{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Consumer expenditure - Why relational learning matters\n", "\n", "This example demonstrates how powerful a real relational learning algorithm can be. Based on a public-domain dataset on consumer behavior, we use a propostionalization algorithm to predict whether purchases were made as a gift. We show that with relational learning, we can get an AUC of over 90%. The generated features would have been impossible to build by hand or by using brute-force approaches.\n", "\n", "Summary:\n", "\n", "- Prediction type: __Classification model__\n", "- Domain: __Retail__\n", "- Prediction target: __If a purchase is a gift__ \n", "- Source data: __Relational data set, 4 tables__\n", "- Population size: __2.020.634__" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Background\n", "\n", "Relational learning is one of the most underappreciated fields of machine learning. Even though relational learning is very relevant to many real world data science projects, many data scientists don't even know what relational learning is. \n", "\n", "There are many subdomains of relational learning, but the most important one is extracting features from relational data: Most business data is relational, meaning that it is spread out over several relational tables. However, most machine learning algorithms require that the data be presented in the form of a single flat table. So we need to extract features from our relational data. Some people also call this data wrangling.\n", "\n", "Most data scientists we know extract features from relational data manually or by using crude, brute-force approaches (randomly generate thousands of features and then do a feature selection). This is very time-consuming and does not produce good features." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### The challenge\n", "\n", "The Consumer Expenditure Data Set is a public domain data set provided by the American Bureau of Labor Statistics (https://www.bls.gov/cex/pumd.htm). It includes the diary entries, where American consumers are asked to keep diaries of the products they have purchased each month.\n", "\n", "These consumer goods are categorized using a six-digit classification system the UCC. This system is hierarchical, meaning that every digit represents an increasingly granular category.\n", "\n", "For instance, all UCC codes beginning with ‘200’ represent beverages. UCC codes beginning with ‘20011’ represents beer and ‘200111’ represents ‘beer and ale’ and ‘200112’ represents ‘nonalcoholic beer’ (https://www.bls.gov/cex/pumd/ce_pumd_interview_diary_dictionary.xlsx).\n", "\n", "The diaries also contain a flag that indicates whether the product was purchased as a gift. The challenge is to predict that flag using other information in the diary entries.\n", "\n", "This can be done based on the following considerations:\n", "\n", "1. Some items are _less likely to be purchased as gifts_ than others (for instance, it is unlikely that toilet paper is ever purchased as a gift).\n", "\n", "2. Items that diverge from the _usual consumption patterns_ are more likely to be gifts.\n", "\n", "In total, there are three tables which we find interesting:\n", "\n", "1. EXPD, which contains information on the _consumer expenditures_, including the target variable GIFT.\n", "\n", "2. FMLD, which contains socio-demographic information on the _households_.\n", "\n", "3. MEMD, which contains socio-demographic information on each _member of the households_.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Analysis" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%pip install -q \"getml==1.5.0\" \"matplotlib==3.9.2\" \"ipywidgets==8.1.5\"" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "getML API version: 1.5.0\n", "\n" ] } ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "import getml\n", "\n", "%matplotlib inline\n", "\n", "print(f\"getML API version: {getml.__version__}\\n\")" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Launching ./getML --allow-push-notifications=true --allow-remote-ips=true --home-directory=/home/user --in-memory=false --install=false --launch-browser=true --log=false --token=token in /home/user/.getML/getml-1.5.0-x64-linux...\n", "Launched the getML Engine. The log output will be stored in /home/user/.getML/logs/20240918134630.log.\n", "\u001b[2K Loading pipelines... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n", "\u001b[?25h" ] }, { "data": { "text/html": [ "
Connected to project 'consumer_expenditures'.\n",
       "
\n" ], "text/plain": [ "Connected to project \u001b[32m'consumer_expenditures'\u001b[0m.\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "getml.engine.launch(in_memory=False, allow_remote_ips=True, token='token')\n", "getml.engine.set_project(\"consumer_expenditures\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1. Loading data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 1.1 Download from source\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Connection(dbname='ConsumerExpenditures',\n", " dialect='mysql',\n", " host='relational.fel.cvut.cz',\n", " port=3306)" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "conn = getml.database.connect_mysql(\n", " host=\"relational.fel.cvut.cz\",\n", " dbname=\"ConsumerExpenditures\",\n", " port=3306,\n", " user=\"guest\",\n", " password=\"ctu-relational\"\n", ")\n", "\n", "conn" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "def load_if_needed(name):\n", " \"\"\"\n", " Loads the data from the relational learning\n", " repository, if the data frame has not already\n", " been loaded.\n", " \"\"\"\n", " if getml.data.exists(name):\n", " return getml.data.load_data_frame(name)\n", " data_frame = getml.data.DataFrame.from_db(\n", " name=name,\n", " table_name=name,\n", " conn=conn\n", " )\n", " data_frame.save()\n", " return data_frame" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "households = load_if_needed(\"HOUSEHOLDS\")\n", "household_members = load_if_needed(\"HOUSEHOLD_MEMBERS\")\n", "expenditures = load_if_needed(\"EXPENDITURES\")" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
name YEAR INCOME_RANKINCOME_RANK_1INCOME_RANK_2INCOME_RANK_3INCOME_RANK_4INCOME_RANK_5INCOME_RANK_MEAN AGE_REFHOUSEHOLD_ID
roleunused_floatunused_float unused_float unused_float unused_float unused_float unused_float unused_floatunused_floatunused_string
0\n", " 2015 \n", " \n", " 0.3044\n", " \n", " 0.1448\n", " \n", " 0.1427\n", " \n", " 0.1432\n", " \n", " 0.1422\n", " \n", " 0.1382\n", " \n", " 0.127\n", " \n", " 66 \n", " 03111041
1\n", " 2015 \n", " \n", " 0.3063\n", " \n", " 0.1462\n", " \n", " 0.1444\n", " \n", " 0.1446\n", " \n", " 0.1435\n", " \n", " 0.1395\n", " \n", " 0.1283\n", " \n", " 66 \n", " 03111042
2\n", " 2015 \n", " \n", " 0.6931\n", " \n", " 0.6222\n", " \n", " 0.6204\n", " \n", " 0.623\n", " \n", " 0.6131\n", " \n", " 0.6123\n", " \n", " 0.6207\n", " \n", " 48 \n", " 03111051
3\n", " 2015 \n", " \n", " 0.6926\n", " \n", " 0.6216\n", " \n", " 0.6198\n", " \n", " 0.6224\n", " \n", " 0.6125\n", " \n", " 0.6117\n", " \n", " 0.6201\n", " \n", " 48 \n", " 03111052
4\n", " 2015 \n", " \n", " 0.2817\n", " \n", " 0.113\n", " \n", " 0.1128\n", " \n", " 0.1098\n", " \n", " 0.1116\n", " \n", " 0.1092\n", " \n", " 0.0951\n", " \n", " 37 \n", " 03111061
\n", " ... \n", " \n", " ... \n", " \n", " ... \n", " \n", " ... \n", " \n", " ... \n", " \n", " ... \n", " \n", " ... \n", " \n", " ... \n", " \n", " ... \n", " ...
56807\n", " 2019 \n", " \n", " 0.4828\n", " \n", " 0.4106\n", " \n", " 0.3603\n", " \n", " 0.3958\n", " \n", " 0.377\n", " \n", " 0.3984\n", " \n", " 0.3769\n", " \n", " 67 \n", " 04362582
56808\n", " 2019 \n", " \n", " 0.6644\n", " \n", " 0.5975\n", " \n", " 0.6026\n", " \n", " 0.5949\n", " \n", " 0.596\n", " \n", " 0.6002\n", " \n", " 0.6\n", " \n", " 52 \n", " 04362661
56809\n", " 2019 \n", " \n", " 0.6639\n", " \n", " 0.597\n", " \n", " 0.6021\n", " \n", " 0.5944\n", " \n", " 0.5955\n", " \n", " 0.5997\n", " \n", " 0.5995\n", " \n", " 52 \n", " 04362662
56810\n", " 2019 \n", " \n", " 0.162\n", " \n", " 0.05217\n", " \n", " 0.03955\n", " \n", " 0.04507\n", " \n", " 0.04607\n", " \n", " 0.02436\n", " \n", " 0.03558\n", " \n", " 72 \n", " 04362671
56811\n", " 2019 \n", " \n", " 0.1616\n", " \n", " 0.03925\n", " \n", " 0.05741\n", " \n", " 0.04595\n", " \n", " 0.03789\n", " \n", " 0.05746\n", " \n", " 0.03931\n", " \n", " 72 \n", " 04362672
\n", "\n", "

\n", " 56812 rows x 10 columns
\n", " memory usage: 5.06 MB
\n", " name: HOUSEHOLDS
\n", " type: getml.DataFrame
\n", " \n", "

\n" ], "text/plain": [ " name YEAR INCOME_RANK INCOME_RANK_1 INCOME_RANK_2 ... INCOME_RANK_4 INCOME_RANK_5 INCOME_RANK_MEAN\n", " role unused_float unused_float unused_float unused_float ... unused_float unused_float unused_float\n", " 0 2015 0.3044 0.1448 0.1427 ... 0.1422 0.1382 0.127 \n", " 1 2015 0.3063 0.1462 0.1444 ... 0.1435 0.1395 0.1283 \n", " 2 2015 0.6931 0.6222 0.6204 ... 0.6131 0.6123 0.6207 \n", " 3 2015 0.6926 0.6216 0.6198 ... 0.6125 0.6117 0.6201 \n", " 4 2015 0.2817 0.113 0.1128 ... 0.1116 0.1092 0.0951 \n", " ... ... ... ... ... ... ... \n", "56807 2019 0.4828 0.4106 0.3603 ... 0.377 0.3984 0.3769 \n", "56808 2019 0.6644 0.5975 0.6026 ... 0.596 0.6002 0.6 \n", "56809 2019 0.6639 0.597 0.6021 ... 0.5955 0.5997 0.5995 \n", "56810 2019 0.162 0.05217 0.03955 ... 0.04607 0.02436 0.03558\n", "56811 2019 0.1616 0.03925 0.05741 ... 0.03789 0.05746 0.03931\n", "\n", " name AGE_REF HOUSEHOLD_ID \n", " role unused_float unused_string\n", " 0 66 03111041 \n", " 1 66 03111042 \n", " 2 48 03111051 \n", " 3 48 03111052 \n", " 4 37 03111061 \n", " ... ... \n", "56807 67 04362582 \n", "56808 52 04362661 \n", "56809 52 04362662 \n", "56810 72 04362671 \n", "56811 72 04362672 \n", "\n", "\n", "56812 rows x 10 columns\n", "memory usage: 5.06 MB\n", "type: getml.DataFrame" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "households" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
name YEAR AGEHOUSEHOLD_ID MARITAL SEX WORK_STATUS
roleunused_floatunused_floatunused_stringunused_stringunused_stringunused_string
0\n", " 2015 \n", " \n", " 66 \n", " 0311104111NULL
1\n", " 2015 \n", " \n", " 66 \n", " 0311104211NULL
2\n", " 2015 \n", " \n", " 56 \n", " 0311109111NULL
3\n", " 2015 \n", " \n", " 56 \n", " 0311109211NULL
4\n", " 2015 \n", " \n", " 50 \n", " 03111111111
\n", " ... \n", " \n", " ... \n", " ............
137350\n", " 2019 \n", " \n", " 22 \n", " 0436242252NULL
137351\n", " 2019 \n", " \n", " 11 \n", " 0436243152NULL
137352\n", " 2019 \n", " \n", " 11 \n", " 0436243252NULL
137353\n", " 2019 \n", " \n", " 72 \n", " 0436267152NULL
137354\n", " 2019 \n", " \n", " 72 \n", " 0436267252NULL
\n", "\n", "

\n", " 137355 rows x 6 columns
\n", " memory usage: 8.59 MB
\n", " name: HOUSEHOLD_MEMBERS
\n", " type: getml.DataFrame
\n", " \n", "

\n" ], "text/plain": [ " name YEAR AGE HOUSEHOLD_ID MARITAL SEX WORK_STATUS \n", " role unused_float unused_float unused_string unused_string unused_string unused_string\n", " 0 2015 66 03111041 1 1 NULL \n", " 1 2015 66 03111042 1 1 NULL \n", " 2 2015 56 03111091 1 1 NULL \n", " 3 2015 56 03111092 1 1 NULL \n", " 4 2015 50 03111111 1 1 1 \n", " ... ... ... ... ... ... \n", "137350 2019 22 04362422 5 2 NULL \n", "137351 2019 11 04362431 5 2 NULL \n", "137352 2019 11 04362432 5 2 NULL \n", "137353 2019 72 04362671 5 2 NULL \n", "137354 2019 72 04362672 5 2 NULL \n", "\n", "\n", "137355 rows x 6 columns\n", "memory usage: 8.59 MB\n", "type: getml.DataFrame" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "household_members" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
name YEAR MONTH COST GIFT IS_TRAININGEXPENDITURE_IDHOUSEHOLD_ID PRODUCT_CODE
roleunused_floatunused_floatunused_floatunused_floatunused_floatunused_string unused_stringunused_string
0\n", " 2015 \n", " \n", " 1 \n", " \n", " 3.89\n", " \n", " 0 \n", " \n", " 1 \n", " 103111041010210
1\n", " 2015 \n", " \n", " 1 \n", " \n", " 4.66\n", " \n", " 0 \n", " \n", " 1 \n", " 1003111041120310
2\n", " 2015 \n", " \n", " 2 \n", " \n", " 9.79\n", " \n", " 0 \n", " \n", " 1 \n", " 10003111051190211
3\n", " 2015 \n", " \n", " 2 \n", " \n", " 2.95\n", " \n", " 0 \n", " \n", " 1 \n", " 100003111402040510
4\n", " 2015 \n", " \n", " 1 \n", " \n", " 2.12\n", " \n", " 0 \n", " \n", " 1 \n", " 1000003114161190321
\n", " ... \n", " \n", " ... \n", " \n", " ... \n", " \n", " ... \n", " \n", " ... \n", " .........
2020629\n", " 2017 \n", " \n", " 6 \n", " \n", " 1.99\n", " \n", " 0 \n", " \n", " 1 \n", " 99999503708582150110
2020630\n", " 2017 \n", " \n", " 6 \n", " \n", " 3.619\n", " \n", " 0 \n", " \n", " 1 \n", " 99999603708582150110
2020631\n", " 2017 \n", " \n", " 6 \n", " \n", " 5.2727\n", " \n", " 0 \n", " \n", " 1 \n", " 99999703708582150211
2020632\n", " 2017 \n", " \n", " 6 \n", " \n", " 4.6894\n", " \n", " 0 \n", " \n", " 1 \n", " 99999803708582150310
2020633\n", " 2017 \n", " \n", " 6 \n", " \n", " 5.7177\n", " \n", " 0 \n", " \n", " 1 \n", " 99999903708582160310
\n", "\n", "

\n", " 2020634 rows x 8 columns
\n", " memory usage: 176.70 MB
\n", " name: EXPENDITURES
\n", " type: getml.DataFrame
\n", " \n", "

\n" ], "text/plain": [ " name YEAR MONTH COST GIFT IS_TRAINING EXPENDITURE_ID HOUSEHOLD_ID \n", " role unused_float unused_float unused_float unused_float unused_float unused_string unused_string\n", " 0 2015 1 3.89 0 1 1 03111041 \n", " 1 2015 1 4.66 0 1 10 03111041 \n", " 2 2015 2 9.79 0 1 100 03111051 \n", " 3 2015 2 2.95 0 1 1000 03111402 \n", " 4 2015 1 2.12 0 1 10000 03114161 \n", " ... ... ... ... ... ... ... \n", "2020629 2017 6 1.99 0 1 999995 03708582 \n", "2020630 2017 6 3.619 0 1 999996 03708582 \n", "2020631 2017 6 5.2727 0 1 999997 03708582 \n", "2020632 2017 6 4.6894 0 1 999998 03708582 \n", "2020633 2017 6 5.7177 0 1 999999 03708582 \n", "\n", " name PRODUCT_CODE \n", " role unused_string\n", " 0 010210 \n", " 1 120310 \n", " 2 190211 \n", " 3 040510 \n", " 4 190321 \n", " ... \n", "2020629 150110 \n", "2020630 150110 \n", "2020631 150211 \n", "2020632 150310 \n", "2020633 160310 \n", "\n", "\n", "2020634 rows x 8 columns\n", "memory usage: 176.70 MB\n", "type: getml.DataFrame" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "expenditures" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 1.2 Prepare data for getML\n", "\n", "We now have to assign roles to the columns." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
nameHOUSEHOLD_ID YEARINCOME_RANKINCOME_RANK_1INCOME_RANK_2INCOME_RANK_3INCOME_RANK_4INCOME_RANK_5INCOME_RANK_MEAN AGE_REF
role join_keynumerical numerical numerical numerical numerical numerical numerical numericalnumerical
003111041\n", " 2015 \n", " \n", " 0.3044\n", " \n", " 0.1448\n", " \n", " 0.1427\n", " \n", " 0.1432\n", " \n", " 0.1422\n", " \n", " 0.1382\n", " \n", " 0.127\n", " \n", " 66 \n", "
103111042\n", " 2015 \n", " \n", " 0.3063\n", " \n", " 0.1462\n", " \n", " 0.1444\n", " \n", " 0.1446\n", " \n", " 0.1435\n", " \n", " 0.1395\n", " \n", " 0.1283\n", " \n", " 66 \n", "
203111051\n", " 2015 \n", " \n", " 0.6931\n", " \n", " 0.6222\n", " \n", " 0.6204\n", " \n", " 0.623\n", " \n", " 0.6131\n", " \n", " 0.6123\n", " \n", " 0.6207\n", " \n", " 48 \n", "
303111052\n", " 2015 \n", " \n", " 0.6926\n", " \n", " 0.6216\n", " \n", " 0.6198\n", " \n", " 0.6224\n", " \n", " 0.6125\n", " \n", " 0.6117\n", " \n", " 0.6201\n", " \n", " 48 \n", "
403111061\n", " 2015 \n", " \n", " 0.2817\n", " \n", " 0.113\n", " \n", " 0.1128\n", " \n", " 0.1098\n", " \n", " 0.1116\n", " \n", " 0.1092\n", " \n", " 0.0951\n", " \n", " 37 \n", "
...\n", " ... \n", " \n", " ... \n", " \n", " ... \n", " \n", " ... \n", " \n", " ... \n", " \n", " ... \n", " \n", " ... \n", " \n", " ... \n", " \n", " ... \n", "
5680704362582\n", " 2019 \n", " \n", " 0.4828\n", " \n", " 0.4106\n", " \n", " 0.3603\n", " \n", " 0.3958\n", " \n", " 0.377\n", " \n", " 0.3984\n", " \n", " 0.3769\n", " \n", " 67 \n", "
5680804362661\n", " 2019 \n", " \n", " 0.6644\n", " \n", " 0.5975\n", " \n", " 0.6026\n", " \n", " 0.5949\n", " \n", " 0.596\n", " \n", " 0.6002\n", " \n", " 0.6\n", " \n", " 52 \n", "
5680904362662\n", " 2019 \n", " \n", " 0.6639\n", " \n", " 0.597\n", " \n", " 0.6021\n", " \n", " 0.5944\n", " \n", " 0.5955\n", " \n", " 0.5997\n", " \n", " 0.5995\n", " \n", " 52 \n", "
5681004362671\n", " 2019 \n", " \n", " 0.162\n", " \n", " 0.05217\n", " \n", " 0.03955\n", " \n", " 0.04507\n", " \n", " 0.04607\n", " \n", " 0.02436\n", " \n", " 0.03558\n", " \n", " 72 \n", "
5681104362672\n", " 2019 \n", " \n", " 0.1616\n", " \n", " 0.03925\n", " \n", " 0.05741\n", " \n", " 0.04595\n", " \n", " 0.03789\n", " \n", " 0.05746\n", " \n", " 0.03931\n", " \n", " 72 \n", "
\n", "\n", "

\n", " 56812 rows x 10 columns
\n", " memory usage: 4.32 MB
\n", " name: HOUSEHOLDS
\n", " type: getml.DataFrame
\n", " \n", "

\n" ], "text/plain": [ " name HOUSEHOLD_ID YEAR INCOME_RANK INCOME_RANK_1 ... INCOME_RANK_3 INCOME_RANK_4 INCOME_RANK_5\n", " role join_key numerical numerical numerical ... numerical numerical numerical\n", " 0 03111041 2015 0.3044 0.1448 ... 0.1432 0.1422 0.1382 \n", " 1 03111042 2015 0.3063 0.1462 ... 0.1446 0.1435 0.1395 \n", " 2 03111051 2015 0.6931 0.6222 ... 0.623 0.6131 0.6123 \n", " 3 03111052 2015 0.6926 0.6216 ... 0.6224 0.6125 0.6117 \n", " 4 03111061 2015 0.2817 0.113 ... 0.1098 0.1116 0.1092 \n", " ... ... ... ... ... ... ... \n", "56807 04362582 2019 0.4828 0.4106 ... 0.3958 0.377 0.3984 \n", "56808 04362661 2019 0.6644 0.5975 ... 0.5949 0.596 0.6002 \n", "56809 04362662 2019 0.6639 0.597 ... 0.5944 0.5955 0.5997 \n", "56810 04362671 2019 0.162 0.05217 ... 0.04507 0.04607 0.02436\n", "56811 04362672 2019 0.1616 0.03925 ... 0.04595 0.03789 0.05746\n", "\n", " name INCOME_RANK_MEAN AGE_REF\n", " role numerical numerical\n", " 0 0.127 66\n", " 1 0.1283 66\n", " 2 0.6207 48\n", " 3 0.6201 48\n", " 4 0.0951 37\n", " ... ...\n", "56807 0.3769 67\n", "56808 0.6 52\n", "56809 0.5995 52\n", "56810 0.03558 72\n", "56811 0.03931 72\n", "\n", "\n", "56812 rows x 10 columns\n", "memory usage: 4.32 MB\n", "type: getml.DataFrame" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "households.set_role(\"HOUSEHOLD_ID\", getml.data.roles.join_key)\n", "households.set_role(households.roles.unused_float, getml.data.roles.numerical)\n", "\n", "households" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
nameHOUSEHOLD_IDMARITAL SEX WORK_STATUS YEAR AGE
role join_keycategoricalcategoricalcategoricalnumericalnumerical
00311104111NULL\n", " 2015 \n", " \n", " 66 \n", "
10311104211NULL\n", " 2015 \n", " \n", " 66 \n", "
20311109111NULL\n", " 2015 \n", " \n", " 56 \n", "
30311109211NULL\n", " 2015 \n", " \n", " 56 \n", "
403111111111\n", " 2015 \n", " \n", " 50 \n", "
............\n", " ... \n", " \n", " ... \n", "
1373500436242252NULL\n", " 2019 \n", " \n", " 22 \n", "
1373510436243152NULL\n", " 2019 \n", " \n", " 11 \n", "
1373520436243252NULL\n", " 2019 \n", " \n", " 11 \n", "
1373530436267152NULL\n", " 2019 \n", " \n", " 72 \n", "
1373540436267252NULL\n", " 2019 \n", " \n", " 72 \n", "
\n", "\n", "

\n", " 137355 rows x 6 columns
\n", " memory usage: 4.40 MB
\n", " name: HOUSEHOLD_MEMBERS
\n", " type: getml.DataFrame
\n", " \n", "

\n" ], "text/plain": [ " name HOUSEHOLD_ID MARITAL SEX WORK_STATUS YEAR AGE\n", " role join_key categorical categorical categorical numerical numerical\n", " 0 03111041 1 1 NULL 2015 66\n", " 1 03111042 1 1 NULL 2015 66\n", " 2 03111091 1 1 NULL 2015 56\n", " 3 03111092 1 1 NULL 2015 56\n", " 4 03111111 1 1 1 2015 50\n", " ... ... ... ... ... ...\n", "137350 04362422 5 2 NULL 2019 22\n", "137351 04362431 5 2 NULL 2019 11\n", "137352 04362432 5 2 NULL 2019 11\n", "137353 04362671 5 2 NULL 2019 72\n", "137354 04362672 5 2 NULL 2019 72\n", "\n", "\n", "137355 rows x 6 columns\n", "memory usage: 4.40 MB\n", "type: getml.DataFrame" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "household_members.set_role(\"HOUSEHOLD_ID\", getml.data.roles.join_key)\n", "household_members.set_role(household_members.roles.unused_float, getml.data.roles.numerical)\n", "household_members.set_role(household_members.roles.unused_string, getml.data.roles.categorical)\n", "\n", "household_members" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "year = expenditures[\"YEAR\"]\n", "month = expenditures[\"MONTH\"]\n", "\n", "ts_strings = year + \"/\" + month\n", "\n", "expenditures[\"TIME_STAMP\"] = ts_strings.as_ts([\"%Y/%n\"])" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
name TIME_STAMPHOUSEHOLD_ID GIFTMONTH YEAR PRODUCT_CODE COST IS_TRAININGEXPENDITURE_ID
role time_stamp join_keytargetcategoricalcategoricalcategorical numericalunused_floatunused_string
unittime stamp, comparison only
subroles:
- include substring
02015-01-0103111041\n", " 0 \n", " 12015010210\n", " 3.89\n", " \n", " 1 \n", " 1
12015-01-0103111041\n", " 0 \n", " 12015120310\n", " 4.66\n", " \n", " 1 \n", " 10
22015-02-0103111051\n", " 0 \n", " 22015190211\n", " 9.79\n", " \n", " 1 \n", " 100
32015-02-0103111402\n", " 0 \n", " 22015040510\n", " 2.95\n", " \n", " 1 \n", " 1000
42015-01-0103114161\n", " 0 \n", " 12015190321\n", " 2.12\n", " \n", " 1 \n", " 10000
......\n", " ... \n", " .........\n", " ... \n", " \n", " ... \n", " ...
20206292017-06-0103708582\n", " 0 \n", " 62017150110\n", " 1.99\n", " \n", " 1 \n", " 999995
20206302017-06-0103708582\n", " 0 \n", " 62017150110\n", " 3.619\n", " \n", " 1 \n", " 999996
20206312017-06-0103708582\n", " 0 \n", " 62017150211\n", " 5.2727\n", " \n", " 1 \n", " 999997
20206322017-06-0103708582\n", " 0 \n", " 62017150310\n", " 4.6894\n", " \n", " 1 \n", " 999998
20206332017-06-0103708582\n", " 0 \n", " 62017160310\n", " 5.7177\n", " \n", " 1 \n", " 999999
\n", "\n", "

\n", " 2020634 rows x 9 columns
\n", " memory usage: 128.21 MB
\n", " name: EXPENDITURES
\n", " type: getml.DataFrame
\n", " \n", "

\n" ], "text/plain": [ " name TIME_STAMP HOUSEHOLD_ID GIFT MONTH YEAR PRODUCT_CODE COST\n", " role time_stamp join_key target categorical categorical categorical numerical\n", " unit time stamp, comparison only \n", "subroles: \n", "- include substring \n", " 0 2015-01-01 03111041 0 1 2015 010210 3.89 \n", " 1 2015-01-01 03111041 0 1 2015 120310 4.66 \n", " 2 2015-02-01 03111051 0 2 2015 190211 9.79 \n", " 3 2015-02-01 03111402 0 2 2015 040510 2.95 \n", " 4 2015-01-01 03114161 0 1 2015 190321 2.12 \n", " ... ... ... ... ... ... ... \n", " 2020629 2017-06-01 03708582 0 6 2017 150110 1.99 \n", " 2020630 2017-06-01 03708582 0 6 2017 150110 3.619 \n", " 2020631 2017-06-01 03708582 0 6 2017 150211 5.2727\n", " 2020632 2017-06-01 03708582 0 6 2017 150310 4.6894\n", " 2020633 2017-06-01 03708582 0 6 2017 160310 5.7177\n", "\n", " name IS_TRAINING EXPENDITURE_ID\n", " role unused_float unused_string \n", " unit \n", "subroles: \n", "- include \n", " 0 1 1 \n", " 1 1 10 \n", " 2 1 100 \n", " 3 1 1000 \n", " 4 1 10000 \n", " ... ... \n", " 2020629 1 999995 \n", " 2020630 1 999996 \n", " 2020631 1 999997 \n", " 2020632 1 999998 \n", " 2020633 1 999999 \n", "\n", "\n", "2020634 rows x 9 columns\n", "memory usage: 128.21 MB\n", "type: getml.DataFrame" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "expenditures.set_role(\"HOUSEHOLD_ID\", getml.data.roles.join_key)\n", "expenditures.set_role(\"GIFT\", getml.data.roles.target)\n", "expenditures.set_role(\"COST\", getml.data.roles.numerical)\n", "expenditures.set_role([\"PRODUCT_CODE\", \"MONTH\", \"YEAR\"], getml.data.roles.categorical)\n", "expenditures.set_role(\"TIME_STAMP\", getml.data.roles.time_stamp)\n", "\n", "expenditures.set_subroles(\"PRODUCT_CODE\", getml.data.subroles.include.substring)\n", "\n", "expenditures" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
0train
1train
2train
3train
4train
...
\n", "\n", "

\n", " 2020634 rows
\n", " \n", " type: StringColumnView
\n", " \n", "

\n" ], "text/plain": [ " \n", " 0 train\n", " 1 train\n", " 2 train\n", " 3 train\n", " 4 train\n", " ... \n", "\n", "\n", "2020634 rows\n", "type: StringColumnView" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "split = expenditures.rowid.as_str().update(expenditures.IS_TRAINING == 1, \"train\").update(expenditures.IS_TRAINING == 0, \"test\")\n", "split" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2. Predictive modeling\n", "\n", "Enough with the data preparation. Let's get to the fun part: Extracting the features." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 2.1 Defining the data model\n", "\n", "First, we define the data model.\n", "\n", "What we want to do is the following: \n", "\n", "1. We want to compare every expenditure made to all *expenditures by the same household* (EXPD).\n", "\n", "2. We want to check out whether *certain kinds of items have been purchased as a gift in the past* (EXPD).\n", "\n", "2. We want to aggregate all available information on the *individual members of the household* (MEMD).\n", "\n" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/html": [ "data model\n", "
\n", "
diagram
\n", "
EXPENDITURESHOUSEHOLDSHOUSEHOLD_MEMBERSPOPULATIONHOUSEHOLD_ID = HOUSEHOLD_IDTIME_STAMP <= TIME_STAMPHOUSEHOLD_ID = HOUSEHOLD_IDRelationship: many-to-oneHOUSEHOLD_ID = HOUSEHOLD_ID
\n", "
\n", "\n", "
\n", "
staging
\n", " \n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
data frames staging table
0POPULATION, HOUSEHOLDSPOPULATION__STAGING_TABLE_1
1EXPENDITURESEXPENDITURES__STAGING_TABLE_2
2HOUSEHOLD_MEMBERSHOUSEHOLD_MEMBERS__STAGING_TABLE_3
\n", "
\n", " \n", "container\n", "
\n", "
\n", "
population
\n", " \n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
subsetname rows type
0testEXPENDITURESunknownView
1trainEXPENDITURESunknownView
\n", "
\n", "
\n", "
peripheral
\n", " \n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
name rowstype
0EXPENDITURES2020634DataFrame
1HOUSEHOLDS56812DataFrame
2HOUSEHOLD_MEMBERS137355DataFrame
\n", "
\n", "
" ], "text/plain": [ "data model\n", "\n", " POPULATION:\n", " columns:\n", " - MONTH: categorical\n", " - YEAR: categorical\n", " - PRODUCT_CODE: categorical\n", " - HOUSEHOLD_ID: join_key\n", " - COST: numerical\n", " - ...\n", "\n", " joins:\n", " - right: 'EXPENDITURES'\n", " on: (POPULATION.HOUSEHOLD_ID, EXPENDITURES.HOUSEHOLD_ID)\n", " time_stamps: (POPULATION.TIME_STAMP, EXPENDITURES.TIME_STAMP)\n", " relationship: 'many-to-many'\n", " lagged_targets: False\n", " - right: 'HOUSEHOLDS'\n", " on: (POPULATION.HOUSEHOLD_ID, HOUSEHOLDS.HOUSEHOLD_ID)\n", " relationship: 'many-to-one'\n", " lagged_targets: False\n", " - right: 'HOUSEHOLD_MEMBERS'\n", " on: (POPULATION.HOUSEHOLD_ID, HOUSEHOLD_MEMBERS.HOUSEHOLD_ID)\n", " relationship: 'many-to-many'\n", " lagged_targets: False\n", "\n", " EXPENDITURES:\n", " columns:\n", " - MONTH: categorical\n", " - YEAR: categorical\n", " - PRODUCT_CODE: categorical\n", " - HOUSEHOLD_ID: join_key\n", " - COST: numerical\n", " - ...\n", "\n", " HOUSEHOLDS:\n", " columns:\n", " - HOUSEHOLD_ID: join_key\n", " - YEAR: numerical\n", " - INCOME_RANK: numerical\n", " - INCOME_RANK_1: numerical\n", " - INCOME_RANK_2: numerical\n", " - ...\n", "\n", " HOUSEHOLD_MEMBERS:\n", " columns:\n", " - MARITAL: categorical\n", " - SEX: categorical\n", " - WORK_STATUS: categorical\n", " - HOUSEHOLD_ID: join_key\n", " - YEAR: numerical\n", " - ...\n", "\n", "\n", "container\n", "\n", " population\n", " subset name rows type\n", " 0 test EXPENDITURES unknown View\n", " 1 train EXPENDITURES unknown View\n", "\n", " peripheral\n", " name rows type \n", " 0 EXPENDITURES 2020634 DataFrame\n", " 1 HOUSEHOLDS 56812 DataFrame\n", " 2 HOUSEHOLD_MEMBERS 137355 DataFrame" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "star_schema = getml.data.StarSchema(alias=\"POPULATION\", population=expenditures, split=split)\n", "\n", "star_schema.join(\n", " expenditures,\n", " on=\"HOUSEHOLD_ID\",\n", " time_stamps=\"TIME_STAMP\"\n", ")\n", "\n", "star_schema.join(\n", " households,\n", " on=\"HOUSEHOLD_ID\",\n", " relationship=getml.data.relationship.many_to_one,\n", ")\n", "\n", "star_schema.join(\n", " household_members,\n", " on=\"HOUSEHOLD_ID\",\n", ")\n", "\n", "star_schema" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 2.2 Setting the hyperparameters\n", "\n", "We use `XGBoost` as our predictor and `FastProp` (short for fast propsitionalization) to generate our features. You are free to play with the hyperparameters." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "ucc1 = getml.preprocessors.Substring(0, 1)\n", "ucc2 = getml.preprocessors.Substring(0, 2)\n", "ucc3 = getml.preprocessors.Substring(0, 3)\n", "ucc4 = getml.preprocessors.Substring(0, 4)\n", "ucc5 = getml.preprocessors.Substring(0, 5)\n", "\n", "mapping = getml.preprocessors.Mapping(multithreading=False)\n", "\n", "fast_prop = getml.feature_learning.FastProp(\n", " aggregation=getml.feature_learning.FastProp.agg_sets.All,\n", " loss_function=getml.feature_learning.loss_functions.CrossEntropyLoss,\n", " num_threads=1,\n", " sampling_factor=0.1,\n", " num_features=100,\n", ")\n", "\n", "relboost = getml.feature_learning.Relboost(\n", " loss_function=getml.feature_learning.loss_functions.CrossEntropyLoss,\n", " num_threads=1,\n", " num_features=20,\n", ")\n", "\n", "feature_selector = getml.predictors.XGBoostClassifier()\n", "\n", "predictor = getml.predictors.XGBoostClassifier(\n", " booster=\"gbtree\",\n", " n_estimators=100,\n", " max_depth=7,\n", " reg_lambda=0.0,\n", " n_jobs=1\n", ")" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Pipeline(data_model='POPULATION',\n",
       "         feature_learners=['FastProp'],\n",
       "         feature_selectors=['XGBoostClassifier'],\n",
       "         include_categorical=False,\n",
       "         loss_function='CrossEntropyLoss',\n",
       "         peripheral=['EXPENDITURES', 'HOUSEHOLDS', 'HOUSEHOLD_MEMBERS'],\n",
       "         predictors=['XGBoostClassifier'],\n",
       "         preprocessors=['Mapping'],\n",
       "         share_selected_features=0.4,\n",
       "         tags=['FastProp'])
" ], "text/plain": [ "Pipeline(data_model='POPULATION',\n", " feature_learners=['FastProp'],\n", " feature_selectors=['XGBoostClassifier'],\n", " include_categorical=False,\n", " loss_function='CrossEntropyLoss',\n", " peripheral=['EXPENDITURES', 'HOUSEHOLDS', 'HOUSEHOLD_MEMBERS'],\n", " predictors=['XGBoostClassifier'],\n", " preprocessors=['Mapping'],\n", " share_selected_features=0.4,\n", " tags=['FastProp'])" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pipe1 = getml.pipeline.Pipeline(\n", " tags=[\"FastProp\"],\n", " data_model=star_schema.data_model,\n", " share_selected_features=0.4,\n", " preprocessors=[mapping],\n", " feature_learners=fast_prop,\n", " feature_selectors=feature_selector,\n", " predictors=predictor\n", ")\n", "\n", "pipe1" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Pipeline(data_model='POPULATION',\n",
       "         feature_learners=['Relboost'],\n",
       "         feature_selectors=['XGBoostClassifier'],\n",
       "         include_categorical=False,\n",
       "         loss_function='CrossEntropyLoss',\n",
       "         peripheral=['EXPENDITURES', 'HOUSEHOLDS', 'HOUSEHOLD_MEMBERS'],\n",
       "         predictors=['XGBoostClassifier'],\n",
       "         preprocessors=['Substring', 'Substring', 'Substring', 'Substring', 'Substring',\n",
       "                        'Mapping'],\n",
       "         share_selected_features=0.9,\n",
       "         tags=['Relboost'])
" ], "text/plain": [ "Pipeline(data_model='POPULATION',\n", " feature_learners=['Relboost'],\n", " feature_selectors=['XGBoostClassifier'],\n", " include_categorical=False,\n", " loss_function='CrossEntropyLoss',\n", " peripheral=['EXPENDITURES', 'HOUSEHOLDS', 'HOUSEHOLD_MEMBERS'],\n", " predictors=['XGBoostClassifier'],\n", " preprocessors=['Substring', 'Substring', 'Substring', 'Substring', 'Substring',\n", " 'Mapping'],\n", " share_selected_features=0.9,\n", " tags=['Relboost'])" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pipe2 = getml.pipeline.Pipeline(\n", " tags=[\"Relboost\"],\n", " data_model=star_schema.data_model,\n", " share_selected_features=0.9,\n", " preprocessors=[ucc1, ucc2, ucc3, ucc4, ucc5, mapping],\n", " feature_learners=relboost,\n", " feature_selectors=feature_selector,\n", " predictors=predictor\n", ")\n", "\n", "pipe2" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Pipeline(data_model='POPULATION',\n",
       "         feature_learners=['FastProp', 'Relboost'],\n",
       "         feature_selectors=['XGBoostClassifier'],\n",
       "         include_categorical=False,\n",
       "         loss_function='CrossEntropyLoss',\n",
       "         peripheral=['EXPENDITURES', 'HOUSEHOLDS', 'HOUSEHOLD_MEMBERS'],\n",
       "         predictors=['XGBoostClassifier'],\n",
       "         preprocessors=['Mapping'],\n",
       "         share_selected_features=0.2,\n",
       "         tags=['FastProp', 'Relboost'])
" ], "text/plain": [ "Pipeline(data_model='POPULATION',\n", " feature_learners=['FastProp', 'Relboost'],\n", " feature_selectors=['XGBoostClassifier'],\n", " include_categorical=False,\n", " loss_function='CrossEntropyLoss',\n", " peripheral=['EXPENDITURES', 'HOUSEHOLDS', 'HOUSEHOLD_MEMBERS'],\n", " predictors=['XGBoostClassifier'],\n", " preprocessors=['Mapping'],\n", " share_selected_features=0.2,\n", " tags=['FastProp', 'Relboost'])" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pipe3 = getml.pipeline.Pipeline(\n", " tags=[\"FastProp\", \"Relboost\"],\n", " data_model=star_schema.data_model,\n", " share_selected_features=0.2,\n", " preprocessors=[mapping],\n", " feature_learners=[fast_prop, relboost],\n", " feature_selectors=feature_selector,\n", " predictors=predictor\n", ")\n", "\n", "pipe3" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`.fit(...)` will automatically call `.check(...)`, but it is always a good idea to call `.check(...)` separately, so we still have time for some last-minute fixes." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 2.3 Training the pipeline\n", "\n", "OK, let's go:" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Checking data model...\n",
       "
\n" ], "text/plain": [ "Checking data model\u001b[33m...\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[2K Staging... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n", "\u001b[2K Preprocessing... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:23\n", "\u001b[2K Checking... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n", "\u001b[?25h" ] }, { "data": { "text/html": [ "
OK.\n",
       "
\n" ], "text/plain": [ "OK.\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "pipe1.check(star_schema.train)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Checking data model...\n",
       "
\n" ], "text/plain": [ "Checking data model\u001b[33m...\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[2K Staging... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:01\n", "\u001b[2K Preprocessing... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n", "\u001b[?25h" ] }, { "data": { "text/html": [ "
OK.\n",
       "
\n" ], "text/plain": [ "OK.\n" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[2K Staging... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:01\n", "\u001b[2K Preprocessing... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n", "\u001b[2K FastProp: Trying 418 features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:33\n", "\u001b[2K FastProp: Building features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 01:09\n", "\u001b[2K XGBoost: Training as feature selector... ━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 05:27\n", "\u001b[2K XGBoost: Training as predictor... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 06:20\n", "\u001b[?25h" ] }, { "data": { "text/html": [ "
Trained pipeline.\n",
       "
\n" ], "text/plain": [ "Trained pipeline.\n" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Time taken: 0:13:34.027354.\n", "\n" ] }, { "data": { "text/html": [ "
Pipeline(data_model='POPULATION',\n",
       "         feature_learners=['FastProp'],\n",
       "         feature_selectors=['XGBoostClassifier'],\n",
       "         include_categorical=False,\n",
       "         loss_function='CrossEntropyLoss',\n",
       "         peripheral=['EXPENDITURES', 'HOUSEHOLDS', 'HOUSEHOLD_MEMBERS'],\n",
       "         predictors=['XGBoostClassifier'],\n",
       "         preprocessors=['Mapping'],\n",
       "         share_selected_features=0.4,\n",
       "         tags=['FastProp', 'container-xVgT7b'])
" ], "text/plain": [ "Pipeline(data_model='POPULATION',\n", " feature_learners=['FastProp'],\n", " feature_selectors=['XGBoostClassifier'],\n", " include_categorical=False,\n", " loss_function='CrossEntropyLoss',\n", " peripheral=['EXPENDITURES', 'HOUSEHOLDS', 'HOUSEHOLD_MEMBERS'],\n", " predictors=['XGBoostClassifier'],\n", " preprocessors=['Mapping'],\n", " share_selected_features=0.4,\n", " tags=['FastProp', 'container-xVgT7b'])" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pipe1.fit(star_schema.train)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Checking data model...\n",
       "
\n" ], "text/plain": [ "Checking data model\u001b[33m...\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[2K Staging... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:01\n", "\u001b[2K Preprocessing... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 02:16\n", "\u001b[2K Checking... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:01\n", "\u001b[?25h" ] }, { "data": { "text/html": [ "
OK.\n",
       "
\n" ], "text/plain": [ "OK.\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "pipe2.check(star_schema.train)" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Checking data model...\n",
       "
\n" ], "text/plain": [ "Checking data model\u001b[33m...\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[2K Staging... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:01\n", "\u001b[2K Preprocessing... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:10\n", "\u001b[?25h" ] }, { "data": { "text/html": [ "
OK.\n",
       "
\n" ], "text/plain": [ "OK.\n" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[2K Staging... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:01\n", "\u001b[2K Preprocessing... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:10\n", "\u001b[2K Relboost: Training features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 21:26\n", "\u001b[2K Relboost: Building features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 18:45\n", "\u001b[2K XGBoost: Training as feature selector... ━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 04:11\n", "\u001b[2K XGBoost: Training as predictor... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 06:29\n", "\u001b[?25h" ] }, { "data": { "text/html": [ "
Trained pipeline.\n",
       "
\n" ], "text/plain": [ "Trained pipeline.\n" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Time taken: 0:51:09.055720.\n", "\n" ] }, { "data": { "text/html": [ "
Pipeline(data_model='POPULATION',\n",
       "         feature_learners=['Relboost'],\n",
       "         feature_selectors=['XGBoostClassifier'],\n",
       "         include_categorical=False,\n",
       "         loss_function='CrossEntropyLoss',\n",
       "         peripheral=['EXPENDITURES', 'HOUSEHOLDS', 'HOUSEHOLD_MEMBERS'],\n",
       "         predictors=['XGBoostClassifier'],\n",
       "         preprocessors=['Substring', 'Substring', 'Substring', 'Substring', 'Substring',\n",
       "                        'Mapping'],\n",
       "         share_selected_features=0.9,\n",
       "         tags=['Relboost', 'container-xVgT7b'])
" ], "text/plain": [ "Pipeline(data_model='POPULATION',\n", " feature_learners=['Relboost'],\n", " feature_selectors=['XGBoostClassifier'],\n", " include_categorical=False,\n", " loss_function='CrossEntropyLoss',\n", " peripheral=['EXPENDITURES', 'HOUSEHOLDS', 'HOUSEHOLD_MEMBERS'],\n", " predictors=['XGBoostClassifier'],\n", " preprocessors=['Substring', 'Substring', 'Substring', 'Substring', 'Substring',\n", " 'Mapping'],\n", " share_selected_features=0.9,\n", " tags=['Relboost', 'container-xVgT7b'])" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pipe2.fit(star_schema.train)" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Checking data model...\n",
       "
\n" ], "text/plain": [ "Checking data model\u001b[33m...\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[2K Staging... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n", "\u001b[2K Preprocessing... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n", "\u001b[2K Checking... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n", "\u001b[?25h" ] }, { "data": { "text/html": [ "
OK.\n",
       "
\n" ], "text/plain": [ "OK.\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "pipe3.check(star_schema.train)" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Checking data model...\n",
       "
\n" ], "text/plain": [ "Checking data model\u001b[33m...\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[2K Staging... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n", "\u001b[2K Preprocessing... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n", "\u001b[?25h" ] }, { "data": { "text/html": [ "
OK.\n",
       "
\n" ], "text/plain": [ "OK.\n" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[2K Staging... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n", "\u001b[2K Preprocessing... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n", "\u001b[2K Retrieving features from cache... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n", "\u001b[2K Relboost: Training features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 05:54\n", "\u001b[2K FastProp: Building features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 01:08\n", "\u001b[2K Relboost: Building features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 04:50\n", "\u001b[2K XGBoost: Training as feature selector... ━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 06:31\n", "\u001b[2K XGBoost: Training as predictor... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 04:03\n", "\u001b[?25h" ] }, { "data": { "text/html": [ "
Trained pipeline.\n",
       "
\n" ], "text/plain": [ "Trained pipeline.\n" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Time taken: 0:22:31.520442.\n", "\n" ] }, { "data": { "text/html": [ "
Pipeline(data_model='POPULATION',\n",
       "         feature_learners=['FastProp', 'Relboost'],\n",
       "         feature_selectors=['XGBoostClassifier'],\n",
       "         include_categorical=False,\n",
       "         loss_function='CrossEntropyLoss',\n",
       "         peripheral=['EXPENDITURES', 'HOUSEHOLDS', 'HOUSEHOLD_MEMBERS'],\n",
       "         predictors=['XGBoostClassifier'],\n",
       "         preprocessors=['Mapping'],\n",
       "         share_selected_features=0.2,\n",
       "         tags=['FastProp', 'Relboost', 'container-xVgT7b'])
" ], "text/plain": [ "Pipeline(data_model='POPULATION',\n", " feature_learners=['FastProp', 'Relboost'],\n", " feature_selectors=['XGBoostClassifier'],\n", " include_categorical=False,\n", " loss_function='CrossEntropyLoss',\n", " peripheral=['EXPENDITURES', 'HOUSEHOLDS', 'HOUSEHOLD_MEMBERS'],\n", " predictors=['XGBoostClassifier'],\n", " preprocessors=['Mapping'],\n", " share_selected_features=0.2,\n", " tags=['FastProp', 'Relboost', 'container-xVgT7b'])" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pipe3.fit(star_schema.train)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 2.4 Evaluating the pipeline\n", "\n", "We want to know how well we did. We will to an in-sample and an out-of-sample evaluation:" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[2K Staging... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n", "\u001b[2K Preprocessing... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n", "\u001b[2K FastProp: Building features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:08\n", "\u001b[?25h" ] }, { "data": { "text/html": [ "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
date time set usedtargetaccuracy auccross entropy
02024-09-18 12:08:28trainGIFT0.98260.93680.05986
12024-09-18 13:43:03testGIFT0.98040.86490.07713
" ], "text/plain": [ " date time set used target accuracy auc cross entropy\n", "0 2024-09-18 12:08:28 train GIFT 0.9826 0.9368 0.05986\n", "1 2024-09-18 13:43:03 test GIFT 0.9804 0.8649 0.07713" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pipe1.score(star_schema.test)" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[2K Staging... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n", "\u001b[2K Preprocessing... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:03\n", "\u001b[2K Relboost: Building features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 02:13\n", "\u001b[?25h" ] }, { "data": { "text/html": [ "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
date time set usedtargetaccuracy auccross entropy
02024-09-18 13:02:15trainGIFT0.98220.92310.06321
12024-09-18 13:45:21testGIFT0.98050.8630.07709
" ], "text/plain": [ " date time set used target accuracy auc cross entropy\n", "0 2024-09-18 13:02:15 train GIFT 0.9822 0.9231 0.06321\n", "1 2024-09-18 13:45:21 test GIFT 0.9805 0.863 0.07709" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pipe2.score(star_schema.test)" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[2K Staging... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n", "\u001b[2K Preprocessing... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n", "\u001b[2K FastProp: Building features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:03\n", "\u001b[2K Relboost: Building features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:08\n", "\u001b[?25h" ] }, { "data": { "text/html": [ "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
date time set usedtargetaccuracy auccross entropy
02024-09-18 13:42:53trainGIFT0.98240.93310.06092
12024-09-18 13:45:35testGIFT0.98050.86760.07667
" ], "text/plain": [ " date time set used target accuracy auc cross entropy\n", "0 2024-09-18 13:42:53 train GIFT 0.9824 0.9331 0.06092\n", "1 2024-09-18 13:45:35 test GIFT 0.9805 0.8676 0.07667" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pipe3.score(star_schema.test)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 2.5 Studying the features\n", "\n", "It is very important that we get an idea about the features that the propositionalization algorithm has produced." ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABmkAAARVCAYAAABWwCS8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADbW0lEQVR4nOzde5yWZYE//s/MAMNBERMBIXPwsKEpUhCspospOpa7pZnHdlUqayO2bCpWSnFQd0Ezo4NKJ83aWO30cisNIhL3WxCW5rq65s9MMyXQdAGFdZiY5/dHy2wjB4dh8HLmeb9fL17w3M9135/ruq95ZfLxfp6aSqVSCQAAAAAAAC+p2tITAAAAAAAAqEZKGgAAAAAAgAKUNAAAAAAAAAUoaQAAAAAAAApQ0gAAAAAAABSgpAEAAAAAAChASQMAAAAAAFCAkgYAAAAAAKAAJQ0AAAAAAEABShoAAKCDn//85znyyCMzaNCg1NTU5J577ik9Jbahubk5NTU13XrNpUuXpqamJkuXLu3W6wIAAFvqU3oCAADAy0dra2tOO+209O/fP5/61KcycODA7Lffft2es3LlynzhC1/IySefnHHjxnX79Xlx1157bQYOHJjzzjuv9FQAAKBqKWkAAIB2Dz/8cH7729/mi1/8Yt797nfvspyVK1dm9uzZaWhoUNIUcu2112bo0KFblDR/9Vd/lf/5n/9Jv379ykwMAACqiI87AwAA2j355JNJkiFDhpSdSBc9//zzaWtrKz2N7Wpra8vzzz+/1ffWr1//Es9mS7W1tenfv39qa/3rIgAA7Gr+XzcAAJAkOe+88zJ58uQkyWmnnZaampocc8wx7e//6le/ytvf/va84hWvSP/+/TNhwoR897vf7XCNZ555Jh/5yEdy2GGHZbfddsvgwYPzpje9Kf/xH//RPmbp0qV5/etfnySZOnVqampqUlNTk6985StJkoaGhq1+BNcxxxzTYT6bvzvlpptuykUXXZRRo0Zl4MCBWbduXZJkxYoVOfHEE7PHHntk4MCBmTx5cn7605926l48//zzaW5uzl/8xV+kf//+2WefffK2t70tDz/8cPuY9evX58Mf/nD23Xff1NfX59WvfnWuuuqqVCqVDteqqanJ9OnT8/Wvfz2vec1rUl9fn4ULF+YrX/lKampqcscdd2TatGkZNmxYXvnKV7af94Mf/CBHH310Bg0alN133z0nnXRS7r///hed+w033JBjjz02w4YNS319fQ455JBcd911HcY0NDTk/vvvzx133NF+/zff2219J803v/nNjB8/PgMGDMjQoUPzt3/7t3niiSc6jDnvvPOy22675YknnsjJJ5+c3XbbLXvvvXc+8pGPZNOmTR3G3nTTTRk/fnx23333DB48OIcddlg+/elPv+j6AACgN/FxZwAAQJLkve99b0aNGpV//ud/zgc+8IG8/vWvz/Dhw5Mk999/f97whjdk1KhRufDCCzNo0KB84xvfyMknn5xvf/vbOeWUU5Ikv/nNb3LLLbfktNNOy+jRo7N69ep8/vOfz+TJk/Nf//VfGTlyZA4++OBceumlmTVrVt7znvfk6KOPTpIceeSRXZr3ZZddln79+uUjH/lIWlpa0q9fv/z4xz/Om970powfPz6XXHJJamtr28uL//f//l8mTpy4zett2rQpf/3Xf50lS5bkzDPPzAc/+ME8++yzWbx4ce67774ccMABqVQqectb3pLbb78973rXuzJu3LgsWrQoH/3oR/PEE0/kU5/6VIdr/vjHP843vvGNTJ8+PUOHDk1DQ0PuueeeJMm0adOy9957Z9asWe1P0nzta1/Lueeem8bGxlxxxRXZsGFDrrvuuhx11FH55S9/mYaGhm3O/7rrrstrXvOavOUtb0mfPn3yve99L9OmTUtbW1ve//73J0nmzZuXf/iHf8huu+2Wj3/840nSvtdb85WvfCVTp07N61//+syZMyerV6/Opz/96fz0pz/NL3/5yw5PXm3atCmNjY2ZNGlSrrrqqvzoRz/KJz/5yRxwwAF53/velyRZvHhxzjrrrBx33HG54oorkiQPPPBAfvrTn+aDH/zgNucBAAC9TgUAAOB/3X777ZUklW9+85sdjh933HGVww47rPL888+3H2tra6sceeSRlYMOOqj92PPPP1/ZtGlTh3MfeeSRSn19feXSSy9tP/bzn/+8kqRyww03bDGH/fbbr3LuueducXzy5MmVyZMnbzHX/fffv7Jhw4YO8zrooIMqjY2Nlba2tvbjGzZsqIwePbpy/PHHb/ceXH/99ZUklauvvnqL9zZf75ZbbqkkqVx++eUd3n/7299eqampqfz6179uP5akUltbW7n//vs7jL3hhhsqSSpHHXVU5Y9//GP78WeffbYyZMiQyvnnn99h/KpVqyp77LFHh+OXXHJJ5YX/Wvfn92KzxsbGyv7779/h2Gte85oO93Ozzff19ttvr1QqlcrGjRsrw4YNqxx66KGV//mf/2kf9/3vf7+SpDJr1qz2Y+eee24lSYe9rlQqlde+9rWV8ePHt7/+4Ac/WBk8eHCHdQMAQDXycWcAAMB2PfPMM/nxj3+c008/Pc8++2z+8Ic/5A9/+EOefvrpNDY25qGHHmr/2Kv6+vr27zLZtGlTnn766ey222559atfnbvvvnuXzO/cc8/NgAED2l/fc889eeihh3L22Wfn6aefbp/v+vXrc9xxx+Xf//3ft/u9Nd/+9rczdOjQ/MM//MMW79XU1CRJbrvtttTV1eUDH/hAh/c//OEPp1Kp5Ac/+EGH45MnT84hhxyy1bzzzz8/dXV17a8XL16cNWvW5Kyzzmqf+x/+8IfU1dVl0qRJuf3227d7P/78XqxduzZ/+MMfMnny5PzmN7/J2rVrt3vu1vziF7/Ik08+mWnTpqV///7tx0866aSMGTMmt9566xbn/P3f/32H10cffXR+85vftL8eMmRI1q9fn8WLF+/wfAAAoDfxcWcAAMB2/frXv06lUsnFF1+ciy++eKtjnnzyyYwaNSptbW359Kc/nWuvvTaPPPJIh+8h2WuvvXbJ/EaPHt3h9UMPPZTkT+XNtqxduzZ77rnnVt97+OGH8+pXvzp9+mz7X5d++9vfZuTIkdl99907HD/44IPb39/eHDsz/2OPPXar4wcPHrzNayXJT3/601xyySVZvnx5NmzY0OG9tWvXZo899tju+S+0eS2vfvWrt3hvzJgx+clPftLhWP/+/bP33nt3OLbnnnvmv//7v9tfT5s2Ld/4xjfypje9KaNGjcoJJ5yQ008/PSeeeOIOzQ0AAHo6JQ0AALBdm586+chHPpLGxsatjjnwwAOTJP/8z/+ciy++OO985ztz2WWX5RWveEVqa2tzwQUXbPfplT+3+WmVF9q0aVOHJ042+/MnR/58vp/4xCcybty4rV5rt91269RcussL57i99zbP/2tf+1pGjBixxfjtlUcPP/xwjjvuuIwZMyZXX3119t133/Tr1y+33XZbPvWpT3V6D3bG1vbohYYNG5Z77rknixYtyg9+8IP84Ac/yA033JBzzjknN9544y6fIwAAvFwoaQAAgO3af//9kyR9+/bNlClTtjv2W9/6Vt74xjfmy1/+cofja9asydChQ9tfb6uISf701MWaNWu2OP7b3/62fS7bc8ABByT50xMnLzbfbZ2/YsWKtLa2pm/fvlsds99+++VHP/pRnn322Q5P0/zqV79qf7+rNs9/2LBhOzz/733ve2lpacl3v/vdvOpVr2o/vrWPSNveHvy5zWt58MEHt3i658EHH+zyWvv165e/+Zu/yd/8zd+kra0t06ZNy+c///lcfPHF7aUfAAD0dr6TBgAA2K5hw4blmGOOyec///n8/ve/3+L9p556qv3PdXV1qVQqHd7/5je/2f6dNZsNGjQoSbZaxhxwwAH52c9+lo0bN7Yf+/73v5/f/e53nZrv+PHjc8ABB+Sqq67Kc889t935bs2pp56aP/zhD/nc5z63xXub1/bmN785mzZt2mLMpz71qdTU1ORNb3pTp+a6NY2NjRk8eHD++Z//Oa2trTs0/81Psfz5HqxduzY33HDDFmMHDRq01fv/QhMmTMiwYcMyf/78tLS0tB//wQ9+kAceeCAnnXTSi17jhZ5++ukOr2trazN27Ngk6ZABAAC9nSdpAACAF3XNNdfkqKOOymGHHZbzzz8/+++/f1avXp3ly5fn8ccfz3/8x38kSf76r/86l156aaZOnZojjzwy//mf/5mvf/3rWzwBc8ABB2TIkCGZP39+dt999wwaNCiTJk3K6NGj8+53vzvf+ta3cuKJJ+b000/Pww8/nH/5l39pf8LkxdTW1uZLX/pS3vSmN+U1r3lNpk6dmlGjRuWJJ57I7bffnsGDB+d73/veNs8/55xz8tWvfjVNTU258847c/TRR2f9+vX50Y9+lGnTpuWtb31r/uZv/iZvfOMb8/GPfzyPPvpoDj/88Pzwhz/Mv/3bv+WCCy7o9Fy3ZvDgwbnuuuvyd3/3d3nd616XM888M3vvvXcee+yx3HrrrXnDG96w1QIpSU444YT2J1Te+9735rnnnssXv/jFDBs2bIuCbfz48bnuuuty+eWX58ADD8ywYcO2+j04ffv2zRVXXJGpU6dm8uTJOeuss7J69ep8+tOfTkNDQz70oQ/t8Brf/e5355lnnsmxxx6bV77ylfntb3+bz372sxk3blz79/oAAEA1UNIAAAAv6pBDDskvfvGLzJ49O1/5ylfy9NNPZ9iwYXnta1+bWbNmtY/72Mc+lvXr12fBggW5+eab87rXvS633nprLrzwwg7X69u3b2688cbMnDkzf//3f58//vGPueGGGzJ69Og0Njbmk5/8ZK6++upccMEFmTBhQr7//e/nwx/+cKfne8wxx2T58uW57LLL8rnPfS7PPfdcRowYkUmTJuW9733vds+tq6vLbbfdln/6p3/KggUL8u1vfzt77bVXe0mV/KkI+u53v5tZs2bl5ptvzg033JCGhoZ84hOf2KF5bsvZZ5+dkSNHZu7cufnEJz6RlpaWjBo1KkcffXSmTp26zfNe/epX51vf+lYuuuiifOQjH8mIESPyvve9L3vvvXfe+c53dhg7a9as/Pa3v82VV16ZZ599NpMnT95qSZMk5513XgYOHJi5c+fmH//xHzNo0KCccsopueKKKzJkyJAdXt/f/u3f5gtf+EKuvfbarFmzJiNGjMgZZ5yR5ubm1Nb6wAcAAKpHTeWFn0UAAAAAAADALuc/UQIAAAAAAChASQMAAAAAAFCAkgYAAAAAAKAAJQ0AAAAAAEABShoAAAAAAIAClDQAAAAAAAAF9Ck9gd6gra0tK1euzO67756amprS0wEAAAAAAAqqVCp59tlnM3LkyNTWbvt5GSVNN1i5cmX23Xff0tMAAAAAAABeRn73u9/lla985TbfV9J0g9133z3Jn2724MGDC8+m52ptbc0Pf/jDnHDCCenbt6/sXpxdjWuu1uxqXHO1ZlfjmmX7OZPd+3Jl22vZvTO7GtdcrdnVuOZqza7GNVdrdjWuuZqze5t169Zl3333be8PtkVJ0w02f8TZ4MGDlTQ7obW1NQMHDszgwYOL/I+P7Jf2H7DVtuZqza7GNVdrdjWuWbafM9m9L1e2vZbdO7Orcc3Vml2Na67W7Gpcc7VmV+Oaqzm7t3qxr0jZ9gehAQAAAAAAsMsoaQAAAAAAAApQ0gAAAAAAABSgpAEAAAAAAChASQMAAAAAAFCAkgYAAAAAAKAAJQ0AAAAAAEABShoAAAAAAIAClDQAAAAAAAAFKGkAAAAAAAAKUNIAAAAAAAAUoKQBAAAAAAAoQEkDAAAAAABQgJIGAAAAAACgACUNAAAAAABAAUoaAAAAAACAApQ0AAAAAAAABShpAAAAAAAAClDSAAAAAAAAFKCkAQAAAAAAKEBJAwAAAAAAUICSBgAAAAAAoAAlDQAAAAAAQAFKGgAAAAAAgAKUNAAAAAAAAAUoaQAAAAAAAApQ0gAAAAAAABSgpAEAAAAAAChASQMAAAAAAFCAkgYAAAAAAKAAJQ0AAAAAAEABShoAAAAAAIAC+pSeAL1bw4W3dnpsfV0lV05MDm1elJZNNZ0+79G5J3VlagAAAAAAUJQnaQAAAAAAAApQ0gAAAAAAABSgpAEAAAAAAChASQMAAAAAAFCAkgYAAAAAAKAAJQ0AAAAAAEABPa6kueaaa9LQ0JD+/ftn0qRJufPOO7c59jvf+U4mTJiQIUOGZNCgQRk3bly+9rWvdRhz3nnnpaampsOvE088cVcvAwAAAAAAqHJ9Sk9gR9x8881pamrK/PnzM2nSpMybNy+NjY158MEHM2zYsC3Gv+IVr8jHP/7xjBkzJv369cv3v//9TJ06NcOGDUtjY2P7uBNPPDE33HBD++v6+vqXZD0AAAAAAED16lFP0lx99dU5//zzM3Xq1BxyyCGZP39+Bg4cmOuvv36r44855piccsopOfjgg3PAAQfkgx/8YMaOHZuf/OQnHcbV19dnxIgR7b/23HPPl2I5AAAAAABAFesxT9Js3Lgxd911V2bOnNl+rLa2NlOmTMny5ctf9PxKpZIf//jHefDBB3PFFVd0eG/p0qUZNmxY9txzzxx77LG5/PLLs9dee23zWi0tLWlpaWl/vW7duiRJa2trWltbd3RpvVp9XaXzY2srHX7vrO6455uvUWL/qjG7GtdcrdnVuOZqza7GNcv2cya79+XKtteye2d2Na65WrOrcc3Vml2Na67W7GpcczVn9zadvYc1lUplx/5GvJCVK1dm1KhRWbZsWY444oj24zNmzMgdd9yRFStWbPW8tWvXZtSoUWlpaUldXV2uvfbavPOd72x//6abbsrAgQMzevToPPzww/nYxz6W3XbbLcuXL09dXd1Wr9nc3JzZs2dvcXzBggUZOHDgTq4UAAAAAADoyTZs2JCzzz47a9euzeDBg7c5rsc8SdNVu+++e+65554899xzWbJkSZqamrL//vvnmGOOSZKceeaZ7WMPO+ywjB07NgcccECWLl2a4447bqvXnDlzZpqamtpfr1u3Lvvuu29OOOGE7d7sanRo86JOj62vreSyCW25+Be1aWmr6fR59zU3vvigF9Ha2prFixfn+OOPT9++fXf6erJfnrmy7bXs3pcru7qyq3HN1ZpdjWuu1uxqXLNsP2eye1+ubHstu/flyi6T3dts/gSuF9NjSpqhQ4emrq4uq1ev7nB89erVGTFixDbPq62tzYEHHpgkGTduXB544IHMmTOnvaR5of333z9Dhw7Nr3/9622WNPX19amvr9/ieN++ff3gvkDLps6XLe3ntNXs0Hndec9L7mE1Zlfjmqs1uxrXXK3Z1bhm2X7OZPe+XNn2WnbvzK7GNVdrdjWuuVqzq3HN1ZpdjWuu5uzeorP3r3YXz6Pb9OvXL+PHj8+SJUvaj7W1tWXJkiUdPv7sxbS1tXX4PpkXevzxx/P0009nn3322an5AgAAAAAAbE+PeZImSZqamnLuuedmwoQJmThxYubNm5f169dn6tSpSZJzzjkno0aNypw5c5Ikc+bMyYQJE3LAAQekpaUlt912W772ta/luuuuS5I899xzmT17dk499dSMGDEiDz/8cGbMmJEDDzwwjY07/xFaAAAAAAAA29KjSpozzjgjTz31VGbNmpVVq1Zl3LhxWbhwYYYPH54keeyxx1Jb+38PB61fvz7Tpk3L448/ngEDBmTMmDH5l3/5l5xxxhlJkrq6utx777258cYbs2bNmowcOTInnHBCLrvssq1+nBkAAAAAAEB36VElTZJMnz4906dP3+p7S5cu7fD68ssvz+WXX77Naw0YMCCLFnX+i+0BAAAAAAC6S4/5ThoAAAAAAIDeREkDAAAAAABQgJIGAAAAAACgACUNAAAAAABAAUoaAAAAAACAApQ0AAAAAAAABShpAAAAAAAAClDSAAAAAAAAFKCkAQAAAAAAKEBJAwAAAAAAUICSBgAAAAAAoAAlDQAAAAAAQAFKGgAAAAAAgAKUNAAAAAAAAAUoaQAAAAAAAApQ0gAAAAAAABSgpAEAAAAAAChASQMAAAAAAFCAkgYAAAAAAKAAJQ0AAAAAAEABShoAAAAAAIAClDQAAAAAAAAFKGkAAAAAAAAKUNIAAAAAAAAUoKQBAAAAAAAoQEkDAAAAAABQgJIGAAAAAACgACUNAAAAAABAAUoaAAAAAACAApQ0AAAAAAAABShpAAAAAAAAClDSAAAAAAAAFKCkAQAAAAAAKEBJAwAAAAAAUICSBgAAAAAAoAAlDQAAAAAAQAFKGgAAAAAAgAKUNAAAAAAAAAUoaQAAAAAAAApQ0gAAAAAAABSgpAEAAAAAAChASQMAAAAAAFCAkgYAAAAAAKAAJQ0AAAAAAEABShoAAAAAAIAClDQAAAAAAAAFKGkAAAAAAAAKUNIAAAAAAAAUoKQBAAAAAAAoQEkDAAAAAABQgJIGAAAAAACgACUNAAAAAABAAUoaAAAAAACAApQ0AAAAAAAABShpAAAAAAAAClDSAAAAAAAAFKCkAQAAAAAAKEBJAwAAAAAAUICSBgAAAAAAoAAlDQAAAAAAQAFKGgAAAAAAgAKUNAAAAAAAAAUoaQAAAAAAAApQ0gAAAAAAABSgpAEAAAAAAChASQMAAAAAAFCAkgYAAAAAAKAAJQ0AAAAAAEABShoAAAAAAIAClDQAAAAAAAAFKGkAAAAAAAAKUNIAAAAAAAAUoKQBAAAAAAAoQEkDAAAAAABQgJIGAAAAAACgACUNAAAAAABAAUoaAAAAAACAAnpcSXPNNdekoaEh/fv3z6RJk3LnnXduc+x3vvOdTJgwIUOGDMmgQYMybty4fO1rX+swplKpZNasWdlnn30yYMCATJkyJQ899NCuXgYAAAAAAFDlelRJc/PNN6epqSmXXHJJ7r777hx++OFpbGzMk08+udXxr3jFK/Lxj388y5cvz7333pupU6dm6tSpWbRoUfuYK6+8Mp/5zGcyf/78rFixIoMGDUpjY2Oef/75l2pZAAAAAABAFepRJc3VV1+d888/P1OnTs0hhxyS+fPnZ+DAgbn++uu3Ov6YY47JKaeckoMPPjgHHHBAPvjBD2bs2LH5yU9+kuRPT9HMmzcvF110Ud761rdm7Nix+epXv5qVK1fmlltueQlXBgAAAAAAVJs+pSfQWRs3bsxdd92VmTNnth+rra3NlClTsnz58hc9v1Kp5Mc//nEefPDBXHHFFUmSRx55JKtWrcqUKVPax+2xxx6ZNGlSli9fnjPPPHOr12ppaUlLS0v763Xr1iVJWltb09ra2qX19Vb1dZXOj62tdPi9s7rjnm++Ron9q8bsalxztWZX45qrNbsa1yzbz5ns3pcr217L7p3Z1bjmas2uxjVXa3Y1rrlas6txzdWc3dt09h7WVCqVHfsb8UJWrlyZUaNGZdmyZTniiCPaj8+YMSN33HFHVqxYsdXz1q5dm1GjRqWlpSV1dXW59tpr8853vjNJsmzZsrzhDW/IypUrs88++7Sfc/rpp6empiY333zzVq/Z3Nyc2bNnb3F8wYIFGThw4M4sEwAAAAAA6OE2bNiQs88+O2vXrs3gwYO3Oa7HPEnTVbvvvnvuueeePPfcc1myZEmampqy//7755hjjunyNWfOnJmmpqb21+vWrcu+++6bE044Ybs3uxod2rzoxQf9r/raSi6b0JaLf1GblraaTp93X3NjV6bWQWtraxYvXpzjjz8+ffv23enryX555sq217J7X67s6squxjVXa3Y1rrlas6txzbL9nMnufbmy7bXs3pcru0x2b7P5E7heTI8paYYOHZq6urqsXr26w/HVq1dnxIgR2zyvtrY2Bx54YJJk3LhxeeCBBzJnzpwcc8wx7eetXr26w5M0q1evzrhx47Z5zfr6+tTX129xvG/fvn5wX6BlU+fLlvZz2mp26LzuvOcl97Aas6txzdWaXY1rrtbsalyzbD9nsntfrmx7Lbt3Zlfjmqs1uxrXXK3Z1bjmas2uxjVXc3Zv0dn7V7uL59Ft+vXrl/Hjx2fJkiXtx9ra2rJkyZIOH3/2Ytra2tq/T2b06NEZMWJEh2uuW7cuK1as2KFrAgAAAAAA7Kge8yRNkjQ1NeXcc8/NhAkTMnHixMybNy/r16/P1KlTkyTnnHNORo0alTlz5iRJ5syZkwkTJuSAAw5IS0tLbrvttnzta1/LddddlySpqanJBRdckMsvvzwHHXRQRo8enYsvvjgjR47MySefXGqZAAAAAABAFehRJc0ZZ5yRp556KrNmzcqqVasybty4LFy4MMOHD0+SPPbYY6mt/b+Hg9avX59p06bl8ccfz4ABAzJmzJj8y7/8S84444z2MTNmzMj69evznve8J2vWrMlRRx2VhQsXpn///i/5+gAAAAAAgOrRo0qaJJk+fXqmT5++1feWLl3a4fXll1+eyy+/fLvXq6mpyaWXXppLL720u6YIAAAAAADwonrMd9IAAAAAAAD0JkoaAAAAAACAApQ0AAAAAAAABShpAAAAAAAAClDSAAAAAAAAFKCkAQAAAAAAKEBJAwAAAAAAUICSBgAAAAAAoAAlDQAAAAAAQAFKGgAAAAAAgAKUNAAAAAAAAAUoaQAAAAAAAApQ0gAAAAAAABSgpAEAAAAAAChASQMAAAAAAFCAkgYAAAAAAKAAJQ0AAAAAAEABShoAAAAAAIAClDQAAAAAAAAFKGkAAAAAAAAKUNIAAAAAAAAUoKQBAAAAAAAoQEkDAAAAAABQgJIGAAAAAACgACUNAAAAAABAAUoaAAAAAACAApQ0AAAAAAAABShpAAAAAAAAClDSAAAAAAAAFKCkAQAAAAAAKEBJAwAAAAAAUICSBgAAAAAAoAAlDQAAAAAAQAFKGgAAAAAAgAKUNAAAAAAAAAUoaQAAAAAAAApQ0gAAAAAAABSgpAEAAAAAAChASQMAAAAAAFCAkgYAAAAAAKAAJQ0AAAAAAEABShoAAAAAAIAClDQAAAAAAAAFKGkAAAAAAAAKUNIAAAAAAAAUoKQBAAAAAAAoQEkDAAAAAABQgJIGAAAAAACgACUNAAAAAABAAUoaAAAAAACAApQ0AAAAAAAABShpAAAAAAAAClDSAAAAAAAAFKCkAQAAAAAAKEBJAwAAAAAAUICSBgAAAAAAoAAlDQAAAAAAQAFKGgAAAAAAgAKUNAAAAAAAAAUoaQAAAAAAAApQ0gAAAAAAABSgpAEAAAAAAChASQMAAAAAAFCAkgYAAAAAAKAAJQ0AAAAAAEABShoAAAAAAIAClDQAAAAAAAAFKGkAAAAAAAAKUNIAAAAAAAAUoKQBAAAAAAAoQEkDAAAAAABQgJIGAAAAAACgACUNAAAAAABAAUoaAAAAAACAApQ0AAAAAAAABShpAAAAAAAAClDSAAAAAAAAFNDjSpprrrkmDQ0N6d+/fyZNmpQ777xzm2O/+MUv5uijj86ee+6ZPffcM1OmTNli/HnnnZeampoOv0488cRdvQwAAAAAAKDK9aiS5uabb05TU1MuueSS3H333Tn88MPT2NiYJ598cqvjly5dmrPOOiu33357li9fnn333TcnnHBCnnjiiQ7jTjzxxPz+979v//Wv//qvL8VyAAAAAACAKtajSpqrr746559/fqZOnZpDDjkk8+fPz8CBA3P99ddvdfzXv/71TJs2LePGjcuYMWPypS99KW1tbVmyZEmHcfX19RkxYkT7rz333POlWA4AAAAAAFDF+pSeQGdt3Lgxd911V2bOnNl+rLa2NlOmTMny5cs7dY0NGzaktbU1r3jFKzocX7p0aYYNG5Y999wzxx57bC6//PLstdde27xOS0tLWlpa2l+vW7cuSdLa2prW1tYdWVavV19X6fzY2kqH3zurO+755muU2L9qzK7GNVdrdjWuuVqzq3HNsv2cye59ubLttezemV2Na67W7Gpcc7VmV+OaqzW7Gtdczdm9TWfvYU2lUtmxvxEvZOXKlRk1alSWLVuWI444ov34jBkzcscdd2TFihUveo1p06Zl0aJFuf/++9O/f/8kyU033ZSBAwdm9OjRefjhh/Oxj30su+22W5YvX566urqtXqe5uTmzZ8/e4viCBQsycODALq4QAAAAAADoDTZs2JCzzz47a9euzeDBg7c5rsc8SbOz5s6dm5tuuilLly5tL2iS5Mwzz2z/82GHHZaxY8fmgAMOyNKlS3Pcccdt9VozZ85MU1NT++t169a1f9/N9m52NTq0eVGnx9bXVnLZhLZc/IvatLTVdPq8+5obuzK1DlpbW7N48eIcf/zx6du3705fT/bLM1e2vZbd+3JlV1d2Na65WrOrcc3Vml2Na5bt50x278uVba9l975c2WWye5vNn8D1YnpMSTN06NDU1dVl9erVHY6vXr06I0aM2O65V111VebOnZsf/ehHGTt27HbH7r///hk6dGh+/etfb7Okqa+vT319/RbH+/bt6wf3BVo2db5saT+nrWaHzuvOe15yD6sxuxrXXK3Z1bjmas2uxjXL9nMmu/flyrbXsntndjWuuVqzq3HN1ZpdjWuu1uxqXHM1Z/cWnb1/tbt4Ht2mX79+GT9+fJYsWdJ+rK2tLUuWLOnw8WcvdOWVV+ayyy7LwoULM2HChBfNefzxx/P0009nn3326ZZ5AwAAAAAAbE2PKWmSpKmpKV/84hdz44035oEHHsj73ve+rF+/PlOnTk2SnHPOOZk5c2b7+CuuuCIXX3xxrr/++jQ0NGTVqlVZtWpVnnvuuSTJc889l49+9KP52c9+lkcffTRLlizJW9/61hx44IFpbNz5j9ACAAAAAADYlh7zcWdJcsYZZ+Spp57KrFmzsmrVqowbNy4LFy7M8OHDkySPPfZYamv/r3e67rrrsnHjxrz97W/vcJ1LLrkkzc3Nqaury7333psbb7wxa9asyciRI3PCCSfksssu2+rHmQEAAAAAAHSXHlXSJMn06dMzffr0rb63dOnSDq8fffTR7V5rwIABWbSo819sDwAAAAAA0F161MedAQAAAAAA9BZKGgAAAAAAgAKUNAAAAAAAAAUoaQAAAAAAAApQ0gAAAAAAABSgpAEAAAAAAChASQMAAAAAAFCAkgYAAAAAAKAAJQ0AAAAAAEABShoAAAAAAIAClDQAAAAAAAAFKGkAAAAAAAAKUNIAAAAAAAAUoKQBAAAAAAAoQEkDAAAAAABQgJIGAAAAAACgACUNAAAAAABAAUoaAAAAAACAApQ0AAAAAAAABShpAAAAAAAAClDSAAAAAAAAFKCkAQAAAAAAKEBJAwAAAAAAUICSBgAAAAAAoAAlDQAAAAAAQAFKGgAAAAAAgAKUNAAAAAAAAAUoaQAAAAAAAApQ0gAAAAAAABSgpAEAAAAAAChASQMAAAAAAFCAkgYAAAAAAKAAJQ0AAAAAAEABShoAAAAAAIAClDQAAAAAAAAFKGkAAAAAAAAKUNIAAAAAAAAUoKQBAAAAAAAoQEkDAAAAAABQgJIGAAAAAACgACUNAAAAAABAAUoaAAAAAACAApQ0AAAAAAAABShpAAAAAAAAClDSAAAAAAAAFKCkAQAAAAAAKEBJAwAAAAAAUICSBgAAAAAAoAAlDQAAAAAAQAFKGgAAAAAAgAKUNAAAAAAAAAUoaQAAAAAAAApQ0gAAAAAAABSgpAEAAAAAAChASQMAAAAAAFCAkgYAAAAAAKAAJQ0AAAAAAEABShoAAAAAAIAClDQAAAAAAAAFKGkAAAAAAAAKUNIAAAAAAAAUoKQBAAAAAAAoQEkDAAAAAABQgJIGAAAAAACgACUNAAAAAABAAUoaAAAAAACAApQ0AAAAAAAABShpAAAAAAAAClDSAAAAAAAAFKCkAQAAAAAAKEBJAwAAAAAAUICSBgAAAAAAoAAlDQAAAAAAQAFKGgAAAAAAgAKUNAAAAAAAAAUoaQAAAAAAAApQ0gAAAAAAABTQ40qaa665Jg0NDenfv38mTZqUO++8c5tjv/jFL+boo4/OnnvumT333DNTpkzZYnylUsmsWbOyzz77ZMCAAZkyZUoeeuihXb0MAAAAAACgyvWokubmm29OU1NTLrnkktx99905/PDD09jYmCeffHKr45cuXZqzzjort99+e5YvX5599903J5xwQp544on2MVdeeWU+85nPZP78+VmxYkUGDRqUxsbGPP/88y/VsgAAAAAAgCrUo0qaq6++Oueff36mTp2aQw45JPPnz8/AgQNz/fXXb3X817/+9UybNi3jxo3LmDFj8qUvfSltbW1ZsmRJkj89RTNv3rxcdNFFeetb35qxY8fmq1/9alauXJlbbrnlJVwZAAAAAABQbfqUnkBnbdy4MXfddVdmzpzZfqy2tjZTpkzJ8uXLO3WNDRs2pLW1Na94xSuSJI888khWrVqVKVOmtI/ZY489MmnSpCxfvjxnnnnmVq/T0tKSlpaW9tfr1q1LkrS2tqa1tXWH19ab1ddVOj+2ttLh987qjnu++Rol9q8as6txzdWaXY1rrtbsalyzbD9nsntfrmx7Lbt3Zlfjmqs1uxrXXK3Z1bjmas2uxjVXc3Zv09l7WFOpVHbsb8QLWblyZUaNGpVly5bliCOOaD8+Y8aM3HHHHVmxYsWLXmPatGlZtGhR7r///vTv3z/Lli3LG97whqxcuTL77LNP+7jTTz89NTU1ufnmm7d6nebm5syePXuL4wsWLMjAgQO7sDoAAAAAAKC32LBhQ84+++ysXbs2gwcP3ua4HvMkzc6aO3dubrrppixdujT9+/ffqWvNnDkzTU1N7a/XrVvX/n0327vZ1ejQ5kWdHltfW8llE9py8S9q09JW0+nz7mtu7MrUOmhtbc3ixYtz/PHHp2/fvjt9Pdkvz1zZ9lp278uVXV3Z1bjmas2uxjVXa3Y1rlm2nzPZvS9Xtr2W3ftyZZfJ7m02fwLXi+kxJc3QoUNTV1eX1atXdzi+evXqjBgxYrvnXnXVVZk7d25+9KMfZezYse3HN5+3evXqDk/SrF69OuPGjdvm9err61NfX7/F8b59+/rBfYGWTZ0vW9rPaavZofO6856X3MNqzK7GNVdrdjWuuVqzq3HNsv2cye59ubLttezemV2Na67W7Gpcc7VmV+OaqzW7Gtdczdm9RWfvX+0unke36devX8aPH58lS5a0H2tra8uSJUs6fPzZC1155ZW57LLLsnDhwkyYMKHDe6NHj86IESM6XHPdunVZsWLFdq8JAAAAAACws3rMkzRJ0tTUlHPPPTcTJkzIxIkTM2/evKxfvz5Tp05NkpxzzjkZNWpU5syZkyS54oorMmvWrCxYsCANDQ1ZtWpVkmS33XbLbrvtlpqamlxwwQW5/PLLc9BBB2X06NG5+OKLM3LkyJx88smllgkAAAAAAFSBHlXSnHHGGXnqqacya9asrFq1KuPGjcvChQszfPjwJMljjz2W2tr/ezjouuuuy8aNG/P2t7+9w3UuueSSNDc3J0lmzJiR9evX5z3veU/WrFmTo446KgsXLtzp760BAAAAAADYnh5V0iTJ9OnTM3369K2+t3Tp0g6vH3300Re9Xk1NTS699NJceuml3TA7AAAAAACAzukx30kDAAAAAADQmyhpAAAAAAAAClDSAAAAAAAAFKCkAQAAAAAAKEBJAwAAAAAAUICSBgAAAAAAoAAlDQAAAAAAQAFKGgAAAAAAgAKUNAAAAAAAAAUoaQAAAAAAAApQ0gAAAAAAABSgpAEAAAAAAChASQMAAAAAAFCAkgYAAAAAAKAAJQ0AAAAAAEABShoAAAAAAIAClDQAAAAAAAAFKGkAAAAAAAAKUNIAAAAAAAAUoKQBAAAAAAAoQEkDAAAAAABQgJIGAAAAAACgACUNAAAAAABAAUoaAAAAAACAApQ0AAAAAAAABShpAAAAAAAAClDSAAAAAAAAFKCkAQAAAAAAKEBJAwAAAAAAUEC3lDSbNm3KPffck//+7//ujssBAAAAAAD0el0qaS644IJ8+ctfTvKngmby5Ml53etel3333TdLly7tzvkBAAAAAAD0Sl0qab71rW/l8MMPT5J873vfyyOPPJJf/epX+dCHPpSPf/zj3TpBAAAAAACA3qhLJc0f/vCHjBgxIkly22235bTTTstf/MVf5J3vfGf+8z//s1snCAAAAAAA0Bt1qaQZPnx4/uu//iubNm3KwoULc/zxxydJNmzYkLq6um6dIAAAAAAAQG/UpysnTZ06Naeffnr22Wef1NTUZMqUKUmSFStWZMyYMd06QQAAAAAAgN6oSyVNc3NzDj300Pzud7/Laaedlvr6+iRJXV1dLrzwwm6dIAAAAAAAQG/UpZImSd7+9rdvcezcc8/dqckAAAAAAABUiy6XNEuWLMmSJUvy5JNPpq2trcN7119//U5PDAAAAAAAoDfrUkkze/bsXHrppZkwYUL799IAAAAAAADQeV0qaebPn5+vfOUr+bu/+7vung8AAAAAAEBVqO3KSRs3bsyRRx7Z3XMBAAAAAACoGl0qad797ndnwYIF3T0XAAAAAACAqtGljzt7/vnn84UvfCE/+tGPMnbs2PTt27fD+1dffXW3TA4AAAAAAKC36lJJc++992bcuHFJkvvuu6/DezU1NTs9KQAAAAAAgN6uSyXN7bff3t3zAAAAAAAAqCpd+k6aP/f444/n8ccf7465AAAAAAAAVI0ulTRtbW259NJLs8cee2S//fbLfvvtlyFDhuSyyy5LW1tbd88RAAAAAACg1+nSx519/OMfz5e//OXMnTs3b3jDG5IkP/nJT9Lc3Jznn38+//RP/9StkwQAAAAAAOhtulTS3HjjjfnSl76Ut7zlLe3Hxo4dm1GjRmXatGlKGgAAAAAAgBfRpY87e+aZZzJmzJgtjo8ZMybPPPPMTk8KAAAAAACgt+tSSXP44Yfnc5/73BbHP/e5z+Xwww/f6UkBAAAAAAD0dl36uLMrr7wyJ510Un70ox/liCOOSJIsX748v/vd73Lbbbd16wQBAAAAAAB6oy49STN58uT8f//f/5dTTjkla9asyZo1a/K2t70tDz74YI4++ujuniMAAAAAAECv06UnaZJk5MiR+ad/+qfunAsAAAAAAEDV6HRJc++99+bQQw9NbW1t7r333u2OHTt27E5PDAAAAAAAoDfrdEkzbty4rFq1KsOGDcu4ceNSU1OTSqWyxbiampps2rSpWycJAAAAAADQ23S6pHnkkUey9957t/8ZAAAAAACArut0SbPffvu1//m3v/1tjjzyyPTp0/H0P/7xj1m2bFmHsQAAAAAAAGyptisnvfGNb8wzzzyzxfG1a9fmjW98405PCgAAAAAAoLfrUklTqVRSU1OzxfGnn346gwYN2ulJAQAAAAAA9Had/rizJHnb296WJKmpqcl5552X+vr69vc2bdqUe++9N0ceeWT3zhAAAAAAAKAX2qGSZo899kjypydpdt999wwYMKD9vX79+uUv//Ivc/7553fvDAEAAAAAAHqhHSppbrjhhiRJQ0NDPvKRj/hoMwAAAAAAgC7aoZJms0suuaS75wEAAAAAAFBVulTSJMm3vvWtfOMb38hjjz2WjRs3dnjv7rvv3umJAQAAAAAA9Ga1XTnpM5/5TKZOnZrhw4fnl7/8ZSZOnJi99torv/nNb/KmN72pu+cIAAAAAADQ63SppLn22mvzhS98IZ/97GfTr1+/zJgxI4sXL84HPvCBrF27trvnCAAAAAAA0Ot0qaR57LHHcuSRRyZJBgwYkGeffTZJ8nd/93f513/91+6bHQAAAAAAQC/VpZJmxIgReeaZZ5Ikr3rVq/Kzn/0sSfLII4+kUql03+wAAAAAAAB6qS6VNMcee2y++93vJkmmTp2aD33oQzn++ONzxhln5JRTTunWCQIAAAAAAPRGfbpy0he+8IW0tbUlSd7//vdnr732yrJly/KWt7wl733ve7t1ggAAAAAAAL1Rl0qa2tra1Nb+30M4Z555Zs4888xumxQAAAAAAEBv1+mS5t577+30RceOHdulyQAAAAAAAFSLTpc048aNS01NTSqVynbH1dTUZNOmTTs9MQAAAAAAgN6s0yXNI488sivnAQAAAAAAUFU6XdLst99+u3IeAAAAAAAAVaW2qyd+7Wtfyxve8IaMHDkyv/3tb5Mk8+bNy7/927912+QAAAAAAAB6qy6VNNddd12ampry5je/OWvWrGn/DpohQ4Zk3rx53Tm/LVxzzTVpaGhI//79M2nSpNx5553bHHv//ffn1FNPTUNDQ2pqarY6t+bm5tTU1HT4NWbMmF24AgAAAAAAgC6WNJ/97GfzxS9+MR//+MdTV1fXfnzChAn5z//8z26b3AvdfPPNaWpqyiWXXJK77747hx9+eBobG/Pkk09udfyGDRuy//77Z+7cuRkxYsQ2r/ua17wmv//979t//eQnP9lVSwAAAAAAAEjSxZLmkUceyWtf+9otjtfX12f9+vU7Paltufrqq3P++edn6tSpOeSQQzJ//vwMHDgw119//VbHv/71r88nPvGJnHnmmamvr9/mdfv06ZMRI0a0/xo6dOiuWgIAAAAAAECSpE9XTho9enTuueee7Lfffh2OL1y4MAcffHC3TOyFNm7cmLvuuiszZ85sP1ZbW5spU6Zk+fLlO3Xthx56KCNHjkz//v1zxBFHZM6cOXnVq161zfEtLS1paWlpf71u3bokSWtra1pbW3dqLr1NfV2l82NrKx1+76zuuOebr1Fi/6oxuxrXXK3Z1bjmas2uxjXL9nMmu/flyrbXsntndjWuuVqzq3HN1ZpdjWuu1uxqXHM1Z/c2nb2HNZVKZcf+RjzJl770pTQ3N+eTn/xk3vWud+VLX/pSHn744cyZMydf+tKXcuaZZ+7whF/MypUrM2rUqCxbtixHHHFE+/EZM2bkjjvuyIoVK7Z7fkNDQy644IJccMEFHY7/4Ac/yHPPPZdXv/rV+f3vf5/Zs2fniSeeyH333Zfdd999q9dqbm7O7Nmztzi+YMGCDBw4cMcXBwAAAAAA9BobNmzI2WefnbVr12bw4MHbHNelJ2ne/e53Z8CAAbnooovag0aOHJlPf/rTu6Sg2ZXe9KY3tf957NixmTRpUvbbb7984xvfyLve9a6tnjNz5sw0NTW1v163bl323XffnHDCCdu92dXo0OZFnR5bX1vJZRPacvEvatPSVtPp8+5rbuzK1DpobW3N4sWLc/zxx6dv3747fT3ZL89c2fZadu/LlV1d2dW45mrNrsY1V2t2Na5Ztp8z2b0vV7a9lt37cmWXye5tNn8C14vZ4ZLmj3/8YxYsWJDGxsa84x3vyIYNG/Lcc89l2LBhOzzJHTF06NDU1dVl9erVHY6vXr06I0aM6LacIUOG5C/+4i/y61//eptj6uvrt/odN3379vWD+wItmzpftrSf01azQ+d15z0vuYfVmF2Na67W7Gpcc7VmV+OaZfs5k937cmXba9m9M7sa11yt2dW45mrNrsY1V2t2Na65mrN7i87ev9odvXCfPn3y93//93n++eeTJAMHDtzlBU2S9OvXL+PHj8+SJUvaj7W1tWXJkiUdPv5sZz333HN5+OGHs88++3TbNQEAAAAAAF5oh0uaJJk4cWJ++ctfdvdcXlRTU1O++MUv5sYbb8wDDzyQ973vfVm/fn2mTp2aJDnnnHMyc+bM9vEbN27MPffck3vuuScbN27ME088kXvuuafDUzIf+chHcscdd+TRRx/NsmXLcsopp6Suri5nnXXWS74+AAAAAACgenTpO2mmTZuWD3/4w3n88cczfvz4DBo0qMP7Y8eO7ZbJvdAZZ5yRp556KrNmzcqqVasybty4LFy4MMOHD0+SPPbYY6mt/b/eaeXKlXnta1/b/vqqq67KVVddlcmTJ2fp0qVJkscffzxnnXVWnn766ey999456qij8rOf/Sx77733LlkDAAAAAABA0sWS5swzz0ySfOADH2g/VlNTk0qlkpqammzatKl7ZrcV06dPz/Tp07f63ubiZbOGhoZUKpXtXu+mm27qrqkBAAAAAAB0WpdKmkceeaS75wEAAAAAAFBVdrikaW1tzbHHHpvvf//7Ofjgg3fFnAAAAAAAAHq92hcf0lHfvn3z/PPP74q5AAAAAAAAVI0dLmmS5P3vf3+uuOKK/PGPf+zu+QAAAAAAAFSFLn0nzc9//vMsWbIkP/zhD3PYYYdl0KBBHd7/zne+0y2TAwAAAAAA6K26VNIMGTIkp556anfPBQAAAAAAoGp0qaS54YYbunseAAAAAAAAVaVLJc1mTz31VB588MEkyatf/ersvffe3TIpAAAAAACA3q62KyetX78+73znO7PPPvvkr/7qr/JXf/VXGTlyZN71rndlw4YN3T1HAAAAAACAXqdLJU1TU1PuuOOOfO9738uaNWuyZs2a/Nu//VvuuOOOfPjDH+7uOQIAAAAAAPQ6Xfq4s29/+9v51re+lWOOOab92Jvf/OYMGDAgp59+eq677rrumh8AAAAAAECv1KUnaTZs2JDhw4dvcXzYsGE+7gwAAAAAAKATulTSHHHEEbnkkkvy/PPPtx/7n//5n8yePTtHHHFEt00OAAAAAACgt+rSx53NmzcvJ554Yl75ylfm8MMPT5L8x3/8R+rr6/PDH/6wWycIXdVw4a2dHltfV8mVE5NDmxelZVNNp855dO5JXZ0aAAAAAAB0raQ57LDD8tBDD+XrX/96fvWrXyVJzjrrrLzjHe/IgAEDunWC0BOVKoh2JLdkdldyS2Yr5AAAAACAXaFLJc2cOXMyfPjwnH/++R2OX3/99Xnqqafyj//4j90yOQAAAAAAgN6qS99J8/nPfz5jxozZ4vhrXvOazJ8/f6cnBQAAAAAA0Nt1qaRZtWpV9tlnny2O77333vn973+/05MCAAAAAADo7bpU0uy777756U9/usXxn/70pxk5cuROTwoAAAAAAKC369J30px//vm54IIL0trammOPPTZJsmTJksyYMSMf/vCHu3WCAC9nDRfe2umx9XWVXDkxObR5UVo21XTqnEfnnrTTud2dDQAAAAB0jy6VNB/96Efz9NNPZ9q0adm4cWOSpH///vnHf/zHzJw5s1snCAAAAAAA0Bt1qaSpqanJFVdckYsvvjgPPPBABgwYkIMOOij19fXdPT8AXmZ29dNDiad4AAAAAKgOXSppNtttt93y+te/vrvmAgAAAAAAUDV2qqQBgJdSqe8AAgAAAIBdobb0BAAAAAAAAKqRkgYAAAAAAKAAJQ0AAAAAAEABShoAAAAAAIAClDQAAAAAAAAFKGkAAAAAAAAKUNIAAAAAAAAUoKQBAAAAAAAoQEkDAAAAAABQgJIGAAAAAACgACUNAAAAAABAAUoaAAAAAACAApQ0AAAAAAAABShpAAAAAAAAClDSAAAAAAAAFKCkAQAAAAAAKKBP6QkAQE/QcOGtnR5bX1fJlROTQ5sXpWVTTafOeXTuSV2dGgAAAAA9lCdpAAAAAAAAClDSAAAAAAAAFKCkAQAAAAAAKMB30gDAy9iOfBdO4vtwAAAAAHoST9IAAAAAAAAUoKQBAAAAAAAoQEkDAAAAAABQgJIGAAAAAACgACUNAAAAAABAAUoaAAAAAACAApQ0AAAAAAAABShpAAAAAAAAClDSAAAAAAAAFKCkAQAAAAAAKEBJAwAAAAAAUICSBgAAAAAAoAAlDQAAAAAAQAFKGgAAAAAAgAKUNAAAAAAAAAUoaQAAAAAAAApQ0gAAAAAAABSgpAEAAAAAAChASQMAAAAAAFCAkgYAAAAAAKCAPqUnAAC8PDVceGunx9bXVXLlxOTQ5kVp2VTT6fMenXtSV6YGAAAA0Ct4kgYAAAAAAKAAJQ0AAAAAAEABShoAAAAAAIAClDQAAAAAAAAFKGkAAAAAAAAKUNIAAAAAAAAUoKQBAAAAAAAoQEkDAAAAAABQgJIGAAAAAACgACUNAAAAAABAAUoaAAAAAACAAnpcSXPNNdekoaEh/fv3z6RJk3LnnXduc+z999+fU089NQ0NDampqcm8efN2+poAAAAAAADdoUeVNDfffHOamppyySWX5O67787hhx+exsbGPPnkk1sdv2HDhuy///6ZO3duRowY0S3XBAAAAAAA6A49qqS5+uqrc/7552fq1Kk55JBDMn/+/AwcODDXX3/9Vse//vWvzyc+8YmceeaZqa+v75ZrAgAAAAAAdIc+pSfQWRs3bsxdd92VmTNnth+rra3NlClTsnz58pf0mi0tLWlpaWl/vW7duiRJa2trWltbuzSX3qq+rtL5sbWVDr931rbu+a7O3t5el8rekdyS2fbaXr9cs+1117O7e6+7co0S/wyW/dJmV+OaqzW7GtdcrdnVuGbZfs5k975c2fZadu/LlV0mu7fp7D2sqVQqO/a3KYWsXLkyo0aNyrJly3LEEUe0H58xY0buuOOOrFixYrvnNzQ05IILLsgFF1yw09dsbm7O7Nmztzi+YMGCDBw4cAdXBgAAAAAA9CYbNmzI2WefnbVr12bw4MHbHNdjnqR5OZk5c2aampraX69bty777rtvTjjhhO3e7Gp0aPOiTo+tr63ksgltufgXtWlpq+n0efc1NxbJ3lZuyewdyS2Zba/t9cs12153Pbu793pHtLa2ZvHixTn++OPTt2/fnb6e7JdvdjWuuVqzq3HN1ZpdjWuW7edMdu/LlW2vZfe+XNllsnubzZ/A9WJ6TEkzdOjQ1NXVZfXq1R2Or169OiNGjHhJr1lfX7/V77jp27evH9wXaNnU+b+oaz+nrWaHztvWPd/V2dvb61LZXcktmW2vu55tr3dNtr3e+ezu2uuuKPnPYdnVkSvbXsvufbmyqyu7GtdcrdnVuOZqza7GNVdrdjWuuZqze4vO3r/aXTyPbtOvX7+MHz8+S5YsaT/W1taWJUuWdPiostLXBAAAAAAA6Iwe8yRNkjQ1NeXcc8/NhAkTMnHixMybNy/r16/P1KlTkyTnnHNORo0alTlz5iRJNm7cmP/6r/9q//MTTzyRe+65J7vttlsOPPDATl0TAAAAAABgV+hRJc0ZZ5yRp556KrNmzcqqVasybty4LFy4MMOHD0+SPPbYY6mt/b+Hg1auXJnXvva17a+vuuqqXHXVVZk8eXKWLl3aqWsCAAAAAADsCj2qpEmS6dOnZ/r06Vt9b3PxsllDQ0MqlcpOXRMAAAAAAGBX6DHfSQMAAAAAANCbKGkAAAAAAAAKUNIAAAAAAAAUoKQBAAAAAAAoQEkDAAAAAABQgJIGAAAAAACgACUNAAAAAABAAUoaAAAAAACAApQ0AAAAAAAABShpAAAAAAAAClDSAAAAAAAAFKCkAQAAAAAAKEBJAwAAAAAAUICSBgAAAAAAoAAlDQAAAAAAQAFKGgAAAAAAgAKUNAAAAAAAAAUoaQAAAAAAAApQ0gAAAAAAABSgpAEAAAAAAChASQMAAAAAAFCAkgYAAAAAAKAAJQ0AAAAAAEABShoAAAAAAIAClDQAAAAAAAAFKGkAAAAAAAAKUNIAAAAAAAAUoKQBAAAAAAAoQEkDAAAAAABQQJ/SEwAAeKGGC2/t9Nj6ukqunJgc2rwoLZtqOn3eo3NP6srUAAAAALqNkgYA4M/s6oJIOQQAAABs5uPOAAAAAAAAClDSAAAAAAAAFKCkAQAAAAAAKEBJAwAAAAAAUICSBgAAAAAAoAAlDQAAAAAAQAFKGgAAAAAAgAL6lJ4AAABJw4W37tD4+rpKrpyYHNq8KC2bajp1zqNzT+rK1AAAAIBdxJM0AAAAAAAABXiSBgCgypV8imdHsruSWzLbk0sAAAC8GE/SAAAAAAAAFKCkAQAAAAAAKEBJAwAAAAAAUICSBgAAAAAAoAAlDQAAAAAAQAFKGgAAAAAAgAKUNAAAAAAAAAX0KT0BAACoNg0X3trpsfV1lVw5MTm0eVFaNtV06pxH557U1akBAADwEvIkDQAAAAAAQAFKGgAAAAAAgAKUNAAAAAAAAAUoaQAAAAAAAApQ0gAAAAAAABSgpAEAAAAAAChASQMAAAAAAFCAkgYAAAAAAKAAJQ0AAAAAAEABShoAAAAAAIAClDQAAAAAAAAFKGkAAAAAAAAKUNIAAAAAAAAUoKQBAAAAAAAooE/pCQAAAC+Nhgtv3aHx9XWVXDkxObR5UVo21XTqnEfnntSVqQEAAFQlT9IAAAAAAAAUoKQBAAAAAAAoQEkDAAAAAABQgJIGAAAAAACgACUNAAAAAABAAUoaAAAAAACAApQ0AAAAAAAABShpAAAAAAAAClDSAAAAAAAAFKCkAQAAAAAAKEBJAwAAAAAAUICSBgAAAAAAoAAlDQAAAAAAQAE9rqS55ppr0tDQkP79+2fSpEm58847tzv+m9/8ZsaMGZP+/fvnsMMOy2233dbh/fPOOy81NTUdfp144om7cgkAAAAAAADpU3oCO+Lmm29OU1NT5s+fn0mTJmXevHlpbGzMgw8+mGHDhm0xftmyZTnrrLMyZ86c/PVf/3UWLFiQk08+OXfffXcOPfTQ9nEnnnhibrjhhvbX9fX1L8l6AACgWjRceGunx9bXVXLlxOTQ5kVp2VTT6fMenXtSV6YGAABQTI96kubqq6/O+eefn6lTp+aQQw7J/PnzM3DgwFx//fVbHf/pT386J554Yj760Y/m4IMPzmWXXZbXve51+dznPtdhXH19fUaMGNH+a88993wplgMAAAAAAFSxHvMkzcaNG3PXXXdl5syZ7cdqa2szZcqULF++fKvnLF++PE1NTR2ONTY25pZbbulwbOnSpRk2bFj23HPPHHvssbn88suz1157bXMuLS0taWlpaX+9bt26JElra2taW1t3dGm9Wn1dpfNjaysdfu+sbd3zXZ29vb0ulb0juSWz7bW9frlm2+uuZ/e0vS6Z3dP3umR2b9nrktnVuteHNi/aoezLJiTjL12YlrbOPcVzX3PjNt8rlb0juSWzu5K7vewdsfnnpcS/w8l+abOrcc3Vml2Na67W7Gpcc7VmV+Oaqzm7t+nsPaypVCo79m8+haxcuTKjRo3KsmXLcsQRR7QfnzFjRu64446sWLFii3P69euXG2+8MWeddVb7sWuvvTazZ8/O6tWrkyQ33XRTBg4cmNGjR+fhhx/Oxz72sey2225Zvnx56urqtjqX5ubmzJ49e4vjCxYsyMCBA3d2qQAAAAAAQA+2YcOGnH322Vm7dm0GDx68zXE95kmaXeXMM89s//Nhhx2WsWPH5oADDsjSpUtz3HHHbfWcmTNndnhCZ926ddl3331zwgknbPdmV6Md/6/o2nLxL2q75b+i29XZ3ftfTHZPdtf+i8mXPtte2+uXa7a97np2T9vrktk9fa9LZveWvS6Zba93Tba97np2T9vr7WXviNbW1ixevDjHH398+vbtu9PXk/3yzJVtr2X3vlzZ9lo2O2LzJ3C9mB5T0gwdOjR1dXXtT8Bstnr16owYMWKr54wYMWKHxifJ/vvvn6FDh+bXv/71Nkua+vr61NfXb3G8b9++fnBfYEe+6LX9nLaaHTpvW/d8V2dvb69LZXclt2S2ve56tr3eNdn2eueze8pel8zuLXtdMrun73XJbHu9a7Lt9c5n95S93l52V5T8d8hqzK7GNVdrdjWuuVqzq3HN1ZpdjWuu5uzeorP3r3YXz6Pb9OvXL+PHj8+SJUvaj7W1tWXJkiUdPv7szx1xxBEdxifJ4sWLtzk+SR5//PE8/fTT2Weffbpn4gAAAAAAAFvRY56kSZKmpqace+65mTBhQiZOnJh58+Zl/fr1mTp1apLknHPOyahRozJnzpwkyQc/+MFMnjw5n/zkJ3PSSSflpptuyi9+8Yt84QtfSJI899xzmT17dk499dSMGDEiDz/8cGbMmJEDDzwwjY07/wg7AAAA1aHhwls7Pba+rpIrJ/7p49k6+xTPo3NP6urUAAB4GetRJc0ZZ5yRp556KrNmzcqqVasybty4LFy4MMOHD0+SPPbYY6mt/b+Hg4488sgsWLAgF110UT72sY/loIMOyi233JJDDz00SVJXV5d77703N954Y9asWZORI0fmhBNOyGWXXbbVjzMDAACAl5MdKYeS7i2ISmYDAPQWPaqkSZLp06dn+vTpW31v6dKlWxw77bTTctppp211/IABA7Jo0Y59oSYAAAAAAEB36DHfSQMAAAAAANCbKGkAAAAAAAAKUNIAAAAAAAAU0OO+kwYAAACobg0X3trpsfV1lVw5MTm0eVFaNtV0+rxH555UJLs7cntTNgD0dkoaAAAAAF6WShZyAPBS8HFnAAAAAAAABShpAAAAAAAACvBxZwAAAADwAqW+fwiA6uJJGgAAAAAAgAKUNAAAAAAAAAUoaQAAAAAAAArwnTQAAAAAwA59D0/iu3gAuoMnaQAAAAAAAArwJA0AAAAAUNSOPMXTlSd4Ek/xAC9PnqQBAAAAAAAoQEkDAAAAAABQgJIGAAAAAACgAN9JAwAAAABUrV39fTi+CwfYHk/SAAAAAAAAFKCkAQAAAAAAKEBJAwAAAAAAUICSBgAAAAAAoIA+pScAAAAAAMBLp+HCW3dofH1dJVdOTA5tXpSWTTWdOufRuSd1ZWpQdTxJAwAAAAAAUICSBgAAAAAAoAAlDQAAAAAAQAFKGgAAAAAAgAKUNAAAAAAAAAUoaQAAAAAAAApQ0gAAAAAAABTQp/QEAAAAAACoDg0X3trpsfV1lVw5MTm0eVFaNtV0+rxH557UlalBEZ6kAQAAAAAAKEBJAwAAAAAAUICSBgAAAAAAoAAlDQAAAAAAQAFKGgAAAAAAgAKUNAAAAAAAAAUoaQAAAAAAAApQ0gAAAAAAABSgpAEAAAAAAChASQMAAAAAAFCAkgYAAAAAAKAAJQ0AAAAAAEABShoAAAAAAIAClDQAAAAAAAAFKGkAAAAAAAAK6FN6AgAAAAAAsKs1XHhrp8fW11Vy5cTk0OZFadlU0+nzHp17UlemRhXzJA0AAAAAAEABShoAAAAAAIAClDQAAAAAAAAFKGkAAAAAAAAKUNIAAAAAAAAUoKQBAAAAAAAoQEkDAAAAAABQgJIGAAAAAACgACUNAAAAAABAAUoaAAAAAACAApQ0AAAAAAAABShpAAAAAAAACuhTegIAAAAAANCbNVx4a6fH1tdVcuXE5NDmRWnZVNOpcx6de1JXp0ZhnqQBAAAAAAAoQEkDAAAAAABQgJIGAAAAAACgACUNAAAAAABAAUoaAAAAAACAApQ0AAAAAAAABShpAAAAAAAAClDSAAAAAAAAFKCkAQAAAAAAKKBP6QkAAAAAAADdr+HCW3dofH1dJVdOTA5tXpSWTTWdOufRuSd1ZWr8L0/SAAAAAAAAFKCkAQAAAAAAKEBJAwAAAAAAUICSBgAAAAAAoAAlDQAAAAAAQAFKGgAAAAAAgAKUNAAAAAAAAAX0uJLmmmuuSUNDQ/r3759Jkyblzjvv3O74b37zmxkzZkz69++fww47LLfddluH9yuVSmbNmpV99tknAwYMyJQpU/LQQw/tyiUAAAAAAAD0rJLm5ptvTlNTUy655JLcfffdOfzww9PY2Jgnn3xyq+OXLVuWs846K+9617vyy1/+MieffHJOPvnk3Hfffe1jrrzyynzmM5/J/Pnzs2LFigwaNCiNjY15/vnnX6plAQAAAAAAVahHlTRXX311zj///EydOjWHHHJI5s+fn4EDB+b666/f6vhPf/rTOfHEE/PRj340Bx98cC677LK87nWvy+c+97kkf3qKZt68ebnooovy1re+NWPHjs1Xv/rVrFy5MrfccstLuDIAAAAAAKDa9JiSZuPGjbnrrrsyZcqU9mO1tbWZMmVKli9fvtVzli9f3mF8kjQ2NraPf+SRR7Jq1aoOY/bYY49MmjRpm9cEAAAAAADoDn1KT6Cz/vCHP2TTpk0ZPnx4h+PDhw/Pr371q62es2rVqq2OX7VqVfv7m49ta8zWtLS0pKWlpf31unXrkiStra1pbW3t5IqqQ31dpfNjaysdfu+sbd3zXZ29vb0ulb0juSWz7bW9frlm2+uuZ/e0vS6Z3dP3umR2b9nrktn2etdk2+uuZ/e0vS6Z3dP3umS2va6e7N6y1ztq83W643r2etdk2+uuZ/e0vS6Z/XL83/Bq19n7UlOpVHZslwpZuXJlRo0alWXLluWII45oPz5jxozccccdWbFixRbn9OvXLzfeeGPOOuus9mPXXnttZs+endWrV2fZsmV5wxvekJUrV2afffZpH3P66aenpqYmN99881bn0tzcnNmzZ29xfMGCBRk4cODOLBMAAAAAAOjhNmzYkLPPPjtr167N4MGDtzmuxzxJM3To0NTV1WX16tUdjq9evTojRozY6jkjRozY7vjNv69evbpDSbN69eqMGzdum3OZOXNmmpqa2l+vW7cu++67b0444YTt3my2r7W1NYsXL87xxx+fvn37yu7F2dW45mrNrsY1V2t2Na5Ztp8z2b0vV7a9lt07s6txzdWa3ZvWfGjzok6Pra+t5LIJbbn4F7Vpaavp1Dn3NTd2dWod2Gt7vav1pr2WXX02fwLXi+kxJU2/fv0yfvz4LFmyJCeffHKSpK2tLUuWLMn06dO3es4RRxyRJUuW5IILLmg/tnjx4vYncUaPHp0RI0ZkyZIl7aXMunXrsmLFirzvfe/b5lzq6+tTX1+/xfG+ffv6we0GJe+j7OrIlW2vZfe+XNnVlV2Na67W7Gpcc7VmV+OaZfs5k937crszu2VT5/4CvsM5bTWdPq+774+97jp7/fLOle3vundGZ+9fjylpkqSpqSnnnntuJkyYkIkTJ2bevHlZv359pk6dmiQ555xzMmrUqMyZMydJ8sEPfjCTJ0/OJz/5yZx00km56aab8otf/CJf+MIXkiQ1NTW54IILcvnll+eggw7K6NGjc/HFF2fkyJHtRRAAAAAAAMCu0KNKmjPOOCNPPfVUZs2alVWrVmXcuHFZuHBhhg8fniR57LHHUltb2z7+yCOPzIIFC3LRRRflYx/7WA466KDccsstOfTQQ9vHzJgxI+vXr8973vOerFmzJkcddVQWLlyY/v37v+TrAwAAAAAAqkePKmmSZPr06dv8eLOlS5ducey0007Laaedts3r1dTU5NJLL82ll17aXVMEAAAAAAB4UbUvPgQAAAAAAIDupqQBAAAAAAAoQEkDAAAAAABQgJIGAAAAAACgACUNAAAAAABAAUoaAAAAAACAApQ0AAAAAAAABShpAAAAAAAAClDSAAAAAAAAFKCkAQAAAAAAKEBJAwAAAAAAUICSBgAAAAAAoAAlDQAAAAAAQAFKGgAAAAAAgAKUNAAAAAAAAAUoaQAAAAAAAApQ0gAAAAAAABSgpAEAAAAAAChASQMAAAAAAFCAkgYAAAAAAKAAJQ0AAAAAAEABShoAAAAAAIAClDQAAAAAAAAFKGkAAAAAAAAKUNIAAAAAAAAUoKQBAAAAAAAoQEkDAAAAAABQgJIGAAAAAACgACUNAAAAAABAAUoaAAAAAACAApQ0AAAAAAAABShpAAAAAAAAClDSAAAAAAAAFKCkAQAAAAAAKEBJAwAAAAAAUICSBgAAAAAAoAAlDQAAAAAAQAFKGgAAAAAAgAKUNAAAAAAAAAUoaQAAAAAAAApQ0gAAAAAAABSgpAEAAAAAAChASQMAAAAAAFCAkgYAAAAAAKAAJQ0AAAAAAEABShoAAAAAAIAClDQAAAAAAAAFKGkAAAAAAAAKUNIAAAAAAAAUoKQBAAAAAAAoQEkDAAAAAABQgJIGAAAAAACgACUNAAAAAABAAUoaAAAAAACAApQ0AAAAAAAABfQpPQEAAAAAgGr06NyTOj22tbU1t912W+5rbkzfvn134ayAl5InaQAAAAAAAApQ0gAAAAAAABSgpAEAAAAAAChASQMAAAAAAFCAkgYAAAAAAKAAJQ0AAAAAAEABShoAAAAAAIAClDQAAAAAAAAFKGkAAAAAAAAKUNIAAAAAAAAU0Kf0BAAAAACA//Po3JM6Pba1tTW33XZb7mtuTN++fXfhrADYFTxJAwAAAAAAUICSBgAAAAAAoAAlDQAAAAAAQAFKGgAAAAAAgAKUNAAAAAAAAAUoaQAAAAAAAApQ0gAAAAAAABSgpAEAAAAAAChASQMAAAAAAFCAkgYAAAAAAKCAHlPSPPPMM3nHO96RwYMHZ8iQIXnXu96V5557brvnPP/883n/+9+fvfbaK7vttltOPfXUrF69usOYmpqaLX7ddNNNu3IpAAAAAAAAPaekecc73pH7778/ixcvzve///38+7//e97znvds95wPfehD+d73vpdvfvObueOOO7Jy5cq87W1v22LcDTfckN///vftv04++eRdtAoAAAAAAIA/6VN6Ap3xwAMPZOHChfn5z3+eCRMmJEk++9nP5s1vfnOuuuqqjBw5cotz1q5dmy9/+ctZsGBBjj322CR/KmMOPvjg/OxnP8tf/uVfto8dMmRIRowY8dIsBgAAAAAAID3kSZrly5dnyJAh7QVNkkyZMiW1tbVZsWLFVs+566670tramilTprQfGzNmTF71qldl+fLlHca+//3vz9ChQzNx4sRcf/31qVQqu2YhAAAAAAAA/6tHPEmzatWqDBs2rMOxPn365BWveEVWrVq1zXP69euXIUOGdDg+fPjwDudceumlOfbYYzNw4MD88Ic/zLRp0/Lcc8/lAx/4wDbn09LSkpaWlvbX69atS5K0tramtbV1R5fH/9p870rcQ9kvbXY1rrlas6txzdWaXY1rlu3nTHbvy5Vtr2X3zuxqXHO1Zlfjmqs1uxrXXK3Z1bjmas7ubTp7D2sqBR8bufDCC3PFFVdsd8wDDzyQ73znO7nxxhvz4IMPdnhv2LBh+f/bu/M4m+v////3c8xqjLHNYBhjJnt2SpaIVOr9jqIVWSpJSlnalCyJUhTVu0JJZUnRLkt2koQZZF9HWbMvYcw8f3/4Oj/T0PLpnHmO87xdL5dzuXRer+ncH8/zeHmd5Xler1f//v3VpUuXbP/f+PHj1bFjxyyTKZJ05ZVXqnHjxhfNfe655zRmzBjt2LHjojX169dP/fv3v2Bm3rx5/3Q8AAAAAAAAAAAguJ04cUKtW7fW4cOHlT9//ov+ndUjaXr27KkOHTr86d8kJyerWLFi2rt3b5blZ86c0YEDBy56LZlixYrp9OnTOnToUJajafbs2fOn15+pU6eOnn/+eZ06dUrh4eEX/Junn35aPXr08N0/cuSIEhISdP311//pk40/l56erpkzZ+q6665TaGgo2UGc7eKYXc12ccyuZrs4ZrLZzsgOvlyy6TXZwZnt4phdzXZxzK5muzhmV7NdHLPL2cHm3Bm4/orVSZrY2FjFxsb+5d/VrVtXhw4d0rJly1SrVi1J0uzZs5WZmak6depc8P+pVauWQkNDNWvWLLVq1UqStH79eqWlpalu3boXzUpJSVHBggUvOkEjSeHh4RdcHxoayobrBzafR7LdyCWbXpMdfLlku5Xt4phdzXZxzK5muzhmstnOyA6+XLLpNdnBl0s233X/G3/3+bskrklTsWJFNWvWTJ06ddLbb7+t9PR0Pfzww7rrrrsUHx8vSfr111917bXX6oMPPtCVV16pmJgY3XffferRo4cKFSqk/Pnz65FHHlHdunV11VVXSZK++uor7dmzR1dddZUiIiI0c+ZMDRo0SL169bI5XAAAAAAAAAAA4IBLYpJGksaNG6eHH35Y1157rbxer1q1aqURI0b41qenp2v9+vU6ceKEb9mrr77q+9tTp07phhtu0P/+9z/f+tDQUL355pvq3r27jDEqU6aMhg0bpk6dOuXo2AAAAAAAAAAAgHsumUmaQoUKafz48RddX7p0aRljsiyLiIjQm2++qTfffPOC/0+zZs3UrFkzv9YJAAAAAAAAAADwd3htFwAAAAAAAAAAAOAiJmkAAAAAAAAAAAAsYJIGAAAAAAAAAADAAiZpAAAAAAAAAAAALGCSBgAAAAAAAAAAwAImaQAAAAAAAAAAACxgkgYAAAAAAAAAAMACJmkAAAAAAAAAAAAsYJIGAAAAAAAAAADAAiZpAAAAAAAAAAAALGCSBgAAAAAAAAAAwAImaQAAAAAAAAAAACwIsV1AMDDGSJKOHDliuZJLW3p6uk6cOKEjR44oNDSU7CDOdnHMrma7OGZXs10cM9lsZ2QHXy7Z9Jrs4Mx2ccyuZrs4ZlezXRyzq9kujtnl7GBzbr7g3PzBxTBJ4wdHjx6VJCUkJFiuBAAAAAAAAAAA5BZHjx5VTEzMRdd7zF9N4+AvZWZmaufOnYqOjpbH47FdziXryJEjSkhI0I4dO5Q/f36ygzjbxTG7mu3imF3NdnHMZLOdkR18uWTTa7KDM9vFMbua7eKYXc12ccyuZrs4Zpezg40xRkePHlV8fLy83otfeYYjafzA6/WqZMmStssIGvnz57e2AyDbjVyy6TXZwZdLtlvZLo7Z1WwXx+xqtotjJpvtjOzgyyWbXpMdfLlkM0nzb/3ZETTnXHz6BgAAAAAAAAAAAAHDJA0AAAAAAAAAAIAFTNIg1wgPD1ffvn0VHh5OdpBnuzhmV7NdHLOr2S6OmWy2M7KDL5dsek12cGa7OGZXs10cs6vZLo7Z1WwXx+xytqs8xhhjuwgAAAAAAAAAAADXcCQNAAAAAAAAAACABUzSAAAAAAAAAAAAWMAkDQAAAAAAAAAAgAVM0gAAAAAAAAAAAFjAJA0AAAAAAAAAwJoRI0bo5MmTkqS0tDQZYyxXlF1urAnBgUkaAEBA8SYGOWHr1q06c+aM7TKQA+bOnavff//ddhk5zta+lH9XOcvmvoxeI9jxnhQAcrcePXroyJEjkqSkpCTt27fPSh0vv/zyBZdnZGSodevWOVZHTr9uffDBBzp16lS25adPn9YHH3yQo7W4iEkaOOmNN95Qu3btNHHiREnShx9+qEqVKqlChQrq3bt3wD6kzpw5U3379tXs2bMlSfPnz9eNN96oJk2aaMyYMQHJPOf333/XwoULtWbNmmzrTp48GdAd7tq1azVmzBitW7dOkrRu3Tp16dJF9957r++5CIRHHnlECxYsCNjj/19t3rxZTZo0Cdjj29q+LyY8PFxr164NeE5qaqratWun5ORkRUZGKioqSlWqVFGfPn18b/T87eabb9aHH35o5Qvj5cuXa+vWrb77H374oerXr6+EhAQ1aNDA138bduzYoXvvvTdHM8uXL6+NGzcGNMPmfvTPBHKfkhv3o9dff722bdsW0Iy9e/dmuZ+SkqL27durfv36uu222zR37tyA5J46dUq9evVSw4YN9dJLL0mSBg4cqHz58ik6OlqtW7cO2P5s2rRpWrVqlSQpMzNTzz//vEqUKKHw8HCVLFlSL774YkA/KNp6r/BHO3fuVN++fdWmTRv16tXLV09OyYl9me1e79q1Sx999JGmTp2q06dPZ1l3/PhxDRgwIGDZNt4rSHY/A6xZs0YPPfSQatSooeLFi6t48eKqUaOGHnrooQu+nuWUQL8fvpBAvye1+d7M9uu1zfdIu3bt0nPPPacmTZqoYsWKuvzyy3XzzTfr3XffVUZGRsBypdzx2nX8+HGNGTNGzzzzjN544w3t378/oHm//fabhgwZoltvvVV169ZV3bp1deutt+rll18O+BfqNnv9Z2zsz6Sc+cw1YsSIC95ef/11jRo1SnPmzPHrcx8fH6/Jkydr+/btMsbol19+UVpa2gVvgfTyyy/r3XffzbIsIyNDd911l1JSUgKafb6c+i7lnI4dO+rw4cPZlh89elQdO3bMsTpc5TH8nASWffnllxdc7vF4FBERoTJlyigpKclveQMHDtSQIUN0/fXXa9GiRXrsscf08ssvq3v37vJ6vXr11VfVpUsX9e/f32+ZkvTRRx+pY8eOqlq1qjZs2KDXX39d3bt312233abMzEx99NFHGjdunG677Ta/5krShg0bdP311ystLU0ej8f3IaF48eKSpD179ig+Pj4gb2ymTZumFi1aKF++fDpx4oQ+++wztWvXTtWqVVNmZqbmzZunGTNmBORNjdfrlcfj0WWXXab77rtP7du3V7Fixfye80+lpqaqZs2aAXm+bW3f0tlfvVzI8OHD1bZtWxUuXFiSNGzYML9nT58+XbfeeqtuuukmRUZGasqUKbr33nsVFRWlyZMnyxijhQsX+r3/Xq9XefLkUVRUlO6++27df//9qlWrll8zLqZatWoaOnSomjZtqtGjR6tbt27q1KmTKlasqPXr12v06NEaPnx4jk+WSIHdxlu2bHnB5V988YWaNGmi6OhoSdKUKVP8mmtzP/pXAvl829yP1qxZ84LLU1JSVKFCBUVEREg6+6WYv+XJk0e7du1SXFycvv/+e11zzTWqV6+errzySqWkpGjOnDmaNWuWGjZs6NfcHj166OOPP9bdd9+tqVOnqnHjxvr66681aNAgeb1ePffcc7rxxhs1YsQIv+ZKUoUKFTRq1ChdffXVGjx4sIYOHapnnnnGt08ZPHiwunfvrieffNLv2TbfK+TNm1fbt29XbGys1qxZo3r16ik2NlY1atTQqlWrlJaWpsWLF6tq1ap+zbW1L5Ps9nrp0qW6/vrrlZmZqfT0dJUoUUKff/65Lr/8ckmB3Zfaeq9g8zPAt99+q1tuuUU1a9bUDTfcoKJFi0o6+zzPnDlTy5Yt0xdffKEbbrjB79l/JZCvXbbek9p8b2bz9drme6SffvpJTZs2VZkyZRQZGanFixerdevWOn36tKZPn65KlSpp2rRpvn2qP9l67apUqZIWLlyoQoUKaceOHWrYsKEOHjyocuXKafPmzQoJCdEPP/zg1+9Qzlm6dKluuOEG5c2bV02bNs2yT5k1a5ZOnDih6dOnq3bt2n7PttnrvxLI/Znt3HNHs5w4cUIFCxaUJB08eFB58+ZVvnz5tHfvXiUnJ2vOnDlKSEj413kjR47UI4888qc/LDXGyOPxBHTc596vjBo1SrfddpvOnDmjO+64Q+vWrdPs2bP9vn+1+V3K+bxer/bs2aPY2Ngsy1NTU9W4cWMdOHAgoPmuY5IG1p17Q/nHTfHcsnNv9D7//HPfi8K/UaZMGQ0ZMkQtW7ZUamqqatWqpbFjx6pNmzaSpM8++0xPPPGE33/FWKNGDXXs2FHdunXTrFmzdPPNN+uFF15Q9+7dJUlDhw7VZ599poULF/o1V5JuvfVWpaen6/3339ehQ4f02GOPac2aNZo7d65KlSoV0DfO9erVU5MmTTRw4EBNnDhRDz30kLp06aIXXnhBkvT0009r2bJlmjFjht+zvV6vZs6cqa+++krjxo3T4cOHdeONN6pTp0666aab5PUG5mDCv/ry7Ndff9Urr7wSkOfb1vYtnX2+q1WrpgIFCmRZPm/ePNWuXVtRUVHyeDwB+VVZjRo11LlzZz344IOSzv5itVu3blq7dq3S09N14403KiEhwe+/VvV6vVq9erVmzJih9957Tz///LOqVKmi+++/X23atPHLPuti8ubNq7Vr1yoxMVE1a9ZUly5d1KlTJ9/68ePH64UXXtDPP//s9+yLTa6fs2XLFvXs2TNgkwYNGzbM9sHzgw8+UPPmzX3bn797bXM/anOfYms/KkmhoaFq2rSprrrqKt8yY4yef/55Pfjgg4qLi5Mk9e3b1+/ZXq9Xu3fvVlxcnK6//nolJCRk+TXdY489plWrVmnWrFl+zS1VqpTee+89NW3aVFu2bFHZsmU1ZcoUtWjRQtLZfVunTp0CciRRRESENmzYoFKlSqlKlSp67rnndPvtt/vWf/PNN3rssccC8vph+73CuV7fcsstyszM1JQpUxQSEqLMzEy1adNGx44d01dffeX3XBv7Mslur6+77jolJCRo9OjROn78uJ588klNmjRJM2fOVI0aNQK6L7X1XsHmZ4Bq1aqpRYsWFz06qV+/fpoyZYpWrlzp92zbr1023pPafG9m8/Xa5nukBg0a6LrrrvO9F/joo4/0xhtv6IcfftDBgwfVpEkTNWzYUMOHD/d7tq3XrvNft9q2bautW7dq6tSpiomJ0bFjx3TrrbcqNjZW48eP92uuJF111VWqVq2a3n77bXk8nizrjDF68MEHtXLlSi1evNjv2TZ7bWt/ZvMz1zkTJkzQyJEjNXr0aF122WWSpE2bNqlz58564IEHVL9+fd11110qVqyYPv30U79kHj16VNu3b1fVqlX13Xff+SYo/qhatWp+ybuY2bNn65ZbbtFHH32kd999V5s2bdLs2bN9k5P+ZPO7FOnsexWPx6PU1FRdfvnlCgkJ8a3LyMjQ1q1b1axZM02aNCkg+fh/DGDZd999Z+rUqWO+++47c+TIEXPkyBHz3Xffmbp165pvvvnGLFy40Fx++eXm3nvv9UteZGSk2b59u+9+aGioWb16te/+tm3bTN68ef2Sdb6oqCizZcuWLLmpqam++2vXrjWFCxf2e64xxsTFxZmVK1f67mdmZpoHH3zQlCpVymzevNns3r3beL3egGTnz5/fbNy40RhjTEZGhgkJCTHLly/3rV+1apUpWrRoQLI9Ho/Zs2ePMcaY06dPm48//tjccMMNJk+ePCY+Pt707t3bV5u/c+Pj403p0qUveIuPjw/Y821r+zbGmMGDB5ukpCQza9asLMtDQkLMzz//HJDMcyIiIszWrVt99zMzM01oaKjZuXOnMcaY+fPnm9jYWL/nnr+NGWPMkiVLzAMPPGBiYmJMZGSkufvuu7M9H/5SuHBh89NPPxljzv4bT0lJybJ+06ZNJjIyMiDZHo/HeL1e4/F4LnoL1DY+YcIEU7JkSfPee+9lWR7o7czmftTmPsXWftQYYxYuXGguu+wy89xzz5mMjAzf8pzYp5w/7uLFi5vFixdnWb969WpTpEgRv+f+1T5869atAduHnz/OokWLZnmtNsaYDRs2BGyfklveKyQkJJj58+dnWb98+XJTvHhxv+fa2pcZY7fXBQsWNOvXr8+ybPDgwaZgwYLmxx9/DOi+1NZ7BZufASIiIsy6desuun7dunUmIiIiINk2X7tsvSe1/d7M1uu1zfdIkZGRZvPmzb77GRkZJjQ01OzevdsYY8yMGTNMfHx8QLJtvXad3+vk5GQzY8aMLOsXLVpkEhIS/J5rzNl9ytq1ay+6fu3atQHbp9jsta39mc3PXOckJyebFStWZFu+fPlyk5SUZIw5u80VK1bM79nvv/++OXnypN8f95/47LPPTEhIiKlSpYrZt29fwHJsfpdijDH9+vUz/fr1Mx6Px/Tq1ct3v1+/fmbQoEFm/Pjx5tSpUwGvw3VM0sC6yy+/3CxatCjb8oULF5pKlSoZY4yZOXOm395oJCUlmW+//dYYc/ZDqNfrNZMmTfKt/+abb0zp0qX9knW+AgUKZPmQlC9fvixvMrZs2RKwL16io6PNmjVrsi3v2rWrKVmypJk/f35AJ2k2bdrku//HcW/bti2gHw7P/wL9nO3bt5u+ffuaxMTEgIy7dOnS5uOPP77o+hUrVgTs+ba1fZ/z448/mnLlypmePXua06dPG2Ny5o3FZZddZqZNm+a7v3HjRpMnTx7fG4ktW7YE5EPxxbax48ePmzFjxpgGDRoErNdt27Y19913nzHGmNtvv908++yzWdYPGjTIVKlSJSDZ8fHx5vPPP7/o+kBu48ac/aK6fv36pmXLlubAgQPGmMBvZzb3ozb3Kbb2o+ccOnTI3HXXXaZOnTq+15KcmqTZtGmTOXz4sElKSsr2JfamTZsC8ppdvnx5M3HiRGPM2f1pWFhYli/xJ06caMqWLev3XGOMeeihh8x///tfc+bMGfPAAw+Y+++/32RmZvrWP/LII6Zu3boBybb5XsHr9Zq9e/caY4xJTEzM8uW5MWdfPwKVbWNfZozdXhcsWDDbc2yMMS+//LIpUKCAmTJlSsD2KbbeK9j8DFChQgUzdOjQi64fOnSoKV++fECybb52GWPnPanN92Y2X69tvkdKTEw0Cxcu9N3fuXOn8Xg85sSJE8aYs/vZQO3Dbb12eTwe3+tWfHy8WbVqVZb1gXzNLF26tBk7duxF148dO9YkJiYGJNtmr23tz2x/5jLm7OTY0qVLsy3/8ccffa+ZW7duNVFRUQHJP3jwoBk1apR56qmnzP79+40xxixbtsz88ssvfs+69dZbL3grXry4ufrqq7MsCwRb36WcLzdMjLks5K+PtQECa/PmzcqfP3+25fnz59eWLVskSWXLltVvv/3ml7w2bdqoXbt2atGihWbNmqUnnnhCvXr10v79++XxePTCCy8E5JzQZcqU0bp161S+fHlJZw+JPf98qZs3b1bJkiX9niudPff4Tz/9pIoVK2ZZ/sYbb0iSmjdvHpBcSSpdurQ2btzoOzR28eLFKlWqlG99Wlqa73zFOaVUqVLq16+f+vbtq++++87vj1+rVi0tW7ZMd9xxxwXXX+j0fv5ia/s+54orrtCyZcvUtWtX1a5dW+PGjct2KHwgtGvXTvfff7+eeeYZhYeHa9iwYWrevLnCwsIknb2GRSDOy3wxefPmVYcOHdShQwdt2LAhIBkvvfSS6tevr0aNGql27doaOnSo5s6d6zvv+Q8//KDPPvssINnntvFzp2D6o0Bu49LZ/cr8+fPVv39/VatWTaNGjQr4dmZzP2pzn3Ixgd6PnhMTE6MJEyZozJgxatCggfr3758j+xRJKleunKSzp+/46aefVKNGDd+6n3/+WfHx8X7PfPDBB9WhQweNHj1ay5Yt0yuvvKLevXtr3bp18nq9euutt9SzZ0+/50rSoEGD1LRpU1WoUEF169bVJ598opkzZ6pcuXLatGmTDhw4oOnTpwck2+Z7BWOMypUrJ4/Ho2PHjmnlypVZrj+zadOmgF3Xwca+TLLb68qVK+v777/Pdo2fXr16KTMzU3fffXdAciV77xVsfgYYMGCAWrdurblz517w+hHTpk0LyCmRJPuvXTbek9p8b3YxOfF6bfM90i233KIHH3xQL7/8ssLDw/X888+rUaNGioyMlCStX79eJUqUCEi2zdeua6+9ViEhITpy5IjWr1+vypUr+9Zt3779oqeH+rd69eqlBx54QMuWLdO1116bbZ8yatQovfLKKwHJttlrW/sz25+5JKlx48bq3LmzRo8e7XsvvGLFCnXp0sV3vaVVq1YF5PVz5cqVatq0qWJiYrRt2zZ16tRJhQoV0pQpU5SWlqYPPvjAr3kxMTEXXJ5T122z9V3K+Zo0aaJ9+/b53pf8+OOPGj9+vCpVqqQHHnggR2txkr35IeCs+vXrm2bNmvl+DWKMMXv37jXNmjUzV199tTHm7JE05cqV80teRkaGeeGFF8x///tfM2jQIJOZmWkmTJhgEhISTOHChU2HDh3MsWPH/JJ1vilTpph58+ZddP3gwYOz/drKXwYNGmRuvPHGi67v0qWL8Xg8Acl+6623zNdff33R9U8//bTvF2f+Vrp0afPbb78F5LH/zM8//3zBX5ucc/r0abNt27aAZNvavi9kwoQJpmjRosbr9Qb81x/p6enmiSeeMPHx8aZw4cKmdevWWQ5HXrJkyZ/++/u/uuaaa8zBgwf9/rh/18GDB82TTz5pKlWqZCIiIkxYWJhJTEw0rVu3/tNt8N+aP3++74itCzl27JiZO3duwPLPt2DBApOUlBTw7czmftTmPsXWfvRCNmzYYK644grj8XgCvk+ZO3dultsfT8/02muvmSFDhgQke9y4cebhhx8248ePN8YYM2fOHHP11VebWrVqmX79+mU59Zu/nT592rz11lvmpptuMhUqVDDlypUzjRo1Mr179zY7duwIWK7N9wrvv/9+ltsfT203YMAA071794Bkny+n9mXn2Or1qFGjTNu2bS+6/sUXXwzYEb+23ivY/AxgzNnT0Nx5552mVKlSJiwszISFhZlSpUqZO++803z//fcBy7X52vVHOfme1NZ7M5uv1zbfIx09etTccccdJiQkxHg8HlOvXr0spxecPn16lrMK+JOt167zT0PUr1+/LEcIGmNMr169zF133eX33HMmTpxo6tSp43vOPR6PCQkJMXXq1PnTo03+LZu9trU/yw2fuXbt2mWaNm1qPB6P7zXE6/Wa6667znequdmzZ5vp06f7PbtJkybm8ccfN8ZkPVJt0aJFATtiK7fIydet8zVo0MB88MEHxpizvY+OjjZ169Y1RYoUMf3798+xOlzlMSaHf3oJ/MH69evVokULbd26VQkJCZKkHTt2KDk5WV988YXKlSunzz//XEePHtU999xjuVoA/8Qvv/yiZcuWqWnTpoqKirJdDoLUsWPHtHnzZlWoUEHh4eG2y0EAZWZm6ujRo8qfP3+2X5ZNmDBBzZs3t7KvsZmN4MG+DAgc3pMGt5MnT+rMmTPKly+f7VKckZ6e7jvbSZEiRRQaGpojufTajnXr1vnOEFG+fHnf0aGBFBMTo+XLl+uyyy5TdHS0UlNTlZycrO3bt6t8+fI6efJkwGuwaceOHVq+fHmOvm4VLFhQP/zwg8qXL68RI0bo448/1qJFizRjxgw9+OCDvrMdITA43RmsK1++vNasWaMZM2Zk2elfd9118nq9ks4e2hqMTp06pV9++UUlS5bkw3iQc7XXJUuW1KZNm3z/lnOSrefc1V7bFBoaau2D2ty5c1WnTh3fqRYQWF6v96KnIujcubPq1Kmj5OTkHK4qsNku71Ny+t9XRkaGfvvtN3m9XsXGxuZI5h9zq1WrlmO5f8zOyTG7mu3imG1nn1OyZMmAnVYO9kVERNguwTmhoaE5ftpyKXuvbb4X37Nnj4wxATstam6wcOFCNWjQQBUqVFCFChVyNDs8PFxHjhzJtnzDhg0Bfy3Zs2ePevXqpVmzZmnv3r3ZTiuXkZER0HxJSkhI8P2QPaekp6f7Pm989913vtNVVqhQQbt27crRWlyU89+aAX+wY8cOeb1eNWvWTN26dVO3bt10ww03BPRL3dGjR6t9+/YaM2aMJOnjjz9WxYoVlZycrL59+wYk8/3339fixYslnf31x3333aeoqCiVK1dO+fLl04MPPqhTp04FJHvv3r1Z7qekpKh9+/aqX7++brvtNs2dOzcgubazJXqd08/3hVx//fXatm1bQDNsPeeu9tpmts3n/EJyYvv+K2vXrg3oxERqaqoGDhyo//3vf9muD3fkyBHde++9Acv+J2weHO6v7Ny2fZ8v0NvZheTUv69vvvlGDRs2VFRUlOLj41WsWDEVKFBA99xzj9LS0oIul2x6HezZVapU0fPPP68dO3YELCM35ZLtVrbNMbv6WfPAgQO67bbbVKpUKXXp0kUZGRm6//77Vbx4cZUoUUL16tULyBfYNnt9TpMmTZSUlKTevXtrzZo1OZrdvHlzDRgwQOnp6ZLOXoMnLS1NTz75pFq1ahXQ7A4dOmj58uXq06ePPv30U02ZMiXLzd9yy7+tyy+/XG+//bYWLFigmTNnqlmzZpKknTt3BuxaVziPzXOtAcYY4/V6TcOGDc3IkSPNgQMHAp736quvmqioKNOyZUtTvHhxM3DgQFO4cGEzcOBA079/f5M/f37zzjvv+D03KSnJ/PDDD8aYs+eJLV26tJkyZYpZu3at+fzzz025cuV859v0N6/Xa/bs2WOMOXv+ztDQUNOoUSPz+OOPm+uuu86EhIQE5BzctrPpdc4+3zVq1LjgzePxmIoVK/ruB4Kt59zVXtvMtvWc29y+/0pKSorxer0Beezp06ebsLAwc/nll5tSpUqZwoULm9mzZ/vW7969O2DZ/9T556q+VLNt7lP+SiC3M5v/vj744AMTHR1tevbsaZ555hlTrFgx89RTT5m33nrLNGrUyBQpUsRs2LAhaHLJptcuZHs8HlO4cGGTJ08ec8MNN5hPP/3UpKenByQrN+SS7Va2zTG7+lnz3nvvNZUrVzavv/66adSokWnRooWpWrWqWbhwofn+++/NFVdcYdq1a+f3XJu9Pmffvn3m9ddfN/Xq1TMej8dUq1bNDBkyJKDXrzvn0KFDpmnTpqZAgQImT548JiEhwYSGhpqGDRsG/Dq7+fLlMytWrAhoxvls/ts635w5c0yBAgWM1+s1HTt29C1/+umnza233hrwfNcxSQPrli9fbnr16mVKlixpwsPDTYsWLcwnn3xiTp48GZC8ChUqmHHjxvmyQ0JCzOjRo33rR48ebWrVquX33PDwcLN9+3ZjjDHlypXLdgG4efPmmVKlSvk915izL+7ndvjXXXeduffee7Osf/TRR02TJk2CLpte5+zzHRISYpo1a5blQpZ9+/Y1Xq/XPPTQQ75lgWDrOXe11zazbT3nNrfv7t27/+mtbdu2AfvyvG7duqZ3797GGGMyMzPNSy+9ZPLly+d73pmk8W+2zX2Kze3M5r+vChUqmIkTJ/ruL1261JQsWdJkZmYaY4y58847A/Kh1FYu2fTahWyPx2N+/fVX89lnn5mbb77ZhISEmNjYWNOzZ0+zZs2agGTazCXbrWzbY3bxs2bx4sXNokWLjDFn3/t6PB4zY8YM3/qFCxeaEiVK+D3XZq8vZMuWLWbgwIHm8ssvN3ny5DGNGzfOkdyFCxeaN99807z00ktm5syZOZJZsWJFs3z58hzJMsbuv60/OnPmTLYf0G/dutVXHwKHSRrkGpmZmWb27Nnm/vvvNwULFjQxMTFZZm79JTIy0vcFiDFnvxBZvXq17/7GjRtNgQIF/J6bmJjo+/VxiRIlzNKlS7OsX7NmjYmKivJ7rjFZd/jFixc3ixcvzrJ+9erVpkiRIkGXTa9z9vleuHChueyyy8xzzz1nMjIyfMtDQkLMzz//HJDMc2w956722ma2refc5vbt9XpNzZo1zTXXXHPBW+3atQP25Xn+/PnNpk2bsiwbN26ciYqKMl999RWTNH7OtrlPsbmd2fz3FRkZabZu3ZplWUhIiPn111+NMcYsWbIkIO8VbOWSnfPZLo7Zdvb571OMMWbnzp1m0KBBpmzZssbr9Zq6deuad999N2hyyXYrO7eM2aXPmnnz5jXbtm3z3Q8NDTWrVq3y3d+yZUtA3p/Z7PXFnDlzxnz11VemevXqAf0McPr0aZMnT54sz3NOmj59urn++uuzvY4Fis1/Wxeyd+9es2DBArNgwQKzd+/eHMt1HZM0yJWWLVsWsJ1+4cKFs/zqoGTJkllecDdu3Gjy5cvn99zevXubunXrmoMHD5qnnnrK3Hzzzebo0aPGGGOOHz9u7rjjDnP99df7PdeYszv8TZs2mcOHD5ukpKRsvwjYtGmTyZs3b9Bl0+ucfb6NOXtI8l133WXq1Knj+2I3J94423rOXe21zWybz7mt7btcuXLmww8/vOj6FStWBOxDUmxsrPnpp5+yLZ8wYYLJmzeveeutt5ik8WO2ze3b5nZmjL1/XxUrVjSffPKJ7/6yZctMWFiYOXPmjDHm7HuFQHzxYiuXbHrtQvb5p435ozlz5pi2bdsGJNtWLtluZdscs6ufNatVq2beeOMNY4wxU6dONdHR0Wbo0KG+9W+99ZapXLmy33Nt9vqPFi5caLp06WJiY2NNdHS0adu2bbYjvv0tKSnJpKSkBDTjYgoUKGDCwsKM1+s1+fLlMwULFsxy8zfb/7bOOXbsmOnYsaPJkyeP8Xg8xuPxmJCQEHPvvfea48ePBzzfdSG2r4kDnPPLL79o/PjxGj9+vFavXq26devqzTff9HtOhQoVtHLlSlWsWFGSsl2Ebd26dSpdurTfc/v27avVq1crOTlZtWvX1oIFC1S0aFGVKFHCdxGumTNn+j33nHLlykk6e3Hjn376STVq1PCt+/nnnxUfHx902fQ653sdExOjCRMmaMyYMWrQoIH69+8vj8cTsLxzbD3nLvfaVrbN59zW9l27dm0tW7ZMbdu2veB6j8fjtwvX/1H16tU1Z84c1apVK8vyu+66S8YYtW/fPiC5/xeJiYkKDQ29pLNtbt82tzPJ3r+vrl276v7779fSpUsVERGh0aNH65577lGePHkkSUuWLPHt74Ihl2x67UL2n+2rrrnmGl1zzTU6cuRI0OSS7Va2zTFLbn7WfPzxx9W+fXu99tpr2rFjhz766CM9+uijWrJkibxer6ZMmaJhw4b5Pdd2ryXp6aef1sSJE7Vz505dd911Gj58uFq0aKG8efMGNFeSnnnmGfXu3VsffvihChUqFPC887322ms5mifZ/bd1To8ePTRv3jx99dVXql+/viRp4cKF6tatm3r27Km33nor4DW4jEkaWPfOO+9o/PjxWrRokSpUqKA2bdroiy++UGJiYkDyXnrpJUVFRV10fVpamjp37uz33LCwMH3xxReaNm2avvrqK+XJk0eZmZkqXry46tevr9atW/9pXf/GnDlzstwvXrx4lvtbt27VAw88EHTZ9Dpnn+/zdezYUQ0aNFCbNm105syZgOfZes5d7bXNbJvP+Tk5vX0PHTpUp06duuj6atWqKTMzMyDZXbp00fz58y+47u6775YxRqNGjQpI9j+1evXqSz7b5vZtczs7X07/++ratau8Xq8++ugjnTp1Sh06dFCfPn1866+88kqNHz8+aHLJptcuZLdv316RkZF/+jf58+cPmlyy3cq2OWZXP2u2adNGpUuX1g8//KC6deuqXr16qlSpkl588UWdOHFCI0eODMgPl2z2+pz58+fr8ccf1x133KEiRYoENOuP3njjDW3atEnx8fFKTEzM9h54+fLlAcvO6R+i5ZZ/W5MnT9ann36qa665xrfspptuUmRkpO644w4maQIth4/cAbIpWbKkefzxx60dxvhXxo8fb44dO+ZMLtn02p8yMjLMoUOHfBeJzcnsP0OvyfYHtm+72SkpKdZOtWYz+3zB3Gv+feWOXLLpNdnBl0u2W9nBPGbeK+SO3EDp16/fn95yyu+//24OHz6c5WZboHodGRmZ5ZIB56xevTpHTrfmOo8xATxvAfA3GGNy5BDV/6v8+fMrJSVFycnJTuSSTa/JDr5csul1MGanpqaqRo0aOXJ0R27KPp8rvSbbzTG7mu3imF3NdnHMZLOdkX1p5q5Zs0ZpaWk6ffp0luXNmzf3e9Y/NWHCBDVv3tyvR5sfP35cTz75pCZNmqT9+/dnW5+RkeG3rP+LQPX62muvVeHChfXBBx8oIiJCkvT777+rffv2OnDggL777ju/5iErTncG685N0Jw4ceKCO/2qVavaKMvH1jymzflTst3IJdudXLLdyQ2m7JYtW/7p+sOHDwfsRx42s/+JYOk12bk3l2x3csl2J5dst7JdHLOr2YHI3bJli2699VatWrUqy/UJz70Ptj1ZIUmdO3dWnTp1/Dph8cQTT2jOnDl66623dM899+jNN9/Ur7/+qnfeeUcvvvii33L+rwK1jb322mtq1qyZSpYsqWrVqkk6++O08PBwzZgxIyCZ+P8xSQPr9u3bpw4dOmjatGkXXJ8bdvoAACBnffXVV7ruuutUtGjRC64P5PsDm9kAAABAbvDoo48qKSlJs2bNUlJSkn788Uft379fPXv21CuvvGK7PEmBmbD46quv9MEHH+iaa65Rx44ddfXVV6tMmTJKTEzUuHHj1KZNG79n5gZVqlTRxo0bNW7cOK1bt07S2euQtmnT5i+vj4R/j0kaWPfYY4/p8OHDWrJkia655hp99tln2rNnjwYOHKihQ4faLg8AAFhQsWJFtWrVSvfdd98F16ekpOjrr78OumwAAAAgN1i8eLFmz56tIkWKyOv1yuv1qkGDBho8eLC6deumFStW2C4xIA4cOOA7Mid//vw6cOCAJKlBgwbq0qWLzdICavDgwSpatKg6deqUZfl7772nffv26cknn7RUmRu8tgsAZs+erWHDhql27dryer1KTExU27ZtNWTIEA0ePNh2eQAAwIJatWpp+fLlF10fHh6uUqVKBV02AAAAkBtkZGQoOjpaklSkSBHt3LlTkpSYmKj169fbLC2gkpOTtXXrVklShQoVNGnSJElnj7ApUKCAxcoC65133lGFChWyLb/88sv19ttvW6jILRxJA+uOHz+uuLg4SVLBggW1b98+lStXTlWqVPnTL0gAAEDwevvtt//0tGIVK1b0fXgKpmwAAAAgN6hcubJSU1OVlJSkOnXqaMiQIQoLC9PIkSP9ftH63KRjx45KTU1Vo0aN9NRTT+nmm2/WG2+8ofT0dA0bNsx2eQGze/duFS9ePNvy2NhY7dq1y0JFbuFIGlhXvnx53wx8tWrV9M477+jXX3/V22+/fcGdQ05LTExUaGioM7lk02uygy+XbHp9KWaHh4crb968f/vvX3zxRR06dOiSz/4ngqXXZOfeXLLpNdnBl0u2W9kujtnV7EDkPvvss8rMzJQkDRgwQFu3btXVV1+tqVOnasSIEX7Nyk26d++ubt26SZKaNm2qdevWafz48VqxYoUeffRRy9UFbhtLSEjQokWLsi1ftGiR4uPj/Z6HrDwmEFdYAv6Bjz76SGfOnFGHDh20bNkyNWvWTAcOHFBYWJjef/993XnnnbZLBAAAuVz+/PmVkpJi5Vd9NrMBAACAnHLgwAEVLFhQHo/Ht+yXX35RfHy8vN6cPxagcuXK+vbbb5WQkOCXx0tPT1ezZs309ttvq2zZsn55zEvFkCFDNGTIEL388stq0qSJJGnWrFl64okn1LNnTz399NOWKwxuHEkD69q2basOHTpIOnsO+O3bt2vp0qXasWOHlQma1NRU5cmTx5lcsuk12cGXSza9diH7j2z+7iinsl3ttYvZLo7Z1WwXx+xqtotjJpvtjOzgyy1UqFCWCRpJqlSpkrZt2+b3rEOHDmn06NF6+umndeDAAUnS8uXL9euvv/r+ZvXq1X6boJGk0NBQrVy50m+P5w851evHH39c9913nx566CElJycrOTlZjzzyiLp168YETQ5gkga5Tt68eVWzZk0VKVIky/L8+fNry5YtOVKDrS96XPiCiWy7uWS7k0u2O7kuZ7vI1V67mO3imF3NdnHMrma7OGay3ckl253cPwpEHStXrlS5cuX00ksv6ZVXXvGdWnjKlCkBnzBo27at3n333YBm/FM50WuPx6OXXnpJ+/bt0w8//KDU1FQdOHBAzz33XMCzIYXYLgD4u/y1Q2rZsuWfrj98+HC2XwVcyrlk53y2i2N2NdvFMbua7eKYbWe7yNVeu5jt4phdzXZxzK5muzhmsnM+28Uxu5rt+vvwHj16qEOHDhoyZIiio6N9y2+66Sa1bt06oNlnzpzRe++9p++++061atVSVFRUlvXDhg3za15u63W+fPl0xRVX5FgezmKSBs756quvdN1116lo0aIXXJ+RkRFUuWTTa7LpNdmXbq7L2S5ytdcuZrs4ZlezXRyzq9kujplstjOyg7PXucHSpUv1zjvvZFteokQJ7d69O6DZq1evVs2aNSVJGzZsyLIuEJMlrvca/48BLhH58uUzmzdv/tePU6VKFTN69OiLrl+xYoXxer3/Oie35JJNr8mm12RfurkuZ/9T/nqfYDPb1V67mO3imF3NdnHMrma7OGay2c7IDs5e/1OBeB8eGxtrli9fnu3xZ8yYYUqWLOnXrP+rHTt2mIyMjH/9OJdSrxE4XJMGzqlVq5aWL19+0fXh4eEqVapU0OSSTa/JptdkX7q5Lmf/U1dffbUiIyMv6WxXe+1itotjdjXbxTG7mu3imMlmOyM7OHv9TwXi6JLmzZtrwIABSk9P92WkpaXpySefVKtWrfye939RqVIlbdu27V8/zqXUawSOx5hccpUp4C/kz59fKSkpSk5O/lePc+rUKWVkZChv3rx+qix355JNr8kOvlyy6bUL2efbvHmzxowZo82bN2v48OGKi4vTt99+q1KlSunyyy8PmmxXe+1itotjdjXbxTG7mu3imMlmOyM7+HL/L6Kjo5Wamvqvv6873+HDh3Xbbbfpp59+0tGjRxUfH6/du3erbt26mjp1arbrxNjgr3FfSr1G4HAkDS4Z/ppPDA8P/0c7vhdffFGHDh26ZHPJptdkBy7bxTG7mu3imG1nnzNv3jxVqVJFS5Ys0ZQpU3Ts2DFJUmpqqvr27evXLNvZrvbaxWwXx+xqtotjdjXbxTGTzXZGduCyc8P78L9rzZo1SkxM9OtjxsTEaObMmfrqq680YsQIPfzww5o6darmzZuXKyZo/OlS6jUCyPLp1oC/bcGCBebkyZM5nhsdHW3lHPe2csmm12QHXy7Z9PpSzr7qqqvM0KFDjTFZz0e9ZMkSU6JECb9m5absvyPYek127sslm16THXy5ZLuV7eKYXc3OydxNmzaZxo0b50hWbmbrmpg2t28ETojtSSLgYnbs2KG+ffvqvffekyQ1aNDASh3G0hkBbeWS7U4u2e7kku1ObjBmr1q1SuPHj8+2PC4uTr/99pvf83JL9t8RbL0mO/flku1OLtnu5JLtVraLY3Y1Oydzjx07pnnz5gU0Y8SIERdc7vF4FBERoTJlyqhhw4bKkydPQOvIjWxu3wgcJmmQax04cEBjx471TdIAAAD3FChQQLt27VJSUlKW5StWrFCJEiWCNhsAAACw4WITJOf8+uuvAa/h1Vdf1b59+3TixAkVLFhQknTw4EHlzZtX+fLl0969e5WcnKw5c+YoISEh4PVciMfjsZKL4MQkDaz58ssv/3T9li1bcqgSAACQW91111168skn9cknn8jj8SgzM1OLFi1Sr1691K5du6DNBgAAAGx47LHHVLx4cYWFhV1w/enTpwNew6BBgzRy5EiNHj1al112mSRp06ZN6ty5sx544AHVr19fd911l7p3765PP/004PVcCEe0wJ+YpIE1t9xyizwez5/u1JiVBgDAbYMGDVLXrl2VkJCgjIwMVapUSRkZGWrdurWeffbZoM0GAAAAbEhMTNRLL72kO+6444LrU1JSVKtWrYDW8Oyzz2ry5Mm+CRpJKlOmjF555RW1atVKW7Zs0ZAhQ9SqVauA1bBp0yZt3rxZDRs2VGRkpIwxWb6nXLNmjeLj4wOWD7d4bRcAdxUvXlxTpkxRZmbmBW/Lly+3XSIAALDIGKPdu3drxIgR2rJli77++mt99NFHWrdunT788MOAnoPaZjYAAABgS61atbRs2bKLrv+rH1z7w65du3TmzJlsy8+cOaPdu3dLkuLj43X06FG/Z+/fv19NmzZVuXLldNNNN2nXrl2SpPvuu089e/b0/V1CQgKfCeA3TNLAmtyw0/87rr76akVGRjqTSza9Jjv4csmm15dqtjFGZcqU0S+//KKEhATddNNNuuOOO1S2bFm/ZeTG7L8rmHpNdu7MJZtekx18uWS7le3imF3N9mfugAEDdPvtt190faVKlbR161a/ZF1M48aN1blzZ61YscK3bMWKFerSpYuaNGkiSVq1alW2a0f6Q/fu3RUSEqK0tDTlzZvXt/zOO+/UtGnT/J73T9ncvhFABrBk/vz55ttvv73o+mPHjpm5c+cGtIZNmzaZZ555xtx1111mz549xhhjpk6dalavXh2UuWTTa7KDL5dseh3s2ZUqVTKLFy8OaEZuzHax165muzhmV7NdHLOr2S6OmWy2M7KDL/fvWrhwoTl58qRfH3PXrl2madOmxuPxmLCwMBMWFma8Xq+57rrrzO7du40xxsyePdtMnz7dr7nGGFO0aFGTkpJijDEmX758ZvPmzcYYYzZv3myioqL8nne+3N5rBA6TNLhk7Nixw2RkZPjt8ebOnWsiIyNN06ZNTVhYmG+nO3jwYNOqVSu/5eSWXLLpNdn0muxLN9fl7C+//NI0aNDArFq1KqA5uSnb1V67mO3imF3NdnHMrma7OGay2c7IDs5e/13R0dG+uvxt7dq15osvvjBffPGFWbduXUAy/ihfvnxmw4YNvv8+N7alS5eaQoUKBSz3Uug1AodJGlwy/L3Tv+qqq8zQoUONMVl3ukuWLDElSpTwW05uySWbXpNNr8m+dHNdzi5QoIDvl3MRERGmYMGCWW7BmO1qr13MdnHMrma7OGZXs10cM9lsZ2QHZ6//rvPrCgY33nijefbZZ40xZ8e2ZcsWk5GRYW6//faATpZcCr1G4ITYPt0a8HcZP1+fZtWqVRo/fny25XFxcfrtt9/8mpUbcsmm12TTa7Iv3VyXs1977bWAPn5uzHa11y5muzhmV7NdHLOr2S6OmWy2M7KDs9e2/fLLL/ryyy+Vlpam06dPZ1k3bNiwgOUOGTJE1157rX766SedPn1aTzzxhH7++WcdOHBAixYtCliuy72GxCQNnFWgQAHt2rUr20XGVqxYoRIlSgRdLtn0mmx6Tfalm+tydvv27QP6+Lkx29Veu5jt4phdzXZxzK5muzhmstnOyA7OXts0a9YsNW/eXMnJyVq3bp0qV66sbdu2yRijmjVrBjS7cuXK2rBhg9544w1FR0fr2LFjatmypbp27arixYsHLNfVXuMsr+0CAFvuuusuPfnkk9q9e7c8Ho8yMzO1aNEi9erVS+3atQu6XLLpNdn0muxLN9fl7LS0tD+9BWO2q712MdvFMbua7eKYXc12ccxks52RHZy9tunpp59Wr169tGrVKkVERGjy5MnasWOHGjVqpNtvvz3g+TExMXrmmWc0adIkTZ06VQMHDgzoBI3kbq/x/9g+3xrwd/n7HJenTp0y999/vwkJCTEej8eEhoYar9dr2rZta86cOeO3nNySSza9Jptek33p5rqc7fF4jNfrvegtGLNd7bWL2S6O2dVsF8fsaraLYyab7Yzs4Oz13+Xva0gbc/Y7wE2bNhljzl4ncvXq1cYYY1JSUkxiYqJfsy7k999/N0uWLDFfffWV+eKLL7LcAuVS6DUCx2OMny/0AQRI/vz5lZKSouTk5H/9WMYY7dixQ7Gxsfrtt9+0atUqHTt2TDVq1FDZsmX9UG3uyiWbXpNNr8m+dHNdzpak1NTULPfT09O1YsUKDRs2TC+88IJatmwZVNmu9trFbBfH7Gq2i2N2NdvFMZPNdkZ2cPb6n4iOjlZqaqpfvq87p1ixYpozZ44qVqyoSpUq6cUXX1Tz5s2Vmpqq+vXr69ixY37L+qNp06apXbt2F7wOjMfjUUZGht8zL5VeI4ACNv0D+Jk/j6TJyMgwoaGhZsOGDX55vNyeSza9Jjv4csmm1y5k/5mvv/7aNGrUKOiyXe21i9kujtnVbBfH7Gq2i2Mmm+2M7ODLPadx48bm4MGD2ZYfPnzYNG7cOKDZLVq0MCNHjjTGGNOzZ09TpkwZM3DgQFOzZk1z7bXXBjS7TJky5qGHHjK7d+8OaM75bPca9nFNGlh377336ujRo9mWHz9+XPfee6/v/po1a5SYmOiXTK/Xq7Jly2r//v1+ebzcnks2vSY7+HLJptcuZP+Z8uXLa+nSpUGX7WqvXcx2ccyuZrs4ZlezXRwz2WxnZAdf7jlz587V6dOnsy0/efKkFixYENDsYcOGqU6dOpKk/v3769prr9XHH3+s0qVL69133w1o9p49e9SjRw8VLVo0oDnns91r5AK2Z4kAr9dr9uzZk235vn37TJ48eQKW++WXX5oGDRqYVatWBSwjN+WSTa/JDr5csum1C9mHDx/Ocjt06JBZu3atufPOO021atWCMtvVXruY7eKYXc12ccyuZrs4ZrLZzsgOrtzU1FSTmppqPB6PmTNnju9+amqqWb58uRk0aFCOXBfm7xg/frw5duyYXx+zY8eOZvTo0X59zL/D5vYN+7gmDaw5cuSIjDEqWLCgNm7cqNjYWN+6jIwMffXVV3rqqae0c+fOgOQXLFhQJ06c0JkzZxQWFqbIyMgs6w8cOBBUuWTTa7LpNdmXbq7L2V6vVx6PJ8syY4wSEhI0ceJE1a1bN+iyXe21i9kujtnVbBfH7Gq2i2Mmm+2M7ODq9fnvgS/0tXFkZKRef/31LGe/scWf168+58SJE7r99tsVGxurKlWqKDQ0NMv6bt26+S3rfDa3b9gXYrsAuKtAgQLyeDzyeDwqV65ctvUej0f9+/cPWP5rr70WsMfOjblku5NLtju5ZLuT63L2nDlzstz3er2KjY1VmTJlFBIS2LeytrJd7bWL2S6O2dVsF8fsaraLYybbnVyy3cjdunWrjDFKTk7Wjz/+mOVH1WFhYYqLi1OePHlyvK4LCcSxBxMmTNCMGTMUERGhuXPnZvnRlsfjCdgkjc3tG/ZxJA2smTdvnowxatKkiSZPnqxChQr51oWFhSkxMVHx8fEWKwQAALbNnz9f9erVyzYpcubMGX3//fdq2LBhUGYDAAAA+HPR0dFKTU3165E0xYoVU7du3fTUU0/J6+Vy7sgZTNLAuu3bt6tUqVLZTicSaGlpaX+6vlSpUkGVS3bOZ7s4ZlezXRyzq9kujtl2dp48ebRr1y7FxcVlWb5//37FxcUpIyMj6LJd7bWL2S6O2dVsF8fsaraLYyY757NdHLOr2TbHLEkffvih3n77bW3dulWLFy9WYmKiXn31VSUnJ6tFixYBzf47AjFJU6hQIS1dulSXXXaZ3x7z77Dda9jFJA1yhQULFuidd97Rli1b9Mknn6hEiRL68MMPlZSUpAYNGgQk80LnmT9foL54sZVLNr0mm16Tfenmup69Z8+eLKdZkKQNGzaodu3aOnLkSNBl236+yc65bBfH7Gq2i2N2NdvFMZPNdkZ2cPb6rbfe0nPPPafHHntML7zwglavXq3k5GS9//77Gjt2bLZTA9sQiEma7t27KzY2Vr179/bbY/4dNnsN+7gmDaybPHmy7rnnHrVp00bLly/XqVOnJEmHDx/WoEGDNHXq1IDkrlixIsv99PR0rVixQsOGDdMLL7wQkEybuWTnfLaLY3Y128Uxu5rt4phtZbds2VLS2fM+d+jQQeHh4b51GRkZWrlyperVqxd02ZJ7vXY528Uxu5rt4phdzXZxzGTnfLaLY3Y12+aYX3/9dY0aNUq33HKLXnzxRd/y2rVrq1evXgHNtikjI0NDhgzR9OnTVbVqVYWGhmZZP2zYsIDk2uw1cgEDWFa9enUzduxYY4wx+fLlM5s3bzbGGLN8+XJTtGjRHK/n66+/No0aNXIml+ycz3ZxzK5muzhmV7NdHHOgszt06GA6dOhgPB6PufPOO333O3ToYB544AEzaNAgs2/fvqDL/jPB2muyc08u2Tmf7eKYXc12ccxk53y2i2N2NTsnciMiIsy2bduMMVm/r9uwYYOJiIgIaPbflZSUZNLS0vz6mNdcc81Fb40bN/Zr1t9hc/tGzuFIGli3fv36C154NyYmRocOHcrxesqXL6+lS5c6k0s2vSY7+HLJptfBkD1mzBhJUunSpdWrVy9FRUUFJCe3Zf+ZYO012bknl2x6TXbw5ZLtVraLY3Y1Oydyk5KSlJKSosTExCzLp02bpooVKwY0++/at2+f0tPT/fqYueE0buezuX0j5zBJA+uKFSumTZs2qXTp0lmWL1y40K/nlPyjP55H3hijXbt2qV+/fipbtmzQ5ZKd89kujtnVbBfH7Gq2i2O2nd23b9+APn5uzHa11y5muzhmV7NdHLOr2S6Omeycz3ZxzK5m2xxzjx491LVrV508eVLGGP3444+aMGGCBg8erNGjRwc0O7f45ZdfJEklS5YMeJbNXsM+JmlgXadOnfToo4/qvffek8fj0c6dO7V48WL16tVLffr0CVhugQIFsl2QyxijhIQETZw4MehyyabXZNNrsi/dXJezJenTTz/VpEmTlJaWptOnT2dZt3z58qDLdrXXLma7OGZXs10cs6vZLo6ZbLYzsoOz1/fff78iIyP17LPP6sSJE2rdurXi4+M1fPhw3XXXXQHNtikzM1MDBw7U0KFDdezYMUlSdHS0evbsqWeeeUZerzcgubY/c8EuJmlg3VNPPaXMzExde+21OnHihBo2bKjw8HD16tVLjzzySMBy/3j4otfrVWxsrMqUKaOQkMD907CVS3bOZ7s4ZlezXRyzq9kujtl29ogRI/TMM8+oQ4cO+uKLL9SxY0dt3rxZS5cuVdeuXYMy29Veu5jt4phdzXZxzK5muzhmsnM+28Uxu5ptc8yS1KZNG7Vp00YnTpzQsWPHFBcXF/BM25555hm9++67evHFF1W/fn1JZ8/2069fP508eVIvvPBCQHJt9xqW/R+uYwMExKlTp8zPP/9slixZYo4ePRrwvHnz5pn09PRsy9PT0828efOCLpdsek02vSb70s11Obt8+fJm/PjxxpisFyzt06eP6dq1a1Bmu9prF7NdHLOr2S6O2dVsF8dMNtsZ2cHZ60vB+e/R/aV48eLmiy++yLb8888/N/Hx8X7NOh+9dpvHGGNsTxQBNuTJk0e7du3K9iuA/fv3Ky4uThkZGUGVSza9Jptek33p5rqcnTdvXq1du1aJiYmKi4vTzJkzVa1aNW3cuFFXXXWV9u/fH3TZrvbaxWwXx+xqtotjdjXbxTGTzXZGdnD2ukaNGtlOvyVJHo9HERERKlOmjDp06KDGjRsHrIa/Eh0drdTUVL9e0zoiIkIrV65UuXLlsixfv369qlevrt9//91vWeez2WvYx7FSsO7WW2/9y51+69atVb58eb/mGmMumLt//35FRUX5NSs35JJNr8mm12RfurkuZxcrVkwHDhxQYmKiSpUqpR9++EHVqlXT1q1bFejfGtnKdrXXLma7OGZXs10cs6vZLo6ZbLYzsoOz182aNdNbb72lKlWq6Morr5QkLV26VCtXrlSHDh20Zs0aNW3aVFOmTFGLFi0CWsvFJCYmKjQ01K+PWa1aNb3xxhsaMWJEluVvvPGGqlWr5tes89nsNexjkgbWxcTE6PPPP1eBAgVUq1YtSWcvxHvo0CFdf/31+vjjj/XSSy9p1qxZvnNB/hstW7aUdHYSqEOHDgoPD/ety8jI0MqVK1WvXr1/nZNbcsmm12TTa7Iv3VyXs89p0qSJvvzyS9WoUUMdO3ZU9+7d9emnn+qnn37y1Rcs2a722sVsF8fsaraLY3Y128Uxk812RnZw9vqc3377TT179lSfPn2yLB84cKC2b9+uGTNmqG/fvnr++ecDPkmzZ88enTp1SqVKlcqyfPXq1X7PGjJkiP7zn//ou+++U926dSVJixcv1o4dOzR16lS/5+WGXsM+JmlgXbFixdS6dWu98cYb8nq9kqTMzEw9+uijio6O1sSJE/Xggw/qySef1MKFC/91XkxMjKSzM9TR0dGKjIz0rQsLC9NVV12lTp06/euc3JJLNr0mm16Tfenmupx9zsiRI5WZmSlJ6tq1qwoXLqzvv/9ezZs3V+fOnYMq29Veu5jt4phdzXZxzK5muzhmstnOyA7OXp8zadIkLVu2LNvyu+66S7Vq1dKoUaN09913a9iwYX7LPHr0qLp06aIFCxbommuu0ahRo9S9e3e99dZb8ng8atCggb766ivlz5/fb5l/1KhRI61fv17/+9//tG7dOklnJ1IeeughxcfH+z0vN/QaucA/vYgN4G9FihQx69evz7Z8/fr1pnDhwsYYY1auXGliYmL8mtuvXz9z7Ngxvz5mbs4lm16THXy5ZNNrF7Jd5GqvXcx2ccyuZrs4ZlezXRwz2WxnZAdfrjHGxMXFmbFjx2ZbPnbsWBMXF2eMMebnn382RYoU8Vvmww8/bCpUqGBGjBhhrrnmGtOiRQtTuXJls3DhQjNv3jxTqVIl07t3b7/l5SZ85nKbx5gAn8wb+AsFCxbU2LFj1bx58yzLv/zyS7Vv314HDx7Uxo0bdeWVV+rgwYOWqgQAALYsWLBA77zzjjZv3qxPP/1UJUqU0IcffqikpCQ1aNAgaLMBAAAAWwYOHKhBgwapU6dOuuKKKySdvSbN6NGj1bt3bz3zzDN69dVXNXXqVM2cOdMvmaVKldLYsWPVuHFj7dy5UyVLltSXX36p//73v5Kkb775Rj179vQd4RIIY8aMUb58+XT77bdnWf7JJ5/oxIkTat++fcCy4S5Odwbr7rnnHt13333q3bt3lp3+oEGD1K5dO0nSvHnzdPnll/s9+9NPP9WkSZOUlpam06dPZ1m3fPlyv+fZziWbXpNNr8m+dHNdzZ48ebLuuecetWnTRitWrNCpU6ckSYcPH9agQYMCcl7o3JDtYq9dzXZxzK5muzhmV7NdHDPZbGdkB1+vn332WSUlJemNN97Qhx9+KEkqX768Ro0apdatW0uSHnzwQXXp0sVvmXv37lWZMmUkSfHx8YqMjFS5cuV86ytXrqwdO3b4Le9CBg8erHfeeSfb8ri4OD3wwAMBnaSxuX3DLq/tAoBXX31Vjz32mIYMGaKGDRuqYcOGGjJkiLp37+47r+X111+viRMn+jV3xIgR6tixo4oWLaoVK1boyiuvVOHChbVlyxbdeOONfs3KDblk02uy6TXZl26uy9kDBw7U22+/rVGjRik0NNS3vH79+gH/oGIr29Veu5jt4phdzXZxzK5muzhmstnOyA6+Xp85c0YDBgxQo0aNtHjxYh04cEAHDhzQ4sWLfRM0khQZGamIiAi/5RYuXFj79u3z3W/RooUKFCjgu3/s2DGFh4f7Le9C0tLSlJSUlG15YmKi0tLSApZrc/tGLmD7fGtwW3p6uhk7dqzZvXu3McaYw4cPm8OHD+dIdvny5c348eONMcbky5fPbN682RhjTJ8+fUzXrl2DLpdsek02vSb70s11OTsyMtJs3bo1W/bmzZtNeHh4UGa72msXs10cs6vZLo7Z1WwXx0w22xnZwdnrqKgo33vhnNKsWTPz9ttvX3T9mDFjTL169QJaQ0JCgvniiy+yLf/8889NiRIlApZrs9ewj0kaWBcZGWm2bdtmNTc2NtakpKQYY4zZsGGDKVSoUNDlkk2vyabXZF+6uS5nJyUlmZkzZxpjsn5YGTt2rKlYsWJQZrvaaxezXRyzq9kujtnVbBfHTDbbGdnB2evmzZub999/P6AZf7R//35z8OBBs337dpOZmZlt/dSpUwNe0xNPPGESExPN7NmzzZkzZ8yZM2fMrFmzTGJiounZs2fAcm32GvZxujNYd+WVV2rFihU5nlusWDEdOHBA0tkLk/3www+SpK1bt8oYE3S5ZNNrsuk12ZdursvZnTp10qOPPqolS5bI4/Fo586dGjdunHr16uXX81/npmxXe+1itotjdjXbxTG7mu3imMlmOyM7OHt944036qmnnlKvXr00YcIEffnll1lugVCoUCEVKFBASUlJWU57ds6VV16pe++9NyDZ5zz//POqU6eOrr32WkVGRioyMlLXX3+9mjRpokGDBgUs12avkQsEcAII+Fs+/vhjk5ycbF5//XXz/fffm9TU1Cy3QLnvvvtMv379jDHGvPHGGyYyMtI0bdrUFChQwNx7771Bl0s2vSabXpN96ea6lp2ammoyMjJ89wcOHGiioqKMx+MxHo/HREREmGeffdbvubazz3Gp165nuzhmV7NdHLOr2S6OmWy2M7KDs9fn3v9e6Ob1egOevXfv3mzLt23bZvLmzRvQ7HPWr19vJk2aZL766qscOQOQzV7DPo8xTMXBLq83+wFdHo9Hxhh5PB5lZGQEJDczM1OZmZkKCQmRJE2cOFHff/+9ypYtq86dOyssLCyocsmm12TTa7Iv3VzXsvPkyaNdu3YpLi5OycnJWrp0qaKjo7Vp0yYdO3ZMlSpVUr58+fyamRuyz3Gp165nuzhmV7NdHLOr2S6OmWy2M7KDs9c29OjRQ5I0fPhwderUSXnz5vWty8jI0JIlS5QnTx4tWrTIVokB41qvkRWTNLBu+/btf7o+MTExhyoBAAC5QeHChTV16lTVqVNHXq9Xe/bsUWxsbNBnAwAAAC5r3LixJGnevHmqW7dulomJsLAwlS5dWr169VLZsmUDVkNGRobef/99zZo1S3v37lVmZmaW9bNnzw5YNtzFNWlgXWJi4p/eAmnBggVq27at6tatq19//VWS9OGHH2rhwoVBmUs2vSY7+HLJptfBmN2qVSs1atRISUlJ8ng8ql27tpKTky94C6bs87nSa7LdHLOr2S6O2dVsF8dMNtsZ2cGXK0nHjx/X1KlT9fbbb2vEiBFZboEwZ84czZkzR+3bt9e3337ruz9nzhxNnz5d77zzTkAnaCTp0Ucf1aOPPqqMjAxVrlxZ1apVy3ILJJu9hl1M0iDXWLNmjaZNm5YjFyKTpMmTJ+uGG25QZGSkVqxYoVOnTkmSDh8+HNALgdnKJZtek02vyb50c13LHjlypD7//HP17NlTxhh16tTJ92Hpj7dgyj7HpV67nu3imF3NdnHMrma7OGay2c7IDs5er1ixQmXKlNHdd9+thx9+WAMHDtRjjz2m3r1767XXXgto9pgxY5Q/f/6AZlzMxIkTNWnSJH388cd67bXX9Oqrr2a5BYrNXiMXsHg9HMAYY8zmzZtN1apVfRceO/8iZIG8EFn16tXN2LFjjTHG5MuXz2zevNkYY8zy5ctN0aJFgy6XbHpNNr0m+9LNdTm7Q4cO5siRIwHNyG3ZrvbaxWwXx+xqtotjdjXbxTGTzXZGdnD2ulGjRqZTp04mIyPDl52WlmYaNmxoJk+eHNBsm4oXL27Wr1+f47k2ew37OJIG1j366KNKSkrS3r17lTdvXv3888+aP3++ateurblz5wYsd/369WrYsGG25TExMTp06FDQ5ZJNr8kOXLaLY3Y128Ux284eM2aMoqOjA5qR27Jd7bWL2S6O2dVsF8fsaraLYyab7YzswGXbHHNKSop69uwpr9erPHny6NSpU0pISNCQIUPUu3fvgGbb1LNnTw0fPlwmhy/jbrPXsI9JGli3ePFiDRgwQEWKFJHX65XX61WDBg00ePBgdevWLWC5xYoV06ZNm7ItX7hwYUDPM28rl2x6TTa9JvvSzXU520Wu9trFbBfH7Gq2i2N2NdvFMZPNdkZ2cPY6NDRUXu/Zr47j4uKUlpYm6eykwY4dOwKabdPChQs1btw4XXbZZbr55pvVsmXLLLdA4TOX42wfygMUKFDAbNmyxRhjTHJyspk9e7YxxphNmzaZyMjIgOUOGjTIVKpUyfzwww8mOjraLFiwwHz00UcmNjbWjBgxIuhyyabXZNNrsi/dXJezXeRqr13MdnHMrma7OGZXs10cM9lsZ2QHZ6+vu+46M27cOGOMMffff7+58sorzUcffWRuuOEGc+WVVwY026YOHTr86S1Q+MzlNiZpYF2DBg3MZ599Zowx5u677zbNmjUzCxcuNO3atTOXX365X7NSU1NNRkaG7/7AgQNNVFSU7zo4ERER5tlnn/Vrps1csuk12fSa7Es31+VsF7naaxezXRyzq9kujtnVbBfHTDbbGdnB2evzLV261PdD6j179pgbbrjBREdHm5o1a5oVK1YEPN8FuaXXsI9JGlg3bdo03wXHNm7caMqXL288Ho8pUqSI+e677/ya5fV6zZ49e4wxxiQlJZnffvvNnDp1yvz8889myZIl5ujRo37Ns51LNr0mm16TfenmupztIld77WK2i2N2NdvFMbua7eKYyWY7Izs4e42cRa9xDpM0yJX2799vMjMz/f64hQoVMj/88IMxxhiPx2P27t3r94zclEs2vSY7+HLJptcuZLvI1V67mO3imF3NdnHMrma7OGay2c7IDr7cP2rcuLE5ePBgtuWHDx82jRs3zvmCAqhGjRrmwIEDxhhjqlevbmrUqHHRmz/lll7DvhDb18QB7r33Xg0fPlzR0dG+ZYUKFdLx48f1yCOP6L333vNbVqtWrdSoUSMVL15cHo9HtWvXVp48eS74t1u2bLnkc8mm12QHLtvFMbua7eKYbWe7yNVeu5jt4phdzXZxzK5muzhmstnOyA5cdm55Hz537lydPn062/KTJ09qwYIFAcu1oUWLFgoPD5ck3XLLLTmWm1t6DfuYpIF1Y8eO1YsvvphlkkaSfv/9d33wwQd+naQZOXKkWrZsqU2bNqlbt27q1KlTttxAsJVLNr0mO/hyyabXLmS7yNVeu5jt4phdzXZxzK5muzhmstnOyA6+3HNWrlzp++81a9Zo9+7dvvsZGRmaNm2aSpQokWP15IS+ffte8L//zIQJE9S8eXNFRUX9n3Nt9xq5iO1DeeCuw4cPm0OHDhmPx2M2bdpkDh8+7LsdOHDAjB071hQvXjxg+R06dDBHjhwJ2OPntlyy6TXZwZdLNr12IdtFrvbaxWwXx+xqtotjdjXbxTGTzXZGdnDlejwe4/V6jdfr9V3A/vxb3rx5zbvvvpujNeVG0dHRZvPmzX57PD5zuc1jjDG2J4rgJq/XK4/Hc9H1Ho9H/fv31zPPPJODVQEAAAAAAABu2r59u4wxSk5O1o8//qjY2FjfurCwMMXFxV30lFwuiY6OVmpqqpKTk22XgiDA6c5gzZw5c2SMUZMmTTR58mQVKlTIty4sLEyJiYmKj4+3WCEAAAAAAADgjsTERElSZmbm3/r7//znPxo9erSKFy8eyLKAoMYkDaxp1KiRJGnr1q0qVarUnx5VI0kPPfSQBgwYoCJFiuREeQAAAAAAAAD+xPz58/X777/bLgO4pHltFwAkJib+5QSNJH300Uc6cuRIDlQEAAAAAAAAAEDgMUmDSwaXTwIAAAAAAAAABBMmaQAAAAAAAAAA+JtiY2MVGhpquwwECSZpAAAAAAAAAAD4m/bt26f09HTbZSBIMEkDAAAAAAAAAABgAZM0AAAAAAAAAIB/rHfv3ipUqJDtMoBLWojtAoC/q23btsqfP7/tMgAAAAAAAICg9uWXX15wucfjUUREhMqUKaOkpCQ9/fTTOVwZEHw8xhhjuwi4beXKlRdcfm6nX6pUKYWHh+dwVQAAAAAAAICbvF6vPB6P/vjV8bllHo9HDRo00Oeff66CBQtaqtKe6OhopaamKjk52XYpCAKc7gzWVa9eXTVq1Mh2q169uipUqKCYmBi1b99eJ0+etF0qAAAAAAAAEPRmzpypK664QjNnztThw4d1+PBhzZw5U3Xq1NHXX3+t+fPna//+/erVq5ftUoFLHpM0sO6zzz5T2bJlNXLkSKWkpCglJUUjR45U+fLlNX78eL377ruaPXu2nn32WdulAgAAAAAAAEHv0Ucf1bBhw3TttdcqOjpa0dHRuvbaa/Xyyy/r8ccfV/369fXaa69p5syZtku1IjExUaGhobbLQJDgmjSw7oUXXtDw4cN1ww03+JZVqVJFJUuWVJ8+ffTjjz8qKipKPXv21CuvvGKxUgAAAAAAACD4bd68+YLXhs6fP7+2bNkiSSpbtqx+++23nC4tR+3Zs0enTp1SqVKlsixfvXq1pYoQjDiSBtatWrVKiYmJ2ZYnJiZq1apVks6eEm3Xrl05XRoAAAAAAADgnFq1aunxxx/Xvn37fMv27dunJ554QldccYUkaePGjUpISLBVol8dPXpUbdu2VWJiotq3b6/Tp0+ra9euKl68uJKSktSoUSMdOXLEdpkIUkzSwLoKFSroxRdf1OnTp33L0tPT9eKLL6pChQqSpF9//VVFixa1VSIAAAAAAADgjHfffVdbt25VyZIlVaZMGZUpU0YlS5bUtm3bNHr0aEnSsWPHgubyBL1799ayZcvUq1cvpaWl6Y477tD8+fO1YMECzZkzR7/99pteeukl22UiSHmMMcZ2EXDb999/r+bNm8vr9apq1aqSzh5dk5GRoa+//lpXXXWVPvzwQ+3evVuPP/645WoBAAAAAACA4JeZmakZM2Zow4YNkqTy5cvruuuuk9cbfL/7L1WqlMaOHavGjRtr586dKlmypL788kv997//lSR988036tmzp9atW2e5UgQjJmmQKxw9elTjxo3LstNv3bq1oqOjLVcGAAAAAAAAIJhFRERkOX1bVFSUVqxYoXLlykmStm/frkqVKun48eM2y0SQCrFdACBJ0dHRevDBB22XAQAAAAAAAEDSrFmzNGvWLO3du1eZmZlZ1r333nuWqgqMwoULa9++fb5JmhYtWqhAgQK+9ceOHVN4eLil6hDsmKRBrrBx40bNmTPngjv95557zlJVAAAAAAAAgHv69++vAQMGqHbt2ipevLg8Ho/tkgKqatWqWrp0qWrWrClJGj9+fJb1S5cuVcWKFW2UBgdwujNYN2rUKHXp0kVFihRRsWLFsuz0PR6Pli9fbrE6AAAAAAAAwC3FixfXkCFDdM8999guJUccOHBAXq9XR44cUUJCQrZJqW+//VZ79+5V+/btLVWIYMYkDaxLTEzUQw89pCeffNJ2KQAAAAAAAIDzChcurB9//FGXXXaZ7VJyVJ48ebRr1y7FxcVlWb5//37FxcUpIyPDUmUIZl7bBQAHDx7U7bffbrsMAAAAAAAAAJLuv//+bKf8coEx5oKndjt27JgiIiIsVAQXcE0aWHf77bdrxowZevDBB22XAgAAAAAAADjv5MmTGjlypL777jtVrVpVoaGhWdYPGzbMUmWB0aNHD0lnL73Qp08f5c2b17cuIyNDS5YsUfXq1S1Vh2DHJA2sK1OmjPr06aMffvhBVapUybbT79atm6XKAAAAAAAAAPesXLnSNymxevXqLOsudKTJpW7FihWSzh5Js2rVKoWFhfnWhYWFqVq1aurVq5et8hDkuCYNrEtKSrroOo/Hoy1btuRgNQAAAAAAAABc1LFjRw0fPlz58+e3XQocwiQNAAAAAAAAAACABZzuDAAAAAAAAAAc17JlS73//vvKnz+/WrZs+ad/O2XKlByqCgh+TNLAih49euj5559XVFSU78JcFxNsFyIDAAAAAAAAcpuYmBjf9WZiYmIsVwO4g9OdwYrGjRvrs88+U4ECBdS4ceOL/p3H49Hs2bNzsDIAAAAAAAAAAHIGkzQAAAAAAAAAgGz27t2r9evXS5LKly+vuLg4yxUBwcdruwDgfDt27NCOHTtslwEAAAAAAAA468iRI7rnnntUokQJNWrUSI0aNVKJEiXUtm1bHT582HZ5QFBhkgbWnTlzRn369FFMTIxKly6t0qVLKyYmRs8++6zS09NtlwcAAAAAAAA4pVOnTlqyZIm+/vprHTp0SIcOHdLXX3+tn376SZ07d7ZdHhBUON0ZrOvSpYumTJmiAQMGqG7dupKkxYsXq1+/frrlllv01ltvWa4QAAAAAAAAcEdUVJSmT5+uBg0aZFm+YMECNWvWTMePH7dUGRB8QmwXAIwfP14TJ07UjTfe6FtWtWpVJSQk6O6772aSBgAAAAAAAMhBhQsXVkxMTLblMTExKliwoIWKgODF6c5gXXh4uEqXLp1teVJSksLCwnK+IAAAAAAAAMBhzz77rHr06KHdu3f7lu3evVuPP/64+vTpY7EyIPhwujNYN2DAAK1bt05jxoxReHi4JOnUqVO67777VLZsWfXt29dyhQAAAAAAAIA7atSooU2bNunUqVMqVaqUJCktLU3h4eEqW7Zslr9dvny5jRKBoMHpzmDdihUrNGvWLJUsWVLVqlWTJKWmpur06dO69tpr1bJlS9/fTpkyxVaZAAAAAAAAgBNuueUW2yUAzuBIGljXsWPHv/23Y8aMCWAlAAAAAAAAAADkHCZpAAAAAAAAAADZ/PTTT1q7dq0kqVKlSqpVq5blioDgw+nOkGvs3btX69evlySVL19ecXFxlisCAAAAAAAA3PPLL7/o7rvv1qJFi1SgQAFJ0qFDh1SvXj1NnDhRJUuWtFsgEES8tgsAjhw5onvuuUclSpRQo0aN1KhRI5UoUUJt27bV4cOHbZcHAAAAAAAAOOX+++9Xenq61q5dqwMHDujAgQNau3atMjMzdf/999suDwgqnO4M1t15551asWKFXn/9ddWtW1eStHjxYj366KOqXr26Jk6caLlCAAAAAAAAwB2RkZH6/vvvVaNGjSzLly1bpquvvlonTpywVBkQfDjdGaz7+uuvNX36dDVo0MC37IYbbtCoUaPUrFkzi5UBAAAAAAAA7klISFB6enq25RkZGYqPj7dQERC8ON0ZrCtcuLBiYmKyLY+JiVHBggUtVAQAAAAAAAC46+WXX9Yjjzyin376ybfsp59+0qOPPqpXXnnFYmVA8OF0Z7Bu5MiR+uSTT/Thhx+qWLFikqTdu3erffv2atmypTp37my5QgAAAAAAAMAdBQsW1IkTJ3TmzBmFhJw9GdO5/46KisrytwcOHLBRIhA0mKSBdTVq1NCmTZt06tQplSpVSpKUlpam8PBwlS1bNsvfLl++3EaJAAAAAAAAgDPGjh37t/+2ffv2AawECH5ckwbW3XLLLbZLAAAAAAAAAPD/MPEC5ByOpAEAAAAAAAAAXNDJkyd1+vTpLMvy589vqRog+HhtFwAAAAAAAAAAyD2OHz+uhx9+WHFxcYqKilLBggWz3AD4D5M0sC4jI0OvvPKKrrzyShUrVkyFChXKcgMAAAAAAACQc5544gnNnj1bb731lsLDwzV69Gj1799f8fHx+uCDD2yXBwQVJmlgXf/+/TVs2DDdeeedOnz4sHr06KGWLVvK6/WqX79+tssDAAAAAAAAnPLVV1/pf//7n1q1aqWQkBBdffXVevbZZzVo0CCNGzfOdnlAUGGSBtaNGzdOo0aNUs+ePRUSEqK7775bo0eP1nPPPacffvjBdnkAAAAAAACAUw4cOKDk5GRJZ68/c+DAAUlSgwYNNH/+fJulAUGHSRpYt3v3blWpUkWSlC9fPh0+fFiS9N///lfffPONzdIAAAAAAAAA5yQnJ2vr1q2SpAoVKmjSpEmSzh5hU6BAAYuVAcGHSRpYV7JkSe3atUuSdNlll2nGjBmSpKVLlyo8PNxmaQAAAAAAAIBzOnbsqNTUVEnSU089pTfffFMRERHq3r27Hn/8ccvVAcHFY4wxtouA25566inlz59fvXv31scff6y2bduqdOnSSktLU/fu3fXiiy/aLhEAAAAAAABw1vbt27Vs2TKVKVNGVatWtV0OEFSYpEGus3jxYi1evFhly5bVzTffbLscAAAAAAAAAAACgkkaAAAAAAAAAEAWS5cu1Zw5c7R3715lZmZmWTds2DBLVQHBJ8R2AYAk7dy5UwsXLrzgTr9bt26WqgIAAAAAAADcM2jQID377LMqX768ihYtKo/H41t3/n8D+Pc4kgbWvf/+++rcubPCwsJUuHDhbDv9LVu2WKwOAAAAAAAAcEvRokX10ksvqUOHDrZLAYIekzSwLiEhQQ8++KCefvppeb1e2+UAAAAAAAAATitevLjmz5+vsmXL2i4FCHp8Iw7rTpw4obvuuosJGgAAAAAAACAX6N69u958803bZQBO4EgaWPfEE0+oUKFCeuqpp2yXAgAAAAAAADgvMzNT//nPf7RhwwZVqlRJoaGhWdZPmTLFUmVA8GGSBtZlZGTov//9r37//XdVqVIl205/2LBhlioDAAAAAAAA3PPwww9r9OjRaty4sYoWLZrlGtKSNGbMGEuVAcEnxHYBwODBgzV9+nSVL19ekrLs9P/4AgAAAAAAAAAgsMaOHavJkyfrP//5j+1SgKDHJA2sGzp0qN577z116NDBdikAAAAAAACA8woVKqTLLrvMdhmAE7hSO6wLDw9X/fr1bZcBAAAAAAAAQFK/fv3Ut29fnThxwnYpQNDjmjSwbvDgwdq1a5dGjBhhuxQAAAAAAADAeTVq1NDmzZtljFHp0qWzXUN6+fLllioDgg+nO4N1P/74o2bPnq2vv/5al19+ebad/pQpUyxVBgAAAAAAALjnlltusV0C4AyOpIF1HTt2/NP1Y8aMyaFKAAAAAAAAAPxdEyZMUPPmzRUVFWW7FOCSxSQNLhmLFi1S7dq1FR4ebrsUAAAAAAAAwHn58+dXSkqKkpOTbZcCXLK8tgsA/q4bb7xRv/76q+0yAAAAAAAAAEji9//Av8ckDS4Z7PQBAAAAAAAAAMGESRoAAAAAAAAAAAALmKQBAAAAAAAAAACwgEkaAAAAAAAAAAAAC5ikAQAAAAAAAAD8Y7GxsQoNDbVdBnBJY5IGl4zff/9dv//+u+0yAAAAAAAAAEjat2+f0tPTbZcBXNKYpMElIzIyUpGRkbbLAAAAAAAAAADAL5ikAQAAAAAAAAAAsIBJGgAAAAAAAAAAAAuYpAEAAAAAAAAAALCASRoAAAAAAAAAAAALmKTBJcPj8dguAQAAAAAAAAhKI0aM0MmTJyVJaWlpMsb85f+TmJio0NDQQJcGBDWP+Tv/2oBcIDo6WqmpqUpOTrZdCgAAAAAAABBUQkJCtHPnTsXFxSlPnjzatWuX4uLibJcFBL0Q2wUAknTmzBnNnTtXmzdvVuvWrRUdHa2dO3cqf/78ypcvnyTp6NGjlqsEAAAAAAAAglN8fLwmT56sm266ScYY/fLLL74ja/6oVKlSOVwdELw4kgbWbd++Xc2aNVNaWppOnTqlDRs2KDk5WY8++qhOnTqlt99+23aJAAAAAAAAQFAbOXKkHnnkEZ05c+aif2OMkcfjUUZGRg5WBgQ3Jmlg3S233KLo6Gi9++67Kly4sO+UZnPnzlWnTp20ceNG2yUCAAAAAAAAQe/o0aPavn27qlatqu+++06FCxe+4N9Vq1YthysDghenO4N1CxYs0Pfff6+wsLAsy0uXLq1ff/3VUlUAAAAAAACAW6Kjo1W5cmWNGTNG9evXV3h4uO2SgKDntV0AkJmZecFDJH/55RdFR0dbqAgAAAAAAABwV/v27fX7779r9OjRevrpp3XgwAFJ0vLly/lRNeBnTNLAuuuvv16vvfaa777H49GxY8fUt29f3XTTTfYKAwAAAAAAABy0cuVKlStXTi+99JJeeeUVHTp0SJI0ZcoUPf3003aLA4IM16SBdb/88otuuOEGGWO0ceNG1a5dWxs3blSRIkU0f/58xcXF2S4RAAAAAAAAcMa1116rWrVqaciQIYqOjvZdQ/r7779X69attW3bNtslAkGDSRrkCmfOnNHEiRO1cuVKHTt2TDVr1lSbNm0UGRlpuzQAAAAAAADAKTExMVq+fLkuu+yyLJM027dvV/ny5XXy5EnbJQJBI8R2AYAkhYSEqG3btrbLAAAAAAAAAJwXHh6uI0eOZFu+YcMGxcbGWqgICF5M0sCKL7/88m//bfPmzQNYCQAAAAAAAIDzNW/eXAMGDNCkSZMknb2GdFpamp588km1atXKcnVAcOF0Z7DC6/Vmue/xePTHTdHj8UiSMjIycqwuAAAAAAAAwHWHDx/Wbbfdpp9++klHjx5VfHy8du/erbp162rq1KmKioqyXSIQNLx//SeA/2VmZvpuM2bMUPXq1fXtt9/q0KFDOnTokL799lvVrFlT06ZNs10qAAAAAAAA4JSYmBjNnDlTX3/9tUaMGKGHH35YU6dO1bx585igAfyMI2lgXeXKlfX222+rQYMGWZYvWLBADzzwgNauXWupMgAAAAAAAMAt6enpioyMVEpKiipXrmy7HCDocSQNrNu8ebMKFCiQbXlMTIy2bduW4/UAAAAAAAAArgoNDVWpUqW4BAGQQ5ikgXVXXHGFevTooT179viW7dmzR48//riuvPJKi5UBAAAAAAAA7nnmmWfUu3dvHThwwHYpQNDjdGewbtOmTbr11lu1YcMGJSQkSJJ27NihsmXL6vPPP1eZMmUsVwgAAAAAAAC4o0aNGtq0aZPS09OVmJiY7To0y5cvt1QZEHxCbBcAlClTRitXrtTMmTO1bt06SVLFihXVtGlTeTwey9UBAAAAAAAAbrnllltslwA4gyNpAAAAAAAAAAD/2IQJE9S8efNsR9oA+Pu4Jg1yhXnz5unmm29WmTJlVKZMGTVv3lwLFiywXRYAAAAAAACAi+jcuXOW60wD+OeYpIF1H330kZo2baq8efOqW7du6tatmyIiInTttddq/PjxtssDAAAAAAAAcAGcpAn49zjdGayrWLGiHnjgAXXv3j3L8mHDhmnUqFFau3atpcoAAAAAAAAAXEx0dLRSU1OVnJxsuxTgksWRNLBuy5Ytuvnmm7Mtb968ubZu3WqhIgAAAAAAAAAAAo9JGliXkJCgWbNmZVv+3XffKSEhwUJFAAAAAAAAAAAEXojtAoCePXuqW7duSklJUb169SRJixYt0vvvv6/hw4dbrg4AAAAAAAAAgMBgkgbWdenSRcWKFdPQoUM1adIkSWevU/Pxxx+rRYsWlqsDAAAAAAAAcCGJiYkKDQ21XQZwSfMYY4ztIgAAAAAAAAAAucehQ4f06aefavPmzXr88cdVqFAhLV++XEWLFlWJEiVslwcEDSZpYN3SpUuVmZmpOnXqZFm+ZMkS5cmTR7Vr17ZUGQAAAAAAAOCelStXqmnTpoqJidG2bdu0fv16JScn69lnn1VaWpo++OAD2yUCQcNruwCga9eu2rFjR7blv/76q7p27WqhIgAAAAAAAMBdPXr0UIcOHbRx40ZFRET4lt90002aP3++xcqA4MMkDaxbs2aNatasmW15jRo1tGbNGgsVAQAAAAAAAO5aunSpOnfunG15iRIltHv3bgsVAcGLSRpYFx4erj179mRbvmvXLoWEhFioCAAAAAAAAHBXeHi4jhw5km35hg0bFBsba6EiIHgxSQPrrr/+ej399NM6fPiwb9mhQ4fUu3dvXXfddRYrAwAAAAAAANzTvHlzDRgwQOnp6ZIkj8ejtLQ0Pfnkk2rVqpXl6oDg4jHGGNtFwG2//vqrGjZsqP3796tGjRqSpJSUFBUtWlQzZ85UQkKC5QoBAAAAAAAAdxw+fFi33XabfvrpJx09elTx8fHavXu36tatq6lTpyoqKsp2iUDQYJIGucLx48c1btw4paamKjIyUlWrVtXdd9+t0NBQ26UBAAAAAAAATlq4cKFWrlypY8eOqWbNmmratKntkoCgwyQNLhn/+c9/NHr0aBUvXtx2KQAAAAAAAAAA/GtclR2XjPnz5+v333+3XQYAAAAAAAAQ1EaMGHHB5R6PRxERESpTpowaNmyoPHny5HBlQPBhkgYAAAAAAAAA4PPqq69q3759OnHihAoWLChJOnjwoPLmzat8+fJp7969Sk5O1pw5c7ieNPAveW0XAAAAAAAAAADIPQYNGqQrrrhCGzdu1P79+7V//35t2LBBderU0fDhw5WWlqZixYqpe/futksFLnlckwaXjOjoaKWmpio5Odl2KQAAAAAAAEDQuuyyyzR58mRVr149y/IVK1aoVatW2rJli77//nu1atVKu3btslMkECQ4kgYAAAAAAAAA4LNr1y6dOXMm2/IzZ85o9+7dkqT4+HgdPXo0p0sDgg6TNAAAAAAAAAAAn8aNG6tz585asWKFb9mKFSvUpUsXNWnSRJK0atUqJSUl2SoRCBpM0sC6+fPnX3Rmfv78+b77vXv3VqFChXKyNAAAAAAAAMA57777rgoVKqRatWopPDxc4eHhql27tgoVKqR3331XkpQvXz4NHTrUcqXApY9r0sC6PHnyaNeuXYqLi8uyfP/+/YqLi1NGRoalygAAAAAAAAB3rVu3Ths2bJAklS9fXuXLl7dcERB8QmwXABhj5PF4si3fv3+/oqKiLFQEAAAAAAAAoEKFCqpQoYLtMoCgxiQNrGnZsqUkyePxqEOHDgoPD/ety8jI0MqVK1WvXj1b5QEAAAAAAADO+uWXX/Tll18qLS1Np0+fzrJu2LBhlqoCgg+TNLAmJiZG0tkjaaKjoxUZGelbFxYWpquuukqdOnWyVR4AAAAAAADgpFmzZql58+ZKTk7WunXrVLlyZW3btk3GGNWsWdN2eUBQ4Zo0sK5///56/PHHlTdvXtulAAAAAAAAAM678sordeONN6p///6Kjo5Wamqq4uLi1KZNGzVr1kxdunSxXSIQNJikgXVbt27VmTNnVLZs2SzLN27cqNDQUJUuXdpOYQAAAAAAAICDoqOjlZKSossuu0wFCxbUwoULdfnllys1NVUtWrTQtm3bbJcIBA2v7QKADh066Pvvv8+2fMmSJerQoUPOFwQAAAAAAAA4LCoqyncdmuLFi2vz5s2+db/99putsoCgxCQNrFuxYoXq16+fbflVV12llJSUnC8IAAAAAAAAcNhVV12lhQsXSpJuuukm9ezZUy+88ILuvfdeXXXVVZarA4JLiO0CAI/Ho6NHj2ZbfvjwYWVkZFioCAAAAAAAAHDXsGHDdOzYMUlnryd97NgxffzxxypbtqyGDRtmuToguHBNGlh38803KzIyUhMmTFCePHkkSRkZGbrzzjt1/Phxffvtt5YrBAAAAAAAAPBHEyZMUPPmzRUVFWW7FOCSxSQNrFuzZo0aNmyoAgUK6Oqrr5YkLViwQEeOHNHs2bNVuXJlyxUCAAAAAAAA+KP8+fMrJSVFycnJtksBLllckwbWVapUSStXrtQdd9yhvXv36ujRo2rXrp3WrVvHBA0AAAAAAACQS/H7f+Df40gaAAAAAAAAAMA/Fh0drdTUVI6kAf6FENsFAPPnz//T9Q0bNsyhSgAAAAAAAAAAyDlM0sC6a665Jtsyj8fj+++MjIwcrAYAAAAAAAAAgJzBNWlg3cGDB7Pc9u7dq2nTpumKK67QjBkzbJcHAAAAAAAAAEBAcCQNrIuJicm27LrrrlNYWJh69OihZcuWWagKAAAAAAAAwJ+JjY1VaGio7TKASxpH0iDXKlq0qNavX2+7DAAAAAAAAAAXsG/fPqWnp9suA7ikcSQNrFu5cmWW+8YY7dq1Sy+++KKqV69upygAAAAAAAAAAAKMSRpYV716dXk8Hhljsiy/6qqr9N5771mqCgAAAAAAAACAwGKSBtZt3bo1y32v16vY2FhFRERYqggAAAAAAAAAgMBjkgbWJSYm2i4BAAAAAAAAAIAcxyQNrBgxYsTf/ttu3boFsBIAAAAAAAAAAOzwmD9eCATIAUlJSVnu79u3TydOnFCBAgUkSYcOHVLevHkVFxenLVu2WKgQAAAAAAAAwJ+pXLmyvv32WyUkJNguBbhkeW0XADdt3brVd3vhhRdUvXp1rV27VgcOHNCBAwe0du1a1axZU88//7ztUgEAAAAAAACn7dmzR2lpadmWr169mgka4F9ikgbW9enTR6+//rrKly/vW1a+fHm9+uqrevbZZy1WBgAAAAAAALjj6NGjatu2rRITE9W+fXudPn1aXbt2VfHixZWUlKRGjRrpyJEjtssEggqTNLBu165dOnPmTLblGRkZ2rNnj4WKAAAAAAAAAPf07t1by5YtU69evZSWlqY77rhD8+fP14IFCzRnzhz99ttveumll2yXCQQVrkkD626++Wb9+uuvGj16tGrWrClJWrZsmR544AGVKFFCX375peUKAQAAAAAAgOBXqlQpjR07Vo0bN9bOnTtVsmRJffnll/rvf/8rSfrmm2/Us2dPrVu3znKlQPDgSBpY995776lYsWKqXbu2wsPDFR4eriuvvFJFixbV6NGjbZcHAAAAAAAAOGHv3r0qU6aMJCk+Pl6RkZEqV66cb33lypW1Y8cOW+UBQSnEdgFAbGyspk6dqg0bNmjt2rXyeDyqUKFClhcAAAAAAAAAAIFVuHBh7du3TwkJCZKkFi1aqECBAr71x44dU3h4uKXqgODEJA1yjXLlyqls2bKSJI/HY7kaAAAAAAAAwC1Vq1bV0qVLfZckGD9+fJb1S5cuVcWKFW2UBgQtTneGXOGDDz5QlSpVFBkZqcjISFWtWlUffvih7bIAAAAAAAAAZ4wbN0533nmn0tLSdKFLmRctWlQPPPCAhcqA4OUxF/rXBuSgYcOGqU+fPnr44YdVv359SdLChQv15ptvauDAgerevbvlCgEAAAAAAAB35MmTR7t27VJcXFyW5fv371dcXJwyMjIsVQYEHyZpYF1SUpL69++vdu3aZVk+duxY9evXT1u3brVUGQAAAAAAAOAer9erPXv2KDY2Nsvy7du3q1KlSjp+/LilyoDgwzVpYN2uXbtUr169bMvr1aunXbt2WagIAAAAAAAAcE+PHj0knb1edJ8+fZQ3b17fuoyMDC1ZskTVq1e3VB0QnJikgXVlypTRpEmT1Lt37yzLP/74Y5UtW9ZSVQAAAAAAAIBbVqxYIUkyxmjVqlUKCwvzrQsLC1O1atXUq1cvW+UBQYnTncG6yZMn684771TTpk1916RZtGiRZs2apUmTJunWW2+1XCEAAAAAAADgjo4dO2r48OHKnz+/7VKAoMckDXKF5cuXa9iwYVq7dq0kqWLFiurZs6dq1KhhuTIAAAAAAAAAAAKDSRpYlZ6ers6dO6tPnz5KSkqyXQ4AAAAAAAAAADnGa7sAuC00NFSTJ0+2XQYAAAAAAAAAADmOSRpYd8stt+jzzz+3XQYAAAAAAAAAADkqxHYBQNmyZTVgwAAtWrRItWrVUlRUVJb13bp1s1QZAAAAAAAAAACBwzVpYN2fXYvG4/Foy5YtOVgNAAAAAAAAAAA5g0ka5CrnNkePx2O5EgAAAAAAAAAAAotr0iBXePfdd1W5cmVFREQoIiJClStX1ujRo22XBQAAAAAAAABAwHBNGlj33HPPadiwYXrkkUdUt25dSdLixYvVvXt3paWlacCAAZYrBAAAAAAAAADA/zjdGayLjY3ViBEjdPfdd2dZPmHCBD3yyCP67bffLFUGAAAAAAAAAEDgcLozWJeenq7atWtnW16rVi2dOXPGQkUAAAAAAAAAAAQekzSw7p577tFbb72VbfnIkSPVpk0bCxUBAAAAAAAAABB4nO4M1j3yyCP64IMPlJCQoKuuukqStGTJEqWlpaldu3YKDQ31/e2wYcNslQkAAAAAAAAAgF8xSQPrGjdu/Lf+zuPxaPbs2QGuBgAAAAAAAACAnMEkDQAAAAAAAAAAgAVckwYAAAAAAAAAAMACJmkAAAAAAAAAAAAsYJIGAAAAAAAAAADAAiZpAAAAAAQ1Y4weeOABFSpUSB6PRykpKbZLAgAAAABJkscYY2wXAQAAAACB8u2336pFixaaO3eukpOTVaRIEYWEhPyrx+zQoYMOHTqkzz//3D9FAgAAAHDSv/tkAgAAAAC53ObNm1W8eHHVq1fPdinZZGRkyOPxyOvlJAcAAACAi/gkAAAAACBodejQQY888ojS0tLk8XhUunRpZWZmavDgwUpKSlJkZKSqVaumTz/91Pf/ZGRk6L777vOtL1++vIYPH+5b369fP40dO1ZffPGFPB6PPB6P5s6dq7lz58rj8ejQoUO+v01JSZHH49G2bdskSe+//74KFCigL7/8UpUqVVJ4eLjS0tJ06tQp9erVSyVKlFBUVJTq1KmjuXPn+h5n+/btuvnmm1WwYEFFRUXp8ssv19SpUwP99AEAAAAIMI6kAQAAABC0hg8frssuu0wjR47U0qVLlSdPHg0ePFgfffSR3n77bZUtW1bz589X27ZtFRsbq0aNGikzM1MlS5bUJ598osKFC+v777/XAw88oOLFi+uOO+5Qr169tHbtWh05ckRjxoyRJBUqVEjff//936rpxIkTeumllzR69GgVLlxYcXFxevjhh7VmzRpNnDhR8fHx+uyzz9SsWTOtWrVKZcuWVdeuXXX69GnNnz9fUVFRWrNmjfLlyxfIpw4AAABADmCSBgAAAEDQiomJUXR0tPLkyaNixYrp1KlTGjRokL777jvVrVtXkpScnKyFCxfqnXfeUaNGjRQaGqr+/fv7HiMpKUmLFy/WpEmTdMcddyhfvnyKjIzUqVOnVKxYsX9cU3p6uv73v/+pWrVqkqS0tDSNGTNGaWlpio+PlyT16tVL06ZN05gxYzRo0CClpaWpVatWqlKliq9mAAAAAJc+JmkAAAAAOGPTpk06ceKErrvuuizLT58+rRo1avjuv/nmm3rvvfeUlpam33//XadPn1b16tX9UkNYWJiqVq3qu79q1SplZGSoXLlyWf7u1KlTKly4sCSpW7du6tKli2bMmKGmTZuqVatWWR4DAAAAwKWJSRoAAAAAzjh27Jgk6ZtvvlGJEiWyrAsPD5ckTZw4Ub169dLQoUNVt25dRUdH6+WXX9aSJUv+9LG93rOX/DTG+Jalp6dn+7vIyEh5PJ4sNeXJk0fLli1Tnjx5svztuVOa3X///brhhhv0zTffaMaMGRo8eLCGDh2qRx555O8OHQAAAEAuxCQNAAAAAGdUqlRJ4eHhSktLU6NGjS74N4sWLVK9evX00EMP+ZZt3rw5y9+EhYUpIyMjy7LY2FhJ0q5du1SwYEFJUkpKyl/WVKNGDWVkZGjv3r26+uqrL/p3CQkJevDBB/Xggw/q6aef1qhRo5ikAQAAAC5xTNIAAAAAcEZ0dLR69eql7t27KzMzUw0aNNDhw4e1aNEi5c+fX+3bt1fZsmX1wQcfaPr06UpKStKHH36opUuXKikpyfc4pUuX1vTp07V+/XoVLlxYMTExKlOmjBISEtSvXz+98MIL2rBhg4YOHfqXNZUrV05t2rRRu3btNHToUNWoUUP79u3TrFmzVLVqVf3nP//RY489phtvvFHlypXTwYMHNWfOHFWsWDGQTxUAAACAHOC1XQAAAAAA5KTnn39effr00eDBg1WxYkU1a9ZM33zzjW8SpnPnzmrZsqXuvPNO1alTR/v3789yVI0kderUSeXLl1ft2rUVGxurRYsWKTQ0VBMmTNC6detUtWpVvfTSSxo4cODfqmnMmDFq166devbsqfLly+uWW27R0qVLVapUKUlSRkaGunbt6qu3XLly+t///uffJwYAAABAjvOY80+YDAAAAAAAAAAAgBzBkTQAAAAAAAAAAAAWMEkDAAAAAAAAAABgAZM0AAAAAAAAAAAAFjBJAwAAAAAAAAAAYAGTNAAAAAAAAAAAABYwSQMAAAAAAAAAAGABkzQAAAAAAAAAAAAWMEkDAAAAAAAAAABgAZM0AAAAAAAAAAAAFjBJAwAAAAAAAAAAYAGTNAAAAAAAAAAAABYwSQMAAAAAAAAAAGDB/wcsZMEDPosbSwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "LENGTH=50\n", "\n", "names, correlations = pipe1.features.correlations()\n", "\n", "plt.subplots(figsize=(20, 10))\n", "\n", "plt.bar(names[:LENGTH], correlations[:LENGTH])\n", "\n", "plt.title(\"feature correlations\")\n", "plt.grid(True)\n", "plt.xlabel(\"features\")\n", "plt.ylabel(\"correlations\")\n", "plt.xticks(rotation='vertical')\n", "\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABl4AAAS3CAYAAACHYwd0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde5yWZYE//s/MAAOoqIWAkOt4aEVTpCD5aZmmCLpuZQePu6tSua3ElktmkoqgtiK5hm0qZauZm2WHfbmVBimJ329JummuZerXzENK4GkFhXWYmOf3Ry9ndwQ53Fw498j7/XrNC57rua7r+dzPzYjOx/t+mhqNRiMAAAAAAABssuaeDgAAAAAAAPB6oXgBAAAAAAAoRPECAAAAAABQiOIFAAAAAACgEMULAAAAAABAIYoXAAAAAACAQhQvAAAAAAAAhSheAAAAAAAAClG8AAAAAAAAFKJ4AQCA17n/+I//yAEHHJCtttoqTU1Nueeee3o6Eq9ixowZaWpqKrrnwoUL09TUlIULFxbdFwAAWLs+PR0AAADYfDo6OnL00Uenf//++cIXvpCBAwdm5513Lv46ixcvzle+8pUcddRRGT16dPH9Wb/LL788AwcOzMknn9zTUQAAYIumeAEAgNexhx9+OI899liuvPLKfPSjH91sr7N48eLMnDkzbW1tipcecvnll2fw4MFrFC/vete78t///d/p169fzwQDAIAtjFuNAQDA69hTTz2VJNluu+16NkhFL730Ujo7O3s6xjp1dnbmpZdeWutzK1aseI3TrKm5uTn9+/dPc7P//AMAgNeCf/MGAIDXqZNPPjkHHXRQkuToo49OU1NTDj744K7nH3jggXzoQx/KG97whvTv3z9jx47N97///W57PPfcczn99NOzzz77ZOutt86gQYNyxBFH5D//8z+75ixcuDBvf/vbkySTJk1KU1NTmpqa8rWvfS1J0tbWttbbXx188MHd8rz8WSTf+ta3cvbZZ2fEiBEZOHBgli9fniS54447cvjhh2fbbbfNwIEDc9BBB+VnP/vZBr0XL730UmbMmJE///M/T//+/bPjjjvmAx/4QB5++OGuOStWrMinPvWp7LTTTmltbc0ee+yRiy++OI1Go9teTU1NmTJlSr7xjW/kLW95S1pbWzNv3rx87WtfS1NTU2677bZMnjw5Q4YMyZve9KaudT/60Y9y4IEHZquttso222yTI488Mvfdd996s1999dU55JBDMmTIkLS2tmavvfbKFVdc0W1OW1tb7rvvvtx2221d7//L7+2rfcbLd77znYwZMyYDBgzI4MGD89d//dd58sknu805+eSTs/XWW+fJJ5/MUUcdla233jo77LBDTj/99Kxevbrb3G9961sZM2ZMttlmmwwaNCj77LNPLr300vUeHwAAvN641RgAALxOfexjH8uIESPyj//4j/nEJz6Rt7/97Rk6dGiS5L777ss73vGOjBgxImeeeWa22mqrfPvb385RRx2V733ve3n/+9+fJPnd736XG264IUcffXR22WWXLF26NF/+8pdz0EEH5Te/+U2GDx+ePffcM+edd16mT5+ev/3bv82BBx6YJDnggAMq5T7//PPTr1+/nH766Wlvb0+/fv3yk5/8JEcccUTGjBmTc889N83NzV2FxP/9v/83++2336vut3r16vzlX/5lFixYkOOOOy6f/OQn88ILL+Tmm2/Or3/96+y2225pNBp573vfm1tvvTUf+chHMnr06MyfPz+f/vSn8+STT+YLX/hCtz1/8pOf5Nvf/namTJmSwYMHp62tLffcc0+SZPLkydlhhx0yffr0riterr322px00kmZOHFiLrrooqxcuTJXXHFF3vnOd+aXv/xl2traXjX/FVdckbe85S1573vfmz59+uQHP/hBJk+enM7Oznz84x9PksyZMyd///d/n6233jpnnXVWknSd67X52te+lkmTJuXtb397LrzwwixdujSXXnppfvazn+WXv/xltyukVq9enYkTJ2bcuHG5+OKLc8stt+Sf/umfsttuu+XUU09Nktx88805/vjjc+ihh+aiiy5Kktx///352c9+lk9+8pOvmgMAAF6XGgAAwOvWrbfe2kjS+M53vtNt/NBDD23ss88+jZdeeqlrrLOzs3HAAQc03vzmN3eNvfTSS43Vq1d3W/vII480WltbG+edd17X2H/8x380kjSuvvrqNTLsvPPOjZNOOmmN8YMOOqhx0EEHrZF11113baxcubJbrje/+c2NiRMnNjo7O7vGV65c2dhll10ahx122Drfg6uuuqqRpHHJJZes8dzL+91www2NJI0LLrig2/Mf+tCHGk1NTY3f/va3XWNJGs3NzY377ruv29yrr766kaTxzne+s/HHP/6xa/yFF15obLfddo1TTjml2/wlS5Y0tt12227j5557buOV/5n2v9+Ll02cOLGx6667dht7y1ve0u39fNnL7+utt97aaDQajVWrVjWGDBnS2HvvvRv//d//3TXvhz/8YSNJY/r06V1jJ510UiNJt3PdaDQab33rWxtjxozpevzJT36yMWjQoG7HDQAAWyq3GgMAgC3Mc889l5/85Cc55phj8sILL+SZZ57JM888k2effTYTJ07MQw891HXLqdbW1q7PBlm9enWeffbZbL311tljjz1y9913b5Z8J510UgYMGND1+J577slDDz2UE044Ic8++2xX3hUrVuTQQw/N//k//2ednwPzve99L4MHD87f//3fr/FcU1NTkuSmm25KS0tLPvGJT3R7/lOf+lQajUZ+9KMfdRs/6KCDstdee6319U455ZS0tLR0Pb755pvz/PPP5/jjj+/K/swzz6SlpSXjxo3Lrbfeus7343+/F8uWLcszzzyTgw46KL/73e+ybNmyda5dm1/84hd56qmnMnny5PTv379r/Mgjj8zIkSNz4403rrHm7/7u77o9PvDAA/O73/2u6/F2222XFStW5Oabb97oPAAA8HrjVmMAALCF+e1vf5tGo5Fzzjkn55xzzlrnPPXUUxkxYkQ6Oztz6aWX5vLLL88jjzzS7XM93vjGN26WfLvssku3xw899FCSPxUyr2bZsmXZfvvt1/rcww8/nD322CN9+rz6f/489thjGT58eLbZZptu43vuuWfX8+vKuCH5DznkkLXOHzRo0KvulSQ/+9nPcu6552bRokVZuXJlt+eWLVuWbbfddp3rX+nlY9ljjz3WeG7kyJH56U9/2m2sf//+2WGHHbqNbb/99vmv//qvrseTJ0/Ot7/97RxxxBEZMWJEJkyYkGOOOSaHH374RmUDAIDXA8ULAABsYV6+OuT000/PxIkT1zpn9913T5L84z/+Y84555x8+MMfzvnnn583vOENaW5uzmmnnbbOq0z+t5evKnml1atXd7sy5GX/+wqP/53385//fEaPHr3WvbbeeusNylLKKzOu67mX81977bUZNmzYGvPXVQg9/PDDOfTQQzNy5Mhccskl2WmnndKvX7/cdNNN+cIXvrDB52BTrO0cvdKQIUNyzz33ZP78+fnRj36UH/3oR7n66qtz4okn5pprrtnsGQEAoE4ULwAAsIXZddddkyR9+/bN+PHj1zn3u9/9bt797nfnX/7lX7qNP//88xk8eHDX41crV5I/XR3x/PPPrzH+2GOPdWVZl9122y3Jn64MWV/eV1t/xx13pKOjI3379l3rnJ133jm33HJLXnjhhW5XvTzwwANdz1f1cv4hQ4ZsdP4f/OAHaW9vz/e///382Z/9Wdf42m5Ptq5z8L+9fCwPPvjgGlfhPPjgg5WPtV+/fnnPe96T97znPens7MzkyZPz5S9/Oeecc05XkQcAAFsCn/ECAABbmCFDhuTggw/Ol7/85fzhD39Y4/mnn3666/ctLS1pNBrdnv/Od77T9RkwL9tqq62SZK0Fy2677Zaf//znWbVqVdfYD3/4w/z+97/foLxjxozJbrvtlosvvjgvvvjiOvOuzQc/+ME888wz+dKXvrTGcy8f21/8xV9k9erVa8z5whe+kKamphxxxBEblHVtJk6cmEGDBuUf//Ef09HRsVH5X77a5H+fg2XLluXqq69eY+5WW2211vf/lcaOHZshQ4Zk7ty5aW9v7xr/0Y9+lPvvvz9HHnnkevd4pWeffbbb4+bm5owaNSpJur0GAABsCVzxAgAAW6DLLrss73znO7PPPvvklFNOya677pqlS5dm0aJFeeKJJ/Kf//mfSZK//Mu/zHnnnZdJkyblgAMOyK9+9at84xvfWONKld122y3bbbdd5s6dm2222SZbbbVVxo0bl1122SUf/ehH893vfjeHH354jjnmmDz88MP513/9164rQdanubk5X/3qV3PEEUfkLW95SyZNmpQRI0bkySefzK233ppBgwblBz/4wauuP/HEE/P1r389U6dOzZ133pkDDzwwK1asyC233JLJkyfnfe97X97znvfk3e9+d84666w8+uij2XffffPjH/84//7v/57TTjttg7OuzaBBg3LFFVfkb/7mb/K2t70txx13XHbYYYc8/vjjufHGG/OOd7xjraVQkkyYMKHrSpKPfexjefHFF3PllVdmyJAha5RmY8aMyRVXXJELLrggu+++e4YMGbLWz5Xp27dvLrrookyaNCkHHXRQjj/++CxdujSXXnpp2tra8g//8A8bfYwf/ehH89xzz+WQQw7Jm970pjz22GP553/+54wePbrrc3IAAGBLoXgBAIAt0F577ZVf/OIXmTlzZr72ta/l2WefzZAhQ/LWt74106dP75r32c9+NitWrMh1112X66+/Pm9729ty44035swzz+y2X9++fXPNNddk2rRp+bu/+7v88Y9/zNVXX51ddtklEydOzD/90z/lkksuyWmnnZaxY8fmhz/8YT71qU9tcN6DDz44ixYtyvnnn58vfelLefHFFzNs2LCMGzcuH/vYx9a5tqWlJTfddFM+97nP5brrrsv3vve9vPGNb+wqnpI/lTvf//73M3369Fx//fW5+uqr09bWls9//vMblfPVnHDCCRk+fHhmzZqVz3/+82lvb8+IESNy4IEHZtKkSa+6bo899sh3v/vdnH322Tn99NMzbNiwnHrqqdlhhx3y4Q9/uNvc6dOn57HHHsvs2bPzwgsv5KCDDlpr8ZIkJ598cgYOHJhZs2blM5/5TLbaaqu8//3vz0UXXZTttttuo4/vr//6r/OVr3wll19+eZ5//vkMGzYsxx57bGbMmJHmZjdaAABgy9LUeOV9AwAAAAAAAKjE/3oEAAAAAABQiOIFAAAAAACgEMULAAAAAABAIYoXAAAAAACAQhQvAAAAAAAAhSheAAAAAAAACunT0wHqqLOzM4sXL84222yTpqamno4DAAAAAAD0oEajkRdeeCHDhw9Pc/O6r2lRvKzF4sWLs9NOO/V0DAAAAAAAoEZ+//vf501vetM65yhe1mKbbbZJ8qc3cNCgQT2c5vWjo6MjP/7xjzNhwoT07du3p+Osoc75ZKuuzvlkq67O+WSrrs756pwtqXc+2aqrcz7ZqqtzPtmqq3O+OmdL6p1PturqnE+26uqcT7bq6pxPturqnq+3Wr58eXbaaaeu/mBdFC9r8fLtxQYNGqR4KaijoyMDBw7MoEGDavkNX+d8slVX53yyVVfnfLJVV+d8dc6W1DufbNXVOZ9s1dU5n2zV1TlfnbMl9c4nW3V1zidbdXXOJ1t1dc4nW3V1z9fbbcjHk6z7RmQAAAAAAABsMMULAAAAAABAIYoXAAAAAACAQhQvAAAAAAAAhSheAAAAAAAAClG8AAAAAAAAFKJ4AQAAAAAAKETxAgAAAAAAUIjiBQAAAAAAoBDFCwAAAAAAQCGKFwAAAAAAgEIULwAAAAAAAIUoXgAAAAAAAApRvAAAAAAAABSieAEAAAAAAChE8QIAAAAAAFCI4gUAAAAAAKAQxQsAAAAAAEAhihcAAAAAAIBCFC8AAAAAAACFKF4AAAAAAAAKUbwAAAAAAAAUongBAAAAAAAoRPECAAAAAABQiOIFAAAAAACgEMULAAAAAABAIYoXAAAAAACAQhQvAAAAAAAAhSheAAAAAAAAClG8AAAAAAAAFKJ4AQAAAAAAKETxAgAAAAAAUIjiBQAAAAAAoBDFCwAAAAAAQCF9ejoAvUvbmTdWXtva0sjs/ZK9Z8xP++qmSns8OuvIyq8PAAAAAACbmyteAAAAAAAACnHFC68rPXlFjqtxAAAAAABwxQsAAAAAAEAhihcAAAAAAIBCFC8AAAAAAACFKF4AAAAAAAAKUbwAAAAAAAAU0qenA8CWou3MGyuvbW1pZPZ+yd4z5qd9dVOlPR6ddWTl1wcAAAAAYMO44gUAAAAAAKCQWhQvl112Wdra2tK/f/+MGzcud95556vO/bd/+7eMHTs22223XbbaaquMHj061157bbc5J598cpqamrp9HX744Zv7MAAAAAAAgC1cj99q7Prrr8/UqVMzd+7cjBs3LnPmzMnEiRPz4IMPZsiQIWvMf8Mb3pCzzjorI0eOTL9+/fLDH/4wkyZNypAhQzJx4sSueYcffniuvvrqrsetra2vyfEAAAAAAABbrh6/4uWSSy7JKaeckkmTJmWvvfbK3LlzM3DgwFx11VVrnX/wwQfn/e9/f/bcc8/stttu+eQnP5lRo0blpz/9abd5ra2tGTZsWNfX9ttv/1ocDgAAAAAAsAXr0eJl1apVueuuuzJ+/Piusebm5owfPz6LFi1a7/pGo5EFCxbkwQcfzLve9a5uzy1cuDBDhgzJHnvskVNPPTXPPvts8fwAAAAAAAD/W4/eauyZZ57J6tWrM3To0G7jQ4cOzQMPPPCq65YtW5YRI0akvb09LS0tufzyy3PYYYd1PX/44YfnAx/4QHbZZZc8/PDD+exnP5sjjjgiixYtSktLyxr7tbe3p729vevx8uXLkyQdHR3p6OjY1MN8XWltaVRf29zo9msV6zsfPZmvztmS9efb1H3r+r1S53yyVVfnfLJVV+d8dc6W1DufbNXVOZ9s1dU5n2zV1TlfnbMl9c4nW3V1zidbdXXOJ1t1dc4nW3V1z9dbbcz72dRoNKr/JHcTLV68OCNGjMjtt9+e/fffv2v8jDPOyG233ZY77rhjres6Ozvzu9/9Li+++GIWLFiQ888/PzfccEMOPvjgtc7/3e9+l9122y233HJLDj300DWenzFjRmbOnLnG+HXXXZeBAwdWOzgAAAAAAOB1YeXKlTnhhBOybNmyDBo0aJ1ze/SKl8GDB6elpSVLly7tNr506dIMGzbsVdc1Nzdn9913T5KMHj06999/fy688MJXLV523XXXDB48OL/97W/XWrxMmzYtU6dO7Xq8fPny7LTTTpkwYcJ638Atzd4z5lde29rcyPljO3POL5rT3tlUaY9fz5i4zud7Ml+dsyXrz1dVR0dHbr755hx22GHp27fvZnmNTVHnfLJVV+d8slVX53x1zpbUO59s1dU5n2zV1TmfbNXVOV+dsyX1zidbdXXOJ1t1dc4nW3V1zidbdXXP11u9fKesDdGjxUu/fv0yZsyYLFiwIEcddVSSP13NsmDBgkyZMmWD9+ns7Ox2q7BXeuKJJ/Lss89mxx13XOvzra2taW1tXWO8b9++/mC+Qvvqaj/077ZHZ1PlfdZ3PnoyX52zJevPt6nq/v1S53yyVVfnfLJVV+d8dc6W1DufbNXVOZ9s1dU5n2zV1TlfnbMl9c4nW3V1zidbdXXOJ1t1dc4nW3V1z9fbbMx72aPFS5JMnTo1J510UsaOHZv99tsvc+bMyYoVKzJp0qQkyYknnpgRI0bkwgsvTJJceOGFGTt2bHbbbbe0t7fnpptuyrXXXpsrrrgiSfLiiy9m5syZ+eAHP5hhw4bl4YcfzhlnnJHdd989Eydunv/jHwAAAAAAIKlB8XLsscfm6aefzvTp07NkyZKMHj068+bNy9ChQ5Mkjz/+eJqbm7vmr1ixIpMnT84TTzyRAQMGZOTIkfnXf/3XHHvssUmSlpaW3Hvvvbnmmmvy/PPPZ/jw4ZkwYULOP//8tV7VAgAAAAAAUEqPFy9JMmXKlFe9tdjChQu7Pb7gggtywQUXvOpeAwYMyPz51T9LAwAAAAAAoKrm9U8BAAAAAABgQyheAAAAAAAAClG8AAAAAAAAFKJ4AQAAAAAAKETxAgAAAAAAUIjiBQAAAAAAoBDFCwAAAAAAQCGKFwAAAAAAgEL69HQAoB7azryx0rrWlkZm75fsPWN+2lc3Vdrj0VlHVloHAAAAAFA3rngBAAAAAAAoRPECAAAAAABQiOIFAAAAAACgEMULAAAAAABAIYoXAAAAAACAQhQvAAAAAAAAhSheAAAAAAAAClG8AAAAAAAAFKJ4AQAAAAAAKETxAgAAAAAAUIjiBQAAAAAAoBDFCwAAAAAAQCGKFwAAAAAAgEIULwAAAAAAAIUoXgAAAAAAAApRvAAAAAAAABSieAEAAAAAAChE8QIAAAAAAFCI4gUAAAAAAKAQxQsAAAAAAEAhihcAAAAAAIBCFC8AAAAAAACFKF4AAAAAAAAKUbwAAAAAAAAUongBAAAAAAAoRPECAAAAAABQiOIFAAAAAACgEMULAAAAAABAIYoXAAAAAACAQhQvAAAAAAAAhSheAAAAAAAAClG8AAAAAAAAFKJ4AQAAAAAAKETxAgAAAAAAUIjiBQAAAAAAoBDFCwAAAAAAQCGKFwAAAAAAgEIULwAAAAAAAIUoXgAAAAAAAApRvAAAAAAAABSieAEAAAAAAChE8QIAAAAAAFCI4gUAAAAAAKAQxQsAAAAAAEAhihcAAAAAAIBCFC8AAAAAAACFKF4AAAAAAAAKUbwAAAAAAAAUongBAAAAAAAoRPECAAAAAABQiOIFAAAAAACgEMULAAAAAABAIYoXAAAAAACAQhQvAAAAAAAAhSheAAAAAAAAClG8AAAAAAAAFKJ4AQAAAAAAKETxAgAAAAAAUIjiBQAAAAAAoBDFCwAAAAAAQCGKFwAAAAAAgEIULwAAAAAAAIUoXgAAAAAAAApRvAAAAAAAABSieAEAAAAAAChE8QIAAAAAAFCI4gUAAAAAAKAQxQsAAAAAAEAhihcAAAAAAIBCFC8AAAAAAACFKF4AAAAAAAAKUbwAAAAAAAAUongBAAAAAAAoRPECAAAAAABQiOIFAAAAAACgEMULAAAAAABAIYoXAAAAAACAQvr0dACA9Wk788bKa1tbGpm9X7L3jPlpX9200esfnXVk5dcGAAAAALY8rngBAAAAAAAoRPECAAAAAABQiOIFAAAAAACgEMULAAAAAABAIYoXAAAAAACAQmpRvFx22WVpa2tL//79M27cuNx5552vOvff/u3fMnbs2Gy33XbZaqutMnr06Fx77bXd5jQajUyfPj077rhjBgwYkPHjx+ehhx7a3IcBAAAAAABs4Xq8eLn++uszderUnHvuubn77ruz7777ZuLEiXnqqafWOv8Nb3hDzjrrrCxatCj33ntvJk2alEmTJmX+/Pldc2bPnp0vfvGLmTt3bu64445stdVWmThxYl566aXX6rAAAAAAAIAtUI8XL5dccklOOeWUTJo0KXvttVfmzp2bgQMH5qqrrlrr/IMPPjjvf//7s+eee2a33XbLJz/5yYwaNSo//elPk/zpapc5c+bk7LPPzvve976MGjUqX//617N48eLccMMNr+GRAQAAAAAAW5o+Pfniq1atyl133ZVp06Z1jTU3N2f8+PFZtGjRetc3Go385Cc/yYMPPpiLLrooSfLII49kyZIlGT9+fNe8bbfdNuPGjcuiRYty3HHHrbFPe3t72tvbux4vX748SdLR0ZGOjo7Kx/d61NrSqL62udHt1yrWdz56Ml+dsyWbL1+dsyWb/7xuipf3ruM/Z+qcLal3Ptmqq3O+OmdL6p1PturqnE+26uqcT7bq6pyvztmSeueTrbo655Otujrnk626OueTrbq65+utNub9bGo0GtV/ormJFi9enBEjRuT222/P/vvv3zV+xhln5Lbbbssdd9yx1nXLli3LiBEj0t7enpaWllx++eX58Ic/nCS5/fbb8453vCOLFy/Ojjvu2LXmmGOOSVNTU66//vo19psxY0Zmzpy5xvh1112XgQMHbuphAgAAAAAAvdjKlStzwgknZNmyZRk0aNA65/boFS9VbbPNNrnnnnvy4osvZsGCBZk6dWp23XXXHHzwwZX2mzZtWqZOndr1ePny5dlpp50yYcKE9b6BW5q9Z8xf/6RX0drcyPljO3POL5rT3tlUaY9fz5i4zud7Ml+dsyWbL1+dsyWb/7xuio6Ojtx888057LDD0rdv3832OlXUOVtS73yyVVfnfHXOltQ7n2zV1TmfbNXVOZ9s1dU5X52zJfXOJ1t1dc4nW3V1zidbdXXOJ1t1dc/XW718p6wN0aPFy+DBg9PS0pKlS5d2G1+6dGmGDRv2quuam5uz++67J0lGjx6d+++/PxdeeGEOPvjgrnVLly7tdsXL0qVLM3r06LXu19ramtbW1jXG+/bt6w/mK7SvrvaD9W57dDZV3md956Mn89U5W7L589U5W7L5zmsJdf5nTZ2zJfXOJ1t1dc5X52xJvfPJVl2d88lWXZ3zyVZdnfPVOVtS73yyVVfnfLJVV+d8slVX53yyVVf3fL3NxryXzZsxx3r169cvY8aMyYIFC7rGOjs7s2DBgm63Hlufzs7Ors9o2WWXXTJs2LBuey5fvjx33HHHRu0JAAAAAACwsXr8VmNTp07NSSedlLFjx2a//fbLnDlzsmLFikyaNClJcuKJJ2bEiBG58MILkyQXXnhhxo4dm9122y3t7e256aabcu211+aKK65IkjQ1NeW0007LBRdckDe/+c3ZZZddcs4552T48OE56qijeuowAQAAAACALUCPFy/HHntsnn766UyfPj1LlizJ6NGjM2/evAwdOjRJ8vjjj6e5+X8uzFmxYkUmT56cJ554IgMGDMjIkSPzr//6rzn22GO75pxxxhlZsWJF/vZv/zbPP/983vnOd2bevHnp37//a358AAAAAADAlqPHi5ckmTJlSqZMmbLW5xYuXNjt8QUXXJALLrhgnfs1NTXlvPPOy3nnnVcqIgAAAAAAwHr16Ge8AAAAAAAAvJ4oXgAAAAAAAApRvAAAAAAAABSieAEAAAAAAChE8QIAAAAAAFCI4gUAAAAAAKAQxQsAAAAAAEAhihcAAAAAAIBCFC8AAAAAAACFKF4AAAAAAAAKUbwAAAAAAAAUongBAAAAAAAoRPECAAAAAABQiOIFAAAAAACgEMULAAAAAABAIYoXAAAAAACAQhQvAAAAAAAAhSheAAAAAAAAClG8AAAAAAAAFKJ4AQAAAAAAKETxAgAAAAAAUEifng4A0Ju1nXlj5bWtLY3M3i/Ze8b8tK9uqrTHo7OOrPz6AAAAAEB5rngBAAAAAAAoRPECAAAAAABQiOIFAAAAAACgEMULAAAAAABAIYoXAAAAAACAQhQvAAAAAAAAhSheAAAAAAAAClG8AAAAAAAAFKJ4AQAAAAAAKETxAgAAAAAAUIjiBQAAAAAAoJA+PR0AgM2n7cwbK61rbWlk9n7J3jPmp311U6U9Hp11ZKV1AAAAANCbueIFAAAAAACgEMULAAAAAABAIYoXAAAAAACAQhQvAAAAAAAAhSheAAAAAAAAClG8AAAAAAAAFKJ4AQAAAAAAKETxAgAAAAAAUIjiBQAAAAAAoBDFCwAAAAAAQCGKFwAAAAAAgEIULwAAAAAAAIUoXgAAAAAAAApRvAAAAAAAABSieAEAAAAAAChE8QIAAAAAAFCI4gUAAAAAAKAQxQsAAAAAAEAhihcAAAAAAIBCFC8AAAAAAACFKF4AAAAAAAAKUbwAAAAAAAAUongBAAAAAAAoRPECAAAAAABQiOIFAAAAAACgEMULAAAAAABAIYoXAAAAAACAQhQvAAAAAAAAhSheAAAAAAAAClG8AAAAAAAAFKJ4AQAAAAAAKETxAgAAAAAAUIjiBQAAAAAAoBDFCwAAAAAAQCGKFwAAAAAAgEIULwAAAAAAAIUoXgAAAAAAAApRvAAAAAAAABSieAEAAAAAAChE8QIAAAAAAFCI4gUAAAAAAKAQxQsAAAAAAEAhihcAAAAAAIBCFC8AAAAAAACFKF4AAAAAAAAKUbwAAAAAAAAUongBAAAAAAAoRPECAAAAAABQiOIFAAAAAACgEMULAAAAAABAIYoXAAAAAACAQhQvAAAAAAAAhSheAAAAAAAAClG8AAAAAAAAFKJ4AQAAAAAAKETxAgAAAAAAUIjiBQAAAAAAoBDFCwAAAAAAQCG1KF4uu+yytLW1pX///hk3blzuvPPOV5175ZVX5sADD8z222+f7bffPuPHj19j/sknn5ympqZuX4cffvjmPgwAAAAAAGAL1+PFy/XXX5+pU6fm3HPPzd1335199903EydOzFNPPbXW+QsXLszxxx+fW2+9NYsWLcpOO+2UCRMm5Mknn+w27/DDD88f/vCHrq9vfvObr8XhAAAAAAAAW7AeL14uueSSnHLKKZk0aVL22muvzJ07NwMHDsxVV1211vnf+MY3Mnny5IwePTojR47MV7/61XR2dmbBggXd5rW2tmbYsGFdX9tvv/1rcTgAAAAAAMAWrE9PvviqVaty1113Zdq0aV1jzc3NGT9+fBYtWrRBe6xcuTIdHR15wxve0G184cKFGTJkSLbffvsccsghueCCC/LGN75xrXu0t7envb296/Hy5cuTJB0dHeno6NjYw3pda21pVF/b3Oj2axXrOx89ma/O2ZLNl6/O2RLntc7ndVO8vHcd/xktW3V1zlfnbEm988lWXZ3zyVZdnfPJVl2d89U5W1LvfLJVV+d8slVX53yyVVfnfLJVV/d8vdXGvJ9NjUaj+k/VNtHixYszYsSI3H777dl///27xs8444zcdtttueOOO9a7x+TJkzN//vzcd9996d+/f5LkW9/6VgYOHJhddtklDz/8cD772c9m6623zqJFi9LS0rLGHjNmzMjMmTPXGL/uuusycODATThCAAAAAACgt1u5cmVOOOGELFu2LIMGDVrn3B694mVTzZo1K9/61reycOHCrtIlSY477riu3++zzz4ZNWpUdttttyxcuDCHHnroGvtMmzYtU6dO7Xq8fPnyrs+OWd8buKXZe8b8ymtbmxs5f2xnzvlFc9o7myrt8esZE9f5fE/mq3O2ZPPlq3O2xHmt83ndFB0dHbn55ptz2GGHpW/fvpvtdaqQrbo656tztqTe+WSrrs75ZKuuzvlkq67O+eqcLal3Ptmqq3M+2aqrcz7ZqqtzPtmqq3u+3urlO2VtiB4tXgYPHpyWlpYsXbq02/jSpUszbNiwda69+OKLM2vWrNxyyy0ZNWrUOufuuuuuGTx4cH7729+utXhpbW1Na2vrGuN9+/b1B/MV2ldX+wFstz06myrvs77z0ZP56pwt2fz56pwtcV6r2pzZSqjzP6dlq67O+eqcLal3Ptmqq3M+2aqrcz7ZqqtzvjpnS+qdT7bq6pxPturqnE+26uqcT7bq6p6vt9mY97J5M+ZYr379+mXMmDFZsGBB11hnZ2cWLFjQ7dZjrzR79uycf/75mTdvXsaOHbve13niiSfy7LPPZscddyySGwAAAAAAYG16tHhJkqlTp+bKK6/MNddck/vvvz+nnnpqVqxYkUmTJiVJTjzxxEybNq1r/kUXXZRzzjknV111Vdra2rJkyZIsWbIkL774YpLkxRdfzKc//en8/Oc/z6OPPpoFCxbkfe97X3bfffdMnLj5bnsDAAAAAADQ45/xcuyxx+bpp5/O9OnTs2TJkowePTrz5s3L0KFDkySPP/54mpv/px+64oorsmrVqnzoQx/qts+5556bGTNmpKWlJffee2+uueaaPP/88xk+fHgmTJiQ888/f623EwMAAAAAACilx4uXJJkyZUqmTJmy1ucWLlzY7fGjjz66zr0GDBiQ+fOrf9g1AAAAAABAVT1+qzEAAAAAAIDXC8ULAAAAAABAIYoXAAAAAACAQhQvAAAAAAAAhSheAAAAAAAAClG8AAAAAAAAFKJ4AQAAAAAAKETxAgAAAAAAUIjiBQAAAAAAoBDFCwAAAAAAQCF9ejoAAFumtjNvrLy2taWR2fsle8+Yn/bVTRu9/tFZR1Z+bQAAAABYF1e8AAAAAAAAFKJ4AQAAAAAAKETxAgAAAAAAUIjiBQAAAAAAoBDFCwAAAAAAQCGKFwAAAAAAgEIULwAAAAAAAIUoXgAAAAAAAApRvAAAAAAAABSieAEAAAAAAChE8QIAAAAAAFCI4gUAAAAAAKAQxQsAAAAAAEAhihcAAAAAAIBCFC8AAAAAAACFKF4AAAAAAAAKUbwAAAAAAAAUongBAAAAAAAoRPECAAAAAABQiOIFAAAAAACgEMULAAAAAABAIYoXAAAAAACAQhQvAAAAAAAAhSheAAAAAAAAClG8AAAAAAAAFKJ4AQAAAAAAKETxAgAAAAAAUIjiBQAAAAAAoBDFCwAAAAAAQCGKFwAAAAAAgEIULwAAAAAAAIUoXgAAAAAAAApRvAAAAAAAABSieAEAAAAAAChE8QIAAAAAAFCI4gUAAAAAAKAQxQsAAAAAAEAhihcAAAAAAIBCFC8AAAAAAACFKF4AAAAAAAAKUbwAAAAAAAAUongBAAAAAAAoRPECAAAAAABQiOIFAAAAAACgEMULAAAAAABAIYoXAAAAAACAQhQvAAAAAAAAhSheAAAAAAAAClG8AAAAAAAAFKJ4AQAAAAAAKETxAgAAAAAAUIjiBQAAAAAAoBDFCwAAAAAAQCGKFwAAAAAAgEIULwAAAAAAAIUoXgAAAAAAAApRvAAAAAAAABSieAEAAAAAAChE8QIAAAAAAFCI4gUAAAAAAKAQxQsAAAAAAEAhihcAAAAAAIBCFC8AAAAAAACFKF4AAAAAAAAKUbwAAAAAAAAUongBAAAAAAAoRPECAAAAAABQiOIFAAAAAACgEMULAAAAAABAIYoXAAAAAACAQhQvAAAAAAAAhRQpXlavXp177rkn//Vf/1ViOwAAAAAAgF6pUvFy2mmn5V/+5V+S/Kl0Oeigg/K2t70tO+20UxYuXFgyHwAAAAAAQK9RqXj57ne/m3333TdJ8oMf/CCPPPJIHnjggfzDP/xDzjrrrKIBAQAAAAAAeotKxcszzzyTYcOGJUluuummHH300fnzP//zfPjDH86vfvWrogEBAAAAAAB6i0rFy9ChQ/Ob3/wmq1evzrx583LYYYclSVauXJmWlpaiAQEAAAAAAHqLPlUWTZo0Kcccc0x23HHHNDU1Zfz48UmSO+64IyNHjiwaEAAAAAAAoLeoVLzMmDEje++9d37/+9/n6KOPTmtra5KkpaUlZ555ZtGAAAAAAAAAvUWl4iVJPvShD60xdtJJJ21SGAAAAAAAgN6scvGyYMGCLFiwIE899VQ6Ozu7PXfVVVdtcjAAAAAAAIDeprnKopkzZ2bChAlZsGBBnnnmmfzXf/1Xt6+Nddlll6WtrS39+/fPuHHjcuedd77q3CuvvDIHHnhgtt9++2y//fYZP378GvMbjUamT5+eHXfcMQMGDMj48ePz0EMPbXQuAAAAAACAjVHpipe5c+fma1/7Wv7mb/5mkwNcf/31mTp1aubOnZtx48Zlzpw5mThxYh588MEMGTJkjfkLFy7M8ccfnwMOOCD9+/fPRRddlAkTJuS+++7LiBEjkiSzZ8/OF7/4xVxzzTXZZZddcs4552TixIn5zW9+k/79+29yZgAAAAAAgLWpdMXLqlWrcsABBxQJcMkll+SUU07JpEmTstdee2Xu3LkZOHDgq96u7Bvf+EYmT56c0aNHZ+TIkfnqV7+azs7OLFiwIMmfrnaZM2dOzj777Lzvfe/LqFGj8vWvfz2LFy/ODTfcUCQzAAAAAADA2lQqXj760Y/muuuu2+QXX7VqVe66666MHz/+fwI1N2f8+PFZtGjRBu2xcuXKdHR05A1veEOS5JFHHsmSJUu67bnttttm3LhxG7wnAAAAAABAFZVuNfbSSy/lK1/5Sm655ZaMGjUqffv27fb8JZdcskH7PPPMM1m9enWGDh3abXzo0KF54IEHNmiPz3zmMxk+fHhX0bJkyZKuPV6558vPvVJ7e3va29u7Hi9fvjxJ0tHRkY6Ojg3KsaVobWlUX9vc6PZrFes7Hz2Zr87Zks2Xr87ZEufVeV27zfnP9pf3ruPfH3XOltQ7X52zJfXOJ1t1dc4nW3V1zidbdXXOV+dsSb3zyVZdnfPJVl2d88lWXZ3zyVZd3fP1VhvzfjY1Go2N/qnVu9/97lffsKkpP/nJTzZon8WLF2fEiBG5/fbbs//++3eNn3HGGbnttttyxx13rHP9rFmzMnv27CxcuDCjRo1Kktx+++15xzvekcWLF2fHHXfsmnvMMcekqakp119//Rr7zJgxIzNnzlxj/LrrrsvAgQM36FgAAAAAAIDXp5UrV+aEE07IsmXLMmjQoHXOrXTFy6233lop2CsNHjw4LS0tWbp0abfxpUuXZtiwYetce/HFF2fWrFldV9287OV1S5cu7Va8LF26NKNHj17rXtOmTcvUqVO7Hi9fvjw77bRTJkyYsN43cEuz94z5lde2Njdy/tjOnPOL5rR3NlXa49czJq7z+Z7MV+dsyebLV+dsifPqvK7d+rJtio6Ojtx888057LDD1rgitKfVOVtS73x1zpbUO59s1dU5n2zV1TmfbNXVOV+dsyX1zidbdXXOJ1t1dc4nW3V1zidbdXXP11u9fKesDVGpePnfnnjiiSTJm970po1e269fv4wZMyYLFizIUUcdlSTp7OzMggULMmXKlFddN3v27Hzuc5/L/PnzM3bs2G7P7bLLLhk2bFgWLFjQVbQsX748d9xxR0499dS17tfa2prW1tY1xvv27esP5iu0r672A9hue3Q2Vd5nfeejJ/PVOVuy+fPVOVvivFZV52zJ5juvJdT575A6Z0vqna/O2ZJ655Otujrnk626OueTrbo656tztqTe+WSrrs75ZKuuzvlkq67O+WSrru75epuNeS+bq7xAZ2dnzjvvvGy77bbZeeeds/POO2e77bbL+eefn87Ozo3aa+rUqbnyyitzzTXX5P7778+pp56aFStWZNKkSUmSE088MdOmTeuaf9FFF+Wcc87JVVddlba2tixZsiRLlizJiy++mORPtzo77bTTcsEFF+T73/9+fvWrX+XEE0/M8OHDu8odAAAAAACAzaHSFS9nnXVW/uVf/iWzZs3KO97xjiTJT3/608yYMSMvvfRSPve5z23wXscee2yefvrpTJ8+PUuWLMno0aMzb968DB06NEny+OOPp7n5f/qhK664IqtWrcqHPvShbvuce+65mTFjRpI/fUbMihUr8rd/+7d5/vnn8853vjPz5s1L//79qxwuAAAAAADABqlUvFxzzTX56le/mve+971dY6NGjcqIESMyefLkjSpekmTKlCmvemuxhQsXdnv86KOPrne/pqamnHfeeTnvvPM2KgcAAAAAAMCmqHSrseeeey4jR45cY3zkyJF57rnnNjkUAAAAAABAb1SpeNl3333zpS99aY3xL33pS9l33303ORQAAAAAAEBvVOlWY7Nnz86RRx6ZW265Jfvvv3+SZNGiRfn973+fm266qWhAAAAAAACA3qLSFS8HHXRQ/t//+395//vfn+effz7PP/98PvCBD+TBBx/MgQceWDojAAAAAABAr1DpipckGT58eD73uc+VzAIAAAAAANCrbXDxcu+992bvvfdOc3Nz7r333nXOHTVq1CYHAwAAAAAA6G02uHgZPXp0lixZkiFDhmT06NFpampKo9FYY15TU1NWr15dNCQAAAAAAEBvsMHFyyOPPJIddtih6/cAAAAAAAB0t8HFy84779z1+8ceeywHHHBA+vTpvvyPf/xjbr/99m5zAQAAAAAAthTNVRa9+93vznPPPbfG+LJly/Lud797k0MBAAAAAAD0RpWKl0ajkaampjXGn3322Wy11VabHAoAAAAAAKA32uBbjSXJBz7wgSRJU1NTTj755LS2tnY9t3r16tx777054IADyiYEAAAAAADoJTaqeNl2222T/OmKl2222SYDBgzoeq5fv375//6//y+nnHJK2YQAAAAAAAC9xEYVL1dffXWSpK2tLaeffrrbigEAAAAAAPwvG1W8vOzcc88tnQMAAAAAAKDXq1S8JMl3v/vdfPvb387jjz+eVatWdXvu7rvv3uRgAAAAAAAAvU1zlUVf/OIXM2nSpAwdOjS//OUvs99+++WNb3xjfve73+WII44onREAAAAAAKBXqFS8XH755fnKV76Sf/7nf06/fv1yxhln5Oabb84nPvGJLFu2rHRGAAAAAACAXqFS8fL444/ngAMOSJIMGDAgL7zwQpLkb/7mb/LNb36zXDoAAAAAAIBepFLxMmzYsDz33HNJkj/7sz/Lz3/+8yTJI488kkajUS4dAAAAAABAL1KpeDnkkEPy/e9/P0kyadKk/MM//EMOO+ywHHvssXn/+99fNCAAAAAAAEBv0afKoq985Svp7OxMknz84x/PG9/4xtx+++1573vfm4997GNFAwIAAAAAAPQWlYqX5ubmNDf/z8Uyxx13XI477rhioQAAAAAAAHqjDS5e7r333g3edNSoUZXCAAAAAAAA9GYbXLyMHj06TU1NaTQa65zX1NSU1atXb3IwAAAAAACA3maDi5dHHnlkc+YAAAAAAADo9Ta4eNl55503Zw4AAAAAAIBer7nqwmuvvTbveMc7Mnz48Dz22GNJkjlz5uTf//3fi4UDAAAAAADoTSoVL1dccUWmTp2av/iLv8jzzz/f9Zku2223XebMmVMyHwAAAAAAQK9RqXj553/+51x55ZU566yz0tLS0jU+duzY/OpXvyoWDgAAAAAAoDepVLw88sgjeetb37rGeGtra1asWLHJoQAAAAAAAHqjSsXLLrvsknvuuWeN8Xnz5mXPPffc1EwAAAAAAAC9Up8qi6ZOnZqPf/zjeemll9JoNHLnnXfmm9/8Zi688MJ89atfLZ0RAAAAAACgV6hUvHz0ox/NgAEDcvbZZ2flypU54YQTMnz48Fx66aU57rjjSmcEAAAAAADoFTa6ePnjH/+Y6667LhMnTsxf/dVfZeXKlXnxxRczZMiQzZEPAAAAAACg19joz3jp06dP/u7v/i4vvfRSkmTgwIFKFwAAAAAAgFQoXpJkv/32yy9/+cvSWQAAAAAAAHq1Sp/xMnny5HzqU5/KE088kTFjxmSrrbbq9vyoUaOKhAMAAAAAAOhNKhUvxx13XJLkE5/4RNdYU1NTGo1Gmpqasnr16jLpAAAAAAAAepFKxcsjjzxSOgcAAAAAAECvt9HFS0dHRw455JD88Ic/zJ577rk5MgEAAAAAAPRKzRu7oG/fvnnppZc2RxYAAAAAAIBebaOLlyT5+Mc/nosuuih//OMfS+cBAAAAAADotSp9xst//Md/ZMGCBfnxj3+cffbZJ1tttVW35//t3/6tSDgAAAAAAIDepFLxst122+WDH/xg6SwAAAAAAAC9WqXi5eqrry6dAwAAAAAAoNerVLy87Omnn86DDz6YJNljjz2yww47FAkFAAAAAADQGzVXWbRixYp8+MMfzo477ph3vetdede73pXhw4fnIx/5SFauXFk6IwAAAAAAQK9QqXiZOnVqbrvttvzgBz/I888/n+effz7//u//nttuuy2f+tSnSmcEAAAAAADoFSrdaux73/tevvvd7+bggw/uGvuLv/iLDBgwIMccc0yuuOKKUvkAAAAAAAB6jUpXvKxcuTJDhw5dY3zIkCFuNQYAAAAAAGyxKhUv+++/f84999y89NJLXWP//d//nZkzZ2b//fcvFg4AAAAAAKA3qXSrsTlz5uTwww/Pm970puy7775Jkv/8z/9Ma2trfvzjHxcNCAAAAAAA0FtUKl722WefPPTQQ/nGN76RBx54IEly/PHH56/+6q8yYMCAogEBAAAAAAB6i0rFy4UXXpihQ4fmlFNO6TZ+1VVX5emnn85nPvOZIuEAAAAAAAB6k0qf8fLlL385I0eOXGP8LW95S+bOnbvJoQAAAAAAAHqjSsXLkiVLsuOOO64xvsMOO+QPf/jDJocCAAAAAADojSoVLzvttFN+9rOfrTH+s5/9LMOHD9/kUAAAAAAAAL1Rpc94OeWUU3Laaaelo6MjhxxySJJkwYIFOeOMM/KpT32qaEAAAAAAAIDeolLx8ulPfzrPPvtsJk+enFWrViVJ+vfvn8985jOZNm1a0YAAAAAAAAC9RaXipampKRdddFHOOeec3H///RkwYEDe/OY3p7W1tXQ+AAAAAACAXqNS8fKyrbfeOm9/+9tLZQEAAAAAAOjVmns6AAAAAAAAwOuF4gUAAAAAAKAQxQsAAAAAAEAhihcAAAAAAIBCFC8AAAAAAACFKF4AAAAAAAAKUbwAAAAAAAAUongBAAAAAAAoRPECAAAAAABQiOIFAAAAAACgEMULAAAAAABAIYoXAAAAAACAQhQvAAAAAAAAhSheAAAAAAAAClG8AAAAAAAAFKJ4AQAAAAAAKETxAgAAAAAAUIjiBQAAAAAAoBDFCwAAAAAAQCGKFwAAAAAAgEIULwAAAAAAAIUoXgAAAAAAAApRvAAAAAAAABSieAEAAAAAAChE8QIAAAAAAFCI4gUAAAAAAKAQxQsAAAAAAEAhihcAAAAAAIBC+vR0AACom7Yzb6y8trWlkdn7JXvPmJ/21U2V9nh01pGVXx8AAACAnuWKFwAAAAAAgEJ6vHi57LLL0tbWlv79+2fcuHG58847X3Xufffdlw9+8INpa2tLU1NT5syZs8acGTNmpKmpqdvXyJEjN+MRAAAAAAAA/EmPFi/XX399pk6dmnPPPTd333139t1330ycODFPPfXUWuevXLkyu+66a2bNmpVhw4a96r5vectb8oc//KHr66c//enmOgQAAAAAAIAuPVq8XHLJJTnllFMyadKk7LXXXpk7d24GDhyYq666aq3z3/72t+fzn/98jjvuuLS2tr7qvn369MmwYcO6vgYPHry5DgEAAAAAAKBLn5564VWrVuWuu+7KtGnTusaam5szfvz4LFq0aJP2fuihhzJ8+PD0798/+++/fy688ML82Z/92avOb29vT3t7e9fj5cuXJ0k6OjrS0dGxSVleb1pbGtXXNje6/VrF+s5HT+arc7Zk8+Wrc7bEeXVe167O2ZL159vUfev6d1ud89U5W1LvfLJVV+d8slVX53yyVVfnfHXOltQ7n2zV1TmfbNXVOZ9s1dU5n2zV1T1fb7Ux72dTo9Go/pOhTbB48eKMGDEit99+e/bff/+u8TPOOCO33XZb7rjjjnWub2try2mnnZbTTjut2/iPfvSjvPjii9ljjz3yhz/8ITNnzsyTTz6ZX//619lmm23WuteMGTMyc+bMNcavu+66DBw4cOMPDgAAAAAAeN1YuXJlTjjhhCxbtiyDBg1a59weu+JlczniiCO6fj9q1KiMGzcuO++8c7797W/nIx/5yFrXTJs2LVOnTu16vHz58uy0006ZMGHCet/ALc3eM+ZXXtva3Mj5Yztzzi+a097ZVGmPX8+YuM7nezJfnbMlmy9fnbMlzqvzunZ1zpasP19VHR0dufnmm3PYYYelb9++m+U1NkWd89U5W1LvfLJVV+d8slVX53yyVVfnfHXOltQ7n2zV1TmfbNXVOZ9s1dU5n2zV1T1fb/XynbI2RI8VL4MHD05LS0uWLl3abXzp0qUZNmxYsdfZbrvt8ud//uf57W9/+6pzWltb1/qZMX379vUH8xXaV1f7IWK3PTqbKu+zvvPRk/nqnC3Z/PnqnC1xXquqc7Zkyz2vm6ruf7/VOV+dsyX1zidbdXXOJ1t1dc4nW3V1zlfnbEm988lWXZ3zyVZdnfPJVl2d88lWXd3z9TYb8142b8Yc69SvX7+MGTMmCxYs6Brr7OzMggULut16bFO9+OKLefjhh7PjjjsW2xMAAAAAAGBtevRWY1OnTs1JJ52UsWPHZr/99sucOXOyYsWKTJo0KUly4oknZsSIEbnwwguTJKtWrcpvfvObrt8/+eSTueeee7L11ltn9913T5Kcfvrpec973pOdd945ixcvzrnnnpuWlpYcf/zxPXOQAAAAAADAFqNHi5djjz02Tz/9dKZPn54lS5Zk9OjRmTdvXoYOHZokefzxx9Pc/D8X5SxevDhvfetbux5ffPHFufjii3PQQQdl4cKFSZInnngixx9/fJ599tnssMMOeec735mf//zn2WGHHV7TYwMAAAAAALY8PVq8JMmUKVMyZcqUtT73cpnysra2tjQajXXu961vfatUNAAAAAAAgI3SY5/xAgAAAAAA8HqjeAEAAAAAAChE8QIAAAAAAFCI4gUAAAAAAKAQxQsAAAAAAEAhihcAAAAAAIBCFC8AAAAAAACFKF4AAAAAAAAKUbwAAAAAAAAUongBAAAAAAAoRPECAAAAAABQSJ+eDgAAbJy2M2+stK61pZHZ+yV7z5if9tVNlfZ4dNaRldYBAAAAbClc8QIAAAAAAFCI4gUAAAAAAKAQxQsAAAAAAEAhihcAAAAAAIBCFC8AAAAAAACFKF4AAAAAAAAKUbwAAAAAAAAUongBAAAAAAAoRPECAAAAAABQiOIFAAAAAACgEMULAAAAAABAIYoXAAAAAACAQhQvAAAAAAAAhSheAAAAAAAAClG8AAAAAAAAFKJ4AQAAAAAAKETxAgAAAAAAUIjiBQAAAAAAoBDFCwAAAAAAQCGKFwAAAAAAgEIULwAAAAAAAIUoXgAAAAAAAApRvAAAAAAAABSieAEAAAAAAChE8QIAAAAAAFCI4gUAAAAAAKAQxQsAAAAAAEAhihcAAAAAAIBCFC8AAAAAAACFKF4AAAAAAAAKUbwAAAAAAAAUongBAAAAAAAoRPECAAAAAABQiOIFAAAAAACgEMULAAAAAABAIYoXAAAAAACAQhQvAAAAAAAAhSheAAAAAAAAClG8AAAAAAAAFKJ4AQAAAAAAKETxAgAAAAAAUIjiBQAAAAAAoBDFCwAAAAAAQCGKFwAAAAAAgEIULwAAAAAAAIUoXgAAAAAAAApRvAAAAAAAABSieAEAAAAAAChE8QIAAAAAAFCI4gUAAAAAAKAQxQsAAAAAAEAhihcAAAAAAIBCFC8AAAAAAACFKF4AAAAAAAAKUbwAAAAAAAAUongBAAAAAAAoRPECAAAAAABQiOIFAAAAAACgEMULAAAAAABAIYoXAAAAAACAQhQvAAAAAAAAhSheAAAAAAAAClG8AAAAAAAAFKJ4AQAAAAAAKETxAgAAAAAAUIjiBQAAAAAAoBDFCwAAAAAAQCGKFwAAAAAAgEIULwAAAAAAAIUoXgAAAAAAAApRvAAAAAAAABSieAEAAAAAAChE8QIAAAAAAFCI4gUAAAAAAKAQxQsAAAAAAEAhihcAAAAAAIBCFC8AAAAAAACFKF4AAAAAAAAKUbwAAAAAAAAUongBAAAAAAAopMeLl8suuyxtbW3p379/xo0blzvvvPNV595333354Ac/mLa2tjQ1NWXOnDmbvCcAAAAAAEApPVq8XH/99Zk6dWrOPffc3H333dl3330zceLEPPXUU2udv3Llyuy6666ZNWtWhg0bVmRPAAAAAACAUnq0eLnkkktyyimnZNKkSdlrr70yd+7cDBw4MFddddVa57/97W/P5z//+Rx33HFpbW0tsicAAAAAAEApfXrqhVetWpW77ror06ZN6xprbm7O+PHjs2jRotd0z/b29rS3t3c9Xr58eZKko6MjHR0dlbK8XrW2NKqvbW50+7WK9Z2PnsxX52zJ5stX52yJ8+q8rl2dsyW9+7xuipf3ruPfvXXOltQ7n2zV1TmfbNXVOZ9s1dU5X52zJfXOJ1t1dc4nW3V1zidbdXXOJ1t1dc/XW23M+9nUaDSq//RlEyxevDgjRozI7bffnv33379r/Iwzzshtt92WO+64Y53r29ractppp+W0007b5D1nzJiRmTNnrjF+3XXXZeDAgRt5ZAAAAAAAwOvJypUrc8IJJ2TZsmUZNGjQOuf22BUvdTJt2rRMnTq16/Hy5cuz0047ZcKECet9A7c0e8+YX3lta3Mj54/tzDm/aE57Z1OlPX49Y+I6n+/JfHXOlmy+fHXOljivzuva1Tlb0rvP66bo6OjIzTffnMMOOyx9+/bdbK9TRZ2zJfXOJ1t1dc4nW3V1zidbdXXOV+dsSb3zyVZdnfPJVl2d88lWXZ3zyVZd3fP1Vi/fKWtD9FjxMnjw4LS0tGTp0qXdxpcuXZphw4a9pnu2trau9TNj+vbt6w/mK7SvrvaDum57dDZV3md956Mn89U5W7L589U5W+K8VlXnbInzWtXmzFZCnf/+rXO2pN75ZKuuzvlkq67O+WSrrs756pwtqXc+2aqrcz7ZqqtzPtmqq3M+2aqre77eZmPey+bNmGOd+vXrlzFjxmTBggVdY52dnVmwYEG324T19J4AAAAAAAAbqkdvNTZ16tScdNJJGTt2bPbbb7/MmTMnK1asyKRJk5IkJ554YkaMGJELL7wwSbJq1ar85je/6fr9k08+mXvuuSdbb711dt999w3aEwAAAAAAYHPp0eLl2GOPzdNPP53p06dnyZIlGT16dObNm5ehQ4cmSR5//PE0N//PRTmLFy/OW9/61q7HF198cS6++OIcdNBBWbhw4QbtCQBsPm1n3lh5bWtLI7P3+9Nn2FS9Fdqjs46s/PoAAAAAJfRo8ZIkU6ZMyZQpU9b63Mtlysva2trSaDQ2aU8AAAAAAIDNpcc+4wUAAAAAAOD1RvECAAAAAABQiOIFAAAAAACgEMULAAAAAABAIYoXAAAAAACAQhQvAAAAAAAAhSheAAAAAAAAClG8AAAAAAAAFNKnpwMAALwW2s68sfLa1pZGZu+X7D1jftpXN1Xa49FZR1Z+fQAAAKD3cMULAAAAAABAIYoXAAAAAACAQhQvAAAAAAAAhSheAAAAAAAAClG8AAAAAAAAFKJ4AQAAAAAAKETxAgAAAAAAUIjiBQAAAAAAoBDFCwAAAAAAQCF9ejoAAABJ25k3Vl7b2tLI7P2SvWfMT/vqpo1e/+isIyu/NgAAANCdK14AAAAAAAAKUbwAAAAAAAAU4lZjAACsU0/eBi1xKzQAAAB6F1e8AAAAAAAAFKJ4AQAAAAAAKETxAgAAAAAAUIjiBQAAAAAAoBDFCwAAAAAAQCGKFwAAAAAAgEIULwAAAAAAAIUoXgAAAAAAAApRvAAAAAAAABSieAEAAAAAAChE8QIAAAAAAFCI4gUAAAAAAKAQxQsAAAAAAEAhihcAAAAAAIBCFC8AAAAAAACFKF4AAAAAAAAKUbwAAAAAAAAU0qenAwAAwKZoO/PGSutaWxqZvV+y94z5aV/dVGmPR2cdWWkdAAAAr1+ueAEAAAAAAChE8QIAAAAAAFCI4gUAAAAAAKAQxQsAAAAAAEAhihcAAAAAAIBCFC8AAAAAAACF9OnpAAAA8HrVduaNlde2tjQye79k7xnz0766aaPXPzrryMqvDQAAQHWueAEAAAAAAChE8QIAAAAAAFCIW40BAMAWqCdvg5as/1ZoVfO9FtkAAADWxRUvAAAAAAAAhSheAAAAAAAACnGrMQAAgI3Qk7dpcxs0AACoP1e8AAAAAAAAFKJ4AQAAAAAAKMStxgAAAF4nevI2aIlboQEAQOKKFwAAAAAAgGIULwAAAAAAAIW41RgAAACviaq3QnstboPmNm0AAJTiihcAAAAAAIBCFC8AAAAAAACFuNUYAAAA1JjboAEA9C6KFwAAAKCyniyGlEIAQB251RgAAAAAAEAhihcAAAAAAIBCFC8AAAAAAACFKF4AAAAAAAAKUbwAAAAAAAAUongBAAAAAAAoRPECAAAAAABQiOIFAAAAAACgEMULAAAAAABAIYoXAAAAAACAQhQvAAAAAAAAhSheAAAAAAAAClG8AAAAAAAAFKJ4AQAAAAAAKETxAgAAAAAAUIjiBQAAAAAAoBDFCwAAAAAAQCGKFwAAAAAAgEIULwAAAAAAAIUoXgAAAAAAAApRvAAAAAAAABSieAEAAAAAAChE8QIAAAAAAFCI4gUAAAAAAKAQxQsAAAAAAEAhihcAAAAAAIBCFC8AAAAAAACFKF4AAAAAAAAKqUXxctlll6WtrS39+/fPuHHjcuedd65z/ne+852MHDky/fv3zz777JObbrqp2/Mnn3xympqaun0dfvjhm/MQAAAAAAAAer54uf766zN16tSce+65ufvuu7Pvvvtm4sSJeeqpp9Y6//bbb8/xxx+fj3zkI/nlL3+Zo446KkcddVR+/etfd5t3+OGH5w9/+EPX1ze/+c3X4nAAAAAAAIAtWI8XL5dccklOOeWUTJo0KXvttVfmzp2bgQMH5qqrrlrr/EsvvTSHH354Pv3pT2fPPffM+eefn7e97W350pe+1G1ea2trhg0b1vW1/fbbvxaHAwAAAAAAbMH69OSLr1q1KnfddVemTZvWNdbc3Jzx48dn0aJFa12zaNGiTJ06tdvYxIkTc8MNN3QbW7hwYYYMGZLtt98+hxxySC644IK88Y1vXOue7e3taW9v73q8fPnyJElHR0c6OjqqHNrrVmtLo/ra5ka3X6tY3/noyXx1zpZsvnx1zpY4r87r2tU5W+K8bq58dc6W+J5YF98TzuvGqHO2xHl1Xl+dv8M2z/fE3jPmV9o3+VOm88cmY86bl/bOpkp7/HrGxMqvvy4vH3ddf2ZR53yyVVfnfLJVV+d8slVX93y91ca8n02NRqP6vyFtosWLF2fEiBG5/fbbs//++3eNn3HGGbnttttyxx13rLGmX79+ueaaa3L88cd3jV1++eWZOXNmli5dmiT51re+lYEDB2aXXXbJww8/nM9+9rPZeuuts2jRorS0tKyx54wZMzJz5sw1xq+77roMHDiwxKECAAAAAAC91MqVK3PCCSdk2bJlGTRo0Drn9ugVL5vLcccd1/X7ffbZJ6NGjcpuu+2WhQsX5tBDD11j/rRp07pdRbN8+fLstNNOmTBhwnrfwC3Npv/fQp055xfNm+3/FurJfHXOlmy+fHXOljivzuva1Tlb4rxurnx1zpb4nlgX3xPO68aoc7bEeXVeX52/w7bM74mqOjo6cvPNN+ewww5L3759N8trbIo655Otujrnk626OueTrbq65+utXr5T1obo0eJl8ODBaWlp6bpS5WVLly7NsGHD1rpm2LBhGzU/SXbdddcMHjw4v/3tb9davLS2tqa1tXWN8b59+/qD+Qrtq6v9y2a3PTqbKu+zvvPRk/nqnC3Z/PnqnC1xXquqc7bEea2qztmSzZevztkS3xPr4nvCea2iztkS57WqOmdL/B22KbbU74lNVfefW9Q5n2zV1TmfbNXVOZ9s1dU9X2+zMe9l82bMsV79+vXLmDFjsmDBgq6xzs7OLFiwoNutx/63/fffv9v8JLn55ptfdX6SPPHEE3n22Wez4447lgkOAAAAAACwFj1avCTJ1KlTc+WVV+aaa67J/fffn1NPPTUrVqzIpEmTkiQnnnhipk2b1jX/k5/8ZObNm5d/+qd/ygMPPJAZM2bkF7/4RaZMmZIkefHFF/PpT386P//5z/Poo49mwYIFed/73pfdd989Eydunkt8AQAAAAAAkhp8xsuxxx6bp59+OtOnT8+SJUsyevTozJs3L0OHDk2SPP7442lu/p9+6IADDsh1112Xs88+O5/97Gfz5je/OTfccEP23nvvJElLS0vuvffeXHPNNXn++eczfPjwTJgwIeeff/5abycGAAAAAABQSo8XL0kyZcqUritWXmnhwoVrjB199NE5+uij1zp/wIABmT+/+ofnAQAAAAAAVNXjtxoDAAAAAAB4vVC8AAAAAAAAFKJ4AQAAAAAAKETxAgAAAAAAUIjiBQAAAAAAoBDFCwAAAAAAQCGKFwAAAAAAgEIULwAAAAAAAIUoXgAAAAAAAApRvAAAAAAAABSieAEAAAAAAChE8QIAAAAAAFCI4gUAAAAAAKAQxQsAAAAAAEAhihcAAAAAAIBCFC8AAAAAAACFKF4AAAAAAAAKUbwAAAAAAAAUongBAAAAAAAoRPECAAAAAABQiOIFAAAAAACgkD49HQAAAABgS9N25o2V17a2NDJ7v2TvGfPTvrqp0h6Pzjqy8usDAOvmihcAAAAAAIBCFC8AAAAAAACFKF4AAAAAAAAKUbwAAAAAAAAUongBAAAAAAAopE9PBwAAAACgXtrOvLHy2taWRmbvl+w9Y37aVzdt9PpHZx1Z+bUBoA5c8QIAAAAAAFCI4gUAAAAAAKAQxQsAAAAAAEAhihcAAAAAAIBCFC8AAAAAAACFKF4AAAAAAAAKUbwAAAAAAAAUongBAAAAAAAopE9PBwAAAACADdV25o2V17a2NDJ7v2TvGfPTvrqp0h6Pzjqy8usDsGVwxQsAAAAAAEAhihcAAAAAAIBCFC8AAAAAAACFKF4AAAAAAAAKUbwAAAAAAAAUongBAAAAAAAoRPECAAAAAABQiOIFAAAAAACgEMULAAAAAABAIYoXAAAAAACAQhQvAAAAAAAAhSheAAAAAAAAClG8AAAAAAAAFKJ4AQAAAAAAKETxAgAAAAAAUIjiBQAAAAAAoBDFCwAAAAAAQCF9ejoAAAAAALxetJ15Y6V1rS2NzN4v2XvG/LSvbqq0x6Ozjqy0DoCyXPECAAAAAABQiOIFAAAAAACgEMULAAAAAABAIYoXAAAAAACAQhQvAAAAAAAAhSheAAAAAAAAClG8AAAAAAAAFKJ4AQAAAAAAKETxAgAAAAAAUEifng4AAAAAAGx+bWfeWHlta0sjs/dL9p4xP+2rmzZ6/aOzjqz82gC9jeIFAAAAAOhRPVkKJYohoCy3GgMAAAAAACjEFS8AAAAAAOtQ9YocV+PAlskVLwAAAAAAAIW44gUAAAAAoJfqyc/HWd/VOD67hy2VK14AAAAAAAAKUbwAAAAAAAAUongBAAAAAAAoRPECAAAAAABQiOIFAAAAAACgEMULAAAAAABAIYoXAAAAAACAQhQvAAAAAAAAhSheAAAAAAAAClG8AAAAAAAAFKJ4AQAAAAAAKETxAgAAAAAAUEifng4AAAAAAACvtbYzb6y0rrWlkdn7JXvPmJ/21U2V9nh01pGV1tE7uOIFAAAAAACgEMULAAAAAABAIYoXAAAAAACAQhQvAAAAAAAAhSheAAAAAAAAClG8AAAAAAAAFKJ4AQAAAAAAKETxAgAAAAAAUIjiBQAAAAAAoJBaFC+XXXZZ2tra0r9//4wbNy533nnnOud/5zvfyciRI9O/f//ss88+uemmm7o932g0Mn369Oy4444ZMGBAxo8fn4ceemhzHgIAAAAAAEDPFy/XX399pk6dmnPPPTd333139t1330ycODFPPfXUWufffvvtOf744/ORj3wkv/zlL3PUUUflqKOOyq9//euuObNnz84Xv/jFzJ07N3fccUe22mqrTJw4MS+99NJrdVgAAAAAAMAWqMeLl0suuSSnnHJKJk2alL322itz587NwIEDc9VVV611/qWXXprDDz88n/70p7Pnnnvm/PPPz9ve9rZ86UtfSvKnq13mzJmTs88+O+973/syatSofP3rX8/ixYtzww03vIZHBgAAAAAAbGn69OSLr1q1KnfddVemTZvWNdbc3Jzx48dn0aJFa12zaNGiTJ06tdvYxIkTu0qVRx55JEuWLMn48eO7nt92220zbty4LFq0KMcdd9wae7a3t6e9vb3r8bJly5Ikzz33XDo6Oiof3+tRnz+uqL62s5GVKzvTp6M5qzubKu3x7LPPrvs1ejBfnbMlmy9fnbMlzqvzunZ1zpY4r5srX52zJb4n1sX3hPO6MeqcLXFenddX5++wLe97os7Z8v+zd99hUdzfHsc/u3SQJoKVGrE37L0nmhh77Ni7Ro3dWGM3Jho1JnaNGrH3RI0NscYGYm+IYsNGLIgiwrl/eNm4Agb3J/s9u5zX8+xz4yz38r5nxnF3Z2YHsl7fR/Z1sl4/BOc2QNYr5/X6v0hISEBcXBwePXoEKyurDPs9mc2zZ88AvLn44z+RQrdv3yYAdPjwYb3lgwcPprJly6b6v2NlZUVBQUF6y3755Rfy8PAgIqJDhw4RALpz547ezzRr1oyaN2+e6v/NMWPGEAB5yEMe8pCHPOQhD3nIQx7ykIc85CEPechDHvKQhzzkIY80Hzdv3vzPYx9Kr3jh4ttvv9W7iiYpKQkxMTFwc3ODRmPYEUuR0tOnT+Hp6YmbN2/CyclJdU4KnPukzXCc+6TNcJz7pM1wnPs4twG8+6TNcJz7pM1wnPukzXCc+zi3Abz7pM1wnPukzXCc+6TNcJz7pM1w3PtMFRHh2bNnyJUr13/+rNIDL9myZYOFhQXu3bunt/zevXvIkSNHqv87OXLkeO/PJ//Pe/fuIWfOnHo/U6JEiVT/b9rY2MDGxkZvmYuLy4f8vyI+gJOTE+u/8Jz7pM1wnPukzXCc+6TNcJz7OLcBvPukzXCc+6TNcJz7pM1wnPs4twG8+6TNcJz7pM1wnPukzXCc+6TNcNz7TJGzs3O6fk6bwR3vZW1tjVKlSmHPnj26ZUlJSdizZw8qVKiQ6v9OhQoV9H4eAHbt2qX7eV9fX+TIkUPvZ54+fYqjR4+m+X9TCCGEEEIIIYQQQgghhBDiY1D+VWMDBgxA+/btUbp0aZQtWxYzZszA8+fP0bFjRwBAu3btkDt3bkyePBkA0K9fP1SrVg3Tpk1DvXr1sGrVKpw4cQLz588HAGg0GnzzzTeYMGEC/P394evri1GjRiFXrlxo1KiRqv83hRBCCCGEEEIIIYQQQgiRCSg/8NKiRQs8ePAAo0ePRnR0NEqUKIEdO3Yge/bsAICoqChotf9emFOxYkUEBQVh5MiRGD58OPz9/bFp0yYUKVJE9zNDhgzB8+fP0a1bNzx+/BiVK1fGjh07YGtra/T//8S/bGxsMGbMmBRf68YF5z5pMxznPmkzHOc+aTMc5z7ObQDvPmkzHOc+aTMc5z5pMxznPs5tAO8+aTMc5z5pMxznPmkzHOc+aTMc977MQENEpDpCCCGEEEIIIYQQQgghhBDCHCi9x4sQQgghhBBCCCGEEEIIIYQ5kQMvQgghhBBCCCGEEEIIIYQQH4kceBFCCCGEEEIIIYQQQgghhPhI5MCLEEIIIYQQQgghhBBCCCHERyIHXoQQQgghhBBCCCGE2Zg1axZevnwJAIiKigIRKS4yjKl2CyGEADQke3GRQU6fPp3qco1GA1tbW3h5ecHGxsbIVaZBZmc4zrPj3CY+rn379qFcuXKws7NTnYItW7akujx5u8ubNy98fX2NXCU+tnv37oGIkCNHDtUpIhOIj4/HrVu3kCdPHrb/bkVGRsLT0xOWlpaqUwAAiYmJePjwIbRaLdzd3VXnCMEOEUGj0ajOSOH169ds9iPiw1haWuLOnTvw8PCAhYUF7t69Cw8PD9VZqfrhhx8wePDgFMsTExMRGBiIlStXKqgyPZzegwnztWzZMrRo0SLFa+BXr15h1apVaNeunaIywZEceBEZRqvVvvfFs5WVFVq0aIF58+bB1tbWiGX8mersLly4gHr16uHatWvKGjjPjnPbwoULceDAAVSvXh0dO3bE6tWr8d133yE+Ph5t27bF2LFjjdrztvDwcGzduhVZs2ZF8+bNkS1bNt1zT58+xTfffIPFixcr60uNtbU1wsPDUbBgQdUpuu3u3X/uk5dpNBpUrlwZmzZtgqurq1GaihYtiubNm6NDhw7w9PQ0yu/8EPfv39d7Y37q1Cn89NNPuHr1KnLmzImvv/4a1atXV9IWExODbt264dixY6hXrx5mz56N7t27Y/HixdBoNChXrhzWr1+PnDlzKul72507dzBv3jzd3Lp06YICBQoo66lfvz6aN2+Or776St6Qf4DffvsN+fPnR4UKFfDy5Uv07t0bS5cuBRFBq9Wic+fOmDlzJrsDMFz2w3/++Se+//57HDt2DAkJCQAAR0dH1K9fHxMnToSXl5fSvl27duHgwYOoVq0aatasif3792Py5Mm6f/87duyorC08PBzTpk3DwYMHcffuXWi1Wvj5+aFRo0YYPHgwnJyclLWdP38es2fPxpEjRxAdHQ0AyJEjBypUqICvv/4ahQoVUtYGAA8fPsTixYtT9FWsWBEdOnRQdvAvPj4eI0aM0P0bNnToUEyYMAFTpkwBADRo0ABz585Vsm537NiB3Llzo2jRokhKSsLEiRMxd+5cREdH6/7tHzp0KMuDQwAQERGBrl27Yu/evcoaZs2aleryt0/2qVq1KiwsLIzS4+XlhW+//RZffPEFfH19ceLECb33Ee/+rEoeHh6YPHkyOnfurFuWmJiIli1b4uzZs7hw4YLRmzi/Hk4Ll3/7/4vqz004v/cHgLt372LPnj3ImjUrateuDWtra91zz58/x7Rp0zB69GhlfWkdyH306BE8PDyQmJioqExOumSJhMggmzZtovz589PChQvp9OnTdPr0aVq4cCEVLFiQVq1aRb///jvlyZOHBg4cqKxx8+bNqT62bNlCO3fupGvXrinpMoXZpebUqVOk1WqVNnCeHde2n376iRwcHKhJkyaUM2dOmjBhArm5udGECRNo7Nix5OTkRPPmzTNqU7K//vqLrK2tqXDhwuTl5UVubm60d+9e3fPR0dFKt7mAgIBUHxqNhgoWLKj7s0q7d++mcuXK0e7du+np06f09OlT2r17N1WoUIH+/PNPOnjwIBUuXJg6depktCaNRkNubm5kYWFBderUoXXr1lFCQoLRfv9/0Wq1dO/ePSIiOnToEFlZWVG1atVo8ODB9Omnn5KlpSWFhIQoaevUqRMVKVKEfv75Z6pWrRo1bNiQihUrRgcPHqTDhw9TmTJlqF27dkra7Ozs6P79+0REdO7cOXJ2dqa8efNSs2bNqECBAmRvb0/h4eFK2ojebHeWlpbk7OxMPXr0oBMnTihreZ/w8PBUH6dPn6bLly/Ty5cvjdrj6+tLf//9NxERDRo0iHx8fGjDhg104cIF2rRpE+XLl48GDx5s1Ka3NW7cONWHVqul2rVr6/6swrJly8jR0ZEGDhxII0aMoBw5ctCwYcNozpw5VK1aNcqWLRtdvnxZSRsR0fLly8nS0pJKlixJWbJkoSVLlpCLiwt16dKFOnXqRNbW1rR27VolbTt27CA7Oztq2rQpBQYGkr29PX399dc0dOhQyps3L33yySd09+5dJW3btm0ja2trKl++PI0ZM4Z+/fVX+vXXX2nMmDFUsWJFsrGxoR07dihpIyI6duwYubq6Uu7cual9+/Y0ZMgQGjJkCLVv357y5MlDWbNmpePHjytp69+/P+XKlYsGDhxIBQsWpF69epGXlxf9/vvvFBQURHnz5qU+ffooacufPz/t37+fiIgmTZpEbm5uNH36dNq+fTvNmDGDsmfPTlOmTFHSlh4c3of5+PiQg4MDaTQaypo1K2XNmpU0Gg05ODhQ9uzZSaPR0CeffEJRUVFG6Zk3bx5ZW1uTVqtN86HRaJTPjejN31sXFxfdPjchIYEaN25MBQsWVLav4/x62BTeg72Pyr+vnN/7E/37d8HJyYns7Owob968dPbsWd3zqt//E715T5H8nudtp06dIldXVwVF/0rep2k0Gr3H2/u7qlWrUkxMjNLOzEQOvIgMU6ZMmVTfdOzYsYPKlClDREQbN24kPz8/Y6fpcN0pcZ1d//793/sIDAxU/o8g19kR8W0rUKAArVixgoiIQkNDydLSkhYuXKh7fuHChVSqVCmjNiWrUKECDR8+nIiIkpKS6Pvvv6csWbLQ9u3biUj9Cy9LS0uqW7cufffdd7rHmDFjSKvVUq9evXTLVCpcuDAdOnQoxfKDBw9SoUKFiIho165d5OnpabQmjUZDt2/fpo0bN1L9+vXJ0tKS3N3daeDAgXT+/HmjdbyvL/mN5qeffprioFS/fv2oZs2aKtIoZ86cuvUZHR1NGo2Gdu7cqXv+4MGDlDt3biVtb8+tYcOGVL9+fd0BtcTERGrZsiV9+eWXStqS+86dO0c//fQTFS1alLRaLRUvXpx+/vlnVm8+kl9/pPWwsbGhdu3a0YsXL4zSY2NjQzdu3CAionz58un2v8lCQkLIy8vLKC2p0Wg0VK1aNerQoYPeQ6vVUqNGjXR/VqFAgQK0atUq3Z+PHz9OefLkoaSkJCIiatGihbKDQkREJUqUoJkzZxLRm4P0dnZ2NH36dN3zP/74I1WqVElZ25w5c3R/3rlzJxUoUICIiF69ekW1atVStl6LFStGo0aNSvP5MWPGUNGiRY1YpK9cuXLUrVs33Xb2tqSkJOrWrRuVL19eQRmRp6cn7dq1i4iIIiIiSKvV0qZNm3TP79y5k7y9vZW0vb2vK1KkCK1Zs0bv+T/++IPy5s2rIo2IiGbOnPnex5AhQ5S/DwsKCqLq1avT1atXdcuuXLlCNWvWpFWrVtHNmzepUqVK1LRpU6M1PX36lM6cOUMajYb27NlDp06dSvXBwZ49e8jR0ZE2b95MDRo0oEKFClF0dLSyHs6vh7m/B+P8uQnn9/5ERLVr16aOHTtSYmIiPX36lHr27Elubm4UGhpKRGrf/5coUYICAgJIq9VS0aJF9Q76FStWjBwdHalZs2ZK2pJxPOkys5MDLyLD2Nra0oULF1Isv3DhAtna2hIRUWRkJNnZ2Rk7TYfrTonr7LRaLZUsWZKqV6+e6qN06dLKX/BznR0R3zY7OzvdG02iN2883z6r5MqVK+Ti4mLUpmROTk56b96IiFasWEEODg60detW5QdeDh48SJ988gmNHj2aEhMTdcstLS3p3LlzyrreZmtrS2fOnEmx/PTp07rt7vr160bd7t5+I0dEdOfOHZo0aRL5+/uTVqulChUq0KJFi4zW876+nDlz0pEjR/SeP3v2LGXLlk1FGtnb29P169d1f7aystJbv9euXSMHBwcVaXpz8/T01J05nCw0NJRy5sypIo2IUm53R48epW7dupGzszPZ2dlRq1ataM+ePcr6knG7OtLb21t3pWHu3LlTnCl//vx5ZdscEdHKlSspT548tHjxYr3lHPbDdnZ2FBkZqbfM0tKSbt++TURvtkFV/74SETk4OOhd3W1lZaV3VdqFCxfIzc1NRRrZ2trqzS4pKYmsrKzozp07RES0f/9+cnd3V9Z28eLFNJ+/ePGi7t9XFdJ6vZns7dedxvbua04rKyu915yRkZFkb2+vIk3v3/vs2bPrPuRLdvnyZaXvWzUaDeXKlYt8fHxSfeTKlUv5+zA/Pz8KCwtLsTw0NJR8fX2J6M2VEzly5DByGdFvv/1m9CtGDbFx40aytLSkokWL0oMHD5S2cH49zP09GOfPTTi/9ycicnV1pUuXLuktmzx5Mrm6utKxY8eUvv9PPqCn0Who0KBBegf+Jk2aREFBQRQfH6+kLRnHky4zOznwIjJMiRIlqH379no7nlevXlH79u2pRIkSRPTmL7+Pj4+qRLY7Ja6zy5cvHy1fvjzN58PCwpS/4Oc6O85tbm5uelcZ5MmTR++D3StXrlCWLFmM2pTM3d091a8DWrlyJdnb29OcOXOUb3OPHz+mli1bUrly5XQHibi86CciqlSpEtWtW1fvcuj79+9T3bp1qUqVKkT0Zj+XL18+ozW9/dUF7woODqbAwEClH+RqNBq6evUqPXnyhHx9fVN8+HL16lVlHwwVL16cZs+eTURvvu7G0dGRpk2bpnt+zpw5VKRIESVtWq1Wt515e3un+Fqxa9euKf0w8t0DL8meP39OS5YsocqVKyvfnxDxuzpy+PDhVKFCBfrnn39o2LBhVL9+fXr27BkRvZld8+bN6bPPPjNKS1oiIyOpUqVK1KRJE93VSxz2wwULFtT7qq6TJ0+StbU1vX79moje/Puqcl/n4uKidwAhS5YsFBERofvztWvXlO3rPvnkE72/B1euXCELCwvda6hr164p+xC8QIECevvdd02bNo3y589vxCJ9Pj4+tHTp0jSfX7p0qbKrSvLnz6+7CuzYsWNkbW2td9B01apV5O/vr6StV69e9OWXX9Lr16+pW7du1KVLF72rhvr06UMVKlRQ0kb0Zr2uXr06zec5vA+zs7NL9Wvsjh07pvv7GhkZqWy/988//9CCBQto2LBh9OjRIyJ6s1++deuWkp60viozZ86cVKVKFb1lKnB+PUzE+z0Y589NOL/3J3pz4CW1ryb+4YcfyMXFhTZs2KB8X8f5QC7Hky4zO0vV95gR5uuXX35BgwYNkCdPHhQrVgwAcObMGSQmJuKPP/4AAFy7dg29evVS1hgREZHqzRudnJx0Nzrz9/fHw4cPjdrFdXalS5fGyZMnERgYmOrzqd3A29i4zo5zW4ECBXD69GndTQhv3ryp9/zFixfh4+Nj1KZkJUqUQHBwMEqVKqW3vGXLliAitG/fXknX25ydnbFy5UosWbIElStXxtixY1ndeHXRokVo2LAh8uTJo7uR/c2bN+Hn54fNmzcDAGJjYzFy5EijNb1vP1G9enVUr14dT58+NVpPavLlywfgTeuJEycQEBCge+7cuXPIlSuXkq7Bgwejffv2mDFjBm7evInff/8d/fr1w9GjR6HVarFhwwZMnz5dSRsRIV++fNBoNIiNjcXp06d1+zoAuHr1KnLkyKGk7X3s7e3RoUMHdOjQAZcvX1adgzNnzsDb2zvFcm9vb5w5cwbAm33j3bt3jdIzZswYnD17Fn5+fihdujQOHDiA7NmzI3fu3Lhz5w7c3Nywa9cuo7SkxcfHB/v378fYsWNRvHhxLFiwgMV+uHfv3ujSpQuOHz8OW1tbLFy4EG3bttXdWPro0aO6fY0KefPmxcWLF5E/f34AwO3bt+Ho6Kh7PiIiAnny5FHS1q5dO3Tp0gUjRoyAjY0Npk+fjgYNGuhusHvq1CllN4cdN24cWrdujX379qF27drInj07AODevXvYs2cPduzYgaCgICVtADBo0CB069YNJ0+eRK1atVL0LViwAD/++KOSth49eqBDhw5YuHAhTp48iR9//BHDhw/HxYsXodVqMWfOHAwcOFBJ26RJk1C7dm0UKFAAFSpUwNq1a7Fr1y7ky5cPV69eRUxMDP766y8lbQBQqlQpnDx5Es2bN0/1eQ7vw2rUqIHu3btj4cKFutdNYWFh6NmzJ2rWrAngzb9xKv7unj59GrVr14azszOuX7+Orl27ImvWrNiwYQOioqKwbNkyozc5OzunurxOnTpGLkkb19fDAO/3YJw/N+H83h8AihQpgsOHD+u9hwDe/NuWlJSEVq1aKSr7V82aNfHgwQPda6Rjx44hKCgIhQoVQrdu3ZS2lSpVCoMHD8ayZcvg7u4OAHjw4AGGDBmCMmXKAACuXLmi+1xAZDwNqf7XWZi1Z8+eYcWKFboPMvLnz4/WrVvrvalTqXLlynB0dEyxU2rXrh2eP3+O/fv3Y/fu3ejduzcuXbpk1DaOs4uOjkZ8fHyqHwhxwnF2yTi2HTp0CA4ODihRokSqz//6669ISkrC119/bdwwABs3bsT+/fvx008/pfp8UFAQFixYgODgYCOXpe7KlSto06YNTpw4gbNnz6JQoUKqkwAASUlJ2Llzp9529+mnn0Kr1Srp6dixI2bNmsXi72RqQkJC9P6cM2dOvQ9HZ86ciVevXmHw4MHGTgPw5u/s33//jQoVKqBixYo4f/48pkyZgri4ONSvX1/ZAcmlS5fq/Tl//vwoX7687s/jx4/HP//8o+zAUI0aNbBx40a4uLgo+f3pFRAQgOLFi2P+/Pm6D5kTEhLQtWtXhIeHIywsDIcOHUJgYCAiIyON1rVjxw5s3boV165dQ1JSEnLmzIlKlSqhdevWcHBwMFrHfzl48CDatWuHGzdu4MyZM8r3w3PmzMHvv/+O+Ph41KlTB6NGjYKtrS2AN/9mJCYmokCBAkraNm7cCDc3N1StWjXV56dMmYLnz59j/PjxRi4DXr9+jREjRujNbubMmciWLRuANx9yvHz5Ms32jHb48GHMmjULR44cQXR0NAAgR44cqFChAvr164cKFSoo6Uq2evVq/PTTTzh58iQSExMBABYWFihVqhQGDBiQ5of3xhAUFIQjR46gYsWKaNWqFfbt24fRo0fr/g0bNWqUstcnCQkJWLRoUar7up49eyo7EAkA58+fR1xcHEqXLp3q8wkJCbhz547S92nR0dFo27Yt9uzZAysrKwBv/i7XqlULy5cvR/bs2REcHIyEhAR89tlnRm2rVasWSpUqhalTp8LR0RHh4eHw8/PD4cOH0bp1a1y/ft2oPaaA++vht3F7D8b5cxPO7/0BYOHChQgJCcHy5ctTff7777/H3Llzjfoa+F1VqlRBt27d0LZtW0RHRyNfvnwoUqQIrly5gj59+mD06NHK2i5duoSGDRsiMjIy1ZMu8+XLh02bNuHZs2do27atss7MRA68iAzz8uVL3RtLrrjulExhdumxcuVKNGjQwKgfyHCeHee2D6FivaYXh7akpCQ8e/YMTk5OKc66UtF38+ZNkz+jhcN6fR/OfZzbROoOHz6MBg0aQKvVpnp1ZPny5bF8+XJER0ez+LDjXRy2udjYWERERKBgwYK6g1emgMPshHlJSEjQXbmfLVs23YfhQmSkixcv6p3sk3xVnUrOzs4IDQ3FJ598onfg5caNG8ifPz9evnypOtHkqf43jNt7sA/BuY9zmyqurq74+++/kT9/fsyaNQurV6/GoUOHsHPnTvTo0UP37TmqcDvpMrOTAy8iwzg5OaFx48YIDAxErVq12P4l57hTMpXZ/RcnJyecOnUKfn5+Rv2dXGfHue1DqFiv6cW5DVDTZ2FhgcqVKyMwMBBfffUVXF1djfa7PxZZr4bj3CbSxvHqyPSSbc5wMjshhCk7ePAgKleurDojVR4eHvjrr78QEBCgd+Bl165d6NSpU4qvWzK2e/fuYdCgQdizZw/u37+f4muokq9c44zzv2Gc2wDefZzbVMmSJQvOnj0LHx8fNGjQAJUqVcLQoUMRFRWF/Pnz48WLF8razOGkS3Njmp/6CZOwdOlSxMXFoWHDhsidOze++eYbnDhxQnWWnps3b0Kr1aJu3bro27cv+vbtizp16ij/QNwUZpceKo7rcp4d57YPwfl4Pec2QE3fiRMnULZsWYwbNw45c+ZEo0aNsG7dOsTHxxu9xVCyXg3Hqe3ChQus37Rx6Xv58iUcHR3Ro0cPTJ8+HdOnT0f37t1N4qALwGubA/is1/SQ2aWftL1feHg4JkyYgF9//TXFvSqfPn2KTp06KSp7Pw6zSwvnNoBHX82aNeHr64vhw4fj/PnzSlve1aBBA4wbNw4JCQkA3txjIyoqCkOHDkXTpk0V1wEdOnRAaGgoRo0ahXXr1mHDhg16D1PA7d+wt3FuA3j3cWvjsK8rXLgw5s6diwMHDmDXrl2oW7cuAOjufaiSj48PqlWrhgULFuCff/5R2iLekAMvIsM0btwYa9euxb179zBp0iScP38e5cuXR758+TBu3DjVeQD47pRMYXZccZ4d5zZhvgICAvDDDz8gKioK27dvh7u7O7p164bs2bOz/eBFmKdXr17hxo0bqjPSxKXPw8MD7du3x65du5CUlKQ6x+RxWa+miPPspC1tO3fuRNmyZbFq1Sp8//33KFCggN698F68eJHinlxcqJ7d+3BuA3j03blzBwMHDkRISAiKFCmCEiVK4IcffsCtW7eUdgHAtGnTEBsbCw8PD7x48QLVqlVD3rx54ejoiIkTJ6rOw8GDB7FixQr07NkTjRo1QsOGDfUeQog3OOzrvv/+e8ybNw/Vq1dHq1atULx4cQDAli1bULZsWaVt5nDSpbmRrxoTRnX+/Hm0adMGp0+fZnG5bFhYGIKCgrBq1So8ePAAdevWRWBgIOrXrw8bGxvVeXq4zS493r6MWyXOs+PclhYu6zU1nNsAPn2hoaHo3LmzyWx3XOaWFs59xmwbMGDAe59/8OABgoKClG1z3PuSbdy4EUFBQfjzzz/h7OyMFi1aIDAwMM0bKnNj7L8PprJe00Nm9y9pM1zFihVRo0YNTJw4EUSEH374AePHj8fatWtRt25d3Lt3D7ly5ZLZvYNzG8C/712RkZEICgrCypUrcfHiRVStWhV79+5VnYVDhw4hPDwcsbGxKFmyJGrXrq06CQBQqFAhrFixAgEBAapTDCavhw3HuU9em6QuMTERT58+1fsa7+vXr8Pe3h4eHh4Ky94gIuzbtw9BQUFYv349kpKS0KRJEyxevFh1WqZjqTpAmL+XL19iy5YtCAoKwo4dO5A9e3Y2N4MNCAhAQEAApk6dqtspdevWjc1OifPsuOM8O85twnzdunULQUFBCAoKwtmzZ1GhQgX88ssvqrOEGZk5cyZKlCgBJyenVJ+PjY01cpE+7n3JGjdujMaNG+PZs2dYt24dVq5cifLly8PPzw+BgYEYPXq06kRWTGW9csR5dtJmuHPnzmH58uUA3nyd0pAhQ5AnTx589dVXWLVqFcqUKaOsjfPsOLcB/Pve5evri2HDhqF48eIYNWoUQkJClLUkJCTAzs4Op06dQqVKlVCpUiVlLWmZMWMGhg0bhnnz5sHHx0d1jhDKmMq+zsLCAq9fv8bBgwcBvLkfI6e/uxqNBjVq1ECNGjXQs2dPdO7cGUuXLlX+GWemREJkkB07dlC7du3IycmJsmbNSt26daOQkBDVWf/p5MmTVKJECdJqtcoaTHV278qSJQtFREQY9Xdynh3ntg+hYr2mF+c2IjV9c+fOpapVq5KFhQUVLlyYJk2aRNevXzdqw/9K1qvhjNmWL18+Wr58eZrPh4WFKf23lXvf+5w7d075a5P0MvbfB1Ner++S2f1L2gzn7u5OJ06cSLF85cqVZG9vT3PmzJHZpYJzGxH/vrcdPHiQevbsSe7u7uTo6EiBgYG0fft2pU2+vr506tQppQ3v4+LiQtbW1qTVailLlizk6uqq9zAF8nrYcJz75LVJSrGxsdSxY0eysLAgjUZDGo2GLC0tqVOnTvT8+XOlbclu3rxJ33//PRUvXpwsLCyocuXKNGfOHNVZmZLc40VkmMaNG+PFixdYtmwZoqOjMW/ePFStWlV1Vqpu3bqFqVOnokSJEihbtiyyZMmi9ExwU5rd+3h7e8PKysqov5Pz7Di3fQgV6zW9OLcBavomTJiAcuXK4eTJkzh79iy+/fZbeHt7G7XhfyXr1XDGbCtdujROnjyZ5vMajUbpDTq5973r5cuXWLNmDRo1aoSSJUsiJibGJK6ONPbfB1Nbr+8js/uXtBmuRIkSevd0SdayZUssXLgQffv2VVD1BufZcW4D+PcBwLfffgtfX1/UrFkTUVFRmDlzJqKjo7F8+XLdzadVGTFiBIYPH46YmBilHWmZMWMG5s+fj8WLF2P27Nn46aef9B5cvb3NcXs9zLkN4N2nss0U9nUDBgxASEgItm7disePH+Px48fYvHkzQkJCMHDgQKVt8+bNQ7Vq1eDj44Nly5ahRYsWiIiIwIEDB9CjRw+lbZmV3ONFZJhnz57B0dFRdcZ7zZs3D0FBQTh06BAKFCiANm3aoHXr1so/lDSF2XHFeXac24T5IiJoNBrVGSITiI6ORnx8vPJ/Q9PCvS/ZX3/9haCgIGzatAmWlpb46quv0KZNG5M8UG8MprJeOeI8O2kz3MaNG7F///40P6wNCgrCggULUj04k9E4z45zG8C/DwAqVaqENm3aoHnz5siWLZvqHD0BAQG4evUqEhIS4O3tDQcHB73nQ0NDFZXx98MPP6R64kdiYiICAwOxcuVKBVVvcG4DePdxbTOFfV22bNmwbt06VK9eXW95cHAwmjdvjgcPHqgJA+Dp6YlWrVqhTZs2KF68uLIO8S858CKM4uXLl3j16pXesrS+s9GYTGGnxHV2qQkPD0fJkiWV3+gsGefZcW57F7f1+jbObQCvvri4OERFRaXY7ooVK6aoKG2c5pYazn2c2961cuVKNGjQIMWHH1yo6rO3t8eXX36JNm3a4IsvvmB1BmRqTGmbA3htdzK7j0faDMe5T9oMx73P2MaOHfve58eMGWOkkv/G7X2ih4cHJk+ejM6dO+uWJSYmomXLljh79iwuXLggbWng3Me57UOo2NfZ29vj5MmTKFiwoN7yc+fOoWzZsnj+/LnRWt4lJ10yZNxvNhOZSWxsLPXu3Zvc3d1Jq9WmeHCQlJSkOiFVpjC71Jw6dYo0Go3SBs6z49z2PhzWa1o4txHx6Lt//z598cUXqW5zXLc7DnN7H859nNve5ejoyPb7rInU9T19+tTov/N/YUrbHBGv7U5m9/FIm+E490mb4VT2nTt3jrZv306bN2/We5iCoKAgio2NNfrv5fw+8dixY+Ti4kJr164lIqKEhARq3LgxFSxYkO7evStt78G5j3Pbh1Cxr6tZsyY1a9aMXrx4oVsWFxdHzZo1o1q1ahm1JS3Pnz+nCxcuUHh4uN5DGJ+l6gM/wnwNGTIEwcHBmDNnDtq2bYtffvkFt2/fxrx58zBlyhTVeQCgOxLM7UxwrrNr0qTJe59/8uSJ8qPrXGfHuY3zeuXcBvDvA4BvvvkGT548wdGjR1G9enVs3LgR9+7dw4QJEzBt2jQlTdznxrmPc9uHIuYXXavqe/srKTmc9WpO2xxg3PUqszMeaTMc5z5pM5yKvmvXrqFx48Y4c+aM3n0YkvdzpnB1X/fu3VGuXDn4+fkZ9fdyfZ8IAGXKlMH69evRqFEjWFtbY9GiRbh69SqCg4ORPXt2aTPRPs5tH0LFvm7GjBmoW7cu8uTJo/vmnPDwcNjY2GDnzp1G73nbgwcP0KFDB+zYsSPV501hP2xu5MCLyDBbt27FsmXLUL16dXTs2BFVqlRB3rx54e3tjRUrVqBNmzaqE9nulLjObuvWrfj000/T/IeYw06c6+w4t3Fer5zbAP59ALB3715s3rwZpUuXhlarhbe3Nz799FM4OTlh8uTJqFevntGbuM+Ncx/nNvFxPH/+HEOHDsWaNWvw6NGjFM8bex3LNmc4mZ0QIjPp168ffH19sWfPHvj6+uLYsWN49OgRBg4ciB9//FF1XrqoOqDG9X1ispo1a2LZsmVo2rQpChYsiJCQEDb38eHcBvDu49zGWdGiRXHlyhWsWLECFy9eBADdLQzs7OyUtnE86TKzkwMvIsPExMTozhRxcnJCTEwMAKBy5cro2bOnyjQdrjslrrMrWLAgmjZtqvc9oG87deoU/vjjDyNX6eM6O4BvG+f1yrkN4N8HvPkQ18PDAwDg6uqKBw8eIF++fChatKiyG4lynxvnPs5t4uPgdtarbHOGk9kJITKTI0eOYO/evciWLRu0Wi20Wi0qV66MyZMno2/fvggLC1OdyBa394lpXbHp7u4OFxcXdOvWTbdsw4YNxsoCwLsN4N3Huc2UTJ48GdmzZ0fXrl31li9evBgPHjzA0KFDFZXxPOkys9OqDhDmy8/PD5GRkQCAAgUKYM2aNQDenM3h4uKisOxfe/fuxfTp0/V2SoGBgZg6dSomT56srIvr7EqVKvXeD2ptbGzg5eVlxKKUuM4O4NvGeb1ybgP49wFA/vz5cenSJQBA8eLFMW/ePNy+fRtz585Fzpw5lTRxnxvnPs5t4uPYunUrfv31VzRt2hSWlpaoUqUKRo4ciUmTJmHFihVG75FtznAyOyFEZpKYmKj7usxs2bLhzp07AABvb2/da1GROm7vE52dnVN91KlTB5988oneMmkznT7ObaZk3rx5KFCgQIrlhQsXxty5cxUU/Su1ky4BKD3pMtNTcmcZkSlMnz6dZs6cSUREu3btIltbW7KxsSGtVkszZsxQXPeGo6MjRUZGEhGRl5cXHTx4kIiIrl27RnZ2dsq6uM7u5cuX9Pz5c2W/Pz24zo5zG+f1yrmNiH8fEdHy5ctpyZIlRER04sQJypYtG2m1WrK1taVVq1YpaeI+N859nNs+VJYsWVjfmFhVn4ODA924cYOIiHLnzk1Hjx4lojevTRwcHIzeY07bHJFx16vMznikzXCc+6TNcCr6KleuTBs3biQiolatWlHdunXp4MGD1K5dOypcuLBRWwylar1yfZ8oBHcq/s7a2NjQtWvXUiyPiIggGxsbo7a8q3Tp0rRjxw4iIqpfvz61bduWbt26RUOGDCE/Pz+lbZmVfNWYyDD9+/fX/Xft2rVx8eJFnDx5Ennz5lV20/p3JZ8J7uPjozsT3MfHR+mZ4ADf2dnY2HzQz0+ZMgU9evQw6lk6XGcH8G3jvF45twH8+wAgMDBQ99+lSpXCjRs3cPHiRXh5eSn7Dl/uc+Pcx7ntQ3l7e8PKykp1RppU9SWf9erl5aU767Vs2bLKzno1p20OMO56ldkZj7QZjnOftBlORd/IkSPx/PlzAMC4cePw5ZdfokqVKnBzc8Pq1auN2mJquL5PFII7Ffs6T09PHDp0CL6+vnrLDx06hFy5chm15V39+vXD3bt3AQBjxoxB3bp1sWLFClhbW+O3335T2pZZaYgU3T1MiP9XtGhRbNu2DZ6enkb/3b///jtev36NDh064OTJk6hbty5iYmJ0O6UWLVoYvelDqJxdejg5OeHUqVO676vlhPPsOLcBvNcr5zaAd5+0GY5zH+c2kbqffvoJFhYW6Nu3L3bv3o369euDiJCQkIDp06ejX79+qhPfS7Y5w8nshBDmJiYmBq6urtBoNLplt27dQq5cuaDV8vvm+yJFimD79u1GfR+WkJCAunXrYu7cufD39zfa702ve/fuYdCgQdizZw/u37+Pdz9CTExMVFTGuw3g3ce5jbupU6di6tSp+OGHH1CzZk0AwJ49ezBkyBAMHDgQ3377reLCf8XFxSk/6TKzkytehHLXr19HQkKCkt/N8UzwD6FydunB+bgu59lxbgN4r1fObQDvPmkzHOc+Tm3h4eEoWbIk2zdyXPpM/axXTtscwGe9pofMLv2kzXCc+6TNcFz7smbNmmJZoUKFlBxkfvz4MdatW4eIiAgMHjwYWbNmRWhoKLJnz47cuXMDAM6ePWvUJgCwsrLC6dOnjf5706tDhw6IiorCqFGjkDNnTr2DaKpxbgN493Fuex8O+7rBgwfj0aNH6NWrF169egUAsLW1xdChQ1kddAEAe3t7lCxZMsVyOdnHeOTAixBvkZ2SEEIIkXG4fbD8Lo593t7e8Pb2TrGc+9WRnHBcr6aC8+ykzXCc+6TNcNz7kqnoPH36NGrXrg1nZ2dcv34dXbt2RdasWbFhwwZERUVh2bJlRm96W2BgIBYtWoQpU6Yo7UjNwYMHceDAAZQoUUJ1Sgqc2wDefZzb/ovqfZ1Go8H333+PUaNG4cKFC7Czs4O/v/8Hf8WsSqpnmJnIgRch0kF2SkIIIcT7NWnS5L3PP3nyROnZdNz7PhT3qyONxdzWqzFxnp20GY5zn7QZjnsfdwMGDECHDh0wdepUODo66pZ/8cUXaN26tcKyN16/fo3Fixdj9+7dKFWqFBwcHPSenz59uqKyN/ez4Pp5COc2gHcf1zZT2tdlyZIFZcqUUZ0hmOP3pZpCCCGEEMLkbN26FS9fvoSzs3OqjyxZskif+OhkvRqO8+ykzTz7pM18+7g7fvw4unfvnmJ57ty5ER0draBI39mzZ1GyZEk4Ojri8uXLCAsL0z1OnTqltG3GjBkYNmwYrl+/rrQjNZzbAN59XNtkXyfMjVzxIoQQQgg2Zw4J01WwYEE0bdoUnTt3TvX5U6dO4Y8//jBy1b+49wnDyHo1HOfZSZvhOPdJm+G493FnY2ODp0+fplh++fJluLu7KyjSFxwcnK6fu3XrFnLlygWt1njnULdo0QJxcXH45JNPYG9vDysrK73nY2JijNbyLs5tAO8+rm2yrxPmRg68CCEyTJUqVWBnZ6c6Q3xknNcr5zaAdx/HS82TcZ4bwLvPmG2lSpVCaGhomm+UbGxs4OXlZZSW1HDvMxfG/vtgTutVZvcvaTMc5z5pMxz3vg+h4mSfBg0aYNy4cVizZo2uISoqCkOHDkXTpk2N3mOoQoUKGf3eszNmzDDa7/pQnNsA3n1c28xpX8eZnHRpPBri/EmLyBSCgoLQsGHDFN9jyomTk5PRX+Ckh8rZRUREYMmSJYiIiMDMmTPh4eGB7du3w8vLC4ULFzZ6z4fivN3JejW9NlPo+y8HDx5EmTJljH5TQO5z49zHrS0+Ph6JiYmwt7c3+u9OD+59H8rR0RHh4eFGfW3CbZsDTGe9yuw+jLQZjnOftBmOe9+HUPHv15MnT/DVV1/hxIkTePbsGXLlyoXo6GhUqFAB27ZtY/meMDUqZieEMZnTvo4z2ZcYj9zjRRjdvXv3MG7cON2fW7duzf6FDpfjk1xmFxISgqJFi+Lo0aPYsGEDYmNjAQDh4eEYM2aM0XvSg8vsUsOljfN65dwG8O9Lzc2bN9GpUyfdnytXrmz0gy7c58a5j2ObjY3NB71JmjJlCh4/fpxxQe/g3scdx20OMI31KrP7cNJmOM590mY47n0f4vz58/D29jbq73R2dsauXbuwdetWzJo1C19//TW2bduGkJAQNu8JTcHLly/x9OlTvQcXnNsA3n2c2sxpX8fZ9u3bkTt3btUZmQMJYWSnTp0irVarOuODHDhwgF6+fKk6g83sypcvT9OmTSMioixZslBERAQRER09epRy586tMi1NXGaXGi5tnNcr5zYi/n2p4bDdcZ8b5z7Obenl6Oio6+aIe9+KFSsoNjbWaL/PHLY5IjXrVWaX8aTNcJz7pM1wnPquXr1KNWrUUJ1hFt7+N8RYYmNjqXfv3uTu7k5arTbFQyXObdz7OLd9CE77Os6ioqKoY8eOqjMyJbnHi/joTp8+/d7nL126ZKQSw928eRNjxozB4sWLAbw5E9wYTGV2Z86cQVBQUIrlHh4eePjwoYIi3rPj3PY2jus1Gec2gGffli1b3vv8tWvXjFSSNo5zexvnPs5t6UVMriZNC7e+e/fuYd68eRg9ejSAN1dHGpM5bHOAmvUqs8t40mY4zn3SZjhOfbGxsQgJCVHaMGvWrFSXazQa2NraIm/evKhatSosLCyMXMbfkCFDEBwcjDlz5qBt27b45ZdfcPv2bcybNw9TpkyRNhPt49z2ITjt6ziLiYnB0qVLdZ9xCuORAy/ioytRogQ0Gk2qO8Dk5dxv5KRqp2Qqs3NxccHdu3fh6+urtzwsLEzZ5YqcZ8e57W0c12syzm0Az75GjRqlud0lU73dcZzb2zj3cW4TGSM6Ohpjx47VHXgxNtnmDCezE0KYs7QOaiS7ffu2kUrS9tNPP+HBgweIi4uDq6srAOCff/6Bvb09smTJgvv378PPzw/BwcHw9PRUXJs2Fa/dt27dimXLlqF69ero2LEjqlSpgrx588Lb2xsrVqxAmzZtjN5kCm3c+zi3iQ9nCiddZlZy4EV8dFmzZsXUqVNRq1atVJ8/d+4c6tevb+QqfVx3SqYwOwBo2bIlhg4dirVr10Kj0SApKQmHDh3CoEGD0K5dOyVNnGfHue1tHNerKbRx7cuZMyd+/fVXNGzYMNXnT506hVKlShm5Sh/HuZlKH+c2YRjuV0fKNmc4mZ0Qwpx98803yJkzJ6ytrVN9/tWrV0YuSmnSpEmYP38+Fi5ciE8++QQAcPXqVXTv3h3dunVDpUqV0LJlS/Tv3x/r1q1TXJs2FWf3x8TE6G7A7eTkhJiYGABvvhWkZ8+eRu95G+c2gHcf5zbx4UzhpMtMy5jfayYyh88++4zGjx+f5vOnTp0ijUZjxKKUNBoNabVa0mg0aT5UfK+lKcyOiCg+Pp66dOlClpaWpNFoyMrKirRaLQUGBtLr16+VNHGeHee2t3Fcr6bQxrWvfv36NGrUqDSf57DdcZybqfRxbksvFd9T/iGM3fe+1ybJy1V+57Y5bHNEarY7mV3GkzbDce6TNsMZs8/Hx4dWr16d5vNhYWHK7xnh5+dHYWFhKZaHhoaSr68vEREdOnSIcuTIYeQyfVeuXKEdO3ZQXFwcERElJSXpPR8VFWX0fzeKFi1K+/btIyKiWrVq0cCBA4mIaObMmcrvU8a5jYh3H+e2D8F9X2wsuXLlok2bNqX5PIf9cGYlV7yIj65Hjx54/vx5ms97eXlhyZIlRixKieuZ4KYwOyJCdHQ0Zs2ahdGjR+PMmTOIjY1FQEAA/P39lXVxnh3ntmRc1yv3Ns59gwcPfu92lzdvXgQHBxuxSB/XuZlCH+c2YTjOV0fKNmc4mZ0QwtyVKlUKJ0+eRPPmzVN9/r/OwjaGu3fv4vXr1ymWv379GtHR0QCAXLly4dmzZ8ZOAwA8evQILVq0wN69e6HRaHDlyhX4+fmhc+fOcHV1xbRp0wBAydegdezYEeHh4ahWrRqGDRuG+vXrY/bs2UhISMD06dON3mMqbdz7OLeJD5e8H07rM04O++FMS9EBHyGUMoUzwblKTEwkKysrunz5suoU8RFxXq+c24j496XXzZs3KTEx0Wi/j/vcOPdxbvsQn3/+Od25c0d1RpqM3cf56khz2eaIjL9eZXbGIW2G49wnbYYzZt+5c+fo+PHjaT7/6tUrun79ulFa0vLFF19QyZIlKTQ0VLcsNDSUSpUqRfXq1SMioi1btlCRIkWU9LVt25bq1KlDN2/e1DuDf8eOHVSoUCElTWm5fv06rV+/nsLDw1WnpMC5jYh3H+e29+G+LzaW/fv30/bt29N8PjY2VneFkzAureoDP0I4OTkZ/Z4qgwcPRsWKFdN8XvWZ4OmlYnZarRb+/v549OiRUX/vx6Zidukl61Uf5zaAf196FSpUCNevXzfa7+M+N859nNuSRUREYOTIkWjVqhXu378PANi+fTvOnTun+5lt27YhZ86c0vf/evToAR8fnzSfV3l1pClscwDP9SqzkzbZ10mbufcVKlQIpUuXTvN5KysreHt76/586NAhxMfHGyNNZ9GiRciaNStKlSoFGxsb2NjYoHTp0siaNSsWLVoEAMiSJYvuyhJj27lzJ77//nvkyZNHb7m/vz9u3LihpAkAEhISUKtWLVy5ckW3zNvbG02aNEGxYsWUdQG82wDefZzb3sZtX8dZlSpVULdu3TSfd3BwQLVq1XR/vnXrFpKSkoyRlunJgRehHCm43M1cdkoqZgcAU6ZMweDBg3H27Fklv/9jUDW79JD1mhLnNoB/X3qo2O64z41zH+e2kJAQFC1aFEePHsWGDRsQGxsLAAgPD8eYMWMU1/Hta9y4MQIDA9N83tXVFe3btzdikT7O2xzAd70CMjtpU4Nzn7QZjntfenz++ee4ffu2UX9njhw5sGvXLpw/fx5r167F2rVrcf78eezcuRPZs2cHANSoUQOfffaZUbuSPX/+HPb29imWx8TEwMbGRkHRG1ZWVjh9+rSy3/8+nNsA3n2c25KZw76OM2OfdJmpKb3eRggyjZthOTo6smxUNTsXFxeytrYmrVZLtra25OrqqvcwBZy3O1mvptVmCn3poWK74z43zn2c28qXL0/Tpk0jIv3t6ujRoyxu1sm9L72M/dqE8zZHxHu9yuwMJ22G49wnbYbj3pcenN+HqfL555/TyJEjiejNfK5du0aJiYnUrFkzatq0qdK2b775hoYOHaq0IS2c24h493FuIzKPfR1nsh82HkvVB36EMAXE+OoIFWbMmKE6QWQAzuuVcxvAv48r7nPj3Me57cyZMwgKCkqx3MPDAw8fPlRQpI97X3oZ+7UJ520O4L1eZXaGkzbDce6TNsNx7+Ps1q1b2LJlC6KiovDq1Su951TfTHzq1KmoVasWTpw4gVevXmHIkCE4d+4cYmJicOjQIaVtr1+/xuLFi7F7926UKlUKDg4Oes+rnB3nNoB3H+c2QPZ1wnzIgRchxAdT+VUnIuNwXq+c2wD+fVxxnxvnPs5tLi4uuHv3Lnx9ffWWh4WFIXfu3Iqq/sW9jyvO2xzAe73K7AwnbYbj3CdthuPex9WePXvQoEED+Pn54eLFiyhSpAiuX78OIkLJkiVV56FIkSK4fPkyZs+eDUdHR8TGxqJJkybo3bu38vtXnD17Vjejy5cv6z2n0WhUJOlwbgN493FuA2RfJ8yHHHgRynHYqZsqVbOLiop67/NeXl5GKjEc5+1O1mtKnNsA/n3poWK74z43zn2c21q2bImhQ4di7dq10Gg0SEpKwqFDhzBo0CC0a9dOWZep9HHFeZsDeK9XmZ20SZ+0ZZY+rr799lsMGjQIY8eOhaOjI9avXw8PDw+0adPmvfd+NSZnZ2eMGDFCdUYKwcHB6fq5W7duIVeuXNBqjXcrac5tAO8+zm2A7OuEGVH8VWdCmMR3C3JtVNWl0WhIq9Wm+TAFXNcpkaxXU2szhb70ULHdcZ8b5z7ObfHx8dSlSxeytLQkjUZDVlZWpNVqKTAwkF6/fq20zRT60svYf2c5b3NEvNerzE7apE/aMktfeqi4f2qWLFno6tWrRPTmvltnz54lIqJTp06Rt7e3UVvS8uLFCzp69Cht3bqVNm/erPcwBVzvi0vEu42Id5+qNnPY13HGeZszNxoiuXmFyBjjxo3DoEGDYG9vr7f8xYsX+OGHHzB69GgAwMGDB1GmTBnY2NioyEwXJycnnDp1Cn5+fkb5fdxnFx4ervfnhIQEhIWFYfr06Zg4cSKaNGli1J63cZ4d5zaA93rl3Abw7uvUqRNmzpwJR0dHveXPnz9Hnz59sHjxYgDAzZs3kStXLlhYWBitjfPcAN59XNuICDdv3oS7uzsePnyIM2fOIDY2FgEBAfD391fSZEp9H8LYr024bnMA//Uqs5M26ZO2zNCXXo6OjggPDzfav18AkCNHDgQHB6NgwYIoVKgQpkyZggYNGiA8PByVKlVCbGys0VpSs2PHDrRr1y7Ve1doNBokJiYqqPowKtZrenFuA3j3qWgzl30dZ5y3ObOj5HCPyBS0Wi3du3cvxfKHDx+yOLvvQxj7rFJTnd0ff/xB1apVU9rAeXac296Hw3pNC+c2Ih59aW13Dx48IAsLCwVF/43D3N6Hc5/qtsTERLKysqLLly8ra3gf7n0fgsuVm6q3OSLTXa8yu/eTNsNx7pM2w3Hvq1GjBv3zzz8plj958oRq1Khh/KC3NGzYkObPn09ERAMHDqS8efPShAkTqGTJklSrVi2lbUREefPmpV69elF0dLTqFINxeV2SGs5tRLz7VLRx39dx1rFjR3r69GmK5bGxsdSxY0fdn6OiouTKISMx7pf0iUyFiFK9Z0B4eDiyZs2qoCilTp064dmzZymWP3/+HJ06ddL9+fz58/D29jZalynMLjX58+fH8ePHlTZwnh3ntvfhsF7TwrkNUNv39OlTPHnyBESEZ8+e4enTp7rHP//8g23btsHDw0NJ23+R9Wo41W1arRb+/v549OiRsob34d4HvLk6Mi4uLsXyFy9eYNy4cbo/b9++ncXNRVVvc4BprNfUyOzeT9oMx7lP2gzHvW/fvn149epViuUvX77EgQMHFBT9a/r06ShXrhwAYOzYsahVqxZWr14NHx8fLFq0SGkbANy7dw8DBgxA9uzZVacIoRz3fR1nS5cuxYsXL1Isf/HiBZYtW6b7s6enp1G/6SJTU3rYR5glFxcXcnV1Ja1Wq/vv5IeTkxNptVrq1auX6kwi4ncmuKnM7smTJ3qPx48f04ULF6hFixZUvHhxJU2cZ8e57W0c16sptHHt+697ClhYWNCECROUtCXjODdT6ePctmXLFqpcuTKdOXNGaUdauPdxvTqS8zZHxHu9yuwMJ22G49wnbYbj2BceHk7h4eGk0WgoODhY9+fw8HAKDQ2lSZMmsbmPyn8JCgqi2NhYo//ejh070sKFC43+ez8muWrDcJz7VLVx3Ndxlvz6UqPR0NWrV/Ved8bExNDSpUspZ86cqjMzJbnHi/joli5dCiJCp06dMGPGDDg7O+ues7a2ho+PDypUqKCw8M2Z4EQEV1dXXLlyBe7u7rrnEhMTsXXrVgwbNgx37twxapcpzA54cwbCu1duEBE8PT2xatUqJY2cZ8e57W0c12syzm0Az76QkBAQEWrWrIn169frXVVlbW0Nb29v5MqVy+hdb+M4t7dx7uPc5urqiri4OLx+/RrW1taws7PTez4mJkZR2Rvc+7RaLe7du6f32gQA9u7dixYtWuDBgwfKurhucwDv9SqzM5y0GY5zn7QZjmPf2/u41D5esrOzw88//6z3jRJcGfv+acni4uLQrFkzuLu7o2jRorCystJ7vm/fvkbtMYSq2aUH5zaAd5+qNo77Os5Se635No1Gg7Fjx2LEiBFGrBIAYKk6QJif9u3bAwB8fX1RqVIlWFry28xcXFyg0Wig0WiQL1++FM8n75SMzRRmBwDBwcF6f9ZqtXB3d0fevHmVNXOeHee2t3Fcr8k4twE8+6pVqwYAiIyMhJeX13tfiKnCcW5v49zHuW3GjBlKf/9/4drn6uqq99rk7b+ziYmJiI2NRY8ePZT1cd7mAL7rFZDZ/S+kzXCc+6TNcBz7IiMjQUTw8/PDsWPH9E4csLa2hoeHh8l8pY2q85JXrlyJnTt3wtbWFvv27dN7DaDRaEziwAvnc7o5twG8+1S1cdzXcRYcHMz+pMvMSq54ERkqIiICS5YsQUREBGbOnAkPDw9s374dXl5eKFy4sLIuUzgTnOvsAGD//v2oWLFiig8LXr9+jcOHD6Nq1aqKyt7gPDvObZzXK+c2gH/fgQMHMG/ePFy7dg1r165F7ty5sXz5cvj6+qJy5crKurjPjXMf5zZhGO5XR8o2ZziZnRBCmAZHR0eEh4cb/ez+HDlyoG/fvhg2bBi0Wp63Yr569SoiIiJQtWpV2NnZpbh/6c2bN5ErVy4lB9k4t3Hv49wmPtyNGzfYnnSZWcmBF5FhQkJC8Pnnn6NSpUrYv38/Lly4AD8/P0yZMgUnTpzAunXrVCey3Slxn52FhQXu3r2b4sbcjx49goeHBxITExWV8Z4d5zaA93rl3Abw7lu/fj3atm2LNm3aYPny5Th//jz8/Pwwe/ZsbNu2Ddu2bVPWxnluAO8+zm1RUVHvfd7Ly8tIJanj3hcSEsLy6kjO2xzAe73K7AwnbYbj3CdthuPet3z5csydOxeRkZE4cuQIvL298dNPP8HPzw8NGzZU2pYeqg68ZM2aFcePH8cnn3xi1N+bHo8ePUKLFi2wd+9eaDQaXLlyBX5+fujUqRNcXV0xbdo0aTPBPs5tAP99HWdcT7rMtDL4HjIiEytfvjxNmzaNiPRvyHX06FHKnTu3yjQ9+/fvpzZt2lCFChXo1q1bRES0bNkyOnDggLIm7rPTaDR0//79FMsvXbpEjo6OCor+xXl2nNuIeK9Xzm1EvPtKlChBS5cuJSL97S40NJSyZ8+uMo313Ih493Fv02q1aT5U495HRHT16lUaMWIEtWzZku7du0dERNu2baOzZ88qa+K8zRHxXq8yO2mTPmnLDH2//vorZcuWjSZMmEB2dna615xLliyh6tWrK21LL1U3Ev/mm29o4sSJRv+96dG2bVuqU6cO3bx5U28+O3bsoEKFCknbe3Du49xGxHtfx9m6devIzs6OunTpQjY2Nrr1+vPPP9Pnn3+uuC5z4nUqnTArZ86cQVBQUIrlHh4eePjwoYKilN4+Ezw0NBTx8fEAgCdPnmDSpEnKzgTnOrsmTZoAePM9sx06dICNjY3uucTERJw+fRoVK1ZUlQeA7+wAvm2c1yvnNoB/HwBcunQp1a+xcXZ2xuPHj40fBP5z49zHuS1ZWFiY3p8TEhIQFhaG6dOnY+LEiYqq/sW9792rIydOnAgPDw+Eh4dj0aJFRr860hS2OYDnepXZ/e+kzXCc+6TNcJz7fv75ZyxYsACNGjXClClTdMtLly6NQYMGKSzjLzExEVOnTsVff/2FYsWKwcrKSu/56dOnKyoDdu7cib/++gt58uTRW+7v748bN24oqnqDcxvAu49zG8B7X8fZhAkTMHfuXLRr1w6rVq3SLa9UqRImTJigsCzzkgMvIsO4uLjg7t278PX11VseFhaG3LlzK6rSx3WnxHV2yd83T0RwdHSEnZ2d7jlra2uUL18eXbt2VZUHgO/sAL5tnNcr5zaAfx/w5jujr169Ch8fH73lBw8eNPrXKCTjPjfOfZzbkhUvXjzFstKlSyNXrlz44YcfdB9Gq8K9b9iwYZgwYQIGDBgAR0dH3fKaNWti9uzZRu8xhW0O4LleZXb/O2kzHOc+aTMc577IyEgEBASkWG5jY4Pnz58rKPpw7u7uKQ56GMOZM2d0szt79qzec6q/Fv358+ewt7dPsTwmJkbvhAIVOLcBvPs4twG893WccTzpMtNTdq2NMHsDBw6kypUr0927d8nR0ZGuXLlCBw8eJD8/P/ruu+9U5xERkZ2dHUVGRhKR/mXFERERZGNjo6yL++y+++47io2NVZ2RKs6z49xGxHu9cm4j4t03adIkKlSoEP3999/k6OhIBw4coN9//53c3d1p1qxZSts4z42Idx/ntrRcuXKF7O3tVWekiUufg4MDXbt2jYj0X5tERkYqfW1iitscEY/1KrP7+KTNcJz7pM1wHPoKFixImzZtIiL9f79mzZpFAQEBKtPSTdVXjXH2+eef08iRI4nozXyuXbtGiYmJ1KxZM2ratKm0vQfnPs5t78NhX8eZr68v7dq1i4j092dLly6lggULqkzLtOTAi8gw8fHx1KVLF7K0tCSNRkNWVlak1WopMDCQXr9+rTqPiPjulExhdlxxnh3nNmG+kpKSaMKECeTg4EAajYY0Gg3Z2trqXmgL8bE9efJE7/H48WO6cOECtWjRgooXL646j31f7ty56dChQ0Sk/9pkw4YN5OfnpzKNNe7rlTPOs5M28+yTNvPsW7BgAeXOnZtWrVpFDg4OtHLlSt1r0JUrVyptSy8OB15u3rxJN2/eVNrwtjNnzpCHhwfVrVuXrK2t6auvvqKCBQtS9uzZ6erVq9Jmon2c24h47+s443zSZWalISJSfdWNMG9RUVE4e/YsYmNjERAQAH9/f9VJOpMnT8bvv/+OxYsX49NPP8W2bdtw48YN9O/fH6NGjUKfPn2U9nGe3bp167BmzRpERUXh1atXes+FhoYqqvoX59lxbuO8Xjm3Afz7Xr16hatXryI2NhaFChVClixZVCcB4D83zn1c27RabYqvxSAieHp6YtWqVahQoYKisje49w0aNAhHjx7F2rVrkS9fPoSGhuLevXto164d2rVrhzFjxihr47rNAfzXq8zOMNJmOM590mY47n0rVqzAd999h4iICABArly5MHbsWHTu3FlpV3o5OjoiPDzc6F/Hm5SUhAkTJmDatGmIjY3VtQwcOBAjRoyAVqs1as+7njx5gtmzZyM8PByxsbEoWbIkevfujZw5cyrt4t4G8O7j3MZ9X8cVEWHSpEmYPHky4uLiALz5usdBgwZh/PjxiusyJ7nHi8hwXl5e8PLyUp2RqmHDhiEpKQm1atVCXFwcqlatqtspqT7oAvCd3axZszBixAh06NABmzdvRseOHREREYHjx4+jd+/eqvMA8J0dwLeN83rl3GYKfcCb+wkUKlRIdYYe7nPj3Me5LTg4WO/PWq0W7u7uyJs3Lywt1b/05N43adIk9O7dG56enkhMTEShQoWQmJiI1q1bY+TIkcq6OG9zAO/1KrMznLQZjnOftBmOe1+bNm3Qpk0bxMXFITY2Fh4eHqqTTMKIESOwaNEiTJkyBZUqVQLw5n6M3333HV6+fKn8ZuLOzs4YMWKE0oa0cG4DePdxbuO+r+NKo9FgxIgRGDx4MMuTLjMjueJFZJgBAwakulyj0cDW1hZ58+ZFw4YNkTVrViOXpcTtTHDusytQoADGjBmDVq1a6Z0VNHr0aMTExCi5+W8yzrPj3AbwXq+c27j3NW7cONWbcr693bVu3Rr58+c3ehvnuXHv49y2f/9+VKxYMcWbotevX+Pw4cOp3vDRmLj3JeN2dSTnbQ7gvV5ldoaTNsNx7pM2w3HvM3WqrnjJlSsX5s6diwYNGugt37x5M3r16oXbt28bteddL1++xOnTp3H//n0kJSXpPfdus7FxbgN493Fuk32dMBdy4EVkmBo1aiA0NBSJiYm6D/QuX74MCwsLFChQAJcuXYJGo8HBgwfZnYWtGvfZ2dvb48KFC/D29oaHhwd27dqF4sWL48qVKyhfvjwePXpk9KZknGfHuQ3gvV45t3Hv69ChAzZt2gQXFxeUKlUKwJuvtXn8+DE+++wzhIeH4/r169izZ4/uDDtj4Tw37n2c2ywsLHD37t0UZ7k+evQIHh4eSExMVFT2Bvc+rjhvcwDv9SqzM5y0GY5zn7QZjnNfQEDAf57s06FDB9SoUUNBXfqoOvBia2uL06dPI1++fHrLL126hBIlSuDFixdG7Xnbjh070K5dOzx8+DDFcxqNRuk2x7kN4N3HuQ3gva/jjPNJl5mV2i+KFGatYcOGqF27Nu7cuYOTJ0/i5MmTuHXrFj799FO0atUKt2/fRtWqVdG/f39ljY0bN0aTJk1SPJo2bYo2bdpgzJgxuHTpktG7uM8uR44ciImJAfDma7P+/vtvAEBkZCRUH8vlPDvObQDv9cq5DeDdlyNHDrRu3RrXrl3D+vXrsX79ekRERCAwMBCffPIJLly4gPbt22Po0KFK2rjODeDdx7mNiFJ9wf/o0SM4ODgoKNLHvW/AgAGpPpK/533JkiW6dW9MnLc5gPd6ldkZTtoMx7lP2gzHua9u3bq4du0aHBwcUKNGDdSoUQNZsmRBREQEypQpg7t376J27drYvHmz0s738fb2hpWVldF/b/HixVO9+nH27NkoXry40Xve1qdPHzRr1gx3795FUlKS3kP1h9+c27j3cW4DeO/rOHN2dsbevXsRGhoKjUYDjUaDsLAw7N27F69fv8bq1atRvHhxHDp0SHVqpiFfjCcyzA8//IBdu3bByclJt8zZ2RnfffcdPvvsM/Tr1w+jR4/GZ599pqzR2dn5vWeCr169Gt9//73RzwTnPruaNWtiy5YtCAgIQMeOHdG/f3+sW7cOJ06cQJMmTZQ0JeM8O85tAO/1yrmNe9+iRYtw6NAhvZtyarVa9OnTBxUrVsSkSZPw9ddfo0qVKkZv4zw37n0c25J/r0ajQYcOHWBjY6N7LjExEadPn0bFihWVtAH8+5KFhYW99+rIX3/9FQMHDjT61ZEctznANNarzE7ajIlzn7QZjnsfADx8+BADBw7EqFGj9JZPmDABN27cwM6dOzFmzBiMHz8eDRs2VFT5xr179xAfH5/ivptnz55V0jN16lTUq1cPu3fv1t00/MiRI7h58ya2bdumpCnZvXv3MGDAAGTPnl1pR2o4twG8+7i2mcK+jrPkky5nz56te/+flJSEfv36wdHREatWrUKPHj0wdOhQHDx4UHFt5iAHXkSGefLkCe7fv5/iQ4EHDx7g6dOnAAAXFxe8evVKRR4Avjsl7rObP3++7jtAe/fuDTc3Nxw+fBgNGjRA9+7dlTQl4zw7zm0A7/XKuQ3g3ff69WtcvHgxxVcXXLx4UXc2k62tbapnFGU0znMDePdxbHN2dgbw5gw1R0dH2NnZ6Z6ztrZG+fLl0bVrVyVtAP++ZMn3+lqyZInuQP2TJ0/QpUsXVK5cGV27dkXr1q3Rv39//PXXX0br4rjNAaaxXmV20mZMnPukzXDc+wBgzZo1OHnyZIrlLVu2RKlSpbBgwQK0atUK06dPN1rTs2fP0LNnTxw4cADVq1fHggUL0L9/f8yZMwcajQaVK1fG1q1b9U6MU6FatWq4dOkSfv31V1y8eBHAmw+ge/XqhVy5cilt++qrr7Bv3z588sknSjtSw7kN4N3Htc0U9nWccT7pMrOSe7yIDNOmTRscOXIE06ZNQ5kyZQAAx48fx6BBg1CxYkUsX74cq1atwo8//ogTJ04oaXR3d8ehQ4dSfCB5+fJlVKxYEQ8fPsSZM2dQpUoVPH782GhdpjA7rjjPjnObMF99+/bFypUrMXz4cL3tbtKkSWjdujVmzpyJhQsX4rfffpOzXsRHMXbsWAwaNIjt1wBw78udOzd27dqV4iD9uXPn8Nlnn+H27dsIDQ3FZ599lur3cmdW3NcrZ5xnJ22G49wnbYbj3Jc9e3b88MMPaNeund7yZcuWYfDgwbh37x7Onz+PatWq4cGDB0Zp6tOnD3bv3o1evXphw4YNcHZ2RkREBObOnYvExET07NkTjRo1wsSJE43SY4ri4uLQrFkzuLu7o2jRoim+iq1v376Kyni3Abz7OLcBvPd1nLm6umLp0qVo0KCB3vItW7agffv2+Oeff3DlyhWULVsW//zzj6LKTIaEyCDPnj2jLl26kLW1NWm1WtJqtWRtbU1du3al2NhYIiIKCwujsLAwZY0uLi60efPmFMs3b95MLi4uRER0+fJl3X8biynMbv/+/dSmTRsqX7483bp1i4iIli1bRgcOHFDWRMR7dpzbknFdr0S824j49r1+/ZomTJhAOXLkII1GQxqNhnLkyEETJ06k169fExHRjRs36ObNm0r6uM4tGec+zm3CcA4ODhQcHJxieXBwMGXJkoWIiCIiIsjR0dHIZbLN/S9kdkIIczd+/Hiys7Ojvn370vLly2n58uXUt29fsre3pwkTJhAR0fTp06l27dpGa/L09KS9e/cSEdHt27dJo9HQ1q1bdc//8ccflD9/fqP1pGXx4sW0Zs2aFMvXrFlDv/32m4Kify1cuJAsLS0pS5Ys5O3tTT4+PrqHr6+vtJloH+c2Ybg+ffpQtmzZaPr06XTgwAE6cOAATZ8+nbJly0Z9+/YlIqIFCxZQpUqVFJdmHnLgRWSI169fU0hICMXExNCzZ88oPDycwsPD6dmzZ6rT9HDcKZnC7NatW0d2dnbUpUsXsrGxoYiICCIi+vnnn+nzzz9X1sV5dpzbknFdr9zbiPj2JSQk0NKlSyk6OpqIiJ48eUJPnjxR1vMurnNLxrmPcxsR0dq1a6lZs2ZUrlw5CggI0HtwwLmvdevW5OvrSxs2bKCbN2/SzZs3acOGDeTn50eBgYFERLRy5UoqVaqUUbu4b3NEfNerzE7aVOHcJ22G49z3+++/U/ny5cnV1ZVcXV2pfPnytGLFCt3zcXFx9OLFC6P12NjYUFRUlO7P9vb2dOnSJd2fr1+/Tvb29kbrSYu/v7/uANHb9u3bR/ny5VNQ9K/s2bPTxIkTKTExUWlHaji3EfHu49yWjPO+jivuJ11mRnLgRWQYGxsbunbtmuqM9+K6U+I+uxIlStDSpUuJiChLliy6DxBCQ0Mpe/bsKtNYz45zGxHv9cq5jYh3n52dHV2/fl1pQ1o4z42Idx/ntpkzZ1KWLFno66+/Jmtra+revTvVrl2bnJ2dafjw4UrbTKGP69WRnLc5It7rVWYnbdInbebel5CQQGPHjmX3YV6uXLno5MmTuj+3atWK7t27p/vz2bNnydXVVUWaHhsbG4qMjEyxPDIykmxtbY0f9BZXV1e6evWq0oa0cG4j4t3HuY2I776OM+4nXWZWcuBFZJhSpUrR7t27VWekifNOifvs7OzsdC8M3/4AISIigmxsbBSW8Z4d5zYi3uuVcxsR775q1arRxo0blTakhfPciHj3cW7Lnz8/BQUFEZF+26hRo6h3794q04iIdx/nqyM5b3NEvNerzM5w0mY4zn3SZjjOfQ4ODqkePFCpbt26NHfu3DSfX7JkCVWsWNGIRanz9PRM9SvQN23aRLlz51ZQ9K9vvvmGJk6cqLQhLZzbiHj3cW4j4r2v44zzSZeZlaXqe8wI8zVhwgQMGjQI48ePR6lSpVLcFMvJyUlR2RuWlpbo0aMHLly4wKLnbdxnlyNHDly9ehU+Pj56yw8ePAg/Pz81Uf+P8+w4twG81yvnNoB3X69evTBw4EDcunUr1e2uWLFiisp4zw3g3ce5LSoqChUrVgQA2NnZ4dmzZwCAtm3bonz58pg9e7bKPNZ9FhYW+Oyzz3DhwgX4+voq/fv5Ls7bHMB7vcrspE0Fzn3SZjjOfbVq1UJISEiKfZ1KK1asgFarRVRUFDw9PaHRaPSez549O7p166ao7l+tWrVC37594ejoiKpVqwIAQkJC0K9fP7Rs2VJpW2JiIqZOnYq//voLxYoVS3ET9unTpysq490G8O7j3Abw3tdxVrZsWYSFhcHb21t1ivh/cuBFZJgvvvgCANCgQQO9FzhEBI1Gg8TERFVpOlx3Stxn17VrV/Tr1w+LFy+GRqPBnTt3cOTIEQwaNAijRo1S2sZ5dpzbAN7rlXMb977kN2t9+/bVLdNoNCy2O85z497HuS1HjhyIiYmBt7c3vLy88Pfff6N48eKIjIwEESltM4W+IkWK4Nq1a/D19VWdoofzNgfwXq8yO2mTPmnLDH2ff/45hg0bhjNnzqR6sk+DBg2M3pQ1a1YAgJubG+7evQsPDw+958uWLQsPDw+0b9/e6G1vGz9+PK5fv45atWrB0vLNx3RJSUlo164dJk2apLTtzJkzCAgIAACcPXtW77l3D2QZG+c2gHcf5zaA976OM84nXWZaxr/IRmQW+/bte++Dg9WrV5Ofnx/9/PPPdPjwYd1XeiQ/VOE4u/DwcL0br02YMIEcHBx098axtbWlkSNHKml7G8fZcW7jvF45t5lCX7Lr16+/92Fs3OfGuY9z29s6d+5M3333HRERzZ49m+zs7Kh27drk4uJCnTp1UlzHv2/79u1UokQJ2rp1K925c0f3VagqvhLVVLY5In7rVWYnbapx7pM2w3HuS96/pfbQarXK2+7fv59i+fXr18ne3l5BUeouXbpEa9asoa1bt8rXBYlMjfO+jrO09r8c9sOZlYZIDhWKzEur1aZYxuVMcG4sLCx0Zwn5+fnh+PHjcHR0xNWrVxEbG4tChQohS5YsqjPFB+K8Xjm3mUIfV9znxrmPc9vbkpKSkJSUpDtjc9WqVTh8+DD8/f3RvXt3WFtbS997vP3aRPXVkaayzQH81qvMTtpU70s490mb+fZxM2DAAADAzJkz0bVrV9jb2+ueS0xMxNGjR2FhYYFDhw6pSjQpt27dAgDkyZNHcUlKnNsA3n0c22RfZ5gbN26893lu3/aTGciBF5Hh4uLiEBUVhVevXukt53CJG/edEqfZubm5Ydu2bShXrhy0Wi3u3bsHd3d3o3ekF6fZvYtTG+f1yrkN4N/3rvPnz6e63Rn7ax+4z41zH+c28fGEhIS89/lq1aoZqUS2uf+FzE4IIdSrUaMGgDf/tlaoUEHvw1pra2v4+Phg0KBB8Pf3V5UI4M1BoN9++w179uzB/fv3kZSUpPf83r17FZW9+QB8woQJmDZtGmJjYwEAjo6OGDhwIEaMGJHqyazSxr+Pc5sQ5kTu8SIyzIMHD9CxY0ds37491ec5XE2i+sBKWjjOrmnTpqhWrRpy5swJjUaD0qVLw8LCItWfvXbtmpHr/sVxdsk4tnFer5zbAP59b//uxo0b48yZM7or+oB/z6Q39nbHfW6c+zi3vevAgQOYN28eIiIisG7dOuTOnRvLly+Hr68vKleurLSNe58xD6z8F1Pa5gBe61VmJ22q27j3SZt59j1//hwhISGpnuzz9v0GjSU4OBgA0LFjR8ycORNOTk5Gb0iPfv364bfffkO9evVQpEgRFvfYSDZixAgsWrQIU6ZMQaVKlQAABw8exHfffYeXL19i4sSJ0maCfZzbknHe13HH5aRLIQdeRAb65ptv8PjxYxw9ehTVq1fHxo0bce/ePd1RdU647ZQ4zm7+/Plo0qQJrl69ir59+6Jr165wdHRU0vI+HGfHuY3zeuXcBvDvS9avXz/4+vpiz5498PX1xbFjx/Do0SMMHDgQP/74o9F7uM+Ncx/ntretX78ebdu2RZs2bRAWFob4+HgAwJMnTzBp0iRs27ZN+tKBw9WRprLNAfzWq8xO2lTvSzj3SZt59oWFheGLL75AXFwcnj9/jqxZs+Lhw4ewt7eHh4eHkgMvyZYsWaLsd6fHqlWrsGbNGnzxxReqU1JYunQpFi5cqPfZSLFixZA7d2706tVL6Qf0nNsA3n2c2wDe+zrOuJ10KQCou72MMHc5cuSgo0ePEhGRo6MjXbp0iYiINm/eTJUqVVKZphMREUHFihXTu+FU8n+rvPEU99l16NCBnj59qjojVZxnx7mNiPd65dxGxLvPzc2NwsPDiYjIycmJLl68SEREe/bsoRIlSqhMYz03It59nNtKlChBS5cuJSKiLFmyUEREBBERhYaGUvbs2VWmERH/vvv371O9evV0r0XefajCeZsj4r1eZXaGkzbDce6TNsNx7qtWrRp17dqVEhMTdW1RUVFUtWpVWr9+vdI27nLmzKl7b8iNjY1Nqm0XL14kW1tbBUX/4txGxLuPcxsR730dZ19++SU1bNiQHjx4QFmyZKHz58/TgQMHqGzZsrR//37VeZmSfGmfyDDPnz+Hh4cHAMDV1RUPHjwAABQtWhShoaEq03SSzwS/f/8+7O3tce7cOezfvx+lS5fGvn37lHVxn92SJUvYnrXJeXac2wDe65VzG8C7LzExUdeWLVs23LlzB8Cbr1q8dOmSyjTWcwN493Fuu3TpEqpWrZpiubOzMx4/fmz8oHdw73v76kg7Ozvs2LEDS5cuhb+/P7Zs2aKsi/M2B/BerzI7w0mb4Tj3SZvhOPedOnUKAwcOhFarhYWFBeLj4+Hp6YmpU6di+PDhStu4GzhwIGbOnKk7O52T4sWLY/bs2SmWz549G8WLF1dQ9C/ObQDvPs5tAO99HWdHjhzBuHHjkC1bNmi1Wmi1WlSuXBmTJ09WetVhZiZfNSYyTP78+XHp0iX4+PigePHimDdvHnx8fDB37lzkzJlTdR6ANzulvXv3prlTCgsLU9JlCrPjivPsOLcJ81WkSBGEh4fD19cX5cqVw9SpU2FtbY358+fDz89PdZ4wQzly5MDVq1fh4+Ojt/zgwYMstjnufXv37sXmzZtRunRpaLVaeHt749NPP4WTkxMmT56MevXqqU5kift65Yzz7KTNcJz7pM1wnPusrKx0N+T28PBAVFQUChYsCGdnZ9y8eVNpG3cHDx5EcHAwtm/fjsKFC8PKykrv+Q0bNigqA6ZOnYp69eph9+7dqFChAoA3n6PcvHlT+dc9cW4DePdxbgN47+s4S+2ky/z587M46TKzkiteRIbp168f7t69CwAYM2YMtm/fDi8vL8yaNQuTJk1SXPcG1zPBTWF2XHGeHec2Yb5GjhyJpKQkAMC4ceMQGRmJKlWqYNu2bZg5c6biOmGOunbtin79+uHo0aPQaDS4c+cOVqxYgUGDBqFnz56q89j3cb86kivu65UzzrOTNvPskzbz7AsICMDx48cBANWqVcPo0aOxYsUKfPPNNyhSpIjSNu5cXFzQuHFjVKtWDdmyZYOzs7PeQ6Vq1arh0qVLaNy4MR4/fozHjx+jSZMmuHTpEqpUqSJtJtrHuQ3gva/jLPmkSwC6ky4PHTqEcePGyQErVVR/15nIPJ4/f04nT56kBw8eqE7RqVy5Mm3cuJGIiFq1akV169algwcPUrt27ahw4cJq497CcXamgvPsOLcJ8/bo0SNKSkpSnSHMSHh4OCUmJur+PGHCBHJwcNDdO83W1pZGjhwpfelQunRp2rFjBxER1a9fn9q2bUu3bt2iIUOGkJ+fn+I6XkxpvXLDeXbSZp590ma+fcmOHz9Oe/fuJSKie/fuUZ06dcjR0ZFKlixJYWFhauOEEOyZyr6Osx07dujuqXXlyhXKnz8/aTQaypYtG+3evVtxXeYkB15Ehhk7diw9f/48xfK4uDgaO3asgqKUuO6UTGF2XHGeHec2Yb46duyY6k2dY2NjqWPHjgqKhDnSarV07949IiLy9fWlhw8fUnx8PJ07d46OHj1Kz549k750Wr58OS1ZsoSIiE6cOEHZsmUjrVZLtra2tGrVKrVxzJjSeuWG8+ykzTz7pM18+4R5W7x4Ma1ZsybF8jVr1tBvv/2moOhfnNuIePdxbJN9XcaQky7VkgMvIsO8vdN828OHD0mr1SooSh8OOyVTnR0HnGfHuU2Yr7S2uwcPHpCFhYWCImGOsmbNSn///TcREWk0Grp//77iIn3c+95Hro5MmymvV9U4z07aDMe5T9oMx70vWY0aNeiff/5JsfzJkydUo0YN4wcxFxAQQDExMUREVKJECQoICEjzoZK/v7/uSqa37du3j/Lly6eg6F+c24h493FsM5V9HWdy0iU/lqq/6kyYLyKCRqNJsTw8PBxZs2ZVUJRSp06dMHPmTN19XgAga9aseP78Ofr06YPFixcr6TKF2XHFeXac24T5efr0KejNCRZ49uwZbG1tdc8lJiZi27ZtuvtICPG/atq0KapVq4acOXNCo9GgdOnSsLCwSPVnr127ZuQ6/n1vGzduHAYNGgR7e3sAgL29PUqWLIkXL15g3LhxGD16tNI+TkxpvXLDeXbSZjjOfdJmOO59yfbt24dXr16lWP7y5UscOHBAQRFvDRs2hI2NDQCgUaNGamPeIyoqCr6+vimWe3t7IyoqSkHRvzi3Abz7OLaZyr6Os6VLl2LKlCl6n3ECwIsXL7Bs2TJln3FmZnLgRXx0rq6u0Gg00Gg0yJcvn94HzYmJiYiNjUWPHj0UFv6L207JlGbHDefZcW4T5svFxUVvu3uXRqPB2LFjFZQJczR//nw0adIEV69eRd++fdG1a9cU/7aqxL3vbWPHjkWPHj10B16SxcXFYezYsXLg5S2mtF654Tw7aTMc5z5pMxz3vtOnT+v++/z584iOjtb9OTExETt27EDu3LlVpLE2ZsyYVP/7fVauXIkGDRrAwcEho7JS8PDwwOnTp+Hj46O3PDw8HG5ubkbrSA3nNoB3H8c27vs6zuSkS77kwIv46GbMmAEiQqdOnTB27Fg4OzvrnrO2toaPjw8qVKigsJDvTskUZscV59lxbhPmKzg4GESEmjVrYv369XpXVVlbW8Pb2xu5cuVSWCjMTd26dQEAJ0+eRL9+/di9UeLel0yujvwwprJeOeI8O2kzHOc+aTMc574SJUroTvapWbNmiuft7Ozw888/KygzP927d0e5cuXg5+dntN/ZqlUr9O3bF46OjqhatSoAICQkBP369UPLli2N1mFqbQDvPq5tnPd1nMlJl3xpiIhURwjzFBISgkqVKsHS8v3H96ZMmYIePXrAxcXFOGEAtFptqh9qJEveKY0YMcJoTW/jPDvuOM+Oc5swXzdu3ICXl9d793kA0KtXL4wbNw7ZsmUzUpkQ4m3JV0c+efIETk5OaV4d+csvvyisFEIIIfTduHEDRAQ/Pz8cO3YM7u7uuuesra3h4eGR5tcFiQ/j6OiI8PBwox54efXqFdq2bYu1a9fq3scmJSWhXbt2mDt3LqytrY3WYkpt3Ps4t4kPFxISIiddMiUHXoRyTk5OOHXqlFFfPJjLTknF7MwF59lxbhPmS7Y7IdRaunSp7urIGTNmyNWRQgghzFK9evWwcOFC5MyZU3WKyVFx4CXZ5cuXER4eDjs7OxQtWhTe3t5Gb0gL5zaAdx/nNvHh5KRLfuTAi1BO5YsHU98pqZydqeM8O85twnzJdicED3J1pBBCCHMmrzkNJ7MTQnwMctKl8cg9XkSmlt6j+b///jsGDRrE7sCLEEIIIcxLtWrV0vVzkyZNQvPmzeXAixBCCCEyTGJiIn777Tfs2bMH9+/fR1JSkt7ze/fuVVTGuw3g3ce5TWQ8uQbDeOTAixDpIDslIYQQQnAir02EEEIIkdH69euH3377DfXq1UORIkX+89tCjIlzG8C7j3ObEOZEDrwIIYQQQgghhBBCCMGYu7s7rKysjPo7V61ahTVr1uCLL74w6u9ND85tAO8+zm1CmBOt6gAhhBBCCCGEEEIIIUTaHjx4gISEBKP+Tmtra+TNm9eovzO9OLcBvPs4twlhTuTAi1CuSpUqsLOzU51hkmR2huM8O85twnwFBgbCyclJdYYQQgghhBCCiYEDB2LmzJksv+KUcxvAu49zmxDmREPyt0xkkKdPn6a6XKPRwMbGBtbW1kYuMpyjoyPCw8Ph5+dnlN9nTrMzNs6z49wmzNfp06dTXa7RaGBrawsvLy/Y2NgYuUoI8b8y9msTIYQQ4mOYPHkyevbsCRcXF9UpJkfFv/2NGzdGcHAwsmbNisKFC6f4qrMNGzYYreVdnNsA3n2c20TG69mzJ8aPH49s2bKpTjF7co8XkWFcXFzee4OuPHnyoEOHDhgzZgy0Wt4XXxn7THBzmp2xcZ4d5zZhvkqUKPHe7c7KygotWrTAvHnzYGtra8QyIcT/Qq6OFEIIwcmWLVtSXZ58sk/evHnh6+uLb7/91shl4n/h4uKCxo0bq85IFec2gHcf5zZhuPSedDlnzhwjl2VecsWLyDDLli3DiBEj0KFDB5QtWxYAcOzYMSxduhQjR47EgwcP8OOPP2Lw4MEYPny4kkauZ4Kbwuy44jw7zm3CfG3evBlDhw7F4MGD9ba7adOmYcyYMXj9+jWGDRuGFi1a4Mcff1RcK4SQqyOFEEKYIq1WC41Gk+Kri5KXaTQaVK5cGZs2bYKrq6uiStMmV7sKId4neT+cFjnpUgESIoPUrFmTVq9enWL56tWrqWbNmkREtGzZMsqfP7+x03Q0Gg1ptdo0HzY2NtSuXTt68eKFUbtMYXZccZ4d5zZhvsqUKUM7duxIsXzHjh1UpkwZIiLauHEj+fn5GTtNCJGK/3pt4uXlRaNHj6bExETVqUIIIYTO7t27qVy5crR79256+vQpPX36lHbv3k0VKlSgP//8kw4ePEiFCxemTp06qU41WVmyZKGIiAjVGUIIpjZt2kT58+enhQsX0unTp+n06dO0cOFCKliwIK1atYp+//13ypMnDw0cOFB1aqYhV7yIDGNnZ4fTp0/D399fb/mVK1dQvHhxxMXFITIyEoULF0ZcXJySRq5ngpvC7LjiPDvObcJ82dnZISwsDAUKFNBbfvHiRQQEBODFixe4fv06ChUqJNudEAzI1ZFCCCFMUZEiRTB//nxUrFhRb/mhQ4fQrVs3nDt3Drt370anTp0QFRWlqNK0FSlSBNu3b4enp2eG/p6SJUtiz549cHV1RUBAwHvPoA8NDc3QlndxbgN493FuEx9H2bJlMX78eNSpU0dv+V9//YVRo0bh2LFj2LRpEwYOHIiIiAhFlZmL3ONFZBhPT08sWrQIU6ZM0Vu+aNEi3QuFR48eKb3MeOLEiZg5c6beTqlo0aLIkyePbqfk4OCAgQMHGvXAiynMjivOs+PcJsxXgQIFMGXKFMyfP1/3FUUJCQmYMmWK7mDM7du3kT17dpWZQoj/t3TpUkybNg3NmzfXLatfvz6KFi2KefPmYc+ePfDy8sLEiRPlwIsQQgg2IiIiUr0vqpOTE65duwYA8Pf3x8OHD42dZnLu3buH+Ph4eHl56S0/e/asUX5/w4YNdV+53qhRI6P8zvTi3Abw7uPcJj6OM2fOwNvbO8Vyb29vnDlzBsCbe8DevXvX2GmZllzxIjLMli1b0KxZMxQoUABlypQBAJw4cQIXL17EunXr8OWXX2LOnDm4cuUKpk+frqSR65ngpjA7rjjPjnObMF+HDx9GgwYNoNVqUaxYMQBvXpAlJibijz/+QPny5bF8+XJER0dj8ODBimuFEHJ1pBBCCFNUuXJlODo6YtmyZXB3dwcAPHjwAO3atcPz58+xf/9+7N69G71798alS5cU1/Lw7Nkz9OzZEwcOHED16tWxYMEC9O/fH3PmzNHdE2fr1q2pHtDiZuXKlWjQoAEcHBxUp6TAuQ3g3ce5TaQUEBCA4sWLpzjpsmvXrggPD0dYWBgOHTqEwMBAREZGKq7NHOTAi8hQkZGRmDdvHi5fvgwAyJ8/P7p37w4fHx+1Yf+P806J++w44zw7zm3CfD179gwrVqzQ2+5at24NR0dHxWVCiHfly5cPTZo0SXF15LBhw7Bx40ZcunQJJ06cQMOGDXH79m1FlUIIIYS+S5cuoWHDhoiMjNRdzX/z5k34+flh8+bNyJcvHzZt2oRnz56hbdu2imt56NOnD3bv3o1evXphw4YNcHZ2RkREBObOnYvExET07NkTjRo1wsSJE1Wn/icnJyecOnUKfn5+qlNS4NwG8O7j3CZSkpMu+ZEDLyJTk52SEEIIITiRqyOFEEKYqqSkJOzcuVPvZJ9PP/0UWq1WcRlPXl5eWLp0KWrUqIE7d+4gT5482LJlC7788ksAwJ9//omBAwfi4sWLikv/m6OjI8LDw1l+QM+5DeDdx7lNpE5OuuRFDryIDPX48WMcO3YM9+/fR1JSkt5z7dq1U1Slj+tOyRRmxxXn2XFuE+brypUrCA4OTnW7Gz16tKIqIURa5OpIIYQQwvzZ2triypUruiuEHBwcEBYWhnz58gEAbty4gUKFCuH58+cqM9OF8wf0nNsA3n2c24QwBZaqA4T52rp1K9q0aYPY2Fg4OTlBo9HontNoNGw+ZHZ0dESPHj1UZ+gxldlxxHl2nNuE+VqwYAF69uyJbNmyIUeOHCm2OznwIgQ/vr6+Kb5qTAghhOBuz5492LNnT6on+yxevFhRFV9ubm548OCB7sBLw4YN4eLions+NjZWdzN0IYRIDznpkhc58CIyzMCBA9GpUydMmjQJ9vb2qnPSxHGnZCqz44jz7Di3CfM1YcIETJw4EUOHDlWdIoRIJ7k6UgghhKkZO3Ysxo0bh9KlSyNnzpx6J/uI1BUrVgzHjx9HyZIlAQBBQUF6zx8/fhwFCxZUkSaEMEFy0iU/8lVjIsM4ODjgzJkzrC9J/K+dUmhoqJIuU5gdV5xnx7lNmC+5IaIQpuW/ro6MiYlRWCeEEEKkLmfOnJg6dSratm2rOsVkxMTEQKvV4unTp/D09ExxsGr79u24f/8+2rdvr6gw/Th/JRXnNoB3H+c2kZK3tzd69eolJ10yInc4ExmmTp06OHHihOqM90o+Ezw6OhqnTp1CWFiY7qHqoAtgGrPjivPsOLcJ89WsWTPs3LlTdYYQIp2Sr46MjY3F48eP8c8//+gectBFCCEEV69evULFihVVZ5iUrFmzwsXFBb6+vnjw4EGK58uWLYtOnTopKPtw7u7usLKyUp2RKs5tAO8+zm0ipX/++QfNmjVTnSHeIl81JjJMvXr1MHjwYJw/fx5FixZNsbNu0KCBorJ/cd0pmcLsuOI8O85twnzlzZsXo0aNwt9//53qdte3b19FZUKI1Ny+fRt9+/aVr6QUQghhUrp06YKgoCCMGjVKdYrJIaJUv5otNjYWtra2Coo+3IMHD5CQkKA6I1Wc2wDefZzbRErJJ11yu491ZiZfNSYyjFab9gVVGo0GiYmJRqxJXefOnVGmTBl2OyVTmB1XnGfHuU2YL19f3zSf02g0uHbtmhFrhBD/pUmTJmjZsiWaN2+uOkUIIYRIt379+mHZsmUoVqwYihUrluJkn+nTpysq42vAgAEAgJkzZ6Jr1656J10kJibi6NGjsLCwwKFDh1Qlphvnr6Ti3Abw7uPcJlKaPHkypk+fjnr16slJl0zIFS8iw7x7M1iOuJ4Jbgqz44rz7Di3CfMVGRmpOkEI8QHk6kghhBCm6PTp0yhRogQA4OzZs3rPpXY1hwDCwsIAvLni5cyZM7C2ttY9Z21tjeLFi2PQoEGq8oQQJmb+/PnIkiULQkJCEBISovecRqORAy8KyBUvIlOTM8GFEEIIwYlcHSmEEEJkLh07dsTMmTPh5OSkOsVgnK+M4NwG8O7j3CaEKZArXsRHNWvWLHTr1g22traYNWvWe3+Ww5FWTmeCm9rsOOE8O85twnwNGDAA48ePh4ODg+4rDNIiX/sgBC9ydaQQQgiRuSxZskR1ghBCiAwgV7yIj8rX1xcnTpyAm5ubXE3ygWR2huM8O85twnzVqFEDGzduhIuLC2rUqJHmz2k0Guzdu9eIZUIIIYQQwlw0adIEv/32G5ycnNCkSZP3/uyGDRuMVCVU4HxlBOc2gHcf5zbxhpx0yZtc8SI+qrevIOF0NcnbuO6UTGF2XHGeHec2Yb6Cg4NT/W8hBE9ydaQQQghT5OzsrLt/i7Ozs+IaoZK3t3eK+9JxwbkN4N3HuU28ERYWhoSEBN1/p0XutaWGXPEijCJ5M+PwF93UzgTnNDtTw3l2nNuE+bp58yYAwNPTU3GJEOJtcnWkEEIIIUzBvXv3EB8fDy8vL9UpKXBuA3j3cW4TwpSlffdOIT6CRYsWoUiRIrC1tYWtrS2KFCmChQsXKm0KDg6Gi4uL7r/Teqg+6MJxdqaC8+w4twnz9Pr1a4waNQrOzs7w8fGBj48PnJ2dMXLkSN2ZMUIItSIjI+Hm5qb777QectBFCCEEd/fv38eBAwdw4MAB3L9/X3WOMNCzZ88QGBgIb29vtG/fHq9evULv3r2RM2dO+Pr6olq1anj69Km0mVgf5zbxcd28eVN34qVQRw68iAwzevRo9OvXD/Xr18fatWuxdu1a1K9fH/3798fo0aNV56XAaadkarPjhPPsOLcJ89WnTx/Mnz8fU6dORVhYGMLCwjB16lQsWrRIvrJICOaICHJxuhBCCFPw9OlTtG3bFrlz50a1atVQrVo15M6dG4GBgXjy5InqPPGBhg8fjpMnT2LQoEGIiopC8+bNsX//fhw4cADBwcF4+PAhvv/+e2kzsT7ObeJ/JyddMkRCZJBs2bJRUFBQiuVBQUHk5uamoCilhIQEGjlyJDk5OZFWqyWtVktOTk40YsQIevXqlbIuU5gdV5xnx7lNmC8nJyfatm1biuV//vknOTk5KSgSQvyXhQsXUuHChcna2pqsra2pcOHCtGDBAtVZQgghRJqaN29O/v7+tGPHDnry5Ak9efKEduzYQfnz56cWLVqozhMfyNPTk/bu3UtERLdv3yaNRkNbt27VPf/HH39Q/vz5pS0VnPs4t4n/XY8ePcjDw4Pmzp1L4eHhFB4eTnPnzqUcOXJQjx49VOdlSpaqD/wI85WQkIDSpUunWF6qVCm8fv1aQVFKffr0wYYNGzB16lRUqFABAHDkyBF89913ePToEebMmaOkyxRmxxXn2XFuE+bLxsYGPj4+KZb7+vrC2tra+EFCiPcaPXo0pk+fjj59+ui9Nunfvz+ioqIwbtw4xYVCCCFESn/88Qf++usvVK5cWbesTp06WLBgAerWrauwTBji/v37yJs3LwAgV65csLOzQ758+XTPFylSRNk3hnBuA3j3cW4T/7ugoCCsWrUKn3/+uW5ZsWLF4OnpiVatWin7jDMzk68aExmmbdu2qf6lnj9/Ptq0aaOgKKWgoCD89ttv6N69O4oVK4ZixYqhe/fuWLRoEYKCgpR1mcLsuOI8O85twnx9/fXXGD9+POLj43XL4uPjMXHiRHz99dcKy4QQqZkzZw4WLFiAyZMno0GDBmjQoAEmT56M+fPn49dff1WdJ4QQQqTKzc0Nzs7OKZY7OzvD1dVVQZH4X7i5ueHBgwe6Pzds2FB3r1wAiI2NhY2NjYIy3m0A7z7ObeJ/Jydd8iNXvIgMtWjRIuzcuRPly5cHABw9ehRRUVFo164dBgwYoPu56dOnK+njvFPiPjvOOM+Oc5swT2FhYdizZw/y5MmD4sWLAwDCw8Px6tUr1KpVC02aNNH97IYNG1RlCiH+n1wdKYQQwhSNHDkSAwYMwPLly5EjRw4AQHR0NAYPHoxRo0YprhMfqlixYjh+/DhKliwJAClOTD1+/DgKFiyoIo11G8C7j3Ob+N8ln3S5ZMkS3QE0OelSLQ2R3LFTZIwaNWqk6+c0Gg327t2bwTWpGzduHC5evJhip9S5c2f4+/tjzJgxSrpMYXZccZ4d5zZhvjp27Jjun12yZEkGlggh0qNPnz6wsrJKcQB+0KBBePHiBX755RdFZUIIIUTaAgICcPXqVcTHx8PLywsAEBUVBRsbG/j7++v9bGhoqIpE8QFiYmKg1Wrx9OlTeHp6QqPR6D2/fft23L9/H+3bt5c2E+rj3Cb+d40bN8aePXtgY2OT6kmXb5OTLo1DDryITE12SkIIIYTgpE+fPli2bBk8PT1TvTrSyspK97NydaQQQgguxo4dm+6fVXWCo/hwFhYWuHv3Ljw8PPSWP3r0CB4eHkhMTFRUxrsN4N3HuU0YTk665Ee+akwYRfLNuTw9PRWX6HNxcUHTpk31lnFr5Do7U8B5dpzbhHm6f/8+Ll26BADInz9/ihfZQggezp49q/v6h4iICABAtmzZkC1bNpw9e1b3c++eoSiEEEKoJAdTzBMRpfqaIzY2Fra2tgqK/sW5DeDdx7lNGE4OpvAjB15Ehnn9+jXGjh2LWbNmITY2FgCQJUsW9OnTB2PGjNE7Y1MVrjslU5gdV5xnx7lNmK+nT5+id+/eWLVqle7MJQsLC7Ro0QK//PJLqjdBFUKoExwcrDpBCCGEMNiJEydw4cIFAEChQoVQqlQpxUXCEMn3H9VoNBg1ahTs7e11zyUmJuLo0aMoUaKEtKWCcx/nNvHxyEmXfMiBF5Fh+vTpgw0bNmDq1KmoUKECAODIkSP47rvv8OjRI8yZM0dx4b+47ZRMaXbccJ4d5zZhvrp27YqwsDD88ccfettdv3790L17d6xatUpxoRAiLXJ1pBBCCFNx69YttGrVCocOHYKLiwsA4PHjx6hYsSJWrVqFPHnyqA0UHyQsLAzAmysjzpw5A2tra91z1tbWKF68OAYNGiRtqeDcx7lN/O/kpEt+5B4vIsM4Oztj1apV+Pzzz/WWb9u2Da1atcKTJ08Ulf2L607JFGbHFefZcW4T5svBwQF//fUXKleurLf8wIEDqFu3Lp4/f66oTAiRGrk6UgghhCmqW7cuHj9+jKVLlyJ//vwAgEuXLqFjx45wcnLCjh07FBcKQ3Ts2BEzZ86Ek5OT6pQUOLcBvPs4twnDtWjRAmFhYfj5559TnHRZokQJOelSAbniRWQYGxsb+Pj4pFju6+urd1RdJa5ngpvC7LjiPDvObcJ8ubm5pXoQ2dnZGa6urgqKhBDvI1dHCiGEMEUhISE4fPiw7qAL8ObbJH7++WdUqVJFYZn4X3D9enaAdxvAu49zmzDcH3/8keKkyzp16mDBggWoW7euwrLMS6s6QJivr7/+GuPHj0d8fLxuWXx8PCZOnIivv/5aYdm//vjjDyxevBh16tSBk5MTnJycdDulrVu3KusyhdlxxXl2nNuE+Ro5ciQGDBiA6Oho3bLo6GgMHjwYo0aNUlgmhEhNUFAQfvvtN3Tv3h3FihVDsWLF0L17dyxatAhBQUGq84QQQohUeXp6IiEhIcXyxMRE5MqVS0GREEJkLnLSJT/yVWMiwzRu3Bh79uyBjY0NihcvDgAIDw/Hq1evUKtWLb2f3bBhg4pEeHl54c8//0TRokX1lp8+fRpffPEFbt26paTLFGbHFefZcW4T5isgIABXr15FfHw8vLy8AABRUVGwsbGBv7+/3s+GhoaqSBRCvMXDwwMhISEoWLCg3vILFy6gatWqePDggaIyIYQQIm2bN2/GpEmT8Msvv6B06dIAgBMnTqBPnz4YOnQoGjVqpDZQCCHM3Pz587F27VosX74cOXLkAPDmpMv27dujSZMm6N69u+LCzEcOvIgM07Fjx3T/rKrLHLnulExhdlxxnh3nNmG+xo4dm+6fHTNmTAaWCCHSY9y4cbh48SKWLFkCGxsbAG+ujuzcuTP8/f3l76kQQgiWXF1dERcXh9evX8PS8s232if/t4ODg97PxsTEqEgUQgizJidd8iMHXkSmJjslIYQQQnAiV0cKIYQwRUuXLk33z7Zv3z4DS4QQInOSky75sVQdIIRKcrmzEEIIIThxcXFB06ZN9ZZ5enoqqhFCCCHSRw6mCCGEWnIwhR+54kVkqHXr1mHNmjWIiorCq1ev9J6TK0jeT2ZnOM6z49wmzFNiYiJ++umnNLc7+aoHIYQQQgjxMb18+TLFa04nJydFNUIIIYQaWtUBwnzNmjULHTt2RPbs2REWFoayZcvCzc0N165dw+eff646jzWZneE4z45zmzBfY8eOxfTp09GiRQs8efIEAwYMQJMmTaDVavHdd9+pzhNCCCGEEGbg+fPn+Prrr+Hh4QEHBwe4urrqPYQQQmSsxMRE/Pjjjyhbtixy5MiBrFmz6j2E8cmBF5Fhfv31V8yfPx8///wzrK2tMWTIEOzatQt9+/bFkydPVOcB4LtTMoXZccV5dpzbhPlasWIFFixYgIEDB8LS0hKtWrXCwoULMXr0aPz999+q84QQqVi3bh2aN2+O8uXLo2TJknoPIYQQgqMhQ4Zg7969mDNnDmxsbLBw4UKMHTsWuXLlwrJly1TnCSGE2ZOTLvmRAy8iw0RFRaFixYoAADs7Ozx79gwA0LZtW6xcuVJlmg7XnZIpzI4rzrPj3CbMV3R0NIoWLQoAyJIli+4g35dffok///xTZZoQIhVydaQQQghTtHXrVvz6669o2rQpLC0tUaVKFYwcORKTJk3CihUrVOcJIYTZk5Mu+ZEDLyLD5MiRQ3fvAC8vL91f8sjISHC5tRDXnZIpzI4rzrPj3CbMV548eXD37l0AwCeffIKdO3cCAI4fPw4bGxuVaUKIVMjVkUIIIUxRTEwM/Pz8ALy5n0vy+57KlStj//79KtOEECJTkJMu+ZEDLyLD1KxZE1u2bAEAdOzYEf3798enn36KFi1aoHHjxorr3uC6UzKF2XHFeXac24T5aty4Mfbs2QMA6NOnD0aNGgV/f3+0a9cOnTp1UlwnhHiXXB0phBDCFPn5+SEyMhIAUKBAAaxZswbAmythXFxcFJYJIUTmICdd8qMhOc1aZJCkpCQkJSXB0tISALBq1SocPnwY/v7+6N69O6ytrRUXAvnz58eyZctQrlw5VK5cGV9++SWGDRuG1atXo0+fPrh//76SLlOYHVecZ8e5TWQeR44cwZEjR+Dv74/69eurzhFCvMPPzw/r169HQEAASpcuja5du6J79+7YuXMnWrZsqTuDWAghhODkp59+goWFBfr27Yvdu3ejfv36ICIkJCRg+vTp6Nevn+pEIYQwa8OGDYOTkxOGDx+O1atXIzAwED4+PoiKikL//v0xZcoU1YmZjhx4EZma7JSEEEIIwUmXLl3g6emJMWPG4JdffsHgwYNRqVIlnDhxAk2aNMGiRYtUJwohhBD/6caNGzh58iTy5s2LYsWKqc4RQohMR066VE8OvIgM9fLlS5w+fRr3799HUlKS3nMNGjRQVJU2TjslU5sdJ5xnx7lNmK87d+7g4MGDqW53ffv2VVQlhEiNXB0phBBCCCGEEKZPDryIDLNjxw60a9cODx8+TPGcRqNBYmKigirTILMzHOfZcW4T5uu3337TfVjr5uYGjUaje06j0eDatWsK64QQQgghhLk4fvw4goODUz3ZZ/r06YqqhBAi85CTLnmRAy8iw/j7++Ozzz7D6NGjkT17dtU5aeK4UzKV2XHEeXac24T58vT0RI8ePfDtt99Cq9WqzhFCpINcHSmEEMLUTJo0CSNHjkT+/PmRPXv2FCf77N27V2GdEEKYPznpkh858CIyjJOTE8LCwvDJJ5+oTkkT152SKcyOK86z49wmzJebmxuOHTsm250QJkKujhRCCGGKsmfPju+//x4dOnRQnSKEEJmSnHTJj6wFkWG++uor7Nu3T3XGe40aNQqjR4/GkydPcP36dURGRuoeKo8Em8LsuOI8O85twnx17twZa9euVZ0hhEinPn36oFmzZrh7967ufi/JDznoIoQQgiutVotKlSqpzhBCiEwrLi4OLVu2lIMujMgVLyLDxMXFoVmzZnB3d0fRokVhZWWl9zyH7xbkeia4KcyOK86z49wmzFdiYiK+/PJLvHjxItXtTr5vWwhe5OpIIYQQpmjq1Km4c+cOZsyYoTpFCCEypSFDhiBr1qwYNmyY6hTx/+TAi8gwixYtQo8ePWBra8vqa7zexnWnZAqz44rz7Di3CfM1YcIEjB49Wr5vWwgT0alTJ1SqVAmdO3dWnSKEEEKkW1JSEurVq4fLly+jUKFCKU722bBhg6IyIYTIHOSkS37kwIvIMDly5EDfvn0xbNgwtpe5cd0pmcLsuOI8O85twny5urrip59+ku/bFsJEyNWRQgghTNHXX3+NhQsXokaNGilO9gGAJUuWKCoTQojMQU665MdSdYAwX69evUKLFi1Yf8A8efJk/PXXX8ifPz8ApNgpqWIKs+OK8+w4twnzZWNjI9+3LYQJWblyJXbu3AlbW1vs27cvxWsTOfAihBCCo6VLl2L9+vWoV6+e6hQhhMiUpk2bhsWLF8tJl4zIFS8iw/Tv3x/u7u4YPny46pQ0cT0T3BRmxxXn2XFuE+Zr8uTJuHv3LmbNmqU6RQiRDnJ1pBBCCFPk7e2Nv/76CwUKFFCdIoQQmVKOHDlw4MAB+Pv7q04R/0+ueBEZJjExEVOnTsVff/2FYsWKsfkar7dxPRPcFGbHFefZcW4T5uvYsWPYu3cv/vjjDxQuXFi+b1sI5uTqSCGEEKbou+++w5gxY7BkyRLY29urzhFCiEynX79++Pnnn+WkS0bkiheRYWrUqJHmc1y+W5DrmeCmMDuuOM+Oc5swXx07dnzv8/J920LwIldHCiGEMEUBAQGIiIgAEcHHxyfFyT6hoaGKyoQQInNo3Lgx9u7dCzc3Nznpkgk58CKUu3XrFnLlyqXkzE5T3ympnJ2p4zw7zm3CfB06dAilS5eGjY2N6hQhMrW+ffti2bJlKF68uFwdKYQQwmSMHTv2vc+PGTPGSCVCCJE5yUmX/MiBF6Gck5MTTp06BT8/P6P/blPfKamcnanjPDvObcJ8yXYnBA9ydaQQQghztnLlSjRo0AAODg6qU4QQIlOSky6NR+7xIpRTeewvvQdWuO6U5Lip4TjPjnObMF+y3QnBQ3BwcLp+Tq6OFEIIYYq6d++OcuXKyck+QgihyOeffy4nXRqJvFMTIh0+//xz3L59W3WGEEIIIQQAoFChQrh+/brqDCGEEOKDyMk+QgihluyHjUcOvAiRDrJTEkIIIQQn8tpECCGEEEIIIfiSAy9CCCGEEEIIIYQQQgghhBAfiRx4EUIIIYQQQgghhBBCCCGE+EjkwItQLi4uTnWCyZLZGY7z7Di3CfP14sULvHjxQnWGEEIIIYQQQgghhMmTAy9CCCGEgJ2dHezs7FRnCCGEEEIIM+bu7g4rKyvVGUIIkWnJSZfGIwdehHL29vaqE/4T152SKcyOK86z49wmhBCCB7k6UgghhCl68OABEhISVGcIIUSmJSddGo8ceBEiHWSnJIQQQgghhBBCCCGEECI95MCLEEIIIYQQJkaujhRCCCGEEEIIvuTAixBCCCGEEEIIIYQQQgghxEciB16EchqNRnWCyZLZGY7z7Di3CfMl250QQgghhBBCCCHExyEHXoRyRKQ6wWTJ7AzHeXac24T5ku1OCCGEEEIIIYQwb3LSpfHIgReh3Pnz5+Ht7a0647247pRMYXZccZ4d5zZhvp49ewY/Pz/VGUKIdOL62kQIIUTmMWvWLLx8+RIAEBUVla4Teby9vWFlZZXRaUIIkakQEaKionT75P/6WWEcGpJpiwzw+PFjbNy4EQcOHMCNGzcQFxcHd3d3BAQEoE6dOqhYsaLqxA/i6OiI8PBwo3woaW6zMybOs+PcJszXhQsXsGrVqjS3u6ZNm8LGxkZ1phDCAMZ8bSKEEEKkxtLSEnfu3IGHhwcsLCxw9+5deHh4qM4SQohMJykpCba2tjh37hz8/f1V54j/J1e8iI/qzp076NKlC3LmzIkJEybgxYsXKFGiBGrVqoU8efIgODgYn376KQoVKoTVq1erzgUAvH79Grt378a8efPw7NkzAG/+/4iNjdX9jDHOBDfF2XHBeXac24T5Cg0NRe3atREQEICDBw+iXLly+OabbzB+/HgEBgaCiDBixAjkypUL33//PeLj41UnCyE+kFwdKYQQQrVcuXJh/fr1uHHjBogIt27dQlRUVKoPIYQQGUer1cLf3x+PHj1SnSLeIle8iI8qe/bsaN++PTp06IBChQql+jMvXrzApk2bMGvWLDRt2hSDBg0ycuW/bty4gbp16yIqKgrx8fG4fPky/Pz80K9fP8THx2Pu3LlGazG12XHCeXac24T58vX1xeDBg9G6dWu4uLik+XNHjhzBzJkzUaxYMQwfPtx4gUKIND1//hxTpkzBnj17cP/+fSQlJek9f+3aNUVlQgghhL758+ejT58+eP36dZo/Q0TQaDRITEw0YpkQQmQ+W7duxdSpUzFnzhwUKVJEdY6AHHgRH9mjR4/g5uaWYT//sTVq1AiOjo5YtGgR3NzcdF/ZsW/fPnTt2hVXrlwxWoupzY4TzrPj3CbMV0JCwgd9d/aH/rwQIuO0atUKISEhaNu2LXLmzJniXi79+vVTVCaEEEKk9OzZM9y4cQPFihXD7t2703wvU7x4cSOXCSFE5uLq6oq4uDi8fv0a1tbWsLOz03s+JiZGUVnmJQdeRKbm5uaGw4cPI3/+/HrflX79+nUUKlQIcXFxqhOFEEIIkYm4uLjgzz//RKVKlVSnCCGEEOm2dOlStGzZUu4fKIQQiixduvS9z7dv395IJSKZpeoAIVRKSkpK9ZLnW7duwdHRUUGREEIIITIzV1dXZM2aVXWGEEII8UHat2+Px48fY/ny5YiIiMDgwYORNWtWhIaGInv27MidO7fqRCGEMGtyYIUfreoAIVT67LPPMGPGDN2fNRoNYmNjMWbMGHzxxRfqwoQQQgiRKY0fPx6jR4+Wq26FEEKYlNOnTyNfvnz4/vvv8eOPP+Lx48cAgA0bNuDbb79VGyeEEJnMy5cv8fTpU72HMD75qjGRqd26dQt16tQBEeHKlSsoXbo0rly5gmzZsmH//v3w8PBQnSiEEEIIMxcQEKB3L5erV6+CiODj45Pi/kuhoaHGzhNCCCH+U61atVCqVClMnTpV72u8Dx8+jNatW+P69euqE4UQwqw9f/4cQ4cOxZo1a/Do0aMUz6f2jT8iY8lXjYlMLU+ePAgPD8eqVatw+vRpxMbGonPnzmjTpk2Km1AJIYQQQmSERo0aqU4QQggh/icnTpzA/PnzUyzPnTs3oqOjFRQJIUTmMmTIEAQHB2POnDlo27YtfvnlF9y+fRvz5s3DlClTVOdlSnLgRRhNQkJCirM2ObC0tERgYKDqjPcaO3YsevfujWzZsqlOMTn37t1DfHw8vLy8VKcIwcrr169x584d+bshBANjxoxRnSCEEEL8T2xsbFL9KpvLly/D3d1dQZEQQmQuW7duxbJly1C9enV07NgRVapUQd68eeHt7Y0VK1agTZs2qhMzHbnHi/jo1qxZg1evXun+PHv2bHh7e8PW1hbZsmXDuHHjFNYBW7ZsSffD2N79/sWnT5/iyZMnmDhxIq5duybfy/gez549Q2BgILy9vdG+fXu8evUKvXv3Rs6cOeHr64tq1aopnd2vv/6K2rVro3nz5tizZ4/ecw8fPoSfn5+iMpFZnTt3Dr6+vqozhBDv8PPzS/WrAR4/fiz/VgghhGCrQYMGGDduHBISEgC8uX9qVFQUhg4diqZNmyquE0II8xcTE6N7v+Dk5ISYmBgAQOXKlbF//36VaZmWXPEiPrpWrVrh7t278PDwwJIlSzB48GAMGTIE5cqVQ1hYGCZPnoxcuXKhS5cuSvre/ToPjUaDd291lPw968b+/kNXV9dUlxMRKlSoACKCRqOR72VMxfDhw3Hy5EkMGjQIGzZsQPPmzREREYEDBw4gMTERPXv2xPfff4+JEycavW3WrFn49ttv0bFjRzx58gRffPEFvvvuO91NJhMTE3Hjxg2jdwkhhODn+vXrqf47Hx8fj1u3bikoEkIIIf7btGnT8NVXX8HDwwMvXrxAtWrVEB0djQoVKih5DyaEEJmNn58fIiMj4eXlhQIFCmDNmjUoW7Ystm7dChcXF9V5mZIceBEf3dsHMebOnYtx48Zh8ODBAIAvvvgCWbNmxa+//qrswEtSUpLuv3fv3o2hQ4di0qRJqFChAgDgyJEjGDlyJCZNmmT0tpw5c6JEiRIYOHAg/q+9e4+qss7bP35tEAEVMRU8hYiCig+imJmHsigrp/JQVo41mVYeSKU8rdVh6aRlZU9SuTIrUVMry0zLeUrzLB7KzGMmnk08kJpKppjilt8f/YYZBm2cPez7+90379dartX+3oxdc82nNcaH+76Dgn6/Ia2wsFAdOnRQZmYmP53+Bz7//HNNmzZNqamp6tatm66++mrNmzdP7dq1kyS98sorGjp0qJE/9L/zzjuaNGmSHnjgAUlSWlqaunbtqrNnzxq/Awzu1aJFiz+8fvbsWYeSALgS/3yn7VdffaXIyMiiz16vV0uWLOHPAQAAa0VGRmrRokVavXq1Nm/erNOnT6tFixbq0KGD6WgAUCb07t1bmzdv1o033qinnnpKnTp10ptvvqmCggJlZGSYjlcmeQr/9Uf9gf9SUFCQjhw5oqioKEVFRWnx4sVq1qxZ0fU9e/YoJSXFikdmJSUl6e2339b1119f7HzlypXq27evsrOzHc1z4sQJPfroo/rll180Y8YM1alTR5IUEhKizZs3q0mTJo7mCSRhYWHatWuXYmJiJEkVK1bUxo0b1bBhQ0nS/v371aRJE505c8bxbBUqVNC2bdtUr169orOtW7eqQ4cO6t27t5588knVrl2bO5lQqsLCwvTnP//5st+ozc3N1aRJk5g7wBJ//4GLS92JGxISonr16mncuHG66667TMQDAOCyCgoKFB4erk2bNikpKcl0HACAfv8+2Pr16xUfH6/k5GTTccok7niBXyxYsECRkZEKCwtTfn5+sWu//fZb0aO8TNuzZ88lb7eLjIzUjz/+6HieqlWrau7cuZo4caJatWqlV199VT169HA8RyCqVq2ajh07VrR46dKlS7H/bU+fPq3Q0FAj2apXr64DBw4UW7wkJSVp6dKluvnmm3X48GEjueBuSUlJuu6665SWlnbJ65s2bdKkSZMcTgXgcv5+R25cXJzWrVun6tWrG04EAMCVCQkJUd26dfmBHgCwxG+//abY2FjFxsaajlKmBZkOAHd6+OGH1bVrVx06dEhLly4tdu2bb75RgwYNDCUr7tprr9WQIUN05MiRorMjR45o+PDhatWqlbFcaWlpWrRokcaOHVv0eCr8seTkZK1bt67o84cffqjo6Oiiz+vWrVNiYqKJaLr++us1Z86cEudNmjTRkiVLNH/+fAOp4Hbt2rXTjh07Lns9IiJC7du3dzARgCuxb98+li4AgIDz7LPP6plnnil6mTMAwFler1fPP/+86tSpo0qVKmnv3r2SpBEjRmjy5MmG05VNPGoMjvu///s/hYSE6PbbbzcdRbt379bdd9+tnTt3Ft0pceDAASUkJOizzz5TfHy80Xznz5/XU089pWXLlmnOnDk82/0PnDhxQkFBQZd9Ydj8+fMVHh6um266ydFckrRlyxatX79evXv3vuT1rVu36tNPP9Vf//pXh5MBAGy0ZMkSLVmyREePHi32bjpJmjJliqFUAABcXkpKinbv3q2CggLFxsaqYsWKxa5v2LDBUDIAKBtGjx6tadOmafTo0erTp4+2bt2q+vXr6+OPP9brr7+ur7/+2nTEMofFC8q8wsJCLVq0SNu3b5ckJSYmqkOHDtY8Dg0AAJQdo0aN0ujRo9WyZUvVqlWrxJ9H5s6daygZAACXN2rUqD+8zg+ZAYB/xcfH65133tEtt9yiiIgIbd68WfXr19f27dvVpk0bnTx50nTEMofFCwAAAGCJWrVq6ZVXXtFDDz1kOgoAAKVu5syZ6ty5c4k7YgAA/53w8HBt375dsbGxxRYv27ZtU6tWrXT69GnTEcsc3vGCMm/FihXq1KmT4uPjFR8fr86dO2vlypWmYwEAgDLo/Pnzatu2rekYAAD4Rb9+/Yq9YxUAUDqaNGlyye9nzp49WykpKQYSgcULyrT3339fHTp0UIUKFZSenq709HSFhYXplltu0Ycffmg6HgAAKGMee+wx/gwCAHAtHroCAP4xcuRIDRw4UGPHjtXFixc1Z84c9enTR2PGjNHIkSNNxyuTeNQYyrTExET17dtXgwcPLnaekZGhSZMmKTs721AyAABQFj3xxBOaPn26kpOTlZycrJCQkGLXMzIyDCUDAOC/98+PvwEAlK6VK1dq9OjR2rx5s06fPq0WLVpo5MiRuu2220xHK5NYvKBMCw0N1Q8//KD4+Phi57t371ZSUpJ+++03Q8kAAEBZlJqaetlrHo9HS5cudTANAACli8ULAPjHww8/rEcffVTt27c3HQX/XznTAVA23XzzzUpNTdXQoUNVoUIFYzliYmK0ZMmSEouXxYsXKyYmxlCqP2ZLd4HI5u5szgb3Yu4A+yxbtsx0BAAAAAAB5pdfflGHDh0UGxur3r17q1evXqpdu7bpWGUa73iBEXXr1tWSJUvUuHFjozmGDh2q9PR0paWlacaMGZoxY4b69++vJ598UsOGDTOa7XJs6S4Q2dydzdngXswdYLeDBw/q4MGDpmMAAAAAsNxnn32mQ4cOKS0tTR9//LFiY2P1pz/9SZ988okKCgpMxyuTeNQYjDp16pQqV65sNMPcuXM1bty4ove5JCYmavjw4erSpYvRXP+ODd0FKpu7szkb3Iu5A+xx8eJFvfDCCxo3bpxOnz4t6ffHsgwdOlTPPvusgoL4uSkAQOBKSkrS/PnzrX3CBAC4xYYNGzR16lRlZmaqUqVK+stf/qLHH39cCQkJpqOVGSxeAAAAAEs8/fTTmjx5skaNGqV27dpJklatWqXnnntOffr00ZgxYwwnBADg0vLy8jR79mzt2bNHw4cPV9WqVbVhwwbVqFFDderUMR0PAMqM3NxcTZ8+XVOnTtXBgwfVrVs3HTp0SCtWrNArr7yiwYMHm45YJvAjc3DckSNHNHr0aNMxJEnr1q3T2rVrS5yvXbtW3333nYFEf8ym7gKNzd3ZnA3uxdwBdpo2bZoyMzOVlpam5ORkJScn6/HHH9ekSZP03nvvmY4HAMAlbdmyRQ0bNtTYsWP16quvKi8vT5I0Z84cPf3002bDAUAZUFBQoE8//VR33XWXYmNj9cknn+jJJ5/U4cOHNW3aNC1evFizZs3i+wAOYvECx/30008aNWqU6RiSpAEDBujAgQMlzg8dOqQBAwYYSPTHbOou0Njcnc3Z4F7MHWCnEydOXPK9S40bN9aJEycMJAIA4N8bMmSIevXqpV27diksLKzo/I477lBWVpbBZABQNtSqVUt9+vRRbGysvv32W3333Xfq379/sceKp6amqkqVKuZCljHlTAeA+2zZsuUPr+/YscOhJP/etm3b1KJFixLnKSkp2rZtm+N5Aqk729jcnc3Z4F7MHRCYmjVrpjfffFPjx48vdv7mm2+qWbNmhlIBAPDH1q1bp3feeafEeZ06dfTTTz8ZSAQAZctrr72m++67r9jy+19VqVJF+/btczBV2cbiBaWuefPm8ng8utTrg/5+7vF4DCQrKTQ0VEeOHFH9+vWLnefm5qpcOef/8Qik7mxjc3c2Z4N7MXdAYHrllVd05513avHixWrTpo0k6euvv1ZOTo7mz59vOB0AAJcWGhqqU6dOlTjfuXOnoqKiDCQCgLLloYceMh0B/8JTeKnvyAD/herVq+uVV17RLbfccsnrP/zwgzp16iSv1+twspJ69Oih3Nxcff7554qMjJT0+wsBu3btqujoaM2aNcvRPIHUnW1s7s7mbHAv5g4IXIcOHdLEiROVnZ0tSUpMTNTjjz+u2rVrG04GAMClPfbYYzp+/LhmzZqlqlWrasuWLQoODlbXrl3Vvn17vf7666YjAgDgKO54Qam75pprdPjwYcXGxl7yel5e3iV/AtuEV199Ve3bt1dsbKxSUlIkSZs2bVKNGjU0Y8YMx/MEUne2sbk7m7PBvZg7IHBVq1ZNnTt3VuvWrXXx4kVJ0nfffSdJ6ty5s8loAABc0rhx43TvvfcqOjpaZ8+e1Y033qiffvpJbdq00ZgxY0zHAwDAcSxeUOr69++vM2fOXPZ63bp1NXXqVAcTXV6dOnW0ZcsWffDBB9q8ebPCw8PVu3dv9ejRQyEhIY7nCaTubGNzdzZng3sxd0BgWrBggXr27Knjx4+XWI56PB7uUgMAWCkyMlKLFi3SqlWrtGXLFp0+fVotWrRQhw4dTEcDAMAIHjUGXIE777xTmZmZqlWrlukoAADAxRISEnTbbbdp5MiRqlGjhuk4AAAAAAAfsHgBrkBERIQ2b96s+vXrm44CAABcrHLlytq4caMaNGhgOgoAAFds/Pjxlzz3eDwKCwtTfHy82rdvr+DgYIeTAQBgBo8aAwAAACxx7733avny5SxeAAAB5bXXXtOxY8eUn5+vq666SpJ08uRJVahQQZUqVdLRo0dVv359LVu2TDExMYbTAgDgf9zxAlwB7ngBAABOyM/P13333aeoqCg1bdq0xDvn0tPTDSUDAODyZs6cqXfffVeZmZlFPzywe/du9evXT3379lW7du305z//WTVr1tTs2bMNpwUAwP9YvABXgMULAABwwuTJk9W/f3+FhYWpWrVq8ng8Rdc8Ho/27t1rMB0AAJfWoEEDffrpp2revHmx840bN6pbt27au3ev1qxZo27duik3N9dMSAAAHMSjxgAAAABLPPvssxo1apSeeuopBQUFmY4DAMAVyc3N1YULF0qcX7hwQT/99JMkqXbt2vr111+djgYAgBH82xyMyMnJkdfrNR0jINGd72zuzuZscC/mDrDP+fPn1b17d5YuAICAkpqaqn79+mnjxo1FZxs3blRaWppuvvlmSdL333+vuLg4UxEBAHAU/0YHI+rVq6cmTZpozpw5RnNkZWVd9qdysrKyij4/88wzqlq1qpPRLsuW7gKRzd3ZnA3uxdwB9nn44Yf18ccfm44BAMB/ZPLkyapataquueYahYaGKjQ0VC1btlTVqlU1efJkSVKlSpU0btw4w0kBAHAG73iBEStWrNDevXu1YMECo99cCA4OVm5urqKjo4udHz9+XNHR0Vb+JLgt3QUim7uzORvci7kD7JOenq7p06erWbNmSk5OVkhISLHrGRkZhpIBAPDvbd++XTt37pQkNWrUSI0aNTKcCAAAM1i8oEwLCgrSkSNHFBUVVex8586datmypU6dOmUoGQAAKItSU1Mve83j8Wjp0qUOpgEAAAAA+KKc6QBwtwsXLmj58uXas2ePHnjgAUVEROjw4cOqXLmyKlWqZCzXPffcI+n3b2D06tVLoaGhRde8Xq+2bNmitm3bmoonyd7uAoHN3dmcDe7F3AGBY9myZaYjAADgk4MHD2revHnKycnR+fPni13jjk0AQFnD4gV+s3//fnXs2FE5OTk6d+6cbr31VkVERGjs2LE6d+6c3n77bWPZIiMjJUmFhYWKiIhQeHh40bXy5curdevW6tOnj6l4VndnO5u7szkb3Iu5AwAAgL8tWbJEnTt3Vv369bV9+3YlJSXpxx9/VGFhoVq0aGE6HgAAjmPxAr954okn1LJlS23evFnVqlUrOr/77ruNLjUkaerUqZJ+f7H08OHDVaFCBaN5/pXN3dnO5u5szgb3Yu4AAADgb08//bSGDRumUaNGKSIiQp9++qmio6P14IMPqmPHjqbjAQDgOBYv8JuVK1dqzZo1Kl++fLHzevXq6dChQ4ZSFdezZ08dOnRICQkJxc537dqlkJAQ1atXz0iuQOjOVjZ3Z3M2uBdzBwAAAH/Lzs7WzJkzJUnlypXT2bNnValSJY0ePVpdunRRWlqa4YQAADgryHQAuNfFixfl9XpLnB88eFAREREGEpXUq1cvrVmzpsT52rVr1atXL+cD/X+B0J2tbO7O5mxwL+YOAAAA/laxYsWi97rUqlVLe/bsKbr2888/m4oFAIAxLF7gN7fddptef/31os8ej0enT5/WX//6V91xxx3mgv2TjRs3ql27diXOW7durU2bNjkf6P8LhO5sZXN3NmeDezF3AAAA8LfWrVtr1apVkqQ77rhDQ4cO1ZgxY/TII4+odevWhtMBAOA8T2FhYaHpEHCngwcP6vbbb1dhYaF27dqlli1bateuXapevbqysrIUHR1tOqIiIyO1fPlypaSkFDtfv369brrpJv36669GcgVCd7ayuTubs8G9mDsAAAD42969e3X69GklJyfrzJkzGjp0qNasWaOEhARlZGQoNjbWdEQAABzF4gV+deHCBX300UfasmWLTp8+rRYtWujBBx9UeHi46WiSpE6dOik8PFwzZ85UcHCwJMnr9ap79+46c+aM5s+fbyyb7d3ZzObubM4G92LuAAAAYIOZM2eqc+fOqlixoukoAAD4FYsXlGnbtm1T+/btVaVKFd1www2Sfn8R9alTp7R06VIlJSUZTggAAAAAgDtUrlxZmzZtUv369U1HAQDAr1i8oFTNmzfvir+2c+fOfkxy5Q4fPqw333xTmzdvVnh4uJKTkzVw4EBVrVrV0RyB2J0tbO7O5mxwL+YOAAAANoqIiNDmzZtZvAAAXI/FC0pVUFBQsc8ej0f/OmIej0fS74/0wj/Qne9s7s7mbHAv5g4AAAA2YvECACgrgv79lwBX7uLFi0W/Fi5cqObNm2v+/PnKy8tTXl6e5s+frxYtWmjBggWmo0qSsrKy/vCXkwKtO5vY3J3N2eBezB0AAAAAAIA53PECv0lKStLbb7+t66+/vtj5ypUr1bdvX2VnZxtK9g//+lPh0j9+Clwy95PggdCdrWzuzuZscC/mDgAAALbgjhcAQFnBHS/wmz179qhKlSolziMjI/Xjjz86nudSTp48WezX0aNHtWDBAl177bVauHChsVyB0J2tbO7O5mxwL+YOAAAAAADAWdzxAr9p3769wsLCNGPGDNWoUUOSdOTIEfXs2VO//fabVqxYYTjh5a1YsUJDhgzR+vXrjfz9A7k702zuzuZscC/mDgAAALaoX7++VqxYoZiYGNNRAADwK+54gd9MmTJFubm5qlu3ruLj4xUfH6+6devq0KFDmjx5sul4f6hGjRrasWOHsb9/IHdnms3d2ZwN7sXcAQAAwBbHjh1TQUGB6RgAAPgdd7zArwoLC7Vo0SJt375dkpSYmKgOHToUe4+KSVu2bCn2ubCwULm5uXr55Zd14cIFrVq1z80mwQAAIG5JREFUylAy+7uzmc3d2ZwN7sXcAQAAwAa84wUAUFaweEGZFhQUJI/Ho3/9x6B169aaMmWKGjdubCgZAAAAAADuwuIFAFBW8Kgx+NWKFSvUqVOnosfbdO7cWStXrjQdq8i+ffu0d+9e7du3T/v27dP+/fuVn5+vNWvWGF+62N6dzWzuzuZscC/mDgAAAAAAwDksXuA377//vjp06KAKFSooPT1d6enpCgsL0y233KIPP/zQdDxJUmxsbLFfMTExCgsLMx0rILqzlc3d2ZwN7sXcAQAAAAAAOItHjcFvEhMT1bdvXw0ePLjYeUZGhiZNmqTs7GwjucaPH3/FX5uenu7HJJdna3eBwObubM4G92LuAAAAYAseNQYAKCtYvMBvQkND9cMPPyg+Pr7Y+e7du5WUlKTffvvNSK64uLhin48dO6b8/HxVqVJFkpSXl6cKFSooOjpae/fuNZDQ3u4Cgc3d2ZwN7sXcAQAAwBZJSUmaP3++YmJiTEcBAMCveNQY/CYmJkZLliwpcb548WKjf8j6+/tc9u3bpzFjxqh58+bKzs7WiRMndOLECWVnZ6tFixZ6/vnnjWW0tbtAYHN3NmeDezF3AAAAcNqRI0eUk5NT4nzr1q38GRQAUCaUMx0A7jV06FClp6dr06ZNatu2rSRp9erVeu+99/TGG28YTve7ESNGaPbs2WrUqFHRWaNGjfTaa6/p3nvv1YMPPmgkVyB0Zyubu7M5G9yLuQMAAIC//Prrr0pLS9PKlSt10003adKkSRo8eLAmTpwoj8ej66+/Xn/7299UuXJl01EBAHAUjxqDX82dO1fjxo0reodAYmKihg8fri5duhhO9rsKFSpoxYoVuvbaa4udf/vtt7rpppuUn59vKJn93dnM5u5szgb3Yu4AAADgD4MGDdLixYv1+OOPa86cOYqMjNSePXv09ttvy+v1Ki0tTV27dtWYMWNMRwUAwFEsXlCmderUSYcOHVJmZqZatGghSVq/fr369u2rOnXqaN68eYYTAgAAAABgp7p162ratGlKTU3V4cOHdfXVV2vevHm66667JElffPGFhg4dqu3btxtOCgCAs3jHC/xm3bp1Wrt2bYnztWvX6rvvvjOQqKQpU6aoZs2aatmypUJDQxUaGqpWrVqpRo0ayszMNJYrELqzlc3d2ZwN7sXcAQAAwF+OHj2q+Ph4SVLt2rUVHh6uhg0bFl1PSkrSgQMHTMUDAMAYFi/wmwEDBlzyD1iHDh3SgAEDDCQqKSoqSl9++aW2b9+uWbNm6ZNPPlF2dra+/PJLRUdHG8sVCN3ZyububM4G92LuAAAA4C/VqlXTsWPHij536dJFVapUKfp8+vRphYaGGkgGAIBZ5UwHgHtt27at6PFd/ywlJUXbtm0zkOjyGjZsqISEBEmSx+MxnCawurONzd3ZnA3uxdwBAADAX5KTk7Vu3bqiP29++OGHxa6vW7dOiYmJJqIBAGAUd7zAb0JDQ3XkyJES57m5uSpXzp6d3/Tp09W0aVOFh4crPDxcycnJmjFjhtFMgdKdjWzuzuZscC/mDgAAAP7ywQcfqHv37srJydGlXiFco0YN9e3b10AyAADM8hRe6v8ZgVLQo0cP5ebm6vPPP1dkZKQkKS8vT127dlV0dLRmzZplOKGUkZGhESNGaODAgWrXrp0kadWqVZowYYJeeOEFDR482EiuQOjOVjZ3Z3M2uBdzBwAAAH8LDg5Wbm5uiUd2Hz9+XNHR0fJ6vYaSAQBgBosX+M2hQ4fUvn17HT9+XCkpKZKkTZs2qUaNGlq0aJFiYmIMJ5Ti4uI0atQo9ezZs9j5tGnT9Nxzz2nfvn1GcgVCd7ayuTubs8G9mDsAAAD4W1BQkI4cOaKoqKhi5/v371eTJk105swZQ8kAADCDxQv86syZM/rggw+0efPmosd49ejRQyEhIaajSZLCwsK0detWxcfHFzvftWuXmjZtqt9++81QMvu7s5nN3dmcDe7F3AEAAMAfhgwZIkl644031KdPH1WoUKHomtfr1dq1axUcHKzVq1ebiggAgBEsXmDcnXfeqczMTNWqVcvxv3dSUpIeeOABPfPMM8XOX3jhBX388cf6/vvvHc/0nzDZXaCzuTubs8G9mDsAAAD8p1JTUyVJK1asUJs2bVS+fPmia+XLl1e9evU0bNgwJSQkmIoIAIARvFUXxmVlZens2bNG/t6jRo1S9+7dlZWVVfSOl9WrV2vJkiUB8d4Dk90FOpu7szkb3Iu5AwAAwH9q2bJlkqTevXvrjTfeUOXKlQ0nAgDADixeUKZ169ZN3377rTIyMvTZZ59JkhITE/Xtt98WvQsBAAAAAABc3tSpU01HAADAKixeUGYVFBSoX79+GjFihN5//33TcQAAAAAAAAAALhBkOgBgSkhIiD799FPTMQAAAAAAAAAALsLiBWVa165dix4xBgAAAAAAAADAf4tHjaFMS0hI0OjRo7V69Wpdc801qlixYrHr6enphpIBAAAAAAAAAAIRd7zAb7KysnThwoUS5xcuXFBWVlbR52eeeUZVq1Z1MlqRyZMnq0qVKlq/fr3effddvfbaa0W/Xn/9dSOZpMDozlY2d2dzNrgXcwcAAAAAAOAsT2FhYaHpEHCn4OBg5ebmKjo6utj58ePHFR0dLa/XayjZpf39HwWPx2M4SeB1ZxObu7M5G9yLuQMAAAAAAHAWd7zAbwoLCy+5xDh+/HiJR3qZNHnyZCUlJSksLExhYWFKSkpSZmam0UyB0p2NbO7O5mxwL+YOAAAAAADAWbzjBaXunnvukfT7nSO9evVSaGho0TWv16stW7aobdu2puIVM3LkSGVkZGjQoEFq06aNJOnrr7/W4MGDlZOTo9GjRzuaJ5C6s43N3dmcDe7F3AEAAAAAAJjB4gWlLjIyUtLvP2UdERGh8PDwomvly5dX69at1adPH1Pxipk4caImTZqkHj16FJ117txZycnJGjRokOOLl0DqzjY2d2dzNrgXcwcAAAAAAGAGixeUuqlTp0qS6tWrp+HDh6tChQqGE11eQUGBWrZsWeL8mmuuueTLqP0tkLqzjc3d2ZwN7sXcAQAAAAAAmOEp/PsbxYFStm/fPl24cEEJCQnFznft2qWQkBDVq1fPTLB/MmjQIIWEhCgjI6PY+bBhw3T27FlNmDDBSK5A6M5WNndncza4F3MHAAAAAADgrCDTAeBevXr10po1a0qcr127Vr169XI+0GVMnjxZSUlJeuyxx/TYY4+padOmmjRpkoKCgjRkyJCiX04KlO5sZHN3NmeDezF3AAAAAAAAzuKOF/hN5cqVtWHDBsXHxxc73717t1q2bKm8vDwzwf5JamrqFX2dx+PR0qVL/ZzmHwKhO1vZ3J3N2eBezB0AAAAAAICzeMcL/Mbj8ejXX38tcf7LL7/I6/UaSFTSsmXLTEe4pEDozlY2d2dzNrgXcwcAAAAAAOAs7niB33Tq1Enh4eGaOXOmgoODJUler1fdu3fXmTNnNH/+fMMJ7UV3vrO5O5uzwb2YOwAAAAAAAGexeIHfbNu2Te3bt1eVKlV0ww03SJJWrlypU6dOaenSpUpKSjKc0F505zubu7M5G9yLuQMAAAAAAHAWixf41eHDh/Xmm29q8+bNCg8PV3JysgYOHKiqVauajmY9uvOdzd3ZnA3uxdwBAAAAAAA4h8ULAAAAAAAAAABAKSlnOgDcKysr6w+vt2/f3qEkgYfufGdzdzZng3sxdwAAAAAAAM7ijhf4TVBQUIkzj8dT9Nder9fJOAGF7nxnc3c2Z4N7MXcAAAAAAADOKvndGKCUnDx5stivo0ePasGCBbr22mu1cOFC0/GsRne+s7k7m7PBvZg7AAAAAAAAZ3HHCxy3YsUKDRkyROvXrzcdJeDQne9s7s7mbHAv5g4AAAAAAMA/uOMFjqtRo4Z27NhhOkZAojvf2dydzdngXswdAAAAAACAf5QzHQDutWXLlmKfCwsLlZubq5dfflnNmzc3EypA0J3vbO7O5mxwL+YOAAAAAADAWTxqDH4TFBQkj8ejfx2x1q1ba8qUKWrcuLGhZPajO9/Z3J3N2eBezB0AAAAAAICzWLzAb/bv31/sc1BQkKKiohQWFmYoUeCgO9/Z3J3N2eBezB0AAAAAAICzWLwAAAAAAAAAAACUEt7xglI1fvz4K/7a9PR0PyYJPHTnO5u7szkb3Iu5AwAAAAAAMIc7XlCq4uLiin0+duyY8vPzVaVKFUlSXl6eKlSooOjoaO3du9dAQnvRne9s7s7mbHAv5g4AAAAAAMCcINMB4C779u0r+jVmzBg1b95c2dnZOnHihE6cOKHs7Gy1aNFCzz//vOmo1qE739ncnc3Z4F7MHQAAAAAAgDnc8QK/adCggWbPnq2UlJRi5+vXr9e9996rffv2GUpmP7rznc3d2ZwN7sXcAQAAAAAAOIs7XuA3ubm5unDhQolzr9erI0eOGEgUOOjOdzZ3Z3M2uBdzBwAAAAAA4CwWL/CbW265Rf369dOGDRuKztavX6+0tDR16NDBYDL70Z3vbO7O5mxwL+YOAAAAAADAWSxe4DdTpkxRzZo11bJlS4WGhio0NFStWrVSjRo1lJmZaTqe1ejOdzZ3Z3M2uBdzBwAAAAAA4Cze8QK/27lzp7Kzs+XxeNS4cWM1bNjQdKSAQXe+s7k7m7PBvZg7AAAAAAAAZ7B4gSP+PmYej8dwksBDd76zuTubs8G9mDsAAAAAAAD/41Fj8Kvp06eradOmCg8PV3h4uJKTkzVjxgzTsQIC3fnO5u5szgb3Yu4AAAAAAACcU850ALhXRkaGRowYoYEDB6pdu3aSpFWrVql///76+eefNXjwYMMJ7UV3vrO5O5uzwb2YOwAAAAAAAGfxqDH4TVxcnEaNGqWePXsWO582bZqee+457du3z1Ay+9Gd72zuzuZscC/mDgAAAAAAwFk8agx+k5ubq7Zt25Y4b9u2rXJzcw0kChx05zubu7M5G9yLuQMAAAAAAHAWixf4TXx8vGbNmlXi/OOPP1ZCQoKBRIGD7nxnc3c2Z4N7MXcAAAAAAADO4h0v8JtRo0ape/fuysrKKnqvwOrVq7VkyZJLfhMQ/0B3vrO5O5uzwb2YOwAAAAAAAGfxjhf41YYNG5SRkaHs7GxJUmJiooYOHaqUlBTDyexHd76zuTubs8G9mDsAAAAAAADnsHiBXxQUFKhfv34aMWKE4uLiTMcJKHTnO5u7szkb3Iu5AwAAAAAAcB7veIFfhISE6NNPPzUdIyDRne9s7s7mbHAv5g4AAAAAAMB5LF7gN127dtVnn31mOkZAojvf2dydzdngXswdAAAAAACAs8qZDgD3SkhI0OjRo7V69Wpdc801qlixYrHr6enphpLZj+58Z3N3NmeDezF3AAAAAAAAzuIdL/CbP3qfgMfj0d69ex1ME1joznc2d2dzNrgXcwcAAAAAAOAsFi8AAAAAAAAAAAClhHe8wBGFhYVix+cbuvOdzd3ZnA3uxdwBAAAAAAD4H4sX+NXkyZOVlJSksLAwhYWFKSkpSZmZmaZjBQS6853N3dmcDe7F3AEAAAAAADinnOkAcK+RI0cqIyNDgwYNUps2bSRJX3/9tQYPHqycnByNHj3acEJ70Z3vbO7O5mxwL+YOAAAAAADAWbzjBX4TFRWl8ePHq0ePHsXOZ86cqUGDBunnn382lMx+dOc7m7uzORvci7kDAAAAAABwFo8ag98UFBSoZcuWJc6vueYaXbhwwUCiwEF3vrO5O5uzwb2YOwAAAAAAAGexeIHfPPTQQ5o4cWKJ83fffVcPPviggUSBg+58Z3N3NmeDezF3AAAAAAAAzuJRY/CbQYMGafr06YqJiVHr1q0lSWvXrlVOTo569uypkJCQoq/NyMgwFdNKdOc7m7uzORvci7kDAAAAAABwFosX+E1qauoVfZ3H49HSpUv9nCaw0J3vbO7O5mxwL+YOAAAAAADAWSxeAAAAAAAAAAAASgnveAEAAAAAAAAAACglLF4AAAAAAAAAAABKCYsXAAAAAAAAAACAUsLiBQAAAAAAAAAAoJSweAEAAAAAAAAAACglLF5Qqr755psr/tr8/Hz98MMPfkwTWOjOdzZ3Z3M2uBdzBwAAAAAAYA6LF5Sqhx56SLfffrs++eQTnTlz5pJfs23bNj3zzDNq0KCB1q9f73BCe9Gd72zuzuZscC/mDgAAAAAAwBxPYWFhoekQcI+CggJNnDhREyZM0N69e9WwYUPVrl1bYWFhOnnypLZv367Tp0/r7rvv1jPPPKOmTZuajmwNuvOdzd3ZnA3uxdwBAAAAAACYw+IFfvPdd99p1apV2r9/v86ePavq1asrJSVFqampqlq1qul4VqM739ncnc3Z4F7MHQAAAAAAgLNYvMBvcnJyFBUVpfDwcNNRAg7d+c7m7mzOBvdi7gAAAAAAAJzFO17gFxcvXlR8fLwOHjxoOkrAoTvf2dydzdngXswdAAAAAACA81i8wC+CgoKUkJCg48ePm44ScOjOdzZ3Z3M2uBdzBwAAAAAA4DwWL/Cbl19+WcOHD9fWrVtNRwk4dOc7m7uzORvci7kDAAAAAABwFu94gd9cddVVys/P14ULF1S+fPkS7xc4ceKEoWT2ozvf2dydzdngXswdAAAAAACAs8qZDgD3eu211+TxeEzHCEh05zubu7M5G9yLuQMAAAAAAHAWd7wAAAAAAAAAAACUEt7xAr8JDg7W0aNHS5wfP35cwcHBBhIFDrrznc3d2ZwN7sXcAQAAAAAAOIvFC/zmcjdTnTt3TuXLl3c4TWChO9/Z3J3N2eBezB0AAAAAAICzeMcLSt348eMlSR6PR5mZmapUqVLRNa/Xq6ysLDVu3NhUPKvRne9s7s7mbHAv5g4AAAAAAMAM3vGCUhcXFydJ2r9/v66++upij7IpX7686tWrp9GjR+u6664zFdFadOc7m7uzORvci7kDAAAAAAAwg8UL/CY1NVVz5szRVVddZTpKwKE739ncnc3Z4F7MHQAAAAAAgLNYvMAxXq9X33//vWJjY/kG4H+I7nxnc3c2Z4N7MXcAAAAAAAD+FWQ6ANzrySef1OTJkyX9/o2+9u3bq0WLFoqJidHy5cvNhrMc3fnO5u5szgb3Yu4AAAAAAACcxeIFfvPJJ5+oWbNmkqS//e1v+vHHH7V9+3YNHjxYzz77rOF0dqM739ncnc3Z4F7MHQAAAAAAgLNYvMBvjh8/rpo1a0qSvvzyS913331q2LChHnnkEX3//feG09mN7nxnc3c2Z4N7MXcAAAAAAADOYvECv6lRo4a2bdsmr9erBQsW6NZbb5Uk5efnKzg42HA6u9Gd72zuzuZscC/mDgAAAAAAwFnlTAeAe/Xu3Vv333+/atWqJY/How4dOkiS1q5dq8aNGxtOZze6853N3dmcDe7F3AEAAAAAADiLxQv85rnnnlNSUpIOHDig++67T6GhoZKk4OBgPfXUU4bT2Y3ufGdzdzZng3sxdwAAAAAAAM7yFBYWFpoOAQAAAAAAAAAA4Aa84wV+tWTJEt11111q0KCBGjRooLvuukuLFy82HSsg0J3vbO7O5mxwL+YOAAAAAADAOSxe4DdvvfWWOnbsqIiICD3xxBN64oknVLlyZd1xxx2aMGGC6XhWozvf2dydzdngXswdAAAAAACAs3jUGPzm6quv1lNPPaWBAwcWO58wYYJefPFFHTp0yFAy+9Gd72zuzuZscC/mDgAAAAAAwFnc8QK/ycvLU8eOHUuc33bbbfrll18MJAocdOc7m7uzORvci7kDAAAAAABwFosX+E3nzp01d+7cEueff/657rrrLgOJAgfd+c7m7mzOBvdi7gAAAAAAAJxVznQAuMv48eOL/rpJkyYaM2aMli9frjZt2kiSvvnmG61evVpDhw41FdFadOc7m7uzORvci7kDAAAAAAAwh3e8oFTFxcVd0dd5PB7t3bvXz2kCC935zububM4G92LuAAAAAAAAzGHxAgAAAAAAAAAAUEp4xwsAAAAAAAAAAEAp4R0v8JtHHnnkD69PmTLFoSSBh+58Z3N3NmeDezF3AAAAAAAAzmLxAr85efJksc8FBQXaunWr8vLydPPNNxtKFRjoznc2d2dzNrgXcwcAAAAAAOAsFi/wm7lz55Y4u3jxotLS0tSgQQMDiQIH3fnO5u5szgb3Yu4AAAAAAACc5SksLCw0HQJly44dO3TTTTcpNzfXdJSAQ3e+s7k7m7PBvZg7AAAAAAAA/wgyHQBlz549e3ThwgXTMQIS3fnO5u5szgb3Yu4AAAAAAAD8g0eNwW+GDBlS7HNhYaFyc3P1xRdf6OGHHzaUKjDQne9s7s7mbHAv5g4AAAAAAMBZPGoMfpOamlrsc1BQkKKionTzzTfrkUceUbly7P0uh+58Z3N3NmeDezF3AAAAAAAAzmLxAgAAAAAAAAAAUEp4xwv85uzZs8rPzy/6vH//fr3++utauHChwVSBge58Z3N3NmeDezF3AAAAAAAAzmLxAr/p0qWLpk+fLknKy8tTq1atNG7cOHXp0kUTJ040nM5udOc7m7uzORvci7kDAAAAAABwFosX+M2GDRt0ww03SJJmz56tmjVrav/+/Zo+fbrGjx9vOJ3d6M53Nndncza4F3MHAAAAAADgLBYv8Jv8/HxFRERIkhYuXKh77rlHQUFBat26tfbv3284nd3oznc2d2dzNrgXcwcAAAAAAOAsFi/wm/j4eH322Wc6cOCAvvrqK912222SpKNHj6py5cqG09mN7nxnc3c2Z4N7MXcAAAAAAADOYvECvxk5cqSGDRumevXq6brrrlObNm0k/f4T1ykpKYbT2Y3ufGdzdzZng3sxdwAAAAAAAM7yFBYWFpoOAff66aeflJubq2bNmiko6Pc937fffqvKlSurcePGhtPZje58Z3N3NmeDezF3AAAAAAAAzmHxAgAAAAAAAAAAUEp41BgAAAAAAAAAAEApYfECAAAAAAAAAABQSli8AAAAAAAAAAAAlBIWLwAAAAACTmFhofr27auqVavK4/Fo06ZNpiMBAAAAgCTJU1hYWGg6BAAAAAD8J+bPn68uXbpo+fLlql+/vqpXr65y5cr9V79nr169lJeXp88++6x0QgIAAAAok/67fzMBAAAAAAP27NmjWrVqqW3btqajlOD1euXxeBQUxAMGAAAAgLKIfxMAAAAAEFB69eqlQYMGKScnRx6PR/Xq1dPFixf10ksvKS4uTuHh4WrWrJlmz55d9J/xer169NFHi643atRIb7zxRtH15557TtOmTdPnn38uj8cjj8ej5cuXa/ny5fJ4PMrLyyv62k2bNsnj8ejHH3+UJL333nuqUqWK5s2bpyZNmig0NFQ5OTk6d+6chg0bpjp16qhixYq67rrrtHz58qLfZ//+/erUqZOuuuoqVaxYUf/zP/+jL7/80t/1AQAAAPAz7ngBAAAAEFDeeOMNNWjQQO+++67WrVun4OBgvfTSS3r//ff19ttvKyEhQVlZWfrLX/6iqKgo3Xjjjbp48aKuvvpqffLJJ6pWrZrWrFmjvn37qlatWrr//vs1bNgwZWdn69SpU5o6daokqWrVqlqzZs0VZcrPz9fYsWOVmZmpatWqKTo6WgMHDtS2bdv00UcfqXbt2po7d646duyo77//XgkJCRowYIDOnz+vrKwsVaxYUdu2bVOlSpX8WR0AAAAAB7B4AQAAABBQIiMjFRERoeDgYNWsWVPnzp3Tiy++qMWLF6tNmzaSpPr162vVqlV65513dOONNyokJESjRo0q+j3i4uL09ddfa9asWbr//vtVqVIlhYeH69y5c6pZs+Z/nKmgoEBvvfWWmjVrJknKycnR1KlTlZOTo9q1a0uShg0bpgULFmjq1Kl68cUXlZOTo27duqlp06ZFmQEAAAAEPhYvAAAAAALa7t27lZ+fr1tvvbXY+fnz55WSklL0ecKECZoyZYpycnJ09uxZnT9/Xs2bNy+VDOXLl1dycnLR5++//15er1cNGzYs9nXnzp1TtWrVJEnp6elKS0vTwoUL1aFDB3Xr1q3Y7wEAAAAgMLF4AQAAABDQTp8+LUn64osvVKdOnWLXQkNDJUkfffSRhg0bpnHjxqlNmzaKiIjQ//7v/2rt2rV/+HsHBf3+WszCwsKis4KCghJfFx4eLo/HUyxTcHCw1q9fr+Dg4GJf+/fHiT322GO6/fbb9cUXX2jhwoV66aWXNG7cOA0aNOhK/6sDAAAAsBCLFwAAAAAB7Z9faH/jjTde8mtWr16ttm3b6vHHHy8627NnT7GvKV++vLxeb7GzqKgoSVJubq6uuuoqSdKmTZv+baaUlBR5vV4dPXpUN9xww2W/LiYmRv3791f//v319NNPa9KkSSxeAAAAgADH4gUAAABAQIuIiNCwYcM0ePBgXbx4Uddff71++eUXrV69WpUrV9bDDz+shIQETZ8+XV999ZXi4uI0Y8YMrVu3TnFxcUW/T7169fTVV19px44dqlatmiIjIxUfH6+YmBg999xzGjNmjHbu3Klx48b920wNGzbUgw8+qJ49e2rcuHFKSUnRsWPHtGTJEiUnJ+vOO+/Uk08+qT/96U9q2LChTp48qWXLlikxMdGfVQEAAABwQJDpAAAAAADw33r++ec1YsQIvfTSS0pMTFTHjh31xRdfFC1W+vXrp3vuuUfdu3fXddddp+PHjxe7+0WS+vTpo0aNGqlly5aKiorS6tWrFRISopkzZ2r79u1KTk7W2LFj9cILL1xRpqlTp6pnz54aOnSoGjVqpK5du2rdunWqW7euJMnr9WrAgAFFeRs2bKi33nqrdIsBAAAA4DhP4T8/rBgAAAAAAAAAAAA+444XAAAAAAAAAACAUsLiBQAAAAAAAAAAoJSweAEAAAAAAAAAACglLF4AAAAAAAAAAABKCYsXAAAAAAAAAACAUsLiBQAAAAAAAAAAoJSweAEAAAAAAAAAACglLF4AAAAAAAAAAABKCYsXAAAAAAAAAACAUsLiBQAAAAAAAAAAoJSweAEAAAAAAAAAACglLF4AAAAAAAAAAABKyf8Dx0cpHbFjsVUAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "LENGTH=50\n", "\n", "names, correlations = pipe2.features.correlations()\n", "\n", "plt.subplots(figsize=(20, 10))\n", "\n", "plt.bar(names[:LENGTH], correlations[:LENGTH])\n", "\n", "plt.title(\"feature correlations\")\n", "plt.grid(True)\n", "plt.xlabel(\"features\")\n", "plt.ylabel(\"correlations\")\n", "plt.xticks(rotation='vertical')\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can express the features in SQLite3:" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Because getML uses a feature learning approach, the concept of feature importances can also be carried over to the individual columns." ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABlUAAASSCAYAAAAo4mgGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD/S0lEQVR4nOzdeZxVdf348fedAQaHRUAQFPk6Im5ISoEg7iVCSppbkuZPBMPSL6JNplLKohW4hKhZ5EJYieLSo76GaYSCC6S5oOKCmeCGgEoyCDqMM/f3hw8mR0b8OA6cgXk+Hw8ees89d+77Xj4DzLzmnJPL5/P5AAAAAAAAYIMKsh4AAAAAAABgcyCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAEAjtXjx4sjlcjF16tSsR6mTXC4XY8eOzXoMAACgERFVAAAAMjBt2rSYNGlS1mMAAACfQ5OsBwAAAKiL999/P5o02Xy/pJk2bVosWLAgzjnnnKxHAQAAEjlSBQAA2Cw1b958s4wqq1evznoEAACgjkQVAADYzLzxxhtx2mmnxfbbbx9FRUWx0047xRlnnBFr166t3ufll1+Ob33rW9GuXbsoLi6OfffdN2bMmPGZH/uQQw6JQw45ZL3tp556apSUlFTfXnc9liuuuCKuvfba6Nq1axQXF8eAAQPitddei3w+H5dccknssMMOsdVWW8U3v/nNWLFiRY2PWVJSEt/4xjfioYceij59+kTz5s2ja9eu8bvf/S7pffjkNVXGjh0buVwuXnzxxTj55JNj6623jg4dOsRFF10U+Xw+XnvttfjmN78ZrVu3jk6dOsUvfvGLGh9v9uzZkcvlYvr06fHjH/84OnXqFC1atIijjjoqXnvttfWe//bbb49evXrFVlttFe3bt4+TTz453njjjfXet5YtW8a///3vOOKII6JVq1bxne98Jw455JCYMWNGvPLKK5HL5SKXy1W/v2vXro3Ro0dHr169Yuutt44WLVrEgQceGPfff3+Nj/3x34Prrrsudt555ygqKop99tkn/vnPf6437wsvvBAnnHBCdOjQIbbaaqvYbbfd4ic/+UmNfd54440YNmxYdOzYMYqKimLPPfeMKVOmrPexrrnmmthzzz2juLg42rZtG717945p06Zt8PcLAAC2BJvfj3UBAEAjtmTJkujTp0+8++67cfrpp8fuu+8eb7zxRtxxxx2xZs2aaNasWSxbtiz222+/WLNmTYwcOTK22WabuOmmm+Koo46KO+64I4455ph6m+fmm2+OtWvXxllnnRUrVqyIyy67LE444YT42te+FrNnz47zzz8/Xnrppbjmmmvi3HPPXe8b9C+99FIcf/zxcdppp8WQIUNiypQpceqpp0avXr1izz33rNNMgwcPjj322CMmTJgQM2bMiJ/+9KfRrl27+M1vfhNf+9rX4tJLL42bb745zj333Nhnn33ioIMOqvH4n/3sZ5HL5eL888+P5cuXx6RJk6J///4xf/782GqrrSIiYurUqTF06NDYZ599Yvz48bFs2bK46qqr4uGHH44nn3wy2rRpU/3xPvzwwxg4cGAccMABccUVV0RxcXF06tQpVq5cGa+//npceeWVERHRsmXLiIgoKyuLG264IU488cQYPnx4rFq1Km688cYYOHBgPProo9GzZ88a806bNi1WrVoV3/ve9yKXy8Vll10Wxx57bLz88svRtGnTiIh4+umn48ADD4ymTZvG6aefHiUlJfHvf/877rrrrvjZz34WERHLli2LfffdN3K5XIwYMSI6dOgQf/3rX+O0006LsrKy6tOUXX/99TFy5Mg4/vjj4+yzz44PPvggnn766XjkkUfipJNOqtPvGQAAbDbyAADAZuOUU07JFxQU5P/5z3+ud19VVVU+n8/nzznnnHxE5B988MHq+1atWpXfaaed8iUlJfnKysp8Pp/PL1q0KB8R+d/+9rfV+x188MH5gw8+eL2PPWTIkPyOO+5YfXvdYzt06JB/9913q7ePGjUqHxH5vffeO19RUVG9/cQTT8w3a9Ys/8EHH1Rv23HHHfMRkX/ggQeqty1fvjxfVFSU/+EPf/iZ70VE5MeMGVN9e8yYMfmIyJ9++unV2z788MP8DjvskM/lcvkJEyZUb//Pf/6T32qrrfJDhgyp3nb//ffnIyLfuXPnfFlZWfX22267LR8R+auuuiqfz+fza9euzW+77bb5Hj165N9///3q/f7yl7/kIyI/evToGu9bROQvuOCC9eYfNGhQjff04zOXl5fX2Paf//wn37Fjx/ywYcOqt637Pdhmm23yK1asqN7+5z//OR8R+bvuuqt620EHHZRv1apV/pVXXqnxcdetmXw+nz/ttNPy2223Xf7tt9+usc+3v/3t/NZbb51fs2ZNPp/P57/5zW/m99xzz/XmBgCAxsDpvwAAYDNRVVUVf/rTn+LII4+M3r17r3d/LpeLiIi77747+vTpEwcccED1fS1btozTTz89Fi9eHM8991y9zfStb30rtt566+rbffv2jYiIk08+ucb1Tvr27Rtr165d7/RY3bt3jwMPPLD6docOHWK33XaLl19+uc4zffe7363+/8LCwujdu3fk8/k47bTTqre3adPmU5/nlFNOiVatWlXfPv7442O77baLu+++OyIiHnvssVi+fHmceeaZ0bx58+r9Bg0aFLvvvnutp1k744wzkucvLCyMZs2aRcRHv+crVqyIDz/8MHr37h1PPPHEevsPHjw42rZtW3173fu57rW99dZb8cADD8SwYcPif/7nf2o8dt2ayefzceedd8aRRx4Z+Xw+3n777epfAwcOjJUrV1Y/d5s2beL111+v9RRjAACwpRNVAABgM/HWW29FWVlZ9OjRY4P7vfLKK7Hbbrutt32PPfaovr++fPKb9OsCS5cuXWrd/p///GeDj4+IaNu27Xr7fdGZmjdvHu3bt19ve23Ps8suu9S4ncvlolu3brF48eKI+O/7V9t7vPvuu6/3/jZp0iR22GGHz/Uabrrppthrr72iefPmsc0220SHDh1ixowZsXLlyvX2/eTrXRdY1r22dXFlQ+vmrbfeinfffTeuu+666NChQ41fQ4cOjYiI5cuXR0TE+eefHy1btow+ffrELrvsEv/7v/8bDz/88Od6fQAAsLlyTRUAAKBaLpeLfD6/3vbKyspa9y8sLPxc2z/5sVP3+zxq+5gb43lSFRUVRUFB+s+z/eEPf4hTTz01jj766PjRj34U2267bRQWFsb48ePj3//+93r718drq6qqioiPjjAaMmRIrfvstddeEfFRnFu4cGH85S9/iXvuuSfuvPPO+NWvfhWjR4+OcePGJT8nAABsjkQVAADYTHTo0CFat24dCxYs2OB+O+64YyxcuHC97S+88EL1/Z+mbdu2tZ4Sqz6Pbmno/vWvf9W4nc/n46WXXqqOCuvev4ULF8bXvva1GvsuXLhwg+/vx6079dYn3XHHHdG1a9f44x//WGOfMWPGJL+Gj+vatWtExAbXTYcOHaJVq1ZRWVkZ/fv3/8yP2aJFixg8eHAMHjw41q5dG8cee2z87Gc/i1GjRtU4JRoAAGxpnP4LAAA2EwUFBXH00UfHXXfdFY899th69687MuGII46IRx99NObNm1d93+rVq+O6666LkpKS6N69+6c+x8477xwvvPBCvPXWW9XbnnrqqUZ1eqff/e53sWrVqurbd9xxR7z55ptx+OGHR0RE7969Y9ttt43JkydHeXl59X5//etf4/nnn49BgwYlPU+LFi1qPZ3XuiNPPn6kySOPPFLj9/Pz6NChQxx00EExZcqUePXVV2vct+45CgsL47jjjos777yz1vjy8fXwzjvv1LivWbNm0b1798jn81FRUVGnGQEAYHPhSBUAANiM/PznP4+//e1vcfDBB8fpp58ee+yxR7z55ptx++23x0MPPRRt2rSJCy64IG655ZY4/PDDY+TIkdGuXbu46aabYtGiRXHnnXdu8FRUw4YNi4kTJ8bAgQPjtNNOi+XLl8fkyZNjzz33jLKysk34SrPTrl27OOCAA2Lo0KGxbNmymDRpUnTr1i2GDx8eERFNmzaNSy+9NIYOHRoHH3xwnHjiibFs2bK46qqroqSkJH7wgx8kPU+vXr1i+vTpUVpaGvvss0+0bNkyjjzyyPjGN74Rf/zjH+OYY46JQYMGxaJFi2Ly5MnRvXv3eO+99+r0mq6++uo44IAD4itf+UqcfvrpsdNOO8XixYtjxowZMX/+/IiImDBhQtx///3Rt2/fGD58eHTv3j1WrFgRTzzxRPz973+PFStWRETEgAEDolOnTrH//vtHx44d4/nnn49f/vKXMWjQoGjVqlWd5gMAgM2FqAIAAJuRzp07xyOPPBIXXXRR3HzzzVFWVhadO3eOww8/PIqLiyMiomPHjjF37tw4//zz45prrokPPvgg9tprr7jrrrs+8yiKPfbYI373u9/F6NGjo7S0NLp37x6///3vY9q0aTF79uxN8Aqz9+Mf/ziefvrpGD9+fKxatSoOPfTQ+NWvflX9/kZEnHrqqVFcXBwTJkyI888/P1q0aBHHHHNMXHrppdGmTZuk5znzzDNj/vz58dvf/jauvPLK2HHHHePII4+MU089NZYuXRq/+c1v4t57743u3bvHH/7wh7j99tvr/Huw9957xz/+8Y+46KKL4te//nV88MEHseOOO8YJJ5xQvU/Hjh3j0UcfjYsvvjj++Mc/xq9+9avYZpttYs8994xLL720er/vfe97cfPNN8fEiRPjvffeix122CFGjhwZF154YZ1mAwCAzUkuvymuzAgAANDAzZ49O7761a/G7bffHscff3zW4wAAAA2Qa6oAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJXFMFAAAAAAAggSNVAAAAAAAAEjTJeoBNraqqKpYsWRKtWrWKXC6X9TgAAAAAAECG8vl8rFq1KrbffvsoKNjwsSiNLqosWbIkunTpkvUYAAAAAABAA/Laa6/FDjvssMF9Gl1UadWqVUR89Oa0bt0642loSCoqKuJvf/tbDBgwIJo2bZr1ODQy1h9Zsv7IkvVHlqw/smT9kTVrkCxZf2TJ+qM2ZWVl0aVLl+p+sCGNLqqsO+VX69atRRVqqKioiOLi4mjdurU/UNnkrD+yZP2RJeuPLFl/ZMn6I2vWIFmy/siS9ceGpFwyxIXqAQAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgAQNIqpce+21UVJSEs2bN4++ffvGo48++qn7Tp06NXK5XI1fzZs334TTAgAAAAAAjVHmUWX69OlRWloaY8aMiSeeeCL23nvvGDhwYCxfvvxTH9O6det48803q3+98sorm3BiAAAAAACgMco8qkycODGGDx8eQ4cOje7du8fkyZOjuLg4pkyZ8qmPyeVy0alTp+pfHTt23IQTAwAAAAAAjVGTLJ987dq18fjjj8eoUaOqtxUUFET//v1j3rx5n/q49957L3bccceoqqqKr3zlK/Hzn/889txzz1r3LS8vj/Ly8urbZWVlERFRUVERFRUV9fRK2BKsWw/WBVmw/siS9UeWrD+yZP2RJeuPrFmDZMn6I0vWH7X5POshl8/n8xtxlg1asmRJdO7cOebOnRv9+vWr3n7eeefFnDlz4pFHHlnvMfPmzYt//etfsddee8XKlSvjiiuuiAceeCCeffbZ2GGHHdbbf+zYsTFu3Lj1tk+bNi2Ki4vr9wUBAAAAAACblTVr1sRJJ50UK1eujNatW29w30yPVKmLfv361Qgw++23X+yxxx7xm9/8Ji655JL19h81alSUlpZW3y4rK4suXbrEgAEDPvPNoXGpqKiImTNnxmGHHRZNmzbNehwaGeuPLFl/ZMn6I0vWH1my/siaNUiWrD+yZP1Rm3VnuEqRaVRp3759FBYWxrJly2psX7ZsWXTq1CnpYzRt2jS+/OUvx0svvVTr/UVFRVFUVFTr43zSUBtrgyxZf2TJ+iNL1h9Zsv7IkvVH1qxBsmT9kSXrj4/7PGsh0wvVN2vWLHr16hWzZs2q3lZVVRWzZs2qcTTKhlRWVsYzzzwT22233cYaEwAAAAAAIPvTf5WWlsaQIUOid+/e0adPn5g0aVKsXr06hg4dGhERp5xySnTu3DnGjx8fEREXX3xx7LvvvtGtW7d499134/LLL49XXnklvvvd72b5MgAAAAAAgC1c5lFl8ODB8dZbb8Xo0aNj6dKl0bNnz7jnnnuiY8eOERHx6quvRkHBfw+o+c9//hPDhw+PpUuXRtu2baNXr14xd+7c6N69e1YvAQAAAAAAaAQyjyoRESNGjIgRI0bUet/s2bNr3L7yyivjyiuv3ARTAQAAAAAA/Fem11QBAAAAAADYXIgqAAAAAAAACUQVAAAAAACABKIKAAAAAABAggZxoXoajpILZmQ9QmaKCvNxWZ+IHmPvjfLKXNbjZGLxhEFZjwAAAAAA0GA5UgUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEjSIqHLttddGSUlJNG/ePPr27RuPPvpo0uNuvfXWyOVycfTRR2/cAQEAAAAAgEYv86gyffr0KC0tjTFjxsQTTzwRe++9dwwcODCWL1++wcctXrw4zj333DjwwAM30aQAAAAAAEBjlnlUmThxYgwfPjyGDh0a3bt3j8mTJ0dxcXFMmTLlUx9TWVkZ3/nOd2LcuHHRtWvXTTgtAAAAAADQWDXJ8snXrl0bjz/+eIwaNap6W0FBQfTv3z/mzZv3qY+7+OKLY9ttt43TTjstHnzwwQ0+R3l5eZSXl1ffLisri4iIioqKqKio+IKvYMtTVJjPeoTMFBXka/y3MfI5kZ11773fA7Jg/ZEl648sWX9kyfoja9YgWbL+yJL1R20+z3rI5fP5zL6DvGTJkujcuXPMnTs3+vXrV739vPPOizlz5sQjjzyy3mMeeuih+Pa3vx3z58+P9u3bx6mnnhrvvvtu/OlPf6r1OcaOHRvjxo1bb/u0adOiuLi43l4LAAAAAACw+VmzZk2cdNJJsXLlymjduvUG9830SJXPa9WqVfH//t//i+uvvz7at2+f9JhRo0ZFaWlp9e2ysrLo0qVLDBgw4DPfnMaox9h7sx4hM0UF+bikd1Vc9FhBlFflsh4nEwvGDsx6hEaroqIiZs6cGYcddlg0bdo063FoZKw/smT9kSXrjyxZf2TNGiRL1h9Zsv6ozbozXKXINKq0b98+CgsLY9myZTW2L1u2LDp16rTe/v/+979j8eLFceSRR1Zvq6qqioiIJk2axMKFC2PnnXeu8ZiioqIoKipa72M1bdrUJ00tyisbZ0z4uPKqXKN9H3xOZM+fTWTJ+iNL1h9Zsv7IkvVH1qxBsmT9kSXrj4/7PGsh0wvVN2vWLHr16hWzZs2q3lZVVRWzZs2qcTqwdXbfffd45plnYv78+dW/jjrqqPjqV78a8+fPjy5dumzK8QEAAAAAgEYk89N/lZaWxpAhQ6J3797Rp0+fmDRpUqxevTqGDh0aERGnnHJKdO7cOcaPHx/NmzePHj161Hh8mzZtIiLW2w4AAAAAAFCfMo8qgwcPjrfeeitGjx4dS5cujZ49e8Y999wTHTt2jIiIV199NQoKMj2gBgAAAAAAIPuoEhExYsSIGDFiRK33zZ49e4OPnTp1av0PBAAAAAAA8AkOAQEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkaBBR5dprr42SkpJo3rx59O3bNx599NFP3fePf/xj9O7dO9q0aRMtWrSInj17xu9///tNOC0AAAAAANAYZR5Vpk+fHqWlpTFmzJh44oknYu+9946BAwfG8uXLa92/Xbt28ZOf/CTmzZsXTz/9dAwdOjSGDh0a99577yaeHAAAAAAAaEwyjyoTJ06M4cOHx9ChQ6N79+4xefLkKC4ujilTptS6/yGHHBLHHHNM7LHHHrHzzjvH2WefHXvttVc89NBDm3hyAAAAAACgMWmS5ZOvXbs2Hn/88Rg1alT1toKCgujfv3/MmzfvMx+fz+fjvvvui4ULF8all15a6z7l5eVRXl5efbusrCwiIioqKqKiouILvoItT1FhPusRMlNUkK/x38bI50R21r33fg/IgvVHlqw/smT9kSXrj6xZg2TJ+iNL1h+1+TzrIZfP5zP7DvKSJUuic+fOMXfu3OjXr1/19vPOOy/mzJkTjzzySK2PW7lyZXTu3DnKy8ujsLAwfvWrX8WwYcNq3Xfs2LExbty49bZPmzYtiouL6+eFAAAAAAAAm6U1a9bESSedFCtXrozWrVtvcN9Mj1Spq1atWsX8+fPjvffei1mzZkVpaWl07do1DjnkkPX2HTVqVJSWllbfLisriy5dusSAAQM+881pjHqMbbzXpikqyMclvavioscKorwql/U4mVgwdmDWIzRaFRUVMXPmzDjssMOiadOmWY9DI2P9kSXrjyxZf2TJ+iNr1iBZsv7IkvVHbdad4SpFplGlffv2UVhYGMuWLauxfdmyZdGpU6dPfVxBQUF069YtIiJ69uwZzz//fIwfP77WqFJUVBRFRUXrbW/atKlPmlqUVzbOmPBx5VW5Rvs++JzInj+byJL1R5asP7Jk/ZEl64+sWYNkyfojS9YfH/d51kKmF6pv1qxZ9OrVK2bNmlW9raqqKmbNmlXjdGCfpaqqqsZ1UwAAAAAAAOpb5qf/Ki0tjSFDhkTv3r2jT58+MWnSpFi9enUMHTo0IiJOOeWU6Ny5c4wfPz4iIsaPHx+9e/eOnXfeOcrLy+Puu++O3//+9/HrX/86y5cBAAAAAABs4TKPKoMHD4633norRo8eHUuXLo2ePXvGPffcEx07doyIiFdffTUKCv57QM3q1avjzDPPjNdffz222mqr2H333eMPf/hDDB48OKuXAAAAAAAANAKZR5WIiBEjRsSIESNqvW/27Nk1bv/0pz+Nn/70p5tgKgAAAAAAgP/K9JoqAAAAAAAAmwtRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJCgzlHlwQcfjJNPPjn69esXb7zxRkRE/P73v4+HHnqo3oYDAAAAAABoKOoUVe68884YOHBgbLXVVvHkk09GeXl5RESsXLkyfv7zn9frgAAAAAAAAA1BnaLKT3/605g8eXJcf/310bRp0+rt+++/fzzxxBP1NhwAAAAAAEBDUaeosnDhwjjooIPW27711lvHu++++0VnAgAAAAAAaHDqFFU6deoUL7300nrbH3rooejatesXHgoAAAAAAKChqVNUGT58eJx99tnxyCOPRC6XiyVLlsTNN98c5557bpxxxhn1PSMAAAAAAEDmmtTlQRdccEFUVVXFoYceGmvWrImDDjooioqK4txzz42zzjqrvmcEAAAAAADIXJ2iSi6Xi5/85Cfxox/9KF566aV47733onv37tGyZcv6ng8AAAAAAKBBqFNUWblyZVRWVka7du2ie/fu1dtXrFgRTZo0idatW9fbgAAAAAAAAA1Bna6p8u1vfztuvfXW9bbfdttt8e1vf/sLDwUAAAAAANDQ1CmqPPLII/HVr351ve2HHHJIPPLII194KAAAAAAAgIamTlGlvLw8Pvzww/W2V1RUxPvvv/+FhwIAAAAAAGho6hRV+vTpE9ddd9162ydPnhy9evX6wkMBAAAAAAA0NHW6UP1Pf/rT6N+/fzz11FNx6KGHRkTErFmz4p///Gf87W9/q9cBAQAAAAAAGoI6Hamy//77x7x586JLly5x2223xV133RXdunWLp59+Og488MD6nhEAAAAAACBzdTpSJSKiZ8+ecfPNN9fnLAAAAAAAAA1WnaNKVVVVvPTSS7F8+fKoqqqqcd9BBx30hQcDAAAAAABoSOoUVf7xj3/ESSedFK+88krk8/ka9+VyuaisrKyX4QAAAAAAABqKOkWV73//+9G7d++YMWNGbLfddpHL5ep7LgAAAAAAgAalTlHlX//6V9xxxx3RrVu3+p4HAAAAAACgQSqoy4P69u0bL730Un3PAgAAAAAA0GDV6UiVs846K374wx/G0qVL40tf+lI0bdq0xv177bVXvQwHAAAAAADQUNQpqhx33HERETFs2LDqbblcLvL5vAvVAwAAAAAAW6Q6RZVFixbV9xwAAAAAAAANWp2iyo477ljfcwAAAAAAADRodYoq6zz33HPx6quvxtq1a2tsP+qoo77QUAAAAAAAAA1NnaLKyy+/HMccc0w888wz1ddSifjouioR4ZoqAAAAAADAFqegLg86++yzY6eddorly5dHcXFxPPvss/HAAw9E7969Y/bs2fU8IgAAAAAAQPbqdKTKvHnz4r777ov27dtHQUFBFBQUxAEHHBDjx4+PkSNHxpNPPlnfcwIAAAAAAGSqTkeqVFZWRqtWrSIion379rFkyZKI+OgC9gsXLqy/6QAAAAAAABqIOh2p0qNHj3jqqadip512ir59+8Zll10WzZo1i+uuuy66du1a3zMCAAAAAABkrk5R5cILL4zVq1dHRMTFF18c3/jGN+LAAw+MbbbZJm699dZ6HRAAAAAAAKAhqFNUGThwYPX/d+vWLV544YVYsWJFtG3bNnK5XL0NBwAAAAAA0FDU6Zoqw4YNi1WrVtXY1q5du1izZk0MGzasXgYDAAAAAABoSOoUVW666aZ4//3319v+/vvvx+9+97svPBQAAAAAAEBD87lO/1VWVhb5fD7y+XysWrUqmjdvXn1fZWVl3H333bHtttvW+5AAAAAAAABZ+1xRpU2bNpHL5SKXy8Wuu+663v25XC7GjRtXb8MBAAAAAAA0FJ8rqtx///2Rz+fja1/7Wtx5553Rrl276vuaNWsWO+64Y2y//fb1PiQAAAAAAEDWPldUOfjgg+PDDz+MIUOGRO/evaNLly4bay4AAAAAAIAG5XNfqL5JkyZxxx13RGVl5caYBwAAAAAAoEH63FElIuJrX/tazJkzp75nAQAAAAAAaLA+1+m/1jn88MPjggsuiGeeeSZ69eoVLVq0qHH/UUcdVS/DAQAAAAAANBR1iipnnnlmRERMnDhxvftyuZxTgwF1UnLBjKxHyExRYT4u6xPRY+y9UV6Zy3qcTCyeMCjrEQAAAABgg+oUVaqqqup7DgAAAAAAgAatTtdUAQAAAAAAaGzqHFXmzJkTRx55ZHTr1i26desWRx11VDz44IP1ORsAAAAAAECDUaeo8oc//CH69+8fxcXFMXLkyBg5cmRstdVWceihh8a0adPqe0YAAAAAAIDM1emaKj/72c/isssuix/84AfV20aOHBkTJ06MSy65JE466aR6GxAAAAAAAKAhqNORKi+//HIceeSR620/6qijYtGiRV94KAAAAAAAgIamTlGlS5cuMWvWrPW2//3vf48uXbp84aEAAAAAAAAamjqd/uuHP/xhjBw5MubPnx/77bdfREQ8/PDDMXXq1LjqqqvqdUAAAAAAAICGoE5R5YwzzohOnTrFL37xi7jtttsiImKPPfaI6dOnxze/+c16HRAAAAAAAKAhqFNUiYg45phj4phjjqnPWQAAAAAAABqsOkeViIjHHnssnn/++YiI6N69e/Tq1atehgIAAAAAAGho6hRVXn/99TjxxBPj4YcfjjZt2kRExLvvvhv77bdf3HrrrbHDDjvU54wAAAAAAACZK6jLg7773e9GRUVFPP/887FixYpYsWJFPP/881FVVRXf/e5363tGAAAAAACAzNXpSJU5c+bE3LlzY7fddqvetttuu8U111wTBx54YL0NBwAAAAAA0FDU6UiVLl26REVFxXrbKysrY/vtt//CQwEAAAAAADQ0dYoql19+eZx11lnx2GOPVW977LHH4uyzz44rrrii3oYDAAAAAABoKOp0+q9TTz011qxZE3379o0mTT76EB9++GE0adIkhg0bFsOGDaved8WKFfUzKQAAAAAAQIbqFFUmTZpUz2MAAAAAAAA0bHWKKkOGDKnvOQAAAAAAABq0OkWVdZYvXx7Lly+PqqqqGtv32muvLzQUAAAAAABAQ1OnqPL444/HkCFD4vnnn498Pl/jvlwuF5WVlfUyHAAAAAAAQENRp6gybNiw2HXXXePGG2+Mjh07Ri6Xq++5AAAAAAAAGpQ6RZWXX3457rzzzujWrVt9zwMAAAAAANAgFdTlQYceemg89dRT9T0LAAAAAABAg1WnI1VuuOGGGDJkSCxYsCB69OgRTZs2rXH/UUcdVS/DAQAAAAAANBR1iirz5s2Lhx9+OP7617+ud58L1QMAAAAAAFuiOp3+66yzzoqTTz453nzzzaiqqqrxS1ABAAAAAAC2RHWKKu+880784Ac/iI4dO9b3PAAAAAAAAA1SnaLKscceG/fff399zwIAAAAAANBg1emaKrvuumuMGjUqHnroofjSl7603oXqR44cWS/DAQAAAAAANBR1iio33HBDtGzZMubMmRNz5sypcV8ulxNVAAAAAACALU6dosqiRYvqew4AAAAAAIAGLTmqlJaWxiWXXBItWrSI0tLST90vl8vFL37xi3oZDgAAAAAAoKFIjipPPvlkVFRUVP//p8nlcl98KgAAAAAAgAYmOarcf//9tf4/AAAAAABAY1CQ9QAAAAAAAACbA1EFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQIIGEVWuvfbaKCkpiebNm0ffvn3j0Ucf/dR9r7/++jjwwAOjbdu20bZt2+jfv/8G9wcAAAAAAKgPmUeV6dOnR2lpaYwZMyaeeOKJ2HvvvWPgwIGxfPnyWvefPXt2nHjiiXH//ffHvHnzokuXLjFgwIB44403NvHkAAAAAABAY5J5VJk4cWIMHz48hg4dGt27d4/JkydHcXFxTJkypdb9b7755jjzzDOjZ8+esfvuu8cNN9wQVVVVMWvWrE08OQAAAAAA0Jg0yfLJ165dG48//niMGjWqeltBQUH0798/5s2bl/Qx1qxZExUVFdGuXbta7y8vL4/y8vLq22VlZRERUVFRERUVFV9g+i1TUWE+6xEyU1SQr/Hfxijrzwnrz/ojG+vee78HZMH6I0vWH1my/siaNUiWrD+yZP1Rm8+zHnL5fD6z7+AtWbIkOnfuHHPnzo1+/fpVbz/vvPNizpw58cgjj3zmxzjzzDPj3nvvjWeffTaaN2++3v1jx46NcePGrbd92rRpUVxc/MVeAAAAAAAAsFlbs2ZNnHTSSbFy5cpo3br1BvfN9EiVL2rChAlx6623xuzZs2sNKhERo0aNitLS0urbZWVl1ddh+aw3pzHqMfberEfITFFBPi7pXRUXPVYQ5VW5rMfJxIKxAzN9fuvP+iMbFRUVMXPmzDjssMOiadOmWY9DI2P9kSXrjyxZf2TNGiRL1h9Zsv6ozbozXKXINKq0b98+CgsLY9myZTW2L1u2LDp16rTBx15xxRUxYcKE+Pvf/x577bXXp+5XVFQURUVF621v2rSpT5palFc2zm/mflx5Va7Rvg9Zf0401vf946w/suTvRrJk/ZEl648sWX9kzRokS9YfWbL++LjPsxYyvVB9s2bNolevXjUuMr/uovMfPx3YJ1122WVxySWXxD333BO9e/feFKMCAAAAAACNXOan/yotLY0hQ4ZE7969o0+fPjFp0qRYvXp1DB06NCIiTjnllOjcuXOMHz8+IiIuvfTSGD16dEybNi1KSkpi6dKlERHRsmXLaNmyZWavAwAAAAAA2LJlHlUGDx4cb731VowePTqWLl0aPXv2jHvuuSc6duwYERGvvvpqFBT894CaX//617F27do4/vjja3ycMWPGxNixYzfl6AAAAAAAQCOSeVSJiBgxYkSMGDGi1vtmz55d4/bixYs3/kAAAAAAAACfkOk1VQAAAAAAADYXogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACZpkPQAANAQlF8zIeoTMFBXm47I+ET3G3hvllbmsx8nE4gmDsh4BAAAA2Aw4UgUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACBB5lHl2muvjZKSkmjevHn07ds3Hn300U/d99lnn43jjjsuSkpKIpfLxaRJkzbdoAAAAAAAQKOWaVSZPn16lJaWxpgxY+KJJ56IvffeOwYOHBjLly+vdf81a9ZE165dY8KECdGpU6dNPC0AAAAAANCYZRpVJk6cGMOHD4+hQ4dG9+7dY/LkyVFcXBxTpkypdf999tknLr/88vj2t78dRUVFm3haAAAAAACgMWuS1ROvXbs2Hn/88Rg1alT1toKCgujfv3/Mmzev3p6nvLw8ysvLq2+XlZVFRERFRUVUVFTU2/NsKYoK81mPkJmignyN/zZGWX9OWH/WX5asP+uPbKx77/0ekAXrjyxZf2TNGiRL1h9Zsv6ozedZD7l8Pp/Jd1CWLFkSnTt3jrlz50a/fv2qt5933nkxZ86ceOSRRzb4+JKSkjjnnHPinHPO2eB+Y8eOjXHjxq23fdq0aVFcXFyn2QEAAAAAgC3DmjVr4qSTToqVK1dG69atN7hvZkeqbCqjRo2K0tLS6ttlZWXRpUuXGDBgwGe+OY1Rj7H3Zj1CZooK8nFJ76q46LGCKK/KZT1OJhaMHZjp81t/1l+WrD/rj2xUVFTEzJkz47DDDoumTZtmPQ6NjPVHlqw/smYNkiXrjyxZf9Rm3RmuUmQWVdq3bx+FhYWxbNmyGtuXLVtWrxehLyoqqvX6K02bNvVJU4vyysb5zbSPK6/KNdr3IevPicb6vn+c9Zedxvq+f5z1R5b824wsWX9kyfoja9YgWbL+yJL1x8d9nrWQ2YXqmzVrFr169YpZs2ZVb6uqqopZs2bVOB0YAAAAAABAQ5Dp6b9KS0tjyJAh0bt37+jTp09MmjQpVq9eHUOHDo2IiFNOOSU6d+4c48ePj4iPLm7/3HPPVf//G2+8EfPnz4+WLVtGt27dMnsdAAAAAADAli/TqDJ48OB46623YvTo0bF06dLo2bNn3HPPPdGxY8eIiHj11VejoOC/B9MsWbIkvvzlL1ffvuKKK+KKK66Igw8+OGbPnr2pxwcAAAAAABqRzC9UP2LEiBgxYkSt930ylJSUlEQ+n98EUwEAAAAAANSU2TVVAAAAAAAANieiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJGiS9QAAAI1dyQUzsh4hM0WF+bisT0SPsfdGeWUu63EysXjCoKxHAAAAIJEjVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJCgSdYDAAAA2Sm5YEbWI2SmqDAfl/WJ6DH23iivzGU9TiYWTxiU9QgAALBZcaQKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJmmQ9AAAAAI1TyQUzsh4hM0WF+bisT0SPsfdGeWUu63EysXjCoKxHAAD43BypAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABI0CTrAQAAAAA2tZILZmQ9QqaKCvNxWZ+IHmPvjfLKXNbjZGLxhEFZjwDAZsiRKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAgiZZDwAAAAAAjU3JBTOyHiEzRYX5uKxPRI+x90Z5ZS7rcTKxeMKgrEcA6siRKgAAAAAAAAlEFQAAAAAAgARO/wUAAAAA0Ig4/ZzTz1F3jlQBAAAAAABIIKoAAAAAAAAkaBBR5dprr42SkpJo3rx59O3bNx599NEN7n/77bfH7rvvHs2bN48vfelLcffdd2+iSQEAAAAAgMYq86gyffr0KC0tjTFjxsQTTzwRe++9dwwcODCWL19e6/5z586NE088MU477bR48skn4+ijj46jjz46FixYsIknBwAAAAAAGpPML1Q/ceLEGD58eAwdOjQiIiZPnhwzZsyIKVOmxAUXXLDe/ldddVV8/etfjx/96EcREXHJJZfEzJkz45e//GVMnjx5vf3Ly8ujvLy8+vbKlSsjImLFihVRUVGxMV7SZq3Jh6uzHiEzTarysWZNVTSpKIjKqsZ5kap33nkn0+e3/qy/LFl/1l+WrD/rL0vWn/WXJevP+stSY15/EdZghDWYJevP+suS9Zf9+muIVq1aFRER+Xz+M/fN5VP22kjWrl0bxcXFcccdd8TRRx9dvX3IkCHx7rvvxp///Of1HvM///M/UVpaGuecc071tjFjxsSf/vSneOqpp9bbf+zYsTFu3LiNMT4AAAAAALCFeO2112KHHXbY4D6ZHqny9ttvR2VlZXTs2LHG9o4dO8YLL7xQ62OWLl1a6/5Lly6tdf9Ro0ZFaWlp9e2qqqpYsWJFbLPNNpHLNc4SSe3KysqiS5cu8dprr0Xr1q2zHodGxvojS9YfWbL+yJL1R5asP7JmDZIl648sWX/UJp/Px6pVq2L77bf/zH0zP/3XxlZUVBRFRUU1trVp0yabYdgstG7d2h+oZMb6I0vWH1my/siS9UeWrD+yZg2SJeuPLFl/fNLWW2+dtF+mF6pv3759FBYWxrJly2psX7ZsWXTq1KnWx3Tq1Olz7Q8AAAAAAFAfMo0qzZo1i169esWsWbOqt1VVVcWsWbOiX79+tT6mX79+NfaPiJg5c+an7g8AAAAAAFAfMj/9V2lpaQwZMiR69+4dffr0iUmTJsXq1atj6NChERFxyimnROfOnWP8+PEREXH22WfHwQcfHL/4xS9i0KBBceutt8Zjjz0W1113XZYvgy1AUVFRjBkzZr3TxcGmYP2RJeuPLFl/ZMn6I0vWH1mzBsmS9UeWrD++qFw+n89nPcQvf/nLuPzyy2Pp0qXRs2fPuPrqq6Nv374REXHIIYdESUlJTJ06tXr/22+/PS688MJYvHhx7LLLLnHZZZfFEUcckdH0AAAAAABAY9AgogoAAAAAAEBDl+k1VQAAAAAAADYXogoAAAAAAEACUQUAAAAAACCBqAIAADR6H374YdYjAECjU1lZGUuWLMl6DIDPRVQBgEbi0UcfjcrKyk+9v7y8PG677bZNOBHApvFZf7Z9+OGHccIJJ2yiaWiMhg0bFqtWrcp6DBqpKVOmRHl5edZjQK0WLFgQXbp0yXoMgM8ll8/n81kPAZtS9+7d46GHHop27dpFRMSZZ54ZF198cbRv3z4iIpYvXx4lJSWxZs2aLMdkC3XEEUfELbfcEltvvXVEREyYMCG+//3vR5s2bSIi4p133okDDzwwnnvuuQynZEtVWFgYb775Zmy77bYREdG6deuYP39+dO3aNSIili1bFttvv/0GwwvU1dVXX52038iRIzfyJDRGzZs3j7vuuisOO+yw9e6rrKyMb33rWzFv3rx48803M5iOxuCTfwfDpvTJ9bf99tvH3Llzo6SkJNvBICKeeuqp+MpXvuJrEDaKiy66KMaMGRNNmjSp9f5XX301TjvttJg5c+YmnozNXe0rCrZgL7zwQo3TO/zhD3+Ic889tzqq5PP5+OCDD7Iajy3cvffeW+OnxH7+85/HCSecUB1VPvzww1i4cGFG07Gl++TPUdT2cxV+1oKN5corr6xx+7XXXovtttuuxhc4uVxOVGGjuPTSS+PYY4+Nv//979G3b9/q7VVVVXHCCSfEww8/HPfdd1+GE7Kl8/crWfrk+lu1alVUVVVlNA3ApnPTTTfFX/7yl/j9738fPXr0qHHfb37zm/jRj34U+++/f0bTsTkTVWj0avsCJ5fLZTAJjUHKN7UhS/78Y2NZtGhRjdutWrWKOXPmVB8pBRvT2WefHStWrIgjjjgiHnjggdhzzz2jsrIyBg8eHA8++GDcd999seeee2Y9Jlu4VatWRfPmzTe4T+vWrTfRNACw5VuwYEGMGDEievfuHWPGjInzzz8/Xn/99Rg2bFj885//jCuuuCJOP/30rMdkMySqAAAAW7xx48bFihUrYsCAAXH//ffHhRdeGHPmzIlZs2at95OLsDHsuuuun3pfPp+PXC7n9DdsFLlcrsYPznzyNmxMTz/99Abvd6YGNqbWrVvH7373uzjuuOPie9/7XkyfPj0WLVoUffr0iaeffjp23HHHrEdkMyWq0OjU9g9I/6BkU7H+yNpzzz0XS5cujYiPvoHzwgsvxHvvvRcREW+//XaWowFsdNdcc0385z//ib333jtatmwZs2bNir322ivrsWgk7rjjjurrOsKmlM/nY9ddd63+uuO9996LL3/5y1FQUFBjvxUrVmQxHlu4nj17Ri6X+9SzhKyLyrAx7bvvvvGlL30pZs2aFS1atIgLL7xQUOELEVVodPL5fBx66KHV53B///3348gjj4xmzZpFRNS43grUt3w+H6eeemoUFRVFRMQHH3wQ3//+96NFixYRETWutwIbw6GHHlrjC5pvfOMbEeELGmDLVlpaWv3/bdu2jXw+Hz179oypU6fW2G/ixImbeDIak/3339+F6snEb3/726xHoBH75ClgYVO75ZZbYsSIEdGzZ894/vnn48Ybb4wBAwbEmWeeGePHj//MU3NCbXJ5J/SnkRk3blzSfmPGjNnIk9AYDR06NGk/X/iwMbzyyitJ+/mJHTaGsrKyGrd32GGHeOihh6KkpKTGdtcTYGP46le/+pn75HI5F6tnoykoKIilS5eKKgC1WLBggVNxslEcd9xxce+998b48ePjrLPOqt4+d+7c6u/PTJ06Nfr165fViGymRBUAADa6goKCGkdCffLIKNcTALZkO+20Uzz22GOxzTbbZD0KjdCjjz4avXr1isLCwlrvLy8vjz//+c9xwgknbOLJaMxWrVoVt9xyS9xwww3x+OOP+zcgG8X+++8fU6dOjV122WW9+95///244IIL4te//nWsXbs2g+nYnIkqNGpvv/12LF68OHK5XJSUlPgih00qn8/HO++8E7lcztpjkykrK6s+EuDuu++uccrDwsLCGDRoUFajsYWbM2dO0n4HH3zwRp4EoOGYM2dOrF69Ovr16xdt27bNehy2UIWFhfHmm29WHynVunXrmD9/fnTt2jUiIpYtWxbbb7+9b2qzSTzwwANx4403xp133hnbb799HHvssXHcccfFPvvsk/VobIGqqqrWu37UJz3wwANx0EEHbaKJ2FK4pgqN0rPPPhtnnHFGPPzwwzW2H3zwwfHrX/86dtttt4wmozFYunRpnHfeefF///d/sWrVqoj46AubY445JsaPHx8dO3bMeEK2VH/5y1/ioosuiieffDIiIgYPHhyrV6+uvj+Xy8X06dPj+OOPz2pEtmCvvPJKDB48uPqaUrApXXzxxUn7jR49eiNPQmN16aWXxnvvvReXXHJJRHz0wzWHH354/O1vf4uIiG233TZmzZoVe+65Z5ZjsoX65M/S1vaztX7elo1p6dKlMXXq1LjxxhujrKwsTjjhhCgvL48//elP0b1796zHYwv2WUElImL33XffBJOwpXGkCo3O0qVLo0ePHtGhQ4f4/ve/H7vvvnvk8/l47rnn4vrrr4933nknFixY4HzHbBRlZWXRs2fPeO+99+I73/lOjfV3yy23RNu2beOJJ56Ili1bZj0qW6Cjjjoqjj766Bg2bFhERLRq1Sqeeuqp6p9SvOyyy2L27Nlx9913ZzkmW6hP/pQsbEpf/vKXP/W+XC4XCxcujA8++MBPabPRfOUrX4nzzz8/Bg8eHBERt99+ewwZMiRmzpwZe+yxR5xyyilRXFwct912W8aTsiX65DV9PvlvQEeqsDEdeeSR8cADD8SgQYPiO9/5Tnz961+PwsLCaNq0aTz11FOiChtVcXFxvPLKK9GhQ4eIiBg0aFDccMMNsd1220WEP/+oO0eq0OhceeWVseOOO8bDDz8czZs3r97+9a9/Pc4444w44IAD4sorr4zx48dnOCVbqquuuioKCwvj2Wefrf5LfZ0LL7ww9t9//7j66qvjxz/+cUYTsiV75pln4vLLL//U+w8//PC44oorNuFENCZ+jocsrTtC75Pmz58fF1xwQSxYsCCGDx++iaeiMVm0aFHstdde1bfvvvvuOP7442P//fePiI/+Hfitb30rq/EANpq//vWvMXLkyDjjjDNqva4FbEwffPBBja9DHnjggXj//fdr7OPrFOris4+Bgi3MzJkz4/zzz68RVNbZaqut4kc/+lHce++9GUxGYzBjxoz48Y9/vF5QifjotA+jRo2Ku+66K4PJaAzefPPNGqdeuv/++6NLly7Vt1u2bBkrV67MYjQaiY9fmB6ytGjRojj55JNjn332ia233jqeffbZmDx5ctZjsQX78MMPa/wdPG/evNhvv/2qb2+//fbx9ttvZzEajcRzzz0XTz/9dDz99NORz+fjhRdeqL797LPPZj0eW7CHHnooVq1aFb169Yq+ffvGL3/5S3/e0aD4GoW6cKQKjc7LL78cX/nKVz71/t69e8fLL7+8CSeiMXnxxRdrfAH9Sfvtt1+ce+65m3AiGpN27drFSy+9FCUlJRHx0Z93H/evf/0r2rVrl8FkNBaHHnpoNGmy4X9+PvHEE5toGhqjt99+O8aNGxfXXXddHHDAATF37lwXxmWT2HnnneOBBx6Irl27xquvvhovvvhijYvivv7667HNNttkOCFbukMPPbTGT2N/4xvfiIiPvpmYz+d9U5GNZt9994199903Jk2aFNOnT48pU6ZEaWlpVFVVxcyZM6NLly7RqlWrrMcE+FxEFRqdVatWRevWrT/1/latWsV77723CSeiMSkrK4s2bdp86v1t2rSJsrKyTTcQjcpBBx0UV199dfTv37/W+6+++uoa3+CB+jZw4EDXjCITq1evjiuuuCImTpwY3bp1i7vuuisGDBiQ9Vg0Iv/7v/8bI0aMiAcffDD+8Y9/RL9+/WpcR+C+++7b4LV/4ItYtGhR1iPQiL366qvRpUuXaNGiRQwbNiyGDRsWCxcujBtvvDEmTJgQF1xwQRx22GHxf//3f1mPyhYol8vViMafvA115UL1NDqFhYXx4osv1nr6pYiPLlK1++67u0gVG0VhYWEsXbp0g+vPRdLYWJ588sno169fHHnkkXHeeefFrrvuGhERCxcujEsvvTRmzJgRc+fO3eDRfFBXn7xILmxKnTp1ilWrVsVZZ50VJ5544qd+Mf3xa15AfZsyZUrcdddd0alTpxgzZkx06tSp+r4zzzwzDjvssDjmmGMynBCg/hUWFsabb75Z678BKysr46677oopU6aIKmwUBQUFsfXWW1f/2+/dd9+N1q1bR0HBR1fEyOfzUVZW5nswfG6iCo1OQUHBBqv0ukOf/YHKxvDJv9A/yV/obGx//vOf47vf/W6sWLGixva2bdvGDTfcEEcffXQ2g7HF29AX1LCxrfvCOeK/p7r55G3//gMaqz/+8Y8xduzYePrpp7MehS2QH6whSzfddFPSfkOGDNnIk7ClcfovGp37778/6xFoxH77299mPQKN3De/+c047LDD4t57741//etfERGxyy67xIABA6JFixYZT8eWzM/xkCWnvqGheOONN+LOO++MF198MSIidttttzj22GOjc+fOGU/Glu43v/lNzJw5M5o1axZnn3129O3bN+6777744Q9/GC+++GKccsopWY/IFszplsiKWMLG4kgVACDy+Xzcc889ceONN8Ydd9yR9ThsgV555ZX4n//5H19U02AtWLAgevTokfUYbMF+9atfRWlpaaxdu7b6Go9lZWXRrFmzmDhxYpx55pkZT8iWasKECTF69OjYa6+94oUXXoh8Ph8/+clP4pprromzzz47vve970Xbtm2zHpMtVEFBQZx++ulRXFy8wf0mTpy4iSaisfvggw9i+vTpsXr16jjssMNil112yXokNkOOVKHR8lNiZOn999+PmTNn1lh//fv3j6222irjyWhsFi1aFFOmTImpU6fGW2+99akXsYcvKvXQ+9GjR2/kSeC/Vq1aFbfcckvccMMN8fjjjzv9FxvNjBkzYuTIkXHOOefED3/4w9huu+0iIuLNN9+Myy+/PM4+++woKSmJI444IuNJ2RL99re/jeuvvz6GDBkSDz74YBx88MExd+7ceOmllxypzCbxzDPPRLNmzT71fj90w8ZSWloaFRUVcc0110RExNq1a6Nfv37x7LPPRnFxcZx33v9n776jorrW94E/MwNSFBDERhTQKMUWe41dYsQSoqhYEYk1drHERAkW7GJJNH6VYrnB7o3Ego2gBpEoAgoqWEEFO0VBEJnfHy7nFxSU5Dpny5zns5brZs4+d63nj1nDPufde7/TceTIEbRq1UpwUiptuFOFZImrxEikffv24ZtvvsHDhw8LXbe0tIS/vz969uwpKBnJRW5uLnbt2gV/f3+cOnUKL1++xLJly+Dp6an5TST60Bo1alTsmEKhwJUrV/D8+XO+1CZJnDhxAv7+/ti9ezesrKzQu3dv9OnTB82aNRMdjXRUhw4d8Pnnn2P+/PlFjv/www84deoU/vjjD2mDkSwYGRkhMTER1atXBwAYGBggIiICTZo0EZyM5IA9VUikevXqwdfXF7169QLwqsg8depUnD9/HtbW1hg+fDju37+P/fv3C05KpY3y/bcQ6ZbXq8TGjRuHO3fuID09Henp6bhz5w7Gjh2LiRMn4sCBA6Jjko6KiIiAq6sr2rVrhz///BOPHz/G48ePcerUKbRt2xaurq6IjIwUHZN01Llz5zB27FhUqVIFK1euhIuLC1JSUqBUKtG1a1cWVEirzp8/X+S/wMBAVKpUCS9evMCIESNExyQdlpaWhkWLFqF27dro27cvTE1NkZubi//+979YtGgRCyqkVdHR0RgyZEix40OGDEF0dLSEiUhOcnNzYWhoqPlcpkwZWFhYCExEcsJdKCRScnIy6tSpo/l8+PBhuLq6wsbGBgqFAhMnTsT58+cFJqTSisd/kewsXboUM2fOfGuVWNWqVbFixQoYGxtjyZIl3HpPWjF//nx4eHhg/fr1ha63bt0arVu3xqhRozB37lwW9kgrWrRogfHjxyMyMhL29vai45DM3bhxA7Nnz8b27dvRu3dvxMfH8zxj0pqePXvixIkT6N69O1auXIkvv/wSKpUKv/zyi+hoJBMvX76Evr5+seP6+vrcqUdaNXv2bE1Pi7y8PMyfPx9mZmaF7mFPC9IGHpBDIimVykLfwcjISMyePVvzuXz58njy5ImIaFTKcacKyQ5XiZFIkZGRGDduXLHj3377LU6fPi1hIpKTzp07w9/fH3PnzsWhQ4f4gENCPHz4EOPHj4eDgwNSU1MRERGB7du3s6BCWnXw4EF4enrCx8cH3bt3h0qlEh2JZKZu3br47bffih3/73//i7p160qYiOSkXbt2uHLlimaXaOvWrXH9+vVCO0djYmJExyQdFRgY+FYBj0gqjo6OCAkJAQDEx8cjOTkZHTt21IzfunULlStXFhWPSjHuVCHZ4SoxEiknJ+edRyyZmZnh+fPnEiYiOQkNDUVKSgoCAwMxZswY5OTkoH///gC4LZ+079mzZ1i2bBlWrFiBWrVqISQkBF988YXoWCQTp06dgr+/P5o0aQJHR0cMGTIEbm5uomORjHz77bcYM2YMDAwMMHLkSOjpvXoUz8/Px/r16/HDDz9g7dq1glOSrmKvHhLJ3NwcoaGh773vdc8Log9p+vTpcHNzw/79+xEfHw9nZ2fUqFFDM37gwAE0b95cYEIqrdionmSnefPmGDBgACZPnlzk+IoVK7Bt2zZERUVJnIzkoEGDBpg8eTI8PDyKHA8ICMDKlSsRFxcncTKSoyNHjiAwMBB79+5F9erV4erqCldXVzRu3Fh0NNJBVapUQVZWFsaPH48BAwYUW8hr0KCBxMlITp49e4bt27cjICAAUVFRePnyJVasWIHhw4fDxMREdDzScV5eXlixYgVMTEzw6aefQq1W4/r163j69CkmTJgAPz8/0RGJAACmpqaIiYlBzZo1RUchHaBUvv+QHIVCwcWtpDXHjh3D77//jipVqmD8+PGaoxABwMfHB+3bt0eHDh3EBaRSiUUVkp1NmzZhzJgxWLZsWZGrxKZNm4a1a9di2LBhYoOSTvLz88P8+fOxZcuWt/r27N+/H+7u7pg1axamTJkiKCHJ0ZMnT7B161YEBAQgLi6ODzSkFX9/oFYoFIWOn3v9mQ/UJKUrV67A398fW7ZsQXp6OpycnLBv3z7RsUjHRUZGIjg4GElJSQAAOzs7uLm5oWXLloKTEf1/JiYmiI2NZVGFiIioGCyqkCxxlRiJUlBQgP79+2P37t2wt7eHo6Mj1Go1Ll26hKSkJLi4uGDnzp0lWs1DpA3R0dHcqUJacevWrRLdZ2Njo+UkRIW9fPkSISEhCAwMfGfPCyIiuWBRhaSWk5MDIyMj0TGIiEqMb+1IlpYtW4aIiAgMGzYMVapUQdWqVeHh4YE///yTBRXSKqVSiZ07dyI4OBj29va4fPkyrly5AgcHB/znP//B7t27WVAhoVhQIW2xsbEp0T8iqalUKrx8+RI3btwQHYV0WFJSEgYMGIDMzMy3xjIyMjBw4EBcv35dQDIiInFyc3OxfPnyQj0uiKTk6OgIlUolOgaVQmxUT7LVsmVLbrMnYfr3769pEE70sXB0dERiYiKPXyKt+uuvvxAcHIzExEQAr46+GThwIJo2bSo4Gem69evX48iRIyhTpgwmTpyIFi1a4Pjx45g6dSoSExPh7u4uOiLpsKVLl6J69eowNTV9a8zMzAzVq1fH0qVLsW7dOgHpiIi0Jzc3Fz/++KPmb/D06dPh4uKCwMBAfP/991CpVMX2vCXStoULFyIjI0N0DCqFuByaZIerxEiku3fvwsvLq9jv37Rp03Dv3j0ByYheTSgDAgJExyAdNn36dLRo0QIbN27E7du3cfv2bWzYsAEtWrTAjBkzRMcjHbZo0SKMHz8eN2/exL59+9CpUyf4+vpi0KBB6N+/P27fvo21a9eKjkk6LDw8HH379i12vF+/fjh+/LiEiYiKp1AoREcgHTJnzhysW7cOtra2uHnzJvr27YuRI0fCz88PK1aswM2bNzkPJGFcXFy4sIb+FRZVSHZKukqMSBtWrFiBzMzMYr9/WVlZWLFihYBkRJxQknZt2rQJa9aswerVq/Ho0SPExMQgJiYGjx8/hp+fH1avXo3NmzeLjkk6KjAwEBs2bMDZs2dx8OBB5OTkICIiAlevXsXMmTNhbm4uOiLpuOTkZFSqVKnYcUtLS6SkpEiYiKh4bL1LH9LOnTuxefNm7Nq1C4cPH8bLly+Rn5+P2NhYuLm58eglEiI8PBwHDhzAkydPREehUopFFZIdrhIjkQ4dOoShQ4cWOz506FD8/vvvEiYi4oSSpPHzzz/D19cX48aNg76+vua6vr4+JkyYgAULFuCnn34SmJB0WXJyMjp16gQAaNu2LfT19eHj44OyZcsKTkZyYWZmhmvXrhU7fvXq1SIX3RCJcPDgQXzyySeiY5COuH37Npo0aQIAqFevHgwMDDB58mTuiCJJLF68GLNnz9Z8VqvV+PLLL9GxY0f06NEDjo6OiI+PF5iQSisWVUh2uEqMRLpx4wasra2LHa9WrRpu3rwpXSCSFU4oSaT4+Hh89dVXxY67uLjw+0dak5ubC0NDQ83nMmXKwMLCQmAikpt27dphzZo1xY6vXr0abdu2lTARyUmdOnXw+PFjzeexY8fi4cOHms/379+HsbGx5vPnn38OAwMDSTOS7nr58iXKlCmj+aynp4dy5coJTERysn37dtSrV0/zedeuXThx4gROnjyJhw8fomnTpvDx8RGYkEorNqon2Xm9SszGxqbIca4SI20yMjLCzZs3iy2s3Lx5E0ZGRhKnIrnYvn17ofOK/z6hdHR0xNChQ+Hj44MdO3YITEm6SqVSIS8vr9jxFy9e8PgH0qrZs2drXhrm5eVh/vz5MDMzK3QPj+Akbfnuu+/QqlUruLq6Yvr06bC3twcAXL58GUuWLEFoaCgiIiIEpyRddfnyZeTn52s+b926FV5eXrC0tATwaqHN8+fPRcUjHadWqzFs2DBNoe758+cYPXr0W7tF9+zZIyIe6bgbN26gQYMGms8HDhyAq6sr2rRpAwD44Ycf3nmaDVFxWFQh2Xm9Suz1ERBv4iox0qYWLVpgy5YtaNeuXZHjmzdvRvPmzSVORXLBCSWJ1LhxY/znP//BvHnzihzfsmULGjduLHEqkot27drhypUrms+tW7fG9evXC93DY0hImxo1aoRdu3Zh+PDh2Lt3b6GxChUqYMeOHfwNJMkU1TOFv4GkLW/2bBw8eLCgJCRH+fn5hXbenT59GpMmTdJ8trKyKrRzj6ikWFQh2eEqMRLJy8sLTk5OMDMzw7Rp01C5cmUAwL1797BkyRIEBQXh8OHDglOSruKEkkTy8vKCi4sLcnNzMXXqVM3vX1paGpYvX46VK1e+9aKR6EP5448/REcgQo8ePXDr1i0cOnQIV69ehVqthp2dHb744otCRy8REemSwMBA0RFIxj799FOcOHECNWvWRHJyMhITEwstcr19+zYqVKggMCGVViyqkOxwlRiJ1LFjR/z888+YOHEi/Pz8YGpqCoVCgYyMDOjr679zFxXR/4oTShKpR48e8PPzg5eXF5YvX645dikjIwN6enpYtmwZevToITgl0SumpqaIiYlBzZo1RUchHWNkZISvv/5adAySGYVC8dZOFO5MoY+BWq3GoUOH4O/vj127domOQzro22+/xbhx43Dy5ElERkaiVatWqFOnjmb8+PHjaNSokcCEVFqxqEKyxFViJNKoUaPQo0cP7Nixo9D3z9XVFdWqVRMdj3QYJ5Qk2vjx4/H1119j586dSEpKAgDY2dmhT58+qF69uuB0RP9fUUfjEGnT2bNnkZ2dXewRsUT/C7Vajc6dO0NP79UroJycHPTs2VPTPPzv/VaIpHDjxg0EBAQgKCgIDx48QJcuXURHIh01YsQIqFQqhISEoF27dvD29i40fvfuXXh4eAhKR6WZQs0nBqJ3ql+/Pg4cOMCXPSRE9+7dsXHjRlStWlV0FNIRAQEBCAkJQZUqVeDt7Y0qVapoxsaOHYsuXbqgd+/eAhMSEYlnYmKC2NhY7lQhyTg6OiIxMREvX74UHYV0kI+PT4nue/NlI9GHlJubi127dsHf3x+nTp3Cy5cvsWzZMnh6esLU1FR0PCKif4RFFaL34EM1icTvHxHpihMnTpToPq7Spo8B//6S1O7evYsXL17AxsZGdBQiog/q3Llz8Pf3R3BwMGrVqoUhQ4agf//+qFatGmJjYwvtnCeSWnR0NObMmYPff/9ddBQqZXj8FxEREQHghJK0q0OHDprz24tb06NQKLhKm4hkycrKSnQEIiKtaNGiBcaPH4/IyEjY29uLjkMyFBoaiiNHjqBMmTL45ptvULNmTVy+fBkzZ85ESEgIunbtKjoilUJK0QGIiIhIOqGhofDy8sKsWbNw/fp1AMDly5fh4uKCZs2aoaCgQHBC0lXm5uaoXr06Zs+ejaSkJDx58uStf48fPxYdkwgAGzgTkW65du0ahg8frvlsbW0NCwsLzb+KFSviypUrAhOSLuvcuTP8/f0xd+5cHDp0iH3LSFL+/v7o1q0bgoKCsHjxYrRs2RJbt25Fq1atUKVKFVy8eBEHDhwQHZNKIRZViIiIZIITShIpNTUVixcvxunTp1G/fn14enoiIiICpqamMDMz0/wj+hjwhQ99aEqlEiqV6p3/XjcRJ/rQ1qxZg8qVK2s+P3nyBN999x38/Pzg5+eHZs2awc/PT2BC0mWhoaGIj4+Hvb09xowZg6pVq2LixIkAuIiBtG/VqlVYvHgxHj58iB07duDhw4dYu3YtLly4gF9++QWOjo6iI1IpxZ4qRO/BM7VJJH7/6ENq0KABhgwZgmnTpmH37t3o27cvWrZsiR07dqBatWqi45GMJCcnIygoCJs2bUJubi7c3d3h4+PDF4r00Th16hSaNWsGAwMD0VFIR/z222/Fjp0+fRqrV69GQUEBnj9/LmEqkov69evD398fzZs3B/D2M0Z4eDi++eYbJCUliYxJMnHkyBEEBgZi7969qF69OlxdXeHq6orGjRuLjkY6qGzZsoiPj4etrS3UajUMDAwQFhaGNm3aiI5GpRyLKkTvwZfaJBK/f/QhcUJJH5sbN27A09MT4eHhePDgASwsLERHIh1Vp04dnDp1SvMdGzt2LObOnQtLS0sAwP3792Fra4vs7GyRMUlmrly5ojnPfdCgQZg7dy4b1ZNWmJiY4NKlS5pFNJMnT8YPP/yAChUqAABu3boFBwcH5OTkiIxJMvPkyRNs3boVAQEBiIuLY1890gqlUom0tDRUqlQJAN+x0IfD479Idjp16oT09PQS379+/fpCW6WJ/hfDhw9HVlZWie+fNWsWXzLSB5OTkwNjY2MAr7baGxgYoGrVqoJTkdzk5ubi119/RZcuXVCvXj1YWlpi//79/K0jrbp8+TLy8/M1n7du3YrMzEzNZ7VazR0CJJm7d+9ixIgRqF+/PvLz8xETE4NNmzaxoEJao1QqcffuXc1nPz8/TUEFAO7duwd9fX0R0UjGzM3NMX78eJw/fx5//fWX6DikwzZu3IjVq1dj9erVyM/PR1BQkObz639E/xR3qpDsvFmlJpKSSqVCamoqv38khFKpxPz581GuXDkAwIwZMzBt2jTNSu3XJkyYICIe6bioqCgEBgZi27ZtsLW1hYeHBwYPHsxiCknifasU7927BysrK66SJa3KyMiAr68v1qxZg4YNG2Lx4sVo27at6FgkA61bt0aPHj0wa9asIsfnzZuHgwcPIiIiQuJkJAfJycklus/a2lrLSUiObG1t39u7R6FQ4Pr16xIlIl3BogrJDosqJBK/fyQSJ5QkklKphLW1Ndzd3dGkSZNi7+vVq5eEqUguWFQh0ZYsWYLFixejSpUq8PX1xVdffSU6EsnIhg0bMGnSJOzYsQPdu3cvNBYSEgI3NzesXLkSI0aMEJSQdJlKpdL89+tXkH9/JlGr1VAoFPwbTESlCosqJDtKpRLHjx9/78rYBg0aSJSI5ESpVCIpKQkVK1Z8532mpqYSJSIikoZS+f5TZ/lATdqiUqmQlpam+ftrYmKCuLg41KhRAwCLKqR9SqUSRkZG6NKlS6EXjG/as2ePhKlITgYMGIDt27fDwcEB9vb2AF719bly5Qr69OmDHTt2CE5IukpPTw/VqlXDsGHD0LNnT+jp6RV532effSZxMiKif49FFZIdpVIJhUKBor76r6/zpQ5py+vvX3H4/SMiIvrwlEol6tWrp3mRExcXBwcHB5QpUwYAkJ+fj/j4eP79Ja0ZNmzYe3eLAkBgYKAEaUiutm3bhm3btiExMREAULt2bQwYMABubm6Ck5EuS0tLw6ZNmxAYGIj09HQMHjwYnp6ecHR0FB2NZMDZ2RnBwcEwMzMDACxatAijR49G+fLlAQCPHj1C27ZtkZCQIDAllUYsqpDsKJVKREVFvXenABtFkjYolUrs3r37vTul2rdvL1EikhNOKIlIrnx8fEp0n7e3t5aTEBF9fAoKCnDgwAH06NFDdBTScadOnUJgYCB27tyJOnXqwNPTE56eniXa0Uz0b7zZ19bU1BQxMTE8Apb+ZyyqkOywpwWJxO8ficQJJX3MUlNT8eLFCzYpJSKdl56ejqtXrwIAatWqpVncQCS1q1evIiAgAEFBQXjw4AFevHghOhLJxL179zBgwACEh4fjwYMH7110SPRvsa8eaQtLwURERDLx5joKrqugj0mnTp00/S2IiHTRzZs30b17d1haWqJFixZo0aIFLC0t0aNHD9y8eVN0PJKJnJwcbN68Ge3atYO9vT0iIiIwZ84c3L59W3Q0koGIiAh88803sLOzw9OnT/Hzzz+zsExEpVLR3aGIdFj79u0152cTSc3GxuadzUmJiORq8+bNyM7OFh2DdFSnTp1KdN/x48e1nITkKiUlBS1btoS+vj7mzZun6SWQkJCAdevWoVWrVvjrr79QrVo1wUlJV/3111/YuHEjtm3bhk8//RSDBg1CREQE1q5dizp16oiORzosNTUVmzdvRmBgIJ48eYJBgwbhzz//RL169URHIxlQKBRv9TQrSY8zovfh8V8kO0+ePMHWrVvh7u4OU1PTQmMZGRnYvHlzkWNEH0JOTg6OHDmCjh07wsTEpNBYZmYm/vjjD3Tt2hUGBgaCEpIuU6lUSEtL0/SUMjExQVxcnGZ3ALc+E5GuUiqVsLGxQffu3aGvr1/sfX5+fhKmIjnx9PTE1atXERoaCkNDw0JjOTk5+PLLL1G7dm1s3LhRUELSZQ0aNEBmZiYGDhyIQYMGoW7dugAAfX19xMbGsqhCWqWvr49PPvkE7u7u6NWrV7F/hxs0aCBxMpIDpVKJbt26ad6xhISEoFOnTihbtiwAIDc3F4cOHeIzMP1jLKqQ7MyfPx+xsbHYuXNnkeP9+vXDZ599hu+//17iZCQHq1evxm+//YZjx44VOd6lSxd8/fXX+PbbbyVORnLACSV9bJ4/f47t27fj2bNncHJyQu3atUVHIh21dOlSBAYG4tGjRxg0aBCGDx/OFbIkqU8++QTbt2/H559/XuT4iRMn4Obmhrt370qcjOTAwMAA/fv3x5AhQ9ClSxfNKm0WVUgKf29C//q79+arSIVCwWcQ0goPD48S3RcYGKjlJKRrWFQh2WnYsCGWL1+Ozp07Fzl+7NgxeHl54fz58xInIzlo1qwZ5syZg549exY5/vvvv2Pu3LmIioqSOBnJASeUJNKUKVPw4sULrFmzBgCQl5eHFi1aID4+HsbGxsjPz8eRI0fQqlUrwUlJl50+fRoBAQHYsWMH7O3tMXz4cAwcOJA7lEnrDAwMcO3atWKP97p9+zZq1aqF58+fS5yM5ODOnTsICgpCYGAgcnJyMGDAAAwaNAgtWrRATEwMiyqkVbdu3SrRfTY2NlpOQkT04bCoQrJjYmKC+Ph4WFtbFzmenJyMevXqITMzU+JkJAfm5uaIjY195/fvs88+w5MnTyRORkSkXfXq1YOvry969eoF4FXxburUqTh//jysra0xfPhw3L9/H/v37xeclOQgOzsbO3fuxM8//4yEhATcvXuXhRXSKltbW/zf//0fvvjiiyLHDx06hNGjR7NhPWnd8ePHERAQgD179uD58+fw8vLSNA4nIiKiklG+/xYi3aJSqd65rf7u3buFtqcSfUj5+fl48OBBseMPHjxAfn6+hImIiKSRnJxcaCXs4cOH4erqChsbGygUCkycOJG7REky0dHRCA8Px6VLl1CvXr139lkh+hBcXFzg5eVV5Dzw/v37mDFjBlxcXKQPRrLTqVMnbN26Fampqfjpp59w/PhxODg4sJ8FEemssLAwLF++HH/++ScAYP369bC2tkbFihUxYsQI5OTkCE5IpRHfHJPsNGrUCP/973+LHd+7dy8aNWokXSCSlbp16+Lo0aPFjh8+fFjTOJJIGzihJFGUSmWh87MjIyPRsmVLzefy5ctzlx5p1d27d+Hr6ws7Ozu4urrCwsICZ86cQWRkJIyMjETHIx3n7e2N58+f49NPP8XYsWOxevVqrFq1CqNHj0atWrWQk5ODOXPmiI5JMmJmZoaxY8fi7NmziI6ORocOHURHIplydHSESqUSHYN01IYNG+Dk5IRffvkFnTt3xsKFCzF16lR0794d/fr1w44dO+Dj4yM6JpVCeqIDEElt3LhxcHNzQ7Vq1TBmzBjNH++XL19i7dq18PPzw6+//io4Jemq4cOHY8qUKahbty569OhRaCwkJAQLFizAihUrBKUjXbdhwwaMGTMGNWrUwPfffw9vb28sWLAAQ4YMgVKpxNatW1GhQgUsWrRIdFTSQY6OjggJCcGUKVMQHx+P5ORkdOzYUTN+69YtVK5cWWBC0mXOzs4ICwvDF198gaVLl6J79+7Q0+OjEEnH3NwcZ86cwaxZs7Bt2zakp6cDeFVQHjhwIHx9fWFhYSE2JMlWw4YNsXr1atExSKYWLlyIjIwM0TFIR61atQp+fn4YP348Dh06hJ49e2Ljxo1wd3cHAHTo0AHfffcdn4HpH2NPFZKl77//HgsXLoSJiQlq1qwJALh+/TqePn2KadOm8ceUtGrw4MH49ddf4eDgAHt7ewDA5cuXkZiYiH79+iE4OFhwQtJV9erVw6hRo4qdUO7cuRPfffcdrl69Kjgp6aK9e/fCzc0Nn3/+OeLj49GsWTOEhIRoxmfMmIEbN25gx44dAlOSrlIqlahatSoqVaoEhUJR7H3R0dESpiK5UqvVmmPAKlas+M7vJJEUZs2ahXv37sHf3190FCKiD8rY2BiXLl2CjY0NAKBMmTKIjY2Fo6MjgFdHFNeuXRu5ubkiY1IpxOVZJEsLFizAV199hf/85z+4evUq1Go12rdvj4EDB6J58+ai45GO27p1K3r16oVff/0ViYmJUKvVsLe3h4+PD/r16yc6Humw69eva5qEf/nll1AoFIV+81q0aIGUlBRR8UjHff311zhw4AB+//13fPHFFxg/fnyhcWNjY4wdO1ZQOtJ13t7eoiMQaSgUClSqVEl0DCKN27dvcw5IkgsPD8ezZ8/QqlUrmJubi45DOur58+eFjnk1MDCAgYFBoc/sa0v/BneqEBERyYRSqURaWprmRY6JiQliY2M1O/bu3bsHKysrvHz5UmRMIiIindOoUaMS7Ujhbiki0jWLFy/G06dPMW/ePACvdut169YNhw8fBgBUqlQJx44dY29R0gqVSoXExERUrFgRarUa1atXx6lTp2Brawvg1TOwg4MDn4HpH+NOFZKdffv2FXndzMwMdnZ2qFq1qsSJSE7i4uKKvG5mZgZra2se/0BapVAokJWVBUNDQ6jVaigUCjx9+hSZmZkAoPlfIm1YsmQJxo8fr1kp9ueff6Jp06aalWJZWVmYMWMG1q5dKzImyUBcXBwSExMBAHZ2dmjQoIHgRCQHLi4uoiMQEQmxfft2zJgxQ/N5165dOHHiBE6ePAlHR0cMHToUPj4+PAKWtEKtVsPOzq7Q50aNGhX6zPcw9G9wpwrJjlKpLHZMoVDAzc0NGzZsgLGxsYSpSC6USiUUCgXe/OlVKBQwNDTEpEmTMHfuXKhUKkEJSZe9/v699uYE8vVnrtIhbVCpVEhNTdXslDI1NUVMTAx3SpFkoqKi4OnpiYSEBM3fYYVCgbp168Lf3x/NmjUTnJB0WXJyMqpVq/bOZxEibTl9+jQePXqEHj16aK5t3rwZ3t7eePbsGVxcXLBmzZpCR+IQfSjm5uaIiIjQ9LDw8PDAy5cvsXnzZgBAZGQk+vbtyyPoSCvCw8NLdF/79u21nIR0DXeqkOwUFBQUeT0jIwPnzp3Dt99+i/nz58PX11fiZCQHN27cKPJ6eno6zp07h9mzZ8Pc3BxeXl4SJyM5CAsLEx2BZOzNYjLX9ZCUEhIS0LlzZzg6OmLr1q2aFzsJCQnw8/ND586dERkZiTp16ghOSrqqRo0ahQrLRFKaO3cuOnTooCmqXLhwAZ6enhg2bBgcHR2xdOlSWFlZ4ccffxQblHRSfn5+oYLd6dOnMWnSJM1nKysrPHz4UEAykgMWS0hbuFOF6A2HDh3CpEmTcPnyZdFRSIZ27doFHx8fXLhwQXQUIqIPij19SKR+/fohPz8fu3fvfuuIB7Vajd69e0NfX59Hj5DWvPkbSCSlqlWrIiQkBE2bNgUAfP/99wgPD8epU6cAADt37oS3tzcSEhJExiQd1bBhQ0yaNAnDhg1DcnIybG1tcfHiRc1ChoiICPTr1w+3b98WnJSIqOS4U4XoDQ4ODvxjTsI0adKk2N0sRERE9O+EhYXh4MGDRZ6ZrVAoMGvWLDg7OwtIRnLCM9tJlCdPnqBy5cqaz+Hh4ejWrZvmc7NmzXj0EmnNt99+i3HjxuHkyZOIjIxEq1atCu0MPX78eKEeF0QfUkmPVufCLvqnWFQhesP169dhZWUlOgbJVFpaGipWrCg6BukoTihJtI0bN6JcuXIAXh0FERQUBEtLSwCvGtUTaUtWVlahF4pvqlKlCr+DpHWzZ89+b9/GFStWSJSG5KRy5cq4ceMGqlevjry8PERHR8PHx0cznpWVBX19fYEJSZeNGDECKpUKISEhaNeuHby9vQuN3717Fx4eHoLSka5Tq9WwsbGBu7s7i3f0QbGoQvQ3MTEx8PLyQvfu3UVHIRl68OABZs+ejY4dO4qOQjqKE0oSydraGhs2bNB8rlKlCrZs2fLWPUTaYGNjg6ioKFSvXr3I8TNnzsDGxkbiVCQ3Fy5cQJkyZYod504W0hZnZ2fMnDkTixcvxn//+18YGxujbdu2mvG4uDh8+umnAhOSrhs+fDiGDx9e5NjatWslTkNyEhUVBX9/f6xatQo1atTA8OHDMWjQIJibm4uORqUce6qQ7Jibmxf5wPLs2TPk5+fDyckJO3bsgKmpqYB0pOsaNWpU5PcvIyMDt2/fhr29PQ4fPowqVaoISEe67uzZs/D398e2bds4oSQiWfH29kZQUBD279+PevXqFRq7cOECevbsiaFDh2Lu3LmCEpKuY08VEunhw4fo3bs3Tp06hXLlyiEoKAi9e/fWjHfu3BktW7bEggULBKYkuYqOjsacOXPw+++/i45COuz58+fYtWsXAgMDERkZiZ49e8LT0xNOTk6io1EpxaIKyc6mTZuKvG5qagp7e/tCZ3sSfWh/32b/d6+/f127di3xEU1E/xYnlPSxunPnDj755BPRMUgHPX/+HJ07d8aZM2fg5OQER0dHqNVqXLp0CUePHkXz5s1x/PhxGBoaio5KOkqlUiE1NZVFFRIqIyMD5cqVe+t54/HjxyhXrtw7d1IR/S9CQ0Nx5MgRlClTBt988w1q1qyJy5cvY+bMmQgJCUHXrl1x4MAB0TFJJm7cuAFPT0+Eh4fjwYMHsLCwEB2JSiEWVYiIiGSME0r6GKSlpWHBggXw9/dHdna26Diko/Ly8uDn54fg4GAkJiYCAOzs7ODm5obJkyfDwMBAcELSZe/bqZKeno6tW7di3LhxEicjuVGr1Xj06BEUCgUqVKggOg7JgL+/P0aMGAELCws8efIEFSpUwIoVKzB+/Hj0798fEydOhKOjo+iYJAO3b99GUFAQgoKCkJ2djaFDh2L+/PnQ02N3DPrnWFQh2crIyMCRI0dw8+ZNKBQK1KhRA126dOGxXyQJtVqNc+fOFfr+FXc0GJE2cEJJUnvy5AnGjh2rWaU4c+ZMjBs3Dj/++COWLVuGBg0aYPLkyejfv7/oqEREH9ymTZvg5ub2VvHu2LFj8Pf3x969e2FsbIxHjx4JSki6Li0tDdOnT8e+ffuQlZUF4NVu+a+//hoLFy5E5cqVBSckXdWgQQMMGTIE06ZNw+7du9G3b1+0bNkSO3bsQLVq1UTHIx2Xl5eHvXv3wt/fHydPnkS3bt0wfPhwdOvWjaeE0P+ERRWSpderwDIzMwtdNzMzwy+//MIXOqRVYWFh8PT0xK1bt/D6J/h1YSUgIADt2rUTnJB0FSeUJNKoUaNw6NAh9O3bF6GhoUhISEDXrl2hVCrxww8/oGXLlqIjkg578uQJtm7dCnd397cW0GRkZGDz5s1FjhFpQ0pKCgIDAxEYGIjk5GS4ublhyJAh6Ny5M/T19UXHIx2UmZmJhg0b4unTpxg0aBAcHBygVquRkJCA4OBgmJubIzo6GuXKlRMdlXRQ2bJlER8fD1tbW6jVahgYGCAsLAxt2rQRHY1koEKFCjAxMYG7uzuGDBlS7I5RzgHpn2JRhWQnOjoaLVq0wKBBgzB58uRCE8qVK1di27Zt+Ouvv/DZZ5+Jjko66OrVq/jss8/QokULTJw4sdD3b/Xq1Th79izi4uJQs2ZN0VFJB3FCSSJZW1sjKCgInTp1ws2bN1GzZk3MnDkTvr6+oqORDMybNw9xcXHYuXNnkeP9+vXDZ599hu+//17iZCQXL168wH//+19s3LgRJ0+exJdffomBAwdiwIABiI2NZV9H0qp58+Zh8+bNiIiIQMWKFQuN3b9/H23atIGHhwdmzZolKCHpsjePPzQxMUFsbCyfeUkSSqVS899FnQyiVquhUCjw8uVLKWORDmBRhWTHw8MDT58+Lfah2tXVFaampggICJA4GcnBuHHjcOnSJRw7duytMbVajS5duqBOnTpYs2aNgHSk6zihJJH09PSQkpKCqlWrAgCMjY1x9uxZvkgkSTRs2BDLly9H586dixw/duwYvLy8cP78eYmTkVxUqlQJDg4OGDx4MPr27Qtzc3MAgL6+PosqpHUtW7bEqFGj4OHhUeR4QEAANmzYgNOnT0ucjORAqVRi/vz5mp1QM2bMwLRp02BpaVnovgkTJoiIRzouPDy8RPe1b99ey0lI1/DgdJKdP//8E2vXri12fPTo0Rg7dqyEiUhO/vjjDyxcuLDIMYVCgUmTJuG7776TOBXJRVhYmOgIJGNqtbpQzx6VSgUjIyOBiUhOrl27htq1axc7Xrt2bVy7dk3CRCQ3+fn5UCgUUCgUPHKTJJeYmIjWrVsXO966dWt4eXlJmIjkxNraGhs2bNB8rlKlCrZs2VLoHoVCwaIKaQWLJaQtLKqQ7Ny9exd2dnbFjtvZ2eHOnTsSJiI5SU5ORv369Ysdr1evHm7duiVhIpITTihJJLVajc6dO2sKKzk5OejZsyfKlClT6L7o6GgR8UjHqVQq3L17F9bW1kWO3717t9BuPqIP7e7du9i9ezf8/f0xceJEdOvWDYMHDy5y5yjRh5aZmYny5csXO16+fPm3+o0SfSg3b94UHYFkbMeOHXBxcdE8c9y+fRtWVlaaeV92djZ++uknTJ8+XWRMKoV4/BfJzpvneb7p3r17sLKy4vE3pBX8/pFInFCSSD4+PiW6z9vbW8tJSI46duyIFi1aYNGiRUWOz5gxA1FRUdzRR5K4du0aAgMDsWnTJty5cwcDBgzAsGHD0KlTJ+5iIa1QqVRIS0t7q5/Ka3wGISJdpVKpkJqaqnkHY2pqipiYGE1PH/7+0b/FogrJjlKpxKZNm2BmZlbkeHp6Ojw8PPiDSlqhVCpx/PhxWFhYFDn+8OFDODk58ftHWsEJJRHJ1e7du+Hm5gY/Pz+MGTNG8+L65cuXWLt2LaZOnYpff/0Vrq6ugpOSnBQUFCA0NBT+/v4ICQlBuXLl8OjRI9GxSAcplUqYmZkVuzNKrVYjMzOTc0DSCmdnZwQHB2vewSxatAijR4/W7J569OgR2rZti4SEBIEpSVe9ubDVxMQEsbGxfAam/xmP/yJZcnd3f+c4t+GTNnXu3BlF1bMVCoWmUTiRNrz5veO6CiKSiz59+mD69OmYMGECvv/+e82D9PXr1/H06VNMmzaNBRWSnFKpRLdu3dCtWzc8ePDgrR4DRB9KYGCg6AgkY6GhocjNzdV89vX1Rb9+/TRFlfz8fFy5ckVQOiKif4dFFZKdgoIC0RFIxm7cuCE6AhGREObm5kUWjc3MzGBnZwcvLy84OTkJSEZysWDBAnz11Vf4z3/+g6tXr0KtVqN9+/YYOHAgmjdvLjoeyVxWVhYOHTqEKVOmiI5COuh9iwrz8/Nx//59idKQ3HBhFxHpIhZViIgkZGNjIzoCEZEQK1euLPJ6eno6zp07hx49emDXrl3o2bOntMFIVpo3b84CCn2UsrKycOzYMdExSKbi4+PRuHFjHn9DRDopNDRUc/xcQUEBjh07hosXLwJ49SxC9G+wqEKytXPnTgQHByMxMREAYGdnh4EDB/LoB5LEX3/9VeT3r2nTpoKTka7jhJJEed8q2YYNG2LhwoUsqpBWJCcnl+g+a2trLSchIiKSF4VC8dZuZR55TVJ68zlk1KhRhT7z+0j/BhvVk+wUFBRgwIAB2LlzJ+zs7ODg4AAAuHTpEq5evYq+ffsiODiYP6qkNdOnT8eyZctQrlw5zZnu165dQ3Z2Nry8vLB48WLBCUlXKZXK996jUCi4SpGESExMRMuWLfH48WPRUUgHKZXKIud2f+9lplAokJ+fL3U0IgBAbGwsdwqQMPz+kTa97h9lYGAAAAgJCUGnTp1QtmxZAEBubi4OHTrE7x8RlSrcqUKys2rVKhw9ehT79u1Djx49Co3t27cPHh4eWLVqFSZNmiQmIOm0TZs2Yc2aNVi9ejVGjRoFfX19AMCLFy+wbt06zJgxA3Xr1sXQoUMFJyVdxJ5S9DHLzc1FmTJlRMcgHXX+/Pkir6vVamzbtg2rV69GuXLlJE5FRESk+97cJTB48OC37uHzLxGVNtypQrLToEEDTJo0CcOHDy9y3N/fH6tWrUJcXJzEyUgOmjdvjgEDBmDy5MlFjq9YsQLbtm1DVFSUxMmIiMSaNGkSLl++jEOHDomOQjJx9OhRzJw5E4mJiZgyZQqmTp0KExMT0bFIRzVq1OidO+Gzs7ORlJTEldqkFe97tr18+TIGDBjA7x8R6ZwTJ06U6L527dppOQnpGhZVSHaMjIxw5cqVYs/MvnXrFhwcHJCTkyNxMpKDsmXL4sKFC5pjv950/fp11K9fH8+ePZM4GckBJ5Qk0pQpU4q8npGRgejoaCQmJuLEiRNo0qSJxMlIbqKjozFjxgycPHkS33zzDebMmYNKlSqJjkU6zsfHp0T3eXt7azkJydHrIxCLev3z+jqPgCUiXfT3I2CLewXO3z/6N3j8F8mOkZER0tPTiy2qZGZmwtDQUOJUJBcqlQp5eXnFjr948QIqlUrCRCQnHTp04ISShImOji5ylbapqSmcnJywZ88e1KhRQ0Aykotr165h1qxZ2L17N/r164eEhIRiFzkQfWgslpBIN27cEB2BZC4sLAzR0dFo2bIl2rRpg/Xr12PBggXIycmBi4sLVq9eDSMjI9ExSQeZm5vDxMQEw4YNw5AhQ2BpaSk6EukI7lQh2enevTusra2xbt26IsdHjx6N5ORkHDhwQOJkJAcdOnRA27ZtMW/evCLHf/jhB5w6dQp//PGHtMFIFipUqFCiCaWZmZnEyYiItGvs2LHw9/dHx44dsWjRIjRs2FB0JCIiIlnYsGEDxowZgxo1aiAlJQXe3t5YsGABhgwZAqVSia1bt2LMmDFYtGiR6Kikg/Ly8rB3714EBATg5MmTcHZ2hqenJ7788st3HstJ9D4sqpDsREREoEOHDnBxcYGXlxccHBygVqtx6dIlLF++HL/99hvCwsLQpk0b0VFJB/3+++9wcXHRnN1euXJlAEBaWhqWL1+OlStXYu/evejRo4fgpKSLOKEkkVQqFVJTU3nMEgmhVCphaGgIBweHd94XHR0tUSKSG3Nz8yL/1pqZmcHOzg5eXl5wcnISkIzk5K+//kJwcDASExMBAHZ2dhg4cCCaNm0qOBnpsnr16mHUqFEYP348Dh06hJ49e2Ljxo2aBvY7d+7Ed999h6tXrwpOSrouOTkZQUFB2LRpE3Jzc+Hu7g4fHx/o6fEgJ/rnWFQhWdq7dy9GjhyJx48fF7pubm6O9evXo0+fPoKSkRysWbMGXl5eyM/P1+wIyMjIgJ6eHpYsWYKJEycKTkhywAklSU2pVCItLY1FFRKC/SxItE2bNhV5PT09HefOncP27duxa9cu9OzZU+JkJBfTp0/HsmXLUK5cOc3Rh9euXUN2dja8vLywePFiwQlJVxkbG+PSpUuwsbEBAJQpUwaxsbFwdHQE8Oq5pHbt2sjNzRUZk2Tkxo0b8PT0RHh4OB48eAALCwvRkagUYlGFZCs7OxuhoaFISkoC8GqVzhdffAFjY2PByUgObt++jZ07dxb6/vXp0wfVq1cXnIzkhhNKkgqLKkRExVuxYgV27dqFiIgI0VFIB23atAmjR4/G0qVLMWrUKOjr6wN41c9x3bp1mDFjBtavX4+hQ4cKTkq66M05oImJCWJjYzXFvXv37sHKyop9HUmrcnNzsXv3bgQEBOD06dPo3r07hg8fji+//FJ0NCqlWFQhKsKdO3fwySefiI5BMpWTk8MmfaRVnFCSCEqlEvPnz0e5cuXeed+ECRMkSkRE9PFITExEy5Yt39pJT/QhNG/eHAMGDMDkyZOLHF+xYgW2bduGqKgoiZORHKhUKiQmJqJixYpQq9WoXr06Tp06BVtbWwCviioODg4sqpBWREVFITAwENu2bYOtrS08PDwwePBgLiak/xmLKkR/k5aWhgULFsDf3x/Z2dmi45DM5Obm4qeffsLSpUuRlpYmOg7pIE4oSSSlUolq1apBpVIVe49CocD169clTEVy0ahRoxL1jmJPFRLlwoULcHJy4hyQtKJs2bK4cOGCZmfAm65fv4769evj2bNnEicjOVAqlYX+BqvV6iI/s6hC2qBUKmFtbQ13d3c0adKk2Pt69eolYSrSBTw4nWTnyZMnGDt2LI4cOYIyZcpg5syZGDduHH788UcsW7YMDRo0QGBgoOiYpKNyc3Px448/ar5/06dPh4uLCwIDA/H9999DpVIVu4KM6H/VsmVLWFtbY8KECZoJ5alTp966jxNK0pazZ8/y+C8SwsXFRXQEonfy9/dHw4YNRccgHaVSqZCXl1fs+IsXL9656IHofxEWFiY6AslccnIy5s2bV+w4i3r0b3CnCsnOqFGjcOjQIfTt2xehoaFISEhA165doVQq8cMPP6Bly5aiI5IOe31ecZcuXRAREYEHDx7Aw8MDkZGRmDVrFvr27csHGtIapVL53ns4oSRtUalUSE1NZVGFiGRpypQpRV7PyMhAdHQ0EhMTceLEiXeuoiX6tzp06IC2bdsW+1Lxhx9+wKlTp/DHH39IG4yIiKiU4k4Vkp2DBw8iKCgInTp1wrhx41CzZk00bNgQvr6+oqORDOzcuRObN29Gr169cPHiRTRo0AD5+fmIjY0t0bEkRP+LgoIC0RFIxriOh4jk7Pz580VeNzU1hZOTE/bs2YMaNWpInIrkwsvLCy4uLsjNzcXUqVNRuXJlAK+Ov16+fDlWrlyJvXv3Ck5JRCRe9+7dsXHjRlStWlV0FPrIcacKyY6enh5SUlI0P5DGxsY4e/Ys6tSpIzgZyUGZMmVw48YNfPLJJwAAIyMjREVFoX79+oKTEb2NE0r6kHx8fDBt2jQYGxuLjkL0llmzZiEtLQ0BAQGioxARacWaNWvg5eWF/Px8mJmZAXi1U0pPTw9LlizBxIkTBSckXVXSkxi4W54+BiYmJoiNjS22BxXRa9ypQrKjVquhp/f/v/oqlQpGRkYCE5GcvHz5EmXKlNF81tPTQ7ly5QQmIireiRMnkJOTIzoG6Yivv/4aV69efe99DRo0kCANUWF37txBSkqK6Bik427evIkjR47gxYsXaN++PerWrSs6EsnI+PHj8fXXX2Pnzp1ISkoCANjZ2aFPnz6oXr264HSky9RqNWxsbODu7o5GjRqJjkNE9EFwpwrJjlKpRL169TSFlbi4ODg4OBR60Q0A0dHRIuKRjlMqlejWrRsMDAwAACEhIejUqRPKli1b6L49e/aIiEdUCFfp0IekVCqhUCiKPAbs9XX29CEiXRUWFoYePXpoFivo6ekhICAAgwcPFpyMiEi7zp49C39/f2zbtg01atTA8OHDMWjQIJibm4uORvQWPgNTSbGoQrLj4+NTovu8vb21nITkyMPDo0T3BQYGajkJ0ftxQkkf0q1bt0p0n42NjZaTEBFJ7/PPP4elpSXWrVsHQ0ND/PDDD9i7dy/u3r0rOhrJwL59+0p0X69evbSchOTs+fPn2LVrFwIDAxEZGYmePXvC09MTTk5OoqMRafAZmEqKRRUiIiIqEieURKQrTp8+jUePHqFHjx6aa5s3b4a3tzeePXsGFxcXrFmzRrOTlOhDK1++PCIiIjR9HLOzs2Fqaop79+6hQoUKgtORrlMqlYU+F7VzlLtFSUo3btyAp6cnwsPD8eDBA1hYWIiORASAz8BUcuypQrIUGRmJkJAQ5OXloXPnzvjyyy9FRyIZeX2edl5eHjp06MDztIlIVpKSkvDbb7/h5s2bUCgUqFGjBlxcXPjgQlo1d+5cdOjQQVNUuXDhAjw9PTFs2DA4Ojpi6dKlsLKywo8//ig2KOmszMxMWFpaaj4bGxvDyMgIGRkZLKqQ1hUUFBT6zJeGJMrt27cRFBSEoKAgZGdnY9q0aTA1NRUdi4joH2NRhWRn165d6N+/P4yMjKCvr48VK1Zg8eLF8PLyEh2NZIDnaRORnC1cuBBz5sxBQUEBKlWqBLVajQcPHmDmzJnw9fXl32LSmpiYGMybN0/zedu2bWjRogU2bNgAAKhevTq8vb1ZVCGtCg0NhZmZmeZzQUEBjh07hosXL2qu8fglItI1eXl52Lt3L/z9/XHy5El069YNK1euRLdu3aBSqUTHIypk1qxZ3DlFJcLjv0h2mjRpgmbNmuHnn3+GSqXCwoULsXTpUjx+/Fh0NJIBnqdNpcnChQsxZswYlC9fXnQU0gFhYWHo0qULZs+ejYkTJ2qakz5+/BgrV66Er68vjh8/jnbt2glOSrrI0NAQSUlJqF69OoBXf4+7deuG77//HsCrXaT169dHVlaWyJikw948fqkoPH6JpMKdKiSlChUqwMTEBO7u7hgyZAgqVapU5H3csULadPz4cezZs6fQbnlXV1c+e9C/xqIKyU65cuUQExODWrVqAXi1aqJs2bK4c+dOsX/ciT4UnqdNHwNOKEmE/v37o3z58li/fn2R4yNHjkRWVhaCg4MlTkZyYGNjgy1btqBdu3bIy8tD+fLlERISgs6dOwN4dRxY+/btuciGiGSBRRWS0t+LygqF4q1xtVrNojJp1ejRo/F///d/MDc3h52dHdRqNZKSkpCeno6xY8dizZo1oiNSKcTjv0h2Xr/Efq1MmTIwNDTE06dPWVQhreN52iRaURPKiIgI/Pzzz5xQklZFRUVhy5YtxY4PGTIEQ4cOlTARyYmzszNmzpyJxYsX47///S+MjY3Rtm1bzXhcXBw+/fRTgQmJiKSjUCiKfLlNpA1hYWGiI5CM7d27F4GBgQgICIC7u7vmt6+goABBQUEYM2YMnJycePwm/WMsqpAsbdy4EeXKldN8zs/PR1BQUKGX3RMmTBARjWSA52mTKJxQkkj37t2Dra1tseM1atRAWlqadIFIVubNm4fevXujffv2KFeuHIKCglCmTBnNeEBAAL744guBCUkudu7cieDgYCQmJgIA7OzsMHDgQLi6ugpORrrM3Ny8UBHl6dOnaNSo0VvH0nG3HmlD+/btRUcgGQsMDMSUKVMwbNiwQteVSiWGDx+OK1euwN/fn8/A9I/x+C+SHVtb2/euylEoFLh+/bpEiUhOeJ42idSrVy/UrVsXCxcuLHJ8xowZuHz5Mn777TeJk5EcKJVKpKWlFbsr9N69e7CysuLvH2lVRkYGypUr91Zj3MePH6NcuXKFCi1EH1JBQQEGDBiAnTt3ws7ODg4ODgCAS5cu4erVq+jbty+Cg4O5e4C0IigoqETfLXd3dwnSkNzs2LEDLi4umr+xt2/fhpWVlebZODs7Gz/99BOmT58uMibpqGrVqmHPnj1o3rx5keNnzpxBnz59cPv2bYmTUWnHogoREZFMcEJJIimVSsyfP7/QTtG/y8rKwpw5c1hUIa1Tq9V49OgRFAoFj94kyfj5+WH+/PnYtGkTevToUWhs37598PDwwOzZszFp0iQxAYmItESlUiE1NVWzsMbU1BQxMTGanj5cWEPaZGhoiOvXr8PKyqrI8Tt37qBWrVrIycmROBmVdjz+i4iISCYePnyIatWqFTterVo1PHr0SMJEJCfW1tbYsGHDe+8h0pa0tDRMnz4d+/btQ1ZWFoBXL3a+/vprLFy4EJUrVxackHRZYGAgli5d+lZBBXi1k3TJkiVYtWoViyqkFVFRUWjSpMlbu/Rey83NxW+//YZ+/fpJnIzk4M213FzbTVLKy8uDvr5+seN6enrIy8uTMBHpCu5UIXrD2bNnkZ2djXbt2omOQjKUmpqKFy9e8MUiaYVSqcS9e/dQsWLFIse5SoyIdFVmZiYaNmyIp0+fYtCgQXBwcIBarUZCQgKCg4Nhbm6O6OjoYndSEf2vjIyMcOXKlWLneLdu3YKDgwNXypJWcKcAifTmEbAmJiaIjY3l948koVQqMXLkSBgbGxc5np2djQ0bNvD7R/8Yd6oQvWHIkCFITEzkDyoJ0alTJ37/SKtmz579zgklEZEuWrVqFVQqFeLj498qLP/www9o06YNVq9ejVmzZglKSLrOyMgI6enpxRZVMjMzYWhoKHEqkouS7BTgelsi0kXt2rXDlStX3nsP0T/FogrRG44dO4YXL16IjkEytXnzZr7YJq3hhJJE2rx5c4nuGzp0qJaTkBzt378fs2bNKnKnXqVKlfDdd99hw4YNLKqQ1rRq1Qrr1q3DunXrihz/+eef0apVK4lTEf1/JWlkT/RvhYaGwszMDABQUFCAY8eO4eLFiwCA9PR0gclI1/3xxx+iI5CO4vFfRERERKR15ubmxY4pFAo8e/YM+fn53KlHWmFhYYHTp0/D3t6+yPHLly+jdevWePz4scTJSC4iIiLQoUMHuLi4wMvLS3ME3aVLl7B8+XL89ttvCAsLQ5s2bURHJR3E45dIJKVS+d57FAoFv38kxPXr1zF69GgcPnxYdBQqZbhThYhIsOfPn2P79u149uwZnJycULt2bdGRSKY4oSRtevLkSZHXU1NT4ePjg4CAADg5OUmciuQiMzMT5cuXL3a8fPnyyMzMlC4QyU7r1q2xfft2jBw5Ert37y40Zm5ujuDgYBZUSKsSEhKQlpYG4NVRX5cvX8bTp08BAA8fPhQZjXRcQUGB6AhExcrKysKxY8dEx6BSiDtVSHaUSuV7tzYrFArk5+dLlIjkZMqUKXjx4gXWrFkDAMjLy0OLFi0QHx8PY2Nj5Ofn48iRIzz+gYSIjY1F48aNuUqMJJGVlYXFixdj1apVqFu3LhYuXIiOHTuKjkU6SqVSIS0trcjjvwCu0ibpZGdnIzQ0FElJSQAAOzs7fPHFF8X2OyP6EF4/Axf1+uf1de4UICI54jMw/VvcqUKys3fv3mLHTp8+jdWrV3MlBWnN4cOH4evrq/n8n//8B7du3UJSUhKsra0xfPhwzJ8/H/v37xeYkohIe14Xln19fVGhQgUEBgbC1dVVdCzScWq1GnZ2dsUurOE6M5KCWq3GnTt3YGdnh549e0JPj4/jJI0bN26IjkAyduLEiRLdx96ORFSacBZHsvPVV1+9de3KlSuYOXMmQkJCMGjQIMydO1dAMpKD5ORk1KlTR/P58OHDcHV1hY2NDQBg4sSJcHZ2FhWPiEhr1Go1Nm/ejDlz5iA/Px++vr7w9PSESqUSHY1kIDAwUHQEkrkbN26gV69eSEhIAABUq1YNu3fvRtOmTQUnIzl4/axBJEKHDh00ixqKW8TAnVJEVNqwqEKydvfuXXh7e2PTpk3o2rUrYmJiUK9ePdGxSIcplcpCE8nIyEjMnj1b87l8+fLF9h0gIirNGjRogOvXr2P8+PGYNGkSjI2N8ezZs7fuMzU1FZCOdJ27u/s7x/Pz83H//n2J0pAcTZs2Dfn5+di6dSsMDQ2xbNkyjBw5EtHR0aKjkQw8fPgQz549K1RciY+Px7Jly/Ds2TO4uLhg4MCBAhOSLjM3N4eJiQmGDRuGIUOGwNLSUnQkkpFGjRq9swVAdna2hGlIl7CoQrKUkZEBX19frFmzBg0bNsSxY8fQtm1b0bFIBhwdHRESEoIpU6YgPj4eycnJhXoI3Lp1C5UrVxaYkHQZJ5QkUnx8PABgyZIlWLp06VvjPM+dRIqPj+d52qRVp06dwq5du/D5558DAFq2bIlq1arh2bNnKFu2rOB0pOvGjx8PKysrLF++HABw//59tG3bFlZWVvj0008xbNgwvHz5EkOGDBGclHRRamoq9u7di4CAACxZsgTOzs7w9PTEl19++d5+t0T/KxcXF9ERSEexqEKys2TJEixevBhVqlRBcHBwkceBEWnL9OnT4ebmhv379yM+Ph7Ozs6oUaOGZvzAgQNo3ry5wISkyzihJJHCwsJERyAiEub+/fuoXbu25nPVqlVhZGSE+/fvF5oLEmlDZGQkgoKCNJ83b94MCwsLxMTEQE9PD8uWLcPPP//MogppRZkyZdC/f3/0798fycnJCAoKwrhx45Cbmwt3d3f4+PiwxxRpjbe3t+gIpKMUanZlJJlRKpUwMjJCly5d3nmO+549eyRMRXJy7Ngx/P7776hSpQrGjx8PY2NjzZiPjw/at2+PDh06iAtIREQkM7GxsdypQlqlUqmQmJiIihUraq5Vq1YNp06dgq2treYaj0AkbTAyMsLly5c1x385OzujXr16WLJkCQAgMTERrVq1wqNHj0TGJBm5ceMGPD09ER4ejgcPHsDCwkJ0JJKBuLg4JCYmAgDs7OzQoEEDwYmoNGMpmGRn6NCh3GJKQnXu3BmdO3cucoyrKEgqnFCS1Hbs2AEXFxeUKVMGAHD79m1YWVlBqVQCeHX83E8//YTp06eLjElEpBVqtRp2dnZvXWvUqJHmv3kEImmLqakp0tPTNUWVqKgoeHp6asYVCgVyc3NFxSOZyM3Nxe7duxEQEIDTp0+je/fu2L9/PwsqpHWvf/MSEhI0PW4VCgXq1q0Lf39/NGvWTHBCKo24U4WISEJLlizB+PHjYWRkBAD4888/0bRpUxgYGAAAsrKyMGPGDKxdu1ZkTNJhnFCSKCqVCqmpqahUqRKAVy94YmJiULNmTQDAvXv3YGVlxReKpBVxcXHvHL98+TIGDBjA7x9pTXh4eInua9++vZaTkBx99dVXsLS0xIYNG7Bnzx4MGjQIaWlpMDc3BwDs378fXl5euHTpkuCkpIuioqIQGBiIbdu2wdbWFh4eHhg8eDCLKSSJhIQEtGjRAo6Ojpg8eTIcHR011/38/HDlyhVERkaiTp06gpNSacOiCslaeno6rl69CgCoVasWypcvLzYQ6Ty+VCSROKEkkZRKJdLS0jS/fyYmJoiNjeXvH0lCqVRCoVCgqEef19e5S4CIdFVcXBw6d+6MzMxM5OfnY9asWZg3b55mfMiQIShbtix++eUXgSlJVymVSlhbW8Pd3R1NmjQp9r5evXpJmIrkol+/fsjPz8fu3bvfOrVGrVajd+/e0NfXx44dOwQlpNKKRRWSpZs3b+Lbb79FaGhooZXaX375JX766adC5xoTfUh8qUgicUJJIvH3j0S6detWie57fTQOEZGuefjwIf78809UqVIFLVq0KDS2f/9+1KlTBzVq1BCUjnTZ66Ne34ULG0hbKlasiIMHD6Jp06ZFjv/1119wdnbGgwcPJE5GpR17qpDspKSkoGXLltDX18e8efMKrdRet24dWrVqhb/++gvVqlUTnJSI6MMKCwvDwYMHi+wrpVAoMGvWLDg7OwtIRkSkXSyWEJHcWVpa4quvvipyrHv37hKnITkpKCgQHYFkLCsrC5UrVy52vEqVKsjKypIwEekKFlVIdn788UfY29sjNDQUhoaGmusuLi6YPHkyvvzyS/z444/YuHGjwJRERB8eJ5QkWmhoKMzMzAC8esA+duwYLl68CODVkZxE2vbXX38hODgYiYmJAAA7OzsMHDiw2NWLRES6YMqUKUVeNzMzg52dHXr37q3p8UgkWvfu3bFx40ZUrVpVdBTSATY2NoiKikL16tWLHD9z5gwX39C/wqIKyc6hQ4ewffv2QgWV14yMjDBv3jy4ubkJSEZysXHjRpQrVw4AkJ+fj6CgIFhaWgIAX2iTVnFCSaK5u7sX+jxq1KhCn4vaRUX0oUyfPh3Lli1DuXLlNMfOhYeHY9WqVfDy8sLixYsFJyQi0o7z588Xef11j9HZs2fj+PHjsLa2ljgZ0dtOnDiBnJwc0TFIR7i5uWHKlCmwt7dHvXr1Co1duHABXl5eGDp0qKB0VJqxpwrJjoGBAa5du1bs8V63b99GrVq18Pz5c4mTkRzY2tqW6KXhjRs3JEhDcuPt7Y2goCDs37+/yAllz549MXToUMydO1dQQiIi7di0aRNGjx6NpUuXYtSoUdDX1wcAvHjxAuvWrcOMGTOwfv16PlQTkexkZmZi0KBBMDExwa+//io6DtFbffeI/hfPnz9H586dcebMGTg5OcHR0RFqtRqXLl3C0aNH0bx5cxw/frzIhddE78KiCsmOra0t/u///g9ffPFFkeOHDh3C6NGjcfPmTWmDERFpGSeU9DHIzc1Ffn4+ypYtKzoKyUjz5s0xYMAATJ48ucjxFStWYNu2bYiKipI4GclB48aN/9H9CoUC+/btwyeffKKlRESFRUVFoW/fvrh165boKEQsqtAHl5eXBz8/v7eOgHVzc8PkyZN5/CH9KyyqkOxMmjQJx48fx7Fjx1CxYsVCY/fv34eTkxM6duyIlStXiglIsnfnzh0+RJPWcEJJojx48ABDhw7F0aNHUVBQgGbNmmHr1q2oVauW6GgkA2XLlsWFCxeKfUFz/fp11K9fH8+ePZM4GcmBUqnE1KlTNce/votarcaiRYuQkJDAF4okmevXr+Ozzz7jUcT0UWBRhYhKAxZVSHaePHmCFi1aIC0tDYMHD4aDg4Nmpfavv/6KKlWqIDIyEhYWFqKjksykpaVhwYIF8Pf3R3Z2tug4REQf1PDhw3Hw4EFMmDABhoaGWL9+PapWrYqwsDDR0UgGTE1NERUVBQcHhyLHr1y5gmbNmiEzM1PiZCQHSqUSaWlpqFSpUonu5wtFktqvv/6KJUuWICYmRnQUIv4GElGpwEb1JDvm5uY4c+YMZs2ahW3btiE9PR0AUL58eQwcOBC+vr4sqJDWPHnyBGPHjsWRI0dQpkwZzJw5E+PGjcOPP/6IZcuWoUGDBggMDBQdk4jogzty5AiCgoLQtWtXAECPHj3g6OiI3Nxc7pAirWvcuDH+85//YN68eUWOb9my5R8f0URUUjdu3Hhrh/y7JCQkwMrKSouJSG7i4uKKvJ6RkYFz587B19cX3t7eEqciItI+c3PzEvW1ffz4sQRpSJdwpwrJmlqtxoMHDwAAFStWLNEPLdH/YtSoUTh06BD69u2L0NBQJCQkoGvXrlAqlfjhhx/QsmVL0RFJh3FCSSKpVCrcuXMHVapU0VwrW7Ys4uPjYWtrKy4YycLvv/8OFxcXTJkyBVOnTkXlypUBvNolunz5cqxcuRJ79+5Fjx49BCclIvrwlEolFAoFinr9Y2lpiSlTpmDGjBl8HqaPwsKFCzFmzBiUL19edBTSAZs2bdL8t1qtxpgxYzB37ty3do+6u7tLHY1KORZViIgkZG1tjaCgIHTq1Ak3b95EzZo1MXPmTPj6+oqORjLACSWJpFKpkJaWVmi1tqmpKWJjY1GjRg2ByUgu1qxZAy8vL+Tn58PMzAzAq1Xaenp6WLJkCSZOnCg4Iemy5OTkEt1nbW2t5SQkR8U1oDc1NYW5ubnEaUiujh8/jj179uDmzZtQKBSoUaMGXF1d0a5dO9HRSEZ4vBx9KCyqkOw0atSoRCtwoqOjJUhDcqOnp4eUlBRUrVoVAGBsbIyzZ8+iTp06gpORHHFCSVJSKpUwMzMr9Dc4PT0dpqamUCqVmmvcKUXadPv2bezcuRNJSUkAADs7O/Tp0wfVq1cXnIx03eudAm9Sq9Wa6wqFAvn5+VJHIyLSutGjR+P//u//YG5uDjs7O6jVaiQlJSE9PR1jx47FmjVrREckmeAzMH0o7KlCsuPi4iI6AsmYWq2Gnt7//+lVqVQwMjISmIiISBrsF0Ufg2rVqmHy5MmiY5AMnT9/vsjrarUa27Ztw+rVq1GuXDmJU5Hc7Ny5E8HBwUhMTATwqrA8cOBAuLq6Ck5Gumzv3r0IDAxEQEAA3N3dNYXkgoICBAUFYcyYMXByckKvXr0EJyUiKjnuVCHZSU5ORrVq1QqtiiWSilKpRL169TSFlbi4ODg4OKBMmTKF7uNOKZICV+kQkVzs27evRPfxhQ5J6ejRo5g5cyYSExM1/X5MTExExyIdVFBQgAEDBmDnzp2ws7ODg4MDAODSpUu4evUq+vbti+DgYPZUIa3o1asX6tati4ULFxY5PmPGDFy+fBm//fabxMlIjvgMTB8Kd6qQ7NSoUQOpqalv9RAgkoK3t3ehz1999ZWgJERE0jp69Ci6dOlS7HhBQQF8fX3xww8/SJiK5OLNncpFNWxWKBR4+fKlhKlIrqKjozFjxgycPHkS33zzDQ4cOMBnE9KqVatW4ejRo9i3bx969OhRaGzfvn3w8PDAqlWrMGnSJDEBSadFR0e/c37Xu3dv9OnTR8JEJCdTpkwp9DkvLw8LFizQ9Nd7bcWKFVLGIh3AnSokO0qlEmlpaXxwISLZeXNC+fPPP2Pw4MGcUJIkypQpg5EjR2LJkiUwNjYuNHbx4kW4u7sjLS0Nd+7cEZSQ5ISrFEmEa9euYdasWdi9ezf69euH+fPn8ztIkmjQoAEmTZqE4cOHFznu7++PVatWIS4uTuJkJAeGhoa4fv06rKysihy/c+cOatWqhZycHImTkRx07NjxvfcoFAocP35cgjSkS7hThWSJ25qJSI7ePM+9devWuH79eqFr/H0kbTl58iSGDRuGzz77DEFBQWjTpo1md8q8efPQp08fHD16VHRMIiKtGDt2LPz9/dGxY0ecPXsWDRs2FB2JZCQpKemdu0W7dOmCcePGSZiI5CQvLw/6+vrFjuvp6SEvL0/CRCQnYWFhoiOQjmJRhWRp9uzZb62SfRNXapM2mJubF/nS2szMDHZ2dvDy8oKTk5OAZCQHnFCSSC1atMD58+cxc+ZMdOzYESNHjkRkZCRSUlIQHByM3r17i45IRKQ1v/zyCwwNDXH//v1idwsA7KtH2mFkZIT09HRYW1sXOZ6ZmQlDQ0OJU5GcvOsdTHZ2tsRpiIj+dyyqkCxduHDhrcbgf8eV2qQtK1euLPJ6eno6zp07hx49emDXrl3o2bOntMGIiCRgaGgIPz8/3L9/H2vXrkXZsmVx9uxZ2Nvbi45GRKRVb/bVI5JSq1atsG7dOqxbt67I8Z9//hmtWrWSOBXJRbt27XDlypX33kOkDXXq1MGpU6dgYWEB4NXO0blz58LS0hIAcP/+fdja2rK4R/8Ye6qQ7LCnCn3MVqxYgV27diEiIkJ0FNJBnFCSaNeuXcOwYcOQlJSEuXPnIjAwEDdv3sQvv/yCr776SnQ8khFTU1PExsaiRo0aoqMQEWldREQEOnToABcXF3h5ecHBwQFqtRqXLl3C8uXL8dtvvyEsLAxt2rQRHZWI6IN68x2gqakpYmJiND3N7t27h6pVq6KgoEBkTCqFlKIDEEmNu1DoY9ajRw9cvnxZdAzSUZcvX0Z+fr7m89atW5GZman5rFar8fz5cxHRSAZ++uknfPbZZ6hUqRIuXLiAkSNH4s8//8SkSZPg5uaGIUOGID09XXRM0lHm5uawsLDQ/Hv69CkaNWpU6NrrgjORtsXFxWHXrl3YtWsXG4OTJFq3bo3t27cjLCwMrVq10vwmtmnTBmFhYQgODmZBhYS5fv06vvjiC9ExSCaK2lvA94T0b/D4L5Kd923OSk9Px9atW9moj4TIzc1959F0RB8SJ5QkpTlz5mD9+vUYNGiQ5ppSqcSMGTPQo0cPuLu7o27durhz547AlKSr/Pz8+PtGwkVFRcHT0xMJCQmav8EKhQJ169aFv78/mjVrJjgh6bKvv/4aXbt2RWhoKJKSkgAAdnZ2+OKLL97bb5RIm7KysnDs2DHRMYiI/hEWVUh2AgMDYWZm9tb1Y8eOwd/fH3v37oWxsTGLKiSEv78/GjZsKDoGEdEHFx8fj6pVqxY5VrduXZw5cwa+vr4SpyK5GDZsmOgIJHMJCQno3LkzHB0dsXXrVjg6Omqu+/n5oXPnzoiMjESdOnUEJyVdZmxsjK+//lp0DCIiySgUircW1nChDX0I7KlCspaSkoLAwEAEBgYiOTlZc/xI586doa+vLzoe6aApU6YUeT0jIwPR0dFITEzEiRMn0KRJE4mTkRyoVCqkpaWhYsWKAAATExPExcVpegrcu3cPVlZWePnypciYREQfXFRUFJo0aQKVSlXkeG5uLn777Tf069dP4mQkF/369UN+fj5279791ssctVqN3r17Q19fHzt27BCUkHTZ6tWrS3TfhAkTtJyE6G2xsbFo3Lgxn0FIK5RKJerVqwc9vVf7CuLi4uDg4KA5ISQ/Px/x8fH8/tE/xqIKyc6LFy/w3//+Fxs3bsTJkyfx5ZdfYuDAgRgwYABiY2O5Ooy0qkOHDkWuijA1NYW9vT3GjBnDprmkNZxQkkjOzs4IDg7W7BZdtGgRRo8ejfLlywMAHj16hLZt2yIhIUFgStJVKpUKqamp72xSyqIyaVPFihVx8OBBNG3atMjxv/76C87Oznjw4IHEyUgO3ny+SElJQdWqVTVzQuDVyu3r169LHY2IRRXSKh8fnxLd5+3treUkpGtYVCHZqVSpEhwcHDB48GD07dsX5ubmAAB9fX0WVYhIp3FCSSLxpTaJpFQqkZaWpvn+mZiYIDY2ttD3r2rVqigoKBAZk3SYoaEhkpKSUL169SLHU1JSULt2bTx//lziZCRHb/4GEmlTo0aN3nncUnZ2NpKSkjgHJKJShT1VSHby8/M1ZyoWdwQEkba8+VKRSEoslpBIb67j4boe+tjwfG3SJhsbG0RFRRVbVDlz5gxsbGwkTkVEpH0uLi6iIxC9JTw8HM+ePUOrVq00i62J/gkWVUh27t69i927d8Pf3x8TJ05Et27dMHjwYD5IkyT4EpE+RpxQEhERaZebmxumTJkCe3t71KtXr9DYhQsX4OXlhaFDhwpKR0SkPVzYRSItXrwYT58+xbx58wC8eifTrVs3HD58GMCr02yOHTuGunXrioxJpRCLKiQ7hoaGGDRoEAYNGoRr164hMDAQEyZMQH5+PhYsWIBhw4ahU6dO3MVCRDqHE0oS6fUu0TevEUklISEBaWlpAF79/l2+fBlPnz4FADx8+FBkNJKB7777DkePHkXDhg3h5OQER0dHqNVqXLp0CUePHkXz5s0xa9Ys0TGJiLQqLi4OiYmJAAA7Ozs0aNBAcCLSddu3b8eMGTM0n3ft2oUTJ07g5MmTcHR0xNChQ+Hj44MdO3YITEmlEXuqEAEoKChAaGgo/P39ERISgnLlyuHRo0eiY5EOUiqVmD9/PsqVK/fO+yZMmCBRIpKTxo0bY8aMGejfvz8AYOfOnXB3d8eRI0c0E0pjY2NOKEkrlEolunXrBgMDAwBASEgIOnXqhLJlywIAcnNzcejQIZ6nTVqhVCqhUCiK3DH6+rpCoeD3j7QqLy8Pfn5+CA4OLvRS0c3NDZMnT9b8PhJ9aJmZmYU+V6tWDadOnYKtrW2h66amphKmIjmJioqCp6cnEhISNH+LFQoF6tatC39/fzRr1kxwQtJV5ubmiIiIgKOjIwDAw8MDL1++xObNmwEAkZGR6Nu3L1JSUkTGpFKIRRWiNzx48ABbtmzBlClTREchHaRUKlGtWrV37oRSKBS4fv26hKlILjihJJE8PDxKdF9gYKCWk5Ac3bp1q0T3sacFEemi14Xl114Xkt/8zMIyaUNCQgJatGgBR0dHTJ48WfMskpCQAD8/P1y5cgWRkZGoU6eO4KSki0xMTBAbG4uaNWsCABwcHDBp0iSMHj0aAJCcnAx7e3vk5OSIjEmlEI//InpDVlYWDh06xKIKac3Zs2fZqJ6EyM/PL7QK9vTp05g0aZLms5WVFY/AIa1hsYREYrGEiOQsLCxMdASSsR9//BFOTk7YvXt3oWJew4YNMWDAAPTu3Rs//vgjd8uTVnz66ac4ceIEatasieTkZCQmJqJdu3aa8du3b6NChQoCE1JpxaIK0RuysrJw7Ngx0TFIR7F/AInECSURydXDhw/x7NmzQsWV+Ph4LFu2DM+ePYOLiwsGDhwoMCHpOnNz8xLNAx8/fixBGpKb9u3bi45AMhYWFoaDBw8W+RuoUCgwa9YsODs7C0hGcvDtt99i3LhxOHnyJCIjI9GqVatCu6KOHz+ORo0aCUxIpRWLKkREEuKJiyQSJ5REJFfjx4+HlZUVli9fDgC4f/8+2rZtCysrK3z66acYNmwYXr58iSFDhghOSrpq5cqVoiMQEQmRlZWFypUrFztepUoVZGVlSZiI5GTEiBFQqVQICQlBu3bt4O3tXWj87t27GD58uKB0VJqxqEJEJCFvb+/3Nqkn0hZOKIlIriIjIxEUFKT5vHnzZlhYWCAmJgZ6enpYtmwZfv75ZxZVSGtq1KiB1q1bQ0+Pj+BEJC82NjaIiopC9erVixw/c+YMj+kkrRo+fHixz7lr166VOA3pCjaqJ3pDbGwsGjduzCZ9pBVxcXEluq9BgwZaTkJERCQfRkZGuHz5sualjbOzM+rVq4clS5YAABITE9GqVSs8evRIZEzSYSqVCqmpqeyrR0Sy4+3tjaCgIOzfvx/16tUrNHbhwgX07NkTQ4cOxdy5cwUlJF1W3DsYMzMzWFtb84h2+te4TIZkp1GjRu/80czOzpYwDclNw4YNoVAoijwG7PV1hULBoh5pBSeURCRXpqamSE9P1xRVoqKi4OnpqRlXKBTIzc0VFY9kgGsZiUiuvvvuOxw9ehQNGzaEk5MTHB0doVarcenSJRw9ehTNmzfHrFmzRMckHVXcOxiFQgFDQ0NMmjQJc+fOhUqlEpSQSisWVUh2XFxcREcgGbtx44boCCRjnFCSKKtXr/7H/x8PDw+YmJhoIQ3JUcuWLbF69Wps2LABe/bsQVZWFjp16qQZT0xMLPZYEqIPhYsXiEiODA0NERYWBj8/PwQHByM8PBwAYGdnh/nz52Py5MkwMDAQnJJ0VXHvYNLT03Hu3DnMnj0b5ubm8PLykjgZlXY8/ouIiEgmbt26VeT1v08oJ0+ezAklfXBKpRLVqlUrccEuJSUFiYmJqFmzppaTkVzExcWhc+fOyMzMRH5+PmbNmoV58+ZpxocMGYKyZcvil19+EZiSdJlSqUS3bt3e++Jwz549EiUiuWjcuPE/ul+hUGDfvn345JNPtJSIiOjjsWvXLvj4+ODChQuio1Apw50qREQCJCUl4bfffsPNmzehUChQo0YNuLi48AUiaVVxDSBtbGzw2WefwdTUFD4+PiyqkFacPXu2xL0EuEOFPrQGDRrg0qVL+PPPP1GlShW0aNGi0Libmxvq1KkjKB3JhYmJCYyMjETHIJmJiYnB1KlTUa5cuffeq1arsWjRIh6HSESy0aRJE54oQv8Kd6qQ7Jibmxe59d7MzAx2dnbw8vKCk5OTgGQkFwsXLsScOXNQUFCASpUqQa1W48GDB1CpVPD19eULbRLmxo0bqF+/Pp4+fSo6CukYHx8fTJs2DcbGxiW6f+HChRgzZgzKly+v3WBERBJRKpVIS0tjo3qS3D/97pmYmCA2NpaLveiDKe4dzJseP34sQRqiwk6fPo2BAweysEL/GIsqJDubNm0q8vrr42+2b9+OXbt2oWfPnhInIzkICwtDly5dMHv2bEycOBHm5uYAXk0gV65cCV9fXxw/fhzt2rUTnJTkiBNKItJVU6ZMKfL660U1vXv35nnupFUqlQqpqaksqpDkbt26BWtr6xL39ElJSYGVlRV77NEH8/d3MGq1GmPGjMHcuXPf+j10d3eXOhrJ3IMHDzBgwABYW1sjICBAdBwqZVhUIXrDihUrsGvXLkRERIiOQjqof//+KF++PNavX1/k+MiRI5GVlYXg4GCJk5HccUJJosXFxaFp06bIy8sTHYV0UMeOHYu8np6ejqtXr6Jy5co4fvw4rK2tJU5GcvG+3QKXLl2Cv78/li1bJnEyIiJpcTcUSalRo0ZFFpUzMjJw+/Zt2Nvb4/Dhw6hSpYqAdFSasahC9IbExES0bNmSW09JK2rUqIEtW7bg888/L3L85MmTGDp0KHcKkFZwQkkfs9jYWDRu3BgvX74UHYVkJjMzE4MGDYKJiQl+/fVX0XFIR4WHh6NNmzbQ0/v/bU2fPXuGbdu2wd/fH5GRkahTpw4uXrwoMCXpquTk5BLdx8IySYFFFZKSj49PkddNTU1hb2+Prl27cmce/StsVE/0htzcXJQpU0Z0DNJR9+7dg62tbbHjNWrUQFpamnSBSFZcXFyKvM4JJRHJmampKWbPno2+ffuKjkI6rH379pr//vPPP+Hv748dO3YgJycHkydPRkBAABwcHAQmJF1ma2tb5MIatVqtua5QKJCfny91NCIirfL29hYdgXQUiypEb/D390fDhg1FxyAd9fz583cW7fT19Xn0DWkNJ5REREWztLTkLmXSqvv37yMoKAgBAQHIyMjAgAED8Mcff6BVq1YYPnw4CyqkVefPny/yulqtxrZt27B69WqUK1dO4lRERNLJycnBkSNHkJiYCACwt7dHly5dYGRkJDgZlVYsqpDsFNeoNCMjA9HR0UhMTMSJEyckTkVysnHjxmIfWrKysiROQ3LECSWJkJmZ+c5x/v6RSJGRkfj0009FxyAdZmNjA1dXV6xatQpOTk5QKpWiI5GMfPbZZ29dO3r0KGbOnInExERMnz4dU6dOFZCM5ODNdzB5eXlYsGABzMzMCl1fsWKFlLFIRvbt24dvvvkGDx8+LHTd0tIS/v7+6Nmzp6BkVJqxqEKyU9wqHVNTUzg5OWHPnj2oUaOGxKlILqytrbFhw4b33kOkLZxQkijly5cv8uiR1/5+BAnRhxYXF1fk9YyMDJw7dw6+vr7czUdaZWNjg1OnTsHa2ho2NjbcmULCREdHY8aMGTh58iS++eYbHDhwAJUqVRIdi3TYm+9gWrdujevXrxe6xjkgaUtERARcXV3Rq1cvTJ06FY6OjgCAhIQELF++HK6urggPD0fLli0FJ6XSho3qiYiIZCIiIgIdOnQodkL5+++/c0JJWhMeHl6i+/7ed4DoQ1EqlVAoFCjq0cfS0hJTpkzBjBkz+FKHtOp1L5WdO3fCzs4OgwcPxvTp0xEXF6f5m0ykLdeuXcOsWbOwe/du9OvXD/Pnz2ejcCLSec7OzqhevTrWr19f5PioUaOQkpKCAwcOSJyMSjsWVUiWbt68iSNHjuDFixdo37496tatKzoSEZHWcUJJH7vHjx/DwsJCdAzSQbdu3SryuqmpKczNzSVOQ3L39OlTBAcHIzAwEJGRkWjfvj0GDhwIFxcXVKxYUXQ80kFjx46Fv78/OnbsiEWLFrGHKBHJhoWFBcLDw1G/fv0ix+Pi4tC+fXs8efJE4mRU2rGoQrITFhaGHj16ICcnBwCgp6eHgIAADB48WHAykoPNmzeX6L6hQ4dqOQnJESeU9LE6fPgwNm7ciJCQEM3fZyIiObh06RL8/f2xZcsWPH78GC9evBAdiXSQUqmEoaHhe4+di46OligRyUmdOnVw6tQpzcKZsWPHYu7cubC0tAQA3L9/H7a2tsjOzhYZk3SUkZERLl++DBsbmyLHb926BQcHBz6D0D/GogrJzueffw5LS0usW7cOhoaG+OGHH7B3717cvXtXdDSSgXethlUoFHj27Bny8/Px8uVLCVORXHBCSR+TW7duISAgAJs2bcKTJ0/QrVs39OnTB3379hUdjXTYzp07ERwcjMTERACAnZ0dBg4cCFdXV8HJSO7y8/Oxb98+9O7dW3QU0kE+Pj4luo+9pUgblEol0tLSNL17TE1NERMTozl+7t69e6hatSoKCgpExiQd1aBBA0yePBkeHh5FjgcEBGDlypXF9t8jKg4b1ZPsXLx4EREREahatSoAYOnSpVi/fj0ePXqEChUqCE5Huq64HQCpqanw8fFBQEAAnJycJE5FclG7dm0cP3682AnlsWPHULt2bYlTkZzk5eVhz5492LhxI/7880906dIFt2/fxvnz54vdQUX0IRQUFGDAgAGaXhavV2vHx8ejf//+6Nu3L4KDg9lThYS5evUqZs6cyaIKaQWLJfQxKWptN//+krZ4eHjAy8sLlStXhrOzc6Gx/fv3Y/r06Zg1a5agdFSasahCspOZmanZZgoAxsbGMDIyQkZGBosqJLmsrCwsXrwYq1atQt26dREaGoqOHTuKjkU6ihNKEmn8+PEIDg5G7dq1MXjwYGzfvh0VKlSAvr4+VCqV6Hik41atWoWjR49i37596NGjR6Gxffv2wcPDA6tWrcKkSZPEBCTZy83NxbVr10THIBmIi4srtFuvQYMGghMREWnPxIkTERERgR49esDe3h6Ojo5Qq9W4dOkSkpKS4OLiwvkf/SssqpAshYaGwszMTPO5oKAAx44dw8WLFzXXevXqJSIaycSLFy+wZs0a+Pr6okKFCggMDOTRI6R1nFCSSOvWrcOMGTMwc+ZMmJiYiI5DMhMYGIilS5e+VVABXs35lixZwqIKEem0qKgoeHp6IiEhQbNTQKFQoG7duvD390ezZs0EJyRdpVAo3tqJwp0pJBWlUomdO3di+/btCA4OxuXLlwEADg4O+PHHH+Hm5iY4IZVW7KlCsqNUKt97j0KhYE8L0gq1Wo3Nmzdjzpw5yM/Ph7e3Nzw9PblKmyT1ekL591WKbm5unFCSVgUHByMgIACnT59G9+7dMWTIEHTr1g2GhoaIjY1FnTp1REckHWZkZIQrV67A2tq6yHH2lCLRYmNj0bhxYz6DkFYkJCSgRYsWcHR0xOTJk+Ho6Ki57ufnhytXriAyMpJ/i0krlEol6tWrBz29V+u64+Li4ODggDJlygB41VMqPj6ev39EVKqwqEJEJKH69evj+vXrGD9+PCZNmgRjY+Mi7zM1NZU4GRGRNG7cuIGgoCAEBQUhOzsbjx8/xvbt27lbj7TKwsICf/zxR7HH3Fy4cAHt2rUrtvcZkbaxqELa1K9fP+Tn52P37t1v7RBQq9Xo3bs39PX1sWPHDkEJSZf5+PiU6D72/iFtyMzMLNF9fAdD/xSLKkREEvr7Tqmitjyr1WrulCKt4YSSPiZqtRqHDx+Gv78/9u3bB0tLS/Tu3RurV68WHY10UPfu3WFtbY1169YVOT569GgkJyfjwIEDEicjuTA3N3/ncTf5+fl49uwZ54CkFRUrVsTBgwfRtGnTIsf/+usvODs748GDBxInIyLSLqVS+c6/v3wHQ/8We6qQbO3cufOt428GDhzIlbKkVWFhYaIjkIyVL1+eE0r6aCgUCnTt2hVdu3bF48ePsXnzZgQFBYmORTrq+++/R4cOHfDo0SN4eXnBwcFB01Nq+fLl+O233/g3mrRq5cqVoiOQjGVlZaFy5crFjlepUgVZWVkSJiICwsPD8ezZM7Rq1Qrm5uai45CO+vv8Tq1Ww9nZGRs3bsQnn3wiMBXpAhZVSHYKCgowYMAA7Ny5E3Z2dnBwcAAAxMfHo3///ujbty+Cg4PZOI20on379qIjkIxxQkkfKwsLC7Rt2xZHjx4VHYV0VOvWrbF9+3aMHDkSu3fvLjRmbm6O4OBgtGnTRlA6kgN3d3fREUjGbGxsEBUVherVqxc5fubMGdjY2EiciuRi8eLFePr0KebNmwfg1XNIt27dcPjwYQBApUqVcOzYMdStW1dkTNJRb76DUalUaNmyJWrWrCkoEekKFlVIdlatWoWjR49i37596NGjR6Gxffv2wcPDA6tWrcKkSZPEBCSdtmPHDri4uGia8t2+fRtWVlaaY8Gys7Px008/Yfr06SJjko7ihJJECw0NxZEjR1CmTBl88803qFmzJi5fvoyZM2ciJCQEXbt2FR2RdNjXX3+Nrl27IjQ0FElJSQBe7VT+4osviu1xRvShFHcEZ9myZaFSqSROQ3Lj5uaGKVOmwN7eHvXq1Ss0duHCBXh5eWHo0KGC0pGu2759O2bMmKH5vGvXLpw4cQInT56Eo6Mjhg4dCh8fH/b0IaJShT1VSHYaNGiASZMmYfjw4UWO+/v7Y9WqVYiLi5M4GcmBSqVCamoqKlWqBOBV74qYmBjNS+179+7BysqKxy+RJExMTBAbG8uiCknC398fI0aMgIWFBZ48eYIKFSpgxYoVGD9+PPr374+JEyfC0dFRdEwiIq0o7kx3lUqFGjVqwMvLCyNGjBCQjOTg+fPn6Ny5M86cOQMnJyc4OjpqjkA8evQomjdvjuPHj8PQ0FB0VNJB5ubmiIiI0MzzPDw88PLlS2zevBkAEBkZib59+yIlJUVkTJIJPgPTh8KdKiQ7SUlJ6NKlS7HjXbp0wbhx4yRMRHLyZh2bdW0ikotVq1Zh8eLFmDZtGnbv3o2+ffti7dq1uHDhAqpVqyY6Hum41atXl+i+CRMmaDkJyVVxPXvS09Nx7tw5TJs2DXp6evDw8JA4GcmBoaEhwsLC4Ofnh+DgYISHhwN4tVtv/vz5mDx5MgwMDASnJF2Vn59f6Pt1+vTpQieDWFlZ4eHDhwKSkVzxuH/6EFhUIdkxMjJCeno6rK2tixzPzMzkCh0ikg1OKEkq165dQ9++fQEAvXv3hp6eHpYuXcqCCknCz8+v0OeUlBRUrVoVenr//3FIoVCwqEJa866+el999RVsbW2xZs0aFlVIa8qUKYMZM2YUOoaJSAqffvopTpw4gZo1ayI5ORmJiYlo166dZvz27duoUKGCwISky3r37l3o8/PnzzF69GiULVu20PU9e/ZIGYt0AIsqJDutWrXCunXrsG7duiLHf/75Z7Rq1UriVERE2scJJYmUk5Oj6VuhUChgYGCAqlWrCk5FcnHjxo1Cn01MTBAeHs6jH+ij0b59e/Z0JCKd9O2332LcuHE4efIkIiMj0apVK9SpU0czfvz4cTRq1EhgQtJlZmZmhT4PHjxYUBLSNSyqkOx8//336NChAx49egQvLy84ODhozpNdvnw5fvvtt2K35xN9CKGhoZo/7AUFBTh27BguXrwI4NUREETawgklibZx40aUK1cOwKujIIKCgmBpaVnoHu4UICI5ysjIeOvvNNGHYm5uXqLdyY8fP5YgDcnNiBEjoFKpEBISgnbt2sHb27vQ+N27d4vteUv0vwoMDBQdgXQUG9WTLO3duxcjR458a9Jobm6O9evXo0+fPoKSka5TKpXvvUehULBRPRHpHFtb2/e+0FEoFLh+/bpEiUjO2KSUPiYvXrzA0KFD8eLFC+zatUt0HNJBmzZtKtF97u7uWk5CRESkG1hUIdnKzs5GaGgokpKSALxq0vfFF19ojiYhIiIiIt3EogpJ7c0jOF/LyMhAfHw8FAoFTp48iVq1akmcjOTgxIkTaN26daE+UkRSiYuLK/K6mZkZrK2t2eORiEolFlVIltRqNa5evYq8vDzY29tzckmSy83NRX5+/lu9LIiIiOjDy8zMLPS5WrVqOHXqFGxtbQtdNzU1lTAVyUlxDehNTU1hb2+PQYMG8fgv0hqVSoXU1FRUqlRJdBSSIaVSCYVCgTdfPyoUChgaGmLSpEmYO3cuVCqVoIRERP8ciyokOzdu3ECvXr2QkJAA4NVD9e7du9G0aVPByUgOHjx4gKFDh+Lo0aMoKChAs2bNsHXrVq5KJCKd5+zsjODgYM1Lw0WLFmH06NEoX748AODRo0do27at5u8z0Yf0+oXOa2q1usjPPH6TiHSRUqlEWloaiyokxK1bt4q8np6ejnPnzmH27NmYPHkyvLy8JE5GRPTvsahCsuPq6or4+HjMmTMHhoaGWLZsGXJychAdHS06GsnA8OHDcfDgQUyYMAGGhoZYv349qlatirCwMNHRiIi06s1VsqampoiJidEcv3Tv3j1YWVnxpTZpRXh4eInua9++vZaTkJxFRkYiJCQEeXl56Ny5M7788kvRkUgmlEol7t27h4oVK4qOQvSWXbt2wcfHBxcuXBAdhYioxFhUIdmpUqUKdu3ahc8//xwAkJqaimrVqiEzM5NHMZHWVa9eHRs3bkTXrl0BAElJSXB0dMSzZ89gYGAgOB0Rkfa8uUr2zZ4WLKoQkS7btWsX+vfvDyMjI+jr6yMzMxOLFy/mymyShFKpRLdu3d77vLFnzx6JEhH9fzdu3ED9+vXx9OlT0VFIx6xevfof/388PDxgYmKihTSka9hIgmTn/v37qF27tuZz1apVYWRkhPv376NGjRoCk5Ec3L17F5999pnmc+3atWFgYIDU1NS3znUn+pA4oSQiIhJn4cKFGDFiBH7++WeoVCosXLgQvr6+LKqQZExMTGBkZCQ6BtFb0tLSuIuKtGLSpEmoVq1aifv1pKSkoEePHnwGphJhUYVkR6FQ4OnTp4UmlEqlEllZWYWamLJRKWnLm3/QVSrVW037iD40TihJNIVCUaiHxetrRERycOXKFWzfvl3zd3jq1KmYM2cO7t+/zz4XJInVq1fzu0YfnQcPHmD27Nno2LGj6Ciko86ePVvi3z4++9I/waIKyY5arYadnd1b1xo1aqT5bzYqJW15/f37+4vEp0+folGjRlAqlZprjx8/FhGPdBwnlCSSWq3GsGHDNEePPH/+HKNHj9YcvZmbmysyHhGRVmVnZxdatFWmTBkYGhri6dOnfNFNWsdFDCRSo0aNivwOZmRk4Pbt27C3t8fWrVsFJCNd5+3tjXLlypX4/lmzZsHCwkKLiUiXsKhCssOG4CRSYGCg6AgkU5xQkmju7u6FPg8ePPite4YOHSpVHCIiyW3cuLHQ3+L8/HwEBQXB0tJSc23ChAkiopGOe9+u+EuXLsHf3x/Lli2TKBHJiYuLS5HXTU1NYW9vj65du5Z4Nz3RP+Ht7f2P7v/uu++0lIR0ERvVExEREREREWmRra3te3cLKBQKXL9+XaJEJCfh4eFo06YN9PT+/7raZ8+eYdu2bfD390dkZCTq1KmDixcvCkxJRCS9uLg4NG3aFHl5eaKjUCnDnSpERBI6evQounTpUux4QUEBfH198cMPP0iYiugVTiiJSBc1btz4H92vUCiwb98+fPLJJ1pKRHJ08+ZN0RFIxtq3b6/57z///BP+/v7YsWMHcnJyMHnyZAQEBMDBwUFgQpKDnJwcHDlyBImJiQAAe3t7dOnSpVC/WyKpqdVqHv9P/wqLKkREEnJ2dsbIkSOxZMkSGBsbFxq7ePEi3N3dkZaWxqIKCcEJJWlT7969S3Tfnj17tJyE5CYmJgZTp04t0RGIarUaixYtYo8fItIp9+/fR1BQEAICApCRkYEBAwbgjz/+QKtWrTB8+HAWVEjr9u3bh2+++QYPHz4sdN3S0hL+/v7o2bOnoGRERP8OiypERBI6efIkhg0bhs8++wxBQUFo06aNZnfKvHnz0KdPHxw9elR0TCKiD87MzKzQ519//RU9e/aEiYmJoEQkJ9OmTStxM/Dly5drOQ3JVX5+Pvz8/BAcHKxZqW1nZ4eBAwdi4sSJ0NfXF5yQdJWNjQ1cXV2xatUqODk5QalUio5EMhIREQFXV1f06tULU6dOhaOjIwAgISEBy5cvh6urK8LDw9GyZUvBSYmISo49VYiIJPb8+XPMnDkTa9euxciRIxEZGYmUlBSsW7euxCu5ibQhNjYWjRs35m4VkoSJiQliY2NRs2ZN0VFIx926dQvW1tbv7WfxWkpKCqysrNg0lz6onJwcODk54fTp0+jSpYvmpeKlS5dw9OhRtGnTBocPH4ahoaHgpKSLHBwckJubi4EDB2LIkCGanSn6+vqIjY1FnTp1BCckXebs7Izq1atj/fr1RY6PGjUKKSkpOHDggMTJSA4yMzPfOR4XF4f27dvzGZj+Me5UISKSmKGhIfz8/HD//n2sXbsWZcuWxdmzZ2Fvby86Gum4900os7KyJEpCRCQdGxubf3R/9erVtZSE5GzRokVISUnB+fPn0aBBg0JjsbGx6NWrFxYtWoQff/xRTEDSaZcvX9b0UmnWrBns7OwwePBgAChxwZno34qMjMTixYuLHf/2228L9f0h+pDKly//zt85tVrN30H6V7hThWSFjUrpY3Dt2jUMGzYMSUlJmDt3LgIDA3Hz5k388ssv+Oqrr0THIx2mVCpLNKHkKh2SAneqkJSSk5NLdJ+1tbWWk5Bc2dvbw9fXF3369ClyfOfOnfj+++81x4IRacvTp08RHByMwMBAREZGon379hg4cCBcXFxQsWJF0fFIBxkZGeHy5cvFLnK4desWHBwckJOTI3EykoPw8PAS3cfCHv1TLKqQrCiVyn/cqDQhIYEvfOiD+emnnzBz5kx07doVv/zyCypWrIiCggIsXboUP/74I1xdXbFmzRqUL19edFTSQZxQ0seERRWSUnFF5b+vTlQoFMjPz5c6GsmEoaEhkpKSit0JlZKSgtq1a+P58+cSJyM5u3TpEvz9/bFlyxY8fvwYL168EB2JdFCDBg0wefJkeHh4FDkeEBCAlStXIi4uTuJkRK88fvwYFhYWomNQKcOiCsmKUqlEWlpaiRuV8oUPfWgWFhZYs2YNBg0a9NZYfHw83N3dkZqaijt37ghIR8QJJWnPvn37Cn0eMGAAVq5cicqVKxe63qtXLyljkUzExsYWeV2tVmPbtm1YvXo1ypUrh/v370ucjOSiUqVKOHjwIJo0aVLk+F9//QVnZ2c8ePBA4mREQH5+Pvbt28f+jqQVfn5+mD9/PrZs2QJnZ+dCY/v374e7uztmzZqFKVOmCEpIcnX48GFs3LgRISEh3ClF/xiLKiQrbFRKoqWmpqJq1arFjr98+RK+vr6YPXu2hKmIOKEk7VMqle+9h8fPkZSOHj2KmTNnIjExEVOmTMHUqVNhYmIiOhbpqP79+yM/Px+7d+8ucrxPnz5QqVTYsWOHxMmIXvVc6dWrF4+fI60oKChA//79sXv3btjb28PR0RFqtRqXLl1CUlISXFxcsHPnzhLNFYn+V7du3UJAQAA2bdqEJ0+eoFu3bujTpw/69u0rOhqVMiyqEBERyRQnlEQkR9HR0ZgxYwZOnjyJb775BnPmzCnxLmaifyshIQEtWrRA3bp1MWXKFDg4OGheKvr5+SEhIQGRkZGoW7eu6KgkQ7GxsWjcuDEXNpBWbd++HcHBwZrinZ2dHdzc3ODm5iY4Gem6vLw87NmzBxs3bsSff/6JLl264ODBgzh//jzq168vOh6VUnqiAxBJjY1KSSRnZ2cEBwfDzMwMALBo0SKMHj1a00Pl0aNHaNu2LRISEgSmJF1W1ITy9u3bnFCSZHJzc5Gfn4+yZcuKjkIyc+3aNcyaNQu7d+9Gv3792DePJFWnTh0cOXIEnp6ecHNz0+ycV6vVcHBwwOHDh1lQISKd1r9/f/Tv3190DJKZ8ePHIzg4GLVr18bgwYOxfft2VKhQAfr6+jyVhv4n3KlCssNGpSSSSqVCamqqZkWsqakpYmJiNC917t27BysrK64SI614c0Lp5uammVDGxsaiTp06oiOSDnvw4AGGDh2Ko0ePoqCgAM2aNcPWrVtRq1Yt0dFIBsaOHQt/f3907NgRixYtQsOGDUVHIhmLiYkptFKb30cSjTtVSJsyMzNLdJ+pqamWk5Ac6enpYcaMGZg5c2ahY175DEz/K+5UIdk5f/58kdffbFRKpA1v1rFZ1yYprVu3rsgJJZEUZsyYgZiYGMydOxeGhoZYv349RowYgbCwMNHRSAZ++eUXGBoa4v79+xg+fHix90VHR0uYiuQmMzMTZ86cQV5eHjp27IiKFSuKjkREpHXly5d/Z1/b1wtcWdQjbdiyZQsCAgJQtWpVdO/eHUOGDEG3bt1ExyIdwKIKyc5nn3321rW/NyqdPn06pk6dKiAZEZF2cUJJIh05cgRBQUHo2rUrAKBHjx5wdHREbm4uDAwMBKcjXeft7S06AslcTEwMnJ2dkZaWBgAwMTHBjh07NL+JRNpkbm7+zpfaPKWBtOnvC2jUajWcnZ2xceNGfPLJJwJTkVwMGDAAAwYMwI0bNxAUFIRvv/0W2dnZKCgoQEJCAneq0L/G479I1tiolKSmUqmQlpamWZloYmKCuLg41KhRAwCP/yJpvJ5QBgUFITs7G48fP8b27dvh6uoqOhrpMJVKhTt37qBKlSqaa2XLlkV8fDxsbW3FBSMikkDXrl3x9OlTLFu2DIaGhpg3bx4uXLiApKQk0dFIBjZt2lSi+9zd3bWchOjVM3BsbCz7mpEQarUahw8fhr+/P/bt2wdLS0v07t0bq1evFh2NShkWVUiW3mxUOn/+fP5BJ0kolUp069ZNsyo7JCQEnTp10jRszs3NxaFDh1hUIUlwQklSerOoDLw6Ozs2NlZTWCaSQlxcXKF+Fg0aNBCciOTA0tIShw8fRuPGjQEA6enpsLCwQHp6OvsIEJGssKhCH4vHjx9j8+bNCAoKQkxMjOg4VMrw+C+Snb83Kj179iwbQ5Kk3lz9NXjw4LfuGTp0qFRxSOYUCgW6du2Krl27FppQEmmDWq2GnZ1doeNHnj59ikaNGkGpVGquPX78WEQ8koGoqCh4enoiISFB09NMoVCgbt268Pf3R7NmzQQnJF32+PFjVKtWTfO5fPnyKFu2LB49esSiCmldcY3Cy5YtC5VKJXEaIqKPg4WFBdq2bYujR4+KjkKlEIsqJDtsVEoiBQYGio5AVCROKEnb+PtHIiUkJKBz585wdHTE1q1b4ejoqLnu5+eHzp07IzIykudqk1YlJCRoeqoAr4rNly5dQlZWluYad06RNhTXKFylUqFGjRrw8vLCiBEjBCQjuXpXjx+iDy00NBRHjhxBmTJl8M0336BmzZq4fPkyZs6ciZCQEPY3o3+Fx3+R7Pj4+JToPjY0JSJdVJIJ5YEDB0THJCL6oPr164f8/Hzs3r37rRc5arUavXv3hr6+Pnbs2CEoIek6pVIJhUKBoh6/X19XKBQ8Apa0Ijw8vMjr6enpOHfuHFavXg0/Pz94eHhInIzkoHfv3oU+v3kE9mt79uyRMhbJhL+/P0aMGAELCws8efIEFSpUwIoVKzB+/Hj0798fEydO1Cy2IfonWFQhIiKSCU4oiUiuKlasiIMHD6Jp06ZFjv/1119wdnbGgwcPJE5GcnHr1q0S3WdjY6PlJERvCwgIwE8//cTTGkgrSlqs465m0oYGDRpgyJAhmDZtGnbv3o2+ffuiZcuW2LFjR6FjOYn+KRZVSNbYqJSI5IQTShLJ3Ny8REc9sKcKaYOhoSGSkpJQvXr1IsdTUlJQu3ZtPH/+XOJkRETiXbt2DY0aNSq29woRUWlVtmxZxMfHw9bWFmq1GgYGBggLC0ObNm1ER6NSjj1VSJbYqJSI5OjatWvo27cvgFfb8PX09LB06VIWVEgSK1euFB2BZMzGxgZRUVHFFlXOnDnDHQKkNXFxcahXrx6USmWJ7o+Pj4e9vT309Pi4TtLIyMiAmZmZ6BhERB9cTk4OjI2NAbx672dgYICqVasKTkW6gLM0kh02KiUiueKEkkRyd3cXHYFkzM3NDVOmTIG9vT3q1atXaOzChQvw8vLC0KFDBaUjXdeoUSOkpaWhYsWKJbq/VatWiImJQc2aNbWcjAh48eIFli5dihYtWoiOQkSkFRs3bkS5cuUAAPn5+QgKCoKlpWWheyZMmCAiGpViPP6LZIeNSkmU1atX/+P/j4eHB0xMTLSQhuRIqVRi/vz5mgnljBkzMG3aNE4o6aOQmpqKBQsW4KeffhIdhXTQ8+fP0blzZ5w5cwZOTk5wdHSEWq3GpUuXcPToUTRv3hzHjx+HoaGh6Kikg5RKJUaOHKlZ2PA+a9euRUJCAosq9MG82Sj8tYyMDMTHx0OhUODkyZOoVauWxMmIiLTL1tb2vUcQKxQKXL9+XaJEpCtYVCHZYaNSEkWpVKJatWpQqVQluj8lJQWJiYl8oKYPhhNKEi0+Ph5hYWEoU6YM+vXrh/Lly+Phw4dYsGABfvnlF9SsWRPx8fGiY5KOysvLg5+fH4KDgwv11HNzc8PkyZNhYGAgOCHpqg4dOpSop9Tf/frrr9xNSh9McY3CTU1NYW9vj0GDBvH4LyIion+ARRWSHTYqJVGUSiXS0tJQqVKlEt1vYmKC2NhYFlWISCfs27cPrq6uyM/PBwDUrFkTGzZsQL9+/dCkSRNMmjQJX375peCURERERERERO/GniokO2xUSqJ4e3trjl0qiVmzZsHCwkKLiYiIpDN//nx8++23mDdvHjZu3IgpU6ZgwoQJOHDgAJo1ayY6HhERkU6LjIxESEgI8vLy0LlzZy5kIEnwCGwSzdnZGcHBwZrdeIsWLcLo0aNRvnx5AMCjR4/Qtm1bJCQkCExJpRF3qpDseHt7IygoCPv37y+yUWnPnj0xdOhQzJ07V1BCIiLt4ISSRDIzM8O5c+dQq1YtvHz5EgYGBjh06BC6dOkiOhrJgLm5eYmOX3r8+LEEaYiIpLVr1y70798fRkZG0NfXR2ZmJhYvXgwvLy/R0UjH8QhsEk2lUiE1NVVzYoipqSliYmI037F79+7BysoKL1++FBmTSiEWVUh22KiUPmZxcXFo2rQp8vLyREchHcQJJYn05hGIPOKQpLRp06YS3efu7q7lJERE0mvSpAmaNWuGn3/+GSqVCgsXLsTSpUtZSCat4xHYJNr7nkH4DEz/Fo//ItkxNDREWFiYplFpeHg4gFeNSufPn89GpSSUWq3mH3PSmjfXUXBdBUktNDRUs1OqoKAAx44dw8WLFwvd06tXLxHRSMfVqFEDrVu3hp4eH3+ISH6uXLmC7du3a3YLTJ06FXPmzMH9+/dL/LKb6N/gEdhEpKu4U4WI6CMSGxuLxo0bs7BCWsFVOiSSUql87z0KhYLfP9KKN3fqERHJSVG7BbgjgIjkQKVSIS0tDRUrVgTw6rcvLi4ONWrUAMBnYPr3uFSLiIhIJhQKxVs9BUrSY4DoQygoKBAdgWSM68iISO42btxYaMdAfn4+goKCYGlpqbk2YcIEEdFI5ngENmmTWq3GsGHDNCfSPH/+HKNHj0bZsmUBALm5uSLjUSnGnSokO2xUSiJlZma+czwuLg7t27fnKgnSCqVSiW7dumkmlCEhIejUqVOhCeWhQ4f4/SOi/9fe3QdVWef/H3+d66jcyYHIm3Q00PUG7+/GG3QzTVuSVbZRsyBv0lIbS21dzZry5jumkeumlbU5AmI1sotaO9pqoqa126rTOgIKaKZmrYGaRNyoIHJ+fzSdX6DmqTjnkut6Pmaa6brOR3nVMPA553193m/LMQxDZ8+e9TylCAB2EhUVddP3wA6HQydPnvRTIuD/o1sDfGny5MlerVu3bp2Pk8BqKKrAdhhUCjMZhvGTb2jcbjftb+AzbChhphkzZmj58uWep2TT09MVHx/vKeoVFxcrMTFR27ZtMzMmLKp2UflG3n33XT8lAgAAEkUVAPUTRRXYzscff8ygUpjmo48+8mrd3Xff7eMkAOBftWdauFwuZWVlMdMHfmEYhsaNG6egoKCfXEdRGQAA/6KoAqA+4lNl2M7QoUMZVArTeFMsofUcACuq/RwPz/XA31599VX2fwBsq6qqSitXrlR6ero+++wzSVKHDh2UmJio2bNnq2HDhiYnhFXdrAV2aWmpn5LAjkaPHu3VOk4r4+eiqALb4UMc3KoyMzOVnJysrVu36tKlS2bHgQWxoQRgV97M0wMAq7p06ZLuvfde7du3T8OHD9fgwYMlSfn5+Zo/f762bNmizMxMBQYGmpwUVhQeHu5VC2zAF8LCwmpcb9iwQaNGjVJoaKhJiWAVFFVgS/zCxq3i9OnTSk1N1fr16/Xtt99qxIgReuutt8yOBYtiQwnArm72UE1+fr5SUlK0YsUKPyUCAP9JSkrSV199pUOHDql79+41XsvOzlZ8fLySkpK0ePFicwLC0vbs2WN2BNhY7daumzZt0vLlyz0tiIFfipkqsB0GlcJslZWVevfdd5WcnKxPPvlEw4cP1/bt23Xo0CF169bN7HiwkdDQUGVnZ7OhhF8YhqFp06YpODhYkvT6669r/PjxnmLfxYsXtXbtWvppwyc++ugjDRo0qMZMvfLycv3tb39TSkqK9u/fr86dO+vIkSMmpgQA3+jYsaOWLVumMWPGXPf1jRs36rnnnvO0BQP8raioSBEREWbHgA3wHhh1hZMqsKXQ0NCbDioFfGHmzJlKT09X+/btNX78eP3973/X7bffroYNG8rpdJodDwB8ZvDgwTp27JjneuDAgTp58uQ1awBf+PFMs08++UQpKSnKyMjQpUuX9Mc//lGpqamKjo42MSEA+M7p06fVr1+/G74+YMAAffnll35MBHyPFtgA6iuKKrAlBpXCLH/96181f/58PfPMM7RcAmAre/fuNTsCbOzcuXNKS0tTamqqvvvuOyUkJGjv3r2KiYnRlClTKKgAsDSXy6Vz586pdevW1329sLCQ9ybwG1pgA7ACiiqwHeapwExvv/22UlNT1aJFC/3+97/XhAkTNGLECLNjAYBflJSU6MCBA6qsrFS/fv3UtGlTsyPBJiIjIzV27Fi98soruvfee2UYhtmRAMBvhg4dqmXLlmnz5s3XfT0pKUlDhw71cyrYyfVaYP/vf/+jBTZ8bsuWLTWuq6urtXv37mtavsbHx/szFiyAogpsh0GlMFNCQoISEhJ06tQppaWl6YknntDFixdVXV2tvLw8de7c2eyIsDA2lDBTVlaW4uLiVFhYKOn7VpwZGRmKjY01ORnsIDIyUv/+97915513KjIykpMpAGxl0aJF6t+/vwYMGKA5c+YoOjpabrdb+fn5WrlypfLy8rR//36zY8KiaIENM91///3X3Js+fXqNa4fDwVxH/GwMqoftMKgUtxK3263MzEylpKRoy5YtatKkiUaPHq1XX33V7GiwIG+ezGZDCV+JjY1VWVmZVqxYocDAQC1ZskSHDx/W8ePHzY4Gm/hhlsrGjRvVoUMHjR8/Xk8//bRycnLUqVMns+MBgE/t379fjz76qPLz8z3dG9xut6Kjo5WSkqKYmBiTE8KqGjRocN0W2A0bNlR2djYPFgKolyiqwNauN6j0scce4+lFmKKoqEhvvfWW0tLSlJWVZXYcAKhTTZo0UWZmpnr37i1JKi4uVkREhIqLi+VyuUxOBzspKytTenq61q1bp/379+vuu+9WYmKi7r//flrSAbC8rKwsffbZZ5KkDh06qGfPnuYGguWlp6crNTVV+/btq9ECOzAwkKIK/KaiokJVVVUKCQkxOwosgmbCsJ1z585p+fLlio6O1tixYxUeHq69e/fKMAwGlcJUERERuuuuu9SqVSuzo8DiKioqVF5ebnYM2ExRUVGNn2/h4eEKCQnRhQsXTEwFO2rcuLGmTp2q//znP8rNzVWfPn30/PPPq2XLlmZHAwCfKSkp0c6dO3XmzBkNHTpU48aNo6ACv0hISNDOnTt1+PBhRUdH64knntAdd9zhaYEN+NL58+c1YsQINW7cWC6XSwMGDNDnn39udixYACdVYDtBQUEaO3asxo8fX2NQKUdP4S87duzQzp071ahRIz322GNq27atjh49qmeeeUZbt25VbGystm3bZnZMWND58+c1ceJE7dq1S9XV1erbt6/eeecdtWvXzuxosAHDMPThhx8qIiLCc2/gwIHKyMioUWzp3r27GfFgc1VVVdqyZYtGjx5tdhQAqHPMNcOthBbY8KcpU6Zo+/btmjVrlgIDA7VmzRq1aNFCe/bsMTsa6jmKKrCd6OhoVVRUKDExURMmTPCcTKGoAn9ISUnR1KlTFRERoW+//Va33367Xn75Zc2cOVMPPvigZs+eTV93+AwbSpjJMAw5HA5db+v5w31m+sAsR48eVXx8vKclDgBYCXPNcKuiBTZ8rXXr1kpOTvYUkY8fP65OnTqpvLxcAQEBJqdDfdbg5ksAazl69Khnlkrfvn09g0oleQb2Ab7yyiuv6KWXXtK8efO0efNmPfDAA3rjjTd0+PBh2n7B53bu3Km0tDTPhnLkyJHq1KmTKioq2FDC506dOmV2BOCGKioqdOLECbNjAIBPHDx4sMZcs9TUVEVERKikpIS5ZjDVDy2wd+3aZXYUWNTXX3+tHj16eK7bt2+vgIAAFRQUKCoqyrxgqPc4qQJbY1Ap/C0kJES5ubmKioqS2+1WQECA9uzZo0GDBpkdDTbgdDp15swZ3XHHHZ57P/6eBAC7ys7OVu/evTkpBcCSDMNQYWGhmjVr5rkXGhqqnJwctWnTxsRksAtaYMMsTqdThYWFNT7jc7lcys7O5ucffhVOqsDWfhhUOnXqVOXn5yslJUXPP/+8ZsyYoStXrpgdDxZ06dIlBQcHS/r+ZFRAQIBatGhhcirYidPpvOaa5yvgazk5OeratatnjtnN5ObmqmPHjmrQgK0qAAB1IS8vzzNTRfp+rkV+fr5KS0s995hrBl+o3QI7OTm5RgvsI0eO0AIbPuN2u9WhQ4canWnKysrUq1evGu9NioqKzIiHeoyTKkAtDCqFLxmGoRdeeEGNGzeWJM2fP1/z5s1TkyZNaqybNWuWGfFgcYZhKCwsrMaGsri4WC6Xiw0lfOp6T4j9FJfLpaysLLVt29bHyYDvcVIFgJUx1wxm6t69uyZMmFCjBfaAAQOUkZFBC2z43Pr1671aN2nSJB8ngdVQVAFqYVApfCkqKuqms3scDodOnjzpp0SwEzaUMIthGJo2bZrnpN7NvPHGG8rLy6Oogjpz2223/eTv36qqKpWXl/OBIgBLOn36tFfrIiMjfZwEdkQLbABWRE8FoBYGlcKXvvjiC7MjwMYolsAsgwcP1rFjx7xeHxMTo6CgIB8mgt2sWrXK7AgAYBqKJTATLbABWBFFFQAAAPjU3r17zY4Am6OoDMCumGuGW0FycrKnBXZVVZXS0tJogQ2/uNlp5R/QAhs/F+2/gFroqQ1fiouLU3p6usLCwiRJSUlJevzxxxUeHi5JunDhgu666y7l5eWZmBJWxYYSgF2VlJRc935ISIicTqef0wCA/zDXDGajBTbMRAts+AqPHgCAH+3YsUMVFRWe62XLlmncuHGeokpVVdXPapED/By0vwFgV+Hh4df9QMfpdKpNmzaaO3eupk6dakIyAPAtt9utBQsWeD3XrLKy0seJYDe0wIaZKJbAVyiqwHa8GVQK+Ertw4EcFoQ/saEEYFd79uy57v3i4mIdPHhQ8+bNU4MGDTR58mQ/JwMA32KuGQDcWEFBgZYuXarVq1ebHQX1DEUV2A5PagPA9bGhBGBVd9999w1f+8Mf/qCoqCi99tprFFUAWA5zzWA2WmDDbLm5udqzZ48aNWrk6RTyzTffaOnSpXrzzTdpd4hfhJkqAOBHtXsah4aGKicnR23atJEknT17Vi1btmSmD3zGmw1lbm6u2TEBwK9OnDihXr163XD2CgAA+GWcTqcKCgrUrFkzSdfO7eE9MHxpy5YtGjt2rKcrTdu2bbV27VqNGzdOffr00VNPPaX77rvP5JSojzipAtthUCnM5Ha79cgjjyggIECSdPnyZT3++OMKCQmRpBrzVoC6VntDuXz58hobyvfee48NJQBb+u677zxP0AIAgLpDC2yY6YUXXtATTzyhJUuWKDk5WXPmzNGsWbO0bds29e3b1+x4qMc4qQLbMQyDQaUwjbdtRdatW+fjJLCjfv36adCgQTU2lF26dFFqaiobSgC2deXKFU2cOFFXrlzRpk2bzI4DAIClGIahwsJCz0mV0NBQZWdnc1IFfhEWFqaDBw+qXbt2unr1qgICAvTBBx9o+PDhZkdDPcdJFdgOg0phJoolMNOxY8e0YcMGNW7cWDNnztTcuXO1cuVKCioALG/06NHXvf/dd98pNzdXDodD//rXv/ycCgAA63M4HNc82Hq9B10BXygtLZXL5ZL0/cPUQUFBzFBBnaCoAtthUCkAu2JDCcCubtTaq3Xr1hozZowefvhh2n8BAOADtMCG2Xbs2OHZ51VXV2v37t06cuRIjTXx8fFmREM9RvsvoBYGlcKXbvSkbG3vvvuuj5PAjgzD0Pr16z0byoSEBK1atUrNmzevsY4NJQAAAIC6QAtsmMkwjJuucTgctJ/Dz8ZJFaAWBpXCl2p/b23YsEGjRo1SaGioSYlgN5MmTapxPX369BrXbCgBWNX+/fu1detWVVZWatiwYbrvvvvMjgQAgOVRLIGZqqurzY4Ai+KkCvAjDCqFv9Ue0gcAAOrepk2b9OCDDyooKEgNGzZUSUmJXnrpJc2dO9fsaAAAAADqGYoqsB1vB5W2a9fOz8lgRxRVAADwvT59+qhv3756/fXX5XQ69eKLL+rPf/6zioqKzI4GAICl0QIbZpoxY4aWL1+uxo0bS5LS09MVHx/vmelTXFysxMREbdu2zcyYqIdu3lgOsJiwsLDr/tO1a1ctXLhQR48epaACwJJmzJihsrIyz3V6errKy8s918XFxYqLizMjGgD41LFjxzR37lw5nU5J0p/+9CeVlpbq3LlzJicDAMDaan/28s9//lOGYVxzH/CFNWvW6OLFi57r6dOn6+zZs57riooK7dixw4xoqOc4qQIAJuKkCvzJ6XSqoKBAzZo1kyS5XC5lZWV5vv/Onj2rli1bMlMFgOUYhqHCwkLPzz+J38EAAJiB37/wp9p7wNrff7wHxi/FoHrYEoNKYZYtW7bUuK6urtbu3bt15MiRGvfj4+P9GQs2Ufs5Cp6rAGAnycnJntYPklRVVaW0tDQ1adLEc2/WrFlmRAMAAABQj3BSBbbDoFKYyTBu3nXR4XDwlAR8gqd0ANhVVFSUHA7HT65xOBw6efKknxIBAGBPnFSBP/EeGL7CSRXYzosvvqipU6fWGFS6bNkyiirwi+rqarMjAABgO1988YXZEQAAAGCChQsXKjg4WJJUWVmppUuXeub4/HjeCvBzcFIFttO4cWNlZWV5htFXVlYqJCREZ86cqdFnG/CliooKVVVVKSQkxOwosBHDMDRt2jTPhvL111/X+PHja2wo165dy1M6AAAAAOpE7RbYCQkJWrVqlZo3b17jPi2w4QtDhgy56WllSdqzZ48f0sBKKKrAdhhUCjOdP39eEydO1K5du1RdXa2+ffvqnXfe8RT5AF9iQwnAzqqqqrRy5Uqlp6frs88+kyR16NBBiYmJmj17tho2bGhyQgAArIcW2ACsiKIKbMcwDL3wwgs1BpXOnz9f8+bNY1ApfG7KlCnavn27Zs2apcDAQK1Zs0YtWrTgQ2wAAHzo0qVLuvfee7Vv3z4NHz5cnTp1kiTl5+dr165dGjRokDIzMxUYGGhyUgAAANSlkpISHThwQJWVlerXr5+aNm1qdiRYAEUV2A6DSmGm1q1bKzk5WbGxsZKk48ePq1OnTiovL1dAQIDJ6WAHbCgB2NGiRYuUlpamrVu3qnv37jVey87OVnx8vCZPnqzFixebExAAAIujBTbMkJWVpbi4OBUWFkr6vlNNRkaG5zMZ4JeiqAIAfuR0OnXmzBndcccdnnshISHKzc1VVFSUecFgC2woAdhVx44dtWzZMo0ZM+a6r2/cuFHPPfecpy0YAACoG7TAhpliY2NVVlamFStWKDAwUEuWLNHhw4d1/Phxs6OhnqOoAgB+5HQ6VVhYWON0gMvlUnZ2ttq0aWNiMtgBG0oAdhUYGKjjx4+rdevW1339q6++Uvv27XX58mU/JwMAwNpogQ0zNWnSRJmZmerdu7ckqbi4WBERESouLpbL5TI5HeoziiqwJQaVwiyGYSgsLKxGC7offpn/eIBfUVGRGfFgcWwoAdhVs2bNtH37dvXp0+e6r3/66aeKi4vT+fPn/ZwMAABrowU2zGQYhgoLC9WsWTPPvdDQUOXk5PBgK36VBmYHAPyt9qDSwYMHS/p+UOn8+fO1ZcsWBpXCZ9atW2d2BNhYUVGRWrVq5bkODw9XSEiILly4QFEFgKUNHTpUy5Yt0+bNm6/7elJSkoYOHernVAAAWN/XX3+tHj16eK7bt2+vgIAAFRQU0AIbfpGXl+dpgS1Jbrdb+fn5Ki0t9dyrPXMPuBmKKrCdpKQkffXVVzp06NANB5UmJSUxqBQ+MWnSJLMjwObYUAKwo0WLFql///4aMGCA5syZo+joaM/Pv5UrVyovL0/79+83OyYAAJbkdDqvuaZxDvxl2LBh13y/jRw5Ug6HQ263Ww6HQ1evXjUpHeor2n/BdhhUCsCuDMPwbBxrY0MJwOr279+vRx99VPn5+Z42nG63W9HR0UpJSVFMTIzJCQEAsB5aYMNMp0+f9mpdZGSkj5PAaiiqwHYYVAoz3XbbbTU2kzfChhK+wIYSAKSsrKwaM/V69uxpbiAAACxs/fr1Xq2jqwOA+oT2X7Adl8ulc+fO3bCoUlhYqNDQUD+ngl2sWrXK7AiwMYolAOyspKREBw4cUGVlpYYOHaqmTZuaHQkAAMujWAKz5OTkqGvXrjVORP2U3NxcdezYUQ0a8HE5bo6TKrCdBx98UFVVVTccVDpmzBg5nU5lZGT4ORkA+A4bSgB2lpWVpbi4OM9MqdDQUGVkZCg2NtbkZAAAAPAFp9OpwsJCrx+kcblcysrKUtu2bX2cDFZAUQW2k5eXp/79+6tLly4/Oai0S5cuZkeFDRUUFGjp0qVavXq12VFgMWwoAdhZbGysysrKtGLFCgUGBmrJkiU6fPiwjh8/bnY0AAAsjRbYMIthGJo2bZqCg4O9Wv/GG28oLy+P98DwCo+fwnY6d+6snTt36tFHH9VDDz10zaDSzMxMCirwqdzcXO3Zs0eNGjXSuHHjFB4erm+++UZLly7Vm2++yS9w+ITb7daCBQu83lBWVlb6OBEA+M/BgweVmZmp3r17S5JSU1MVERGhkpISuVwuk9MBAGBdtMCGWQYPHqxjx455vT4mJkZBQUE+TAQr4aQKbI1BpfC3LVu2aOzYsaqqqpIktW3bVmvXrtW4cePUp08fPfXUU7rvvvtMTgkrGjJkiFdPiP3Yhg0b1KJFCx8lAgD/MQxDhYWFatasmedeaGiocnJy1KZNGxOTAQAAAKhvKKrAln48qLRfv34MKoXf9OvXT4MGDdKSJUuUnJysOXPmqEuXLkpNTVXfvn3NjgcAgCUZhqEPP/xQERERnnsDBw5URkaGWrVq5bnXvXt3M+IBAGBbtMAGUB9RVIHtMKgUZgoLC9PBgwfVrl07Xb16VQEBAfrggw80fPhws6MBAGBZhmHI4XDoem99frjvcDh09epVE9IBAGBt3rTAzs3NNTsmAHiNogpsh0GlMFPt9iOhoaHKzs5mjgoAAD50+vRpr9ZFRkb6OAkAAPZCC2wAVkRRBbbTpEmTGoNKi4uLFRERoeLiYgaVwucMw9D69esVFhYmSUpISNCqVavUvHnzGuvi4+PNiAcAAAAAQJ2hBTYAK6KoAtthUCnMZBjGTdfQfgQAgLqTk5Ojrl27evU7WPq+RUnHjh3VoEEDHycDAMD6aIENwIp4pwBbysvL88xUkSS32638/HyVlpZ67jGoFL5QXV1tdgQAAGylV69eKiwsVNOmTb1aHxMTo6ysLFpzAgBQB0pLSz1dQZxOp4KCgvgdC6Deo6gCWxo2bNg1g0pHjhzJoFIAAACLcbvdWrBggYKDg71aX1lZ6eNEAADYy44dOzwtsKurq7V7924dOXKkxhpaYAOoT2j/BdthUCnMNGPGDC1fvlyNGzeWJKWnpys+Pl4hISGSvp/xk5iYqG3btpkZEwAAyxgyZIgcDsfP+jMbNmxQixYtfJQIAAD7oAU2ACuiqAIAfuR0OlVQUOCZ6eNyuWq0GDl79qxatmzJhhIAAAAAAAC4BXk3rRGwiJycnJ810yI3N1dVVVU+TAS7qV3Hpq4NAAAAAAAA1B8UVWArvXr10oULF7xeHxMToy+//NKHiQAAAAAAAKxpxowZKisr81ynp6ervLzcc11cXKy4uDgzogHAL8agetgKg0oBAAAAAAD8Y82aNVq8eLFnruj06dPVv39/TwvsiooK7dixw8yIAPCzUVSBrQwePFjHjh3zen1MTIyCgoJ8mAh2tHDhQk9hr7KyUkuXLlVYWJgk6eLFi2ZGAwAAAACgztACG4AVUVSBrezdu9fsCLC52oW9gQMH6uTJk9esAQAAAAAAAHDroagCAH5EYQ8AAAAAAACovyiqAICflZSU6MCBA6qsrFS/fv3UtGlTsyMBAAAAAOATtMAGYDUON80MAcBvsrKyFBcXp8LCQklSaGioMjIyFBsba3IyAAAAAADq1pAhQ+RwOG66bs+ePX5IAwB1g6IKAPhRbGysysrKtGLFCgUGBmrJkiU6fPiwjh8/bnY0AAAAAAAAADdBUQUA/KhJkybKzMxU7969JUnFxcWKiIhQcXGxXC6XyekAAAAAAKhbtMAGYDXMVAEAPyoqKlKrVq081+Hh4QoJCdGFCxcoqgAAAAAALIUW2ACsiKIKAPhZXl6eZ0MpSW63W/n5+SotLfXc6969uxnRAAAAAACoM/Pnz1ebNm20efNmTwvsJ598khbYAOo12n8BgB8ZhiGHw6Hr/ej94b7D4dDVq1dNSAcAAAAAQN2hBTYAK+KkCgD40alTp8yOAAAAAACAX9ACG4AVUVQBAD+KjIw0OwIAAAAAAH5DC2wAVkP7LwDwk5ycHHXt2lWGYXi1Pjc3Vx07dlSDBtS/AQAAAAD1Dy2wAVgRRRUA8BOn06nCwkI1bdrUq/Uul0tZWVlq27atj5MBAAAAAFD3Tp8+7dU6ujoAqE94/BkA/MTtdmvBggUKDg72an1lZaWPEwEAAAAA4DsUSwBYEUUVAPCTwYMH69ixY16vj4mJUVBQkA8TAQAAAADgG7TABmBVtP8CAAAAAAAAUKdogQ3Aqij9AgAAAAAAAKhTtMAGYFUUVQAAAAAAAADUKVpgA7Aq2n8BAAAAAAAAAAB4wbtJUQAAAAAAAAAAADZHUQUAAAAAAAAAAMALFFUAAAAAAAAAAAC8QFEFAAAAAAAAAADACxRVAAAAAAAAAAAAvEBRBQAAAIBlPPLII7r//vvNjgEAAADAoiiqAAAAAAAAAAAAeIGiCgAAAAAAAAAAgBcoqgAAAAC4pVRXV2v58uVq166dAgICdOedd2rp0qWSpMOHD+uee+5RUFCQbr/9dk2bNk1lZWU3/LuioqK0atWqGvd69uypxYsXe64dDofWrFmjkSNHKjg4WJ06ddK+ffv0+eefa8iQIQoJCdHAgQN14sQJz59ZvHixevbsqbfffltRUVEKCwvTQw89pNLSUs+aTZs2qVu3bp6sw4cPV3l5ed38TwIAAABgCooqAAAAAG4pzz77rJKSkrRgwQLl5eVpw4YNat68ucrLyxUbG6vbbrtNn376qTZu3Khdu3bpySef/NVfc8mSJZo4caKysrIUHR2txMRETZ8+Xc8++6z++9//yu12X/N1Tpw4oX/84x96//339f777+ujjz5SUlKSJKmgoEAJCQmaMmWK8vPztXfvXo0ePVput/tXZwUAAABgngZmBwAAAACAH5SWluqVV17R6tWrNWnSJEnSb37zG/32t7/V2rVrdfnyZb311lsKCQmRJK1evVqjRo3SSy+9pObNm//irzt58mSNGzdOkjR//nzFxMRowYIFio2NlSTNnj1bkydPrvFnqqurlZaWptDQUEnShAkTtHv3bi1dulQFBQWqqqrS6NGjFRkZKUnq1q3bL84HAAAA4NbASRUAAAAAt4z8/HxVVFRo2LBh132tR48enoKKJA0aNEjV1dU6duzYr/q63bt39/z7D8WZHxdBmjdvrsuXL6ukpMRzLyoqylNQkaQWLVro3LlzkqQePXpo2LBh6tatmx544AGtXbtW33777a/KCAAAAMB8FFUAAAAA3DKCgoLq9O8zDOOalltXrly5Zl3Dhg09/+5wOG54r7q6+rp/5oc1P7zudDq1c+dObd++XZ07d9Zrr72mjh076tSpU7/yvwgAAACAmSiqAAAAALhltG/fXkFBQdq9e/c1r3Xq1EnZ2dk1hr1/8sknMgxDHTt2vO7f17RpUxUUFHiuS0pK/FbYcDgcGjRokP7v//5Phw4dUqNGjfTee+/55WsDAAAA8A1mqgAAAAC4ZQQGBmr+/Pl6+umn1ahRIw0aNEjnz59Xbm6uHn74YS1atEiTJk3S4sWLdf78ec2cOVMTJky44TyVe+65R2lpaRo1apTCw8O1cOFCOZ1On/93HDhwQLt379bvfvc7NWvWTAcOHND58+fVqVMnn39tAAAAAL5DUQUAAADALWXBggVq0KCBFi5cqK+//lotWrTQ448/ruDgYO3YsUOzZ89W3759FRwcrDFjxujll1++4d/17LPP6tSpUxo5cqTCwsK0ZMkSv5xUcblc+vjjj7Vq1SqVlJQoMjJSf/nLXzRixAiff20AAAAAvuNw124wDAAAAAAAAAAAgGswUwUAAAAAAAAAAMALFFUAAAAAAAAAAAC8QFEFAAAAAAAAAADACxRVAAAAAAAAAAAAvEBRBQAAAAAAAAAAwAsUVQAAAAAAAAAAALxAUQUAAAAAAAAAAMALFFUAAAAAAAAAAAC8QFEFAAAAAAAAAADACxRVAAAAAAAAAAAAvEBRBQAAAAAAAAAAwAv/D4y1l0WWXmsUAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "names, importances = pipe1.columns.importances()\n", "\n", "plt.subplots(figsize=(20, 10))\n", "\n", "plt.bar(names, importances)\n", "\n", "plt.title(\"column importances\")\n", "plt.grid(True)\n", "plt.xlabel(\"columns\")\n", "plt.ylabel(\"importance\")\n", "plt.xticks(rotation='vertical')\n", "\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABlUAAAS9CAYAAADeGN/lAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdfZjUdbn48Xt2WRZXRUQQdOW4KvmAhBQEUZkeRTjlc6Wo+QPB8KSR2mYqZTyoCZoRZhpZklaSpnbqeDDUUDCEIDUznyjzMZEHRVkEXZbd+f3Rxei6K35YF2a/8HpdF5fOd76ze8/ci8K+d2Zy+Xw+HwAAAAAAAGxUSbEHAAAAAAAAyAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAC2Uc8991zkcrm44YYbij1Ki+RyuZgwYUKxxwAAALYhogoAAEARzJgxI6ZOnVrsMQAAgE3QrtgDAAAAtMSbb74Z7dpl9680M2bMiMceeyzOPffcYo8CAAAk8kwVAAAgkzp06JDJqLJmzZpijwAAALSQqAIAABnz0ksvxemnnx677757lJeXx1577RVnnnlmrFu3rnDOM888EyeccEJ07tw5Kioq4uMf/3jMnDnzfT/2oYceGoceemiT46eddlpUVVUVLm94P5Yrr7wyrrnmmth7772joqIihgwZEi+++GLk8/m45JJLYo899ojtttsujj322Fi5cmWjj1lVVRVHHXVUzJs3LwYMGBAdOnSIvffeO37+858nPQ7vfk+VCRMmRC6Xi7///e9x6qmnxk477RRdu3aNb3/725HP5+PFF1+MY489Njp27Bjdu3eP733ve40+3pw5cyKXy8Utt9wS3/zmN6N79+6x/fbbxzHHHBMvvvhik89/6623Rr9+/WK77baLLl26xKmnnhovvfRSk8dthx12iH/+85/x2c9+Nnbcccf44he/GIceemjMnDkznn/++cjlcpHL5QqP77p162LcuHHRr1+/2GmnnWL77bePgw8+OO67775GH/udO7juuutin332ifLy8vjYxz4Wf/7zn5vM+9RTT8WJJ54YXbt2je222y7222+/+Na3vtXonJdeeilGjRoV3bp1i/Ly8jjwwANj+vTpTT7W1VdfHQceeGBUVFTEzjvvHP37948ZM2ZsdF8AALA1yN6PdQEAwDZsyZIlMWDAgHj99dfjjDPOiP333z9eeumluO2222Lt2rXRvn37WLZsWXziE5+ItWvXxtlnnx277LJL3HjjjXHMMcfEbbfdFscff3yrzXPTTTfFunXr4qtf/WqsXLkyrrjiijjxxBPjsMMOizlz5sQFF1wQTz/9dFx99dVx3nnnNfkG/dNPPx1f+MIX4vTTT48RI0bE9OnT47TTTot+/frFgQce2KKZhg0bFgcccEBMnjw5Zs6cGZdeeml07tw5fvzjH8dhhx0Wl19+edx0001x3nnnxcc+9rH49Kc/3ej23/nOdyKXy8UFF1wQy5cvj6lTp8bgwYPjkUceie222y4iIm644YYYOXJkfOxjH4tJkybFsmXL4qqrrooHHngg/vKXv0SnTp0KH2/9+vUxdOjQ+NSnPhVXXnllVFRURPfu3WPVqlXxr3/9K77//e9HRMQOO+wQERE1NTXx05/+NE4++eQYPXp0rF69Oq6//voYOnRoLFq0KPr27dto3hkzZsTq1avjv//7vyOXy8UVV1wRn/vc5+KZZ56JsrKyiIh49NFH4+CDD46ysrI444wzoqqqKv75z3/GHXfcEd/5znciImLZsmXx8Y9/PHK5XIwZMya6du0av//97+P000+PmpqawsuU/eQnP4mzzz47vvCFL8Q555wTb731Vjz66KOxcOHCOOWUU1q0MwAAyIw8AACQGcOHD8+XlJTk//znPze5rqGhIZ/P5/PnnntuPiLyf/zjHwvXrV69Or/XXnvlq6qq8vX19fl8Pp9/9tln8xGR/9nPflY475BDDskfcsghTT72iBEj8nvuuWfh8obbdu3aNf/6668Xjo8dOzYfEfmDDjooX1dXVzh+8skn59u3b59/6623Csf23HPPfETk77///sKx5cuX58vLy/Nf//rX3/exiIj8+PHjC5fHjx+fj4j8GWecUTi2fv36/B577JHP5XL5yZMnF46/9tpr+e222y4/YsSIwrH77rsvHxH5ysrKfE1NTeH4r3/963xE5K+66qp8Pp/Pr1u3Lr/rrrvme/funX/zzTcL5/3f//1fPiLy48aNa/S4RUT+wgsvbDL/kUce2egxfefMtbW1jY699tpr+W7duuVHjRpVOLZhB7vsskt+5cqVheO/+93v8hGRv+OOOwrHPv3pT+d33HHH/PPPP9/o4274msnn8/nTTz89v9tuu+VfeeWVRuecdNJJ+Z122im/du3afD6fzx977LH5Aw88sMncAACwLfDyXwAAkBENDQ3x29/+No4++ujo379/k+tzuVxERNx5550xYMCA+NSnPlW4bocddogzzjgjnnvuuXjiiSdabaYTTjghdtppp8LlgQMHRkTEqaee2uj9TgYOHBjr1q1r8vJYvXr1ioMPPrhwuWvXrrHffvvFM8880+KZvvSlLxX+vbS0NPr37x/5fD5OP/30wvFOnTq95+cZPnx47LjjjoXLX/jCF2K33XaLO++8MyIiHnzwwVi+fHmcddZZ0aFDh8J5Rx55ZOy///7NvszamWeemTx/aWlptG/fPiL+vfOVK1fG+vXro3///vHwww83OX/YsGGx8847Fy5veDw33LcVK1bE/fffH6NGjYr/+I//aHTbDV8z+Xw+br/99jj66KMjn8/HK6+8Uvg1dOjQWLVqVeFzd+rUKf71r381+xJjAACwtRNVAAAgI1asWBE1NTXRu3fvjZ73/PPPx3777dfk+AEHHFC4vrW8+5v0GwJLjx49mj3+2muvbfT2ERE777xzk/M+6EwdOnSILl26NDne3Of50Ic+1OhyLpeLnj17xnPPPRcRbz9+zT3G+++/f5PHt127drHHHnts0n248cYbo0+fPtGhQ4fYZZddomvXrjFz5sxYtWpVk3PffX83BJYN921DXNnY182KFSvi9ddfj+uuuy66du3a6NfIkSMjImL58uUREXHBBRfEDjvsEAMGDIgPfehD8ZWvfCUeeOCBTbp/AACQVd5TBQAAKMjlcpHP55scr6+vb/b80tLSTTr+7o+det6maO5jbo7Pk6q8vDxKStJ/nu2Xv/xlnHbaaXHcccfFN77xjdh1112jtLQ0Jk2aFP/85z+bnN8a962hoSEi/v0MoxEjRjR7Tp8+fSLi33Fu8eLF8X//938xa9asuP322+Paa6+NcePGxcSJE5M/JwAAZJGoAgAAGdG1a9fo2LFjPPbYYxs9b88994zFixc3Of7UU08Vrn8vO++8c7MvidWaz25p6/7xj380upzP5+Ppp58uRIUNj9/ixYvjsMMOa3Tu4sWLN/r4vtOGl956t9tuuy323nvv+M1vftPonPHjxyffh3fae++9IyI2+nXTtWvX2HHHHaO+vj4GDx78vh9z++23j2HDhsWwYcNi3bp18bnPfS6+853vxNixYxu9JBoAAGxtvPwXAABkRElJSRx33HFxxx13xIMPPtjk+g3PTPjsZz8bixYtigULFhSuW7NmTVx33XVRVVUVvXr1es/Psc8++8RTTz0VK1asKBz761//uk29vNPPf/7zWL16deHybbfdFi+//HJ85jOfiYiI/v37x6677hrTpk2L2trawnm///3v48knn4wjjzwy6fNsv/32zb6c14ZnnrzzmSYLFy5stM9N0bVr1/j0pz8d06dPjxdeeKHRdRs+R2lpaXz+85+P22+/vdn48s6vh1dffbXRde3bt49evXpFPp+Purq6Fs0IAABZ4ZkqAACQIZdddlncfffdccghh8QZZ5wRBxxwQLz88stx6623xrx586JTp05x4YUXxq9+9av4zGc+E2effXZ07tw5brzxxnj22Wfj9ttv3+hLUY0aNSqmTJkSQ4cOjdNPPz2WL18e06ZNiwMPPDBqamq24D0tns6dO8enPvWpGDlyZCxbtiymTp0aPXv2jNGjR0dERFlZWVx++eUxcuTIOOSQQ+Lkk0+OZcuWxVVXXRVVVVXxta99Lenz9OvXL2655Zaorq6Oj33sY7HDDjvE0UcfHUcddVT85je/ieOPPz6OPPLIePbZZ2PatGnRq1eveOONN1p0n37wgx/Epz71qfjoRz8aZ5xxRuy1117x3HPPxcyZM+ORRx6JiIjJkyfHfffdFwMHDozRo0dHr169YuXKlfHwww/HH/7wh1i5cmVERAwZMiS6d+8en/zkJ6Nbt27x5JNPxg9/+MM48sgjY8cdd2zRfAAAkBWiCgAAZEhlZWUsXLgwvv3tb8dNN90UNTU1UVlZGZ/5zGeioqIiIiK6desW8+fPjwsuuCCuvvrqeOutt6JPnz5xxx13vO+zKA444ID4+c9/HuPGjYvq6uro1atX/OIXv4gZM2bEnDlztsA9LL5vfvOb8eijj8akSZNi9erVcfjhh8e1115beHwjIk477bSoqKiIyZMnxwUXXBDbb799HH/88XH55ZdHp06dkj7PWWedFY888kj87Gc/i+9///ux5557xtFHHx2nnXZaLF26NH784x/HXXfdFb169Ypf/vKXceutt7Z4BwcddFD86U9/im9/+9vxox/9KN56663Yc88948QTTyyc061bt1i0aFFcfPHF8Zvf/Cauvfba2GWXXeLAAw+Myy+/vHDef//3f8dNN90UU6ZMiTfeeCP22GOPOPvss+Oiiy5q0WwAAJAlufyWeGdGAACANm7OnDnxn//5n3HrrbfGF77whWKPAwAAtEHeUwUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEjgPVUAAAAAAAASeKYKAAAAAABAAlEFAAAAAAAgQbtiD7ClNTQ0xJIlS2LHHXeMXC5X7HEAAAAAAIAiyufzsXr16th9992jpGTjz0XZ5qLKkiVLokePHsUeAwAAAAAAaENefPHF2GOPPTZ6zjYXVXbccceI+PeD07FjxyJPwwdRV1cXd999dwwZMiTKysqKPQ6J7C2b7C2b7C2b7C2b7C2b7C2b7C2b7C277C6b7C2b7C2b7G3rUFNTEz169Cj0g43Z5qLKhpf86tixo6iScXV1dVFRUREdO3b0H6wMsbdssrdssrdssrdssrdssrdssrdssrfssrtssrdssrdssretS8pbhnijegAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAgjYRVa655pqoqqqKDh06xMCBA2PRokXvee6hhx4auVyuya8jjzxyC04MAAAAAABsa4oeVW655Zaorq6O8ePHx8MPPxwHHXRQDB06NJYvX97s+b/5zW/i5ZdfLvx67LHHorS0NE444YQtPDkAAAAAALAtKXpUmTJlSowePTpGjhwZvXr1imnTpkVFRUVMnz692fM7d+4c3bt3L/y65557oqKiQlQBAAAAAAA2q3bF/OTr1q2Lhx56KMaOHVs4VlJSEoMHD44FCxYkfYzrr78+TjrppNh+++2bvb62tjZqa2sLl2tqaiIioq6uLurq6j7A9BTbhv3ZY7bYWzbZWzbZWzbZWzbZWzbZWzbZWzbZW3bZXTbZWzbZWzbZ29ZhU/aXy+fz+c04y0YtWbIkKisrY/78+TFo0KDC8fPPPz/mzp0bCxcu3OjtFy1aFAMHDoyFCxfGgAEDmj1nwoQJMXHixCbHZ8yYERUVFR/sDgAAAAAAAJm2du3aOOWUU2LVqlXRsWPHjZ5b1GeqfFDXX399fPjDH37PoBIRMXbs2Kiuri5crqmpiR49esSQIUPe98Ghbaurq4t77rknjjjiiCgrKyv2OCSyt2yyt2yyt2yyt2yyt2yyt2yyt2yyt+yyu2yyt2yyt2yyt63Dhle4SlHUqNKlS5coLS2NZcuWNTq+bNmy6N69+0Zvu2bNmrj55pvj4osv3uh55eXlUV5e3uR4WVmZL/KthF1mk71lk71lk71lk71lk71lk71lk71lk71ll91lk71lk71lk71l26bsrqhvVN++ffvo169fzJ49u3CsoaEhZs+e3ejlwJpz6623Rm1tbZx66qmbe0wAAAAAAIDiv/xXdXV1jBgxIvr37x8DBgyIqVOnxpo1a2LkyJERETF8+PCorKyMSZMmNbrd9ddfH8cdd1zssssuxRgbAAAAAADYxhQ9qgwbNixWrFgR48aNi6VLl0bfvn1j1qxZ0a1bt4iIeOGFF6KkpPETahYvXhzz5s2Lu+++uxgjAwAAAAAA26CiR5WIiDFjxsSYMWOavW7OnDlNju23336Rz+c381QAAAAAAABvK+p7qgAAAAAAAGSFqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAErQr9gC0LVUXziz2CMnKS/NxxYCI3hPuitr6XLHHSfLc5COLPQIAAAAAAC3kmSoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgARFjyrXXHNNVFVVRYcOHWLgwIGxaNGijZ7/+uuvx1e+8pXYbbfdory8PPbdd9+48847t9C0AAAAAADAtqpdMT/5LbfcEtXV1TFt2rQYOHBgTJ06NYYOHRqLFy+OXXfdtcn569atiyOOOCJ23XXXuO2226KysjKef/756NSp05YfHgAAAAAA2KYUNapMmTIlRo8eHSNHjoyIiGnTpsXMmTNj+vTpceGFFzY5f/r06bFy5cqYP39+lJWVRUREVVXVlhwZAAAAAADYRhXt5b/WrVsXDz30UAwePPjtYUpKYvDgwbFgwYJmb/O///u/MWjQoPjKV74S3bp1i969e8dll10W9fX1W2psAAAAAABgG1W0Z6q88sorUV9fH926dWt0vFu3bvHUU081e5tnnnkm7r333vjiF78Yd955Zzz99NNx1llnRV1dXYwfP77Z29TW1kZtbW3hck1NTURE1NXVRV1dXSvdm61HeWm+2CMkKy/JN/pnFviae/sx8Fhki71lk71lk71lk71lk71lk71lk71ll91lk71lk71lk71tHTZlf7l8Pl+U70gvWbIkKisrY/78+TFo0KDC8fPPPz/mzp0bCxcubHKbfffdN95666149tlno7S0NCL+/RJi3/3ud+Pll19u9vNMmDAhJk6c2OT4jBkzoqKiopXuDQAAAAAAkEVr166NU045JVatWhUdO3bc6LlFe6ZKly5dorS0NJYtW9bo+LJly6J79+7N3ma33XaLsrKyQlCJiDjggANi6dKlsW7dumjfvn2T24wdOzaqq6sLl2tqaqJHjx4xZMiQ931wtkW9J9xV7BGSlZfk45L+DfHtB0uitiFX7HGSPDZhaLFHKLq6urq455574ogjjii8NxJtn71lk71lk71lk71lk71lk71lk71ll91lk71lk71lk71tHTa8wlWKokWV9u3bR79+/WL27Nlx3HHHRUREQ0NDzJ49O8aMGdPsbT75yU/GjBkzoqGhIUpK/v12MH//+99jt912azaoRESUl5dHeXl5k+NlZWW+yJtRW5+NOPFOtQ25zMzta+5tfg9mk71lk71lk71lk71lk71lk71lk71ll91lk71lk71lk71l26bsrmhvVB8RUV1dHT/5yU/ixhtvjCeffDLOPPPMWLNmTYwcOTIiIoYPHx5jx44tnH/mmWfGypUr45xzzom///3vMXPmzLjsssviK1/5SrHuAgAAAAAAsI0o2jNVIiKGDRsWK1asiHHjxsXSpUujb9++MWvWrMKb17/wwguFZ6RERPTo0SPuuuuu+NrXvhZ9+vSJysrKOOecc+KCCy4o1l0AAAAAAAC2EUWNKhERY8aMec+X+5ozZ06TY4MGDYo//elPm3kqAAAAAACAxor68l8AAAAAAABZIaoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABI0CaiyjXXXBNVVVXRoUOHGDhwYCxatOg9z73hhhsil8s1+tWhQ4ctOC0AAAAAALAtKnpUueWWW6K6ujrGjx8fDz/8cBx00EExdOjQWL58+XvepmPHjvHyyy8Xfj3//PNbcGIAAAAAAGBbVPSoMmXKlBg9enSMHDkyevXqFdOmTYuKioqYPn36e94ml8tF9+7dC7+6deu2BScGAAAAAAC2Re2K+cnXrVsXDz30UIwdO7ZwrKSkJAYPHhwLFix4z9u98cYbseeee0ZDQ0N89KMfjcsuuywOPPDAZs+tra2N2trawuWampqIiKirq4u6urpWuidbj/LSfLFHSFZekm/0zyzwNff2Y+CxyBZ7yyZ7yyZ7yyZ7yyZ7yyZ7yyZ7yy67yyZ7yyZ7yyZ72zpsyv5y+Xy+aN+RXrJkSVRWVsb8+fNj0KBBhePnn39+zJ07NxYuXNjkNgsWLIh//OMf0adPn1i1alVceeWVcf/998fjjz8ee+yxR5PzJ0yYEBMnTmxyfMaMGVFRUdG6dwgAAAAAAMiUtWvXximnnBKrVq2Kjh07bvTcoj5TpSUGDRrUKMB84hOfiAMOOCB+/OMfxyWXXNLk/LFjx0Z1dXXhck1NTfTo0SOGDBnyvg/Otqj3hLuKPUKy8pJ8XNK/Ib79YEnUNuSKPU6SxyYMLfYIRVdXVxf33HNPHHHEEVFWVlbscUhkb9lkb9lkb9lkb9lkb9lkb9lkb9lld9lkb9lkb9lkb1uHDa9wlaKoUaVLly5RWloay5Yta3R82bJl0b1796SPUVZWFh/5yEfi6aefbvb68vLyKC8vb/Z2vsibqq3PRpx4p9qGXGbm9jX3Nr8Hs8nessnessnessnessnessnessnessvussnessnessnesm1TdlfUN6pv37599OvXL2bPnl041tDQELNnz270bJSNqa+vj7/97W+x2267ba4xAQAAAAAAiv/yX9XV1TFixIjo379/DBgwIKZOnRpr1qyJkSNHRkTE8OHDo7KyMiZNmhQRERdffHF8/OMfj549e8brr78e3/3ud+P555+PL33pS8W8GwAAAAAAwFau6FFl2LBhsWLFihg3blwsXbo0+vbtG7NmzYpu3bpFRMQLL7wQJSVvP6Hmtddei9GjR8fSpUtj5513jn79+sX8+fOjV69exboLAAAAAADANqDoUSUiYsyYMTFmzJhmr5szZ06jy9///vfj+9///haYCgAAAAAA4G1FfU8VAAAAAACArBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASNAmoso111wTVVVV0aFDhxg4cGAsWrQo6XY333xz5HK5OO644zbvgAAAAAAAwDav6FHllltuierq6hg/fnw8/PDDcdBBB8XQoUNj+fLlG73dc889F+edd14cfPDBW2hSAAAAAABgW1b0qDJlypQYPXp0jBw5Mnr16hXTpk2LioqKmD59+nvepr6+Pr74xS/GxIkTY++9996C0wIAAAAAANuqokaVdevWxUMPPRSDBw8uHCspKYnBgwfHggUL3vN2F198cey6665x+umnb4kxAQAAAAAAol0xP/krr7wS9fX10a1bt0bHu3XrFk899VSzt5k3b15cf/318cgjjyR9jtra2qitrS1crqmpiYiIurq6qKura9ngW7Hy0nyxR0hWXpJv9M8s8DX39mPgscgWe8sme8sme8sme8sme8sme8sme8suu8sme8sme8sme9s6bMr+cvl8vmjfkV6yZElUVlbG/PnzY9CgQYXj559/fsydOzcWLlzY6PzVq1dHnz594tprr43PfOYzERFx2mmnxeuvvx6//e1vm/0cEyZMiIkTJzY5PmPGjKioqGi9OwMAAAAAAGTO2rVr45RTTolVq1ZFx44dN3puUZ+p0qVLlygtLY1ly5Y1Or5s2bLo3r17k/P/+c9/xnPPPRdHH3104VhDQ0NERLRr1y4WL14c++yzT6PbjB07NqqrqwuXa2pqokePHjFkyJD3fXC2Rb0n3FXsEZKVl+Tjkv4N8e0HS6K2IVfscZI8NmFosUcourq6urjnnnviiCOOiLKysmKPQyJ7yyZ7yyZ7yyZ7yyZ7yyZ7yyZ7yy67yyZ7yyZ7yyZ72zpseIWrFEWNKu3bt49+/frF7Nmz47jjjouIf0eS2bNnx5gxY5qcv//++8ff/va3RscuuuiiWL16dVx11VXRo0ePJrcpLy+P8vLyJsfLysp8kTejtj4bceKdahtymZnb19zb/B7MJnvLJnvLJnvLJnvLJnvLJnvLJnvLLrvLJnvLJnvLJnvLtk3ZXVGjSkREdXV1jBgxIvr37x8DBgyIqVOnxpo1a2LkyJERETF8+PCorKyMSZMmRYcOHaJ3796Nbt+pU6eIiCbHAQAAAAAAWlPRo8qwYcNixYoVMW7cuFi6dGn07ds3Zs2aVXjz+hdeeCFKSkqKPCUAAAAAALCtK3pUiYgYM2ZMsy/3FRExZ86cjd72hhtuaP2BAAAAAAAA3sVTQAAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgAQtjip//OMf49RTT41BgwbFSy+9FBERv/jFL2LevHmtNhwAAAAAAEBb0aKocvvtt8fQoUNju+22i7/85S9RW1sbERGrVq2Kyy67rFUHBAAAAAAAaAtaFFUuvfTSmDZtWvzkJz+JsrKywvFPfvKT8fDDD7facAAAAAAAAG1Fi6LK4sWL49Of/nST4zvttFO8/vrrH3QmAAAAAACANqdFUaV79+7x9NNPNzk+b9682HvvvT/wUAAAAAAAAG1Ni6LK6NGj45xzzomFCxdGLpeLJUuWxE033RTnnXdenHnmma09IwAAAAAAQNG1a8mNLrzwwmhoaIjDDz881q5dG5/+9KejvLw8zjvvvPjqV7/a2jMCAAAAAAAUXYuiSi6Xi29961vxjW98I55++ul44403olevXrHDDju09nwAAAAAAABtQouiyqpVq6K+vj46d+4cvXr1KhxfuXJltGvXLjp27NhqAwIAAAAAALQFLXpPlZNOOiluvvnmJsd//etfx0knnfSBhwIAAAAAAGhrWhRVFi5cGP/5n//Z5Pihhx4aCxcu/MBDAQAAAAAAtDUtiiq1tbWxfv36Jsfr6urizTff/MBDAQAAAAAAtDUtiioDBgyI6667rsnxadOmRb9+/T7wUAAAAAAAAG1Ni96o/tJLL43BgwfHX//61zj88MMjImL27Nnx5z//Oe6+++5WHRAAAAAAAKAtaNEzVT75yU/GggULokePHvHrX/867rjjjujZs2c8+uijcfDBB7f2jAAAAAAAAEXXomeqRET07ds3brrpptacBQAAAAAAoM1qcVRpaGiIp59+OpYvXx4NDQ2Nrvv0pz/9gQcDAAAAAABoS1oUVf70pz/FKaecEs8//3zk8/lG1+Vyuaivr2+V4QAAAAAAANqKFkWVL3/5y9G/f/+YOXNm7LbbbpHL5Vp7LgAAAAAAgDalRVHlH//4R9x2223Rs2fP1p4HAAAAAACgTSppyY0GDhwYTz/9dGvPAgAAAAAA0Ga16JkqX/3qV+PrX/96LF26ND784Q9HWVlZo+v79OnTKsMBAAAAAAC0FS2KKp///OcjImLUqFGFY7lcLvL5vDeqBwAAAAAAtkotiirPPvtsa88BAAAAAADQprUoquy5556tPQcAAAAAAECb1qKossETTzwRL7zwQqxbt67R8WOOOeYDDQUAAAAAANDWtCiqPPPMM3H88cfH3/72t8J7qUT8+31VIsJ7qgAAAAAAAFudkpbc6Jxzzom99torli9fHhUVFfH444/H/fffH/379485c+a08ogAAAAAAADF16JnqixYsCDuvffe6NKlS5SUlERJSUl86lOfikmTJsXZZ58df/nLX1p7TgAAAAAAgKJq0TNV6uvrY8cdd4yIiC5dusSSJUsi4t9vYL948eLWmw4AAAAAAKCNaNEzVXr37h1//etfY6+99oqBAwfGFVdcEe3bt4/rrrsu9t5779aeEQAAAAAAoOhaFFUuuuiiWLNmTUREXHzxxXHUUUfFwQcfHLvsskvcfPPNrTogAAAAAABAW9CiqDJ06NDCv/fs2TOeeuqpWLlyZey8886Ry+VabTgAAAAAAIC2okXvqTJq1KhYvXp1o2OdO3eOtWvXxqhRo1plMAAAAAAAgLakRVHlxhtvjDfffLPJ8TfffDN+/vOff+ChAAAAAAAA2ppNevmvmpqayOfzkc/nY/Xq1dGhQ4fCdfX19XHnnXfGrrvu2upDAgAAAAAAFNsmRZVOnTpFLpeLXC4X++67b5Prc7lcTJw4sdWGAwAAAAAAaCs2Karcd999kc/n47DDDovbb789OnfuXLiuffv2seeee8buu+/e6kMCAAAAAAAU2yZFlUMOOSTWr18fI0aMiP79+0ePHj0211wAAAAAAABtyia/UX27du3itttui/r6+s0xDwAAAAAAQJu0yVElIuKwww6LuXPntvYsAAAAAAAAbdYmvfzXBp/5zGfiwgsvjL/97W/Rr1+/2H777Rtdf8wxx7TKcAAAAAAAAG1Fi6LKWWedFRERU6ZMaXJdLpfz0mAAAAAAAMBWp0VRpaGhobXnAAAAAAAAaNNa9J4qAAAAAAAA25oWR5W5c+fG0UcfHT179oyePXvGMcccE3/84x9bczYAAAAAAIA2o0VR5Ze//GUMHjw4Kioq4uyzz46zzz47tttuuzj88MNjxowZrT0jAAAAAABA0bXoPVW+853vxBVXXBFf+9rXCsfOPvvsmDJlSlxyySVxyimntNqAAAAAAAAAbUGLnqnyzDPPxNFHH93k+DHHHBPPPvvsBx4KAAAAAACgrWlRVOnRo0fMnj27yfE//OEP0aNHjw88FAAAAAAAQFvTopf/+vrXvx5nn312PPLII/GJT3wiIiIeeOCBuOGGG+Kqq65q1QEBAAAAAADaghZFlTPPPDO6d+8e3/ve9+LXv/51REQccMABccstt8Sxxx7bqgMCAAAAAAC0BS2KKhERxx9/fBx//PGtOQsAAAAAAECb1eKoEhHx4IMPxpNPPhkREb169Yp+/fq1ylAAAAAAAABtTYuiyr/+9a84+eST44EHHohOnTpFRMTrr78en/jEJ+Lmm2+OPfbYozVnBAAAAAAAKLqSltzoS1/6UtTV1cWTTz4ZK1eujJUrV8aTTz4ZDQ0N8aUvfam1ZwQAAAAAACi6Fj1TZe7cuTF//vzYb7/9Csf222+/uPrqq+Pggw9uteEAAAAAAADaihY9U6VHjx5RV1fX5Hh9fX3svvvuH3goAAAAAACAtqZFUeW73/1ufPWrX40HH3ywcOzBBx+Mc845J6688spWGw4AAAAAAKCtaNHLf5122mmxdu3aGDhwYLRr9+8PsX79+mjXrl2MGjUqRo0aVTh35cqVrTMpAAAAAABAEbUoqkydOrWVxwAAAAAAAGjbWhRVRowY0dpzAAAAAAAAtGktiiobLF++PJYvXx4NDQ2Njvfp0+cDDQUAAAAAANDWtCiqPPTQQzFixIh48sknI5/PN7oul8tFfX19qwwHAAAAAADQVrQoqowaNSr23XffuP7666Nbt26Ry+Vaey4AAAAAAIA2pUVR5Zlnnonbb789evbs2drzAAAAAAAAtEklLbnR4YcfHn/9619bexYAAAAAAIA2q0XPVPnpT38aI0aMiMceeyx69+4dZWVlja4/5phjWmU4AAAAAACAtqJFUWXBggXxwAMPxO9///sm13mjegAAAAAAYGvUopf/+upXvxqnnnpqvPzyy9HQ0NDol6ACAAAAAABsjVoUVV599dX42te+Ft26dWvteQAAAAAAANqkFkWVz33uc3Hfffe19iwAAAAAAABtVoveU2XfffeNsWPHxrx58+LDH/5wkzeqP/vss1tlOAAAAAAAgLaiRVHlpz/9aeywww4xd+7cmDt3bqPrcrmcqAIAAAAAAGx1WhRVnn322daeAwAAAAAAoE1LjirV1dVxySWXxPbbbx/V1dXveV4ul4vvfe97rTIcAAAAAABAW5EcVf7yl79EXV1d4d/fSy6X++BTAQAAAAAAtDHJUeW+++5r9t8BAAAAAAC2BSXFHgAAAAAAACALRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAErSJqHLNNddEVVVVdOjQIQYOHBiLFi16z3N/85vfRP/+/aNTp06x/fbbR9++feMXv/jFFpwWAAAAAADYFhU9qtxyyy1RXV0d48ePj4cffjgOOuigGDp0aCxfvrzZ8zt37hzf+ta3YsGCBfHoo4/GyJEjY+TIkXHXXXdt4ckBAAAAAIBtSdGjypQpU2L06NExcuTI6NWrV0ybNi0qKipi+vTpzZ5/6KGHxvHHHx8HHHBA7LPPPnHOOedEnz59Yt68eVt4cgAAAAAAYFvSrpiffN26dfHQQw/F2LFjC8dKSkpi8ODBsWDBgve9fT6fj3vvvTcWL14cl19+ebPn1NbWRm1tbeFyTU1NRETU1dVFXV3dB7wHW5/y0nyxR0hWXpJv9M8s8DX39mPgscgWe8sme8sme8sme8sme8sme8sme8suu8sme8sme8sme9s6bMr+cvl8vmjfkV6yZElUVlbG/PnzY9CgQYXj559/fsydOzcWLlzY7O1WrVoVlZWVUVtbG6WlpXHttdfGqFGjmj13woQJMXHixCbHZ8yYERUVFa1zRwAAAAAAgExau3ZtnHLKKbFq1aro2LHjRs8t6jNVWmrHHXeMRx55JN54442YPXt2VFdXx9577x2HHnpok3PHjh0b1dXVhcs1NTXRo0ePGDJkyPs+ONui3hOy89405SX5uKR/Q3z7wZKobcgVe5wkj00YWuwRiq6uri7uueeeOOKII6KsrKzY45DI3rLJ3rLJ3rLJ3rLJ3rLJ3rLJ3rLL7rLJ3rLJ3rLJ3rYOG17hKkVRo0qXLl2itLQ0li1b1uj4smXLonv37u95u5KSkujZs2dERPTt2zeefPLJmDRpUrNRpby8PMrLy5scLysr80XejNr6bMSJd6ptyGVmbl9zb/N7MJvsLZvsLZvsLZvsLZvsLZvsLZvsLbvsLpvsLZvsLZvsLds2ZXdFfaP69u3bR79+/WL27NmFYw0NDTF79uxGLwf2fhoaGhq9bwoAAAAAAEBrK/rLf1VXV8eIESOif//+MWDAgJg6dWqsWbMmRo4cGRERw4cPj8rKypg0aVJEREyaNCn69+8f++yzT9TW1sadd94Zv/jFL+JHP/pRMe8GAAAAAACwlSt6VBk2bFisWLEixo0bF0uXLo2+ffvGrFmzolu3bhER8cILL0RJydtPqFmzZk2cddZZ8a9//Su222672H///eOXv/xlDBs2rFh3AQAAAAAA2AYUPapERIwZMybGjBnT7HVz5sxpdPnSSy+NSy+9dAtMBQAAAAAA8LaivqcKAAAAAABAVogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAErSJqHLNNddEVVVVdOjQIQYOHBiLFi16z3N/8pOfxMEHHxw777xz7LzzzjF48OCNng8AAAAAANAaih5Vbrnllqiuro7x48fHww8/HAcddFAMHTo0li9f3uz5c+bMiZNPPjnuu+++WLBgQfTo0SOGDBkSL7300haeHAAAAAAA2JYUPapMmTIlRo8eHSNHjoxevXrFtGnToqKiIqZPn97s+TfddFOcddZZ0bdv39h///3jpz/9aTQ0NMTs2bO38OQAAAAAAMC2pF0xP/m6devioYceirFjxxaOlZSUxODBg2PBggVJH2Pt2rVRV1cXnTt3bvb62traqK2tLVyuqamJiIi6urqoq6v7ANNvncpL88UeIVl5Sb7RP7PA19zbj4HHIlvsLZvsLZvsLZvsLZvsLZvsLZvsLbvsLpvsLZvsLZvsbeuwKfvL5fP5on1HesmSJVFZWRnz58+PQYMGFY6ff/75MXfu3Fi4cOH7foyzzjor7rrrrnj88cejQ4cOTa6fMGFCTJw4scnxGTNmREVFxQe7AwAAAAAAQKatXbs2TjnllFi1alV07Nhxo+cW9ZkqH9TkyZPj5ptvjjlz5jQbVCIixo4dG9XV1YXLNTU1hfdheb8HZ1vUe8JdxR4hWXlJPi7p3xDffrAkahtyxR4nyWMThhZ7hKKrq6uLe+65J4444ogoKysr9jgksrdssrdssrdssrdssrdssrdssrfssrtssrdssrdssretw4ZXuEpR1KjSpUuXKC0tjWXLljU6vmzZsujevftGb3vllVfG5MmT4w9/+EP06dPnPc8rLy+P8vLyJsfLysp8kTejtj4bceKdahtymZnb19zb/B7MJnvLJnvLJnvLJnvLJnvLJnvLJnvLLrvLJnvLJnvLJnvLtk3ZXVHfqL59+/bRr1+/Rm8yv+FN59/5cmDvdsUVV8Qll1wSs2bNiv79+2+JUQEAAAAAgG1c0V/+q7q6OkaMGBH9+/ePAQMGxNSpU2PNmjUxcuTIiIgYPnx4VFZWxqRJkyIi4vLLL49x48bFjBkzoqqqKpYuXRoRETvssEPssMMORbsfAAAAAADA1q3oUWXYsGGxYsWKGDduXCxdujT69u0bs2bNim7dukVExAsvvBAlJW8/oeZHP/pRrFu3Lr7whS80+jjjx4+PCRMmbMnRAQAAAACAbUjRo0pExJgxY2LMmDHNXjdnzpxGl5977rnNPxAAAAAAAMC7FPU9VQAAAAAAALJCVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACBB0aPKNddcE1VVVdGhQ4cYOHBgLFq06D3Pffzxx+Pzn/98VFVVRS6Xi6lTp265QQEAAAAAgG1aUaPKLbfcEtXV1TF+/Ph4+OGH46CDDoqhQ4fG8uXLmz1/7dq1sffee8fkyZOje/fuW3haAAAAAABgW1bUqDJlypQYPXp0jBw5Mnr16hXTpk2LioqKmD59erPnf+xjH4vvfve7cdJJJ0V5efkWnhYAAAAAANiWFS2qrFu3Lh566KEYPHjw28OUlMTgwYNjwYIFxRoLAAAAAACgWe2K9YlfeeWVqK+vj27dujU63q1bt3jqqada7fPU1tZGbW1t4XJNTU1ERNTV1UVdXV2rfZ6tRXlpvtgjJCsvyTf6Zxb4mnv7MfBYZIu9ZZO9ZZO9ZZO9ZZO9ZZO9ZZO9ZZfdZZO9ZZO9ZZO9bR02ZX+5fD5flO9IL1myJCorK2P+/PkxaNCgwvHzzz8/5s6dGwsXLtzo7auqquLcc8+Nc889d6PnTZgwISZOnNjk+IwZM6KioqJFswMAAAAAAFuHtWvXximnnBKrVq2Kjh07bvTcoj1TpUuXLlFaWhrLli1rdHzZsmWt+ib0Y8eOjerq6sLlmpqa6NGjRwwZMuR9H5xtUe8JdxV7hGTlJfm4pH9DfPvBkqhtyBV7nCSPTRi6WT6uvW1em2tvWVJXVxf33HNPHHHEEVFWVlbscUhkb9lkb9lkb9lkb9lkb9lkb9lld9lkb9lkb9lkb1uHDa9wlaJoUaV9+/bRr1+/mD17dhx33HEREdHQ0BCzZ8+OMWPGtNrnKS8vb/ZN7cvKynyRN6O2Phvf5H6n2oZcZubeXF9zWbn/72Rv2eS/ndlkb9lkb9lkb9lkb9lkb9lkb9lld9lkb9lkb9lkb9m2KbsrWlSJiKiuro4RI0ZE//79Y8CAATF16tRYs2ZNjBw5MiIihg8fHpWVlTFp0qSI+Peb2z/xxBOFf3/ppZfikUceiR122CF69uxZtPsBAAAAAABs/YoaVYYNGxYrVqyIcePGxdKlS6Nv374xa9aswpvXv/DCC1FSUlI4f8mSJfGRj3ykcPnKK6+MK6+8Mg455JCYM2fOlh4fAAAAAADYhhQ1qkREjBkz5j1f7uvdoaSqqiry+fwWmAoAAAAAAKCxkvc/BQAAAAAAAFEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJBBVAAAAAAAAEogqAAAAAAAACUQVAAAAAACABKIKAAAAAABAAlEFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAE7Yo9AMC2qurCmcUeIVl5aT6uGBDRe8JdUVufK/Y4SZ6bfGSxRwAAAABgK+OZKgAAAAAAAAk8UwUANoFnGG1enmEEAAAAtGWeqQIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABJ4o3oAYKtXdeHMYo+QrLw0H1cMiOg94a6orc8Ve5wkz00+stgjAAAAwBbhmSoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACQQVQAAAAAAABKIKgAAAAAAAAlEFQAAAAAAgATtij0AAAA0p+rCmcUeIVl5aT6uGBDRe8JdUVufK/Y4SZ6bfORm+bj2tnltrr0BAABpPFMFAAAAAAAggagCAAAAAACQQFQBAAAAAABIIKoAAAAAAAAkEFUAAAAAAAASiCoAAAAAAAAJRBUAAAAAAIAEogoAAAAAAEACUQUAAAAAACCBqAIAAAAAAJBAVAEAAAAAAEggqgAAAAAAACRoV+wBAAAAKK6qC2cWe4Rk5aX5uGJARO8Jd0Vtfa7Y4yR5bvKRxR4BAIBWIqoAAABABolhm5cYBgA0R1QBAAAA2EKyFMMiBLF3ytLu7A1g8/GeKgAAAAAAAAlEFQAAAAAAgASiCgAAAAAAQAJRBQAAAAAAIIGoAgAAAAAAkEBUAQAAAAAASCCqAAAAAAAAJGgTUeWaa66Jqqqq6NChQwwcODAWLVq00fNvvfXW2H///aNDhw7x4Q9/OO68884tNCkAAAAAALCtalfsAW655Zaorq6OadOmxcCBA2Pq1KkxdOjQWLx4cey6665Nzp8/f36cfPLJMWnSpDjqqKNixowZcdxxx8XDDz8cvXv3LsI9AAAAAADaoqoLZxZ7hGTlpfm4YkBE7wl3RW19rtjjJHlu8pHFHgG2uKI/U2XKlCkxevToGDlyZPTq1SumTZsWFRUVMX369GbPv+qqq+K//uu/4hvf+EYccMABcckll8RHP/rR+OEPf7iFJwcAAAAAALYlRX2myrp16+Khhx6KsWPHFo6VlJTE4MGDY8GCBc3eZsGCBVFdXd3o2NChQ+O3v/1ts+fX1tZGbW1t4fKqVasiImLlypVRV1f3Ae/B1qfd+jXFHiFZu4Z8rF3bEO3qSqK+IRv1/tVXX90sH9feNi97s7d3srfNy97s7Z3sbfOyN3t7J3vbvOzN3t4pS3uLsLt3ytLu7O1t9rZ5ba69ZUldXV2sXbs2Xn311SgrKyv2OLTQ6tWrIyIin8+/77m5fMpZm8mSJUuisrIy5s+fH4MGDSocP//882Pu3LmxcOHCJrdp37593HjjjXHyyScXjl177bUxceLEWLZsWZPzJ0yYEBMnTtw8dwAAAAAAANgqvPjii7HHHnts9Jyiv6fK5jZ27NhGz2xpaGiIlStXxi677BK5XDaKL82rqamJHj16xIsvvhgdO3Ys9jgksrdssrdssrdssrdssrdssrdssrdssrfssrtssrdssrdssretQz6fj9WrV8fuu+/+vucWNap06dIlSktLmzzDZNmyZdG9e/dmb9O9e/dNOr+8vDzKy8sbHevUqVPLh6bN6dixo/9gZZC9ZZO9ZZO9ZZO9ZZO9ZZO9ZZO9ZZO9ZZfdZZO9ZZO9ZZO9Zd9OO+2UdF5R36i+ffv20a9fv5g9e3bhWENDQ8yePbvRy4G906BBgxqdHxFxzz33vOf5AAAAAAAAraHoL/9VXV0dI0aMiP79+8eAAQNi6tSpsWbNmhg5cmRERAwfPjwqKytj0qRJERFxzjnnxCGHHBLf+9734sgjj4ybb745HnzwwbjuuuuKeTcAAAAAAICtXNGjyrBhw2LFihUxbty4WLp0afTt2zdmzZoV3bp1i4iIF154IUpK3n5CzSc+8YmYMWNGXHTRRfHNb34zPvShD8Vvf/vb6N27d7HuAkVSXl4e48ePb/LybrRt9pZN9pZN9pZN9pZN9pZN9pZN9pZN9pZddpdN9pZN9pZN9rbtyeXz+XyxhwAAAAAAAGjrivqeKgAAAAAAAFkhqgAAAAAAACQQVQAAAAAAABKIKgBskvXr1xd7BAAAAAAoClEFgIJf//rXG71+/fr1ceKJJ26haUg1ffr0qK2tLfYYsE1YtGhR1NfXv+f1tbW17/vfUra8UaNGxerVq4s9BgBAsttuu63YIwDvIZfP5/PFHgI2plevXjFv3rzo3LlzREScddZZcfHFF0eXLl0iImL58uVRVVUVa9euLeaYvMtnP/vZ+NWvfhU77bRTRERMnjw5vvzlL0enTp0iIuLVV1+Ngw8+OJ544okiTsm7dejQIe6444444ogjmlxXX18fJ5xwQixYsCBefvnlIkzHeyktLY2XX345dt1114iI2H333WP+/PlRVVVV3MHYqOrq6qTzpkyZspknYVO8+/dbx44d45FHHom99947IiKWLVsWu++++0bDC1veu/dGtu29995x1113xYc+9KFij8JGvPrqq/Hoo4/GQQcdFJ07d45XXnklrr/++qitrY0TTjghDjjggGKPyPvI5/MxZ86cePrpp2O33XaLoUOHRllZWbHHYhMtW7YsfvzjH8e4ceOKPQrvsn79+njqqaeiffv2se+++xaO/+53v4tx48bFU0895Yfn2pi///3v8frrr8eAAQMKx2bPnh2XXnpprFmzJo477rj45je/WcQJ2VLaFXsAeD9PPfVUo5cb+uUvfxnnnXdeIark8/l46623ijUe7+Guu+5q9D//yy67LE488cRCVFm/fn0sXry4SNPxXi6//PL43Oc+F3/4wx9i4MCBheMNDQ1x4oknxgMPPBD33ntvESekOe/++YjVq1dHQ0NDkaYh1V/+8pdGl+fNmxf9+vWL7bbbrnAsl8tt6bF4H+/+/dbczyf5maW2x06y6Qc/+EGzx1944YX42c9+Ft27d4+IiLPPPntLjkWCRYsWxZAhQ6KmpiY6deoU99xzT5xwwgnRrl27aGhoiMmTJ8e8efPiox/9aLFH5R3e+YNxK1eujM9+9rOxaNGi6NKlS7z66qux7777xv333x9du3Yt9qhsgqVLl8bEiRNFlTbmsccei6OOOipefPHFiIg49thj40c/+lGceOKJ8dhjj8Xo0aNj5syZRZ6Sd7vgggviwx/+cCGqPPvss3H00UfHwQcfHH369IlJkyZFRUVFnHvuucUdlM1OVCFzmvtLsW86tT0p33Si7TnnnHMKf4G6//7748ADD4z6+voYNmxY/PGPf4x77703DjzwwGKPCVuF++67r9HlHXfcMWbMmFF4xgPZ5c8lbdPq1aujQ4cOGz2nY8eOW2gaUpx77rlRWVkZ7do1/mtrQ0ND/PznP4+ysrLI5XKiShv0rW99K0444YSYMmVK/PjHP47jjjsu/uu//it+8pOfRMS/X5Lvkksuif/5n/8p8qS806xZswo/GHfRRRfF6tWr45///Gfstdde8a9//SuOO+64GDduXPzoRz8q8qS806OPPrrR6/0wY9t0wQUXRM+ePeOHP/xh/OpXv4pf/epX8eSTT8bpp58es2bNavSDVrQdDz74YJx//vmFyzfddFPsu+++cdddd0VERJ8+feLqq68WVbYBogoAjUycODFWrlwZQ4YMifvuuy8uuuiimDt3bsyePTt69+5d7PFoRi6Xa/RN3HdfBiAavazGu+Xz+cjlcl62rY0544wzYuHChTFjxoxGLxVVVlYWd999d/Tq1auI07ExDz30UPzgBz+IHXfcMc4555y44IILYvTo0YXrx4wZE8ccc0wRJ+T93HvvvXHFFVfEXnvtFRERe+yxR1x++eWN9kjb0Ldv38jlcu/5A6gb/h9H2/LnP/857r777ujbt28cfPDB8atf/Sq++c1vxv/7f/+v2KOxEa+88krssccehcv33XdfHH300YXLhx56aHz9618vxmhsYaIKbV5z3xz0B4K2z96y7eqrr47XXnstDjrooNhhhx1i9uzZ0adPn2KPxXvI5/Ox7777Fn6PvfHGG/GRj3wkSkpKGp23cuXKYowHW50nnngili5dGhH//v331FNPxRtvvBER//6LFm3TbbfdVniPPrJh2rRp8T//8z8xdOjQOP/882PMmDHFHolE69atK/yUdVlZWVRUVBRevjkiCi8nRduz4c+Tr732Wuyzzz6NruvZs2csWbKkGGOxEZ07d44rrrgiDj/88Gavf/zxxxt905e24ZVXXondd989IiJ22mmn2H777ePjH/94kafi/XTu3Dlefvnl6NGjRzQ0NMSDDz7Y6L0y161b55VathGiCm1ePp+Pww8/vPC0/zfffDOOPvroaN++fUREo/dboe3I5/Nx2mmnRXl5eUREvPXWW/HlL385tt9++4gIb7bWRr3zDwM777xz5PP56Nu3b9xwww2NzvPG2W3Lz372s2KPANuUww8/vNFflo466qiI8NOgbd0nP/lJb1SfQccff3wMGDAghg8fHjNnzvT/vIzo0aNHPPPMM1FVVRURETfffHPstttuhetffvnlRpGFtmPD3+Hq6uri2WefbfTSv0uXLi28RyZtR79+/WLJkiWx5557Nnv966+/7pu8bVAulyu8NOmGPz+++eabUVNT0+g8L03athx66KFxySWXxLXXXhu33nprNDQ0xKGHHlq4/oknnij8v4+tm6hCmzd+/PhGl4899tgm53z+85/fUuOQaMSIEY0un3rqqU3OGT58+JYah0TvfuPsQYMGxfr16xsd983Ctufdv9/Ihne//vW7n/GwgWeJtS3PPvtssUeAbU5lZWX84Q9/iMmTJ8dHPvIR3xzMgJNOOimWL19euHzkkUc2uv5///d/C2/yS9vxzj9THnvssbF27dpG199+++3Rt2/fLTwV7+fLX/5yrFmz5j2v/4//+A9Bug3a8GoD77z8kY98pNFlL03a9nznO9+JI444Ivbcc88oLS2NH/zgB4UfHo6I+MUvfhGHHXZYESdkS8nl/YkUADJt0aJF0a9fvygtLW32+tra2vjd734XJ5544haejI0pKSlJev1rf5GCD26vvfaKBx98MHbZZZdij8IH9NBDD8W8efNi+PDhsfPOOxd7HFpo7dq1UVpaWnhWO9mwZs2aKC0tjQ4dOhR7FMi8uXPnJp13yCGHbOZJ2FTr16+Pxx9/PLp27Vp4CbcN/vrXv8Yee+zhz5zbAFGFTHnllVfiueeei1wuF1VVVf4jlRH5fD5effXVyOVydgabQWlpafx/9u4zKqqrfRv4NQMiKEXsEkRsFNujJraYiEqwF2IFLCiaWKLGQoRgFFvsDY0tOhQ1QQVEITESFcSCiJEgBhTsHTtFsCHzfvB1/oIzMJg45xy8fmtlPZ6zz4drrfsBZs6+9963b99WbWtjamqKpKQk1KtXDwBw584dWFhY8OW8yFy9elWr5zRt5UDCyc7OVm3FsHfv3kJbkerp6b3VkU3iFRsbi9zcXLRr144v6MuAon//SDpYO2li3aSJdZOOhw8f8jw4IpHi9l8kCSkpKRg3bhyOHTtW6L6DgwPWr18PW1tbgZJRcTIyMjB9+nREREQgJycHwKsPcF9++SUWLlyIGjVqCJyQipo7d65Wz82aNes9J6HSKNofoa5fgj0U4hMUFARPT09UqFBB6ChUCr/99htmzpyp2hZx8ODBhbbckMlk2LFjBwYMGCBURFJj8eLFePz4MebNmwfg1e/E7t27488//wQAVK9eHQcPHix0dgBJD//WSRdrJ02smzSxbuL3559/YvPmzYiMjMSTJ0+EjkNv6Nevn9r7ZmZmsLGxwejRo1GtWjUdpyIhcFKFRC8jIwMODg6oVq0aVqxYATs7OyiVSqSmpmLTpk34/PPP8c8///DgUZHJzs7Gp59+isePH2PkyJGF6hYcHIyjR48iMTERxsbGQkelN4SHh2sck8lkSEtLw9OnTzmpIkE8C0d85syZg7Fjx3JSRWJ+/vlnTJw4sdC9CxcuqLo9lyxZAn9/f06qiMyOHTvg5eWlug4NDcXhw4dx5MgR2NvbY/jw4ZgzZw527twpYEoiIiL6UF29ehX+/v4ICgrCo0eP0L17d2zZskXoWFSEmZmZ2vuZmZnYtGkTli5disOHD6NJkyY6Tka6xkkVEr2VK1eiTp06OHbsWKG9W7t164Zx48bhs88+w8qVK7Fw4UIBU1JRfn5+0NPTU+0z+aYffvgB7du3x+rVq+Hj4yNQQlKn6EH1ryUlJcHb2xv//PMPvvrqKx2nIiqb2CUoTWfOnMHSpUs1jnfv3h3Lli3TYSLSxuXLl9GsWTPV9d69ezFgwAC0b98ewKvPJgMHDhQqHhEREX2Anj9/jl27dmHz5s04duwYvvjiC9y4cQN///03mjZtKnQ8UiMgIEDjWEFBAb766it8//33iIyM1GEqEoJc6ABEJdm/fz+8vLzUHoZnZGSE7777DlFRUQIko+L8/vvv8PHxUbvssXr16vwjIxGXL1/G0KFD0apVK5iZmSElJQUbNmwQOhapkZqaiuTkZCQnJ0OpVOLcuXOq65SUFKHjkQZcQSQ9t2/fLnSwckxMDGrXrq26NjY2RlZWlhDRqBj5+fmF6nb8+HF8+umnqmsLCwvcv39fiGhERET0AZo4cSIsLCzg5+eHL7/8Ejdu3EBkZCRkMhn09PSEjkfvQC6XY9KkSTh16pTQUUgHuFKFRO/SpUto2bKlxvFPPvkEly5d0mEi0kZ6enqhlxVFffrpp/D09NRhIiqN+/fvY86cOfj555/x2WefIS4uDq1atRI6FhXD0dGx0MqHXr16AXj10l6pVPLlvUjZ2NiUWJuHDx/qKA1po3Llyrhw4QKsra0BvPoc8qbz58/zQFERql+/Pg4fPox69erh2rVrSE9PR4cOHVTjN27cQJUqVQRMSP8F/q2TLtZOmlg3aWLdxGH9+vXw8vKCt7c3TExMhI5D/5GKFSsiLy9P6BikA5xUIdHLycmBqampxnETExM8fvxYh4lIG9nZ2ahUqZLG8UqVKiE7O1t3gUgrubm5WLZsGVasWIEGDRogMjISXbp0EToWleDy5ctCR6B3NGfOHI378pI4dejQAatXr8YXX3yhdnz16tWFXtaTOHzzzTeYMGECjhw5gvj4eLRr1w6NGjVSjUdHR6NFixYCJqR3lZ+fD339V19rua2itLB20sS6SRPrJj5bt26Fv78/atWqhZ49e2LYsGHo3r270LHoX9q/fz9sbGyEjkE6wEkVkoScnBy1238Br17e80OB+CiVSsjlmncYfN09T+JSv3595OTkYOLEiXB1dYVMJkNycvJbz725Lz0Jr06dOkJHoHfk4uKC6tWrCx2DSsHLywvt2rXDwIEDMX36dNWXprS0NCxevBgHDhxAXFycwCmpqK+++gp6enqIjIxEhw4d4OvrW2j81q1b8PDwECgdabJz504MGjRI43h+fj4GDRqEXbt2AQD++OMPfPTRR7qKR8Vg7aSJdZMm1k2aXF1d4erqisuXLyMwMBDffPMN8vLyUFBQgNTU1ELNHyQeERERau9nZWXh1KlT2Lx5MzZv3qzjVCQEmZJvNUnk5HJ5sctTX29r8/LlSx2mopLI5XKYmZlprJ1SqUR2djbrJjJvToQVnfh6cxsp1k1adu3ahdmzZ6udICPh6Onp4fbt25xUkaA9e/Zg9OjRb23NZm5ujs2bN8PZ2VmYYERljKGhISIjI+Hk5PTW2MuXLzFw4EAcP34ct2/fFiAdFYe1kybWTZpYt7JBqVTizz//hEKhQEREBKpWrYp+/fph9erVQkejN2hqHjYxMYGtrS2mTp0KFxcXHaciIXClColeTEyM0BHoHQQEBAgdgd4Bt5GSro0bN2L//v0wMDDAt99+izZt2iA6OhrTpk1Deno6hg8fLnREKoJ9LdLVt29fODk5ISoqCufPnwcANGzYEF26dEHFihUFTkfFuXnzJsLCwpCeng4AsLW1Rb9+/dixK1KLFy9Gv379cODAAbRp00Z1v6CgAIMGDcKxY8cQHR0tYELShLWTJtZNmli3skEmk6Fr167o2rUrHj58iC1btvC9iggVFBQIHYFEgitViIioVP755x80adJE6Bj0hkWLFmHWrFlo1qwZzp07B6VSiRkzZmDNmjX49ttvMWbMGJibmwsdk6jMUyqV2LdvHxQKBUJDQ4WOQ0WsW7cOU6dOxfPnz1Xn9WVnZ8PAwAArVqzA+PHjBU5I6vj6+uKnn37C4cOH0bhxY7x8+RKDBw/G4cOHER0dzc8kIsbaSRPrJk2sG5FudO7cGbt27Sr2DGH6MHClCkkGOwul6cmTJ9i/f3+hun3xxRcwMjISOBmVRk5ODoKDg7F582acOnWK23+JTEBAADZt2gR3d3ccOXIEDg4OiIuLw4ULF9g1L2LanN8gk8mgUCh0kIb+jcuXL8Pf3x+BgYG4d++exkPsSTi///47Jk2ahMmTJ2PatGmoVasWAOD27dtYunQpvv32W1hbW6NHjx4CJ6Wi5syZg4cPH6JLly6IiYnBDz/8gNjYWBw8eJAvCUWOtZMm1k2aWDfpadSoEY4ePYrKlSsDAMaPH4+5c+eiatWqAIC7d+/C2toaeXl5QsakIg4dOoTnz58LHYNEgCtVSBLYWShNERERGD16NO7fv1/oftWqVaFQKNC7d2+BkpG2Dh8+DIVCgbCwMFhYWKBfv37o378/WrVqJXQ0eoORkRHS09NRu3ZtAED58uURFxeHjz/+WOBkVJwvv/xS49jLly9x4MABPHv2jJOYIvXs2TOEhoZCoVDg6NGjePnyJZYtW4ZRo0apPquQeHTs2BGfffYZ5s+fr3b8hx9+wNGjR3Ho0CHdBiOtDR06FGFhYTA2NsbBgwfRrFkzoSORllg7aWLdpIl1kw65XI6MjAzV+YqmpqZISkpCvXr1AAB37txBrVq1uN2UyBStG324uFKFRI+dhdIUFxeHAQMGoE+fPpg2bRrs7e0BAKmpqVi+fDkGDBiA2NhYtG3bVuCkVFRGRgYCAwOhUCiQnZ2NQYMG4dmzZ9i9ezcaNWokdDxS49mzZzA0NFRdGxgYqDqeSLzCw8PV3t+zZw98fHxQvnx5zJo1S8epqCSnTp2CQqFAcHAwGjRogGHDhiE4OBiWlpbo2rUrJ1REKjExERs3btQ4PmzYMB4EK0JTp05V/dvc3BxKpRLNmzdHYGBgoedWrFih42RUEtZOmlg3aWLdygZ1Pe8ymUyAJFSS1NRUZGRkFPsMJzTLPq5UIdFjZ6E09ejRA7Vr19b4AmPMmDG4fv069u7dq+NkVJzevXvj8OHD6NmzJ4YMGYJu3bpBT08P5cqVw+nTpzmpIlJyuRxff/01KlSoAABYu3Ythg4dCjMzs0LP8YuUuB07dgze3t5ITEzEhAkT4O3tzbNwREhfXx8TJ07E2LFjYWtrq7rP35PiVrFiRZw5c0bV/VnUpUuX0LRpU+Tm5uo4GRWnU6dOJT4jk8l4ALMIsXbSxLpJE+smTUVXPJiYmOD06dOFVqpYWFhw1brIyOVyyGQyjZNgSqUSMpmMdfsAcFKFRM/U1BQnT54s9OLiTWlpaWjVqhWys7N1nIyKU7lyZcTGxqJp06Zqx5OTk+Hg4IBHjx7pOBkVR19fH5MmTcK4cePQsGFD1X2+LBS3jh07ltjFxC9S4pWamgovLy/s27cPw4cPx5w5c2BpaSl0LNKga9euOH78OHr37o1hw4aha9eukMlk/D0pcq1bt4arqyumTJmidnzFihXYvn07EhISdJyMiIiIPkR6enrIyMhAtWrVALyaVElOTkbdunUBcFJFrORyORISElR106ROnTo6SkRC4fZfJHovX75EuXLlNI6XK1eOf2RE6MmTJ8VugWJmZoanT5/qMBFp4+jRo1AoFPj4449hb2+PYcOGwcXFRehYVAKu1JOm69evY9asWdi2bRt69eqF5ORk1VaJJF5RUVG4fv06AgICMG7cODx58gSDBw8GwC0axOybb77BuHHjUL58eXz99dfQ13/1NSg/Px8bN27EDz/8gHXr1gmckoiIiD4USqUSjo6Oqs8kT548Qe/evWFgYADg1WcUEicrKyueqUJcqULix85CaWrWrBmmTJmCkSNHqh339/fHqlWrkJycrONkpI3c3Fzs2LED/v7+SEhIwMuXL7FixQp4eHjAxMRE6Hj0LxU9BJGEUaFCBchkMkyYMAHt27fX+FyfPn10mIpKa//+/QgICEB4eDhq166NAQMGYMCAAWjZsqXQ0agIT09PrFixAiYmJqhfvz6USiUuXbqEx48fY9KkSVi5cqXQEamIuXPnavUcz58SH9ZOmlg3aWLdpGn27NlaNeT4+vrqIA1pS5uD6h8+fMgzTj8AnFQh0QsKCsK4ceOwbNkytZ2F3333HdatW4cRI0YIG5QKWblyJebPn4+tW7eiR48ehcZ+//13uLu7w8fHp9CheiROaWlpUCgU2Lp1KzIzM+Hk5ISIiAihY9G/UHS/XhKGXC4v8Rnuxysdjx49wrZt2+Dv74/k5GTWTaTi4+MRHByM8+fPAwBsbGzg4uKCtm3bCpyM1GnRooXGMZlMhrS0NDx9+pQ/byLE2kkT6yZNrJs0vT57g6SlU6dOCA8PR6VKld4a+/PPP7F582ZERkbiyZMnug9HOsVJFZIEdhZKT0FBAQYPHoywsDDY2trC3t4eSqUSZ8+exfnz5+Hs7IyQkBCtXiqSOLx8+RKRkZEICAjAnj17hI5D/wInVYjer8TERK5UIXqPkpKS4O3tjejoaHh4eGDDhg1CRyItsXbSxLpJE+smbp9++im2bNmCBg0aCB2F/oWrV6/C398fQUFBePToEbp3747+/ftj4MCBQkej94xvM0kSli1bhri4OIwYMQI1a9ZErVq1MHLkSBw7dowTKiIll8sREhKC4OBg2Nra4ty5c0hLS4OdnR1++eUXhIWFcUJFYvT09PDy5UtcvnxZ6ChERKLGCRXxOX/+PFxdXZGdnf3WWFZWFtzc3HDp0iUBklFpXL58GUOHDkWrVq1gZmaGlJQUviSUCNZOmlg3aWLdpMHS0hLNmzfH2rVrhY5CpfT8+XNs374dX3zxBezs7JCYmIgbN27g6NGj2L59OydUPhA8qJ4ko23bttyaQYIGDx6sOsCXpGHjxo3Yv38/DAwM8O2336JNmzaIjo7GtGnTkJ6eDnd3d6EjEpUpryeg09PTAbzajsjNzQ0DBgwQOBm9C3t7e6Snp3OLDZFZunQpateuDVNT07fGzMzMULt2bSxduhTr168XIB2V5P79+5gzZw5+/vlnfPbZZ4iLi0OrVq2EjkVaYO2kiXWTJtZNWnbu3ImQkBBMmDABu3fvRkBAACwtLYWORSWYOHEigoOD0bBhQwwdOhQ7duxAlSpVUK5cOejp6Qkdj3SIbeIkeuwslKZbt27B09NTY92+++473LlzR4BkVJxFixZh4sSJuHLlCiIiItC5c2csWLAAQ4YMweDBg3Hjxg2sW7dO6Jj0L3HvXnF4vU3i4MGDkZqaigYNGqBBgwZISUnB4MGD4eLiAu7SKj0LFy6Ev7+/0DGoiNjY2GK7BgcNGoTo6GgdJiJt5ObmYs6cOahfvz7i4uIQGRmJgwcP8iWhBLB20sS6SRPrJl0DBw7EP//8A3NzczRt2hSTJk3C1KlTC/1H4rJ+/XqMGTMGf/75J7755htUqVJF6EgkEK5UIdFjZ6E0rVixAtnZ2RrrlpOTgxUrVmDx4sUCpCNNAgICsGnTJri7u+PIkSNwcHBAXFwcLly4gIoVKwodj/4jfFEvDn5+fjhw4AAiIiLQq1evQmMREREYOXIk/Pz8MHnyZGEC0jtxdnYWOgKpce3aNVSvXl3jeNWqVXH9+nUdJiJt1K9fHzk5OZg4cSJcXV0hk8mQnJz81nPNmjUTIB0Vh7WTJtZNmlg3aatcuTLs7e0RHh6Ov//+G/r6//eqls1w4rN161b4+/ujVq1a6NmzJ4YNG4bu3bsLHYsEwIPqSfRsbW2xbds2jV0Wp06dgpubG9LS0nScjIrTpEkTbNiwAZ999pna8bi4OHz11VdISUnRcTIqjpGREdLT01G7dm0AQPny5REXF4ePP/5Y4GT0Xzp69ChatWqF8uXLCx3lg9asWTNMnjwZHh4eascVCgX8/PzUfikm8YmNjUVubi7atWsHc3NzoeNQETVr1sSvv/6Kzp07qx0/ePAghgwZgoyMDB0no+K8ef6eTCYr1BTw+lomk3G7PRFi7aSJdZMm1k26UlJSMHz4cDx8+BD+/v7o1KmT0JFIS5cvX0ZgYCACAwORl5eHhw8fYseOHdzC+QPCSRUSPSMjI5w7dw516tRRO3716lXY29sjLy9Px8moOBUrVsTZs2dhZWWldvzatWuwt7dHbm6ujpNRceRyOe7cuYNq1aoBAExMTJCcnIy6desKnIyK06hRIxw9ehSVK1cGAIwfPx5z585F1apVAQB3796FtbU1f0+KjJGREdLS0jT+nrx69Srs7Ozw5MkTHSej4ixevBiPHz/GvHnzALxa+dW9e3f8+eefAIDq1avj4MGDaNy4sZAxqYhBgwbhxYsXCA8PVzvet29fGBgYICQkRMfJqDhXr17V6jlN3xNIOKydNLFu0sS6SdOiRYswe/ZsuLm5wc/PDyYmJkJHonegVCrx559/QqFQICIiAlWrVkW/fv2wevVqoaPRe8btv0j0zMzMcPHiRY0fAC5cuKB2iykSlpGREa5cuaLxZeGVK1dgZGSk41SkjZkzZ6JChQoAgOfPn2P+/PkwMzMr9MyKFSuEiEYanDt3Dvn5+arrbdu2wdPTUzWpolQq8fTpU6HikQZGRkbIzMzU+HsyOzsbhoaGOk5FJdmxYwe8vLxU16GhoTh8+DCOHDkCe3t7DB8+HHPmzMHOnTsFTElFff/992jXrh0GDBiA6dOnw9bWFsCr359LlixBVFQU4uLiBE5JRWnzAvCff/7RQRIqLdZOmlg3aWLdpMnPzw8hISHo3bu30FGoFPT09HD79m3VtrIymQxdu3ZF165d8fDhQ2zZsgUBAQECpyRd4EoVEj12FkpTz549YWFhgU2bNqkdHz16NG7duoW9e/fqOBkVp2PHjiXu2yqTyXiYr8jI5XJkZGSoPtiZmJjg9OnTqFevHgDgzp07sLCw4JJ/kenZsyesrKw0ngk2duxYXLt2jb8nRcbc3BxxcXGwt7cHAIwcORIvX77Eli1bAADx8fEYOHAgz+cQod9++w0eHh548OBBoftVqlTB5s2b0adPH4GSUWnl5OQgODgYmzdvxqlTp/j3TUJYO2li3aSJdRO3Bw8e8JBzCSr63Zs+XFypQqLHzkJp8vT0hJOTE8zMzPDdd9+hRo0aAF693F2yZAkCAwNVW6WQeBw6dEjoCEQfjBkzZqBjx4548OABPD09YWdnB6VSibNnz2L58uXYs2cPYmJihI5JReTn5xc6j+j48eOYPHmy6trCwgL3798XIBmVpFevXrh69Sr27duHCxcuQKlUwsbGBl26dFGt0CRxO3z4MBQKBcLCwmBhYYF+/fph7dq1QsciLbB20sS6SRPrJg0lTaj89ddfyMvLQ4cOHXSUiIhKg5MqJHotWrRAaGgoPDw83lqtUqVKFezcuRMtW7YUKB1p0qlTJ6xduxbffvstVq5cCVNTU8hkMmRlZaFcuXJYs2aNxsNiSTpMTU2RlJSkWhFBwpDJZG+tMCppxREJ79NPP8WOHTvw9ddfIywsrNCYubk5goOD0b59e4HSkSb169fH4cOHUa9ePVy7dg3p6emFvuzeuHGDXYciZmRkhC+//FLoGFQKGRkZCAwMhEKhQHZ2NgYNGoRnz55h9+7daNSokdDxqBisnTSxbtLEupU9w4YNQ3p6OlcYidDmzZthbGxc7DOTJk3SURoSCrf/Isl48uQJOwsl6ObNm9i5c2ehug0YMACWlpZCR6P/QNFtpkgYcrkcTZo0gb7+q16J5ORk2NnZwcDAAMCrzvqUlBR+IBepvLw8REVF4fz58wDAv28it2nTJkyZMgWDBw9GfHw8KlWqhGPHjqnG58+fjxMnTiAyMlLAlFRa7AYVp969e+Pw4cPo2bMnhgwZgm7dukFPTw/lypXD6dOn+aJQxFg7aWLdpIl1K5tu3bqFFy9eaHVmDumOXC6HpaUl9PT0ND4jk8lw6dIlHaYiIXBShcqcpk2bYu/evahdu7bQUagUevbsic2bN6NWrVpCR6FS4KSKOMyZM0er53x9fd9zEqIPg7+/PyIjI1GzZk34+vqiZs2aqrHx48fjiy++QL9+/QRMSKVlb2/PblAR0tfXx6RJkzBu3Dg0bNhQdZ8vCsWPtZMm1k2aWDci3eGZKvQat/+iMufKlSt48eKF0DGolA4fPownT54IHYNIkjhZIk2vDzYvyfDhw99zEiotDw8PeHh4qB1bt26djtPQf+HgwYP8/ChCR48ehUKhwMcffwx7e3sMGzYMLi4uQsciLbB20sS6SRPrRqQ73GabXuNKFSpz2DkvTaybNLFuRO9OLpfD2NgY+vr60PRxTCaT4eHDhzpORv9GYmIiZs2ahd9++03oKERlRm5uLnbs2AF/f38kJCTg5cuXWLFiBTw8PGBiYiJ0PCoGaydNrJs0sW7SIpfLS3xBL5PJkJ+fr6NEpA2uVKHXOKlCZQ5f8koT6yZNPKheHC5evIgff/wR/v7+AAArKys8fvxYNa6np4ejR4/C1tZWqIikRuPGjXHnzh0MHToUHh4eaNasmdCRSEtRUVHYv38/DAwMMHr0aNSrVw/nzp2Dt7c3IiMj0bVrV+zdu1fomERlUlpaGhQKBbZu3YrMzEw4OTkhIiJC6FikBdZOmlg3aWLdxG/Pnj0ax44fP47Vq1ejoKAAT58+1WEqKsmcOXPw3Xff8fxL4qQKlT18OS9NrJs0sW7iMHnyZBgZGWHhwoUAXtVl1qxZqu6ZHTt2wMrKChs2bBAyJqlx4sQJ+Pv7Y8eOHWjQoAFGjRqFIUOGwNTUVOhopIFCocBXX32FypUr49GjR6hSpQpWrFiBiRMnYvDgwfj2229hb28vdEwqgt2gZc/Lly8RGRmJgICAYl9MkfiwdtLEukkT6yYtaWlpqiadIUOGYO7cuTyoXmTu37+P3NzcQnVJSUnBsmXLkJubC2dnZ7i5uQmYkHSFZ6oQEdE7++OPP/DRRx8JHeODd/DgQSgUikL3+vfvr5rssra2xujRo4WIRiVo06YN2rRpg1WrViEkJAQBAQHw9PSEs7Mz/P39Ub58eaEjUhF+fn5YvHgxvvvuO4SFhWHgwIFYt24dzpw5A0tLS6HjkQbh4eEax97sBiXp0NPTw8uXL3H58mWho1ApsXbSxLpJE+smDbdu3YKvry+CgoLQtWtXJCUloUmTJkLHIjUmTpwICwsLLF++HABw9+5dfP7557CwsED9+vUxYsQIvHz5EsOGDRM4Kb1vcqEDEBGReDRq1KjQ+Q3jx4/H/fv3Vdd3794ttMz1s88+40tfEbhy5QosLCxU16NHj4aZmZnq2traGjdu3BAiGmnJyMgIw4cPx5w5c9C6dWts374deXl5QsciNS5evIiBAwcCAPr16wd9fX0sXbqUEyoi17dv37f+s7OzQ2BgIJYtW4aBAwciLS1N6JikxsaNGzFgwAC4ubnhxIkTAIDo6Gi0aNECw4cPx2effSZwQtKEtZMm1k2aWDdpysrKgpeXFxo0aICUlBQcPHgQkZGRnFARsfj4ePTp00d1vWXLFlSuXBlJSUnYs2cPFixYgLVr1wqYkHSFkyokep07d0ZmZqbWz2/cuBE1atR4f4FIKx4eHsjJydH6eR8fH1SuXPk9JiJtnDt3rtDWJ9u2bUN2drbqWqlUck9XEZLL5bh165bqeuXKlahSpYrq+s6dOyhXrpwQ0UgLN2/exIIFC9CwYUO4uLigVatWSElJgbm5udDRSI0nT56oJpdlMhnKly+PWrVqCZyKSuPWrVv46quv0LRpU+Tn5yMpKQlBQUHcXkOEFi1ahIkTJ+LKlSuIiIhA586dsWDBAgwZMgSDBw/GjRs3sG7dOqFjkhqsnTSxbtLEuknTkiVLUK9ePfz2228IDg5GXFwcPv/8c6FjUQkyMjJgbW2tuo6OjlY1WgFAnz59cP78eYHSkS5x+y8SvUOHDuH58+daP8+9C8UhKCgIixYtgomJiVbPf//99+85Eb0LdcdulbQnPele48aNceDAAbRu3VrteFRUFLudRGjnzp0ICAhAbGwsunbtiuXLl6Nnz57Q09MTOhqVYPPmzTA2NgYA5OfnIzAwEFWrVi30zKRJk4SIRsXIysrCggULsGbNGjRv3hwHDx7kywuRCwgIwKZNm+Du7o4jR47AwcEBcXFxuHDhAipWrCh0PCoGaydNrJs0sW7S5O3tDSMjIzRo0ABBQUEICgpS+9yuXbt0nIyKY2pqiszMTFUzTkJCAkaNGqUal8lkePbsmVDxSId4UD2JnlwuR0ZGhurAZZIG1k2aitat6EH0d+7cgYWFBV6+fClkTCpi06ZNmDx5Mnbu3ImePXsWGouMjISLiwtWrVqFr776SqCEpI5cLoeVlRWGDBlS7ApLvpwXF2tra60OPL906ZKOEpE2lixZgsWLF6NmzZpYsGAB+vbtK3Qk0oKRkRHS09NRu3ZtAED58uURFxeHjz/+WOBkVBLWTppYN2li3aRpxIgRWjUsBgQE6CANaatv376oWrUqNm3ahF27dmHIkCHIyMhQ7TLw+++/w9PTE2fPnhU4Kb1vXKlCkpCamoqMjIxin2nWrJmO0pC2cnJyYGhoWOwzpqamOkpD2pDJZG99sOPKFPH76quvEB0djd69e8POzg62trYAgLS0NKSlpaF///6cUBEhKysryGQy/PrrrxqfkclknFQRmStXrggdgd4Bu0Gl6dmzZ4U+SxoYGHC7WIlg7aSJdZMm1k2aAgMDhY5A72DevHlwdHTEtm3bkJ+fDx8fn0LbNm/fvh0ODg4CJiRd4aQKSYKjo6PGbYiUSiVkMhk750XIxsZG4xjrJk5KpRKOjo6q/UCfPHmC3r17w8DAAAAKnbdC4hIcHIy+ffti+/btqsOWGzZsiFmzZsHFxUXgdKQOX84T6c7w4cPZJCBRM2fOVJ1j9Pz5c8yfPx9mZmaFnlmxYoUQ0agErJ00sW7SxLpJW2ZmJi5cuAAAaNCgASpVqiRsINKoWbNmOHv2LI4dO4aaNWuiTZs2hcZdXFzQqFEjgdKRLnH7LxI9uVyOhIQEVKtWrdjneLiouMjlcoSFhZXYIcMZfHGZM2eOVs/5+vq+5yT0XyooKMDevXvRq1cvoaMQSV6PHj0QHByselGxaNEijB07VvXl98GDB/j888+RmpoqYEqisqFjx45abbcXHR2to0SkLdZOmlg3aWLdpOvKlSv45ptvEBUVpWoklslk6NatG3766adCB6KTNDVt2hR79+5Vbc9HZQcnVUj0eDaHNLFuRMK7cOEC/P39ERgYiHv37uHFixdCR6JS+Ouvv5CXl4cOHToIHYXeoKenh9u3b6v+vpmamiIpKYlnT0kIu0GJiIhIaNevX0erVq1Qrlw5jB8/Hvb29gBebX+/fv165Ofn4+TJk7C0tBQ4Kf0bRc+ppbJDLnQAIiIi+u88efIEW7ZsQYcOHWBra4u4uDjMmjULN27cEDoaldKwYcPQqVMnoWNQEUX7kdifJB1XrlxBz549UbVqVbRp0wZt2rRB1apV0atXL27HV0aYmpri0qVLQsegd8DaSRPrJk2smzjMnj0btra2OH/+PL7//ns4OzvD2dkZPj4+SE9Ph42NDWbPni10TCLSgGeqkOg5ODioznMg6ahTpw709PSEjkGl1LlzZ62e49Jx8Tl58iQ2b96M7du3o379+hgyZAji4uKwbt067ukqUQcPHuTqIqL/yPXr19G2bVuUK1cO8+bNe6sbtF27duwGLQM4ySldrJ00sW7SxLqJw759+7Bjxw4YGhq+NWZkZIR58+bxbEwiEeOkConerl27sHXrVri7u8PU1LTQWFZWFrZs2aJ2jISVmpqK/fv3o1OnTjAxMSk0lp2djUOHDqFr164oX768QAlJnUOHDqFOnTro2bMnypUrJ3Qc0lKzZs2QnZ0NNzc3xMXFoXHjxgAAb29vgZPRv2FhYSF0BFJDJpO9tW85D0AXv9fdoFFRUYVeXjg7O2PKlCno1q0bZs+ejc2bNwuYkoiIiD4U9+/fL/bMlHr16uHhw4e6C0REpcJJFRK9tWvX4vTp05g4ceJbY2ZmZjhy5Aiys7MxY8YMAdKRJps2bcKePXvQp0+ft8ZMTU2xevVqXL9+Hd98840A6UiTxYsXIyAgACEhIRgyZAg8PDzQpEkToWNRCdLS0jB48GB06tSJq1KI3jOlUokRI0aomgKePn2KsWPHomLFigCAZ8+eCRmPNGA3KBEREYlJrVq1kJqaqnGV7D///IOaNWvqOBURaYtnqpDohYaGYuzYsRrHx4wZg9DQUB0mIm1s3boVkydP1jg+efJkBAUF6S4QaeW7775Damoqdu/ejZycHLRv3x6tW7fGhg0bkJ2dLXQ80uDSpUuwtbXFuHHjYGlpCU9PT/z999/snhc5uVwOPT29Yv/T12f/i9i4u7ujevXqMDMzg5mZGYYOHQoLCwvVdfXq1TF8+HChY1IR7AYlIiIiMXF2doanpyfu3bv31tjdu3fh5eUFZ2dn3QcjIq3IlNxMkUTOxMQEKSkpsLKyUjt+7do1NGnShC98Rcbc3BynT58utm7/+9//8OjRIx0no9LIy8tDSEgI1q5di9TUVNy6dYtb7YlcdHQ0/P39sWvXLjx9+hSenp4YPXo0bGxshI5GRezZs0fj2PHjx7F69WoUFBTg6dOnOkxFVDZZW1vj559/RpcuXdSO79u3D2PHjuWB9RJnamqKpKQk1KtXT+goVEqsnTSxbtLEuonDo0eP0KZNG2RkZGDo0KGws7ODUqnE2bNn8euvv6JmzZqIj49H5cqVhY5Kbzh8+DA6dOhQ7DMTJ07EmjVrAAC//vor+vbtq1rVTmUH2x9J9PT09HDr1i2NL+dv3boFuZyLrsQmPz8f9+7d01i3e/fuIT8/X8epqLQSExMRGxuLs2fPokmTJjxnRQI6d+6Mzp07IysrC7/88gv8/f2xbNkyNGnSBMnJyULHozf07dv3rXtpaWnw9vZGZGQkhgwZgrlz5wqQjKjsed0NevDgQVSrVq3QGLtByw72C0oXaydNrJs0sW7iYG5ujhMnTsDHxwfbt29HZmYmAKBSpUpwc3PDggULOKEiQn369MGhQ4fQvHlzteMTJ05EUFCQalLFzc1Nh+lIl/gmmkSvRYsW2L17t8bx8PBwtGjRQneBSCuNGzfGgQMHNI7/+eefqsO0SVxu3bqFBQsWwMbGBgMGDEDlypVx4sQJxMfHw8jISOh4pCUzMzOMHz8ef/31FxITE9GxY0ehI1Exbt26ha+++gpNmzZFfn4+kpKSEBQUhDp16ggdjdSIiYnB8uXLcezYMQDAxo0bYWVlhWrVquGrr77CkydPBE5IRfn6+uLp06eoX78+xo8fj9WrV8PPzw9jx45FgwYN8OTJE8yaNUvomPQv/fHHH/joo4+EjkHvgLWTJtZNmlg38TA3N8f69evx4MEDZGRkICMjAw8ePMCGDRs4oSJSo0ePRrdu3XDhwoW3xr799lsEBAQgMjJSgGSkc0oikQsNDVXq6+sr16xZo8zPz1fdz8/PV65evVpZrlw5ZUhIiIAJSZ2NGzcqK1asqIyMjHxrLCIiQlmxYkXlxo0bBUhGxenevbvS0NBQ2adPH+Xu3buVL168EDoSUZmWmZmpnD59utLIyEjZrl075eHDh4WORCX4+eeflXp6esoGDRooy5cvr1ywYIGyYsWKyrFjxyrHjx+vNDU1VXp5eQkdk9R4+PChcuzYsUpzc3OlTCZTymQypbm5uXLMmDHKBw8eCB2P1LC3ty9Um3Hjxinv3bunur5z547SyMhIiGhUAtZOmlg3aWLdiHRr5MiRyjp16ihv3rypuvftt98qK1SooIyOjhYwGekSz1QhSZgxYwYWLlwIExMT1b6fly5dwuPHj/Hdd99h0aJFAickdYYOHYpff/0VdnZ2sLW1BQCcO3cO6enpGDRoEIKDgwVOSEXJ5XLUqlUL1atXL/aQ88TERB2mon/Lx8cHd+7cgUKhEDoKvWHJkiVYvHgxatasiQULFqjdDozEp0mTJhgzZgwmTpyIffv2oXfv3ti8eTPc3d0BACEhIfj+++/Vdq+ROCiVStWhsNWqVSv27x0JSy6XIyMjA9WrVwfw9jkAd+7cQa1atVBQUCBkTFKDtZMm1k2aWDdpatGihVafQfjdW3wKCgowYMAAnDt3DkeOHMGPP/6IDRs2IDIyEo6OjkLHIx3hmSokCT/++CP69u2LX375BRcuXIBSqYSDgwPc3NzQunVroeORBtu2bUOfPn3w66+/Ij09HUqlEra2tpgzZw4GDRokdDxSw9fXV+gI9B7cuHED169fFzoGFeHt7Q0jIyM0aNAAQUFBCAoKUvvcrl27dJyMinPp0iX06dMHANCtWzfIZLJCn0XatGnDnzeRk8lkqhdPJC3q+gE5KSYNrJ00sW7SxLpJA89yky65XI7t27ejZ8+esLe3R25uLiIiIjih8oHhpApJRuvWrTmBIkGDBg3iBIqEcFKlbNqyZYvQEUiN4cOH8wuuBD19+rTQ+VLly5dH+fLlC13n5+cLEY2KwW5QIiIiEpORI0fC0tIScjmPu5aS1atXq/7dsWNHHDlyBF27dkVqaipSU1NVY5MmTRIiHukQJ1VI9CIiItTeNzMzg42NDWrVqqXjRKSN5ORktffNzMxgZWXFF4kSkJycjPT0dACAjY0NmjVrJnAiorIlMDBQ6Aj0DmQyGXJycmBoaAilUgmZTIbHjx8jOzsbAFT/S+LCblBpkslkb31m5GdIaWDtpIl1kybWTZrq1q2L27dvc/WsxKxcubLQda1atZCcnFzoHZhMJuOkygeAZ6qQ6BU3ay+TyeDi4oJNmzahQoUKOkxFJZHL5ZDJZG8tPZbJZDA0NMTkyZMxd+5c6OnpCZSQNElISMCoUaOQmpqqqp9MJkPjxo2hUCjQqlUrgRNSUcePH8eDBw/Qq1cv1b0tW7bA19cXubm5cHZ2xpo1awp105O4ZGZmqs7gaNCgASpVqiRsINLo9d+3115PrBS9fvnypRDxSINr166xG1SC5HI5mjRpAn39V72AycnJsLOzg4GBAQAgPz8fKSkp/HkTIdZOmlg3aWLdpKnoWThEJC2cVCHJysrKwqlTp/DNN9/gyy+/xIIFC4SORG+4evWq2vuZmZk4deoUZs6ciSlTpsDT01PHyag4qampaNOmDezt7TFlyhTY29ur7q9cuRJpaWmIj49Ho0aNBE5Kb+revTs6duwILy8vAMCZM2fQsmVLjBgxAvb29li6dCnGjBmD2bNnCxuU3nLlyhV88803iIqKKjSJ2a1bN/z000+wtrYWNiC9JTY2VqvnHBwc3nMSKg09PT12g0rQnDlztHqO25eKD2snTaybNLFu0iSXy3Hnzh1Uq1ZN6Cj0H7t58yY++ugjoWPQe8ZJFZK8ffv2YfLkyTh37pzQUagUQkNDMWfOHJw5c0boKPSGQYMGIT8/H2FhYW8tGVcqlejXrx/KlSuHnTt3CpSQ1KlVqxYiIyPxySefAABmzJiB2NhYHD16FAAQEhICX1/fQnu8kvCuX7+OVq1aoVy5chg/fnyhScz169cjPz8fJ0+ehKWlpcBJiaSP3aBEREQkJnK5HF9//XWJu66sWLFCR4no38rIyMCPP/4IhUKBvLw8oePQe8YzVUjy7OzscOPGDaFjUCl9/PHHuHz5stAxqIiYmBj88ccfavfglclk8PHxQY8ePQRIRsV59OgRatSoobqOjY1F9+7dVdetWrXC9evXhYhGxZg9ezZsbW0RFRUFQ0ND1X1nZ2dMmTIF3bp1w+zZs7F582YBUxKVHdxfnoiIiMTkzJkzqm3a1OFnF/F59OgRxo8fj/3798PAwADe3t6YMGECZs+ejWXLlqFZs2YICAgQOibpACdVSPIuXboECwsLoWNQKWVkZHCZqwjl5OQUejlfVM2aNZGTk6PDRKSNGjVq4PLly6hduzaeP3+OxMTEQtsA5OTkoFy5cgImJHX27duHHTt2FJpQec3IyAjz5s2Di4uLAMmoONqeBcZ9y8Vn5syZ7AaVmM6dO2v1XHR09HtOQqXF2kkT6yZNrJt0hYeHcxWtxHh7eyMuLg4jRoxAVFQUpkyZgn379kEulyM6Ohpt27YVOiLpCCdVSNKSkpLg6emJnj17Ch2FSuHevXuYOXMmOnXqJHQUKqJOnTpISEhA7dq11Y6fOHECderU0XEqKkmPHj3g7e2NxYsXY/fu3ahQoQI+//xz1XhycjLq168vYEJS5/79+8WemVKvXj08fPhQd4FIK0qlEnXq1IG7uztatGghdBwqBXaDSs+hQ4dQp04d9OzZk80BEsPaSRPrJk2smzTxc4c0/fHHHwgMDETnzp0xYcIE1KtXD82bN+c5zx8gTqqQ6Jmbm6v9Y5Obm4v8/Hw4OTlpfTAb6U6LFi3U1i0rKws3btyAra0ttm3bJkAyKo6LiwumTp0KW1tbNGnSpNDYmTNn4OnpieHDhwuUjjSZN28e+vXrBwcHBxgbGyMwMLDQi0N/f3906dJFwISkTq1atZCamqrxzJR//vkHNWvW1HEqKklCQgIUCgX8/PxQt25deHh4YMiQITA3Nxc6GpWA3aDSs3jxYgQEBCAkJARDhgyBh4fHW59PSJxYO2li3aSJdZOmko64zszMxLZt2zBhwgQdJSJt3Lp1S3UWprW1NQwNDTF06FCBU5EQeFA9iV5QUJDa+6amprC1tUWjRo10nIi0oWmi63XdunbtqvUWKqQ7T58+haOjI06cOAEnJyfY29tDqVTi7NmzOHDgAFq3bo3o6Gi12xWR8LKysmBsbPzWz9bDhw9hbGxcbIc26d7kyZMRHR2NgwcPvrUd4t27d+Hk5IROnTph1apVwgSkYj19+hShoaEICAhAfHw8evfujVGjRsHJyUnoaKSGnp4ebt++zUkViTp+/Dj8/f2xc+dO2NrawsPDA25ubjA1NRU6GpWAtZMm1k2aWDdpCQoKgouLC8qXL1/o/sGDB6FQKBAeHo4KFSrgwYMHAiUkdfT09AptZ29iYoLk5GTUrVtX4GSka5xUISKiQp4/f46VK1ciODgY6enpAAAbGxu4uLhgypQpb33oI3FRKpV48OABZDIZqlSpInQcKsajR4/Qpk0bZGRkYOjQobCzs1NNYv7666+oWbMm4uPjUblyZaGjUgkuX76MUaNGITY2Fvfu3WPNREgulyMjI0PjpAq7QaUhLy8PISEhWLt2LVJTU3Hr1i2+LJQI1k6aWDdpYt2k5/r16wgICEBAQACuXbsGFxcXDBs2DI6OjtzSTWTkcjmaNGkCff1Xmz8lJyfDzs7urQbGxMREIeKRDnH7L5KMrKws7N+/H1euXIFMJkPdunXxxRdf8MOByCmVSpw6dapQ3TRtDUbiYGBgAC8vL3h5eQkdhUohIyMD06dPR0REBHJycgC8Whn25ZdfYuHChahRo4bACakoc3NznDhxAj4+Pti+fTsyMzMBAJUqVYKbmxsWLFjAl/Mid+PGDQQGBiIwMBB5eXn47rvv+LlEpAICAmBmZvbW/aLdoJxUEbfExETExsbi7NmzaNKkCV80SQhrJ02smzSxbtLw4sUL7N69G5s3b8aRI0fQrVs3LF26FK6urpgxYwZ3ZREpX1/fQtd9+/YVKAkJjStVSBJedw5mZ2cXum9mZoYNGzZg8ODBAiWj4sTExGDUqFG4evWqar/Q1xMr/v7+6NChg8AJqahHjx5h27ZtcHd3f+vFYFZWFrZs2aJ2jISVnZ2N5s2b4/HjxxgyZIhqxUNqaiqCg4Nhbm6OxMREGBsbCx2VNFAqlbh37x4AoFq1apx4FrHnz58jPDwcCoUCR44cQffu3eHh4YHu3btzW0uJYDeotNy6dUs1eZmdnY2hQ4fCw8ODL5skgLWTJtZNmlg36alevTrs7OwwdOhQDBw4UHU+X7ly5XD69GnWjkjkuFKFRC8xMREjR47EkCFDMGXKlEIvC1etWoVhw4bBzs4O//vf/4SOSm+4cOECevXqhTZt2mDlypWF6rZ69Wr06NEDycnJqFevntBR6Q0//fQTkpOTMXHixLfGzMzMcOTIEWRnZ2PGjBkCpCNN/Pz8oKenh5SUlLfO5vjhhx/Qvn17rF69Gj4+PgIlpJLIZDKe9SARtWrVgomJCdzd3bFu3TpV3XJzcws9x8lncWE3qDT16NEDMTEx6NKlC5YuXYqePXuqttsgcWPtpIl1kybWTZry8/Mhk8kgk8nYmCNRycnJhbZMb9asmcCJSJe4UoVEb+TIkXj8+DFCQkLUjg8YMACmpqbw9/fXcTIqzoQJE3D27FkcPHjwrTGlUokvvvgCjRo1wpo1awRIR5o0b94cy5cvh6Ojo9rxgwcPwtPTE3///beOk1Fx2rZtizFjxmDkyJFqx/39/bFp0yYcP35cx8moONpuhcj9eMVFLper/q2ufkqlEjKZDC9fvtRlLCoBu0GlSS6Xo1atWqhevXqxvy/5e1J8WDtpYt2kiXWTpqdPnyIsLAwKhQLx8fHo3r07hg4disGDByMpKYmfTUQsISEBo0aNQmpqaqFdWRo3bgyFQoFWrVoJnJB0gVPXJHrHjh3DunXrNI6PHTsW48eP12Ei0sahQ4ewcOFCtWMymQyTJ0/G999/r+NUVJKLFy+iYcOGGscbNmyIixcv6jARaSM9PR2ffvqpxvFPP/0Unp6eOkxE2nB2dhY6Ar2DmJgYoSPQO2A3qDQV3becpIO1kybWTZpYN2kyNDTEkCFDMGTIEFy8eBEBAQGYNGkS8vPz8eOPP2LEiBHo3LkzP7eITGpqKhwdHWFvb49t27bB3t5edX/lypVwdHREfHw8J8U+AFypQqJnbGyM1NRUWFlZqR2/du0a7O3t39p2g4RlamqK5ORkWFtbqx2/fPkymjVrpjpQm8ShUqVK2LdvH9q2bat2PD4+Ht26dVMdqE3ioK+vj5s3b2o8jD4jIwOWlpbIz8/XcTIqzrVr12BpaVlo5QMRvR/sBiUiIiKxKygoQFRUFBQKBSIjI2FsbIwHDx4IHYveMGjQIOTn5yMsLOytlWFKpRL9+vVDuXLlsHPnToESkq7wWzyJXl5eHgwNDTWOly9fHk+fPtVhItLG48ePUaFCBY3jFSpUQF5eng4TkTZatGiB3bt3axwPDw9HixYtdBeItKJUKot9MS+TycAeCvGpW7cu7t+/L3QMKqWdO3fi+fPnqusbN26goKBAdZ2Xl4clS5YIEY2K8bobNDo6GmfOnIG9vX2hbtD9+/dzyzaRS05ORmhoKEJDQ5GcnCx0HCoF1k6aWDdpYt2kTS6Xo3v37ggNDcWNGzd4lqkIxcTEwMfHR+1WezKZDD4+PlzZ/oHgShUSPblcjqCgIJiZmakdz8zMxMiRI/lFWGTkcjmio6NRuXJlteP379+Hk5MT6yYyYWFhcHFxwcqVKzFu3DjVUuOXL19i3bp1mDZtGn799VcMGDBA4KT0JrlcDjMzM417KCuVSmRnZ/PnTWTkcjkyMjJ4QL3E6Onp4fbt26q6mZqaIikpCfXq1QMA3LlzBxYWFvx5kwB2g0oD9y2XLtZOmlg3aWLdyp5Lly5h7Nix+PPPP4WOQm8wNDTE+fPnUbt2bbXj169fR8OGDdn8/QHgmSokCe7u7sWOa3PQL+meo6Oj2u74113zrJv49O/fH9OnT8ekSZMwY8YM1UvCS5cu4fHjx/juu+84oSJCAQEBQkegd8Tfg9JT9O8a+5Ok63U3aPfu3XHv3j1s3bpV6EhUBPctly7WTppYN2li3cqmnJwcHDx4UOgYVESdOnWQkJCgcVLlxIkTqFOnjo5TkRC4UoWI3ourV69q9Rz/2IhTQkICfvnlF1y4cAFKpRI2NjZwc3ND69athY5G7yA/Px93796FhYWF0FHoDXK5HF9//XWxWyUCwIoVK3SUiLRRdIWRiYkJTp8+zZUqEsduUHHivuXSxdpJE+smTaxb2XT69Gm0bNmSnylFxtfXF4GBgfj999/RpEmTQmNnzpxB7969MXz4cMydO1eghKQrnFQhIiIq4/iBXJzkcjnatWsHAwMDjc/IZDJER0frMBWVhJMqZRN/T4pTtWrV8Mcff+CTTz5RO37y5En06NED9+7d03EyKglrJ02smzSxbmUTP5uI09OnT+Ho6IgTJ07AyckJ9vb2UCqVOHv2LA4cOIDWrVsjOjq62LOhqWzg9l8kGSEhIQgODkZ6ejoAqDrnuRWRuJ08eVJt3TR94CNhXbt2TavnrKys3nMSog9DeHg4z1SRoKioKNVZbwUFBTh48CD++ecfAK/OeiOi/0ZOTg5q1KihcbxmzZrIycnRYSLSFmsnTaybNLFuRLpjaGiImJgYrFy5EsHBwYiNjQXw6l3X/PnzMWXKFJQvX17glKQLnFQh0SsoKICrqytCQkJgY2MDOzs7AEBKSgoGDx6MgQMHIjg4mPvSi9D06dOxbNkyGBsbqzp4Y2Nj4efnB09PTyxevFjghFSUtbW12p+lN8/AkclkyM/P13U0ojKHf7ekq+hZb2PGjCl0zdoS/Te4b7l0sXbSxLpJE+smTS1atCj2M2NeXp4O01BpGBgYwMvLC15eXkJHIQFxUoVEz8/PDwcOHEBERAR69epVaCwiIgIjR46En58fJk+eLExAUisoKAhr1qzB6tWrMWbMGJQrVw4A8OLFC6xfvx5eXl5o3Lgxhg8fLnBSetPff/+t9r5SqcT27duxevVqGBsb6zgVUdlU0g6smZmZ2LZtGyZMmKCjRKSNgoICoSMQfTBcXFwwdepU2Nraqt233NPTk58lRYq1kybWTZpYN2lydnYWOgK9A3d3dzg6OqJjx47cweMDxzNVSPSaNWuGyZMnw8PDQ+24QqGAn58fkpOTdZyMitO6dWu4urpiypQpasdXrFiB7du3IyEhQcfJqLQOHDgAb29vpKenY+rUqZg2bRpMTEyEjkVvKOn337lz5+Dq6sr9eEUmKCgILi4uby0PP3jwIBQKBcLDw1GhQgU8ePBAoIREZYc23aDnz5/n70mR4b7l0sXaSRPrJk2sG5HudOzYESdOnMDz589hbW2NTp06oVOnTujcuTNq1aoldDzSIU6qkOgZGRkhLS1N4wzw1atXYWdnhydPnug4GRWnYsWKOHPmjGrbr6IuXbqEpk2bIjc3V8fJSFuJiYnw8vLCkSNHMHr0aMyaNYtnP4iUXC6HTCZTu/Lh9X2ZTMaXhSJ2/fp1BAQEICAgANeuXYOLiwuGDRsGR0dH1Uo/EofDhw9r9VyHDh3ecxIqjTlz5mj1nK+v73tOQqX1/Plz1b7lb57R5+Liwn3LRY61kybWTZpYNyLdefbsGeLi4nDo0CEcOnQIJ06cwIsXL9CwYUPVBMvAgQOFjknvGSdVSPQqV66MQ4cOoVmzZmrHz5w5gw4dOuDRo0c6TkbFMTU1RUJCguoMnKLS0tLQqlUrZGdn6zgZleTixYvw8fFBWFgYBg0ahPnz52ucHCNxuHr1qlbPcS9lcXnx4gV2796NzZs348iRI+jWrRvc3Nzg6uqK06dPo1GjRkJHJDVeT2ICmrdw4yQmERERERXH3Nxc7SpaMzMz2NjYwNPTE05OTgIko9J6+vQp4uLi8Mcff+Dnn3/G48eP+V3gA8AzVUj02rVrh/Xr12P9+vVqx9euXYt27drpOBWVpGXLlvjll18wb948teNbt25Fy5YtdZyKSjJ+/HgoFAp06tQJf/31F5o3by50JNICJ0uk6aOPPoKdnR2GDh2K7du3w9zcHADg6uoqcDIqjrm5OUxMTDBixAgMGzYMVatWFToSUZn16NEjbNu2De7u7jA1NS00lpWVhS1btqgdI+GxdtLEukkT6yZNq1atUns/MzMTp06dQq9evRAaGorevXvrNhhp7fnz5zh+/DgOHTqEmJgYnDhxAhYWFujfv7/Q0UgHOKlCojdjxgx07NgRDx48gKenJ+zs7FT7gy5fvhx79uxBTEyM0DGpCE9PTzg7O+PZs2eYNm0aatSoAQDIyMjA8uXLsWrVKoSHhwuckorasGEDDA0NcffuXY3nGAGvtgYj8Tl58uRbS/7d3NzwySefCJyM1MnPz4dMJoNMJoOenp7QcUhLt2/fRnh4OPz9/bFkyRL06NEDo0aNQrdu3Yo9s4OExW5Qafrpp5+QnJyMiRMnvjVmZmaGI0eOIDs7GzNmzBAgHRWHtZMm1k2aWDdpcnd3L3a8efPmWLhwISdVRObw4cOFJlGsrKzg4OCAr7/+Gtu2bYOlpaXQEUlHuP0XSUJ4eDi+/vprPHz4sNB9c3NzbNy4kbPAIrVmzRp4enoiPz8fZmZmAF51yujr62PJkiX49ttvBU5IRXHPeemaPn06li1bBmNjY9V2bRcvXkReXh48PT2xePFigRNSUU+fPkVYWBgUCgXi4+PRvXt3DB06FIMHD0ZSUhK3/5KAa9euITAwEEFBQXj27Bnc3d0xZ84c6Ouzb0lsgoKC1N5/3Q26Y8cOdoOKUPPmzbF8+XI4OjqqHT948CA8PT3x999/6zgZlYS1kybWTZpYt7IpPT0dbdu2fes9GAlLLpfDysoKXl5e6Nevn6qBmD48nFQhycjLy0NUVBTOnz8P4FUHdpcuXVChQgWBk1Fxbty4gZCQkEJ169+/P2rXri1wMqKyIygoCGPHjsXSpUsxZswY1cHmL168wPr16+Hl5YWNGzdi+PDhAiclTS5evIiAgAAEBQXh5s2bcHV1xYgRI9C5c2euYpGAy5cvY9SoUYiNjcW9e/dQuXJloSNRKa1YsQKhoaGIi4sTOgq9wcTEBCkpKbCyslI7fu3aNTRp0oRn9IkQaydNrJs0sW5l05kzZ+Dk5ISMjAyho9AbvL29cejQIfz999+wtbWFg4MDOnbsCAcHB24L/IHhpAqVCTdv3sRHH30kdAwqpSdPnsDIyEjoGESS17p1a7i6umLKlClqx1esWIHt27cjISFBx8motAoKChAVFQWFQoHIyEgYGxvjwYMHQsciNZ49e4awsDD4+/vj+PHj6NmzJzw8PNCtWzeho9E7YDeoOFWqVAn79u1D27Zt1Y7Hx8ejW7duyMzM1G0wKhFrJ02smzSxbmXT5MmTce7cOezbt0/oKKTG48ePceTIERw6dEg1yWJjYwMHBwd06tQJAwYMEDoivWfcm4AkLSMjAz/++CMUCgXy8vKEjkNaevbsGX766ScsXbqUXRci06JFC63OBOCZKuKSkpKCvn37ahx3dnbGzJkzdZiI3pVcLkf37t3RvXt33Lt3D1u3bhU6EhWRkJCAgIAAbN++HdbW1hg5ciR27tzJ1SkS9+zZMxgYGAgdg4po0aIFdu/erfFFYXh4OFq0aKHjVKQN1k6aWDdpYt2kaerUqWrvZ2VlITExEenp6Th8+LCOU5G2jI2NVd/bAODhw4dYsWIF1qxZgw0bNuDly5cCJ6T3jZMqJHqPHj3C+PHjsX//fhgYGMDb2xsTJkzA7NmzsWzZMjRr1gwBAQFCx6Qinj17htmzZ6vqNn36dDg7OyMgIAAzZsyAnp6exq56Eo6zs7PQEegd6Onp4fnz5xrHX7x4wS2kJCgnJwf79u3T+IWLhNG2bVtYWVlh0qRJ+PjjjwEAR48efeu5Pn366Doa/QsKhQLNmzcXOgYVMWHCBLi4uMDS0hLjxo1T/S17+fIl1q1bh5UrV+LXX38VOCWpw9pJE+smTaybNGk648bU1BROTk7YtWsX6tatq+NUpK2CggKcPHlStVLl2LFjePz4MaysrNCvXz+h45EOcPsvEr0xY8Zg3759GDhwIKKiopCamoquXbtCLpfjhx9+0NiNQcJ6fYbDF198gbi4ONy7dw8jR45EfHw8fHx8MHDgQL7kJfqPdOzYEZ9//jnmzZundvyHH37A0aNHcejQId0Go3/l9OnTaNmyJbucREYul5f4jEwmY91ERttu0NcTZSQeM2bMwMKFC2FiYoJ69eoBAC5duoTHjx/ju+++w6JFiwROSJqwdtLEukkT60akG0uWLFFNouTk5OCjjz5Cx44d0alTJ3Tq1IkTYR8QTqqQ6FlZWSEwMBCdO3fGlStXUK9ePXh7e2PBggVCR6Ni1KtXD6tWrUKfPn3wzz//oFmzZhgxYgQUCoVW20sRkfZ+++03ODs7Y+rUqZg2bRpq1KgB4NUWicuXL8eqVasQHh6OXr16CZyUSoOTKkT/nU6dOqm9b2pqCltbW4wbN45fgkUsISEBv/zyCy5cuAClUgkbGxu4ubmhdevWQkejErB20sS6SRPrJj1XrlzB/v378eLFCzg4OKBx48ZCR6ISWFhYFJpEadCggdCRSCCcVCHR09fXx/Xr11GrVi0AQIUKFfDXX3+hUaNGAiej4hgYGODy5cv46KOPAABGRkZISEhA06ZNBU5G/4aPjw8yMjLg7+8vdBQqYs2aNfD09ER+fj7MzMwAvOrA1tfXx5IlS/Dtt98KnJBKi5MqZUPPnj2xefNm1ecYIiIiIqKYmBj06tULT548AfDq3Ze/vz+GDh0qcDIi0gbPVCHRUyqV0Nf/v/+r6unpwcjISMBEpI2XL18WOvBVX18fxsbGAiai/8LNmzdx/fp1oWOQGhMnTsSXX36JkJAQnD9/HgBgY2OD/v37o3bt2gKnI/pwHT58WPVlmYTFblDpuXbtmlbPWVlZveckVFqsnTSxbtLEuknTzJkz4eTkhPXr18PQ0BA//PADpk+fzkkVIongShUSPblcjiZNmqgmVpKTk2FnZ1fohT0AJCYmChGPNJDL5ejevTvKly8PAIiMjETnzp1RsWLFQs/t2rVLiHhERIJr0aJFsdsh5uXl4fz581ypInEmJiY4ffq0an9zEga7QaVJLper/T2pVCpV92UyGfLz83UdjUrA2kkT6yZNrJs0VapUCXFxcapdWPLy8mBqaoo7d+6gSpUqAqejd2Vvb4/09HR+h/sAcKUKiZ6vr2+h6759+wqUhErD3d290DVfWhC9PxEREVo916dPn/echErD2dlZ6AhEHwx2g0rT33//rfa+UqnE9u3bsXr1aq6EFinWTppYN2li3aQpOzsbVatWVV1XqFABRkZGyMrK4qSKhC1cuBBZWVlCxyAd4EoVIiJSOX78OB48eFDoQPMtW7bA19cXubm5cHZ2xpo1a1QrkEgc5HJ5oWuZTIaif95lMhm7ZYgEwJUq4sBu0LLjwIED8Pb2Rnp6OqZOnYpp06bBxMRE6FikBdZOmlg3aWLdxE8ulyMoKEh1HiYAuLq6YtWqVahRo4bqHhvjiMSJK1VIEuLj4xEZGYnnz5/D0dER3bp1EzoSaeH13uXPnz9Hx44duXe5BMydOxcdO3ZUTaqcOXMGo0aNwogRI2Bvb4+lS5fCwsICs2fPFjYoFVJQUFDomi9xiYgKYzeo9CUmJsLLywtHjhzB6NGjsXfvXlSvXl3oWKQF1k6aWDdpYt2kpegOHwAwZswY1b/ZGCcdsbGxyM3NRbt27WBubi50HNIBTqqQ6IWGhmLw4MEwMjJCuXLlsGLFCixevBienp5CR6NicO9yaUpKSsK8efNU19u3b0ebNm2wadMmAEDt2rXh6+vLSRWi/4C5ubna/a/NzMxgY2MDT09PODk5CZCMqGyKiooq1A1aUFCAgwcP4p9//lHdYzeo+Fy8eBE+Pj4ICwvDoEGDkJqayqYBiWDtpIl1kybWTXqKNsaRNCxevBiPHz9WvTdRKpXo3r07/vzzTwBA9erVcfDgQTYVfwC4/ReJ3scff4xWrVph7dq10NPTw8KFC7F06VI8fPhQ6GhUjM8++wxVq1YttHd5eHg4bt26JXQ0KoahoSHOnz+P2rVrA3hVx+7du2PGjBkAXq0+atq0KXJycoSMSSXgShVpCAoKUns/MzMTp06dwo4dOxAaGorevXvrOBn9lxYuXIhx48ahUqVKQkf5oBXdJlEddoOKz/jx46FQKNCpUycsWrQIzZs3FzoSaYm1kybWTZpYNyLdadmyJby8vDB48GAAQEhICNzd3bF//37Y29tj+PDhqFChAnbu3ClwUnrfOKlComdsbIykpCQ0aNAAAPD8+XNUrFgRN2/e5DJWEePe5dJUp04dbN26FR06dMDz589RqVIlREZGwtHREcCr7cAcHBw4qSlynFQpG1asWIHQ0FDExcUJHYXUiI6Oxq5du3DlyhXIZDLUrVsXAwYMQIcOHYSORlRmyOVyGBoaws7OrtjnEhMTdZSItMXaSRPrJk2sm7SFhIQgODgY6enpAAAbGxu4ublhwIABAicjdczNzREXFwd7e3sAwMiRI/Hy5Uts2bIFwKvjCwYOHIjr168LGZN0gNt/kei9fhn/moGBAQwNDfH48WNOqogY9y6Xph49esDb2xuLFy/G7t27UaFCBXz++eeq8eTkZNSvX1/AhKQNmUymdlspkpZevXph/vz5QscgNcaOHYuff/4Z5ubmsLGxgVKpRFxcHNauXYvx48djzZo1QkckKhN8fX2FjkDviLWTJtZNmlg3aSooKICrqytCQkJgY2OjmhRLSUnB4MGDMXDgQAQHB/N7ncjk5+ejfPnyquvjx49j8uTJqmsLCwvcv39fgGSka5xUIUnYvHkzjI2NVdf5+fkIDAws9NJ+0qRJQkSjYnDvcumZN28e+vXrBwcHBxgbGyMwMBAGBgaqcX9/f3Tp0kXAhKRO0bM5Hj9+jBYtWry13Q1XGEnLs2fPCv38kTiEh4cjICAA/v7+cHd3V/3sFRQUIDAwEOPGjYOTkxP/vokUu0GlhS8KpYu1kybWTZpYN2ny8/PDgQMHEBERgV69ehUai4iIwMiRI+Hn51fohT0Jr379+jh8+DDq1auHa9euIT09vdBK9Rs3brCR+APB7b9I9KytrUucmZfJZLh06ZKOEpE2uHe5tGVlZcHY2Bh6enqF7j98+BDGxsZ80SsygYGBWnUwubu76yAN/VcmT56Mc+fOYd++fUJHoTf06dMHjRs3xsKFC9WOe3l54dy5c9izZ4+Ok1FxNHWDnj17FhcuXGA3KBEREelUs2bNMHnyZHh4eKgdVygU8PPzQ3Jyso6TUXE2bdqEKVOmYPDgwYiPj0elSpVw7Ngx1fj8+fNx4sQJREZGCpiSdIGTKkREpJZSqcSDBw8gk8nYaUH0HkydOlXt/aysLCQmJiI9PR2HDx/Gxx9/rONkVBxLS0vs2rULrVu3Vjt+4sQJ9O/fHzdu3NBxMirOypUrMX/+fAQFBWnsBp05cya7QUWmRYsWWk108ZwA8WHtpIl1kybWTZqMjIyQlpYGKysrteNXr16FnZ0dnjx5ouNkVBJ/f39ERkaiZs2a8PX1Rc2aNVVj48ePxxdffIF+/foJmJB0gdt/ERFRIRkZGZg+fToiIiKQk5MDADA1NcWXX36JhQsXokaNGgInpKISEhLw8ccfv7Wy6LVnz55hz549GDRokI6TUXH+/vtvtfdNTU3h5OSEXbt2oW7dujpORSW5f/8+LC0tNY5bWlriwYMHOkxE2ggICMDSpUvfmlABXq0+WrJkCbfYECFnZ2ehI9A7Yu2kiXWTJtZNmoyMjJCZmalxUiU7OxuGhoY6TkXa8PDw0LjCaN26dTpOQ0LhShWSvL/++gt5eXmF9jAk8bt9+zZevHih8QMECSM7OxvNmzfH48ePMWTIENjZ2UGpVCI1NRXBwcEwNzdHYmJioTOOSHh6enq4ffs2qlevDuDVS/mkpCTUq1cPAHDnzh1YWFhwuz2i/4BcLsedO3dQrVo1teP8eRMndoMSERGRmPTs2RNWVlZYv3692vGxY8fi2rVr2Lt3r46T0b+RmJiIWbNm4bfffhM6Cr1nXKlCkjds2DCkp6fz5YXEdO7cmXUTIT8/P+jp6SElJeWtF4Y//PAD2rdvj9WrV8PHx0eghKRO0f4Idf0S7KEQpytXrmD//v148eIFHBwc0LhxY6EjkRZmzpyJChUqqB3Ly8vTcRrSBrtBiYiISExmzJiBjh074sGDB/D09FQ1NJ49exbLly/Hnj17EBMTI3RMUiMqKgr79++HgYEBRo8ejXr16uHcuXPw9vZGZGQkunbtKnRE0gGuVCHJu3XrFl68eIE6deoIHYVK4eTJk8jLy4ODg4PQUegNbdu2xZgxYzBy5Ei14/7+/ti0aROOHz+u42RUHLlcjoyMDNVKFRMTE5w+fZorVUQuJiYGvXr1UnXG6+vrw9/fH0OHDhU4GRWnY8eOWu1bzi/B4sJu0LLJx8cHGRkZ8Pf3FzoKlRJrJ02smzSxbuIVHh6Or7/+Gg8fPix039zcHBs3bkT//v0FSkaaKBQKfPXVV6hcuTIePXqEKlWqYMWKFZg4cSIGDx6Mb7/9Fvb29kLHJB3gShWSPAsLC6Ej0Dto1aqV0BFIjfT0dHz66acaxz/99FN4enrqMBFR2TVz5kw4OTlh/fr1MDQ0xA8//IDp06dzUkXkDh06JHQEegfsBi2bbt68ievXrwsdg94BaydNrJs0sW7i9eWXX6Jr166IiorC+fPnAQA2Njbo0qWLxlXRJCw/Pz8sXrwY3333HcLCwjBw4ECsW7cOZ86cKfbcRSp7uFKFiHTm6dOn2LFjB3Jzc+Hk5ISGDRsKHYmK0NfXx82bNzUeRp+RkQFLS0vk5+frOBkVRy6XIzo6GpUrVwbwavJr586dqg919+/fh5OTE1eqiEylSpUQFxeHRo0aAXi1bZSpqSnu3LmDKlWqCJyO3tWlS5cwduxY/Pnnn0JHoSLYDUpERERiolQqceHCBTx//hy2trbQ12fvu9hVrFgRKSkpsLa2hlKpRPny5RETE4P27dsLHY10jJMqJHpyubzEbTZkMhlf8orM1KlT8eLFC6xZswYA8Pz5c7Rp0wYpKSmoUKEC8vPzsX//frRr107gpPQmPT09ZGRk8ABmiXn9e1Ldn/TX92UyGesmMkW3bQPe3rqNpOf06dNo2bIlf95EKi8vj92gREREJLjLly+jT58+SE1NBQBYWloiLCwMn3zyicDJqDglbb1NHw5OgZLohYeHaxw7fvw4Vq9ejYKCAh0mIm38+eefWLBgger6l19+wdWrV3H+/HlYWVnBw8MD8+fPx++//y5gSipKqVTCxsZG40Qm5+HF6fLly0JHoHcUFRUFMzMz1XVBQQEOHjyIf/75R3WvT58+QkQjKnOUSiVu3rwJGxsb9O7dm92gEnD8+HE8ePAAvXr1Ut3bsmULfH19kZubC2dnZ6xZswbly5cXMCWpw9pJE+smTaybNH333XfIz8/Htm3bYGhoiGXLluHrr79GYmKi0NGoBJs3b4axsTEAID8/H4GBgahatWqhZyZNmiRENNIhrlQhSUpLS4O3tzciIyMxZMgQzJ07lwfVi4ypqSkSExPRoEEDAICrqytMTEzw888/AwCSkpLQo0cP3Lp1S8iYVERQUJBWz7m7u7/nJERln1wuL/EZrjCSHq5UESd2g0pT9+7d0bFjR3h5eQEAzpw5g5YtW2LEiBGwt7fH0qVLMWbMGMyePVvYoPQW1k6aWDdpYt2kqWbNmggNDcVnn30GALh9+zYsLS2RnZ2NihUrCpyONLG2ttZqN51Lly7pKBEJhe1ZJCm3bt2Cr68vgoKC0LVrVyQlJaFJkyZCxyI15HJ5oVUN8fHxmDlzpuq6UqVKePTokRDRqBglTZbk5+fj7t27OkpD2rp//z5yc3MLTS6npKRg2bJlqu40Nzc3AROSOlxlSaQ77AaVpqSkJMybN091vX37drRp0wabNm0CANSuXRu+vr58UShCrJ00sW7SxLpJ0927dwudM1urVi0YGRnh7t27qFu3roDJqDhXrlwROgKJBCdVSBKysrKwYMECrFmzBs2bN8fBgwfx+eefCx2LimFvb4/IyEhMnToVKSkpuHbtGjp16qQav3r1qsbD0Em8UlJS2IEtQhMnToSFhQWWL18O4NUH9M8//xwWFhaoX78+RowYgZcvX2LYsGECJyWSvhYtWhTbnZaXl6fDNKSto0ePFuoGbdu2LSwtLZGbm8tuUBF79OhRoc+LsbGx6N69u+q6VatWuH79uhDRqASsnTSxbtLEukmTTCbD48ePYWRkpLonl8uRk5OD7Oxs1T1TU1Mh4hFRCTipQqK3ZMkSLF68GDVr1kRwcDD69u0rdCTSwvTp0+Hi4oLff/8dKSkp6NGjR6Fui71796J169YCJiQqO+Lj4xEYGKi63rJlCypXroykpCTo6+tj2bJlWLt2LSdVRCokJATBwcFIT08H8OrgbDc3NwwYMEDgZKSOs7Oz0BHoHbAbVJpq1KiBy5cvo3bt2nj+/DkSExMxZ84c1XhOTg7KlSsnYELShLWTJtZNmlg3aXp9nmnRey1atFD9m1sBi0+PHj0QHBysOhdz0aJFGDt2LCpVqgQAePDgAT7//HPVlrNUdnFShUTP29sbRkZGaNCgAYKCgjSe+bBr1y4dJ6PifPnll9i7dy9+++03dOnSBRMnTiw0XqFCBYwfP16gdERlS0ZGBqytrVXX0dHR6Nevn+oQ5j59+mDhwoUCpSNNCgoK4OrqipCQENjY2MDOzg7AqxVhgwcPxsCBAxEcHFzinr2kW76+vkJHoHfAblBp6tGjB7y9vbF48WLs3r0bFSpUKLRaPTk5GfXr1xcwIWnC2kkT6yZNrJs0xcTECB2B3kFUVBSePXumul6wYAEGDRqkmlTJz89HWlqaQOlIlzipQqI3fPhwvlCSKEdHRzg6Oqod40spov+OqakpMjMzVWeqJCQkYNSoUapxmUxW6IMfiYOfnx8OHDiAiIgI9OrVq9BYREQERo4cCT8/P0yePFmYgFSi5OTkQiuMmjVrJnAi0oTdoNI0b9489OvXDw4ODjA2NkZgYCAMDAxU4/7+/ujSpYuACUkT1k6aWDdpYt2kycHBQegI9A7ePDtY3TV9OGRKVp+I3oMlS5Zg4sSJqo7QY8eO4ZNPPkH58uUBvFqC7OXlhXXr1gkZk4pITk4udvzcuXNwdXXlSyeR6du3L6pWrYpNmzZh165dGDJkCDIyMmBubg4A+P333+Hp6YmzZ88KnJTe1KxZM0yePBkeHh5qxxUKBfz8/Er8uSTdez1xmZqaqvoiJZPJ0LhxYygUCrRq1UrghFRUbGysVs/xBYc4ZWVlwdjYGHp6eoXuP3z4EMbGxoVeHpK4sHbSxLpJE+tG9P7J5XJkZGSgevXqAAATExOcPn0a9erVAwDcuXMHFhYWfGfyAeCkCklKZmYmLly4AABo0KCBankdiY+enh5u376t+kNjamqKpKQk/qEROblcDplMprbb4vV9dvKKT3JyMhwdHZGdnY38/Hz4+Phg3rx5qvFhw4ahYsWK2LBhg4ApqSgjIyOkpaXByspK7fjVq1dhZ2eHJ0+e6DgZFSc1NRVt2rSBvb09pkyZAnt7e9X9lStXIi0tDfHx8WjUqJHASYnKFqVSiQcPHkAmk6FKlSpCx6FSYO2kiXWTJtaN6P3S09NDRkYGqlWrBuDVpEpycrLqjD6+6/pwcPsvkoQrV67gm2++QVRUVKGO0G7duuGnn34qdJYAiQOXRErT5cuXhY5A76BZs2Y4e/Ysjh07hpo1a6JNmzaFxl1cXPiCV4SMjIyQmZmpcVIlOzsbhoaGOk5FJZk9ezacnJwQFhZWaHvS5s2bw9XVFf369cPs2bOxc+dOAVMSlR0ZGRmYPn06IiIikJOTA+BVs86XX36JhQsXokaNGgInJE1YO2li3aSJdSPSDaVSiREjRqh2YXn69CnGjh2LihUrAgC33f6AcKUKid7169fRqlUrlCtXDuPHjy/UEbp+/Xrk5+fj5MmTsLS0FDgpvYlLIomIitezZ09YWVlh/fr1asfHjh2La9euYe/evTpORsWpVq0a/vjjD3zyySdqx0+ePIkePXrg3r17Ok5GVPZkZ2ejefPmePz4MYYMGQI7OzsolUqkpqYiODgY5ubmSExMhLGxsdBRqQjWTppYN2li3Yh0Z+TIkVo9FxAQ8J6TkNA4qUKiN2rUKFy4cAFRUVFvdew+efIE3bp1Q8OGDbF582aBEpI6nFSRtpMnTyI4OLjQAcxubm4aXyKSsKZOnar2vpmZGWxsbNCvXz9VJw2JR1xcHDp27AhnZ2d4enqqvgCfPXsWy5cvx549exATE4P27dsLHZXeYGhoiPPnz6N27dpqx69fv46GDRvi6dOnOk5GVPbMmzcPW7ZsQVxcnGqbjdfu3r2L9u3bY+TIkfDx8REoIWnC2kkT6yZNrBsRke5xUoVE76OPPsKOHTvw2WefqR0/fPgwXFxccOvWLR0no+LI5XLMnz9f1Q3j5eWF7777DlWrVgXw6qD6WbNmcVJFhKZPn45ly5bB2NhYNQl28eJF5OXlwdPTE4sXLxY4IRXVqVMntfdfn0NVo0YNREdHa9xmioQTHh6Or7/+Gg8fPix039zcHBs3bkT//v0FSkaa2NraYsGCBRprExoaihkzZiAtLU3HyYjKnrZt22LMmDEau0L9/f2xadMmHD9+XMfJqCSsnTSxbtLEuklPy5YtS/W8TCZDREQEPvroo/eUiIhKi5MqJHrly5fHxYsXNW7vdePGDTRo0IAdoSJjbW1daK95TXiGh7gEBQVh7NixWLp0KcaMGYNy5coBAF68eIH169fDy8sLGzduxPDhwwVOStrKzs7GkCFDYGJigl9//VXoOKRGXl4eoqKicP78eQCvVoZ16dIFFSpUEDgZqePr64vAwED8/vvvaNKkSaGxM2fOoHfv3hg+fDjmzp0rUEKisqNy5co4fvw4bG1t1Y6fO3cOn3766VsT0yQ81k6aWDdpYt2kRy6XY9q0aVptyaZUKrFo0SKkpqaqmh5JWDExMUhMTETbtm3Rvn17bNy4ET/++COePHkCZ2dnrF69GkZGRkLHpPeMkyoketbW1vj555/RpUsXteP79u3D2LFjceXKFd0GIyqDWrduDVdXV0yZMkXt+IoVK7B9+3YkJCToOBn9GwkJCRg4cCCuXr0qdBQqQqlU4sKFC3j+/DlsbW2hr68vdCQqwdOnT+Ho6IgTJ07AyckJ9vb2qm3bDhw4gNatWyM6OvqtLUtJOOwGlS59fX3cvHlT4wHLGRkZsLS0RH5+vo6TUUlYO2li3aSJdZOeotull6ToduoknE2bNmHcuHGoW7curl+/Dl9fX/z4448YNmwY5HI5tm3bhnHjxmHRokVCR6X3jN/cSfRe7zV/8OBBtfuDenl5wdnZWZhw9K/cvHmTLyxEJiUlBX379tU47uzsjJkzZ+owEf0Xqlatys40Ebp8+TL69OmD1NRUAIClpSXCwsJ4dpHIGRoaIiYmBitXrkRwcDBiY2MBvFphNH/+fEyZMoVnGIlMUlJSqbtBnz17poNkVBKlUgm5XK5xXCaTgT2C4sTaSRPrJk2sm/Rcvnz5rfdbxUlNTYWFhcV7TETa8vPzw8qVKzFx4kTs27cPvXv3xubNm+Hu7g4A6NixI77//ntOqnwAuFKFRO/Ro0do06YNMjIyMHTo0EIH+f7666+oWbMm4uPjUblyZaGjkpYyMjLw448/QqFQIC8vT+g49AZTU1MkJCTAzs5O7XhaWhpatWqF7OxsHSejf+PXX3/FkiVLkJSUJHQUesOAAQOQkpKCWbNmwdDQEMuWLcOTJ0+QmJgodDSiMoXdoNIll8thZmamcUtZpVKJ7OxsntEnQqydNLFu0sS6EelOhQoVcPbsWdSpUwcAYGBggNOnT8Pe3h4AcO3aNTRs2JANOh8ArlQh0TM3N8eJEyfg4+OD7du3IzMzEwBQqVIluLm5YcGCBZxQEaFHjx5h/Pjx2L9/PwwMDODt7Y0JEyZg9uzZWLZsGZo1a4aAgAChY1IRLVu2xC+//IJ58+apHd+6dWupt1Gh9y85OVnt/aysLJw6dQoLFiyAr6+vjlNRSY4ePYrQ0FB89tlnAF4dMmppaYnc3FxUrFhR4HREZQe7QaWLnxWli7WTJtZNmlg3abp27ZpWz1lZWb3nJFQaT58+LXReSvny5QutUi9fvjy32vtAcKUKSYpSqcS9e/cAANWqVdPqIHQSxpgxY7Bv3z4MHDgQUVFRSE1NRdeuXSGXy/HDDz+gbdu2QkckNX777Tc4Oztj6tSpmDZtmmpf3oyMDCxfvhyrVq1CeHg4evXqJXBSepNcLte4rL9q1aqYOnUqvLy8+DtTZORyOW7fvl1o/2tjY2OcOXMGdevWFTAZFcfc3FyrnyVuuUf0/uXn5+Pu3bucBJMg1k6aWDdpYt3E6fV3uKKUSqXqvkwm4wt6kdHT00N6ejqqVasGpVKJ2rVr4+jRo7C2tgYA3LlzB3Z2dlwZ9gHgpAoRvRdWVlYIDAxE586dceXKFdSrVw/e3t5YsGCB0NGoBGvWrIGnpyfy8/NhZmYG4NWKB319fSxZsgTffvutwAmpKE0H0JuamsLc3FzHaUhbb34gf83S0rLQh3LgVR1JPIKCglT/ViqVGDduHObOnfvW1lKv91UmcWA3aNl0+vRptGzZki8uJIi1kybWTZpYN3E6ffq02vtKpRLbt2/H6tWrYWxsjLt37+o4GRWn6GTYm5Ngb17z563s46QKiV6LFi206gjlHvTioq+vj+vXr6NWrVoAXu07+ddff6FRo0YCJyNt3LhxAyEhITh//jyAVwcw9+/fH7Vr1xY4GVHZoa477c0P5fxALg08f0Ma2A1aNvFFoXSxdtLEukkT6yYdBw4cgLe3N9LT01W7R5iYmAgdi94QGxur1XMODg7vOQkJjWeqkOg5OzsLHYHegVKphL7+//2K0dPTK7TvJImbpaUlpkyZInQMKqWQkBAEBwcjPT0dwKvJMDc3NwwYMEDgZKROTEyM0BGIPhh///232vtFu0GJiIiIdC0xMRFeXl44cuQIRo8ejb179761CprEgZMl9BonVUj0Ro4cCUtLS8jlcqGjUCkolUo4OjqqJlaePHmC3r17w8DAoNBzXGEkLhEREVo916dPn/echEqjoKAArq6uCAkJgY2NDezs7AAAKSkpGDx4MAYOHIjg4GCeqSIy/EBOpDv/+9//3rr3Zjfo9OnTMW3aNAGSERER0Yfq4sWL8PHxQVhYGAYNGoTU1FSufiaSCE6qkOjVrVsXt2/f5iy9xPj6+ha67tu3r0BJqDSKrgxTd/g5tyMSHz8/Pxw4cAARERHo1atXobGIiAiMHDkSfn5+mDx5sjABiYhEhN2g0pGcnFzseFpamo6SUGmxdtLEukkT6yZN48ePh0KhQKdOnfDXX3+hefPmQkciLejp6Wn1HN+ZlH08U4VETy6XIyMjg192iQTAswKkoVmzZpg8eTI8PDzUjisUCvj5+ZX4hYuISjZ16tRC12vXrsXQoUNhZmZW6P6KFSt0GYu0ULQbdP78+fz7JnKvz8JR95X19X02e4gTaydNrJs0sW7SJJfLYWhoqNplQBPu7iEucrkcderUgbu7O1q0aKHxOTYWl31cqUKSwC1riIg0O3/+PL744guN41988QUmTJigw0REZVfRszk+/fRTXLp0qdA9fm4RH3aDStPly5eFjkDviLWTJtZNmlg3aSq6uwdJQ0JCgqppsW7duvDw8MCQIUNgbm4udDTSMa5UIdGTy+X4+uuvUaFChWKfY0eouJibm6t9qWRmZgYbGxt4enrCyclJgGRUGlypIg2VK1fGoUOH0KxZM7XjZ86cQYcOHfDo0SMdJyMiEgd2gxIRERHRf+Xp06cIDQ1FQEAA4uPj0bt3b4waNYrvuT4gXKlCknDmzJm3Djh/EztCxWfVqlVq72dmZuLUqVPo1asXQkND0bt3b90GIyqD2rVrh/Xr12P9+vVqx9euXYt27drpOBURkXiwG1TaTp48ieDgYKSnpwMAbGxs4Obmhk8++UTgZFQS1k6aWDdpYt2kKzk5uVDdNDXLkXgYGhpi6NChGDp0KC5fvoxRo0ahW7duuHfvHipXrix0PNIBrlQh0eOZKmXTihUrEBoairi4OKGjUDFMTU1x+vRp1K1bV+goVIy4uDh07NgRzs7O8PT0hJ2dHZRKJc6ePYvly5djz549iImJQfv27YWOSv9fy5YtS/W8TCZDREQEPvroo/eUiLTVqFEjHD16VPVlafz48Zg7dy6qVq0KALh79y6sra2Rl5cnZEyiMmP69OlYtmwZjI2NVStnL168iLy8PHh6emLx4sUCJyRNWDtpYt2kiXWTpoSEBIwaNQqpqamqM3FkMhkaN24MhUKBVq1aCZyQinPjxg0EBgYiMDAQeXl5GD58OObPnw99fa5h+BBwUoVET09PD7dv3+akShmTnp6Otm3b4uHDh0JHoTcU3bYtMzMTpqamkMvlhZ5j3cQnPDwcX3/99Vu1MTc3x8aNG9G/f3+BkpE6crkc06ZNg7GxcYnPKpVKLFq0CKmpqdyKTwSKNnuYmpoiKSlJVZs7d+6gVq1aKCgoEDImFYPdoNIRFBSEsWPHYunSpRgzZgzKlSsHAHjx4gXWr18PLy8vbNy4EcOHDxc4KRXF2kkT6yZNrJs0paamok2bNrC3t8eUKVNgb2+vur9y5UqkpaUhPj4ejRo1Ejgpven58+cIDw+HQqHAkSNH0L17d3h4eKB79+7Q09MTOh7pECdVSPRKWqmSmZmJbdu28RBmiTlz5gycnJyQkZEhdBR6Q2BgoFbb6bm7u+sgDZVWXl4eoqKicP78eQCvXhZ26dKlxDOpSPdKuwqT5xuJR9HaFa3NnTt3YGFhgZcvXwoZk9RgN6j0tG7dGq6urpgyZYra8RUrVmD79u1ISEjQcTIqCWsnTaybNLFu0jRo0CDk5+cjLCzsre/gSqUS/fr1Q7ly5bBz506BEpI6VapUgYmJCdzd3TFs2DCN3+dMTU11nIx0jZMqJHpBQUFwcXFB+fLlC90/ePAgFAoFwsPDUaFCBTx48ECghPQuJk+ejHPnzmHfvn1CRyEi0rmrV6/CyspK6zPBrl+/DgsLC3Y/iQAnVaSJ3aDSVLFiRZw5c0bjhPKlS5fQtGlT5Obm6jgZlYS1kybWTZpYN2mqVq0a/vjjD41n3pw8eRI9evTAvXv3dJyMivPmLh7qvssplUrIZDJ+F/gAcJM3Er03O+KvX7+OgIAABAQE4Nq1a3BxcUF4eDgcHR0FTEjqTJ06Ve39rKwsJCYmIj09HYcPH9ZxKipJQkICPv74Y40vbp89e4Y9e/Zg0KBBOk5GxVm9erVWz02aNOk9JyFt1alTp1TP165d+z0lodKSyWRvfYHSdnKMhDN79mw4OTm91Q3avHlzuLq6ol+/fpg9eza7QUVGT08Pz58/1zj+4sULTjaLFGsnTaybNLFu0pSTk4MaNWpoHK9ZsyZycnJ0mIi0ERMTI3QEEglOqpDovXjxArt378bmzZtx5MgRdOvWDUuXLoWrqytmzJjBjkKRSkxMVPuSydTUFE5OTti1axcPPxehdu3aFTrDqOhZAZmZmXB1deWkisisXLmy0PX169dRq1atQgfkyWQyTqqIzLVr17R6zsrK6j0nodJQKpVwdHRU/Xw9efIEvXv3hoGBAQAgPz9fyHikQUxMDP744w+1n01kMhl8fHzQo0cPAZJRcVq2bIlffvkF8+bNUzu+detWtGzZUsepSBusnTSxbtLEuklTnTp1kJCQoLF56sSJE6VuxKL3z8HBQegIJBKcVCHR++ijj2BnZ4ehQ4di+/btMDc3BwC4uroKnIyKc+jQIaEj0DsouiOkuh0iuWuk+Fy+fLnQtYmJCWJjY3n+hshZW1sXu2QcePWyly/pxcXX17fQdd++fd96pn///rqKQ1piN6g0eXp6wtnZGc+ePcO0adNUNczIyMDy5cuxatUqhIeHC5yS1GHtpIl1kybWTZpcXFwwdepU2NraokmTJoXGzpw5A09PTwwfPlygdKTJzp074ezsrGqounHjBiwsLFTbguXl5eGnn37C9OnThYxJOsAzVUj0KleujKZNm2Lo0KEYPHiw6rCncuXK4fTp01ypIlJ6enqFVjyQNPCsgLKBh5pLw+nTp9XeVyqV2L59O1avXg1jY2PcvXtXx8mIyh5bW1ssWLBA44RXaGgoZsyYgbS0NB0no5KsWbMGnp6eyM/Ph5mZGYBX28nq6+tjyZIl+PbbbwVOSJqwdtLEukkT6yY9T58+haOjI06cOAEnJyfY29tDqVTi7NmzOHDgAFq3bo3o6GgYGhoKHZXeUPRdV9HdPfjO5MPBSRUSvadPnyIsLAwKhQLx8fHo3r27aoIlKSmJkyoiVfTlPEkDJ1XKBk6qSNeBAwfg7e2N9PR0TJ06FdOmTYOJiYnQsUgLsbGxyM3NRbt27VSrakk8fH19ERgYiN9//11tN2jv3r0xfPhwzJ07V6CEVJwbN24gJCQE58+fBwDY2Nigf//+PG9KAlg7aWLdpIl1k57nz59j5cqVCA4ORnp6OoBXdXNxccGUKVNQvnx5gRNSUXxnQq9xUoUk5eLFiwgICEBQUBBu3rwJV1dXjBgxAp07d+bBayLDSRVpksvliI6ORuXKlQEAn376KXbu3AlLS0sAwP379+Hk5MQPCCLHSRXpSUxMhJeXF44cOYLRo0dj1qxZ/P0pUosXL8bjx49V+5YrlUp0794df/75JwCgevXqOHjwIBo3bixkTCqC3aBERERE9G9xUoVe46QKSVJBQQGioqKgUCgQGRkJY2NjPHjwQOhY9Aa5XI758+fD2Ni42Od4cLa4yOVyyGQyteemvL4vk8n4AUFksrOzC11bWlri6NGjsLa2LnT/9faJJB4XL16Ej48PwsLCMGjQIMyfP5+TYSLXsmVLeHl5YfDgwQCAkJAQuLu7Y//+/bC3t8fw4cNRoUIF7Ny5U+CkVBS7QaUnIiJCq+f69OnznpNQabF20sS6SRPrRqQ7nFSh1zipQpJ37949bN26FVOnThU6Cr1BLpfD0tKy2BVEMpkMly5d0mEqKsnVq1e1eq5OnTrvOQmVxuvJsNfePOj8zWt+sBOX8ePHQ6FQoFOnTli0aBGaN28udCTSgrm5OeLi4mBvbw8AGDlyJF6+fIktW7YAAOLj4zFw4EBcv35dyJhEZcLrQ19fU9f4wb9v4sTaSRPrJk2smzSZm5sX+s6mycOHD3WQhrQll8sRFBSkOrvI1dUVq1atQo0aNQAAmZmZqu8HVLZxUoUk79KlSxg7dqxq2w0SB27/RaQ7sbGxWj3n4ODwnpNQacjlchgaGsLOzq7Y5xITE3WUiLRRtBvNzs4OkydPxtixYwEA165dg62tLZ48eSJkTKIyidtbShdrJ02smzSxbtIQFBSk1XPu7u7vOQmVRtFJTHU4iflh0Bc6ANG/lZOTg4MHDwodg4rQpuOCxOf+/fvIzc0ttBIlJSUFy5YtQ25uLpydneHm5iZgQlKHkyXS5OvrK3QEegf169fH4cOHUa9ePVy7dg3p6eno0KGDavzGjRuoUqWKgAlJHXaDEhERkZjUrVsXn376KfT1+WpWSgoKCoSOQCLBn1wiei+4CE6aJk6cCAsLCyxfvhwAcPfuXXz++eewsLBA/fr1MWLECLx8+RLDhg0TOCmR9HFSRZq++eYbTJgwAUeOHEF8fDzatWuHRo0aqcajo6PRokULAROSOqtWrRI6AhEREZFKp06dcPv2be7uQSRRnFQhovfC19e3xEPqSXzi4+MRGBiout6yZQsqV66MpKQk6OvrY9myZVi7di0nVYj+Y8nJyYUOzm7WrJnAiUiTr776Cnp6eoiMjESHDh3emhy7desWPDw8BEpHmrAblIiIiMSEjajSdPjwYa2ee3MlO5VN/FZBRO/Fl19+iQsXLpT4HF8ciktGRgasra1V19HR0ejXr5/qJVSfPn2wcOFCgdIRlT0JCQkYNWoUUlNTVV+sZDIZGjduDIVCgVatWgmckNTx8PDQOHGybt06HachbbAbtGyQyWTcYlaiWDtpYt2kiXWTDtZJejp27Kiqm6aJMZ6p8mHgpAqJXosWLYr9Q5OXl6fDNKSt5s2bQyaTqf0j8/o+/9CIj6mpKTIzM1Vnqrx+4fuaTCbDs2fPhIpHVKakpqbC0dER9vb22LZtG+zt7VX3V65cCUdHR8THxxfaWoqEl5ycrPa+mZkZrKys+OVYpNgNKk1Fz8J5/PgxWrRo8dYhsTwLR3xYO2li3aSJdZOuESNGoHz58sU+s2vXLh2lIW2Ym5vDxMQEI0aMwLBhw1C1alWhI5FAOKlCoufs7Cx0BHoHly9fFjoCvYO2bdti9erV2LRpE3bt2oWcnBx07txZNZ6eno7atWsLmJCo7Jg9ezacnJwQFhZW6Itw8+bN4erqin79+mH27NnYuXOngCmpKE1NAzKZDIaGhpg8eTLmzp0LPT09gRKSJpzwkp6VK1eybhLF2kkT6yZNrJt0mZiYwMjISOgYVAq3b99GeHg4/P39sWTJEvTo0QOjRo1Ct27d+HP4gZEp2bZFRET/X3JyMhwdHZGdnY38/Hz4+Phg3rx5qvFhw4ahYsWK2LBhg4Ap6U0tW7Ys1fMymQwRERH46KOP3lMi0la1atXwxx9/4JNPPlE7fvLkSfTo0QP37t3TcTIqztWrV9Xez8zMxKlTpzBz5kxMmTIFnp6eOk5GxZHL5ejevTu7QYmIiEgU5HI5MjIyuDWphF27dg2BgYEICgrCs2fP4O7ujjlz5vAMvw8EJ1WI6L06f/489uzZgytXrkAmk6Fu3bpwdnZGvXr1hI5GGty/fx/Hjh1DzZo10aZNm0Jjv//+Oxo1aoS6desKlI6KksvlmDZtGoyNjUt8VqlUYtGiRUhNTeXPoAgYGhri/PnzGld/Xb9+HQ0bNsTTp091nIz+jdDQUMyZMwdnzpwROgq9QS6XY9CgQSV2gwYEBOgoEWkjISEBH3/8scaVX8+ePcOePXswaNAgHSejkrB20sS6SRPrJk16eno8762MuHz5MkaNGoXY2Fjcu3cPlStXFjoS6QAnVUj0iu4P+pqZmRlsbGzg6ekJJycnAZJRSRYuXIhZs2ahoKAA1atXh1KpxL1796Cnp4cFCxawi5foP1DaDicTExOcPn2akyoiYGtriwULFqB///5qx0NDQzFjxgykpaXpOBn9G5cvX0bTpk3x+PFjoaPQG9gNKk1FXziZmpoiKSlJ9Tfszp07sLCw4Bl9IsTaSRPrJk2smzSV9Nnk7NmzUCgUWLZsmY6TkTaePXuGsLAw+Pv74/jx4+jZsyc8PDzQrVs3oaORjnA9EoneqlWr1N5/vc1Gr169EBoait69e+s2GBUrJiYGP/zwA2bOnIlvv/0W5ubmAF4djrdq1Sp4e3ujdevW6NChg8BJ6U1Tp05Ve//1JGa/fv1K3DqFdOvy5cuoVq2a1s+npqbCwsLiPSYibbm4uGDq1KmwtbVFkyZNCo2dOXMGnp6eGD58uEDp6F1lZGSU6meSdIN7XEtT0f4/df2A7BEUJ9ZOmlg3aWLdpCkmJuatFQ25ubnYvn07FAoF4uPj0ahRI06qiExCQgICAgKwfft2WFtbY+TIkdi5cydXp3yAOKlCoufu7l7sePPmzbFw4UJOqojMhg0bMHr0aMyePbvQ/cqVK2Pu3LnIyMjA+vXrOakiMn///bfa+5mZmbhw4QJmzpyJ6OhoWFlZ6TgZaVKnTp1SPa9pqynSve+//x4HDhxA8+bN4eTkBHt7eyiVSpw9exYHDhxA69at4ePjI3RMKoV79+5h5syZ6NSpk9BRqIiSXiaxG1S6OGEmXaydNLFu0sS6iY+Dg4Pq38eOHYNCocDOnTvx5MkTTJkyBf7+/rCzsxMwIanTtm1bWFlZYdKkSfj4448BAEePHn3ruT59+ug6GukYJ1VI8nr16oX58+cLHYOKSEhIwNatWzWODxs2jB3YIhQTE6NxLDs7G0OGDIG3tzd+/fVXHaaikly7dk2r5zgZJi6GhoaIiYnBypUrERwcjNjYWACAjY0N5s+fjylTpnBlmAi1aNFC7YuJrKws3LhxA7a2tti2bZsAyag47AYlIiIiMbl79y4CAwPh7++PrKwsuLq64tChQ2jXrh08PDw4oSJi165dw7x58zSOy2Qybrf3AeCkCknes2fPYGBgIHQMKuLOnTuwtrbWOF63bl1kZGToLhD9a6amppg5cyYGDhwodBQqwtraWu1LXqVSqbovk8mQn5+v62hUAgMDA3h5ecHLy0voKKQlZ2dntfdNTU1ha2uLrl27ajwoloTDblDpSk1NVX1mVCqVOHfunOrMovv37wsZjUrA2kkT6yZNrJv01KlTBwMGDICfnx+cnJwgl8uFjkRaKCgoEDoCiQQPqifJmzx5Ms6dO4d9+/YJHYXeUNKhazwsT5ouXbqE//3vf8jJyRE6Cr3h9OnTau8rlUps374dq1evhrGxMe7evavjZERE4qCuG9TNzQ3t2rXD6dOn0ahRI6EjkhpyuRwymUzt9m2v77MbVJxYO2li3aSJdZMmOzs7PHv2DG5ubhg2bJiquaNcuXL8bFKG9OzZE5s3b0atWrWEjkL/Ma5UIdHTdHB2VlYWEhMTkZ6ejsOHD+s4FWlj8+bNMDY2VjvGl/LSFB8fj/r16wsdg4r43//+99a9AwcOwNvbG+np6Zg+fTqmTZsmQDIqjrm5uVb7Wz98+FAHaai0njx5gv379yM9PR0AYGtriy+++AJGRkYCJyN12A0qTZcvXxY6Ar0j1k6aWDdpYt2k6dy5c6rVs61atYKNjQ2GDh0KgGfglCWHDx/GkydPhI5B7wEnVUj0NB2cbWpqCicnJ+zatQt169bVcSoqiZWVFTZt2lTiMyQuycnJau9nZWXh1KlTWLBgAXx9fXWcikojMTERXl5eOHLkCEaPHo29e/dqXDFGwlq1apXQEegdRUREYPTo0W9tp1G1alUoFAr07t1boGSkSZ06dXD06FFYWVmhTp063OpLIurUqSN0BHpHrJ00sW7SxLpJV/v27dG+fXusXr0awcHBCAgIwMuXLzF+/Hi4ubnB2dkZ1apVEzomEanB7b+IiEiluKXjVatWxdSpU+Hl5cXOGRG6ePEifHx8EBYWhkGDBmH+/PmoV6+e0LGoGIcPH8ann34KfX32uEhJXFwcOnbsiD59+mDatGmwt7cH8Gov8+XLl+O3335DbGws2rZtK3BSKup1N2hISIiqG3T69OlITk5W1ZHE5f79+8jNzS30wjAlJQXLli1Dbm4unJ2d4ebmJmBC0oS1kybWTZpYt7Ll7NmzUCgU2Lp1Kx4+fIgXL14IHYn+BRMTE5w+fZrfzcsgTqqQJFy5cgX79+/Hixcv4ODggMaNGwsdiahMunr1qtr7pqamMDc313Ea0tb48eOhUCjQqVMnLFq0CM2bNxc6EmlBT08Pt2/f5koiienRowdq166NjRs3qh0fM2YMrl+/jr179+o4GWnr8ePHqm7Q+Ph4ODg4sBtUpFxdXWFhYYHly5cDeHU2jp2dHSwsLFC/fn388ccfUCgUGDZsmMBJqSjWTppYN2li3cqm/Px8REREoF+/fkJHoX+BkyplFydVSPRiYmLQq1cv1R6E+vr68Pf3V+01SeK0ZcsWrZ4bPnz4e05CVPbJ5XIYGhqWuJ1NYmKijhKRNuRyOTIyMjipIjGVK1dGbGwsmjZtqnY8OTkZDg4OePTokY6T0btgN6i41a1bF4GBgXBwcAAALFu2DBs2bMC5c+egr6+PZcuWITQ0FPHx8QInpaJYO2li3aSJdSubzp07hz59+qjO7yNp4qRK2cVJFRK9zz77DFWrVsX69ethaGiIH374AeHh4bh165bQ0agYxa1qkMlkyM3NRX5+Pl6+fKnDVKStkJAQBAcHqz7A2djYwM3NDQMGDBA4GakzZ84crZ7jeTjiIpfLcefOHXbGS4yRkRHOnTuncf/yq1evws7OjgdSSgy7QcWp6M9bjx490KRJEyxZsgQAkJ6ejnbt2uHBgwdCxiQ1WDtpYt2kiXUrm06fPo2WLVvynYnEcVKl7OIm3iR6//zzD+Li4lCrVi0AwNKlS7Fx40Y8ePAAVapUETgdaaKpQ/f27duYM2cO/P394eTkpONUVJKCggK4urqq9pt/vfIhJSUFgwcPxsCBAxEcHMwzVUSGkyXSNWLECJQvX77YZ3bt2qWjNKSNhg0bIjo6GiNHjlQ7fvDgQTRs2FDHqejfunDhAry9vTmpIjKmpqbIzMxUvShMSEjAqFGjVOMymQzPnj0TKh4Vg7WTJtZNmlg3IvHy8fFB5cqVhY5B74Fc6ABEJcnOzkbVqlVV1xUqVICRkRGysrIETEWllZOTgx9++AE2NjZISkpCVFQU9u3bJ3QsKsLPzw8HDhxAREQEzp07h927d2P37t1IS0tDeHg49u/fDz8/P6FjUjGSk5MRGhqK0NBQJCcnCx2HSmBiYgIzM7Ni/yNxGTlyJDw9PdWemfL7779j+vTpGDFihO6D0b/y7NkzXLx4UegYVETbtm2xevVqFBQUIDQ0FDk5OejcubNqPD09HbVr1xYwIWnC2kkT6yZNrBuR7kVHR2PChAno1asXevfujUmTJuHw4cNvPff999+jUqVKug9I7x23/yLRk8vlCAoKKvRiydXVFatWrUKNGjVU9/r06SNEPCrBixcvsGbNGixYsABVqlTBjz/+yC2kRKxZs2aYPHkyPDw81I4rFAr4+fnxZb0Ive5IS01Nxes/7TKZDI0bN4ZCoUCrVq0ETkhF8UwVaSooKMDgwYMRFhYGW1tb2NvbQ6lU4uzZszh//jycnZ0REhICuZy9S1LCLTbEKTk5GY6OjsjOzkZ+fj58fHwwb9481fiwYcNQsWJFbNiwQcCUpA5rJ02smzSxbmUTP5uI19ixY/Hzzz/D3NwcNjY2UCqVOH/+PDIzMzF+/HisWbNG6IikA5xUIdHT5qWETCbjHxqRUSqV2LJlC2bNmoX8/Hz4+vpi1KhR0NPTEzoaFcPIyAhpaWmwsrJSO86zAsQpNTUVbdq0gb29PaZMmQJ7e3vV/ZUrVyItLQ3x8fFo1KiRwEnpTXp6erh9+zYnVSRqx44db5095eLiAhcXF4GT0bvgiwvxun//Po4dO4aaNWuiTZs2hcZ+//13NGrUCHXr1hUoHRWHtZMm1k2aWDfpMTc3L3Zb7fz8fOTm5vKziciEh4fDxcUFGzduhLu7u6qGBQUFCAwMxLhx4xASEsLG7w8AJ1WI6L1o2rQpLl26hIkTJ2Ly5MmoUKGC2udMTU11nIyKU7lyZRw6dAjNmjVTO37mzBl06NBB45k5JIxBgwYhPz8fYWFhb30wVyqV6NevH8qVK4edO3cKlJDUKWmlytmzZ6FQKLBs2TIdJyP68HBShYiIiHQpKChIq+fc3d3fcxIqjT59+qBx48ZYuHCh2nEvLy+cO3cOe/bs0XEy0jVOqhDRe/HmCiN13RdKpZIrjESoZ8+esLKywvr169WOjx07FteuXVN7lgAJp1q1avjjjz/wySefqB0/efIkevTogXv37uk4GRUnNjYW7du3h76+vupebm4utm/fDoVCoVpd9M8//wiYkorKzs7W6jk2DYgLu0GlaerUqWrvm5mZwcbGBv369UP58uV1nIq0wdpJE+smTawbke5YWlpi165daN26tdrxEydOoH///rhx44aOk5GucVKFJCMkJOStbTbc3Nx4PodIxcbGavWcg4PDe05CpREXF4eOHTvC2dkZnp6esLOzU50VsHz5cuzZswcxMTFo37690FHpDYaGhjh//rzGAyivX7+Ohg0b4unTpzpORto6duwYFAoFdu7ciSdPnmDKlCkYPXo07OzshI5GRcjl8mJfzrNpQJzYDSpNnTp1Uns/MzMTFy5cQI0aNRAdHa1x21ISDmsnTaybNLFu0qSpUadixYrcNl3EDA0NcenSJVhYWKgdv3nzJho0aMAt0z8AnFQh0SsoKICrqytCQkJgY2OjesF09uxZXLhwAQMHDkRwcHCxLziISHvh4eH4+uuv8fDhw0L3zc3NsXHjRvTv31+gZKSJra0tFixYoLE2oaGhmDFjBtLS0nScjIpz9+5dBAYGwt/fH1lZWXB1dYWbmxvatWuH06dP8wwckXqzaUCpVKJHjx7YvHkzPvroo0LPsWmA6P3Kzs7GkCFDYGJigl9//VXoOFQKrJ00sW7SxLqJl6ZGHT09PdStWxeenp746quvBEhGxZHL5bhz5w6qVaumdvzOnTuwsLBgg9UHQL/kR4iE5efnhwMHDiAiIgK9evUqNBYREYGRI0fCz88PkydPFiYgqbVz5044OzvDwMAAAHDjxg1YWFiotgXLy8vDTz/9hOnTpwsZk9T48ssv0bVrV0RFReH8+fMAXq0M69Kli8azcUhYLi4umDp1KmxtbdGkSZNCY2fOnIGnpyeGDx8uUDrSpE6dOhgwYAD8/Pzg5ORUaNtEEq+ikyV6enpo27Yt6tWrJ1Ai0ga7QcseU1NTzJw5EwMHDhQ6CpUSaydNrJs0sW7iFRMTo/Z+ZmYmTp06he+++w76+voYOXKkjpNRSWbOnKnx3UheXp6O05BQuFKFRK9Zs2aYPHkyPDw81I4rFAr4+fkhOTlZx8moOHp6erh9+7bqAGZTU1MkJSWpXjpx9p7ov/P06VM4OjrixIkTcHJygr29vWrbtgMHDqB169aIjo6GoaGh0FHpDXZ2dnj27Bnc3NwwbNgw1UrMcuXKcaWKhJiYmOD06dOcVBE5doOWTZcuXcL//vc/5OTkCB2FSom1kybWTZpYN2ny9/fHTz/9hMTERKGj0Bs6duyo1U45mibNqOzgShUSvfPnz+OLL77QOP7FF19gwoQJOkxE2ig6X8v5W2lYvXq1Vs9NmjTpPSeh0jA0NERMTAxWrlyJ4OBg1fZENjY2mD9/PqZMmcLDKUXo3LlzqrNUWrVqBRsbGwwdOhQAuKUl0X+M3aBlU3x8POrXry90DHoHrJ00sW7SxLpJk4ODA3dkEaFDhw4JHYFEgpMqJHpGRkbIzMzUeKhadnY2u6+J/iMrV64sdH39+nXUqlUL+vr/9+dCJpNxUkWEDAwM4OXlBS8vL6GjUCm0b98e7du3x+rVqxEcHIyAgAC8fPkS48ePh5ubG5ydnTXu10viwUkw8SvujJu+ffvC2toaa9as4aSKyGhaiZ6VlYVTp05hwYIF8PX11XEq0gZrJ02smzSxbmVTVlYWzMzMhI5BpXTp0iWMHTsWf/75p9BR6D3j9l8kej179oSVlRXWr1+vdnzs/2vv3qOyrPP9/7/u+/YAIiAkpo0HcKuAmqXmgdg7LXVISqaNpmWlo2XTt12WpoPVeJhMo3KiHGtqJYg1S/LU3gNNJmqOlSPWqIACKpnbGAfSJMQzIvfvj37eW5DDbcl1wOdjrdbqvq7LfM28FwrX+/P5vB97TN9++60+/vhjg5OhPk6nUyUlJZ7jv2oej8LxX/bAsTaA8QoKCpScnKz3339fpaWlOn/+vNmRcIn4+PhqnzMyMnTHHXfIz8+v2vUPP/zQyFj4mQ4cOKC+ffvWOXsF5rh4bFttP7K2bdtW06dPV0JCAo1NC6J29kTd7Im6NT3nz5/XhAkTdP78ea1Zs8bsOLgCOTk56tevH++6rgHsVIHlPf/88xo6dKiOHTumGTNmKCIiwjMr4A9/+IP+8pe/cFahRa1fv96zsqKqqkqbNm3Snj17JP143AaAqyMoKMirH5JKS0sNSIOfKzIyUosWLVJiYqLS09PNjoMaaq4YvHhkG+yN1aDWdPDgwVqvBwQEKCgoyOA0uBLUzp6omz1RN3uquVDnouPHjysvL08Oh0Off/65wakAeIudKrCF//7v/9ajjz562QvBoKAgvfPOOxo9erRJyVAXp9PZ4DMOh4PuvcWxU8Ueli9f7tVzEydObOQkuJr27t2ruLg47d+/3+woQJPGalAAAGC0uo4cDQgIUHh4uB544AEWfNgQO1WuHexUgS3853/+p2JiYrR+/XoVFhZK+nEA8y9/+Uu1atXK5HSoTVVVldkRgGtGWFiYbr311mqzb2B/586d04EDB8yOATQJrAa1t9WrVystLc3TZO7Ro4fGjx+vMWPGmJwMDaF29kTd7Im62cuyZcvMjgDgZ2CnCmzB7Xbr66+/VkVFhcLDw3lxaCPnzp1TZWXlZWfNw5pqniXfsWNHffHFFwoNDa12PSAgwMBUaIjL5VJxcbFnhhGaBlY5AVcPq0HtqaqqSvfff79Wr16tHj16KCIiQtKPs6e+/vpr3XvvvUpLS2NOgAVRO3uibvZE3ewrKytLGRkZqqio0LBhw3TnnXeaHQkN6Nu3b71fS6dPn1ZhYSE/w10DeDMNyzt48KDi4uKUn58v6ceXvGvXrtUtt9xicjLU5+jRo5owYYI2btyoqqoqDRgwQH/+85/VrVs3s6OhHm3atKn2DYLb7Vbfvn2rfebYNuthfQQA1I/VoPb0xhtvaOPGjUpPT9fdd99d7V56eromTZqkN954Q08//bQ5AVEnamdP1M2eqJs9rVmzRuPGjZOvr6+aN2+u1157TS+//LJmzJhhdjTU45577jE7AiyCnSqwvDFjxigvL09z5syRj4+PFi1apDNnzmjnzp1mR0M9Jk+erHXr1mnq1Kny8fHRO++8ow4dOmjz5s1mR0M9tmzZ4tVzQ4YMaeQkuBJOp1PfffedQkJCzI6Cq4idKsDVxWpQ++nTp4+efvppTZ48udb7ycnJeuONN5Sbm2twMjSE2tkTdbMn6mZP/fv314ABA/Tmm2/K5XLppZde0quvvnrZLGEA1kRTBZbXvn17rVmzRv/+7/8uSSouLlbHjh1VXl7OkVIW1qlTJy1dulQxMTGSpMLCQkVGRurUqVNq2bKlyemApsXpdGrkyJENfm19+OGHBiWCN4KCgurdOl5ZWalTp07RVAGugpqrQcvLy1kNagO+vr7at2+fOnfuXOv9Q4cOKSIiQmfOnDE4GRpC7eyJutkTdbOn1q1bKzs723OaR0VFhfz8/HT48GGOdbaJ3NzcajOM+vTpY3IiGInjv2B5R44cUffu3T2fO3ToIF9fXx05ckRhYWEmJkN9/vWvf+mmm27yfO7evbtatmyp4uLiy+ZzAPj5/P395evra3YMXIHXX3/d7Ai4QosXL77iXzNp0iT5+/s3QhpciZdeeklTpkypthp04cKFNFUsztfXV2VlZXW+KCwvL5ePj4/BqeANamdP1M2eqJs9nT59utqs0hYtWsjHx0cnT56kqWJxX375pR5++GHl5+d7juJ2OBzq1auXkpOTNWDAAJMTwgjsVIHluVwu7d+/v9qxNrUNz2ZwtrW4XC6VlJRUq1tAQIBycnJohgFXmdPpVElJCd98A43M6XSqY8eOcrlcXj1fVFSk/fv3q2vXro2cDA1hNag93XXXXercubP+9Kc/1Xr/scce07fffquPP/7Y4GRoCLWzJ+pmT9TNnpxOp1588UW1bt3acy0hIUEzZ85U27ZtPdemTp1qRjzUIT8/X4MGDVJkZKSmTZumyMhIz/WkpCTt27dPWVlZ6tmzp8lJ0dhoqsDynE7nZcejXByWfem/czyKtTidTgUGBlarXVlZmQICAuR0Oj3XOC8U+PlcLpeKi4t5MWgz5eXltV738/Pz+qU9jHWlDUx/f3/l5OTQVLGA2mpHfazv73//u4YOHap77rlHM2bMUEREhNxutwoKCvSHP/xBf/nLX7R582ZFR0ebHRU1UDt7om72RN3sKTQ0tN6jgKUfdz988803BiWCN8aOHavKykqtXbu21neV8fHxat68uVatWmVSQhiF479geQw2t6dly5aZHQG4ZjS0PqKgoEDJyclatGiRQYngjTZt2tT6g5TL5VJYWJhmzJihKVOmmJAMdZk7d2611YQNee655xQcHNyIiXAlli5dWq1+lZWVSk1NZTWohd16661auXKlHn30Ua1du7bavaCgIKWlpfGS0KKonT1RN3uibvb0v//7v2ZHwE+wefNmrVu3rtaf4xwOh5577jnFxsaakAxGY6cKAAA2t2XLFkVHR6tZs/9bK3Hq1Cl98MEHSk5O9mw/3rNnj4kpUdOWLVtqvV5WVqYdO3Zo8eLFSkpK0qRJkwxOBjQ9rAa1t9OnT2v9+vUqLCyU9OMw2F/+8pdq1aqVycnQEGpnT9TNnqgb0Ph8fHxUWFioTp061Xq/qKhI3bt319mzZw1OBqPRVAHQKDZu3Kjhw4fXeb+qqkoLFy7U7373OwNToT79+vW7oucdDofS09P1i1/8opES4afYunWrkpOTtWrVKp05c0bTpk3TI488ooiICLOj4QqlpKRoyZIl2rlzp9lRcAVyc3N1yy23qKKiwuwoAAAAsLDKykolJSUpLS1N+/fvl/RjM2z8+PF66qmn1Lx5c5MToqbw8HAtXLhQo0ePrvX+mjVr9Pzzz2vfvn0GJ4PRaKoAaBQtWrTQo48+qldeeeWylTF79uzRxIkTVVJSosOHD5uUEDU5nU4988wzXh1t43a7lZiYqPz8fM6it4AjR44oNTVVKSkpOn78uO6//36NHz9eUVFRysnJYUieTR04cEB9+/atc/YKrCknJ0f9+vVj1htwFSxevNir5zi2zXqonT1RN3uibvZ05swZjRgxQtu2bdPw4cM9A88LCgq0ceNGRUdHKzMzUz4+PiYnxaXmzp2r1NRU/fWvf1Xv3r2r3du9e7dGjRqlCRMm6IUXXjApIYxCUwVAo9i+fbt+/etfe84rj46O9uxOmT9/vkaPHq0333xTQUFBZkfF/48BzPbl6+urMWPG6MEHH9SIESPkdDolSc2bN6epYmM7d+7Ur371KxUVFZkdBVeApop1sRrUfsLCwqp9LioqUocOHaodd8mxbdZE7eyJutkTdbOniy/nMzIy1KdPn2r3cnJyFBcXp0mTJmnevHnmBEStzp49q2HDhmn79u0aMWKEIiMj5Xa7Pc2wgQMH6tNPP6UZdg2gqQKg0Zw9e1azZs3SW2+9pUcffVRZWVkqKirSn/70J8XHx5sdDzUcOnRInTt3bvDM+YuKiop0ww03yOVyNXIyNCQiIkLnzp3T+PHj9dBDD3mO+qKpYl/nz5/XhAkTdP78ea1Zs8bsOLgCNFWsidWgTQMLOuyL2tkTdbMn6mYPDR0jtXr1aj3//POehSCwjoqKiloX6tx3332aNm2aWrZsaXJCGKFZw48AwE/j4+OjpKQkHTlyRG+99Zb8/Pz0j3/8Q+Hh4WZHQy26dOlyRc/XNZgNxtu7d69nlsqAAQPUo0cPPfjgg5LkdZMMxquruXz8+HHl5eXJ4XDo888/NzgVGtLQcWwnTpwwKAmuRGJiooqKirRr1646V4MmJiayGhQAABji0KFDGjhwYJ33Bw8erG+//dbARPBWixYtlJCQoISEBLOjwEQ0VWBpDM62twMHDujXv/61CgsL9fbbb2vZsmUaOnSo3n77bf3qV78yOx5q4e03bZ07d27kJLhS0dHRio6O1uLFi5WWlqZly5bpwoULevzxxzV+/Hjdc889CgkJMTsmLhEYGFjr9U6dOmn06NF64IEH6nwG5mnTpk29zUq3200z04I++OADvfbaa5c1VCTppptu0qJFi/T888/TVAEAAIYICAjQkSNH6lysWFJSIn9/f4NTAfAWx3/B0hicbV9LlizRrFmzFBMTo7ffflshISGqqqrSq6++qnnz5mnMmDH64x//qDZt2pgdFZdwOp21vgy89CWhw+FQZWWl0dHwExQUFCg5OVnvv/++SktLdf78ebMjAba3ZcsWr54bMmRIIyfBlfDx8VFhYWGdLy6KiorUvXt3nT171uBkuBIcaWNf1M6eqJs9UTd7GDdunCorK7V27dpa748ePVoul0urVq0yOBnqExQU5NUCqtLSUgPSwEw0VWBpDM62r+DgYP3xj3/UAw88cNm9vLw8TZw4UcXFxTp8+LAJ6VCXnJycWq+73W598MEHWrx4sVq3bq0jR44YnAw/R2VlpdLT05llZEFZWVnKyMhQRUWFhg0bpjvvvNPsSLgKSktLFRwcbHYMXKJdu3Zat26d+vfvX+v9r776SrGxsTp69KjByVCfmsftdezYUV988YVCQ0OrXQ8ICDAwFbxB7eyJutkTdbOn/Px8DRo0SL169dL06dMVERHhGXielJSk/Px8ZWVlqVevXmZHxSWWL1/u+Xe3263/9//+n1544YXL3ltOnDjR6GgwGE0VWBqDs+2ruLhYHTp0qPP+hQsXtHDhQs2ePdvAVPgpNm7cqFmzZmn//v2aPn26nnnmGbYh28zevXsVFxfHkEOLWbNmjcaNGydfX181b95c5eXlevnllzVjxgyzo+EnyszM1NKlS5WRkaEzZ86YHQeXYDWoPdXcQVvzeL2Lny9cuGBGPNSD2tkTdbMn6mZfWVlZevjhh1VQUOCpmdvtVkREhJKTkxUVFWVyQjSExd3XLpoqAIBa7dy5UwkJCfr888/1yCOPaM6cOV7vGoO15OTkqF+/fvwgZTH9+/fXgAED9Oabb8rlcumll17Sq6++ylZxmzl06JBSUlK0fPly/fDDDxo5cqRGjx6te++91+xouASrQe2J4/bsi9rZE3WzJ+pmf9nZ2Z4FcD169NDNN99sbiB4jabKtYumCiyPwdn2FBsbq7S0NM+Q5cTERD322GOeGSrHjh3Tf/zHfyg/P9/ElKjNgQMH9Nxzz2nt2rUaO3asXnzxRb5BsDmaKtbUunVrZWdnq1u3bpKkiooK+fn56fDhwzQwLa6iokIffvihli5dqq1bt2r48OFat26ddu3apRtvvNHseKgDq0EBAICVlJeXa/v27aqoqNDAgQMVEhJidiRcIZoq165mZgcAGhIaGsrgbBtav369zp075/m8cOFCjR071tNUqays1L59+0xKh7o8/vjjSk5O1u23365//OMfrJABGtHp06ernW3dokUL+fj46OTJkzRVLOzJJ59UWlqaunfvrgcffFArV67Uddddp+bNm3P8qMUNHjxYeXl5rAYFAACmy87OVmxsrEpKSiT9+HJ+1apViomJMTkZAG/QVIHl7dq1q9brNQdnw1pqboJjU5w9vP322/Lx8dGRI0c0efLkOp/buXOngamApmvp0qXV/g6rrKxUamqq2rZt67k2depUM6KhDn/605+UkJCgWbNmMV/KZi5dDXr77bezGhQAAJgmISFBYWFhWrt2rXx8fDR//nw98cQTKiwsNDsa6jF9+vRqnysqKrRgwQLPKS0Xvfbaa0bGggloqsDybrrppsuuXTo4+7e//a2eeeYZE5IBTc/cuXPNjoCfICgoqNYdfRexk8+aOnfurHfffbfatfbt2+v999/3fHY4HDRVLOb9999XSkqKOnTooLvuuksPPfSQRo4caXYsNIDVoAAAwEp27NihzMxM9evXT5KUkpKi4OBglZeXV9vNDmupufD71ltv1TfffFPtWn0/m6PpYKYKbIXB2fbhcrlUUlLiWQXq7++v3NxchYWFSZK+++473XDDDcx4AK6C5cuXe/XcxIkTGzkJcO04ePCgUlNTlZqaqtOnT6u0tFQrV67UmDFjzI6GWsTExOjkyZNatGiRZzXo7t27WQ0KAABM4XQ6VVJSUu2dVs33JgCsi6YKbIHB2fbjdDo1cuRItWzZUpKUkZGhO+64Q35+fpKkc+fO6ZNPPqGpYmG5ubnVzpzv06ePyYkAwHrcbrcyMzOVnJys9PR0tW3bVvHx8Vq8eLHZ0XCJtm3bVlsNWlZWpuDgYJWVlbEaFAAAGM7pdOrTTz9VcHCw59qtt96qVatWqWPHjp5r/BwOWBNNFVjepYOzExMTGSZqE5MmTfLquWXLljVyElypL7/8Ug8//LDy8/M9s3AcDod69eql5ORkDRgwwOSEqKm8vLzW635+fgzOtrjKykolJSUpLS2tWhNz/Pjxeuqpp9S8eXOTE+JKlJaW6r333lNqaqqys7PNjoNLsBrUfi42wLzlcDiUnp6uX/ziF42UCN6idvZE3eyJutmX0+mUw+Godf7sxesOh4OFqBbTs2dPffHFF55m2OOPP64XXnjBMxPzyJEjCg0N1enTp82MCQPQVIHlOZ1O+fj4KCIiot7nGJwN/Hz5+fkaNGiQIiMjNW3aNEVGRnquJyUlad++fcrKylLPnj1NTopLXfyGvCaXy6WwsDDNmDFDU6ZMMSEZ6nPmzBmNGDFC27Zt0/Dhwz1fbwUFBdq4caOio6OVmZkpHx8fk5PiSuzYsUNz587VRx99ZHYUXILVoPbjdDr1zDPPqHXr1g0+63a7lZiYqPz8fHazWwC1syfqZk/Uzb4OHTrk1XNdunRp5CS4EjUX6gQEBCg7O9vzNfXdd9+pQ4cOqqqqMjMmDEBTBZb3+9//3qvnGLAN/Hxjx45VZWWl1q5de9lLerfbrfj4eDVv3lyrVq0yKSFqs2XLllqvl5WVaceOHVq8eLGSkpK83kEGY8ydO1epqanKyMi47EVuTk6O4uLiNGnSJM2bN8+cgKjT+vXrtWHDBrVo0UKPPPKIunbtqr1792rWrFnKyMhQTEyMPv74Y7Nj4hKsBrWf2nYX1cff3185OTm8KLQAamdP1M2eqBtgrJpfczW/ppgffO2gqQIA8AgJCdG6det0yy231Hr/q6++UmxsrI4ePWpwMvwcKSkpWrJkCTv6LCY8PFwLFy7U6NGja72/evVqPf/8855jwWANycnJmjJlioKDg/XDDz/ouuuu02uvvaYnn3xS48aN01NPPeXZdQTrYDWo/Rw6dEidO3eudSdmbYqKinTDDTdw7KUFUDt7om72RN3sKTc3V71795bT6fTq+by8PIWHh6tZs2aNnAwNoamCi2iqwFYYnA00Lh8fHxUWFqpTp0613i8qKlL37t119uxZg5Ph5zhw4ID69u1b5+wVmIOvN3vq06ePHnroIc2cOVNr167Vvffeq8GDB192jBQAAABQG5fLpZKSEoWEhHj1fM0jpmCemrWrOaOPpsq1gxYnbIHB2YAxunTpoi+//LLOl7zbt29nFa8NHT9+XIGBgWbHQA0BAQE6cuRInV9vJSUl8vf3NzgVGnLgwAHde++9kqT4+Hg1a9ZMr776Kg0VC2M1qH19++23Xj3XuXPnRk6CK0Xt7Im62RN1sx+3263Zs2erVatWXj1fUVHRyIngLbfbrWHDhnm+Tzxz5oxGjRqlFi1aSJIqKyvNjAcDsVMFlsfgbMA4F2c8/PWvf1Xv3r2r3du9e7dGjRqlCRMm6IUXXjApIa7U+fPnNWHCBJ0/f15r1qwxOw4uMW7cOM8Mo9qMHj1aLpeLGUYW09CWf1gPq0Ht6+IsnJouzsCRflxoxQsM66F29kTd7Im62c/QoUO9PrLtohUrVqhDhw6NlAjeYu4zLqKpAstjcLb9LF68+Ip/zaRJk1iRbQFnz57VsGHDtH37do0YMUKRkZFyu90qKCjQxo0bNXDgQH366afy8fExOyouER8fX+v148ePKy8vTw6HQ59//rm6detmcDLU5+KigV69emn69OmKiIjwfL0lJSUpPz9fWVlZ6tWrl9lRcQmn06kXX3xRrVu3liQlJCRo5syZatu2bbXnpk6dakY81MLpdOrRRx/1ejXoW2+9pfz8fJoqFpCTk1PrdbfbrQ8++ECLFy9W69atdeTIEYOToSHUzp6omz1RNwAwHk0VWB6Ds+3H6XSqY8eOXg+/Kyoq0v79+3l5YREVFRVKSkpSWlpatRlG9913n6ZNm6aWLVuanBA1TZo0qdbrAQEBCg8P1wMPPMDxXxaVlZWlhx9+WAUFBZ6FA263WxEREUpOTlZUVJTJCVFTaGhogysLHQ6HvvnmG4MSoSGsBm1aNm7cqFmzZmn//v2aPn26nnnmGRbm2AS1syfqZk/UDTDWli1bdOrUKUVFRSkoKMjsODAATRVYHoN87afm0SgN4egUANe67Ozsak3Mm2++2dxAAGAxO3fuVEJCgj7//HM98sgjmjNnjtffa8Jc1M6eqJs9UTegcb388ss6efKk5s+fL+nHBXEjR45UZmamJKldu3batGkTpw1cA7yb1giY6OLg7LowONt65s6d6zkWxRvPPfecgoODGzER0PRlZWXp+eef18yZM/XJJ5+YHQdeKi8v14YNG3T48GHdfvvtGjt2LA0VALjEgQMHNG7cOA0cOFAhISHKz8/XkiVLeEloA9TOnqibPVE3wBgrV66sNn92zZo1+uyzz/T555/r+++/1y233OL13BXYG00VWN59992n6dOna8+ePZfd2717t2bMmKFx48aZkAx1mTt3rtfnlkvSs88+qzZt2jReIHgtKChIwcHBDf4Da1mzZo2io6P1xhtvaOnSpbrrrru0aNEis2OhAdnZ2YqIiFBMTIxGjRqlbt26af369WbHQgNiY2N1/Phxz+fExESVlZV5Ph87dkw9e/Y0IRnQ9Dz++OPq2bOnjh8/rn/84x9asWIFO5ttgtrZE3WzJ+oGGOfgwYPq06eP5/PHH3+sMWPGKDo6WsHBwfrd736nbdu2mZgQRuH4L1geg7ObptzcXN1yyy2qqKgwOwousXz5cq+emzhxYiMnwZXo37+/BgwYoDfffFMul0svvfSSXn31VZWWlpodDfWIiYnRyZMntWjRIvn4+Gj+/PnavXu3CgsLzY6GerhcLhUXF3tWfgYEBCg7O9vz8uK7777TDTfcoAsXLpgZE2gSnE6nfHx8FBERUe9zO3fuNCgRvEXt7Im62RN1A4xT8/j6iIgIPf3003rsscckSd9++63Cw8N15swZM2PCAM3MDgA0xMfHR5s3b/YMzt6yZYukH8+cf/HFFxmcbVNut5sXThYUFhamW2+9Vc2a8deDnezbt08rV66Uy+WSJD3zzDOaM2eOjhw5wpZ/C9uxY4cyMzPVr18/SVJKSoqCg4NVXl6ugIAAk9OhLjXXI7E+CWg8c+fONTsCfiJqZ0/UzZ6oG2Ccf/u3f9Nnn32mrl276ttvv9X+/ft12223ee7/85//1HXXXWdiQhiFnSoATJGTk6N+/frRWLGYmiuwYQ9OL6o0CAAAL09JREFUp1MlJSXV6lZzBQ2sp6665ebmKiwszMRkqE/NutX8WmOnCgAAANA0vfvuu5o2bZrGjRunrKwstWnTRlu3bvXcf/HFF7V9+3ZlZGSYmBJGYCkyAMCDPrt9LV26VK1bt/Z8rqysVGpqqtq2beu5NnXqVDOioR75+fkqKSnxfL54vOWJEyc81y49sxfmczgccjgcl10D0Lhyc3O1f/9+ST/uWOfPRvugdvZE3eyJugGNa8qUKXK5XMrIyNBtt9122U6xf/3rX5o8ebJJ6WAkdqrA8oKCgrx6WcHsAGspLy+v935ubq6GDBnCSl6LcTqd+u677xQSEmJ2FFyB0NDQBv+cdDgc+uabbwxKBG84nU45HI5am5kXrzscDv6ctBin06mRI0d6jh7NyMjQHXfcIT8/P0nSuXPn9Mknn1A34Cr58ssv9fDDDys/P9/z56XD4VCvXr2UnJysAQMGmJwQdaF29kTd7Im6AYCxaKrA8hicbU8XXxbWhZeF1lTzZWFdPvzwQ4MSAU3XoUOHvHquS5cujZwEV2LSpElePbds2bJGTgI0ffn5+Ro0aJAiIyM1bdo0RUZGeq4nJSVp3759ysrKUs+ePU1OipqonT1RN3uiboBxcnNza70eGBiozp07s4P9GkJTBZb32WefMTjbhrZs2eLVc0OGDGnkJLgSTqdTY8eOla+vb73P8bIQAAA0trFjx6qyslJr16697CWF2+1WfHy8mjdvrlWrVpmUEHWhdvZE3eyJugHGqeu0AYfDIR8fHz399NN64YUX5HK5TEoIo9BUgeUxOLvpKi0tVXBwsNkxcInaBmfDHiorK5WUlKS0tLRq5yiPHz9eTz31lJo3b25yQlwqNzdXvXv3ltPp9Or5vLw8hYeHs8AAwDUlJCRE69at0y233FLr/a+++kqxsbE6evSowcnQEGpnT9TNnqgbYJy6ThsoKyvTjh07NHv2bE2bNk0zZswwOBmMxk/msDz6fk1PZmamli5dqoyMDJ05c8bsOLgEW1Xt6cyZMxoxYoS2bdum4cOH67bbbpMkFRQUKCEhQenp6crMzJSPj4/JSXFR3759VVJS4vX8oqioKGVnZ6tr166NnAwNiY+P9+o5jkkEfr4TJ07o+uuvr/N++/btdeLECQMTwVvUzp6omz1RN8A4dR3N3KVLF910000KCAjQ73//e5oq1wCaKrAFXvTa36FDh5SSkqLly5frhx9+0MiRI/Xee++ZHQs1NNTELCgoUHJyshYtWmRQIngjMTFRRUVF2rVrl/r06VPtXk5OjuLi4pSYmKh58+aZExCXcbvdmj17tlq1auXV8xUVFY2cCN4KDAys9nnFihUaNWqU/P39TUoENF1dunTRl19+qU6dOtV6f/v27cydsihqZ0/UzZ6oG2Ad/fv318GDB82OAQPQVIEt/PrXv2Zwtg1VVFToww8/1NKlS7V161YNHz5c//znP7Vr1y7deOONZsdDLTZv3nzZkWynTp3SBx98oOTkZM+AQ5oq1vLBBx/otddeu6yhIkk33XSTFi1apOeff56mioXcdttt2rdvn9fPR0VFNTjrCMaoOVNqzZo1euWVV9hFBDSC++67T9OnT1d4eLh69+5d7d7u3bs1Y8YMTZgwwaR0qA+1syfqZk/UDbCOKzmNAPbGTBVYHoOz7enJJ59UWlqaunfvrgcffFD33XefrrvuOjVv3lw5OTnq2bOn2RHRgK1btyo5OVmrVq3SmTNnNG3aND3yyCOKiIgwOxpq8PHxUWFhYZ2r04qKitS9e3edPXvW4GRA0+fv76+cnByaKkAjOHv2rIYNG6bt27drxIgRioyMlNvtVkFBgTZu3KiBAwfq008/5XhLC6J29kTd7Im6AdZw9OhR3X///ercubNSUlLMjoNGRlMFlsfgbHtq1qyZEhISNGvWrGpHotBUsbYjR44oNTVVKSkpOn78uO6//36NHz9eUVFR1M3C2rVrp3Xr1ql///613mc4JdB4aKoAjauiokJJSUlKS0vT/v37JUk9evTQfffdp2nTpjW4mx3moXb2RN3siboBxujbt2+tIwqOHz+uf/7znwoPD1dmZqbat29vQjoYiaYKLM/lcqm4uJimis2kpaUpJSVF27Zt01133aWHHnpII0eOlI+PDy/nLczX11djxozRgw8+qBEjRsjpdEqiGWZ148aNU2VlpdauXVvr/dGjR8vlcmnVqlUGJwOaPpoqAAAAwLXh97//fa3XAwICFB4erpiYGLlcLoNTwQzMVIHlMTjbnu6//37df//9OnjwoFJTU/Vf//VfOn36tKqqqpSfn8/LeYvq0qWLvvjiC3Xu3FldunThqC+bmDt3rgYNGqTBgwdr+vTpioiI8Gz5T0pKUn5+vrKyssyOCTQJ6enp1T5XVVVp06ZN2rNnT7XrcXFxRsYCAAAA0Mjmzp1rdgRYBDtVYHlbtmxRdHS0mjX7vx5gbYOza77MgLW43W5lZmYqOTlZ6enpatu2reLj47V48WKzo6GGi7NUVq9erR49eujBBx/Ub3/7W+Xm5ioyMtLseKhDVlaWHn74YRUUFHi2I7vdbkVERCg5OVlRUVEmJwSahos7+OrjcDh04cIFA9IATVtQUFCtR2zUVFpaakAaXAlqZ0/UzZ6oG2C8M2fOaMOGDZ7j9sLDwzV8+PAG50Gj6aCpAlthcHbTUFpaqvfee0+pqanKzs42Ow7qcPLkSaWlpWnZsmXKysrSkCFDNH78eN1zzz0KCQkxOx7qkJ2dXe0c5ZtvvtncQAAA/ETLly/36rmJEyc2chJcKWpnT9TNnqgbYKz09HQ98sgj+v7776tdb9u2rZKTkzVq1CiTksFINFVgeQzObpp27NihuXPn6qOPPjI7Crxw8Zi9999/X6WlpTp//rzZkVBDeXm5tm/froqKCg0cOJDGF9DIzp07p8rKSvn5+ZkdBWiyPvvsM916663VdqzDHqidPVE3e6JugHH+/ve/a+jQoYqLi9MzzzzjOc0jPz9ff/jDH/TRRx9py5YtGjx4sMlJ0dhoqsDyGJxtX+vXr9eGDRvUokULPfLII+ratav27t2rWbNmKSMjQzExMfr444/NjokrUFlZqfT0dMXHx5sdBZfIzs5WbGysSkpKJP04OHvVqlWKiYkxORnQ9Bw9elQTJkzQxo0bVVVVpQEDBujPf/6zunXrZnY0oMlxuVwqLi5Wu3btzI6CK0Tt7Im62RN1A4wTGxurTp066Z133qn1/m9+8xsVFRXxrusa0PCh0IDJLg7O/uyzzzxH2sD6kpOTNXLkSKWmpurll1/W4MGD9ec//1lRUVFq37699uzZw18yNvT1119r1qxZZsdADQkJCQoLC9PWrVu1Y8cODRs2TE888YTZsYAmKSEhQdnZ2XrhhRe0aNEilZWVacqUKWbHApok1v/ZF7WzJ+pmT9QNME5WVla9P2v/13/9l7Zt22ZgIpiFvYGwvL1793pmqQwYMMAzOFuSV8PYYI433nhDL7/8smbOnKm1a9fq3nvv1VtvvaXdu3erY8eOZsfDT3Tu3DkdOHDA7BioYceOHcrMzFS/fv0kSSkpKQoODlZ5ebkCAgJMTgc0LRs2bFBqaqpnJ9jdd9+tyMhInTt3Ti1btjQ5HdD08P2+fVE7e6Ju9kTdAGOcOXOm3p+xAwMDdfbsWQMTwSwc/wVbYXC2ffj5+SkvL0+hoaFyu91q2bKlNm/erOjoaLOj4WfIyclRv379dOHCBbOj4BJOp1MlJSXVtvz7+/srNzdXYWFhJiYDmh6Xy6XDhw+rffv2nmuX/p0H4OpxOp0aOXJkgw3LDz/80KBE8Ba1syfqZk/UDTBOnz59NG3aNE2aNKnW+ykpKXr99deVm5trcDIYjZ0qsJXWrVtrypQpmjJlimdw9u9+9zs9/vjjDM62mDNnzqhVq1aSflw107JlS3Xo0MHkVEDTlZ+f75mpIv14DEBBQYFOnDjhudanTx8zogFNjsvluuwz65SAxuHv7y9fX1+zY+AnoHb2RN3siboBxpg0aZJmzJih66+/XrGxsdXu/fWvf9Vvf/tbPffccyalg5HYqQLbY3C2NTmdTr344otq3bq1pB/PoJ85c6batm1b7bmpU6eaEQ8/ETtVrMnpdMrhcNT6UvfidYfDQd2Aq8DpdCowMLDaMRtlZWUKCAiQ0/l/4wpLS0vNiAc0KbXtxIQ9UDt7om72RN0A41RVVWncuHFau3atwsPDFRkZ6VnQWFhYqHvuuUerV6+u9nMBmiaaKrC9vXv3Ki4ujiH2FhMaGtrgua4Oh0PffPONQYngjaCgoHrrVllZqVOnTvFy3mIOHTrk1XNdunRp5CRA07d8+XKvnps4cWIjJwGaPpfLpeLiYl4U2hC1syfqZk/UDTDeypUrlZaW5nkX2aNHD91333267777TE4Go9BUge2xch64enhZCAAArKKh1dcXjwNetGiRwcnQEGpnT9TNnqgbABiPpgpsj6YKgGtZbm6uevfu7fX24ry8PIWHh6tZM8aqAQCsbcuWLYqOjq72d9apU6f0wQcfKDk5WVlZWerZs6f27NljYkrUhtrZE3WzJ+oGGKe8vNyr5wICAho5CczGAW8AGkVsbKyOHz/u+ZyYmKiysjLP52PHjqlnz54mJEN9ysvLa/2HpqV19e3bV8eOHfP6+aioKH377beNmAho2oKCghQcHNzgPwB+viFDhnheEm7dulWTJ0/W9ddfr0cffVS33nqr8vPzeUloUdTOnqibPVE3wDht2rRRUFBQnf9cvI+mj2WqABrF+vXrde7cOc/nhQsXauzYsWrTpo2kH2dz7Nu3z6R0qEubNm1qnanicrkUFhamGTNmaMqUKSYkQ13cbrdmz56tVq1aefV8RUVFIycCmrbXX3/d7AjANePIkSNKTU1VSkqKjh8/rvvvv19/+9vfFBUVpcmTJysiIsLsiKgDtbMn6mZP1A0wzubNmz3/7na7FRsbq6VLl+oXv/iFialgBpoqsDxvBmfDemqeLMhJg/Zw6TcIlyorK9OOHTs0c+ZMNWvWTJMmTTI4Gepy2223XVGDMioqSr6+vo2YCGjamCkFGKdLly4aM2aM3njjDY0YMcLroy5hPmpnT9TNnqgbYJwhQ4ZU++xyuTR48GB17drVpEQwC00VWB4rQgHj1PwG4VK/+tWvFBoaqj/+8Y80VSzkb3/7m9kRAFyiuLhYCxYs0JIlS8yOAthely5d9MUXX6hz587q0qULq61thNrZE3WzJ+oGAMajqQLLY0WoPTkcjst2GNW34wj2MGTIED399NNmxwAAU+Xl5Wnz5s1q0aKF52jL77//XgsWLNDbb7/NSjXgKtm7d6+2bt2q5ORkDRgwQD169NCDDz4oie8rrY7a2RN1syfqBgDGc7g5kwcWV15eXut1Pz8/uVwug9PAW06nUyNHjlTLli0lSRkZGbrjjjvk5+cnSTp37pw++eQTBqDbzM6dO/WrX/1KRUVFZkcBAFOkp6drzJgxnuNHu3btqnfffVdjx45V//799fTTT+vOO+80OSXQ9Jw8eVJpaWlatmyZsrKyNGTIEI0fP1733HOPQkJCzI6HelA7e6Ju9kTdAGP5+/srNzdXYWFhZkeBwWiqwPKcTieDs23I2+Ohli1b1shJcLWcP39eEyZM0Pnz57VmzRqz4wCAKQYOHKjo6GjNnz9fS5cu1fTp09WrVy+lpKRowIABZscDrgkFBQVKTk7W+++/r9LSUp0/f97sSPAStbMn6mZP1A24+uLj46t9rrmA+KIPP/zQyFgwAU0VWN6WLVtqvX5xcPbixYuVlJTEjAfgKqj5DcJFx48fV15enhwOhz7//HN169bN4GQAYA2BgYHasWOHunXrpgsXLqhly5b65JNPNHz4cLOjAdecyspKpaen1/n9C6yL2tkTdbMn6gZcPSwgxkU0VWB7KSkpWrJkiXbu3Gl2FMD26voGISAgQOHh4XrggQcUGBhocCoAsA6n06mSkhK1a9dO0o9b/nNycpijAphg7969iouL0/79+82OgitE7eyJutkTdQOAq49B9bA9Bmdbk7erYNgSaS2spgCAhq1fv97TYK6qqtKmTZu0Z8+eas/ExcWZEQ24ppw7d04HDhwwOwZ+AmpnT9TNnqgbAFx9NFVge8ePH2flvAXVrMmKFSs0atQo+fv7m5QI3srKylJGRoYqKio0bNgwBi4DQA0TJ06s9vk3v/lNtc8Oh0MXLlwwMhIAAAAAwCA0VWBr58+f16uvvqpBgwaZHQU11NzxsGbNGr3yyiscj2Jxa9as0bhx4+Tr66vmzZvrtdde08svv6wZM2aYHQ0ALKGqqsrsCAAAAAAAE9FUgeV5OzgbwM/30ksvacqUKXrzzTflcrn00ksvaeHChTRVAAAAAAAAADGoHjbA4OymgUG+9tC6dWtlZ2erW7dukqSKigr5+fnp8OHDnqHMAHAte/zxx/XKK6+odevWkqS0tDTFxcXJz89PklRWVqbx48fr448/NjMm0CQEBQXJ4XDUeb+yslKnTp3iuD0Lonb2RN3siboBgPHYqQLLY3A2YJzTp08rICDA87lFixby8fHRyZMnaaoAgKR33nlH8+bN8zRVfvOb32jQoEGeRQPnzp3T+vXrzYwINBmvv/662RHwE1E7e6Ju9kTdAGMsXrz4in/NpEmTmC3cRLFTBbbA4Gz7SU9Pr/b5/vvv1+uvv67rr7++2vW4uDgjY6EBTqdTL774oudloSQlJCRo5syZatu2refa1KlTzYgHAKZzOp0qKSnxNJpr7sT87rvvdMMNN7AaFAAAAGhCnE6nOnbsKJfL5dXzRUVF2r9/Pye2NFE0VWB5NQdnl5eXMzjbBpxOZ4PPOBwOXjpZTGhoaL1bx6Uf6/bNN98YlAgArIWmCmCc8vLyWq/7+fl5/UID5qB29kTd7Im6Acao+XNAQzgGv2nj+C9YHoOz7amqqsrsCPgJ/vd//9fsCAAAAJKkNm3a1LrYw+VyKSwsTDNmzNCUKVNMSIaGUDt7om72RN0AY8ydO7faqR4Nee655xQcHNyIiWAmmiqwvH379mnlypWeFRbPPPOM5syZoyNHjjDjwQbOnTunyspKzwBfAADsbs6cOWrVqpUkqaKiQgsWLFBgYKCkH2dTAbg6Nm/eXOv1srIy7dixQzNnzlSzZs00adIkg5OhIdTOnqibPVE3wBhz5869ouefffbZRkoCK+D4L1hebdvr2EJnfUePHtWECRO0ceNGVVVVacCAAfrzn/+sbt26mR0NDaisrFRSUpLS0tK0f/9+SVKPHj00fvx4PfXUU2revLnJCQHAPEOHDm3wmESp7hccAK6elJQULVmyRDt37jQ7Cq4QtbMn6mZP1A0wTm5urm655RZVVFSYHQWNjKYKLI/B2fY0efJkrVu3TlOnTpWPj4/eeecddejQgZdMFnfmzBmNGDFC27Zt0/DhwxUZGSlJKigo0MaNGxUdHa3MzEz5+PiYnBQAAFzrDhw4oL59+9Y5TwDWRe3sibrZE3UDjJOTk6N+/foxX/EawPFfsLzOnTvr3XffrXatffv2ev/99z2fHQ4HTRWL2bBhg1JTUxUTEyNJuvvuuxUZGalz586pZcuWJqdDXRITE1VUVKRdu3apT58+1e7l5OQoLi5OiYmJmjdvnjkBAcACysvLtX37dlVUVGjgwIEKCQkxOxJwTTp+/Ljn6D3YC7WzJ+pmT9QNAK4+dqoAaBQul0uHDx9W+/btPdf8/PyUl5en0NBQ84KhXuHh4Vq4cKFGjx5d6/3Vq1fr+eef9xwLBgDXmuzsbMXGxqqkpETSj0eSrlq1yrOIAIAxzp8/rwkTJuj8+fNas2aN2XFwBaidPVE3e6JugLHYqXLtYKcKgEbjcrku+0wf19oOHTqkgQMH1nl/8ODB+vbbbw1MBADWkpCQoLCwMK1du1Y+Pj6aP3++nnjiCRUWFpodDWhy4uPja71+/Phx5eXlyeFw6PPPPzc4FbxB7eyJutkTdQOM09AxeidOnDAoCcxGUwW2wOBs+3G73erRo0e1Yb4nT55U37595XQ6PddKS0vNiIc6BAQE6MiRI+rUqVOt90tKSuTv729wKgCwjh07digzM1P9+vWT9OPw1+DgYJWXlysgIMDkdEDTUtdxNZ06ddLo0aP1wAMPcKSNRVE7e6Ju9kTdAOO0adOm2nuumtxud7330XRw/Bcsj8HZ9rR8+XKvnps4cWIjJ8GVGDdunCorK7V27dpa748ePVoul0urVq0yOBkAWIPT6VRJSYnatWvnuebv76/c3FyFhYWZmAwAAABAY9qyZYtXzw0ZMqSRk8Bs7FSB5TE4255oltjT3LlzNWjQIA0ePFjTp09XRESE3G63CgoKlJSUpPz8fGVlZZkdEwBMlZ+f75mpIsnz5+Sl2/1rfs8C4KfJyspSRkaGKioqNGzYMN15551mR4KXqJ09UTd7om6AMbxplnAiy7WBnSqwPAZnA8bKysrSww8/rIKCAs+2VbfbrYiICCUnJysqKsrkhABgHqfTKYfDUeuMsIvXHQ4HwymBq2DNmjUaN26cfH191bx5c5WXl+vll1/WjBkzzI6GBlA7e6Ju9kTdAGvIzMzU0qVLlZGRoTNnzpgdB42Mpgosz8fHR4WFhXXOeCgqKlL37t119uxZg5OhPkFBQV6dI0kH37qys7OrzTC6+eabzQ0EABZw6NAhr57r0qVLIycBmr7+/ftrwIABevPNN+VyufTSSy/p1Vdf5ftHG6B29kTd7Im6AeY5dOiQUlJStHz5cv3www8aOXKkRo8erXvvvdfsaGhkNFVgee3atdO6devUv3//Wu9/9dVXio2N1dGjRw1OhvowU8W+ysvLtX37dlVUVGjgwIEKCQkxOxIAALgGtW7dWtnZ2erWrZskqaKiQn5+fjp8+HC1uUawHmpnT9TNnqgbYKyKigp9+OGHWrp0qbZu3arhw4dr3bp12rVrl2688Uaz48EgzFSB5d1+++1auHBhnYOzExMTdfvttxucCg2hWWJP2dnZio2N9cwK8Pf316pVqxQTE2NyMgAwX25urnr37i2n0+nV83l5eQoPD1ezZnzLDfwUp0+fVkBAgOdzixYt5OPjo5MnT/Ki0OKonT1RN3uiboBxnnzySaWlpal79+568MEHtXLlSl133XVq3ry5XC6X2fFgIH7Cg+UxOLtpKi4u1oIFC7RkyRKzo+ASCQkJCgsL09q1a+Xj46P58+friSeeUGFhodnRAMB0ffv2VUlJidc7+KKiopSdna2uXbs2cjKg6Vq6dKlat27t+VxZWanU1FS1bdvWc23q1KlmREMDqJ09UTd7om6AMf70pz8pISFBs2bNkr+/v9lxYCKO/4ItMDjbnvLy8rR582a1aNFCY8eOVZs2bfT9999rwYIFevvtt9W1a1fl5eWZHROXaNu2rTIzM9WvXz9JUllZmYKDg1VWVlZt9RMAXIucTqceffRRtWrVyqvn33rrLeXn59NUAX6i0NDQBmf0ORwOffPNNwYlgreonT1RN3uiboBx0tLSlJKSom3btumuu+7SQw89pJEjR8rHx0c5OTnq2bOn2RFhEJoqsBUGZ9tHenq6xowZo8rKSklS165d9e6772rs2LHq37+/nn76ad15550mp0RNTqdTJSUl1baJ+/v7Kzc3V2FhYSYmAwDzDR06tMGXFjWtWLFCHTp0aKREAAAAAIx28OBBpaamKjU1VadPn1ZpaalWrlypMWPGmB0NBqGpAltgcLb9DBw4UNHR0Zo/f76WLl2q6dOnq1evXkpJSdGAAQPMjoc6OJ1OffrppwoODvZcu/XWW7Vq1Sp17NjRc61Pnz5mxAMAAAAAALAEt9utzMxMJScnKz09XW3btlV8fLwWL15sdjQ0MpoqsDwGZ9tTYGCgduzYoW7duunChQtq2bKlPvnkEw0fPtzsaKiH0+mUw+FQbX81XLzucDh04cIFE9IBAIBrTWVlpZKSkpSWllZtx/r48eP11FNPqXnz5iYnRF2onT1RN3uiboD5SktL9d577yk1NVXZ2dlmx0Ejo6kCy4uJidHJkye1aNEiz+Ds3bt3Mzjb4moeI+Xv76+cnBzOlbe4Q4cOefVcly5dGjkJAAC41p05c0YjRozQtm3bNHz4cEVGRkqSCgoKtHHjRkVHRyszM1M+Pj4mJ0VN1M6eqJs9UTfAOnbs2KG5c+fqo48+MjsKGlkzswMADdmxY0e1wdkpKSkKDg5WeXk5g7Mtbv369QoMDJQkVVVVadOmTdqzZ0+1Z+Li4syIhjrQLAEAAFaRmJiooqIi7dq167KjR3NychQXF6fExETNmzfPnICoE7WzJ+pmT9QNMNb69eu1YcMGtWjRQo888oi6du2qvXv3atasWcrIyOBknWsEO1VgeQzOtien09ngMxwjZS25ubnq3bu3V7WTpLy8PIWHh6tZM/rzAADg6gsPD9fChQs1evToWu+vXr1azz//vOeoG1gHtbMn6mZP1A0wTnJysqZMmaLg4GD98MMPuu666/Taa6/pySef1Lhx4/TUU095douhaaOpAstjcDZgDJfLpZKSEoWEhHj1fEBAgLKzsznSDQAANAofHx8VFhaqU6dOtd4vKipS9+7ddfbsWYOToSHUzp6omz1RN8A4ffr00UMPPaSZM2dq7dq1uvfeezV48ODL3lGi6WN5MWxh2LBhlw3OvvvuuxmcDVxFbrdbs2fPVqtWrbx6vqKiopETAQCAa1lAQICOHDlS54vCkpIS+fv7G5wK3qB29kTd7Im6AcY5cOCA7r33XklSfHy8mjVrpldffZWGyjWInSqwPAZn29Pjjz+uV155Ra1bt5YkpaWlKS4uTn5+fpKksrIyjR8/Xh9//LGZMXGJoUOHyuFwXNGvWbFihTp06NBIiQAAwLVs3Lhxqqys1Nq1a2u9P3r0aLlcLq1atcrgZGgItbMn6mZP1A0wTs0RBf7+/srJyeEEj2sQTRUAjcLlcqm4uNjzF03No6K+++473XDDDewwAgAAQK3y8/M1aNAg9erVS9OnT1dERITcbrcKCgqUlJSk/Px8ZWVlqVevXmZHRQ3Uzp6omz1RN8A4TqdTL774omcBcUJCgmbOnKm2bdtWe27q1KlmxIOBaKrA0hicbV8Nde9pqgAAAKAhWVlZevjhh1VQUODZUet2uxUREaHk5GRFRUWZnBB1oXb2RN3siboBxggNDW3whA+Hw6FvvvnGoEQwC00VWBqDs+2LpgoAAACuluzsbO3fv1+S1KNHD918883mBoLXqJ09UTd7om4AYAyW88PSGJwNAAAAXLvKy8u1fft2VVRU6Pbbb/d6sRXMR+3sibrZE3UDAGPRVIGl3Xbbbdq3b5/Xz0dFRcnX17cRE+FKzJkzx9MQq6io0IIFCxQYGChJOn36tJnRAAAAYHHZ2dmKjY1VSUmJpB93Pq9atUoxMTEmJ0NDqJ09UTd7om6AcWJjY5WWluZ5t5WYmKjHHntMbdq0kSQdO3ZM//Ef/6H8/HwTU8IIHP8FoFEMHTq0wXMmJWnz5s0GpAEAAIDdxMTE6OTJk1q0aJF8fHw0f/587d69W4WFhWZHQwOonT1RN3uiboBxXC6XiouLPUfd1xxDwFH31w6aKgAAAAAAy2nbtq0yMzPVr18/SVJZWZmCg4NVVlamgIAAk9OhPtTOnqibPVE3wDjMD8ZFTrMDAGi6ysvLtWHDBv31r3/V0aNHzY4DAAAAGyktLVXHjh09n9u0aSM/Pz8dO3bMxFTwBrWzJ+pmT9QNAIzHTBUAjYJzXQEAAPBz5efne76flCS3262CggKdOHHCc61Pnz5mREMDqJ09UTd7om6AMRwOx2VH3Xtz9D2aHo7/AtAoONcVAAAAP4fT6ZTD4VBtP7JevO5wODhiw4KonT1RN3uiboBxnE6nRo4cqZYtW0qSMjIydMcdd8jPz0+SdO7cOX3yySd8vV0DaKoAaBSc6woAAICf49ChQ14916VLl0ZOgitF7eyJutkTdQOMM2nSJK+eW7ZsWSMngdloqgBoFDWHd0k/HgGWm5ursLAwE5MBAAAAAAAAwE/DoHoAjSY/P1+5ubmefy6e63rpNQAAAKCm3NxcVVVVef18Xl6eKisrGzERvEXt7Im62RN1AwBzsFMFQKPgXFcAAAD8VC6XSyUlJQoJCfHq+YCAAGVnZ6tr166NnAwNoXb2RN3siboBxoqPj/fquQ8//LCRk8BszcwOAKBpOnjwoNkRAAAAYFNut1uzZ89Wq1atvHq+oqKikRPBW9TOnqibPVE3wFiBgYHVPq9YsUKjRo2Sv7+/SYlgFnaqAAAAAAAsZejQoXI4HFf0a1asWKEOHTo0UiJ4i9rZE3WzJ+oGmMvf3185OTns/roG0VQBcNXl5uaqd+/ecjq9G9uUl5en8PBwNWvG5jkAAAAAAABYH02VaxeD6gFcdX379tWxY8e8fj4qKkrffvttIyYCAAAAAAAAgJ+PZeEArjrOdQUAAAAAAADQFNFUAXDV3Xbbbdq3b5/Xz0dFRcnX17cREwEAAAAAAAA/XXp6erXPVVVV2rRpk/bs2VPtelxcnJGxYAJmqgAAAAAAAAAAUA9vZgc7HA5duHDBgDQwE00VAAAAAAAAAAAALzCoHgAAAAAAAAAAL5w7d06nTp0yOwZMRFMFAAAAAAAAAIB6HD16VCNHjlTr1q0VEBCgwYMH6+uvvzY7FkzA8V8AAAAAAAAAANRj8uTJWrdunaZOnSofHx+988476tChgzZv3mx2NBiMpgoAAAAAAAAAAPXo1KmTli5dqpiYGElSYWGhIiMjderUKbVs2dLkdDASTRUAAAAAAAAAAOrhcrl0+PBhtW/f3nPNz89PeXl5Cg0NNS8YDMdMFQAAAAAAAAAAGuByuS77zJ6Faw87VQAAAAAAAAAAqIfT6VRgYKAcDofnWllZmQICAuR0/t/ehdLSUjPiwUDNzA4AAAAAAAAAAICVLVu2zOwIsAh2qgAAAAAAAAAAAHiBmSoAAAAAAAAAAABe4PgvAAAAAAAAAADqERQUVG2eSl2YqdL00VQBAAAAAAAAAKAer7/+utkRYBHMVAEAAAAAAAAAAPACM1UAAAAAAAAAAPgZiouL9cQTT5gdAwbg+C8AAAAAAAAAABqQl5enzZs3q0WLFho7dqzatGmj77//XgsWLNDbb7+trl27mh0RBuD4LwAAAAAAAAAA6pGenq4xY8aosrJSktS1a1e9++67Gjt2rPr376+nn35ad955p8kpYQSaKgAAAAAAAAAA1GPgwIGKjo7W/PnztXTpUk2fPl29evVSSkqKBgwYYHY8GIimCgAAAAAAAAAA9QgMDNSOHTvUrVs3XbhwQS1bttQnn3yi4cOHmx0NBmNQPQAAAAAAAAAA9Thx4oQCAgIkSS6XS76+vsxQuUYxqB4AAAAAAAAAgAasX79egYGBkqSqqipt2rRJe/bsqfZMXFycGdFgII7/AgAAAAAAAACgHk5nw4c+ORwOXbhwwYA0MBNNFQAAAAAAAAAAAC8wUwUAAAAAAAAAAMALNFUAAAAAAAAAAKjH448/rpMnT3o+p6Wl6dSpU57PZWVlio2NNSMaDMbxXwAAAAAAAAAA1MPlcqm4uFjt2rWTJAUEBCg7O1tdu3aVJH333Xe64YYbmKlyDWCnCgAAAAAAAAAA9ai5N4G9CtcumioAAAAAAAAAAABeoKkCAAAAAAAAAADghWZmBwAAAAAAAAAAwOrmzJmjVq1aSZIqKiq0YMECBQYGSpJOnz5tZjQYiEH1AAAAAAAAAADUY+jQoXI4HA0+t3nzZgPSwEw0VQAAAAAAAAAAALzA8V8AAAAAAAAAADSgvLxc27dvV0VFhQYOHKiQkBCzI8EENFUAAAAAAAAAAKhHdna2YmNjVVJSIkny9/fXqlWrFBMTY3IyGI3jvwAAAAAAAAAAqEdMTIxOnjypRYsWycfHR/Pnz9fu3btVWFhodjQYjKYKAAAAAAAAAAD1aNu2rTIzM9WvXz9JUllZmYKDg1VWVqaAgACT08FITrMDAAAAAAAAAABgZaWlperYsaPnc5s2beTn56djx46ZmApmYKYKAAAAAAAAAAANyM/P98xUkSS3262CggKdOHHCc61Pnz5mRIOBOP4LAAAAAAAAAIB6OJ1OORwO1fY6/eJ1h8OhCxcumJAORmKnCgAAAAAAAAAA9Th48KDZEWAR7FQBAAAAAAAAAADwAoPqAQAAAAAAAACoQ25urqqqqrx+Pi8vT5WVlY2YCGZipwoAAAAAAAAAAHVwuVwqKSlRSEiIV88HBAQoOztbXbt2beRkMAMzVQAAAAAAAAAAqIPb7dbs2bPVqlUrr56vqKho5EQwE00VAAAAAAAAAADqcNttt2nfvn1ePx8VFSVfX99GTAQzcfwXAAAAAAAAAACAFxhUDwAAAAAAAAAA4AWaKgAAAAAAAAAAAF6gqQIAAAAAAAAAAOAFmioAAAAAAAAAAABeoKkCAAAAoMn49a9/rXvuucfsGAAAAACaKJoqAAAAAAAAAAAAXqCpAgAAAAAAAAAA4AWaKgAAAAAspaqqSq+88oq6deumli1bqnPnzlqwYIEkaffu3brjjjvk6+ur6667To8++qhOnjxZ538rNDRUr7/+erVrN998s+bNm+f57HA49M477+juu+9Wq1atFBkZqW3btunrr7/W0KFD5efnp1tvvVUHDhzw/Jp58+bp5ptv1vvvv6/Q0FAFBgbqvvvu04kTJzzPrFmzRjfeeKMn6/Dhw3Xq1Kmr838SAAAAAFPQVAEAAABgKc8++6wSExM1e/Zs5efna8WKFbr++ut16tQpxcTEKCgoSF999ZVWr16tjRs36oknnvjZv+f8+fM1YcIEZWdnKyIiQuPHj9dvfvMbPfvss/rHP/4ht9t92e9z4MAB/c///I8++ugjffTRR9qyZYsSExMlScXFxbr//vs1efJkFRQU6G9/+5vi4+Pldrt/dlYAAAAA5mlmdgAAAAAAuOjEiRN64403tGTJEk2cOFGS9G//9m/693//d7377rs6e/as3nvvPfn5+UmSlixZolGjRunll1/W9ddf/5N/30mTJmns2LGSpISEBEVFRWn27NmKiYmRJD311FOaNGlStV9TVVWl1NRU+fv7S5Ieeughbdq0SQsWLFBxcbEqKysVHx+vLl26SJJuvPHGn5wPAAAAgDWwUwUAAACAZRQUFOjcuXMaNmxYrfduuukmT0NFkqKjo1VVVaV9+/b9rN+3T58+nn+/2Jy5tAly/fXX6+zZsyovL/dcCw0N9TRUJKlDhw46cuSIJOmmm27SsGHDdOONN+ree+/Vu+++qx9++OFnZQQAAABgPpoqAAAAACzD19f3qv73nE7nZUdunT9//rLnmjdv7vl3h8NR57Wqqqpaf83FZy7ed7lc2rBhg9atW6eePXvqj3/8o8LDw3Xw4MGf+b8IAAAAgJloqgAAAACwjO7du8vX11ebNm267F5kZKRycnKqDXvfunWrnE6nwsPDa/3vhYSEqLi42PO5vLzcsMaGw+FQdHS0fv/732vXrl1q0aKF/vu//9uQ3xsAAABA42CmCgAAAADL8PHxUUJCgn7729+qRYsWio6O1tGjR5WXl6cHHnhAc+fO1cSJEzVv3jwdPXpUTz75pB566KE656nccccdSk1N1ahRo9SmTRvNmTNHLper0f93bN++XZs2bdIvf/lLtWvXTtu3b9fRo0cVGRnZ6L83AAAAgMZDUwUAAACApcyePVvNmjXTnDlz9K9//UsdOnTQY489platWmn9+vV66qmnNGDAALVq1UqjR4/Wa6+9Vud/69lnn9XBgwd19913KzAwUPPnzzdkp0pAQIA+++wzvf766yovL1eXLl30hz/8QSNHjmz03xsAAABA43G4ax4wDAAAAAAAAAAAgMswUwUAAAAAAAAAAMALNFUAAAAAAAAAAAC8QFMFAAAAAAAAAADACzRVAAAAAAAAAAAAvEBTBQAAAAAAAAAAwAs0VQAAAAAAAAAAALxAUwUAAAAAAAAAAMALNFUAAAAAAAAAAAC8QFMFAAAAAAAAAADACzRVAAAAAAAAAAAAvEBTBQAAAAAAAAAAwAs0VQAAAAAAAAAAALzw/wERzMrMdP2BwgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "names, importances = pipe2.columns.importances()\n", "\n", "plt.subplots(figsize=(20, 10))\n", "\n", "plt.bar(names, importances)\n", "\n", "plt.title(\"column importances\")\n", "plt.grid(True)\n", "plt.xlabel(\"columns\")\n", "plt.ylabel(\"importance\")\n", "plt.xticks(rotation='vertical')\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The most important feature of pipe1 looks as follows:" ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "DROP TABLE IF EXISTS \"PRODUCT_CODE__MAPPING_TARGET_1_AVG\";\n", "\n", "CREATE TABLE \"PRODUCT_CODE__MAPPING_TARGET_1_AVG\"(\"key\" TEXT, \"value\" REAL);\n", "\n", "INSERT INTO \"PRODUCT_CODE__MAPPING_TARGET_1_AVG\" (\"key\", \"value\")\n", "VALUES('410901', 0.5265553869499241),\n", " ('410140', 0.5248618784530387),\n", " ('004190', 0.5073846153846154),\n", " ('410120', 0.5013123359580053),\n", " ('410110', 0.4444444444444444),\n", " ('004100', 0.3336306868867083),\n", " ('390110', 0.3132530120481928),\n", " ('390120', 0.3067484662576687),\n", " ('410130', 0.2967448902346707),\n", " ('370110', 0.2948717948717949),\n", " ('370212', 0.2944444444444445),\n", " ('370220', 0.2920353982300885),\n", " ('680140', 0.288135593220339),\n", " ('390322', 0.2795918367346939),\n", " ('390321', 0.2764227642276423),\n", " ('370901', 0.271948608137045),\n", " ('390210', 0.2579837194740138),\n", " ('370125', 0.2519157088122606),\n", " ('390310', 0.2443181818181818),\n", " ('390223', 0.2344706911636046),\n", " ('390230', 0.2238442822384428),\n", " ('370211', 0.2185714285714286),\n", " ('370314', 0.2182952182952183),\n", " ('400220', 0.2164179104477612),\n", " ('610110', 0.2162868883078072),\n", " ('360320', 0.2151898734177215),\n", " ('590220', 0.2075471698113208),\n", " ('370213', 0.2015968063872255),\n", " ('400210', 0.1944764096662831),\n", " ('430120', 0.194006309148265),\n", " ('320130', 0.1899441340782123),\n", " ('390901', 0.1797752808988764),\n", " ('330410', 0.1751831107281344),\n", " ('380410', 0.1386392811296534),\n", " ('590230', 0.13469068128426),\n", " ('360350', 0.1321279554937413),\n", " ('360210', 0.1305555555555556),\n", " ('290420', 0.1282051282051282),\n", " ('280220', 0.1231884057971015),\n", " ('320903', 0.1229724632214259),\n", " ('360420', 0.1222091656874266),\n", " ('005000', 0.1219512195121951),\n", " ('660900', 0.1205479452054795),\n", " ('320345', 0.1176205497972059),\n", " ('610902', 0.1162790697674419),\n", " ('660110', 0.111731843575419),\n", " ('600900', 0.1111111111111111),\n", " ('670110', 0.1111111111111111),\n", " ('320233', 0.1108969866853539),\n", " ('610230', 0.11),\n", " ('660210', 0.1097922848664688),\n", " ('610901', 0.1097560975609756),\n", " ('380510', 0.1081081081081081),\n", " ('290310', 0.1044776119402985),\n", " ('280120', 0.1030640668523677),\n", " ('380901', 0.1010141987829615),\n", " ('320521', 0.1009174311926606),\n", " ('360330', 0.1004366812227074),\n", " ('360311', 0.09981167608286252),\n", " ('430110', 0.09863945578231292),\n", " ('300320', 0.0975609756097561),\n", " ('360312', 0.09716599190283401),\n", " ('660000', 0.09413886384129846),\n", " ('600430', 0.09302325581395349),\n", " ('380110', 0.09302325581395349),\n", " ('310231', 0.09090909090909091),\n", " ('004000', 0.08723998758149643),\n", " ('600410', 0.08408408408408409),\n", " ('310210', 0.08333333333333333),\n", " ('340120', 0.08333333333333333),\n", " ('430130', 0.08226221079691516),\n", " ('600210', 0.08190476190476191),\n", " ('380315', 0.08014981273408239),\n", " ('610120', 0.07865168539325842),\n", " ('620610', 0.07755102040816327),\n", " ('360513', 0.07722969606377678),\n", " ('280140', 0.07646356033452807),\n", " ('320380', 0.07645788336933046),\n", " ('620213', 0.07375643224699828),\n", " ('620510', 0.07370393504059962),\n", " ('380430', 0.07358390682901006),\n", " ('310316', 0.07329842931937172),\n", " ('310232', 0.0726950354609929),\n", " ('200210', 0.07258064516129033),\n", " ('530110', 0.07235621521335807),\n", " ('380320', 0.07142857142857142),\n", " ('640420', 0.06923076923076923),\n", " ('620214', 0.0689900426742532),\n", " ('610130', 0.06882591093117409),\n", " ('290410', 0.06748466257668712),\n", " ('380420', 0.06734816596512327),\n", " ('400310', 0.0672059738643435),\n", " ('690117', 0.06666666666666667),\n", " ('610903', 0.06578947368421052),\n", " ('310220', 0.06555863342566944),\n", " ('320330', 0.06554307116104868),\n", " ('400110', 0.06538692261547691),\n", " ('640120', 0.06442953020134229),\n", " ('690230', 0.0641025641025641),\n", " ('620330', 0.06329113924050633),\n", " ('420115', 0.06281407035175879),\n", " ('380311', 0.0625),\n", " ('310340', 0.06231454005934718),\n", " ('320370', 0.06196746707978312),\n", " ('380340', 0.06157635467980296),\n", " ('380210', 0.06014492753623189),\n", " ('620112', 0.05970149253731343),\n", " ('340110', 0.05929824561403509),\n", " ('320901', 0.05747126436781609),\n", " ('280110', 0.05726600985221675),\n", " ('290120', 0.05673758865248227),\n", " ('320150', 0.05652173913043478),\n", " ('240220', 0.05647840531561462),\n", " ('340907', 0.05555555555555555),\n", " ('600310', 0.05521472392638037),\n", " ('320221', 0.05381727158948686),\n", " ('320522', 0.05371900826446281),\n", " ('620913', 0.05333333333333334),\n", " ('340510', 0.052734375),\n", " ('640130', 0.05263157894736842),\n", " ('310332', 0.05128205128205128),\n", " ('320232', 0.05029013539651837),\n", " ('380333', 0.0501577287066246),\n", " ('690118', 0.05),\n", " ('670903', 0.04895104895104895),\n", " ('320905', 0.04766031195840555),\n", " ('320627', 0.04761904761904762),\n", " ('320902', 0.04666666666666667),\n", " ('690110', 0.04666666666666667),\n", " ('150110', 0.04635643740546312),\n", " ('620221', 0.04615384615384616),\n", " ('670901', 0.04597701149425287),\n", " ('001000', 0.04587155963302753),\n", " ('670310', 0.04553734061930783),\n", " ('340610', 0.04444444444444445),\n", " ('200410', 0.04397394136807817),\n", " ('300900', 0.04375),\n", " ('610320', 0.04300578034682081),\n", " ('300110', 0.0425531914893617),\n", " ('002000', 0.0418848167539267),\n", " ('680220', 0.04184704184704185),\n", " ('570901', 0.04081632653061224),\n", " ('280210', 0.04081632653061224),\n", " ('600420', 0.04044489383215369),\n", " ('320420', 0.0400890868596882),\n", " ('290440', 0.038860103626943),\n", " ('200310', 0.03872966692486444),\n", " ('310900', 0.0380952380952381),\n", " ('520550', 0.03773584905660377),\n", " ('690116', 0.03773584905660377),\n", " ('020410', 0.03773262762506403),\n", " ('440130', 0.03759398496240601),\n", " ('380902', 0.03571428571428571),\n", " ('550320', 0.03547297297297297),\n", " ('290110', 0.03539823008849557),\n", " ('590210', 0.03476151980598222),\n", " ('320904', 0.03454231433506045),\n", " ('490311', 0.03448275862068965),\n", " ('620310', 0.03422053231939164),\n", " ('220000', 0.03418803418803419),\n", " ('320120', 0.03355704697986577),\n", " ('240310', 0.03343949044585987),\n", " ('310351', 0.03333333333333333),\n", " ('640310', 0.03329679364209372),\n", " ('670902', 0.03174603174603174),\n", " ('680903', 0.03137789904502047),\n", " ('310140', 0.0308641975308642),\n", " ('620420', 0.03061224489795918),\n", " ('630220', 0.03052325581395349),\n", " ('330610', 0.03022860381636123),\n", " ('330510', 0.02971188475390156),\n", " ('180620', 0.02942668696093353),\n", " ('240900', 0.02941176470588235),\n", " ('550330', 0.02935420743639922),\n", " ('320610', 0.02929427430093209),\n", " ('620710', 0.02877697841726619),\n", " ('290320', 0.02877697841726619),\n", " ('200111', 0.02867072111207646),\n", " ('240320', 0.02842928216062544),\n", " ('310352', 0.02838427947598253),\n", " ('320410', 0.02791625124626122),\n", " ('300218', 0.02777777777777778),\n", " ('320110', 0.02768166089965398),\n", " ('620121', 0.02765208647561589),\n", " ('340210', 0.02722323049001815),\n", " ('240210', 0.02707581227436823),\n", " ('440150', 0.02702702702702703),\n", " ('320140', 0.02697022767075306),\n", " ('640220', 0.02683461117196057),\n", " ('640410', 0.026232741617357),\n", " ('310335', 0.02593659942363112),\n", " ('490315', 0.02564102564102564),\n", " ('340901', 0.02542372881355932),\n", " ('610310', 0.02461584365209608),\n", " ('680110', 0.02362204724409449),\n", " ('340903', 0.0234375),\n", " ('480213', 0.0231811697574893),\n", " ('320430', 0.02272727272727273),\n", " ('230000', 0.02272727272727273),\n", " ('640210', 0.02267002518891688),\n", " ('550310', 0.02246796559592768),\n", " ('490110', 0.02173913043478261),\n", " ('620410', 0.02165087956698241),\n", " ('340913', 0.02127659574468085),\n", " ('340906', 0.02127659574468085),\n", " ('590110', 0.0209366391184573),\n", " ('620810', 0.02090592334494774),\n", " ('020710', 0.02085600290170475),\n", " ('620926', 0.02076875387476751),\n", " ('480212', 0.02055622732769045),\n", " ('020510', 0.0202097074243193),\n", " ('650210', 0.02016868353502017),\n", " ('530510', 0.02005730659025788),\n", " ('520310', 0.02),\n", " ('480110', 0.01970443349753695),\n", " ('550110', 0.0194300518134715),\n", " ('650110', 0.0190424374319913),\n", " ('320511', 0.01829268292682927),\n", " ('240120', 0.01818181818181818),\n", " ('040610', 0.01785714285714286),\n", " ('170531', 0.0177293934681182),\n", " ('550210', 0.01761658031088083),\n", " ('290430', 0.01748251748251748),\n", " ('002100', 0.01715481171548117),\n", " ('150310', 0.01708217913204063),\n", " ('560310', 0.01682692307692308),\n", " ('640110', 0.01674500587544066),\n", " ('640430', 0.01648351648351648),\n", " ('570000', 0.01633393829401089),\n", " ('240110', 0.0162052667116813),\n", " ('690119', 0.01618122977346278),\n", " ('630110', 0.0158344666796192),\n", " ('330310', 0.01570146818923328),\n", " ('020820', 0.01567783584383646),\n", " ('130320', 0.0156165858912224),\n", " ('630210', 0.0155902004454343),\n", " ('020610', 0.01553829078801332),\n", " ('010120', 0.01547231270358306),\n", " ('180310', 0.01535880227155395),\n", " ('550410', 0.01529571719918423),\n", " ('360110', 0.01515151515151515),\n", " ('620114', 0.01492537313432836),\n", " ('440210', 0.01488095238095238),\n", " ('470220', 0.01478743068391867),\n", " ('620111', 0.01471389645776567),\n", " ('330210', 0.01441871961769795),\n", " ('140320', 0.01423487544483986),\n", " ('340520', 0.01411100658513641),\n", " ('560210', 0.01355661881977671),\n", " ('530311', 0.01341184167484462),\n", " ('330110', 0.01330895052321447),\n", " ('050900', 0.0131578947368421),\n", " ('250900', 0.01309707241910632),\n", " ('690120', 0.01305483028720627),\n", " ('490300', 0.01298701298701299),\n", " ('180320', 0.01298701298701299),\n", " ('170533', 0.01296982530439386),\n", " ('540000', 0.01271259233808624),\n", " ('170510', 0.01269971323228185),\n", " ('620930', 0.01252609603340292),\n", " ('340410', 0.01241642788920726),\n", " ('270000', 0.01241039905852145),\n", " ('520110', 0.01237964236588721),\n", " ('560400', 0.01210898082744702),\n", " ('180612', 0.01201452919810003),\n", " ('620320', 0.01185770750988142),\n", " ('470211', 0.01179941002949852),\n", " ('180520', 0.01179574732267577),\n", " ('100410', 0.01164329187615771),\n", " ('310331', 0.01162790697674419),\n", " ('530412', 0.01158504476040021),\n", " ('020810', 0.01154575219713941),\n", " ('530210', 0.01152737752161383),\n", " ('220110', 0.01149425287356322),\n", " ('320630', 0.01142857142857143),\n", " ('520531', 0.01112484548825711),\n", " ('180710', 0.01103708190322364),\n", " ('030810', 0.01092896174863388),\n", " ('130310', 0.01086556169429098),\n", " ('170210', 0.01082262080178853),\n", " ('340620', 0.01075268817204301),\n", " ('999900', 0.01062416998671979),\n", " ('030210', 0.01055662188099808),\n", " ('030510', 0.01044277360066834),\n", " ('170110', 0.01034780109226789),\n", " ('220210', 0.01027397260273973),\n", " ('680902', 0.01025641025641026),\n", " ('020310', 0.01021667580910587),\n", " ('130212', 0.009969657563935847),\n", " ('030710', 0.009891435464414958),\n", " ('140420', 0.009844993715961458),\n", " ('560330', 0.009771986970684038),\n", " ('270210', 0.009420631182289214),\n", " ('140220', 0.009351432880844645),\n", " ('160320', 0.00933609958506224),\n", " ('560110', 0.009322560596643879),\n", " ('170520', 0.009291360421578144),\n", " ('230110', 0.009202453987730062),\n", " ('170310', 0.009154113557358054),\n", " ('180110', 0.009134615384615385),\n", " ('140210', 0.009130282102305981),\n", " ('160212', 0.009098914000587027),\n", " ('050410', 0.008833922261484099),\n", " ('100210', 0.008741319144525446),\n", " ('170532', 0.008554705087798289),\n", " ('620912', 0.008553654743390357),\n", " ('090210', 0.008506616257088847),\n", " ('490000', 0.008489564909798374),\n", " ('170410', 0.008431932544539644),\n", " ('210210', 0.00823045267489712),\n", " ('020620', 0.008152173913043478),\n", " ('340310', 0.008032128514056224),\n", " ('110410', 0.007990834884720034),\n", " ('490312', 0.007977207977207978),\n", " ('210110', 0.007972665148063782),\n", " ('180420', 0.007866728366496992),\n", " ('180220', 0.007703887363853715),\n", " ('010210', 0.007637017070979336),\n", " ('180510', 0.007588713125267208),\n", " ('470111', 0.007556238768484639),\n", " ('060310', 0.007518796992481203),\n", " ('050310', 0.007514761137949544),\n", " ('030610', 0.007317073170731708),\n", " ('180611', 0.007287611061195967),\n", " ('010320', 0.007257694074414332),\n", " ('500110', 0.007106598984771574),\n", " ('040510', 0.006984459577440196),\n", " ('110310', 0.006973269134982567),\n", " ('250220', 0.006944444444444444),\n", " ('580000', 0.006857142857142857),\n", " ('020210', 0.006824146981627296),\n", " ('180210', 0.006806282722513089),\n", " ('040410', 0.006790744466800805),\n", " ('050110', 0.00675990675990676),\n", " ('010110', 0.006644518272425249),\n", " ('180410', 0.006634078212290503),\n", " ('140230', 0.00663265306122449),\n", " ('050210', 0.00662133142448103),\n", " ('160310', 0.006574892130675981),\n", " ('020110', 0.006501360749924402),\n", " ('070110', 0.006377551020408163),\n", " ('030310', 0.00625),\n", " ('120310', 0.006177540831006178),\n", " ('100510', 0.006119326874043855),\n", " ('030410', 0.006116207951070336),\n", " ('690114', 0.006105834464043419),\n", " ('110510', 0.005989518342899925),\n", " ('160211', 0.005981308411214953),\n", " ('150211', 0.005960568546538285),\n", " ('130211', 0.005947955390334572),\n", " ('520541', 0.005911778080945885),\n", " ('120210', 0.005798018131983976),\n", " ('040110', 0.005780346820809248),\n", " ('260110', 0.005772763054316453),\n", " ('070240', 0.005749668288367979),\n", " ('090110', 0.005704227647576519),\n", " ('110210', 0.005692403229145104),\n", " ('030110', 0.005622410731899783),\n", " ('260210', 0.0055542698449433),\n", " ('080110', 0.005548549810844893),\n", " ('120110', 0.005436931593515224),\n", " ('040310', 0.005404077622205846),\n", " ('250210', 0.005342831700801425),\n", " ('010310', 0.005331627212625293),\n", " ('440120', 0.005319148936170213),\n", " ('100110', 0.005308219178082192),\n", " ('470112', 0.005277044854881266),\n", " ('110110', 0.005152378864284149),\n", " ('160110', 0.005109489051094891),\n", " ('270410', 0.00496031746031746),\n", " ('060110', 0.004922542348342262),\n", " ('520516', 0.004901960784313725),\n", " ('270310', 0.004885574697865775),\n", " ('120410', 0.004865350089766607),\n", " ('220120', 0.004815409309791332),\n", " ('040210', 0.004786324786324786),\n", " ('070230', 0.004725554343874954),\n", " ('130110', 0.004694835680751174),\n", " ('140110', 0.004555336991406978),\n", " ('340530', 0.004530011325028313),\n", " ('060210', 0.00400114318376679),\n", " ('230900', 0.003992015968063872),\n", " ('520410', 0.003937007874015748),\n", " ('140340', 0.003897369275738876),\n", " ('490313', 0.003875968992248062),\n", " ('009000', 0.002952029520295203),\n", " ('350110', 0.002881844380403458),\n", " ('140330', 0.002380952380952381),\n", " ('130122', 0.002169197396963124),\n", " ('150212', 0.001451378809869376),\n", " ('130121', 0.001373626373626374),\n", " ('190323', 0.0009389671361502347),\n", " ('190311', 0.0008796003096193089),\n", " ('200532', 0.0005934718100890207),\n", " ('190312', 0.0005761198329252485),\n", " ('190314', 0.0004549590536851683),\n", " ('190324', 0.0004541326067211626),\n", " ('200522', 0.0004464285714285714),\n", " ('190212', 0.0004089793692629283),\n", " ('190114', 0.0003787878787878788),\n", " ('190112', 0.0003610760064993681),\n", " ('190322', 0.0002765869174388052),\n", " ('190211', 0.0002144925463840132),\n", " ('190111', 0.0002058036633052068),\n", " ('200512', 0.0001853911753800519),\n", " ('190321', 7.427213309566251e-05),\n", " ('440140', 0),\n", " ('200112', 0),\n", " ('620925', 0),\n", " ('250110', 0),\n", " ('200531', 0),\n", " ('310242', 0),\n", " ('600130', 0),\n", " ('580901', 0),\n", " ('200521', 0),\n", " ('490316', 0),\n", " ('200523', 0),\n", " ('190113', 0),\n", " ('310241', 0),\n", " ('550340', 0),\n", " ('450350', 0),\n", " ('190214', 0),\n", " ('300410', 0),\n", " ('530903', 0),\n", " ('200513', 0),\n", " ('140410', 0),\n", " ('002200', 0),\n", " ('630900', 0),\n", " ('680210', 0),\n", " ('290210', 0),\n", " ('140310', 0),\n", " ('200533', 0),\n", " ('440110', 0),\n", " ('190313', 0),\n", " ('190213', 0),\n", " ('270311', 0),\n", " ('270900', 0),\n", " ('200511', 0);\n", "\n", "ALTER TABLE \"POPULATION__STAGING_TABLE_1\" ADD COLUMN \"product_code__mapping_target_1_avg\" REAL;\n", "\n", "UPDATE \"POPULATION__STAGING_TABLE_1\" SET \"product_code__mapping_target_1_avg\" = 0.0;\n", "\n", "UPDATE \"POPULATION__STAGING_TABLE_1\"\n", "SET \"product_code__mapping_target_1_avg\" = \"PRODUCT_CODE__MAPPING_TARGET_1_AVG\".\"value\"\n", "FROM \"PRODUCT_CODE__MAPPING_TARGET_1_AVG\"\n", "WHERE \"POPULATION__STAGING_TABLE_1\".\"product_code\" = \"PRODUCT_CODE__MAPPING_TARGET_1_AVG\".\"key\";\n", "\n", "DROP TABLE IF EXISTS \"PRODUCT_CODE__MAPPING_TARGET_1_AVG\";\n" ] } ], "source": [ "print(pipe1.features.to_sql()[pipe1.features.sort(by=\"importances\")[0].name])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Similarly their SQL statements can be produced for pipe2 and pipe3 with:" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "DROP TABLE IF EXISTS \"PRODUCT_CODE__MAPPING_TARGET_1_AVG\";\n", "\n", "CREATE TABLE \"PRODUCT_CODE__MAPPING_TARGET_1_AVG\"(\"key\" TEXT, \"value\" REAL);\n", "\n", "INSERT INTO \"PRODUCT_CODE__MAPPING_TARGET_1_AVG\" (\"key\", \"value\")\n", "VALUES('410901', 0.5265553869499241),\n", " ('410140', 0.5248618784530387),\n", " ('004190', 0.5073846153846154),\n", " ('410120', 0.5013123359580053),\n", " ('410110', 0.4444444444444444),\n", " ('004100', 0.3336306868867083),\n", " ('390110', 0.3132530120481928),\n", " ('390120', 0.3067484662576687),\n", " ('410130', 0.2967448902346707),\n", " ('370110', 0.2948717948717949),\n", " ('370212', 0.2944444444444445),\n", " ('370220', 0.2920353982300885),\n", " ('680140', 0.288135593220339),\n", " ('390322', 0.2795918367346939),\n", " ('390321', 0.2764227642276423),\n", " ('370901', 0.271948608137045),\n", " ('390210', 0.2579837194740138),\n", " ('370125', 0.2519157088122606),\n", " ('390310', 0.2443181818181818),\n", " ('390223', 0.2344706911636046),\n", " ('390230', 0.2238442822384428),\n", " ('370211', 0.2185714285714286),\n", " ('370314', 0.2182952182952183),\n", " ('400220', 0.2164179104477612),\n", " ('610110', 0.2162868883078072),\n", " ('360320', 0.2151898734177215),\n", " ('590220', 0.2075471698113208),\n", " ('370213', 0.2015968063872255),\n", " ('400210', 0.1944764096662831),\n", " ('430120', 0.194006309148265),\n", " ('320130', 0.1899441340782123),\n", " ('390901', 0.1797752808988764),\n", " ('330410', 0.1751831107281344),\n", " ('380410', 0.1386392811296534),\n", " ('590230', 0.13469068128426),\n", " ('360350', 0.1321279554937413),\n", " ('360210', 0.1305555555555556),\n", " ('290420', 0.1282051282051282),\n", " ('280220', 0.1231884057971015),\n", " ('320903', 0.1229724632214259),\n", " ('360420', 0.1222091656874266),\n", " ('005000', 0.1219512195121951),\n", " ('660900', 0.1205479452054795),\n", " ('320345', 0.1176205497972059),\n", " ('610902', 0.1162790697674419),\n", " ('660110', 0.111731843575419),\n", " ('600900', 0.1111111111111111),\n", " ('670110', 0.1111111111111111),\n", " ('320233', 0.1108969866853539),\n", " ('610230', 0.11),\n", " ('660210', 0.1097922848664688),\n", " ('610901', 0.1097560975609756),\n", " ('380510', 0.1081081081081081),\n", " ('290310', 0.1044776119402985),\n", " ('280120', 0.1030640668523677),\n", " ('380901', 0.1010141987829615),\n", " ('320521', 0.1009174311926606),\n", " ('360330', 0.1004366812227074),\n", " ('360311', 0.09981167608286252),\n", " ('430110', 0.09863945578231292),\n", " ('300320', 0.0975609756097561),\n", " ('360312', 0.09716599190283401),\n", " ('660000', 0.09413886384129846),\n", " ('600430', 0.09302325581395349),\n", " ('380110', 0.09302325581395349),\n", " ('310231', 0.09090909090909091),\n", " ('004000', 0.08723998758149643),\n", " ('600410', 0.08408408408408409),\n", " ('310210', 0.08333333333333333),\n", " ('340120', 0.08333333333333333),\n", " ('430130', 0.08226221079691516),\n", " ('600210', 0.08190476190476191),\n", " ('380315', 0.08014981273408239),\n", " ('610120', 0.07865168539325842),\n", " ('620610', 0.07755102040816327),\n", " ('360513', 0.07722969606377678),\n", " ('280140', 0.07646356033452807),\n", " ('320380', 0.07645788336933046),\n", " ('620213', 0.07375643224699828),\n", " ('620510', 0.07370393504059962),\n", " ('380430', 0.07358390682901006),\n", " ('310316', 0.07329842931937172),\n", " ('310232', 0.0726950354609929),\n", " ('200210', 0.07258064516129033),\n", " ('530110', 0.07235621521335807),\n", " ('380320', 0.07142857142857142),\n", " ('640420', 0.06923076923076923),\n", " ('620214', 0.0689900426742532),\n", " ('610130', 0.06882591093117409),\n", " ('290410', 0.06748466257668712),\n", " ('380420', 0.06734816596512327),\n", " ('400310', 0.0672059738643435),\n", " ('690117', 0.06666666666666667),\n", " ('610903', 0.06578947368421052),\n", " ('310220', 0.06555863342566944),\n", " ('320330', 0.06554307116104868),\n", " ('400110', 0.06538692261547691),\n", " ('640120', 0.06442953020134229),\n", " ('690230', 0.0641025641025641),\n", " ('620330', 0.06329113924050633),\n", " ('420115', 0.06281407035175879),\n", " ('380311', 0.0625),\n", " ('310340', 0.06231454005934718),\n", " ('320370', 0.06196746707978312),\n", " ('380340', 0.06157635467980296),\n", " ('380210', 0.06014492753623189),\n", " ('620112', 0.05970149253731343),\n", " ('340110', 0.05929824561403509),\n", " ('320901', 0.05747126436781609),\n", " ('280110', 0.05726600985221675),\n", " ('290120', 0.05673758865248227),\n", " ('320150', 0.05652173913043478),\n", " ('240220', 0.05647840531561462),\n", " ('340907', 0.05555555555555555),\n", " ('600310', 0.05521472392638037),\n", " ('320221', 0.05381727158948686),\n", " ('320522', 0.05371900826446281),\n", " ('620913', 0.05333333333333334),\n", " ('340510', 0.052734375),\n", " ('640130', 0.05263157894736842),\n", " ('310332', 0.05128205128205128),\n", " ('320232', 0.05029013539651837),\n", " ('380333', 0.0501577287066246),\n", " ('690118', 0.05),\n", " ('670903', 0.04895104895104895),\n", " ('320905', 0.04766031195840555),\n", " ('320627', 0.04761904761904762),\n", " ('320902', 0.04666666666666667),\n", " ('690110', 0.04666666666666667),\n", " ('150110', 0.04635643740546312),\n", " ('620221', 0.04615384615384616),\n", " ('670901', 0.04597701149425287),\n", " ('001000', 0.04587155963302753),\n", " ('670310', 0.04553734061930783),\n", " ('340610', 0.04444444444444445),\n", " ('200410', 0.04397394136807817),\n", " ('300900', 0.04375),\n", " ('610320', 0.04300578034682081),\n", " ('300110', 0.0425531914893617),\n", " ('002000', 0.0418848167539267),\n", " ('680220', 0.04184704184704185),\n", " ('570901', 0.04081632653061224),\n", " ('280210', 0.04081632653061224),\n", " ('600420', 0.04044489383215369),\n", " ('320420', 0.0400890868596882),\n", " ('290440', 0.038860103626943),\n", " ('200310', 0.03872966692486444),\n", " ('310900', 0.0380952380952381),\n", " ('520550', 0.03773584905660377),\n", " ('690116', 0.03773584905660377),\n", " ('020410', 0.03773262762506403),\n", " ('440130', 0.03759398496240601),\n", " ('380902', 0.03571428571428571),\n", " ('550320', 0.03547297297297297),\n", " ('290110', 0.03539823008849557),\n", " ('590210', 0.03476151980598222),\n", " ('320904', 0.03454231433506045),\n", " ('490311', 0.03448275862068965),\n", " ('620310', 0.03422053231939164),\n", " ('220000', 0.03418803418803419),\n", " ('320120', 0.03355704697986577),\n", " ('240310', 0.03343949044585987),\n", " ('310351', 0.03333333333333333),\n", " ('640310', 0.03329679364209372),\n", " ('670902', 0.03174603174603174),\n", " ('680903', 0.03137789904502047),\n", " ('310140', 0.0308641975308642),\n", " ('620420', 0.03061224489795918),\n", " ('630220', 0.03052325581395349),\n", " ('330610', 0.03022860381636123),\n", " ('330510', 0.02971188475390156),\n", " ('180620', 0.02942668696093353),\n", " ('240900', 0.02941176470588235),\n", " ('550330', 0.02935420743639922),\n", " ('320610', 0.02929427430093209),\n", " ('620710', 0.02877697841726619),\n", " ('290320', 0.02877697841726619),\n", " ('200111', 0.02867072111207646),\n", " ('240320', 0.02842928216062544),\n", " ('310352', 0.02838427947598253),\n", " ('320410', 0.02791625124626122),\n", " ('300218', 0.02777777777777778),\n", " ('320110', 0.02768166089965398),\n", " ('620121', 0.02765208647561589),\n", " ('340210', 0.02722323049001815),\n", " ('240210', 0.02707581227436823),\n", " ('440150', 0.02702702702702703),\n", " ('320140', 0.02697022767075306),\n", " ('640220', 0.02683461117196057),\n", " ('640410', 0.026232741617357),\n", " ('310335', 0.02593659942363112),\n", " ('490315', 0.02564102564102564),\n", " ('340901', 0.02542372881355932),\n", " ('610310', 0.02461584365209608),\n", " ('680110', 0.02362204724409449),\n", " ('340903', 0.0234375),\n", " ('480213', 0.0231811697574893),\n", " ('320430', 0.02272727272727273),\n", " ('230000', 0.02272727272727273),\n", " ('640210', 0.02267002518891688),\n", " ('550310', 0.02246796559592768),\n", " ('490110', 0.02173913043478261),\n", " ('620410', 0.02165087956698241),\n", " ('340913', 0.02127659574468085),\n", " ('340906', 0.02127659574468085),\n", " ('590110', 0.0209366391184573),\n", " ('620810', 0.02090592334494774),\n", " ('020710', 0.02085600290170475),\n", " ('620926', 0.02076875387476751),\n", " ('480212', 0.02055622732769045),\n", " ('020510', 0.0202097074243193),\n", " ('650210', 0.02016868353502017),\n", " ('530510', 0.02005730659025788),\n", " ('520310', 0.02),\n", " ('480110', 0.01970443349753695),\n", " ('550110', 0.0194300518134715),\n", " ('650110', 0.0190424374319913),\n", " ('320511', 0.01829268292682927),\n", " ('240120', 0.01818181818181818),\n", " ('040610', 0.01785714285714286),\n", " ('170531', 0.0177293934681182),\n", " ('550210', 0.01761658031088083),\n", " ('290430', 0.01748251748251748),\n", " ('002100', 0.01715481171548117),\n", " ('150310', 0.01708217913204063),\n", " ('560310', 0.01682692307692308),\n", " ('640110', 0.01674500587544066),\n", " ('640430', 0.01648351648351648),\n", " ('570000', 0.01633393829401089),\n", " ('240110', 0.0162052667116813),\n", " ('690119', 0.01618122977346278),\n", " ('630110', 0.0158344666796192),\n", " ('330310', 0.01570146818923328),\n", " ('020820', 0.01567783584383646),\n", " ('130320', 0.0156165858912224),\n", " ('630210', 0.0155902004454343),\n", " ('020610', 0.01553829078801332),\n", " ('010120', 0.01547231270358306),\n", " ('180310', 0.01535880227155395),\n", " ('550410', 0.01529571719918423),\n", " ('360110', 0.01515151515151515),\n", " ('620114', 0.01492537313432836),\n", " ('440210', 0.01488095238095238),\n", " ('470220', 0.01478743068391867),\n", " ('620111', 0.01471389645776567),\n", " ('330210', 0.01441871961769795),\n", " ('140320', 0.01423487544483986),\n", " ('340520', 0.01411100658513641),\n", " ('560210', 0.01355661881977671),\n", " ('530311', 0.01341184167484462),\n", " ('330110', 0.01330895052321447),\n", " ('050900', 0.0131578947368421),\n", " ('250900', 0.01309707241910632),\n", " ('690120', 0.01305483028720627),\n", " ('490300', 0.01298701298701299),\n", " ('180320', 0.01298701298701299),\n", " ('170533', 0.01296982530439386),\n", " ('540000', 0.01271259233808624),\n", " ('170510', 0.01269971323228185),\n", " ('620930', 0.01252609603340292),\n", " ('340410', 0.01241642788920726),\n", " ('270000', 0.01241039905852145),\n", " ('520110', 0.01237964236588721),\n", " ('560400', 0.01210898082744702),\n", " ('180612', 0.01201452919810003),\n", " ('620320', 0.01185770750988142),\n", " ('470211', 0.01179941002949852),\n", " ('180520', 0.01179574732267577),\n", " ('100410', 0.01164329187615771),\n", " ('310331', 0.01162790697674419),\n", " ('530412', 0.01158504476040021),\n", " ('020810', 0.01154575219713941),\n", " ('530210', 0.01152737752161383),\n", " ('220110', 0.01149425287356322),\n", " ('320630', 0.01142857142857143),\n", " ('520531', 0.01112484548825711),\n", " ('180710', 0.01103708190322364),\n", " ('030810', 0.01092896174863388),\n", " ('130310', 0.01086556169429098),\n", " ('170210', 0.01082262080178853),\n", " ('340620', 0.01075268817204301),\n", " ('999900', 0.01062416998671979),\n", " ('030210', 0.01055662188099808),\n", " ('030510', 0.01044277360066834),\n", " ('170110', 0.01034780109226789),\n", " ('220210', 0.01027397260273973),\n", " ('680902', 0.01025641025641026),\n", " ('020310', 0.01021667580910587),\n", " ('130212', 0.009969657563935847),\n", " ('030710', 0.009891435464414958),\n", " ('140420', 0.009844993715961458),\n", " ('560330', 0.009771986970684038),\n", " ('270210', 0.009420631182289214),\n", " ('140220', 0.009351432880844645),\n", " ('160320', 0.00933609958506224),\n", " ('560110', 0.009322560596643879),\n", " ('170520', 0.009291360421578144),\n", " ('230110', 0.009202453987730062),\n", " ('170310', 0.009154113557358054),\n", " ('180110', 0.009134615384615385),\n", " ('140210', 0.009130282102305981),\n", " ('160212', 0.009098914000587027),\n", " ('050410', 0.008833922261484099),\n", " ('100210', 0.008741319144525446),\n", " ('170532', 0.008554705087798289),\n", " ('620912', 0.008553654743390357),\n", " ('090210', 0.008506616257088847),\n", " ('490000', 0.008489564909798374),\n", " ('170410', 0.008431932544539644),\n", " ('210210', 0.00823045267489712),\n", " ('020620', 0.008152173913043478),\n", " ('340310', 0.008032128514056224),\n", " ('110410', 0.007990834884720034),\n", " ('490312', 0.007977207977207978),\n", " ('210110', 0.007972665148063782),\n", " ('180420', 0.007866728366496992),\n", " ('180220', 0.007703887363853715),\n", " ('010210', 0.007637017070979336),\n", " ('180510', 0.007588713125267208),\n", " ('470111', 0.007556238768484639),\n", " ('060310', 0.007518796992481203),\n", " ('050310', 0.007514761137949544),\n", " ('030610', 0.007317073170731708),\n", " ('180611', 0.007287611061195967),\n", " ('010320', 0.007257694074414332),\n", " ('500110', 0.007106598984771574),\n", " ('040510', 0.006984459577440196),\n", " ('110310', 0.006973269134982567),\n", " ('250220', 0.006944444444444444),\n", " ('580000', 0.006857142857142857),\n", " ('020210', 0.006824146981627296),\n", " ('180210', 0.006806282722513089),\n", " ('040410', 0.006790744466800805),\n", " ('050110', 0.00675990675990676),\n", " ('010110', 0.006644518272425249),\n", " ('180410', 0.006634078212290503),\n", " ('140230', 0.00663265306122449),\n", " ('050210', 0.00662133142448103),\n", " ('160310', 0.006574892130675981),\n", " ('020110', 0.006501360749924402),\n", " ('070110', 0.006377551020408163),\n", " ('030310', 0.00625),\n", " ('120310', 0.006177540831006178),\n", " ('100510', 0.006119326874043855),\n", " ('030410', 0.006116207951070336),\n", " ('690114', 0.006105834464043419),\n", " ('110510', 0.005989518342899925),\n", " ('160211', 0.005981308411214953),\n", " ('150211', 0.005960568546538285),\n", " ('130211', 0.005947955390334572),\n", " ('520541', 0.005911778080945885),\n", " ('120210', 0.005798018131983976),\n", " ('040110', 0.005780346820809248),\n", " ('260110', 0.005772763054316453),\n", " ('070240', 0.005749668288367979),\n", " ('090110', 0.005704227647576519),\n", " ('110210', 0.005692403229145104),\n", " ('030110', 0.005622410731899783),\n", " ('260210', 0.0055542698449433),\n", " ('080110', 0.005548549810844893),\n", " ('120110', 0.005436931593515224),\n", " ('040310', 0.005404077622205846),\n", " ('250210', 0.005342831700801425),\n", " ('010310', 0.005331627212625293),\n", " ('440120', 0.005319148936170213),\n", " ('100110', 0.005308219178082192),\n", " ('470112', 0.005277044854881266),\n", " ('110110', 0.005152378864284149),\n", " ('160110', 0.005109489051094891),\n", " ('270410', 0.00496031746031746),\n", " ('060110', 0.004922542348342262),\n", " ('520516', 0.004901960784313725),\n", " ('270310', 0.004885574697865775),\n", " ('120410', 0.004865350089766607),\n", " ('220120', 0.004815409309791332),\n", " ('040210', 0.004786324786324786),\n", " ('070230', 0.004725554343874954),\n", " ('130110', 0.004694835680751174),\n", " ('140110', 0.004555336991406978),\n", " ('340530', 0.004530011325028313),\n", " ('060210', 0.00400114318376679),\n", " ('230900', 0.003992015968063872),\n", " ('520410', 0.003937007874015748),\n", " ('140340', 0.003897369275738876),\n", " ('490313', 0.003875968992248062),\n", " ('009000', 0.002952029520295203),\n", " ('350110', 0.002881844380403458),\n", " ('140330', 0.002380952380952381),\n", " ('130122', 0.002169197396963124),\n", " ('150212', 0.001451378809869376),\n", " ('130121', 0.001373626373626374),\n", " ('190323', 0.0009389671361502347),\n", " ('190311', 0.0008796003096193089),\n", " ('200532', 0.0005934718100890207),\n", " ('190312', 0.0005761198329252485),\n", " ('190314', 0.0004549590536851683),\n", " ('190324', 0.0004541326067211626),\n", " ('200522', 0.0004464285714285714),\n", " ('190212', 0.0004089793692629283),\n", " ('190114', 0.0003787878787878788),\n", " ('190112', 0.0003610760064993681),\n", " ('190322', 0.0002765869174388052),\n", " ('190211', 0.0002144925463840132),\n", " ('190111', 0.0002058036633052068),\n", " ('200512', 0.0001853911753800519),\n", " ('190321', 7.427213309566251e-05),\n", " ('440140', 0),\n", " ('200112', 0),\n", " ('620925', 0),\n", " ('250110', 0),\n", " ('200531', 0),\n", " ('310242', 0),\n", " ('600130', 0),\n", " ('580901', 0),\n", " ('200521', 0),\n", " ('490316', 0),\n", " ('200523', 0),\n", " ('190113', 0),\n", " ('310241', 0),\n", " ('550340', 0),\n", " ('450350', 0),\n", " ('190214', 0),\n", " ('300410', 0),\n", " ('530903', 0),\n", " ('200513', 0),\n", " ('140410', 0),\n", " ('002200', 0),\n", " ('630900', 0),\n", " ('680210', 0),\n", " ('290210', 0),\n", " ('140310', 0),\n", " ('200533', 0),\n", " ('440110', 0),\n", " ('190313', 0),\n", " ('190213', 0),\n", " ('270311', 0),\n", " ('270900', 0),\n", " ('200511', 0);\n", "\n", "ALTER TABLE \"POPULATION__STAGING_TABLE_1\" ADD COLUMN \"product_code__mapping_target_1_avg\" REAL;\n", "\n", "UPDATE \"POPULATION__STAGING_TABLE_1\" SET \"product_code__mapping_target_1_avg\" = 0.0;\n", "\n", "UPDATE \"POPULATION__STAGING_TABLE_1\"\n", "SET \"product_code__mapping_target_1_avg\" = \"PRODUCT_CODE__MAPPING_TARGET_1_AVG\".\"value\"\n", "FROM \"PRODUCT_CODE__MAPPING_TARGET_1_AVG\"\n", "WHERE \"POPULATION__STAGING_TABLE_1\".\"product_code\" = \"PRODUCT_CODE__MAPPING_TARGET_1_AVG\".\"key\";\n", "\n", "DROP TABLE IF EXISTS \"PRODUCT_CODE__MAPPING_TARGET_1_AVG\";\n" ] } ], "source": [ "print(pipe2.features.to_sql()[pipe2.features.sort(by=\"importances\")[0].name])" ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "DROP TABLE IF EXISTS \"PRODUCT_CODE__MAPPING_TARGET_1_AVG\";\n", "\n", "CREATE TABLE \"PRODUCT_CODE__MAPPING_TARGET_1_AVG\"(\"key\" TEXT, \"value\" REAL);\n", "\n", "INSERT INTO \"PRODUCT_CODE__MAPPING_TARGET_1_AVG\" (\"key\", \"value\")\n", "VALUES('410901', 0.5265553869499241),\n", " ('410140', 0.5248618784530387),\n", " ('004190', 0.5073846153846154),\n", " ('410120', 0.5013123359580053),\n", " ('410110', 0.4444444444444444),\n", " ('004100', 0.3336306868867083),\n", " ('390110', 0.3132530120481928),\n", " ('390120', 0.3067484662576687),\n", " ('410130', 0.2967448902346707),\n", " ('370110', 0.2948717948717949),\n", " ('370212', 0.2944444444444445),\n", " ('370220', 0.2920353982300885),\n", " ('680140', 0.288135593220339),\n", " ('390322', 0.2795918367346939),\n", " ('390321', 0.2764227642276423),\n", " ('370901', 0.271948608137045),\n", " ('390210', 0.2579837194740138),\n", " ('370125', 0.2519157088122606),\n", " ('390310', 0.2443181818181818),\n", " ('390223', 0.2344706911636046),\n", " ('390230', 0.2238442822384428),\n", " ('370211', 0.2185714285714286),\n", " ('370314', 0.2182952182952183),\n", " ('400220', 0.2164179104477612),\n", " ('610110', 0.2162868883078072),\n", " ('360320', 0.2151898734177215),\n", " ('590220', 0.2075471698113208),\n", " ('370213', 0.2015968063872255),\n", " ('400210', 0.1944764096662831),\n", " ('430120', 0.194006309148265),\n", " ('320130', 0.1899441340782123),\n", " ('390901', 0.1797752808988764),\n", " ('330410', 0.1751831107281344),\n", " ('380410', 0.1386392811296534),\n", " ('590230', 0.13469068128426),\n", " ('360350', 0.1321279554937413),\n", " ('360210', 0.1305555555555556),\n", " ('290420', 0.1282051282051282),\n", " ('280220', 0.1231884057971015),\n", " ('320903', 0.1229724632214259),\n", " ('360420', 0.1222091656874266),\n", " ('005000', 0.1219512195121951),\n", " ('660900', 0.1205479452054795),\n", " ('320345', 0.1176205497972059),\n", " ('610902', 0.1162790697674419),\n", " ('660110', 0.111731843575419),\n", " ('600900', 0.1111111111111111),\n", " ('670110', 0.1111111111111111),\n", " ('320233', 0.1108969866853539),\n", " ('610230', 0.11),\n", " ('660210', 0.1097922848664688),\n", " ('610901', 0.1097560975609756),\n", " ('380510', 0.1081081081081081),\n", " ('290310', 0.1044776119402985),\n", " ('280120', 0.1030640668523677),\n", " ('380901', 0.1010141987829615),\n", " ('320521', 0.1009174311926606),\n", " ('360330', 0.1004366812227074),\n", " ('360311', 0.09981167608286252),\n", " ('430110', 0.09863945578231292),\n", " ('300320', 0.0975609756097561),\n", " ('360312', 0.09716599190283401),\n", " ('660000', 0.09413886384129846),\n", " ('600430', 0.09302325581395349),\n", " ('380110', 0.09302325581395349),\n", " ('310231', 0.09090909090909091),\n", " ('004000', 0.08723998758149643),\n", " ('600410', 0.08408408408408409),\n", " ('310210', 0.08333333333333333),\n", " ('340120', 0.08333333333333333),\n", " ('430130', 0.08226221079691516),\n", " ('600210', 0.08190476190476191),\n", " ('380315', 0.08014981273408239),\n", " ('610120', 0.07865168539325842),\n", " ('620610', 0.07755102040816327),\n", " ('360513', 0.07722969606377678),\n", " ('280140', 0.07646356033452807),\n", " ('320380', 0.07645788336933046),\n", " ('620213', 0.07375643224699828),\n", " ('620510', 0.07370393504059962),\n", " ('380430', 0.07358390682901006),\n", " ('310316', 0.07329842931937172),\n", " ('310232', 0.0726950354609929),\n", " ('200210', 0.07258064516129033),\n", " ('530110', 0.07235621521335807),\n", " ('380320', 0.07142857142857142),\n", " ('640420', 0.06923076923076923),\n", " ('620214', 0.0689900426742532),\n", " ('610130', 0.06882591093117409),\n", " ('290410', 0.06748466257668712),\n", " ('380420', 0.06734816596512327),\n", " ('400310', 0.0672059738643435),\n", " ('690117', 0.06666666666666667),\n", " ('610903', 0.06578947368421052),\n", " ('310220', 0.06555863342566944),\n", " ('320330', 0.06554307116104868),\n", " ('400110', 0.06538692261547691),\n", " ('640120', 0.06442953020134229),\n", " ('690230', 0.0641025641025641),\n", " ('620330', 0.06329113924050633),\n", " ('420115', 0.06281407035175879),\n", " ('380311', 0.0625),\n", " ('310340', 0.06231454005934718),\n", " ('320370', 0.06196746707978312),\n", " ('380340', 0.06157635467980296),\n", " ('380210', 0.06014492753623189),\n", " ('620112', 0.05970149253731343),\n", " ('340110', 0.05929824561403509),\n", " ('320901', 0.05747126436781609),\n", " ('280110', 0.05726600985221675),\n", " ('290120', 0.05673758865248227),\n", " ('320150', 0.05652173913043478),\n", " ('240220', 0.05647840531561462),\n", " ('340907', 0.05555555555555555),\n", " ('600310', 0.05521472392638037),\n", " ('320221', 0.05381727158948686),\n", " ('320522', 0.05371900826446281),\n", " ('620913', 0.05333333333333334),\n", " ('340510', 0.052734375),\n", " ('640130', 0.05263157894736842),\n", " ('310332', 0.05128205128205128),\n", " ('320232', 0.05029013539651837),\n", " ('380333', 0.0501577287066246),\n", " ('690118', 0.05),\n", " ('670903', 0.04895104895104895),\n", " ('320905', 0.04766031195840555),\n", " ('320627', 0.04761904761904762),\n", " ('320902', 0.04666666666666667),\n", " ('690110', 0.04666666666666667),\n", " ('150110', 0.04635643740546312),\n", " ('620221', 0.04615384615384616),\n", " ('670901', 0.04597701149425287),\n", " ('001000', 0.04587155963302753),\n", " ('670310', 0.04553734061930783),\n", " ('340610', 0.04444444444444445),\n", " ('200410', 0.04397394136807817),\n", " ('300900', 0.04375),\n", " ('610320', 0.04300578034682081),\n", " ('300110', 0.0425531914893617),\n", " ('002000', 0.0418848167539267),\n", " ('680220', 0.04184704184704185),\n", " ('570901', 0.04081632653061224),\n", " ('280210', 0.04081632653061224),\n", " ('600420', 0.04044489383215369),\n", " ('320420', 0.0400890868596882),\n", " ('290440', 0.038860103626943),\n", " ('200310', 0.03872966692486444),\n", " ('310900', 0.0380952380952381),\n", " ('520550', 0.03773584905660377),\n", " ('690116', 0.03773584905660377),\n", " ('020410', 0.03773262762506403),\n", " ('440130', 0.03759398496240601),\n", " ('380902', 0.03571428571428571),\n", " ('550320', 0.03547297297297297),\n", " ('290110', 0.03539823008849557),\n", " ('590210', 0.03476151980598222),\n", " ('320904', 0.03454231433506045),\n", " ('490311', 0.03448275862068965),\n", " ('620310', 0.03422053231939164),\n", " ('220000', 0.03418803418803419),\n", " ('320120', 0.03355704697986577),\n", " ('240310', 0.03343949044585987),\n", " ('310351', 0.03333333333333333),\n", " ('640310', 0.03329679364209372),\n", " ('670902', 0.03174603174603174),\n", " ('680903', 0.03137789904502047),\n", " ('310140', 0.0308641975308642),\n", " ('620420', 0.03061224489795918),\n", " ('630220', 0.03052325581395349),\n", " ('330610', 0.03022860381636123),\n", " ('330510', 0.02971188475390156),\n", " ('180620', 0.02942668696093353),\n", " ('240900', 0.02941176470588235),\n", " ('550330', 0.02935420743639922),\n", " ('320610', 0.02929427430093209),\n", " ('620710', 0.02877697841726619),\n", " ('290320', 0.02877697841726619),\n", " ('200111', 0.02867072111207646),\n", " ('240320', 0.02842928216062544),\n", " ('310352', 0.02838427947598253),\n", " ('320410', 0.02791625124626122),\n", " ('300218', 0.02777777777777778),\n", " ('320110', 0.02768166089965398),\n", " ('620121', 0.02765208647561589),\n", " ('340210', 0.02722323049001815),\n", " ('240210', 0.02707581227436823),\n", " ('440150', 0.02702702702702703),\n", " ('320140', 0.02697022767075306),\n", " ('640220', 0.02683461117196057),\n", " ('640410', 0.026232741617357),\n", " ('310335', 0.02593659942363112),\n", " ('490315', 0.02564102564102564),\n", " ('340901', 0.02542372881355932),\n", " ('610310', 0.02461584365209608),\n", " ('680110', 0.02362204724409449),\n", " ('340903', 0.0234375),\n", " ('480213', 0.0231811697574893),\n", " ('320430', 0.02272727272727273),\n", " ('230000', 0.02272727272727273),\n", " ('640210', 0.02267002518891688),\n", " ('550310', 0.02246796559592768),\n", " ('490110', 0.02173913043478261),\n", " ('620410', 0.02165087956698241),\n", " ('340913', 0.02127659574468085),\n", " ('340906', 0.02127659574468085),\n", " ('590110', 0.0209366391184573),\n", " ('620810', 0.02090592334494774),\n", " ('020710', 0.02085600290170475),\n", " ('620926', 0.02076875387476751),\n", " ('480212', 0.02055622732769045),\n", " ('020510', 0.0202097074243193),\n", " ('650210', 0.02016868353502017),\n", " ('530510', 0.02005730659025788),\n", " ('520310', 0.02),\n", " ('480110', 0.01970443349753695),\n", " ('550110', 0.0194300518134715),\n", " ('650110', 0.0190424374319913),\n", " ('320511', 0.01829268292682927),\n", " ('240120', 0.01818181818181818),\n", " ('040610', 0.01785714285714286),\n", " ('170531', 0.0177293934681182),\n", " ('550210', 0.01761658031088083),\n", " ('290430', 0.01748251748251748),\n", " ('002100', 0.01715481171548117),\n", " ('150310', 0.01708217913204063),\n", " ('560310', 0.01682692307692308),\n", " ('640110', 0.01674500587544066),\n", " ('640430', 0.01648351648351648),\n", " ('570000', 0.01633393829401089),\n", " ('240110', 0.0162052667116813),\n", " ('690119', 0.01618122977346278),\n", " ('630110', 0.0158344666796192),\n", " ('330310', 0.01570146818923328),\n", " ('020820', 0.01567783584383646),\n", " ('130320', 0.0156165858912224),\n", " ('630210', 0.0155902004454343),\n", " ('020610', 0.01553829078801332),\n", " ('010120', 0.01547231270358306),\n", " ('180310', 0.01535880227155395),\n", " ('550410', 0.01529571719918423),\n", " ('360110', 0.01515151515151515),\n", " ('620114', 0.01492537313432836),\n", " ('440210', 0.01488095238095238),\n", " ('470220', 0.01478743068391867),\n", " ('620111', 0.01471389645776567),\n", " ('330210', 0.01441871961769795),\n", " ('140320', 0.01423487544483986),\n", " ('340520', 0.01411100658513641),\n", " ('560210', 0.01355661881977671),\n", " ('530311', 0.01341184167484462),\n", " ('330110', 0.01330895052321447),\n", " ('050900', 0.0131578947368421),\n", " ('250900', 0.01309707241910632),\n", " ('690120', 0.01305483028720627),\n", " ('490300', 0.01298701298701299),\n", " ('180320', 0.01298701298701299),\n", " ('170533', 0.01296982530439386),\n", " ('540000', 0.01271259233808624),\n", " ('170510', 0.01269971323228185),\n", " ('620930', 0.01252609603340292),\n", " ('340410', 0.01241642788920726),\n", " ('270000', 0.01241039905852145),\n", " ('520110', 0.01237964236588721),\n", " ('560400', 0.01210898082744702),\n", " ('180612', 0.01201452919810003),\n", " ('620320', 0.01185770750988142),\n", " ('470211', 0.01179941002949852),\n", " ('180520', 0.01179574732267577),\n", " ('100410', 0.01164329187615771),\n", " ('310331', 0.01162790697674419),\n", " ('530412', 0.01158504476040021),\n", " ('020810', 0.01154575219713941),\n", " ('530210', 0.01152737752161383),\n", " ('220110', 0.01149425287356322),\n", " ('320630', 0.01142857142857143),\n", " ('520531', 0.01112484548825711),\n", " ('180710', 0.01103708190322364),\n", " ('030810', 0.01092896174863388),\n", " ('130310', 0.01086556169429098),\n", " ('170210', 0.01082262080178853),\n", " ('340620', 0.01075268817204301),\n", " ('999900', 0.01062416998671979),\n", " ('030210', 0.01055662188099808),\n", " ('030510', 0.01044277360066834),\n", " ('170110', 0.01034780109226789),\n", " ('220210', 0.01027397260273973),\n", " ('680902', 0.01025641025641026),\n", " ('020310', 0.01021667580910587),\n", " ('130212', 0.009969657563935847),\n", " ('030710', 0.009891435464414958),\n", " ('140420', 0.009844993715961458),\n", " ('560330', 0.009771986970684038),\n", " ('270210', 0.009420631182289214),\n", " ('140220', 0.009351432880844645),\n", " ('160320', 0.00933609958506224),\n", " ('560110', 0.009322560596643879),\n", " ('170520', 0.009291360421578144),\n", " ('230110', 0.009202453987730062),\n", " ('170310', 0.009154113557358054),\n", " ('180110', 0.009134615384615385),\n", " ('140210', 0.009130282102305981),\n", " ('160212', 0.009098914000587027),\n", " ('050410', 0.008833922261484099),\n", " ('100210', 0.008741319144525446),\n", " ('170532', 0.008554705087798289),\n", " ('620912', 0.008553654743390357),\n", " ('090210', 0.008506616257088847),\n", " ('490000', 0.008489564909798374),\n", " ('170410', 0.008431932544539644),\n", " ('210210', 0.00823045267489712),\n", " ('020620', 0.008152173913043478),\n", " ('340310', 0.008032128514056224),\n", " ('110410', 0.007990834884720034),\n", " ('490312', 0.007977207977207978),\n", " ('210110', 0.007972665148063782),\n", " ('180420', 0.007866728366496992),\n", " ('180220', 0.007703887363853715),\n", " ('010210', 0.007637017070979336),\n", " ('180510', 0.007588713125267208),\n", " ('470111', 0.007556238768484639),\n", " ('060310', 0.007518796992481203),\n", " ('050310', 0.007514761137949544),\n", " ('030610', 0.007317073170731708),\n", " ('180611', 0.007287611061195967),\n", " ('010320', 0.007257694074414332),\n", " ('500110', 0.007106598984771574),\n", " ('040510', 0.006984459577440196),\n", " ('110310', 0.006973269134982567),\n", " ('250220', 0.006944444444444444),\n", " ('580000', 0.006857142857142857),\n", " ('020210', 0.006824146981627296),\n", " ('180210', 0.006806282722513089),\n", " ('040410', 0.006790744466800805),\n", " ('050110', 0.00675990675990676),\n", " ('010110', 0.006644518272425249),\n", " ('180410', 0.006634078212290503),\n", " ('140230', 0.00663265306122449),\n", " ('050210', 0.00662133142448103),\n", " ('160310', 0.006574892130675981),\n", " ('020110', 0.006501360749924402),\n", " ('070110', 0.006377551020408163),\n", " ('030310', 0.00625),\n", " ('120310', 0.006177540831006178),\n", " ('100510', 0.006119326874043855),\n", " ('030410', 0.006116207951070336),\n", " ('690114', 0.006105834464043419),\n", " ('110510', 0.005989518342899925),\n", " ('160211', 0.005981308411214953),\n", " ('150211', 0.005960568546538285),\n", " ('130211', 0.005947955390334572),\n", " ('520541', 0.005911778080945885),\n", " ('120210', 0.005798018131983976),\n", " ('040110', 0.005780346820809248),\n", " ('260110', 0.005772763054316453),\n", " ('070240', 0.005749668288367979),\n", " ('090110', 0.005704227647576519),\n", " ('110210', 0.005692403229145104),\n", " ('030110', 0.005622410731899783),\n", " ('260210', 0.0055542698449433),\n", " ('080110', 0.005548549810844893),\n", " ('120110', 0.005436931593515224),\n", " ('040310', 0.005404077622205846),\n", " ('250210', 0.005342831700801425),\n", " ('010310', 0.005331627212625293),\n", " ('440120', 0.005319148936170213),\n", " ('100110', 0.005308219178082192),\n", " ('470112', 0.005277044854881266),\n", " ('110110', 0.005152378864284149),\n", " ('160110', 0.005109489051094891),\n", " ('270410', 0.00496031746031746),\n", " ('060110', 0.004922542348342262),\n", " ('520516', 0.004901960784313725),\n", " ('270310', 0.004885574697865775),\n", " ('120410', 0.004865350089766607),\n", " ('220120', 0.004815409309791332),\n", " ('040210', 0.004786324786324786),\n", " ('070230', 0.004725554343874954),\n", " ('130110', 0.004694835680751174),\n", " ('140110', 0.004555336991406978),\n", " ('340530', 0.004530011325028313),\n", " ('060210', 0.00400114318376679),\n", " ('230900', 0.003992015968063872),\n", " ('520410', 0.003937007874015748),\n", " ('140340', 0.003897369275738876),\n", " ('490313', 0.003875968992248062),\n", " ('009000', 0.002952029520295203),\n", " ('350110', 0.002881844380403458),\n", " ('140330', 0.002380952380952381),\n", " ('130122', 0.002169197396963124),\n", " ('150212', 0.001451378809869376),\n", " ('130121', 0.001373626373626374),\n", " ('190323', 0.0009389671361502347),\n", " ('190311', 0.0008796003096193089),\n", " ('200532', 0.0005934718100890207),\n", " ('190312', 0.0005761198329252485),\n", " ('190314', 0.0004549590536851683),\n", " ('190324', 0.0004541326067211626),\n", " ('200522', 0.0004464285714285714),\n", " ('190212', 0.0004089793692629283),\n", " ('190114', 0.0003787878787878788),\n", " ('190112', 0.0003610760064993681),\n", " ('190322', 0.0002765869174388052),\n", " ('190211', 0.0002144925463840132),\n", " ('190111', 0.0002058036633052068),\n", " ('200512', 0.0001853911753800519),\n", " ('190321', 7.427213309566251e-05),\n", " ('440140', 0),\n", " ('200112', 0),\n", " ('620925', 0),\n", " ('250110', 0),\n", " ('200531', 0),\n", " ('310242', 0),\n", " ('600130', 0),\n", " ('580901', 0),\n", " ('200521', 0),\n", " ('490316', 0),\n", " ('200523', 0),\n", " ('190113', 0),\n", " ('310241', 0),\n", " ('550340', 0),\n", " ('450350', 0),\n", " ('190214', 0),\n", " ('300410', 0),\n", " ('530903', 0),\n", " ('200513', 0),\n", " ('140410', 0),\n", " ('002200', 0),\n", " ('630900', 0),\n", " ('680210', 0),\n", " ('290210', 0),\n", " ('140310', 0),\n", " ('200533', 0),\n", " ('440110', 0),\n", " ('190313', 0),\n", " ('190213', 0),\n", " ('270311', 0),\n", " ('270900', 0),\n", " ('200511', 0);\n", "\n", "ALTER TABLE \"POPULATION__STAGING_TABLE_1\" ADD COLUMN \"product_code__mapping_target_1_avg\" REAL;\n", "\n", "UPDATE \"POPULATION__STAGING_TABLE_1\" SET \"product_code__mapping_target_1_avg\" = 0.0;\n", "\n", "UPDATE \"POPULATION__STAGING_TABLE_1\"\n", "SET \"product_code__mapping_target_1_avg\" = \"PRODUCT_CODE__MAPPING_TARGET_1_AVG\".\"value\"\n", "FROM \"PRODUCT_CODE__MAPPING_TARGET_1_AVG\"\n", "WHERE \"POPULATION__STAGING_TABLE_1\".\"product_code\" = \"PRODUCT_CODE__MAPPING_TARGET_1_AVG\".\"key\";\n", "\n", "DROP TABLE IF EXISTS \"PRODUCT_CODE__MAPPING_TARGET_1_AVG\";\n" ] } ], "source": [ "print(pipe3.features.to_sql()[pipe2.features.sort(by=\"importances\")[0].name])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### 2.6 Productionization\n", "\n", "It is possible to productionize the pipeline by transpiling the features into production-ready SQL code. Please also refer to getML's `sqlite3` module." ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [], "source": [ "# Creates a folder named containing the SQL code.\n", "pipe3.features.to_sql().save(\"consumer_expenditures_pipeline\")" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": [ "pipe3.features.to_sql(dialect=getml.pipeline.dialect.spark_sql).save(\"consumer_expenditures_spark\")" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [], "source": [ "getml.engine.shutdown()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 3. Conclusion\n", "\n", "In this notebook, we have shown how you can use relational learning to predict whether items were purchased as a gift. We did this to highlight the importance of relational learning. Relational learning can be used in many real-world data science applications, but unfortunately most data scientists don't even know what relation learning is." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.4" } }, "nbformat": 4, "nbformat_minor": 4 }