG9/uATs77qNWfEdrJxmg0mlVV9rsvXhCGkYleDAlM961knIaZdSJ4nDyHdaxq5clTlxEnaJfzwn8T0UkzwnYjffhJg4QyVedNdy0Gx962rvPrsjHuY6rAPpOyurbQ7+HYBxwNB9zM7/9qsb2kMBedldZxlk/6xmOZ1fkU+sKkE9t689qRAsyniwU8bNKAU+vmMIU4Ix26jlS/vB2lYXTDFrUMysr8xD95VHTcUP6ptsxwGLqtFNmJOvtNnaQU7k2EDvIJbxeL9PeBeDMpqlnKDczRqvwE7Tf1KUvKdSAXjCqJ2X17WFmirBzqlMFa2AvGvT1oYUHIK1uzOq6vHCEpWmgR+Sw/jNP2H0aSAIbQNi9MWkx1HpZmfNIfKfnNaOicrqvRZ29p8aiYBp93PRHtFoaDZHON036Dss37MiSSGJACbiEJEno6OhAfHy85e68XZsmbSBEdDCaCCXa5mRAlMJmxqpQmTwijqk9rOpDmvU62RSkzf5o33/45tG4NW8YDjd1YHJmPFZNz7IdyhkINQ3wkJE1FFhcaG3CotFpRMme03h2BdkZwlgvFr6LdKpEFVQTkyxj+74T8KWnhnjJAWzRalnaUeVVlhwDbpw3WKH/Bokv7ciSSGJACbiEKIr47LPPsGDBAsuOM4sDZJx5uU1fZ5b4RYWddIBAHxObBdnKGz6UqT3M6kMSSKyzXj3MBBvLPsHrB5u0fQonexKa4jzfiajzx7Fo4WjT51V6WOEVeKZ6sShcN7xmBVKOgG9sLMdPp4j4xrtf4L55uRFNI0oLnRHpsBlOQeNLO7IkkhhQAi7h9XpDopyaoSArPI8wQHb1dDMQnCyl7SyJzYSKnfagBTIjCSTWWa8KFsFm/D4Qvk+gvmOnfUgKGMg2bQsremjPnvqyK+QeaYPPagLghNecJjnq6xcOP69UxI+xX5xuAKv1osVOiqRicworvmQdO5HEgBJwCUmS0NbWhuTkZCbtPW90CjHKonHAOR0IkVhKW8FMqOjb4/CZSyECliQ0jPWhCSTWWa9VOcZ2Ztkn0O+NOFHAP140lplH7HjoAOYurXqYKTG7vObGdKT2Cw8ZY+JknLrEQQJnGe7arK9ZksXrvx8JJeB0o9yMLyePiLMlSyKFASXgEpIk4ejRoygqKmLqONYB59Qt0ukKwu7ApgkVtT0+607TTgYbYVa2WfssLxwRkdWK3XcComSa41YFTQEvHJeCS342HjHLl+s29j1NidF4DQjP7evWdKS2sYcH7vRJeP6IgGtSeNuzrrxYk8WroJ1HoYHF08eOEjTjS7uyJFIYUAIu4fF4sGDBAubnnQp3gLzU18Mqm5PZe3YGtpkXicfjQcKoArxk4n5p5ZlilmaSdSXz92PhwbSs2pnFC8pswNMUcEN7N5Yz8IhVvlwj7W7MJkaw5vZ1a6/Xt/EzhxXxQ+sXq75mTRavh/48itVsntQfpBPGtLFCKt9q/NuRJZHCgBJwCUmS0NzcjOHDh4eYP8yYWNngIwAAIABJREFUN1KpAvUwiyNvJfwiGVZBkiT4G8+A52RIMv3Ai5Vnin4g69NMsoBmFy6eOMzyXVYvKFJ70oSvL2kwzp49i+HDh2szvEh4P7mZUNDKs6pLJBTPY4vHo3hCKuqbzsGXmY7C7CTrlxDeZjS+1cfrqmu9jN9+VBdGizH7GSkFJKkN1AxyRhjHitk4MVtFq7JkYCXw/yNIkoS6ujq8ergjxPzh1hPBjmCmCT1a/BMjWAc2i6CSJAmDr7YqEU9Nli5WnilG2DE5mMVwsbOJ6cTcYkxKMiUzDpMy4lBefgxpaWnged6R9xNt1hppH3f1m7T7ywtHRETxTMqIw+WGY5iUwZa0iDYrJ0G/IU/rQ7PsfiqtdqAfKyzjhLTKUWWJyifXCwNKwCU8Hg9ifPlh5g87s3aSwrAz47IT/8TJEtXqO3qh6PF4sHjhAuy6WMWUZ9bOYGM1OdDa7jcffoGeoBQR+y0JVY3tYVmpDjVdwpFzXSgqKtKeseP9FBAl3P/7gyGxmkhJ0+14K1nBim5V8ehPb9uFx+PR2kQPOyaYLzu7w9438q2dFYqev8zeM5qbjN90ajKjtUl/Y0AJuIQkSaivb4DAyRAN5g/WWTtJYdhZ6rNuaDpZotoNmiZJEjaVHsRfDrVBDT+8rCCdGE7brO5W3zEDqe1U2HUTtBMtkzr4W7uQKCs5LOx4Pxn3I5zQ4GQTk4X3WE9v0xSQJEloampCZmZmiInMjgmGNMkwmvxItNDSs+r5i8ZDagwgszDuTk1mpDa5HhhQAi4hSRJuCHZC4KDFIVdhZ9ZOUhisS32WDU2rBPdqOfo62g2aBgBVDRfRceE8BI7X2kM9B0GKmWPHJdKOycFp5FVavuWvjU3BwzePduSRlJ14A86ePYWMjAxm7yfSfgQrDXpaInUITM/aZsJab340U0CSJOHs2bPIyMjQBJ5dEwwJrOMoNXaQJX/pVzxGPlJ5Ggj3oHK6V0Nqk+uBASXgAtosZ1Q+7u9pcTVrp91n9Yax2tCkmWbMNmiNKNlzGjvWzTZVTA3t3SipEcLeNRNaNGXn1tZtN/KqGf0fnWzFwzebn/ilDf6pOclATrLpM0ZbMc2WbUWDHk7NElbKg1bubz78QlsVWHnReDwezJ4dmoODRtNNY1PRE5RCyhudOgS158PrwTKOzNxwSe/R6H1xdy3VTOdkr4bUJtcDA0rAIVSBIXAy5g2TMX70SOxYN5tp1m5lU2QF6WQqiwDRw2yDlgR1c5BWX1/iYNw0XMLeFi7EPGbln01SdsaBa1ch2JmRsdDPMvsmDX5RFJUcyDk5EASBSUCYCXlWfnFqlrBSHlbvs3jRqG3S6UlA/cWrlmVaTXKAUFdiGqzccEmg8a4xpwbL5q8ZjHxyvTCgBBxALzB4DvDFyPivT/wozksPObVI2xTWK4BlBemOwtaaLbVpA8pM+bAuxa0G66QRcbg55wZ8+uXVEPOYWb4AK7g5nMM6I2Oh32xDmKSMVRxqakfT6bO45InHVF/fisBMQJAU2IJxKfjuAnOTVCRgpTzM9lxYy5ZlGfuON+DJ/Se0tJpfG0vP58AyyZk7mvy+CifmMdrq0LhXZKyrE8iyjPb2dvh8PkfvO8WAEnAAvcAISBx+f0rR2i98WBsShpjF99hJikiW0BCkGfD6xeNdbdCyzEA9Hg/uveNmRA0PzxfgxB4dCbs2y4zMin4a7VYKKuT33Qf6RYHR4NQcxLKCMrOXA2QTjr6MI+e68ER5N1TnAQAhY0cPY9/01wrHCNrq8NkV+RiTFkNUAk4O6qnweDyYPn264/cdf/e6f/F/AfQdLXAyFmZIeP8sH8bErL7HdmcPLOUsmjhMW5LrN+toApE28IttCiFRFFFbWwsvf4NlHQFrM4/d8xJOBSbNi2QuxQNE/Z6ZglJ/1/NIfygwtS5G2t0c7GJRQGrdaMK+ICuBno+3tQu3jhDx/lk+xGzI4o3ldOPVbnuYeXKx1MEOP1Y1tsPf2oWE4AUUTZs0YA76nw49A/AcEB+lLGU/ONEW9iyL77Hd2YNVOcbZqZrwxQq0gc/EwL3vTMqIxdWrV5GdlGxZ90iel3BjMlLrv2jisIgkZlf7XP1d5RG+14PMjcmABLO8E27TcrIINTOFQSsjIEohbaKCNXcxKQKsVXwnq/Yw0sd6XoJUVzv8qD7r5WWs8Ek4eCEK65dMJD7bHxhQAg5BYkKSErDyPSYNSqe5YPWzTz3szD7tbmaRmb1AuzYbcJE6L+GG5v4KBqb/PyBxeOO0YPmeE1jR7iYEth5W7cTCN8YypmQmIiD1Ha6zk7tY/007fUhrD1oZVrxHotsOP+qf1fjkdD2K86w3uSOFASXgAgVZCZiUEYuamhqMH8+WeMRqULIyNK0cJyYnp2YUErP/V1kdZsRdwfyZBaa0RvK8RH+5QlqhIMvc00tVYP9VVofbsyT8tZHHg0W5ER3cVrSz5gs247tI7MsYy/BwMnz8RXxj+SR4PR7HbsBOYy6xTiKc7MvY4Uf9sx5O1vgk0qtFMwwogQjCzuEuJzZmlnLsmpyczoSrGtvx1udNxN8uXQ2Y1pG1nuTkLPaX7XbrzzoAWTy9Hls8HsXjU9FQdwr/tHgMCn1swdJYYUY7a65iK5/+SOxlmdnXrVw0nZQbiboZvZJUWE2a7PBjpEzEbjCgBFxCEATk5eVpf9s1p+gRCYYuyCIHMYuE0lFhdqgqKHPwjR5nubFlZeahKSeny3bW+gPOM1iRPL2qGtsVP/jR4/plZkdrR4CccMYIFp9+Wns0XLiCqsZ2JrqMZQRlDn9uEPDPt5ED57GuTiMhRO2UwTJpsrMXo39WbRM3kWCdYEAJuIQoiqiursakSe539CPB0LQgZqTB6tR0ZCZA1xX5gAv1EDNiLdvDLF4RSYDlJA9xvWy3qj/rAGRpO+OG364RuSjOS3d1ClqlQV8GiXY7BwZpsDoXoD8hbBWf31iGl5fx+CzFkcAIO6tTt5vfdsqwM2myY0bqy0XdhdjuZnxt1hjmukcCA0ogAhg8eHBEyokEQ9sR7E6UDq38e2Zk4q5pmZiUEYva2lrG2pJXTrRvHG7qoNbJ7dJfrT9rOVZtpxcYkgx0XAPe2uu3FW7cju3e2I52Jg5WPv2A+bmAkj3W8fn1ZfjbrsCXOBg3dIf72TtZnUYinDZLGXYnTXasAur+Ym3tV/YqHgH0e5SiDRs2ICcnB4MGDcLUqVOxd+9e0+f37NmDqVOnYtCgQRg5ciRKSkrCntm2bRsmTJiA6OhoTJgwATt27Oiv6ltCEASMG2dt/mDFY4vHY8e62Xj+7snYsW52iI25qrEd2yvPoKqxnfq+HcGuKh09rJQOrXxVgEaiPWjfmJwZT33+mZ01WLahHI+8eRjLNpTjmZ01tsq2owAA67bTCwxR5vDeGSEsymzJntPUviTRQxOQpDJo9aPV2Yzv9GVmJ5HbjxSckFav5YUjUOhLIvKJmaA1g1ouzexpNW6sygAit1Kn1SXSsoQV/boS2Lp1K77//e9jw4YNmDNnDjZu3IjFixfj+PHjyMrKCnve7/djyZIlePDBB/Hqq6/i008/xbp165CSkoIVK1YAAPbt24dVq1bhX//1X7Fs2TLs2LEDd999Nz755BPMnDmzP8kBED47CwaDqKqqQkFBATweD/U5szLMfqNFtaTNIq08Voyw629NWq0sGJfSV/fzXRh6pQkL5szU2oNGk10X2DFpMfja2JSQQ3ksCdeN36PVnwSzurImb/fyMr45SsJrX/BaiAQV+lmk3oeeRA9rVisVtAODxjqbpQs1wo7AUwU3qX0q6tvQdOoYMsdM1EJpmJXP+t2qxvaQPAekSLgsIa+d5t1w42aryhI+JQcNF7tdmQztgJNl2Sp1rWPMnDkThYWFeOmll7R748ePx5133omnn3467Pn169fjL3/5C2pq+mZxa9asweHDh7Fv3z4AwKpVq9DZ2YmdO3dqz9x6661ISEjAli1bmOrV2dmJuLg4XLp0CbGx4TZJGkid+KPiMWFBn8w6285vxg1eI3asm23JaMsK0vF/VxU4po9mrqhqbA8LkwEgJKDe+iUTLWmy+oY6oIyDWR9HZ3vlGTzy5uGw95+/ezJOfdlFpIlUf9OQDxZ1JcEYZNAYVA/o60OrzWpAyRRHCtHAwge0ujuhkaWuQHisKv3m/stldVqbPFiUa9ruasgTK7DWy9hednmUJuit3GyXEfJu6+siiiJe2XkAz356UeMTOzznVK71mzno2rVrqKioQHFxccj94uJilJeTk5Dv27cv7PlFixbh888/RyAQMH2GViYA9PT0oLOzM+QfoDS6+j/pOhgMatcV/ja8XKbkKo3iZfCcjJI9p3GosR0jR46EIAgIBAKobLiozNoEGVxvFPbNn9ShsuEiKhsuYvMndQCU36IFpYzKhouo8LcqJ5AhI5pX3qtu6kBU7zXPydq10Hvtb7sCURQRDAYBAJX1F/DKXqWOHk6Gh5Oxo+ocKurbiDQFg0FIkqTRt0lPH5S6VfhbtWcCgQDUOYMkBntnXAodKk0eHvi4mUdJmR9bD/gtafrd3jpUNbZDkiSNDpWmgqwELJ08HJIkomTPaY0mANh76jzk3nplJw6C0Hs/ipe160AgQKVJlmV8dLKV2E+yLPf2R53WTwCwcU8dKvyK0pAkSeNJfd311z9eNBbbHpqJX901BQ8vnY3V83K0/vPyMtbOH4lJGbGorL+gbSCrdddfqzTdNDYVa4t84HX31xbloCArAYFAQNeXrdi4R6Fbpa+kt+6yLEOWZQQCAVQ1tmPjnjqNPh4yNhP6w3i9sHflpNJhvPZwMlYUDMeOqnMhdLyytw5bD9b3KkZoSvF3e+tQ2XBB48kfLxqrmKZW5mH72llYv3h8CO+p1yodsizrxhZC+kzPezz6xo1KU1VjO14uqwsZW8fOdoTQVLLnNCrrL2jjZlJGLJZOHq5ZAkRRRFVjO363ty6kzzaVKW0ZDAbhb72s9EcvH6p9o94PBAI4fOYS/v2Ti1AWb0q/bf5EKUOl1Yr3nKDflEBbmyJ40tLSQu6npaWhpaWF+E5LSwvx+WAwiLa2NtNnaGUCwNNPP424uDjtX2ZmJgDg6NGjAICamhpt9VFdXa1tbFZVVcHv9wMAmk4dwfQUpfPWTRAxKUG5bjpegbKyMgSDQezevRv155Sl6JOFItJ694ufmyGi/ssOlJ1swXMzREQLQGyUch8Ayk+cQdOR/QCArKHAT6co98fEyXgkv5fxEmSsm6BcT0+Rcf9YCQFRgt/vR1VVFQCgwV+HFT6FEW7PknB7lnLd+MUJIk0HDx5EU5PiK9904pBG0yP5IsbE9dJ37DN0dCiDYteuXejq6gIAnKkuR2wUEC0gjKY140WMGCLD23yEiSZ/2xU0NTXh4MGDABBCU21tLRq/OBFG0wqfhAa/MuilVj/Wz0kEANw/VsL0FEXARl+so9Jk1k/BYBBnqsvD+iltMLR+6ujowO7duwEovF5WVgYAaG5u1iYkTU1N6Gk+hTsmDcPFL6pwU9Jl7Fg3G78uTsVLS1KwfvF41NTUoKHulEbTwgyFvm+OkjBvmKzRtHzMIBRkJWDW0Av40z+MwfN3T8b/mx+N+6YpppTdu3dr/dR0ZH8ITWo/nakuRzAYRHd3N0pLS+Fvu4K0wUob6PvJ33bFlKamU0q/zhummLkAYGGGhJ/NHorn756MTV8fhrnJPUSavjyr8Nu3x4r40SQRUbzCA/VNyoqhrKwMbW1tKMhKwJALJ+Dr9SDV815paSm6u7sRDAZRWlqKYDCI+i87QvrJSJOe9wKipNHkb7uijScSTep4aqg7ZSoj/G1XNN4D+mSEv+0KysrKMCz6GgClLllDofFexlBOo6m+5QLWjRfDxpO/7Qq6urqwa9cuU94zk4Fm6Ddz0Llz55CRkYHy8nLMmjVLu//UU0/hT3/6E06cOBH2zpgxY3DffffhJz/5iXbv008/xdy5c9Hc3Ixhw4YhKioKf/jDH/CNb3xDe+a1117DAw88gO7u8JyjgLIS6Onp0f7u7FRS/V28eBEJCQmahhcEIeQ6GAyC4zgIgoAKfxvu3rQfoswhipcRlAFJ5vD2g9ORLHyFrKwsiKKII+e6sPylfYgWZFwTFX0eLcjYsno29pw8j5I9X6BHVGInRglAj8jhewtyUTQ6CSs2HgQPGV4e6JE48L0z62sSB56TleTtEgeBkyFwwDMrp2Dp5OGQZRkejweV9RewatM+BCROmzEHZQ7b1szElMyEMJqCwSB4ngfP86jwt+GuTfshqfRJgAQO2x6agYLsJPA8j0AgAI/HA47jUOFvxcqNByBDETAqTYM9MiYlAp+3Ak/dmYf1O45b0rR1zRxMHhEHSZLg8XggiqJGkyiKONTUjhUlB0Jo8vIytq6ehUJfEoLBIP5j10m8VFaPKF6GKAMPFuVi4bgUKk0cL1D7qSArAZX1bVix8UBIP3GQ8fZDMzE1JwWSJEEURXi9XkiSpNWddM3zPBoaGpCRkYFjLVfgb+1CdtINmOpLhiiKONzUgeUl++HlZUiyspGsv1ZpenvtHOSnx6D67CXUX7iK7IRBKMhO1PpGEITevlT7htPRB2x7aCYKe+3vwWAQR5svY/mGTzX61H56w9AfRpqqGi5ixcYDEDgZPKeEOxA4Gf++LA9ejwe+REUDkWj6tzvzsH77MQwWJBQkyTjQykPggDcemoXC7CSNJw+fuQT/+U74UmJQmJ0YwnvqtUqHx+NBVWM7vrGpXOsnI0163ntm5RTcOSUdkiThyLkurHzpUwi6saWnSb3evuZGTM6Mp8qI6rOdWFXyKURdnwVlYJvWZ50Kv/EyAr18qPKbSl/1mUv41Y5yVF/k8FWQ03jvjYfmYEpmPILBoMZvJN7r6OhAQkLC/xxzUHJyMgRBCNNO58+fD5vJqxg2bBjxeY/Hg6SkJNNnaGUCQHR0NGJjY0P+AdBs+IIgEK89Ho92PTUnGQ8W5QJQmEWSOaydPxLTclPh8/nA8zy8Xi8KsxOxZv5I9Igc5N4wuffPzUVhdiJuGpeGHpGDsmDleq+Bm8alYWpOCtbMHwkJHHp6Nw8nZcbjWu+1JHPatdh7nZM8BIIgaAOi0JeEB+YpdQzKHIK9dZzqSybS5PF4tDR2U3OSsVpPH3rfzUnRnvF6veA4rvf5FDw0PxfQ6FBo+irIY/95Hg8WjcKqmTmWND0wTwmjwPO8RodKU1VjO9453AyeF7Bm/kiNJgD49rxc7fTtkXNdmuvlNUkxMZTsOQ1eEKg0mfUTx3G9/ZEb0k9r5udiao5iClH7W71W6268PnKuC38+dA4dQjye/7BO8fh56whWlBzAMztrIAgCCn1JWDN/JAJS356B/lqlyd92Bb9+vxbLX9qPR948jBUbD+C5v5/U+qavL9W+gUbf2t66cxwHjuPg9XpRkJWAh+bnavRJ4HA/oT+M11NzkrGsIB2izGkb3fkj4rF++zE88uZhLC/Zj10158No+va8XKya4cOa+SNxVeRRfl7xmHpgXi4Ks5M0nnzu7yeVdnr7KJa/tA/P7KwJ4T31WqWD4zgUZifivrkKzfo+0/OehL5xo9JUkJWAB4tyQ8bWxIx47TogKTxT6EsylREFWQm4f15uSJ891BsixOPxoP6C4vrZ08uHat+o971eL6bmJGPK+NH4Kshr4+n+uUoZKq1WvOcE/b4xPHXqVGzYsEG7N2HCBCxdupS6Mfzuu+/i+PHj2r21a9fi0KFDIRvDXV1dKC0t1Z5ZvHgx4uPj+31jGCB7B5WXl2P27NlM3kFWm16s3kFmm2VGDwkrDwP9NwGyNwftnYAoaSn6AMB/vhOD2+uw8GtFjr2DSO2khjcwftNqY3h54QjT+DnGsszaxu7vKg2qyWPDcUETNir0G4P6OpEyZz27Ip94n7QxrJbHwgd2Y0cZ+2b+mGTsORUePHHHOiVVItE7yN+GphOHkDluipJ+U1cXqw1UM1h5B9HGjR0edfIbC12qLBmSOQEN7fa9g5zKtX5VAlu3bsW9996LkpISzJo1C5s2bcLLL7+MY8eOITs7Gz/5yU9w9uxZ/PGPfwSg2ILz8vLw0EMP4cEHH8S+ffuwZs0abNmyRXMRLS8vR1FREZ566iksXboU77zzDh5//HFbLqJulIARkqTYF4cPH86siZ0KFtbB6iSMLcuzLO84aQ8jzAYMyeVv0cRhtgSHW68flnL0NPCcjEkJMqrblRWkHqqisip77fyRGJ0WY6rsWOvnhr9ofUMCrV4AnU+sFLoTuMkzYYQb3rGaALodO07lWr+eE1i1ahUuXLiAJ598Es3NzcjLy0NpaSmys7MBKBtOjY2N2vM5OTkoLS3FD37wA/z2t79Feno6XnjhBU0BAMDs2bPxxhtv4PHHH8cTTzyB3NxcbN269bqcESCB53lkZGTYesfsJKEZk7GcQHQaxtbqWdZ3nLSHEbSDQR+fPE/9tptcwnYjYrKUo6dBkjkcusgZiwBA938nnUGgHXYilUGrH+1kL6twszq0xVKvPprC+aQ/AqqxntxlmZy54R2rU8mRGDtO0O9hI9atW4d169YRf/v9738fdm/+/PmorKw0LXPlypVYuXJlJKrnGsFgEGVlZSgqKgoxBzlBJASU0zC2Vs9avaNG5MxPj7HVHqSBZ3fA+9uuuM4lrNY/Uu2spyGKV7xSnj8Sag6yOp1tFF4sh5Ws6kc62WsWk8m4Umi4QC6X5YCiXtFE8TL+7UYBy5csDOETOzTq4Xa2z6IEIxXgkfZsJGWJHQzEDnIJnueRl5fn2PShRySYrL/D2NJ+e/1gE14/2IQ1RTm4fxpbe9jNiHXT2FTiYalIRIzU6s+4vLdqOz0NQQn4cz2PB+aORHHe8H6JccMaXpsElphMZgexrPJXq/XTvx+UgN8dC2LU5E4UZicy0UiDW/Me6+TL7nixo5iqGtvhb72MYanZEZEldjCgBFyC53mkpqZGpKzrHVvcyayL9I4eJWV+LMobjlQLRnaaEYtWX1ZBYFl/xpUXS9vpg64BfZuzbu3SxjJYw2svL0jHdsNKAFBiMr1+MDy3AikYnh7fu3kUU/5qIHyCI4HDiUuKd4xRCViVpcf1XD3bGS/u9uWuOdqjcooBJeASgUAAu3fvxoIFC+D1epk310jPOF0K62F3NeEkAqP6zlufN4UJj2heRkP1PuQNX6i5sTmtJ0kQ0GzldgSBWf2NdTADScgb8fdjLdi8tw4/nSLiH0pqcd+83IgOcLtZsVJjB4Xx16rpWfC3XaHyHa2vspPYVzPGiUw0L+OnU0QEAgHL3MBmuB6rZ/14ZRkvTvfl1Db59711tveo3GBACbiAuoRLz1Ii/7Fof6tn3OaEdbKacDI7VZ83CtGABAzLnaj5UdMUntultb4sJ4KAVn+zOpCg91bSx9ZX66yEzQA2nxIQkJxtQpvBinZjW9H4izUYnh522sk4wQlIwCeXYvHhjmOa37wTL63+qBtgvcI06z+n+3IBqY9P7CgxtxhQAg4RHqjtInHTTT/gWWcILELZrj29PxiK9K2H5ufixvHZpnWkvet0ae1UELhtK1YPIQkc6i/3PRPJAc5CO0mBkr5vdt9N9EwVekXTdxaib6PcroJUv2knai6trk5XmG4nYvp7ej7pLxMwCQNKwAFClnCCjCcLRfys8iz0DK1CP+AjsXQ1fl8FyZ5uZqYwK9vOwS7j4MkbPhR/+9vfMGzCDMsBFKmltRthbhZKGzA/OMfqIdTHIwJ6RC6iA9yK9kidiTDrK7uZwAqyErD98wY8Oz2otYkKtU3tHiZcVpCOeaNTXJ2hsbvCjMRETP+syieNg3Ov2yoAGFACjqBnjmsi8H+PCrgmkp/VD/hIbfyyKBMzMwUNTsM+6wePLMuYN28ePqi9FPacsY7Gd2nPs5TjJruUWgczDxgS7aweQhv31Gk80h+rMrtpOlln2ywrCKtv0CYRvpQYrPtb+LjZW9sacliM1O6kb5LyO5PosdMeZv3r1LGBBO3Z1svIGMrh7jHX96zAgBJwAD1zyODQclW5tlqWRspUw7KRRWNQgDzLIr1jzGXAIkA4jkNsbCwCEtnt0K7Cs6M4nextqKB5wKigme1YPYScuoWyuhmSaHez8mSZ3Vc1tmvnK0jfMEvoUpidiDtn5Fp6L5Ha3Slddt8j9a+agMipYwMNbnjXLQaUgAMYl3DPzRBxypuLHy3JM/WVBtg8Sux8XwWLN4dZEhXWk6BWAy0QCKC0tBQ/OyjAaB5zovAioThZBCkL/STaabZk/d95w4eisaoMeflLbNXJKIi/NjYFD988mpl2pytPlhmzVQIXWnY0tYxAIIDx105h20Oz0dDeg5zkIfC3XSG6sBrb3SldTt5T+/fF3bXYfaJV+7esIN1RHcygjp0lS5aYetZFGgNKwCH0S7j0OC/uyE1jnrU5MdVQv2/Dm8OYBUw/KFmZV10K0+g8cq4LP6sIX+Y/uyIfq6ZnMX3DCDezaVZ7NQv9tGf0szjS99bfOg7FxcXaKVDWWbZRiH50shUfnWx1bNdnhdUs12rVtHb+SHgF81SYHo8HxcXFSu7xHHJIDRUkV03SWY+/H2uxXC05nVDsPhE6dnZUnbNc+ds9xay2yfU8LQwMKAFXKMhK0OJ8P7uzBiVlfu03s1ymduySZoxkXEKaDZIF41LCGBkIdSU0vmPcE1g7f6Rlztb6tivo7o1frwdNKJjRaeYWyoKtnzUytzWJfj1YQxeQvlc8IQ356TGmzxht6LTwDGY0GOHUbGI1Y6aVe8+MTNw1LVOjw6psO8KOtBFsBEu7GD2UvAKPqsZ2R2akeaNTqCt/pxvy11sBAANKwDXU7EabDeYPGkPaGZhuo4HuWDc7xOuFpAT0g5KUmNwYZtoYQdJIZ3biIDw3Q8SPDwro0a0zX9UtAAAgAElEQVQGzGbapLqrZbPQzlKmHqwH59Rn3QqL+tYuNB3aiyVLlpj2v1HBmoHFrt9frrO091UFwFKGOm70pg9a25ACBxrdsVXQ2sU4obCTgJ6mkGmTE6cb8qQ2uR4YUAIu4fF4IGZMQY8YHuedxJCsAzNS0UD14XftuBL2BKUwj5DtlWeIddfTWehLxoc1uegR67Xfl/fO2kgnQ2l1N8KuV4uZMLVzcI5VWJiV60uJQf7kJfB4PNRnSDZ0M7CYryLliACEruxYyzUz43k8HixZsiRk5hsJ19m9ta1hIadJqwirMz2k9/RYXpCuKa1IbciT2uR6YEAJRACZ8dHgEG4CoXmwsAwgp6cOzZ5160rIqsC++7VcNHddw46qZgDA9qpzIRt+TjakSfSYPUdDJA+DGWHWt93d3VomK9IzNHPZ924ehSNnL4Ws4uzYnp3sp7DQTVo1kmBmxlNTQ+qftRM4kJTMxugqSnMnJUHPX2bxkhovfhXC05E6vAiEt8n1wIAScIlgMIhzxw5gbVEuNpQ1aPfNhM1ji8cjJ3kIDjd1YHJmPHHD1OmpQz0aLlwJM2G4cSVkUWDBYBC7du1CaXW4d5AKJxvSAPtMkfYc6+a0lV3ezuE+GX1toi7z7eQKuGlsKn6wcCxzpjrSSsXufordQ1LqqtEOKuvbcKa6HCMmzdZSdgJ0pUXiu9FpMcSMZvr+Ub3wWKDnG7OJhNUqgmWckPrTyCfXCwNKwCW8Xi+WLl0KAFiYl8E049IPotcPNsHfdoU4cJ2cOtTjNx9+weR9ZEfhWM0svV4vxMyp6Nl3OOxdPexsSAP2ZvCkMpcXpDMpACvXR8A8vhFtBq3yiL6OdhRsJG3PNOjTW5LAckiKBX1t7AH2HQzjTxKtdpPsVDW2a26dJFh59jg5wMmy6g6lX4FKv16WXE8MKAGXkGUZXV1diImJYZpx2RlELCsG/bPq+QPj0tlqkNq1HZvRKcsyMoYoabJlykoACB1k5JgyoSjuPejGiscWjw/JorW96hxSYweZKkOrvQTAvF2oM+jWy8iNFxATE6MlS6fV2cxzxTh7jFQYEsD6tLhKN8u+kBnUNuYgI20w8OVVe+G7WRSn1QY7S/4Du6Yp1sOLZuN/Sma8JkvM+CTSGFACLhEMBrF3714UFxczLeGcegfRVgx6uBEMTm3HpCVt2xeHsbbIF2Ie04MkSNUBYyVkWH2vqxrbmTb/jN8g4Xs3j0J20hDLb9Jmj9mJg5h5hOa5otZff28RRTGarVTsnBZ/dkU+vAIf8rzb0CdqG0cJwA/y1HhKZP60G5SO5sGmx/duHoUfLBwLwNpMZjenBQvMxmfe8KG2ZEmkMKAEXMLr9eK2225jfn5vLXl56sY7yKwcq/t62LEdmy1pb7vtNtyGUPMYYB0UzKr+dlxmnShD2rfNNj71oM0ep+akADlsPGLXWyoSkVhpbeUV+DBPG7ceR2ob94gc1n9G9wxyEpQOoHuwqbB7Qp/VNMUKM/62K0sihQEl4BKSJKGjowPx8fGWaeFIs1NAsVdHys3MapCaza7szLJpCmryiDitPUjLd1JZxgNhpPqr3yB9k1SuHVdc/fedtp0KYlTSiiak3yBhxthMSx6x6y1lhNFDTa23WdvZnTi4Dda3Zv5IbNpTh6yhQONlJfy41cqE1WRkNtmJZPA+u5vt+vdoPGZHlkQSA0rAJURRxGeffYYFCxY4HuBzR6eE3XMzo6cNUrPZFWsoAyuvmbzhQ5nbg/ZNUv3t2qJZZqy079ttO9K39V40asaoMv9l/HjJRNM2sbMhaRWfR4XVhMLJ7N6uEDRm51o4LhlNxz5D5sTpId5BLPU1A4mWBeNS8N0F7DGX+hs0HrMjSyKJASXgEl6vF4sWLWJ61o5gd7vsNg5Sq8iiVsKE1WuGtT2sZnvG+rsJ/sVqB9e3h526WtHXI3H4eaUHQD0W5oWv+vSg9bsMhN2zis+jgqXt3EY7NQNNgU7NWUJ83u2+Q3/S4gZWYVDsyJJIYkAJuIQkSWhra0NycrKl9rYr2FkiVLLCbHZl9o76TVavGX17HD5ziVpXu7M9p0pRP9j0bUf7PinS6pi0GFt1VX9TwUPGmDgZpy5xTLNZmhCz4yKpB2vbOTVxmMEsntKIwUHiuImEWc7NSsVtG5DKYllJ2pElkcSAEnAJSZJw9OhRFBUVMXWc3VmKnpndZIlyMrvSb+iS8L2bR2nX6oab2h6fdafhpbJ6al3NfNFpYD2lSgJLADKAHGn12RX51Lqy5FD28MCdPgnPHxGYPXdIQoy0x8KqGN3mro705KO+tQsdnXXUcRMJsxwLXW7LNIJU1qKJw5hWknZlSaTQr0qgvb0dDz/8MP7yl78AAO644w68+OKLiI+PJz4fCATw+OOPo7S0FKdPn0ZcXBxuueUWPPPMM0hP7xu0N910E/bs2RPy7qpVq/DGG2/0HzEUeDweLFiwQPu7P2YpgL2ImLRvmgkMJwHDGi9+pW106w+lJYwqwEsmgeZopiWzmb2bU6q00AHGA0O0SKtegWfyR6flUL4mcXjmsMdxDmUz2BHuLHxnJ5gfC69TJx+psSiYtoD4G62+bjaMaW0cyQN3tLLUiYsRxlWhUZZcL/SrErjnnntw5swZvPfeewCA1atX495778W7775LfP6rr75CZWUlnnjiCUyePBnt7e34/ve/jzvuuAOff/55yLMPPvggnnzySe3vwYMH9x8hJpAkCc3NzRg+fDie+/vJiM0o9HASEZMEM4FhluyGpEBoWaCKJ6SivukceE6GJIceeFFnhSRazEI6uB2otNmoMRQwQI+0urxwhKU/urFO+pwTaZ6rmJU/KqzsSAghM+FuZwZvxz1VfxAPME89SlKgk0fE4ezZs/gyOAj1F64y1c/phrFZG9PKVDOmRWLVQ4NRQeplyf+KlUBNTQ3ee+897N+/HzNnzgQAvPzyy5g1axZOnjyJsWPHhr0TFxeH999/P+Teiy++iBkzZqCxsRFZWX1C4oYbbsCwYfZOkfYHJElCXV0dWq5Fm240OrU3WtnjSfGBzGAmMMyS3RgViL+NnAWqvvUyuM4WeDjgmsFf0cwWT9vktEphyEK3mSnM2B6soRtYvZUKshKQnx6D8vJySNLIsMHNKticmGPsrjDsCDE7B/FIk49gMIiyiqP4+f4ArkkcU/2cbhibtTHt3dcPNuH1g02mXnJmJkA9bhqbip6gROUrFaosSUtL+9+hBPbt24e4uDhNAQDAjTfeiLi4OJSXlxOVAAmXLl0Cx3FhJqTXXnsNr776KtLS0rB48WL8/Oc/R0wMeQOvp6cHPT092t+dnZ0AFJcs/f+CIIRcB4NBcBynXfM8D57nQ64BYO7cufjzoXOI5mUEJEACh2hBxjVR2Wgs/+I8rvUmWllX5MOPFitugsFgEF6vF7Isa9eSJEEURe3af16pK8/JimCVOAicDKH3+j9312LDR7V4YF4uflQ8JoSOw00dqL94FdmJgzAlM8GUpgp/GzaV1QHgEMXLCErKwF44LhkF2UngeR55w4diSmY8OI6DJAZ7Q0MA0QLQIyrh4srr2vB21TVwAKIFGT0iBx4y1hbloCArAbIsI4qXcU3iQmjyJQ7WIiiKoghZlvHr92vxclkdeA4AOHg4RasEZQ5eXoYvcbDWjnqaqs9cUuhOGISC7EQUZCVgbZEPG8v8St/wMu6fqwzCQCAAj8cDjuMQCASULGAT0lDf2gVfSoz2jLGffEk3IJqX0SMp9Hl4hY5Pas/jjknD4PF4IEkSJEmCx+PBnDlzIMtyGL/5EgfDw8kaTZIMiDKH7MRBEEURgiDg2dJj2LTXD1FW+ub+uSPx2JIJIf0XCAQgCIJ2feRcl2KK6OVDGcDmT+pQPCFNE8KsNNF4T+Bk8BwQ6L32n+9CQVYCcTypylANh3C4qQOP7wtoNAVlld9SUJCdSKRpSmY81swfic2f1Gk0fafIhymZ8SF0GMdTdkK0MoYMNGUnDMLfj7WY0vTK3josmjgMkzJiAQC/2nUKr+yt0/ppbZEPP1w0DoIgID89BmuKclBS5tdoeqgoF/npMZg8Ik5RhOc74UuJQWF2YhjveTwezJs3D8FgUOMVFhmh8pgkkffZrNBv6qalpQWpqeGn81JTU9HS0sJURnd3Nx577DHcc889iI2N1e5/85vfxJYtW/Dxxx/jiSeewLZt27B8+XJqOU8//TTi4uK0f5mZmQCAo0ePAlBWLTU1NQCA6upq1NbWAgCqqqrg9yvZwg4ePIimJmVGWl5ejuZmJUzynj17cOzYMfgSB+OnU0RkDVW++WShiLTBykbjczNExEYpwnJsoA6V9W34vO5LlJaWoqqxHV1dXdi1axcAoKOjA7t37wYAtLW1YdCFUwCASQky1k1QBtT0FBn3j1U6fN4wGd8cpcwyyj6vRnV1NQDgD6Wf4I87P8Ujbx7GW7vKsbm03JSmphOHMClBYbxH8kWMiVOum459ho4OJWn8rl270NXVBQA4U12O7xRlIVoAnpshIloAVhWkYd6gM7gxVcLwG2Q8WajU95mv52KSoMycRwwO4t9uFEJoWjt/JJK4yzh48CAA4JOq49j6XpkiFDIkrPAptN6eJeH2LOX68VlDcEN3axhNW0s/wnPby/HIm4ex99NP8dJOxYw4fdCXePUfx+N7N4/Cv9/IYX7OkDCaSktL0d3djfz0GAhnDyE/PQbd3d0oLS0FgJB+8sUA/zpD6esxcTIeyVdoPd1wFu9/VKa0XVMTDh48CEmSUFlZicrKSgBAbW2t1k8d5/waTSt8EhZmKNcXGk7C7/ejqrEdcmsdpqco/bFugoj9R+tQ1diOsrIytLUpUTR3794d0k/1LRcAIIT3npshor61y5Smp2ZyITStnT8Sj85NDeG9n0zzhvAeACzMkCC3NwJQxtOeA1XYXnkGH+37nDiemk5WY9VICQKn8IDKe03HK7D/uB/bK8/g7+9/EMZ7jy0ej+dmiPiP5ROw7aGZGBOoQzAYJNJU1diOPx84heaazxUvL10//XBuKs5/UY2SPaeJ40mlaYVPgr/tikZTyZ7TIf10taUOn1QdR1VjO/764V7MGQbsWDcb/zrLi8eK0lA8cZjWTwVZCRhy4QSufdWF7ZVnsPO9v4fw3ldffQW/34/S0lIqTUC4jCgrU/iNVa4awcmqymHEL37xC/zyl780feazzz7Drl278Ic//AEnT54M+W306NF44IEH8Nhjj5mWEQgEcNddd6GxsREff/xxiBIwoqKiAtOmTUNFRQUKCwvDfietBDIzM3Hx4kUkJJBnLqwrge7ublRUVGDmzJl4ftdJlKizTUHGnNEp2H2iLWQ2Fi0As0el4OOTrYgSlOPza4py8OjC0VQt/+v3a7GprE6bjd08Lhl7T7WGzVyevysfS6dkoPpsJ+566VMACJlhvr12jjYbI60E7tq0H5LctxKQwGHbQzO0lQBp5lLV2K7NmuvbruDnfz6Eb46SsfkkB3AcekQOz981CV+fNCyEpiPnuuBvvYzsxMGYmpMcQqs6+w8Y6PNwMlZNH4GV07K1mZm+n6rPdmJVyacQe2dp6mxsWy/dv951CiVlfm3Ftnp+Lh69ZVQYTUBoXHfabOzPlU145O2jYTPMX6/Ix/Jp2RpNAHDgwAFMmzYN0dHRGo9Vn+3E2583YOtnZ8JWAs+vzMfSggy8c7gZj719KIymX981BXdMGkZcCVT4W1FWewG/2V0XxntbVs+mrgRU3jvafDmsb6oaLqKhvRu+xMGYNCKO2k8PzMsFJ0t4ea9fo+nbc3OwfsnEkPH0Wd2X+PCT/fjdSaGXTwFJ5rCyYBi2VzVrK7b7elc9JN4z66df7TyGDWUN4CHDywP3zcvVVng5qbGYPCJO6z+zlQDPAW+umYNJGbF459BZPPLWkZB+8vIy5o9JwQcn2hDFyxBlIH9EPI6f7dBoWlvkw49uHQ+e5/Fc6bEQGXHfnD76AGViVlhYiEGDBpnyHmkl0NHRgYSEBFy6dMlUXhph2xz0L//yL/iHf/gH02d8Ph+qq6vx5Zdfhv3W2tqKtLQ00/cDgQDuvvtu+P1+7N6925KgwsJCeL1e1NbWEpVAdHQ0oqOjw+4LghDyv/Fan9yBdj1o0CDMmTMHAPDjJROxMC/dsNHYhh6xb4O0RwQ+OtkGgNPSL5aU+bEobzgKshJCzEz6a0nmNBt77OAozY4qyhzE3vs5KTEQBAH+tisI6jZlA73PkrwRVEzNScbqolzNmwXQxb3phT6olXpdmJ2IwuxEAADHcegK8CipQQhyUoZqz6s0GW3xPM/j8JlLvXbTPpr09AVlDiunZYfZUlU6/G1XtLoD0K61DeneHNA9vfeNdmwSffrrQ00dIbbgnFSFLyVwuNa7EpdkTruv7z+VRwCFx0Lt9Up9Arq656QqfZmTPIRIU07ykJD+U+sY5kWl4737547U+kp9nuM4pr6ZmpOMqTnaLS3CrRrxVe0nEk0vldWj2HBIbnpuGj48NQbXakKdDd6uOqe92yNxIWPDSCvt+lBThxa8UAKHHkmXaW9atq6NY0PqTrpeOqWv3jkpMRpNKgIShw9OKKsxtW+U6Kt9z6j0A8CGsvo++sRw+vR8oqeJ1E+kayewrQSSk5ORnJxs+dysWbNw6dIlHDx4EDNmKOvmAwcO4NKlS5g9ezb1PVUB1NbW4qOPPkJSUpLlt44dO4ZAIIDhw4ezExIhiKIIv9+PnJwcCIJgudFolfDdCFb3RhaXTisf9UUThzG5G9I2xlTbe03taext4RSbaQQiLKqwKsuMbrdhl2mbrCx++iqPdHoSUH/xqmUqSeNmNOtZALNsWMZzFZE4HEXbzCfB6G0jiiJWjvaiePyNqL941dTZ4OOT503r6jTENq1tWyghyEnP08Yz6dtmv6l7KXpZcr3QbxvD48ePx6233ooHH3wQGzduBKC4iN5+++0hm8Ljxo3D008/jWXLliEYDGLlypWorKzEX//6V4iiqNm5EhMTERUVhbq6Orz22mtYsmQJkpOTcfz4cTz66KMoKCgI06LXA7Iso729HT6fj/g7KaCYVcJ3PVjdG1kPERkHjF0PEqvnHy0ei91DOnDHkEzkpMbYEjC0NiAJMRLsCEwVLN5VZi6GZq61KmRZxr7jDXhy/4mQWaQR98zIDEnWroL1LACNV7KTrA9HOQmzYCfOkdHbRh03BQU+FPrMJ3r6+P1GfqPRwlpf4wFEwNz1l3U8s3zb+JuVLOkv2N4TsIOLFy+GHRb7z//8zxBPH47jsHnzZnzrW99CfX09cnJyiGV99NFHuOmmm9DU1IR//Md/xNGjR3H58mVkZmbitttuw89//nMkJiYy1auzsxNxcXG2bWeRgpFx1SQXtJOapPjoO9bNZvL7NhP4pITbZmW7qQsrfrC1KmyFs1436FlmsKwnQ/UwU37bK8/gkTcPh91//u7JWF44wlIx0trNCLftyNI/LHWxc76FxMvGOEdm9bEqz+x9M3qNB/mMfET6lhoixKyvWepMSsijfps29iMBp3KtXw+LJSYm4tVXXzV9Rq+DfD4frHRSZmZm2Gnh/06Iooja2lqMHj2aeQlHmtnRBImT2a0KvWnKTsJt2vKbZZntpD1UPLOzJqROywrSQwYI66qFdhbCafY1MzMTy2Evf2sXbh0h4v2zPESZvBJg6VMrBcjCKyxnAewcVjOLc/TW58rs3wh/2xVMyogl8om+vIYLV4hZvFR+M+NHq9UTrd/MQoSQUNXYjjFpMWEJeGh9ZVYvN2PHDQZiB0UAV69etf2OlYA2W4I6mS3aOQhEW35b7TVUNbbDf74Lsd2XMHq0vfrRlNQ/zfJpgyoSx/vt2Iz175Bsweo7VmVlJ92A+CiA56BtOgIgZu6igVUBWvEKqwnHzkl0ktJV/yYpAbUOtHGjllfV2G6aytGKH80ORpodWrTKP6yC1CfqasHs22a/OZElbnH9jqX9L4UgCCgoKHCluVkifBZkJWB54QjH5gLagKEFUlNRsue0Fq1SFYZ6qAPkmZ01WLahHI+8fQTf/msbfrXrlK36WbWBkyioNDgNS71j3WxN+O8+0YplG8qZMsVN9SUjPnN0yH7A2vkjsWp6FrFPqxrbsb3yjNbuNAVIiyJqxiukPrSqv1OY8YvZuFHpB0B9n1a+2j9WoNG3t7bVdDWqr6OdPmFBJGSJEwysBFxCFEXU1NRg/Pjx1M6zWsa7jZ/O8k2aqUBNuP3i7lrqBpd+VkgLb62W6+Fk3J4l4b/K6mzN0q3awGzQ0my1NLgxsRnbyMpTC1B45PZMEcVr+jxhWG3iTkNZm8HMLAaQM905Ac1UAtDHDYn+HetmU8ePSovKv+o/q30NEg+Q4mHpV6N6uPU2I4FFlvQHBpRAP4NlGU9iSECJ5eOEoexk7FJh5uHgJjaLHZOCVdwe0kY2bZBawYmJzYmnlh6TM+NNPWHc2KntunyamcVIme7M6swantlKWZuZ/KzeNfIvi6mQNR4WiY/7Y+L234UBJeASgiAgLy+P+JsdOzZrzHEr2M3YBZibVFhSMupd8oIyhz83KLMY0oAwE1ZWgnne6BTiZrbT2ZeZbZYEO4Ho9DDjET3M7NS0PQnAeShqGj0BUcL2yjOWCsVNeGZSm9idTFilO2WJBMrCA6R2crOapIGVTyKNASXgEqIoorq6GpMmTQpbwtlh6kgtL52UQxMGxvDOtMGdkzwEXxubgo9OtsLLy1jhk5A4Ijfse6yrIrv1NN6PZJYoY92cDHwzHtHDjD41lLXR7EFaHbFOHkj0TMmM004BA3SF4iQ8s9GLzNgmdmbXLK6kZpFASbDbv5FOY8nKJ5HGgBKIAGi5DOwwdaSWl07KoTG/Mb4/bXDrhcb8MSlYND4KRdPGhTzDuioyE+BmXjoqIpkligQnA/9wUwcaOgKQmzpQ6EsyPXFttb9A2pMgQS9wWVdfAVEK6UuArlCchGc23u+4Brxz6CxyeqO1sgphlnSnLDSQ4CbzXyTw35EXZUAJuIQgCBg3bhzxNzszC5ZnWbOWkTa8rBiV5eQri0L64EQbvrNgtqNVEYsAN9sItGtSc7pisDPwQ2lqDTtIpKfR6pyEHU8ota/srL7MciSo/2txkyw26q14+Ve7TqFkzzkA50LqxSKEae3wvZtHobWrh3o2wY3LqxPY5S8zWdKfGFACLhEMBlFVVYWCgoKQgF4q7MwszBLLG13X9IPZyGyPLR4fkvlJH//EDGZJZQD6BrYeXl5Gw4lq5KfPCWkPljMGdgQ4aSOQNY0f0P8rBqCPJi+vhCd+7Qs+RAGo9Vb3VMzOSQDmbr6k1YPdNjUT7PpTtGpbmW3Um/F9VWM7Xtlbh2+NUdokIHGW+1Ys9VQnLmZnE0joD/OhE/6ykiX9hQEl4BIcxyEhIUFLlkGCnZmF/lkzu6c6aEh5bhdNHGbbTswqMKzMB5IMJCQmau2hH2Bms8NI7J/QQNoziMQmvBXUekoyUN/FQaIchmcJLgbQV4uqm69RkEXiUBwtjeiiicMsN+ppfO9vu0JsE/U9tyej7dj1nU4GzOrolL9YZEl/YEAJuIQgCBg1Kjx3rFuw2D0/PnmeyGx2ZsT631jf0Q9uf9uVkDqsLsrF/GnkOClmPt+R2D9hTeNHo5XmTeJ0pqjWU5Q5fNxMH9gswcVU0GbYJIHr9FAcq9uk032snOQhxDbJSR5i62R0TvIQHG7qwOTM+JD9K9bVt1NhbVVHp04e/SVLrDBwYtglgsEgysvLEQwGI1quk5OwVrAjbFjeAfpO0j5/92TsWDcbjy4cjfLyclT424gDDADxNKs6u9PDav+E9KyxPqTTnjSaXj/YhGUbyvHMzr6ECNpJ6DcPh/1mBbWeUbyMNeNFRPEypmTGEetNoglQTHRO4bTMgqy+E8dWbrGsfWYsf22RT2sT9T0g3CRGO4X7zM4arN92BK8fbML6bUfC+kVPAw1OTqGznBR2Opb6S5ZYYWAl4BI8zyMjIyPiiaGtGGbt/JG4aWwq8cQn64xYDzd+z/pZqCRJyMjIQEXbV8RnzWZDbvdPSPWh1ddsb0NdTaXHD3ZtNnps8XgUj09FQ2MT3pifaeodxLKxbdd84fb8iRVfOHWT/NGt4/HpIQ5j8oZq3kFmG9PGPYVImPOcCGuWWb7TsdRfssQKA0rAJXieR3Z2tvWDNkGzz84dnaINNtKsVD+ztDs4I+H3rLbHRY4cQ8VKuRnt2VbC3KkNX6WVFumSpFxV2D27UehLCjkpbGYrN/ueE+EXifMnkfaHBxQ+mVc4IeQeq1B2ShNrKBUnm9KsZjsz9JcsscKAEnAJdQk3e/ZsRzv6Tk/Q0vYMinWnd1VGVwNyXQ+/Z317OAmFEQmvHVYbvvobSQmYwe7ZDVYesRIwkTwIaJcGGl847S9jm6h9xhLB0wlNTkKpkGBHcdgdS25liVMMKAGX4Hkeubm5jpZwbk7QsgqE6+EKqYe+PZz47btd5tul18o0ZIST0ACsPGIlYCJ5EJDFC4cG9T1SmkzW/tK3CSnZ0Tzdilf/Tf1eBOsMPtLeYDTF4dbV1I0scYMBJeASqh3PLpwwpp7JWARCpJmfhcn17WF35urWdMFCL4kGq6iaKmhhha1gh0esBIzZmQA7K0qnkwOWcA0kG76xbmqbWOWRIH1TrasxzSNttWvGVyQXa9YQE5GebDmVJW4xoARcIhgMoqysDEVFRbaWcHYFHonJnGaRsmvTpn2fxOQV/jY0Ha9A5oSpVEVFy+vr1nRhRa8ZDeqgNm6o62EVsZQmiK14hGSrNhMwxpmy3RWl08kBa7gGfX/R6qa2SUdsLrEM1n0QFvpp/ON0JWPsr0hNtpzKErcYUAIuwfM88vLybC/h7AhIGpPtWDfbURYpu/ZgViZ/ZmcNNu2pw5g4Gaf27sfq+blEU8tvPl/+cRMAACAASURBVPyC+USyHfOLGb12D8OZpUYkzXLNTnSb8QhLfmKzmXJ/bhYbhR2L27K+v8zqNnlEHPLy8nDmKlkEse6DsNBP4yuvYP88TX/me3AqS9xiQAm4BM/zSE0Nj7NjBZotmiQgzQaCm2xjepiZE1iERt9g5HDiknIISK+oWPP6Gk8kewU+RCnaDTCnCiVW90O1HMA6/ADLie6CrAQqjzDlJ7Zo+/7aLLYKGa4HLU2mVd1SU1ORCvMTvk43y415smkhWczKNiJSeYlpcCpL3GJACbhEIBDA7t27sWDBAni9XlvvsiY+D4gS8X0rJovU5jGL0FC/Fc3L+OkUEf9+SECPxGmKyu6JZJKtFgBRMFkNdgC229BqVcJiGlFpo/EIS5tYtX2kN4sBc+XEEm3Wqg45yUNC2sTqzIcTJUHKk200s9ldedL6i5TvwYkDgRtZ4gYDSsAlBEHA9OnTHcf/tprNGYWhChYmi9TmMctgUcsMSMDmUwICUuh9O8KKVicjSvacJiovK5s6jQYjzIQTi2lEpY3EI1WN7dRkKPo2sWp7pyY0J7T5267Ycqkk1U2NaCtJUkibGPuMta4FWeSMc3qYmcfs0GO2txCJsxRuZYlTDCgBl+B5HomJia7KsLNxBYQne6GBRUCwztBZ3OLUb9VfVt5ZXpAecuiLNVa8GsPHLkiDnTZjt9OGJDs5bWWhQk+bkUfMzEikNrESME4FEE3wWilsM4FthFlEWzvjhvZNY/jtwqx4VDZ2hD1nZh5jpYdmwl2/7YimIN2YZiMhS5xgQAm4RCAQwK5du1BcXOx4CWd344p2nwSrPAF2ZuhWM+w180di20Mz0HRkPz65mo63q85pwcdIbn3GAcPifmgF42CnKblzHVeZD9DR6mfMDWA80a0qjOyEaLQcP4ji4mIcbb5MpPF7N4/CTWNTHQsq0u9u8iU4WV2QvlfV2E6MaLtwXLLWJk7HDUnBkxQAELncv2rgOtbkO3YQCVniBP2qBNrb2/Hwww/jL3/5CwDgjjvuwIsvvoj4+HjqO9/61rfwhz/8IeTezJkzsX//fu3vnp4e/PCHP8SWLVtw9epV3HzzzdiwYQNGjDBPRt0f8Hg8mDdvnmuXLjsbV6w5YFWY5QlwM+BJJpviCWkYPrYA2zYfAsCF/KZ362MpT4+180dCBtkspIdxsNuxGZuBVL9DTZeom6J6hcFBxnfnjcASj4eqlLKTIpsK063fOkuSIZbv0ehtuNiNW2yOG1ZvpQXjUkLyTbjN/WuEE68iFkRKltj+bn8Wfs899+DMmTN47733AACrV6/Gvffei3fffdf0vVtvvRWbN2/W/o6Kigr5/fvf/z7effddvPHGG0hKSsKjjz6K22+/HRUVFdfdnsZxHGJjYyNSFsvGFWsOWBUsNn8n5gTaAKy/oASOkxEeOtlskNDKu2dGJu6alqm9p6+ncb+ENNhpS3g9WGZxZpuCywtDJx/GNpfB4YW9Z/G1/GzbZyfMQJvpR8pv3SrJkPotWkjzRROH0VeaKUOp44ZElx1vpe8uGI3vLhjNxM9OVkuRcr02IpKyxA76TQnU1NTgvffew/79+zFz5kwAwMsvv4xZs2bh5MmTGDt2LPXd6OhoDBtG7uBLly7hlVdewZ/+9CfccsstAIBXX30VmZmZ+OCDD7Bo0aLIE2OCQCCA0tJSLFmypF+WcE5zwKpgtfmrCog1zhCN4bMTonGmuhzRgoAeMTxevB4sJ6D1CkBfT/WaRXnp27DhwhXiqWBSLgG7J7RVGNs8WpDx3AwR/vOdWD4t29bZCRrMZvp2PLHcKBIr853qGUZaaeYNH4p33nkHIybNRkN7j+nBN1r4kWgPbxpryEqoO10tOV09W6G/ZQkN/aYE9u3bh7i4OE0BAMCNN96IuLg4lJeXmyqBjz/+GKmpqYiPj8f8+fPx1FNPaf6zFRUVCAQCKC4u1p5PT09HXl4eysvLr7sS8Hg8KC4u7tclnCr47Pi6q7AjvOwMCtpAKPQlY8KwYtR4/Sgp84f8ZrWfYDcejCq8jDNxWn1VJUdSAq8fVA6HqTS7qZ+xba+JwM8qBGyeohwqYnUNpsFKQLP2+Q+2VlEPuDk5pEX7HmmlKcsyar05+P7GA9qqkeTlowp7EtS2I8UasoLb1VJ/RFa9HrKE+N3+KrilpYV48CE1NRUtLfSkFosXL8Zdd92F7Oxs+P1+PPHEE1iwYAEqKioQHR2NlpYWREVFISEhtNHT0tKo5fb09KCnp0f7u7OzEwAgimLI/4IghFwHg0FwHKdd8zwPnueJ14CiyQVBAM/zCAQC8Hg84DhOuwaUo+H6a6/XC1mWtWtJkiCKonYtSRI8Hg8kSUJ2wiClbpwMgQOuSRwETkZ24iAqHQVZSgKPTXv9EGUOXl7Gg3NzUJCVEEJHhb8Nm8rqAHCI4mUEpb4NvILsJCJN628dh+IJaahv7YKvNya8+syPbx2HheNT0NDeA1/SDchPVwSgJEmoariIkj2nwXMyPL10vFxWhzdX36gMrNYuZCfdgKm+ZCJNv9p1Cq/srYMkK1m71hb58MNF45j6qSArAeuKfCgp80MCh2hBxjVRMdlECzI27qlDTtIN2PxJHQBlVyNKUNpi+9pZWDgumUiTvp/y02OwZv5IvFxW19tPwL0zs7XnRVHEpIxY+NuuwMMpSVWCvX0jyYqgzU+PofKev1Vxv1L7SQKHaF6Gv/UyCrISkDd8KNYU5aCkzK/Rt6ZImX3LsvK9H71ZiR1VLeAgI0oAekQOm/bUYeG4ZEzNSYEv6QZE8TKuSVxIP/kSByt1aLsCgZPBc0Cglw/Vaw8nY/U8hcf0fKjSBCjhRX5X3gBZ5TdZOQltpEl1NTb2k3INRAvAjqqzuPfGbOQNHwoATOPJ33pZo08/nvytXchPj4HH46HKBRpNVrynjiGajBAEAYIgIBAIaCsBuzLCCWyfT/7FL34BjuNM/33++ecAQMyVKcuyaQ7NVatW4bbbbkNeXh6+/vWvY+fOnTh16hT+9re/mdbLrNynn34acXFx2r/MzEwAwNGjRwEopquaGiU2f3V1NWprawEAVVVV8PuV2ezBgwfR1KSYDMrLy9Hc3AwAKCsrw3vvvYdgMIjdu3ejo0PxTti1axe6uroAAKWlpeju7kYwGERpaSmCwSC6u7tRWloKAOjq6sKuXbsAAB0dHdi9ezcAYP9xP/769w9R1diO5uZmXGk6jjXzR2J6ioz7xyodvn5OIqRWpY61tbWorq4Oo6l4+DX8150ZeP7uyfjtogQsHxMdRlPTiUOYlKAIiEfyRYyJU66bjn1mSlN+egyEs4eQnx6D7u5u7Ny5E6Wlpejo6EDL8YNYXjgCvhiE0HTq8EEAwKQEGesmKANqeoqMplNHUJCVgElx16g07TlQhZI9p7HCJ2FhhtIGV1vq8EnVcct+amtrAwBMFs7g9X/Oxz0zMvFkoYi0wQqfPDdDRGwUcPRMO56bISJaAGKjlPsAUN9ygUhTW1sbysrKAADNzc14/6MyjEmLwbOL0vHc/CHY9tBMjP7/2vvy8KiKdO9fbwlbaAIBspCNHUmITZAlQkCQsMgMgiM4cr3oKCBcLyI6gs7zfMB81wGZAe98IiKOonfEUUeIjtegoIEECBIkHUjYDJCQIAQIZBWSdPep74/mHE6f/fSSTkj9nicPh9Pn1Kl6q+p9q+rdnOdRUFDg0abEiM6YEcdgRpy7HWybEiM6K4693uZbon569V4XojsxXD8tGdsHmUvSsH6kC589MwLLJw/gxt6P565gXAf3rrJ3R+CPw93ti+vi7m8A6NPRif8abfLop8Xj+6KHoQH5+flIjOiMcZEE8/q7vzk5hsEjCQyen9QfW38Vielx7nrJzaeLPxVh7X0MQk3AkntckmPv1XtdiOviVkqvHUlE/RRqAtdPZVdqVOcTv596m295jD12PvUgtbDb7ZJjzxcewY49JR7R0NCAXbt2YdeuXZp5BL9NSotrJRgIuzTQiKqqKq5BckhISMDHH3+M5cuXcw1m0a1bN7zxxht46qmnNH9zwIABeOaZZ7BixQpkZ2dj0qRJuHHjhsduICUlBQ8//DDWrFkjel9qJxAbG8uV4ctOwOFwgGEYhISEwOl0+m0nsOG7s9iacw5mo3uF8mx6Il7KGAiz2YyCsusoq2pAYq+uGBbTFYQQTSsXpTYdLa3Co1t/AEMMHquxHYtGyu4EpNrkcDi48vmrFak28VeYJgPBZwtHIzXRvfqXa9OXhT9j+T+LuFUzu7t5/ZFhmJ0ap2s1duxiLR5756BohbludjL+z5dFaHLd2Qk0uQzYuXgMkqPDFFdj67JO4v0D57k2LRyXiJen3YOmpiaYTCZYLBaPNr2edQLv7i/ldgILxibi5elDVcfe7LfzcPLnGq6fRsR1xWfP3q+pnzILLuKVncfQ5DJ47ASMIPjnolFITezJtanoUj1KrzUgvntHpCZGeLT19awT+NuBUm4nsGicu+4ulwvHKmpQduMW4rt3wL2x4aKx9+P5a/j393/ATacBIUbASQCGGPAbWyR22i9zO4Hfje2LFdPvgcPhQNGleuT8dA1b9pV47ASaXMDOxWlc32hZNRdcuI7H3jkk2gnsfHY0hvWx+jyfvN0JsKklvdkJ1NTUIDw8HLW1tboUzLqPgyIiIhAREaH63JgxY1BbW4v8/HyMHDkSAHD48GHU1tYiLS1N8/euX7+OiooKREVFAQBSU1NhsViwZ88ezJkzB4B79VVcXIz169dLlhEaGorQ0FDRfdaSiG9RxL/mn80pXTc2NgKAhzJHz7XBYOCujUYjjl2s5eLwNN/e4W3JLcWUpCjY4sJFmaqk6q63TamJEViY3g9bctwMDHCfeacm9tTdpsbGRpjNZtU2McSA5ttLkIXp/ZCaGKHajsSe7iMVB3Nn1+dgDNx9LX3G1ssWF46nxvbjzoabXAZ3GISR8Si9fhNbcs6DwM1kFo/vi+Hxdxx52EnNb9++M1dv60HcdXMRA97OLcPkoVEY0qsjVwe2TfbyagyItOK12cNEZqZK7bCXV9/2T7hDgx/L63DsYi1sceGq/ZTYswuntCcwoMnN0/CwLYbrb7Z9Qos1frtXTB+KjKRo0bn4n3f/JKlbEo6336XF463cco/xtmLaEMwbI1ZWWywWDI/vjuHx3T0ivUr1jXA+8fuJvS67fov7rosY4Lo9Dstu3OLmli/zSW3sSV0TQuByudChQwfuVEOOR0i1ydvAcwHTCQwZMgRTp07FggUL8M477wBwm4jOmDHDQyk8ePBgrF27FrNmzUJDQwNWr16NRx55BFFRUSgrK8Orr76KiIgIzJo1CwBgtVrx9NNP48UXX0SPHj3QvXt3vPTSS0hOTuashVoSTqcTu3fv9qtG358hoLWAVbJOGRrpc7IMOXpoNQFVg78tM+QUfHoUf2pWMmXX6lFRuN+DJlKKZy0KbgCc7b4QWseHFA1n26Kxca5N0/eFZXljnup0OjHAUYrPF3laB0mVKYQ/lLJqynP+mAfgVwWwHALBS7QgoGro7du3Y+nSpZwlz69//Wts2rTJ45kzZ86gttbtdWkymVBUVIT/+Z//QU1NDaKiovDAAw/g008/RVjYnXCtb7zxBsxmM+bMmcM5i33wwQct7iMAuCX1zJkz/VqmVusOXzMZAeoWQXrN6Pj08MYEVAlqwspbyJnHagknoMlKpldX2EbcGSO+WKYoCRw9duqBsG4B5IU9PxQI+012nKQm6v+O1lAPSu/LLSaUaBzIzHyB4CVaoFsncDegrq4OVqtV99mZFAghqK+vR1hYmKLCWy+EA5HdKsv97m0u3lmb80T3M5ekcUxR6XcpsPTYfOCih4moVBRQYZuUoLW93gpGb+m5s+Ailn92TPb3xeP74uWpg1FfX4+z1U6UXb8p66uwcU6K4m5Arj/Y73iT9czfUKojH6wX9QvTU/w6b/RCKkGMWv2Vxr8v8JWXeMvXaOwgH+F0OrF//36/x/vQm2ReLniaEkMMRKx6p9OJfTm52PYDIAwboZYER67eepLaeMPI9azMhXWTW33zYwE5HA58tzcHr+QbRA50fHgbGvz5Sf3xwmR5vxt/7Bi1QouHNuBWtsc0XkBBWYyH3qmlwd9RaA1eGKhj2UDxEjVQIeAjLBYLHnrooYCULXXeynq9SoE/OLUwxEDEqrdYLHDG3Isml3h1zHqQ6jlf15q5yZcjFl/zLkgdK/CZcvHlBiw/pKy08yU0uDCuD5/pe5tDVw5aBIpadjbArYRfccSMjYlN3HFQIIWVWtl6ghf6KxidEIHkJUqgQsBHMAyDmpoadOvWLaBp4bQMUjb+DCAOtOZN7BitSlj+BEvpY0V0RxeMIGAE8YPU4uPozdzEL88XZboWYffpkXJZmqqdr5dea0BCF4LyBnjQ5PlJ/RHfo7Mo6qgco9LSH2rjxJdol8KyHxjUE0snDZCtKyCdnQ0AjCCI6wIk9OgkWbaWmFhaBYY3KTzl4O9gdHy0FC8RggoBH+FyuXDkyBFMnDgxYB2ndZCy8WcmDpbeXmsNs8x/Tm/45yXpCUgxXcSz6YnYnFsmWT+5Ca4nc5OwPLlgYnJJa/jtUWOuSoyVpZWSojK+ewc8NZDNtnbnPj90tFYmqPeYUKnOeiBV9t4z17D3zDXZuiodDVmMwHPJBiRHh+nexWlh6nzLHrWy1SzX2GcCfZzWErxEClQI+AiLxRLweEVKZ8EAREpGfhhdPrSGWRbel2NwUpN3c24ZMpek4eW4cExOitYVH0epPrOH91GNt6Nl1yLHQJSS5igxVi1HA6mJPbHn9EA0MdJ108sE5fpDS7Yzts56j16Uylaqq5CubFn87+oNeKdEK6ndilrZWizXAq1LAVqGl0iBCgEfwTAMqqqqEBERETDprXQWLDeBHhjUE3vPKMdU98XmXk6JZgRBacUlpPSx6j6mUauPWnlaktQrMRAp5qrE/LTSimEY/C61hzvO0vWbIsbrL78QLQJp8fi+XukJtCit5eoqpKstzp1e8urVq4iIiPApQqvwvtRuRa1sf/ueeIuW4CVSoELARzAMg+LiYqSnpwes47wZpFOTIrF0knRMdf4q0Bt7caXjEbMR6NBwCQwzCEajUbdyWa0+auXZ4qST1CslOPEmCqvW9JSA5xjhe7aqfUOvAlJunGQIVuJCE0gtegI1qx+9deXTRM/4VqKVL0lm9CbRCQRagpdIgfoJBCGJg7eQ28LLMWWpFZ6v/gVqdtRS9upqPg96oVSekm8DIGaA7G96LJYCYZPvz28oHfXI+TWo+Sjwy34zu0TEVP1BD61HVFLjndULKfW9Wtn+8L0JJrzla1QI+CgEGIbB5cuXERUV1aLSW4hPj5SLEs4AngzOG+cv4cSUYyKsEi2lj1WSHv42/5MrT43JyTFbtfr5Un+tY0TKP8LfCklhDgEWeh2glOqmpd6+zBulcSyVbU6LgPJmbvgbvvIS6iwWJDAMg3PnzqF3795BFQJyeU/5GbP0HofoSenHKtGcTqckPYRKQF8nlpxyVO1ohU0UfqyiBimx3TD3vjhNK0A5nw0tDFrrGOF/Q8+qVGtdpJK+A+64QVr1QEKrKiG01ptPk2MXa3XF6ZEbx/vOXHWH8JbJ+6yElo7XJYVg8RIqBHyE2WxGenp6sKshy/z4GbP0mlHKKVGVzm/l6NFSW2095p4f51fgh/PXJbNZKZ2RC9uiltmKTxMphu2th7RUXZToKsfoxg64Y0Gj9chRLt+w1nqzNPEmTo/cWOdbjckF5JNrn7/0Mr4gWLyECgEfwTAMKioqEBsbG9SdgJriTo8ZJaC8MlJS3krRwxdvXm+ORPSYe0qtjNl2ajWLzbRf4sqRYlwsTf5x4hfVeEpKHtLCPMhydA01Gz18EFjIMTSHy+28IMfotfafntU0wzA4WHga7+a6w4tLQa4tamNdrn5Kgqw1WAgFi5dQIeAjGIbBzz//jJiYmKAKAUDdXV+NgfOhxQpH6l0peiht3/UoAPXsHvSaewoh1361MqSYD8MwOH3uAt4/UAdhPCWp9+U8pIV5kOXqIueUJ8c8V+woUtwRaWXuuqLfXq1D0+VLMBnAxfLX0xb+OJYLyKc3rEigIqtqRbB4SXC51l0As9mMtLS0Fk8OLQdbXDjn5SgEn4GrxfBhGQYf7MqIDbnMhqjgQ4oeStv3dbtOSf4mN2mlvqkVcvWYZYv2+L/SClDL8YCQaZrNZvzSrS+XxEQNrIe0HFg6qNVFil4rpw2RFDJKOyI9ToVyY4bFul2nMGtzHpZ/XoxXDjZppolUW9hxLGfOya+fmn+BsMyWFgBA8HgJFQI+wuVy4ezZs1zKudYALZNRDnwGv3LaEGQuScPGOSnIXJKGFdOG3JnEnx3DrM15IiYuRQ+p+rCQmtxK0Rz1rOaFkKPLG3NtonbqKUMIIXN0uVzowVTDZNBmiMf6b2QuScPjI6UFOrvKVauLFL3kjAjk6qJnPEmNGRZ8wW4yEEyIYjTTBJDvezk6fHviTs7d1nDmr4Zg8ZLWsXxtwyCEoLq6GgkJCcGuigf84QTGbsG1bqnd2/x6dPnliogeK6cNQajZqLptVwuApmXSKukR5Ogid7wlBX4Z+0uueayipZgjIQSdSCMWjkvE27x4SovH9wWBOMcCv06AdBA2vrWTXDgN/nNq9wD3jkiuLXrGkxwt+UzcaAASwggOXjHg3rhumDcqnquXXFuUAhBOGRqp6g0e7DN/NQSLl1A/gTbkLOYPyDFILXbSSjb4P12p12Q94k0SGxazbdEYq2CFA/jPtFKPQtrXZ/WGOZazfdfjcCZ8lqUtG24jUOGc5fqXn39Bqn58SPWpVie4lsyt0NKgfgJBgsvlQklJCQYMGBCU9JZ6oMQgtSj/lKxL+Nv8yTEM3s09J1KQqq3GlKI53nK4sNN+CTsVrHD8ZVop5x8hxzzUdhH8MSL1rJoPhdZVuJ7VunA3I6St1nzHemCLC+diWrHjZM/PRriIQaQAVtrhSPWpr8EQWwOCxUuoTsAPuHXrVrCroAo1RauWSSR3Nsw/YzYagG4h7n+lmDp7Zvz8pP54flJ/ZPB8F+TqkBLbTdJyRahL0Kr8U6KF3G9KehAtuFhViy/tP0sqttX0LEBgFJa2OHdmNC209QV8PdPSSQMAeI4TuW/b4sIR30OblZYverDWhGDwEroT8BEmkwk2my3Y1VCF2kpf65mp1GqTzzAcjAGfnHevYuSYOt+1n7/6kzNh5Cv4pOrObvFZe3chhPXQKizkoNXHgcWfd/+ELTlVAKoAeO46vPGh8MWhSwi5Ngt9ErTWQQipOrF9zI4TqTqp7T6l7iv5h7SFI6Bg8RIqBHyEy+XCqVOnMGTIkFZ9HKQ0mdhJMmVopKbjBOGWms+8zQaCGXEMouP7aXa24jM9KQWfUn4EIZO5N9aKwopa7v9Sgmx/ibZ8C0oQ2sgr6Vr+lnsOD8cz+N9yI5zE4NFef4Ty0OPQpbXNQp8ELXUQQq5OmUvSkDGkF4pOnMD/PVAHJ/HcDvgS5lk4NttSULhg8RIqBNoJ5CaTXNhldguvdfXErcKu1aNb01WMHzVY8jk1pqcnPwIgdrgqrKhVjB2jJX6OlkTpfEbli65Fz0pXidF7G/tGbvclLF+P0xX/23J1mpkShZCG7lhg6CGymPJWJyKEL57q7QlUCPgIk8mEpKSkYFdDE6SyPEnFlr9S1+jBKLWunu6swuTj7KsxPbnfl04aIMqPsLPgouSzFpNRVrGpJX6OkE5SkSm1MsXEiM5wEgO+uOC5suM77vkjlIcvdvBaPM3VlPdvZpfg/SdHavp2YkRnbt4kJQEZSdG6d59a0BqCwulBsHgJFQI+wuVy4fjx4xg2bFirPg5iwZ9MckxULnwAIB/hkT0Oie/eAdUXz6GuQxQSe4VJWsKoZQ9T+52FVh2Alt+UrEjYYypW78DPWKZF17I4PQHVF89hR5kRDsYgYvJqK10tOg9f7eC1+CQIr/nIPn1NZMNviwuX9T3gz5tAWey0BQcxPoLFSwIqBKqrq7F06VL861//AgD8+te/xptvvolu3brJvmMwSLuRr1+/Hr///e8BABMmTEBOTo7H73PnzsUnn3zip5rrQ8eOHYPyXV+hZzL8v+9LPI5j5Ewq75j+XYOLGCR3EWpMT8v2X86OXMj49CaVl4MtTjpjmVJkVvbbk++JRG2PZoxM7YHEnmGy9ZOyZxc6oynpPHyNfaOFNnwzTyGEK+x1u0551H2WLdrDbyHQ88ZXwRgMBIOXBNRZbNq0abh48SK2bt0KAFi4cCESEhLw1Vdfyb5TWelpCbJr1y48/fTTOHv2LPr2dZ8DT5gwAQMHDsQf//hH7rmOHTvCarVqqld7dhYTQsppaKdMHBkhlLJ1CZ9Tmnh6rTfknI6EKR+Vzur99U25RCZCT2A9ClY1r2lv4uXrgZYEO2qOha0hSQuLtmId5CtanbPYqVOn8M033+CHH37AqFGjAADvvvsuxowZgzNnzmDQoEGS70VGeq6svvzySzzwwAOcAGDRqVMn0bPBgNPphN1uh81mazVB5PRAavXYq2sHDyYkzNHKQjIujZFgXn8G28+6jz7Y5+Qmn9Y49fz6yR3B8P0V9CaVV2MUekJrA56C0WIkaLxcgqNlPZGaEKFYv8SIzqpKaSWdhz+gdjyjZYWtdkymZ974ysRbs4MYH8HiJQH70qFDh2C1WjkBAACjR4+G1WpFXl6erBDg48qVK/j666/x4Ycfin7bvn07PvroI/Tu3RvTpk3DqlWrEBYmHYc9kDAYDAgPD5c9xmoLEE4SKaYmJQSkjpMYApTVG8AQ5ecAbdYberKbaY0aKWQIWgSRntDaQl0LS5ML128iNUG5ft+fuiJ5X0tdtKan9MfKWO3oSY1eWudNWzLx9BXB4iUBEwKVZCM/6AAAIABJREFUlZXo1Usc4rVXr16iIx85fPjhhwgLC8Ps2bM97s+bNw+JiYmIjIxEcXExXnnlFRw7dgx79uyRLKepqQlNTU3c/+vq6gCAi9bH/msymTyunU4nDAYDd200GmE0Gj2uCSHo27cvjEYjHA4HTCYTd202m2EwGLhrwC3t+dcWiwWEEO6aYRi4XC7ummEYmM1m2WuXywVCCHct1Q61Nh27WIvSq3VI6NkFw+N7wOl0IqWPFba4cK5Nz47vi20HzqHZBRAY8B/p8bg31q3bWZIej825ZTAAMBuBfZeNMIAg1ETwu7H9kNLHCofDIWpT6bUGhBgJmhkDTAYCkwFoZgwovVaP5OgwFF2qx7u552Axup3QzAaCv90OR7E4PQFb95fCRQywGAkWjE3kVphGo/uoJMRI4CQAQwzua8bNhPj9dLT0Gt7JOQfAgFATQbML2JJzDpMHR2D47VW70+l0r37TE7Ht4Hk0uQwwgmBxuvubwr6JD+/gpjevTfsrgf/s0Ykbb/Hd3c+Yb0fRdN5uh1sIuK8ZArhu1911+3pJegJS+li5erHjcH3WCWzJLQVzux33RFthr6jj2rQovS9enDwAG/aU4J3c8wgxAU0uA55NT8SLkwd4NfaGxXRFcnSY5NgbFtMVz47vi/f2n+PasSQ9AcNi3McU/HkjN7eOll7DVlHfnBf1TWubT0ptUuMR/fr14573pk3eQHfYiNWrV8NgMCj+/fjjjwCklbyEEM2S7v3338e8efPQoUMHj/sLFizAgw8+iKSkJDz22GP4/PPP8d1336GgoECynLVr18JqtXJ/sbHu8LzFxcUA3EdXp065XfWPHz+OkpISAIDdbkdpqTsTVH5+Pioq3JYTeXl5uHz5MgAgJycHubm5cDqdyM7ORk1NDQBg9+7dqK+vBwBkZWWhsbERTqcTWVlZcDqdaGxsRFZWFgCgvr4eu3fvBgDU1NQgOzsbAFBVVYXc3FwAwOXLl5GX5z5iqKioQH5+PgCgtLQUdrsdAFBSUoLjx4/ratPWrHzM2pyH8tOF+OOn7pAFubm5qKpye7eybVo5bQj+PBrYMGsQMpekYaDjHNemQY5z2LFoFDbMvgfrR7rwTkYYNszsjz+PBjKGRuKLwz/h2z3fidrU23wLS+5xT6j7ehL8bpB7EPcgte56Vv2CyTEMHklw358Rx2BGHIPSql+QEdWMvz0cg41zUvDWlHDMHhjq0U+2uHCsGW3BsHA3k12e7MLyce4dBr+fKop+QO/burj1I13oGgKEmoCLx/NE/bRkbB/8ebQ7KNnH85MxzHRRsp9+qTiJZ8f35doUYiRYO9oI55VzXD8Zq92OWGybAOCRBAaTY9zX8/ozGBfprvsrIyz4y7Q+yFyShtFdrnNjj+0ne3k1ejecRVwXdzv+ONyFy1W1Hm3advA8srKysO3geXQNcd8HgC+OnMeub77VNPbs5dX48sBxfJ+bJzv27OXV+Ne+fOQctmPltCF4e3pP/CWjFzKXpOHezjX414FC2MurcfjwYezduxdOp9NjPvHHXsWJIx5tYvvp4vG8VjufpHiE1HwCxDyioaEBBw8e9LpNWhfXQuhWDFdVVXENkkNCQgI+/vhjLF++nGswi27duuGNN97AU089pVjG/v37kZ6ejsLCQqSkpCg+SwhBaGgo/v73v2Pu3Lmi36V2ArGxsbhx4wbCw8N9kvLNzc24dOkS4uLi4HK52tRO4GhpFeZs/YFbbbKr5h2LRsEW392r3U1zczMqKyvRp08fbPj2FDbnXoARBBYj8NS4fnh5yiCPdvz5m1N4O7eMWzU/Pa4fXsoYCEIIii7V4zdvH4TRcGcnAAD/XHw/t6JU66fjP9ei7PotxId3kGzT0dJr+M07h0F4q00CYMeiUR6rTW/6qaDsOsqqGpAQ0QXhpA4xMTEICQnx6I+Csusou/4LLty4hc17S7hVM7sTeG7iAPznA/0UV5hfFF7CK58XwsGA2wmwOzZ+m54Y2Qd/z78IA8DtBAwg2PCbZMweEc+1qfhyA0qvNSC+e0ekJkZI9tPvxvXD72/3Ezv2/vLtabydW8b10zPp7mcAd+gM/q5g8bh4zLmnM+Lj3d+9s/qvwoUbt5DYswsYlxOPvnNY1KYdi0belTsBo9GIiooKREVFISQkRHebampqEB4eHnjFcEREBCIiIlSfGzNmDGpra5Gfn4+RI91OJIcPH0ZtbS3S0tJU33/vvfeQmpqqKgAA4MSJE3A4HIiKipL8PTQ0FKGhoaL7rC0u3yaXf81Xzshdh4SEcPG/+SnhLBaL5muDwcBds4NF67Vc3bW06UJ1I1y3Xfb5GZ4uVDciNdGoux2Am9bx8fGwl1djc+4FAG7G1MSIz/uNRiNWTB8q6yxkiwvHgvR+3Jmwk4ht7IVtEl4Pj++B4fEej3vUNzWxJxaNd3+jyeWmweLxfZGa2FP0fGFFjUc9+f1x7GKtqA3DE3pgeEKP26X04Mrj9wf7jL282iNaJqtUnzCol+o4TIzojCZe/7HtEF4nxXYH8n8GAdB0O28JgQGJvbpy7Vj/7RlJHQzr1esiBriIuC+P/1zHPcOGgeD7l7jLvFOXt/dfQEZyGhJ5Y1nq/H+hxr7hXwdrPmm5VptDwlwCetvkDQKmExgyZAimTp2KBQsW4J133gHgNhGdMWOGh1J48ODBWLt2LWbNmsXdq6urwz//+U9s2LBBVO65c+ewfft2TJ8+HRERETh58iRefPFF2Gw23H///YFqjizY7WxrSjGpFbpywmpUJLL0qOoUL/m7lGJWyXrDX3lfvUk0w4fe0NMepqhX69Cx+hwmP5AuO0Z8sWmXelfKn2DufXEorfpFt/dzqFmauWj1JJ4xLFp0P8RIcOHEUSRHT4DZbFaMMxTMvL8tiWDxkoB+afv27Vi6dCkyMjIAuJ3FNm3a5PHMmTNnUFtb63Hvk08+ASEEv/3tb0VlhoSE4Pvvv8df//pXNDQ0IDY2Fg899BBWrVoVFI9do9GIfv36BT3JvDfQwnj0Wmew9Oji7CD5uzfemr6a+Glpg9I3lKyY2Gup31j/AaOBYFg4wTHHT1g5/R7Zevoi8OSiuwrLUvqG3tSdWj2Jpay5nAToGR3HzRslay42hLbeeFZtDcHiJQEVAt27d8dHH32k+IyUSmLhwoVYuHCh5POxsbEib+Fgwmg0IiYmJtjV8BpKTMGbAFwsPWIgDsQ2cXBPyXek4C8HH38EEfMm9PS+M1e57zLEgMIbBhTmlmJKUpSqDb637RW+K1eW3H05Rj5hUC80ORnFxYKSJ7HFZBSNhUXp/XB/ykDVb7P324OpaLB4Sds6v2iFcDqdyM3NRXq6/Fa/tUOOKXgTgItPD1bAvJldguzT17g/tQnsrwmvlrBeLkaPUPD4GoMmxEiwPNmFjUWmVhu8DFDeGfLjJ8kJ5qWTBkgKATYkBv/95OgwZGdnc/NG6dvtJRposHhJ2+RarQhGoxFJSUlt8jhIDd4wPyl6CB3NlCawvya83oT1SoJH7dhM6rcJg3pxil4nA3xRZuT8FFozlHaGvnoS899nGEY0TuS+3daigXqLYPESKgR8hNFolHSKuxvgjbJSSA+1Caw1JISeCS8lSPiQCjKnJniUmKPcbyztGBhwulbaskkrvIl15EsguUB5ErOQmzdS325r0UC9RbB4CRUCPsLhcCA7OxsTJ070MPm6W6BXWSmkh9IE9jYkhBrkBMnjI2Px6IhYURu0Ch4l5ij1G0e7q3UIuXoSUx7sz/2mh0nrPR7z5/m5VD3V6q5FiMjNG6myfbGcaksIFi+hQsBHmEwm3HfffW0il4C30LMyFNJDKj+wXFYwdvXt64SXExiPjnB7igstTPy10pRjYCl9rKipCeNoImTSs2zRGDegp2wuAT3HY2rPa4kQKpdM51mJfvNWwEjNGyXh5S9T4daMYPESKgR8hNFoRPfu3YNdjVYDPj3kjmUyVNIhBiouvlwqTX+sNJUYmBpNMu2XuLj7QqaqZpmk5/xcrv1ybRBC6jct+hopwSOcN1qEna+mwq0dweIlVAj4CIfDgd27dyMjI+OuPA7SCz49fEmHqGXC63EAA6RTabJMxhvBw8/4pcTAtNBE6j0+PYTYX3INyz87xv2fZehyz6vVUU2PogRvQoUL5017Uf4qIVi8hAoBH2E2mzFu3Lg2ax7qb/DpocTopVbfevwI9DiAaTUVlRI8coJGbdXML1sLTeTqJHWcJpX4h8/QpXY1/FwLUt/S6yjGB9smqVDWcoLn3thuHvOmvSh/lRAsXkI5l48wGAztPjsZH3x62OLkc8wC8NqPQM85uV5TUaV32XppXTXzY+fzaSJk0nLvyX0ntnsnyfdYhi7nPSyF/SXXMHt4H03MVipjGtufUrQa2Fs6vwdbT/68aS/KXyUEi5dQIeAjHA4HsrKyMH36dHocBE96bPjurGKOWRZ6/AgA7dY8ek1F+VASNFpWzazye2fBRcSHh+Li8TxujPCZtDCHML9OvoRxkPIeFgpkwK2P+PcxCbJMOEPiiExKwEjR6vVHkmXrKTVv2oPyVwnB4iVUCPgIs9mMjIwMehx0Gyw9ii7VSypAWYbDwpuzYK1HB3pNRbW8q6TP4Of+/fZEJaeDMIDgP9ITPcYIy6RnD++Dfx+ToMtTWUsYBynEebGDYOvKh1DAKKX7lFvdE0Ik583drvxVQrB4CeVcfgAVAJ4wm80o08jclRi63Hm81qMDh0s605KaAFCrl9z32ST3wpUxAfDuwXJMHNoHw+PF1h9yjE+pnbY49TAOfCgdiyntILRAiVbCcBH8sum8ESMYNKG94CPY7Eb0OMgNlh7xw6RzRggZhl5zThZqRwdyTM+X8MxS+gwt0ThDTe5MXmXX6iWFgBRYAThlaKTXYRz4ZckJAH+cu6vRSqqedN6IESya6M4sdjegrq4OVqtVdwYeKbAZf9gMQe0dfHq8/s1pEWOQ0gkAnpYlgNicEwAyl6RpZnpS77/+SDK3WtcKb8IviL9PEGoC/rEwTZMQ8HfEzJ0FFz3MSVk8P6k/Xpg8SOINbdCa2F4KdN6I4StNvOVrdCfgB/BT3FHcoYceRR9/tbiz4KLkM1ptxt/MLpG8L2cmCcgze2+OR4QrYwOAhffHeb1q9zVippJuQake3iTZ0WpiC9B5I4Vg0IT2gI9wOp3YvXs33dbehpAe/jxjZs0ZlWAvrxZZG6mVq7by9mY3wBeArHWQ0zlEdYwEwmlKr/mlFnpoEVRK5dB5I0awaEKFgI+wWCyYOXNmsKvRauAPemgxZ5SDHBOdOLinV7F29B7NCAUG+83URGWa8L2PpSAnwLQKKK27Mi0MXougUiuHzhsxgkUTKgR8BCEE9fX1CAsLo2eb8B89xg3oKRICgPqKWI5Z/ufEAZL31WLz6DmakRMYajQRvieVH1jP9+SgZVemhcFrMdFVK4fOGzGCRZO7LxNKC8PpdGL//v1wOp3BrkqrgL/o4W0YAfbogw85Jmovr8aF69LMKjGis6a0kmze20+PlEsKDHt5tSJNpFbMhRW1eP2RZGyck4LMJWmSynS5lbacZ7BWaKG7FhqrlUPnjRjBogndCfgIi8WChx56KNjVaDXwFz18CSOg5ehDyW6e/c5PV+olf5fLeysFduUbnZyGr4quaE7ubjEZFfUfgQq4ppXuajRWK4fOGzGCRRMqBHwEwzCoqalBt27d7soUk3rhT3r4EkZA6ehDzm7++Un9MWFQL0ldAAulvLdSSIzojHVZJ/FNwXmUNwAMDB7HNkpRP9XK1XNfD7TSXe14SakcOm/ECBZNKPV9hMvlwpEjR+ByuYJdlVYBf9ODDa3gz1ACcqvo+B7ysXAAt58BezSjJ37QtgPn8dRAFyy3Z9uWnPP49Eg5ZworPFoBgBU7irBu1ynZsvUce3kDf9Fdrhw6b8QIFk3oTsBHWCwWTJkyJdjVaDVoC/RQW0UrHdGolcGPH2SLC8fOgotoYgxYVeA51VbsKOKunx3f1y1gePcAdf8AuWihbSEAW1sYJy2NYNGE7gR8BMMwuHr1KhhGefveXtAW6KG2ivZFOTr3vjiPlW9iRGcYQTDYysAIaef8LTnncanmluRv+85cxc6Ci7IKX/5Ke92uU5i1OQ/LPzuGWZvzFHcSwUZbGCctjWDRhO4EfATDMCguLkZ6ejo920TboYfSebVW5eiUoZEINbvbyOoShLDFhWNReiKstWexsciEZp3z+6/fn+WulUxAA+FpHEi0lXHSkggWTQIaO+i1117D119/jcLCQoSEhKCmpkb1HUII1qxZg61bt6K6uhqjRo3CW2+9haFDh3LPNDU14aWXXsI//vEP3Lp1C5MmTcLmzZvRp4+yNykLf8YOorh7oXS04q0TmcPFiI59AHdcJGHQPCnw4yfx61da9YtkfKCNc1JUvawp7g54y9cCKm6am5vx6KOPYvHixZrfWb9+PTZu3IhNmzbhyJEjiIyMxOTJk1Fff8dcb9myZcjMzMQnn3yCAwcOoKGhATNmzAiKkolhGPz88890W3sbdxM95JSaem30GYZBL9NNPHxvNObeFyd7FLVy2hBkLknDxjkpeH5Sf8myWH2F8Ohnf4m+UBnBxt00TvyFYNEkoEJgzZo1eOGFF5CcLJ1hSAhCCP77v/8bf/jDHzB79mwkJSXhww8/xM2bN/Hxxx8DAGpra/Hee+9hw4YNePDBB2Gz2fDRRx+hqKgI3333XSCbIwmGYXDu3Dk6mG+jPdBDixMZH0Ka8Jm90BmMFTxywd3YPAtSCXtm2aI97rXm9IztYZzoRbBo0qoO40pLS1FZWYmMjAzuXmhoKMaPH4+8PHdo3qNHj8LhcHg8Ex0djaSkJO4ZIZqamlBXV+fxB4DbObhcLslrp9Ppcc12Dv8aAMaOHQuz2QyHw8HddzgcYE/a2GtCiOgagMc1wzAe16z3oNy1y+XyuPZHm/jXettECEF6ejpMJtNd0yZhP7HK3lCj+z0jCEKMBIkRnSXbZDabcf/993PjxeVyYVhMV8we3gfDYrpKtik5OgyL0xMAACFGApOBYPH4vkiODkPptQbuPqtsDjUSjOsf4RYuv0nCzsVjsGLakFY79oA78yZQ/dTSbfJ17JlMJowbN85jLultkzdoVUKgsrISANC7d2+P+7179+Z+q6ysREhICMLDw2WfEWLt2rWwWq3cX2xsLACguLgYAHDq1CmcOuW2pDh+/DhKStyhiO12O0pLSwEA+fn5qKioAADk5eXh8uXLAICcnBycOHECDMMgOzub03vs3r2bO8LKyspCY2MjlzTC6XSisbERWVlZAID6+nrs3r0bAFBTU4Ps7GwAQFVVFXJzcwEAly9f5oRcRUUF8vPzAbgFp91uBwCUlJTg+PHjPrcpNzcXVVVVAOBVmy5cuIC6urq7qk38frLFheP5cdF49V735B9oJfiv0SbY4sIl28QwDAoKClBQUKCrTY8MDEXmkjSsH98ZHzzqzsWQl5eH3ma3JdHyZBcGWt1M5NV7XYjuxMAWF47QK8XoH25u9WOvsLAQDMMErJ/a2ti7efMmSktLvW6THP9TBdGJVatWEbgz5sn+HTlyxOOdbdu2EavVqlr2wYMHCQBy6dIlj/vPPPMMmTJlCiGEkO3bt5OQkBDRuw8++CBZtGiRZLmNjY2ktraW+6uoqCAAyI0bNwghhDidTuJ0OkXXDofD49rlcomub926RQ4cOEAcDgdpbm7m7jc3NxOGYTyuGYYRXRNCPK5dLpfHtcPhULx2Op0e11Lt0Nsm/rXeNt28eZMcPHiQNDc33zVtkuunH89fJTuOVpCjZdcV2+RwOMiBAwdIY2Oj39q0NuskGfDKVyRxxVckfsX/kvVfF7epscefN4Hup7Yy9pqbm8mBAwfIzZs3vWpTdXU1AUBqa2uJHui2DqqqquKkmhwSEhLQoUMH7v8ffPABli1bpmoddP78efTr1w8FBQWw2Wzc/ZkzZ6Jbt2748MMPkZ2djUmTJuHGjRseu4GUlBQ8/PDDWLNmjWobqHUQxd2AtuIYRtEyaDHroIiICAwePFjxjy8A9CAxMRGRkZHYs2cPd6+5uRk5OTlIS3PnrE1NTYXFYvF45vLlyyguLuaeaUm4XC6cPXuWur/fBqWHGIGiSSBCarQU6DgRI1g0CahOoLy8HIWFhSgvL4fL5UJhYSEKCwvR0NDAPTN48GBkZmYCAAwGA5YtW4Y//elPyMzMRHFxMZ588kl06tQJjz/+OADAarXi6aefxosvvojvv/8edrsd//Zv/4bk5GQ8+OCDgWyOJAghqK6uhs4N1V0LSg8xKE3EoDQRI2g00XV4pBPz58+X1Bns3buXewYA2bZtG/d/hmHIqlWrSGRkJAkNDSXp6emkqKjIo9xbt26R5557jnTv3p107NiRzJgxg5SXl2uuV21trVdnZxQUFBStFd7ytYB6DLdW+FMn4HK5UFJSggEDBsBkMvmphm0XlB5iUJqIQWkihq80aZUew+0Ft25JB/9qr6D0EIPSRAxKEzGCQRO6E6DWQRQUFHcB6E4gSHC5XCguLqZWDrdB6SEGpYkYlCZiBIsmVAhQUFBQtGPQ4yB6HERBQXEXwFu+1i6TyrByjw0k5wvYLVxSUhK1cgClhxQoTcSgNBHDV5qw/Ezvur5dCgE2aBMbSI6CgoLibkF9fT2sVqvm59vlcRDDMLh06RLCwsJgMBh8Kquurg6xsbGoqKigR0ug9JACpYkYlCZi+EoTQgjq6+sRHR2tKz1lu9wJGI1GzakotaJr1650MPNA6SEGpYkYlCZi+EITPTsAFtQ6iIKCgqIdgwoBCgoKinYM0+rVq1cHuxJtHSaTCRMmTIDZ3C5P10Sg9BCD0kQMShMxgkGTdqkYpqCgoKBwgx4HUVBQULRjUCFAQUFB0Y5BhQAFBQVFOwYVAhQUFBTtGFQI6MRrr72GtLQ0dOrUCd26ddP0DiEEq1evRnR0NDp27IgJEybgxIkTAa5py6G6uhpPPPEErFYrrFYrnnjiCdTU1Ci+8+STT8JgMHj8jR49uoVq7H9s3rwZiYmJ6NChA1JTU7F//37F53NycpCamooOHTqgb9++2LJlSwvVtOWghyb79u0TjQeDwYDTp0+3YI0Dh9zcXPzqV79CdHQ0DAYDvvjiC9V3WmqMUCGgE83NzXj00UexePFize+sX78eGzduxKZNm3DkyBFERkZi8uTJXAyjto7HH38chYWF+Oabb/DNN9+gsLAQTzzxhOp7U6dOxeXLl7m/rKysFqit//Hpp59i2bJl+MMf/gC73Y5x48Zh2rRpKC8vl3y+tLQU06dPx7hx42C32/Hqq69i6dKl2LFjRwvXPHDQSxMWZ86c8RgTAwYMaKEaBxa//PILUlJSsGnTJk3Pt+gY8VuW43aGbdu2EavVqvocwzAkMjKSrFu3jrvX2NhIrFYr2bJlSyCr2CI4efIkAUB++OEH7t6hQ4cIAHL69GnZ9+bPn09mzpzZElUMOEaOHEmeffZZj3uDBw8mK1eulHz+5ZdfJoMHD/a4t2jRIjJ69OiA1bGloZcme/fuJQBIdXV1S1QvqABAMjMzFZ9pyTFCdwIBRmlpKSorK5GRkcHdCw0Nxfjx45GXlxfEmvkHhw4dgtVqxahRo7h7o0ePhtVqVW3fvn370KtXLwwcOBALFizA1atXA11dv6O5uRlHjx716F8AyMjIkG3/oUOHRM9PmTIFP/74IxwOR8Dq2lLwhiYsbDYboqKiMGnSJOzduzeQ1WzVaMkxQoVAgFFZWQkA6N27t8f93r17c7+1ZVRWVqJXr16i+7169VJs37Rp07B9+3ZkZ2djw4YNOHLkCCZOnIimpqZAVtfvqKqqgsvl0tW/lZWVks87nU5UVVUFrK4tBW9oEhUVha1bt2LHjh3YuXMnBg0ahEmTJiE3N7clqtzq0JJjhPprA1i9ejXWrFmj+MyRI0cwYsQIr78hDFlNCPE5jHUgoZUmgLhtgHr75s6dy10nJSVhxIgRiI+Px9dff43Zs2d7WevgQW//Sj0vdb8tQw9NBg0ahEGDBnH/HzNmDCoqKvCXv/wF6enpAa1na0VLjREqBAA899xzeOyxxxSfSUhI8KrsyMhIAG7JHhUVxd2/evWqSNK3JmilyfHjx3HlyhXRb9euXdPVvqioKMTHx6OkpER3XYOJiIgImEwm0QpXqX8jIyMlnzebzejRo0fA6tpS8IYmUhg9ejQ++ugjf1evTaAlxwgVAnAP2oiIiICUnZiYiMjISOzZswc2mw2A+8w0JycHr7/+ekC+6Q9opcmYMWNQW1uL/Px8jBw5EgBw+PBh1NbWIi0tTfP3rl+/joqKCg9B2RYQEhKC1NRU7NmzB7NmzeLu79mzBzNnzpR8Z8yYMfjqq6887u3evRsjRoyAxWIJaH1bAt7QRAp2u73NjQd/oUXHiN9VzXc5Lly4QOx2O1mzZg3p0qULsdvtxG63k/r6eu6ZQYMGkZ07d3L/X7duHbFarWTnzp2kqKiI/Pa3vyVRUVGkrq4uGE3wO6ZOnUqGDRtGDh06RA4dOkSSk5PJjBkzPJ7h06S+vp68+OKLJC8vj5SWlpK9e/eSMWPGkJiYmDZJk08++YRYLBby3nvvkZMnT5Jly5aRzp07k7KyMkIIIStXriRPPPEE9/z58+dJp06dyAsvvEBOnjxJ3nvvPWKxWMjnn38erCb4HXpp8sYbb5DMzEzy008/keLiYrJy5UoCgOzYsSNYTfAr6uvrOV4BgGzcuJHY7XZy4cIFQkhwxwgVAjoxf/58AkD0t3fvXu4ZAGTbtm3c/xmGIatWrSKRkZEkNDSUpKenk6KiopavfIBw/fp1Mm/ePBIWFkbCwsLIvHnzRKZ+fJrcvHmTZGRkkJ49exKLxULi4uLI/PnzSXl5eRBq7x+89dZbJD4vTaWzAAAAzUlEQVQ+noSEhJDhw4eTnJwc7rf58+eT8ePHezy/b98+YrPZSEhICElISCBvv/12C9c48NBDk9dff53069ePdOjQgYSHh5OxY8eSr7/+Ogi1DgxYE1jh3/z58wkhwR0jNJQ0BQUFRTsGNRGloKCgaMegQoCCgoKiHYMKAQoKCop2DCoEKCgoKNoxqBCgoKCgaMegQoCCgoKiHYMKAQoKCop2DCoEKCgoKNoxqBCgoKCgaMegQoCCgoKiHYMKAQoKCop2DCoEKCgoKNox/j/ImsyF0gfW0QAAAABJRU5ErkJggg==", "text/plain": [ "PyPlot.Figure(PyObject
)" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " 2.054135 seconds (51 allocations: 33.073 MiB, 0.73% gc time)\n" ] } ], "source": [ "n = 2^10\n", "seed!(2018)\n", "X = (2rand(n,n) .- 1) * √(3/n) # [-√(3/n), √(3/n)]上の一様分布. 分散は1/nになる.\n", "@time λ, U = eigen(X)\n", "\n", "plt.figure(figsize=(4, 4))\n", "plt.scatter(real(λ), imag(λ), s=10.0)\n", "plt.grid(ls=\":\")\n", "plt.title(\"Circular law\");" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### Semicircle law\n", "\n", "* [Wigner's Semicircle Law -- from Wolfram MathWorld](http://mathworld.wolfram.com/WignersSemicircleLaw.html)\n", "\n", "ランダムな実対称行列については半円則の成立が知られている." ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcMAAAEPCAYAAAA+rK8RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXl8E2X++N+TpBcFSoFaSiktFhAUvDjklvvywGvFE1Rc8VgV2F0VRVdRAfGLwLriuiqirrKIF+tafxSsWm4QC4iWs+VsC5SrBZo0k3l+f6RNU5qUJs0kGXjer1de/XQ6M3k/neR55nnmORQhhEAikUgkkgsYU6gFJBKJRCIJNbIwlEgkEskFjywMJRKJRHLBIwtDiUQikVzwyMJQIpFIJBc8sjCUSCQSyQWPLAwlEolEcsEjC0OJRCKRXPDIwlAikUgkFzyyMJRcEKxbt46bb76Z1q1bExUVRWJiIj179uTPf/5zSHx+/PFHFEXhxx9/9Om4BQsWoCgKe/bsCZjLfffdR1paWsDOp4ejRKI3sjCUnPd8++239OrVi5KSEmbOnElmZiZz586ld+/eLFq0KCROV199NWvWrOHqq6/26bjrrruONWvWkJSUpJOZRHJhYgm1gESiNzNnzqRNmzYsXboUi6XqI3/HHXcwc+bMkDg1btyYHj16+HxcQkICCQkJ59zvzJkzNGjQwB81ieSCRNYMJec9R48epXnz5tUKwkpMpppfgUWLFtGzZ09iY2Np2LAhw4YNIycnp9o+9913Hw0bNmTbtm0MGzaM2NhYkpKSmDFjBgBr166lT58+xMbG0r59ez788MNqx3trJl23bh033HADzZo1Izo6mvT0dCZMmOD6u6cmyP79+9OpUyeys7Pp1asXDRo04IEHHnD9/dNPP6Vnz540bNiQhg0bcuWVV/L+++/X+j8TQjBv3jyuvPJKYmJiiI+P57bbbiMvL6/W47yxbNkyRo0aRatWrYiOjqZt27aMHz+e4uJi1z6//fYbiqKwePFi17aNGzeiKAqXXXZZtfPdeOONdOnSxS8XicQTsjCUnPf07NmTdevW8cQTT7Bu3TrsdrvXfadNm8add97JpZdeymeffcbHH39MaWkpffv25ffff6+2r91u55ZbbuG6665jyZIljBgxgsmTJ/Pss88yduxYHnjgAb766isuueQS7rvvPjZu3Fir59KlS+nbty/79u3jjTfe4LvvvmPKlCkcOnTonGksLCzknnvu4a677iIjI4NHH30UgBdeeIG7776bli1bsmDBAr766ivGjh3L3r17az3f+PHjmTBhAoMHD+brr79m3rx5/Pbbb/Tq1atOPmeze/duevbsydtvv01mZiYvvPAC69ato0+fPq7rcdlll5GUlMTy5ctdxy1fvpyYmBh+//13CgoKAFBVlZ9++onBgwf77CGReEVIJOc5xcXFok+fPgIQgIiIiBC9evUS06dPF6Wlpa799u3bJywWi3j88cerHV9aWipatGghbr/9dte2sWPHCkB88cUXrm12u10kJCQIQPzyyy+u7UePHhVms1lMmjTJte2HH34QgPjhhx9c29LT00V6erooKyvzmpYPPvhAACI/P9+17dprrxWA+P7776vtm5eXJ8xms7j77rtr/f+MHTtWpKamun5fs2aNAMSsWbOq7bd//34RExMjnnrqqVrP58nRHU3ThN1uF3v37hWAWLJkietv99xzj7j44otdvw8ePFj88Y9/FPHx8eLDDz8UQgixatUqAYjMzMxaPSQSX5A1Q8l5T7NmzVixYgUbNmxgxowZjBo1ih07djB58mQ6d+7saqpbunQpqqoyZswYVFV1vaKjo7n22mtrNGkqisLIkSNdv1ssFtq2bUtSUhJXXXWVa3vTpk256KKLaq2N7dixg927dzNu3Diio6N9TmN8fDwDBw6stm3ZsmU4HA4ee+wxn871v//9D0VRuOeee6r9H1q0aMEVV1zhcw9YgMOHD/Pwww+TkpKCxWIhIiKC1NRUAHJzc137DRo0iLy8PPLz87FaraxcuZLhw4czYMAAli1bBjhri1FRUfTp08dnD4nEG7IDjeSCoWvXrnTt2hVwNnE+/fTTzJ49m5kzZzJz5kxX81+3bt08Hn/288UGDRrUKLgiIyNp2rRpjWMjIyOxWq1e3Y4cOQJAq1at6p4gNzz1LvX3nIcOHUIIQWJiose/X3zxxT6dT9M0hg4dSkFBAc8//zydO3cmNjYWTdPo0aMHZWVlrn0rmz6XL19OmzZtsNvtDBw4kEOHDvHyyy+7/ta7d29iYmJ88pBIakMWhpILkoiICP72t78xe/Zstm7dCkDz5s0B+Pzzz121lmBR2UP0wIEDfh2vKEqt50xJSanzuZo3b46iKKxYsYKoqKgaf/e0rTa2bt3K5s2bWbBgAWPHjnVt37VrV419W7VqRfv27Vm+fDlpaWl07dqVJk2aMGjQIB599FHWrVvH2rVreemll3xykEjOhSwMJec9hYWFHmtOlc1zLVu2BGDYsGFYLBZ2797NrbfeGlTH9u3bk56ezvz585k0aZLPBY4nhg4ditls5u2336Znz551Pu76669nxowZHDx4kNtvv73eHpUF9dlpeueddzzuP3jwYD777DNSUlK47rrrAOf/p3Xr1rzwwgvY7XbZeUYScGRhKDnvGTZsGK1ateKGG26gQ4cOaJrGpk2bmDVrFg0bNuTJJ58EIC0tjalTp/Lcc8+Rl5fH8OHDiY+P59ChQ6xfv57Y2FhdayRvvfUWN9xwAz169GDixIm0bt2affv2sXTpUj755BOfz5eWlsazzz7Lyy+/TFlZGXfeeSdxcXH8/vvvFBcXe01L7969eeihh7j//vv5+eef6devH7GxsRQWFrJy5Uo6d+7MI488UmePDh06kJ6ezjPPPIMQgqZNm/LNN9+4ngGezaBBg5g3bx7FxcXMmTOn2vYPPviA+Ph4OaxCEnBkYSg575kyZQpLlixh9uzZFBYWYrPZSEpKYvDgwUyePJmOHTu69p08eTKXXnopc+fOZeHChdhsNlq0aEG3bt14+OGHdfUcNmwY2dnZTJ06lSeeeAKr1UqrVq248cYb/T7n1KlTadeuHW+++SZ33303FouFdu3a8cQTT9R63DvvvEOPHj145513mDdvHpqm0bJlS3r37k337t19coiIiOCbb77hySefZPz48VgsFgYPHszy5ctp3bp1jf0HDhyIyWQiJiamWo128ODBfPDBBwwYMMDj+FCJpD4oQggRagmJRCKRSEKJvL2SSCQSyQWPLAwlEolEcsEjC0OJRCKRXPDIwlAikUgkFzyyMJRIJBLJBc95M7RC0zQKCgpo1KiRx9k4JBKJRHL+I4SgtLSUli1b+jQE57wpDAsKCnyackoikUgk5y/79+/3aV7e86YwbNSoEeD8BzRu3Nivc6iqysaNG+nSpYvHhWDDDemrL9JXX4zmC8ZzvhB9S0pKSElJcZUJdSX8/zt1pLJptHHjxn4Xhpqm0b59e5o0aWKIGS6kr75IX30xmi8Yz/lC9vX1cdl5MwNNSUkJcXFxnDx50u/CUCKRSCTGxt+yIPxvFYKIqqpkZ2ejqmqoVeqE9NUX6asvRvMF4zlL37ojC0M3TCYT6enphmhOAOmrN9JXX4zmC8Zzlr51RzaTSiQSieS8QTaTBgBVVcnKyjJUk4L01Q/pqy9G8wXjOUvfuiMLQzdMJhOdOnUyVJOC9NUP6asvRvMF4zlL37ojm0klEolEct7gb1lw3owzDAR2u52srCwGDhxIREREqHXOifT1ndnLdnj928Qh7av9HihfX96zPtTXN1ielYTD58FXjOYsfeuOMerOQcJsNtOtWzfMZnOoVeqE9NUX6asvRvMF4zlL37oja4ZumEwmmjZtGmqNOiN99UX66ovRfMF4ztLXh/cOybuGKXa7nW+//Ra73R5qlTohffVF+uqL0XzBeM7St+7IwtANi8VC3759DTGhLUhfvZG++mI0XzCes/T14b2D/o5hjKIohuqJKn31Rfrqi9F8wXjO0rfuyMLQDbvdTkZGBiNHjjRMzyvpqx9h4fv113DkCBw9CqWlcPo0nDrl/JmeDq+84tpVu+kmjm/fTnyTJpiioiAiAiIjna/WrWHu3KrzfvwxWK3QtClcdBFcdBFRpSXYGjaGIC2OHRb/Xx8xmrP0rTtynKEbQgisVivR0dE+L/8RCqSv7/gyfCBQvtXeUwjiCvfT5OAemhTsY2D0GThwoOp11VXw1VdV+zdpAidPej5x9+6wbl3VqVNSUA4c8LzvFVfApk1Vv7dvDzt31tjNYYmgOK0dn86rcrh4TRajuqU6j0lLgwD19AuHz4OvGM35QvSV4wwDhFHa1iuRvvpSF19PBaxJtRO/P5/me3bQXjGxo/9I19/uHX8jEbYyj+c6bI7hk4rzTRzSHoYMAZsNmjWDxo0hNhZiY/nxwGlKE5LY5fbebR6agtluQygmTJoDs92OSbVjVlWsjeLYuWxHVYE/bBh06ADHjsGhQ3D4MJSUYFbtiLNm/+j3zgz4214A1IgITrZM5VjKxRxv1YbDbTty/ctP+vS/cSEEChoCU43aqB7jGgPF+fgZDidC5Wus/5LOqKpqqCYF6asvvvgm7PqdpG2bSdz+K4k7t9J0Xx5m1dkj7kib9lWFoaJQ3KY9EdYyTrRszcmkFEoTWnCqeQtKE1pQmpBU/cSLF3t8vxwPhcyea/rRpmwH+THtEco5am9vvllj09+//ZUGJ45itpdX236kbUcckVE0ObgHi72cZnt30WzvLgAOtb0U3AvDl1+GhATo0QM6dapVQUGr8sUY4+DO589wOBBKX1kYumGxWBg5cqRh7qSkr7549T1xArZvh2uucW0aOW0STQ/kV9vN1qAhR9Pacahd9ULhP3MX6fJcTmCqKFj86yTuiIyi9KKWNbZ/O8X5rFFxOGh0uID4A/k03Z9H0/15lFyUTGLljuXlzmeY5RWFaWwst7btROGlV1HY8UoKOnVxPpMMkG8oOG8+w2FKKH2N8R8KIqqqGuaDA9JXb1RVxVJWBj/84Hz99BNs3gwNGzqbGCvSsrdLb0oSkym6pDOHLunMkYs7OAsWT4Wejs9uTELDoehTuAizmZKkFEqSUtjbrZ9re5/KwGqFv/wFNmxwPsssKaH15nW03ux8rrm7xwD+O/WfruMs1jJEVIRuvnphyM+w9D0nxvoU6oyqqmRmZhpquRPpqx+Ojz/mVPfuzud1N93k7I25aRMIAUlJUFDg2vfHx57nq+nvs+a+CeT1HERpYnLQemVWoqCRat2FghbU93XRuDG8+ipkZjpvFLZsYfmTU/lt6C0cT05j/5U9XLs2OnSQR2/txp1/uYMui9+j6b7dzv9rmGO0z7D0rTvGuV0IAhEREYwaNSrUGnVG+gYOk70cli6F3r2dtT7AsmcPCVu3Ondo1w4GD4Zrr4V+/ZyFYZghFDN5DTqGWsOJ2QydO/PrdVH8et1o5zatqpBu+XsOZlUlYetWErZupd97/8eJpBTyu/cn75r+0L+Nc2hImBHOn2FPSN+6IwtDN4QQlJaW0qhRI8N0Q5a+/mOxlpG2IZu2q5bRZt2PcLrU2WHlttsAELfdhjU2luhRo1Datg2tbF0QgghRjl2JDHqttE649VLd3v86DrW7jPT1P9B6w0pabVlPk8L9XLXkY65a8jG0joK77w6hrGfC7TN8LqRv3fGrMJw3bx6vv/46hYWFXHbZZcyZM4e+fft63HflypU8/fTTbNu2jTNnzpCamsr48eOZOHFitf2++OILnn/+eXbv3k16ejqvvvoqN998sz96fqOqKitWrGDo0KGG6Xl1Pvv6u6RQbccpDpXWOWvokPUNbVctI7LsTNUfW7SAkpIq33btyMrPZ2hqKqH479Y6LMEDChrJ1j3sjWnrtXemr+esC36dU1E4mdyao8N788vNY7FYraTkrOHidT+R+vMKPo7tQHnFeS//5lNabNvCtkE3sv+Ka5gwPHS13/P9OxdqQunr86D7RYsWce+99zJv3jx69+7NO++8w3vvvcfvv/9O69ata+yfk5PDtm3buPzyy4mNjWXlypWMHz+e2bNn89BDDwGwZs0a+vbty8svv8zNN9/MV199xQsvvMDKlSu5xq3HXm3IxX3PP/QoDJscyOf+B4a7fj+ZmMzOvsPY1XsIdzxxe7XaSyA8JX4gRLWa7Z2P30aL7b8CUNq8BY0evA/GjIGOYdIkLAkr/C0LfC4Mr7nmGq6++mrefvtt17aOHTty0003MX369Dqd45ZbbiE2NpaPP/4YgNGjR1NSUsJ3333n2mf48OHEx8ezcOFCj+ew2WzYbDbX7yUlJaSkpHDs2DHi4+NxOByAc30s91hVVRRFccUmkwmTyeR6YFtSUkLDhg2xWCyYTCbsdjtms9kVWywWFEVxxVC995OqqkRERCCEcMWapuFwOFyxpmlYLBavscPhQAjhij2lw+FwoGkapaWlNGzYELPZ7DFNnuJQpcnhcHDq1CkaNWqEyWTymCb36/Rm1i5QTChCQ6CAorjiiUMv8ZqmOZm5CExEnS6l4/KviTlxnDVjn3AN8B71/HhKEpPZNuhGCjtcgaIIhGLmyUFtq6VJVVVOnTrl+kJ5u05v/pAHQkMBRIUvbrEAt3TgNU01Y4drQLrHGKoGrQOKcBApyrEp0a40uQa2u2KBUEy1xFXp0D1NmkqkZsNmblA9HWfFLX/9hUt++B+X/JRB9Kmqmjtdu6I9+CDauHEB+T7JPMJ4eYSn63Ts2DGaNWvmc2Ho021weXk5GzduZOjQodW2Dx06lNWrV9fpHDk5OaxevZprr73WtW3NmjU1zjls2LBazzl9+nTi4uJcr5SUFAC2VnR4yM3NJTc3F4AtW7aws2LqqZycHPLznePB1q9fz/79+wFYvXo1BQUFbNiwgRUrVlBcXAxAVlYWJ06cACAzM5PS0lIAMjIysFqtrkGiqqpitVrJyMgAoLS0lMzMTABOnDhBVlYWAMXFxWRnZwNQWFjoSuP+/ftZv349APn5+eTk5ACwc+dOtmzZ4jFNO3bsYMOGDbWmqbCwEIDs7OywSNOGDRvYsWOH1zS5X6c49TgAibYDNHI4fZNs+4h1lHpPkxBcvfG/jJj5Fx66ow8D5r1Kt8XvElNyjDZlO1DQ+N/Ut9g77nYKL72KCOyklu3ymKYVK1awYcMGCgoKznmd4u1HaVZeVBEfId5+BIBm5UXE248CkFBecM40JVvzidFOA5BizSNKc85Uk1q2iwjhHL/XpmwHZqG6Bq0raJiFShvrThLLDxIprK40RWllpFjzAIjRTpNsdX5OYh2lJNn2AdDIcYJEm3Matzj1OAnlBcFJk3U3ieUHXenwmKayHRy8vBsrHn+WpR98wDfP/53y4cPRzGb4+WfK//vfgH2fZB5hvDzCU5rWuU1R6As+1QwLCgpITk5m1apV9OrVy7V92rRpfPjhh2zfvt3rsa1ateLIkSOoqsqLL77I888/7/pbZGQkCxYs4K677nJt+/TTT7n//vur1f7c0aNmGE53SIG6kzVymnyqGZaWYv7sM0xvvukcB1hBcVo7fh3xB34begtqgwbVax9n1ZzOrhnWNU1hUzP0kKawrhn6maYnB7XFUVhIxGefoXXtitazp/Pa7NyJMmYMyiOPoN1+O5rFIr9PF2Ca/K0Z+tWB5uxePkKIc/b8WbFiBadOnWLt2rU888wztG3bljvvvNPvc0ZFRREVFVVju7liEuHKn2fH7oM5z441TePw4cM0b94cU8WzI/eHuL7EiqK44sqLVNfYm/vZsSff2tLnTzoCmSZPvrVep4rB2MJtULZ7XC1N//wnPPUUAPaoaLb3v45fR95OUYcrPPasdHUwURRXfLY74PKtfC9v1wnFROVdpTdf32PzuWO3jjJCmIhxnKLMFFu1j1v6nLFyjrgqHbqnCRMx2unqvmenydt1Sk6GiRMxUdW8ZXrvPVi7FtauxfTMM5gefxzGj8fstnJ6Xb5bMo8wUB5xjtgXfGombd68OWazmaKiomrbDx8+TGJiopejnLRp04bOnTvzxz/+kYkTJ/Liiy+6/taiRQu/zhloNE1j69ataFqIBi37yAXtu20bVDQTAXD//c5VFV57jXc/+Yllf55GUccr6zXEwGj/XwVBs/JDKIT/4HXQwXfSJOeg/5YtobAQnn0WUlLgT3+CXbsC8hZG+0xI37rjVweaLl26MG/ePNe2Sy+9lFGjRtW5A83LL7/M+++/z549ewBnB5rS0lJXuzPAiBEjaNKkidcONGcje5Oef3jqpXnRjq10/8+/aLcq0zlAfsWKqj9W9EKUvTsvXCYOae+cG3XRIpg1q6rJvHFj54xBsbEej/O357Ik/AjaEk6TJk3i3nvvpWvXrvTs2ZN//etf7Nu3j4cffhiAyZMnc/DgQT766CMA3nrrLVq3bk2HDh0A57jD//u//+Pxxx93nfPJJ5+kX79+vPbaa4waNYolS5awfPlyVq5c6atevdA0jcLCQpKSklxV9HDmQvJN/vVnui98m7Sf3T4TzZs7F7mtzOACPUhXCGIdpZw2NwrPQexnI32dREbCvffCPfdAVpazULziiqrPiRCwYwdcconPp76QvnOhIJS+PheGo0eP5ujRo0ydOpXCwkI6depERkYGqampgLOn0L59+1z7a5rG5MmTyc/Px2KxkJ6ezowZMxg/frxrn169evGf//yHKVOm8Pzzz5Oens6iRYvqPMYwUGiaxu7du0lMTDTMB+d8903Y9Tt93p9F2kZnIaiZzGwfcB0d506Dyy7TUxcFQZx6jDPmhlXP1MIY6Xv2GygwaJDz5d7s9tNPMGAA3HgjvPiic0HlOnIhfOdCSSh95Ur3krBl9rIddFi+hBEzn8JhtvDbsFv5efQfOZmU4vege8n5TZ2aNGfMcD5PrMz67riD+cPHcbJlzUlD6nxOSdjgb1kQ/rcKQUTTNPbu3Wuoh83nne+ePc6mrQq2D7ie9aMf4sP5/4/vJ0zlZFKK/qKVCEEj9bghVlMApG9deeYZ+P13qOzN/p//MHbcCAa8+RINjh2p9dDz8jsXRoTSVxaGbmiaxsGDBw31wTlvfEtKYPJk6NDBOdVWmXNgtjCbWTXuz8EtBCtQEMSqpYbqnSl960iHDvDpp84eycOHY3aoXPnNp9z6zAO1Fs7n1XcuDAmlrywM3bBYLPTq1cswC2GeF74OB7z7rnOJpBkzwGZzDpE4fjx0ohUIxURRdOtq4+TCGenrB1deCd99x+LXP6LwksvZcPuDVZ15NK1GwXhefOfCmFD6GuNbEyQcDge7du1yzXIQ7hje98cf4eqr4aGH4PBhZ4G4ZAl8/71zrFioERpx9qMgjHFXLX3958AV1/Cfv3/GtoE3uLZdtvQLbp90F/zyi2ub4b9zYU4ofY1xuxAkhBAcP36ctLS0UKvUCaP4VnZoUYRGQnkB/8tTabp3N2Meuh4Aa8PGrL3nMTbfcBdaRCQs31nnc+qJgnNuT4V4QzQ8St96fi4UxVUrVBwOrln4T+KKDiC6dmXr8NtY+cAkbI2buD7DQjGFfecao+QRlYTSV/YmleiOtwxq+Iy/UN6gIavvexJr4/ggW0kktdPwSBF93nudjj/8D4AzcfFkj3+G3EGjXIVmuBeGFyKyN2kAcDgcbNu2zVBNCkbxTdidy61PjSW54DdXs9j/e2omWU+8GL4FodCILz8SFs14dUL6BpRTCS34f5NnseiNTyhOa0+Dk8cZPvNpRj99D3EH94Rar04YKY+A0PrKwvAsyip6MRqFsPe12ei5YA53PXYrrTetpeuCt6uGV4f5IGAFMAu7AYavO5G++lDQqSufzPuSlfdPQo2MouWmn4k9fjTUWnUm7POIswiVr2wmlejHxo1w331Qscbkjr7D+PHR5zjdLLgTsEskgSLu4F7SNq5k8413AxXNpKWl0KhRiM0klchm0gDgcDjYunWroZoUwtLXZoPnnoNrroGtWzkT15T/TZlLxpQ5RDXCtTZeuKMIjablh6SvThjNF6CkZQr7hw+uct61C9LSYOZM5zChMCNs8wgvhNJXFoaSwDNrFkyb5swc7riDD9/7lp39hofaSiIJPB98AMeOwdNPw7XXBmypKEnwkc2kkoDg3mPUUnaGWyc/wMbbHmBXn6EhtJJI9GXi4HbOAnHCBGdzaYMGzpvB8eOZXcsQIdkLVT9kM2kAcDgc5OTkGKpJISx8Dx+m50d/d60MoMY0YNHshTUKQkVoNLcVGKZZTPrqi9F8wYOzosADD8CWLdC/P5w5A488An/4A1GnSkLqCmGUR9SRUPrKwvAsYmJiQq3gEyH3XboULr+cHv9+iy5ffFC13cP6dAJwKBGGGBAO0ldvjOYLtTinpTlnTpo1CyIi4IsvuOK/nwRf0AMhzyN8JFS+sjB0w2w206FDB8xmc6hV6kRIfVXVOfv/8OFw6BDFae3Z07Vv7ccoJo5HJoBB5s6UvjpjNF+o3dlkgkmTYPVquOMOfr79weD7nYXM0+qOgT6F+qOqKhs2bEBV1VCr1ImQ+R46BEOHwmuvOX9/7DE+fXMxR9vU/hxEERoX2Q4YpllM+uqL0Xyhjs5du8LChWiWCABMqp2+/3qN6JLgTz4v87S6IwtDNxRFIT4+HsVDE184EhLfdeuck2v/8AM0bAiffQb/+AeOqOhzHioAmynGMM1i0ldfjOYL/jn3/OhNun4+n7seu5WE3bl6qXlE5ml1RxaGbpjNZtq2bWuoJoWg+5rNUFzsXA9u/Xr4wx/qfqxi4mREM+M0i0lffTGaL/jlvG3AdZxo2Zq4QwcZPeEOLqmY6zQYyDyt7sihFW6oqsr69evp3r27Idb/CrZv5fCJ1r+sprDD5dgbNPTpeEVoJNoOcCiqlSHW3JO++mI0X/DfOar0JCOnTyLt55UA/HzbA6wc92eEueb3NpDDLi7EPC2oQyvmzZtHmzZtiI6OpkuXLqxYscLrvl9++SVDhgwhISGBxo0b07NnT5YuXVptnwULFqAoSo2X1Wr1R89vTCYTycnJmMJ8zsxKguJ7+LBbcDDCAAAgAElEQVTz+WBOjmvTvqt7+VwQAggUTlsaIcJ+Nkon0ldfjOYL/jvbGsXx9cv/Yv0d4wHo+vl8bnn2Qd2fI8o8zYf39vWARYsWMWHCBJ577jlycnLo27cvI0aMYN++fR73z87OZsiQIWRkZLBx40YGDBjADTfcQI5b5grQuHFjCgsLq72io8/9HCqQmEwmUlNTDfXB0dX311+he3dYtgzGjnWNI/QbRaHUEu9x2EVYIn31xWi+UC9nYTaz6oFJ/G/KXMqjG9Bi22YaHjmkg2QVMk/z4b19PeCNN95g3LhxPPjgg3Ts2JE5c+aQkpLC22+/7XH/OXPm8NRTT9GtWzfatWvHtGnTaNeuHd988021/RRFoUWLFtVetWGz2SgpKan2AlyDNR0Oh8dYVdVqsVY5UFxVKS8vJzs7G6vV6tput9urxZWtypWxEKJGDFSLNU2rFlf2lPIWOxyOarG3NNlsNrKzs7HZbF7T5CmuS5rUJUsQvXrB3r2Itm3h889BUVBExWBYIc6KtXPEGiZNpaV1D4qmurYrQqsW4zUW54gdtceVvu6xx3RUxVW+Dq9p8hSHKk0mze7m6/91ClaaTJqdlmX5Fef2/zoFM02K5qCldQ8mTfX7Ou3qO4T/zF3ENy/8g6MXt6uRJqPkEXrke558/cnL/cGnwrC8vJyNGzcydGj1mUWGDh3K6tWr63QOTdMoLS2ladOm1bafOnWK1NRUWrVqxfXXX1+j5ng206dPJy4uzvVKSUkBYGvFCgm5ubnk5jp7bm3ZsoWdO51TI+Xk5JCfnw/A+vXr2b9/PwCrV6/m8OHDpKens2rVKoqLiwHIysrixIkTAGRmZlJaWgpARkYGVqsVVVXJyMhAVVWsVisZGRkAlJaWkpmZCcCJEyfIysoCoLi4mOzsbAAKCwtd/7f9+/ezfv16APLz813p37lzJ1u2bPGYpry8PNLT09m8ebPXNBUWFgLOGnqd0lRWhjZ7NuZbbkE5dQrHtdfy3d/+Bu3bEyHKSS1zzr0YpZWRYs0DIEY7TbLV+f6xjlKSbM5WgkaOEyTaDgAQpx6neXkRJy1NaaIeo1l5EQDx9iPE248A0Ky8iHi7c2mchPIC4lRnE1Ki7QCNHE7fJNs+Yh1O32RrPjHaaQBSrHlEac6lX1LLdhEhygFoU7YDs1BR0GhTtgMFDbNQaVPmfP5ZW5pa2vZy0tKUBtopr2lKKC+oSMfRkKcpzbqLk5amWIS9XtcpWGlqbc3jlLkxAqVe1ymYaWqgneKkpSktbXvr9dk72qY9hVd1daWp9W9r6ZnpnLQi7PMIHfO9zZs3k56eTl5entc0nSsvX7duHf7gUweagoICkpOTWbVqFb169XJtnzZtGh9++CHbt28/5zlef/11ZsyYQW5uLhdddBEAa9euZdeuXXTu3JmSkhLmzp1LRkYGmzdvpl27dh7PY7PZsNlsrt9LSkpISUnh2LFjxMfHu+4YzGZztVhVVRRFccUmkwmTyeQ1ttvtmM1mV2yxWFAUxRWD807EPY6IiHDWripiTdNwOByuWNM0LBaL19jhcCCEcMWe0qFLmmw2LM8+i/LGGwCIcePgrbdQTSYiIiKYnbkdBQ2hmJ13stVi4exQ4DXWUKBGXHlnXhkLAI+xUlEz9RY7EJi8x+D0dY89pkOmSaYpuGmKLT7C3Y/eRIOTx1l5/yR6vTsTreL7H3Z5hAHyvWPHjtGsWbPgdKA5ewyIEKJO40IWLlzIiy++yKJFi1wFIUCPHj245557uOKKK+jbty+fffYZ7du358033/R6rqioKBo3blztBbi65JrNZo+xxWKpFle2TVdemMo7mcrtERER1eLKdFbGiqLUiCv/R5WxqaIwqYwrP0DeYrPZXC32liYhhMvXW5o8xV7TZDKhVNSsmTkT5d13UaKiXO4oivNL7DE2nSN2/mxVtrsqY6r46R7jNVbOEZtrjyt93eNzpKnKV3hNk6c4VGkCxc3X/+sUrDSBQitrnrNgqcd1CmaaFAStyna73sOf63R2Ok43TSB38E0A9PngDUyPPIKl4hxhl0fonO+Bs1YqhKhXXu4PPh3VvHlzzGYzRUVF1bYfPnyYxMTaF2xdtGgR48aNY/HixQwePLjWfU0mE926dXNVh4OFyWSiU6dOhnrYHFDfijkVycqCG28MzDndECgcjUw0TO9B6asvRvMFfZyF2Uz2+Gc4kZTCgHmvYHr3XTh+HP79b4iKqte5L/g8zQd8KgwjIyPp0qULy5Yt4+abb3ZtX7ZsGaNGjfJ63MKFC3nggQdYuHAh11133TnfRwjBpk2b6Ny5sy969cZkMlWrsYY7/vq6L7cUVXKCjt//l0033Vt1xx7TAdz2CRiKQpnZ9yEZIUP66ovRfEFX5y033s2ZpgmMmD4Jy+efsye/iG9eeBM1poFrH1/HIF4oeVpA3tvXAyZNmsR7773H/Pnzyc3NZeLEiezbt4+HH34YgMmTJzNmzBjX/gsXLmTMmDHMmjWLHj16UFRURFFRESdPnnTt89JLL7F06VLy8vLYtGkT48aNY9OmTa5zBgu73c7SpUtdPaDCnfr6xhYfYvSf72bA26/S5fP5AbariSIctC7bWdUTMMyRvvpiNF/Q33lXn6EsmfoO9qgY0jau5JpPPffSrysXWp5WH3xuXB09ejRHjx5l6tSpFBYW0qlTJzIyMkhNTQWcPYXcxxy+8847qKrKY489xmOPPebaPnbsWBYsWAA4ex099NBDFBUVERcXx1VXXUV2djbdu3evZ/J8w2w2061bN0NNXeSvb6PDBdz21zE0KdxPafNE9nTrp4NhdQQmDkUmuzoShDvSV1+M5gvBcd7XpTdfzJhPt8/eZd3dj9brXBdSnlZf5HRsFyDv/fsH/vDXMcQVHeBEUgqfz/yQ0sTkUGtJJBJvCEHkmdM8dtPVoTYJe+RK9wHAbrfz7bffGqpJwWff/Hz+8Jd7nQVhy9Ysfv3joBWEinCQdma7YZrFpK++GM0XQuQsBL0/mM2dj98KFWMC68oFkacFCFkzdEMIQWlpKY0aNTLEkic++545A5deCnv3cjw5jcWvf8Tp5rX3Ag4oQhAhyrErkW7d68MY6asvRvOFkDhHlZzgnkdvpvHhAudqMT/+COfovV/JeZ+neUDWDAOAoig0btzYEB8a8MO3QQOYMoWjKRez+P+CXBACKAp2U5RxMj7pqy9G84WQONsaN+Hz1z+iJCEJtm2DgQOdE+jXgfM+Twvke8uaYRV2u52MjAxGjhxZNdA8jKnNd3YtQyPM5eU4IiP11quBIhy0KdtBfkz7qoHHYYz01Rej+UJoneMO7uWBKffDwYPQubNzPHDz5rUecz7laXXF37JAFoZuCCGwWq1ER0cb4k6qNt/KwjDmxDEGvPUyPzw6hbL4ZqHQrEIIzELFoViMURuQvvpiNF8IufPEVKB/f+ezwyuucBaIZ83z7M75lKfVFdlMGiCMsACmO7X5Rp4u5eZnx3HJTxmMeO2vQbTyjmaQRVwrkb76YjRfCLFz+/bOAjAxETZvhopJsWvjfMrT9MR4n0QdcZ+J3QjU5mu2WRn1wiMk7vqdM3FNyfrT8yEwrI777P1GQPrqi9F8IUycO3SA77+HTz+FO+6oddfzKU/TG9lM6kbljOuVM7SHO1597Xby+g7l4nU/YmvQkMX/9zFH2l4aOtFKKlcbwGSMZjHpqy9G84WQO3udjq2kBBo2hLPm9Dxv8jQfkM2kAcIod1CV1PDVNLj/fi5e9yNqZBRLXn4nPArCCkzCOLUAkL56YzRfCEPnwkLo0weefNK1sLA7hs/TgoQsDN1QVZXMzEzDfHg8+r7yCnzyCQ6zhW9eeJODnbuGTvAsFDRSrbsM0ywmffXFaL4Qps5r18LWrfCPf8CsWdX+dF7kaUFCNpMaGE/DJ+IK9nHTlIdYf+fD5A65KQRWEokk2Fz15QL6/3O685fPPoM//CG0QiFENpMGACEEJSUlGOb+QAgiNFu1ppGTLVvz73/+NzwLQg++YY301Rej+ULYOufcPBYef9z5y733wurVgPHytFD6ysLQDVVVWbFihWGaFBQ0kq17SNj9O2nrf3JtD8WA+rpQ6RtWTUy1IH31xWi+EMbOigKzZ8MNN4DNBqNGwa5dhsvTQukrm0kNzOxlO4g5fpS7/nQrDY8e5pu/vUlez0Gh1pJIJCFg4pD2cPo0XHstbNzoHJz/ww+h1go6spk0AGiaxrFjx9C0MLvr84Kp3MaNUx+j8ZFCTrRM4WCn8Oks4xEhiHKcCbsmJq9IX30xmi+Ev3NsLHzzDVx/PXz4oeHytFD6ysLQDYfDwYYNG3A4DLCkjBAMnPcyLX/LwdagIf996W1sjeJCbVUrChqJ5QfDr4nJC9JXX4zmCwZxTkpyFoitWxsrTyO0ebBsJjUq8+bBY48hFIWvX36HPd2vDbWRRCIJIV4H5H/1FajqBdPDVDaTBgBN0zh8+HD4NymsXOkcYAusu/9x9nTrF2KhOiIEMY5T4dvEdDbSV1+M5guGc9YyM+GWWxBjxzrnMg1zQpkHG2sGV53RNI2tW7fSr18/TKYwvk/4+mtQVbb3H8n+G4ehIBCE/1RLCoJm5Yc4GN1G+uqA9NWfcHb2NO7Y5Ejm9qu7kPTLRrjtNvj5Z4gL38cpocyD/Xq3efPm0aZNG6Kjo+nSpQsrVqzwuu+XX37JkCFDSEhIoHHjxvTs2ZOlS5fW2O+LL77g0ksvJSoqiksvvZSvvvrKH7V6YbFYGDhwYPjP8v766/Dvf7Ns4iscaNAWYZCZ/4Vi4kBMuvTVCemrP0Zz1iwRfP3sW5CSArt2wQMPhHWtNpR5sM9XdNGiRUyYMIHnnnuOnJwc+vbty4gRI9i3b5/H/bOzsxkyZAgZGRls3LiRAQMGcMMNN5CTk+PaZ82aNYwePZp7772XzZs3c++993L77bezbt06/1PmB5qmcfDgwfBtJq38ECsK3H039ugGxKolYf3hroYQ0ldPpK/+GM1ZCMwNzGiffQYREfDllzBnTqitvBLKPNjnDjTXXHMNV199NW+//bZrW8eOHbnpppuYPn16nc5x2WWXMXr0aF544QUARo8eTUlJCd99951rn+HDhxMfH8/ChQs9nsNms2Gz2Vy/l5SUkJKSwrFjx4iPj3f1RjKbzdViVVVRFMUVm0wmTCYTqqqiaRpr166le/fuREZGYjKZsNvtmM1mV1w5m3plDLhmWa+MIyIiXLOvR0REoGkaDofDFWuahsVi8Ro7HA6EEK4YwLx0KeKf/0SbPx9z8+Y4HA7eXL6dpPIDFEW2cq6xpphQhOZsvlGUWmKHa9Z9jzFUzcxfGSvmqhn7PcbCebfsNdYwCY0W5QcojGwFiglR4Qu4YgFu6SCkaTIJR4VvCiiKxzQpFe7ucajSZBIqLcoPVvji93UKVppMmp0WtgMURqcCQtfPXqDShBAkle+v+M6ZQ/p9qkuaEBpJ5Qe4aei1RPzrX5ieeAJhsSCysjD17VsjD6yMQ5XvqarKunXruOaaa7BYLDXy77rk5ceOHaNZs2b6dqApLy9n48aNDB06tNr2oUOHsrpi+p9zoWkapaWlNHVbnXnNmjU1zjls2LBazzl9+nTi4uJcr5SUFAC2bt0KQG5uLrm5uQBs2bKFnTt3ApCTk0N+fj4A69evZ//+/QCsXr2aI0eO0K9fP1avXk1xcTEAWVlZnDhxAoDMzExKS0sByMjIwGq1Vlt/y2q1kpGRAUBpaSmZFQtvnjhxgqysLACKi4vJzs4GoLCw0JXG/fv3s379egDy8/NdNeedO3fy+/ffw5gxKN98w9EpU1xpaqIepyA6jeb2IuLU4wAk2g7QyOH0TbLtI9bh9E225hOjnQYgxZpHlFYGQGrZLiJEOQBtynZgFmq1NdvMQqVNmfNZRIQoJ7VsFwBRWhkp1jwAYrTTJFud/9NYRylJNmcrQSPHCRJtBwCIU4/T3F5EQXQaTdTjNCsvAiDefoR4+xEAmpUXEW8/CkBCeUHI09TStpeC6DQaaKe9pimhvKAiHUdDnqY06y4KotOwoNbrOgUrTa2teRyJaolQTLp/9gKVpgbaaQqi02hp2xvy71Nd0lSZR2zZsoW84cPhjjtQVJWSxYsBZ75XWFgIOFvxQp3vbdmyhX79+rli8D0v97dF0aeaYUFBAcnJyaxatYpevXq5tk+bNo0PP/yQ7du3n/Mcr7/+OjNmzCA3N5eLLroIgMjISBYsWMBdd93l2u/TTz/l/vvvr1b7c0ePmiHAwYMHSUpKwmKxhEfN0G7HNGIEyvffI668Em3VKswNGuBwOPj78h000ko4ZWqMUJSwrxkqQtBQK6HU1BiloqYVzjVDRWgVvnEoCrrWOAKSJuGgoVZa4StCXos6Z5o0lYaOEkot8TWvTZjWDIWARtrJiu9cLdcmTGqGQggaaSWMGXQVZrMZ85kzOL7/HuXGG2vUBsOhZuhwOCgsLKRly5aYTKag1gz9ekp59qKLQog6LcS4cOFCXnzxRZYsWeIqCP09Z1RUFFFRUTW2m83maj/Pjt0fzJ4dq6rKwYMHSU5OdvVkioiIcO3jS6woiiuuvEh1jau5z53rXNU6JgZl4ULMDRq49lEUhVi1lFNRcVDxQN/9wb732HzuGA+xotQSK+eITYDm8hU++YYmTaDU8D07Ta47Sbc4VGkCk5uv/9cpWGlCMRHrOMUpSxPdP3uBSpPi9hmuXNw3VN+nuqSp0reyYKFRI8w3VU3i7y0/DFW+J4Rw5cH1ycv9waejmjdvjtlspqioqNr2w4cPk5iYWOuxixYtYty4cSxevJjBgwdX+1uLFi38OmegsVgs1Wq8IWfjRhyTn8UMLBv/LFv3m2C/W/dpxURRdOuQ6fmKkL66In31x2jOlb5v/pBX42+xRw8z4B9TaTf/H9Dey4D9IBPKPNinZ4aRkZF06dKFZcuWVdu+bNmyWhOwcOFC7rvvPj799FOuu+66Gn/v2bNnjXNmZmYG/Z/icDjYtWtXeExddPo03HUXZtXOzj5D2TrCw+wRQiPOfhTCbeVtb0hffZG++mM051p8+897hXarlsFdd0F5eQjkahLKPNjnoRWTJk3ivffeY/78+eTm5jJx4kT27dvHww8/DMDkyZMZM2aMa/+FCxcyZswYZs2aRY8ePSgqKqKoqIiTJ0+69nnyySfJzMzktddeY9u2bbz22mssX76cCRMmBCCJdUcIwfHjx8Nj7a/8fCgro7R5IssmvOxqknFHwfngPbyG/npH+uqL9NUfoznX5vvTw89ibRTnXOFi2rRgq3kklHmwX3OTzps3j5kzZ1JYWEinTp2YPXs2/fo5pwS777772LNnDz/++CMA/fv356effqpxjrFjx7JgwQLX759//jlTpkwhLy+P9PR0Xn31VW655ZY6O52Xc5OePMnH//mJ4os7hNpEIpGch7T/MYPrpk0EiwXWr4errgq1Ur3xtyyQE3W74XA42LlzJ+3atav2oDaUeJpiyYXQiLcf5XhEM1cHmrBG+uqL9NUfozmfy1cIJv7rOfjiC7j8ctiwAUK4OHgg8mA5UXeAKCsrC63A00/Du+9SlxkuFMAs7IZqspG++iF99cdozuf0VRTnCjjNm8OWLfDKK0G080yo8mBZMwwnsrJgUMVK9evXQ7dutdcMJRKJpJ5MHNIeFi+G22+HDh1g0ybwMGzNKPhbFoT5jNTBxeFwkJubS8eOHYPaTDp72Q4s1jLGPDSWOGDz9XeSdSIOzlEQKkIj3n6E4xEJ1cYXhSvSV1+kr/4YzbnOvn/4A8yf7ywQ3QrC2m7Gva6fWA9ClQeDLAzDhms+mUdc0QFKEpJY8eBfQq0jkUguNO6/P9QGISX8b22CiNlsplOnTkG/I2mWv4Mun88H4IfHpmBv0LBOxwnFxLHIREPcoYL01Rvpqz9Gc/bL1+GAt98GLysR6Umo8mCQhWE1HA4HOTk5wR3wqWkM+vvfMDtUdvUcRF6vwec+pgJFaDS3FbjmIwx3pK++SF/9MZqzX75PPgmPPgp/+lOdOvIFkpDkwRXIwvAsYmJigvuGa9fS8vccyqMb8MNjz/t0qAAcSgRG6QElffVF+uqP0Zz98n30Uefah998Q/qq5TqZeSfoeXAFsjB0w2w206FDh+BW0Xv1YuHcz1g+8WVOXZTk27GKieORCcYY7wTSV2+kr/4Yzdkf30svhb/+FYAB814m4swpneRqEpI8uAKDXNHgoKoqGzZscC3nFCwOdbic7QOu9/k4RWhcZDtgqCYb6asf0ld/jObst++UKXDxxTQqPkT3he/oI+eBUOXBIAvDaiiKQnx8fJ2Wo6o327fDrl31OoUAbKYYQzXZSF/9kL76YzRnv31jYmD2bACu/vID4gr3B1rNI0HNg89+bznoPgQIAQMGwJo1sGABs5t3CbWRRCKRVEcIbnnmAVJzVrOzzzD+98Lfq/1Zj3GGgUBOxxYAVFVl9erV+lfRv/wSfvoJTCbo3dvv0yhCo4V1n6GabKSvfkhf/TGac718FYWfHp7MgU5d2TD6wcDLeSBoebAH5KB7N0wmU7VV7nXBanU9nOavf4XWrWG7f1OuCRROWxpVrX4d5khffZG++mM05/r6Hm3TnsVvfBJgK+8EJQ/2giwM3TCZTKSmpur7JnPmONcqbNkSnnqqfudSFEot8YHxCgbSV1+kr/4YzTnAvuZyG45I/eYtDUoe7O29Q/KuYYqqqmRnZ+tXRS8urlpEc8YMaFi3mWa8oQiNltY9hmqykb76IX31x2jOgfK1WMvo897rjB03AkvZmQDZ1UT3PLgWZGHohslkIj09Xb8q+muvQWkpXHkl3H13vU8nUDhpaWqoJhvpqx/SV3+M5hwoX81spt2KpcQdOsiV//13gOxqonseXNt7B/0dwxjd26ubNnXWBqdNc3aeqS+KwmlLY+eaZEZA+uqL9NUfozkHyFeLiGTNvY8D0O2z94g6VRIIuxqE8pmhLAzdUFWVrKwsXaros5ftYHbXW5m34Htmmy92/l7x8hdFaLQq222oJhvpqx/SV3+M5hxI3+0Drqc4tR3RpSfpsvj9ANjVRM88+FzIwtANk8lEp06ddL0rsTVuErC7SoHC0chEQzXZSF/9kL76YzTnQPoKs5nV900A4KqvPoJDh+p9zrMJRh7s9b39OWjevHm0adOG6OhounTpwooVK7zuW1hYyF133cUll1yCyWRiwoQJNfZZsGABiqLUeFmtVn/0/MZkMnHRRRcF/kK8+iopOWsCe04ARaHM3NBQTTbSV0ekr/4YzTnAvrt7DaLoks5EWs/A9OkBOac7uuXBdXlvXw9YtGgREyZM4LnnniMnJ4e+ffsyYsQI9nlZ+8pms5GQkMBzzz3HFVdc4fW8jRs3prCwsNorOjraV716YbfbWbp0KXa7PXAn3boVnn+e256+j/h9uwN3XkARDlqX7UQRwV/uxB+kr75IX/0xmnPAfRWFVfdPcsYLFsCpwE7irUseXEd8LgzfeOMNxo0bx4MPPkjHjh2ZM2cOKSkpvP322x73T0tLY+7cuYwZM4a4uDiv51UUhRYtWlR71YbNZqOkpKTaC3Ctg+VwODzGqqpWizVNc8WKotCtWzeEEK7tdru9Wlw5e11lLISoEQNV8SuvgBDs7DOU463TQYiq9nuvseYxVs6KhYBDkcnOCQjdtleuQeY9dtQeC1Ezdjl6i8+dJip8hcBrmvAaBz9NVb5Kva5TsNKEEG6+/l+nYKUJITgU0RKBSffPXqDSJITi9p0L7fcpVHnEvit78OP4Z7Bv3oyIjfWc7wGaplWLK58DeosdDgdCCLp16+b6vfKnr3m5P/hUGJaXl7Nx40aGDh1abfvQoUNZvXq1XwKVnDp1itTUVFq1asX1119PTk5OrftPnz6duLg41yslJQWArVu3ApCbm0tubi4AW7ZsYefOnQDk5OSQn58PwPr169m/3zkB7erVqzl06BBNmzZl5cqVFBcXA5CVlcWJEycAyMzMpLS0FICMjAysViuqqpKRkYGqqlitVjIyMgAoLS1l5YIFsHgxAHtvda5KEaOdJtnqfP9YRylJNmeNupHjBIm2AwDEqcdJKC8AIN5+lGblRRXxEeLtRwBoVl5EvHoMm7kBCfZC4tTjACTaDtDI4fRNsu0j1uH0TbbmE6OdBiDFmkeUVgZAatkuIkQ5AG3KdmAWKgoabcp2oKBhFiptypydfCJEOallzsnFo7QyUqx5vqXJXojN3IB49Zj3NNmPApBQXhD6NNn2YDM3IFY7Vb/rFKw0WXdiMzcgAnv9rlOw0mTdjWaygKLo/9kLVJq0U9jMDUi27Qn99ylUeQQONt0yhoxNmzzme5mZmQCcOHGCrKwsAIqLi8nOzgacj84qy4v9+/ezfv16APLz89m8eTNNmzZl9+7dbNmyBfA9L1+3bh3+4NNE3QUFBSQnJ7Nq1Sp69erl2j5t2jQ+/PBDtm/fXuvx/fv358orr2TOnDnVtq9du5Zdu3bRuXNnSkpKmDt3LhkZGWzevJl27dp5PJfNZsNms7l+LykpISUlhWPHjhEfH++6YzCbzdXiyhpgZWwymTCZTK67jOXLlzNw4ECioqIwmUzY7XbMZrMrtlgsKIriisF5J+IeR0REOGuKf/wjpvffR4wYwdwJsxCK2Xl3h0AoplpiDQVqxJV3fK5YOEi15rEv+mI0xQwV2wUKKEotsQOByXsMKGjVY5e7t/jcaTIJB62teeyNvhgUs8c0CXBLByFNk0moFb7poJj8vk7BSpNJ2Gltza/wVfy+TsFKk0krd/5/Y5zfcT0/e4FKE0Ij1bq74jtnCen3KdR5xJ8GXOzM944cQY2Pd+V7lXmgpmk4HA5XrGkaFovFa+xwOLDb7Xz//fcMGjSIiIiIGvl3XfLyY8eO0axZM58n6vZrOrazl9cQQqs+ENAAACAASURBVNRryY0ePXrQo0cP1++9e/fm6quv5s033+Tvf/+7x2OioqKIiqo5LVDlopDui0O6x5WFlqfYbDbTt29foqOjXemJiIhw7eNLrBQUoHz8sTN+9llEWYWDolT17PIam6qWXHGLhdsCnc5Y4WB0mutL6XkfT7H53DEeYkWpJT53mrQKX+Gzb2jSpGGp8DW7fP27TsFJk0aEF189Pnv1T5OmRHAwuo0ro/WUpkB99gKXJk/fudB8n0KdR0SUlsI998Dq1UTs3QtxcSiK4soDKwunusaVlY6+ffsSFRXlyoP9ycv9wadm0ubNm2M2mykqKqq2/fDhwyQmJvol4FHKZKJbt26u6nCwUBSFxo0bB2YtrTfegPJy6NPH+dIDRcFuiqqWkYQ10ldfpK/+GM1ZT98mTWDvXjh5EubNC8gpA5oH+4hPhWFkZCRdunRh2bJl1bYvW7asWrNpfRFCsGnTJpKSkgJ2zrpgt9tZsmRJYHoydesGHTrA5Mn1P5cXFOHg4jO5VQ/ewxzpqy/SV3+M5qyrr8kEzzzjjOfMgbKyep8yoHmwj/jcm3TSpEm89957zJ8/n9zcXCZOnMi+fft4+OGHAZg8eTJjxoypdsymTZvYtGkTp06d4siRI2zatInff//d9feXXnqJpUuXkpeXx6ZNmxg3bhybNm1ynTNYWCwWhg4d6nc1uxp33AG//QYjRtT/XF4QmNgb3dbVhh/uSF99kb76YzRn3X3vuAPS0uDwYZg/v96nC2ge7Ot7+3rA6NGjOXr0KFOnTqWwsJBOnTqRkZHhWnajsLCwxpjDq666yhVv3LiRTz/9lNTUVPbs2QM4ex099NBDFBUVERcXx1VXXUV2djbdu3evR9L8I6AXIQgDRzXFGF/KSqSvvkhf/TGas66+ERHOdVkfewxefx0efhjcnuv5QygKQvCxN2k4U1JSQlxcnM89iNyx2+1kZGQwcuTIap1ifGLJEigsdD5YdluiqT5zkHpDEQ7alO0gP6Z9tQfb4Yr01Rfpqz9Gc9bTd+KQ9s6grAxSUuDoUfj6axg1yu9zBiIP9rcsMNYtjs5YLBZGjhzp/52JEPDSS/DII+BlEoJAIjA5P+QGuYzSV1+kr/4YzTkovjExMG6cM/7oo3qdqt55cH3eO+jvGOa4jxn0mbVrIScHoqPhgQcCK+YFk9BwGKjZRvrqi/TVH6M5B8X30UehY0cYPbrep6pXHlwPjHNFg4CqqmRmZvo9nU/uc85V7H/rN5LZvxwNyDJNtaGgkWrdhYJBlpORvroiffXHaM5B801Nhfvuc9YS60F98+D6IJ8ZBopDh3C0SsGs2vnkH19wuH2n4DtIJBJJkHA9MzwbTQOHw9m5JgTIZ4YBQAhBSUkJft0fvPsuZtVOQccrg1cQCkGEZgOj3M9IX32RvvpjNOdg+y5c6Gwufe89vw6vVx5cT2Rh6IaqqqxYscL3KrrdDv/8JwCbb7hLBzPPKGgkW/cYqslG+uqH9NUfozkH3ffIEdixA956y68C2O88OADIZtJAcOgQ/PGPnF61lvc/ysIRGRnc95dIJJIg47GZ9ORJSE6G06fhhx+gf/+ge8lm0gCgaRrHjh1zrYtVZxIT4b//5YMPlga3IBSCKMcZQzXZSF8dkb76YzTnYPvGxTnHWAO8+67Ph/udBwcAWRi64XA42LBhg2uZEF+xx8QG2Kh2FDQSyw8aqslG+uqH9NUfozmHxLdyzOGXX0LFWrB1pb55cH2QzaQ+cvYwieRff6bkoiRKE5N1e0+JRCIxDEJw70M30HzvTmdfivHjg/r2spk0AGiaxuHDh+teRReCIbOeZdyYQaSt/0lfOS/vH+M4ZagmG+mrI9JXf4zmHApfReG3Ybc4Yx8n7/Y5Dw4gsjB0Q9M0tm7dWucL0fK3jcQX7MUeHcOBzt10tquJgqBZ+SEUjPHFlL76In31x2jOofLdNuhGuOsueOUVnwpiX/PgQCKnY3PDYrEwcODAOu/fIesbAHb2GYYa00AvLa8IxcSBmPSgv6+/SF99kb76YzTnUPmeiW8On3zi83G+5sGBRNYM3dA0jYMHD9bprsSk2mmf/f8A2DbwBr3VPCMEsWqJoZpspK+OSF/9MZqzwXx9yYMDjSwM3dA0jd27d9fpQrT+ZTUxJSc4Hd+c/VdeEwS7migI4tRjhmqykb76IX31x2jOIffdvBmeegp++aVOu/uSBwca2UzqhsVioV+/fnXat7KJdMf/b++8w6Oo9j7+md1No4WQQBJiGqFXIXQEKRqaXsSG4kUsoKCICBZAeUGRIiBgA0QR5XpBVJpSpEgTCEUIRHoLJARCS4OQbLI75/1jk80uuymbZNtlPs8zyW/PnJn5nrOzvzPnzCldeiPUzslGIam47B3hlGuXBUWvfVH02h930+x0vTNmwNKloNVCq1YlRrfFB1c0Ss3QBFmWuXjxYolPJSpdHhF//wXAye6POEKadYSgqi7NbZpAFL12RtFrf9xNs7P1DsyfnnL5csPk3SVQWh9sD5SaoQkF7dUhISGoVEU/J8gaDxYt+ZOwQ7GkNGzhQIXmSAgq625xW+2LQLLrtdQIPFUCytHcIglBdX0WelVVhGRfvRWBote+uJteqEjNErmyhN7Ov1tH+girxMSAn59hysrdu6GEWl9pfbA9UApDEzQaDR07dixV3LxKVTj3wMN2VlQ8QlKR4h1m76sQ6p1L7Uoy6gpxWAGE4vhJeMuOote+uJteqCjNeiG4fEdFUo4n2KmgcoyPKAYPD3j0UViyBFatKrEwtMUHVzRlKgznzZvHzJkzuXLlCk2aNGHu3Ll07tzZatwrV64wZswYDh48yJkzZxg5ciRz5861iLdixQomTJjAuXPniIqKYsqUKfTv378s8sqMXq8nISGByMhI1Gq1Q69dJoSMry6NDI0f2Gkl61DvXMKrgn9AIJ5e3lCeAlEI1OjRoy7feRyFote+uJteqDjNQpCrzcHjxnUgl6QcrwqTaH4d+/uIEnn8cUNhuHIlzJ5dbL450wfbXBguX76cUaNGMW/ePDp16sTXX39N7969OX78OGFhlk8gWq2WmjVr8v777zNnzhyr54yNjWXAgAFMnjyZ/v37s2rVKp5++ml27dpFu3aO66kphCAtLY2IiIgi44T9vYsHvvuUY72e5Mi/nnOYNmtIgJecjYSfXfqKqRHUriTjHxBI5WrVy39CIdCIPHSSh3s4P0WvfXE3vVChmj28vAHI01/lco6wS5OpvX1EqYiJgUqVIDHR0Ks0OrrIqKXxwfbC5keF2bNn8/LLLzNkyBAaNWrE3LlzCQ0NZf78+VbjR0RE8Nlnn/H888/j6+trNc7cuXN5+OGHGTduHA0bNmTcuHH06NHDag2yAK1WS2ZmptkGGCd41ev1Vm2dTmdmF7yo1el0qFQq2rQxzCRTEJ6Xl2dm19u1icCzxwk4f9LwUloIJKE3t6EEWy7Blq3a0l22AK553WeMVxBe8LK8aFtfvJ2v11MyNI16euY/tQoKX8TbbBv+61SeZp8LrleyTflsYcUuSbtRr1R0msplV3CaStRbGtuBaQJ0kqehUCnP9+TINCGZ3MOlTGsxafL09DL8xiTZLX1EcX5PlmXy8vLAxwfRuzciIADyO8cUrFdoahf45TZt2iBJUrl8eVmwqTDMzc3l4MGDxMTEmIXHxMSwZ8+eMgkAQ83w7nP27Nmz2HNOmzYNX19f4xYaGgrA0aNHAThx4gQnTpwAID4+njNnzgAQFxdHQkICAPv37ycpKQmAPXv2kJyczMmTJ9mxYwc3btwAYOvWraTnz7y+aeNGovZuBeB2m0aohQ4Jmcjs00jIqIWOyGzDRN4eIpfw7LOA4cksNOc8AD5yFiE5hutX1t8iWJsIQFV9OoHaSwD46tKomXsZAL+8m/jnpuTb1/HLuw6Af24Kfnk38Mu9Tk1tMr66NAACtZeoqjfoDdYmUll/C4CQnAR85CwAQnPO4yVnAxCefRYPkQtAZPZpizQBeJIHGGbA9xRaK7beeA6Vma1DIwzHqtGjEXmoZR1qoUMjDDesWhg+A2iEDnX+D0kj8lBTaKvy39F4iFxU+eEeIhcp3/YU2kK9JraX0FLghSztktOklnUlpsmQDr1LpEkt6yrke3JUmtQiD4S178a278mRaVLLugq79zzyf1ueIsdtfURRfi89PZ2tWw3+8sbkyWxfuhQef5wrV64YfXtSUhL79+8HICEhgUOHDnHy5ElOnTpFfHw8YLsv37dvH2XBplUrLl++TEhICLt37zZ7yTl16lR++OEHTp06VezxXbt25f7777eo8Xl6evL9998zcGDhKvFLly7lxRdfRKvVWj2XVqs125eZmUloaCipqan4+fkZnxjUarWZrdPpkCTJaKtUKlQqFTqdDiEER48epXHjxnh4eKBSqcjLy0OtVhvsAwfwaNuWXO9KfP3LHnSehmYOCRmR/1whISMkteEJqUhbICRVMbaMBBZ2wROf0RYy/nnXSPWohSypID9cIIEkFWPrDXqLsvPT4a2CljXyCAkNMzTpCACR/yRvq224zTRCh07Kb503CS/ZlgxtPmW1yddiapdCu6VeyzSV3a74NBWvt/Tfk6PSZGxyNJykzN+T49Jkeg+X/97Ly80hOSmRuFQPcmTczkcU5/fe7FEXvV6Ph4cHsiwjyzIajaZIu6DWd+zYMZo0aYJarbbw36Xx5ampqfj7+9u8akWZOtBId7WVCyEswux9Ti8vL7y8LF86F7x0NX35amprNJpi7ZYtW5qdz8PDo9DevBmApJbt0Xn5FGpFbWlLUjG2VIKtKmxJMrGFyQtwkX9j3/CqbabXIo5VW12yjRokvVGb4b/xTxlsw/9Cx4dZuENsrNglaLfUaxrHgdpLmabi9ZbGdmw6dJK1xbBt/56KtytWe5nu4aLSZPLbMv7+3MlH3G2b+LrP/jyLBULglXWL1/q3BjAWYICx8LvbB5fVl9uKTc2kAQEBqNVqUlJSzMKvXbtGYGBgmQQABAUFVfg5y4Jer+fo0aNFLyy5YQMAF9o4Z4aEu5GETI3cq4XvDlwdIVDLeYVP3q6Oote+uJtecDvNruQjIvduY+jALvSc+V6RcUr0wXbEpsLQ09OT6OhoNufXkArYvHlzucaGdOjQweKcmzZtctp4E6ukpUF+O3eCixSGCgoKCu5Cln8tqty8RmjcXsP0bC6GzfXJ0aNHM2jQIFq3bk2HDh1YuHAhiYmJDBs2DIBx48aRnJzMkiVLjMccPnwYgNu3b3P9+nUOHz6Mp6cnjRs3BuDNN9+kS5cufPLJJ/Tr1481a9awZcsWdu3aVRFpLDVqtZqmTZta35mZCU8/TfI/p11mVXshqUj1dGztuVxIEvq7m5hcmf8BvVm3bxMVUtNJgspPSka2syWY42b3hCv5iGtRjciqUZPKqddh1y7o0cMiTrE+2M7YXBgOGDCAmzdv8tFHH3HlyhWaNm3K+vXrCQ8PBwyD7BMTE82OMW0DPnjwIEuXLiU8PJwLFy4A0LFjR3766Sc++OADJkyYQFRUFMuXL3foGEMwVNHj4+Np3ry55YDP8HBYtoyfN592qKbikISMf24KNz2DzNr7XRZh0sHDHcaV/Q/o3b51C1t376dx02ZOFmcFd8tfcDvNLuUjVCoutO5Mk00r4Y8/rBaGxfpgO1OmN42vvfYar732mtV933//vUVYaTqsPvnkkzz55JNlkVOh+Pj4lBzJRRCAXvLAPd5eGHDK/IjlwN31njh+jL7/esxJakrG3fIX3Euzq/mIi606GgrD7duLjOMsH+wG1QnHoVaradiwoeUTSXo6nDzpei/NJRVpnjVx2jRLtiJJ6FXu8UQNuL1eWZYdPtlxaUm+lET/R3rSsX0bunVqy2+rVjhbUulwu3vCtXzEpeZtDcahQ5CRYbG/SB/sAFwjh1wEnU7HgQMHLGcwWLMGGjWCR5y4XJMVJCFTS3vJJXqKlQoh0Mi5rvdQURRurvfAvlhat3HOwtMlodFomDx1BrF79/Hz6rVMHP8uWVlZzpZVMm52T7iaj8gKCCQtJAJk2fDe8C6K9MEOQFm1wgRJkvDz87Mc31hQpW/e3OGaikMAWpWPyzSBlAanv7ewEXfWu3f3bl578y0nqimawKBgAgODEOipWbMW1f1qkJ6WSuXKlZ0trUTc6Z5wRR9xrOcTPOAHRERY7CvSBzsA9/lWHYBaraZu3bqWVfSCwrBrV0dLKh5JRYaHv8s0gZSIJKF3k44HQKn1pqbepElUGIkXL9pVzsuDnmXBl58VHeEuvbl5uWaTRrgc+XoPxx1ClmVC7gt1tqKScbt72PV8xIFnXoFZs6BJE4t9RfpgB+A6OeQC6HQ69uzZY15Fv3DBsGk00KmTs6RZRRIyQTmJLtMEUiJu1sRUWr2ffzqTmF59CMvvUV0Q1rNrJ6JCatIkKowXBj7F2TOWPZFHDh/KxxM/KJWcMe+N57NZM7iVPyl9cXrPnztL3Xr1LKLE7t7FoAFP0KJBJEG+PmxY+1uprm0XhCDzRgpvDBvCrM++dJ4OW3Cze9jdfIRVH+wglMLQBJVKZbnC8s6dhv+tW0OVKs4RVgQCiSxNVTfq3SYZ5kf8H9KbnZ3Nsv/8wHODXzALj939Fy8OHca6LTv4efVadDo9A/o/YvZeTJZltmz8g159S/cuunHTZoSGhbPi55/Mwm/fusWvy5eZ6f1z0x90f6inxTnu3MmiSdNmTJ1pfTk1R6LV5vL8v59j5Fvv0KZdB2fLKSXudQ+7rI/IyICtWyF/0u0CrPpgB6EUhiaoVCrCw8PNv4iCGdBdrFYIgCRxS+PnRk02IEsah/mRlo2iWPzN12ZhB/bFEhlUg6TEUjRplkLv1s0bUWs0tG7b3ix82crfeOa5QTRs1JgmzZozd97XJCclEX84zhhn/949qFQqWrU29LB7oHULgnx9rG7fLvgKgJg+fVm94meza61e8QuT/288ebo8o9709HR8q1uuQdnj4Z6MnTDJ7sMtVv26nPBa1blyOdkYNnrEcLp1bENmRgZCCN58bSidHuzGU88OLOZMLoaD7+Fy46o+4s03DeMMf/zRLNiqD3YQSmFogk6nY+fOneZV9PzlRWjb1jmiikESMrVzLjinCSQrq+gtJ8d63Nu38biVCrdvF4ZlZ5fuvGWgVeu2HI47aPwshGDC2HcYOnwEoWHhZnE/mzWDOrUDLLYoE3vvHsveb3v37KJFy1YlarmVYWjarO7nZwzbuH4dMb36GH/43/13OQC//raB+NMJHDx2Go1Gwzc//JdBLw4BoGV0a+IO/m22Ysu/X3iJzg92I3bXTjxkLak3b1DD37+02WQXHnviaaLq1efz2TMBmDV9Ctu3bmbpr6up5uvL/r17WLPyVzauXUOPTm3p8UA7Thw76lTNpUIIPGStWzWTOs1HFEeBPy3wr/lY9cEOQulNaoJKpSIqKsr8qWTiRIiNdcmaoUAiQ1PDKU0ggbUDitynjelF+i+rjJ9r1Q1DunPHatzcBzqTtm6T8XPNZg1R3bxhEe9qGablim7TluVLC588f/lpKcmXLjFy9DsWcZ9/aQj/6v+ERbiE3jgLf1Dt2hb7kxIvEhQUXKwOIQQT33+Pdh060qhxYaeBTRvWMfHjacbP165eRaPR0KZ9B7y8vDgafwSdTkf7jp2MK7QEB9dGq9Vy7WqKWYEe07svf6xbS9euXflz0yYeerhXsZrsjSRJjJ0wiaHPDyQoqDbfzv+K1X9sIbi2YSrDdh06cSXtDir0yKjdp6ZFfgcaNxHsTB9RHEvlWgwEsnfvZcGmU4U1VyF4ukmUU2qGSmFoQkF7tRmPPOJy4wuNSBJZmtKv13WvEd2mLR9P/ICs27eRVCqmffR/jP1gIlWqVrWI61ejBn41ath8jZzsHLyCvYuNM+7ttzh+7B9+++NPY9jpUye5fDmZzl27G8NOHj9Knbr1jAXf0X/i8Q+oSc1ahXNLeufPzpF9V426+0MxTJ88CVlSc+HC+Qppepw57WM+nT6l2Dh/bNvF/a2ire6L6dWH+g0a8eknU/hp1VoaNmpsHkHCUBC6E+6m2UV9xI3Ihug8PPC5lY5vyiUygvN7EkuSpQ92EEphaEJBFb1Lly5lXhPLkUhCJiQngWTvSIePfbp62bL2ZuSubtHXzubPVSsEHiKXPMmz8EnwrifA6/+crDCNLVpGo1ariT9ymJ3bt+JXw59nBw22GvezWTP4bPYMi3AJjGO0lv66mvYdHzDbX8Pfn4z0tCI1jH/nLTZtWMuq9VuoHXKfMXzj+rU82K272dRTx48eNas5HvvnCI2bmE9anJ6WCoB/gHnNvErVqoRHRHBk/268razzWRZeemUYjz3xVLFx7m5uNmXbls2cPXMKvV5PzVq1LCNYux9cHTfT7EwfURx6T0+u12lE8Kl4Ak/GGwtDSchs3brVKT7Y9T2+A1GpVDRt2rSwir56NXh5QceO4OvrXHFWEEjc9Ax0ThOILYOjC+IK0KGH4prFKnDQtbe3N42bNmP976v58fvvWPLTiiKbX8raTNq0eQuL3p1gaBod/85bbFj7GyvXbSL8rgHGG9evZeDzL5qFHT/2D737/sv4+eg/8TRvcb9ZnJPHj1M7JAR/f8tm6pjej/DBBx8w6ePpVtNoK/7+AVavUxriD8cx9IXnmDH3S1av+IVPPv6Qb5csvSuWVLhivNvgXpqd6iNK4GqDZgSfiifoVDynu/UFDHrNfLADcZ1HBRdApVJRq1atwi9i3Djo0wd273ausKKQJLLVVdziCRUoXM3bgXKj27Tl2wXz6Ny1O527disynl+NGkRGRVlsEVH1jba1CYS79XiYUyeOk55mXjscO2YUK37+iXnf/kCVKlW4djWFa1dTyM7O5vr1axw+dJCHe/U2xpdlmVMnT9DIZPmaxAsJ3BcaZnbevbG7ebDbQ1bT0LNPXy5euECrNkV39sq6fZuj8Uc4Gn/EcI2LFzgaf4RLSYlFHmMriRcv8u+nH+eNUW/z1DMDeXf8BNb9tpojcYfMIzrhfig37qbZhX1ESgPDjF5Bp+ILAyXJ3Ac7EKUwNCEvL4+NGzeSl5dnGAdzMr/Jrk0b5worAknoCcs+gyQcvyp0mRACTznHoT3xmjZrgUaj4f8mT7X94FLobdSkKS1atrKYaPqHRQvJzMjg8b4xNK8fadzWrPyVzRvW06p1G2rWLGw6vJBwnuw7d8yaRRs3bc6saVOI3W3oxZqTk8OGtb/x7xfMa5QF1K4dwpzZnxbrpw/HHeKhzu15qLNhKMjE8e/xUOf2zJg6uaTcKBVpqak892Q/evbuy5tvvwtAi5atiOndl+mTJ5lHdsL9UG7cTLMr+4ik+9vz5xsT2Tbi/4xhktAX+mAHI4nSrK/kBmRmZuLr60tGRgbVqpXthbEsy6Snp1O9enVUe/ZA584QGgom6zPOcaH1DBECLzkbrcrHLk9+Pio9Lf3yCAkLx8OzAt5DCZCQEagc9mT9xCO9aNy0KZOnz7L94FLq3bLpDz78YBw79h4s1RPt8888Sdv2HRgxaoxNcr77ZgEb161l+eq15dLrMribXqhwzXm5WpITLxKX5kG2bIeOOXb2ERWOEAxuXdPgg8tYOyxrWaC8MzRBpVJRo6BH4YkThv+NGxd9gLORJLTqSs5WUXokDE7EzsiyzM0b11m65AfOnT3N4vzxezZTSr0PxfQi4dxZrlxOLtX8mm3bd6D/k0/bLMdD48GUmbOLjuCg/K0w3E0vuJ9mt/MRUqEPdjBu9K3an7y8PNatW2eoohcUhg0bOldUMUhCT8SdUy7ZBGIVBzUxxe7eRfP6kfz68zK++/EnqpW185MNeocOH1HqiaZHjBpTpkmpB734MnXr1S86gps14bmdXnA7za7uI/ySztN0/c+EHdoDGPQafbCDUWqGJmg0Gjp37mzo0ltQGDZq5FxRxSBQkewd4UZPqpKhS7qd28Q6de7ClXTrg/xtwzF6Kw5Fr/1xL82u7iPq7trEA4vncKL7oyS26ohAVeiDHYxSGJogSVJhG7MbFIZIEnlSxYwpcwhu18Sk6LUr7qYX3E+zi/uI1NAoAGoknjcEmPpgB1Omb3XevHlERkbi7e1NdHQ0f/31V7Hxd+zYQXR0NN7e3tSpU4cFCxaY7f/++++RJMliy7l7jks7k5eXx5o1awxV9FWrDJPItmjhUA22IAk9de6ccNkmEAuEwMuNmpgUvXbG3fSC22l2dR+RGlYHgBpJ50GWkYS+0Ac7GJsLw+XLlzNq1Cjef/994uLi6Ny5M7179yYx0fo4pYSEBPr06UPnzp2Ji4tj/PjxjBw5khUrzLuiV6tWjStXrpht3t7FT3NV0Wg0GmJiYgxV9JYt4bnnXHKwfQECFRe967rRk6qEVvLCXZqYFL32xt30grtpdnUfkVE7DL1ag4c2m6o3UhCoCn2wg7E5h2bPns3LL7/MkCFDaNSoEXPnziU0NJT58+dbjb9gwQLCwsKYO3cujRo1YsiQIbz00kvMmmXe1V2SJIKCgsy24tBqtWRmZpptAHq93vjfmq3T6cxsWZbNbI1GYxael5dnZhc8EUpCb7CFsLShBFsuwZat2tJdNkJGllRGuzBclGDri7eNacKozfC/PLbA5ITm4aWyKZ8trNglabeql1LqdUKaStRbGtuBaSo0yvc9OTJNZnlcyrSWMk3u6SNMbKPG0vs9Wa0hPSQcgBoXzyIJgw8uyn+X1peXBZsKw9zcXA4ePEhMTIxZeExMDHv27LF6TGxsrEX8nj178vfff5tVhW/fvk14eDj33XcfjzzyCHFxcXefyoxp06bh6+tr3EJDDb3zjh41LANz4sQJTuS/94uPj+dM/iKScXFxJCQkALB//36SkpIA2LNnD8nJyaxfv55jM2aQNW0aHDvG1q1b6MrmqwAAIABJREFUSU9PB2DTpk14iFwAIrNPoxY6JGQis08jIaMWOiKzDeMQPUQu4dlnAfCSswnNMbSJ+8hZhOQYrl9Zf4tgraFGXVWfTqD2EgC+ujRq5l4GwC/vJv65Kfn2dfzyrgPgn5uCn+4GkdmnqZV7GV+dYQaUQO0lquoNeoO1iVTW3wIgJCcBH9mwFFJoznm8ZMNEz+HZZ4tNE4Bn/n4JGU+htWLrjedQmdk6NMLwHavRoxF5eAktaqFDIww3rFroUOfbGqFDnf/j0Yg81BTaKnTGfFXlh3uIXKR821NoTfQW2l5CS4EXsrRLTpOX0KJCLjZNhnToXSJNXkKLhCj39+SoNBXoL+/35Lg0yXgJbYXdewV6PUWO2/qI8vq9OyGGVV9qXzhKrdzLrF+/nlOnThEfb5iZxlZfvq9gDVobsWnQ/eXLlwkJCWH37t107NjRGD516lR++OEHTp06ZXFM/fr1eeGFFxg/frwxbM+ePXTq1InLly8THBzM3r17OXv2LM2aNSMzM5PPPvuM9evXc+TIEerVq2dVi1arNVvTLTMzk9DQUFJTU/Hz8zM+MajVajNbp9MhSZLRVqlUqFQqY7gsyyR0f4T6uzax/dVxHH58UP4AWwlJ6C1tTAbhFtiS2vD0U6QtDJPmFmnLhgmi77ILnqYKbCGEYRytACFJUBCOlK+xKNtKOqykyVsFLWvkERIahoeXd2HtQ5LKYFu5zUzDS7QlQ8tUWW3ytZjapdFuoddKmsps2yFNxeotje3oNJGvv5zfk8PSZJbB5b738nJzSE5KJC7VgxwZt/MRFeH3On4/h3bLvia+z9NsHTmJ17vXNfYbudt/l8aXp6am4u/v75hB99JdMxkYMrzoNnRr8U3D27dvT/v2hSuFd+rUiVatWvHFF1/w+eefWz2nl5eXcakbU9T5KyaoTVZOMLVN26LvtoUQ5ObmUiPJ8LSRGlbH8EUW6C7KxootScXYUgm2qtCtmdims84bbIFK6Azrq+XnpWUca3Yp0yTpjdoM/41/ymCbFjBSoV8wvTfsbWPFLk67MHHSElbiOFB7adJUot7S2I7WLooIv8su771XUdrLeg8XlSaT35bx9+dOPuJuuwx+7/jD/Uls1Ymb4fUQkqFi4u3tbSwfyuLLy4JNzaQBAQGo1WpSUlLMwq9du0ZgYKDVY4KCgqzG12g0+BexGrdKpaJNmzbG6rCj0Ol0bNq0iWpXDU0R6bXDHXp9W5GQCc85S0GzjOtj2lzkDih67Yu76QV30+wOPiL9vkgutWhHdvUaSMhs2rTJKSvd21QYenp6Eh0dzebNm83CN2/ebNZsakqHDh0s4m/atInWrVvj4eFh9RghBIcPHyY4uPgVxCsaDw8P+vXujWeOoa08p1p1h17fVoSk5nylRmZPay6NJKFVed/1xOzCKHrti7vpBbfT7G4+Qkhq+vXrV2TZYE9srk+OHj2aQYMG0bp1azp06MDChQtJTExk2LBhAIwbN47k5GSWLFkCwLBhw/jyyy8ZPXo0Q4cOJTY2lkWLFrFs2TLjOT/88EPat29PvXr1yMzM5PPPP+fw4cN89dVXFZTM0iGE4HZSEgXroOdWquLQ69uMcN5Co9/sPF/GI03fnZSeoV3qlPF65UBQ+F7EAdk7cvhQMjPS+X7pL2U7QSn0tm7WgFeGj+CV194o0yUSL16kbfOGbPlrL02bl3MMroPz1xo254cLaLYJJ/qI0qLKy6X52p/wyspk/zOvkpmZSdWqVYt99WYPbC4MBwwYwM2bN/noo4+4cuUKTZs2Zf369YSHG5oUr1y5YjbmMDIykvXr1/PWW2/x1VdfUbt2bT7//HOeeKJwIdX09HReeeUVUlJS8PX1pWXLluzcuZO2bYtel80e6HQ6Dm7ZQlcgp3JVhNq1n6YkZEJyLnDRp65Z+73rIlALPXpJjZt4EjxELrkOGlf28fRZlG8RGfvrDbnvPuJPJ1CjjIv+muPY/K0Y3EuzO/gIoVLRbf4UAOIfeYa//rpATEyMw2uHZXrT+Nprr/Haa69Z3ff9999bhD344IMcOnTIMnI+c+bMYc6cOWWRUqF4eHjQNX/GGW0V50wJZAtCUnOhUgNny7AByfAi312QJHKlwokf8vLy7PoDLfOE4gXcpdceqNVqagUWPwa41DhAb4XjZprdwUcItQZtpcp43cnCK+s2fZ/q6xQdrjktgZOQZZnU2rX5ac4y/nhvhrPllIwQeOnvWOny7co4Rmv/vjG8/+5oPpownobhtWlWL4KZ0z42i3MpKZHBzz5FndoB1L2vFkMHP8f1a1eN+2dO/ZgendqydMkPtG3eiLCavggh6N83hvHvvMWEsW/TICyYpnXD+c/iRWRlZfHma68QFVKTdi0a8+fmjcZz6fV63np9GG2aNSQi0I9O0c35Zv6XZnpGDh/KCwOfAgzNkUG+PhZb/76FY3YP7Ivlsd4PERHoR6vGdXn/ndHcuX3LmMXXr19j0IAniAj0o02zhqz4eRmlYdmPS+jc5n7Ca1XngdYtWPzN18Z9BbqOxh8xhm1cv5YOLZsSEejH44/0ZPnSHwny9SEjf3yuVa3vjibrdlb+QG9Dc+Vns2Yw6vVXiQqpSXSTevxn8aIiNS757lvub1jHONC6gOefeZI3hg0B4ML58wx+9ima1g2nTu0AenbtxM5tW4s8p7W0ZaSnE+Trw+6/dhoCBJw+cYyBTz5GndoBNK0bzohXXuLmzRvGY35fvZKuHVoTEehHo4gQnvpXH7KyskrIdTvhJj5CW8XwIOiVmUFqaqrF9+oIlMLQBL1ez4ETJ0hp3ILLTVs7W06JSMgE5ia7dE8xc0T+wGbH/DB/XvZfKlWuzPqtO5nw0RRmfzKVHVv/NCgRghcHDiA9LZVV6zbx8+q1XExI4JUXB5npvZBwnt9X/8qi/yzjz137zM5dwz+ADdv+4uVXh/Pe6JEMHfwcbdq2Z/POWLr2eJg3XnmZO3cMq2fIskxwSAgLv/+RHfviGP3eOKZ+NJE1K3+1qr2gObJg2/LXXmrU8Kd9xwcAOHHsKM88/i/6PNqPrXsO8PXi/7B/7x7ef2cUBfn75vBXSEq8yK+/b+DbJUv5/tuF3Lx+vdg8+/H775g+eSJjJ0xi5/7DjPu/D5kx5SOWL/3RavzEixcZ8vxAevV9lC279vH8Cy8zffJEszhWtcbGMv6dUfmDuQ16F3z5GS3ub8WWnXt54eVXeG/0SM6cthy7DPDoY4+TevMmu3fuMIalp6Wx/c/NPPHUMwBkZd2mx8M9+WXNOrb8tZduPR7m+Wee4FKS9akjS8PVlMv079uTps2asXH7bpatWMP1a9d4ZfC/8/dfYfjLg3n238+zc/9hVq7bSJ9H+zmtMHIXH6GtYuip4Z2VwYEDB4zjCR2JG7VZ2R8PDw969uzJcVdazb4YhKQm0cf6pASuiWObSRs3acrbY98HoE5UXb5bOJ+/dmzjwe492LltK8eP/cP++BPGtQW/WLiIB9u1Iu7g37SMbm1oEsvN5YuF3xEQUNPs3E2aNuOtd8YCMHL0O3wxZxY1/P359wsvATDmvXH8sGghJ479Q3Sbdnh4ePDu+AnG48MjIjiwbx+/rVpBv8eftNBu2hyZk5PDCwOfJrptO94Z9wEAX30+h8efHGDs+FEnqi4fz/iU/n1imDbnK5IvJbF180bW/7mDVq0N795nf7mAzm3uLzbP5sycxqQp0+n7r8eMOk+fOsl/Fn/LgIH/toi/5LtviKpXn4kfTwOgbr36nDxxnLmzPjHGsa51Fv37xPDJnC/w9ja8e+sR05MXh74KwIi33ubreV+y56+d1Ktv2cznV6MG3R6KYeUvy+nctRtgqJFV96th/NykWXOaNGtuPGbshEmsX/sbGzes4+VXhhebD0Xx/Xff0qxFS8ZPnFyYZ18toFXjepw7e4as27fR6XT0ebQfoWGGfhSNmjQt07UqAnfxETkFNcPbt+nZs6dTNCiFoQmyLJPx+++03LCPlIbNudKklbMlFY8Q+MhZZKsqu2xPMUtkHNUg0ahJM7PPgUHB3LhhqBmdOX2S2iH3mS2y26BhI3x9q3Pm9ClDYSjgvtAwAvzNC8K7z61Wq/GrUYNGjZsYw2rWMoy7vWFSE/th0Tf8d8n3XEpKJCcnm7zcXDNnXRSjRwzj9u3b/Lx6HSqVIe/iD8dx4fw5VvzykzGeEAJZlkm8cIHz586g0Who0TLauL9e/Qb4+hY9XOjGjeskX7rE6BHDGTPydWO4XqejajXr7zPPnT3N/a2izcJaRpu3qhSnNenCOeo1MOSbaaEhSRK1AgON35c1Hn9qAO+MGsH02Z/h5eXFil9+4rEnnjQOzM7KyuLT6VPYvHEDV1OuoNPpyMnOJjl/2q6yEH84jt1/7aBObcsORBcSztO1+0N0frAb3Tq2oWv3h+ja/SEe6def6n5+Zb5muXATH1HQR8P7VgbXrl0jICDAeK87CqUwNEGWZW799790/eUX/n7yJZcvDCUE/rlXSfaOLJzRwaURqISMLEk4oieeh4f57S1JGN9FFDVrksA0XFC5kg/WhoNYnlsy61xTcI6C661Z+SsTx7/LxI+n07ptO6pUqcq8z+dw6OCBYtMwZ+Z0tm3ZzIatf1GlalVjuJBlBr34MkNefd0ktkAj8ggMjeTc2dNmOkqDyNc66/OvaBVt3pNbVUTPaiEE0l15c3ePWOtaDXojQgIpaCa9u3NSwfSIRRHTuy9jRr7Glo0buL9VNPv27ObDKYU10o8mjGf7n5uZ+PE0IutE4e3tw5DBA8nLy7V6PpVKstCfpzNfSkiW9fTs1Yv3P5zK3fdEraAg1Go1P69Zx4F9sWzf+ieLFs5n2uRJrP9zJ+EREUWmxV64i4/IqZpfGN7O4OjRo3Tp0kUpDJ2JRqMhLH8uO/foTarikk+Us2XYgITsIr1J6zdoRPKlJJIvJRlrh6dOniAzI6OwWU6SDFNUVcAT9b7Y3bRu297YDAiGmkRxrF2zitmfTGXpr2uIqGM+zrJZi/s5deIEkVHWv/96DRqi0+k4HHeQVtFtADh75jQZGelW44OhNhtcuzYXL1zgiaefLVW66tZrYNZRCOBInHnP8ZK0lhUfHx/6PNqPlT//RML5c0TVrUeLloUPsPtidzPguUGGd3ZA1u3bJCVeBDpbPZ9/flP41aspFNT7j+VPFl1A8xYtWffbakLDI4qc9kuSJNq270jb9h0Z8954Wjetz4a1axg24s3yJbgMuIuPOPjkyxzr9STpwWG82r2TUzQoHWhMkGWZ7MuGmeBz3KAwRAgq6zJdvqeYKa7yIr9Lt+40btKM14e+SPzhOA4dPMAbrw6hwwOdC5v9BJgvOVR2IutEceTwIbZt2cy5s2f45OMPORx3sMj4J44f441hQxgxagwNGjXi2tUUrl1NIS01FYARo8Zw8MA+xo4ZxdH4I5w/d5aN69by/tujQBje3XV7KIa3R77Oob/3cyTuEGPeGI6Pj0+xOt8e+wFfzJ7JN/O/5NzZM5w4dpRlPy5hwZefWY0/6MUhnD19isn/9z7nzp5hzcpfWb70P0BhrdSq1vVrGf/2W6hMlworA0889QxbNv3BTz8u4YkB5gV4ZJ06rP9tDUfjj3Dsn3iGD3mh2Jqmj48P0W3a8uWcWZw6eYLY3buY/vEkszgvDnmV9LRUhr30PIcOHuBiQgLb/9zCqNdfRa/Xc+jv/Xw2awaHDx3kUlIi635bzc0bN6jXoGHZE1ke3MRHpIbX5XKTaO74BZCcnOyU3qSu8ZjuIsiyjDYlBR9AW9V1F/UtQELgq0vljrqKw5tAyjQjjAvNhiFJEouXLuf9d8fwWJ+HUalUdOvxMFNnzjaJZZhdv6yz5pjy/EtDOfpPPK++NAgJiceefJoXXn6FrVs2WY1/JO4Q2XfuMGfmdObMnG4M7/BAZ1at20Tjps1YuW4T0ydPol/vhxBCEBFRh/79HzPq/Wze14x+4zX694khoFYtxn4wiU+mfFiszucGv4hPJR/mfTaXyf/3PpUqVaZhkya8MnyE1fjhERF8u2Qpk94fy7cLviK6bTveHPMe740eiWf+RPpWtUbWoV//J1ALHbJU9mfyBx7sSnU/P86eOc3jTw4w2/fh1Jm89fqrPBrTjRr+/rw+agy3bmUWe745X33NW6+/Sq+unYiqW58JH01hQP9HjPuDgoNZ/8dGJk36kGf7/4vcXC33hYbR7SHDPVSlajX27tnFwvlfcvtWJveFhjFxynR6POycTiHO9BFlQUJw7tw5AgMDHd5MatMSTq5MZmYmvr6+Ni/bYUHLlnD4MCunfMPFNl0qTqAb4qPS09Ivj5CwcDw8LVcIUVCwxtyZn7Bk8TccOn7W2VJcnrxcLcmJF4lL8yBbds0ZYhxBtStJ1Nm7DW2VavSa8W65zlXWskBpJjVBlmV0+b3/3OGdIUJQVZfm8k0gRgSohM5dJvxX9JaSxd98TdzBv7mYkMAvPy1l3hdzePpZy2EYFrhb/oL7aXYTH1Ej6Tzd5k+h5aofuHjxotJM6mxkWYaMDMA9CkMJQWXdLW6rfd2iCaSwN2n5mx0dg6K3NCScP8vcWdNJT0sj5L5Qho14k5Gj3ynFke6Wv+Bumt3FR2gr5w+6v53JueRkQkJClN6kzkSj0cDmzaz68x8ya9V2tpwSEZKKFO8wZ8soPZKETvJ0torSo+gtFR9Nm8lH02bafqC75S+4nWZ38REFfTS8sm4VuRygvVGaSU3Q6/WcDQjgQpvO6L3cYDJeIeObdxOEa/TQLBEhUAudyzfZGFH02hd30wvup9lNfERB732v25mcPX3aKdOxKYWhCUII0tLSXLgxwRwJ8JKz7abX2JeyAn9Ikov/KO9G0Wtf3E0vVKxmIeT8/sr2+RXb20dUFAUTdUtCkHnpUjmXMisbSjOpCZqrV2mzezdXb6o406WXs+WUiJBUXPO6z27n18oSWp0g9fpVqvsFoNZoyj0kwjCfh/UZQFwRRa99cTe9UEGahUCv05GeegOtTqCV7VNc2dtHVBR6T0/yvLzx0ObQKjISipjQwJ4ohaEJ+qNHUb/1Fu0j6rlFYYiQ8cu7SZqHP5RjrFaRp0fiaKYXEbpc7mQno6qAsYEqZGQ3apBQ9NoXd9MLFadZFoJUrcSFO17269xiZx9RkWgrV8VDm0NCXBxhYWHGOWYdhVIYmpK//ppbzD6DoQlELfKQsF9P71yh4nSWFx53BBqJcl1JEoLqeTdI9whAuPCkwQUoeu2Lu+mFitQsoROQJ+w7T68jfERFsWHcp8hqNQ0DA51yfaUwNEFdMKzCDWafAUMTyA0vR/R6lcgTEnkV8Gu6ownCOKmLG6DotS/uphfcS7PjfET5udSiHQADOtV3yvVdu97sYOSbNwH3GGMIhhf5NXKvuk0nBEWvfVH02h930+yOeo8ePeo+vUnnzZtHZGQk3t7eREdH89dffxUbf8eOHURHR+Pt7U2dOnVYsGCBRZwVK1bQuHFjvLy8aNy4MatWrSqLtPKRlgYUDgBVUFBQUHAMtY8d5P7V/8Hn8GGnXN/mwnD58uWMGjWK999/n7i4ODp37kzv3r1JTEy0Gj8hIYE+ffrQuXNn4uLiGD9+PCNHjmTFihXGOLGxsQwYMIBBgwZx5MgRBg0axNNPP82+ffvKnrIyoMpvJs2pWvQCqK6EkFSkegYalhlyAxS99kXRa3/cTbM76a2/fT1d508l6sQJh3eegTJM1N2uXTtatWrF/PnzjWGNGjXiscceY9q0aRbx33vvPX777TdOnDhhDBs2bBhHjhwhNjYWgAEDBpCZmcmGDRuMcXr16oWfnx/Lli2zqkOr1aLVao2fMzIyCAsL48KFC/j5+Rmr2Wq12szW6XRIkmS0VSoVKpXKYL/0Eqo1a/jrpdHEPzIQJAlJ6BGoirYxLEtkZktqEKIYWxhuziJt2fDC+y67oKnDaAuZGrrrpGlqGmb+zw8XSPkai7KdkyaVkPHTXSdVUxMkldU0CTBJB05Nk0ro8/XWKlzbsAzfk6PSpBI6/HQ38vVi13uvItKkkvPwy7tOqmcQIJz+eypNmhCCGrpr+b85teIjKjBNbZfNp83P33Ljsceo9s03qNVqC/9dGl+emppKZGQk6enp+Pra0P9D2IBWqxVqtVqsXLnSLHzkyJGiS5cuVo/p3LmzGDlypFnYypUrhUajEbm5uUIIIUJDQ8Xs2bPN4syePVuEhYUVqWXixIkFr7CVTdmUTdmUTdnMtqSkJFuKN2FTb9IbN26g1+sJvKvra2BgICkpKVaPSUlJsRpfp9Nx48YNgoODi4xT1DkBxo0bx+jRo42fZVkmNTUVf39/46KitpKZmUloaChJSUnlWwbKQSh67Yui1764m15wP833ol4hBLdu3aJ2bdt60ZZpaMXdhY0QotgCyFr8u8NtPaeXlxdeXuZr7FWvXjHv+qpVq+YWN04Bil77oui1L+6mF9xP872m16bm0XxseqsaEBCAWq22qLFdu3bNomZXQFBQkNX4Go0Gf3//YuMUdU4FBQUFBYWKxKbC0NPTk+joaDZv3mwWvnnz5iKX3ejQoYNF/E2bNtG6dWs8PDyKjeOspTwUFBQUFO4t1JMmTZpkywHVqlVjwoQJhISE4O3tzdSpU9m2bRuLFy+mevXqjBs3jiVLltC/f38A6taty7Rp07h58yZhYWH8/vvvTJ48mdmzZ9O4cWMAQkJC+OCDD/Dy8iIgIIBFixbx7bffsnDhQu67z7GTzKrVarp27WpY29ANUPTaF0WvfXE3veB+mhW9pcSm7jb5fPXVVyI8PFx4enqKVq1aiR07dhj3DR48WDz44INm8bdv3y5atmwpPD09RUREhJg/f77FOX/55RfRoEED4eHhIRo2bChWrFhRFmkKCgoKCgo2Y/M4QwUFBQUFhf81XH9aAgUFBQUFBTujFIYKCgoKCvc8SmGooKCgoHDPoxSGCgoKCgr3PPd0YXjhwgVefvllIiMj8fHxISoqiokTJ5Kbm1vscUIIJk2aRO3atfHx8aFr164cO3bMIZqnTJlCx44dqVSpUqln3HnhhReQJMlsa9++vZ2VGiiLXmfmb1paGoMGDcLX1xdfX18GDRpEenp6scc4Mn/tsXyaPbFF7/bt2y3yUZIkTp486RCtO3fu5NFHH6V27dpIksTq1atLPMaZ+WurXmfn77Rp02jTpg1Vq1alVq1aPPbYY5w6darE4xyVx/d0YXjy5ElkWebrr7/m2LFjzJkzhwULFjB+/Phij5sxYwazZ8/myy+/5MCBAwQFBfHwww9z69Ytu2vOzc3lqaeeYvjw4TYd16tXL65cuWLc1q9fbyeF5pRFrzPzd+DAgRw+fJg//viDP/74g8OHDzNo0KASj3NE/tpj+TR7YqveAk6dOmWWl/Xq1XOI3qysLFq0aMGXX35ZqvjOzl9b9RbgrPzdsWMHr7/+Onv37mXz5s3odDpiYmLIysoq8hiH5rFzR3a4HjNmzBCRkZFF7pdlWQQFBYnp06cbw3JycoSvr69YsGCBIyQKIYRYvHix8PX1LVXcwYMHi379+tlZUfGUVq8z8/f48eMCEHv37jWGxcbGCkCcPHmyyOMclb9t27YVw4YNMwtr2LChGDt2rNX47777rmjYsKFZ2Kuvvirat29vN42m2Kp327ZtAhBpaWmOkFcsgFi1alWxcZydv6aURq8r5a8QQly7dk0AZuPU78aReXxP1wytkZGRQY0aNYrcn5CQQEpKCjExMcYwLy8vHnzwQfbs2eMIiWVi+/bt1KpVi/r16zN06FCuXbvmbElWcWb+xsbG4uvrS7t27Yxh7du3x9fXt8Rr2zt/c3NzOXjwoFm+AMTExBSpLTY21iJ+z549+fvvv8nLy6tQfXdTFr0FtGzZkuDgYHr06MG2bdvsKbNcODN/y4Or5G9G/mLqxflbR+axUhiacO7cOb744guGDRtWZJyCCcVtXXLKmfTu3Zv//ve/bN26lU8//ZQDBw7QvXt3s8WRXQVn5m9KSgq1atWyCK9Vq1ax13ZE/tpj+TR7Uha9wcHBLFy4kBUrVrBy5UoaNGhAjx492Llzp121lhVn5m9ZcKX8FUIwevRoHnjgAZo2bVpkPEfm8f9kYThp0iSrL4pNt7///tvsmMuXL9OrVy+eeuophgwZUuI1bF1yqqL12sKAAQPo27cvTZs25dFHH2XDhg2cPn2adevWuaRecF7+WrtGSdeu6PwtDnssn2ZPbNHboEEDhg4dSqtWrejQoQPz5s2jb9++zJo1yxFSy4Sz89cWXCl/R4wYQXx8PMuWLSsxrqPy2D1mbrWRESNG8MwzzxQbJyIiwmhfvnyZbt260aFDBxYuXFjscUFBQYDhiSU4ONgYXp4lp2zVW16Cg4MJDw/nzJkzZTrennqdmb/x8fFcvXrVYt/169dtunZ589ca9lo+zV6URa812rdvz48//ljR8ioEZ+ZvReGM/H3jjTf47bff2LlzZ4kLMTgyj/8nC8OAgAACAgJKFTc5OZlu3boRHR3N4sWLUamKryxHRkYSFBTE5s2badmyJWB4P7Jjxw4++eQTu+utCG7evElSUpJZYWML9tTrzPzt0KEDGRkZ7N+/n7Zt2wKwb98+MjIybFpOrLz5aw3T5dMKVoQBw/Jp/fr1s3pMhw4d+P33383C7l4+zV6URa814uLiKjQfKxJn5m9F4cj8FULwxhtvsGrVKrZv305kZGSJxzg0jyu8S44bkZycLOrWrSu6d+8uLl26JK5cuWLcTGnQoIFYuXKl8fP06dOFr6+vWLlypfjnn3/Es88+K4KDg0VmZqbdNV+8eFHExcWJDz/8UFSpUkXExcWJuLg4cevWLat6b926JcaMGSP27NkjEhISxLZt20SHDh1ESEiIS+oVwrn526tXL9G8eXMRGxsrYmNr7urEAAABy0lEQVRjRbNmzcQjjzxiFsdZ+fvTTz8JDw8PsWjRInH8+HExatQoUblyZXHhwgUhhBBjx44VgwYNMsY/f/68qFSpknjrrbfE8ePHxaJFi4SHh4f49ddfK1RXRemdM2eOWLVqlTh9+rQ4evSoGDt2rAActoLNrVu3jPcnIGbPni3i4uLExYsXrep1dv7aqtfZ+Tt8+HDh6+srtm/fbuZr79y5Y4zjzDy+pwvDxYsXC8DqZgogFi9ebPwsy7KYOHGiCAoKEl5eXqJLly7in3/+cYjmwYMHW9W7bds2q3rv3LkjYmJiRM2aNYWHh4cICwsTgwcPFomJiS6pVwjn5u/NmzfFc889J6pWrSqqVq0qnnvuOYuu6M7MX3ssn2ZPbNH7ySefiKioKOHt7S38/PzEAw88INatW+cwrQVDD+7eBg8ebFWvEM7NX1v1Ojt/i/K1pr99Z+axsoSTgoKCgsI9z/9kb1IFBQUFBQVbUApDBQUFBYV7HqUwVFBQUFC451EKQwUFBQWFex6lMFRQUFBQuOdRCkMFBQUFhXsepTBUUFBQULjnUQpDBQUFBYV7HqUwVFBQUFC451EKQwUFBQWFex6lMFRQUFBQuOf5f2PQdBDM5J6gAAAAAElFTkSuQmCC", "text/plain": [ "PyPlot.Figure(PyObject
)" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " 0.633140 seconds (7.03 k allocations: 24.739 MiB, 8.31% gc time)\n" ] } ], "source": [ "n = 2^10\n", "seed!(2019)\n", "X = Symmetric(randn(n,n)) # 標準正規分布の場合\n", "@time λ, U = eigen(X)\n", "\n", "a = λ/√n\n", "x = range(-2, 2, length=200)\n", "f(x) = 1/(2π)*sqrt(4-x^2)\n", "\n", "plt.figure(figsize=(5, 2.7))\n", "plt.hist(a, normed=true, bins=50, alpha=0.5, label=\"normaized eigen values\")\n", "plt.plot(x, f.(x), label=\"\\$y = (2/π)\\\\sqrt{1-x^2}\\$\", color=\"red\", ls=\"--\")\n", "plt.grid(ls=\":\")\n", "plt.legend()\n", "plt.title(\"Semicircle law\");" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAboAAAEPCAYAAAA08AFDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXd4FNX+uN/Z3TQChIRACCGEEEQQUOmEphSDgu2qV+y9ICq2372KYrlY8KJesOHF8hXFqxd7I0oRlRLapYj0FkhIQiAESCHZ7Oyc3x9DloRsks1mZ3eHnPd58uTs7JT3zM58zp6zZ85RhBACiUQikUjOUCyBFpBIJBKJxEhkQSeRSCSSMxpZ0EkkEonkjEYWdBKJRCI5o5EFnUQikUjOaGRBJ5FIJJIzGlnQSSQSieSMRhZ0EolEIjmjkQWdRCKRSM5oZEEnMT2rV6/mL3/5Cx07diQsLIy4uDhSU1N57LHHAuLz22+/oSgKv/32W4O2mzNnDoqisG/fPp+53HbbbXTq1Mln+zPCUSIxGlnQSUzN/PnzGTx4MEVFRUyfPp2FCxfy+uuvM2TIEObNmxcQpz59+rBy5Ur69OnToO3GjRvHypUriY+PN8hMImma2AItIJE0hunTp5OcnMyCBQuw2U5dztdddx3Tp08PiFPLli0ZNGhQg7dr06YNbdq0qXe9EydO0KxZM2/UJJImiazRSUzNkSNHiI2NrVbIVWKx1Ly8582bR2pqKpGRkTRv3pwxY8awYcOGauvcdtttNG/enO3btzNmzBgiIyOJj4/n5ZdfBmDVqlUMHTqUyMhIunbtykcffVRt+9qaLlevXs1ll11G69atCQ8PJyUlhYcfftj1vrtmwQsvvJCePXuydOlSBg8eTLNmzbjjjjtc73/66aekpqbSvHlzmjdvzvnnn88HH3xQ5zkTQjBr1izOP/98IiIiiI6O5pprrmHv3r11blcbixYt4oorrqBDhw6Eh4fTpUsX7r33XgoKClzrbNmyBUVR+OKLL1zL1q1bh6Io9OjRo9r+Lr/8cvr27euVi0TiDlnQSUxNamoqq1evZtKkSaxevRqHw1Hrui+99BLXX38955xzDp9//jlz586luLiYYcOGsXXr1mrrOhwOrrrqKsaNG8d3333HJZdcwuTJk3nyySe59dZbueOOO/jmm284++yzue2221i3bl2dngsWLGDYsGFkZWXxr3/9i59++okpU6aQn59fbx7z8vK46aabuOGGG0hPT2fixIkAPPPMM9x44420b9+eOXPm8M0333Drrbeyf//+Ovd377338vDDDzN69Gi+/fZbZs2axZYtWxg8eLBHPqezZ88eUlNTeeedd1i4cCHPPPMMq1evZujQoa7Po0ePHsTHx7N48WLXdosXLyYiIoKtW7eSm5sLgKqq/P7774wePbrBHhJJrQiJxMQUFBSIoUOHCkAAIiQkRAwePFhMmzZNFBcXu9bLysoSNptNPPjgg9W2Ly4uFu3atRPXXnuta9mtt94qAPHVV1+5ljkcDtGmTRsBiPXr17uWHzlyRFitVvHoo4+6lv36668CEL/++qtrWUpKikhJSRFlZWW15uXDDz8UgMjMzHQtu+CCCwQgfvnll2rr7t27V1itVnHjjTfWeX5uvfVWkZSU5Hq9cuVKAYjXXnut2nrZ2dkiIiJC/P3vf69zf+4cq6JpmnA4HGL//v0CEN99953rvZtuukl07tzZ9Xr06NHi7rvvFtHR0eKjjz4SQgixYsUKAYiFCxfW6SGRNARZo5OYmtatW7Ns2TLWrl3Lyy+/zBVXXMHOnTuZPHkyvXr1cjWfLViwAFVVueWWW1BV1fUXHh7OBRdcUKOZUVEUxo4d63pts9no0qUL8fHx9O7d27U8JiaGtm3b1lmL2rlzJ3v27OHOO+8kPDy8wXmMjo5m5MiR1ZYtWrQIp9PJ/fff36B9/fjjjyiKwk033VTtPLRr147zzjuvwT1FAQ4dOsSECRNITEzEZrMREhJCUlISANu2bXOtN2rUKPbu3UtmZibl5eUsX76ciy++mBEjRrBo0SJAr+WFhYUxdOjQBntIJLUhO6NIzgj69etHv379AL3Z8fHHH2fGjBlMnz6d6dOnu5rk+vfv73b703/Pa9asWY1CKTQ0lJiYmBrbhoaGUl5eXqvb4cOHAejQoYPnGaqCu16Y3u4zPz8fIQRxcXFu3+/cuXOD9qdpGmlpaeTm5vL000/Tq1cvIiMj0TSNQYMGUVZW5lq3sjly8eLFJCcn43A4GDlyJPn5+Tz//POu94YMGUJERESDPCSSupAFneSMIyQkhGeffZYZM2awefNmAGJjYwH48ssvXbUNf1HZk/LAgQNeba8oSp37TExM9HhfsbGxKIrCsmXLCAsLq/G+u2V1sXnzZv744w/mzJnDrbfe6lq+e/fuGut26NCBrl27snjxYjp16kS/fv1o1aoVo0aNYuLEiaxevZpVq1bxj3/8o0EOEkl9yIJOYmry8vLc1ngqm8zat28PwJgxY7DZbOzZs4err77ar45du3YlJSWF//u//+PRRx9tcGHijrS0NKxWK++88w6pqakeb3fppZfy8ssvk5OTw7XXXttoj8pC+PQ8zZ492+36o0eP5vPPPycxMZFx48YB+vnp2LEjzzzzDA6HQ3ZEkfgcWdBJTM2YMWPo0KEDl112Gd26dUPTNDZu3Mhrr71G8+bNeeihhwDo1KkTU6dO5amnnmLv3r1cfPHFREdHk5+fz5o1a4iMjDS0JvH2229z2WWXMWjQIB555BE6duxIVlYWCxYs4D//+U+D99epUyeefPJJnn/+ecrKyrj++uuJiopi69atFBQU1JqXIUOGcM8993D77bfzv//9j+HDhxMZGUleXh7Lly+nV69e3HfffR57dOvWjZSUFJ544gmEEMTExPDDDz+4fnM7nVGjRjFr1iwKCgqYOXNmteUffvgh0dHR8tECic+RBZ3E1EyZMoXvvvuOGTNmkJeXh91uJz4+ntGjRzN58mS6d+/uWnfy5Mmcc845vP7663z22WfY7XbatWtH//79mTBhgqGeY8aMYenSpUydOpVJkyZRXl5Ohw4duPzyy73e59SpUznrrLN48803ufHGG7HZbJx11llMmjSpzu1mz57NoEGDmD17NrNmzULTNNq3b8+QIUMYMGBAgxxCQkL44YcfeOihh7j33nux2WyMHj2axYsX07Fjxxrrjxw5EovFQkRERLWa6OjRo/nwww8ZMWKE2+cfJZLGoAghRKAlJBKJRCIxCvnVSSKRSCRnNLKgk0gkEskZjSzoJBKJRHJGIws6iUQikZzRyIJOIpFIJGc0pni8QNM0cnNzadGihdtRIiQSiURy5iOEoLi4mPbt2zfoMRRTFHS5ubkNGuZIIpFIJGcu2dnZDRrn1RQFXYsWLQA9cy1btvRqH6qqsm7dOvr27et2ks5gw2y+YD5n6Wss0tdYmqJvUVERiYmJrjLBU4L/7HBqPL2WLVt6XdBpmkbXrl1p1aqVKUZeMJsvmM9Z+hqL9DWWpuzb0J+wTDEySlFREVFRURw/ftzrgk4ikUgk5sbbsiD4vwb4CFVVWbp0KaqqBlrFI8zmC+Zzlr7GIn2NRfp6TpMp6CwWCykpKaao4oP5fMF8ztLXWKSvsUhfz5FNlxKJRCIxBbLpsh5UVWXJkiWmquabyRfM5yx9jUX6Gov09ZwmU9BZLBZ69uxpqmq+mXzBfM7S11ikr7FIX8+RTZcSiUQiMQXelgWmeI7OFzgcDpYsWcLIkSMJCQkJtE69mM0XzOfsC98Zi3Z6td0jF3Vt8D4V4aS7yPLb+a0rb3X5V9IUrwd/In09xxx1Xh9gtVrp378/Vqs10CoeYTZfMJ+z2XwFFlP5mu38Sl9jCaRvk6nRWSwWYmJiAq3hMWbzBfM5m80XRTGVr9nOr/Q1lkD6NpkancPhYP78+TgcjkCreITZfMF8zmbzVYTTVL5mO7/S11gC6dtkCjqbzcawYcNMMfgpmM8XzOdsNl+BxVS+Zju/0tdYAulrjjPkAxRFMVWPTbP5gvmczeaLyXzNdn6lr7EE0rfJ1OgcDgffffedqar5ZvIF8zmbzVcRTlP5mu38Sl9jCaRvkynobDYbaWlppqrmm8kXzOdsNl+BxVS+Zju/0tdYAulrjjPkI8xyQVRiNl8Ibucaz4UJgYKGwMIjaWf7T6TqGA0nTsDixVBUBKWlUFrKwD/2E2Ivw1phJ79rL7aPuhwAa0UFYRMnQmjoqb+QEP1/ZCTf2aPYmzrStevWmTsobxnNPVcP1NcLAMF8PbhD+hpLoHzNdZYagaqqpKenM3bsWFM8XGk2XzCfs4JGctlOMiPqf/i5IVjt5bTfuoGWBw/QoiCf5gUHaX74IM2P5NO84BDbRl8OaR/pKxcXwxVXVNt+cJX01tFXuAo6RahY5syp9bjnDE07VdAJwU33/QWL5tRfx8RAXJz+l5gIgwfDhAmnNnY4fF4Ymu16kL7GEkjfJlPQ2Ww2xo4da5pvQGbzBfM5CyxkRnRFeNOCX14OW7fSfdFiYjN3UND5bLaNvhKAiKJjXPP4bbVuGnGs8NSLmBjo3x+ioiAyEiIj+fOoiiM8AjUsnENdurtWddpCcT7/PBZNQ3E49MKpokL/Ky0lOzLRta7VUUFZy1ZEFB3FomlQWKj/bdumr1BScqqgEwLatNFdzj7b9ZdwogUFnbthb+5dBwKzXQ/S11gC6WuOM+QjVFU1zUUB5vMF8zlbhIZT8aCgKy2Ft96Cdetg0ybYtQs0jYtPvr1z2BhXQVfSui2Hk7tS0jqOkjbxFLeJoyS2HcWx7Sht3ZaS1m1xFV8hIbBmTbVDLa5l6C1htVHx2GOEh4eDotR4/48q2zlDw3j38wzQNB7pGwv5+XDoEOTlQVYWdOlyasPcXDh+XP/LzISffwbg2pNvbx19JQv+/k/X6tUK6now2/UgfY0lUL7mOUONRFVVFi5caKpqvpl8wXzOChpJ5burN10KATt2wO+/g80Gd96pLw8Nheee02tylcTEkN2hCwXJXcnp1e/UcouFT2b/YIhvg8+vxQKxsfpfjx7u12nfXi8Ad+yo9nf8fxuJys+htHUb16rhRUeZcG0qJCXBoEGQmqr/791bP0dVMNv1IH2NJZC+cvYCSZPB7SDFQtB6305use/TC7elS+HwYf29nj3hzz9PrfvUU3oT4/nnQ69e0K4dMxbv8srFm0Gdvd3OkwGYa9tfWPFxLE4nZa30oZsSNq3hmr/fqjeHViUyEoYOhQcegEsv9ep4Ekl9yNkL6kEIQXFxMS1atEBx0+wTbJjNF0zoLATXT7qGdjs2V18eHq7XVC68UK/hVeblxRf9rlgNISgqKvLr+bW3iKr2OufcAcz6ei0PtDgGq1bBypX635EjsGAB/PWvp3T376f8m28Iv+oqlI4d/eLbGMx2/Upfz2kyBZ2qqixbtoy0tDTTVPPN5Av+c/ZmapyYrD30X7GYDpvW8O0L7yKsVhQ0yju0w7FvNzk9+3Hg3AHknNuP/LN64axshlu8y+saka9R0Pjl19/ZH9EFoXg+Ary3UwnVhqNZcxjZB0ae7OGpabBlC/z6K4wZ41pP++orIh57DB55RK8Bjx3L523PJfec3ogGjmDvj8/AbPec9PUc2XQpMR0eBW5No92OP+mSsYiUFYuJOZDpeuvTN74gv9u5gN6xoqJZJM7QsFp35W0zY10YsU9/4lHBM28evPGGXvOr0tRZ2qo1u4dexKqbHuBETJs6dtDA40nOeLwtC7waGWXWrFkkJycTHh5O3759WbZsWa3rLl++nCFDhtC6dWsiIiLo1q0bM2bM8OawjULTNAoLC9FO/20hSDGbLwSPc+eMxdx5yyiuf+ha+s97j5gDmaghIWT2H87ih6ZyrP3JZjQh0FqE4wwJrXuHwYIQhDlPVH/gPIjR/vpXCn/4Ae3gQfj0U7jxRsqbtyTy2BF6LPgaR3iEa93IgnwUpzOAtsFz/XqK9PWcBhd08+bN4+GHH+app55iw4YNDBs2jEsuuYSsrCy360dGRvLAAw+wdOlStm3bxpQpU5gyZQrvvvtuo+UbgtPpZO3atTgDfDN5itl8IXDOLfJzaHnwgOt1WVQMLQ/lUhHRjB0XjGX+kzOY/fkqvn3xPf4cNx57y1aA3hQYV5GDgjkChdl8XddDq1Zw/fXwySfMnreCr196n6X3PK43gZ7kimfv486bRzD0g1dpvc+7Dj4+8zXJPSd9PafBTZcDBw6kT58+vPPOO65l3bt358orr2TatGke7eOqq64iMjKSuXPnun3fbrdjt9tdr4uKikhMTKSwsJDo6GjXibJardXSqqqiKIorbbFYsFgstaYdDgdWq9WVttlsKIriSkP15z5UVSUkJAQhhCutaRpOp9OV1jQNm81Wa9rpdCKEcKXd5UPmqe48vfXrXqwOBykZC+n581d03LCSP8deyy+T/gHogx8nr/qN/X2GoIWF6r9nVQ735UoLhGKpI62hAEKxMGlkSq15euOXXaBYUISGgCppBRSl1vQDFybX+jm99etePR8nhydzpd3mw7s8VU0rQi84hdt8uM/TpNFdvbr2Xl+0vUaeIo4e4bY7Lya8pMh1z+d3OYetF13J9lGXU94ymodGdQmKa+9MvJ/MlKfCwkJat25tbNNlRUUF69atIy0trdrytLQ0MjIyPNrHhg0byMjI4IILLqh1nWnTphEVFeX6S0zUR3zYvFnvHbdt2za2nRzhYdOmTezatcu178xM/beYNWvWkJ2dDUBGRga5ubkcOnSI33//nYKCAgCWLFnCsWPHAFi4cCHFxcUApKenU15e7hqyRlVVysvLSU9PB6C4uJiFCxcCcOzYMZYsWQJAQUEBS5cuBSAvL891TrKzs1lz8qHgzMxMNmzYAMCuXbvYtGmT2zzt3LmTQ4cOsX79+lrzlJeXB8DSpUuDIk+aprFx48Za8+TJ51RfnjLee48R/36Ru28YxriXHiNpfQaKELQ+mo2ChlWoJJfvYu/g0VhCLSSV7QYgTCsjsVwvQCK0UhLKM0EIoh2HiS/fD0AL5zHi7HrNMEo9SpuK3Ho/p2jHEQDaVOQSpR4FIM5+gBZO3TfenkWkU/8MEsozidBK6/2crEJ1DU/mylPZThCCFuqxuvMERDqLibdn1ZmnaMcRWlccPJk+TLRDf6SidcVBj/LkybVXVFTEoUOHql17NfIEqFHNWfDhh/zwzJvsTb0QzWYjbvdWRrzzEvfcMJzeX81p9P0kY0TgY8T69es5dOgQO3fu9PpzWr16Nd7QoBpdbm4uCQkJrFixgsGDT43I99JLL/HRRx+xY8eOWrft0KEDhw8fRlVVnnvuOZ5++ula1zWiRqdpGsuXL2fw4MGEhoYG/TcbVVVZsWIFQ4YMwWazmeLbGsDvv//O0KFDCQsL8/030Ouvh88/d10XxbFxbEm7ii1jrqa4XfsG134AEsr2khveCc1iC/oaHSgnfZPQLCFBX6MDWLZsGampqfpoLriv0Z2ej4iiQrr+9hO90ufRJnMn3z/7Npc+M0G/3k6cQAO0Zs18XvuRMcLYPLnz9VeNzquCLiMjg9TUVNfyF198kblz57J9+/Zat83MzKSkpIRVq1bxxBNP8NZbb3H99dd7dFzZ69K8NObh57Di49gjW+ijewCDP5xB/3nvsXfQCP4cey37+w5tcDd1bzB7D0nTIgTttv9BfteeCKsedAd+8hZ9vv6IP8dey8bLb6KkbbwhD99LghO/PDAeGxuL1Wrl4MGD1ZYfOnSIuLi4OrdNTk4GoFevXuTn5/Pcc895XND5Ak3TyMvLIz4+Hosl+KfhM5sv+NB5/34ufPt5ev78FT8+/Tr7BujN3OuvupVN466jpG28b4SFINJZTKm1hduxI4OOpuarKBzsfn61RR3XryS8pIj+n79P3y8/ZOcFl0CrZ/SBsRuJ2e456es5DTpaaGgoffv2ZdGiRdWWL1q0qFpTZn0IIao1TfoDTdPYs2ePqbrimskXfOC8ZQvccgukpND7u08IsZfRedWvrrfLo2J8V8gBCoIotdDVjBnsSF/44tW5fPePd8g+bwAWzUm3X3+EAQP0h9d/+61R+zbbPSd9PafBI6M8+uij3HzzzfTr14/U1FTeffddsrKymHByyo/JkyeTk5PDxx9/DMDbb79Nx44d6datG6A/V/fqq6/y4IMP+jAb9WOz2Rg+fLhfj9kYzOYLjXBes0YfXuv7712L9vcezNrr7iH7/EE+NKyOUCzkhncybP++RvoCFgt7U0eyN3UkbXZvpc/Xczjnt/n6qCyJifqwbV5itntO+jbg2A3dYPz48Rw5coSpU6eSl5dHz549SU9PJykpCdB73VR9pk7TNCZPnkxmZiY2m42UlBRefvll7r33Xt/lwgM0TSM7O5vExETTVPPN5AteOmsa3HabPk+aosBVV8ETT/D1UT/8FisELZzHKLa2Mk1ToPQ9xeEu57Dg79M554M3YPp0fUDpSipnYQg/2+Njm+2ek76e49XRJk6cyL59+7Db7axbt65aKT1nzhx+q9KE8OCDD7J582ZKS0s5fvw469ev57777vN7RjVNIycnx1TVfDP5gufOMft3Y6042XRtscDUqXDrrbB1K3z5JfTrV+f2vkJBEKkWm6opUPq6oWNHfa7Ak61GADz/PFxxBeMfvo4Of3jWJd1s95z09ZwmM6izzWZr0O+IgcZsvlC/c4v8HIbMmUm3JT/w24QnYVwv/Y1rrtH//IxQLBwMD/5R9SuRvp4eWEByMkRE0H7bRv76t1vY13coK25/hENde9a6mdnuOenrOcFf3/URTqeT3bt3m2q4HDP5Qu3OoaXFDP3gVW6742K6//I9ihDEZO8JkGUVhEaU4wgIc3wjlr4eoih6jW7PHjZedgNOq41O65Zz4wNXM+6Fh2iZl+12M7Pdc9LXc5pMjU4IwdGjR+nUqVOgVTzCbL7gxllVOff7/5A6902aHddH2Mg6byDL7v47h7r2ZEmAn0FT0EcXUYius3EtWJ6V89Q3WPCXb52fz4PPsv7q20n9+A26/fojXZf+TGHHFFbeMqnGqma756Sv58hpeiTGcc898N57ABR2SGbZ3X9n76AR5uhIITnjiN27nf7z3mPRw8+jRjTTHxjPz4c2bVyDEkiCG79O02NGnE4n27dvN1U130y+4Mb5wQcpjY5lyQPPMPfdH9ibOjK4CjmhEV1x2FRNgdLXewo6d+Onya+hRjTTF2gajBsHgwbByVH1zXTPSV/PaTJNlwBlZWWBVmgQpvJ1OFBmzKDVzp0we7a+rFcvPpj766nZuoMMBbAKhz7mY6BlPED6+pht22DnTiguhoEDUSZOxD5+PJx1VqDNPMZUMYLA+cqmS0njWbYM7rtPH9nEaoXNm11dvYPl9y2J5HQeuagrHDwIf/sbfPKJvrB9e31W9KuuCq7WBwkgmy7rxel0snnzZlNV84Pet6REf0h3+HDYsgURG8uB557DmZISaDOPUIRGTEW+a/T+YEf6GkC7djB3LixahOjSBXJz9UddLrsMTk5lE6yYIkZUIZC+Taagk/iYxYuhZ094+2399Z13om3dyrErr5Q/7EvMx+jRaBs3cujeexEhIXDoELRoEWgriY+QTZcSj6jaBBlWUsSdN40g7EQJx+MSiPpkDoweXe92EokZiMnaw62DOkKPHvoCux0KCiAhIbBiEtl0WR9Op5MNGzaYqpofrL725i1Zdvff2Xj5jcx99wdXIRfMzu5QhEasPTe4m9aqIH2NpdL3aGLyqUIO4B//0F9/9JE+6kqQYLb7LZC+TaagA4iIiAi0QoMIGt+KCoZ+8CodNq5yLfpz3Hh+feAZHBGR1VYNGmcPEIBTCQnOHoFukL7G4tZXVWHpUjh+XB98/Mor4fDhwAi6wUz3GwTOt8kUdFarlW7dumH1w4zUviBofHfsgNRU+s97j4unP46tvPbuwUHj7CmKhaOhbUAxyW0gfY3Fna/Nps9zN20ahIbqU0mdd54+LVCAMdv9Fkhfk1yBjUdVVdauXYuqqoFW8YiA+woB774LvXvD+vWUtWjFbxOfQg2v/RtZwJ0biCI02toPmKppTfoaR62+Nhs88QSsXQvdu0NeHowaBVOm6DW+AGG2+y2Qvk2moFMUhejoaBSTPBsTUN/iYrjuOrj3Xigrg1GjmDv7e3YPTatzM7OdYwHYLRGmalqTvsZRr++55+qF3Z136l8EZ86EKnNv+huz3W+B9G0yI6NYrVa6dOkSaA2PCZhvQQEMHao3WdpsepPNo49S+svuejc12zlGsXA8pHWgLTxH+hqLJ76RkfD++3DRReB0QufO/nFzg9nut0D6NpnHC1RVZc2aNQwYMACbLfjL98b41tWl/5GLuta9nRCMfekR2m9Zz/wpr5N3Tm+Pj6sIjTj7AfLDOiBM8LuM9DWWM9XX7T20YgUsWsSM1OtqfY60rnvPG5pSTKvE27Ig+M+Oj7BYLCQkJJhiynnws6/dDg6HnlYUFj3yAraKCspaxTRoNwKFUlsLBOZoSpG+xtJkfIuK9NFUDh7kigG/8fPjr2BvEWWMZBVkTGvAsf1+xABhsVhISkoy1UXhF9+DB+HCC/Wu0ycr945mzRtcyAGgKBTbos0zRqD0NZam4tuyJUyfDuHhdF7zOzc8eA2tM3cY41gFGdMacGy/HzFAqKrK0qVLTdVDyXDfjRthwABYtQp++YWogwcatTtFaLQv32eqXnbS1zialO/NN0NGBsfjEmiVm8X1k8bT9fd030tWQcY0z2kyBZ3FYiElJcVU334M9f36axgyBLKzoWtXWLOG4/GJjdqlQOG4LcZUTVXS1zianG/v3nz69lfs6zuUEHsZ4158hAH/mWXYaCoypjXg2H4/YoCQ7dknEQJefBGuvhpOnNB7j61a5Zs5uBSFUltLUzVVSV8DaYK+5S2j+faFd1l39e0AtN291dCCTsY0D4/t9yMGCFVVWbJkiamq+Yb4Pvig/qBrZTo9HaKjfbJrRWh0KNtjqqYq6WscTdVXWK0svfcJ5j85g58ff8Ww2TxkTPOcJlPQWSzauGYpAAAgAElEQVQWevbsaapvP4b4XnedPv3IO+/oE0z6sFuyQOFIaJypmqqkr3E0dd+dF449NZKQEPDkk7Brl0/2DTKmNYQm9XhB27ZtA63hMT71FeJUc8zQobBvH8R40auyPhSFMmtz3+/XKKSvsZyhvt5MPdXnqznw7suUvf0O37z4Hvlnn1vtfW+esWvSMa2hxw7IUQOAw+FgwYIFOCqfFwtyfOXbKmcfN9x/FbF7tp9aaEQhByjCSceyXSjCHNOGSF9jkb6n2D7yUg527UlE0TGu+futJG5Y2eh9NtWY5g1NpqCzWq3079/fVCN9N9Y3bscmxj98HXG7tzLi7ecNn0tLYCE/NAFhkstK+hqL9D3FiZg2fDn9I7LOH0Ro2QmunHI3KcsXNWqfTTGmeYs5rkAfYLFYiImJMVV7dmN8Ezes5Jq/3Uqz40fJP6sH859+3fjeb4qC3drMVL3spK+BSN9qOJo159sX3mXXkIuwORxc+sIkevz8pdf7a2oxrVHH9vsRA4TD4WD+/PmmquZ765v0v2Vc+fS9hJafYH+fIXzxyseciI41wLI6inDS6cQOUzVVSV/jkL41cYaGMX/KTP68+BosmsaoN56jpZcDNTSlmNZYmkxnFJvNxrBhw0wx+Ck0wvfHH7n82fuwORzsGTSC+VPewBkaaozkaQgs5IR3MlVTlfQ1Dulby3GsNhY/8gLlLVtRkHw2Re06eLWfJhPTfHFsvx8xQCiK4vXMB4HAK18h4M03sTkc7BqaRvrk19BC/FPIAaAoOJQw/x2vsUhfY5G+dR5r+V1/q76suFh/9MfjXTSBmOarYzeVaXocDgfp6emMHTuWkJAQHxv6Hq99S0rIuP8p1l53D5rNv/lUhJPksp1kRnRFKMH/A7n0NRbp6znND+Xx17/fwpa0q1hzw33V3qvt0YMmE9Oq4G1Z0GQKOiEE5eXlhIeHm2JG3gb57tgBZ5/teunNcz4+QQisQsWp2MzRAUH6Gov09Zhzf/yMUW88B8Dy2x9h7fUTXO/VVtCd0TGtFrwtC8zReO4jzNKWXYlHvj/8AD17wrPPGv74gCdoJphgsyrS11ikr2dsuvR6lt/+KABDP5xB/89me7TdGRnTDMBcV2EjUFWV9PR0U40LV6/vkiXw17+CqkJmZsALOgWN5LKdKJhkbEPpayjSt2Gsvf5elt/+CABDP/wXfT9/v871z8iYZhBNqulSVVVsNptpqvl1+q5eDaNGQWkpXHklfPGFa9zKQDZdKmh6rzUTnGPpazDS1ysGfPoOQ+bMBGDRw89z0Ywpbtc742KaB8imSw8wyzefSmr13bQJLrlEL+RGj4b//tengzM3BotJRqqvRPoai/RtOGtuuI814+8BoM9XH4LdXuu6Z0xMM5gmU9CpqsrChQtNc2HU6rtrF6SlwdGjkJoK334LYcHRhVtBI6l8t6maqqSvcUhf71lxx6Msv+Mxvnx1bq339xkT0/xAk2m6PGN4/324+24Ode7Gl6/Oxd68iZ8PieQMx9Xr8sQJaNYssDIBRjZd1oMQgqKiIkxQrgN1+N51F/z3v3wz7YPgK+SEIESzB7xTjMdIX2ORvr7jww+ha1fYu9e16IyJaX6gyRR0qqqybNkyU1XzXb6qCiUlp94cP94vY1c2FAWNhPJ9QdH04wnS11ikr49wOODNNyEnB8aOhSNHAJPHND8jmy6DHSHgnntg/Xr48UeIjwcC2LNSIpH4lUcu6gq5uTBoEGRn65MnL1oE4eGBVvM7sumyHjRNo7CwEE0Lsm9rteDyffll/Xe5jRthw4ZAa9WNEIQ5TwRn0487pK+xSF/f0b49/PQTREXB8uVw++1oTqc5Y1oAfJtMQed0Olm7di1OpzmmDHE6nex74w2Up57SF8ycqTdbBDEKGnEVOcHX9FML0tdYpK+P6dEDvvlGf5Tov/9FvPCC6WJaoHxl02Ww8uefMHiw/tvcfffBrFnV3pZNlxJJ06DGWJfvvaf/nAGwcqXepNlE8LYsCI6njP2ApmkUFBQQGxsb/DPyFhQgLr8cpaQEMWIEyuuvB9rIM4QgQiulzBJpmpEwpK+BSF9juPtu2LIFLTaWguRkYjUt+GMagY3BTaqg27x5M8OHDw/+i+Luu1H27aOkXTyfTHyRst8yA23kEQqC1hX55IQnIwjiQHES6Wss0tdAZsxAczrZvHSpOWIagY3BsukyGMnMhDvu4KMb/0ZhUpdA20gkkgBS2zQ9LkpL4e234bHHwBr88/41Br/2upw1axbJycmEh4fTt29fli1bVuu6X3/9NRdddBFt2rShZcuWpKamsmDBAm8O2yg0TSMnJ8ccPZSSk9F++QV7Qtvg7AFWG0IQqRaZx1n6Gov0NRRN08jJzkaMHg2PP65P1RXEBDIGN7igmzdvHg8//DBPPfUUGzZsYNiwYVxyySVkZWW5XX/p0qVcdNFFpKens27dOkaMGMFll13GBj93ldc0jT179gRvQbd9O6Snu15qmkaUWoiCOW460Jt+zOQsfY1F+hqLpmnsycxEu/9+fcGLL+rzUwYpgYzBDW66HDhwIH369OGdd95xLevevTtXXnkl06ZN82gfPXr0YPz48TzzzDMerX/GN12WlMDAgbB1K3z0EdxyCyB7VkokEg+aLgEmTdJHT4mK0geX6NzZeLEA4Jemy4qKCtatW0daWlq15WlpaWRkZHi0D03TKC4uJiYmptZ17HY7RUVF1f4A1/MXTqfTbVpV1Wrpym8Oqqqiqir79++noqLCtdzhcFRLV5b5lWkhRI00UC2taVq1dOXwNrWlnU5ntbTT6dQfH9i6FREfD2PG4HQ6cTgctFCPomhOODl1iCI0V7NK7Wln3Wkhaqb1TNWR1upJay6HFo5C3fmkl1LNvbZ0gPJ0mq/bPJ2WDmieXL5q4z4nf+VJ005ew6rx154v8uTyreezqe9z8nGeaot7DofDFdOc//ynPpvJ8eOIa64Bu71GDAx03KuoqGD//v04HI5GxXJvaFBBV1BQgNPpJC4urtryuLg4Dh486NE+XnvtNUpLS7n22mtrXWfatGlERUW5/hITEwHYvHkzANu2bWPbtm0AbNq0iV27dgGwYcMGMjP1Hopr1qwhOzsbgIyMDPLy8sjJyWHZsmUUFBQAsGTJEo4dOwbAwoULKS4uBiA9PZ3y8vJqM+KWl5eTfrJpsbi4mIULFwJw7NgxlixZ4jo/S5cuBSAvL89V+GdnZ7NmzRoAMjMzXc22u3btIvull+CTTxBWK5kvvwxxca48RarFtK3IJUo9qp9n+wFaOHXfeHsWkU7dN6E8kwitFIDE8r2EaWUAJJXtJkRUAJBcthOrUKvNomwVKslleq0xRFSQVLYbgDCtjMRyffDYCK2UhHL9nEY6i4m3603ULZzHiLMfACBKPUqbilwUBK0chcQ68gGIdhwm2nEYgNYVB4l26GP0tQmSPCkIWqrH6syTno8jtK44GPA8KQiaq0Ukle9p1OfkrzyFCjuRajHJ5bsMv/Z8kietmEi1mAT7vqC4nyrztGnTJsB93MvJydHjXk4OfP45jqgolA0b4MknXXEP9J+QgiHu5eTksGvXrjrzBLXH8tWrV+MNDWq6zM3NJSEhgYyMDFJTU13LX3zxRebOncv27dvr3P6zzz7jrrvu4rvvvmP06NG1rme327FXmWywqKiIxMRECgsLiY6OdpX0Vqu1WlpVVRRFcaUtFgsWi6XWtMPhwGq1utKVM99WpgHXjLiV6ZCQENdMuSEhIWia/o2rMq1pGjabrda00+lECKGnt2/H2acvoWUnyLh1EmtuuA+hWFCEpv9K4DatgKLUkXa6Zkh2m4ZTsyhXphWr/o2y1rRAKJY60hoK1EhXfiuVeZJ5knnyT546r/yFK56dyImoGD56fz7lLaPd5mnS6LMDF/dqid+exPLCwkJat25t7APjsbGxWK3WGrW3Q4cO1ajlnc68efO48847+eKLL+os5ADCwsIIczPZoPVk11lrlS60VdO2KrNsn552Op3s3r2b5ORk1zMcISEhrnUaklYUxZWu/AA8Tbt8Kyqw3nQT1rITZJ87gDXXTdAvbE5d4FGOIxy3RUPV5SepPW2tP42btKLUkVbqSVv0G01oRKlHdWePfQOYp9N83ebptHRA8+TW14vPyV95EhpRjsKT17DiPk9u8xGgPLnzDeT9VF+e3MSIvamjWDzpH+xNHUF5VEz19au4exMDGxv3qsbgxsRyb2hQ02VoaCh9+/Zl0aJF1ZYvWrSIwYMH17rdZ599xm233cann37KuHHjvBJtLEIIjh49StA8NvjVV7BuHWUtWvHz468gTnv+RUFv8gjyx1arYTZn6Wss0tdYavP989LrKG1dd8UjEAQyBje4eHz00Ue5+eab6devH6mpqbz77rtkZWUxYcIEACZPnkxOTg4ff/wxoBdyt9xyC6+//jqDBg1y1QYjIiKIioryYVbqxmaz0b9/f78dr16uvx6cThbuLaakTbsabwvFwqGwDgEQ8x6zOUtfY5G+xuKJb8qKxUQUHWXzJX/1k1XtBDIGN/g5uvHjxzNz5kymTp3K+eefz9KlS0lPTycpKQnQf4ys+kzd7NmzUVWV+++/n/j4eNffQw895LtceIDT6WT79u3BNdL3TTexN3WU+/eERnTFYSp7iJkCszlLX2ORvsZSj2/ihpVc/o/7GfH280Rn7fGzXE0CGYO9avCcOHEiEydOdPvenDlzqr3+7bffvDmEIZSVlQVaQZ9b7sorIbbuGcIVwCoc+g/RfhFrPGZzlr7GIn2NpT7f7PMHsa/fUDr9bzljXnmCeTM/Q1gDO7xxoGJw8I8E6iOsViu9e/eu9oOn3/npJ33k8V694PjxOlcVioWCsPbVfkQOdszmLH2NRfoaS72+isKiR16kPLIF8Ts20e/zD/wreBqBjMFNZvYCp9PJtm3b6N69uyEnuq5RTB65qCscPQp33aUvuO46fQSDOlCERrTjMEdD2pjmxjObs/Q1FulrLJ74lrRpx28Tp3DxK4+TOvdNMgdeQEHnbn421TE6BtdF8H+aZwoPPwy5uXD22fDSS4G2kUgkTYRto69gT+pIrKqDtFcnozi9G13EzDSZgs5qtdKzZ8/ANF0uXgwff6w/mzNnDkRE1LuJUCwUhsaZ4ptlJWZzlr7GIn2NxWNfRWHxQ1MpbxFF3O6tJK/53T+CpxHIGGyOT9QHOJ1ONmzY4PceP1Z7OZx89IL77/d42ntFaMTac0+NeWcCzOYsfY1F+hpLQ3xPxLRh8UNT+eaFd2vv6W0wgYrB0IR+owP92T1/0/fL/4M9eyAhQZ9Gw0ME4FRCTNH7qxKzOUtfY5G+xtJQ313DLzZSxyMCEYOhCRV0VquVbt38/yPsH5ffyJCwMrj4YmjIFEOKhaOhbYwTMwKzOUtfY5G+xtIY37w82LsXhgzxrVMdBCoGQxNqulRVlbVr13o9zYO32FtEwezZ8Je/NGg7RWi0tR8wTTMKmM9Z+hqL9DUWb33jdmyCbt3gmmvg5CwG/iBQMRiaUEGnKArR0dEoin9GsossyIdGjOkmALslwjTNKGA+Z+lrLNLXWLz1LUjuBvHxcPAgeDj5tS/wdwyuduyGzjAeCMwww3jV5+hCS0u47Y4xFHTqys9PvMKJ6LpHQZFIJBJ/krhhJdc8fhuaxcon//6OI53Ocr3n0YzmAcIvM4ybGVVVycjI8Eu1eeCns4g8WkDLQ7mUN/euYFaERrvyLNM0o4D5nKWvsUhfY2mMb3bvVHYNuQiL5uSCf09rVOuTp/gzBp9OkynoLBYLCQkJrvmRjKJVzj56f6PP3PD7hMloIaFe7UegUGprcWqOKhNgNmfpayzS11ga67vsnsdRQ0JJWr+Czit/8bFdTfwVg90e2+9HDBAWi4WkpCTDT/Lw2S9jVR1k9h9O5sALvd+RolBcZQJIU2A2Z+lrLNLXWBrpezw+kXXX3AHABbNfxlpR4Uu7GvgrBrs9tt+PGCBUVWXp0qWGVpuT/reMlFW/4rTa+P3eJxq1L0VotC/fZ5pmFDCfs/Q1FulrLL7wXXvdPRyPS2DvoJFYnA4f2tXEHzG4NprMc3QWi4WUlBTDvk0oTifDZ/8TgI1X3MTRjimN2p9A4bgtxjTNKGA+Z+lrLNLXWHzh64iI5KP303GGhfvQzD1Gx+C6aFIFXUJCgmH7b15wEKvqoLxFFKtvur/xO1QUSm3B2cO0VszmLH2NRfoai498/VHIgfExuM5jB+SoAUBVVZYsWWJYtbk4LoGP3/uRL175GLuXPS2rogiNDmV7TNOMAuZzlr7GIn2Nxde+cTv/5Iop98D+/T7Z3+kYHYProskUdBaLhZ49expabdZsIT6b60mgcCQ0zjTNKGA+Z+lrLNLXWHztO/SD1+i85nd47jmf7O90/BGDaz22348YICwWC23btvX9SS4uhn//G4vDxz2WFIUya3Pz9AAD8zlLX2ORvsbiY9/ltz+qJz7+GLZu9ck+q2JYDPbk2H4/YoBwOBwsWLAAh8PHPYtmzoT77uPKpyf4dLeKcNKxbBeK8P+UFt5iNmfpayzS11h87Zvf7Vx2DbkINA2mTPHJPqtiWAz2gCZT0FmtVvr37+/bSf8KCuCVVwDYfPE1vtsvILCQH5qAMNFHZDZn6Wss0tdYjPDNuO1hsFjgm29g9Wqf7RcMisEeYo5P1AdYLBZiYmJ8W22eMUNvuuzdm52+nutJUbBbm5mnGQXM5yx9jUX6GosBvoVJXeCWW/QXU6f6bL9gUAz29Nh+P2KAcDgczJ8/33fV5uPH4a239PQzz+jfgnyIIpx0OrHDNM0oYD5n6Wss0tdYDPOdMkWPZ+npsGGDz3br8xjcAJrMc3Q2m41hw4Zhs/koy2+/DUVF0KMHXH45/LLbN/s9icBCTngn0zSjgPmcpa+xSF9jMcw3JQUeewySk6F7d5/t1ucxuCHH9vsRA4SiKL6b4ufECb3ZEmDyZJ/X5gBQFBxKmO/3ayRmc5a+xiJ9jcVI3+nTfb5Ln8bgBmKOry4+wOFw8N133/mm2nzkCPTrB507w/jxjd+fGxThpPOJbaZpRgHzOUtfY5G+xuI3Xx9N4ePTGNxAmkxBZ7PZSEtL8021OTERfvoJ1q8Hg6rhAgv7w7uYphkFzOcsfY1F+hqL4b5CwJw5cO65PhktxacxuIGY4xP1ET4/wVFRvt3faWiK+T4eszlLX2ORvsZiqK+iwCefwObNrseoGksgCjloQgWdqqqkp6c3bpw1TdM/8Jwc34nVgoJGctlOFMwx7h6Yz1n6Gov0NRa/+D71lP7//ffh8OFG7conMdhLFCH8MId6IykqKiIqKorjx497/WOmEAJVVbHZbCjePnfy008wdizExkJuLoSEuN6asWind/usDSFQ0PRmCbM812M2Z+lrLNLXWAzyfeSirtWOwcCBsHYtvPgiPPmk1/v1RQz2tixoMjU6oPHfJN58U/9/883VCjmjsJhkFPWqmM1Z+hqL9DUWw30VBR58UE+/8w40MoYGojYHTejxAlVVWbhwIWPHjiXEm0Jq1y746SeEovDheWM57usa3GkoaCSV7yYzoisC/w+Z4w1mc5a+xiJ9jcUo39Nbp6wxvbkrKoZmBw7At9/CNd4Nd9joGNwImkzTZaN5+GF4/XX2DryQ756fHRgHiUQiCQCDP5zBwM/+DcOHw++/B8xDNl3WgxCCoqIivCrXS0rgww8B2HjFTT42qwUhCNHsPnuGxS+YzVn6Gov0NRY/+v5x2Q3sGTSi0b/ReR2DG0mTKehUVWXZsmXetRF//LE+3FfXruzvM8T3cm5Q0Ego32eaHmBgPmfpayzS11j86VsaG8f3U/8NY8Z4vY9GxeBG0mR+owsJCWHcuHHebVxUBM2awf33GzPclxuEYmVfs7P9cixfYTZn6Wss0tdYzObbqBjcSJpMjU7TNAoLC9E0L779PPGE/uzcnXf6Xqw2hCDMecI8zShgPmfpayzS11gC4ZudrcfD2Q3vp9CoGNxImkxB53Q6Wbt2LU6nl+PCtWoFkZG+laoDBY24ihzTNKOA+Zylr7FIX2MJiO/PP8M//wn/+leDC9hGx+BGIHtduqGye21YSRGtcveTf1ZPczxAKpFIJAYScqKEe8cPJcRexrwZn5Lbo6/rvWoPmhuE7HVZD5qmcejQoQZVm7v98j03PHANl7z8/ww0qwUhiHCWmKcZBcznLH2NRfoaSwB8Hc2as/OCSwDo8fNXDdrWmxjsK5pUQbd58+YGneQeC/QPMvec3kZp1YqCoHVFPgomuekwn7P0NRbpayyB8t188dUAdP39J0LKSj3ezpsY7CuaTEFns9kYOXKkx6Nnx+7ZTtzuraghIWwfcanBdjURioUDESkIE42mbjZn6Wss0tdYAuWb26MvRxM6EVp+grOW/uzxdg2Nwb7EHJ+oD9A0jZycHI+/TXRf8j0AmQNHYm/Zykg19whBpFpknmYUMJ+z9DUW6WssgfJVFLZedCUA3Zb86PFmDY3BvqRJFXR79uzx7CRrGmf/Oh+AbSMvM9jMPQqCKLXQNM0oYD5n6Wss0tdYAum7fcSllLVoxbGEJH36Mg9oUAz2MbLXpRu+eHUuf/3bLZQ3b8m7/12BMzTU8GNKJBKJmVCcKsJ6qhlS9roMAjRNY//+/R59m+iyYhEAu4aNCVwhJwQt1KPmaUYB8zlLX2ORvsYSYN+qhZwnNCQG+5omMwRYZftwQkIClnqG8fr93ifI7D+ckth2frKriYIgUi2mxBqFwNhn+BQEYRbR6CYQRQhaOUtxWlogTPDcofQ1lqbrq1ChKTj9cN/6K0bUihC0276J4rbxQN01uobEYF8jmy7d4PPZwoOYUEWjZ0s7YTYlULeKRHLG4RSC3BMWsstD4Qy+sy6e9hjdf/2R5Xc8xtAPXjX8eN6WBV7V6GbNmsUrr7xCXl4ePXr0YObMmQwbNsztunl5eTz22GOsW7eOXbt2MWnSJGbOnOnNYRuF0+kkMzOT5ORkrNbgn1QRoRGlHuW4LRoM6z4s6NSsglbNw4hpE4fS2OMIgRUnTqzmGElG+hpLU/UVggp7OSEFh4EKssvDfKZY/Tj+iBF1k3PuALr/+iNdli8A6i7oAhmDG1zQzZs3j4cffphZs2YxZMgQZs+ezSWXXMLWrVvp2LFjjfXtdjtt2rThqaeeYsaMGT6R9gYhBEePHqVTp061r+R0wuDBDE/swaqb7qcisoXf/E5HAcK0MhSiDetTFaIIYsKgVXQsoWERjd+hENiEA1UJMU1gk74G0oR9Q8LCAXA488ktF4Y0Y/ojRtTHnsGjGPXGs7TbuRmyssBNGVCJRzHYIBr8NeBf//oXd955J3fddRfdu3dn5syZJCYm8s4777hdv1OnTrz++uvccsstREVFNVrYW2w2G/3796/7YcXly2HNGnos/Br15IUaKIRi4VBYB0MfBrUpYFHA6qsHOBUF1RJqjqAG0tdomrhvaFg4VkUh1GJMMeSPGFEfJ6JjyenZT3/x9dd1rutRDDaIBp2hiooK1q1bR1paWrXlaWlpZGRk+EzKbrdTVFRU7Q9wjXrtdDrdplVVrZau7N2jqioOh4Pt27djt9tdyx0OR7W0+PJLAPYMGoFmtYEQKMKp92qqTEM9aa2etOY2rZyWRlOJrjiMoqlQdfnJn1RrTzvrTp+WJ/1NBQSnXjc4LVx/Vs1Rc3m9aRqXFm7SnrjX8HWTJ6/TBuSpTl9P0v7Ok8CqqY3/nPyWp9N8PclrXXni1LpmjhH1xb1dQy/Sl331FZqmuSZWrZp2Op1UVFSwfft2KioqGhXLvaFBBV1BQQFOp5O4uLhqy+Pi4jh48KBXAu6YNm0aUVFRrr/ExEQANm/eDMC2bdvYtm0bAJs2bWLXrl0AbNiwgczMTADWrFlDdnY2ABkZGRw8eJCysjKWL19OQUEBAEuWLOHYsWMALFywAPG9PhpKSf9zsAoVBY3ksp0oaFiFSnKZ3kklRFSQVLYb0JsOEsv3AhChlZJQrh8/0llMvD0LgBbOY8TZDwAQpR6lTUUuANGOI7SuOHgyfZhox2EAWlccJFotxCoctK3II0o9qp9n+wFaOHXfeHsWkc5iABLKM4nQ9DHnEsv3EqaVAZBUtpsQUQFActnOmnlCxSYcgD7lR6iwu0k7XfuwVEuf2taK05W2oGET+sVoFSrWk2mbULGevDFswoGVU2kLquu8Wk4uDxEVKCfTocLumoqkajpM2KmMMDXTnuVJQdSbJ6twBlGehE8+J//kSe/J64vPyT950lzXgy+uvUrfUFFu3hjhQdw7kDoEAFasIH/LFlelJzs7mzVr1gCQmZnJxo0bKSsrY/fu3WzatAloeCxfvXo13tCgXpe5ubkkJCSQkZFBamqqa/mLL77I3Llz2b59e53bX3jhhZx//vn1dkax2+3Y7XbX66KiIhITEyksLCQ6OtpV0lut1mppVVVRFMWVtlgsWCwWt+nXf9mNIpwILKAotN63g1vuuRw1JJR/f5mBI7y5foLQ9HUq04pV/zZTa1roTQm1pjUUqJGu/KZWmRYAbtMKKEod6VN5cpuukqcIi0bvGAcJHZMICQkDxKnaXYPSJy8hr9OK/oODt2lOulRNe5UPmSeZJ9/lyVFRTk52FhsKQyjXMGWMcKXriXs3TbiCNpk7SH/8FXaOvLRGniaNTEEIgc1mqzV+exLLCwsLad26tbG9LmNjY7FarTVqb4cOHapRy2sMYWFhhIXV7KlU2VOnao+dqumqbb+np51OJ5s3b6Z79+6uZziEcmrbTmuXA3DgvAE4Ik51QhFYa6YVpY60Uk/acqpVo0q6ajt75YUcXZHP0ZA2VPaoOn0d92lr/WmXL6dQqixocPrkfyGwChWnYqu+3B/pmpmp372Gr5s8BTJ9ep7q9PUk7ed8nLacnHwAACAASURBVGwKdCq2Klnx4nPyV57c+Tbm2lNOpV33n9liBJ7FvWV3/T/UsAjyzjn/1LGq5KmyIKuMwY2J5d7QoKbL0NBQ+vbty6JFi6otX7RoEYMHD/ZKIFjotOZ3ADIHXBhYEYlEIjEZ+/sPJ+fc/mi2kECruKXBxeOjjz7KzTffTL9+/UhNTeXdd98lKyuLCRMmADB58mRycnL4+OOPXdts3LgRgJKSEg4fPszGjRsJDQ3lnHPO8VE26sdqtdKzZ0/3bwpBYVIXonP2kdl/uN+c6kIoFgpDfVdL9guKglMJzgvdLSb3LS0pISWhTQCFGsfB42WBVqiOya4Hs8WIOmOwwTS4oBs/fjxHjhxh6tSp5OXl0bNnT9LT00lKSgL0B8SzsrKqbdO796mJS9etW8enn35KUlIS+/bta5x9A3A6nWzatIlzzz235sOKisKvDzzDr/c/fVqTROBQhEbrioMcCW1nmvmxEAKbUFEVW9Ccxzoxue9vSxazZMUazunZK9Bm7jH5+Q12gi1GtN21hR4LvuJoh2Q2XnlzjffrjMEG41WD58SJE5k4caLb9+bMmVNjWbCMMhYRUc9D0UF0cQvAqYQQHGfOcwI25p6XmNl329YtjLv8ygDa1I+Zz2+wE2wxIjZzJ+d//x/yzj7XbUEHHsRggwj81wA/YbVa6datm9tvErF7t6Oc7PETNCgWjoae+pHZFCgKTos5vg0DpvbVNM3vA+N6Ss6BbP4yLo1hA/swfGgq339b94PEQYPprofgihFZ5w8CIG7XFkJLS2q8X1cMNprgOEN+QFVV1q5dW+OBw8gj+dw84QruvXYwVnt5gOxqogiNtvYDpx4cNQNCYNMqTnXhDnZM7Lt29Ur69R8YaCO32Gw2np/2CstWr+frb77l2Sf/TmlpaaC16sdk10OwxYiStvEca98Ri+YkYfP/arxfWwz2B02moFMUhejoaJTTvq0lbtQfQCxql4AzwMN+VUUAdktE0DRLeEow/FbQEMzqu2rFClKHuh9IPdDEtYun57nnARDbNo5WrWI4drQwwFaeYabrIRhjRPZ5+pevDn/UfLC7thjsD8zzqTYSq9VKly5dalSbKz+Qyg8oaFAsHA9pHTTNEh6hKCefQTJL00/9voWFR+iR0pGs/fsNVbnz5uv591uv171SFd8KRwUhIUHeQ1BRWLfhDzShkdAhMdA29WO66zf4YkRlHK2sQFSlthjsD4LnDBmMqqpkZGTUqDYnVhZ0J9uXgwVFaLQrzwqaZgmPMFnTjye+b7z2CmkXj6XjyV7FlcvGXDiElIQ29EjpyG03/JXdu2rOYTjpvrt54dkpHqk89viTvP7qdIpPjutal+/e3bvoctZZNd5euWI5N4+/mvPOTqZdVAQ//fi9R8c2isIjBUyacCevznwroB4eY7LrNxhjxIGTBV3bPVsJKz5e7b3aYrA/aDIFncViqTGzbYtDubTKy0azWMnp2TeAdjURKJTaWpiqFxgoaIoFTONct29ZWRmfzf2IG2+9rdrylSuWcfvdE5i/+Hc+//ZHVNXJ+L9cWu13KE3TWLzgZy4ed6lHJuf07EVixyS++vy/1ZaXFBfz5bzPqvn+snABI0ePqbGPEydK6dGzFy+9ErjpsCqx2+3cceN1THrkMfoPTK1/g6DAXNdvMMaI0tZtKeyQTFHb9rTMz6n2nrsY7C+aVEGXlJRU7SS337IegENnnYOjWfNAqblHUSi2RZunGQVAAa3acE/G0bt7Ch++N7vasrWrV5LcLobsLA+bGevxXbJoAVabjX4Dqtf2P/v6e6678Wa6dT+HHr3OZeas2eRkZ7Np4wbXOmtWZWCxWOjTbwAAQ/udR7uoCLd/7//7bQDSxo7j268+r3asb7/6guefeRKHw+HyPXb8GFGtWtXwHXXRGJ54+jnDHzn45st5JLVtRV7uqUD26AP3MWJwf4qOH0cIwUP33c2QCy7kmutvNku54dfr1ycEaYz47xuf839zl3C4S/UBQdzFYH/RZAo6VVVZunRptWpzu+36CNp53c4PlFatKEKjffm+wDRLlJbW/ldeXvu6JSWEFBdCSYn+uqzMs/16QZ9+A9i4YZ3rtRCCp5/4G3ff9wCJHZOqrfv6q9Pp3D7W7V/Kyf+rMpbXOMaqjOWc17tPvS7Fx/XmxlbR0a5lC9Lnk3bxWNdN/X//mQfAl9//xKadmazbshObzcZ7H/2Hm2+/C4DeffuxYd3/qg1oftNtdzDsghGsXL4MhKC4II+YmBhPT5MhXHn1taSc1ZU3/vUKAK++/CK/LVnEp19+S8uoKNasyuC7r7/k5x+/Z/SQ/owaMoBtWzYH1NkjhCBEs5uq6TJgMaIO7M3dD7bsLgb7C//PgBcgLBYLKSkp1b5N7LhwHOUtooKu2RL0ZonjtpiANEvEtY+t9T172sUc++Ib1+u2XTqinDjhdt2KocM4On+h63WbXt2wHCmosV6+F0NB9e0/gHmffuJ6/cV/PyXnwAEmPfq3GuvecsddXP6Xq93uR8GJwEq79u1rvJedtZ927eLr9BBC8OxTjzMwdTDdz+nhWr7wp/k8+8I01+tD+fn6xJODUgkLC2Pzpj9QVZVBg4e4BjCPj2+P3W7nUP7BaoV12iXj+Dn9B4ZfOJIFi35hdNoldToZjaIoPPH0c9x9yw20a9ee9995m29/Xkx8+wQABqYOIe/YCRD69DoaVpPUkk52RjGHbEBjhEdUnSkC9zHYXzSpgi4hIaHasoPdz+Ng9/MCZFQPikKpzfNpKJoaffsP4IVnp1BaUoJisTBt6jM8MeVZmrdoUWPd6JgYor2oBZWXlRMWX/cjJ/+/vfMOi+Ja4/A7uyBgRKQICIpgw4IN1KhX7GKLV416TTQGjT2WWFLUJFeNvURTjDEmhsR4TVMsscQSRUxEoxF7wQIW7ICIoMCy5/6xsLKygAtsk3mfZx52z54z85tvl++b882Zc6a+PZEzp0+y+fc/tGUx589x40Y8wW3ba8vOnTlFtRo1tUHt1MkTuLpVpKL7k7kK7bNnjXj0VE+4fccQ5s+aARLExsXR99XXDD6Xp1k0bzYfz59TYJ3f9/5Jo0D9F4EhXbpRy78OHy+Yw08btlC7jp55ayU0Qc5asDq9lusjus9+C5/oKH5ZvIYEv1qAfh9sKkpNoMvpNrdu3dosS7kbiiTUeD+OJd7ez+TP9ty+kbfXpeWpocF3Luaa11RoFq3MlMporuKeunK7e7Lg9QoNoWHjIJRKJSeOHyMyYg/OLq68OihUb91PFy/k0yUL9X4moXkeae26jTRv2UrnMxdXV5LvJ+WrYdo7E9m5fQsbtu3Gy7uytnzHti20addeZ7qjM6dO6fT4Tp88Tt16uhPc5jxr5uqm26Mu5+hIVV8/jh4+RNkyNpor5WLel3ljxCh69elXYJ2nU8C52bt7FxcvnCcrK4uK7u76Kz39e7B0rEyvOX1EYdgnJ2GfkoznuePaQGdOH2z5Hr+EUCgUBAQEaLvNnmePUS7hDjfqBZLmnH+qzlwIJBLKeJgnLfHCC0WrK0BFFuSXqjJkv4Vgb29P3YD6bPttI2u++5bVP63PNyVS1NRlQIOGeUZBgiZdOe2diWzfspnwrTup6uur8/mObVsY8PoQnbIzp0/Stfu/te9PnTxBg4a694bPnTmDl7c3rq55f48hXbsz/f0pzJg9l5JIrbm6uuk9zrNw4lg0wwcPZOEny9i4/lcWzJ7JN6vX6qkpaSZIttTUWh6sS69ZfUQh3K7dAJ/jh/A8f5LTXTUXVE/7YFNSqgKde64rzwZbf6beznAODnyTqNC3zKgsHySJR0oLGwlaGJLugo3GJqhpM75ZsZxOXboR3LZdvvWKmrps16ETc2f+l/tJSToDTaZMnsCGdT/z3dpfKVeuHHduaxYidizvxMOHKRw7+g9ha5+MnlSr1Zw/d5ZJ703Tll2Ni6XbS08CH8DBqL9o066jXi2du3Vn6aL5BDZtnq8fTn34kNjLl54c40ocp04cp4KzM5Wr+Bh8/vq4euUKr/3nZcZNeJt+rwygln9turRrxfHoo3kH7pj491BsrE6v5fqIW/4NAPA8d1xb9rQPNiWW1d81IpmZmezYsUMzTBvwPK8ZcZnzhVgaksjC59EFJGFhk00XhBCUUT822ai1gPoNsbGx4b+z5hZtB4XorVMvgIaNA9m8Yb1O+ferVvIgOZmXu4fQoJafdtsUvo5d27cR2KQpFSs++YeOi73Mo7Q0nVRl3YAGLJ43h6i/NKM9Hz9+zPYtm3ltsG5PMAcv78osWvoZdiL/UYHHoo/SMbg5HYM1j0NMn/YeHYObs3DurGe3SQEkJSYysG9POnftzltvvwtAw8aBhHTtrrmH+DQm/j0UGyvTa8k+IsevusVdwOaRZrDa0z7YlJSaHp1SqaRp06aa6WcePsTlqubK97a/Za7lJVBwu4w3wqquRSTN/Q0TpVLW//ITg4eNoEbNWkXcQ+F6J747lZkfTOW1wW9oUy4FLRj6+it9CenaXaesWvUaedr88LNu8Fz7w3cEBjUlqICJmjt360Em6nz1/iu4tVEXM3V2cWH/4WN5yr//8dd8Wpj291B8rEuvJfuIhxU9eehSkXKJd3G/fBZopOuDTUypCXQKheLJ80fnziEJQZqTi0XenwNAkkhXljW3CsOQMPo/nVqtJuHeXdau/p5LF2MIy34+rUg8g96OIV2IvXSRmzfin2m+xmbNW9C7738MlmJrY8ucRUsKrmQC+5Yosl7jYuE+4p6fP+US7+JyRdOp0PHBJsaKvtXikZmZydatWzXd5rNnAUioWsPMqvJHEln4pp23yLREvpgg9RP11580qOXHul9+5Ns1P1HeyanoO3tGvcNHj33mSYnHTphcpAmMBw0ZWnjP1MpSa7Je42LpPuJGvcZcbdScx+U1s/jo+GATU2p6dDY2NgQHB2uGtZ45A0CiTzUzq8ofgYJ4e1/rusI0QernX8GtNQ8jlwjWlaqS9Rob69Jr6T7i0Gtjyb2GgY4PNjGlJtBJkkT58tkPV2b36BJ9LLdHhySRKdmZW4VhWF3qR9ZrVGS9xsXKfISODzYxVvStFo/MzEw2bdqk6TYvXMiWDz4htlkbc8vKF0lkUS3trMWmJfQiBHZWlPqR9RoZWa9RsRYfUSb1IahUuj7YxJSaHp2NjQ0hISGabnOtWlxobW5FBSNQcMW+hnVdYSKRLtlhLakfWa+xkfUaE2vwEQPe7I3HxTNw5Ag2gYFPfLCJsVwLGQFrmPorN2oLm9ZHRkbGsrB0H5HpkD0bUva4CHP5YMu2UgmiUqnYtm0bWQcPwuLFVMpei85SkVDj9ygGCctagqNghOaBZqwj9SPrNTayXmNiDT4ioWp1zYuzZ7U+WF5h3IjY2NjQrVs3lDt3wjvvUH97fg+5WgYCBbEOtSw6LZEX60r9yHqNjazXmFiDj0is8iTQ5fhgOXVpZFQq1ZNn6Hyqm1lN4SgsbEFFGRkZy8LSfUSiz5NAB5ilNwelKNCpVCp27twJMTEAJFWx3GfoQJOWqPr4okWnJfJiXakfWa+xkfUaE2vwEYk5fvbiRVTp6ezcuVNOXRoTW1tbevbsiZSQAECqpU79lY2QlFwuWwchWdds6ukKe6tYywuQ9RobWa9RsQYfkebsqnmRlYVtWho9e/bE1tbW5DqsaxhiMRBCkJKSgmNSEhKQ7miZK/NqMeMikF9HXi5Ga4Gh9ziGtzZT71porooFCqPflhk/ejgPku/z3dpi3BsuRG+T+v6MGD2WEW+OK9Lur165QrMGtdm9/yABDRoWXWcOJrSvPgy2h5n1GowVLBSrti1DTHBnavl5INRqUh48wNHREcnEektNj06lUvFnRARSSgoA6S9YdqCTUOP9OM6i0xJ5EShFFtaS+gGNozCF3tnzF/Pp8q+LuRfj6vWuXJkTMbHUzrUSevEwnX1LBuvSay0+YuuHn8H336NycmL//v1mSV2Wmh6dra0t3Vq21L5PL+doRjWFIyQlcWX9zS3DQCSyJCv6SUkSGZI9oJk5x5gplWJNPp1DLr3GQKlU4u7hWXI7NLLeEsfK9Fqbj7C1taV79+6FVzQCpaZHp1arSVSpUB84ADt2oLYxfZ7YIITALivNaqYjeoLx9fbuHsL7707iow+nUbuqF/Vr+rJo3mydOtevXSX01X5U83KjRmV3hocO5O6d29rPF82bTYd/vciPq8No1qAOPhWdEELQu3sI096ZyIdT3sbfpxIBNaryQ9gqUlNTeevNEVT3rsiLDevyx64d2n1lZWUxccwomtavja+HM/8KasDXXy7T0TN+9HAGD+gHaFKEnk4Oebbe3UO09Q8fiqJX1474ejgTWLcG7787idSHqUhCDQLu3r3DoP598PVwpmn92qz/5cdnst2Pa1YT3LQRVd0r0KpJQ8K+/kr7WY6uUyeerAq9Y9sWWjQOwNfDmZdf6szPa9fg6eRA8v37BWtNTdWkAoWaJgH+fLp4IRPGjKS6d0WC6tXkh7BV+Wpc/e03NKpdDbVat6fy+it9GTdqGABxly8T+mo/AmpUpZqXG53b/ovIvXvy3ae+c0u+fx9PJwf+2h+pKRAQc/Y0A/r2opqXGwE1qjJ2xBskJNzTtvltYzhtWzTB18OZOr7e9Pt3N825mgNr8RFCwKNHqNPSSExMzPO9moJSE+iysrI4fPw4WU2aQEhI4Q3MjIQaj4x4i09L6GK61OUvP/6Psi+8wLY9kXz40RyWLJjLvj1/aFQIwZAB/bmflMiGrTv5ZeMWrsTGMmLIIJ19xMZe4reN61m1ei1//HlIZ98urm5s37ufoSNH896k8QwPHUjTZs3ZFRlF2w6dGDdiKGlpmlUU1Go1lby9WfndGvYdimbSe1OZ+9F0NoWv06s9J0WYs+3efxAXF1eat2wFwNnTp3jl5X/TrUdP9hw4zFdhP/B3VBTT3pmgTa29NXoE165eYd1v2/lm9Vq++2YlCXfvFmizNd99y/xZ05ny4Qwi/z7G1P/OZOGcj/h57Rq99a9eucKw1wfQpXsPdv95iNcHD2X+rOk6dfLXOpEnqUBYsexTGjYKZHfkQQYPHcF7k8ZzIea83uP26PUyiQkJ/BW5T1t2PymJiD920affKwCkpj6kQ6fO/LppK7v3H6Rdh068/kofrl+7WqANCuL2rRv07t6ZgPr12RHxFz+u38TdO3cYEfpa9uc3GT00lFdfe53Iv48RvnUH3Xr0NFugsRYf8dKs8VC2LOrvv+fw4cNkZZl+bk4ryjMVD1tbWzp37mxuGc+MkJRcdahpbhkGYrrUZd16Abw95X1As4L3tyu/ZP++vbRp34HIvXs4c/okf584q10b7vOVq2jzYiDR/xyhcVATADIzMvhsZRhubhV19l0voD4T35kCwPhJ7/D50sW4uLry2uA3AJj83lS+X7WSs6dPEtT0RWxtbXl32ofa9lV9fTl86BCbN6yn58t982jPnSJ8/Pgxgwf8h6BmL/LO1A8A+OKzpbzct792EEW16jWYvXAxvbuFsGDp58Rfv8ieXTvY9sc+Aps0A2DJshUEN21UoM2WLprHjDnz6f7vXlqdMefP8UPYN/Qf8Fqe+qu//ZrqNWsxffY8AGrUrMW5s2f4ZPECbZ0CtS75DOztQYIOIZ0ZMnwkAGMnvs1Xy5dxYH8kNWvlTb05u7jQrmMI4b/+THDbdoCmJ1XB2UX7vl79BtSr30DbZsqHM9i2ZTM7tm9l6IjRBdohP7779hvqN2zMtOmzntjsixUE1q3JpYsXSH34EJVKRbcePaniUxWAOvUCinSsksBafERG9jRgNg8emM0Hl5pAp1arSYqMxPnIERT16oGNhT8wLgQO6lQeKV6w2BFV+lFjikRBnXr1dd57eFbi3j1Nj+ZCzDm8vCvrLIDqX7sOTk4VuBBzXhvoKlfxoaKri+aCPJeJc+9bqVTi7OJCnVwDNCq6ewBwL1cP6vtVX/O/1d9x/dpVHj9+RGZGho4jzo9JY0fx8OFDftm4FYVCY7cTx6KJu3yJ9b/+pK0nhECtVnMt7hKXLl7GxsaGho2DtJ/XrOWPk1OFfI9z795d4q9fZ9LY0UweP0ZbnqVS4Vhe//3DSxdjaBQYpFOWY7scCtJ6NS4Of/+aIHQDgiRJuHt4aL8vfbzcrz/vTBjL/CWfYmdnx/pff6JXn74olZqh9KmpqXw8fw67dmzn9q2bqFQqHj96RPy1a/nuszBOHIvmr/37qOaV99GjuNjLtG3fkeA27WjXsilt23ekbfuOvNSzNxWcnYt8zGJhJT4ivZxm4J9ITOTunTu4ublpf+umolQFunsbN+L66afQqxe8uaDwRmZEQuCacZt4ez+EVYx1BhAohBq1JGHs8dm2tro/XUlCm/sXQugdvizQLS9btiw2QkWmpNDRm3ffks5AlZx95BxvU/g6pk97l+mz59Ok2YuUK+fI8s+WcvSfwwWew9JF89m7exfb9+ynnOOTwVFCrWbQkKEMGznmqRYCX28PLl64qKPjWRDZWhd/9gWBQc10PlMo9T+HJYRAeup7FE+l6fLXqknR2gjNCLunB/pIklTgvZqQrt2ZPP5Ndu/YTqPAIA4d+IuZc578z3704TQi/tjF9Nnz8KtWHXt7B4aFDiAzM0Pv/hQKKY/+TJXucjFqdRadu3Th/Zlzefr36+7piVKp5JdNWzl8KIqIPX+wauWXzJs1g21/RFLV1zffczEW1uIjHjs+CXSnTp2idevWcqAzFjY2Nvi7u2vemOsKzACEpOC6g4X3OvMgobaAUZe1/OsQf/0a8devaXt158+d5UFysm6qTJLIVBR/4cpDUX/RpFlzbWoOND2AgtiyaQNLFsxl7bpN+FbTfY6wfsNGnD97Fr/q+r//mrXroFKpOBb9D4FBTQG4eCGG5OT7euuDphdaycuLK3Fx9PnPq890XjVq+usMugE4Hq07GXphWjOhSNc8Dg4OdOvRk/BffiL28iWq16hJw8aB2s8PRf1F/4GDNPfIgNSHD7l29QoQrHd/rtnp6du3b5HTXz994oROnQYNG7N180aqVPXNdz5GSZJo1rwlzZq3ZPJ702gSUIvtWzYxauxbhp9kMbEWH5FeTpMxUCQn0759e7NoKDWDUdRqNSlXs29UW0GgQwheUD2w/BFVT2EJN8Zbt2tP3Xr1GTN8CCeORXP0n8OMGzmMFq2CdVNxAhQiq9hjZ/yqVef4saPs3b2LSxcvsGD2TI5F/5Nv/bNnTjNu1DDGTpiMf5063Ll9izu3b5GUmAjA2AmT+efwIaZMnsCpE8e5fOkiO7ZtYdrbE1GILGrUqEW7jiG8PX4MR4/8zfHoo0weNxoHB4cCdb495QM+X7KIr79cxqWLFzh7+hQ/rlnNimWf6q0/aMgwLsacZ9Z/3+fSxQtsCl/Hz2t/AJ70JvPV+s7EYtu3T79X2L3zd35as5o+/XWDs1+1amzbvIlTJ45z+uQJRg8bXGAP0cHBgaCmzVi2dDHnz50l6q8/mT97hk6dIcNGcj8pkVFvvM7Rfw5zJTaWiD92M2HMSLKysjh65G8+XbyQY0f/4fq1q2zdvJGEe/eo6V+7aCdYXKzERzzOlbqMj483y6hL819+mwi1Ws3D69dxBKsIdBICJ1UiacpyJk9LFHmmEguZqUGSJMLW/sz7706mV7dOKBQK2nXoxNxFS56qKVAKVfaaXkXX+/obwzl18gQj3xiEhESvvv9h8NAR7Nm9U2/949FHeZSWxtJF81m6aL62vEWrYDZs3UndgPqEb93J/Fkz6Nm1I0IIfP2q0bN3H63eT5d/xaRxb9K7Wwhu7u5M+WAGC+bMLFDnwNAhOJR1YPmnnzDrv+9TtuwL1K5XjxGjx+qtX9XXl29Wr2XG+1P4ZsUXBDV7kbcmv8d7k8ZTxk7TE85fa19y7FtUWrVpSwVnZy5eiOHlvv11Pps5dxETx4ykR0g7XFxdGTNhMikpDwrc39IvvmLimJF0afsvqteoxYcfzaF/75e0n3tWqsS233cwY8ZMXu39bzIy0qlcxYd2HTW/oXKO5Tl44E9WfrmMhykPqFzFh+lz5tOhk3kGWJjTRxhCumP2PeCkJC5duoSHh4fJU5eSeDrpboE8ePAAJycnkpOTKV++GDOa9O0L69fDsmUsrdWp5ARaKQ6KLBo7Z+LtUxXbMsVP4ck8/3yyaAGrw77m6JmL5pZi8WRmpBN/9QrRSbY8UlvufJTGxjU2hte3fg21a8OC4o2NKGosKFU9uvSbN3EAq+jRIQSOWfdJUVaw6BFVOghQoEKNjZXMFSjrLYywr7+iUWAQLi6u/H0oiuWfL+WN4aOerbFsX+NiJT4iwa8WbNqkGTV85QpVqlSRB6MYC7VaTda97BkOrCDQSQheUKXwUOlk0WkJXXJGXRo+sbN5kPUWRuzli3yyeD73k5LwrlyFUWPfYvykd56xtWxfY2JtPkKtVhMfH4+3t7ecutRHiaUujx2DW7egSROWRieWnEArRU5dysgYDzl1+YSJnWrBo0dgZwfFCHJFjQWlZtRlVlYWF8uVI6tTJ3Cz7LXoABBqnDITwMJXENZBZA8+sPxrJw2yXuMi6zUu1uQjXFygbFni9u0zyxRgpSbQCSFISkrK88CrpSIBdupHRk5IZO+9BG0iWcM/XS5kvcalNOsVQo0Ao6UVTeMjSgh7zaoQqdevm8UHl5p7dDbp6TSNjISTJ2HIEHPLKRQhKbhjV9mox0hXS2RkCVKSk3B0ci6RG9qauSb0z05hich6jUup1CsEWSoV9xPvka4SpKuNE4pM4SNKDGdnuHmTel5ekM/D+Mak1AS6rOvXUb79NqJsWaQ33jC3nMIRapwzE0iydQXJOB1vNRLnU8oAD3jwIKVE9qlAjdqKEgWyXuNSWvWqhSAxXSIuzc54A0VM4CNKjOwBrZiuWAAADDBJREFUgPGnTuHZtq12zlJTUWoCHUlJmr9WMOISNGkJpchEwriL3qRkKTl63x47hSj2kSQhqJB5j/u2bggLHu6cg6zXuJRevRIqAZnCuHO+mspHlAguLgBPRr6bmFIT6JQPNLMmSFYS6ISk4J6dl0mOpUbiUQmlV9JsPKH4MdNkyHqNi6zXeJjSRxSbbL/r4+gIJu7NQSkajKJOSABAVMh/KRNLQhJqXDJuW9XNfGvTLOs1LrJe42JVerMD3d2YGOsZdbl8+XL8/Pywt7cnKCiI/fv3F1h/3759BAUFYW9vT7Vq1VixYkWRxBYLK0tdysjIyDw3NGqE6NGDdDMsZwRFCHQ///wzEyZM4P333yc6Oprg4GC6du3K1av6l7CPjY2lW7duBAcHEx0dzbRp0xg/fjzr168vtnhDUCQnAyBl54otHSEpSCzjgbD0m8y5sDbNsl7jIus1Llald/BgpM2bqfzBByYfiAJFuEe3ZMkShg4dyrBhwwD45JNP2LFjB19++SXz5s3LU3/FihX4+PjwySefAFCnTh2OHDnC4sWL6dOnj95jpKenk56ern2fnB2kkrJ7ZTldX6VSqfNapVIhSZL2tUKhQKFQaMpv3EAJqOztUdy/z+PUh0giC4ECJEn/azTLzui8lpQgRAGvheaHl+9rtebm8VOvc9IP2tdCjYvqLkk2FTWz62eXC6Rsjfm9Nt85Abhk3CLJ1h21wibPOQnIdR6Y/Zye1luU78mU5wRStt6KqBW2RvvtldQ5IcBFdYckGzftOoXm+n96lnNCiGy9FVFLSrP/Pz1PPiIpKYmsrCzOnj1LnTp1UCqVefz3s/jyxOylrAx+Fk8YQHp6ulAqlSI8PFynfPz48aJ169Z62wQHB4vx48frlIWHhwsbGxuRkZGht8306dNzbgfLm7zJm7zJm7zpbNeuXTMkdAmDenT37t0jKysLDw8PnXIPDw9u3bqlt82tW7f01lepVNy7d49KlSrlaTN16lQmTZqkfa9Wq0lMTMTV1VW74KOhPHjwgCpVqnDt2rXizZdpIqxNL1ifZlmvcZH1GpfSqFcIQUpKCl5eho02LdLjBU8HGyFEgQFIX3195TnY2dlhZ6c7yXCFEhotWb58eav4UeRgbXrB+jTLeo2LrNe4lDa9Tk5OBrcx6C6mm5sbSqUyT+/tzp07eXptOXh6euqtb2Njg6urq4FyZWRkZGRkDMOgQFemTBmCgoLYtWuXTvmuXbto2bKl3jYtWrTIU3/nzp00adIEW1tbA+XKyMjIyMgYhnLGjBkzDGlQvnx5PvzwQ7y9vbG3t2fu3Lns3buXsLAwKlSowNSpU1m9ejW9e/cGoEaNGsybN4+EhAR8fHz47bffmDVrFkuWLKFu3brGOKd8USqVtG3bFhszTCpaFKxNL1ifZlmvcZH1GhdZ77NRpIVXly9fzsKFC7l58yYBAQEsXbqU1q1bAzB48GDi4uKIiIjQ1t+3bx8TJ07k9OnTeHl58d577zFq1KgSOwkZGRkZGZn8sIoVxmVkZGRkZIqKFTxSLyMjIyMjU3TkQCcjIyMj81wjBzoZGRkZmecaOdDJyMjIyDzXPLeBLi4ujqFDh+Ln54eDgwPVq1dn+vTpZGRkFNhOCMGMGTPw8vLCwcGBtm3bcvr0aZNonjNnDi1btqRs2bLPPBPM4MGDkSRJZ2vevLmRlWooil5z2jcpKYlBgwbh5OSEk5MTgwYN4v79+wW2MaV9rW35K0P0RkRE5LGjJEmcO3fOJFojIyPp0aMHXl5eSJLExo0bC21jTvsaqtfc9p03bx5NmzbF0dERd3d3evXqxfnz5wttZyobP7eB7ty5c6jVar766itOnz7N0qVLWbFiBdOmTSuw3cKFC1myZAnLli3j8OHDeHp60qlTJ1JSUoyuOSMjg379+jF69GiD2nXp0oWbN29qt23bthlJoS5F0WtO+w4YMIBjx47x+++/8/vvv3Ps2DEGDRpUaDtT2Nfalr8yVG8O58+f17FlzZo1TaI3NTWVhg0bsmzZsmeqb277Gqo3B3PZd9++fYwZM4aDBw+ya9cuVCoVISEhpKam5tvGpDY2aApoK2fhwoXCz88v38/VarXw9PQU8+fP15Y9fvxYODk5iRUrVphCohBCiLCwMOHk5PRMdUNDQ0XPnj2NrKhgnlWvOe175swZAYiDBw9qy6KiogQgzp07l287U9m3WbNmYtSoUTpltWvXFlOmTNFb/9133xW1a9fWKRs5cqRo3ry50TTmxlC9e/fuFYBISkoyhbwCAcSGDRsKrGNu++bmWfRakn2FEOLOnTsCEPv27cu3jilt/Nz26PSRnJyMSwELr8bGxnLr1i1CQkK0ZXZ2drRp04YDBw6YQmKRiIiIwN3dnVq1ajF8+HDu3Lljbkl6Mad9o6KicHJy4sUXX9SWNW/eHCcnp0KPbWz7ZmRk8M8//+jYBSAkJCRfbVFRUXnqd+7cmSNHjpCZmVmi+p6mKHpzaNy4MZUqVaJDhw7s3bvXmDKLhTntWxwsxb45a4gW5G9NaeNSE+guXbrE559/XuCMLDmTTxuyDJG56dq1K//73//Ys2cPH3/8MYcPH6Z9+/Y6C9daCua0761bt3B3d89T7u7uXuCxTWFfYyx/ZUyKordSpUqsXLmS9evXEx4ejr+/Px06dCAyMtKoWouKOe1bFCzJvkIIJk2aRKtWrQgICMi3niltbHWBbsaMGXpvuubejhw5otPmxo0bdOnShX79+mlXRi8IQ5chKmm9htC/f3+6d+9OQEAAPXr0YPv27cTExLB161aL1Avms6++YxR27JK2b0EYe/mrksYQvf7+/gwfPpzAwEBatGjB8uXL6d69O4sXLzaF1CJhbvsagiXZd+zYsZw4cYIff/yx0LqmsrF1zASai7Fjx/LKK68UWMfX11f7+saNG7Rr144WLVqwcuXKAtt5enoCmiuN3AvCFrQMUUnrLS6VKlWiatWqXLhwoUjtjanXnPY9ceIEt2/fzvPZ3bt3DTp2ce2rD2tb/qooevXRvHlz1qxZU9LySoTnYXkxc9h33LhxbN68mcjISCpXrlxgXVPa2OoCnZubG25ubs9UNz4+nnbt2hEUFERYWBgKRcEdWD8/Pzw9Pdm1axeNGzcGNPcj9u3bx4IFC4yutyRISEjg2rVreldufxaMqdec9m3RogXJycn8/fffNGvWDIBDhw6RnJyc7xJT+iiuffWRe/mrnFU/QLP8Vc+ePfW2adGiBb/99ptOmamWvyqKXn1ER0eXqB1LEnPat6QwpX2FEIwbN44NGzYQERGBn59foW1MauMSH95iIcTHx4saNWqI9u3bi+vXr4ubN29qt9z4+/uL8PBw7fv58+cLJycnER4eLk6ePCleffVVUalSJfHgwQOja75y5YqIjo4WM2fOFOXKlRPR0dEiOjpapKSk6NWbkpIiJk+eLA4cOCBiY2PF3r17RYsWLYS3t7dF6hXCvPbt0qWLaNCggYiKihJRUVGifv364qWXXtKpYy77/vTTT8LW1lasWrVKnDlzRkyYMEG88MILIi4uTgghxJQpU8SgQYO09S9fvizKli0rJk6cKM6cOSNWrVolbG1txbp160pUV0npXbp0qdiwYYOIiYkRp06dElOmTBGAWL9+vUn0pqSkaH+fgFiyZImIjo4WV65c0avX3PY1VK+57Tt69Gjh5OQkIiIidHxtWlqato45bfzcBrqwsDAB6N1yA4iwsDDte7VaLaZPny48PT2FnZ2daN26tTh58qRJNIeGhurVu3fvXr1609LSREhIiKhYsaKwtbUVPj4+IjQ0VFy9etUi9QphXvsmJCSIgQMHCkdHR+Ho6CgGDhyYZzi2Oe37xRdfiKpVq4oyZcqIwMBAnaHZoaGhok2bNjr1IyIiROPGjUWZMmWEr6+v+PLLL42iqyT0LliwQFSvXl3Y29sLZ2dn0apVK7F161aTac0Zfv/0FhoaqlevEOa1r6F6zW3f/Hxt7v99c9pYXqZHRkZGRua5xupGXcrIyMjIyBiCHOhkZGRkZJ5r5EAnIyMjI/NcIwc6GRkZGZnnGjnQycjIyMg818iBTkZGRkbmuUYOdDIyMjIyzzVyoJORkZGRea6RA52MjIyMzHONHOhkZGRkZJ5r5EAnIyMjI/Nc839AMXGTz3qfOgAAAABJRU5ErkJggg==", "text/plain": [ "PyPlot.Figure(PyObject
)" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " 0.559621 seconds (21 allocations: 24.368 MiB, 1.79% gc time)\n" ] } ], "source": [ "n = 2^10\n", "seed!(2019)\n", "X = Symmetric((2*√3)*rand(n,n) .- √3) # 分散1の一様分布の場合\n", "@time λ, U = eigen(X)\n", "\n", "a = λ/√n\n", "x = range(-2, 2, length=200)\n", "f(x) = 1/(2π)*sqrt(4-x^2)\n", "\n", "plt.figure(figsize=(5, 2.7))\n", "plt.hist(a, normed=true, bins=50, alpha=0.5, label=\"normaized eigen values\")\n", "plt.plot(x, f.(x), label=\"\\$y = (2/π)\\\\sqrt{1-x^2}\\$\", color=\"red\", ls=\"--\")\n", "plt.grid(ls=\":\")\n", "plt.legend()\n", "plt.title(\"Semicircle law\");" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### 佐藤・Tate予想の数値的確認\n", "\n", "分散処理(`@distributed`)の使用例. 異なる素数ごとに有理点の個数を別々に計算可能なので, 分散処理を利用してみる.\n", "\n", "* [佐藤・テイト予想 - Wikipedia](https://ja.wikipedia.org/wiki/%E4%BD%90%E8%97%A4%E3%83%BB%E3%83%86%E3%82%A4%E3%83%88%E4%BA%88%E6%83%B3)\n", "\n", "$E$ を有理数体上定義された楕円曲線であるとし, 素数位数 $p$ の有限体上での有理点の個数を $S_p$ と書き, $a_p = p+1-S_p$ とおく. このとき, [楕円曲線に関するHasseの定理](https://en.wikipedia.org/wiki/Hasse%27s_theorem_on_elliptic_curves)(Weil予想のひな形)によって,\n", "\n", "$$\n", "|a_p| \\leqq 2\\sqrt{p}\n", "$$\n", "\n", "が成立している. すなわち, $x_p = a_p/(2\\sqrt{p})$ とおくと, $x_p$ は $-1$ と $1$ のあいだに分布するようになる. \n", "\n", "楕円曲線 $E$ が虚数乗法を持たないならば, $x_p$ 達の分布が半円則に従うという主張が佐藤・Tate予想である. この予想は大変深い数学的予想であり, 21世紀になってから解決された. \n", "\n", "半円則とは確率密度函数\n", "\n", "$$\n", "\\varphi(x) = \\frac{2}{\\pi}\\sqrt{1-x^2} \\quad (|x|\\leqq 1)\n", "$$\n", "\n", "を持つ確率分布のことである. $x_p = \\cos\\theta_p$ を満たす $0\\leqq\\theta_p\\leqq\\pi$ を取ると, 佐藤・Tate予想は $\\theta_p$ 達が $\\sin^2$ 分布に従うという主張に言い換えられる. $\\sin^2$ 分布とは確率密度函数\n", "\n", "$$\n", "\\psi(\\theta) = \\frac{2}{\\pi}\\sin^2\\theta \\quad (0\\leqq\\theta\\leqq\\pi)\n", "$$\n", "\n", "を持つ確率分布のことである. \n", "\n", "佐藤・Tate予想については以下の解説が面白く読める:\n", "\n", "* 数学のたのしみ, 2008 最終号, フォーラム: 現代数学のひろがり, 佐藤-テイト予想の解決と展望\n", "\n", "* 難波完爾, Dedeking $\\eta$ 函数と佐藤 $\\sin^2$ 予想, 2005.12.07 [PDF](https://www2.tsuda.ac.jp/suukeiken/math/suugakushi/sympo16/16_8nanba.pdf)" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/html": [ "$$\\int_{-1}^{1} \\sqrt{- x^{2} + 1}\\, dx = \\frac{\\pi}{2}$$" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "$$\\int_{0}^{\\pi} \\sin^{2}{\\left (θ \\right )}\\, dθ = \\frac{\\pi}{2}$$" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "@vars x\n", "I = sympy.Integral(√(1-x^2), (x,-1,1))\n", "ldisp(sympy.latex(I), \" = \", sympy.latex(I.doit()))\n", "\n", "@vars θ\n", "J = sympy.Integral(sin(θ)^2, (θ, 0, PI))\n", "ldisp(sympy.latex(J), \" = \", sympy.latex(J.doit()))" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/plain": [ "plot_SatoTate (generic function with 1 method)" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "function nrationalpoints_naive(f, p)\n", " @distributed (+) for x in 0:p-1\n", " s = 0\n", " for y in 0:p-1\n", " s += ifelse(mod(f(x,y),p) == 0, 1, 0)\n", " end\n", " s\n", " end\n", "end\n", "\n", "function plot_SatoTate_naive(f; figtitle=\"Sato-Tate conjecture\", N=2^12)\n", " P = primes(N)\n", " @show N, length(P)\n", " @time S = nrationalpoints_naive.(f, P) .+ 1 # \"+1\" は無限遠点の個数\n", " plot_SatoTate(P, S; figtitle=figtitle)\n", "end\n", "\n", "function nrationalpoints_legendre(g, p)\n", " @distributed (+) for x in 0:p-1\n", " l = legendresymbol(mod(g(x),p), p)\n", " ifelse(l == 1, 2, ifelse(l == -1, 0, 1))\n", " end\n", "end\n", "\n", "function plot_SatoTate_legendre(f; figtitle=\"Sato-Tate conjecture\", N=2^12)\n", " P = primes(N)\n", " @show N, length(P)\n", " @time S = nrationalpoints_legendre.(f, P) .+ 1 # \"+1\" は無限遠点の個数\n", " plot_SatoTate(P, S; figtitle=figtitle)\n", "end\n", "\n", "function plot_SatoTate(P, S; figtitle=\"Sato-Tate conjecture\")\n", " a = (P .+ 1) - S\n", "\n", " @show count(abs.(a) .> 2sqrt.(P)) # Weil予想の確認\n", " X = a ./ (2sqrt.(P)) # -1 から 1 の区間に入るように正規化\n", " θ = acos.(X)\n", "\n", " x = range(-1, 1, length=200)\n", " g(x) = (2/π)*sqrt(1-x^2) # 半円則\n", "\n", " t = range(0, π, length=200)\n", " h(t) = (2/π)*sin(t)^2 # sin^2 分布\n", "\n", " sleep(0.1)\n", " plt.figure(figsize=(8,3))\n", " \n", " plt.subplot(121)\n", " plt.hist(X, normed=true, bins=21, alpha=0.5, label=\"\\$a_p/(2\\\\sqrt{p})\\$\")\n", " plt.plot(x, g.(x), color=\"red\", ls=\"--\", label=\"\\$y=(2/\\\\pi)\\\\sqrt{1-x^2}\\$\")\n", " plt.xlabel(\"\\$x\\$\")\n", " plt.grid(ls=\":\")\n", " plt.legend(fontsize=9)\n", " plt.title(figtitle, fontsize=10)\n", " \n", " plt.subplot(122)\n", " plt.hist(θ, normed=true, bins=21, alpha=0.5, label=\"\\$\\\\arccos(a_p/(2\\\\sqrt{p}))\")\n", " plt.plot(t, h.(t), color=\"red\", ls=\"--\", label=\"\\$y=(2/\\\\pi)\\\\sin^2\\\\theta\\$\")\n", " plt.xlabel(\"\\$\\\\theta\\$\")\n", " plt.grid(ls=\":\")\n", " plt.legend(fontsize=8)\n", " plt.title(figtitle, fontsize=10)\n", "\n", " plt.tight_layout()\n", "end" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "楕円曲線 $y^2 + y = x^3 - x^2$ の場合の佐藤・Tate予想を数値的に確認.\n", "\n", "素朴な方法(遅い!)で計算してみる." ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(N, length(P)) = (4096, 564)\n", " 14.552031 seconds (2.13 M allocations: 107.279 MiB, 0.36% gc time)\n", "count(abs.(a) .> 2 * sqrt.(P)) = 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxIAAAEiCAYAAABtIeRPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXl4FEX+h9+emWQSIISEI0IIAUGUU5RDARFEDQt4o4C4KAgqPxAFVxQX7wvXM3jAeouiu4qi6xEgKCJglHAEOeQmmADhSoAESCaZ6fr9MWTIkGt6Mpnp7tT7PPOk0ume/n4+3VWV6qquUoQQAolEIpFIJBKJRCLRgCXUAUgkEolEIpFIJBLjIRsSEolEIpFIJBKJRDOyISGRSCQSiUQikUg0IxsSEolEIpFIJBKJRDOyISGRSCQSiUQikUg0IxsSEolEIpFIJBKJRDOyISGRSCQSiUQikUg0IxsSEolEIpFIJBKJRDOyISGRSCQSiUQikUg0IxsSEolEIpFIJBKJRDOyISGRSCQSiUQikUg0IxsSEkk1ZGdnM2DAADp27EjXrl2ZP39+qEOqFQoKCujZsyfdunWjS5cuvPvuu0E9v9l9vvHGG4mJieHmm2/2bDO7ZomkLlBX8rGsI2oXo9YRihBChDoIiUTP5OTkcPDgQbp168ahQ4e4+OKL2bZtG/Xr1w91aAHF5XLhcDioV68ep06donPnzqxevZrGjRsH5fxm9/nnn3/mxIkTzJ07ly+//BIwv2aJpC5QV/KxrCNqF6PWEbJHQlLrjBkzhhtuuMHn/YUQ3H333cTGxqIoCuvXr6/F6KqnefPmdOvWDYBmzZoRGxtLXl5eSGOqDaxWK/Xq1QOgqKgIl8tFMJ8zmN3nK664gqioKK9tZtcskfiCrCOMgawjahej1hGyIQEcOnSIe+65h1atWmG32znnnHMYNGgQv/32m8/fMWDAAKZMmVLlPoqiVPkZM2ZMwM6lJ2bNmsVHH33k8/6LFi3io48+4vvvvycnJ4fOnTvXXnAaWbNmDaqqkpCQEOpQaoVjx45x4YUX0rJlSx566CGaNGkSkjiM5vPMmTPp2bMnUVFRNGvWjBtuuIFt27Zp+g6jaa5LyDqidpF1hHGQdYR/mLmOkA0JYNiwYfzxxx/MnTuX7du38+233zJgwICAt/pycnI8n+TkZBo2bOi1bdasWQE9n16Ijo6mUaNGPu+/a9cumjdvTp8+fTjnnHOw2Wx+nbe4uNiv4yojNzeX22+/nXfeecen/QcMGKCpctQDjRo14o8//iAzM5PPPvuMgwcPBj0GrT4Hk6NHj3LixIly23/55RcmTZrE77//zpIlS3A6nSQlJXHy5EmfvlfPmiWyjqhtZB1hHGQdUTV1so4QdZyjR48KQCxbtqzSfRYuXCj69u0roqOjRWxsrBg6dKjYuXOn5+933HGHALw+mZmZVZ73ww8/FNHR0ZrPV9W5VFUV//rXv0SbNm1ERESE6Nq1q5g/f36VcbhcLvHCCy+Itm3bivDwcJGQkCCeffZZIYQQRUVFYvLkyaJp06bCbreLvn37ivT0dK/j+/fvLyZPniymTZsmYmJiRFxcnHjiiSe89rnjjjvE9ddfX2UcZfctqy0xMVFTLJMmTRJTp04VjRs3FpdffrlP54yPjxdvvfWW17Zff/1VREZGij179njO369fP/Hxxx/79J2l8Xz44YcBi6GmfPbZZ8Jut4u9e/d6to0bN0506dJFHDt2rNz+EyZMEF988UVAzu1rDP74XBUHDhwQgEhOThbdunUTdrtddOzYUaxYscLn7ygpKRHff/+9uOWWW4Tdbhfr16+v9phDhw4JQPzyyy9e23/++WcxbNgwr22B1iwJLLKOkHWErCNkHVEVdb2OqPMNiZKSEtGgQQMxZcoUUVRUVOE+X375pfjqq6/E9u3bRUZGhrj22mtFly5dhMvlEkIIcezYMdG7d29x1113iZycHJGTkyOcTmeV562qkqjqfFWd65///Ke44IILxKJFi8SuXbvEhx9+KOx2e5UV4EMPPSRiYmLERx99JHbu3ClWrFgh3n33XSGEEPfdd59o0aKFSElJEZs3bxZ33HGHiImJEbm5uZ7j+/fvLxo2bCiefPJJsX37djF37lyhKIpITU317KOlkjh27Jh4+umnRcuWLUVOTo44dOiQplgaNGggpk2bJrZu3Sq2bNni0zmHDRsmxowZ4/ldVVXRs2dP8cgjj3h+HzlyZLnKrzq0VBLVxVCW5557TtSvX7/Kz/Lly8sdp6qq6Nq1q5g0aZIQQognn3xStGzZ0lNgHzhwQBw/flwIIcTx48dFx44dxR9//KFJc3VUFYO/PlfFwoULBSDat28vfv75Z7F161YxZMgQ0apVK0/+rYwNGzaIf/zjHyIuLk7ExsaKCRMmiLS0NJ/Ou2PHDgGIjRs3em0/u5KoDc2SwCLrCFlHyDpC1hEVIesIN3W+ISGEu1COiYkRERERok+fPuKRRx6pMnOUtiTL3gD9+/cX999/v8/nrKqSqO58FZ3rxIkTIiIiotxNPG7cOHHrrbdW+L35+fnCbrd7KoWzvy8sLEx8+umnnm3FxcWiRYsW4sUXX/Rs69+/v7jsssu8ju3Zs6d4+OGHPb9rqSSEEOK1117zPGXSGku3bt18Pk8pL730kujUqZPn97lz54q4uDiRn58vhBBixYoVQlEUceGFF3o+GzZsqPZ7tVQS1cVQltzcXLFjx44qP6dOnarwPN99952w2+3iueeeEzExMWLTpk2ev61Zs0ZceOGFomvXrqJLly5i9uzZPsWulcpi8NfnqnjhhRdEWFiY2L17t2fbmjVrBCCysrLK7X/kyBExa9YscdFFF4nw8HBx/fXXi6+++ko4HA6fz6mqqrj22mvL5YukpCTRpEkTERkZKeLj40V6enqtaJYEHllHyDpC1hGyjhBC1hEVIRsSpyksLBSpqaniqaeeEr179xZWq9WTwXfu3CluvfVW0aZNGxEVFSXq168vAPHDDz94jj+74J43b16Vrf+qKonqzldRJZGeni6Ack8dwsLCRK9evSo8z6pVqwTglYFK+eOPPwRQrsv0hhtuEGPHjvXSPXHiRK99rrvuOq99alpJaIll/PjxPp+nlBUrVgiLxSIKCgrEyZMnRXx8fIUVZ3Wc/RTIYrEIu91e7VOgQMbgC6UFYFVPIaviiSeeKDd04uzP6tWrazUGXxk5cqQYMWKE17aNGzdWWkmUauvXr1+Ff/eFiRMnisTERJGdne3X8RJ9IusIb2QdIeuIypB1RNWYrY7w7w0lExIREcHVV1/N1VdfzeOPP8748eN54oknGDNmDNdeey0JCQm8++67tGjRAlVV6dy5c5Uval133XVccsklnt/j4+N9jsWf86mqCsAPP/xQ7lx2u73CYyIjIyv9PnF6SjdFUcptP3tbWFiY1++KonjiCQRaYvFnbuUePXpgtVpZt24dP/74I40bN+bOO+/U/D0TJkxg+PDhnt9vu+02hg0bxk033eTZVtl9oCWG559/nueff77KWBYuXEi/fv3KbV+8eDFbt27F5XIRFxfni6xy3HvvvYwcObLKfVq3bl3p3wIRg6+sX7+eO+64w2vbunXraNKkSYXX4u677yYsLIy5c+fSsWNHhg0bxujRo7niiiuwWKqfm2Ly5Ml8++23LF++nJYtWwZMhyT0yDrCG1lHyDqiMmQdUTlmrCNkQ6ISOnbsyDfffENubi5btmzh7bff9mS6lStXlts/PDwcl8vl+T0qKqrcfMC+4Mv5zj5Xabx2u52srCz69+/v07nOO+88IiMj+emnnxg/frzX39q1a0d4eDgrV65k1KhRAJSUlLBmzZqgTytY27FERERw4YUXsmDBAt555x2+++47nwqEs4mNjSU2Ntbze2RkJM2aNaNdu3YBjeHsyqgiKioA161bxy233MLbb7/Nf//7Xx577DG/Vsls0qSJ31P+BSoGXygsLGTHjh1eeUVVVWbNmsUdd9xRob8tWrRgxowZzJgxg7S0NObOncuwYcOIioritttuY/To0XTq1KnccUIIJk+ezNdff82yZcto06ZNrWiS6AdZR8g6QiuyjqgeWUcYjzrfkMjNzeWWW27hzjvvpGvXrkRFRbFmzRpefPFFrr/+emJiYmjcuDHvvPMOzZs3Jysri+nTp5f7ntatW7Nq1Sr27NlDgwYNiI2N9aug8eV8FZ0rKiqKBx98kKlTp6KqKpdddhn5+fmkpaXRoEGDci1ucBdMDz/8MA899BDh4eH07duXw4cPs3nzZsaNG8f//d//MW3aNGJjY2nVqhUvvvgip06dYty4cZp1lfLmm2/y9ddf89NPP/l8TP369WsllrJceumlvP7661xzzTVceeWVAfnO2orh7MrIF/bs2cPQoUOZPn06o0ePpmPHjvTs2ZO1a9fSvXv3moauyxg2btyIoijMmzePgQMH0qhRIx5//HGOHTvGo48+Wu3xffr0oU+fPsyaNYtvvvmGuXPn8vLLL5ORkUGXLl289p00aRKfffYZ//vf/4iKiuLAgQOAe1rLqp7qSvSPrCNkHQGyjggGso4wKKEaU6UXioqKxPTp08XFF18soqOjRb169cT5558vHn30Uc/LSEuWLBEdOnQQdrtddO3aVSxbtkwA4uuvv/Z8z7Zt28Sll14qIiMjazy1X3Xnq+xcqqqKWbNmifPPP1+EhYWJpk2bikGDBpWbXqwsLpdLPPvssyIxMVGEhYWJVq1aieeff14I4R4TPHnyZNGkSZMqp9M7eyzu9ddfL+644w7P72XHvz7xxBNeY1sr4uzxrzWJxVfee+89ERYWJrZu3erX8RWh5UW62opBCPeLdxdccIG4++67vbZfd911YtCgQQE9V23G8OGHHwotRdbbb78tOnfuLObNmydatGgh6tWrJ4YPHy4OHjyoKfay7Nu3zzNrSVmoZBywlusv0SeyjpB1hBCyjqhtZB1hXBQhgri+uaROcuutt2K1Wpk3b16oQ6mUgQMH0rVrV5KTk+t0DHrmySefZNmyZSxbtsyn/SdNmsTRo0f57LPPajcwiURSI2QdYZwY9IysI0JDnR/aJKk9nE4n27dv57fffuOee+4JdTjlUFWVw4cP8/7777Nt2za+/vrrOhmDUVi8eLGmlX3Xr1/PtddeW4sRSSSSmiDrCGPEYBRkHREatA/QlEh8ZNOmTfTo0YNOnToxYcKEUIdTjuXLl9O8eXPmzZvHggULiI6OrpMxGIXffvuNXr16+bSvEIKNGzfStWvXWo5KIpH4i6wjjBGDUZB1RGiQQ5skEolEIpFIJBKJZmSPhEQikUgkEolEItGMbEhIJBKJRCKRSCQSzciGhEQikUgkEolEItGMbEhIJBKJRCKRSCQSzRhi+ldVVdm/fz9RUVEoihLqcCQSicRwCCEoKCigRYsWfq2orFdk/SCRSCQ1x986whANif3795OQkBDqMCQSicTwZGdn07Jly1CHETBk/SCRSCSBQ2sdYYiGRFRUFOAW17BhQ03HOp1Ofv31V/r27YvNZgi5IUd6ph3pmXakZ9qpiWf5+fkkJCR4ylOzUJP6AcxxH0oN+kBq0AdSg3/4W0cYYh2J/Px8oqOjOX78uOaKQlVVjhw5QpMmTUzVnV+bSM+0Iz3TjvRMOzXxrCblqJ6pqS4z3IdSgz6QGvSB1OAf/palpm9ISCQSicS85ahZdUkkEkkw8bcsNWZTTQMlJSUsXryYkpKSUIdiGKRn2pGeaUd6ph3pWeAxg6dSgz6QGvSB1BBc/GpIzJ49mzZt2hAREUH37t1ZsWJFlft/+umnXHjhhdSrV4/mzZszduxYcnNz/QpYK1arlZ49e2K1WoNyPjMgPdOO9Ew70jPtSM8Cjxk8lRr0gdSgD6SG4KK5IfH5558zZcoUZsyYQUZGBv369WPw4MFkZWVVuP/KlSu5/fbbGTduHJs3b2b+/PmsXr2a8ePH1zh4X7BYLMTGxhp2nFwokJ5pR3qmHemZdqRngccMnkoN+kBq0AdSQ3DRHOGrr77KuHHjGD9+PB06dCA5OZmEhATmzJlT4f6///47rVu35r777qNNmzZcdtll3HPPPaxZs6bGwftCSUkJP/zwgyG6h/SC9Ew70jPtSM+0Iz0LPGbwVGrQB1KDPpAagoumhkRxcTFr164lKSnJa3tSUhJpaWkVHtOnTx/27t1LSkoKQggOHjzIl19+ydChQys9j8PhID8/3+sD4HK5PD8rSjudTq+0qqrYbDb69OnjadWVbgf3hSqbLn3vvDQthCiXBrzSqqp6pZ1OZ5Vpl8vllfZHU1XpQGiyWCz07t0bm81mGk21fZ0AzzRtZtFU29dJCEG/fv2wWq2m0VTb10lRFPr164eiKH5rknhjs9no16+fYaeJBKlBL0gN+kBqCC6aGhJHjhzB5XIRFxfntT0uLo4DBw5UeEyfPn349NNPGTFiBOHh4Zxzzjk0atSIN954o9LzzJw5k+joaM+ndLGhTZs2AbBlyxa2bNkCwIYNG9ixYwcAGRkZZGZmApCenk52djaKorBx40ZPfMuXL+fIkSMALF26lGPHjgGQmppKQUEBACkpKRQVFeF0OklJScHpdFJUVERKSgoABQUFpKamAnDs2DGWLl3q8Wf58uUA5OTkeBpX2dnZpKenA5CZmUlGRgYAO3bsYMOGDZo1AaSlpZGTk1Mrmo4fP87q1atRFMU0mmr7Oq1fv54jR46gKIppNNX2dVq4cCENGzbkxIkTptFU29dp69atNGzYkI0bN2rWFKz30oyGoig0bNjQ0KtiSw36QGrQB1JDcNE0/ev+/fuJj48nLS2N3r17e7Y/99xzfPLJJ2zdurXcMX/++SdXXXUVU6dOZdCgQeTk5DBt2jR69uzJ+++/X+F5HA4HDofD83vpIhl5eXnExMR4nr5ZrVavtNPpRFEUT9piseByuUhJSeFvf/sbdrvds91isVBSUoLVavWkbTYbiqJ40uB+klc2HRYWhhDCk1ZVFZfL5UmX9oJUlna5XAghPOmKdFSnyWKxVJoOhCaHw8GiRYsYMmQIVqvVFJpq+zoVFRWxePFihgwZgqIohtb0+k87QLGgCBUBZdIKKEql6XsHtNGkqbCwkCVLljB48GAURTFtfgqkptKZPAYNGkRYWJgmTSdOnCAmJsZ006TWdPrXkpISUlJSGDJkCGFhYbUQYe0jNeiDshreXJap+fipV7evhai0YbbrIDX4TlDWkSguLqZevXrMnz+fG2+80bP9/vvvZ/369fzyyy/ljhk9ejRFRUXMnz/fs23lypX069eP/fv307x582rPW5OKQghBUVERERERhmjZ6QHpmXbM5NlrS7b7dZzWStBMngWLmnhm1vUWaqrLDPeh1KAPympI/nGH5uP10JAw23WQGnwnKOtIhIeH0717d5YsWeK1fcmSJfTp06fCY06dOlXurfPS6ayCtRaeEcaY6Q3pmXakZ9qRnmlHehZ4zOCp1KAPpAZ9IDUED82zNj3wwAO89957fPDBB2zZsoWpU6eSlZXFhAkTAHjkkUe4/fbbPftfe+21LFiwgDlz5rB7925+/fVX7rvvPnr16kWLFi0Cp6QSyo5hlviG9Ew70jPtSM+0Iz0LPGbwVGrQB1KDPpAagoumoU2lzJ49mxdffJGcnBw6d+7Ma6+9xuWXXw7AmDFj2LNnD8uWLfPs/8Ybb/Dvf/+bzMxMGjVqxMCBA/nXv/5FfHy8T+er6dCm0jHMRu3iCjbSM+2YybNgDm0yi2fBoiaeyaFNFWOG+1Bq0AdlNRh5aJOZroPU4Dv+lqV+9ZtMnDiRiRMnVvi3jz76qNy2yZMnM3nyZH9OFRDKvgwp8Q3pmXakZ9qRnmlHehZ4zOCp1KAPpAZ9IDUED/0vmVdDnE4nqamphuge0gvSM+1Iz7QjPdOO9CzwmMFTqUEfSA36QGoILn4NbQo2Zu2Sl0j0SLCGNkmCi1nLUbPqkhgbf8pRWYZKQklQZm0yIkII8vPzgzZDlBmQnmlHeqYd6Zl2pGeBxwyeSg36QGrQB1JDcNH/4Ksa4nQ6WbFiBUlJSYZdmCTYSM+0U1ue+ds7APp/uiXvM+1IzwKPGTyVGvRBWQ1GxWzXQWqofeTQJolEx4SiISGHNpkTs5ajZtUlMTZyaJPEaMihTZWgqip5eXmoqhrqUAyD9Ew70jPtSM+0Iz0LPGbwVGrQB1KDPpAagovpGxIul4vVq1fjcrlCHYphkJ5pR3qmHemZdqRngccMnkoN+kBq0AdSQ3CRQ5skEh8x0jCjUJxTdsvrG7OWo2bVJTE2cmiTxGjIoU2VoKoqhw4dMkT3kF6QnvmBEES6ToD+2+W6Qd5n2pGeBR4zeCo16AOpQR9IDcGlTjQkNm3aZIiLoRekZ9pREDQuPoiCbEj4irzPtCM9Czxm8FRq0AdSgz6QGoKL6ad/tdlsDBw4MNRhGArpmXaEYmFvZNtQh2Eo5H2mHelZ4DGDp1KDPpAa9IHUEFzqRI/Evn37DNGq0wvSMz8QgvrOfDm0SQPyPtOO9CzwmMFTqUEfSA36QGoILqbvkVBVlV27dhEXF4fFYvp2U0Awimd6eilYQRDtzOOUtQECJeDfb0aMcp/pCelZ4DGDp1KDPiirwaiY7TpIDbWP6RsSNpuNyy+/PNRhGArpmXaEYmF/ROtQh2Eo5H2mHelZ4DGDp1KDPpAa9IHUEFz03cwJAKqq8tdffxmie0gvSM/8QAiinEfl0CYNyPtMO9KzwGMGT6UGfSA16AOpIbjUiYaEUcaZ6QXpmXYUBPWdBXLWJg3I+0w70rPAYwZPpQZ9IDXoA6khuNSJoU19+vQJdRiGQnqmHaFYOBDRKtRhGAp5n2lHehZ4zOCp1KAPpAZ9IDUEF9P3SLhcLnbu3GmIZcb1gvTMD4RKdEkuCP0/PdAL8j7TjvQs8JjBU6lBH0gN+kBqCC6m75EQQnD06FFat24d6lAMg/RMOwpgVwtRiJGDm3xE3mfakZ4FHjN4Wlc1+DNzX23M2ldKXb0OekNqCC6mb0jYbDZ69uwZ6jAMhfRMO0KxcMjeMtRhGAp5n2lHehZ4zOCp1KAPpAZ9IDUElzoxtGnr1q2G6B7SC9IzPxAqMcWH5dAmDcj7TDvSs8BjBk+lBn0gNegDqSG4mL5HAqCwsDDUIRgO6Zk2FMAqSlBADm3SgLzPtCM9Czxm8FRq0AFZWUQsWICSl0eb6PPIvPQKAKJzshl99zUoqgtHVCMKG8ZwqlEsea3acrhtB/Z3vIi8xHYhDv4Mhr8OSA3BxPQNCavVykUXXRTqMAyF9Ew7QrFwxN4i1GEYCnmfaUd6FnjM4KnUECKcTvj5Z/j8c0hNxZqdTevTf0q8/u+ehoRqtRLmKALAlneY+nmHAWi1/ncA/rjmVpbe9+SZ783Ph4YNgyTCG0Neh7OQGoKL6RsSLpeLLVu20KFDB6xWa6jDMQTSM+0oQiWm5DBHw5oiFNOPGAwI8j7TjvQs8JjBU6khBBw+DJ06uX+eRlitFHboQET//mQ16+TZfqJxM97/+CeEohBxIp/I40epn3uIJpnbaLprK/s7XXzmezdtgh494Kab4K67oH9/sASvTjHcdagAqSG4mL4hIZFIJBKJRFJjsrMhIcGdbtoU4uJACBg2DG66CfXSS9mdlUWHDh3YvXSX5zBhtZF/jnsyjoK4+KrP8f334HDAf/7j/nTqBI89BjffDDr/h1JSNzH9o1Or1Urnzp1136LTE9Iz7QjFQl54nOyN0IC8z7QjPQs8ZvBUaqhlNm2Ca66Bzp3dw45K+e472L8f/v1vSErC2rBhzTU8/DCsXg333ANRUbB5M4wcCV26wPz57oZLLaLr6+AjUkNwMX2PhMvlYsOGDXTt2tUQFyTUvLZkO4pQaVx8gNzwc3z+x7g25+Y2Av54VteReVM70rPAYwZPpYZaIjcXpk+HDz4AVXX3CPz+OyQluf9+1hz/ZTX4jaK4hzb16AEvvACvvw6vvQZbtsDdd8OVV0JsrP/fXw26vA4akRqCS534jycyMjLUIRgKAbiUMDn7kAakZ/4h86Z29O7Z7NmzadOmDREREXTv3p0VK1ZUub/D4WDGjBkkJiZit9tp27YtH3zwQZCidaN3T31BagggQriHFXXoAO+9525EDBsGf/55phFRCQHV0KgRPP447Nnj/vnii96NCKczcOcqg26uQw2QGoKH6XskrFYrF1xwQajDMBaKhaPhTUMdhbGQnmlG5k3t6N2zzz//nClTpjB79mz69u3L22+/zeDBg/nzzz9p1apVhccMHz6cgwcP8v7779OuXTsOHTqEs5b+QaoIvXvqC1KD71S3Gra12ME1z9zHuauWAXCkdXt+vP8pcjpdDH8Bf1W3mraFhdm7qtlHI9HR8NRT3tsWLoR//AM++QS6dw/YqeS9pA+MpMH0PRJOp5PVq1cHtWIyOopQaebYiyIXV/MZ6Zl2ZN7Ujt49e/XVVxk3bhzjx4+nQ4cOJCcnk5CQwJw5cyrcf9GiRfzyyy+kpKRw1VVX0bp1a3r16kWfPn2CFrPePfUFqSFwuMLtFDaMwRkWRtrt9/HpW1+5GxE+ELR6QAh49FH3cKdLL4VnnoEALVyml+tQE6SG4GL6hoSiKMTExKAoSqhDMQwCcFgi5TAdDUjPtCPzpnb07FlxcTFr164l6ayhH0lJSaSlpVV4zLfffkuPHj148cUXiY+Pp3379jz44INVLsTkcDjIz8/3+gCeFWBdLleFaafT6ZVWVdWzT6NGjVAUxWt7SUmJV1qcfsm1NC2EKJcGvNKqqnqlS/8pqCztcrm80r5qUhSF6OhoT4xldRhFk6qqxMTEoKpqhdepsrQiXJ4XkCtMC1E+7RblSSvOEuwnjnm2/3zvo3w653+sum0iwmYrs//pBoJQK007lAgE7kYFojTGs9OiwrTP1wko+f57xM03u4c3Pf44XHMNIje3xtep9F4qmz+05Cc93Hsul8tzL/mTn/SgSQhBdHQ0iqIEpIzwVZM/mL4hYbVaadeune5fVtEVioXjYY2hrr407HJBcfGZ33Ny4KOPuPDbT+k+/33CIzA9AAAgAElEQVQumfcWfT94lf5znufKWY/TZtUyj2cNjhziijee4oo3n+byt1+g99xZ9PjiXXjrLZg7F9avP/O9qgqnC5C6iMyb2tGzZ0eOHMHlchEXF+e1PS4ujgMHDlR4zO7du1m5ciWbNm3i66+/Jjk5mS+//JJJkyZVep6ZM2cSHR3t+SScno5z06ZNAGzZsoUtW7YAsGHDBnbs2AFARkYGmZmZAKSnp5OdnQ3AqlWrqFevHlarleXLl3PkyBEAli5dyrFj7n8uU1NTKSgoACAlJYWioiKcTicpKSk4nU6KiopISUkBoKCggNTUVACOHTvG0qVLPf4sX74cgJycHE/jKjs7m/T0dAAyMzPJyMgAYMeOHWzYsMEnTVarlSNHjrB//34A0tLSyMnJATCMpt27d9OuXTv++OOPCq9TZZoSinZjV90Nz8TCnYQJd9ndpnA7VuFEQaVN4XYUVKzCSZtC99CkMFFMYuFO7CfyuenRu7jpuYmgqkSqJ4njIHmt2lLfVUBzRxYAUa5jxDn2AhDtPErTYrfXMSW5NC52398xzlysuECx0Lj4ADEluQA0Ld5PtPMoAHGOvUS53NeguSOL+i73NYgvytR2ndLTcX76KcXvvIMzPBwWLUJ0787vp3v//L1OVqsVVVXZvHmzT/eer9cpmPfe2rVradeuHVlZWX7lJz1oOnToEAcOHMBqtQakjPBVkz8oorQJpWPy8/OJjo7m+PHjNNS42qPT6SQ9PZ1evXphs5n+lZAaUzprU5xjLwftLXU9a1N1Y10rY+rV7eHgQfjxR8jKcn+ys90/9+2Do0fhjTeg9J+Z5cvdiwJVwsqxU1kz8m7iHHtRs/O5bdKwyk/+yCPw/PPu9J490KYNxMRAs2buOckTE90zgbRpAz178lpOuF8aPTr9oEa+akDmTe3UxLOalKO+sH//fuLj40lLS6N3796e7c899xyffPIJW7duLXdMUlISK1as4MCBA0RHRwOwYMECbr75Zk6ePFnhy4YOhwOHw+GlKyEhgby8PGJiYjxP36xWq1e69GlradpisWCxWCgqKmLt2rVccsklAJ7tJSUlWK1WT9pms6EoiicN7utRNh0WFoYQwpMufTpamlZVFZvNVmna5XIhhPCkK9JRkSYhBKtWraJnz56Eh4d76Sub1rMmp9PJ2rVr6d69Ozabrdx1qig966edKMKFwAKKUnEaUFC904oVhCBm326ue3wSsXszKbFH8tlbX5GXcC4Kwl33CVFJWkWBcmmL6qSZYx8HI9yNWwGgWFCEelZaOR2jd/q+q9r7d53WriVsxAjYvRsREYGSkYHavr1f1wncjesePXpgt9s15yc93HvFxcWsW7eO7t27Y7VaNecnPWgqLi5m9erVXHLJJVgslhqXEb5oOnHihF91hOlrb4vFQnx8PJYgrgxpdAQKJ21R7gLOqAhB9P4smuzZQWzWLmKzd7NtwBD29DrdINi6Ff7+98qPz809k27ZEgYPZvsJFac9Amd4BE673fNzX9eeHs/UGDu//30SqCpWZwlhRYWEFZ6iU7QVTpxwzwJSyqFD7p9Hj7o/27Z5xzBtGlw9HgB7/jGuTn6M3MR25LZqR27rdhyLb4Mr3P+GRqiReVM7evasSZMmWK3Wcr0Phw4dKtdLUUrz5s2Jj4/3NCIAOnTogBCCvXv3ct5555U7xm63Y7fby20v7aUp21tTNl224VU2HR4eTsuWLT2VailhYWF+pRVF8aTLfqcv6cpir06Tqqq0bNnS83tlWvWsSVEU4uPjCQsL8xxbmY6yaaFYq09TPh2/cQ3XPTWJiILj5DdtzrdPzyGvVdvT+5yu+xSlkrTlzDDWMmlVsXIyrKGncXAmFotP6VLdmq9Tjx6wZg2MGoWSkADnn49FUfy6TqX3Uun3a81Perj3wsPDy91LWvKTHjTZbDavcqmmZYSvaX+oEw2JxMTEUIdhLBSFAltMqKPQTIPDB7jo67nE7dhE051biDhZ4PX3E42bnWlInHsuXHGFe5XSVq3cn4QEd6OhWTPvKfbOPRdSUvihmif1BbYYaAK/3X5fub91quhpfY8ecOSIu0Fx6JB7CNWePWc+F595wa/Jnh2ctzKV81amerapFiu5rdtx4PyubLnyOvZ17VWdRbpC5k3t6Nmz8PBwunfvzpIlS7jxxhs925csWcL1119f4TF9+/Zl/vz5nDhxggYNGgCwfft2LBYLLVu2DErcevbUV6QGbZz7208MfXYKtpJi9nfoxndPvMmp2ADMuhfKujMmxr1A3uk4ACgsBLsdNDx4kPeSPjCSBtM3JJxOJ2lpafTp00cOn/ARRag0d2SRY2+lz8XVSkogI4Pu87/iaHwiu/tcBYCiuujx5Zn5551h4eS2Po+8Vm3JSziX7AsvOfMdCQlwelxiIPDLM4sFGjd2f8r2VJTldOPl+DktWTbhERr/tdP92bMD+6kTNN29jaa7t3GoXUdPQ6LR3ky6LJwPJTdBv37u1VF1iMyb2tG7Zw888ACjR4+mR48e9O7dm3feeYesrCwmTJgAwCOPPMK+ffv4+OOPARg1ahTPPPMMY8eO5amnnuLIkSNMmzaNO++8M2hzqOvdU1+QGnzngp++ZdBL07GoLnb1HsgP/3wNlz0iIN8d8rqzrG9Op3vti7g491oYPr5XJe8lfWAkDfqOLgBYLBbatm2ry6EAekWgcNwWq5+hTaoK69bB4sXwyy+QlgYnT3I5sLP3lZ6GREGzFqwdNpbcxHYcPK8zeYltUW1hVX93gKhtz040a07GTWPKnFDQ4PAB4nZs5pxtG7waSS03rKbH/Pdh/vvuyqN7d3fvyxVXQN++cPrJb6iReVM7evdsxIgR5Obm8vTTT5OTk0Pnzp1JSUnxPFnLyckhKyvLs3+DBg1YsmQJkydPpkePHjRu3Jjhw4fz7LPPBi1mvXvqC1KD7xxrkYgz3M6OfoNY8sCzCGvg/g3SVd2Zng6pqe7JQxwO92QfYdXXh/Je0gdG0uDXy9azZ8/mpZdeIicnh06dOpGcnEy/fv0q3d/hcPD0008zb948Dhw4QMuWLZkxYwZ33nmnT+er7ZcEJWcI1ou2PlNc7B5atG+f9/bYWHad343Mnv3ZeM1ITV8Z7JeQg33O5pvX0WnxV3TZkQG7zloYKTzcXblU8fK47u4BSUAwazlqVl2S6vG3rIrJ2sXRlm00DfkJBgEvQ7/6Cm691d2Lf+ON8N//uusAiaQC/C1LNeei0pVLZ8yYQUZGBv369WPw4MFeT5nOZvjw4fz000+8//77bNu2jf/85z9BW7HP6XSydOlSQyzqoRcUodKycFfwF1f76y94+WW4++4z28LDoV079/CcG290T6O6cSMcPsy3T83R3IioLULmWQXkdLqYHx94DnbudHs6dy6MGeOeEUpVoVu3Mzu/9x5Mnw6//ur+WxCReVM70rPAYwZPpYaq6bxwPk13bfH8frRV21ppROipHgDcQ5sWLHDXo19/DaNGuYc8VYG8l/SBkTRo7tMru3IpQHJyMosXL2bOnDnMnDmz3P6lK5fu3r2b2NMvsLZu3bpmUWvAYrHQuXNnQ3QP6QWBQm54XHC6Z/fsgS+/hPnz3V2x4H5R7LnnoOnpl9/mzXO/AK3jJylB9UwLrVrB7be7P0LA3r1QZoYc3n3X7fu//uV+0XzECOLa9ObgeZ29Zh2pDWTe1I70LPCYwVOpoXI6p3zB1cmPURjViHn//h8nmp4T0O8vS7DrAZ96ZOztafXkHK5/YgK2r76CsWPdD5cq8VneS/rASBo0RWjElUstFounAVN2O+h7lc9QrrQIUGSJdP8j6bWaZ2VpP1aP/PJL6NXLvV7CtGmQno6wWBADBsCbb+I8vSgOQElcHOrpl43KatKycmnZdE2uk1JmFVOv1UoRFFrqeeYDr2jlUn+uk6+aKrs2XppUFWfz5t6apk5FHTkS0bChu5HxyiuMuvdmxo5Notens31ajZUysWu591wuF82aNfPMu10ar9nyUyA1CSFo1qyZxz9/NEm8sVgsNGvWzBAVdmVIDRVz3vJFXDXrcQA2D7qJE00qnoY4YCgKhdYGtf4QRitZPS7jh0dnoVqs7p6JCtZ0KUXeS/rASBo0RWjElUtLSkpISUlh7173ipRGWeUzlCstRrhO0rpwO4pwEameJL7Iff6qVvmsVtO6dew8ff0yMjI4smsXrF6NsFgo6t0bZs/m96++Yv+8eTBxIsvXr69Wk68rlwLY1UISinbX+DrFlBwmpuQwgNfKpc0c+0gs3IEiXJWuXOrPdfJVU2XXqVpNI0fy54wZ/Ll0KXz9NUeTknDa7TTan0XLXX94rcba6OSBcpriizKJVE/6fe8tXryYo0ePmjo/BVLTpk2bWLx4MevXr9esKbfs2igSDyUlJSxevNjrQYrRkBrK02pdGoNfeBBFCDYMHcGKux6q9X/wFeGi1el6QG/s7n0lCx952f2OXMeOle4n7yV9YCQNml62NuLKpQC5ubnExMRgs9kMs8pnVZpqc6XFN5dlgqoSoZ6iyFrffZP4sMrn5IHtKta0cyfWDz9EfPwx4sEHsTzwgFvTyZNY583DecMNWJo390tTcuqWalcurSh9/5Xt/LpOry89M/ZVnL1aqeoiXC3CYa3n9uWslUunJp3v13V68+fdPmmq6NpMSbrAr3tvzvfrabNqOSeancP+jheBYiEmexejJt3Mjsv/xqa/3ezebvFepfXeAW003XvFxcWcPHmS6OhoVFU1ZX4KtCZVVSkoKCAqKgqLxaJJ04kTJ4iJiTHdS8k1fdlaVVWOHTtGo0aNDPH0ryLqqobKhvbEbdvAzdPuILzoFNv7DSLln68hfJz+tEYIgV0txFHao68RrS9b+/Oyudc5Tp2CevW8/l7RdajxeYJMXc0PNcXfslTTOxJGXbm0adOmFW7X8yqf1WmqzZUWsVgospyZItSXVT5LY7Bare6Xdhcvxvr663D6Ca0CKN99Bw884N43OhomTfK6AbVqqm7lUneM5dM1uU6VrkpqseKw1Pf266x9/LpOpyuj6jRVdm38ufdK6kWx/YqhlKVt2k+EF52iU+oCOqUuIDexHX9ccyt/Jt1ISWR9bZpOUzafl8ZgxvwUSE1Wq9VrqKYWTUatUGubs4e/GhGp4QxRB/dx/WMTCC86xV8X9WHRwy8HpxEBoCg4rPWq308PrF0L114Lc+ZAmQUj5b2kD4ykQVNDwogrl5aUlJCamkpSUpJXhW9majJNKbi7ZxMLd/JXZDuvf9Z94u23ITn5zBhMRYHBg2HcOLjmmoDHqhdq5JkBWDP8LvZ37k7nlPm0X76Qxn/tZOBbz9Dno2Q2Db6F9FsnaP7Oupg3a4r0LPCYwVOp4QzFkfXJTWzHydimfPfEG7iCOEmHoeqBuXMhJwdGjoSff4ZLLwXkvaQXjKRB8yOqBx54gPfee48PPviALVu2MHXq1HIrl95+++2e/UeNGkXjxo0ZO3Ysf/75J8uXLw/qyqU2m41+/frpfmVAPSGwsC+itWeokCZSU92NiKgouP9+2L4dfvgBbrpJ17Mu1ZQaeWYEFIX9nbqTOu0F3vnvSpZOeoyj8a2JOFlA58Vf4fJj4T+ZN7UjPQs8ZvBUajiDo2Ejvp75PgtmfkBJveAuvmmoeuDVV2HoUCgqghtucE+2gbyX9IKRNGiO0GgrlyqKYqrxwEFBUShRyg8tO5vonGx6fPEu6SPvAU6Ph3z4YRgwwL1uQVRUbUapL3z0zAwU14/ij+v/zh/XjqLN6uVEHs/DGXm6O18IuPdeuOUW96J3VYwTlnlTO9KzwGMGT6UGaLF5Lfs7dQdAtYVRGNM4UKH5Tg3rgaD20Nts7gXq+vaFDRvcjYkVK1AiI+v8vaQHjKTBr2bzxIkT2bNnDw6Hg7Vr13L55Zd7/vbRRx+xbNkyr/0vuOAClixZwqlTp8jOzuaVV14JSm8EuLuH/ve//xnizXe9oAgX557aUunME7FZu/jbCw8yZmwSXX/4nO5ffnDmj716weTJdasRQfWemRKLhcxLBvBn0k1nti1aBLNnwxVXwGWXwcKFnulhz0bmTe1IzwKPGTyt6xq6fP9fRkwdxYC3nq20vAkGhqsHGjSAb76Bxo3d70yMH09JcXGdvpf0gpE0GKD/rWbYbDaSkpIM0T2kFwQW/opoV657Njonm0EvPszou6+hw9LvsKgqmT0vZ/uAISGKVD9U5lmdo1MnmDgR7HZIS4MhQ9wNip9/LrerzJvakZ4FHjN4Wpc1tPxjFQPffBqAU41iQ7qGgyHrgTZt3IvC2mzw2WfYPvywzt5LesJIGvQfYQAwwoXQG6riXRBe/u+ZdPvfPKwu90JZO/tcxarbJnLovE6hCE+XnO1ZnaRVK3jrLXjsMXjlFXc6LQ0GDoQrr3R3pTdp4tld5k3tSM8Cjxk8rYsa6h85yJDnpmJRXWwZeC3po/6vliLzHUPWAwMGwOuvu99xvPXWOnkv6RGjaDDgHa+NsgtGSXyj7AJvpQirFavLyZ4el/HZm1/y3ZNvyUZEGSryrE5zzjnw0kuwaxdMmgRhYXDoEJy1yrzMm9qQngUeM3haJzWUlHDNs/dT/1guh889nx+nPBPyFaUNXQ/83//BggU4IyPr3r2kQ4ykwRjNnRpgs9kYMmSIYVp2usAlqP/zHzQ9z8mh9l0AWD3iLnZfOpB9XXqEODh9IrCQGdneWF3awaB5c3jzTXjwQcjNhdK1DAoLsb3wAkPuvVfmTQ3I8izwmMHTOqnhoYdo8WcGRfWj+O6xN3BGBOe9y6owfD2gKO7rMHgwts8+g+HDIUjvswaSOpkfQohB73ZtGKFFpxdarUvjtkk3ctWsJxgwZ6bnxbWihjGyEVENFmHAp1DBonVr6N79zO/JyShPP42tQwd3Q0PmUZ+R5VngMYOndUrD5s0waxYAi6e9wPH4xFqMShtmqAeUe+9FGTPGPYW7QalT+SHE6L+pU0OcTiepqakMGTJE94t6hJL6uQfp/++ZnP/LQgCKGzRgR78kFFX1aVVQsyws5y8KKolFO08/jSrvV13wR4vGVso5DGjVlsZZu+C+++CDD9wrrJ5eFElSMbI8Czxm8LTOaejUCb79ll+/+ondfa4KToA+UF09oAeqK6cV4aJny5b0URSUd99lYcx5cFXFCw7rlTqXH0KMIkQI50rzkfz8fKKjozl+/Lhh5tUNJVr+oVNcTrp9+ym9587CfuokqsXCH9fexm+j78XRsFEtRhk6pl7d3q/jjNYY0LtOxeWkS8oX9P0omYiC4+6Nd90FM2e6pyOUBBSzlqNm1SWpHqOVyUbi0k/epPcnb1Bij+Szt74ir1VbTcf7W/9IQoe/ZanphzYJIcjPz8cA7aWQcP7PPzBgzvPYT51kf4dufPbWApZNnIHaIDKk83EbDiEIUx3SMw0Ii5UtQ4fx0XsLYexY98Z333UvaCepEFmeBR4zeFpnNLz2Gvz1V/CC0ooZ6oHTGlbdOoG/LupDmKOQoc/cj63wVKgj85k6kx90gukbEk6nkxUrVhhmrFmw2XbFNfx1cV9+vP9pPn/tPxxu2wEFlfiiPcaceSJESM+0U+pZUaNG7qFNK1ZAz54QpFXvjYgszwKPGTytExq++goeeAAuvhjy8oIbnI+YoR4o1YBVYdH0lzgZ25Qmf+3gitnPhDo0n6kT+UFHmL4hERYWxtChQ3U/xixYNN+8jusen4DVUQS4p3VdMPN9Ng4d4ZlRRyhW9tQ7H6Hoc4ynHpGeaaecZ5ddBqtWQdsyXejTp7t7KQzwVCYYyPIs8JjBU9NryM52D3sEuPtur2mk9YQZ6oGyGk7FNOGHf76KarHQcck3xP61M9Th+YTp84POMH1DQlVV8vLyUFXjPiEIBFZHEZf/eyYjHhhF299/pucX753549lzbwuB3XVK/vOmBemZdiryrOy9mJ4O//qX+x+HpCTIygp+jDpDlmeBxwyemlqDywV//zscPerusXz66dAE6AtmqAfO0rCvay9+mfBPvnjlU/IS24U4ON8wdX7QIaZvSLhcLlavXo3L5Qp1KCGjceY2Rt17M90XfIQiBJuTbiLjhtGV7q+gEle8z9Dds8FGeqadaj3r3t29OnZEBPz4I3TtCp9/HtwgdYYszwKPGTw1tYbnn4fly6FBA/jPf9yLW+oUM9QDFWlYf8NocjpdHMKotGHq/KBDTN+QCAsLY9CgQYboHgo4QtDt648Zde/NNPlrBydjmvDNM2+T+uBMHFHRlR+mWMmKPM/Q3bPBRnqmnWo9s1rdY6I3bIBLLoHjx2HkSBgzBgoKghqrXqjT5VktYQZPTashLQ2eesqdnj3be9ijDjFDPVCdhtisXVzw07dBjkobps0POsX0DQlVVTl06JAhuocCTZ+PkrliznPYSorZ3as/n/z7WzIvGVD9gUIQ6Tph7O7ZYCM9046vnp13nvtF7Ecfdb/HM3cuDBxYJ72uy+VZbWEGT02rYeZM99Cm226D0ZX3ousGM9QDVWiIydrFbRNvJOmVf9J015YQBOcbps0POqVONCQ2bdpkiIsRaDYOHcGJ2KYsnfQY/3vmbQpjfJubX0HQuPggCgYuDIOM9Ew7mjwLC4NnnoFly6BVK3jwwfLv9tQB6nJ5VluYwVPTapg/390j8dZboQtMA2aoB6rScDThXPb06IfVWcLgmf/AVlQYggirx7T5QafIBenMhBCwciWvFcV5NlkdRbjsESEMSn/ofaG2QGEknZpiPXUK6tU78/uGDdCmDURFBT4wE2HWctSsuiTVY7Qy2QxEHM/j9nuuo37eYTJuGM2yiY9WuJ9ckM54yAXpKkFVVfbt22eIVl2NOH4cbr4ZLr+cc3/7ybPZr0aEENR35hu7ezbYSM+0469nZRsR+/e7Z3Tq1Qv+/DOw8emQOlOeBREzeGoqDXl5MGsWGGD+/HKYoR6oRkNRdCyL//E8ABd98wnxG1YHMzqfMFV+MICGOtGQ2LVrlyEuht9s3uyeFm/BAggPJ/L40Rp9nYIg2pln6O7ZYCM9005APDt4EGw22LrV3Zj44ovABahD6kR5FmTM4KmZNHD//TBlintSBYNhhnrAFw1/9bycjYNvASDplUd0t+q1mfKDETSYviFhs9m4/PLLsdlsoQ6ldkhJgd69YccO99jxFSvY/Leba/SVQrGwP6I1QjH97REwpGfaCYhnF10E69bBlVfCyZMwYgQ88QQYoPD1B9OXZyHADJ6aRkNeHpZ589yTKkycGOqQNGOGesBXDcvvnk5+0+Y0ysmm27fzghSdb5gmPxhEg/4jrCGqqpKdnU1CQgIWi3EzdzmEgORk90unqgr9+8OXX0KTJlDTcaNCEOU6RoG1kSlfaK2VcbU69Ez344fLeuYnpRqVB9/gsthX6DH/fXj6abYvS2fxgy/gjIis8Dijjt81bXkWQszgqSk0HDyIGD8eK8C0adCnT6hD0o4O6wHN+KihuH4DljzwHHHbN7L25juDGGD1mCI/GEiDvqMLAEYaZ6aJlSvdc+yrKowfD6mp7kZEAFAQ1HcWGLp7NthIz7QTSM+E1cqKux5i8T+ex2ULo/3yRVzy6ewARKkvTFuehRAzeGoGDUyZgjU3F9Gp05m1IwyGGeoBLRqyuvdl9a0TEFZ9PZM2Q34wkgZ9Xf1awGaz0ceITzaqo18/d29Eixbu8aQBfPohFAsHIloF7PvqAtIz7dSGZ38OGsbxFolc8uls0kdNCOh36wHTlmchxAyeGl7D999j+e9/wWJB+egjsNtDHZFfmKEe8FeDtbiYxLUr2N37ylqIShuGzw8YS4PpGxIul4vMzEzatGmD1Wrc1SYB9ww19epBo9NDQV56qXbOI1SinUc5bosBA4/1DCrSM+2U9SyA7OvSgwUvfFDmPIKYvZkcTTg3oOcJBaYqz3SCGTw1tAaXy/2CNXB07FgaXnQRBlNwBjPUA35osDqKuPW+W2iauZ0vXv6EfV17aR5aG8jhpobOD6cxkgaD3um+I4Tg6NGjGGC5jKrZts09ZvT666GoqFZPpQB2tRCDjvAMCdIz7QTLs0s+nc3fJ1zHecsX1fKZah/TlGc6wgyeGlqD1Qrffos6fDi777jDmBpOY4Z6wB8NLnsEOR0uAuCq5MewFjtqJTZfMXR+OI2RNJi+IWGz2ejZs6ch3nyvlPR06NsX/voLcnIgN7dWTycUC4fsLQ0980SwkZ5pJyieqSpNd2/FVlLC0Oem0PX7/9TeuYKAKcoznWEGTw2voVMnLJ9/Tvd+/YyrAXPUA/5qWDn+QU7ENiV2756Qv59m+PyAsTQY9273EZfLxdatW3G5XKEOxT9SU2HgQHfjoUcP+PVXiI+v3XMKlZjiwyD0/5KPbpCeaScYnlks/DAjmQ1DRqAIwZWvP8mlH79h2AWjDF+e6RAzeGpIDYWFkJHh+dWQGs7GDPWAnxocDRry872PA9Dji/dosntrbUTnE2a4l4ykQf9NnQBQWFgY6hD84/vvYdgwKC6Gq6+Gr76CqKhaP60CWEUJChh47ongIj3TTlnPahNhtfLT/U9xKrYJl857i97z3oQW9eCFFww5RaNhyzMdYwZPDafhqafg5Zfh+efhoYcAWL3zAIuyMOwTfTPUAzXRsPOyJHb0vZrzfl3CVa89xufJ/0WEaHy/4fJDBRhFgzFzqwasVisXXXSR7l9WKcf338NNN7kbETfd5P49CI0IcBfiR+wtDFuYhwLpmXaC6pmi8Nvt9/Hz/81w//7ii55/XoyEYcszHWMGTw2nYd06dyPC5YLzzwfcGoxehpqhHqiphp/vfQxHvQY037YhZAvVGS4/VICRNJi+R8LlcrFlyxY6dOgQsgviz8JgTfapjG7Y0L1i77x5EBZWC5FVjCJUYkoOczSsqaELxGAiPdNOWc+Cxfobb0e1Wrnyrb/w7uAAACAASURBVGfgvPOCdt5AoYfyzGyYwVNDaSgpgXHj3I2I4cPdE4jg1hBbfNDQZagZ6oGaajjZOI4V46fRfvlCdvcaEPgAfcBQ+aESjKTB9A0Jo3Lk3Atg1SpITAQDvGwjkRiFDdfdxpUTR0KHDqEORSKpeyQnw/r1EBMDr78e6mgktcDGIcPZOHSEIYeOSrRjzCazBqxWK507d9Z9iw6g7colxG9cU2ZD25A0IoRiIS88zrBPVEKB9Ew7IfWsbCPiyBH3UCcDvIBthPJs9uzZtGnThoiICLp3786KFSt8Ou7XX3/FZrPRrVu3Wo7QGyN4Wh2G0ZCdDU8+6U6/8grExXn+ZLVaDV+GmqEeCIgGi8WrEWE/kR+AyHzHMPmhCoykwbh3u4+4XC4yMjJ0/+Z7q7W/MmTmVG6YcRexWbtCGosiVJo49qMYeeaJICM9044uPHM6YdAgePhheOKJ0MXhI3ovzz7//HOmTJnCjBkzyMjIoF+/fgwePJisrKwqjzt+/Di33347V14Z/FVx9e6pLxhGw9SpcOoUXHYZjBnj9SeXyxX68qCG6KJMqyGB1GArPMXA15/kjjv/RsTxvABE5xuGyQ9VYCQNdWLMTGRkZKhDqJJztqzn2qfuxVZSwvbeV3I0vnVI4xGASwkz7KwToUB6pp1Qelb2vaWul13HlevWwTPPsOyQk4xhY6o8NpArsPqDnsuzV199lXHjxjF+/HgAkpOTWbx4MXPmzGHmzJmVHnfPPfcwatQorFYr33zzTbDC9aBnT31F9xqEgP79YdkymD27wmEvRi9DzVAPBFKDarMRv2kt9Y/l0u+9l1nyj+cD8K2+ofv84ANG0WD6Hgmr1coFF1yg2+6hxpnbufHRuwkvOsWe7pex6KGXQjZdmgfFwtHwpmDg7tmgIz3Tjk4823DNrawcOxWAAW/PpGPqgpDGUxV6Ls+Ki4tZu3YtSUlJXtuTkpJIS0ur9LgPP/yQXbt28USIeoT07KmvGEKDosDkyZCVBV26lPuz1WrVRXlQI3RSptWIAGpQw8L56f4nAei8+CtabF5b4+/0BUPkh2owkgYD3+2+4XQ6Wb16NU6nM9ShlCM6J5ubHrmTiILj7O94Ed89/gau8PBQh4UiVJo59hq6ezbYSM+0oyfPVo+8hzU33wnA1a/OoO2vP4Y4oorRc3l25MgRXC4XcWXGvQPExcVx4MCBCo/ZsWMH06dP59NPP/V5BVeHw0F+fr7XB/AMAXC5XBWmnU6nV1pV3fddUVER6enpOJ1Or+0lJSVeaXH6HZrStBCiXBrwSquq6pUuvW6VpV0ul1faV01Op5NVq1ZRXFxcTp8uNJ3e3+Vy4bLbK9TkcDho5tiLRXV6FkNThOp5d6nytKvqtBDl025RVaTVatJqhWmL6qRZUTZK6TYvHcbQpAiVZkXZ7utwOi6lUh3Va9rf8WI2/u1mAAa+/iQWZ0mFmgJ57xUVFbF69WocDodf+ak0XVEeClZ+Ki4uZtWqVZ7z1bSM8FWTP5i+IaEoCjExMSg6mz0g8lgeN00fS4O8wxxu055vnnkbZ2S9UIcFuLs2HZZIQ3fPBhvpmXZ05ZmisOKuh9g0aBgWVWXI81No+ceqUEdVDr2WZ2U5OzYhRIXxulwuRo0axVNPPUX79r4PF5s5cybR0dGeT0JCAgCbNm0CYMuWLWzZsgWADRs2sGPHDgAyMjLIzMwEID09nezsbABWrVqF1WpFURSWL1/OkSNHAFi6dCnHjh0DIDU1lYKCAgBSUlIoKirC6XSSkpKC0+mkqKiIlJQUAAoKCkhNTQXg2LFjLF26FHA3tJYvXw5ATk6Op5cmOzub9PR0ADIzM8k4vdrzjh072LBhg0+aFEWhoKCAffv2AZCWlkZOTg5AyDVlL1tG8QUXwMKFVWratWsXDkskTYpziHYeBSDOsZcolzve5o4s6rvc8cYXZRKpngQgoWg3dtW9cFdi4U7ChLsx1aZwO1bhREGlTeF2FFSswkmbQvewxjBRTGLhTgDsaiEJRbsBiFRPEl/kvk/quwpo7nC/3xPlOkacYy8A0c6jNC3eD0BMSS6Ni90N5UYlR7DiQgCNiw8QU5ILQNPi/YbRJAALKrElh07rO0xMyWGogaaV4x/EEdWQppnb6fbNJxVqCuS9t27dOmJiYsjKyvIrP4F3GRGK/HTw4EGOHz+OoigBKSN81eQPiihtQumY/Px8oqOjOX78OA0bNgx1OJqpaB2JsMKTDH7hQZpkbufz1/7DycbNyu3j71hsf9atkEhCiV7udcXlZOhzU2m2YzPfPPsOeYntyu0T6nck/KW2y9Hi4mLq1avH/PnzufHGGz3b77//ftavX88vv/zitf+xY8eIiYnx6rpXVRUhBFarldTUVAYOHFjuPA6HA4fD4aUrISGBvLw8YmJiPE/frFarV9rpdKIoiidtsViwWCyVpktKSrBarZ60zWZDURRPGtxP8sqmw8LCEEJ40qqq4nK5PGlVVbHZbJWmXS4XQghPuiIdhtJktSKGDEFZtAiuugrXwoVwOt6KNL2+dBeKUN0PFxTL6bQCilJF2oXAUnkaUFC904rV/TS+0rRwz1pUaVp1r/x8Vrr0yb3wxF5WR93W1GnRFyS9+hjFEfX4+N3vKGgW76VpytXtZX4KsaYTJ074VUf41SNhpOn9nE4naWlpuhsKUBJZn+8ef7PSRkQoUYTKOUVZuhhyYhSkZ9rRo2fCamPhwy/xn9fnV9iICDV6Lc8AwsPD6d69O0uWLPHavmTJEvr06VNu/4YNG7Jx40bWr1/v+UyYMIHzzz+f9evXc8kll1R4HrvdTsOGDb0+gKdBYrVaK0zbbDavtMVypvr7/fffPRV+6fawsDCvdGmvSmlaUZRyacArbbFYvNKl/1BUlrZarV5pXzU5nU7S09M9wxPK6gippm++cTciwsLgzTexlrkGZ2sSQnBO0enZvU6PzxfKmWlEK09bq04rSvm0W1QVaUs1aUvFadxP5xWhno6xrA5jaFKEyjmneylK4xKV6vBd0+akm9nf8SJcYeHE7MsqpymQ9x64n7iX/sMN2vJTabqiPBSs/KSqqmfIZSDKCF81+YPmWZtKp/ebPXs2ffv25e2332bw4MH8+eeftGrVqtLjyk7vd/DgQb8D1orFYiE+Pr5GJgWSFpvWsL9Td3cGtlp114gAECictEW5nyRIfEJ6ph29euayR1Boj/D8fs6W9Rw+9wJcZbaFCr2VZ2fzwAMPMHr0aHr06EHv3r155513yMrKYsKECQA88sgj7Nu3j48//hiLxULnzp29jm/WrBkRERHlttcmevfUF3Sp4eRJuP9+d3raNDj//Cp3t1gsuiwPtKDXMk0LtabBYmHRwy/hqFefoujYwH53uVPpMD9oxEgaNEdYdnq/Dh06kJycTEJCAnPmzKnyuNLp/Xr37u13sP5gsVhITEzUxcVo//MPjHjgNga9NB1q8GJLraMoFNhi5KqUWpCeaccAnl3w07cMf+A2rn51hi4WrNNTeVYRI0aMIDk5maeffppu3bqxfPlyUlJSSExMBNxjmatbUyLY6N1TX9ClhmefdS9Al5gIM2ZUu7vFYtF9eVAtBijTqqUWNRxvnlDrjQjQaX7QiJE0aOqRKJ3eb/r06V7bfZ3eb968eTz77LPVnqeiMbDgPSsH+DYWTFVVfv31V3r37k14eHhIxrchBC3+XMegl92+nWoU6175sbpxiKfPqXXMHkLUaGylorpo7sgiJyIRgRLysZVGGC/6/+ydd3wUxdvAv3t36QlJaAFC6CAloPTeIXQRBVFURFBUQAQLYAcVeQURRKQJNvyJiAoIBAi9GOk1tNBLCD2NlMuVff/Y5MiRdpdc28t+P5/A3N7s7DzPzTyz055RGfVU0F4l3lt6YXIHmez9O6lEPRUy44j3DEOn0xVpvai9ZUotXRZBFKm3bS23a9Xj4MARAE5bA5vtnadly5Zmy1ossRHF8cphDaNGjWLUqFF5fvfTTz8VeO/kyZOZnH3ysYPIXi7Wpk0biz1HuRouJ8Pp0xi+mokaWD18Ihf+vVboLYJopJL2CvFeVWR7MrQgGqW2U5GhYESRWv9uIuDWdQ4/OczmybtcfSgCcpLBqlLiKPd+tvTKkf1yfeuW5IHAGR4syt8+x+OfjkGjy+Ryq/bEPv8MYO7tIT/PCEXxIlBcbw+eRi0eYiYiQrE8WNjC2wO4lleO/GQqm3kDncoTEcFtZLL371Qt4xxJmtJoRF2RPcLYWyahbjn+Hfk2AO2XzKTGge2A8zz3xMbGUrNmTU6ePGm1V467dyUdKJijUqmoWbOmLEb+8sPlZFi2DLVex4WWnbnQ2rLTykUEkjSlZb8sSJGhcEJjDtLv0zdov/grgq+ct3n6LlcfioCcZLDKa9P169cJDQ0lOjrabInS1KlTWbp0KadPnzaLbzAYaNWqFSNGjDCtkZ08eTKrVq3iyJEj+T7HrbxyiCJxjVsTeuIgd6rW5vdvlqH38XOZUWF3HOlWZFJksqlMokD3WR8QvvFvMvwD8T5yEF2VKrLzynH//n2Cg4Nl6/0uP+Tu1c8tEUVWf7aAO9XqkFwxzNm5UXA1RJH+H71KjX07uPJoS/6a/jPjIwreQ6Ngf4pqS63q6pQtWxa1Wp1r9uHWrVu5ZilAGpU7cOAAY8aMQaPRoNFo+PTTTzl69CgajcY0SvcwtvTKodfr2blzZ57eLBziweLddwk9cRCtrz9rPvkWnW9Ant4ebOUZwRbeHgREQjMuSS9jxfBg4Uoy2corR34yAVTOuJjDW4f8ZbL37wQCldPPZ3UKXFgmlYqtb0zher3H8L6fBAMH4pH18u5ozz2iKLJ161aTi1RwjFcOd0av17N161aX9IRlKS4ngyBwoXVXqzoRgmiU7IELeXGzFkUGSx8isH30R+g9vahydC91t66xafIuVx+KgJxksKplcZR7P1uS7RnEKY1obCzMnQvAhglfkli5uuPzUAREBO56hsh6etbRKDqzHjnpzODpydqP55AWWBqOHIEffnBKPpxqz9wUd9Cpy8jw++9w+3aRbpWTPcgPRQbLSaoYxt4hrwPQYdGXkLXM3Ba4TH0oBnKSweodHHJz76dSqShf3kkuVuvUgS1b2PXrWi606eacPBQFQSBd7e/sXMgLRWfWIzOdpZYJYf2kr3hKfQdef90peXCqPXNT3EGnLiHD0aPw3HMQGAgnT1p/v8zsQZ4oMljFwYEjqLd5NaWvXYSPP4Y5c2ySrkvUh2IiJxms7urIzb2fTqdj48aNkjcjZ9CxIweefsU5zy4igmigSvpZBNHg7KzIBkVn1iNHnV1p2lbyie+kUSKn2zM3xB106nQZjEYYNUr6v1s3qFDB6iTkaA8eRpHBOgyenmx94xPpw3ffwYULNknX6fXBBshJBqs2WzuL4mymMxqNJCYmEhQU5LgpojlzoEcP0wE8szbFOua5tkIU8TKmo1X5mNaKKxSCojPrkanOxnevIwXu34evv4aJE8HLyyHPLo49c9dNycWVyylthI1xugw//gjDh4OfH5w+DZUrW9/uydQemKHIUCTaLfmK5sMHQkSETdJzen2wAc6Qoai21LWd09oAlUpF6dL2PwDFxPr10mmefn5w5gyEhjru2bZCENCqfZ2dC3mh6Mx65KwzUZQGC6KjpQ7F9OkOeazD7VkJwB106lQZ7t2DCROk8OTJULly0dKRsz3IRpGhSOwe8Q7NswdobIBSpx2LPLtqVqDT6Vi3bp1jpodu34Zhw6Tw8OHy7EQgTW1WSzsj6+lZR6PozHpkrTNBePDy9NVXsG2bQx7rUHtWQnAHnTpVhvffhzt3oEEDaRCtiMjaHmShyGAD4uOlzmkxUOq0Y3H7joRGo6F9+/b2PxlQFKUNmLduQXi4w0Yo7YGIijjvaiZ//wqFo+jMemSvs/794ZVXpLo/dCgkJNj9kQ6zZyUId9Cp02TYvx8WLZLC8+ZBlpvjoiB7e4AiQ7FZtkxaEj5pUrGSUeq0Y3H9HBYTQRAcsx7499/hr79Ao4FffgFvb/s/014IAjrBMWu+3QZFZ9YjU53lXPvt0fd1nlsXRfC1y5wa+CIbJn2V733jbTB17zB7VoJwB506TYZataQBtLQ06NCheGnJ1B6YochQPMLCICUFFi+GESOgiEcEKHXasci322whOp2O1atX23d6KD4eRo+Wwh9+CI0b2+9ZDkAQDdRIOyXr6VlHo+jMetxBZzofPzZMnIFRpaLe1jVU32PfJU4OsWclDHfQqdNkCA6WvO0sWVLspNzBHigyFJN27eDFF6VZ3lGjwFC0PCh12rG4fUdCo9EQERFh3+mhmTOlZQ1NmkjrRWWOiIrL3rVkPT3raBSdWY+76OxGvUc59OQwANr98LXUCNoJh9izEoY76NThMmRkmJdzG3iVcQd7oMhgA6ZPh6AgOHQIFiwoUhJKnXYsrp9DG2D3H2LaNOkQngEDirVG1JUwCvI1hM5C0Zn1uIvO/hs6Fk2mln3PvmZ3l4lyaFjkhjvo1J4yPOzKNWLGJALu3GDL2Mkkhlaz2XPcwR4oMhST8uVh6lRplccHH8DAgRASYnUySp12HPIv8YWg1+uJjIxEr9fb7yEeHvDRR9ImazdAwEj19FgEjM7OimxQdGY97qQzvbcP28Z8TGoZ+55E6hB7VsJwB506UoZKMQdosGklVQ7/h3dyos3SdQd7oMhgI159FZo2haSkB97xrECp047F7TsSGo2G3r1726dnt2EDZGbaPl0nI6Liok8dWU/POhpFZ9bjzjoLO/wf6kytzdO1qz0robiDTh0lg0qvo+ucKQAc7/U0N+o9ZrO03cEeKDLYCLX6gRew8uWtXi6q1GnHIt/SbgV26dHt2QO9e0v7IlJTbZ++k1GJ8h1RcRaKzqzHHXXW+dspDJw4jKZ//mCX9OUwQiU33EGnjpDhsVW/UvZSLOmlgtg94i2bp+8O9kCRwUa0aAGXL8OMGUVaLqrUacfh9h0JvV5PVFSUbX8QvV6aehNFaNZMOsXajRAwUjXjnKynZx2NojPrcVedxdeXvLa1WLaAgJtxNk3bLvashOMOOnWEDH53btJ66RxAOok4o1SwTdN3B3ugyGBjKlYs0m1KnXYsbt+R8PDwoH///njYchP0woVw7BiULi2dautmiIKaC771EAW1s7MiGxSdWY+76ux0l35ca9gcD20GHRf+n03Ttos9K+G4g04dIUPHhdPwTE/jer3HiOnxlM3Tdwd7oMhgJ44dg169IM6ygRmlTjsWt+9IiKJIcnIyoq1cMiYkwMcfS+HPP4eyZW2TrishingYtXZ1Y+l2KDqzHnfVmSCwdcxHGFVqau+OosqB3TZL2ub2TMEtdGpvGTxT71P2YixGlYqtYyfbxN1rLtzBHigy2IcxY6Q9qW9ZtpxOqdOOxe07Enq9nl27dtlueujTT+HePWjQAF55xTZpuhgCRkIzLrnG1KZMUHRmPe6ss7vVH+FI/+cA6Dzvc1R62xwqZHN7puAWOrW3DJl+/vw6fxUrv1jC7Zr17PIMd7AHigx2Ys4cqfP6xx+weXOh0ZU67VgEUQbdneTkZAIDA0lKSnLukeGxsVIHQq+HqCjo3t2i2x72wa2goOD+eKam8NKwCHyT7rFl7GS6fvOJU/PjMnbUxrirXK6E0oYp2Jvx3esUHGHsWPj2W6hTR1rq5OXlmIyVIIpqS91+RsJoNHLv3j2MRhv0rgUBOnWCvn0t7kTIElHEy5DmWlObro6iM+txc51l+gWw5/nRJIWEkhpcziZp2tSeKQDuoVO7yXDpEsyYgUrnADfn7mAPFBnsx2efSQfTxcbCzJkFRlXqtGNx+46EwWBg//79GAyG4idWu7Y0E/H778VPy4URMBKSGedaU5sujqIz6ykJOjveZzA/L9nA+bbdbJKeTe2ZAuAeOrWbDOPGwYQJdPl2im3TzQN3sAeKDHYkMPCBc5vPP5c6ufmg1GnHoixtcgDKtLCCgkKhU/d2Ru52ND/cVS6ns3Yt9OsHGg0/z1/Nvaq1nJ0jBTfGIvsoitC5M+zYAePHw9df2z9jJQhlaVM+GI1Gbt26VbzpoagoqdDevGm7jLkyooiP4b7rTW26MorOrKcE6Uww6CW30ZMnFysdm9gzBTPcQac2lyE9XVqTDjB+vGM6Ee5gDxQZ7IsgSCdef/MNTJ+ebzSlTjuWEtGRiImJKfqPIYrw3nswe3aJ6f0KiJTJvImACxoSF0XRmfWUJJ1VPH0UXnsNpk4tcEq+MIptzxRy4Q46tbkM06bBxYtQufIDd+d2xh3sgSKDA6hfX+rkajT5RlHqtGNRljYVxsqV8OST4O8PFy5AOes3TSpLmxQUFMbPGAObNkkdivnzHf58d10C5K5yOY0zZ6BRI8jMhD//hKeeUtowBZdkfPsqsGeP5ARHodgoS5vywWg0EhcXV7RencEAH30khceNK1InQpaIIn76ZNec2nRVFJ1ZT0nTWbYt+eEHi09ofZhi2TOFPHEHndpUhnHjpE5Er17SIJqjcAd7oMjgMHwS7kJ4OPTsCWfPmn2n1GnHkv/ckJtgNBo5f/48ISEhqKw9jfPvv+HECQgKgrfftk8GXRABkUD9PdLU/ogIWVdFPAQRjSCFFcwRRJGyhkRElS+iIBR+Q4lEQGsUMGaVqbzLmRvTvj106AA7d0rre7/5xuokimXPFPLEHXRqUxlmzZIO//r2W2lNuoNwB3ugyOA40oNKQ82acP48vPEGrF9vKq9KnXYsytKm/BBFaNECDhyQ1ohOKbr7O7lPC3sKRqr5ZlLaC1Sua1cUZECmQeRMiicpBrWzs+JwxnevI53K2r07eHtLa9ArVHDY8911CZC7ymUv5N4eKShkM76aIM1K5FiGp1B0impLS8SMxNWrVwkLC7OuV7djh9SJ8PaGMWPsl0FXRBQJMCSSog5CECC8lJYgfy+Cgsui1mgcOkolG0RQoceIBhcexHEuokhKUgKQzKFEb4wipnJWYspU167QsiXs3Ss5byjA80heFNmeKeSLO+jUFjL434rnfvmKNs6ZFeRod2RrDxQZHEvt2jBhgnSuxLhx0KMH+PsrddrBlIiORFxcHKGhodb9GLVqSQXTw6Pk7I3IQkDET5/CfXUgXirw0giULheCp5ePs7PmuogiGlFAL3i4vvF1IgGBwSQnp+ClEskwYCpnrjyFblMEQdorMXcuDBhg9e1FtmcK+eIOOi2uDCGnjzF4/LMc6/sM21//QFra5GBytjtytQeKDE7gvffg118lb3iffQZffqnUaQfj9h0JjUZDmzZtrL+xcmVprWgJRBRU3PCuAoCAAQEQBNcuyE5HENALns7OhesjPNhzIwpqUzkrUfTpI/0VgSLbM4V8cQedFkcGwaCn65xPUBv0eKWmOKUTAebtjlxRZHACvr4wZw48/rg0y/vii2jq1y/RddrRuP3bocFg4Ny5c7I4ZtxlEI0E6u6C6PreAlwGUUQt6l3e04VLoZQzq1Hsme1xB50WR4bH/vkfIedOkuFfip2vTLRD7izEHeyBIoNz6NdP+uvRA3x9S3yddjRu35EQRZGEhAQs3lMeFye5vNu9274Zc2EEwMuYLodJTZdCkJPhdQFKfDm7dEla37t+vcW3WG3PFArFHXRaVBn87tyk9c+S97Ddw98mPbiMPbJnEe5gDxQZnMjy5bBmDVSrVqLrtDMoEUubmjdvbvkN8+dLh9DduSO5aSyBiIKKW16Vsz65fm/YJXDw0qYKgfLZr3IjKT3P6+blrASyaBHMmCE5dejVy6JbrLZnCoXiDjotqgydFnyBV1oq1+s9xvHeT9shZ5bjDvZAkcGJ+DxoEzUaDc2bNZP1fkU52SW370gYDAbOnj1L7dq1UasLcTmp10uHRYHklzgHJcplnmgkWHeXBA/njU7JDlFELRowCGq7G6/463EsWPIzTwx0bsNfbHKWs5K4B+f11yWvTdu2wfHj0LBhobdYZc8ULMIddFoUGaru30mdnRswqtRsGTvFaXsjTLiDPVBkcD63b2OcOJFEo5HAJUtKVJ12FjIsJdaTnp73iGgu1q2D+HjJS1P//vbNlAsjAGpRJ7+pTScjOOigvm2bN9G5W4RDnmVPSnw5CwuDJ56QwnPnWnybxfZMwWLcQafWyuCVdp8M/1IcfuIF7tSsa6dcWY472ANFBhfgyBFUP/5I8NKlcPSos3NTLORil9y+I6FWq2ncuLFlPbpFi6T/hw0Dz5LrgUcUVNzxqoQox9EIZyEI6FWOcf2alJRIYFCQ3Z9jb5RyBowdK/2/dCncu1dodKvsmYJFuINOiyJDbMfe/LRkA/8NfaPwyA7AHeyBIoML0L07DBqEYDSiHjUKZLBZOS/kZJdkWlIsx2AwEBMTU/jO9ytXYMMGKfzyy/bPmAsjiEZKZ95UNg9bgyiiNurs7rUpNTUVPz9/uz7DUSjlDGjfHho1gvR0+O23QqNbbM8ULMYddFpUGdKDy6DzdQ174g72QJHBNTB89RUGf3/p4M/vvnN2doqEnOyS23ckLOaHH8BohE6doE4dZ+dGQSFPdmzdTMcu3ZydDQAO7NtDn24deaJ3d54bNICkxERnZ0l+CMKDgYvs/VkyZ968eVSvXh1vb2+aNm3Krl278o37999/0717d8qVK0epUqVo3bo1GzdudGBuSxh6Pf0mj6bGf1udnRMFBfsRGsqN8eOl8Pvvw+XLzs2Pm+P2HQm1Wk14eHjh00PVqkHdujBypEPy5cqIgop7niHyndq0E6v+/IORw57P+0tBwFCMpU1P9+/Dzm2FN+5XLl+iarVqRXqGrakcVoUV/6xnVeQmInr25sfvF1p1v1LOshgyBCpUgDZtIDOzwKgW2zMnsXz5csaNG8cHH3zA4cOHad++Pb169eLKlSt5xt+5cyfdu3cnSSBQEAAAIABJREFUMjKSgwcP0rlzZ/r168fhw4cdlmdX16klWCzDnDnUit5Mj+kT8EpJckzmLMQd7IEig2ugVqsJnTwZOnSA1FR49VXZnfEkJ7sk35JiIQaDgcOHDxc+PTRsGJw8CU/L3BOODRBEI2W112U9tWlrjEYjX3z6CePfnYRWq+XtN0bRvGFdaoaWo12zR/ntl5/QPLS0SavVUqdKBe7du1to+uPencSnH72f53NzhvMyKksWzSeiY1uqlAtk2JBBRZTQeipUrISvry8guapTa6wzeEo5y6JMGbh2TdpwXcjeLIvtmZP4+uuvGTFiBC+//DL16tVj9uzZhIWFMX/+/Dzjz549mwkTJtC8eXNq167NF198Qe3atVmzZo3D8uzqOrUEi2S4cAE+/BCAXa9MQBsQ6KDcWYY72ANFBtfAYDBw+OhRDPPng5cXHD4MV686O1tWISe7VCT3r/PmzWPGjBnEx8fToEEDZs+eTfv27fOM+/fffzN//nyOHDmCVqulQYMGTJ48mR49ehQr49bg42Ohz31BABn0/uyNCBgEDwf5IJIHm6M2EBRcmnoNwklNTaV8hQqsWB1J1erVOXRgH0OeeoLKlSrSoesDb0r/7tpBvfoNKF26cDe6rdu2IykpkX17omnRqg0Gg4Gvp09Dr9Px3sdTADi4fy9Nm7fIdW+FChUZ/+5Edm7fSvz1ONsJbSH37t3lp8WL+H2VdS9/SjnLgRV2x2J75mAyMzM5ePAgkyZNMrseERFBdHS0RWkYjUZSUlIoXbp0vnG0Wi1ardb0OTk5GcDU4Gb/r1arzcJ6vR5BEExhlUqFSqVCr9fj7e0NYHZdp9OhVqtNYY1GgyAIpnB2/JxhDw8PRFE0hY1GIwaDwRQ2Go1oNJp8wwaDAVEUTeG85MhLJgAvLy/TYMPD8qkEAdWrr0J6OlcbtSCm1yAE0YCICgThQRgQMJqHBTWIYgFhURq9zjdsRIBc4ewX1eywKBoxCB4PTlTOvo6Qlcf8wnnI4SSZEI0Y0CBCVh5zyiETmQADGul3yOt3ciGZZkedzlsm0UCQPo3tGi+qfzCb6/WboD2dhnD6NOMi6hbJRuQVtreN8PLyMtnF4toIS2QqKlbfKbepa7VaTd26dfOfHkpJgWXLpOkvBQlBRYJnOVn5kNZqtVQpF8jxo0dM19LT02naoDb/7ir+wYJRketo16EjAH5+fkz84GOq1aiBIAg0bd6Stu078N/evWZLmzZGriOiVx9AermpXyOMCoE+1KhUlhqVyhJWthSVywQw+YNJCIJAuw6d2Bi5DgCVSsXrY95k5/YHy52OHDpI46a5D6jp8/gT9Or7OKXLlC22nA8ze8aXRHRsazpdc90/q3isbg0uX7wIQFpaGq8MfY4vvvqaMtY+X4blzK4YjbB7N8TE5BulUHvmRO7cuYPBYCAkJMTsekhICDdu3LAojZkzZ5KamsrTBcwMT5s2jcDAQNNfWFgYADFZejt16hSnTp0C4NixY5w9exaAw4cPczGr3O7bt4+rWSOUe/fupVSpUqjVanbu3MmdO3cA2Lp1K4lZ+36ioqJISUkBIDIykoyMDPR6PZGRkej1ejIyMoiMjAQgJSWFqKgoABITE9m6datJPzuzDjmNj483da6uXr3Kvn37ALh48aKpbTx79izHjh2zSCa1Wk1iYiLXr18HIDo6mvj4eEBqg+9/9x1s3ozB05OdY98HQaBq+jk8RGkpXfX0WNSiHgEj1dNjETCiFvVUT5fOT/IQM6mafg6QTj0Oy7gAgI8xldAMSad+hhQqaqX3gABDIiHaawAE6hMolynlK1h3lzKZN7LCtwnW3QagTOYNgvUJJHiWo5zuBoH6BABCtNcIMEi/QUXtFfwM0m8QmnERH6PUZodlXMDLKLnJdLpM+rsIggiCSpJJJ81Gl8u8Lh+ZBOkFv4zuVt6/kxxkyrxOgmc5Ag1JpDaug7ZUkNnvZK2NeLg+OcJG3Lp1izt37qBWq21iIyyVqSgIopXnb7ds2ZImTZqYTVXXq1ePJ554gmnTplmURoMGDRg8eDAff/yxRfGTk5MJDAwkKSmJUqVKWZNd9Ho9hw8fpnHjxmg0mlwHy9XdvJpe0ydwq2Y9/jd/lVVpuyuCaKRc5nVue1bCWy3SOFhHaJWqeHh6OTtrBdKrS3ueG/oSzw8bDsDX06dx9PAhfl62wizexLfeZOWfy/NNZ+nyv2jZuq3ZtZ6d2zF0+CsMeeHFXPEzMjJo3bgBU7+YRu8nBpk6E00b1Gb5qnXUqi1t3t8YuZapUz5m595DAIwZOZwq1aoz4f2PAJj/7Wx2bN3C7ysfjOy/PHQI7308hZq1arNo3reMHJW/q8YZ0z7nxPGj/PTbinzjWEtaWhptmoQzdfrXlC5TlpHDnmfZX6sJb/Qoer2e4c8/wzPPvUDvfpadu6LL1BJ35TKHEzzIMAimcibn9bi2ou2SmbRYvogT3QcQ9e7/ma6P7/7A+cPD9swaimNHLeH69euEhoYSHR1N69atTdenTp3K0qVLOX36dIH3L1u2jJdffpnVq1fTrVv+DgXympEICwvj3r17BAcHWz0yl5GRwbFjx2jSpAmALGckRFHk4MGDNG7cGE9PT/PRxrg41A0bIiQkYJg6lTnNnnKJ0fuHR7oRjZTT3eCORwWMgkoeo/cPhVVGPWUz47ntFSrJBi4zem+pTADltHHc8ayIUaVx6RmJ/GRSiQbK6m5w26MCCCrputFA3W3r6NWlEYauXa2yEc6YkcjMzOTw4cM0bdoUlUrlkBmJ+/fvF6mNsKolctTUtS0RBIHg4GDT9O/DPLJdGgG+0LqLQ/IjB0RAq/IpeMlJQTM4ajVkLRUoNK5KZXa0vVlcP79CcmpOk2bNOXZE6qnfunmDhXPnsG7Ljlzxvvz6G778+hur0k5KTCQgICDXdVEUefuN16leoxZ9Hn/CpLOYY0fx8vI2dSIATsQcp0H4g9OLjx87Ss8+/UyfAwJKkZiYYJZ+zz792LBuDX0fH0C1GjWtyvPD6HS6Atdbenl55aonvr6+vDPpQz77+APS0tJY+ONSwhs9CsDKP/9gT/RuUlKS+X7Bd3SL6MnoN9+yOD8WlbMSxMWWHWmxfBG1/o1iy9jJGLy8c8UpzJ45k7Jly6JWq3PNPty6dSvXLMXDLF++nBEjRrBixYoCOxEgldPsKf+cZM/S5JytyRnO2fHKGfbw8KB06dKmxjbn9aKEBUEwhbMbakvD+eW9MJkMBgNlypQxfWcm68qVkJAAjRujnjABtkkjuqLwIB2zMHmEBaGAsFBIWPWgjucI5xw8yA5rVT6mTkR+cXKH85HDCTIZBRVata/pBbvwvLugTKIRrdpX+h2KlHfny2REJbUtOcpS+Ia/6D77I/gtDPWJE5DVnltiIwqyHUUJW2Ij1Go1ZcqUQRAEm9gIS8NFwaq7HTV1bcs1sGq1mmrVqpka3pw9ZO+ku1Q9+C8AZzr2kjbKusjojFN7/Qgka4KkCijmePEUs/4RBEIq5b+MRRvRg8QVq0wbj8vXqoKQlpZn3My27UlYF4WkCJFyDeuiuitNsd1MTDddByH/cFbmmjRtzsJ5c0EUmfbpZJ58ejC1atXOlXfLwllNQ1Y4MChImrbMcV00Gpn41ljOnY1lxap1iNlem0TxwbKmHPk9cfwYjzVpCkB6WhrnYs/QILyRKU5KSjJBQcE8aKFEukX05KXnBlOqVCkGPvNcwXnPzls+cV567mk2b9yQ7++279hpqlSpYiY3QMNHH+PSxQu8Mf4d2rRrb8rvoGeGMGjws+a/R/ZPkt/vlCOPAiJJHmVMa1rdtj5ZKFN8vcdILleRUrfjqb5vO+fa9wRRGq3Kaetq1aqFwWAwXbd0xCnnxn174OnpSdOmTdm0aRMDBgwwXd+0aRP9++c/Y7Vs2TKGDx/OsmXL6NOnj13zmBdqtZpatWo5/Lm2pEAZxoyBatUgNBSK+cJgVwSVZA/kjCKDa5CHDKc796XF7wsJvHpVcgn77bdOypxlyMkuFWk9wcOjYaIoWjRCtmzZMiZPnszy5cspX758vvFsuQZWr9ezceNG4uKkTag51+w1+/dP1AY9d6rVoVQ5o2utF3XiOkRvQxpV088iiEa8xTTUoh4AFQZTegUhZL0sqkW96d584yKiQm/KQ463aASkFydPUYuAMVfYS9RmxRfxErU0adac0ydjOHHwP9av/Yd3Jr6Hp6jNSstoCk8YP5qaoeWkvQqhZXOF90TvRo0BjajLksNAw4YNORd7xiSTKIq8//ZYDh88wPKVayldylfKvyiiEXVs2rCOHr374iFmosqS41TMMcLDwwE4G3MIbx8fqtWoYZIp9vRpGoXXN5MpKCgItVrNzWuX8fHxMZPDPGxAnfWcnL+TCr1JjmXLV3AnIYkbSencTkjhTkJyVjiZ2wnJVKlaFY2oR53VedSIOq5eOsewIYMY8fIr/Ln8N9LT081k8hAzrfqdPLPypUYqexUyruBpzHDr+mSxTLrrnG0vOaFosHutSaaca2BPnDhBdHQ0R48etXoN7N27hXsPKy5vvfUWixcv5ocffuDUqVOMHz+eK1eu8NprrwHw3nvvMXToUFP8ZcuWMXToUGbOnEmrVq24ceMGN27cICnJca5J9Xo90dHR6PUF2ypXplAZ+vaFxo3zvV+FiI/KiI/K4LQ/X0FPmP4avoLeqflQZJCzDEZUiAiikQoZV8w8T+l9fNn85qfSh7lzYUfu1QquhJzsklV7JDIzM/H19WXFihVmI05vvvkmR44cYUcBP8zy5ct56aWXWLFiRaGjTrZcAwtw6dIlqlSpgkajkXb5Z4029p0yhtr/bmLPc6PYM3SMQ9chuvQIqtFIKUMCyZrS+KiMNC6dtUfCwwvTSPf91Afhh0bvUaul5UrZ19PScsfJDgsC+Pg+GLlOTXsQ9vO3akYCBOrXDMPPz4+hw1/mjXHv5MgjVobN8xu1fh0zp09j47bdAEx6Zzz7/ovmzzWR0iZnUUSFASMabt64Tuc2LTh+7jJqlQoQSE1LpVZoOY6cOk9IxYos/99SlixaQNSOf01ytHi0HnPmf0+rNu3MZFo071v8/f0Z8uJLeeZXbzCg1+mZ/dU0Tp44waIff0WlEvD08ipQpsLCt2/eoF+Prox9612GvPAivbt1pFeffrwx/p2Cf48CfiddZgZxV69w+J4HGQYRf2MKKapABEF03/pkhUyVjh/k6XeeJ8M/kAUrohFVKsZ2rW2ydUajkevXr1OpUiXTjKulMxL3798nODjYbnskspk3bx7Tp08nPj6e8PBwZs2aRYcOHQAYNmwYly5dYvv27QB06tQpz3bjxRdf5KeffrLoecXd+2E0Grl69SphYWHF8lziTPKUYfZsGDwYKlY0i/vwPsEAtYFHAjLxVDt/uVzOuiRXFBmcS6ZB5EyKB2hTSFEHkdMBCsD4FV/B999D9epw7Bj4u8bJ7g/jDLtUVFtq1Tyno6aubb0GtkaNGqZw9po9tTbDtKzpfJtuTl9b6VLrEFUqklVZ04I566CQ44K/BfsXsiuwpXsdBCHvdHMagvzCWflq3LQZZ06f5JXXx5jn1+qw+XO69ujFBxPf4dSpk/j7+/PT4oV4eXnRrGFdU7SBTz/L9NnfErVhPV26R5iVzVMnjhNcugwhWY16+ZAKXDh/lp+XfM+LI15hT/Ru/AMCaNW2HTkeDMCgZ597kFYe+Z014/+Y+X9TTXdVqxBM63btWZm9ZCwfmQoKpyQn8+xTT/DMc0MZMnQYAO99NIWXhw7h+WEjCM7e42RFmmZhAUSVhhRVMJBjHsod65MVMl1v0Ji0wGB8kxIIPX6Aa4+1MrN7arWaqlWrkhNL18A6qjEaNWoUo0aNyvO7hzsH2R0KZ6JSqXLpVG7kkuHvv2H8ePjiCzh3DvJ5KVAh8khAJmWDSxEQGJzrpUtBQVaIIilJCUAyhwxBmL/AZDFzJkRFwcWL8O67kM8ZN85GTnbJ6gWTb731Fi+88ALNmjWjdevWLFq0KNfUdVxcHL/88gvwYOr6m2++MU1dg+QLPTDQ/gfiZE8PtWnTxqxhrXjqCJ4ZaSSXq8itWvXtng85IYhGKmqvEO9VxdlZsQpRFIm/Hsf7H08x+YW3FWq1mvc/mcKs6dNY9NOv3EhKf/jheIiZ6ESRqA2RDHpmiNnXzVq04uSFBwfidO7WnXPXbpk+z57xJZ98lrfXs+BCHBO8+96HvPveh1ZKVDABpUqxefces2vtO3XmzJV4mz0jZzlTvDZJiGoNF1p1Jnzj31Q7sItrj7Uy+z4/e6ZQdNxBp2YyJCRAVnvMK6/k24kA8FKJeKoFAgKD8chjc79Dybahgqd8OzSKDE4nIDCY5OQUwnRXuaKpnLttCQiAH3+ELl1g4UKpw12nTt6JORE52SWrczd48GDu3r3Lp59+apq6joyMNPWc4uPjzc6UWLhwIXq9ntGjRzN69GjTdWumrouDSqWiZs2auUbjrj3WiiW/bKHUzThZVhZ7IiKQpCmdNVoqH5868+bMIiAggAEDB9sl/QEDBxeQtoBB0AACLVu3oUu3iHzi5U1Ol68lBfNyppDNoSdfIqbnIG7UfTTXd/nZM4Wi4w46NckgCFIn4vZtaNgQCnWxnmNZo9N5YEPliyKD08meVdcE5d+2dO4MU6dCmzYu2YkAedklq8+RcAa29H/+8PpQhYLxURlc/hyJI4cOMqh/b6rXqMWSpb8RVkUe04ElkZznSKQbXe9QNVck5zkSxcHe50g4C3eVq0j89hs895zknWnfvjw3WOdsA+Vg3xUUrKGwNsZW9tQdKaotdf2uTjHR6/Vs3bpVFjvfXQVBNFI5/byZxwNX5rEmTTl79SZRO/51XidCFPEwah9sVlYoFLmVM1dAsWe2xx10qtfr2f3HH4hjxkgXPvywQC9NLok72FBFBpehgvaq5W3LhQuQdaK0qyAnu+TaC69sgEqlIjw83Gx6qMH6FdT8bwsxvQZxoXVXJ+bONRERuOsZIrulTc5FQC/n6WAnYF7OFHISfOU8Tf/6CaNaBd2Xma7nZc8Uioc76FSlUtF07VqEhARo0kTyky873MGGFk+G6N27WLHsf2i1GQQGBTHtq9m2zZ5FuMPvAIkeZRBFC2SIjoaICMnT5PHjUKGC/TNnAXKyS66fw2KiUqkoX7682Y9R878t1NyzjdJXLzgxZy6MIJCu9neRdbMyQcjy5KOozHKUcpYvmkwtDdf/Qb0t/4BOZ7qelz1TKB7uoFOVSoXPggXS4XP/+x/kOE1XNjjAhg5/bjAH9u0hIyODYUMG0aZJQ7q2a8mzTz7OlcuXzeL+s/IvJowfW2B6oijSv2dXLl+6JF0oQIau7VqSnp6e+4sctGnXnlnfLWDe4p+Iu3aN+ykppu9+W/ozXdu1pFnDR/ho0jsWyVsk3KQty1D5Wta2NG0KNWvCnTswbBjY+eBOS5GTXXL9HBYTnU7Hxo0b0WU1xipdJmFH9wJwuWm7gm4tsQiigSrpZxFynmqtUDCiiKcxQ/bTwY5EKWf5c7tGXdICS+OZngZ7HnjPetieKRQfuet01qZYZked4q/N25jdbxSzrqqYtSk23z+Xxc429NDB/SQlJdGsheQJ7flhI/j34DG27N5Lt569ePfN0WbxN6xbQ68+/QpMUxAERo56g5lfTi1Uhi279+Lj42NRXjdHbaB2nUfwDwgAYP3af9iycT2RW3by74FjbNqwntgzpy1Ky2rcpC2rpL1sWdvi5QXLloG3N2zc6DInXsvJLrl9R0KtVtO8eXOTL/aQ2Bg809NICwzmdvVHnJw710RExU3PUNkeSOMcBMldntyHcRyIUs4KQKXiSpM2UnjrVtPlh+2ZQvGRtU7T0mi4bjmiETeoSw9s6O3bt6gZWs504CzAyGHP89svPxU59aU/LOGpp58BwNvbm24RPRGyRqybNmvB5UsXTXF1Oh379v5H2w4dSUxIoHG9mtSvXpmu7VrSvvljVCkXyLtvSvtRInr1YUvURu6npJCensGw4S/TvmUTurRtweAn+prSrBDoQ+r9+6bwt7O+oleX9jRvWJdlv/5iivfrTz9w+OABPvpU6pyIosjnn3zI9G/mms7YqhxWhbP26ki4SVt2xyPE8vpQv750vgTAhAnSQXVORk52qUTskSidww9/pZOHAbjeoCnIYMrIKQgCWrWvs3MhLwRk3og7AaWcFUhcgybU3bZWWsObxcP2TKH4yFqnb79NtwULCI05wIaJM2yTZmpq/t+p1dLIrSVxVSpp3XnOuAUdTprDhpYrV56KFStx4vgxGj3WmM1RG7h18wbPvvCi2S0jXniWSxfzXqL8y+9/Elo5zPQ5evdOXh87Ls+4ixfOI6JXb9Pnf3fuoHmLVnh6euLp6cmAgYMJDAzizXcmsG3zJubOnsmMb+YC4OHhQd169dm39z8y0tNJSkxk1z7pPSPh3r18xfX29mb91l3EnjlNry7tGfTMEDasW8PX07+gW0QvJox7gwkffsyFc2e5efMGT/d/cJjv2TOneee9D/LXZXFwk7YsU+UNRis6Q6+/DuvXw9q18OyzcOCAefl1MHKyS27fkdDpdERFRREREYGHhwcVszsS9WXm0cKBCKKBqunnuOxTy9lZkQ+iiKeoJVPwUtb8W0jOcpbzpGgFifgGTaTAnj1gMIBancueKRQf2ep09WpYsACAk90ep1raGZvUpZBKZfP9ThvRk8QVK02fy9eqgpCWlmfczHbtSVgXZfpcrmFdbuc4lDMXD9nQVm3asX/fHmrWrsPHk97lx9/+MM0gZLNk6bJ8EstN/PU4ypcPyXX9m6+mc/H8OabPWm+6tn7dGnr1fdz0+cTxY4wc/QYAx44cJrxRI7M0yoeEEB8XR7sOHTkXe5qJb42lddv2dIvomW9+nsyaHanzSF00ag23bt6gb/8B9O0/wCzeX8uXMeSFF/l0mtRRjLt2lTZNGhLeMPc5MzbBTdqy0IxLnPeoZnl9EARYsgQaNYKTJ2HOHJg40b6ZLAA52SW370hoNBrat28vnQwoilQ6cQiA+AZKRyI/RFTEeVfLGpVwjY1Hro97TAc7EvNypvAwd6rVIdPHF8/kZDhxAho1MrdnCjZBljq9cgWGDwfgwMDhXGnSDg8xU+Z1ydyGtmzTlm2bo7hy+RKPD3iKR+rWy3WHNTMSPj6+ZGSkA8Gma/PmzGLdmtWsWL0OX19pdlQURbZv2cTHWUuLAGKOHyO8odR5OHbkED0e2juhzcjA28ebqtVqsGvvIXbt3MnOHVv57JMP2LJrL0HBwTyMd46TxNVqNXp93uv57929i4/Pg5nbf1b+Redu3U37J2yPe7RlN71CEY1W1ofy5eHnn2H7dunEayciJ7vk+jksJoIgPDhYIzGRxNCqaDK13Kwd7tyMuTKCgE5QDieyCjeZDnYoSjkrEFGtJr5eY6qm3oG7d4GH7JmCTZCdTjMzYdAguHcPmjUjeth4m9alm9fv5P/lQ+u1b527kn/ch5YO3z5eyJr+h2xo67bt+GjiO5QtV47Nu/fmeYs1MxL1wsM5FxtLhYqVAFgw9xtW/bmCP1avIzAoyBTv8MH91H6kLn7+/oA0k6FSqQipUBGAkydiGPfuJLO0z8aeoX54I65fv0ZgUDA9+vSlc/cINqxbw/W4a3l2JCylVp1H+G3pTwBcOH+OxQvnsWJ1ZJHTKxQ3acv0gkfRZlR69JD+nIyc7JL8S0sh6HQ6Vq9eLe18Dwrij1nLmP/XXgzKKZ75IogGaqSdUrzpWIMo4uUGni4ciVLOCmfVZwvg9Gno3Bl4yJ4p2ATZ6fSdd6RTq4ODYcUKDJ6etq1Lfn75/+XcH1FY3IfXlxe0PwJy2dBKoZUxika+mDEL74efWwT69h/Alk0bAbged43JH0wiKSmRp/r1pGu7lvTq0h6AyDX/mHlrOn7sqGk2AiAgoBQ/LV5k+pztNrZe/QacOhHD49070rl1c7p3aM3AwUOoH96w2Pn28fGlWcNHeG34i3y7YAk1atpx2bGbtGVhGReKXx8yM2HGDCjEba89kJNdEkTR9UtLUY/tBmmaMiMjA29vbwRBcG33d66CKKIW9RgEDT5qI42DdYRWqYqH0vnKHzH7H0HuM8J2RZepJe7KZQ4neJBuUJnKmZzX4tqb8d3rmMIP2zNrKI4ddWWKK1dxdOpwLl2CunVBq4U1a6BvX6lNy2GzralLPiqD69j3h2zo4gXfcezoEebM/94myd9PSaFP905EbtmJXwGdmg4tm/DX2g2UK1feonQ//+RDatSsxZChw9yjHZC5DNltzLF7AveNnrnqQ057WihPPCHtRXr5ZfjeNuXQUpxhl4pqS91+aRPwYI2ZDHp2roJRcPvJKrtz80Y8jz5Sw+r7biQ5fvTDWSjlzEJEUfoTBFmsmZUbstFptWqSF68dO6BvX7Ov3KUunY09w/AXnqFSpVCrli4Vhn9AAJ9Nm8GVy5eoV79BvvF27j1kVboVKlbkmeeHFjd7CjbGaIsFN2PGwD//wOLF0LatdGCdA5GLXXIPy1MAer2eyMhI9JmZULYsQ0f0wvfebWdny6URMFI9PRZB2WhtBSJeopas4RwA1q1ZzY2kdKv/SgpKObOQgQMhMBCiox/YM73e2blyG2Sn0yZNcm0EdY+6JNnQ2nXqsGvfYZavWmvzDcUdOncpsBNRFF5+bXSO04dztwPywx1kgMraS8WvD926wZQpUnjUKDh+vPgZsxA52SW370hoNBp69+6N5soVSE4m8GYc6YHy8M3rLERUXPSp4xYbrorCqj//YOSw5628S0AreJE9F3znzm3Kli1n9bOf7t+Hndu2Fh7RDSjp5cxi0tMhJQWOH39gz2QyUiUHXF6noghvvgn79+cfxS3qkrkNlSeKDK7CNS8beQT84ANp83UTuJUJAAAgAElEQVR6OgwYYHJ8YW9c3i7lQM5Wx2L0ej3ExABwt0otRBmcFOhsVKKcR7asQ6vVUqdKBe7du4vRaOSLTz9hfJZXDq1Wy9tvjKJ5w7rUDC1Hu2aP8tvSnwtNc8fWzXTs3NXqvIx7dxKffvS+1ffJlZJUzopMeJaHuSwbJocRKrnh0jqdOlXyad+1q+SpKR+UuqSg8ACVrWbnVCr49VdpWeH58/D00w5bJu/SdikHbt+R0Ov1REVFYTx6FIC71Wo7OUeuj4CRqhnnZD5Nbjn/7tpBvfoNKF26DJujNhAUXJp6DaSXN71eT/kKFVixOpJz127xzfxFTPlgEtu3bH4oFfPp4KSkJDOXgpbSum07kpIS2bcnuvDIMqeklbMi0zDL68vx4yZ7JpcGRg64tE7/+gs++kgKz5wJ+Zx06x51yR2W1CgyuAqVtFdsVx/KlpWcG/j7w8GDkic9O+PSdukhXH/OpJh4eHjQv39/+O03AO4oHYlCEQU1F3yzD//J233a9zvzPgTIlrzSwbqNyqn37zNu9Kvs2xNNSkoKtes8wsw58whvVPAJoBsj1xHRqw8AUZHraNeho+k7Pz8/Jn7wselz0+Ytadu+A3v3RNOpa7cHiQgCWkFyUajVavH2Nnd9GLUhkikfTKJth05s3byR+8kpDH/1dSa8/5FZPEEQaNehExsj19GiVRur5Jcb5uVMIV9yzEh4aDSSPVOwGaY2wtU4fBiGZm3iffNNeOWVfKO6RV3KYUNliyKDy3DVuwai0YarT8LDpY59lSqS5zQ747J2KQ/cviMhiiIpKSkEHD+OANypboXrr5KKKOIhZmadbikfkpISeerpZ5g9bxFqtZr33h7HlA/fY8U/BR/es3ljJMtXrQMg5vhRhg7Pv8HOyMjg8KEDDBg02PwLURoVFFHx764dtG3f0ezrUzExXLxwnmEvj+TTadM5fPAAA/v1pN8TT+ba/Fenbl12bN1iheQyJWc5c3W3m86kbl3pILCEBMS4OFJKlSIgIMD1XZXKBFMb4QI6zXZP7nf3Fs++MYiAtDQuNWvHqp4jEQtyXe4OdSmHDZXt8nxFBpdBI+pAVNm2PkREmH/W68FOexhcyS4VRolY2vTv1q0QKxnhu9WUjkRhCBgJzbCBxwMHUym0Mj379MPPzw9vb2/6DXiSpMTEAu+JOXYULy9vatWWykVSYiIB+XgKEUWRt994neo1a9Hn8SdM17dujuLUieN4iJmAyOWLF6larZrZvSdijvHU4Gd55fUxeHt707ptO2rUqs252DO5nhMQUIrExATrhJchci1nDsfbG2pLM6mGI0fYtWuXLKa75YJer3cpnaq1GfSbMoaAOze4V7k6ke/PQlQX/LLiHnVJNNlQ+aLI4CqEaOPsWx+2bZMGec7kbsNtgavZpYJw+xkJDw8PerVrB88+C5cucb9siLOz5PKIgppLvo9kfZLPqcNRGyJZOHcOZ2PPkJGRji4z0+yFPy82rn+wrAkgMCiIlJSUXPFEUWTi+LGcOxvLitWRJnd/GRkZXL54kT3/7qZe+KcAOVwBPuBkzHGmTJtudu32zZuUycOzU0pKMkFBwYULLHPMy5lCgXTvDjVroilVij4dOjg7N26Fh4cHffr0KTyiA0ktXY6MgEBWf7YArX/hB0O5RV0SBDLlvqRGkcFliPOuZtulTTkRRckt7Pnzkken6GioVMmmj3BFu5Qfbt+RMBqNJKpUBP38s/SCp5xsXTiiiJcxHa3Kp/C4LsK+PdG8++Zo5i/5hWYtWuLp6cnQZwbS8NHHAOjWrhVVq1cn/noc1arXYN7inwCIWr+OyVO/NKUT3vDRXLMEoigy6e1xHD54gBX/RFIqMND0nbe3N8NeHsmgx3sjiEaOHT1GeKNGZvenp6dz4fw5ypd/0IndtnkTKrWaps1b5JIl9vRpGjRslOu625GznLn41K3TmTMHyLJn9+4RFBSUZ4dVwXqMRiOJiYkuo1ODlzdrP/qGoLjLJIZWs+wmd6hL7rCkRpHBZfA0ZpAu+tqnPggCrFghHVJ39iz06gU7d0rn/dgIV7NLBeH2HQmDwcD+/fvp0qWLy/8YroKAkZDMOK56W38qs7M4fuwo5cqF8FiTpugyM5k7eyZR69fx2pg30Wq1XI+7xo+/LSesSlUe79GF+OtxqFQqrl6+TItWrU3pRPTqzcwvvzBL+713xrN/73/8uWY9QcG5ZwoEQaBqtWpcu3CGQwf35dpjcepkDIIg8Ocfy6gf3pCTMceZ+NZYPpz8GV5eXrnS+3fXDuYs+N5GmnFdcpYzEcUlsyUo9sz2uIxON28GMQwEAVGtIaFKTYtvtWVdsqcjjYIdaEhLajJlfYaBIoOrUFZ3k2RN1Vz1YZYNB5NLfTifZ8Y/i9+xY1ztEMHKLxZj8JTa9PHdi7eM3mXskgW4du5sgIeHBz26dMFDBod6uAqioOaKT21EQT4vdwMGPk1AYCka1AyjV9cOlC1bDkEQaNjoUU6fPEHPPv0Iq1IVAI2HB97ePkStj6RL9wjUOc4V6RrRk3t373Lq5AkArl65zE+LF3L+bCzNwh+hRqWy1KhUlgnj3jB7fkSvPqxZH4Uokmtj1KmYGCJ69Sbh3j3qVKnAqy+9wNuTPmDI0GG55NgTvRv/gABatWlnYw25HnIsZ87GQ6WiR48eeHh4ODsrboOHh4fzdTprFnTvTvev35eWTViJW9QlQSBT5W02gjxj2uemcIeWTbh9+5YzcmYxItCjZy+uXr1it2d0at2MmzfiAVi84Du+/XoGALt3bKdXl/a0b9GYjq2aMu3TTxBFkZs34unSNvfMd77k8TvkRVJiInNnz8zzu+jdu2jX7FG6tWtFZmZmoY88dSKGzm2a07VdS67HXTP7Lmr9Ot59c4zpc0ZGBhEd2pCclFRgmte9qtq9PiRXDGPl1O/R+voRdmwffaaOQ6W3zRkTLmGXLMTtOxJGo5HUiRMRPTxgwgRnZ0ceiCI+hvtFatCcRenSZVi5LoqL8XfZufcQQ4e/THxiGgGlSnEi5rjp5f7IoYOUKVOW4NKlidoQabY/AkCtVvP+J1OYNX0aAGFVqnIjKZ3LtxK5cP2O6W/67G/N7uvQqSsrVyynUqXQXHk7EXOMuvXDmTP/e87H3Sb60HEGD8n75OzZM77kk8+m2UIlro8My5nT2LgRAgIQ27Xj1q1bGI1y3lTrWhiNRufq9Lvv4K23AEgOCS3aUgx3qEsiCKIBRPhz+TIiOrThlx8W0719a375YTERPXsTFbnO6mSNRqPDftt/Vv5FzVq1CQurapf0L54/j7+/PyEVKpKens7C775l+MjXAWl/34Ilv7Br32E2bv+X//7dxco/lxNSoSI+Pj5cPH/esofk+B3yQ6/Xk5SUxLxvZuX5/aq/VvDU4GfZvHsPnp6Fe3+s1yCcbdH7CatShe0PeSyM6NWHI4cOcumCNFPm7e3Nk08PZuG8b/NKyoS3Mc0h9eF2zXr8M3keek8vav63lcdWLbVJuk63S1bg9sP0RqORhPPn8TMYJO8nCoUiIFIm8yZx3tXzjWPtGQ/O5MTxo3h5ezHo8d54enkxa+58AFq2bkOXbhG54g8YOJgBAwfnul4QPj7e1KhenXYdO+X67mTMcYa9/KpF6fy+co1Vz5UzOcuZKOMpdIfg6wv378Pdu8TExNChQweXn+6WC0aj0Xk6XbwYxmSNtk6axN7Ow4qUjHvUJRGNqCcxLZ133xzNtugDrFj+G2PGvc3VK5cJb9SIr6f/H8+9+BIAt27e4LURL3I/OYUMbQbtO3bi8y9nIggCM6Z9zuWLF0hLTeXixQv89ucqUlJS+HjSu9y8eQOAYSNG8uKIV4i/HseHE9/hwvlzAPTs3ZeJH37C7Vs3mTD+DS5euIAoirz86iheeGkERqORDya8xa7t2/D08kKj1vBP1Fa8vb1Z+uMS3nprPNJbuMCCud+w8s8/MOgNaDw0fDHja5o0y392YMa0z4k9fYrU1FTirl2larXqzJn/vWlJbeTa1fTs0w+AtatX0rJ1G/z8/QFM+wFBetlu0LARly9dkmTq04/16/5h1NjxgDTKP+2zyahUKvR6Pe99NJmeffpx5vQpxo0aiUGXSa1H6nHp4gXGvTuJiJ69GdAnghYtW3Nw/z5AGjFPSkqka7uWqNUaonb8a3p+Rka62V5CgLGvv4KHxoPLly5yI/46TZq3YMbsuWbLe0sFBpGenpZLL48PeJJlv/7Mex9PAaQVCD07t+Pd9z7MV5dBurskavwcUh+uPdaKfz6ZS73NqznSXxoktHYJ1cNLoZxql6zE7TsSGo2Gyr6+0od8TgVVMEcUVFzzyV6fKx+vTflx5tQp/vfnqlz7EcaMe9t2DxEEvpq7EF8/v1xfnTwRwyN1ZX5YlB0wL2cKBZJlu4R79+jSpYuTM+NeaDQa5+h08WIYOVIKjx8PX3wBm88WKSm3qEuCgE7wQlAZUKnV3L59EwAfHx/qPFIXURQ5e+Y0qffv4+fvT6nAIJb+/hd+/v4YDAZefHYQa1evpN8TTwLSXrOonf9Rrlx59Ho9T/XtycQPP6H/kwMBuHv3DgCjRw6na/ceLFm6DIA7d24D8MGEt6lV+xF+/N8f3L59ix4d29CgUSM8NB7s3rGdnfsOo1KpSE5KwtPTE51Ox4F9e3isZTvTrNLAZ4bw2pg3ATi4fy/jx7zOjj0HC1TD3v+i2bJ7D+XKhzDxrTeZ9tlkvvz6GwA2rFvD7HmLAIjetZNmLVrlmcatmzdYu3oV/1uxEoDe/fozfvSrpo7E/30+hemz5tC8ZWuMRiMpyckAvDFyBCNeG8XgIc9zcP9e+kWY14uY48dY9vc/eHh4cOXyZXp2asuW3XvN4uj1es6fjc1zkO7Qwf2sjdqGt48PLz03mO/nzzVrh4NLl+bMqVO57mvWsjWfffw+7yF1JEIqVMTDw5OzsWeoXSdvb2U3vMIQjY57Ab/cvAOXm+fwqGc0IojGQl0354fT7FIRcO1ujg0wGo1kxEvrCZWOhIWIIn76ZHlPk+cgLS01z03NNkWEAD+fPKeDY6/coF6DcPs+X464WTmzK1m2S0xIIO7qVVlMd8sFo9FIXFycY3X6zTfSSdWiKM1IzJxZPO8y7lCXRFCJBnx9fPnx1+VMn/oZSxbMY9iQQRw6uB9BEOjUtTtbNm0EpN/ts08+pEvbFnRr34qjhw9x4vgxU3Lde/SmXLnyAJw7G4terzd1IgDKlClL6v37HNi7h1dHjzVdL5vlknvX9m289Io0k1yuXHl69+vP7u3bqVqtOjqdjnGjX2X5b7+i0+tQqVTcu3sHD09P/H28TO1AzNGjPNG7Ox1bNWXC+LHEnj5V6J6B7j16US7Lw98Lw4aza/tWQOocpKSkULOWdKZM/PU4yofkdmefkpzMC4OfYvSb42n0WGMAataqTVJSErdvSZ2z9h078dGkd5k7eyYnY45Lbs+Tkzl96gSDBg9BJRpo2qxlrnZr0OBnC1yzv3vnDhrVroYuU0fvfrlPZe4/YCB+/v6o1WqefX4ou7ZvM/t+xMhRbFi3hqYNanMj/rrpevmQEOKvx5nFLR8SQnyc+bWc+BhSnVcfRJGu306m76djUWdqi5SEU+xSESkRHQndDWkqkzJlnJsZmSAgEqi/hyDzA2myidyy0wFPEVGLeuR+iI8jcbdyZleyZySMRi4fOyaLxkUuGI1Gzp8/71idVq0qnVY+YYLk2reYLirdoy49sKEdOndhxT+RDHt5JIOHvMAzA/qh1Wrp1acf69f+A8DC7+aQcO8ukVt2si16P08OepqMjAxTannNDlvLw44zBAFKBQayY+8hnhw4mHOxZ+jSpjkXz5/Hx8cXbUaGSYbMzExGDH2WKVO/ZMeeg6yK3IQoiugs2HycVx42rFtLjxx7+nx8fcjISDeLez8lhWefepwevfuaZkKy6dGrDxvWrQVgyhfTmT1vET6+vox9/RXTpmnpWfm3Zb5Zy6jyo12Hjhw6dQ69Qc/2LZssli2b3//3C+07duJATCwVKj44l0GbkYG3t7k7em2GFm+f/JerBxgSnVYfSl85T/2oldT6bwv9P3oNTR7LtQrDKXapiLh9R0Kj0RCQXXGVGQmLEAUV172rIQpuXzxshyCgU3nJ14e7E1DKmRV4eUHWi1GbunXRKF7obIZGo6FDhw421+msTbH5//nV55d5q5jVdTizNp81XS8qblGXsmxoamqqab+CWqOhcdNm6DIz0et0tO3Qkf379qDT6UhMTKB8SAje3t7cvnWTNav+zjfpWrXr4OnpyT8r/zJdu3v3Dn7+/rRo1YaF380xXc9e2tS+U2eW/vSD6dr6tf/QtmMn7ty5TVpqKp26duP9Tz4lrEpVYs+colRgIOUrVODc5esgCGgzMtDrdFSqXBmAJQvnW6SGzVHrTd6pflv6E+07Sctb1q9bQ6++j5vi1WvQkLOxD8pM6v37PPvU43Tq2p23JryXK91efR9n/TppD97Z2DPUrVefESNf58Xhr3Bo/z4CSpXikXoN+GvFcnQqLw4dOsCpEzH55jMgIID09LRcJy97e3tTP7whcdeu5bpnzeq/SU1NxWAw8Pv/ltK+U2ez76/HXaNx02a5OhixZ05TP7yh6bPBYODy5YvUrdcg3/zd8gx1Wn24V7UWK6d+T6aPL1UPRzNowlB87922Kg172SV74Po5LCZGoxHu3JF6TKVLw31n50gGiCIBhkRS1EHOzol8EEGFHiMaObvediw5y5nSASuc0qUhNZX4mBhCqld3+Q14csFoNHL16lXCwsLsplPP1BS6fvMJ0cPGkVSpCgB3qxfPz7wZNqxLTnOkkWVDdTodH036//buPS6qMuED+O/MDTR1RLl7pSzUNUsuBaiYuGFaht3WrDVaszS0FilbtbWizddLZlp4a7PLvrblvqm9tZpJq0iuWGD4er+0IZoLIhcBUYGZed4/RmbFGRjOMJcz4+/7+czHmWeeMz73w3Muz5mFmurzOPPLaXz1xUbMf/Nty03Fd9wZj107czBlahqeTn0co4bdidCwcMsf3LZoNBp89On/YO6LM7F08QJIkoTfTZmKJyZPQdZ7a/HyrAwk3hkFjUaDe+4dh5fmzsP8xW/hpZnPYWRCLEwmE37/wh8QFR2L/fsK8eLz09FoaITJZELsHXFIuns0AODeceOxPftr/O7pNHTu0gWz5s7DmKTh6Nmzl9UKgS0ZPmIkMmY8i1PFJy03W9fW1ODnn07g9qhoS7xxKQ8gffpU/OHlVwAAf161AoV7C3Dx4kXLWZtxKQ8ifdYfAAC3R0XjXyeO40JtLf4rcx7+9dNP0Gl16NCxAxYtNU+k3l3zPtLTnsF7K97BrbcNQVRMbIvpDOjWDQ8+8ihGxsegQ8cbmt1srVarYRLWR9LjEobid4/9Bv8+8wuiYu/AU1PTmn1vMpmgUlsv2brjH9m4L2W85fP3ebsRFR1rdUP31W4w1uASPLdv+eX2OGxY+BHGz3sGoccOYOLzv8EXf1qNioi2PYHeHeOSs/j+RMJoxPnYWHQTAqqgIOBUuaeTpHgSBG4w1OKC2nlPafR9Aiphgkkyr9ZB9l3dzrx3pRk3uusumMrLcba6GkEmk+J3Lt6i6VrkHj16uKRM9SWnkfLKNHQv/gkBZ07ir1kbnP7HjW/0JfMY2rVrV8tNwm8ueMNqZZ6mI+uLf/0Otu7YZfOXbK3m0+/mW/C3/7VePjY0LBxr131mFR4UHIIPP/mbVfjg24dgW+5um/+veXIzEalPTYVKrcaM9Bea3UzcdLNzawKDgpH13gfNwr74/G9Iurv5zcsDfjUI3QODULi3AEOiY5A+6w+WSYMtkiQh6e5kfLttq818AUBk/wH4+h+50IhGGCQtHrhvtOW7TZu3WcV/692VNn+ne/dAnDpZZBV+Y7+bMX/xUpvbCCFw+lQxRt09ull4RUU5DvzfPry5LMsS9vHa9+yWZQdjHSQP94fSAbfh0+V/w/h5z6DbLycxYeZEbP7jchTHDLe7ravHJWfy+YmERqtF4D+uXpeYEwl7hKRCqX/vK5+8f9Umt5AkGCT762XTfzRvZ2TXX/4CFYDb7UYkOTQaDRISElzy2zfu/haj35wN/7paXOgejG/T/+SSI6Q+0ZdsjKEJwxKtoo0b/6BlZSal6dWnD6anv4jS0hKE9+jptN8d//BvMP7h31iFz1/0Fk6cONbm31mwZJn9SE7Yl/32ycmY9fsZ+PWwOGzZnmv3WRJHDh3E9GcmIyLiRvx69Jhm3xUX/YxFS5dbfuPy5ctIGJaIxJGtr2hUrgtz66pNLanu0QefLVuPca8/hx4HC2DUtq1sXTkuOZskhPKXeaipqYFer0d1dTW6dOkia1uj0YiioiJERERArVY79fHoPkuYoDdUoVoTgA5qgSEBjejRuw+0OhevfOTNhIAaRhih5mU6rWhsqMeZU8UorNLiklGytDN487XdLnb1+uLXjmdytGccVbL25qs9ZdqixkYUPDYNMZ+bjyz/e8Dt2PzH5bgQFOqc37/WVWO2nL7UQWVUzvjuC2NoG/Jw7lwZHn1gnFV44l1JePUNBTyM1MvroWkf89O5OpRJytm3qBob0GvfnmZLxEpGI8SVMefa50i4ZFyyw9Gx1OfPSAiDAVWVlejbt6+nk+I1JAB+pkuQEABxZd0DYeN6R2pOEiZAck+H91qW4xbSNe2M2kIIwfHMyYQQqKqqcl6ZlpUB992HmPx8AMCPD6TiuykvwtTGI5GO8JW+5AtjqL08BAUFWz17QWl8oR50pnpIauWso2jS6ppNIgJO/4zx86biuymz8NMw62duOH1cciGfn0hovv0WsSkpwMiRQLb95cjIfJq8zM98WrbeJFBvEKg8dxZdAwKh1mi88iiFOzQCAOQt7XddEQK11VVoMArUmyQISbK0M2qDhQuheeMNxE6ZAtzR8tNxSR6NRoPY2JZvKpWte3dAq8XlTl2QPfMN/DR8tP1t2unqMVueK2O5Ei5M8IXLQ5kHz7vSlit0oYq4tKklcf+dha7/PoVxrz+Ho3fdCwz5CAgMtHzv9HHJhXx+ImE6dw4qoxFCkrz2FjS3EyYENFagStsdQlLhYI0f+hoacPHSGag4iWiRCiaYfH9F5XZpMAocq9XBBKlZO1PK6WdFU6uBujpUFxWhk9HottPdvs5oNOLEiRO4+eabHS/T7duB6GhArzfX07p1+Mv3v6Cuu/UDw1zCwb5Ub5LQYDRP8DvrAzx7kEgIqIURRsk7L6kBwDx42lUHqzrWV+CSRrn7lm0vLkR1WC/Erv8z+udsBvr3B15/3fy0e43GOeOSm/j8RAKVlQAA0a0bJxJtJAFQi0aYH00DNAgVjtf5QXtRQCMByjlZqBySEOjaWI7z2kAIbxt83UZCvUkyTyJg3c7IjqYHal4Z08h5Ll26ZD+SLUeOALNnA19+CcyaBSxebA6PiEDdT43OS6AdjvYlEyQcq9UBqEFNTa1rEieDCkaYoOw/muxhHjyrwShwvFYDnUnZ+xajTofdv5uJfw39NZKXzEXgyePA9OnAihVAVhaQmOj4uORmDk0kVq5ciTfffBMlJSX41a9+hWXLlmH48JaXs9q5cycyMjJw6NAhhIeH46WXXsK0adMcTrQcqvPnzf/yqdZtJiQVyv3CrwmV0CgkNCq1VyrARU2oedRiGbWJ7XZGLbryQE29wWA+6q1Q3rR/AMxr3g8ZMkTeRj/8ACxcCHzxhflSCrXao5cHtacv1RrV+PG8P/xUShi8tB7+/52BefCcqw5Wecm+5ewtt2Ldqk1I/zkHeOUV4PBh4OhRqEeOlD8ueYjsicT69euRnp6OlStXYujQoVizZg3GjBmDw4cPo3dv6+XnioqKMHbsWDz99NNYt24d/vnPfyItLQ1BQUF46KGHnJKJ1pgqKqACYOralRedtJEkTAhoPIcqbZB3PynVjVhm8rHMZLoykagvLYVGoZc2edv+ATBf2nTkyBEMGDDAfpmuXw+8+y7wz/88fAvjxwMLFpgvTfCQ9vYlEyRcMnn2TKovjAfMgzJ4Wx6EWgOkpQGPPQa89Rbw5JOWcWlgQQFUxcXAb38L3HSTp5Nqk+wSXrp0KZ566ilMmTIFAwYMwLJly9CrVy+sWmX78e+rV69G7969sWzZMgwYMABTpkzB5MmTsWTJknYnvk2aLgPgGQki8mZXJhLq6moPJ6RlXrd/aI0Q5kuX6ur+E1ZQYJ5EaDRAaipw6BCwaZNHJxFE5CO6dgX+9CegQwdLkLRsGfDaa0C/fkB8PJCZaR6DGt136aQ9siYSDQ0N2Lt3L5KTmy9VlZycjN27bT/pMS8vzyr+6NGjUVBQgEY3FITqykRCddXd8NQ6IalQqQvxipm8UrDM5GOZyXTlYIimuhpqBd6H4437BwBQnz2LQYWFUK9ZYz6z8MwzwPDhQFAQMHCg+UbqJpMnm++DKC4GPvrI/L0C+EJfYh6UgXlQBrVajUEDB0KaNQtITgZUKmDPHvOkYtgw88IOEyY03+iTT4Aff3R7WmVd2lReXg6j0YiQkOYrUYSEhKC0tNTmNqWlpTbjGwwGlJeXIywszGqb+vp61NfXWz5XXzkCV1VVBcB8KhowF/TV7w0GAyRJsrxXqVTAgAG4UF6OjgEB0NTUoP5CjfmR6ZIESRghoGr5PQAJpubvJfO1sC2/F+bG2+J7862m176Xrjynoem9AACb75vS3tL79udJMhnRrfEsKnWhEJB8Ik+urieVyYCAxjJU6swPnPKFPLm6nlTCgABDOSo1wYAEn8iTK+qpqqrKPNZJEqS4ONRoNOh45gzUnTq1OO6pVCqr9xcuXDCXiYuu5ffG/YNKpULDrl3QPfGEzfQJPz9Ix46hMSEBGo0GUo8eaJw8GRqNBqiuhsFgML8HYDAYoNtE+DMAAA6XSURBVNVqIYSAwWDA5boLbmvPEoBuDaWo1IZAqNSKbs8t5QnChG6Gc6jSBMEkqbyqjza9t94PwOvGHVxpS1XaYJhUGq8cS1XCiADDOVRqggBJ5RX7h5qaGphMJphMJmg0GjQ2NuLgwYMYPHYspHvvhenMGWi+/RamnBxIubmQKishLl+GqWn/YDBA9cQTkNLSYIyIsDvu2Xrv6D7CoZutpWuOhgkhrMLsxbcV3mTBggXIzMy0Cm/Xgznuv9/xbYmIPGSurUAb9xu0VW1tLfR6vcPb2+OV+4eW1NebV2OaNcv5v01EdMUcRzb68kvLJa8WWVnmVzvI3UfImkgEBgZCrVZbHV0qKyuzOqrUJDQ01GZ8jUaD7i3ctzBnzhxkZGRYPptMJlRWVqJ79+6t7pBsqampQa9evXD69GlZj/y+nrHM5GOZyccyk689ZSaEQG1tLcLDXbOaiTfuHwDfaIfMgzIwD8rAPDjG0X2ErImETqdDdHQ0srOz8cADD1jCs7OzkZKSYnOb+Ph4fPXVV83Ctm3bhpiYGGi1tpcY8/Pzg5+fX7Owrl27ykmqlS5dunhtg/IUlpl8LDP5WGbyOVpmrjwT4c37B8A32iHzoAzMgzIwD/I5so+QfSdKRkYG3n//fXzwwQc4cuQIZs6ciVOnTlnW/Z4zZw6euOp602nTpqG4uBgZGRk4cuQIPvjgA6xduxYvvvii7MQSEZFycf9ARHR9kX2PxIQJE1BRUYHXX38dJSUlGDRoELZs2YI+ffoAAEpKSnDq1ClL/IiICGzZsgUzZ87EihUrEB4ejnfeecdta4QTEZF7cP9ARHR9cehm67S0NKSlpdn87qOPPrIKGzFiBH70wJJUgPk0+Kuvvmp1KpxaxjKTj2UmH8tMPm8oM2/aPwDeUab2MA/KwDwoA/PgXpJw1VqARERERETks7z3aR1EREREROQxnEgQEREREZFsnEgQEREREZFsPjmRmD9/PhISEtCxY8c2ry8uhMBrr72G8PBwdOjQAXfddRcOHTrk4pQqR1VVFSZNmgS9Xg+9Xo9Jkybh/PnzrW7z5JNPQpKkZq+4uDg3pdj9Vq5ciYiICPj7+yM6Ohrfffddq/F37tyJ6Oho+Pv748Ybb8Tq1avdlFLlkFNmOTk5Vu1JkiQcPXrUjSn2rNzcXIwbNw7h4eGQJAlffPGF3W3Yzuzzhb7rzX3JF9q13DworQ4A81PhY2Nj0blzZwQHB2P8+PE4duyY3e2UVBeO5EFpdbFq1SoMHjzY8oyI+Ph4fP31161uo6Q6uJZPTiQaGhrwyCOP4Nlnn23zNosXL8bSpUuRlZWF/Px8hIaG4u6770Ztba0LU6ocjz32GPbt24etW7di69at2LdvHyZNmmR3u3vuuQclJSWW15YtW9yQWvdbv3490tPT8fLLL6OwsBDDhw/HmDFjmi1lebWioiKMHTsWw4cPR2FhIebOnYvnn38eGzZscHPKPUdumTU5duxYszZ18803uynFnldXV4fbbrsNWVlZbYrPdmafL/Rdb+9LvtCu5eahiVLqADD/MTp9+nTs2bMH2dnZMBgMSE5ORl1dXYvbKK0uHMlDE6XURc+ePbFw4UIUFBSgoKAASUlJSElJafHgtdLqwIrwYR9++KHQ6/V245lMJhEaGioWLlxoCbt8+bLQ6/Vi9erVrkyiIhw+fFgAEHv27LGE5eXlCQDi6NGjLW6XmpoqUlJS3JFEj7vjjjvEtGnTmoX1799fzJ4922b8l156SfTv379Z2NSpU0VcXJzL0qg0cstsx44dAoCoqqpyR/IUD4DYtGlTq3HYzuzzhb7rS33JF9p1W/Kg5DpoUlZWJgCInTt3thhH6XXRljx4Q10EBASI999/3+Z3Sq8DnzwjIVdRURFKS0uRnJxsCfPz88OIESOwe/duD6bMPfLy8qDX63HnnXdawuLi4qDX6+3mPycnB8HBwbjlllvw9NNPo6yszNXJdbuGhgbs3bu3WfsAgOTk5BbLJy8vzyr+6NGjUVBQgMbGRpelVSkcKbMmQ4YMQVhYGEaNGoUdO3a4Mple73pvZ/b4Qt+9HvuS0uqgPZRcB9XV1QCAbt26tRhH6XXRljw0UWJdGI1GfPbZZ6irq0N8fLzNOEqvA04kAJSWlgIAQkJCmoWHhIRYvvNlpaWlCA4OtgoPDg5uNf9jxozBJ598gu3bt+Ott95Cfn4+kpKSUF9f78rkul15eTmMRqOs9lFaWmozvsFgQHl5ucvSqhSOlFlYWBjee+89bNiwARs3bkRkZCRGjRqF3NxcdyTZK13v7cweX+i712NfUlodOELpdSCEQEZGBoYNG4ZBgwa1GE/JddHWPCixLg4cOIBOnTrBz88P06ZNw6ZNmzBw4ECbcZVcB4CDT7b2hNdeew2ZmZmtxsnPz0dMTIzD/4ckSc0+CyGswrxJW8sMsM47YD//EyZMsLwfNGgQYmJi0KdPH2zevBkPPvigg6lWLrntw1Z8W+G+TE6ZRUZGIjIy0vI5Pj4ep0+fxpIlS5CYmOjSdHoztjP7fKHvXm99SYl1IIfS62DGjBnYv38/du3aZTeuUuuirXlQYl1ERkZi3759OH/+PDZs2IDU1FTs3LmzxcmEUusA8KKJxIwZM/Doo4+2Gqdv374O/XZoaCgA86wvLCzMEl5WVmY1C/QmbS2z/fv34+zZs1bfnTt3Tlb+w8LC0KdPH5w4cUJ2WpUsMDAQarXa6uhfa+0jNDTUZnyNRoPu3bu7LK1K4UiZ2RIXF4d169Y5O3k+43pvZ/b4Qt+9HvuS0urAWZRSB8899xy+/PJL5ObmomfPnq3GVWpdyMmDLZ6uC51Oh379+gEAYmJikJ+fj+XLl2PNmjVWcZVaB0285tKmwMBA9O/fv9WXv7+/Q78dERGB0NBQZGdnW8IaGhqwc+dOJCQkOCsLbtfWMouPj0d1dTV++OEHy7bff/89qqurZeW/oqICp0+fbjYZ8wU6nQ7R0dHN2gcAZGdnt1g+8fHxVvG3bduGmJgYaLVal6VVKRwpM1sKCwt9rj050/Xezuzxhb57PfYlpdWBs3i6DoQQmDFjBjZu3Ijt27cjIiLC7jZKqwtH8mCLp+viWkKIFi8LV1odWHH77d1uUFxcLAoLC0VmZqbo1KmTKCwsFIWFhaK2ttYSJzIyUmzcuNHyeeHChUKv14uNGzeKAwcOiIkTJ4qwsDBRU1PjiSy43T333CMGDx4s8vLyRF5enrj11lvFfffd1yzO1WVWW1srXnjhBbF7925RVFQkduzYIeLj40WPHj18ssw+++wzodVqxdq1a8Xhw4dFenq6uOGGG8TJkyeFEELMnj1bTJo0yRL/559/Fh07dhQzZ84Uhw8fFmvXrhVarVZ8/vnnnsqC28kts7ffflts2rRJHD9+XBw8eFDMnj1bABAbNmzwVBbcrra21jJeARBLly4VhYWFori4WAjBduYIX+i73t6XfKFdy82D0upACCGeffZZodfrRU5OjigpKbG8Ll68aImj9LpwJA9Kq4s5c+aI3NxcUVRUJPbv3y/mzp0rVCqV2LZtm830K60OruWTE4nU1FQBwOq1Y8cOSxwA4sMPP7R8NplM4tVXXxWhoaHCz89PJCYmigMHDrg/8R5SUVEhHn/8cdG5c2fRuXNn8fjjj1stlXZ1mV28eFEkJyeLoKAgodVqRe/evUVqaqo4deqUB1LvHitWrBB9+vQROp1OREVFNVtuLjU1VYwYMaJZ/JycHDFkyBCh0+lE3759xapVq9ycYs+TU2aLFi0SN910k/D39xcBAQFi2LBhYvPmzR5Itec0LVN47Ss1NVUIwXbmKF/ou97cl3yhXcvNg9LqQAhhM/3X/i2k9LpwJA9Kq4vJkydb+nJQUJAYNWqUZRIhhPLr4FqSEFfu2CAiIiIiImojr7lHgoiIiIiIlIMTCSIiIiIiko0TCSIiIiIiko0TCSIiIiIiko0TCSIiIiIiko0TCSIiIiIiko0TCSIiIiIiko0TCSIiIiIiko0TCSIiIiIiko0TCSIiIiIXWr58OSIiItCxY0eMHz8e1dXVnk4SkVNwIkFERETkInPnzkVWVhY+/vhj7Nq1C4WFhcjMzPR0soicghMJonb49NNP4e/vjzNnzljCpkyZgsGDB/OIExHRdS4/Px+LFi3C+vXrkZiYiKioKEydOhV///vfPZ00IqfgRIKoHR599FFERkZiwYIFAIDMzEx88803+Prrr6HX6z2cOiIi8qQlS5YgKSkJUVFRlrCgoCCUl5d7MFVEzqPxdAKIvJkkSZg/fz4efvhhhIeHY/ny5fjuu+/Qo0cPTyeNiIg8qL6+Hl999RWWLFnSLPzSpUs80EQ+QxJCCE8ngsjbRUVF4dChQ9i2bRtGjBjh6eQQEZGH5eXlISEhAf7+/lCr1ZbwxsZGjBw5Elu3bvVg6oicg2ckiNrpm2++wdGjR2E0GhESEuLp5BARkQIcP34c/v7+OHDgQLPw+++/H0OHDvVQqoici/dIELXDjz/+iEceeQRr1qzB6NGjMW/ePE8niYiIFKCmpgbBwcHo16+f5aXT6XD06FE89NBDnk4ekVPwjASRg06ePIl7770Xs2fPxqRJkzBw4EDExsZi7969iI6O9nTyiIjIgwIDA1FTUwMhBCRJAgDMnz8fY8eOxcCBAz2cOiLn4D0SRA6orKzE0KFDkZiYiDVr1ljCU1JSUF9fz2tfiYiuc2fPnkXfvn3xyiuvYOLEifjrX/+Kd999Fz/88AN69erl6eQROQUnEkREREQusH79esyaNQvl5eVISkrC8uXLcdNNN3k6WUROw4kEERERERHJxputiYiIiIhINk4kiIiIiIhINk4kiIiIiIhINk4kiIiIiIhINk4kiIiIiIhINk4kiIiIiIhINk4kiIiIiIhINk4kiIiIiIhINk4kiIiIiIhINk4kiIiIiIhINk4kiIiIiIhINk4kiIiIiIhItv8H2PEZRCfj3FgAAAAASUVORK5CYII=", "text/plain": [ "PyPlot.Figure(PyObject
)" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "addedprocs = addprocs(4)\n", "@everywhere f(x,y) = y^2 + y - (x^3-x^2)\n", "N = 2^12\n", "figtitle = \"Sat-Tate conj. for \\$y^2 + y = x^3-x^2\\$, \\$p < 2^{12}\\$\"\n", "plot_SatoTate_naive(f, figtitle=figtitle, N=N)\n", "rmprocs(addedprocs);" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "楕円曲線 $y^2 = x^3 + x + 1$ の場合の佐藤・Tate予想を数値的に確認.\n", "\n", "Legendre記号を使った計算によって高速化し, より多数の素数における有理点の個数を求める." ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(N, length(P)) = (16384, 1900)\n", " 7.224259 seconds (1.21 M allocations: 53.728 MiB, 0.48% gc time)\n", "count(abs.(a) .> 2 * sqrt.(P)) = 0\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxUAAAEiCAYAAACP/f82AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXd8FEX/x997d2lACAmhhhBQQLpUaSI2QLGAYlcEhZ8iiIqColhRQdFHwIIKPgKK+vhYEEsoUVoEHhEMvQRI6CGQQAiEtNud3x9Hjhxpd5fL3e4y79frXpnb2935fr47O5PZ7+yMIoQQSCQSiUQikUgkEomXWAJtgEQikUgkEolEIjE2slMhkUgkEolEIpFIKoXsVEgkEolEIpFIJJJKITsVEolEIpFIJBKJpFLIToVEIpFIJBKJRCKpFLJTIZFIJBKJRCKRSCqF7FRIJBKJRCKRSCSSSiE7FRKJRCKRSCQSiaRSyE6FRCKRSCQSiUQiqRSyUyGRSCQSiUQikUgqhexUSCQSiUQikUgkkkohOxUSiRccPHiQq6++mtatW9O+fXu+++47v9tw+vRpunbtSocOHWjXrh2zZ8/2uw2SirntttuIjIzkjjvuKPX3s2fPEhcXx7hx4/xsmUQiqQpk+yBxF7O1D4oQQgTaCInEaKSlpZGenk6HDh04duwYnTp1YteuXVSvXt1vNqiqSn5+PtWqVePs2bO0bduWv//+m9q1a/vNBknFLF++nDNnzjBv3jy+//77Er9PnDiR3bt307hxY959990AWCiRSHyJbB8k7mK29kFGKiQBYdiwYQwaNMjt/YUQPPLII0RFRaEoChs3bqxC6yqmQYMGdOjQAYC6desSFRXFiRMn/GqD1WqlWrVqAOTl5aGqKvIZgf645pprCA8PL/W33bt3s3PnTgYMGOBnqyQS/SLbh8oj2wdjYLb2QXYqyuDYsWM8+uijNG7cmJCQEOrXr0///v1Zu3at2+e4+uqreeqpp8rdR1GUcj/Dhg3zWV56YsaMGcydO9ft/RcvXszcuXP59ddfSUtLo23btlVnnIesX78eTdOIjY31e95ZWVlcfvnlNGrUiGeffZbo6Gi/21BZVq1axS233ELDhg1RFIWffvop0Ca5zZQpU+jatSvh4eHUrVuXQYMGsWvXLrePHzduHFOmTKlCCyVVgWwfqhbZPvgG2T4ElouxfZCdijIYPHgwmzZtYt68eSQnJ/Pzzz9z9dVX+/xpQ1pamvMzffp0atas6bJtxowZPs1PL0RERFCrVi2399+7dy8NGjSgZ8+e1K9fH5vN5lW+BQUFXh1XFpmZmTz44IPMmjXLp+d1l1q1arFp0yZSU1P5+uuvSU9Pr/CYq6++2qMG2xs8ySMnJ4fLL7+cDz/8sEptqgwnT57kzJkzJbavXLmS0aNH87///Y+EhATsdjv9+vUjJyenwnMuXLiQFi1a0KJFi6owWVKFyPahapHtg2+Q7YN/kO1DMYSkBCdPnhSAWLFiRZn7LFq0SPTq1UtERESIqKgocdNNN4k9e/Y4fx86dKgAXD6pqanl5jtnzhwRERHhcX7l5aVpmnj77bdF06ZNRWhoqGjfvr347rvvyrVDVVXx1ltviUsvvVQEBweL2NhY8cYbbwghhMjLyxNjxowRderUESEhIaJXr15i3bp1Lsf36dNHjBkzRowfP15ERkaKevXqiVdeecVln6FDh4qBAweWa0fxfYtri4uL88iW0aNHi7Fjx4ratWuLq666yq08Y2JixEcffeSybfXq1SIsLEzs27fPmX/v3r3FF1984dY5PeXrr78WISEh4tChQ85tw4cPF+3atRNZWVkl9h85cqT473//W+F5+/TpI+bMmePz/L3J40IAsWDBAo+PK42jR48KQEyfPl106NBBhISEiNatW4vExES3ji8sLBS//vqruPPOO0VISIjYuHFjhcccO3ZMAGLlypUu25cvXy4GDx7ssm3ChAmiUaNGIi4uTtSuXVvUrFlTvPbaa+4LlAQE2T7I9kG2D7J9kO1D6chORSkUFhaKGjVqiKeeekrk5eWVus/3338vfvjhB5GcnCySkpLELbfcItq1aydUVRVCCJGVlSV69Ogh/u///k+kpaWJtLQ0Ybfby823vEajvPzKy+uFF14QLVu2FIsXLxZ79+4Vc+bMESEhIeU2iM8++6yIjIwUc+fOFXv27BGJiYli9uzZQgghnnjiCdGwYUMRHx8vtm3bJoYOHSoiIyNFZmam8/g+ffqImjVrildffVUkJyeLefPmCUVRxNKlS537eNJoZGVliUmTJolGjRqJtLQ0cezYMY9sqVGjhhg/frzYuXOn2LFjh1t5Dh48WAwbNsz5XdM00bVrV/H88887v99zzz0lGsMLefPNN0X16tXL/axatarUYzVNE+3btxejR48WQgjx6quvikaNGjkr8aNHj4pTp04JIYQ4deqUaN26tdi0aVOF2tyt0CvK3xd5XIgvG41FixYJQLRo0UIsX75c7Ny5UwwYMEA0btzYeZ+WxubNm8Uzzzwj6tWrJ6KiosTIkSPFmjVr3Mpz9+7dAhBbtmxx2V5ao1GcOXPmiGeeecY9YZKAItsH2T7I9kG2D7J9KB3ZqSiD77//XkRGRorQ0FDRs2dP8fzzz5d7Qxb1QIsXlj59+ognn3zS7TzLazQqyq+0vM6cOSNCQ0NLFPjhw4eLe++9t9TzZmdni5CQEGcjceH5goKCxFdffeXcVlBQIBo2bCimTp3q3NanTx9x5ZVXuhzbtWtX8dxzzzm/e9JoCCHEtGnTnE+gPLWlQ4cObudTxDvvvCPatGnj/D5v3jxRr149kZ2dLYQQIjExUSiKIi6//HLnZ/PmzSXOk5mZKXbv3l3u5+zZs2Xa8csvv4iQkBDx5ptvisjISLF161bnb+vXrxeXX365aN++vWjXrp2YOXOmW9o8qdDLy99XeRTHl43GW2+9JYKCgkRKSopz2/r16wUgDhw44LJvRkaGmDFjhujYsaMIDg4WAwcOFD/88IPIz893Oz9N08Qtt9xSouz369dPREdHi7CwMBETE1PiaakQxmo0JLJ9kO2DbB8qyt9XeRRHtg/6R3YqyiE3N1csXbpUvPbaa6JHjx7CarU6b4Q9e/aIe++9VzRt2lSEh4eL6tWrC0D89ttvzuMvrMjnz59f7hOI8hqNivIrrdFYt26dAEo8+QgKChJXXHFFqfn89ddfAnC50YrYtGmTAJzh3SIGDRokHnroIRfdo0aNctnn1ltvddmnso2GJ7aMGDHC7XyKSExMFBaLRZw+fVrk5OSImJiYUhtSf1BUkZX39LA8LnwaZrFYREhIiFtPw9zNv7J5FOHLRuOee+4Rd999t8u2LVu2lNpovPLKKwIQvXv3LvGbu4waNUrExcWJgwcPem2zxDjI9sEV2T7I9qGq8ihCtg/6x7u3mS4SQkND6du3L3379uXll19mxIgRvPLKKwwbNoxbbrmF2NhYZs+eTcOGDdE0jbZt25b7otett95Kt27dnN9jYmLctsWb/DRNA+C3334rkVdISEipx4SFhZV5PnFuOjpFUUpsv3BbUFCQy3dFUZz2+AJPbPFmbvAuXbpgtVr5559/+P3336lduzYPP/ywx+eZPHkykydPLnefRYsW0bt371J/W7JkCTt37kRVVerVq+dx/gAjR47krrvucn6///77GTx4MLfffrtzW1ll0d38K5NHVbFx40aGDh3qsu2ff/4hOjq6hC2PPPIIQUFBzJs3j9atWzN48GCGDBnCNddcg8VS8XwWY8aM4eeff2bVqlU0atTIpzok+kS2D67I9kG2D1WRR1Uh24eqQXYqPKB169b89NNPZGZmsmPHDj799FPnzf7nn3+W2D84OBhVVZ3fw8PDy5yPuDzcye/CvIrsDQkJ4cCBA/Tp08etvJo3b05YWBh//PEHI0aMcPmtWbNmBAcH8+eff3LfffcBUFhYyPr16/0+XWFV2xIaGsrll1/Ojz/+yKxZs/jll1/cqjwu5MLKtDTKqkz/+ecf7rzzTj799FP+85//8NJLL3m1MmtUVBRRUVHO72FhYdStW5dmzZqVe5wn+XubR1WRm5vL7t27Xe4JTdOYMWMGQ4cOLXEtGzZsyMSJE5k4cSJr1qxh3rx5DB48mPDwcO6//36GDBlCmzZtSuQjhGDMmDEsWLCAFStW0LRp0yrXJtEnsn2Q7YOnyPZBtg9mQ3YqSiEzM5M777yThx9+mPbt2xMeHs769euZOnUqAwcOJDIyktq1azNr1iwaNGjAgQMHmDBhQonzNGnShL/++ot9+/ZRo0YNoqKivKp43MmvtLzCw8MZN24cY8eORdM0rrzySrKzs1mzZg01atQo0UsHR2X53HPP8eyzzxIcHEyvXr04fvw427ZtY/jw4Tz22GOMHz+eqKgoGjduzNSpUzl79izDhw/3WFcRH374IQsWLOCPP/5w+5jq1atXiS3F6d69O++//z4333wz1113nVfnuLAydZd9+/Zx0003MWHCBIYMGULr1q3p2rUrGzZsoHPnzl7Zotf8z5w5w549e5zfU1NT2bhxo/O6esOWLVtQFIX58+dz7bXXUqtWLV5++WWysrJ48cUXyz22Z8+e9OzZkxkzZvDTTz8xb9483n33XZKSkmjXrp3LvqNHj+brr79m4cKFhIeHc/ToUcAxJWZ5T3UlxkW2D7J9ANk+yPZBtg+lEqhxV3omLy9PTJgwQXTq1ElERESIatWqicsuu0y8+OKLzpemEhISRKtWrURISIho3769WLFiRYnxfrt27RLdu3cXYWFhlZ4ysKL8yspL0zQxY8YMcdlll4mgoCBRp04d0b9//xJTmhVHVVXxxhtviLi4OBEUFCQaN24sJk+eLIRwjCMeM2aMiI6OLneavgvH7w4cOFAMHTrU+b34mNlXXnnFZTxsaVw4ZrYytrjLZ599JoKCgsTOnTu9Ot5bMjMzRcuWLcUjjzzisv3WW28V/fv3r/T5K3pJzhf5e/Ii3vLly0tMeQk4y8ucOXOEp1XVp59+Ktq2bSvmz58vGjZsKKpVqybuuusukZ6e7tF5ijh8+LBzJpXilGY34NVLiBJjINsH2T4IIdsH2T6cR7YP51GEkOu2S/zPvffei9VqZf78+YE2pUyuvfZa2rdvz/Tp0wNtykXNq6++yooVK1ixYoXbx4wePZqTJ0/y9ddfV51hEomkSpDtg8RdZPugL+SK2hK/Yrfb2b59O2vXri11DGKg0TSN9PR0Jk+ezK5du3jttdcCbdJFz5IlS5g6dapHx2zcuJH27dtXkUUSiaQqkO2DxFNk+6AvZKdC4le2bt1Kly5daNOmDSNHjgy0OSVYtWoVDRo0YP78+fz4449EREQE2qSLnrVr13LFFVe4vb8Qgi1btshGQyIxGLJ9kHiKbB/0hRz+JJFIJBKJRCKRSCqFjFRIJBKJRCKRSCSSSiE7FRKJRCKRSCQSiaRSyE6FRCKRSCQSiUQiqRSyUyGRSCQSiUQikUgqhSFW1NY0jSNHjhAeHo6iKIE2RyKRSAyPEILTp0/TsGFDr1Zy1guyfZBIJBLf4m37YIhOxZEjR4iNjQ20GRKJRGI6Dh48SKNGjQJthtfI9kEikUiqBk/bB0N0KsLDwwGHuJo1a3p0rN1uZ/Xq1fTq1QubzRBydYH0m3dIv3mO9Jl3VNZv2dnZxMbGOutXo1KZ9gHMUf7MoAHMocMMGsAcOsygAQKjw9v2wRDrVGRnZxMREcGpU6c8bjQ0TSMjI4Po6GhDh/j9jfSbd0i/eY70mXdU1m+VqVf1RGV1mKH8mUEDmEOHGTSAOXSYQQMERoe39arpOxUSiUQiKYlZ6lWz6JBIJBK94G29atyum5sUFhayZMkSCgsLA22KoZB+8w7pN8+RPvMO6TffYAY/mkEDmEOHGTSAOXSYQQMYS4fpIxWappGVlUWtWrUMHf7yN9Jv3iH95jnSZ95RWb+Z5Qm/L4Y/Gb38mUEDmEOHGTSAOXSYQQMERocc/iSRSCQStzFLvWoWHRKJRKIX5PCnMigsLOS3334zRNhIT0i/eYf0m+dIn3mH9JtvMIMfzaABzKHDDBrAHDrMoAGMpcP0kYqiBTzkwkieIf3mHdJvniN95h2V9ZtZnvBXVocZyp8ZNIA5dJhBA5hDhxk0QGB0eFuvGnfiXjdRFMXQDWagkH7zDuk3z5E+8w7pN99gBj+aQQOYQ4cZNIA5dJhBAxhLh+k7FYWFhcTHxzNgwACCgoICbY5h8KffpiUke33s2L4tfGhJ5ZHlzXOkz7xD+s03mMGPZtAAxtZR1I4pQqVpbjKpYS0QirXC4/TWhhVh5GtRhBk0gLF0XBTDn/Ly8ggNDTV0+Mvf+NNvZupUyPLmOdJn3lFZv8nhTw7MUP7MoAGMrcPZjgmBVdhRFRu4oUFvbVgRRr4WRZhBAwRGh3xRuxyMvDx7IJF+8w7pN8+RPvMO6TffYAY/mkEDmEOHppjjXyszXAszaADj6DBHyS8Hu91OfHw8drs90KYYCuk375B+8xzpM++QfvMNZvCjGTSAOXQoaDTNTUZBC7QplcIM18IMGsBYOi6K4U92ux2bzWbo8Je/8affzDb8SZY3z5A+847K+k0Of3JghvJnBg1gbB3Fhz8paAgshh/+ZNRrUYQZNEBgdMjhT+VghN6dHpF+8w7pN8+RPvMO6TffYAY/mkEDmEOHRRg7SlGEGa6FGTSAcXSYvlNht9tZunSpYS6IXpB+8w7pN8+RPvMO6TffYAY/mkEDmEOHgkZc3h5TDH8y+rUwgwYwlg7TD3+S6B8jDn/y1ma9hrolFx9mqVfNokNibGSbIDETcvhTGQghyM7OxgB9J10h/eYlQhCk5YP0m9vIsuYd0m++wQx+NIMGMIkOk7QBZrgWZtAAxtJh+k6F3W4nMTHREGEjPSH95h0KGjF5+wwf+vYnsqx5h/SbbzCDH82gAcyhwyxtgBmuhRk0gLF0yOFPkoAjhz9JJP7HLPWqWXRIjI1sEyRmQg5/KgNN0zhx4gSaZuynBv5G+s1LhCBEPWv40Lc/kWXNO6TffIMZ/GgGDWASHaW0AWEnM6mbvJUG2/6h0cb/0WDbP9Q6vI/gnNO6bSvMcC3MoAGMpcMYS/RVAlVV+fvvv7n22muxWEzfh/IZ0m/eoaBRr+AwB0MvQWANtDlO9BwNkmXNO6TffIMZ/GgGDWACHZpG3b3baLc+nv/1HUpOdH0ALlsZzzUz3yj9mJo14ZNP4N57/WhoxRj+WmAODWAsHabvVAQFBdG/f/9Am2E4pN+8QyhWDoQ1r5JzV6ZjoGdkWfMO6TffYAY/mkEDGFSHEPC//3Ht++/TYtViwrKzADgSfRk7+g4CIDOuGaej66MGB6MGBWMtLCAsK5OQszmQnQ11654/39Kl8N57cNttjo5GgIb0GfJaXIAZNICxdJi+U6FpGhkZGURHR+u+h6cnpN+8RAjCtBxyLdXdWk1VIsuat0i/+QYz+NEMGsBgOnJz4d//hg8+gORkLj+3Ob9adY627cjZWlHOXQ927MFnX68scQprfh5PNAaaNTu/8YcfYMkSx2fcOHjwQXj8cWjVqmr1XIChrkUZmEEDGEvHRdGp2Lp1K1dddZXuL4aekH7zDgVB7YJ0Doc2RVCyU2HWaENlkGXNO6TffIMZ/GgGDWAwHYcOwZNPgqZBtWps79mXHdcP4lD7LjQsPMjh0KYVnkINCYX2FwwvHTcOmjaFL7+E7dth5kzH54474M03oYV/Xuw21LUoAzNoAGPpkLM/SQKOnsf7l8W0hGQs9kIiD+3DotpBCBRNQ0GAJlCEIDciklMNGzsOEAJbfh724BDQeaVwIXJ2EnNilnrVLDokgafctkgI6qTs5Pil5yMGvWe9TXb9Rmy/fiCF1Wp4lWeZ9asQsHy5IxKycKHje1wc7N0LVv28rycxJ97WqxdFpCItLY0GDRrovoenJy5av2VlwY8/QloaHD3q+JuWBunpjrGvI0bA5MkAVD9xnAcfubnMU22/fhBLnn0bAFt+HmNu7QBAQWg1ciMiOVurNrm1ojhbK4rDbbuwvf9g57HBOWcoqO5dI2U0LtqyVkmk33yDGfxoBg2gXx21U3dx7QeTaLBjI/M//ZkTjS8FIPGR50ruLATV1dPkWMMrNwRWUeDaax2frVvhhRfg1lvPdyiKngdX0TBbvV4LTzCDBjCWjouiU7F3717q1aun+4uhJ0zpNyEcHYSNG2HHDti9G/bscVTUTzzh2CcrC4YPL/scGRnOZEG1GuSG10ILCkIoyrmPBSsqqsXG6Tr1nfva8nOd6eC8swTnnSUi/bBzm0VVnZ0Ki72QxwZ3paBaDU7Vb0R2/VhOxDYlo+llZDRtwclGTRBW89y6pixrfkD6zTeYwY9m0AD606GoKp1+mEPPedOxFRZSGBJK9N6dzk5FqccgiLCf4Ky1RqlDYL2ibVv4+WfX6We/+w5mzXJ8LrnEN/kUQ2/XwhvMoAGMpUMOf5IEnCof/pSe7njZLSkJjh8v+fv998P8+Y50Xp5j1o0GDRyf+vXP/42IgHr1oG5dz20WAlteLkH5eQSfPUPYqRNUy8qkWtYJwrIyyYxrRkrP6wGomXaQ4UOvL/NUu/oMIH7iNOd56+/czPFLW6EGB3tmk5vI4U/mpKrq1ZkzZ/LOO++QlpZGmzZtmD59Or179y5z//z8fCZNmsT8+fM5evQojRo1YuLEiTz88MNu5SfbB4mvKF6vh6cf5oapz9Foy98ApHS7hmVjXuZ03YY+zdOr+tVuh+bNYd8+x+xQ//63450LicRHyOFPZaBpGgcPHiQ2Nlb3PTw9YTi/FRY6Og2JifDnn9C6teOlNoDISMfY1MJCx/sMrVo5nvw0b+6YdaNjx/PnCQ2FRYu8t0MIwtUsTltruYalFQV7WDXsYdXIrRV1/l2LUshuEMsHC5OISD9MRNpBIo4epPa+PdTel0z0vmQympyfsrZm+mHuffIu7EFBHGvelrRWHTjSuiNprTuSU7tumXnoCcOVNZ2gR799++23PPXUU8ycOZNevXrx6aefcuONN7J9+3YaNy69zN91112kp6fz73//m2bNmnHs2DHsdrvfbNajHz3FDBpAPzri1icyYMozhJ4+RUFoNVY+9gJbb7jDvaFGZbUBvsRmg4QEGDYMVq+GO++E0aPh3XcdbZgP0Mu1qAxm0ADG0nFRdCoOHz5MTEyM7i+GntC934QgOnUXvL3AMa/32rWOKf6K2LPnfKciOBi++gqaNHF0JsLCqswsBUF1+2nOWCMqFfq2h1Ujs0lzMptcsOaFpmG1Fzq/hh87wtmISKqdOknD7Uk03J5E5x/mAI650dcOeZzdV93otR3+QPdlTafo0W/vvfcew4cPZ8SIEQBMnz6dJUuW8PHHHzNlypQS+y9evJiVK1eSkpJCVJRjCs4mTZr402Rd+tFTzKAB9KOj/s7NhJ4+Rdpl7Vn0/L/KfQh0Ib5qAypiWqqGZeKn9Jj3Pld8Ows++oijCSv5+bWPy32g5G5kRC/XojKYQQMYS4cc/iQJOO4OJbIWFJwf4iMEI+6/mvCMo+d3iIqCK690fHr3hu7dq8BaB7qaGlYIah3ZT4PtG2mwI4kG2zdSJ3UXihD88tL77OntWDSndmoyl/y1gpTu15AZ18ztp2hy+JM58XW9WlBQQLVq1fjuu++47bbbnNuffPJJNm7cyMqVJefpHzVqFMnJyXTp0oUvv/yS6tWrc+utt/L6668TVkbnPz8/n/z8fBcdsbGxnDhxgsjISFRVBcBqtbqk7XY7iqI40xaLBYvFUma6sLAQq9XqTNtsNhRFcaYB7Ha7SzooKAghhDOtaRqqqjrTmqZhs9nKTKuqihDCmS5Nh9RUdZo+XJF6biY/lXa/fcu2/negBQchFItjO+JcWkOBEmlFaFAsLQBKTSugKChC44nrW3ilaUbCTgSOfzCb/r2C/lMnEJadRXad+nw1cwF5NSNR0BCK1cX2J69rZvjrZMaypzdNZ86c8ap98KrLM3PmTJo2bUpoaCidO3cmMTGx3P3z8/OZOHEicXFxhISEcOmll/L55597k7XHqKrKnj17nE6WuIde/FbtZAbtf/2Gwc8NY/gDV6MU2aMo7O7dH266CT78ELZtc7wvsXAhjB9fpR2KchEaEYWZcK5x8QuKQlZME3b0HcSyJ17jq08W8sl3a/n1xekc7NjDuVuz1Uu58vN/8eAjNzPs4Ru48rN3qL9jo2Oe9QCil7JmNPTmt4yMDFRVpV69ei7b69Wrx9GjR0s9JiUlhT///JOtW7eyYMECpk+fzvfff8/o0aPLzGfKlClEREQ4P7GxsQBs3boVgB07drBjxw4ANm/ezO7duwFISkoiNTUVgHXr1nHw4EEAVq9eTVJSEqqqsmrVKjLOTcawbNkysrIcqyMvXbqU06dPAxAfH09eXh52u534+Hjsdjt5eXnEx8cDcPr0aZYuXQpAVlYWy5Ytc/pn1apVAKSlpbFmzRoADh48yLp16wBITU0lKSkJgN27d7N582a3NKmqyooVK9i/fz8Aa9asIS0tDcBQmlRVJTExkZSUlBLXyRNN0xKSiY+P54Ol25mRsJP4+HhmJOzkg6XbiY+PZ1pCMh8t3cqv8YuZlpDM5z+uZt8dd2LNzyNMyyGmYD+bb72fUGs+DfIPABCuZlEv/xAAEfaT1Ck4AkBkYSa1C46eSx8nsuAYEee2RRZmAlCn4AgR9pMA1Ms/RLjqsLdB/gE+W/IP0xKSWRCfwKylG5mWkMzPi5byydLNTEtI5tf4xXy0dGsJTU1zk1HQsAo7Stv6fPP+d5xs1ITjXTuTFxFFiJZLbJ7Dj2FaDjF5qR5dp02bNrFnzx62bdvm0f2kp7KXkpJCYmIiqqp6dD/pTdP+/ftZsWIFqqp6XUd4o8kbPI5UfPvttwwZMsRlzOxnn31W7pjZgQMHkp6ezhtvvOEyZrZnz55u5VmZJ2p2u52kpCQ6duzo7C1KKsaffrvwqX9Y1glarFpE88TFxGxZj6XYP71fffgDx1q0dX4P5DoVpaEIjToFRzge3NDxFEtHXPouPpVDAAAgAElEQVRnAm0Xf0fjpDXYCs8PoTodXY/kPgP4677HyA+PKHFcVftY3qPeUVm/+TpSceTIEWJiYlizZg09epzvzL755pt8+eWX7Ny5s8Qx/fr1IzExkaNHjxIR4Sh7P/74I3fccQc5OTmlRit8HanIy8tj8+bNdOrUCcCQTyGFEGzYsIGOHTsSHBxs2CerRTo6dOhASEiI10+Lp/++G0Wozif5Cppr2vn0XqPaiQxue2EEdVKT2XHdrSx+dmqxiIQoI112pEIRGtGFR8kIqo+mWCqMVJSePmd7WekyNAWfycYeGoJmC3HYK1SExeZVpMJut7N582bat2+PzWYz5FP9/Px8Nm7cSOfOnVHOReaNGKkoKCggKSnJqUPPkQqPOxXdunWjU6dOfPzxx85trVq1YtCgQWWOmb3nnntcxsx6ihz+ZG6K/4Pe7rdvuebDSVjV8y9qHr2sHbt792f3lf1LjG3VW6fCCASdPUPTv1dx6erfabpuBSFnc8irUZNZ/1ntHF5my8vFHur4h04OfzInehj+NHToUFavXs2ePXuc23bs2EHr1q1JTk6mefPmJY6pah0S4+Nu/RyRdpDBzw4lIv0wOVF1WPDmbJfF7YyMtaCAmyc9TkqP69hy093O7bI+l7iDt/WqR49SCwoK2LBhA/369XPZ3q9fP2eY5kJ+/vlnunTpwtSpU4mJiaFFixaMGzeO3OIv1VYhqqqyc+dO3QwRMAp+89umTUQc3u/8eqx5a6yqnfTmbVj5yAQ++3IZ33zwPevv+j+PXpYLGEIjsuC4f4c/eUhhtRok9xnAohfe49P//o+Fr80kccR4l/dV7ht9O7c/9xAtVsZDsafCVYG8R71Db34LDg6mc+fOJCQkuGxPSEgoMyrdq1cvjhw5wpkzZ5zbkpOTsVgsNGrUqErtLUJvfvQGM2gA/+qISDvIHeOGEJF+mJMxTfjPtG9806HQSRvQctnPXLJuJdfPeJlO38/x+HgzlCkzaABj6fAoZl6ZMbOhoaEsWLCAjIwMRo0axYkTJ8p8r6K08DbgdKgnYR6AnJwcNE0rEf7Reyg4EOG4ohfVLEIlqvAYi/cLOLeoW0Wh4Kf6tXRP0+nTWH74AcusWbB2LVf0u52EcVNQhEZ6szbM+Xwxp2Li3AsFnwu0+fs6AaW+iKcAVq0ARQiEgs/D20Uh+9LTnofs1eBgUrtf46Kpdsouog6lUvtgCnFJa+DTN9GGDIGRI7G0aFElZS8nJwfAdPdTVdYRqqqSm5tbQp+7mqqCp59+miFDhtClSxd69OjBrFmzOHDgACNHjgTg+eef5/Dhw3zxxRcA3Hfffbz++us89NBDvPbaa2RkZDB+/HgefvjhMl/Urgr89ZCrKjGDBvCPjogjB7hj/IPUPJ7GiUZN+f6dL3w2BbcCWEWho671yRm9Y1v/wUQe3kfXb2fTZ9ZbCItC0u3DPDqHGcqUGTSAcXR4Nei7aGxaEUKIEtuK0DQNRVH46quvuOKKKxgwYADvvfcec+fOLdNJvnwRz2q1kpOTw7Fjx4DAvzjkz5dsvNUUouXSKD+VjJCGhIpc5wte1dXTFb60Vp6m1MREeO45aNQIy0MPwdq1aFYrwVo+CEGD/ANU186Q1agpMXmphGmOfzRj81II0RxlJS53D0GiAICmuckBvU6lvYgnFAs2VGpojo5wg/wDVFcd18BdTVZhR0FzeRGvaa4jnB8kCojL3eO8TqW9iOfOdSrxcmHhcacmNTaaz+f9zpa7HyCndjRkZGCZNg2lZUu45RY2z53r07J39uxZjh49itVqNeX9VFWaUlJS6NixI5s2bfLri3jlcffddzN9+nQmTZpEhw4dWLVqFfHx8cTFxTk1HzhwwLl/jRo1SEhIICsriy5dunD//fdzyy238P7771eJfaVhtVrp2LFjlXW0/IEZNIB/dCiqysCXR1LzeBqZsZf4tEMBjoc2GSE6eKdOUfhz+DjWPvA4AFd/MoW28f91+3AzlCkzaABj6fDonQp/jZn15Yt4Qgi2bdtGq1atCAoKMsxTyPI0+StSUcueyUlbtE8iFdpTT6F89BGK3fGuhIiLQ3nkEewPPsgH23O8fmntyb4tA3Kd3l+2t8xIRWTBMU4G1UFYrLqPVFQ0DSKqnafUfWgzZ2I5tyigungxSt++Pit7drud7du306ZNGxRFMdX9VNWRiuTkZFq0aIHVavXbi3h6o7LvVKiqyo4dO2jVqpUhGu3SMIMG8J2Oit6pqLdzM31mvcVvE6f7fJFQRWhEFh53tAGB7lgACEHvz96hy3f/RigKyhdfwAMPVHiYGcqUGTRAYHT4ZUXt4mNmi3cqEhISGDhwYKnH9OrVi++++44zZ85Qo0YNoOIxsyEhIYSEhJTYXuTM4k4tni4+A0pRWlVVZ2N64T5BQUFepRVFcaaLn9uddFm2e6KpvLQvNKEozn9mnR0K53allLTFGeZ12i4EVovFuRaCJToa7Hbo0weefhrlppvAanUUwB2OBqB4BeyatpaZLoqQBeI6lWqv0Byaz9nljSZnmlLSilJOurRrU/p1Kp4u20YL2IKZZmsBY6dT684nuWxFPH8pTeAPx0OCjj/ORdE0ttx0N4Vh1SlO0QuB7pQ9T66N0e6nqtZU1KHwRpNEcjGS3rI9//3XV1W34rWeUBQSR4zHlp9Hh5+/glGj4IYbIDo60JZJTIjXU8p+8sknzjGzs2fPZtu2bcTFxZUYM3vmzBlatWpF9+7dnWNmR4wYQZ8+fZg9e7ZbecrZPfxHZWY1Gtu3BQgBS5bApEnwwgtw882OH0+cgNRU6NzZp3lWhsrMgmHk2Z98RXDOaYY/cA2hOafJDa/FxkFDSBr4APk1awFylhG9Y5Z61Sw6JL7jwvrZWlBA/3eeY8OdD5Peol2ArAowmkafT9+i03OPQbdugbZGonP8MvsTGG/MrKqqzoWNJO6jCI3o/CPOoTEVIgT8+qujsrrxRli7FqZOPf97VFSpHQqz4bHfDIw9OIRVj07gZEwTwk5n0ePLDxj+4HV0m/8RQWfPVHyCc8h71Duk33yDGfxoBg1QRTqEoO+0iVy2Mp5bX34Ma36e785dCrptAywWVj72gmuHopxnymYoU2bQAMbS4dVKU6NGjWLUqFGl/jZ37twS21q2bFlimkF/4s9ZRMyCAFQlyK3ZKxpu28CVn70L2/5xbAgLc4RYx42rShN1iSd+MzpaUDDbbriD7X1vo3niEq745mPqpCbT84v36bDwS/jmK0cH0w3kPeod0m++wQx+NIMG8L2Obl/NpNUfP6NZrCwZ/zZqSKhPz38hhmkD1q+HZ56BH3+E2rVL3cUMZcoMGsA4Oky/fK3VaqVly5aBNsN4KBZOBtepcLc+H0+m04J5ji+hoTBmjKMzUde3L78ZBjf9ZiaE1Ury1QNIvuoGWqxaTM95M4hIOwhuLFwG8h71Fuk332AGP5pBA/heR4sV8fT8wjEqYtmYVzjQuZfPzl0mRmgDVBWGDoXt2+Guu2DxYrjgXSszlCkzaABj6dDB1ARVi91u5++//8Zut1e8s8SJIjTq5h+qMIR7uG1nNIuFLTfeBXv2OIY8XawdCtz3mymxWEi+egDzPvuN7979Apo1O//b5MmwfHmph8l71Duk33yDGfxoBg3gWx31d2yi/zvPAbBh8EMuq0pXJYZoA6xW+M9/oHp1WLbMEbG4ADOUKTNoAGPpMH2kQlEUIiMjy1xHQ1I6Asi3hLmEcC32Qi7/+Svya9Rke7/bAdhzZT/mfr6EUw0b0y4mJiC2ektVvGxdmt8uNoTVxpG2Xc5v+OcfePFFx/jdQYPgnXdcOhzyHvUO6TffYAY/mkED+E5HtZMZ3Pz6GGyFBeztfg2JI8b7yMKKMUwb0K4dfPkl3H47fPABXH45DB/u/NkMZcoMGsBYOkwfqbBarTRr1szQcxQHBMXCqaDacG6K0cbr/+SBkQO5+pMpXPXp24Rkn1s8S1E41bBxAA3VGRf4TQI0bux4x8ZqhZ9+gtat4aWX4Nzil/Ie9Q7pN99gBj+aQQP4TocaFMzxS1uTGXsJiya8i/CnX4zUBtx2G7z2miP92GNwbjFOMEeZMoMGMJYOA5T6ymG321mzZo0hwkZ6QhEa9fMOUD0znQFvPsXgF4ZT+8BezkZE8eeIcRRUDw+0ibqkyG+6Dn37m+ho+PBD2LwZ+veHwkJ44w1o2xYWL5b3qJdIv/kGM/jRDBrAdzrya9Rk4Wsz+f7dLymsVsNH1rmH4dqAF1+EO+5w1Mt33QXHjwPmKFNm0ADG0mH64U8Wi4WYmBjnwlIS9xCaoNHvf9D185mEnslGs1jZOPB+/jdkDPk15FzwZSFQyLGFn19wTnKe1q1h0SJYsACeeAJSUuD++7GkpMh71Atk3eYbzOBHM2gAH+hITYUmTYpOxtlI/y/wZrg2wGKBzz+HrVsdw1LPLZRphjJlBg1gLB0XRaeiaA0NiftE79/NlR+8jSIE6c3bkDD2DY43a13uMXJBOEBROG2LDLQV+kVRHGN4+/aFV1+Fdu2wREQQFxHh+F2Ii2OVWx8g6zbfYAY/mkEDVFJHcjJ06gS33YbtrnHYQwM0BacR24DwcFixAurUcXQyMEeZMoMGMJYO/Xd7KondbmfVqlWGCBvpicymLdh5+52sfHQC37z/3wo7FBIHitBomLfPOKHvQBEeDv/6Fwwb5rxH1Z9+gptugkOHAm2dIZB1m28wgx/NoAEqoSM/H+65B3Jy4OBB1KDgqjHQDQzbBtSr5+xQANgPHTJ8mbro74sAYPpOhcVi4dJLLzVE2CigpKTAjTcScXg/4AjhJg4fzz+3D0NYTR/Q8hkChVO2KOOEvnWAxWLh0rg4LE8/7Rge1bYtzJlT7mqvElm3+Qoz+NEMGqASOiZMgKQkxyJuX33l3xezL8DwbcCZMzBkCNbOnWles6ahy9RFf18EAP1bWEmMNBYtIAgBn33mmE5u8WKu/XCSY7uikGOrKYeieIr0m8dYLBZi4uJQfvsNrrgCTp2Chx92TD+bkRFo83SLrNt8gxn8aAYN4KWOX36B6dMd6XnzINBTmxu9DbDZYNMmlGPHaPDCC1iMqoOL/L4IEPq3sJLY7XaWLVtmiLCR38nMhIED4f/+z/F0ondv/njiVcARwm2Uu9d4IdwAI/3mOc57tHlzWL0a3noLgoPh558dnd0yFs272JF1m28wgx/NoAG80HHoEDz0kCM9dqxj+GSA0XsbMC0hufxP4gG+eHwy9qBgWLSIFaNfdP5mNC7a+yKAmL5TYbFYaNu2rSF6eH5l9Wro0MHxlCc4GN59F5YvJ7tBLOAI4WYG1zNuCDdASL95jss9arPBc8/BX3/BZZfBkSNw3XWwZUugzdQdsm7zDWbwoxk0gIc6hIAHH3Q8HOvcGaZMqXoD3cAMbUBm0xas+r9nAbjys3epnborwBZ5x0V5XwQY/VtYSSwWC3Xr1jXExfAbf/wBffo4nvK0aOH4B+6ZZxyLkxWhKORaaxg3hBsopN88ptR7tEMH2LABRoyAYcMcq79KXJB1m28wgx/NoAE81KEo8MIL0Lw5/Oc/EBJS9Qa6g0nagE0DHyCl29XYCgsYMPkZrPl5gTbJYy7K+yLA6N/CSlJYWMiSJUsoLCwMtCn6oXdv6NgR7r8f1q93/AN3AYpQaZy7G0WoATDQuEi/eU6Z92j16jB7tuNTREaGo1MskXWbjzCDH82gAbzQcf31sGOHY30FnWCWNkBBY/uoEeTUqk30/t30/uydQJvkMRftfRFATD+tj9VqpWvXroZY3rxK2bHDEZWwWh3DnZYtgxplP00RWEgPjkGYv9/pU6TfzuP2GFwhCBH12L48xVkex/Ztcf73ontXVeG+++D33+H11+H5512mQLzYkHWbbzCDH82gAdzUUVAA6ekQG1t0kH+McxOztAECCwfqtmHpuCn0fW8iKd2uoWOgjfKQi+q+0Amm71RYLBaioqICbUZgmT/f8TL2U0+dH3caHl7+MYpCvrVa1dtmNqTfPKcUn5XWIbEUFnCtrRbthIAXX2Tvb8tYMv7tEiu8u3RITIys23yDGfxoBg1QUkdp9UCPudPp+NMX/P7k6yRfE/gXs0tgljbgnI59V/RhztyEwC0mWAnMel/oGWN3pd2gsLCQ3377zRBhI59jtzvelRgyBPLyHC+7ujl7gCJUmpzdZfgQrr+RfvMcd32mBQXz+9g3SBj7BvagYC5du4x7x9xJ5MEUP1mqLy7qus2HmMGPZtAAFeuot3MzV/xnFiFncwK6FkV5mKUNKK7DpUNx6lTgjPKQi+W+0BOm71TYbDZ69+6NzWb6oIwrJ0/CDTfAe+85vr/4omOKTjf9ILBwOLSJ4UO4/kb6zXM89dnWG+/kv9O+JrtuQyIP7+Oep+6h0cb/VbGV+uOirdt8jBn8aAYNUL4Oa34eN0x9FoumsuOam9l91Q0BsLBizNIGlKpj3jxo0gSWLAmYXZ5wMdwXesPYpd4NFEWhZs2aKAaficEjUlOhZ0/HC63Vq8P33zvGoHsy/lxRKLSEGH4GC78j/eY5XvgsvUU7vvngO4606kDo6VNcP+MVLHb9P8XxJRdl3VYFmMGPZtAA5evoNWcaUYdSORNVh+WjXwqAdW5iljagNB3//ANZWY5Z+QwQsbgY7gu9YfpORWFhIQsXLjRE2Mgn5OfDNdfAzp3QqBGsWQODB3t8GkWoXHJ2h+FDuP5G+s1zvPXZ2chovp86jy033skvL3+AZguqIgv1yUVXt1URZvCjGTRA2ToabE+i04J5ACQ8/Sb5NWsFwjy3MEsbUKqOyZPh0ksd09GPGxc449zE7PeFHlGEECLQRlREdnY2ERERnDp1ipo1a1Z8QDGEEOTl5REaGmqIXp5P+PZbePttx8J2MTEeHep8MU4IrMKOqtiM/8TFn0i/eY6PfTY27Bh06QKhoT4wTr9Utm6rTL2qJyqrwwxthBk0QEkd0xKSsRQW8MCo26i9fw/b+t7G0vFvBdrM8jFLG1CKjrF9W8CqVY51rgAWL4b+/QNoZPmY9b7wB97Wq6aPVACGGIdWaYqHIu++G9at87hDcSGaclEUD58j/eY5vvJZbNJaxwrcN90E2dk+OaeeuSjqNj9gBj+aQQOU1KFoGvu69OZMVB1WPfpcgKzyDLO0AaXquOoqGDPGkf6//4PTp/1rlIeY9b7QK+Yo+eVgt9uJj4/H7uasR4ZDCJg0Cdq3h4MHz2+vZAFU0Giam4yCVkkDLy6k3zzH5z4rWoflmmvg2DHfnFOHmL5u8xNm8KMZNEDpOtSQUFY9OoG5ny8mr2ZkAK1zD7O0AeXqmDIFmjZ1/M/xkn7fbzHzfaFXTN+psNlsDBgwwDC9PI8QwjGu8ZVX4MAB+PVX350aC6lhLQw/g4W/kX7zHF/67GDHHrBiBdSp43ip8MorYd++Sp9Xj5i6bvMjZvCjGTTABTo0zfE5R2G1GgG0zH3M0gaUq6N6dfj44/PDu3Q6it6U94XO0b+FPsButxviYniEqsLIkfDZZ47v06fDY4/5NAuL0FBNEsb1J9JvnuNTn3XuDH/+Cf36we7djpnQfv8dWrf2zfl1hCnrtgBgBj+aQQMU0/HJJ9z90WckPP0mJxpfGmizPMIsbcCFOlwWI7Q0JeLzJZyKiYPfd5d7nkAuSGq6+0LnGL/UV4Ddbmfp0qWGCBu5TUEB3H+/o0NhscDnn8OTT/o0CwWNuLw9hg/h+hvpN8+pEp+1aAGrV0ObNpCW5hgKtX+/786vA0xZtwUAM/jRDBqgmI7UVJgwgYbbkxzvSRkIs7QB7ug4FRPnR4s8x3T3hQF0mH72J6Pi8kSgGBZ7ITe9/iTN1v6Bagsi/vl/sae36+wLlXkqUFa+EolRcCn/J07A9ddD27YwZw7odBXeQGCWetUsOiTFGDQIFi7kSOuOfPve156tsSTxO5EHU7jq07dYNuYVTtcrOUFMICMVEu+Qsz+VgRCC7OxsDNB3covgnNPUOnIAe1AwC1+bWaJD4TOEIEjL1+1YSd0i/eY5VemzqChYvtyUHQqz1W2Bwgx+NIMGcOg4++23sHAh2Gz8/uQk43UozNIGeKDj6plvcsm6lVz74SRd6TbTfWEUHQa7Wz3HbreTmJhoiLCRO+RFRPH9O1+wYPJn7O96VZXlo6ARk7fP8CFcfyP95jlV7rOIiPMdClV1TIe4aVPV5OVHzFa3BQoz+NEMGgDs2dnnh/I+/TSZTY33hNssbYAnOlY89gKqLYhL/lpB88TFfrDOPUxzXxhIh+k7FUFBQdx0000EBRl3tV1FVYnZvM75PbdWFIcu71aleQrFyr5qlyEUcz3drWqk3zzHrz6bMgU+/NCxlsX27VWfXxVihrpND5jBj2bQABD0zjtUS0+H2FhdT1VaHmZpAzzRcbLxpfx9zyMA9PlkCkG5OVVtnluY5r4wkA7Tdyo0TePEiRNomkGfGmga109/kTvHP0jbRd/5L18hCFHP6iqUaQik3zzHnz57/HHHatuZmY7ZoQw83azh6zadYAY/mkEDqopISABAmz4dahhjCtkSmKUN8FDHunseJatBLOEZ6XT7amYVG+ceprgvMJYO03cqVFXl77//RlXVQJviOUJw1ay3abvkR4RiIb96uN+yVtCoV3DY8CFcfyP95jl+9VmtWrB4sWN62cOHoW9fSE+v+nyrAEPXbTrCDH40gwasVuwrVpD04ouoN98caGu8xixtgKc61OAQVjw2EYBOP8wl8sDeqjTPLUxxX2AsHXL2J50yLSGZzv/9jKs+eweARc9OZef1AwNslUSif9yaaeTwYejVyzHNbIcOjpe5a9WqeuN0hFnqVbPokJREzkZoPAa+NJJL/lrOlhvv4vexrwNy9icjImd/KgNN0zh27JghwkbFafX7T84OxcpHJvi/QyEEYeoZ44dw/Y30m+cEwmcxMZCQAHXrwsaNcPvthrtmRq3b9IYZ/GhoDdnZMHUq5OUZW0cRZmkDvNSxYtREVo0Yz7LHA/9OjCnKE8bSof/l+SqJpmls3bqVq666CksApqbz5klL3N+rGPgvRxhx/R0P888dD/narApRENQuSOdwaFMEit/zNyrSb54TMJ81bw5LlsCAATBuHCjGul6BrtvMghn8aGgNkybBv/4FK1eiLVxoXB3nMEsb4K2OUw1i2XDXiCq0zH0MfV8Uw0g65PCnKsabTkXPOdPo9s0n7LjuVhaPf9t483RLJAHE41B7bi6EhVWNMTrGyPVqccyi46Jk505o1w7sdoiPhxtvdPlZDn8yNpbCAhrs3MxdT98XaFMkHiKHP5WBpmkcPnzYEGGjItY8NJbfJk5j6dNvBq5DIQTV7dnGD+H6G+k3zwm0z4p3KFJS4JtvAmOHhxixbtMjZvCjITUIAWPHOjoUN90EN95oTB0XEuj6zFdUUkdo9kkeGDmQwc8Ng+TAdA5NUZ4wlo6LolOxd+9e3V8MW14uFnuh83tynwFoQcEBs0dBEGE/gYLBK0Y/I/3mObrx2cGD0L07DBniGBalc4xSt+kdM/jRkBp++80xE1tQEEybBhhUxwXopj6rJJXVkRdei+z6jbDaC+GJJwLSyTJDeQJj6ZDDn6oYt8K3msYtk8YQnJvDrxOnk1/z4pqFRiLxJV7PNCIEPPQQzJsHNWvC6tXQtq1vjdMRRq5Xi2MWHRcV+fmOe2vPHnj2WXj77VJ3k8OfjE2tw/sY8sjN2AoL4ccf4bbbAm2SxE3k8Kcy0DSN/fv367qH13PeDJqt+Z2GWzdQ68iBQJvjQAjC7SeNH8L1N9JvnqMXnykKzJoFffo4ZqS5+WZdr2FhhLrNCJjBj4bTMH26o0NRvz68+KJzs+F0lIZe6rPK4gMdWTFN2HDHcMeXsWMd76/5EVOUJ4yl46KY/enw4cPExMTo8q35y5b9QrdvPgHg97Gvk96yfYAtcqAgqG4/zRlrhKFnsPA30m+eoyefTVu5j9Axb3PPnnuI3L+PQ9ffzA9T56LZgso9LhDzsOu9bjMKZvCj4TTcfjv8+SfccQeEn1/U1XA6SkFP9Vll8JWOdfc8SrfEXx1rAk2bBi+84EMry8cM5QmMpUPf1vkAm81Gz549sdn013+qt2sz/d5zTB37910j2HH9oABbdB6hWDga2hihmL6I+BTpN8/Rm8/yakby0+ufkF+tBo22rqf37KmBNqlU9Fq3zZw5k6ZNmxIaGkrnzp1JTEx067jVq1djs9no0KFDFVvoil796AmG09C8OfzyCzz4oMtmw+koBb3VZ97iKx32sGrw1luOL5MnQ1qaD6xzDzOUJzCWDmOXejdQVZU9e/bobnnz0OyT3DzpCWwF+aR0u4bVDz0daJNcERoRhZkg9B9u0xXSb56jQ59lNWrK4uccnYmYrRuw5fk3bO8Oeqzbvv32W5566ikmTpxIUlISvXv35sYbb+TAgfKHdZ46dYoHH3yQ6667zk+WnkePfvQUw2jIz3f9fsHaMIbRUR46rM+8wpc67rvPMQlG9+5+HQJlivKEsXTov9tTSYQQnDx5kiZNmgTaFBeun/4yNY+ncbJhHIsmvIOwWgNtkgsKEKLlohBp8Dks/Iv0m+f42me+erkzpcd1/PzKR+zrciVqSKhPzulL9Fi3vffeewwfPpwRIxyLX02fPp0lS5bw8ccfM2XKlDKPe/TRR7nvvvuwWq389NNP/jIX0KcfPcUQGjTN8b5SmzaOF7Ojo0vsYggdFWCWNsCnOhQFFi2CiAi/LjJqhvIExtLhVaTCSOFtm81G165ddRc2WjvkcY5d0pJfX36fgurhFR/gZ4Ri4VhII8OHcP2N9Jvn6Nlne3td79qh0NHLl3qr2woKCtiwYQP9+vVz2d6vXz/WrFlT5nFz5sxh7969vPLKK27lk5+fT3Z2tssHcD7FU1W11LTdbndJF+iNNmwAACAASURBVH/psXPnzthsNpfthYWFLumiiRKL0kKIEmnAJa1pmkvabreXm1ZV1SXtriabzUbHjh2d462L69CNpnnz4K+/EN99B+fsvlBTkQ7l3D+eitCc91zZabX8tBAl0w5R5aS1CtJaqemiv8dCGjl/O29v8bT+NRXXoZSpw31NhdWro11Q3oqnq6LsKYpCx44dsdlsHt1PRenS7qFA3E8Wi8VFhzd1hDeavMHjVtxo4W1VVdm5c6fuwkaZTS/jq5kLyLikZaBNKR2hEVlw3PghXH8j/eY5BvCZoqp0/+IDbpj6rG46Fnqr2zIyMlBVlXr16rlsr1evHkePHi31mN27dzNhwgS++uortztHU6ZMISIiwvmJjY0FYOvWrQDs2LGDHTt2ALB582Z2794NQFJSEqmpqQCsW7eOgwcPAo6HXRs2bEBVVVatWkVGRgYAy5YtIysrC4ClS5dy+vRpAOLj48nLy8NutxMfH4/dbicvL4/4+HgATp8+zdKlSwHIyspi2bJlTv+sWrUKgLS0NGdH6+DBg6xbtw6A1NRUkpKSnL7ZvHmzW5pUVWX58uXs378fgDVr1pB2buy6HjRtWr0aJjreHzzy8MNQv36pmlRVZeXKlaSkpABQL/8Q4arD3gb5B6iuOuyNyUslTMsBIDYvhRDNMaQmLncPQaIAgKa5yViFHQWNprnJKGhYhZ2muY5IZpAoIC53D+B4Ih+b58gzTMshJs9RTqqrp2mQ7/jfJlzNol7+IQAi7CepU3AEgMjCTGoXHD2XPk5kwTEiC45Tu+AokYWZANQpOEKE/aThNEUWnNNTeBygUpqcZS8zk8O3307ul18CVVv2UlJSWLlyJaqqenQ/gWsdEej7af/+/SxfvhxVVb2uI7zR5A0er1PRrVs3OnXqxMcff+zc1qpVKwYNGlRuePuee+6hefPmzvD2xo0b3c6zMvOQq6rK5s2bad++PdYADDEqPhQj7GQmNY8fIb1FO7/b4SmK0KhdcJTM4Pq6fIKsV6TfPMcIPoveu5P7R9+ORVNZOvYNtt14p8vvgZj9qbJ1m6/Xdzhy5AgxMTGsWbOGHj16OLe/+eabfPnll+zcubOE/d27d2f48OGMHDkSgFdffbXC9iE/P5/8YmPzs7OziY2N5cSJE0RGRjo7WVar1SVtt9tRFMWZtlgsWCwW8vPz2bZtG5dffjlCCOf2wsJCrFarM22z2VAUxZkGxxO+4umgoCCEEM60pmmoqupMa5qGzWYrM62qKkIIZ7o0HaVpAti4cSPt27cnKCjIRV/xdKA0/T3sSbrP/4isBrF8OetX7CGhzqffQrGgCA2BY8hN7fw0MoPrISy2c9sVUJRy0ioCS9lpQEFzTStWx1P6MtPCUReVmdZQztlePK2ce9ofVXiME0F10RQLFNN3Pq1/TZZiOoRicblOnmoa2++y82Xvrbdg4kRE48YoO3dSaLNVWdkrKChgy5YtLqNj3LmfLqwjAn0/FRYWsnnzZqcOb+oITzWdOXOm6tepMGJ422q10q5dO2fFG4jQFUKgaCr9/vU8dz95D22W/HBuu2vY1BchRl+FTUGQEdIQgVKpULCeNPkqvF2eJqFYHP8cU1H43jiaqvo6CRTHPxFFjZwONWVc2pI1w54E4JqZbxCdutNFRyCGwAB07NgRIYRfw9tlER0djdVqLRGVOHbsWInoBTie1q1fv57HH38c27l/LCZNmsSmTZuw2WzOp3cXEhISQs2aNV0+gLNjZbVaS03bbDaXdNFQoZCQEDp16oTVanXZHhQU5JIuakOK0oqilEgDLmmLxeKSLvrnoqx0kQ3l6ShNk9VqpXPnzs68iusIuKb0dDp/9zkAfw5/Bvu54YRF/6gWpTn3PSM0BmGxFduuVJC2lp9WlJJph6hy0pYK0pZS00KxoFlsZIQ0RLPY4AJ9RtJUXMeF18kbTc6y99RTEBuLcuAAvPdelZa94OBgOnfu7LxHvK0jAn0/BQUFuejwpo7wRpM3eHSkEcPbqqry+++/c/jwYSAwoatwNYsrf/yIS9atRFgsFDStC5QSNvVBiNFnYdPcFKIK0qmmnqlcKFhPmnwV3i5HkyI0GuXtdSwaZBJNVX2dgrU8muQmowhN15qO33wV+7v0Iig/j4FvjiE4P8epKRBDYHbt2sXWrVv5559//BreLouiBjwhIcFle0JCAj179iyxf82aNdmyZQsbN250fkaOHMlll13Gxo0b6datm89tLA1VVdm6datuhpF5g641vPQSQfm5HGndkd29byh3V0VoRBWkn39QYEDMoAGqUEe1audXUJ8yBY4c8e35i6Hr+8IDjKTDo+FPRgxvCyHYtm0brVq1KhEW9kfo6oPlKUTv3cm9T9yJrbCAZaNeZPPA+0sNm1Is7U2I0ZdhU4tQqWXP5KQt+vzTDC9CwXrS5KvwdnmaFCCy4Bgng+ogLFZTaKrq66RoKpGFxzkZXNcRGdOxptCskwx59FaqZ2WyfvBDJD7yHAoaT/Zt6XUd4e0QGFVVSU5OpkWLFs4nU/4Ib5fHt99+y5AhQ/jkk0/o0aMHs2bNYvbs2Wzbto24uDief/55Dh8+zBdffFHq8e60DxdS2WFcqqqyY8cOWrVqFZAhsr5Atxqys6FZMzh+nG9mfMvRVuVP0qIIzVEXBNXR7VDIijCDBvCtjhLDQ4WAXr1g7VoYOhTmzq3U+ctCt/eFhwRCh7f1qkfThngb3k5KSuLxxx8HHGH+ogZz6dKlXHvttSWOCwkJISQkpMT24qGdC7cBLpGQ4un27duXur0o5ORp+sLQVVGoqLS0taCAG98ej62wgJRuV7Np4APOcCCKxTlVW/GbtnJpa8VpSkkriktaU2ycCL7gmirK+ZU1XdLndehZk2u6NB2V1ySAEyH1TaXJ/bR3moTF6uozHWvKjYzm97FvMPCVx+j841xSu13NoQ7dXcLeDhPdryMuTJdVv12YtlqttG3bluKUVQeWVe/5mrvvvpvMzEwmTZpEWloabdu2JT4+nri4OMARnaloUg9/U5ofjYZuNdSsCbt2sfit2RV2KMBx75VodwyGGTRAFetQFJgxA664wjEr2Jgx0Lmzz7PR7X3hIUbS4VH304jhbVVVSUpKCljYqPv8D4nel0xOrdosfXry+Q6FzlGERnT+EcOHcP2N9JvnGM1nKT2uZcuNd2EPDqFGRnrA7Ah03VYWo0aNYt++feTn57Nhwwauuuoq529z585lxYoVZR776quvehSl8AV69aMn6FpDZCQ7rh/k1q5GqwtKwwwawA86unaFBx5wpN1839ZTdH1feICRdHg8wfnTTz/NkCFD6NKlizO8feDAAefwpuLhbYvFUqJ3VbduXUJDQ/3a6woLC/NbXi5s2UKX/84G4I8nXiM3snZg7PACAahKkKEX7wkE0m+eY0SfrRw5gQ13PMTJ2EsCakfA6jaTYQY/6kqD3Q4JCXDDDR49SDNiXXAhZtAAftIxeTLUqgUvvVRlWejqvqgERtHhcafCaOFtq9VKy5YBWguiTRtWPTqB2vt2s/fKvoGxwVsUCyeD6wTaCuMh/eY5BvRZYVj1gHcoAlq3mQgz+FF3Gv79bxg5Em67DX780f3jDFgXlMAMGsA/OmJj4YMPquz0ursvvMRIOrx6+8ZI4W273c7ff/99fnpXf2KxkHTbUH4f+4b/864kitCom3/I8CFcfyP95jlG91nMlvVw/fWOl1L9SEDrNhPx/+ydeXxM1/vH33eWLCKyIEFK7GsotS+hlNiKaqta3RRVqq2tSquLbrT1U9qq0uq++Kq2qpoglhKkdhqxxU4iEWQVyWSW+/vjysiemWQyM/dm3q9XOHOXc8/nmXOeM+eeTQl2dCoNGRnw5ptS+N57rbpV7r4AlKEBHKTDxitBOVW5qABy0iHfpQksRBAE/Pz8zBMp7cLFi5Cdbb/nVQIioFN5yr4L19647GY9craZYDQwYNFrsHUrvPqqfZ/tCN+mQJRgR6fS8OGHkJwMzZpJvRVWIGdfkIcSNICddVy7Jg2Vu/tuSE+3WbROVS4qgJx0WL2jtiOw9c6vlYrBAF27SgVjzRoWX/dydIpcuHBRidQ//C8Pzx4rfYiKgtBQh6bHUmTlV0tBKToUweXL0Lw55OTA2rXwgDRBe/HmOAcnzIUzozLoeeK54dS8fI59oyeye/xMoJilaF3YjfL6VcX3VBgMBqKjo+3XbbR0KRw6BDduQL169nlmJSCIJurkXJJ9F669cdnNeuRus8sdusOECdKHCRMg3x47lYndfZtCUYIdnUbD3LlSgyI0FEaMsPp2ufsCUIYGsK8Ok0bLrgmzALjnj+/wTrbNMCinKRcVRE46FN+oUKlUBAUFVWjbcYu5fBlef10Kf/QRFLN3h1wQEcjSeN/ZD8CFRbjsZj2KsNnChVCnDsTFwaJFdnmkXX2bglGCHZ1Cw8GD8OOPUvjjj8u1fLoSfIESNID9dZzr1pfLd3dBo8+l57eLbRKnU5QLGyAnHc6fwgqiUqkIDg62z5fxwguQlSXtFDl+fOU/rzIRBDI1frLZV8NpcNnNepRgM19f+L//k8LvvSfNq6pk7OrbFIwS7OgUGnJzoU0bePxx6NSpfHEowRcoQQPYX4cgEPXsbABabf2LgLjYCkfpFOXCBshJh/OnsIIYDAaioqIqv9soIgL++gs0GlixAmTw5ZeGIJqol3NB9l249sZlN+tRjM3GjIHevaVFGr77rtIfZzffpnCUYEen0NC9Oxw5Ap9/Xu4olOALlKABHKMjuXkIx/tLw+Z6f/khVHDKr1OUCxsgJx3y/uVrASqViiZNmlRuCy83F6ZPl8JTp0pva2SOiEC6xl/2Xbj2xmU361GMzQQBli2D//3vzpKalYhdfFsVQAl2dBoNGg34+JT7diX4AiVoAMfpiB47DYObO97Xk6RVxCqA05SLCiInHVZvfic38saiVSrp6dC0KaSlVerOkHZFEMjSuFZSsRqX3axHSTZr08ZuLxXs4tuqAEqwo0M1fPut9ONv6lTw8KhYXErwBUrQAA7TkRlQj98//Jak5m2ZWsF5qUoo2yAvHc7f7KkgBoOBbdu2VW63Ue3aEB4udf1W4C2NMyGIJu7KPiv7Llx747Kb9SjWZunpsGtXpUVvF99WBVCCHR2mIT0dXnkF5syBn3+ucHRK8AVK0ACO1XGlTUdMWrcKx6OEsg3y0qH4RoVKpSIkJMQ+3UZ161b+M+yEiMANt0DZd+HaG5fdrEeRNjtxQuq9HD4cUlIq5RF29W0KRgl2dJiG+fPh+nVo2RKefrrC0SnBFyhBAziJDr0eli8v94Z4SijbIC8dzp/CCqJSqQgICKicLyMmBiZOrPC4P6dEEMhWV5f/Chb2xmU361GizZo3l5aYTU2F99+vlEdUqm+rQijBjg7RcOECfPKJFF64UJpPUVGU4AuUoAGcQ8fDD8PkyfDBB+W6XQllG+Slw/lTWEH0ej2bNm1Cr9fbPvLXXoOvvpK6fxWGIBppkH0aQTQ6OimywmU361GkzdTqO0vMfvYZnDtn80dUqm+rQijBjvbSsHhznPnv5LgXQafj0t1dWezWrMC5wn+WogRfoAQN4CQ68jYVXbwYLl2y+nYllG2Qlw7FNyrUajWdO3dGrVbbNuKdO6V5FBrNnQ3vFISIiqtuQYjKzyI2xWU361GszQYOlP70emnMuY2pNN9WxVCCHe2tIfBkDC3/+RtREIh6bo7N3mYrwRcoQQM4iY7774e+fUGnk17iWokSyjbIS4e8c70FqFQq/P39bdttJIp3fiRMmCCNnVYagoBOXU3+Xbj2xmU361GyzRYulPasWbMG9u2zadSV4tuqIEqwo701hH69EIDj/R/gWtPWtotYCb5ACRrAOXQIwp0e359/hgMHrLpdCWUb5KXD+VNYQfR6PeHh4bbtNvr7b4iOBk9P5SwhWwhBNNLw1inZd+HaG5fdrEfRNmvbFp58Ugq/9ZZNo64U31YFUYId7a1h64vziAsdSPTYaTaNVwm+QAkawDl0LN4cx+Ib1c0b4sWPe57FkadKHWqXf7idEso2yEuH4hsVGo2G0NBQNLaYRAZgNN7phps6FerVs028ToaIigSPhrLvwrU3LrtZj+Jt9uab4O4OtWpJG2XaCJv7tiqKEuxobw2pDZoQ/san3Kxdx6bxKsEXKEEDOJeO3WOnY3Bz566j+2n871aL71NC2QZ56XD+FFYQQRCoUcOGG7isXg2xseDrq8gJ2mYEAb3g7uhUyA+X3axH6TZr3FiaZBgQYNNobe7bqihKsKO9NLhl3STXq3rlPUAJvkAJGsCpdNwMqMuhB8dS51QM6XXrW3yfEso2yEuH45uglYxer2fdunW26zbq2xdeflka9uTnZ5s4nRBBNNL41gnZd+HaG5fdrKdK2MzGDQqoBN9WRVGCHe2iISWFZ8b2p//i19Heulkpj1CCL1CCBnA+HdFPv8TvH3zLjUYtLL5HCWUb5KVD8T0VGo2GsLAw23Ub1a0rTb5UOCIqLno0dYquTznhspv1VCmbnToFv/0Gc+dWOCqb+7YqihLsaBcN771HtfRU6p74D4O7Z6U8Qgm+QAkawPl0iGrr87YSyjbIS4fzp9AGyOGLcEZMgnM4E7nhspv1VAmbpaVBhw6QnQ29ekGfPhWO0uXbbIMS7FipGs6ehaVLAYh6dhZiJS5tqQRfoAQN4Jw6PDJS6fbT5+g9qrF73Iwyr1dC2Qb56HC+HGNjDAYDERERGAyGikW0YYO05vzu3bZJmJMjYKJRdhwCJkcnRVa47GY9VcZmvr4wdqwU/uijCkdnM99WxVGCHStdw5w5oNdzoWMvLnbuXTnPQBm+QAkawHl11DkZQ4c/f+Se37/BJ/FyqdcqoWyDvHQovlGh0WgYMmRIxVp5ogjvvQeRkbB2re0S58SIqDjv2dxpuj7lgstu1lOlbDZzprRvRUSEtOBDBbCJb3OhCDtWqobdu6UheyoVO5+dZfv486EEX6AEDeC8Oi507s3Fe3qi0evp9fX/lXqtEso2yEuHc+WWSqLCrbsdO6R9KdzdpR8FVQSV6FxvKOSCy27WU2Vs1qQJPPigFP6/0itES5DDmys5oAQ7VooGkwlm3B5iMm4c1xu3tP0zCqEEX6AEDeCkOgSBqImvIAoCzaM2UvfYoVIvV0LZBvnoUHyjwmAwEBkZWbEvZNEi6f9x46SJ2lUAARPBOWecruvT2XHZzXqqnM3ylqL+5ReIjy93NDbxbS4UYcdK03D2LJw5A15e8O67to27GJTgC5SgAZxbx/XGLYkd+BAAvb/8UBpNUgxKKNsgLx2CKJbwbTgRGRkZ+Pj4kJ6ebv+1es+cgebNpUx76pQUtoL8uzu6cOHCBcDDLz9J/Zh9HHh4HJ3WfO2QNDjUr9oQpehwWlJT4eBB6N/fVZ+5cBq8biQz9pmBuOXcIvy1xcTdO8R8bvoA636nuShKef2q4nsqRFEkIyODcredPvtMalAMGWJ1g0LWiCJak67ENwAuSsBlN+upgjY7OGo82TV8ueVbs9xxVNi3uQCUYcdK1eDnB/372z7e4lCCL1CCBnB6HVk1AzjwyHgAuvxvebHpVELZBnnpcP5ZHxXEYDCwc+dOwsLC0Gq11t2ckQHffgvA770e4lIVeksjYCIo5wIXPZsiUnnLByoNl92spyra7Hzn3qz8aTsGD0/Ku5ZOhXybCzNKsKPNNSQnS/MIR4wAQah4fBaiBF+gBA0gDx0HHxqHW/YtDjw8vth8qoSyDfLS4Rr+VBo5OfDDD5z+4Tf+fvMzuzpXFy5cVA0c1VWvlGFDStHhVEyeDMuXw5Qp5v0pwDWc14U8cA1/qjiu4U8lYDKZSElJwWQqx2QjDw+YOJG/31pa9RoUooi78ZbTdn06LS67WU9VtpnJBBs3wqHSVzAp/tYK+DYXZpRgR5tqOHYMvvxSCj/ySMXjswYl+AIlaABZ6vC7fK7AZyWUbZCXDsU3KoxGI/v378doNDo6KbJCwERgboJTrvzgzLjsZj1V2WY9vv8EBg+G+fOtvtfl22yDEuxoUw2zZkmN3ZEjoXflbXRXHErwBUrQAPLSodbl8MBrE3hy4rACDQsllG2Qlw7X8KeSePllaU35xx9n8d4k+zzThQsXVYqa5+N46rlhoFbDpUtQr57dnq2UYUNK0eEUbNoEgwaBViv1WDRrVuC0a/iTC2dlxBuTaLz3H85270eT6K2OTo7scQ1/KgGTyURycrJ13UYJCbB4MTz/PFy9WnmJc2ZEEU/jTVl1fToFLrtZTxW22Y1GzaFXLzAa4WvrlpYtl29zUQQl2NEmGoxG6WUaSHMpCjUo7IISfIESNIDsdEQ9OwuTSk2Tf7fB9u2AMso2yEtHlWhUxMbGWvdl/PCD1P3bq5djHKsTICBSM/cqAvJwKM6Cy27WU+VtNmmS9P+XX4IVmxuVy7e5KIIS7GgTDd98A7Gx0hKyb7xhu8RZgRJ8gRI0gPx0pDZoQszQ0dKHmTPBZFJE2QZ5+SjFNyo0Gg39+vVDo7Fw9VxRNC8jyzPPVF7CnBxRUBHv2QRRUHwWsSkuu1lPlbfZQw9BzZrS7tobNlh8m9W+zUWxKMGONtHQuDG0bg1vvQX+/rZLnBUowRcoQQPIU8eeJ19EV626tPDFTz8pomyDvHyU86ewgphMJhITE6lbty4qlQWFY/duOH0avLxg1KjKT6CzIop4GTPJUntXvZWvKoLLbtZT1W3m4QHjxsHChbByJQwbZtFtVvs2F8WiBDtao6HkeRH1ERatQRBFTI6aO6EEX6AEDSBLHdm+/ux77DlCv14Er72GaeRIEjMyZF22QV4+qko0Ks6ePUtgYKBlX0ZeL8WoUeDtXbmJc2IERHwMKdxSV0fkjkNRIeKuEkEmXaL2RhBFahnTEFXVEGXiiO2LgEEEvSjA7XxVUl6rUowdKzUqLl4EvV6aKFsGVvs2F8WiBDvaSoOo1jjUsyvBFyhBA8hXx+GRTxO69XdQqzGdP8/ZtDRZl22Ql49yrf6Un5s3oU4dyMqCqCgIDQVcK17k4a020sI7Fze1fByMC+fDJEKKDi7cciNXdG4HaQ/MGzXFxkKbNnZ7K6iUVZOUosNeFK7PwhbO4UZwUw6PfAqT1s1BqXLhwnZMr2+CRo3A3d3RSZEt5fWrVaKn4vLly9SvX7/sFt6NG9C3L5w5I03SrsqIIt7GNDLVviAIqBBp4Z1LLb8aePv4yaY71O6IoMKACQ0yerljP0QRo8FAtdTrVNfoOJzugShSIK9VWUJCrLrcKt/mokSUYMfyaqh/+F/abF6LSaXmfNd7SQluWomptIBC9Y4sUYIGkLeOli0BZZRtkJeOKtGoSEhIICgoqOwvIzgY1q8HnU5+hcjGCIh4GTK5qfZBRMBdJeKmFvD28UPr7uHo5DkvoohGFDAI2iqfh0pC6w7+GjXZOZdxV4nojBTIa1We7GzIzQUfn1Ivs8q3uSgRJdixPBoEo4F7v5A2Xfxv2BjHNygoWu/IESVoAGXoMOXmYlyyBNPw4aj69nV0csqNnHyUc6fOBmg0Gnr06GHdrHlXlxmioCLJo0G+lR9uj5Jz/VAuHUHAoHJz2akMBEGFNKtCLCavVWE+/hgCAmDJkjIvLZdvc1EEJdixPBra/f0/al2II7uGL/8++UIlps5ylOALlKABlKFD89FHNF6yBM20aVYt1+1syMlHyTe3WIjRaOTMmTNlb29+6JA0SdKFhGjCR38DROdfF9mpEEXUokE2GwY5Ba68dodataS5XatXl5mHLPZtLkpFCXa0VoNHRio9fvgUgOinp6Kr4VuZybMcJfgCJWgARegwTpqE0ccHYmLgq68cnZxyIycfpfhGhSiKpKamUuZ89JdegoYN4Zdf7JIuZ0cA3E3ZMu30dCyCjJ2wI3DltXyMGAFubnDihDRxuxQs9m0uSkUJdrRWQ/fvP8UjM51rjZpzdMgjlZw6y1GCL1CCBlCGDtHfn/hnn5U+vPEGpKQ4NkHlRE4+yvn7UiqIRqOhc+fOpV90+bK0PwVAnz6VnygZIAoqkt3vcnQy5IcgYBDst4JKHR9Puz2roiSlZxd73JXX8uHjA4MHw7p1Um9F27YlXmqRb3MAy5YtY+HChSQmJtKmTRuWLFlC6O2V9Arzxx9/8MUXX3DkyBF0Oh1t2rRh3rx5DBw40G7pdVY7WoM1GjxTbxCy8TcAtk+ei6h2np8BSvAFStAAytCh0WgIXrBA2lT02DGYNw8+/dTRybIaOfkoxfdUGI1GTp48WXq30dq10v89e0JQkH0S5uyIJvxyr8m669MhiCJqk32GPyVeSWD519+TlJ4ti7+SbebKawV45Pab4z/+KPUyi3ybnVm9ejXTpk1j7ty5HD58mNDQUAYPHsylS5eKvT4qKooBAwYQERHBwYMH6du3L8OGDePw4cN2S7Mz2tFarNGQ7VeTn774k13jZhLfvpsdUmcFSvAFStAAitBhNBo5eeYMxo8/lg4sWyY1LmSGnHxUuRoVy5Yto1GjRnh4eNCxY0d27txZ4rV//PEHAwYMoHbt2tSoUYPu3buzadOmcie4PGRnl/KDBqS3ggAjR1Z+YmSCAKhFvay7Ph2FYKfto/7Zspm+/cPs8qzKxJXXCjFkCGg00hCo06dLvbRM32ZnPv74Y8aPH8+ECRNo1aoVS5YsoX79+nzxxRfFXr9kyRJeeeUVOnfuTLNmzZg/fz7NmjVj/fr1dk23s9mxPFijIbVBE/Y/OrESU1M+lOALlKABlKMjOzsb7rsPHngAjEaYOdPRSSoXcvFRVvd75r2JWrZsGT179mTFihUMHjyY48eP06BBgyLX572Jmj9/Pr6+vnz77bcMGzaMvXv30qFDB5uIKA21Wk2HDh1K3MDOPTOdSdt3oAK+qdmOdNdGd4DU9XndvZ6jkyE/AB/s8gAAIABJREFUhNvLydqB9PQ0fHydZIJlBXDltUL4+kr75WzeLL3wePnlYi/L823OQm5uLgcPHmTOnDkFjoeFhREdHW1RHCaTiczMTPz9/SsjicXibHYsDxZpuHULTp0CvOySpvKgBF+gBA2gDB0FysWiRVIZ+PBDxyaqHMjJR1ndUyG3N1FGo5HY2NgSJ8822rcDlcnI9eBmpAcF2yVNckAQTfjnXnVNOrYWUURt0lf68KesrCy8vKpX6jPshSuvFcOkSfDee9LE7RLI823O0iV+/fp1jEYjgYGBBY4HBgaSlJRkURyLFi0iKyuLRx4pefKwTqcjIyOjwB9gtoPRaCw2bDAYCoRNJpM5vqNHj2I0Ggsc1+v1BcJ5kyTzwqIoFgkDBcImk6lA2HB7WcuSwnlpKE1HcZqMRiMxMTHmZ+XXYQ7Pn4/YqRNdf/ocAEE0mv2UOSyKRcOSqFLCpjLCpmLDQqFw3jl/XRKCyZDvuFhGuBgdDtSkMhnwz72KymQwDx3K0ycnTfl1FP6enF1TXhnKzc0lJiZGKiPBwRgjIuDuu632ESWF7eUj9Hr9HR3l9BHl0VQerGpU5L2JCgsrOOTC1m+ibF1pmEwlZ/LG/24D4Fz3vg53Rs5VcItJ++3P0v/5w2IFw1QsLBYTLpJGa8MV0JSfStK0Y9sW+vTtbz9NpaT3wN49DO3fhwcGD+DxUSNJT0uzTFMBG915jjLLU+maivywHD4c5s7F2LhxmX6vsA+s7EqjLIRCe7SIoljkWHGsWrWKefPmsXr1agICAkq8bsGCBfj4+Jj/6tevD0Ds7dWyTpw4wYkTJwCIiYnh9O0hZIcPH+b8+fMA7Nu3j8uXLwOwZ88esrKyAKln/fr16wBs27aNtLQ0ACIjI8nMzAQgIiKCnJwcDAYDERERGAwGcnJyiIiIACAzM5PIyEgA0tLS2LZNqmOuX79OVFQUAImJieY68/Lly+zbtw+A8+fPm+eTnD59mpiYGIs1JSUlER8fD0B0dDSJiYlmTal798LChQgmExm3RxQEZ59BK+YC0Cg7DrVoQMBEo+w4BEyoRQONsqWee62YS3D2GUBaEah+zjkAPE1ZBOVIz/cyZlJXJ82d8TamEaiT0uJjSKV27hUA/PQ3qJmbdDt8DT/9NQBq5ibhp78BQDXTTWoYJLsH6uLxNkrhurpLeBml7yAo5zyeJuk7q59zDndTthNpkvJPTX2yWVPt3Cv4GFLlpUmffDt8vdjvyZk1rdmwncWb4/hp8wFOXYjns62n+XHjHn7ZsFM6vjGaNasjWLw5jl827OTHjXtYvDmO1RujivURhcuTvX1EfHy8+cVMRXyEtZrKgyBasUbVlStXCAoKYvfu3fTo0cN8fP78+Xz//fecOnWqzDgWLlzIBx98wIkTJ0qsOObNm8fbb79d5HhUVBShoaHmyiMkJITDhw/j6elJy5Yt2b9/P35+fjRt2pTo6GiCgoIIDg4mKiqKk1nVyNLU4K7ss9xwCyRbXZ0G2adJ0ftQ7/AB3Op5cKpJT/QqdxrfOsFFj6aYBBWNsuM479kclWgiOOcM56q1QmvSEZRzgQvVWuBuvEVgbgKXPJvhabxJzdyrxHs2wcuQgY8hhSseDfE2pOJlyCTJowE++hu4m7JJdr8Lv9xrqEU9193r4Z97FYAUt0Bq6a5gFLSkutUmQBePTuVJurYmdXIukaXxJlPjR72cC6Rr/IvVdNUtCJ26Gg1vnSLBo6FNNN3wasg9fjoa3BWE4OGNSjSgEk0YVG6SQ8gLmwwIiBhUWumNPWBUadGY9IgIGFUaNKZcREGFUZDCJkGFSdCgNekwChpMghqtSYdB0CAKatxMOegFN0RBVSDsbspBJ0gbFbqLuoJhlQeCaEIr5pJbJGxEIxrQq9xRiUbU5rBlmtb+/ht/h4fzzTff2lzToyMG8/y0l+l9b79SNX26bAWTp7xoM00V+Z7ik67h7euPr4eKld/+QEpKKq/MnFrq96TP1XH10ln2p1XDYDBUufJkK01jh/Ys1e81adKEoKAgtm3bRkhICAEBAWzatInOnTuj0Wjw8fEhPT2dGjVqlOm7yyI3N5dq1aqxZs0aRuabnzZ16lSOHDnCjh07Srx39erVPPPMM6xZs4ahQ4eW+hydTodOpzN/zsjIoH79+qSkpODn52duYKnV6gJhg8GAIAjmsEqlQqVSlRjW6/Wo1WpzWKPRIAiCOQxSYy1/WKvVIt5+U6rVajGZTBiNRnPYZDKh0WhKDBuNRkRRNIeL02G1Jr0e9ZAhCFu2YBo4kE+mLwGVCkE0IqICQbgTBgRMBcOCWmoAlxiWNrAsOWxCgCLhvAZ1XlgEKDYs3E5jSeFidLg0uTSVoAmTidCvFtIu/H/8/PkfpNVvVEDHi/c1q3o+ohhNN2/eLFf9UK5GRXR0NN27dzcff//99/nxxx85efJkqfevWrWKCRMmsG7dOvr371/idbasNERR5MiRI+y8Xg1RpXbKTO6MBVclGvHXJ3NDGwiCgIdapIOfnqD6DdC6e9x+0yxKO0fnZaFyhwVpVlh5w9xOS/6wIBRKo7Xh4tNrMhrp1iGE71etoXGTprw2azpR2/8hJeUGdevW4/mXpvPUE2OkeRW379XpcmnbPJg9h2Px969VqqbonVG8+eorbNm5p4Amk8mISq0GUQp//eUXPDvphQJp//rLZaz+5WdOHo+lX/8wvlu1xu7f088/fEdKyg1enDaz1O9Jn6sj4fJFDqdqyTFIb8BuuNdFRFBkeSqPJresmzTctwP3WzeJuf+xIpoQTfQJkJZhVavVdqs0SqNr16507NiRZcuWmY+1bt2aESNGsGDBgmLvWbVqFePGjWPVqlU88MADVj8zIyOjQjryhg61a9cOtVpt9f3OQKka1qyRVhRzd4fYWBafd95hhoJoknyBWx3Z7uSsBA2gDB3FahBFRrw5icZ7t3OpfTd+//A7qY67zfQBzR2T2FJwhI8qr1+1aqJ2rVq1UKvVRcbHJicnFxlHW5jVq1czfvx41qxZU2qDAsDd3R13d/cix/OMmd+o+cP5tzDPCxuNRry8vBClHrsChUMU1GWHKSYsCKWEhTLCqjsjP/KFC6arImHbaDKhwihoEQUBBBVgNJ+T/jf/U6BAOixMMWGhIuHin7Nl8yZ8/fxp1SaErKwsAurUZc26CIIbNeLQgX2MeegB7qpXl973hZnv3b1rB61at8G/Zq0ydXTvFUp6ehr79kbTpVsPjEYjH3+0AINez6tvvg0CHDywj46duxRJe5269Zg+azZR27eReCXBYk22CqekpvDdyi/535/ry/6e8h0SBQGjyu32j31llqfyaKp17hRDPniZWz5+xAwZjagqmkZPT09zgwKK94GFw1pt5S0kMGPGDJ588kk6depE9+7d+fLLL7l06RKTJk0C4NVXXyUhIYEffvgBkBoUTz31FJ988gndunUz1y2enp74+PhUWjoL4+kpn/1eSqJYDTdvwvTpUnj2bGjaFM4772IkIkj1jqMTUgGUoAGUoaNYDYLA9udfp8Hhf2lwZA/Nt0cQ17f03lFnQC4+yqrmp5ubGx07dmTz5s0Fjm/evLnAcKjCrFq1irFjx/LLL7+U2bVta9RqNS1btrz9w7gg/Re/Trcfl+KZesOuaZIFgopUt9rF2s2Z0el0NKjtw9H/jpiPZWdn07FNM3bvjKpw/JER4fTq3QcALy8vZs99k4aNGyMIAh07d6VnaG/+3bu3wA/pTRHhhA2W8r3RaKR14/rU8fGkcb1aNK5Xi/q1anBXTW/mzZ2DIAj06n0vmyLCAVCpVEx+YSpR27eZ4zty6CAdOhbdCGfo8AcYfP/wgo0XG7Fk4YeE9elJXsdm+F9/0r5lYy7eHqt569Ytnn3qceb/38fUtPb5Ms1rlU1i6/boqnlRLT2VwDPFrK0uqGjZsqVTvV0fPXo0S5Ys4Z133qF9+/ZERUURERFBcHAwII0Tzr9nxYoVKzAYDEyZMoW6deua/6ZOnWq3NOfVEc5kR2spUcM770BCAjRqBIVW5XJKlOALlKABlKGjBA3pdeuz79HnAOizYgFuWTcdkTqLkZOPsjq3zJgxg5UrV/LNN99w4sQJpk+fXuRN1FNPPWW+Pu9N1KJFi8xvopKSkkhPT7edilIwGAzs37+/4GRjwCM9hZCNv9H9x89QmZxj9RRnQhBNBOjii9jN2XF3d6dN23b8d/iQ+dgXny0hpF17eob2LnDt7BlTad6gTol/e//dXST+2KP/0bR5i2KfnZOTw+FDB2jbuuWdoUPAlk0RDBxyPyA5h8VLv6B5y1acu3Kdc1euM+LBh3lp5ivMe/8DAJq3bMmxo9LkK0EQqO7tTdBd9Tl7Rpp4ZenEV1syccqLJF9NJGL9Ov7dvYs5M6fx069rCW7UCIPBwKRxTzH+ucl07tq97MgKIde8VtmYNFou3y1tThZ8YFeR84JoYv/+/eYJ3s7C888/z4ULF9DpdBw8eJDeve+Uu++++47t27ebP2/fvp28lVHy/3333Xd2S29eHeFsdrSGEjU0ayYtUfzZZyCDN51K8AVK0ADK0FGahgOPTCC1XjDVU67R7cfPHJA6y5GTj7J6n4rRo0dz48YN3nnnHRITEwkJCbH4TdSUKVPMx59++mm7VByCIODn54eYWvDLaHDoXwRR5FrjFmTVLHmlkaqKCOhUnmV3fd5eNaVY1Grw8LDsWpWqYKWX/1ov69ZVv6dTZ2KOSKsjJF9NYsXSTwnfuqPIdR9+/AkffvyJVXGnp6Xh7e1d5Lgoisx8cTKNGjdl6PAHzHaLjfkPd3cPmja7M07zWOxR2oS0NX8+GvMfg4YOM3/29q5BWlpqgfgHDR3GxvD13D98JA0bN7EqzYXR6/WlLkPq7u5epNFSrVo1Xp7zOu++OZdbt26x4tsfCWl3NwBrf/uVPdG7yMzM4Kvln9M/bBBTps6wOD0W57UqyMXOoTT9dyvBB3axb8zkAudEwM/Pz+4NTKWRV0fI2Y4lanj2WWk+hR2HklUEJfgCJWgAZegoTYPRzZ1/XniDB1+bQIc/f+DkfcNJbtbG3km0CDn5KKsbFSC9iXr++eeLPVe4oZD/rZQjUKvVNC1mHGn9mL0AXGpv/ZvVKoGgIl1bs8zLAuuVPNRFFzaItDVrzZ8DmjZAuHWr2Gtze4WSGh5p/ly7bUtUN6Qlzq6mW7eT5D2dOrPi86UALHhnHg8+MrrAj/qK4OPra142Lg9RFJk9/SXOnI5jzboIRLWb+dymDXeGPuVx7GgM7e/pCEhDs87EnaJNSDvz+czMDHx9/Qrc0z9sEM88MZoaNXx4+NExFdLwzOOj2bJpQ4nn98WcpMHtlwT5aXt3ey6cP8eL01+mR69Q8/FRj45hVEXSZGFeq4pc7CANK61z6j/UuhyM7vka6YJK8m0uKoS5jpAxRTSI4p0hmDJpUADK8AVK0ADK0FGGhoudQjnVZwgN9++gRlK80zYq5OSjytWokBMGg4F9+/YhiP4FJmAGHT0AQHy7omPTXUjdhoG6eK663yW7lR/u6diFk8djOXzwABv+/otdB/8r9rpXpr3Ib7+uKjGeX377k249ehU4FtL2bs7E3Vk6WRRF5sycxuGDB1jzVwQ1atRAY8o1r/4UuSGcee8X3MHzeOxRHn/6GQBOHDuKh6cnDRs3Np+PO3mSNm3bFbjH188PtUrNlYT4Ck/Y+unXP6y+5+L584wdM4pnnn2O31b/wozZr9ls4pic81plk16vATf9a1M95Rp1TsWQ0K6L+ZwgmoiOjqZLly4FJmK7sI68OkLOdiygITkZBg2CBQvAyjmMKkTcVYU3krEfgihSU5/EDW0daZEQGaIEDSB3HQI6k4AoimXWLf88/zoq4xyyapW+2JAjkZOPcu7U2QCVSkVQUBDiqRzzMc/UG9S8dBaAKyEdHZU0p0ZEIEvjfWdFmhK4euV6yScLTSpKPnOphAuRhj/l49rR0pcnLo1GTZpQ3bsGE8c+wZRpM6hVq3ax13205DM+WmLdWMqwwUNY9OF88+dXX57O/r3/8tv6Dfj6+UlLvgoqQOBqUiKXL16kS7c7vWFZWVlcOH/OPPzpdFwcTZo2L9CtuXvnDj5d/lWxz65evejQqzwMBoO0AaTBgMkkkpOTg0qlws3NrcR7LOFa8lVGj7yfWa++wZinxvLf4UOs/GIpL86YVaF487A0r1VJBIGEtp1psSOCgLMnCjQqRASCgoJQqVwNsYqQV0fI2Y4FNLz0Ehw9Cm+/DYMHF/GtJeGtNtLCOxc3tWPLoYA/9XH+seOloQQNIG8duUaRU5lasoyl1y3Zfs7fGyMnH1UlGhXBwcEQd2f4U9CxgwBca9ScnBp+Jd1atREEMjUW2Maa+Q6VdW0xdOjYiVMnj/Ps5BcqFE9h7gsbxNxXZnLi+DGqV6/OdytX4O7uTqeQO5O3H37kMT5a8hmRGyLoNyCswIoNJ44dxc+/JoF16gIQEBDIubOn+f7rr3h6/LPsid5FdW/vIj0kAKMefbzU1R8WL/yARR+8b/7cMNCP7r1CWZtvWJm1ZGZk8NiDI3j08acY89RYAF59420mPDWGJ8aOx8/fv9xxm7E0r1VRdj8znR2TXi0690sQzHPZXJQfcx0hY8wa1q2D33+XXuh89ZXFDQoVIi28c6nlVwNvH79Cy0C7cCEzRJHM9FQgg0NGX7DwhVXwgZ3w2yJYvtypyoCcfJTiGxUGg4Ho6GgEMeDO2u7pqeR4eZPQ1jX0qSQE0URd3SUS3RvIbkiKKIokXkngtTffxiP/RHEboFaree2tt1n80QK+/O4nkgrP9xBFtGIuelEkcmNEkbkGnbp04/i5y+bPffsP4Ex8svnzkoUf8ta7xW8SVtYP+Fmvvs6sV1+3UlHpeNeowZZdewocC723L6cuJdrsGXLOa/YgvV6DYo8LoomoqCh69Ojh9F3izkxeHSFnOxoMBvZu3kyPKVOkn08vvwx3323x/e4qETe1gLePn7S5qaPI85+Cm1P9qLMKJWgA2evw9vEjIyOT+vrLXNKUPbS2Wso1hr/1POhz4d574bHH7JNQC5CTj3Lu1NkAlUpFkyZNOHjszjrER4eOJnbQw2hzrJsAXJUQEUjX+MtySMqyTxfj7e3NyIdHV0r8Ix8eXUrcAkZBAwh07d6Dfv3DrIr7f2vXVzh9ckPOec2RiAg0adJEFl3izkxeHSFnO6pUKu7+9VeEhARo0gTeesvKGG7PoXD4j8c7/lO+KEEDyF7H7bycqfG1qG655V+bvWMm0/P7T2DqVBg4EGzRE28D5OSjnD+FFSRvLFphZymq1eR6VXdQqmSAIJClqeEElYzlHDl0kGb1A1n3x+8s/fIbxyy/JoBJUIMAL0ybSfVilp91UQgZ5jV70yxqIyNfG0+7v/MtLCC45lTYAjmNVy4J1b//Uv3776UPy5fLYk+KYsnnP2WLEjSAYnRkq70srlsOPDIB2rSBa9fu7ETvBMjJRym+p8JgMBAVFYUg1pO6v/IvteeiRATRRFDOeRI8GslmSEr7ezpy+vJVxyZC5l3GjkCOec3e+MWfp+GBXeR4+xJzv9QtL4gmtm3bRu/evZ2+S9yZyasj5GbHxZvvzBPs+fUPdBFFjg0YSaTYADbHlXKnE6ME/6kEDaAYHXV0l7mgsWxorUnrBitXQs+e8MMP8NBDMHy4HVJZOnLyUc6dOhugUqkICQnhvyPSZmId/vie9n/9RMz9j3Fw1HgHp855ERG44RboGpJiNQIGOXcZOwBXXiubq81DAAiMizUfExEICQmRxdsrZyavjpCzHXePm8GNli05367oAg/yQgn+s2IaonftZM2qn9HpcvDx9WXB/y2xbfIsRgnfBaRpayKKVmjo1g1mzoSFC2HiRKmBUdOxK0TJyUc5fworiEqlIiAgwNzSDow7im/iZdS5OgenzMkRBLLV1WX9hsIhCCAqoMvYrrjyWplcvb0pk1/CBdxvZkgHBYGAgABZVDTOTF4dIWs7CgInew5F5y2jje6Kww7+c9zjozmwbw85OTmMHTOKHve05b5eXXnsweFcunixwLV/rf2dV6a/VGp8oigyYtB9XLxwQTpQiob7enUlO7v0uZw9eoWy+PPlLFv5HQnx8dzMt9nqLz9+z329utKpbQvemPOyRXrLjULqshxVNevrlnfegZYt4epVWFXyXlb2Qk4+yvlTWEH0ej2bNm1CEI0ABJ6W3vTlvflzUTyCaKRB9mmz3VxYiCjiZsqRhtm5sAhXXiubHB9/0gODAAg4fQyQ7LZp0yb0er0jkyZ78uoIudlRm51Fv0/nUS31unLKUCX7z0MH95Oenk6nLt0AeGLseHYfjGHrrr30HzSYWVOnFLh+Y/h6Bg8dVmqcgiAw8fkXWfTh+2Vq2Lprr8Wbhm6J3Eiz5i3M8/I2/P0XWzdtIGJrFLsPxLB54wbiTpV/P6cyUUhdVk930fpy4eEhDX/69Vd4wbbL0pcHOfkoxTcq1Go1nTt3RkSFW1Ym/vEXAEhu5mpUlIaIiqtuQYjKzyI2RpDGoMr99Y4dceU1yzAPgbr9YkRERefOnUvdu8RF2eTVEXKzY+hXC7n771U88PpERFFQSBm64z+vXUumSVBtjMY7Pwgnjn2CX374rtyx//jN1zz0yKMAeHh40D9skHlBj46dunDxwnnztXq9nn17/6Vn7z6kpabSoVUTWje6i/t6dSW0c3sa1PZh1lTpB2fY4KFsjdzEzcxMsrNzGDtuAqFd76Ffzy6MfuB+c5x1fDzJunnTHP5s8f8xuF8ondu2ZNVPP5iv++m7bzh88ABvvCM1VERR5L23XuejT5bi7u6Ou7s7d9VvwOnKbFQopC67rg0sX7no3BlGjbJ9gsqBnHxUlZhT4e/vD8J18xu+9MAgsn2dY6kwp0UQ0KmrOToV8kNAARW7nXHlNYu42jyE5js33ZlXIQiSb3NRIcx1hJzYsoW7b68EtnPCLFCp0GHjMpSVVfI5tVp6m2vJtSqV5atR5fOftWsHULduPY4djaFd+w5sidxI8tUkHnvy6QK3jH/yMS6cP1dsdD/87zeC7qpv/hy9K4rJL00r9tqVK5YRNniI+fPuqB107tINNzc33NzcGPnwaHx8fJn68iv8s2UzS5csYuEnSwHQarW0bNWafXv/JSc7m/S0NHbuOwxAakpKiXI9PDzYsG0ncadOMrhfKKMeHcPG8PV8/NF8+ocN5pVpL/LK629y7sxprl5N4pERQ833nj51kpdfnVuaNSuGQuqyXJUHmCrYMEpOhp9/hmnTHDJMV04+SvGNCr1eT2RkJIK2sbkydg19KhtBNBKcfYaLnk2lcZUuLEMUcRN15ArurjkCFuLKa5ZxtXlbdNW8MGq0gGS38PBwwsLC0Gq1Dk6dfMmrI2Rjx9RUGDcOgCPDxnC5Q/dKKUOB9WqVeE4XNoi0NWvNnwOaNkC4davYa3N7hZIaHmnZQwv5z249erF/3x6aNGvOm3Nm8e0vvxZZKvzrHy0f8554JYGAgMAixz/5v484f/YMHy3eYD62IXw9g++/s/LPsaMxTJzyIgAxRw4T0q5dgTgCAgNJTEigV+8+nIk7yewZL9G9Zyj9wwaVmJ4Hb/eaNG/REo1aQ/LVJO4fMZL7R4wscN3vq1cx5smneWfBQgAS4i/T4562hLS1fINDq1FIXRaUc4Gz2oblLxdZWdC+PSQmQu3a8MQTtk2gBcjJRym+UaHRaAgNDSVuTyK1LpwG4Frjlg5OlfMjoiLBo6Ei3lTYF2V0GdsTV16zjPh2XVj2xwHpzS+S3UJDQ51+iUFnJ6+OkIUdRRGefRYuXya1XjC7JkiTdZVThgr6z649evLPlkguXbzA8JEP0aJlqyJ3WNNT4elZjZycbMDPfGzZp4sJX7+ONevCqVZN6u0RRZHtWzfz5u3hRwCxR2MIaSs1JGKOHGJgobkWupwcPDw9CG7YmJ17D7EzKoqoHdt49625bN25F18/PwrjkW/3crVajcFQ/Nj/lBs38PS80xP119rf6dt/QCXvg6SMuuyqexCiqQLlwssLJk2SNpScPBm6d5c2mLQjcvJRzp/CCiIIAjVq1AAhibR6DUhs0Y7rrkZF2QgCesHd0amQHwrpMrYrrrxmEWLh8bR5vs1FhRDkZMeVK+H330GrJeK1j9F7eknHK6EMXb1yveSThfJi8plLJV9rzYo1hfxn9569eGP2y9SqXZstu/YWe4s1PRWtQkI4ExdHnbr1AFi+9BP+/G0Nv64Lx8fX13zd4YP7adaiJV7VpQ1yE68koFKpCKxTF4Djx2KZNmtOgbhPx52idUg7rlyJx8fXj4FD76fvgDA2hq/nSkJ8sY0KS2navAW//PgdAOfOnmHlimWsWRdR7vgsQiF1mUHQVryn5bXXYMsW2LkTHnsMdu0CNzfbJNAC5OSj5J9jykCv17Nu3ToE0cjeJ6bwv8/WcK57P0cny+kRRCONb52Q/2oi9kYUcVfAihn2xJXXyocgGlm3bp0sVgRxZvLqCKe3o9EIn38uhefPJznfMN5KKUNeXiX/5Z9PUda11uzuXch/1gu6C5NoYv7CxXgUfmY5uH/ESLZu3gTAlYR45s2dQ3p6Gg8NG8R9vboyuF8oABHr/yqw6tPRmP/MvRQA3t41+G7ll+bPeUvRtmrdhhPHYhk+oA99u3dmQO/uPDx6DK1D2lY43Z6e1ejUtgWTxj3NZ8u/pnGTphWKs0wUUpfVzzlX8XKh0cBPP4GfH+zfD2++aZvEWYhsfBQgiKLz55iMjAx8fHxIT0+3urUmiiI5OTks33lJ1uMC7Y4oohYNGAUNCAKeKiMd/PQENQhG6+Z6q1wiYt4/gtx7jSsVfa6OhEsXOZyqJduoKpDXXJRM+z9/5O6/fuLEfSPYN2Yyk0Ib4OHhUWScuSVUxK86ExWQO5SyAAAgAElEQVTVkVdHlNeOduXmTfjyS5g2jcVbz9w5XshfW4vT+PdC/nPl8s+J+e8In37xlU2iv5mZydAB9xKxNQovL68Sr+vd9R5+/3sjtWsHWBTve2+9TuMmTRnz1Fjl1AEy15FXx8SkCNw0Wb4r+PQBzUs++ccf0i7bggCRkdC/v41SWzqO8FHl9auKH/4E0ng0da4OUa3GpHHuSS7OhMmCbe1dlM3VpETubtHY6vuS0kvfJElJuPKaZaj1ufjHXzDPD5PDGFs5IBs7Vq8OM2YUe0pJZeh03CnGPfko9eoFWTW8qSyqe3vz7oKFXLp4gVat25R4XdTeQ1bFW6duXR594qmKJs9FJWCy5YCcBx+E556DFSukDfLuu89uL8Lk4qOU44VKwGAwEBERQesta3lhWHv6L37D0UmSBQImGmXHIWBydFJkhoi7qOP2ax4AwtevIyk92+q/qoIrr1lO6l2NAPCLP4+AiYiICAwGg4NTJW/y6ginteP69fDJJ6UOQ1FOGZL8Z7Pmzdm57zCr//zb5pORe/ftV2qDojxMmDQl327HResAeaIMHXfpLti2XHz8Mbz6KoSH261B4fQ+Kh+Kb1RoNBqGDBmC3+XzqI0Gcj1d6+FbgoiK857NFTFRq7z8+duvTBxr7fJxAjrBnbz+4uvXr1GrVm2rn/3IiKFE/bPN6vvkiCuvWU5KA6nHyy/+PKIJhgwZIps3WM5KXh3hlHY8exaefFJaH/+rkocAKacMFfSf8kQJGkApOuLdbbwqWrVqMH8+VOrKWwVxah9VCOdPoQ0wGAz4X5Z2ykytb/0wlKqKSjRhVFCXelnodDraNgtmz5Fj+Pr6Mf+dt/h+1Rrzuddenk7U9m2kpNygbt16PD91BmMKbcRUmB3bttA/bLDVaZk2aw5vzpnFll17yqVFblS1vFZe0uvchVGjRavLwft6EgZDQ1lUNM6OwWBwmB0Xb44r9rgmJ5vR0x4lID2dK607sOauHphKuBZcZciFi+JQWdlLUVJ5LBZR5J7fv+V645Y8NHusdQmzEkf6KGtQvAcyGAxERkbiFy81KlLqN3JwiuSBgIngnDMK6E63nN07d9CqdRv8/WuyJXIjvn7+tGojrbBiMBgIqFOHNesiOBOfzCdffMnbc+ewfeuWQrEU7DJOT08vsFShpXTv2Yv09DT27YmuoCrnpyrmtfIiqjWk1WsAgP/ls0RGRsqiS9yZyasjnMqOoki/z94m4NxJsnxrEj53CSZtyUtYKqcMKWHIjRI0gFJ01NNdqrRy0TZ8NX2+/JDBC2bApVKWVa4gTumjSsD5mz0VRKvVMmLgQMSkeMDVU2EpoqDmXLWiGw0V5quo4jcdsiXP9rbuO8u6eZNpU55j355oMjMzada8BYs+XUZIu9J3H90UEU7Y4KEAREaE06t3H/M5Ly8vZs+9s4xcx85d6Rnam717orn3vnwrQAgCOkFa+lCn0+HhUXA5xciNEbw9dw49e9/Lti2buJmRybjnJvPKawXn+giCQK/e97IpIpwu3XpYpV9uWJrXXEik3tWImpfO4nf5An1fneDo5MgerVbLiBEjHJ2MArQL/x9tNq/FpFIR8drH3Kxdp9TrFVOG8vlP2aIEDaAYHZc9GiOabLPLfGGOh42k7YZfCTx9DB5+GKKiii63bAOc0UeVhOJ7KkRRJDMuDkEU0bt7cMu3pqOTJA9EEa1JJ8s1qtPT03jokUeJPhTL8XPxtG7Tlrdff7XM+7ZsimDgkPsBiD36H02btyjx2pycHA4fOkDrNiEFT4ggiCYQpZ6PnqF9Cpw+ERvL+XNnada8Obv2/8e3v/zKJ//3ISeOHyvyjOYtW3LsaIwFimWOjPOaI0hq0Y6k5iEY3dzIyMhABquCOzWiKDqVHe86sod7P38PgN3jZhDfvlvZNymlDOXzn7JFCRpAMTo0or7SyoXRzZ2/3/iUbG9faf+KCRMq5VnO5qNKQ/GNCoPBwJHt2wHQVa/hWgffQgRMBOXYeNUEO1Ev6C4GDR2Gl5cXHh4eDBv5IOlpaaXeExvzH+7uHjRtJq1RnZ6WhncJE7FEUWTmi5Np1KQpQ4c/YD6+bUskJ44dRSvmAiIXz58nuGHDAvcei43hodGP8ezkF/Dw8KB7z140btqMM3GnijzH27sGaWmp1omXIXLOa45g/2PPsWrp78QOGcXOnTtl0SXuzBgMBqeyY43kRABO9L2fA6Ms64lSThkSzf5TvihBAyhFR6AuoVLLRUaduwh/fYm0Qd7PP8MHH9j8Gc7mo0qjSgx/Ch04kLjeg9BVq+7o5MgGUVBzoVrJb+qdmciNEaxY+imn406Rk5ONPje3wI//4ti04c7QJwAfX18yMzOLXCeKIrOnv8SZ03GsWRdhXkYwJyeHi+fPs2f3LlqFvAOQb4nBOxyPPcrbCz4qcOza1avULGaFqMzMDHx9/coWLHPknNcciSioGTp0aNkXuigVrVbrVHY8HjaSlPqNuNa4pcUvwRRThgSBXLkPuVGCBlCMjgSPhpU2/CmPyx26w2efweTJ8Npr0KoVPFD6bw5rcDYfVRqKb1SYTCbSatcmfO4SVy+FNYgi7qZsdCpPWdlt355oZk2dwhdf/0CnLl1xc3PjqUcfpu3d7QHo36sbwY0akXglgYaNGrNs5XcARG4IZ977H5rjCWl7d5HeA1EUmTNzGocPHmDNXxHU8PExn/Pw8GDshImMGj4EQTQR818MIe3aFbg/Ozubc2fPEBAQaD72z5bNqNRqOnbuUkRL3MmTtGnbrshxxSHTvOZwRJGUlBR8fX2LbcC6sAyTyURaWppD7ajS5+KedZNsX38Aklq1ty4CpZQhUep1EVHJdyVTJWgAxehwM+WQLVar/HIxaRIcOwbLl0NKik2jdgYfZSmKb1QYjUb279+PIDRApHJbq0pCwERgboI0yUlGdjsa8x+1awfS/p6O6HNzWbpkEZEbwpn0wlR0Oh1XEuL59pfV1G8QzPCB/Ui8koBKpeLyxYt06dbdHE/Y4CEs+nB+gbhffXk6+/f+y2/rN+DrV7QHQRAEghs2JP7cKQ4d3MdT454tcP7E8VgEQeC3X1fROqQtx2OPMnvGS7w+713c3d2LxLd75w4+XV7y2vRKQa55zVEEHT3AwIWzSa9zF/s/mEe/fv2cvqJxZvLqCIfZ0WQi7OO51Dt2iD8WfE1aUEOro6iMMlRZi3CUvvCGNOQmV9b7IyhBAyhFRy39VTI0wfapWxYvhqefhk6dbBqtw32UFTh36myAVqtlYL9+iKJ8C4UjEAU1lzybIQry+pE38uFH8PapQZsm9Rl8X29q1aqNIAi0bXc3J48fY9DQYdRvEAyARqvFw8OTyA0R9BsQhlp9R+t9YYNIuXHDPIH68qWLfLdyBWdPx9EppAWN69Wicb1avDLtxQLPDxs8lPUbIhFFqZGRnxOxsYQNHkJqSgrNG9ThuWeeZOacuYx5amwRHXuid1Hd25tuPXrZ2ELOh1zzmqMQVQI+SfF4JycycOBAtFqto5Mka7RarUPt2OubRbTa+hfeyYn4XCnfspSKKUOCQK7Ko8hb5YUL3jOHe3e9h2vXku2dMssRpE3jhg3sx+VLFyvtMfd278TVJGn+zcrln/PZxwsB2LVjO4P7hRLapQN9unVkwTtvIYoiV5MS6dezaI94iZTwXRQmPS2NpUsWFXsuetdOenW6m/69upGbm1vmI08ci6Vvj87c16srVxLiC5yL3BDOrKkvmD/n5OQQ1rsHGenppcZ5xT3YfuVCoynYoLh6VfqrII72Udag+EaFyWQia/Zspg1uTeiXH5Z9gwsJUcTTeFN2q4n4+9dkbXgk5xNvELX3EE+Nm0Bi2i28a9TgWOxR8w/9I4cOUrNmLfz8/YncGFFgPgWAWq3mtbfeZvFHCwCo3yCYpPRsLiance7KdfPfR0s+K3Bf73vvY+2a1dSrF1QkbcdiY2jZOoRPv/iKswnXiD50lNFjit+xe8nCD3nr3QW2MInzI9O85ih0XjUAcM/KIDk5GZNJ7pNzHYvJZHKcHZcsofOvKwHYPON9LnbuXb54lFKGRBBEo3lu8G+rVxHWuwc/fLOSAaHd+eGblYQNGkJkRLjVUZtMJvt8xyKsX7uGJk2bm19g2ZrzZ89SvXp1AuvUJTs7mxWff8a4iZMBaT7g8q9/YOe+w2zavpt/d+9k7W+rCaxTF09PT86fPWuxjvzfRXEYDAbS09NZ9sniYs//+fsaHhr9GFt27cHNreR9VvJo1SaEf6L3U79BA7Zv21rgXNjgoRw5dJAL56QeNA8PDx58ZDQrln1WXFRmPEy3HFMuzpyBHj1g6FAoZn6mNTjUR1mJ4oc/mUwmUs6fx0sUMbgVHWLiongERGrmXiXBoxFiKV2f1u4h4UiOHf0Pdw93Rg0fgpu7O4uXfgFA1+496Nc/rMj1Ix8ezciHR1v1DE9PDxo3akSvPvcWOXc89ihjJzxnUTz/W7vequfKGUvzmguJnOpSo8IjM4M9R4/Su08fp+8Sd2ZMJhOxsbH07t3bvnb88kuYPh2AXc/M4HjYyHJHpZwyJKIRDegFFVlZt5g1dQr/RB9gzepfeGHaTC5fukhIu3Z8/NEHPP70MwAkX01i0vinuZmRSY4uh9A+9/Leh4sQBIGFC97j4vlz3MrK4vz5c/zy259kZmby5pxZXL2aBMDY8RN5evyzJF5J4PXZL3Pu7BkABg25n9mvv8W15Ku8Mv1Fzp87hyiKTHjueZ58Zjwmk4m5r8xg5/Z/cHN3R6PW8FfkNjzc3fnx2695aeZss6rlSz9h7W+/YjQY0Wg1zF/4Mfd0KrnXYOGC94g7eYKsrCwS4i8T3LARn37xlXnYbcTf6xg0dBgAf69bS9fuPfCqLi1Ekzd/EKQf3m3atuPihQuSpqHD2BD+F8+/JOW7yA3hLHh3HiqVCoPBwKtvzGPQ0GGcOnmCac9PxKjPpWmLVlw4f45ps+YQNmgII4eG0aVrdw7u3wdIb9HT09O4r1dX1GoNkTt2m5+fk5NdYO4hwEuTn0Wr0XLxwnmSEq9wT+cuLFyytMAQ4Bo+vmRn3ypil+EjH2TVT9/z6ptvA9LIhEF9ezHr1ddLtKWv/gZpGq9KLxeFd+L2TbjA6BupVDt3jvge/Vj7/lcYPKsVuW/6gOZlxu0wH1UOFN+o0Gg01L9d2HS3K2MXZSMKKuI9mzg6GTbl1IkT/Pzbn0XmL7wwbabtHiII/N/SFVTz8ipy6vixWFq0VMAGVTZGiXmtMtF5SUsdq0xG+nXtKnW5uyg3Go2Gfv362feh33wDz0kvGA4+9Az7H51YoegUU4YEAb3gfjsooFKruXZNGj7i6elJ8xYtEUWR06dOknXzJl7Vq1PDx5cf//c7XtWrYzQaefqxUfy9bi3DHngQkOamRUb9S+3aARgMBh66fxCzX3+LEQ8+DMCNG9cBmDJxHPcNGMjXP64C4Pr1awDMfWUmTZu14Nuff+XatWQG9ulBm3bt0Gq07Nqxnah9h1GpVGSkp+Pm5obeYGD/vn107HJnf5GHHx3DpBemAnBw/16mvzCZHXsOlmqKvf9Gs3XXHmoHBDJ7xlQWvDuPDz/+BICN4etZsuxLAKJ3RtGpS/F7mSRfTeLvdX/y85q1AAwZNoLpU54zNyo+eO9tPlr8KZ27dsdkMpGZkQHAixPHM37S84we8wQH9+9lWFjB8hF7NIZVf/yFVqvl0sWLDLq3J1t37S1wjcFg4OzpuGJf2B06uJ+/I//Bw9OTZx4fzVdfLC1QD/v5+3PqxIki93Xq2p1333yNV5EaFYF16qLVunE67hTNSthXKsm9PqLJ/j/E04Iasvb9lTw0eyx3xR5gxJuTWPfuCgyFNsS1BIf4qHLi3E0eG2AymchOkt5I5FXGLixAFPEyZMi/Oz0ft25lFTsh2qaI4O3lWWyXcdylJFoV3izPhSLzWmVi8PDEqJHG1iaeOCGLLnFnxmQykZCQYD876vXwifTjkJdeImri7IqvTKOUMiSC6vaQm2rVqvHtT6v56P13+Xr5MsaOGcWhg/sRBIF77xvA1s2bAOn7e/et1+nXswv9Q7vx3+FDBTYNHTBwCLVrBwBw5nQcBoPB3KAAqFmzFlk3b3Jg7x6em/KS+Xit28t879z+D888KzUAa9cOYMiwEezavp3gho3Q6/VMm/Icq3/5Cb1Bj0qlIuX6dbRublTL91Y69r//eGDIAPp068gr018i7uSJMucYDBg4mNq3Vwp8cuw4dm7fBkgNhczMTJo0bQZA4pUEAgIDi9yfmZHBk6MfYsrU6bRr3wGAJk2bkZ6ezrVkqaEW2ude3pgzi6VLFnE89qi0lHpGBidPHGPU6DGoRCMdO3UtUm+NGv1YqeP7d0XtoF2zhuhz9QwZVnQn6BEjH8arenXUajWPPfEUO7f/U+D8+InPszF8PR3bNCMp8Yr5eEBgIIlXEgpcGxAYSGJCwWP58TRmOaxcJDcPYe38r9FV86LBf3sZPm8Kal2O1fHY3UdVgCrRqMi9PVHG1VNhOQIiPoYUBJlvfJOfiK1RdniKiFo0IPcNg+yJEvNapSII5hckCceOyaKicWZMJhNnz561nx21WtiyRdoka4ltljpXThkq6D979+3Hmr8iGDthIqPHPMmjI4eh0+kYPHQYG/7+C4AVn39KasoNIrZG8U/0fh4c9Qg5OXd+uBXXa/z/7d15WFNX3gfw701CCChGZMcFaLWIUlsBW0EFxRHUutZ21Pa1tFbrUttXabVop1XmHcbdauuGU1rnHW21M6iv1pVpFXTEiop1X9qioBURZF9ClvP+gURDwpKF5Oby+zxPnic5OTec9V7Ovfeca6yGi25wHNBBLkf6T+fw8isT8cuN64iO6IecX3+Fk5MTFDU12jzU1tbi7TcmIzFpOdJPncWeA2lgjEHZgonLhtJwaP/3iH1iDqCTsxNqaqp14laUl2PyhDGIHTlKe4WkXuyIl3Bo//cAgMS/rsDajVvg5OyM92dN1064rvtbjR/LnNs3/cyvgZFROHf1F6jUKhz7Ia3Feau3Y/v/YlDUYJy5dAPePr7acEVNDWQNzvQrahSQOTX+PA0XdYlN+0V+0HPYk/Q31Mqc4XfuPxj/p+mQVlYY9RtW30eZQfCDColEAvmjiqBBRcsxToTfZf5gnOCbiGVxHJQiR/teK97KqK0Z78FTPZH/TDDCQkMhodufzCKRSBAZGdm65cgY8NMTt4d4eAAfWeAKRf3PC6UPPbH/rKyo0M5vEEsk6BsaBmVtLVRKJQZERiHr9CkolUqUlBTD08sLMpkMDwruY9+eXY3+fPcez0AqlWLv7lRtWFFRIdq1b48X+kcgecPn2vD6258GDR6Cf2z9Sht28Pu9GBA1GIWFD1BVWYnBQ/+ARYv/jK7d/HDj+lV06NgRnt7e2nkMipoaqJRK+HbpAgBISd7UoqL495GD2lWuvvnHVgwaXHf7y8H9+zBi1BhtvKDez+Lmjcf381dWVGDyhDEYPHQY4hcs1PvdEaPG4OD+ujl7N29cR8+gXnj7nVmImzod57JOw6VDBwQG9UbqP3dCKXLEuXNncPXypUbT6eLigurqKr2nPctkMvQKfhZ379zR22bf/+1CZWUl1Go1dmz/BwYNHqLz/e9376BvaJjeYOPG9WvoFfys9rNarcbt2znoGdS70fQVSDvbvF/83jsUe5L+BoVzOziXPIRIrTRqe6vsoyyE/yk0k0ajgaaoCBLQoMIojMFFXYJycUf6B9kYDBBBBQ0k9ry0t3VRWzParuVfA4zh5Q4ydNVoeD95j880Gg3y8vLQtWvX1ilHjQZYsABYvbpuLsVbb1n+b7RCH7LJIhxP7D+VSiU+SZiPstIS3L2Th317diFp5WfaCckvvBiOE+nHMG3GbEyPex1DB74Ibx9f7T/fhkgkEmz99p9Y9OE8rFmxFBzH4a1pM/DG1GlYvyUFH8+PR+SLIZBIJBj+0mgsWPQJklasxoJ572FIRD9oNBr89wcfISS0Hy6cz8aH778LpUoJjUaDfi/0R/SwWIABo0aPwQ9phzH1nZlw6dAB8xd9ghHRg9ClS1e9lQYbMyhqCOLnzELu7VvaidrlZWX47ZebeD4kVBtv9NjxmPvuDHz08acAgL9t2oDss2dQVVWlvZozeuzLmDu/buL48yGh+PXmDVSUl+OviZ/g119+gdRBCidnJyxfUzeo+iL5S8yd/Q62bPgczz7XFyFh/RpNp2unTnj51UkYEh4GJ+d2OhO1xWIxNEz/7Hr/iAF467U/4ve7dxDS7wW8PWO2zvcajQYisf4ysEd/SMOosY+fVP1T5kmEhPbTmwz+pHbqMlTD9seWu8+G4Z+rtqGqoxtqOug/56oprb6PsqA2Mah4+PzzqL5fiqqObrZOjt3gwNBOVY4KsdzOVxOxNgYR00DDMdCoomWorZmGA8Pdu3fRuXNn3h9o+Kz+fuVWKceKCuCNN4DddRNl0cya+qYSTh96vP/s6OqqnWC8culf9Fb4qT/jvuIPn+PQ0RMGf83QqkDdezyD7/5Pf0labx9fpGzboRfu4emFr7d/pxfe5/m+OJJx0kAWGGa8MwNvvhmHN6e9A5FIhDlzP9CZiFw/Ubop7h6eWL/lK52wPf/6DtHDdCc+B/UOhpu7B7LPnkHf0DDMnf+RdgBhCMdxiB4Wg38fOWQwXwAQ2DMIB3/IgIQpoeIcMH5UrPa73fuP6MVf/cVGg7/j5uaO3Fs5euFPde+BpBVrDG7DGENe7m0MHRarE15UVIiLP5/HyrXrtWF/T9nSbFk6qSvB8aRfPOjeS+dzn73bAecYYMCAJrdr1X2UhQl+UCGRSOB58KDecl+kaYwTIV/WzdbJsD8cBxXX/Hrc5DFqa6ZhnAgRERG2Tobdk0gkFinHhseYDvl3MGbJbHj8dh0qBwekzUvCtd4jgVY4FgmmDzWy/4wYqP/8jtHjXtau8MQrHAcf/+6YM/cD5N/7Hb6du1jsp8e98keMe+WPeuFJy1fj5s3rLf6dpavWNh/JAsey/3pzKub/9xz8YWB/HPgxo9lnVVy9fAnvvjMVAQFP4Q+xI3S+u53zG5avWaf9jZqaGkQMjETkkKZXRSqU+thk9afmdM3ORPSG/wGSlwLJyU1ewbTUPsoaOMb4v1xEWVkZ5HI5SktL0aGDcbcwqdVq5OTkYN9vKsDe7ze1JqaBXFWMUokrwIngJFKjr6sSnbv5wYGe99E4xiCGGmqIbX65lc+UtQrczb2N7GIHVKs5nbZGmvfC9o0IPpwKZdzrcE1K0nkafEuZs1/lE3PzUX+MCAgIMKkc6z05qPDLysDwFQvgXFqMSld37F2yAflBzzextZka7K+NxZv9uxD2ny3Mw4MHBZg0frReeOTgaCz+Cw8efGrndVF/jPnlQSUKOP4dWyTVVRi+MgE9TtStYoZ33wVWrQJk+pPOLbWPMoap+1XBX6lgajWKi4rAQW7362JYEwfAUVMNDq6Pyu3RToX/Y1Cb45gG4KzT8e0VYxowAAycgbZGmiOtroQ8/w7yc3NhB+eFeI0xhuLiYvj7+1vk9+R3b2PcJzMg0mhwv3tv7F2yARWePhb57cYIqQ8JYf/Zkjx4eHjqPduBb4RQF1KNApyYf+sxqpyc8f2f1mLeqZ3AkiXAhg1ARgawYwfQS/c2KUvvo1qT4AcVkp9/Rr/wcAT49cA/trSdpxSbi3EiFDg+vmyr0HCoVTOUlxbDRe5ql2curKVuXQfjlgtsMxiDWqVCycNCKFQMCg0HxnE6bY00T9G+bmKit0xGD78zk0QiQb9+jU9ENVZpZz+cfWUqJAoFjk+fD7UVzvw33F8bjycnjYRw+6gQ8gDYfz4eteUiqTcvb38CAIhE+CxiMvySOiN2ZQLaXbwIVd8Q/PDeYlyJndAgshwnjv6m/dSSJ3HbguCPRurCQogZA6N/go3DNHBVFqHYwQ3gRNCAw/VyKYAylJWV2zp1vCaCBhrhr9ZsMg1jeKjgcKvKsW7yXIO2RpqnaF/3nIryvDw4q9VWuyQuRGq1Gjdv3kSPHj1MK8eKCiAxEW7PDEaRf90DyU68/aF1T7yY2Yd4c9KIMYiZGmrOPm+5ASCMPAD2nQ9W15Zr1QzOiiJUS/h9bLndLxLbkvciduVH8D9zAhpxg3/N7egYKfhBBfdotY36gzBpGQ6AmClR9wicOuVqMc6VyOAoYuDfxUR+4BhDR2UhShzcaSBrEAcVA5SMQ/3ZUUNtjTStpt2je1xLSmybEIGorq5uPlJDKhXwzTfAxx8Dd+4gOvgY/rl6W90/YFbu++b2IT6dNBJBDQ3se5AshDwA9p2PWjXDjXIJpBr7OLZUubpj91/+hu4n/41fBgzThnc5fwolXfwhdtHYRT5MGlRs3LgRK1euxL1799C7d2+sXbsWgwYNajR+eno64uPjcfnyZfj6+mLBggWYOXOmyYk2hqisDABQ077xdYyJPsaJUOjoqxeuAYdqDf2z3JQqiTdA464Wa6ytkcbVnyRxUakAnl2lsKfjA1C3ln7fvn1bvoFaDezcCSQmAvUPHQsIQNakd2x2RtcSfYg/J40cbPi3LUUIeQDsNx8cFBoOGnCAPR1bRCL8MvDxksGS6iqM/Gs8HCvLcWHUJJz543RUunnaMIHNM3pQsXPnTsydOxcbN27EgAEDkJycjBEjRuDKlSvo1k1/SbucnByMHDkS06dPx7Zt2/Cf//wHs2fPhoeHByZMaHjPmOVpHj6ECEAtXakwCsc0cFU+QLGDh82fRmlPqNyMR2VmvPo5FbUPHkDMo9uf7O34ANTd/nT16lUEBQU1X45btwKffgrk5dV9dnOre7Dde+/h1om8Vk9rYyzVh2x90kgI+wIh5AEQRj7sPQ/OpQ9R0sUfnS+dRcju/8Vz+77FrxFDcXHkRGBod4CHz3TGZFIAABD8SURBVKwwOkVr1qzB22+/jWnTpiEoKAhr165F165dsWmT4UfPb968Gd26dcPatWsRFBSEadOmYerUqVi1apXZiW+R4mIAgKIdDSoIIcJQ3aEjin27obYLvya4293xoSmMAT//DOTnPw5Tq+sGFG5uQFISkJNTN6hwcrJdOgkhglTm3QXfrd6O1KUpKAgKhlilxDMZhzAh4S0gIAD44QdbJ1GPUVcqamtrcfbsWSQkJOiEx8TE4ORJA0+WBJCZmYmYGN0nQMbGxiIlJQVKpRIODq17eY1ufzIN40R4KPWydTLsDpWb8ajMjFfa2Q9bt6bxagUQezw+AIC4ogLB588D6el1T7y+dQu4fBm4dAkoK6tbO/6DR09DnjgRcHYGxo83uJ68rQilDwkhH0LIAyCMfAghD+A45IYOxPbQgfD49SqCD3yHoB/2wjE3F/B94taulBTg4EEgKAjo1AmQy4HnnwdCQqyaXKMGFYWFhVCr1fDy0q0kLy8v5D95NucJ+fn5BuOrVCoUFhbCx0d//W6FQgGFQqH9XPposnXxo6sOarUaQN29sE++V6lU4DhO+14kEgHduqEiNBR3PbxRU1kBjmnqVpzhOHBMDQZR4+8BcNDovufEAGNNvGd1l9kaff9osk2D9xzTAE+8ZwBg8H192ht7b5k8iZgarqoHeCjxBDhOEHmyRj1xADrV5uOhgxeYSCyIPLV2PXEaNTop7+Oh1PvRcyvsP0/WqCcwDY4fP669befJ/Z5IJGr0vVKphFgsRkVFRd3vWWgZUXs8PohEIiiuX4fjlCkG06eUynD+9DVk7c56XPey7mAHLwPgTx8Vyn7ncT48wUQSu+yjHNPAVfUAxRIPaDiR3e53RE/kg3Eiu9yXchoVOikLHh1bYLfHh/pj5B2vzsh7ax7SXpuJGQ4FUHt5AcXFEIvF0Bw+DFFqqu4ObM4cqPz9De73Wuv4YNJEba7BZDTGmF5Yc/ENhddbunQpEhMT9cLNevDH2bPAZ38yfXtCCBGg8vJyyOWWu5Jrl8eHxtTWAN99WfcihBCeWNCSSOvX173MYOzxwahBhbu7O8Risd5Zp4KCAr2zTfW8vb0NxpdIJHBzczO4zcKFCxEfH6/9rNFo8PDhQ7i5uTV5cDKkrKwMXbt2RV5enlGPGm/rqNxMQ+VmPCoz05hbbowxlJeXw9fXMquj2OPxARBG+xNCHgBh5EMIeQCEkQ8h5AGwTT5MPT4YNaiQSqUIDQ1FWloaxo8frw1PS0vD2LFjDW4THh6Offt0n2R95MgRhIWFNXq/rKOjIxwddZ9C2rFjR2OSqqdDhw523ahshcrNNFRuxqMyM4055WbJKxT2fHwAhNH+hJAHQBj5EEIeAGHkQwh5AKyfD1OOD0av/hQfH48vv/wSX331Fa5evYp58+YhNzdXu674woUL8cYbb2jjz5w5E7dv30Z8fDyuXr2Kr776CikpKfjwww+NTiwhhBD+ouMDIYS0XUbPqZg4cSKKiorw5z//Gffu3UNwcDAOHDgAPz8/AMC9e/eQm5urjR8QEIADBw5g3rx52LBhA3x9ffH5559bbQ1yQggh1kHHB0IIabtMmqg9e/ZszJ492+B3W7du1QuLiorCuXPnTPlTZnN0dMTixYv1LpeTplG5mYbKzXhUZqbha7nZ0/EB4G85GkMIeQCEkQ8h5AEQRj6EkAfAvvLBMUutJ0gIIYQQQghpk/j3jG9CCCGEEEKIXaFBBSGEEEIIIcQsNKgghBBCCCGEmEWQg4qkpCRERETA2dm5xeuXM8awZMkS+Pr6wsnJCYMHD8bly5dbOaX8UlxcjClTpkAul0Mul2PKlCkoKSlpcps333wTHMfpvPr372+lFNvGxo0bERAQAJlMhtDQUBw/frzJ+Onp6QgNDYVMJsNTTz2FzZs3Wyml/GFMmR07dkyvTXEch2vXrlkxxbaXkZGB0aNHw9fXFxzHYc+ePc1uQ23NMCH0WXvvQ0Jpz8bmg491sXTpUvTr1w8uLi7w9PTEuHHjcP369Wa341N9mJIHPtbFpk2b0KdPH+0zKMLDw3Hw4MEmt+FTPTQkyEFFbW0tXn31VcyaNavF26xYsQJr1qzB+vXrkZWVBW9vbwwbNgzl5eWtmFJ+ee2113D+/HkcOnQIhw4dwvnz5zFlypRmtxs+fDju3bunfR04cMAKqbWNnTt3Yu7cufj444+RnZ2NQYMGYcSIETrLZD4pJycHI0eOxKBBg5CdnY1Fixbh/fffR2pqqpVTbjvGllm969ev67SrHj16WCnF/FBZWYnnnnsO69evb1F8amuGCaHPCqEPCaU9G5uPenyqi/T0dLz77rs4deoU0tLSoFKpEBMTg8rKyka34Vt9mJKHenyqiy5dumDZsmU4c+YMzpw5g+joaIwdO7bRk9p8qwc9TMC+/vprJpfLm42n0WiYt7c3W7ZsmTaspqaGyeVytnnz5tZMIm9cuXKFAWCnTp3ShmVmZjIA7Nq1a41uFxcXx8aOHWuNJPLCCy+8wGbOnKkT1rNnT5aQkGAw/oIFC1jPnj11wmbMmMH69+/famnkG2PL7OjRowwAKy4utkby7AIAtnv37ibjUFszTAh9Vmh9SCjtuSX54HtdMMZYQUEBA8DS09MbjcP3+mhJHuyhLhhjzNXVlX355ZcGv+N7PQjySoWxcnJykJ+fj5iYGG2Yo6MjoqKicPLkSRumzHoyMzMhl8vx4osvasP69+8PuVzebBkcO3YMnp6eeOaZZzB9+nQUFBS0dnJtora2FmfPntVpJwAQExPTaBllZmbqxY+NjcWZM2egVCpbLa18YUqZ1evbty98fHwwdOhQHD16tDWTKQhtva0ZIoQ+21b7EN/qwVx8rovS0lIAQKdOnRqNw/f6aEke6vG1LtRqNXbs2IHKykqEh4cbjMP3eqBBBYD8/HwAgJeXl064l5eX9juhy8/Ph6enp164p6dnk2UwYsQIbN++HT/++CNWr16NrKwsREdHQ6FQtGZybaKwsBBqtdqodpKfn28wvkqlQmFhYaullS9MKTMfHx9s2bIFqamp2LVrFwIDAzF06FBkZGRYI8l2q623NUOE0Gfbah/iWz2Yiu91wRhDfHw8Bg4ciODg4Ebj8bk+WpoHvtbFxYsX0b59ezg6OmLmzJnYvXs3evXqZTAun+sBMPGJ2rawZMkSJCYmNhknKysLYWFhJv8NjuN0PjPG9MLsTUvLDdDPP9B8GUycOFH7Pjg4GGFhYfDz88P+/fvx8ssvm5hqfjO2nRiKbyhcyIwps8DAQAQGBmo/h4eHIy8vD6tWrUJkZGSrptPeUVszTAh9ti32IT7Wg7H4Xhdz5szBhQsXcOLEiWbj8rU+WpoHvtZFYGAgzp8/j5KSEqSmpiIuLg7p6emNDiz4Wg+AHQ0q5syZg0mTJjUZx9/f36Tf9vb2BlA3AvTx8dGGFxQU6I0I7U1Ly+3ChQu4f/++3ncPHjwwqgx8fHzg5+eHmzdvGp1WvnN3d4dYLNY7O9hUO/H29jYYXyKRwM3NrdXSyhemlJkh/fv3x7Zt2yydPEFp623NECH02bbah/hWD5bEl7p47733sHfvXmRkZKBLly5NxuVrfRiTB0P4UBdSqRTdu3cHAISFhSErKwvr1q1DcnKyXly+1kM9u7n9yd3dHT179mzyJZPJTPrtgIAAeHt7Iy0tTRtWW1uL9PR0REREWCoLNtHScgsPD0dpaSlOnz6t3fann35CaWmpUWVQVFSEvLw8ncGZUEilUoSGhuq0EwBIS0trtIzCw8P14h85cgRhYWFwcHBotbTyhSllZkh2drYg25QltfW2ZogQ+mxb7UN8qwdLsnVdMMYwZ84c7Nq1Cz/++CMCAgKa3YZv9WFKHgyxdV0Ywhhr9BZyvtWDHqtPDbeC27dvs+zsbJaYmMjat2/PsrOzWXZ2NisvL9fGCQwMZLt27dJ+XrZsGZPL5WzXrl3s4sWLbPLkyczHx4eVlZXZIgs2MXz4cNanTx+WmZnJMjMz2bPPPstGjRqlE+fJcisvL2cffPABO3nyJMvJyWFHjx5l4eHhrHPnzoIttx07djAHBweWkpLCrly5wubOncvatWvHbt26xRhjLCEhgU2ZMkUb/7fffmPOzs5s3rx57MqVKywlJYU5ODiwf/3rX7bKgtUZW2afffYZ2717N7tx4wa7dOkSS0hIYABYamqqrbJgE+Xl5dp9FwC2Zs0alp2dzW7fvs0Yo7bWUkLos0LoQ0Jpz8bmg491MWvWLCaXy9mxY8fYvXv3tK+qqiptHL7Xhyl54GNdLFy4kGVkZLCcnBx24cIFtmjRIiYSidiRI0cYY/yvh4YEOaiIi4tjAPReR48e1cYBwL7++mvtZ41GwxYvXsy8vb2Zo6Mji4yMZBcvXrR+4m2oqKiIvf7668zFxYW5uLiw119/XW/ptSfLraqqisXExDAPDw/m4ODAunXrxuLi4lhubq4NUm89GzZsYH5+fkwqlbKQkBCdJezi4uJYVFSUTvxjx46xvn37MqlUyvz9/dmmTZusnGLbM6bMli9fzp5++mkmk8mYq6srGzhwINu/f78NUm1b9csfNnzFxcUxxqitGUMIfdbe+5BQ2rOx+eBjXRhKf8P/ifheH6bkgY91MXXqVG2/9vDwYEOHDtUOKBjjfz00xDH2aIYHIYQQQgghhJjAbuZUEEIIIYQQQviJBhWEEEIIIYQQs9CgghBCCCGEEGIWGlQQQgghhBBCzEKDCkIIIYQQQohZaFBBCCGEEEIIMQsNKgghhBBCCCFmoUEFIYQQQgghxCw0qCCEEEIIIYSYhQYVhBBCCCGtbN26dQgICICzszPGjRuH0tJSWyeJEIuiQQUhhBBCSCtatGgR1q9fj7///e84ceIEsrOzkZiYaOtkEWJRNKggxEzffvstZDIZ7t69qw2bNm0a+vTpQ2eiCCGkjcvKysLy5cuxc+dOREZGIiQkBDNmzMD3339v66QRYlE0qCDETJMmTUJgYCCWLl0KAEhMTMThw4dx8OBByOVyG6eOEEKILa1atQrR0dEICQnRhnl4eKCwsNCGqSLE8iS2TgAh9o7jOCQlJeGVV16Br68v1q1bh+PHj6Nz5862ThohhBAbUigU2LdvH1atWqUTXl1dTSediOBwjDFm60QQIgQhISG4fPkyjhw5gqioKFsnhxBCiI1lZmYiIiICMpkMYrFYG65UKjFkyBAcOnTIhqkjxLLoSgUhFnD48GFcu3YNarUaXl5etk4OIYQQHrhx4wZkMhkuXryoEz5mzBgMGDDARqkipHXQnApCzHTu3Dm8+uqrSE5ORmxsLD755BNbJ4kQQggPlJWVwdPTE927d9e+pFIprl27hgkTJtg6eYRYFF2pIMQMt27dwksvvYSEhARMmTIFvXr1Qr9+/XD27FmEhobaOnmEEEJsyN3dHWVlZWCMgeM4AEBSUhJGjhyJXr162Th1hFgWzakgxEQPHz7EgAEDEBkZieTkZG342LFjoVAo6F5ZQghp4+7fvw9/f398+umnmDx5Mr755ht88cUXOH36NLp27Wrr5BFiUTSoIIQQQghpJTt37sT8+fNRWFiI6OhorFu3Dk8//bStk0WIxdGgghBCCCGEEGIWmqhNCCGEEEIIMQsNKgghhBBCCCFmoUEFIYQQQgghxCw0qCCEEEIIIYSYhQYVhBBCCCGEELPQoIIQQgghhBBiFhpUEEIIIYQQQsxCgwpCCCGEEEKIWWhQQQghhBBCCDELDSoIIYQQQgghZqFBBSGEEEIIIcQsNKgghBBCCCGEmOX/AVboeaNX5OaGAAAAAElFTkSuQmCC", "text/plain": [ "PyPlot.Figure(PyObject
)" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "addedprocs = addprocs(4)\n", "@everywhere using Combinatorics: legendresymbol\n", "@everywhere g(x) = x^3+x+1\n", "N = 2^14\n", "figtitle = \"Sat-Tate conj. for \\$y^2 = x^3+x+1\\$, \\$p < 2^{14}\\$\"\n", "plot_SatoTate_legendre(g, figtitle=figtitle, N=N)\n", "rmprocs(addedprocs);" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### サウンドファイルも扱える.\n", "\n", "以下は FileIO.jl と LibSndFile.jl の最も簡単な使用例." ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/html": [ "\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "using FileIO: load, save\n", "using LibSndFile: LibSndFile" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/html": [ "
\n", "

SampleBuf display requires javascript

\n", "

To enable for the whole notebook select \"Trust Notebook\" from the\n", " \"File\" menu. You can also trust this cell by re-running it. You may\n", " also need to re-run `using SampledSignals` if the module is not yet\n", " loaded in the Julia kernel, or `SampledSignals.embed_javascript()`\n", " if the Julia module is loaded but the javascript isn't initialized.

\n", "
\n", "\n", "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "37376-frame, 2-channel SampleBuf{FixedPointNumbers.Fixed{Int16,15}, 2}\n", "0.8475283446712019s sampled at 44100.0Hz\n", "▇▇▇▇▇▇▇▇▇▇▇▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▄▅▄▄▄▄▄▄▄▄▃▃▃▂▁▁\n", "▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▆▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▄▄▄▄▄▄▄▄▃▃▃▂▁▁" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ "## downloaded from https://freewavesamples.com/casio-mt-600-harpsichord-c3\n", "samplesound1 = load(\"sounds/Casio-MT-600-Harpsichord-C3.wav\")" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "text/html": [ "
\n", "

SampleBuf display requires javascript

\n", "

To enable for the whole notebook select \"Trust Notebook\" from the\n", " \"File\" menu. You can also trust this cell by re-running it. You may\n", " also need to re-run `using SampledSignals` if the module is not yet\n", " loaded in the Julia kernel, or `SampledSignals.embed_javascript()`\n", " if the Julia module is loaded but the javascript isn't initialized.

\n", "
\n", "\n", "\n", "\n", "\n", "\n", "\n" ], "text/plain": [ "3408409-frame, 2-channel SampleBuf{FixedPointNumbers.Fixed{Int16,15}, 2}\n", "77.28818594104308s sampled at 44100.0Hz\n", "▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▆▄▃▁▁▁▁\n", "▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇█▇▇▇▇▇▇▇▇▇▇▇▇▇▆▄▃▂▁▁▁" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "## downloaded from http://music.futta.net/mp3.html\n", "samplesound2 = load(\"sounds/futta-dream.wav\")" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### マウスでグリグリ動かせる3Dプロット" ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [], "source": [ "# plotlyjs()\n", "# x = range(-3, 3, length=300)\n", "# y = range(-3, 3, length=300)\n", "# z = @. exp(-(x'^2+y^2))\n", "# clibrary(:misc)\n", "# P = surface(x, y, z, colorbar=false, size=(600, 500), color=:rainbow)\n", "# display(P)\n", "# gr();" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## ツイッターで紹介したJuliaの使い方のリスト\n", "\n", "**注意:** Juliaやパッケージのバージョンの違いのせいで最新版のJuliaとパッケージの組み合わせではそのままで動かないものが多数含まれている.\n", "\n", "以下は[ツイッターにおける長大なスレッド](https://twitter.com/genkuroki/status/974473336724967424)より.\n", "\n", "* [2018-02-18放送の仮面ライダービルドの数学ネタの数値的確認](https://nbviewer.jupyter.org/gist/genkuroki/a587dd8e2ec2e16b7370f916762b865d)\n", "\n", "* [混合正規分布モデルの尤度函数のプロット](https://nbviewer.jupyter.org/gist/genkuroki/3e385f7dfdf61e92d3e2458cf2494f1c)\n", "\n", "* [『ベイズ推論による機械学習』図2.1(p.48)の再現](https://nbviewer.jupyter.org/gist/genkuroki/bc6642a646620b59833ed14de3a823da)\n", "\n", "* [Diffusion-limited aggregation](https://nbviewer.jupyter.org/gist/genkuroki/10f4e48332671e8a27e0e8b0e6c0062a)\n", "\n", "* [残差が指数分布に従うときの最小二乗法の振る舞い](https://nbviewer.jupyter.org/gist/genkuroki/8f41a876ec9a7e5e18dfb8074e300077)\n", "\n", "* [連続オープン戸田格子と離散オープン戸田格子の解の一致](https://nbviewer.jupyter.org/gist/genkuroki/6a8f7a116a67270ff7088ad7e9d18cb7)\n", "\n", "* [Julia言語による線分と円弧の作画](https://nbviewer.jupyter.org/gist/genkuroki/d1752b5fd8c496acc5b09122ec630a1e)\n", "\n", "* [FFTを用いた熱方程式やKdV方程式などを数値解法の in-place 版](https://nbviewer.jupyter.org/gist/genkuroki/d7328478c1188f876052fce859e91b40) ←おすすめ!\n", "\n", "* [複素函数 1/z^2 の流れの図](https://nbviewer.jupyter.org/gist/genkuroki/7d2071c7c77e688bbd77c63383261ed4)\n", "\n", "* [ζ(3)の数値積分による計算](https://nbviewer.jupyter.org/gist/genkuroki/d8c4b06bfdfe46bfb2ecd81291e99a42)\n", "\n", "* [2次元配列でのFFTの使い方](https://nbviewer.jupyter.org/gist/genkuroki/26928d4a1ae2e912a3850ed1b31e2941)\n", "\n", "* [巨大ランダム行列の固有値の circular law](https://nbviewer.jupyter.org/gist/genkuroki/6c34330399d6b900da648209d907ff6e)\n", "\n", "* [巨大ランダム実対称行列の半円則](https://nbviewer.jupyter.org/gist/genkuroki/98fb70dcbff7388add25f7e1f0ce00ca)\n", "\n", "* [OpenBLAS版の公式バイナリとJuliaProとして配布されているMKL版バイナリの比較](https://nbviewer.jupyter.org/gist/genkuroki/ccf8e65b2de1245ad51a1f4eafe6d427)\n", "\n", "* [佐藤・Tate予想 (佐藤幹夫のsin²予想)の数値的確認](https://nbviewer.jupyter.org/gist/genkuroki/fdcc26c337d6c22f85087b4f76587979)\n", "\n", "* [なんちゃってhyperfunctions Part 2](https://nbviewer.jupyter.org/gist/genkuroki/4016341f109b877f7dd0849869ff32b8)\n", "\n", "* [ξ(s) = π^(-s/2)Γ(s/2)ζ(s) のクリティカルストリップ上でのプロット](https://nbviewer.jupyter.org/gist/genkuroki/d57c0731b8ba4a05e68936391011ba75)\n", "\n", "* [SymPy.jl の使用例](https://nbviewer.jupyter.org/gist/genkuroki/2a926d491299ab776018671e7fc1cbbf)\n", "\n", "* [資産のランダム分配(日本語版)](https://nbviewer.jupyter.org/gist/genkuroki/841cdac99dec4fd5417af7042de78e4d)\n", "\n", "* [ζ(s) の Re s < 1 での様子](https://nbviewer.jupyter.org/gist/genkuroki/8b13fc9c05bfd669c345b940066b896b)\n", "\n", "* [複素平面上でのガンマ函数](https://nbviewer.jupyter.org/gist/genkuroki/5f372ab9498514ac6366e8ba57493c5b)\n", "\n", "* [交代ゼータ函数のオイラー変換](https://nbviewer.jupyter.org/gist/genkuroki/4a8fea5e2ed1b4e3b737c99acf237042)\n", "\n", "* [ロジスティック分布の2通りの正規分布近似の比較](https://nbviewer.jupyter.org/gist/genkuroki/96b0508a5773035e3a5247beff1d4f99)\n", "\n", "* [2次元Ising模型:メトロポリス法](https://nbviewer.jupyter.org/gist/genkuroki/057814687dcba128ecc2f830dad6e64f)\n", "\n", "* [2次元Ising模型:メトロポリス法のよりシンプルなコード](https://nbviewer.jupyter.org/gist/genkuroki/4fa46c68c56ee0f3b1a6fc8ec628b9d7)\n", "\n", "* [対数尤度の比較によるモデル選択の簡単な例](https://nbviewer.jupyter.org/gist/genkuroki/55a6e87c4c5e0112614d3317727a75ad)\n", "\n", "* [AICと汎化損失の簡単な計算例](https://nbviewer.jupyter.org/gist/genkuroki/17f19359e475fb01cae47dbf65d4b574/Simple%20examples%20of%20AICs%20and%20generalization%20losses.ipynb)\n", "\n", "* [百囚人問題](https://nbviewer.jupyter.org/gist/genkuroki/fa348364bec065eccab2d7aa55dd929e) (注意! これのリンク先には素晴らしいパズルである百囚人問題の答えが書いてある. 答えを見たくない人は[ツイッターの方での紹介](https://twitter.com/genkuroki/status/974514909315719173)の方を参照せよ.)\n", "\n", "* [2×2の分割表の独立性検定シリーズ](https://twitter.com/genkuroki/status/974524859907637249)\n", "\n", " * [複数の確率分布でカイ二乗検定とG検定とFisherの正確検定を比較](https://nbviewer.jupyter.org/gist/genkuroki/7c52b10fc6cdb254c8227f4fb0a47e0d)\n", "\n", " * [2x2の分割表での独立性検定の比較](https://nbviewer.jupyter.org/gist/genkuroki/1dd6d1ee5b473435a2027d221c560640)\n", "\n", " * [2×2の分割表における尤度函数](https://nbviewer.jupyter.org/gist/genkuroki/a3034d25a429b590d96c486064e53c8b)\n", "\n", " * [2×2の分割表の独立性に関する様々な検定法の比較](https://nbviewer.jupyter.org/gist/genkuroki/3935a24dcfcb0fa4da46a0a3955158d8)\n", "\n", "* [蔵本予想](https://nbviewer.jupyter.org/gist/genkuroki/f961bea4bc73321cd85c4abad7035c88)\n", "\n", "* [平衡状態でのカノニカル分布としての正規分布](https://nbviewer.jupyter.org/gist/genkuroki/3b5566ee3f2fe9620a85bc41ee988b35/%E5%B9%B3%E8%A1%A1%E7%8A%B6%E6%85%8B%E3%81%A7%E3%81%AE%E3%82%AB%E3%83%8E%E3%83%8B%E3%82%AB%E3%83%AB%E5%88%86%E5%B8%83%E3%81%A8%E3%81%97%E3%81%A6%E3%81%AE%E6%AD%A3%E8%A6%8F%E5%88%86%E5%B8%83.ipynb)\n", "\n", "* [平衡状態でのカノニカル分布としてのガンマ分布](https://nbviewer.jupyter.org/gist/genkuroki/3b5566ee3f2fe9620a85bc41ee988b35/%E5%B9%B3%E8%A1%A1%E7%8A%B6%E6%85%8B%E3%81%A7%E3%81%AE%E3%82%AB%E3%83%8E%E3%83%8B%E3%82%AB%E3%83%AB%E5%88%86%E5%B8%83%E3%81%A8%E3%81%97%E3%81%A6%E3%81%AE%E3%82%AC%E3%83%B3%E3%83%9E%E5%88%86%E5%B8%83.ipynb)\n", "\n", "* [t-SNEでO(2),O(3),O(4)を平面に射影](https://nbviewer.jupyter.org/gist/genkuroki/3f81d824b468eabb04ff73f480f259a3)\n", "\n", "* [t-SNE Animations with KL divergences (perplexity = 50)](https://twitter.com/genkuroki/status/974524859907637249)\n", "\n", "* [八方桂飛びで次に動ける場所の数が最も少ない場所に移動し続けたらどうなるか?](https://nbviewer.jupyter.org/gist/genkuroki/ec2985f59b2de7fe783637799c644cbf)\n", "\n", "* [Julia言語で計算が遅くなった場合の解決法](https://nbviewer.jupyter.org/gist/genkuroki/1ac59bb3e03eac12945d7040d4f98246)\n", "\n", "* [プロットの仕方](https://twitter.com/genkuroki/status/974542612613890048)\n", "\n", " * [Sarcone's dynamic Muller-Lyer illusion](https://nbviewer.jupyter.org/gist/genkuroki/5058ebf89ba603361ac531558916cf86)\n", "\n", " * [カイ二乗分布のGIFアニメーション](https://nbviewer.jupyter.org/gist/genkuroki/509ae2ec68fdad57b2b000aeaa3a18e6)\n", "\n", " * [Gibbs sampling animation (translation Python to Julia)](https://nbviewer.jupyter.org/gist/genkuroki/b46b0a094ee232302d41780defaffd6e)\n", "\n", " * [JuliaカーネルのJupyterでjavascriptアニメーションを動かす](https://nbviewer.jupyter.org/gist/genkuroki/f1480db0c035d4cb82d1d5ec6989b05d/Julia%E3%82%AB%E3%83%BC%E3%83%8D%E3%83%AB%E3%81%AEJupyter%E3%81%A7javascript%E3%82%A2%E3%83%8B%E3%83%A1%E3%83%BC%E3%82%B7%E3%83%A7%E3%83%B3%E3%82%92%E5%8B%95%E3%81%8B%E3%81%99.ipynb)\n", "\n", " * [PyPlot.jl によるプロットと Plots.jl によるプロットを比較してみる.](https://nbviewer.jupyter.org/gist/genkuroki/3d6dbf52a3e52eb7c664bc88632c81d3)\n", "\n", " * [日本語フォントをPyPlotで使用する方法](https://nbviewer.jupyter.org/gist/genkuroki/e7484bc3f81e28209aef10cac6d62ed3)\n", "\n", " * [日本語フォントをPlotsで使用する方法](https://nbviewer.jupyter.org/gist/genkuroki/544b1fe7c6f9d1b744b1bbea9da3865a)\n", "\n", " * [PyPlotで自動的に決まる線の色とスタイルの変え方](https://nbviewer.jupyter.org/gist/genkuroki/823182aea57068941681f0fa52749c94)\n", "\n", " * [GRバックエンドで日本語フォントが使えないことの確認](https://nbviewer.jupyter.org/gist/genkuroki/44b2182c4c890a91df2f0687b9d67112)\n", "\n", " * [2変数以上の確率密度函数の3次元プロットの例](https://nbviewer.jupyter.org/gist/genkuroki/cbee2d661c5e19ae366044a4f3f3af0d)\n", "\n", " * [Solving single pendulums by DifferentialEquations.jl](https://nbviewer.jupyter.org/gist/genkuroki/563edf907c659928799a929a49b71c04)\n", "\n", " * [PyPlot の savefig を使う場合には bbox_inches=\"tight\" を使うようにした方が無難](https://nbviewer.jupyter.org/gist/genkuroki/7b38758fa8d1323f3f59d317526fa0ed?flush_cache=true)\n", "\n", " * [matplotlibのstreamplotのサンプルコードをJuliaでほぼ再現](https://nbviewer.jupyter.org/gist/genkuroki/91d630c187680ebaba3d716d77370f4f)\n", " \n", "* [過学習の過程の動画 LASSO版](https://nbviewer.jupyter.org/gist/genkuroki/c08b416648d4d7db4948ffac6abeadfd) ([twitter](https://twitter.com/genkuroki/status/1042144375176929282))\n", "\n", "* [正規分布の共役事前分布(正規ガンマ分布)](https://nbviewer.jupyter.org/gist/genkuroki/8a342d0b7b249e279dd8ad6ae283c5db) ←おすすめ! ([twitterでの解説](https://twitter.com/genkuroki/status/1046931969131474944))\n", "\n", "* [Benchmark test of Monte Carlo calculation of pi (Julia v1.0.0)](https://nbviewer.jupyter.org/gist/genkuroki/7f1a9970cf3fbb206d87e37771938321)\n", "\n", "* [Makie パッケージが動きました](https://nbviewer.jupyter.org/gist/genkuroki/71667db95c38422437c6db1412f9fc6e)\n", "\n", "* [v1.0 から Seaborn でプロットする方法](https://nbviewer.jupyter.org/gist/genkuroki/c0c0d591b074bdfb696d963ede3bbcab)\n", "\n", "* [v1.0でもRcall.jlを使える](https://nbviewer.jupyter.org/gist/genkuroki/c72aa29f24156e46c7564852e4f36c9a)\n", "\n", "* [v1.0でも普通にJavaCall.jlを使える](https://nbviewer.jupyter.org/gist/genkuroki/6a91eece7d62d880bb36a91adce08d5e?flush_cache=true)\n", "\n", "* [v1.0でも高速に代数計算をしてくれるNemo.jlパッケージも使えます(月を日数に変換する多項式の計算)](https://nbviewer.jupyter.org/gist/genkuroki/e879d4e00b0a4ea20469c5027de15770)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## ツイッターで教えてもらったJuliaの使い方\n", "\n", "* Julia + Jupyter でサウンドファイルも扱える(ツイッターで[アヲギリさん](https://twitter.com/Aogiri_m2d/status/998160259695824897)教えてもらった).\n", "\n", " * Demos:\n", "\n", " * [Simple feedback delay](https://nbviewer.jupyter.org/github/Aogiri-m2d/JuliaAudioProcessingDemo/blob/master/Notebooks/SimpleFeedbackDelay.ipynb)\n", "\n", " * [Load and save audio files](https://nbviewer.jupyter.org/github/Aogiri-m2d/JuliaAudioProcessingDemo/blob/master/Notebooks/LoadAndSaveAudioFile.ipynb)\n", " \n", " * [https://github.com/Aogiri-m2d](https://github.com/Aogiri-m2d)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## おまけ\n", "\n", "* [Weave.jlの使い方](https://github.com/genkuroki/msfd28/tree/master/Weave): JuliaカーネルのJupyterノートブックをLaTeXに変換して, xelatexでPDFに変換してみた.\n", "\n", " * [Weaveによる文書作成のテスト](https://nbviewer.jupyter.org/github/genkuroki/msfd28/blob/master/Weave/%E3%83%86%E3%82%B9%E3%83%88.ipynb)\n", "\n", " * [ipynbファイルのtexおよびhtmlファイルへの変換](https://nbviewer.jupyter.org/github/genkuroki/msfd28/blob/master/Weave/Convert%20ipynb%20into%20html%2C%20tex%2C%20pdf.ipynb)\n", "\n", "\n", "* [1変数函数の微積分のノート](https://github.com/genkuroki/Calculus): Jupyterノートブックで作成した微積分のノート.\n", "\n", "\n", "* [高校数学の話題](https://github.com/genkuroki/HighSchoolMath): 高校生に数学を教えている人(および教えることになるかもしれない人)のために書いた数学のノート. これもJupyterノートブックで作成した." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### メモ\n", "\n", "$$\n", "\\Gamma(s) = \\int_0^\\infty e^{-x}x^{s-1}\\,dx.\n", "$$" ] } ], "metadata": { "_draft": { "nbviewer_url": "https://gist.github.com/91db4780c941f8c49a968ad27d27f46c" }, "gist": { "data": { "description": "msfd28/Julia/msfd28genkuroki.ipynb", "public": true }, "id": "91db4780c941f8c49a968ad27d27f46c" }, "kernelspec": { "display_name": "Julia 1.1.1", "language": "julia", "name": "julia-1.1" }, "language_info": { "file_extension": ".jl", "mimetype": "application/julia", "name": "julia", "version": "1.1.1" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": true, "title_cell": "目次", "title_sidebar": "目次", "toc_cell": true, "toc_position": { "height": "calc(100% - 180px)", "left": "10px", "top": "150px", "width": "249.332px" }, "toc_section_display": true, "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 2 }