quantile ...

Prev Next

Function Names

quantile, quantile ignore zero

Description

Quantiles are points in a distribution that relate to the rank order of values in that distribution. As an example, the middle quantile (quantile parameter p = 0.5) is referred as median() function. B4P also supports this function directly. Quantile calculation is the inverse of the empirical probability distribution. Following calculation rule is applied:

n refers to the number numeric values provided. p is referred as the quantile parameter.
Quantile formula

Examples:

  • For the 1st quartile, use p = 0.25
  • For the 2nd quartile (median), use p = 0.5, or the median() function
  • For the 3rd quartil, use p = 0.75

The function quantile ignore zero ignores all zero values provided. If the sequence of values does only contain zeros, then an exception will be asserted because the quantile cannot be calculated.

Call as: function

Parameter count

2

Parameters

No.TypeDescription
1
input
numeral Quantile parameter

The value must lie between 0 and 1.

2
input
set Set of values

The set must contain at least one numeric element which will be included in the calculation. Blank strings are tolerated (no exceptions asserted) and ignored as well (not treated as zero). The values do not need to be ordered in ascending order. This function will take of it.

Opt. 3
input
numeral Starting set element to include

Points to the starting set element. Negative indexing is allowed here, i.e. -1 refers to last element in the set.

Default value: 0
Opt. 4
input
numeral Ending set element to include

Points to the ending set element. Negative indexing is allowed here, i.e. -1 refers to last element in the set.

Default value: Last value

Return value

TypeDescription
numeral Calculated quantile

Exceptions

Quantile parameter not between 0 and 1
No numbers available to calculate

Examples

       ps[] = { 0, 0.0001, 0.1, 0.2, 0.25, 1/3, 0.5, 2/3, 0.75, 0.8, 0.9, 0.9999, 1.0 };

       for all( ps[], p[] )
       {
           echo("p: ", p[],"  quantile = ", quantile( p[], { 1, 2, 2, 3, 5, 8, 9, 12, 12, 13 } ) );
       }
       echo( "Call with 4 parameters: ", quantile( 0.5, { 8,7,6,5,4,3,2,1 }, 1, 3 ) );
       // Values 7,6,5 are calculated and result in 6.

Output

p: 0  quantile = 1
p: 0.0001  quantile = 1
p: 0.1  quantile = 1.5
p: 0.2  quantile = 2
p: 0.25  quantile = 2
p: 0.3333333333  quantile = 3
p: 0.5  quantile = 6.5
p: 0.6666666667  quantile = 9
p: 0.75  quantile = 12
p: 0.8  quantile = 12
p: 0.9  quantile = 12.5
p: 0.9999  quantile = 13
p: 1.0  quantile = 13
Call with 4 parameters: 6
Try it yourself: Open LIB_Function_quantile.b4p in B4P_Examples.zip. Decompress before use.

See also

median