{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# MovieLens - Predicting a user's gender based on the movies they have watched\n",
"\n",
"In this notebook, we will apply getML to a dataset that is often used for benchmarking in the relational learning literature: The MovieLens dataset.\n",
"\n",
"Summary:\n",
"\n",
"- Prediction type: __Classification model__\n",
"- Domain: __Entertainment__\n",
"- Prediction target: __The gender of a user__ \n",
"- Population size: __6039__"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Background\n",
"\n",
"The MovieLens dataset is often used in the relational learning literature has a benchmark for newly developed algorithms. Following the tradition, we benchmark getML's own algorithms on this dataset as well. The task is to predict a user's gender based on the movies they have watched.\n",
"\n",
"\n",
"It has been downloaded from the [CTU Prague relational learning repository](https://relational.fit.cvut.cz/dataset/MovieLens) (Motl and Schulte, 2015) (Now residing at [relational-data.org](https://relational-data.org/dataset/MovieLens).)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Analysis"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's get started with the analysis and set up your session:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%pip install -q \"getml==1.5.0\" \"matplotlib==3.9.2\" \"ipywidgets==8.1.5\""
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"getML API version: 1.5.0\n",
"\n"
]
}
],
"source": [
"import os\n",
"\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"\n",
"import getml\n",
"\n",
"os.environ[\"PYARROW_IGNORE_TIMEZONE\"] = \"1\"\n",
"%matplotlib inline \n",
"\n",
"print(f\"getML API version: {getml.__version__}\\n\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Launching ./getML --allow-push-notifications=true --allow-remote-ips=true --home-directory=/home/user --in-memory=true --install=false --launch-browser=true --log=false --token=token in /home/user/.getML/getml-1.5.0-x64-linux...\n",
"Launched the getML Engine. The log output will be stored in /home/user/.getML/logs/20240912151421.log.\n",
"\u001b[2K Loading pipelines... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n",
"\u001b[?25h"
]
},
{
"data": {
"text/html": [
"
Connected to project 'MovieLens'.\n",
"
\n"
],
"text/plain": [
"Connected to project \u001b[32m'MovieLens'\u001b[0m.\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"getml.engine.launch(allow_remote_ips=True, token=\"token\")\n",
"getml.engine.set_project(\"MovieLens\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1. Loading data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 1.1 Download from source\n",
"\n",
"We begin by downloading the data from the source file:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Connection(dbname='imdb_MovieLens',\n",
" dialect='mysql',\n",
" host='relational.fel.cvut.cz',\n",
" port=3306)"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"conn = getml.database.connect_mysql(\n",
" host=\"relational.fel.cvut.cz\",\n",
" dbname=\"imdb_MovieLens\",\n",
" port=3306,\n",
" user=\"guest\",\n",
" password=\"ctu-relational\",\n",
")\n",
"\n",
"conn"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def load_if_needed(name):\n",
" \"\"\"\n",
" Loads the data from the relational learning\n",
" repository, if the data frame has not already\n",
" been loaded.\n",
" \"\"\"\n",
" if not getml.data.exists(name):\n",
" data_frame = getml.data.DataFrame.from_db(name=name, table_name=name, conn=conn)\n",
" data_frame.save()\n",
" else:\n",
" data_frame = getml.data.load_data_frame(name)\n",
" return data_frame"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"users = load_if_needed(\"users\")\n",
"u2base = load_if_needed(\"u2base\")\n",
"movies = load_if_needed(\"movies\")\n",
"movies2directors = load_if_needed(\"movies2directors\")\n",
"directors = load_if_needed(\"directors\")\n",
"movies2actors = load_if_needed(\"movies2actors\")\n",
"actors = load_if_needed(\"actors\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 1.2 Prepare data for getML"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"getML requires that we define *roles* for each of the columns."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"users[\"target\"] = users.u_gender == \"F\""
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
When joining U2BASE__STAGING_TABLE_4 and MOVIES2DIRECTORS__STAGING_TABLE_3 over 'movieid' and 'movieid', there are no corresponding entries for 0.159513% of entries in 'movieid' in 'U2BASE__STAGING_TABLE_4'. You might want to double-check your join keys.
\n",
" \n",
" \n",
"
\n",
" \n",
"
\n",
"
1
\n",
" \n",
" \n",
"
INFO
\n",
" \n",
" \n",
" \n",
"
FOREIGN KEYS NOT FOUND
\n",
" \n",
" \n",
" \n",
"
When joining U2BASE__STAGING_TABLE_4 and MOVIES2ACTORS__STAGING_TABLE_2 over 'movieid' and 'movieid', there are no corresponding entries for 0.336492% of entries in 'movieid' in 'U2BASE__STAGING_TABLE_4'. You might want to double-check your join keys.
\n",
" \n",
" \n",
"
\n",
" \n",
" \n",
"
"
],
"text/plain": [
" type label message \n",
"0 INFO FOREIGN KEYS NOT FOUND When joining U2BASE__STAGING_TAB...\n",
"1 INFO FOREIGN KEYS NOT FOUND When joining U2BASE__STAGING_TAB..."
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pipe1.check(container.train)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
When joining U2BASE__STAGING_TABLE_4 and MOVIES2DIRECTORS__STAGING_TABLE_3 over 'movieid' and 'movieid', there are no corresponding entries for 0.159513% of entries in 'movieid' in 'U2BASE__STAGING_TABLE_4'. You might want to double-check your join keys.
\n",
" \n",
" \n",
"
\n",
" \n",
"
\n",
"
1
\n",
" \n",
" \n",
"
INFO
\n",
" \n",
" \n",
" \n",
"
FOREIGN KEYS NOT FOUND
\n",
" \n",
" \n",
" \n",
"
When joining U2BASE__STAGING_TABLE_4 and MOVIES2ACTORS__STAGING_TABLE_2 over 'movieid' and 'movieid', there are no corresponding entries for 0.336492% of entries in 'movieid' in 'U2BASE__STAGING_TABLE_4'. You might want to double-check your join keys.
\n",
" \n",
" \n",
"
\n",
" \n",
" \n",
"
"
],
"text/plain": [
" type label message \n",
"0 INFO FOREIGN KEYS NOT FOUND When joining U2BASE__STAGING_TAB...\n",
"1 INFO FOREIGN KEYS NOT FOUND When joining U2BASE__STAGING_TAB..."
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pipe2.check(container.train)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
],
"text/plain": [
" date time set used target accuracy auc cross entropy\n",
"0 2024-09-12 15:33:57 train target 0.9755 0.9962 0.1488\n",
"1 2024-09-12 15:36:24 test target 0.8048 0.8377 0.4429"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"relboost_score = pipe2.score(container.test)\n",
"relboost_score"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 2.6 Studying features"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"__Column importances__\n",
"\n",
"Because getML uses relational learning, we can apply the principles we used to calculate the feature importances to individual columns as well.\n",
"\n",
"As we can see, most of the predictive accuracy is drawn from the roles played by the actors. This suggests that the text fields contained in this relational database have a higher impact on predictive accuracy than for most other data sets."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABl4AAARaCAYAAAAtuQ8oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD9nUlEQVR4nOzdfZyVdZ3/8fcMygAqA4oMguSAkDchUpAsptHaJBCldmOg7Q8ltdLMbFJXKlGzDVBzMTVdK03tRsst29JFXZLKJNkkl2601RbEO0BUGMWEZM7vjx7O7gSoDF89jDyfj8d5xLnO91zncw3XA7UX17lqKpVKJQAAAAAAAGyx2moPAAAAAAAA8HohvAAAAAAAABQivAAAAAAAABQivAAAAAAAABQivAAAAAAAABQivAAAAAAAABQivAAAAAAAABQivAAAAAAAABQivAAAAAAAABQivAAAAO284x3vyDve8Y5qj/GqaWxszLHHHlvtMQAAgNcp4QUAADq5P/3pT/nYxz6WwYMHp1u3bunZs2fe9ra35eKLL86f//znao9HYbfcckvOOeecao8BAABswnbVHgAAAOi4m2++OUceeWTq6uoyZcqUDBs2LOvWrcudd96Z008/Pb///e9z5ZVXVnvMrcof//jH1NZ23r+Ddsstt+Syyy4TXwAAYCslvAAAQCe1ePHiTJ48OXvssUd++tOfZrfddmt77ROf+EQefPDB3HzzzVWccOtUV1dX7RE6ZM2aNdlhhx2qPQYAAPAyOu9f8wIAgG3c+eefn2effTbf+MY32kWXFw0ZMiSf+tSn2p6/8MILOe+887Lnnnumrq4ujY2N+exnP5u1a9e+5Od885vfTE1NTZYsWdJu+7x581JTU5N58+a1bXvHO96RYcOGZdGiRRk7dmx69OiRIUOG5MYbb0yS/OxnP8vo0aPTvXv37LXXXvmP//iPdvs855xzUlNTkwcffDDHHntsevXqlfr6+kydOjXPPfdcu7W33357DjrooPTq1Ss77rhj9tprr3z2s5992Z/b397j5cXju/POO3PKKadk1113Ta9evfKxj30s69aty6pVqzJlypT07t07vXv3zhlnnJFKpdL2/iVLlqSmpiYXXnhh/vmf/zl77LFHunfvnrFjx+Z3v/vdBp//05/+NAcffHB22GGH9OrVK4cffnjuu+++jf4c/vCHP+Too49O7969c9BBB+XYY4/NZZddliSpqalpe7zowgsvzIEHHphddtkl3bt3z8iRI9t+9v9XTU1NTj755Nx0000ZNmxY6urq8qY3vSlz5szZYO2jjz6a4447Lv37909dXV0GDRqUE088MevWrWtbs2rVqpx66qkZOHBg6urqMmTIkMyaNSutra3t9nX99ddn5MiR2WmnndKzZ8/st99+ufjii1/mdwwAADoXV7wAAEAn9eMf/ziDBw/OgQce+IrWH3/88bnmmmvywQ9+MJ/5zGdy9913Z8aMGbnvvvvywx/+sNhcTz/9dN7znvdk8uTJOfLII3P55Zdn8uTJ+fa3v51TTz01H//4x3P00UfnggsuyAc/+ME8/PDD2Wmnndrt40Mf+lAGDRqUGTNmZOHChfn617+evn37ZtasWUmS3//+93nPe96T4cOH5wtf+ELq6ury4IMP5pe//GWH5/7kJz+Zfv365dxzz82vfvWrXHnllenVq1fuuuuuvOENb8iXvvSl3HLLLbngggsybNiwTJkypd37r7322jzzzDP5xCc+keeffz4XX3xxDjnkkPz2t79NQ0NDkuQ//uM/MmHChAwePDjnnHNO/vznP+eSSy7J2972tixcuDCNjY3t9nnkkUdm6NCh+dKXvpRKpZI3v/nNeeyxx3L77bfnuuuu2+AYLr744hx22GH58Ic/nHXr1uX666/PkUcemZ/85CeZOHFiu7V33nlnfvCDH+Skk07KTjvtlK985Sv5wAc+kKVLl2aXXXZJkjz22GM54IADsmrVqnz0ox/N3nvvnUcffTQ33nhjnnvuuXTt2jXPPfdcxo4dm0cffTQf+9jH8oY3vCF33XVXpk2blscffzyzZ89O8tdQdtRRR+Wd73xn2+/jfffdl1/+8pftAiEAAHR6FQAAoNNZvXp1JUnl8MMPf0Xr77333kqSyvHHH99u+2mnnVZJUvnpT3/atm3s2LGVsWPHtj2/+uqrK0kqixcvbvfeO+64o5Kkcscdd7R7b5LKd77znbZt999/fyVJpba2tvKrX/2qbfutt95aSVK5+uqr27adffbZlSSVj3zkI+0+633ve19ll112aXv+z//8z5UklSeeeOIVHf//tccee1SOOeaYDY5v3LhxldbW1rbtY8aMqdTU1FQ+/vGPt2174YUXKrvvvnu7n8/ixYsrSSrdu3evPPLII23b77777kqSyqc//em2bSNGjKj07du38uSTT7Zt+6//+q9KbW1tZcqUKRv8HI466qgN5v/EJz5R2dR/yj333HPtnq9bt64ybNiwyiGHHNJue5JK165dKw8++GC7OZJULrnkkrZtU6ZMqdTW1lb+8z//c4PPevFndd5551V22GGHyn//93+3e/3MM8+sdOnSpbJ06dJKpVKpfOpTn6r07Nmz8sILL2x0dgAAeL3wVWMAANAJtbS0JMkGV4psyi233JIkaW5ubrf9M5/5TJIUvRfMjjvumMmTJ7c932uvvdKrV6/ss88+GT16dNv2F3/9P//zPxvs4+Mf/3i75wcffHCefPLJtuPu1atXkuRHP/rRBl9n1VHHHXdcu6/tGj16dCqVSo477ri2bV26dMmoUaM2OvMRRxyRAQMGtD0/4IADMnr06Laf/eOPP5577703xx57bHbeeee2dcOHD8+73vWutnX/19/+HF5O9+7d23799NNPZ/Xq1Tn44IOzcOHCDdY2NTVlzz33bDdHz549246ttbU1N910U9773vdm1KhRG7z/xZ/V97///Rx88MHp3bt3Vq5c2fZoamrK+vXr8/Of/zzJX3/P1qxZk9tvv32zjgkAADob4QUAADqhnj17JkmeeeaZV7T+oYceSm1tbYYMGdJue79+/dKrV6889NBDxWbbfffd2wWMJKmvr8/AgQM32Jb8NRD8rTe84Q3tnvfu3bvd2kmTJuVtb3tbjj/++DQ0NGTy5Mn53ve+t0UR5m8/88X5Njb3xmYeOnToBtve+MY3tt0b58Wf8V577bXBun322ScrV67MmjVr2m0fNGjQKz+AJD/5yU/yd3/3d+nWrVt23nnn7Lrrrrn88suzevXqDdb+7fEmf/05v3hsTzzxRFpaWjJs2LCX/MwHHnggc+bMya677tru0dTUlCRZsWJFkuSkk07KG9/4xkyYMCG77757PvKRj2z0njIAANDZuccLAAB0Qj179kz//v03evP2l/K3QWRL3rN+/fqNbu/Spctmba/8nxvVv9K13bt3z89//vPccccdufnmmzNnzpzccMMNOeSQQ3Lbbbdt8v0vZXPm3tjMr4b/ewXLy/nFL36Rww47LG9/+9vz1a9+Nbvttlu23377XH311fnOd76zwfrN+f14Ka2trXnXu96VM844Y6Ovv/GNb0yS9O3bN/fee29uvfXW/Pu//3v+/d//PVdffXWmTJmSa665ZrM+EwAAtmbCCwAAdFLvec97cuWVV2b+/PkZM2bMS67dY4890tramgceeCD77LNP2/bly5dn1apV2WOPPTb53hevNlm1alW77SWvkumI2travPOd78w73/nOXHTRRfnSl76Uz33uc7njjjvarrZ4LT3wwAMbbPvv//7vNDY2Jknbz/iPf/zjBuvuv//+9OnTJzvssMPLfs6mQti//uu/plu3brn11ltTV1fXtv3qq69+JeNvYNddd03Pnj1fNu7tueeeefbZZ1/Rz7xr165573vfm/e+971pbW3NSSedlH/5l3/JWWedtcHVWAAA0Fn5qjEAAOikzjjjjOywww45/vjjs3z58g1e/9Of/pSLL744SfLud787STJ79ux2ay666KIkycSJEzf5OS/eB+TFe3Ukf73a5corr9yi+bfEU089tcG2ESNGJEnWrl37Gk/zVzfddFMeffTRtucLFizI3XffnQkTJiRJdtttt4wYMSLXXHNNu4j1u9/9Lrfddlvb79HLeTHO/G0I69KlS2pqatpdibRkyZLcdNNNHTqe2traHHHEEfnxj3+cX//61xu8/uKVMR/60Icyf/783HrrrRusWbVqVV544YUkyZNPPrnB/ocPH56ker9nAADwanDFCwAAdFJ77rlnvvOd72TSpEnZZ599MmXKlAwbNizr1q3LXXfdle9///s59thjkyT7779/jjnmmFx55ZVZtWpVxo4dmwULFuSaa67JEUcckb//+7/f5Oe86U1vyt/93d9l2rRpeeqpp7Lzzjvn+uuvb/s/1KvhC1/4Qn7+859n4sSJ2WOPPbJixYp89atfze67756DDjqoKjMNGTIkBx10UE488cSsXbs2s2fPzi677NLuK7guuOCCTJgwIWPGjMlxxx2XP//5z7nkkktSX1+fc8455xV9zsiRI5Mkp5xySsaNG5cuXbpk8uTJmThxYi666KKMHz8+Rx99dFasWJHLLrssQ4YMyaJFizp0TF/60pdy2223ZezYsfnoRz+affbZJ48//ni+//3v584770yvXr1y+umn59/+7d/ynve8J8cee2xGjhyZNWvW5Le//W1uvPHGLFmyJH369Mnxxx+fp556Koccckh23333PPTQQ7nkkksyYsSIdldhAQBAZye8AABAJ3bYYYdl0aJFueCCC/KjH/0ol19+eerq6jJ8+PB8+ctfzgknnNC29utf/3oGDx6cb37zm/nhD3+Yfv36Zdq0aTn77LNf9nO+/e1v52Mf+1hmzpyZXr165bjjjsvf//3f513vetereXibdNhhh2XJkiW56qqrsnLlyvTp0ydjx47Nueeem/r6+qrMNGXKlNTW1mb27NlZsWJFDjjggFx66aXZbbfd2tY0NTVlzpw5OfvsszN9+vRsv/32GTt2bGbNmpVBgwa9os95//vfn09+8pO5/vrr861vfSuVSiWTJ0/OIYcckm984xuZOXNmTj311AwaNCizZs3KkiVLOhxeBgwYkLvvvjtnnXVWvv3tb6elpSUDBgzIhAkT0qNHjyRJjx498rOf/Sxf+tKX8v3vfz/XXnttevbsmTe+8Y3tfj/+4R/+IVdeeWW++tWvZtWqVenXr18mTZqUc845J7W1vowBAIDXj5rKa3VXSAAAgNehJUuWZNCgQbngggty2mmnVXscAACgyvy1IgAAAAAAgEKEFwAAAAAAgEKEFwAAAAAAgELc4wUAAAAAAKAQV7wAAAAAAAAUIrwAAAAAAAAUsl21B9gatba25rHHHstOO+2Umpqaao8DAAAAAABUUaVSyTPPPJP+/funtvalr2kRXjbisccey8CBA6s9BgAAAAAAsBV5+OGHs/vuu7/kGuFlI3baaackf/0B9uzZs8rTAAAAAAAA1dTS0pKBAwe29YOXIrxsxItfL9azZ0/hBQAAAAAASJJXdHuSl/4iMgAAAAAAAF4x4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKCQ7ao9AJ1L45k3V3sECloyc2K1RwAAAAAAeF1xxQsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhwgsAAAAAAEAhW0V4ueyyy9LY2Jhu3bpl9OjRWbBgwSbX/uAHP8ioUaPSq1ev7LDDDhkxYkSuu+66dmuOPfbY1NTUtHuMHz/+1T4MAAAAAABgG7ddtQe44YYb0tzcnCuuuCKjR4/O7NmzM27cuPzxj39M3759N1i/884753Of+1z23nvvdO3aNT/5yU8yderU9O3bN+PGjWtbN378+Fx99dVtz+vq6l6T4wEAAAAAALZdVb/i5aKLLsoJJ5yQqVOnZt99980VV1yRHj165Kqrrtro+ne84x153/vel3322Sd77rlnPvWpT2X48OG58847262rq6tLv3792h69e/d+LQ4HAAAAAADYhlU1vKxbty733HNPmpqa2rbV1tamqakp8+fPf9n3VyqVzJ07N3/84x/z9re/vd1r8+bNS9++fbPXXnvlxBNPzJNPPrnJ/axduzYtLS3tHgAAAAAAAJurql81tnLlyqxfvz4NDQ3ttjc0NOT+++/f5PtWr16dAQMGZO3atenSpUu++tWv5l3velfb6+PHj8/73//+DBo0KH/605/y2c9+NhMmTMj8+fPTpUuXDfY3Y8aMnHvuueUODAAAAAAA2CZV/R4vHbHTTjvl3nvvzbPPPpu5c+emubk5gwcPzjve8Y4kyeTJk9vW7rfffhk+fHj23HPPzJs3L+985zs32N+0adPS3Nzc9rylpSUDBw581Y8DAAAAAAB4falqeOnTp0+6dOmS5cuXt9u+fPny9OvXb5Pvq62tzZAhQ5IkI0aMyH333ZcZM2a0hZe/NXjw4PTp0ycPPvjgRsNLXV1d6urqOn4gAAAAAAAAqfI9Xrp27ZqRI0dm7ty5bdtaW1szd+7cjBkz5hXvp7W1NWvXrt3k64888kiefPLJ7Lbbbls0LwAAAAAAwEup+leNNTc355hjjsmoUaNywAEHZPbs2VmzZk2mTp2aJJkyZUoGDBiQGTNmJPnr/VhGjRqVPffcM2vXrs0tt9yS6667LpdffnmS5Nlnn825556bD3zgA+nXr1/+9Kc/5YwzzsiQIUMybty4qh0nAAAAAADw+lf18DJp0qQ88cQTmT59epYtW5YRI0Zkzpw5aWhoSJIsXbo0tbX/e2HOmjVrctJJJ+WRRx5J9+7ds/fee+db3/pWJk2alCTp0qVLFi1alGuuuSarVq1K//79c+ihh+a8887zdWIAAAAAAMCrqqZSqVSqPcTWpqWlJfX19Vm9enV69uxZ7XG2Ko1n3lztEShoycyJ1R4BAAAAAGCrtzndoKr3eAEAAAAAAHg9EV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAK2SrCy2WXXZbGxsZ069Yto0ePzoIFCza59gc/+EFGjRqVXr16ZYcddsiIESNy3XXXtVtTqVQyffr07LbbbunevXuamprywAMPvNqHAQAAAAAAbOOqHl5uuOGGNDc35+yzz87ChQuz//77Z9y4cVmxYsVG1++888753Oc+l/nz52fRokWZOnVqpk6dmltvvbVtzfnnn5+vfOUrueKKK3L33Xdnhx12yLhx4/L888+/VocFAAAAAABsg2oqlUqlmgOMHj06b33rW3PppZcmSVpbWzNw4MB88pOfzJlnnvmK9vGWt7wlEydOzHnnnZdKpZL+/fvnM5/5TE477bQkyerVq9PQ0JBvfvObmTx58svur6WlJfX19Vm9enV69uzZ8YN7HWo88+Zqj0BBS2ZOrPYIAAAAAABbvc3pBlW94mXdunW555570tTU1LattrY2TU1NmT9//su+v1KpZO7cufnjH/+Yt7/97UmSxYsXZ9myZe32WV9fn9GjR29yn2vXrk1LS0u7BwAAAAAAwOaqanhZuXJl1q9fn4aGhnbbGxoasmzZsk2+b/Xq1dlxxx3TtWvXTJw4MZdcckne9a53JUnb+zZnnzNmzEh9fX3bY+DAgVtyWAAAAAAAwDaq6vd46Yiddtop9957b/7zP/8z//RP/5Tm5ubMmzevw/ubNm1aVq9e3fZ4+OGHyw0LAAAAAABsM7ar5of36dMnXbp0yfLly9ttX758efr167fJ99XW1mbIkCFJkhEjRuS+++7LjBkz8o53vKPtfcuXL89uu+3Wbp8jRozY6P7q6upSV1e3hUcDAAAAAABs66p6xUvXrl0zcuTIzJ07t21ba2tr5s6dmzFjxrzi/bS2tmbt2rVJkkGDBqVfv37t9tnS0pK77757s/YJAAAAAACwuap6xUuSNDc355hjjsmoUaNywAEHZPbs2VmzZk2mTp2aJJkyZUoGDBiQGTNmJPnr/VhGjRqVPffcM2vXrs0tt9yS6667LpdffnmSpKamJqeeemq++MUvZujQoRk0aFDOOuus9O/fP0cccUS1DhMAAAAAANgGVD28TJo0KU888USmT5+eZcuWZcSIEZkzZ04aGhqSJEuXLk1t7f9emLNmzZqcdNJJeeSRR9K9e/fsvffe+da3vpVJkya1rTnjjDOyZs2afPSjH82qVaty0EEHZc6cOenWrdtrfnwAAAAAAMC2o6ZSqVSqPcTWpqWlJfX19Vm9enV69uxZ7XG2Ko1n3lztEShoycyJ1R4BAAAAAGCrtzndoKr3eAEAAAAAAHg9EV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAK2SrCy2WXXZbGxsZ069Yto0ePzoIFCza59mtf+1oOPvjg9O7dO717905TU9MG64899tjU1NS0e4wfP/7VPgwAAAAAAGAbV/XwcsMNN6S5uTlnn312Fi5cmP333z/jxo3LihUrNrp+3rx5Oeqoo3LHHXdk/vz5GThwYA499NA8+uij7daNHz8+jz/+eNvju9/97mtxOAAAAAAAwDas6uHloosuygknnJCpU6dm3333zRVXXJEePXrkqquu2uj6b3/72znppJMyYsSI7L333vn617+e1tbWzJ07t926urq69OvXr+3Ru3fv1+JwAAAAAACAbVhVw8u6detyzz33pKmpqW1bbW1tmpqaMn/+/Fe0j+eeey5/+ctfsvPOO7fbPm/evPTt2zd77bVXTjzxxDz55JOb3MfatWvT0tLS7gEAAAAAALC5qhpeVq5cmfXr16ehoaHd9oaGhixbtuwV7eMf//Ef079//3bxZvz48bn22mszd+7czJo1Kz/72c8yYcKErF+/fqP7mDFjRurr69seAwcO7PhBAQAAAAAA26ztqj3Alpg5c2auv/76zJs3L926dWvbPnny5LZf77fffhk+fHj23HPPzJs3L+985zs32M+0adPS3Nzc9rylpUV8AQAAAAAANltVr3jp06dPunTpkuXLl7fbvnz58vTr1+8l33vhhRdm5syZue222zJ8+PCXXDt48OD06dMnDz744EZfr6urS8+ePds9AAAAAAAANldVw0vXrl0zcuTIzJ07t21ba2tr5s6dmzFjxmzyfeeff37OO++8zJkzJ6NGjXrZz3nkkUfy5JNPZrfddisyNwAAAAAAwMZUNbwkSXNzc772ta/lmmuuyX333ZcTTzwxa9asydSpU5MkU6ZMybRp09rWz5o1K2eddVauuuqqNDY2ZtmyZVm2bFmeffbZJMmzzz6b008/Pb/61a+yZMmSzJ07N4cffniGDBmScePGVeUYAQAAAACAbUPV7/EyadKkPPHEE5k+fXqWLVuWESNGZM6cOWloaEiSLF26NLW1/9uHLr/88qxbty4f/OAH2+3n7LPPzjnnnJMuXbpk0aJFueaaa7Jq1ar0798/hx56aM4777zU1dW9pscGAAAAAABsW2oqlUql2kNsbVpaWlJfX5/Vq1e738vfaDzz5mqPQEFLZk6s9ggAAAAAAFu9zekGVf+qMQAAAAAAgNcL4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKCQYuFl1apVpXYFAAAAAADQKXUovMyaNSs33HBD2/MPfehD2WWXXTJgwID813/9V7HhAAAAAAAAOpMOhZcrrrgiAwcOTJLcfvvtuf322/Pv//7vmTBhQk4//fSiAwIAAAAAAHQW23XkTcuWLWsLLz/5yU/yoQ99KIceemgaGxszevToogMCAAAAAAB0Fh264qV37955+OGHkyRz5sxJU1NTkqRSqWT9+vXlpgMAAAAAAOhEOnTFy/vf//4cffTRGTp0aJ588slMmDAhSfKb3/wmQ4YMKTogAAAAAABAZ9Gh8PLP//zPaWxszMMPP5zzzz8/O+64Y5Lk8ccfz0knnVR0QAAAAAAAgM6iQ+Fl++23z2mnnbbB9k9/+tNbPBAAAAAAAEBn1aF7vCTJddddl4MOOij9+/fPQw89lCSZPXt2fvSjHxUbDgAAAAAAoDPpUHi5/PLL09zcnAkTJmTVqlVZv359kqRXr16ZPXt2yfkAAAAAAAA6jQ591dgll1ySr33tazniiCMyc+bMtu2jRo3a6FeQASRJ45k3V3sEClkyc2K1RwAAAACArVKHrnhZvHhx3vzmN2+wva6uLmvWrNnioQAAAAAAADqjDoWXQYMG5d57791g+5w5c7LPPvts6UwAAAAAAACdUoe+aqy5uTmf+MQn8vzzz6dSqWTBggX57ne/mxkzZuTrX/966RkBAAAAAAA6hQ6Fl+OPPz7du3fP5z//+Tz33HM5+uij079//1x88cWZPHly6RkBAAAAAAA6hQ6FlyT58Ic/nA9/+MN57rnn8uyzz6Zv374l5wIAAAAAAOh0OhReFi9enBdeeCFDhw5Njx490qNHjyTJAw88kO233z6NjY0lZwQAAAAAAOgUajvypmOPPTZ33XXXBtvvvvvuHHvssVs6EwAAAAAAQKfUofDym9/8Jm9729s22P53f/d3uffee7d0JgAAAAAAgE6pQ+GlpqYmzzzzzAbbV69enfXr12/xUAAAAAAAAJ1Rh8LL29/+9syYMaNdZFm/fn1mzJiRgw46qNhwAAAAAAAAncl2HXnTrFmz8va3vz177bVXDj744CTJL37xi7S0tOSnP/1p0QEBAAAAAAA6iw5d8bLvvvtm0aJF+dCHPpQVK1bkmWeeyZQpU3L//fdn2LBhpWcEAAAAAADoFDp0xUuS9O/fP1/60pdKzgIAAAAAANCpdTi8rFq1KgsWLMiKFSvS2tra7rUpU6Zs8WAAAAAAAACdTYfCy49//ON8+MMfzrPPPpuePXumpqam7bWamhrhBQAAAAAA2CZ16B4vn/nMZ/KRj3wkzz77bFatWpWnn3667fHUU0+VnhEAAAAAAKBT6FB4efTRR3PKKaekR48epecBAAAAAADotDoUXsaNG5df//rXpWcBAAAAAADo1DoUXiZOnJjTTz8955xzTv71X/81//Zv/9busbkuu+yyNDY2plu3bhk9enQWLFiwybVf+9rXcvDBB6d3797p3bt3mpqaNlhfqVQyffr07LbbbunevXuamprywAMPbPZcAAAAAAAAm2O7jrzphBNOSJJ84Qtf2OC1mpqarF+//hXv64Ybbkhzc3OuuOKKjB49OrNnz864cePyxz/+MX379t1g/bx583LUUUflwAMPTLdu3TJr1qwceuih+f3vf58BAwYkSc4///x85StfyTXXXJNBgwblrLPOyrhx4/KHP/wh3bp168ghAwAAAAAAvKyaSqVSqeYAo0ePzlvf+tZceumlSZLW1tYMHDgwn/zkJ3PmmWe+7PvXr1+f3r1759JLL82UKVNSqVTSv3//fOYzn8lpp52WJFm9enUaGhryzW9+M5MnT37Zfba0tKS+vj6rV69Oz549t+wAX2caz7y52iNQ0JKZE1/Tz3P+vH681ucOAAAAAFTT5nSDDn3VWCnr1q3LPffck6amprZttbW1aWpqyvz581/RPp577rn85S9/yc4775wkWbx4cZYtW9Zun/X19Rk9evQm97l27dq0tLS0ewAAAAAAAGyuDn3VWJKsWbMmP/vZz7J06dKsW7eu3WunnHLKK9rHypUrs379+jQ0NLTb3tDQkPvvv/8V7eMf//Ef079//7bQsmzZsrZ9/O0+X3ztb82YMSPnnnvuK/o8AAAAAACATelQePnNb36Td7/73XnuueeyZs2a7Lzzzlm5cmV69OiRvn37vuLwsqVmzpyZ66+/PvPmzduie7dMmzYtzc3Nbc9bWloycODAEiMCAAAAAADbkA591dinP/3pvPe9783TTz+d7t2751e/+lUeeuihjBw5MhdeeOEr3k+fPn3SpUuXLF++vN325cuXp1+/fi/53gsvvDAzZ87MbbfdluHDh7dtf/F9m7PPurq69OzZs90DAAAAAABgc3UovNx77735zGc+k9ra2nTp0iVr167NwIEDc/755+ezn/3sK95P165dM3LkyMydO7dtW2tra+bOnZsxY8Zs8n3nn39+zjvvvMyZMyejRo1q99qgQYPSr1+/dvtsaWnJ3Xff/ZL7BAAAAAAA2FId+qqx7bffPrW1f202ffv2zdKlS7PPPvukvr4+Dz/88Gbtq7m5Occcc0xGjRqVAw44ILNnz86aNWsyderUJMmUKVMyYMCAzJgxI0kya9asTJ8+Pd/5znfS2NjYdt+WHXfcMTvuuGNqampy6qmn5otf/GKGDh2aQYMG5ayzzkr//v1zxBFHdORwAQAAAAAAXpEOhZc3v/nN+c///M8MHTo0Y8eOzfTp07Ny5cpcd911GTZs2Gbta9KkSXniiScyffr0LFu2LCNGjMicOXPS0NCQJFm6dGlb5EmSyy+/POvWrcsHP/jBdvs5++yzc8455yRJzjjjjKxZsyYf/ehHs2rVqhx00EGZM2fOFt0HBgAAAAAA4OXUVCqVyua+6de//nWeeeaZ/P3f/31WrFiRKVOm5K677srQoUPzjW98IyNGjHgVRn3ttLS0pL6+PqtXr3a/l7/ReObN1R6BgpbMnPiafp7z5/XjtT53AAAAAKCaNqcbdOiKl/97X5W+fftmzpw5HdkNAAAAAADA60rtyy/Z0CGHHJJVq1ZtsL2lpSWHHHLIls4EAAAAAADQKXUovMybNy/r1q3bYPvzzz+fX/ziF1s8FAAAAAAAQGe0WV81tmjRorZf/+EPf8iyZcvanq9fvz5z5szJgAEDyk0HAAAAAADQiWxWeBkxYkRqampSU1Oz0a8U6969ey655JJiwwEAAAAAAHQmmxVeFi9enEqlksGDB2fBggXZdddd217r2rVr+vbtmy5duhQfEgAAAAAAoDPYrPCyxx575C9/+UuOOeaY7LLLLtljjz1erbkAAAAAAAA6ndrNfcP222+fH/7wh6/GLAAAAAAAAJ3aZoeXJDn88MNz0003FR4FAAAAAACgc9usrxp70dChQ/OFL3whv/zlLzNy5MjssMMO7V4/5ZRTigwHAAAAAADQmXQovHzjG99Ir169cs899+See+5p91pNTY3wAgAAAAAAbJM6FF4WL15ceg4AAAAAAIBOr0P3ePm/KpVKKpVKiVkAAAAAAAA6tQ6Hl2uvvTb77bdfunfvnu7du2f48OG57rrrSs4GAAAAAADQqXToq8YuuuiinHXWWTn55JPztre9LUly55135uMf/3hWrlyZT3/600WHBAAAAAAA6Aw6FF4uueSSXH755ZkyZUrbtsMOOyxvetObcs455wgvAAAAAADANqlDXzX2+OOP58ADD9xg+4EHHpjHH398i4cCAAAAAADojDoUXoYMGZLvfe97G2y/4YYbMnTo0C0eCgAAAAAAoDPq0FeNnXvuuZk0aVJ+/vOft93j5Ze//GXmzp270SADAAAAAACwLejQFS8f+MAHcvfdd6dPnz656aabctNNN6VPnz5ZsGBB3ve+95WeEQAAAAAAoFPo0BUvSTJy5Mh861vfKjkLAAAAAABAp9bh8LJ+/fr88Ic/zH333Zck2XfffXP44Ydnu+06vEsAAAAAAIBOrUOV5Pe//30OO+ywLFu2LHvttVeSZNasWdl1113z4x//OMOGDSs6JAAAAAAAQGfQoXu8HH/88XnTm96URx55JAsXLszChQvz8MMPZ/jw4fnoRz9aekYAAAAAAIBOoUNXvNx777359a9/nd69e7dt6927d/7pn/4pb33rW4sNBwAAAAAA0Jl06IqXN77xjVm+fPkG21esWJEhQ4Zs8VAAAAAAAACdUYfCy4wZM3LKKafkxhtvzCOPPJJHHnkkN954Y0499dTMmjUrLS0tbQ8AAAAAAIBtRYe+auw973lPkuRDH/pQampqkiSVSiVJ8t73vrfteU1NTdavX19iTgAAAAAAgK1eh8LLHXfcUXoOAAAAAACATq9D4WXs2LGl5wAAAAAAAOj0OhRekuT555/PokWLsmLFirS2trZ77bDDDtviwQAAAAAAADqbDoWXOXPmZMqUKVm5cuUGr7mvCwAAAAAAsK2q7cibPvnJT+bII4/M448/ntbW1nYP0QUAAAAAANhWdSi8LF++PM3NzWloaCg9DwAAAAAAQKfVofDywQ9+MPPmzSs8CgAAAAAAQOfWoXu8XHrppTnyyCPzi1/8Ivvtt1+23377dq+fcsopRYYDAAAAAADoTDoUXr773e/mtttuS7du3TJv3rzU1NS0vVZTUyO8AAAAAAAA26QOhZfPfe5zOffcc3PmmWemtrZD31YGAAAAAADwutOharJu3bpMmjRJdAEAAAAAAPg/OlROjjnmmNxwww2lZwEAAAAAAOjUOvRVY+vXr8/555+fW2+9NcOHD8/222/f7vWLLrqoyHAAAAAAAACdSYfCy29/+9u8+c1vTpL87ne/KzoQAAAAAABAZ9Wh8HLHHXeUngMAAAAAAKDT26zw8v73v/9l19TU1ORf//VfOzwQAAAAAABAZ7VZ4aW+vv7VmgMAAAAAAKDT26zwcvXVV79acwAAAAAAAHR6tdUeAAAAAAAA4PVCeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAACik6uHlsssuS2NjY7p165bRo0dnwYIFm1z7+9//Ph/4wAfS2NiYmpqazJ49e4M155xzTmpqato99t5771fxCAAAAAAAAP6qquHlhhtuSHNzc84+++wsXLgw+++/f8aNG5cVK1ZsdP1zzz2XwYMHZ+bMmenXr98m9/umN70pjz/+eNvjzjvvfLUOAQAAAAAAoE1Vw8tFF12UE044IVOnTs2+++6bK664Ij169MhVV1210fVvfetbc8EFF2Ty5Mmpq6vb5H6322679OvXr+3Rp0+fV+sQAAAAAAAA2lQtvKxbty733HNPmpqa/neY2to0NTVl/vz5W7TvBx54IP3798/gwYPz4Q9/OEuXLn3J9WvXrk1LS0u7BwAAAAAAwOaqWnhZuXJl1q9fn4aGhnbbGxoasmzZsg7vd/To0fnmN7+ZOXPm5PLLL8/ixYtz8MEH55lnntnke2bMmJH6+vq2x8CBAzv8+QAAAAAAwLarql819mqYMGFCjjzyyAwfPjzjxo3LLbfcklWrVuV73/veJt8zbdq0rF69uu3x8MMPv4YTAwAAAAAArxfbVeuD+/Tpky5dumT58uXtti9fvjz9+vUr9jm9evXKG9/4xjz44IObXFNXV/eS94wBAAAAAAB4Jap2xUvXrl0zcuTIzJ07t21ba2tr5s6dmzFjxhT7nGeffTZ/+tOfsttuuxXbJwAAAAAAwMZU7YqXJGlubs4xxxyTUaNG5YADDsjs2bOzZs2aTJ06NUkyZcqUDBgwIDNmzEiSrFu3Ln/4wx/afv3oo4/m3nvvzY477pghQ4YkSU477bS8973vzR577JHHHnssZ599drp06ZKjjjqqOgcJAAAAAABsM6oaXiZNmpQnnngi06dPz7JlyzJixIjMmTMnDQ0NSZKlS5emtvZ/L8p57LHH8uY3v7nt+YUXXpgLL7wwY8eOzbx585IkjzzySI466qg8+eST2XXXXXPQQQflV7/6VXbdddfX9NgAAAAAAIBtT1XDS5KcfPLJOfnkkzf62osx5UWNjY2pVCovub/rr7++1GgAAAAAAACbpWr3eAEAAAAAAHi9EV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAK2a7aAwDAK9F45s3VHoFClsycWO0RAAAAAF41rngBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoRHgBAAAAAAAoZLtqDwAA8GprPPPmao9AIUtmTqz2CAAAAPCSXPECAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQiPACAAAAAABQSNXDy2WXXZbGxsZ069Yto0ePzoIFCza59ve//30+8IEPpLGxMTU1NZk9e/YW7xMAAAAAAKCUqoaXG264Ic3NzTn77LOzcOHC7L///hk3blxWrFix0fXPPfdcBg8enJkzZ6Zfv35F9gkAAAAAAFBKVcPLRRddlBNOOCFTp07NvvvumyuuuCI9evTIVVddtdH1b33rW3PBBRdk8uTJqaurK7JPAAAAAACAUqoWXtatW5d77rknTU1N/ztMbW2ampoyf/7813Sfa9euTUtLS7sHAAAAAADA5qpaeFm5cmXWr1+fhoaGdtsbGhqybNmy13SfM2bMSH19fdtj4MCBHfp8AAAAAABg21bVrxrbWkybNi2rV69uezz88MPVHgkAAAAAAOiEtqvWB/fp0yddunTJ8uXL221fvnx5+vXr95rus66ubpP3jAEAAAAAAHilqnbFS9euXTNy5MjMnTu3bVtra2vmzp2bMWPGbDX7BAAAAAAAeKWqdsVLkjQ3N+eYY47JqFGjcsABB2T27NlZs2ZNpk6dmiSZMmVKBgwYkBkzZiRJ1q1blz/84Q9tv3700Udz7733Zscdd8yQIUNe0T4BAAAAAABeLVUNL5MmTcoTTzyR6dOnZ9myZRkxYkTmzJmThoaGJMnSpUtTW/u/F+U89thjefOb39z2/MILL8yFF16YsWPHZt68ea9onwAAAAAAAK+WqoaXJDn55JNz8sknb/S1F2PKixobG1OpVLZonwAAAAAAAK+Wqt3jBQAAAAAA4PVGeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChEeAEAAAAAAChku2oPAAAAW7PGM2+u9ggUsmTmxGqPAAAAbANc8QIAAAAAAFCI8AIAAAAAAFCI8AIAAAAAAFCI8AIAAAAAAFCI8AIAAAAAAFCI8AIAAAAAAFCI8AIAAAAAAFCI8AIAAAAAAFCI8AIAAAAAAFCI8AIAAAAAAFCI8AIAAAAAAFCI8AIAAAAAAFCI8AIAAAAAAFCI8AIAAAAAAFCI8AIAAAAAAFCI8AIAAAAAAFCI8AIAAAAAAFCI8AIAAAAAAFCI8AIAAAAAAFCI8AIAAAAAAFCI8AIAAAAAAFCI8AIAAAAAAFDIVhFeLrvssjQ2NqZbt24ZPXp0FixY8JLrv//972fvvfdOt27dst9+++WWW25p9/qxxx6bmpqado/x48e/mocAAAAAAABQ/fByww03pLm5OWeffXYWLlyY/fffP+PGjcuKFSs2uv6uu+7KUUcdleOOOy6/+c1vcsQRR+SII47I7373u3brxo8fn8cff7zt8d3vfve1OBwAAAAAAGAbVvXwctFFF+WEE07I1KlTs+++++aKK65Ijx49ctVVV210/cUXX5zx48fn9NNPzz777JPzzjsvb3nLW3LppZe2W1dXV5d+/fq1PXr37v1aHA4AAAAAALANq2p4WbduXe655540NTW1bautrU1TU1Pmz5+/0ffMnz+/3fokGTdu3Abr582bl759+2avvfbKiSeemCeffHKTc6xduzYtLS3tHgAAAAAAAJurquFl5cqVWb9+fRoaGtptb2hoyLJlyzb6nmXLlr3s+vHjx+faa6/N3LlzM2vWrPzsZz/LhAkTsn79+o3uc8aMGamvr297DBw4cAuPDAAAAAAA2BZtV+0BXg2TJ09u+/V+++2X4cOHZ88998y8efPyzne+c4P106ZNS3Nzc9vzlpYW8QUAAAAAANhsVb3ipU+fPunSpUuWL1/ebvvy5cvTr1+/jb6nX79+m7U+SQYPHpw+ffrkwQcf3OjrdXV16dmzZ7sHAAAAAADA5qpqeOnatWtGjhyZuXPntm1rbW3N3LlzM2bMmI2+Z8yYMe3WJ8ntt9++yfVJ8sgjj+TJJ5/MbrvtVmZwAAAAAACAjahqeEmS5ubmfO1rX8s111yT++67LyeeeGLWrFmTqVOnJkmmTJmSadOmta3/1Kc+lTlz5uTLX/5y7r///pxzzjn59a9/nZNPPjlJ8uyzz+b000/Pr371qyxZsiRz587N4YcfniFDhmTcuHFVOUYAAAAAAGDbUPV7vEyaNClPPPFEpk+fnmXLlmXEiBGZM2dOGhoakiRLly5Nbe3/9qEDDzww3/nOd/L5z38+n/3sZzN06NDcdNNNGTZsWJKkS5cuWbRoUa655pqsWrUq/fv3z6GHHprzzjsvdXV1VTlGAAAAAABg21D18JIkJ598ctsVK39r3rx5G2w78sgjc+SRR250fffu3XPrrbeWHA8AAAAAAOAVqfpXjQEAAAAAALxeCC8AAAAAAACFCC8AAAAAAACFCC8AAAAAAACFCC8AAAAAAACFCC8AAAAAAACFCC8AAAAAAACFCC8AAAAAAACFCC8AAAAAAACFCC8AAAAAAACFCC8AAAAAAACFCC8AAAAAAACFCC8AAAAAAACFCC8AAAAAAACFCC8AAAAAAACFCC8AAAAAAACFCC8AAAAAAACFCC8AAAAAAACFCC8AAAAAAACFCC8AAAAAAACFCC8AAAAAAACFCC8AAAAAAACFCC8AAAAAAACFbFftAQAAAF6PGs+8udojUMiSmROrPQIAAJ2IK14AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAKEV4AAAAAAAAK2a7aAwAAAADtNZ55c7VHoJAlMydWewQA4DXmihcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBChBcAAAAAAIBCtqv2AAAAAACU03jmzdUegUKWzJxY7REA6ABXvAAAAAAAABQivAAAAAAAABTiq8YAAAAAgCS+qu71xFfVQfW44gUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKAQ4QUAAAAAAKCQ7ao9AAAAAAAAnV/jmTdXewQKWTJzYrVH6NRc8QIAAAAAAFCI8AIAAAAAAFCI8AIAAAAAAFCI8AIAAAAAAFCI8AIAAAAAAFCI8AIAAAAAAFCI8AIAAAAAAFCI8AIAAAAAAFCI8AIAAAAAAFDIVhFeLrvssjQ2NqZbt24ZPXp0FixY8JLrv//972fvvfdOt27dst9+++WWW25p93qlUsn06dOz2267pXv37mlqasoDDzzwah4CAAAAAABA9cPLDTfckObm5px99tlZuHBh9t9//4wbNy4rVqzY6Pq77rorRx11VI477rj85je/yRFHHJEjjjgiv/vd79rWnH/++fnKV76SK664InfffXd22GGHjBs3Ls8///xrdVgAAAAAAMA2qOrh5aKLLsoJJ5yQqVOnZt99980VV1yRHj165Kqrrtro+osvvjjjx4/P6aefnn322SfnnXde3vKWt+TSSy9N8terXWbPnp3Pf/7zOfzwwzN8+PBce+21eeyxx3LTTTe9hkcGAAAAAABsa7ar5oevW7cu99xzT6ZNm9a2rba2Nk1NTZk/f/5G3zN//vw0Nze32zZu3Li2qLJ48eIsW7YsTU1Nba/X19dn9OjRmT9/fiZPnrzBPteuXZu1a9e2PV+9enWSpKWlpcPH9nrVuva5ao9AQa/1Oe78ef2oxp+Pzp/XD+cPW8L5w5bw7z50lD972BLOH7aE84ct4fxhS/j/xjf04s+kUqm87NqqhpeVK1dm/fr1aWhoaLe9oaEh999//0bfs2zZso2uX7ZsWdvrL27b1Jq/NWPGjJx77rkbbB84cOArOxDopOpnV3sCOivnDlvC+cOWcP6wJZw/dJRzhy3h/GFLOH/YEs4ftoTzZ9OeeeaZ1NfXv+SaqoaXrcW0adPaXUXT2tqap556KrvssktqamqqOBnV0NLSkoEDB+bhhx9Oz549qz0OnYzzhy3h/KGjnDtsCecPW8L5w5Zw/tBRzh22hPOHLeH82bZVKpU888wz6d+//8uurWp46dOnT7p06ZLly5e32758+fL069dvo+/p16/fS65/8X+XL1+e3Xbbrd2aESNGbHSfdXV1qaura7etV69em3MovA717NnTH6B0mPOHLeH8oaOcO2wJ5w9bwvnDlnD+0FHOHbaE84ct4fzZdr3clS4vqn2V53hJXbt2zciRIzN37ty2ba2trZk7d27GjBmz0feMGTOm3fokuf3229vWDxo0KP369Wu3pqWlJXffffcm9wkAAAAAAFBC1b9qrLm5Occcc0xGjRqVAw44ILNnz86aNWsyderUJMmUKVMyYMCAzJgxI0nyqU99KmPHjs2Xv/zlTJw4Mddff31+/etf58orr0yS1NTU5NRTT80Xv/jFDB06NIMGDcpZZ52V/v3754gjjqjWYQIAAAAAANuAqoeXSZMm5Yknnsj06dOzbNmyjBgxInPmzElDQ0OSZOnSpamt/d8Lcw488MB85zvfyec///l89rOfzdChQ3PTTTdl2LBhbWvOOOOMrFmzJh/96EezatWqHHTQQZkzZ066dev2mh8fnU9dXV3OPvvsDb5+Dl4J5w9bwvlDRzl32BLOH7aE84ct4fyho5w7bAnnD1vC+cMrVVOpVCrVHgIAAAAAAOD1oKr3eAEAAAAAAHg9EV4AAAAAAAAKEV4AAAAAAAAKEV7Ypr3wwgu59tprs3z58mqPAgAAW7X169fn5z//eVatWlXtUQAAYKsmvLBN22677fLxj388zz//fLVHoZO64447qj0CsI1atWpVvv71r2fatGl56qmnkiQLFy7Mo48+WuXJ2Nodc8wx+fnPf17tMeiEunTpkkMPPTRPP/10tUehE3vhhRfyH//xH/mXf/mXPPPMM0mSxx57LM8++2yVJ6MzePDBB3Prrbfmz3/+c5KkUqlUeSJgW+HPHzbXdtUeAKrtgAMOyL333ps99tij2qPQCY0fPz677757pk6dmmOOOSYDBw6s9kh0IpVKJTfeeGPuuOOOrFixIq2tre1e/8EPflClydjaLVq0KE1NTamvr8+SJUtywgknZOedd84PfvCDLF26NNdee221R2Qrtnr16jQ1NWWPPfZo++fXgAEDqj0WncSwYcPyP//zPxk0aFC1R6ETeuihhzJ+/PgsXbo0a9euzbve9a7stNNOmTVrVtauXZsrrrii2iOylXryySczadKk/PSnP01NTU0eeOCBDB48OMcdd1x69+6dL3/5y9Ueka3cAw88sMn/7po+fXqVpqIz8OcPHeWKF7Z5J510Upqbm3PppZdm/vz5WbRoUbsHvJRHH300J598cm688cYMHjw448aNy/e+972sW7eu2qPRCZx66qn5f//v/2Xx4sXZcccdU19f3+4Bm9Lc3Jxjjz02DzzwQLp169a2/d3vfrcrGXhZN910Ux599NGceOKJueGGG9LY2JgJEybkxhtvzF/+8pdqj8dW7otf/GJOO+20/OQnP8njjz+elpaWdg94KZ/61KcyatSoPP300+nevXvb9ve9732ZO3duFSdja/fpT3862223XZYuXZoePXq0bZ80aVLmzJlTxcnoDL72ta9ln332yfTp03PjjTfmhz/8YdvjpptuqvZ4bOX8+UNH1VRcF8U2rrZ2w/5YU1OTSqWSmpqarF+/vgpT0RktXLgwV199db773e8mSY4++ugcd9xx2X///as8GVurnXfeOd/61rfy7ne/u9qj0MnU19dn4cKF2XPPPbPTTjvlv/7rvzJ48OA89NBD2WuvvXyFJpvlxX9+ff3rX8+OO+6Yf/iHf8hJJ52UoUOHVns0tkL/99+da2pq2n7t3515JXbZZZfcdddd2Wuvvdr982vJkiXZd99989xzz1V7RLZS/fr1y6233pr999+/3bnzP//zPxk+fLivquMl7bHHHjnppJPyj//4j9UehU7Inz90lK8aY5u3ePHiao/A68Rb3vKW9OvXL7vssktmzpyZq666Kl/96lczZsyYXHHFFXnTm95U7RHZytTX12fw4MHVHoNOqK6ubqN/s/y///u/s+uuu1ZhIjqrxx9/PLfffntuv/32dOnSJe9+97vz29/+Nvvuu2/OP//8fPrTn672iGxl3N+OLdHa2rrROPfII49kp512qsJEdBZr1qxp9zfNX/TUU0+lrq6uChPRmTz99NM58sgjqz0GnZQ/f+goV7wAbKG//OUv+dGPfpSrrroqt99+e0aNGpXjjjsuRx11VJ544ol8/vOfz8KFC/OHP/yh2qOylbnmmmsyZ86cXHXVVe2+bgNezvHHH58nn3wy3/ve97Lzzjtn0aJF6dKlS4444oi8/e1vz+zZs6s9Iluxv/zlL/m3f/u3XH311bntttsyfPjwHH/88Tn66KPTs2fPJMkPf/jDfOQjH3ETdaCoSZMmpb6+PldeeWV22mmnLFq0KLvuumsOP/zwvOENb8jVV19d7RHZSr373e/OyJH/n707D6sx//8H/jwnbdJKIUuLsoQoOx/D2JdRNGNL9hjM2EXDiAxZZixjGDGVbWgYy4xd9qGRtcWWohDKliRp2s7vD1/nN0crhvd91/NxXV2X875v1/X841zn3Oe9vF6N8N1336nfO1ZWVujXrx9yc3Oxbds20RFJwoYPH44mTZpg1KhRoqOQDPHzh94VF16IAGzcuBH+/v6Ij4/H6dOnYWVlhWXLlsHGxgaurq6i45GEjR07FsHBwVCpVBg4cCA8PT1Rr149jXuSkpJgaWmZp4Ef0cuXL9GrVy+EhobC2toa2traGtcvXrwoKBlJ3bNnz/DFF1/g/PnzeP78OSwtLZGUlIQWLVpg3759MDAwEB2RJKxChQrIzc1F//79MWLECDRs2DDPPSkpKXBycuLJYCpQeno67ty5k6evnaOjo6BEJAd3795F586doVKpEBsbi8aNGyM2NhYVKlTAX3/9BQsLC9ERSaIuX76M9u3bw9nZGUePHoWLiwuuXLmC5ORkhIaGokaNGqIjkoTNnz8fS5YsQffu3VG/fv08v7vGjRsnKBnJAT9/6F1x4YVKvVWrVsHHxwcTJkzAvHnzcPnyZdja2mLdunVYv349yylQodq3bw9PT0+4ubkVeMQ0OzsboaGhaNOmzUdOR1LXp08fHDt2DF988QUqVqyoUSsfAGbNmiUoGclFaGgoIiMjkZaWBmdnZ3To0EF0JJKBjRs3onfv3tDT0xMdhWTo0aNHGDp0KPbv35/vdfZ4oaJkZ2fjt99+Q1RUlPr7a8CAATz9S0V69uwZVqxYofHs89VXX6Fy5cqio5HE2djYFHhNoVAgLi7uI6YhOeLnD70LLrxQqefg4AA/Pz/07NlTo0nW5cuX0bZtWzx+/Fh0RJKwv/76Cy1btkSZMpots7Kzs/H333/jk08+EZSM5MDAwAAHDx7E//73P9FRSEaysrKgr6+PiIiIPCfsiIpj2LBh+PHHH/P0U3jx4gXGjh2LoKAgQclIDgYMGIDbt29j2bJlaNu2LXbu3IkHDx5g7ty5WLx4Mbp37y46IhERERGRcFx4oVJPX18f0dHRsLKy0lh4iY2NhaOjI16+fCk6IkmYlpYWEhMT85RFePLkCSwsLLjrkwpVu3ZtbN26lWVZ6K3Z2tpi586daNCggegoJEMFfXc9fvwYlSpVQnZ2tqBkJAeVK1fGn3/+iaZNm8LIyAjnz59HzZo1sWvXLixatAinTp0SHZEkbMOGDYVeHzRo0EdKQnITFRWV77hCoYCenh6qV6/OJtdULK+nQd+sNkBUmIyMDERFReHhw4d5ysi7uLgISkVSV6boW4hKNhsbG0RERMDKykpj/MCBA6hTp46gVCQXKpUq3we2J0+esMcCFWnx4sWYOnUq/P39YW1tLToOyciMGTMwffp0bNy4EWZmZqLjkEykpqZCpVJBpVLh+fPnGqXGcnJysG/fPvZXoCK9ePFC/T4xNTXFo0ePULNmTdSvX5+9yahI48eP13idlZWF9PR06OjooGzZslx4oQI1bNhQ/bsrv4lzbW1t9O3bF6tXr2YpTcrXhg0b8P333yM2NhYAULNmTXh5eWHgwIGCk5HUHThwAIMGDcq3Io5CoeCGWyoQF16o1Js0aRK++uorZGRkQKVS4ezZswgODsb8+fMREBAgOh5JlJubG4BXX7JDhgzR2F2Vk5ODqKgotGzZUlQ8kgkPDw+kp6ejRo0aKFu2bJ4mj8nJyYKSkdStWLECN27cgKWlJaysrPIs9HLyk/JjYmIChUIBhUKBmjVr5rmuUCjg6+srIBnJSa1atXD9+nVYW1ujQYMGWL16NaytreHv788651Skp0+f5hmLjY3F6NGj4eXlJSARycXOnTsxbdo0eHl5oWnTpgCAs2fPYvHixZg1axays7Ph7e2Nb7/9Fj/88IPgtCQ1S5YswcyZM/H111+jVatWAIBTp05h1KhRePz4MSZOnCg4IUnZ2LFj0bt3b/j4+KBixYqi45CMcOGFSj1PT0/o6+vj22+/RXp6Otzd3WFpaYkff/wR/fr1Ex2PJMrY2BjAq91WhoaGGs1AdXR00Lx5c4wYMUJUPJKJZcuWiY5AMtWzZ0/REUiGjh07BpVKhXbt2mH79u0ap6V0dHRgZWUFS0tLgQlJDsaPH4/ExEQAwKxZs9ClSxds2rQJOjo6WLdundhwJEv29vZYsGABPDw8EB0dLToOSdS8efPw448/onPnzuqx+vXro2rVqpg5cybOnj0LAwMDTJ48mQsvlMdPP/2EVatWaZyqc3FxQd26dTF79mwuvFChHjx4gEmTJnHRhd4ae7wQ/Ut6ejrS0tJYZoOKzdfXF1OmTGFZMSIiko3bt2+jevXqrG1O/4n09HRER0ejevXqqFChgug4JFMRERH45JNPkJqaKjoKSZS+vj7Cw8NRu3ZtjfHo6Gg4OTnh5cuXuHXrFhwcHJCeni4oJUmVnp4eLl++DDs7O43x2NhY1K9fHxkZGYKSkRwMGzYMrVq1wvDhw0VHIZnhwgsREZEgd+7cKfR69erVP1ISkqvMzMx8GzzyvUNvioqKQr169aBUKgtsUPyao6PjR0pFcpaZmYn4+HjUqFEDZcqwkAIVz65duzReq1QqJCYmYsWKFahWrRr2798vKBlJnZOTExo0aIA1a9ZAR0cHwKseQSNGjEBkZCTCw8MRGhoKDw8PxMfHC05LUlOvXj24u7tj+vTpGuNz587Fli1bcOnSJUHJSA7S09PRu3dvmJubo379+nlKhI8bN05QMpI6LrxQqeTk5FTsXZ6sk09vcnZ2xpEjR2Bqalrke4nvHyqMUqks9P3DJn1UkJiYGAwfPhx///23xrhKpWKDR8qXUqlEUlISLCws1J89+f0M4PuHipKeno6xY8di/fr1AF59Htna2mLs2LGoUqUKvL29BSckKVMqlRqvFQoFzM3N0a5dOyxevJh9gqhAf//9N1xcXKBUKtUbBC5duoScnBzs2bMHzZs3x8aNG5GUlMR+QZTH9u3b0bdvX3To0EHd4yU0NBRHjhzB1q1b0atXL8EJScoCAwMxatQo6OnpoXz58hq/4RUKBeLi4gSmIynj1iQqlf5dGz8jIwM///wzHBwc0KJFCwBAWFgYrly5gjFjxghKSFLm6uoKXV1dAOyzQO8nPDxc43VWVhbCw8OxZMkSzJs3T1AqkoOhQ4eiTJky2LNnDypXrsySUVSk+Ph4mJubq/9N9K6++eYbREZG4vjx4+jSpYt6vEOHDpg9ezYXXqhQb57QJCquli1bIj4+Hps2bUJMTAwAoHfv3nB3d4ehoSEAYODAgSIjkoR9/vnnOHPmDJYuXYo//vgDAFCnTh2cPXsWTk5OYsOR5M2YMQO+vr7w9vbOs4GAqDA88UKlnqenJypXrozvvvtOY3zWrFlISEhAUFCQoGREVFrt3bsX33//PY4fPy46CkmUgYEBLly4kKfOORHRh2ZlZYUtW7agefPmMDQ0RGRkJGxtbXHjxg04OzuzRwcRERGVKGZmZjh37hxq1KghOgrJDE+8UKn3+++/4/z583nGPTw80LhxYy68ENFHV6tWLZw7d050DJIwBwcHPH78WHQMkpE3+yoUxsXF5QMmIbl79OgRLCws8oy/ePGCp++oSDk5OVi3bh2OHDmSb4+yo0ePCkpGcnH16lXcuXMHmZmZGuP87qI3paamwsjISP3vwry+jyg/gwcPxpYtW/L0CCIqChdeqNTT19dHaGgo7O3tNcZDQ0Ohp6cnKBVJmampabEnFpKTkz9wGpKzN38AvG4wO3v27DyfSUT/tnDhQkydOhV+fn75Nnjkj0d6U3FLY7LHCxWlcePG2Lt3L8aOHQsA6meigIAAddleooKMHz8e69atQ/fu3VGvXj0u1lGxxcXFoVevXrh06ZJGn7LX7yF+d9GbTE1NkZiYCAsLC5iYmOT7ecP+iFQcOTk5WLRoEQ4ePAhHR8c8v72WLFkiKBlJHRdeqNSbMGECRo8ejYsXL6Jp06YAgDNnziAoKAgzZ84UnI6kaNmyZaIjUAmR3w8AlUqFatWq4bfffhOUiuSgQ4cOAID27dtrjPPHIxWEfRXov+Ln54euXbvi6tWryM7Oxo8//oirV6/i77//xokTJ0THI4n77bffsHXrVnTr1k10FJKZ8ePHw8bGBkeOHIGNjQ3Onj2LJ0+eYPLkyfjhhx9ExyMJOnr0KMzMzAAAx44dE5yG5OzSpUvqXkCXL1/WuMYNBFQY9nghArB161b8+OOPuHbtGoBXTdbGjx+PPn36CE5GRCXZmxNUSqUS5ubmsLOzQ5ky3BtBBStqcrNNmzYfKQkRlUY3b97EggULEBkZibS0NDg7O2PatGmoX7++6GgkcZaWljh+/Dhq1qwpOgrJTIUKFXD06FE4OjrC2NgYZ8+eRa1atXD06FFMnjwZ4eHhoiOShN25cwfVqlXLd9NbQkICqlevLigZEZVkXHghIvqPZGRk5Kk1zHI/REQkRS9evMCJEyfyrZM/btw4QamIqKRbvHgx4uLisGLFCu4SprdiamqKixcvwsbGBjVq1EBAQAA+/fRT3Lx5E/Xr10d6erroiCRhWlpa6rJj//bkyRNYWFjwtDgRfRDcTkv0fzIzM/Nt8MidD1SYFy9eYNq0adi6dSuePHmS5zof4KgosbGxOHbsWL6fPz4+PoJSkRycPHkSq1evRlxcHH7//XdUqVIFGzduhI2NDf73v/+JjkcSFh4ejm7duiE9PR0vXryAmZkZHj9+jLJly8LCwoILL1SoNm3aYPjw4ejduzf09fVFxyGZOXXqFI4dO4b9+/ejbt26eerk79ixQ1Aykrp69eohMjISNjY2aNasGRYtWgQdHR2sWbMGtra2ouORxL0ux/umtLQ09valfLm5uWHdunUwMjKCm5tboffyu4sKwoUXKvViY2MxbNgw/P333xrjrJNPxTF16lQcO3YMq1atwsCBA7Fy5Urcu3cPq1evxoIFC0THI4n75ZdfMHr0aFSoUAGVKlXS+DGgUCi48EIF2r59OwYOHIgBAwbg4sWL+OeffwAAz549g5+fH/bt2yc4IUnZxIkT0aNHD/j7+8PY2BhhYWHQ1taGh4cHxo8fLzoeSZyTkxOmTJmCsWPHok+fPhg+fDiaN28uOhbJhImJCXr16iU6BsnQt99+ixcvXgAA5syZg88++wytW7dG+fLlsWXLFsHpSKomTZoE4NVvq5kzZ6Js2bLqazk5OThz5gwaNmwoKB1JmbGxsfr3uZGREU9p0jthqTEq9Vq1aoUyZcrA29sblStXzvNh2qBBA0HJSA6qV6+ODRs2oG3btjAyMsLFixdhZ2eHjRs3Ijg4mJOfVCgrKyuMGTMG06ZNEx2FZMbJyQkTJ07EoEGDYGhoiMjISNja2iI8PBxdu3ZFUlKS6IgkYSYmJjhz5gxq1aoFExMTnD59GnXq1MGZM2cwePBgREdHi45IEpednY1du3Zh/fr12L9/P+zs7DBs2DAMHDgQFStWFB2PiEqJ5ORkmJqackKUCvTpp58CeNUfsUWLFtDR0VFf09HRgbW1NaZMmQJ7e3tREYmoBOOJFyr1IiIicOHCBdSuXVt0FJKh5ORk9dF2IyMjJCcnAwD+97//YfTo0SKjkQw8ffoUvXv3Fh2DZOj69ev45JNP8owbGxsjJSXl4wciWdHW1oZSqQQAWFhY4M6dO6hTpw6MjY2RkJAgOB3JQZkyZeDm5gY3Nzc8fPgQa9aswcyZMzF9+nR069YN48aNQ7t27UTHJInKzs7G8ePHcfPmTbi7u8PQ0BD379+HkZERypUrJzoeyYiZmZnoCCRxx44dAwAMHToUP/74I3uw0jtp164dduzYARMTE43x1NRU9OzZE0ePHhUTjCRPKToAkWgODg54/Pix6BgkU7a2toiPjwcA1K5dG1u3bgUA7N69O8+XMtGbevfujZCQENExSIYqVaqEGzdu5Bk/deoU65xTkZycnHDu3DkAr/p1+Pj4YNOmTZgwYQLq1asnOB3JydmzZzFr1iwsXrwYFhYW+Oabb1ChQgV89tlnmDJliuh4JEG3b99G/fr14erqiq+++gqPHj0CACxcuJDvGXonP//8M+bMmSM6Bknc2rVruehC7+z48ePIzMzMM56RkYGTJ08KSERywRMvVOotXLgQU6dOhZ+fH+rXr5+nwSO/nKkwQ4cORWRkJNq0aQNvb2/06NEDK1asQFZWFpYsWSI6HkmcnZ0dZs6cibCwsHw/f9jgmgoyYsQIjB8/HkFBQVAoFLh//z5Onz6NKVOmYObMmaLjkcT5+fnh+fPnAIB58+Zh0KBBGD16NOzt7REUFCQ4HUndw4cPsXHjRqxduxaxsbHo0aMHgoOD0blzZ3W5nyFDhqBLly744YcfBKclqRk/fjwaN26MyMhIlC9fXj3eq1cvjBgxQmAykqvt27cjPj6evRGpSOfPn8fWrVtx586dPJPobI5O+YmKilL/++rVqxrlnHNycnDgwAFUqVJFRDSSCfZ4oVLvdamNN+vCqlQqKBQK5OTkiIhFMnX79m1cuHABdnZ2cHR0FB2HJM7GxqbAawqFAnFxcR8xDcmJSqWCn58f5s+fj/T0dACArq4upkyZgu+++05wOiIqyXR0dFCjRg0MGzYMQ4YMgbm5eZ57UlNT4erqqi7xQvRa+fLl8ffff6NWrVoaPcpu3boFBwcH9XcaEdF/6bfffsOgQYPQuXNnhISEoFOnToiJicGDBw/Qq1cvrF27VnREkiClUqmeK8xv+lxfXx8//fQThg0b9rGjkUxw4YVKvRMnThR6vU2bNh8pCRER0dvJzMzEjRs3kJaWBgcHB9bGJ6IP7uTJk2jdurXoGCRTpqamCA0NhYODg8bCy6lTp/D555/jwYMHoiMSUQnk6OiIL7/8El999ZX6s8fGxgZffvklKleuDF9fX9ERSYJu374NlUoFW1tbnD17VmOziY6ODiwsLKClpSUwIUkdF16IiN5DUfWEeeSd/gtGRkaIiIhg7w4i+k/Y2NjkOen7bzxtR0QfSt++fWFsbIw1a9bA0NAQUVFRMDc3h6urK6pXr85d51Sg9evXo0KFCujevTsAYOrUqVizZg0cHBwQHBwMKysrwQlJygwMDHDlyhVYW1ujfPnyOH78OOrXr49r166hXbt2SExMFB2RiEog9nghwqude6tXr0ZcXBx+//13VKlSBRs3boSNjQ3+97//iY5HErZz506N11lZWYiPj0eZMmVQo0YNLrzQf4J7JOhNvXr1ynfiXKFQQE9PD3Z2dnB3d0etWrUEpCOpmzBhgsbrrKwshIeH48CBA/Dy8hITimRv+vTpSEpKYp8gKtTixYvRuXNnODg4ICMjA+7u7oiNjUWFChUQHBwsOh5JmJ+fH1atWgUAOH36NFauXImlS5diz549mDhxInt0UKFMTU3V/e2qVKmCy5cvo379+khJSWGJQyrSrl278h3/92+vwsqIU+nFhRcq9bZv346BAwdiwIABuHjxIv755x8AwLNnz+Dn54d9+/YJTkhSFh4enmcsNTUVQ4YMQa9evQQkIqLSwNjYGH/88QdMTEzQqFEjAMDFixeRkpKCTp06YcuWLVi4cCGOHDmCVq1aCU5LUjN+/Ph8x1euXInz589/5DRUUty7dw8JCQmiY5DEVa1aFZGRkfjtt98QFRWFtLQ0DB8+HAMGDIC+vr7oeCRhCQkJsLOzAwD88ccf+PzzzzFy5Ei0atUKbdu2FRuOJO+TTz7BoUOHUL9+ffTu3Rvjx4/H0aNHcejQIbRv3150PJK4nj17QqFQ5NkQ+XpMoVDgf//7H/744w+YmpoKSklSxFJjVOo5OTlh4sSJGDRokEad4fDwcHTt2hVJSUmiI5IMXbp0CT169MCtW7dER6ES4N+fTUQA4O3tjdTUVKxYsQJKpRIAkJubi/Hjx8PQ0BDz5s3DqFGjcOXKFZw6dUpwWpKLuLg4NGzYEKmpqaKjEFEJlZGRAT09PdExSIYsLCxw8OBBODk5wcnJCZMmTcLAgQNx8+ZNNGjQAGlpaaIjkoQlJycjIyMDlpaWyM3NxaJFi/D333/D3t4e3377LSfLqVBHjhzBjBkzMG/ePDRt2hQAcPbsWcycORPffvstjI2N8eWXX6JZs2YIDAwUnJakhCdeqNS7fv06PvnkkzzjxsbGSElJ+fiBqER49uwZnj17JjoGEZVQgYGBCA0NVS+6AIBSqcTYsWPRsmVL+Pn54euvv2YDbHor27Ztg5mZmegYJEMpKSkwMTERHYNkwMLCAr169YKHhwfat2+v8T1GVJiOHTvC09MTTk5OiImJQbdu3QBA3beDqDD/fr5RKpXw9vYWmIbkZvz48VizZg1atmypHmvfvj309PQwcuRIXLlyBcuWLcOwYcMEpiQp4sILlXqVKlXCjRs38jysnTp1irvLqUjLly/XeK1SqZCYmIiNGzeia9euglJRSVNYE2wqnbKzsxEdHY2aNWtqjEdHRyMnJwcAoKenx/cO5cvJyUnjvaFSqZCUlIRHjx7h559/FpiM5GDhwoWwtrZG3759AQB9+vTB9u3bUalSJezbtw8NGjQQnJCkbP369di8eTNcXV1hbGyMvn37wsPDA40bNxYdjSRu5cqVmDlzJu7cuYPt27ejfPnyAIALFy6gf//+gtORHOTk5GDnzp24du0aAMDBwQGurq4oU4ZTo1S4mzdvwsjIKM+4kZER4uLiAAD29vZ4/Pjxx45GEsdPFyr1RowYgfHjxyMoKAgKhQL379/H6dOnMWXKFMycOVN0PJK4pUuXarxWKpUwNzfH4MGD8c033whKRSUNq4LSmwYOHIjhw4dj+vTpaNKkCQDg3Llz8PPzw6BBgwAAJ06cQN26dUXGJInq2bOnxuvX311t27ZF7dq1xYQi2fD398emTZsAAIcOHcKhQ4ewf/9+bN26FV5eXggJCRGckKSsV69e6NWrF54/f45t27YhODgYzZs3h62tLTw8PODj4yM6IklQdnY2li9fjmnTpqFq1aoa13x9fQWlIjm5cuUKXFxckJSUhFq1agF4tZHA3Nwcu3fvRr169QQnJClr1KgRvLy8sGHDBpibmwMAHj16hKlTp6p/i8XGxqJatWoiY5IEsccLlXoqlQp+fn6YP38+0tPTAQC6urqYMmUKvvvuO8HpiKgkmzNnDqZMmYKyZctqjL98+RLff/+9evLh1KlTaNKkCXR1dUXEJAnKycnBggULsGLFCjx48AAAULFiRYwdOxbTpk2DlpYW7ty5A6VSmWeCgojofejr6yMmJgbVqlXD+PHjkZGRgdWrVyMmJgbNmjXD06dPRUckmbl69SoGDBiAqKgo9alNojeVK1cOly9fZlkxeictWrSAubk51q9fr+7n8vTpUwwZMgSPHj3C33//LTghSdn169fh6uqK+Ph49eJKQkICbG1t8eeff6JmzZr4448/8Pz5cwwcOFBwWpISLrwQ/Z/MzEzcuHEDaWlpcHBwQLly5URHIqISTktLC4mJibCwsNAYf/LkCSwsLDj5QMXyuhF6fsffifLz+j1THHxf0ZssLS2xbds2tGzZErVq1cLcuXPRu3dvXL9+HU2aNHmr9xeVXhkZGdi1axc2b96MAwcOoGLFiujfvz8WLFggOhpJlKurK9zc3DB48GDRUUiG9PX1cf78+TynwS9fvowmTZrg5cuXgpKRXOTm5iIkJAQxMTEAgFq1aqFjx47sVUaFYqkxov+jo6MDBwcH0TFIZnr16lXsHgo7duz4wGlIblQqVb7vn8jISDa4pmLjxDi9LRMTkyK/u15/PnEBmN7k5uYGd3d32Nvb48mTJ+qeduHh4bCzsxOcjqTu4MGD2Lx5M/744w+UKVMGX3zxBUJCQvDJJ5+IjkYS17VrV3h7e+PSpUto1KgRDAwMNK67uLgISkZyULNmTTx48CDPwsvDhw/53UXFolQq0aVLF3Tp0kV0FJIRLrxQqVfQxLlCoYCenh7s7Ozg7u6urgNK9G/GxsbYuXMnjI2N1U1BL1y4gGfPnqFnz55sbE35MjU1hUKhgEKhQM2aNTXeJzk5OUhLS8OoUaMEJiS5mj59OpKSkhAUFCQ6CknY2rVr4e3tjSFDhqBFixYAgNOnT2P9+vWYP38+y7hQoZYuXQpra2skJCRg0aJF6lPiiYmJGDNmjOB0JHW9evXCZ599hg0bNqBbt27Q1tYWHYlk4vXny5IlS/Jc40YBKsr8+fMxbtw4zJ49G82bNwcAhIWFYc6cOVi4cKHGaU1uaqL8HDlyBEeOHMHDhw+Rm5urcY2/vaggLDVGpd6QIUPwxx9/wMTEBI0aNQIAXLx4ESkpKejUqRMiIyNx69YtHDlyBK1atRKclqRm2rRpSE5Ohr+/P7S0tAC8mjgfM2YMjIyM8P333wtOSFK0fv16qFQqDBs2DMuWLYOxsbH6mo6ODqytrdWToURvY/DgwUhISMDRo0dFRyEJa9++PTw9PdG/f3+N8c2bN2PNmjU4fvy4mGBEVOI9f/4choaGomMQUSnz73JQrze9vZ4O/fdrLuJRfnx9fTFnzhw0btwYlStXzrPBdufOnYKSkdRx4YVKPW9vb6SmpmLFihXqL+Pc3FyMHz8ehoaGmDdvHkaNGoUrV67g1KlTgtOS1Jibm+PUqVN5TkRdv34dLVu2xJMnTwQlIzk4ceIEWrVqhTJleACViD6esmXLIjIyEvb29hrjMTExaNiwIdLT0wUlI7nYuHEjVq9ejbi4OJw+fRpWVlZYtmwZbGxs4OrqKjoeSdzNmzexdu1a3Lx5Ez/++CMsLCywf/9+VK9ePU8ZIKL8ZGRkQE9PT3QMkpETJ04U+942bdp8wCQkR5UrV8aiRYswcOBA0VFIZtgBiEq9wMBATJgwQWMHhFKpxNixY7FmzRooFAp8/fXXuHz5ssCUJFXZ2dmIjo7OMx4dHZ3n+CnRmwwNDXHt2jX16z///BM9e/bE9OnTkZmZKTAZyVFKSoroCCQT1apVwy+//JJnPCAgANWqVROQiORk1apVmDRpErp27YqUlBT1zmATExMsW7ZMbDiSvBMnTqB+/fo4c+YMduzYgbS0NACv+tvNmjVLcDqSspycHHz33XeoUqUKypUrh7i4OADAzJkzERgYKDgdSV2bNm2K/Uf0pszMTLRs2VJ0DJIhLrxQqVfYxPnrH5J6enrs1UH5Gjp0KIYPH44lS5bg1KlTOHXqFBYvXgxPT08MHTpUdDySuC+//BIxMTEAgLi4OPTt2xdly5bF77//jqlTpwpOR1K2cOFCbNmyRf26T58+KF++PKpUqYLIyEiByUgOli5dip9++gn169eHp6cnPD094ejoiJ9++glLly4VHY8k7qeffsIvv/yCGTNmqMusAkDjxo1x6dIlgclIDry9vTF37lwcOnQIOjo66vF27dohLCxMYDKSunnz5mHdunVYtGiRxnunXr16CAgIEJiM5OCvv/4q9I+oMJ6enti8ebPoGCRDrG1Cpd7AgQMxfPhwTJ8+HU2aNAEAnDt3Dn5+fhg0aBCAVzuzeOyd8vPDDz+gUqVKWLx4MRITEwG8Oobq5eWFyZMnC05HUve6rA8A/P7772jTpg02b96M0NBQ9OvXjzuHqUD+/v7YtGkTAODQoUM4dOgQ9u/fj61bt8LLywshISGCE5KUdevWDbGxsVi1apX61F2PHj0watQonnihIsXHx8PJySnPuK6uLl68eCEgEcnJpUuX8p28srCwwOPHjwUkIrnYsGED1qxZg/bt22PUqFHq8QYNGuS7kZLo39q2bZtn7N+ba9nXhQqTkZGBNWvW4PDhw3B0dIS2trbG9SVLlghKRlLHhRcq9ZYuXYqKFSti0aJFePDgAQCgYsWKmDhxIqZNmwYA6NSpE7p06SIyJkmUUqnE1KlTMXXqVKSmpgIAjIyM8twXGhqKxo0bQ1dX92NHJAlTqVTqknSHDx/GZ599BuBVGSBOPlBhkpKS1BPke/bsQZ8+fdCpUydYW1ujWbNmgtORHFStWhXz5s0r9J4xY8Zgzpw5qFChwkdKRXJgY2ODiIgIWFlZaYwfOHAAderUEZSK5MLExASJiYmwsbHRGA8PD0eVKlUEpSI5uHfvHuzs7PKM5+bmIisrS0AikpOnT59qvM7KykJ4eDhmzpxZ5PMQUVRUlHrD5JttCFgdhwrDhRcq9bS0tDBjxgzMmDGjwInz6tWrIzQ0FObm5pw4pwLlt+DyWteuXREREQFbW9uPmIikrnHjxpg7dy46dOiAEydOYNWqVQBe7SauWLGi4HQkZaampkhISEC1atVw4MABzJ07F8CrxTzu2KP/yq+//oopU6Zw4YU0TJo0CV999RUyMjKgUqlw9uxZBAcHY/78+Sz3Q0Xq168fpk2bht9//x0KhQK5ubkIDQ3FlClT1NUGiPLj4OCAkydP5ln03bZtW76n8Ij+zdjYOM9Yx44doaOjg0mTJuHChQsCUpFcHDt2THQEkikuvBD9CyfO6UNRqVSiI5AELVu2DAMGDMAff/yBGTNmqHfxbdu2jc37qFBubm5wd3eHvb09njx5gq5duwJ4tWM4v92gRO+C312UH09PT+jr6+Pbb79Feno63N3dYWlpiR9//BH9+vUTHY8kzs/PD1999RWqVauGnJwcODg4ICcnB+7u7vj2229FxyMJ8/HxweDBg3Hv3j3k5uZix44duH79OjZs2IA9e/aIjkcyVbFiRVy/fl10DCIqoRQq/qIiKhZDQ0NERkZy4YXeCd8/9DYyMjKgpaWVp3Ys0WtZWVlYvnw57ty5gyFDhqh3ei5duhSGhobw9PQUnJBKAn53UVHS09ORlpYGCwsL0VFIBlQqFRISEmBubo7Hjx/j0qVLSEtLg5OTE+zt7UXHIxk4efIk5syZg8jISKSlpcHZ2Rk+Pj7o1KmT6GgkcVFRURqvVSoVEhMTsWDBAmRnZ+PUqVOCkpFUubm5Yd26dTAyMoKbm1uh9+7YseMjpSK54YkXIiIiidHT0xMdgSQsKysLX375JWbOnJmnRv7EiRMFpSKi0qhs2bIoW7as6BgkEyqVCnZ2drhy5Qrs7e3VvcqIiqt169Y4dOiQ6BgkQw0bNoRCochzmrd58+YICgoSlIqkzNjYWN2/Jb9SdUTFwYUXIiIiQXJycrB06VJs3boVd+7cQWZmpsb15ORkQclIyrS1tbF9+3bMnDlTdBQiKiWcnZ1x5MgRmJqawsnJqdBGshcvXvyIyUhOlEqlukQmT7jQ20pISIBCoUDVqlUBAGfPnsXmzZvh4OCAkSNHCk5HUhcfH6/xWqlUwtzcnBveqEBr167N999Eb4MLL0REH0FhExRUevn6+iIgIACTJ0/Gt99+ixkzZuDWrVv4448/4OPjIzoeSVjPnj3xxx9/8IQLEX0Urq6u0NXVVf+bzzX0rhYsWAAvLy+sWrUK9erVEx2HZMTd3R0jR47EwIEDkZSUhA4dOqBevXrYtGkTkpKS+OxMhbKyshIdgYhKIfZ4ISomIyMjREREsM45vRPWyaf81KhRA8uXL0f37t1haGiIiIgI9VhYWBg2b94sOiJJ1Ny5c7F48WK0b98ejRo1goGBgcb1cePGCUpGJcno0aPx3XffoUKFCqKjEFEJYWpqivT0dGRnZ0NHRwf6+voa13nalwpiamqKsLAw1KpVC8uXL8eWLVsQGhqKkJAQjBo1CnFxcaIjkoSNGzcOdnZ2eZ6RV6xYgRs3bmDZsmVigpEsPHjwAFOmTMGRI0fw8OHDPCXrcnJyBCUjqePCC1ExceKciP5rBgYGuHbtGqpXr47KlStj7969cHZ2RlxcHJycnPDs2TPREUmi3uzt8m8KhYKTD5THm01lC+Po6PgBk5DceXp6wsPDA23bthUdhWRo/fr1hV4fPHjwR0pCclOuXDlcvnwZ1tbWcHFxQatWrTBt2jTcuXMHtWrVwsuXL0VHJAmrUqUKdu3ahUaNGmmMX7x4ES4uLrh7966gZCQHXbt2xZ07d/D111+jcuXKeU7+urq6CkpGUsdSY0TF9Pz5c9ERSKK2bdtWYI8O1jmnwlStWhWJiYmoXr06atSogZCQEDg7O+PcuXPqki5E+XmzTjVRUf7dVLaoMlHctUeFefToEbp06QJzc3P069cPHh4eaNCggehYJBPFXVhZsGABRo0aBRMTkw8biGSjbt268Pf3R/fu3XHo0CF89913AID79++jfPnygtOR1D158iTfBulGRkZ4/PixgEQkJ6dOncLJkyfRsGFD0VFIZpSiAxBJwbZt29CnTx80b94czs7OGn9EhVm+fDmGDh2KihUrIjw8HE2bNkX58uURFxeHrl27io5HEterVy8cOXIEADB27FjMnDkT9vb2GDRoEIYNGyY4HcmFSqXKc9yd6E3x8fGIi4tDfHw8tm/fDhsbG/z8888IDw9HeHg4fv75Z9SoUQPbt28XHZUk7s8//0RiYiJmzpyJc+fOwdnZGXXr1oWfnx9u3bolOh6VEH5+fiw7RhoWLlyI1atXo23btujfv796wXfXrl1o2rSp4HQkdXZ2djhw4ECe8f3797OqCRWpWrVq/L1F74SlxqjUW758OWbMmIEhQ4ZgzZo1GDp0KG7evIlz587hq6++wrx580RHJAmrXbs2Zs2ahf79+2uUo/Px8UFycjJWrFghOiLJSFhYGP7++2/Y29ujR48eouOQxG3YsAHff/89YmNjAQA1a9aEl5cXBg4cKDgZSV3Tpk0xe/ZsdOvWTWN83759mDlzJi5cuCAoGcnR3bt3ERwcjKCgIMTGxiI7O1t0JCoBWOaZ8pOTk4PU1FSYmpqqx27duoWyZcvCwsJCYDKSuqCgIHz99dfw8vJCu3btAABHjhzB4sWLsWzZMowYMUJwQpKykJAQLF68GKtXr4a1tbXoOCQjXHihUo8T5/Q+ypYti2vXrsHKygoWFhY4dOgQGjRogNjYWDRv3hxPnjwRHZGISqAlS5Zg5syZ+Prrr9GqVSsAr47Ar1y5EnPnzsXEiRMFJyQp09fXx8WLF1GnTh2N8WvXrsHZ2Zl18qnYsrKysHfvXvz666/Yu3cvzMzMcO/ePdGxqATgwgsR/ddWrVqFefPm4f79+wAAa2trzJ49G4MGDRKcjKTO1NQU6enpyM7ORtmyZaGtra1xnSc0qSDs8UKl3p07d9CyZUsAryYiXvdyGThwIJo3b86FFypUpUqVkJycDCsrK1SvXh1hYWFo0KAB4uPjeRSVijR//nxUrFgxT1mxoKAgPHr0CNOmTROUjKTup59+wqpVqzR+KLq4uKBu3bqYPXs2F16oUHXq1MH8+fMREBAAHR0dAEBmZibmz5+fZzGGKD/Hjh3D5s2bsX37duTm5sLNzQ179uxR7yImIvqv2djYFNqjLC4u7iOmITkaPXo0Ro8ejUePHkFfXx/lypUTHYlkYtmyZaIjkExx4YVKPU6c0/to164ddu3aBScnJwwdOhQTJ07Etm3bcP78ebi5uYmORxK3evVqbN68Oc943bp10a9fPy68UIESExPVmwb+rWXLlkhMTBSQiOTE398fPXr0QNWqVeHo6AgAiIqKgkKhwO7duwWnI6mrUqUKkpOT0aVLF6xZswY9evSArq6u6FhEVMJNmDBB43VWVhbCw8Nx4MABeHl5iQlFshEfH4/s7GzY29vD3NxcPR4bGwttbW2Wj6JCDR48WHQEkikuvFCpx4lzeh9r1qxBbm4uAOCrr75C+fLl8ffff8PFxQVffvml4HQkdUlJSahcuXKecXNzc06eU6Hs7OywdetWTJ8+XWN8y5YtsLe3F5SK5KJp06aIi4vDpk2bEB0dDQDo27cv3N3dYWBgIDgdSd3s2bPRu3dvmJiYiI5CRKXI+PHj8x1fuXIlzp8//5HTkNwMGTIEw4YNy/OcfObMGQQEBOD48eNigpFs5Obm4saNG3j48KF6Dui1Tz75RFAqkjr2eKFSLzc3F7m5uShT5tU65G+//aZubv3ll1+qS3AQEf3X7O3tMWvWLHh4eGiMb9y4EbNmzWLJBCrQ9u3b0bdvX3To0EHd4yU0NBRHjhzB1q1b0atXL8EJiag0uHv3LgCgatWqgpNQSdOtWzcEBgbmu0GF6N/i4uLQsGFDpKamio5CEmZkZISLFy/Czs5OY/zGjRto3LgxUlJSxAQjWQgLC4O7uztu376dpzKOQqFATk6OoGQkdTzxQqWeUqmEUqlUv+7Xrx/69esnMBERlRYjRozAhAkTkJWVpa6Lf+TIEUydOhWTJ08WnI6k7PPPP8eZM2ewdOlS/PHHHwBe9e04e/YsnJycxIYj2UpMTERWVhaqV68uOgpJWG5uLubOnYvFixcjLS0NwKtG6JMnT8aMGTM0nquJ3lTQ5LhCoYCurq5609u+ffs+ZiySsW3btsHMzEx0DJI4hUKh7uf7b8+ePeOkORVp1KhRaNy4Mfbu3YvKlSsX2m+K6N944oWI6AOoU6cOYmJi+BBHhVKpVPD29sby5cuRmZkJANDT08O0adPg4+MjOB0RlTb87qLi+OabbxAYGAhfX1/1ibtTp05h9uzZGDFiBObNmyc4IUmZUqksdMKqatWqGDJkCGbNmsVFPNLg5OSk8d5RqVRISkrCo0eP8PPPP2PkyJEC05HU9ejRA/r6+ggODoaWlhYAICcnB3379sWLFy+wf/9+wQlJygwMDBAZGZnnxBRRUbjwQlQATj7Q+9i5cydSU1PZhI2KJS0tDdeuXYO+vj7s7e3ZpJiKpKWlhcTERFhYWGiMP3nyBBYWFvzuondy7tw5pKeno02bNqKjkIRZWlrC398fLi4uGuN//vknxowZg3v37glKRnKwYcMGzJgxA0OGDEHTpk0BAGfPnsX69evx7bff4tGjR/jhhx/g5eWVp48ZlW6+vr4ar5VKJczNzdG2bVvUrl1bUCqSi6tXr+KTTz6BiYkJWrduDQA4efIkUlNTcfToUdSrV09wQpKydu3aYerUqejSpYvoKCQzXHghKgAnzomISKqUSiWSkpLyLLzcv38fNWrUwMuXLwUlI6KSTk9PD1FRUahZs6bG+PXr19GwYUN+/lCh2rdvjy+//BJ9+vTRGN+6dStWr16NI0eOYOPGjZg3bx6io6MFpSSikuj+/ftYsWIFIiMjoa+vD0dHR3z99dcsVUdF2rlzJ7799lt4eXmhfv360NbW1rju6OgoKBlJHRdeiIjew8uXL6FSqVC2bFkAwO3bt7Fz5044ODigU6dOgtORXP388894/Pgxy41RHsuXLwcATJw4Ed999x3KlSunvpaTk4O//voLt27dQnh4uKiIJAMJCQlQKBTqhuhnz57F5s2b4eDgwFItVKRmzZqhWbNm6s+j18aOHYtz584hLCxMUDKSA319fURFRcHe3l5jPDY2Fg0aNEB6ejri4+NRt25dpKenC0pJRET0/+VX+lKhUEClUkGhULDaABWojOgARKJx4pzeh6urK9zc3DBq1CikpKSgWbNm0NbWxuPHj7FkyRKMHj1adESSoe3btyM+Pp4LL5TH0qVLAbyqa+7v76+uUQ0AOjo6sLa2hr+/v6h4JBPu7u4YOXIkBg4ciKSkJHTs2BF169bFpk2bkJSUxM8eKtSiRYvQvXt3HD58GC1atAAAnD59GgkJCWyITkWqVq0aAgMDsWDBAo3xwMBAVKtWDcCrspmmpqYi4hFRCZaSkoLAwEBcu3YNAFC3bl0MGzYMxsbGgpOR1MXHx4uOQDLFEy9U6nXq1Elj4rx27dqcOKdiq1ChAk6cOIG6desiICAAP/30E8LDw7F9+3b4+PioH+qIiP5Ln376KXbs2MGJKXonpqamCAsLQ61atbB8+XJs2bIFoaGhCAkJwahRoxAXFyc6Iknc/fv3sXLlSnUpqDp16mDMmDGwtLQUnIykbteuXejduzdq166NJk2aAADOnz+P6OhobNu2DZ999hlWrVqF2NhYLFmyRHBaIiopzp8/j86dO0NfX1/dX+rcuXN4+fIlQkJC4OzsLDghEZVEXHihUo8T5/Q+ypYti+joaFSvXh19+vRB3bp1MWvWLCQkJKBWrVoskUBERJJTrlw5XL58GdbW1nBxcUGrVq0wbdo03LlzB7Vq1WKPDiL6oOLj47FmzRpcv34dAFCrVi18+eWXsLa2FhuMiEqs1q1bw87ODr/88gvKlHlV/Cc7Oxuenp6Ii4vDX3/9JTghSdmGDRsKvT5o0KCPlITkhgsvVOpx4pzeh6OjIzw9PdGrVy/Uq1cPBw4cQIsWLXDhwgV0794dSUlJoiOShK1fvx4VKlRA9+7dAQBTp07FmjVr4ODggODgYFhZWQlOSFL1+eefo2nTppg2bZrG+KJFi3Du3Dn8/vvvgpKRHDRr1gyffvopunfvjk6dOiEsLAwNGjRAWFgYvvjiC9y9e1d0RJK4jIwMREVF4eHDh8jNzdW45uLiIigVERFR/vT19REeHo7atWtrjF+9ehWNGzfmvA8V6s0qA1lZWUhPT4eOjg7Kli2L5ORkQclI6tjjhUo9Ozs7/PHHH+jVqxcOHjyIiRMnAgAePnwIIyMjwelI6nx8fODu7o6JEyeiffv26lrnISEhcHJyEpyOpM7Pzw+rVq0C8Ko+/sqVK7F06VLs2bMHEydOxI4dOwQnJKn666+/MHv27DzjXbt2xeLFiz9+IJKVhQsXolevXvj+++8xePBgNGjQAMCrEkCvy28QFeTAgQMYNGgQHj9+nOcaG8xSUezs7ODh4YEBAwbA3t5edBySuLct/6RQKLBr1y5UqVLlAyUiuTIyMsKdO3fyLLwkJCTA0NBQUCqSi6dPn+YZi42NxejRo+Hl5SUgEckFT7xQqbdt2za4u7sjJycH7du3R0hICABg/vz5+Ouvv7B//37BCUnqkpKSkJiYiAYNGkCpVAIAzp49CyMjozwPdkT/9u8Td9OmTUNiYiI2bNiAK1euoG3btnj06JHoiCRR+vr6iIiIQK1atTTGo6Oj4eTkxFJRVCCVSoWEhASYmpoiOztbYwffrVu3ULZsWVhYWAhMSFJnb2+PTp06wcfHBxUrVhQdh2Rm6dKl2Lx5My5cuIBGjRrBw8MDffv2RaVKlURHIwlSKpWYPHkyypUrV+S9KpUKCxYswNWrV2Fra/sR0pGcjBs3Djt37sQPP/yAli1bAgBCQ0Ph5eWFzz//HMuWLRMbkGTp/Pnz8PDwUPe8I3oTF16IwIlzejdZWVnqyc969eqJjkMyZGFhgYMHD8LJyQlOTk6YNGkSBg4ciJs3b6JBgwZIS0sTHZEkqmnTpvjss8/g4+OjMT579mzs3r0bFy5cEJSMpC43Nxd6enq4cuUKd5vTOzEyMkJ4eDhq1KghOgrJWExMDDZt2oTg4GDEx8fj008/hYeHB+vkkwalUomkpKRibwgwNDREZGQkF14oj8zMTHh5ecHf3x/Z2dkAAG1tbYwePRoLFiyArq6u4IQkRxEREfjkk0+QmpoqOgpJFBdeqFTjxDm9L1tbW+zcuVNdpoXobQwYMEB9QiE4OBh37txB+fLlsWvXLkyfPh2XL18WHZEkavfu3XBzc4O7uzvatWsHADhy5AiCg4Px+++/o2fPnmIDkqTVrVsXgYGBaN68uegoJEPDhg1Dq1atMHz4cNFRqIQICwvD6NGjERUVxVJ1pOH27duoXr06FApFse5PSEiApaUltLS0PnAykqv09HTcvHkTAFCjRg2ULVtWcCKSg127dmm8VqlUSExMxIoVK1CtWjVWyqECceGFSj1OnNP7CAwMxI4dO7Bx40aYmZmJjkMyk5KSgpkzZ+LOnTsYPXo0unTpAgCYNWsWdHR0MGPGDMEJScr27t0LPz8/REREQF9fH46Ojpg1axbatGkjOhpJ3O7du7Fo0SKsWrWKG0/oraWnp6N3794wNzdH/fr1oa2trXF93LhxgpKR3Jw9exabN2/Gli1bkJqaih49euC3334THYuIiEjD68o4rykUCpibm6Ndu3ZYvHgxKleuLCgZSR0XXqjU48Q5vQ8nJyfcuHEDWVlZsLKygoGBgcb1ixcvCkpGUpednQ0/Pz8MGzYMVatWFR2HiEoRU1NTpKenIzs7Gzo6OtDX19e4npycLCgZyUFgYCBGjRoFPT09lC9fXmMnukKhQFxcnMB0JHVvlhhr164dBgwYADc3t2L18aDS586dO8W6r3r16h84CZVEP//8Mx4/fpynfC8R0X+BCy9U6nHinN6Hr69voddnzZr1kZKQHJUrVw6XL1+GtbW16CgkQykpKdi2bRvi4uIwZcoUmJmZ4eLFi6hYsSKqVKkiOh5J2Pr16wu9Pnjw4I+UhOSoUqVKGDduHLy9vfPsACUqilKpRJMmTeDu7o5+/fqhYsWKoiORxCmVynxLjalUKvW4QqFQ9+0gehvt27dHfHw8Nw1QgbKyslC7dm3s2bMHderUER2HZKaM6ABEorEOPr0PLqzQ+2jfvj1OnDjBhRd6a1FRUejQoQOMjY1x69YteHp6wszMDDt27MCdO3ewYcMG0RFJwriwQu8jMzMTffv25aILvZPr16/D3t5edAySkfDw8HzHVSoVfvvtNyxfvpynpeidHTlyRHQEkjhtbW1kZGSIjkEyxRMvRET/gQsXLuDatWsAXjUtdnJyEpyI5MDf3x++vr4YMGAAGjVqlOfEnYuLi6BkJHUdOnSAs7MzFi1aBENDQ0RGRsLW1hZ///033N3dcevWLdERSeJycnLwxx9/aHx3ubi4sCExFWnixIkwNzfH9OnTRUcholLq8OHD8Pb2RkxMDCZNmoTJkyfD0NBQdCwiKqH8/PwQExODgIAAlCnDMwxUfFx4Ifo/nDind/Hw4UP069cPx48fh4mJCYBX5X8+/fRT/PbbbzA3NxcbkCStsN3CCoUCOTk5HzENyYmxsTEuXryIGjVqaCy83L59G7Vq1eKuLCrUjRs30K1bN9y7dw+1atUC8GoXerVq1bB3717UqFFDcEKSsnHjxmHDhg1o0KABHB0doa2trXF9yZIlgpKRHOTk5GDp0qXYunUr7ty5g8zMTI3r7DFFhbl48SKmTZuGkydPwtPTEz4+PrCwsBAdi2Rg/fr1qFChArp37w4AmDp1KtasWQMHBwcEBwfDyspKcEKSsl69euHIkSMoV64c6tevn2fD5I4dOwQlI6nj+XAq9R4+fIh27dqhSZMmGDduHMaNG4dGjRqhffv2ePTokeh4JHFjx47F8+fPceXKFSQnJyM5ORmXL19Gamoqxo0bJzoeSVxubm6Bf1x0ocLo6uoiNTU1z3hMTAwXfKlI48aNQ40aNZCQkICLFy/i4sWLuHPnDmxsbPjdRUW6dOkSnJycoFQqcfnyZYSHh6v/IiIiRMcjifP19cWSJUvQt29fPHv2DJMmTYKbmxuUSiVmz54tOh5J1M2bN9G3b180bdoU5ubmuHr1KlasWMFFFyo2Pz8/6OvrAwBOnz6NlStXYtGiRahQoQImTpwoOB1JnYmJCT7//HN07twZlpaWMDY21vgjKghPvFCp17dvX8TFxWHDhg3qRllXr17F4MGDYWdnh+DgYMEJScqMjY1x+PBhNGnSRGP87Nmz6NSpE1JSUsQEI6ISzdPTE0+ePMHWrVthZmaGqKgoaGlpoWfPnvjkk0+wbNky0RFJwgwMDBAWFob69etrjEdGRqJVq1ZIS0sTlIyISroaNWpg+fLl6N69OwwNDREREaEeCwsLw+bNm0VHJIkZM2YMAgMD8emnn2LBggVo2LCh6EgkQ2XLlkV0dDSqV6+OadOmITExERs2bMCVK1fQtm1bbrolog+CJ16o1Dtw4AB+/vln9aILADg4OGDlypXYv3+/wGQkB7m5uXlKbACvGrDl5uYKSERyc+LECfTo0QN2dnaws7ODi4sLTp48KToWSdzixYuRlpYGCwsLvHz5Em3atIGdnR0MDQ0xb9480fFI4nR1dfH8+fM842lpadDR0RGQiIhKi6SkJPWib7ly5fDs2TMAwGeffYa9e/eKjEYS5e/vDy0tLTx8+BDDhg2Ds7Nzvn9EhSlXrhyePHkCAAgJCUHHjh0BAHp6enj58qXIaERUgrEjEJV6nDin99GuXTuMHz8ewcHBsLS0BADcu3cPEydORPv27QWnI6n79ddfMXToULi5uanL+4SGhqJ9+/ZYt24d3N3dBSckqTI2NsahQ4cQGhqKyMhIpKWlwdnZGR06dBAdjWTgs88+w8iRIxEYGIimTZsCAM6cOYNRo0bBxcVFcDoiKsmqVq2KxMREVK9eHTVq1EBISAicnZ1x7tw56Orqio5HEjRr1izREagE6NixIzw9PeHk5ISYmBh069YNAHDlyhVYW1uLDUeyNX36dCQlJSEoKEh0FJIolhqjUs/V1RUpKSl5Js4HDBgAU1NT7Ny5U3BCkrKEhAS4uLjgypUrqFatmnqsXr162LVrF6pWrSo4IUlZnTp1MHLkyDx1hZcsWYJffvkF165dE5SMpCwrKwv6+vqIiIhAvXr1RMchGUpJScHgwYOxe/du9eaT7OxsuLi4YO3atTAxMREbkIhKLG9vbxgZGWH69OnYsmULPDw8YG1tjTt37mDixIlYsGCB6IhEVAKlpKRg5syZuHPnDkaPHo0uXboAeLWwp6OjgxkzZghOSHI0ePBgJCQk4OjRo6KjkERx4YVKPU6c0/tSqVQ4fPgwoqOjAbyaTOeucyoOXV1dXLlyBXZ2dhrjN27cQL169ZCRkSEoGUmdra0tdu7ciQYNGoiOQjJ248YN9QJvnTp18nwWERF9aGFhYfj7779hb2+PHj16iI5DEhcVFYWYmBgAQM2aNeHo6Cg4EclBdnY2/Pz8MGzYMM7vENFHxYUXInDinN7dhg0b0Ldv3zylETIzM/Hbb79h0KBBgpKRHNjZ2cHLywtffvmlxri/vz8WL16M2NhYQclI6gIDA7Fjxw5s3LgRZmZmouOQzMyZMwdTpkxB2bJlNcZfvnyJ77//Hj4+PoKSERER5XX27FkMHz4cV69exespLIVCgbp16yIwMBBNmjQRnJCkrly5crh8+TLLitF/JiUlhafEqUhceKFSjxPn9D60tLSQmJgICwsLjfEnT57AwsICOTk5gpKRHKxatQoTJkzAsGHD0LJlSwCverysW7cOP/74Y54FGaLXnJyccOPGDWRlZcHKygoGBgYa1y9evCgoGckBv7vobS1fvvyt/8/QoUNhaGj4AdJQSZSYmIisrCxUr15ddBSSmKtXr6JZs2aoU6cOJk6ciDp16qjHly5diuvXryMsLAwODg6Ck5KUubq6ws3NDYMHDxYdhWRo4cKFsLa2Rt++fQEAffr0wfbt21GpUiXs27ePVQioQFx4oVKPkw/0PpRKJR48eABzc3ON8cjISHz66adITk4WlIzkYufOnVi8eLFGuR8vLy+4uroKTkZS5uvrW+h1NqKlwhT03XX06FH07dsXjx49EpSMpEqpVKJq1arQ0tIq1v0JCQmIiYmBra3tB05GJUWdOnUQExPD316UR58+fZCdnY3t27dDoVBoXFOpVHBzc4O2tja2bt0qKCHJgb+/P3x9fTFgwAA0atQoz6YlFxcXQclIDmxsbLBp0ya0bNkShw4dQp8+fbBlyxZs3boVd+7cQUhIiOiIJFFceKFSjxPn9C6cnJygUCgQGRmJunXrokyZMuprOTk5iI+PR5cuXfgDgIiIJMPU1BQKhQLPnj2DkZGRxgRWTk4O0tLSMGrUKKxcuVJgSpIipVKJpKSkPBuVCmJoaIjIyEguvFCxnTt3Dunp6WjTpo3oKCQx5ubm2L9/Pxo3bpzv9XPnzqFbt27cNECFUiqVBV5TKBRc9KVC6evrIyYmBtWqVcP48eORkZGB1atXIyYmBs2aNcPTp09FRySJKlP0LUQl0+uJc4VCgfbt2xc4cU6Un549ewIAIiIi0LlzZ5QrV059TUdHB9bW1vj8888FpSO5sLW1xblz51C+fHmN8ZSUFDg7OyMuLk5QMiIqiZYtWwaVSoVhw4bB19cXxsbG6muvv7tatGghMCFJ1axZszSedYoyffp09p+it8IeHVSQ58+fo2LFigVer1SpEp4/f/4RE5Ec5ebmio5AMmZqaoqEhARUq1YNBw4cwNy5cwG8OnXHRTsqDBdeqNTixDm9j9dlfKytrdGvX788PYKIiuPWrVv5Pqj9888/uHfvnoBEJGVmZmaIiYlBhQoV1CcXCsLTmpSf13XNbWxs0KpVK41NJ0SFedvyhd98880HSkJyl5CQAIVCgapVqwJ41TR98+bNcHBwwMiRIwWnIymysrLC2bNnUa1atXyvnzlzBlZWVh85FclZRkYG9PT0RMcgGXFzc4O7uzvs7e3x5MkTdO3aFQAQHh4OOzs7welIyvhri0otTpzTf8HBwQERERFo1qyZxviZM2egpaVV4JF4Kt127dql/vfBgwc1dp3n5OTgyJEjsLa2FpCMpGzp0qXqRtXLli0TG4Zk7cWLFzhy5Ag6d+6sMX7w4EHk5uaqf0wSvY2oqCg0btwYmZmZoqOQhLm7u2PkyJEYOHAgkpKS0LFjR9StWxebNm1CUlISfHx8REckienXrx8mTZqEWrVqoV69ehrXLl26hClTpmDQoEGC0pFc5OTkwM/PD/7+/njw4IG6D9nMmTNhbW2N4cOHi45IErZ06VJYW1sjISEBixYtUm/cTkxMxJgxYwSnIyljjxcq9c6dO4fc3FxOnNM7adq0KaZOnYovvvhCY3zHjh1YuHAhzpw5IygZSdnrGsMKhQJvfg1ra2vD2toaixcvxmeffSYiHhGVcI6OjliwYAG6deumMX7gwAFMmzYNkZGRgpKRnEVGRsLZ2ZklN6hQpqamCAsLQ61atbB8+XJs2bIFoaGhCAkJwahRo1hmlfLIyMhA+/btcebMGXTs2BF16tSBSqXCtWvXcPjwYTRt2hRHjx7lCQYq1Jw5c7B+/XrMmTMHI0aMwOXLl2Fra4stW7Zg2bJlOH36tOiIRFQCFdxdiqiU+Oqrr5CQkJBn/N69e/jqq68EJCI5uXr1KpydnfOMOzk54erVqwISkRzk5uYiNzcX1atXx8OHD9Wvc3Nz8c8//+D69etcdKE8UlNTi/1HVJjY2Fg4ODjkGa9duzZu3LghIBERlRZZWVnqSgOHDx+Gi4sLgFefP4mJiSKjkUTp6enh2LFjmDdvHhITE+Hv74/Vq1cjKSkJc+fOxbFjx7joQkXasGED1qxZgwEDBkBLS0s93qBBA0RHRwtMRnKxceNG/O9//4OlpSVu374N4FUVgj///FNwMpIyLrxQqceJc3ofurq6ePDgQZ7xxMRE1s6nIsXHx6NChQqiY5BMmJiYwNTUtFh/RIUxNjbOd1f5jRs3YGBgICAREZUWdevWhb+/P06ePIlDhw6hS5cuAID79++jfPnygtORVOno6GDatGmIiIhAeno60tPTERERAW9vb5YMp2K5d+9evr04cnNzkZWVJSARycmqVaswadIkdO3aFSkpKerTvSYmJiwBTYXiwguVepw4p/fRqVMnfPPNN3j27Jl6LCUlBdOnT0fHjh0FJiM5GDduHJYvX55nfMWKFZgwYcLHD0SSduzYMRw9ehRHjx5FUFAQLCwsMHXqVOzcuRM7d+7E1KlTUbFiRQQFBYmOShLn6uqKCRMm4ObNm+qxGzduYPLkyerd50RvKuqk3fPnz0VHJBlYuHAhVq9ejbZt26J///5o0KABgFf975o2bSo4HRGVVA4ODjh58mSe8W3btsHJyUlAIpKTn376Cb/88gtmzJihcWKqcePGuHTpksBkJHXs8UKlXv/+/ZGYmIg///xT3eA6JSUFPXv2hIWFBbZu3So4IUnZvXv38Mknn+DJkyfqB7aIiAhUrFgRhw4dQrVq1QQnJCmrUqUKdu3ahUaNGmmMX7x4ES4uLrh7966gZCR17du3h6enJ/r3768xvnnzZqxZswbHjx8XE4xk4dmzZ+jSpQvOnz+PqlWrAgDu3r2L1q1bY8eOHTAxMREbkCRJqVRCoVAUeF2lUkGhULDHCxVIpVIhISEBpqamyM7O1jiheevWLZQtWxYWFhYCE5IUmZqaFvrZ81pycvJHSENy9eeff2Lw4MH45ptvMGfOHPj6+uL69evYsGED9uzZw02TVCh9fX1ER0fDysoKhoaGiIyMhK2tLWJjY+Ho6IiXL1+KjkgSxe38VOr98MMP+OSTT2BlZZVn4nzjxo2C05HUValSBVFRUdi0aRMiIyOhr6+PoUOHon///tDW1hYdjyTuyZMn6gXffzMyMsLjx48FJCK5OH36NPz9/fOMN27cGJ6engISkZwYGxvj77//xqFDh9TfXY6Ojvjkk09ERyMJO3bsmOgIJHMqlQp2dna4cuUK7O3tNa5ZW1uLCUWSxzI+9F9wdXXF7t27MWfOHBgYGMDHxwfOzs7YvXs3F12oSDY2NoiIiICVlZXG+IEDB1CnTh1BqUgOuPBCpR4nzul9GRgYYOTIkaJjkAzZ2dnhwIED+PrrrzXG9+/fD1tbW0GpSA6qVauGX375BYsWLdIYDwgI4Ek7KhaFQoFOnTrhk08+ga6ubrF2E1Pp1qZNmyLv4Y5zKoxSqYS9vT2ePHmSZ+GFqCA2NjZo2bIly4DTe2vdujUOHTokOgbJ0KRJk/DVV18hIyMDKpUKZ8+eRXBwMObPn4+AgADR8UjCWGqMiOg/cPXqVdy5cweZmZka46yVT4UJCgrC119/DS8vL7Rr1w4AcOTIESxevBjLli3DiBEjBCckqdq3bx8+//xz2NnZoVmzZgCAs2fPIjY2Ftu3b0e3bt0EJyQpy83Nxbx58+Dv748HDx4gJiYGtra2mDlzJqytrTF8+HDREUlmQkJCEBAQgN27d7PcBhVq9+7dWLRoEVatWoV69eqJjkMyoKWlhcTERJaho/eSkJAAhUKhLrF69uxZbN68GQ4ODtxEScWyadMmzJ49W90j0dLSEr6+vnxupkJx4YXo/3DinN5FXFwcevXqhUuXLkGhUOD1R+rrncOsc05FWbVqFebNm4f79+8DeFVqY/bs2Rg0aJDgZCR1d+/exapVq3Dt2jUAQJ06dTBq1CieeKEizZkzB+vXr8ecOXMwYsQIXL58Gba2ttiyZQuWLVuG06dPi45IMnD79m0EBQVh/fr1ePr0Kbp27YrPP/8cvXv3Fh2NJMzU1BTp6enIzs6Gjo4O9PX1Na7z1BS9SalUIikpiQsv9F5at26NkSNHYuDAgUhKSkLNmjVRr149xMbGYuzYsfDx8REdkWQiPT0daWlp/EyiYuHCC5V6nDin99GjRw9oaWkhICAANjY2OHv2LJ48eYLJkyfjhx9+QOvWrUVHJJl49OgR9PX1Ua5cOdFRiKiEs7Ozw+rVq9G+fXuNBqHR0dFo0aIFnj59KjoiSVRmZiZ27NiBgIAAhIaGokOHDti/fz/Cw8NRv3590fFIBtavX1/o9cGDB3+kJCQXSqUSDx48gLm5uegoJGOmpqYICwtDrVq1sHz5cmzZsgWhoaEICQnBqFGjEBcXJzoiEZVALJJJpd748eNhY2ODI0eO5DtxTlSY06dP4+jRo6hQoQKUSiWUSiX+97//Yf78+Rg3bhzCw8NFRySZ4I9Jehu5ublQKpX5jt+9exfVq1cXkIrk4t69e7Czs8sznpubi6ysLAGJSA7Gjh2L4OBg2Nvbw8PDA1u2bEH58uWhra0NLS0t0fFIJriwQu9iyJAh0NXVLfSeHTt2fKQ0JEdZWVnq99Dhw4fVlU1q166NxMREkdFIopydnXHkyBGYmprCycmp0H6IFy9e/IjJSE648EKlHifO6X3k5OTA0NAQAFChQgXcv38ftWrVgpWVFa5fvy44HcnBtm3bsHXr1nxLHfIBjt6UmpoKT09P7N69G0ZGRvjyyy8xa9Ys9aTno0ePYGNjw9OaVCgHBwecPHkSVlZWGuPbtm2Dk5OToFQkdatWrcK0adPg7e2tfvYhehc5OTn4448/1KUy69atCxcXFy7gUYEMDQ3zlKUjeht169aFv78/unfvjkOHDuG7774DANy/fx/ly5cXnI6kyNXVVb1Y5+rqWujCC1FBuPBCpR4nzul91KtXD5GRkbCxsUGzZs2waNEi6OjoYM2aNbC1tRUdjyRu+fLlmDFjBoYMGYI///wTQ4cOxc2bN3Hu3Dl89dVXouORBM2cORORkZHYuHEjUlJSMHfuXFy8eBE7duyAjo4OAIBVZKkoPj4+GDx4MO7du4fc3Fzs2LED169fx4YNG7Bnzx7R8UiiNm7ciKCgIFSuXBndu3fHwIED0bVrV9GxSGZu3LiBbt264d69e6hVqxYAYP78+ahWrRr27t2LGjVqCE5IUrR8+XL2U6D3snDhQvTq1Qvff/89Bg8ejAYNGgAAdu3ahaZNmwpOR1I0a9Ys9b9nz54tLgjJGnu8UKnXunVrTJ48GT179oS7uzuePn2Kb7/9FmvWrMGFCxdw+fJl0RFJwg4ePIgXL17Azc0NN27cwGeffYaYmBiUL18eW7ZsQbt27URHJAmrXbs2Zs2ahf79+2v0WfDx8UFycjJWrFghOiJJjJWVFdavX4+2bdsCAB4/fozu3bvDxMQEu3btQkpKCiwtLXnihYp08uRJzJkzB5GRkUhLS4OzszN8fHzQqVMn0dFI4uLj47Fu3TqsW7cO6enpSE5OxpYtW/DFF1+IjkYy0K1bN6hUKmzatAlmZmYAgCdPnsDDwwNKpRJ79+4VnJCkRktLC4mJiVx4ofeWk5OD1NRUmJqaqsdu3bqFsmXL8v1FhfL09ISHh4f6NxhRcXHhhUo9TpzTfy05ORmmpqY8ikpFKlu2LK5duwYrKytYWFjg0KFDaNCgAWJjY9G8eXM8efJEdESSmLJly+LKlSuwsbFRjz1//hydO3eGvr4+AgICYGdnx4UXKlB2djb8/PwwbNgwVK1aVXQckjGVSoWQkBAEBgZi165dqFChAtzc3LB8+XLR0UjCDAwMEBYWhvr162uMR0ZGolWrVkhLSxOUjKRKqVQiKSmpwInxa9euITAwkP1ZieiDcXV1xcGDB2Fubo5+/frBw8NDfWqKqDB5u7ISlTKdO3eGm5sbAMDOzg7R0dF4/PgxHj58yEUXeidmZmZcdKFiqVSpEpKTkwEA1atXR1hYGIBXu4m5L4LyU716dXVN/NcMDQ0REhKCly9folevXoKSkVyUKVMGixYtQnZ2tugoJHMKhQKdO3fG1q1bcf/+fUyZMgV//fWX6Fgkcbq6unj+/Hme8bS0NHXJTKJ/O3bsmPp01GsvXrxAYGAgWrZsibp16+LAgQOC0pFc2NjYwNbWtsA/osL8+eefSExMxMyZM3Hu3Dk4Ozujbt268PPzw61bt0THIwnjwgtRPjhxTkQfQ7t27bBr1y4AwNChQzFx4kR07NgRffv25QQ65atTp05Yu3ZtnvFy5crh4MGD0NPTE5CK5KZ9+/Y4ceKE6BhUgpiZmaF169Y8RUVF+uyzzzBy5EicOXMGKpUKKpUKYWFhGDVqFFxcXETHIwlq06YNypR51Z44NDQUw4YNQ8WKFTFy5Ei0bNkSV69eZXlwKtKECRMwfvx49d+YMWPQokULPHv2DCNHjhQdj2TA1NQUI0eOxPHjx3H79m0MGTIEGzduhJ2dnehoJGEsNUZERCRIbm4ucnNz1T8mf/vtN/z999+wt7fHl19+yZ2flMfTp09x//591K1bN9/rz58/x8WLF9GmTZuPnIzkxN/fH76+vhgwYAAaNWoEAwMDjeuc/KSCHDx4EIcOHYKOjg48PT1ha2uL6OhoeHt7Y/fu3ejcuTP27dsnOiZJWEpKCgYPHozdu3dDW1sbwKsSiC4uLli7di1MTEzEBiTJefjwIdatW4egoCA8e/YM/fv3h7u7O1q0aIHIyEg4ODiIjkgytnLlSpw/fz7fjU1E+cnKysLevXvx66+/Yu/evTAzM8O9e/dExyKJ4sILERERUQmQkpLCCSsqFqWy4EPvCoWCPYIoX4GBgRgxYgTMzMzw9OlTlC9fHkuWLMHYsWPRt29fjB8/HnXq1BEdk2Tixo0b6tKZderU4Y5hKpC+vj6++OILeHh4oGPHjurvMG1tbS680HuLi4tDw4YNkZqaKjoKSdyxY8ewefNmbN++Hbm5uXBzc8OAAQPQrl07VsyhArHUGBERkSC5ubn5jqtUKty5c+cjpyE5WbhwIbZs2aJ+3adPH5QvXx5VqlRBZGSkwGQkB69P2+X3x0UXKsiPP/6IhQsX4vHjx9i6dSseP36Mn3/+GZcuXYK/vz8XXahY5syZg/T0dNjZ2aFHjx7o0aMH7Ozs8PLlS8yZM0d0PJIgKysrnDp1Cn/99RdiYmJEx6ESZtu2bXl6CBG9qUqVKujWrRseP36MNWvW4MGDBwgKCkL79u256EKF4okXIqK3tHz58rf+P0OHDoWhoeEHSENylJqaCk9PT+zevRtGRkb48ssvMWvWLGhpaQEAHjx4AEtLS06AUoFsbGywadMmtGzZEocOHUKfPn2wZcsWbN26FXfu3EFISIjoiERUwhgYGODKlSuwtraGSqWCrq4ujh07hlatWomORjKipaWFxMREWFhYaIw/efIEFhYWfPahfIWGhiIwMBC///47atasCQ8PD0ydOhVRUVFc9KVicXJy0pggV6lUSEpKwqNHj/Dzzz+zzwsV6pdffkHv3r1ZXYDeGhdeqFTixDm9D6VSiapVq6onyYuSkJCAmJgY2NrafuBkJBfjx4/HgQMHMG/ePKSkpGDu3LmoV68eduzYAR0dHTx48ACVK1cu8EQMkb6+PmJiYlCtWjWMHz8eGRkZWL16NWJiYtCsWTM8ffpUdESSmOXLl2PkyJHQ09Mr8jlo3LhxHykVyYlSqURSUpJ6wtzQ0BCRkZF8vqG3olQq8eDBA5ibm2uMHz16FH379sWjR48EJSM5SEtLQ3BwMNauXYuwsDC0adMG7u7u6NmzZ573FNG/+fr6arxWKpUwNzdH27ZtUbt2bUGpSI7u3r0LAKhatargJCQHXHihUokT5/Q+3px4KAonJuhNVlZWWL9+Pdq2bQsAePz4Mbp37w4TExPs2rULKSkpPPFChbK0tMS2bdvQsmVL1KpVC3PnzkXv3r1x/fp1NGnShHWqKQ8bGxucP38e5cuXh42NTYH3KRQKxMXFfcRkJBdKpRJz585FuXLlAADTpk2Dl5cXKlSooHEfF+4oP6amplAoFHj27BmMjIw0dp7n5OQgLS0No0aNwsqVKwWmJDm5du0aAgMDsXHjRiQnJyMrK0t0JCIqoXJzczF37lwsXrwYaWlpAF7N80yePBkzZswotH8ilW5ceKFSiRPn9D58fX3h5eWFsmXLFuv++fPnY/To0TyWSmply5bFlStXNCY/nz9/js6dO0NfXx8BAQGws7PjwgsV6Ouvv8aePXtgb2+P8PBw3Lp1C+XKlcNvv/2GRYsW4eLFi6IjElEJY21tXWQdcy7cUUHWr18PlUqFYcOGYdmyZTA2NlZf09HRgbW1NVq0aCEwIclVdnY2du3aBTc3N9FRiKiE+uabbxAYGAhfX191idVTp05h9uzZGDFiBObNmyc4IUkVF16oVOLEORGJVLt2bSxZsgTdunXTGE9LS0OnTp2Qnp6OS5cuceGFCpSVlYUff/wRCQkJGDJkCJycnAAAS5cuhaGhITw9PQUnJCIiyuvEiRNo1aoVypQpIzoKlRDR0dFwcXFBTEyM6ChEVEJZWlrC398fLi4uGuN//vknxowZg3v37glKRlLHhRciog8gKioKjRs3RmZmpugoJEHjxo1DYmIifv/99zzXnj9/jo4dO+LcuXNceCGi/8ykSZOKfe+SJUs+YBIiKs327dsHLS0tdO7cWWP84MGDyM3NRdeuXQUlI7mKjIyEs7Mzn5uJ6IPR09NDVFQUatasqTF+/fp1NGzYEC9fvhSUjKSOReiIChAVFQUdHR3RMUimVCoVH/6pQL6+vpg9e3a+1wwNDXHo0CEcPXr044Yi2dm4cSP+97//wdLSErdv3wYALFu2DH/++afgZCRF4eHhGn+BgYFYvXo1jh8/juPHj2PNmjUIDAxERESE6KgkUd26dcOzZ8/UrxcsWICUlBT16ydPnsDBwUFAMpITb2/vfJ+RVSoVvL29BSQiIiIqXIMGDbBixYo84ytWrECDBg0EJCK54PleogJw4pyIPhRTU1OYmprmey0lJQUmJiZo06bNR05FcrJq1Sr4+PhgwoQJmDdvnvr7ysTEBMuWLYOrq6vghCQ1x44dU/97yZIlMDQ0xPr169WfRU+fPsXQoUPRunVrURFJ4g4ePIh//vlH/drPzw99+vRRl+LNzs7G9evXBaUjuYiNjc13ga527dq4ceOGgERERESFW7RoEbp3747Dhw+r+5GdPn0aCQkJ2Ldvn+B0JGVceCEiIhJk4cKFsLa2Rt++fQEAffr0wfbt21GpUiXs27ePu2eoQD/99BN++eUX9OzZEwsWLFCPN27cGFOmTBGYjORg8eLFCAkJ0VgANjU1xdy5c9GpUydMnjxZYDqSqjcrVLNiNb0LY2NjxMXFwdraWmP8xo0bMDAwEBOKiEokZ2fnt7pfoVBg165dqFKlygdKRHLVpk0bxMTEYOXKlYiOjgYAuLm5YcyYMbC0tBScjqSMCy9ERO8gNTW10OvPnz//SElIzvz9/bFp0yYAwKFDh3Do0CHs378fW7duhZeXF0JCQgQnJKmKj4+Hk5NTnnFdXV28ePFCQCKSk9TUVDx69CjP+KNHj/j9RUQflKurKyZMmICdO3eiRo0aAF4tukyePDlP02Ii4NXGAIVCUeD17Ozsj5iG5CQiIgKTJ09GuXLlirxXpVJhwYIFGic7if7N0tIS8+bNEx2DZIYLL1RqceKc3oeJiUmhPwBUKlWh14kAICkpCdWqVQMA7NmzB3369EGnTp1gbW2NZs2aCU5HUmZjY4OIiAhYWVlpjB84cAB16tQRlIrkolevXhg6dCgWL16Mpk2bAgDOnDkDLy8vuLm5CU5HUqVQKPI82/BZh97WokWL0KVLF9SuXRtVq1YFANy9exetW7fGDz/8IDgdSdGyZctERyAZ8/LygoWFRbHuXbx48QdOQ3KWkZGBqKgoPHz4ELm5uRrXuHGACsKFFyq1OHFO7+PftfKJ3pWpqSkSEhJQrVo1HDhwAHPnzgXAHlNUtEmTJuGrr75CRkYGVCoVzp49i+DgYMyfPx8BAQGi45HE+fv7Y8qUKXB3d0dWVhYAoEyZMhg+fDi+//57welIqlQqFYYMGQJdXV0AryYgRo0apS4PxV3CVBzGxsb4+++/cejQIURGRkJfXx+Ojo745JNPREcjiRo8eLDoCCRT8fHxMDc3L/b9V69eZdkoyteBAwcwaNAgPH78OM81hULB3+5UIIWKxXmplDpx4kSx7mODa3pXycnJMDMzEx2DJOzrr7/Gnj17YG9vj/DwcNy6dQvlypXDb7/9hkWLFuHixYuiI5KEbdq0CbNnz8bNmzcBvDr+7uvri+HDhwtORnLx4sUL9funRo0a7K9AhRo6dGix7lu7du0HTkIlRUZGBnR1dbnZjQpVUKUKAwMDaGlpfeQ0RFQa2dvbo1OnTvDx8UHFihVFxyEZ4cILUSE4cU7vIiQkBAEBAdi9ezdevnwpOg5JWFZWFn788UckJCRgyJAh6p4dS5cuhaGhITw9PQUnJDlIT09HWlpascsoEBERiZKbm4t58+bB398fDx48QExMDGxtbTFz5kxYW1tz8wDloVQq812c09LSgo2NDaZMmYIRI0YISEZycOfOnWLdV7169Q+chOTMyMgI4eHh6t5kRMXFUmNE+eDEOb2t27dvIygoCOvXr8fTp0/RtWtXbNiwQXQskjhtbW1MmTIlz/jEiRMFpCG5Klu2LMqWLSs6BhERUZHmzp2L9evXY9GiRRqT5fXq1cOyZcu48EJ5FFTiOSUlBRcuXICXlxfKlClT7FN5VLpYW1vnu3D379LyCoUC2dnZHzsaycgXX3yB48ePc+GF3hpPvBD9n/wmzj///HP07t1bdDSSqMzMTOzYsQMBAQEIDQ1Fhw4dsH//foSHh6N+/fqi45FMbNy4EatXr0ZcXBxOnz4NKysrLFu2DDY2NnB1dRUdjyTE2dkZR44cgampKZycnAotzcIydUT0X3NzcyvWfTt27PjASUjO7OzssHr1arRv3x6GhoaIjIyEra0toqOj0aJFCzx9+lR0RJKZoKAgrFixgs8+lK/IyMh8x1UqFX777TcsX74c5cqVw8OHDz9yMpKT9PR09O7dG+bm5qhfvz60tbU1ro8bN05QMpI6nnihUi2/ifO7d+9y4pyKNHbsWAQHB8Pe3h4eHh7YsmULypcvD21tbdYapmJbtWoVfHx8MGHCBMybN0/dlM/ExATLli3jwgtpcHV1VTe1dnV1ZU18IvqojI2NNV5v3rwZPXr0gKGhoaBEJEf37t2DnZ1dnvHc3FxkZWUJSERy16ZNG0yYMEF0DJKoBg0a5Bk7fPgwvL29ERMTg6lTp2Ly5MkCkpGcBAcHIyQkBHp6ejh+/LjG7zCFQsGFFyoQT7xQqfXmxHm/fv3UE+eRkZFwcHAQHZEkrEyZMpg2bRq8vb01Jhz4/qG34eDgAD8/P/Ts2VNj1+fly5fRtm1bPH78WHREIiKifP37e4uouBo1aoSJEyfCw8ND4z00Z84cHDp0CCdPnhQdkWTm4sWLcHV1RUJCgugoJHEXL17EtGnTcPLkSXh6esLHx4c9EqlYKlWqhHHjxsHb2xtKpVJ0HJIRnnihUmvVqlX5TpwTFcfGjRsRFBSEypUro3v37hg4cCC6du0qOhbJTHx8PJycnPKM6+rq4sWLFwISkVx4enrCw8MDbdu2FR2FZGL58uVv/X+GDh3KZyQi+k/5+Phg8ODBuHfvHnJzc7Fjxw5cv34dGzZswJ49e0THI5nJysrC999/j2bNmomOQhJ28+ZNTJ8+Hdu3b0efPn1w9epVbhqgt5KZmYm+ffty0YXeGhdeqNTixDm9j/79+6N///6Ij4/HunXr8NVXXyE9PR25ubm4evUqT7xQsdjY2CAiIgJWVlYa4wcOHECdOnUEpSI5ePToEbp06QJzc3P069cPHh4e+ZZSIHptwoQJqFq1arHLYSYkJOCzzz7jwgsR/adcXV2xe/duzJkzBwYGBvDx8YGzszN2796Njh07io5HElRQf6lnz57hypUrUCgUPClFBRozZgwCAwPx6aef4vz582jYsKHoSCRDgwcPxpYtWzB9+nTRUUhmWGqMSr3XE+fr1q1Deno6kpOTsWXLFnzxxReio5GMqFQqhISEIDAwELt27UKFChXg5ub2TjuMqfQICAjA7NmzsXjxYgwfPhwBAQG4efMm5s+fj4CAAPTr1090RJKwp0+f4vfff8fmzZtx8uRJ1K5dGwMGDIC7uzusra1FxyOJUSqVSEpKKnZJDZaRoqLwPUJvKzs7G35+fhg2bBiqVq0qOg7JxNChQ/MdNzIyQq1atTBgwIA8PaiIXlMqldDT00Pt2rULve/ixYsfKRHJ0bhx47BhwwY0aNAAjo6O0NbW1ri+ZMkSQclI6rjwQvR/OHFO/5Xk5GRs2LAB69atQ0REhOg4JHGbNm3C7NmzcfPmTQCApaUlfH19MXz4cMHJSE7u3r2L4OBgBAUFITY2FtnZ2aIjkcT4+vrCy8sLZcuWLdb98+fPx+jRo2FiYvJhg5Fs7Nq1S+N1//79sWzZMlSsWFFj3MXF5WPGIpkpV64cLl++zA0CRPRR+Pr6Fuu+WbNmfeAkJGeffvppgdcUCgWOHj36EdOQnHDhhSgfnDin93XhwgXMmjWLtaqp2NLT05GWlsYGj/TWsrKysHfvXvz666/Yu3cvzMzMcO/ePdGxiKiEKU5dc4VCgZycnI+QhuTK1dUVbm5uGDx4sOgoJCNhYWHYvXs3MjMz0b59e3Tp0kV0JCIioiKxxwtRPszMzNC6dWscPnxYdBSSsIMHD+LQoUPQ0dGBp6cnbG1tER0dDW9vb+zevRudO3cWHZFkpGzZssXeiU4EAMeOHcPmzZuxfft25Obmws3NDXv27EG7du1ERyOZioqKQuPGjZGZmSk6CklQbm6u6AhUAnTt2hXe3t64dOkSGjVqBAMDA43rPDFFb9q2bRv69u0LfX19aGtrY8mSJVi4cCGmTJkiOhrJTFRUFGJiYgAANWvWhKOjo+BERFTS8cQLlWrFmTjft2+f6JgkQYGBgRgxYgTMzMzw9OlTlC9fHkuWLMHYsWPRt29fjB8/ns3RKV/Ozs44cuQITE1N4eTkBIVCUeC9rDVMBalSpQqSk5PRpUsXDBgwAD169ICurq7oWCRzkZGRcHZ25okFKtQ///yD7OzsPBPmRMVR2Mkpnpii/DRq1AhNmjTBypUroaWlhfnz5+P7779HcnKy6GgkE2fPnsXw4cNx9epVvJ4CVSgUqFu3LgIDA9GkSRPBCYmopOKJFyq13pw4DwgI0Jg4v3z5MifOqUA//vgjFi5cCC8vL2zfvh29e/fGzz//jEuXLrFZKBXK1dVVPUHu6upa6MILUUFmz56N3r17s/8GEX00jx49wqBBg3D48GHk5uaiSZMm+PXXX2FnZyc6GskIT07R27p+/Tq2bNkCLS0tAMDkyZPh4+ODhw8fskQvFenq1ato37496tSpg19//VU9x3P16lUsXboU7du3R1hYGBwcHAQnJaKSiCdeqNRydHTEwIEDNSbOmzdvjq1bt3LinIpkYGCAK1euwNraGiqVCrq6ujh27BhatWolOhoRlTJ3794FAH530XvjiRcqzLBhw7B//36MGzcOenp6WL16NSpXroxjx46JjkZEJZhSqURSUpLGIouhoSEiIyNha2srMBnJQZ8+fZCdnY3t27fn2fCmUqng5uYGbW1tbN26VVBCIirJeOKFSq2bN2+id+/eAAA3NzeUKVMG33//PSeuqFhevnyp7sehUCigq6uLypUrC05FcuPp6QkPDw+0bdtWdBSSmdzcXMydOxeLFy9GWloagFeTEJMnT8aMGTOK1QSbSp/U1NRCrz9//vwjJSE5OnToENatW6fuYffZZ5+hTp06+Oeff1jqkAq1fPlyjBw5Enp6eli+fHmh944bN+4jpSI5CQgIQLly5dSvs7OzsW7dOlSoUEE9xvcO5efYsWPYv39/vlUGFAoFpk+fjm7duglIRkSlAU+8UKn15s4Z7pqht6FUKjF37lz1D4Bp06bBy8tL4+Ef4A8AKpyrqysOHjwIc3Nz9OvXDx4eHmjQoIHoWCQD33zzDQIDA+Hr66s+aXfq1CnMnj0bI0aMwLx58wQnJClSKpWFljdUqVTssUAF0tLSwr1791CpUiX12L9PABMVxMbGBufPn0f58uVhY2NT4H0KhQJxcXEfMRnJgbW1dZGlefneoYLo6ekhNjYW1apVy/d6QkIC7O3tkZGR8ZGTkdQVtVEgP0OHDoWhoeEHSENyxYUXKrU4cU7vgz8A6L/y9OlT/P7779i8eTNOnjyJ2rVrY8CAAXB3d+dEFhXI0tIS/v7+cHFx0Rj/888/MWbMGNy7d09QMpKyEydOFOu+Nm3afOAkJEdaWlpISkqCubm5eszIyAiRkZGFTqYTERGJUqtWLfj5+eHzzz/P9/q2bdswY8YMXL9+/SMnI6lTKpWoWrWqur9UURISEhATE8PN3KSBCy9UanHinIik5u7duwgODkZQUBBiY2ORnZ0tOhJJlJ6eHqKiolCzZk2N8evXr6Nhw4Z4+fKloGQkd8nJyTAzMxMdgyRIqVTC2NhY4/k5JSUFRkZGGuUNk5OTRcQjIiLKY9asWVi3bh327t2LevXqaVy7dOkSevTogUGDBmHOnDmCEpJU5ddfqjCsokP5YY8XKrVu3bolOgIRkVpWVhbOnz+PM2fO4NatW6hYsaLoSCRhDRo0wIoVK/IcgV+xYgXL1dE7CQkJQUBAAHbv3s2FO8rX2rVrRUcgmZo0aVKx712yZMkHTEJylZ2djaVLlyI4OBgxMTEAgJo1a8Ld3R3jx4+Htra24IQkVd988w0OHz6Mhg0bomPHjqhTpw5UKhWuXbuGw4cPo2nTppg+fbromCRBs2bN0ugtVZTp06dz8xLlwRMvRETvoFu3bggODoaxsTEAYMGCBRg1ahRMTEwAAE+ePEHr1q1x9epVgSlJDo4dO4bNmzdj+/btyM3NhZubGwYMGIB27doVeSqPSq8TJ06ge/fuqF69Olq0aAEAOH36NBISErBv3z60bt1acEKSg9u3byMoKAjr16/H06dP0bVrV3z++efo3bu36GhEVIJ8+umnGq8vXryI7Oxs1KpVCwAQExMDLS0tNGrUCEePHhURkSTs5cuX6NixI06fPo0OHTqgTp06AKCeOG/VqhVCQkKgp6cnOClJVWZmZr4Ld/369cPEiROhq6srOCERlVRceKFSixPn9D60tLSQmJioPnZqZGSEiIgI9bHSBw8ewNLSkg2KqVBVqlRBcnIyunTpggEDBqBHjx588Kdiu3//PlauXIno6GgAQJ06dTBmzBhYWloKTkZSlpmZiR07diAgIAChoaHo0KED9u/fj/DwcNSvX190PCIq4ZYsWYLjx49j/fr1MDU1BfCq393QoUPRunVrTJ48WXBCkprXpaJ2794NR0dHjWuRkZFwcXHB0KFDMXv2bDEBiajUioqKQuPGjZGZmSk6CkkUF16o1OLEOb2PN+t9vlnPk+8fKo5ffvkFvXv3Vi/4EhF9SGPHjkVwcDDs7e3h4eGBfv36oXz58tDW1kZkZCQcHBxERyQJMzU1LdZJTPZ4ocJUqVIFISEhqFu3rsb45cuX0alTJ9y/f19QMpKqopqj//7775gxY4b6JAMR0ccSGRkJZ2dnzvtQgdjjhUqtN9ccuQZJRB/biBEj1P++e/cuAKBq1aqi4pDMZGRkICoqCg8fPkRubq7GNRcXF0GpSMpWrVqFadOmwdvbG4aGhqLjkMwsW7ZMdAQqAVJTU/Ho0aM8448ePcLz588FJCKpu337Npo2bVrg9ebNm+POnTsfMRHJCTcNEJFIXHghInoHCoUizwMc+3HQ28rNzcXcuXOxePFipKWlAXh1emry5MmYMWMGlEql4IQkVQcOHMCgQYPw+PHjPNcUCgV3XVG+Nm7ciKCgIFSuXBndu3fHwIED0bVrV9GxSCYGDx4sOgKVAL169cLQoUOxePFi9WT6mTNn4OXlBTc3N8HpSIqMjIzw8OFDVKtWLd/rSUlJ3ExABeKmASISiQsvVGpx4pzeh0qlwpAhQ9T9ODIyMjBq1CgYGBgAAP755x+R8UgmZsyYgcDAQCxYsACtWrUCAJw6dQqzZ89GRkYG5s2bJzghSdXYsWPRu3dv+Pj4oGLFiqLjkEz0798f/fv3R3x8PNatW4evvvoK6enpyM3NxdWrV1lqjN5LYmIi5s2bhxUrVoiOQhLm7++PKVOmwN3dHVlZWQCAMmXKYPjw4fj+++8FpyMp+vTTT+Hn54ft27fne33BggX49NNPP3IqkgsbGxu0bNkSZcpw+pPeXmpqaqHXeVKTisIeL1RqKZVKdO3aVT1xvnv3brRr105j4vzAgQPcNUz5Gjp0aLHuW7t27QdOQnJmaWkJf3//PGWh/vzzT4wZMwb37t0TlIykzsjICOHh4ahRo4boKCRjKpUKISEhCAwMxK5du1ChQgW4ublh+fLloqORRF25cgXHjh2Djo4O+vTpAxMTEzx+/Bjz5s2Dv78/bG1tceXKFdExSQZevHiBmzdvAgBq1Kih/g1G9KarV6+iWbNmqFu3LiZNmoTatWtDpVLh2rVrWLp0Ka5evYqwsLA8fYOIgLy9fYnehlKpLHSDtkqlYrUBKhQXXqjU4sQ5EYmmp6eHqKgo1KxZU2P8+vXraNiwIV6+fCkoGUndsGHD0KpVKwwfPlx0FCohkpOTsWHDBqxbtw4RERGi45AE7dq1C1988QWys7MBALa2tvjll1/Qp08fNGrUCBMmTECXLl0EpySikigsLAzDhw/HtWvX1JOgKpUKtWvXRmBgIFq0aCE4IUmVUqlEUlISF17onZw4caJY97Vp0+YDJyG54sILERGRIM2aNUOzZs3y7C4fO3Yszp07h7CwMEHJSOrS09PRu3dvmJubo379+tDW1ta4Pm7cOEHJSM4uXLiAWbNmYc+ePaKjkAQ1bdoUrVq1wnfffYeAgABMmjQJdevWRVBQEJo0aSI6HhGVAhEREYiJiQEA1KxZEw0bNhQbiCRPqVTiwYMHMDc3Fx2FSqjk5GSYmZmJjkESxYUXIqJ3UNzmnzt27PjASUjOTpw4ge7du6N69erqnXqnT59GQkIC9u3bh9atWwtOSFIVGBiIUaNGQU9PD+XLl9c4Aq9QKBAXFycwHUnZwYMHcejQIejo6MDT0xO2traIjo6Gt7c3du/ejc6dO2Pfvn2iY5IEGRsb48KFC7Czs0NOTg50dXVx4MABdOjQQXQ0IirhUlNTcebMGWRmZqJp06acRKdie7PEfEH4u53eVkhICAICArB7925WqqACsbsUlVqcOKf3YWxsrPF68+bN6NGjBwwNDQUlIjlq06YNYmJisHLlSkRHRwN49dk0ZswYWFpaCk5HUjZjxgz4+vrC29sbSqVSdBySicDAQIwYMQJmZmZ4+vQpAgICsGTJEowdOxZ9+/bF5cuXUadOHdExSaKeP38OIyMjAK9q5uvr68PW1lZwKiIq6SIiItCtWzckJSUBAAwNDbF161Z07txZcDKSC0NDQ+jr64uOQSXA7du3ERQUhPXr1+Pp06fo2rUrNmzYIDoWSRhPvFCp9WaPl4ImztnjhYrD0NAQkZGRnIAgoo/CzMwM586dQ40aNURHIRlxdHTEwIED4eXlhe3bt6N3795o3rw5tm7diqpVq4qORxKnVCqxfv169eaT/v37Y9myZahYsaLGfS4uLiLiEVEJ1blzZ6SlpeGHH36Anp4evvvuO1y6dAmxsbGio5EMsMcLva/MzEzs2LEDAQEBCA0NRYcOHbB//36Eh4ejfv36ouORxHHhhej/cOKc3gffP/SuMjIyEBUVhYcPHyI3N1fjGievqCATJ06Eubk5pk+fLjoKyYiBgQGuXLkCa2trqFQq6Orq4tixY2jVqpXoaCQDxTldp1AokJOT8xHSkJy82cuuOIYOHcqT5AQAqFChAkJCQuDs7AwASElJgZmZGVJSUtSn8IgKoqWlhcTERC680DsZO3YsgoODYW9vDw8PD/Tr1w/ly5eHtrY2IiMj4eDgIDoiSRxLjREREQly4MABDBo0CI8fP85zjZNXVJicnBwsWrQIBw8ehKOjI7S1tTWuL1myRFAykrKXL1+ibNmyAF59xujq6qJy5cqCU5FcvLk5gKi4JkyYgKpVq0JLS6tY9yckJOCzzz7jwgsBeNW4+t+nMk1MTGBgYIAnT55w4YWKVNRe82vXriEwMBA//PDDR0pEcrJq1SpMmzYN3t7e/E6id8KFFyIiIkHGjh2L3r17w8fHJ0+pFqLCXLp0CU5OTgCAy5cva1xTKBQiIpFMBAQEoFy5cgCA7OxsrFu3DhUqVNC4Z9y4cSKiEVEJdv78+WLvOOfkFr3p6tWr6h4vwKvJ9GvXruH58+fqMUdHRxHRSOKOHTsGMzMzjbEXL17gt99+Q2BgIMLCwuDg4MCFF8rXxo0bERQUhMqVK6N79+4YOHAgunbtKjoWyQhLjRH9H5aKorexa9cujdesc07vwsjICOHh4ezTQUQfhbW1dZELcwqFAnFxcR8pEcnJmDFjsGjRIvXCXXBwMFxcXGBgYADgVfkfd3d37Nu3T2RMkiBfX194eXmpT9wVZf78+Rg9ejRMTEw+bDCSBaVSCYVCke/JhdfjPClOxREaGorAwEBs3boVL1++xMSJE+Hp6YnatWuLjkYSFx8fj3Xr1mHdunVIT09HcnIytmzZgi+++EJ0NJI4LrxQqcWJc3ofrHNO/4Vhw4ahVatWGD58uOgoREREhXqzTr6RkREiIiLUm5YePHgAS0tLPvsQ0X/q9u3bxbrPysrqAychOXr48CHWrVuHoKAgPHv2DP3794e7uztatGjBHh301lQqFUJCQhAYGIhdu3ahQoUKcHNze6deZlQ6cOGFSi1OnBORaOnp6ejduzfMzc1Rv379PH06WO6HiIikQqlUIikpSb3w8uZpcS680PuIiopC48aNkZmZKToKEZUg+vr6+OKLL+Dh4YGOHTuq54HYHJ3eV3JyMjZs2IB169YhIiJCdBySKPZ4oVKLDULpv/DPP/8gOztbXWaD6G0EBwcjJCQEenp6OH78uEYJIIVCwYUXIvpPdevWDcHBwTA2NgYALFiwAKNGjVKX83ny5Alat26Nq1evCkxJRKWRSqXioh3lERUVhXr16hVr0yQAXLlyBbVq1UKZMpzqolesrKxw6tQpVK9eHVZWViwrRv8ZMzMztG7dGocPHxYdhSSseN9eRCXYP//8gxcvXoiOQTLz6NEjdO3aFeXKlYORkRGaN2+OGzduiI5FMjNjxgz4+vri2bNnuHXrFuLj49V/7LFARP+1gwcP4p9//lG/9vPzQ3Jysvp1dnY2rl+/LiIaERFRHk5OTnjy5Emx72/RogXu3LnzAROR3ERHR+PXX39FYmIimjRpgkaNGmHp0qUAUGTfOyLg1fPzlClTMH36dPVv9OjoaPTs2RNNmzblpm4qFLcBUKn16NEjDBo0CIcPH0Zubi6aNGmCX3/9FXZ2dqKjkQxMmzYNERERmDNnDvT09LB69WqMGDECx44dEx2NZCQzMxN9+/Yt9i4+IqL38WaFYVYcprfl4+OjbpCemZmJefPmqU9Qpaeni4xGRCWQSqXCzJkz1Z87RWGpOspPq1at0KpVKyxfvhzBwcFYu3YtcnJyMGbMGLi7u6Nnz54wNzcXHZMkKDAwECNGjICZmRmePn2KgIAALFmyBGPHjkXfvn1x+fJl1KlTR3RMkjD2eKFSa9iwYdi/fz/GjRunnjivXLkyJ86pWKpVq4aAgAB07twZABAbG4s6dergxYsX0NXVFZyO5GLixIkwNzfH9OnTRUchGXiXpo1Dhw6FoaHhB0hDcsQeHfQ+2rZtW6zdwXyWpvykpqYWej0qKgpt2rTh5w9pKO7nzr9t3rwZlStX/kCJqKS4du0aAgMDsXHjRiQnJyMrK0t0JJIgR0dHDBw4EF5eXti+fTt69+6N5s2bY+vWrahataroeCQDXHihUosT5/Q+tLS0cO/ePVSqVEk9ZmBggCtXrsDa2lpcMJKVcePGYcOGDWjQoAEcHR2hra2tcX3JkiWCkpEUKZVKVK1aFVpaWsW6PyEhATExMepJdSItLS0kJSWpd3UaGhoiKioKNjY2ALjwQkQfjlKpLHQCXaVSQaFQ8POHiD6q7Oxs7Nq1C25ubqKjkAT9e45HpVJBV1cXx44dQ6tWrURHI5lgqTEqte7fv48GDRqoX9vb20NXVxeJiYmcOKdieXPyU0tLi2Vb6K1cunQJTk5OAIDLly9rXGPNYcrP+fPn1acVisKTLvQmlUqFIUOGqDeYZGRkYNSoUTAwMAAAjf4vRPlJTU3FmTNnkJmZiaZNm7I0CxUbT0IRkRTduHED3t7eXHihfL18+VJd6lChUEBXV5cn6uitcOGFSjVOnNO7UqlUqFmzpsbkeFpaGpycnDT6dfy7aTHRmzgJQW9j1qxZKFeuXLHvnz59OszMzD5gIpKbwYMHa7z28PDIc8+gQYM+VhySmYiICHTr1g1JSUkAXi3ubt26VX16nKgwbdq0KfIePjcT0cf2zz//4ObNm6JjkIQFBASof4NlZ2dj3bp1qFChgsY948aNExGNZIClxqjUUiqVMDY21pg4T0lJgZGRESfOqUjr168v1n1vTnIRERERyVHnzp2RlpaGH374AXp6evjuu+9w6dIlxMbGio5GMhcSEoKAgADs3r0bL1++FB2HiEqRyMhIODs7s8wh5cva2rrIShQKhQJxcXEfKRHJDU+8UKm1du1a0RFIxrigQkRSFBUVhcaNGyMzM1N0FCIqYS5cuICQkBA4OzsDAIKCgmBmZobU1FQYGRkJTkdyc/v2bQQFBWH9+vV4+vQpunbtig0bNoiORUREpHbr1i3REUjmuPBCpRYnzomIqKRRqVTcsUcFKm798h07dnzgJCRHycnJqFq1qvq1iYkJDAwM8OTJEy68ULFkZmZix44dCAgIQGhoKDp06IC7d+8iPDwc9evXFx2PiIiI6D/FhRciondgamparObnLFVHRERSYWxsrPF68+bN6NGjBwwNDQUlIrm5evWquscL8Gqx99q1a3j+/Ll6zNHRUUQ0krixY8ciODgY9vb28PDwwJYtW1C+fHloa2vn6btJRPRfKep3e3Z29kdMQ3LTrVs3BAcHq5+hFyxYgFGjRsHExAQA8OTJE7Ru3RpXr14VmJKkjD1eqNTixDm9D/Z4ISIpYp1qehuGhoaIjIyEra2t6CgkA0qlEgqFAvn9fHw9rlAo+PlD+SpTpgymTZsGb29vjcVebW1tREZGwsHBQWA6Iiqp+Lud3oeWlhYSExNhYWEBADAyMkJERIT62fnBgwewtLTksw8ViCdeqNRatmyZ6AgkY3wwo3e1fPnyt/4/Q4cO5Y50AgCkpqYWev3fu86JiP5L8fHxoiOQjG3cuBFBQUGoXLkyunfvjoEDB6Jr166iYxFRCcff7fQ+3txswrML9LZ44oWI6ANITEzEvHnzsGLFCtFRSGKUSiWqVq1a7LIaCQkJiImJ4Y50AvD/d5wXhDvO6W3wxAsRfWzx8fFYt24d1q1bh/T0dCQnJ2PLli344osvREcjohKooE1LBgYGLHNIRVIqlUhKSlKfeHnz2ZknXqgoPPFCVABOnFNRrly5gmPHjkFHRwd9+vSBiYkJHj9+jHnz5sHf358TWVSg8+fPqx/eisKTLvRvx44dEx2BiEqhqKgo1KtXD0qlslj3X7lyBbVq1UKZMvy5SZpsbGzg6+uL2bNnIyQkBIGBgfDw8MCECRPg5ub2TieDiYgKYmJiku+mJS0tLdjY2GDKlCkYMWKEgGQkBwqFIs/7pzgtC4he45MwlWqcOKd3tWvXLnzxxRfqZnyLFi3CL7/8gj59+qBRo0bYuXMnunTpIjglSdGsWbNQrly5Yt8/ffp0mJmZfcBEJCdt2rQp8h72JqOC7Nq1S+N1bm4ujhw5gsuXL2uMu7i4fMxYJANOTk5ISkqCubl5se5v0aKFRg10ojcpFAp07twZnTt3RnJyMjZs2IB169aJjkVEJUxBm5ZSUlJw4cIFeHl5oUyZMhg6dOhHTkZyoFKpMGTIEOjq6gIAMjIyMGrUKBgYGAAA/vnnH5HxSAZYaoxKrTcnzm1tbTUmzidMmMCJcypQ06ZN0apVK3z33XcICAjApEmTULduXQQFBaFJkyai4xFRKRQSEoKAgADs3r0bL1++FB2HJKg4pxVYqo7yo1QqMXLkSJQtW7ZY9//888+4evUqF16o2C5cuIBZs2Zhz549oqMQUSkSFBSEFStW4OLFi6KjkAQVd0Fu7dq1HzgJyRUXXqjU4sQ5vQ9jY2NcuHABdnZ2yMnJga6uLg4cOIAOHTqIjkYlQFRUFBo3bozMzEzRUUjibt++jaCgIKxfvx5Pnz5F165d8fnnn6N3796ioxFRCdK2bdu3Lq2xefNmVK5c+QMlIjk6ePAgDh06BB0dHXh6esLW1hbR0dHw9vbG7t270blzZ+zbt090TCIqRW7evAknJ6cCe8EQEb0PLrxQqcWJc3ofRTVZI3ofkZGRcHZ25q5zyldmZiZ27NiBgIAAhIaGokOHDti/fz/Cw8NRv379/9fe/QdVdef3H3/de1V+yeVKQMXREe+SKGroRgsbwsTYjR0MUZIxijWboElXYzW6xt2M2enE7IQljcbZmNSYuKJi1pGNjekUV1dAi9t2arKt9gICsrS6Jk25RiF3AUkg13u/fzg536AYbiL3nnvh+ZhxJufwAV5mGC/3vD+f99vseIgA3d3d8nq9RpsEAAi2Xbt2afny5UpMTNSnn36q2267Tb/4xS+0Zs0aLV68WD/60Y+Unp5udkwAQ8zp06f10EMP6aOPPjI7CoBBiBkvGLI6Ojpkt9slXRusFhMTw0NzfCMVFRVKSEiQRJ98AKGxZs0alZWV6fbbb9djjz2md955R7fddpuGDx8um81mdjyEuUuXLqmwsFDHjh2Tz+dTZmam9u3bp7S0NLOjARjkXnvtNW3atEnPPvusDh48qEWLFmn79u2qq6vT+PHjzY4HYAj64osv9Morr+h73/ue2VEQphYsWBDQuvfeey/ISRCpKLxgSOPBOW7F0qVLe10/9dRTva7pkw9goL355pvasGGDnnvuOcXHx5sdBxFmw4YNcrlcevHFFxUdHa0dO3Zo+fLlNx08CwAD5X/+53+MNpgLFizQsGHD9Morr1B0ARBUN3tw/qc//Un19fWyWCz613/91xCnQqT48nnhl/bv36/58+fzPgwBo9UYhiwGzAIwS389hGtra3Xffffx7w9uUFZWpt27d+vkyZN68MEH9fjjj+uBBx5QdHS0ampqNHXqVLMjIoxNmDBBJSUlys3NlSQ1NzcrPT1dV65cUVRUlMnpAAxmtOkFYIabDUe32+2aPHmyfvCDH9zwcB24GV678E1x4gVDls/nMzsCgCHK4XB87ZBiv9//jYcYY2hYsmSJlixZovPnz6u0tFSrV69WV1eXfD6fGhoaKLzga/3f//2f/uzP/sy4vv322xUVFaWWlhalpqaaFwzAkFBSUqKRI0dKkrxer0pLS5WUlNRrzdq1a82IBmCQ2rNnj9kRAAxhnHgBgG9h1apV2rx5s/HmsaysTPn5+cagYo/Ho0cffVRHjhwxMybC1O9+97uA1t13331BToJI5/f7VVlZqV27dqm8vFxJSUlasGCBXn/9dbOjIQzZbDa53W4lJycb9+x2u2pqajRp0iQTkwEY7FJTU/vdVGKxWHTu3LkQJQIwVLz//vs6dOiQenp6dP/992vu3LlmR0KE4sQLvikKLxiyeHCOW2Gz2dTS0mK0S7Db7XK5XMYL8MWLFzVu3DhaReFba2trU2JiotkxEEHa2tr09ttvq7S0VC6Xy+w4CENWq1UJCQm9Hn56PB7Z7fZeLVjb2trMiAcAADCg3n33XS1evFgxMTEaPny42tvbtWnTJv3kJz8xOxoiEIUXfFMUXjBk8eAct6K/PtX8/ODbqqysVElJiQ4dOqTPPvvM7DiIMKdOndILL7yg3/zmN2ZHQRjau3dvQOuWLl0a5CQAAADBN3PmTGVmZuqNN96QzWbT3/3d3+mVV15hkwkCUl5e3ut6yZIl2rp1q8aMGdPrfn5+fihjIYIw4wVD1vU1R2qQAMxy4cIF7d69W3v37tWnn36qBx54QG+//bbZsRCmKioqVFVVpREjRuiHP/yhnE6nzp49q+eee06HDh0yBqcD16OgAsAseXl5KisrM4ZYv/zyy1q5cqUcDockqbW1Vffee68aGhpMTAlgsGlqatI777wjm80mSfrxj3+sjRs36pNPPjE2UQI38/DDD99w76mnnup1bbFY2HCLm7L2vwQAAAy0np4e/frXv9acOXM0ZcoUnT59Wv/7v/+rf/u3f9Ovf/1rLVq0yOyICEO7du3SAw88oNLSUm3atEl333239u3bp+zsbI0dO1ZnzpyhRSYAIOxUVFSou7vbuH7ppZd67Tj3er1qamoyIxqAQayrq0t2u924HjFihKKjo9XZ2WliKkQKn8/X7x+KLvg6nHgBgG9p48aNio2NlXTtIXpxcbGxi6+rq8vMaAhza9asUVlZmW6//XY99thjeuedd3Tbbbdp+PDhxm4soC+vvfaaNm3apGeffVYHDx7UokWLtH37dtXV1Wn8+PFmx0OYGzVqVL/DrSVmvAAYeHQbAGCWkpISY7avdK3QW1paqqSkJOPe2rVrzYiGCNHd3S2v12vMhAYCxYwXDFlWq1UrVqwwHpy/8cYbeuyxx3o9ON+5cyfVa/Rp9uzZAT28qq6uDkEaRJphw4Zpw4YNeu655xQfH2/cHz58uGpqajR16lQT0yGcxcXFqb6+XqmpqfL7/YqKilJ1dbVycnLMjoYIwIwXAGZhPiIAM6Smpvb7vt1isejcuXMhSoRIcunSJRUWFurYsWPy+XzKzMzUvn37lJaWZnY0RAhOvGDImjVrVq/j7Pfcc88NL7azZs0KdSxEiBMnTpgdARHsV7/6lXbv3q2UlBQ9+OCDevzxx/XAAw+YHQsR4LPPPjM2DFgsFkVFRSklJcXkVIgUFFQAmMVisdzw8DOQTUwAcCv++Mc/mh0BEWzDhg1yuVx68cUXFR0drR07dmj58uVssEXAKLxgyOLBOW5Ve3u7PvjgA/X09CgrK0vJyclmR0KEWLJkiZYsWaLz58+rtLRUq1evVldXl3w+nxoaGjjxgq/11XYJfbVKkGiXgG+npaVFxcXF2rZtm9lRAAwyfr9fy5YtU1RUlCTp888/18qVK422LV+d/wIAQDioqqpSaWmpcnNzJUnz5s1Tenq6uru7jdcz4OvQagxDGg/O8W25XC7l5eXJ7XZLutYu4cCBA8YLMvBN+P1+VVZWateuXSovL1dSUpIWLFig119/3exoCDO0S8Ctqq+vV3V1tUaMGKGCggI5HA5dvnxZxcXFeuutt+R0OlVfX292TACDzBNPPBHQuj179gQ5CYChxuv16tVXX1VZWZn+8Ic/SJLuuOMOPfroo/rRj36k4cOHm5wQ4cpms+njjz/W2LFjjXtfbf0M9IfCC4YsHpzjVuTm5qqzs1NbtmxRdHS0ioqKVFdXp+bmZrOjIcK1tbXp7bffVmlpqVwul9lxAAwi5eXlWrhwobxeryTJ6XRq586dKigo0MyZM7Vu3TrNnTvX5JQAAAAD47PPPtNf/uVf6uTJk5ozZ47S09MlSY2NjTp27JhycnJUWVmp6Ohok5MiHNlsNrnd7l6btO12u2pqajRp0iQTkyFSUHjBkMWDc9yKpKQkVVZWasaMGZIkj8ejxMREeTwe2e12k9Mh0p06dUovvPCCfvOb35gdBcAgkpWVpZycHBUVFamkpETr16/XtGnTtHv3bmVmZpodDwAAYEC98MILKi0t1aFDh5SRkdHrYzU1NcrPz9cTTzyhn/3sZ+YERFizWq1KSEjo1XHgy2c+VqvVuNfW1mZGPEQACi8YsnhwjlthtVrldrs1evRo4158fLxqa2vZ+YCAVFRUqKqqSiNGjNAPf/hDOZ1OnT17Vs8995wOHTqk3NxcHTlyxOyYCDN5eXkqKytTQkKCJOnll1/WypUr5XA4JEmtra2699571dDQYGJKhKuEhASdOnVKaWlpunr1qqKionT06FHNmTPH7GgABrkFCxYEtO69994LchIAQ8nkyZP10ksv6ZFHHunz4//wD/+gv/3bvzVakAFftXfv3oDWLV26NMhJEKmGmR0AMEtbW5vGjx9vXDscDsXFxam1tZXCCwLS0NBgtKqTrs3paGxsVEdHh3Hv+l01gCTt2rVLy5cvV2Jioj799FOVlJToF7/4hdasWaPFixfrzJkzxjF44KsqKip6DSB+6aWXjDkd0rUe1k1NTSalQ7jr6Ogwfsex2WyKiYmR0+k0ORWAoeDLDQNf2r9/v+bPn6/4+HiTEgEYCi5cuKCsrKybfvzuu+/Whx9+GMJEiCQUVHCrKLxgSOPBOW7F/fffr+sPDc6bN08Wi0V+v18Wi0VXr141KR3C2WuvvaZNmzbp2Wef1cGDB7Vo0SJt375ddXV1vQrCwPWu/zeHg8v4pioqKowHoD6fT8ePH9eZM2d6rcnPzzcjGoBBbM+ePb2u3333XW3evJniL4Cgstvt+uSTTzRhwoQ+P+52uykAAwgaWo1hyLJarcYD8uvx4Bz9uXDhQkDrJk6cGOQkiERxcXGqr69Xamqq/H6/oqKiVF1drZycHLOjIcxd3+YwPj5eNTU1xoOrixcvaty4cbx2oU9f7UV9M/zuAyAUrn/9AoBgWLx4sbxerw4ePNjnxx955BHZbDYdOHAgxMkQCUaNGtVrvsvNMOMFN8OJFwxZ58+fNzsCIhgFFdyKzz77TLGxsZKuPeSMiopSSkqKyakQCSwWyw2//AfyZgCQrp1wAQAAGCpeeOEFfe9739Pdd9+t9evXa8qUKUank1dffVUNDQ16//33zY6JMLV161azIyDCUXjBkMWDc3xbtbW1mj59ekA7hyWpvr5ekydP1rBh/JOL/6+kpEQjR46UdG0uR2lpqZKSknqtWbt2rRnREMb8fr+WLVumqKgoSdLnn3+ulStXKi4uTpJ6zX8BAAAAhrKpU6eqqqpKf/3Xf62/+qu/MjYs+f1+TZkyRZWVlZo2bZrJKRGumPGCW0WrMQxJPDjHrbDZbHK73UpOTg5ovd1ul8vlopUCDKmpqf2eUrBYLDp37lyIEiFSPPHEEwGtu76XPiBJq1at0ubNm42ib1lZmfLz843Cncfj0aOPPqojR46YGRPAIFReXt7resmSJdq6davGjBnT6z4zpgAEi8vl0h/+8AdJ0h133KHvfve75gZCxGtpaVFxcbG2bdtmdhSEKQovGJJ4cI5bYbVatWLFCqNVVH+2b9+uhoYGfn4AAKay2WxqaWkxZgRd//sNM4IABAszpgCYpb29XR988IF6enqUlZUV8HMgQLq2Ebu6ulojRoxQQUGBHA6HLl++rOLiYr311ltyOp2qr683OybCFNv3MST5/X49//zzAT847+npCXIiRJJZs2apqakp4PXZ2dmKiYkJYiIAAPp3/X4r9l8BCBVmTAEwg8vlUl5entxutyQpPj5eBw4cUG5ursnJEAnKy8u1cOFCeb1eSdLmzZu1c+dOFRQUaObMmfrHf/xHzZ071+SUCGeceMGQNHv27G88jHj//v0MvwYwIPLy8lRWVqaEhARJ0ssvv6yVK1fK4XBIklpbW3XvvfeqoaHBxJQIRwsWLAho3XvvvRfkJIhEVqtVbrfbOPESHx+vmpoaTrwACJnu7m55vV6jxSEABFNubq46Ozu1ZcsWRUdHq6ioSHV1dWpubjY7GiJAVlaWcnJyVFRUpJKSEq1fv17Tpk3T7t27lZmZaXY8RAAKLwAAhBjtfvBtXT/jZf/+/Zo/f77i4+N73WfGC/pC4QWAWS5duqTCwkIdO3ZMPp9PmZmZ2rdvn9LS0syOBmAQS0pKUmVlpWbMmCHp2jy7xMREeTwe2e12k9Mh3CUkJOjUqVNKS0vT1atXFRUVpaNHj2rOnDlmR0OEoNUYAAAhRrsffFvXF1Teffddbd68mRlSCNjGjRuNVqs9PT0qLi42Tt91dXWZGQ3AILZhwwa5XC69+OKLio6O1o4dO7R8+XJVV1ebHQ3AINbW1qbx48cb1w6HQ3FxcWptbaXwgn51dHQYPyc2m00xMTG878I3QuEFAAAAGAKun1F2zz336Ny5czesAYCBVlVVpdLSUmOuwrx585Senq7u7m5FRUWZnA7AYNbQ0GDMeJGubXprbGxUR0eHcS8jI8OMaIgAFRUVxiYln8+n48eP68yZM73W5OfnmxENEYBWYwAAhJjNZpPb7VZycrKka+1+amtrNWnSJEm0+0Hgrm8VBQBAOLLZbPr44481duxY415cXJzq6+uVmppqXjAAg5rVapXFYumzw8CX9y0WC++70Cer1drvGn5+8HU48QIAQIj5/X4tW7bM2OH5+eefa+XKlcag2e7ubjPjARjE2tvb9cEHH6inp0dZWVlGARgAgs1ms91wzT5QAMF0/vx5syMggvl8PrMjIMJx4gUAgBC7fkD6zTAgHdcrLy/vdb1kyRJt3bpVY8aM6XWf4+7oi8vlUl5entFuIz4+XgcOHDBa/wBAsFitViUkJMhisRj3vhxu/dUdxW1tbWbEAwAAGHAUXgAAACIEx91xK3Jzc9XZ2aktW7YoOjpaRUVFqqurU3Nzs9nRAAxye/fuDWjd0qVLg5wEwFBRW1ur6dOnB/T7syTV19dr8uTJGjaM5kC4ZtWqVdq8ebNGjhwpSSorK1N+fr7RqcLj8ejRRx/VkSNHzIyJMEbhBQAAABgCkpKSVFlZqRkzZki69mYxMTHR2HUOAAAwWFw/V7M/drtdLpeL2Ykw2Gw2tbS0aPTo0ZJu/BlhNiv6QxkXAIAQW7BgQUDr3nvvvSAnQaTq7u6W1+s1dlsBgWhra9P48eONa4fDobi4OLW2tlJ4AQAAg4rf79fzzz+v2NjYgNb39PQEOREizfVnFTi7gG+KwgsAACGWkJDQ63r//v2aP3++4uPjTUqESHHp0iUVFhbq2LFj8vl8yszM1L59+5SWlmZ2NESIhoYGY8aLdO0NZGNjozo6Oox7GRkZZkQDMIiNGjWq13yXm2HGC4CBMmvWLDU1NQW8Pjs7WzExMUFMBGCoodUYAAAmi4+PV01NDcfa0a8nn3xSv/3tb7V27VpFR0drx44dSklJUXV1tdnREAGsVqssFkufu/W+vM+MIADBwIwXAECksVqtcrvdRqux69+302oM/eHECwAAQISoqqpSaWmpcnNzJUnz5s1Tenq6uru7FRUVZXI6hLvz58+bHQHAEEVBBQAQiTZu3Gi0q+vp6VFxcbHRwaKrq8vMaIgAnHgBAMBknHhBoGw2mz7++GONHTvWuBcXF6f6+nqlpqaaFwwAgFvQ0tKi4uJibdu2zewoAABIkmbPnh1Qm0y6D+BmOPECAAAQQWw22w3X7KNBf2prazV9+nRZrdaA1tfX12vy5MkaNoy3CwAGRn19vaqrqzVixAgVFBTI4XDo8uXLKi4u1ltvvcUGFABAWDlx4oTZERDhOPECAECIlZeX97pesmSJtm7dqjFjxvS6n5+fH8pYiABWq1UJCQm9dl55PB7Z7fZeD9QZTozr2Ww2ud1uJScnB7TebrfL5XLxIBTAgCgvL9fChQvl9XolSU6nUzt37lRBQYFmzpypdevWae7cuSanBACgt/b2dn3wwQfq6elRVlZWwL9LAxKFFwAAQi6QHecMuEZfGE6Mb8tqtWrFihVGj+r+bN++XQ0NDRReAAyIrKws5eTkqKioSCUlJVq/fr2mTZum3bt3KzMz0+x4AADcwOVyKS8vT263W9K1FuEHDhww5m0C/aHwAgAAAAxygfao/qr9+/crJSUlSIkADCUJCQk6deqU0tLSdPXqVUVFReno0aOaM2eO2dEAAOhTbm6uOjs7tWXLFkVHR6uoqEh1dXVqbm42OxoiBIUXAABM0t3dLa/Xq7i4OLOjAAAABI3VapXb7dbo0aMlXds1XFNTw6k6AEDYSkpKUmVlpWbMmCHpWovnxMREo9Uz0B+mZQIAEGKXLl1SYWGhjh07Jp/Pp8zMTO3bt09paWlmR0OYGzVqVECnFpjxAgAINxUVFUpISJAk+Xw+HT9+XGfOnOm1hvl2AIBw0dbWpvHjxxvXDodDcXFxam1tpfCCgHDiBQCAEHvyySf129/+VmvXrlV0dLR27NihlJQUVVdXmx0NYY4ZLwCASMR8OwBApLFarfrnf/5nJSYmGvfuueceHThwoFdBJiMjw4x4iAAUXgAACLEJEyaopKTEGMrX3Nys9PR0XblyRVFRUSanAwAAAABgaLNarbJYLOrr0fmX99k0gK9D4QUAgBCz2Wz6+OOPNXbsWONeXFyc6uvrlZqaal4wRLyWlhYVFxdr27ZtZkcBAAAAgIh14cKFgNZNnDgxyEkQqfo/7wsAAAaczWa74Zq9EAhEfX29tm3bpl/+8pfyeDySpMuXL+uZZ56R0+mkZR0AIOysWrVKnZ2dxnVZWZmuXLliXHs8HuXl5ZkRDQCAPk2cODGgP8DNcOIFAIAQs1qtSkhI6DUk3ePxyG639+qBzoB0XK+8vFwLFy6U1+uVJDmdTu3cuVMFBQWaOXOm1q1bp7lz55qcEgCA3mw2m1paWjR69GhJkt1ul8vlktPplCRdvHhR48aNo10LACAs1NbWavr06QHNKJOubY6bPHmyhg0bFuRkiCT8NAAAEGJ79uwxOwIi1M9//nOtXr1aRUVFKikp0fr167V27VodOXJEmZmZZscDAKBP1+/3ZP8nACCc3XXXXXK73UpOTg5ofXZ2dq8NBYDEiRcAAICIkZCQoFOnTiktLU1Xr15VVFSUjh49qjlz5pgdDQCAm7JarXK73caJl/j4eNXU1HDiBQAQlqxWq1asWKHY2NiA1m/fvl0NDQ0UXtALJ14AAAAiREdHh+x2u6RrbVtiYmL45R4AAAAABtCsWbPU1NQU8Prs7GzFxMQEMREiEYUXAABCbNSoUb3mu9wMM17Ql4qKCiUkJEiSfD6fjh8/rjNnzvRak5+fb0Y0AABuauPGjcbO4Z6eHhUXFxuvZ11dXWZGAwCglxMnTpgdAYMArcYAAAixvXv3BrRu6dKlQU6CSBPIcEeLxUKrFgBAWJk9e3ZAm06qq6tDkAYAACD4KLwAAAAAAAAAAAAMkP63TQIAgJBqaWnR008/bXYMAACAAdPe3q6qqiodPnxYly5dMjsOAABAUFF4AQDABPX19dq2bZt++ctfyuPxSJIuX76sZ555Rk6nk1Yb6NOqVavU2dlpXJeVlenKlSvGtcfjUV5enhnRAAC4KZfLpSlTpig3N1fz589XWlqaKioqzI4FAAAQNLQaAwAgxMrLy7Vw4UJ5vV5JktPp1M6dO1VQUKCZM2dq3bp1mjt3rskpEY5sNptaWlo0evRoSZLdbpfL5ZLT6ZQkXbx4UePGjWPGCwAgrOTm5qqzs1NbtmxRdHS0ioqKVFdXp+bmZrOjAQAABAWFFwAAQiwrK0s5OTkqKipSSUmJ1q9fr2nTpmn37t3KzMw0Ox7CmNVqldvtNgov8fHxqqmpofACAAhrSUlJqqys1IwZMyRdO6GZmJgoj8cju91ucjoAAICBR6sxAABCrKmpSatXr9bIkSO1Zs0aWa1WvfrqqxRdAADAoNTW1qbx48cb1w6HQ3FxcWptbTUxFQAAQPAMMzsAAABDTUdHh7G702azKSYmxjixAAAAMBg1NDTI7XYb136/X42Njero6DDuZWRkmBENAABgwFF4AQDABBUVFUpISJAk+Xw+HT9+XGfOnOm1Jj8/34xoCHMbN25UbGysJKmnp0fFxcXGz1JXV5eZ0QAAuKn7779f13c6nzdvniwWi/x+vywWC60yAQDAoMGMFwAAQsxq7b/TJw8f0JfZs2fLYrH0u666ujoEaQAACMyFCxcCWjdx4sQgJwEAAAgNCi8AAAAAAAAAAAADpP8ttwAAAAgb7e3tqqqq0uHDh3Xp0iWz4wAA8LVqa2vl8/kCXl9fXy+v1xvERAAAAMFH4QUAgBBbtWqVOjs7jeuysjJduXLFuPZ4PMrLyzMjGsKcy+XSlClTlJubq/nz5ystLU0VFRVmxwIA4Kbuuusutba2Brw+OztbH374YRATAQAABB+txgAACDGbzaaWlhaNHj1akmS32+VyueR0OiVJFy9e1Lhx45jxghvk5uaqs7NTW7ZsUXR0tIqKilRXV6fm5mazowEA0Cer1aoVK1YoNjY2oPXbt29XQ0OD8XsRAABAJBpmdgAAAIaa6/c8sAcCgTp16pQqKys1Y8YMSdLu3buVmJio9vZ22e12k9MBAHCjWbNmqampKeD12dnZiomJCWIiAACA4KPwAgAAECHa2to0fvx449rhcCguLk6tra0UXgAAYenEiRNmRwAAAAg5Ci8AAAARpKGhQW6327j2+/1qbGxUR0eHcS8jI8OMaAAAAAAAQBReAAAwxcaNG41e5z09PSouLlZCQoIkqaury8xoCHP333//De3p5s2bJ4vFIr/fL4vFwnwgAAAAAABMZPHTWB4AgJCaPXu2LBZLv+uqq6tDkAaR5MKFCwGtmzhxYpCTAAAAAACAm6HwAgAAAAAAAAAAMECsZgcAAGAoam9vV1VVlQ4fPqxLly6ZHQcRoLa2Vj6fL+D19fX18nq9QUwEAAAAAAD6wokXAABCzOVyKS8vzxiQHh8frwMHDig3N9fkZAhnNptNbrdbycnJAa232+1yuVxyOp1BTgYAAAAAAL5qmNkBAAAYajZs2KBJkybp4MGDio6OVlFRkZ5++mk1NzebHQ1hzO/36/nnn1dsbGxA63t6eoKcCAAAAAAA9IUTLwAAhFhSUpIqKys1Y8YMSZLH41FiYqI8Ho/sdrvJ6RCuZs+eLYvF8o0+Z//+/UpJSQlSIgAAAAAA0BcKLwAAhJjVapXb7dbo0aONe/Hx8aqtrdWkSZNMTAYAAAAAAIBbRasxAABM0NDQYMx4ka61kWpsbFRHR4dxLyMjw4xoAAAAAAAAuAWceAEAIMSsVqssFov6egn+8r7FYtHVq1dNSAcAAAAAAIBbwYkXAABC7Pz582ZHAAAAAAAAQJBw4gUAAAAAAAAAAGCAWM0OAADAUFJbWyufzxfw+vr6enm93iAmAgAAAAAAwEDixAsAACFks9nkdruVnJwc0Hq73S6XyyWn0xnkZAAAAAAAABgIzHgBACCE/H6/nn/+ecXGxga0vqenJ8iJAAAAAAAAMJAovAAAEEKzZs1SU1NTwOuzs7MVExMTxEQAAAAAAAAYSLQaAwAAAAAAAAAAGCBWswMAAAAAAAAAAAAMFhReAAAAAAAAAAAABgiFFwAAAAAAAAAAgAFC4QUAAAAAAAAAAGCAUHgBAAAAMOT87Gc/03e/+12zYwAAAAAYhCi8AAAAAIg4brdba9askdPpVFRUlCZMmKD58+fr+PHjZkcDAAAAMMQNMzsAAAAAAHwTf/zjH5WTkyOHw6FXXnlFd955p7744gtVVFRo9erVOnv2rNkRAQAAAAxhnHgBAAAAEFFWrVoli8Wi3//+93rkkUd0xx13aNq0aVq/fr3ef/99SdKHH36ohx56SCNHjpTdbldBQYEuXrx40685e/ZsrVu3rte9hx9+WMuWLTOuU1NT9fOf/1yFhYUaOXKkJk6cqPLycl26dMn4XhkZGfrP//xP43NKS0vlcDhUUVGh9PR0jRw5UnPnzlVLS4ux5sSJE8rKylJcXJwcDodycnJ04cKFgfmfBQAAACDkKLwAAAAAiBhtbW06evSoVq9erbi4uBs+7nA45PP59NBDD6mtrU2/+93vVFVVpXPnzmnx4sW3/P1fffVV5eTk6L/+67/04IMP6vHHH1dhYaEee+wxnT59Wt/5zndUWFgov99vfE5XV5e2bNmiX/3qV/qXf/kXffjhh/rJT34iSfJ6vXr44Yd13333qba2VidPntSKFStksVhuOSsAAAAAc9BqDAAAAEDE+O///m/5/X5NmTLlpmuOHz+uuro6nT9/XhMmTJAkvf3225o2bZr+4z/+Q5mZmd/6++fl5empp56SJG3cuFFvvvmmMjMztWjRIknShg0blJ2drYsXL2rs2LGSpC+++EJvvfWWvvOd70iSnn76ab344ouSpPb2dv3pT3/SvHnzjI+np6d/63wAAAAAzMeJFwAAAAAR46snSW6msbFREyZMMIoukjR16lQ5HA41Njbe0vfPyMgw/nvMmDGSpDvvvPOGe5988olxLzY21iiqSFJKSorx8cTERC1btky5ubmaP3++XnvttV5tyAAAAABEHgovAAAAACLG7bffLovForNnzw7o17VarTcUdb744osb1g0fPtz47y/bgfV1z+fz9fk5X6756vfas2ePTp48qXvuuUfvvPOO7rjjDmNWDQAAAIDIQ+EFAAAAQMRITExUbm6u3njjDV25cuWGj3s8HqWnp+ujjz7SRx99ZNxvaGiQx+PR1KlT+/y6ycnJvU6aXL16VWfOnBn4v8BN3HXXXfrpT3+qf//3f9f06dO1f//+kH1vAAAAAAOLwgsAAACAiPLGG2/o6tWrysrK0sGDB9Xc3KzGxka9/vrrys7O1pw5c3TnnXfqBz/4gU6fPq3f//73Kiws1H333ac///M/7/Nrfv/739fhw4d1+PBhnT17Vn/zN38jj8cT9L/L+fPn9dOf/lQnT57UhQsXVFlZqebmZua8AAAAABFsmNkBAAAAAOCbcDqdOn36tIqLi/XjH/9YLS0tSk5O1syZM/Xmm2/KYrHon/7pn7RmzRrNmjVLVqtVc+fO1d///d/f9Gs++eSTqqmpUWFhoYYNG6ZnnnlGf/EXfxH0v0tsbKzOnj2rvXv3qrW1VSkpKVq9erWeeuqpoH9vAAAAAMFh8QcynRIAAAAAAAAAAAD9otUYAAAAAAAAAADAAKHwAgAAAAAAAAAAMEAovAAAAAAAAAAAAAwQCi8AAAAAAAAAAAADhMILAAAAAAAAAADAAKHwAgAAAAAAAAAAMEAovAAAAAAAAAAAAAwQCi8AAAAAAAAAAAADhMILAAAAAAAAAADAAKHwAgAAAAAAAAAAMEAovAAAAAAAAAAAAAwQCi8AAAAAAAAAAAAD5P8BwL6vvbcicywAAAAASUVORK5CYII=",
"text/plain": [
"