{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from geoscilabs.dcip.CondUtils import ColeColePelton, vizColeCole\n", "from geoscilabs.dcip.FreqtoTime import transFilt\n", "import matplotlib\n", "from ipywidgets import interact, FloatText, FloatSlider, ToggleButtons" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "matplotlib.rcParams['font.size'] = 16" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Complex conductivity and resistivity" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Purpose\n", "\n", "Using a simple Cole-Cole model, we parameterize complex resistivity with four parameters: resistivity at zero frequency ($\\rho_0$), chargeability($\\eta$), time constant ($\\tau$), and frequency dependence ($c$). Based upon those parameters, we understand how resistivity and conductivity changes when medium is chargeable both in frequency domain and time domain." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Set up\n", "\n", "Pelton's Cole-Cole model for resistivity and conductivity can be written as \n", "\n", "$$ \\rho(\\omega) = \\rho_0 \\Big[1 - \\eta \\Big(1-\\frac{1}{1+(\\imath\\omega\\tau)^c}\\Big) \\Big] $$\n", "\n", "and\n", "\n", "$$ \\sigma(\\omega) = \\sigma_{\\infty}\\Big(1-\\frac{\\eta}{1+(1-\\eta)(\\imath\\omega\\tau)^c} \\Big) $$\n", "\n", "respectively. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Cole-Cole app\n", "\n", "## Parameters\n", "\n", "- $\\sigma_1$: Conductivity of the first layer (S/m)\n", "\n", "- $\\sigma_2$: Conductivity of the first layer (S/m)\n", "\n", "- $f$ (Hz): Frequency (Hz)\n", "\n", "- Type: \n", "\n", " - Reflection: Transmission power as a function of incident angle \n", " - Transmission: Transmission power as a function of incident angle \n", " - Angle: relationship between $\\theta_i$ and $\\theta_t$" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "interact(vizColeCole, eta=FloatSlider(min=0.1, max=0.5, step=0.05, value=0.4), \n", " tau=FloatText(value=0.1), \n", " c=FloatSlider(min=0.1, max=1., step=0.1, value=0.5), \n", " sigres = ToggleButtons(options=['sigma','resis']), \n", " t1=FloatText(value=800), \n", " t2=FloatText(value=1400), \n", " );" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 4 }