{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Robot - Feature engineering on sensor data\n",
"\n",
"The purpose of this notebook is to illustrate how we can overcome the feature explosion problem based on an example dataset involving sensor data.\n",
"\n",
"Summary:\n",
"\n",
"- Prediction type: __Regression__\n",
"- Domain: __Robotics__\n",
"- Prediction target: __The force vector on the robot's arm__ \n",
"- Population size: __15001__"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Feature explosion \n",
"\n",
"### The problem\n",
"\n",
"The feature explosion problem is one of the most important issues in automated feature engineering. In fact, it is probably the main reason why automated feature engineering is not already the norm in data science projects involving business data.\n",
"\n",
"To illustrate the problem, consider how data scientists write features for a simple time series problem:\n",
"\n",
"```sql\n",
"SELECT SOME_AGGREGATION(t2.some_column)\n",
"FROM some_table t1\n",
"LEFT JOIN some_table t2\n",
"ON t1.join_key = t2.join_key\n",
"WHERE t2.some_other_column >= some_value\n",
"AND t2.rowid <= t1.rowid\n",
"AND t2.rowid + some_other_value > t1.rowid\n",
"GROUP BY t1.rowid;\n",
"```\n",
"\n",
"Think about that for a second. \n",
"\n",
"Every column that we have can either be aggregated (*some_column*) or it can be used for our conditions (*some_other_column*). That means if we have *n* columns to aggregate, we can potentially build conditions for $n$ other columns. In other words, the computational complexity is $n^2$ in the number of columns.\n",
"\n",
"Note that this problem occurs regardless of whether you automate feature engineering or you do it by hand. The size of the search space is $n^2$ in the number of columns in either case, unless you can rule something out a-priori.\n",
"\n",
"This problem is known as _feature explosion_."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### The solution\n",
"\n",
"So when we have relational data or time series with many columns, what do we do? The answer is to write different features. Specifically, suppose we had features like this:\n",
"\n",
"```sql\n",
"SELECT SOME_AGGREGATION(\n",
" CASE \n",
" WHEN t2.some_column > some_value THEN weight1\n",
" WHEN t2.some_column <= some_value THEN weight2\n",
" END\n",
")\n",
"FROM some_table t1\n",
"LEFT JOIN some_table t2\n",
"ON t1.join_key = t2.join_key\n",
"WHERE t2.rowid <= t1.rowid\n",
"AND t2.rowid + some_other_value > t1.rowid\n",
"GROUP BY t1.rowid;\n",
"```\n",
"\n",
"*weight1* and *weight2* are learnable weights. An algorithm that generates features like this can only use columns for conditions, it is not allowed to aggregate columns – and it doesn't need to do so.\n",
"\n",
"That means the computational complexity is linear instead of quadratic. For data sets with a large number of columns this can make all the difference in the world. For instance, if you have 100 columns the size of the search space of the second approach is only 1% of the size of the search space of the first one.\n",
"\n",
"getML features an algorithm called *relboost*, which generates features according to this principle and is therefore very suitable for data sets with many columns."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### The data set\n",
"\n",
"To illustrate the problem, we use a data set related to robotics. When robots interact with humans, the most important think is that they don't hurt people. In order to prevent such accidents, the *force vector* on the robot's arm is measured. However, measuring the force vector is expensive.\n",
"\n",
"Therefore, we want consider an alternative approach. We would like to predict the force vector based on other sensor data that are less costly to measure. To do so, we use *machine learning*.\n",
"\n",
"However, the data set contains measurements from almost 100 different sensors and we do not know which and how many sensors are relevant for predicting the force vector.\n",
"\n",
"The data set has been generously provided by Erik Berger who originally collected it for his dissertation:\n",
"\n",
"> Berger, E. (2018). *Behavior-Specific Proprioception Models for Robotic Force Estimation: A Machine Learning Approach.* Freiberg, Germany: Technische Universitaet Bergakademie Freiberg."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Loading data\n",
"\n",
"We begin by importing the libraries and setting the project."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%pip install -q \"getml==1.5.0\" \"matplotlib==3.9.2\" \"ipywidgets==8.1.5\""
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"getML API version: 1.5.0\n",
"\n"
]
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"import getml\n",
"\n",
"%matplotlib inline \n",
"\n",
"print(f\"getML API version: {getml.__version__}\\n\")"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Launching ./getML --allow-push-notifications=true --allow-remote-ips=true --home-directory=/home/user --in-memory=true --install=false --launch-browser=true --log=false --token=token in /home/user/.getML/getml-1.5.0-x64-linux...\n",
"Launched the getML Engine. The log output will be stored in /home/user/.getML/logs/20240912154610.log.\n",
"\u001b[2K Loading pipelines... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n",
"\u001b[?25h"
]
},
{
"data": {
"text/html": [
"
Connected to project 'robot' .\n",
" \n"
],
"text/plain": [
"Connected to project \u001b[32m'robot'\u001b[0m.\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"getml.engine.launch(allow_remote_ips=True, token='token')\n",
"getml.engine.set_project('robot')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.1 Download from source\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"data_all = getml.data.DataFrame.from_csv(\n",
" \"https://static.getml.com/datasets/robotarm/robot-demo.csv\", \n",
" \"data_all\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
" \n",
" name \n",
" \n",
" \n",
" \n",
" 3 \n",
" \n",
" \n",
" \n",
" 4 \n",
" \n",
" \n",
" \n",
" 5 \n",
" \n",
" \n",
" \n",
" 6 \n",
" \n",
" \n",
" \n",
" 7 \n",
" \n",
" \n",
" \n",
" 8 \n",
" \n",
" \n",
" \n",
" 9 \n",
" \n",
" \n",
" \n",
" 10 \n",
" \n",
" \n",
" \n",
" 11 \n",
" \n",
" \n",
" \n",
" 12 \n",
" \n",
" \n",
" \n",
" 13 \n",
" \n",
" \n",
" \n",
" 14 \n",
" \n",
" \n",
" \n",
" 15 \n",
" \n",
" \n",
" \n",
" 16 \n",
" \n",
" \n",
" \n",
" 17 \n",
" \n",
" \n",
" \n",
" 18 \n",
" \n",
" \n",
" \n",
" 19 \n",
" \n",
" \n",
" \n",
" 20 \n",
" \n",
" \n",
" \n",
" 21 \n",
" \n",
" \n",
" \n",
" 22 \n",
" \n",
" \n",
" \n",
" 23 \n",
" \n",
" \n",
" \n",
" 24 \n",
" \n",
" \n",
" \n",
" 25 \n",
" \n",
" \n",
" \n",
" 26 \n",
" \n",
" \n",
" \n",
" 27 \n",
" \n",
" \n",
" \n",
" 28 \n",
" \n",
" \n",
" \n",
" 29 \n",
" \n",
" \n",
" \n",
" 30 \n",
" \n",
" \n",
" \n",
" 31 \n",
" \n",
" \n",
" \n",
" 32 \n",
" \n",
" \n",
" \n",
" 33 \n",
" \n",
" \n",
" \n",
" 34 \n",
" \n",
" \n",
" \n",
" 35 \n",
" \n",
" \n",
" \n",
" 36 \n",
" \n",
" \n",
" \n",
" 37 \n",
" \n",
" \n",
" \n",
" 38 \n",
" \n",
" \n",
" \n",
" 39 \n",
" \n",
" \n",
" \n",
" 40 \n",
" \n",
" \n",
" \n",
" 41 \n",
" \n",
" \n",
" \n",
" 42 \n",
" \n",
" \n",
" \n",
" 43 \n",
" \n",
" \n",
" \n",
" 44 \n",
" \n",
" \n",
" \n",
" 45 \n",
" \n",
" \n",
" \n",
" 46 \n",
" \n",
" \n",
" \n",
" 47 \n",
" \n",
" \n",
" \n",
" 48 \n",
" \n",
" \n",
" \n",
" 49 \n",
" \n",
" \n",
" \n",
" 50 \n",
" \n",
" \n",
" \n",
" 51 \n",
" \n",
" \n",
" \n",
" 52 \n",
" \n",
" \n",
" \n",
" 53 \n",
" \n",
" \n",
" \n",
" 54 \n",
" \n",
" \n",
" \n",
" 55 \n",
" \n",
" \n",
" \n",
" 56 \n",
" \n",
" \n",
" \n",
" 57 \n",
" \n",
" \n",
" \n",
" 58 \n",
" \n",
" \n",
" \n",
" 59 \n",
" \n",
" \n",
" \n",
" 60 \n",
" \n",
" \n",
" \n",
" 61 \n",
" \n",
" \n",
" \n",
" 62 \n",
" \n",
" \n",
" \n",
" 63 \n",
" \n",
" \n",
" \n",
" 64 \n",
" \n",
" \n",
" \n",
" 65 \n",
" \n",
" \n",
" \n",
" 66 \n",
" \n",
" \n",
" \n",
" 67 \n",
" \n",
" \n",
" \n",
" 68 \n",
" \n",
" \n",
" \n",
" 69 \n",
" \n",
" \n",
" \n",
" 70 \n",
" \n",
" \n",
" \n",
" 71 \n",
" \n",
" \n",
" \n",
" 72 \n",
" \n",
" \n",
" \n",
" 73 \n",
" \n",
" \n",
" \n",
" 74 \n",
" \n",
" \n",
" \n",
" 75 \n",
" \n",
" \n",
" \n",
" 76 \n",
" \n",
" \n",
" \n",
" 77 \n",
" \n",
" \n",
" \n",
" 78 \n",
" \n",
" \n",
" \n",
" 79 \n",
" \n",
" \n",
" \n",
" 80 \n",
" \n",
" \n",
" \n",
" 81 \n",
" \n",
" \n",
" \n",
" 82 \n",
" \n",
" \n",
" \n",
" 83 \n",
" \n",
" \n",
" \n",
" 84 \n",
" \n",
" \n",
" \n",
" 85 \n",
" \n",
" \n",
" \n",
" 86 \n",
" \n",
" \n",
" \n",
" 98 \n",
" \n",
" \n",
" \n",
" 99 \n",
" \n",
" \n",
" \n",
" 100 \n",
" \n",
" \n",
" \n",
" 101 \n",
" \n",
" \n",
" \n",
" 102 \n",
" \n",
" \n",
" \n",
" 103 \n",
" \n",
" \n",
" \n",
" 104 \n",
" \n",
" \n",
" \n",
" 105 \n",
" \n",
" \n",
" \n",
" 106 \n",
" \n",
" \n",
" \n",
" f_x \n",
" \n",
" \n",
" \n",
" f_y \n",
" \n",
" \n",
" \n",
" f_z \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .4098 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3274 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .9604 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -3 .7436 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .0191 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .0205 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 8 .38e-17 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -4 .8116 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .4033 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1369 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .002472 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 9 .803e-16 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -55 .642 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -16 .312 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .2042 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .02167 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .4098 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3274 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .9605 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -3 .7437 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .0191 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .0205 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1233 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .5483 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .8045 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8296 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .07625 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1906 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1211 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .5483 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .8157 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8281 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .07015 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1983 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7699 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .41 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .08279 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .4094 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .786 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3682 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -22 .654 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -11 .503 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -18 .673 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -3 .5155 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 5 .8354 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .05 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7699 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .41 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .08278 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .4094 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .786 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3681 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .069 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .009 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .9668 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .834 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .925 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .818 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .834 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .955 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .971 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -11 .03 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 6 .9 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -7 .33 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .4098 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3274 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .9604 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -3 .7436 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .0191 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .0205 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 8 .38e-17 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -4 .8116 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .4033 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1369 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .002472 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 9 .803e-16 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -55 .642 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -16 .312 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .2042 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .02167 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .4098 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3274 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .9604 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -3 .7437 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .0191 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .0205 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1188 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .5506 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .8404 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8281 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06405 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1998 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1211 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .5483 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .8157 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8281 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .07015 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1983 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7699 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .41 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .0828 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .4094 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7859 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3682 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -21 .627 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -11 .046 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -18 .66 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -3 .5395 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 5 .7577 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .9805 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7699 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .41 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .08278 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .4094 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .786 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3681 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .009 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .009 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .8594 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .834 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .925 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .818 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .834 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .955 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .971 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -10 .848 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 6 .7218 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -7 .4427 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 2 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .4098 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3274 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .9604 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -3 .7436 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .0191 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .0205 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 8 .38e-17 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -4 .8116 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .4033 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1369 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .002472 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 9 .803e-16 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -55 .642 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -16 .312 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .2042 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .02167 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .4098 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3274 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .9605 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -3 .7437 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .0191 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .0205 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1099 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .5438 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .8 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8205 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .07473 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .183 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1211 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .5483 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .8157 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8281 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .07015 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1922 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7699 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .41 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .08279 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .4094 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7859 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3682 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -23 .843 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -12 .127 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -18 .393 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -3 .6453 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 5 .978 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .9978 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7699 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .41 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .08278 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .4094 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .786 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3681 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .009 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .069 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .931 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .879 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .925 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .818 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .834 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .955 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .971 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -10 .666 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 6 .5436 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -7 .5555 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .4098 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3274 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .9604 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -3 .7436 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .0191 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .0205 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 8 .38e-17 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -4 .8116 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .4033 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1369 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .002472 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 9 .803e-16 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -55 .642 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -16 .312 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .2042 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .02167 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .4098 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3273 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .9604 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -3 .7437 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .0191 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .0205 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1233 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .5483 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .8224 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8266 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .07168 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1998 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1211 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .5483 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .8157 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8281 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .07015 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1967 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7699 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .41 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .08275 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .4094 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .786 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3681 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -21 .772 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -10 .872 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -18 .691 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -3 .5512 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 5 .6648 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .9976 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7699 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .41 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .08278 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .4094 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .786 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3681 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .069 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .069 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .931 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .879 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .925 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .818 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .834 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .955 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .971 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -10 .507 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 6 .4533 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -7 .65 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 4 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .4098 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3274 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .9604 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -3 .7436 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .0191 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .0205 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 8 .38e-17 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -4 .8116 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .4033 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1369 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .002472 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 9 .803e-16 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -55 .642 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -16 .312 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .2042 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .02167 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .4098 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3274 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .9604 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -3 .7437 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .0191 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .0205 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1255 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .5394 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .8 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8327 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .07473 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1952 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1211 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .5483 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .8157 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8327 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .07015 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1922 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7699 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .41 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .08278 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .4094 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .786 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3681 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -22 .823 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -11 .645 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -18 .524 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -3 .5305 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 5 .8712 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .0096 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7699 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .41 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .08278 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .4094 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .786 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3681 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .069 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .069 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .8952 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .879 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .925 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .818 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .834 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .955 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .971 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -10 .413 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 6 .6267 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -7 .69 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 14996 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .0837 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8836 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 .4501 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .2102 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .559 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -5 .3265 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03151 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .05375 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .04732 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1482 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .05218 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06706 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .2969 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .5065 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .4459 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .3963 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .4916 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .6319 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3694 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -4 .1879 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .1847 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .09441 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1568 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1898 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 .1605 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -42 .951 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -19 .023 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .6343 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1551 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1338 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .0836 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8836 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 .4503 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .2101 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .5591 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -5 .3263 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03347 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .05585 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .04805 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .151 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .05513 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .07114 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3564 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .0394 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .3001 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .2181 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1159 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .09608 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3632 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .0394 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .3023 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .212 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .125 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1113 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7116 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06957 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06036 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8506 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 2 .9515 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03352 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03558 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03029 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .002444 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .04208 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1458 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1098 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8784 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .07291 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -37 .584 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .0001132 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .1031 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .03318 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7117 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .0697 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06044 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8511 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 2 .951 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03356 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03508 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02849 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .001571 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03951 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1442 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1036 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .069 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .009 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .8952 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .818 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .834 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .818 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .803 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .94 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .94 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 10 .84 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .41 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 16 .14 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 14997 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .0835 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .884 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 .4505 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .2091 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .5594 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -5 .326 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02913 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .0497 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .04376 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .137 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .04825 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .062 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .2969 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .5065 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .4459 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .3963 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .4916 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .6319 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3677 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -4 .1837 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .1874 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .09682 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1562 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .189 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 .1592 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -42 .937 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -19 .023 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .6331 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1545 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1338 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .0833 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8841 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 .4507 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .209 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .5596 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -5 .3258 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02909 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .04989 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .04198 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1481 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .05465 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06249 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3161 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .1179 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .253 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3752 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03965 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .08693 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3273 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .1022 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .2597 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .366 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .05033 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .0915 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7114 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06932 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06039 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8497 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 2 .953 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03359 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .0335 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02723 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .001208 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .04242 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1428 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .0967 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .7137 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .8552 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -38 .514 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .6088 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -3 .2383 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .9666 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7114 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06948 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06045 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8503 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 2 .9525 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03359 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03246 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02633 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .001469 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03657 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1333 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .09571 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .009 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .009 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .8594 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .818 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .834 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .818 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .803 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .94 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .94 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 10 .857 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .52 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 15 .943 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 14998 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .0833 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8844 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 .4508 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .208 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .5598 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -5 .3256 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02676 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .04565 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .04019 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1258 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .04431 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .05695 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .2969 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .5065 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .4459 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .3963 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .4916 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .6319 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3659 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -4 .1797 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .1901 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .09922 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1555 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1881 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 .1579 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -42 .924 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -19 .023 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .6321 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .154 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1338 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .0831 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8844 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 .451 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .2078 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .56 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -5 .3253 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02776 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .04382 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .03652 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1295 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .05064 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .04818 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .343 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .2569 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .1566 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3035 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .00305 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1434 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3385 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .2322 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .1589 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .302 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .00915 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1571 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7111 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06912 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06039 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .849 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 2 .9544 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .0337 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02911 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02589 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .001292 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .04046 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1246 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .08058 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 4 .2749 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 .0128 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -36 .412 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .2811 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .4296 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .1013 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7112 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06928 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06046 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8495 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 2 .9538 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03362 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02984 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02417 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .001364 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03362 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1224 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .08786 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .009 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .009 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .931 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .818 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .834 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .818 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .803 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .94 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .94 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 10 .89 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .74 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 15 .55 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 14999 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .0831 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8847 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 .4511 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .2071 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .5602 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -5 .3251 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02438 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .0416 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .03662 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1147 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .04038 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .0519 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .2969 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .5065 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .4459 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .3963 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .4916 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .6319 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3642 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -4 .1758 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .1928 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1016 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1548 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1873 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 .1568 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -42 .912 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -19 .023 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .6311 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1535 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1338 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .0829 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8848 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 .4513 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .2068 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .5604 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -5 .3249 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02149 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .04059 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .03417 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1202 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .0395 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .04178 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .4237 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .2703 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .0939 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .302 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .01372 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1739 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .4125 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .2569 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .0916 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .2943 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02898 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1891 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7109 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06894 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06039 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8484 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 2 .9557 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03384 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02738 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .01982 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .001031 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03028 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1157 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .06702 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 11 .518 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 .5002 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -39 .314 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .8671 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3734 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .5733 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7109 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06909 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06047 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8488 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 2 .955 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03364 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02721 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02201 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .001255 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03067 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1115 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .08003 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .009 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .009 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .931 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .818 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .834 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .818 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .803 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .94 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .94 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 11 .29 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .4601 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 15 .743 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 15000 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .0829 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .885 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 .4514 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .2062 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .5605 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -5 .3247 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02201 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03755 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .03305 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1035 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03645 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .04684 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .2969 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .5065 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .4459 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .3963 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .4916 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .6319 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3624 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -4 .172 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .1955 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1041 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1542 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1864 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 .1558 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -42 .901 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -19 .023 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .6302 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1531 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1338 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .0827 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8851 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 .4516 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .2059 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .5607 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -5 .3246 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02096 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03808 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .02958 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1171 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03289 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .03883 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .417 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .2434 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .058 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .4102 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .04728 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1967 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .4237 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .2367 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .0714 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .4163 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .0671 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .2059 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7107 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06878 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06041 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8478 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 2 .9567 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03382 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02535 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .01854 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .001614 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02421 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .11 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .06304 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 15 .099 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 2 .936 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -39 .068 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .9402 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .139 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .2674 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7107 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06893 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06048 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8482 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 2 .9561 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03367 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02458 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .01986 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .001142 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .0277 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1007 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .07221 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .009 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .069 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .8952 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .818 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .834 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .818 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .803 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .94 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .955 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 11 .69 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .1801 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 15 .937 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
"
\n",
"\n",
" \n",
" 15001 rows x 96 columns \n",
" memory usage: 11.52 MB \n",
" name: data_all \n",
" type: getml.DataFrame \n",
" \n",
"
\n"
],
"text/plain": [
" name 3 4 5 6 ... 105 106 f_x\n",
" role unused_float unused_float unused_float unused_float ... unused_float unused_float unused_float\n",
" 0 3.4098 -0.3274 0.9604 -3.7436 ... 47.955 47.971 -11.03 \n",
" 1 3.4098 -0.3274 0.9604 -3.7436 ... 47.955 47.971 -10.848\n",
" 2 3.4098 -0.3274 0.9604 -3.7436 ... 47.955 47.971 -10.666\n",
" 3 3.4098 -0.3274 0.9604 -3.7436 ... 47.955 47.971 -10.507\n",
" 4 3.4098 -0.3274 0.9604 -3.7436 ... 47.955 47.971 -10.413\n",
" ... ... ... ... ... ... ... \n",
"14996 3.0837 -0.8836 1.4501 -2.2102 ... 47.94 47.94 10.84 \n",
"14997 3.0835 -0.884 1.4505 -2.2091 ... 47.94 47.94 10.857\n",
"14998 3.0833 -0.8844 1.4508 -2.208 ... 47.94 47.94 10.89 \n",
"14999 3.0831 -0.8847 1.4511 -2.2071 ... 47.94 47.94 11.29 \n",
"15000 3.0829 -0.885 1.4514 -2.2062 ... 47.94 47.955 11.69 \n",
"\n",
" name f_y f_z\n",
" role unused_float unused_float\n",
" 0 6.9 -7.33 \n",
" 1 6.7218 -7.4427\n",
" 2 6.5436 -7.5555\n",
" 3 6.4533 -7.65 \n",
" 4 6.6267 -7.69 \n",
" ... ... \n",
"14996 -1.41 16.14 \n",
"14997 -1.52 15.943 \n",
"14998 -1.74 15.55 \n",
"14999 -1.4601 15.743 \n",
"15000 -1.1801 15.937 \n",
"\n",
"\n",
"15001 rows x 96 columns\n",
"memory usage: 11.52 MB\n",
"type: getml.DataFrame"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data_all"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.2 Prepare data for getML\n",
"\n",
"The force vector consists of three component (*f_x*, *f_y* and *f_z*), meaning that we have three targets."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"data_all.set_role([\"f_x\", \"f_y\", \"f_z\"], getml.data.roles.target)\n",
"data_all.set_role(data_all.roles.unused, getml.data.roles.numerical)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This is what the data set looks like:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
" \n",
" name \n",
" \n",
" \n",
" \n",
" f_x \n",
" \n",
" \n",
" \n",
" f_y \n",
" \n",
" \n",
" \n",
" f_z \n",
" \n",
" \n",
" \n",
" 3 \n",
" \n",
" \n",
" \n",
" 4 \n",
" \n",
" \n",
" \n",
" 5 \n",
" \n",
" \n",
" \n",
" 6 \n",
" \n",
" \n",
" \n",
" 7 \n",
" \n",
" \n",
" \n",
" 8 \n",
" \n",
" \n",
" \n",
" 9 \n",
" \n",
" \n",
" \n",
" 10 \n",
" \n",
" \n",
" \n",
" 11 \n",
" \n",
" \n",
" \n",
" 12 \n",
" \n",
" \n",
" \n",
" 13 \n",
" \n",
" \n",
" \n",
" 14 \n",
" \n",
" \n",
" \n",
" 15 \n",
" \n",
" \n",
" \n",
" 16 \n",
" \n",
" \n",
" \n",
" 17 \n",
" \n",
" \n",
" \n",
" 18 \n",
" \n",
" \n",
" \n",
" 19 \n",
" \n",
" \n",
" \n",
" 20 \n",
" \n",
" \n",
" \n",
" 21 \n",
" \n",
" \n",
" \n",
" 22 \n",
" \n",
" \n",
" \n",
" 23 \n",
" \n",
" \n",
" \n",
" 24 \n",
" \n",
" \n",
" \n",
" 25 \n",
" \n",
" \n",
" \n",
" 26 \n",
" \n",
" \n",
" \n",
" 27 \n",
" \n",
" \n",
" \n",
" 28 \n",
" \n",
" \n",
" \n",
" 29 \n",
" \n",
" \n",
" \n",
" 30 \n",
" \n",
" \n",
" \n",
" 31 \n",
" \n",
" \n",
" \n",
" 32 \n",
" \n",
" \n",
" \n",
" 33 \n",
" \n",
" \n",
" \n",
" 34 \n",
" \n",
" \n",
" \n",
" 35 \n",
" \n",
" \n",
" \n",
" 36 \n",
" \n",
" \n",
" \n",
" 37 \n",
" \n",
" \n",
" \n",
" 38 \n",
" \n",
" \n",
" \n",
" 39 \n",
" \n",
" \n",
" \n",
" 40 \n",
" \n",
" \n",
" \n",
" 41 \n",
" \n",
" \n",
" \n",
" 42 \n",
" \n",
" \n",
" \n",
" 43 \n",
" \n",
" \n",
" \n",
" 44 \n",
" \n",
" \n",
" \n",
" 45 \n",
" \n",
" \n",
" \n",
" 46 \n",
" \n",
" \n",
" \n",
" 47 \n",
" \n",
" \n",
" \n",
" 48 \n",
" \n",
" \n",
" \n",
" 49 \n",
" \n",
" \n",
" \n",
" 50 \n",
" \n",
" \n",
" \n",
" 51 \n",
" \n",
" \n",
" \n",
" 52 \n",
" \n",
" \n",
" \n",
" 53 \n",
" \n",
" \n",
" \n",
" 54 \n",
" \n",
" \n",
" \n",
" 55 \n",
" \n",
" \n",
" \n",
" 56 \n",
" \n",
" \n",
" \n",
" 57 \n",
" \n",
" \n",
" \n",
" 58 \n",
" \n",
" \n",
" \n",
" 59 \n",
" \n",
" \n",
" \n",
" 60 \n",
" \n",
" \n",
" \n",
" 61 \n",
" \n",
" \n",
" \n",
" 62 \n",
" \n",
" \n",
" \n",
" 63 \n",
" \n",
" \n",
" \n",
" 64 \n",
" \n",
" \n",
" \n",
" 65 \n",
" \n",
" \n",
" \n",
" 66 \n",
" \n",
" \n",
" \n",
" 67 \n",
" \n",
" \n",
" \n",
" 68 \n",
" \n",
" \n",
" \n",
" 69 \n",
" \n",
" \n",
" \n",
" 70 \n",
" \n",
" \n",
" \n",
" 71 \n",
" \n",
" \n",
" \n",
" 72 \n",
" \n",
" \n",
" \n",
" 73 \n",
" \n",
" \n",
" \n",
" 74 \n",
" \n",
" \n",
" \n",
" 75 \n",
" \n",
" \n",
" \n",
" 76 \n",
" \n",
" \n",
" \n",
" 77 \n",
" \n",
" \n",
" \n",
" 78 \n",
" \n",
" \n",
" \n",
" 79 \n",
" \n",
" \n",
" \n",
" 80 \n",
" \n",
" \n",
" \n",
" 81 \n",
" \n",
" \n",
" \n",
" 82 \n",
" \n",
" \n",
" \n",
" 83 \n",
" \n",
" \n",
" \n",
" 84 \n",
" \n",
" \n",
" \n",
" 85 \n",
" \n",
" \n",
" \n",
" 86 \n",
" \n",
" \n",
" \n",
" 98 \n",
" \n",
" \n",
" \n",
" 99 \n",
" \n",
" \n",
" \n",
" 100 \n",
" \n",
" \n",
" \n",
" 101 \n",
" \n",
" \n",
" \n",
" 102 \n",
" \n",
" \n",
" \n",
" 103 \n",
" \n",
" \n",
" \n",
" 104 \n",
" \n",
" \n",
" \n",
" 105 \n",
" \n",
" \n",
" \n",
" 106 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -11 .03 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 6 .9 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -7 .33 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .4098 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3274 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .9604 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -3 .7436 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .0191 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .0205 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 8 .38e-17 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -4 .8116 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .4033 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1369 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .002472 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 9 .803e-16 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -55 .642 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -16 .312 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .2042 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .02167 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .4098 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3274 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .9605 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -3 .7437 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .0191 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .0205 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1233 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .5483 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .8045 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8296 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .07625 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1906 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1211 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .5483 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .8157 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8281 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .07015 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1983 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7699 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .41 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .08279 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .4094 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .786 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3682 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -22 .654 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -11 .503 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -18 .673 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -3 .5155 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 5 .8354 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .05 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7699 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .41 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .08278 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .4094 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .786 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3681 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .069 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .009 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .9668 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .834 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .925 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .818 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .834 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .955 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .971 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -10 .848 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 6 .7218 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -7 .4427 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .4098 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3274 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .9604 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -3 .7436 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .0191 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .0205 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 8 .38e-17 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -4 .8116 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .4033 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1369 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .002472 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 9 .803e-16 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -55 .642 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -16 .312 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .2042 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .02167 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .4098 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3274 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .9604 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -3 .7437 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .0191 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .0205 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1188 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .5506 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .8404 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8281 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06405 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1998 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1211 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .5483 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .8157 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8281 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .07015 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1983 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7699 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .41 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .0828 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .4094 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7859 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3682 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -21 .627 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -11 .046 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -18 .66 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -3 .5395 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 5 .7577 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .9805 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7699 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .41 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .08278 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .4094 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .786 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3681 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .009 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .009 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .8594 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .834 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .925 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .818 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .834 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .955 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .971 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 2 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -10 .666 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 6 .5436 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -7 .5555 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .4098 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3274 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .9604 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -3 .7436 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .0191 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .0205 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 8 .38e-17 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -4 .8116 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .4033 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1369 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .002472 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 9 .803e-16 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -55 .642 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -16 .312 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .2042 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .02167 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .4098 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3274 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .9605 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -3 .7437 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .0191 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .0205 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1099 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .5438 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .8 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8205 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .07473 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .183 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1211 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .5483 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .8157 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8281 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .07015 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1922 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7699 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .41 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .08279 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .4094 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7859 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3682 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -23 .843 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -12 .127 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -18 .393 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -3 .6453 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 5 .978 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .9978 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7699 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .41 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .08278 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .4094 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .786 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3681 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .009 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .069 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .931 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .879 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .925 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .818 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .834 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .955 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .971 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -10 .507 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 6 .4533 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -7 .65 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .4098 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3274 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .9604 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -3 .7436 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .0191 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .0205 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 8 .38e-17 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -4 .8116 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .4033 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1369 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .002472 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 9 .803e-16 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -55 .642 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -16 .312 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .2042 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .02167 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .4098 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3273 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .9604 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -3 .7437 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .0191 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .0205 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1233 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .5483 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .8224 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8266 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .07168 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1998 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1211 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .5483 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .8157 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8281 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .07015 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1967 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7699 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .41 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .08275 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .4094 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .786 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3681 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -21 .772 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -10 .872 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -18 .691 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -3 .5512 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 5 .6648 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .9976 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7699 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .41 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .08278 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .4094 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .786 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3681 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .069 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .069 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .931 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .879 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .925 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .818 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .834 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .955 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .971 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 4 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -10 .413 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 6 .6267 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -7 .69 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .4098 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3274 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .9604 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -3 .7436 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .0191 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .0205 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 8 .38e-17 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -4 .8116 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .4033 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1369 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .002472 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 9 .803e-16 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -55 .642 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -16 .312 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .2042 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .02167 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .4098 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3274 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .9604 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -3 .7437 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .0191 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .0205 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1255 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .5394 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .8 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8327 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .07473 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1952 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1211 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .5483 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .8157 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8327 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .07015 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1922 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7699 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .41 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .08278 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .4094 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .786 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3681 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -22 .823 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -11 .645 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -18 .524 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -3 .5305 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 5 .8712 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .0096 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7699 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .41 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .08278 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .4094 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .786 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3681 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .069 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .069 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .8952 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .879 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .925 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .818 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .834 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .955 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .971 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 14996 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 10 .84 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .41 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 16 .14 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .0837 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8836 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 .4501 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .2102 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .559 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -5 .3265 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03151 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .05375 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .04732 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1482 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .05218 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06706 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .2969 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .5065 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .4459 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .3963 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .4916 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .6319 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3694 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -4 .1879 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .1847 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .09441 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1568 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1898 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 .1605 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -42 .951 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -19 .023 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .6343 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1551 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1338 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .0836 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8836 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 .4503 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .2101 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .5591 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -5 .3263 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03347 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .05585 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .04805 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .151 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .05513 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .07114 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3564 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .0394 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .3001 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .2181 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1159 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .09608 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3632 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .0394 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .3023 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .212 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .125 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1113 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7116 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06957 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06036 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8506 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 2 .9515 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03352 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03558 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03029 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .002444 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .04208 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1458 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1098 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8784 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .07291 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -37 .584 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .0001132 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .1031 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .03318 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7117 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .0697 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06044 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8511 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 2 .951 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03356 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03508 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02849 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .001571 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03951 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1442 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1036 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .069 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .009 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .8952 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .818 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .834 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .818 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .803 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .94 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .94 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 14997 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 10 .857 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .52 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 15 .943 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .0835 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .884 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 .4505 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .2091 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .5594 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -5 .326 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02913 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .0497 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .04376 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .137 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .04825 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .062 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .2969 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .5065 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .4459 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .3963 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .4916 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .6319 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3677 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -4 .1837 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .1874 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .09682 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1562 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .189 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 .1592 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -42 .937 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -19 .023 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .6331 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1545 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1338 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .0833 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8841 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 .4507 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .209 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .5596 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -5 .3258 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02909 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .04989 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .04198 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1481 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .05465 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06249 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3161 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .1179 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .253 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3752 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03965 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .08693 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3273 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .1022 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .2597 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .366 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .05033 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .0915 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7114 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06932 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06039 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8497 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 2 .953 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03359 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .0335 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02723 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .001208 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .04242 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1428 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .0967 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .7137 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .8552 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -38 .514 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .6088 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -3 .2383 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .9666 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7114 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06948 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06045 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8503 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 2 .9525 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03359 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03246 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02633 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .001469 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03657 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1333 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .09571 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .009 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .009 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .8594 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .818 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .834 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .818 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .803 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .94 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .94 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 14998 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 10 .89 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .74 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 15 .55 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .0833 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8844 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 .4508 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .208 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .5598 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -5 .3256 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02676 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .04565 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .04019 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1258 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .04431 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .05695 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .2969 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .5065 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .4459 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .3963 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .4916 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .6319 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3659 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -4 .1797 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .1901 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .09922 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1555 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1881 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 .1579 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -42 .924 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -19 .023 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .6321 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .154 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1338 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .0831 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8844 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 .451 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .2078 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .56 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -5 .3253 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02776 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .04382 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .03652 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1295 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .05064 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .04818 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .343 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .2569 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .1566 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3035 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .00305 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1434 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3385 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .2322 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .1589 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .302 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .00915 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1571 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7111 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06912 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06039 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .849 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 2 .9544 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .0337 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02911 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02589 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .001292 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .04046 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1246 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .08058 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 4 .2749 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 .0128 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -36 .412 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .2811 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .4296 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .1013 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7112 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06928 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06046 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8495 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 2 .9538 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03362 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02984 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02417 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .001364 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03362 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1224 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .08786 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .009 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .009 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .931 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .818 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .834 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .818 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .803 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .94 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .94 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 14999 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 11 .29 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .4601 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 15 .743 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .0831 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8847 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 .4511 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .2071 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .5602 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -5 .3251 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02438 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .0416 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .03662 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1147 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .04038 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .0519 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .2969 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .5065 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .4459 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .3963 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .4916 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .6319 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3642 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -4 .1758 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .1928 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1016 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1548 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1873 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 .1568 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -42 .912 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -19 .023 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .6311 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1535 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1338 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .0829 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8848 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 .4513 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .2068 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .5604 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -5 .3249 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02149 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .04059 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .03417 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1202 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .0395 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .04178 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .4237 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .2703 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .0939 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .302 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .01372 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1739 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .4125 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .2569 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .0916 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .2943 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02898 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1891 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7109 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06894 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06039 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8484 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 2 .9557 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03384 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02738 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .01982 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .001031 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03028 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1157 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .06702 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 11 .518 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 .5002 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -39 .314 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .8671 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3734 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .5733 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7109 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06909 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06047 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8488 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 2 .955 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03364 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02721 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02201 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .001255 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03067 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1115 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .08003 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .009 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .009 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .931 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .818 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .834 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .818 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .803 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .94 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .94 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 15000 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 11 .69 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .1801 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 15 .937 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .0829 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .885 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 .4514 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .2062 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .5605 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -5 .3247 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02201 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03755 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .03305 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1035 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03645 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .04684 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .2969 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .5065 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .4459 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .3963 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .4916 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .6319 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .3624 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -4 .172 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .1955 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1041 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1542 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1864 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 .1558 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -42 .901 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -19 .023 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .6302 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1531 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .1338 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 .0827 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8851 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 .4516 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .2059 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .5607 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -5 .3246 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02096 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03808 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .02958 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1171 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03289 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .03883 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .417 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .2434 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .058 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .4102 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .04728 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1967 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .4237 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -6 .2367 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -2 .0714 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .4163 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .0671 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .2059 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7107 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06878 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06041 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8478 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 2 .9567 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03382 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02535 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .01854 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .001614 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02421 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .11 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .06304 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 15 .099 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 2 .936 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -39 .068 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -1 .9402 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .139 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .2674 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .7107 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06893 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .06048 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .8482 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 2 .9561 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .03367 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .02458 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .01986 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .001142 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .0277 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .1007 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" -0 .07221 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .009 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 48 .069 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 .8952 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .818 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .834 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .818 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .803 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .94 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 47 .955 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
"
\n",
"\n",
" \n",
" 15001 rows x 96 columns \n",
" memory usage: 11.52 MB \n",
" name: data_all \n",
" type: getml.DataFrame \n",
" \n",
"
\n"
],
"text/plain": [
" name f_x f_y f_z 3 ... 102 103 104 105 106\n",
" role target target target numerical ... numerical numerical numerical numerical numerical\n",
" 0 -11.03 6.9 -7.33 3.4098 ... 47.925 47.818 47.834 47.955 47.971\n",
" 1 -10.848 6.7218 -7.4427 3.4098 ... 47.925 47.818 47.834 47.955 47.971\n",
" 2 -10.666 6.5436 -7.5555 3.4098 ... 47.925 47.818 47.834 47.955 47.971\n",
" 3 -10.507 6.4533 -7.65 3.4098 ... 47.925 47.818 47.834 47.955 47.971\n",
" 4 -10.413 6.6267 -7.69 3.4098 ... 47.925 47.818 47.834 47.955 47.971\n",
" ... ... ... ... ... ... ... ... ... \n",
"14996 10.84 -1.41 16.14 3.0837 ... 47.834 47.818 47.803 47.94 47.94 \n",
"14997 10.857 -1.52 15.943 3.0835 ... 47.834 47.818 47.803 47.94 47.94 \n",
"14998 10.89 -1.74 15.55 3.0833 ... 47.834 47.818 47.803 47.94 47.94 \n",
"14999 11.29 -1.4601 15.743 3.0831 ... 47.834 47.818 47.803 47.94 47.94 \n",
"15000 11.69 -1.1801 15.937 3.0829 ... 47.834 47.818 47.803 47.94 47.955\n",
"\n",
"\n",
"15001 rows x 96 columns\n",
"memory usage: 11.52 MB\n",
"type: getml.DataFrame"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data_all"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1.3 Separate data into a training and testing set\n",
"\n",
"We also want to separate the data set into a training and testing set. We do so by using the first 10,500 measurements for training and then using the remainder for testing."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" train \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 \n",
" \n",
" \n",
" train \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 2 \n",
" \n",
" \n",
" train \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 \n",
" \n",
" \n",
" train \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 4 \n",
" \n",
" \n",
" train \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" ... \n",
" \n",
" \n",
" \n",
" \n",
" \n",
"
\n",
"\n",
" \n",
" unknown number of rows \n",
" \n",
" type: StringColumnView \n",
" \n",
"
\n"
],
"text/plain": [
" \n",
" 0 train\n",
" 1 train\n",
" 2 train\n",
" 3 train\n",
" 4 train\n",
" ... \n",
"\n",
"\n",
"unknown number of rows\n",
"type: StringColumnView"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"split = getml.data.split.time(data_all, \"rowid\", test=10500)\n",
"split"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"data model \n",
" \n",
"
diagram
\n",
"
data_all population rowid <= rowid Memory: 30 time steps \n",
"
\n",
"\n",
" \n",
"
staging
\n",
" \n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" data frames \n",
" \n",
" \n",
" \n",
" staging table \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" population \n",
" \n",
" \n",
" \n",
" POPULATION__STAGING_TABLE_1 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 \n",
" \n",
" \n",
" data_all \n",
" \n",
" \n",
" \n",
" DATA_ALL__STAGING_TABLE_2 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
"
\n",
"
\n",
" \n",
"container \n",
"\n",
"
\n",
"
population
\n",
" \n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" subset \n",
" \n",
" \n",
" \n",
" name \n",
" \n",
" \n",
" \n",
" rows \n",
" \n",
" \n",
" \n",
" type \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" test \n",
" \n",
" \n",
" \n",
" data_all \n",
" \n",
" \n",
" \n",
" 4501 \n",
" \n",
" \n",
" \n",
" View \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 \n",
" \n",
" \n",
" train \n",
" \n",
" \n",
" \n",
" data_all \n",
" \n",
" \n",
" \n",
" 10500 \n",
" \n",
" \n",
" \n",
" View \n",
" \n",
" \n",
" \n",
" \n",
" \n",
"
\n",
"
\n",
"
\n",
"
peripheral
\n",
" \n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" name \n",
" \n",
" \n",
" \n",
" rows \n",
" \n",
" \n",
" \n",
" type \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" data_all \n",
" \n",
" \n",
" \n",
" 15001 \n",
" \n",
" \n",
" \n",
" View \n",
" \n",
" \n",
" \n",
" \n",
" \n",
"
\n",
"
\n",
"
"
],
"text/plain": [
"data model\n",
"\n",
" population:\n",
" columns:\n",
" - 3: numerical\n",
" - 4: numerical\n",
" - 5: numerical\n",
" - 6: numerical\n",
" - 7: numerical\n",
" - ...\n",
"\n",
" joins:\n",
" - right: 'data_all'\n",
" time_stamps: (population.rowid, data_all.rowid)\n",
" relationship: 'many-to-many'\n",
" memory: 30\n",
" lagged_targets: False\n",
"\n",
" data_all:\n",
" columns:\n",
" - 3: numerical\n",
" - 4: numerical\n",
" - 5: numerical\n",
" - 6: numerical\n",
" - 7: numerical\n",
" - ...\n",
"\n",
"\n",
"container\n",
"\n",
" population\n",
" subset name rows type\n",
" 0 test data_all 4501 View\n",
" 1 train data_all 10500 View\n",
"\n",
" peripheral\n",
" name rows type\n",
" 0 data_all 15001 View"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"time_series = getml.data.TimeSeries(\n",
" population=data_all,\n",
" split=split,\n",
" time_stamps=\"rowid\",\n",
" lagged_targets=False,\n",
" memory=30,\n",
")\n",
"\n",
"time_series"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Predictive modeling\n",
"\n",
"### 2.1 Building the pipeline\n",
"\n",
"We then build a pipeline based on the *relboost* algorithm with *xgboost* as our predictor."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"relboost = getml.feature_learning.Relboost(\n",
" loss_function=getml.feature_learning.loss_functions.SquareLoss,\n",
" num_features=10,\n",
")\n",
"\n",
"xgboost = getml.predictors.XGBoostRegressor()\n",
"\n",
"pipe1 = getml.pipeline.Pipeline(\n",
" data_model=time_series.data_model,\n",
" feature_learners=[relboost],\n",
" predictors=xgboost\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"It is always a good idea to check the pipeline for any potential issues."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"Checking data model... \n",
" \n"
],
"text/plain": [
"Checking data model\u001b[33m...\u001b[0m\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[2K Staging... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n",
"\u001b[2K Checking... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n",
"\u001b[?25h"
]
},
{
"data": {
"text/html": [
"OK.\n",
" \n"
],
"text/plain": [
"OK.\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"pipe1.check(time_series.train)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.2 Fitting the pipeline"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"Checking data model... \n",
" \n"
],
"text/plain": [
"Checking data model\u001b[33m...\u001b[0m\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[2K Staging... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n",
"\u001b[?25h"
]
},
{
"data": {
"text/html": [
"OK.\n",
" \n"
],
"text/plain": [
"OK.\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[2K Staging... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n",
"\u001b[2K Relboost: Training features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:32\n",
"\u001b[2K Relboost: Training features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:34\n",
"\u001b[2K Relboost: Training features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:34\n",
"\u001b[2K Relboost: Building features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:08\n",
"\u001b[2K Relboost: Building features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:07\n",
"\u001b[2K Relboost: Building features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:07\n",
"\u001b[2K XGBoost: Training as predictor... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:03\n",
"\u001b[2K XGBoost: Training as predictor... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:03\n",
"\u001b[2K XGBoost: Training as predictor... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:04\n",
"\u001b[?25h"
]
},
{
"data": {
"text/html": [
"Trained pipeline.\n",
" \n"
],
"text/plain": [
"Trained pipeline.\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Time taken: 0:02:16.080596.\n",
"\n"
]
},
{
"data": {
"text/html": [
"Pipeline(data_model='population',\n",
" feature_learners=['Relboost'],\n",
" feature_selectors=[],\n",
" include_categorical=False,\n",
" loss_function='SquareLoss',\n",
" peripheral=['data_all'],\n",
" predictors=['XGBoostRegressor'],\n",
" preprocessors=[],\n",
" share_selected_features=0.5,\n",
" tags=['container-cETtgf']) "
],
"text/plain": [
"Pipeline(data_model='population',\n",
" feature_learners=['Relboost'],\n",
" feature_selectors=[],\n",
" include_categorical=False,\n",
" loss_function='SquareLoss',\n",
" peripheral=['data_all'],\n",
" predictors=['XGBoostRegressor'],\n",
" preprocessors=[],\n",
" share_selected_features=0.5,\n",
" tags=['container-cETtgf'])"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pipe1.fit(time_series.train)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.3 Evaluating the pipeline"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[2K Staging... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n",
"\u001b[2K Preprocessing... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n",
"\u001b[2K Relboost: Building features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:03\n",
"\u001b[2K Relboost: Building features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:03\n",
"\u001b[2K Relboost: Building features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:03\n",
"\u001b[?25h"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" date time \n",
" \n",
" \n",
" \n",
" set used \n",
" \n",
" \n",
" \n",
" target \n",
" \n",
" \n",
" \n",
" mae \n",
" \n",
" \n",
" \n",
" rmse \n",
" \n",
" \n",
" \n",
" rsquared \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" 2024-09-12 15:44:28 \n",
" \n",
" \n",
" \n",
" train \n",
" \n",
" \n",
" \n",
" f_x \n",
" \n",
" \n",
" \n",
" 0.4467 \n",
" \n",
" \n",
" \n",
" 0.5882 \n",
" \n",
" \n",
" \n",
" 0.9961 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 \n",
" \n",
" \n",
" 2024-09-12 15:44:28 \n",
" \n",
" \n",
" \n",
" train \n",
" \n",
" \n",
" \n",
" f_y \n",
" \n",
" \n",
" \n",
" 0.511 \n",
" \n",
" \n",
" \n",
" 0.675 \n",
" \n",
" \n",
" \n",
" 0.9895 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 2 \n",
" \n",
" \n",
" 2024-09-12 15:44:28 \n",
" \n",
" \n",
" \n",
" train \n",
" \n",
" \n",
" \n",
" f_z \n",
" \n",
" \n",
" \n",
" 0.2724 \n",
" \n",
" \n",
" \n",
" 0.3544 \n",
" \n",
" \n",
" \n",
" 0.9988 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 \n",
" \n",
" \n",
" 2024-09-12 15:44:40 \n",
" \n",
" \n",
" \n",
" test \n",
" \n",
" \n",
" \n",
" f_x \n",
" \n",
" \n",
" \n",
" 0.5649 \n",
" \n",
" \n",
" \n",
" 0.7368 \n",
" \n",
" \n",
" \n",
" 0.995 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 4 \n",
" \n",
" \n",
" 2024-09-12 15:44:40 \n",
" \n",
" \n",
" \n",
" test \n",
" \n",
" \n",
" \n",
" f_y \n",
" \n",
" \n",
" \n",
" 0.564 \n",
" \n",
" \n",
" \n",
" 0.7535 \n",
" \n",
" \n",
" \n",
" 0.9871 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 5 \n",
" \n",
" \n",
" 2024-09-12 15:44:40 \n",
" \n",
" \n",
" \n",
" test \n",
" \n",
" \n",
" \n",
" f_z \n",
" \n",
" \n",
" \n",
" 0.301 \n",
" \n",
" \n",
" \n",
" 0.3931 \n",
" \n",
" \n",
" \n",
" 0.9985 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
"
"
],
"text/plain": [
" date time set used target mae rmse rsquared\n",
"0 2024-09-12 15:44:28 train f_x 0.4467 0.5882 0.9961\n",
"1 2024-09-12 15:44:28 train f_y 0.511 0.675 0.9895\n",
"2 2024-09-12 15:44:28 train f_z 0.2724 0.3544 0.9988\n",
"3 2024-09-12 15:44:40 test f_x 0.5649 0.7368 0.995 \n",
"4 2024-09-12 15:44:40 test f_y 0.564 0.7535 0.9871\n",
"5 2024-09-12 15:44:40 test f_z 0.301 0.3931 0.9985"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pipe1.score(time_series.test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.4 Feature importances\n",
"\n",
"It is always a good idea to study the features the relational learning algorithm has extracted.\n",
"\n",
"The feature importance is calculated by xgboost based on the improvement of the optimizing criterium at each split in the decision tree and is normalized to 100%.\n",
"\n",
"Also note that we have three different target (*f_x*, *f_y* and *f_z*) and that different features are relevant for different targets."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABl4AAAOsCAYAAAAr1cuiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACsPUlEQVR4nOzdeZxVdf0/8PcdGAaGRUBkjVhEUjTEQMgtTRHMcstywRKxrFRyIeInpiyKYmZ+yTRJDUWNpK8t3zYhRUARAkExXDIXyK8iYJqgoMPInN8fPuZ+GWZhGA5ejz6fj8c89J7lc1733nPv8DivOefkkiRJAgAAAAAAgJ1WVOgAAAAAAAAAHxWKFwAAAAAAgJQoXgAAAAAAAFKieAEAAAAAAEiJ4gUAAAAAACAlihcAAAAAAICUKF4AAAAAAABSongBAAAAAABIieIFAAAAAAAgJYoXACCTXnrppfj2t78de+65ZzRt2jRyuVzkcrn4/e9/X+hobOOOO+7Ivz+rVq0qdBxI1Uf9u+iss86KXC4X3bt3L3QUAADIjMaFDgAAsKNeeuml6N+/f/z73/8udBTgY8x3EQAAUBNnvAAAmTNp0qT497//HY0bN44f/vCHsWjRolixYkWsWLEijjrqqELHq8Jfi5OGCRMm5M+k4MMjS99FW3MWGnw4+DcCAHx0OeMFAMicBx54ICIiTjzxxBgzZkyB07A9Z511Vpx11lmFjgGp810EAADUxBkvAEDmvPLKKxER0bt37wInAT7OfBcBAAA1UbwAAJmzefPmiIgoLi4ucBLg48x3EQAAUBPFCwCQCVvfk6DSxIkT89NyuVyNl7PasmVLTJ8+Pb70pS9F586do6SkJHbfffc49NBD4/rrr4933nmn1m1WVFTEgw8+GKNHj45DDjkk2rVrF8XFxdG6devo169fjB49Ol566aUa1628J8f06dMjIuJf//pXlaw13a+jctqECRPqfC2OOOKIyOVyccQRR1SbN2/evPw48+bNi4qKipg2bVp8/vOfjw4dOkRRUVGNr9Njjz0W3/nOd+JTn/pUtGjRIpo3bx6f+tSn4txzz41//vOfdebZnu3dT2Lb5/P888/Hd77znejZs2c0a9YsunfvHt/4xjfiX//6V5X1nnzyyRgxYkT07NkzmjZtGl27do1zzz031q1bV2uWba+n/8orr8SoUaOid+/eUVpaGnvssUd88YtfjFmzZtXrua1YsSK+9a1vxV577RWlpaXRsmXL2HfffePiiy+u894Zq1atyr8md9xxR0RE/Pa3v41jjz02OnfuHI0bN44jjjgi/9pNnDgxv25N+9HW29qZ/bbStu9J5evUq1evaNasWey+++4xdOjQuO++++r1Or322mtxxRVXxCGHHBLt27eP4uLiaNOmTQwaNCjGjBkTf//732td9913340bb7wxjjrqqOjYsWM0adIk2rdvH4MHD45f/OIX8d5779W57QcffDBOP/306NGjRzRr1ixKS0ujW7du8dnPfjZGjx4dDz74YL2eQ6WGfhe99tprcdlll8UBBxwQrVu3jqZNm0b37t3j61//eixYsKDObXbv3r3KuMuWLYuzzjorevToESUlJfW+90/l98OIESPy03r06FFtf5o3b16tY7z55psxbty42HfffaN58+bRunXr+NznPhe//OUv65Vh/fr1MXny5DjkkENijz32iCZNmkSnTp3iuOOOi3vvvTeSJKnXONt6/fXXo3PnzpHL5eITn/hE/Oc//6l12S9/+cuRy+WiqKgo5syZ06DtVaqoqIhf/epXcfLJJ8cnP/nJaNasWTRr1ix69+4dZ5xxRtx7771RXl5e47qbN2+On/3sZ/H5z38+/1p07Ngxjj322Lj77rujoqKi1u1u+122Zs2aGD16dP67rEuXLnHKKafEU089VWW9VatWxQUXXBC9e/eOZs2aRYcOHeKMM86IF154odZtbXuPqTfffDPGjx8f++67b7Ro0SLatm0bn//85+NXv/pVvV6zVatWxcUXXxz77rtvtGzZMkpLS2OvvfaKb3/727FixYo619329+Sjjz4ap59+enziE5+IkpKS6NKlS3z961+PZ555pl5ZGvq7b9vfaxUVFXHLLbfEwQcfHG3atInmzZtH375946qrropNmzZVW78h/0YAADImAQDIgNtvvz2JiDp/hg8fXmWdf/3rX8n+++9f5zq9evVKnn322Rq3OX78+O1us7S0NPntb3/boHW3/adY5bTx48fX+VocfvjhSUQkhx9+eLV5c+fOzY9z3333JYMHD67zddqyZUty8cUXJ7lcrtaMjRs3Tn7+85/XmakuW793K1eurPP53H///UnLli1rzNG+ffvkmWeeSZIkSWbMmJE0adKkxuW6deuWvPLKKzVmGT58eH6ZRx99NGnfvn2tz3vUqFF1Pq+rr746KSoqqnX9kpKSZPr06TWuu3Llyvxy06ZNS77+9a9XW//www+v136/7eu6M/ttTe/JggULknbt2tU61o9+9KM6X6e77747ad68eZ15unXrVuO6y5cvT7p161bnugceeGCyZs2aGte/6KKLtvta7L777nXm31ZDvotmz56dtGrVqs51zj///GTLli01brPyNRg+fHhy8803J40bN67zu6Q2W38/1PUzd+7c/Dpbf2b+8Y9/JN27d6/zOdTlgQceSHbfffc6t33ssccmb731Vr2ez7Zmz56d/y776le/WuMyt912W70/49uzcuXKpF+/fjv0em697t57713neoceemjy+uuv17jtrd+X5cuXJx07dqxxjObNmycPP/xwkiRJMmfOnGS33Xarcbk2bdokTz75ZI3b2vo75cUXX0z23HPPWjOfcsopSXl5ea2v2fTp05OSkpJa12/UqFFy9dVX17p+5XLjx49Pbrrppho/C5XfcfPnz691nJ393bf198BTTz2VHHXUUbWOM3DgwOTtt9+u9TWt6wcAyC6/yQGATPjPf/6TrFixIlmxYkX+gMS5556bn7ZixYrk5Zdfzi//73//O+natWsS8f4B8JEjRyb//d//nTz66KPJ3Llzk7FjxyalpaVJRCQ9e/ZM3nzzzWrb/MEPfpB06tQpOe+885K77roreeSRR5Jly5Ylv//975MxY8YkLVq0SCIiadq0afL0009XWXft2rXJihUrkhNOOCGJiKRz585Vslb+bG3rA0p1qW/x0rdv3yQikuOPPz757W9/myxbtiz5y1/+ktxzzz355c8777z88p/73OeSadOmJfPmzUuWLFmS3Hrrrcm+++6bn/8///M/9Xinqqtv8bLXXnslbdq0Sbp27Zr89Kc/TRYvXpw8/PDDyUUXXZQ/OHbIIYckS5YsSRo3bpzss88+yW233ZYsWbIkmTt3bpXy4tRTT60xS+XByj322CPp3r17UlJSklxyySXJQw89lCxevDi54YYbkk6dOuXHmTJlSo3j3HTTTfll9thjj+S6665LFi1alCxYsCCZMGFCvmjI5XLJn//852rrb128VL5Phx12WDJjxoxk6dKlyQMPPJDcdttt+f3+3HPPzS9f0360efPm/Ng7s99u+5707t07adeuXdK+ffvkmmuuSRYsWJAsWbIkuf7665PWrVvnD07WdsD2zjvvzOdu2rRp8t3vfjf5y1/+kjz22GPJQw89lNx4443JkCFDkh49elRb97nnnssfJG7VqlUyduzY5He/+12ydOnSZPbs2cn555+fP+g6aNCgKq9BkiTJH//4xyqv8c0335zMmzcvefzxx5O5c+cmN954Y3LiiScmnTt3rjF7bXb0u+jxxx/Pl4TFxcXJxRdfnMydOzdZsmRJ8vOf/zzp0aNHfpwxY8bUuM3K4qVPnz5Jo0aNku7duyc33nhj8re//S1ZsGBBMnny5Hplf/vtt5MVK1YkkyZNym9z9uzZ1fanrQ8Sb/2Z2WuvvZKWLVsml112WTJv3rxk6dKlya233pp84hOfyI83a9asGre9YMGCpLi4OImIpEOHDsmkSZOSP/7xj8myZcuSP/7xj8nXvva1/Bhf/vKXd+AdqerCCy/Mj3PHHXdUmffcc8/l9/++ffsm7777boO3s2bNmqRz5875bR155JHJ9OnTk8WLFydLlixJZs6cmXz7299O2rZtW614eeutt5KePXvm1z3xxBOTP/zhD8nSpUuT//7v/85//iIiOfjgg5P33nuv2va3fl969OiRtG3bNrn66quTRx55JPnb3/6WTJgwIb/fde/ePXnuueeSli1bJp/4xCeSn/zkJ/l9Z+vyYdCgQTU+161LggMPPDApKipKvvOd7yQPPPBA8uijjya/+MUvkt69e+eXueiii2oc509/+lN+Wy1atEjGjx+fPPzww8miRYuSH//4x1UK3p/97Gc1jlE5/7Of/WxSVFSU7L///sm0adOSRx99NHnooYeSiy++OF+If/KTn0zKyspqHGdnf/dt/Xvt4IMPToqKipLhw4cnf/7zn5Nly5Ylv/vd75KDDjoov8wll1xSZf2G/BsBAMgWxQsAkDn1KSiGDRuWRLz/18Avvvhijcs89thj+QPkl156abX5K1eurHYwd2v/+7//m3Tp0iWJiORrX/tajcts/VfJ25N28RIRyWWXXVbrOH/961/zy9122201LvPOO+8kRx55ZP451PWXzLWpb/FSWb6sW7eu2jKjR4+uUnQcfPDBycaNG6st99WvfjVfBtQ0TuX7UXkQvKa/iH7llVfyB5KbN29ebZx169blS7vOnTsnL730UrUxtt63unTpUm0/2rp4iYjkzDPPTCoqKqqNU2nrA5/bk8Z+u/V70q1btypFQqWHH344fxD1ggsuqDZ/9erV+depffv2dR5ErOk1PPjgg5OISA444IDktddeq3G9++67L3+Q9ZZbbqkyr7KI69atW51nUNR2RkF91Ocze+CBByYR7/8l/+zZs6vNf+ONN5I+ffokEZEUFRXVWGJtfdbPpz/96eQ///lPgzMnyfY/k1vb+jOz22671ZjvueeeS5o2bZovere1efPm/JkyxxxzTI2f3SRJkltuuSW/rb/+9a8Nem7vvPNOst9++yURkbRs2TL//V9eXp4MGjQoXwLu7EHtk046KZ/1hz/8Ya3LvfXWW8kbb7xRZdrW32c1fUdXVFQkZ5xxRp0lxNbvS7t27ZLnn3++2jI33nhjle/N2r5fv//97+eXe+yxx6rN3/bsjBkzZlRbZsOGDfkzTIuKiqq9vps3b84XVS1atEgef/zxamOsWrUqX3yXlpbW+LnfOsexxx5bY7GydbFY05l9afzu2/bMt7vuuqvaGO+++25+X9x9991r/P25I/9GAACyRfECAGTO9g52rly5MmnUqFESEckf//jHOscaM2ZM/gB6Q0yZMiWJeP8v8ms6cF7I4qV37941/qV0pcqDSieffHKd23v66ad36mDojhQv9913X41jvPjii/llcrlcrWdqPPjgg3X+lfLWBytHjhxZa+aZM2fml9v2Ulo//OEP8/O2PntoW1sf/Pv1r39dZd7WxUvr1q2TDRs21DpOkuxY8VIf29tvt35P/vCHP9Q6zmc/+9l8ObKtsWPH5sf4/e9/v0P5Hnroofy6f//73+tc9pRTTkki3v+r860dffTRSUQkJ5100g5te0ds7zO7ePHi/DLf+c53ah1nwYIF+eXOO++8avO3Ll4eeuihnc7d0OLlhhtuqHW50047LYmIpG3bttXmVZ751LRp0xoP/G9t4MCBSUQkw4YNq9dzqckTTzyRv5xV5Rkjl19+ef551HYmW3394x//yJeOJ5544g6t++677+bPFtt3331r/Y5ev359/rJsffr0qTZ/6/fl5ptvrnGMTZs25Qux+n6//uQnP6k2f+vvny996Uu1Pret9/dtLzu39XfqNddcU+sYd999d365a6+9ttr8ynlNmzZN1q5dW+MYGzZsyJ/tc/HFF1ebn8bvvq0/Q3WdoTV16tT8ck888US1+YoXAPjoKgoAgI+YP//5z7Fly5YoLS2NL3zhC3Uu+7nPfS4iIlavXr3dG45v2LAhVq5cGU899VQ8+eST8eSTT0ZpaWmVeR8mp556ajRq1KjGeRs2bMjfQPsrX/lKnePss88+0a5du4iIWLRoUaoZt9a6desYOnRojfN69OgRLVu2jIiIvn37xj777FPjcvvvv3/+/1988cU6t7f1Dca3ddJJJ0Xr1q0jIuKBBx6oMq/ycevWrePLX/5yrWN885vfrLZOTY477rj8c9sVdma/bd26dXzxi1+sdX7//v0joubX+k9/+lNERPTs2TOOP/74Hcr8hz/8ISIiPvWpT8WnP/3pOpet/Aw/+uij8d577+Wnd+rUKSIiHnrooTpvHL4rbf2+f+Mb36h1uUMOOSS/T9e1r3Tt2jUOO+yw9ALugFwuF8OGDat1fuW+8MYbb8Sbb75ZZV7l+3n44YfHHnvsUed2Kt/Pnfmu6du3b0yePDkiIhYuXBjDhg2Lq6++OiIihgwZEhdccEGDx454/3dMkiQREXHxxRfv0LrLli3Lvz5nnXVWrd/RrVq1ilNOOSUiIp5++ul49dVXa1wul8vll9tWs2bNYq+99oqIiDZt2tTr+3VnvjcHDhwY++67b0TU/r2Zy+Xi7LPPrnWMr371q7HbbrvVOMbWjj766Gjfvn2N81q2bJl/3ts+n13xu++MM86odV7l56KmLADAR1vjQgcAAEjb0qVLIyJi06ZN0bhx/f+5s2bNmvjkJz9ZZdq//vWvuO666+KPf/xj/Otf/6pz/X//+9/Rs2fPHQ+8i/Tt27fWeY8//nhUVFRERMTpp58ep59+er3GXLNmTSrZarLXXntFLperdX7r1q3jrbfeit69e9e5TKW33nqr1uWaNGlSpaTZVnFxcRxwwAExd+7cWLFiRZV5Tz75ZEREfOYzn4ni4uJax+jQoUN07949Vq1alV+nJnW9Tw2V1n671157RVFR7X+r1bZt24io/lqXl5fnn/Ohhx5a5/tak8rP8LPPPlvvdcvLy+ONN97IH4w988wz484774zXX3899ttvvzjhhBNi6NChcdhhh0WvXr12KE9DVb4GTZo0iX79+tW57KBBg+KZZ56J5557LjZv3hxNmjSptsyu2Ffqq127drH77rvXOr9yX4h4f3/Y+rNY+X7Onj273u/nzn7XXHTRRfGXv/wlHnjggfj1r38dERG777573H777bVm+Oc//xmbN2+ucd4nPvGJ/HN6/PHHI+L974nPfvazO5Rr6++CQYMG1bnsoEGD4uabb86vV1kmbq1du3ZVXvttVWbu1atXvb5f6/rejIg48MAD65w/cODAeOqpp/KvZeV+XPm8e/ToUWf51qRJkzjggANi3rx5dX5v7r333nXmqO27aVf87qsry7afCwDg40PxAgB85Kxbt65B623atKnK4/vuuy++8pWvVJtem3feeadB291V2rRpU+u8tF6jNFWehVGbygKgruW2Lgm2bNlS63Jt27at9S/NK3Xo0CEi3v8L/q1VPq7tr6231rFjx1i1alW1MbZW1/vUEGnut/V9TyoPZFZ644038mcE1HSweHvS2D+POuqouPHGG+P73/9+vPPOOzFz5syYOXNmRER06dIlvvSlL8W5555bZwG3syrf97Zt2263BO7YsWNERCRJEv/5z3/y+9/W0t5XdkR994WI6p+9hryfO/t9msvl4pZbbok999wzvy/ecMMN0blz51rXGTJkSK1F5e233x5nnXVWRLxfVka8/77WVJDVZevvgu19h1TuE9uut7U0vje3Xq6u782I7Weu3G+33Y939Htz63Vq0tDnsyt+96XxOwkA+OhRvAAAHzmVBzfatWsXc+fOrfd6PXr0yP//v//97xg2bFhs2rQpWrRoEaNHj46hQ4fGnnvuGbvttlv+YNuDDz4YRx11VERE/uDeh0VdxcLWB4B+/vOfx8EHH1yvMQt54DdNO3oGxq4aI6Lu92lHfRT224j/2z/333//uPvuu+u9XpcuXao8Pv/88+OrX/1qzJgxI+6///545JFHYv369fHKK6/Ez3/+87jlllvi0ksvjUmTJqWaf1sfxn3lg1T5fn7hC1+Ia6+99gPb7k9/+tMq+/df//rXOi+X9kFLa7/4IO1s5kI/54/77z4A4IOjeAEAPnIqL4fz1ltvxT777NOgg5X33ntv/jr8v/vd72Lw4ME1LlfXX+TuqFwuF0mSVDt7YFsbN27c6W1tfcmg0tLS2G+//XZ6zCx5/fXXY8uWLXXuG2vXro2IqHYZn7Zt28arr76an1+XysvT1HUpoDQVYr+tSdu2baOoqCgqKipqvTdFXSr3z7fffnun98327dvHRRddFBdddFFUVFTE8uXL43e/+13ceOON8eabb8ZVV10VBx54YJxwwgk7tZ2aVL7vr7/+erz33nt1nvVSua/kcrmP3EHe3XffPVavXh2bN2/+wL5r5syZE1OmTImI9++XsmHDhpg+fXocd9xxcfLJJ9e4zqpVq+o1duV9P954441aLwtXm62/C9auXVvnpRO3vrzVB/Udsj1r166Nrl271jk/ovp+XJm/0N+bH/fffQDAB6f2CzYDAGTUAQccEBERZWVl+XsL7KinnnoqIt4/8FPbweuI2O74O/LXvZU3N/7Pf/5T6zJJksTzzz9f7zFr069fv3y2Rx55ZKfHy5rNmzfHE088Uev89957L5YvXx4RUe3AXOXjxx57rMrN3Le1bt26/GWLdvbgXn33o7T2251VXFycf84PP/zwDp9VU/kZfvHFF1O9r1BRUVF85jOfiSuvvDLmzJmTn155D5C0Vb4Gmzdvzu9PtVmyZElEvH9fnR29fNWO+qDPOqh8P5cuXVrrPVTS9J///CeGDx8eSZJEp06dYvny5fkzGr/1rW/F6tWrd2r8z3zmMxHx/n2F6rrpek22/i5YvHhxnctW7hPbrldIjz76aL3mb7sfV+ZfuXJlvPbaa7WuX15enr+Hzq54zh+2332FPgMIANh1FC8AwEfOcccdlz+YUfkXzzuq8oD6u+++W+sZKJs2bYq77rqrznGaNm0aEe+XQNtTeWCwroPi9913X/6Mhp2xxx575G8KPWPGjDoPhH1UTZ8+vdZ5v/vd7/IF2LYFRuXjN998M37729/WOsYvfvGLfOFQVwlSH5X7UUTd+1Ja+20ajjvuuIh4/0Dr//zP/+zQuscff3xEvF80/uQnP0k9W8T7B88r/yK/8p4dadv6fZ82bVqtyy1atCiefvrpauvsKvXdn9JS+X6uX78+br/99l2+ve985zvxyiuvRC6Xi9tvvz169OgRd911VzRq1CjeeOONOOuss3bqEntf/OIXG/w7pn///vkb3k+fPr3Wz+lbb72VLwT79OnToHsl7Qp1fW8++uij8eSTT0ZE7d+bSZLUuQ/ce++9sX79+hrHSMOH7XffjvwbAQDIFsULAPCR86lPfSq++tWvRkTEPffcE9dff32dy69cuTJ+9atfVZm21157RcT7B6lr+mv4LVu2xDe/+c3t/uV05cGydevWxVtvvVXnsocffnhEvP9X0DX9Je6aNWviu9/9bp1j7IjLLrssIiI2bNgQX/nKV+osdMrKyuKmm26Kd999N7XtF9rNN98cCxYsqDZ9zZo1MXr06Ih4/1I0w4cPrzJ/xIgR+Zspf+9734tXXnml2hhPPPFEXH311RHx/n1HTjzxxJ3KuvVB1xdeeKHW5dLab9MwcuTIaN68eUREfPvb384fkK3Jyy+/XOXxkCFDYuDAgRER8aMf/Wi7Z6SsWLEi/vjHP1aZNnPmzDpv0L506dJ8ubb1/Z3SNHDgwBgwYEBERNx6661VzrKptH79+vj2t78dEe+fkXPuuefukixbq+/+lJbhw4fnL081evToeOihh+pcfsGCBTF//vwGbevOO+/M7y8jR46MoUOHRkTEIYccEmPHjo2IiPvvvz9uuOGGBo0fEdG7d+846aSTIiLi97//ffzoRz+qddmNGzdWOYuxpKQkvvnNb0ZExJNPPhlXXnlltXWSJImRI0fmC8GRI0c2OGva/vCHP9T4eXz77ber7MeV/1/pxBNPjM6dO0dExFVXXRUrVqyoNsb//u//VvnuHTFiRNrxI+LD9btvR/6NAABki+IFAPhIuvnmm6Nnz54R8f7B8cMPPzx+8YtfxN/+9rd4/PHH44EHHogf//jHcfTRR0evXr3iN7/5TZX1TznllCgpKYmI9w+0X3LJJTFnzpxYunRpTJ8+PQYNGhS/+tWv4pBDDqkzR+WNeysqKuI73/lO/O1vf4vnn38+/7O1b33rW9G4ceNIkiSOO+64mDJlSixdujQWLlwYP/rRj+KAAw6I9evX5w+u76xjjz02LrzwwoiIeOihh2KfffaJiRMnxpw5c2L58uXxyCOPxPTp0+Ob3/xmdOrUKUaOHFnnpbWyZI899ojOnTvH0UcfHZdeemksWLAgHn300bjpppuif//+8dJLL0VExJVXXhnt27evtm7lgdaXX345+vfvH1OmTIklS5bEwoUL44orrohDDz003n777cjlcnHLLbdEcXHxTuXd+gbQF198cTz00EPx3HPP5fejyvclrf02DR07doybb745It4/qDhw4MC48MILY9asWbF8+fJYsGBBTJ06NY499th86bi1GTNmRNu2bWPLli1x6qmnxvHHHx+//OUvY8mSJbFs2bK477774uqrr46DDjoo+vbtW+1A/f/7f/8vOnfuHGeddVZMmzYtFixYkP/sT5gwIX9AvlGjRvkD4bvCrbfeGk2aNIn33nsvjj322Bg9enTMnz8/li5dGrfeemt85jOfyR+EHj169AdySakDDjgg/5f2l19+edx///3xz3/+M78/1VVYNURJSUn8+te/jpKSknj77bfjyCOPjK997Wtx7733xrJly+LRRx+NP/zhDzF+/Pjo27dvHHbYYTUemN+eVatW5cvpPn36xLXXXltl/vjx4+PAAw+MiIhLLrkkf5ZRQ/zsZz/LFwljxoyJo446Ku6666549NFHY+nSpXHvvffG+eefH5/85CerXdZw3Lhx+d9PEyZMiK985Svx5z//OR577LH4zW9+E0ceeWTceeedERFx0EEHxbe+9a0G50zbgAEDYtiwYXH++efH3LlzY9myZXH77bfHgAED8pcIO//886Nv375V1mvSpEnccsstkcvlYsOGDXHIIYfElVdeGQsXLozFixfHf/3Xf8WAAQPypfB1112Xv5dO2j5Mv/t25N8IAEDGJAAAGRMRSUQk48ePr3O5V199NTnssMPyy9f1M2LEiGrrT5s2LSkqKqp1nVNPPTV54IEH8o/nzp1bbYwtW7Ykn/3sZ2sdY1vXX399rcu2bds2eeihh5LDDz88iYjk8MMPr7b+3Llz68yzrYqKimTixIlJ48aNt/saNW/ePNm0adN2x9zW7bffnh9j5cqV1ebX9Xy21q1btyQikuHDh9e5XF37x/Dhw5OISLp165Y8+uijSbt27Wp9vhdccEGd27nqqqvq3D9KSkqS6dOn17juypUr88vdfvvtdW6n0imnnFLrtrZ+XdPYb+v7nowfP77WfbnSHXfckTRr1qzOfatbt241rvvss88m++23X70+wxMnTqyybuX+UtdPSUlJvV//mtT3u2j27NlJq1at6sxy/vnnJ1u2bKlx/fru+ztizJgxtWbZep/Y+jNTl+19zpMkSRYtWpR07dq1Xu9nbZ+d2mzZsiU59NBDk4hImjRpkjz++OM1Lvfss88mpaWlSUQk/fr1S8rKynZoO1t74YUX6rV/1vQZW7lyZbL33nvXud4hhxySvP766zVuu77vSxrfr1t/zl988cWkR48etWY++eSTk/Ly8lq3c8cddyQlJSW1rt+oUaPk6quvrnX9+n7mtve8d/Z3X3329yTZ/nf9jv4bAQDIDme8AAAfWR07doyHHnoo/vSnP8UZZ5wRPXv2jNLS0iguLo499tgjDj744Pje974X8+fPr/H+CyNGjIiHH344TjzxxNhjjz2iuLg4OnXqFMccc0zMnDkz7rnnnmjUqFGdGYqKiuKvf/1rXHbZZbH//vtHixYt6ryZ7sUXXxyzZs2KoUOHRps2baKkpCR69OgR559/fjz++ONx2GGH7fTrsrVcLhfjxo2Lf/7znzFmzJgYMGBAtG3bNho1ahQtW7aMPn36xBlnnBHTp0+PV199NZo1a5bq9gtpwIAB8dhjj8UFF1wQe+65ZzRt2jR23333OOaYY+Ivf/nLdu8tcumll8bjjz8e55xzTuy5557RrFmzaN68eeyzzz5x4YUXxj/+8Y8488wzU8t79913x7XXXhsDBw6M3XbbLYqKav6nfBr7bZqGDx8eL7zwQvzgBz/I39+iUaNG0aZNm/jsZz8bl156acyaNavGdXv37h3Lly+PGTNmxMknnxyf/OQno1mzZtGkSZPo1KlTHHHEEXHZZZfFsmXLYty4cVXWnTt3bvzkJz+Jk08+OT796U/HHnvsEY0bN45WrVrFAQccEKNHj46nn346zjrrrF3+GgwZMiSef/75uPTSS6Nfv37RqlWrKCkpiU9+8pNxxhlnxMMPPxw33nhjre/prnDNNdfErbfeGocddlj+M7+rffazn43nnnsupk6dGl/84hejc+fO0aRJk2jatGl07do1hgwZEldddVWDPjvXXHNN/tKBV155ZfTr16/G5Xr37h3/9V//FRERy5cvz192qiF69uwZy5cvjzvuuCO++MUvRqdOnaK4uDiaNWsWvXv3jjPPPDP+53/+p8bv7e7du8cTTzwRN954Yxx++OGx++67R3FxcXTo0CGOOeaYuOuuu+Khhx6Ktm3bNjjfrtCjR49YtmxZXHrppbHPPvtEaWlp7LbbbvG5z30u7r777rj33nujcePGta4/fPjw+Mc//hEXXnhh7LPPPtG8efNo1qxZ7LnnnnHOOefE448/nr8k3K70Yfndt6P/RgAAsiOXJDtxV0EAAMiQs846K6ZPnx7dunWLVatWFToOwIfehAkTYuLEiRER4fABAED9OOMFAAAAAAAgJYoXAAAAAACAlCheAAAAAAAAUqJ4AQAAAAAASIniBQAAAAAAICW5JEmSQocAAAAAAAD4KGhc6AAfRhUVFbF69epo2bJl5HK5QscBAAAAAAAKKEmSeOutt6Jz585RVFT3xcQULzVYvXp1dO3atdAxAAAAAACAD5H//d//jU984hN1LqN4qUHLli0j4v0XsFWrVgVO89FUXl4ef/3rX2PIkCFRXFxc6Dg7LMv5ZS+cLOeXvTCynD0i2/llL5ws55e9MLKcPSLb+WUvnCznl70wspw9Itv5ZS+cLOeXvTCynD0i+/mzYMOGDdG1a9d8f1AXxUsNKi8v1qpVK8XLLlJeXh6lpaXRqlWrTH4RZDm/7IWT5fyyF0aWs0dkO7/shZPl/LIXRpazR2Q7v+yFk+X8shdGlrNHZDu/7IWT5fyyF0aWs0dkP3+W1Of2JHVfiAwAAAAAAIB6U7wAAAAAAACkRPECAAAAAACQEsULAAAAAABAShQvAAAAAAAAKVG8AAAAAAAApETxAgAAAAAAkBLFCwAAAAAAQEoULwAAAAAAAClRvAAAAAAAAKRE8QIAAAAAAJASxQsAAAAAAEBKFC8AAAAAAAApUbwAAAAAAACkRPECAAAAAACQEsULAAAAAABAShQvAAAAAAAAKVG8AAAAAAAApETxAgAAAAAAkBLFCwAAAAAAQEoULwAAAAAAAClRvAAAAAAAAKRE8QIAAAAAAJASxQsAAAAAAEBKFC8AAAAAAAApUbwAAAAAAACkRPECAAAAAACQEsULAAAAAABAShQvAAAAAAAAKVG8AAAAAAAApETxAgAAAAAAkBLFCwAAAAAAQEoULwAAAAAAAClRvAAAAAAAAKSkcaEDkC3dL/lzKuOUNEri2oER+02YHWVbcjs93qprvphCKgAAAAAA2DnOeAEAAAAAAEiJ4gUAAAAAACAlihcAAAAAAICUKF4AAAAAAABSongBAAAAAABIieIFAAAAAAAgJYoXAAAAAACAlCheAAAAAAAAUqJ4AQAAAAAASIniBQAAAAAAICWKFwAAAAAAgJQoXgAAAAAAAFKieAEAAAAAAEiJ4gUAAAAAACAlihcAAAAAAICUKF4AAAAAAABSongBAAAAAABIieIFAAAAAAAgJYoXAAAAAACAlCheAAAAAAAAUqJ4AQAAAAAASIniBQAAAAAAICWKFwAAAAAAgJQoXgAAAAAAAFKieAEAAAAAAEiJ4gUAAAAAACAlihcAAAAAAICUKF4AAAAAAABSongBAAAAAABIieIFAAAAAAAgJYoXAAAAAACAlCheAAAAAAAAUqJ4AQAAAAAASIniBQAAAAAAICWKFwAAAAAAgJR8KIqXm266Kbp37x5NmzaNQYMGxZIlS+q13j333BO5XC5OPPHEKtOTJIlx48ZFp06dolmzZjF48OB47rnndkFyAAAAAACA/1Pw4mXmzJkxatSoGD9+fDz22GOx//77x9ChQ2PdunV1rrdq1aoYPXp0HHbYYdXmXXvttXHDDTfE1KlTY/HixdG8efMYOnRovPvuu7vqaQAAAAAAABS+eLn++uvjnHPOiREjRkSfPn1i6tSpUVpaGtOmTat1nS1btsQZZ5wREydOjJ49e1aZlyRJTJkyJS677LI44YQTom/fvnHnnXfG6tWr4/e///0ufjYAAAAAAMDHWeNCbnzz5s2xbNmyGDt2bH5aUVFRDB48OBYtWlTreldccUW0b98+vvGNb8TDDz9cZd7KlStjzZo1MXjw4Py03XbbLQYNGhSLFi2K0047rdp4ZWVlUVZWln+8YcOGiIgoLy+P8vLyBj+/j6KSRkk64xQlVf67sz7o96lye1ncP2QvnCznl70wspw9Itv5ZS+cLOeXvTCynD0i2/llL5ws55e9MLKcPSLb+WUvnCznl70wspw9Ivv5s2BHXttckiTpHPlugNWrV0eXLl1i4cKFcdBBB+WnjxkzJubPnx+LFy+uts6CBQvitNNOi+XLl0e7du3irLPOijfffDN/NsvChQvjkEMOidWrV0enTp3y651yyimRy+Vi5syZ1cacMGFCTJw4sdr0GTNmRGlpaQrPFAAAAAAAyKpNmzbFsGHDYv369dGqVas6ly3oGS876q233oqvf/3rceutt0a7du1SG3fs2LExatSo/OMNGzZE165dY8iQIdt9AT9u9pswO5VxSoqSuHJARVy+tCjKKnI7Pd6TE4amkKr+ysvL4/7774+jjz46iouLP9Bt7yzZCyfL+WUvjCxnj8h2ftkLJ8v5ZS+MLGePyHZ+2Qsny/llL4wsZ4/Idn7ZCyfL+WUvjCxnj8h+/iyovFJWfRS0eGnXrl00atQo1q5dW2X62rVro2PHjtWWf+GFF2LVqlVx3HHH5adVVFRERETjxo3j2Wefza+3du3aKme8rF27Nvr161djjpKSkigpKak2vbi42E66jbItO1+SVBmvIpfKmIV6n7K8j8heOFnOL3thZDl7RLbzy144Wc4ve2FkOXtEtvPLXjhZzi97YWQ5e0S288teOFnOL3thZDl7RPbzf5jtyOtatAtzbFeTJk2if//+MWfOnPy0ioqKmDNnTpVLj1Xae++9Y8WKFbF8+fL8z/HHHx+f//znY/ny5dG1a9fo0aNHdOzYscqYGzZsiMWLF9c4JgAAAAAAQFoKfqmxUaNGxfDhw2PAgAExcODAmDJlSmzcuDFGjBgRERFnnnlmdOnSJSZPnhxNmzaN/fbbr8r6rVu3joioMv2iiy6KSZMmxV577RU9evSIyy+/PDp37hwnnnjiB/W0AAAAAACAj6GCFy+nnnpqvPbaazFu3LhYs2ZN9OvXL2bNmhUdOnSIiIiXXnopiop27MScMWPGxMaNG+Nb3/pWvPnmm3HooYfGrFmzomnTprviKQAAAAAAAETEh6B4iYgYOXJkjBw5ssZ58+bNq3PdO+64o9q0XC4XV1xxRVxxxRUppAMAAAAAAKifgt7jBQAAAAAA4KNE8QIAAAAAAJASxQsAAAAAAEBKFC8AAAAAAAApUbwAAAAAAACkRPECAAAAAACQEsULAAAAAABAShQvAAAAAAAAKVG8AAAAAAAApETxAgAAAAAAkBLFCwAAAAAAQEoULwAAAAAAAClRvAAAAAAAAKRE8QIAAAAAAJASxQsAAAAAAEBKFC8AAAAAAAApUbwAAAAAAACkRPECAAAAAACQEsULAAAAAABAShQvAAAAAAAAKVG8AAAAAAAApETxAgAAAAAAkBLFCwAAAAAAQEoULwAAAAAAAClRvAAAAAAAAKRE8QIAAAAAAJASxQsAAAAAAEBKFC8AAAAAAAApUbwAAAAAAACkRPECAAAAAACQEsULAAAAAABAShQvAAAAAAAAKVG8AAAAAAAApETxAgAAAAAAkBLFCwAAAAAAQEoULwAAAAAAAClRvAAAAAAAAKRE8QIAAAAAAJASxQsAAAAAAEBKFC8AAAAAAAApUbwAAAAAAACkRPECAAAAAACQEsULAAAAAABAShQvAAAAAAAAKVG8AAAAAAAApETxAgAAAAAAkBLFCwAAAAAAQEoULwAAAAAAAClRvAAAAAAAAKRE8QIAAAAAAJASxQsAAAAAAEBKFC8AAAAAAAApUbwAAAAAAACkRPECAAAAAACQEsULAAAAAABAShQvAAAAAAAAKVG8AAAAAAAApETxAgAAAAAAkBLFCwAAAAAAQEoULwAAAAAAAClRvAAAAAAAAKRE8QIAAAAAAJASxQsAAAAAAEBKFC8AAAAAAAApUbwAAAAAAACkRPECAAAAAACQEsULAAAAAABAShQvAAAAAAAAKVG8AAAAAAAApETxAgAAAAAAkBLFCwAAAAAAQEoULwAAAAAAAClRvAAAAAAAAKRE8QIAAAAAAJASxQsAAAAAAEBKFC8AAAAAAAAp+VAULzfddFN07949mjZtGoMGDYolS5bUuuxvf/vbGDBgQLRu3TqaN28e/fr1i7vuuqvKMmeddVbkcrkqP8ccc8yufhoAAAAAAMDHXONCB5g5c2aMGjUqpk6dGoMGDYopU6bE0KFD49lnn4327dtXW75t27bxgx/8IPbee+9o0qRJ/OlPf4oRI0ZE+/btY+jQofnljjnmmLj99tvzj0tKSj6Q5wMAAAAAAHx8FfyMl+uvvz7OOeecGDFiRPTp0yemTp0apaWlMW3atBqXP+KII+Kkk06KffbZJ/bcc8+48MILo2/fvrFgwYIqy5WUlETHjh3zP23atPkgng4AAAAAAPAxVtAzXjZv3hzLli2LsWPH5qcVFRXF4MGDY9GiRdtdP0mSePDBB+PZZ5+NH/7wh1XmzZs3L9q3bx9t2rSJI488MiZNmhS77757jeOUlZVFWVlZ/vGGDRsiIqK8vDzKy8sb8tQ+skoaJemMU5RU+e/O+qDfp8rtZXH/kL1wspxf9sLIcvaIbOeXvXCynF/2wshy9ohs55e9cLKcX/bCyHL2iGznl71wspxf9sLIcvaI7OfPgh15bXNJkqRz5LsBVq9eHV26dImFCxfGQQcdlJ8+ZsyYmD9/fixevLjG9davXx9dunSJsrKyaNSoUfzsZz+Ls88+Oz//nnvuidLS0ujRo0e88MILcemll0aLFi1i0aJF0ahRo2rjTZgwISZOnFht+owZM6K0tDSFZwoAAAAAAGTVpk2bYtiwYbF+/fpo1apVncsW/B4vDdGyZctYvnx5vP322zFnzpwYNWpU9OzZM4444oiIiDjttNPyy37605+Ovn37xp577hnz5s2Lo446qtp4Y8eOjVGjRuUfb9iwIbp27RpDhgzZ7gv4cbPfhNmpjFNSlMSVAyri8qVFUVaR2+nxnpwwdPsLpai8vDzuv//+OProo6O4uPgD3fbOkr1wspxf9sLIcvaIbOeXvXCynF/2wshy9ohs55e9cLKcX/bCyHL2iGznl71wspxf9sLIcvaI7OfPgsorZdVHQYuXdu3aRaNGjWLt2rVVpq9duzY6duxY63pFRUXRq1eviIjo169fPPPMMzF58uR88bKtnj17Rrt27eL555+vsXgpKSmJkpKSatOLi4vtpNso27LzJUmV8SpyqYxZqPcpy/uI7IWT5fyyF0aWs0dkO7/shZPl/LIXRpazR2Q7v+yFk+X8shdGlrNHZDu/7IWT5fyyF0aWs0dkP/+H2Y68rkW7MMd2NWnSJPr37x9z5szJT6uoqIg5c+ZUufTY9lRUVFS5R8u2Xn755Xj99dejU6dOO5UXAAAAAACgLgW/1NioUaNi+PDhMWDAgBg4cGBMmTIlNm7cGCNGjIiIiDPPPDO6dOkSkydPjoiIyZMnx4ABA2LPPfeMsrKy+Mtf/hJ33XVX3HzzzRER8fbbb8fEiRPj5JNPjo4dO8YLL7wQY8aMiV69esXQoR/s5agAAAAAAICPl4IXL6eeemq89tprMW7cuFizZk3069cvZs2aFR06dIiIiJdeeimKiv7vxJyNGzfGeeedFy+//HI0a9Ys9t5777j77rvj1FNPjYiIRo0axd///veYPn16vPnmm9G5c+cYMmRIXHnllTVeTgwAAAAAACAtBS9eIiJGjhwZI0eOrHHevHnzqjyeNGlSTJo0qdaxmjVrFrNnp3MDeAAAAAAAgB1R0Hu8AAAAAAAAfJQoXgAAAAAAAFKieAEAAAAAAEiJ4gUAAAAAACAlihcAAAAAAICUKF4AAAAAAABSongBAAAAAABIieIFAAAAAAAgJYoXAAAAAACAlCheAAAAAAAAUqJ4AQAAAAAASIniBQAAAAAAICWKFwAAAAAAgJQoXgAAAAAAAFKieAEAAAAAAEiJ4gUAAAAAACAlihcAAAAAAICUKF4AAAAAAABSongBAAAAAABIieIFAAAAAAAgJYoXAAAAAACAlCheAAAAAAAAUqJ4AQAAAAAASIniBQAAAAAAICWKFwAAAAAAgJQoXgAAAAAAAFKieAEAAAAAAEiJ4gUAAAAAACAlihcAAAAAAICUKF4AAAAAAABSongBAAAAAABIieIFAAAAAAAgJYoXAAAAAACAlCheAAAAAAAAUqJ4AQAAAAAASIniBQAAAAAAICWKFwAAAAAAgJQ0LnQA+CB1v+TPqYxT0iiJawdG7DdhdpRtye30eKuu+WIKqQAAAAAAKDRnvAAAAAAAAKRE8QIAAAAAAJASxQsAAAAAAEBKFC8AAAAAAAApUbwAAAAAAACkRPECAAAAAACQEsULAAAAAABAShQvAAAAAAAAKVG8AAAAAAAApETxAgAAAAAAkBLFCwAAAAAAQEoULwAAAAAAAClRvAAAAAAAAKRE8QIAAAAAAJASxQsAAAAAAEBKFC8AAAAAAAApUbwAAAAAAACkRPECAAAAAACQEsULAAAAAABAShQvAAAAAAAAKVG8AAAAAAAApETxAgAAAAAAkBLFCwAAAAAAQEoULwAAAAAAAClRvAAAAAAAAKRE8QIAAAAAAJASxQsAAAAAAEBKFC8AAAAAAAApUbwAAAAAAACkRPECAAAAAACQEsULAAAAAABAShQvAAAAAAAAKVG8AAAAAAAApETxAgAAAAAAkBLFCwAAAAAAQEoULwAAAAAAAClRvAAAAAAAAKTkQ1G83HTTTdG9e/do2rRpDBo0KJYsWVLrsr/97W9jwIAB0bp162jevHn069cv7rrrrirLJEkS48aNi06dOkWzZs1i8ODB8dxzz+3qpwEAAAAAAHzMFbx4mTlzZowaNSrGjx8fjz32WOy///4xdOjQWLduXY3Lt23bNn7wgx/EokWL4u9//3uMGDEiRowYEbNnz84vc+2118YNN9wQU6dOjcWLF0fz5s1j6NCh8e67735QTwsAAAAAAPgYKnjxcv3118c555wTI0aMiD59+sTUqVOjtLQ0pk2bVuPyRxxxRJx00kmxzz77xJ577hkXXnhh9O3bNxYsWBAR75/tMmXKlLjsssvihBNOiL59+8add94Zq1evjt///vcf4DMDAAAAAAA+bhoXcuObN2+OZcuWxdixY/PTioqKYvDgwbFo0aLtrp8kSTz44IPx7LPPxg9/+MOIiFi5cmWsWbMmBg8enF9ut912i0GDBsWiRYvitNNOqzZOWVlZlJWV5R9v2LAhIiLKy8ujvLy8wc/vo6ikUZLOOEVJlf/urPq+T1nPn+a2srhvZzl7RLbzy14YWc4eke38shdOlvPLXhhZzh6R7fyyF06W88teGFnOHpHt/LIXTpbzy14YWc4ekf38WbAjr20uSZJ0jhw3wOrVq6NLly6xcOHCOOigg/LTx4wZE/Pnz4/FixfXuN769eujS5cuUVZWFo0aNYqf/exncfbZZ0dExMKFC+OQQw6J1atXR6dOnfLrnHLKKZHL5WLmzJnVxpswYUJMnDix2vQZM2ZEaWnpzj5NAAAAAAAgwzZt2hTDhg2L9evXR6tWrepctqBnvDRUy5YtY/ny5fH222/HnDlzYtSoUdGzZ8844ogjGjTe2LFjY9SoUfnHGzZsiK5du8aQIUO2+wJ+3Ow3Yfb2F6qHkqIkrhxQEZcvLYqyitxOj/fkhKH1Wi7r+dNQXl4e999/fxx99NFRXFz8gW03DVnOHpHt/LIXRpazR2Q7v+yFk+X8shdGlrNHZDu/7IWT5fyyF0aWs0dkO7/shZPl/LIXRpazR2Q/fxZUXimrPgpavLRr1y4aNWoUa9eurTJ97dq10bFjx1rXKyoqil69ekVERL9+/eKZZ56JyZMnxxFHHJFfb+3atVXOeFm7dm3069evxvFKSkqipKSk2vTi4mI76TbKtux8yVBlvIpcKmPW933Kev40ZXn/znL2iGznl70wspw9Itv5ZS+cLOeXvTCynD0i2/llL5ws55e9MLKcPSLb+WUvnCznl70wspw9Ivv5P8x25HUt2oU5tqtJkybRv3//mDNnTn5aRUVFzJkzp8qlx7anoqIif4+WHj16RMeOHauMuWHDhli8ePEOjQkAAAAAALCjCn6psVGjRsXw4cNjwIABMXDgwJgyZUps3LgxRowYERERZ555ZnTp0iUmT54cERGTJ0+OAQMGxJ577hllZWXxl7/8Je666664+eabIyIil8vFRRddFJMmTYq99torevToEZdffnl07tw5TjzxxEI9TQAAAAAA4GOg4MXLqaeeGq+99lqMGzcu1qxZE/369YtZs2ZFhw4dIiLipZdeiqKi/zsxZ+PGjXHeeefFyy+/HM2aNYu999477r777jj11FPzy4wZMyY2btwY3/rWt+LNN9+MQw89NGbNmhVNmzb9wJ8fAAAAAADw8VHw4iUiYuTIkTFy5Mga582bN6/K40mTJsWkSZPqHC+Xy8UVV1wRV1xxRVoRAQAAAAAAtqug93gBAAAAAAD4KFG8AAAAAAAApETxAgAAAAAAkBLFCwAAAAAAQEoULwAAAAAAAClRvAAAAAAAAKRE8QIAAAAAAJASxQsAAAAAAEBKFC8AAAAAAAApUbwAAAAAAACkRPECAAAAAACQEsULAAAAAABAShQvAAAAAAAAKVG8AAAAAAAApETxAgAAAAAAkBLFCwAAAAAAQEoULwAAAAAAAClRvAAAAAAAAKRE8QIAAAAAAJASxQsAAAAAAEBKFC8AAAAAAAApUbwAAAAAAACkRPECAAAAAACQEsULAAAAAABAShQvAAAAAAAAKVG8AAAAAAAApETxAgAAAAAAkBLFCwAAAAAAQEoULwAAAAAAAClRvAAAAAAAAKRE8QIAAAAAAJASxQsAAAAAAEBKFC8AAAAAAAApUbwAAAAAAACkRPECAAAAAACQEsULAAAAAABAShQvAAAAAAAAKVG8AAAAAAAApETxAgAAAAAAkBLFCwAAAAAAQEoULwAAAAAAAClRvAAAAAAAAKRE8QIAAAAAAJASxQsAAAAAAEBKFC8AAAAAAAApUbwAAAAAAACkRPECAAAAAACQEsULAAAAAABAShQvAAAAAAAAKVG8AAAAAAAApETxAgAAAAAAkBLFCwAAAAAAQEoULwAAAAAAAClRvAAAAAAAAKRE8QIAAAAAAJASxQsAAAAAAEBKFC8AAAAAAAApUbwAAAAAAACkRPECAAAAAACQEsULAAAAAABAShQvAAAAAAAAKVG8AAAAAAAApETxAgAAAAAAkBLFCwAAAAAAQEoULwAAAAAAAClRvAAAAAAAAKRE8QIAAAAAAJASxQsAAAAAAEBKFC8AAAAAAAApUbwAAAAAAACkRPECAAAAAACQEsULAAAAAABAShQvAAAAAAAAKVG8AAAAAAAApETxAgAAAAAAkBLFCwAAAAAAQEo+FMXLTTfdFN27d4+mTZvGoEGDYsmSJbUue+utt8Zhhx0Wbdq0iTZt2sTgwYOrLX/WWWdFLper8nPMMcfs6qcBAAAAAAB8zBW8eJk5c2aMGjUqxo8fH4899ljsv//+MXTo0Fi3bl2Ny8+bNy9OP/30mDt3bixatCi6du0aQ4YMiVdeeaXKcsccc0y8+uqr+Z9f/epXH8TTAQAAAAAAPsYKXrxcf/31cc4558SIESOiT58+MXXq1CgtLY1p06bVuPwvf/nLOO+886Jfv36x9957x2233RYVFRUxZ86cKsuVlJREx44d8z9t2rT5IJ4OAAAAAADwMda4kBvfvHlzLFu2LMaOHZufVlRUFIMHD45FixbVa4xNmzZFeXl5tG3btsr0efPmRfv27aNNmzZx5JFHxqRJk2L33XevcYyysrIoKyvLP96wYUNERJSXl0d5efmOPq2PtJJGSTrjFCVV/ruz6vs+ZT1/mtvK4r6d5ewR2c4ve2FkOXtEtvPLXjhZzi97YWQ5e0S288teOFnOL3thZDl7RLbzy144Wc4ve2FkOXtE9vNnwY68trkkSdI5ctwAq1evji5dusTChQvjoIMOyk8fM2ZMzJ8/PxYvXrzdMc4777yYPXt2PPXUU9G0adOIiLjnnnuitLQ0evToES+88EJceuml0aJFi1i0aFE0atSo2hgTJkyIiRMnVps+Y8aMKC0t3YlnCAAAAAAAZN2mTZti2LBhsX79+mjVqlWdyxb0jJeddc0118Q999wT8+bNy5cuERGnnXZa/v8//elPR9++fWPPPfeMefPmxVFHHVVtnLFjx8aoUaPyjzds2JC/d8z2XsCPm/0mzE5lnJKiJK4cUBGXLy2KsorcTo/35ISh9Vou6/nTUF5eHvfff38cffTRUVxc/IFtNw1Zzh6R7fyyF0aWs0dkO7/shZPl/LIXRpazR2Q7v+yFk+X8shdGlrNHZDu/7IWT5fyyF0aWs0dkP38WVF4pqz4KWry0a9cuGjVqFGvXrq0yfe3atdGxY8c6173uuuvimmuuiQceeCD69u1b57I9e/aMdu3axfPPP19j8VJSUhIlJSXVphcXF9tJt1G2ZedLhirjVeRSGbO+71PW86cpy/t3lrNHZDu/7IWR5ewR2c4ve+FkOb/shZHl7BHZzi974WQ5v+yFkeXsEdnOL3vhZDm/7IWR5ewR2c//YbYjr2vRLsyxXU2aNIn+/fvHnDlz8tMqKipizpw5VS49tq1rr702rrzyypg1a1YMGDBgu9t5+eWX4/XXX49OnTqlkhsAAAAAAKAmBS1eIiJGjRoVt956a0yfPj2eeeaZOPfcc2Pjxo0xYsSIiIg488wzY+zYsfnlf/jDH8bll18e06ZNi+7du8eaNWtizZo18fbbb0dExNtvvx3f//73429/+1usWrUq5syZEyeccEL06tUrhg794C7nBAAAAAAAfPwU/B4vp556arz22msxbty4WLNmTfTr1y9mzZoVHTp0iIiIl156KYqK/q8fuvnmm2Pz5s3xla98pco448ePjwkTJkSjRo3i73//e0yfPj3efPPN6Ny5cwwZMiSuvPLKGi8nBgAAAAAAkJaCFy8RESNHjoyRI0fWOG/evHlVHq9atarOsZo1axazZ6dzA3UAAAAAAIAdUfBLjQEAAAAAAHxUKF4AAAAAAABSongBAAAAAABIieIFAAAAAAAgJYoXAAAAAACAlDS4eHn44Yfja1/7Whx00EHxyiuvRETEXXfdFQsWLEgtHAAAAAAAQJY0qHj5zW9+E0OHDo1mzZrF448/HmVlZRERsX79+rj66qtTDQgAAAAAAJAVDSpeJk2aFFOnTo1bb701iouL89MPOeSQeOyxx1ILBwAAAAAAkCUNKl6effbZ+NznPldt+m677RZvvvnmzmYCAAAAAADIpAYVLx07doznn3++2vQFCxZEz549dzoUAAAAAABAFjWoeDnnnHPiwgsvjMWLF0cul4vVq1fHL3/5yxg9enSce+65aWcEAAAAAADIhMYNWemSSy6JioqKOOqoo2LTpk3xuc99LkpKSmL06NHx3e9+N+2MAAAAAAAAmdCg4iWXy8UPfvCD+P73vx/PP/98vP3229GnT59o0aJF2vkAAAAAAAAyo0HFy/r162PLli3Rtm3b6NOnT376G2+8EY0bN45WrVqlFhAAAAAAACArGnSPl9NOOy3uueeeatN//etfx2mnnbbToQAAAAAAALKoQcXL4sWL4/Of/3y16UcccUQsXrx4p0MBAAAAAABkUYOKl7KysnjvvfeqTS8vL4933nlnp0MBAAAAAABkUYOKl4EDB8Ytt9xSbfrUqVOjf//+Ox0KAAAAAAAgixo3ZKVJkybF4MGD44knnoijjjoqIiLmzJkTjz76aPz1r39NNSAAAAAAAEBWNOiMl0MOOSQWLVoUXbt2jV//+tfxxz/+MXr16hV///vf47DDDks7IwAAAAAAQCY06IyXiIh+/frFL3/5yzSzAAAAAAAAZFqDi5eKiop4/vnnY926dVFRUVFl3uc+97mdDgYAAAAAAJA1DSpe/va3v8WwYcPiX//6VyRJUmVeLpeLLVu2pBIOAAAAAAAgSxpUvHznO9+JAQMGxJ///Ofo1KlT5HK5tHMBAAAAAABkToOKl+eeey7uvffe6NWrV9p5AAAAAAAAMquoISsNGjQonn/++bSzAAAAAAAAZFqDznj57ne/G9/73vdizZo18elPfzqKi4urzO/bt28q4QAAAAAAALKkQcXLySefHBERZ599dn5aLpeLJEkil8vFli1b0kkHAAAAAACQIQ0qXlauXJl2DgAAAAAAgMxrUPHSrVu3tHMAAAAAAABkXoOKl0pPP/10vPTSS7F58+Yq048//vidCgUAAAAAAJBFDSpeXnzxxTjppJNixYoV+Xu7RLx/n5eIcI8XAAAAAADgY6moIStdeOGF0aNHj1i3bl2UlpbGU089FQ899FAMGDAg5s2bl3JEAAAAAACAbGjQGS+LFi2KBx98MNq1axdFRUVRVFQUhx56aEyePDkuuOCCePzxx9POCQAAAAAA8KHXoDNetmzZEi1btoyIiHbt2sXq1asjIqJbt27x7LPPppcOAAAAAAAgQxp0xst+++0XTzzxRPTo0SMGDRoU1157bTRp0iRuueWW6NmzZ9oZAQAAAAAAMqFBxctll10WGzdujIiIK664Ir70pS/FYYcdFrvvvnvcc889qQYEAAAAAADIigYVL0OHDs3/f69eveIf//hHvPHGG9GmTZvI5XKphQMAAAAAAMiSBt3j5eyzz4633nqryrS2bdvGpk2b4uyzz04lGAAAAAAAQNY0qHiZPn16vPPOO9Wmv/POO3HnnXfudCgAAAAAAIAs2qFLjW3YsCGSJIkkSeKtt96Kpk2b5udt2bIl/vKXv0T79u1TDwkAAAAAAJAFO1S8tG7dOnK5XORyuejdu3e1+blcLiZOnJhaOAAAAAAAgCzZoeJl7ty5kSRJHHnkkfGb3/wm2rZtm5/XpEmT6NatW3Tu3Dn1kAAAAAAAAFmwQ8XL4YcfHu+9914MHz48BgwYEF27dt1VuQAAAAAAADKnaEdXaNy4cdx7772xZcuWXZEHAAAAAAAgs3a4eImIOPLII2P+/PlpZwEAAAAAAMi0HbrUWKUvfOELcckll8SKFSuif//+0bx58yrzjz/++FTCAQAAAAAAZEmDipfzzjsvIiKuv/76avNyuZzLkAEAAAAAAB9LDSpeKioq0s4BAAAAAACQeQ26xwsAAAAAAADVNbh4mT9/fhx33HHRq1ev6NWrVxx//PHx8MMPp5kNAAAAAAAgUxpUvNx9990xePDgKC0tjQsuuCAuuOCCaNasWRx11FExY8aMtDMCAAAAAABkQoPu8XLVVVfFtddeGxdffHF+2gUXXBDXX399XHnllTFs2LDUAgIAAAAAAGRFg854efHFF+O4446rNv3444+PlStX7nQoAAAAAACALGpQ8dK1a9eYM2dOtekPPPBAdO3adadDAQAAAAAAZFGDLjX2ve99Ly644IJYvnx5HHzwwRER8cgjj8Qdd9wRP/nJT1INCAAAAAAAkBUNKl7OPffc6NixY/z4xz+OX//61xERsc8++8TMmTPjhBNOSDUgAAAAAABAVjSoeImIOOmkk+Kkk05KMwsAAAAAAECmNbh4iYhYunRpPPPMMxER0adPn+jfv38qoQAAAAAAALKoQcXLyy+/HKeffno88sgj0bp164iIePPNN+Pggw+Oe+65Jz7xiU+kmREAAAAAACATihqy0je/+c0oLy+PZ555Jt54441444034plnnomKior45je/mXZGAAAAAACATGjQGS/z58+PhQsXxqc+9an8tE996lPx05/+NA477LDUwgEAAAAAAGRJg8546dq1a5SXl1ebvmXLlujcufNOhwIAAAAAAMiiBhUvP/rRj+K73/1uLF26ND9t6dKlceGFF8Z1112XWjgAAAAAAIAsadClxs4666zYtGlTDBo0KBo3fn+I9957Lxo3bhxnn312nH322fll33jjjXSSAgAAAAAAfMg1qHiZMmVKyjEAAAAAAACyr0HFy/Dhw9POAQAAAAAAkHkNKl4qrVu3LtatWxcVFRVVpvft23enQgEAAAAAAGRRg4qXZcuWxfDhw+OZZ56JJEmqzMvlcrFly5ZUwgEAAAAAAGRJg4qXs88+O3r37h2/+MUvokOHDpHL5dLOBQAAAAAAkDkNKl5efPHF+M1vfhO9evVKOw8AAAAAAEBmFTVkpaOOOiqeeOKJtLMAAAAAAABkWoPOeLntttti+PDh8eSTT8Z+++0XxcXFVeYff/zxqYQDAAAAAADIkgYVL4sWLYpHHnkk7rvvvmrzcrlcbNmyZaeDAQAAAAAAZE2DLjX23e9+N772ta/Fq6++GhUVFVV+lC4AAAAAAMDHVYOKl9dffz0uvvji6NChQyohbrrppujevXs0bdo0Bg0aFEuWLKl12VtvvTUOO+ywaNOmTbRp0yYGDx5cbfkkSWLcuHHRqVOnaNasWQwePDiee+65VLICAAAAAADUpkHFy5e//OWYO3duKgFmzpwZo0aNivHjx8djjz0W+++/fwwdOjTWrVtX4/Lz5s2L008/PebOnRuLFi2Krl27xpAhQ+KVV17JL3PttdfGDTfcEFOnTo3FixdH8+bNY+jQofHuu++mkhkAAAAAAKAmDbrHS+/evWPs2LGxYMGC+PSnPx3FxcVV5l9wwQX1Huv666+Pc845J0aMGBEREVOnTo0///nPMW3atLjkkkuqLf/LX/6yyuPbbrstfvOb38ScOXPizDPPjCRJYsqUKXHZZZfFCSecEBERd955Z3To0CF+//vfx2mnnbajTxcAAAAAAKBeGlS83HbbbdGiRYuYP39+zJ8/v8q8XC5X7+Jl8+bNsWzZshg7dmx+WlFRUQwePDgWLVpUrzE2bdoU5eXl0bZt24iIWLlyZaxZsyYGDx6cX2a33XaLQYMGxaJFixQvAAAAAADALtOg4mXlypWpbPzf//53bNmypdq9Yjp06BD/+Mc/6jXG//t//y86d+6cL1rWrFmTH2PbMSvnbausrCzKysryjzds2BAREeXl5VFeXl6/J/MxUdIoSWecoqTKf3dWfd+nrOdPc1tZ3LeznD0i2/llL4wsZ4/Idn7ZCyfL+WUvjCxnj8h2ftkLJ8v5ZS+MLGePyHZ+2Qsny/llL4wsZ4/Ifv4s2JHXNpckSb2OHI8aNSquvPLKaN68eYwaNar2AXO5+PGPf1yvja9evTq6dOkSCxcujIMOOig/fcyYMTF//vxYvHhxnetfc801ce2118a8efOib9++ERGxcOHCOOSQQ2L16tXRqVOn/LKnnHJK5HK5mDlzZrVxJkyYEBMnTqw2fcaMGVFaWlqv5wIAAAAAAHw0bdq0KYYNGxbr16+PVq1a1blsvc94efzxx/ONzuOPP17rcrlcrr5DRrt27aJRo0axdu3aKtPXrl0bHTt2rHPd6667Lq655pp44IEH8qVLROTXW7t2bZXiZe3atdGvX78axxo7dmyVMmnDhg3RtWvXGDJkyHZfwI+b/SbMTmWckqIkrhxQEZcvLYqyivrvM7V5csLQei2X9fxpKC8vj/vvvz+OPvroavdn+rDLcvaIbOeXvTCynD0i2/llL5ws55e9MLKcPSLb+WUvnCznl70wspw9Itv5ZS+cLOeXvTCynD0i+/mzoPJKWfVR7+Jl7ty5Nf7/zmjSpEn0798/5syZEyeeeGJERFRUVMScOXNi5MiRta537bXXxlVXXRWzZ8+OAQMGVJnXo0eP6NixY8yZMydftGzYsCEWL14c5557bo3jlZSURElJSbXpxcXFdtJtlG3Z+ZKhyngVuVTGrO/7lPX8acry/p3l7BHZzi97YWQ5e0S288teOFnOL3thZDl7RLbzy144Wc4ve2FkOXtEtvPLXjhZzi97YWQ5e0T283+Y7cjr2qB7vKRp1KhRMXz48BgwYEAMHDgwpkyZEhs3bowRI0ZERMSZZ54ZXbp0icmTJ0dExA9/+MMYN25czJgxI7p3756/b0uLFi2iRYsWkcvl4qKLLopJkybFXnvtFT169IjLL788OnfunC93AAAAAAAAdoWCFy+nnnpqvPbaazFu3LhYs2ZN9OvXL2bNmhUdOnSIiIiXXnopioqK8svffPPNsXnz5vjKV75SZZzx48fHhAkTIuL9e8Rs3LgxvvWtb8Wbb74Zhx56aMyaNSuaNm36gT0vAAAAAADg46fgxUtExMiRI2u9tNi8efOqPF61atV2x8vlcnHFFVfEFVdckUI6AAAAAACA+ina/iIAAAAAAADUh+IFAAAAAAAgJYoXAAAAAACAlCheAAAAAAAAUqJ4AQAAAAAASIniBQAAAAAAICWKFwAAAAAAgJQoXgAAAAAAAFKieAEAAAAAAEiJ4gUAAAAAACAlihcAAAAAAICUKF4AAAAAAABSongBAAAAAABIieIFAAAAAAAgJYoXAAAAAACAlCheAAAAAAAAUqJ4AQAAAAAASIniBQAAAAAAICWKFwAAAAAAgJQoXgAAAAAAAFKieAEAAAAAAEiJ4gUAAAAAACAlihcAAAAAAICUKF4AAAAAAABSongBAAAAAABIieIFAAAAAAAgJYoXAAAAAACAlCheAAAAAAAAUqJ4AQAAAAAASIniBQAAAAAAICWKFwAAAAAAgJQoXgAAAAAAAFKieAEAAAAAAEiJ4gUAAAAAACAlihcAAAAAAICUKF4AAAAAAABSongBAAAAAABIieIFAAAAAAAgJYoXAAAAAACAlCheAAAAAAAAUqJ4AQAAAAAASIniBQAAAAAAICWKFwAAAAAAgJQoXgAAAAAAAFKieAEAAAAAAEiJ4gUAAAAAACAlihcAAAAAAICUKF4AAAAAAABSongBAAAAAABIieIFAAAAAAAgJYoXAAAAAACAlCheAAAAAAAAUqJ4AQAAAAAASIniBQAAAAAAICWKFwAAAAAAgJQoXgAAAAAAAFKieAEAAAAAAEiJ4gUAAAAAACAlihcAAAAAAICUKF4AAAAAAABSongBAAAAAABIieIFAAAAAAAgJYoXAAAAAACAlCheAAAAAAAAUqJ4AQAAAAAASIniBQAAAAAAICWKFwAAAAAAgJQoXgAAAAAAAFKieAEAAAAAAEiJ4gUAAAAAACAlihcAAAAAAICUKF4AAAAAAABSongBAAAAAABIieIFAAAAAAAgJYoXAAAAAACAlCheAAAAAAAAUlLw4uWmm26K7t27R9OmTWPQoEGxZMmSWpd96qmn4uSTT47u3btHLpeLKVOmVFtmwoQJkcvlqvzsvffeu/AZAAAAAAAAvK+gxcvMmTNj1KhRMX78+Hjsscdi//33j6FDh8a6detqXH7Tpk3Rs2fPuOaaa6Jjx461jrvvvvvGq6++mv9ZsGDBrnoKAAAAAAAAeQUtXq6//vo455xzYsSIEdGnT5+YOnVqlJaWxrRp02pc/sADD4wf/ehHcdppp0VJSUmt4zZu3Dg6duyY/2nXrt2uegoAAAAAAAB5jQu14c2bN8eyZcti7Nix+WlFRUUxePDgWLRo0U6N/dxzz0Xnzp2jadOmcdBBB8XkyZPjk5/8ZK3Ll5WVRVlZWf7xhg0bIiKivLw8ysvLdyrLR01JoySdcYqSKv/dWfV9n7KeP81tZXHfznL2iGznl70wspw9Itv5ZS+cLOeXvTCynD0i2/llL5ws55e9MLKcPSLb+WUvnCznl70wspw9Ivv5s2BHXttckiTpHDneQatXr44uXbrEwoUL46CDDspPHzNmTMyfPz8WL15c5/rdu3ePiy66KC666KIq0++77754++2341Of+lS8+uqrMXHixHjllVfiySefjJYtW9Y41oQJE2LixInVps+YMSNKS0t3/MkBAAAAAAAfGZs2bYphw4bF+vXro1WrVnUuW7AzXnaVL3zhC/n/79u3bwwaNCi6desWv/71r+Mb3/hGjeuMHTs2Ro0alX+8YcOG6Nq1awwZMmS7L+DHzX4TZqcyTklRElcOqIjLlxZFWUVup8d7csLQei2X9fxpKC8vj/vvvz+OPvroKC4u/sC2m4YsZ4/Idn7ZCyPL2SOynV/2wslyftkLI8vZI7KdX/bCyXJ+2Qsjy9kjsp1f9sLJcn7ZCyPL2SOynz8LKq+UVR8FK17atWsXjRo1irVr11aZvnbt2ujYsWNq22ndunX07t07nn/++VqXKSkpqfGeMcXFxXbSbZRt2fmSocp4FblUxqzv+5T1/GnK8v6d5ewR2c4ve2FkOXtEtvPLXjhZzi97YWQ5e0S288teOFnOL3thZDl7RLbzy144Wc4ve2FkOXtE9vN/mO3I61q0C3PUqUmTJtG/f/+YM2dOflpFRUXMmTOnyqXHdtbbb78dL7zwQnTq1Cm1MQEAAAAAAGpS0EuNjRo1KoYPHx4DBgyIgQMHxpQpU2Ljxo0xYsSIiIg488wzo0uXLjF58uSIiNi8eXM8/fTT+f9/5ZVXYvny5dGiRYvo1atXRESMHj06jjvuuOjWrVusXr06xo8fH40aNYrTTz+9ME8SAAAAAAD42Cho8XLqqafGa6+9FuPGjYs1a9ZEv379YtasWdGhQ4eIiHjppZeiqOj/TspZvXp1HHDAAfnH1113XVx33XVx+OGHx7x58yIi4uWXX47TTz89Xn/99dhjjz3i0EMPjb/97W+xxx57fKDPDQAAAAAA+PgpaPESETFy5MgYOXJkjfMqy5RK3bt3jyRJ6hzvnnvuSSsaAAAAAADADinYPV4AAAAAAAA+ahQvAAAAAAAAKVG8AAAAAAAApETxAgAAAAAAkBLFCwAAAAAAQEoULwAAAAAAAClRvAAAAAAAAKRE8QIAAAAAAJASxQsAAAAAAEBKFC8AAAAAAAApUbwAAAAAAACkRPECAAAAAACQEsULAAAAAABAShQvAAAAAAAAKVG8AAAAAAAApETxAgAAAAAAkBLFCwAAAAAAQEoULwAAAAAAAClRvAAAAAAAAKRE8QIAAAAAAJASxQsAAAAAAEBKFC8AAAAAAAApUbwAAAAAAACkRPECAAAAAACQEsULAAAAAABAShQvAAAAAAAAKVG8AAAAAAAApETxAgAAAAAAkBLFCwAAAAAAQEoULwAAAAAAAClRvAAAAAAAAKRE8QIAAAAAAJASxQsAAAAAAEBKFC8AAAAAAAApUbwAAAAAAACkRPECAAAAAACQEsULAAAAAABAShQvAAAAAAAAKVG8AAAAAAAApETxAgAAAAAAkBLFCwAAAAAAQEoULwAAAAAAAClRvAAAAAAAAKRE8QIAAAAAAJASxQsAAAAAAEBKFC8AAAAAAAApUbwAAAAAAACkRPECAAAAAACQEsULAAAAAABAShQvAAAAAAAAKVG8AAAAAAAApETxAgAAAAAAkBLFCwAAAAAAQEoULwAAAAAAAClRvAAAAAAAAKRE8QIAAAAAAJASxQsAAAAAAEBKFC8AAAAAAAApUbwAAAAAAACkRPECAAAAAACQEsULAAAAAABAShQvAAAAAAAAKVG8AAAAAAAApETxAgAAAAAAkBLFCwAAAAAAQEoULwAAAAAAAClRvAAAAAAAAKRE8QIAAAAAAJASxQsAAAAAAEBKFC8AAAAAAAApUbwAAAAAAACkRPECAAAAAACQEsULAAAAAABAShQvAAAAAAAAKVG8AAAAAAAApETxAgAAAAAAkJKCFy833XRTdO/ePZo2bRqDBg2KJUuW1LrsU089FSeffHJ07949crlcTJkyZafHBAAAAAAASEtBi5eZM2fGqFGjYvz48fHYY4/F/vvvH0OHDo1169bVuPymTZuiZ8+ecc0110THjh1TGRMAAAAAACAtBS1err/++jjnnHNixIgR0adPn5g6dWqUlpbGtGnTalz+wAMPjB/96Edx2mmnRUlJSSpjAgAAAAAApKVxoTa8efPmWLZsWYwdOzY/raioKAYPHhyLFi36QMcsKyuLsrKy/OMNGzZERER5eXmUl5c3KMtHVUmjJJ1xipIq/91Z9X2fsp4/zW1lcd/OcvaIbOeXvTCynD0i2/llL5ws55e9MLKcPSLb+WUvnCznl70wspw9Itv5ZS+cLOeXvTCynD0i+/mzYEde21ySJOkcOd5Bq1evji5dusTChQvjoIMOyk8fM2ZMzJ8/PxYvXlzn+t27d4+LLrooLrroop0ec8KECTFx4sRq02fMmBGlpaU7+MwAAAAAAICPkk2bNsWwYcNi/fr10apVqzqXLdgZLx8mY8eOjVGjRuUfb9iwIbp27RpDhgzZ7gv4cbPfhNmpjFNSlMSVAyri8qVFUVaR2+nxnpwwtF7LZTl/lrOnpby8PO6///44+uijo7i4+APbblqynF/2wshy9ohs55e9cLKcX/bCyHL2iGznl71wspxf9sLIcvaIbOeXvXCynF/2wshy9ojs58+Cyitl1UfBipd27dpFo0aNYu3atVWmr127Njp27PiBjllSUlLjPWOKi4vtpNso27LzB+qrjFeRS2XM+r5PWc6f5expy/pnM8v5ZS+MLGePyHZ+2Qsny/llL4wsZ4/Idn7ZCyfL+WUvjCxnj8h2ftkLJ8v5ZS+MLGePyH7+D7MdeV2LdmGOOjVp0iT69+8fc+bMyU+rqKiIOXPmVLlMWKHHBAAAAAAAqK+CXmps1KhRMXz48BgwYEAMHDgwpkyZEhs3bowRI0ZERMSZZ54ZXbp0icmTJ0dExObNm+Ppp5/O//8rr7wSy5cvjxYtWkSvXr3qNSYAAAAAAMCuUtDi5dRTT43XXnstxo0bF2vWrIl+/frFrFmzokOHDhER8dJLL0VR0f+dlLN69eo44IAD8o+vu+66uO666+Lwww+PefPm1WtMAAAAAACAXaWgxUtExMiRI2PkyJE1zqssUyp17949kiTZqTEBAAAAAAB2lYLd4wUAAAAAAOCjRvECAAAAAACQEsULAAAAAABAShQvAAAAAAAAKVG8AAAAAAAApETxAgAAAAAAkBLFCwAAAAAAQEoULwAAAAAAAClRvAAAAAAAAKRE8QIAAAAAAJASxQsAAAAAAEBKFC8AAAAAAAApUbwAAAAAAACkRPECAAAAAACQEsULAAAAAABAShQvAAAAAAAAKVG8AAAAAAAApETxAgAAAAAAkBLFCwAAAAAAQEoULwAAAAAAAClRvAAAAAAAAKRE8QIAAAAAAJASxQsAAAAAAEBKFC8AAAAAAAApUbwAAAAAAACkRPECAAAAAACQEsULAAAAAABAShQvAAAAAAAAKVG8AAAAAAAApETxAgAAAAAAkBLFCwAAAAAAQEoULwAAAAAAAClRvAAAAAAAAKSkcaEDAB993S/5cyrjlDRK4tqBEftNmB1lW3I7Pd6qa76YQioAAAAAgP/jjBcAAAAAAICUKF4AAAAAAABSongBAAAAAABIieIFAAAAAAAgJYoXAAAAAACAlCheAAAAAAAAUqJ4AQAAAAAASIniBQAAAAAAICWKFwAAAAAAgJQoXgAAAAAAAFKieAEAAAAAAEiJ4gUAAAAAACAlihcAAID/3979x9lc5///v58zv5kxI0wzREwkIj8j+jGblNp+rB+LJIOV0G92yI+EpahW0aqsxPZLKqnPtqJkUSG/fyXE+DFpkB/rd40x8/z+0dd5d5oxM3Sc53mO2/VyOZf3+5zXMd3muec1XuZxXq8DAAAAAAHC4AUAAAAAAAAAACBAGLwAAAAAAAAAAAAECIMXAAAAAAAAAACAAGHwAgAAAAAAAAAAECAMXgAAAAAAAAAAAAKEwQsAAAAAAAAAAECAMHgBAAAAAAAAAAAIEAYvAAAAAAAAAAAAAcLgBQAAAAAAAAAAIEAYvAAAAAAAAAAAAAQIgxcAAAAAAAAAAIAAYfACAAAAAAAAAAAQIAxeAAAAAAAAAAAAAoTBCwAAAAAAAAAAQIAweAEAAAAAAAAAAAgQBi8AAAAAAAAAAAABwuAFAAAAAAAAAAAgQBi8AAAAAAAAAAAABAiDFwAAAAAAAAAAgABh8AIAAAAAAAAAABAgDF4AAAAAAAAAAAAChMELAAAAAAAAAABAgDB4AQAAAAAAAAAACBAGLwAAAAAAAAAAAAHC4AUAAAAAAAAAACBAGLwAAAAAAAAAAAAECIMXAAAAAAAAAACAAGHwAgAAAAAAAAAAECAhMXh56aWXVLVqVUVHR6tp06ZatmxZoc9///33dcUVVyg6Olp169bVJ5984re9W7du8ng8frdbb731fH4LAAAAAAAAAAAA9gcv7777rvr166dhw4Zp1apVqlevnlq1aqUff/yxwOcvXrxYnTp1Uo8ePbR69Wq1bt1arVu31jfffOP3vFtvvVW7d+/23d55551gfDsAAAAAAAAAAOACZn3w8vzzz6tnz57q3r27ateurYkTJ6pUqVKaMmVKgc8fP368br31VvXv31+1atXSyJEj1bBhQ02YMMHveVFRUUpKSvLdypYtG4xvBwAAAAAAAAAAXMDCbf7HT548qZUrV2rQoEG+x7xer1q2bKklS5YU+GeWLFmifv36+T3WqlUrffTRR36PLViwQImJiSpbtqxatGihUaNGqVy5cgV+zezsbGVnZ/vuHzlyRJKUk5OjnJycc/nWSqyoMBOYr+M1fv/39yru/04u99Nu73UTKKf/ey7+XKHdDpfbJbf7abfH5X7a7XC5XXK7n3Z7XO6n3Q6X2yW3+2m3x+V+2u1wuV1yv98FZ7O2HmNMYH6DeQ6ysrJUqVIlLV68WM2aNfM9PmDAAC1cuFBLly7N92ciIyP1+uuvq1OnTr7HXn75ZY0YMUJ79+6VJE2fPl2lSpVStWrVlJGRocGDBys2NlZLlixRWFhYvq85fPhwjRgxIt/j06ZNU6lSpQLxrQIAAAAAAAAAAEedOHFC99xzjw4fPqwyZcoU+lyrZ7ycL3fffbfv/69bt66uuuoqXXbZZVqwYIFuuummfM8fNGiQ31k0R44cUeXKlXXLLbcUuYAXmjrDPw3I14nyGo1snKehK7zKzvP87q/3zfBWxXqey/2023vdBEpOTo7mzp2rm2++WREREUH9b/9etNvhcrvkdj/t9rjcT7sdLrdLbvfTbo/L/bTb4XK75HY/7fa43E+7HS63S+73u+D0lbKKw+rgpXz58goLC/OdqXLa3r17lZSUVOCfSUpKOqvnS1JKSorKly+vrVu3Fjh4iYqKUlRUVL7HIyIieJH+Rnbu7/9lt9/Xy/ME5GsW938nl/tp/9XXC/LrJtBc/tlCux0ut0tu99Nuj8v9tNvhcrvkdj/t9rjcT7sdLrdLbvfTbo/L/bTb4XK75H5/KDubdfWex44iRUZGqlGjRpo3b57vsby8PM2bN8/v0mO/1qxZM7/nS9LcuXPP+HxJ2rVrlw4cOKDk5OTAhAMAAAAAAAAAABTA6uBFkvr166dXX31Vr7/+ujZu3Kg+ffro+PHj6t69uyQpLS1NgwYN8j3/0Ucf1Zw5czR27Fht2rRJw4cP14oVK/TQQw9Jko4dO6b+/fvr66+/1o4dOzRv3jz96U9/UvXq1dWqVXAvKwQAAAAAAAAAAC4s1j/jpWPHjtq3b5+efPJJ7dmzR/Xr19ecOXN08cUXS5IyMzPl9f7ffKh58+aaNm2annjiCQ0ePFg1atTQRx99pDp16kiSwsLCtG7dOr3++us6dOiQKlasqFtuuUUjR44s8HJiAAAAAAAAAAAAgWJ98CJJDz30kO+Mld9asGBBvsfat2+v9u3bF/j8mJgYffppYD7IGwAAAAAAAAAA4GxYv9QYAAAAAAAAAABAScHgBQAAAAAAAAAAIEAYvAAAAAAAAAAAAAQIgxcAAAAAAAAAAIAAYfACAAAAAAAAAAAQIAxeAAAAAAAAAAAAAoTBCwAAAAAAAAAAQIAweAEAAAAAAAAAAAgQBi8AAAAAAAAAAAABEm47AABCXdWBswLydaLCjJ5tItUZ/qmycz2/62vtGHN7QJoAAAAAAAAABBZnvAAAAAAAAAAAAAQIgxcAAAAAAAAAAIAAYfACAAAAAAAAAAAQIAxeAAAAAAAAAAAAAoTBCwAAAAAAAAAAQIAweAEAAAAAAAAAAAgQBi8AAAAAAAAAAAABwuAFAAAAAAAAAAAgQBi8AAAAAAAAAAAABAiDFwAAAAAAAAAAgABh8AIAAAAAAAAAABAgDF4AAAAAAAAAAAAChMELAAAAAAAAAABAgDB4AQAAAAAAAAAACBAGLwAAAAAAAAAAAAHC4AUAAAAAAAAAACBAGLwAAAAAAAAAAAAECIMXAAAAAAAAAACAAGHwAgAAAAAAAAAAECAMXgAAAAAAAAAAAAKEwQsAAAAAAAAAAECAMHgBAAAAAAAAAAAIEAYvAAAAAAAAAAAAAcLgBQAAAAAAAAAAIEAYvAAAAAAAAAAAAAQIgxcAAAAAAAAAAIAAYfACAAAAAAAAAAAQIAxeAAAAAAAAAAAAAoTBCwAAAAAAAAAAQIAweAEAAAAAAAAAAAgQBi8AAAAAAAAAAAABwuAFAAAAAAAAAAAgQBi8AAAAAAAAAAAABAiDFwAAAAAAAAAAgABh8AIAAAAAAAAAABAgDF4AAAAAAAAAAAAChMELAAAAAAAAAABAgITbDgAAnD9VB84KyNeJCjN6tolUZ/inys71/O6vt2PM7QGoAgAAAAAAAEIPZ7wAAAAAAAAAAAAECIMXAAAAAAAAAACAAGHwAgAAAAAAAAAAECAMXgAAAAAAAAAAAAKEwQsAAAAAAAAAAECAMHgBAAAAAAAAAAAIEAYvAAAAAAAAAAAAAcLgBQAAAAAAAAAAIEAYvAAAAAAAAAAAAAQIgxcAAAAAAAAAAIAAYfACAAAAAAAAAAAQIAxeAAAAAAAAAAAAAoTBCwAAAAAAAAAAQIAweAEAAAAAAAAAAAgQBi8AAAAAAAAAAAABwuAFAAAAAAAAAAAgQBi8AAAAAAAAAAAABAiDFwAAAAAAAAAAgABh8AIAAAAAAAAAABAgDF4AAAAAAAAAAAACJNx2AAAABak6cFZAvk5UmNGzTaQ6wz9Vdq7nd3+9HWNuD0AVAAAAAAAASirOeAEAAAAAAAAAAAgQBi8AAAAAAAAAAAABwuAFAAAAAAAAAAAgQBi8AAAAAAAAAAAABAiDFwAAAAAAAAAAgABh8AIAAAAAAAAAABAg4bYDAAAoaaoOnBWQrxMVZvRsE6nO8E+Vnev53V9vx5jbA1AFAAAAAACAwoTEGS8vvfSSqlatqujoaDVt2lTLli0r9Pnvv/++rrjiCkVHR6tu3br65JNP/LYbY/Tkk08qOTlZMTExatmypbZs2XI+vwUAAAAAAAAAAAD7Z7y8++676tevnyZOnKimTZtq3LhxatWqlTZv3qzExMR8z1+8eLE6deqk0aNH64477tC0adPUunVrrVq1SnXq1JEkPfvss3rxxRf1+uuvq1q1aho6dKhatWqlb7/9VtHR0cH+FgEAcApn7AAAAAAAAJw762e8PP/88+rZs6e6d++u2rVra+LEiSpVqpSmTJlS4PPHjx+vW2+9Vf3791etWrU0cuRINWzYUBMmTJD0y9ku48aN0xNPPKE//elPuuqqq/TGG28oKytLH330URC/MwAAAAAAAAAAcKGxesbLyZMntXLlSg0aNMj3mNfrVcuWLbVkyZIC/8ySJUvUr18/v8datWrlG6ps375de/bsUcuWLX3b4+Pj1bRpUy1ZskR33313vq+ZnZ2t7Oxs3/3Dhw9Lkg4ePKicnJxz/v5KovBTxwPzdfKMTpzIU3iOV7l5v/9d0AcOHCjef9fhftp53fyay+1SyX/duNwuud3fdPS83/3fkaQor9ETDfJUf8hMZQegfemgm4p8jsvtUmj2u9wuFb8/EHJycnTixAkdOHBAERERQfvvBoLL7ZLb/bTb43I/7Xa43C653U+7PS73026Hy+2S+/0uOHr0qKRfTv4okrHohx9+MJLM4sWL/R7v37+/adKkSYF/JiIiwkybNs3vsZdeeskkJiYaY4xZtGiRkWSysrL8ntO+fXvToUOHAr/msGHDjCRu3Lhx48aNGzdu3Lhx48aNGzdu3Lhx48aNG7cz3r7//vsiZx/WP+MlFAwaNMjvLJq8vDwdPHhQ5cqVk8fz+9+tiPyOHDmiypUr6/vvv1eZMmVs55w1l/tpt8flftrtcLldcrufdntc7qfdDpfbJbf7abfH5X7a7XC5XXK7n3Z7XO6n3Q6X2yX3+11gjNHRo0dVsWLFIp9rdfBSvnx5hYWFae/evX6P7927V0lJSQX+maSkpEKff/r/7t27V8nJyX7PqV+/foFfMyoqSlFRUX6PJSQknM23gnNUpkwZp38QuNxPuz0u99Nuh8vtktv9tNvjcj/tdrjcLrndT7s9LvfTbofL7ZLb/bTb43I/7Xa43C653x/q4uPji/U873nuKFRkZKQaNWqkefP+77raeXl5mjdvnpo1a1bgn2nWrJnf8yVp7ty5vudXq1ZNSUlJfs85cuSIli5desavCQAAAAAAAAAAEAjWLzXWr18/de3aVY0bN1aTJk00btw4HT9+XN27d5ckpaWlqVKlSho9erQk6dFHH1VqaqrGjh2r22+/XdOnT9eKFSs0adIkSZLH49Fjjz2mUaNGqUaNGqpWrZqGDh2qihUrqnXr1ra+TQAAAAAAAAAAcAGwPnjp2LGj9u3bpyeffFJ79uxR/fr1NWfOHF188cWSpMzMTHm9/3diTvPmzTVt2jQ98cQTGjx4sGrUqKGPPvpIderU8T1nwIABOn78uO6//34dOnRI1113nebMmaPo6Oigf38oWFRUlIYNG5bvEm+ucLmfdntc7qfdDpfbJbf7abfH5X7a7XC5XXK7n3Z7XO6n3Q6X2yW3+2m3x+V+2u1wuV1yv7+k8RhjjO0IAAAAAAAAAACAksDqZ7wAAAAAAAAAAACUJAxeAAAAAAAAAAAAAoTBCwAAAAAAAAAAQIAweAEAAAAAAAAAAAgQBi8AAAAAAAAAAAABEm47AAAQmnJzc7V//355vV5VqFDBdg4AAAAAAADgBM54QVBMnjxZXbt21dSpUyVJ7777rmrVqqWUlBQNGzbMct2527hxo1JSUmxnFOjHH3/0u79mzRp17dpV1157rf785z9rwYIFdsKKqW7duho5cqS+//572ynnZP/+/Xr22WfVpk0bNWvWTM2aNVObNm303HPPad++fbbzCjVr1izdcMMNKl26tCpWrKikpCQlJCSoS5cuyszMtJ1XpLlz52rYsGH673//K0n64osvdNttt6lFixa+n0Gh6M4779Sbb76pn376yXbKOXF13YuSkZGhFi1a2M44Z6Hev3btWqWlpSklJUUxMTEqXbq06tatq6FDh+rIkSO28wq1e/duvfXWW/rkk0908uRJv23Hjx/X3/72N0tlxbN27VpNmTJF27ZtkyRt2LBBDzzwgHr37q1PP/3Ucl3R8vLyzvi4C39Xwa6srCwNGzZMnTt3Vnp6ujZt2mQ7qcTbtWuXjh07lu/xnJwcffHFFxaKzl1KSoq2bNliO6NYXF73jRs3aurUqb79c9OmTerTp4/+8pe/+I43XXD8+HFNnTpVQ4YM0YQJE3TgwAHbSeds7969IX98c/LkSb333nvq27evOnXqpE6dOqlv3756//338x2vueJ///uf3njjDdsZZ/TBBx/oxIkTtjPOya5du7R//37f/S+//FKdO3fW9ddfr3vvvVdLliyxWFc4139/cMEwwHn2wgsvmNKlS5u2bdua5ORkM2rUKFOuXDkzatQoM2LECFOmTBnzz3/+03bmOVmzZo3xer22Mwrk9XrN3r17jTHGLFq0yERERJjU1FTTv39/c/PNN5vw8HCzcOFCy5Vn5vF4TLly5UxYWJhp1aqVmTFjhsnJybGdVSzLli0zZcuWNZUqVTJdu3Y1AwYMMAMGDDBdu3Y1l1xyibnooovM8uXLbWcW6I033jBxcXHmr3/9qxkyZIhJSkoyAwcONK+88opJTU015cuXN999953tzDN68803TXh4uGnYsKGJjY01U6dONQkJCea+++4zf/nLX0xkZKR5//33bWcWyOPxmPDwcBMfH2969+5tVqxYYTup2Fxe96KE8s/54gjl/jlz5piYmBjTrl07c++995pSpUqZhx56yDz++OOmevXq5rLLLjO7d++2nVmgZcuWmYSEBFOmTBkTExNjqlevbr755hvf9j179oTsuhtjzAcffGDCwsJMuXLlTGxsrJk7d65JSEgwLVu2NK1atTJhYWHm7bfftp1ZoMOHD5v27dub6Ohok5iYaIYOHWpOnTrl2x7qaz9jxgxz/Phx2xm/y9KlS824cePMwIEDzcCBA824cePM0qVLbWcVKiYmxvz444/GGGM2bNhg4uPjTfXq1U379u3NFVdcYUqVKmXWrl1rubJwa9asMa+99prJyMgwxhjzzTffmD59+phevXqZOXPmWK47s6ysLHP11Vcbr9drwsLCTJcuXczRo0d920N5nx0/fnyBt7CwMDNo0CDf/VDk8robY8zs2bNNZGSkueiii0x0dLSZPXu2qVChgmnZsqVp0aKFCQsLM/PmzbOdWaBatWqZAwcOGGOMyczMNFWrVjXx8fHm6quvNhdddJFJTEw027Zts1x5bkL5uNIYY7Zs2WJSUlJMdHS0SU1NNR06dDAdOnQwqampJjo62lSvXt1s2bLFduZZC/V193g8pkyZMqZnz57m66+/tp1zVpo0aWI+/vhjY4wxH330kfF6veauu+4yjz/+uGnTpo2JiIjwbQ81Lv/+4ELiMcYY28MflGy1atXS0KFDdc8992j16tVq0qSJJk6cqB49ekiSXnvtNb3yyitasWKF5dL8+vXrV+j2ffv2adq0acrNzQ1SUfF5vV7t2bNHiYmJuuWWW1S5cmW99tprvu2PPfaY1q9fr3nz5lmsPDOv16tdu3Zp2bJlmjJlimbPnq2yZcsqLS1NPXr0UK1atWwnntE111yjevXqaeLEifJ4PH7bjDHq3bu31q1bF5LvnqhVq5aGDx+ujh07SpJWrFihNm3aKDMzUx6PR3fffbdOnjypmTNnWi4tWIMGDdS9e3c98sgjmjdvnu6880499dRT6tu3ryRp7Nix+vDDD/XVV19ZLs3P6/Xqm2++0WeffaYpU6Zow4YNqlu3ru677z517txZZcuWtZ14Ri6v+4svvljo9h9++EF///vfQ/LnvOR2f4MGDdSrVy/17t1b0i9nTT3yyCPauHGjcnJydNttt6ly5cohecbUzTffrMqVK2vy5Mk6fvy4Hn/8cb333nuaO3euGjRooL1796pixYohue6S1KhRI7Vt21ZDhgzR9OnT1adPH/Xr109Dhw6V9Ms++9Zbb2n16tWWS/N79NFHNWfOHD311FM6dOiQRo0apTp16mjmzJmKjIzU3r17lZycfMYzYmzzer2Ki4tTx44d1aNHDzVt2tR2UrH9+OOPateunRYtWqQqVaro4osvlvTLO6AzMzN17bXX6oMPPlBiYqLl0vx+fVzcunVr5eXlaebMmQoPD1deXp46d+6sY8eO6eOPP7adWqCZM2eqQ4cOSkhIUHZ2tj788EO1b99ejRs3VlhYmD7//HO98cYbuueee2yn5tO1a1dt3rxZEyZM0KFDhzRw4EB5PB599tlnKlu2bEjvs16vV5UqVVJ4uP8V2nfu3KmKFSsqIiJCHo/Hd+ZgKHF53SWpefPmatGihUaNGqXp06frgQceUJ8+ffTUU09JkgYNGqSVK1fqs88+s1ya369/3tx7773avn27PvnkE8XHx+vYsWNq06aNKlSooGnTptlOzWfdunWFbt+0aZM6deoUssc3N998s0qXLq033nhDZcqU8dt25MgRpaWl6aeffgq5M3uLOst73bp1Sk1NDdl193q9GjFihD788EOtWbNGtWvX1n333acuXbqoXLlytvMKFRsbq/Xr16tatWq65ppr1KZNGz3++OO+7RMmTNCUKVO0atUqi5UFc/n3BxcUy4MfXABiYmLMzp07ffejoqL83hW6ZcsWk5CQYCOtSF6v1zRs2ND84Q9/KPDWuHHjkH3ngcfj8Z3xkpycbJYsWeK3/ZtvvjHly5e3kVYsv+435pd3bT399NOmRo0axuv1mmbNmpnXXnvNYuGZRUdHm40bN55x+8aNG010dHQQi4ovJibGbN++3e+x8PBw88MPPxhjfnmXa6jur8YYU7p0ab93kEVERPi9g3Xjxo2mXLlyNtKK9NvX/NKlS839999v4uPjTUxMjOnUqVPIvrPP9XWvWLGiqVq1aoG3ihUrhuzPeWPc7o+Ojvb7eZOXl2ciIiJMVlaWMcaYL774wlSoUMFSXeHKli1rNm/e7PfY6NGjTdmyZc2yZctC/p3EpUuX9q396XVft26db3tGRoaJjY21VFe4KlWqmPnz5/vu79u3zzRp0sTccsst5ueffw75tfd4POZvf/ubadCggfF4PObKK680L7zwgtm/f7/ttCK1a9fONGvWzGzatCnftk2bNpnmzZubP//5zxbKivbrv2MrV65svvjiC7/tq1atMsnJyTbSiqVhw4Zm1KhRxhhj3nnnHZOQkGD+9re/+bb//e9/N/Xr17eVV6iKFSv6nRH1888/mzvvvNPUr1/fHDhwIKT32V69epn69eubb7/91u/x8PBws2HDBktVxePyuhtjTJkyZXxnJuTm5prw8HCzatUq3/b169ebiy++2FZeoX798yYlJcV89tlnftsXLVpkKleubCOtSB6Px3i9XuPxePLdTj8eyq+bmJgYs379+jNuX7dunYmJiQliUfGcXtcz3UJ93X/9ml+xYoXp06ePSUhIMFFRUaZ9+/b59oFQEh8f7/t3a2JiYr6zX7du3WpKlSplI61ILv/+4ELCZ7zgvCtVqpSOHz/uu1+hQgXFxsb6PefUqVPBziqW6tWrq2/fvpo/f36Bt1dffdV2YqGOHj2qI0eOKDo6WlFRUX7boqOjQ/o6nL89UyQ5OVmDBg3Sd999p3nz5umyyy7TI488YqmucElJSVq2bNkZty9btsz3LtFQU7VqVb+zz1atWiWv1+vrveiii5STk2Mrr0gRERF+1+6Niory+3kTFRXlzDVQmzRpon/+85/KysrSyy+/rO+//14333yz7awCubzul156qV544QVt3769wNusWbNsJxbK5f5KlSpp8+bNvvsZGRnKy8vzvTPukksuKfC69KHi559/9rs/cOBADR48WLfccosWL15sqap44uLifNeYP3TokE6dOuV3zfkDBw7kO1YLFfv27dOll17qu1++fHl9/vnnOnr0qP74xz+G9LHNab169dKqVau0fPly3XDDDRoxYoQqVaqkDh06aO7cubbzzujTTz/VSy+9pJo1a+bbVrNmTb344ouaM2eOhbKieTwe37Gl1+tVfHy83/aEhAT973//s5FWLJs3b1bnzp0lSR07dtTx48fVunVr3/Y2bdpo69atluoKd/jwYb933UZFRWnmzJmqWrWqbrzxxnyfSxlKJk6cqCeffFKtWrXShAkTbOecFZfX/bRf77PR0dF++21cXJwOHz5sK61Ip9t//vlnJScn+22rVKlSyH7m50UXXaRXX321wGPKbdu26T//+Y/txEIlJCRox44dZ9y+Y8cOJSQkBK2nuOLi4jR69Gj997//LfA2adIk24nF1qhRI7388svavXu3Xn31Ve3bt0+33nqrqlWrZjutQKmpqXrnnXck/XI2/m8/C3n+/PmqVKmShbKz59LvDy4k4UU/Bfh9rrjiCq1bt853aajfflj6pk2bVLVqVQtlRWvcuLFWrlype++9t8DtHo9HJoSv1nf55ZdL+uXyVitWrFCDBg182zZs2KCKFSvaSitSYev6hz/8QX/4wx9C9oOX09PTdf/992vlypW66aab/C7FMW/ePL366qv6+9//brmyYA8++KDuu+8+LV++XNHR0Zo8ebK6dOmisLAwSdLSpUt9r6tQVL16dW3atMn3S6EffvhBcXFxvu0ZGRm65JJLbOWdk1KlSqlbt27q1q2bvvvuO9s5BXJ53Rs1aqSVK1eqQ4cOBW4P9Z/zLvenpaXpvvvu05AhQxQVFaXnn39ed911lyIjIyVJa9asCdl/pNWpU0eLFy/WVVdd5fd4enq68vLy1KlTJ0tlxdOyZUs9+OCDevjhh/Xuu+/qlltu0aBBgzR16lR5PB71799f1113ne3MAlWpUkUbN270e23ExcXps88+0y233KI2bdpYrDs7jRo1UqNGjfT888/r/fff15QpU3TrrbeqSpUq2r59u+28fKKiogo99jp69Gi+N/qECmOMLr/8cnk8Hh07dkzr1q3z23+3bt2qpKQki4WFOz0srVq1qnPD0pSUFK1bt041atTwPRYeHq73339f7du31x133GGxrmht2rRRkyZNlJaWplmzZoXk5S8L4vq6V61aVVu2bNFll10mSVqyZImqVKni256ZmZlvoBFKbrrpJoWHh+vIkSPavHmz6tSp49u2c+fOkL38UqNGjZSVleX3BodfO3ToUMgeV0rSfffdp7S0NA0dOrTAf4ePGjVKDz/8sOXK/Bo2bCjplyFAQRISEkJ63X/7plnplzf6dunSRV26dNHWrVtD9mfnmDFjdP311ysrK0vXXXedhgwZouXLl6tWrVravHmz3n33XU2cONF25llx4fcHFxIGLzjvnnnmGZUuXfqM2zMzM9WrV68gFhXf2LFjlZ2dfcbt9erVC9nr4s6fP9/v/m8PTLdv3677778/mElnpWvXroqJiSn0Ob+9bmuoePDBB1W+fHm98MILevnll33XYg0LC1OjRo30r3/964y/JLXtwQcflNfr1VtvvaXs7Gx169bNd81/6Zd3UYTi9YhPGzx4sN+7+377GlmxYkXIrn1qaqrvF85nEqpDL5fX/W9/+1uh75CvXbt2SP4C9DSX+wcPHqzjx49r5MiRys7OVqtWrTR+/Hjf9kqVKumVV16xWHhmaWlpWrhwoe/zaX5twIABMsaE9D/S/v73v6tLly7q3bu3rr32Wr377rt64oknVLt2bXk8Hl122WV+nwsXSm655RZNnTpVf/zjH/0ej42N1aeffhry7+xz+ZcTHTt2VNeuXfXCCy/opptu8v2sP3LkiObNm6d+/fqF7NDxt2tavXp1v/tff/11SA/tXB6W3nbbbZo0aZLatWvn9/jpIUC7du20a9cuS3XFU6lSJX3++ecaM2aMGjRoENK/AD3N9XXv06eP3+dZ/HpwIUmzZ89WixYtgp1VLMOGDfO7/9uh6Mcff6zrr78+mEnF1rt3b7+rlfxWlSpVQvbvKOmX4+LSpUvrueee01//+lff37nGGCUlJenxxx/XgAEDLFfmd8899xR6dYCkpKR8r6tQUtTPxOrVq/s+nynU1KpVS0uXLtUTTzyhZ599VsePH9fbb7+t8PBwXX311Zo+fbrfGaahxOXfH1xIPMaFowZcUN555x3dddddhQ5rQhXt9oRqf05Ojvbv3y/pl8uhREREWC4KrFBd9+JatGiRGjduHLLv0C0M7Xa43C653U/7+bdt2zadOHFCV1xxRb4Pkw4V//vf/5SVlaUrr7yywO1Hjx7VqlWrzviuUdt+/aHLrsnOztZjjz2mKVOm6NSpU75/7J88eVLh4eHq0aOHXnjhhZB/nRdHqO2ze/fuVZcuXbRkyRK/YelLL73kG5bOnj3bd3ZAKDl16pROnDhxxjdMnTp1Sj/88MMZ32EfalauXKmvvvpKaWlpIf3BxSVt3YGztX37du3Zs0fSL4OLUD2LujDGmALfsBFqdu7cqSpVqjjRWhhjjH788Ufl5eWVyN/dhNqxzYWCwQtCTpkyZbRmzRqlpKTYTjlrtNvjer+rXF93l/tpt8PldsntftpREpSEX04cOXJEK1as0N69eyX98gutRo0aheyZyOfClX3WhWEpAODcREZGau3atb7L9gO/hyvHNiWN13YA8FsuzwJpt8el/oyMjJA9Nf5subTuBXG5n3Y7XG6X3O6nPbB++uknffXVV/r222/zbfv555/1xhtvWKgqHpfbL730Ur+hy/HjxzV16lQNGTJEEyZM8PvcjlDz8MMP68svv1SZMmXUokULderUSZ06ddKNN95YooYuUmjus792+nXz2muvaeHChSH9IeOSNGHCBKWlpWn69OmSpDfffFO1a9fWFVdcocGDB+vUqVOWC8/M1fZVq1b5XWr0zTff1LXXXqvKlSvruuuu830/wG+5+po/zcX+fv36FXjLzc3VmDFjfPdDmavHZhfSz8pQP7YpqRi8AECQHTt2TAsXLrSdAQC4QH333XeqVauWbrjhBtWtW1epqanavXu3b/vhw4fVvXt3i4Vn5nK79MvnLh08eFCS9P3336tOnTrq27ev5s6dq2HDhoX05zK99NJL+sMf/qDLL79czzzzjO8SLjj/fvu6ufLKK32vmyeffDKkXzejRo3S4MGDdeLECfXt21fPPPOM+vbtq86dO6tr166aPHmyRo4caTuzQC63d+/eXRkZGZKkyZMnq1evXmrcuLGGDBmiq6++Wj179tSUKVMsVyLUuPyal9ztHzdunObPn6/Vq1f73Ywx2rhxo1avXq01a9bYzjwjl4/N+FmJ884AISY2NtZkZGTYzjgntNsTSv3jx48v9DZgwADj9XptZwZEKK37uXC5n3Y7XG43xu1+2gOndevW5vbbbzf79u0zW7ZsMbfffrupVq2a2blzpzHGmD179oTs31MutxtjjMfjMXv37jXGGNO5c2fTvHlzc+jQIWOMMUePHjUtW7Y0nTp1spl4Rh6Px3z++efm0UcfNeXLlzcRERHmrrvuMh9//LHJzc21nRdQobbPuvy6ueyyy8wHH3xgjDFmzZo1JiwszLz11lu+7TNnzjTVq1e3lVcol9tjYmLMjh07jDHGNGjQwEyaNMlv+9tvv21q165tIw0hzOXXvDHu9o8ePdpUq1bNzJs3z+/x8PBws2HDBktVxefysdmF9LMy1I5tLhRcCBYAAuyxxx5TcnKy70Nnf+vkyZNBLgIA4P8sXrxYn3/+ucqXL6/y5cvr448/1gMPPKDrr79e8+fPV+nSpW0nnpHL7b+1ZMkSTZw4UfHx8ZKk2NhYjRgxQnfffbflsjOrW7eubrrpJj333HP68MMPNWXKFLVu3VoXX3yxunXrpu7du6t69eq2M0s01143WVlZaty4sSSpXr168nq9ql+/vm97w4YNlZWVZamucC63lypVSvv379ell16qH374QU2aNPHb3rRp05A9Swr2uPyal9ztHzhwoG666Sbde++9uvPOOzV69GinPtjd5WMzflbifONSYwAQYJdeeqleeOEFbd++vcDbrFmzbCfi/+fyhxvTbofL7ZLb/bQHzk8//eT3Qdwej0evvPKK7rzzTqWmpuq7776zWFc4l9tPO/16+Pnnn5WcnOy3rVKlStq3b5+NrLMSERGhDh06aM6cOdq2bZt69uypt99+WzVr1rSdFhChts9K7r5ukpKSfNf837Jli3Jzc/0+A2DDhg1KTEy0lVcol9tvu+02vfLKK5Kk1NRUzZgxw2/7e++9x5AU+bj8mpfc7r/66qu1cuVK7du3T40bN9Y333wTkn8XFcTlY7ML6WelK6+nkoYzXhByLr30Uqem+79Guz2h1N+oUSOtXLlSHTp0KHC7x+MpMR9sFkrrfi5c/t+Bdjtcbpfc7qc9cK644gqtWLFCtWrV8nt8woQJkqS77rrLRlaxuNx+2k033aTw8HAdOXJEmzdvVp06dXzbdu7cqXLlylmsO3tVqlTR8OHDNWzYMH3++ee2cwIi1PZZyd3XTefOnZWWlqY//elPmjdvngYMGKD09HQdOHBAHo9HTz31lP785z/bziyQy+3PPPOMrr32WqWmpqpx48YaO3asFixYoFq1amnz5s36+uuv9eGHH9rORIhx+TUvud8fGxur119/XdOnT1fLli2Vm5trO6lYXD42u5B+Vobisc2FwGNYeQAIqG+//VYnTpzwneb8Wzk5OcrKytKll14a5DIguIwxysvLU1hYmO2UC47La0/7+Td69Gh9+eWX+uSTTwrc/sADD2jixInKy8sLclnRXG6XpBEjRvjdv+aaa9SqVSvf/f79+2vXrl165513gp1WpGrVqmnFihUh+wv+c+HKPuvy6yYvL09jxozRkiVL1Lx5cw0cOFDvvvuuBgwYoBMnTujOO+/UhAkTQvJSNC63S9KhQ4c0ZswYffzxx9q2bZvy8vKUnJysa6+9Vn379j3jv1Vw4XL9Ne96/6/t2rVLK1euVMuWLUO+1/Vjs5L2s9KVY5sLRrA/VAb4rTVr1oTsB20VhXZ7XO//ta+++sr8/PPPtjOKxYV1nzVrlunRo4fp37+/2bhxo9+2gwcPmhtvvNFSWdFcbc/JyTFDhgwxN9xwg3nyySeNMcY8++yzplSpUiYyMtKkpaWZ7Oxsy5Vn5uq6G+P22tMOIFjYZwEAQEnCsY0b+IwXhATj8IlXtNvjev9pt912m3744QfbGcUWyus+bdo03XXXXdqzZ4+WLFmiBg0a6O233/ZtP3nypBYuXGix8Mxcbh8xYoQmT56sxo0ba8aMGerTp4/+8Y9/aNKkSXr11Vc1b948jRs3znZmgVxed8nttacdQLCwzwIAgJKEYxs3cKkxnHdt27YtdPvhw4e1YMGCkLx+Je32uN5/NuLi4rR27VqlpKTYTnF+3Rs0aKDu3bvrkUcekfTLh+H95S9/0fjx49WjRw/t3btXFStWDMl+l9svu+wyjR8/XnfccYe2bt2qmjVratq0aerYsaOkX76XkSNHav369ZZL83N53SW31552AMHCPgsAAEoSjm3cEG47ACXfxx9/rJtvvlkXX3xxgdtD9ZdZEu02ud7vKtfXfcuWLbrzzjt99zt06KAKFSrorrvuUk5Ojtq0aWOxrnAut2dlZalevXqSpOrVqysyMtJ3X5Kuvvpq7dy501ZeoVxed8nttacdQLCwzwIAgJKEYxs3MHjBeVerVi21a9dOPXr0KHD7mjVr9J///CfIVcVDuz2u97vK9XUvU6aM9u7dq2rVqvkeu/HGG/Wf//xHd9xxh3bt2mWxrnAut8fHx+vQoUOqXLmyJKlhw4aKi4vzbc/OzpbH47GVVyiX111ye+1pBxAs7LMAAKAk4djGDXzGC867Ro0aadWqVWfcHhUVpSpVqgSxqPhot8f1fle5vu5NmjTR7Nmz8z2empqqjz/+OKSvcepye+3atf1eN4sWLVKlSpV899evX68aNWrYSCuSy+suub32tAMIFvZZAABQknBs4wY+4wXnXXZ2tnJzc1WqVCnbKWeNdntc7z8bZcqU0Zo1a0LiM15cX/eFCxdq8eLFGjRoUIHb58+frzfeeENTp04NclnRXG7/7rvvFBER4XfWyK9NmzZN4eHh6tChQ5DLiubyukturz3tAIKFfRYAAJQkHNu4gcELQs6YMWPUu3dvJSQk2E45a7Tb43J/XFyc1q5dGxKDl7Pl8rpLbvfTbofL7ZLb/bQDCBb2WQAAUJJwbGMHgxeEnFB69//Zot0eF/qNMcrLy1NYWJjtlIBxYd0L43I/7Xa43C653U87gGBhnwUAACUJxzZ28BkvCDkuzwJptyeU+k+dOqUnnnhCqampGjZsmCTpueeeU2xsrEqVKqWuXbvq5MmTlisDI5TW/Vy43E+7HS63S2730w4gWNhnAQBAScKxjR3htgMAoKQZMWKEJk+erM6dO2vGjBn68ccfNWvWLE2aNEm5ubkaPHiwxo0bpwEDBthOBQAAAAAAABBgDF4AIMCmTZumyZMn64477lCfPn1Us2ZNTZs2TR07dpQkRUdHa+TIkQxeAAAAAAAAgBKIS40BQIBlZWWpXr16kqTq1asrMjLSd1+Srr76au3cudNWHgAAAAAAAIDziMELAARYfHy8Dh065LvfsGFDxcXF+e5nZ2fL4/FYKAMAAAAAAABwvjF4Qci5/vrrFRMTYzvjnNBuTyj1165dW6tWrfLdX7RokSpVquS7v379etWoUcNGWsCF0rqfC5f7abfD5XbJ7X7aAQQL+ywAAChJOLaxw2OMMbYjcOHIyMjQ1KlTlZGRofHjxysxMVGzZ89WlSpVdOWVV9rOKxTt9rjW/9133ykiIkLVqlUrcPu0adMUHh6uDh06BLns7Li27r/lcj/tdrjcLrndTzuAYGGfBQAAJQnHNqGLM14QNAsXLlTdunW1dOlSzZw5U8eOHZMkrV27VsOGDbNcVzja7XGx//LLLz/j0EWS7rnnHr+hy5gxY/wuTRYKXFz3X3O5n3Y7XG6X3O6nHUCwsM8CAICShGOb0MbgBUEzcOBAjRo1SnPnzlVkZKTv8RYtWujrr7+2WFY02u1xvb84nn76aR08eNB2hh/X193lftrtcLldcrufdgDBwj4LAABKEo5tQhuDFwTN+vXr1aZNm3yPJyYmav/+/RaKio92e1zvL45QvOKj6+vucj/tdrjcLrndTzuAYGGfBQAAJQnHNqGNwQuCJiEhQbt37873+OrVq/0+eDwU0W6P6/2ucn3dXe6n3Q6X2yW3+2kHECzsswAAoCTh2Ca0MXhB0Nx99916/PHHtWfPHnk8HuXl5WnRokVKT09XWlqa7bxC0W6P6/2ucn3dXe6n3Q6X2yW3+2kHECzsswAAoCTh2CbEGSBIsrOzzX333WfCw8ONx+MxERERxuv1mnvvvdecOnXKdl6haLfH9f7iiI2NNRkZGbYz/Li+7i73026Hy+3GuN1PO4BgYZ8FAAAlCcc2oc1jTAh+uABKHGOMvv/+e1WoUEH79+/X+vXrdezYMTVo0EA1atSwnVco2u1xvb+44uLitHbtWqWkpNhOkeT+urvcT7sdLrdLbvfTDiBY2GcBAEBJwrFN6GPwgqDIy8tTdHS0NmzY4NzOT7s9rvcX1x//+Ee99tprSk5Otp0iyf11d7mfdjtcbpfc7qcdQLCwzwIAgJKEY5vQx2e8ICi8Xq9q1KihAwcO2E45a7Tb43q/JGVkZOiJJ55Qp06d9OOPP0qSZs+erQ0bNvie88knn4TM0EVyf91d7qfdDpfbJbf7aQcQLOyzAACgJOHYJvQxeEHQjBkzRv3799c333xjO+Ws0W6Py/0LFy5U3bp1tXTpUs2cOVPHjh2TJK1du1bDhg2zXFc4l9ddcrufdjtcbpfc7qcdQLCwzwIAgJKEY5vQxqXGEDRly5bViRMndOrUKUVGRiomJsZv+8GDBy2VFY12e1zub9asmdq3b69+/fr5fY7LsmXL1LZtW+3atct24hm5vO6S2/202+Fyu+R2P+0AgoV9FgAAlCQc24S2cNsBuHCMGzfOdsI5o90el/vXr1+vadOm5Xs8MTFR+/fvt1BUfC6vu+R2P+12uNwuud1PO4BgYZ8FAAAlCcc2oY0zXgDgPLnkkkv03nvvqXnz5n5nvHz44YdKT09XRkaG7UQAAAAAAAAAAcYZLwiazMzMQrdXqVIlSCVnj3Z7XO6/++679fjjj+v999+Xx+NRXl6eFi1apPT0dKWlpdnOK5TL6y653U+7HS63S2730w4gWNhnAQBAScKxTWjjjBcEjdfrlcfjOeP23NzcINacHdrtcbn/5MmTevDBB/Wvf/1Lubm5Cg8PV25uru655x7961//UlhYmO3EM3J53SW3+2m3w+V2ye1+2gEEC/ssAAAoSTi2CW2c8YKgWb16td/9nJwcrV69Ws8//7yeeuopS1XFQ7s9rvYbY7Rnzx69+OKLevLJJ7V+/XodO3ZMDRo0UI0aNWznFcnVdT/N5X7a7XC5XXK7n3YAwcI+CwAAShKObUIbZ7zAulmzZum5557TggULbKecNdrtCfX+vLw8RUdHa8OGDU4MWoor1Ne9KC73026Hy+2S2/20AwgW9lkAAFCScGwTGry2A4CaNWtq+fLltjPOCe32hHq/1+tVjRo1dODAAdspARXq614Ul/tpt8PldsntftoBBAv7LAAAKEk4tgkNXGoMQXPkyBG/+8YY7d69W8OHDw/5MwJot8fl/jFjxqh///565ZVXVKdOHds5Z8XldZfc7qfdDpfbJbf7aQcQLOyzAACgJOHYJrQxeEHQJCQk5PvAJ2OMKleurOnTp1uqKh7a7XG5Py0tTSdOnFC9evUUGRmpmJgYv+0HDx60VFY0l9ddcrufdjtcbpfc7qcdQLCwzwIAgJKEY5vQxuAFQTN//ny/+16vVxUqVFD16tUVHh7aL0Xa7XG5f9y4cbYTzpnL6y653U+7HS63S2730w4gWNhnAQBAScKxTWjjfwEEjcfjUfPmzfPt+KdOndIXX3yhG264wVJZ0Wi3x+X+rl272k44Zy6vu+R2P+12uNwuud1PO4BgYZ8FAAAlCcc2oc1jjDG2I3BhCAsL0+7du5WYmOj3+IEDB5SYmKjc3FxLZUWj3R6X+zMzMwvdXqVKlSCVnD2X111yu592O1xul9zupx1AsLDPAgCAkoRjm9DGGS8IGmNMvusOSr/8MChdurSFouKj3R6X+6tWrVpg+2mh/Begy+suud1Pux0ut0tu99MOIFjYZwEAQEnCsU1oY/CC865t27aSfjn9rVu3boqKivJty83N1bp169S8eXNbeYWi3R7X+yVp9erVfvdzcnK0evVqPf/883rqqacsVRXO9XV3uZ92O1xul9zupx1AsLDPAgCAkoRjGzcweMF5Fx8fL+mXKWxcXJxiYmJ82yIjI3XNNdeoZ8+etvIKRbs9rvdLUr169fI91rhxY1WsWFHPPfec7y/KUOL6urvcT7sdLrdLbvfTDiBY2GcBAEBJwrGNG/iMFwTNiBEjlJ6e7uSpbrTb43p/QbZu3ap69erp+PHjtlPOyPV1d7mfdjtcbpfc7qcdQLCwzwIAgJKEY5vQxuAFAM6TI0eO+N03xmj37t0aPny4Nm3apDVr1tgJAwAAAAAAAHDecKkxBNWMGTP03nvvKTMzUydPnvTbtmrVKktVxUO7Pa72JyQk5PuQM2OMKleurOnTp1uqKj5X1/00l/tpt8PldsntftoBBAv7LAAAKEk4tgldXtsBuHC8+OKL6t69uy6++GKtXr1aTZo0Ubly5bRt2zbddttttvMKRbs9LvfPnz9f//3vf323BQsW6Ntvv1VGRoaaNWtmO69QLq+75HY/7Xa43C653U87gGBhnwUAACUJxzYhzgBBUrNmTTNt2jRjjDGxsbEmIyPDGGPM0KFDzYMPPmgzrUi02+Ny/8KFC01OTk6+x3NycszChQstFBWfy+tujNv9tNvhcrsxbvfTDiBY2GcBAEBJwrFNaOOMFwRNZmammjdvLkmKiYnR0aNHJUldunTRO++8YzOtSLTb43L/jTfeqIMHD+Z7/PDhw7rxxhstFBWfy+suud1Pux0ut0tu99MOIFjYZwEAQEnCsU1oY/CCoElKSvL9ErpKlSr6+uuvJUnbt2+XMcZmWpFot8flfmNMvs94kaQDBw6odOnSFoqKz+V1l9zup90Ol9slt/tpBxAs7LMAAKAk4dgmtIXbDsCFo0WLFvr3v/+tBg0aqHv37urbt69mzJihFStWqG3btrbzCkW7PS72n+7yeDzq1q2boqKifNtyc3O1bt063zsSQpWL6/5rLvfTbofL7ZLb/bQDCBb2WQAAUJJwbBPaPIbxF4IkLy9PeXl5Cg//Zd43ffp0LV68WDVq1FCvXr0UGRlpufDMaLfHxf7u3btLkl5//XV16NBBMTExvm2RkZGqWrWqevbsqfLly9tKLJKL6/5rLvfTbofL7ZLb/bQDCBb2WQAAUJJwbBPaGLwAwHkyYsQIpaenh/xlxQAAAAAAAAAEDp/xgqD68ssvde+996pZs2b64YcfJElvvvmmvvrqK8tlRaPdHlf7hw0b5vTQxdV1P83lftrtcLldcrufdgDBwj4LAABKEo5tQheDFwTNBx98oFatWikmJkarV69Wdna2JOnw4cN6+umnLdcVjnZ7XO+fMWOGOnTooGuuuUYNGzb0u4Uy19fd5X7a7XC5XXK7n3YAwcI+CwAAShKObUKcAYKkfv365vXXXzfGGBMbG2syMjKMMcasWrXKXHzxxTbTikS7PS73jx8/3sTGxpqHHnrIREZGml69epmWLVua+Ph4M3jwYNt5hXJ53Y1xu592O1xuN8btftoBBAv7LAAAKEk4tgltnPGCoNm8ebNuuOGGfI/Hx8fr0KFDwQ86C7Tb43L/yy+/rEmTJukf//iHIiMjNWDAAM2dO1ePPPKIDh8+bDuvUC6vu+R2P+12uNwuud1PO4BgYZ8FAAAlCcc2oY3BC4ImKSlJW7duzff4V199pZSUFAtFxUe7PS73Z2Zmqnnz5pKkmJgYHT16VJLUpUsXvfPOOzbTiuTyuktu99Nuh8vtktv9tAMIFvZZAABQknBsE9oYvCBoevbsqUcffVRLly6Vx+NRVlaW3n77baWnp6tPnz628wpFuz0u9yclJengwYOSpCpVqujrr7+WJG3fvl3GGJtpRXJ53SW3+2m3w+V2ye1+2gEEC/ssAAAoSTi2CXG2r3WGkm3t2rUmNzfXd3/UqFGmdOnSxuPxGI/HY6Kjo80TTzxhsfDMaLfH9f7TevToYYYPH26MMWbChAkmJibGtGzZ0iQkJJi//OUvluvyc33dXe6n3Q6X241xu592AMHCPgsAAEoSjm3c4TEmxN92DaeFhYVp9+7dSkxMVEpKipYvX664uDht3bpVx44dU+3atRUbG2s7s0C02+N6/2l5eXnKy8tTeHi4JGn69OlavHixatSooV69eikyMtJyoT/X193lftrtcLldcrufdgDBwj4LAABKEo5t3BFuOwAlW0JCgrZv367ExETt2LFDeXl5ioyMVO3atW2nFYl2e1zvP83r9crr/b8rOt599926++67LRYVzvV1d7mfdjtcbpfc7qcdQLCwzwIAgJKEYxt3MHjBedWuXTulpqYqOTlZHo9HjRs3VlhYWIHP3bZtW5DrCke7Pa73/9qXX36pf/7zn8rIyNCMGTNUqVIlvfnmm6pWrZquu+4623l+XF93l/tpt8PldsntftoBBAv7LAAAKEk4tnEHgxecV5MmTVLbtm21detWPfLII+rZs6fi4uJsZxUL7fa43n/aBx98oC5duqhz585avXq1srOzJUmHDx/W008/rU8++cRyoT/X193lftrtcLldcrufdgDBwj4LAABKEo5t3MFnvCBounfvrhdffNHJHwa02+Nyf4MGDdS3b1+lpaUpLi5Oa9euVUpKilavXq3bbrtNe/bssZ14Ri6vu+R2P+12uNwuud1PO4BgYZ8FAAAlCcc2oY3BCwCcJ6VKldK3336rqlWr+g1etm3bptq1a+vnn3+2nQgAAAAAAAAgwLxFPwUAcC6SkpK0devWfI9/9dVXSklJsVAEAAAAAAAA4Hxj8AIA50nPnj316KOPaunSpfJ4PMrKytLbb7+t9PR09enTx3YeAAAAAAAAgPMg3HYAAJQk69atU506deT1ejVo0CDl5eXppptu0okTJ3TDDTcoKipK6enpevjhh22nAgAAAAAAADgP+IwXAAigsLAw7d69W4mJiUpJSdHy5csVFxenrVu36tixY6pdu7ZiY2NtZwIAAAAAAAA4TzjjBQACKCEhQdu3b1diYqJ27NihvLw8RUZGqnbt2rbTAAAAAAAAAAQBgxcACKB27dopNTVVycnJ8ng8aty4scLCwgp87rZt24JcBwAAAAAAAOB8Y/ACAAE0adIktW3bVlu3btUjjzyinj17Ki4uznYWAAAAAAAAgCDhM14A4Dzp3r27XnzxRQYvAAAAAAAAwAWEwQsAAAAAAAAAAECAeG0HAAAAAAAAAAAAlBQMXgAAAAAAAAAAAAKEwQsAAAAAAAAAAECAMHgBAAAA4BxjjO6//35ddNFF8ng8WrNmje0kAAAAAJAkeYwxxnYEAAAAAJyN2bNn609/+pMWLFiglJQUlS9fXuHh4b/ra3br1k2HDh3SRx99FJhIAAAAABek3/cvEwAAAACwICMjQ8nJyWrevLntlHxyc3Pl8Xjk9XKBAQAAAOBCxL8EAAAAADilW7duevjhh5WZmSmPx6OqVasqLy9Po0ePVrVq1RQTE6N69eppxowZvj+Tm5urHj16+LbXrFlT48eP920fPny4Xn/9df2///f/5PF45PF4tGDBAi1YsEAej0eHDh3yPXfNmjXyeDzasWOHJOlf//qXEhIS9O9//1u1a9dWVFSUMjMzlZ2drfT0dFWqVEmlS5dW06ZNtWDBAt/X2blzp+68806VLVtWpUuX1pVXXqlPPvnkfC8fAAAAgPOMM14AAAAAOGX8+PG67LLLNGnSJC1fvlxhYWEaPXq03nrrLU2cOFE1atTQF198oXvvvVcVKlRQamqq8vLydMkll+j9999XuXLltHjxYt1///1KTk5Whw4dlJ6ero0bN+rIkSOaOnWqJOmiiy7S4sWLi9V04sQJPfPMM5o8ebLKlSunxMREPfTQQ/r22281ffp0VaxYUR9++KFuvfVWrV+/XjVq1NCDDz6okydP6osvvlDp0qX17bffKjY29nwuHQAAAIAgYPACAAAAwCnx8fGKi4tTWFiYkpKSlJ2draefflqff/65mjVrJklKSUnRV199pX/+859KTU1VRESERowY4fsa1apV05IlS/Tee++pQ4cOio2NVUxMjLKzs5WUlHTWTTk5OXr55ZdVr149SVJmZqamTp2qzMxMVaxYUZKUnp6uOXPmaOrUqXr66aeVmZmpdu3aqW7dur5mAAAAAO5j8AIAAADAaVu3btWJEyd08803+z1+8uRJNWjQwHf/pZde0pQpU5SZmamffvpJJ0+eVP369QPSEBkZqauuusp3f/369crNzdXll1/u97zs7GyVK1dOkvTII4+oT58++uyzz9SyZUu1a9fO72sAAAAAcBODFwAAAABOO3bsmCRp1qxZqlSpkt+2qKgoSdL06dOVnp6usWPHqlmzZoqLi9Nzzz2npUuXFvq1vd5fPhbTGON7LCcnJ9/zYmJi5PF4/JrCwsK0cuVKhYWF+T339OXE7rvvPrVq1UqzZs3SZ599ptGjR2vs2LF6+OGHi/utAwAAAAhBDF4AAAAAOO3XH2ifmppa4HMWLVqk5s2b64EHHvA9lpGR4fecyMhI5ebm+j1WoUIFSdLu3btVtmxZSdKaNWuKbGrQoIFyc3P1448/6vrrrz/j8ypXrqzevXurd+/eGjRokF599VUGLwAAAIDjGLwAAAAAcFpcXJzS09PVt29f5eXl6brrrtPhw4e1aNEilSlTRl27dlWNGjX0xhtv6NNPP1W1atX05ptvavny5apWrZrv61StWlWffvqpNm/erHLlyik+Pl7Vq1dX5cqVNXz4cD311FP67rvvNHbs2CKbLr/8cnXu3FlpaWkaO3asGjRooH379mnevHm66qqrdPvtt+uxxx7Tbbfdpssvv1z/+9//NH/+fNWqVet8LhUAAACAIPDaDgAAAACA32vkyJEaOnSoRo8erVq1aunWW2/VrFmzfIOVXr16qW3bturYsaOaNm2qAwcO+J39Ikk9e/ZUzZo11bhxY1WoUEGLFi1SRESE3nnnHW3atElXXXWVnnnmGY0aNapYTVOnTlVaWpr++te/qmbNmmrdurWWL1+uKlWqSJJyc3P14IMP+novv/xyvfzyy4FdGAAAAABB5zG/vlgxAAAAAAAAAAAAzhlnvAAAAAAAAAAAAAQIgxcAAAAAAAAAAIAAYfACAAAAAAAAAAAQIAxeAAAAAAAAAAAAAoTBCwAAAAAAAAAAQIAweAEAAAAAAAAAAAgQBi8AAAAAAAAAAAABwuAFAAAAAAAAAAAgQBi8AAAAAAAAAAAABAiDFwAAAAAAAAAAgABh8AIAAAAAAAAAABAgDF4AAAAAAAAAAAAC5P8DASUueKUTakwAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.subplots(figsize=(20, 10))\n",
"\n",
"names, importances = pipe1.features.importances(target_num=0)\n",
"\n",
"plt.bar(names[0:30], importances[0:30])\n",
"\n",
"plt.title(\"feature importances for the x-component\", size=20)\n",
"plt.grid(True)\n",
"plt.xlabel(\"features\")\n",
"plt.ylabel(\"importance\")\n",
"plt.xticks(rotation='vertical')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABl4AAAOsCAYAAAAr1cuiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACnlElEQVR4nOzde5xVdb0//vceGAYGRe7XiIt4I0UUktRMSgTL4y0rL5WIaaWRGhnfMBVQSlOPDypNyqIoI/FkeboopAgYiiCghZdMTfMoAqYJIgkjs35/8Jsdw1wYhg9ulz6fj8c8nL0un/3ae6+9qPWatVYhy7IsAAAAAAAA2GllpQ4AAAAAAADwTqF4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAcum5556LL3zhC7HnnntG69ato1AoRKFQiNtvv73U0djGT3/60+Ln8+yzz5Y6DiT1Tt8XnXnmmVEoFKJv376ljgIAALnRstQBAAB21HPPPRdDhgyJf/7zn6WOAryL2RcBAAD1ccYLAJA7U6ZMiX/+85/RsmXL+Pa3vx2LFi2KFStWxIoVK+Koo44qdbxa/LU4KUyaNKl4JgVvH3naF23NWWhQes8++2zxe/jTn/601HEAgMSc8QIA5M7dd98dEREnnnhijB8/vsRp2J4zzzwzzjzzzFLHgOTsiwAAgPo44wUAyJ0XXnghIiL23nvvEicB3s3siwAAgPooXgCA3Nm0aVNERJSXl5c4CfBuZl8EAADUR/ECAOTC1vckqDF58uTitEKhUO/lrDZv3hwzZsyI//qv/4qePXtGRUVFdOrUKT74wQ/GddddF//+978bfM7q6uq455574qKLLorDDz88OnfuHOXl5dG+ffsYPHhwXHTRRfHcc8/Vu27NPTlmzJgRERH/+Mc/amWt734dNdMmTZrU6HsxfPjwKBQKMXz48Drz5s+fXxxn/vz5UV1dHdOnT48Pf/jD0a1btygrK6v3fVq+fHl88YtfjH322Sd22223aNu2beyzzz5x7rnnxt/+9rdG82zP9u4nse3reeqpp+KLX/xi9O/fP9q0aRN9+/aNz33uc/GPf/yj1nqPPPJIjBkzJvr37x+tW7eO3r17x7nnnhtr1qxpMMu299x54YUXYty4cbH33ntHZWVldOnSJY499tiYPXt2k17bihUr4vOf/3zstddeUVlZGbvvvnu8733vi6985SuN3jujvmv7//rXv46Pfexj0bNnz2jZsmUMHz68+N5Nnjy5uG5929HWz7Uz222NbT+TmvdpwIAB0aZNm+jUqVOMGjUq7rzzzia9Ty+99FJcfvnlcfjhh0fXrl2jvLw8OnToEMOGDYvx48fHX/7ylwbXfeONN+L666+Po446Krp37x6tWrWKrl27xogRI+LHP/5xvPnmm40+9z333BOnnXZa9OvXL9q0aROVlZXRp0+f+MAHPhAXXXRR3HPPPU16DTWauy966aWX4pJLLomDDjoo2rdvH61bt46+ffvGZz/72Vi4cGGjz9m3b99a4y5btizOPPPM6NevX1RUVDT53j81+4cxY8YUp/Xr16/O9jR//vwGx3j11Vfjsssui/e9733Rtm3baN++fXzoQx+KX/ziF03KsHbt2rjyyivj8MMPjy5dukSrVq2iR48ecdxxx8WvfvWryLKsSeNsa9y4cVEoFKJFixbFM5EaM2TIkCgUCjFw4MBmPV+NZ599Nv7f//t/MWTIkOjUqVOUl5dH586d44gjjohJkybF3//+9wbXTb3/GDlyZHTt2jXatm0bBx54YHzve9+Lqqqq4npZlsXMmTNj+PDh0bVr16isrIyDDz44pk2b1uj7vu2/TXfffXccf/zx0aNHj2jdunX0798/xo4d26T3vbq6Om6++eb42Mc+Vvw+d+nSJT784Q/H97///WKZWZ9t73X1xhtvxDXXXBMHH3xw7L777rH77rvHIYccEtdff/129ws16zd337Ltd/KJJ56Ic845J/r27RsVFRXRrVu3OOmkk+KBBx6od/1CoRD9+vUrPh4zZkyd7+H2/rcAAPA2lwEA5MBPfvKTLCIa/Rk9enStdf7xj39kBx54YKPrDBgwIHviiSfqfc6JEydu9zkrKyuzX//6181ad9v/KVYzbeLEiY2+F0ceeWQWEdmRRx5ZZ968efOK49x5553ZiBEjGn2fNm/enH3lK1/JCoVCgxlbtmyZ/eAHP2g0U2O2/uyeeeaZRl/PXXfdle2+++715ujatWv2+OOPZ1mWZTNnzsxatWpV73J9+vTJXnjhhXqzjB49urjMgw8+mHXt2rXB1z1u3LhGX9e3vvWtrKysrMH1KyoqshkzZtS77jPPPFNcbvr06dlnP/vZOusfeeSRTdrut31fd2a7re8zWbhwYda5c+cGx7rmmmsafZ9uvvnmrG3bto3m6dOnT73rPvzww1mfPn0aXff9739/tmrVqnrXv/DCC7f7XnTq1KnR/Ntqzr5ozpw5Wbt27Rpd50tf+lK2efPmep+z5j0YPXp0duONN2YtW7ZsdF/SkK33D439zJs3r7jO1t+Zv/71r1nfvn0bfQ2Nufvuu7NOnTo1+twf+9jHstdee61Jr2drjz76aHGMK6+8stFl//znPzd5+23MNddck5WXlzf6eurbT2dZuv3HT37yk+zcc89tcJyPf/zj2Ztvvpm98cYb2Sc+8YkGlzvnnHMafJ01y0ycODGbNGlSg2Psscce2b333tvgOC+//HJ2+OGHN/p+7bffftmzzz5b7/pb79tWrVqVDR48uMFxjjvuuAa/T1m28/uWrb+Tv/71r7PKysp6x2jRokV2yy23NPieNvazvf8tAAC8vSleAIBc+Ne//pWtWLEiW7FiRfGgxLnnnluctmLFiuz5558vLv/Pf/4z6927d/EA1tixY7P/+Z//yR588MFs3rx52YQJE4oHSvr375+9+uqrdZ7zG9/4RtajR4/svPPOy37+859n9913X7Zs2bLs9ttvz8aPH5/ttttuWURkrVu3zh577LFa665evTpbsWJFdsIJJ2QRkfXs2bNW1pqfrTX1YEtTi5dBgwZlEZEdf/zx2a9//ets2bJl2R133FHrINB5551XXP5DH/pQNn369Gz+/PnZkiVLsptuuil73/veV5z/v//7v034pOpqavGy1157ZR06dMh69+6dfe9738sWL16c/elPf8ouvPDCYjF0+OGHZ0uWLMlatmyZ7bffftmPfvSjbMmSJdm8efNqlRennHJKvVlqDiJ36dIl69u3b1ZRUZF9/etfz+69995s8eLF2Xe/+92sR48exXGmTp1a7zg33HBDcZkuXbpk1157bbZo0aJs4cKF2aRJk4pFQ6FQyP7whz/UWX/rA6c1n9MRRxyRzZw5M1u6dGl29913Zz/60Y+K2/3WB1br2442bdpUHHtnttttP5O9994769y5c9a1a9fsqquuyhYuXJgtWbIku+6667L27dtnEVuKuUceeaTecX72s58Vc7du3Tr78pe/nN1xxx3Z8uXLs3vvvTe7/vrrs5EjR2b9+vWrs+6TTz6Z7bHHHllEZO3atcsmTJiQ/eY3v8mWLl2azZkzJ/vSl75ULCCGDRtW6z3Isiz73e9+V+s9vvHGG7P58+dnDz30UDZv3rzs+uuvz0488cSsZ8+e9WZvyI7uix566KFiSVheXp595StfyebNm5ctWbIk+8EPfpD169evOM748ePrfc6ag7wDBw7MWrRokfXt2ze7/vrrswceeCBbuHDhdouGGuvXr89WrFiRTZkypficc+bMqbM9rV+/vrjO1t+ZvfbaK9t9992zSy65JJs/f362dOnS7Kabbsre8573FMebPXt2vc+9cOHCYknRrVu3bMqUKdnvfve7bNmyZdnvfve77DOf+UytsqA5Dj300Cwisn322afR5WoKuZYtWzZ4YH17Lr/88mLe9u3bZxdffHF21113ZcuXL8/uueee7Nprr80OO+ywbPjw4XXWTbn/GDZsWBaxpbCq2c/ffvvtxekRkd10003Zl7/85SwistNPPz37/e9/ny1btiy75ZZbsn333be43J133lnva62ZP3To0OL7++Mf/zh78MEHs7vvvjv7whe+UCyR2rVrlz333HN1xnjzzTeLn0/Nv1//8z//ky1dujT77W9/m5144onFeXvuuWe95dvWxcthhx2WtWrVKjv//POzu+66K1u2bFk2c+bMbL/99isuM23atHpfz87uW7LsP9/Jgw8+OGvdunXWr1+/4ndy0aJF2aRJk7LWrVsXn2PNmjW11l+xYkU2Z86cYtYpU6bU+R6uXr263vwAQD4oXgCA3GlKQXH66adnEVv+Svvvf/97vcssX768eIDr4osvrjP/mWeeqfeAS43/+7//y3r16pVFRPaZz3ym3mW2/mvx7UldvEREdskllzQ4zh//+Mficj/60Y/qXebf//539pGPfKT4Gqqqqrb7OrbV1OKlpnzZ9gBVlmXZRRddVOtA5WGHHZa9/vrrdZb75Cc/WTygWt84NZ9HzUHwBQsW1FnmhRdeKB5Ibtu2bZ1x1qxZUyztevbsWe9Bxq23rV69etXZjrY+cBoR2RlnnJFVV1fXGafG1gcctyfFdrv1Z9KnT59aRUKNP/3pT8VC7Pzzz68zf+XKlcX3qWvXrnWKxq3V9x4edthhWURkBx10UPbSSy/Vu96dd95ZPOD7wx/+sNa8miKuT58+jZ5B8fLLLzc4b3ua8p19//vfn0Vs+cv3OXPm1Jn/yiuvZAMHDswiIisrK6u3xNr6L/MPOOCA7F//+lezM2fZ9r+TW9v6O7PHHnvUm+/JJ58sHmQ+/vjj68zftGlT8UyZY445pt7vbpZl2Q9/+MPic/3xj3/c4df14x//uLj+fffdV+8ymzZtKp7BdcIJJ+zwc2TZlu93zXa39957Z//3f//X4LLbbtu7Yv9x4YUX1hnj9ddfL243nTp1ygqFQr1F8osvvlg8y7C+zy7Lap+dcfDBB9f7fdq6ZP3kJz9ZZ/7111+/3f3dxRdf3GgJufV+sLy8vNaZWTVefvnlrFu3bsXCtT47u2/JstrfySFDhmRr166ts8zNN99cXOa6666rM3/bM5cAgHcWxQsAkDvbO9j5zDPPZC1atMgiIvvd737X6Fjjx48vHgBrjqlTpxb/orW+A0mlLF723nvv7M0332xwnJpC5eSTT270+R577LGdOhi6I8VLQ39x/fe//724TKFQaPBMjXvuuae4XH1n6Gx9EHns2LENZp41a1ZxuW0vRfTtb3+7OK++S8jU2PqsgltvvbXWvK0PuLVv3z5bt25dg+Nk2Y4VL02xve1268/kt7/9bYPjfOADHygewNzWhAkTimPcfvvtO5Tv3nvvLa77l7/8pdFlP/WpT2URW/4CfmtHH310FhHZSSedtEPPvSO2951dvHhxcZkvfvGLDY6zcOHC4nLnnXdenflbH+Rt7FJOTdXc4uW73/1ug8udeuqpWURkHTt2rDOv5qB869at6y1Et3bIIYdkEVvOzNhR69evL5YIZ599dr3L3HbbbY3uI5ritNNOK+6Lli9fvkPrpt5/9O7du8Gi9bLLLisu94EPfKDB5zrjjDOyiMg6dOhQ7/yti5elS5c2OM5HP/rRLGJL8f3iiy/WmldzJkqXLl0a3N9VVVUVz8Dp0KFD9sYbb9Sav/V+sLFLQX79618vfj7bns2aYt+SZbW/k3/+85/rXb+6ujrr2bNng/shxQsAvLOVBQDAO8wf/vCH2Lx5c1RWVsZHP/rRRpf90Ic+FBERK1eu3O4Nx9etWxfPPPNMPProo/HII4/EI488EpWVlbXmvZ2ccsop0aJFi3rnrVu3rngD7U984hONjrPffvtF586dIyJi0aJFSTNurX379jFq1Kh65/Xr1y923333iIgYNGhQ7LfffvUud+CBBxZ/b+ym1hFR6wbj2zrppJOiffv2EbHlRtJbq3ncvn37+PjHP97gGGeffXaddepz3HHHFV/brrAz22379u3j2GOPbXD+kCFDIqL+9/r3v/99RET0798/jj/++B3K/Nvf/jYiIvbZZ5844IADGl225jv84IMP1roZdo8ePSIi4t57742nn356h54/la0/98997nMNLnf44YcXt+nGtpXevXvHEUcckS7gDigUCnH66ac3OL9mW3jllVfi1VdfrTWv5vM88sgjo0uXLo0+T83n2Zx9Tdu2bePUU0+NiIhbb701NmzYUGeZn/zkJxER0b179/jYxz62w89RXV0dd955Z0REDB8+PA466KAdWj/1/uPjH/94lJeX1ztv6/3hKaec0uAYNcv961//qvPZbe2AAw4ofs71OeussyIi4s033yz++xKx5d/Xxx9/PCIiPvWpTzW4v2vZsmVxv/yvf/0rli9f3uBzffrTn25wXk3GLMvq7N9S7Fu2dsABB8SgQYPqnVcoFIrbx/b+PQIA3nlaljoAAEBqS5cujYiIDRs2RMuWTf+fO6tWrYr3vve9tab94x//iGuvvTZ+97vfxT/+8Y9G1//nP/8Z/fv33/HAu0hDB4MiIh566KGorq6OiIjTTjstTjvttCaNuWrVqiTZ6rPXXntFoVBocH779u3jtddei7333rvRZWq89tprDS7XqlWrWgclt1VeXh4HHXRQzJs3L1asWFFr3iOPPBIREQcffHCDBzwjIrp16xZ9+/aNZ599trhOfRr7nJor1Xa71157RVlZw3+r1bFjx4io+15XVVUVX/MHP/jBRj/X+tR8h5944okmr1tVVRWvvPJKdO3aNSIizjjjjPjZz34WL7/8cuy///5xwgknxKhRo+KII46IAQMG7FCe5qp5D1q1ahWDBw9udNlhw4bF448/Hk8++WRs2rQpWrVqVWeZXbGtNFXnzp2jU6dODc6v2RYitmwPW38Xaz7POXPmNPnzbO6+5uyzz46bbrop1q1bF7fddlt89rOfrTXm7NmzIyLis5/9bK1/H1599dV4/vnn6x2zVatWxf3OM888UywnmlOCpd5/NHV/uCP7za0fb+39739/g2NERBxyyCHF31esWFEswbbOP2zYsEbH2Hr+I488Eoceemi9y+27774NjrHttri1FPuWpubYOktj/x4BAO9MzngBAN5x1qxZ06z1tv3r6DvvvDMGDhwY119//XYPXkdE/Pvf/27W8+4qHTp0aHBeqvcopZqzMBpSUwA0ttzWJcHmzZsbXK5jx44Nng1Uo1u3bhGx5S/4t1bzuL6DcNvq3r17vWNsrbHPqTlSbrdN/UxqSrwar7zySmRZFhH/OfNkR6TYPo866qi4/vrro02bNvHGG2/ErFmz4qyzzoq99tor3vOe98QXv/jF+POf/9ys52mqms+9Y8eO2y2Ba7aVLMviX//6V73LpN5WdkRTt4WIut+95nyezd2fHnLIIcUzGWrObqnxs5/9rHjmQs3ZGTVuv/32OOCAA+r9GTlyZHG5f/7zn8Xfm7Ntp95/NHV/mGK/ub3MNfvMiNqZt/59e2PUvOZt19tWc19P6n/7mvq9aOx9BQDemZzxAgC849Qc4OjcuXPMmzevyev169ev+Ps///nPOP3002PDhg2x2267xUUXXRSjRo2KPffcM/bYY4/iX6Pfc889cdRRR0VEFA80v100VixsfRDoBz/4QRx22GFNGrOUB35T2tEzMHbVGBGNf0476p2w3Ub8Z/s88MAD4+abb27yer169ar1+Etf+lJ88pOfjJkzZ8Zdd90V9913X6xduzZeeOGF+MEPfhA//OEP4+KLL44pU6Ykzb+tt+O28laq+Tw/+tGPxtVXX73Ln+/ss8+OCy64IObPnx/PPvts9O3bNyL+U8Qceuih2z1TYVdLtU28ld5O+83mSrVvAQDYHsULAPCOU3M5nNdeey3222+/Zh2s/NWvflW8nMxvfvObGDFiRL3LNfYXuTuqUChElmV1zh7Y1uuvv77Tz7X1JYMqKytj//333+kx8+Tll1+OzZs3N7ptrF69OiJqX7am5vGLL75YnN+YmsslbTvGrlKK7bY+HTt2jLKysqiuro4XX3xxh9ev2T7Xr1+/09tm165d48ILL4wLL7wwqqur4+GHH47f/OY3cf3118err74a3/zmN+P9739/nHDCCTv1PPWp+dxffvnlePPNNxs966VmWykUCu+YgrNGp06dYuXKlbFp06a3ZF/zmc98JsaPHx8bN26Mn/70pzFp0qR44IEH4q9//WtE1D3bJSLizDPPjDPPPHO7Y9fc7yoimrVtv533H9uzvcxbz98689a/b2+MrS8xtyted8p9CwBAY1xqDAB4x6m5me3GjRuL13PfUY8++mhEbDnw09DB64jY7vg78te9NTccbugyQxFbzk546qmnmjxmQwYPHlzMdt999+30eHmzadOmRi8z9eabb8bDDz8cEVHn4FzN4+XLlzd4w+WILZe0qbnU184e4GvqdpRqu91Z5eXlxdf8pz/9aYfPqtn6htQp7ytUVlYWBx98cFxxxRUxd+7c4vRbb7012XNsreY92LRpU3F7asiSJUsiYst9deq7v0tKb/VZBzWf59KlS2PTpk27/Pk6duxYvHH9jBkzIsuymD59ekREtG3bttEbzW9Pv379ivdAuffee3d4/VLsP1J58MEHmzx/68xb/7548eJGx6j5Hmy7Xiq7at/SHKU++wcA2LUULwDAO85xxx1XPKAxderUZo1Rc0DsjTfeaPAMlA0bNsTPf/7zRsdp3bp1RGwpgban5lJnjR0Uv/POO4tnNOyMLl26xAc+8IGIiJg5c2a89NJLOz1m3syYMaPBeb/5zW+KBdi2BUbN41dffTV+/etfNzjGj3/842Lh0FgJ0hQ121FE49tSqu02heOOOy4ittyM/H//9393aN3jjz8+IrYUjd/5zneSZ4vYcnPzmjNLtr5vR0pbf+41B/7rs2jRonjsscfqrLOrNHV7SqXm81y7dm2d+67sKmeffXZERDz77LPxhz/8IWbNmhUREZ/4xCeKJXdzlJWVxbHHHhsREQsWLIiHHnpoh9Yvxf4jlRUrVjT6emu28RYtWsTw4cOL03v27Bn77bdfRGwpOdevX1/v+ps3b46f/vSnEbHlspYHH3xwmuBbeSv2LU31Vn8PAYC3luIFAHjH2WeffeKTn/xkRETccsstcd111zW6/DPPPBO//OUva03ba6+9ImLLQer6/hp+8+bNcfbZZ8fKlSsbHbvm5str1qyJ1157rdFljzzyyIjY8hfB9Z2FsmrVqvjyl7/c6Bg74pJLLomIiHXr1sUnPvGJRgudjRs3xg033BBvvPFGsucvtRtvvDEWLlxYZ/qqVavioosuiogtl2EbPXp0rfljxowp3lD5q1/9arzwwgt1xvjzn/8c3/rWtyJiy70BTjzxxJ3KuvVNvJ9++ukGl0u13aYwduzYaNu2bUREfOELX4hHHnmkwWWff/75Wo9HjhwZhxxySEREXHPNNds9I2XFihXxu9/9rta0WbNmNXqD9qVLlxbLta3v75TSIYccEkOHDo2IiJtuuqnWWTY11q5dG1/4whciYstB/XPPPXeXZNlaU7enVEaPHh29e/eOiIiLLrpou2eKLFy4MBYsWLBTz/nhD3849txzz4iIOOecc2LdunURUf9lxnbURRddFGVlZZFlWZx66ql1tt+tbTuvFPuPlD7/+c/Xe7nLmTNnxh133BERESeeeGKtbSxiy/2WIiJeeumlOP/88+sde/LkycUC8pxzzomKioqU0SMizb4llU6dOhXPbnsrvocAwFtL8QIAvCPdeOON0b9//4jYcnDryCOPjB//+MfxwAMPxEMPPRR33313/Pd//3ccffTRMWDAgLjttttqrf+pT32qeNBnzJgx8fWvfz3mzp0bS5cujRkzZsSwYcPil7/8ZRx++OGN5qi5aX11dXV88YtfjAceeCCeeuqp4s/WPv/5z0fLli0jy7I47rjjYurUqbF06dK4//7745prromDDjoo1q5dWzy4vrM+9rGPxQUXXBARWy6Zs99++8XkyZNj7ty58fDDD8d9990XM2bMiLPPPjt69OgRY8eObfTSOHnSpUuX6NmzZxx99NFx8cUXx8KFC+PBBx+MG264IYYMGRLPPfdcRERcccUV0bVr1zrrXnPNNRGx5aDqkCFDYurUqbFkyZK4//774/LLL48PfvCDsX79+igUCvHDH/4wysvLdypvzXYUEfGVr3wl7r333njyySeL21HN55Jqu02he/fuceONN0bEluLxkEMOiQsuuCBmz54dDz/8cCxcuDCmTZsWH/vYx4ql49ZmzpwZHTt2jM2bN8cpp5wSxx9/fPziF7+IJUuWxLJly+LOO++Mb33rW3HooYfGoEGD6hyo/3//7/9Fz54948wzz4zp06fHwoULi9/9SZMmxahRoyJiy1/n15wdsSvcdNNN0apVq3jzzTfjYx/7WFx00UWxYMGCWLp0adx0001x8MEHx4oVKyJiywH9t+KyUgcddFDxr+0vvfTSuOuuu+Jvf/tbcXtqrLBqjoqKirj11lujoqIi1q9fHx/5yEfiM5/5TPzqV7+KZcuWxYMPPhi//e1vY+LEiTFo0KA44ogjiu9JcxUKhWLJUnNJqQEDBsSHPvShnX49gwcPjsmTJ0dExN/+9rc44IAD4pJLLinuO+fPnx9Tp06ND33oQ/HZz3621rql2H+kMnTo0Fi6dGkMHTo0fvrTn8ayZcvinnvuifPOO6/4Onffffe49tpr66z7xS9+MQ499NCIiPjJT34SRx11VNx2222xfPny+MMf/hAnn3xyXHHFFRERseeee8all166y17Hzu5bUmnZsmW8//3vj4gtZwv98pe/jMcff7z4PdzV9+ICAHaxDAAgZyIii4hs4sSJjS734osvZkcccURx+cZ+xowZU2f96dOnZ2VlZQ2uc8opp2R333138fG8efPqjLF58+bsAx/4QINjbOu6665rcNmOHTtm9957b3bkkUdmEZEdeeSRddafN29eo3m2VV1dnU2ePDlr2bLldt+jtm3bZhs2bNjumNv6yU9+UhzjmWeeqTO/sdeztT59+mQRkY0ePbrR5RrbPkaPHp1FRNanT5/swQcfzDp37tzg6z3//PMbfZ5vfvObjW4fFRUV2YwZM+pd95lnniku95Of/KTR56nxqU99qsHn2vp9TbHdNvUzmThxYoPbco2f/vSnWZs2bRrdtvr06VPvuk888US2//77N+k7PHny5Frr1mwvjf1UVFQ0+f2vT1P3RXPmzMnatWvXaJYvfelL2ebNm+tdv6nb/o4YP358g1m23ia2/s40Znvf8yzLskWLFmW9e/du0ufZ0HdnR7zwwgtZixYtimN+85vf3Okxt/bNb35zu/vOhr5Db8X+o6n/Hmzvs9t6O9/6O7/tT7t27bL58+c3+Dwvv/xydvjhhzf6fu23337Zs88+W+/6TdnfNPV178y+Jcua/p3c3vfn97//fVYoFOp93u3tVwCAtzdnvAAA71jdu3ePe++9N37/+9/Hpz/96ejfv39UVlZGeXl5dOnSJQ477LD46le/GgsWLKj3/gtjxoyJP/3pT3HiiSdGly5dory8PHr06BHHHHNMzJo1K2655ZZo0aJFoxnKysrij3/8Y1xyySVx4IEHxm677dboDXW/8pWvxOzZs2PUqFHRoUOHqKioiH79+sWXvvSleOihh+KII47Y6fdla4VCIS677LL429/+FuPHj4+hQ4dGx44do0WLFrH77rvHwIED49Of/nTMmDEjXnzxxWjTpk3S5y+loUOHxvLly+P888+PPffcM1q3bh2dOnWKY445Ju64447tXv//4osvjoceeijOOeec2HPPPaNNmzbRtm3b2G+//eKCCy6Iv/71r3HGGWcky3vzzTfH1VdfHYccckjsscceUVZW//+UT7HdpjR69Oh4+umn4xvf+EYMGTIk2rdvHy1atIgOHTrEBz7wgbj44otj9uzZ9a679957x8MPPxwzZ86Mk08+Od773vdGmzZtolWrVtGjR48YPnx4XHLJJbFs2bK47LLLaq07b968+M53vhMnn3xyHHDAAdGlS5do2bJltGvXLg466KC46KKL4rHHHoszzzxzl78HI0eOjKeeeiouvvjiGDx4cLRr1y4qKirive99b3z605+OP/3pT3H99dc3+JnuCldddVXcdNNNccQRRxS/87vaBz7wgXjyySdj2rRpceyxx0bPnj2jVatW0bp16+jdu3eMHDkyvvnNbyb77vTs2TOOOuqoiNhyZtO2lw3cWRdffHE89thjceGFF8b+++8f7dq1i5YtW0aXLl3iyCOPjClTpjR4P6W3ev+RyqRJk2L27Nlx7LHHRrdu3aJVq1bRt2/fOO+88+LRRx+t9+y1Gh07dox77703fvazn8UxxxwT3bp1i/Ly8ujUqVMMHz48rr/++nj44YejT58+u/x17My+JaVjjz025s6dGyeccEL07NnzbXN2EwCw8wpZ9v/fsQ8AAN7hzjzzzJgxY0b06dMnnn322VLHAXah6urq6NOnTzz//PPx0Y9+tHgPEnZMzR8LTJw4MSZNmlTaMAAAOeGMFwAAAN5x7rrrruLN7T/3uc+VOA0AAO8mihcAAADecb797W9HRESPHj3ihBNOKHEaAADeTVqWOgAAAADsrNdeey1Wr14d69ati+nTp8e8efMiIuJrX/tatGzp//oCAPDW8b8+AQAAyL3bbrstxowZU2vaQQcdFGPHji1RIgAA3q1cagwAAIB3jLKysujTp0+MHTs27rrrrigvLy91JAAA3mUKWZZlpQ4BAAAAAADwTuBSY/Worq6OlStXxu677x6FQqHUcQAAAAAAgBLKsixee+216NmzZ5SVNX4xMcVLPVauXBm9e/cudQwAAAAAAOBt5P/+7//iPe95T6PLKF7qsfvuu0fEljewXbt2JU7zzlRVVRV//OMfY+TIkbm85nKe88teOnnOL3tp5Dl7RL7zy146ec4ve2nkOXtEvvPLXjp5zi97aeQ5e0S+88teOnnOL3tp5Dl7RP7z58G6deuid+/exf6gMYqXetRcXqxdu3aKl12kqqoqKisro127drncEeQ5v+ylk+f8spdGnrNH5Du/7KWT5/yyl0aes0fkO7/spZPn/LKXRp6zR+Q7v+ylk+f8spdGnrNH5D9/njTl9iSNX4gMAAAAAACAJlO8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACTSstQByJe+X/9DknEqWmRx9SER+0+aExs3F3Z6vGevOjZBKgAAAAAA2DnOeAEAAAAAAEhE8QIAAAAAAJDI26J4ueGGG6Jv377RunXrGDZsWCxZsqTBZX/961/H0KFDo3379tG2bdsYPHhw/PznP6+1zJlnnhmFQqHWzzHHHLOrXwYAAAAAAPAuV/J7vMyaNSvGjRsX06ZNi2HDhsXUqVNj1KhR8cQTT0TXrl3rLN+xY8f4xje+Efvuu2+0atUqfv/738eYMWOia9euMWrUqOJyxxxzTPzkJz8pPq6oqHhLXg8AAAAAAPDuVfIzXq677ro455xzYsyYMTFw4MCYNm1aVFZWxvTp0+tdfvjw4XHSSSfFfvvtF3vuuWdccMEFMWjQoFi4cGGt5SoqKqJ79+7Fnw4dOrwVLwcAAAAAAHgXK+kZL5s2bYply5bFhAkTitPKyspixIgRsWjRou2un2VZ3HPPPfHEE0/Et7/97Vrz5s+fH127do0OHTrERz7ykZgyZUp06tSp3nE2btwYGzduLD5et25dRERUVVVFVVVVc17aO1ZFiyzNOGVZrf/urLf6c6p5vjxuH7KXTp7zy14aec4eke/8spdOnvPLXhp5zh6R7/yyl06e88teGnnOHpHv/LKXTp7zy14aec4ekf/8ebAj720hy7I0R76bYeXKldGrV6+4//7749BDDy1OHz9+fCxYsCAWL15c73pr166NXr16xcaNG6NFixbx/e9/P84666zi/FtuuSUqKyujX79+8fTTT8fFF18cu+22WyxatChatGhRZ7xJkybF5MmT60yfOXNmVFZWJnilAAAAAABAXm3YsCFOP/30WLt2bbRr167RZUt+j5fm2H333ePhhx+O9evXx9y5c2PcuHHRv3//GD58eEREnHrqqcVlDzjggBg0aFDsueeeMX/+/DjqqKPqjDdhwoQYN25c8fG6deuid+/eMXLkyO2+ge82+0+ak2ScirIsrhhaHZcuLYuN1YWdHu+RSaO2v1BCVVVVcdddd8XRRx8d5eXlb+lz7yzZSyfP+WUvjTxnj8h3ftlLJ8/5ZS+NPGePyHd+2Usnz/llL408Z4/Id37ZSyfP+WUvjTxnj8h//jyouVJWU5S0eOncuXO0aNEiVq9eXWv66tWro3v37g2uV1ZWFgMGDIiIiMGDB8fjjz8eV155ZbF42Vb//v2jc+fO8dRTT9VbvFRUVERFRUWd6eXl5TbSbWzcvPMlSa3xqgtJxizV55TnbUT20slzftlLI8/ZI/KdX/bSyXN+2Usjz9kj8p1f9tLJc37ZSyPP2SPynV/20slzftlLI8/ZI/Kf/+1sR97Xsl2YY7tatWoVQ4YMiblz5xanVVdXx9y5c2tdemx7qqura92jZVvPP/98vPzyy9GjR4+dygsAAAAAANCYkl9qbNy4cTF69OgYOnRoHHLIITF16tR4/fXXY8yYMRERccYZZ0SvXr3iyiuvjIiIK6+8MoYOHRp77rlnbNy4Me644474+c9/HjfeeGNERKxfvz4mT54cJ598cnTv3j2efvrpGD9+fAwYMCBGjXprL0cFAAAAAAC8u5S8eDnllFPipZdeissuuyxWrVoVgwcPjtmzZ0e3bt0iIuK5556LsrL/nJjz+uuvx3nnnRfPP/98tGnTJvbdd9+4+eab45RTTomIiBYtWsRf/vKXmDFjRrz66qvRs2fPGDlyZFxxxRX1Xk4MAAAAAAAglZIXLxERY8eOjbFjx9Y7b/78+bUeT5kyJaZMmdLgWG3atIk5c9LcAB4AAAAAAGBHlPQeLwAAAAAAAO8kihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACTytihebrjhhujbt2+0bt06hg0bFkuWLGlw2V//+tcxdOjQaN++fbRt2zYGDx4cP//5z2stk2VZXHbZZdGjR49o06ZNjBgxIp588sld/TIAAAAAAIB3uZIXL7NmzYpx48bFxIkTY/ny5XHggQfGqFGjYs2aNfUu37Fjx/jGN74RixYtir/85S8xZsyYGDNmTMyZM6e4zNVXXx3f/e53Y9q0abF48eJo27ZtjBo1Kt5444236mUBAAAAAADvQiUvXq677ro455xzYsyYMTFw4MCYNm1aVFZWxvTp0+tdfvjw4XHSSSfFfvvtF3vuuWdccMEFMWjQoFi4cGFEbDnbZerUqXHJJZfECSecEIMGDYqf/exnsXLlyrj99tvfwlcGAAAAAAC827Qs5ZNv2rQpli1bFhMmTChOKysrixEjRsSiRYu2u36WZXHPPffEE088Ed/+9rcjIuKZZ56JVatWxYgRI4rL7bHHHjFs2LBYtGhRnHrqqXXG2bhxY2zcuLH4eN26dRERUVVVFVVVVc1+fe9EFS2yNOOUZbX+u7Pe6s+p5vnyuH3IXjp5zi97aeQ5e0S+88teOnnOL3tp5Dl7RL7zy146ec4ve2nkOXtEvvPLXjp5zi97aeQ5e0T+8+fBjry3hSzL0hz5boaVK1dGr1694v77749DDz20OH38+PGxYMGCWLx4cb3rrV27Nnr16hUbN26MFi1axPe///0466yzIiLi/vvvj8MPPzxWrlwZPXr0KK7zqU99KgqFQsyaNavOeJMmTYrJkyfXmT5z5syorKzc2ZcJAAAAAADk2IYNG+L000+PtWvXRrt27RpdtqRnvDTX7rvvHg8//HCsX78+5s6dG+PGjYv+/fvH8OHDmzXehAkTYty4ccXH69ati969e8fIkSO3+wa+2+w/ac72F2qCirIsrhhaHZcuLYuN1YWdHu+RSaMSpGq6qqqquOuuu+Loo4+O8vLyt/S5d5bspZPn/LKXRp6zR+Q7v+ylk+f8spdGnrNH5Du/7KWT5/yyl0aes0fkO7/spZPn/LKXRp6zR+Q/fx7UXCmrKUpavHTu3DlatGgRq1evrjV99erV0b179wbXKysriwEDBkRExODBg+Pxxx+PK6+8MoYPH15cb/Xq1bXOeFm9enUMHjy43vEqKiqioqKizvTy8nIb6TY2bt75kqTWeNWFJGOW6nPK8zYie+nkOb/spZHn7BH5zi976eQ5v+ylkefsEfnOL3vp5Dm/7KWR5+wR+c4ve+nkOb/spZHn7BH5z/92tiPva9kuzLFdrVq1iiFDhsTcuXOL06qrq2Pu3Lm1Lj22PdXV1cV7tPTr1y+6d+9ea8x169bF4sWLd2hMAAAAAACAHVXyS42NGzcuRo8eHUOHDo1DDjkkpk6dGq+//nqMGTMmIiLOOOOM6NWrV1x55ZUREXHllVfG0KFDY88994yNGzfGHXfcET//+c/jxhtvjIiIQqEQF154YUyZMiX22muv6NevX1x66aXRs2fPOPHEE0v1MgEAAAAAgHeBkhcvp5xySrz00ktx2WWXxapVq2Lw4MExe/bs6NatW0REPPfcc1FW9p8Tc15//fU477zz4vnnn482bdrEvvvuGzfffHOccsopxWXGjx8fr7/+enz+85+PV199NT74wQ/G7Nmzo3Xr1m/56wMAAAAAAN49Sl68RESMHTs2xo4dW++8+fPn13o8ZcqUmDJlSqPjFQqFuPzyy+Pyyy9PFREAAAAAAGC7SnqPFwAAAAAAgHcSxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIm8LYqXG264Ifr27RutW7eOYcOGxZIlSxpc9qabboojjjgiOnToEB06dIgRI0bUWf7MM8+MQqFQ6+eYY47Z1S8DAAAAAAB4lyt58TJr1qwYN25cTJw4MZYvXx4HHnhgjBo1KtasWVPv8vPnz4/TTjst5s2bF4sWLYrevXvHyJEj44UXXqi13DHHHBMvvvhi8eeXv/zlW/FyAAAAAACAd7GSFy/XXXddnHPOOTFmzJgYOHBgTJs2LSorK2P69On1Lv+LX/wizjvvvBg8eHDsu+++8aMf/Siqq6tj7ty5tZarqKiI7t27F386dOjwVrwcAAAAAADgXaxlKZ9806ZNsWzZspgwYUJxWllZWYwYMSIWLVrUpDE2bNgQVVVV0bFjx1rT58+fH127do0OHTrERz7ykZgyZUp06tSp3jE2btwYGzduLD5et25dRERUVVVFVVXVjr6sd7SKFlmaccqyWv/dWW/151TzfHncPmQvnTznl7008pw9It/5ZS+dPOeXvTTynD0i3/llL50855e9NPKcPSLf+WUvnTznl7008pw9Iv/582BH3ttClmVpjnw3w8qVK6NXr15x//33x6GHHlqcPn78+FiwYEEsXrx4u2Ocd955MWfOnHj00UejdevWERFxyy23RGVlZfTr1y+efvrpuPjii2O33XaLRYsWRYsWLeqMMWnSpJg8eXKd6TNnzozKysqdeIUAAAAAAEDebdiwIU4//fRYu3ZttGvXrtFlS3rGy8666qqr4pZbbon58+cXS5eIiFNPPbX4+wEHHBCDBg2KPffcM+bPnx9HHXVUnXEmTJgQ48aNKz5et25d8d4x23sD3232nzQnyTgVZVlcMbQ6Ll1aFhurCzs93iOTRiVI1XRVVVVx1113xdFHHx3l5eVv6XPvLNlLJ8/5ZS+NPGePyHd+2Usnz/llL408Z4/Id37ZSyfP+WUvjTxnj8h3ftlLJ8/5ZS+NPGePyH/+PKi5UlZTlLR46dy5c7Ro0SJWr15da/rq1auje/fuja577bXXxlVXXRV33313DBo0qNFl+/fvH507d46nnnqq3uKloqIiKioq6kwvLy+3kW5j4+adL0lqjVddSDJmqT6nPG8jspdOnvPLXhp5zh6R7/yyl06e88teGnnOHpHv/LKXTp7zy14aec4eke/8spdOnvPLXhp5zh6R//xvZzvyvpbtwhzb1apVqxgyZEjMnTu3OK26ujrmzp1b69Jj27r66qvjiiuuiNmzZ8fQoUO3+zzPP/98vPzyy9GjR48kuQEAAAAAAOpT0uIlImLcuHFx0003xYwZM+Lxxx+Pc889N15//fUYM2ZMREScccYZMWHChOLy3/72t+PSSy+N6dOnR9++fWPVqlWxatWqWL9+fURErF+/Pr72ta/FAw88EM8++2zMnTs3TjjhhBgwYECMGvXWXo4KAAAAAAB4dyn5PV5OOeWUeOmll+Kyyy6LVatWxeDBg2P27NnRrVu3iIh47rnnoqzsP/3QjTfeGJs2bYpPfOITtcaZOHFiTJo0KVq0aBF/+ctfYsaMGfHqq69Gz549Y+TIkXHFFVfUezkxAAAAAACAVEpevEREjB07NsaOHVvvvPnz59d6/OyzzzY6Vps2bWLOnDQ3gAcAAAAAANgRJb/UGAAAAAAAwDuF4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAk0rLUAeCt1Pfrf0gyTkWLLK4+JGL/SXNi4+bCTo/37FXHJkgFAAAAAECpOeMFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgESaXbz86U9/is985jNx6KGHxgsvvBARET//+c9j4cKFycIBAAAAAADkSbOKl9tuuy1GjRoVbdq0iYceeig2btwYERFr166Nb33rW0kDAgAAAAAA5EWzipcpU6bEtGnT4qabbory8vLi9MMPPzyWL1++w+PdcMMN0bdv32jdunUMGzYslixZ0uCyN910UxxxxBHRoUOH6NChQ4wYMaLO8lmWxWWXXRY9evSINm3axIgRI+LJJ5/c4VwAAAAAAAA7olnFyxNPPBEf+tCH6kzfY4894tVXX92hsWbNmhXjxo2LiRMnxvLly+PAAw+MUaNGxZo1a+pdfv78+XHaaafFvHnzYtGiRdG7d+8YOXJk8XJnERFXX311fPe7341p06bF4sWLo23btjFq1Kh44403digbAAAAAADAjmhW8dK9e/d46qmn6kxfuHBh9O/ff4fGuu666+Kcc86JMWPGxMCBA2PatGlRWVkZ06dPr3f5X/ziF3HeeefF4MGDY999940f/ehHUV1dHXPnzo2ILWe7TJ06NS655JI44YQTYtCgQfGzn/0sVq5cGbfffvsOv1YAAAAAAICmatmclc4555y44IILYvr06VEoFGLlypWxaNGiuOiii+LSSy9t8jibNm2KZcuWxYQJE4rTysrKYsSIEbFo0aImjbFhw4aoqqqKjh07RkTEM888E6tWrYoRI0YUl9ljjz1i2LBhsWjRojj11FPrjLFx48bifWoiItatWxcREVVVVVFVVdXk1/NuUNEiSzNOWVbrvzurqZ9T3vOnfK48btt5zh6R7/yyl0aes0fkO7/spZPn/LKXRp6zR+Q7v+ylk+f8spdGnrNH5Du/7KWT5/yyl0aes0fkP38e7Mh7W8iybIePHGdZFt/61rfiyiuvjA0bNkREREVFRVx00UVxxRVXNHmclStXRq9eveL++++PQw89tDh9/PjxsWDBgli8ePF2xzjvvPNizpw58eijj0br1q3j/vvvj8MPPzxWrlwZPXr0KC73qU99KgqFQsyaNavOGJMmTYrJkyfXmT5z5syorKxs8usBAAAAAADeeTZs2BCnn356rF27Ntq1a9foss0646VQKMQ3vvGN+NrXvhZPPfVUrF+/PgYOHBi77bZbswI311VXXRW33HJLzJ8/P1q3bt3scSZMmBDjxo0rPl63bl3x3jHbewPfbfafNCfJOBVlWVwxtDouXVoWG6sLOz3eI5NGNWm5vOdPoaqqKu666644+uijo7y8/C173hTynD0i3/llL408Z4/Id37ZSyfP+WUvjTxnj8h3ftlLJ8/5ZS+NPGePyHd+2Usnz/llL408Z4/If/48qLlSVlM0q3hZu3ZtbN68OTp27BgDBw4sTn/llVeiZcuWTS4rOnfuHC1atIjVq1fXmr569ero3r17o+tee+21cdVVV8Xdd98dgwYNKk6vWW/16tW1znhZvXp1DB48uN6xKioqoqKios708vJyG+k2Nm7e+ZKh1njVhSRjNvVzynv+lPK8fec5e0S+88teGnnOHpHv/LKXTp7zy14aec4eke/8spdOnvPLXhp5zh6R7/yyl06e88teGnnOHpH//G9nO/K+ljXnCU499dS45ZZb6ky/9dZb672HSkNatWoVQ4YMiblz5xanVVdXx9y5c2tdemxbV199dVxxxRUxe/bsGDp0aK15/fr1i+7du9cac926dbF48eJGxwQAAAAAANhZzSpeFi9eHB/+8IfrTB8+fHiT7suytXHjxsVNN90UM2bMiMcffzzOPffceP3112PMmDEREXHGGWfEhAkTist/+9vfjksvvTSmT58effv2jVWrVsWqVati/fr1EbHlMmgXXnhhTJkyJX7729/GihUr4owzzoiePXvGiSee2JyXCwAAAAAA0CTNutTYxo0b480336wzvaqqKv7973/v0FinnHJKvPTSS3HZZZfFqlWrYvDgwTF79uzo1q1bREQ899xzUVb2n37oxhtvjE2bNsUnPvGJWuNMnDgxJk2aFBER48ePj9dffz0+//nPx6uvvhof/OAHY/bs2Tt1HxgAAAAAAIDtaVbxcsghh8QPf/jD+N73vldr+rRp02LIkCE7PN7YsWNj7Nix9c6bP39+rcfPPvvsdscrFApx+eWXx+WXX77DWQAAAAAAAJqrWcXLlClTYsSIEfHnP/85jjrqqIiImDt3bjz44IPxxz/+MWlAAAAAAACAvGjWPV4OP/zwWLRoUfTu3TtuvfXW+N3vfhcDBgyIv/zlL3HEEUekzggAAAAAAJALzTrjJSJi8ODB8Ytf/CJlFgAAAAAAgFxrdvFSXV0dTz31VKxZsyaqq6trzfvQhz6008EAAAAAAADyplnFywMPPBCnn356/OMf/4gsy2rNKxQKsXnz5iThAAAAAAAA8qRZxcsXv/jFGDp0aPzhD3+IHj16RKFQSJ0LAAAAAAAgd5pVvDz55JPxq1/9KgYMGJA6DwAAAAAAQG6VNWelYcOGxVNPPZU6CwAAAAAAQK4164yXL3/5y/HVr341Vq1aFQcccECUl5fXmj9o0KAk4QAAAAAAAPKkWcXLySefHBERZ511VnFaoVCILMuiUCjE5s2b06QDAAAAAADIkWYVL88880zqHAAAAAAAALnXrOKlT58+qXMAAAAAAADkXrOKlxqPPfZYPPfcc7Fp06Za048//vidCgUAAAAAAJBHzSpe/v73v8dJJ50UK1asKN7bJWLLfV4iwj1eAAAAAACAd6Wy5qx0wQUXRL9+/WLNmjVRWVkZjz76aNx7770xdOjQmD9/fuKIAAAAAAAA+dCsM14WLVoU99xzT3Tu3DnKysqirKwsPvjBD8aVV14Z559/fjz00EOpcwIAAAAAALztNeuMl82bN8fuu+8eERGdO3eOlStXRkREnz594oknnkiXDgAAAAAAIEeadcbL/vvvH3/+85+jX79+MWzYsLj66qujVatW8cMf/jD69++fOiMAAAAAAEAuNKt4ueSSS+L111+PiIjLL788/uu//iuOOOKI6NSpU9xyyy1JAwIAAAAAAORFs4qXUaNGFX8fMGBA/PWvf41XXnklOnToEIVCIVk4AAAAAACAPGnWPV7OOuuseO2112pN69ixY2zYsCHOOuusJMEAAAAAAADyplnFy4wZM+Lf//53nen//ve/42c/+9lOhwIAAAAAAMijHbrU2Lp16yLLssiyLF577bVo3bp1cd7mzZvjjjvuiK5duyYPCQAAAAAAkAc7VLy0b98+CoVCFAqF2HvvvevMLxQKMXny5GThAAAAAAAA8mSHipd58+ZFlmXxkY98JG677bbo2LFjcV6rVq2iT58+0bNnz+QhAQAAAAAA8mCHipcjjzwy3nzzzRg9enQMHTo0evfuvatyAQAAAAAA5E7Zjq7QsmXL+NWvfhWbN2/eFXkAAAAAAABya4eLl4iIj3zkI7FgwYLUWQAAAAAAAHJthy41VuOjH/1ofP3rX48VK1bEkCFDom3btrXmH3/88UnCAQAAAAAA5EmzipfzzjsvIiKuu+66OvMKhYLLkAEAAAAAAO9KzSpeqqurU+cAAAAAAADIvWbd4wUAAAAAAIC6ml28LFiwII477rgYMGBADBgwII4//vj405/+lDIbAAAAAABArjSreLn55ptjxIgRUVlZGeeff36cf/750aZNmzjqqKNi5syZqTMCAAAAAADkQrPu8fLNb34zrr766vjKV75SnHb++efHddddF1dccUWcfvrpyQICAAAAAADkRbPOePn73/8exx13XJ3pxx9/fDzzzDM7HQoAAAAAACCPmlW89O7dO+bOnVtn+t133x29e/fe6VAAAAAAAAB51KxLjX31q1+N888/Px5++OE47LDDIiLivvvui5/+9Kfxne98J2lAAAAAAACAvGhW8XLuuedG9+7d47//+7/j1ltvjYiI/fbbL2bNmhUnnHBC0oAAAAAAAAB50aziJSLipJNOipNOOillFgAAAAAAgFxrdvESEbF06dJ4/PHHIyJi4MCBMWTIkCShAAAAAAAA8qhZxcvzzz8fp512Wtx3333Rvn37iIh49dVX47DDDotbbrkl3vOe96TMCAAAAAAAkAtlzVnp7LPPjqqqqnj88cfjlVdeiVdeeSUef/zxqK6ujrPPPjt1RgAAAAAAgFxo1hkvCxYsiPvvvz/22Wef4rR99tknvve978URRxyRLBwAAAAAAECeNOuMl969e0dVVVWd6Zs3b46ePXvudCgAAAAAAIA8albxcs0118SXv/zlWLp0aXHa0qVL44ILLohrr702WTgAAAAAAIA8adalxs4888zYsGFDDBs2LFq23DLEm2++GS1btoyzzjorzjrrrOKyr7zySpqkAAAAAAAAb3PNKl6mTp2aOAYAAAAAAED+Nat4GT16dOocAAAAAAAAudes4qXGmjVrYs2aNVFdXV1r+qBBg3YqFAAAAAAAQB41q3hZtmxZjB49Oh5//PHIsqzWvEKhEJs3b04SDgAAAAAAIE+aVbycddZZsffee8ePf/zj6NatWxQKhdS5AAAAAAAAcqdZxcvf//73uO2222LAgAGp8wAAAAAAAORWWXNWOuqoo+LPf/5z6iwAAAAAAAC51qwzXn70ox/F6NGj45FHHon9998/ysvLa80//vjjk4QDAAAAAADIk2YVL4sWLYr77rsv7rzzzjrzCoVCbN68eaeDAQAAAAAA5E2zLjX25S9/OT7zmc/Eiy++GNXV1bV+lC4AAAAAAMC7VbOKl5dffjm+8pWvRLdu3VLnAQAAAAAAyK1mFS8f//jHY968eamzAAAAAAAA5Fqz7vGy9957x4QJE2LhwoVxwAEHRHl5ea35559/fpJwAAAAAAAAedKs4uVHP/pR7LbbbrFgwYJYsGBBrXmFQkHxAgAAAAAAvCs1q3h55plnUucAAAAAAADIvSYXL+PGjYsrrrgi2rZtG+PGjWtwuUKhEP/93/+dJBwAAAAAAECeNLl4eeihh6Kqqqr4e0MKhcLOpwIAAAAAAMihJhcv8+bNq/d3AAAAAAAAtigrdQAAAAAAAIB3CsULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiZS8eLnhhhuib9++0bp16xg2bFgsWbKkwWUfffTROPnkk6Nv375RKBRi6tSpdZaZNGlSFAqFWj/77rvvLnwFAAAAAAAAW5S0eJk1a1aMGzcuJk6cGMuXL48DDzwwRo0aFWvWrKl3+Q0bNkT//v3jqquuiu7duzc47vve97548cUXiz8LFy7cVS8BAAAAAACgqKTFy3XXXRfnnHNOjBkzJgYOHBjTpk2LysrKmD59er3Lv//9749rrrkmTj311KioqGhw3JYtW0b37t2LP507d95VLwEAAAAAAKCoZameeNOmTbFs2bKYMGFCcVpZWVmMGDEiFi1atFNjP/nkk9GzZ89o3bp1HHrooXHllVfGe9/73gaX37hxY2zcuLH4eN26dRERUVVVFVVVVTuV5Z2mokWWZpyyrNZ/d1ZTP6e850/5XHnctvOcPSLf+WUvjTxnj8h3ftlLJ8/5ZS+NPGePyHd+2Usnz/llL408Z4/Id37ZSyfP+WUvjTxnj8h//jzYkfe2kGVZmiPHO2jlypXRq1evuP/+++PQQw8tTh8/fnwsWLAgFi9e3Oj6ffv2jQsvvDAuvPDCWtPvvPPOWL9+feyzzz7x4osvxuTJk+OFF16IRx55JHbfffd6x5o0aVJMnjy5zvSZM2dGZWXljr84AAAAAADgHWPDhg1x+umnx9q1a6Ndu3aNLluyM152lY9+9KPF3wcNGhTDhg2LPn36xK233hqf+9zn6l1nwoQJMW7cuOLjdevWRe/evWPkyJHbfQPfbfafNCfJOBVlWVwxtDouXVoWG6sLOz3eI5NGNWm5vOdPoaqqKu666644+uijo7y8/C173hTynD0i3/llL408Z4/Id37ZSyfP+WUvjTxnj8h3ftlLJ8/5ZS+NPGePyHd+2Usnz/llL408Z4/If/48qLlSVlOUrHjp3LlztGjRIlavXl1r+urVq6N79+7Jnqd9+/ax9957x1NPPdXgMhUVFfXeM6a8vNxGuo2Nm3e+ZKg1XnUhyZhN/Zzynj+lPG/fec4eke/8spdGnrNH5Du/7KWT5/yyl0aes0fkO7/spZPn/LKXRp6zR+Q7v+ylk+f8spdGnrNH5D//29mOvK9luzBHo1q1ahVDhgyJuXPnFqdVV1fH3Llza116bGetX78+nn766ejRo0eyMQEAAAAAAOpT0kuNjRs3LkaPHh1Dhw6NQw45JKZOnRqvv/56jBkzJiIizjjjjOjVq1dceeWVERGxadOmeOyxx4q/v/DCC/Hwww/HbrvtFgMGDIiIiIsuuiiOO+646NOnT6xcuTImTpwYLVq0iNNOO600LxIAAAAAAHjXKGnxcsopp8RLL70Ul112WaxatSoGDx4cs2fPjm7dukVExHPPPRdlZf85KWflypVx0EEHFR9fe+21ce2118aRRx4Z8+fPj4iI559/Pk477bR4+eWXo0uXLvHBD34wHnjggejSpctb+toAAAAAAIB3n5IWLxERY8eOjbFjx9Y7r6ZMqdG3b9/IsqzR8W655ZZU0QAAAAAAAHZIye7xAgAAAAAA8E6jeAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIJGWpQ4ANE3fr/8hyTgVLbK4+pCI/SfNiY2bCzs93rNXHZsgFQAAAADAO4MzXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACTSstQBgHe+vl//Q5JxKlpkcfUhEftPmhMbNxd2erxnrzo2QSoAAAAAgP9wxgsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABIpefFyww03RN++faN169YxbNiwWLJkSYPLPvroo3HyySdH3759o1AoxNSpU3d6TAAAAAAAgFRKWrzMmjUrxo0bFxMnTozly5fHgQceGKNGjYo1a9bUu/yGDRuif//+cdVVV0X37t2TjAkAAAAAAJBKSYuX6667Ls4555wYM2ZMDBw4MKZNmxaVlZUxffr0epd///vfH9dcc02ceuqpUVFRkWRMAAAAAACAVEpWvGzatCmWLVsWI0aM+E+YsrIYMWJELFq06G0zJgAAAAAAQFO1LNUT//Of/4zNmzdHt27dak3v1q1b/PWvf31Lx9y4cWNs3Lix+HjdunUREVFVVRVVVVXNyvJOVdEiSzNOWVbrvzurqZ9TnvPLXrrtJpWa58vjfkX20shz9oh855e9dPKcX/bSyHP2iHznl7108pxf9tLIc/aIfOeXvXTynF/20shz9oj858+DHXlvC1mWpTmCuYNWrlwZvXr1ivvvvz8OPfTQ4vTx48fHggULYvHixY2u37dv37jwwgvjwgsv3OkxJ02aFJMnT64zfebMmVFZWbmDrwwAAAAAAHgn2bBhQ5x++umxdu3aaNeuXaPLluyMl86dO0eLFi1i9erVtaavXr06unfv/paOOWHChBg3blzx8bp166J3794xcuTI7b6B7zb7T5qTZJyKsiyuGFodly4ti43VhZ0e75FJo5q0XJ7zy1667SaVqqqquOuuu+Loo4+O8vLyt/S5d5bspZHn7BH5zi976eQ5v+ylkefsEfnOL3vp5Dm/7KWR5+wR+c4ve+nkOb/spZHn7BH5z58HNVfKaoqSFS+tWrWKIUOGxNy5c+PEE0+MiIjq6uqYO3dujB079i0ds6KiIioqKupMLy8vt5FuY+PmnT/YXWu86kKSMZv6OeU5v+xbjfcWbzep5XnfIntp5Dl7RL7zy146ec4ve2nkOXtEvvPLXjp5zi97aeQ5e0S+88teOnnOL3tp5Dl7RP7zv53tyPtasuIlImLcuHExevToGDp0aBxyyCExderUeP3112PMmDEREXHGGWdEr1694sorr4yIiE2bNsVjjz1W/P2FF16Ihx9+OHbbbbcYMGBAk8YEAAAAAADYVUpavJxyyinx0ksvxWWXXRarVq2KwYMHx+zZs6Nbt24REfHcc89FWVlZcfmVK1fGQQcdVHx87bXXxrXXXhtHHnlkzJ8/v0ljAgAAAAAA7ColLV4iIsaOHdvgZcBqypQaffv2jSzLdmpMAAAAAACAXaVs+4sAAAAAAADQFIoXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAEmlZ6gAAb3d9v/6HJONUtMji6kMi9p80JzZuLuzUWM9edWySTAAAAABAWs54AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAk8rYoXm644Ybo27dvtG7dOoYNGxZLlixpdPn/+Z//iX333Tdat24dBxxwQNxxxx215p955plRKBRq/RxzzDG78iUAAAAAAACUvniZNWtWjBs3LiZOnBjLly+PAw88MEaNGhVr1qypd/n7778/TjvttPjc5z4XDz30UJx44olx4oknxiOPPFJruWOOOSZefPHF4s8vf/nLt+LlAAAAAAAA72IlL16uu+66OOecc2LMmDExcODAmDZtWlRWVsb06dPrXf473/lOHHPMMfG1r30t9ttvv7jiiivi4IMPjuuvv77WchUVFdG9e/fiT4cOHd6KlwMAAAAAALyLtSzlk2/atCmWLVsWEyZMKE4rKyuLESNGxKJFi+pdZ9GiRTFu3Lha00aNGhW33357rWnz58+Prl27RocOHeIjH/lITJkyJTp16lTvmBs3boyNGzcWH69bty4iIqqqqqKqqqo5L+0dq6JFlmacsqzWf3dWUz+nPOeX3XaztaZm33/SnJ1+rogtma8YGjHk8tmxsbqw0+M9MmlUglRNU/Ne5XF/nufsEfnOL3vp5Dm/7KWR5+wR+c4ve+nkOb/spZHn7BH5zi976eQ5v+ylkefsEfnPnwc78t4WsixLc0SxGVauXBm9evWK+++/Pw499NDi9PHjx8eCBQti8eLFddZp1apVzJgxI0477bTitO9///sxefLkWL16dURE3HLLLVFZWRn9+vWLp59+Oi6++OLYbbfdYtGiRdGiRYs6Y06aNCkmT55cZ/rMmTOjsrIyxUsFAAAAAAByasOGDXH66afH2rVro127do0uW9IzXnaVU089tfj7AQccEIMGDYo999wz5s+fH0cddVSd5SdMmFDrLJp169ZF7969Y+TIkdt9A99t0v71fHVcurTsLf3r+Tznl912s7U8Z4946894ueuuu+Loo4+O8vLyt+x5U8hz9oh855e9dPKcX/bSyHP2iHznl7108pxf9tLIc/aIfOeXvXTynF/20shz9oj858+DmitlNUVJi5fOnTtHixYtimeq1Fi9enV079693nW6d+++Q8tHRPTv3z86d+4cTz31VL3FS0VFRVRUVNSZXl5ebiPdxsbNO3/AtdZ4/1979x4nc93/f/w5s2e7i5JtbWHJEpfSInKoLRdJoVAOHbaEylUUPx2UopJD0lU6uRBFRAd1XZJOinJIziSKddjKIYeQaJfd9+8PN/O1WWunxrznvfO4325zu24znzE9va+nz352XjOfT74nIK9Z3P+fXM5P9uNej944nV0qfv5Acnmf7nJ2ye38ZLfH5fxkt8Pl7JLb+cluj8v5yW6Hy9klt/OT3R6X85PdDpezS+7nD2X+rKv3NOY4pejoaNWrV0+zZ8/2PZafn6/Zs2cXOPXY8Ro1alTg+ZL06aefnvT5kvTTTz9p9+7dqlChQmCCAwAAAAAAAAAAFMLq4EWS+vbtq7Fjx+r111/X2rVr1bNnT/3+++/q2rWrJCkzM1P9+/f3Pf/ee+/VRx99pJEjR2rdunUaNGiQlixZonvuuUeSdODAAd1///36+uuvtXnzZs2ePVvXXnutqlWrppYtg3dqGwAAAAAAAAAAEH6sX+OlU6dO2rlzpx577DFt375dF110kT766COdffbZkqTs7Gx5vf83H2rcuLGmTJmiAQMG6OGHH1ZaWpref/991a5dW5IUERGhVatW6fXXX9fevXuVkpKiK6+8Uk8++WShpxMDAAAAAAAAAAAIFOuDF0m65557fN9Y+bM5c+ac8NgNN9ygG264odDnx8XF6eOPA3MxaQAAAAAAAAAAAH9YP9UYAAAAAAAAAABAScHgBQAAAAAAAAAAIEAYvAAAAAAAAAAAAAQIgxcAAAAAAAAAAIAAYfACAAAAAAAAAAAQIAxeAAAAAAAAAAAAAoTBCwAAAAAAAAAAQIAweAEAAAAAAAAAAAgQBi8AAAAAAAAAAAABwuAFAAAAAAAAAAAgQBi8AAAAAAAAAAAABAiDFwAAAAAAAAAAgABh8AIAAAAAAAAAABAgDF4AAAAAAAAAAAAChMELAAAAAAAAAABAgDB4AQAAAAAAAAAACBAGLwAAAAAAAAAAAAHC4AUAAAAAAAAAACBAGLwAAAAAAAAAAAAECIMXAAAAAAAAAACAAGHwAgAAAAAAAAAAECAMXgAAAAAAAAAAAAKEwQsAAAAAAAAAAECAMHgBAAAAAAAAAAAIEAYvAAAAAAAAAAAAAcLgBQAAAAAAAAAAIEAYvAAAAAAAAAAAAAQIgxcAAAAAAAAAAIAAYfACAAAAAAAAAAAQIAxeAAAAAAAAAAAAAoTBCwAAAAAAAAAAQIAweAEAAAAAAAAAAAgQBi8AAAAAAAAAAAABwuAFAAAAAAAAAAAgQBi8AAAAAAAAAAAABAiDFwAAAAAAAAAAgABh8AIAAAAAAAAAABAgDF4AAAAAAAAAAAAChMELAAAAAAAAAABAgDB4AQAAAAAAAAAACBAGLwAAAAAAAAAAAAHC4AUAAAAAAAAAACBAGLwAAAAAAAAAAAAECIMXAAAAAAAAAACAAGHwAgAAAAAAAAAAECAMXgAAAAAAAAAAAAKEwQsAAAAAAAAAAECAMHgBAAAAAAAAAAAIkEjbAQAAKEzqQzMD8joxEUZPN5BqD/pYOXmev/16m4ddE4BUAAAAAAAAKKn4xgsAAAAAAAAAAECAMHgBAAAAAAAAAAAIEAYvAAAAAAAAAAAAAcLgBQAAAAAAAAAAIEAYvAAAAAAAAAAAAAQIgxcAAAAAAAAAAIAAYfACAAAAAAAAAAAQIAxeAAAAAAAAAAAAAoTBCwAAAAAAAAAAQIAweAEAAAAAAAAAAAgQBi8AAAAAAAAAAAABwuAFAAAAAAAAAAAgQBi8AAAAAAAAAAAABAiDFwAAAAAAAAAAgABh8AIAAAAAAAAAABAgDF4AAAAAAAAAAAAChMELAAAAAAAAAABAgDB4AQAAAAAAAAAACBAGLwAAAAAAAAAAAAHC4AUAAAAAAAAAACBAGLwAAAAAAAAAAAAECIMXAAAAAAAAAACAAGHwAgAAAAAAAAAAECAMXgAAAAAAAAAAAAKEwQsAAAAAAAAAAECAMHgBAAAAAAAAAAAIEAYvAAAAAAAAAAAAAcLgBQAAAAAAAAAAIEAYvAAAAAAAAAAAAAQIgxcAAAAAAAAAAIAAYfACAAAAAAAAAAAQIAxeAAAAAAAAAAAAAoTBCwAAAAAAAAAAQIAweAEAAAAAAAAAAAiQSNsBAAAoaVIfmhmQ14mJMHq6gVR70MfKyfP87dfbPOyaAKQCAAAAAABAUfjGCwAAAAAAAAAAQIAweAEAAAAAAAAAAAgQBi8AAAAAAAAAAAABwuAFAAAAAAAAAAAgQBi8AAAAAAAAAAAABAiDFwAAAAAAAAAAgABh8AIAAAAAAAAAABAgDF4AAAAAAAAAAAAChMELAAAAAAAAAABAgITE4OWll15SamqqYmNj1bBhQ33zzTdFPv/tt9/W+eefr9jYWF1wwQX68MMPC2w3xuixxx5ThQoVFBcXp+bNm2v9+vWn868AAAAAAAAAAACgSNsBpk2bpr59+2r06NFq2LChnnvuObVs2VLff/+9kpKSTnj+ggUL1KVLFw0dOlStW7fWlClTdN1112nZsmWqXbu2JOnpp5/WqFGj9Prrr6tKlSp69NFH1bJlS3333XeKjY0N9l8RAACnpD40MyCvExNh9HQDqfagj5WT5/nbr7d52DWnfI7L2QEAAAAAQMlgffDy7LPPqkePHurataskafTo0Zo5c6bGjx+vhx566ITnP//887rqqqt0//33S5KefPJJffrpp3rxxRc1evRoGWP03HPPacCAAbr22mslSRMnTtTZZ5+t999/X507dw7eXw4AAKCYXB8ahWJ+l7NLDBsBAAAAwFVWBy+5ublaunSp+vfv73vM6/WqefPmWrhwYaF/ZuHCherbt2+Bx1q2bKn3339fkrRp0yZt375dzZs3920vU6aMGjZsqIULFxY6eMnJyVFOTo7v/r59+yRJe/bs0eHDh//y368kijzye2BeJ9/o4MF8RR72Ki//7/9yv3v37uL9dx3OT3Z6czyXs0slvzcuZ5fczk92enM8l7NLJb83DYfO/tv/HUmK8RoNSM/XRY9MV04Asi/q/89iPc/l/GSnN8dzObtU/PyBcPjwYR08eFC7d+9WVFRU0P67geBydsnt/GS3x+X8ZLfD5eyS+/ld8Ntvv0k6eqmTUzIW/fzzz0aSWbBgQYHH77//ftOgQYNC/0xUVJSZMmVKgcdeeuklk5SUZIwxZv78+UaS2bp1a4Hn3HDDDaZjx46FvubAgQONJG7cuHHjxo0bN27cuHHjxo0bN27cuHHjxo0bt5Pefvzxx1POPqyfaiwU9O/fv8C3aPLz87Vnzx6VK1dOHs/f/wQOTrR//35VrFhRP/74o0qXLm07jt9czk92e1zOT3Y7XM4uuZ2f7Pa4nJ/sdricXXI7P9ntcTk/2e1wObvkdn6y2+NyfrLb4XJ2yf38LjDG6LffflNKSsopn2t18HLWWWcpIiJCO3bsKPD4jh07lJycXOifSU5OLvL5x/53x44dqlChQoHnXHTRRYW+ZkxMjGJiYgo8VrZsWX/+KviLSpcu7fSOwOX8ZLfH5fxkt8Pl7JLb+cluj8v5yW6Hy9klt/OT3R6X85PdDpezS27nJ7s9Lucnux0uZ5fczx/qypQpU6zneU9zjiJFR0erXr16mj37/84Vm5+fr9mzZ6tRo0aF/plGjRoVeL4kffrpp77nV6lSRcnJyQWes3//fi1atOikrwkAAAAAAAAAABAI1k811rdvX916662qX7++GjRooOeee06///67unbtKknKzMzUOeeco6FDh0qS7r33XmVkZGjkyJG65pprNHXqVC1ZskRjxoyRJHk8Ht13330aPHiw0tLSVKVKFT366KNKSUnRddddZ+uvCQAAAAAAAAAAwoD1wUunTp20c+dOPfbYY9q+fbsuuugiffTRRzr77LMlSdnZ2fJ6/++LOY0bN9aUKVM0YMAAPfzww0pLS9P777+v2rVr+57zwAMP6Pfff9cdd9yhvXv3qmnTpvroo48UGxsb9L8fChcTE6OBAweecIo3V7icn+z2uJyf7Ha4nF1yOz/Z7XE5P9ntcDm75HZ+stvjcn6y2+Fydsnt/GS3x+X8ZLfD5eyS+/lLGo8xxtgOAQAAAAAAAAAAUBJYvcYLAAAAAAAAAABAScLgBQAAAAAAAAAAIEAYvAAAAAAAAAAAAAQIgxcAAAAAAAAAAIAAYfACAAAAAAAAAAAQIJG2AwAAAACwIy8vT7t27ZLX61X58uVtxwEAAACAEoFvvMC6rKwsNWvWzHaMYtm6dasGDhyom266Sf369dO6detsRyrSypUrlZmZqapVqyouLk7x8fG64IIL9Oijj2r//v224xWpTZs2mjRpkg4dOmQ7yl+ya9cuPf3002rXrp0aNWqkRo0aqV27dhoxYoR27txpO16RPv30Uw0cOFCff/65JOnLL79Uq1at1KxZM02YMMFyulNzee1d1qtXL3311Ve2YwTc2rVrVbVqVdsxipSbm6u33npLffr0UZcuXdSlSxf16dNHb7/9tnJzc23HK7Fc31fOnDlTl112meLj45WSkqLk5GSVLVtWt9xyi7Kzs23HO6lly5Zp06ZNvvuTJk1SkyZNVLFiRTVt2lRTp061mK7kuuCCC/Tkk0/qxx9/tB3ltNixY4eeeOIJ2zHgGJd+j/2zX3/9VRMnTrQdo8Rz7f0DSTp06JDGjx+v22+/Xa1atdI111yjXr16afbs2bajndLIkSO1ZcsW2zHCzk8//aRdu3b57n/11Ve66aabdOmll+rmm2/WwoULLaYr+VauXKnx48dr48aNkqQ1a9boX//6l+666y59/PHHltPBY4wxtkMgvK1cuVJ169ZVXl6e7SgnKFWqlLZs2aLy5cvru+++U+PGjVW+fHmlp6dr9erVys7O1sKFC3XhhRfajnqCjz/+WO3atdPVV1+tuLg4TZ8+Xbfffrvi4+P17rvvyhijefPmKTk52XbUQnm9XkVERCg+Pl5dunRR9+7dVa9ePduximXx4sVq2bKlSpUqpebNm+vss8+WdPSX+tmzZ+vgwYP6+OOPVb9+fctJT/TGG2+oa9euuvDCC/XDDz/ohRdeUJ8+fXT99dcrPz9fb7zxhiZPnqzrr7/edtRCubz2x6xcuVJLly7V5ZdfrqpVq2rNmjV66aWXlJ+fr3bt2qlly5a2IxbK6/XK4/HovPPOU7du3XTrrbeG7P7FH6H8M0qSNmzYoJYtW2rr1q1q2LBhgc4vWrRI5557rmbNmqVq1apZTlq0zz//XPPmzdO2bdvk9XpVtWpVtW3bVmlpabajFcr1feWkSZN0991364477lBsbKxeffVV3XbbbapcubKmTp2qNWvWaMGCBSG5/nXq1NHIkSPVvHlzjRs3Tr1791aPHj1Us2ZNff/99xo3bpyef/553X777bajFurdd99Vq1atVKpUKdtR/OL1enXmmWdq7969at68uXr06KFrr71WkZEl4wQKob6vP+abb77RwoULtX37dklScnKyGjVqpAYNGlhO9tf9+uuvmjFjhjIzM21H8ZsrvSmMy9ml0O2Ny+8fSEePK5s3b65Dhw4pJiZGP/30k66++mrt2rVLS5YsUfv27TVlypSQ3fd7vV55vV5dccUV6t69u9q1a6fo6Gjbsfzi4n6+YcOGevTRR9W6dWv997//Vfv27dW6dWvVrFlTP/zwgz744ANNnz5drVu3th31BK4elx0zffp0dezYUWXLllVOTo7ee+893XDDDapfv74iIiL02WefaeLEibrxxhttRw1bDF5w2o0aNarI7T///LOeeeaZkDzo83q92r59u5KSknTdddcpPz9f06dPV2RkpPLz83XTTTfpwIEDmjFjhu2oJ0hPT9edd96pu+66S9LRT+b27t1ba9eu1eHDh9WqVStVrFgxZD+V6/V69e233+qTTz7R+PHjtWbNGl1wwQXq3r27brrpJp1xxhm2I57UJZdcojp16mj06NHyeDwFthljdNddd2nVqlUh+cmP9PR0de3aVb1799bs2bPVpk0bPfXUU+rTp4+ko58ieu+99zRv3jzLSQvn8tpLbh84eb1effrpp5oxY4YmT56sffv2qVWrVurRo4euvvpqeb2h+SXbvn37Frl9586dmjJlSkj+jJKkFi1aKD4+XhMnTlTp0qULbNu/f78yMzN16NChkP200y+//KI2bdpoyZIl8nq9ys/PV3p6un7++Wft3LlTffv21dNPP2075glc31fWrFlTgwYNUqdOnSRJS5YsUbt27ZSdnS2Px6POnTsrNzdX06dPt5z0RKVKldLatWtVuXJl1a1bVz179lSPHj1826dMmaKnnnpKa9assZjy5LxerxITE9WpUyd169ZNDRs2tB2pWLxer3766Sd98803Gj9+vGbNmqUzzjhDmZmZ6tatm2rWrGk7YpFWrVpV5PZ169apS5cuIbuv/+WXX9ShQwfNnz9flSpVKjBkz87OVpMmTfTuu+8qKSnJclL/hfIAwOXfY091doNVq1YpIyMjJLMXR6j2xuX3DyTp6quvVqVKlfTKK6/I4/Fo+PDhmjt3rj788EOtX79eV155pW699VYNGjTIdtRCeb1ejR8/Xu+//74+/PBDlS5dWjfffLO6d++u2rVr245XJJf38wkJCVq9erWqVKmiSy65RO3atdODDz7o2/7iiy9q/PjxWrZsmcWUhXP1uOyYevXqqX379nrkkUc0depU9ezZU3379tWjjz4q6ejvJG+88YaWL19uOWkYM8Bp5vF4TEpKiklNTS30lpKSYrxer+2YhfJ4PGbHjh3GGGMqVqxovvzyywLbly1bZipUqGAj2inFxsaaTZs2+e7n5+ebqKgos3XrVmOMMV9++aUpX768pXSndvzaG2PMokWLzB133GHKlClj4uLiTJcuXczs2bMtJjy52NhYs3bt2pNuX7t2rYmNjQ1iouKLj483Gzdu9N2PiooyK1eu9N1fu3atKVeunI1oxeLy2htjTN26dc3gwYONMca8+eabpmzZsuaJJ57wbX/mmWfMRRddZCtekY7/N5ubm2umTZtmWrZsaSIiIkxKSop5+OGHzfr16y2nPJHX6zV169Y1l19+eaG3+vXrh+zPKGOMiYuLM6tXrz7p9lWrVpm4uLggJvJPp06dzHXXXWf27dtn/vjjD3PPPfeYzMxMY4wxs2fPNuXKlTPPPfec5ZQncn1fGRcXV+AYwRhjIiMjzc8//2yMOfozt2zZshaSnVq5cuXMkiVLjDHGJCUlmRUrVhTYvmHDhpDuvMfjMU888YRJT083Ho/H/OMf/zD//ve/za5du2xHK9Kfj8u2bt1qhgwZYtLS0ozX6zWNGjUyr776qsWERfN4PMbr9RqPx3PC7djjobyv79Chg2nUqJFZt27dCdvWrVtnGjdubK6//noLyU5t3759Rd6++uqrkF1713+P9Xq9J72Feudd7Y3L7x8YY0ypUqXMDz/84Lufk5NjoqKifD+j3n//fZOammor3ikdv/47duwww4cPN+eff77xer3m4osvNmPGjDH79++3nLJwLu/ny5Qp4zsOTkpKKnBMbMzRY7NSpUrZiHZKrh6XHRMfH+87pj/2nt+qVat827OyskxCQoKldDDGGAYvOO1SU1PNtGnTTrp9+fLlIXnQZMzRN+R++eUXY4wxlStXPuEHyMaNG0P2TdzzzjvPfPTRR77769evNxERESYnJ8cYczR7qL8xcfwv+Mf8/vvvZsKECaZp06Yh25vU1FTz+uuvn3T766+/bipXrhy8QH4oW7ZsgYO9hIQEk5WV5bu/cePGkD1oMsbttTfG7QOnk/2b3bJlixk4cKCpXLlySP6brV69upk0adJJt4fyzyhjjKlQoYKZMWPGSbf/73//C+lf8EuXLm2+/fZb3/0DBw6YqKgos2/fPmOMMZMmTTI1atSwFe+kXN9X1qxZ07z99tu++0uXLjXR0dHmyJEjxpijxwzx8fG24hXp5ptvNt26dTPGGHPDDTeYAQMGFNg+ZMgQc8EFF9iIVizH7yuXLFlievbsacqWLWtiYmLMDTfcYD755BPLCQvn9XoL3ccbY8wXX3xhbr755pDtjDFHB3avvvqq2bx5c6G3mTNnhvS+PiEhwSxbtuyk25csWRLSxweuDgBc/j22dOnSZvjw4WbOnDmF3saOHRuy2Y1xtzcuv39gjDEpKSlm6dKlvvu//vqr8Xg8vmHFxo0bTUxMjK14p3Sy30e+/PJLc+utt5r4+PiQ/Vnl8n6+bdu25qGHHjLGGNOyZUvz/PPPF9g+duxYk5aWZiPaKbl6XHZMcnKy7wNJe/bsMR6Px3zxxRe+7d98841JTk62lA7GGBOaJ2ZEiVKvXj0tXbpUHTt2LHS7x+ORCdEz3hljVL16dXk8Hh04cECrVq0qcD7WDRs2hOw1DDIzM9W9e3c98sgjiomJ0bPPPqu2bdv6znG6YsUKValSxXJK/5UqVUq33XabbrvtNv3www+24xSqX79+uuOOO7R06VL985//POE6I2PHjtUzzzxjOWXhqlWrpnXr1qlGjRqSjp5CITEx0bc9KytL5557rq14p+Ty2ktSYmKidu/erdTUVO3du1dHjhzR7t27fdt3796thIQEiwn9V6lSJQ0aNEgDBw7UZ599ZjvOCerXr6+lS5fq5ptvLnR7KP+MkqTu3bsrMzNTjz76aKGdHzx4sHr16mU55cnFxMQUOC2g1+tVXl6ejhw5Iklq3LixNm/ebCndybm+r7z77rvVvXt3LV68WLGxsRo3bpxuueUWRURESJIWLVqk6tWrW05ZuOHDh6tJkybKyMhQ/fr1NXLkSM2ZM8d3jZevv/5a7733nu2YxVKvXj3Vq1dPzz77rN5++22NHz9eV111lSpVqqRNmzbZjldAUfvByy+/XJdffvkpT21kU7169bR161ZVrly50O179+4N6X19TExMkev722+/KSYmJoiJii8xMVGPPPLISU/fsn79et15551BTlU8Lv8eW7duXUlSRkZGodvLli0bstkld3vj8vsH0tFT2Pbt21ejR49WTEyM+vfvr4suush3jJOdnR2Sp7o65s+nmj7m0ksv1aWXXqpRo0Zp2rRpQU5VPC7v54cNG6ZLL71UW7duVdOmTfXII49o8eLFvmOzadOmafTo0bZjnpJLx2XHNG/eXHfffbd69eqladOm6corr1T//v01YcIEeTwe3X///WratKntmOHN3swH4WLNmjVm8eLFJ92em5trNm/eHMRExffaa68VuC1cuLDA9ieeeML06dPHUrqiHT582DzwwAMmJSXFlCtXztx4441m586dvu2LFi0yc+fOtZiwaJdffrn59ddfbcf4y6ZOnWoaNmxoIiMjfaeyiIyMNA0bNizyk3O2TZ8+vcheDB069IRPF4caV9femKOf5G7YsKF54403TJs2bUzLli3NJZdcYtauXWvWrVtnMjIyQvYr5qmpqc58Jft427ZtC9mfQcU1bNgwU6FChQKfDvV4PKZChQpm+PDhtuMVqV27dqZDhw7mwIEDJjc319x3332mWrVqvu1ff/11SH5KqyTsK19++WXTuHFjU69ePfPwww+bQ4cO+bb98MMPRZ620bZff/3VPPjgg6ZWrVomNjbWREdHm8qVK5sbb7yxyGPOUFDUN0eMOfpto4cffjiIiYrntttuC9nTsxTH9OnTi/x24549e8xrr70WxET++de//mUqV65spk+f7vtGoDFHT8c0ffp0k5qaau655x6LCU/u8ssvL/Jn0YoVK4zH4wliouJz+ffYMWPGnPCp8+Nt377dDBo0KIiJ/ONqb1x+/8CYo6fnuuSSS3zHlJUrVy7wLYy3337bjBo1ymLCop3sGy8ucHk/b8zR04l17tzZJCYm+n4Hj4qKMo0bNzbvvfee7Xgn5epx2THbt283LVq0MAkJCaZly5Zm79695p577vH9G05LSzMbNmywHTOseYwJ4Y85ICzNnz9f9evXD9lpflHIbk+o5j98+LB27dolSTrrrLMUFRVlOVFgheq6S26u/Y4dO3TLLbdo4cKFatKkiaZNm6YBAwbopZdeksfj0XnnnadZs2bpvPPOsx01bL355ptq27at4uPjbUc5waZNm7R9+3ZJUnJyshPfaty4caOuvPJKbdmyRR6PR/Hx8XrrrbfUokULSdJrr72m77//XkOHDrWc9O8J5X1lcYRy711z/IWXSzI6E1g5OTm67777NH78eB05csT3Dfbc3FxFRkaqW7du+ve//x2S+5ixY8fq4MGDuvfeewvdvmPHDo0ePVoDBw4McrLAc31fH0rGjh2rQ4cOqXfv3oVuLym9CdXOrF+/Xjk5OTr//PMVGcmJcoLB5f388Ywx+uWXX5Sfn+/E7+Al9bhs48aNOnjwIP+GQwCDF4Sc0qVLa8WKFapatartKH4juz2u53cV6x4cHDiFDjofeAcPHtT8+fOVk5OjSy65RGeddZbtSAHnem9czx9KtmzZokqVKp30dCglBZ05Pfbv36+lS5cWGLLXq1dPpUuXtpwMEr2H/+gM/mz//v1asmSJduzYIYn9/OkWLsdlsMdrOwDwZy7PAsluj0v5s7Ky1KxZM9sxAsKldZdCf+179eqlr7766oTHq1atqtq1azN0CQGh1vlly5YVOOfwpEmT1KRJE1WsWFFNmzbV1KlTLaYrnlKlSqlFixZq3bq14uLiNGHCBD3yyCN68cUXC1zjyGWh1ht/uZ4/lDzzzDOaN2+e7RinXah1piTsK9euXat3331XFSpUUJcuXZSenq633npL9913nz7//HPb8Yq0du1aTZgwQevWrZMkrVu3Tj179tTtt98e8tn9EWq9P3TokObNm6fvvvvuhG1//PGHJk6caCHVX/P7779zfBAEru8rXc5/7PfA0qVLq1mzZurSpYu6dOmiK664womhy4svvqjMzEzfGk+aNEm1atXS+eefr4cffth3/cZQU7ly5QJDFxf3NSVpX18iBf/sZkDREhISTFZWlu0YfwnZ7XEp/4oVK4zX67UdIyBcWndjQn/tjz8X67Bhw8y2bdtsR8KfhFrnL7zwQvPpp58aY4wZO3asiYuLM7179zavvPKKue+++0xCQoJ59dVXLac8uZo1a5rdu3cbY4zJzs42lStXNmXKlDEXX3yxOfPMM01SUpLZuHGj5ZR/X6j1xl+u5w8l4bKfD7XOuL6vnDVrlomOjjZnnnmmiY2NNbNmzTLly5c3zZs3N82aNTMRERFm9uzZtmMWyuXs/gql3n///femcuXKvn3OZZddZrZu3erbvn379pA+Jv7z8UFqairHB0Hg+r7S5fwuHx88+eSTJjEx0XTo0MEkJyebYcOGmXLlypnBgwebIUOGmPLly5vHHnvMdsxCub6vcX1fHw4YvCDkhNrBhz/Ibk8o5X/++eeLvD3wwAMl5odfKK27Me6vvcfjMZ999pm59957zVlnnWWioqJM27ZtzYwZM0xeXp7teDCh1/m4uDjfhX3T09PNmDFjCmyfPHmyqVWrlo1oxXL8RVBvuukm07hxY7N3715jjDG//fabad68uenSpYvNiAERar3xl+v5Q0m47OdDrTOu7ysbNWpkHnnkEWOMMW+++aY544wzClzs96GHHjItWrSwFa9ILmf3Vyj1/rrrrjPXXHON2blzp1m/fr255pprTJUqVcyWLVuMMaH/ZhzHB3a4vq90Ob/LxwfnnXeeeffdd40xRz/oGBERYd544w3f9unTp5tq1arZilck1/c1ru/rwwGDF4ScUDv48AfZ7Qml/B6Px6SkpJjU1NRCbykpKSXmh18orbsx7q/98Qd+ubm5Ztq0aaZly5YmIiLCpKSkmIcfftisX7/ecsrwFmqdL1eunFmyZIkxxpikpCSzYsWKAts3bNhg4uLibEQrluM7X7VqVfPJJ58U2D5//nxTsWJFG9ECKtR64y/X84eScNnPh1pnXN9Xli5d2teLvLw8ExkZaZYtW+bbvnr1anP22Wfbilckl7P7K5R6n5SUZFatWuW7n5+fb+666y5TqVIlk5WVFfJvxnF8YIfr+0qX87t8fBAXF+d7o98YY6Kiosy3337ru79582ZTqlQpG9FOyfV9jev7+nDANV4Qcly+qBXZ7Qml/JUrV9a///1vbdq0qdDbzJkzbUcMmFBad6lkrX1UVJQ6duyojz76SBs3blSPHj00efJk1ahRw3Y0hJBWrVrplVdekSRlZGTonXfeKbD9rbfeUrVq1WxEK7Zj+5E//vhDFSpUKLDtnHPO0c6dO23ECqhQ21ciNLCfD56StK/0er2KjY1VmTJlfNsSExO1b98+W9FOyeXs/gilff2hQ4cKXBvQ4/HolVdeUZs2bZSRkaEffvjBYrri4fgg+FzfV7qe/xjXjg+Sk5N91xdZv3698vLyClxvZM2aNUpKSrIV75Rc3teUhH19ScdVehFyTIhdYM4fZLcnlPLXq1dPS5cuVceOHQvd7vF4Qirv3xFqf4+SuvaVKlXSoEGDNHDgQH322We244S1ypUrKyoqynYMn+HDh6tJkybKyMhQ/fr1NXLkSM2ZM0c1a9bU999/r6+//lrvvfee7ZhF+uc//6nIyEjt379f33//vWrXru3btmXLFpUrV85iusBwcb9zvFDrfUlU0vbzodYZ1/eVqampWr9+vc477zxJ0sKFC1WpUiXf9uzs7BPeLAoVLmf3Vyjt688//3wtWbJENWvWLPD4iy++KElq27atjVh+4fgg+FzfV7qevzAuHB/cdNNNyszM1LXXXqvZs2frgQceUL9+/bR79255PB499dRTuv76623HPCmX9zUlYV9f0jF4Qcj57bffbEf4y8huTyjlf+KJJ3Tw4MGTbq9Vq5Y2bdoUxESnTyitu+T+2leuXFkREREn3e7xeNSiRYsgJsKfffvtt7YjFJCSkqLly5dr2LBhmjFjhowx+uabb/Tjjz+qSZMmmj9/vurXr2875kkNHDiwwP2EhIQC92fMmKFLL700mJH+FmOM8vPzT/h3HGr7Sn+FWu9dFi77+VDrjOv7yp49eyovL893//g3hSRp1qxZatasWbBjFYvL2U/GhX19u3bt9Oabb+qWW245YduLL76o/Px8jR492kKy4uH4wA7X95Uu53f5+ODxxx9XXFycFi5cqB49euihhx5SnTp19MADD+jgwYNq06aNnnzySdsxC+X6vsb1fX048JhQG7GjRPrwww81ffp0nXnmmbr99tt1/vnn+7b9+uuv6tChgz7//HOLCU+O7Pa4nr+4jh0AxsTE2I4iKXzWXQq9tUfoWblyperWrVvgTSPgyJEjGjRokL766itdfvnlevzxxzVixAgNGjRIR44cUefOnTV27FhFR0fbjvqX0Hv4i86gJCrp+3oEHp0BAByPa7zgtJsyZYratm2r7du3a+HChUpPT9fkyZN923NzczV37lyLCU+O7Pa4nt8frVq10s8//2w7hqTwWncptNYeoYvPqODPHn/8cY0bN07169fXO++8o549e+qFF17QmDFjNHbsWM2ePVvPPfec7Zh/C72Hv+gMSppw2NcjsOgMAOB4nGoMp92IESP07LPPqnfv3pKOXtDs9ttv1x9//KFu3bpZTlc0stvjen5/hNIbFeG07lJorT3saN++fZHb9+3bF3IXPoV9U6ZM0bhx49S6dWv17NlTNWrU0JQpU9SpUydJUmxsrJ588kk98MADlpMWjt7DX3QG4cj1fT2Cj84AAI7H4AWn3fr169WmTRvf/Y4dO6p8+fJq27atDh8+rHbt2llMVzSy2+N6flex7gg3M2bMUIsWLXT22WcXup3T5qAwW7duVZ06dSRJ1apVU3R0tO++JF188cXasmWLrXinRO/hLzqDcOT6vh7BR2cAAMdj8ILTrnTp0tqxY4eqVKnie+yKK67QBx98oNatW+unn36ymK5oZLfH9fyuYt0RbmrWrKkOHTqc9BtdK1as0AcffBDkVAh1ZcqU0d69e1WxYkVJUt26dZWYmOjbnpOTE9Kf/qf38BedQThyfV+P4KMzAIDjcY0XnHYNGjTQrFmzTng8IyNDM2bMCOlznJLdHtfzu4p1R7ipV6+eli1bdtLtMTExqlSpUhATwQW1atUq0Jv58+frnHPO8d1fvXq10tLSbEQrFnoPf9EZhCPX9/UIPjoDADge33jBadenTx8tWLCg0G2XX365ZsyYoYkTJwY5VfGQ3R7X8/sjlD71FE7rLoXW2sOO0aNHF3mKnJo1a2rTpk1BTAQXjB49WlFRUSfdfvjw4ZA+fzu9h7/oDMKR6/t6BB+dAQAcz2O4sjBCzLBhw3TXXXepbNmytqP4jez2uJw/MTFRK1euVNWqVW1H8ZvL6y65vfaww/XOww7Xe+N6fgQfnUE4ovfwF50BgJKNwQtCTunSpbVixQon3wgluz0u5DfGKD8/XxEREbajBIwL6w4EEp3HX+F6b1zPj+CjMwhH9B7+ojMAULJxjReEHJdngWS3J5TyHzlyRAMGDFBGRoYGDhwoSRoxYoQSEhJUqlQp3XrrrcrNzbWcMjBCad2P+fDDD9W9e3c98MADWrduXYFtv/76q5o1a2YpGUqCUOw8Qp/rvXE9P4KPziAc0Xv4i84AQMnG4AUAAuzxxx/XuHHjVL9+fb3zzjvq2bOnXnjhBY0ZM0Zjx47V7NmzuUj9aTJlyhS1bdtW27dv18KFC5Wenq7Jkyf7tufm5mru3LkWEwIAAAAAAKCki7QdAABKmilTpmjcuHFq3bq1evbsqRo1amjKlCnq1KmTJCk2NlZPPvkkF1Y8DUaMGKFnn31WvXv3liS99dZbuv322/XHH3+oW7dultMBAAAAAAAgHDB4AYAA27p1q+rUqSNJqlatmqKjo333Jeniiy/Wli1bbMUr0davX682bdr47nfs2FHly5dX27ZtdfjwYbVr185iOgAAAAAAAIQDBi8AEGBlypTR3r17VbFiRUlS3bp1lZiY6Nuek5Mjj8djK16JVrp0ae3YsUNVqlTxPXbFFVfogw8+UOvWrfXTTz9ZTAcAAAAAAIBwwDVeEHIuvfRSxcXF2Y7xl5DdnlDKX6tWLS1btsx3f/78+TrnnHN891evXq20tDQb0QIulNZdkho0aKBZs2ad8HhGRoZmzJjBtXXwt4Va5+EG13vjen4EH51BOKL38BedAYCSzWOMMbZDIHxkZWVpwoQJysrK0vPPP6+kpCTNmjVLlSpV0j/+8Q/b8YpEdntcy//DDz8oKiqqwLcujjdlyhRFRkaqY8eOQU7mH9fWXZLmzp2rBQsWqH///oVu/+KLLzRx4kRNmDAhyMngAhc7D/tc743r+RF8dAbhiN7DX3QGAMA3XhA0c+fO1QUXXKBFixZp+vTpOnDggCRp5cqVGjhwoOV0RSO7PS7mr169+kmHLpJ04403Fhi6DBs2THv37g1CsuJzcd2lo99sOdnQRTp62rHjhy6huPaww9XOwy7Xe+N6fgQfnUE4ovfwF50BAEgMXhBEDz30kAYPHqxPP/1U0dHRvsebNWumr7/+2mKyUyO7Pa7nL44hQ4Zoz549tmMUEA7rLoXm2sOOcOk8Asv13rieH8FHZxCO6D38RWcAABKDFwTR6tWr1a5duxMeT0pK0q5duywkKj6y2+N6/uIIxTM+hsO6S6G59rAjXDqPwHK9N67nR/DRGYQjeg9/0RkAgMTgBUFUtmxZbdu27YTHly9fXuDC46GI7Pa4nt9VrDvCDZ3HX+F6b1zPj+CjMwhH9B7+ojMAAInBC4Koc+fOevDBB7V9+3Z5PB7l5+dr/vz56tevnzIzM23HKxLZ7XE9v6tYd4QbOo+/wvXeuJ4fwUdnEI7oPfxFZwAAkiQDBElOTo7p3r27iYyMNB6Px0RFRRmv12tuvvlmc+TIEdvxikR2e1zPXxwJCQkmKyvLdowCwmHdjQnNtYcd4dJ5BJbrvXE9P4KPziAc0Xv4i84AAIwxxmMMJ7jH6WeM0Y8//qjy5ctr165dWr16tQ4cOKD09HSlpaXZjlckstvjev7iSkxM1MqVK1W1alXbUSSFz7pLobf2sCOcOo/Acb03rudH8NEZhCN6D3/RGQDAMQxeEBT5+fmKjY3VmjVrnDvYILs9rucvrquvvlqvvvqqKlSoYDuKpPBZdyn01h52hFPnETiu98b1/Ag+OoNwRO/hLzoDADiGa7wgKLxer9LS0rR7927bUfxGdntczy9JWVlZGjBggLp06aJffvlFkjRr1iytWbPG95wPP/wwpN74LwnrLrm59rCjpHQeweV6b1zPj+CjMwhH9B7+ojMAgGMYvCBohg0bpvvvv1/ffvut7Sh+I7s9LuefO3euLrjgAi1atEjTp0/XgQMHJEkrV67UwIEDLacrmsvrLrm99rDD9c7DDtd743p+BB+dQTii9/AXnQEASJxqDEF0xhln6ODBgzpy5Iiio6MVFxdXYPuePXssJTs1stvjcv5GjRrphhtuUN++fQtcS+Sbb75R+/bt9dNPP9mOeFIur7vk9trDDtc7Dztc743r+RF8dAbhiN7DX3QGACBJkbYDIHw899xztiP8ZWS3x+X8q1ev1pQpU054PCkpSbt27bKQqPhcXnfJ7bWHHa53Hna43hvX8yP46AzCEb2Hv+gMAEDiGy8AcNqce+65euutt9S4ceMC37p477331K9fP2VlZdmOWGKx9gAAAAAAALCFb7wgaLKzs4vcXqlSpSAl8R/Z7XE5f+fOnfXggw/q7bfflsfjUX5+vubPn69+/fopMzPTdrwiubzukttrDztc7zzscL03rudH8NEZhCN6D3/RGQCAxDdeEERer1cej+ek2/Py8oKYxj9kt8fl/Lm5ubr77rv12muvKS8vT5GRkcrLy9ONN96o1157TREREbYjnpTL6y65vfaww/XOww7Xe+N6fgQfnUE4ovfwF50BAEh84wVBtHz58gL3Dx8+rOXLl+vZZ5/VU089ZSlV8ZDdHlfzG2O0fft2jRo1So899phWr16tAwcOKD09XWlpabbjnZKr6y65v/aww+XOwx7Xe+N6fgQfnUE4ovfwF50BAEh84wUhYObMmRoxYoTmzJljO4rfyG5PqOfPz89XbGys1qxZU6Le7A/1dZdK7trDDhc6j9Djem9cz4/gozMIR/Qe/qIzABBevLYDADVq1NDixYttx/hLyG5PqOf3er1KS0vT7t27bUcJqFBfd6nkrj3scKHzCD2u98b1/Ag+OoNwRO/hLzoDAOGFU40haPbv31/gvjFG27Zt06BBg0L+U+lkt8fl/MOGDdP999+vV155RbVr17Ydxy8ur7vk9trDDtc7Dztc743r+RF8dAbhiN7DX3QGACAxeEEQlS1b9oQLzBljVLFiRU2dOtVSquIhuz0u58/MzNTBgwdVp04dRUdHKy4ursD2PXv2WEp2ai6vu+T22sMO1zsPO1zvjev5EXx0BuGI3sNfdAYAIDF4QRB98cUXBe57vV6VL19e1apVU2RkaFeR7Pa4nP+5556zHeEvc3ndJbfXHna43nnY4XpvXM+P4KMzCEf0Hv6iMwAAicELgsjj8ahx48YnHGgcOXJEX375pS677DJLyU6N7Pa4nP/WW2+1HeEvc3ndJbfXHna43nnY4XpvXM+P4KMzCEf0Hv6iMwAASfIYY4ztEAgPERER2rZtm5KSkgo8vnv3biUlJSkvL89SslMjuz0u58/Ozi5ye6VKlYKUxH8ur7vk9trDDtc7Dztc743r+RF8dAbhiN7DX3QGACDxjRcEkTHmhPOcSkcPPuLj4y0kKj6y2+Ny/tTU1EKzHxPKB9wur7vk9trDDtc7Dztc743r+RF8dAbhiN7DX3QGACAxeEEQtG/fXtLRr9vedtttiomJ8W3Ly8vTqlWr1LhxY1vxikR2e1zPL0nLly8vcP/w4cNavny5nn32WT311FOWUhWtJKy75Obaw46S0nkEl+u9cT0/go/OIBzRe/iLzgAAjsfgBaddmTJlJB391EdiYqLi4uJ826Kjo3XJJZeoR48etuIViez2uJ5fkurUqXPCY/Xr11dKSopGjBjhOzAPJSVh3SU31x52lJTOI7hc743r+RF8dAbhiN7DX3QGAHA8rvGCoHn88cfVr18/J79aS3Z7XM9fmA0bNqhOnTr6/fffbUc5qZK47pIbaw87SmrncXq53hvX8yP46AzCEb2Hv+gMAEBi8AIAp83+/fsL3DfGaNu2bRo0aJDWrVunFStW2AkWBlh7AAAAAAAA2MKpxhBU77zzjt566y1lZ2crNze3wLZly5ZZSlU8ZLfH1fxly5Y94aKKxhhVrFhRU6dOtZSq+Fxdd8n9tYcdLnce9rjeG9fzI/joDMIRvYe/6AwAwGs7AMLHqFGj1LVrV5199tlavny5GjRooHLlymnjxo1q1aqV7XhFIrs9Luf/4osv9Pnnn/tuc+bM0XfffaesrCw1atTIdrwiubzukttrDztc7zzscL03rudH8NEZhCN6D3/RGQCAJMkAQVKjRg0zZcoUY4wxCQkJJisryxhjzKOPPmruvvtum9FOiez2uJx/7ty55vDhwyc8fvjwYTN37lwLiYrP5XU3xu21hx2udx52uN4b1/Mj+OgMwhG9h7/oDADAGGP4xguCJjs7W40bN5YkxcXF6bfffpMk3XLLLXrzzTdtRjslstvjcv4rrrhCe/bsOeHxffv26YorrrCQqPhcXnfJ7bWHHa53Hna43hvX8yP46AzCEb2Hv+gMAEDiVGMIouTkZN8boZUqVdLXX38tSdq0aZOMMTajnRLZ7XE5vzHmhOuMSNLu3bsVHx9vIVHxubzukttrDztc7zzscL03rudH8NEZhCN6D3/RGQCAJEXaDoDw0axZM/3vf/9Tenq6unbtqj59+uidd97RkiVL1L59e9vxikR2e1zMfyyXx+PRbbfdppiYGN+2vLw8rVq1yvcJqFDl4rpLJWPtYYernYddrvfG9fwIPjqDcETv4S86AwCQJI9h3I4gyc/PV35+viIjj877pk6dqgULFigtLU133nmnoqOjLSc8ObLb42L+rl27SpJef/11dezYUXFxcb5t0dHRSk1NVY8ePXTWWWfZinhKLq67VDLWHna42nnY5XpvXM+P4KMzCEf0Hv6iMwAAicELAJw2jz/+uPr168eprSxg7QEAAAAAAGAL13hBUH311Ve6+eab1ahRI/3888+SpEmTJmnevHmWk50a2e1xNf/AgQOdfuPf1XWX3F972OFy52GP671xPT+Cj84gHNF7+IvOAAAYvCBo3n33XbVs2VJxcXFavny5cnJyJEn79u3TkCFDLKcrGtntcT3/O++8o44dO+qSSy5R3bp1C9xCmevrLrm79rCjJHQewed6b1zPj+CjMwhH9B7+ojMAAInBC4Jo8ODBGj16tMaOHauoqCjf402aNNGyZcssJjs1stvjcv5Ro0apa9euOvvss7V8+XI1aNBA5cqV08aNG9WqVSvb8Yrk8rpLbq897HC987DD9d64nh/BR2cQjug9/EVnAAASgxcE0ffff6/LLrvshMfLlCmjvXv3Bj+QH8huj8v5X375ZY0ZM0YvvPCCoqOj9cADD+jTTz9V7969tW/fPtvxiuTyukturz3scL3zsMP13rieH8FHZxCO6D38RWcAABKDFwRRcnKyNmzYcMLj8+bNU9WqVS0kKj6y2+Ny/uzsbDVu3FiSFBcXp99++02SdMstt+jNN9+0Ge2UXF53ye21hx2udx52uN4b1/Mj+OgMwhG9h7/oDABAYvCCIOrRo4fuvfdeLVq0SB6PR1u3btXkyZPVr18/9ezZ03a8IpHdHpfzJycna8+ePZKkSpUq6euvv5Ykbdq0ScYYm9FOyeV1l9xee9jheudhh+u9cT0/go/OIBzRe/iLzgAAJEkGOI1Wrlxp8vLyfPcHDx5s4uPjjcfjMR6Px8TGxpoBAwZYTHhyZLfH9fzHdOvWzQwaNMgYY8yLL75o4uLiTPPmzU3ZsmXN7bffbjndiUrKuhvj3trDjpLUeQSP671xPT+Cj84gHNF7+IvOAAD+zGMMH/3F6RMREaFt27YpKSlJVatW1eLFi5WYmKgNGzbowIEDqlWrlhISEmzHLBTZ7XE9/zH5+fnKz89XZGSkJGnq1KlasGCB0tLSdOeddyo6OtpywoJKyrpL7q097ChJnUfwuN4b1/Mj+OgMwhG9h7/oDADgzyJtB0DJVrZsWW3atElJSUnavHmz8vPzFR0drVq1atmOdkpkt8f1/Md4vV55vf93RsfOnTurc+fOFhMVraSsu+Te2sOOktR5BI/rvXE9P4KPziAc0Xv4i84AAP6MwQtOqw4dOigjI0MVKlSQx+NR/fr1FRERUehzN27cGOR0RSO7Pa7nP95XX32l//znP8rKytI777yjc845R5MmTVKVKlXUtGlT2/EKKEnrLrm19rCjpHUeweF6b1zPj+CjMwhH9B7+ojMAgD9j8ILTasyYMWrfvr02bNig3r17q0ePHkpMTLQdq1jIbo/r+Y959913dcstt+imm27S8uXLlZOTI0nat2+fhgwZog8//NBywoJKyrpL7q097ChJnUfwuN4b1/Mj+OgMwhG9h7/oDADgz7jGC4Kma9euGjVqlJMHH2S3x+X86enp6tOnjzIzM5WYmKiVK1eqatWqWr58uVq1aqXt27fbjnhSLq+75Pbaww7XOw87XO+N6/kRfHQG4Yjew190BgAgMXgBgNOmVKlS+u6775Samlrgzf+NGzeqVq1a+uOPP2xHLLFYewAAAAAAANjiPfVTAAB/RXJysjZs2HDC4/PmzVPVqlUtJAofrD0AAAAAAABsYfACAKdJjx49dO+992rRokXyeDzaunWrJk+erH79+qlnz56245VorD0AAAAAAABsibQdAABKklWrVql27dryer3q37+/8vPz9c9//lMHDx7UZZddppiYGPXr10+9evWyHbXEYe0BAAAAAAAQCrjGCwAEUEREhLZt26akpCRVrVpVixcvVmJiojZs2KADBw6oVq1aSkhIsB2zRGLtAQAAAAAAEAr4xgsABFDZsmW1adMmJSUlafPmzcrPz1d0dLRq1aplO1qJx9oDAAAAAAAgFDB4AYAA6tChgzIyMlShQgV5PB7Vr19fERERhT5348aNQU5XsrH2AAAAAAAACAUMXgAggMaMGaP27dtrw4YN6t27t3r06KHExETbscICaw8AAAAAAIBQwDVeAOA06dq1q0aNGsWb/xaw9gAAAAAAALCFwQsAAAAAAAAAAECAeG0HAAAAAAAAAAAAKCkYvAAAAAAAAAAAAAQIgxcAAAAAAAAAAIAAYfACAAAAwDnGGN1xxx0688wz5fF4tGLFCtuRAAAAAECS5DHGGNshAAAAAMAfs2bN0rXXXqs5c+aoatWqOuussxQZGfm3XvO2227T3r179f777wcmJAAAAICw9Pd+MwEAAAAAC7KyslShQgU1btzYdpQT5OXlyePxyOvlBAMAAABAOOI3AQAAAABOue2229SrVy9lZ2fL4/EoNTVV+fn5Gjp0qKpUqaK4uDjVqVNH77zzju/P5OXlqVu3br7tNWrU0PPPP+/bPmjQIL3++uv673//K4/HI4/Hozlz5mjOnDnyeDzau3ev77krVqyQx+PR5s2bJUmvvfaaypYtq//973+qVauWYmJilJ2drZycHPXr10/nnHOO4uPj1bBhQ82ZM8f3Olu2bFGbNm10xhlnKD4+Xv/4xz/04Ycfnu7lAwAAAHCa8Y0XAAAAAE55/vnndd5552nMmDFavHixIiIiNHToUL3xxhsaPXq00tLS9OWXX+rmm29W+fLllZGRofz8fJ177rl6++23Va5cOS1YsEB33HGHKlSooI4dO6pfv35au3at9u/frwkTJkiSzjzzTC1YsKBYmQ4ePKjhw4dr3LhxKleunJKSknTPPffou+++09SpU5WSkqL33ntPV111lVavXq20tDTdfffdys3N1Zdffqn4+Hh99913SkhIOJ1LBwAAACAIGLwAAAAAcEqZMmWUmJioiIgIJScnKycnR0OGDNFnn32mRo0aSZKqVq2qefPm6T//+Y8yMjIUFRWlxx9/3PcaVapU0cKFC/XWW2+pY8eOSkhIUFxcnHJycpScnOx3psOHD+vll19WnTp1JEnZ2dmaMGGCsrOzlZKSIknq16+fPvroI02YMEFDhgxRdna2OnTooAsuuMCXGQAAAID7GLwAAAAAcNqGDRt08OBBtWjRosDjubm5Sk9P991/6aWXNH78eGVnZ+vQoUPKzc3VRRddFJAM0dHRuvDCC333V69erby8PFWvXr3A83JyclSuXDlJUu/evdWzZ0998sknat68uTp06FDgNQAAAAC4icELAAAAAKcdOHBAkjRz5kydc845BbbFxMRIkqZOnap+/fpp5MiRatSokRITEzVixAgtWrSoyNf2eo9eFtMY43vs8OHDJzwvLi5OHo+nQKaIiAgtXbpUERERBZ577HRi3bt3V8uWLTVz5kx98sknGjp0qEaOHKlevXoV968OAAAAIAQxeAEAAADgtOMvaJ+RkVHoc+bPn6/GjRvrX//6l++xrKysAs+Jjo5WXl5egcfKly8vSdq2bZvOOOMMSdKKFStOmSk9PV15eXn65ZdfdOmll570eRUrVtRdd92lu+66S/3799fYsWMZvAAAAACOY/ACAAAAwGmJiYnq16+f+vTpo/z8fDVt2lT79u3T/PnzVbp0ad16661KS0vTxIkT9fHHH6tKlSqaNGmSFi9erCpVqvheJzU1VR9//LG+//57lStXTmXKlFG1atVUsWJFDRo0SE899ZR++OEHjRw58pSZqlevrptuukmZmZkaOXKk0tPTtXPnTs2ePVsXXnihrrnmGt13331q1aqVqlevrl9//VVffPGFataseTqXCgAAAEAQeG0HAAAAAIC/68knn9Sjjz6qoUOHqmbNmrrqqqs0c+ZM32DlzjvvVPv27dWpUyc1bNhQu3fvLvDtF0nq0aOHatSoofr166t8+fKaP3++oqKi9Oabb2rdunW68MILNXz4cA0ePLhYmSZMmKDMzEz9v//3/1SjRg1dd911Wrx4sSpVqiRJysvL09133+3LW716db388suBXRgAAAAAQecxx5+sGAAAAAAAAAAAAH8Z33gBAAAAAAAAAAAIEAYvAAAAAAAAAAAAAcLgBQAAAAAAAAAAIEAYvAAAAAAAAAAAAAQIgxcAAAAAAAAAAIAAYfACAAAAAAAAAAAQIAxeAAAAAAAAAAAAAoTBCwAAAAAAAAAAQIAweAEAAAAAAAAAAAgQBi8AAAAAAAAAAAABwuAFAAAAAAAAAAAgQBi8AAAAAAAAAAAABMj/B2ZMBpvyh7bIAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.subplots(figsize=(20, 10))\n",
"\n",
"names, importances = pipe1.features.importances(target_num=1)\n",
"\n",
"plt.bar(names[0:30], importances[0:30])\n",
"\n",
"plt.title(\"feature importances for the y-component\", size=20)\n",
"plt.grid(True)\n",
"plt.xlabel(\"features\")\n",
"plt.ylabel(\"importance\")\n",
"plt.xticks(rotation='vertical')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABl4AAAOsCAYAAAAr1cuiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACny0lEQVR4nOzdeZxWdd0//vcMDAODIpvIErKIG26YCO6aIljdblm5VCKW5oKmZHzDXEApTb15WLlQKkYaiZUt3imoCCiKILjhcnu7YN6KgGmCQA0jc35/+JvrZpiFYfjo5dHn8/GYh8w5n/M5r3Nd57rqcb3mXKcky7IsAAAAAAAA2GylxQ4AAAAAAADwaaF4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAcuv111+P7373u7HddttF69ato6SkJEpKSuLPf/5zsaOxgV//+teF5+e1114rdhxI6tP+XnTKKadESUlJ9O7du9hRAAAgF1oWOwAAQHO8/vrrsddee8U//vGPYkcBPsO8FwEAABtyxQsAkEvjx4+Pf/zjH9GyZcv46U9/GnPnzo1FixbFokWL4rDDDit2vFr8tTgpjB07tnAlBZ8ceXovWp+r0KC4Zs2aVXgNzpo1q9hxAIDEXPECAOTSAw88EBERxxxzTIwePbrIadiYU045JU455ZRix4DkvBcBAAAbcsULAJBLb775ZkRE7LDDDkVOAnyWeS8CAAA2pHgBAHJp7dq1ERFRVlZW5CTAZ5n3IgAAYEOKFwAgN9a/J0GNcePGFZaVlJTU+3VW69ati8mTJ8d//Md/RPfu3aO8vDw6deoUBxxwQEyYMCH+9a9/NbjP6urqePDBB+OCCy6I/fffPzp37hxlZWXRvn37GDBgQFxwwQXx+uuv17ttzT05Jk+eHBERf//732tlre9+HTXLxo4d2+hjccghh0RJSUkccsghddZt+L3x1dXVMWnSpPjCF74Q22yzTZSWltb7OD3xxBNxxhlnxI477hhbbLFFtG3bNnbcccc488wz43/+538azbMxG7ufxIbH8/LLL8cZZ5wRffv2jTZt2kTv3r3j29/+dvz973+vtd2zzz4bI0aMiL59+0br1q2jZ8+eceaZZ8by5csbzLLhPXfefPPNGDVqVOywww5RUVERW2+9dXz5y1+OadOmNenYFi1aFKeffnpsv/32UVFREVtuuWXssssucf755zd674zXXnut8Jj8+te/joiIu+66K770pS9F9+7do2XLlnHIIYcUHrtx48YVtq3vPFp/X5tz3tbY8DmpeZz69esXbdq0iU6dOsWwYcPi3nvvbdLj9Pbbb8dll10W+++/f3Tp0iXKysqiQ4cOMXjw4Bg9enQ888wzDW7773//O6677ro47LDDomvXrtGqVavo0qVLDBkyJG655Zb44IMPGt33gw8+GCeeeGL06dMn2rRpExUVFdGrV6/YZ5994oILLogHH3ywScdQo7nvRW+//XZcdNFFseeee0b79u2jdevW0bt37/jWt74Vc+bMaXSfvXv3rjXvwoUL45RTTok+ffpEeXl5k+/9U/P+MGLEiMKyPn361DmfGrvnxHvvvReXXHJJ7LLLLtG2bdto3759HHTQQfHb3/62SRlWrFgRV1xxRey///6x9dZbR6tWraJbt25x5JFHxh/+8IfIsqxJ89SnvtdGQz8p7rv17LPPxjnnnBO77bZbdOjQIcrKyqJr164xZMiQuOqqq+Ktt95qcNs5c+bEt771rejdu3e0bt062rdvH3vuuWdcdNFF8fbbbze43Ybv8VmWxS233BIHHHBAdOrUKdq1axeDBg2K2267rdZ2a9eujYkTJ8Y+++wTHTt2jC233DL233//uPPOOxvcV33vU7///e9jyJAh0aVLl2jTpk3stNNOMWbMmHjvvfc2+nitXbs2brjhhvjCF75QeO67du0aX/rSl+L222+P6urqBrfd8L27mOfhhv9b/fjjj8eJJ54Yn/vc56K8vDx69OgR3/rWt+KFF16os23NY/qFL3yhsOwLX/hCnfOz5vEGAHIqAwDIiVtvvTWLiEZ/hg8fXmubv//979kee+zR6Db9+vXLXnzxxXr3eemll250nxUVFdldd93VrG03/L9jNcsuvfTSRh+Lgw8+OIuI7OCDD66zbubMmYV57r333mzIkCGNPk7r1q3Lzj///KykpKTBjC1btsx++ctfNpqpMes/d4sXL270eO6///5syy23rDdHly5dshdeeCHLsiybMmVK1qpVq3rH9erVK3vzzTfrzTJ8+PDCmMcffzzr0qVLg8c9atSoRo/rJz/5SVZaWtrg9uXl5dnkyZPr3Xbx4sWFcZMmTcq+9a1v1dn+4IMPbtJ5v+HjujnnbX3PyZw5c7LOnTs3ONfVV1/d6ON0++23Z23btm00T69everd9qmnnsp69erV6LZ77713tnTp0nq3P++88zb6WHTq1KnR/BtqznvR9OnTs3bt2jW6zdlnn52tW7eu3n3WPAbDhw/Pbrzxxqxly5aNvpc0ZP33h8Z+Zs6cWdhm/dfMf//3f2e9e/du9Bga88ADD2SdOnVqdN9f+tKXsvfff79Jx7Ohphzbxs65pvjggw82+r5Z33mQZR++55599tmNbrfVVltl9913X737Xv85vO+++7IjjzyywXnOPffcLMuy7N13380OOuigBsf9+Mc/rndf679P3Xrrrdmpp57a4Bzdu3cvvD83NNdOO+3U6HEfcMAB2TvvvFPv9p+k87BmzKWXXppdf/319b4eIz58n509e3aDj2ljP7feemujxwAAfLIpXgCA3PjnP/+ZLVq0KFu0aFHhg4kzzzyzsGzRokXZG2+8URj/j3/8I+vZs2cW8eEH4CNHjsx+//vfZ48//ng2c+bMbMyYMVlFRUUWEVnfvn2z9957r84+f/SjH2XdunXLzjrrrOy2227LHnnkkWzhwoXZn//852z06NHZFltskUVE1rp16+z555+vte2yZcuyRYsWZUcffXThQ6n1s9b8rG/9D3Ma09TiZffdd88iIjvqqKOyu+66K1u4cGF2zz33ZHfccUdh/FlnnVUYf9BBB2WTJk3KZs2alc2fPz+76aabsl122aWw/i9/+UsTnqm6mlq8bL/99lmHDh2ynj17Zr/4xS+yefPmZQ8//HB23nnnFT7g3H///bP58+dnLVu2zHbeeefs5ptvzubPn5/NnDmzVnlx/PHH15ul5sO7rbfeOuvdu3dWXl6e/fCHP8weeuihbN68ednPf/7zrFu3boV5rr322nrnuf766wtjtt566+yaa67J5s6dm82ZMycbO3ZsoWgoKSnJ/va3v9XZfv0P32qepwMPPDCbMmVKtmDBguyBBx7Ibr755sJ5f+aZZxbG13cerV27tjD35py3Gz4nO+ywQ9a5c+esS5cu2ZVXXpnNmTMnmz9/fjZhwoSsffv2WcSHxdyzzz5b7zy/+c1vCrlbt26dnXPOOdk999yTPfHEE9lDDz2UXXfdddnQoUOzPn361Nn2pZdeyrbaaqssIrJ27dplY8aMyf70pz9lCxYsyKZPn56dffbZhQ88Bw8eXOsxyLIsu/vuu2s9xjfeeGM2a9as7Mknn8xmzpyZXXfdddkxxxyTde/evd7sDdnU96Inn3yyUBKWlZVl559/fjZz5sxs/vz52S9/+cusT58+hXlGjx5d7z5ripf+/ftnLVq0yHr37p1dd9112WOPPZbNmTMnu+KKK5qUfdWqVdmiRYuy8ePHF/Y5ffr0OufTqlWrCtus/5rZfvvtsy233DK76KKLslmzZmULFizIbrrppuxzn/tcYb5p06bVu+85c+ZkZWVlWURk22yzTTZ+/Pjs7rvvzhYuXJjdfffd2Te/+c3CHF/5ylc24Rn5P/W9Ntb/ufHGG2u93zXX+gVEt27dsh//+MfZzJkzsyeeeCKbPn16dvnll2d77LFHvcXLD37wg8K2ffr0ySZOnFh4Dzv//PMLj1GrVq2yp556qs7267/HDx48OIuI7Bvf+Eb2t7/9LVu4cGH2u9/9Lttxxx0LY+6///7sqKOOylq2bJmdeeaZ2X333ZctXLgwu+WWW7Lu3btnEZG1aNGi3tfw+u9Te++9dxYR2aBBg7Lf/e532YIFC7J77rkn+/rXv14Ys+2222YrV66sM8/777+f9e3btzDumGOOyf76179mCxYsyH7/+98X3m8iIttvv/2yDz74oM4cn6TzsGb9Pvvsk5WWlmZ77LFHNmnSpOzxxx/PHnrooez8888vlPLbbrttVllZWdh27dq12aJFi7JJkyYV5pk0aVKdc/Wf//xnvfsGAPJB8QIA5FJTCoqTTjqp8Nexr776ar1jnnjiicIH5BdeeGGd9YsXL67zYe76/vd//zfr0aNHFhHZN7/5zXrHrP9XuhuTuniJiOyiiy5qcJ777ruvMO7mm2+ud8y//vWv7NBDDy0cQ1VV1UaPY0NNLV5qypfly5fXGXPBBRfUKjr222+/bPXq1XXGfe1rXyuUAfXNU/N81HwIvuFfI2dZlr355puFD/Datm1bZ57ly5cXSrvu3btnr7/+ep051j+3evToUec82vCvnk8++eSsurq6zjw11r+KZWNSnLfrPye9evWqVSTUePjhhwuFWM1f1q9vyZIlhcepS5cudYrG9dX3GO63335ZRGR77rln9vbbb9e73b333lv4gPNXv/pVrXU1RVyvXr0avYKiob+wb4qmvGZrPrBu0aJFNn369Drr33333ax///5ZRGSlpaX1fgC+/lU/u+2222Z/KLux1+T61n/NbLXVVvXme+mll7LWrVsXit4NrV27tnCFwhFHHFHvazfLsuxXv/pVYV8NXfHRXIsXL8623nrrwgfu9Z1zTfGXv/ylkHHfffdt9LnYcB/PPPNM4Xzddddd6912/XN60KBBddZv+B5fXzn81ltvFa4c3HrrrbOSkpLsT3/6U51xTz/9dGFf9b2GN3yf+tKXvlTv/wZcdtllhTE/+MEP6qxf//27vv9Nqq6uzr7xjW8Uxtxwww11xnySzsMNH5P1i5Ua65eb9V1duP7zuP4VZgDAp4PiBQDIpY192Ll48eKsRYsWWURkd999d6NzjR49uvABenNce+21WcSHf5Ff3wfnxSxedthhh3r/crhGTaFy3HHHNbq/559/frM+DN2U4uXee++td45XX321MKakpKTBKzUefPDBwrj6rtBZ/8O7kSNHNph56tSphXEbfpXWT3/608K69a8e2tD6H7zdeeedtdat/4Fm+/bt6/0r8fVtSvHSFBs7b9d/Tv761782OM8+++xTKEc2NGbMmMIcf/7znzcp30MPPVTY9plnnml0bM1f3O+33361lh9++OFZRGTHHnvsJu17U2zsNTtv3rzCmDPOOKPBeebMmVMYd9ZZZ9VZv37x8tBDD2127uYWLz//+c8bHHfCCSdkEZF17NixzrqaK59at25dbyG6vkGDBmURkZ100klNOpameP/997Pddtsti/jwCsi5c+c2e6599903i/jwa6Qa+krDhqx/5dpjjz3W4LjvfOc7hXHz58+vtW7DK14acvLJJxfGNXQFYJZlha8gq+81vP77VHl5eYPHu27dumzXXXctPP/rFxH//ve/C1fH7bLLLg3+b9KKFSsKX//Vv3//Ous/SedhTY7WrVtny5Ytq3f7lStXFq50O//88+usV7wAwKdbaQAAfAr97W9/i3Xr1kVFRUV88YtfbHTsQQcdFBERS5Ys2egNx1euXBmLFy+O5557Lp599tl49tlno6Kiota6T5Ljjz8+WrRoUe+6lStXFm6g/dWvfrXReXbeeefo3LlzRETMnTs3acb1tW/fPoYNG1bvuj59+sSWW24ZERG777577LzzzvWO22OPPQr/fvXVVxvd3/o3GN/QscceG+3bt4+IiAceeKDWuprf27dvH1/5ylcanOM73/lOnW3qc+SRRxaO7aOwOedt+/bt48tf/nKD6/faa6+IqP+x/q//+q+IiOjbt28cddRRm5T5r3/9a0RE7LjjjrHbbrs1OrbmNfz444/HBx98UFjerVu3iIh46KGH4pVXXtmk/aey/vP+7W9/u8Fx+++/f+Gcbuxc6dmzZxx44IHpAm6CkpKSOOmkkxpcX3MuvPvuu3VutF7zfB588MGx9dZbN7qfmucz1XtNdXV1nHTSSbFo0aKIiLjppptin332adZc77zzTjz22GMR8eH7a/fu3Tdp+5rndpdddonBgwc3OO60006rs019TjjhhAbXrf9e2JRxG3u/HDp0aIPHW1paGsOHD4+ID5//J554orBu4cKFhfPhlFNOafB/k9q1axdf//rXIyLi+eefj7feeqvecZ+k8/Dwww+PLl261Ltuyy23jO233z4iNv7YAgCfPi2LHQAA4KOwYMGCiIhYs2ZNtGzZ9P/Ls3Tp0th2221rLfv73/8e11xzTdx9993x97//vdHt//GPf0Tfvn03PfBHZPfdd29w3ZNPPhnV1dUREXHiiSfGiSee2KQ5ly5dmiRbfbbffvsoKSlpcH379u3j/fffjx122KHRMTXef//9Bse1atWq1geTGyorK4s999wzZs6cWfjAtsazzz4bERGf//zno6ysrME5ttlmm+jdu3e89tprhW3q09jz1Fypztvtt98+Sksb/nutjh07RkTdx7qqqqpwzAcccECjz2t9al7DL774YpO3raqqinfffbfwQejJJ58cv/nNb+Kdd96JXXfdNY4++ugYNmxYHHjggdGvX79NytNcNY9Bq1atYsCAAY2OHTx4cLzwwgvx0ksvxdq1a6NVq1Z1xnwU50pTde7cOTp16tTg+ppzIeLD82H912LN8zl9+vQmP5+p3mvGjBkTd999d0REjB49Or71rW/VGbN8+fJYvnx5vdu3bds2+vTpExERTz31VGRZFhGxyQVYZWVlvPTSSxERjZYuERF77rlnlJWV1Xod1aep74VNGdfY+2VExN57793o+kGDBhX+vWjRokK5tX7+jR334MGD48YbbyxsV1Oeru+TdB7utNNOjW7b0PsjAPDpp3gBAD6VGvoAbWPWrFlT6/d77703vvrVr9ZZ3pB//etfzdrvR6VDhw4Nrkv1GKVUcxVGQ2oKgMbGrV8SrFu3rsFxHTt2bPAvr2tss802EfHhX06vr+b3hv7SeX1du3aN1157rc4c62vseWqOlOdtU5+TmhKvxrvvvlv4gLq+D083JsX5edhhh8V1110XP/jBD+Jf//pXTJ06NaZOnRoRET169Ij/+I//iDPPPLPRAm5z1TzvHTt23GgJ3LVr14iIyLIs/vnPfxbOv/WlPlc2RVPPhYi6r73mPJ8p3k9vu+22uOqqqyLiwyvLrrjiinrH3XDDDTFu3Lh61x188MGFqwP/8Y9/FJZv6nn9z3/+s/Dvjb13lJWVRadOnWLp0qWNvnc09b2wKeM2fA1vaGOZ1z9f18+8/r83NkfNa2DD7db3SToPm5qlsf8tAgA+nRQvAMCnUs2HHJ07d46ZM2c2ebuav2qO+PADtpNOOinWrFkTW2yxRVxwwQUxbNiw2G677WKrrbYq/DX6gw8+GIcddlhEROGD5k+KxoqF9T8I+uUvfxn77bdfk+Ys5ge/KW3qFRgf1RwRjT9Pm+rTcN5G/N/5uccee8Ttt9/e5O169OhR6/ezzz47vva1r8WUKVPi/vvvj0ceeSRWrFgRb775Zvzyl7+MX/3qV3HhhRfG+PHjk+bf0CfxXPk41TyfX/ziFwtFyEdt7ty5ha/s2nXXXeO3v/1to1dvfZxSnQ8fp0/Se2ZzFeM8BAA+mxQvAMCnUs3XkLz//vux8847N+vDyj/84Q+F74f/05/+FEOGDKl3XGN/jbypSkpKIsuyjf7l8erVqzd7X+t/VUtFRUXsuuuumz1nnrzzzjuxbt26Rs+NZcuWRUTtr66p+f2tt94qrG9MzdfUbDjHR6UY5219OnbsGKWlpVFdXd3gvRoaU3N+rlq1arPPzS5dusR5550X5513XlRXV8dTTz0Vf/rTn+K6666L9957L3784x/H3nvvHUcfffRm7ac+Nc/7O++8Ex988EGjV73UnCslJSWfmoKzRqdOnWLJkiWxdu3aj+W95vXXX49jjz02Kisro3PnzvHXv/610fsojR07NsaOHbvReWvudRURm3xer/+cbuy944MPPoh33nknIj6+946N2Vjm9devn3n9fy9btqzRrz1b/2u9Porj/rjPQwDgs+uT8ec+AACJ7bnnnhHx4Xfq13yn+6Z67rnnIuLDD38a+vA6IjY6/6b8hW/NB4PrfyXNhrIsi5dffrnJczZkwIABhWyPPPLIZs+XN2vXro2nn366wfUffPBBPPXUUxERdT6gq/n9iSeeqHUz9w0tX768cH+Vzf2Qr6nnUarzdnOVlZUVjvnhhx/e5Ktqal7Dr776atL7CpWWlsbnP//5uPzyy2PGjBmF5XfeeWeyfayv5jFYu3Zt4XxqyPz58yPiw/vq1Hd/l5Q+7isPap7PBQsWxNq1az/Sfa1evTqOPvroWLZsWZSVlcUf//jHWlczbo4999yz8Ng99NBDm7RteXl54Wbr8+bNa3Tsk08+GVVVVRGx+e8dqTz++ONNXr9+5vX/vbHjrnkNbLhdKh/nebgxxb76BwD4aCleAIBPpSOPPLLwoca1117brDlqPlD/97//3eAVKGvWrInbbrut0Xlat24dER+WQBtT8+FgYx+K33vvvYUrGjbH1ltvXbj58ZQpU+Ltt9/e7DnzZvLkyQ2u+9Of/lQowDYsMGp+f++99+Kuu+5qcI5bbrmlUDg0VoI0Rc15FNH4uZTqvE3hyCOPjIiIxYsXx1/+8pdN2vaoo46KiA+Lxp/97GfJs0VEfP7zny9chbD+vTtSWv95nzRpUoPj5s6dG88//3ydbT4qTT2fUql5PlesWBG33nrrR7afLMviW9/6VqHkuv766+Oggw5KNn/Hjh0LX8t45513xpIlSzZp+5rn9rnnnqtVMmzo5ptvrrNNsd13330NXuVTXV1deD/t0KFDfP7zny+s22uvvQo3uJ88eXKD70vvv/9+oQDt379/s+4NtTEf13nYFB/3axAA+HgpXgCAT6Udd9wxvva1r0VExB133BETJkxodPzixYvjd7/7Xa1lNX+ZvGbNmnr/Gn7dunXxne98Z6MfvNV8eLR8+fJ4//33Gx178MEHR8SHfxVc31UoS5cujXPOOafROTbFRRddFBERK1eujK9+9auNFjqVlZVx/fXXx7///e9k+y+2G2+8MebMmVNn+dKlS+OCCy6IiA+/hm348OG11o8YMaJwU+Xvf//78eabb9aZ4+mnn46f/OQnEfHhfUeOOeaYzcq6/oeQr7zySoPjUp23KYwcOTLatm0bERHf/e5349lnn21w7BtvvFHr96FDh8agQYMiIuLqq6/e6BUpixYtirvvvrvWsqlTpzZ6Y+wFCxYUyrVUV0RsaNCgQTFw4MCIiLjppptqXWVTY8WKFfHd7343Ij68IufMM8/8SLKsr6nnUyrDhw+Pnj17RkTEBRdcsNGrRebMmROzZ8/e5P1cdNFF8ac//SkiIs4999zCPV5S+n//7/9FxIevsa997WuxYsWKBsdueF6feeaZhfvMnH766bFy5co629x3331xyy23RMSH58/ee++dKvpmqaysjO9+97v13ij+yiuvjEWLFkVExKmnnhrl5eWFdeXl5fGd73wnIiKeffbZuPzyy+tsn2VZjBw5slCAjhw58qM4hI/tPGyKj/s1CAB8vNzjBQD41LrxxhtjwYIF8eqrr8b3v//9+Mtf/hInn3xy7LLLLlFeXh7vvPNOPP300zFt2rR48MEH49hjj40TTzyxsP3Xv/71uPDCC6OysjJGjBgRTz31VBx++OGx1VZbxXPPPRe/+MUvYuHChbH//vs3+lVdNX8dXV1dHWeccUacc845te4T0K9fv8K/Tz/99Ljhhhvigw8+iCOPPDIuueSSOOCAA2Lt2rXxyCOPxIQJE6Kqqiq23377eOmllzb7MfrSl74U3/ve9+JnP/tZPPTQQ7HzzjvHGWecEQcccEB06tQpVq9eHS+//HI8/PDDcdddd8U///nPOiVEXm299dZRUVERhx9+eJx//vnxpS99KcrLy2P+/Pnxk5/8pFBMXH755dGlS5c621599dVx9tlnxxtvvBF77bVX/PCHP4z99tsvPvjgg3jggQfi6quvjlWrVkVJSUn86le/irKyss3KW3MeRUScf/758aMf/Si6detWuLKrd+/e0bJly2TnbQpdu3aNG2+8MU4++eRYvnx5DBo0KE477bT44he/GF27do1Vq1bFs88+G3/961/jxRdfrPPh45QpU2LQoEHx7rvvxvHHHx+33357HH/88bH99ttHixYtYvny5fHkk0/G3XffHY899lh8//vfL1xlE/HhB+RnnHFGHH300XHQQQfFDjvsEG3bto133nkn5syZE7/4xS8i4sMb1td8MPxRuOmmm2Lw4MGxdu3a+NKXvhTnnHNOHHnkkdG2bdt48skn48orr4xXX301Ij78MPjj+GqpPffcM1q3bh3//ve/4+KLL46ysrLo1atXoRTo0aNHtGnTJtn+ysvL484774xDDjkkVq1aFYceemiccMIJccwxx0SfPn0K9wJauHBh/OlPf4pFixbFL37xi0IZ3RQPPvhgoezcZZdd4tRTT2207GvVqlWj9xtpyJFHHhnf/va345ZbbolHH300+vfvHyNHjoz9998/2rVrF//4xz9iwYIFMXXq1Nhjjz3i17/+dWHb3XbbLb7//e/H1VdfHU8//XR8/vOfj//3//5f7LnnnrF69eq4++674+c//3msW7cuWrVqFb/85S83Od9HZeDAgXH33XfH/vvvH+eff35sv/32sXz58pg8eXLccccdERHxuc99Li6++OI6215yySVx1113xauvvhpjx46NRYsWxYgRI6Jbt26xePHiuO6662LWrFkREbHvvvvG6aef/pEcw8dxHjbVtttuG5/73OfijTfeiGuuuSY+97nPxY477li479g222zT6H2JAIBPuAwAIIciIouI7NJLL2103FtvvZUdeOCBhfGN/YwYMaLO9pMmTcpKS0sb3Ob444/PHnjggcLvM2fOrDPHunXrsn322afBOTY0YcKEBsd27Ngxe+ihh7KDDz44i4js4IMPrrP9zJkzG82zoerq6mzcuHFZy5YtN/oYtW3bNluzZs1G59zQrbfeWphj8eLFddY3djzr69WrVxYR2fDhwxsd19j5MXz48Cwisl69emWPP/541rlz5waP99xzz210Pz/+8Y8bPT/Ky8uzyZMn17vt4sWLC+NuvfXWRvdT4+tf/3qD+1r/cU1x3jb1Obn00ksbPJdr/PrXv87atGnT6LnVq1everd98cUXs1133bVJr+Fx48bV2rbmfGnsp7y8vMmPf32a+l40ffr0rF27do1mOfvss7N169bVu31Tz/1NMXr06AazrH9OrP+aaczGXudZlmVz587Nevbs2aTns6HXTlP235SfjR1PYz744INs5MiRWUlJSaP7qO/5WrduXXbWWWc1ut1WW22VTZ8+vd59N/U9vinPR5Y1/hre8H3qlFNOaTBzt27dsueee67B/SxevDjbaaedGj3u/fffP3vnnXfq3f6TdB429XW/sffRG264ocH9bs77EgBQfL5qDAD4VOvatWs89NBD8V//9V/xjW98I/r27RsVFRVRVlYWW2+9dey3337x/e9/P2bPnl3v/RdGjBgRDz/8cBxzzDGx9dZbR1lZWXTr1i2OOOKImDp1atxxxx2Fv05tSGlpadx3331x0UUXxR577BFbbLFFozfVPf/882PatGkxbNiw6NChQ5SXl0efPn3i7LPPjieffDIOPPDAzX5c1ldSUhKXXHJJ/M///E+MHj06Bg4cGB07dowWLVrElltuGf37949vfOMbMXny5HjrrbeS/hV8sQ0cODCeeOKJOPfcc2O77baL1q1bR6dOneKII46Ie+65Z6P3FrnwwgvjySefjNNOOy222267aNOmTbRt2zZ23nnn+N73vhf//d//HSeffHKyvLfffntcddVVMWjQoNhqq60KVydsKMV5m9Lw4cPjlVdeiR/96EeF+z20aNEiOnToEPvss09ceOGFMW3atHq33WGHHeKpp56KKVOmxHHHHRfbbrtttGnTJlq1ahXdunWLQw45JC666KJYuHBhXHLJJbW2nTlzZvzsZz+L4447LnbbbbfYeuuto2XLltGuXbvYc88944ILLojnn38+TjnllI/8MRg6dGi8/PLLceGFF8aAAQOiXbt2UV5eHttuu2184xvfiIcffjiuu+66Bp/Tj8KVV14ZN910Uxx44IGF1/xHbZ999omXXnopJk6cGF/+8peje/fu0apVq2jdunX07Nkzhg4dGj/+8Y+Tv3ZSa9GiRfziF7+IBQsWxOmnn164mqqsrCy6du0aQ4cOjQkTJsQ111xTZ9vS0tK4/vrr46GHHopvfOMbse2220Z5eXm0a9cuBgwYEBdeeGG89NJLMXTo0CIcWeNuvfXWmDJlShxyyCHRqVOnKC8vjx122CFGjx4dzz33XPTv37/BbXv37h1PP/10XHfddXHwwQdHp06doqysLLbZZps44ogj4rbbbouHHnooOnbs+JEfxyflPDzzzDPjj3/8YwwdOjS6dOkSLVv6UhIA+LQoybL//26fAADwGXDKKafE5MmTo1evXvHaa68VOw7AJ9Zrr71WuP/Rrbfe+rGUlAAAnwaueAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBESrIsy4odAgAAAAAA4NOgZbEDfBJVV1fHkiVLYsstt4ySkpJixwEAAAAAAIooy7J4//33o3v37lFa2viXiSle6rFkyZLo2bNnsWMAAAAAAACfIP/7v/8bn/vc5xodo3ipx5ZbbhkRHz6A7dq1K3KaT6eqqqq47777YujQoVFWVlbsOJssz/llL54855e9OPKcPSLf+WUvnjznl7048pw9It/5ZS+ePOeXvTjynD0i3/llL54855e9OPKcPSL/+fNg5cqV0bNnz0J/0BjFSz1qvl6sXbt2ipePSFVVVVRUVES7du1y+UaQ5/yyF0+e88teHHnOHpHv/LIXT57zy14cec4eke/8shdPnvPLXhx5zh6R7/yyF0+e88teHHnOHpH//HnSlNuTNP5FZAAAAAAAADSZ4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgkZbFDkC+9P7h35LMU94ii6sGRew6dnpUrivZ7Pleu/LLCVIBAAAAAMDmccULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEPhHFy/XXXx+9e/eO1q1bx+DBg2P+/PkNjr3rrrti4MCB0b59+2jbtm0MGDAgbrvttlpjTjnllCgpKan1c8QRR3zUhwEAAAAAAHzGtSx2gKlTp8aoUaNi4sSJMXjw4Lj22mtj2LBh8eKLL0aXLl3qjO/YsWP86Ec/ip122ilatWoV//Vf/xUjRoyILl26xLBhwwrjjjjiiLj11lsLv5eXl38sxwMAAAAAAHx2Ff2KlwkTJsRpp50WI0aMiP79+8fEiROjoqIiJk2aVO/4Qw45JI499tjYeeedY7vttovvfe97sfvuu8ecOXNqjSsvL4+uXbsWfjp06PBxHA4AAAAAAPAZVtQrXtauXRsLFy6MMWPGFJaVlpbGkCFDYu7cuRvdPsuyePDBB+PFF1+Mn/70p7XWzZo1K7p06RIdOnSIQw89NMaPHx+dOnWqd57KysqorKws/L5y5cqIiKiqqoqqqqrmHNqnVnmLLM08pVmt/26uj/t5qtlfHs8P2Ysnz/llL448Z4/Id37ZiyfP+WUvjjxnj8h3ftmLJ8/5ZS+OPGePyHd+2Ysnz/llL448Z4/If/482JTHtiTLsjSffDfDkiVLokePHvHoo4/GvvvuW1g+evTomD17dsybN6/e7VasWBE9evSIysrKaNGiRdxwww1x6qmnFtbfcccdUVFREX369IlXXnklLrzwwthiiy1i7ty50aJFizrzjR07NsaNG1dn+ZQpU6KioiLBkQIAAAAAAHm1Zs2aOOmkk2LFihXRrl27RscW/R4vzbHlllvGU089FatWrYoZM2bEqFGjom/fvnHIIYdERMQJJ5xQGLvbbrvF7rvvHtttt13MmjUrDjvssDrzjRkzJkaNGlX4feXKldGzZ88YOnToRh/Az5pdx05PMk95aRaXD6yOixeURmV1yWbP9+zYYRsflFBVVVXcf//9cfjhh0dZWdnHuu/NJXvx5Dm/7MWR5+wR+c4ve/HkOb/sxZHn7BH5zi978eQ5v+zFkefsEfnOL3vx5Dm/7MWR5+wR+c+fBzXflNUURS1eOnfuHC1atIhly5bVWr5s2bLo2rVrg9uVlpZGv379IiJiwIAB8cILL8QVV1xRKF421Ldv3+jcuXO8/PLL9RYv5eXlUV5eXmd5WVmZk3QDles2vySpNV91SZI5i/U85fkckb148pxf9uLIc/aIfOeXvXjynF/24shz9oh855e9ePKcX/biyHP2iHznl7148pxf9uLIc/aI/Of/JNuUx7X0I8yxUa1atYq99torZsyYUVhWXV0dM2bMqPXVYxtTXV1d6x4tG3rjjTfinXfeiW7dum1WXgAAAAAAgMYU/avGRo0aFcOHD4+BAwfGoEGD4tprr43Vq1fHiBEjIiLi5JNPjh49esQVV1wRERFXXHFFDBw4MLbbbruorKyMe+65J2677ba48cYbIyJi1apVMW7cuDjuuOOia9eu8corr8To0aOjX79+MWzYx/t1VAAAAAAAwGdL0YuX448/Pt5+++245JJLYunSpTFgwICYNm1abLPNNhER8frrr0dp6f9dmLN69eo466yz4o033og2bdrETjvtFLfffnscf/zxERHRokWLeOaZZ2Ly5Mnx3nvvRffu3WPo0KFx+eWX1/t1YgAAAAAAAKkUvXiJiBg5cmSMHDmy3nWzZs2q9fv48eNj/PjxDc7Vpk2bmD49zQ3gAQAAAAAANkVR7/ECAAAAAADwaaJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJfCKKl+uvvz569+4drVu3jsGDB8f8+fMbHHvXXXfFwIEDo3379tG2bdsYMGBA3HbbbbXGZFkWl1xySXTr1i3atGkTQ4YMiZdeeumjPgwAAAAAAOAzrujFy9SpU2PUqFFx6aWXxhNPPBF77LFHDBs2LJYvX17v+I4dO8aPfvSjmDt3bjzzzDMxYsSIGDFiREyfPr0w5qqrroqf//znMXHixJg3b160bds2hg0bFv/+978/rsMCAAAAAAA+g4pevEyYMCFOO+20GDFiRPTv3z8mTpwYFRUVMWnSpHrHH3LIIXHsscfGzjvvHNttt11873vfi9133z3mzJkTER9e7XLttdfGRRddFEcffXTsvvvu8Zvf/CaWLFkSf/7znz/GIwMAAAAAAD5rWhZz52vXro2FCxfGmDFjCstKS0tjyJAhMXfu3I1un2VZPPjgg/Hiiy/GT3/604iIWLx4cSxdujSGDBlSGLfVVlvF4MGDY+7cuXHCCSfUmaeysjIqKysLv69cuTIiIqqqqqKqqqrZx/dpVN4iSzNPaVbrv5vr436eavaXx/ND9uLJc37ZiyPP2SPynV/24slzftmLI8/ZI/KdX/biyXN+2Ysjz9kj8p1f9uLJc37ZiyPP2SPynz8PNuWxLcmyLM0n382wZMmS6NGjRzz66KOx7777FpaPHj06Zs+eHfPmzat3uxUrVkSPHj2isrIyWrRoETfccEOceuqpERHx6KOPxv777x9LliyJbt26Fbb5+te/HiUlJTF16tQ6840dOzbGjRtXZ/mUKVOioqJicw8TAAAAAADIsTVr1sRJJ50UK1asiHbt2jU6tqhXvDTXlltuGU899VSsWrUqZsyYEaNGjYq+ffvGIYcc0qz5xowZE6NGjSr8vnLlyujZs2cMHTp0ow/gZ82uY6dvfFATlJdmcfnA6rh4QWlUVpds9nzPjh2WIFXTVVVVxf333x+HH354lJWVfaz73lyyF0+e88teHHnOHpHv/LIXT57zy14cec4eke/8shdPnvPLXhx5zh6R7/yyF0+e88teHHnOHpH//HlQ801ZTVHU4qVz587RokWLWLZsWa3ly5Yti65duza4XWlpafTr1y8iIgYMGBAvvPBCXHHFFXHIIYcUtlu2bFmtK16WLVsWAwYMqHe+8vLyKC8vr7O8rKzMSbqBynWbX5LUmq+6JMmcxXqe8nyOyF48ec4ve3HkOXtEvvPLXjx5zi97ceQ5e0S+88tePHnOL3tx5Dl7RL7zy148ec4ve3HkOXtE/vN/km3K41r6EebYqFatWsVee+0VM2bMKCyrrq6OGTNm1PrqsY2prq4u3KOlT58+0bVr11pzrly5MubNm7dJcwIAAAAAAGyqon/V2KhRo2L48OExcODAGDRoUFx77bWxevXqGDFiREREnHzyydGjR4+44oorIiLiiiuuiIEDB8Z2220XlZWVcc8998Rtt90WN954Y0RElJSUxHnnnRfjx4+P7bffPvr06RMXX3xxdO/ePY455phiHSYAAAAAAPAZUPTi5fjjj4+33347Lrnkkli6dGkMGDAgpk2bFttss01ERLz++utRWvp/F+asXr06zjrrrHjjjTeiTZs2sdNOO8Xtt98exx9/fGHM6NGjY/Xq1XH66afHe++9FwcccEBMmzYtWrdu/bEfHwAAAAAA8NlR9OIlImLkyJExcuTIetfNmjWr1u/jx4+P8ePHNzpfSUlJXHbZZXHZZZeliggAAAAAALBRRb3HCwAAAAAAwKeJ4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJPKJKF6uv/766N27d7Ru3ToGDx4c8+fPb3DsTTfdFAceeGB06NAhOnToEEOGDKkz/pRTTomSkpJaP0ccccRHfRgAAAAAAMBnXNGLl6lTp8aoUaPi0ksvjSeeeCL22GOPGDZsWCxfvrze8bNmzYoTTzwxZs6cGXPnzo2ePXvG0KFD480336w17ogjjoi33nqr8PO73/3u4zgcAAAAAADgM6zoxcuECRPitNNOixEjRkT//v1j4sSJUVFREZMmTap3/G9/+9s466yzYsCAAbHTTjvFzTffHNXV1TFjxoxa48rLy6Nr166Fnw4dOnwchwMAAAAAAHyGtSzmzteuXRsLFy6MMWPGFJaVlpbGkCFDYu7cuU2aY82aNVFVVRUdO3astXzWrFnRpUuX6NChQxx66KExfvz46NSpU71zVFZWRmVlZeH3lStXRkREVVVVVFVVbephfaqVt8jSzFOa1frv5vq4n6ea/eXx/JC9ePKcX/biyHP2iHznl7148pxf9uLIc/aIfOeXvXjynF/24shz9oh855e9ePKcX/biyHP2iPznz4NNeWxLsixL88l3MyxZsiR69OgRjz76aOy7776F5aNHj47Zs2fHvHnzNjrHWWedFdOnT4/nnnsuWrduHRERd9xxR1RUVESfPn3ilVdeiQsvvDC22GKLmDt3brRo0aLOHGPHjo1x48bVWT5lypSoqKjYjCMEAAAAAADybs2aNXHSSSfFihUrol27do2OLeoVL5vryiuvjDvuuCNmzZpVKF0iIk444YTCv3fbbbfYfffdY7vttotZs2bFYYcdVmeeMWPGxKhRowq/r1y5snDvmI09gJ81u46dnmSe8tIsLh9YHRcvKI3K6pLNnu/ZscMSpGq6qqqquP/+++Pwww+PsrKyj3Xfm0v24slzftmLI8/ZI/KdX/biyXN+2Ysjz9kj8p1f9uLJc37ZiyPP2SPynV/24slzftmLI8/ZI/KfPw9qvimrKYpavHTu3DlatGgRy5Ytq7V82bJl0bVr10a3veaaa+LKK6+MBx54IHbfffdGx/bt2zc6d+4cL7/8cr3FS3l5eZSXl9dZXlZW5iTdQOW6zS9Jas1XXZJkzmI9T3k+R2Qvnjznl7048pw9It/5ZS+ePOeXvTjynD0i3/llL54855e9OPKcPSLf+WUvnjznl7048pw9Iv/5P8k25XEt/QhzbFSrVq1ir732ihkzZhSWVVdXx4wZM2p99diGrrrqqrj88stj2rRpMXDgwI3u54033oh33nknunXrliQ3AAAAAABAfYpavEREjBo1Km666aaYPHlyvPDCC3HmmWfG6tWrY8SIERERcfLJJ8eYMWMK43/605/GxRdfHJMmTYrevXvH0qVLY+nSpbFq1aqIiFi1alX84Ac/iMceeyxee+21mDFjRhx99NHRr1+/GDbs4/06KgAAAAAA4LOl6Pd4Of744+Ptt9+OSy65JJYuXRoDBgyIadOmxTbbbBMREa+//nqUlv5fP3TjjTfG2rVr46tf/WqteS699NIYO3ZstGjRIp555pmYPHlyvPfee9G9e/cYOnRoXH755fV+nRgAAAAAAEAqRS9eIiJGjhwZI0eOrHfdrFmzav3+2muvNTpXmzZtYvr0NDeABwAAAAAA2BRF/6oxAAAAAACATwvFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASKRlsQPAx6n3D/+WZJ7yFllcNShi17HTo3JdyWbP99qVX06QCgAAAACAYnPFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIpNnFy8MPPxzf/OY3Y999940333wzIiJuu+22mDNnTrJwAAAAAAAAedKs4uWPf/xjDBs2LNq0aRNPPvlkVFZWRkTEihUr4ic/+UnSgAAAAAAAAHnRrOJl/PjxMXHixLjpppuirKyssHz//fePJ554Ilk4AAAAAACAPGlW8fLiiy/GQQcdVGf5VlttFe+9997mZgIAAAAAAMilZhUvXbt2jZdffrnO8jlz5kTfvn03OxQAAAAAAEAeNat4Oe200+J73/tezJs3L0pKSmLJkiXx29/+Ni644II488wzU2cEAAAAAADIhZbN2eiHP/xhVFdXx2GHHRZr1qyJgw46KMrLy+OCCy6Ic845J3VGAAAAAACAXGhW8VJSUhI/+tGP4gc/+EG8/PLLsWrVqujfv39sscUWqfMBAAAAAADkRrOKlxUrVsS6deuiY8eO0b9//8Lyd999N1q2bBnt2rVLFhAAAAAAACAvmnWPlxNOOCHuuOOOOsvvvPPOOOGEEzY7FAAAAAAAQB41q3iZN29efOELX6iz/JBDDol58+ZtdigAAAAAAIA8albxUllZGR988EGd5VVVVfGvf/1rs0MBAAAAAADkUbOKl0GDBsWvfvWrOssnTpwYe+2112aHAgAAAAAAyKOWzdlo/PjxMWTIkHj66afjsMMOi4iIGTNmxOOPPx733Xdf0oAAAAAAAAB50awrXvbff/+YO3du9OzZM+688864++67o1+/fvHMM8/EgQcemDojAAAAAABALjTripeIiAEDBsRvf/vblFkAAAAAAAByrdnFS3V1dbz88suxfPnyqK6urrXuoIMO2uxgAAAAAAAAedOs4uWxxx6Lk046Kf7+979HlmW11pWUlMS6deuShAMAAAAAAMiTZhUvZ5xxRgwcODD+9re/Rbdu3aKkpCR1LgAAAAAAgNxpVvHy0ksvxR/+8Ifo169f6jwAAAAAAAC5VdqcjQYPHhwvv/xy6iwAAAAAAAC51qwrXs4555z4/ve/H0uXLo3ddtstysrKaq3ffffdk4QDAAAAAADIk2YVL8cdd1xERJx66qmFZSUlJZFlWZSUlMS6devSpAMAAAAAAMiRZhUvixcvTp0DAAAAAAAg95pVvPTq1St1DgAAAAAAgNwr3ZyNn3/++Zg2bVr89a9/rfWzqa6//vro3bt3tG7dOgYPHhzz589vcOxNN90UBx54YHTo0CE6dOgQQ4YMqTM+y7K45JJLolu3btGmTZsYMmRIvPTSS5ucCwAAAAAAYFM064qXV199NY499thYtGhR4d4uER/e5yUiNukeL1OnTo1Ro0bFxIkTY/DgwXHttdfGsGHD4sUXX4wuXbrUGT9r1qw48cQTY7/99ovWrVvHT3/60xg6dGg899xz0aNHj4iIuOqqq+LnP/95TJ48Ofr06RMXX3xxDBs2LJ5//vlo3bp1cw4ZAAAAAABgo5p1xcv3vve96NOnTyxfvjwqKiriueeei4ceeigGDhwYs2bN2qS5JkyYEKeddlqMGDEi+vfvHxMnToyKioqYNGlSveN/+9vfxllnnRUDBgyInXbaKW6++eaorq6OGTNmRMSHV7tce+21cdFFF8XRRx8du+++e/zmN7+JJUuWxJ///OfmHC4AAAAAAECTNOuKl7lz58aDDz4YnTt3jtLS0igtLY0DDjggrrjiijj33HPjySefbNI8a9eujYULF8aYMWMKy0pLS2PIkCExd+7cJs2xZs2aqKqqio4dO0ZExOLFi2Pp0qUxZMiQwpitttoqBg8eHHPnzo0TTjihzhyVlZVRWVlZ+H3lypUREVFVVRVVVVVNyvFZUd4iSzNPaVbrv5urqc9T3vOn3Fcez+08Z4/Id37ZiyPP2SPynV/24slzftmLI8/ZI/KdX/biyXN+2Ysjz9kj8p1f9uLJc37ZiyPP2SPynz8PNuWxLclqvidsE3To0CGeeOKJ6NOnT2y33XZx8803xxe+8IV45ZVXYrfddos1a9Y0aZ4lS5ZEjx494tFHH4199923sHz06NExe/bsmDdv3kbnOOuss2L69Onx3HPPRevWrePRRx+N/fffP5YsWRLdunUrjPv6178eJSUlMXXq1DpzjB07NsaNG1dn+ZQpU6KioqJJxwIAAAAAAHw6rVmzJk466aRYsWJFtGvXrtGxzbriZdddd42nn346+vTpE4MHD46rrroqWrVqFb/61a+ib9++zQrdHFdeeWXccccdMWvWrM26d8uYMWNi1KhRhd9XrlwZPXv2jKFDh270Afys2XXs9CTzlJdmcfnA6rh4QWlUVpds9nzPjh3WpHF5z59CVVVV3H///XH44YdHWVnZx7bfFPKcPSLf+WUvjjxnj8h3ftmLJ8/5ZS+OPGePyHd+2Ysnz/llL448Z4/Id37ZiyfP+WUvjjxnj8h//jyo+aaspmhW8XLRRRfF6tWrIyLisssui//4j/+IAw88MDp16hR33HFHk+fp3LlztGjRIpYtW1Zr+bJly6Jr166NbnvNNdfElVdeGQ888EDsvvvuheU12y1btqzWFS/Lli2LAQMG1DtXeXl5lJeX11leVlbmJN1A5brNLxlqzVddkmTOpj5Pec+fUp7P7zxnj8h3ftmLI8/ZI/KdX/biyXN+2Ysjz9kj8p1f9uLJc37ZiyPP2SPynV/24slzftmLI8/ZI/Kf/5NsUx7X0ubsYNiwYfGVr3wlIiL69esX//3f/x3/+Mc/Yvny5XHYYYc1eZ5WrVrFXnvtFTNmzCgsq66ujhkzZtT66rENXXXVVXH55ZfHtGnTYuDAgbXW9enTJ7p27VprzpUrV8a8efManRMAAAAAAGBzNat4OfXUU+P999+vtaxjx46xZs2aOPXUUzdprlGjRsVNN90UkydPjhdeeCHOPPPMWL16dYwYMSIiIk4++eQYM2ZMYfxPf/rTuPjii2PSpEnRu3fvWLp0aSxdujRWrVoVERElJSVx3nnnxfjx4+Ovf/1rLFq0KE4++eTo3r17HHPMMc05XAAAAAAAgCZpVvEyefLk+Ne//lVn+b/+9a/4zW9+s0lzHX/88XHNNdfEJZdcEgMGDIinnnoqpk2bFttss01ERLz++uvx1ltvFcbfeOONsXbt2vjqV78a3bp1K/xcc801hTGjR4+Oc845J04//fTYe++9Y9WqVTFt2rTNug8MAAAAAADAxmzSPV5WrlwZWZZFlmXx/vvv1yoy1q1bF/fcc0906dJlk0OMHDkyRo4cWe+6WbNm1fr9tdde2+h8JSUlcdlll8Vll122yVkAAAAAAACaa5OKl/bt20dJSUmUlJTEDjvsUGd9SUlJjBs3Llk4AAAAAACAPNmk4mXmzJmRZVkceuih8cc//jE6duxYWNeqVavo1atXdO/ePXlIAAAAAACAPNik4uXggw+ODz74IIYPHx4DBw6Mnj17flS5AAAAAAAAcqd0Uzdo2bJl/OEPf4h169Z9FHkAAAAAAABya5OLl4iIQw89NGbPnp06CwAAAAAAQK5t0leN1fjiF78YP/zhD2PRokWx1157Rdu2bWutP+qoo5KEAwAAAAAAyJNmFS9nnXVWRERMmDChzrqSkhJfQwYAAAAAAHwmNat4qa6uTp0DAAAAAAAg95p1jxcAAAAAAADqanbxMnv27DjyyCOjX79+0a9fvzjqqKPi4YcfTpkNAAAAAAAgV5pVvNx+++0xZMiQqKioiHPPPTfOPffcaNOmTRx22GExZcqU1BkBAAAAAAByoVn3ePnxj38cV111VZx//vmFZeeee25MmDAhLr/88jjppJOSBQQAAAAAAMiLZl3x8uqrr8aRRx5ZZ/lRRx0Vixcv3uxQAAAAAAAAedSs4qVnz54xY8aMOssfeOCB6Nmz52aHAgAAAAAAyKNmfdXY97///Tj33HPjqaeeiv322y8iIh555JH49a9/HT/72c+SBgQAAAAAAMiLZhUvZ555ZnTt2jX+8z//M+68886IiNh5551j6tSpcfTRRycNCAAAAAAAkBfNKl4iIo499tg49thjU2YBAAAAAADItWYXLxERCxYsiBdeeCEiIvr37x977bVXklAAAAAAAAB51Kzi5Y033ogTTzwxHnnkkWjfvn1ERLz33nux3377xR133BGf+9znUmYEAAAAAADIhdLmbPSd73wnqqqq4oUXXoh333033n333XjhhReiuro6vvOd76TOCAAAAAAAkAvNuuJl9uzZ8eijj8aOO+5YWLbjjjvGL37xizjwwAOThQMAAAAAAMiTZl3x0rNnz6iqqqqzfN26ddG9e/fNDgUAAAAAAJBHzSperr766jjnnHNiwYIFhWULFiyI733ve3HNNdckCwcAAAAAAJAnzfqqsVNOOSXWrFkTgwcPjpYtP5zigw8+iJYtW8app54ap556amHsu+++myYpAAAAAADAJ1yzipdrr702cQwAAAAAAID8a1bxMnz48NQ5AAAAAAAAcq9ZxUuN5cuXx/Lly6O6urrW8t13332zQgEAAAAAAORRs4qXhQsXxvDhw+OFF16ILMtqrSspKYl169YlCQcAAAAAAJAnzSpeTj311Nhhhx3illtuiW222SZKSkpS5wIAAAAAAMidZhUvr776avzxj3+Mfv36pc4DAAAAAACQW6XN2eiwww6Lp59+OnUWAAAAAACAXGvWFS8333xzDB8+PJ599tnYddddo6ysrNb6o446Kkk4AAAAAACAPGlW8TJ37tx45JFH4t57762zrqSkJNatW7fZwQAAAAAAAPKmWV81ds4558Q3v/nNeOutt6K6urrWj9IFAAAAAAD4rGpW8fLOO+/E+eefH9tss03qPAAAAAAAALnVrOLlK1/5SsycOTN1FgAAAAAAgFxr1j1edthhhxgzZkzMmTMndttttygrK6u1/txzz00SDgAAAAAAIE+aVbzcfPPNscUWW8Ts2bNj9uzZtdaVlJQoXgAAAAAAgM+kZhUvixcvTp0DAAAAAAAg95pcvIwaNSouv/zyaNu2bYwaNarBcSUlJfGf//mfScIBAAAAAADkSZOLlyeffDKqqqoK/25ISUnJ5qcCAAAAAADIoSYXLzNnzqz33wAAAAAAAHyotNgBAAAAAAAAPi0ULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEikZbEDAE3T+4d/SzJPeYssrhoUsevY6VG5rmSz53vtyi8nSAUAAAAA8OngihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIJGiFy/XX3999O7dO1q3bh2DBw+O+fPnNzj2ueeei+OOOy569+4dJSUlce2119YZM3bs2CgpKan1s9NOO32ERwAAAAAAAPChohYvU6dOjVGjRsWll14aTzzxROyxxx4xbNiwWL58eb3j16xZE3379o0rr7wyunbt2uC8u+yyS7z11luFnzlz5nxUhwAAAAAAAFBQ1OJlwoQJcdppp8WIESOif//+MXHixKioqIhJkybVO37vvfeOq6++Ok444YQoLy9vcN6WLVtG165dCz+dO3f+qA4BAAAAAACgoGWxdrx27dpYuHBhjBkzprCstLQ0hgwZEnPnzt2suV966aXo3r17tG7dOvbdd9+44oorYtttt21wfGVlZVRWVhZ+X7lyZUREVFVVRVVV1WZl+bQpb5Glmac0q/XfzdXU5ynP+fOcPZWafeX1dZnn/LIXR56zR+Q7v+zFk+f8shdHnrNH5Du/7MWT5/yyF0ees0fkO7/sxZPn/LIXR56zR+Q/fx5symNbkmVZmk9fN9GSJUuiR48e8eijj8a+++5bWD569OiYPXt2zJs3r9Hte/fuHeedd16cd955tZbfe++9sWrVqthxxx3jrbfeinHjxsWbb74Zzz77bGy55Zb1zjV27NgYN25cneVTpkyJioqKTT84AAAAAADgU2PNmjVx0kknxYoVK6Jdu3aNji3aFS8flS9+8YuFf+++++4xePDg6NWrV9x5553x7W9/u95txowZE6NGjSr8vnLlyujZs2cMHTp0ow/gZ82uY6cnmae8NIvLB1bHxQtKo7K6ZLPne3bssCaNy3P+PGdPpaqqKu6///44/PDDo6ys7GPbbyp5zi97ceQ5e0S+88tePHnOL3tx5Dl7RL7zy148ec4ve3HkOXtEvvPLXjx5zi97ceQ5e0T+8+dBzTdlNUXRipfOnTtHixYtYtmyZbWWL1u2LLp27ZpsP+3bt48ddtghXn755QbHlJeX13vPmLKyMifpBirXbf4H9bXmqy5JMmdTn6c8589z9tTy/trMc37ZiyPP2SPynV/24slzftmLI8/ZI/KdX/biyXN+2Ysjz9kj8p1f9uLJc37ZiyPP2SPyn/+TbFMe19KPMEejWrVqFXvttVfMmDGjsKy6ujpmzJhR66vHNteqVavilVdeiW7duiWbEwAAAAAAoD5F/aqxUaNGxfDhw2PgwIExaNCguPbaa2P16tUxYsSIiIg4+eSTo0ePHnHFFVdERMTatWvj+eefL/z7zTffjKeeeiq22GKL6NevX0REXHDBBXHkkUdGr169YsmSJXHppZdGixYt4sQTTyzOQQIAAAAAAJ8ZRS1ejj/++Hj77bfjkksuiaVLl8aAAQNi2rRpsc0220RExOuvvx6lpf93Uc6SJUtizz33LPx+zTXXxDXXXBMHH3xwzJo1KyIi3njjjTjxxBPjnXfeia233joOOOCAeOyxx2Lrrbf+WI8NAAAAAAD47Clq8RIRMXLkyBg5cmS962rKlBq9e/eOLMsane+OO+5IFQ0AAAAAAGCTFO0eLwAAAAAAAJ82ihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkEjRi5frr78+evfuHa1bt47BgwfH/PnzGxz73HPPxXHHHRe9e/eOkpKSuPbaazd7TgAAAAAAgFSKWrxMnTo1Ro0aFZdeemk88cQTsccee8SwYcNi+fLl9Y5fs2ZN9O3bN6688sro2rVrkjkBAAAAAABSKWrxMmHChDjttNNixIgR0b9//5g4cWJUVFTEpEmT6h2/9957x9VXXx0nnHBClJeXJ5kTAAAAAAAglZbF2vHatWtj4cKFMWbMmMKy0tLSGDJkSMydO/djnbOysjIqKysLv69cuTIiIqqqqqKqqqpZWT6tyltkaeYpzWr9d3M19XnKc/48Z0+lZl95fV3mOb/sxZHn7BH5zi978eQ5v+zFkefsEfnOL3vx5Dm/7MWR5+wR+c4ve/HkOb/sxZHn7BH5z58Hm/LYlmRZlubT1020ZMmS6NGjRzz66KOx7777FpaPHj06Zs+eHfPmzWt0+969e8d5550X55133mbPOXbs2Bg3blyd5VOmTImKiopNPDIAAAAAAODTZM2aNXHSSSfFihUrol27do2OLdoVL58kY8aMiVGjRhV+X7lyZfTs2TOGDh260Qfws2bXsdOTzFNemsXlA6vj4gWlUVldstnzPTt2WJPG5Tl/nrOnUlVVFffff38cfvjhUVZW9rHtN5U855e9OPKcPSLf+WUvnjznl7048pw9It/5ZS+ePOeXvTjynD0i3/llL54855e9OPKcPSL/+fOg5puymqJoxUvnzp2jRYsWsWzZslrLly1bFl27dv1Y5ywvL6/3njFlZWVO0g1Urtv8D+przVddkmTOpj5Pec6f5+yp5f21mef8shdHnrNH5Du/7MWT5/yyF0ees0fkO7/sxZPn/LIXR56zR+Q7v+zFk+f8shdHnrNH5D//J9mmPK6lH2GORrVq1Sr22muvmDFjRmFZdXV1zJgxo9bXhBV7TgAAAAAAgKYq6leNjRo1KoYPHx4DBw6MQYMGxbXXXhurV6+OESNGRETEySefHD169IgrrrgiIiLWrl0bzz//fOHfb775Zjz11FOxxRZbRL9+/Zo0JwAAAAAAwEelqMXL8ccfH2+//XZccsklsXTp0hgwYEBMmzYtttlmm4iIeP3116O09P8uylmyZEnsueeehd+vueaauOaaa+Lggw+OWbNmNWlOAAAAAACAj0pRi5eIiJEjR8bIkSPrXVdTptTo3bt3ZFm2WXMCAAAAAAB8VIp2jxcAAAAAAIBPG8ULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgkZbFDgB8+vX+4d+SzFPeIourBkXsOnZ6VK4r2ez5XrvyywlSAQAAAAD8H1e8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAElG8AAAAAAAAJKJ4AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAiihcAAAAAAIBEFC8AAAAAAACJKF4AAAAAAAASUbwAAAAAAAAkongBAAAAAABIRPECAAAAAACQiOIFAAAAAAAgEcULAAAAAABAIooXAAAAAACARBQvAAAAAAAAiSheAAAAAAAAEmlZ7AAAn3S9f/i3JPOUt8jiqkERu46dHpXrSjZrrteu/HKSTAAAAABAWq54AQAAAAAASETxAgAAAAAAkIjiBQAAAAAAIBHFCwAAAAAAQCKKFwAAAAAAgEQULwAAAAAAAIkoXgAAAAAAABJRvAAAAAAAACSieAEAAAAAAEhE8QIAAAAAAJCI4gUAAAAAACARxQsAAAAAAEAin4ji5frrr4/evXtH69atY/DgwTF//vxGx//+97+PnXbaKVq3bh277bZb3HPPPbXWn3LKKVFSUlLr54gjjvgoDwEAAAAAAKD4xcvUqVNj1KhRcemll8YTTzwRe+yxRwwbNiyWL19e7/hHH300TjzxxPj2t78dTz75ZBxzzDFxzDHHxLPPPltr3BFHHBFvvfVW4ed3v/vdx3E4AAAAAADAZ1jRi5cJEybEaaedFiNGjIj+/fvHxIkTo6KiIiZNmlTv+J/97GdxxBFHxA9+8IPYeeed4/LLL4/Pf/7zcd1119UaV15eHl27di38dOjQ4eM4HAAAAAAA4DOsZTF3vnbt2li4cGGMGTOmsKy0tDSGDBkSc+fOrXebuXPnxqhRo2otGzZsWPz5z3+utWzWrFnRpUuX6NChQxx66KExfvz46NSpU71zVlZWRmVlZeH3lStXRkREVVVVVFVVNefQPrXKW2Rp5inNav13czX1ecpzftmdN+v7uN+bavaXx/dE2Ysnz/llL54855e9OPKcPSLf+WUvnjznl7048pw9It/5ZS+ePOeXvTjynD0i//nzYFMe25Isy9J8otgMS5YsiR49esSjjz4a++67b2H56NGjY/bs2TFv3rw627Rq1SomT54cJ554YmHZDTfcEOPGjYtly5ZFRMQdd9wRFRUV0adPn3jllVfiwgsvjC222CLmzp0bLVq0qDPn2LFjY9y4cXWWT5kyJSoqKlIcKgAAAADA/9fevcfJXDb+H3/P7MnaXVZYa+VsiQ6IWze5U3JIkqgc7sqhHL8qqU1xV6t0klvofEtJSiqqm5SSG+WQnEmUXYd155D4sQ61tHP9/vA1X9uea8w113o9H4953PfMZ+z92uu+9prZvWbmA8BRx48f19///ncdPnxYZcqUKfC+Vt/xcrb06NHD/98vvvhiXXLJJapdu7YWLVqkq6++Otf9R4wYkeNdNJmZmapataratWtX6ACeay4a9VlAvk6U12h0U58eXuVVls/zp7/et6PaF+l+LvfTzrw5U1HbA+XkyZOaP3++2rZtq4iIiKD+b/9ZtNvjcj/t9rjcT7sdLrdLbvfTbo/L/bTb4XK75HY/7fa43E+7HS63S+73u+D0J2UVhdWNlwoVKigsLMz/TpXT9u3bp8TExDz/TWJiYrHuL0m1atVShQoVlJaWlufGS1RUlKKionLdHhERwST9nazsP//H7hxfz+cJyNcs6v9PLvfTfsbXY95YW5tcXhdpt8flftrtcbmfdjtcbpfc7qfdHpf7abfD5XbJ7X7a7XG5n3Y7XG6X3O8PZcUZV+9Z7ChUZGSkmjRpogULFvhv8/l8WrBgQY6PHjtT8+bNc9xfkubPn5/v/SXpv//9rw4cOKDKlSsHJhwAAAAAAAAAACAPVjdeJOnee+/Vq6++qqlTp2rz5s0aPHiwjh07pr59+0qSevXqpREjRvjvP3ToUM2bN0/jxo3Tli1bNGrUKK1atUp33nmnJOno0aO6//779fXXX2vHjh1asGCBOnfurDp16qh9++B+NA8AAAAAAAAAADi3WD/HS/fu3bV//3498sgj2rt3rxo1aqR58+apUqVKkqSMjAx5vf+3P9SiRQtNnz5dDz30kEaOHKnk5GR99NFHuuiiiyRJYWFh2rBhg6ZOnapDhw4pKSlJ7dq10+jRo/P8ODEAAAAAAAAAAIBAsb7xIkl33nmn/x0rv7do0aJct9188826+eab87x/dHS0PvssMCfCBgAAAAAAAAAAKA7rHzUGAAAAAAAAAABQUrDxAgAAAAAAAAAAECBsvAAAAAAAAAAAAAQIGy8AAAAAAAAAAAABwsYLAAAAAAAAAABAgLDxAgAAAAAAAAAAECBsvAAAAAAAAAAAAAQIGy8AAAAAAAAAAAABwsYLAAAAAAAAAABAgLDxAgAAAAAAAAAAECBsvAAAAAAAAAAAAAQIGy8AAAAAAAAAAAABwsYLAAAAAAAAAABAgLDxAgAAAAAAAAAAECBsvAAAAAAAAAAAAAQIGy8AAAAAAAAAAAABwsYLAAAAAAAAAABAgLDxAgAAAAAAAAAAECBsvAAAAAAAAAAAAAQIGy8AAAAAAAAAAAABwsYLAAAAAAAAAABAgLDxAgAAAAAAAAAAECBsvAAAAAAAAAAAAAQIGy8AAAAAAAAAAAABwsYLAAAAAAAAAABAgLDxAgAAAAAAAAAAECBsvAAAAAAAAAAAAAQIGy8AAAAAAAAAAAABwsYLAAAAAAAAAABAgLDxAgAAAAAAAAAAECBsvAAAAAAAAAAAAAQIGy8AAAAAAAAAAAABwsYLAAAAAAAAAABAgLDxAgAAAAAAAAAAECBsvAAAAAAAAAAAAAQIGy8AAAAAAAAAAAABwsYLAAAAAAAAAABAgLDxAgAAAAAAAAAAECBsvAAAAAAAAAAAAARIuO0AAMDZU+PBuQH5OlFhRs80ky4a9Zmysj1/+uvteLpjAKoAAAAAAACA0MM7XgAAAAAAAAAAAAKEjRcAAAAAAAAAAIAAYeMFAAAAAAAAAAAgQNh4AQAAAAAAAAAACBA2XgAAAAAAAAAAAAKEjRcAAAAAAAAAAIAAYeMFAAAAAAAAAAAgQNh4AQAAAAAAAAAACBA2XgAAAAAAAAAAAAKEjRcAAAAAAAAAAIAAYeMFAAAAAAAAAAAgQNh4AQAAAAAAAAAACBA2XgAAAAAAAAAAAAKEjRcAAAAAAAAAAIAAYeMFAAAAAAAAAAAgQNh4AQAAAAAAAAAACBA2XgAAAAAAAAAAAAKEjRcAAAAAAAAAAIAAYeMFAAAAAAAAAAAgQNh4AQAAAAAAAAAACBA2XgAAAAAAAAAAAAKEjRcAAAAAAAAAAIAAYeMFAAAAAAAAAAAgQNh4AQAAAAAAAAAACBA2XgAAAAAAAAAAAAIk3HYAAAB5qfHg3IB8nagwo2eaSReN+kxZ2Z4//fV2PN2x0Pu43A4AAAAAAIA/h3e8AAAAAAAAAAAABAgbLwAAAAAAAAAAAAHCxgsAAAAAAAAAAECAsPECAAAAAAAAAAAQIGy8AAAAAAAAAAAABAgbLwAAAAAAAAAAAAHCxgsAAAAAAAAAAECAsPECAAAAAAAAAAAQIGy8AAAAAAAAAAAABAgbLwAAAAAAAAAAAAHCxgsAAAAAAAAAAECAsPECAAAAAAAAAAAQIGy8AAAAAAAAAAAABEi47QAAABBaajw4NyBfJyrM6Jlm0kWjPlNWtudPf70dT3cMQBUAAAAAAMDZxTteAAAAAAAAAAAAAoR3vAAAgBLD5XfruNwOAAAAAAD+DxsvAAAA+NNCceOITSMAAAAAgA1svAAAAOCcFoqbRhIbRwAAAADgKs7xAgAAAAAAAAAAECC84wUAAABwFO/WAQAAAIDQwzteAAAAAAAAAAAAAiQk3vHy4osvauzYsdq7d68aNmyo559/Xs2aNcv3/u+//74efvhh7dixQ8nJyRozZoyuvfZa/3FjjFJTU/Xqq6/q0KFDuvzyy/Xyyy8rOTk5GN8OAAAAgELwbh0AAAAAJZX1d7y8++67uvfee5Wamqo1a9aoYcOGat++vX766ac8779s2TL17NlTd9xxh9auXasbbrhBN9xwg7799lv/fZ555hk999xzeuWVV7RixQrFxMSoffv2+vXXX4P1bQEAAAAAAAAAgHOQ9Xe8PPvss+rfv7/69u0rSXrllVc0d+5cvf7663rwwQdz3X/ixIm65pprdP/990uSRo8erfnz5+uFF17QK6+8ImOMJkyYoIceekidO3eWJL355puqVKmSPvroI/Xo0SN43xwAAACAEsnld+zQbu+dUqHYz7u8AAAAAs/qxsuJEye0evVqjRgxwn+b1+tVmzZttHz58jz/zfLly3XvvffmuK19+/b66KOPJEnbt2/X3r171aZNG//xsmXL6rLLLtPy5cvz3HjJyspSVlaW//rhw4clSQcPHtTJkyf/8PdXEoX/diwwX8dndPy4T+Envcr2/flfdA4cOFC0/12H+2ln3pzJ5Xap5M8bl9slt/tpZ96cyeV2qeTPG5fbJbf7aWfenKmo7YFy8uRJHT9+XAcOHFBERERQ/7f/LNrtcbmfdntc7qfdDpfbJff7XXDkyBFJp051Uihj0Y8//mgkmWXLluW4/f777zfNmjXL899ERESY6dOn57jtxRdfNAkJCcYYY5YuXWokmd27d+e4z80332y6deuW59dMTU01krhw4cKFCxcuXLhw4cKFCxcuXLhw4cKFCxcuXPK97Nq1q9C9D+sfNRYKRowYkeNdND6fTwcPHlT58uXl8fz5Vz8ht8zMTFWtWlW7du1SmTJlbOcUm8v9tNvjcj/tdrjcLrndT7s9LvfTbofL7ZLb/bTb43I/7Xa43C653U+7PS73026Hy+2S+/0uMMboyJEjSkpKKvS+VjdeKlSooLCwMO3bty/H7fv27VNiYmKe/yYxMbHA+5/+z3379qly5co57tOoUaM8v2ZUVJSioqJy3BYfH1+cbwV/UJkyZZxeCFzup90el/tpt8Pldsntftrtcbmfdjtcbpfc7qfdHpf7abfD5XbJ7X7a7XG5n3Y7XG6X3O8PdWXLli3S/bxnuaNAkZGRatKkiRYsWOC/zefzacGCBWrevHme/6Z58+Y57i9J8+fP99+/Zs2aSkxMzHGfzMxMrVixIt+vCQAAAAAAAAAAEAjWP2rs3nvvVe/evdW0aVM1a9ZMEyZM0LFjx9S3b19JUq9evVSlShU99dRTkqShQ4eqVatWGjdunDp27KgZM2Zo1apVmjRpkiTJ4/Honnvu0eOPP67k5GTVrFlTDz/8sJKSknTDDTfY+jYBAAAAAAAAAMA5wPrGS/fu3bV//3498sgj2rt3rxo1aqR58+apUqVKkqSMjAx5vf/3xpwWLVpo+vTpeuihhzRy5EglJyfro48+0kUXXeS/z/Dhw3Xs2DENGDBAhw4dUsuWLTVv3jyVKlUq6N8f8hYVFaXU1NRcH/HmCpf7abfH5X7a7XC5XXK7n3Z7XO6n3Q6X2yW3+2m3x+V+2u1wuV1yu592e1zup90Ol9sl9/tLGo8xxtiOAAAAAAAAAAAAKAmsnuMFAAAAAAAAAACgJGHjBQAAAAAAAAAAIEDYeAEAAAAAAAAAAAgQNl4AAAAAAAAAAAAChI0XAAAAhAxjjO0EAAAAAAD+FDZeAAAlUnZ2tvbt26f9+/fbTgFQDFFRUdq8ebPtDAAAAAAA/jA2XmBdenq6WrdubTsjX/Pnz1dqaqr+85//SJK+/PJLdejQQa1bt9aUKVMs1+Xv4osv1ujRo7Vr1y7bKX9Ip06dNG3aNP3yyy+2U/6Qn3/+Wc8884y6dOmi5s2bq3nz5urSpYvGjh3LRsBZNnfuXF1xxRWKiYlRUlKSEhMTFR8fr9tuu00ZGRm28wq0fv169erVS7Vq1VJ0dLRiYmJ08cUX6+GHH1ZmZqbtvCLbvXu3UlNTdcsttyglJUVbtmyxnVRkLrbv2bNHb731lj755BOdOHEix7Fjx47pscces1RWsHvvvTfPS3Z2tp5++mn/9VDl8s/rXXfdpa+++sp2xh82efJk9e7d2/887N1331X9+vVVq1YtpaamWq47N23evFm1atWynZEv159Xuu7EiRN67733NGzYMPXs2VM9e/bUsGHD9P777+d63HJB69attXPnTtsZCHE+ny/f20P1d5Kffvopx/V169apd+/euvzyy3XTTTdp0aJFdsKK4cCBA1q4cKEOHjwo6dTv5WPGjNFjjz3GC3ss2bdvX8j+PvJ7xhgtXLhQr776qj7++GOdPHnSdhIc5zF8ngMsW79+vS699FJlZ2fbTsnlrbfeUt++fXXJJZfohx9+0PPPP69hw4bppptuks/n01tvvaW3335bN910k+3UXLxer8477zwdOnRIbdq0Uf/+/dW5c2eFh4fbTisSr9ersLAwxcTEqGfPnurXr5+aNGliO6tIVq5cqfbt26t06dJq06aNKlWqJOnUE44FCxbo+PHj+uyzz9S0aVPLpXmbNWuWOnTooNKlS9tOKbZp06ZpyJAhGjBggEqVKqXXXntNffr0UfXq1TVjxgxt2rRJy5YtU3Jysu3UXD777DN16dJF1157raKjo/XBBx/o9ttvV0xMjGbNmiVjjJYsWaLExETbqbmULl1aO3fuVMWKFfXdd9+pRYsWqlixoho3bqyNGzcqIyNDy5cv1yWXXGI7NReX26VT6027du3k8/l08uRJValSRR999JEuvPBCSafWnaSkpJB8jPV6vWrYsKHi4+Nz3L548WI1bdpUMTEx8ng8/hc+hBKXf16lU2Pv8XhUu3Zt3XHHHerdu3fItv7ehAkT9NBDD6l9+/Zavny5hgwZovHjx2vYsGHKzs7WuHHjNHbsWA0YMMB2arGcfkFP9erVbaf8IaH8fF5y+3nlmb755hstX75ce/fulSQlJiaqefPmatasmeWy/KWlpal9+/bavXu3LrvsshzPi1esWKHzzz9fn376qerUqWO5NLfZs2fneXvXrl01ceJEVa1aVZJ0/fXXBzOrSLKysuT1ehURESHp1IsdX3/9dWVkZKh69eq64447VLNmTcuVBVu/fr1Wr16tK6+8UrVq1dKmTZv04osvyufzqUuXLmrfvr3txDxlZmaqX79+mjNnjsqUKaOBAwcqNTVVYWFhkkL7uVlYWJj27NmjhIQELVu2TFdeeaVatGihZs2aad26dVq4cKEWLFigK664wnZqnr755hu1a9dOmZmZio+P1/z583XzzTcrPDxcPp9Pu3fv1pIlS3TppZfaTs3F5d/BCxPKzxGuvfZavfPOOypbtqwOHjyoa6+9Vt98840qVKigAwcOqG7duvryyy9VsWJF26n5cnWtPGcY4CybOHFigZfhw4cbr9drOzNPjRo1MhMnTjTGGPPFF1+Y6Oho8+yzz/qP//Of/zSXX365rbwCeTwe8+OPP5oPP/zQdOrUyYSHh5uKFSua++67z3z33Xe28wrl8XjMpk2bzPjx483FF19svF6vadiwoXn++efNwYMHbecV6LLLLjMDBgwwPp8v1zGfz2cGDBhg/vrXv1ooKxqPx2PKlClj+vfvb77++mvbOcVywQUXmBkzZvivr1y50px//vn+/y+6d+9uunTpYiuvQI0aNTIvv/yy//rnn39uLrjgAmOMMSdOnDBXX3216dOnj628Ank8HrNv3z5jjDGdO3c2nTp1MidPnjTGGJOdnW169OhhrrvuOpuJ+XK53Rhj2rRpY/r27Wuys7NNZmamGTx4sClfvrxZs2aNMcaYvXv3huxj7FNPPWVq1qxpFixYkOP28PBws2nTJktVRePyz6sxp+b9F198YYYOHWoqVKhgIiIizPXXX2/mzJljsrOzbecV6IILLjBvv/22McaYNWvWmPDwcDN58mT/8cmTJ5smTZrYyivUv//97zwvYWFh5oUXXvBfDzXDhg0r8HLrrbeG7FpjjNvPK40xZt++faZly5bG4/GY6tWrm2bNmplmzZqZ6tWrG4/HY1q2bOl/LAs1bdq0MZ07dzaHDx/Odezw4cOmc+fOpl27dhbKCufxeIzX6zUejyffS6jO+1atWpn333/fGGPMkiVLTFRUlLnkkktM9+7dTePGjU3p0qXNsmXLLFfmb9asWSYsLMyUL1/exMbGmvnz55v4+HjTpk0b0759exMWFuZ/LAg1d999t6lbt655//33zauvvmqqV69uOnbsaLKysowxp56beTwey5V5O/N5cdu2bc3tt9+e4/jQoUNN69atbaQVSZs2bUy/fv1MZmamGTt2rDn//PNNv379/Mf79u1rbrjhBouF+XP5d/D169cXeHn33XdDdq08c84PHjzYNGjQwGzbts0YY8yuXbtMkyZNzKBBg2wmFsjltfJcwcYLzjqPx2OSkpJMjRo18rwkJSWF7CIcExPjX3SNMSYiIsKsX7/ef33z5s2mfPnyNtIKdeYDiDHG7N692zz55JMmOTnZeL1e07x5c/Paa69ZLCzY7/tXrFhhBgwYYMqWLWuio6NNz549c/2xLlSUKlXKbN68Od/jmzdvNqVKlQpiUfF4PB7z2GOPmcaNGxuPx2MuvPBCM378ePPzzz/bTitUdHS02b59e47bwsPDzY8//miMOTWP4uPjLZQVrlSpUjnafT6fiYiIMLt37zbGGPPll1+aihUrWqor2Jk/r1WrVjVffvlljuNr1qwxlStXtpFWKJfbjTGmXLly5vvvv89x21NPPWXKlStnvvnmm5DeeDHGmG+++cbUrVvX3HfffebEiRPGGDc2Xlz+eTUm57w/ceKEeffdd/2/nCUlJZmRI0earVu3Wq7MW3R0tNm5c6f/elRUlPn222/917du3Rqy67wx7v4h1+v1mksvvdRceeWVeV6aNm0akt2nufy80hhjbrzxRtO8eXOzZcuWXMe2bNliWrRoYW666SYLZYWLjo42GzduzPf4hg0bTHR0dBCLiu6aa64xHTt2zLWp5cLjVJkyZcwPP/xgjDm1CTNs2LAcxx966KGQfQGhMcZceuml5vHHHzfGGPPOO++Y+Ph489hjj/mP//Of/zSNGjWylVegatWqmYULF/qv79+/3zRr1sy0a9fO/PrrryH93OzMtbJy5cpm+fLlOY5/++23pkKFCjbSiqRcuXL+F5meOHHCeL1es2LFCv/x1atXmypVqtjKK5DLv4MX9Nzm9O0uzPl69erlevHLF198YWrWrGkjrUhcXivPFWy84KyrUaOGeffdd/M9vnbt2pBdhOPj43P8ghMbG2vS09P917dt22ZKly5tI61QXq8331e+LVy40Nx6660mJiYmyFVF9/tfkE87duyYmTJlimnZsmXIzpsaNWqYqVOn5nt86tSppnr16sELKqYzx37VqlVm8ODBJj4+3kRFRZmbb77ZfP7555YL81e/fn3/q/uMOfXkOjIy0vz222/GmFN/kAvVeV+7dm0zb948//WtW7easLAw/6vjtm3bFrJ/mPB6veann34yxhhTvXr1HBvUxpxqD9XNRpfbjTn1C+bvm40xZuzYsSY+Pt588MEHIbtWnnbkyBHTq1cvc8kll5iNGzeaiIiIkP+Dlss/r8bk/xi7c+dOk5qaaqpXrx6y86Z8+fI53rl7/vnnmx07dvivb9261cTGxtpIKxJX/5Bbt25dM23atHyPh/LzeWPcfl5pzKnfQU6/kzEvq1atCtl5X7lyZTNnzpx8j8+ePTukX+Dw7LPPmqpVq+b4HkL959WYUy8gPP1CsEqVKpl169blOJ6Wlhayc8aYU/2nX+Bw+sUNGzZs8B9PT08P2f7o6OgcL940xpjMzEzTvHlz07p1a7Nt27aQXW88Ho9JS0szhw8fNjVr1sy17qSlpYXs3z+MyTlvjMn995udO3eG7PN6l38HL1++vHnttdfMjh078rzMnTs3pOf86d8FExIScryYxxhjduzYYaKiomykFYnLa+W5wmv7o85Q8jVp0kSrV6/O97jH45EJ0VMN1alTJ8eJlX/88cccn4Wbnp6u888/30ZaoQoa0yuvvFLTpk3T7t27g1gUGKVLl1afPn301VdfhezJ8VJSUjRgwAANHTpUs2fP1ooVK7RixQrNnj1bQ4cO1aBBgzR8+HDbmUXSpEkTvfTSS9qzZ49effVV7d+/X9dcc03Ifib0kCFD1K9fPz3wwANKTU1Vp06ddNttt/k/U3nFihWqW7eu5cq89erVS/369dMrr7yiKVOmqEuXLrr++usVGRkp6dTJLUN13I0xqlu3rs477zzt3r1bGzZsyHE8LS0tZM8f4XK7JF100UVatmxZrttTUlI0YsQI9ezZ00JV8cTGxmrq1KkaMWKE2rRpE5Kf//x7Lv+8FqRatWoaNWqUtm/frnnz5tnOydMFF1yQ4+d0165dOc6LsmXLFtWoUcNCWdF8+umnuvrqq9W0aVN9/PHHtnOKrGnTps4+ny+IC88rJSkqKkqZmZn5Hj9y5IiioqKCWFR0/fr1U69evTR+/Hht2LBB+/bt0759+7RhwwaNHz9effr0CelzMg0bNkyzZ8/WAw88oIEDB+r48eO2k4rksssu05w5cyRJtWvX1vr163McX7dunc477zwbaUUSFxenAwcOSJIOHTqk3377zX9dOnUC9djYWFt5BapWrVqu9SQuLk6ff/65fvnlF3Xp0sVSWdHUrVtX5cqV044dO7Rq1aocxzZt2qSkpCRLZYWrWrWqtm3b5r8+Y8YMVa5c2X99z549qlChgo20YnHtd/AmTZpo9+7dql69ep6XKlWqhPRzhD59+qhr1646efKktm/fnuPY3r17c52PMpS4vFaeK9w4yzac9thjjxX4BLVBgwa5FrdQMXLkSJUrV85/vUyZMjmOr1q1St26dQt2VpH07t1b0dHRBd7n999PKGnVqpX/D1j5CdU/oA8ZMkQVKlTQ+PHj9dJLL/n/iBgWFqYmTZrojTfeCNl5I53648nvlSpVSrfddptuu+02paWlacqUKRbKCjdkyBB5vV699dZbysrKUp8+ffTwww/7jzdr1kzTp0+3WJi/kSNH6tixYxo9erSysrLUvn17TZw40X+8SpUqevnlly0W5u/38+H3J8j9+uuvQ/aXTJfbpVMbAIsXL9agQYNyHRs+fLiMMXrllVcslBVfjx491LJlS61evTrkTzDu8s+rJFWvXt2/IZ0Xj8ejtm3bBrGo6MaMGaOYmJh8j2dkZGjgwIFBLCq+YcOG6aqrrtItt9yiOXPmaPz48baTCjVu3DhlZWXle7xhw4by+XxBLCoel59XSlL37t3Vu3dvjR8/XldffbX/OXxmZqYWLFige++9N2Q32h977DHFxMRo7Nixuu+++/zPM40xSkxM1AMPPBDyL0hq1KiRVq1apWHDhqlRo0Yh/QfE0x5//HF16NBBx44dU8+ePXXfffdp69atql+/vr7//ns999xzGjFihO3MfLVp00ZDhgzRXXfdpXfffVft2rXTiBEjNGXKFHk8Ht1///1q2bKl7cw8tWvXTlOmTNG1116b4/bY2Fh99tlnIfv4KkkLFy7Mcf3MTQtJ2r59e0hvlPbo0UM//fST/3rHjh1zHJ89e7aaNWsW7Kwicfl38EGDBunYsWP5Hq9WrVrItvfu3dv/3zt37pzrb5ezZs1So0aNglxVdC6vlecMa++1AfKxZMkS8+uvv9rO+ENcbp8+fbo5evSo7Yw/LFTH/sSJE2b37t1m9+7d/vMXhLr8Po6jJHJ53ofqnC8K2u1xvd9VjLs9obzOHz9+3AwcONAkJyebsLCwkP/oouII5XEvilD7mf3111/NoEGDTGRkpPF6vaZUqVKmVKlSxuv1msjISDN48OCQ6s3Ptm3bzLJly8yyZctyfRSTK/7973+be+65x4nnysuWLTN//etfc51zoUqVKmbChAm28wq0d+9e07ZtWxMbG2vat29vDh06ZO68807/95CcnGzS0tJsZ+bp4MGDuT6u6EyZmZlm0aJFQSw6e1xb648dOxaya+W59Du4S44ePWp++eUX2xn5Kmit9Hq9Ib1Wnis8xjjwcg2cU8qUKaN169apVq1atlOKjXZ7XO8PJTt37lS1atXyfNVNSePyvKHdDpfbJff7XcW42+PC2M+ePVsLFy7UiBEjlJCQYDsnIFwY94KEan9mZqZWr16tvXv3SpISExPVpEmTkH4XO+zbv3+/tm3bJp/Pp8qVK4f0xzEWZtu2bTp+/LguuOAChYfzAS62hepa6aJz6XdwnH2slaGDc7wg5Li8F0i7PS71p6enq3Xr1rYz8lW9enVt2bJFU6ZM8Z/jaMuWLRo8eLBuv/12/ec//7FcGDguzZvfo90Ol9sl9/tdxbjbE4pjv3nz5hyPsXXr1tUvv/yiBx98sMQ8xobiuBdHKPZv3rxZs2bNUuXKldWzZ081btxY7733nu65556Qnjdr1qzJ8bHS06ZN0+WXX66qVauqZcuWmjFjhsW6wv3yyy9asmSJvvvuu1zHfv31V7355psWqorm9Fpz8OBBXXbZZSpXrpzGjBnjzPP50/3ff/+9pFO/j4wdO1bPPvusvvzyS8t1BXN53hRHKK6VL7zwgnr16uVfW6ZNm6YGDRroggsu0MiRI/Xbb79ZLszbP//5Ty1ZssR2xh/i8jrvcntejh07pilTpui1117T4sWLdfjwYdtJ5zw2XgAgyI4eParFixfbzsjXvHnz1KhRI6WkpKhx48aaN2+errjiCqWlpWnnzp1q166dE7+sAQAQavJ7jE1PT+cxFvly+blZ3759lZ6eLkmaPHmyBg4cqKZNm+of//iH/vKXv6h///56/fXXLVfm7YcfflD9+vV1xRVX6OKLL1arVq20Z88e//HDhw+rb9++Fgvzd+acadSokVNzRnK73+V547rHH39cI0eO1PHjxzVs2DCNGTNGw4YN0y233KLevXtr8uTJGj16tO3MPL344ou68sorVbduXY0ZM8b/zkYXuLzOu9wunTpn9sGDByVJu3bt0oUXXqhhw4Zp/vz5euSRR0L6nNrnjOB/uhlQsNjYWJOenm474w+h3Z5Q6p84cWKBl+HDhxuv12s7M1/Nmzc3//jHP4wxxrzzzjumXLlyZuTIkf7jDz74oGnbtq2tvIAKpXlTXLTb4XK7Me73u4pxtyfUxv5ceYwNtXEvrlDrd3neREdHmx07dhhjjGncuLGZNGlSjuNvv/22adCggY20Qt1www2mY8eOZv/+/Wbr1q2mY8eOpmbNmmbnzp3GmFOfrR+qz+ldnjPGuN3v8rwprlBbK2vXrm1mzZpljDFm3bp1JiwszLz11lv+4x988IGpU6eOrbwCeTwe88UXX5ihQ4eaChUqmIiICHP99debOXPmmOzsbNt5BXJ5nXe53Zic5wa65ZZbTIsWLcyhQ4eMMcYcOXLEtGnTxvTs2dNm4jmPjReEnFB78C4O2u0JpX6Px2OSkpJMjRo18rwkJSWF9JPtMmXKmK1btxpjjMnOzjbh4eFmzZo1/uMbN240lSpVspUXUKE0b4qLdjtcbjfG/X5XMe72hNrYnyuPsaE27sUVav0uz5vy5cubVatWGWOMSUhIMOvWrctxPC0tzURHR9tIK1RCQoLZsGGD/7rP5zODBg0y1apVM+np6SH9B3SX54wxbve7PG+KK9TWyujoaP8GlzHGREREmG+//dZ/fceOHaZ06dI20gp15h/QT5w4Yd59913Tvn17ExYWZpKSkszIkSP9PxOhxuV13uV2Y3LOm1q1apnPP/88x/GlS5eaqlWr2kjD/+KjxhByXD6ZmMvtrgulsa9evbrGjx+v7du353mZO3eu7cRCnR5Pr9erUqVKqWzZsv5jcXFxfFZoCAilOV9ctNvjer+rGHecicfY0BeKP7OuzpsOHTro5ZdfliS1atVKM2fOzHH8vffeU506dWykFeqXX37JcVJij8ejl19+WZ06dVKrVq30ww8/WKwrnKtz5jRX+12fNy5LTEz0n1dn69atys7OznGenU2bNikhIcFWXpFFRESoW7dumjdvnrZt26b+/fvr7bffVr169Wyn5cnldd7l9tNOr5W//vqrKleunONYlSpVtH//fhtZ+F/hhd8FCC4TgidoKyqX26tXr66IiAjbGX9YKI19kyZNtHr1anXr1i3P4x6PJ6R6f69GjRraunWrateuLUlavny5qlWr5j+ekZGR6wHdVS7P+1CeQ4Wh3R7X+13FuNsTauv8ufIYG2rjXlyh9jPr8rwZM2aMLr/8crVq1UpNmzbVuHHjtGjRItWvX1/ff/+9vv76a3344Ye2M/N0wQUXaNWqVapfv36O21944QVJ0vXXX28jq0hcnjOS2/0uz5viCrW1/pZbblGvXr3UuXNnLViwQMOHD1dKSooOHDggj8ejJ554QjfddJPtzGKpVq2aRo0apdTUVH3xxRe2c/Lk8jrvcvtpV199tcLDw5WZmanvv/9eF110kf/Yzp07Vb58eYt1YOMF1hhj5PP5FBYWluP2I0eOWCoqOpfb8/Ptt9/aTigSF8b+scce0/Hjx/M9HuonOBs8eLCys7P918984JakTz/9VK1btw521lnhwrx3Yc7nx+X2/LjSXhLH3mWMuz2hts6fK4+xoTbuxRVqP7Muz5ukpCStXbtWTz/9tObMmSNjjL755hvt2rVLl19+uZYuXaqmTZvazsxTly5d9M477+i2227LdeyFF16Qz+fTK6+8YqGscC7PGcntfpfnTXGF2lr/6KOPKjo6WsuXL1f//v314IMPqmHDhho+fLiOHz+uTp06afTo0bYz81S9evVcz9vP5PF41LZt2yAWFZ3L67zL7ZKUmpqa43psbGyO63PmzNHf/va3YCbh94L80WY4B508edL84x//MFdccYV55JFHjDHGPPPMM6Z06dImMjLS9OrVy2RlZVmuzJvL7YVZt25dSH+2bEke+99bsmSJ+fXXX21nnBNCed67POddbjfGmLlz55o77rjD3H///Wbz5s05jh08eNBcddVVlsoK5/rYu8zleVOShfI6X5K5MO78zALAn+PCWg8AoYRzvOCse/TRRzV58mQ1bdpUM2fO1ODBg/X8889r0qRJevXVV7VgwQJNmDDBdmaeXG4vChNiH6NwppI+9mfq0KGDfvzxR9sZ54xQnfcuz3mX26dPn67rr79ee/fu1fLly9W4cWO9/fbb/uMnTpzQ4sWLLRYWzOWxd5nr86akC9V1vqQL5XHnZxYAAiOU13oACDUew6qJs6x27dqaOHGirrvuOqWlpalevXqaPn26unfvLunUyapGjx6tjRs3Wi7NzeX2rl27Fnj88OHDWrRoUY63cIcSl8e+uOLi4rR+/XrVqlXLdorzXJ73Ls95l9sbN26svn376u6775Z0qvX222/XxIkTdccdd2jfvn1KSkoKyTkjuT32LnN93rjM5XXeZa6POz+zAFA419d6AAg1nOMFZ93u3bvVsGFDSVKdOnUUGRnpvy5Jf/nLX7Rz505beQVyuX3OnDlq27atKlWqlOfxUH+y5PLYwx6X573Lc97l9q1bt6pTp07+6926dVPFihV1/fXX6+TJk+rSpYvFusK5PPYuc33euMzldd5lro87P7MAUDjX13oACDVsvOCsK1u2rA4dOqSqVatKki699FLFxcX5j2dlZcnj8djKK5DL7fXr19eNN96oO+64I8/j69at08cffxzkqqJzeexhj8vz3uU573J7mTJltG/fPtWsWdN/21VXXaWPP/5Y1113nf773/9arCucy2PvMtfnjctcXudd5vq48zMLAIVzfa0HgFDDOV5w1jVo0EBr1qzxX1+6dKmqVKniv75x40YlJyfbSCuUy+1NmjTJ0f57UVFRqlatWhCLisflsYc9Ls97l+e8y+3NmjXTp59+muv2Vq1aac6cOSF/fhSXx95lrs8bl7m8zrvM9XHnZxYACuf6Wg8AoYZzvOCs++GHHxQREZHjFWZnmj59usLDw9WtW7cglxXO5fasrCxlZ2erdOnStlP+EJfHvrjKlCmjdevWcY6XAHB53rs8511uX7x4sZYtW6YRI0bkeXzhwoV68803NWXKlCCXFY3LY+8y1+eNy1xe513m+rjzMwsAhXN9rQeAUMPGC0LO008/rUGDBik+Pt52SrHRbo/L/XFxcVq/fj0bLxa4PG9ot8Pldsn9flcx7vYw9na4Pu6u9wNAMLBWAkDB2HhByHH51f+02+NCvzFGPp9PYWFhtlPwv1yYN/mh3Q6X2yX3+13FuNvD2Nvh+ri73g8AwcBaCQAF4xwvCDku7wXSbk8o9f/222966KGH1KpVK6WmpkqSxo4dq9jYWJUuXVq9e/fWiRMnLFdCCq15U1y02+Fyu+R+v6sYd3sYeztcH3fX+wEgGFgrAaBg4bYDAKCkefTRRzV58mTdcsstmjlzpn766SfNnTtXkyZNUnZ2tkaOHKkJEyZo+PDhtlMBAAAAAAAABBgbLwAQYNOnT9fkyZN13XXXafDgwapXr56mT5+u7t27S5JKlSql0aNHs/ECAAAAAAAAlEB81BgABNju3bvVsGFDSVKdOnUUGRnpvy5Jf/nLX7Rz505beQAAAAAAAADOIjZeACDAypYtq0OHDvmvX3rppYqLi/Nfz8rKksfjsVAGAAAAAAAA4Gxj4wUh529/+5uio6NtZ/whtNsTSv0NGjTQmjVr/NeXLl2qKlWq+K9v3LhRycnJNtLwO6E0b4qLdjtcbpfc73cV424PY2+H6+Puej8ABANrJQAUzGOMMbYjcO5IT0/XlClTlJ6erokTJyohIUGffvqpqlWrpgsvvNB2XoFot8e1/h9++EERERGqWbNmnsenT5+u8PBwdevWLchl5xbX5s2ZaLfD5XbJ/X5XMe72MPZ2uD7urvcDQDCwVgLAn8c7XhA0ixcv1sUXX6wVK1bogw8+0NGjRyVJ69evV2pqquW6gtFuj4v9devWzXfTRZL+/ve/59h0efrpp3N8NBn+PBfnzWm02+Fyu+R+v6sYd3sYeztcH3fX+wEgGFgrASAw2HhB0Dz44IN6/PHHNX/+fEVGRvpvb926tb7++muLZYWj3R7X+4viySef1MGDB21nlCguzxva7XC5XXK/31WMuz2MvR2uj7vr/QAQDKyVABAYbLwgaDZu3KguXbrkuj0hIUE///yzhaKio90e1/uLgk98DDyX5w3tdrjcLrnf7yrG3R7G3g7Xx931fgAIBtZKAAgMNl4QNPHx8dqzZ0+u29euXZvjxOOhiHZ7XO+HHS7PG9rtcLldcr/fVYy7PYy9Ha6Pu+v9ABAMrJUAEBhsvCBoevTooQceeEB79+6Vx+ORz+fT0qVLlZKSol69etnOKxDt9rjeDztcnje02+Fyu+R+v6sYd3sYeztcH3fX+wEgGFgrASBADBAkWVlZpl+/fiY8PNx4PB4TERFhvF6vufXWW81vv/1mO69AtNvjen9RxMbGmvT0dNsZJYrL84Z2O1xuN8b9flcx7vYw9na4Pu6u9wNAMLBWAkBgeIzh5AI4+4wx2rVrlypWrKiff/5ZGzdu1NGjR9W4cWMlJyfbzisQ7fa43l9UcXFxWr9+vWrVqmU7pURwed7QbofL7ZL7/a5i3O1h7O1wfdxd7weAYGCtBIDAYeMFQeHz+VSqVClt2rTJuQdr2u1xvb+orr32Wr322muqXLmy7ZQSweV5Q7sdLrdL7ve7inG3h7G3w/Vxd70fAIKBtRIAAodzvCAovF6vkpOTdeDAAdspxUa7Pa73S1J6eroeeugh9ezZUz/99JMk6dNPP9WmTZv89/nkk0/YdAkgl+cN7Xa43C653+8qxt0ext4O18fd9X4ACAbWSgAIHDZeEDRPP/207r//fn377be2U4qNdntc7l+8eLEuvvhirVixQh988IGOHj0qSVq/fr1SU1Mt15VsLs8b2u1wuV1yv99VjLs9jL0dro+76/0AEAyslQAQGHzUGIKmXLlyOn78uH777TdFRkYqOjo6x/GDBw9aKisc7fa43N+8eXPdfPPNuvfee3Ocx+Wbb75R165d9d///td2Yonl8ryh3Q6X2yX3+13FuNvD2Nvh+ri73g8AwcBaCQCBEW47AOeOCRMm2E74w2i3x+X+jRs3avr06bluT0hI0M8//2yh6Nzh8ryh3Q6X2yX3+13FuNvD2Nvh+ri73g8AwcBaCQCBwTteAOAsOf/88/Xee++pRYsWOd7x8uGHHyolJUXp6em2EwEAAAAAAAAEGO94QdBkZGQUeLxatWpBKik+2u1xub9Hjx564IEH9P7778vj8cjn82np0qVKSUlRr169bOeVaC7PG9rtcLldcr/fVYy7PYy9Ha6Pu+v9ABAMrJUAEBi84wVB4/V65fF48j2enZ0dxJriod0el/tPnDihIUOG6I033lB2drbCw8OVnZ2tv//973rjjTcUFhZmO7HEcnne0G6Hy+2S+/2uYtztYeztcH3cXe8HgGBgrQSAwOAdLwiatWvX5rh+8uRJrV27Vs8++6yeeOIJS1VFQ7s9rvYbY7R3714999xzeuSRR7Rx40YdPXpUjRs3VnJysu28Es/VeSPRbovL7ZL7/a5i3O1h7O1wfdxd7weAYGCtBIDA4B0vsG7u3LkaO3asFi1aZDul2Gi3J9T7fT6fSpUqpU2bNrHREkJCfd4UhHY7XG6X3O93FeNuD2Nvh+vj7no/AAQDayUAFI/XdgBQr149rVy50nbGH0K7PaHe7/V6lZycrAMHDthOwRlCfd4UhHY7XG6X3O93FeNuD2Nvh+vj7no/AAQDayUAFA8fNYagyczMzHHdGKM9e/Zo1KhRIf+OANrtcbn/6aef1v3336+XX35ZF110ke2cc4rL84Z2O1xul9zvdxXjbg9jb4fr4+56PwAEA2slAAQGGy8Imvj4+FwnaDPGqGrVqpoxY4alqqKh3R6X+3v16qXjx4+rYcOGioyMVHR0dI7jBw8etFRW8rk8b2i3w+V2yf1+VzHu9jD2drg+7q73A0AwsFYCQGCw8YKgWbhwYY7rXq9XFStWVJ06dRQeHtpTkXZ7XO6fMGGC7YRzlsvzhnY7XG6X3O93FeNuD2Nvh+vj7no/AAQDayUABAYrJoLG4/GoRYsWuR6of/vtN3355Ze64oorLJUVjnZ7XO7v3bu37YRzlsvzhnY7XG6X3O93FeNuD2Nvh+vj7no/AAQDayUABIbHGGNsR+DcEBYWpj179ighISHH7QcOHFBCQoKys7MtlRWOdntc7s/IyCjweLVq1YJUcu5xed7QbofL7ZL7/a5i3O1h7O1wfdxd7weAYGCtBIDA4B0vCBpjTK7PCZVOPXjHxMRYKCo62u1xub9GjRp5tp/GE9azx+V5Q7sdLrdL7ve7inG3h7G3w/Vxd70fAIKBtRIAAoONF5x1Xbt2lXTq7ap9+vRRVFSU/1h2drY2bNigFi1a2MorEO32uN4vSWvXrs1x/eTJk1q7dq2effZZPfHEE5aqSjaX5w3tdrjcLrnf7yrG3R7G3g7Xx931fgAIBtZKAAgsNl5w1pUtW1bSqVdNxMXFKTo62n8sMjJSf/3rX9W/f39beQWi3R7X+yWpYcOGuW5r2rSpkpKSNHbsWP8TWwSOy/OGdjtcbpfc73cV424PY2+H6+Puej8ABANrJQAEFud4QdA8+uijSklJcfKtqbTb43p/XtLS0tSwYUMdO3bMdkqJ5fK8od0Ol9sl9/tdxbjbw9jb4fq4u94PAMHAWgkAgcHGCwCcJZmZmTmuG2O0Z88ejRo1Slu2bNG6devshAEAAAAAAAA4a/ioMQTVzJkz9d577ykjI0MnTpzIcWzNmjWWqoqGdntc7Y+Pj891UkJjjKpWraoZM2ZYqjp3uDpvJNptcbldcr/fVYy7PYy9Ha6Pu+v9ABAMrJUA8Od5bQfg3PHcc8+pb9++qlSpktauXatmzZqpfPny2rZtmzp06GA7r0C02+Ny/8KFC/Wf//zHf1m0aJG+++47paenq3nz5rbzSjSX5w3tdrjcLrnf7yrG3R7G3g7Xx931fgAIBtZKAAgQAwRJvXr1zPTp040xxsTGxpr09HRjjDEPP/ywGTJkiM20QtFuj8v9ixcvNidPnsx1+8mTJ83ixYstFJ07XJ43tNvhcrsx7ve7inG3h7G3w/Vxd70fAIKBtRIAAoN3vCBoMjIy1KJFC0lSdHS0jhw5Ikm67bbb9M4779hMKxTt9rjcf9VVV+ngwYO5bj98+LCuuuoqC0XnDpfnDe12uNwuud/vKsbdHsbeDtfH3fV+AAgG1koACAw2XhA0iYmJ/j9CV6tWTV9//bUkafv27TLG2EwrFO32uNxvjMl1jhdJOnDggGJiYiwUnTtcnje02+Fyu+R+v6sYd3sYeztcH3fX+wEgGFgrASAwwm0H4NzRunVrzZ49W40bN1bfvn01bNgwzZw5U6tWrVLXrl1t5xWIdntc7D/d5fF41KdPH0VFRfmPZWdna8OGDf5XEOHscHHenEa7HS63S+73u4pxt4ext8P1cXe9HwCCgbUSAALDY9iuRpD4fD75fD6Fh5/a75sxY4aWLVum5ORkDRw4UJGRkZYL80e7PS729+3bV5I0depUdevWTdHR0f5jkZGRqlGjhvr3768KFSrYSizxXJw3p9Fuh8vtkvv9rmLc7WHs7XB93F3vB4BgYK0EgMBg4wUAzpJHH31UKSkpfKwYAAAAAAAAcA7hHC8Iqq+++kq33nqrmjdvrh9//FGSNG3aNC1ZssRyWeFot8fV/tTUVDZdLHJ13ki02+Jyu+R+v6sYd3sYeztcH3fX+wEgGFgrAeDPY+MFQTNr1iy1b99e0dHRWrt2rbKysiRJhw8f1pNPPmm5rmC02+N6/8yZM9WtWzf99a9/1aWXXprjgrPH5XlDux0ut0vu97uKcbeHsbfD9XF3vR8AgoG1EgACxABB0qhRIzN16lRjjDGxsbEmPT3dGGPMmjVrTKVKlWymFYp2e1zunzhxoomNjTV33nmniYyMNAMHDjRt2rQxZcuWNSNHjrSdV6K5PG9ot8PldmPc73cV424PY2+H6+Puej8ABANrJQAEBu94QdB8//33uuKKK3LdXrZsWR06dCj4QcVAuz0u97/00kuaNGmSnn/+eUVGRmr48OGaP3++7r77bh0+fNh2Xonm8ryh3Q6X2yX3+13FuNvD2Nvh+ri73g8AwcBaCQCBwcYLgiYxMVFpaWm5bl+yZIlq1aploajoaLfH5f6MjAy1aNFCkhQdHa0jR45Ikm677Ta98847NtNKPJfnDe12uNwuud/vKsbdHsbeDtfH3fV+AAgG1koACAw2XhA0/fv319ChQ7VixQp5PB7t3r1bb7/9tlJSUjR48GDbeQWi3R6X+xMTE3Xw4EFJUrVq1fT1119LkrZv3y5jjM20Es/leUO7HS63S+73u4pxt4ext8P1cXe9HwCCgbUSAALE9medoWRbv369yc7O9l9//PHHTUxMjPF4PMbj8ZhSpUqZhx56yGJh/mi3x/X+0+644w4zatQoY4wxL7zwgomOjjZt2rQx8fHx5vbbb7dcV/K4PG9ot8PldmPc73cV424PY2+H6+Puej8ABANrJQAEnscYXnaNsycsLEx79uxRQkKCatWqpZUrVyouLk5paWk6evSoGjRooNjYWNuZeaLdHtf7T/P5fPL5fAoPD5ckzZgxQ8uWLVNycrIGDhyoyMhIy4Uli8vzhnY7XG6X3O93FeNuD2Nvh+vj7no/AAQDayUABF647QCUbPHx8dq+fbsSEhK0Y8cO+Xw+RUZGqkGDBrbTCkW7Pa73n+b1euX1/t8nOvbo0UM9evSwWFSyuTxvaLfD5XbJ/X5XMe72MPZ2uD7urvcDQDCwVgJA4LHxgrPqxhtvVKtWrVS5cmV5PB41bdpUYWFhed5327ZtQa4rGO32uN5/pq+++kr/+te/lJ6erpkzZ6pKlSqaNm2aatasqZYtW9rOK1Fcnje02+Fyu+R+v6sYd3sYeztcH3fX+wEgGFgrASDw2HjBWTVp0iR17dpVaWlpuvvuu9W/f3/FxcXZzioS2u1xvf+0WbNm6bbbbtMtt9yitWvXKisrS5J0+PBhPfnkk/rkk08sF5YsLs8b2u1wuV1yv99VjLs9jL0dro+76/0AEAyslQAQeJzjBUHTt29fPffcc04+eNNuj8v9jRs31rBhw9SrVy/FxcVp/fr1qlWrltauXasOHTpo7969thNLLJfnDe12uNwuud/vKsbdHsbeDtfH3fV+AAgG1koACAw2XgDgLCldurS+++471ahRI8fGy7Zt29SgQQP9+uuvthMBAAAAAAAABJi38LsAAP6IxMREpaWl5bp9yZIlqlWrloUiAAAAAAAAAGcbGy8AcJb0799fQ4cO1YoVK+TxeLR79269/fbbSklJ0eDBg23nAQAAAAAAADgLwm0HAEBJsmHDBl100UXyer0aMWKEfD6frr76ah0/flxXXHGFoqKilJKSorvuust2KgAAAAAAAICzgHO8AEAAhYWFac+ePUpISFCtWrW0cuVKxcXFKS0tTUePHlWDBg0UGxtrOxMAAAAAAADAWcI7XgAggOLj47V9+3YlJCRox44d8vl8ioyMVIMGDWynAQAAAAAAAAgCNl4AIIBuvPFGtWrVSpUrV5bH41HTpk0VFhaW5323bdsW5DoAAAAAAAAAZxsbLwAQQJMmTVLXrl2Vlpamu+++W/3791dcXJztLAAAAAAAAABBwjleAOAs6du3r5577jk2XgAAAAAAAIBzCBsvAAAAAAAAAAAAAeK1HQAAAAAAAAAAAFBSsPECAAAAAAAAAAAQIGy8AAAAAAAAAAAABAgbLwAAAACcY4zRgAEDdN5558nj8WjdunW2kwAAAABAkuQxxhjbEQAAAABQHJ9++qk6d+6sRYsWqVatWqpQoYLCw8P/1Nfs06ePDh06pI8++igwkQAAAADOSX/uNxMAAAAAsCA9PV2VK1dWixYtbKfkkp2dLY/HI6+XDxgAAAAAzkX8JgAAAADAKX369NFdd92ljIwMeTwe1ahRQz6fT0899ZRq1qyp6OhoNWzYUDNnzvT/m+zsbN1xxx3+4/Xq1dPEiRP9x0eNGqWpU6fq3//+tzwejzwejxYtWqRFixbJ4/Ho0KFD/vuuW7dOHo9HO3bskCS98cYbio+P1+zZs9WgQQNFRUUpIyNDWVlZSklJUZUqVRQTE6PLLrtMixYt8n+dnTt3qlOnTipXrpxiYmJ04YUX6pNPPjnbwwcAAADgLOMdLwAAAACcMnHiRNWuXVuTJk3SypUrFRYWpqeeekpvvfWWXnnlFSUnJ+vLL7/UrbfeqooVK6pVq1by+Xw6//zz9f7776t8+fJatmyZBgwYoMqVK6tbt25KSUnR5s2blZmZqSlTpkiSzjvvPC1btqxITcePH9eYMWM0efJklS9fXgkJCbrzzjv13XffacaMGUpKStKHH36oa665Rhs3blRycrKGDBmiEydO6Msvv1RMTIy+++47xcbGns2hAwAAABAEbLwAAAAAcErZsmUVFxensLAwJSYmKisrS08++aS++OILNW/eXJJUq1YtLVmyRP/617/UqlUrRURE6NFHH/V/jZo1a2r58uV677331K1bN8XGxio6OlpZWVlKTEwsdtPJkyf10ksvqWHDhpKkjIwMTZkyRRkZGUpKSpIkpaSkaN68eZoyZYqefPJJZWRk6MYbb9TFF1/sbwYAAADgPjZeAAAAADgtLS1Nx48fV9u2bXPcfuLECTVu3Nh//cUXX9Trr7+ujIwM/fLLLzpx4oQaNWoUkIbIyEhdcskl/usbN25Udna26tatm+N+WVlZKl++vCTp7rvv1uDBg/X555+rTZs2uvHGG3N8DQAAAABuYuMFAAAAgNOOHj0qSZo7d66qVKmS41hUVJQkacaMGUpJSdG4cePUvHlzxcXFaezYsVqxYkWBX9vrPXVaTGOM/7aTJ0/mul90dLQ8Hk+OprCwMK1evVphYWE57nv648T69eun9u3ba+7cufr888/11FNPady4cbrrrruK+q0DAAAACEFsvAAAAABw2pkntG/VqlWe91m6dKlatGih//mf//Hflp6enuM+kZGRys7OznFbxYoVJUl79uxRuXLlJEnr1q0rtKlx48bKzs7WTz/9pL/97W/53q9q1aoaNGiQBg0apBEjRujVV19l4wUAAABwHBsvAAAAAJwWFxenlJQUDRs2TD6fTy1bttThw4e1dOlSlSlTRr1791ZycrLefPNNffbZZ6pZs6amTZumlStXqmbNmv6vU6NGDX322Wf6/vvvVb58eZUtW1Z16tRR1apVNWrUKD3xxBP64YcfNG7cuEKb6tatq1tuuUW9evXSuHHj1LhxY+3fv18LFizQJZdcoo4dO+qee+5Rhw4dVLduXf2///f/tHDhQtWvX/9sDhUAAACAIPDaDgAAAACAP2v06NF6+OGH9dRTT6l+/fq65pprNHfuXP/GysCBA9W1a1d1795dl112mQ4cOJDj3S+S1L9/f9WrV09NmzZVxYoVtXTpUkVEROidd97Rli1bdMkll2jMmDF6/PHHi9Q0ZcoU9erVS/fdd5/q1aunG264QStXrlS1atUkSdnZ2RoyZIi/t27dunrppZcCOzAAAAAAgs5jzvywYgAAAAAAAAAAAPxhvOMFAAAAAAAAAAAgQNh4AQAAAAAAAAAACBA2XgAAAAAAAAAAAAKEjRcAAAAAAAAAAIAAYeMFAAAAAAAAAAAgQNh4AQAAAAAAAAAACBA2XgAAAAAAAAAAAAKEjRcAAAAAAAAAAIAAYeMFAAAAAAAAAAAgQNh4AQAAAAAAAAAACBA2XgAAAAAAAAAAAAKEjRcAAAAAAAAAAIAA+f826gHF8rs74wAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.subplots(figsize=(20, 10))\n",
"\n",
"names, importances = pipe1.features.importances(target_num=2)\n",
"\n",
"plt.bar(names[0:30], importances[0:30])\n",
"\n",
"plt.title(\"feature importances for the z-component\", size=20)\n",
"plt.grid(True)\n",
"plt.xlabel(\"features\")\n",
"plt.ylabel(\"importance\")\n",
"plt.xticks(rotation='vertical')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.5 Column importances\n",
"\n",
"Because getML is a tool for relational learning, we can also calculate the importances for the original columns, using similar methods we have used for the feature importances."
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABlUAAAQZCAYAAABclYwdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADiE0lEQVR4nOzdeZhWdf0//tcMDIPDoiAKsSQgLpgoBkFqbolQbrnlgiliUZlkSWZSKpAW5u7XJdNCLSVtsVIzTREJFRc2wzUN0BQFFQEFHcaZ8/vD39yfGWbhzTByz62Px3XNJXPO+5zzvO/73Ge87ud9zinKsiwLAAAAAAAAGlWc7wAAAAAAAACFQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCABARDz74YBQVFUVRUVE8+OCD+Y5TUDx3fJy99dZbccYZZ0T//v1js802y+3rl19+eb6jNYuJEyfmHhMAALB+rfMdAAAAoCVauXJl7L777vHCCy/kOwoAANBCOFMFAADy7MYbb8ydLbB48eJ8x+H/d/XVV+cKlTPPPDNmzpwZCxYsiAULFsQJJ5yQ53QNc/YYtAzOBAOAjydnqgAAsFH23XffyLIs3zGg2d1///0RETF48OD4xS9+kec0AABAS+BMFQAAgHq8+uqrERGx/fbb5zkJAADQUihVAAAA6lFeXh4RESUlJXlOAgAAtBRKFQCgxXn44YfjG9/4Ruywww7RsWPHaNOmTfTs2TMOPvjguPrqq2PFihUNLnvnnXfGUUcdFT179ozS0tLYcsstY/fdd48LLrgg3n333SZn2nfffaOoqCj23XffRset7/rp1fMmTpwYERHTp0+Pww47LLp37x6bbbZZ9O/fP84777xYvXp1reXuvvvuOPDAA3Pjdtppp5g8eXKsXbu2wSy9e/eOoqKiOOmkkyIi4vnnn48xY8ZE7969o7S0NLp27RqHH354PProo8nPQ33Wd/+Gk046KYqKiqJ3794REfH666/HGWecEdtvv32UlZVFjx494uijj46nn3661nKLFy+O0047LbbffvvYbLPNomvXrnH88cfHf//73wazrPv8r1ixIiZMmBCf+cxnon379tG5c+fYb7/94ve//33SY1u8eHGcfvrp8ZnPfCY6dOgQZWVlsd1228W3vvWtWLBgQaPLrvtaP/DAA/HVr341evXqFSUlJdG7d+/cczd69Ojccn369Mkt29Dz+uijj8bZZ58d++67b3Tr1i3atGkTHTt2jJ122ilOOeWUeOaZZxrNtu5rsmLFijj33HPjM5/5TLRr1y622GKL2HvvveOWW25Jep7eeeeduOSSS+KLX/xirTy77bZbfPe7342HH364wWUrKyvjpptuioMPPji6d++ee99+4QtfiEsvvTTee++9Rrc9Z86c+PrXvx7bb799tGvXLtq2bRu9evWKQYMGxamnnhp33HHHBl2erub+/NJLL0VExE033VTr9ajvOPDuu+/GBRdcELvvvnt07tw5SktLo2fPnnHUUUfFXXfd1eg21z2+vPDCCzF27NjYbrvtoqysLPleO4sXL46ioqLYb7/9ctP222+/OvvTjTfe2OA63n///bjooovis5/9bHTo0CE6dOgQQ4YMiauuuio++OCD9WZ4//3346qrror9998/ty9svfXWMWzYsPjNb36TtI76lJeXxy677BJFRUXRoUOHWLhwYYNjx40bl3usN9xwQ5O2V9Pdd98dX/va16Jv3765faxPnz5x5JFHxo033hhr1qypd7mqqqq4+eab48ADD8w9F1tttVXst99+cc011zR6/F73WLZq1aqYOHFiDBgwINq3bx9bb711HHjggfHII4/UWm7ZsmVx9tln597LW265ZXzlK1+JefPmNbitde/pVF5eHhdffHF89rOfjc033zw6duwYQ4cOjWuuuSYqKyvX+3y98cYbcfbZZ8duu+0WW2yxRbRt2zZ69+4dJ5xwQjz00EONLtvcf7defPHFOP3002PAgAGx+eabx2abbRZ9+/aNk046KWbPnt3gcvX9XfvDH/4Q+++/f2y11Vax2WabxQ477BBnnnlmLF++vM7y1c/ppEmTctPWfR+6hxYAFLAMAKCFWLNmTXbcccdlEdHoz4QJE+os+95772WHH354o8t17949mzdvXr3bnj59em7c9OnT68zfZ599sojI9tlnn0Yfw4QJE3LrqU/NxzB58uSsqKio3qx77LFH9u6772ZVVVXZaaed1uBj+tKXvpR98MEH9W5rm222ySIiGzVqVHb77bdnZWVl9a6jVatW2a233tro42rM+p67UaNGZRGRbbPNNtn8+fOzbt261ZujXbt22cyZM7Msy7Jp06Zlm2++eb3jOnXqlD311FP1Zqn5/C9cuDDbdtttG3zujj766KyioqLBx3XTTTdlpaWlDS7fqlWr7Oc//3mDy9d8rX/84x/XWX6bbbap9dw19lPzeb3hhhvWO75Vq1bZ1Vdf3WC2mq/Jc889l/Xu3bvBdZ166qkNrifLsuy+++7LunTpst5M9XnppZeyXXfdtdHl+vXrlz3//PP1Ln/ppZdmxcXF6932O++80+hjqCnlNVn3ODB37tyse/fujS5zxBFHZO+9916926x5fPnrX/+atWvXrs7yixYtWm/2RYsWJe1PN9xwQ26Zmu+Z119/PRs4cGCDyx1yyCFZZWVlg9ufP39+7rjT0M/nPve57PXXX095Ker497//nXtP7r777vUe++67777ccfXII49s0naqvfnmm9n++++/Qc9ntbfeeivbc889G12uf//+2eLFi+vdds3X5eWXX8623377Bt/rf/jDH7Isy7Inn3wy69GjR73jSktLswceeKDebdU8psydOzcbNGhQg5n33nvvRt9P9957b9axY8dGH/epp57a4H7UnH+3LrrooqykpKTBHEVFRdk555xT77I1jwPTpk3Lvva1rzV6jHrttdcafE4b+0l5XwMALY9SBQBoESorK7MDDjgg90HDdtttl1122WXZzJkzszlz5mR33XVX9uMf/zjr169fvaXK0UcfnVt21113zX77299mTzzxRHbvvfdmo0ePzn3I1rlz5+yVV16ps/ymLlWGDBmS+2Bw6tSp2ezZs7N77rkn+/KXv5wb85Of/CS75JJLsojIvvzlL2d//vOfszlz5mR/+9vfss9//vO5cb/85S/r3Vb1h1Of/exns7Zt22Z9+vTJrrrqquzRRx/NZs2alU2cODFr27ZtFhFZx44ds2XLljX62BqSWqpstdVWWZ8+fbLOnTtnP//5z7OHH344e/TRR7OJEydmbdq0ySIi6927d/bCCy9kHTp0yHr27JldccUV2aOPPpo99NBD2emnn557HYcOHbre5/9zn/tcVlxcnH3729/O7r///uyJJ57IfvOb39T6cPL73/9+veu56667cttq3759NmHChGzmzJnZrFmzsksuuaRWiXDNNdfUu47q+QMGDMj9d8qUKdnjjz+ezZgxI7viiiuyd999N1uwYEF2/vnn58bfe++92YIFC2r9vPvuu7n1Xn/99VmnTp2yk046KZsyZUo2c+bMbO7cudldd92V/fSnP81lKyoqyqZNm1ZvtpqvyXbbbZd16NAhO/vss7MHH3wwmz17dnb99ddnPXv2zGW655576l3PAw88kLVu3Tr3IedJJ52U/eUvf8nmzJmTPfzww9n111+fHXHEEVlJSUmdZd98882sV69euQ98x44dm/3xj3/MnnjiiWz69OnZ+PHjcx+o9u3bN1uxYkWt5Z988slcodKnT5/skksuyaZNm5bNmzcv+9e//pVdf/312ciRI7N27dptUKlS/ZosWLAgV5R85StfqfV6LFy4MDf+lVdeyTp16pR7zkePHp3de++92ezZs7Pf/va3tUqjY445pt5tVh9f+vTpk7Vv3z7baqutsgsuuCD3HrnyyiuzN954Y73Z165dmy1YsCCbMmVKbptTpkypsz+9/fbbuWVqvmf22GOPrE2bNtlpp52W3XfffdmcOXOyqVOnZv3798+Nufbaa+vd9gsvvJArQjt27JiNHz8++8tf/pLNnj07u/fee7NTTz01t68MHTo0W7t2bfJrUtNll12WyzJx4sRa8956663ca9a9e/fszTffbNI2sizLVq9enXvvRkQ2aNCg7Fe/+lX28MMPZ7Nnz87+8pe/ZKeffnrWvXv3OqXKBx98kO2+++65ZffZZ5/sj3/8YzZ79uzsjjvuyA477LDcvG233bbe/bPm6zJ06NCsrKwsGz9+fDZjxozsiSeeyC677LJcedGhQ4ds4cKFWa9evbLOnTtnP/vZz7KHHnooe+yxx7JJkybljq+f/vSns/Ly8jrbqlkAfO5zn8vtq3fffXc2e/bsbOrUqbnpEZEddthh9T5n8+bNy22rpKQkO/3007Pp06dnjz/+eParX/0q69OnT24dZ555Zr3raK6/WxdeeGFuW7vsskv2y1/+Mrv//vuz2bNnZ7fcckut1+eKK66os3zNv2t77LFH7nHffvvt2Zw5c7K77747O+igg3Jjjj322FrLv/3229mCBQuyU045JTdm3ffhggULmvw+AADyS6kCALQIV1xxRe6Dh8MPPzx7//336x1XWVlZpxS56667csvuv//+9X5odN111+XGHH300XXmb+pSJeLDb1Gv+03rDz74IFeYdOjQIWvbtm29H/yvXr069+HTLrvsUu+2an5jfNCgQdnKlSvrjLn55ptzYy699NJGH1tDUkuViMi6dOmSvfjii3XGXHXVVbkx1R/01/dh2Q9/+MPcuLlz59aZX/P5j4hs6tSpdcasWrUq90F3cXFxtmDBglrz165dm/tgtn379vWe3bR48eLsU5/6VBYRWVlZWb0feNfMsf/++ze4T2dZ7Q811/fN5VdeeSVbvXp1g/NXrFiR7bLLLllEZF/4whfqHVPzNdl8883rPfPnhRdeyH14eeihh9aZ/9577+Wep7Kysnpf+2ovv/xynWkjR47MIj48W6ZmSVHT3Llzc2dt/PjHP64175xzzskiPjzDqbEzH1asWNHo2RWNqfmt+YYcddRRuefy17/+dZ3577//frbffvvlxtx99911xlQfX6rLgJdeeqlJeaut7z1ZU833TElJSb3j33rrraxr166NHm+qP3jebbfdGiyA/vGPf+SKsOuuu25DH1aWZVlWVVWVK+Bbt26dzZo1KzfviCOOyJVb//znP5u0/mqnn3567nk59dRTs6qqqnrHlZeX19n/ah7PTjzxxHqXrXn2Wn0FQ83XpbS0NHv00UfrjKn5t2+rrbZq8Ph69dVX58bdfvvtdeave1ZFfWfgVVRUZCNGjMiN+fvf/15nTHXx0qpVq+zee++tM3/58uXZTjvtlDv21nfcaY6/W08//XTuDJUJEybU+/xXVlbmzj5p3759tnz58lrz1z1j7fzzz6+zjqqqqmz48OG5fbG+v1nr+38CAKAw+csOAORdZWVl7lvxPXv23KBvlWdZlju7o6SkpN4Pb6sNGzYs9+HHkiVLas3b1KVKWVlZ9tZbb9U7pua3zHv16tXgN1nPPffc3Lh1v8WfZbU/nHryySfrXUdVVVXug/HDDz+80cfWkA0pVRo6q2bNmjW5D/AjIvvHP/5R77iFCxc2+u3ims//wQcf3GDmxx57rNYHpjXddtttuXkXXHBBg+uo+cHehRdeWGd+9bzi4uL1FiUbUqqk+Otf/5pbX33f1q/5mvy///f/GlzPsccem0V8eIbXun71q1/l1nH55ZdvUL5FixZlrVq1yiIiu/POOxsde+aZZ+bKhprGjBmT+xD/o7K+UuXVV1/NPY4vfelLDa5n0aJFubM0DjzwwDrza5Yqv/3tbzc6d1NLlXHjxjU47qyzzsoVFuseb/71r3/l1vHvf/+70e1Vn1W4xx57JD+edb366qvZlltumUX835kev/nNb3IZGjoDLdXbb7+dO0tq0KBBDV5isSHVZ/ZstdVW2apVq+odU1FRke24445ZxIeXNFy3dK35uvzoRz9qcFs1j/Mpx9fTTz+9zvyax59ddtmlwQLpf//7X66sOOigg2rNq3lM/fa3v91g3oceeig37jvf+U6jj6epf7dOPvnkLCKywYMHN/hYsuzD17n6cnLrlnw130ODBg1qcD333HNPbtzf/va3OvOVKgDw8eRG9QBA3s2fPz9eeeWViIgYM2ZMtG/fPnnZDz74IGbMmBEREcOHD49evXo1OHbMmDG5Zeq7ofqmdMABB0Tnzp3rnbfrrrvm/n3EEUdESUnJesctWrSowW0NGDAgdtlll3rnFRUVxW677RYR0eiNn5tDUVFRHH300fXO22yzzWK77baLiIhOnTrFiBEj6h3Xp0+f6NChQ0SsP2/Nm7+va8iQIfGZz3wmIiLuv//+WvOqfy8qKoqTTz65wXV89atfjc0337zeddS055575m4I/1FYvXp1LF68OJ5++ul46qmn4qmnnqq1zzz55JMNLltUVBQjR45scP6gQYMiImL58uWxYsWKWvOqb77erl273Hsr1d///veorKyMsrKy+PKXv9zo2L333jsiIpYsWRIvv/xybvqnPvWpiIh45pln4vHHH9+g7TeXBx98MHfj7q9//esNjuvdu3cccMABdZZZV5s2beKrX/1q8wdNdPzxxzc4r3pfyLKszvHmjjvuiIiIHXbYIQYMGNDoNqpfzyeeeKLJN63v3r17XH/99RER8d///jdGjhwZ3/ve9yIiYuedd44LLrigSeut9sADD+RuPn/aaadFq1atkpddsmRJPPvssxERcfTRR+eOV+tq3bp17hj19ttvx9y5cxtc57HHHtvgvOpje1FRURxzzDH1jql5fF3fcXPUqFFRVFRU77yePXvG8OHDI6LuflzzGNjYe2HPPfeM/v3711lmXRvzd+vOO++MiIgjjzyywccSEbHFFlvk9tdZs2Y1OG7kyJENrqf6fdFQFgDg40mpAgDk3bx583L/3muvvTZo2YULF+Y+/Bo6dGijY2vOf+qppzZoO81t++23b3DeFltsscHj3nnnnQbH7bjjjo1mqS53GltHc+jSpUuDRVLE/z2efv36rfeDsIj15/3c5z7X6PwhQ4ZERMR//vOfWLt2bW569b7Rp0+f2GqrrRpcvk2bNrkP9hrbnxr6YHBjvPnmm/HjH/84dthhh+jQoUP06dMndt555xgwYEAMGDAgDjrooFpjG9KlS5fYcsstG5xf8/Va9/muft8OGjQoysrKNij/7NmzIyJizZo10bp16ygqKmrw5+CDD84t9/rrr+f+fdxxx0VJSUmUl5fHnnvuGYccckhce+218dRTT0WWZRuUp6lqvu6px581a9Y0+OHrdtttF23btm2+gBuosWNFY/tC9ev5/PPPN/paFhUVxdixYyMioqKiIpYvX97krIcffnjuw/s777wz3n333SgtLY1bbrklSktL611m0aJFueJx3Z9ly5blxm3M36Sm7BPrLreulL8DXbp0iU6dOq13XHMdN1evXl1rP67O36ZNmxg4cGCj66h+3C+88EKtY29NTf279dJLL8Ubb7wRERHjx49f7/5Yve/WPLZsSJbG3hcAwMeXUgUAyLuaH/pWf/s8Vc0P5bbeeutGx3br1q3e5fKhsQ+hi4uLN3hcQ998X986aq6nsXU0h9QczZV3fftD165dI+LDb96//fbbuenV+8b6lo/4v32qsf2psQ86m2LOnDmx4447xuTJk+M///nPeguE9957r8F5qc91RN3nu/p9u6Hv2Yio9QH2hqguUCM+/KDz97//fXTq1Ck++OCDuOuuu+KUU06JAQMGxNZbbx0nnHBCzJw5s0nbSdXcx5/m3lc2VFOPN83xejbFZZddVuvMxnPPPbfREnP06NG54nHdn2uuuSY3rqX9TUp5XTb1cTOidubqf3fu3Dlat27d6DqqH/e6x96amvp4Pop9sTn+DgMAHy+N/98OAEABaezsBj55NnZ/aK79aUMuHbQ+a9eujaOPPjreeuutKCkpie9+97vxla98Jbbffvvo1KlT7hv6CxcujG233TYiYpOdtbEhqj987NKlS0yfPj15uT59+tT6/cgjj4xhw4bFbbfdFvfee2/MnDkz3njjjXjzzTfj5ptvjptvvjlGjRoVU6ZMqfXh50ehOfaX5txXNqXq13PXXXeNm2++OXm5Hj16bNR2b7jhhnj33Xdzv99///25sxNagpaSY0O0lONmU9UsNs4999zky+m1a9fuo4oEAHwMKVUAgLzr0qVL7t+vvfbaei/7UVPNS28sXbq00bE1L+/R2GWo6lP9gWxVVVWj41avXr1B6+Wjs3Tp0kbvsVO9vxQVFdU6Q6B631jf/hTxf/vUhu5PTfXAAw/kLrlzzTXXxDe+8Y16x22KM7G6dOkSr7zySrz22msbvGz1Jcfeeeed6N+//0aVCZtvvnl885vfjG9+85sREfHss8/G3/72t7jyyitjyZIlcdNNN8Vuu+2Wu+dGc1r3+NPY/rYxx5+Wrvr1fPfdd2PnnXfeJNt85pln4kc/+lFERHTs2DFWrVoV06dPj0suuSTOOOOMepdJvZfWun+T1i3zGrOp/iZ9VJYuXdro5cZqPqaamav//dZbb8UHH3zQ6Nkq1Y973WNvc6h5OcOSkpJNtj8CAJ8sLv8FAOTdZz/72dy///Wvf23Qsn379s1dmuOxxx5rdGzNm1lv6Act1TcbbuhSJdX+85//bNB6+eg88cQTSfO32267aNOmTW569b6xaNGi3LX561NRUZG798LGfnCX+u3up59+Ovfvhm5KHfF/97j4KFW/b2fPnr3Bl3GqvhdNeXl5s2ft379/nHXWWfHoo4/mvn3+hz/8oVm3Ua3m6556/CkrK4u+fft+JHmqbeqzBWreNLyxe1M0l7Vr18bxxx8f77//fpSVlcWsWbNy9+k4++yz49///vdGrX9j/iY1ZZ9Yd7l8Sj1urrsfV+dfu3ZtzJ8/v9F1VD/udY+9zaFv376x+eabR0TEww8/3Kzrbop8n7kDAHw0lCoAQN7tuuuuuW94//rXv651OZf1ad26deyzzz4REXHffffFK6+80uDYX//617ll9t133w3KWP1N5f/85z8N3oz2zTffjPvuu2+D1stH56abbmpw3hNPPJG7sfKwYcNqzav+PcuyuOGGGxpcx5/+9KdYuXJlvevYUDVvTl5eXt7guA8++CD374bOiqqqqorrr79+o/KkOOSQQyLiw3sRXHfddRu8bPWHjZdffnlzR4uIiF69euW+cV/zHhnNad99982dZTNlypQGx7388su5Y0PNZT4qqftTczn00EMj4sP3zBVXXPGRb+/ss8/OfXB/2WWXxU477RQ333xztG/fPsrLy+P444/fqMe933775Qq5K6+8coPuldG9e/fo379/RHxY5jX096yysjJuvPHGiPjwXjo1i5x8+t3vftfgJQNfffXV+Oc//xkRdffjmsfAxt4Ls2bNimeeeabOMs2lVatWceCBB0ZExD//+c949tlnm30bG2JTvxcBgE1DqQIA5F1xcXH88Ic/jIiIV155JU488cRYu3ZtvWOrqqpiyZIltaadeuqpEfHhN2S//vWvR0VFRZ3lpkyZkvsw6Igjjtjgmw9XFzdr166NK6+8ss78ioqK+MY3vtHoTcHZtO644456z1B4991341vf+lZEfLjvVf+72mGHHRbdu3ePiIif/exnsWDBgjrr+N///pe7xFBZWVmMHj16o7LW3B//+9//Njhuu+22y/27+gPZdY0fPz7mzp27UXlSfO1rX8vdE+MnP/lJzJgxo8Gx65adO+ywQ+5eB7feemtceumljW5r0aJF8fvf/77WtL/+9a+xYsWKBpf53//+F88991xE1L0XS3Pp3r17HH744RER8Y9//KPeIm/t2rVx8skn545LY8eO/Uiy1JS6PzWX4cOHx5AhQyIi4qKLLlrvmUELFiyIO++8s0nbevDBB+OSSy6JiA/LnOrLvvXr1y9X0D311FNx1llnNWn9ERFbbLFF7rgwZ86c+P73v99g0VBRUVHn5ujVf5PeeOONOO200+pdbtKkSblyYcyYMbn7IeXb/Pnz46KLLqoz/YMPPogxY8bk/jafcsopteYPGTIkBg8eHBER119/fUybNq3OOlauXFnr2LvuOprL+PHjo1WrVlFVVRVHHXVUo1+2qKysjFtuuaXRMRtjU78XAYBNwz1VAIAW4dRTT40777wz7rvvvvjLX/4SAwYMiO985zsxePDgKCsri9dffz0effTR+P3vfx8jR46MiRMn5pY96KCD4qtf/Wr88Y9/jH/+85/x+c9/PsaNGxc77rhjvP3223HrrbfmvjnbuXPn9X6AW5+DDjoottlmm3jppZfinHPOiTfffDOOOOKIaNu2bTz99NPx//7f/4t58+bF5z//+Xj00Ueb62lhIwwePDhGjhwZM2bMiKOOOio6duwY//73v+MXv/hFPP/88xHx4X63yy671FquTZs2cd1118UhhxwSq1atij333DN++MMfxv777x+tWrWKRx55JC644ILcB6kXX3xxrXswNMVuu+0Wbdu2jffffz/OOeecKCkpiW222SZ3L58ePXrEZpttFiNGjIitt946li1bFmeffXYsXrw4Dj/88OjSpUu8+OKLuQ8z99xzz4/80jdt27aN3/3udzF8+PBYs2ZNDBs2LE444YQ47LDDomfPnlFeXh7PPfdc3H333XHHHXfU+Zb2L3/5y5g9e3YsXLgwfvCDH8Tf/va3OPHEE+Mzn/lMlJaWxltvvRVPPvlk3HPPPfHAAw/E4YcfHscdd1xu+csvvzyOP/74OOigg+KLX/xi9O/fPzbffPN4++23Y/bs2XHllVfmSs5vf/vbH9nzcNlll8W0adPi7bffjpNPPjkeeuihOOaYY6JTp07x3HPPxcUXX5w7q+Loo4+OL3/5yx9Zlmqf/vSno2fPnvHKK6/ExRdfHD179owddtghd2ZB165dc5c0bC5Tp06NIUOGxPLly+OYY46Jm2++OY455pjYbrvtolWrVrFs2bKYN29e3HnnnfHoo4/GD37wg9zZTqlWrFgRo0aNiqqqqujatWvu7MNqX//61+Pvf/97/OUvf4krrrgiDj744Nh///2b9HjOO++8uO+++2LBggVx1VVXxaxZs+Jb3/pWDBgwINq0aROvvPJKzJw5M37/+9/H+eefHyeddFJu2W9/+9txyy23xKxZs+KGG26Il156Kb7zne9Enz594rXXXospU6bE7bffHhER2267bZxzzjlNyvhRGDx4cPzoRz+K+fPnx4knnhhbb711vPDCC3HppZfmLtt1yCGHxMEHH1xn2euvvz6GDh0aa9eujQMPPDC++93vxiGHHBLt2rWLefPmxQUXXJC7J9QZZ5zxkV3ybMCAAXHxxRfH6aefHs8880zsvPPO8c1vfjO++MUvRteuXeP999+PxYsXx6xZs+JPf/pTvPbaa7FgwYLo2bNns2fZY489cv8+/fTT4yc/+Ul86lOfyp2p17t370bvPwMAtFAZAEALsXr16uyoo47KIqLRnwkTJtRZ9r333ssOP/zwRpfr3r17Nm/evHq3PX369Ny46dOn1ztm5syZWbt27epdd6tWrbIrrrgimzBhQm5afRp7DNUWLVqUG3fDDTc0OG59mbfZZpssIrJRo0Y1uI4sy7JRo0ZlEZFts802jY5rao7U9e+zzz5ZRGT77LNPo+Mae1w1n/+FCxdmffr0aXB/OPLII7OKiooGt3PjjTdmpaWlDS7fqlWr7Oc//3mDy6e81jWdeeaZDW6r5vN6zz33ZG3btm1w7L777ps99dRTje5Dqa/JDTfckFvPokWL6h1zzz33ZJ06dVrv+7Y+r732WrbXXnutd9mIyEaPHl1r2er9pbGf4uLi7Lzzzmv0MTYm9T00d+7crHv37o1mOeKII7L33nuv3uVT9/0Ncc011zSYpeY+sb5jVrWUY+Tzzz+f7bzzzkmv56RJkzb4MR133HG55f/+97/XO+aNN97IPvWpT2URkfXo0SNbvnz5Bm+n5rr23nvv9T6W+t5jb731Vrbnnns2ulz//v2zxYsX17vt1NelOY6vNd/nc+fOzXbbbbcGM++5557ZqlWrGtzOvffem3Xs2LHRx33qqadmlZWV9S7fnH+3rrvuuqysrGy9r1+bNm2yF154odayKft7tfUd648++ugGt93QcRUAaNlc/gsAaDHKysrij3/8YzzwwANxwgknRJ8+fWKzzTaLNm3aRK9eveKQQw6JX/3qV/GDH/ygzrJt27aN22+/Pe6444444ogjonv37tGmTZvo1KlTDB06NCZPnhzPP/98DBw4sMn5vvCFL8ScOXPihBNOiO7du0dJSUl86lOfiiOPPDL+9a9/NXiZF/KjT58+MWfOnPjxj38c/fv3j7Kysth8881j7733jptvvjn+9Kc/NfoN4VGjRsVzzz0X3/ve96J///7Rrl272GyzzWLbbbeNMWPGxLx582L8+PHNlveCCy6I66+/Pvbaa6/o3Llzg/fdGDFiRMyePTu+9rWv5fbDrbbaKvbZZ5+47rrrYtq0abn7QWwKI0aMiIULF8bPf/7z2GOPPWLLLbeMVq1aRceOHeOzn/1sfP/73691Q+6aunXrFv/617/irrvuiuOPPz769u0bZWVluce0xx57xA9+8IOYMWNGnfs0/P73v4/rrrsuRo4cGQMHDoxu3bpF69ato3379vGZz3wmTjnllJg3b16cffbZH/lzsNtuu8Xzzz8fkydPjqFDh8YWW2wRbdq0ie7du8cRRxwRd9xxR/z5z3+udX+Fj9opp5wSf/7zn2P48OGx9dZbb5Jvw2+//fYxf/78mDp1ahx55JHx6U9/OncM/9SnPhX77rtvnH322TFnzpw499xzN2jdU6dOzV0C7pRTTsndN2NdXbp0iRtuuCGKiori1Vdf3aizlLp06RIzZsyI22+/PY466qjo2bNnlJaWRtu2baNv377x1a9+NW655ZZaZ1BV69y5c/zrX/+K3/72t/GlL30punbtGiUlJbHlllvGvvvuG1dddVXMnz8/ttlmmybn+yh06tQpHnnkkZg8eXIMHDgwOnToEO3bt4/Pfe5zceWVV8aMGTMaPctp+PDh8eKLL8aPf/zjGDhwYHTs2DFKS0vj05/+dBx//PExc+bMuOqqq3Jn4X2UxowZEwsXLoxJkybFnnvuGV26dInWrVtHu3btYvvtt48jjzwyrr322nj11VejX79+H1mOm2++OS688MIYMmRIbL755pvksQMAH62iLGvg4rAAAFBgJk6cGJMmTYqIaPAeCAD8nxtvvDF3X6hFixZF79698xsIAKCF8xUJAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEVZlmX5DgEAAAAAANDStc53gE2tqqoqlixZEh06dIiioqJ8xwEAAAAAAPIoy7J45513onv37lFc3PgFvj5xpcqSJUuiV69e+Y4BAAAAAAC0IP/73/+iZ8+ejY75xJUqHTp0iIgPn5yOHTvmOc3HV0VFRfzzn/+M4cOHR0lJSb7jbBDZ86eQ88ueH4WcPaKw88ueH4WcPaKw88ueP4WcX/b8KOTsEYWdX/b8KeT8sudHIWePKOz8sudPIecv5OyFYtWqVdGrV69cf9CYT1ypUn3Jr44dOypVPkIVFRVRVlYWHTt2LLg3uuz5U8j5Zc+PQs4eUdj5Zc+PQs4eUdj5Zc+fQs4ve34UcvaIws4ve/4Ucn7Z86OQs0cUdn7Z86eQ8xdy9kKTcsuQxi8OBgAAAAAAQEQoVQAAAAAAAJIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABK0zncAWpbeZ/29WdZT2iqLC4dE7Dzx3iivLNro9S2+4KBmSAUAAAAAAE3nTBUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAELaJUufrqq6N3797Rtm3bGDp0aDz++OMNjr3xxhujqKio1k/btm03YVoAAAAAAOCTKO+lym233Rbjxo2LCRMmxNy5c2PXXXeNESNGxLJlyxpcpmPHjvHaa6/lfl566aVNmBgAAAAAAPgkynupcumll8aYMWNi9OjRsdNOO8W1114bZWVlMWXKlAaXKSoqim7duuV+unbtugkTAwAAAAAAn0R5LVXWrl0bc+bMiWHDhuWmFRcXx7Bhw2LWrFkNLvfuu+/GNttsE7169YqvfOUr8fTTT2+KuAAAAAAAwCdY63xu/M0334zKyso6Z5p07do1nnvuuXqX2WGHHWLKlCmxyy67xMqVK+Piiy+OPfbYI55++uno2bNnnfHl5eVRXl6e+33VqlUREVFRUREVFRXN+Gg+HkpbZc2znuKs1n831qZ8raq3VYj7RyFnjyjs/LLnRyFnjyjs/LLnRyFnjyjs/LLnTyHnlz0/Cjl7RGHnlz1/Cjm/7PlRyNkjCju/7PlTyPkLOXuh2JDntijLsub51LsJlixZEj169IhHHnkkdt9999z0M888M2bMmBGPPfbYetdRUVER/fv3j+OOOy7OO++8OvMnTpwYkyZNqjN96tSpUVZWtnEPAAAAAAAAKGhr1qyJkSNHxsqVK6Njx46Njs3rmSpdunSJVq1axdKlS2tNX7p0aXTr1i1pHSUlJbHbbrvFiy++WO/88ePHx7hx43K/r1q1Knr16hXDhw9f75PzSbTzxHubZT2lxVmcN7gqzpldHOVVRRu9vqcmjmiGVGkqKirivvvuiwMOOCBKSko22XabQyFnjyjs/LLnRyFnjyjs/LLnRyFnjyjs/LLnTyHnlz0/Cjl7RGHnlz1/Cjm/7PlRyNkjCju/7PlTyPkLOXuhqL7CVYq8lipt2rSJQYMGxbRp0+Kwww6LiIiqqqqYNm1ajB07NmkdlZWVsWDBgjjwwAPrnV9aWhqlpaV1ppeUlNgB61FeufEFSK31VRU1yzrz8VoV8j5SyNkjCju/7PlRyNkjCju/7PlRyNkjCju/7PlTyPllz49Czh5R2Pllz59Czi97fhRy9ojCzi97/hRy/kLO3tJtyPOa11IlImLcuHExatSoGDx4cAwZMiQuv/zyWL16dYwePToiIk488cTo0aNHTJ48OSIifvrTn8bnP//56NevX6xYsSIuuuiieOmll+Ib3/hGPh8GAAAAAADwMZf3UuWYY46JN954I84999x4/fXXY+DAgXHPPffkbl7/8ssvR3FxcW7822+/HWPGjInXX389OnXqFIMGDYpHHnkkdtppp3w9BAAAAAAA4BMg76VKRMTYsWMbvNzXgw8+WOv3yy67LC677LJNkAoAAAAAAOD/FK9/CAAAAAAAAEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABC2iVLn66qujd+/e0bZt2xg6dGg8/vjjScvdeuutUVRUFIcddthHGxAAAAAAAPjEy3upctttt8W4ceNiwoQJMXfu3Nh1111jxIgRsWzZskaXW7x4cZxxxhmx1157baKkAAAAAADAJ1neS5VLL700xowZE6NHj46ddtoprr322igrK4spU6Y0uExlZWUcf/zxMWnSpOjbt+8mTAsAAAAAAHxStc7nxteuXRtz5syJ8ePH56YVFxfHsGHDYtasWQ0u99Of/jS23nrr+PrXvx4zZ85sdBvl5eVRXl6e+33VqlUREVFRUREVFRUb+Qg+fkpbZc2znuKs1n831qZ8raq3VYj7RyFnjyjs/LLnRyFnjyjs/LLnRyFnjyjs/LLnTyHnlz0/Cjl7RGHnlz1/Cjm/7PlRyNkjCju/7PlTyPkLOXuh2JDntijLsub51LsJlixZEj169IhHHnkkdt9999z0M888M2bMmBGPPfZYnWUeeuihOPbYY2P+/PnRpUuXOOmkk2LFihXx17/+td5tTJw4MSZNmlRn+tSpU6OsrKzZHgsAAAAAAFB41qxZEyNHjoyVK1dGx44dGx2b1zNVNtQ777wTJ5xwQlx//fXRpUuXpGXGjx8f48aNy/2+atWq6NWrVwwfPny9T84n0c4T722W9ZQWZ3He4Ko4Z3ZxlFcVbfT6npo4ohlSpamoqIj77rsvDjjggCgpKdlk220OhZw9orDzy54fhZw9orDzy54fhZw9orDzy54/hZxf9vwo5OwRhZ1f9vwp5Pyy50chZ48o7Pyy508h5y/k7IWi+gpXKfJaqnTp0iVatWoVS5curTV96dKl0a1btzrj//vf/8bixYvjkEMOyU2rqqqKiIjWrVvH888/H9tuu22tZUpLS6O0tLTOukpKSuyA9Siv3PgCpNb6qoqaZZ35eK0KeR8p5OwRhZ1f9vwo5OwRhZ1f9vwo5OwRhZ1f9vwp5Pyy50chZ48o7Pyy508h55c9Pwo5e0Rh55c9fwo5fyFnb+k25HnN643q27RpE4MGDYpp06blplVVVcW0adNqXQ6s2o477hgLFiyI+fPn534OPfTQ2G+//WL+/PnRq1evTRkfAAAAAAD4BMn75b/GjRsXo0aNisGDB8eQIUPi8ssvj9WrV8fo0aMjIuLEE0+MHj16xOTJk6Nt27ax884711p+iy22iIioMx0AAAAAAKA55b1UOeaYY+KNN96Ic889N15//fUYOHBg3HPPPdG1a9eIiHj55ZejuDivJ9QAAAAAAADkv1SJiBg7dmyMHTu23nkPPvhgo8veeOONzR8IAAAAAABgHU4BAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASNDkUmXmzJnxta99LXbfffd49dVXIyLid7/7XTz00EPNFg4AAAAAAKClaFKp8uc//zlGjBgRm222WcybNy/Ky8sjImLlypXx85//vFkDAgAAAAAAtARNKlXOP//8uPbaa+P666+PkpKS3PQ999wz5s6d22zhAAAAAAAAWoomlSrPP/987L333nWmb7755rFixYqNzQQAAAAAANDiNKlU6datW7z44ot1pj/00EPRt2/fjQ4FAAAAAADQ0jSpVBkzZkx873vfi8ceeyyKiopiyZIlccstt8QZZ5wRp5xySnNnBAAAAAAAyLvWTVnorLPOiqqqqth///1jzZo1sffee0dpaWmcccYZ8d3vfre5M0KS3mf9vVnWU9oqiwuHROw88d4oryza6PUtvuCgZkgFAAAAAEC+NalUKSoqip/85Cfxwx/+MF588cV49913Y6eddor27ds3dz4AAAAAAIAWoUmlysqVK6OysjI6d+4cO+20U2768uXLo3Xr1tGxY8dmCwgAAAAAANASNOmeKscee2zceuutdab/4Q9/iGOPPXajQwEAAAAAALQ0TSpVHnvssdhvv/3qTN93333jscce2+hQAAAAAAAALU2TSpXy8vL44IMP6kyvqKiI9957b6NDAQAAAAAAtDRNKlWGDBkS1113XZ3p1157bQwaNGijQwEAAAAAALQ0TbpR/fnnnx/Dhg2LJ598Mvbff/+IiJg2bVo88cQT8c9//rNZAwIAAAAAALQETTpTZc8994xZs2ZFr1694g9/+EPceeed0a9fv/j3v/8de+21V3NnBAAAAAAAyLsmnakSETFw4MC45ZZbmjMLAAAAAABAi9XkUqWqqipefPHFWLZsWVRVVdWat/fee290MAAAAAAAgJakSZf/evTRR6Nfv37Rv3//2HvvvWPffffN/ey3334bvL6rr746evfuHW3bto2hQ4fG448/3uDY22+/PQYPHhxbbLFFtGvXLgYOHBi/+93vmvIwAAAAAAAAkjWpVPn2t78dgwcPjqeeeiqWL18eb7/9du5n+fLlG7Su2267LcaNGxcTJkyIuXPnxq677hojRoyIZcuW1Tu+c+fO8ZOf/CRmzZoV//73v2P06NExevTouPfee5vyUAAAAAAAAJI06fJfL7zwQvzpT3+Kfv36bXSASy+9NMaMGROjR4+OiIhrr702/v73v8eUKVPirLPOqjN+3333rfX79773vbjpppvioYceihEjRmx0HgAAAAAAgPo0qVQZOnRovPjiixtdqqxduzbmzJkT48ePz00rLi6OYcOGxaxZs9a7fJZl8cADD8Tzzz8fv/jFL+odU15eHuXl5bnfV61aFRERFRUVUVFRsVH5P45KW2XNs57irNZ/N1bKa1XI2ZtL9bYKdd8u5Pyy50chZ48o7Pyy50chZ48o7Pyy508h55c9Pwo5e0Rh55c9fwo5v+z5UcjZIwo7v+z5U8j5Czl7odiQ57Yoy7IN/uT4L3/5S5x99tnxwx/+MAYMGBAlJSW15u+yyy5J61myZEn06NEjHnnkkdh9991z088888yYMWNGPPbYY/Uut3LlyujRo0eUl5dHq1at4pprromTTz653rETJ06MSZMm1Zk+derUKCsrS8oJAAAAAAB8PK1ZsyZGjhwZK1eujI4dOzY6tklnqhx55JEREbWKjKKiosiyLIqKiqKysrIpq03WoUOHmD9/frz77rsxbdq0GDduXPTt27fOpcEiIsaPHx/jxo3L/b5q1aro1atXDB8+fL1PzifRzhOb5940pcVZnDe4Ks6ZXRzlVUUbvb6nJq7/0m6FnL25VFRUxH333RcHHHBAnbKzEBRyftnzo5CzRxR2ftnzo5CzRxR2ftnzp5Dzy54fhZw9orDzy54/hZxf9vwo5OwRhZ1f9vwp5PyFnL1QVF/hKkWTSpVFixY1ZbE6unTpEq1atYqlS5fWmr506dLo1q1bg8sVFxfnLj02cODAePbZZ2Py5Mn1liqlpaVRWlpaZ3pJSYkdsB7llRtfItRaX1VRs6wz5bUq5OzNrdD370LOL3t+FHL2iMLOL3t+FHL2iMLOL3v+FHJ+2fOjkLNHFHZ+2fOnkPPLnh+FnD2isPPLnj+FnL+Qs7d0G/K8NqlU2WabbZqyWB1t2rSJQYMGxbRp0+Kwww6LiIiqqqqYNm1ajB07Nnk9VVVVte6bAgAAAAAA0NyaVKpUe+aZZ+Lll1+OtWvX1pp+6KGHJq9j3LhxMWrUqBg8eHAMGTIkLr/88li9enWMHj06IiJOPPHE6NGjR0yePDkiIiZPnhyDBw+ObbfdNsrLy+Puu++O3/3ud/HLX/5yYx4KAAAAAABAo5pUqixcuDAOP/zwWLBgQe5eKhEf3lclIjbonirHHHNMvPHGG3HuuefG66+/HgMHDox77rknunbtGhERL7/8chQXF+fGr169Or7zne/EK6+8EptttlnsuOOOcfPNN8cxxxzTlIcCAAAAAACQpEmlyve+973o06dPTJs2Lfr06ROPP/54vPXWW/GDH/wgLr744g1e39ixYxu83NeDDz5Y6/fzzz8/zj///KbEBgAAAAAAaLImlSqzZs2KBx54ILp06RLFxcVRXFwcX/jCF2Ly5Mlx2mmnxbx585o7JwAAAAAAQF4Vr39IXZWVldGhQ4eIiOjSpUssWbIkIj68gf3zzz/ffOkAAAAAAABaiCadqbLzzjvHk08+GX369ImhQ4fGhRdeGG3atInrrrsu+vbt29wZAQAAAAAA8q5JpcrZZ58dq1evjoiIn/70p3HwwQfHXnvtFVtuuWXceuutzRoQAAAAAACgJWhSqTJixIjcv/v16xfPPfdcLF++PDp16hRFRUXNFg4AAAAAAKClaNI9VU4++eR45513ak3r3LlzrFmzJk4++eRmCQYAAAAAANCSNKlUuemmm+K9996rM/29996L3/72txsdCgAAAAAAoKXZoMt/rVq1KrIsiyzL4p133om2bdvm5lVWVsbdd98dW2+9dbOHBAAAAAAAyLcNKlW22GKLKCoqiqKioth+++3rzC8qKopJkyY1WzgAAAAAAICWYoNKlenTp0eWZfHFL34x/vznP0fnzp1z89q0aRPbbLNNdO/evdlDAgAAAAAA5NsGlSr77LNPfPDBBzFq1KgYPHhw9OrV66PKBQAAAAAA0KJs8I3qW7duHX/605+isrLyo8gDAAAAAADQIm1wqRIR8cUvfjFmzJjR3FkAAAAAAABarA26/Fe1L3/5y3HWWWfFggULYtCgQdGuXbta8w899NBmCQcAAAAAANBSNKlU+c53vhMREZdeemmdeUVFRS4NBgAAAAAAfOw0qVSpqqpq7hwAAAAAAAAtWpPuqQIAAAAAAPBJ0+RSZcaMGXHIIYdEv379ol+/fnHooYfGzJkzmzMbAAAAAABAi9GkUuXmm2+OYcOGRVlZWZx22mlx2mmnxWabbRb7779/TJ06tbkzAgAAAAAA5F2T7qnys5/9LC688MI4/fTTc9NOO+20uPTSS+O8886LkSNHNltAAAAAAACAlqBJZ6osXLgwDjnkkDrTDz300Fi0aNFGhwIAAAAAAGhpmlSq9OrVK6ZNm1Zn+v333x+9evXa6FAAAAAAAAAtTZMu//WDH/wgTjvttJg/f37sscceERHx8MMPx4033hhXXHFFswYEAAAAAABoCZpUqpxyyinRrVu3uOSSS+IPf/hDRET0798/brvttvjKV77SrAEBAAAAAABagiaVKhERhx9+eBx++OHNmQUAAAAAAKDFanKpEhExe/bsePbZZyMiYqeddopBgwY1SygAAAAAAICWpkmlyiuvvBLHHXdcPPzww7HFFltERMSKFStijz32iFtvvTV69uzZnBkBAAAAAADyrrgpC33jG9+IioqKePbZZ2P58uWxfPnyePbZZ6Oqqiq+8Y1vNHdGAAAAAACAvGvSmSozZsyIRx55JHbYYYfctB122CGuvPLK2GuvvZotHAAAAAAAQEvRpDNVevXqFRUVFXWmV1ZWRvfu3Tc6FAAAAAAAQEvTpFLloosuiu9+97sxe/bs3LTZs2fH9773vbj44oubLRwAAAAAAEBL0aTLf5100kmxZs2aGDp0aLRu/eEqPvjgg2jdunWcfPLJcfLJJ+fGLl++vHmSAgAAAAAA5FGTSpXLL7+8mWMAAAAAAAC0bE0qVUaNGtXcOQAAAAAAAFq0JpUq1ZYtWxbLli2LqqqqWtN32WWXjQoFAAAAAADQ0jSpVJkzZ06MGjUqnn322ciyrNa8oqKiqKysbJZwAAAAAAAALUWTSpWTTz45tt9++/jNb34TXbt2jaKioubOBQAAAAAA0KI0qVRZuHBh/PnPf45+/fo1dx4AAAAAAIAWqbgpC+2///7x5JNPNncWAAAAAACAFqtJZ6r8+te/jlGjRsVTTz0VO++8c5SUlNSaf+ihhzZLOAAAAAAAgJaiSaXKrFmz4uGHH45//OMfdea5UT0AAAAAAPBx1KTLf333u9+Nr33ta/Haa69FVVVVrR+FCgAAAAAA8HHUpFLlrbfeitNPPz26du3a3HkAAAAAAABapCaVKkcccURMnz69ubMAAAAAAAC0WE26p8r2228f48ePj4ceeigGDBhQ50b1p512WrOEAwAAAAAAaCmaVKr8+te/jvbt28eMGTNixowZteYVFRUpVQAAAAAAgI+dJpUqixYtau4cAAAAAAAALVpyqTJu3Lg477zzol27djFu3LgGxxUVFcUll1zSLOEAAAAAAABaiuRSZd68eVFRUZH7d0OKioo2PhUAAAAAAEALk1yqTJ8+vd5/AwAAAAAAfBIU5zsAAAAAAABAIVCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJGgRpcrVV18dvXv3jrZt28bQoUPj8ccfb3Ds9ddfH3vttVd06tQpOnXqFMOGDWt0PAAAAAAAQHPIe6ly2223xbhx42LChAkxd+7c2HXXXWPEiBGxbNmyesc/+OCDcdxxx8X06dNj1qxZ0atXrxg+fHi8+uqrmzg5AAAAAADwSZL3UuXSSy+NMWPGxOjRo2OnnXaKa6+9NsrKymLKlCn1jr/lllviO9/5TgwcODB23HHH+PWvfx1VVVUxbdq0TZwcAAAAAAD4JMlrqbJ27dqYM2dODBs2LDetuLg4hg0bFrNmzUpax5o1a6KioiI6d+78UcUEAAAAAACI1vnc+JtvvhmVlZXRtWvXWtO7du0azz33XNI6fvSjH0X37t1rFTM1lZeXR3l5ee73VatWRURERUVFVFRUNDH5x1dpq6x51lOc1frvxkp5rQo5e3Op3lah7tuFnF/2/Cjk7BGFnV/2/Cjk7BGFnV/2/Cnk/LLnRyFnjyjs/LLnTyHnlz0/Cjl7RGHnlz1/Cjl/IWcvFBvy3BZlWdY8nxw3wZIlS6JHjx7xyCOPxO67756bfuaZZ8aMGTPisccea3T5Cy64IC688MJ48MEHY5dddql3zMSJE2PSpEl1pk+dOjXKyso27gEAAAAAAAAFbc2aNTFy5MhYuXJldOzYsdGxeT1TpUuXLtGqVatYunRprelLly6Nbt26NbrsxRdfHBdccEHcf//9DRYqERHjx4+PcePG5X5ftWpV7ub263tyPol2nnhvs6yntDiL8wZXxTmzi6O8qmij1/fUxBHrHVPI2ZtLRUVF3HfffXHAAQdESUnJJttucynk/LLnRyFnjyjs/LLnRyFnjyjs/LLnTyHnlz0/Cjl7RGHnlz1/Cjm/7PlRyNkjCju/7PlTyPkLOXuhqL7CVYq8lipt2rSJQYMGxbRp0+Kwww6LiMjddH7s2LENLnfhhRfGz372s7j33ntj8ODBjW6jtLQ0SktL60wvKSmxA9ajvHLjS4Ra66sqapZ1prxWhZy9uRX6/l3I+WXPj0LOHlHY+WXPj0LOHlHY+WXPn0LOL3t+FHL2iMLOL3v+FHJ+2fOjkLNHFHZ+2fOnkPMXcvaWbkOe17yWKhER48aNi1GjRsXgwYNjyJAhcfnll8fq1atj9OjRERFx4oknRo8ePWLy5MkREfGLX/wizj333Jg6dWr07t07Xn/99YiIaN++fbRv3z5vjwMAAAAAAPh4y3upcswxx8Qbb7wR5557brz++usxcODAuOeee3I3r3/55ZejuLg4N/6Xv/xlrF27No466qha65kwYUJMnDhxU0YHAAAAAAA+QfJeqkREjB07tsHLfT344IO1fl+8ePFHHwgAAAAAAGAdxesfAgAAAAAAgFIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAggVIFAAAAAAAgQd5Llauvvjp69+4dbdu2jaFDh8bjjz/e4Ninn346jjzyyOjdu3cUFRXF5ZdfvumCAgAAAAAAn2h5LVVuu+22GDduXEyYMCHmzp0bu+66a4wYMSKWLVtW7/g1a9ZE375944ILLohu3bpt4rQAAAAAAMAnWV5LlUsvvTTGjBkTo0ePjp122imuvfbaKCsriylTptQ7/nOf+1xcdNFFceyxx0ZpaekmTgsAAAAAAHyStc7XhteuXRtz5syJ8ePH56YVFxfHsGHDYtasWc22nfLy8igvL8/9vmrVqoiIqKioiIqKimbbzsdFaausedZTnNX678ZKea0KOXtzqd5Woe7bhZxf9vwo5OwRhZ1f9vwo5OwRhZ1f9vwp5Pyy50chZ48o7Pyy508h55c9Pwo5e0Rh55c9fwo5fyFnLxQb8twWZVnWPJ8cb6AlS5ZEjx494pFHHondd989N/3MM8+MGTNmxGOPPdbo8r17947vf//78f3vf7/RcRMnToxJkybVmT516tQoKytrUnYAAAAAAODjYc2aNTFy5MhYuXJldOzYsdGxeTtTZVMZP358jBs3Lvf7qlWrolevXjF8+PD1PjmfRDtPvLdZ1lNanMV5g6vinNnFUV5VtNHre2riiPWOKeTszaWioiLuu+++OOCAA6KkpGSTbbe5FHJ+2fOjkLNHFHZ+2fOjkLNHFHZ+2fOnkPPLnh+FnD2isPPLnj+FnF/2/Cjk7BGFnV/2/Cnk/IWcvVBUX+EqRd5KlS5dukSrVq1i6dKltaYvXbq0WW9CX1paWu/9V0pKSuyA9Siv3PgSodb6qoqaZZ0pr1UhZ29uhb5/F3J+2fOjkLNHFHZ+2fOjkLNHFHZ+2fOnkPPLnh+FnD2isPPLnj+FnF/2/Cjk7BGFnV/2/Cnk/IWcvaXbkOc1bzeqb9OmTQwaNCimTZuWm1ZVVRXTpk2rdTkwAAAAAACAliCvl/8aN25cjBo1KgYPHhxDhgyJyy+/PFavXh2jR4+OiIgTTzwxevToEZMnT46ID29u/8wzz+T+/eqrr8b8+fOjffv20a9fv7w9DgAAAAAA4OMvr6XKMcccE2+88Uace+658frrr8fAgQPjnnvuia5du0ZExMsvvxzFxf93Ms2SJUtit912y/1+8cUXx8UXXxz77LNPPPjgg5s6PgAAAAAA8AmS9xvVjx07NsaOHVvvvHWLkt69e0eWZZsgFQAAAAAAQG15u6cKAAAAAABAIVGqAAAAAAAAJFCqAAAAAAAAJFCqAAAAAAAAJMj7jeqBiN5n/b1Z1lPaKosLh0TsPPHeKK8s2uj1Lb7goGZIBQAAAADw8eBMFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAAAAAgARKFQAAgP+vvfuOjqrO3zj+zKSTAoQiPQECCYhIb8qioouAgoKLYgFBLLiKIqKLriBiQUQQXZVVmuIKqOiK2BBErICUAJJQDAi6VIl0BZJ8fn9wMr8EUiZB8p0neV7n5Bxm7qjvvfu534R7M3dERERERET8EOw6QET4xf/jwz/l3xMWZBjXBmjy6Kc4luk5o3/XT2O7/ylNIiIiIiIiIiIiItn0ThURERERERERERERERE/6KKKiIiIiIiIiIiIiIiIH3RRRURERERERERERERExA/6TBURKdMC8fNgAH0mjIiIiIiIiIiISCDSO1VERERERERERERERET8oIsqIiIiIiIiIiIiIiIiftBFFRERERERERERERERET/oooqIiIiIiIiIiIiIiIgfdFFFRERERERERERERETED7qoIiIiIiIiIiIiIiIi4gddVBEREREREREREREREfGDLqqIiIiIiIiIiIiIiIj4Idh1gIiIFE/8Pz78U/49YUGGcW2AJo9+imOZnjP+9/00tvufUCUiIiIiIiIiIhJ49E4VERERERERERERERERP+iiioiIiIiIiIiIiIiIiB90UUVERERERERERERERMQPuqgiIiIiIiIiIiIiIiLih4C4qPLiiy8iPj4e4eHhaNu2LZYvX17g699++20kJSUhPDwc5513Hj766KMSKhURERERERERERERkbLK+UWVOXPm4L777sOoUaOwatUqnH/++ejSpQv27NmT5+u//fZb9O3bF7fccgtWr16Nq666CldddRV++OGHEi4XEREREREREREREZGyxPlFlQkTJuDWW2/FgAED0LhxY0yePBnlypXDtGnT8nz9pEmTcPnll2P48OFo1KgRxowZgxYtWuBf//pXCZeLiIiIiIiIiIiIiEhZEuzyP378+HGsXLkSI0aM8D3n9Xpx6aWX4rvvvsvzn/nuu+9w33335XquS5cu+O9//5vn648dO4Zjx475Hh84cAAAkJ6ejhMnTpzh/4LSJzjjyJ/z78kyHD2aheATXmRmec7437dv377C/5tqd9IOBGY/cztQ+uem7VOLzvi/AwBhXsM/m2eh2cPv4tif0L5sRGe/Xsfcr3buuWFuB9z1/xlOnDiBo0ePYt++fQgJCSmx/+6fgbkd4O5XuxvM7QB3v9rdYe5XuxvM7QB3v9rdYe5nbmdx6NAhAICZFfpaj/nzqrNkx44dqFmzJr799lu0b9/e9/wDDzyAJUuWYNmyZaf9M6GhoXjttdfQt29f33MvvfQSRo8ejd27d5/2+kcffRSjR48+O/8DRERERERERERERESkVPj5559Rq1atAl/j9J0qJWHEiBG53tmSlZWF9PR0VKpUCR7Pmf+GpOTt4MGDqF27Nn7++WfExMS4zikStbvD3K92N5jbAe5+tbvB3A5w96vdHeZ+tbvB3A5w96vdHeZ+tbvB3A5w96vdHeZ+5nYWZoZDhw6hRo0ahb7W6UWVypUrIygo6LR3mOzevRvVqlXL85+pVq1akV4fFhaGsLCwXM9VqFCh+NFSJDExMbQHutrdYe5XuxvM7QB3v9rdYG4HuPvV7g5zv9rdYG4HuPvV7g5zv9rdYG4HuPvV7g5zP3M7g/Lly/v1OqcfVB8aGoqWLVti0aL/v093VlYWFi1alOt2YDm1b98+1+sB4LPPPsv39SIiIiIiIiIiIiIiIn8G57f/uu+++9C/f3+0atUKbdq0wXPPPYcjR45gwIABAIB+/fqhZs2aeOqppwAA99xzDzp16oRnn30W3bt3x+zZs7FixQq88sorLv9niIiIiIiIiIiIiIhIKef8osq1116LvXv3YuTIkdi1axeaNWuGTz75BOeccw4AYPv27fB6//8NNR06dMCbb76Jf/7zn3jooYfQoEED/Pe//0WTJk1c/U+QPISFhWHUqFGn3XqNgdrdYe5XuxvM7QB3v9rdYG4HuPvV7g5zv9rdYG4HuPvV7g5zv9rdYG4HuPvV7g5zP3N7aeQxM3MdISIiIiIiIiIiIiIiEuicfqaKiIiIiIiIiIiIiIgIC11UERERERERERERERER8YMuqoiIiIiIiIiIiIiIiPhBF1VERERERERERERERET8EOw6QEqnGTNm4Oqrr0b58uVdpxTZ1q1bUbt2bQQH6/Bwwczg8XhcZ5RqmZmZCAoK8j1evnw5srKy0Lx5c4SFhTksExF/ZGRk6HuUCIndu3fDzFCtWjXXKUWmtebsW7lyJVq2bOk644zs2rULy5Ytw65duwAA1apVQ9u2bSlnXkRERMRfeqeKnBW33XYbduzY4TqjWBITE7F582bXGQW68sorMXPmTPz++++uU4rl2LFjuP/++/GXv/wFTz/9NADg8ccfR1RUFKKjo3H99dfj4MGDjivzFh0djVtuuQXffvut65Qi27ZtG1q1aoWwsDB07doVBw8exGWXXYZ27dqhQ4cOaNy4MTZt2uQ6M19r1qxBv379UK9ePURERCAyMhLnnXceHnnkkYCdl/zs2LEDo0aNwg033ID7778fGzZscJ1UoNK073NKS0vDJZdc4jojX5988gnWrVsHAMjKysKYMWNQs2ZNhIWFoVatWhg7dizMzHFl/tasWYPHH38cL730En799ddc2w4ePIiBAwc6KisY+/fYlJQU3HnnnWjevDmqV6+O6tWro3nz5rjzzjuRkpLiOq9Qe/bsweeff44DBw4AOHlRYty4cRg7dqzveAhE6enpuOaaa1CnTh0MHjwYmZmZGDRoEKpXr46aNWuiQ4cO2Llzp+vMPDGvNSdOnMADDzyAhIQEtGnTBtOmTcu1fffu3bl+kSTQtG7dGgkJCXjyySfp/u505MgR3HjjjahVqxauueYajBw5EiNHjsQ111yDWrVq4aabbsLRo0ddZxZo+fLlmDRpEkaMGIERI0Zg0qRJWL58uessv5SWn83YfiZm/R5VmCNHjuDLL790nVGorKysfJ/fvn17CdecmUsuuQTbtm1zneEX5v2+b98+LF68GOnp6QCAX3/9FU8//TQee+wxpKamOq7zn5lh8eLFePXVVzF//nycOHHCdZIAgImcgYoVK+b55fF4rHz58r7Hgejqq6/O88vr9dqll17qexyIPB6PBQcHW/ny5e2OO+6wFStWuE4qkqFDh1qNGjVs2LBh1qhRI7vzzjutTp069sYbb9ibb75pCQkJdvfdd7vOzJPH47Fzzz3XPB6PJSUl2fjx423Pnj2us/zSu3dv69Spk33wwQfWp08fu+CCC+yiiy6yX375xXbs2GFdunSxq666ynVmnj755BOLiIiw3r1724033mjlypWzu+66yx588EFLSEiw+vXr286dO11n5isiIsI3J+vXr7fy5ctbQkKC/e1vf7OkpCQrV66crVmzxnFl3tj3fUGSk5PN6/W6zshXYmKiffnll2Zm9uSTT1qlSpVswoQJ9vHHH9tzzz1n55xzjo0dO9ZxZd4+/fRTCw0NtXPPPdfq1KljlSpVss8//9y3fdeuXQG775m/x3700UcWGhpq7dq1s1GjRtlLL71kL730ko0aNco6dOhgYWFh9sknn7jOzNfixYstMjLSPB6PVatWzZKTk61WrVrWoEEDS0xMtLCwMPv0009dZ+Zp4MCB1qRJE3vhhResU6dO1rNnT2vatKl9/fXX9u2331rr1q2tX79+rjPzxLzWjBo1ys455xx75pln7OGHH7by5cvbbbfd5tu+a9cu83g8DgsL5vF47NZbb7WqVatacHCwde/e3d577z3LyMhwnVaoW265xRo0aGCffPJJrt6MjAz79NNPrWHDhjZo0CCHhfnbvXu3XXjhhebxeCwuLs7atGljbdq0sbi4OPN4PHbhhRfa7t27XWfmi/lnM+afiZm/RxUm0H8mPnDggP3tb3+z8PBwq1q1qj3yyCO51p1A/rny/fffz/MrKCjI/vWvf/keByLm/W5mtmzZMitfvrx5PB6rWLGirVixwurWrWsNGjSw+vXrW0REhK1cudJ1Zp66du1q+/fvNzOzffv2Wdu2bc3j8ViVKlXM6/VaUlISzXmo0kwXVeSMREVFWffu3W3GjBm+r+nTp1tQUJA98cQTvucCkcfjsU6dOtnNN9+c68vr9dpVV13lexyIPB6PrV+/3iZOnGjnnXeeeb1eO//88+2FF16w9PR013mFql27tn322WdmZpaWlmZer9f++9//+rYvWLDA4uLiHNUVzOPx2O7duy05Odnuuusui42NtdDQUOvVq5d99NFHlpWV5ToxX1WqVLHVq1ebmdn+/fvN4/HYV1995du+cuVKO+eccxzVFaxZs2b28ssv+x4vWLDAkpKSzMzs+PHj1rlz54A9Xs3+f27MzHr27GlXXnmlnThxwszMMjMz7brrrrMrrrjCZWK+mPf9pEmTCvx64IEHAvovAmFhYbZt2zYzM2vSpIm99dZbubbPnz/fEhISXKQVqn379vbQQw+ZmVlWVpY9/fTTFhUVZR9//LGZBfZfwpi/xzZt2tQeeeSRfLePGjXKzjvvvBIsKpoLL7zQ/v73v9uhQ4fsmWeesZo1a9rf//533/b777/fOnTo4LAwf9WrV7dvvvnGzP7/RP6CBQt827/++murWbOmq7wCMa81CQkJ9sEHH/geb9682RISEuzmm2+2rKysgF5rzP7/54MTJ07YO++8Y926dbOgoCA755xz7IEHHrCNGze6TsxXhQoVfDOfl6+//toqVKhQgkX+6927t7Vv3942bNhw2rYNGzZYhw4d7JprrnFQ5h/mn82YfyZm/h5VmEC/qDJkyBBr2LChvf322/bqq69aXFycde/e3Y4dO2ZmgX0B3ePxmNfrNY/Hk+9XoO575v1uZnbppZfaoEGD7ODBg/bMM89YrVq1cl3sHzBgQMD+UmnOtXLw4MHWuHFj27Jli5mZ/fzzz9ayZUu74447XCaK6aKKnKHNmzf7fvPu0KFDvueDg4Nt/fr1DssKN2vWLKtVq5ZNmzYt1/MM7TkXWLOTV+Bvu+02K1++vEVERFjfvn1t0aJFDgsLFhER4fvLu5lZSEiI/fDDD77HW7dutXLlyrlIK9Sp+/6PP/6wN9980zp37mxer9dq1apV4Aktl6Kjo33fiDMzMy04ONiSk5N92zdv3mzR0dGu8goUHh5uW7du9T3OysqykJAQ27Fjh5mZffnll1alShVHdYXLOTe1a9f2/UZwtlWrVln16tVdpBWKed97PB6rUaOGxcfH5/lVo0aNgP1LjNnJk7TfffedmZmdc845tmrVqlzbN23aZBERES7SChUTE2M//vhjruf+85//WGRkpH3wwQcBfaKT+XtseHh4nicJs23YsMHCw8NLsKhocs7NiRMnLDg42PfLAGYnZ758+fJu4gpRrlw5++mnn3yPQ0JCbN26db7HW7ZsscjISBdphWJeayIiInJ9jzIz++WXX6xhw4Z2ww032P/+97+AXWvMTl9vzE72P/bYY1avXj3zer3WsWNHR3UFi4mJse+//z7f7cuXL7eYmJgSLPJfVFTUaXOe04oVKywqKqoEi4qG/Wcz1p+Jmb9H5XeHkeyvmJiYgF4r69SpY4sXL/Y93rt3r7Vp08b++te/2h9//BHQP1defvnl1r1799PWeobzTsz73ezk3KekpJjZyQvOXq/Xli1b5tu+cuXKgP2Fl5xrZWJi4mnvZlq4cKHVrVvXRZrkoM9UkTOSkJCAb7/9FtWqVUOzZs3wzTffuE7y23XXXYevvvoKU6dORe/evfHbb7+5Tiq2Nm3a4N///jd27NiBl156CT///DMuu+wy11n5qlOnDr777jsAwPfffw+Px5Pr/sXLli1DzZo1XeUVyOPx5HocFhaGvn37YuHChUhLS8PNN9+MGTNmuIkrxLnnnuu71/hrr72GSpUqYfbs2b7ts2bNQsOGDV3lFahmzZrYuHGj73FaWhqysrJQqVIlAECtWrVw+PBhV3mF8ng8vtnxer0oX758ru0VKlQI2DWIed/HxcVh4sSJ2Lp1a55fH374oevEAl199dV44oknkJmZiZ49e+Kll17K9bkGL7zwApo1a+YusABhYWHYv39/rueuv/56TJkyBddeey3ee+89N2HFwPQ9Nj4+vsC5/vDDDxEXF1eCRUUTGhqKP/74AwBw/PhxZGVl+R4DwO+//46QkBBXeQVq0KAB5s+fDwD4+OOPER4ejgULFvi2f/rpp6hbt66rvAIxrzXVqlVDWlparudq1qyJxYsX4/vvv8fNN9/sJsxPp/5cCZzsf+SRR5CWloYFCxagdu3aDsoKd8UVV+C2227D6tWrT9u2evVqDB48GFdeeaWDssKFhYUV+Lkjhw4dQlhYWAkWFQ3zz2bMPxMzf486duwYBg4ciIkTJ+b5NWzYMNeJBdq7d2+un18qV66MhQsX4tChQ+jWrVtAf37Txx9/jM6dO6NVq1a+nxNYMO934ORxGhERAQAICQlBuXLlULlyZd/2ypUrY9++fa7yCpW9Vv7222+oX79+rm0JCQl0n8VWKrm+qiOlx6JFi6xOnTo2YsQICwkJCfir7tkyMzNt5MiRVrt2bfvkk08o2vP6rbZTBfLtAiZOnGjh4eF26aWXWsWKFe3555+3atWq2QMPPGD/+Mc/rHz58vbYY4+5zsyTP/s+UG8B9sknn1h4eLiFhoZaeHi4LVmyxBo2bGht2rSxdu3aWVBQkM2ZM8d1Zp5Gjx5ttWrVspdfftmmTZtmTZo0yfWZR++++641btzYYWHBPB6PVahQwSpWrGghISE2c+bMXNsXLFhg8fHxjuoKxrzve/fubQ888EC+25OTkwP6Lev79++3Vq1aWUJCgt10000WHh5ucXFxdtlll1ndunWtfPnytnTpUteZebrsssvsmWeeyXPbm2++aSEhIQH7m23M32PfeustCw4OtiuvvNImTZpks2fPttmzZ9ukSZOsR48eFhoaau+8847rzHz17NnTrrjiCvv666/ttttus1atWln37t3t8OHDduTIEbvmmmvs8ssvd52ZpzfeeMOCgoIsISHBwsLC7O2337YaNWpYnz597LrrrrPQ0FD717/+5TozT8xrzS233GIDBw7Mc9svv/xiCQkJAbvWmPm33gSq9PR0u/zyy83j8VhsbKwlJSVZUlKSxcbGmtfrta5du9pvv/3mOjNPd955p8XFxdm7775rBw4c8D1/4MABe/fddy0+Pt7uuusuh4UFY/7ZjPlnYubvUR06dLDnnnsu3+2BfvuvxMRE+/DDD097/tChQ9a+fXs7//zzA7rfzGz16tXWuHFju+222+zIkSMU71Rh3+9JSUm53l0+f/58O3r0qO/x0qVLrVatWi7SCuXxeKxbt2529dVXW8WKFXPd6tTsZHug3rq9LAl2fVFHSo9LLrkEq1atwq233orIyEgEBQW5TvKL1+vF6NGjcdlll6Ffv37IzMx0nVSoTp06ITQ0tMDXBOo7DgDg3nvvRdWqVfHdd99h4MCB6Nu3L8477zyMHDkSR48exdChQ/Hwww+7zszTqFGjEBUVVeBr8vqtw0DQpUsXpKamYuXKlWjZsiXi4+Px5Zdf4sUXX8TRo0fx5JNP4uKLL3admaeHHnoIR44cwZgxY3Ds2DF06dIFkyZN8m2vWbMmXn75ZYeFBZs+fXquxwkJCbkeL126FFdffXVJJvmNed8/9thjBf4GVePGjbF169YSLCqa8uXL49tvv8XUqVPxwQcfID4+HllZWTh+/Dj69u2LwYMHo1atWq4z8zR48GB8+eWXeW7r27cvzAyvvvpqCVf5h/l77N/+9jfUrFkTzz//PJ599lns2rULwMnf5m/fvj2++OILtG/f3nFl/p555hl0794dHTt2RFJSEj777DPceeedqFChAgCgYsWK+OSTT9xG5uOGG25AfHw8li5divbt26NDhw5o3Lgxxo4di6NHj+KVV15B//79XWfmiXmteeSRR7Bhw4Y8t9WsWRNLlizBZ599VsJV/lu8eDFiY2NdZxRLxYoV8fHHH2PDhg347rvvTltvkpKSHBfmb8KECcjKysJ1112HjIwM35p//PhxBAcH45ZbbsH48eMdV+aP+Wcz5p+Jmb9Hde/e/bR3EOcUGxuLfv36lVxQEf31r3/F9OnT0a1bt1zPR0VF4dNPPw3YdxDn1KxZM6xYsQJDhw5Fs2bNcr0jNFCx7/frrrsOe/bs8T3u3r17ru3z5s1DmzZtSjrLLzl/ZuzZs+dpf6edO3duwL6LuCzxGMORLFJCDh8+jLS0NCQlJQX0W75FRERESqt9+/b5bmMDAIsWLcLvv/+O9u3b53peRORMHDx4ECtXrsx1Qahly5aIiYlxXCaBTN+jSt5vv/2GHTt24Nxzz81z+6FDh7Bq1Sp06tSphMuKZ968eVi8eDFGjBiBqlWrus7JV2nb76c6evQogoKCKM/9HTlyBEFBQQgPD3edUqbpoorIKcwMWVlZNO+0yYm5HeDvFykqzbwb7PudtX/z5s3Yvn074uLiTvvNVDm7WGdGxF+//PILKlSocNq7iU+cOIHvvvsOf/nLXxyVFY2Z4YsvvsCPP/6I6tWro0uXLgH7GQ3PPvssrrnmmoD+nCYRERGRs0UfVC9n1aWXXop69eq5zshTRkYG/vnPf6JTp04YNWoUgJNv6Y2KikK5cuXQv39/HD9+3HFl3pjbAf7+ggTyzBcmkNuXL1+e69Z88+fPR6dOnVCzZk20atUKr7/+usO6wjHPfHR0NG655RZ8++23rlOKjHm/A9z9Tz31FBYtWgTg5G+5XXrppUhMTMRll12GxMREdO3atcDbULj20UcfYdCgQXjggQdOu7XQb7/9hksuucRRWcGYZyanX375Jc8PWT5x4kS+t5ULdGvWrAnYi1rM6/zOnTvRpk0bxMXFoUKFCujXr1+u2UlPTw/YW5sCQLdu3XDgwAEAJ1vbt2+Pzp074+GHH0bPnj3RtGlT7N2713Fl3oYPH4769evjsssuw5w5cyjWFn/t3r0bjz32mOuMAuX8PpWampprWyB/n2Jeb05lZli8eDFeffVVfPjhhzhx4oTrpALt27cPixcvRnp6OgDg119/xdNPP43HHnvstBkKRPPnz8fIkSPxzTffAAA+//xzdOvWDZdffjleeeUVx3UFY23/5Zdf8Ouvv/oef/XVV7jhhhvQsWNH3Hjjjfjuu+8c1p25999/P+DPI+SHub1UcfA5LlKG/Otf/7JHH33UdUae/vnPf9o555xj9913nzVu3NjuuOMOq127tr3xxhv22muvWc2aNe3pp592nZkn5nYz/v6CBPLMFyaQ271er++DXOfNm2der9f69etnL774og0aNMiCg4Pt3XffdVyZP+aZ93g8du6555rH47GkpCQbP3687dmzx3WWX5j3uxl3f61atWzVqlVmZjZo0CBr3ry5rVq1yn7//XdLTk62du3a2S233OK4Mm//+c9/LCgoyLp3724XXnihhYeH2xtvvOHbvmvXroD9UE7mmTEz27Fjh7Vu3dq8Xq8FBQXZTTfdZIcOHfJtD+R9X5jk5GTzeDyuM/LEvM7369fP2rZta99//7199tln1rJlS2vVqpWlp6eb2cmZCdT9bpb7g+oHDx5sjRs3ti1btpiZ2c8//2wtW7a0O+64w2Vivjwej02fPt169uxpISEhVqlSJbvnnnts3bp1rtPOWKB/aDfz9ynm9aZr1662f/9+MzPbt2+ftW3b1jwej1WpUsW8Xq8lJSUF7P+WZcuWWfny5c3j8VjFihVtxYoVVrduXWvQoIHVr1/fIiIibOXKla4z8zV58mQLDg62li1bWkxMjM2cOdOio6Nt0KBBdvvtt1tERIQ999xzrjPzxNzepk0b3wek//e//zWv12s9evSwBx980K6++moLCQk57QPUmSQmJgbsWlkY5vbSRBdVpMyqV6+e7xvA5s2bzev12uzZs33b58yZY02aNHGVVyDmdjP+fil5OU86XHjhhfaPf/wj1/YnnnjC2rVr5yLNL8wzn73vk5OT7a677rLY2FgLDQ21Xr162UcffWRZWVmuE/PFvN/NuPvDwsLsp59+MjOz+Ph4W7JkSa7tK1assOrVq7tIK1SzZs1s0qRJvsdz5syxyMhImzJlipkF9skq5pkx4z5BfvXVVxf4dckllwTs3DCv8zVq1LBly5b5Hv/xxx925ZVXWrNmzWzfvn0Bfbya5f75JjEx0d5///1c2xcuXGh169Z1kVaonO27d++2p59+2pKSkszr9Vrr1q3tlVdesYMHDzquzNuaNWsK/JozZ05Azw3z9ynm9Yb5Iuill15qgwYNsoMHD9ozzzxjtWrVskGDBvm2DxgwwK666iqHhQVr3LixvfLKK2Zm9vnnn1t4eLi9+OKLvu3Tp0+3Ro0aucorEHN7ZGSkb8bbtm1rY8eOzbX9hRdesObNm7tIEwkIuqgiZVZ4eLht37491+PU1FTf4y1btlh0dLSLtEIxt5vx90vJy/mXmKpVq9qKFStybd+wYYNVqFDBRZpfmGc+5743O3nC6s0337TOnTub1+u1WrVq2SOPPOKwMH/M+92Mu79hw4Y2f/58MzOrW7euffPNN7m2r1692mJiYlykFSrnXyCzff755xYVFWUvv/xyQJ+sYp4ZM+4T5MHBwda1a1e7+eab8/zq0aNHwLYzr/ORkZG2adOmXM+dOHHCrrrqKmvatKmtXbs2YPe72cl9n/2b7VWrVrUffvgh1/affvrJwsLCXKQV6tS5yfbll19a//79LTIy0iIjIx2UFc7j8ZjX6zWPx3PaV/bzgTw3zN+nmNcb5ougFStWtJSUFDMzO378uHm93lzfb1euXGk1a9Z0lVeoiIgI27Ztm+9xSEhIrnfFbd261cqVK+cirVDM7eXLl7c1a9aY2cnvUdl/zvbjjz8GbLtISQh2ffsx4dWrVy+/X/vuu++exZLiKV++PPbv34/atWsDAFq0aIHo6Gjf9mPHjsHj8bjKKxBzO8DbzzzzzO3ZUlJSsGvXLkRERCArK+u07RkZGQ6q/MM68wBO6woLC0Pfvn3Rt29f/PTTT5g6dSpmzJgRkPceZ97vAHf/rbfeiuHDhyMxMRF33XUX7r//fsycORP169fH1q1bMXToUPz1r391nZmnmJgY7N69G3Xr1vU9d/HFF2P+/Pm44oor8MsvvzisKxjzzADAgQMHULFiRd/jsLAwvPvuu/jb3/6Giy++GG+88YbDuoI1atQIvXv3xi233JLn9uTkZMyfP7+Eq/zDvM7Xq1cPa9euRYMGDXzPBQcH4+2338bf/vY3XHHFFQ7r/HPzzTcjLCwMJ06cwNatW3Huuef6tu3atQsVKlRwF1eA/NaSjh07omPHjnj++ecxZ86cEq7yT2xsLMaNG4fOnTvnuX39+vW48sorS7jKf8zfp5jXG+D/+3/77TfUr18/17aEhATs2LHDRVahjh8/joiICABASEgIypUrh8qVK/u2V65cGfv27XOVV6hKlSph27ZtqFOnDnbs2IGMjAxs374dTZo0AQBs27YNsbGxjivzxtzeqVMnzJo1C02bNkXz5s3xxRdfoGnTpr7tixcvRs2aNR0W+m///v1Yvnw59uzZc9q5hH79+jmq8g9ze2mniypSbOXLl3edcEYaN26MVatW4bzzzgMA34eGZVu3bl2uv6AFEuZ2gLefeeaZ27N17twZZgbg5My0bt3at2316tWoU6eOq7RCsc48AN8+z0t8fDzGjBkTsH/xZd7vAHf//fffj+3bt6Nx48aoX78+fvrpJzRs2BDBwcHIyMhAixYtMGvWLNeZeWrTpg0+/vhjtGvXLtfznTp1wgcffBDQJ2mZZwbgPkHesmVLrFq1Kt+LKmFhYQH7fYp5ne/atSteeeUV9O7dO9fz2XPTu3fvgD7B3L9/f9+fe/bsiaNHj+baPnfuXDRr1qyEq/xT0NwAJ0/833rrrSVUUzQtW7bEjh07EBcXl+f2/fv3F/q/zyXm71PM6w3AexG0du3a2LJlC+Lj4wEAs2fPRvXq1X3bd+7cmesiS6Dp2bMnbrnlFvTv3x/z5s1Dv379MGzYMHi9Xng8HgwfPjxgf1mHuX3s2LHo2LEjduzYgQsvvBAPP/wwvv/+ezRq1AgbN27EnDlzMHnyZNeZhfrggw9www034PDhw4iJicl1cdfj8QT0hQnm9rLAY4H804LIWbRp0yaEhITk+g2fnN58800EBwejT58+JVxWOOZ2gL9fSt62bdtyPY6KikKlSpV8j19//XUAgfubGswzP3r0aAwfPhzlypVznVJkzPsd4O8HgNTUVMyfPx9btmxBVlYWqlevjgsuuACXXnppwL5jYsmSJfj2228xYsSIPLcvXrwYr7/+OqZPn17CZYVjn5kHH3wQycnJ+PTTT0/blpGRgd69e2P+/PnIzMx0UFewY8eOITMzk3KtZF7nMzIycPToUcTExOS7/X//+1++J88D3ZEjRxAUFITw8HDXKaXKe++9hyNHjuDGG2/Mc/tvv/2GefPm5broFUiYv08xrzcDBgzI9bhr1665vp8+8MADWLt2LT755JOSTivU6NGjkZiYiOuuuy7P7Q8//DA2bNiAuXPnlnCZf44cOYKhQ4fiu+++Q4cOHfDCCy/g+eefx8MPP4wTJ06gU6dOmDNnDqpWreo69TTM7QCQlpaGf/7zn/jwww9x+PBhACd/caF169YYPnw4rrrqKreBfmjYsCG6deuGJ598km7tYW4vC3RRRUREREREnCvtJ8hFRKT0Yr4IevToUQQFBSEsLMx1SpH88ccfOHHiRK5bnbJgazcz3+2nKleujJCQENdJfouMjMS6detQr1491ylFxtxeFuj2X1JszZs39/u3TFetWnWWa0TOPuaZZ24XEZGyITg4ON8LKtnbdUFFiuL999/HgQMHAvadrIVh7mduFymOyMhI1wnFxvob8OHh4ZQXsQC+do/Hg3POOcd1RrF06dIFK1asoLwwwdxeFuiiihQbw9v8zsSll16KLVu2YMuWLa5Tioy5HQjcfuaZZ273R6DOjL+Y+9XuDnO/2t1gbge4T9Iy73vm9gcffBCbN2+mnBmAu5+5nXmtAbiPWeZ25rlhbge4+9V+9nXv3h3Dhw9HSkoKzjvvvNPeZdOjRw9HZYVjbi8LdFFFim3UqFGuE86qq6++Gr/++qvrjGJhbgcCt5955pnb/RGoM+Mv5n61u8Pcr3Y3mNsB7pO0zPueuX3Dhg2uE84Icz9zO/NaA3Afs8ztzHPD3A5w96v97Lv11lsBAI899thp2zweT0B+Vl825vayQJ+pIiIiIiIiIiIiIiIi4ge9U0X+FJmZmZg4cSLeeustbN++HcePH8+1PT093VGZyNnBPPPM7SIiIiJ52b9/P5YvX+77IN2cAv23aAHufuZ2ERERkeLQRRX5U4wePRpTpkzBsGHD8M9//hMPP/wwfvrpJ/z3v//FyJEjXeedplevXn6/9t133z2LJUXH3A7w92djm/mc2NrZZ4a5X+3uMPer3Q3m9rwwnaRl3vfM7Tl98MEHuOGGG3D48GHExMTA4/H4tnk8noCbmVMx9zO3A1xrDcB9zDK3n4ptbnJibge4+9XuzpIlSzB+/HikpqYCABo3bozhw4ejY8eOjssKx9xe2umiivwp/vOf/+DVV19F9+7d8eijj6Jv376oX78+mjZtiqVLl2LIkCGuE3MpX76864RiY24H+Puzsc18Tmzt7DPD3K92d5j71e4Gc/up2E7SMu975vachg0bhoEDB+LJJ59EuXLlXOcUGXM/czvbWgNwH7PM7Tkxzk025naAu1/t7rzxxhsYMGAAevXq5TvX8c0336Bz586YMWMGrr/+eseF+WNuLwv0mSryp4iMjERqairq1KmD6tWr48MPP0SLFi2wZcsWNG/eHAcOHHCdKPKnYp555nYRESn9GjZsiG7dulGepBU3IiMjsW7dOtSrV891SrEw9zO3a62R4mCeG+Z2gLtf7e40atQIt912G4YOHZrr+QkTJuDVV1/1vQMkEDG3lwVe1wFSOtSqVQs7d+4EANSvXx8LFiwAAHz//fcICwtzmSZyVjDPPHO7iIiUfv/73/8wZMgQyr+4ixtdunTBihUrXGcUG3M/c7vWGikO5rlhbge4+9XuzpYtW3DllVee9nyPHj2wdetWB0X+Y24vC3T7L/lTXH311Vi0aBHatm2Lu+++GzfeeCOmTp2K7du3n3ZFNRA0b94811sWC7Jq1aqzXFM0zO0Af382tpnPia2dfWaY+9XuDnO/2t1gbj9V9klalt98Z973zO05de/eHcOHD0dKSgrOO+88hISE5Nreo0cPR2X+Ye5nbmdbawDuY5a5PSfGucnG3A5w96vdndq1a2PRokVISEjI9fzChQtRu3ZtR1X+YW4vC3RRRf4UY8eO9f352muvRVxcHL799ls0aNAgz6uqrl111VWuE4qNuR3g78/GNvM5sbWzzwxzv9rdYe5XuxvM7adiO0nLvO+Z23O69dZbAQCPPfbYads8Hg8yMzNLOqlImPuZ29nWGoD7mGVuz4lxbrIxtwPc/Wp3Z9iwYRgyZAiSk5PRoUMHACc/l2TGjBmYNGmS47qCMbeXBfpMFSlR3bt3x5QpU1C9enXXKSIlgnnmmdtFRISX15v/HYoD/SStiPDQWiPFwTw3zO0Ad7/a3Xrvvffw7LPP+j6DpFGjRhg+fDh69uzpuKxwzO2lnS6qSImKjo7GmjVraN82KFJUzDPP3C4iIiIiIiIiInI26IPqpczLzMzE+PHj0aZNG1SrVg2xsbG5vgIZczvA3y8lj31mmPvV7g5zv9rdYG5nx7zvmdsBYMmSJbjyyiuRkJCAhIQE9OjRA1999ZXrLL8x9zO3M2M+ZpnbRUREAF1UEcHo0aMxYcIEXHvttThw4ADuu+8+9OrVC16vF48++qjrvAIxtwP8/VLy2GeGuV/t7jD3q90N5vZsrCdpmfc9c/sbb7yBSy+9FOXKlcOQIUMwZMgQREREoHPnznjzzTdd5xWKuZ+5HeBdawDuY5a5HeCeG+Z2gLtf7SUnNjYWv/76KwCgYsWKp124DeSLuMztZY6JlKCoqChLS0tznZFLvXr1bP78+WZ2su/HH380M7NJkyZZ3759XaYVirndjL/fH4E48/4KxHb2mWHuV7s7zP1qd4O53cxs5syZFhwcbH369LFJkybZpEmTrE+fPhYSEmL/+c9/XOcViHnfM7cnJSXZhAkTTnv+2WeftaSkJAdFRcPcz9zOvNaYcR+zzO3Mc8Pcbsbdr/aSNWPGDPvjjz/MzGz69Ok2Y8aMfL8CDXN7WaOLKlKiAvEkbbly5Wzbtm1mZlatWjVbuXKlmZmlpaVZTEyMy7RCMbeb8ff7IxBn3l+B2M4+M8z9aneHuV/tbjC3m3GfpGXe98ztoaGhtnnz5tOe37x5s4WFhTkoKhrmfuZ25rXGjPuYZW5nnhvmdjPufrWLlD66/ZeUebVq1cLOnTsBAPXr18eCBQsAAN9//z3CwsJcphWKuR3g75eSxz4zzP1qd4e5X+1uMLcDwJYtW3DllVee9nyPHj2wdetWB0X+Y973zO21a9fGokWLTnt+4cKFqF27toOiomHuZ25nXmsA7mOWuZ15bpjbAe5+tbsTFBSEPXv2nPb8vn37EBQU5KDIf8ztZYEuqkiJeuihhwLuvn9XX3217y8Cd999Nx555BE0aNAA/fr1w8CBAx3XFYy5HeDv90cgzry/ArGdfWaY+9XuDnO/2t1gbge4T9Iy73vm9mHDhmHIkCEYPHgwZs6ciZkzZ+KOO+7Avffei/vvv991XqGY+5nbmdcagPuYZW5nnhvmdoC7X+3umFmezx87dgyhoaElXFM0zO1lgcfy+39IpBhSUlKwfft2HD9+PNfzPXr0cFRUdEuXLsW3336LBg0a5Hk1PpAxtwOc/cwzz9yejXFmcmLuV7s7zP1qd4Ot/eWXX8a9996LgQMHokOHDgCAb775BjNmzMCkSZNw++23Oy70H9u+z4mt/b333sOzzz6L1NRUAECjRo0wfPhw9OzZ03GZf5j7WdtL01oD8B2zOTG1M88NczvA3a/2kvf8888DAIYOHYoxY8YgKirKty0zMxNffvklfvrpJ6xevdpVYr6Y28sUt3cfk9IiLS3NmjZtah6Px7xer3k8Ht+fvV6v67w/Rbdu3WzHjh2uM4qFud0sMPuZZ5653V+BODNFwdyvdneY+9XuRiC3v/vuu3bBBRdYbGysxcbG2gUXXGD//e9/XWf9aQJ53xeGuV3kVKV9rTHjPmYDtZ15bpjbzbj71V6y4uPjLT4+3jwej9WuXdv3OD4+3ho2bGh//etfbenSpa4z88TcXpbonSryp7jyyisRFBSEKVOmoG7duli+fDn27duHYcOGYfz48ejYsaPrxDMWHR2NNWvWoF69eq5Tioy5HQjMfuaZZ273VyDOTFEw96vdHeZ+tbvB3M6Oed8zt4uURczHLHO7iASGiy++GO+++y4qVqzoOqXImNvLgmDXAVI6fPfdd/j8889RuXJleL1eeL1eXHjhhXjqqacwZMgQvSVNSh3mmWduFxEREQGA2NhYbNq0CZUrV0bFihXh8XjyfW16enoJlvmHuZ+5XUREypbFixe7Tig25vayQBdV5E+RmZmJ6OhoAEDlypWxY8cOJCYmIi4uDhs3bnRcJ/LnY5555nYRESmddJJWimrixIm+n2cmTpxY4MwEIuZ+5natNVIczHPD3A5w96s9cPzyyy+YN29enp8pO2HCBEdV/mFuL+10UUX+FE2aNMGaNWtQt25dtG3bFuPGjUNoaCheeeUVvVVXSiXmmWduFxGR0on5JK240b9/f9+fb775ZnchxcTcz9yutUaKg3lumNsB7n61B4ZFixahR48eqFevHjZs2IAmTZrgp59+gpmhRYsWrvMKxNxeFugzVeRP8emnn+LIkSPo1asXfvzxR1xxxRXYtGkTKlWqhNmzZ6Nz586uE88Y8/1cmduBwOxnnnnmdn8F4swUBXO/2t1h7le7G8zt7Jj3fSC2BwUFYefOnahatWqu5/ft24eqVasiMzPTUZl/mPuZ28uKQDxm/cXcLiKBoU2bNujatStGjx7tW1OqVq2KG264AZdffjkGDx7sOjFfzO1lgd6pIn+KLl26+P6ckJCADRs2ID09vdC3CYqwYp555nYRESn9dJJWiiq/3xM8duwYQkNDS7im6Jj7mdu11khxMM8NczvA3a92d1JTUzFr1iwAQHBwMH7//XdERUXhscceQ8+ePQP6wgRze1mgiyrypxg4cCAmTZrke3sgcPIejEeOHMHdd9+NadOmOaz7czz00EOIjY11nVEszO1AYPYzzzxzu78CcWaKgrlf7e4w96vdjUBtZz5J669A3ff+CKT2559/HgDg8XgwZcoUREVF+bZlZmbiyy+/RFJSkqu8QjH3M7dnKwtrDRBYx2xRBWI789wwtwPc/Wp3JzIy0vdZJNWrV0daWhrOPfdcAMCvv/7qMq1QzO1lgW7/JX+K/K5c//rrr6hWrRoyMjIclfkvJSUlzw9+6tGjh6Mi/zG3A5z9zDPP3J6NcWZyYu5XuzvM/Wp3g609+yTt0KFDMWbMmDxP0v70009YvXq1q0S/se37nJja69atCwDYtm0batWqhaCgIN+20NBQxMfH47HHHkPbtm1dJRaIuZ+5vTStNQDXMXsqpnbmuWFuB7j71e7eVVddhe7du+PWW2/F/fffj/fffx8333wz3n33XVSsWBELFy50nZgv5vayQO9UkTNy8OBBmBnMDIcOHUJ4eLhvW2ZmJj766KPTTtwGmi1btuDqq6/GunXr4PF4fFfhs2+DFMhvZWRuBzj7mWeeuT0b48zkxNyvdneY+9XuBmv7xIkTAZz8jcjJkyfneZJ28uTJrvL8wrrvAc72rVu3AgAuvvhi3wkGJsz9zO2lYa0BOI/ZbIztzHPD3A5w96vdvQkTJuDw4cMAgNGjR+Pw4cOYM2cOGjRogAkTJjiuKxhze5lgImfA4/GY1+vN9ysoKMgef/xx15kFuuKKK6xnz562d+9ei4qKspSUFPvqq6+sTZs29uWXX7rOKxBzuxlnP/PMM7dnY5yZnJj71e4Oc7/a3WBuNzO76KKLLD093XVGsTDve+Z2keJgXmvMuI9Z5nbmuWFuN+PuV7tI6aPbf8kZWbJkCcwMl1xyCebOnZvrfqehoaGIi4tDjRo1HBYWrnLlyvj888/RtGlTlC9fHsuXL0diYiI+//xzDBs2LKDfysjcDnD2M888c3s2xpnJiblf7e4w96vdDeZ2dsz7nrkdAH755RfMmzcvz1sJMfw2J3M/czsz5mOWuV1ERATQ7b/kDHXq1AnAybd/165dG16v13FR0WVmZvo+sLty5crYsWMHEhMTERcXh40bNzquKxhzO8DZzzzzzO3ZGGcmJ+Z+tbvD3K92N5jbs7GepGXe98ztixYtQo8ePVCvXj1s2LABTZo0wU8//QQzQ4sWLVznFYq5n7kd4F1rAO5jlrkd4J4b5naAu1/tJadixYq+2wkWJj09/SzXFA1ze1mjiyryp4iLiwMAHD16NM9FtmnTpi6y/NKkSROsWbMGdevWRdu2bTFu3DiEhobilVdeQb169VznFYi5HeDuZ5555nbmmQG4+9XuDnO/2t1gbge4T9Iy73vm9hEjRuD+++/H6NGjER0djblz56Jq1aq44YYbcPnll7vOKxRzP3M781oDcB+zzO3Mc8PcDnD3q71kPffcc64Tio25vcxxcMsxKYX27Nlj3bt3z/ezGgLZJ598YnPnzjUzs82bN1tiYqJ5PB6rXLmyLVy40HFdwZjbzbj7mWeeuZ15Zsy4+9XuDnO/2t1gbjcza926tY0cOdLMzKKioiwtLc0OHTpkPXr0sJdeeslxXcGY9z1ze1RUlP34449mZlahQgX74YcfzMwsOTnZ4uLiHJb5h7mfuZ15rTHjPmaZ25nnhrndjLtf7SKljy6qyJ/i+uuvtwsuuMC+//57i4yMtAULFtjMmTMtMTHR5s+f7zqvyPbt22dZWVmuM4qFud2Mp5955pnb88IyM/lh7le7O8z9aneDqZ35JG1emPb9qVjazznnHEtJSTEzs0aNGtn7779vZidnJjIy0mWaX5j7mdtL21pjxnPM5oWlnXlumNvNuPvV7s62bdsK/ApkzO1lAd8N9SUgff7555gwYQJatWoFr9eLuLg43HjjjRg3bhyeeuop13kFGjhwIA4dOpTrudjYWBw9ehQDBw50VOUf5naAu5955pnbmWcG4O5XuzvM/Wp3g7kdACIjI323pqxevTrS0tJ823799VdXWX5h3vfM7e3atcPXX38NAOjWrRuGDRuGJ554AgMHDkS7du0c1xWOuZ+5nXmtAbiPWeZ25rlhbge4+9XuTnx8POrWrZvvVyBjbi8TXF/VkdIhOjratm7damZmderUsa+//trMzLZs2WIREREOywrn9Xpt9+7dpz2/d+9eCwoKclDkP+Z2M+5+5plnbmeeGTPufrW7w9yvdjeY283Mevbsaa+88oqZmQ0bNswSEhLs8ccftxYtWljnzp0d1xWMed8zt6elpdmaNWvMzOzw4cN2++2323nnnWe9evWyn376yXFd4Zj7mduZ1xoz7mOWuZ15bpjbzbj71e5OcnJyrq/vv//eXnnlFUtKSvLdhjBQMbeXBfqgevlTJCYmYuPGjYiPj8f555+Pf//734iPj8fkyZNRvXp113l5OnjwIOzkLfBw6NAhhIeH+7ZlZmbio48+QtWqVR0W5o+5HeDvBzhnPhtjO/vMMPer3R3mfrW7wdye04QJE3D48GEAwOjRo3H48GHMmTMHDRo0wIQJExzX5Y153zO3Z8v5wdaRkZGYPHmyw5qiY+5nbmdcawDuY5a5PRvr3ADc7QB3v9rdOf/88097rlWrVqhRowaeeeYZ9OrVy0GVf5jby4SSuHIjpd/MmTNt+vTpZma2YsUKq1y5snm9XgsPD7fZs2e7jcuHx+PJ94O6vV6vBQUF2eOPP+46M0/M7Wb8/WacM5+NsZ19Zpj71e4Oc7/a3WBuZ8e875nbRcoi5mOWuV1ESpfNmzdbuXLlXGcUC3N7aeIxM3N9YUdKn6NHj2LDhg2oU6cOKleu7DonT0uWLIGZ4ZJLLsHcuXMRGxvr2xYaGoq4uDjUqFHDYWH+mNsB/v68MMx8fhja2WeGuV/t7jD3q90N5nZ2zPuetb1ixYrweDx+vTY9Pf0s1xQdcz9ze2nAeswC3O0iwungwYO5HpsZdu7ciUcffRQbNmxAcnKymzA/MLeXBbqoImXetm3bULt2bXi9XtcpRcbcDvD3S8ljnxnmfrW7w9yvdjcY20vLSVrGfZ+Nrf21117z+7X9+/c/iyXFw9zP3F5a1hqA75jNia2deW6Y2wHufrUHBq/Xe9r/FjND7dq1MXv2bLRv395RWeGY28sCXVSRYrvvvvv8fi3DfRaPHj2K7du34/jx47meb9q0qaMi/zG3Azz9zDPP3J4XlpnJD3O/2t1h7le7G0ztzCdp88K070/F3C5SmNK21gDcxyxLO/PcMLcD3P1qDwxLlizJ9djr9aJKlSpISEhAcHBgf9Q4c3tZoIsqUmwXX3xxrserVq1CRkYGEhMTAQCbNm1CUFAQWrZsic8//9xFol/27t2LAQMG4OOPP85ze2ZmZgkX+Y+5HeDrZ5555vac2GbmVMz9aneHuV/tbjC3s2Pe98zt27dvL3B7nTp1SqikeJj7mdvZMR+zzO0iIiIAoMtaUmyLFy/2/XnChAmIjo7Ga6+9hooVKwIAfvvtNwwYMAAdO3Z0leiXe++9F/v378eyZctw0UUX4b333sPu3bvx+OOP49lnn3WdVyDmdoCvn3nmmdtzYpuZUzH3q90d5n61u8HcDnCfpGXe98zt8fHxBd6mJNBP0DL3M7czrzUA9zHL3M48N8ztAHe/2t3auHEjXnjhBaSmpgIAGjVqhLvuugtJSUmOywrH3F7q/ckffC9lVI0aNeyHH3447fl169ZZ9erVHRT5r1q1arZs2TIzM4uOjraNGzeamdn7779vF1xwgcu0QjG3m3H3M888czvzzJhx96vdHeZ+tbvB3G5m5vF4zOv15vsVyJj3PXN7cnJyrq/vv//eXnnlFUtKSrK5c+e6zisUcz9zO/NaY8Z9zDK3M88Nc7sZd7/a3XnnnXcsODjY2rVrZ0OHDrWhQ4da+/btLTg42N555x3XeQVibi8L9E4V+VMcPHgQe/fuPe35vXv34tChQw6K/HfkyBFUrVoVwMkP49q7dy8aNmyI8847D6tWrXJcVzDmdoC7n3nmmduZZwbg7le7O8z9aneDuR0AVq9enevxiRMnsHr1akyYMAFPPPGEoyr/MO975vbzzz//tOdatWqFGjVq4JlnnkGvXr0cVPmPuZ+5nXmtAbiPWeZ25rlhbge4+9XuzgMPPIARI0bgsccey/X8qFGj8MADD6B3796OygrH3F4W6KKK/CmuvvpqDBgwAM8++yzatGkDAFi2bBmGDx8e0D9IA0BiYiI2btyI+Ph4nH/++fj3v/+N+Ph4TJ48GdWrV3edVyDmdoC7n3nmmduZZwbg7le7O8z9aneDuR3gPknLvO+Z2/OTmJiI77//3nVGsTH3M7QzrzUA9zHL3M48N8ztAHe/2t3ZuXMn+vXrd9rzN954I5555hkHRf5jbi8TXL9VRkqHI0eO2ODBgy0sLMz3FsDQ0FAbPHiwHT582HVegWbOnGnTp083M7MVK1ZY5cqVzev1Wnh4uM2ePdttXCGY2824+5lnnrmdeWbMuPvV7g5zv9rdYG4vyObNm61cuXKuMwrEvO+Z2w8cOJDra//+/ZaammrXXnutnX/++a7zCsXcz9yeH4a1xoz7mGVuzw/L3OSFud2Mu1/tZ1/Xrl1t2rRppz0/bdo0++tf/+qgyH/M7WWBx8zM9YUdKT2OHDmCtLQ0AED9+vURGRnpuKjojh49ig0bNqBOnTqoXLmy65wiYW4HOPuZZ565PRvjzOTE3K92d5j71e4GW/vBgwdzPTYz7Ny5E48++ig2bNiA5ORkN2HFwLbvc2Jq93q9p31Yupmhdu3amD17Ntq3b++ozD/M/cztpWmtAbiO2VMxtTPPDXM7wN2vdncmT56MkSNHok+fPmjXrh0AYOnSpXj77bcxevRo1KhRw/faHj16uMrME3N7WaCLKiIiIiIiEjCYT9KKG0uWLMn12Ov1okqVKkhISEBwcODf8Zq5n7lda40UB/PcMLcD3P1qd8fr9fr1Oo/Hg8zMzLNcUzTM7WWBLqpImXTffff5/doJEyacxZKiY24H+Pul5LHPDHO/2t1h7le7G8ztp2I7Scu875nbRc4U21oDcB+zzO05Mc5NNuZ2gLtf7SKlj6ZfyqTVq1fnerxq1SpkZGQgMTERALBp0yYEBQWhZcuWLvIKxNwO8PdLyWOfGeZ+tbvD3K92N5jbT9WpUyfXCUXCvO+Z20+1ceNGvPDCC0hNTQUANGrUCHfddReSkpIcl/mHuZ+1nW2tAbiPWeb2nBjnJhtzO8Ddr3aR0kcXVaRMWrx4se/PEyZMQHR0NF577TVUrFgRAPDbb79hwIAB6Nixo6vEfDG3A/z9UvLYZ4a5X+3uMPer3Q3m9rwwnaRl3vfM7TnNnTsX1113HVq1auW7DcnSpUtx3nnnYfbs2ejdu7fjwoIx9zO3A1xrDcB9zDK3n4ptbnJibge4+9XuzpIlSzB+/Hhff+PGjTF8+HCK9Ya5vdT7kz/4XoROjRo17Icffjjt+XXr1ln16tUdFPmPud2Mv19KHvvMMPer3R3mfrW7wdxuZvbOO+9YcHCwtWvXzoYOHWpDhw619u3bW3BwsL3zzjuu8wrEvO+Z2+vVq2ePPPLIac+PHDnS6tWr56CoaJj7mduZ1xoz7mOWuZ15bpjbzbj71e7OzJkzLTg42Pr06WOTJk2ySZMmWZ8+fSwkJMT+85//uM4rEHN7WaB3qkixPf/880X+ZwYMGIDo6OizUFN8Bw8exN69e097fu/evTh06JCDIv8xtwN8/cwzz9yeE9vMnIq5X+3uMPer3Q3mdgB44IEHMGLECDz22GO5nh81ahQeeOCBgP7Nd+Z9z9y+c+dO9OvX77Tnb7zxRjzzzDMOioqGuZ+5nXmtAbiPWeZ25rlhbge4+9XuzhNPPIFx48Zh6NChvueGDBmCCRMmYMyYMbj++usd1hWMub1McH1VR3h5PB6rXbu2xcfH+/UVFBRkaWlprrNPc9NNN1l8fLzNnTvXfv75Z/v555/tnXfesbp161q/fv1c5xWIud2Mr5955pnbc2KbmVMx96vdHeZ+tbvB3G5mFhERYZs3bz7t+U2bNllERISDIv8x73vm9q5du9q0adNOe37atGn217/+1UFR0TD3M7czrzVm3Mcsczvz3DC3m3H3q92d0NDQPPs3b95sYWFhDor8x9xeFuiiihSbx+Ox3bt3+/36qKiogDxJe+TIERs8eLCFhYWZ1+s1r9droaGhNnjwYDt8+LDrvAIxt5vx9TPPPHN7TmwzcyrmfrW7w9yvdjeY2824T9Iy73vm9pdfftmqVKlif//7323mzJk2c+ZM+/vf/25Vq1a1l19+2d5//33fVyBi7mduZ15rzLiPWeZ25rlhbjfj7le7O/Xr17fJkyef9vzLL79sCQkJDor8x9xeFnjMzFy/W0Y4jR49GsOHD0e5cuX8ev1TTz2FwYMHo0KFCmc3rJiOHDmCtLQ0AED9+vURGRnpuMh/zO0ATz/zzDO354VlZvLD3K92d5j71e4Ga/vkyZMxcuRI9OnTB+3atQNw8oOv3377bYwePRo1atTwvbZHjx6uMgvEuu8Bznav1+vX6zweDzIzM89yTdEx9zO3l4a1BuA8ZrMxtjPPDXM7wN2vdndefvll3HvvvRg4cCA6dOgAAPjmm28wY8YMTJo0Cbfffrvjwvwxt5cFuqgiIiIiIiIBg/kkrYjw0FojxcE8N8ztAHe/2t1677338OyzzyI1NRUA0KhRIwwfPhw9e/Z0XFY45vbSThdV5Kxau3YtWrVqhePHj7tOESkRzDPP3C4iIiIiIiIiIlIS/LvcKFJMZhawV6pFzgbmmWduFxERkbJtyZIluPLKK5GQkICEhAT06NEDX331lessvzH3M7eLiEjZsGLFCsycORMzZ87EypUrXecUCXN7aaaLKiIiIiIiElB0klaK4o033sCll16KcuXKYciQIRgyZAgiIiLQuXNnvPnmm67zCsXcz9wOaK2R4mGeG+Z2gLtf7W788ssv6NixI9q0aYN77rkH99xzD1q3bo0LL7wQv/zyi+u8AjG3lwW6qCIiIiIiIgGD/SStlLwnnngC48aNw5w5c3wzM2fOHIwdOxZjxoxxnVco5n7mdq01UhzMc8PcDnD3q92dQYMG4cSJE0hNTUV6ejrS09ORmpqKrKwsDBo0yHVegZjbywJ9poqckYMHDxa4fe3atejUqVPA3VLo+eefL/I/M2DAAERHR5+FmqJhbgf4+1lnHuBtZ58Z5n61u8Pcr3Y3mNtP1ahRI9x2220YOnRorucnTJiAV1991fdBnYGCed8zt+cUFhaG9evXIyEhIdfzP/74I5o0aYI//vjDUZl/mPuZ29nWGoD7mGVuz4lxbrIxtwPc/Wp3JyIiAt9++y2aN2+e6/mVK1eiY8eOOHr0qKOywjG3lwW6qCJnxOv1wuPx5LvdzODxeALuJK3X60WtWrUQFBTk1+t//vlnbNq0CfXq1TvLZYVjbgdKRz/jzAO87aVhZlj71e4Oc7/a3WBuPxXbSVrmfc/cnlNCQgKGDx+O22+/PdfzkydPxrPPPovNmzc7KvMPcz9zO9taA3Afs8ztOTHOTTbmdoC7X+3uNGzYEG+88QbatGmT6/nly5fj+uuvx48//uiorHDM7WVBsOsA4bZ48WLXCcW2YsUKVK1a1a/XBtpvxzC3A9z9zDPP3M48MwB3v9rdYe5XuxvM7TnVrl0bixYtOu0v7wsXLkTt2rUdVRWMed8zt2cbNmwYhgwZguTkZHTo0AEA8M0332DGjBmYNGmS47rCMfcztzOuNQD3Mcvcno11bgDudoC7X+3uPPPMM7j77rvx4osvolWrVgBOrkX33HMPxo8f77iuYMztZYEuqsgZ6dSpU6GvSU9PL4GSohk1ahSioqL8fv1DDz2E2NjYs1jkP+Z2gL+fdeYB3nb2mWHuV7s7zP1qd4O5/VRsJ2mZ9z1ze06DBw9GtWrV8Oyzz+Ktt94CcPJ2JXPmzEHPnj0d1xWOuZ+5nW2tAbiPWeb2nBjnJhtzO8Ddr3Z3br75Zhw9ehRt27ZFcPDJ0+AZGRkIDg7GwIEDMXDgQN9rA+18CHN7WaDbf8lZs2DBAkyZMgUffPABfv/9d9c5Imcd88wzt4uISOnz3nvv4dlnn/Xdp7tRo0YYPnx4wJ+kFREuWmukOJjnhrkd4O5Xuxuvvfaa36/t37//WSwpOub2skAXVeRPtW3bNkybNg2vvfYafvvtN3Tt2hW9e/fG3/72N9dpRbZ27Vq0atUKx48fd51SZMztAFc/88wzt5+KaWbywtyvdneY+9XuBnM7O+Z9z9S+YsUK3wmfxo0bo2XLlo6Lioa5n7m9tGE6Zk/F3C4iImWLbv8lZ+z48eN49913MWXKFHzzzTe49NJL8csvv2D16tU477zzXOcVm5kF3Ad2+4u5HQj8fuaZZ24vSKDPTGGY+9XuDnO/2t1gay9NJ2nZ9n1ODO2//PIL+vbti2+++QYVKlQAAOzfvx8dOnTA7NmzUatWLbeBhWDuZ27PVprWGoDjmM0PUzvz3DC3A9z9ahcpPXRRRc7I3XffjVmzZqFBgwa48cYbMWfOHFSqVAkhISEICgpynSfyp2OeeeZ2EREpO0rDSVopWYMGDcKJEyeQmpqKxMREAMDGjRsxYMAADBo0CJ988onjwoIx9zO3a62R4mCeG+Z2gLtf7SKlj9d1gHB7+eWXcfvtt2PBggX4+9//jkqVKrlOEjmrmGeeuV1ERMqOnCdp09PTkZ6ejtTUVGRlZWHQoEGu8yQALVmyBC+//LLvpD4AJCYm4oUXXsCXX37psMw/zP3M7VprpDiY54a5HeDuV7tI6aN3qsgZmTlzJqZNm4bq1auje/fuuOmmm9C1a1fXWX45ePBggdsPHTpUQiVFx9wOcPczzzxzO/PMANz9aneHuV/tbjC357RkyRJ8++23eZ6k7dixo8Oy/DHve+b2bLVr18aJEydOez4zMxM1atRwUFQ0zP3M7YxrDcB9zDK3Z2OdG4C7HeDuV7tI6aOLKnJG+vbti759+2Lr1q2YMWMG/v73v+Po0aPIyspCSkoKGjdu7DoxXxUqVIDH48l3u5kVuN0l5naAu5955pnbmWcG4O5XuzvM/Wp3g7k9J8aTtMz7nrk92zPPPIO7774bL774Ilq1agXg5L3f77nnHowfP95xXeGY+5nbGdcagPuYZW7Pxjo3AHc7wN2vdpHSx2Nm5jpCSg8zw4IFCzB16lTMmzcPlStXRq9evfD888+7TjvNkiVL/Hpdp06dznJJ0TG3A/z9OTHN/KmY2tlnhrlf7e4w96vdDeb2nN5//308+eSTp52kvfvuu/Hggw/iqquuchuYB+Z9z9yerWLFijh69CgyMjIQHHzy9waz/xwZGZnrtenp6S4SC8Tcz9zOuNYA3Mcsc3s21rkBuNsB7n61l6wWLVoU6fUejwfz5s1DzZo1z1KR/5jbyxpdVJGzJj09Ha+//jpmzJiB5ORk1znFkp6ejtjYWNcZxcLcDnD2M888c3s2xpnJiblf7e4w96vdDYZ25pO0BWHY9/kJ9PbXXnvN79f279//LJYUD3M/c3tpXWuAwD9mCxLo7cxzw9wOcPervWR5vV4MGzYMUVFRhb7WzDB27FikpKSgXr16JVBXMOb2ska3/5KzJjY2Fh07dsTChQtdpxTZggULMGXKFHzwwQf4/fffXecUCXM7wN3PPPPM7cwzA3D3q90d5n61u8HU/txzz7lO+FMx7ftTsbQH2sn6omLuZ24vbWsNwHPM5oWlnXlumNsB7n61l7zhw4ejatWqfr322WefPcs1RcPcXpboooqcsU8//RSfffYZQkNDMWjQINSrVw8bNmzAP/7xD3zwwQfo0qWL60S/bNu2DdOmTcNrr72G3377DV27dsXrr7/uOssvzO0AXz/zzDO358Q2M6di7le7O8z9aneDtZ35JG021n0PcLeLFEVpWGsA7mOWsZ15bpjbAe5+tZesrVu3okqVKn6/PiUlJWA+H4a5vcwxkTMwZcoU83g8VqlSJfN6vValShWbOXOmVahQwW6//XZLSUlxnVigY8eO2axZs6xz584WHh5uV1xxhQUFBdnatWtdpxWKud2Mt5955pnbzXhnJhtzv9rdYe5XuxvM7eyY9z1zu0hZxHzMMreLiIhk0ztV5IxMmjQJTz/9NIYPH465c+fib3/7G1566SWsW7cOtWrVcp1XoLvvvhuzZs1CgwYNcOONN2LOnDmoVKkSQkJCEBQU5DqvQMztAHc/88wztzPPDMDdr3Z3mPvV7gZzOzvmfc/cLlIWMR+zzO0iwmX79u1+va5OnTpnuaTomNvLFNdXdYRbuXLlbOvWrWZmlpWVZSEhIfb111+7jfJTUFCQPfTQQ3bw4MFczwcHB9v69esdVfmHud2Mu5955pnbmWfGjLtf7e4w96vdDeZ2dsz7nrldpCxiPmaZ20WEi8fjMa/Xe9pXzueDgoJcZ+aJub0s8bq+qCPcfv/9d5QrVw4A4PF4EBYWhurVqzuu8s/MmTOxfPlyVK9eHddeey3mz5+PzMxM11l+YW4HuPuZZ565nXlmAO5+tbvD3K92N5jb2THve+Z2kbKI+ZhlbhcRLqtXr8aqVavy/Bo+fDjCwsIQGxvrOjNPzO1licfMzHWE8PJ6vXj88ccRFRUFAHjwwQcxfPhwVK5cOdfrhgwZ4iLPL1u3bsWMGTMwY8YMHD16FOnp6ZgzZw6uueYa12mFYm4HOPuZZ565PRvjzOTE3K92d5j71e4Gczs75n3P1t6iRYsivd7j8WDevHmoWbPmWSoqGuZ+5vbShO2YzYm5XUR4LVy4EP/4xz+wadMm3HfffRg2bBiio6NdZ/mFub200kUVOSPx8fHweDwFvsbj8WDLli0lVFR8ZoYFCxZg6tSpmDdvHipXroxevXrh+eefd51WKOZ2gKufeeaZ20/FNDN5Ye5XuzvM/Wp3g6m9tJ2kZdr3p2Jp93q9GDZsmO+XRQpiZhg7dixSUlJQr169EqgrHHM/c3tpW2sAnmM2LyztzHPD3A5w96s9cKxatQoPPvggvvrqKwwaNAgjR45E1apVXWf5hbm9tNNFFZE8pKen4/XXX8eMGTOQnJzsOqdImNsB/n4peewzw9yvdneY+9XuRqC3M5+kLUyg7/uCBHK71+vFrl27/D6xEB0djTVr1gTMzDD3s7eX1rUGCOxjtjCB3M48N8ztAHe/2t1LS0vDQw89hLlz56JPnz54/PHHA64xP8ztZUWw6wCRQBQbG4uOHTti4cKFrlOKjLkd4O+Xksc+M8z9aneHuV/tbjC0Dx8+3O+TtM8+++xZrvnzMOz7/ARy+9atW1GlShW/X5+SkoIaNWqcxaKiYe5nbgdK71oDBPYxW5hAb2eeG+Z2gLtf7e7ceeedmDp1Ki6++GKsWLECzZo1c53kN+b2skQfVC9npFu3bjhw4IDv8dixY7F//37f43379qFx48YOyvzz6aef4v7778dDDz3ku+XRhg0bcNVVV6FNmzbIyspyXJg/5naAt5955pnbAd6Zycbcr3Z3mPvV7gZre3FO0sbFxZ3FoqJj3fcAZ3tcXFyhtzXNqXbt2ggKCjqLRUXD3M/cXhrWGoDzmM3G2M48N8ztAHe/2t2aPHkygoKCsGfPHgwcOBAtWrTI8ysQMbeXKSZyBrxer+3evdv3ODo62tLS0nyPd+3aZV6v10VaoaZMmWIej8cqVapkXq/XqlSpYjNnzrQKFSrY7bffbikpKa4T88XcbsbdzzzzzO3MM2PG3a92d5j71e4Gczs75n3P3L5t2za/vgIVcz9zOzvmY5a5XUS4PProo359BSLm9rJEF1XkjHg8nlwnaaOiomhO0p533nk2btw4MzN75513zOPxWPv27e3nn392XFY45nYz7n7mmWduZ54ZM+5+tbvD3K92N5jbzbhP0jLve+Z2j8djXq/3tK+czwcFBbnOzBdzP3M781pjxn3MMrczzw1zuxl3v9pFSi99UL2ckVM/pPDUDyHcvXs3atSogczMTJeZeYqMjMT69esRHx8PM0NYWBgWL16MCy64wHVaoZjbAe5+5plnbmeeGYC7X+3uMPer3Q3mduDk96m8bilkZr7nPR4PMjIySjqtUMz7nrl9zZo1eT5vZpg9ezaef/55REVFYc+ePSVc5h/mfuZ25rUG4D5mmduZ54a5HeDuV3tgWLt2LTZt2gQAaNiwIZo2beq4yH/M7aWdPqhezojH4zltkS3K/XVd+v3331GuXDkAJ5vDwsJQvXp1x1X+YW4HuPuZZ565nXlmAO5+tbvD3K92N5jbAWD16tV5Pn/qSdpAxLzvmdvPP//8055buHAh/vGPf2DTpk144IEHMGzYMAdl/mHuZ25nXmsA7mOWuZ15bpjbAe5+tbu1fPly3HLLLUhJSUH2ewo8Hg/OPfdcTJ06Fa1bt3ZcmD/m9rJCF1XkjJgZbr75ZoSFhQEA/vjjD9xxxx2IjIwEABw7dsxlXqGmTJni+yaQkZGBGTNmoHLlyrleM2TIEBdphWJuB3j7mWeeuR3gnZlszP1qd4e5X+1uMLczn6QFuPc9c3u2VatW4cEHH8RXX32FQYMG4aOPPvK9O5cBcz9bO/taA3Afs6ztzHPD3A5w96vdnZSUFHTu3BmNGjXCG2+8gUaNGvmenzhxIjp37oylS5eicePGjktPx9xeluj2X3JGBgwY4Nfrpk+ffpZLii4+Pr7Q39L3eDzYsmVLCRX5j7kd4O5nnnnmduaZAbj71e4Oc7/a3WBuP9WpJ2lHjhwZ0Cdpmfc9czsApKWl4aGHHsLcuXPRp08fPP74475bmzJg7mduz8a21gDcxyxze06Mc5ONuR3g7ld7yerTpw8yMjIwd+7c09YdM0OvXr0QEhKCt956y1Fh/pjby5Sz9FktIiIiIiIiRfLjjz9anz59LCgoyPr27WtpaWmukySADR482EJDQ61Lly62evVq1zlFxtzP3G6mtUaKh3lumNvNuPvV7kblypXt+++/z3f78uXLrXLlyiVY5D/m9rJEt/8SERERERHn7rzzTkydOhUXX3wxVqxYgWbNmrlOkgA3efJkhIeHY8+ePRg4cGC+r1u1alUJVvmPuZ+5XWuNFAfz3DC3A9z9anfn0KFDOOecc/LdXq1aNRw6dKgEi/zH3F6W6PZfckZ69erl1+vefffds1xSdN26dcOsWbNQvnx5AMDYsWNxxx13oEKFCgCAffv2oWPHjkhJSXFYmTfmdoC7n3nmmduZZwbg7le7O8z9aneDuR0AvF4vwsPDkZSUVODrAvEkLfO+Z24fPXq0X68bNWrUWS4pHuZ+5nbmtQbgPmaZ25nnhrkd4O5XuzuJiYl48skn0bt37zy3v/POO3j44YexcePGEi4rHHN7WaKLKnJGTv2MhjfffBNXXnkloqOjcz0fiJ/REBQUhJ07d/ruAxkTE4Pk5GTffYB3796NGjVqIDMz02VmnpjbAe5+5plnbmeeGYC7X+3uMPer3Q3mdoD7JC3zvmduFykO5rUG4D5mmduZ54a5HeDuV7s7o0aNwowZM/Dhhx+iSZMmubatW7cOV155Jfr164fHHnvMUWH+mNvLEt3+S87IqSdf33nnHYwbN47iAwpPvZ7IdH2RuR3g7meeeeZ25pkBuPvV7g5zv9rdYG4HAvcv5f5g3vfM7TmtXbsWmzZtAgA0bNgQTZs2dVxUNMz9bO3Maw3AfcwytzPPDXM7wN2vdndGjBiBhQsXolmzZrjsssvQqFEjmBlSU1OxcOFCtGnTBg899JDrzDwxt5cluqgiIiIiIiIBhe0krbizfPly3HLLLUhJSfGdoPV4PDj33HMxdepUtG7d2nFhwZj7mduzaa2R4mCeG+Z2gLtf7SUrPDwcixcvxsSJEzFr1iwsWbIEwMn+xx9/HEOHDkVYWJjjyrwxt5cluqgiZZbH44HH4zntOQbM7QB/v5Q89plh7le7O8z9aneDuT0b60la5n3P3J6SkoLOnTujUaNGeOONN9CoUSPf8xMnTkTnzp2xdOlSNG7c2HFp3pj7mdsB3rUG4D5mmdsB7rlhbge4+9XuTmhoKB588EE8+OCDrlOKjLm9rNBFFSmzzAw333yz7+ruH3/8gTvuuAORkZEAgGPHjrnMKxBzO8DfLyWPfWaY+9XuDnO/2t1gbge4T9Iy73vm9kcffRSXXXYZ5s6dm+vEbLNmzdC3b1/06tULjz76KN566y2Hlflj7mduZ15rAO5jlrmdeW6Y2wHufrWLlF76oHo5I/Pmzcv1uG/fvnjuuedwzjnn5Hq+R48eJZnll1M/tDs/gfih3cztAHc/88wztzPPDMDdr3Z3mPvV7gZzOwD06dMHGRkZp52kBU6eiOvVqxdCQkIC8iQt875nbq9SpQo+/vhjtGrVKs/t33//Pbp164a9e/eWcJl/mPuZ25nXGoD7mGVuZ54b5naAu1/t7lSsWNGvd8Klp6eXQE3RMLeXJbqoImfE6/UW+hqPx4PMzMwSqBE5+5hnnrldRERKP+aTtOJGeHg4Nm/ejNq1a+e5/eeff0aDBg3wxx9/lHCZf5j7mdu11khxMM8NczvA3a92d1577TW/Xte/f/+zXFJ0zO1liW7/JWckKyvLdYJIiWKeeeZ2EREp/Q4dOnTauydzqlatGg4dOlSCRRLo4uLisHz58nxP7C9btgxxcXElXOU/5n7mdq01UhzMc8PcDnD3q92dunXrokOHDggO5jv1zdxeluj/HflTHDt2DBkZGb57oTLo1auXX6979913z3JJ0TG3A/z9AOfMZ2NsZ58Z5n61u8Pcr3Y3mNsB7pO0zPueuf26667Dfffdh8TERDRp0iTXtnXr1uH+++9Hv379HNUVjrmfuZ15rQG4j1nmdua5YW4HuPvV7s7FF1+MnTt3omrVqq5Tioy5vSwp/F4wIgXYu3cvunbtiqioKMTExKBdu3b48ccfXWf5pXz58rm+PvzwQ3i93tOeD0TM7QB3P/PMM7czzwzA3a92d5j71e4Gczvw/ydpf/jhh9O2ZZ+kvfbaax2UFY553zO3jxgxArVq1UKzZs3QtWtX3HfffRg6dCguv/xyNG/eHDVq1MBDDz3kOjNfzP3M7cxrDcB9zDK3M88NczvA3a92d5g/7YK5vSzRZ6rIGRk4cCA+/vhjDBkyBOHh4fj3v/+N6tWrY/Hixa7Tiiw6Ohpr1qxBvXr1XKcUGXM7wNXPPPPM7adimpm8MPer3R3mfrW7wdb+xx9/oHPnzli2bBkuu+wyNGrUCGaG1NRULFy4EG3atMHnn3+O8PBw16mFYtv3ObG1Hz9+HBMnTsSsWbOwadMmAEDDhg1x3XXXYejQoQgLC3NcWDDmftb20rTWAHzHbE5M7cxzw9wOcPer3R2v14vdu3ejSpUqrlOKjLm9LNFFFTkjtWvXxpQpU9ClSxcAwObNm9GoUSMcOXIkYH+Izg/TD3SnYm4HuPqZZ565/VRMM5MX5n61u8Pcr3Y3GNtZT9KeinHfZ2NuF/FXaVlrAO5jlq2deW6Y2wHufrW74fV60bVr10IbA/F2g8ztZYkuqsgZCQoKwv/+9z9Uq1bN91xkZCTWr1+P+Ph4d2HFwPYDXU7M7QBXP/PMM7efimlm8sLcr3Z3mPvV7gZzOzvmfc/cLlIWMR+zzO0iEti8Xi/69OmDiIiIAl83ffr0EiryH3N7WaIPqpczFhQUdNpjXauT0ox55pnbRURERHKqWLEiPB5Poa9LT08vgZqiY+5nbhcRkbLh+eefp/2wd+b2skIXVeSMmBkaNmyY6wfqw4cPo3nz5vB6vb7nAvGH6Xnz5uV6nJWVhUWLFp32IVw9evQoySy/MLcD3P3MM8/czjwzAHe/2t1h7le7G8ztAPdJWuZ9z9z+3HPPuU44I8z9zO3Maw3AfcwytzPPDXM7wN2vdnf8aQ9UzO1liW7/JWfktdde8+t1/fv3P8slRZfzJHJ+PB4PMjMzS6CmaJjbAe5+5plnbmeeGYC7X+3uMPer3Q3mdkDfp1xhbv/yyy/RoUMHBAdz/q4gcz9zO/NaA3Afs8ztzHPD3A5w96vdHa/Xi127duX7bo/U1FRMnToV48ePL+GywjG3lyW6qCIiIiIiIs4xn6QVN4KCgrBz507a22Mw9zO3a62R4mCeG+Z2gLtf7e4sWbIEF1xwQa7+I0eOYPbs2Zg6dSqWLl2Kxo0bn/ZOuUDA3F6W6KKKlHnHjh1DRkYGIiMjXacUGXM7wN8vJY99Zpj71e4Oc7/a3WBtZz5Jm4113wOc7YX9JmegY+5nbi8Naw3AecxmY2xnnhvmdoC7X+2B4ZtvvsHUqVPx1ltv4ffff8fQoUMxaNAgJCUluU4rFHN7aVf4ey9FClCxYkXExsYW+hWI9u7di65duyIqKgoxMTFo164dfvzxR9dZfmFuB7j7mWeeuZ15ZgDufrW7w9yvdjeY24GTn/3FinnfM7cD/PcdZ+5nbWdeawDuY5a5nXlumNsB7n61u7Nnzx6MGzcOSUlJuOaaa1ChQgV88cUX8Hq9GDhwYEBflGBuL0v0ThU5I8z3WBw4cCA+/vhjDBkyBOHh4fj3v/+N6tWrY/Hixa7TCsXcDnD3M888czvzzADc/Wp3h7lf7W4wtwMnf/N99+7dqFKliuuUImPe98ztXq8XXbt2RVhYWIGve/fdd0uoqGiY+9nbWdcagPuYZW5nnhvmdoC7X+3uRERE4JprrsGNN96Iyy67zPeZTiEhIVizZg0aN27suDB/zO1liS6qSJlVu3ZtTJkyBV26dAEAbN68GY0aNcKRI0cK/cuBa8ztAH+/lDz2mWHuV7s7zP1qd4O5HeA+Scu875nbvV4v+vTpg4iIiAJfN3369BIqKhrmfvZ21rUG4D5mmduZ54a5HeDuV7s7SUlJOHbsGK6//nrcdNNNvnd3MFyYYG4vSzg/bUho7Ny5E0888QT+9a9/uU45zY4dO3D++ef7Hjdo0ABhYWHYuXMn4uPj3YX5gbkd4O8vSCDPfGECuZ19Zpj71e4Oc7/a3WBuzxYdHV3oSdpAxLzvmdsB4Pnnn6e+3ztzP3M761oDcB+zzO0A99wwtwPc/Wp3Y8OGDb7PI2ndujUaNmyIG2+8EUDg376Sub0s0UUVOWPr16/H4sWLERoaij59+qBChQr49ddf8cQTT2Dy5MmoV6+e68R8BQUFnfaY5c1bzO0Adz/zzDO3M88MwN2vdneY+9XuBnM7wH2Slnnfs7azn1hg7mduB7jXGoD3mAW425nnhrkd4O5XuzsXXHABLrjgAjz//POYNWsWpk+fjszMTNx55524/vrrcdVVVwXs7c2Y28sK3f5Lzsi8efNwzTXXICMjAwBQr149vPrqq+jTpw9atmyJe++9F5dffrnjyrx5vV6UL18+118I9u/fj5iYGN/9CgEgPT3dRV6BmNsB7n7mmWduZ54ZgLtf7e4w96vdDeZ24OSJtZ07d1L+5Z1537O379q1K9+ZSU1NxdSpUzF+/PgSLvMPcz9zO/NaA/Afs6ztzHPD3A5w96s98GR/f5o5cybS09Nx4sQJ10l+Y24vjfROFTkjjz/+OP7+979jzJgxmDJlCu677z4MGTIEH330EVq3bu06r0CBeH9ffzG3A9z9zDPP3M48MwB3v9rdYe5XuxvM7QAK/U3lQD5Jy7zvmdsXL16M2NjYXM8dOXIEs2fPxtSpU7F06VI0btw4IGcG4O5nbmdeawDuY5a5nXlumNsB7n61B55GjRph/PjxGDt2LObNm+c6p0iY20slEzkDMTExtnnzZjMzy8jIsKCgIPvss88cV4mcPcwzz9wuIiKl3xdffGEnTpzI9dzhw4dtypQp1r59e/N4PHbuuec6qpNA9/XXX9uAAQMsMjLSvF6vDRs2zFJTU11n+Y25n61da40UB/PcMLebcferPXClpqZagwYNXGcUC3N7aeIt/LKLSP4OHTqEmJgYACffGhgRERHQn8kgcqaYZ565XURESr9OnTohOPjkG+m/+eYbDBw4EOeccw5uu+02dOjQASkpKfjhhx8cV0og2bNnD8aNG4ekpCRcc801qFChAr744gt4vV4MHDgQSUlJrhMLxNzP3K61RoqDeW6Y2wHufrUHrmPHjiEtLc11RrEwt5cmuv2XnLFPP/0U5cuXBwBkZWVh0aJFpy2sPXr0cJFWoIoVK/r1AYuBeD9X5naAv5915gHedvaZYe5XuzvM/Wp3g7kdOHmSdsaMGZg2bRoOHDiAvn374osvvkD79u0D/iQt875nbo+Li8M111yDSZMm4bLLLsv1mQwMmPuZ25nXGoD7mGVuZ54b5naAu1/tIqWXLqrIGevfv3+ux7fffnuuxx6PB5mZmSWZ5JfnnnvOdUKxMbcD/P2sMw/wtrPPDHO/2t1h7le7G8ztAPdJWuZ9z9weFxeHr7/+GnXq1EFcXBzdCR7mfvZ21rUG4D5mmduZ54a5HeDuV7tI6aWLKnJGsrKyXCcU26knl5kwtwPc/cwzz9zOPDMAd7/a3WHuV7sbzO0A90la5n3P3L5hwwZ88803mDp1Klq3bo2GDRvixhtvBAC/fhveNeZ+5nbmtQbgPmaZ25nnhrkd4O5Xu0jppcuMIvnYuXMn7rrrLtcZxcLcDvD3S8ljnxnmfrW7w9yvdjcCvX3Dhg144403sHPnTrRu3RotW7bExIkTAQT+SdrCBPq+L0igt19wwQWYNm0adu7ciTvuuANvv/02MjMzceedd+LVV1/F3r17XScWiLmftb00rzVA4B+zBQnkdua5YW4HuPvV7k7FihURGxub71fHjh1dJ+aLub0s8ZiZuY4QXnfeeSfGjRuHqKgoAMCsWbPQo0cPREZGAgD279+P66+/Hh999JHLzHytX78eixcvRmhoKPr06YMKFSrg119/xRNPPIHJkyejXr16WL9+vevMPDG3A7z9zDPP3A7wzkw25n61u8Pcr3Y3mNtzOnz4MGbNmoXp06dj6dKl6NSpE66//npcddVVqFKliuu8PDHve+b2vKSmpmLq1KmYOXMm0tPTceLECddJRcLcz9bOuNYA3Mcsc3s21rkBuNsB7n61l6zXXnvNr9cF4jvomNvLFBM5A16v13bv3u17HB0dbWlpab7Hu3btMq/X6yKtUO+//76FhISYx+Mxj8dj9evXt88//9wqV65sXbp0sY8//th1Yr6Y2824+5lnnrmdeWbMuPvV7g5zv9rdYG4vSEpKig0bNsyqVq1qwcHBrnPyxLzvmdsLc+LECZs7d67rjGJj7mdsZ1hrzLiPWeb2/LDMTV6Y2824+9Uuwk8XVeSMeDyeXCdpo6KiaE7Stm7d2u699147dOiQTZw40TwejzVp0sSWL1/uOq1QzO1m3P3MM8/czjwzZtz9aneHuV/tbjC3+yOQT9Iy73vm9sKkpqZagwYNXGcUG3M/c3sgrzVm3Mcsc3thAn1uCsLcbsbdr/az58CBA3l+ZWRkuE4rFHN7WaKLKnJGmE/SxsTE2ObNm83MLCMjw4KCguyzzz5zXOUf5nYz7n7mmWduZ54ZM+5+tbvD3K92N5jb/RHIJ2mZ9z1ze2GSk5MD9mcbfzD3M7cH8lpjxn3MMrcXJtDnpiDM7Wbc/Wo/ezwej3m93tO+QkJCrGHDhvbKK6+4TswXc3tZEuz69mMirhw6dAgxMTEAgKCgIERERKBevXqOq/zD3A7w90vJY58Z5n61u8Pcr3Y3mNv9cezYMaSlpbnOyBPzvmduFzkbAnmtAbiPWeb2wgT63BSEuR3g7lf72bN48eI8n9+/fz9WrlyJ4cOHIzg4GAMGDCjhssIxt5cluqgiZ2zkyJEoV64cAOD48eN44oknUL58eQDA0aNHXaYV6tNPP/W1ZmVlYdGiRfjhhx9yvaZHjx4u0grF3A5w9zPPPHM788wA3P1qd4e5X+1uMLezY973zO0iZRHzMcvcLiI8OnXqlO+2nj17Ij4+Hi+88EJAXphgbi9LPGZmriOE10UXXQSPx1Po6/K7yuqS1+st9DUejweZmZklUFM0zO0Adz/zzDO3M88MwN2vdneY+9XuBnO7P9asWYMWLVoEZD/zvmduL0wgz4w/mPvVfvYwH7PM7YUJ9LkpCHM7wN2vdnfS0tLQvHlzHDx40HVKkTG3lyZ6p4qckS+++MJ1QrFlZWW5Tig25naAu5955pnbmWcG4O5XuzvM/Wp3g7mdHfO+Z26vWLFigb8wkpGRUYI1Rcfcz9zOjvmYZW4XkdLlwIEDvnfNsWFuL010UUXO2MGDB7Fs2TIcP34cbdq0QZUqVVwniZxVzDPP3C4iIqWbTtJKUT333HOuE84Icz9zu9YaKQ7muWFuB7j71R6YTpw4gWeeeQZt27Z1nVJkzO2ljS6qyBlJTk5Gt27dsGvXLgBAdHQ03nrrLXTp0sVxWeHuvPNOjBs3DlFRUQCAWbNmoUePHoiMjARw8gOgrr/+enz00UcuM/PE3A5w9zPPPHM788wA3P1qd4e5X+1uMLcD3Cdpmfc9c3v//v1dJ5wR5n7mdua1BuA+ZpnbmeeGuR3g7le7O7169crz+QMHDmD9+vXweDz46quvSrjKP8ztZYk+U0XOSJcuXXD48GGMHz8e4eHhGDNmDNatW4fNmze7TitUUFAQdu7ciapVqwIAYmJikJycjHr16gEAdu/ejRo1agTk/SGZ2wHufuaZZ25nnhmAu1/t7jD3q90N5nZ2zPueuT2/e4lHRkYiKCiohGuKjrmfuZ0d8zHL3C4iXPL7EPeYmBgkJibihhtuCNhbaDG3lyV6p4qckZUrV2LBggVo0aIFAGDatGmIjY3FwYMHERMT47iuYKdeT2S6vsjcDnD3M888czvzzADc/Wp3h7lf7W4wtwPcJ2mZ9z1ze4UKFfK8NUlQUBDq1q2L+++/H7feequDMv8w9zO3M681APcxy9zOPDfM7QB3v9rdmT59uuuEYmNuL0t0UUXOSHp6OmrVquV7XKFCBURGRmLfvn0Bf5JWpDiYZ565XURESj/mk7TixuLFi/N8fv/+/Vi5ciWGDx+O4ODgfH/j0zXmfuZ2rTVSHMxzw9wOcPer3a2lS5figw8+wPHjx9G5c2dcfvnlrpP8xtxeVuiiipyxlJQU32c0ACd/2yQ1NRWHDh3yPde0aVMXaSJnBfPMM7eLiEjpxnySVtzo1KlTvtt69uyJ+Ph4vPDCCwE7M8z9zO1aa6Q4mOeGuR3g7le7O++88w6uvfZaREREICQkBBMmTMDTTz+N+++/33VaoZjbyxJdVJEz1rlz59PetnvFFVfA4/HAzODxeAL2nqgjR45EuXLlAADHjx/HE0884bsv4dGjR12mFYq5HeDuZ5555nbmmQG4+9XuDnO/2t1gbmc+SQtw73vm9oJ06tQJ9957r+uMYmPuD+R29rUG4D5mWduZ54a5HeDuV7s7Tz31FG699Va8+OKLCAoKwlNPPYUnn3yS4sIEc3tZog+qlzOybds2v14XFxd3lkuK7qKLLsrzrYynyu/qvEvM7QB3P/PMM7czzwzA3a92d5j71e4Gc7s/0tLS0Lx583zv8e0S875nbi/MqlWr0LNnT/z888+uU4qFuZ+5PZDXGoD7mGVuL0ygz01BmNsB7n61nz1RUVFITk5GQkICgJMXcSMjI/G///0PVatWdVxXMOb2skTvVJEzEognX/31xRdfuE4oNuZ2gLufeeaZ25lnBuDuV7s7zP1qd4O53R8HDhzw/TZzoGHe98ztBTlx4gSeeeYZtG3b1nVKsTD3M7cDgb3WANzHLHN7YQJ9bgrC3A5w96v97Dl69Giuz44NDQ1FeHg4Dh8+HPAXJpjbyxJdVJFiW7t2LZo0aQKv1+vX69evX4/ExEQEBwfO2B08eBDLli3D8ePH0aZNG1SpUsV1kt+Y2wHOfuaZZ27PxjgzOTH3q90d5n61u8HcXhCGk7TM+561vVevXnk+f+DAAaxfvx4ejwdfffVVCVf5j7mfub0gDGsNwHvMAtzt+WGZm7wwtwPc/Wo/+6ZMmYKoqCjf44yMDMyYMQOVK1f2PTdkyBAXaYVibi8rdPsvKbagoCDs2rXL7x+CYmJikJycjHr16p3lMv8kJyejW7duvg/tjo6OxltvvYUuXbo4LiscczvA288888ztAO/MZGPuV7s7zP1qd4O5HfD/JG32rRACCfO+Z27P7z7uMTExSExMxA033BDQv0XL3M/czrzWANzHLHM789wwtwPc/Wp3Jz4+vtDbDXo8HmzZsqWEivzH3F6W6KKKFJvX68Vtt93m+5C5wrz00ktISUkJmJO0Xbp0weHDhzF+/HiEh4djzJgxWLduHTZv3uw6rVDM7QBvP/PMM7cDvDOTjblf7e4w96vdDeZ2gPskLfO+Z24XKQ7mtQbgPmaZ25nnhrkd4O5Xu0jppYsqUmz+fshcTm+++SaqV69+loqKpnLlyliwYAFatGgBANi/fz9iY2Oxf//+XPcuDETM7QBvP/PMM7cDvDOTjblf7e4w96vdDeZ2dsz7nrkdAJYuXYoPPvgAx48fR+fOnXH55Ze7TioS5n7mdmbMxyxzu4iISE6Bc7N8ocP+IXPp6emoVauW73GFChUQGRmJffv2BfwPdMztAG8/88wztwO8M5ONuV/t7jD3q90N5vZsrCdpmfc9c/s777yDa6+9FhEREQgJCcGECRPw9NNP4/7773ed5hfmfuZ2gHetAbiPWeZ2gHtumNsB7n61u5ORkYGJEydi1qxZ2LRpEwCgYcOGuP7663HPPfcgJCTEcWH+mNvLCl1UkTItJSXFdz9XADAzpKam4tChQ77nmjZt6iKtUMztAH+/lDz2mWHuV7s7zP1qd4O5nf0kLfO+Z21/6qmncOutt+LFF19EUFAQnnrqKTz55JM0M8Pcz9zOvtYAvMcswNvOPDfM7QB3v9rd+f3333HZZZfhu+++w6WXXoq//OUvAIDU1FQ8+OCDmDdvHhYsWIDw8HDHpadjbi9TTKSM8ng85vV6zePxnPaV/bzX63WdmSfmdjP+fil57DPD3K92d5j71e4Gc7uZWYsWLez222+3jIwMMzN78sknrWLFio6r/MO875nbIyMjbfPmzb7Hx44ds+DgYNu9e7fDKv8x9zO3M681ZtzHLHM789wwt5tx96vdnZEjR1qdOnVszZo1p21LTk62OnXq2KhRo0o+zA/M7WWJPlNFyqxt27b59bq4uLizXFJ0zO0Af7+UPPaZYe5XuzvM/Wp3g7kdAKKiopCcnIyEhAQAwPHjxxEZGYn//e9/qFq1quO6gjHve+Z2r9eLXbt25ZqP6OhorFmzBvXq1XNY5h/mfuZ25rUG4D5mmduZ54a5HeDuV7s7iYmJePLJJ9G7d+88t7/99tt4+OGHfbfWCiTM7WWJbv8lZVYg/qDmL+Z2gL9fSh77zDD3q90d5n61u8HcDgBHjx7NdU/90NBQhIeH4/DhwwH/l3fmfc/cDgBTpkxBVFSU73FGRgZmzJiBypUr+54bMmSIizS/MPeztjOvNQD3Mcvczjw3zO0Ad7/a3dm2bRvatGmT7/Z27dph+/btJVjkP+b2skQXVaRMWrt2LZo0aQKv1+vX69evX4/ExEQEB7s/ZJjbAf5+KXnsM8Pcr3Z3mPvV7gZze06MJ2mZ9z1zOwDUqVMHr776aq7nqlWrhpkzZ/oeezyegJuZbMz9zO0A51oDcB+zzO3ZWOcG4G4HuPvV7kZMTAz27NmD2rVr57l9165diI6OLuEq/zC3lyW6/ZeUSUFBQdi1axeqVKni1+tjYmKQnJwcEG9lZ24H+Pul5LHPDHO/2t1h7le7G8zt2eLj4+HxeAp8jcfjwZYtW0qoyD/M+565XaS4WNcagPuYZW4HuOeGuR3g7le7O9deey0yMjIwd+7cPLf37t0bQUFBeOutt0q4rHDM7WVJ4FzyFylBZoZHHnkE5cqV8+v1x48fP8tF/mNuB/j7peSxzwxzv9rdYe5XuxvM7dl++ukn1wnFwrzvmdtFiot1rQG4j1nmdoB7bpjbAe5+tbszatQotG3bFu3atcN9992HpKQkmBlSU1MxceJEpKSkYOnSpa4z88TcXpboooqUSX/5y1+wceNGv1/fvn17REREnMUi/zG3A/z9UvLYZ4a5X+3uMPer3Q3mdnbM+565PVtGRgYmTpyIWbNm+T6wtWHDhrj++utxzz33ICQkxHFhwZj7mdtZMR+zzO0iwqdx48b47LPPcMstt+C6667zvevGzJCUlIQFCxbg3HPPdVyZN+b2skS3/xIRERERkYCgk7RSFL///jsuu+wyfPfdd7j00kvRqFEjAEBqaioWLlyICy64AAsWLEB4eLjj0rwx9zO3A1prpHiY54a5HeDuV7t7ycnJufqbNWvmNqgImNtLO11UERERERER59hP0krJGzVqFGbMmIEPPvgATZs2zbVtzZo16NGjBwYMGIBHH33UTWAhmPuZ27XWSHEwzw1zO8Ddr3a3Dh48iGXLluH48eNo06aN35/pFAiY28sMExERERERcWzkyJFWp04dW7NmzWnbkpOTrU6dOjZq1KiSD5OA1bBhQ3vnnXfy3f7WW29ZgwYNSrCoaJj7mdu11khxMM8Nc7sZd7/a3Vm9erVVr17dPB6PeTwei4mJsU8++cR1ll+Y28sSvVNFREREREScS0xMxJNPPonevXvnuf3tt9/Gww8/7LsFgkh4eDg2b96M2rVr57n9559/RoMGDfDHH3+UcJl/mPuZ27XWSHEwzw1zO8Ddr3Z3unTpgsOHD2P8+PEIDw/HmDFjsG7dOmzevNl1WqGY28sSfVC9iIiIiIg4t23bNrRp0ybf7e3atcP27dtLsEgCXUxMDPbs2ZPvif1du3YhOjq6hKv8x9zP3K61RoqDeW6Y2wHufrW7s3LlSixYsAAtWrQAAEybNg2xsbE4ePAgYmJiHNcVjLm9LPG6DhAREREREck+SZufQD5JK25cfPHFePLJJ/PdPnbsWFx88cUlWFQ0zP3M7VprpDiY54a5HeDuV7s76enpqFWrlu9xhQoVEBkZiX379jms8g9ze1mi23+JiIiIiIhz1157LTIyMjB37tw8t/fu3RtBQUF46623SrhMAlVKSgratm2Lc889F/fddx+SkpJgZkhNTcXEiRORkpKCpUuX4txzz3WdmifmfuZ2rTVSHMxzw9wOcPer3R2v14vPP/8csbGxvuc6dOiAt956K9cFi6ZNm7rIKxBze1miiyoiIiIiIuIc80lacWfp0qW45ZZbkJqaCo/HAwAwMyQlJWHq1Klo376948KCMfeztmutkeJgnhvmdoC7X+3ueL1eeDwe5HXaO/t5j8eDzMxMB3UFY24vS3RRRUREREREAgLrSVpxLzk52fdhuQ0bNkSzZs3cBhURcz9ju9YaKQ7muWFuB7j71e7Gtm3b/HpdXFzcWS4pOub2skQXVUREREREJKAwnqQVNw4ePIhly5bh+PHjaNOmDapUqeI6qUiY+5nbs2mtkeJgnhvmdoC7X+0ipYsuqoiIiIiISEAoDSdppeQkJyejW7du2LVrFwAgOjoab731Frp06eK4zD/M/cztgNYaKR7muWFuB7j71V7y1q5diyZNmsDr9fr1+vXr1yMxMRHBwcFnuaxwzO1ljS6qiIiIiIiIc+wnaaXkdenSBYcPH8b48eMRHh6OMWPGYN26ddi8ebPrNL8w9zO3a62R4mCeG+Z2gLtf7W4EBQVh165dfl8EiomJQXJyMurVq3eWywrH3F7W6KKKiIiIiIg4x3ySVtyoXLkyFixYgBYtWgAA9u/fj9jYWOzfvx8xMTGO6wrH3M/crrVGioN5bpjbAe5+tbvh9Xpx2223oVy5cn69/qWXXkJKSkpAXJhgbi9rdFFFREREREScYz5JK254vV7s2rULVatW9T0XHR2NtWvXom7dug7L/MPcz9yutUaKg3lumNsB7n61u3HRRRfB4/EU6Z958803Ub169bNU5D/m9rJGN1wTERERERHn0tPTUatWLd/jChUqIDIyEvv27Qv4v7yLOykpKb5bkwCAmSE1NRWHDh3yPde0aVMXaX5h7mdt11ojxcE8N8ztAHe/2t344osvXCcUG3N7WaOLKiIiIiIiEhBYT9KKO507d8apN1+44oor4PF4YGbweDzIzMx0VFc45n7mdq01UhzMc8PcDnD3q12kdNLtv0RERERExDmv1+s7GXsqhpO0UvK2bdvm1+vi4uLOcknxMPczt2utkeJgnhvmdoC7X+0ipZfeqSIiIiIiIs5t3brVdYKQCcQT9kXB3M/crrVGioN5bpjbAe5+tYuUXnqnioiIiIiIiFBZu3YtmjRpAq/X69fr169fj8TERAQHB8bvFTL3M7eLiIiI/Bn8+ylIRERERETkLFm7di2ysrL8fv369euRkZFxFosk0DVv3hz79u3z+/Xt27fH9u3bz2JR0TD3M7drrZHiYJ4b5naAu1/tIqWb3qkiIiIiIiJOBQUFYdeuXahSpYpfr4+JiUFycjLq1at3lsskUHm9Xtx2220oV66cX69/6aWXkJKSEjAzw9zP3K61RoqDeW6Y2wHufrWLlG56/62IiIiIiDhlZnjkkUf8Pkl7/Pjxs1wkge4vf/kLNm7c6Pfr27dvj4iIiLNYVDTM/cztWmukOJjnhrkd4O5Xu0jppneqiIiIiIiIUxdddBE8Hk+R/pk333wT1atXP0tFIlIaaa2R4mCeG+Z2gLtf7SKlmy6qiIiIiIiIiIiIiIiI+EEfVC8iIiIiIiIiIiIiIuIHXVQRERERERERERERERHxgy6qiIiIiIiIiIiIiIiI+EEXVURERERERERERERERPygiyoiIiIiIlJq3XzzzbjqqqtcZ4iIiIiISCmhiyoiIiIiIiIiIiIiIiJ+0EUVERERERERERERERERP+iiioiIiIiIBLSsrCyMGzcOCQkJCAsLQ506dfDEE08AANatW4dLLrkEERERqFSpEm677TYcPnw4339XfHw8nnvuuVzPNWvWDI8++qjvscfjwb///W9cccUVKFeuHBo1aoTvvvsOP/74Iy666CJERkaiQ4cOSEtL8/0zjz76KJo1a4aZM2ciPj4e5cuXx3XXXYdDhw79qftCRERERETc0kUVEREREREJaCNGjMDYsWPxyCOPICUlBW+++SbOOeccHDlyBF26dEHFihXx/fff4+2338bChQtx1113nfF/c8yYMejXrx+Sk5ORlJSE66+/HrfffjtGjBiBFStWwMxO+++kpaXhv//9L+bPn4/58+djyZIlGDt27Bm3iIiIiIhI4Ah2HSAiIiIiIpKfQ4cOYdKkSfjXv/6F/v37AwDq16+PCy+8EK+++ir++OMPvP7664iMjAQA/Otf/8KVV16Jp59+Guecc06x/7sDBgxAnz59AAAPPvgg2rdvj0ceeQRdunQBANxzzz0YMGBArn8mKysLM2bMQHR0NADgpptuwqJFi3zvqhEREREREX56p4qIiIiIiASs1NRUHDt2DJ07d85z2/nnn++7oAIAF1xwAbKysrBx48Yz+u82bdrU9+fsizPnnXderuf++OMPHDx40PdcfHy874IKAFSvXh179uw5ow4REREREQksuqgiIiIiIiIBKyIi4k/993m9XphZrudOnDhx2utCQkJ8f/Z4PPk+l5WVlec/k/2anNtFRERERISfLqqIiIiIiEjAatCgASIiIrBo0aLTtjVq1Ahr1qzBkSNHfM9988038Hq9SExMzPPfV6VKFezcudP3+ODBg9i6deufHy4iIiIiIqWSLqqIiIiIiEjACg8Px4MPPogHHngAr7/+OtLS0rB06VJMnToVN9xwA8LDw9G/f3/88MMPWLx4Me6++27cdNNN+X6eyiWXXIKZM2fiq6++wrp169C/f38EBQWV8P8qERERERFhpQ+qFxERERGRgPbII48gODgYI0eOxI4dO1C9enXccccdKFeuHD799FPcc889aN26NcqVK4fevXtjwoQJ+f67RowYga1bt+KKK65A+fLlMWbMGL1TRURERERE/OaxU28oLCIiIiIiIiIiIiIiIqfR7b9ERERERERERERERET8oIsqIiIiIiIiIiIiIiIiftBFFRERERERERERERERET/oooqIiIiIiIiIiIiIiIgfdFFFRERERERERERERETED7qoIiIiIiIiIiIiIiIi4gddVBEREREREREREREREfGDLqqIiIiIiIiIiIiIiIj4QRdVRERERERERERERERE/KCLKiIiIiIiIiIiIiIiIn7QRRURERERERERERERERE/6KKKiIiIiIiIiIiIiIiIH/4PqAMla1QTG9QAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.subplots(figsize=(20, 10))\n",
"\n",
"names, importances = pipe1.columns.importances(target_num=0)\n",
"\n",
"plt.bar(names[0:30], importances[0:30])\n",
"\n",
"plt.title(\"column importances for the x-component\", size=20)\n",
"plt.grid(True)\n",
"plt.xlabel(\"column\")\n",
"plt.ylabel(\"importance\")\n",
"plt.xticks(rotation='vertical')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABlUAAAQZCAYAAABclYwdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADtWElEQVR4nOzdf7zX8/0//vs5dTo5EaUp/XgrkvlZVmoyZKKZMWFM2yS0zRa2mI/MlNnE0Bg2w8JmYWMzzJhFCfnRDxajsYqRys/SD6ej8/z+4Xte6zg/enR66XVeul4vly7OeT4fz+fz9nq9nq/ny+V1O8/nsyTLsiwAAAAAAABoVGmhAwAAAAAAABQDpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAwP9vypQpUVJSEiUlJTFlypRCxykqnjs+yd56660488wzY+edd47NNtsst69ffvnlhY6WF+PGjcs9JgAAoHEtCx0AAACguVq6dGnsvffe8eKLLxY6CgAA0Aw4UwUAAJqBG2+8MXe2wIIFCwodh//f1VdfnStUzjrrrJg2bVrMmTMn5syZE9/4xjcKnK5hzh6D5qHmfThu3LhCRwEA8sSZKgAAbLBBgwZFlmWFjgF5949//CMiIvr16xcXX3xxgdMAAACF5kwVAACABrz22msREdGrV68CJwEAAJoDpQoAAEADKisrIyKirKyswEkAAIDmQKkCADRLjz76aJx88smx0047Rdu2baNVq1bRtWvX+NKXvhRXX311vPvuuw0ue/fdd8fRRx8dXbt2jfLy8th6661j7733josuuiiWL1/e5EyDBg2KkpKSGDRoUKPjxo0bl7uGen0+en31hx56KI444ojo3LlzbLbZZrHzzjvHBRdcECtWrKi13L333htf/OIXc+N22WWXGD9+fKxevbrBLN27d4+SkpI44YQTIiJi7ty5MXLkyOjevXuUl5dHx44dY+jQofH4448nPw/1Wdf9G0444YQoKSmJ7t27R0TEokWL4swzz4xevXpFRUVFdOnSJY455ph47rnnai23YMGCOO2006JXr16x2WabRceOHeNrX/ta/Oc//2kwy0ef/3fffTfGjh0bu+66a2y++ebRvn37OOCAA+KWW25JemwLFiyI73//+7HrrrvGFltsERUVFbHjjjvGt771rZgzZ06jy370tX7wwQfjK1/5SnTr1i3Kysqie/fuueduxIgRueV69OiRW7ah5/Xxxx+Pc889NwYNGhSdOnWKVq1aRdu2bWOXXXaJU045Jf71r381mu2jr8m7774b5513Xuy6667Rpk2b2GqrrWK//faL3//+90nP03vvvReXXXZZfP7zn6+VZ88994xTTz01Hn300QaXXbNmTdx0003xpS99KTp37px7337uc5+LCRMmxKpVqxrd9syZM+Okk06KXr16RZs2baJ169bRrVu36Nu3b3z3u9+Nu+66a70uT7f2/vzyyy9HRMRNN91U6/Wo7ziwfPnyuOiii2LvvfeO9u3bR3l5eXTt2jWOPvrouOeeexrd5kePLy+++GKMGjUqdtxxx6ioqEi+186CBQuipKQkDjjggNy0Aw44oM7+dOONNza4jvfffz8uueSS+MxnPhNbbLFFbLHFFtG/f/+46qqr4oMPPlhnhvfffz+uuuqqOPDAA3P7wjbbbBODBw+O3/zmN0nrqM8vfvGLXP6UY9ZRRx0VJSUl0b59+3j//febtM2IiDfeeCN+/OMfxz777BPbbLNNlJWVRbt27WLAgAFx1llnxT//+c8Gl83n8WNjflY89dRTcdxxx0W3bt1y76cRI0bECy+8kPScNfVz+KP3lqquro5rr702Bg4cGO3atYs2bdrEHnvsET/96U9j5cqV68yxIceWj74nX3vttRg9enT07NkzNttss9h6661jyJAh8be//a3e5Wue0xrnn39+nfdhzfMNABSZDACgGVm5cmV23HHHZRHR6L+xY8fWWXbVqlXZ0KFDG12uc+fO2ezZs+vd9kMPPZQb99BDD9WZv//++2cRke2///6NPoaxY8fm1lOftR/D+PHjs5KSknqzDhw4MFu+fHlWXV2dnXbaaQ0+pi984QvZBx98UO+2tttuuywisuHDh2d/+tOfsoqKinrX0aJFi+zWW29t9HE1Zl3P3fDhw7OIyLbbbrvs6aefzjp16lRvjjZt2mTTpk3LsizLJk+enG255Zb1jmvXrl327LPP1ptl7ed/3rx52Q477NDgc3fMMcdkVVVVDT6um266KSsvL29w+RYtWmQXXnhhg8uv/Vqfc845dZbfbrvtaj13jf1b+3m94YYb1jm+RYsW2dVXX91gtrVfkxdeeCHr3r17g+v67ne/2+B6sizLHnjggaxDhw7rzFSfl19+Oevdu3ejy/Xs2TObO3duvctPmDAhKy0tXee233vvvUYfw9pSXpOPHgdmzZqVde7cudFljjzyyGzVqlX1bnPt48udd96ZtWnTps7y8+fPX2f2+fPnJ+1PN9xwQ26Ztd8zixYtyvr06dPgcocddli2Zs2aBrf/9NNP5447Df3ba6+9skWLFqW8FLW89dZbuffjt771rUbHvvHGG1lZWVnS/tuYm2++ud7X4qPv4/rk8/ixMT8rfvOb32QtW7asdx3l5eXZH/7whwYzb+jn8NrHtueeey478MADG1xP//79s+XLlzeYZUOPLWu/Jx955JFGj3GXXHJJg89pY/+GDx/eYH4AoPlSqgAAzcaaNWuygw46KPdlw4477pj9/Oc/z6ZNm5bNnDkzu+eee7Jzzjkn69mzZ72lyjHHHJNbtnfv3tlvf/vb7Kmnnsruv//+bMSIEbkvpNq3b5+9+uqrdZbf2KVK//79s4jI9t5772zSpEnZjBkzsvvuuy875JBDcmN++MMfZpdddlkWEdkhhxyS3XHHHdnMmTOzv/zlL9lnP/vZ3Lhf/epX9W6r5kudz3zmM1nr1q2zHj16ZFdddVX2+OOPZ9OnT8/GjRuXtW7dOouIrG3bttmSJUsafWwNSS1VPvWpT2U9evTI2rdvn1144YXZo48+mj3++OPZuHHjslatWmURkXXv3j178cUXsy222CLr2rVrdsUVV2SPP/549sgjj2Tf//73c6/jgAED1vn877XXXllpaWn27W9/O/vHP/6RPfXUU9lvfvObrFevXrkx3/ve9+pdzz333JPb1uabb56NHTs2mzZtWjZ9+vTssssuq/UF2y9/+ct611Ezf/fdd8/9d+LEidmTTz6ZTZ06Nbviiiuy5cuXZ3PmzMl+8pOf5Mbff//92Zw5c2r9W/vLw+uuuy5r165ddsIJJ2QTJ07Mpk2bls2aNSu75557sh//+Me5bCUlJdnkyZPrzbb2a7LjjjtmW2yxRXbuuedmU6ZMyWbMmJFdd911WdeuXXOZ7rvvvnrX8+CDD+a+gG3RokV2wgknZH/+85+zmTNnZo8++mh23XXXZUceeWRWVlZWZ9k333wz69atW+7L2lGjRmV//OMfs6eeeip76KGHsjFjxuSKwO233z579913ay3/zDPP5AqVHj16ZJdddlk2efLkbPbs2dnDDz+cXXfdddmwYcOyNm3arFepUvOazJkzJ1eUfPnLX671esybNy83/tVXX83atWuXe85HjBiR3X///dmMGTOy3/72t7W+2D322GPr3WbN8aVHjx7Z5ptvnn3qU5/KLrrootx75Morr8zeeOONdWZfvXp1NmfOnGzixIm5bU6cOLHO/vTOO+/klln7PTNw4MCsVatW2WmnnZY98MAD2cyZM7NJkyZlO++8c27MNddcU++2X3zxxVwR2rZt22zMmDHZn//852zGjBnZ/fffn333u9/N7SsDBgzIVq9enfya1Kgp3bfccsts5cqVDY67/PLLc3lnzpy53tvJsiz77W9/m1tH69ats1NPPTW79957s1mzZmUPP/xwdtVVV2UHH3xw1qNHjzrL5vP4sTE/K3r37p2VlZVlnTt3zq688srsiSeeyKZOnZr9v//3/3IFUVlZWfbUU0/Vu54N/Rxeu1QZOHBgVlpamg0fPjz761//ms2cOTP785//nO299965MWeffXa9OTb02JJl/3tP9urVK+vQoUO2zTbbZBdddFH2yCOPZE8++WQ2YcKEbKuttsoiImvZsmWdon/u3LnZnDlzcllPOeWUOu/D+p4DAKD5U6oAAM3GFVdckfvyYejQodn7779f77g1a9bU+SLinnvuyS174IEHZpWVlXWWu/baa3NjjjnmmDrzN3apEhHZUUcdVecvhz/44IPcl2BbbLFF1rp163q/+F+xYkXui7A99tij3m2t/Zeyffv2zZYuXVpnzM0335wbM2HChEYfW0NSS5WIyDp06JC99NJLdcZcddVVuTE1X/TXV/L84Ac/yI2bNWtWnflrP/8RkU2aNKnOmGXLluW+6C4tLc3mzJlTa/7q1atzX6Zvvvnm9f5V9YIFC7Jtt902i4isoqKi3i+8185x4IEHNrhPZ1ntLxPXdUbCq6++mq1YsaLB+e+++262xx57ZBGRfe5zn6t3zNqvyZZbblnvmT8vvvhirnQ7/PDD68xftWpV7nmqqKio97Wv8corr9SZNmzYsCziw7/0X7ukWNusWbNyZwqcc845teb96Ec/yiI+PMOpsTMf3n333UbPrmjM2n/B35Cjjz4691xef/31dea///772QEHHJAbc++999YZU3N8ifjwL/lffvnlJuWtsa735NrWfs+UlZXVO/6tt97KOnbs2OjxZuDAgVlEZHvuuWeDBdDf/va3XBF27bXXru/DyiZPnpzL+vvf/77BcTXv7969e6/3NrIsyxYuXJj70n2bbbapc4xY20f37Y/j+LExPyu222677PXXX68zZu0Cda+99qozPx+fwx89C+93v/tdnTHvv/9+tttuu2URkW299db1nm24oceWLKv9ntxuu+3qLUCmTZuWK4pOO+20erdTs476/hgEAChOShUAoFlYs2ZN7q/iu3btul5/VZ5lWe4vdsvKyur98rbG4MGDc39VunDhwlrzNnapUlFRkb311lv1jln7r8y7devW4F90n3feeblx9f2l7dpflD3zzDP1rqO6ujr3BeDQoUMbfWwNWZ9SpaG/lF65cmXuC/yIyP72t7/VO27evHm5MVdccUWd+Ws//1/60pcazPzEE0/kxn308kC33XZbbt5FF13U4DrWLqR+9rOf1ZlfM6+0tHSdRcn6lCop7rzzztz63nzzzTrz135NfvGLXzS4nq9+9atZxId/Wf5Rv/71r3PruPzyy9cr3/z587MWLVpkEZHdfffdjY4966yzcmXD2kaOHJn7Ev/jsq5S5bXXXss9ji984QsNrmf+/Pm5L6S/+MUv1pm/9he4v/3tbzc4d1NLldGjRzc47uyzz84iPjwb56PHm4cffji3jn/+85+Nbq/mbIaBAwcmP54a1dXVuUv6DR48uN4xM2fObPQYkWLMmDG5ddx5553rtWy+jx8b+7Pi9ttvbzDzKaeckhv30bNV8vE5vPZx8Mgjj2xwHddcc02Dn235OLZkWe335F133dXgOmqKrYaOQ0oVAPjkcaN6AKBZePrpp+PVV1+NiIiRI0fG5ptvnrzsBx98EFOnTo2IiIMPPji6devW4NiRI0fmlqnvhuob00EHHRTt27evd17v3r1zPx955JFRVla2znHz589vcFu777577LHHHvXOKykpiT333DMiIubNm7fO3BuipKQkjjnmmHrnbbbZZrHjjjtGRES7du1iyJAh9Y7r0aNHbLHFFhGx7rxr3/z9o/r37x+77rprRET84x//qDWv5veSkpI48cQTG1zHV77yldhyyy3rXcfa9tlnn9wN4T8OK1asiAULFsRzzz0Xzz77bDz77LO19plnnnmmwWVLSkpi2LBhDc7v27dvRES8/fbb8e6779aaV3Pz9TZt2uTeW6n++te/xpo1a6KioiIOOeSQRsfut99+ERGxcOHCeOWVV3LTt91224iI+Ne//hVPPvnkem0/X6ZMmRJr1qyJiIiTTjqpwXHdu3ePgw46qM4yH9WqVav4yle+kv+gib72ta81OK9mX8iyrM7x5q677oqIiJ122il23333RrdR83o+9dRT633T+rXfkw8++GCt/aHGDTfcEBEfPpeNPZ7G1Ozb22+/fRx++OHrtWy+jx8b87OiXbt28eUvf7nB+Ws/nrUzfxyfwyn7YkTdz4F8HFvWttVWW8Whhx66ziwf9+cnANB8KFUAgGZh9uzZuZ/33Xff9Vp23rx5sXLlyoiIGDBgQKNj157/7LPPrtd28q1Xr14Nzttqq63We9x7773X4LhPf/rTjWap+cKusXXkQ4cOHRr8cjDif4+nZ8+eUVJSss5x68q71157NTq/f//+ERHx73//O1avXp2bXrNv9OjRIz71qU81uHyrVq1yhVRj+1NDhdaGePPNN+Occ86JnXbaKbbYYovo0aNH7LbbbrH77rvH7rvvXutLwDfffLPB9XTo0CG23nrrBuev/Xp99Pmued/27ds3Kioq1iv/jBkzIiJi5cqV0bJlyygpKWnw35e+9KXccosWLcr9fNxxx0VZWVlUVlbGPvvsE4cddlhcc8018eyzz0aWZeuVp6nWft1Tjz8rV65s8AvYHXfcMVq3bp2/gOupsWNFY/tCzes5d+7cRl/LkpKSGDVqVEREVFVVxdtvv73eGU844YRo0aJFVFdXx0033VRrXmVlZUyaNCkiIr785S/X2rdXrFiRKx3r+1ejqqoq9/vnPve5Ro9F9cn38WNjflbsueee0bJlywbn9+nTJ1q1ahUREXPmzMlN/zg+hzd0X9yQY8vadtxxxygtbfirk431+QkANB8N/98SAMBGtPaXvjV/fZ5q7S/lttlmm0bHdurUqd7lCqGxL6HX/gIndVxDf/m+rnWsvZ7G1pEPqTnylXdd+0PHjh0j4sO/vH/nnXdyv9fsG+taPuJ/+1Rj+1O7du3WuZ71MXPmzBgyZEi89dZbSeNXrVrV4LzU5zqi7vNd875d3/dsRMSSJUvWe5mIyH1xG/Hhl6633HJLjBw5Mt5555245557cmcYdOjQIb7whS/EN7/5zfUuatdHvo8/+d5X1ldTjzf5eD1Tde7cOb74xS/G3XffHTfeeGOce+65ueLjL3/5S+65/ehZIk899VQccMABDa63poh7++23cz83Zd/O9/FjY35WrCtzy5Yto3379rFo0aJamT+Oz+Hmsi+mHiOrq6ubtF0AoPgoVQCAT5T1/YtiPtk2dH/I1/7UokWLvKwnImL16tVxzDHHxFtvvRVlZWVx6qmnxpe//OXo1atXtGvXLsrLyyPiw78c32GHHSIiNtpZG+uj5ovQDh06xEMPPZS8XI8ePWr9ftRRR8XgwYPjtttui/vvvz+mTZsWb7zxRrz55ptx8803x8033xzDhw+PiRMnNvrX5vmQj/0ln/vKxlTzevbu3Ttuvvnm5OW6dOnSpO2dfPLJcffdd8e8efPi4Ycfjv333z8i/nfpr65du8bBBx/cpHXnSzF+HuUjc6Efd76OLQAADVGqAADNQocOHXI/v/766+u8XNXa1r4MyOLFixsdu/blPRq7DFV9Uv8adcWKFeu1Xj4+ixcvbvTa/jX7S0lJSa0zBGr2jXXtTxH/26fWd39qqgcffDB36ahf/vKXcfLJJ9c7bmOcidWhQ4d49dVX4/XXX1/vZWsuy/Tee+/FzjvvvEFlwpZbbhnf/OY345vf/GZERDz//PPxl7/8Ja688spYuHBh3HTTTbHnnnvG6aef3uRtNOSjx5/G9rcNOf40dzWv5/Lly2O33Xb72Ld36KGHxrbbbhuvv/563HDDDbH//vvHa6+9Fn//+98jImL48OF1SrRBgwYlFYzt27eP0tLSqK6ubtK+3ZyPH+uyrswffPBB7tiyduaN9TmcIp/HFgCA+rinCgDQLHzmM5/J/fzwww+v17Lbb7997vIcTzzxRKNj176Z9fp+8Vdzc/R33nmn0XH//ve/12u9fHyeeuqppPk77rhj7j4BEf/bN+bPnx9vvPFGg8tXVVXl7iuyoV8kp/5193PPPZf7+dhjj21wXM19BT5ONe/bGTNmrPdlnGruJVFZWZn3rDvvvHOcffbZ8fjjj0ebNm0iIuIPf/hDXrdRY+3XPfX4U1FREdtvv/3HkqfGxj5boOb1nDdvXoP3psinFi1axAknnBAREbfffnssX748brrppqiuro6SkpIYMWJEk9ddVlaWe12nTZu23md6FeL4kS9PP/10fPDBBw3Of+aZZ3L3n1o788b6HE7xcR5bAAAilCoAQDPRu3fv3F94X3/99bF8+fLkZVu2bJm79MsDDzwQr776aoNjr7/++twygwYNWq+MNZcG+fe//93gDWnffPPNeOCBB9ZrvXx8PnoT67U99dRTuZskDx48uNa8mt+zLMtdTqg+t99+eyxdurTedayvtW9OXllZ2eC4tb/wbOisqOrq6rjuuus2KE+Kww47LCI+vBfBtddeu97L1nzxf/nll+c7WkREdOvWLXfz7rXv25RPgwYNyv0l/MSJExsc98orr+SODWsv83FJ3Z/y5fDDD4+ID98zV1xxxce+vYiIk046KUpKSmLFihVx2223xY033hgREfvtt1/u0ndNVbNvz58/P/7yl7+s17KFOH7ky9tvvx133313g/PX3sfXzryxPodTbIxjy/qoeS9ujPchALBxKFUAgGahtLQ0fvCDH0RExKuvvhrHH3987q9hP6q6ujoWLlxYa9p3v/vdiPjwfhMnnXRSVFVV1Vlu4sSJuUvDHHnkket9A+KaL4xWr14dV155ZZ35VVVVcfLJJzd6U3A2rrvuuqveMxSWL18e3/rWtyLiw32v5ucaRxxxRHTu3DkiIn7605/GnDlz6qzjv//9b5x55pkR8eGZBxvyl/ERtW+I/Z///KfBcTvuuGPu55ovkT9qzJgxMWvWrA3Kk+LrX/967p4YP/zhD2Pq1KkNjv3ol6w77bRTfOUrX4mIiFtvvTUmTJjQ6Lbmz58ft9xyS61pd955Z7z77rsNLvPf//43XnjhhYj4+O6X0Llz5xg6dGhERPztb3+rt8hbvXp1nHjiibnj0qhRoz6WLGtL3Z/y5eCDD47+/ftHRMQll1yyzjOD5syZ0+iX9yl22GGH3Jfy5557brz44osRUfcG9U0xatSo3FlO3/rWt3IFbH0+um8X4viRT6NHj673El5Tp07Nlad9+/aNvfbaq9b8jfE5nCIfx5Z8qnmMG+N9CABsHO6pAgA0G9/97nfj7rvvjgceeCD+/Oc/x+677x7f+c53ol+/flFRURGLFi2Kxx9/PG655ZYYNmxYjBs3LrfsoYceGl/5ylfij3/8Y/z973+Pz372szF69Oj49Kc/He+8807ceuutub+wbd++/Tq/ZKnPoYceGtttt128/PLL8aMf/SjefPPNOPLII6N169bx3HPPxS9+8YuYPXt2fPazn43HH388X08LG6Bfv34xbNiwmDp1ahx99NHRtm3b+Oc//xkXX3xxzJ07NyI+3O/22GOPWsu1atUqrr322jjssMNi2bJlsc8++8QPfvCDOPDAA6NFixbx2GOPxUUXXRRLliyJiIhLL7201n2BmmLPPfeM1q1bx/vvvx8/+tGPoqysLLbbbrvcfSG6dOkSm222WQwZMiS22WabWLJkSZx77rmxYMGCGDp0aHTo0CFeeumluO6662Ly5Mmxzz77xKOPPrpBmdaldevW8bvf/S4OPvjgWLlyZQwePDi+8Y1vxBFHHBFdu3aNysrKeOGFF+Lee++Nu+66q85fav/qV7+KGTNmxLx58+KMM86Iv/zlL3H88cfHrrvuGuXl5fHWW2/FM888E/fdd188+OCDMXTo0DjuuONyy19++eXxta99LQ499ND4/Oc/HzvvvHNsueWW8c4778SMGTPiyiuvzJWc3/72tz+25+HnP/95TJ48Od5555048cQT45FHHoljjz022rVrFy+88EJceuml8fTTT0dExDHHHBOHHHLIx5alxv/93/9F165d49VXX41LL700unbtGjvttFPuDJmOHTvmLmmYL5MmTYr+/fvH22+/Hccee2zcfPPNceyxx8aOO+4YLVq0iCVLlsTs2bPj7rvvjscffzzOOOOM3BkhTXXyySfHQw89lLvkWNu2bePoo4/e4MfSqVOn+NWvfhXHH398LFmyJPr37x8jR46MQw45JDp16hTLly+PZ599Nu66666YO3durS/MC3H8yJfevXvHv/71r+jbt2+MGTMm+vfvH5WVlXHvvffGz3/+8/jggw+iZcuWcfXVV9dZdmN8Dqfa0GNLPg0cODDmz58fd911V/z617+OffbZJ3f2Stu2bWObbbb5WLYLAHyMMgCAZmTFihXZ0UcfnUVEo//Gjh1bZ9lVq1ZlQ4cObXS5zp07Z7Nnz6532w899FBu3EMPPVTvmGnTpmVt2rSpd90tWrTIrrjiimzs2LG5afVp7DHUmD9/fm7cDTfc0OC4dWXebrvtsojIhg8f3uA6sizLhg8fnkVEtt122zU6rqk5Ute///77ZxGR7b///o2Oa+xxrf38z5s3L+vRo0eD+8NRRx2VVVVVNbidG2+8MSsvL29w+RYtWmQXXnhhg8unvNZrO+ussxrc1trP63333Ze1bt26wbGDBg3Knn322Ub3odTX5IYbbsitZ/78+fWOue+++7J27dqt831bn9dffz3bd99917lsRGQjRoyotWzN/tLYv9LS0uyCCy5o9DE2JvU9NGvWrKxz586NZjnyyCOzVatW1bt86r6/Pn75y182mGXtfWJdx6waKcfIuXPnZrvttlvS63n++edv8GNctWpVrX1v5MiRG7zOtd14443ZZptt1ujjaOg9tDGOHx/HZ8V1112XtWzZst7MrVq1ym655ZYGt7Ohn8Mpx5vUx70hx5YsS39Pruv9M3v27Ab3g3UdVwCA5snlvwCAZqWioiL++Mc/xoMPPhjf+MY3okePHrHZZptFq1atolu3bnHYYYfFr3/96zjjjDPqLNu6dev405/+FHfddVcceeSR0blz52jVqlW0a9cuBgwYEOPHj4+5c+dGnz59mpzvc5/7XMycOTO+8Y1vROfOnaOsrCy23XbbOOqoo+Lhhx+O0047bQMePfnWo0ePmDlzZpxzzjmx8847R0VFRWy55Zax3377xc033xy33357tGzZ8Mnbw4cPjxdeeCFOP/302HnnnaNNmzax2WabxQ477BAjR46M2bNnx5gxY/KW96KLLorrrrsu9t1332jfvn2D990YMmRIzJgxI77+9a/n9sNPfepTsf/++8e1114bkydPzl26aGMYMmRIzJs3Ly688MIYOHBgbL311tGiRYto27ZtfOYzn4nvfe97tW5OvbZOnTrFww8/HPfcc0987Wtfy93wuuYxDRw4MM4444yYOnVqnXuW3HLLLXHttdfGsGHDok+fPtGpU6do2bJlbL755rHrrrvGKaecErNnz45zzz33Y38O9txzz5g7d26MHz8+BgwYEFtttVW0atUqOnfuHEceeWTcddddcccdd9S618nH7ZRTTok77rgjDj744Nhmm20a3dfzpVevXvH000/HpEmT4qijjor/+7//yx3Dt9122xg0aFCce+65MXPmzDjvvPM2eHutW7fOXeopIj+X/lrb8OHD4z//+U/88Ic/jL59+8ZWW20VLVq0iHbt2sVnP/vZOOecc+K+++5rcNmNefzIl5NPPjmmTZsWxxxzTO5ztEuXLnH88cfH7Nmz46tf/WqDy26Mz+FUG3Jsyac+ffrE9OnT47jjjov/+7//i/Ly8o9tWwDAxlGSZVlW6BAAAJAv48aNi/PPPz8iIvyvLnzy7bPPPvHYY4/FLrvsEs8991yh4xSl7t27x8svvxzDhw9v8F5NAAB8yJkqAAAAFKW5c+fGY489FhH5P0sFAADqo1QBAACgKF188cUR8eFlp0444YTChgEAYJPw8V9UFwAAAPJg1apV8dprr8XKlSvjzjvvzF2q6pvf/GZsvfXWhQ0HAMAmQakCAABAUXjiiSfigAMOqDWtW7duMW7cuMIEAgBgk+PyXwAAABSVkpKS6Ny5c3z961+PRx55JNq1a1foSAAAbCJKsizLCh0CAAAAAACgudvkLv9VXV0dCxcujC222CJKSkoKHQcAAAAAACigLMvivffei86dO0dpaeMX+NrkSpWFCxdGt27dCh0DAAAAAABoRv773/9G165dGx2zyZUqW2yxRUR8+OS0bdu2wGk+uaqqquLvf/97HHzwwVFWVlboOOtF9sIp5vyyF0YxZ48o7vyyF0YxZ48o7vyyF04x55e9MIo5e0Rx55e9cIo5v+yFUczZI4o7v+yFU8z5izl7sVi2bFl069Yt1x80ZpMrVWou+dW2bVulyseoqqoqKioqom3btkX3Rpe9cIo5v+yFUczZI4o7v+yFUczZI4o7v+yFU8z5ZS+MYs4eUdz5ZS+cYs4ve2EUc/aI4s4ve+EUc/5izl5sUm4Z0vjFwQAAAAAAAIgIpQoAAAAAAEASpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAEACpQoAAAAAAECCloUOQPPS/ey/5mU95S2y+Fn/iN3G3R+Va0o2eH0LLjo0D6kAAAAAAKDpnKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQoFmUKldffXV07949WrduHQMGDIgnn3yywbE33nhjlJSU1PrXunXrjZgWAAAAAADYFBW8VLntttti9OjRMXbs2Jg1a1b07t07hgwZEkuWLGlwmbZt28brr7+e+/fyyy9vxMQAAAAAAMCmqOClyoQJE2LkyJExYsSI2GWXXeKaa66JioqKmDhxYoPLlJSURKdOnXL/OnbsuBETAwAAAAAAm6KWhdz46tWrY+bMmTFmzJjctNLS0hg8eHBMnz69weWWL18e2223XVRXV8dnPvOZuPDCC2PXXXetd2xlZWVUVlbmfl+2bFlERFRVVUVVVVWeHsknR3mLLD/rKc1q/XdDbczXqmZbxbh/FHP2iOLOL3thFHP2iOLOL3thFHP2iOLOL3vhFHN+2QujmLNHFHd+2QunmPPLXhjFnD2iuPPLXjjFnL+YsxeL9XluS7Isy8+33k2wcOHC6NKlSzz22GOx995756afddZZMXXq1HjiiSfqLDN9+vR48cUXY4899oilS5fGpZdeGg8//HA899xz0bVr1zrjx40bF+eff36d6ZMmTYqKior8PiAAAAAAAKCorFy5MoYNGxZLly6Ntm3bNjq2oGeqNMXee+9dq4AZOHBg7LzzzvHrX/86Lrjggjrjx4wZE6NHj879vmzZsujWrVscfPDB63xyNkW7jbs/L+spL83ign7V8aMZpVFZXbLB63t23JA8pEpTVVUVDzzwQBx00EFRVla20babD8WcPaK488teGMWcPaK488teGMWcPaK488teOMWcX/bCKObsEcWdX/bCKeb8shdGMWePKO78shdOMecv5uzFouYKVykKWqp06NAhWrRoEYsXL641ffHixdGpU6ekdZSVlcWee+4ZL730Ur3zy8vLo7y8vN7l7IB1Va7Z8AKk1vqqS/KyzkK8VsW8jxRz9ojizi97YRRz9ojizi97YRRz9ojizi974RRzftkLo5izRxR3ftkLp5jzy14YxZw9orjzy144xZy/mLM3d+vzvBb0RvWtWrWKvn37xuTJk3PTqqurY/LkybXORmnMmjVrYs6cObHtttt+XDEBAAAAAAAKf/mv0aNHx/Dhw6Nfv37Rv3//uPzyy2PFihUxYsSIiIg4/vjjo0uXLjF+/PiIiPjxj38cn/3sZ6Nnz57x7rvvxiWXXBIvv/xynHzyyYV8GAAAAAAAwCdcwUuVY489Nt54440477zzYtGiRdGnT5+47777omPHjhER8corr0Rp6f9OqHnnnXdi5MiRsWjRomjXrl307ds3Hnvssdhll10K9RAAAAAAAIBNQMFLlYiIUaNGxahRo+qdN2XKlFq///znP4+f//znGyEVAAAAAADA/xT0nioAAAAAAADFQqkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQoFmUKldffXV07949WrduHQMGDIgnn3wyablbb701SkpK4ogjjvh4AwIAAAAAAJu8gpcqt912W4wePTrGjh0bs2bNit69e8eQIUNiyZIljS63YMGCOPPMM2PffffdSEkBAAAAAIBNWcFLlQkTJsTIkSNjxIgRscsuu8Q111wTFRUVMXHixAaXWbNmTXzta1+L888/P7bffvuNmBYAAAAAANhUFbRUWb16dcycOTMGDx6cm1ZaWhqDBw+O6dOnN7jcj3/849hmm23ipJNO2hgxAQAAAAAAomUhN/7mm2/GmjVromPHjrWmd+zYMV544YV6l3nkkUfiN7/5TTz99NNJ26isrIzKysrc78uWLYuIiKqqqqiqqmpa8E+w8hZZftZTmtX674bamK9VzbaKcf8o5uwRxZ1f9sIo5uwRxZ1f9sIo5uwRxZ1f9sIp5vyyF0YxZ48o7vyyF04x55e9MIo5e0Rx55e9cIo5fzFnLxbr89yWZFmWn2+9m2DhwoXRpUuXeOyxx2LvvffOTT/rrLNi6tSp8cQTT9Qa/95778Uee+wRv/zlL+OQQw6JiIgTTjgh3n333bjzzjvr3ca4cePi/PPPrzN90qRJUVFRkb8HAwAAAAAAFJ2VK1fGsGHDYunSpdG2bdtGxxb0TJUOHTpEixYtYvHixbWmL168ODp16lRn/H/+859YsGBBHHbYYblp1dXVERHRsmXLmDt3buywww61lhkzZkyMHj069/uyZcuiW7ducfDBB6/zydkU7Tbu/rysp7w0iwv6VcePZpRGZXXJBq/v2XFD8pAqTVVVVTzwwANx0EEHRVlZ2Ubbbj4Uc/aI4s4ve2EUc/aI4s4ve2EUc/aI4s4ve+EUc37ZC6OYs0cUd37ZC6eY88teGMWcPaK488teOMWcv5izF4uaK1ylKGip0qpVq+jbt29Mnjw5jjjiiIj4sCSZPHlyjBo1qs74T3/60zFnzpxa084999x477334oorrohu3brVWaa8vDzKy8vrTC8rK7MD1qNyzYYXILXWV12Sl3UW4rUq5n2kmLNHFHd+2QujmLNHFHd+2QujmLNHFHd+2QunmPPLXhjFnD2iuPPLXjjFnF/2wijm7BHFnV/2winm/MWcvblbn+e1oKVKRMTo0aNj+PDh0a9fv+jfv39cfvnlsWLFihgxYkRERBx//PHRpUuXGD9+fLRu3Tp22223WstvtdVWERF1pgMAAAAAAORTwUuVY489Nt54440477zzYtGiRdGnT5+47777cjevf+WVV6K0tLTAKQEAAAAAgE1dwUuViIhRo0bVe7mviIgpU6Y0uuyNN96Y/0AAAAAAAAAf4RQQAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABEoVAAAAAACABC0LHQDypfvZf83LespbZPGz/hG7jbs/KteUbPD6Flx0aB5SAQAAAABQaM5UAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASNAsSpWrr746unfvHq1bt44BAwbEk08+2eDYP/3pT9GvX7/Yaqutok2bNtGnT5/43e9+txHTAgAAAAAAm6KClyq33XZbjB49OsaOHRuzZs2K3r17x5AhQ2LJkiX1jm/fvn388Ic/jOnTp8c///nPGDFiRIwYMSLuv//+jZwcAAAAAADYlBS8VJkwYUKMHDkyRowYEbvssktcc801UVFRERMnTqx3/KBBg2Lo0KGx8847xw477BCnn3567LHHHvHII49s5OQAAAAAAMCmpGUhN7569eqYOXNmjBkzJjettLQ0Bg8eHNOnT1/n8lmWxYMPPhhz586Niy++uN4xlZWVUVlZmft92bJlERFRVVUVVVVVG/gIPnnKW2T5WU9pVuu/GyrltSrm7PlSs61i3beLOb/shVHM2SOKO7/shVHM2SOKO7/shVPM+WUvjGLOHlHc+WUvnGLOL3thFHP2iOLOL3vhFHP+Ys5eLNbnuS3Jsiw/3xw3wcKFC6NLly7x2GOPxd57752bftZZZ8XUqVPjiSeeqHe5pUuXRpcuXaKysjJatGgRv/zlL+PEE0+sd+y4cePi/PPPrzN90qRJUVFRkZ8HAgAAAAAAFKWVK1fGsGHDYunSpdG2bdtGxxb0TJWm2mKLLeLpp5+O5cuXx+TJk2P06NGx/fbbx6BBg+qMHTNmTIwePTr3+7Jly6Jbt25x8MEHr/PJ2RTtNi4/96YpL83ign7V8aMZpVFZXbLB63t23JB1jinm7PlSVVUVDzzwQBx00EFRVla20babL8WcX/bCKObsEcWdX/bCKObsEcWdX/bCKeb8shdGMWePKO78shdOMeeXvTCKOXtEceeXvXCKOX8xZy8WNVe4SlHQUqVDhw7RokWLWLx4ca3pixcvjk6dOjW4XGlpafTs2TMiIvr06RPPP/98jB8/vt5Spby8PMrLy+tMLysrswPWo3LNhpcItdZXXZKXdaa8VsWcPd+Kff8u5vyyF0YxZ48o7vyyF0YxZ48o7vyyF04x55e9MIo5e0Rx55e9cIo5v+yFUczZI4o7v+yFU8z5izl7c7c+z2tBb1TfqlWr6Nu3b0yePDk3rbq6OiZPnlzrcmDrUl1dXeu+KQAAAAAAAPlW8Mt/jR49OoYPHx79+vWL/v37x+WXXx4rVqyIESNGRETE8ccfH126dInx48dHRMT48eOjX79+scMOO0RlZWXce++98bvf/S5+9atfFfJhAAAAAAAAn3AFL1WOPfbYeOONN+K8886LRYsWRZ8+feK+++6Ljh07RkTEK6+8EqWl/zuhZsWKFfGd73wnXn311dhss83i05/+dNx8881x7LHHFuohAAAAAAAAm4CClyoREaNGjYpRo0bVO2/KlCm1fv/JT34SP/nJTzZCKgAAAAAAgP8p6D1VAAAAAAAAioVSBQAAAAAAIIFSBQAAAAAAIIFSBQAAAAAAIIFSBQAAAAAAIEGTS5Vp06bF17/+9dh7773jtddei4iI3/3ud/HII4/kLRwAAAAAAEBz0aRS5Y477oghQ4bEZpttFrNnz47KysqIiFi6dGlceOGFeQ0IAAAAAADQHDSpVPnJT34S11xzTVx33XVRVlaWm77PPvvErFmz8hYOAAAAAACguWhSqTJ37tzYb7/96kzfcsst4913393QTAAAAAAAAM1Ok0qVTp06xUsvvVRn+iOPPBLbb7/9BocCAAAAAABobppUqowcOTJOP/30eOKJJ6KkpCQWLlwYv//97+PMM8+MU045Jd8ZAQAAAAAACq5lUxY6++yzo7q6Og488MBYuXJl7LffflFeXh5nnnlmnHrqqfnOCAAAAAAAUHBNKlVKSkrihz/8YfzgBz+Il156KZYvXx677LJLbL755vnOBwAAAAAA0Cw0qVRZunRprFmzJtq3bx+77LJLbvrbb78dLVu2jLZt2+YtIAAAAAAAQHPQpHuqfPWrX41bb721zvQ//OEP8dWvfnWDQwEAAAAAADQ3TSpVnnjiiTjggAPqTB80aFA88cQTGxwKAAAAAACguWlSqVJZWRkffPBBnelVVVWxatWqDQ4FAAAAAADQ3DSpVOnfv39ce+21daZfc8010bdv3w0OBQAAAAAA0Nw06Ub1P/nJT2Lw4MHxzDPPxIEHHhgREZMnT46nnnoq/v73v+c1IAAAAAAAQHPQpDNV9tlnn5g+fXp069Yt/vCHP8Tdd98dPXv2jH/+85+x77775jsjAAAAAABAwTXpTJWIiD59+sTvf//7fGYBAAAAAABotppcqlRXV8dLL70US5Ysierq6lrz9ttvvw0OBgAAAAAA0Jw0qVR5/PHHY9iwYfHyyy9HlmW15pWUlMSaNWvyEg4AAAAAAKC5aFKp8u1vfzv69esXf/3rX2PbbbeNkpKSfOcCAAAAAABoVppUqrz44otx++23R8+ePfOdBwAAAAAAoFkqbcpCAwYMiJdeeinfWQAAAAAAAJqtJp2pcuqpp8YZZ5wRixYtit133z3Kyspqzd9jjz3yEg4AAAAAAKC5aFKpctRRR0VExIknnpibVlJSElmWuVE9AAAAAADwidSkUmX+/Pn5zgEAAAAAANCsNalU2W677fKdAwAAAAAAoFlrUqlS41//+le88sorsXr16lrTDz/88A0KBQAAAAAA0Nw0qVSZN29eDB06NObMmZO7l0rEh/dViQj3VAEAAAAAAD5xSpuy0Omnnx49evSIJUuWREVFRTz33HPx8MMPR79+/WLKlCl5jggAAAAAAFB4TTpTZfr06fHggw9Ghw4dorS0NEpLS+Nzn/tcjB8/Pk477bSYPXt2vnMCAAAAAAAUVJPOVFmzZk1sscUWERHRoUOHWLhwYUR8eAP7uXPn5i8dAAAAAABAM9GkM1V22223eOaZZ6JHjx4xYMCA+NnPfhatWrWKa6+9Nrbffvt8ZwQAAAAAACi4JpUq5557bqxYsSIiIn784x/Hl770pdh3331j6623jltvvTWvAQEAAAAAAJqDJpUqQ4YMyf3cs2fPeOGFF+Ltt9+Odu3aRUlJSd7CAQAAAAAANBdNuqfKiSeeGO+9916tae3bt4+VK1fGiSeemJdgAAAAAAAAzUmTSpWbbropVq1aVWf6qlWr4re//e0GhwIAAAAAAGhu1uvyX8uWLYssyyLLsnjvvfeidevWuXlr1qyJe++9N7bZZpu8hwQAAAAAACi09SpVttpqqygpKYmSkpLo1atXnfklJSVx/vnn5y0cAAAAAABAc7FepcpDDz0UWZbF5z//+bjjjjuiffv2uXmtWrWK7bbbLjp37pz3kAAAAAAAAIW2XqXK/vvvHx988EEMHz48+vXrF926dfu4cgEAAAAAADQr632j+pYtW8btt98ea9as+TjyAAAAAAAANEvrXapERHz+85+PqVOn5jsLAAAAAABAs7Vel/+qccghh8TZZ58dc+bMib59+0abNm1qzT/88MPzEg4AAAAAAKC5aFKp8p3vfCciIiZMmFBnXklJiUuDAQAAAAAAnzhNKlWqq6vznQMAAAAAAKBZa9I9VQAAAAAAADY1TS5Vpk6dGocddlj07NkzevbsGYcffnhMmzYtn9kAAAAAAACajSaVKjfffHMMHjw4Kioq4rTTTovTTjstNttsszjwwANj0qRJ+c4IAAAAAABQcE26p8pPf/rT+NnPfhbf//73c9NOO+20mDBhQlxwwQUxbNiwvAUEAAAAAABoDpp0psq8efPisMMOqzP98MMPj/nz529wKAAAAAAAgOamSaVKt27dYvLkyXWm/+Mf/4hu3bptcCgAAAAAAIDmpkmX/zrjjDPitNNOi6effjoGDhwYERGPPvpo3HjjjXHFFVfkNSAAAAAAAEBz0KRS5ZRTTolOnTrFZZddFn/4wx8iImLnnXeO2267Lb785S/nNSAAAAAAAEBz0KRSJSJi6NChMXTo0HxmAQAAAAAAaLaaXKpERMyYMSOef/75iIjYZZddom/fvnkJBQAAAAAA0Nw0qVR59dVX47jjjotHH300ttpqq4iIePfdd2PgwIFx6623RteuXfOZEQAAAAAAoOBKm7LQySefHFVVVfH888/H22+/HW+//XY8//zzUV1dHSeffHK+MwIAAAAAABRck85UmTp1ajz22GOx00475abttNNOceWVV8a+++6bt3AAAAAAAADNRZPOVOnWrVtUVVXVmb5mzZro3LnzBocCAAAAAABobppUqlxyySVx6qmnxowZM3LTZsyYEaeffnpceumleQsHAAAAAADQXDTp8l8nnHBCrFy5MgYMGBAtW364ig8++CBatmwZJ554Ypx44om5sW+//XZ+kgIAAAAAABRQk0qVyy+/PM8xAAAAAAAAmrcmlSrDhw/Pdw4AAAAAAIBmrUmlSo0lS5bEkiVLorq6utb0PfbYY4NCAQAAAAAANDdNKlVmzpwZw4cPj+effz6yLKs1r6SkJNasWZOXcAAAAAAAAM1Fk0qVE088MXr16hW/+c1vomPHjlFSUpLvXAAAAAAAAM1Kk0qVefPmxR133BE9e/bMdx4AAAAAAIBmqbQpCx144IHxzDPP5DsLAAAAAABAs9WkM1Wuv/76GD58eDz77LOx2267RVlZWa35hx9+eF7CAQAAAAAANBdNKlWmT58ejz76aPztb3+rM8+N6gEAAAAAgE+iJl3+69RTT42vf/3r8frrr0d1dXWtfwoVAAAAAADgk6hJpcpbb70V3//+96Njx475zgMAAAAAANAsNalUOfLII+Ohhx7KdxYAAAAAAIBmq0n3VOnVq1eMGTMmHnnkkdh9993r3Kj+tNNOy0s4AAAAAACA5qJJpcr1118fm2++eUydOjWmTp1aa15JSYlSBQAAAAAA+MRpUqkyf/78fOcAAAAAAABo1pJLldGjR8cFF1wQbdq0idGjRzc4rqSkJC677LK8hAMAAAAAAGgukkuV2bNnR1VVVe7nhpSUlGx4KgAAAAAAgGYmuVR56KGH6v0ZAAAAAABgU1Ba6AAAAAAAAADFQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQoFmUKldffXV07949WrduHQMGDIgnn3yywbHXXXdd7LvvvtGuXbto165dDB48uNHxAAAAAAAA+VDwUuW2226L0aNHx9ixY2PWrFnRu3fvGDJkSCxZsqTe8VOmTInjjjsuHnrooZg+fXp069YtDj744Hjttdc2cnIAAAAAAGBTUvBSZcKECTFy5MgYMWJE7LLLLnHNNddERUVFTJw4sd7xv//97+M73/lO9OnTJz796U/H9ddfH9XV1TF58uSNnBwAAAAAANiUtCzkxlevXh0zZ86MMWPG5KaVlpbG4MGDY/r06UnrWLlyZVRVVUX79u3rnV9ZWRmVlZW535ctWxYREVVVVVFVVbUB6T+Zyltk+VlPaVbrvxsq5bUq5uz5UrOtYt23izm/7IVRzNkjiju/7IVRzNkjiju/7IVTzPllL4xizh5R3PllL5xizi97YRRz9ojizi974RRz/mLOXizW57ktybIsP98cN8HChQujS5cu8dhjj8Xee++dm37WWWfF1KlT44knnljnOr7zne/E/fffH88991y0bt26zvxx48bF+eefX2f6pEmToqKiYsMeAAAAAAAAUNRWrlwZw4YNi6VLl0bbtm0bHVvQM1U21EUXXRS33nprTJkypd5CJSJizJgxMXr06Nzvy5Yty92HZV1PzqZot3H352U95aVZXNCvOn40ozQqq0s2eH3PjhuyzjHFnD1fqqqq4oEHHoiDDjooysrKNtp286WY88teGMWcPaK488teGMWcPaK488teOMWcX/bCKObsEcWdX/bCKeb8shdGMWePKO78shdOMecv5uzFouYKVykKWqp06NAhWrRoEYsXL641ffHixdGpU6dGl7300kvjoosuin/84x+xxx57NDiuvLw8ysvL60wvKyuzA9ajcs2Glwi11lddkpd1prxWxZw934p9/y7m/LIXRjFnjyju/LIXRjFnjyju/LIXTjHnl70wijl7RHHnl71wijm/7IVRzNkjiju/7IVTzPmLOXtztz7Pa0FvVN+qVavo27dvrZvM19x0fu3LgX3Uz372s7jgggvivvvui379+m2MqAAAAAAAwCau4Jf/Gj16dAwfPjz69esX/fv3j8svvzxWrFgRI0aMiIiI448/Prp06RLjx4+PiIiLL744zjvvvJg0aVJ07949Fi1aFBERm2++eWy++eYFexwAAAAAAMAnW8FLlWOPPTbeeOONOO+882LRokXRp0+fuO+++6Jjx44REfHKK69Eaen/Tqj51a9+FatXr46jjz661nrGjh0b48aN25jRAQAAAACATUjBS5WIiFGjRsWoUaPqnTdlypRavy9YsODjDwQAAAAAAPARBb2nCgAAAAAAQLFQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACRQqgAAAAAAACQoeKly9dVXR/fu3aN169YxYMCAePLJJxsc+9xzz8VRRx0V3bt3j5KSkrj88ss3XlAAAAAAAGCTVtBS5bbbbovRo0fH2LFjY9asWdG7d+8YMmRILFmypN7xK1eujO233z4uuuii6NSp00ZOCwAAAAAAbMoKWqpMmDAhRo4cGSNGjIhddtklrrnmmqioqIiJEyfWO36vvfaKSy65JL761a9GeXn5Rk4LAAAAAABsygpWqqxevTpmzpwZgwcP/l+Y0tIYPHhwTJ8+vVCxAAAAAAAA6tWyUBt+8803Y82aNdGxY8da0zt27BgvvPBC3rZTWVkZlZWVud+XLVsWERFVVVVRVVWVt+18UpS3yPKzntKs1n83VMprVczZ86VmW8W6bxdzftkLo5izRxR3ftkLo5izRxR3ftkLp5jzy14YxZw9orjzy144xZxf9sIo5uwRxZ1f9sIp5vzFnL1YrM9zW5JlWX6+OV5PCxcujC5dusRjjz0We++9d276WWedFVOnTo0nnnii0eW7d+8e3/ve9+J73/teo+PGjRsX559/fp3pkyZNioqKiiZlBwAAAAAAPhlWrlwZw4YNi6VLl0bbtm0bHVuwM1U6dOgQLVq0iMWLF9eavnjx4rzehH7MmDExevTo3O/Lli2Lbt26xcEHH7zOJ2dTtNu4+/OynvLSLC7oVx0/mlEaldUlG7y+Z8cNWeeYYs6eL1VVVfHAAw/EQQcdFGVlZRttu/lSzPllL4xizh5R3PllL4xizh5R3PllL5xizi97YRRz9ojizi974RRzftkLo5izRxR3ftkLp5jzF3P2YlFzhasUBStVWrVqFX379o3JkyfHEUccERER1dXVMXny5Bg1alTetlNeXl7vTe3LysrsgPWoXLPhJUKt9VWX5GWdKa9VMWfPt2Lfv4s5v+yFUczZI4o7v+yFUczZI4o7v+yFU8z5ZS+MYs4eUdz5ZS+cYs4ve2EUc/aI4s4ve+EUc/5izt7crc/zWrBSJSJi9OjRMXz48OjXr1/0798/Lr/88lixYkWMGDEiIiKOP/746NKlS4wfPz4iPry5/b/+9a/cz6+99lo8/fTTsfnmm0fPnj0L9jgAAAAAAIBPvoKWKscee2y88cYbcd5558WiRYuiT58+cd999+VuXv/KK69EaWlpbvzChQtjzz33zP1+6aWXxqWXXhr7779/TJkyZWPHBwAAAAAANiEFLVUiIkaNGtXg5b4+WpR07949sizbCKkAAAAAAABqK133EAAAAAAAAJQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACVoWOgAQ0f3sv+ZlPeUtsvhZ/4jdxt0flWtKNnh9Cy46NA+pAAAAAAA+GZypAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkECpAgAAAAAAkKBloQMAxa/72X/Ny3rKW2Txs/4Ru427PyrXlGzQuhZcdGheMgEAAAAA1HCmCgAAAAAAQAJnqgCbtOZ4lk2EM20AAAAAoDlSqgAUKYUQAAAAAGxcLv8FAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQoGWhAwCw6el+9l/zsp7yFln8rH/EbuPuj8o1JRu8vgUXHZqHVAAAAAB8UjlTBQAAAAAAIIEzVQBgPRXzmTayO8MJAAAAaDqlCgDARpCPUkghBAAAAIXl8l8AAAAAAAAJnKkCAECjXHoNAAAAPuRMFQAAAAAAgARKFQAAAAAAgATN4vJfV199dVxyySWxaNGi6N27d1x55ZXRv3//Bsf/8Y9/jB/96EexYMGC2HHHHePiiy+OL37xixsxMQAAxcClywAAAMingp+pctttt8Xo0aNj7NixMWvWrOjdu3cMGTIklixZUu/4xx57LI477rg46aSTYvbs2XHEEUfEEUccEc8+++xGTg4AAAAAAGxKCn6myoQJE2LkyJExYsSIiIi45ppr4q9//WtMnDgxzj777Drjr7jiivjCF74QP/jBDyIi4oILLogHHnggrrrqqrjmmms2anYA/r/27js8qjptH/g9Z9IbJIQSaqghCEivy4ICi3QFBEEEQRRRQemiK4iIIlWwsUIo4tIEXIoNKSKigJQElgSIoelCaBESQEqS7+8Pfpk3IW2SkHzPfeb5XFeuy8yM797e73MeODmZM0IIIQoL+7tsmPNLdu65Yc4OyDvjhBBCCCHMTutFldu3b2P//v2YMGGC4zHDMNCuXTv88ssvWf47v/zyC0aNGpXhsQ4dOuA///lPlq+/desWbt265fj+6tWrAICEhATcuXOngP8F1uOWfP3+/N9JVbhxIxVudwykpBb8RODy5cu5/29Kdi3ZAXPmZ84OWH9umLMD3PklO/fcMGcHZG7Ss3p2gDu/ZOeeG+bsgJ78Td/dWuD/HQDwNBT+WT8V9V5fh1v3IfueCW1zfQ1zdoA7v2Tnnhtd2e+XO3fu4MaNG7h8+TLc3d2L9H+7oCS7Psz5mbOzSEpKAgAopXJ9rU0586pCcvbsWZQrVw4///wzmjdv7nh83Lhx2LFjB/bs2ZPp3/Hw8MDSpUvRt29fx2Mff/wxJk+ejPPnz2d6/ZtvvonJkycXzn+AEEIIIYQQQgghhBBCCCEs4ffff0f58uVzfI32238VtgkTJmR4Z0tqaioSEhJQokQJ2GwFvxIvspaYmIgKFSrg999/R0BAgO44eSLZ9WHOL9n1YM4OcOeX7HowZwe480t2fZjzS3Y9mLMD3Pkluz7M+SW7HszZAe78kl0f5vzM2VkopZCUlISyZcvm+lqtF1WCg4Nht9szvcPk/PnzKFOmTJb/TpkyZfL0ek9PT3h6emZ4rHjx4vkPLfIkICCA9kCX7Pow55fsejBnB7jzS3Y9mLMD3Pkluz7M+SW7HszZAe78kl0f5vySXQ/m7AB3fsmuD3N+5uwMihUr5tTrjELOkSMPDw80bNgQW7f+370gU1NTsXXr1gy3A0uvefPmGV4PAN9//322rxdCCCGEEEIIIYQQQgghhLgftN/+a9SoURg4cCAaNWqEJk2a4P3338f169cxaNAgAMCAAQNQrlw5vPvuuwCAl19+Ga1bt8asWbPQuXNnrFy5Evv27cOnn36q8z9DCCGEEEIIIYQQQgghhBAWp/2iSp8+fXDx4kVMnDgR8fHxqFevHr799luULl0aAHDmzBkYxv+9oaZFixZYvnw5/vnPf+K1115D9erV8Z///Ae1a9fW9Z8gsuDp6YlJkyZluvUaA8muD3N+ya4Hc3aAO79k14M5O8CdX7Lrw5xfsuvBnB3gzi/Z9WHOL9n1YM4OcOeX7Pow52fObkU2pZTSHUIIIYQQQgghhBBCCCGEEMLstH6mihBCCCGEEEIIIYQQQgghBAu5qCKEEEIIIYQQQgghhBBCCOEEuagihBBCCCGEEEIIIYQQQgjhBLmoIoQQQgghhBBCCCGEEEII4QQ33QGEEPfPkiVL8Nhjj6FYsWK6owhRJJRSsNlsumPk2a1btwAAnp6empMIBikpKbDb7Y7v9+7di9TUVNSvX59uhpKTk+HmJn/9LGonT55EhQoVpHshhBAin/bv34+GDRvqjiHSOX/+PJRSKFOmjO4olhYfH489e/YgPj4eAFCmTBk0bdpUehcuT96pIgrE398fzzzzDH7++WfdUfKsa9euWLZsGf766y/dUe6b5557DmfPntUdI1fs3UdHR+OFF15A/fr1ERISgpCQENSvXx8vvPACoqOjdcfLUVRUFN5++218/PHHuHTpUobnEhMTMXjwYE3J8sfT0xMxMTG6Yzjl+++/R6dOnRAYGAgfHx/4+PggMDAQnTp1wpYtW3THc9rZs2cxadIkPPnkkxgzZgyOHj2qO1KOLly4gG3btuHq1asA7p58TZ8+HdOmTcPhw4c1p8vZ6dOn0ahRI3h6eqJjx45ITExE+/bt0axZM7Ro0QK1atXC8ePHdcfM0rfffuvoNzU1FVOmTEG5cuXg6emJ8uXLY9q0aVBKaU6ZvaioKAwYMABVqlSBt7c3fH19UadOHbzxxhtITEzUHS/PwsLCEBsbqzuGU1i7nzVrFk6fPq07Rr6x9p5m7969mDt3LiZMmIAJEyZg7ty52Lt3r+5YTmPOf+LECXz22Wd47733MGPGDKxdu5ZiZnISExODKlWq6I6RrbVr1+LGjRu6Y+TLH3/8keEcZOfOnXjyySfRqlUr9O/fH7/88ovGdDlr3LgxqlWrhnfeeYfinDsrqamp2T5+5syZIk7jvISEBPTq1QsVK1bEsGHDkJKSgiFDhiAkJATlypVDixYtcO7cOd0x8+XPP//EZ599pjtGlq5fv47+/fujfPny6NWrFyZOnIiJEyeiV69eKF++PJ566inaXQTc/e/78ccfdcfIkypVqtD8nd4V2JSZz2iF6RmGgVq1aiE6OhphYWEYMmQIBgwYgJIlS+qOlivDMGC32+Hr64u+fftiyJAhNL95EhQUlOXjV65cQUBAAAzj7vXShISEoozlNObuv/nmGzz66KNo0KABOnTogNKlSwO4+4Pa77//Hvv378f69evRoUMHzUkz27x5M7p27Yrq1asjKSkJ169fxxdffIGHHnoIwN3/hrJlyyIlJUVz0sxGjRqV5eNz585F//79UaJECQDA7NmzizKW05YuXYohQ4agV69emeZm8+bNWLNmDSIiIvDUU09pTpqZj48PTp8+jZIlSyI6OhotWrRAyZIlUb9+fRw+fBhnzpzBL7/8grp16+qOmskPP/yALl264MaNGyhdujS+/fZbdOnSBd7e3jAMA6dOncKGDRvwj3/8Q3fULPXq1QuXLl3CmDFjsGzZMvzvf/+Du7s7Pv/8cxiGgUGDBsHb2xtffvml7qiZ1KxZEwsWLECrVq3w7rvvYtasWXj99dcRHh6OY8eO4d1338XIkSMxfvx43VEz+e677/DYY4+hU6dO8Pb2xrp16zB48GD4+vpi7dq1UErhp59+MuVv5/Xo0SPLx9evX4+HH34Y/v7+AIB169YVZSynMXdvGAYMw8BDDz2EIUOG4LHHHoOHh4fuWE5h7v3ChQvo2bMndu3ahYoVK2b48/XMmTNo2bIl1q5di1KlSmlOmjXm/NevX8fTTz+NtWvXAgBsNhtKlSqFixcvwtvbG9OmTcOLL76oOWX+REVFoUGDBqb8OzFwd9/4+/ujT58+eOaZZ9C0aVPdkZzWtGlTvPHGG+jSpQvWr1+PHj16oEuXLggPD8fx48exadMmrFu3Dl26dNEdNRPDMDBkyBCsX78eCQkJ6NChA4YMGYKuXbtmeEexGSUmJmLIkCHYuHEjAgICMHToUEyaNMmR28zngQDwzDPPYO/evRg6dCjWrFmD4sWL4+TJk/j4449hGAZefvllhIeHY+nSpbqj5pmZ982QIUPw448/4oMPPkC7du0c85KSkoKtW7di+PDh+Pvf/44FCxZoTpo/Zu5+3rx5WT4+atQojBs3zvF3shEjRhRlLHEvJUQB2Gw2df78eRUZGaleeuklFRQUpDw8PFSPHj3U119/rVJTU3VHzJbNZlNHjhxRc+bMUXXq1FGGYagHH3xQffDBByohIUF3vBz5+fmpzp07qyVLlji+Fi9erOx2u5o6darjMbNi7r5u3brqjTfeyPb5SZMmqTp16hRhIuc1b95cvfbaa0oppVJTU9V7772n/Pz81DfffKOUUio+Pl4ZhqEzYrZsNpuqV6+eatOmTYYvm82mGjdurNq0aaMeeugh3TGzVb16dfXhhx9m+/xHH32kqlWrVoSJnJe255VSqnv37qpr167qzp07SimlUlJS1BNPPKG6dOmiM2K2/va3v6kXX3xRJSUlqRkzZqhy5cqpF1980fH8mDFjVIsWLTQmzFnJkiXVwYMHlVJKXblyRdlsNrVz507H8/v371elS5fWlC5nnp6e6vTp00oppWrXrq1Wr16d4flNmzaZdubr1aunPvnkE8f3mzdvVjVr1lRKKXX79m3Vtm1b9fTTT+uKlyObzaZat26tnn766QxfhmGoRx991PG9WbF3v3jxYtW9e3fl7u6uSpQooV5++WV1+PBh3dFyxdx7z549VfPmzdXRo0czPXf06FHVokUL1atXLw3JnMOc/7nnnlMtW7ZUhw8fVrGxsapXr15q3Lhx6vr16yoiIkL5+Piof//737pjZmnkyJE5fvXv39+0fydW6u6+eeutt1T9+vWVzWZTDzzwgJozZ466dOmS7mi58vX1VSdOnFBKKdW0aVM1bdq0DM9/8MEHqn79+jqi5Srt78R37txRa9asUZ06dVJ2u12VLl1ajRs3Th07dkx3xGyNGDFC1ahRQ33xxRdqwYIFqlKlSqpz587q1q1bSqm754E2m01zyuyFhISoXbt2KaX+L+vmzZsdz//000+qXLlyuuLl6OrVqzl+7dy507T7pnjx4o7es/LTTz+p4sWLF2Gi+ysyMtK03dtsNlW+fHkVGhqa4ctms6ly5cqp0NBQVblyZd0xXZ5cVBEFkv6HbUopdfPmTbV8+XLVtm1bZRiGKl++fI4/gNbp3ux79uxRzz33nCpWrJjy9vZWffv2VVu3btWYMHuxsbGqcePGasCAASopKcnxuJubmzpy5IjGZM5h7t7LyyvLE980R48eVV5eXkWYyHkBAQHqt99+y/DYv//9b+Xr66s2btxo6osq7777rqpcuXKmuWCZeU9PT9q5SX+8VqhQQf34448Znj9w4IAKCQnRES1X6Wf+zp07ys3NzXGRQimljh8/rooVK6YnnBP8/f0dP3hISUlRbm5uKjIy0vF8bGys8vf31xUvRyEhIeqXX35RSilVunRpdeDAgQzPHz9+XHl7e+uIlisvLy918uRJx/epqanK3d1dnT17Viml1I8//qhKliypKV3OVqxYocqXL68WLVqU4XGWXcncffpdef78efXee++pmjVrKsMwVOPGjdWnn36qEhMTNafMGnPvfn5+mfZLevv27VN+fn5FmChvmPMHBwerffv2Ob5PSEhQXl5e6vr160oppT788ENVr149XfFyZBiGatCgQaZf1kn7atSokWn/TqxUxn2zb98+NWzYMFW8eHHl6empHn/88Qw/bDabYsWKqaioKKWUUqVKlXL8c5rffvtN+fj46IiWq3vPYZVS6o8//lBvvfWWqlKlijIMQ7Vq1UpTupxVrFhRbd++3fH9xYsXVZMmTdQ//vEPdfPmTVOfByqllI+Pjzp16pTje3d39wy/tHDixAnl6+urI1qubDabMgwj26+0580oICBA/frrr9k+v3fvXhUQEFCEifImMDAwx6+AgADTdj906FBVr149FR0dneFxlr/Tuwr5TBVRIPd+QLSnpyf69u2LLVu2IC4uDk8//TSWLFmiJ1weNWnSBP/6179w9uxZfPzxx/j999/Rvn173bGyVK1aNfz8888oU6YM6tWrh127dumOVCBM3YeGhuKrr77K9vmvvvoKlSpVKsJEzvP09MSVK1cyPNavXz8sXLgQffr0MeUthNK8+uqrWLVqFYYNG4YxY8bgzp07uiPlyQMPPICIiIhsn1+0aBFq1apVhImcZ7PZHLveMAwUK1Ysw/PFixfHn3/+qSNarjw8PHDz5k0AwO3bt5Gamur4HgD++usvuLu764qXqwceeACLFi0CcPcWciVKlMDKlSsdz69YsQI1atTQFS9Hjz32GKZOnYqUlBR0794dH3/8cYbPUPnggw9Qr149fQFzUK5cORw7dszxfVxcHFJTUx23GSxfvjyuXbumK16OnnjiCezcuRMRERHo2bOnaY/N7DB3n16pUqUwbtw4xMTE4IcffkCtWrUwcuRIhISE6I6WJebePT09c/z8jqSkJHh6ehZhorxhzp+cnIyAgADH935+fkhOTsb169cBAP/4xz9M+7lr1apVw8iRI7F9+/Ysv5huZdOwYUN8/PHHOHfuHBYsWICLFy/ikUceQeXKlXVHy1Lr1q2xYsUKAED9+vXxww8/ZHh++/btKFeunIZkubv3Zx/A3f35xhtvIC4uDps3b0aFChU0JMvdxYsXM5yjBgcHY8uWLUhKSkKnTp1M/7kY1atXx6ZNmwDcvR23l5cXNm/e7Hj+u+++M+3M+/v7491338W2bduy/Pr00091R8xWly5d8Nxzz+HgwYOZnjt48CCGDRuGrl27akjmnFu3bmHw4MGYM2dOll+jR4/WHTFb8+fPx8SJE9GhQwd8+OGHuuOI7Oi+qiO4ZfXbGvcy6y3AnMlu5rfwptm6dauqWLGimjBhgnJ3d6e4as3c/erVq5Wbm5vq2rWrmjt3rlq5cqVauXKlmjt3rurWrZvy8PBQa9as0R0zS+3bt1czZszI8rnly5crd3d30/6mRpqkpCQ1YMAAVbduXXX48GGamd++fbvy9fVVderUUSNHjlTTpk1T06ZNUyNHjlR169ZVfn5+aseOHbpjZslms6nixYurwMBA5e7urpYtW5bh+c2bN6vQ0FBN6XLWvXt31aVLF/XTTz+p5557TjVq1Eh17txZXbt2TV2/fl316tVLPfLII7pjZuvbb79VXl5eysPDQ3l5eakdO3aoGjVqqCZNmqhmzZopu92uVq1apTtmlq5cuaIaNWqkqlWrpp566inl5eWlKlWqpNq3b68qV66sihUrpnbv3q07ZpYmT56sypcvrz755BO1aNEiVbt2bfXYY485nl+3bp2qVauWxoS5S0lJURMnTlQVKlRQ3377Lc2uZO7eMIwc/25z9epV9emnnxZhIucx9/7CCy+oSpUqqXXr1qmrV686Hr969apat26dCg0NVS+99JLGhDljzt++ffsMt9ScMWNGhneuHjhwQAUHB+uIlqt+/fqpV155JdvnIyMjTX0rpNz2TWxsrOOWv2YTHR2tSpQooQYMGKCmTJmi/Pz8VP/+/dXUqVPVgAEDlKenp1q8eLHumFly5hzWrMLCwtRXX32V6fGkpCTVvHlz9eCDD5r6PPDzzz9XdrtdVatWTXl6eqovvvhClS1bVvXu3Vs98cQTysPDI8dbLevUpk0b9d5772X7vJn3TUJCgnrkkUeUzWZTQUFBqmbNmqpmzZoqKChIGYahOnbsqP7880/dMbPVokUL9f7772f7vJlv/5Xmjz/+UA8//LB65JFH1Llz5+SdKiYjF1VEgbz55puOt3izadOmjan/AMiLS5cuqccee0wVL148x1sMmQV797t27VJ9+vRRFStWVB4eHsrDw0NVrFhR9enTR/3888+642Vr3bp1OZ5A/vvf/1Zt2rQpwkT5t2LFClW6dGllGAbNXypOnjypxo0bp/7+97+rGjVqqBo1aqi///3vavz48Rluu2I26T+7acmSJY5bOqV566231MiRIzWly9nx48dV9erVlc1mU+Hh4eqPP/5Q3bp1U25ubsrNzU2VLFlS7d+/X3fMHJ08eVKtWbPGMSPx8fHqjTfeUKNHj1bbtm3TGy4Xt2/fVp988onq1KmTqlmzpqpRo4Zq3bq1eu2119Tvv/+uO1627ty5o8aNG6fKli2rSpQoofr166cuXrzoeH7Pnj2mvQh6r507d6rKlSvT7Erm7pl/2Mbc+82bN9Xzzz+vPDw8lGEYysvLS3l5eSnDMJSHh4caNmyYunnzpu6Y2WLOv3//fhUUFKTKlCnj+DvxihUrHM9/+OGHasCAARoTZu/cuXMZbiXEhnnfKHX3Fl9PPPGE8vf3VzabTdlsNuXu7q5atGihvvzyS93xsvXDDz84PleQzfDhw7P9fKbExETVtGlT0/9w+aefflIzZ850fMbHkSNH1FNPPaV69uxp6s+T/fTTT9XcuXOzfT4+Pl69+eabRZgo76Kjo9WiRYvUO++8o9555x21aNEiFRMToztWrqZOnZpjt2fOnDHtZ8all5qaqt555x1VpkwZZbfbKf5O7ypsSqW7F4MQQghB4vfff8eBAwfQrl07+Pr66o4jTOzy5cuO29gAwNatW/HXX3+hefPmGR4XwoquXbuGuLg41KxZ07S3ERKioBITE7F//37Ex8cDAMqUKYOGDRtmuD2VmbHmP3fuHDZt2oRbt27h4YcfNu2tTK3m9OnTqFixYpa3o2KilMKFCxeQmpqK4OBgU9+Sld2ff/6Js2fP4oEHHsjy+aSkJBw4cACtW7cu4mRCCGft378fP/30EwYMGIDAwEDdcQQAuagixD2UUkhNTYXdbtcdRRBhnZvY2FicOXMGlSpVQrVq1XTHcdqtW7cAgPoHhKzdC1EQrLuSnfQuhBA5k7+XidzMmjULvXr1Mu3nZwpRGC5fvoxDhw7hwQcfRFBQEC5duoSIiAjcunULjz/+OMLDw3VHFEIb+aB6UajatWuHKlWq6I6RpeTkZPzzn/9E69atMWnSJADAjBkz4OfnBx8fHwwcOBC3b9/WnDJ/zNw7cPfD2p555hn8/PPPuqPkGfPcvPvuu9i6dSuAu7+t1K5dO4SFhaF9+/YICwtDx44dM32QvZl8//336NSpEwIDA+Hj4wMfHx8EBgaiU6dO2LJli+54Obq3+7Zt29J0z3y8zpo1C6dOndIdo9CYedcz78q9e/ciJSXF8f2mTZvQunVrlCtXDo0aNcJnn32mMV3OmHtP8/XXX2PIkCGOD3pP788//8TDDz+sKVnBrF+/3rSzw7zngbvH6MSJE7Fr1y4AwLZt29CpUyc88sgjpv4AYAD4448/cOnSJcf3O3fuxJNPPolWrVqhf//++OWXXzSmyxullOND3jdt2oQ7d+7ojpQt9r8TW2lu7mXmXTl27FhUrVoV7du3x6pVq0z/52lenD9/Hm+99ZbuGPkWFRVl2l8cYT5e9+7di6pVq6Jt27aoVq0a9u/fjyZNmiAiIgKfffYZGjZsiAMHDuiOmaPLly9j+/btSEhIAABcunQJ7733Ht56661Mf89kYuZd6VJ03XdMuIYPP/zQtPeH/Oc//6lKly6tRo0apWrVqqWef/55VaFCBfX555+rpUuXqnLlyuX4gWJmZubelbp7H+AHHnhA2Ww2VbNmTTVz5kx14cIF3bGcwjw35cuXVwcOHFBKKTVkyBBVv359deDAAfXXX3+pyMhI1axZM/XMM89oTpm1JUuWKDc3N/XEE0+oxYsXq6+//lp9/fXXavHixapv377K3d1dffbZZ7pjZou5e+bj1WazKbvdrtq1a6dWrlypbt26pTvSfWXmXc+8K9N/APCGDRuUYRhqwIAB6qOPPlJDhgxRbm5uat26dZpTZo25d6XufraX3W5XnTt3Vn/729+Ul5eX+vzzzx3Px8fHm/6e79kJCwszbXbmPT9//nzl5uamGjZsqAICAtSyZcuUv7+/GjJkiBo6dKjy9vbO8UNqdWvSpInauHGjUkqp//znP8owDNWtWzc1fvx49dhjjyl3d3fH82bTsWNHdeXKFaWUUpcvX1ZNmzZVNptNlSxZUhmGoWrWrGnaOWL+e5lS3HOTG7PvysWLF6vu3bsrd3d3VaJECfXyyy+rw4cP645WYAwf2J0TM3/YO/Px2q5dOzVkyBCVmJioZsyYocqXL6+GDBnieH7QoEHq0Ucf1ZgwZ3v27FHFihVTNptNBQYGqn379qnKlSur6tWrq6pVqypvb2/Tf75mdsy8K12JXFQRLqtKlSqOP7xiY2OVYRhq5cqVjudXrVqlateurSuepaV9uGJkZKR66aWXVFBQkPLw8FA9evRQX3/9tUpNTdUdMVvMc+Pp6en4UM7Q0NBMHzq7b98+FRISoiNarqpXr64+/PDDbJ//6KOPVLVq1YowUd4wd898vFr55NfsmHdl+g8A/tvf/qZeffXVDM9PnTpVNWvWTEe0XDH3rpRS9erVy/BhrqtWrVK+vr5q4cKFSinuiypmxrzna9WqpT799FOllFLbtm1TXl5e6qOPPnI8v3jxYhUeHq4rXq58fX3ViRMnlFJKNW3aVE2bNi3D8x988IGqX7++jmi5Sr8rhw0bpmrVquX4b/n9999Vw4YN1fPPP68zYraY/16mFPfcMEs/8+fPn1fvvfeeqlmzpjIMQzVu3Fh9+umnKjExUXPKrEVFReX4tWrVKlP/+frYY4/l+PXwww+bNj/z8RoYGKiio6OVUkrdvn1bGYah9uzZ43h+//79qly5crri5Yr9opAwP7moIlyWl5eXOnPmTIbvY2JiHN+fOHFC+fv764hmeen/QqqUUjdv3lTLly9Xbdu2VYZhqPLly6s33nhDY8LsMc9NjRo11KZNm5RSSlWuXFnt2rUrw/MHDx5UAQEBOqLlytPTUx09ejTb548ePaq8vLyKMFHeMHfPfLwyn/yyY96V6eemVKlSat++fRmeP3r0qCpevLiOaLli7l2pjD94SLNt2zbl5+enPvnkE7moUkiY97y3t7c6ffq043t3d/cMF85PnjypfHx8dERzSrFixVRUVJRS6u6+SfvnNL/99ptp86efm7CwMLV+/foMz2/ZskVVrlxZR7RcMf+9TCnuuWF2765M8+OPP6qBAwcqX19f5evrqyFZ7mw2mzIMQ9lstkxfaY+b+c9XNzc31bFjR/X0009n+dWtWzfT5mc+Xn19fdXJkycd3/v5+am4uDjH96dPnzb1OTj7RSFhfm66bz8mePXo0cPp165bt64Qk+RPsWLFcOXKFVSoUAEA0KBBA/j7+zuev3XrFmw2m6542WLvHUCmXj09PdG3b1/07dsXp06dQkREBJYsWWLK+7qyzg0APPvssxg7dizCwsLw0ksvYcyYMVi2bBmqVq2KkydPYuTIkfjHP/6hO2aWHnjgAURERGD69OlZPr9o0SLUqlWriFM5j7l75uM1vVKlSmHcuHEYN24cdu7ciYiICIwcORIjR47EtWvXdMfLhH3XM+9KAIiOjkZ8fDy8vb2Rmpqa6fnk5GQNqXLH3ntAQADOnz+PypUrOx576KGHsGnTJnTp0gV//PGHxnTOu3LlCvbu3YsLFy5kmp8BAwZoSpU95j1fokQJnD59GhUrVsTZs2eRnJyMM2fOoHbt2gCA06dPIygoSHPK7LVu3RorVqxA3bp1Ub9+ffzwww+oW7eu4/nt27ejXLlyGhPmLG12/vzzT1StWjXDc9WqVcPZs2d1xMoV89/LAP65ScO+K9O0atUKrVq1wrx587Bq1aoiTuWcoKAgTJ8+HW3bts3y+SNHjqBr165FnMp54eHh6NmzJ5555pksn4+MjMSmTZuKOJVzmI/XChUq4MSJEwgNDQUArFy5EiEhIY7nz507h+DgYE3pcnf79m14e3sDANzd3eHj45Mhb3BwMC5fvqwrntPYdqUrkYsqIt+KFSumO0KB1KpVCwcOHECdOnUAwPHhlmkOHz6M6tWr64iWI/begbsfZJmd0NBQTJkyxZQn7gDv3ADAmDFjcObMGdSqVQtVq1bFqVOnUKNGDbi5uSE5ORkNGjTAihUrdMfM0qxZs9ClSxd8++23aNeuHUqXLg3g7ocqbt26FSdOnMBXX32lOWX2mLtnPl6ZT37Zdz3zrgSAtm3bOmZ/165daNy4seO5gwcPomLFirqi5Yi99yZNmuCbb75Bs2bNMjzeunVrbNy4EV26dNGUzHkbN27Ek08+iWvXriEgICDDHrLZbKY8+WXe8927d8czzzyDgQMHYsOGDRgwYABGjx4NwzBgs9kwduxYU/9wfNq0aWjVqhXOnj2Lv/3tb3j99dfx66+/Ijw8HMeOHcOqVaswf/583TGz9fTTT8PT0xN37tzByZMn8cADDziei4+PR/HixfWFywHz38sA/rkBrLcrgbu/GPDss88WUZq8adiwIc6ePYtKlSpl+fyVK1dy/e/TKe0D0bO7qOLp6Wnav5sxH69PPPEELly44Pi+c+fOGZ7fsGEDmjRpUtSxnMZ+UQjg3JWuxKbMvDmFKETHjx+Hu7t7ht+GTG/58uVwc3ND7969iziZ9U2ePBljx46Fj4+P7ih5ZoW5iYmJwaZNm3DixAmkpqYiJCQELVu2RLt27Uz9G8ynTp3CJ598gt27dyM+Ph4AUKZMGTRv3hzPP/+84y9LZsbYPfPxahgG4uPjUapUKd1RXA7zrjx9+nSG7/38/FCiRAnH95999hkAc/5mGHPvALBjxw78/PPPmDBhQpbPb9++HZ999hkWL15cxMmcV6NGDXTq1AnvvPMOzd5k3vPXr1/HyJEj8csvv6BFixb44IMPMG/ePLz++uu4c+cOWrdujVWrVpn6z4G4uDj885//xFdffeV456SbmxsaN26MsWPH4tFHH9UbMBuDBg3K8H3Hjh0z7JZx48bh0KFD+Pbbb4s6mtMY/16WhnVu0jDuSmZffvklrl+/jv79+2f5/J9//okNGzZg4MCBRZzMObdu3UJKSgrtrLAfr9m5ceMG7HY7PD09dUfJ0uTJkxEWFoYnnngiy+dff/11HD16FGvXri3iZM6TXWluclFFCCGEEEIIIe4DX19fHD58GFWqVNEdxaXdvHkTd+7cyXD7O7NTSjlu7REcHAx3d3fdkQrk+vXrsNvt8PLy0h3F0ljnRnalcEWsx6tVmf2iECC70uzk9l8i3+rXr+/0b/AcOHCgkNO4DuldCCGsT3a9EJw6dOiAffv2ycmvZl5eXnQ/zLfZbI7bm1qBr6+v7ggugXVurLgr169fj6tXr5rynazCHFiP1+ywzzzDOz+suCutRC6qiHxjfYuis9q1a4cTJ07gxIkTuqNkYPXeAfN27wzJrkdUVBQaNGiAlJQU3VHyhbl75uxmPhGw+q5nnhvJrg9D/s6dO2Ps2LGIjo5GnTp1Mv0Wardu3TQlyz+G3rNj5j3vDOb8zNmZZx7g6N6Ku3L8+PGIjY01de/ZYZiZnDAfs8zdM888wNG9FXellcjtv4TIxkcffYRLly5h0qRJuqO4HObuJbseUVFRqF+/PlJTU3VHyRfm7pmz16xZE7GxsbQX45gxz41k14chv2EY2T5ns9ko9w1D79lh3/PM+ZmzM888wNG9FXclM4aZyQnzMcvePTOG7mVXmptcVBFCCGF6PXr0yPH5q1ev4ocffpC/VAghhBBCCCGEEEKIQiW3/xL3RUpKCubMmYPVq1fjzJkzuH37dobnExISNCWzNulduIqNGzeiffv22d6DVi6mCCuTXS+EEEIIYR5XrlzB3r17HR86np6ZbyUkRH7JzAuRmVxUEffF5MmTsXDhQowePRr//Oc/8frrr+PUqVP4z3/+g4kTJ+qOl0luv/We3rp16woxScGw9Q5wdy/Z9QkPD0fPnj3xzDPPZPl8ZGQkNm3aVMSpnMPcPXP2ezGfCLDteua5kez6sOdPb8eOHZg5cyZiYmIAALVq1cLYsWPRqlUrzckys1LvzHse4M7PlN1KMw9wdX8vpl2Z3saNG/Hkk0/i2rVrCAgIgM1mczxns9lM3zvbzFjpmGXrPg37zAO83QO8u9IVyEUVcV/8+9//xoIFC9C5c2e8+eab6Nu3L6pWrYq6deti9+7dGDFihO6IGRQrVkx3hPuCrXeAu3vJrk/Dhg1x4MCBbC+qeHp6omLFikWcyjnM3TNnT4/9RIBt1zPPjWTXhz1/ms8//xyDBg1Cjx49HMfmrl270LZtWyxZsgT9+vXTnDAjq/TOvueZ87Nlt8rMA3zdp8e2K9MbPXo0Bg8ejHfeeQc+Pj664+QJ48xY5Zhl7D4N88wD3N0z70pXIJ+pIu4LX19fxMTEoGLFiggJCcFXX32FBg0a4MSJE6hfvz6uXr2qO6IlSe/CVdy6dQspKSmUf4kT+tWoUQOdOnWiPRGQXS8Ej/DwcDz33HMYOXJkhsdnz56NBQsWOH7LUNxf7HueOT9zdnbM3TPvSl9fXxw+fBhVqlTRHSXPmGeGHXP3zDMPcHfPvCtdgaE7gLCG8uXL49y5cwCAqlWrYvPmzQCAX3/9FZ6enjqjWZr0LlyFp6cn3V+AhHn873//w4gRI2hnSHa9EDxOnDiBrl27Znq8W7duOHnypIZEroF9zzPnZ87Ojrl75l3ZoUMH7Nu3T3eMfGGeGXbM3TPPPMDdPfOudAVy+y9xXzz22GPYunUrmjZtiuHDh6N///6IiIjAmTNnMl1RNYP69etneMtfTg4cOFDIafKPrXeAu3vJLvKDuXvm7OmlnQiw/nYV265nnhvJrg97/jQVKlTA1q1bUa1atQyPb9myBRUqVNCUKntW6Z19zzPnZ8tulZkH+LpPj21Xpte5c2eMHTsW0dHRqFOnDtzd3TM8361bN03Jcsc4M1Y5Zhm7T8M88wB398y70hXIRRVxX0ybNs3xz3369EGlSpXw888/o3r16lleVdXt0Ucf1R3hvmDrHeDuXrKbV7t27XDixAmcOHFCd5RMmLtnzp4e+4kA265nnhvJrg97/jSjR4/GiBEjEBkZiRYtWgC4e+/rJUuWYO7cuZrTZWaV3tn3PHN+tuxWmXmAr/v02HZles8++ywA4K233sr0nM1mQ0pKSlFHchrjzFjlmGXsPg3zzAPc3TPvSlcgn6kiilTnzp2xcOFChISE6I7iUqR3YXUfffQRLl26hEmTJumOIkzIMLK/2ynDiYCzZNcLYQ5ffvklZs2a5bjPdXh4OMaOHYvu3btrTmZd7HueOT9zdnbs3cuuLHrsM8NMuteHvXvZleYlF1VEkfL390dUVBTl2+6YSe9CCGF9suuFEEIIIYQQQojCJx9UL1xeSkoKZs6ciSZNmqBMmTIICgrK8CUKD3P3kl3kB3P3zNmFPsxzI9n1Yc/PSnoXrkZmXuTXjh070LVrV1SrVg3VqlVDt27dsHPnTt2xLE+OWX1k5oXITC6qCJc3efJkzJ49G3369MHVq1cxatQo9OjRA4Zh4M0339Qdz9KYu5fsRadHjx5Of5kdW/fpMWcH5ERAF+a5kez6sOUPCgrCpUuXAACBgYGZfsjD8gMftt7vxb7nmfOzZmefeYCre6vsys8//xzt2rWDj48PRowYgREjRsDb2xtt27bF8uXLdcfLFdPM3Iv9mGXtnn3mAa7urbIrXYHc/ksUKTPemqRq1aqYN28eOnfuDH9/f0RGRjoe2717N80fEjkxY+8Ad/eSvegMGjTI6dcuXry4EJMUHFv36TFn//zzzzFo0CD06NEDLVu2BHD3A/6+/PJLLFmyBP369dOc8P4w465nnhvJrg9b/qVLl+KJJ56Ap6cnlixZApvNlu1rBw4cWITJ8oat9/TY9zxzfubszDMP8HVvlV0ZHh6O5557DiNHjszw+OzZs7FgwQLH5x6YEdvM3Iv5mGXunnnmAb7urbIrXYISogj5+fmpuLg43TEy8PHxUadPn1ZKKVWmTBm1f/9+pZRScXFxKiAgQGe0+8aMvSvF3b1kF/nB3D1z9po1a6rZs2dnenzWrFmqZs2aGhIVDjPueua5kez6sOdnxdw7+55nzs+cnXnmleLunpmHh4eKjY3N9HhsbKzy9PTUkMh57DPDfMwyd88880pxdy/MTW7/JVxe+fLlce7cOQB3f/Nh8+bNAIBff/0Vnp6eOqNZHnP3kl3kB3P3zNlPnDiBrl27Znq8W7duOHnypIZEroN5biS7Psz57XY7Lly4kOnxy5cvw263a0jkPObe2fc8c37m7MwzD3B3z7wrK1SogK1bt2Z6fMuWLahQoYKGRM5jnhmA+5hl7p555gHu7pl3pStw0x1AuJbXXnvNdPf9e+yxx7B161Y0bdoUw4cPR//+/REREYEzZ85kensjKzP2DnB3L9mLTv369XN8y2t6Bw4cKOQ0BcPWfXrM2dNOBKpVq5bhcZYTAWeZcdczz41k14c5v8rmzsq3bt2Ch4dHEafJG+be2fc8c37m7MwzD3B3z7wrR48ejREjRiAyMhItWrQAcPdWQkuWLMHcuXM1p8sZ88wA3Mcsc/fMMw9wd8+8K12BfKaKuK+io6Nx5swZ3L59O8Pj3bp105Qo73bv3o2ff/4Z1atXz/JqthlZoXeAs/s0kr3wTJ482enXTpo0qRCT3H9m7z4nTNk/+eQTvPLKKxg8eHCWJwJDhw7VnNA5Vtj1THNzL8muD0P+efPmAQBGjhyJKVOmwM/Pz/FcSkoKfvzxR5w6dQoHDx7UFTHPGHpPw77nmfMzZ78X08wDnN1bZVd++eWXmDVrluOzJMLDwzF27Fh0795dc7KcMc5MTpiOWfbuWWce4OzeKrvS8rTefExYRlxcnKpbt66y2WzKMAxls9kc/2wYhu5490WnTp3U2bNndcfIwBV6V8qc3TtLsov8YO7erNnXrVunWrZsqYKCglRQUJBq2bKl+s9//qM7llNcYdebdW6cIdn1MVP+0NBQFRoaqmw2m6pQoYLj+9DQUFWjRg31j3/8Q+3evVt3zPvCTL2nx7znleLOz5zdGWadeaX4unelXWlWbDOTH2Y9Zl2he7Ni6152JQd5p4q4L7p27Qq73Y6FCxeicuXK2Lt3Ly5fvozRo0dj5syZaNWqle6IBebv74+oqChUqVJFdxQHV+gdMGf3zpLsIj+Yu2fOblausOuZ50ay62PG/A899BDWrVuHwMBA3VEKjRl7F6Iwyczff66wK4U+cswKq5BdaW7ymSrivvjll1+wbds2BAcHwzAMGIaBv/3tb3j33XcxYsQIeUtaIZHehatJSUnBnDlzsHr16ixvg5SQkKApmRCFR3a9EDy2b9+uO4IQQpge264MCgrC8ePHERwcjMDAwBw/71HOR4QVyMybA9uudDVyUUXcFykpKfD39wcABAcH4+zZswgLC0OlSpVw7NgxzemsS3oXrmby5MlYuHAhRo8ejX/+8594/fXXcerUKfznP//BxIkTdccTJmKlEwHZ9UJw+eOPP7Bhw4YsL/7Pnj1bUyrrYd/zzPmZs7OzUvdMu3LOnDmOv4vNmTMnx97Nxkozw4a5e+aZB7i7vxfTrnQ1clFF3Be1a9dGVFQUKleujKZNm2L69Onw8PDAp59+Km+5LETSu3A1//73v7FgwQJ07twZb775Jvr27YuqVauibt262L17N0aMGKE7ojAJ9hOB9GTXC8Fj69at6NatG6pUqYKjR4+idu3aOHXqFJRSaNCgge54lsK+55nzM2dnZ5Xu2XblwIEDHf/89NNP6wuSD1aZGUbM3TPPPMDdfXpsu9LVyGeqiPviu+++w/Xr19GjRw/89ttv6NKlC44fP44SJUpg5cqVaNu2re6IBWbG+3K6Qu+AObt3lmS/v3x9fRETE4OKFSsiJCQEX331FRo0aIATJ06gfv36uHr1qu6I94UZu3cWc3azcoVdzzw3kl0fM+Zv0qQJOnbsiMmTJzvylSpVCk8++SQeeeQRDBs2THfEAjNj70IUJpn5+495V9rtdpw7dw6lSpXK8Pjly5dRqlQppKSkaEom0sgxe3/JzOvDvCtdgaE7gLCGDh06oEePHgCAatWq4ejRo7h06RIuXLhgiR/2mJX0LlxN+fLlce7cOQBA1apVsXnzZgDAr7/+Ck9PT53RhInZ7XZcuHAh0+OXL1+G3W7XkChvZNcLwSMmJgYDBgwAALi5ueGvv/6Cn58f3nrrLbz33nua01kX+55nzs+cnR1z98y7MrvfS7516xY8PDyKOE3eMM8MO+bumWce4O6eeVe6Arn9l7gvBg8ejLlz5zreXgfcvYfh9evXMXz4cCxatEhjuvvjtddeQ1BQkO4YGbhC74A5u3eWZL+/HnvsMWzduhVNmzbF8OHD0b9/f0RERODMmTMYOXKk7nj3jRm7d5YZs7OfCLjCrjfj3DhLsutjxvy+vr6O+12HhIQgLi4ODzzwAADg0qVLOqPdN2bsnX3PM+dnzu4sM848wN09466cN28eAMBms2HhwoXw8/NzPJeSkoIff/wRNWvW1BXPKcwzkxdmPGYZu7fCzAOc3adh3JWuRG7/Je6L7N4OeOnSJZQpUwbJycmakjkvOjo6yw9+6tatm6ZEubNC7wBn92kku167d+/Gzz//jOrVq6Nr16664ziNuXum7GknAiNHjsSUKVOyPBE4deoUDh48qCuiU6yw65nm5l6SXR/G/I8++ig6d+6MZ599FmPGjMH69evx9NNPY926dQgMDMSWLVt0R8wVU+/se545P3P2ezHNPGCN7hl3ZeXKlQEAp0+fRvny5TP8hruHhwdCQ0Px1ltvoWnTproiZssKM5Me0zHL3D3zzAPc3adh3JWuRC6qiAJJTEyEUgqBgYGIjY1FyZIlHc+lpKRg48aNePXVV3H27FmNKXN24sQJPPbYYzh8+DBsNpvjKnbaB1mZ8f6QVugd4Ow+jWQ3t86dO2PhwoUICQnRHSUD5u4Zs7OfCFhh1zPOTRrJrg9z/hMnTuDatWuoW7curl+/jtGjRzsu/s+ePRuVKlXSHTFbjL2z73nm/MzZ0zDOPGCd7ll35UMPPeT4gSYLK8wMwHnMWqF7xpkHrNE98650CUqIArDZbMowjGy/7Ha7evvtt3XHzFGXLl1U9+7d1cWLF5Wfn5+Kjo5WO3fuVE2aNFE//vij7nhZskLvSnF2n0aym5ufn5+Ki4vTHSMT5u6Zs7dp00YlJCTojpFnVtj1zHMj2fVhz8+KuXfWPZ+GOT9zduaZV4q7e6EH+8wwH7Ps3TOT7kVhkXeqiALZsWMHlFJ4+OGHsXbt2gz3rfTw8EClSpVQtmxZjQlzFxwcjG3btqFu3booVqwY9u7di7CwMGzbtg2jR4825VsBrdA7wNl9Gslubv7+/oiKikKVKlV0R8mAuXvm7KyssOuZ50ay68Oen5X0LlyNzLzIrz/++AMbNmzI8hZUs2fP1pTK+uSY1UdmXojM5IPqRYG0bt0aAHDy5ElUqFABhmFoTpR3KSkpjg//DQ4OxtmzZxEWFoZKlSrh2LFjmtNlzQq9A5zdp5HsIj+Yu2fODnCeCFhh1zPPjWTXhy1/YGCg49YjuUlISCjkNPnH1vu9GPd8esz5WbOzzzzA1b1VduXWrVvRrVs3VKlSBUePHkXt2rVx6tQpKKXQoEED3fFyxTQz92I/Zlm7Z595gKt7q+xKVyAXVcR9kXYfvxs3bmS5pOrWrasjllNq166NqKgoVK5cGU2bNsX06dPh4eGBTz/91HS/5X4v5t4B7u4lu8gP5u6Zs7OfCDDveua5kez6sOV///33dUe4L9h6T499zzPnZ87OPPMAX/dW2ZUTJkzAmDFjMHnyZPj7+2Pt2rUoVaoUnnzySTzyyCO64+WIbWbuxXzMMnfPPPMAX/dW2ZUuQcMtx4QFXbhwQXXu3Dnb+76b2bfffqvWrl2rlFIqNjZWhYWFKZvNpoKDg9WWLVs0p8sZc+9KcXcv2c3NrJ+pwtw9c/bGjRuriRMnKqX+bzaSkpJUt27d1Mcff6w5Xe6Ydz3z3Eh2fdjzs2LunX3PM+dnzs4880pxd8/Mz89P/fbbb0oppYoXL67++9//KqWUioyMVJUqVdKYLHfsM8N8zDJ3zzzzSnF3L8xNLqqI+6Jfv36qZcuW6tdff1W+vr5q8+bNatmyZSosLExt2rRJd7w8u3z5skpNTdUdI1dW610pnu6zItnNw6wXVbLC3D1LdvYTAavtepa5yYpk14cl/+nTp3P8YsPSO/ueZ87PnD0rLDOvFHf3zLuydOnSKjo6WimlVHh4uFq/fr1S6m7vvr6+OqPlinlmssNyzDJ3zzzzSnF3z7wrXQHfzbmFKW3btg2zZ89Go0aNYBgGKlWqhP79+2P69Ol49913dcfL0eDBg5GUlJThsaCgINy4cQODBw/WlMo5zL0D3N1LdnN77bXXMnyot1kwd8+c3dfX13HLrJCQEMTFxTmeu3Tpkq5YTmPe9cxzI9n1Yc4fGhqKypUrZ/tlZsy9s+955vzM2ZlnHuDunnlXNmvWDD/99BMAoFOnThg9ejSmTp2KwYMHo1mzZprT5Yx5ZgDuY5a5e+aZB7i7Z96VLkH3VR1hDf7+/urkyZNKKaUqVqyofvrpJ6WUUidOnFDe3t4ak+XOMAx1/vz5TI9fvHhR2e12DYmcx9y7UtzdS3a9jhw5or755hu1fv36DF9mx9w9c/bu3burTz/9VCml1OjRo1W1atXU22+/rRo0aKDatm2rOV3umHc989xIdn2Y80dGRmb4+vXXX9Wnn36qatas6bhliVkx986+55nzM2dnnnmluLtn3pVxcXEqKipKKaXUtWvX1NChQ1WdOnVUjx491KlTpzSnyxnzzCjFfcwyd88880pxd8+8K12BfFC9uC/CwsJw7NgxhIaG4sEHH8S//vUvhIaGYv78+QgJCdEdL0uJiYlQd2+Bh6SkJHh5eTmeS0lJwddff41SpUppTJg7xt4B7u4lu14nTpzAY489hsOHD8Nms0EpBQCw2WwA7v53mBFz98zZ08yePRvXrl0DAEyePBnXrl3DqlWrUL16dcyePVtzutwx7nrmuZHs+rDnB4AHH3ww02ONGjVC2bJlMWPGDPTo0UNDqpxZoXf2Pc+cnzG7FWYe4Ow+DeOuTJP+A9F9fX0xf/58jWnyhnVmrHDMsnYPcM88wN098650CUV08UZY3LJly9TixYuVUkrt27dPBQcHK8MwlJeXl1q5cqXecNmw2WzZfuivYRjKbrert99+W3fMHDH2rhR395Jdry5duqju3burixcvKj8/PxUdHa127typmjRpon788Ufd8bLF3D1zdqtg3PXMcyPZ9WHPn5PY2Fjl4+OjO0aWrNy7EFmRmTcvM+9KoY8cs0JkJLvSHGxK/f9f8xXiPrpx4waOHj2KihUrIjg4WHecLO3YsQNKKTz88MNYu3Zths9f8PDwQKVKlVC2bFmNCfOOoXeAu3vJrldwcDC2bduGunXrolixYti7dy/CwsKwbds2jB49GgcPHtQdMUvM3TNntyqGXc88N5JdH/b8wN3fpk1PKYVz587hzTffxNGjRxEZGaknWA6s0LsQeSEzrx/brgwMDHS8Mz43CQkJhZzG9cgxW/Rk5s2BbVe6GrmoIlze6dOnUaFCBRiGoTuKy2HuXrLrERgYiAMHDqBy5cqoWrUqFi5ciIceeghxcXGoU6cObty4oTtijpi7Z8suJwLmwDY36Ul2fZjzG4aRafcopVChQgWsXLkSzZs315Qsd2y9s+955vzM2dNjm3nAOt2z7cqlS5c6/dqBAwcWYpK8s8rMAHzHLHP3zDMPcHefHtuudDXymSoi30aNGuX0a818n8JKlSoBuPubv2fOnMHt27czPF+3bl0dsbJlld4Bvu7Tk+x61K5dG1FRUahcuTKaNm2K6dOnw8PDA59++mmGe72aFXP3bNnff/993REKxCq7nm1u0pPs+jDn3759e4bvDcNAyZIlUa1aNbi5mfvUi6139j3PnJ85e3psMw9Yp3u2XWnGHxo7yyozA/Ads8zdM888wN19emy70tXIO1VEvj300EMZvj9w4ACSk5MRFhYGADh+/DjsdjsaNmyIbdu26YjolIsXL2LQoEH45ptvsnzebB98bZXeAb7u05Psenz33Xe4fv06evTogd9++w1dunTB8ePHUaJECaxcuRJt27bVHTFHzN0zZ2dklV3PPDeSXR/2/Kykd+FqZOZFfpw5cybH5ytWrFhESVyPHLN6yMwLkTW5rCXyLf0V09mzZ8Pf3x9Lly5FYGAgAODPP//EoEGD0KpVK10RnfLKK6/gypUr2LNnD9q0aYMvv/wS58+fx9tvv41Zs2bpjpeJVXoH+LpPT7Lr0aFDB8c/V6tWDUePHkVCQkKe3t6rE3P3zNkZTwSssuuZ50ay68Oe/9ixY/jggw8QExMDAAgPD8dLL72EmjVrak6WM+beGfd8esz5mbMzzzzA3T3AuytDQ0NzPO8w8w/22WeG+Zhl7p555gHu7gHeXekS7vMH3wsXVbZsWfXf//430+OHDx9WISEhGhI5r0yZMmrPnj1KKaX8/f3VsWPHlFJKrV+/XrVs2VJntFwx964Ud/eSXY9BgwapxMTETI9fu3ZNDRo0SEOivGHunjm7zWZThmFk+2V2zLueeW4kuz7M+desWaPc3NxUs2bN1MiRI9XIkSNV8+bNlZubm1qzZo3ueDli7p19zzPnZ87OPPNKcXfPvCsjIyMzfP3666/q008/VTVr1lRr167VHS9HzDOjFPcxy9w988wrxd098650BfJOFXFfJCYm4uLFi5kev3jxIpKSkjQkct7169dRqlQpAHc/zOrixYuoUaMG6tSpgwMHDmhOlzPm3gHu7iW7HkuXLsW0adPg7++f4fG//voLn332GRYtWqQpmXOYu2fOfvDgwQzf37lzBwcPHsTs2bMxdepUTamcx7zrmedGsuvDnH/cuHGYMGEC3nrrrQyPT5o0CePGjUPPnj01Jcsdc+/se545P3N25pkHuLtn3pUPPvhgpscaNWqEsmXLYsaMGejRo4eGVM5hnhmA+5hl7p555gHu7pl3pSuQiyrivnjssccwaNAgzJo1C02aNAEA7NmzB2PHjjX9gg0LC8OxY8cQGhqKBx98EP/6178QGhqK+fPnIyQkRHe8HDH3DnB3L9mLVmJiIpRSUEohKSkJXl5ejudSUlLw9ddfO/6CbWaM3adhzs5+IsC865nnRrLrw5z/3LlzGDBgQKbH+/fvjxkzZmhI5Dzm3tn3PHN+5uzMMw9wd8+8K7MTFhaGX3/9VXeMHDHPDMB9zLJ3nxWGmQe4u7firrQU3W+VEdZw/fp1NWzYMOXp6el4C52Hh4caNmyYunbtmu54OVq2bJlavHixUkqpffv2qeDgYGUYhvLy8lIrV67UGy4XzL0rxd29ZC9aub1l1263q7ffflt3zFwxdp+GOXt2YmNjlY+Pj+4YuWLe9cxzI9n1Yc7fsWNHtWjRokyPL1q0SP3jH//QkMh5zL1nh2XPZ4c5P0N2K868UhzdM+/Kq1evZvi6cuWKiomJUX369FEPPvig7nj5wjAzSlnzmGXo3oozrxRH98y70hXYlFJK94UdYR3Xr19HXFwcAKBq1arw9fXVnCjvbty4gaNHj6JixYoIDg7WHccpVugd4Ow+jWQvXDt27IBSCg8//DDWrl2LoKAgx3MeHh6oVKkSypYtqzFh/jB0nx2m7ImJiRm+V0rh3LlzePPNN3H06FFERkbqCZZHVtj1THNzL8muD1P++fPnY+LEiejduzeaNWsGANi9eze++OILTJ48OcOfVd26ddMV0ylMvbPveeb8zNnvxTTzAHf3zLvSMIxMH9qtlEKFChWwcuVKNG/eXFOy3DHPTFaYjlnm7plnHuDunnlXugK5qCKEEILG6dOnUaFCBRiGoTuKIMJ+IiCE4OHsn082mw0pKSmFnMZ1sO955vzM2dkxd8+8K3fs2JHhe8MwULJkSVSrVg1ubua+wz7zzLBj7p555gHu7pl3pSuQiyrCJY0aNcrp186ePbsQk7ge5u4lu3ncuHEDZ86cwe3btzM8XrduXU2JssfcPXP29NhPBNgwz41k14c9Pyur9M6+55nzs2W3yswDfN0L/RhnxirHLGP3ViHdi8Ii0yNc0sGDBzN8f+DAASQnJyMsLAwAcPz4cdjtdjRs2FBHPEtj7l6y63fx4kUMGjQI33zzTZbPm/G3M5i7Z86eXuvWrXVHcCnMcyPZ9WHPz8oqvbPveeb8bNmtMvMAX/dWcuzYMXzwwQeIiYkBAISHh+Oll15CzZo1NSfLGePMWOWYZew+PdaZB/i7F+YlF1WES9q+fbvjn2fPng1/f38sXboUgYGBAIA///wTgwYNQqtWrXRFtCzm7iW7fq+88gquXLmCPXv2oE2bNvjyyy9x/vx5vP3225g1a5bueFli7p45+72YTwTYMM+NZNeHPX96O3bswMyZMx37platWhg7dqwps1upd/Y9z5yfKbuVZh7g6v5eTLsyvbVr1+KJJ55Ao0aNHLcN2r17N+rUqYOVK1eiZ8+emhPmjG1mrHTMsnWfhn3mAd7uAd5d6RLu8wffC0GnbNmy6r///W+mxw8fPqxCQkI0JHIdzN1Ldj3KlCmj9uzZo5RSyt/fXx07dkwppdT69etVy5YtdUZzCnP3zNnXrFmj3NzcVLNmzdTIkSPVyJEjVfPmzZWbm5tas2aN7niWxjw3kl0f5vzLli1Tbm5uqnfv3mru3Llq7ty5qnfv3srd3V39+9//1h0vR8y9s+955vzM2ZlnXinu7pl3ZZUqVdQbb7yR6fGJEyeqKlWqaEjkPOaZUYr7mGXunnnmleLunnlXugJ5p4rIt3nz5uX53xk0aBD8/f0LIU3+JSYm4uLFi5kev3jxIpKSkjQkyplVegf4uk9Psutx/fp1lCpVCgAQGBiIixcvokaNGqhTpw4OHDigOV3umLtnzj5u3DhMmDABb731VobHJ02ahHHjxpnyt6ussuuZ50ay68Ocf+rUqZg+fTpGjhzpeGzEiBGYPXs2pkyZgn79+mlMlzPm3hn3fHrM+ZmzM888wN098648d+4cBgwYkOnx/v37Y8aMGRoSOY95ZgDuY5a5e+aZB7i7Z96VLkH3VR3By2azqQoVKqjQ0FCnvux2u4qLi9MdO5OnnnpKhYaGqrVr16rff/9d/f7772rNmjWqcuXKasCAAbrjZWKV3pXi6z49ya5Ho0aN1LfffquUUqpr167qqaeeUn/88YcaN24cxW/JMHfPnN3b21vFxsZmevz48ePK29tbQ6LcWWXXM8+NZNeHOb+Hh0eW+yY2NlZ5enpqSOQ85t4Z93x6zPmZszPPvFLc3TPvyo4dO6pFixZlenzRokXqH//4h4ZEzmOeGaW4j1nm7plnXinu7pl3pSuQiyoi32w2mzp//rzTr/fz8zPlD3yuX7+uhg0bpjw9PZVhGMowDOXh4aGGDRumrl27pjteJlbpXSm+7tOT7HosW7ZMLV68WCml1L59+1RwcLAyDEN5eXmplStX6g3nBObumbMznghYZdczz41k14c5f9WqVdX8+fMzPf7JJ5+oatWqaUjkPObeGfd8esz5mbMzz7xS3N0z78pPPvlElSxZUr344otq2bJlatmyZerFF19UpUqVUp988olav36948tsmGdGKe5jlrl75plXirt75l3pCmxKKaX73TKC0+TJkzF27Fj4+Pg49fp3330Xw4YNQ/HixQs3WD5dv34dcXFxAICqVavC19dXc6KsWa13gKf7rEh2vW7cuIGjR4+iYsWKCA4O1h3HaczdM2afP38+Jk6ciN69e6NZs2YA7n644hdffIHJkyejbNmyjtd269ZNV8wMrLbrGecmjWTXhzH/J598gldeeQWDBw9GixYtAAC7du3CkiVLMHfuXAwdOlRzwtwx9s6459Njzs+cPQ3jzAPc3TPvSsMwnHqdzWZDSkpKIafJG+aZSY/xmGXunnnmAe7umXelK5CLKkIIIYSwNPYTASEEly+//BKzZs1CTEwMACA8PBxjx45F9+7dNSezLvY9z5yfOTs79u5lVxY99plhJt3rw9697ErzkosqolAdOnQIjRo1wu3bt3VHcSnSu7CSUaNGOf3a2bNnF2ISIcxFdr0QQgghhBBCCFH03HQHENamlDLllV6rk96FlRw8eDDD9wcOHEBycjLCwsIAAMePH4fdbkfDhg11xBNCG9n1QpjXvn37HL9RWKtWLfkzSgghssC6K3fs2IGZM2dmyD527Fi0atVKczIhCofMvF6su9LqnHsPlBBCCKHJ9u3bHV9du3ZF69at8ccff+DAgQM4cOAAfv/9dzz00EPo3Lmz7qjCxHbs2IGuXbuiWrVqqFatGrp164adO3fqjiWEsJg//vgDrVq1QpMmTfDyyy/j5ZdfRuPGjfG3v/0Nf/zxh+54lsa+55nzM2dnx9o98678/PPP0a5dO/j4+GDEiBEYMWIEvL290bZtWyxfvlx3vFyxzowVsHbPPvMAb/fMu9IVyEUVIYQQNGbNmoV3330XgYGBjscCAwPx9ttvY9asWRqTCTOzwomAEILDkCFDcOfOHcTExCAhIQEJCQmIiYlBamoqhgwZojueZbHveeb8zNnZMXfPvCunTp2K6dOnY9WqVY7eV61ahWnTpmHKlCm64+WIeWbYMXfPPPMAd/fMu9IVyGeqiAJJTEzM8flDhw6hdevWprs9ybx58/L87wwaNAj+/v6FkCbvWHsHuLuX7Pr5+/tj48aNaNOmTYbHt2/fjm7duiEpKUlPsBwwd8+cPb3w8HA899xzGDlyZIbHZ8+ejQULFjjeSm02rLueeW4kuz7s+dN4e3vj559/Rv369TM8vn//frRq1Qo3btzQlCxrVumddc+nYc7Plt0qMw/wdZ8e265Mz9PTE0eOHEG1atUyPP7bb7+hdu3auHnzpqZkuWOcGascs4zdp2GeeYC7e+Zd6QrkooooEMMwYLPZsn1eKQWbzWa6H/gYhoHy5cvDbrc79frff/8dx48fR5UqVQo5mXNYewe4u5fs+g0YMAA7d+7ErFmz0KRJEwDAnj17HPdzXbp0qeaEmTF3z5w9PdYTAdZdzzw3kl0f9vxpatSogc8//9zxZ1SavXv3ol+/fvjtt980JcuaVXpn3fNpmPOzZbfKzAN83afHtivTq1atGsaOHYuhQ4dmeHz+/PmYNWsWYmNjNSXLHePMWOWYZew+DfPMA9zdM+9KVyAfVC8KZPv27boj5Nu+fftQqlQpp15rtt9yYO4d4O5esus1f/58jBkzBv369cOdO3cAAG5ubnjmmWcwY8YMzemyx9w9c/Y0FSpUwNatWzP9RXrLli2oUKGCplS5Y971zHMj2fVhzw8AM2bMwPDhw/HRRx+hUaNGAO7+d7388suYOXOm5nRZs0LvrHs+DXN+xuxWmHmAs/s0jLsyzejRozFixAhERkaiRYsWAIBdu3ZhyZIlmDt3ruZ0OWOdGSscs6zdA9wzD3B3z7wrXYFcVBEF0rp161xfk5CQUARJ8mbSpEnw8/Nz+vWvvfYagoKCCjFR3rD2DnB3L9n18/Hxwccff4wZM2YgLi4OAFC1alX4+vpqTpY95u6Zs6fHeiLAuuuZ50ay68OeP83TTz+NGzduoGnTpnBzu3uqlZycDDc3NwwePBiDBw92vNYMx69Vemfd82mY87Nlt8rMA3zdp8e2K9MbNmwYypQpg1mzZmH16tUA7t5eaNWqVejevbvmdDljnBmrHLOM3adhnnmAu3vmXekK5PZfotBs3rwZCxcuxMaNG/HXX3/pjuMypHchhMjsyy+/xKxZsxz3zA0PD8fYsWMpTgSyIrteCHPKy20oBw4cWIhJXA/7nmfOz5ydHWv3siv1YZ0ZK5Du9WHtXnaluclFFXFfnT59GosWLcLSpUvx559/omPHjujZsycef/xx3dHy7NChQ2jUqBFu376tO0qurNQ7wNX9vSS7yA/m7pmzs7HSrmeeG8muD3t+VtK7cDUy88IZ+/btc/yAtlatWmjYsKHmRK5LjtmiITMvREZy+y9RYLdv38a6deuwcOFC7Nq1C+3atcMff/yBgwcPok6dOrrj5ZtSynQf/pueVXsHzN99TiS7yA/m7pmyM54IWHXXM83NvSS7Puz5WTH1zrjn02POz5z9XkwzD1irewZ//PEH+vbti127dqF48eIAgCtXrqBFixZYuXIlypcvrzegE6w2M0zHLGP3Vph5gLN7YW5yUUUUyPDhw7FixQpUr14d/fv3x6pVq1CiRAm4u7vDbrfrjmdZ0rsQQjiP9URAdr0QQjiHdc+nYc7PnJ2ddK/HkCFDcOfOHcTExCAsLAwAcOzYMQwaNAhDhgzBt99+qzlh9mRm9GHunnnmAe7uhbkZugMIbp988gmGDh2KzZs348UXX0SJEiV0R3IJ0rsQQjgv/YlAQkICEhISEBMTg9TUVAwZMkR3vGzJrhdCCOew7vk0zPmZs7OT7vXYsWMHPvnkE8cPlwEgLCwMH3zwAX788UeNyXInM6MPc/fMMw9wdy/MTd6pIgpk2bJlWLRoEUJCQtC5c2c89dRT6Nixo+5YTklMTMzx+aSkpCJKknfMvQPc3Uv2ojdv3rw8/zuDBg2Cv79/IaTJH9buAe7saXbs2IGff/45yxOBVq1aaUyWM+Zdzzw3kl0f9vysrNA7655Pw5yfMbsVZh7g7N4KKlSogDt37mR6PCUlBWXLltWQyHmsM2OFY5a1e4B75gHu7oW5yUUVUSB9+/ZF3759cfLkSSxZsgQvvvgibty4gdTUVERHR6NWrVq6I2arePHisNls2T6vlMrxeZ2Yewe4u5fsRe+VV15B+fLlnb7d0e+//44uXbqY6qIKa/cAd/Y0rCcCzLueeW4kuz7s+VlZoXfWPZ+GOT9jdivMPMDZvRXMmDEDw4cPx0cffYRGjRoBuPtZDS+//DJmzpypOV3OWGfGCscsa/cA98wD3N0Lc7MppZTuEMI6lFLYvHkzIiIisGHDBgQHB6NHjx75+k3zwrZjxw6nXte6detCTlJwTL0D3N1L9qJnGAbi4+NRqlQpp17v7++PqKgoVKlSpZCTOY+1e4A7e5r169fjnXfeyXQiMHz4cIwfPx6PPvqo3oBOYtr1zHMj2fVhzd+gQYM8vd5ms2HDhg0oV65cISXKG9be02Pf88z5GbNbYeYBvu7Zd2WawMBA3LhxA8nJyXBzu/t7ymn/7Ovrm+G1CQkJOiJmi21m0ljhmGXtHuCeeYCve6vsSlcgF1VEoUlISMBnn32GJUuWIDIyUnecfElISEBQUJDuGHlihd4Bzu7TSPb7a/LkyRg7dix8fHycev27776LYcOGOT6EjoUZu3eW2bOznwhkxQq73uxzkxPJro8Z8xuGgdGjR8PPzy/X1yqlMG3aNERHR5vq4n9uzNh7eux7njk/c/acmH3mAb7urbIrly5d6vRrBw4cWIhJ8o5tZvLC7Mcsc/fMMw/wdW+VXekK5PZfotAEBQWhVatW2LJli+4oebZ582YsXLgQGzduxF9//aU7Tp4w9w5wdy/ZC8ekSZPy9PoJEyYUUpLCYebuc8OS/f3339cd4b5j3vUsc5MVya6P2fOPHTvW6XdUzpo1q5DT3D9m7z0N+55nzs+cPSssMw9wdm+FXWnGHxo7i3FmcsNyzDJ3zzzzAGf3VtiVrkAuqogC++677/D999/Dw8MDQ4YMQZUqVXD06FG8+uqr2LhxIzp06KA7olNOnz6NRYsWYenSpfjzzz/RsWNHfPbZZ7pjZcsqvQN83acn2c3h0KFDaNSoEW7fvq07ilOYu2fMznwiYJVdzzg3aSS7Piz5T548iZIlSzr9+ujoaFPfw5ul9/SY9zzAnZ85exrGmQf4urfarmTENjPZYTxmrdI9I7buZVcSUUIUwMKFC5XNZlMlSpRQhmGokiVLqmXLlqnixYuroUOHqujoaN0Rc3Tr1i21YsUK1bZtW+Xl5aW6dOmi7Ha7OnTokO5oOWLvXSne7pWS7GYUGRmpDMPQHSNHzN0zZ2fGvuuZ50ay68Oen5X0LlyNzLwQXOSYFUKYjbxTRRTI3Llz8d5772Hs2LFYu3YtHn/8cXz88cc4fPgwypcvrztejoYPH44VK1agevXq6N+/P1atWoUSJUrA3d0ddrtdd7wcMfcOcHcv2UV+MHfPnJ0d865nnhvJrg9z/jNnzjj1uooVKxZykrxj7l2I/JCZ14d5Vwp95JgVrkZ2JQndV3UENx8fH3Xy5EmllFKpqanK3d1d/fTTT3pDOclut6vXXntNJSYmZnjczc1NHTlyRFMq5zD3rhR395LdnMz+ThXm7pmzs2Pe9cxzI9n1Yc5vs9mUYRiZvtI/brfbdcfMEnPvQuSHzLw+zLtS6CPHrHA1sis5GLov6ghuf/31F3x8fAAANpsNnp6eCAkJ0ZzKOcuWLcPevXsREhKCPn36YNOmTUhJSdEdyynMvQPc3Ut2PRITE3P8SkpK0h0xR8zdM2dnx7zrmedGsuvDnP/gwYM4cOBAll9jx46Fp6cngoKCdMfMEnPvQuSHzLw+zLtS6CPHrHA1sis52JRSSncIwcswDLz99tvw8/MDAIwfPx5jx45FcHBwhteNGDFCRzynnDx5EkuWLMGSJUtw48YNJCQkYNWqVejVq5fuaNmyQu8AZ/dpJHvRMgwDNpst2+eVUrDZbKb/yzVj92mYs7Oywq5nnhvJrg97/jRbtmzBq6++iuPHj2PUqFEYPXo0/P39dcfKllV6F8JZMvPmwLArGzRokKfX22w2bNiwAeXKlSukRK5JjtmiIzNvPgy70tXIRRVRIKGhoTn+oBO4u1xPnDhRRInyTymFzZs3IyIiAhs2bEBwcDB69OiBefPm6Y6WiZV6B7i6v5dkLxo7duxw6nWtW7cu5CT3B1P392LJboUTASvtepa5yYpk14c1/4EDBzB+/Hjs3LkTQ4YMwcSJE1GqVCndsZzG0jv7nmfOz5w9KywzD1ire6ZdaRgGRo8e7fhFl5wopTBt2jRER0ejSpUqRZAuZ1aamTQsxyxz98wzD3B3fy+mXelq5KKKEFlISEjAZ599hiVLliAyMlJ3HJfC3L1k1yshIYHyLbDM3Zs5O/uJgJWZeW5yI9n1YcgfFxeH1157DWvXrkXv3r3x9ttv0+8UM/fOvueZ8zNnz42ZZx6wRveMu9IwDMTHxzv9g0x/f39ERUWZ4r/LCjOTEzMfs8zdM888wN19GsZd6XKK4oNbhGC0b98+1blzZ90xXBJz95K96H333Xfq8ccfV15eXrqj5Btr90qZN7vNZlPnz593+vV+fn4qLi6uEBOJ9Mw6N86Q7PqYOf+wYcOUh4eH6tChgzp48KDuOPeVWXtn3/PM+ZmzO8OsM68Uf/esu/LUqVMqNTXV6defOXNGJScnF2Ii57HPjDPMeswyd88880pxd68U7650NfJB9aJAOnXqhKtXrzq+nzZtGq5cueL4/vLly6hVq5aGZM757rvvMGbMGLz22muO26ccPXoUjz76KJo0aYLU1FTNCbPG3jvA2z0g2c3g9OnTmDRpEkJDQ/H444/DMAx89tlnumPliLl7xuwnT55EyZIlnX59dHQ0KlWqVIiJ8o591zPOTRrJrg9r/vnz58Nut+PChQsYPHgwGjRokOWXWTH2zr7nmfMzZ0/DOPMAf/esu7JSpUq53pI1vQoVKsButxdiIuexz0waxmOWuXvmmQe4uwd4d6Wrkdt/iQKx2+04d+6c4y2BAQEBiIyMdLwl7fz58yhbtqwpPzw6IiICzz77LIKCgvDnn3+iRIkSmD17NoYPH44+ffrg5ZdfRnh4uO6YWWLuHeDuXrLrc/v2baxbtw4LFy7Erl270K5dO3zzzTc4ePAg6tSpoztejpi7Z87OjnnXM8+NZNeHOf/kyZOdet2kSZMKOUneMfcuRH7IzOvDvCvPnDnj1OsqVqxYyElcjxyzesjM68O8K12JXFQRBXLvfRbvvY+imX/gU7duXTz11FMYO3Ys1q5di8cffxzNmjXD6tWrUb58ed3xcsTcO8DdvWTXY/jw4VixYgWqV6+O/v3744knnkCJEiXg7u6OqKgoU/+2PsDdPXN29hMB5l3PPDeSXR/2/KyYe2ff88z5mbMzzzzA3T0zwzCy/M19pZTjcZvNhuTk5KKOliv2mWE+Zpm7Z555gLt7wUEuqogCYf6Bj6+vL44cOYLQ0FAopeDp6Ynt27ejZcuWuqPlirl3gLt7ya6Hm5sbxo8fj1dffRX+/v6Ox1kuqjB3z5yd/USAedczz41k14c9f5pDhw7h+PHjAIAaNWqgbt26mhPljLl3K+x51vzM2ZlnHuDuPj22XRkVFZXl40oprFy5EvPmzYOfnx8uXLhQxMlyxz4zzMcsc/fMMw9wd58e2650JW66AwhuNpst05LKy30Xdfrrr7/g4+MD4G5mT09PhISEaE7lHObeAe7uJbsey5Ytw6JFixASEoLOnTvjqaeeQseOHXXHchpz98zZDx48mOXj954ImBXzrmeeG8muD3v+vXv34plnnkF0dDTSfm/NZrPhgQceQEREBBo3bqw5YdaYe2ff88z5mbMzzzzA3T3AuysffPDBTI9t2bIFr776Ko4fP45x48Zh9OjRGpLljn1mmI9Z5u6ZZx7g7h7g3ZWuRC6qiAJRSuHpp5+Gp6cnAODmzZt4/vnn4evrCwC4deuWzni5WrhwoWOJJicnY8mSJQgODs7wmhEjRuiIliP23gHe7gHJrkPfvn3Rt29fnDx5EkuWLMGLL76IGzduIDU1FdHR0aZ/pwrA2z3Am539RIB917PODSDZdWLNHx0djbZt2yI8PByff/65497u0dHRmDNnDtq2bYvdu3eb9s8r1t7Z9zxzfubsAO/MA9zds+/KNAcOHMD48eOxc+dODBkyBF9//bXjncVmxDwzaViPWSt0D/DNPMDdvVV2pdXJ7b9EgQwaNMip1y1evLiQk+RdaGhorr/xa7PZcOLEiSJK5Dzm3gHu7iW7OSilsHnzZkRERGDDhg0IDg5Gjx49MG/ePN3RssTcPXP29O49EZg4caLpTwSYdz3z3Eh2fZjz9+7dG8nJyVi7dm2m/walFHr06AF3d3esXr1aU8LsMfeeHuOeT485P1t2q8w8wNc9864EgLi4OLz22mtYu3YtevfujbfffttxW1YWbDMDWOeYZezeCjMP8HXPvitdhhJCCCGIXb58Wc2ZM0c9+OCDuqMIE/rtt99U7969ld1uV3379lVxcXG6IwkhLCg4OFj9+uuv2T6/d+9eFRwcXISJXAf7nmfOz5ydHWv3zLty2LBhysPDQ3Xo0EEdPHhQd5w8Y50ZK2Dtnn3mleLtnnlXuhK5/ZcQQghqQUFBaNWqFbZs2aI7ijCZF154AREREXjooYewb98+1KtXT3ckIYRFJSUloXTp0tk+X6ZMGSQlJRVhItfAvueZ8zNnZ8fcPfOunD9/Pry8vHDhwgUMHjw429cdOHCgCFM5h3lm2DF3zzzzAHf3zLvSlcjtv0SB9OjRw6nXrVu3rpCT5F2nTp2wYsUKFCtWDAAwbdo0PP/88yhevDgA4PLly2jVqhWio6M1pswac+8Ad/eSXZ/vvvsO33//PTw8PDBkyBBUqVIFR48exauvvoqNGzeiQ4cO+Prrr3XHzBJz98zZDcOAl5cXatasmePrzHoiwLzrmedGsuvDnD8sLAzvvPMOevbsmeXza9asweuvv45jx44VcbLcMffOvueZ8zNnZ555gLt75l05efJkp143adKkQk6Sd8wzA3Afs8zdM888wN098650JXJRRRTIvfd7X758Obp27Qp/f/8Mj5vxfu92ux3nzp1z3EcxICAAkZGRjvtDnj9/HmXLlkVKSorOmFli7h3g7l6y6xEREYFnn30WQUFB+PPPP1GiRAnMnj0bw4cPR58+ffDyyy87PrzNjJi7Z87OfiLAvOuZ50ay68Ocf9KkSViyZAm++uor1K5dO8Nzhw8fRteuXTFgwAC89dZbmhJmj7l39j3PnJ85O/PMA9zdM+9KZswzA3Afs+zdM2PuXnYlB7n9lyiQe3+Qs2bNGkyfPp3ig6vuvZ7IdH2RuXeAu3vJrsfcuXPx3nvvYezYsVi7di0ef/xxfPzxxzh8+DDKly+vO16umLtnzm7GvyDnBfOuZ54bya4Pc/4JEyZgy5YtqFevHtq3b4/w8HAopRATE4MtW7agSZMmeO2113THzBJz7+x7njk/c3bmmQe4u2felekdOnQIx48fBwDUqFEDdevW1ZwoZ8wzA3Afs+zdp2GbeYC7e6vsSquTiypCCCFMLy4uDo8//jiAu7dEcnNzw4wZMyguqAhzYDwREELw8PLywvbt2zFnzhysWLECO3bsAHB337z99tsYOXIkPD09Nae0NvY9z5yfOTs7tu7Zd+XevXvxzDPPIDo62vGDfZvNhgceeAARERFo3Lix5oS5Y5sZK2Hs3gozD/B1z74rXYVcVBEuy2azwWazZXpMFD7m7iW7Hn/99Rd8fHwA3M3s6emJkJAQzamcx9w9c3bAOicCbJjnRrLrw57fw8MD48ePx/jx43VHyRP23tn3PHN+1uzsMw/wdg/w7sro6Gi0bdsW4eHh+Pzzzx23Ho6OjsacOXPQtm1b7N69G7Vq1dKcNGvMM8N+zLJ2zz7zAG/3AO+udCVyUUW4LKUUnn76acfV3Zs3b+L555+Hr68vAODWrVs641kac/eSXZ+FCxfCz88PAJCcnIwlS5YgODg4w2tGjBihI1qumLtnzm6FEwFWzHMj2fVhz8+KuXf2Pc+cnzk788wD3N0ze/PNN9G+fXusXbs2ww/069Wrh759+6JHjx548803sXr1ao0ps8Y+M8zHLHP3zDMPcHcvOMgH1YsC2bBhQ4bv+/bti/fffx+lS5fO8Hi3bt2KMpZT7v0A4OyY8QOAmXsHuLuX7HqEhobm+ttINpsNJ06cKKJEecPcPXP23r17Izk5OdOJAHD35KxHjx5wd3c37YkA865nnhvJrg9z/sDAQKd+azYhIaEI0uQNc+/se545P3N25pkHuLtn3pUlS5bEN998g0aNGmX5/K+//opOnTrh4sWLRZwsd8wzA3Afs8zdM888wN098650JXJRRRSIYRi5vsZmsyElJaUI0rgO6V0IIXLHfiIgu14IHkuXLnXqdQMHDizkJK6Ffc8z52fOzo65e+Zd6eXlhdjYWFSoUCHL53///XdUr14dN2/eLOJkuWOeGXbM3TPPPMDdPfOudCVy+y9RIKmpqbojuCTpXQghcpeUlJTpXR3plSlTBklJSUWYKG9k1wvBo3LlymjRogXc3OT0qiix73nm/MzZ2TF3z7wrK1WqhL1792b7A+Y9e/agUqVKRZzKOcwzw465e+aZB7i7Z96VrkT+vyPui1u3biE5OdlxT0sGPXr0cOp169atK+Qk+cfYO8DdvWTXo1OnTlixYgWKFSsGAJg2bRqef/55FC9eHABw+fJltGrVCtHR0RpTZo+5e+bs7CcCaRh3PfPcSHZ9mPM/9NBDOHfuHEqVKqU7Sp4x986+55nzM2dnnnmAu3vmXfnEE09g1KhRCAsLQ+3atTM8d/jwYYwZMwYDBgzQlC5nzDMDcB+zzN0zzzzA3T3zrnQlud9XQogcXLx4ER07doSfnx8CAgLQrFkz/Pbbb7pjOaVYsWIZvr766isYhpHpcTNi7h3g7l6y6/Hdd99l+ADCd955J8P9Q5OTk3Hs2DEd0ZzC3D1z9rQTgf/+97+Znks7EejTp4+GZM5h3vXMcyPZ9WHOz3xHZebe2fc8c37m7MwzD3B3z7wrJ0yYgPLly6NevXro2LEjRo0ahZEjR+KRRx5B/fr1UbZsWbz22mu6Y2aJeWYA7mOWuXvmmQe4u2fela5EPlNFFMjgwYPxzTffYMSIEfDy8sK//vUvhISEYPv27bqj5Zm/vz+ioqJQpUoV3VFyZaXeAa7u7yXZi4ZhGIiPj3f8psa92c+fP4+yZcvSfLYEU/f3Ysp+8+ZNtG3bFnv27EH79u0RHh4OpRRiYmKwZcsWNGnSBNu2bYOXl5fuqFmy0q5nmpt7SXZ9mPIbhoHz58+jZMmSuqMUGFPv7HueOT9z9nsxzTzA3T37rrx9+zbmzJmDFStW4Pjx4wCAGjVq4IknnsDIkSPh6empOWHWmGcmK0zHLHv3rDMPcHfPvitdhVxUEQVSoUIFLFy4EB06dAAAxMbGIjw8HNevXzf1cs0K0x/MVuod4Or+XpK9aMhFFfNgy858ImClXc82N+lJdn2Y8huGgY4dO+Z6bJrx1iT3Yuod4N7zAHd+5uzpsc08wNu9lXYlG9aZyQrbMWul7tmwdi+7koNcVBEFYrfb8b///Q9lypRxPObr64sjR44gNDRUX7B8YPqD2Uq9A1zd30uyFw273Y74+HjHb2r4+/vj0KFDqFy5MgC5qFKUmLOzsdKuZ54bya4PU37DMNC7d294e3vn+LrFixcXUaL8Y+pdiPtBZr7oWGlXCn3kmBVWJ7uSg3xQvSgwu92e6Xu5Vlf4pHfhSpRSePrppx2/qXHz5k08//zzjg/uTv95K0JYiex6IXjMmzdPPlBUCCFywborAwMDYbPZcn1d+s99FIKZzLxerLvSlchFFVEgSinUqFEjw6K9du0a6tevD8MwHI+Zcclu2LAhw/epqanYunVrpg+x6tatW1HGcgpz7wB395Jdj4EDB2b4vn///pleM2DAgKKKk2fM3TNnZz8RYN71zHMj2fVhzu/MrjEr5t7Z9zxzfubszDMPcHfPvCvff/993RHyjXlmAO5jlrl75pkHuLtn3pWuRG7/JQpk6dKlTr3u3h+ImkH6H0hlx2azmfJ2Qsy9A9zdS3aRH8zdM2dn35XM+ZnnRrLrw5z/3s/+uldMTAwiIiIwc+bMIk6WO+bemfckwJ2fOTvzzAP83bPuyh9//BEtWrSAmxvf7yYzzwzAfcwyd8888wB398y70pXIRRUhhBBCWBL7iYAQgseOHTvQsmXLDPvm+vXrWLlyJSIiIrB7927UqlUr02/VioJh3/PM+Zmzs2PunnlX2u12nDt3jvJ2PMwzw465e+aZB7i7Z96VrkQuqgiXd+vWLSQnJzs+m0EUHebuJXvR6tGjh1OvW7duXSEnKRjG7tMwZmc/EbACxrlJI9n1Yc+/a9cuREREYPXq1fjrr78wcuRIDBkyBDVr1tQdLUeMvbPveeb8zNnTMM48YI3uAb5dmdtvjpuZVWaG8Zhl7p555gHu7tNj25WuJPf30AmRg8DAQAQFBeX6ZUYXL15Ex44d4efnh4CAADRr1gy//fab7lhOYe4d4O5esutRrFixDF9fffUVDMPI9LhZMXfPnJ3990aYdz3z3Eh2fZjzX7hwAdOnT0fNmjXRq1cvFC9eHD/88AMMw8DgwYNNfeLL3Dv7nmfOz5ydeeYB7u6ZdyXA+zkHzDMDcB+z7N2zzjzA3T37rnQV8k4VUSDM9ygcPHgwvvnmG4wYMQJeXl7417/+hZCQEGzfvl13tFwx9w5wdy/ZzcHf3x9RUVGoUqWK7ihOYe6eObthGDh//jxKliypO0q+MO965rmR7Pow5/f29kavXr3Qv39/tG/f3nH/d3d3d0RFRaFWrVqaE2aPuXf2Pc+cnzk788wD3N0z70rDMNCxY0d4enrm+DozvnOeeWYA7mOWuXvmmQe4u2fela5ELqoIl1WhQgUsXLgQHTp0AADExsYiPDwc169fz/UPDVEwzN1LdnNgu6jC3D1zdvYTAWbMcyPZ9WHOX7NmTdy6dQv9+vXDU0895fgNQoaTX+be2fc8c37m7MwzD3B3z7wrDcNA79694e3tnePrFi9eXESJnMc8MwD3McvcPfPMA9zdM+9KV8L3aT2Cyrlz5zB16lR8+OGHuqNkcvbsWTz44IOO76tXrw5PT0+cO3cOoaGh+oLdB2buHeDuXrKL/GDunjk7cPcCXG4nAqzMvOuZ50ay68Oc/+jRo457Xjdu3Bg1atRA//79AZj/1hnMvQP8e545P2t29pkHeLtn3pUAMG/ePNrPZ2CdGYD/mGXunnnmAd7u2Xelq5CLKqLAjhw5gu3bt8PDwwO9e/dG8eLFcenSJUydOhXz58839W+S2+32TN+zvHmLuXeAu3vJLvKDuXvm7OwnAsy7nnluJLs+zPlbtmyJli1bYt68eVixYgUWL16MlJQUvPDCC+jXrx8effRR096Cgrl39j3PnJ85O/PMA9zds+5K9h9kMs8MwH3MsnbPPvMAb/cA7650JXL7L1EgGzZsQK9evZCcnAwAqFKlChYsWIDevXujYcOGeOWVV/DII49oTpm1tA+5Tv8HxZUrVxAQEOC4XyEAJCQk6IiXI+beAe7uJbseGzZsyPB937598f7776N06dIZHu/WrVtRxnIac/fM2e12O86dO0f7F2nmXc88N5JdH/b8WYmJiUFERASWLVuGhIQE3LlzR3ekTJh7Z9/zzPmZszPPPMDdfXZYdmV8fHy2vaf9N8ycObOIk+WOfWaYj1nm7plnHuDuPjsMu9KVyDtVRIG8/fbbePHFFzFlyhQsXLgQo0aNwogRI/D111+jcePGuuPlyKz3fXQGc+8Ad/eSXY9HH30002NDhw7N8L3NZkNKSkoRJcob5u6Zs+f2eyNmPxFg3vXMcyPZ9WHPn5Xw8HDMnDkT06ZNy/QLAmbB3Dv7nmfOz5ydeeYB7u6zw7Art2/fjqCgoAyPXb9+HStXrkRERAR2796NWrVqmbJ39plhPmaZu2eeeYC7++ww7EqXooQogICAABUbG6uUUio5OVnZ7Xb1/fffa05lfdK7EELk7ocfflB37tzJ8Ni1a9fUwoULVfPmzZXNZlMPPPCApnS5k10vhHXExMSo6tWr645hOex7njk/c3Z2Vu6eZVf+9NNPatCgQcrX11cZhqFGjx6tYmJidMfKlpVnxuys0j3bzCtlne6zwrIrrc7I/bKLENlLSkpCQEAAgLtvrfP29jb1/d2tQnoXrurWrVu4fv267hiCROvWreHmdvdNubt27cLgwYNRunRpPPfcc2jRogWio6Px3//+V3PK7MmuF8I6bt26hbi4ON0xLId9zzPnZ87Ozsrdm3lXXrhwAdOnT0fNmjXRq1cvFC9eHD/88AMMw8DgwYNRs2ZN3RGzZeWZMTvm7plnHuDuPjdm3pWuRG7/JQrsu+++Q7FixQAAqamp2Lp1a6bFZMbPOQgMDHTqg7fMeF9OgLd3gLt7ya7HxYsXMWDAAGzZsgWpqalo3LgxPv/8c1SrVk13NKcwd8+c/cKFC1iyZAkWLVqEq1evom/fvvjhhx/QvHlzihMBgHfXM8+NZNeHPT8r5t7Z9zxzfubszDMPcHfPrFKlSujVqxfmzp2L9u3bZ/gsD7NjnxnmY5a5e+aZB7i7FxzkoooosIEDB2b4nuVzDt5//33dEQqEtXeAu3vJrsf48eMRGRmJt956C15eXvjXv/6FZ599Ftu3b9cdzSnM3TNnZz8RAHh3PfPcSHZ92POzYu6dfc8z52fOzjzzAHf3zCpVqoSffvoJFStWRKVKlah+IMs+M8zHLHP3zDMPcHcvOMhFFVEgqampuiPk270/qGLC3DvA3b1k1+P777/HkiVL0KFDBwBAly5dEB4ejlu3bsHT01Nzutwxd8+cnf1EgHnXM8+NZNeHPT8r5t7Z9zxzfubszDMPcHfP7OjRo9i1axciIiLQuHFj1KhRA/379wcAp95FoRP7zDAfs8zdM888wN294CCX6YTIxrlz5/DSSy/pjuGSmLuX7IXj7NmzePDBBx3fV69eHZ6enjh37pzGVPePmbvPjZmzHz16FJ9//jnOnTuHxo0bo2HDhpgzZw4AjhMBKzPz3ORGsutj5vyBgYEICgrK9qtVq1a6I+abmXtn3/PM+Zmz58bMMw9wd8++K1u2bIlFixbh3LlzeP755/HFF18gJSUFL7zwAhYsWICLFy/qjpgl5plxhpmPWfbuWWce4O6efVe6CptSSukOIXi98MILmD59Ovz8/AAAK1asQLdu3eDr6wsAuHLlCvr164evv/5aZ8xsHTlyBNu3b4eHhwd69+6N4sWL49KlS5g6dSrmz5+PKlWq4MiRI7pjZsLeO8DbPSDZdbDb7YiPj0fJkiUdjwUEBCAqKgqVK1fWmMx5rN0D3NnTXLt2DStWrMDixYuxe/dutG7dGv369cOjjz6aYa7MhH3XM8+NZNeHNf/SpUudep1Zf9uWtff0GPd8esz5GbNbYeYBvu7Zd2VWYmJiEBERgWXLliEhIQF37tzRHSlHbDOTxgrHLGv392KbeYCveyvuSktSQhSAYRjq/Pnzju/9/f1VXFyc4/v4+HhlGIaOaLlav369cnd3VzabTdlsNlW1alW1bds2FRwcrDp06KC++eYb3RGzxdy7UtzdS3Y9bDabKl68uAoMDHR82Ww2VaxYsQyPmRVz98zZsxMdHa1Gjx6tSpUqpdzc3HTHyRbzrmeeG8muD3t+VlbsnWXPZ4c5P0N2K868UhzdW9mdO3fU2rVrdcfIE5aZseIxy9J9ThhnXilrdC/MQS6qiAKx2WwZfuDj5+dH8wOfxo0bq1deeUUlJSWpOXPmKJvNpmrXrq327t2rO1qumHtXirt7ya7HkiVLnPoyK+bumbPnxuwnAsy7nnluJLs+zPmvXr2a5VdycrLuaLli7j03Zt/zuWHOb+bsVp55pczdPfOuzE1MTIyqXr267hj5YuaZUcrax6zZu88J88wrZe7urbwrrUQuqogCYf6BT0BAgIqNjVVKKZWcnKzsdrv6/vvvNadyDnPvSnF3L9lFfjB3z5w9N2Y/EWDe9cxzI9n1Yc5vs9mUYRiZvtzd3VWNGjXUp59+qjtitph7z43Z93xumPObObuVZ14pc3fPvCtzExkZadq/l+XGzDOjlLWPWbN3nxPmmVfK3N1beVdaiZvu248JoUtSUhICAgIA3P28Bm9vb1SpUkVzKtfA3L1kF/nB3D1z9tzcunULcXFxumNYEvPcSHZ9mPNv3749y8evXLmC/fv3Y+zYsXBzc8OgQYOKOFnumHvPDfueZ85v5uxWnnnA3N0z70orM/PMANY+Zs3evZWZuXvZlRzkoooosIkTJ8LHxwcAcPv2bUydOhXFihUDANy4cUNntFx99913jqypqanYunUr/vvf/2Z4Tbdu3XREyxVz7wB395K96AUGBsJms+X6uoSEhCJIkz+s3QPc2dkx73rmuZHs+rDmb926dbbPde/eHaGhofjggw9Me/LL2rsQ+SUzrwf7rhT6yDErXInsSg42pZTSHULwatOmjVM/6MzuKqtOhmHk+hqbzYaUlJQiSJM3zL0D3N1Ldj2WLl3q1OsGDhxYyEnyh7l75uy5iYqKQoMGDUybnXnXM8+NZNeHPX9O4uLiUL9+fSQmJuqOkomVezf7ns8Nc34zZ7fyzAPm7j43Zt6VuWHu3ezZrXzMmr37nDBnB7jzM+9KK5F3qogC+eGHH3RHyLfU1FTdEfKNuXeAu3vJrodZL5Y4i7l75uzsmHc989xIdn3Y8+fk6tWrjt+wNRsr9y5EVmTmzcvMuzK3d84nJycXYRrXIsesHjLz5mXmXelK5KKKKLDExETs2bMHt2/fRpMmTVCyZEndkVyC9C7E/zl37hymTp2KDz/8UHcUYSJWOBGQXS8Evzt37mDGjBlo2rSp7iiWw77nmfMzZ2dn1e7Nvivff/993RHyzaozw4C5e+aZB7i7z4nZd6UrkYsqokAiIyPRqVMnxMfHAwD8/f2xevVqdOjQQXOy3L3wwguYPn06/Pz8AAArVqxAt27d4OvrC+DuB0D169cPX3/9tc6YWWLuHeDuXrLrc+TIEWzfvh0eHh7o3bs3ihcvjkuXLmHq1KmYP3++qT+skLl75uzsJwLMu555biS7Psz5e/TokeXjV69exZEjR2Cz2bBz584iTuUc5t7Z9zxzfubszDMPcHfPvCuZ3znPPDMA9zHL3D3zzAPc3TPvSlcin6kiCqRDhw64du0aZs6cCS8vL0yZMgWHDx9GbGys7mi5stvtOHfuHEqVKgUACAgIQGRkpOMHs+fPn0fZsmVNeX9F5t4B7u4lux4bNmxAr169HL9NUqVKFSxYsAC9e/dGw4YN8corr+CRRx7RnDJ7zN0zZ2fHvOuZ50ay68OcP7sPCg0ICEBYWBiefPJJ096mgbl3IfJDZl4f5l2Z3WcX+Pr6wm63F3Ea1yLHrB4y8/ow70pXIu9UEQWyf/9+bN68GQ0aNAAALFq0CEFBQUhMTERAQIDmdDm793oi0/VF5t4B7u4lux5vv/02XnzxRUyZMgULFy7EqFGjMGLECHz99ddo3Lix7ni5Yu6eOTv7iQDzrmeeG8muD3P+xYsX646Qb8y9s+955vzM2ZlnHuDunnlXFi9ePMtbCdntdlSuXBljxozBs88+qyFZ7phnBuA+Zpm7Z555gLt75l3pSuSiiiiQhIQElC9f3vF98eLF4evri8uXL5v+Bz7MpHfhao4dO4bly5fDz88Pw4cPx5gxYzBnzhyKCypCH/YTAdn1QnDZvXs3Nm7ciNu3b6Nt27amfgelVbDveeb8zNnZsXfPuiu3b9+e5eNXrlzB/v37MXbsWLi5uWX7G+Y6sc8MM+bumWce4O4e4N2VrkQuqogCi46OdtzvHbj7WwMxMTFISkpyPFa3bl0d0SxNeheuJCkpyfFDZLvdDm9vb1N/hoowB/YTAUB2vRAs1qxZgz59+sDb2xvu7u6YPXs23nvvPYwZM0Z3NEtj3/PM+Zmzs2PunnlXtm7dOtvnunfvjtDQUHzwwQem7J15Ztgxd8888wB398y70pXIZ6qIAjEMAzabLcu3X6Y9brPZTHlvS8Mw8Nxzz8HHxwcA8NFHH6F///6O+xLeuHEDCxYsMG121t4B/u4le9EzDANLly51ZO3bty/ef/99lC5dOsPrunXrpiNerti7Z82em0WLFuHDDz/EgQMHdEfJEvOuZ54bya4Pc/6GDRuicePG+Oijj2C32/Huu+9ixowZSEhI0B0tV8y958bsez43zPnNnN3KMw+Yu3vmXZmbuLg41K9fP9tbDpmZmWcGsPYxa/buc8I884C5u7fyrrQSuagiCuT06dNOva5SpUqFnCTv2rRpk+VbAe+V3dVtnZh7B7i7l+x6GIaR62vM+sNlgLt75uy5MfuJAPOuZ54bya4Pc34/Pz9ERkaiWrVqAIDbt2/D19cX//vf/xwfrGtWzL3nxux7PjfM+c2c3cozD5i7e+ZdmZsDBw6ge/fu+P3333VHyTMzzwxg7WPW7N3nhHnmAXN3b+VdaSVy+y9RIGb8QY6zfvjhB90R8o25d4C7e8muR2pqqu4IBcLcPXP23Fy9etXxG25mxLzrmedGsuvDnP/GjRsZPuvIw8MDXl5euHbtmulPfpl7z43Z93xumPObObuVZx4wd/fMuzInd+7cwYwZM9C0aVPdUfLFzDMDWPuYNXv32WGfecDc3Vt1V1qNXFQR+Xbo0CHUrl3bqd8gB4AjR44gLCwMbm7mGbvExETs2bMHt2/fRpMmTVCyZEndkXJlhd4Bzu7TSHaRH8zdM2fPjtlPBKyw65nnRrLrw5x/4cKF8PPzc3yfnJyMJUuWIDg42PHYiBEjdETLFXPv2TH7ns8Nc36G7FaceYCje9Zd2aNHjywfv3r1Ko4cOQKbzYadO3cWcaqCY5gZwJrHrNm7t+rMA+bvHuDdla5Ebv8l8s1utyM+Pt7pP8wCAgIQGRlpmg+XjoyMRKdOnRwfAOzv74/Vq1ejQ4cOmpPljL13gLd7QLLr8sILL2D69OmOv1SsWLEC3bp1g6+vL4C7HzbXr18/fP311zpjZou5e+bszp4IpL2t2kzYdz3z3Eh2fZjzh4aG5nprEpvNhhMnThRRIucx98685wHu/MzZmWce4O6eeVdm92HWAQEBCAsLw5NPPmna33pnnhmA+5hl7p555gHu7pl3pSuRiyoi3+79sLDcfPzxx4iOjjbND3w6dOiAa9euYebMmfDy8sKUKVNw+PBhxMbG6o6WI/beAd7uAcmui91ux7lz5xxvdb33B8jnz59H2bJlTfuZKszdM2dnPhFg3/XMcyPZ9WHPz4q5d+Y9D3DnZ87OPPMAd/dCD/aZYT5m2btnJt2LwiYXVUS+OfthYektX74cISEhhZQob4KDg7F582Y0aNAAwN3fdA8KCsKVK1cy3LvQbNh7B3i7ByS7LoZhID4+3nFRxd/fH1FRUTQXVZi7Z87OjH3XM8+NZNeHPT8r6V24Gpl5kV+7d+/Gxo0bcfv2bbRt2xaPPPKI7kguQY5ZfWTmhcieeW68Leiwf1hYQkICypcv7/i+ePHi8PX1xeXLl039BzN77wBv94BkF/nD3D1zdoD3RIB91zPPjWTXhz1/cnIy5syZgxUrVuD48eMAgBo1aqBfv354+eWX4e7urjlh1th7Z93zaZjzs2Znn3mAt3uAd1euWbMGffr0gbe3N9zd3TF79my89957GDNmjO5oTmGeGfZjlrV79pkHeLsHeHelK5GLKsKlRUdHO+7LCQBKKcTExCApKcnxWN26dXVEszzm7iW7yA/m7lmzW+FEgBnr3ACSXSfW/H/99Rfat2+PX375Be3atcPf//53AEBMTAzGjx+PDRs2YPPmzfDy8tKcNGusvbPveeb8zNkB3pkHuLtn3pXvvvsunn32WXz00Uew2+1499138c4771D0zjwzaViPWebumWce4O6eeVe6FCWEi7LZbMowDGWz2TJ9pT1uGIbumJbE3L1k18Nms6mhQ4eqkSNHqpEjRyoPDw81ePBgx/dDhw41bXal+Ltnzd6gQQM1dOhQlZycrJRS6p133lGBgYGaU7kG5rmR7Pow5584caKqWLGiioqKyvRcZGSkqlixopo0aVLRB3MCc+/se545P3N25plXirt75l3p6+urYmNjHd/funVLubm5qfPnz2tM5RzmmVGK+5hl7p555pXi7p55V7oS+UwV4bJOnz7t1OsqVapUyElcD3P3kl0PZz9fYvv27UWQJu+Yu2fO7ufnh8jISFSrVg0AcPv2bfj6+uJ///uf4/N5ROFgnhvJrg9z/rCwMLzzzjvo2bNnls9/8cUXeP311x23bzAT5t7Z9zxzfubszDMPcHfPvCvv/YxHIPPnPJoV88wA3Mcsc/fMMw9wd8+8K12J3P5LuCwz/oHrKpi7l+x6sH++BHP3zNlv3LiR4T7LHh4e8PLywrVr10z/F2l2zHMj2fVhzn/69Gk0adIk2+ebNWuGM2fOFGEi5zH3zr7nmfMzZ2eeeYC7e+ZdCQALFy6En5+f4/vk5GQsWbIEwcHBjsdGjBihI1qOmGcG4D5m2btnnXmAu3v2Xekq5KKKcEmHDh1C7dq1YRiGU68/cuQIwsLC4OYmh0xBMXcv2fVKTEzEnj17cPv2bTRp0gQlS5bUHckpzN0zZ0/DfCLAinluJLs+7PkDAgJw4cIFVKhQIcvn4+Pj4e/vX8SpcsfeO8C/55nzM2a3wswDnN0DvLsSACpWrIgFCxZkeKxMmTJYtmyZ43ubzWbK3gHembHCMcvaPfvMA7zdM+9KVyK3/xIuyW63Iz4+3ukfygYEBCAyMpLiLY5mx9y9ZNcnMjISnTp1cnw4ob+/P1avXo0OHTpoTpY75u6ZswNAaGhorreNs9lsOHHiRBElcg3McyPZ9WHP36dPHyQnJ2Pt2rVZPt+zZ0/Y7XasXr26iJPljL139j3PnJ81O/vMA7zdA7y7kh3zzLAfs8zds2PuXnYlB/NcuhWiCCml8MYbb8DHx8ep19++fbuQE7kO5u4luz7jx49H5cqVsXbtWnh5eWHKlCl46aWXEBsbqztarpi7Z84OAKdOndIdwSUxz41k14c9/6RJk9C0aVM0a9YMo0aNQs2aNaGUQkxMDObMmYPo6Gjs3r1bd8xM2Htn3/PM+Vmzs888wNs9wLsr2THPDPsxy9w9O+buZVdykHeqCJfk7Idep7d8+XKEhIQUUiLXwdy9ZNcnODgYmzdvRoMGDQAAV65cQVBQEK5cuZLhPqlmxNw9c3ahD/PcSHZ92PMDwO7du/HMM88gJibG8d+ilELNmjURERGB5s2ba06YmRV6FyIvZOb1Y9yVaZKTkzFnzhysWLHC8QHRNWrUQL9+/fDyyy/D3d1dc0LrkWNWL5l5fZh3pauQiypCCCFMzzAMxMfHZ/hAOX9/fxw6dAiVK1fWmEyYnZwICCGKWmRkZIZ9U69ePb2BLI59zzPnZ87Ozgrds+3Kv/76C+3bt8cvv/yCdu3aITw8HAAQExODLVu2oGXLlti8eTO8vLw0J82aFWaGFWv37DMP8HafHtuudCVyUUUIIYTpGYaBbdu2ISgoyPFYixYtsHr1apQvX97xWN26dXXEEyZlhRMBIQSPxMRE7NmzB7dv30aTJk2cvv+7yD/2Pc+cnzk7O/buWXflpEmTsGTJEmzcuDHTOUdUVBS6deuGQYMG4c0339QTMAfsM8OMuXvmmQe4uwd4d6VLUUIIIYTJ2Ww2ZRiGstlsmb7SHjcMQ3dMYTITJ05UFStWVFFRUZmei4yMVBUrVlSTJk0q+mBCCMs5ePCgCgkJcfzZFBAQoL799lvdsSyPfc8z52fOzo65e+ZdWaNGDbVmzZpsn1+9erWqXr16ESZyHvPMsGPunnnmleLunnlXuhJ5p4oQQgjTO336tFOvq1SpUiEnEUzCwsLwzjvvoGfPnlk+/8UXX+D11193vJ1aCCHyq0OHDrh27RpmzpwJLy8vTJkyBYcPH0ZsbKzuaJbGvueZ8zNnZ8fcPfOu9PLyQmxsLCpUqJDl87///juqV6+OmzdvFnGy3DHPDDvm7plnHuDunnlXuhK5qCKEEEIIS2I/ERBC8AgODsbmzZvRoEEDAMCVK1cQFBSEK1euICAgQHM662Lf88z5mbOzY+6eeVeWKlUK33zzDRo2bJjl87/++is6deqEixcvFnGy3DHPDDvm7plnHuDunnlXuhJDdwAhhBAiJ4cOHUJqaqrTrz9y5AiSk5MLMZFgERAQgAsXLmT7fHx8PPz9/YswkRDCqhISEjJ8xlfx4sXh6+uLy5cva0xlfex7njk/c3Z2zN0z78qHHnoI77zzTrbPT5s2DQ899FARJnIe88ywY+6eeeYB7u6Zd6UrkXeqCCGEMDW73Y74+HinP5gtICAAkZGRqFKlSiEnE2bXp08fJCcnY+3atVk+37NnT9jtdqxevbqIkwkhrMYwDGzbtg1BQUGOx1q0aIHVq1dnOCm+94NeRcGw73nm/MzZ2TF3z7wro6Oj0bRpUzzwwAMYNWoUatasCaUUYmJiMGfOHERHR2P37t144IEHdEfNhHlm2DF3zzzzAHf3zLvSlchFFSGEEKZmGAaee+45+Pj4OPX6jz/+GNHR0XJRRdCfCAgheBiGAZvNhqxOrdIet9lsSElJ0ZDOutj3PHN+5uzsmLtn35W7d+/GM888g5iYGNhsNgCAUgo1a9ZEREQEmjdvrjlh1phnhh1796wzD3B3z74rXYVcVBFCCGFqbdq0cfwFzlnLly9HSEhIISUSTJhPBIQQPE6fPu3U6ypVqlTISVwP+55nzs+cnR1r91bZlZGRkY4Pt65Rowbq1aunN5ATWGfGCqzQPePMA7zdW2VXWp1cVBFCCCGE5bGeCAghhHAO+55nzs+cnZ10X7QSExOxZ88e3L59G02aNHH69sRmIjOjD2P3Vph5gLN7YX5yUUUIIYQQlmWVEwEhhHkdOnQItWvXhmEYTr3+yJEjCAsLg5ubWyEncw3se545P3N2dozds+/KyMhIdOrUCfHx8QAAf39/rF69Gh06dNCczDmMM2MVrN2zzzzA2T37rnQlclFFCCGEEJZkhRMBIYT52e12xMfHO32iHhAQgMjISPnsr/uAfc8z52fOzo61e/Zd2aFDB1y7dg0zZ86El5cXpkyZgsOHDyM2NlZ3tFyxzowVMHfPPPMAb/fsu9KVyEUVIYQQQlgS+4mAEIKDYRh47rnn4OPj49TrP/74Y0RHR8vJ733AvueZ8zNnZ8faPfuuDA4OxubNm9GgQQMAwJUrVxAUFIQrV64gICBAc7qcsc6MFTB3zzzzAG/37LvSlchFFSGEEEJYEvuJgBCCQ5s2bRwffuqs5cuXIyQkpJASuQ72Pc+cnzk7O9bu2XelYRiIj49HqVKlHI/5+/vj0KFDqFy5ssZkuWOdGStg7p555gHe7tl3pSuRG64JIYQQwpISEhJQvnx5x/fFixeHr68vLl++bOq/SAshuPzwww+6I7gs9j3PnJ85OzvW7q2wK6Ojox23EgIApRRiYmKQlJTkeKxu3bo6ouWIdWasgL171pkHeLu3wq50FXJRRQghhBCWxXwiIIQQInfse545P3N2dtK9Hm3btsW9N3vp0qULbDYblFKw2WxISUnRlC5nMjP6MHfPPPMAd/fC/OT2X0IIIYSwJMMwHH/hvxfLiYAQQojsse955vzM2dlJ93qcPn3aqddVqlSpkJPkncyMPszdM888wN294CDvVBFCCCGEJZ08eVJ3BCGEEIWIfc8z52fOzk6618OsPzh2hsyMPszdM888wN294CDvVBFCCCGEEEIIIYQQIguHDh1C7dq1YRiGU68/cuQIwsLC4OYmv8csOMnMC5E7544OIYQQQggihw4dQmpqqtOvP3LkCJKTkwsxkRBCiPuJfc8z52fOzk6616N+/fq4fPmy069v3rw5zpw5U4iJnCczow9z98wzD3B3L3jIO1WEEEIIYTl2ux3x8fEoWbKkU68PCAhAZGQkqlSpUsjJhBBC3A/se545P3N2dtK9HoZh4LnnnoOPj49Tr//4448RHR1tit5lZvRh7p555gHu7gUPeV+WEEIIISxHKYU33njD6ROB27dvF3IiIYQQ9xP7nmfOz5ydnXSvx9///nccO3bM6dc3b94c3t7ehZjIeTIz+jB3zzzzAHf3goe8U0UIIYQQltOmTRvYbLY8/TvLly9HSEhIISUSQghxP7Hveeb8zNnZSfcir2Rm9JHu9ZHuRVGQiypCCCGEEEIIIYQQQgghhBBOkA+qF0IIIYQQQgghhBBCCCGEcIJcVBFCCCGEEEIIIYQQQgghhHCCXFQRQgghhBBCCCGEEEIIIYRwglxUEUIIIYQQQgghhBBCCCGEcIJcVBFCCCGEEEJY1tNPP41HH31UdwwhhBBCCCGERchFFSGEEEIIIYQQQgghhBBCCCfIRRUhhBBCCCGEEEIIIYQQQggnyEUVIYQQQgghhKmlpqZi+vTpqFatGjw9PVGxYkVMnToVAHD48GE8/PDD8Pb2RokSJfDcc8/h2rVr2f7fCg0Nxfvvv5/hsXr16uHNN990fG+z2fCvf/0LXbp0gY+PD8LDw/HLL7/gt99+Q5s2beDr64sWLVogLi7O8e+8+eabqFevHpYtW4bQ0FAUK1YMTzzxBJKSku5rF0IIIYQQQgi95KKKEEIIIYQQwtQmTJiAadOm4Y033kB0dDSWL1+O0qVL4/r16+jQoQMCAwPx66+/4osvvsCWLVvw0ksvFfh/c8qUKRgwYAAiIyNRs2ZN9OvXD0OHDsWECROwb98+KKUy/e/ExcXhP//5DzZt2oRNmzZhx44dmDZtWoGzCCGEEEIIIczDTXcAIYQQQgghhMhOUlIS5s6diw8//BADBw4EAFStWhV/+9vfsGDBAty8eROfffYZfH19AQAffvghunbtivfeew+lS5fO9//uoEGD0Lt3bwDA+PHj0bx5c7zxxhvo0KEDAODll1/GoEGDMvw7qampWLJkCfz9/QEATz31FLZu3ep4V40QQgghhBCCn7xTRQghhBBCCGFaMTExuHXrFtq2bZvlcw8++KDjggoAtGzZEqmpqTh27FiB/nfr1q3r+Oe0izN16tTJ8NjNmzeRmJjoeCw0NNRxQQUAQkJCcOHChQLlEEIIIYQQQpiLXFQRQgghhBBCmJa3t/d9/b9nGAaUUhkeu3PnTqbXubu7O/7ZZrNl+1hqamqW/07aa9I/L4QQQgghhOAnF1WEEEIIIYQQplW9enV4e3tj69atmZ4LDw9HVFQUrl+/7nhs165dMAwDYWFhWf7fK1myJM6dO+f4PjExESdPnrz/wYUQQgghhBCWJBdVhBBCCCGEEKbl5eWF8ePHY9y4cfjss88QFxeH3bt3IyIiAk8++SS8vLwwcOBA/Pe//8X27dsxfPhwPPXUU9l+nsrDDz+MZcuWYefOnTh8+DAGDhwIu91exP9VQgghhBBCCFbyQfVCCCGEEEIIU3vjjTfg5uaGiRMn4uzZswgJCcHzzz8PHx8ffPfdd3j55ZfRuHFj+Pj4oGfPnpg9e3a2/7cmTJiAkydPokuXLihWrBimTJki71QRQgghhBBCOM2m7r2hsBBCCCGEEEIIIYQQQgghhMhEbv8lhBBCCCGEEEIIIYQQQgjhBLmoIoQQQgghhBBCCCGEEEII4QS5qCKEEEIIIYQQQgghhBBCCOEEuagihBBCCCGEEEIIIYQQQgjhBLmoIoQQQgghhBBCCCGEEEII4QS5qCKEEEIIIYQQQgghhBBCCOEEuagihBBCCCGEEEIIIYQQQgjhBLmoIoQQQgghhBBCCCGEEEII4QS5qCKEEEIIIYQQQgghhBBCCOEEuagihBBCCCGEEEIIIYQQQgjhBLmoIoQQQgghhBBCCCGEEEII4QS5qCKEEEIIIYQQQgghhBBCCOGE/wc+A9BEub8H4QAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.subplots(figsize=(20, 10))\n",
"\n",
"names, importances = pipe1.columns.importances(target_num=1)\n",
"\n",
"plt.bar(names[0:30], importances[0:30])\n",
"\n",
"plt.title(\"column importances for the y-component\", size=20)\n",
"plt.grid(True)\n",
"plt.xlabel(\"column\")\n",
"plt.ylabel(\"importance\")\n",
"plt.xticks(rotation='vertical')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABlUAAAQZCAYAAABclYwdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADvYklEQVR4nOzdfZwVdd0//vcuLIuLoiAKgiR4g+ItCkFoKiZKZZp3qVGJmHSlohaaiaVAmloa6bcsk0ItIy31MjPDFAHv8AZQQ1PSC9AUAe8ABVtWdn5/+NvTrnvDh2Xl7Ojz+XjsQ3bmMzOvc86cc2peOzMlWZZlAQAAAAAAQJNKix0AAAAAAAAgD5QqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAD/vxkzZkRJSUmUlJTEjBkzih0nVzx3fJS98cYbcc4550Tfvn1jk002KezrV155ZbGjtYjx48cXHhMAANC0tsUOAAAA0FqtWLEiBg8eHM8//3yxowAAAK2AM1UAAKAVuP766wtnCyxatKjYcfj/XX311YVC5dxzz40HHngg5s2bF/PmzYuvfe1rRU7XOGePQXEtWrSo8B68/vrrix0HAGhBzlQBAGCDDRkyJLIsK3YMaHH33ntvREQMGDAgfvSjHxU5DQAAUGzOVAEAAGjEK6+8EhERffr0KXISAACgNVCqAAAANKKysjIiIsrKyoqcBAAAaA2UKgBAq/TQQw/FKaecEjvvvHN07Ngx2rVrF9tuu2184QtfiKuvvjqWL1/e6LJ/+ctf4thjj41tt902ysvLY8stt4zBgwfHZZddFu+8806zMw0ZMiRKSkpiyJAhTY4bP3584TrqDamZN378+IiImD59ehx55JHRvXv32GSTTaJv375x0UUXxapVq+osd9ddd8XnP//5wrhdd901Lr300lizZk2jWXr16hUlJSVx0kknRUTE/PnzY9SoUdGrV68oLy+Prl27xlFHHRWPPPJI8vPQkHXdv+Gkk06KkpKS6NWrV0RELFmyJM4555zo06dPVFRURI8ePeK4446LZ555ps5yixYtijPPPDP69OkTm2yySXTt2jW+8pWvxP/93/81muWDz//y5ctj3Lhxsdtuu8Wmm24anTt3joMOOij+8Ic/JD22RYsWxbe//e3YbbfdYrPNNouKiorYaaed4n/+539i3rx5TS77wdf6vvvuiy996UvRs2fPKCsri169ehWeu5EjRxaW6927d2HZxp7XRx55JL7//e/HkCFDolu3btGuXbvo2LFj7LrrrnHqqafGP//5zyazffA1Wb58eVx44YWx2267RYcOHWKLLbaIAw44IH7/+98nPU9vv/12/OQnP4nPfOYzdfLsvffeccYZZ8RDDz3U6LJr166NG264Ib7whS9E9+7dC+/bT3/60zFx4sR49913m9z2nDlz4utf/3r06dMnOnToEO3bt4+ePXtG//794/TTT4877rhjvS5PV3t/fvHFFyMi4oYbbqjzejT0OfDOO+/EZZddFoMHD47OnTtHeXl5bLvttnHsscfGnXfe2eQ2P/j58vzzz8fo0aNjp512ioqKiuR77dTcx+Gggw4qTDvooIPq7U9N3ePhP//5T1x++eWxzz77xGabbRabbbZZDBw4MH7+85/He++9t84M//nPf+LnP/95HHzwwYV9Yeutt46hQ4fGb37zm6R1NKbmMy31Z0MtWrQovvvd70b//v1jyy23jLKysujSpUvsv//+MX78+FiwYEGjy86bNy++8Y1vFF7DzTbbLHbbbbf49re/3eRr2dC9OG677bY49NBDY+utt44OHTrEXnvtFT/72c+iqqqqsFyWZTFlypQYMmRIbL311lFRURH77LNPXHPNNU3u/x/8nLr33nvjiCOOiG222Sbat28f22+/fYwePbpw1lZTqqur48Ybb4zPf/7zhdd+q622ioMOOih+8YtfNPl99cHP7mLuhxv63VlSUhK9e/cu/D5y5Mh6+2bN8w0A5FAGANCKrF69Ovvyl7+cRUSTP+PGjau37LvvvpsdddRRTS7XvXv37Iknnmhw29OnTy+Mmz59er35Bx54YBYR2YEHHtjkYxg3blxhPQ2p/RguvfTSrKSkpMGs++67b/bOO+9k1dXV2ZlnntnoY/rsZz+bvffeew1ua7vttssiIhsxYkR22223ZRUVFQ2uo02bNtlNN93U5ONqyrqeuxEjRmQRkW233XbZk08+mXXr1q3BHB06dMgeeOCBLMuybNq0adnmm2/e4LhOnTplTz/9dINZaj//CxYsyHbYYYdGn7vjjjsuq6qqavRx3XDDDVl5eXmjy7dp0ya75JJLGl2+9mt9/vnn11t+u+22q/PcNfVT+3m97rrr1jm+TZs22dVXX91ottqvyXPPPZf16tWr0XWdfvrpja4ny7Lsnnvuybp06bLOTA158cUXs7322qvJ5Xbcccds/vz5DS4/ceLErLS0dJ3bfvvtt5t8DLWlvCYf/ByYO3du1r179yaXOfroo7N33323wW3W/ny5/fbbsw4dOtRbfuHChevMvnDhwqT96brrrissU/s9s2TJkqxfv36NLnf44Ydna9eubXT7Tz75ZOFzp7GfT37yk9mSJUtSXop61rXulH0u1eWXX56VlZWt135Q45JLLmlyvywvL89uuOGGBpet/Rped9112amnntrkPvXee+9l//nPf7Jjjz220XGjRo1q9HHWjBk3blw2fvz4Rtex+eabZ/fff3+j63njjTey/fbbr8nnq2/fvtmiRYsaXL417Ycb+t2Zsm829L9jAIB8UKoAAK3G2rVrs0MOOaRwwGGnnXbKfvrTn2YPPPBANmfOnOzOO+/Mzj///GzHHXds8GDEcccdV1h2r732yn77299mjz/+eHb33XdnI0eOLJQXnTt3zl5++eV6y2/sUmXgwIFZRGSDBw/OpkyZks2ePTubOnVq9rnPfa4w5nvf+172k5/8JIuI7HOf+1x26623ZnPmzMn+/Oc/Z5/61KcK4375y182uK2aA0P77LNP1r59+6x3797Zz3/+8+yRRx7JZs2alY0fPz5r3759FhFZx44ds2XLljX52BqTWqpstdVWWe/evbPOnTtnl1xySfbQQw9ljzzySDZ+/PisXbt2WURkvXr1yp5//vlss802y7bddtvsqquuyh555JHswQcfzL797W8XXsdBgwat8/n/5Cc/mZWWlmbf/OY3s3vvvTd7/PHHs9/85jdZnz59CmO+9a1vNbieO++8s7CtTTfdNBs3blz2wAMPZLNmzcp+8pOf1CkRfvGLXzS4jpr5e+yxR+G/kydPzh577LFs5syZ2VVXXZW988472bx587KLL764MP7uu+/O5s2bV+fnnXfeKax30qRJWadOnbKTTjopmzx5cvbAAw9kc+fOze68887sBz/4QSFbSUlJNm3atAaz1X5Ndtppp2yzzTbLvv/972czZszIZs+enU2aNCnbdtttC5mmTp3a4Hruu+++rG3btoUDjCeddFL2v//7v9mcOXOyhx56KJs0aVJ29NFHZ2VlZfWWff3117OePXsWDjKPHj06+9Of/pQ9/vjj2fTp07OxY8cWDmZuv/322fLly+ss/9RTTxUOXPfu3Tv7yU9+kk2bNi174oknsvvvvz+bNGlSNnz48KxDhw7rVarUvCbz5s0rFCVf/OIX67weCxYsKIx/+eWXs06dOhWe85EjR2Z33313Nnv27Oy3v/1tndLo+OOPb3CbNZ8vvXv3zjbddNNsq622yi677LLCe+RnP/tZ9tprr60z+5o1a7J58+ZlkydPLmxz8uTJ9fant956q7BM7ffMvvvum7Vr1y4788wzs3vuuSebM2dONmXKlKxv376FMddcc02D237++ecLRWjHjh2zsWPHZv/7v/+bzZ49O7v77ruz008/vbCvDBo0KFuzZk3ya1Jj/vz59R5L7Z9bb721UIR84hOfWO/11/jBD35QeLxbbLFFdv7552f33HNPNnfu3Oy+++7LrrjiimzffffNhgwZUm/Zq6++urDsVlttlV1xxRXZrFmzsgcffDAbP358oTArKSnJ/vrXv9ZbvnapMmjQoCwiss9//vPZbbfdls2ZMye7/fbbC9MjIps0aVJ2xhlnZBGRDR8+PLvzzjuzOXPmZDfddFO2yy67FMb97W9/a/Cx1swfMGBAFhHZzjvvnP3mN7/JHn/88ezee+/N/ud//qfwPuvYsWP20ksv1VvHe++9lw0ePLiwrgMPPDD705/+lM2ePTu74447siOPPLIwb4cddmjw/dia9sMN/e6cN29edvfddxeyXnzxxfX21aVLlzaYHwBo/ZQqAECrcdVVVxUOQBx11FHZf/7znwbHrV27tl4pcueddxaWPfjgg7PKysp6y1177bWFMccdd1y9+Ru7VImI7Jhjjql3lsl7771XKEw222yzrH379g0e+F+1alXhwM+ee+7Z4LZq/6Vu//79sxUrVtQbc+ONNxbGTJw4scnH1pjUUiUisi5dumQvvPBCvTE///nP6xyI3GmnnRoseb7zne8Uxs2dO7fe/NrPf0RkU6ZMqTdm5cqVhQPdpaWl2bx58+rMX7NmTeFg+qabbtrg2U2LFi3KttlmmywisoqKigYPeNfOcfDBBze6T2dZ3bNP1nVGwssvv5ytWrWq0fnLly/P9txzzywisk9/+tMNjqn9mmy++eYNnvnz/PPPFw4cHnHEEfXmv/vuu4XnqaKiosHXvkZDB2KHDx+eRbx/tkztkqK2uXPnFg5Cn3/++XXmXXDBBVnE+2c4NXXmw/Lly5v8q/am1P6L9cbUPkPg17/+db35//nPf7KDDjqoMOauu+6qN6bm8yXi/TPqXnzxxWblrbGu92Rttd8zZWVlDY5/4403sq5duzb5ebPvvvtmEZHtvffejRZAf/vb3woH6K+99tr1fVhNeuuttwqFaYcOHRo9K3Fd5s6dW8jYp0+f7N///nejYz+4Xy9btqxQBHbv3r3B/b72Pt2jR496B/U/eLbRuj7/t9xyy6ykpCS78sor64179dVXs80226zR93CW1f2c2meffRosPH77298WxnzpS1+qN7/25/eJJ56YVVdX1xtT+2y9c889t9781rQftsR35wfPOAIAPjqUKgBAq7B27drCX8Vvu+226/VX5VmWFc7uKCsra/AgVo2hQ4dmEZG1bds2W7x4cZ15G7tUqaioyN54440Gx9T+K/OePXs2+hfdF154YWHcB/+KP8vqHhh66qmnGlxHdXV14cD4UUcd1eRja8z6lCqNnVWzevXqwgH8iMb/qnrBggWFMVdddVW9+bWf/y984QuNZn700UcL4z54eaubb765MO+yyy5rdB21D6r9+Mc/rje/Zl5paek6i5L1KVVS3H777YX1vf766/Xm135N/t//+3+NrueEE07IIt4/w+uDfvWrXxXW0dAB3aYsXLgwa9OmTRYR2V/+8pcmx5577rmFg9S1jRo1qnDw9MOyrlLllVdeKTyOz372s42uZ+HChYW/jv/85z9fb37tUuW3v/3tBudubqkyZsyYRsedd955WcT7Z1h88PPm/vvvL6zjH//4R5PbqzmrcN99901+POtSVVVV+HwvKSnJbr311mavq+YSlCUlJQ0Wt0350Y9+VHgemrqkYu0z0/74xz/WmVf7YHzq5/+nPvWpRrd14oknZhHvXzaxIbVLldmzZze6nprv2bZt22avvvpqnXk1Z5BstdVW2cqVKxtcvqqqqnDmTKdOneqVzK1pP2yJ706lCgB8dLlRPQDQKjz55JPx8ssvR0TEqFGjYtNNN01e9r333ouZM2dGRMShhx4aPXv2bHTsqFGjCss0dEP1jemQQw6Jzp07Nzhvr732Kvz76KOPjrKysnWOW7hwYaPb2mOPPWLPPfdscF5JSUnsvffeERFN3nS5JZSUlMRxxx3X4LxNNtkkdtppp4iI6NSpUwwbNqzBcb17947NNtssItadt/bN3z9o4MCBsdtuu0XE+zdmrq3m95KSkjj55JMbXceXvvSl2HzzzRtcR2377bdf4YbwH4ZVq1bFokWL4plnnomnn346nn766Tr7zFNPPdXosiUlJTF8+PBG5/fv3z8iIt58881Yvnx5nXk1N1/v0KFD4b2V6q9//WusXbs2Kioq4nOf+1yTYw844ICIiFi8eHG89NJLhenbbLNNRET885//jMcee2y9tt9SZsyYEWvXro2IiK9//euNjuvVq1cccsgh9Zb5oHbt2sWXvvSllg+a6Ctf+Uqj82r2hSzL6n3e3HHHHRERsfPOO8cee+zR5DZqXs/HH398g25aX9u3vvWtwntwwoQJcfTRRzdrPdXV1fG3v/0tIiKGDBlS+GxMVZNhiy22aDLDKaecUm+ZhqR+/h9//PGNrqNm3FtvvVXvPVzbHnvsUXiNG1LzWfjB78/FixfHs88+GxERxx13XOHz+YPatm1b+Ex+6623Yu7cuY1uq7Xsh63luxMAaF3aFjsAAEBExBNPPFH49/77779eyy5YsCBWr14dERGDBg1qcmzt+U8//fR6bael9enTp9F5W2yxxXqPe/vttxsdt8suuzSZpabcaWodLaFLly6NFkkR/308O+64Y5SUlDQ57u23315n3k9+8pNNzh84cGA888wz8a9//SvWrFkT7dq1i4j/7hu9e/eOrbbaqtHl27VrF3vvvXfMmDGjyf2psYNyG+L111+PiRMnxq233hrPP/98ZFnW5NjGdOnSJbbccstG59d+vd5+++06+1zN+7Z///5RUVGxHukjZs+eHRERq1evjrZt0/9vyZIlS+ITn/hERER8+ctfjksvvTQqKytjv/32i89+9rNx2GGHxac//enYbbfdmtyHWkrt1z3l8+dvf/tbrF69OhYsWFAoEWvbaaedon379i2eM1VTnxUf3Bdqq3k958+fn/y8V1VVxZtvvhlbb711M5L+1zXXXBNXX311RLxfLlxwwQX1xixfvrxQ3H9Qu3btCp+zCxcuLBQP6/tdFPHf/WGfffZptAyJiOjatWv06tUrFi1a1ORnx4fxPVH799pSPi9rzJs3L0444YSIWP/3QI2nn346Bg8e3OC41rIftpbvTgCgdVGqAACtQu2DvjV/fZ7qzTffLPx7XQfnunXr1uByxdDUQejS0tL1HtfYX76vax2119PUOlpCao6Wyruu/aFr164R8f5fPL/11luF32v2jZSDvTX7VFP7U6dOnda5nvUxZ86cGDZsWLzxxhtJ4999991G56U+1xH1n++a9+36vmcjIpYtW7bey0REoUCNeP+A5x/+8IcYNWpUvPXWW3HnnXcWzp7p0qVLfPazn41vfOMbzTo4nqqlP39ael9ZX839vGmJ17M5pk+fHmeccUZERAwYMCCuu+66BsfdfvvtjZ65tt1228WiRYsiYsO+iyLW/7Nj0aJFTX52bMzvidTPy4i6+++H8R3cWvbD1vLdCQC0LkoVAOAjZWP8ZTr5saH7Q0vtT23atGmR9URErFmzJo477rh44403oqysLM4444z44he/GH369IlOnTpFeXl5RLx/BtcOO+wQEdHkWSzFUnMQskuXLjF9+vTk5Xr37l3n92OOOSaGDh0aN998c9x9993xwAMPxGuvvRavv/563HjjjXHjjTfGiBEjYvLkyXUOxn4YWmJ/acl9ZWOqeT332muvuPHGG5OX69GjR7O3+cILL8Sxxx4b7733XmyzzTZx++23xyabbNLs9bWkPH4XtUTmYj/uYuyHAMDHj1IFAGgVunTpUvj3q6++us5LbtRW+1IgS5cubXLskiVLGlwuRc0B2erq6ibHrVq1ar3Wy4dn6dKlTd5jp2Z/KSkpqXOGQM2+sa79KeK/+9T67k/Ndd999xWu3/+LX/yizr0ZatsYZ2J16dIlXn755Xj11VfXe9maS469/fbb0bdv3w0qEzbffPP4xje+Ed/4xjciIuLZZ5+NP//5z/Gzn/0sFi9eHDfccEPsvffecdZZZzV7G4354OdPU/vbhnz+tHY1r+c777wTu++++4e+vRUrVsThhx8eb775ZrRv3z7+/Oc/N3lg/KSTToqTTjppnev94HfR+urcuXO8+uqrrfKzY13Wlbn2/NqZN9Z3cIqNvR8CAB9PblQPALQK++yzT+Hf999//3otu/322xcu0fHoo482Obb2zazX94BLzc1333rrrSbH/etf/1qv9fLhefzxx5Pm77TTToX7qUT8d99YuHBhvPbaa40uX1VVVbivyIYewEv9C+9nnnmm8O+mbk5dc2+BD1PN+3b27NnrfRmnmhs8V1ZWtnjWvn37xnnnnRePPPJIdOjQISIi/vjHP7boNmrUft1TP38qKipi++23/1Dy1NjYZwzUvmF37QPnH4a1a9fGCSecEM8991xEREyePHmd9wNJ1bt378I9R9b3uyjiv/vD3LlzG735ecT7l6l68cUX6yxTbKmflxF1MzfnPfDB5VrKxtwP16XYZ+0AAB8epQoA0Crstddehb/w/vWvfx3vvPNO8rJt27aNAw88MCIi7rnnnkZvRlyz7pplhgwZsl4Zay479K9//avRm9K+/vrrcc8996zXevnw3HDDDY3Oe/zxxws3WB46dGideTW/Z1nW6D0aIiJuueWWWLFiRYPrWF+1b05eWVnZ6LjaB2obOyuquro6Jk2atEF5Uhx++OER8f79CK699tr1XrbmoOOVV17Z0tEiIqJnz56FG3jXvldGSxoyZEjhLJvJkyc3Ou6ll14qfDbUXubDkro/tZQjjjgiIt5/z1x11VUf6rbOPvvsmDp1akREnH/++fHlL3+5xdZdWloahx12WEREzJw5s1Capqr5HFi+fHncdtttjY77zW9+U7gs34Z+drSUefPmNfl4a/bvNm3a1Pn+7N69e/Tt2zci3i8vG/v+Xrt2bVx//fUR8f69g2r/MUVL2Zj74bps7PcgALDxKFUAgFahtLQ0vvOd70RExMsvvxwnnnhirFmzpsGx1dXVsXjx4jrTTj/99Ih4/34TX//616OqqqrecpMnT46///3vERFx9NFHr/dNiGuKmzVr1sTPfvazevOrqqrilFNOafKm4Gxcd9xxR4NnKLzzzjvxP//zPxHx/r5X8+8aRx55ZHTv3j0iIn74wx/GvHnz6q3j3//+d5xzzjkR8f6ZB43dBDtV7f3x//7v/xodt9NOOxX+XXOA8oPGjh0bc+fO3aA8Kb761a8WLrn0ve99L2bOnNno2A+WnTvvvHN86UtfioiIm266KSZOnNjkthYuXBh/+MMf6ky7/fbbY/ny5Y0u8+9//7twNsMH78XSUrp37x5HHXVURET87W9/a7DIW7NmTZx88smFz6XRo0d/KFlqS92fWsqhhx4aAwcOjIiIyy+/fJ1nBs2bNy/+8pe/rPd2Jk2aVDhYfuSRR8bFF1+8/mHX4ZxzzonS0tLIsixOOOGEJov6D84bOXJk4czJs88+O1555ZV6yzz11FNxySWXRMT79/I48sgjWy78BvrGN77RYFk7ZcqUuOuuuyLi/ef9g9+fNd/Br732Wpx55pkNrnvChAnxz3/+MyIiRo0aVbj/U0vaWPthii233LJwBuTGeA8CABuPe6oAAK3G6aefHn/5y1/innvuif/93/+NPfbYI0477bQYMGBAVFRUxJIlS+KRRx6JP/zhDzF8+PAYP358YdnDDjssvvSlL8Wf/vSn+Pvf/x6f+tSnYsyYMbHLLrvEW2+9FTfddFPhr2w7d+68zgO4DTnssMNiu+22ixdffDEuuOCCeP311+Poo4+O9u3bxzPPPBP/7//9v3jiiSfiU5/6VDzyyCMt9bSwAQYMGBDDhw+PmTNnxrHHHhsdO3aMf/zjH/GjH/0o5s+fHxHv73d77rlnneXatWsX1157bRx++OGxcuXK2G+//eI73/lOHHzwwdGmTZt4+OGH47LLLotly5ZFRMQVV1xR514MzbH33ntH+/bt4z//+U9ccMEFUVZWFtttt13hXj49evSITTbZJIYNGxZbb711LFu2LL7//e/HokWL4qijjoouXbrECy+8EJMmTYpp06bFfvvtFw899NAGZVqX9u3bx+9+97s49NBDY/Xq1TF06ND42te+FkceeWRsu+22UVlZGc8991zcddddcccdd9T7a+1f/vKXMXv27FiwYEGcffbZ8ec//zlOPPHE2G233aK8vDzeeOONeOqpp2Lq1Klx3333xVFHHVXnrIQrr7wyvvKVr8Rhhx0Wn/nMZ6Jv376x+eabx1tvvRWzZ8+On/3sZ4WS85vf/OaH9jz89Kc/jWnTpsVbb70VJ598cjz44INx/PHHR6dOneK5556LK664Ip588smIiDjuuOPic5/73IeWpcYnPvGJ2HbbbePll1+OK664IrbddtvYeeedC2fIdO3atXBJw5YyZcqUGDhwYLz55ptx/PHHx4033hjHH3987LTTTtGmTZtYtmxZPPHEE/GXv/wlHnnkkTj77LMLZzulmD9/fuHg/TbbbBPf/e5361wOryHNucRUv379YsKECXHBBRfEv/71r9hjjz3i9NNPj4MOOii23HLLWL58eTz55JNx2223RZs2bWL69OmFZbfaaqu4/PLL4/TTT4+XX345+vfvH+edd17su+++8d5778W9994bl19+ebzzzjtRUlIS1157bZSVla13xg/DgAEDYvbs2TFgwID47ne/G3vssUesWLEibrnllvjVr34VEe9fBvOKK66ot+w3v/nN+P3vfx+zZs2K6667Ll588cU47bTTonfv3vHqq6/G5MmTC2fu7LDDDnHBBRd8aI/jw94PU7Vt2zY++clPxkMPPRSTJ0+OvffeO/r161d4vTt37txq7qcDAKynDACgFVm1alV27LHHZhHR5M+4cePqLfvuu+9mRx11VJPLde/ePXviiSca3Pb06dML46ZPn97gmAceeCDr0KFDg+tu06ZNdtVVV2Xjxo0rTGtIU4+hxsKFCwvjrrvuukbHrSvzdtttl0VENmLEiEbXkWVZNmLEiCwisu22267Jcc3Nkbr+Aw88MIuI7MADD2xyXFOPq/bzv2DBgqx3796N7g/HHHNMVlVV1eh2rr/++qy8vLzR5du0aZNdcskljS6f8lrXdu655za6rdrP69SpU7P27ds3OnbIkCHZ008/3eQ+lPqaXHfddYX1LFy4sMExU6dOzTp16rTO921DXn311Wz//fdf57IRkY0cObLOsjX7S1M/paWl2UUXXdTkY2xK6nto7ty5Wffu3ZvMcvTRR2fvvvtug8un7vvr4xe/+EWjWWrvE+v6zKqR8hk5f/78bPfdd096PSdMmLBej6f29lN/NsQPf/jDrG3btk2uv7HX64c//GFWWlra6HLl5eXZDTfc0OCyLfX5X2Nd7+Han1O194UP/nTs2DGbMWNGo9t54403sv3226/J56tv377ZokWLGly+Ne2HLfXdeeedd2YlJSUNbjf1ewEAaH1c/gsAaFUqKiriT3/6U9x3333xta99LXr37h2bbLJJtGvXLnr27BmHH354/OpXv4qzzz673rLt27eP2267Le644444+uijo3v37tGuXbvo1KlTDBo0KC699NKYP39+9OvXr9n5Pv3pT8ecOXPia1/7WnTv3j3Kyspim222iWOOOSbuv//+Ri97QnH07t075syZE+eff3707ds3KioqYvPNN48DDjggbrzxxrjllluibdvGT94eMWJEPPfcc3HWWWdF3759o0OHDrHJJpvEDjvsEKNGjYonnngixo4d22J5L7vsspg0aVLsv//+0blz50bvuzFs2LCYPXt2fPWrXy3sh1tttVUceOCBce2118a0adMKN2jfGIYNGxYLFiyISy65JPbdd9/Ycssto02bNtGxY8fYZ5994lvf+ladG1TX1q1bt7j//vvjzjvvjK985Sux/fbbR0VFReEx7bvvvnH22WfHzJkz692z5A9/+ENce+21MXz48OjXr19069Yt2rZtG5tuumnstttuceqpp8YTTzwR3//+9z/052DvvfeO+fPnx6WXXhqDBg2KLbbYItq1axfdu3ePo48+Ou6444649dZb69xn4cN26qmnxq233hqHHnpobL311k3u6y2lT58+8eSTT8aUKVPimGOOiU984hOFz/BtttkmhgwZEt///vdjzpw5ceGFF37oeTbE+eefH//85z/jW9/6Vuy+++7RsWPHaNu2beG9dvHFF8fvfve7Rpd94oknYtSoUbHDDjvEJptsEh06dIi+ffvGWWedFc8991yceOKJG/kRrdv48eNj6tSpcdhhh0XXrl2jXbt20atXrzjttNPimWeeKVwGsyGdO3eO+++/P37729/GZz/72ejatWuUlZXFlltuGUOGDImf//zn8eSTT8Z22233oT+O1rIfHnbYYTFt2rT44he/WPisBgDyryTL/v+74wEAwEfA+PHjY8KECRER4X/qAjStpKQkIiLGjRtX57KaAAA0zJkqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACZQqAAAAAAAACUqyLMuKHQIAAAAAAKC1a1vsABtbdXV1LF68ODbbbLMoKSkpdhwAAAAAAKCIsiyLt99+O7p37x6lpU1f4OtjV6osXrw4evbsWewYAAAAAABAK/Lvf/87tt122ybHfOxKlc022ywi3n9yOnbsWOQ0H11VVVXx97//PQ499NAoKysrdpz1Invx5Dm/7MWR5+wR+c4ve3HkOXtEvvPLXjx5zi97ceQ5e0S+88tePHnOL3tx5Dl7RL7zy148ec6f5+x5sXLlyujZs2ehP2jKx65UqbnkV8eOHZUqH6KqqqqoqKiIjh075u6NLnvx5Dm/7MWR5+wR+c4ve3HkOXtEvvPLXjx5zi97ceQ5e0S+88tePHnOL3tx5Dl7RL7zy148ec6f5+x5k3LLkKYvDgYAAAAAAEBEKFUAAAAAAACSKFUAAAAAAAASKFUAAAAAAAASKFUAAAAAAAASKFUAAAAAAAASKFUAAAAAAAASKFUAAAAAAAASKFUAAAAAAAASKFUAAAAAAAASKFUAAAAAAAASKFUAAAAAAAASKFUAAAAAAAASKFUAAAAAAAASKFUAAAAAAAASKFUAAAAAAAASKFUAAAAAAAASKFUAAAAAAAASKFUAAAAAAAASKFUAAAAAAAASKFUAAAAAAAASKFUAAAAAAAASKFUAAAAAAAASKFUAAAAAAAASKFUAAAAAAAASKFUAAAAAAAASKFUAAAAAAAASKFUAAAAAAAASKFUAAAAAAAASKFUAAAAAAAASKFUAAAAAAAASKFUAAAAAAAASKFUAAAAAAAASKFUAAAAAAAAStC12AFqXXuf9tUXWU94mix8PjNh9/N1RubZkg9e36LLDWiAVAAAAAAA0nzNVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEhS9VLn66qujV69e0b59+xg0aFA89thjTY5fvnx5nH766bHNNttEeXl59OnTJ+66666NlBYAAAAAAPi4alvMjd98880xZsyYuOaaa2LQoEFx5ZVXxrBhw2L+/Pmx9dZb1xu/Zs2aOOSQQ2LrrbeOW265JXr06BEvvvhibLHFFhs/PAAAAAAA8LFS1FJl4sSJMWrUqBg5cmRERFxzzTXx17/+NSZPnhznnXdevfGTJ0+ON998Mx5++OEoKyuLiIhevXptzMgAAAAAAMDHVNFKlTVr1sScOXNi7NixhWmlpaUxdOjQmDVrVoPL3HHHHTF48OA4/fTT489//nNstdVWMXz48Pjud78bbdq0aXCZysrKqKysLPy+cuXKiIioqqqKqqqqFnxEHw3lbbKWWU9pVue/G2pjvlY128rj/pHn7BH5zi97ceQ5e0S+88teHHnOHpHv/LIXT57zy14cec4eke/8shdPnvPLXhx5zh6R7/yyF0+e8+c5e16sz3NbkmVZyxz1Xk+LFy+OHj16xMMPPxyDBw8uTD/33HNj5syZ8eijj9ZbZpdddolFixbFV77ylTjttNPihRdeiNNOOy3OPPPMGDduXIPbGT9+fEyYMKHe9ClTpkRFRUXLPSAAAAAAACB3Vq9eHcOHD48VK1ZEx44dmxxb1Mt/ra/q6urYeuut49prr402bdpE//7945VXXonLL7+80VJl7NixMWbMmMLvK1eujJ49e8ahhx66zifn42j38Xe3yHrKS7O4aEB1XDC7NCqrSzZ4fU+PH9YCqdJUVVXFPffcE4ccckjhMnN5kefsEfnOL3tx5Dl7RL7zy14cec4eke/8shdPnvPLXhx5zh6R7/yyF0+e88teHHnOHpHv/LIXT57z5zl7XtRc4SpF0UqVLl26RJs2bWLp0qV1pi9dujS6devW4DLbbLNNlJWV1bnUV9++fWPJkiWxZs2aaNeuXb1lysvLo7y8vN70srIyO2ADKtdueAFSZ33VJS2yzmK8VnneR/KcPSLf+WUvjjxnj8h3ftmLI8/ZI/KdX/biyXN+2Ysjz9kj8p1f9uLJc37ZiyPP2SPynV/24slz/jxnb+3W53kt/RBzNKldu3bRv3//mDZtWmFadXV1TJs2rc7lwGrbb7/94oUXXojq6urCtH/961+xzTbbNFioAAAAAAAAtJSilSoREWPGjIlJkybFDTfcEM8++2yceuqpsWrVqhg5cmRERJx44ol1bmR/6qmnxptvvhlnnXVW/Otf/4q//vWvcckll8Tpp59erIcAAAAAAAB8TBT1nirHH398vPbaa3HhhRfGkiVLol+/fjF16tTo2rVrRES89NJLUVr6396nZ8+ecffdd8e3v/3t2HPPPaNHjx5x1llnxXe/+91iPQQAAAAAAOBjoug3qh89enSMHj26wXkzZsyoN23w4MHxyCOPfMipAAAAAAAA6irq5b8AAAAAAADyQqkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQQKkCAAAAAACQoFWUKldffXX06tUr2rdvH4MGDYrHHnus0bHXX399lJSU1Plp3779RkwLAAAAAAB8HBW9VLn55ptjzJgxMW7cuJg7d27stddeMWzYsFi2bFmjy3Ts2DFeffXVws+LL764ERMDAAAAAAAfR0UvVSZOnBijRo2KkSNHxq677hrXXHNNVFRUxOTJkxtdpqSkJLp161b46dq160ZMDAAAAAAAfBy1LebG16xZE3PmzImxY8cWppWWlsbQoUNj1qxZjS73zjvvxHbbbRfV1dWxzz77xCWXXBK77bZbg2MrKyujsrKy8PvKlSsjIqKqqiqqqqpa6JF8dJS3yVpmPaVZnf9uqI35WtVsK4/7R56zR+Q7v+zFkefsEfnOL3tx5Dl7RL7zy148ec4ve3HkOXtEvvPLXjx5zi97ceQ5e0S+88tePHnOn+fsebE+z21JlmUtc9S7GRYvXhw9evSIhx9+OAYPHlyYfu6558bMmTPj0UcfrbfMrFmz4vnnn48999wzVqxYEVdccUXcf//98cwzz8S2225bb/z48eNjwoQJ9aZPmTIlKioqWvYBAQAAAAAAubJ69eoYPnx4rFixIjp27Njk2KKeqdIcgwcPrlPA7LvvvtG3b9/41a9+FRdddFG98WPHjo0xY8YUfl+5cmX07NkzDj300HU+OR9Hu4+/u0XWU16axUUDquOC2aVRWV2ywet7evywFkiVpqqqKu6555445JBDoqysbKNttyXkOXtEvvPLXhx5zh6R7/yyF0ees0fkO7/sxZPn/LIXR56zR+Q7v+zFk+f8shdHnrNH5Du/7MWT5/x5zp4XNVe4SlHUUqVLly7Rpk2bWLp0aZ3pS5cujW7duiWto6ysLPbee+944YUXGpxfXl4e5eXlDS5nB6yvcu2GFyB11ldd0iLrLMZrled9JM/ZI/KdX/biyHP2iHznl7048pw9It/5ZS+ePOeXvTjynD0i3/llL54855e9OPKcPSLf+WUvnjznz3P21m59ntei3qi+Xbt20b9//5g2bVphWnV1dUybNq3O2ShNWbt2bcybNy+22WabDysmAAAAAABA8S//NWbMmBgxYkQMGDAgBg4cGFdeeWWsWrUqRo4cGRERJ554YvTo0SMuvfTSiIj4wQ9+EJ/61Kdixx13jOXLl8fll18eL774YpxyyinFfBgAAAAAAMBHXNFLleOPPz5ee+21uPDCC2PJkiXRr1+/mDp1anTt2jUiIl566aUoLf3vCTVvvfVWjBo1KpYsWRKdOnWK/v37x8MPPxy77rprsR4CAAAAAADwMVD0UiUiYvTo0TF69OgG582YMaPO7z/96U/jpz/96UZIBQAAAAAA8F9FvacKAAAAAABAXihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAEihVAAAAAAAAErSKUuXqq6+OXr16Rfv27WPQoEHx2GOPJS130003RUlJSRx55JEfbkAAAAAAAOBjr+ilys033xxjxoyJcePGxdy5c2OvvfaKYcOGxbJly5pcbtGiRXHOOefE/vvvv5GSAgAAAAAAH2dFL1UmTpwYo0aNipEjR8auu+4a11xzTVRUVMTkyZMbXWbt2rXxla98JSZMmBDbb7/9RkwLAAAAAAB8XLUt5sbXrFkTc+bMibFjxxamlZaWxtChQ2PWrFmNLveDH/wgtt566/j6178eDzzwQJPbqKysjMrKysLvK1eujIiIqqqqqKqq2sBH8NFT3iZrmfWUZnX+u6E25mtVs6087h95zh6R7/yyF0ees0fkO7/sxZHn7BH5zi978eQ5v+zFkefsEfnOL3vx5Dm/7MWR5+wR+c4ve/HkOX+es+fF+jy3JVmWtcxR72ZYvHhx9OjRIx5++OEYPHhwYfq5554bM2fOjEcffbTeMg8++GCccMIJ8eSTT0aXLl3ipJNOiuXLl8ftt9/e4DbGjx8fEyZMqDd9ypQpUVFR0WKPBQAAAAAAyJ/Vq1fH8OHDY8WKFdGxY8cmxxb1TJX19fbbb8fXvva1mDRpUnTp0iVpmbFjx8aYMWMKv69cuTJ69uwZhx566DqfnI+j3cff3SLrKS/N4qIB1XHB7NKorC7Z4PU9PX5YC6RKU1VVFffcc08ccsghUVZWttG22xLynD0i3/llL448Z4/Id37ZiyPP2SPynV/24slzftmLI8/ZI/KdX/biyXN+2Ysjz9kj8p1f9uLJc/48Z8+LmitcpShqqdKlS5do06ZNLF26tM70pUuXRrdu3eqN/7//+79YtGhRHH744YVp1dXVERHRtm3bmD9/fuywww51likvL4/y8vJ66yorK7MDNqBy7YYXIHXWV13SIussxmuV530kz9kj8p1f9uLIc/aIfOeXvTjynD0i3/llL54855e9OPKcPSLf+WUvnjznl7048pw9It/5ZS+ePOfPc/bWbn2e16LeqL5du3bRv3//mDZtWmFadXV1TJs2rc7lwGrssssuMW/evHjyyScLP0cccUQcdNBB8eSTT0bPnj03ZnwAAAAAAOBjpOiX/xozZkyMGDEiBgwYEAMHDowrr7wyVq1aFSNHjoyIiBNPPDF69OgRl156abRv3z523333OstvscUWERH1pgMAAAAAALSkopcqxx9/fLz22mtx4YUXxpIlS6Jfv34xderU6Nq1a0REvPTSS1FaWtQTagAAAAAAAIpfqkREjB49OkaPHt3gvBkzZjS57PXXX9/ygQAAAAAAAD7AKSAAAAAAAAAJlCoAAAAAAAAJlCoAAAAAAAAJlCoAAAAAAAAJlCoAAAAAAAAJlCoAAAAAAAAJlCoAAAAAAAAJlCoAAAAAAAAJlCoAAAAAAAAJlCoAAAAAAAAJlCoAAAAAAAAJlCoAAAAAAAAJlCoAAAAAAAAJml2qPPDAA/HVr341Bg8eHK+88kpERPzud7+LBx98sMXCAQAAAAAAtBbNKlVuvfXWGDZsWGyyySbxxBNPRGVlZURErFixIi655JIWDQgAAAAAANAaNKtUufjii+Oaa66JSZMmRVlZWWH6fvvtF3Pnzm2xcAAAAAAAAK1Fs0qV+fPnxwEHHFBv+uabbx7Lly/f0EwAAAAAAACtTrNKlW7dusULL7xQb/qDDz4Y22+//QaHAgAAAAAAaG2aVaqMGjUqzjrrrHj00UejpKQkFi9eHL///e/jnHPOiVNPPbWlMwIAAAAAABRd2+YsdN5550V1dXUcfPDBsXr16jjggAOivLw8zjnnnDjjjDNaOiMAAAAAAEDRNatUKSkpie9973vxne98J1544YV45513Ytddd41NN920pfMBAAAAAAC0Cs0qVVasWBFr166Nzp07x6677lqY/uabb0bbtm2jY8eOLRYQAAAAAACgNWjWPVVOOOGEuOmmm+pN/+Mf/xgnnHDCBocCAAAAAABobZpVqjz66KNx0EEH1Zs+ZMiQePTRRzc4FAAAAAAAQGvTrFKlsrIy3nvvvXrTq6qq4t13393gUAAAAAAAAK1Ns0qVgQMHxrXXXltv+jXXXBP9+/ff4FAAAAAAAACtTbNuVH/xxRfH0KFD46mnnoqDDz44IiKmTZsWjz/+ePz9739v0YAAAAAAAACtQbPOVNlvv/1i1qxZ0bNnz/jjH/8Yf/nLX2LHHXeMf/zjH7H//vu3dEYAAAAAAICia9aZKhER/fr1i9///vctmQUAAAAAAKDVanapUl1dHS+88EIsW7Ysqqur68w74IADNjgYAAAAAABAa9KsUuWRRx6J4cOHx4svvhhZltWZV1JSEmvXrm2RcAAAAAAAAK1Fs0qVb37zmzFgwID461//Gttss02UlJS0dC4AAAAAAIBWpVmlyvPPPx+33HJL7Ljjji2dBwAAAAAAoFUqbc5CgwYNihdeeKGlswAAAAAAALRazTpT5Ywzzoizzz47lixZEnvssUeUlZXVmb/nnnu2SDgAAAAAAIDWolmlyjHHHBMRESeffHJhWklJSWRZ5kb1AAAAAADAR1KzSpWFCxe2dA4AAAAAAIBWrVmlynbbbdfSOQAAAAAAAFq1ZpUqNf75z3/GSy+9FGvWrKkz/YgjjtigUAAAAAAAAK1Ns0qVBQsWxFFHHRXz5s0r3Esl4v37qkSEe6oAAAAAAAAfOaXNWeiss86K3r17x7Jly6KioiKeeeaZuP/++2PAgAExY8aMFo4IAAAAAABQfM06U2XWrFlx3333RZcuXaK0tDRKS0vj05/+dFx66aVx5plnxhNPPNHSOQEAAAAAAIqqWWeqrF27NjbbbLOIiOjSpUssXrw4It6/gf38+fNbLh0AAAAAAEAr0awzVXbfffd46qmnonfv3jFo0KD48Y9/HO3atYtrr702tt9++5bOCAAAAAAAUHTNKlW+//3vx6pVqyIi4gc/+EF84QtfiP333z+23HLLuOmmm1o0IAAAAAAAQGvQrFJl2LBhhX/vuOOO8dxzz8Wbb74ZnTp1ipKSkhYLBwAAAAAA0Fo0654qJ598crz99tt1pnXu3DlWr14dJ598cosEAwAAAAAAaE2aVarccMMN8e6779ab/u6778Zvf/vbDQ4FAAAAAADQ2qzX5b9WrlwZWZZFlmXx9ttvR/v27Qvz1q5dG3fddVdsvfXWLR4SAAAAAACg2NarVNliiy2ipKQkSkpKok+fPvXml5SUxIQJE1osHAAAAAAAQGuxXqXK9OnTI8uy+MxnPhO33nprdO7cuTCvXbt2sd1220X37t1bPCQAAAAAAECxrVepcuCBB8Z7770XI0aMiAEDBkTPnj0/rFwAAAAAAACtynrfqL5t27Zxyy23xNq1az+MPAAAAAAAAK3SepcqERGf+cxnYubMmS2dBQAAAAAAoNVar8t/1fjc5z4X5513XsybNy/69+8fHTp0qDP/iCOOaJFwAAAAAAAArUWzSpXTTjstIiImTpxYb15JSYlLgwEAAAAAAB85zSpVqqurWzoHAAAAAABAq9ase6oAAAAAAAB83DS7VJk5c2YcfvjhseOOO8aOO+4YRxxxRDzwwAMtmQ0AAAAAAKDVaFapcuONN8bQoUOjoqIizjzzzDjzzDNjk002iYMPPjimTJnS0hkBAAAAAACKrln3VPnhD38YP/7xj+Pb3/52YdqZZ54ZEydOjIsuuiiGDx/eYgEBAAAAAABag2adqbJgwYI4/PDD600/4ogjYuHChRscCgAAAAAAoLVpVqnSs2fPmDZtWr3p9957b/Ts2XODQwEAAAAAALQ2zbr819lnnx1nnnlmPPnkk7HvvvtGRMRDDz0U119/fVx11VUtGhAAAAAAAKA1aFapcuqpp0a3bt3iJz/5Sfzxj3+MiIi+ffvGzTffHF/84hdbNCAAAAAAAEBr0KxSJSLiqKOOiqOOOqolswAAAAAAALRazS5VIiJmz54dzz77bERE7LrrrtG/f/8WCQUAAAAAANDaNKtUefnll+PLX/5yPPTQQ7HFFltERMTy5ctj3333jZtuuim23XbblswIAAAAAABQdKXNWeiUU06JqqqqePbZZ+PNN9+MN998M5599tmorq6OU045paUzAgAAAAAAFF2zzlSZOXNmPPzww7HzzjsXpu28887xs5/9LPbff/8WCwcAAAAAANBaNOtMlZ49e0ZVVVW96WvXro3u3btvcCgAAAAAAIDWplmlyuWXXx5nnHFGzJ49uzBt9uzZcdZZZ8UVV1zRYuEAAAAAAABai2Zd/uukk06K1atXx6BBg6Jt2/dX8d5770Xbtm3j5JNPjpNPPrkw9s0332yZpAAAAAAAAEXUrFLlyiuvbOEYAAAAAAAArVuzSpURI0a0dA4AAAAAAIBWrVmlSo1ly5bFsmXLorq6us70Pffcc4NCAQAAAAAAtDbNKlXmzJkTI0aMiGeffTayLKszr6SkJNauXdsi4QAAAAAAAFqLZpUqJ598cvTp0yd+85vfRNeuXaOkpKSlcwEAAAAAALQqzSpVFixYELfeemvsuOOOLZ0HAAAAAACgVSptzkIHH3xwPPXUUy2dBQAAAAAAoNVq1pkqv/71r2PEiBHx9NNPx+677x5lZWV15h9xxBEtEg4AAAAAAKC1aFapMmvWrHjooYfib3/7W715blQPAAAAAAB8FDXr8l9nnHFGfPWrX41XX301qqur6/woVAAAAAAAgI+iZpUqb7zxRnz729+Orl27tnQeAAAAAACAVqlZpcrRRx8d06dPb+ksAAAAAAAArVaz7qnSp0+fGDt2bDz44IOxxx571LtR/Zlnntki4QAAAAAAAFqLZpUqv/71r2PTTTeNmTNnxsyZM+vMKykpUaoAAAAAAAAfOc0qVRYuXNjSOQAAAAAAAFq15FJlzJgxcdFFF0WHDh1izJgxjY4rKSmJn/zkJy0SDgAAAAAAoLVILlWeeOKJqKqqKvy7MSUlJRueCgAAAAAAoJVJLlWmT5/e4L8BAAAAAAA+DkqLHQAAAAAAACAPlCoAAAAAAAAJlCoAAAAAAAAJlCoAAAAAAAAJlCoAAAAAAAAJlCoAAAAAAAAJlCoAAAAAAAAJlCoAAAAAAAAJWkWpcvXVV0evXr2iffv2MWjQoHjssccaHXvbbbfFgAEDYosttogOHTpEv3794ne/+91GTAsAAAAAAHwcFb1Uufnmm2PMmDExbty4mDt3buy1114xbNiwWLZsWYPjO3fuHN/73vdi1qxZ8Y9//CNGjhwZI0eOjLvvvnsjJwcAAAAAAD5Oil6qTJw4MUaNGhUjR46MXXfdNa655pqoqKiIyZMnNzh+yJAhcdRRR0Xfvn1jhx12iLPOOiv23HPPePDBBzdycgAAAAAA4OOkqKXKmjVrYs6cOTF06NDCtNLS0hg6dGjMmjVrnctnWRbTpk2L+fPnxwEHHPBhRgUAAAAAAD7m2hZz46+//nqsXbs2unbtWmd6165d47nnnmt0uRUrVkSPHj2isrIy2rRpE7/4xS/ikEMOaXBsZWVlVFZWFn5fuXJlRERUVVVFVVVVCzyKj5byNlnLrKc0q/PfDbUxX6uabeVx/8hz9oh855e9OPKcPSLf+WUvjjxnj8h3ftmLJ8/5ZS+OPGePyHd+2Ysnz/llL448Z4/Id37ZiyfP+fOcPS/W57ktybKsZY56N8PixYujR48e8fDDD8fgwYML088999yYOXNmPProow0uV11dHQsWLIh33nknpk2bFhdddFHcfvvtMWTIkHpjx48fHxMmTKg3fcqUKVFRUdFijwUAAAAAAMif1atXx/Dhw2PFihXRsWPHJscWtVRZs2ZNVFRUxC233BJHHnlkYfqIESNi+fLl8ec//zlpPaecckr8+9//bvBm9Q2dqdKzZ894/fXX1/nkfBztPr7+c9gc5aVZXDSgOi6YXRqV1SUbvL6nxw9rgVRpqqqq4p577olDDjkkysrKNtp2W0Kes0fkO7/sxZHn7BH5zi97ceQ5e0S+88tePHnOL3tx5Dl7RL7zy148ec4ve3HkOXtEvvPLXjx5zp/n7HmxcuXK6NKlS1KpUtTLf7Vr1y769+8f06ZNK5Qq1dXVMW3atBg9enTyeqqrq+sUJ7WVl5dHeXl5vellZWV2wAZUrt3wAqTO+qpLWmSdxXit8ryP5Dl7RL7zy14cec4eke/8shdHnrNH5Du/7MWT5/yyF0ees0fkO7/sxZPn/LIXR56zR+Q7v+zFk+f8ec7e2q3P81rUUiUiYsyYMTFixIgYMGBADBw4MK688spYtWpVjBw5MiIiTjzxxOjRo0dceumlERFx6aWXxoABA2KHHXaIysrKuOuuu+J3v/td/PKXvyzmwwAAAAAAAD7iil6qHH/88fHaa6/FhRdeGEuWLIl+/frF1KlTCzevf+mll6K0tLQwftWqVXHaaafFyy+/HJtssknssssuceONN8bxxx9frIcAAAAAAAB8DBS9VImIGD16dKOX+5oxY0ad3y+++OK4+OKLN0IqAAAAAACA/ypd9xAAAAAAAACUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAmUKgAAAAAAAAlaRaly9dVXR69evaJ9+/YxaNCgeOyxxxodO2nSpNh///2jU6dO0alTpxg6dGiT4wEAAAAAAFpC0UuVm2++OcaMGRPjxo2LuXPnxl577RXDhg2LZcuWNTh+xowZ8eUvfzmmT58es2bNip49e8ahhx4ar7zyykZODgAAAAAAfJwUvVSZOHFijBo1KkaOHBm77rprXHPNNVFRURGTJ09ucPzvf//7OO2006Jfv36xyy67xK9//euorq6OadOmbeTkAAAAAADAx0lRS5U1a9bEnDlzYujQoYVppaWlMXTo0Jg1a1bSOlavXh1VVVXRuXPnDysmAAAAAABAtC3mxl9//fVYu3ZtdO3atc70rl27xnPPPZe0ju9+97vRvXv3OsVMbZWVlVFZWVn4feXKlRERUVVVFVVVVc1M/tFV3iZrmfWUZnX+u6E25mtVs6087h95zh6R7/yyF0ees0fkO7/sxZHn7BH5zi978eQ5v+zFkefsEfnOL3vx5Dm/7MWR5+wR+c4ve/HkOX+es+fF+jy3JVmWtcxR72ZYvHhx9OjRIx5++OEYPHhwYfq5554bM2fOjEcffbTJ5S+77LL48Y9/HDNmzIg999yzwTHjx4+PCRMm1Js+ZcqUqKio2LAHAAAAAAAA5Nrq1atj+PDhsWLFiujYsWOTY4t6pkqXLl2iTZs2sXTp0jrTly5dGt26dWty2SuuuCIuu+yyuPfeexstVCIixo4dG2PGjCn8vnLlysLN7df15Hwc7T7+7hZZT3lpFhcNqI4LZpdGZXXJBq/v6fHDWiBVmqqqqrjnnnvikEMOibKyso223ZaQ5+wR+c4ve3HkOXtEvvPLXhx5zh6R7/yyF0+e88teHHnOHpHv/LIXT57zy14cec4eke/8shdPnvPnOXte1FzhKkVRS5V27dpF//79Y9q0aXHkkUdGRBRuOj969OhGl/vxj38cP/zhD+Puu++OAQMGNLmN8vLyKC8vrze9rKzMDtiAyrUbXoDUWV91SYusM+W16nXeXzd4OxHvXwLtxwMj9v7hfS2SfdFlh7VAqvWT9/07z/llL448Z4/Id37ZiyPP2SPynV/24slzftmLI8/ZI/KdX/biyXN+2Ysjz9kj8p1f9uLJc/48Z2/t1ud5LWqpEhExZsyYGDFiRAwYMCAGDhwYV155ZaxatSpGjhwZEREnnnhi9OjRIy699NKIiPjRj34UF154YUyZMiV69eoVS5YsiYiITTfdNDbddNOiPQ4AAAAAAOCjreilyvHHHx+vvfZaXHjhhbFkyZLo169fTJ06tXDz+pdeeilKS0sL43/5y1/GmjVr4thjj62znnHjxsX48eM3ZnQAAAAAAOBjpOilSkTE6NGjG73c14wZM+r8vmjRog8/EAAAAAAAwAeUrnsIAAAAAAAAShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAEShUAAAAAAIAERS9Vrr766ujVq1e0b98+Bg0aFI899lijY5955pk45phjolevXlFSUhJXXnnlxgsKAAAAAAB8rBW1VLn55ptjzJgxMW7cuJg7d27stddeMWzYsFi2bFmD41evXh3bb799XHbZZdGtW7eNnBYAAAAAAPg4K2qpMnHixBg1alSMHDkydt1117jmmmuioqIiJk+e3OD4T37yk3H55ZfHCSecEOXl5Rs5LQAAAAAA8HHWtlgbXrNmTcyZMyfGjh1bmFZaWhpDhw6NWbNmtdh2Kisro7KysvD7ypUrIyKiqqoqqqqqWmw7HxXlbbKWWU9pVue/Gyrltcpz9pZSs6287tt5zi97ceQ5e0S+88teHHnOHpHv/LIXT57zy14cec4eke/8shdPnvPLXhx5zh6R7/yyF0+e8+c5e16sz3NbkmVZyxw5Xk+LFy+OHj16xMMPPxyDBw8uTD/33HNj5syZ8eijjza5fK9eveJb3/pWfOtb32py3Pjx42PChAn1pk+ZMiUqKiqalR0AAAAAAPhoWL16dQwfPjxWrFgRHTt2bHJs0c5U2VjGjh0bY8aMKfy+cuXK6NmzZxx66KHrfHI+jnYff3eLrKe8NIuLBlTHBbNLo7K6ZIPX9/T4Yesck+fsLaWqqiruueeeOOSQQ6KsrGyjbbel5Dm/7MWR5+wR+c4ve3HkOXtEvvPLXjx5zi97ceQ5e0S+88tePHnOL3tx5Dl7RL7zy148ec6f5+x5UXOFqxRFK1W6dOkSbdq0iaVLl9aZvnTp0ha9CX15eXmD918pKyuzAzagcu2Glwh11ldd0iLrTHmt8py9peV9/85zftmLI8/ZI/KdX/biyHP2iHznl7148pxf9uLIc/aIfOeXvXjynF/24shz9oh855e9ePKcP8/ZW7v1eV6LdqP6du3aRf/+/WPatGmFadXV1TFt2rQ6lwMDAAAAAABoDYp6+a8xY8bEiBEjYsCAATFw4MC48sorY9WqVTFy5MiIiDjxxBOjR48ecemll0bE+ze3/+c//1n49yuvvBJPPvlkbLrpprHjjjsW7XEAAAAAAAAffUUtVY4//vh47bXX4sILL4wlS5ZEv379YurUqdG1a9eIiHjppZeitPS/J9MsXrw49t5778LvV1xxRVxxxRVx4IEHxowZMzZ2fAAAAAAA4GOk6DeqHz16dIwePbrBeR8sSnr16hVZlm2EVAAAAAAAAHUV7Z4qAAAAAAAAeaJUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASKBUAQAAAAAASNC22AGAiF7n/bVF1lPeJosfD4zYffzdUbm2ZIPXt+iyw1ogFQAAAADAR4MzVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVQAAAAAAABIoVYD/r707D4/p7v8//prJvkrSUEEkYomofV/qVqV3rKmiWqrU0kUXe6gu1iq1lm7aClGKKlp0o1S1pZYiqMTS2G+JLbUTknx+f/hlvolMkolIPuc983pcV66rmZn2fvrc73POOGcWIiIiIiIiIiIiIrIBL6oQERERERERERERERHZgBdViIiIiIiIiIiIiIiIbOCsO4CI5At9/fv78t9xc1KY0hCoPnYtUtNNhfpvHZvc/r40EREREREREREREWXiO1WIiIiIiIiIiIiIiIhswIsqRERERERERERERERENuBFFSIiIiIiIiIiIiIiIhvwogoREREREREREREREZENeFGFiIiIiIiIiIiIiIjIBryoQkREREREREREREREZANeVCEiIiIiIiIiIiIiIrIBL6oQERERERERERERERHZgBdViIiIiIiIiIiIiIiIbMCLKkRERERERERERERERDbgRRUiIiIiIiIiIiIiIiIb8KIKERERERERERERERGRDXhRhYiIiIiIiIiIiIiIyAa8qEJERERERERERERERGQDXlQhIiIiIiIiIiIiIiKyAS+qEBERERERERERERER2YAXVYiIiIiIiIiIiIiIiGzAiypEREREREREREREREQ2cNYdQESkU+jr39+X/46bk8KUhkD1sWuRmm4q9H/v2OT296GKiIiIiIiIiIiI7ie+U4WIiIiIiIiIiIiIiMgGvKhCRERERERERERERERkA15UISIiIiIiIiIiIiIisgEvqhAREREREREREREREdmAX1RPRCRU6Ovf35f/jpuTwpSGQPWxa5Gabir0f+/Y5Pb5PkZyOxEREREREREROS5DXFT56KOPMHXqVCQnJ6NWrVr44IMP0LBhw1wf//XXX+Ptt9/GsWPHULlyZbz33nto165dMRYTEZEj40UhIiIiIiIiIiLHpP2iyldffYWhQ4dizpw5aNSoEd5//31ERkbi4MGDKFWqVI7Hb9myBd27d8ekSZPQoUMHLF68GJ06dcKuXbtQvXp1DX8CIiIiOXhBiIiIiIiIiIjo3mm/qDJjxgw8//zz6NOnDwBgzpw5+P777zFv3jy8/vrrOR4/a9YstGnTBtHR0QCACRMm4Oeff8aHH36IOXPmFGs7ERERFR9eECIiIiIiIiIi3bReVLl16xZ27tyJUaNGWW4zm81o3bo1/vzzT6v/zp9//omhQ4dmuy0yMhLffvut1cenpqYiNTXV8vulS5cAACkpKbh9+3Yh/wT2xznt2v3572QoXL+eAefbZqRnFP6E1YULF/L/32S7lnbAmP2S2wH7nxvJ7YDsfrbrm5tGkzYU+n/LzazwVp0M1H5zJVLvQ/u2Ua1setz9aAf09LNd39zcL7dv38b169dx4cIFuLi4FOv/dmGxXQ/J7YDsfrbrI7mf7XpIbgdk97NdH8n9ktuluHLlCgBAKZXvY03KlkcVkdOnT6Ns2bLYsmULmjRpYrl9xIgR2LRpE7Zt25bj33F1dcWCBQvQvXt3y20ff/wxxo0bhzNnzuR4/NixYzFu3Lii+QMQEREREREREREREZFdOHnyJMqVK5fnY7R//FdRGzVqVLZ3tmRkZCAlJQUPPPAATKbCv1KPrLt8+TKCg4Nx8uRJ+Pr66s4pELbrI7mf7XpIbgdk97NdD8ntgOx+tusjuZ/tekhuB2T3s10fyf1s10NyOyC7n+36SO6X3C6FUgpXrlxBmTJl8n2s1osqgYGBcHJyyvEOkzNnzqB06dJW/53SpUsX6PFubm5wc3PLdpufn9+9R1OB+Pr6it3Q2a6P5H626yG5HZDdz3Y9JLcDsvvZro/kfrbrIbkdkN3Pdn0k97NdD8ntgOx+tusjuV9yuwQlSpSw6XHmIu7Ik6urK+rVq4cNG/7v86IzMjKwYcOGbB8HllWTJk2yPR4Afv7551wfT0REREREREREREREdD9o//ivoUOHonfv3qhfvz4aNmyI999/H9euXUOfPn0AAL169ULZsmUxadIkAMCgQYPQokULTJ8+He3bt8fSpUvx119/4bPPPtP5xyAiIiIiIiIiIiIiIjun/aLKU089hXPnzmH06NFITk5G7dq18dNPP+HBBx8EAJw4cQJm8/+9oaZp06ZYvHgx3nrrLbzxxhuoXLkyvv32W1SvXl3XH4GscHNzw5gxY3J89JoEbNdHcj/b9ZDcDsjuZ7sektsB2f1s10dyP9v1kNwOyO5nuz6S+9muh+R2QHY/2/WR3C+53R6ZlFJKdwQREREREREREREREZHRaf1OFSIiIiIiIiIiIiIiIil4UYWIiIiIiIiIiIiIiMgGvKhCRERERERERERERERkA15UISIiIiIiIiIiIiIisgEvqhDZkdjYWFy6dEl3Rr527typO4GIHNiZM2eQnJysO+OepKamIjExEampqbpT7snRo0eRlpamO+Oe9OnTB6dPn9adYZPk5GSsWrUKn376KT799FOsWrVK7MwDEDsz0nHd6V4opXQnOCxJxykiouKSnp6e7fft27dj69atov4+lZqaKqrXUfCiChWKj48P+vXrhy1btuhOKbCOHTti4cKFuHHjhu6U++aFF14Q8US6QYMGqFSpEt59910RvQWRkJCAsLAw3RkFEhYWhsOHD+vOKJTExEQ8+uijujPytGfPHvTq1QthYWHw8PCAl5cXatSogbfffhuXL1/WnZer6dOn4/jx47oz7klKSgq6du2K8uXLY8CAAUhPT0f//v0RFBSEsmXLomnTpkhKStKdmavY2Fj8+eefAICbN2+iX79+8PLyQpUqVeDt7Y2XXnpJ3JPr8PBww+9v9u7da/Xnyy+/xPbt2y2/G9G1a9fQs2dPlCtXDl27dsXo0aMxevRodO3aFeXKlcOzzz6L69ev687M1U8//YR9+/YBADIyMjBhwgSULVsWbm5uKFeuHCZPnizmhO3p06cxZswYPPPMMxg+fDgOHDigOylX9rDue/bswTvvvIOPP/4Y58+fz3bf5cuX0bdvX01l+YuPj8fLL7+MOnXqICgoCEFBQahTpw5efvllxMfH684rMDc3NyQkJOjOsMn27dsxa9YsjBo1CqNGjcKsWbOwfft23Vn5knycAuQ+J77bxYsX8fnnn+Ptt9/G3LlzRby4MTfXrl3Db7/9pjsjT2fPnsUvv/xiWeczZ85gypQpmDx5suUYZkS3b9/GiBEjUKlSJTRs2BDz5s3Ldv+ZM2fg5OSkqS5/krfX48ePo379+nBzc0Pbtm1x+fJlPPbYY2jcuDGaNm2KatWq4dChQ7ozc/Xzzz+jXbt28Pf3h6enJzw9PeHv74927dph/fr1uvMIgEkZ/RkyGZrZbEa1atUQHx+P8PBw9O/fH7169ULJkiV1p+XLbDbDyckJXl5e6N69O/r374969erpzrJJQECA1dsvXrwIX19fmM13rpempKQUZ5bNzGYz+vfvj1WrViElJQWRkZHo378/OnbsaOgnFLbYs2cP6tatm+PVEEYwe/Zsq7cPHToUI0aMQOnSpQEAAwcOLM6s+8LI6w4Aa9euxRNPPIF27drBw8MDK1euRN++feHl5YUVK1ZAKYU//vjD8v+BkZjNZpjNZrRs2RL9+/fHE088AVdXV91ZNunXrx+2b9+OF198EcuXL4efnx+OHj2Kjz/+GGazGYMGDUJERAQWLFigO9WqsLAwLFmyBI0aNUJ0dDSWL1+OGTNmICIiAgcPHsSIESPw+OOPY8qUKbpTc+jcubPV21etWoVHH30UPj4+AICVK1cWZ5ZNzGYzTCaT1ZPImbebTCZD7m/69++P3377DR988AFat25tOaamp6djw4YNeO211/Cf//wHn3/+ueZS66pWrYrPP/8czZs3x6RJkzB9+nS8+eablpmfNGkShgwZgpEjR+pOzcHT0xPHjx9HyZIlER8fj6ZNm6JkyZKoU6cO9u3bhxMnTuDPP/9EzZo1dafmIHndAWDdunXo2LEjKleujCtXruDatWv4+uuv0bJlSwB3TliVKVPGkNvsjz/+iE6dOqFu3bqIjIzEgw8+COBO888//4ydO3di1apViIyM1Fya09ChQ63ePmvWLPTs2RMPPPAAAGDGjBnFmWWTs2fPokuXLti8eTPKly+fbd1PnDiBZs2aYcWKFShVqpTmUuskH6ckPyfu3LkzevToga5du2L//v145JFHYDKZEBYWhmPHjsFkMuGXX35BRESE7tQCM/rfpX799Vd06NAB169fx4MPPoiffvoJHTp0gIeHB8xmM44dO4bVq1fjv//9r+7UHMaOHYs5c+Zg+PDhuHjxIj788EM89dRT+PTTTwHc2e8EBQUhIyNDc2lOkrdXAOjatSvOnz+P4cOHY+HChfjf//4HFxcXLFq0CGazGX369IGHhwe++eYb3ak5LFiwAP3790fXrl1zPD9Yt24dli9fjpiYGDz77LOaSx0bL6pQoZjNZiQnJyMpKQlz587F4sWLcfXqVXTo0AH9+/dHmzZtYDKZdGdaZTab8ffff2PdunWYN28e9u/fjxo1aqB///545pln4O/vrzsxVz4+PmjRogWefPJJy21KKfTv3x/jx49H2bJlAQC9e/fWlZinzLkJCAjAqlWrMG/ePKxduxaBgYHo3bs3+vXrhypVqujOtCq3v0BmOnfuHBYvXmzIJ6Rmsxlly5aFs7NzttuPHz+OMmXKwMXFBSaTCUeOHNFUmLvcLghl+t///odp06YZct0BoE6dOnjxxRfx0ksvAbjzqpOBAwciISEBt2/fRtu2bREcHIz58+drLs3JbDZj3rx5+Pbbb/HDDz/A19cXPXv2RP/+/VG9enXdeXkqU6YMli9fjqZNm1r+wrJ27Vo89thjAIDNmzfjqaeewqlTpzSXWufu7o5Dhw6hfPnyCA8Px6xZs9CmTRvL/b/99hueffZZQ76TyGw24z//+Q8qVKiQ7fYvvvgCUVFR8PPzAwBDznzt2rVRrlw5TJs2DR4eHgDuHGMrV66MH3/8EZUrVwYAhISE6My0yt/fH99//z2aNm1q9f7NmzejQ4cO+Pfff4u5zDZZZ75GjRoYPXp0tuc633//PQYPHmzIdztlPrcpVaoUOnXqhIyMDKxcuRLOzs7IyMjAM888g6tXr2LNmjW6U3OQvO4A0LRpU7Rs2RITJ06EUgpTp07FhAkT8PXXX6NNmzaGvqhSq1YtPP744xg/frzV+8eOHYuVK1ca8l0HZrMZtWrVsuzPM23atAn169eHl5eX5SSz0XTt2hWnT5/G/PnzER4enu2+gwcPom/fvihTpgy+/vprTYV5k3yckvycOCAgAFu2bEHVqlUtrx6fP38+XF1dcfv2bQwYMAAnT57E2rVrdacWmNEvqjRv3hy1atXC5MmTMWfOHLz//vvo1KkTPvzwQwBAdHQ0tmzZgs2bN2suzaly5cqYOXMmOnToAAD4559/0LZtWzz88MOYN28ezp49a9hjlOTtFQBKlSqFdevWoXbt2rh06RL8/f3x22+/4eGHHwYA7Nq1C+3atTPkR+RWqVIFgwYNwiuvvGL1/o8//hgzZ8407HMzh6GICsFkMqkzZ85Yfr9586ZavHixatWqlTKbzapcuXLq7bff1liYu7vbt23bpl544QVVokQJ5eHhobp37642bNigsTB3hw8fVg0aNFC9evVSV65csdzu7Oys9u/fr7HMNnevvVJKnTp1So0fP16FhYUps9msmjdvrqkub2azWdWtW1c98sgjVn/q16+vzGaz7kyrXnzxRVW7dm0VHx+f7XYJc2MymVSZMmVUaGio1Z8yZcoYdt2VUsrd3V0dPXrU8ntGRoZycXFRp0+fVkop9dtvv6mSJUtqqstb1u31zJkz6r333lNVq1ZVZrNZNWjQQH322Wfq8uXLmiut8/T0VMeOHbP87uLiovbt22f5/ciRI8rLy0tHmk1CQkLUL7/8opRSqmzZsmrHjh3Z7o+Pjzds/5IlS1S5cuXUvHnzst0uYX+TmpqqBg0apKpVq6Z27dpluV1Cu6+vb445yWr79u3K19e3GIsKJigoSP35559KKaUefPDBbOuvlFKHDh1SHh4eOtLylXVfGRwcrH777bds9+/atUsFBQXpSMuX5HVX6s7c//PPP9lu+/LLL5WXl5das2aNSk5ONuxzBHd3d3XgwIFc7z9w4IByd3cvxiLbTZo0SVWoUCHH35ck7Cu9vb1zzHlWf/31l/L29i7GooKRfJyS/JzYw8PDsq8JCgrKMUMHDx5UJUqU0FCWP39//zx/fH19DbufVCr7fv727dvK2dlZ7d6923L/oUOHDLv2Hh4e2WZeqTvnPqpUqaKeeeYZ9b///c+way95e1VKKR8fH3XkyBGllFLp6enK2dlZxcXFWe4/fPiw8vHx0ZWXJzc3N7HPDxwJv1OFCuXud6G4ubmhe/fuWL9+PRITE/Hcc88hNjZWT1wBNWzYEJ9++ilOnz6Njz/+GCdPnrS8mtloKlWqhC1btqB06dKoXbu2IV+RkRdr714qW7Ys3n77bSQmJmLdunUIDg7WUJa/SpUqYciQIdi4caPVH6N+pAoAzJkzB6NHj0ZkZKTlVT1ShISEYObMmTh69KjVn++//153Yp7Kli2LgwcPWn5PTExERkaG5aMxypUrh6tXr+rKs1mpUqUwYsQIJCQk4Ndff0W1atUwZMgQBAUF6U6zqnLlyvjuu+8A3PmIFXd3d6xbt85y/9q1a3O8k8JInnnmGbz55pu4ePEinn32WYwfP94yJ9evX8fYsWPRrFkzzZXWPf300/j9998RExODLl26GPadEda4urri/fffx7Rp0xAVFYVJkyYZ8iMZrOnQoQNeeOEF7N69O8d9u3fvxoABA9CxY0cNZbZ54oknMHHiRKSnp+Pxxx/Hxx9/nO3jbT744APUrl1bX2AeTCaT5fmN2WxGiRIlst3v5+dn2O1A8roDd/7+cfHixWy39ejRA3PnzsVTTz1lyI/1yBQaGprnc5jvv//ekO82AIDXX38dX331FQYMGIDhw4fj9u3bupNs5ubmlud3AVy5cgVubm7FWFQwko9Tkp8T16xZ0/LOq9KlS+d4p/Dx48ct7xwymtTUVPTt2xczZ860+jNs2DDdiXlydXXFzZs3AQC3bt1CRkaG5XcAuHHjBlxcXHTl5al06dJITEzMdlvZsmWxceNG7NixA88995yeMBtI3l4B4KGHHrJ8h82CBQvwwAMPYOnSpZb7lyxZYthPSHnooYcQExOT6/3z5s1DtWrVirGIrNJ9VYdks/aOg7tlZGQUU03B2NJ+8ODBYqq5dxs2bFDly5dXo0aNUi4uLoZ/dZJStq29UfXo0UMNHjw41/vj4uKUyWQqxqKCO3XqlHr00UdVmzZtVFJSkohXtXXp0kWNGDEi1/uNvu7jxo1T5cqVU5988omaN2+eql69unriiScs969cuVJVq1ZNY2HuzGZzntvrpUuX1GeffVaMRbZbtGiRcnJyUpUqVVJubm7q66+/VmXKlFHdunVTTz/9tHJ1dVUffvih7sxcpaamqqioKOXv768ee+wx5e7urjw9PVXlypWVl5eXKl++vOGPU+np6Wr06NEqODhY/fTTT2KOU5mSk5NV27ZtVfPmzUXsK1NSUlSbNm2UyWRSAQEBqmrVqqpq1aoqICBAmc1m1bZtW/Xvv//qzszVxYsXVf369VWlSpXUs88+q9zd3VVISIh67LHHVIUKFVSJEiXU1q1bdWdaZTKZlJ+fn/L391cuLi5q4cKF2e5ft26dCg0N1VSXN8nrrpRSjz32mJo6darV+xYvXqxcXFwM+yrgZcuWKWdnZ9WxY0c1a9YstXTpUrV06VI1a9YsFRUVpVxdXdXy5ct1Z+bpypUrqlevXqpmzZpq3759IvbzL7/8sgoJCVErV65Uly5dstx+6dIltXLlShUaGqpeffVVjYW2k3ackvyc+LvvvlMBAQFq/vz5av78+So0NFTNnTtXbd68Wc2bN08FBwer6Oho3ZlWNW3aVL3//vu53h8XF2fY/aRSSj3++OOqQ4cO6o8//lAvvPCCql+/vmrfvr26evWqunbtmuratatq06aN7kyr+vXrp/r27Wv1vlOnTqlKlSoZdu0lb69KKfXTTz8pd3d35erqqtzd3dWmTZtUlSpVVMOGDVXjxo2Vk5OT+uqrr3RnWrVx40bl5eWlatSooYYMGaImT56sJk+erIYMGaJq1qypvL291aZNm3RnOjx+pwoVyrhx4xAdHQ1PT0/dKQXWsmVLfPPNNzk+B1iiCxcu4Pnnn8fGjRuxdevWHJ8NbDSbNm1Cs2bNcny3hwTJyclITU017KsGbaWUwuTJkzF79mycO3cOe/fuNfQrHeLj43H9+nXUr1/f6v23b9/G6dOnDfv/S1paGt58800sWrQIqampiIyMxKxZsxAYGAgA2L59O27evIn//Oc/mktzyvo9ARJt3rwZW7duRZMmTdC0aVPEx8dj8uTJuH79Ojp27GjY757K6qeffsKaNWtw5MgRZGRkICgoCM2aNUOPHj3g5eWlO88mf/zxB3r16oXjx49j3759ht7fWDN79mxs3LgRH3zwAcqVK6c7J18JCQnYunWr5TOiS5cujSZNmqBq1aqay/J3+/ZtxMTEWJ35AQMGGHb9FyxYkO338PBwNG7c2PL7hAkT8O+//xryS7sBuesOAN988w1+++03zJw50+r9ixcvxueff46NGzcWc5lttmzZgtmzZ+PPP//Msc0OGjQITZo00Vxom6VLl2Lw4ME4d+6c4ffzqampGDx4MObNm4e0tDS4uroCuPMKeGdnZ/Tr1w8zZ8409LtV7iblOCX5OTEArFixAoMHD8bp06ezvaPPzc0NL730EqZNmwYnJyeNhda9++67uH37NsaMGWP1/pMnT2L06NGG/W6Mw4cPo3379vjnn39QtWpV/Pzzz3j55Zfxww8/ALjznXI//fQT6tatq7k0p+PHj+PAgQOIjIy0ev/p06fx888/G/LvJNK3VwA4duwYdu7ciXr16iE0NBRnzpzBRx99hOvXr6N9+/Zo2bKl7sRcHTt2DJ988onV5/QvvfQSQkND9QYSv6ieiMiR7dy503Ky09/fX3cOEdmxq1evIjExEVWrVhV1ooqIiGxz8uRJ7Nq1C61btxZx0f/y5cvYuXNntpNV9erVg6+vr+YyMrL09HTs2rUr2wXoevXqwcfHR3ea3btw4YLlo6cAYMOGDbhx4waaNGmS7XYiouLAiypEd1FKISMjw5CvMLEnFy5cwN69e1GrVi0EBATg/PnziImJQWpqKp588klEREToTrTZ4cOHceLECYSEhKBSpUq6cxwKt1ciWaRss5KPUZLbcyNlbqyR3C6Z9OdmEucmNTUVAHjRvBidOnUKfn5+8Pb2znb77du38eeffxr61eNEjobbKxWW9Oc29ohfVE9FqnXr1ggLC9OdYVVaWhreeusttGjRwvI22KlTp8Lb2xuenp7o3bs3bt26pbny3hh53YE7bxOtWLEiWrVqhUqVKmHnzp1o2LAhYmJi8MUXX6BevXrYtWuX7kyrJk2ahA0bNgAA/v33X7Ru3Rrh4eF47LHHEB4ejrZt2+b4slQpVq1ahS+++EJ3hlXSt1cfHx/069cPW7Zs0Z1y3xl5bvKzZ88eUSes7mbkfsnbrORjlOR2QPbcSG6XfoyS/NxM8twAwM8//4x27drB398fnp6e8PT0hL+/P9q1a4f169frzsvVqVOncP78ecvvv//+O5555hk0b94cPXv2xJ9//qmxLn9JSUlo2LAhQkJC4Ofnh169emX7suiUlBTDfqTN9u3bkZ6ebvn9u+++Q4sWLVC2bFnUr1/f8M8pL1y4gI0bNyIlJQUAcP78ebz33nsYP348EhISNNflTXI7ILdf8vYKAD/88AP69++PESNG5Fjnf//9F48++qimssIz8nmzu5/btGrVSsxzG4ei44tcyHF8+OGHauzYsbozrHrrrbfUgw8+qIYOHaqqVaumXnrpJRUcHKwWLVqkFixYoMqWLavee+893Zn3xMjrrpRSrVu3Vv3791eXL19WU6dOVeXKlVP9+/e33N+nTx/VqVMnjYW5K1eunNq1a5dSSqn+/furOnXqqF27dqkbN26ouLg41bhxY9WvXz/NlfcmPDzcsF+SJ317NZlM6qGHHlImk0lVrVpVTZs2TZ09e1Z31n1h5LnJT1xcnDKZTLoz7pmR+yVvs5KPUZLblZI9N5LbpR+jJD83kzw3sbGxytnZWT399NNq/vz56ocfflA//PCDmj9/vurevbtycXFRX3zxhe5Mqxo2bKjWrFmjlFLq22+/VWazWUVFRamRI0eqJ554Qrm4uFjuN6JevXqpRo0aqR07dqiff/5Z1atXT9WvX1+lpKQope58eb1Rnx+YzWZ15swZpZRSq1evVmazWfXq1Ut99NFHqn///srZ2VmtXLlSc6V127ZtUyVKlFAmk0n5+/urv/76S1WoUEFVrlxZVaxYUXl4eKidO3fqzrRKcrtSsvslb69ffvmlcnJyUu3bt1cPP/ywcnd3V4sWLbLcn5ycLPbvgUoZ+7yZ5Oc2joQXVchhhYWFWZ4sHz58WJnNZrV06VLL/V999ZWqXr26rjy75u/vr+Lj45VSSt26dUuZzWa1bds2y/07d+5UZcuW1ZWXJzc3N3Xs2DGllFKhoaFq06ZN2e7/66+/VFBQkI40uyZ9ezWZTOrMmTMqLi5OvfrqqyogIEC5urqqzp07qx9++EFlZGToTrRLTzzxRJ4/jz76qKH/IiC5X/I2K/kYJbldKdlzI7ld+jFK8nMzyXNTuXJl9eGHH+Z6/0cffaQqVapUjEW28/LyUkeOHFFKKdWoUSM1efLkbPd/8MEHqk6dOjrSbFKmTJls+/abN2+qjh07qtq1a6sLFy4Y+kRn5v5GKaUefvhh9frrr2e7f+LEiapx48Y60vIl+YULktuVkt0veXutXbu2mjVrluX3r776Snl5eam5c+cqpeRfVDEyyc9tHAk//osc1unTp1GrVi0AQKVKleDq6mr5HQAaNGiA48eP68qza7du3YKHhwcAwMXFBZ6enggMDLTcHxgYiAsXLujKy1NISAj+/vtvAIDJZIKzs3O2+52cnHDt2jUdaXbNXrbXWrVq4YMPPsDp06cRGxuLS5cuoUOHDihfvjxGjx6tO8/urFmzBjdv3kSJEiWs/tz9mcZGI7lf8jYr+RgluR2QPTeS2zNJPUZJfm4meW5OnDiB1q1b53p/q1atcOrUqWIssp2zszOuXLkCADh69Cjatm2b7f62bdvi4MGDOtJscunSJfj7+1t+d3Nzw8qVKxEaGoqWLVvi7NmzGutsd+jQIXTt2jXbbV26dMGBAwc0FeVt586dGDp0KHx8fDBo0CCcPn0azz//vOX+V199FTt27NBYmDvJ7YDsfsnb6+HDh9GxY0fL7926dcOaNWswePBgzJkzR2OZ/ZP83MaROOf/ECLrOnfubPNjV65cWYQl96ZEiRK4ePEigoODAQB169aFj4+P5f7U1FSYTCZdebmSvu4AEBwcjCNHjiA0NBQAsHTpUgQFBVnuT0pKynYSyEief/55REdHIzw8HK+++iqGDx+OhQsXomLFijh69CiGDBmC//73v7oz83Xx4kVs374dZ8+eRUZGRrb7evXqpakqd1K310x3t7m5uaF79+7o3r07jh07hpiYGMTGxmL8+PGaCm0jbW4iIiLQpUsX9OvXz+r9cXFx+O6774q5ynaS+yVvs5KPUZLbAdlzI7ld+jFK8nMzyXPz0EMPISYmBlOmTLF6/7x581CtWrVirrJNixYtsGTJEtSsWRN16tTBr7/+ipo1a1ru37hxI8qWLauxMG9hYWHYu3cvKleubLnN2dkZX3/9NZ588kl06NBBY13+4uPjkZycDA8PjxzPJ4E73zVkRJJfuCC5HZDdL3l79fX1xZkzZ1ChQgXLbS1btsR3332HDh06GPbCOSD/vJnk5zaOhBdV6J6VKFFCd0KhVKtWDbt27UKNGjUAAJs3b852/759+7Id+IxC+roDwNNPP53tFRnt27fPdv/q1avRsGHD4s6yyfDhw3HixAlUq1YNFStWxLFjx1ClShU4OzsjLS0NdevWxZIlS3Rn5mnNmjV45plncPXqVfj6+mb7y7rJZDLkyXGp22smpVSu94WGhmLChAmGPVmVSeLcZH4pd24XJdzc3FC+fPlirrKd5H7J26zkY5TkdkD23Ehul36MkvzcTPLcTJ8+HR06dMBPP/2E1q1b48EHHwQAnDlzBhs2bMCRI0fw/fffa660bvLkyWjevDlOnz6Nhx9+GG+++SZ27NiBiIgIHDx4EF999ZWhX4Xdtm1bfPbZZ+jSpUu22zNP1Hbp0sXQJztbtWpl2e9s3rwZDRo0sNy3e/duwz63kfzCBcntgOx+ydtrw4YN8eOPP6Jx48bZbm/RogXWrFlj6AtC0s+bSX5u40hMKq9n0UR27NChQ3Bxccl21T2rxYsXw9nZGd26dSvmMrp+/TqcnJzg5uamOyVXCQkJ+O6773DkyBFkZGQgKCgIzZo1Q+vWrQ37isJMVapUQbt27fDuu+/C09NTd45NpG+v48aNQ3R0tJj1tkbi3KSmpiI9PV1M790k90vfZvMi4RiVG6O3S54bye32cIwCZD43kzw3AHDs2DF88skn2Lp1K5KTkwEApUuXRpMmTfDSSy9ZToAaUWJiIt566y18//33uHr1KoA7JzkbNGiA6OhodOrUSW9gHtLS0nD9+nX4+vrmev///vc/hISEFHNZ/u7+ODtvb2888MADlt+/+OILAMZ8B/S4ceMQHh6Op59+2ur9b775Jg4cOIAVK1YUc1n+JLcDsvslb6+bNm3Cli1bMGrUKKv3b9y4EV988QXmz59fzGWOQ+JzG0fCiypERA7Gy8sL+/btQ1hYmO4UEoRzQ0RERPZGKWX5WNPAwEC4uLjoTiKhjP7ChbxIbgfk9xORTPz4L7pnderUsfnK6K5du4q4xnE4wrqvWrUKly5dMuQrlOxBZGQk/vrrL54cpwLh3BDdIfkYJbmdiKgomEwmy0eX2Qvu6/WQ/G4/ye2A7H5ur0XDEc6bkX58pwrds3Hjxtn82DFjxhRhSdFo3bo1jhw5giNHjuhOycbe1x0AqlatisOHDyM9PV13SoEZdW6yiomJwfjx49GnTx/UqFEjxyvyoqKiNJXdOwnrnhcJ/Zwb45HcL7ld8jFKcjsge27Yro/kfsnte/bsQd26dUXub6Sf5JS8r5c885LnRnI7ILuf22vRsPfzZkZee0fCd6rQPZO44ymIJ554AufPn9edkYO9rzsAHDhwQHfCPTPq3GT1/PPPA4DVL501mUwin9BJWPe8SOjn3BiP5H7J7ZKPUZLbAdlzw3Z9JPdLbgcAqa/fHDlyJA4fPizyBC0ge18veeYlz43kdkB2P7fXomHv582MvPaOhO9UISIiIiIiIiKbde7cOc/7L126hF9//VXkiy6IiIiI8sN3qtB9kZ6ejpkzZ2LZsmU4ceIEbt26le3+lJQUTWX2zR7W/eLFi9i+fbvlCyKzkvhKEyIish+Sj1GS24nI+NasWYPHHnss1+8j4cWU4sF9PZEc3F71sIfzZmRMfKcK3RejR4/G3LlzMWzYMLz11lt48803cezYMXz77bcYPXo0Bg4cqDsxm/xeWZXVypUri7CkcKSt+93WrFmDZ555BlevXoWvr2+2LxIzmUyGO7jZy9wAwKZNmzBt2jQkJCQAAKpVq4bo6Gg0b95cc1lO0tdden9WnJviI7lfcntW0o5RWUlslzw3bNdHcr/kdgCoWbMmBg0ahH79+lm9Py4uDvXq1TP8xRXJJzml7eulz3xWkudGcjsgt5/bqz7SzpvZ09rbO75The6LL7/8Ep9//jnat2+PsWPHonv37qhYsSJq1qyJrVu3Gm4nVaJECd0J94W0db/bsGHD0LdvX7z77rvw9PTUnZMve5mbRYsWoU+fPujcubNlRjZv3oxWrVohNjYWPXr00FyYnfR1l96fiXNTvCT3S27PStoxKiuJ7ZLnhu36SO6X3A4A9erVw65du3K9qOLm5oby5csXc1XB5HeS08gnaAF5+3rpM59J8txIbgdk93N71UfaeTN7Wnt7x3eq0H3h5eWFhIQElC9fHkFBQfj+++9Rt25dHDlyBHXq1MGlS5d0J9ol6evu5eWFffv2ISwsTHeKQ4mIiMALL7yAIUOGZLt9xowZ+Pzzzy3vQiDKinNDjkbyMUpyOxHJkJqaivT0dBEnB3NTpUoVtGvXTsxJzrtxX6+H5LmR3A7I7uf2qo/082ZkXGbdAWQfypUrh6SkJABAxYoVsW7dOgDAjh074ObmpjPNrklf98jISPz111+6MxzOkSNH0LFjxxy3R0VF4ejRoxqKSALODTkayccoye1EJIObm5u4k5p3+9///oeBAweK/XNwX6+H5LmR3A7I7uf2qo/082ZkXPz4L7ovnnjiCWzYsAGNGjXCa6+9hp49eyImJgYnTpzI8apmI6hTp062t4rmZdeuXUVcc++krfvd2rdvj+joaMTHx6NGjRpwcXHJdn9UVJSmMuvsZW6Cg4OxYcMGVKpUKdvt69evR3BwsKaq3Elfd+n9mTg3xUtyv+T2rKQdo7KS2C55btiuj+R+ye32IvMkp9RXjkvb19vLzEueG8ntgOx+bq/6SDtvZk9rb+94UYXui8mTJ1v++amnnkJISAi2bNmCypUrW31ls26dOnXSnXBfSFv3uz3//PMAgPHjx+e4z2QyGe6LLe1lboYNG4aBAwciLi4OTZs2BXDnuzFiY2Mxa9YszXU5SV936f2ZODfFS3K/5PaspB2jspLYLnlu2K6P5H7J7bZo3bo1jhw5giNHjuhOyZW0k5x3k7avt5eZlzw3ktsB2f3cXvWRdt7Mntbe3vE7VahYtW/fHnPnzkVQUJDuFIfCdae7ffPNN5g+fbrlezAiIiIQHR2Nxx9/XHMZGRnnhoiIiGzx0Ucf4fz58xgzZozulFyZzbl/GroRT3KSMUieG8ntgPx+MjaeN6OC4kUVKlY+Pj7Ys2ePyLdrSsZ1JyIiIiIiIiIiyonnzaig+EX15PDS09Mxbdo0NGzYEKVLl0ZAQEC2HypamzZtQseOHVGpUiVUqlQJUVFR+P3333Vn5Ytzo4f0dZfeL5X0dZfcL7kdkHuMAmS3S54btusjuV9yO+kldV/PmSdHxO2VCoprb2y8qEIOb9y4cZgxYwaeeuopXLp0CUOHDkXnzp1hNpsxduxY3Xl2bdGiRWjdujU8PT0xcOBADBw4EB4eHmjVqhUWL16sOy9P0uYmICAA58+fBwD4+/vnOBhLOTBLW/e7Sevn3BiD5H7J7ZKPUZLbAdlzw3Z9JPdLa+/cubPNP0Yn9SQnIHtfL23m7yZ5biS3A3L7ub3SveDaG5wiKkbe3t4qMTFRd0Y2YWFh6rvvvlNK3en7559/lFJKzZo1S3Xv3l1n2n1jxHVXSqmqVauqGTNm5Lh9+vTpqmrVqhqKbCdtbmJjY9XNmzeVUkrNnz9fxcbG5vpjZNLW/W7S+jk3xiC5X3K75GOU5HalZM8N2/WR3C+t/bnnnrP5x8gWLlyonJ2dVbdu3dSsWbPUrFmzVLdu3ZSLi4v68ssvdeflS/K+XtrMZyV5biS3KyW7n9ur8RnxvJmjrL1UvKhCxcqIOylPT091/PhxpZRSpUuXVjt37lRKKZWYmKh8fX11pt03Rlx3pZRydXVVhw8fznH74cOHlZubm4Yi2znC3BiR9HWX3i+V9HWX3C+5XfIxSnK7UrLnhu36SO6X3C6Z5JOcSsne10ueeclzI7ldKdn93F6Nz4jnzRxl7aXix3+RwytXrhySkpIAABUrVsS6desAADt27ICbm5vONLsXHByMDRs25Lh9/fr1CA4O1lBkO8lz4+TkhLNnz+a4/cKFC3ByctJQZDvJ6w7I7ufc6CO5X3K75GOU5HZA9tywXR/J/ZLbJTty5Ag6duyY4/aoqCgcPXpUQ1HBSN7XS555yXMjuR2Q3c/tle4F197YnHUHkGN54403DPfZ+0888QQ2bNiARo0a4bXXXkPPnj0RExODEydOYMiQIbrz7gsjrjsADBs2DAMHDkRcXByaNm0KANi8eTNiY2Mxa9YszXV5kzw3Simrt6empsLV1bWYawpG8roDsvs5N/pI7pfcLvkYJbkdkD03bNdHcr+09jp16sBkMtn02F27dhVxzb3LPMlZqVKlbLdLOMkJyN7XS5v5rCTPjeR2QHY/t1fjM+J5M0dZe6lMKrezJET3ID4+HidOnMCtW7ey3R4VFaWpqOC2bt2KLVu2oHLlylZfBWFEktf9m2++wfTp05GQkAAAiIiIQHR0NB5//HHNZQUjYW5mz54NABgyZAgmTJgAb29vy33p6en47bffcOzYMezevVtXYoFJWPe8SOjn3BiP5H5p7ZKPUZLb7yZtbrJiuz6S+43ePm7cOJsfO2bMmCIsKZxPPvkEgwcPRt++fa2e5HzxxRc1F+bPXvb1Rp/5rCTPjeR2QH4/t1e9JJ83yyR17e2W3k8fI3uRmJioatasqUwmkzKbzcpkMln+2Ww26867L9q1a6dOnz6tOyMbR1h36Yw0N6GhoSo0NFSZTCYVHBxs+T00NFRVqVJF/fe//1Vbt27VnXlfGGnd74WR+jk3ckjul9xO+kieG7brI7lfcrtRrVy5UjVr1kwFBASogIAA1axZM/Xtt9/qzqL/z6gzL3luJLcrJb/fnhl1e3WE82ZGXXt7x3eq0H3RsWNHODk5Ye7cuahQoQK2b9+OCxcuYNiwYZg2bRqaN2+uO7HQfHx8sGfPHoSFhelOsXCEdZfOiHPTsmVLrFy5Ev7+/rpTiowR170gjNjPuTE+yf2S20kfyXPDdn0k90tuJ7oXnHkiOYy6vTrCeTOjrr2943eq0H3x559/4pdffkFgYCDMZjPMZjMefvhhTJo0CQMHDhT1sTCSSFz3gIAAHDp0CIGBgfD398/z85hTUlKKscxxbNy4UXcCCcS5IUcg+RgluZ2I5EpPT8fMmTOxbNkyqx+rwv3N/cV9PZEc3F6NQeJ5M5KBF1XovkhPT4ePjw8AIDAwEKdPn0Z4eDhCQkJw8OBBzXX2S+K6z5w509I8c+ZMm7/kku6vU6dOYfXq1Vb/8jtjxgxNVWR0nBuyd5KPUZLbiUiucePGYe7cuRg2bBjeeustvPnmmzh27Bi+/fZbjB49WndeDtJPcnJfr4fkuZHcDsju5/ZqDBLPm5EMvKhC90X16tWxZ88eVKhQAY0aNcKUKVPg6uqKzz77jG8/K0IS1713796Wf37uuef0hTiwDRs2ICoqCmFhYThw4ACqV6+OY8eOQSmFunXr6s4jg+LckCOQfIyS3E5Ecn355Zf4/PPP0b59e4wdOxbdu3dHxYoVUbNmTWzduhUDBw7UnZiN9JOc3NfrIXluJLcDsvu5vRqDxPNmJAMvqtB98dZbb+HatWsAgPHjx6NDhw5o3rw5HnjgASxdulRznf2Svu5OTk5ISkpCqVKlst1+4cIFlCpVCunp6ZrK7NuoUaMwfPhwjBs3Dj4+PlixYgVKlSqFZ555Bm3atNGdRwbFuSFHI/kYJbmdiGRJTk5GjRo1AADe3t64dOkSAKBDhw54++23daZZZU8nObmvLz6S50ZyOyC/PxO3V32knzcj4+JFFbovIiMjLf9cqVIlHDhwACkpKfm+PZMKR/q6K6Ws3p6amgpXV9dirnEcCQkJWLJkCQDA2dkZN27cgLe3N8aPH4/HH38cAwYM0FxIRsS5IUcj+RgluZ2IZClXrhySkpJQvnx5VKxYEevWrUPdunWxY8cOuLm56c7Lk/STnNzX6yF5biS3A7L7ub3qI/28GRkXL6rQfdG3b1/MmjXL8rZM4M5nX167dg2vvfYa5s2bp7Hu/njjjTcQEBCgOyMbqes+e/ZsAIDJZMLcuXPh7e1tuS89PR2//fYbqlatqivvvjLi3Hh5eVm+DyMoKAiJiYl46KGHAADnz5/XmXbfGHHdC8KI/Zwb45Pcb6R2yccoye33wkhzU1Bs10dyvxHbn3jiCWzYsAGNGjXCa6+9hp49eyImJgYnTpzAkCFDdOflSepJTkfa1xtx5qXODSC7HZDZz+1VP6nnzQrCqGtv70wqt70SUQHk9oqB8+fPo3Tp0khLS9NUZrv4+HirX74cFRWlqSh/Ute9QoUKAIDjx4+jXLlycHJystzn6uqK0NBQjB8/Ho0aNdKVaDOJc9OpUye0b98ezz//PIYPH45Vq1bhueeew8qVK+Hv74/169frTsyXxHXPSmI/50Y/yf2S2iUfoyS3WyNpbu7Gdn0k90tuz7R161Zs2bIFlStXRseOHXXnWJV5knPIkCGYMGGC1ZOcx44dw+7du3Ul5sme9vWSZl7y3EhuB2T3c3vVT+p5s6ykrr2940UVKpTLly9DKQV/f38cPnwYJUuWtNyXnp6ONWvW4PXXX8fp06c1VubtyJEjeOKJJ7Bv3z6YTCbLqx8y3wZoxLeQ2sO6A0DLli0tJ2SlkTg3mY4cOYKrV6+iZs2auHbtGoYNG2b5y++MGTMQEhKiOzFXktcdkN3PudFHcr/kdsnHKMntgOy5Ybs+kvslt9uqffv2mDt3LoKCgnSn2M1JTsn7eokzL3luJLcD8vsBbq862MN5M6lr7zAUUSGYTCZlNptz/XFyclLvvPOO7sw8dejQQT3++OPq3LlzytvbW8XHx6vff/9dNWzYUP3222+686yyh3WXTuLc2APp6y69Xyrp6y65X3I76SN5btiuj+R+ye228vb2VomJibozsnnkkUdUSkqK7gyHJHnmJc+N5Hal5PdLJXV7tYfzZlLX3lHwnSpUKJs2bYJSCo8++ihWrFiR7TP8XF1dERISgjJlymgszF9gYCB++eUX1KxZEyVKlMD27dsRHh6OX375BcOGDTPkW0jtYd0znTp1CqtXr7b6VsYZM2ZoqsqfxLmxB9LXXXq/VNLXXXK/5HZA7jEKkN0ueW7Yro/kfsnttvLx8cGePXsQFhamO8WuSN3XO8LME92N22vxsofzZlLX3lHwi+qpUFq0aAEAOHr0KIKDg2E2mzUXFVx6errlC6sCAwNx+vRphIeHIyQkBAcPHtRcZ509rDsAbNiwAVFRUQgLC8OBAwdQvXp1HDt2DEop1K1bV3denqTNjb+/v+UtovlJSUkp4pp7J23d7yatn3NjDJL7JbdLPkZJbgdkzw3b9ZHcL7ldOqknOQHZ+3rpMy95biS3A3L7ub0WP3s4byZ17R0FL6rQfZH5WfrXr1+3enCrWbOmjiybVK9eHXv27EGFChXQqFEjTJkyBa6urvjss88M/0oqyesOAKNGjcLw4cMxbtw4+Pj4YMWKFShVqhSeeeYZtGnTRndenqTNzfvvv6874b6Qtu53k9bPuTEGyf2S2yUfoyS3A7Lnhu36SO6X3C6Z5JOcgOx9veSZlzw3ktsB2f3cXvWRfN5M+trbPR2fOUb25+zZs6p9+/a5flahkf30009qxYoVSimlDh8+rMLDw5XJZFKBgYFq/fr1muvyJnndlbrz2cr//POPUkopPz8/9ffffyullIqLi1MhISEay/IneW4kk77u0vulkr7ukvslt0s+RkluV0r23LBdH8n9ktttZcTvVGnQoIEaPXq0Uur/+q5cuaKioqLUxx9/rLkuf5L39ZJnXvLcSG5XSnY/t1d9JJ83k7729o4XVei+6NGjh2rWrJnasWOH8vLyUuvWrVMLFy5U4eHh6rvvvtOdV2AXLlxQGRkZujPyJX3dH3zwQRUfH6+UUioiIkKtWrVKKXXniYWXl5fOtHsiZW6OHz+e5480UtY9N1L6OTfGIrlfSrvkY5Tk9txImRtr2K6P5H7J7dYY8aKK5JOcStnfvl7KzEueG8ntSsnu5/aqj/TzZneTtPb2Tt4HypEh/fLLL5gxYwbq168Ps9mMkJAQ9OzZE1OmTMGkSZN05+Wpb9++uHLlSrbbAgICcP36dfTt21dTlW0krzsANG7cGH/88QcAoF27dhg2bBgmTpyIvn37onHjxprr8iZ5bkJDQ1GhQoVcf4xM8roDsvs5N/pI7pfcLvkYJbkdkD03bNdHcr/kdlu98cYb2b4k2Ai8vLwsHwMTFBSExMREy33nz5/XlWUzyft6yTMveW4ktwOy+7m96iP5vJn0tbd3JqWU0h1B8vn6+mLv3r0IDQ1FSEgIFi9ejGbNmuHo0aN46KGHcP36dd2JuXJyckJSUhJKlSqV7fbz58+jdOnSSEtL01SWP8nrDgBHjhzB1atXUbNmTVy7dg3Dhg3Dli1bULlyZcyYMcPy2ZdGJHlu9uzZk+3327dvY/fu3ZgxYwYmTpyIzp07ayrLn+R1B2T3c270kdwvuV3yMUpyOyB7btiuj+R+ye2Z4uPjrX5WfVRUlKai/HXq1Ant27fH888/j+HDh2PVqlV47rnnsHLlSvj7+2P9+vW6E/MkeV8veeYlz43kdkB2P7dXfSSfN5O+9vaOX1RP90V4eDgOHjyI0NBQ1KpVC59++ilCQ0MxZ84cBAUF6c6z6vLly1B3PgIPV65cgbu7u+W+9PR0/PDDDzl2XEYjcd2zyvrFWl5eXpgzZ47GGtvYw9zUqlUrx23169dHmTJlMHXqVEOeHJe+7tL7Ac6NDpL7JbdnkniMyiS1XfLcsF0fyf2S2zMdOXIETzzxBPbt2weTyYTM12yaTCYAd/4cRjVjxgxcvXoVADBu3DhcvXoVX331leUkp9FJ3Nfbw8xLnhvJ7YDsfm6v+kg8b2Yva2/veFGF7otBgwYhKSkJADBmzBi0adMGX375JVxdXREbG6s3Lhd+fn4wmUwwmUyoUqVKjvtNJhPGjRunocx2EtddOnuYm9yEh4djx44dujOskr7u0vvzwrkpOpL7JbeTPpLnhu36SO6X3J5p0KBBqFChAjZs2IAKFSpg+/btuHDhAoYNG4Zp06bpzsuTxJOc0tnDzEueG8ntgPx+aexhewVknjezl7W3d/z4LyoS169fx4EDB1C+fHkEBgbqzrFq06ZNUErh0UcfxYoVK7J9xq+rqytCQkJQpkwZjYUFJ2Hd/f39La9cy09KSkoR1xScPczN5cuXs/2ulEJSUhLGjh2LAwcOIC4uTk9YHqSvu/R+gHOjg+R+qe2Sj1GS2zNJnRuA7TpJ7pfcnikwMBC//PILatasiRIlSmD79u0IDw/HL7/8gmHDhmH37t26E+2K9H29Pcw8ka24vRqThPNm9rr29oYXVcjhHT9+HMHBwTCbzbpTHMKCBQtsfmzv3r2LsKRwJM+N2WzO8eROKYXg4GAsXboUTZo00VSWP8nrDsju59zoI7lfWrvkY5Tk9rtJm5us2K6P5H7J7f7+/ti1axcqVKiAihUrYu7cuWjZsiUSExNRo0YNw31WvfSTnPayr5c285LnRnI7ILuf2ysVFtfe2HhRhe7Z0KFDbX6s0T/fErhztdralyvWrFlTU5F19rbu0kmZm6w2bdqU7Xez2YySJUuiUqVKcHaW8amQEtc9K4n9nBv9JPdLbid9JM8N2/WR3C+xvXnz5hg2bBg6deqEHj164N9//8Vbb72Fzz77DDt37sTff/+tOzEbeznJaS+kzLzkuZHcDsjvtydStlfA/s6bSVp7R8KLKnTPWrZsme33Xbt2IS0tDeHh4QCAQ4cOwcnJCfXq1cMvv/yiI9Em586dQ58+ffDjjz9avd9oX65oL+sOACdOnMjz/vLlyxdTScFJmxt7IX3dpfdLJX3dJfdLbpd8jJLcDsieG7brI7lfcvvatWtx7do1dO7cGf/88w86dOiAQ4cO4YEHHsDSpUvRqlUr3Yl2S/K+XvLME90Lbq/Fy17Om0lce0ci46WlZEgbN260/POMGTPg4+ODBQsWwN/fHwDw77//ok+fPmjevLmuRJsMHjwYFy9exLZt2/DII4/gm2++wZkzZ/DOO+9g+vTpuvNysJd1B4DQ0NA838pr5AOEtLm528GDB/HBBx8gISEBABAREYFXX30VVatW1VyWN+nrLr2fc6OH5H7J7ZKPUZLbAdlzw3Z9JPdLbo+MjLT8c6VKlXDgwAGkpKQU6CN7dJF8khOQva+XPPOS50ZyOyC7n9tr8bKX82YS196hKKL7oEyZMurvv//Ocfu+fftUUFCQhiLblS5dWm3btk0ppZSPj486ePCgUkqpVatWqWbNmulMy5fkdVdKqbi4uGw/O3bsUJ999pmqWrWqWrFihe68PEmem+XLlytnZ2fVuHFjNWTIEDVkyBDVpEkT5ezsrJYvX647L0+S110p2f2cG30k90tul3yMktyulOy5Ybs+kvslt/fp00ddvnw5x+1Xr15Vffr00VBkO5PJpMxmc64/Rid5Xy955iXPjeR2pWT3c3vVR/J5M+lrb+/4ThW6Ly5fvoxz587luP3cuXO4cuWKhiLbXbt2DaVKlQJw50vQzp07hypVqqBGjRrYtWuX5rq8SV53AKhVq1aO2+rXr48yZcpg6tSp6Ny5s4Yq20iemxEjRmDUqFEYP358ttvHjBmDESNGoEuXLprK8id53QHZ/ZwbfST3S26XfIyS3A7Inhu26yO5X3L7ggULMHnyZPj4+GS7/caNG/jiiy8wb948TWX52717d7bfb9++jd27d2PGjBmYOHGipirbSd7XS555yXMjuR2Q3c/tVR/J582kr72940UVui+eeOIJ9OnTB9OnT0fDhg0BANu2bUN0dLShDw4AEB4ejoMHDyI0NBS1atXCp59+itDQUMyZMwdBQUG68/Iked3zEh4ejh07dujOyJPkuUlKSkKvXr1y3N6zZ09MnTpVQ5HtJK87ILufc6OP5H7J7bmRcIzKjZR2yXPDdn0k90tsv3z5MpRSUErhypUrcHd3t9yXnp6OH374wXIiyKgkn+TMi4R9vcSZzyR5biS3A/L7reH2WvQknzeTvvZ2T/dbZcg+XLt2TQ0YMEC5ublZ3nrp6uqqBgwYoK5evao7L08LFy5U8+fPV0op9ddff6nAwEBlNpuVu7u7Wrp0qd64fEhed6WUunTpUrafixcvqoSEBPXUU0+pWrVq6c7Lk+S5adu2rZo3b16O2+fNm6f++9//aiiyneR1V0p2P+dGH8n9ktslH6Mktysle27Yro/kfont+X0Mj5OTk3rnnXd0Z96Tw4cPK09PT90Z+ZK8r5c48/mRMjfWSG5XSkY/t1d9JJ83k7729s6klFK6L+yQ/bh27RoSExMBABUrVoSXl5fmooK7fv06Dhw4gPLlyyMwMFB3jk2krrvZbM7xZW1KKQQHB2Pp0qVo0qSJprKCkzQ3c+bMwejRo9GtWzc0btwYALB161Z8/fXXGDduHMqUKWN5bFRUlK5Mm0had2sk9XNujENyv6R2yccoye3WSJqbu7FdH8n9Eto3bdoEpRQeffRRrFixAgEBAZb7XF1dERISku25gRFdvnw52+9KKSQlJWHs2LE4cOAA4uLi9ITZyJ729RJmPpPkuZHcDsju5/aqn9TzZllJXXt7xYsqRKTNpk2bsv1uNptRsmRJVKpUCc7O/HTComI2m216nMlkQnp6ehHXkBScG3I0ko9RktuJSJbjx48jODjY5ucJRiL9JCf39XpInhvJ7YDsfm6vRPaHF1XIIQ0dOtTmx86YMaMIS0gSzo0e0tdder9U0tddcr/kdtJH8tywXR/J/ZLbrbl+/TpOnDiBW7duZbu9Zs2amoryx5OcxcteZl7y3EhuB+T3S2Iv26tEXHs5uNchh7R79+5sv+/atQtpaWkIDw8HABw6dAhOTk6oV6+ejjyHcvDgQXzwwQdISEgAAERERODVV19F1apVNZflxLnRQ/q6S++XSvq6S+6X3H43Sceou0lrlzw3bNdHcr/k9qzOnTuHPn364Mcff7R6v5HfvdqiRQvdCYUmaV9vLzMveW4ktwPy+7m9ki249nLwogo5pI0bN1r+ecaMGfDx8cGCBQvg7+8PAPj333/Rp08fNG/eXFeiQ1ixYgWefvpp1K9f3/JW3a1bt6JGjRpYunQpunTporkwO3uam02bNmHatGmWJ3TVqlVDdHS0Idulr7v0/qw4N8VHcr/k9qykHaOyktgueW7Yro/kfsntWQ0ePBgXL17Etm3b8Mgjj+Cbb77BmTNn8M4772D69Om68/Il6STn3aTt6+1l5gHZcyO5HZDbz+2VbMW1F+Q+f/E9kThlypRRf//9d47b9+3bp4KCgjQUOY6wsDD19ttv57h99OjRKiwsTEOR7STPzcKFC5Wzs7Pq1q2bmjVrlpo1a5bq1q2bcnFxUV9++aXuvDxJXnelZPdzbvSR3C+5XfIxSnK7UrLnhu36SO6X3F66dGm1bds2pZRSPj4+6uDBg0oppVatWqWaNWumMy1fy5cvV87Ozqpx48ZqyJAhasiQIapJkybK2dlZLV++XHdeviTv6yXPvOS5kdyulOx+bq90L7j2xsZ3qtA9mz17doH/nT59+sDHx6cIau7d5cuXce7cuRy3nzt3DleuXNFQlDd7WXcASEpKQq9evXLc3rNnT0ydOlVDke2kzU1WEydOxJQpUzBkyBDLbQMHDsSMGTMwYcIE9OjRQ2Nd3iSvOyC7n3Ojj+R+ye2Sj1GS2wHZc8N2fST3S26/du0aSpUqBQDw9/fHuXPnUKVKFdSoUQO7du3SXJe3ESNGYNSoURg/fny228eMGYMRI0YY7pXjd5O8r5c885LnRnI7ILuf22vxspfzZhLX3qHovqpDcplMJhUcHKxCQ0Nt+nFyclKJiYm6s3N49tlnVWhoqFqxYoU6efKkOnnypFq+fLmqUKGC6tWrl+68HOxl3ZVSqm3btmrevHk5bp83b57673//q6HIdtLmJitXV1d1+PDhHLcfPnxYubm5aSiyneR1V0p2P+dGH8n9ktslH6Mktysle27Yro/kfsnt9evXVz/99JNSSqmOHTuqZ599Vp06dUqNGDHC8K++9vDwsPrc5tChQ8rDw0NDUcFI3tdLnnnJcyO5XSnZ/dxei5e9nDeTuPaOhBdV6J6ZTCZ15swZmx/v7e1tyJ3UtWvX1IABA5Sbm5sym83KbDYrV1dXNWDAAHX16lXdeTnYy7orpdQnn3yiSpYsqV555RW1cOFCtXDhQvXKK6+oUqVKqU8++UStWrXK8mM00uYmq4oVK6o5c+bkuP2TTz5RlSpV0lBkO8nrrpTsfs6NPpL7JbdLPkZJbldK9tywXR/J/ZLbFy5cqObPn6+UUuqvv/5SgYGBymw2K3d3d7V06VK9cfmQfJJTKdn7eskzL3luJLcrJbuf22vxspfzZhLX3pGYlFJK97tlSKZx48YhOjoanp6eNj1+0qRJGDBgAPz8/Io27B5du3YNiYmJAICKFSvCy8tLc5F19rTuZrPZpseZTCakp6cXcc29kTI3WX3yyScYPHgw+vbti6ZNmwIANm/ejNjYWMyaNQsvvvii5sL8SVz3rCT2c270k9wvsV3yMUpye1YS5yYT2/WR3C+5PdP169dx4MABlC9fHoGBgbpz8jRnzhyMHj0a3bp1Q+PGjQHc+eLor7/+GuPGjUOZMmUsj42KitKVmSt72NdLnHnJcyO5HZDdz+21eNnTeTNA1to7El5UISJyQN988w2mT5+OhIQEAEBERASio6Px+OOPay4jI+PcEBERkb2wh5OcVPwkz43kdkB+PxHZF15UoSK1d+9e1K9fH7du3dKd4lC47kREREREVBSGDh1q82NnzJhRhCVERET3hufNqLCcdQeQfVNK8RUCGkha902bNmHatGmWV75Xq1YN0dHRaN68ueYy+/fXX39lW/d69eppLiIJODfkSCQfoyS3E5Gx7d69O9vvu3btQlpaGsLDwwEAhw4dgpOTE58jFAPu64nk4PZqLJLOm5Ex2fbeOSKiIrBo0SK0bt0anp6eGDhwIAYOHAgPDw+0atUKixcv1p1nt06dOoXmzZujYcOGGDRoEAYNGoQGDRrg4YcfxqlTp3TnkUFxbsjRSD5GSW4nIuPbuHGj5adjx45o0aIFTp06hV27dmHXrl04efIkWrZsifbt2+tOzdemTZvQsWNHVKpUCZUqVUJUVBR+//133Vk24b5eH8lzI7kdkNvP7ZXI/vDjv6hI7dmzB3Xr1uXV32ImZd0jIiLwwgsvYMiQIdlunzFjBj7//HPLKzjo/mrTpg0uXryIBQsWWF5RePDgQfTp0we+vr746aefNBeSEXFuyNFIPkZJbiciWcqWLYt169bhoYceynb733//jf/+9784ffq0prL8LVq0CH369EHnzp3RrFkzAMDmzZvxzTffIDY2Fj169NBcmDfu6/WQPDeS2wHZ/dxejUfKeTMyLl5UoUK5fPlynvfv3bsXLVq0MNxOavbs2QX+d/r06QMfH58iqCk4qet+Nzc3N+zfvx+VKlXKdvs///yD6tWr4+bNm5rKrJM+N5k8PDywZcsW1KlTJ9vtO3fuRPPmzXH9+nVNZdZJX3fp/Zk4N8VLcr/k9qykHaOyktgueW7Yro/kfsntWfn4+GDNmjV45JFHst2+ceNGREVF4cqVK3rCbCD9JKe0fb29zLzkuZHcDsju5/Za/KSeN7OHtXcUvKhChWI2m2EymXK9XykFk8lkuJ2U2WxGuXLl4OTkZNPjT548iUOHDiEsLKyIy2wjdd3vVqlSJURHR+PFF1/MdvucOXMwffp0HD58WFOZddLnJlOVKlWwaNEiNGzYMNvt27dvR48ePfDPP/9oKrNO+rpL78/EuSlekvslt2cl7RiVlcR2yXPDdn0k90tuz6pXr174/fffMX36dMtzhG3btlm+J2DBggWaC3Mn7STn3aTt6+1l5iXPjeR2QHY/t9fiJ/W8mT2svaPgF9VToWzcuFF3wj3766+/UKpUKZsea7QrvpLXPathw4Zh4MCBiIuLQ9OmTQHceftubGwsZs2apbnOOslzk2nq1Kl47bXX8NFHH6F+/foA7vy5Bg0ahGnTpmmus076ukvvBzg3Okjul9yeSeIxKpPUdslzw3Z9JPdLbs80Z84cDB8+HD169MDt27cBAM7OzujXrx+mTp2quS5vwcHB2LBhQ44TtOvXr0dwcLCmKttJ3Nfbw8xLnhvJ7YDsfm6vxU/yeTPpa+8oeFGFCqVFixb5PiYlJaUYSgpmzJgx8Pb2tvnxb7zxBgICAoqwqGCkrvvdBgwYgNKlS2P69OlYtmwZgDtv6f3qq6/w+OOPa67LSfrcZHruuedw/fp1NGrUCM7Odw4DaWlpcHZ2Rt++fdG3b1/LY40wR9LXXXp/Js5N8ZLcL7k9K2nHqKwktkueG7brI7lfcntWnp6e+PjjjzF16lQkJiYCACpWrAgvLy/NZfmTeJIzK2n7enuZeclzI7kdkN3P7bX4ST1vZg9r7yj48V9UZNatW4e5c+dizZo1uHHjhu4ch8F1p/wU5GMYevfuXYQlJAnnhoiIiOzNN998g+nTp1u+iyEiIgLR0dGGPMlJxiF5biS3A/L7yRh43ozuB15Uofvq+PHjmDdvHhYsWIB///0Xbdu2RZcuXfDkk0/qTiuwvXv3on79+rh165bulHxJX/e//vrL8qSoWrVqqFevnuaieydpbuyJ9HWX3i+V9HWX3C+pXfIxSnK7NZLm5m5s10dyv+R2Kj72tK/nzJO94/aqj/TzZllJW3t7xY//okK7desWVq5ciblz52Lz5s1o3bo1Tp06hd27d6NGjRq68+6ZUspwX1iVlT2s+6lTp9C9e3ds3rwZfn5+AICLFy+iadOmWLp0KcqVK6c38B4YfW7slfR1l94vlfR1l9wvoV3yMUpye14kzE1u2K6P5H7J7ZJIPclpj/t6STMvdW4A2e2AzH5ur3rYw3kzaySsvSMw6w4g2V577TWUKVMGs2bNwhNPPIFTp05hzZo1MJlMcHJy0p1nt+xl3fv374/bt28jISEBKSkpSElJQUJCAjIyMtC/f3/deURE5MAkH6MktxMRFZdTp06hefPmaNiwIQYNGoRBgwahQYMGePjhh3Hq1Cndefnivl4PyXMjuR2Q3c/ttfjZy3kzMi5eVKFC+eSTT/Diiy9i3bp1eOWVV/DAAw/oTnII9rLumzZtwieffILw8HDLbeHh4fjggw/w22+/aSwjIiJHJ/kYJbmdiKi4SD/JyX29HpLnRnI7ILuf22vxs5fzZmRc/PgvKpSFCxdi3rx5CAoKQvv27fHss8+ibdu2urNscvny5Tzvv3LlSjGVFJzkdc8qODgYt2/fznF7eno6ypQpo6Eof5LnRjLp6y69Xyrp6y65X3J7JonHqExS2yXPDdv1kdwvtX327NkF/nf69OkDHx+fIqi5d5s2bcKWLVusnuRs3ry5xjLbSNzXS535rCTPjeR2QHY/t9fiJ/m8mfS1dxS8qEKF0r17d3Tv3h1Hjx5FbGwsXnnlFVy/fh0ZGRmIj49HtWrVdCfmys/PDyaTKdf7lVJ53q+T5HXPaurUqXjttdfw0UcfoX79+gDufD7qoEGDMG3aNM111kmeG8mkr7v0fqmkr7vkfsntmSQeozJJbZc8N2zXR3K/1PbBgwejXLlyNn98ysmTJ9GhQwfDXVSReJIzK4n7eqkzn5XkuZHcDsju5/Za/CSfN5O+9o7CpJRSuiPIfiilsG7dOsTExGD16tUIDAxE586d7+nVTEVt06ZNNj2uRYsWRVxSeJLWPSt/f39cv34daWlpcHa+c40385+9vLyyPTYlJUVHYg5S56Zu3boFerzJZMLq1atRtmzZIioqGKnrnklqP+dGL8n9ktszSTxGZZLaLnlu2K6P5H6p7WazGcnJyShVqpRNj/fx8cGePXsQFhZWxGUFs2rVKrz77rs5TnK+9tprGDlyJDp16qQ3MB8S9/VSZz4ryXMjuR2Q3c/tVT9J583sbe3tFS+qUJFJSUnBF198gdjYWMTFxenOuScpKSkICAjQnVEgktZ9wYIFNj+2d+/eRVhyfxlxbsxmM4YNGwZvb+98H6uUwuTJkxEfH2+4v/zmxYjrXhBG7OfcGJ/kfqO3Sz5GSW7Pj9HnJi9s10dyvxHbx40bh+joaHh6etr0+EmTJmHAgAHw8/Mr2rACkniSMyt73dcbceazkjw3ktsB2f3cXo1F0nmz3Ehde3vCiypUpHbu3IkxY8bgu+++051SIOvWrcPcuXOxZs0a3LhxQ3dOgUldd+mMPDf28opCa4y87rYwcj/nxrgk90tuJ30kzw3b9ZHcL7ldCns9ySmVlJmXPDeS2wH5/fZEyvaaF6nnzexh7e0Fv1OFCm3t2rX4+eef4erqiv79+yMsLAwHDhzA66+/jjVr1iAyMlJ3ok2OHz+OefPmYcGCBfj333/Rtm1bfPHFF7qzcmUv6y6dlLk5evQoSpYsafPj4+PjDf25tFLWPTdS+jk3xiK5X3I76SN5btiuj+R+ye1327t3L+rXr49bt27pTskVT7rqJ3HmJc+N5HZAfr90ErdXezlvJnHtHYIiKoS5c+cqk8mkHnjgAWU2m1XJkiXVwoULlZ+fn3rxxRdVfHy87sQ8paamqiVLlqhWrVopd3d31aFDB+Xk5KT27t2rOy1P0tddOqlzI530dZfeL5X0dZfcL7md9JE8N2zXR3K/5Pa8xMXFKbPZrDuDDMheZ57IHkneXqWfN5O89o6C71ShQpk1axbee+89REdHY8WKFXjyySfx8ccfY9++fShXrpzuvDy99tprWLJkCSpXroyePXviq6++wgMPPAAXFxc4OTnpzsuT5HWXTvLcnDhxwqbHlS9fvohLCk7yugOy+zk3+kjul9xO+kieG7brI7lfcjvRveDME8khfXuVfN5M+to7DN1XdUg2T09PdfToUaWUUhkZGcrFxUX98ccfeqNs5OTkpN544w11+fLlbLc7Ozur/fv3a6qyjeR1l07y3JhMJmU2m3P8ZL3dyclJd6ZVktddKdn9nBt9JPdLbid9JM8N2/WR3C+5PT98pwpZY88zT2RvpG+vks+bSV97R2HWfVGHZLtx4wY8PT0BACaTCW5ubggKCtJcZZuFCxdi+/btCAoKwlNPPYXvvvsO6enpurNsInndpZM8N7t378auXbus/kRHR8PNzQ0BAQG6M62SvO6A7H7OjT6S+yW3kz6S54bt+kjul9x++fLlPH+uXLmiO5EMSPLMEzka6dur5PNm0tfeUZiUUkp3BMllNpvxzjvvwNvbGwAwcuRIREdHIzAwMNvjBg4cqCPPJkePHkVsbCxiY2Nx/fp1pKSk4KuvvkLXrl11p+VK8rrXrVu3QI83mUxYvXo1ypYtW0RF90bi3Fizfv16vP766zh06BCGDh2KYcOGwcfHR3dWrqSvu/T+TJyb4iW5X1q75GOU5Pa7SZubrNiuj+R+ie1msxkmkynX+5VSMJlMPAl0n9nLvl7izBMVFLdXvSSfN8skde0dBS+qUKGEhobm+WQauHNgOHLkSDEV3TulFNatW4eYmBisXr0agYGB6Ny5M2bPnq07LQfJ6242mzFs2DDLgS0vSilMnjwZ8fHxCAsLK4a6gpM0N1nt2rULI0eOxO+//47+/ftj9OjRKFWqlO4sm0ld90xS+zk3eknul9Iu+RgluT03UubGGrbrI7lfUvumTZtselyLFi2KuKRgpJ/ktLd9vZSZlzw3ktsB2f3cXvWSfN7sbtLW3lHwogqRFSkpKfjiiy8QGxuLuLg43Tl2xWw2Izk52eYTsT4+PtizZ49hn1hkJWFuEhMT8cYbb2DFihXo1q0b3nnnHRFrmxcJ654XCf2cG+OR3G/kdsnHKMnttjDy3OSH7fpI7pfcniklJcVwHxEq/SSnPe/rjTzzkudGcjsgu5/bKxUFrr1xOOsOIDKigIAANG/eHOvXr9edYneOHj2KkiVL2vz4+Ph4lClTpgiL7h+jz83LL7+MmJgYtGzZEn/99Rdq166tO+m+MPq658fo/ZwbY5Lcb+R2yccoye22MPLc5Ift+kjul9y+bt06zJ07F2vWrMGNGzd05+QQHR1t80nO6dOnF3FNwdjzvt7oMy95biS3A3L7ub1SUeDaGwe/qJ4KpV27drh06ZLl98mTJ+PixYuW3y9cuIBq1appKLPN2rVrMXz4cLzxxhuWt/wdOHAAnTp1QsOGDZGRkaG50DrJ6x4SEpLvWzCzCg4OhpOTUxEWFZzUuZkzZw6cnJxw9uxZ9O3bF3Xr1rX6Y1RS1z2T1H7OjV6S+yW2Sz5GSW7PSuLcZGK7PpL7Jbdndfz4cYwZMwahoaF48sknYTab8cUXX+jOyuFeTnKGhIQUYVHB2MO+XuLMS54bye2A7H5ur3pJPm8GyF57h6GICsFsNqszZ85Yfvfx8VGJiYmW35OTk5XZbNaRlq+5c+cqk8mkHnjgAWU2m1XJkiXVwoULlZ+fn3rxxRdVfHy87sRcSV53pZQ6fvy4TT9GJHluxo4da9OPEUled6Vk93Nu9JHcL7ld8jFKcrtSsueG7fpI7pfcrpRSqampasmSJapVq1bK3d1ddejQQTk5Oam9e/fqTrNrkvf10meeqKC4veoj+byZ9LV3FLyoQoViMpmy7aS8vb3F7KRq1KihpkyZopRSavny5cpkMqkmTZqokydPai7Ln+R1V+pOv9lszvGT9XYnJyfdmVZJnhvJpK+79H6ppK+75H7J7ZKPUZLblZI9N2zXR3K/5PZXX31VPfDAA6px48bqww8/VOfPn1dKKeXs7Kz279+vuS5vkk9yKiV7Xy955iXPjeR2pWT3c3vVR/J5M+lr7yj4RfVUKHd/8dbdX6x15swZlClTBunp6TozrfLy8sL+/fsRGhoKpRTc3NywceNGNGvWTHdaviSvOwDs2bPH6u1KKSxduhSzZ8+Gt7c3zp49W8xl+ZM8N1nt3bsXhw4dAgBUqVIFNWvW1FyUN+nrLr0/E+emeEnul9wu+RgluR2QPTds10dyv+R2Z2dnjBw5Eq+//jp8fHwst7u4uGDPnj2G/kgVs9ls9SN5lFKW200mE9LS0oo7zSaS9/WSZ17y3EhuB2T3c3vVR/J5M+lr7yj4RfVUKCaTKcfBrSCfGanTjRs34OnpCeBOs5ubG4KCgjRX2UbyugNArVq1cty2fv16vP766zh06BBGjBiBYcOGaSjLn+S5AYDt27ejX79+iI+PR+Y1dZPJhIceeggxMTFo0KCB5kLrpK+79H7OjR6S+yW3Sz5GSW4HZM8N2/WR3C+5feHChZg3bx6CgoLQvn17PPvss2jbtq3uLJvs3r3b6u13n+Q0Ksn7eskzL3luJLcDsvu5veoj+byZ9LV3FLyoQoWilMJzzz0HNzc3AMDNmzfx0ksvwcvLCwCQmpqqMy9fc+fOtRx809LSEBsbi8DAwGyPGThwoI60PElf96x27dqFkSNH4vfff0f//v3xww8/WF5JYFRS5yY+Ph6tWrVCREQEFi1ahIiICMvtM2fORKtWrbB161bDvrJQ6rpnktrPudFLcr/k9kwSj1GZpLZLnhu26yO5X2p79+7d0b17dxw9ehSxsbF45ZVXcP36dWRkZCA+Pt6wzwsA2Sc57yZxXy915iXPjeR2QH5/Jm6vxUv6eTPJa+8o+PFfVCh9+vSx6XHz588v4pKCCw0NzfcqtclkwpEjR4qpyHaS1z1TYmIi3njjDaxYsQLdunXDO++8Y3kbppFJnptu3bohLS0NK1asyPFnUEqhc+fOcHFxwbJlyzQV5k7yugOy+zk3+kjul9wOyD1GAbLbJc8N2/WR3C+5/W5KKaxbtw4xMTFYvXo1AgMD0blzZ8yePVt3Wp7uPsk5evRow5/kBOTu6+1l5qXODSC7HZDZz+1VD8nnzaSvvcMouq9rISKybsCAAcrV1VVFRkaq3bt3685xGIGBgWrHjh253r99+3YVGBhYjEUkAeeGHI3kY5TkdiKyHxcuXFAzZ85UtWrV0p2Sq3/++Ud169ZNOTk5qe7du2f78mKj475eH8lzI7ldKbn93F6J7BffqUJExc5sNsPd3R1Vq1bN83G7du0qpiLH4O7ujsOHDyM4ONjq/SdPnkTlypVx8+bNYi4jI+PckKORfIyS3E5E9mXnzp0YM2YMvvvuO90pObz88suIiYlBy5YtMXnyZNSuXVt3UoFwX6+H5LmR3A7I7uf2SmS/+J0qVCidO3e26XErV64s4pKCa9euHZYsWYISJUoAACZPnoyXXnoJfn5+AIALFy6gefPmiI+P11hpneR1B4AxY8boTrhnkucmJCQE27dvz/Xk+LZt2xASElLMVbaRvO6A7H7OjT6S+yW3Sz5GSW4HZM8N2/WR3C+5HQDWrl2Ln3/+Ga6urujfvz/CwsJw4MABvP7661izZg0iIyN1J1o1Z84cuLu74+zZs+jbt2+ujzPqSU7J+3rJMy95biS3A7L7ub3qI/m8mfS1dxR8pwoVyt2fUbh48WJ07NgRPj4+2W434mcUOjk5ISkpyfL5m76+voiLi7N8tuWZM2dQpkwZpKen68y0SvK6Syd5bsaMGYPY2Fh8//33qF69erb79u3bh44dO6JXr14YP368psLcSV53QHY/50Yfyf2S20kfyXPDdn0k90tuj4mJwfPPP4+AgAD8+++/eOCBBzBjxgy89tpreOqppzBo0CBERETozrRq3LhxNj1O8slQo5I885LnRnI7IL9fKsnbKyD7vJn0tXcUfKcKFcrdO5/ly5djypQpIr506+7riZKuL0pe97vt3bsXhw4dAgBUqVIFNWvW1FyUN8lzM2rUKKxfvx61a9fGY489hoiICCilkJCQgPXr16Nhw4Z44403dGdaJXndAdn9nBt9JPdLbs9K2jEqK4ntkueG7fpI7pfcPmvWLLz33nuIjo7GihUr8OSTT+Ljjz/Gvn37UK5cOd15ebKnE6/S9vWSZ17y3EhuB+T3Z+L2WrwknzeTvvaOghdViEiL7du3o1+/foiPj7ccIEwmEx566CHExMSgQYMGmgvtj7u7OzZu3IiZM2diyZIl2LRpE4A7T+jeeecdDBkyBG5ubporyWg4N+SIJB+jJLcTkRyJiYl48sknAdz5iBVnZ2dMnTrV8BdU7ibtJGcm7uv1kjo3gOx2QGY/t1ci+8SLKuSwTCYTTCZTjtuo6MXHx6NVq1aIiIjAokWLLB8NEB8fj5kzZ6JVq1bYunUrqlWrprk0J+lz4+rqipEjR2LkyJG6UwpE+rpL7+fc6CG5X3K75GOU5HZA9tywXR/J/ZLbb9y4AU9PTwB3mt3c3BAUFKS5ynaST3JK3tdLnnlA9txIbgfk9nN7pXvBtZeB36lC95WPjw/27Nkj4u10ZrMZbdu2tbzCes2aNXj00Ufh5eUFAEhNTcVPP/0k4jMKJa07AHTr1g1paWlYsWJFjgODUgqdO3eGi4sLli1bpqkwd/Y0N5JIX3fp/VJJX3fJ/ZLbJR+jJLcDsueG7fpI7pfe/s4778Db2xsAMHLkSERHRyMwMDDb4wYOHKgjL0/x8fFo1KgRIiIiMGTIkBwnOQ8ePGjYk5yA7H295JmXPDeS2wHZ/dxejUPSeTN7W3t7xYsqVCirV6/O9nv37t3x/vvv48EHH8x2e1RUVHFm2eTuL63KjRG/tEryugNAyZIl8eOPP6J+/fpW79+xYwfatWuHc+fOFXNZ/iTPjb+/v02vbkhJSSmGmoKRvO6A7H7OjT6S+yW3Sz5GSW4HZM8N2/WR3C+5PTQ0NN/nByaTCUeOHCmmIttJPskJyN7XS555yXMjuR2Q3c/tVR/J582kr72j4EUVKhSz2ZzvY0wmE6+e3mfS193d3R2HDx9GcHCw1ftPnjyJypUr4+bNm8VcZt8WLFhg0+N69+5dxCUkCeeGHI3kY5TkdiKi4iL5JCfAfb0ukudGcjsgu5/bqz7Sz5uR8fE7VahQMjIydCc4JOnrHhISgu3bt+f6xGLbtm0ICQkp5ir7V6FCBTRt2hTOztz1k+04N+RoJB+jJLcTERWXK1eu5HilclalS5fGlStXirGoYLiv10Py3EhuB2T3c3vVR/p5MzI+niGh+yI1NRVpaWmWz/eToHPnzjY9buXKlUVccu8krjsAPP300xg6dCjCw8NRvXr1bPft27cPw4cPR69evTTV5U3y3LRs2RJJSUkoVaqU7pQCk7zugOx+zo0+kvslt0s+RkluB2TPDdv1kdwvub1du3ZYsmQJSpQoAQCYPHkyXnrpJfj5+QEALly4gObNmyM+Pl5jpXXST3JK3tdLnnnJcyO5HZDdz+1VP4nnzexl7e1d/u+FIsrDuXPn0LZtW3h7e8PX1xeNGzfGP//8ozvLJiVKlMj28/3338NsNue43YgkrzsAjBo1CuXKlUPt2rXRtm1bDB06FEOGDEGbNm1Qp04dlClTBm+88YbuTKskz43kT3uUvO6A7H7OjT6S+yW3Sz5GSW4HZM8N2/WR3C+5fe3atUhNTbX8/u6772b7frW0tDQcPHhQR1q+Mk9y/v333znuyzzJ+dRTT2kos43kfb3kmZc8N5LbAdn93F71kXzeTPraOwp+pwoVSt++ffHjjz9i4MCBcHd3x6effoqgoCBs3LhRd1qB+fj4YM+ePQgLC9Odki97WPdbt25h5syZWLJkCQ4dOgQAqFKlCp5++mkMGTIEbm5umgttI2luzGYzzpw5g5IlS+pOKTRJ626NpH7OjXFI7pfWLvkYJbn9btLmJiu26yO5X1K72WxGcnKy5Z2sd7efOXMGZcqUMeRn1d+8eROtWrXCtm3b8NhjjyEiIgJKKSQkJGD9+vVo2LAhfvnlF7i7u+tOzZW97OslzbzkuZHcDsjv5/aqhz2cN8skbe0dBS+qUKEEBwdj7ty5iIyMBAAcPnwYERERuHbtmpgDQyZJOyl7WnfpJM2N2WxG27Zt850RCW8hlbTu1kjq59wYh+R+ye2kj+S5Ybs+kvsltUu+qALYz0lO6STNPCB7biS3A/L77YG07dWezptJW3tHwe9UoUI5ffo0atWqZfm9cuXKcHNzQ1JSEkJDQ/WF2TmuO90rHx8feHh46M4gYTg3RERElJXJZILJZMpxmxSurq4YOXIkRo4cqTuFBJE8N5LbAfn9VPx43oyKGi+qUKE5OTnl+J1vgCp6ktfd39/fpr90Zf1cZro/Zs+eLfILx0kvzg05EsnHKMntRCSLUgrPPfec5dW+N2/exEsvvWT5IuCs37dC9xf39URycHvVS/J5MzI+XlShQlFKoUqVKtkOElevXkWdOnVgNpsttxnxALF69epsv2dkZGDDhg05vvwsKiqqOLNsInndAeD999/XnXDPJM+NpFcP3k3yugOy+zk3+kjul9wu+RgluR2QPTds10dyv+T23r17Z/u9Z8+eOR7Tq1ev4sopEOknOSXv6yXPvOS5kdwOyO7n9qqP5PNm0tfeUfA7VahQFixYYNPj7n7SbQRZd6K5MZlMhvwcYMnrDgC//fYbmjZtCmdnedd1Jc/N3Z99fbeEhATExMRg2rRpxVyWP8nrDsju59zoI7lfcrvkY5TkdkD23LBdH8n9ktsl49+l9JE885LnRnI7ILuf26s+kudG+to7Cl5UIaJi5+TkhKSkJH6cUDHbtGkTmjVrlu0J3bVr17B06VLExMRg69atqFatWo5XP5Bj49yQo5F8jJLcTkRUXCSf5AS4r9dF8txIbgdk93N7JbJfvKhCDi81NRVpaWmWz/+lopffK98lkD43mzdvRkxMDJYtW4YbN25gyJAh6N+/P6pWrao7LU/S1116P+dGD8n9EtslH6Mkt2clcW4ysV0fyf0S2zt37mzT41auXFnEJQUn/SSnPezrJc685LmR3A7I7uf2SoXBtTe2/N9PRJQHf39/BAQE5PtjROfOnUPbtm3h7e0NX19fNG7cGP/884/uLJtIXvdMUr+nQfLcnD17FlOmTEHVqlXRtWtX+Pn54ddff4XZbEbfvn0NfWJc8roDsvs5N/pI7pfcDsg9RgGy2yXPDdv1kdwvub1EiRLZfr7//nuYzeYctxuRPbyuVOq+XvLMS54bye2A/H5ur3pIPm8mfe0dBd+pQoUi+TMK+/btix9//BEDBw6Eu7s7Pv30UwQFBWHjxo260/Iled2BO6/WaNu2Ldzc3PJ8nBFf2SZ5bjw8PNC1a1f07NkTjz32mOVzOl1cXLBnzx5Uq1ZNc2HuJK87ILufc6OP5H7J7ZKPUZLbAdlzw3Z9JPdLbr+bj48P9uzZg7CwMN0p+TKbzThz5gxKliypO+WeSN7XS555yXMjuR2Q3c/tVR/J582kr72j4EUVcljBwcGYO3cuIiMjAQCHDx9GREQErl27lu8BjwrHbDajW7du8PDwyPNx8+fPL6Yi20mem6pVqyI1NRU9evTAs88+a3mHgYST45LXHZDdz7nRR3K/5HbJxyjJ7YDsuWG7PpL7JbffTdpFFaknOQHZ+3rJMy95biS3A7L7ub3SveDayyDvW55IlKSkJEycOBEffvih7pQcTp8+jVq1all+r1y5Mtzc3JCUlITQ0FB9YfeBkdc90+zZs0V+rqjkuTlw4IDlOzEaNGiAKlWqoGfPngCM/5ZkyesOyO7n3OgjuV9yOyD3GAXIbpc8N2zXR3K/5HbpfHx88j3JaWRS9/XSZ17y3EhuB2T3c3s1JiOfN7P3tbcXvKhChbZ//35s3LgRrq6u6NatG/z8/HD+/HlMnDgRc+bMMfSrlZycnHL8LuXNW5LX3egnYvMjeW6aNWuGZs2aYfbs2ViyZAnmz5+P9PR0vPzyy+jRowc6depk2LdVS153QHY/50Yfyf1S2yUfoyS3Z5I6NwDbdZLcL7ldMqknOQH5+3rJMy95biS3A3L7ub3qJfm8mfS1dwT8+C8qlNWrV6Nr165IS0sDAISFheHzzz9Ht27dUK9ePQwePBht2rTRXGld5hcpZj3IXbx4Eb6+vpbvDACAlJQUHXl5krzuwJ21T05OzvVJUUJCAmJiYjBt2rRiLsuf5LnJTeZ6L1y4ECkpKbh9+7bupBykr7v0fms4N0VPcr/0dsnHKKntgPy5Ybsekvslt69evTrb7927d8f777+PBx98MNvtUVFRxZllEycnJyQlJYk8QQvI3tdLnnnJcyO5HZDdz+1VH8nnzaSvvaPgO1WoUN555x288sormDBhAubOnYuhQ4di4MCB+OGHH9CgQQPdeXky4mdW2kryugPAxo0bERAQkO22a9euYenSpYiJicHWrVtRrVo1Qz6xkDw3uYmIiMC0adMwefLkHH9BNgrp6y693xrOTdGT3C+5XfIxSnI7IHtu2K6P5H7J7Z06dcpx24svvpjtd5PJhPT09GIqsl1+rys18klOQPa+XvLMS54bye2A7H5ur/pIPm8mfe0dhiIqBF9fX3X48GGllFJpaWnKyclJ/fzzz5qr7J89rfsff/yh+vTpo7y8vJTZbFbDhg1TCQkJurMcUkJCgqpcubLuDBKGc0P2TPIxSnI7EVFR+vXXX9Xt27ez3Xb16lU1d+5c1aRJE2UymdRDDz2kqa5guK8vPpLnRnK7UvL7M3F7LV72dN6MjMmc/2UXotxduXIFvr6+AO68JdPDw8PQn0loL6Sv+9mzZzFlyhRUrVoVXbt2hZ+fH3799VeYzWb07dsXVatW1Z3okFJTU5GYmKg7g4Th3JC9kXyMktxORDKlpqbi2rVrujMKpEWLFnB2vvOhHZs3b0bfvn3x4IMP4oUXXkDTpk0RHx+Pv//+W3Nl7riv10Py3EhuB2T3c3vVR/p5MzI+fvwXFdratWtRokQJAEBGRgY2bNiQ44BmxM/S9ff3t+lLw4z6GYVS1x0AQkJC0LVrV8yaNQuPPfZYts+ENDrpcyOV9HWX3i+V9HWX3C+5XfIxSnI7IHtu2K6P5H7J7efOnUOvXr2wfv16ZGRkoEGDBli0aBEqVaqkOy1fZ8+eRWxsLObNm4dLly6he/fu+PXXX9GkSRMRJzkl7+slz7zkuZHcDsju5/aql9TzZvaw9o6AF1Wo0Hr37p3tdymfpfv+++/rTigUqesO3Hli8ccff6B8+fIICQkx9JOgu0mfG6mkr7v0fqmkr7vkfsntko9RktsB2XPDdn0k90tuHzlyJOLi4jB+/Hi4u7vj008/xfPPP4+NGzfqTsuX5JOcgOx9veSZlzw3ktsB2f3cXvWSet7MHtbeEfCiChVKRkaG7oR7dvfOVRLJ6w4ABw4cwObNmxETE4MGDRqgSpUq6NmzJwDYdDVeJ8lzI5n0dZfeL5X0dZfcL7ld8jFKcjsge27Yro/kfsntP//8M2JjYxEZGQkA6NChAyIiIpCamgo3NzfNdXmTfJITkL2vlzzzkudGcjsgu5/bqz6Sz5tJX3tHIefyLlExS0pKwquvvqo7w241a9YM8+bNQ1JSEl566SV8/fXXSE9Px8svv4zPP/8c586d0514T4w8N/7+/ggICMj1p3nz5roT75mR190WRu7n3BiX5H6jt0s+Rkluz4/R5yYvbNdHcr+R20+fPo1atWpZfq9cuTLc3NyQlJSksco2Bw4cwKJFi5CUlIQGDRqgXr16mDlzJgDjn+TMZK/7eiPPvOS5kdwOyO/n9kr3G9feGExKKaU7guR6+eWXMWXKFHh7ewMAlixZgqioKHh5eQEALl68iB49euCHH37QmZmr/fv3Y+PGjXB1dUW3bt3g5+eH8+fPY+LEiZgzZw7CwsKwf/9+3Zk5SF/33CQkJCAmJgYLFy5ESkoKbt++rTvJKqlzs2DBApseZ9RXRUhd90xS+zk3eknul9xujZRjlDWS2iXPDdv1kdwvtd3JyQnJyckoWbKk5TZfX1/s2bMHFSpU0FhWMFevXsWSJUswf/58bN26FS1atECPHj3QqVOnbH82CaTs66XOfFaS50ZyOyC/PxO316In/byZ5LV3GIqoEMxmszpz5ozldx8fH5WYmGj5PTk5WZnNZh1p+Vq1apVycXFRJpNJmUwmVbFiRfXLL7+owMBAFRkZqX788UfdibmSvO62uH37tlqxYoXuDKskz41k0tdder9U0tddcr/k9vwY+RiVH6O3S54btusjuV9yu8lkUn5+fsrf39/yYzKZVIkSJbLdJkl8fLwaNmyYKlWqlHJ2dtadc8+MvK+XPPO5kTw3ktuVkt+vFLfXoiT5vJn0tXcUvKhChWIymbLtpLy9vcXspBo0aKAGDx6srly5ombOnKlMJpOqXr262r59u+60fEled1skJCSoypUr686wSvLcXLp0yepPWlqa7rR8SV53pWT3c270kdwvuT0/Rj5G5cfo7ZLnhu36SO6X3B4bG2vTj0RGPslpCyPv6yXPfH4kz43kdqVk93N7LTqSz5tJX3tHwYsqVCiSd1K+vr7q8OHDSiml0tLSlJOTk/r55581V9lG8rrbIi4uzrD90ufGbDbn+HFxcVFVqlRRn332me7EXEled6Vk93Nu9JHcL7k9P0Y+RuXH6O2S54bt+kjul9xuz4x8ktMWRt7X2/PMS54bye1Kye7n9lp0JJ83k772jsJZ98ePEely5coV+Pr6ArjzmcAeHh4ICwvTXEVGJ3luNm7caPX2ixcvYufOnYiOjoazszP69OlTzGX5k7zugOx+zo0+kvslt5M+kueG7fpI7pfcbs9SU1ORmJioO8Mu2fPMS54bye2A/H6jsuft1ei49jLwogoV2ujRo+Hp6QkAuHXrFiZOnIgSJUoAAK5fv64zLV9r1661tGZkZGDDhg34+++/sz0mKipKR1q+JK+7dFLnpkWLFrne9/jjjyM0NBQffPCBIU+OA3LXPZPUfs6NXpL7JbeTPpLnhu36SO6X2u7v7w+TyZTv41JSUoqhhiSROvNEjkj69ir5vJn0tXcEJqWU0h1Bcj3yyCM2PZnO7ZXOOpnN5nwfYzKZkJ6eXgw1BSN53W2xZ88e1K1b15BrL3lu8pOYmIg6derg8uXLulNykL7u0vvzwrkpOpL7Jbfnx8jHqPwYvV3y3LBdH8n9ktsXLFhg0+N69+5dxCX3n9H3lfkxcr/kmc+Pkdc9P5LbAdn9Rm6Xvr1KPm8mfe0dBd+pQoXy66+/6k64ZxkZGboT7pnkdQfyf2VbWlpaMdYUjOS5yc+lS5csr4QwGunrLr0/L5yboiO5X3K75GOU5HZA9tywXR/J/ZLbJV4ssReS9/WSZ57oXnB71UfyeTPpa+8oeFGFCu3y5cvYtm0bbt26hYYNG6JkyZK6kxyC5HV///33dSfQXW7fvo2pU6eiUaNGulNIEM4N2SPJxyjJ7URkX5KSkjBx4kR8+OGHulNykHySE+C+XhfJcyO5HZDdz+1VL8nnzcj4+PFfVChxcXFo164dkpOTAQA+Pj5YtmwZIiMjNZfl7+WXX8aUKVPg7e0NAFiyZAmioqLg5eUF4M6XMPfo0QM//PCDzkyrJK+7dJLnpnPnzlZvv3TpEvbv3w+TyYTff/8dlSpVKuay/Eled0B2P+dGH8n9kttJH8lzw3Z9JPdLbgeA/fv3Y+PGjXB1dUW3bt3g5+eH8+fPY+LEiZgzZw7CwsKwf/9+3Zk52PNHlxmd5JmXPDeS2wH5/VJJ3l4B2efNpK+9o+BFFSqUyMhIXL16FdOmTYO7uzsmTJiAffv24fDhw7rT8uXk5ISkpCSUKlUKAODr64u4uDiEhYUBAM6cOYMyZcoY8jMKJa87gFy/e8HLywtOTk7FXFMwkucmty8S9/X1RXh4OJ555hnDfoyT5HUHZPdzbvSR3C+5XfIxSnI7IHtu2K6P5H7J7atXr0bXrl0trxAPCwvD559/jm7duqFevXoYPHgw2rRpo7nSPkne10ueeaJ7we1VH8nnzaSvvaPgx39RoezcuRPr1q1D3bp1AQDz5s1DQEAALl++DF9fX811ebv7eqKk64uS1x0A/Pz8rL5918nJCRUqVMDw4cPx/PPPayjLn+S5mT9/vu6EeyZ53QHZ/ZwbfST3S26XfIyS3A7Inhu26yO5X3L7O++8g1deeQUTJkzA3LlzMXToUAwcOBA//PADGjRooDsvT5JPcgKy9/WSZ17y3EhuB2T3c3vVR/J5M+lr7yh4UYUKJSUlBeXKlbP87ufnBy8vL1y4cMHwOynJpK/7xo0brd5+8eJF7Ny5E9HR0XB2ds71FfJ077Zu3Yo1a9bg1q1baNWqFV9BSDbh3JAjkXyMktxORLIcPHgQixcvhre3N1577TUMHz4cM2fONPwFFUD2SU6A+3pdJM+N5HZAdj+3V32knzcj4+NFFSq0+Ph4y2cUAneuoCYkJODKlSuW22rWrKkjza5JXvcWLVrket/jjz+O0NBQfPDBB3xicZ8tX74cTz31FDw8PODi4oIZM2bgvffew/Dhw3WnkYFxbsjRSD5GSW4nIlmuXLliOSnl5OQEDw8Py8eSGJ30k5zc1+sheW4ktwOy+7m96iX5vBkZHy+qUKG1atUqx1vROnToAJPJBKUUTCaTYT/nb/To0fD09AQA3Lp1CxMnTrR8N8D169d1puVL8rrnp0WLFhg8eLDujFxJnZtJkybh+eefx0cffQQnJydMmjQJ7777rpiT41LXPZPUfs6NXpL7JbfnxejHqLxIaJc8N2zXR3K/5Pa1a9daWjMyMrBhwwb8/fff2R4TFRWlIy1P9n6S0+j7eqkzL3luJLcD8vvzwu21aEk+byZ97R0Bv6ieCuX48eM2PS4kJKSISwrukUcesfoW0rvl9qoInSSvuy127dqFxx9/HCdPntSdkoPkufH29kZcXBwqVaoE4M6B2cvLC//73/8sX4BmVJLXHZDdz7nRR3K/5Pb8GPkYlR+jt0ueG7brI7lfcrvZbM73MUY+WZWXxMRE1KlTJ9fvcTA6I+/rJc98fiTPjeR2QHY/t9eiI/m8mfS1dxS8qEJEhnL79m306tULt2/fxvLly3Xn2BWz2Yzk5ORsJ8J9fHywZ88eMR/XQMWPc0P0fyQfoyS3ExEVJyOf5MwP9/X6SJ4bye2A3H5ur0Sy8eO/6J7t3bsX1atXt+lVSgCwf/9+hIeHw9nZOGN3+fJlbNu2Dbdu3ULDhg1RsmRJ3Un5sod179y5s9XbL126hP3798NkMuH3338v5irbSZybTHPnzoW3t7fl97S0NMTGxiIwMNBy28CBA3Wk5UvyugOy+zk3+kjul9ou+RgluT2T1LkB2K6T5H7J7fbo9u3bmDp1Kho1aqQ7JVfS9/X2OPMS5iY3ktsB4/dze9XDHs6bSV17R8J3qtA9c3JyQnJyss0btq+vL+Li4gzzyua4uDi0a9fO8qVVPj4+WLZsGSIjIzWX5U36ugPI9bNOfX19ER4ejmeeecbyWZFGI3VuACA0NDTft5CaTCYcOXKkmIpsJ3ndAdn9nBt9JPdLbpd8jJLcDsieG7brI7lfcvvLL7+MKVOmWF50sWTJEkRFRcHLywvAnS+Q7tGjB3744QedmVbZepIz86NPjUbyvl7yzEueG8ntgOx+bq96SD9vJnntHQkvqtA9M5vNeOGFFyxfnJSfjz/+GPHx8YbZSUVGRuLq1auYNm0a3N3dMWHCBOzbtw+HDx/WnZYn6esundS5kU76ukvvl0r6ukvul9xO+kieG7brI7lfcruTkxOSkpIsHw969wmpM2fOoEyZMob8ThXJJzmlkzzzkudGcjsgv18qydur9PNmktfekfCiCt0zW784KavFixcjKCioiIoKJjAwEOvWrUPdunUB3Hk1VUBAAC5evAhfX1/NdbmTvu6Ztm7dijVr1uDWrVto1aoV2rRpozvJJlLnRjrp6y69Xyrp6y65X3I7IPcYBchulzw3bNdHcr/k9ru/c+3u71sz8kUVeyB1Xy955onuFbfX4if9vJnktXckxvmwOBLn119/1Z1QKCkpKShXrpzldz8/P3h5eeHChQuG3klJX3cAWL58OZ566il4eHjAxcUFM2bMwHvvvYfhw4frTsuX1LnJlJaWhpkzZ2LJkiU4dOgQAKBKlSro0aMHBg0aBBcXF82F1klfd+n9nBs9JPdLbpd8jJLcDsieG7brI7lfcrt0Uk9yArL39dJnXvLcSG4H5PZze9VD+nkzyWvvSHhRhRxafHy85TMKAUAphYSEBFy5csVyW82aNXWk2bVJkybh+eefx0cffQQnJydMmjQJ7777rognFoDcublx4wYee+wx/Pnnn2jdujX+85//AAASEhIwcuRIrF69GuvWrYO7u7vmUuukrnsmqf2cG70k90ttl3yMktyeSercAGzXSXK/5HapJJ/kBOTv66XOvOS5kdwOyO7n9kr3imtvfPz4L3JYZrMZJpMJ1jaBzNtNJhPfsl4EvL29ERcXZ/kiuVu3bsHLywv/+9//LB8hYFSS52bMmDGIjY3FmjVrchx89+zZg6ioKPTp0wdjx47VE5gHyesOyO7n3OgjuV9yu+RjlOR2QPbcsF0fyf3S27N+Xv1HH32Enj17Wr7X4Pr16/j8888N2V6vXj00aNAg20nOqVOnIiUlRXeaTSTv6yXPvOS5kdwOyO7n9kr3gmsvAy+qkMM6fvy4TY8LCQkp4hLHc/dnMAM5P4fZqCTPTXh4ON5991106dLF6v1ff/013nzzTcvHOxmJ5HUHZPdzbvSR3C+5XfIxSnI7IHtu2K6P5H7J7bZ+Xv3GjRuLoaZgJJ/kBGTv6yXPvOS5kdwOyO7n9kr3gmsvAz/+ixwWdz56zZ07F97e3pbf09LSEBsbi8DAQMttAwcO1JGWJ8lzc/z4cTRs2DDX+xs3bowTJ04UY5HtJK87ILufc6OP5H7J7YDcYxQgu13y3LBdH8n9ktslf1799evXs30mvaurK9zd3XH16lXDn6DNJHVfL3nmJc+N5HZAfj+3Vyoorr0MfKcKOaS9e/eievXqMJvNNj1+//79CA8Ph7Mzr0PeD6Ghofm+ss1kMuHIkSPFVGQb6XNTqlQp/Pjjj6hXr57V+3fs2IF27drh3LlzxVyWN+nrLr2fc6OH5H7J7YDcYxQgu13y3LBdH8n9ktszXb58Gdu2bcOtW7fQsGFDlCxZUneSTcxmM955551sJzlHjhyJ6Ohow5/kBOTu66XPvOS5kdwOyO7n9koFxbWXgxdVyCE5OTkhOTnZ5if+vr6+iIuLM/zbM6loSZ+bp556CmlpaVixYoXV+7t06QInJycsW7asmMvyJn3dpfdzbvSQ3C+5nfSRPDds10dyv+R2AIiLi0O7du0sX6Lr4+ODZcuWITIyUnNZ/qSe5JRO+sxLnhvJ7YD8fomkb6+Sce3l4GUsckhKKbz99tuWL1bMz61bt4q4iCSQPjdjxoxBo0aN0LhxYwwdOhRVq1aFUgoJCQmYOXMm4uPjsXXrVt2ZOUhfd+n9nBs9JPdLbid9JM8N2/WR3C+5HbjzKvEKFSpgxYoVcHd3x4QJE/Dqq6/i8OHDutPydezYMd0JDkn6zEueG8ntgPx+iaRvr5Jx7eXgO1XIIdn6xYpZLV68GEFBQUVU5HjS0tIwc+ZMLFmyxPIF11WqVEGPHj0waNAguLi4aC7MyR7mZuvWrejXrx8SEhIsfxalFKpWrYqYmBg0adJEc2FO0tddej/AudFBcr/k9kwSj1GZpLZLnhu26yO5X3I7AAQGBmLdunWoW7cuAODixYsICAjAxYsXs333ARUNift66TNPdK+4vVJBcO3l4EUVIip2N27cwGOPPYY///wTrVu3RkREBAAgISEB69evR7NmzbBu3Tq4u7trLrVfcXFx2Z7Q1a5dW28QicC5IUcg+RgluZ2IZDGbzUhOTs72JdE+Pj7Yu3cvKlSooLHMNhJPcmbivl4fyXMjuR2Q28/tlch+8eO/iKjYTZ48GSdPnsTu3btRs2bNbPft2bMHUVFRmDx5MsaOHasn0I5l/ULRli1bivlCUdKLc0OORPIxSnI7EckTHx9v+U4VAJaPB71y5Yrltrv3RUZw90nO//znPwDunOQcOXIkVq9ebeiTnNzX6yF5biS3A7L7ub0S2TFFRFTMqlSpopYvX57r/cuWLVOVK1cuxiLHsHv3bhUUFKRMJpMymUzK19dX/fTTT7qzyOA4N+RoJB+jJLcTkSwmk0mZzWbL84OsP5m3m81m3ZlWjR49WpUvX17t2bMnx31xcXGqfPnyasyYMcUfZiPu6/WQPDeS25WS3c/tlch+8eO/iKjYubu74/DhwwgODrZ6/8mTJ1G5cmXcvHmzmMvsW2RkJK5evYpp06ZZvlB03759Ir5QlPTh3JCjkXyMktxORLIcP37cpseFhIQUcUnBhYeH491330WXLl2s3v/111/jzTfftHzEkNFwX6+H5LmR3A7I7uf2SmS/+PFfRFTsfH19cfbs2VyfWCQnJ8PHx6eYq+zfzp07s32h6Lx58xAQEIDLly/zC0UpV5wbcjSSj1GS24lIFiNeLLHV8ePH0bBhw1zvb9y4MU6cOFGMRQXDfb0ekudGcjsgu5/bK5H9MusOICLH07JlS7z77ru53j958mS0bNmyGIscQ0pKCsqVK2f53c/PD15eXrhw4YLGKjI6zg05GsnHKMntRCTH3r17kZGRYfPj9+/fj7S0tCIsKpjMk5y5MfpJTu7r9ZA8N5LbAdn93F6J7Bc//ouIil18fDwaNWqEhx56CEOHDkXVqlUtX2w5c+ZMxMfHY+vWrXjooYd0p9oVs9mMX375BQEBAZbbmjZtimXLlmU7aW7ELxQlfTg35GgkH6MktxORHE5OTkhOTkbJkiVteryvry/i4uIQFhZWxGW2eeqpp5CWloYVK1ZYvb9Lly5wcnLCsmXLirnMNtzX6yF5biS3A7L7ub0S2S9eVCEiLbZu3Yp+/fohISEBJpMJAKCUQtWqVRETE4MmTZpoLrQ/ZrMZJpMJ1nb7mbebTCakp6drqCOj4tyQI5J8jJLcTkQymM1mvPDCC/D09LTp8R9//DHi4+MNc1HFHk5ycl9f/CTPjeR2QH4/t1ci+8SLKkSkVVxcnOUL5apUqYLatWvrDbJjkr9QlPTh3JAjk3yMktxORMb2yCOPWE4M2mrx4sUICgoqoqKCs5eTnNzXFy/JcyO5HZDfD3B7JbI3vKhCRFpcvnwZ27Ztw61bt9CwYUObPz6AiIioqEk+RkluJyIqblJPcnJfr5fUuQFktwMy+7m9EtknXlQhomIXFxeHdu3aITk5GQDg4+ODZcuWITIyUnOZ/dq7dy+qV68Os9ls0+P379+P8PBwODs7F3EZGRnnhhyR5GOU5HYiouIk+SQn9/X6SJ4bye2A3H5ur0T2ixdViKjYRUZG4urVq5g2bRrc3d0xYcIE7Nu3D4cPH9adZrekf6Eo6cG5IUck+RgluZ2IqLhIP8nJfb0ekudGcjsgu5/bK5H94kUVIip2gYGBWLduHerWrQsAuHjxIgICAnDx4kX4+vpqrrNP0r9QlPTg3JAjknyMktxORFRcpJ/k5L5eD8lzI7kdkN3P7ZXIfvGiChEVO7PZjOTkZJQqVcpym4+PD/bu3YsKFSpoLLNf9vCFolT8ODfkiCQfoyS3ExEVF+knObmv10Py3EhuB2T3c3slsl/80HMi0iI+Pt7y9l0AUEohISEBV65csdxWs2ZNHWl26ddff9WdQAJxbshRST5GSW4nIioOKSkpKFeunOV3Pz8/eHl54cKFC4Y/QZuJ+/riJ3luJLcD8vu5vRLZJ75ThYiKndlshslkgrXdT+btJpMJ6enpGuqIiMiRST5GSW4nIiouZrMZv/zyCwICAiy3NW3aFMuWLct24taoJzm5r9dD8txIbgdk93N7JbJfvKhCRMXu+PHjNj0uJCSkiEuIiIiyk3yMktxORFRcpJ/k5L5eD8lzI7kdkN3P7ZXIfvGiChERERERERE5BJ7kpHsheW4ktwPy+4nIPvGiChEVq71796J69eowm802PX7//v0IDw+HszO/AoqIiIqW5GOU5HYiIrIN9/VEcnB7JbJvtm3ZRET3SZ06dXDhwgWbH9+kSROcOHGiCIuIiIjukHyMktxORFRc9u7di4yMDJsfv3//fqSlpRVhUcFwX6+H5LmR3A7I7uf2SmTfePmTiIqVUgpvv/02PD09bXr8rVu3iriIiIjoDsnHKMntRETFpU6dOkhOTkbJkiVtenyTJk0QFxeHsLCwIi6zDff1ekieG8ntgOx+bq9E9o0XVYioWP3nP//BwYMHbX58kyZN4OHhUYRFREREd0g+RkluJyIqLtJPcnJfr4fkuZHcDsju5/ZKZN/4nSpEREREREREZPceeeQRmEymAv07ixcvRlBQUBEVkQSS50ZyOyC/n4jsFy+qEBERERERERERERER2YBfVE9ERERERERERERERGQDXlQhIiIiIiIiIiIiIiKyAS+qEBERERERERERERER2YAXVYiIiIiIiIiIiIiIiGzAiypERERERGS3nnvuOXTq1El3BhERERER2QleVCEiIiIiIiIiIiIiIrIBL6oQERERERERERERERHZgBdViIiIiIjI0DIyMjBlyhRUqlQJbm5uKF++PCZOnAgA2LdvHx599FF4eHjggQcewAsvvICrV6/m+t8KDQ3F+++/n+222rVrY+zYsZbfTSYTPv30U3To0AGenp6IiIjAn3/+iX/++QePPPIIvLy80LRpUyQmJlr+nbFjx6J27dpYuHAhQkNDUaJECTz99NO4cuXKfV0LIiIiIiLSixdViIiIiIjI0EaNGoXJkyfj7bffRnx8PBYvXowHH3wQ165dQ2RkJPz9/bFjxw58/fXXWL9+PV599dVC/29OmDABvXr1QlxcHKpWrYoePXrgxRdfxKhRo/DXX39BKZXjfycxMRHffvstvvvuO3z33XfYtGkTJk+eXOgWIiIiIiIyDmfdAURERERERLm5cuUKZs2ahQ8//BC9e/cGAFSsWBEPP/wwPv/8c9y8eRNffPEFvLy8AAAffvghOnbsiPfeew8PPvjgPf/v9unTB926dQMAjBw5Ek2aNMHbb7+NyMhIAMCgQYPQp0+fbP9ORkYGYmNj4ePjAwB49tlnsWHDBsu7aoiIiIiISD6+U4WIiIiIiAwrISEBqampaNWqldX7atWqZbmgAgDNmjVDRkYGDh48WKj/3Zo1a1r+OfPiTI0aNbLddvPmTVy+fNlyW2hoqOWCCgAEBQXh7NmzheogIiIiIiJj4UUVIiIiIiIyLA8Pj/v63zObzVBKZbvt9u3bOR7n4uJi+WeTyZTrbRkZGVb/nczHZL2fiIiIiIjk40UVIiIiIiIyrMqVK8PDwwMbNmzIcV9ERAT27NmDa9euWW7bvHkzzGYzwsPDrf73SpYsiaSkJMvvly9fxtGjR+9/OBERERER2SVeVCEiIiIiIsNyd3fHyJEjMWLECHzxxRdITEzE1q1bERMTg2eeeQbu7u7o3bs3/v77b2zcuBGvvfYann322Vy/T+XRRx/FwoUL8fvvv2Pfvn3o3bs3nJycivlPRUREREREUvGL6omIiIiIyNDefvttODs7Y/To0Th9+jSCgoLw0ksvwdPTE2vXrsWgQYPQoEEDeHp6okuXLpgxY0au/61Ro0bh6NGj6NChA0qUKIEJEybwnSpERERERGQzk7r7A4WJiIiIiIiIiIiIiIgoB378FxERERERERERERERkQ14UYWIiIiIiIiIiIiIiMgGvKhCRERERERERERERERkA15UISIiIiIiIiIiIiIisgEvqhAREREREREREREREdmAF1WIiIiIiIiIiIiIiIhswIsqRERERERERERERERENuBFFSIiIiIiIiIiIiIiIhvwogoREREREREREREREZENeFGFiIiIiIiIiIiIiIjIBryoQkREREREREREREREZANeVCEiIiIiIiIiIiIiIrLB/wNsEeufIMdEggAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.subplots(figsize=(20, 10))\n",
"\n",
"names, importances = pipe1.columns.importances(target_num=2)\n",
"\n",
"plt.bar(names[0:30], importances[0:30])\n",
"\n",
"plt.title(\"column importances for the z-component\", size=20)\n",
"plt.grid(True)\n",
"plt.xlabel(\"column\")\n",
"plt.ylabel(\"importance\")\n",
"plt.xticks(rotation='vertical')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.6 Column selection\n",
"\n",
"When we study the plots for the *column importances* we find that there are some good news. We actually don't need that many columns. About 80% of the columns contain very little predictive value.\n",
"\n",
"This means that we can also apply other algorithms that are not as scalable as *relboost*. All we have to do is to select the most relevant columns:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The `.select(...)` returns a new column, in which the unimportant columns have been dropped:"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"time_series2 = pipe1.columns.select(time_series, share_selected_columns=0.35)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"data model \n",
" \n",
"
diagram
\n",
"
data_all population rowid <= rowid Memory: 30 time steps \n",
"
\n",
"\n",
" \n",
"
staging
\n",
" \n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" data frames \n",
" \n",
" \n",
" \n",
" staging table \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" population \n",
" \n",
" \n",
" \n",
" POPULATION__STAGING_TABLE_1 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 \n",
" \n",
" \n",
" data_all \n",
" \n",
" \n",
" \n",
" DATA_ALL__STAGING_TABLE_2 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
"
\n",
"
\n",
" \n",
"container \n",
"\n",
"
\n",
"
population
\n",
" \n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" subset \n",
" \n",
" \n",
" \n",
" name \n",
" \n",
" \n",
" \n",
" rows \n",
" \n",
" \n",
" \n",
" type \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" train \n",
" \n",
" \n",
" \n",
" data_all \n",
" \n",
" \n",
" \n",
" 10500 \n",
" \n",
" \n",
" \n",
" View \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 \n",
" \n",
" \n",
" test \n",
" \n",
" \n",
" \n",
" data_all \n",
" \n",
" \n",
" \n",
" 4501 \n",
" \n",
" \n",
" \n",
" View \n",
" \n",
" \n",
" \n",
" \n",
" \n",
"
\n",
"
\n",
"
\n",
"
peripheral
\n",
" \n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" name \n",
" \n",
" \n",
" \n",
" rows \n",
" \n",
" \n",
" \n",
" type \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" data_all \n",
" \n",
" \n",
" \n",
" 15001 \n",
" \n",
" \n",
" \n",
" View \n",
" \n",
" \n",
" \n",
" \n",
" \n",
"
\n",
"
\n",
"
"
],
"text/plain": [
"data model\n",
"\n",
" population:\n",
" columns:\n",
" - 3: numerical\n",
" - 4: numerical\n",
" - 5: numerical\n",
" - 6: numerical\n",
" - 7: numerical\n",
" - ...\n",
"\n",
" joins:\n",
" - right: 'data_all'\n",
" time_stamps: (population.rowid, data_all.rowid)\n",
" relationship: 'many-to-many'\n",
" memory: 30\n",
" lagged_targets: False\n",
"\n",
" data_all:\n",
" columns:\n",
" - 3: numerical\n",
" - 4: numerical\n",
" - 5: numerical\n",
" - 6: numerical\n",
" - 7: numerical\n",
" - ...\n",
"\n",
"\n",
"container\n",
"\n",
" population\n",
" subset name rows type\n",
" 0 train data_all 10500 View\n",
" 1 test data_all 4501 View\n",
"\n",
" peripheral\n",
" name rows type\n",
" 0 data_all 15001 View"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"time_series2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.7 Fitting a second pipeline\n",
"\n",
"The *multirel* algorithm does scale well do data sets with many columns. As we have discussed in the introduction, its computational complexity is $n^2$ in the number of columns. But now, we only use 35% of the original columns, meaning that it is fine to use multirel."
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"multirel = getml.feature_learning.Multirel(\n",
" loss_function=getml.feature_learning.loss_functions.SquareLoss,\n",
" num_features=10,\n",
")\n",
"\n",
"relboost = getml.feature_learning.Relboost(\n",
" loss_function=getml.feature_learning.loss_functions.SquareLoss,\n",
" num_features=10,\n",
")\n",
"\n",
"xgboost = getml.predictors.XGBoostRegressor(n_jobs=7)\n",
"\n",
"pipe2 = getml.pipeline.Pipeline(\n",
" data_model=time_series2.data_model,\n",
" feature_learners=[multirel, relboost],\n",
" predictors=xgboost\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"Checking data model... \n",
" \n"
],
"text/plain": [
"Checking data model\u001b[33m...\u001b[0m\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[2K Staging... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n",
"\u001b[2K Checking... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n",
"\u001b[?25h"
]
},
{
"data": {
"text/html": [
"The pipeline check generated 1 issues labeled INFO and 0 issues labeled WARNING.\n",
" \n"
],
"text/plain": [
"The pipeline check generated \u001b[1;36m1\u001b[0m issues labeled INFO and \u001b[1;36m0\u001b[0m issues labeled WARNING.\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" type \n",
" \n",
" \n",
" \n",
" label \n",
" \n",
" \n",
" \n",
" message \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" INFO \n",
" \n",
" \n",
" \n",
" MIGHT TAKE LONG \n",
" \n",
" \n",
" \n",
" DATA_ALL__STAGING_TABLE_2 contains 23 categorical and numerical columns. Please note that columns created by the preprocessors are also part of this count. The multirel algorithm does not scale very well to data frames with many columns. This pipeline might take a very long time to fit. You should consider removing some columns or preprocessors. You could use a column selection to pick the right columns. You could also replace Multirel with Relboost or Fastboost. Both algorithms have been designed to scale well to data frames with many columns. \n",
" \n",
" \n",
" \n",
" \n",
" \n",
"
"
],
"text/plain": [
" type label message \n",
"0 INFO MIGHT TAKE LONG DATA_ALL__STAGING_TABLE_2 contai..."
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pipe2.check(time_series2.train)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"Checking data model... \n",
" \n"
],
"text/plain": [
"Checking data model\u001b[33m...\u001b[0m\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[2K Staging... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n",
"\u001b[?25h"
]
},
{
"data": {
"text/html": [
"The pipeline check generated 1 issues labeled INFO and 0 issues labeled WARNING.\n",
" \n"
],
"text/plain": [
"The pipeline check generated \u001b[1;36m1\u001b[0m issues labeled INFO and \u001b[1;36m0\u001b[0m issues labeled WARNING.\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"To see the issues in full, run .check () on the pipeline.\n",
" \n"
],
"text/plain": [
"To see the issues in full, run \u001b[1;35m.check\u001b[0m\u001b[1m(\u001b[0m\u001b[1m)\u001b[0m on the pipeline.\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[2K Staging... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n",
"\u001b[2K Multirel: Training features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:08\n",
"\u001b[2K Relboost: Training features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:11\n",
"\u001b[2K Relboost: Training features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:08\n",
"\u001b[2K Relboost: Training features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:08\n",
"\u001b[2K Multirel: Building features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:01\n",
"\u001b[2K Relboost: Building features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:02\n",
"\u001b[2K Relboost: Building features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:02\n",
"\u001b[2K Relboost: Building features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:02\n",
"\u001b[2K XGBoost: Training as predictor... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n",
"\u001b[2K XGBoost: Training as predictor... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n",
"\u001b[2K XGBoost: Training as predictor... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n",
"\u001b[?25h"
]
},
{
"data": {
"text/html": [
"Trained pipeline.\n",
" \n"
],
"text/plain": [
"Trained pipeline.\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Time taken: 0:00:48.628798.\n",
"\n"
]
},
{
"data": {
"text/html": [
"Pipeline(data_model='population',\n",
" feature_learners=['Multirel', 'Relboost'],\n",
" feature_selectors=[],\n",
" include_categorical=False,\n",
" loss_function='SquareLoss',\n",
" peripheral=['data_all'],\n",
" predictors=['XGBoostRegressor'],\n",
" preprocessors=[],\n",
" share_selected_features=0.5,\n",
" tags=['container-5qzYt6']) "
],
"text/plain": [
"Pipeline(data_model='population',\n",
" feature_learners=['Multirel', 'Relboost'],\n",
" feature_selectors=[],\n",
" include_categorical=False,\n",
" loss_function='SquareLoss',\n",
" peripheral=['data_all'],\n",
" predictors=['XGBoostRegressor'],\n",
" preprocessors=[],\n",
" share_selected_features=0.5,\n",
" tags=['container-5qzYt6'])"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pipe2.fit(time_series2.train)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[2K Staging... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n",
"\u001b[2K Preprocessing... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n",
"\u001b[2K Multirel: Building features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n",
"\u001b[2K Relboost: Building features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:01\n",
"\u001b[2K Relboost: Building features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:01\n",
"\u001b[2K Relboost: Building features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:01\n",
"\u001b[?25h"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"\n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" date time \n",
" \n",
" \n",
" \n",
" set used \n",
" \n",
" \n",
" \n",
" target \n",
" \n",
" \n",
" \n",
" mae \n",
" \n",
" \n",
" \n",
" rmse \n",
" \n",
" \n",
" \n",
" rsquared \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" \n",
" \n",
" 2024-09-12 15:45:31 \n",
" \n",
" \n",
" \n",
" train \n",
" \n",
" \n",
" \n",
" f_x \n",
" \n",
" \n",
" \n",
" 0.4525 \n",
" \n",
" \n",
" \n",
" 0.5984 \n",
" \n",
" \n",
" \n",
" 0.996 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1 \n",
" \n",
" \n",
" 2024-09-12 15:45:31 \n",
" \n",
" \n",
" \n",
" train \n",
" \n",
" \n",
" \n",
" f_y \n",
" \n",
" \n",
" \n",
" 0.5236 \n",
" \n",
" \n",
" \n",
" 0.6882 \n",
" \n",
" \n",
" \n",
" 0.9891 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 2 \n",
" \n",
" \n",
" 2024-09-12 15:45:31 \n",
" \n",
" \n",
" \n",
" train \n",
" \n",
" \n",
" \n",
" f_z \n",
" \n",
" \n",
" \n",
" 0.2664 \n",
" \n",
" \n",
" \n",
" 0.3486 \n",
" \n",
" \n",
" \n",
" 0.9988 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 3 \n",
" \n",
" \n",
" 2024-09-12 15:45:37 \n",
" \n",
" \n",
" \n",
" test \n",
" \n",
" \n",
" \n",
" f_x \n",
" \n",
" \n",
" \n",
" 0.5587 \n",
" \n",
" \n",
" \n",
" 0.7319 \n",
" \n",
" \n",
" \n",
" 0.995 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 4 \n",
" \n",
" \n",
" 2024-09-12 15:45:37 \n",
" \n",
" \n",
" \n",
" test \n",
" \n",
" \n",
" \n",
" f_y \n",
" \n",
" \n",
" \n",
" 0.5667 \n",
" \n",
" \n",
" \n",
" 0.7534 \n",
" \n",
" \n",
" \n",
" 0.9871 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 5 \n",
" \n",
" \n",
" 2024-09-12 15:45:37 \n",
" \n",
" \n",
" \n",
" test \n",
" \n",
" \n",
" \n",
" f_z \n",
" \n",
" \n",
" \n",
" 0.2914 \n",
" \n",
" \n",
" \n",
" 0.3789 \n",
" \n",
" \n",
" \n",
" 0.9986 \n",
" \n",
" \n",
" \n",
" \n",
" \n",
"
"
],
"text/plain": [
" date time set used target mae rmse rsquared\n",
"0 2024-09-12 15:45:31 train f_x 0.4525 0.5984 0.996 \n",
"1 2024-09-12 15:45:31 train f_y 0.5236 0.6882 0.9891\n",
"2 2024-09-12 15:45:31 train f_z 0.2664 0.3486 0.9988\n",
"3 2024-09-12 15:45:37 test f_x 0.5587 0.7319 0.995 \n",
"4 2024-09-12 15:45:37 test f_y 0.5667 0.7534 0.9871\n",
"5 2024-09-12 15:45:37 test f_z 0.2914 0.3789 0.9986"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pipe2.score(time_series2.test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.8 Visualizing the predictions\n",
"\n",
"Sometimes a picture says more than a 1000 words. We therefore want to visualize our predictions on the testing set."
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"f_x = time_series2.test.population[\"f_x\"].to_numpy()\n",
"f_y = time_series2.test.population[\"f_y\"].to_numpy()\n",
"f_z = time_series2.test.population[\"f_z\"].to_numpy()"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[2K Staging... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n",
"\u001b[2K Preprocessing... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n",
"\u001b[2K Multirel: Building features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:00\n",
"\u001b[2K Relboost: Building features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:01\n",
"\u001b[2K Relboost: Building features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:01\n",
"\u001b[2K Relboost: Building features... ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% • 00:01\n",
"\u001b[?25h"
]
}
],
"source": [
"predictions = pipe2.predict(time_series2.test)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABkgAAANMCAYAAAAXISGPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUVdsG8Hu2pofQexdEpaiISpEiIir28qm8Cth7F8WOotjlfUVQUUClqKCCUkQQCL0HCL2GkACB9LrZdr4/NjM7szuzKaQB9++6uEh22tk2mTnPeZ4jCSEEiIiIiIiIiIiIiIiIziGmmm4AERERERERERERERFRdWOAhIiIiIiIiIiIiIiIzjkMkBARERERERERERER0TmHARIiIiIiIiIiIiIiIjrnMEBCRERERERERERERETnHAZIiIiIiIiIiIiIiIjonMMACRERERERERERERERnXMYICEiIiIiIiIiIiIionMOAyRERERERERERERERHTOYYCEiIiIiIhqteTkZDz66KNo164dwsLCIEkSJEnCnDlzquR48v7feeedKtl/Vaju14iIiIiI6GxgqekGEBERERERGUlOTsall16K9PT0mm5KrcXXiIiIiIioYphBQkREREREAGpn5sSYMWOQnp4Oi8WCjz76CGvXrkViYiISExNx9dVXl3k//fr1gyRJ6NevX9U1toZU1mtEZ5akpCTlOzt16tSabg4RERHRGYkZJEREREREVGstWbIEAHDLLbdg5MiRNdya2omvERERERFRxTCDhIiIiIiIaq3U1FQAQIcOHWq4JbUXXyMiIiIioophgISIiIiIiGotp9MJALBarTXcktqLrxERERERUcUwQEJERERUBWbMmKHUhn/iiScM10tOTkZcXBwkSUKnTp1QVFR0Wsc9deoU3n33XfTq1QsNGzaE1WpFXFwcLr/8cowcORLbt2833DYpKQnPP/88LrzwQkRHRyMiIgLnnXceHn30USQmJoY8buDcFcuWLcMtt9yCpk2bIjw8HJ06dcJ7772HgoICzXYLFizA9ddfr6x3wQUXYOzYsUqHr57WrVtDkiQMHz4cALBx40bcc889aNGiBcLCwtCiRQuMGDECe/bsKdNr9tdff+GOO+5A8+bNYbfbUa9ePVx55ZX48MMPkZ+fb7jd1KlTleedlJQEr9eLb7/9Fj179kRcXBwiIyPRpUsXvP/++ygsLCy1HR6PBz/88AOGDBmCpk2bKm3p3bs3Pv/885CfjcD5NVJTU/HCCy+gffv2CA8PR7169XDttddi4cKFutvLr6ls9OjRynOT/8mvd3l5vV5MmzYN119/PRo3bgybzYYGDRqgf//+mDBhgu57rX5tjdpU1vYMHz4ckiQhPj4eABAfHx/03Fq3bh1yH/JnTP6MNGvWDPfddx92795dpjZs2bIFjz32GDp27IioqChERkaiY8eOePzxx7Fv374y7SNQRV+jU6dO4Y033sDFF1+MOnXqICwsDK1bt8Z9992HVatWhTxm4Hdv8+bNGD58ONq0aQO73a5piywvLw+fffYZBgwYoLz/MTExuPjii/H0009j9erVhsc7ne9EKD/++KPyGi1evLjU9R999FFIkgS73Y6srCzddZYtW4Zhw4ahbdu2iIiIQExMDDp37oyXX34Zx44dK1O7Vq9ejYceeggdO3ZETEwMbDYbmjdvjiFDhuCrr75Cdna2sq4kSWjTpo3y+4gRI4I+13pzCVXk+yh75513NJ+5nJwcvPfee8pniXOhEBER0RlJEBEREVGVuPfeewUAAUDMmzcvaLnH4xF9+/YVAITVahWbN28+reNNmzZNREZGKsfU+9eqVSvdbX/44Qdht9sNtzObzeKDDz4wPLa83ttvvy3Gjh0rJEnS3U/Pnj1Ffn6+8Hq94plnnjE83uDBg4Xb7dY9VqtWrQQAMWzYMPH9998Li8Wiuw+73S5+/fVXwzYXFRWJW2+9NeTr1bRpU5GQkKC7/ZQpU5T1du7cKa6++mrD/fTo0UPk5+cbtuXIkSOia9euIdvSvn17sXfvXt3t5c9R3759xapVq0T9+vUN9/PJJ58Yvqah/g0bNsyw/UYyMjJEr169Qu63U6dOIikpyfC1Pd32DBs2rNR9BX4v1J/nr776yvAzFhERIeLj4w2P7fF4xPPPP2/4fQAgLBaL+Oabb8r70lboNVq0aJGIiYkJuc2TTz4pPB6P7jHV372JEyfqvi5qixcvDvlZ1NtGdrrfiVByc3NFeHi4ACCGDx8ecl2n0ynq1q0rAIhbbrklaHlRUZG4++67Q7YzMjJS/Pnnn4bHKCwsFPfcc0+pr9Pbb7+tbFPauoHrC1Hx76Ps7bffVtbbt2+faN26ddD2U6ZMCfl6EhEREdU2DJAQERERVZHs7GzRsmVLAUA0bNhQpKWlaZaPHTtW6VQaO3bsaR3rxx9/VPYVFhYmnn76abFgwQKxZcsWsWLFCjF+/HgxaNAg0aZNm6Bt582bp3TgRkVFibffflusXLlSrF27Vnz22WeaDs4JEyboHl9e3qNHDwFAXHnllWLGjBli06ZN4u+//xbXXXedss7rr78uPvvsMwFAXHfddeK3334TmzdvFnPnzhVXXHGFst7EiRN1jyV30nbt2lVYrVbRtGlT8eWXX4r169eL+Ph48corryjBHqvVKjZu3Ki7n7vuuks5VteuXcWPP/4oNm7cKBYtWiRGjBihvCZ169YVKSkpQdurO6h79uwpTCaTGDZsmJg/f77YvHmz+OOPP8SVV16prPPqq6/qtiM9PV20aNFCAL6gzlNPPSVmzZolNm7cKJYtWyZGjRolIiIiBADRtm1bkZ2dHbQPOUDSoUMHUb9+fdGwYUPx4YcfilWrVokNGzaIzz//XNSpU0fpkN+xY4dm+71794rExESlrY8//rhITEzU/NN7DUJxu92a59+3b18xa9YssWnTJvHnn3+KW265RVnWrl07kZeXp2yblZWlHNeoTWVtT0pKikhMTBTdu3cXAET37t2DnltgJ7t8zCuuuEKYTCbRtWtXMXnyZLFx40axYsUK8fzzzwuTySQAiJYtW4ri4mLdYz/xxBPKvq666ioxefJksXz5crFhwwYxadIkceGFFyrL586dW67Xt7yvUUJCgrDZbMr34vnnnxfLli0TGzZsEN98841o06aNsp+RI0fqHlP+7l1wwQXCbDaL1q1bi/Hjx4t169aJVatWac5jS5cuVQIoZrNZDB8+XPzxxx9i8+bNYvXq1WLSpEnitttuE1arNeg4lfGdKM3//d//CQAiJiZGFBUVGa43d+5c5XWZNWuWZpnX6xU33HCDsvzGG28UP/30k1i9erVYu3at+O9//6v8DbDZbLrnIo/HI6655hplH+edd5744osvxMqVK8XmzZvFvHnzxGuvvSbat2+vCXgkJiaKRYsWKduNGTMm6HOt/ptzOt9HmTpA0qVLF2G1WsXTTz8tFi9eLDZt2iRmzpwp1qxZU+73goiIiKgmMUBCREREVIXi4+OVjtQhQ4Yoj2/atElYrVal49RoxHZZHDt2TOksbNiwoUhMTDRcNzk5WfO70+kUTZs2VYIjetkSSUlJokmTJgLwjZg/depU0DrqEcS33357UPaH2+1Wgh/R0dEiLCxMPPfcc0H7KSgoUDphu3Tpovsc1NkOrVq1EsePHw9aR905e9lllwUtnzdvnrKPq6++WreD+9tvv1XWueuuu4KWB47g/+mnn4LWcTgc4qKLLhIARL169YTL5QpaR840atWqlTh06JDuc96yZYuSHfTaa68FLZcDJPJ+9IIHK1euVII+zzzzjO5xjEaeV8T48eOV/d1///3C6/UGrfPaa6+V2ilfWW1SZ9mURv2+Xn/99bqfjzFjxijr/P7770HL//nnH2X5d999p3ucoqIiMWDAAOV90/t8lEVZXqPLLrtMCVYsWrQoaHlmZqa44IILBABhMpmCgmhCaL97nTt3FllZWYbPSz6vREREiGXLlhm2K/CcJETlfCdK8+effxoGPtRCBVLkc4TVahULFy7U3T4zM1MJhPXq1Sto+X//+1+lHbfeeqtwOBy6+/F4PEHf68OHDyvblpa5URnfR3WAxGQy6X6OiIiIiM40DJAQERERVbFRo0YpnUoTJkwQBQUFomPHjgKAiI2NNSxnUpH9z5kzp1zb/vLLL8q2H374oeF606ZNU9b7+OOPg5bLyyIiIkRGRobuPiZPnqys16JFC+F0OnXXe+utt5T19EaGqztpZ8+ebdjmxx9/XFkvcOS2nNFitVp1O2hlAwcOFIAv6+LYsWOaZeoAyW233Wa4j6+//lpZb9u2bZplhw8fFmazWQAQf/31l+E+hBBi5MiRAvCV/QqkDpCEKuUjB6kuvvhi3eWVGSDp1KmTACAaNGggcnNzdddxuVzi/PPPFwBEXFycbudwTQZIwsLCgjK/ZLm5uUpGxvPPPx+0XA583H777SGPtWvXLuV4//zzT5mei1F7jV6j9evXK+s89thjhvtZtWqVst4TTzwRtFz93VuxYoXhfr755htlvXHjxpXruVTWd6I0TqdT1KtXTwD6pbOEECIvL08pxTVixAjNMq/XK9q1aycAiBdffDHksRYsWKC8Hvv27VMe93g8onnz5gKAaN68uW7WRijlCZBUxvdRHSB54IEHytVWIiIiotqKk7QTERERVbHRo0fj0ksvBQC8+OKLuPfee7F3714AwFdffYVWrVqd1v7nzZsHAGjbti1uuummcm27ZMkSAL4Jfx944AHD9e68807ExsZqttFzzTXXoG7durrLunbtqvx82223wWq1lrre4cOHDY8VFxeHm2++2XC5+vmo2+x2u5UJuwcNGoQWLVoY7uPhhx9Wtlm+fLnhekOHDjVcJr/3AHDo0CHNsvnz58Pj8SAiIgLXXXed4T4A4KqrrgIAHDt2DMnJybrr1KlTBzfccEOpbQlsR2U7duyYMoH5XXfdhejoaN31LBYLRowYAQDIysrCli1bqrRd5XXNNdegYcOGusuio6Nx3nnnAQh+PXNzc5XPyx133BHyGJ06dUL9+vUBAGvXrj3NFutTf/4ffPBBw/V69eqFTp06BW0TqEWLFujTp4/hcvmcFBkZqXyHyqqyvxNGrFYr7rzzTgDAwoULNROgy/744w9lIvjA7/iuXbtw8OBBAKW/x3I7Ae17vHXrVqSkpADwnWuioqLK9RzKqiq+j6HOeURERERnEgZIiIiIiKqY1WrF9OnTERERgaKiIsydOxcAcM899xh2MhUUFGDHjh2G/2Qul0v5vXfv3pAkqVxtk7dt06YNGjRoYLiezWbDxRdfrNlGT4cOHQyX1alTp9zr5eXlGa538cUXw2KxGC7v1q0bbDYbACAxMVF5/NChQygsLAQAXH755YbbBy4P9bzPP/98w2XqgFHg89m0aRMAoLCwEBaLBZIkGf4bMmSIst2JEyd0j3XeeefBZDK+xJfbEup1rQzq16qyXuOaEOp9BYxfz4SEBHi9XgC+73mo91WSJKSnpwMwfl9Pl/y62mw2dOvWLeS68vuxf/9+OJ1O3XW6dOkSch8JCQkAfAG5iIiIcrW1sr8Tocjn3+LiYsyePTto+YwZMwAATZs2Rf/+/XXbCQBXXnllyHaqAx/qdsqvE4CQAafTVRXfx9I+A0RERERnCgZIiIiIiKpBx44d8fLLLyu/N2jQABMmTDBcf+PGjejcubPhP1lmZiaEEACAJk2alLtdmZmZAGA4Sl6tcePGmm30hOoMVXfcl3U9j8djuF5pbbZYLEoHtrrN6p9L24f8nAO3C1TR53Py5MmQxzciB3jK0w51W+TO+6pSFa9xTSjr61nV7+vpkl/XunXrhgwqAv73QwiBrKws3XXi4uJC7kMO+FTknFSdr12vXr2UDL7p06cHtUPOorn77ruDAo+V0U75dQIq9lqVVVV8H0v7DBARERGdKUJfHRMRERFRpcjNzcUPP/yg/J6eno4tW7ZgwIABNdgqv/JmntQGldHmmn7ecsd6/fr1sWzZsjJv16ZNm6pqUqWr6de4JqgDJt988w169uxZpu2qutO5st4Ls9lcKfvRU53fCUmScO+992Ls2LFYsWIFUlNT0axZMwDAr7/+CrfbDUC/nJT6Pf7rr7/QunXrMh2zLMHoqnQmfAaIiIiIqhMDJERERETV4KmnnkJSUhIA39wFeXl5GD58OLZv364pKSXr16+fkhkSSt26dWEymeD1enH8+PFyt0vOsEhLSyt1Xbk0jNEcI9WttDa73W7NyHmZ+ufS9qEuh1MVz7tevXoAfCWaOnXqdNZ0Otam17gmyO8r4MtCueiii2qwNf7XNSMjA263O2QWifx+SJJU4YBN/fr1kZKSUqFzUnV/J4YOHYqxY8fC6/Vi5syZeOmllwD4y2udf/75uOSSSwzbCfjKAlbkPZbnngGA48ePl1rSraLO9e8jERERUSgssUVERERUxWbNmoWffvoJAPDQQw8pHW9Hjx7F448/flr7tlqtSsfcypUryxRUUZO3PXz4ME6dOmW4nsvlUurl13Rnr2zr1q3KCG8927ZtU+ZQULe5bdu2Sumk9evXhzzGhg0blJ+r4nnL87oUFxdr5jQ406lfq5p+jWXVmcnSrVs35XirV6+utuMakV9Xp9OJrVu3hlxXfj/OO+88ZQ6f8pIDCps2bSp36avq/k5ceOGF6Nq1KwB/UOTw4cPKZOpG80TJ7QQq/h6rAy8rVqwo9/Zl/UzXxu8jERERUW3BAAkRERFRFUpNTcWjjz4KwNfhOG7cOAwZMgSPPfYYAODnn38Oqn1fXjfeeCMAX6eePAF8WQ0cOBCAb76BKVOmGK43e/Zs5OTkaLapaZmZmfjrr78Ml0+ePFn5Wd1mi8WCvn37AgAWL16MlJQUw3189913yjb9+vU7zRYHu/HGG5VOznHjxlX6/ssrLCwMgK9z+nQ0bdoUnTp1AuArVZSfn6+7nsfjwdSpUwH4ykvpjdSvLJX13MqiQYMGuOKKKwD4Ot1DBR+rg/rzr/5eBFq7di127doVtE15yeekwsJCfPvtt+Xetrq/E3IQJCEhAbt371YCJQBw77336m5zySWXoHnz5gCAb7/9Fg6Ho9zH7dq1K1q0aAHAd64x+p4YkT/TQOjPdW38PhIRERHVFgyQEBEREVURIQSGDRuGrKwsWCwWTJs2DZGRkQCAzz77DB07dgQAPPnkk0hOTq7wcZ566illv48++ih27NhhuG5gMOCWW25B06ZNAQDvv/8+EhMTg7Y5evSoUnYmIiICI0aMqHBbK9sLL7ygWzImPj5e6Zi99NJLcdlll2mWP/nkkwB8I+offPBBuFyuoH1MnjwZ//zzDwDgtttuq5JJlDt27Ig777wTgC9Y9vnnn4dc//Dhw5g5c2alt0MmP8eDBw+e9r7k1/jUqVN45plndNcZPXq00iH/8MMPw263n/ZxjcjP7dChQ+XOtKqIN954A4Bv/qE77rgD2dnZhusWFxfjq6++qlAne1n06NED3bt3BwBMmjQJ//77b9A6OTk5SjDXZDKdVnbbf/7zH2Uuj9dffx3x8fGG6waek2riO3HPPfcoQZnp06cr+7vyyivRtm1b3W1MJhNee+01AL7P1P333x8ySJGbm4vx48cH7ePll18G4Hsd7r//fiXrLZDX68WxY8c0j9WrV0/J8intO1vbvo9EREREtYYgIiIioirx2WefCQACgBg9enTQ8o0bNwqr1SoAiL59+wqPx1PhY/3444/KscLDw8UzzzwjFi5cKBISEsTKlSvFxIkTxXXXXSfatm0btO28efOEJEkCgIiOjhbvvvuuWL16tVi3bp34/PPPRcOGDZV9T5gwQff48vK3337bsI2HDx9W1psyZYrhesuWLVPWW7ZsWdDyVq1aCQCia9euwmq1imbNmonx48eLDRs2iJUrV4pRo0aJsLAwAUBYLBaxbt063ePceeedynEuueQSMW3aNLFp0yaxePFi8eCDDyqvSd26dUVKSkrQ9lOmTFG2P3z4cIWfd0ZGhmjbtq2yzlVXXSW+++47sXbtWrFlyxaxePFi8emnn4qBAwcKk8kkbr/99qB99O3bV/kchfL2228rx9EzdOhQAUDY7Xbx9ddfi8TERLF//36xf/9+kZaWFnLfgdxut7jyyiuV4w0YMEDMnj1bbN68WcybN0/cdtttyrJ27dqJvLw83f2U5bNVFpMmTVL29dxzz4lNmzYpzy0pKalCxyztdX/22WeVfTVu3Fi88847YsmSJSIhIUGsWrVKTJ06VTz44IMiLi5OADB8DUpTlvYmJCQIm80mAAibzSZefPFFsXz5crFx40bx7bffaj6DI0eO1N2H/N0bNmxYqW1aunSpsFgsyvdwxIgRYu7cuWLz5s1izZo1YvLkyeKOO+4QNpstaNvK+E6UV79+/QQAUadOHeW448ePD7mN1+sVt956q+Zz/PHHH4vly5eLhIQEER8fL7755htxzz33iMjISFGvXr2gfXg8HnHNNdco++jQoYMYN26cWLVqldiyZYtYsGCBeOutt8R5552n+/726tVLABD16tUTM2bMELt27VI+1xkZGcp6lfF9LO38QURERHQm4pUNERERURXYvn27sNvtAoC48sorhdvt1l1vzJgxSofTRx99dFrHnDp1qggPD1f2p/evVatWhtvK7dX7ZzabxQcffGB47JoIkAwbNkxMmjRJ6YQN/Gez2cTMmTMNj1NUVKTp3NT717RpU5GQkKC7fWUFSIQQ4vjx46JPnz4h2yL/GzFiRND2lRUgSUhIMPwclKVTPFBGRobSgWv0r1OnTkEBCrXKCpDk5eVpOt1DfS8qK0Di9XrF6NGjDT+j6n+RkZGisLCwQs+trO1dtGiRiImJCdmOJ5980jBYW54AiRBC/P3330rwJ9Q/Paf7nSgvdQBNDuqcPHmy1O2cTqd4/PHHlYBqqH9t2rTR3UdBQYG44447St1e7/1VB7hLW/90v48MkBAREdHZiCW2iIiIiCpZcXExhg4diuLiYkRFReGnn36C2WzWXffVV19F7969AQBvvvlmqRMohzJs2DAcPHgQr7/+Oi699FLUqVMHZrMZcXFxuOKKK/Daa6/h77//Ntx2z549ePbZZ9GpUydERkYiPDwc7dq1w8MPP4yEhASMGjWqwm2rKg899BBWrlyJu+66C02bNoXNZkOzZs1w//33IyEhAXfffbfhtmFhYfj999/x559/4rbbblO2j4uLw+WXX46xY8di79696NatW5U/j8aNG2PFihWYN28ehg4dqkwkb7Va0aBBA/Ts2RMvvvgi4uPjQ84hcbq6deuGtWvX4p577kHLli1Pu8RO3bp1sWLFCvz4448YPHgwGjVqBKvVinr16qFfv34YP348tm7dilatWlXSMzAWFRWFNWvWKJ/xiIiIKj+mJEl46623sG/fPowcORLdu3dH3bp1YTabER0djQsuuABDhw7FDz/8gOPHjyM8PLxK2zNo0CAcOHAAr732Grp164aYmBjY7Xa0bNkSQ4cOxcqVKzF+/HiYTJVzm3jttdfi0KFD+OCDD9CzZ0/Uq1cPZrMZMTExuOSSS/Dcc89pJgVXq+7vxB133KH5vA8aNAgNGjQodTur1YoJEyZg27ZtePrpp9G5c2fExsbCbDYjNjYW3bp1w4MPPojZs2dj9+7duvuIiIjArFmzsHTpUtx3331o06YNwsPDYbPZ0KJFC9x444345ptv8OKLLwZte8MNN+Dff//FzTffjKZNm8JqtRq2tTZ9H4mIiIhqC0mIaijAS0RERERUSVq3bo0jR45g2LBhyoTCREREREREROXFDBIiIiIiIiIiIiIiIjrnMEBCRERERERERERERETnHAZIiIiIiIiIiIiIiIjonMMACRERERERERERERERnXMYICEiIiIiIiIiIiIionOOJIQQNd0IIiIiIiIiIiIiIiKi6mSp6QacLq/Xi2PHjiE6OhqSJNV0c4iIiIiIiIiIiIiIqAYJIZCXl4emTZvCZDIupHXGB0iOHTuGFi1a1HQziIiIiIiIiIiIiIioFjl69CiaN29uuPyMD5BER0cD8D3RmJiYGm4NERERERERERERERHVpNzcXLRo0UKJHxg54wMkclmtmJgYBkiIiIiIiIiIiIiIiAgASp2Ww7j4FhERERERERERERER0VmKARIiIiIiIiIiIiIiIjrnMEBCRERERERERERERETnHAZIiIiIiIiIiIiIiIjonMMACRERERERERERERERnXMYICEiIiIiIiIiIiIionMOAyRERERERERERERERHTOsdR0A4iIiIiIiIiIiIjOdG63G263u6abQXRWMZlMsFqtkCSpSvbPAAkRERERERERERFRBRUWFiI9PR0FBQU13RSis5LVakV0dDTq168Ps9lcqftmgISIiIiIiIiIiIioApxOJ44ePQqr1YomTZrAbrdX2Uh3onONEAIejwf5+fnIzs5GUVERWrRoUalBEgZIiIiIiIiIiIiIiCrg5MmTMJvNaNWqVaWPbCcin6ioKMTGxiI5ORnp6elo1KhRpe2bk7QTERERERERERERlZMQAoWFhYiNjWVwhKiKhYeHIyYmBnl5eRBCVNp+GSAhIiIiIiIiIiIiKieXywWPx4Pw8PCabgrROSE6Ohoulwsul6vS9skACREREREREREREVE5eb1eAGD2CFE1kb9r8nevMjBAQkRERERERERERFRBnJSdqHpUxXeNARIiIiIiIiIiIiIiIjrnMEBCRERERERERERERETnHAZIiIiIiIiIiIiIiIhqQFJSEiRJQuvWrWu6KZXqTHleDJAQEREREREREREREZ1BWrduDUmSkJSUVCPH79evHyRJwvLly2vk+JWFARIiIiIiIiIiIiIiIjrnMEBCRERERERERERERETnHAZIiIiIiIiIiIiIiKjK7NixA7fffjvq16+PiIgIdO7cGePGjYPX6zUsFaV+fO7cuRgwYADq1q0bVNZpz549GDFiBFq1agW73Y66devi6quvxq+//qrbluHDh0OSJEydOlV3+dSpUyFJEoYPH274eEFBAUaNGoX27dvDbrejcePGGDZsGFJTUw1fg3nz5qFv376Ijo5GbGws+vTpg7lz55bl5dNtx5EjRwAAbdq0gSRJyj/5tVm+fDkkSUK/fv1QWFiIt956C506dUJERIQyL0hZ5gkJfH/k/cbHxwMA+vfvrzm+3usqhMC3336LSy+9FJGRkYiNjcWgQYOwdu3acj//ymap6QYQERERERERERER0dkpPj4e1113HYqKitCuXTtcc801yMjIwCuvvIJ169aVuv1nn32G8ePHo3v37hg8eDCOHTsGs9kMAJg/fz7uuOMOOBwOdOzYEbfddhtOnjyJ+Ph4LF26FIsWLcL3339fqc8nJycHPXv2RHJyMvr06YOLLroIa9euxY8//oj4+Hhs27YNsbGxmm2++OILvPDCCwCAHj16oF27dti/fz9uueUW5fGyat++PYYNG4bZs2ejoKAAt99+O6KiopTljRs31qzvcDjQr18/7Nq1C1dddRW6du2KjIyMCj57KMGgv//+G2lpabj22ms1x2zfvn3QNiNGjMCMGTPQp08fDBkyBFu3bsXixYuxYsUKxMfH4/LLL69we04XAyREREREREREREREVOmKioowdOhQFBUV4cUXX8THH38Mk8lX1GjXrl0YMGAA0tLSQu5j4sSJmDt3Lm666SbN42lpaRg6dCgcDgfGjBmD1157DZIkAQA2bdqEQYMGYfLkybjiiivw8MMPV9pzmjNnDq699lqsXLkSMTExAICsrCwMGDAAW7duxYQJEzBq1Chl/e3bt+Pll1+GyWTCL7/8gjvuuENZNn36dNx3333lOn7v3r3Ru3dvLF++HAUFBfj0009DZoCsX78eXbp0wYEDB4KCJxVx/vnnY+rUqejXrx/S0tLw6quvol+/fobrHzlyBMuXL8eOHTvQoUMHAIDH48EjjzyCyZMn46233sKiRYtOu10VxRJbRERERERERERERJVMCIFCp/uM/CeEqJTXYPbs2UhNTUWrVq0wduxYJTgCABdccAHefPPNUvcxbNiwoOAIAEyaNAk5OTm49NJL8frrryvBEQDo3r07Xn/9dQDAJ598UgnPxC8yMhJTpkxRgiMAEBcXh1dffRUAsGTJEs36X375JTweD+68805NcAQAhg4dqvvcKtv48eMrJThSUV9++aUSHAEAs9mM999/H4Avw8jlctVU05hBQkRERERERERERFTZilweXPBWzY2MPx273r0WEbbT7zqW56m48847YbVag5YPHToUTz31VMh9BAYVZPJcG8OGDdNd/uCDD+Kll17C/v37cezYMTRt2rQcLTfWvXt3NGnSJOjxTp06AUDQPCRyO//zn//o7m/YsGEVmoukrBo2bIg+ffpU2f5LY7FYMHjw4KDHGzdujLi4OGRlZSEjI6PGAjjMICEiIiIiIiIiIiKiSpeSkgIAhiWg6tSpEzRfRyCjbeVARJs2bQz3XbduXU07KkPLli11H5czShwOh+Zx+dhG7TR6vLKEKr9VHZo0aaIbHAOMX7PqxAwSIiIiIiIiIiIiokoWbjVj17vX1nQzKiTcaq7U/anLX5VnGQCEh4dXaltK4/V6Qy5Xlwk7E5zu61fa61Ga2v56MUBCREREREREREREVMkkSaqUMlVnsmbNmgEAkpKSdJfn5OQgOzu7wvves2cPDh06ZLjvzMxMTTsAwGazAQDy8vJ0tzty5EiF2hOqnQcPHkRSUhIuvPDCoOVGr011KO21cLlcOH78eHU2qdpVafhmxYoVuPHGG9G0aVNIkoQ5c+Zolg8fPhySJGn+6dUjIyIiIiIiIiIiIqIzy1VXXQUAmDVrFtxud9DyGTNmVHjf/fr1AwD88MMPussnT54MADjvvPM0ARL55927dwdtI4TAwoULK9wmPX379gUATJ8+XXf5jz/+WKH9ysENvde1rBo0aACbzYbMzEycPHkyaPmiRYsM918Zx68NqjRAUlBQgK5du+Krr74yXGfw4ME4fvy48m/mzJlV2SQiIiIiIiIiIiIiqgZ33nknmjRpgqSkJLz++uuack179uzBu+++W+F9P/zww4iJicGWLVvwwQcfQAihLEtISMCYMWMAAC+//LJmu4EDBwIAfvrpJ+zatUt53OVy4ZVXXsHGjRsr3CY9Tz/9NMxmM3799Vf88ccfmmU///xzUFJBWTVv3hwAsHPnzgq3zWq1KkGsN954Q/P+bNu2DU899VSVHr82qNIAyXXXXYcxY8bg1ltvNVzHbrejcePGyr+4uLiqbBIREREREVGtMG3dEbwxJ1FzM09ERER0NomIiMC0adMQFhaGjz/+GB07dsQ999yDa6+9Fl27dkWfPn2USc/ljISyatSoEaZPn46wsDC8/vrruOCCC3Dvvfdi4MCB6NGjBzIzMzFixAg8/PDDmu169eqFm2++Gfn5+ejevTsGDRqEm2++GW3btsU333yDZ599ttKePwB069YNY8eOhcfjwW233YYrrrgCQ4cORY8ePXDPPffgueeeq9B+b7/9dgDAf/7zH9x+++146KGH8NBDD2Hv3r3l2s+YMWNgs9kwadIkdOrUCXfeeSd69uyJyy67DP369UOrVq1CHn/kyJG48cYb8eCDD+Khhx7CmjVrKvR8akqNz5CyfPlyNGzYEB07dsTjjz+OjIyMkOsXFxcjNzdX84+IiIiIiOhM88acHZi2LhmrD4S+ByIiIiI6kw0YMADr16/HrbfeiszMTMyZMwcpKSl4//33MW3aNJw4cQImkwl169Yt976HDBmCLVu2YNiwYcjPz8fs2bOxefNm9OnTBz///LNSZivQL7/8gjfeeANNmjTB8uXLsW7dOvTp0wdbtmxBt27dTvMZB3v55Zcxd+5c9O7dGzt27MCff/4Jq9WK2bNn45lnnqnQPh9//HGMHTsWrVq1woIFC/D999/j+++/L/ecIZdffjni4+MxaNAgnDhxAvPnz0dhYSH++9//YsqUKYbb3XDDDZg0aRIuuugiLF26FJMnT8b333+Pffv2Vej51BRJVNNwJUmS8Mcff+CWW25RHvv5558RERGBNm3a4ODBg3jttdcQFRWFtWvXwmw26+7nnXfewejRo4Mez8nJQUxMTFU1n4iIiIiIqFK1fnU+AGDi0EtwXecmNdwaIiIiKi+Hw4HDhw+jTZs2CAsLq+nmnJFWrFiBvn37onPnzti+fXtNN4dqufJ853JzcxEbG1tq3MBS2Y0sj7vvvlv5uXPnzujSpQvatWuH5cuX4+qrr9bdZtSoUXjhhReU33Nzc9GiRYsqbysREREREVFVkKSabgERERFR1Tl16hTy8/PRpk0bzeM7duxQyl+NGDGiJppGVLMBkkBt27ZF/fr1ceDAAcMAid1uh91ur+aWEREREREREREREVF57dy5E/3798cFF1yAtm3bIjw8HIcPH8aWLVvg9XpxzTXX4Omnn67pZtI5qlYFSFJSUpCRkYEmTZheTkRERERE5wqmkBAREdHZq0OHDnjyyScRHx+P1atXIy8vD9HR0ejZsyfuvfdePPzww7BYalU3NZ1DqvSTl5+fjwMHDii/Hz58GFu3bkXdunVRt25djB49GrfffjsaN26MgwcPYuTIkWjfvj2uvfbaqmwWERERERFRrcESW0RERHQ2a9q0KcaPH1/TzSDSVaUBkk2bNqF///7K7/LcIcOGDcPEiROxfft2/PDDD8jOzkbTpk0xaNAgvPfeeyyhRUREREREREREREREVapKAyT9+vWDEMJw+aJFi6ry8ERERERERLUeE0iIiIiIiGqGqaYbQEREREREdK4JNZCMiIiIiIiqBwMkRERERERE1cyrio9InISEiIiIiKhGMEBCRERERERUzTxeZpAQEREREdU0BkiIiIiIiIiqmVdVYov5I0RERERENYMBEiIiIiIiomqmCZAwQkJEREREVCMYICEiIiIiIqpmLLFFRERERFTzGCAhIiIiIiKqZtpJ2muuHURERERE5zIGSIiIiIiIiKqZlxkkREREREQ1jgESIiIiIiKiaqaeg4SIiIiIao+pU6dCkiQMHz5c8/jy5cshSRL69etXLe2QJAkSU42rHAMkRERERERE1cyjCpAwVkJERER0bunXrx8kScLy5ctruinnPEtNN4CIiIiIiOhc4/WqfmaAhIiIiKjW69GjB3bv3o2IiIhqOd7u3bur5TjnOgZIiIiIiIiIqpm6xBbLbRERERHVfhERETj//POr7XjVeaxzGUtsERERERERVTOPV11iiwESIiIiOnup59KYNGkSLr30UkRGRqJOnTq4/vrrsW7dOt3tWrduDUmSkJSUhLlz52LAgAGoW7duUGmqrKwsvP322+jWrRuio6MRERGBzp07Y8yYMSgsLNTdt9vtxrhx49C5c2eEhYWhQYMGuP3225GYmGj4PEqbgyQrKwvvvvsuunfvjtjYWISHh6Nt27a46667sHDhQs0+4uPjAQD9+/dXXh9JkjB16lTd1y1QZmYmXnvtNVx44YWIiIhAdHQ0Lr30Unz88ccoKioK2XaXy4WPPvoIF154IcLDw1GvXj3cdttt52zGCjNIiIiIiIiIqpk6JsISW0RERHQueOGFFzBu3Dj06tULN998MxITE7Fw4UIsXrwYv/76K2699Vbd7T777DOMHz8e3bt3x+DBg3Hs2DGYzWYAwK5duzB48GAcPXoUTZo0Qe/evWG1WrFhwwa8+eab+O2337B8+XLExsYq+/N6vbjzzjsxZ84c2Gw29OvXD3FxcVi/fj169OiBBx54oNzPbdu2bbjhhhuQmpqK2NhY9O7dG9HR0UhOTsa8efNw8uRJXHfddWjcuDGGDRuGv//+G2lpabj22mvRuHFjZT/t27cv9ViHDh3CgAEDcOTIETRo0ADXX389XC4Xli1bhldeeQW//PILlixZgri4uKBtXS4Xrr/+eqxZswZXXXUVOnXqhA0bNuCPP/7AsmXLkJCQgNatW5f7+Z/JGCAhIiIiIiKqIhn5xZi+Phm3X9oczeqEK497WGKLatiGw5loHheOpqrPJRERUVX6+uuvsWTJEgwYMEB57JNPPsHIkSMxYsQI9OrVCw0bNgzabuLEiZg7dy5uuukmzeNFRUW46aabcPToUbzxxht48803YbPZAACFhYV46KGHMHPmTDz//POYPHmyZn9z5sxBo0aNsGzZMnTq1AmAL6vkmWeewYQJE8r1vAoKCnDjjTciNTUV999/P7766itERUUpy3NycrBx40YAvrJZU6dORb9+/ZCWloZXX33VMCPFyL333osjR47gpptuwowZMxAZGQkAOHXqFAYPHowtW7bgqaeewvTp04O2XbNmDS6++GIcPHhQCcw4HA7ccsstWLRoEcaOHYtvvvmmXO0507HEFhERERERURV5b94ufL54H+6YuEbzuHYOkupuFZ3rElNycNc3a9Hzw6U13RQiorObEICz4Mz8VwUDOB599FFNcAQAXn75ZXTv3h05OTn47rvvdLcbNmxYUHAEAH744QccPHgQQ4YMwXvvvacERwDffCHffvstGjZsiJ9++glZWVnKsnHjxgEA3nnnHSU4AgAWiwWff/65JqOjLL777jscPXoU3bp1w+TJkzXBEQCIjY3FwIEDy7VPI6tWrcL69euV5ycHRwCgQYMG+PbbbwEAP//8M1JSUoK2lyQJU6ZM0TzHsLAwjB49GgCwZMmSSmnnmYQZJERERERERFVkS3I2AOB4jkPzuJdzkFAN2pKcVfpKRER0+lyFwAdNa7oVFfPaMcAWWfp65TBs2DDdx++//35s2rQJy5cvx2uvvRa0/I477tDdbv78+QCA//u//9NdHhUVhe7du2PBggXYuHEjBg0ahNTUVBw4cAAA8J///Cdom7CwMNx111343//+V6bnBAB///03AODBBx9USn9VFXnulcGDB6NRo0ZByy+99FJ07doV27ZtQ3x8PIYOHapZ3rJlS3Tt2jVoOzlQlJqaWvmNruWYQUJERERERFRFmtYJ032cJbaoJtkt/q4Aj1cgI7+4BltDRETnijZt2oR8XC/jAYDhnBiHDh0CANx3332aic7V/xYsWADAV35KfYz69esHZXqU1k4jR44cAeArn1XV5ABGqDa2a9dOs65ay5YtdbeJiYkBABQXn3vXBMwgISIiIiIiqiJGsQ+vV/9noupgt/oDJG/N3YEZG5Lxv7svxo1dz9BRzkREtZU1wpeJcSayRlT7IY2yasPD9efL8pZcRBllU6i1atXq9Bp3ljCZmC8RiAESIiIiIiKiKuIxmGDEW0oGidcrYDJJVdYuOrdJ8H+2pq9PBgA8PTMBQ7o0gSTxc0dEVGkkqdLLVJ3JDh8+jG7dugU9npSUBABo3rx5ufbXokUL7NmzBw8++KBhGa5AzZo1AwCkp6cjPz9fN4tEbk9ZtWzZErt378aePXsqba4RI3L75ewZPfIyeV0KjSEjIiIiIiKiKuIqQ4AkMD4ybd0RdH33HyRwngiqIg6XR/fxXIe7mltCRETnkp9++ink4/369SvX/q677joAwK+//lrmbZo3b462bdsCAGbMmBG0vLi4GLNmzSpXOwYPHgwAmDx5Mjwe/b+xgeQJ5d3u8v3tlV+jv//+G2lpaUHLExISsHXrVphMJlx11VXl2ve5igESIiIiIiKiKuL26NfPUmeWBGaQvDFnB/Icbrzy2/YqbRudu4rd/s+lTTUfyam8c6/uOBERVZ+JEycqk4zLvvjiC2zYsAHR0dF48MEHy7W/Rx55BK1atcKsWbPwyiuvIC8vL2idEydOYNKkSZrHnnvuOQDAO++8gz179iiPezwevPTSSzh2rHxl0R566CE0b94cCQkJePjhh1FQUKBZnpubiyVLlmgek7Nldu7cWa5j9e7dG5dffjmKiorw6KOPorCwUFmWnp6ORx99FABw9913o0WLFuXa97mKJbaIiIiIiIiqiNtjlEGi/7OaugwSUWVSZ5A4VcGS9PxitG+oP2EtERHR6Xr00UcxYMAA9OnTB82aNcOOHTuQmJgIs9mMyZMno3HjxuXaX2RkJObPn48hQ4bg448/xrfffosuXbqgefPmKCwsxL59+7B79240bNgQDz/8sLLdk08+icWLF+Ovv/5C165d0b9/f8TFxWH9+vU4fvw4Hn/8cUycOLHM7YiKisKff/6J66+/HlOmTMEff/yBXr16ISoqCkePHkVCQgJ69OihKb91++23Y8qUKRg5ciSWLFmChg0bQpIkPPDAA+jZs2fI482YMQMDBgzA3Llz0aZNG1x11VVwuVxYtmwZcnNzcckll2D8+PHlei3PZcwgISIiIiIiqiIugxnYS5uDBAAsZgZIqGo4XPqfy9wiVzW3hIiIziVffPEFJkyYgNzcXMyZMwdHjhzB4MGDsWLFijLPIRLowgsvxPbt2/Hxxx+jU6dO2L59O2bNmoX169cjMjISL730Ev744w/NNiaTCb///js+++wztG/fHsuXL8fixYvRpUsXrFu3Dj169Ch3Oy6++GIkJibijTfeQIsWLbB8+XL8+eefOHHiBG666SaMGjVKs/4NN9yASZMm4aKLLsLSpUsxefJkfP/999i3b1+px2rbti22bNmCUaNGoV69epg3bx4WL16Mdu3a4cMPP8SqVasQFxdX7udwrpKEMLgaP0Pk5uYiNjYWOTk5iImJqenmEBERERERKa76eBmSM32lD5I+vEF5fN2hDNz97ToAwHs3X4j7rmytLGv96nwAQLcWdTDnyV7V11g6Z3z09x5MXH4w6PGv/3MJBl/UpAZaRER0ZnI4HDh8+DDatGmDsLCwmm5OrSVJvkEfZ3g3NNUC5fnOlTVuwAwSIiIiIiKiKmI0B4k2g0R/WyszSKiKGM+NU80NISIiIqphDJAQERERERFVEZdB9ENdecuwxJaJt2tUNYwCIR6O7CUiIqJzDK+4iYiIiIiIqsjpZJAwPkJVxSgo5zX6MBIRERGdpSw13QAiIiIiIqKzldugw1k9Ul8Y/OxhZzVVEaPPFj9zRERUFTj3CNVmHJNERERERERURYz6A4Qmg0Q/KOLlfBBURYxKabHEFhEREZ1rGCAhIiIiIiKqIkYjJj2aOUj8P6szTthZTVXFqJQWS2wRERHRuYYBEiIiIiIioipi1N3sNcggcakiJ7lFrqpqFp3jDEtsMShHRERE5xgGSIiIiIiIiKpIWSbDdnv0fz6e46i6htE5zSgQwgwSIiIiOtcwQEJ0BthwOBMvz9qGvSfyaropRERERFQORgPy1R3UTrc/a0RdYiu/2I2cQmaRUOUzCoQYZZbkFLmweFea5rNKRER+nIScqHpUxXeNARKiM8CjP23CrM0pGP3XzppuChERERGVg3GJLf/PTo86QKLtgD6aVVgFraJzncfgg2mUQPLA1I14+MdNGL90f9U1iojoDGQ2mwEALhcHNBBVh+LiYgCAxWKptH0yQEJ0BsgqGTm4Ly2/hltCREREROVi1BGt6okudnmUn90BPdfJmQyQUOUznKTdYFTm5iNZAIDftqRWWZuIiM5EVqsVdrsdOTk5zCIhqmIejweZmZmIjIys1ABJ5e2JiKpclN1c000gIiIionIwnINEXWLLo19iC+BE7VQ1DCdpL2UOEpuFYyyJiALVr18fqampSElJQWxsLKxWKyRJqulmEZ0VhBDweDwoKipCTk4OvF4vmjRpUqnHYICE6AwSaedXloiIiOhMYtTdrO6ILlbPQeLRlthyqLJLiCqL0STtRo/LrGZ2+BERBYqJiQEApKenIzWVmXZEVcFsNiMiIgINGzaEzWar1H2zt5WollPfJEcxQEJERER0RlGX2xBCKCNK1f3Q6gCJK6DEVjEnxaZKlppdhD0ncnWXHUkvxIbDmejRpq7ucquZGSRERHpiYmIQExMDl8sFj4eDG4gqk8lkqtLMLPa2EtVyBcX+P6zMICEiIiI6s6jDHV4ByAPw1SP1nW7jSdodLgZIqPIUOt3o/8lyTVk3tV82HcUvm45i1Sv90TwuImg5AyRERKFZrVZYrdaabgYRlQOvbohqOYfbHyAxm5jSTkRERHQmUWeKqLNJ1CW2tAESbQaJ+lqQ6HSl5RYbBkfUkjMLdR9nSX0iIiI62zBAQlTLFatGDYpSagITERERUe2lvpJTX9cVq4Ig7oASW5yDhMoqOaMQz/6cgF3H9MtnAUC+w12mfWUXunQfL20SdyIiIqIzDQMkRLWcU1W7kvcjRERERGcub1kySIImaWeJLSqbJ2Zsxtytx3DLhNWG6+Q59AMfgTLyi3UfD5wjh4iIiOhMxwAJUS2nvin2nkYGidcrkJbrqIwmEREREVEFqC/l1ANf1CWPAktsqbNLZqxPxuRVh6usfXRm23M8D4A24BYor7hsGST//Xe/8rM6mOfxMmBHREREZxcGSIhquWK3OkBS8f08NXMLLv/gX8zadLQSWkVEREREp8Nbxkna5XKrp/KK8dofiXh33i5kFTirp5F0RjGVYYKQspbYspj8XQXqz2RgAI+IiIjoTMcACVEtp75hPp05SBYkngAAzNyQfNptIiIiIqLy02aQqOcg8V/vBZYwkrNLtqdkK49lFOiXP6JzW1kmUC9wli1AkpbngKvks6fOIAmcI4eIiIjoTMcACVEtpy6rcDoltvz7OO1dEBEREVEFaOcg8T+unYNEe7HmLbl4y1eVRsrIZwYJBTPKIMkudOKhHzbiu5WHlIyk0ggBnMjxledVB+04STsRERGdbRggIarlNCW2KqHkb1lGlhERERHR6QvM/lX/VtYSW3JJI3XHdFYhAyQUzGRwnT9+6QEs2X0SY+bvRno5so/SSyZqV3/2XB7OQUJERERnFwZIiGo5p7tyJmknIiIiouoVONheHTDxevVLbAVlkJRso577IbvQVZnNpLOEUQZJwtFs5Wd5IvdQWtQNB+DPVFIH7YpDTABPREREdCZigISolivWzEFSgw0hIiIionIJHNyi/s1T1gySkoCJOqBS5PKAKFBesf78Imm5DuXnY9lFpe6nVd1IAP4MEnXQzsHPHhEREZ1lGCAhquXcntPPIFGPVmSFLSIiIqLqEThfg1DFPtSLnB6vcr3mDtjGo/M4AySUnl+MAlVApMAgOAJoy2KlliFA0iQ2TDkGoP0cF7u9QaXjiIiIiM5kDJAQ1XLqe+SKBkicqpsiiZOQEBEREVUL+dLNCje6S3sgPP65Q7wBgRA5a1gerW8pmVDCozMHSZGTAZJzWXahE93HLEGX0f8oj8nlsADAatZe76snWS80+Ox0a1EHANChURTqR9sBAOlKiS3tZ7Xr6H8wcva2ij8BIiIiolqEARKiWk4dFAmsY11W6rINDI8QERERVQ85++M9y2TMtr+LsPj3lGWBA1/kAS3yaH+7xXerJgdG3AyQUImdx3IBaINm6pJtdotZs35ZJlbv3ioOS164Cj89eDnqR8kBErnElnb7XIcbv25KqVjjiYiIiGoZBkiIajn1zXNF09nVARImxBMRERFVD7kD+27LcgBA2KaJ/mWBARI5g6RkG7vVrNmHRzU3SSFLbJ3T9AY8qe8ZAku7lSVAYrea0L5hNBrFhKFepA0AkFmgn0FCREREdDZhgISollOXX6jorYm6xBZvcIiIiIiqhxACkfDP+SBMVuVn9cTXgL8TW+7cDguRQeJgBsm5TSdCor5nCA6Q+H6/+vyGhru0mv1dA2ElwTm57Fvg/oiIzgQn8xxYuf8U500iolIxQEJUy1XKHCSqDBL1z1QzhBB8H4iIiM4BHq/AfNtryu/CFqn8fCxgsmz5mk8psRWYQVKGeSTo3CN3/KkzkpweLx75cRNO5Djg8QrlM9Qwxm64H3XATp7DxK0q+xaDfFwq7UV95FT6cyAKRQiBIxkF7OQmQ8kZhViQeDxobq8bv1yF+77fgPh9p2qoZUR0pmCAhKiW08xBUsE+dXVafVlS7KlqPfrTZlw59l/kFLqq7ZjZhU58/PceLN97stqOSUREdK7zCqC1KU35XVh9ARKn24u1hzK068qZIiUd1cocJCI4gyTweu7QqXxe451DJFUKifyxCLxP+GdXGj77Zy+KVOXY6paUztLTLC5c+dlSkk3iLPksWrIPYXvYI/jNPhpL7S/Chuq7hiWasPwg+n6yHBOWH6zpplAttPdEHq76ZBmemL4FS/f473U9XoG0XN88Siv2pddU84joDMEACVEtp52kvWKjZoqZQVKr/LMrDRkFTizYcbzajvnDmiOYsPwghk/ZiI1Jmfh7x4lqOzYREdG5KvDaTQ6QJCRnIbvQBZuqrJE3IBASOEm7el/qYMn87ccx4LN4PPrT5ip4BlQbSaoSW3qfD9mszSl4edY25fe6kcEZJJ/e2RXjB0Xh/zbcAfy3G3BkDawmbQZJnY3jlPVjpELEIr8SngVR2XyyaK/mfyK1Han+rLZ9J/OUnzMKipWfo8Is1domIjrzMEBCVMups0QD73uOZhYiI78YpVEHRVhDuPYoKHZX27GOZhUqP9/59Vo8Nm0zktILqu34RERE55ojGQX4Nl474tldryMAYG+arxOn93n1EV3ScaPMNWJQYksdFHGr0gW+X3UIADQjZ+nspp6CRCnBZnCNv1A1KKZhdHCA5OJm4Riy4T6Y0vcCWYeBKdchJncPAGD/yXw89tNmFKQf1Wxjl5hBQtVHDhYT6VFnT6blOJSf1X0gZekzIaJzG//SENVyRhkkOYUu9Pl4GS4ds8R4W6/AzxuSceiUvyOcAZKa5VZdwBUUV1/9cL3ko2M5RcEPEhERUaV4YOpG/Lx6t+YxrzUCAJBaMv9Iq3oRMJWkA8iXaEYZJOpruMAJ3unc5dGZg0SP2SShdb3IoMejjywFHNp5RS768wbEIRcA8PfOE8jId2qW20tKbHFOCKoOjWLCaroJVIupAySnVIEQl+rvZJ6j+gYmEtGZiQESolpOfd+hDpCkZPszAowyEWZtPopXf0/Ei6rUejcDJDWqUFUH2uGuzgBJ8PvOe1oiIqKqc/BUAWIRkK3p9f3tlzuc60fZYTbJARLfH2ZlknZLQAaJqrNHHSxR/zn//J+9uGPiGjhcnMT9bCapamzJn4XSghVWs4SW9SKCHrcUZ/p+qNtO83gbyZ954gnoNgiD7/PL2wqqDo1VARIG5SiQ06M/eEAdOCl0MkBCRKExQEJUy2lugFXXg+pU43/3nERmgXZkFwAs3pUW9JinojO9U4XsS8vD6gP+SeGKnP4OC0lvgypSpNNRwvsLIiKiqlVPytU+IOQAiW+Ua4MoO0riI0qAJLvINzq/ToQVgCpDQHUN5za4Pvzf0gPYdCQLCxKPw+3x4vaJa9Dvk2W614l0dvAqGUbax4f3bK0pqWU1mRAbbsWEoZcony0AMLtK5hNpfplm+yjJn2lsgnbnMZJvoBY7q6k6NFB9jtPzeS4jLXUgRD2gVF1iqzorNxDRmYkBEqJazqjElvrG+JmZCbjkvcUYOXsbpqw+HHJ/LMlQvYZ8uQpDv1uPjUm+0XmFqgBJdWbz5OtkGXmFgMPlwY1frsJN41dxtCkR1TghBF6ZvR3jluwr13Z/bTuG/p8ux65juaWvTFSNGkjZ2gc8vr/HcsCibqRNKbElD4pJzSopv1U3QvO4+rrBKINE5hVAUkYhNh/JQlJGIbalZOusRWcDt8EcJCZJ0kxMbC0ZXHV95yYY0qWJ8rjZWRIgsUcBvV9QHo+CP0ASKWnr90+2fgKAGSRUPVQJUziWzRLBpOUymG/VqS5tzQwSIioFAyREtZz6xkP9s16g49dNKRj91y4lhVQva6C6S2wVV2MZqdqm0OlWRq4s2Z2mPCZTj2qp+rboZJAA2HU8F4mpOdiekoNdx9mxSEQ1a0dqLn7ZdBTjluwv13ZPz0zA4fQCPDVzSxW1jKhiGgYGSEoySOSBC9FhFiVAIo+DOV4yR1iLgACJuuPHFZguEMBmMSGnyD+Rtpc92bVSsdtToWtl9WdBHkDlDcjmMJuAaLs/QBJuNSs/m1Q9ziY5g8QeDQx8G+gwGIA2gyQS2k7pcEkuscXPFVU99ed9S3KW7jqbj2Ri6Z40ZjWdg9R/D9VdJC5NBgkDJEQUGgMkRLWcV+cGCAh9Y5xd6LshdriC16nOSdrXH8pAxzf+xpf/lq+j62whjwAFAKmkoFax6kKttM6NyqSXHSKEgEMVOCnSCaIQEVWnvGJ/h667AufI5IzC0lciqgZyJ10d5GsXlMxBIg9ciLRbguYgka/foktG/5eWQaJXM9NmNiGnyKm/PtUK+cVuXDl2Ke78em25z3fqTmD5vQ0OkJiUDBI7nLgJK4B1E4GcFCVAYoIX4Vsm+TawR2v+j1YFRSICMkj87ShXs4kqRH3um74+OWh5VoETt09ciwembsL2lJzqbBqVw5JdaRi/dH+lB7Gcmvm51Pfa/sf1BgsSEakxQEJUy6lvdtTXEqEyQfwBEr0MkurrlH9jzg4AwGeLy1cq5WxxMs9/Mym/F+UZ/SlLSi/A3hN5p9UWvWwVrxCaieL1ynAREZ0uIQRe/HUb3pq7o9R11dmRzgoESKo7S5LIiHzNFik5AACFoqSGfkmARB7NGmEzK+Vj5GsE+fpAHvGvdIAbBUh0eLxCm0HCnuxaJzmjEJkFTmxPycH21NI7dU/mOfDdykPILnQq89IA+hlGgC+DpG6k73P3pGUOXnF8Afz9KvBNX5g9vs/lH7a3IMlF2sJiff+XBEjkeUYAIBwGARLdAm9ElUv92c53BN+vpKrKbqXn639WT4fT7cVn/+zFzxuCgzNUNkIIPPTjJnz6zz5sq+QgliaDxOBeOyPfiZO5jko9LhGdXSylr0JENUlbYquMGSQlIwb1AiRe4bvBNpmqforwc/2Wafr6I8rPcmktdeefqwzzwQgh0O/T5QCAbW8NQqxqUs3yKNYJkLg8QtOeQtZmJaIqcDi9AL9tSQEAvDnkAljNxuNz1H/bil1eRNiqvHlEVUK+ZpPncchFFCJQDAg3hBAodHpwkXQIzX//HB87Abe1GJa8iQDilO+BPSBAog4AaiZp1zl+sdujCZAweFj7qIPAWQWlTzw9fPJG7Dqei01JWbjn8pbK44YZJJKEepG+k+jNpjX+BYXpqFOcikbIQVfTIf/jca19/0c2BAA0QLayKAz67ePHiqqD+trgRK4DDpcHYaqScadUg9Kq4ly36sApfLn0AABg8EWNUYcXJ+WWnOkPuHoqecCmZpJ21a7V51inx4seH/yLNa8OQNM64ZV6fCI6OzCDhKiWE0aTtIfoXM8JUWILgGbUWXVZczAdM8+xUTcLEk8oP8tpveXNIFGvn5ZX8VEvehkkLo9XM09NQTFTj4kqamHicazYd6qmm1ErZas6aUsb9a4ugaAX2CU6U8gf9Uj4/nbnSpElCzxwerxwewUetCyE7fgm9PRswlXmRDTZ8gWEEMoACiWDRARnCJT2XXK6vZoASWWW2HJ5vHhyxhZMXX240vZ5LipWXYPl6YyKDyTPFbd070ltNpHy+dCubzL5AyTRkrb8YJQ7Cw9YFmo3aNzV9390IwBAA9X8OXb4Pkv7zn8SALDT2woAM5OochzLLsKW5CzD0kuB56+ULO2cOKdUWSNVMd9SVoH/XCpXaqDyUWf2lHba8HgFth7NNnwv8xwuTFt3BMdKMoeKVX0enlIGlK7an675XQiBlftPVUnmERGdWRggIarltJMw+i4gv1t5SNPhFEgulaSXQRK4z4TkLGUy0NNxNLMQiQHpsuoclXsnrceo3xOx9mDGaR/rTCS/Fy5v+eYgqaxRUHoTgLo8Xs1nJHDyuqwCJxJC3KwQ1SYVma+isqTlOvD49C24f/KGGmtDbaYuh1HaeS+r0D9K2ehvGNGZQMkgkeQMEl+ARBJuFJYMSJA7nRXCo/m7H2b13ap5vAJCCE2ZVPV3Se/PdLHbq+nIq8wAybztxzB/+3G889euStvn2WDPidxyXVOrRzfnlaPMaYTNrAlMeL0CJ3MdSMnSBkHMkoRGMWEAABu0+490ZeEy017f9o27AY+tBqIa+BZGNQbgD5BY4IZF8rW1KKYtAECUXOULxrHpNHm8AteOW4HbJqxBvMFAk8D7oaMBn/WcwuBsuS3JWYYTupdXoYsliU+X0132KgpfLTuAW75ajck6QXiXx4u+nyzHG3N24PPF+5CSVYhfNh1Vlqv/1ukOEAzIXpmfeBz3fb8B136xoszPhYjOTgyQENVy2jk4BR6bthlj5u/Gy7O2GW4jj8A16lySLxwPnMzHrRPW4MqxS0+rjSfzHLj+vytx4/hVWHMgPeS6m49kntaxzlRKBkk5S2xVVoBE9wLRLUIGSG7/eg1unbAGfySkVkobiKrKlNWHceHbi7AxqWbOL9pRcQwoBlKfW0J10o5fuh9vzd2p/M4MEjqTyacCucRWHvwZJHIgMMqkLVtUENNWFfgQmhIyXmGcQWIxB5dNdbq9yK2iDJKM/NLLQZ1rElNyMHjcSgz4NL7MwV31qOc8R9lHpUfaLJr30+HylY4ZHRCwMpsltK4fCTuciJK0Wch3HXkbl5h8JYM8/UYBjS/yLwyPAwDEogCAtryWsEcBACzwPUfOQUKnq9DpVjKoktILdNeRP+/mkhLR4wLmt8wPuM5wuDy4bcIa3DZhTdD9TUUUqcoQq481c0MyLv9gCXaXZHeRMXVQv7TBMp+XvL9j5u8OWrbuUAYyS0oSrj+cgc/+0X4W5ODxtHVH8MKvwf0lroBry393nwQAZJShzCERnd0YICGq5TQjxASwvSRLI1THUaHTAyEEHCXrzH7sSvzxRE9ludxJv0t1MZdbjhuzQEt3n1RGvq0sJUCSlnvupK/aLf5TrFzKSh3wWLrnJNYcTA/ZaeEpQxClLPQ+L06PF0Wqcja5AeUdDp3y3aRsOHxuBrXozDH6r10odnvx0A+bauT4Quj/TMCmpEzM3pyi/O4uKZvwz84TQet+GnCTq5f5VhYMUlFtIF+/2SXf9VUBSmqeez0lEwoLXCVtBQBkSnEly7xwuQWuN63DbvsINP7mQgw0bQYAuL1ewzlIrKbgWzqnx6vJNq7MUkjOGszYq60OpecD8F3vlfWaWpNBUoYSW7LADBKjwUdmSULHRtHob/UFnr2SGejzYtB6pjZXaR8omaxdnqQ9TJ3pZPMFSKwlGSmcg4ROl7rcr9lgjkz5fHdD5yYAgG0pOZq5E9U/u71CExw+mXf6957q8p/qrNhRvyciLbcYr/y2/bSPcTbxekVQ0Fc9WK8sVRT0vPjrNtz3vT9bO8xixuGAoFpWoRMz1ifjjTk7dPcROPjQ6DNHROceBkiIajmjOUhCKXS64fIIpeP9vIbR6Nq8jrJcLtGgvh7Yn5aH7SnZ6D5mCUbONs5O0XM4w39hciRDf+SPTKriaxCHy4NXZm/Hcz8n1GgtUSGEJighzwcTGAy5d9J6PDVjS9D2RzML8eKv2zRBrLI6klGAuVtTlc+Oxyt0M1FcHi8cqg7I7EKjCTh590tnhpwiV413jtfEHE81rdjtQYbB+faOr9fi3z0nld/dHoFbvlqNR37ajIOn8kvZb9luoAPfc3beUm0g/+2USxs5JTsAX4mtlKwitJOOKetmmur6fvC44PR4McH2P4RLTpiKMvCd7TMAArM3pyDLoGSWHEy0miXcenEz32Muj+bvemVOXKyXlXquUwc4ypqtow4ClyeDJNxm1gQmUrP1y3qZJYHY+DfwtfkTAIApsgFwwc2adfZ5m8FkC5iwOCwGAFBPyoMJXthLMkgcwgqTxTeniZxBwmtEOl3qwVpG5yl5Uu9bL2mmPJZV6LvmW7bnpDKoC/B1zqsHfZ0smdQ98zQyBNQBkgJncDCzyOm7Djp5GvNFnql+25yC3zanaK7Fhk3ZgC6j/8GJHP/roc0gKft548DJPP+xtqRolmUUOLH1aLbmsaOZRXjtj0TD/amPvflIFn4P2CcRnbsYICGq5TwBNYZDBRjuu8I3YWKh06Pp+LZbTTCZJCUgIt+4qSfvXLU/A7M3pyA9vxi/birfhYJ6orxig4nhZZU9SuOFX7bivu/XK5O4rT6Qjl82HcWcrcewSGeEcnUJ7NiTLwrd3uDXZ+GOE8gqcKLY7VEuLh+fvhm/bUnBvd+tU9Yr6w33rRPW4NmftyqlsYw6MlweL4qc/mXqkaYiIHOJqDarH2VXfk6vgdIv6v6hc7Gz6KkZCej90bIylZhQl54JnGQ1UGl/T2SB5yiHk523VPPkj6U80t6BkvOU14vMAicaqibA3mW9AAAgeZ26I2vrIxev/7ED21QdQerrCfmaY/Lwy1C3ZFJup0dorvPKO3Hx5iOZeGrGFt1sr7MpQLIjNQffrTwEj1fA6xVYmHhc06lXVuoyPu4ydv6pX8fADJKTeQ688+dOLFMFmGUStNeERtknF5+YBaz/2v/ADZ8CTbpq1imCHVLgzUVJBgkA/M/6pTKPjgM2mOUAicQACVUOdQaJ0XdHftxqMqFhtO9cmlXgxILEExgxdaN2IEZA9sKJXAcGfLocl7y3uEwBjPT8Ytz81Wr8vCFZeawwoMSWw+XBCtV8Ken5xej54VL0HLu0QuePM9UzMxPw4qxteHHWNqw9lIGfNyQjLdeBlfvTIYRvviqZs4wltoQQmkGcAz9fgTUH0nUHQFUk6KW+Dr194hre5xKRggESolpOOweJcfmWGzo3US4YC51u5Y+/JPlLPVlKSjDIo3Nyi/wXe79sTK5wuqt65E9pI37NlZhC4nR78XtCKlbuT1dGIqvrh6rbVd0C60/Lr61RkOPi9xbjgrcW4flftgIAdqT6OhrV73dZAyTyxeKcrb6LUqMyNU63V3NToh6Zqh5dw5tfqu3aN4xUfg7MhKqOjBJ1DXYhfGXp/t5RcwHa6iSEwOJdaShyefDBAm2taL0O2UzV+2MpJWBe2t8kt8eLYZM3YMx8bd19vUA0UXWTJ6+WR9oXw9exDK8bOUUu1EFJBlWLK+CUwkqWuWA6sipoX62k4POJ3GG4ZFca9pzwjbC1W8ywmkuu9TxeTYBEvob437/78dWyA6W2f9yS/Zi3/Tge+WlzcJbWWRQgGfLlKoyZvxu/bjqKnzcexePTt2Dwf32T9e5IzcGpMpbnMZpradvRbLwxJxFZOh156mtmddmePxJS0OP9fzF1TRJGTN2oezz1tZlegOSq9nG4ZPfH2gcDgiMA0NV0KHjnJWW0AGCIeT0W2V8FANSRCmCyWAD4P9ecgoROV9kySPxzkMRF+M6l2YUuLNUJIHq8Xs08ISdzi3GsJGix/lDpZYM/+Xsvth3Nxqu/+7MQCor9bXS4vJi04hDun+wv9ZRV6EKx21cGMbDk09mgyBmcgZOW68Cf2/wBkGd/3opXf0/E0zMTlMei7BblZ/W9ZajrNKfHGxS02JKcpVRjOF3yZyOnsOLlxYno7MQACVEtp74pDVm6RfKl3AO+DBJ55G2YxayMDJMn8ZQvMk/k+Efvphc4NaN23OUIlqg7sVYdSMdl7y/B8r3BF6ylPodyUo8OkjNTcgw6+atb4EWcPCFcqBIXHq9Qghp6yhvAcpTccBh1ZDg9AsWqAEmOphSHfxvGR6i2U3/G1YG+3cdzcemYJZi6+nCVHj8wkHnXN2vx2LTNpZYcPBuoOw9PquaYcrg8mqw0WaYqw6e0iYz1grMOlwev/ZGIf3enYfORLMTvO4Upq5M061TmZNREFSV/fq1Kia2SAInwIKfQhTpSSYAkoi48kq8TSfK4EL35q6B9tZLSgh5zewWEEJrApM1igrXkWs8VECBxewVyHS58vngfPlm0V7fDXk3d6V7o1B/0cTbZdjQb/+zyBaKyC13YcyIXQ75chV4fLi3T9vnF+p28N3+1GtPWJWP0XzuDttFO0u5/vZ//RVvqVp50Wk19fgyc86Rfh/r48aY4SCLgfYpu6vv/7pmhn4wkAWF1dBfJGSRWpcRW6F0RlUYTIDE4t8h/1y1mCXUirAB8c03odbT7Mkj836cTuf6MDvn8GEqaTpaJumyzw+XBxPiDhtuXdm1zpnG6vRj4eTwue38Jdh3zZwoHlgWUrwfVc1farf7uRs0cJG7jE4feAEev0GbxnA45GJ2cWRi07GwK/hNR+TFAQlTLqTt6SrshjSwZpVFQ7FEyA8JUFyZyEEG+cducnKUsc7q9OKYKmJSnhntg1sipvGIMn6I/4q2sZQfKQq/ec5a6k78Gb+ADL46dJc/7dJ5/WTr91MeNCfd9HoyCMi6PNoNE3ZmpvnBlBgnVdupgqPoc8PbcncgscOKdv3Zh1f50XPvFCiSoznuVRf0NUX9f0nJrbh6k6qLugJVH5RU5Pejz8TJc8t7ioPXVnQzqEZ569E5dP29Ixoz1yXjwh02wmPUvYytzrgWiigqcgyQPvlH5Zmcesouc6CqVdLCF+wMkUVm7EZm8LGhfPUx7AAAStNc1xW6vZh44u8WkZJBkFDiDskFdquu1jILQ5yd1R2JghoJTtd+zJSDpFUI74Gd/OgDf9fDagxmG87TJjDJIZHKWT0GxG58v3of1hzI019qhJnZ/Yvpm7flUkqDuF1a/P1eadmJy8mBgwhW+ByxhQJ2WwMB3AHPJaO6WVyjrp4j6+ge973fdhy1WX7Y65yChyqK+F/ls8T7Eq0pXyVwlH3h1BskXS/bp3ld5vEJTUSBVVc5TrqYQSmBAeGNSJlaWnA8A3/xOseFWw+3PpACJ1yswdfVhLNkVHISXJWcWIjW7CB6vQGJqtvJ4URnKmS7d438v1efXUP0MRTqvX4HTrXlfHuvbDhElA0NlN3RpUmp7AP+1p17ApSarTxBRzWOAhKiWU99jhcqIkADlQqHI5S+xFWb1XzzI5Uw8Xi8Kit3YfTxPs4+sAv/NWXlGUJRnJGFllj5R30zKQRpNJ38pN+3Hc4pKnSS4ohwBZa2cJb/LkwzKNcLLoyydfurOYZtFLrOhv93+tDwsVJUByilyKSVxXKr36WhmIeZuTT1rOkHo7KM+B+Wqa+6rOm7+8/167E3Lw72T1lf68TWZfqrvSSVPuVTtPAF1vPXolUxIzS4yLEuj7rR49uetOFRyDtYrhaZ3zjlZhnI3PFdRbSB/DOW5Go6afKP3LQUn4HAU+ksbtbwCHsnX2RaXsUW7kyufAgDcbVmOVfZnsMr+LCLh7+wrcnqUgAjg+7svZwuvV43iBXzXEOpOqfSAbK59aXma76H6miO/WHseUJfPO5NL2qmvdT3ewPOZ/+d7Jq1D/0+X46VZ2/D7lhTduvf5ztABEvmlnbD8AP737348Pn2LpjPOaB4RAFi0My2o09ZjkEHyuXUiTOpAWtv+wHOJQO/n/Y9F1MX8zuMQ7+mCYc5X9A9qi9Z/2MZJ2qlyBXaIv/vXTjhcHizbcxJrDqbj/fm7cDTTd96zmCSlhNWhUwW696Aer8ApVdZIkiqIbC5DBklgx/msTUc1vyem5uB4iHlGMk5jMvhAJ3MdWL73ZJVlNszenIJ3/tqFR6cFl1KUJWf6Xz91lrZeICPQX9uOYX+ar79B/V4FDmLcfCQLE5cfxH3fr9edny7f4Q+Q1I204dXrzlcGhgLATV2b4uE+bUttDwDkyYN5dNpfngGiRHT2YYCEqJYr642HJEmIsPkzSOQST+GqAIm5ZNSMyyOUkSCx4VZ0aOQb1ai+4SttLhG18gRI1DefQgj8uvEo9p7IC7GFMfXNpDzPhiZ9t6Rdb83dgbu/XauZi+NIRgGuHLsUQ/63qkITvJUmqMSWnEFSctMcZin/6Tfwhnvu1lRN7VdAO+rJ6Q4Odqgt2a0tgyaE/zVVv6dbkrPx7M9b8fuWlHK3mag6qL/36psbk06Eoiw3dOWl/maqz516x68OB07moe8ny/BrwE19ed33/Xp0fuefkBOOqjtH5XNUqL8J6gwSABhfMheCXm1pvZt19YhBo1Ga8nk2LdeBn9YmaUZ2E1UXEVBiK0Oqi0JhhwSBmOJTCEfJd6H+efBKlqDtn7K/D9T1d/g0l9LRTMrAn7Y3IJ91Cl0ezVw+dosJtpKASWCQ0usVmuxQ9Xdx6HfrMeiLFfhHNYpYPbgiN6DzXh08qMzM4Mq2KSkTn/2zN+i8I1NnwAmIkB14WYUuzN6cghd+3YZBX8QH7StfJ6tZTZ6r6tApX2djZoETh9L9g3TUQY7GMWEhnxegDVJlqzotTQFZRjDrj3QvaDUQw1yv4qBopn8Ae5Tuw1abb3+Wks814yN0ugKDfwdPFeDDhXswYupG3DtpPSat9JdJtZhMmsFgetcbbq/QlMDao77PLMPnNfB6JPAQy/YGZ7iovTFnB75dYVyCqzyGTdmI4VM24oc1SZWyv0AHSgapeLzCMKs3OcNfikr92pe15NWOYzkAAidp978R21OycfvENfjo7z1YuT8dY+btCtpHQbFbOZ7ctxGpuh6MDbeWeZ7TA2l5uO/79ViQeDxo2dlYPpLOHVNWH8a1X6zA1yFKAFJoDJAQ1XJlvfEwS6oMEqdH6Tiy62aQCOViNMpuQUyY72bnlOoGsrgcE6GVZ1SL+oZz3vbjGPnbdlw7bkWZtg3sLFOPFJc7Jd0BN7eH0wvw49ojWHcoEztVdVPlmvVFLo+mnmooy/acxMr9oS+KZfLrL1+8BU7Srs7sKSu35mbYiWd/3opnZiZoOgnVoxFLmxhej9xZoFcbdksVlCYiqgzqmy71uau0ScAri/rUpD6+SXWzNur3RNz97dpqKb1w24Q1OJJRiJGzt5/WftYczAAAzNe5iZRpOkpLfg71N0E9ah0ArCWB+wKdG215hLQQAntO5MLp9iLc5u9ITsvVD9zImXp3f7sOb87diTHzd+uuR1SV5K+GPFeDC1YUwNfxbfEWIVwqueayRsBjCu7EPmluDMQ0DXq8nem4Up6ryOkO6hQyOu95vIEdVP6fNx/x/X1Xj5RWL88PCJB4DTJNagshBN6fvwt3fL0WXy49YDgpvfp87PaIgBIwxs8r8DwGaEtshcqqUR9TXQM/z+HGjlRfR2JpnXQStBnm6oE+J0TdgIbpX7de37kJGseEYWCnRvoHsUXqP6yU2PK1kQESOl1610VTDQICFrOEi5rFKr+rJ0+XebzCcG6csgwADBycKLevYbS91G1lHyzYc9qd7XkOF3Yf992j/rvHuATW6VC30ShD94jqPLV090nl9Sjr9WxGyfnSaDCTunwZAKRmB1/b5Re7lXtcub9DnUFSJ8KKUNXTnurfXvn5WI4DK/en49dNwQP/anPAn6g0J3Id2JuWh/QyZNuTPgZIiGq5snZuh9ssyiTtBU53qXOQyBcZ4TazUkdVfSynp+ydeOWZDF1d9kq+ESxNdqETPcf+izfm7NA8rldiS32j7vIITQea3Pn//vxdmgvvspTZynW4MGLqRtz3/YYyXRDK68SUvLZur8BHf+9RgjT2EAESoxRnt8eLXIcLB07may5i1YEi9eh4+UK0PBfo8vuul3Ui1/wlqm2MbrrM1RYg8X9n1Zlq8uGL3R7M3JCMdYcyMVY1ofLI2dtw59drKm3iSQDIKXQpo73L+vQ9XhGUZaF+TvYQGW/qm0mPp/QMkvi92sy1uJJyg4U6nRzy6XzW5hQMHrcSj0/brNl3hk4nJeD/OyCX4fh7h3GAh6iqyBkDcgaJR7LACV+Hjsnj9GeQWCN0M0iyzPWAyAa6+37NOgNASeeg6nveINoOq8H31eP1as6Veh1B6vr86uupwHOUNoOk9o243X8yXzPq/MBJ/es8dWep0+3VvCblLcGaX8ocJPIpVZ39rB6ZDQBDvlzla0vJa3pBkxjD43kMrhUzRMA24XG660XZLVj1Sn9Muv9S/QPYonFCBG9rtfuCfCZJwAI3S2zRaSvPvA9mk4T3b71I+T1PJ+vB7fEq38HzGmozocpyTxT4kZbvrcp7HyRn3+YUunDbhNWYuvpwKVtoydlmAKqk2gGgzaIzKo2qPk/tP5mPK8f+i5wiV5kzsuVzoysgQH8y14HMAieS0gs06+tl/BW5PMrgTr0ASWy41fCa/7fHr8QL13TAjIcvL7WtRlUXiM4E8iA9u5Xd/BXFV46olivrjUeEzYzIkpG1KVlFysVMmEWVQWL2z0FS5PKnqUaHBd+Y65U7MWI0Wlgv01V9Ix2q/IwQAjklJQM2HM7EsRwHpq9PxnHVRPKaElsuOYNEO6m9+uZXnmBTfdMM+Orll0bdeacOSPzv3/14asYW5BS58PKsbejyziJsSspUXj/1aztx+UH8kZAKIHSHo9Fr/+APm9DlnX8w8PN4DPrCn3WjDhQVViCDpGG0HTEl7VTKcuncQFRk3hSi6qAZ9av6zldXBon6O6Y3OlGunQ0Au0tKPaTlOvDrphRsTMrCK78lVlpb1JlePdrUDbGm3yu/bUeX0f9g3nZ/yT51SR1byACJqsNVziAJ0QERWKpHnttAr7SDHKSZvMp3zv53z0nNOc5oUuPAjt/yBPGJKos/g8T32XabLHAK399ai6cIMVLJecEWAa9OBonZbAZiW+ju+3LTHvQzbUWh06Nc//zz/FWwW8xKVlYgT8Ak5HrXlxZVfX71dzuobKhm7o7a9/06mavtYDPqOFP/vSh2ezTPZXNS6KzZF37ZiqWqUd3qLDi9rBr5EfW1a+D5UNm+5Jw14PyGhsc3GkwTLZV0Zl7+OHDeIOCa9wz3YTGbIBmVpTGZ0Lf4C9xQ/L7mYXuEf26SCDgYIKHTVp7SpxaThCax4cr1nV4JTYfqe/3pnV01y8oWINF+puUAcZ0I44nZ9cjf9W9WHMSW5Gy881dw6ahQ1AELowEhgO8+ufM7izBy9ragZYkpOSEHiajvaeX2Hs0s1JwL1ZlugK/c4O7juWWapB3w/41QZyL+ufUYenzwLy55b3GZgj/FLi8KXXKAxPd3NEoVIIkJUWLr0lZ1YTJJuLJtvVKPwxJbdCaT70HtlvJXKiEfBkiIarmy3ndE2MyItPtPhu+XjFIOt6nnICnJIPEI5aIm3GbWlCyRhcruCBwtaNQZpnfPrO64CtV3+cGC3bj4vX+wMSlTc8O+Yp+/VID6ok5uQ2BdbHW2R1aBC1k6F2Hfrjhk3JAS6lHhk1cnQQhfrdbPF+/DvO3HsTDxOGZtTkGuw43fE1KV9aPD9C+mw0JE9ss7mjynyL++Xomt0joHf3rwcqWdyuuos42pjLVdiaqb+jOu7vAy+v5VNm2AxBP0+DFVEFZu3740f03sIxna0XOnI7vIf44ra6mA2ZtT4CnJclP2o6oz7Q3RAarOCpRHNJclINGvo29kvHxDrnfek18/9STU6nO6+m+AWmDnZFVNbkoUiu97I2AtmaTda7LCCd856XbHb/4VreFwmrRzTjzkfNH3Nze6EZ4wvYWJ7huD9n+feTFW7j+l/N2WRzdbLfp/q93egDk2dL7X6u+aevlzv2zVnBPU5zlXNQZIdh3LxaQVh0rtxFIPpgGMg+Xq61enx6vp7D9hUMJP9ntCKh6Yukn5XV3qRz+DpKSTsAxzIsnPb+gVLXWXe4UwDExFoaTd510DDJ0F1G+vu15ZFMOGnaKN5jGL1Q6YbcqxamF8jM4w5c0gAfylivN0BkqorxOax4VrlpV2PbBy/ykkqTImvF6BopIAcXkHiuU5XHB5vJiwvGzzARQ5PZrrLXXp66xCp+G12C8bjyLP4dYtGXXj+FV4bNoWw3LSuap7yIJiNxbtPIE+Hy/DUzO2APCdtwIDJL7n5i5zYOv3LalIzS7SZKscUmWNHNHZPwBc0bYuRl13PgBfx++2o9kA/BkkEQFzkJQ2758kSbjuosYh12GJLaoNhBD4c9uxoCzT0sjXZqEG4lJofOWIarmyjswKt5nRrE44brtYO9miuiNeOweJP4NEfYEhe/V334jm+duP45+dJ5THv4k/iM7v/KNcpADGF5uBNasB7Q13qA73SSsPwyuA71ce1ux/hapOaa4mg8RTsn9V+q5Xm0GSVehEWp7+Da/6xl+P+iLw6/iDWLb3pKZDT12+wWKSlItzvewcIHRkP8eg08+IupNQ3aZjOQ4cPJUPt8cLCV60l1Jgh/95dpEO4iLpEOKKkmArCULJN+V6QS+OqqHaSjMHiarjLlQd+LLYl5aHb+IPavapR13qRD0HidyBpc50kNukviktS4dZWanPl+X9zqo7+LJUk/4WhOi8UAfMlUnayxCQaN/AV/ZC/jsRWEIR8AfZ1aO/1ec4o3OlJ+B9d3q8mLkhGf/urpoa3kR6hPDPPwIAMFngKimx1cO92f+4NRIZVu1cIyu9nZXBIZstXfGR+x7c43wdu70tsMnbAQDQQUrB71tSlW3kTC9LQAZJdMkoW69XaM4Peh3s6kBCYEfRv7v95fHU11aeauxQuv5/K/H+gt34ZePRkOtlBVzTGc2TUqy6tit2ecsyf7Muj1doriP1J2n30ct8692+PgDfuc7rFUp7bWb9W3WXx3iOBeU6zxpRxtaXjyRJgM13/o6UHCjTrNdEIZQvg8T3nZDvb9XXKjJ1gEQudSwLvC7Kdbjw5PQtWLwrDav2p+O+7zdoljs9XhQpGSTlDZC48fOGZMPlWQVOPDB1I+ZvP46M/GJ0fmcRhk3xH189j4BXANkG1zzqvgJ1EEX9c0qWfker+joqr9iNiSXBnIU7fPf+bq/QzYzOLnTqBqf0pGYXof8nyw0z5ozKGUbZLejc3DffzN4Tefi+JJtYHvwZFVBiy+Jx4GbTKjREFu693BdcHt4mF0jZDGQeBvbMR6f6+vflMt7rUm0wZ2sqnpmZgL6fLivXdk4lg4Td/BXFV46oltO7ybratBlJYfdiSfgo1IVvRMjlbepBkiR8/n/d0LGRP/1dXWLLXHJR6fb6MysibPoBEsBXM/XJGVvwyE+bseFwJgBg7MI9KHJ58Pocf0kYo4sJvU4/dYelUVq/eiRRbLhVM1FmimqUifomU34+6tfL5RGam9+sQqdu0AYovbZrYHmJw+mFcKhSi79b5S/bZTGZlPUjbGbd0g5GrzkQnMpcGnXb1dkwp/KKcfVn8Vh1IB2fWL/FEvtIzLa9A0AgBvn40/4m5tnfQMMfeuMOzwIAJX9Y0w8Aub4L4zAUQ7755UUj1Vbqm0B1B2B5SgXqGfTFCoxduAeTVyUpj2UVODHq90TNZMZGJbaUAIkqGCJ3OqpvLPVKRFSUpqZ+OTsu1ededbZdYYj2qbNFPF4BEVDGx4g894hcPzwlK7jUofy+WlVZhNPW+TsbjAIkeiMAR/2eiAd/2KSzNlHV8AqhlNcCAMlsU+Yg0TBbccqmHdxSDKsyiEQuG7LWeyGuc36ER5wvAACaSenIzvVn+8o3xNaATvWwkuuNwEna5fOTupyMev6SwACz+pJNfZ4prWb7mgPpGPRFPDYmZYZcrzz2qzLw9ASWftGb4wgIziCpSF+/0+1FRn6xJmChm90hoGQfB+pQct3u8QpNZ7HVYtLNOD6eUxQUCJbZpZLzoqXsE0obkT9Tw50jkSfC8aTzmZIFvvZGoYgZJHTa9DJIXrL8gq+s42CC9nMu31OFGmimvvYLzB5zBpRi7vLOP5ifeBwP/7gJ8xODS1E5PV7VHCTly0rOL3ZjX5rxXEbjlx3A0j0n8eSMLViw4wTcXqGZsDzwXBEY+JWp7zPzDQaRRNotOJHjwL+70zQZdup1CordQeXFjK7nXp69HeOW7Dd8boGcHi9OGgxSNBoLGmY1K++z+lwtPxamms+zWZ1w1Fv5Fv5rm4Cfbe+hS9NobBl1Fd45/hjw3QDgf92An+/F4COfBh3HF1T2NcIomE5UneL3+iqmlLeCpXxtZmOJrQpjgISoltP7O/297TMAQHtxBPE9NmDag5fj0lb+iRTVN1PqycC1GST+SdrDDTrrD5zy34C+O2+nZpl6lHR5AiTqzjSjWqHqC0CH26Pp8NTUn1d1OuYVuzF19WHNhWVargNj5vsnRM4qcGlqPwP+1OvSsjYCL94bRNvhMBhVXuz24NeSztMwi1nTuSdrGG1842o0maiRo6pRQXoZR18uPYBeJt/o7M6mJLSUTqK5lK5Z5xpXyQiF/DRg/KW4+Lee+I95MfaEjcA7lh8AsEwN1V7qz72zlBIyFbH5iL8W/Y9rj2DmhmS8PHu77vH1SmxpM0jkAIn/XGTUeVcRZTk3GylyeZSbY/V5WG8SVFlgR6DHK0LOQSKTS1XIr4P8usW/3A99O/jKb8mva+CIeJneyFG9NqkZ1e0nqmxe4ZvEWibMNqXE1gGplX9FSUKxOQoPOV/E4aZDsLH3dwAk5ZrNHHANkYkYuOxxMEkCbSV/h56cbRB4zSFfE3q83qCAJqANdlhVHW2BpfJ+WncEJ0vKTumd54zc+9167EvLx+PTNodcrzTq727gqPBAhS7tOavAoHSpZg6SCmaQbE/JRlrAnCfKfEyq/UuSLxtP7xQUq3o+k1UDbmxmk2aUtCy70IWdBiVzwpQMknDd5eXx8R1d0LpeBET7a9CleBLme6/wLZADJFIR5yCh0xY8SE3gKctc3GDegBm292GD/2+9RSmxFWouR9/5yWqWIEkSpo64TFmm/k4GZpXqjboudnmVbWJLOe8ESs8vhghxVtHce+p8jwLPW0alyNTnYHVVgYyCYs06Az+Px4M/bMKVY5cqmS25AYN1fBnRAg2QDQih+jsgEIHQZQdLsyNV/5xlJMJm1n2f5bnr1JrG2hFxYD4AoK3pBBoU7kddb3BQvsPxPzW//8e8GHvDhuMz69cAypYBTVTV9LK2yrMdM0gqjq8cUS0X7s7GQtsr2Gp/GFOtHwVdnEQn/YPeYYeBHb8DS8cAjlxNUCRcHSApuWl2q0aohVvNiLDqB0h2HfcHSHak5mpSlpVSTG7/DXdf0zbcalqJUEPwNJO0q+/h9y0CDsUD0HbM5RS5NJ186pF16hHYaw9mBE1+t+FwpubiM6vQGdTRJ1/sZhe5IITAsewi3XI6gcEQl9treKHqcHmVi1WTSdItkdAwJizoMZk6qGPk6QH+mtLzth/H3zuOY39aHo7o1Ko0w+O70C0xxLQWn1q/0azTwbMfSWH34vhvrwIAJOHFGOsUAMBwyz8Ayj8anai6qPvn1AGCyuoMV8dydx33j9iWz2fqjAVNBknJ8eVSBYD/RlaTQeIMHrVXUZoAUQWyvuROtx/WHlEe+3bFIQz6Ih5zt6YGrR84ytw3z0Hpz0UOkOQXu+BRbRMTZlUu7OX31aITZAZ8E4nqCRUY44TtVF28ArCpSmyZVJO0hwvfCN6MC4YB8A0YWeK9FKu6fIC0hr1K1tdmkKg567QDAJwv+Tq5LCZJWT8wg0S+DnQHlNiSvyfqDDazKhgZeP5ISM7GE9N9dekrEogtPs2MvmM5/uvfwKCBM+CazBFwfRY4OEa29mCGfx8Bc5CU1fK9p7DqgHbQiZzdcULV5nCb2TCL2a7qBPxs8T7lZ6vZZDhSfu7WY7qPKwGSSsggublbMyx/uT8mDL0EbepH4/4rSwJ7coktOHCalSyJkJSej3ctU7DQ9iq+sH6FuvDff15h2o3x1v/hStNOjDAvRMSKd4HCTCV7wAo3epp24JOux3Fj+HZcLu1GcUmAVB5c0a99HO65rAUA7fkqQVUuGtAvy+r0+O9zo8OsuNK0E5dJvvnamkun8KR5DmKgHdgmn58SjmYHZbOpgxnqzn/1mUeeB7Qw4DwW+DvgG4yovp5Un+uOq84/xW6vZuDizA3JcHm8mn3mOdzweIFfbe9iY9gTwOwHlNfrLctP2BX2AO40Lw9qQ7hBP8LpCldlkKh1ahIDALjtkmZoWTcCD/RqA/OpXTAVZyvrnLdvEvDHY7r7fdvyA2JQgNtNK5R73dvNKwFU75xaREbKOyjVW5LBL1dOsYcIIFNooYvwEVGNe/vYY6hv8qXZ9TNvw1viR+0KuSnA9wP9vztycJ64FDthQQHCDeYg8d9I+kps6Z8KFmzXphq/r+q4l0/ccgCiLnLxg+0jAEBKcQNsFOfDDieaShlIEQ2UutuaOUhK2hOHXGBGyUXMi/vw5zb/iA+3R3tDr74BVtcyLUvWRXJmoXJzGmEzY+GzffDaH75SYS/P2o70ksnwLmlZB78/0UuzbeDNdrHbqwSM2jaIxKFTBaplHuUCdejlLbF870kEahwiQFIW/7miFfp2aIA7vl6LAyfz8di0LUHr9DFtRwfpKN60Ttc8PtL6q+F+7zCvMFzGEltUGwUGFopVn9PKGtmq7p48qaoJXez2wmI2aY6jDiTLE5+r52ySv0fqYK1X+IK/Rufi8ijWBLJLf/6Br598TlfXvgaAfWn5ePHXbbi5m7YUUOAxPAGdsEbkCaXzHG7Na2a3mpTSQnKAKbDDV5ZhUBox1Ih2h9ujzNVAVLVUJbbMNtgsZqXEVnjJYBfJ4hukIWeJeDz+ARZKBonexLNRjYA04HPb1/jd0UdTTiEwoBgd5jtGkcuj+TsuH0fdQaY+l+l1FG0qyaZTB4IPpxdgR2oObr24ecjvVn1V5uzeE3kYt2Qfnr+mg1JeqjQLVeVv1E1zuDwY8Kmvvv3iF65Ck9jwoI7EjHzt+Qzwlf5Sl0ctdnk080mVVWJqDiLt2k48+VpXXfe/2OXFBoMyY3qTyEuS770vS0fH2zdegB/XHsHh9ALY5dH2ltPPIJFF2i3498W+/tK4dl+AJEoqUkbIe7wCW5KzcFHTWMPMdCI9w/K+wf2WxQCATkjGrebVmuWDzJsxyFySgbYeQGQdhFmuBAA8Y/kdT1vmAHuBOwHADuAosMLaGc+aRwF7FwIz78Zt9W/FTNypOQdmF/gDC83jwnXLsjrdXiWroI6pEDNt7wMAznP8iO+sn+J801H0MSdimPMVFMOGb++7FGHeAjw3fQMOnoxGu5L51gDgcfOfELN/A278DAiP0wQW1KVih3y5ChteuzpoIN5d36zFDZ2bYMwtF+GhHzdpsptl6gDJ7uP+jI3AwX8eIYKqJ6TnF6OPIx49THt9D+z8HV9mDwYQhQcsfwMAPrF+iwPeZkgQ5ynbta4fqTlWZYkJtwZlkNSPsuPhPm0BAF2a18GKkf2B5PXA14M067U8vshwvyMsizDCordcVGhgEVFlK0smvkwIgdsmroHT7S1TCUIKjQESolquvueU5verzcEd4RobvsX7AO6ytcXNzjGa+pzySVOTQWKzGN7IrD2Uofn9p3X+EcXyTZJ8cdU+LFtZ1kI6ia2iPZbYXkaLkuDO+Y4pcMCOAyfzMXjcCgzv2VrpBLvctEfZNnXTX/gmvgkaIgudTMnoWBCNhml10NfkK1llc5qA/RIEBBqmbURD+bopD+hQ2j1kDlC48wD6mtLRq3U9tMq04ErvflhMWUAh/Dl1KQD2l9RnXfcVhMmKTsVRWGWP95emWuj7LynMd+yDtib4wTMI+0QLOFyNlJTl2HCrbueePPrFyJVt62Hr0WzDiQsjt/+A7ktG4hfb+fAIE1Z5O2OC5ybIXbntpFT8ZPuwlBcEgD0GKC79ovYG0zo43a1KXY+oKjndXmxMykSX5rFKp19gH566c76sI1uzC51wewXqR/k78NQ3q+oB3Oqba6fbi0i7r7a/LHAOEnnCS/VjgfsBfKMAKyVAElhTv7T1A4IZhU4PCp1upGYHzwmil5kReDPpyyApS4kt3/uXHxggsfjnbRJC4L9L9mPpHn+Q+cVrOmDnsVz8vfMEjITKIHG4PIgJK1+ZDKKK8ArAIpV0VpmssJglpcSWEiAx+36Xs6aK3f4AiTlEgMTVsjdw0FdOpIV0EnmW5sqywKxVuW5+vsOt+W7oBUjyHG489tNm9GxfL2RHkbqz7akZCQCAY9kOPH9NB8NtYsL857dhkzfgRK4DC3ecwJtDLsB/rmgJu8WM9PxiZBc60b6hf04OIQQsZhPWqLI91OeM1OwiJbtk17FcX4CkZPkL13TA54v3ocDpwb60PE0wRn1eAQCHOziDpH6UHZe1jtNkAQbKLnIhLVeb3f37llT8veMELmnpL3+bnFmIZ2Ym6O5D7z2Wrx3VZX2u79wYMWFW/KyapH7Yla0wolcbTFt3BBa4YZFK3jfr6Q3ECaSZN1CVQSK/ZFPXJOG9ebswsFMjfDese6Uem85u90sLy7fB0vfwG4DPzXegs1QS5IxrjQynBfUKDgAArjInopvpEPDz2wCAy9L/QDupJ5zutspu1NdIDpdHc16RFbs9yjxL9YQ/wBmJIpxfcm96hWk3/rW/hKuKxyEMxbjqt0uwJQzomTUZRXV8gcqOUjJesf4M7AJQtyUw8B2Eq675ChzFuEzagwjJF8zNSXSibc4x9DX5s5YBIH/nNvzq2Iiooxnoq3Pfaz1cCLjjkFFQjGOb9qOvyRekjU3NRV+TPyDc2hkB555s9DUlYqh5CSLgQH5KWwwu+kuzv9Gpj2B0wKmkvzkBCe7zAAhcIu3Ht3lf43XTPVjkvQylGdipIZbsDh44qOfCgvVo/MP/ISnM1+5PXXfCevlIRMoZhCmbfOeiX+9Ttknu/DRaJn5Zpv0Het7yG1yeSyu0LVFlMqn+3nq9QhlUrCe70IWtAdlwLLFVcQyQENVmruAOqgaSrzM7K6w5Iq57F/Y/HtDdtKvpEBbaXoX7cC+g6EMgvA4sJhM6SsnovGkWrj06H++GOXEisQuOXfIC6qMI6YgFAEx78HL85/v1IZsm17jOzc+HBW60sBcAJQP06km5uNS0TwmOAMA46wQ85noeb3kn4u7s5Tg4rwly4i7Ec5YYPGf53b/jYwkwoyHm2V9HQykbyAKQBVxnUx18ui8M8IP6sbJKBh6y+f7HdOApANDbjyrpQgLQWv7BQDvTcbxr8s3V8WJhO+QX+zpaYyxu1DEV4Dj8QahH+7ZF2waRuvuxw4mh5n9hCrsWO8w2QKfEfkNkIWrJSAD+4FJP8y5cYtqHR10voGFMBFrla+vqJnkb4VnXkxht/QHdTAdxIqwtGl/QBxj0HpB/Cl/OWoCn095EsbAgw9IQTT3HsNfbHB1NKQCAr2z/w1vOG4xfAKJq8MWSfZi4/CD6dmiAHx7oASA4S0Qd2DDKIFFfbG5JzsL9329AfrEbj/Zti1HXdQKgnehSXV9ePaJPDi6oRx2ry8joZTLIGReBE4kXFnuAsg2kDqm8pW8Cy94UOt1KWZhwqxkuj9cw4DBzQzJG/Z6oecwTIkDSuVksEktKR9SN9J0j3V7/KEarWYLZJCkBKZdH4Isl+zT7KHB6QtYe97XBi+d+1u+IPN0yP0ShCCGUjmSvELApGSRWWMwmJZs2vKQMkmT2XYDIo/2yi1z46G/f33V/gESnLn7X+4FlowAA7aTj2GVuqSyzBARIYsN9x/hnVxp6n1dfeVwpsaU61/2ekAIhEDIACeiXf1iQeDwoQKLOUFMP2DmhCii8N28XdqTm4Iv/64Y+Hy1DkcuD5S/1Q6OYMFw7bgUKit1Y+FwfTcbYjtQcpOcXo36UXXNOlkvIyFm/6vnePv57r6bjvlFAJm92oTMoULHw2T5oEG1H74+WIiUr+Joc8NX8l8uU1Y+yIT3fqQRf5qkysUPVFNcLkMiBrg9v64L7vl+Pp68+D/dd0QrbU7I1ARL5b5lJkvzZIwBgqdwAiYZmknbfezxpxSEAwJKAeR2IQvIYzwGZ7G2AcMmJBlKO7vIXrLP9vwwZh99SW2L8gs1YFf48YkQ+pnjf0KzfTToIp8dfIUB9HnO4vIYZJGaPA4AVcR5/Kb0+Le2Aqp+/uZSOesjBheteVB5bIz2A1cd64Xxzc4y0/uJfedUX+EbcCuu+JWiARjiFOFy0+Q08aV/sX2cx8DKgf496FHjU6B64pBBAPQDvqLdfD/RRb5MHYF7AvXShdr5RI3kiAr/aRqMechEjFaC+Oxff2L5AJ8dkPG/5DQdFU/zi6R+03QO92qBupLVMAZJ2UioGb3tZ89hL1llYn9oA8LwHFGUC312t3eien9Gyw2DAlA5sm+l77PwhvnvdkvNh9o5FeGLeSbiFGe1Nx3BKxGKS7XMAwLOW37E8cxiAJmV6HYiqijobt8jl8QcFdWTrzKPLTPmKY4CEqDYrmZNDT5zdBDTrEnLzTqZkICUZWCiATjeiu+MAult+Ratk/wVQ49ztaLx8ODaFAb0c/0UqGqB9wyhIkn++uB5t6mLDYW1ZgEi7Bcg9hs4/X4EDYTlKcAQAXrfOQK6I0Kw/2LwRSeZ7ld/bmY4DOcdxScBZKOLgfEyw7kFDKRtOYcZRS2tEhVlwSlXu5YImMch1uAxvVgNF2MywmCRNSa429SMRaTPjRG6xUlpL7aKmMYAjG8hOLtMx1KLzD0CICxGDfNT/byssBNBbGocU0RA7Rl+LKLsFQghc3LIOEpKzNds+Yp6HF62zUXhkDn43T9Hd/0CDLKKB5gQcNN8HOBF0Qd3P+QUA4BbnewCA4Ze0xjs3XehbGBaLXdG90PrIDADAJY3q4N7LW+GlWduQFOZ/zx4/+BiAreV5KYgq1W+bfQG7+H3+4GtgEMRdhgBJsduLcJsZi3aewBPTtyiBjO9XHsbzAztACOD5n7cq629PyYbb4yunpR5tLd9cq4My6uV6ARK5xnVgaaqdx3Ix+q+d6H9+Q9x/ZWvddpeFekRkWSabDJxfyeHyKOfKupE2uDxeTVkxtcDgCOB7fmWZXDA23Kr8nUnP93V8hpV0Essjp3IKg0tond84Gtk6j6u5PAJzDOrz680xRVQZJq86jHFL9mHGw1fgomax8HoBqzwHidkGq0lS5iCRyQESOeinzjiT5x7RqzBntlixSboI3cUOxKBAczMcOEm7nEECAH+rMiHk85Y6wKB3ynyodxtNKSpAv7NfPdmvrEC171Bll/5ISMUX/9dNyZpduf8ULmoWi+SSeYY2HM7UnA/+3XMSj/y4Cb8/0Uvznc4vdmPZnpP4tyRAoT5moxjtnBz5AXPSeQXgVZ2XJQloUBJgGXB+Q/y49ghG9GqNKauTNNvlFLmUbJvoMKtyPisP/QwS32MdG0dj/WtXK4G3wI4Si0kC4j/GG0XxeEu6TbWgGgIkUpGSxak3fwNRqZLXGS5KEQ2w3dsWj1nmlb6fOi1hPm5CLiKxyNwPd7qDt3nZ+gsmuO9GWq4DBcVuzXmsyOXRvT6wH16CBOsjsEkeQFWVKRpFOCVilIGLALDG/gysR7X76OVcjV46SauPrr4KAPB0GLDeez4uL/RXU9jhbY3W9SNxIscBh8sDkxScLQ34rqMCy2Q1iQ1DZoEz6BzdKCZMk+lms5jQJDYMpzIy0dakDYi7hcmfiabjdesM3cfvNy/GI5b5yu+dpCOY6RmAvcIXwLdbTZqR8HaLSWlnhM2M5waehw8W+F6Hi00HdI9xedIE4L0J+g3reJ3v/1u/9v3TYb30Pqz50/dGbvB0ClreO/5uoM9xbeo4UTVTl90sdIYOkGTp3BMxg6TiGCAhqs2c/nk1nmu/COMOXKtdVv884M4ffBMxHksA4j/S38/2n4HtP+M5AAhRkvBm8xpM8NyMaJGHJtF2HCsZNa0egSfbn5YP996/YXXqj+qJkfQnzy1NnDcL15o3AQDWezvh/eix6H9+Q02nwVe9LsHSPSfxW1oKBl/YuNSRjmtfHICpq5PwTcnoNgD4956+aNcgCnPiD+LDhXuCtkl67AY4XB6seXcABpi3AgAOexuhjSl4ZFyapSkauf2dce8UvI/htkbYJ/lLUk2zjkWSaIzIr18DGneB1P0B/PZYP7R9bQEAQIIXAia8WDIaKsKTB5tVv3P3Pctk3w8dBuOH/B746XAUlthHGj7/lZ6Lgh4LrHcdONJAHgE+vuG7eOrkWwCAhsXlDxYRVSaTzg1LYJ+MRxMg0d9PodONcJsZqw+ka9Z3ewVSs4s0HWzyfjIKnGgUE6aZ0Fi+mVYHZQpd/uV69ew9cgZJQMNnbkjGqgPpWLb3FK5oW6/MdfkDaTJIyjDZZODNdaHTozwWHWaBMyBAcve3a9E0Nhyf3tlVd3+h5iARqmlIzSYJUTYL8ordSpBarrUvdxZmBlz0t6gbjhu7NtWkkut1HOiNppLpjRAlqgzvztsFALh30jpsf+daeIWARZNB4i+xJZPnIAnTmeRWDrZKOumrFpOEAlMU4AFipQJEmt2+6IYkBZX1VM9hob5p1pukXU+TOsFzWegFSPQmIFefX9Tnb7NJCjlXUEaBU9OZd/BkQdD3ekvJABP1JMhrDmRgvmqukvMaRuP5gR3wxZJ9CDya/LwfvaotFu08gaQM7XXr69f7O89eu74T/u+yFujUOAbT1h3RBLjVzzFw8viy0puDRJ0JpC5vFa06hh1OWCQBLHsffQHE21cBADySRQmwVQlNiS25bCQnN6byE44c5QyXPHwLYqf0RmzJPeRMzwAs9l6Kw6IJNno74hnL77jFvEZ/R3XbwiwlAQC+le6A5Mn1z6v4f9OAX/6DxlIW6qdvwsDPT0JyZCMXkZDLA3i8QjOQThaV9I8vOBIgXOSjrqlQM7u6VWe9spCrARQKOy4u/gbFsOH7a7pjzPzdOFxQgPYNo3Tn2vzs5q7IKChWggoAMKJDcBAXAG5s1hR/pfvvVeMsVlzXsglmHE/GtLhJ6F20DACw09sKNzvfw/+s43G9eYN2J1eNBFZ8bPg8RllnKj9/ZJ0EABhu+QdXOr7EcdRDmMVccq4T6CHtQW5Ee+zJ9f0NjLJb8MhV7ZTn8qn1G2VfjzqfQ4poiInWL9DSpC09rmh/jWG71CLtFjzVvz3GL/MHYIru+R3hM33BZYunyFfBwxZhtAuiKufW3JuGvm/J1BmUwTlIKo4BEqLazOM74S33dIXFHo6HnC/iO9tn2nUuvMX3f8frgLg2wJzHgvfT4nIAgPvoZljgRoaIxlv1PkfGiSP4vPUGND32DwBgpPUX2CUnIsfdi0djHsXbuX0B+EfQqTk9XmzbuApGlTqfCv8QH9w3EDHfll6HeJ+3GWKHvIepG0/AeczXweCVTFjk7o5wjzdoFPSTM/wZFI1jw2AxSYYlYJrEhqFJbDjqRGhTKupF+n6vE25ci37RzhMY43oYw8Q/sMGNPzy9YYYHYXDiGcsfMEkC091XA22uw8TOB4A/n1K2bW1KQ2ukBf+eBSArCdj9J0yPLMeF0mHMt7+ue/x1rjvRX/oMw81/oxg27PS2QoRUDLNU8lx7PYs9m6Nx4FCyYfAGAB5zPR/0mDlohKn29ZFHQ+6M6Y1ZFy3HnUv7wQyPrzdap9wHUXXQG2UbnEFS+iTt09cn44ImMUpH/kuDOuCvbcexNy0PRzMLkV0Y3MF+MrcYDaPtmhHRxToZJI5SMkjkWtaBJbbUmWzbjmZXOEDiDJgjRV3yR8+xgLlG1AGS2HBr0DxI6w75sgmHXqE/J5HHK8o8uWB0WECApOSCXm5uZsAk7A/1bhs0abHNYgoKeqRkGgfo03IduKhZrPK7EAKH0gvQIi6CKelUKeRONiEQVGLLGXDrZbLIJbaCP3sZBb7vhd7n0mySUGCKATzAVaZEvJk/HVj0CDD4g6AAiXpuI3Wnu6fkXBQ4oXmgyIDMD7dqInm1AqcH572+AP93WQuMvukiPPLjJhxKL1CWqwOnYRaT5lzqa4826CCX+gOA/SfzgoK5MvW8AeryTpe2isP5jaOV+fTyHG4cOJmH0X/twkN92uLPbb7Owki7Bec1itYESHaOvlYzYjPMasaFTX3nDbNJ0gQD1O2ODXFNGSja7jv/+fYZ/B4HziUjk9sVhmLE25+HaUf9oHWKLLGICnq0EoX55tGrJ+UYDkQgKguvywEzgLWeC9CpYQt0L/4at5hXoSGyMc97Bcbf2x3jltTDoZP5eMH1BG4Z2B9Y9r5mH/92/RxXSxLMJd+Zk+5IvOR6DD/HPojZzwwCbBE4Fd0JDfJ244K0PzHAeRH+GzYBH7vuwgTPLcp+9LJWjeZievOUv/xTvKcL+pq3h3yeyd4GeN89FE/fNgBZa3/C1jQX3MKMfPgC0E5YMM9zBYpLSgAUuTxKEPe2S5rh47/3Bu0zKswSdJ2rFxwBgL+2abNqswpdmLHeN/BtetwTaHPeRViw5SD+8lwJNyx4zfUgUs0t0NBzHCmiPhZH34o5V/RD4dGtiDj8T8jnGugl6y/obdqBRquyAQCPlCS3nXLXR398CC9MeN00E1iwCDeZrLjQpH0Oi0UPeAWwU7RGS+gESHo+A/R6ruztubYjVh5Ix7aSwTbW9v3xQscl+HzvQN8KbgcDJFSj1OedwPvFQKsOpAc9Zi+lFDEZY4CEqDYrCZC4YEGY1YQlXlU4otGFwet3uweIbY7N//6KS1N+BADs7vYGOt3iu4i7+6sVyE7ZjROiLvKPRQC4ALv73I+wjPmou8TXif6s5Q8AwLDcb/CX1AibxPloHKOfpp95PEmTkfKK9AI+Er46ntdffwtimhrX8Fzh6YwW0kms9V6Abzw3YlKrQdi2bSfWeFoD8I0kyXe70dIjdMs2yOpEWBFuMyNPZ9QPALRvGKWsJzNJUCbpVT8eaPq6ZJxCHD51/1/Qsvtdo5Sfb7DYgUvuw9bwHuj2Sw/D/QX5th/mB8eeNJbZX9RfENMMaNUT9m2+cmn3uV7Dy5ZfcHPAyCrx0n4UjNkYtLk14GZc3QGzJTlbGZlpNZtgsaoa6XECpios20AUgl4/f+DNYVkySD5frJ3Xwmo2oWGMHXvT8pCR70RcZHBx51P5DhS7ozT715uDpLQSW0aTtKtTpA+cCh4pWJo5Can437/7g8phFbu9uqPTHS4P7BYTjmVrJxcucnqQqwqQ6GXtAMHBC5k6g+Sxvu3w4qAO+Cb+IPp1bIhXf9d2IESFWYAcID0vIIOk5JhZBdpzv6UksBumGhllNZvwSJ+2+N9S/2jAwMmX1WZuSEbfDg1gMZuQ63Dhlw1H8f6C3RhwfkNMHl76BKNEZeUVIrjEVmCAxOT7LOt9R7NKArWBAxgAwGIyocgSDbiAa8ybfQ+u+woY/EFQNkLfDg3wySJf55o6mCCfgjIMvsuyiICsiFAl9FwegWnrknF5m3qaLDxAGyBpFheOfWn+85zVLGnK23i9QpMxsvVotm75LwCaIK7ctvuvbIW3hlwAk0lCdMnk8PkOF579eSt2HsvFyv3+DoVIuwXtGkRhccmgFpPkK/dixGoywQHfcdo1iMTBUwWG64by5pALMPI33zlRL4MksFSaTG5bZ+kwGknZQGF20Dobmt2PARVqVRk1892PXG7ag6SSNyYwMEdUFnKAxAErTCYJLlgwy9NPWX5Dlyb4doWvioAXJqDvSKB1b8xduhJxh/7C5+478UBbX2kl+XsknxMKrPWUju59Le5Cg12jMdC9AgNtvsySkdZfsVu0wjLvxQD0z4VSsb+ElrfrUMRv2YH+5m3KY8V12mPYiVcxXxqFC01HNNvO8fREXeThuKiHSZ7rcUA0x9CYCzC7/pP4M1W/DKis0OlRyh8OvrAxLmtdFxKAO75eq6wjn9tO19D+lyCiaT+8v8E/B0o2ovG+43bl93aWSCCiLixDfwHGxAXswZcVYuR28yrdxxt407Ej7CHfL8UANgD/C/xzN2gMrAt8pbh+8FyLfpFHEO5Q/W1pXTKfZjmpT7kWswlXX9gcrj1mXxaQag7Yo5mFaBIbFjS3F1FVUg/8DbyXLCyZN04e/HI8J7jkPEtsVRxfOaLarGTiOifMSofQbcXvYJnpCuDmr/S3adMHOy98EW0d03C+YwrSLxyuLNpzsggHRHPkwz8qIjrMCnQYrLur2fZ3McoyHQ8vvwxJYfdq/o22TEFjyTcq7wHnS/jlhkQss/TCy65HcFfxm0qn2v22L/CHpxfSRQwWey7BOPdtuLr4E9zvGoX+zi/wmvthHBGN8di0zVhzMEM5tlw32u3xaiZIDhRps4ScdFfOflHX4I6wWZQaqDEGo/22Hs3G0azgUch6Iznlm1hLTGP0dPwP67zBNU0BIF+E+QIbOn7z9DF8DroGvgPAXzs8RTTAs66n0NEx1b9O31cgRTXU3TxwJL7ezTngu+E1W/0BkcU7UvDdykO66xJVNf0AifZ39UWlXPqjU5OYkPu1mk1K0PTFWduwZFdwNlZ+sScoqCF3+Hk0JbZKySDxCAghgrLe1MGAjHLWsD+cXoDnftmKQ+kFQXX19UZdp+U60H3MErw0azten6OdR6TIpc0giTK4Ac81GM3t9gqlo9NmMcFqNuGpAedpsjZkcjmar0vKH8qBW/nvR2D2itwBp+5MtltMeKJ/e/z8yBUY2KkRAGC/TikK2ZLdJ/HgD5uQmJKDy9//F+8v2A0gdFCFqCIEAItU8n00yRkk2msOc0mZ0jCdawv5fNOybvBIVrNJwqaIq3SPG3idYreYcEXbugACAyS+/WfozMMWyp/bQnfsAfrfp2LV+bNepHZ0iNkkaTLBPEJoSnYZzTm3cv8pzXOSdWgUrXRoySWp8hxu3f20rBuh6WgMs5pDZt2pM3D/e/fFmmVlrWr1yFVt0bp+pPK7qZQSW4r9iyHNvAe3WfTLDHVyTEZHx1RsbXpP2RpSUfXaAwDqS7nwylmRnIOEKkC4fIM0imGDWZLw1b2XBAUHg4JvrXpiT5Obcb9rFLaK9qgf5etVl+9t5Gszm2o/x5oO0j3+u5apAARuN61AIu7CNvtD2GF/QLnfbXncN1/Fq66HId3yFUa778cU97WYF34T0LgzTl7tGxj4kusxTHdfjVO93wWu+xjPxo3Hc66ncL9rFF5xP4JTYW0A+K5rSsvaA3z3dwUlHaGRdgsua10XbVTnDACoH2VHuE5wXTbrsSvx6nXnax7r0jw26PW9oGkMYkrmhTMiX5fZLCbMt6n6DWJbAm+mI83WAgDwnPMJ3OP0VUaYbLoj9JMszdVvA1c8oWTTrfNegBU3rgReV12j1z+vQrsOHPxjs5jgkCfwdPs+k//uTkOfj5fhien6c38SVRV11oj6b6vHK3DJe4vR+Z1/lGtEvbLGzIivOGaQENVmJQESNyxKh9AW0QFvh3VD/zj98iaALzvCCxMcsGs6kgI7zgDf6JPwOo3QzfENVtifg0uyo96V/wHWjgcAPGqZrzsoZJjFP8okSTRGuM0Ci0lSRv08UnKRmmxtg+dznyz1qR4KGIEnX/A5PUJThzpQhN0cspyLP1PEPyRFPTKwTnjwyEwAuHXCamW0Yqt6EThSUnohNtyqmTAe8N/E2i0mHEN93O18A9eb1uOWeskYdEET9FzdFS63B6cQh6QXbvBt5HIABafw8aI9mJKQiyKE4VXXw4hFAdIRixf7NkXU7l/gykyGFW5McN+Mlyy/wiK5Md09EL93uQsAcHO3pvhl01GlLcWwwXHzJITtn+9LOQbw2Z1dMWXNYVx3URNlFGngH87hvVpjgmqeF5nVLMGsyiB55ZeNyEQMureui24t6ui+dkRVRX1D4/EKmE2SEgRRPx74c6fG0dh9PBdGrBYTYsL9l0RySRa1fIc7KM1ZDgSoL06NSmyNuu58jC2Z78grgjNI1Ocxo+yMQEIIrDuUiW0p2Ybr3PC/ldj0hrY285TVScgvduO3LSnKYwM7NcSS3SdR6PTAYvIHSIzKFxqVu1FnkASOYAocAd66XiS2JGcr68sZInKCW+BIdfmmPkyVOm41mxBmNeOKtvXw49ok3TYFit93ChaTFBSAIapMvgwSf4mt/2fvvuPsqMr/gX/OlHvv9k12U0lvBAIkEFrovUgHBSmCIIpYEOxYEBDF8sWuqFgQO/5URBERVHrvJdSQRhLSN5ttt8yc3x/Tzsydu7tJ9vbP+/VS7s69u3uye3dmznnO8zymLpCNNGnX0k6AJBmzyOWVF/3oEbNw88NLQ8FgQxNY1bQr/rdufmg3s/dc6GNdQ8LdZKO+572/7TVbCt9jAfmT7yv/8kKBVwZeW7t10K8T1wxZDXQMZO0hy0oAwHt+/ji+eOKuecfVgEdHs3MPs74njQZTzzt3LZjcjreUDTFD7bxUf7oT2sIZteo5/6hdxoVKfnn2mNSGTx+7c2i3evQ6BsQsCm99G/its+D4dV3HZ+z3h55+IHko+gec8cQFXEZUMth0oGV6AHQO6/dFFBUESEzomsAJe0zA8buNxy8fXoaFU51MhbjFPq+6gSbgb8CI9t0JNTZOteG9mU/j5sQ30CuTODvzBdye/CIma+vxn8QnMVNzehe1FeihaQqnXOkyOQHX5C7Avm2jceIHFyG7vgfAfXhZTsXnc+/DgQsOw5jOJqx//lEAwb3kqEanofpA1ooN6kZ19WX9c763aTBawm9qR2OoPGtUY0LPyzJ5/8EzcPXtL4XOP6OVstObY0rMAuGlgEMu+zmefO5h7LFgXyRME9ANtH3kPjyz4m2YL+fwyFNvYdrA7zC9swk3bjgCx+pP4FF7F3z1/GPx+hbg+tueQA8acfkBo9D92O/QJnpw7IIZmHvyJ7DzVf/Gu/T7cJe1D544+FwAzj063H9m0tAAMwW8+3fAs79zgijbIZp9nnQDJC3o9zNIfupu3vl3zKYpomJSgyLqPKxnIOdvJtnQk8aEtobYrF72INl+DC0RVbJIiS1PobR7j7rQlxriBNmScr52F1pwQuareK/xNeDoa4c9xNflZLwpJ6DR1EO73bxdPNubkuoFMXrTOb+GdVzzy6bE4HFe73PUEhXqDbP6s1Kp903TOoIdO3H1pfN3NQv8094fd066Ajj+a1hnt2E9IunIZgpon4xPnXkUDtzFCXZlYWAD3F3WiWbcP+p0fDV3Lq7JXYBzjtwH6w7/P3wi+yE8Lef4X+aAWZ2495OHhb50csG7gDN/BSSd8mJnLJyEf3z0YExWdqFGa1uPbUnhz5cuiv23JUwDWen827zFnuUbt6+kBNGOUAMk3gQzL4NEWaTxnhsdUzJLldQ1J5tuEL3pXF6wwFvwU4MdfTE9SgCnTIQnawWLf3HntbeHWLD0PLJkI86+6VF87c5XCr5mQ08GW90yhVv6snh86aa8xcmErmG/6R0AgP5Mzi9r2NZgFmw6rDZCVmVydsEASXRR4NLDZoY+9q4X3u85Ok7vfK8G/tWFE2Mb+iNFy/8Q7ajodVVGSmwZWn4PEt0NkMTtAvb6XIxqSuC3F+8fek7TBBpMDd/NnYHXbCUzdfWzzmKSwtSFPzY1S8OWTjbbUNlTcbsTAef8UGiXYlxD4XQkAKIayNpYvDoIYvdnLL8/x1C+/I/FecfU85YXxFi+sQ+mEb5/Pm//KRjTkgzdS8aVOysk+tpD54wB4PxsmpLBc2ofl4VTR8HQNYxV+vvFbQRKRO/11wfneVNYmK+FN7U8nAoykYvaoB0AjCSy7ntZZJxgWDToTzQc0t2tPyATfgaDpgm876Dp/kasuLnXWftMxnffvQD/uvwQfzOcEfmbUYMDCUPDvfZ8nJP5HE7OXIfn5Uz82ToIAPzgyGCe0sKlrb15bl5Gvh5kWqi80q2PLd3kl8gZjBr4aHTPM+qcuimhI2noofvbnSO965oSRuje9uT5E3HS/ImhefAfPxBcW+LKy3rUIG5LczP2PvAYJJragYQzR061dmDP3eaFeh+kTB3r0Y7fWEdj5q4Lsc/cqdA1za9kMXHiZIw+8mPo3v/TmHnaF4BEE9JI4DfW0ViPdv/rqOse/tjnngC8+7dAQ/C6bRGtPpE0NAzIcAYJUbmofc7C89r8ks5x92gssbX9mEFCVMm8EltSjywIDT55m9DW4D/ubBl8YbAlZfqlBFbKcdhqm4CmA2f9BvjfV4GTvw/YOVz80/+g0e7FYjkVn90vhT89vhRpGHjenglAoDGhh3YtervXCpVuGooXdPB2O7Y3muhoSqBnffimcrA60UBwgVB7jag/y4ltDThoVmdsgyvAuSkf1xpMYuMWWr0bt+jFyJuUj2pK5GWdeIQQfmp46Gsamr9jyBvzvtNH44ZI7wQAoTIN3teME663mv+a5mT+BMTQhbPrFQZMWDBFDpCFy10QFZP6ru3PWmhK5jeotGJKbE3pGLzZomkIvwxLIT3pXF7JLC8Aot6c9oUWAYPH6gKoZUt/d1Bbg5mX3bd4TTfWbOkPncvjPPfWlkGf9yxZ34v5k9pw9k2PYnFMJs3scc3++aYvY/nZLK0NZl4jZc8rytd59Mojcc5Nj+LNDb346f1v+v+26AJBf+RrjW0J77423ZOUHyCJTGC9cl/qhgF1IVC93oxpSeK6U3fDJb9+Knb8RCMtYWihTDBbIpJBovmLyh5tzrEA4u8t1K+lLsJ57/OUqeNZOQvvyFyPVxouhiEzwK9Pg/mxcMDU1DX//kQ9J+Usid6MVTAbzDOmJb9Z2vxJbTh/0TQkTQ0f+8OzBc+NKq+niJQSXTHNkC++5Un/8Stvd8eWKBwuNUAyTumjt3JT+N7loFlOg/PGZPh+azBqoD6a5XHhgdMxqjGBA2Z14If/C/oiNSUN/1zqfY56rxb3PfMySHrD96nRfgdPpQ4EsNkZY7EzSIRAn2hAm9wKzQ2QRMtbDlamjAhwgmpW2vmbTMMsGNh730HT8cyKLpy8YKJ/LGXqOGVBuGxxNFihBgecILHAw/Zu/rFPZj+IP+YOR6MYgAaJBmTwuD0XT3z+KGTWvIhLb34IBmy8KSdgfcOk0Nf25lHR7+n93Ub/fr2xPLVs86B/n20NTqbJxl5n3pgwtNjNhofPdUoozx3fisuOmIUxLUn8e/FavKpk7zUm9VCJaW9eeva+U/D1f72Co3YZh/1mdPjPj25M4E3Eb4Abbo8hdaOKeq+2z7TREEKE/u1JwynBui1fs9CmnW0V3YCTNPWgxFaWc1wqr2hZreC4EiBJuwGSmM0JDJBsP/7kiCqZ7UwmszBC5RfydpVF7DKhFT86dy/8/IK9QwtsP33PwrzXejca891dOhceMN39IicBH3oEmLQ3MGV/PKItxO32gXhDTkLbgpOwdfpxuNfeE5vgpNk3JPTQTaJ3k6uuXW5LPcToAn5bgxnbcLkpaeDk+c4N85dP3Q3v2X8qvn92UBM6rsmpukCgaQK/uXg//Pi8vWLHcfSu40JN6uNqgZt+ia3wBHdCu/Oz/9w75qKtwcRVMWUg1M+PHmswg5vABlPDwqmj8KNz98LfP3JQ7NcZij7IpB5AaLejJ6FrSOgasnCeS8L5eUYXOolKQV10896DduTEoN5UesGTWWOa8Yv37u2Xa4jymrRHTRrVgFPcCXlvOlewB0kog0QJdqjlbBqVHco5S/q7g+J2RgLA62vDO7Df3jKAJ5ZtCv17ByutoFq/NY11W9OxwREgXMe6P2v5Ad32RrPgTbb6u+hoTviZfrc/t9ovmRjdUR8NtrSkjFDNa90PkOR/DwBocYO4e08d7R/zsl3Uz/e+97Hzxg9an5toJEXvcWw7XGKrKalDQ2QiO+90AM7f4GDUPyXvfe5lCOdg4PY51ztP9m+C2RveDd2Y0P2xhXqQSInNbpmVhKGho8Du4SPnjsX5i8JlXW+5aD+csXASTtxjIm69JD/7NM6m3gw29qTxyT89j9VDZMktWd+LZRvzS92o92ODaY7sHC+URegFJtQMkiFLbIXupfLr2J+5z2RMGtUY+prqop4ayP3Fe/fGOftNwZl7T877PnkbWSIBkr01ZcPMIZ+GUDcplSA40SuczTlOia3o5oSif3uqcv0ZC4d9817c8qBT+tcrsRVn72mj8ejnjsTn3hHf49ETDbCof3dx8x4JDY/LXXCvvSf+a++FO+z98YnTDwZaxiEx50g8qO2Du+x98LqclJehahTKIHE/jt7/XHjANABOqb/BSmx594T/fOFtAEGpaM+pCybC0ASuODqoJvDxY3bGexZNw7yJ4V5vzUkDe00J7nu9DXUfPHQG7r7iEPzo3PDcd7AMkrgykHHUn4daxcL7+au/o+jPqBD12jpyAZLwtTihaxjweoS5ARKexqhcCvUgeW5ll//Yqw4QzSBJGBo3KOwAZpAQVbBcNg0DzuS33cy/yRjMO3afkHfsmHnjsexrJ2Bt9wBueWQZOpuT/o3Mj8/bC4+9uckPNkSZhga4i1sNpo537D4h1FS9MWGEdrh495Hj2lL+bpYZnU145e38utSx3y9yI5o0tFC6YfB9dXz5lN3w3gOnhW4CX1i1BTc/vAxnLHR2F6k3VxtisjkK3fjNGdccyqyYGhMg8SaxaloxABw62ym1cNqek3DanpPyPs8TFzhK6AINCSWV2r0hjPu9DpemDX5TqvZp8Zi65uyKdW8avXIhrN1P5aBOaAqV2FIXabyHQggcMXccHn5jI55avjnv65q6hhP2mIjP/DlcW/+iA6f7pRC6B7KFM0iUc5PaILxXCZaoi2452/ZveNXsNtXyTeHFwZN+8CDWb03jh+fs5ZfrGqw/k2pzXwaruwrviBvfmvKz8d5c34u33a87b2IrXi1wzlZ3MUUXJbzz/FAZJJom0NZgossNZHvXNu9clYns8PMWPdVygVuVRs7qgqJ3Pk6aWsHzlRBcyKORE72u2tIphQQA0BPuwk6QOfGk2B17u/c6cVkaKnVxzluAU7NMt0w5Elg/E9i0BHr3Cv/4WGxGy5t3Iqk7AY7+SI+kLn8TiVmwh4SmCXz2+Lm45ZEgY0HdUDHcRS4AOP3Gh/2ebttjXFvKPz8NJhoQueSQGX4PKJUXuFZLzkwaNUjm3srH8UH79/iPtjMesedBCIG541vwyttbscek8OJkhxL0Ur++eq98xNxxOGLuuNhvlXev3/N27Ose2P0rOPiwS6G98YR/bDur226TAeH2gMjml1OzpYQGLtBQYSs392FVVz9ShnNOTCOxw4t60WCFes8WLT1YyLv3neI/bmswsc6dM0Y3JxoxC/7qcTV4mjA07Dvd2dixqTczaImt9kYTKzYFH0crJXzrzAW45pTdYjfXfOSIWVi6oQejGhM4cY+J/vnt1ksW4eU13ThtT2dOLITA7Eg5LmDwAHR0M1IhRlw5LOVxaCPLMH8n6o94pAIkHU2JUDWEpKlhk5tB8vLKddhlTqHPJCo+dY7l3Zvd/9r6UKZttzv/iQZImD2yY/jTI6pg/f3OhdsSBkY1BTdCw01zLWRcawqfOnYuLjxwun9sQlsDTt1zp4Jpv+oEuClp4Jx9p+Dd+zg73sa2JDGtszF0o+PdMP70PQtx9K7jcNkRs0JZHEOJ3jQlDT2290pT0kBboxkKjgDA596xC57/0jGh3TSnujvBz1iYH6wo1Ktlp/ZGzJvoZMk0JXTMHNuc9xovmKNekFpSxpBlffzPL5BBogZmRuKGMJRBYuT/LJuTBn5+wd6hY60NBkw9qJvu7YZlgITKQc3U8GrYR0ts5WwJy5a48d4lfh18v1Z0gey7hKGhOWngq6ftHjpuGpq/o25Tbza0iwcIFvAL1egPFv6dsgLen6AlpX/DGw2QeAt765VFwAElq2PxmqCsVu8gNfp/d/F+mOaeg7r6MoP2NRnflvIXW1d19cOyJeZPasPMMc0F/20eTRQu5xI9j3vZOPtNDzJA2pVJvt+k3e9BEimxFXMeVF8TzSBR/xsnumN+R0r6EKnXVcuWbg8S929UM9GSMtEgggCJKZQsrKbEoItF6gYM732uHhvXmgI6ZgEAxFqnJ0crevHX1NXAre/Bvt3/AgAMKH8vOUuiq98Zz6jGxKC7ZfPr7Ct98WLuJwoZTnAk+jc7eXQQsJgRKSmqUvsNRBf69lfKyKi8DLM9JrVhRmcTmpMGrj9tN2DpA0D/ZuBvHwGe+Y3z4tfvBn5+NC62/x9+Y34VnXDOxbecPw8X7TsOv552F/CvK4GY4Le6M9scpLyOKvRz6F4DPPht5/Gup/iHe2QKb004FtDCWdylyCDJebut7fzrkMXIMw3BK6GZRBAg2VHRrKvT9wpKcEXPKz8+by+ctfdkfP2M3Qv29lSDEF6AZa8p7QCAs/d15sD5JbaE+9/g+zWYOpqShn9eivZgKvQ9ndfGbyyJ05w08JP37I2vnbEHDprd6R/fd/poXHDAtCHLB+7qznfjREvBFqJmyKklpJt3IECi3oc2jVCA5IYz52OvKe24+cJ9AIR7kCy+9w/+66aItdDBOS+VVk6Z73pzk5/e/2boNf1Z528yOlca7D6JhsYMEqIK1j/QjxYAiWQKuqZORksf21TXjca3pqBpAtefvjsO23kMZo1tRtLQQzX8/RIQpo6bzncW3a/447PD/n7Rck8JQ4OMmb4P1oMkeiN4/el74Ox9p2CBe3Nb6OskDc2/2Ewa1YD5k9vxz8sORmuDgRWb8if3cfWkC5WqiDM2ZueoqWuhurEjcUOo3pQWCrIducs4fOCQGf5FuDXl1E3PSAMQQMItsTXAEltUBuoOtn4/gyS/B8mfn34LX/9XsFvYe+sXqm/tTZyjk2tTE35m1QOvr8dHjpgVer43Y+HFVVuwZkt8dsbmSGaELgRyUsK2g2DPHpPa/VIKgLPQuak3g+/99w3c//oG/OmDi0JZEss29MGyJXRNoDdd+O+wsyWJw+eOxS8fWobNfVkY2uABkmiT+g8cMhNCiNjShipvZ3tL0shrqhwtO3j1yfOwaGYHjlR2TKulcLyv5Z2rojf9hRYFop/vfO8gg6SQjqYkNvQEC9aZnB3alU+0LdTzS9ayIRHuQdKSMpBGkMFqasH7W9NEXpatWhJQ/VvyghOzxgQbNsa1JoHJ+wCv3wWsehLAZBytPYWdsB4AcPD63wO4DmqVwIGs5QdZm5NGKDNj0YwOPPJmkCUczepVJXQN88RS7K29hrd3Ohp3rXBeu6d4HcfoT+I7uTMKLn5ed+puaEzo+Pitz/nHHvjM4bjo5ifwktu0fcroRr93yM7jW/Cdsxbg8pj7yYsPmoEVm/pw4KyOvJ3o8ye348+XLoKhaXj0zY1+NonXeyRl6rjrikMwkLXQ8tJvgb9/LPjkZ34NLHsIeO53/iFdSNybvALYcijG/vxQXNW7Pnj9oz8CPv926J5rWkcj7ncfx/UT8L8uLByvPY4lciJsOSZ44s5PB493PRVY/DcAwN+tRdBM5x4yrlxhMeWEe+62s6HFHICZeTS0jOXcvzQJ55zoZSTtCHWu/H/vmo89lc1ziUggtzVl4uvv3AOAs5nlG3e9is8eNzf0GvWew1v4/93798eKTX2Y7W6Yyy+x5d1P5peFmjW2ecgMuGg2/2DluEbaO3abgLsXr8W0jib84qGloefi5qpx1N9BhxIgaU3FBEhizoUXLJqKXz2yHOftH2TyqAGlbSnXPZhZY1vwlw8d6H+cNHRMFM417wz9ASxe3Y3W5Xfj1uQNuMvaG8DJI/J9iYZDrZqSdSdiDy3ZEPsab650wMwOLF7TjWtO2Q20/RggIapgA2k3rTeZjNTsLH3aurpz2ltAEkLguN2Ckk/q7t64XSqXHzUbG3szWNPVHypDE0dAoDlp+DtWkobmN1xWqTWeh9KQ0EPN6FS7TmzF8buNhxDAuu40nnTL8HilFrxdNWu788tzxc11t2X33gUHTMO1/1gcOqbuXAfi+4NsK20YARIg3Ey6rcFEwggayybcJu19DJBQGai7Ur0ASfS0kLMlXo702vAWy4wCi0ZmTEkEwJngehO8dM7Gxb96IvT8N+96Fd+869WC493sNiIOlY6ypZNB4t7w7un2f/KMa03iZbeFwLMru/Dg6xswVclGu+OFNTB1ge+8e0/0DlKmIaFrfu3qrQP5C1iq8W2pvP5KM8Y4O5AuPng6/vLMW342TJSuLBqc9IMHw2OITGSbkgZO3yucwadOkL2ff/T0edCsTlx/+u5DTozVibe3oDxoBklzAlgbfJyxbDSAARLaPuo1NmdL2FL6ZSmhJ9CSMvCiDLKnzGg/EsVnjpvrlwgFws1uvff5yQsm4pmVXejPWJg/qR3ocxf33rwP10/oQO+Glf7njOlfir3E63haBnVDBnKWv/DUkNBD59JosNj7tx2rPY4F+lIgeyRgOguanY9chzuSNwIAnrPW4y6cBwD4a/JLAICtshGnXXYDjv72/Yg6d78pofvB5qSBsS3J0DlgyuhGPARn4aqjKYFT99wpNkBiSYkbzpyfd9yz0O1d9NxbXf4xNYPN1DUnu0MNjniU4Ig/VjEAfDu+txy+Mh6nzzkBHaMlVu95OZalI+c5KYEl/wESLcCU/fznTtUewg2JHwMAfrrhEkDu45wQVz3lvODIq4BdTkKPaEaz7MFD9m44VIQz76KPi8Vy7wuFlclrEhvduEAU5WWQNMILkAxvAX4w6lw5WiovOu9RSytfcuhMvPfAaXmbOtQNE97np0wdc5TyVNGAp3cfo87VvfnxiXtMwINvhBc5o8ZFAhFxVQ+Kpa3RxC/e62RUeAGSPae0ozlp4NphLrqqGXIdTcG/JeX+LNVzU9w93ZdOmofDdh6LvZQNAl19mbzXjbSkqaFZBJud3v/zB/Bd4+8AgGP1J5Gz7EGD20QjKdyk3XmcN991AyReNYMvn7obZnQ2sf/IDuJfOVEFkznnhkDoCaib93a0xNb2KFSbWqXuBI4rhTK1owm3XLQvvn3WgiG/loQMlUtIGho+e3x+c77GEQgcAM7P9MbzFuJH5y4M7VqO1rGOq+u4qitmN9A2XJt0TeC5q47BjUqzvIQuQiXJRiSDZJiN8TqVm/PWBhMJXUPaLaWQclPhWWKLykEtgeQ3aY/JIInWSvbma4VKQXkTWl3Ln+iqfYfUbIPhiAZIvL9B2w5KbCXNcPnAaGmYNzf0hjJIAOC2Z1ejqy8zaKCyIaH7mXF9GQtr3BJb41tT+ME5e+IyJRtmfGsKnc0J/5ybMjVMd1O0J7Y34OkvHF3w+3gLqbtPasOVx4d3Xw6nN0GoNKMmANvGlK3P+mU3AGBaZ2Oo7wgQlEwc06gDlhO8MWJKN0QXPFQdkcbYQ5UTIxqMuvCTs2ynB4mSQdKYMHCzdaz/GhkpTaSeyi49bCbGtgTnAvV9LJRjXz1td3z7rAXOwo1bYgu963D25h/jYv2O0Nefqa0OfdyfsfxredLQYzehqFJI4yeJ7+BS/W/A8390DmZ60fLMT/3XzN/4TyxLnYPJIog8ztJWYUpHIxYmVuAq4xa0IgiICCFC9zczxziT+0PcHm6NCR0T2oKFzrGR8+PHlUbF3f3xQdwo9Tri7xDP9gO3fRi4//+G/PzvmhcN6/sYr92BI/v+ifc8+S5c9Mr78YfEl/HHxLXY580fALd9CPjNGcAvjwc2LvE/51A9yKT5QO9PgGvagf9eB3Svcg4uvBDQTVzb+Q28N/Mp/MPe3z8Hh0pslTKDxMrmnTtZrZCGkra8AIlzbzKAQXr/DJP6NxDNOI0uxjdENvLF3Suorym0QSM63/UWJ9W5ujc/PsstTT2YA2aFN/J9+ti5BV5ZXF8/Y3cctctY/OZ9++HX79vPvyccilrKVs0g8a4vQ1Uz0DSBw+eOHTJjeKQldA09MngPWr0bg+s3gNVxc32iIrEiPUji7s+8IIq3QSGhszn7SGAGCVGF2tybwYtLV2GqDlh6Ktw/ogwBki+fOg9X/PE5/OCcPQu+Rr1JHCxwETd+XROhi0FTwkBLyoBXbj9p6Nh3+mg896Vj8LE/PIN7X3XKGWxLc9DhUq8t0QvNzuNbcNjOY5CzpL8LKK5R8rZentoazVDPElPXsOvEVrdurY7Jo4bXz2Qw6nx5sPfQGOWGdlRjAqYhsFU63/+XiW/iNusAfGvtxyGl5IWYSkoNhhRq0p617FBzOyCYkBXKIPFKGkRrwxuahrGtKZy59yTc+uRb2zxetQeJ+v1ztkQ65y1MakgaOrKWMxHbY1I7/vTUW/75cHVXP7bGNNN8/q0tg9aETplBgKQ/Y/lN2q8+eR6O2208HmzYAOANJHQNk0Y1QAiBL5+yG3724Ju47IjZoSxAdbFtYlsKCUPDMreXgPozjfZTGU4phIQR2aH54p9x7uIPYoa5K87OfsH9Hvlf57rTdsfE9gZcsvHrwFfOBd71K+jaLOXrakOOIVoKMTtIlg3RUNSzR9byMkiCAImpC6SRwN3WQhytP4U/GSfi88rnxJUR9aibMwruzh8zF9jj3cDzf4h9+nPG73CbdZCfEdqftf1AczSDJC4D4V36fcEHf7/M+d/omRAyP1D7Uf02//Hp+oPA7R/Cn7U/ABpwkfEv/Cp3NPQDPgysXYzxj/0EXzFWIgMDF264C7ga+DSAT3uxkAeAy7zHvwOgJ/BGswkLGpIPbA2ee9r9HwBoJmArAZNkK5B2MgsvBHCh9zlfjv1RxTvlh8BOe+Mvv1qD//VMw23Jq4LnDv88sPM7gPG7Af+4AnjyF8Fz6S3YKb0FO3m/wqVKs3hpAT/YB5h3Gpal/l/8973/m85/x+4KNDpZMGtSs/CA3Q4gCOyrl69C5SRHkiW8DJK4AAkjJDQ4P4PEK7Gl7XiJLSMma8MTnfekBim/6VEzSArdPwLAvtNG4/Flm0LH1HLY3liEEDhr78n445MrEaetwfQbqwPAIXPGlK3s51n7TMFZ+0wZ+oURRiSTd97EVqzZMuD3BA0/P7w5/HG7jcc/nl+DzuYdzzIqJGlo0JSszlGixy8rDQBL1vcMu7co0Y5Sr6nOnDF/fuKV2PI23JVjfbAW8adIVKF+8+hyTBZOEKArMWFY/SOK6bQ9J+HV647DiXtMLPgadYyDNRVXd0sLATz+uSNx7SnzQq/50OEzQ7tHvDrybQ1maLGsGAv0B8x0GtvFBV9MXcPNF+6L31wclESYpTRu/8jhzgLd1SfPy/vcoaj/LlPXMKGtAU984Sg88OkjRiSDRF3kjJbPUI1WUqLnjGtGQtfQjWDn0Kn6w7g//U58+2+PAFknONQ9kC1pnVyqT2oQ1Xu/RRtrbx3I4bePrQgd8xb7Cu2qHdfqvOcLlUq49LBZeZ8zHJt6Y0psuWP2StukTD00Ud99pzbc+bGDscgtB7hmSz+2DuTvjO4eyKJvkABJY0JHgzvRXrqhF8+95USbvV2AB87qwC/fuw/+fOkBfv+RU/fcCf/46ME4Zt74gl+3rTGBbiWjRX2sllMAhjf5Vc+zhiaAxbcBABbpi/0skrgGqs0JHZ9O/Q1tr//FaRL8x3ORUBpp+j1ItiFAwgwS2hHqonDOtiGlhCHc96Rm+ueBD2U/hqPT38D4g98b+vxdJxRukKu+j7OFMnqFAE7/CXDCDeHj0w8B4Cz4XGP80j88kLUw4AZqU4YWGn/oVLn0AeAbM/Bl8+b877nJyX5Y2bY33hh3vH/4TOO+8OsiQZsLjLtx3vMXADceAP3pm3Gu8R9caNwV/++KsjIwcr1I5rYWfo0dOWemu+NfV8iso4EvdQGXvwgccBnw6aXAnucBY+dCEwLPylk4LH0D8LnVwBfWA4d+2gmOAMCJ3wY+vxb4zHKgaezQ30tawItBcMTSU9h6wo35rzvhW/5D9f2gx5TYKsU0ISe8Ju3ZvMWbaBYnUZS367nBLbGVHoEeJKrovCk6pxtO4EHNIBls7n2Fm8l2+VGzY1+vVlhYOC0oHeXxzv0XHjgt1BOzNVV9e5n1SC+4v334QDz82SP8TTfb06T9y6fshosPmo7fKnPvkSaEgKZsUrgzeSV20YJA1pZhZigS7SgpZWgDXM6W/mYWlVc62bt3G6RVHG2D6jvrEtUJS8ogQJLaKbSwF200VyqDlSoBwjeS0dRllbozuTVlYmxrKnTj+qcPLsKssS3YZUIrnli22f3ewfMnL5iIe15ei/1nBLW8R9JlR85Cg6njuN0KLxICwF2XH4J/PL8a7z9khn/sE8fMwfsPmbFdqcFq0MK7sR4s0LSthhtk22faKHzmuLmYM64Zhq7BNIISW6qPP3s8skunY835D+Oob9+HjqYE7v3UYUO+T4i2h5QylC2yfmvaPz4Ub93IW0iagI34fOL3+EX2GDwt5/g79qI7BL2/k+HucivEjJRAsaX0S9ukTC30N5M0NcwZ14L3HjgNj7y5Eau7BtAdEyDp6sui171hvufjh+KFVV244o/P+d/H1DV/oq02fp7W6eyAE8IpY7CtWlMGXl4TlL9SA1TRMljDmfyqP1tD14DNQRmgsWIzVspx8eerdYuBe78aOnTGyx/DP8S78Iac5HzvZ3+Pn6/9FD6vvQd/sw/K+xLR3YDMIKEdoZ6fcpaEbQMJP4Mk4b+PszCwypyKCw6YFvr8q06ah6akgTP3zi/DogZvo0HhPLu/C7jjE8HHR34JePa3wJO/wNH60/icO6SBrIUBJYPknQsn4VePLMe+00aHM0huPR/oD++OxuxjnYbwrsknXQnMPBJY/TRw0xGDj88zsCV4OOsEdMkmjF9yq3Ng+iHA5P2BtS8Cr/7T+Xc3joF+1FVA5xwg1QZYGedrvP5v4OHvA2PnAVP2B578OXDAR4GVTwArH3W+3vm3A1tWAhteBx76Tngc804HZh8N3HZpcGzOsc6Fo30ycEw4zWTmmGYs3dCLFZgAJAqUnTFTzv8+9AgwsAU/fF7isbtvxcX6P5Ha+zzsu+eewPqXgaYxwN8vB3rX+Z+qn/cntEw/BOh6BXjou87BUdOAqYuCLx/Tu8kIbT4q/jzB9jJI7Ex+gITxERpC2r0HavJKbI1AgETdqBXt3Ri9H0kNY66SGkaJLQBYNLMDz111TKg0dKF+oacsmIg7nl+DGWOaoAuB0c0JnLHXJCxe041DZ4/BmxuCEoTe5pVqov67m5IGDF2D+qOeP7kd8ya2YnRTApOGWR1hVFMCXzixQL+nEaSLwveA0T5LRMXSm7FC11DLttEXswk1Z8vQ3LgUvcfqAQMkRBUqKSyMEs5NUn+is+wltoZjjNK7YrDJWTIm7Vi98fRq8M9Q6p2qz588fyL2nNyOca0ju9vI05gw8DFlF1AhO49vwc7jdw4dE0Jsd91UU8uf8G6rwcpOhxrjDfIeEkLg0sNmhl5rIH6nurllKV5ZsxmZnI01WwawsSeDie07XkeYKCq64HLD3a/ho0fOhi0BAzm8T78T87UleM6eiZ9aJ0AqSbLee98LUHzJvAXHaU/gxOTD+Pr+j/mvi2ZWeR+nBgn4xhnfmsLbSuk9P4PEHUcmZ/uLnA2RDBLvb3OiW3f/2ZVdOGznMXnfY8Ump8RVwtAwc0wTJo1q8AMkXtAoukPyk8fM2e4A5iWHzMBP7n8TV75jF5z6w4diXzN5dPhvPy+wZNvAqieBxg6gY6Y/fo+pAdj0pv/xBGzCSoxzFoelBHJpZ9HSSAJvPZn//bc8gXuST+Da7HuwYHMbcNsP0Azgu4kfYXW6E2/JMVgDJzOnJWnkBaDjUtiJhiucQRJfYstzyoKd8jLWRjcl8JXTdh/y+wwZyEu1Ob0qnnKzRdqnOEGSJ3+BMWILZojV+KzxeyTSQOcrHfinOAopYzo+sUcGZ1ovYNKxV+CmB5fhf6+8jTP0+/3gSEbqOCfzebzZuAeePvdo4NU7gd+/2/naM490/jZ3WoiV7/oXJv/pOOd7T9oXeOtxYPohSOtNeLz5SOy94TY0vPVgMN5FH0HqmOswXgjA+hGgGUFU28oCr98NTN4PeqoN0GOmrtMPAY65znksJXDU1UCqcDYOjrwKyA0AZmO4pmqiGbj1PcCMw52fXwGfPX4umpM6Tl5QOKPa19QJNHXC0Jbgfns+7rfn47tTFwBTdgqas88+BvjDOcAb9wCXPeMEQwDg6GuBlY8DKx4B3hHujaKeN73H6s7tUpTYyoEltmj7edfbFuHcy/SLHS9f5GXmAvmb+qJz5+Fk5qv3foOV2AKcUsmFvt8p84NzRdLQ8auL9s37fG9O26CU2KrGDJKh+pG2NZi447KDSzmkYRODlLlkhjGVSrRqQM6S6M/koMHGhfqdOEl/FPfa8yGznwzNjUtx3a8H1XfWJaoTLbazsy4nnfJGcdkFleaYeePwpdtfwswxgzdyi1tsDO+Gc3dtK69Ta7IC+TuVa4E+Ar/jwXYPTB7VACGc10xsH35wydQ1PG3PwQn647HPD/QGpSuG3NlKtJ3i3ltbB7KwpcR79Ltxpfl7AMA79MfxthwVyhiIBkh2Fcv85z5zVJABFu114X08VAbJlNGNmDOuBfe87DQmHtOSDAVIggUs52M1dTpl6qGJvPfa6cp59L+vBLuLPU8td7LrxjQnIYSI9Chw/hvN5Jsd08tkuD57/FxcduTsQRcVGhMGOpuT2NDjZPf4i3hSAutfAZb8D7jryuAT5p+DCbkTcbF+B/5sHYyj3v4ZMNDlP727thTv0e7GsY88BzzUH3zeXudjsE5PV5m/BtaGj/0peS0A4Ee5k7Fqznvw0VMOwRvrekKvYQYJ7YhwU03bDd66u/50M3Rdb9qBuvLDqkkvlfdyYweg6ejTWtBob8V/k58MntsE3JP8N/AEgCeAeQDw/PX4hGbgkyllY0SyDXO2/AiAwCyvNN3OxwNXB1kgnsnzFgFjH3cyPMYHAZ8kAGdZ7P3AmueBe652ggBeaSoA0CMbTHQTmPuOof+9HiEGD44AgKbHZ37senLsvydq1thmfOfdhfvxxTFi7nF9ugmc42bORO/hLrwT6NsENIUbN6tfwzvPqj209CEWc0dCzs8gyfkNtz0MkNBQMjkbJnJoF70AgC6tfYe/ZuMg50Y1QJ0ytWFluA63xFYc9W9+WzaONQ4y960G6ibBlioL8PzdWoQPGv/IO56WJgMkVDJbB8KbUnO2RF/Gwhn6/fii+VsAwAJtCf6+YW9Y9i7+6wqVkaZtU11nLaI6ksw4i1+b0Yz+XPgmqVIDJBPaGvDY544csiyUupDn7XQ2QuWfnMdqlsNgJbtqhTkCfWYGC5CMbU3h4c8eAU0IdGxDoztdE/iddQS+aP4m9vktXZv9x5wUU7HEvbf6sxZsKfEl89eh499N/Ah/GwgCJN6fk6EJ6LAwRiiLYN/fC/jIk8Div6HB2C30dbxz0VABkr99+EBcdftL/sdNSR1JQ/N3SHrnNy/g0pcJbn6Thub3WAKCxa7mpIFpHY1YtrEPG3uCklYeL0Ayd7wT9IjL2otOTnck604I4QdHDtt5DO59dX3s6yaNaggCJN4P/rV/OTvNo577HT6N3wEm8AXzt8Db4afP0f+DmdoaIDovffoWZ9EXAM78tbMg+pcPAD2RqEiMDxm3Y1VfH8a3HYNX3g73JeAEmHaEeopy+oTI2BJbwOALeYWcv2gq7nh+Da4/fegsE6iN0zXne21OTkRj/6vD+l7CjmSN7nMRvtOxJ75516v4zlkLhv4CY3Ye/PkJewDv+cuwxlIL1CzB2J3ohe7dhMgLjgDhDBLv+qRupCrFQolXYgt2Ju/cyVtBGko6Z2MUnPKfOamhTzQP8RlDO2BmBy5YNBW7TswPkqp/M+0Nibzn4zQklMDmNpZaVe8bt6WPpBoAN8tUUntHNCeDAMlI9M8spW/n3omX7Sl4wN4DfUjiIO1F/CxxA5Iiiw1b+3DkDffimHnj8Znj5pZ7qFTDuvujGSQ20lkLXzF+HjreMLCucO842m6VucpKRND6NgAANslW9Gdzod2G2zOxLpVxrakhb4jUXTXeaV1d3DP8DBIlQFLB/+aRov5cBmuiPpihsisntDVs1yJpPwp/ztYtXf5jZpBQsajvLe99PpCxgWyQqXGdeL//eKF4VXl90KR9otiABqEEHLasBL4yDvjrB7DLnWdhL/EajtCexvn6XehYcSfwq5Ng3PYBAMC79HvxWPJD+Ij+19DYTEML7U5sShihyXHQpN35uDftLF4mDQ1CiFBatDqJn+CW2fKavcc5SSndsOeUdgDAXu5/p3eGd0mrZRB3xHcH2T09oS2F/cTLWJY6B+2/OMDpDRAXHBmEpTv/7pnamvwnhfvz6dvo/HenvYAZhwGffA0rOw/Je/n63d6Xd6xj09MAgANmduLAWcHiY8Hm10TDEMogsZ0MkkIlthq2Y2fwtafshqe+eDSOmTd4fzQATjm7iP5keKF9j4Gf4rLMh/F6896w558LHHZl+BNGTQPmnQa89w7giKtw6p474aHPHoHddmrb5rHXu6YR3uSUiMlIKXWJLUtzFkKFlUU6F66PzntBGkomZ/ubVTahFULf8XmeEALXnLIbztpnSt5zahnj9sbhlUI+QunTFtckeTAdTUEQJtoPZTBJQ8PBszvRmjJC379aGKEeJNU1d08jgb/ZB2ETWjGAJO6z5/vP/fa+F7FkfS9uvHdJGUdI9WBVV3/o43TOhtm1BAkRPgcdteI7sAecjV5zxEoYGxaXbIy1rLrCukR1RB/wMkha0J+x0KgEHYaTFlwt4naFB7u2qyMoNFLUkgjbuwugVA26jkl/Hf9OfgYA0LjpBQDOzntmkNBIy1k2Xl27FZPag7J6zQkDW9M59GctaP1OMDkDA+/+4FVY8dO7MMVagVsT12Jm2klF9v4uDE1gPDbnfxNXsmcl/pK8Ojjw31/5D6eIA3CB/m+ME134pPkn3GfPx5tyAsaJzTB6VqMF/ThEew4bZBuaE2OR1AUEbCSRxQe7vwtcfRx+qO2C03El1rrlt6YYXcCGN5BC2v8+iZjSKf1+cz6JXcQKtKIPc7SVeJ9+J6b9bS3wNwC7nIyfHXoh/vNyN/aZZgD3fQON61/BWc2z0NWXwYn6I+h86gVgZn6z8jyaAUzc0+n1EaOtwcRuO7XixVXdec+Na03hxqTT1Fjf9Abw7y8M/f1Ue1+EVaMPwJR/X+wf2jjleHTYG4EDP+Y0XX70RqB5HLDgXKBtkv+6Bxd8HX+44270oAHfmP4MFh55JpJLHsv7FpvadsVEOD/f3168P07+wYN4/q0tyFjbtgBCpFKvf1nL6UFieBNazYyUWSrytXqXE4Hnfge0BAHUt0YfgFldD/sfd6MZt9sH4ruf+EqwSeWwzxZ3XHVK3Tg0Eruq43qQqO+pUswTcnADJHaOPUhom6VzFjrcAMlG2Vr0+YuaVbXnlFHD+pxZY4OypKsji5ZDURusN21DQFwIgVsu2he2LE2pvJGm9g/d3p53leKjR++KrQ80ogV96BRbsEXueJYT0VCWb+wLfZyxbCS73ox9rfHAN5DAfs6azM8AXLkKSPJ9uiMYICGqMFnLhiYEBrY4pUI2yhb0Z+1QiamhGsVVE28Opf6L/B4kygSvLkpshRZMtu13PKEthTVbBnDgrM6RHZTiE5kP4obEj4HTf4bcv8cAbvn+09b9CFfjRwAAlvCnkXblX17An556C+/eZ7J/rCnpBEgGshbGvH4bAKALbZg1rhUv7XY+8Nx10IWEBhvN6EPnfz8BtLTjwOWvoclw3rhdY/dF+5k/An6w97DGcX/yitDHf08qC//f/ySuAQB3w2D3mx3YbKcwNbXKOeCU2MYe9su4PfFFdD04Bb8zN+IALAZ+AHxX68QB+D+kkYgNkEzARszXluDjk17GnHV3xQ/w5dvR8fLtOBMAXgwOf10ZFx54FHhgWP9cYM/zgFN+WPDpRIFd0PtOHw08XeCTdn8XsO8lwNoXgV1PAW49H1j2AJ6xZ6FbNmLXcQ0Ys+gjaFq3OvRp6bmnAAec7Xywy4lBQ+YIkWjGc3IWAODR2Udg4cxZaOh6K+91NuKbt7LEFu0IdVHYsmUkgyQRu+u/aHZ+B3D+7cC4ef6hJdPejcPe/L+8l8aV56ORpWaBtzbs+PQ7FAxx30tqD61SBEhs4fybNJbYou2QydnogLPJYoNsLUkw4PKjZuPhNzbig4fOGPrFEa+8vXWbXj9aySDZ1jmsk1m8TZ9SMdobE7j3k4fF9hutNh89YhY2Pd4BpPvQgW4swU7lHhLVgWUbe0MfZ3I2Uj1O5tK/rYVYJTtxoeHMBbW1L2CimBm8+IadgSn7A3NPAPa+qGRjriUMkBBVkKxl4+hv3YeWlImTNznF2DfJVgxkrUh2QZXeNcXwsvDVf5IXAFIDJNXYqG5b7UgGya2XLMJfnl6F8xdNHeFRBf5sH4LnGw7H3Xsch3/MzaH3Kyk0iQGs08b4r2FZBRppf3rKWeD+wxMr/WONbtq+3PAaJj71DQDAeq0DYwFs3vV8ZJ+9Hqaw8FLyIqeclpt1PAnAJHfOlm0cD3TOdvqPvPUk8M9PAZltmwAX0prbiEJtgnfVlgPp5VDX6DvsDThWewIvyWnQNr7mH59srcTO4m3cnPgGJohNgNKrvUs2+c1NfZ1K3f8NTomxdYkp2DqQDcpVdQ7RG8BKA5uXAc/8BmjdCejfDLxxD7BJ2b10/DfxrU03oj+RxZtyAvDDa4Gzfw+sexnHP/ad8NdrGAWMnQec92fAdEv1Td7H+e97/4HfP74CV/7lBQDAzUfvg8M6xqIp1YlVsgM7iY1YJTuQmnvM4GN2qTuzveuHudupuOmv/8T7jX/6z3WY4ZJl3gJjRimxdffitfjKHYvx7bMWDHu3KdU39fKXs2xIKZFUSmyppUeKHiARAphxaOhQKjm8uvs08tQysWoT4+2VUMoRJWJ6kBQKYI8kS3gZJFm/35aHGSQ0lHTORqebQbIBbSWpn3/5UXNw+VHb9jnvPWAabn54GT502MyhX6zYZUILzl80FZ3NybprnjwtUt61Wtz3qcNw6Dfv9T8WQmAgMQpIr8RosTWoC05URC+vceaiY1uSWLc1DTGwBdOfdea6b8vR+EbuLIwRXThRfwzG8gdwb1LZ+ZbpceZso6aXY+g1ofZXHImqyPKNvVi2sQ+AxCfN1wDdadI+e2w4VW57+1NUIq9Juxog8XYzJkIBkurfiTIUtT7u+LZt6xMyeXQjPnbU7JEeUp60cEruNCYM3DLmUpy/4dtYh2DxkJNiKjYhgvOBtjmoBfyLxLm4AcDkzmbY0ABY4V4jEVbzBOdB52znf/NOw+aX/4ev/fE/2CobYEHDN48dh9amFPAPJ3skl2iF+PjL0B/4BvDQd4Mvdt6f8b3FDbjs6XfEfq87Ot6LEzbePOi/63sJN1tDSdq4CgDcKlebZTPszp3RMnocjnr9dKy3W/DvKw7B5NGN0S8V8qPbX8LNDy8DACz72gmDvhYAkN4KXO+Wrbrv6/GvufNTmAYAGrALVgLrAdx8EtD9Vjj37XNrgMTg41PrdI9tcc57qaY2HJz+LnYRK7BSjsEz7aOHHjeA5lR+gATJFnwldx7SMPER428AgAa7J/R53rVG3QX9/lueBABc8IvH8fzVxw7r+1N9UzcIZG2nxFaLcEslpFpD2b9FL7EVox7uoyqVmqUzEgEStXlzkEESHFN7+BWLpTnn2/gSW0X/9lSFuvoyaE4aMHQN6ZyFicJZCNwsWyq2nNTnT9gFx+02Hntt40YJIQSuPWW3Io2KimFqRxNa3Ax1z0DCuf/0gnlExbSqqx8vr3Ey6/ac0o67XlqLtq1v+M/fZh2IfqRwRfbDOCj5Jtpz6+O/0IKzSzHcmlQ7jQyIasBA1plgvFe/C4fqzwMAZk2aiOtOc26w9pvuXKSPG06Dzirh1dYXMSWl1NqlHc21v/NR0wSe+PxReOTKIyo2Y0aq22dMZ+HTtIK6vMwgoWLThfDLFYhep1H3/6z5eMZcAMCZ4Gycd4H/+p/mTsCmk28GDvho6Ov4ARKPmYI26yj80Toc/7T3x132vpD7vN9JUT7ua8DsY2B8/CXoqWbg0Eid/hmHI5fqxEPWPMT5z5gLgFN/HP8POvIqbNJGYbNsxmbZ7GRcuP/r1VuxWTZjjRyNK7IfwjNH/h6Jc3+Pf155Gp656ughgyMAcOGB0wAAJ+wxYfAXepItQ78mTneklNWURUMGRwBg7vhW5XHwvW1oeElOQzeahr1w0qoESNQA+6RRDfhO7gy8Mf/TzoGBcO8Ubzd/NqZGYPdALu8YURx1g0DOsmHbQCu8AElbaJG8HL3kGkwDy+xxAAALGtobTXz33QtKPo56NEppCj0SJWP1mPeSGiApeQZJ5NzJe0GKWrmpDwuuvRsHfO2/OPkHD+K/T76ES42/AwB6kKrY6gimrmH/GR011f+TCotu9PMCJF45OKJi2tzrbOxrbzSxszs/Sqadue5T9mxYk/bFJ46egywMPNIebHr7vXU4cMn9wFHXAJ9fC+y0sPSDrxGVuQJHVI+sLFLP/QrTRSOuNm/xD79j4UzA3VX7u/fvj/6sheYRaPBYKfoyToBk7oT8RTl1sapa03W31ZiW+KbI5WbqAllLYtaYIJtJuIufpj3gH7OYQUJFpmnCr22s9To1pzYh3OBz4qlfxrKmCfjaQ1txt70Qp8w6BtjrNDxnz0Tzw19HN5rQPOO4vK8d3XWbSrgf73+p8z9PohEvNC3C7r2PuIPSYeoaLs1ejvPse/CRUY+isWc5AOD3ucMxYVQjsOBsfOA+A7usuxNHG8/g7tyemHLUJTjj4P1w/rP7+g3Pl10T3PBef9sL+M2jK/yP3+eOb1uuAVM7mvD81cegudRB1/P+PKyXTeloxJ8vPQBjRqAMhdoUVV3MuOOyg/Hm+h7MTM0BnvuGkyWjSMZkkBBtK9sON2mXAFq9Mnip8O7jopfYitGU1PGt3DvxEeM2vLT3dXjmpKPZf6REpnY04etn7I7RTckR/5kHJbaC91SyJD1InGuKZsX1IOG9IIXd8cIaCNg4vO9f6OltwCfMe/3n+mSqYjNIqL5EY7uZVAcAYLRggISKL+e+AZuThn8db0g7WSIbZBt0AbS6Waj/aDkL++93IK7860u4Dwtx9oT5wIT55Rl4DamdVVaiavf0LZj1+Bfxv+j6eCJYkNY1UVPBEdWEtgb8+4pD0KoscM0c2wwhgFGNidBxKr2bzt8bf31mFT56xCz/mHDfmykZBEhs7hqkItOF8HfHjln3IABglewI169ONKJnwfvxrwec573gSf+ck3HKvWMBAPe0T0ZUdFFpsF24D44/H7sveQQPWvNwEIDZ41rQjSbcaJ+Csy/6Dr50651YvnwpXpLT8I+FzvdaZ0zEv60z8F3rDADAN1smAgCyufi/G7XOPIDtbnq5zefPs34L/PFcYPzuwGk/Ae78DLAspru70IGjrgb++2XAUsqZnfYTIDH8oPbCqSPT46NFzSDRwzX/95wyCtji7uZPdztdhN33hVfu6Eu3v4TzF02FEAJtDSa29Gedl+esUEYjUZxQDxLbhi0lWuEGSBraQ6+Nlk4thcaEjtvtA3F75kB8rn0ugyMldtY+U0bsazUm1XNdTA+SEgRI/AwSmUM6Z4We460gRVm2xInao/i6eVPec71IMUODKoKMNBrJmm0AkN/zj6gILNvZbGBowVx39tbHAACrZCd0TWDGGGd+9djKPnSdcAL+ZTfx/DmCirrSev/99+Ob3/wmnnrqKaxZswZ//etfceqpp/rPSynxpS99CTfddBO6urpw4IEH4sYbb8Ts2cWvo09UcVY9FX98GxaZqsnEthRWbxnARKXXxpxx4SyS5qSBp75w9IiUI6Adc9jOY3HYzmNDx0TSeW82Qckg4ayYikzXhH8j2NjvNB5/xJ6XV55BrbfvBU/U2u9xwY/oguFgC4hdHXvikMXfRpdsxvMAjtttPO795GFoTOgY25rCptQUPC6d89v41pQ/9vAYnduwTExpJyBcZx4oza5gAMAuJwJXK/WW3/uPwV9/4GXFHc8wjWtJYdGMDqzc3BcfdEm55bzsHJAbAMwGAMCE9gb/JSs39WNKRyP2nT4ady9eCwDY0JPBTspriOKoGZSWLSFtG63CLUHplq6747KDsK47jdnjtrOU3Q5oMINpX6WWs6HhOWmPCXhm+WbM26nNzxwJ9SApQUA36EGSjelBwntBCstaNnbTlsY+149kqA8jUblEp7FSd0p8m2C5VSq+nOW8AdW5bnvmbQDAw/Y8CCGwz7TRGNVoYkNPGv952Zmn6LynGzFFvRL19vZi/vz5+OEPfxj7/De+8Q1873vfw49//GM89thjaGpqwrHHHouBgYHY1xPVqr5MDv9d2h//pF6bvTd+ffF+OHn+RNx80b6Dvm50UwINbCxakfSkswO2QaT9YyyxRcWmiWB3rGY5773NsiUvmKH28fGea1UCJMYONkluThpYIcehG0EQe1pnE8a6wZD2xuDc7Z3DojewXhDn3fs4GSaLZnSEnk9Ggjjbm0FSLzRN4Pcf2B8PfuYIjFeC775EM+D1u1L6kHzw0Jn+47VbnXtQ9TeVZektGga1rFDWkk4gzmM46cHzJrbh8Lljo59aEuGgMSfT1ay9MYFvnbUA7ztoun9MK3GPG+lmkGgMkNAw5CyJNOKzWS2pgackqgTR8oDSDQSbsOJeTjSivBJbhqYF5TNtJ0N/s2yGLpwy00fu4vSTW7zamcuwROHIKWoGyfHHH4/jjz8+9jkpJb7zne/gC1/4Ak455RQAwC233IJx48bhtttuw7vf/e5iDo2ootzx/Bqs3ihxRNxf5EBt1rycOaYZ3zt7z3IPg3aAkXIWhhsRBEhsriPSCIrLSNKVtGPdDZCkYaIxcm+oZp55izdqCaYdXcA5c5/J+PY9r+Eo9yY16hPHzMHSDT1430EzQmNXNbllUi4+eAZ236kNe0xuDz0f7VOQYpmnHSMEkGwF0lucMlstzu+urcHEPtNG4Yllm/H2FidAEmq4zRMbDYN6vspZdrjsnFb+MqGNyeD8wcXI2qNe0kpSYstdOIwNkPCUSRFZ24aQ8UtPo0QP3uZJiSpA3rRDd67dBjNIqEi29GfRl8lhQluDHyDRNeFXDTBkMNdtcOeR093evMs3OaWDefocOWXLZVy6dCnefvttHHXUUf6xtrY27LfffnjkkUfKNSyisjB0AVsGf47TBn6LR6xdMSAagFlHlnFkRIWZKTeDBBnArdnKDBIaSQPZ/B1buiZgujeNururJi1NNEWakLc2GNhn2ijsvlMbxrY4u7ebEwYaEzpMXWBMS7Thk2P+JKfe8LyJrYOObVxrCi9dcxx+fN7C2OcntjfgLx86ECfsMSE0dtWoRtM/fsCszrweU9FFrmgTedoOXpmtdHjzQUeT837o6nPeU+pid6ZAjxgilbqwkrUlhJpBUgHZwGpWXbZAWT+qXt0DWf9xqoQ9SDQ7h5PfuAoPJi/DTLEKADNIKJ9lSTQpGefTB36D9dK5HjulY8o1MqJA3rnLzyBhgISKY/41/8ai6/+L9VvTQQ8SXaDdnSN6GSQDSEBz55HefHFDj3NOZQbJyClbt+e333ZqqY0bF955OW7cOP+5OOl0Gul0cHHt7q7N3fVUX3KWRINwTn435d4BQODc7Odw6s6j8a3G0eUdHFEBRoNTQ10TEilkMIAkm7TTiIoLkGh+k3YJQ7oBEph5JZWEELj1kkWQEv4NpaYJPP3Fo5GzZcEa7T9+z0Lc8shyHL1rfGaIalvL/2mRG1i1DFecaICEGSQjwO0FEc3O9IJPaXcndM5WyyVxMZkGF7325SwbSTeDxIaAppX/b1fNquP6de1JK1kcRkyPrZFmu1lR6YEe7DHwNCCAU/SH8K3cmQyQUJ6cLdECZ7fzt7NnQELDUen/wzixGa/JyTiIERKqANFTl3TPc6ZgiS0aed6mLAB4/q0uf3OWoQmMdjdumcpc15tGevPP5Rudcyp7kIycsgVIttf111+Pa665ptzDIBpR/VkLKbdMUT+cBTMbGjS3xwNRJUqmgt4LjUhjAEk2aacRNRDT+8FLO04i2C2bhokJMT0nhBB5uxKH6uMxoa0Bnzlu7vYNeAjRtidq0/g40RJbzCAZAcn4DBKvbJu3yGhLBkho+KILwjkryCCxhFERPT90TeCDh87E08s348T5E8s9HBphFx04HS+u2oJz95taku9nC2cZwe7b4tek6MQW5xhvBSkia9loFE4Jyx4492tb0Iwt0pnrVsApkiif5qzLGOxBQiPs78+txkd//4z/sWVLJUCioaPJee8lZAYQQFom/EBIY2SDXrQPJ22/ss20x48fDwBYu3Zt6PjatWv95+JceeWV2LJli/+/lStXFnWcRKXQl7HcMkXAgAzKvjSwIS9VsMZUAgPSWeBtdNPmWWKLRlLBDJJIgGQACcwY05T32kqjZoy0N5pD1onPK7FVgrIpNc8vsbU1dNj7WXu19HNWpOE20SCi75CsHfQgsSpoP9pnj5+LWz+4CDu1N5R7KDTCxrel8Lv37x8q61hMtltiq1X0+sfGCCfwHG10TJSzJJrgBEj6Eb+hhajcpnU0AoC/Uz/oQcIACY2sz/z5+dDHtpShHiQdzQnosGAIZ16ShulXIogGSEqQNFo3yvajnD59OsaPH4///Oc//rHu7m489thjWLRoUcHPSyaTaG1tDf2PqNr1ZSw0CydFrg9OgGSXCa04frfCwUKicmtI6P77tcHNgGKJLRopKzf1hVKPPV6Tdi9AYkmBHHTsM63yyxHOGhtkBS6a0THk69WASNLQuIAwEqIltpb8F/jeXpjT7+ziyljMIKFtF10PtiwJYbvnKFE5ARKikWK7tflb3bJJAHC0/hSWpc5B81v3l2tYVKFytkSjGyDplfk94FhCnyrBzy7YB0fvOg5/+/BBzgE3QGIyQEIjLFoa2rKD/oeGLtCYMNBmBu+7AQQZJA1m+L6SJbZGTlEDJD09PXj22Wfx7LPPAnAasz/77LNYsWIFhBC4/PLLcd111+H222/HCy+8gPPPPx8TJ07EqaeeWsxhEVWc/kwOHcLZzbpRtuKSQ2bgzo8djANmdZZ5ZESFtTaY6HN3gXm7wphBQiPh9bVbcfA3/oczbnwk7zldczNIhLP4mEYCgMCMMZVfkvDQOWP8MhLDKYOiltgaqjRYrfnjB/bHzuNacOslhTfNbBevxNZdVwJvvwj8+jRg0xJc8NpH0YK+IIOEPUhoG0RLbDlN2hkgodplC7f0jMg/P86954JSD4cqnIT0s837kR8g4fIeVYJZY5tx0/l7Y/dJbc4BPdyknZncNFJGR/pQfuOuV/DcW10Agqbr4xuDM2MGBjT37RfN0oz2uKTtV9Q79ieffBKHH364//HHP/5xAMAFF1yAm2++GZ/+9KfR29uLD3zgA+jq6sJBBx2Ef/3rX0il8tMuiWpZf9ZCB5zdrBvQhinRQvVEFWjq6Ea8CadMR5PoByTYg4RGxH9eWVfwOSGcwEESQdO6XSdURzbpbju14f99cBFsiWFlvCT0cAZJPdlvRgfuuuKQkf/CXgYJAPz4wNBTXzJvwXO56wGEs+FYYou2Vc6yIbwSW2LwXkNE1cjLICEarkY327w3psRWJfRpIooSmldiywmQcB8gjZToptLlG/vwy4eWAXCatAPAuAYJpIEsTEho/nkymn3C8+fIKeqdzWGHHTZoDVIhBK699lpce+21xRwGUUWxbImfP/gmOpqSOGPhJP9Yp3AaG26QbTC0+loIo+pk6Bq0VCuQBprRDyB/Fy3R9his/5IA0Jw0kIKXQWLCrKLgwcKpwy8Fpv676i2DpGhShYNpJ2mP4AlmkNB2yGvSzgwSqnGWlhj6RUQKr8RWf0yJLa7vUSWSunOeM4VT6ojzXBopg20q9TJIRiWd+UfG3WjjHZ8xphknz5+I259bHTpOO656VhSIasSTyzbhq/98BZ/403PY1OvW17dyGCV6ADgltkxmkFCVmDzB6ZPT6vbQ4ToijYSGROFggCacxnV+Bok0kazR7nRqBklrAxdZR0SyrfBTIuv3ILEYIKFtEF0z+en9b+KvTy4DwAAJ1SZLz1/kJhqMV2KrFyl88cRdQyU02WONKpGINGlngIRGSm6Q7HRvs3ST5mQuZeAGSJTzpNqrmPGRkVObKwpEFax7IOc/7ss4j1PZzQCcZsOb0QyjRhf7qPaYTc5iY4uXQcISWzQCBs0gEUBHc1LpQWLCNGrzzjChZJCMauRu3RGhltiK4fUgYYCEtkXcoomVc4K4NgMkVIMsjQES2gYyXGLrmF3HYd/po/0SqYfOGVPO0RHFc0sJjhebkUAWnObSSBks2OZlhKTcue4AnDmgGkhOmsEckSW2Rg7v2IlKzLKDhRbvvNjkBkg2oRUSml93kKjSaW65mha4GSTcWUMjYLB+G5oQGNOSRFIpsVWrN4ZqBsnoJgZIRkRKySDRDMAONi10ySakvQCJci7LsAcJDUF9h4zDJvQj6Td1tTT2IKHaM2SJLdsCNJaGJIeQdtCkXSb9Gvq//8D+WLK+BwsmtZdxdEQFGMH1+1rjl/hs7gOQUjLjiXZYbpBom7cW2Ki5c13pldgKXpMygusrS2yNHG5TJyoxtdmrFzluyDkBko3SWWxmgISqRvM4AMChrU4NTDZpp5Ew2K6aFrsbE/UtSLkltgaQqNn3XWdLsADFAMkIaewIHs88MvSUAcsvsaVmw1nMIKEheKesCdiIx1IfwSPJj8D0SnIwg4Rq0JAltqxMaQZCVcGQA/7jncZ2wnRX+toaTOw1ZRQ0zn2pAml6cO/9buNeAGAWCY2IweauY3JrACuHBuFstBlAuAcJAKSUctS1ulGwHBggISqxnJJB4p0XDduZRPTDmWywxBZVjdnHAABmZV4BwNqsNDIKrUcv0l7Cn7rPhbhhZ/yw6SYAzq6aWg2QTGhrwFUn7op9p4/GOxdOKvdwakNTZ/C4ZXzoqWYxgJ7XH8JvH1se2tnFBBIainSvfY+kPgoAaBJpP4ibEwxuUu2xIyW2+mUC/UgFB3LpEo+IKpmRczLNbSmgJxvLPBqi4ck1dOYd41yXRoK6Jqg6V78HV77+buDW85ES7mZAN4NEDYTMGReUDGafypHDVViiElMbMnmLerrlTCIybtU7NmmnqjF6BgCg1dqMfcXLNbtQTaVVqFTb14yb/Md6thcAkEaipicrFx00HbdesgjzJhZuLk7bQA2Q7Hy881+zyT90ufFnfP6vL4YzSApMYog8cacgb2KbY68GqkGaFl5G6EUKl47/o/9xLssACQUMy+lV2IckUiYX86hKJMLBvN3EmzU956DSsQrsvjpH/4/z4NU7/H6b/baz0UYNkDQnDXzi6Dk4ZM4YXHfqbsUdbB1hgISoxNRdqd6OQ83NIPHqC45p4WSaqkTDKP/h9ebPGCChEaEuTieQxR7am9hbvIKp2rq816ZhDlrHlSgk2QqMngk0dgIzjwA++jRwxYtYM/10AMqidihAUpaRUhWJWzBphrMgyAAJ1aJoRY/v5M7Ay5tySEtn8fu+xavKMCqqVEbOOR/2I4mUySUoqg6aEOiSwSaajxh/i90QQbSt1M2ABnKYJ5ZioXgV87Tl/vEZ/S8CcOa6QH6vkY8eORu3XLQvZo1tAY0Mhu+JSixn5ZfY0m1nl1UaTnR40iimHlOVEAJYcC7w7G8hIbirhkaEujj9TfMnOEV/uOBr06jdEltUBEIAH3rEaSBsJIGOmQCAzdPegQlL/xKURVLeUzyv0VCk8v+eFgZIqIZFa57/xjoKM5IGMmkTSeTwxtubcGSBz6X642eQyCQalNr5RJVM1wT2S/8QLycvhCYkJon1vCekEaHOXb9l3oiT9UfyXrPfuj8BCAIk7DVSfAzfE5VY3KKLId0MEhg4fOcxmDWmuSxjI9ouC98LwGlwzJ3WNBLUDJLBgiMA0C+TGMusO9oWRjKvbIKWdHYINrgBkkwuOJnl2ISEhiAlcJ3xi9CxVuGUAczqDeUYElFRRZdp/vTBA3DDu+YjC2fxW7BJOylMOyix1ZzkHl2qDpoQSCOBd2a+BABoQR+btNOIUNcE44Ijqm7pzFnYprj4+CMmKjF1ocULkOhuia3dpozFLy/cF5rG6DBVEdNZ/GkQae6qoRFRqAcJAPyu8TzgtJ/4Hz/acSouPWxmKYZFNUxLuAES4fYEy1k4Q7sf08WaQd+PRIBTMvU84z+hY14GicUMEqpB0bnKPtNGY88po2AmnHtCYbEHCQV0awAAMIAkZnIjIFUJ7zTXixQAoFEM+CXSiXZEoR4kAPDQ+PcAB1zmf7xYTgXADJJSYPieqMSySrNX76EXILH1RDmGRLRjTGdXwzjRBS3TU+bBUC0YrGTW46lFOGePs4BNbwINo/G9/S8o4cioVulJ5zzWAGdRby/5Em5I/BgA8K3c/WUbF1WHuDOWl0GS0xkgodpTaJ3G0tzlBStbusFQxTPcctIDMoGz9plc5tEQDY/X88ELkDQhjSzjIzQCBuufuWT0wTjwmLPwwLokNrz6MP5kHQoAMHQGSIqNARKiErNiMkgM25lESE6iqRqZQfmQfZf/BMCN5RsL1QQ1QLLUHofp2lostcfhsuxHYRrTnZWZwz9XxhFSrTFT4RJbM8Qa/7mOnjcAzC/HsKhKxGVPtqAPADNIqDYV2skqhbO8IOxcKYdDFereV9dh2YZeCLdJ+/SJnWhv5IZAqg7eea5PehkkaXSvfxmYskc5h0U1QM1OXyNHY4LYhNusA/Dr3NHYt9WZc7w69Rxc9+Ke/usMjQWgio0/YaISyw7Sg0Qyg4SqkRIgGb/1xTIOhGqFGiAxhQUA+Fj2I3hBzmB6MRWF4fYgaRRpABKjsNV/rrPvjTKNiqpFXMWNFsEm7VS7BICsdPqNbJBt/nEpnGOSAZK6l85ZeO8vn8DVf1+MtRs3AwCkwZ5MVD28OYeXQQIAydsvxdINveUaEtUIda7bL501wN/kjsJTcmfo7vsuaeqhzzFYhr/oGCAhKrGc0sXaOy96acfMIKGqZAbNjjMaJz6049Td2El3R38aJoD4UjZEO8psaPIfJ5FFp9gSfJzpKsOIqJrImHJCTXBq7kvNLPVwiIpOEwJnZb6Ix+y5+LAIMjptN0DCDBIayAZzXq98pc0ACVURb8O+NwcBgE3rV+Pw/7sXT6/YXKZRUS1QAyQp4cx1B+AESrw4yKRR4fOlwS7tRcefMFGJqSdDKSXue209Nnc7fRuknir0aUSVS8l86jPaBnkh0fCodVmTcBZZvMlJXCkboh2VSAYBkgakMUYJkNh9XWUYEVUTmcnfTdoo3ACJYEVjqj2aAJ6Wc3BW5iq8rs/0j0u3B4m0rXINjSqEOuf1ylcyg4Sqie5nrQc799+WowEAS9ax7yaNjBTCARLhvu+mdzSFXmeyB0nRMUBCVGJZpQfJm+t7ccEvHkdSODsP2aSdqpJS8ujthtllHAjVCisUIHHOjxnpBkgGaWpHtL2aG1NIS2dhr1kMYIzo8p9bt34tnlq+qUwjo2ogsv15xxrdHdNS0/OeI6p2Qrn3U0tfeiW2wAySuqdWTWgQDJBQ9Ymr6vuAvRuA+NKaRMMhI2+elDvX9QIknqkdjaGPdZbYKjoGSIhKLGcHN4sPL9kAAEi4J0UYLLFF1en5MSc5D6Q9+AuJhiEIgkg/gOxlkFickVAROJMOZ+Jxe+Lz6ESQQdIq+nDjvW+WaWRUFbL5GSR+SRmW2KIapC7UqFU/ggAJM0jqXdbOL5cqTQZIqHpkcsF7+Je5YwEEuSRZm3Ne2j650GY/GZSTdnuReM8KIfCZ4+b6r2SJreJjzjdRiaknxJWb+wFItMDdecgMEqpWwr1gc0JMI8ALgnjZIwCQ8QIknI9QkXjBuNGiBwaCN1or+tCYYBYAFSYyfXnHksLZQc8SW1SL1I2soQwSt8SWkLwfrHdeBsk8sRQXGncBAKTBctJUPdI55TzmznU19/4wm+OEhLZPVpnMJpGFLpx5bx/yN0unzCAoYjKDpOgYgiIqMTXdeHNvBv9n/gSH6c8B4E0jVS9/xyAnxLSDpJT4+QNLAQQ1WYEg7ZgltqgUWkWw4J1ElgESGpS2dVXB57wFY6JaommDl9hik3byykrfkfx8cJAltqiKjGtV1mbcAInu7u/PcT5C2ymrZCY1YcB/7AdIlGoJppI1whJbxcc7dqISyyk9SDb1ZfBO/f7gSZ0ltqhKeTXWWWKLdtDTKzZja9pZWGkRTnad1FPIurcsbNJOpaYLBn5pcOP/eWHB5xggoVqkC7XElppO4r7fmVFctwayFt73qycwsS0/GDKuc1QZRkS0fSa2N+DX79sX7Q0JPH7T7wEoGSQW5yO0fTLKhulG4QRIemUS0s1fUN9ZCSVAYrLEVtHxjp2oxNTdBl19WUBNGmEPEqpSfrNO1mOlHbR+a5A10gJnF7+dbAHcEv/sQUKlZsJCT5q7oamAyEKwNfMo6Evu8T9mgIRqUbgHSUwGieQ5s1794fEVeOiNje5HkWbEDS2lHxDRDjh49hgAwGNwzm26HyDhnJe2j/reaXYzSPoQX0kmYTCDpJQYgiIqMbVJu4nw5IEltqhascQWjRRDuflr9vozJYMJNeMjVDTtU2IPG8hxIkyFbV7mP/yy+EB+NjB7kFANEkItsRUc93uQsMRW3do6EPzu27zdLR42aacqZbvt2b0MkhzvC2k7qefIRngZJME6oDrXNUMZJAyQFBsDJEQlpqZjRm8aBTNIqFqxxBaNkN5McNPY4vaBkMlW/5jFmr9ULO+9I/awAYvvOyqsazkA4FV7Em7TjgGMROhpZpBQLVLXaZKG0qOJG2bqnprpO0psDT9pNpZ4NEQjQ0aatGdYYou205L1Pf7jJrfEllXg3KgGRQyNy/fFxp8wUYmpiyytggESqg3CvWkUnBDTDlJ31XgltsAACZVCgQwSExabcVJhOacsYD8SEAIQkQAJNLMMgyIqLrXUx6im4D3ODBJS79PyM0hYLYGqk6475zadGSS0g1Z39fuP2+EES2bsNN4/JpXShKZaYosZJEXHAAlRiallOpLIhp5jiS2qWoIZJDQygl4PEtPEWudh42j/eTZpp1K539odADNIaAhWGgCQgQlAQOjRDBI95pOIqptaYqu9QXnPewESbpipW+HNgH3hJ1smlHg0RCNDN5xzm+YuXnPjDG0v9b0zS1sFABDKJi11qhtq0s4MkqLjT5ioxHJKOmZCCZC8JTuRHTW7HEMi2nHeBZsBEtpB/RkLHdiC+xOX4wrzz87BpjH+81yoplJ42p6F7+TOAAAYwmIPEirMzSDJSAOayM8GlswgoRqkZpC0NyrvcTcgyAyS+qWW2MrLIGndqcSjIRoZph8g8Ups8b6Qto83lz1NewAfM/7qHGyf6j+vznTVHiRs0l58DJAQlZi6uOdlkFhS4B3pr0IzWWKLqpQ/IeaOQdoxUkrcmrgWU7T1/jGhBEiYQULF9NPGS/CsPRMXZT6FNJxd0SZyDMxRYW4GSRYGhACQl0HCHiRUe3Qlg2RUIzNIKGBZ8RkkORgssUVVyzBYYotGhrdh+iLjzuBgx6zY1yYMNmkvJQZIiEosawcX04Rwdle9JiehG83QBE96VJ2EV2ILvFmkHWPbEjO1NaFjWstY/zHjI1RMdzSdglMzX0YXWtDY4CzkGOxBQoPJBSW2NCHyAiRggIRqkDplUTNIvICgxgBJ3YrLIHnKno2PjP9tuYZEtMP8DBLhBUh4X0jbx7IsPJW8BLtry4KDO+0V+1o1g316Z1ORR0YMkBCVWFyJrTSciUVjgnWqqUq5KZ/CZoCEdkzLwFt5x8SURf5jZpBQManZ60J3rs3sQUKDstwSWzAgAD+j0qczQEK1J1xiixkkFLBDPUicAMmz9iz0JUYX+hSiimcYzj2h14OEJbZoe43d+gI6xFb/4w+LzwGdQal9dao7d3wLRjclsGhGBzqaWW2m2HjHTlRiuZgSWxk3QNKU5J8kVSk3g0SAE2LaAZk+XPKs0/dhrWzH5dkPoxn9uGnsXABLAITrshKNNDWTUwrnmmzA4k5BKswPkJhO4+pdTgYeuCF4XvDejmqPGiAZFdODRJPsQVKv1Lmul0GyRTYhwfIwVMUSpnNuC0ps8b6Qhu/JZZswvi2FSS0GznvxYv/4r3NH4bHUwtBrpTLbbUmZePizRyBpMLehFPhTJioxtV7lkfozAICsdCbPTUlmkFB1Eu6EeGtfGmf95BE8smRjmUdEVWn9y/7DLbIJj9jzcLe9d+glNnfyUxGpGSReqRhmkNCg3Cbtaen2IBk1LfR0NtFW+jERFZkaTFZLbHklV5lBUr/U6+Vh+rMAgG40wtC49ETVy/QzSNwACasm0DA9s2Iz3vnjR3Dcdx4AtqwMPXdN7nwY0ebrkSlHytSdDThUdLxKEZWYt6umGX14p34/AGBv7TUAQIPJAAlVJ80NkAxkc3hs6SacfdOjZR4RVSUR3JYUug1khS0qJnXRz9acybAJixNhKswKepAIASDZGno6l2wv/ZiIikw9VzaYSpaUtwguec6sV1l3Z72JHCaKTQCATbIFJndAUxVLmM49oZdBkmEGCQ3Tn592ykf3pHPAQJd/fINsRQ5GKCOTyotXKaIS8xZZGpH2jyWFU2qLkWGqVqY7OdbYpJ12RKbXf/hX66DYl3A6QsWkLvp5tfQ1IWFbLBdDBUSbtEd2SQs2aacapCtv84QRnDcFAyR1z+vN4PXaBIB77fkwuQhIVcwrseX1IMmxBwkN079eXBt80BtU2bjVOgwAYEbKD3KuWz68YycqMa9eJReSqZYkTKdBJ9/XtK2klLjzxbeRydk4tSkIkNxonRT7ejZpp2JS17aFoTQeZoCECok2aVd0yabC6XBEVUwNJqulk4S3/5LX6rqVzTlzAU1Z5utHCgZ7kFAV8zJIvLlulgESGqaNvcHGaPQFAZL/y50JILI5i8qKARKiEvPSjnVlIflhuTvetXBSuYZEtMOSbgaJzgAJbaPn3tqCD/32aQDAYadvRTuAR6xdIQskuXLNhYpJnaQIXSl7aQcBEtuWePdPH0VnSwI/OjfcWJHqkPvesKD775/9xW8wceANvCSn4Suc+FINUs+VodJJbrBEcA9s3fIySNRNUzYETJ3FS6h6mZESW1mW2KJhCs1dcwMAgH9bC2G7c92BrBV5Pd9b5cIACVGJWW6JLSGCE9/ul/8FB4waW64hEe0wb1fNSfqjeMqeg19Zx5R5RFQtFq/u9h+n+7YCAHqRLPh6ZpBQMamLfppSGsm2g8nL6+t68Pgyp666lJLlMeude06SgJ8tktFSeFrOAQCwqgzVIrVmuloeRAhmkNS7dM65XqoBEgsaAyRU1QzDKyftlthibzraHtI5P1rKRsC+vABJSUdECgZIiEosF8kg2SobkGjpKOeQiHZYMmH6j682b0EGJoD4EklEqq//6xX/scg6Jbb6BwmQ8J6RikldzNZ05TZZySCRyrvQlgCrhtQ75/1gS82vphV6HzGARjUuoS58u+93wYziutWfcRb79NAdm8irs09UTXTNySqeKDYAALI5zkho20nbgkA4QOKdMz2zxjaXeFTkYYCEqMSydrguqw0Rqt1LVI0Sevjj47THyzMQqjqNCR1b+p1Gnrbl/Dc7yO0J046pmNTFbF0tsSWDyYtQmkpYtgztpKY65DajlgjeP2pWEeMjVItydnAtDmUGMIOk7vVn3WoJbpAsJ533hMEMEqpi3qaZOdoqLEudg7/2nQDgkPIOiqqOlcvBgFOW1ZN2+zb9+dID8OibG/GuvSeXaXTEAAlRiVl2uEm7DY2LK1T1zPSW0Mf7aq8UeCVRWGgNxW2EbcnCk2ibay5URJpyPTZ0HVJoENKGVEpsqQveLPlGQYkt4b83mEFCtc4qECARfgYJz431qj/j3Mvp/lzXeU+wxBZVM1OmQx+flr0DGNgCpNrKNCKqRpblBUg0dDYnsKEng2tPmQcAWDh1FBZOHVXeAdY5BkiISkhK6Tf08jJIpODNItWA/k2hD1MiC+TSgFG4VBIREF5g9hahc9ALvZwZJFRU6sK2qQtA6IC0IS0r9jU5RuxIyQj2giG62suGARKqQeq1mz1ISNXlZgUH1RKc94TJDYFUxZKZrvyDt54PnP+3ko+FqocdmSfY7mZAGxouP2oOjtplHMa3pcoxNIrBlVmiElJ3W3m7asAACdWCvo35x9Y8V/pxUNVR7xulHdw0Duf1RCNNXcw2NM0JkCB4bzrCJbaozkmv14K6SKwGSEo8HqISUM99IhQEZA+SembZ0i+bqomgWgIAmAbnvFS9zMzm/INv3lvycVB1yVjha6EXIMlJDaYuGBypMLxKEZWQutPUK7ElReGd0kRVY+yu+cd+fnTpx0FVKC6DhLcnVB6hAIkuIN0eYepiX6jEFgMkJL3/CH+h2AjtqC/HoIiKq2B5Qb+vIs+N9WhLf9ZPHvIySLxmxAajxVTF7FEzyz0EqkLZAgESp8w+57uVhr8RohKKC5AIZpBQLdjvg+UeAVWp0PryMDJIiIpJ7UFi6kEGiQ47trybxTIyFCqx5RzRRXw2CVGtKJQ9xx4k9W1zX8Z/7FVLkOxBQjVgYNcz845tNTvLMBKqJplcNEASlJPmKbHy8FdCVEI5JYLs7aoRGjNIqAaYKbyQ2jt0SAqdNahpSOqis/TSjqEj4d41HjJnTFnGRfVJ3eBqaALQnHZ9Omx/QVA9rbHEFnkltiSCbBFdYw8Sqm0Fz33sQVK3BrIWfv3Icv9jbzOgl0HCAAlVs0QyiT9bB4cPWtnyDIaqhtd/2GO77xmLGSQVib8RohIKZ5C4zdp1BkioNvxt/Efxmr0TPpu9GAAgpAVkeso8Kqp04R4kzq4aCzo+fdzOuPnCffD9s/cs08ioHoVLbGmAFmSQeO9VNajHAAl5C8FSbdKusQcJ1ba541tjj3uZ8RozSOrOX55ehZsfXuZ/LJTsOiBcepCo2pi6hm/nzsCr9iT8OHciAMCAVeZRUaXLyyBx57o2tFC2MVUGo9wDIKonOSu/xBYjx1QrtjbPwDGZbwKQuMa4GUmRA/q7gGRLuYdGFSxUx9wtsWVBoCWh47Cdx5ZpVFSv1LmKqQt/N7QTIHEXe5hBQiHBIqD39mEGCdW63Se14ZcX7oPJoxpCx/2ScpJN2uvN8o29oY+9EltegCTBDBKqYoYu8JYci2Mz38BF8zRgyT+gyVy5h0UVLmcXaNIOjSW2KhADJEQllA2V2HIfs8QW1YiE4V3lBbrRiDHoBga2AJhczmFRpQv1IAnqsnJRkcpB3c1laEEGiaYESCSYQUIKfyFY+BE2tRkxT2VUqw6P28TAHiTk0vzgsduknRkkVMXUAJ/QTQCAzgAJDSF6JVSbtLNHXeVhzIqohNSFFN3rQcIm7VQjggAJkEbCeWClyzQaqhZqBon0mrRLph1TeaiBOdMQECK/xJa6GYxN2ilcYss5pDGDhOqUd84UYAZJvdP8DBL2IKHqp75/NcOZ5xrIsd8SDUpG3h9WzquWwLluJeJViqiE1BQ7TTCDhGpLYyJ4L6els7MGOQZIaHDqBnyhZJDwnpHKQa16OaoxEepB4m1yUIN6NjNIKKbElsEACdUrv8RWeYdBpRf9lXsZJF6TdnUjFVG1UUtnjmtvDp6wmUVChUWnCVbOa9Kug5X2Kw9LbBGVUDamB4ngmZFqxAl7TMCtT67E2u40MvACJAPlHRRVPLVcUdCkXeOiIpWF+r4brQRINNj+LjB1MxgzSMgrsaU2aVffRzyVUT3xMuOZQVJ/ojulvR4kUjonwZYkl56ouv3twweiN53D2o2bgoNWHstRNQABAABJREFUFnBLbhFFRacJXpN2S7LEViXiyixRCakltrxdNULjzSLVhrnjW/HY545Cc9JAGswgoeFRd9a8stqZcFjQQju1iEpFXdge1ZQA3Gu0USCDJGcxQFL3/BJbwftHrbXP+S/VE8EeJOTyNgN6GSTNKc55qbrNn9yOA2Z1QjeVgIidLd+AqOLZ0RJbSpN2bgasPAyQEJWQ2qTd21XDHiRUa3RN+AGSe19aib4MU4+pMHXHYV86A8BJO+Y9I5WDGpcb3ZTw6+lrQulBopbYYgYJKY2IGxLe+4UltqhOuZnxgufGuhf0IHHOgU0JBkioNmh6IvjAYoCECoteCp96cz0A556RPUgqD69SRCU0kLUxSazDL81v+gvIgj1IqMaYukA657y/b3tyKZ5uXoKPH7NzmUdFlUq9cTSU3YZcVKRySOeCjQzTO5tCPUi8YJ6a9WSxBwnJ4D3T7JaQYQ8SqldByRCeG+uNdz83Gt34ZeIbmK+9CSBo0t7CDBKqEYauISc1GMJmgIQGFd1I5fUhdua65RgRDYZb14lKqD+bwy/Nb2K2tgq7acsAgCdGqjlqBklSZPHEss1lHhFVMvXGUUfQgyRaYuuAmR0AgINnd5ZucFR3VnX1+49HNyUAN8tTh+33G1GznhggoaDElkCjm0GihwIkZRkVUXn4PUjC58ZofwqqPd7l8NeJ6/3gCABMFBsBAE3sQUI1Qtc0ZL295iyxRYOIXvqCzYA6e5BUIAZIiEqoL2NhtrYqdEwb2FTg1UTVydC0IECCDKaPaSrziKiSqfeNOgrvqvnRuXvhulN3w/fP3rN0g6O6M5C1wgeUJu1Bia3gaQZIyGND+AuAaoCEE2CqJ1pMgOR/r6zD3tfdg/+9uq5cw6IS8Da8zNOWh443ijR2am+AqXPpiWqDoQtk4VYBYQYJDUJGNgsMNtel8uNViqiE+jJW3jEt21eGkRAVj6ErGSTIImnwUkPxpJShnTXeTWMO+aUH2xsTOG//qWhvTOQ9RzRS1BJbAAARlNiyY5q0W9wVTW6JLQmBpiQzSKjO+T1IgnPphTc/gY29GVz4yyfKNSoqAWfDQPw18d5PHVbSsRAVk6GJYK7CAAkNwttHNaYlCSDozWRBg8YbxIrDVSuiEuqPCZCITE8ZRkJUPKauIS2DAEnc+54IyE879nfVSA09ab5vqPTS2UiAROlBYsv8AIkdeTnVoVCJLS+DJJhiMYOE6grf73UrZ0u0In7jH7NHqJbomkCOJbZoGLw5Q8rUMKOzCYZSTpo96ioPr1REJZTc/Hr+wdxA6QdCVEQpU/NvGk1hoZcBEiogus9Q7UGypZ8TDiq9dC5aYstd8IYVlNNS3rg5RkjIfUPYEE7fGkSbtJdlUERlIdwSWxps9h2pM5ZtY7xg6WiqfaauscQWDYt3GdSEgKlr4QwS3h9WHAZIiEqobfML5R4CUdGlDN1vXGcih750rswjokply0J1WXUGSKgs8ktsBU3a43qQRN/DVIeUUkKTRzUCQGhXIHcIUj3xMqYEZF6WKNU2ywamibcBAM/b05GTXGqi2qRrAlnpzHX/t3h1mUdDlczbKKAJAdMQ/lzXZgZJReJVi6iE7I1LAQCLx51U5pEQFU/K1P1dNQYs9EebHhO58gIkIthVc+icznIMiepcXoDEzyAJdkOHepAwgaTuWXbQg2RqhxMgMUJN2ssyLKKyEEqTdsZH6otl25gq1gIAlsnx6EOqzCMiKg61B8mP//tKmUdDlczbVCXgZB75/TalzgBJBWKAhKiEerZ2AQDaOieUdyBERZQ0NP+m0UQuKEtDFBHdXerVZX3XPlOxcOroMoyI6l06GtA1GwAASZH1G7KHAySMkNQjKSW6+jIAgJ4BJ9utKZnApFHO+0XTmEFC9SkosSWZYVdncrZEs3BKR2+RTehlgIRqlKEFJbYMwUoJVJi3uUoIIKEESGxo0LgaX3H4KyEqJdu5gJpmEkg0l3kwRMWRMnU/QGLAYokFKqhQk/bJna1lGA0RcPHBMwAAJ+7hbmQwnAWeBqT9huzq+5YZJPXpM39+HguuvRsPvr4BWbdvzeimhF9eyGCAhOqVFmSQMEBSXyxb+r3kctDRJ5NlHhFRcehKBokJVkqgwrx9ovtaT+N76y7E3tqrAIAcS2xVJKPcAyCqK26AxDBNJ0CS6SnzgIhGXtLUkJFBDxKLE2QqwCvAcbL2MC4x/o5ZYhUAQGh6OYdFdeyyI2fjkDljsNtObpDOdEomNSDjL/aFMkh4fqtLtz75FgDgO/e8hh9YzuJIKhFMq3Q2aac6pWaQeKdHQxPIMZu45lm29DOBszDQg4Yyj4ioODSBUL9NokK8DJLr+65xDrj3hBYDJBWJARKiErJzWcAAdDMBJJsBxkeoBqkZJKawuIOQCvLWS76X+EH4Cd0s/WCI4CxsL5w6KjhgOhkkKaEGSIKnbS761bWcLf0ya8lEcN7adWKQBSc4AaY6osU0adcZIKkLli393fROBglLbFFtEkL4ARIDlpM9xd0QFKPQlc9p0l7SodAwsMQWUYn88YkV/q4aQzeAI77gPLHg3DKOimjkpQwdOeWmkXNiKuTB19fHHteYQUKVwu1BcqL2iH8uU4O+XPSrb7aUsNwMkgYzOG8ds+s4/3EmxzpsVEdiSmxx4bA+5GwJw91Nn4OGH1knAwBWjDuynMMiGnG6JpCTQYmtgWj/OiJXoY2iOejcQFOBGCAhKpEv3vYSDOFcPM1EEph3GnDFS8DJPxjiM4mqS1NSR0ZJO5bMIKEYm3oz+OBvno5/UmOCK1WI7jUAgJnaGlhuwxH1nMYMkvqWsyQs9z2glthqawiySUydE2CqH16JLeEX0WSApF7YUsJwe8nlpIEH7D2w/8D38fBeN5R5ZEQjSxNQ+m3m0M8ACRUgJZBEJu+4DY3XxgrEFQiiInt5TTf+8vRbyFg2DM3NIDHciXPbpDKOjKg4jtl1PH57X7CrxuICIsXY3OfdLOa/PzSdGSRUIbqWB48t5z2rntLYg6S+WbaEdEtsGcp5SwiBn52/N97a3IfZ41rKNTyikhPugo+mZJAYXASqWSs39eFH9y7BMfPGIWcFPUi8xeO30cG+clRzNCGCzYDCQnd/Fp3NyTKPiiqRLSVa0J933GKJrYrEAAlRkR3/3Qf8x95No2awvj7VLl0ToV01jI9QnKy7G987L6o0nbcnVCEaRvsPH3ltNa791xIcNKvDP8YAcH2zpASkcy7T9XBi/lFKmS2ieiHgZZD4fxrQNRatqFU/f3Apfv/4Cvz+8RXYZ9ooGMIpsZVFOGBMVEuEkkFiIoe/PbsaVxw9p8yjokokJdAi+vKOs0l7ZeIKBFEJeWnHLB9DtczUBbLSC5BYLLFFsbI5d2dpTIBE8BxJleL4rwGv3wUA+NV9i7Eeo/Dcyi7/aQZI6ptlS/8ax0VgIkC4fweasP0iW8wgqV1ppcfSik19fpN2SwmQ6FwEpBqjCXUzoIW3NudnCBABgIREU1wGidTAU2Pl4Z08UQl5jeugMYOEapeuCWTd+HtC5LiASLEybmNjMzZAwnIMVCFGz0A/UgCAlMivIczzW33L2Ta8MoEaz1tEfg8SIChHyDrrtUvtsdTdn/M3vagZJIwdU61R57oGLCzd0FPmEVGlsm0g4a0BKnLQeW2sQLxcERWRV0LGozODhOqAqWuhXTU2M0goRsbPIMm/aRQ6g8hUOdLCqSvdENdkkee3uubER9wSW5zoEik9SGz//Mi/jdqlXgPTOSuvBwkAlpGhmiMEkHOrJSSQw9aB/LkMEeCcIxMi//1hs8RWRWKAhKiI+rPhndH+TmnW16caFt1Vw/VDijN4DxLuxKbKkREJAEAqJkCSYwZJXcvZtl9iS+M2aSI/g0QA/v0fS2zVLvUSaEswQEJ1QRPhuW5fJn8uQwQ4OcYJZPOOW2CJrUrEO3miIhqIXCx14X7MDBKqYYYe3DSazCChArwASXyJLZ4jqXIMlkHCElv1zbKlvwrMEltEANwAiQZb6c/DVaBaFe0z6JfYksF9HAMkVGucAIlbLUHk0JdhBgnFk1LCjKmWwCbtlYkBEqIiKphBwh4kVMMMLSixZSIHiwESiuFnkIiYDBKDARKqHBm4ARKRznvOZoCkruVs6ZfYMnROq4ic3BFAg2QPkjoQ3SQQNGkPzoc8NVKt0USQJZWAhV5mkFABtozfDMgASWXiCgRREUUDJDqYQUK1z9AFstLrQZJzarQTRWQsZ1Idt6tG4zmSKsgWvR2wgPFiU95zDADXN8uWgO7tkucqIBH8Ju0STy7flLeAbtsSGgMmNSO6R8Bwa+1nlWUmwUVAqjFCCHTJZgDAKGxFJmcjZ9ncKEF5pIxv0m5Bg85zY8XhCgRREfVHdhMYXpN29iChGmZoIsggEVZe+j0RAGRzhXuQsEk7VZKtWisA4Gvmz/AH64jQcyyxVd9CJbbYO4kIXlF1DRIf+d0zeU9nbRtJlqOrGdEyut5clz1IqJbpmsDbGA0AOFR/Dq25HvRlLbQyQEIRdsESW3qwn4AqBn8lREU0kA1vnTe8kyN3R1MNMzTN3zk2SWxAp72uzCOiSsQm7VQtNujjCz7HAEl9y1lBiS2WESKCn0EiEH9uzFo8Z9aSaJlJb66rBki4Zky1RhPAGukESMaLzbjB/EnexliqT1JKbOgJSvLaUsIU7EFSLXi5IiqigbwSW27AhD1IqIYZmgil1t+e/SDQu7GMI6JKNFiTdo1ZdlRB/tl8mv84GWnUzhJb9S1j2YC7EMzSGkSA2oMkjpc9SrUhr8SWe0934oLJ/jGW2KJaowmBTbLV//ho/SlkeG4jAJf/8Vnsfd09+NOTK/1jsRkkUgP31VQe3skTFVF+4zpmkFDt05QSW77fnBb/YqpbXg8SI+amkSW2qJL0ay2wpDOLaUVv6DmLu6HJK7HFezsiv8RWoXUfb3ME1YZoiS1v04tUNgNylzTVGiGALbIpdIznNgKAvz27GgDwm0eXA3DOkYV6kPDcWHkYICEqouhNoy7Yg4TqQzYaIFnzXHkGQhXL22mViEk7ZoktqiSarqMbzkR4ktgQeo4ZJBRkkHCiSxQESOIXCzNcRKwp0Uug7gdIgrkuGxFTrdGEwBZEAiTZ/PkM1S9vfiBlgQwSBkgqEgMkREUUXTbxS8lwlyHVuKzke5wG5+20aovsyAcAnRkkVEGECOqpn6w/HHouWn+d6kNbg3KO8jNIGNglCnqQxHtt7dbSjYWKLq9agsif67KMDNUaTQj0IhU+uGVFeQZDFUm4V0FbokAGic5zYwVigISoiGQ0g8QPkHDxj2pbXoktoggvQNIuevKeY4ktqiS6JrBcjgOQ33iYGST1qb0xOEdZttekndMqoqAHSXymyAtvdZdyMFRk0WoJXg8SKPdx7EFCtcZZ2A6/r9te/kNZxkKVrVCT9k+dMJ+96yoQfyNERRRdN2EGCdWLvBJbo2eUZyBUsbwyG+0xGSSmyQAJVQ5NCNxrzQcAtIo+7CVe88vHRHfPUn3QlW1/QjrvBcEACdGQGSTcMVtbCjVpF2qJLf7SqcZ4Qb8T09fhHmtPAMAbz9yLpRvy5zRUn/y4cIESW2cfvGtpB0TDwjt5oiKK3jT6GSTsQUI17h0LpoQPNHaWZyBUsbI55wTZFskgsaXgZJoqiiYEMnCu26frD+Ivyatxgf5vAAyQ1Ct1A4x3tmItaSL4mQNJZGKf5hmztuQ3aXcXAnW1SXspR0RUOi/KGfh/1qEAnPJy/3fXq2UeEVWa2CbteqI8g6EhMUBCVEQSBdKOmUFCNe5r71wYPmBnyzMQqlheia0GpEPHNcHlE6osmgDSCE9mLtDvAgDkGCCpS2oJVa/smsZSCURAs1OOcKzoQlw4JLqgTtUt+vvU3exKqZST1hghoRrmlZVOIFc4dY7qjvdWsOMySATvFysVfzNERVQo7Zg9SKjmRXtIWPmppVSfvIVFL0Dilx50eaWMiCqFmkHiH3MX/phBUp/sUAaJ84HghJcIaJkAAEiJLNqR32OM8ZHaEr0EmjEltphdR7Us694fmsghZbAHJ4VJyPwAyf6XlmcwNCRuYycqovAOQxu6tzOaGSRU66KTIWaQEIB/vrAGn/3z8/ju2Xv6PUi8wPG9LSfh4U3N+Ke9Px4s5yCJInRNICPDQV9vUTxncbWvHtlxGSRcBCQCzBS60Ip2dGO82Iwu2RJ6mmfM2mLb0WoJzkKg0NUASUmHRFRSGSVA0pDgRglyufeEtgRSXpP2Ay93+rLOP7t846JB8S+YqIjUXVKGm3IMgD1IqC6kZx4bfGAxQELAZb9/Bt0DOVz4yyeQdReWDeEESPbYfQH+3X4WPnTqEeUcIlEeIYA0wgESrxRczrbjPoVqnIzJINF07hwlAoD1WgcAYLzYmP8kU0hqil1oM2CoBwkjJFS7stK59huwmEFCeaTag6R1IrDwAsBgD5JKxQAJURGpN42GmlrHDBKqA1tPvQWnpa8BAEhmkNS9Xz+6PNSvYcWmPgBBXdbRrU2491OH45z9ppRlfESF6Fp+iS0PM0jqk5ohrPkltrgISAQAG4UTIPm0cSumiLX4lvkj7C7eBMAMklqjznXVkqmCARKqE16JrQRyaEgwQEJhUirnxmgJcqo4DJAQFVHBDBL2IKE6oGtasKjIHiR1bc2WfnzxthdDxzb1Os3Zg95MDBxTZXJ6kEQySNxrOpu016e4HiSaxmkVEQCs1CcBAHbVluP+5BU4XX8Qf09+AQATSGqNei7U1Z5yaoCEp0aqYTmvxJbI8fxGvqBJu0QC7kZRPVm28dDw8HJFVETMIKF6pgmBHNydNMwgqWu96fwAWc+Ac8zgrhqqcKFzmXcMLLFVjx5+YwNO+v6DeLt7wD/mTYLZpJ3I8a/kcQWfk8whqSlqDxKzQIBEZwYJ1TC1B4nXX5HIO+3ZMqiWAJ2ltSodV2mJikidAngZJFJoENxKQ3VAaPAXFdPpNFJlHg+VTzamDFGPGzTxJ9TMrKMKpQnAiuwpYpP2+nTOzx7LOyYEM0iIVG+bk/C2HIXxYnPouAHusK414c2AQYBEU/ptsvwg1bJ9Zo4F3nIDJDkGSChMSomE16SdmwErHu/kiYpIxt00MnuE6oQuhF+XNZfNlHk0VE5WTBkiv0k7eNNIlU0TAo/Zu4SO2e4tdNx7m+oLS2wRhemawK9zR+cdb0Y/80dqSDpnhUps+XNdoUHTgqxLjfERqmHzJncCcDZ8MYOEoiQzSKoK7+SJisi7aRyPjfh14noAgLC4UEz1QRMCOelMkExY3FVTx7KDTBhMweAxVTZNE7Ch4TF7rn9sgtiEvcRryDJAUvf8AAl3SRMBcAIkW9CUd7xF9DGDpEZ87c5XMPeL/8Li1d0AgE5swS8T33CeTLZAV6IiOiMkVMNs4WzwMpFDlnPduqaWHFR7kDBAUj0YICEqIm8S8OvE1zBLW13ewRCVmKELZN0SWwZy6MuwUXu9GmyXPXuQUKXz1nYsGb5tvtT4Oyz2IKl7XplAYXDiSwQ4GcRbZUPe8Vb0swdJjfjxfUsgJfwd8zcmvo152nLnycn7hfqOMHhMtcx25y+GsJHLsedmPbOUHQBeacGsZSPpN2nnXLfSMUBCVEReXdbZ2qoyj4So9Exdw9fetRcAQBcSvWneNNar3CABkpmjk84D9iChCuXtfl2H9tDxo/Wn2IOEkHAnvhoDJEQAnKy7fiTzjjODpHbto70WfDD1wFDfEcZHqJbZIsiAz2Y4161ndswFLpOz0Sm2OB80jy3xiGhbMUBCVERxc4D+fT9a8nEQlcuR83byH/f395dxJFROhRaRm9GH9q4XnQ90ltiiyuTtfv1W7l2h470yOWjwj+qDl0GiGfkLwkT1SBcCfUjlHW9Fb6g/I9WoGYexxBbVDSmCzRED6b4yjoTKLS6pXKQ3Y7TocT5oGV/aAdE2Y4CEqIiklNC98jEA3pKdSO/7kTKOiKjElKyAvoF0GQdC5ZQrUIboJvNbwQfMIKEK5QVIVshx2Hfgh/7xNEzk2JCzbvSk48tEehkkwmQGCRHglFjtkzEZJOhnBkkN8uvrA3gksQiYMB+zxjZDE0BHUwKjGnlupNplabr/uLd/oIwjoXILldhy/3vS61cBALJaEki1l35QtE24XZOoiKQEmhBcKA9PfwtPNnWUcUREJabU2uznTWPdKtSDZJG+uMQjIdp26ubXjWj1H2+WLcwgqSPLN/bmHdNgwxBOkIwZJEQOTYRLbPXKJJpE2imxVcZxUXG0YysAwJIC32r/Av4kBKZ3NuGJzx+FpKkjZepDfAWi6rX75A5IoUNIC32sllDX1PmuV1pw9MAKAMArncdhd9YbrHjMICEqIlvKoCkTgCx0MMuY6ooWxOF7edNYt7IxJbYaEAmY9a4v0WiIto1aHsSCjo9nPggAkBDsQVJHBrJW3jF157TOAAkRAOec2Y8ga2CZdMqKtIA9SGpFYyIIeoxyy8d0oRmmGdz3dzQn0ZzkflyqTf/9xKH42fl7Y/8ZHZDuhsD+AW4GrGd5JSRtC22ZdQCAp2ZcUoYR0bZigISoiGwZlF4YkCYA4ZfqIKoLQsCCM4na2J2/+5bqQ1wGyVjRFT4web/SDIZoG4nIdXuJnAgASCKLDEts1Y24YFhCCZBoJgMkRICTQdIngx4kS+UEAMBosRWSOSQ1IWkEy0ijhZNB0iWbYehcXqL6MGNMM47adZzzgVsmOJsZYJ+lOpY33+3dAB0WbClgNbJBezXgFYyoiKSUSAonQJKGc+FkozqqN7Zwdo8tfmtjmUdC5RLXg6TZzSCxEy3A5S8C7ZNLPSyiYYlettPuzuikyGJTbwabejNlGBWVWlw5NTWDBDrr7BMBgKEJDCgZJC/a0wAAk8QGZpDUCHXjQDOcDPFuNMHkPJfqkXv9N6TFjTN1TO1BYksAGSe7rhcpmCZ7bVYDBkiIikhK+CW2vAUVJpBQvfHSjv/38mqs2NhX5tFQOcTtvG50AySyeRyDI1TR1I0Np+25k7/hIQknMLJ4dXdZxkWlFRcg8bKEM1LnDR6RS9cEutGEL2fPw5eyF2CxnAoAOFp/ChN72XusFqhnOx1O+cEsdG4EpLokDGedJ4EcBjIMkNQrdT+gLWUoQJJgdl1V4G+JqIgkZDB5hrOLniW2qN6YprurBhbe6mKApB7FldhqEm5PmkRTiUdDtG3UnbJNSR3XnL4XACAlnOyBvkwu9vOotlgxmXCm+x7IgnX2iTyau0j+c+sd+JV1LDbKVv+5dy39YrmGRUViwDk32tBg6JznUv0R7mbAO5KfQ2bzyjKPhsrFjmaQpN0AiUwhYXDpvRrwt0RURLaaQSLdElsMkFCd8W4aTVixC+VU+7IxC4tNSAMARLKl1MMh2ibqdVsXAofsPhOAk0EyGt3oj2neTbUnO0gPkixYOoHIE10j70XQj8SwWZKwFqjTWS+DJCc16BqXl6gOKSU2k49+t4wDoXJS1zmklEDG6b/aCwZIqgV/S0RFYtkSdqgHCUtsUZ3qWQsA+IRxa2yJEqp9zCChaqZWDNE0AaTagLHzAAD7a4vRn2GApB7EnceCAAkzSIg80UXyXtngP85qyVIPh4pMdzNILOgwWGKL6pHQ/Yd2Nl3GgVA5qRkkli0h3RJbfUhhdCP71FUDBkiIiqAvk8NBX/8vvvGvV/0SW2mYECJcqoOonhylP4OWdU+VexhUBnE9SJrcHiTMIKFKp+vhDBIAwPSDAQD7aS+jjwGSuhAX4G9wM+HSghNfIo8ZSSHpUTJIAG6UqQ3B79gQzjXQgsYeJFSfNrzqP7Rs3hPWK3UjjS2Bnq1dAJwSW3tNHVWmUdG2YICEqAjuXrwWa7Y4i39JpQeJ5JyA6tyM524o9xCoDHKxJbbcAAkzSKjCqY0VTS9FfsICAMBssYoltupEXA+SduHsDtwCBnqJPMlIKZF+BFkjmuT5sjYEk1pmkBAFLIvnuHql7qNZ1z2An9z9PABgQGtAytQLfBZVEgZIiIrMK7+QliZ236mtzKMhKi/JDKq6FFdZrVk4ARIwg4QqnFo32A+WdM4GAEzX3maJrToR14NkFBggIYpK5i0EBfd+WcESW7VAva8LAiSaU4aSqI7Fbaag2vf0is245u8v+R9v7M34TdrTWmO5hkXbiAVziYpAzRQxhRMgyUHHQqbWUZ2zWIakLtkx6XONbgYJe5BQpTOVDBI/WNLUCQBoRw9LbNWJuB4ki/TFAIBu0Vzq4RBVrFRMM9pu2YBW0Y83m/fCmDKMiUaWej70m7RDYwYJ1T3Jfpt16fQfPZx3rMndDJjRGvKeo8rEDBKiIjP8m0YdzUnGJKm+WZpZ7iFQGcSVFwyatHNhkSpbqMSWV1vfdAJ7DSKDbC5bjmFRicX1IFmkObsFswz+E/nyM0iAn+ROAgAIltiqCbYdX2KLPUioLr3rV8FjmSvfOKiieOWkt1jMnKwWDJAQFYFU6rJ6AZIsdDQmWXuQ6tB+l/oPX1y1Bdf9Y3EZB0PlIGMiJE1uc2NmkFClU0ts+dkkZrAbTGb6nP9KiVfe7kbOYnmFWmTF/F6lWzrofm3fUg+HqGJFe5AATvklgD1IaoUl4wIkzCChOjXvVNzU+mEAgGZlyjwYqhReBslWmwGSasEACVERhEps+RkkBjNIqD4d8kn/YQoZ/OzBpdg6wB3X9SQ/PiJxnP6E85A9SKjChXqQeI9NpZ5w1smG+uVDy3Dcdx7AV//5SimHRyUSl0Hi7Q5cpU0s9XCIKlZcM9ocnGMad1fXBLXElrcZ0JIadI3LS1SfLOGs87ywYgOuvv2lIV5NtW4sNuMM/QEAwBYGSKoGr2BERWYg6EHSlGCAhOpQUyd+03k5ACAlnF0167amyzggKrXouuJEbAw+GLdbaQdDtI1iM0g0DTktBQAQOSeD5Fo3O+4XDy0t7QCpJOIDJE5wrJ/1pYl8cRkkQYCEGSS1QO0tp7kZJDnozCChumUJp4x0Elnc/PCy8g6Gym5/7WX/8WI5rXwDoW3CAAlREai7pf0SW1JHE0tsUZ3qMsYCcDJIAKCfTY3rilp2EADGiC4AQJ9MAuN2LcOIiIYvqTZpVx5buhsgcTNIqLZFm7QnkEVCONeytGCAhMizqTe/xIwfIAHv/2pBOIPECZDY0NiDhOqW7fbZTAhmyRGQdDeFPmvPwKknnlLm0dBwMUBCVATqFNpUmrQ3MIOE6lTOcBYSk3BKa/UxQFJXohuvx7oBkiViUukHQ7SNYjNIAOQMZ1FcZPtCr/cbuVNNyVnhE1mjW14LAAYYICHyjWpM5B3zAyQ2Fw+rnZQydF+nC2+uyx4kVL8s4Zz3TPAcR8Gm0A3aWLxn0bTyDoaGjau1REWgNiQ2hNek3UBDTE1eonpga07tzQb3ZqEvw5vHehJt0u4FSDZgVBlGQ7RtYnuQALANpw+JmesJvd5gDfaalLOdXdIt6EMKaSTdXaID0oTUOKUi8pyy50Ss3NyHRTM7cM5NjwFQmrQzg6TqRTe9BE3adejcIEB1KudlkIB9NutRQteQsWz/Y29TaFNTc7mGRNuh7DO4q6++GkKI0P/mzp1b7mERjRg1g6QxwQAJ1aeM4dwctAhnpzVLbNWXaJN2r8TWRrSXfCxE2yqcQRIs/mRSnQCA5tzm0Ou5g7Y2eT1I/pf8OJ5IfRjzxDIAwHrZDv7GiQJJQ8cnjtkZ+03v8I/lpDMH0tmkvepFyw0afoCEGSRUv2y3B4nJIHBdaois83kZJDktP6OSKldFbHeaN28e7rnnHv9jw6iIYRGNCLVJe/TESVQvBsw2AEAr+qDBZomtOqM28zxGewKXG38BAGwUzCChyje2JeU/HsgG565so9NbqSW3MfR67qCtTd5prFN0AwDO0v8HAFgqx0PwV06UR10r90psCTZpr3p2ZNeL7i4IW9BhMoOS6pTtLoR7GSS2LaExYFg31A1Uh2jP4ZPmnwAAWbeKBlWHiohEGIaB8ePHl3sYRCNGvW30m7Qzg4TqWNZoBQBoQqIFfejLcoJcT9Rz4k8T3/YfbxLtJR8L0bYa3RTs/hqjBEtsN0DSmpdBwgWiWiQh/YVAAJivLQEArJEd0BghIcojlL8LL0DCDJLqF80g8Ups5aChgQvCVKcsL0Dilt/MWDZSGtd+6oV6Xrwl8XX/cVYwQFJNKmIG9/rrr2PixImYMWMGzj33XKxYsaLcQyIaMV6aZSqZCu1CJaorRgI90nn/t4lepBkgqSvR3YaeXtFU4pEQbZ9/X3EIvn/2nthrSntwMOH0IDHsNLJK3WGWGKlRMlxbvENsBQB0o5EZJERD8Ju0M4Ok6lkFM0g06Lz+UZ2y3V5kCbd6SDpnD/ZyqjFZK36ua7HEVlUpewbJfvvth5tvvhk777wz1qxZg2uuuQYHH3wwXnzxRbS0tOS9Pp1OI51O+x93d3eXcrhEw6OcH70MkvcdMps3jVS3dE1gKxrRjAG0ojevJwXVtkK/7wHRUNqBEG2nOeNaMGdc+L5UN52gr7Az6FeCvrzW1yaJoOmmaqtsZAYJ0RC8Ju3MIKl+doEMEkvqoZ5dRPXEckspeb0nMgyQ1BV1o1ToOEtsVZWyB0iOP/54//Eee+yB/fbbD1OnTsWtt96K973vfXmvv/7663HNNdeUcohE20wqERLDTbPUDUaPqX7pmkC/TADCuXEslFFAtUkW+H33C2bVUfUyTGfSI+wMtg4Ei35cK69NUsr4AAkY6CUaiu0XruD9X7UrVGLLgoYkAyRUpwZ0ZxNNq3D6bRZaMKfalLPjr21pjdUSqknFXcHa29sxZ84cvPHGG7HPX3nlldiyZYv/v5UrV5Z4hETbxiuxBd0s70CIykgXAgNwFhMbRCYvPZ9qW4F7RmaQUFUzk845TbOy2Nyb8Y9zUlybpASSIj9AYsBiBgnREGw4fyOCAZKqF72HbxIDAIABmAyQUN0aMFv9xy3oYwZJHZFS5gWOPUua9izxaGhHVNwVrKenB0uWLMGECRNin08mk2htbQ39j6jSqPeNDW6aJQym11H90nWBAThBwhQyLLFVZwqX2GIGCVWvRNJ5/5rIYW33gH+8UB1iqm6FSmy9IqdAq7gZFVFl8TJINMlFw2pnR36FE8VGAMBq2YmkwabUVJ+kZqJPOus9baIXGW6WqRuD3fevS04t4UhoR5X9dv6Tn/wk7rvvPixbtgwPP/wwTjvtNOi6jrPPPrvcQyPabuopcozY7DxoHl+WsRBVAl0I9Ls3jQ3IFNxlQbVjdVc/cu7kQC2ptkk2+4/TzCChKpZIBAGSVV39/vEsdw3WJFtKJN1NL6tkB/Yf+D4uyVyOB+zdIcAMEqLBeD1IBHh+rHbRDJKJYgMAYLXsYA8SqluaENgCp5xSG3qR42aZupHOWeGPpbMp9L2ZT0OwL2FVKfsV7K233sLZZ5+NnXfeGWeeeSY6Ojrw6KOPYsyYMeUeGtF2U+8bx4ku50ELAyRUvwxNYABOH56USLMHSY376zNv4YCv/Rcf+PVTec+9JYPre6/WnPc8UbXQ3MxQEzm8ub7XP87zW22SMsggSUsTb6MDd9n7AhDg/JdocNIrscXzY9ULN2mX6EA3AGCDbGOJLapbQgBbpbPxq1n0czNgHRnIqoF/6ZdjfdGezhKsVabsTdr/8Ic/lHsIREWjwcYYdDkftMSXjSOqB5om0O8GSBqQiUyuqNb88QmnP9h/X1kHILxg7NUh/1b2nUhrjaUfHNFIMZxzWkLkcPPDy/zDPLvVLm/Sm0GkrxwnwESDsqXXg4QZJNVOXfhNIoukyAEAtqCJGSRUt3Qh0O/220whg1y0Fh3VLDWDRC3FOgCTG2iqDK9gREUg3eWRDnTDELZTd7eJWVFUv5wMkuCmkfGR2hbdNaUGSEw4N5HPyZlcU6TqprsBkkhfCmaQ1CYpJRJwFgKzCNfZ5wSYaHBBk3YuGlY79RrXBid70pICvUixBwnVLU0o1RKQ4b1gHVEzSNQASRoJlmCtMgyQEBWBtzt+rNt/pD8xGtDLnrBFVDa6pmHArcfZINJ59YuptkQDJOqvW3cXR3LQmHZM1c0NkJjuormHp7faJAEYboA3F0nC57mMaHBek3bBJu1Vz1v41WHht4mvAgC60QQJjRkkVLc0DRiQXrWENHuQ1JGBrJpB4vSqs6VAFjo0nhKrCn9dREXgrQ2+U78fANCbHFvG0RCVn64BWXdByUSOu2pqXH4GSfDYW0zOSYOLilTddCfo62VFeXh6q01SBgGSaAYJz2REg/MDJCxCWPUsN8Z1sPY8ZmurAABbpNOcmj1IqF5pSomtBpHhZsA6ks4pGSRuKVYnm0hAcK5bVXgFIyoCb3HwQuMuAEBzem05h0NUdrqm+QESAxZ7kNS4XN7vN/jYyyDJQmeJLapuujMRnqutxEf1v/iHGQCuTRJSCfBGS2zxZEY0GK/ElsYMkqrnzXPVs94WNCFpaBjdlCjPoIjKzAmQeCW20mzSXkfS2fweJGm3Vx1LsFYXBkiIisCWEs3o8z9O5LaWcTRE5aeLYMetCYs9SGpcXgaJsh5iCOcm0oLGXTVU3YxgIegT5v/DBGwEwCbttUrNIMlFMkiYQkI0uKAHCc+Q1c7bBJBRSg3OmTga937qMKRM9iCh+qSJoMRWClkGSOrIgNKkPeWW2PL60XADTXVhgISoCGwpsZPY4H+8YswRZRwNUfnpuubXbGeJrdqX14NEWRBRa/hzVw1VNbMx9GGjGADADJJaJREEeKMBEp7LiAbnldjS2KS96nn3eGoz4oaddseEtoZyDYmo7DQtaNLeIJhBUk/+/twa/7GfQeL2XuXtYXVhgISoCCwb6BDd/seP7/KZMo6GqPx0IZCRLLFVL6J1d9VfdxAgYZN2qnJmeDEo5U6KGB+pTYNlkPBcRjQ4NmmvHd49nhogwaGc61J900QQIEkhE1NumGpVxsrvQeKV2GK1hOrCAAlREdhSosUtsfWkPQfZVEeZR0RUXoYm/AWlhMixxFaNy2/SHnzs1/CHzl3XVN0iGSTtYivO0+/GGGyGZJSkBsnCTdp5LiMaFEts1Q5vk5NXSuZ+a3egdUI5h0RUdpoIys5xM2B9Ue/5WWKruhlDv4SItpVlS7QKJ0CyVTZwEZDqnq6JUJP2aIYB1ZacFfn9xmaQ6NxVQ9UtkkHyPfMH6BBbcZz2OGx5LnS+vWuKlE4PLQB+yUgPJ8BEgwsCJMwgqXbeJpiUCC8EEtUzTRPIutUSEsgxg6SOqMsabNJe3ZhBQlQEA1kLzegHAPSgATonzlTndE34u2pM5Li7usZFezCoH6u1WXnTSFXNCAdIOsRWAMBB+ks8x9Ugp8RWkAFHRMPnl9hiBknVi5bY8hYCieqZJoLNgOy3WV/suAwS6QSOuQxYXRggISqCvoyFFjdAslU2cmch1T1dKbFlwmLjuhoX3TXlfWQgB0M4u0f7keS5kaqbHp+I/ao9iWUEa5BUS2zJcICE6yBEg/MySDRplXkktKNsNwnoeP1xAMFCIFE90wSCAInI5WfTU80KZZCIaAYJ57rVhAESoiLoz1joEFsAAFvQxMgx1T1dSTt2dtWUeUBUVNG6u7YEmtCPJ5If8o8NIMGbRqpJ3WiE5C7pmqOW2LIiGST8fRMNjhkktcOSEuOxEftprwBwNrwQ1TtdhKslcDNg/fB+1Rfpd+Lr5k0AgvtFlpOuLgyQEBVBXyaHvbXXAACv2pOhs44M1TmnB4mzoGQgx8Z1NS6aQWJLie+YP8Io0eMfS8Nk8Jiq3sCoOXnHmpBmRkENsiWgi/gm7fx9Ew2OPUhqh21LtIle/+Ms29oSQSglthLst1lnJJLI4Crz1/6RBdobANiDpNowQEJUBM19KzFPWw4AeNyey13SVPd05aZxnrYcts0Jci3LC4BJ4Gj9qcirBM+NVPVWnvxHdMmm0LFGDOC8nz2GN9b1FPgsqkYSUmnSzgAJ0baQ0iuxxT+WapezJXj3RhSmCeGX3zSRQ87iXLde2BJoR/iev90NInOqW10YICEqAj3dBQBYLUdjNTqhMXRMdU7Xgx4ko0QPdul5uMwjomKKyyBZJTvyXsebRqp2omks/mcvCB1rEgN4cvlm/OS+JeUZFBWHhN+DJBfZMc0SW0TxPnjoTCR0DQfMHgsAkNLGfa+tL/OoaHt97A/P4P23PImE26AdAG62jinjiIgqg64F2VSH6c/hHQ+/G7ByZR4VlYKUEqYI99d6w54IgD1Iqg0DJEQjaG33AG5+aCk2bHb6j/RLpyYr4yNU7wxNwFIuOQd0/aOMo6FisyM7RNXa/SreNFK1M3WBtDRDx1LIAAA292XjPoWqlJQSO4uVAJwSWwsmt/vPsWokUbzPHj8XL117LI6a5ywW6bDxsT88U+ZR0fb627OrAcAPkKyT7Vgpx5VzSEQVQdOCHiQA0LH1ZWDNs+UbEJWMLZ2sIc/L9hRckr0CAHuQVBsGSIhG0Of/+gKu/vti9PU5KXZpJAA45YWI6pkuBF6xp/gf7977CMAyWzUrulZoSxnabejhqZGqna4JpBEOkHhNiLk5orYcs+FmHKK/AAA4/6A5+OMl+5d5RETVwdQ1f5FIg0QXg8dVLymc3+Em2VLmkRBVhoSu5ZXf5ESnPkgEGcYbZQuOz3wNS+ROADgXqDYMkBCNoHteXgcASLoLgQPuogkjx1TvdE1gNTrx+9zhwcGeteUbEBWVjGaQAEggP82cGSRU7Uxd8zdDeDQ/QML3dy05fsPN/uO28TOQ0JVpFDNIiAYnnL8XTUjwD6Y6qT0VvHu6DBu0EwEAEoaWP9cRevyLqaZIKf0MkmiQjHOB6sIACVEReOU1BqSzaMLIMdU73f0jCO20zrCBca2K9mCVSgbJYzu9FyemrwPAcyNVv7gMEg3OIpLGu+za1T4ltPmFPUiIhqAsFAr+vVSlTChA4tzTZSLXP6J6ZeoamkV/+ODLt5dnMFRSUulRl40EjTnVrS6cuhEVQUq4ARKvxBZXAanOGe5O25tyJwQHf//uMo2Gii2vB4ltwRDOxLrl8MvxopwBgNl1VP1MTcvrQeK9q/n+rmFNnaEPo0FhIopQIsYaAyRVKZ0NAiRJd7d09PpHVK8SuoacjGSMPHADkN5angFRyUgoGSSR94DGdcCqwgAJURF4Jba8XaVMraN6N7YlCQBYhTHBwY1vsA9JjYo2LNZtpd64HpQj4rmRqp2hx/UgcTNI+P6uXWZD6MNoUJiIwoQIlh108N6vGoUySISXQcISW0QAYBoa7rBjepPZ+SWGqbbYNmCKAhkknApUFQZIiIrgQv1fAIAmDABg5JhoXGsq/gnJSXI90KUSIDGCAInOuxCqcromYEXrDbu7o3nlr2FmY7lHQFRdlAAJS2xVJzWDZK5YAYAltog8CV0gAxO/zR0ZfoIbKGqehPRLbLEHSXXj0gTRCGtFD2ZqawAAPXB2GDI+QvVO1wRGNzkL4zmpNrZlgKTWSSlDARKhqwESnhypupm6hjYR7qcUNGkvx4ioJCIZJFz+IBqCFiwaacwgqUoZy1kATCKDi407AQD9SAz2KUR1I2E489tn5czQ8Z8/sKQcw6ESsiVguCW2spEACacC1YUBEqIRNlls8B9/P3caAEBn5JgID3z6cHz+HbugF0o2ibTKNyAqCSkBw3b6MllaAkJZNWaPBqp2mgDGoCtyTAKQ3DVWy4xoia0yjYOoSqglttiDpDoNuBkk48Um/9ivcseWazhEFUW4S+H/zzokdPzG/71ejuFQKUkg4fUgYQZJVWOAhGiEdYotAIDF9lS8LKcC4CIgEQA0JQ1MaE9hK5TSJMwgqXm2lNDttPNYS4RuFBk8pmonhMB/7b0AAH1K8FdAcgmwlmmRKRRLaBANjgGSquf1IOmEM9ddbo/FM3J2OYdEVDG8XmQyssQqYMPmLoqaZsugxBZ7kFQ3BkiIRtgY0QUAWC/b/GMsI0Pk0ITArbnDggM2M0hqnQSQsvsAADmzOVR2iOdGqgX32HvhXemrcGHiBv+YBgmLE+K6wd800eDCGSTcHFONvB4kZxv/AwCsR3sZR0NUWQrd8umwYXETRU2TQBAgkcwgqWYMkBCNsMliPQBgjRztH+MaIJFDEwI/tU4IDjCDpOZJCTTYWwEAWbMFajVW3jNSbRB4Qs5Fl2hTjkhOiOsIf9VEgxM6e5BUOy+DpB3OPZ1Xc5+IENoUc1nmI/5jbpipfbaUMP0m7QbGtiT950ydk91qwgAJ0QibJd4CALwud/KPscQWkUMTQAZmcIABkppnS4kGy8sgaQlnkPDcSDXEVoJ/GiQsixPiWrLemAAAWDrxpLznWFCNaHAJIyg7whJb1SmddRYAU3D6yv0id3w5h0NUURoSQRD4dvsA9ElnkVwT0i+/RbVJSsAQzvnxgDnj8Znj5vrPGTqX3KsJf1tEI2yM24Nktez0j7GMDJFDEyK0iMgASR2wLRzQfy8AJ0CiBox5bqRaItXsKGaQ1Bzvt/n61DPzn+OvmmhQKVODJZ1zJAMk1cnLIEmJLAAgjUQ5h0NUUQ6a1YkT9pjgf+zNdwVsZpDUOAmgDT0AgERDS2h+y7ludWGAhGiENcJpRtyPILWO50Uih3OToARJGCCpOTKyUqg9fTMWpR8EkN+DROPJkWqIDGWQsClnrfHLAgk97zkGSIgGlzR0WO7Sgw72n6tGXg8SL4MkrWaEE9U5XRP44Tl74dLDZgIIAiQ6bNic7tY0KSWminXOB6Onh+a3LLFVXRggIRphDW6AxEurBNicicjj/Sl4C4lL128t42ioGKJrwtprd/qPM6kxofMh4yNUS/JKbHHVvKZoXkBfy58+8TdNNLikqfklVk3B3hX/n707j5PtKuv9/1177xp6PGPOyTyHQBgSpsQwCYKAoqCiVxEVUFG8Dj8ZrooXEXAARVEvoiggoogoKiIySpgJQwghJGQgJGSezskZe6raw/r9sceqru5zurq69q6qz/v14pWqXd0vl12ndq21nvU8zyhqBZ0BkhUySIBV0rVNlGy1Mh8cf9ZKZ5h74yc7z+4oIe31mDOiuni3gAFqqK1znHskSUsiQAJ0S9NM00nj8/7mC/rGnYdKHBEGrTuN3M6ckD1uTe3teI0eJBgntjCtpinn+MkbS3urXuvOnAPQqeE5WcZBQ37Jo0E/fvv91+hHnM/qXOfu+ILXlCRdeOq2EkcFVEu675OX2GI+OO4ia3Wmc1/8ZOfZKrYd8TgNOFJWz/AB9O0F7seyx8USW9QeBGL5pDE/VfOJ6+/XI07dXuKoMEjdjQij2ROzx+3pEzVbuB9SYgvjxJpiDxJqTo8bY+OyQJbTgMCGNTw3yyAhQDK63lR/a/b4JU97qH6oea6e/tAT1/kNYLKkM8EoKykY0aR9zJko1Ml6IH6y40w5hQIZNGkfLbxbwAA92Lkje7xkm9lj9gCBWPepGsdEZBGMme5N4Wg6zyB54OQnd9wPee8xTjqbtK/+LGC0pRkktkcPkr3zzVXXAOQanqOWzQMk9Ggafc2pGf3Exadr5wyltoCU6XEYkPngeHNtW45J3uP6bMfhaI8eJCOFAAkwQAftXPa4WGKrWVu9mAYmkdPVg8SRFQcrxsuqOrtRfOr6/eHjZeuzMiKDBOPlex68R5L0M487O7vmcGJw7OQ9SPI53Z/9+IV6wrm79RvPPL+kUQGjoVlz8xJbxqcm/zjwCAwD3VYdBiSjeOzlJVglOW5nk3ayjkcKJbaAAbpHu7PHi8onjY0aN0ZAKvYgiTeYHEVsko+Z7lOhNtlUjORIpjOjjv5MGAd/9fxH6bp7juiiU7dLn4yvcWJwvHzmW/v06CiMU4NMPqf74Ueeqh9+5KnlDQwYEfWOHiRthZEV58dGzz12p04yByRJYXN7uYMBKihv0p4HSDgwM97SEqzxE7cjKEKp/dHCri0wQG0TpxjfFJ2ioBB/nGIFAEgqph3H/3VFia1xs6pJe5JBElkjx5js34AksocwFpo1V486fYccxyiyeXYcAZLxcHCxrRf83VfyE4I9SmwBWJ/rmEKAJOD+OKKuis6VJP1j8DSpNlPyaIDqMVmAJC+x9boPXqcPfeOeEkeFrWSizgySqXq+wK1RYmuksDUBDFAtqT14kz2l4zoltoBYeooiTL5+jCwnK8bMqrIZSQZJKEeOyRcOEhkkGD9p8NfIUkJmTCy2A0lxQF+SRLkEoC/nnxL3JGvIV0CAZOTMNT0Zxe/bDfZ0MYUDVssOAxYOzFx2w/365fd8rcxhYQt1ZpA4mq7nB6Vp0j5aeLeAATIqlJIpqHFjBCT17kHCJvl4WR0fSTJIZGRkOt5vw3uPMdNZc7rkwWAg0ntankFChWKgH3Ozs5KkhmmTQTKCXMdkgeKoaz4HIOasatLOZHDcGcVrXWscyRjNFAMkHAQdKezaAgOURo9DPlpAT92N61xFZJCMme5ND5MFSJIMkuJrQxwXMAw2y45b3Y8Hoyk96U4GCbA5xmtISjNI2DQcNVFkswySOCuYWRzQLf1YhARIxp61Vm++7Cbd+cBi/DwpwTrdyKvHsM8xWpjhA4Nk81M1AFZLF1NhoS4rE4fxsqoHSaHEVtykvZhBMtShAVuOppzjJwgjSVZOUkbV0oME6E8hQEIGyeixNp63S3EmONN3YLXuaglPc6/SrJYkpfMJjIv/ue4+/en/fEuuSTOM4/2NYgaJz3s+UgiQAANkbO8SWwBi6cHbvC4rGSTjZtWmsC1mkJh07ihJMgSTMWbSBbExlgDJmAgim2ePSDIOARKgL8UMkpD746iJbH4vjKxDmVSgh+5qCS/xPqi/rb1JkrTkh2v+HkbPPYdXJOVZQukBmmYtX+y2AwIko4QiusCAWGvlJqdqImu0fboma6WfeOxpJY8MqA43yyDJAyTER8bLqgySqCtAUniN9x7jJir0V+KA9HgIws4AiQiQAP3xmpKkhiGDZBRFNt8IDJOyqQA6ma4eJJL0OPc6yZeWWqHmm7WyhoYB89y8ZLgkKQmQFIPH5+2ZG/q40D8CJMCAWJs3aa/VavrQrz1Rp2yfKnlUQLWkE4bQJuWWZOVSz32srM4gyRfThhJbGHOU2Bo/QRR11hCnxBbQnyRAUpevkPvjyLHKe5DQpB3oLf1U9KoostgOhjsYbKm0AXueQZK/5994zdO14ofaNk1AbJQQIAEGpJh2/H2POEUNgiPAKmk5reImIsur8bKq1GqWQRLXq+4MkPDuY7zYQgaJzwbgWOgusUUGCdAnepCMtMgqq7VvCZAAPaWZVb1WuCuU2BorNTcOiGRzxML8cL5ZI1toBHFsFxiQ4qTRcCIe6CmfNOZN2jlFOF7WatIev+eGrBGMtfTeZmQVUXZ4LKwqsWWY4wF9SUts0YNkJFlr5Zg0g8RhPgf04HQdBixiXjhe0iCx29WDBKOLGT4wIJHN044pvwD05nTVZXVNJEuAZKysKivUlUFSXFCzuMa4Sf/1G9GkfVysKrFFBgnQnzSDhB4kIymyyta6oZwsKxxAbr0SWwERkrGSNmDP5ogcoBl5vIPAgFibR48Ni2egp+5TNYZGxmNndQ+SOEAS9yDpLMlgKLCGMVPMjiNAMh6CyMorBkjEHA/oi5uW2GqzUTiCImvzWvuU2AJ6ypu0r/58EBgeL+2krjQZJOODAAkwIFZWTnKqxhA9BnpyuzJIaGQ8flZN/pNNkMg6cQZJ4SXW1hg3M4243rBD8HdsBGG+KRhaI8OpaaA/9CAZacXDgGlWMIBO3dUSirjvjZc0g6RXDxKMJnZxgQGJbCG9jpsj0FN34zpXkSImi2OlO+CV9yCJTxu6jtE5J8zIGOkxZ+woY4jAlpkygSTpX+uvlcKg5NFgEMIoyha/oRzy3oB+FXuQMPcbKWk5XKdQYstwygVYJV3rhgRIxl6aQUKJrfHhlT0AYFxE1hZKbHFzBHrpTjvmlPX4CbuqZpgo3iROFwrGGH3o156oIyu+9sw1hz08YGu1DkuS5s2yfjF6r6RnljsebJofWrkmDZC4bAoC/Sr0IOFwzGhJ3660BwkZJEBv6RTB9iqxRdWEseJ3Z5BQYmvksYsLDIiN8lM13ByB3tKGjtlmOXX6x8Zff/pmvfoD164+HWXTxbSTpZ03ay7BEYy9n9f7yx4CBiCMCiW2yCAB+pdkkNTJIBk56Vw9q7VfmNMByGWHAe3qzwf3vfGS9SBJDtFYqsiMPDJIgAGJe5CkGSR8tIBenOxUTRwgcRWRQTIGrLX6o4/eIEk6fed012txk/ZIhp4jAEaOH0aFuvsO9zGgX4UeJIeZ/I2UqEeJLQIkwGrp56Jnia2Q+944ocTW+OEdBAak2IOEBp5Ab05XBomrkDILY+BoK++10Aq6amzZ/OQ1i2kAoyaMrGqK73FteQRIgH7Rg2Rk2azEVt5XjnshsFr6sdhrDnZc36YFSmyNmXQPgxJb44MACTAgnT1IyCABekk3yI/YOMvgUuc6SmyNgcNLfvbY72pC8oVv3ScpLccw1GEBwKYFkVVTbUnSiuoyFNkC+lPIIAmj6Bg/jCpJp+p5iS2THXoCkEtb0U4l84bUm2tvpkn7mEmXvFkGCSW2Rh4BEmBAImsL6XXcHIFe3CRAss0sSpJe6H1cN957RJYgyUg7vJwHSI6uBKrL1xOdb6ihtprRkqSkdj9raQAjxto8QNKyNREfAfpUaNJOBsloWVViy3LoBeglPQwYdG21Psm9hgDJmOnuzcQe4OgjQAIMiLXFJu3MGIFe0o/GCTqUXZv6xj/o3668s5wBYSCKAZKFlUC/4b1X/1h/g95Y+xt9j/t1SZKnIGtcCACjIoysmqaYQQKgL1mJrTYbhSMm3Qg0yVo3kqFsKtBDutZpq7bqNe5742VVgIQMkpFHgAQYEGu5OQLHUnfjr53XBj+TXfuD2t/p//zbN3Tv4ZWyhoVNahf6jhxt+XqR+1FJ0rPdL2bXzzD3s7EIYOREVh0lttgUBPrUUWKLjcJREnWV2IrICgZ6Sj8Wv+3/nHyb7wl9InwkmXNjpjuzztKkfeTxDgIDElkrx6QZJHy0gF4cx+i8PbO6LHq0boxO7Xjt1957VUmjwmZZ5RP+D19zr/Zr26qfmTeLbCxi8hy6vewRYJMia9VUnCW3YutsCgL9SjJI6goUhPQgGSU22wjMe5DUHNa7QLd0rXOlPV8Pb71dr/V/WpK0qKmsqTfGQ/o1Romt8cG3GjAg9CABjs8FJ89Lkl7q/29J0rKtS5K+8p0DpY0Jm9Pda/WAnV/1M9u0yMYiJo5dPlj2ELBJ1koNQ5N2YNOSDBLHWNnQP8YPo0rSVoHpYcBffuqDtGOmXuKIgGoq9uZZUUO+PElSTQEZJGMmDRx7CuILjlfiaDAIBEiAAenoQUKJLWBNaZmtJcULZV98XkZd93R/WasXzX8Z/BAZJJg4Efe3kRcWmrSvqEagF+iXm88NbNAqcSDYqKgrg+RpF5xU5nCAyuqeIxQDJGH3iTKMtLRU5KyJy4TbxlyZw8EAECABBqSjBwkltoA1NWrx5yPIJoxhmcPBAKQL51SvxoRX2vPZWMTEiTglPfKijgAJTdqBvhVO19owKHEg2Kj04Ht2GJC1LtCT6VrspH1I6grovTRm0rdzTkuSCJCMA77ZgAHpLLHFRwtYS8OLJ4rphNEjQDLyuuIjatvOFOOjdkrS6kUDMO5s2C57CNgkW2jS3rJ1ESEB+lQIkBA8Hi22qxkx5aSB3rqz5SmxNb7S++Jv1d4rSTJ1AiSjjl1cYEAia/OT8NQfBNZU99IMknhxVTOhVhdpwiixqzJIOu+B6XvtsLGICWMDNgFHXRRZNelBAmyeMQqT+QABktGS7utSLQFYX/daJ10TeSZclXGP0RZaq+Iehrfv2vIGg4Hgmw0YkMhKM1qOn5BeB6ypkQRIir1HyCIZbd0HoqKu6UUaIGFjEZMmCsggGXVxD5J4M3dFdUoFApsQJZkHNmTeN0rSjV1DgARY11o9SOpkkIydyMbva8qJmPOPOr7ZgAGx1momadCk+my5gwEqLM0gCQmQjA3blQHU/X76ZJBgQllOSY+8qFBia8XWsyA/gI3LAyTcG0dJOsvLSmw5lNgCelnVg6TYpD0kQDJOoshqSq3suf+9ry9xNBgE6gABA/BfV9+tlh/qUVkGCQESYC1pD5KgECCpKdRKWQPCpnUfiFoVIEl7khAgwYRhE3D0WWvVNPECeEW17DsMwMZFydzPRjRpHyVRZPUIc7O2m8X4AhkkQE91t/OzQQ+S8RXZPEDiW1fm9ItLHhE2i282YJOuvuOQfu2fr9L/+bdvkEECHIe8xFYeo/fEQnmUdfcgqXUFSPIeJERIMOae8qqOp/QgGX2RtXkGiepq1Fg+Af1KM0hE8HikWCu9r/66/MLUjvIGA1RYrStA0rZ5gITwyHgJI6vp5ADNshpyWeeOPGb4wCbddmApezxLDxLgmOanapLiPhU2SSnw0prGGEndPQc90xnwSoNhBEgw9p70CtlfvkJfjh4sSbIh9YhHXRipowcJJbaA/tmsxBYHY0ZJFKyoYQpBLQIkQE91r3cfxpoJVx0ow2iLrLIMkiU15FJLeuQxwwc2qe7GN8IzzT2aTTNIpneWOCKg2k7ZPpU9jpx445weJKOtuwfJWhkkTBsx9oyROeFB2YlBSmyNPlvMILF1SmwBmxCZ5N5Iia2R0rjz8s4LHHgBeuousZX23PQUKiJAMlaKJbaWbGNV/xmMHnqQAJvkOfGX4EXmZknS1ebBupBTNcCaLjx1my48bbvmm57s3TVJfpxxwJxxZEVdCUCrm7STQYLJki6IKSMz+iJr1TRxgKRFiS1gU6K0uTcZJCPFXbgnf3L+s8obCFBx3RkkfjIfdBWu6tmI0RbZvMTWiholjwaDwAwf2KRa8iV4kjkgSbrbnFjmcIDK81xH//m/H6d/+NmLZZ20LisZJKOse75fU3eJrWRDhPgIJoRvklKCBEhGXmSlacUZwgtqUmIL2ASbZZAw7xsl3tE7JUkf0JOln/incgcDVFj3HCFMtlw9RatKEmO0hZHNDgW2yT0YC7yLwCYEYaRaUmtwbxIg2efsKnNIwEhIU1AtJbbGQnfKePf7eZfdLUmiNCsmRVpWThEBklEXRlZzJu4xt2CnVpXPAHD80ibtlNgaMUEcJD5i5iivBaxjrR4knuhBMm6szde82bwfI40ZPtCnv/3szXr4az6u6+45IkmaM3Gz9qNmtsxhAaPFiU9Zd2ccYLR0T/i738+vR+dKosQWJkdaYssGNGkfddZazSoJkGiKGtPAJqRN2ik/OGKS7zKf87XAuo7Vg4QgyfgIIytXcZ3pkK31scC7CPTpDz98g5b9UL//oeslSQ3FE33f1MscFjBSvNm4X88J5nDJI8FmdM/1PdOZQdJSHAhjXxGTIjQ0aR8XUZQHSI7a6ZJHA4y2NHPYkEEyWsIkQMI6F1hXrbsHic17kPzdF27VY//gE7rpvqNlDA2DtO9b+u39v6nHOd+UJAWWDJJxQIAEGJBGcmKaiSNw/JyF+yRJf1//YzbPR1h308HunjJtS5N2TBabZMcFbTJIRp0brcgz8QnBP/mpx5c8GmC00YNkNJkwbkTsJwdeAPS2VgZJ3YQKo0j7F9p67QevK2No2KQPXn23brw3Dm613vsCPbz9df209wlJZJCMC95FoE8nzjc7njcUb4IEhokjcNyWD2YPrY1P6mL0WK3fg4SSDJg4bhIg8QmQjJq3fOrbes+Xb8+e14IFSZKV0ZMeemZJowLGg3XozzSKTJZBwjoXWE/N7TwMFhS2XB2xzh1Vn7tpn371n6/SM/78s5Kk9oHbO16nB8l4IEAC9On0XZ1lFuomziAJyCABjt95T+94GlKXdSStziDpLJ3RTk4ckkGCiZEESHx6kIyUW/Yt6I0fu1G//f5rsmv1YFGS1HZnqBMIbJJj4/nBntZtJY8EG5JkkLDOBdZX7FNmTOfGeXqAzHWYS4yaa+860vF8JeqdKYTRRoAE6JPX9cWW9SAh9Rg4fk98hSTpjugESXGzM4ygVU3au0psJRkk7C1iUjhJgCRst0oeCTZioZUHd+89vKK//ezNai/FPbLa3mxZwwLGxglH4tIyz97/tpJHgo04cDguKxMYMoKBY/n0K56s//7VJ+iE2UbPAEn3PhKqr7taQndAxCdAMhb4hgP6FHVtCKYBEk7WABvgps27488TAZLR1P22easySOhBgsniePFcICCDZKQY5feon3zbl3TL/kVd6twl1SXfmylxZMB4sDIylJkZKd/Zv6i79h/W2a4UOKxzgWM5c3c8X7Dq3Egng2R8dJfUogfJeOBdBPrUvSFYTzNIHDJIgOPmxBvn6YSRElujyRbeN6NIrul8H/2kSTvLAUwKkwRIQnqQjJRiDPeW/YtqqK1Xeu+RJPnu9Bq/BeB4XfHw10iSvtV4eLkDwXH7zv4FNQwHAYGNsrazB4mbZpC4rIhGXWg7t9LpQTIeCJAAfepuJk0GCdCH7gBJSIBkFBVvh93ltaT4xKgkOZyYwoRoNhqSpJUWJbZG2Xc7V+sRznckSXuOXFvyaIDR157aI0l6UOuaVeU5UU0tP8oOAgY0aQc2wMrKUWjj9U+eQcI27KjzTOd6lx4k44FPJtCn7hJb9eRkTUgGCXD8yCAZGdfedVhv+viNuufw8qrXiu+a1yNAIknPesRJWzQyoHp2b4vLKxxdXP15QXV1VwGcU/7+ffOMnx7yaIDxE9Wm8ic3fri8geC4tYJI04qD/T4HAYENS7MLPEXxfzkwNtKstXKT9zJ16bl7ShoNBokACdCn4kF3o0gzWpEk+aZR0oiAEeTEE8Z0kkEPkur6xX+8Uv/vk9/W73/o+lWvFUts1br6j0iSkVXdZcqBybFtNi7H1GqtlDwSbITpKgRYM/H97NvRybrqvF8rY0jAWLG1Qi+fO68obyA4bn5rWWeZeyVJ93inlDwaYHSky6M0QOIaepCMquIZznYYKeqaL56yc27II8JWYLcC6FNxQ/DB5g7NmhUdtVO6z+WUNHDckibtWQYJAZLKuutQfJL6iu8cWPVa1BEgWZ1BYiTVqLeLCTI/HQdIAr/dMV9AtXVnkKQB3xvtqdn3FYD+mWIGydTO8gaC41ZbuFs1E2rJNrTPnFD2cICRk5ZfStdIZJCMthU/yspHZ5KqGBhtBEiAPhU3cneaI5Kku+xuSmwBG5FMJlwCJCMj6PEeFfd/vWRDsW1dXRWdqwfsnL5uz1GNDBJMkLmZOEDi2ECf/ta+kkeD49UdIKkn9zNfnkz3iwA2rGNfcJoAySiI2kuSpEU1Vt8kAawpXR6ljdrT9S7zidHW8kMCJGOK3QqgT8WN3LRBe0s1TgQAG5FMJuomlGQJkIwAP4xWXSu+bWnTukCefqT9Gn1X6y1qqU6ABBOlVovrtHsK9aJ3UkZmVKwqsZUGSKxHSQxgAFbmz8mfJHNAP4x6zi1QDZEfZxC3RP8RoB++4ntdU+3kCuvdUbbY7tFv0yVAMg7YrQD6VDwxnZ4wbIsFNLAhhdMWjmzP7ARUSxD2yCDR6hJbgVxZOdmioM3mByZJUo6pV08eVNdaJbZ8eWJ6B2yeW/N0WfjI+Enoy1qrZ/75Z/XEP/qUAuYJ1eTHvbRWLAESYCPSEqu327iB99nmnuR6aUPCACysBKuatJNBMh4IkAB9CgvfbPUkg6RtySABNiRp0i7FJ60jZoyV1yvLp7PEVhwg8eV2/Mxii41iTJBkoeT16MmD6uqewaVN2tuU2AIGwnNM1rBYka+ldqib9y3q3iMruuPgcrmDQ2bFD/Ur7/ma3n/VnXKjJEBCBgmwIeny6NvRKZKks8y98XWWuyPtaMvPSkpnglY5g8FAESAB+lTcyG2YvMQWGSTABhR69rgKe2YnoFr8aPUJT9vRpD2eMAZdAZKFFQIkmCBuvJFUN/y7HyWre5CkAV9PDgESYNNcY7J6/Io6D8YcWfZLGhW6ve/KO/Xf37hHL/2Xq+VG8cYfARKgP0tqSsr3jCwltkba0ZUgq5iQIUAyFgiQAH2KevQgadODBNiYQjqqp4gMkhHQ6y0qJpWkAZLpZlN//fxHZdf3bmtu9dCA6qhNSZIaWb1pjKJiiS3aKAGb5zpGQVJ6U6HfkZV6ZIUASVW0g/wwjBcmARJb4+Q7sAHp5yUtN5zOKagoPdoOL/urM8TPfWo5g8FAMdUH+hSt2YOEjxVw3DoCJAE9SEZUrxJbcmv6voefpPf8/CX6oYtO1iuefn45gwPK4MUBwSkCJCOle/OvswcJB2CAzfLcYgZJ57zvyDIZd1WxYzrP8DYhJbaAzWgnWfVZgIT17kg7sux3ZpA88eXSg59V3oAwMHSSAfpUPPGU9iBp0YME2BjHUVz13cpT1LO/BaqvmPlTM/GEMUrKpz3u3N163Lm7SxkXUJratCSpadoSpRRGRvc7lW5mtK0njwMwwKY5xiiwyRZE1JlBstQmQFIVc808QNJaWpQkrahR1nCAkZSWIPaTe156qJYDgaOnWE56qR129iB5yA+WMCJsBWb6QJ+KN8nznTskxSW26EECbFCSReIqJEAyoorvWppBYh3OYGCC1eIMklPNfl3V+EXp4G0lDwjHozuDJO0h48ulxBYwAJ7jFJq0d877KLNaHcXVbNRelkQGCbBRz77oZEmrS2yx3h1ty21frknew59+v3TyI8sdEAaG3QugT2FhEv/D7hckSY92vqUvEyABNsatSZEvzxAgGVXFgHF6osaa2lo/Dow/L++5s8MsSDdfJj3mZ0scEI5H2jj1uc5nNWVaWYYwJbaAwYh7kCTRxq4eJGG0xi9h6IrBKjdKSmzZGs2lgQ141bMu0GPP3Knd11wp3SzVTJpBws1u1JjCHLDdKpTPPflRPX4ao4oACdCndD5vlH/BzZtFSmwBGzW9Wzp8u07UAQIkI6qjxBYZJEDWpD1jSD8YBdZKp2if/rT+VknSXXaXpLRJO/M7YLPiHiRpia3OHiQhGSSVUZzXOWmTdjJIgA1p1lw956JTdOVN8ZywnmWQlDkq9KPYN6btt/IXXA4EjhNWa0Cf0pvkbh3Orr2k/VIW0MBG7T5PknSOcw+L4xFVfNvS9HECJJhohQwSSVJ7sZxxYEOslebNUvb8FPOAJKktTw7zO2DTHFNs0u4rLJykpnFxdRTfCpcm7cCmWLezxBa96UZPcY8iaBcCJA4BknHC7gXQp/RkTbp4vtvu1DfsOXqoywIa2JBtp0iKg40hKccjqbiQznuQMGHEBEuatKdsa0HMDqrPymb3sCLfemQIAwPgOaajB0lHBgkBksooZpB4UZJBYgmQAP2InPiz873u13Syv1/W7il5RDheX/nOAf33N+5WrdCIru0XSmxxIHCskEEC9CmdxJ9s9kuS7ra7JYkMEmCjGvOS4hJ1pByPpmJN6qzEFinHmGReo+Pp4cOH9Pv/fZ3uPrRc0oBwPKwtnvDM+fLk0oME2DS3GCAJfQUhTdqrqOPgS5SX2OItAvpQWBO9qvZu8kdGyP/6my/qH754m97x+e9k19rtOEASyZEcttTHCe8m0Kd0gnhSlkES16n2uEkCG9PcLkma0xIZJCOquGD2THL6mgwSTDJjtPicd2RP/+fqW/T2z39Hv/CPXy1xUDgWa9U7g4QSW8BAuI5RYNMMkqAjayQgg6QyiuXOigESABtnnfzQzBnmPlkijSMtSHqQRGSPjB12coE+pXUId5qjkqQHbHwKngwSYIOaaQbJEhkkI+iKWw/obZ+7JXuenb5m0ogJFz3kOXq9/zxJkuPHPUiuvetImUPCMVjZPMhb0KZJOzAQnmMUZiW2fEpsVVQxm6dm483AlmqcfAf6UPcPZY8P2lk+RyMuSEpsWcNad9wQIAH6lE4cZxQ3rlvQlCRRoxrYqOY2SdK8lmjSPoJ+7K1fzDJI6vL1PPeT8RNKbGHCuY5RW92NOVFlcYmt3hkkBEiAzXMdIz8JkNiuDBKatFdH8a2o04ME2JTF+XOzx3UTUKpuRKyV6eOnJbY4DDh2CJAAfUorAc2aOECyaJuSRAkGYKOm4/49e81BSmxV2PGU3/+z2lv0UOe2+AkltjDhHJPX2nfEvW0UWElerx4klh4kwCC4hQwSG/gKCvM+DslURzGDpJFkkCypIe6CwMYd2nWR3hZ8vyRpVitkkIyIFb/33P3oYtxPkAyS8UOABOhTOomfJoME2JwdZ0qSznfu1NyBb5Y7FqzJOcbm4KyW9Cz3K9lz25jd6iEBlWaMso1AjwDJSLDWrtGDxCWDBBiAYgZJFPqav+PTush8O35OBkllFN+LaS1JkhbsNBu7QB8cx9FHwoslSTNapgfJiPDXOLjZasdBY8thwLFDgAToU3qyZlZxBHnJxs23WEADG7T9tOzhtm/+IzWoK+pYd7Y31f664/nKzgdv3WCAEeAYozCZars9Nt1RPVa9S2y15R0zSAzg2DzHyQLHB67/rB726Z/TfzZerXktkkFSIcWp+LSN17rpYUAAG+MYaVFxtZGZpPoIqs+ucbYpnSdSYmv8ECAB+mCtzWpHpl9yi2SQAP3xGrp89umSpKP77tAbP3ZjyQNCL8faHHy6e2XH82D7uWv8JDAZigGSXlkJqB5rewez6EECDIbjKMsg2WMOZdd3miMdDdtRrmKJrRmlAZImJ9+BPhhjsr2iWS3Tg2RERGu8Uemc3hIgGTsESIA+5PdKq9PMPknSA3ZOklRz+VgBG3XDzGMkxY2M3/qZm/Wcv/y8/urT3y55VCja6OHpcP7UrRkIMCIcIwU23gh0KbE1IqxqhgAJsFU8x1FoV6+VmvIpsVUhaSDEKNKcSQIklgwSoB+OMVpI+tU2jS/H+iWPCMdjzQBJMk+0hhJb44adXKAP6c3yRB3QHnNIvnV1jT1bkjQ/xY0S2KjIqUuS6iZujnv1nYf1xx8lk6RKjhUguTHqCojMn7R1gwFGgDFGoUlLbBEgGQXW9s72aRMgAQbCMVKg1adup9RSyG2yMtJytzPKywEtaIqDgEAf4hJbeYCxES2XOBocr7Vi9mSQjC++4YA+pDfLKdOWJC2rrpbiDd65JjdKYKPSJmc1BSWPBGsxhS4kvUos1BWfhvp4+Gj9hv9iObXm0MYGVFWUbAR6PbISUD1WvQMky7Yhlx4kwKYZYxT02IJomvaap3UxfOlaNw2Q+NZVSzW98HFnljcoYEQZE5cWDG08j/CidskjwvFYq6RgHiBxhzkcDAE7uUAfrOKbZXpz9AsfpfkmGSTARlk3/tzUCZBUVvHwdGQlt2uvcDbpx/RnwY/qenuGfsXhDAZgySAZKdb2DtQf0Jy4pQGDEWj1plJD7SxrAeVLg1WzJm/Q/tFff5IefOJ8mcMCRpIxRpLRiuqaUUs12yp7SDgOa30lZfNEh32/ccNUH+hDGkxON3M7AiSU2AI2LC2xRQZJdRWbtKebGLajiWccIFlQnDnidkdQgAkUmngjMD1QQRJCtVlre2aQWDnyiJAAA+H3LLHVVkgGSWWkb8Vc0qB9UU2CI0Cf0jVUS0nFhIgAySigSfvk4R0F+pDeLNPNXN/mH6XtBEiAjXMpsVV5HRkk8T0wDZQ4ijRt4sn+YtLE06NeP6AoOYvkJBkkfCqqzUqqJQvfj4aP1R5zUB8ML5UkMkiAAQl7ldhSW2FIgKQqIms1pyW9o/5GSTRoBzajlqyJVpKS7J5o0j4Kjh0gYd9v3BAgAfqQ3iu9LIMkTxU/ZQcTSGCjupu0o3qKG7vpPTBIAiSzypsNLiRNCGloDEiRSXqQpAESUkgqzVqpmQR777Pb9RL/pdlr9CABBqNXBknTtOWTQVIZobV6nnuZdpmjkqRFTZc8ImB0zSY9alu2JhmpTgbJSFjrK6lGBsnY4iwU0Icsg8Ss7kFSc/lYARvm0IOk6pxCwKM7gyRr4ilP7SR9nAwSQLJJiS03LbFV5mBwTFZW04o3LpaScoEpgr7AYIS2dwZJRA+SyrBWcpW/H75hIxDo12wj/vykGSR1epCMhDUzSJI9QHqQjB92coE+pPP3Wo8eJAA2LqQHSeV19CBJJoxpBslM0sSz7eYnDNlMBPIm7fQgGQ3WKg+Q2EbHaw73NGAgejVprymgB0mFRJHVfuU9R6bEhi7QryyDJD1EZttlDgfH6VhN2skgGT8ESIA+2K4eJL0m+gCOX8vGn6E6NVkrq6PEVlwtSEEYP5hNMkhCbyb7GRoaA3mJrbwHCZvsVWatNG3i+9mSOgMkDY97GjAIxXVTK+njWFOYZaWifJHNy8hI0tfNg0scDTDa5ptxYKSVZZAQIBkFa2WQpBUvrNvo+TpGFzN9oA82yyCJJ45tMkiATUk/Q2SQVJdZp0n7fI8MEs9lIxiIkhJbaQ8S4iPVViyxtVwosWWMVKeEKjAQYSFAco09W1Lcg+6/v3FPWUNCl9DajkNLf21+osTRAKMtPWDRsnGgpEYPkpFg1wiQNJN5oq3Re3jcVGKm/5a3vEVnnnmmms2mLrnkEn3lK18pe0jAuqKuDBLfEiABNqOdfIbqJpRJNxJRMWuX2PoZ738kSUebJ2U/Q0NjIC+xNWVautT5JllyFWdtXkqmWGKr4Tky3NOAgWgWyjVdH50uiQMyVWOtzd6Tfw+foMBtHuM3AKzFGKNfe+p5CkwcIHG5342EtZIap0ycAWQ9AiTjpvQAyb/8y7/oZS97mX73d39XX/va13ThhRfqGc94hu6///6yhwasiR4kwGAtJynHktRgA7GS1ssgeZS5UZLk775AklT3HOr1A8pLbO02R/TP9T/QHzl/XfKIsB4radqkGSR5gKRZo5QqMCjfsOfoa9G5+sfgaVpUvMGU1XSnD0klRIUASdvWOvrQAdi4l33vg/TQ03ZJklwbHuOnUQVrfR01lQZICByPm9IDJG9605v04he/WC960Yt0wQUX6K1vfaump6f1d3/3d2UPDViTVXy39Ez85ebTgwTYlOXCSd2ZpJ8FqqU4SUwfB5GVq1DbzYIk6exn/LL+5qcfrQ/96hNKGCFQPVHXVPtZzuUljQTHw9q8xNZiocQW/UeAwfHl6Ufar9PvBD+rdrKGygMkZY4MqchKDZMfBHQ59AJsWtrU27VkkIyCtXqQpJnG1pvu+TpGV6mz/Xa7rSuvvFJPe9rTsmuO4+hpT3uavvjFL5Y4MmB96b1yXkuSyCABNiu0RotJkCRtkIuqySeJeQZJpB1akCMrycjbcZqe8dATdd7euZLGCFSMYX4wSqx6l9gigwTYGmmZ4rTpbUiEpBKiyHZUSiCDBNg8m5bYIkAyEtYMkCQltkQPkrFT6qpt//79CsNQe/fu7bi+d+9e3XDDDT1/p9VqqdXK65YeOXJkS8cI9BLZ+NT0q2r/JEkKk1jjO1/02DKHBYysIIq0pKZm1NKMaFxXRcU5YlpaK4ykE8yh+OL0TslhExEoSpu0Y0TYvMTWSrH0IxkkwJZID5mlm/FrbUhhuDpKbJFBAgxElkFCD5KRsNbXUYMSW2Nr5Gb7r3/967Vt27bsf6eddlrZQ8IEslaa12L2vCFfn//Np+gp5+8pcVTA6Aojq0UbTzKmKbFVScU5YjphDCOrS53r4ie7zh36mICqO2JmO563bK2kkeB4WNk8g4QeJMCWeMXTH6TTdk7pwlO35QESQ4mtKomsVE96AhIgAQYjL7FFD5JRsHaJrSRAQgbJ2Ck1QLJ79265rqv77ruv4/p9992nE088sefvvPKVr9Thw4ez/91xxx3DGCrQIbJWnqLs+fvC79ZsgzIaQL+CyGopqfc+Q4mtyksnjJG1OsXsjy+edkmJIwKq6YFopuN5w/hSxMK4qmxksyD9ks1PBtbdkTtTBlTWr3zPefrcb3yPTt4+pTYZJJVUzCDxrSfiI8DmWSc+JOOIeeAoiNb4Opo1y/GD+mzvH8DIKnW2X6/X9ehHP1qXXXZZdi2KIl122WW69NJLe/5Oo9HQ/Px8x/+AYbNW8gpfbP8TPUbTdQIkQL/CyGandckgqSZriz1I0v/a7IShajSqA7q1g0gfCbvKb/rL5QwGx2TCtlwT3+CWCxkke7dRRgEYNMcxWQZJPVlXXXHrwTKHhEQUWZq0AwNGk/bR0itg/xTnKl3ixO0g7NSOYQ8JW6z041Ave9nL9La3vU3vete7dP311+uXfumXtLi4qBe96EVlDw1YU2StvGTSmDaWrlOfGuhbENpVjTpRLcUpYt6DxObvl1df/UvAhPPDSL/u/7K+a+XNhYsESKrKCZayx8USWw87eVsZwwHGmueYbO73ve6VkqQX/N1XyhwSEpGNS0hLcT8m12GdC2waJbZGiu0RIHlr7c+yx1GTAMm4Kf3I+4//+I9r3759evWrX617771XF110kT760Y+uatwOVIm1Ui056RSIutTAZoWRlZ98ltxC+TpUR3GOaAsltuomySBxGz1+C5hs7SBSoLru1S6t2Jqaxpf8pWP/Ikphgjh41bKewsL8bqrG5iAwaK4xWlBew31eCzoiSpZUQWStmkk/pjhAUvKAgDGQZpB4HAYcCd0ltmoKssw6SdLUzuEOCFuuEl91v/Irv6LbbrtNrVZLX/7yl3XJJdQxR7XFPUjiAIlffpwRGHnPeNiJCpOvpJph0lh1eYmt/IShPAIkQLegsLo6oqQfyfKBkkaDY3GTDJJieS1JqpElDAyc4xh9Orowe77bHClxNCiKrNRMGhEv27pcQ4ktYLPSHiSU2KqmKLL6+Xddodd+8JvZ86ILzK0dz+307mENDUPCbB/oQ0QGCTBQL3zcmXrYafEkgwySaursQVIssUWABDge99jkpNmRe8odCNbkJBkkS90BEo5PAwPnGqOW6ro1iitH7BQBkqqIIqspEwdIVlSXQw8SYNOyHiQ0aa+kq+44qE9cf7/e+YVbJa3OIDnRxAeclm1dP9j6fZka/enGDbN9oC82S40kQAJsnusYnbAtbvLtMWmspF49SOIm7ckpKEpsAeu6x+6KHxy5q9yBYE1ZBolt6OGn5H1H6gRIgIFLN90f0Lwk6bnu5yT1rvuO4YpLbOUBEjJIgAFIMkg8MkgqyQ87v3u6v4tmtSJJ+nL0EF1jz5ZL4HjsMNsH+hDZfBPXtwRIgIFIJ40ESKqpowdJ/N8okhppDxKatAPrOmjj2vofu/JG/d5/X1fyaNBLMYPkXT97cXadDBJg8Lxkcyk9Tb3HHJK0+tQuhq+zxFaDDBJgANIMEoe1biV13+W6v4umTRwgWUyyjB0Cx2OH2T7Qh8ha1UxaYoseJMBAZI3rmDRWXVZiy9pCDxLSjIH1rCgOIn7rrn16x+e/o0NL7ZJHhG5OkkHiNma1faqWXfdcFsHAoO2ZizeZ3h48S5I0a+IApR9SarVs1lo1DRkkwCBlJbYsa91REK2RQbJopyRJxI3HDzu7QB9sIYMkcjz9/g89rOQRAWPAJYOkyopTxHTC2FliiwwSYD1pgGRKLUnSnQeXtX2az02VuEkGSctpdpyYrhEgAQbu5594tm6496h+cvfDpS9Kc4o/fyEpJKULrc2+q5ZV1zZ2AoFNS5u077X3lzwSHI/uAEmeQRIfCiSzbvyQQQL0IbJ5D5IHnbRDP/VdZ5Q8ImAMOHG5umKAhDrU1dGrSXtEk3bguK3YOBiSli25+9BymcNBD/OH4tJny2am4zoltoDBm6q7esvzH6XHXXC2JGlOcQZXQICkdJFVliHcUo2NQGAAbNKv8YLwRumuK0seDdZjrVX3NsRsEsTPAiRk1o0dZvtAH6yVaskmrnFIxAIGIu1BYooBkrIGg26dGSTxf8MoL8Egb2roYwJGyXKaQZJ8Zo6s0KSzanY8cJUk6armYzuuEyABtlBjTlJeYosMkvJF1qqWHAZs25pIogM2L5jamT/5+j+XNxD0ZAoBD2tXZ5DMJCW2lmwaIBne2DAczPaBPsQZJMkmrltb/4cBHJ8ePUi6JyaohihKS2zlp+FVI0ACdHvGQ/dKkp543u6sxFYjbXzbJkBSNdNLd0qSbq+d3XH9xHl6LAFbpjkvKT2daxVE9CApm40i1bN+m65ch20jYLOC5u78yczutX8QpYusXbNJ+wIltsYWR9+BPhQzSEQGCTAYWQ+SfGHMIcLqKMaq0vclKtSoJkACrPZnP36Rvn77Ie2cresdb45LK0wlAZKlNv2WKsVfVqN9SJL0gBcHtt75osfqwEJbZ+6eWecXAWxKkkFSM6GaaisImfyVLvKzh748deYRA+hH2NiePyFAUjnFillRjwyStEn7EiW2xhY7u0Afij1IyCABBiTpQeIWe5CwIKuM4nvxtdsP6p+/crt2THl6ZpZBMl3SyIDqmq57ety5u3XnwSW1unqQLBIgqRY/7wnTcuKA71PO31PWaIDJUZtRZI0cYzWnZUpsVYAT5RmObXkE9IEBaM8X+ta69G6sMitb6L9p9fPuh/Vk92pJ0oKN54geGSRjhwAJ0IfISk2TNibm1DQwEGkPEtGDpIqK78UbP3ajpLhU0GubyQtkkABrqrmOVhTf46ZMnHVFia2KCeKTgb51ZQ1LJGBoHEcLmtK8ljRnlmjSXgFOIYMkkMt8HBgAY4w+Fj5Gz3C/2pGlheqJe5DEj7/b+YZeVfun7LUlxcGtZs0tY2jYQhSTBPpiNaul+GFSNxfAJtGDZOSkvRQkESAB1lFzHbXVGQQmg6RikgBJSzVRNQEYrqOK5xCzWlZID5LSOTYP4AdiExAYBGOkIN2CjZgDVk1x6hf3IIn3IS40N3f8XJpBgvFDgAToQ2SlWZOUYkjq5gLYJHd1gIT4SHX0eivSXgqBPMoNAuvwXKN2krhdS0p0vufLt+svP3lTmcNCURBn9rTEvQwYtqM2LtM5a5bJIKkAJ4rndy3rSTKUvAUGwsRrJkkKySCpsqiQQdIw7Y7XFpMeJBg/BEiAPkSRzZo0qT5b7mCAcUEGSbX1eCvSUkFtUx/yYIDRUncd+Ta+xz3EuUNPca6SJP3Jx79V5rBQ8Bcfu0ZSmkFCCgkwTAtJBsmclmjSXgVJDxKyR4DBiTNIks8UJbYqp7NJe96DpK48o+5O52R9254y7KFhSAiQAH2wilPAJZFBAgyKG2+yN0w+YeQQYXX0Oj3YUPxeBQRIgHXVXEd+ofXfO+tv1EPMbSWOCN0+e92dkqSWrYnwCDBcacmSOTJIKsFNNm/T7y3OKwGbZyQFNg2Q0IeuymyUH9SsJ+vdz4cP1Q3P+g/96GPO1Ht+/pIyh4ctQoAE2CBrrb6zf5ESW8CgTe+WJO3UkfwaC7JKS0sFBYaSNMB6XMd0BEgk6SONV5Y0GnSLIpsF51uq04MEGDJ6kFSLY7sCJGUOBhgTxpg8gyQkQFJlVjYLDKcZJF+KLtD0thP0Rz/6CD3u3N0ljg5bhQAJsEFv+OgNeuV/XFPIIKFJOzAQc3slSXvMoewSJbaqo9dbkU4YQ+OtfhFAh7b4nFRVENksI25FNTlESIChOmopsVUlFy5/RZLkp5u5vCXAphkVPlNkkFRasQdJPTlA05ZHCdYxR4AE2KC/+cwtkuIUcElkkACDMhsHSE4wh7NLBEiqo9c7kfaLCckgAY7Jp5Z7ZQVRlAVIWqpTYgsYsqPKm7SHlNgq1Q33HtFPHn2nJOlkc6Dk0QDjwxgpTOaC7/nSzXr1B64teURYS2Rttg/RSA4EtlUjw3jMESAB+jRDDxJgsKZ2SpK2aVFGcXkFlsjVYXsEq2omySBxCJAAx/LTjz9v1TUWWtUQRFZNtSUlPUh4X4ChWihmkBAgKdUz//xzq6716kMHYGOMTHZYZmFpRf/wRXrRVUlxqVts0l4rBEjIMB5vBEiAPtGDBBiwZlyuzjFWM1qRRAZJ1b3Be7skabu/r+SRANX3c9/94FXXmh5ZJVUQhFYzJv7eWVJTIocEGKplNSRJTeMroAcJgDFkjLIeJGkWPqqjuOtgiyW2VCyxNfxxYXgIkAB9miWDBBgsrylfcSbCXPL5Ij5SHb3eitOcODAyEx0Z7mCAUeSuzrQiCFwNQRRpWmmApMECGBiytEdTXT49SCqIrypgMNISWzvM0ZJHgm5RIXsxDpDEz9Oem21b4/jMmCNAAvTFajZZSKs+W+5QgHFhjJadGUnSvFmUxIKsSngvgE1y66su8bmqhiC0mlZLkrRkGyyAgSHzkwBJQwE9SErmiebRwFYwRtqluNfmD7tfKHk06Fb85ol7kMSP0ybtLXlyHGaI44wACdCHugI5Jrlj1prlDgYYI0tpgERLkjhdXWU1FtDAxnQFSK6IHqSQe1wlBKHVdFJia1FNMkiAIWvbOMOuLp8eJCW69q7DaiTlZCTpf8JHS6InIDAIRkZPdK4pexhYQ3HfodiDJM0g8eXJZYI41giQAH2oFyaO8giQAIOy4G6TJO00cckmAiTV0KtB+3YtlDASYIR1ldh6rPMtzVpKLFRBEEVZ76sl25QhhwQYqrTEVo0MklL9wJs/3xEgebn/EknSsx5+UllDAsaGMdJfBD+SPa97bMdWSuGrx9q45FZTLV3o3CJJWrRTNGkfc17ZAwBGUb14crpHyQwA/Tns7ZJa0onmoCTKz1RZR6AYwLEZI73kC9I3/kW6/P9Jkl7iflDW/i8ZFlylCiKraROX2CKDBBi+dtKDrm4C+SFN2st0gjmUPf6D5z1Bsw1PT3rQCeUNCBgTxkifiS7Mns/W3RJHg27F2HxaYutttT/Nrh3RtBxiWmONtxfoQ3qyxpcnVtHA4BzxdkuSTjQHJBEgqYpe70PNUGIL2LATHyad/l3Z03ktcZ+rAD+MtE1x76sFTVFjGhiyVqFJOxkk5Vhqx/O619X+Pru2a6aupzx4j1zuicCmGZms35IkuZbDZlVitbpJ+xPda7NrR+w0GSRjjgAJ0Ie0UZNvyB4BBmlf/TRJ0kPNrZIosVUVvd4FT+HQxwGMBZOfGGyaNn1IKiCMbBaYv9fuoMY0MGR+FiAJ6EFSkqV2PK+7xLkhu0awGBgcx+TlBCXJZS1VKd0ZJN3T8yOaIVg85giQAH3IGjWZ2jF+EsBG3DH9EEnSg5w7JdEUsip69SDpKDU4d/IQRwOMOCcPkDTkEwiuAD+02puUdrzP7mQBDAxZsUk7GSTlSL+KrozOy65xWhoYHGOkQPkckAySarEdTdolE6x0vL6gppgejjcCJMAGPcjcobfW/kySFIgACTBIgTslKW7SKZFBUmUdGSQv+nB5AwFGjcmn3w21KbFVAWFktUNHJUkH7BybgsCQpaeq64YMkrKkm4PXRGdJkj4QPo7NQGCgTEeApCbKFVdJ8ZvHWisnzAMk7wyeISuH+eGYI0ACbNA7an+ic5x7JJFBAgycE3+masnme6/MBQxfr3chndTf554s7TxruAMCRlkhg6SpNoHgCgiCQK6J3wdfHpuCwJBlTdoVKKBJeynSb6L0AMwt0UkybAYCAxN/nIzaNp4HepYSW1XSnUGiKM7wCa3Ra4MXSCKrbtx5x/4RAEWnOfuyxwE9SIDBctMASbz5zr5hNaTvg6NIr/Teoyui83VEM5KkwDCVADbEyT8zdRNQTqYCDi8tZ48DuZTYAoasXWjSTgZJOdJgfRog4V4IDFb6afLlqa6QElsVU9x3sLJywrYkKShsmxMgGW9kkAAbtGQb2eP56FB5AwHGUOTGQcd0ccYauRpscq7w2c7lerH3Yf1t/c+yIFZIgATYmEKTdivDfa4CPn7NndljXy6NiYEhaxeatBM0Lke6OVgzeYCEWyEwOGlGlp/c72jSXi0dTdojyUTxWrddDJCwgz7WeHuBDfpq9KDscY2oPzBYycnqeHFmKT1TMSeb/dnj7IQhARJgYwoltiRKCVbBjJe/B6FcuZwQBIYqbdJeEz1IypLOud1CBkndY7sIGJQ8gyQtscVeUpV0ltiyUhRnkPiFvjFkkIw3vvGADXpA89ljpu/AYBkn7+tTU0iJrYrIS2zlb0g9zSChWiewMaYzQMJeYPlMmDdK9SkrAwxdekK3ZkKFIY2Ly5DO9Rom7gFzyTl7dP7euRJHBIyXdG89zSDxLPe6KinOx62VTNKDxC+sdZkfjjcCJMAG1UiFBLaMX8hGqCkgg6RiXOWNU8kgAfrUtbainEwFJJsUoTWycjghCAxZ2qRdkg4fXSxxJJOru8TW0x9+Kk3agQEyyQTQt5TYqqbODBInXB0g4ZY43giQABvkFb/IuEMCA7UY5J8pTwEZJBWRZZCY/A2hBwnQp64bGyW2KiBZBKeNOF1WSMBQFQMk/3Xld0ocyeRK+81la123ts5PA9iodOsoSEo21dXWp2+8X7/4j1/VgcV2iSODFGeQNNTWv9d/Vyd95Q/kJCW22raQQcL+31hj+g9sUDHSb7uPgQLYlOVCgKSuMFusoRpMIYOkZuIAyRknbC9pNMCI6gqIkEBSvrSMQpAsjWjSDgxXUCg9eOq8u85PYquk30VZgMThAAywFVZUlxT3s33hO6/Qx755n/7ja3eWPCpYK32/82U92rlJe675254ltsgwHm8ESIAN6iyxxQ0SGKSVIFLbJo3rFLBxWBFpoKrYg2Tei4Mlc9NTpYwJGFk26nhKKcEKiOKAb3qqkwUwMFye46iVnNI1IY2Ly5BmM3omDZCQQQIMUjq1WFJDktSwK9lrTAXLF1mrebOUPSdAMnkIkAAbRAYJsHUuPmtXNgmpGXqQVEWvJu2z6QTSq5cwImCEFQIkRpYeJBVgkgBJ+v1DCQVguBxjsjJbbtQqeTSTaVUGiUsGCTBIaU+fJduUJM0oD5A0a2zNls1Kmlb+/eP0CpDwNo013l5gg9LGdQAG72cuPUP1enyqpqaQ0zQVkb4NDze3ZNe2K2miWpsZ/oCAUVYIkHjc5yrBdGeQUGILGCrPMWonm1DpphSGLf4yqlFiC9gS6cxiUXGAZNrkm/GclSmftVZTJg9apd9FbTJIJgYBEmCDOpq0AxiomuuolgVIApoXV8zDnbxx6rwW4gf16ZJGA4yoXedkD2siU64KugMkZJAAw/Xsi07JMkjSxrgYrtU9SCixBQxSOrVYTkpsTRcySMgmLp+10pTy759r79gvSfJt3hfL5QDNWCNAAmyAtbYjQGJZQAODlyzIavQgqYw0UJWeeJKkbWkGSZ0MEmBD5k6Uvvf3JMUndQmQlM/YJECSLIJdVkjAUL36By7Q9FTc08wlQFKK9KvIpcQWsCVMkkOymJTY+u3aP8sozipmLli+yNqOEltHF+Jy0kEhg4Ttv/HG9B/YgFYQdWWQcIcEBq4WL5Cn1FYrCHXzvoWSB4R0yl5XkF2bN5TYAvp28kWS4pO6LIrLlzbipMQWUI6puquZ6Xg+4VqfDOISpN9FlNgCtkbepD0/cPY9zlWSyCCpAmulZqHsmZeU1i/2ICHDeLwRIAE2YKEVdARI7myeV+JogDHVnJckzZkl/fQ7vqKn/uln9Kkb7y95UJMt3aeoFQIk22xaYosACbBhSaacR6ZcJZzevlmStMsckcQCGCiFF5edqctns7AE6VyvmZ6g5gAMMFDpzOKIncquzWpZkhQSFC5ddwZJuu5tKy+xRQ+S8UaABDhOdxxY0k33LWQBkhujU/XPJ7+y5FEBY6iRBEi0lF16z5dvL2s0KCgGSKaTCT09SIA+uEkpQUMGSRW84MjfSJJ2mDjwS41pYPhMLT5V3ZCvgADJ0NkkXzjri8ABGGCwkqnFStKDJH5clyRF3PNKZ6WOAElDcXaxT4mtiUGABDgOi61AT/zjT+l5b/tSFiB5pf/zWqjtKnlkwBhKMkj+ov5XSos7cZKwZL0ySHQ0fpAEtABsgJtmkISKopLHAn3LO7/juWEFDAyflwdI/JAb4zCFkc0ySKYIkABbIu1BEhXKtEfJliy3vAqw0pQpBkjifli+LQZImB+OMwIkwHG4/2jhRmnyOtWGHiTA4BU23B9jbpQkFsols7IyilQ3eYnB+bRJ+/bTSxoVMMK8uLxCU20ySCrgLvcUSdIf+D8pSXKZ3gFD5xQzSELui8PyoW/cowte/VH94Yevl6tQzWRTUPXZcgcGjJl0b70YIEn7OzIXLF93ia2mSQIkoh/TpCBAAhyHtNJCUy3t1UFJ0p32BFGBAdgChQVZLdmQZ6FcLmsLTTu7bT9juIMBxkFyMndGK4pIISmdUfwepCc5KbEFDJ9JepA0jC+f++LQvP3zt6gVRLr85gc6NgfJIAEGK51ZfDS8OLuWBiQJkJTPSpoqBkiSElttAiQTgwAJcBzSZkxnmvvkGKuDdlYHNE+TJmArOPkkpGXjMjSU2CqXVWd5rQ7NbUMdCzAWGnEguGZCRUHrGD+MrWZsGiCJ53UOARJg+LISW20OxpQk2xw0ruQ11v9hABviOfH26/3aoS+GF0jKq5Ow1i1fZG1Hia00eEUGyeQgQAIch7RR4C5zWJJ0v90uiSZNwJZw8q+m9DQvJwnLt2aAJOmlAGADavnJXOMvljgQSJKxcYZcmGaQMMEDhq/Qg4TNwuGZb+bzuBmT9h+ZZaELDFjNyz9T92u7pHwTPiSDpHTWdjZpf5b7JUkESCYJARLgOARJ/4M/8P5OkuQmpRho0gRsAeNmD71kU56Fcrmstb0DJG6dBTTQD9dToPhe5y0fKHkwyDNI4qURGSRACdISWzRpH6r5qTxA8nLvX+MHrcMljQYYX17hEGBaJeHH3E9LkiLWuqWz1naU2NpljkqSTtChkkaEYSNAAhyHNIPkTOc+SdK5zt2SRA8SYCuY/Ksp7UHi8WErlVXeRLCDS/kFoF9e0tdnz7V/W/JIkPYgSTNIKO8DlCDNIDF+tvbC1qu7+bz7B9wvlzgSYLzV3Hw9u6ApSdJDnDu0VwdETLgCIl8Ns3q9u82Q6T0pCJAAx2GthTI9SIAtMHdi9jDNWvBcvq7KZK1U7zFhpLwWsHkz+79R9hAmXncGSXETA8CQeHVJZJAMG82hgeEoVh/5h/B7s8d7zCE+hxXgrlHyNq0eg/HHjhNwHLr7H/yG/2JJVJYBtsSjX5g9TAMkbFaVryF/9UUaeAJ9+9facyRJizsfWvJI4CQBku9/+Cl6waVn6AcecXLJIwImkBMfunAVir3C4WFjFhi+W+1Juj46XZK03SzwOayAWrDQ83rWmwljjwAJcBzSDJL9dl6S9PXoXElkkABbwmvoxtpDJEkPMnfFlxy+rspkZbVNPU7VkEEC9O0eJ86Wc/3eCzIMUxwgOXPPvF77nIdpqu4e4+cBDJwTN8KtESAZKqqZAeU4rBlJ0jYt0m+zArw1ei8t2/qQR4KysOMEHIcgySCpJyeofcUTeOIjwNY4379ekvSbtfdKkuoeX1elsvHpplXoQQL0bdlMS5KcNVL6MTxpBolj+K4BSuPEgUlXIaeph4i/NVCOQ3ZWEhkkVeG0DvW8/prgBcMdCErDKgA4DmkGSSMp99O2SYBEREiAYWDOWC6rNQIklNgC+rZk4gada9U8xvA4aX1pl8wRoDRJVqpnIjYLh8gmf+u9OpBfvPgXShoNMDkO2ziDZJ4MkkpwVw6sunZldJ5usyf2+GmMIwIkwHGIM0hs1g+hrXgC7xAfAbZcTUG2eEN5dujo6ouU2AL6tuLEGSSU2CqfY8P4vw4BEqA0SYmtOIOk5LFMkLTV5u/U3p1ffOIryhkMMEEOJSW2tptFhfQBL91j73jnqmshW+YThXcbOA5+aOUplGPi2XorKbHlECEBttyJ5gFOEpbMWuk0s2/1C5TYAvrWNvHnxwlp/lg2o/g7xqHfFVCeQg8S5n3DEyZ/6/PMnfnFWrOk0QCTI80g2aZF7nkVENnVe3uWijEThVUAcBzCyKqeZI9IeQYJPUiArXeKeYCThCWzsjrL3LP6BTJIgL610gBJQICkbCYtsZVs0AIoQbEHCRO/oUmztNNem5Ikb6qk0QCT47DiHiTf5VxHia0KmAlWl9iKLFvmk4R3GzgOfhh1TBqzAAkRZWDLnaz9YspYLmulk8wDq1+gBwnQN58MkspwkwCJocQWUB4n6UGiiIMxQ5T+rQ9oPr/IARhgyz1g48/cGc79csLlkkcz4aJIM8Gh+GEhkyRiv2+iECABjkMQWk2rFT+2jqLko0OFLWBrvGHPH2WPZ80yPUhKZiWdYA5Lktq2sIFIiS2gb22HAElVGEuABChdoQcJ877hSUv77FY8z/tx/3cpkwAMwaejC7PHM8HhEkcCtQ5nh2X2a1t2uRggmW2QZTzuCJAAxyEMfV3e/DVJki9ujMBWu2HqUfr38ImSpKba1GUtmW0tatbEm7j3a0f+AicMgb75pi5JciJfNgyO8dPYSk6aQWJYGgGlSQIkHk3ahyr+W1udaA5Kku6KdpY6HmCcvfWnHq1nPfwkSdKKGjqU9CHxwqUyh4UgPgwdWaMVm69vIzl61bMeohc+7kz95y8/vqzRYUhYBQDHwVvOmxOni2hJTN6BLeIYoxUbbx5Oqa0oOsYvYEs5K/GiuW1dHbWFutSU2AL65jv55+dH//KT1J8uUTa3I4MEKE/y+fNo0j5U1lo11VbDxOWkD9i5kkcEjK9nPuxEveX5j8qeL6opSfLIJi5XEiBpy8uqxUhxBslJ26b0mmc/VOfumS1rdBgSAiTAcbB+O3v88egx+XUm78CWMJJWFAdImoYMkrLZpIl0S3WpWIuVDBKgb0Fyj5Ok8+7/mO4/vFjiaCbXwcW2lJTYclyyhIHSpCW2TMS8b4jCKA6QpFYK300Atta84syRSxY+UfJIJlwY3wPbqnWU1YrkyGXXfGLwVgPHId0clKS/Cp6TPWbyDmwNY4yW0wCJ2uKjVi4bpJNGr7NZHT1IgL5Zx1UrSeN/Q+3tqt/wn+UOaEI9/o8+mdWdpu4+UCI3bdIeMu8bosjmAZK2dTtOTwPYWnMmbs7+9CP/UfJIJlySQdKSJ6vOJu2GueHE4NsPOB5JgGTRNnS9PSO7TDUMYGs4RlmJrQY9SMpXOFVTnDRSYgvon5GyQLAk1e/4QnmDmWBL7TALkBiHDBKgNIUm7cz7hieycba2RPYIgAkVpiW2Ote6VkYuAZKJQYAEOA4mCZDcb7d3XKdeOLA1jCmW2PJZKJctrctqPXW8E5TYAvrmmLz2tCS1p04ocTSTKS2VmvYgcehBApQn+fzVaNI+VHEPkrj/SEvM6wBMoLRagu2slhDKkesQIJkUBEiA4xHEqY+trlM19CABtoa1eYDk8c61LJTLlgRI/K60Y0psAf0zxmjZ5p+hUGzOD9uyH0qSnDT067A0AkqTZZBEHEIbosgqK7HVvdYFsLV+z3++JGmfu7fkkUy4QgZJd5N2EkgmB6sA4DgYP75hrnSdqmHuDmyNVhDpqJ2SJO01h+TZ9jF+A1vJhvHJwu7GdXJZSAP9MpKWlAdIojAobzAT6vByfG9zDRkkQOmcYg8SFlnDEkY2L7FlmdcBw/S16EGS1HkADUMXtOOKMW11VkuwZJBMFArtAsfBhPENs/tUDWV/gK2x3A51RfSY7PnUwh2y1tIkrSQmO1XTNW3wWEgD/XKM0XIhQJJmamF4jq7EQSmHHiRA+Tp6kJQ8lgliC03a6UECDFc6D6xb5oBl8lsr8hTv97nK34uIHiQThQwS4Dg4SQ+S7lM1u2aYRAJbYdkPtaSmronOlCTVj9yqv/3sLeUOaoLZtC4rJbaAwTHqKLEVBWTKDZsfRnIV6mRzQJJkyCAByuPGAZKaoUn7MEVW+kH3ckkESIBhW04+cwRIyhX6SQZJVw+SuMQWAZJJQYAEOJbDd+o5t/6eJGm/tkmSXvWsh+h5F5+mn770zBIHBoyvtC78fht/5naYBb3+IzeUOaTJFvZuXEeTdqB/3SW20vrHGJ4wsnqy8/X8Aj1IgPJ4TUlSQ20CJEM0Hx7Qc93PS5JqotQjMEzpQZmGXSl5JJPNBnkPkuK3D03aJwt55MCxXPGO7OHXo3MkST/0yFO0e5aT08BWWW7HAZIFxX1I5rVU5nAmnkkDJKqpKT9/weM+CPTLMUb32p35BTJIhs4PbUczTifguwYoTRYg8UV8ZHh+Yvm92eO3Bc8qcSTA5GklPW5dRVIYZJl0GK48QOJ1zAvjHiRljQrDxlsNHMvU9uzhN5NyPw5pdsCWagVxgCRMvqZeXfvHMoeDsPepGpq0A/0zRvqL4EfyCyEBkmELI5t9z0iSTrqotLEAEy8JkDTJIBmqk8J7sscHNVviSIDJE6hQ2jPy1/5BbKnODJJCiS1Lia1JQoAEOJbZvdnDa+zZkiSy7ICt9ROPPV2S9Cj35pJHAknZyXZfblcPEgIkQL+MkQ5rVq/2XxBfIEAydEEUxac2JV0dnS2HrDigPEmApG5CRVGoz9+0X7/zn9dmWcXYGotJtrYktSylU4Fh6giQhARIypIGSFpa3YOEw9GTg/wt4FiieFL+qfBC+clHxiFCAmypl37vg/S0C/Zq7z9FUlaS1SoII3nkuQ6dCZYlxXVybXGSyGYi0Ld0wdVOyisYepAMXRjZrOZ+IFesgYESFeYUJmzpp95xrSRp21RNr3jG+WWNauytFHphpf02AQyHX9ySjegBVJo0g8TWOta6kYyYGk4OdpmAY4nyhXOKKDKwtVzH6KLTtmvphAvza4rUCqISRzW50gDJiupdGSScNAQ2q23jxTEBkuELQitP8UGYQC7zO6BMSQaJJDlB3rD4hnuPljGaieEkWXTXRWfoVntSyaMBJkskR5GN5x7/deVtJY9mctkg7bfZmUFi2TKfKLzbwLHYtBdCMUBS1mCAyXLHxa/OHnsKteJTZqEM6UbFsuqythggIYME6Fda0zgtb+L6i2UOZyIFUR4g8S0ZJECpXC87kFYMGC+2OFW9lZxkrfuv4XeXPBJgMvnJfe/1H7qm5JFMsEIPkmKT9lAOc8MJQoAEOJYoPVmYf1w4YQgMRzC9J3tcV0AGSUlMEiBZUb3jVA0ltoD+pZ+ko0mApBYslDeYCRVGkWpZBonH/A4oWWCS3mZBHiBZahMg2UquVldLALC1tk3lWfjpZ88z3OtKE6YBEq+zSbsMRbYmCD1IgGNJSmxFBEiA4SuUcPIUkEFSEhPGAZKWrauYQEKJLaB/aTbqUTstiQBJGfzQyjNJBolcMoSBkvlOQ81wWW5S2lOSFsgg2VJpBskjTt8pfUe66LTt5Q4ImAD/+cuP17suv1UPOWlOwX/HAZKaQi21A03X2aYdumIPElssscXEcJLwyQOOpWcPkrIGA0wWx/UUWSPHxGVQyCApx9o9SMggAfqVltjKM0gosTVsYaHEVig3e08AlMNPMkhM2M6uLbU5HLOV3OQe+F3n7tW/Pv1SXXDyfMkjAsbfWbtn9JpnP1Sfv2l/1qjdU6gHFtqa3sk27dAlGSQt1TqqJUSU2JoolNgCjiUJkIQ2/7i4REiAoXBMXpe1Rg+S0nT0IOkIkNRLGhEw+tJP0kKWQbIoRQSBh6nYg4TyMkD50hJbTpg3aY+sLWs4Y2/FDxX4viTJcWu6+Kydmm2wOQsMi2Py+UdNoR5YbB/jN7AVTNakvTtAwr7fJCFAAhxLjwwSThgCw+EYU6jLSgZJWZzkVI1vGp0BEo8ACdCv7gwSIyu1KbM1TGEUyUvq7/sESIDS+U6cmVps0h4RH9kyv/Of12ZBYusQGAGGrhAg8RTo8LJf8oAm1Bo9SEK2zCcK7zZwLMlpTm6OwPAZoyztuEYPktKkGxWBqXUGSBx6kAD9Ss9atFRT2yab860j5Q1oAvmhzZu0WwIkQNnSDBK3ECAhgWTrvO/KO7M+TA595YChc4yRb9MASagWa91SpGUdW+pc61oZSmxNEHZ8gWNJS2zxcQGGzjEmO9VLD5LymCg+zRSamjr2KThtCPTNFB7Vkw0qfeQ3SxrNZCr2ICGDBChf4KwusWWJkGwpV/Hc2nG5BwLDFldLSA4DmlArrHXLkQRI2tajrNYEY8cXOJYsQMKkERi2jkmjAgIkJTHJfdA6XueU0eG+CPTL6XUk7Yb/Hv5AJlgQWdVM2oOEgC9QtrTElhPldfgJj2ytNEhs6CsHDJ3TUWKLfptlMVmJrZqiwjb5451rtXOGe+OkYCUAHEuPHiQAhiewrmRo0l4mk2xURE5NTlgIUhnOWQD9ImW/fGEUyU02B8kUBspHk/bhS++BrsvWEDBscTnptEk7hwHLkpbYaqszg+ScWV8z26bKGhaGjJUAcCwRC2egLEEUUWKrAtIMksh4cSPpFCW2gL4RICmfHxZLbHE/A8oWOvQgGbYsg8SjBwkwbMaY7CBuTQE9SEqSB0hqKhbBnXF5PyYJO77AsdCDBChNFBXSjg2N68riJD1IIqcmpyNAQmYd0C9TiJC8yn9R/KC5raTRTKZ2EOVN2skUBkrnO01JktMRICFCspW8rAcJQWJg2OJ+m/Fnj8OA5Um/c9q2pqlGIVgcrKzxGxhH7PgCx2LTDBIWzsCwhdZmk0bSjstT7EHSESAx3BeBfhUTSD4dXRg/CFo9fxZb44HFljzF9zeatAPl65lBUtZgJoSb9SAhgwQYNsck5aRFD5IypRkkp+/Zriecuzt/gXn5RCFAAhxL2oPE8nEBhi2MbEeJLSaN5TBJBol1anJMIUhFiS2gb8UMkmUbNyZWsEI9mSHaf7SdZ5BYAiRA2WwyrzA2yK9xS9xSXtaDhAAJMGxGxRJbrHXL4iT9NtM+WBkCJBOFHV/gWLISWyycgWGLrFWQZZCEWm4zaSxDZ4mtYoCEaQTQr2IGSUvFdH4WY8Oyb6GVbQ4yzwPKF5kkQBIVAyRESLaSZ+J7oFPj0AswbMUm7Z6hxFZZ0gySyK11RuV/7J0ljQhlYGcDOJar3i1JCvi4AEN38vapjsZ1S5yqKUW2UdHdgwRA35xChGRFhRNrwfLwBzOhFlYCuSZt0k6ABCibTUp3OsUMkrIGMyHSLDrXIYMEGDbHmMJhwEBhxB2vDGkGSWgaki0Eqc55akkjQhnY8QWOxY03LRY1VfJAgMlzyvYpPfjknZLiEgBkkJSjmEFi2KoABqJYYiuQqyidlpNBMjQrQUiTdqBComSTvphBEpFBsqUaiud4Tp21LjBsjpPPPzyFIj5SjixA4tY6AySUk54oBEiAY7DJBP1/wkeXPBJgMm2fnZYk1UygpXZwjJ/GVkhrgRu3q8QWgL6ZrmeBE/ch+eV3fYEa1EOy3A6zElu+WAQDZbOGHiTDlgdImiWPBJg8Rqaj32ZEhGT4wkCOjeeCkVOXbGEOToBkohAgAdYThTJJBLnNwhkoR5LF5SnUEhkkwxdFhUmjR4ktYECKGSSS1E76kNx4135dfcehEkY0eZZ9MkiAKomSzSgnIkAyDEaRGiYOkLi16ZJHA0wex0iBzZu0h9zwhs9fyh86U10ZJMwNJwkBEmA9hTIXbVGXFSiFGy+WKbFVkqS8liTJqVNiCxiQrviIWkkfkoZ8rdCkcyhW/FCe4o1YAiRA+dIm7Z09SJh3bJW68r8zGSTA8BlTzCAJyCApQxIgiaxR5Hb1IOmerGOsESAB1hMWAyRkkAClSOpR1xTqq7cdlOVkzXAVAsXWrcllowIYiO4lV8vEAZKm2gSDh8API/mhzUpspSc4AZTHJhkkJgpkkpKeTPu2TlPt/IlHgAQYNscoa9LumZCeS2VIAiTLqst1HL50JhgBEmA9YX5ympOFQEncOECSnvK97YGl9X4aA3blt26XJLWtK+s2sg0LAJvjrFFiq2F8epAMQfo39pJ7GvM8oAKSDJKTl67X1xu/oJ9zP8SxjC2U9h8JrJPNtwEMjzEmm3/EJbZKHtAkasd7C0tqyHFMZwYJJgoBEmA9ycnplq1p9VlPAEORnCZM68T7IZOWYXrlP39eknRU03Jdhx4kwID4Uee9LAuQyNcyAZItl/6NPRMH330CJEDpomSTflfrTm0zS/qd2j9xonoLNU2cQdKilDRQCseIJu1l85clScu2IdcQIJlkBEiA9YTppJHyWkBpkibt8/V4wkjzuuGa16Ik6YidlmsMARJgQLqz4fysSWdABskQtPx4AUyTdqA6rFm95vJsoH1HWz1+Gpuxf6GVZZCsJD2wAAyX05FBEhAQLoMfr3WX1ZBLBslEI0ACrCcJkPgESIDyJKcJaybexIqYswzVvIk3cY9oRo5j5FBiCxiI/QudG37FE4RkkGy9IDmleZFzsyTp+y88vczhAJCyrOGiZzhX6N1fuq2EwYyvN37sBj3m9z+R9SAhgwQohyn2IFGokAyS4UszSFSnxNaEI0ACrOPwwoKkvOwFgBJ0ldjiZM1wzSkOkBy1UzKSDBkkwEB0Z4n4Nl8gr9CkfcsFYaSHm1uy5899zBkljgaAlDdpL3qYc6v2LZBBMkhv+VQcGN5m4pPTR+10mcMBJpYxJssg9kST9jLsO3REktRSXa4RAZIJRoAEWMcfffAbkqS2JYMEKE13BgkTx6GqJ/X5W6rLocQWMDArfncPkniBXDeBVgIWZ1vND61ONvvzCyuHShsLgFjkrD6U9hBzW1YSD4O1U0clSQfsfMkjASZXkM3/fDJISvDGj1wrSQqsSwbJhCNAAqzj5nsPSqLEFlCqZLH8/eGnJEnMG4errjhAEsiV40iRTMkjAsZDdwZJu3CC0A9ZnG01P4y0wyzkF+ZPKW8wACRJtWh1psj5zh1qBWTVbYWdJj45/YDmSh4JMJmiyOqQZiVJjzY3sc4tQdCOSw0GcmnSPuEIkADrqJu4cR0ltoASze6RJIXJ6RoySIbLS0qb+fJkZLRP28sdEDAmWl1ZIgRIhiuIojyDZGqndNrF5Q4IgOba96+6tkMLqzLusDl1L94G2mHiDBI7tbPM4QAT7YrofEnSSeYA69wSeCZd67pxk/aIgPykIkACrKOuNEBCBglQmrOfIkmqJZkMEUdrhspL/u6+XDU8R/fb7eUOCBhT7SieltcUyA+4z201P7Q6y9wbP3niy8odDABJ0t07L1l1rWF8tf12CaMZX9P1OCDfSNa6T7rg9DKHA0wsa6UjdkZSvOaixNbwpX1OA3lxia32YskjQlkIkADrSG+WBEiAEnl1SYUACfPGocomjdZVs+7qz4PnSpK+uP0HyhwWMHbSuUZNARkkQxCEVqeZ5LT6zrPLHQwASdID2x6q72/9od4SPFtvCZ6dXTf+UomjGj/TtTxjUZKMS7UEoAyRtdn8zzVWURiUPKLJ42UBkqTE1lN+WzKO9EN/XfLIMGzs+gLryDJIrKeXf++DdPWdh/ULT2IRDQyV25Ak1eRLspysGbJaIYNkqubqZnuKLlj5Oz3zxLN1acljA8aJXyix1SZAsuX8MNK8kk3XqR3lDgaAJMkxRtfZM3VdcKYkq1/yPihHVgqWyx7aWJlKMkhcxd81xmVbCChDo+ZkTdolybUESIatWC3BdYz08B+VHvwDUq1Z8sgwbGSQAOtoFHqQnLF7Rm9/wWN08VnUaAWGKjnV5sjKVSRLbdahqjvx4tmXp6maqyeet1srpqkfuOjkkkcGjLZ/fvF36cEnzulHHhk3B08XyDV6kAyFH0aaNSvxk/psuYMBIElyTPGZUcvEG1ROmwySQaq58TZQenLaIUAClOKkbVP62Sc9KHvuRH6Jo5lMxWoJjkm+hAiOTCS+CYF1NJ28OXHdNcf4aQBbwmtkD+vyKbE1ZGkGSSBPU3VX73rRxTq87GvHTL3kkQGj7dJzdumjv/4k/fNXbtd/XHWX/GRa7plQfsiNbqsFYaA95lD8pEGABKgCtzNCIt9paCpclkMGyUCl2dguARKgdC9/5sOkryRPCJAMXRoojjNISh4MSsXbD6xjyuQ9SDyHjwtQCrcYIAkUkkEyVDWTTxqnaq4cxxAcAQYo3Q8kg2S4Trn5X/In9bnyBgIgY0xngCRwpyRJJwZ3ljGcsZXOpb2kxJZDDxKgPI6jyCRlVgmQDF261g3k5RkkmEjs+ALraDrxyem2aqp5fFyAUjiupHiyUlegiADJUNVNvHgO5KpR4z4IDFq6GPNp0j5UZ3/77/MnZJAAldC9OdWqbZckvSj4lx4/jX5lGSSGDBKgCqwTBymNJUAybF5WLSE+CIjJxU4HsI6ppMRW23qqcbMEymFMVmarLp8eJEPWMPmkcbruHuOnAWxUWlImSKblP+d9hBJbQ5BuvEqSPGpNA1XQvdy67rTnSZJ22kPDH8wYSwMkWQaJRwYJUKY0QOJENGkfto4SW2SQTDQCJMA6pt28xBYZJECJkjJbdROIg9XD1UgySOZnpvXUh+wteTTA+HnCubslSTNqZdcetfSFsoYzMW7y90iSDrs740A8gNJ1Z5Ac2fMYSVKzcH/E5kVZD5J4jmccMkiAMkVZgIQMkmHLmrSTQTLx2PEFerDW6qb7juYZJKrJ42YJlCepjVyjxNbQuUna8Q888gzNNzlhCAza7tk4APxf4aXZtf979PfLGs7EqPmHJUn/vv1FJY8EQKo7Vjk1HZe/a6otMf8bmIAm7UClZBkklNgaOk95DxIySCYbARKgh/d85XZ97599VkcXlyTFdcFp0g6UiBJbpXFtHCAxNPAEtoTjGNVco8Oa6bi+4ocljWgCLB3Qaf6tkqTveui55Y4FQKY7g6SZBEgcWSkgi2RQoq4m7SKDBCiVdQmQlMFam/cgsY5ctvwmWqlv/5lnniljTMf/3vCGN5Q5JECS9Kcf/5akeDNWiktsBRF1fYDS1KYkSdNqUWJryFwbb9ISIAG2Tt11FHZNy2+573BJoxlvURgp/H+P0l67T5I0u2NPySMCkOo+j9aYms2f+EvDHcwY684gIUAClCvNIHEpsTVUkS2W2PIosTXhSv8mfN3rXqcXv/jF2fO5ubkSRwN0qifR5LatqRWwKwuUphF/N8yaZUpsDVlNbUmSk2TxABi8Rs1V1O7aGTxws3TqznIGNMZ+9/1X6vdWDmbPZ7btLnE0AIq6M0hmphpqWU8NEyQBEu6Jg5A3aSdAAlSCU5ckeZYm7cMURlZ1k+z5UWJr4pX+TTg3N6cTTzyx7GEAHdISPrXCzfL8vQTvgNI05iVJc1oiQDJkDduWjGTq02UPBRhbdddRILfjWru1UtJoxtuHv3qTfq+ZP58hgwSoDFPYnJquu9o739SK6mookPzlEkc2XtIm7XtmPWlZkuOu/wsAtlTY2CZJmo2OljySyRJZG/e4krSshlwySCZa6RXW3vCGN2jXrl165CMfqTe+8Y0KgvUjpq1WS0eOHOn4HzBoyZwxK7H1+PNP1o6ZeokjAiZcMwmQkEEydI1k0miSMmcABq/uOYq6puW+T739rTBrOjdZG3NkkABVUTy9+7LvfZAcY7SsJIOVElsDk5bYOmtn8rclgwQoVTAdz0W224PH+EkMUhDlAZIVW1uVxYjJUuo34a/92q/pUY96lHbu3KnLL79cr3zlK3XPPffoTW9605q/8/rXv16vfe1rhzhKTKKaG98YG0mJrZlpTk4DpUpO1cxrSbQDGp4oslmAxKkTIAG2St1ztNAVIGm32iWNZry90P1Yx3PjcQAGqIri4d2puivXMVqwdclIUWup/NOdYyI9bGQiSmwBVRBOxQGSHdGhcgcyYcLIqmmSAInqZJBMuIHPMX7rt35rVeP17v/dcMMNkqSXvexlevKTn6xHPOIReslLXqI//dM/1Zvf/Ga1WmufmHvlK1+pw4cPZ/+74447Bv3/ApDdGGtJgMS6LJ6BUmUZJEt6+fuu1v4FTlYPQzuMNKX4b+01CJAAW6XhrW7SHvgESLbCi7w8QPI3zo+XOBIA3bpLbLmO0UqSQRKRQTIwaQaJSfsdECABSpUGSHbawyWPZLKExQwS1WnSPuEG/k348pe/XC984QvX/Zmzzz675/VLLrlEQRDo1ltv1fnnn9/zZxqNhhoNGsVia3lOvEmRltiyTq3M4QAo9CCRpDd85Ab9yY9dWOaIJkIriNQw8X3Qa5BJB2yVeo8ACSW2tt57pp6nXyx7EAAyHRkktThAsqz4oFrUIkAyCNZapdVqjSWDBKiCcPoESdIOESAZpu4ACU3aJ9vAvwlPOOEEnXDCCX397te//nU5jqM9e2iWiHJ5SYmtetKkPXIJygGlSjJI0trxdxxgkTwM7SDKJo01AiTAlqm7ZJAMy/XRaXqIc4fe4P+Epmo0JgaqpFj/faruyTVGyzbJIGkz9xuEMMp7+eUltrgXAmWKkgDJTnuo3IFMmGKT9hVbz0rtYzKVdlTgi1/8or785S/rKU95iubm5vTFL35RL33pS/VTP/VT2rFjR1nDAiStLrEllwwSoFSNOUnSnOIAyVyTz+RW+8+r7tJtDyzp59Im7XUCJMBW6dWkPfT9kkYz3raZRUnSF6KHaarOpiBQJU7hNjhdd+U4yjJILCW2BiK0eYBEUfI9Q4AEKFWYNGnfqUPZtfd+5XZ9+Np79VfPf5RmG2R5bYWgqwdJzaXT1SQr7VPWaDT03ve+V695zWvUarV01lln6aUvfale9rKXlTUkIFNbVWKLHiRAqRp5DxIpXjRj69z+wJJ+/V++rvPN7fr/GivxxRoBEmCruI5RoM77mg2DkkYz3mYV39MW1dRJfJcAlVLsQTJVc+MMkqQHiSWDZCCK8RHTPho/qM+WMxgAkqQoC5Acjj+kxui3/uMaSdI7P/8d/epTzytzeGPLHPiO9ppDkqRlNQiQTLjSAiSPetSj9KUvfams//PAuqzimWNdaYktAiRAqZISW7t0RJJVO4jKHc+YO7Qcn6R5vnuZJCmUI3d2b5lDAsaaa8yqEluKKLG1FVzFJWV8uZTYAirG6dGkPS2xRYBkMKJChMQsH4wfTO8saTQAJCmcjtsMTKktHbhF2nVO9tpCiwMzW2Xm2ndnj2+3e7JS+5hMhMeAAmutPnnDfbrnUHy6MG1ObAmQAOXa81CFcnSOc49ubT5fT3ngPWWPaKz5Ybx4njHxvfCDzlMlmtYBW6YVRJK6PmMRC+Kt4CUBksB6mqpTsgKokgftndVsw9Mp26d08vYpGWO0bJJekO2Fcgc3JtIWJE21ZIIkS3h6V3kDAiBTzNR//y92vOY4rMEGzQ8j/dhbL9fl198uSfpI+FiFclUng2SisSoACt72uVv0hx++QXX5+kj9VTrV7Jck+VO7Sx4ZMOHm9nZsHf74obdL+tOyRjPWDi/5eu5fXy4pP2l9p3damUMCxt6KH66+GNKDZNDuOLCkk9MAiRxNk0ECVMpJ26Z0xf99mlzHqO7FG1UPaLskySzcW+LIxkdkrRxFuqH5oviC41FiCyiZU2zAdOcV0m2XZ09dDqkN3NV3HNIVtx7UD3lLkiddH50hSWSQTDjCY0DB/7vs25Kk88ydeohzhyTpsvCRWpk+tcxhAZDkqLOs1uElNg+3wts/f0v22E3+5sawiQhspY6muSkySAbqwGJbT/rjy+Sa+G8dyKVJO1BBU3U3C45I0r2KD6o5R+4ua0hjxUbSGea+/ML0LrKEgZIZI701+MH8wju/L3tIBsnWSfcX0jK39CCZbLz7QEFa33FP0qjpXrtDP+e/QnwnAeV7z56XdTz/zgOLJY1kvB1dyTdl00mjcdlEBLZSr/iIiQgCD9InrrtPXiHQHhIgAUbCAbNDkuQs3V/ySMZDZK1ONAfyC790+do/DGAoHGP0reiUnq+RQTJ4S+04mzg9DBhlARL+1pOMAAmQuGVfXtc2DZBcF50hycjwpQSU7sbpR3c8v+MAzTq3QrF5p5cFSKjICWwl2zODhADJIN1431F5ygPANGkHRsOK05QkGX+l5JGMh8hanaQHJEn2rO+WZiglDZTNGOmIZnq+xmHdwUsPBLomL7sqkUEy6Xj3gcRnvrUve7xdcbDkoOYkkXUMVMGSO9/x3A+jNX4SmxFG+UZtmkFS82plDQeYCD3CI1LUoy8J+nbfkZVVGSTTZJAAlecnTdpNuFzySMaDlTRtWpIkM7W91LEAiBljdK/d0fM1SmwN3tGV+BBSdwaJ57BFPsl494HEbCM/Ie0lDTzbNr7mECEBSrfiTHc8L27kY3CKf1Y3C5CQQQJspahHBomhSftA3XVoeVUGSXHuB6CagjRAEpBBMgiRtaql90KHeyBQBY6RbrCn93zNJUAycGlpfberB0nd4289yQiQAIli3f2aiR+nN0q+k4AKcFy9yn9R9pQAydaICn/XLEBSI4ME2Eq9e5DQpH1QDi62dfUdh7IMksgaWTk6ZcdUySMDcCyBU5dEgGRQrM0PA8phfgdUgZFRIE+vCn5OkmQbeeUE9qIGLz2Y1N2knQySyca7DySOrOQnNdNNQV/xqRoSSIBq+GB4afZ45si3SxzJ+AptMUASL6DrBEiALdUr3mssAZJBuePgkqLCpqCvuLTWmbt61/sGUB2+E2eQOGGrdzQZGxJZm5cbJIMEqIQ0CPKp8KL4QSEgTDWTwUu/SrwsQBLPC2seW+STjHcfSHRkkCht1hTfKGnSDpTPSDpcaF637fD15Q1mTF1z52H925V3Zs/dpDMCARJga/Vq0k4GyeDcezjeaDhzZ7zRGhlXf/ETF+m0ndPr/RqACkh7kEiSglZ5AxkTcbA4+X5xCZAAVZDuNy3beM1lwnaW3UCJrcFLDyZ1Z5AE9DidaARIgMRSO2+Gmp6aTiPJRO2BqjD6TPgISZINaWA8aD/1ji93PHdMPEmcbtbLGA4wMXqX2KIHyaDcfzTeVD1nZ3wvm2o09ZyLTilzSACOU+gU5iABjdr7Ya3Va/7rm3rPl29XFFl5hgwSoErS7aYV5fe7htqSCJBshbTEVlo55sTt0zpr94xO2U7p1UlGgARItIM8WtxdgoGvJKA60s+lOF09cIeXOzdk03vhJefsKWM4wMRIF2r/x/+F7JpDia2BWfHje9lsPZnROW6JowGwIU5NoU0+uz59SPrxpVsO6O8vv1W//f5rkh4kaZN2MoSBKkgP5LaUfyYf73xTEntRWyHN3E7Xuv/f0x6sj7/0SfJctsgnGe8+kPDD1QGSvEk7X0tA2dKPYZrZ9dXv7NP/996rOj67GKztzfhvPTfdLHkkwHhLE0jeFz5Z3zzvJZIosTVIQZQuhJPvC5dNQWBUOK6Tn6qmUXtfFlr594mVzU5NEywGqsHpWudK0onmQHytV6M6bEp3iS3HralGcGTi8S8ASPTMILFx2jFZjUB1BMlX18GFZX3g63fr/VfdVfKIxkfN7bzZOcm9UIYFNLCVokKNLZNs3pNBMjjp5kLdJPc0ysoAI8M1Jj9VTYCkL15hfueHNuu3SbAYqAZTyBMJL/hhSXn5J+Ijg5eX2EojJWyNgwAJkCmeQq+Zzibt5DUC1RElX11pIPPoCpuIg9J9ciY/Ych0AdhKe+cKWVrJhhUZJIOTBkg8AiTAyHEck2eQ+PQg6YdXOO233A6zfpvcC4FqMIWlVppFkpbCi3o1qsOmpEGnk+aTIDGHASECJECmXQiQpJPGgBJbQGWkn8I0cJl+TsnwGpy61zktcGxyX2TSCGypP/7RR+gJ5+7Wu372YpmkJrxLBsnApCW2amwKAiPHc4xWLCW2NqPY5HmxHRTuhWSQAFVQXM7+1zX3S8rLglJia/DSHiRZtQTKDUIESIBMscRWLQuQpCW22IEFymaSz2GYBUiSmqF8PgfG68oUcdhMBIbitJ3TevfPX6LvftAJWQYJJbYGJ0o2Fxpqxxc8+ioBo8JxKLG1WcUN1jd/8qZCBgmbgkAVFNezvu08DEh8ZPDSpJzsMCBrXYgACZDpnUESfzmx/wpUR2DTElvxZ5bP5+DMNTsnhw5NPIGhowfJ4KUZJDPR0fjC1PbyBgNgQ1wjtbISWwRI+hGE+Q7rF779QFZOmh4kQDUUAyRhsk1bywIkREgGLcoySKiWgBwBEiDRq0l7GiChhA9QvvRjGHaV2DJESAYmiKKO5y5N2oHhy0pshSUPZHyEyb1tOlqILzS3lTgaABvhFnuQBPQg6Uex16ZUmN9RYguohOJy1k+qmLhJIJMSW4MXZRkk6b2QrXEQIAEyHU3a0wCJTTNI2IAFqiI9VeOZtMRWmaMZL8UThlIx7ZgACTAs1kmDwGSQDEo6xZsK0wDJ9tLGAmBjHGPUsslGPhkkffG75nceJVSBSiluN5FBsvUsGSTogQAJkChmkHQ3aWf/FaiOdNKYfk5dApgD033CkBJbQAmyElvxPe7wkq9WQDbJZqQZJPP+vvgCJbaAkeG5xQwSAiT96M4QTsvUyiVAAlSBKew4BV39NiMySAYuK7FlCRYjR4AEUPylc+sDS9nztC4rTdqBCkk+ht2TRgxOMVAscaoGKEVWYivQgcW2Lnzdx/XkN3663DGNuCgK9N767+lR9/5rfOHkR5Y7IADHzTEESDZrdQZJkqHIpiBQCcWKCOlat5Z8TkMySAbu4JIvSTIcBkQBARJA0vX3Hul4vroHCQESoCrCrgCJz6magQkKf8uzzD3aFjwQP2HSCAyNSU70ugr15Vviz+A9h9kU3Ixdy7fqu5zr8wunX1reYABsiOuYrCa/wna5gxlRQVeGcI0eJECldDZp78ogYak7UF/49n7925V36iHmNu1auT2+yGFAiAAJIEla8fPSFQ3PUV1xRLmleNJIfAQoX5p6nJa+ywKZIZkkg2Ct1VI7vxf+tPs/hVe5CQLDYpMNK8/Sg2RQ/KjrHjZ3YjkDAbBhrjEKbLJtEXFf7Ef3YaKGide68holjAZAt44m7Ukf3HStS4mtwXrT/3xLkvSntbfmFzkMCBEgASTlzTvP3j0jSWp0BUjqHh8VoCryUzVpgIRJ4yB89baDHc/T+6AkaceZwx0MMMFM0oPEVcgBjQExkd95weXUNDAqXMdkWf0KCZD0o/swUVNJJk5tqoTRAOhmemSQpAGSkADJQKV/6dPM/fnFXeeUMhZUC7u+gApNmpLij1mAxCYBEpePClAVoU0zSNISW2SQDMIt+xY6nqeZdHrqq6X6dAkjAiZTWmIrqxGPTTOU5QFGVkeJLXqQ9MXvCpA00gAJGSRA5aTVEtykLy7xka3xgJ2PH/zMB6SpHeUOBpXAri+gPG0xbY7VNPGksZU0BKyRQQKUzmRN2pNJIxkkA7V/Ib7v/eijT5Uk1U2yOetxuhAYqqxJeyjK2w3GqgwSACPDKWaQfOHPpTDQP37pNv3E335RN957tNSxjYruJu1ZljBzPKBy8ibtaYCEte4gpX9NLwlAqT5X2lhQLez6ApLCNIPEdGaQrIgMEqBquhvX0YNkMA4sxgGSXTNxYDjLIPHqZQ0JmEyFJu1F1KDun1PMIHnoj5Q3EAAb5hojR4X736Hb9Dv/ea2+dMsBvfmTN5U3sBFiuzZY08OAqjVLGA2A9QRd5aQpsTU4//rVO3RlUla6lmZqJ/NugF1fQPmXTt2EeqRu1DYtSqIHCVBFedpxWmKLSeMgHEwCJDuyAEk6aaT8AjBMxo0/g25Xk/aAe13fTFQIkDz7zeUNBMCGeY6Ro8JhmEKt/vuOUHLreKRfH65CPdjcrqmsxBYZJEDVdGeQMP8bnN/4t29kj9MeL2nmNkCoDJCUHqr52eV36Ye892fX6UECVEe6HA6zSWO8eegHZJAMwlI7niTO1OO/b55BQoAEGCaTLNS8ribtlFjon5OU2Hpg+yO0qzFb8mgAbITjGJliBkmh9GCLOeBxSb8/Xuf9vZ7vXZa/wBwPqJygsNY939yuVvvEkkc0ntIAlFwCJIix6wsozyD5wZUPdFwngwSonpWkN1Az2cBncTwYy348SZyqx2cnGiYJkLiU2AKGqtCkfce+r+g3vPeqpoAThJuQ9iCJHO5nwKhZVWIryssPtnzmgMcj/froCI5IUo0MEqBqlm0cuHyKe7U+1vgtPfOet5Y8ovGUZ5CQN4AY/xIA5T1IXHVOstMm7a5Dk1SgKhZtXC95VsuSrFpBuP4v4LgsJxkkUzUySIBSJSfZXIW6+NM/rYs96W67S2H4/SUPbHS5SQ8SyylBYOQ43SW2koCnJOaAx6m7B0nGowcJUDVHNN3x/OmH/1X3HXmz9s7zeR0kLysnzdwQMY7FA1p70tgmhghURlpq5qji026Xutfpq41f0tmHvljiqMZHmkEynZTYaqSTRgIkwFA5WQZJvvG31xxUEHFSul9O0s/FUmcaGDlxD5LCWi0sBki4Lx6PNUs01ik5CFTNETuz6tor3nd1CSMZZ1Z1Qw8SdCJAAkgKe8ytj9opWT4iQOUs2LwcwG5zRI8/8B8ljmZ8LLXjDcRmzdVn/s+Tddp8HCihSTswXCY5ydZU3lj8kJ3NyoFi49IeJJb7GTByPLerB0khQNImQHJcen19tFTPSjoCqI7uDJKjdkpX3X6onMGMqY7KMWSQIME3IqC8xFZR9xcTgGpYVGe95F3tu0sayXhZSep4T9ddnbFrRnKTUzVkkABDZXos1A5rhh4km+BaSmwBo6ruOl09SMgg2aheGSTLZlrM8IDq6c4g+UZ0tk7cQXmtQSpmadODBCmOxwOSosjqf7mf6rhmRd8RoEpM8pk82hUgqdlWGcMZO3mT9iRzxF+M/1sjWAwMVY9NfCNLBskmZBkkNGkHRk7dczp7kBQySLgvHh9rpWc7X+i4tuzQoB2oou6DunXj69wTKIc3SLW0lLREBgkyhMoAxadqftN7b8e1U81+/dXzH6Uzd62uAQmgPMUSW5JUj1ZKGsl4aSUBkoaXnJ1oL8X/rXMPBIbJuKs38T2FZJBsQhogkUeABBg1NdeRY3pnkFhxXzweUWT1Cu9fO67tCe8raTQA1tNW54b9lNraPcf8ZZA6M0gIkCBGgASQFAVt7TJHV13//oefVMJoAKynu8RWgwySgYg3X61q4bK0EkrBcvwCARJgqIy3enruKVRIk/a+eTbZUGURDIycuues2YNkrd7j6BRFVnvMoY5r+9092lvOcABsQFPtnj1z0S+rWkeAxC1vKKgUSmwBkuor+yVJgTz9W/gkSdIL2r9Z5pAAdDlpe1x71e+K7ddtWyt+2OtXsAFhFOndtT/UyX91jvSG0/IXKLEFDJXTI4OkRgbJpjhpgIQm7cDIqbmOro7OyZ5HQTt7TIDk+NTCBTVNfB/8ufbL9eXowXrX3C+WPCoAvUzVOjfsm6bNIZkBaAWh/rL2F7qx8UJd0fzfkqTIuJKhtD5iZJAAkhor+yRJR93tesXKS/QK/yUljwhAt1940tm68+CyXGPkX+OqZuKgiGOsvn3vQT3stN0lj3B0WWtlo1BPqH9z9Ys1alQDw2Sc1eeXPAUKQnYC++WlJXmoMw2MnLrn6J/Cp+q1tXdJkqLQl5L24pTYOj6z7Xite8RO6bLo0bqs/WhdMrWz5FEB6GWq7qqY4NBUm0MyA3B42dcPuF/uuOZYDlkiRwYJIGn26C2SpPtrp5Q8EgBrma57+pMfu1BPu2CvAnWerFk5vL+kUY2HMLKdtVj3XJA/5lQNMFROj8+cp1ARR6X75lp6kACjqu4aBfL0ufBhkjozSNgzPD67lm+TJN1qT8yu9fquAVC+U3d0Hk6LS2xxs9usI8v+qmuRIWcAOQIkgKS5xXjSeF/j9JJHAuBYHCO1uprXrRx9oKTRjIcgsqoryC884aXlDQaYcL02rSixtTkuJbaAkVX34i2L9HCMDYsltrgvHo9zjn5FknSTPTW71iNZEUAFzNQ9WbeZPZ9SSyFNSDbtvsPL2ePntF6nT4UX6jMX/02JI0LV8LUISKr5RyRJi+72cgcC4JgcY/Tp6MKOa62V5TV+GscjziApBEge9lzpue+Qfu4T5Q0KmFBOj0O9ngnVDlgc98uz8f3NkEECjJyamwZI4pO+Nig0aS9lRKPnlKUbJEmfKcyfySABqunM3dMy5z0te+4aK0Wrsx+wMZ+/8Z7s8S32ZL3I/03t231JiSNC1ZBPBEjygkVJUtulGTFQdcZIf+g/X0u2oZ/0PiVJWl5plTyq0RaEVrWkxJY1rozjSg//0ZJHBUwmY4y+GZ2hhzq3ZddqCrXYCtb5LazHo8QWMLLqSYCknWaQFAMkREiOS5pFd8TMZ9cMARKgUt7+M4/RJ66/T7/6PedJ9TdLcydJV7xNkuQEKyWPbvTdd+ho9thPv08Is6OADBJAUs1PAyQzJY8EwLE4xuh+7dBvBy/WbdEeSdJKiwDJZgRRpFqaQUITY6BUjpFe2P4N/Xv4BF0bnSkpbtK+QICkb57izUFDiS1g5BxYjEtqpRkkUaHEFo6Pk2TRFevtEx4BquVpF+zVG577CJ28fUqa3il9/xsVJVu2XkiAZLOOLCxlj/3k+2S5TZN25AiQAJK8kAwSYFQUSwLk9ahJO96MMLKqmaQEjcsJa6BMjjHapx16uf+/9cnoIklxk3YCJP3LS2wRAAZGzSVn75KUz/nUNeeLIquPf/NeXXHrgWEPbWSkARLr5AGSXuUcAVSIMQqTXiQuAZJNO7oYB0giaxQmW+FLPgES5AiQAJJqSYktnwAJUHnFBV16+kOcJtwUP7LykhJbcqi+CZSpIwhs48/jC72Pyx65u6whjbxaUl7GeM1j/CSAqjlr94ze8+JL5Nveh2Ju2b+oX/jHK/Vjb/1iGcMbCa5Nyqh2BEiIkABVF6UBkogAyWYtLsd/w7i8Vnz/W2oRIEGOAAkgyQvjBs+U2AKqz/TIIOk+TYiNCUOrelZiiwwSoEymMDtfVv55vOT6PyphNOPBS+5vDj1IgJF0+s7p7FCM7ToUc8eBpV6/goI8gyTPoqMHCVB9oUcGyaDYIP7u8AutuJcosYUCAiSAJC+M+xeEbkPPesRJkqSnPWRPmUMCsIaeGSQRAZLNCKIozyChBwlQquKp3lvsSdnj0w5fUcZwxkIt7UFCgAQYSXXPWbOsahDlTXaDMBrquEaFmwRIRIktYKRETtw7zYuolrBZUZD2s3Kza0ttytciRx0NQJIbxQGSyGnod3/gAj3tIXv0jIeeWPKoAPTiFFZ0Pj1IBiKMLE3agYooblpdFZ2XPb6zeZ7OLWE846BmA8lIjkeTdmAU1V0nOxQTBZ1zvjDKgyJ+aOW5Qpc0QBIVMkgosQVUX0QGyUBYa+P9Aq8zg+TcPbMljgpVQwYJIMm1cTTZug3tmW/qhx95qqbrxA+BKipuHgZJPWpFnP7YDD+0qpk0g4QT1kCZiptWBzSv3/J/XpJ07uJV0i2fLmlUo8tam5fYqnF/A0ZR3XOyQzF+u9XxWjGDpB2QQdJLGiAxhUMwDjtBQOVZNz7YkR7oRX/aYZTNBdtJgOTZF56sn770jDKHhYrhaxGQ5CYpiyEbg0Dl0YNk8DoySBwySIAydR/q/WZ0Zv7k6+8Z6ljGQWSlelpiyyWDBBhFDc9VkGxq3bH/cMdrfqGsVpsSWz05Wt2k3YgMEqDq0ibtNUuAZDNW/Cjrt5kesPy1p56nBimHKCBAAiiv6WgdAiRA1TkdARJ6kAxCEEWU2AIqorvsyTX2rPzJLP3RNiqM8gw5p848DxhFrmPkJRlgKyudG4XLbQIkx5L3ICk2aS9pMACOm01Kg7ohPUg2oxWEqiWB4rTE1glzHJpBJwIkQBjIUTyZttSmBiqvWGIrSk7CGTJINiUII73ce1/8pD5T7mCACbe6LrzRXwbPiR9yr9uwMLLZqUGXDBJgZD301F2SpHZXia1lP8we+5TYWuVrt+6Xo6QMmVts0k6EBKg6m/Qg8cgg2ZSWH+nXvX+XJJ2yd7c+8MuP17YpDgWiEwESIMgbXoVOs8SBADgexQVd2mzS0INkU+r7v6mHOrfFTx7zonIHA0w4p8eeVcsmi7iAJp0bFURRVmLLqREgAUbV1FS8Tgv87gySfA5IBslqz3vr57LHxWoJvb5rAFSLzUpskUGyGdED39al7nWSpKnv+nldeNr2cgeESiJAMsbuPrSs7+xfLHsY1RcUJtkeUWSg6ooH3qxJMkgosbUp9SN3SJJuc06THvbckkcDTDbT41RvS/H85Gu33Dfs4Yy8Yo8llwAJMLKajXijMAw653yL7TyDhCbtq3nK/z4OGSTAaEkqnNRo0r4p0YH4IOC92i09+gUljwZVRYBkTEWR1ePe8Ek95U8+rYUWJ6vXFcZfNr515RQa1wGopuKCLms2SYBkU9zlfZKku91TSh4JgF5aik/93rX/YMkjGT3tMCoESOhBAoyqej0JcHaVGlwuBkjIIFmlGCCxHT1ICJAAVZeV2IrIINmUpf2SpDudk0seCKqMAMmYuu9oXoLh4CI303Ul5Spaqskh1xiovI4m7Wnaccipms1wlx+QJB12d5Q8EgC9tJOGkg35WinU28exBUGoetKk3XiUUgVGVT3JIGmoM0ByeDl/TgbJarVCgMQtZJAQHwFGQG1aktS0lFjdDGcxPgx42Nle7kBQaQRIxtSt+5eyx2FkSxzJCGgdlSQtqUmqMTACinHMths3FK9HS2v8NI6HtxIHSBbcbSWPBEAvaQ+Shnw9wMGXdd11aLljk9Qv9itwKaUKjKra1Kwkacp0Hop5/1V3ZY8JkKw2beKN1UXbkOvm2z+cCwSqz9aT+55dLnkko81Zite6Rx3WulgbAZIxdWSlcJImjPSt+47qw9fcU+KIKmwxTrd7wM7JZaYIVF6xJIDvxQGSRki/pc2orRyQJB11t5c7EAA9pSW2GsZXQAmZNX36xvv1+Dd8Un/00Ruya0G7GCChxBYwqhpTc5Kkaa19kjqyHAzstlPxYcCDmpNXWOtyMBAYAY34vucFC/qld1+p+4+QSdIPNzkMeNTbXu5AUGkESMZUEOaTw3YQ6el/9ln973/6mr7ynQMljqqikmjyATvPRBEYAcVApu/Fp2qaEQGSzai1kgwSjxJbQBWlTdob8hWQGbym3/z3b0iS3vH572TXgpU4wzCSkVyatAOjqjGTBkjWLqtKgGS17SYJkNhZeW4+h6YHCTACkgDJrJb1kWvv1av+89qSBzSavOX4UPQC5aSxDgIkYyqI8tOFrUKq8c37FsoYTrWlARLNyeUTAVReMdErrKUBEkpsbUZjhQAJUGUdAZKQDcC1eE4+kbPW6uPfvFcvfsdnJEkrakgOEz1gVDWm443C7hJbRREJdqtkGSR2ruMeSeEEYAQ05iVJsyYusXX3YUpt9aPGWhfHgVXCmCoung8t5bWqt01Re3mVdhw0OmqnyCABRkDxc5oGSKYjgr+bUfMPS5Ja7nzJIwHQS96DpN1xCAadtk/n89wVP9Iv/OOVmknK8SybqbKGBWAA8hJbawdIQjJIVkk3Vo9ouiODhHUvMAIKGSQSn9t+3HdkRe2FuJLOSo21LtZGgGRMFRuz33UojzJ7HBVZLYgn2W3V+MIBRkDxY3p06hRJ0inhnRKL4r55QVyirJ30dAFQLe0kg6SugAySdXiFVOCFViAp71dAgAQYbU4jnqNMrRMgscwFV6krvhe2VOsoU8u2AFB93fc9PrYb44eRLvnDy2SSQ9FBUp4b6IUAyZjyC6cLjyznDduL5baQKARIaNIOVF8xkHl49hyF1mjWLkoL95U4qhEWhaqFcSA9IEACVFJWYsvQg2Q9fmGeu5gESGZNHCBZIUACjLZ6vLHVMIEaavf8EW6Pq9UV7wW0bU21QoktepAA1efUmpLi+Z/E53ajvnVfXGIwzcAJWetiHQRIxlQxg2TZD7PHbQIkq4XxBLstj5M0wAjYO9/UxWft1Fm7Z3TRmSeopXr8QrBS7sBGVTsvT0aABKimvAdJW0HIXG4trSCf83ZnkLRMs5QxARiQ5jb58iRJu3Sk54+EREhWaZj4XujLk9vRpL2sEQE4XmmApJkEhdmv2phv3nVEjiJNJ72r0vLcQC9e2QPA1vAL5RdW/Hwh3WZRvVqaQWJrcvjGASrPdYz+9RcvlSRdfvN++XLjF0J/nd+CtVZfu/2Qztw1rV2zjfyFVhwg8a0ruY01fhtAmfIeJD4bgOsoZkqnAZJ5syRJWnGmSxkTgAExRgfMdu21+3WCOaS77e5VPxJRYmuVLINEnpqem12ntDRQfU49nrs0RAZJP669+3DWi06SohqHAbE2MkjGVFgosUUGyTEUMkhcvnCAkeIao3Ya6w97l1tA7P1X3aXn/vXleu5fX975QpJBsqimXJdpAVBFaaZc0/hkkKyjI0CyEgdITjdx+cX93omljAnA4BxydkiSTjCHe75OgGS1WTfeC9g+N6vHn7sru865QKD6nFp8eC0OkFhdedvBjh7DWN/tB5Y0k5TX8q2b/T2BXtgJGVPF+tTLbQIk6yo2aWemCIwU1zFZuQUCJOu74taDkqRbH1jqfOHoPZKkA3ZOnss9EKiC97z4Ej39gr36voedqGc+9MSsxJYkhcHaDYonXatwKCg9IHS6uV+StL9+ciljAjA4R9ydkqTdawVIWOqu4tn45Pn3Pvx0zTbyAiJkkADV59bjjAfHWNUVH/x4zl9+vswhjRQ/jLTXxGvgg5pTrZBFB3SjxNaYCgoltopltYq1mZEI0wCJx0QRGDGOY+RbTzKixNYxrHl723ejJOnb9hR5DucmgCp43Dm79bhz8vIxD/qtO7LH1qff0lqKGSRBslM6rXieF9TmSxkTgME54iYZJDrU83UySFbz0tI8tbo8lybtwChx63n/tIZ8tVXT/oX4UOAXb35Ah5d9PfNhZMiuxQ+tznPukiTdFJ2iGtUSsA7+dYypYgZJMWuEDJLVwnbSvFM1cb8ERotjyCA5XsUEOVvcQDh0uyTpVnuiXLLogEpqF840RX684f/aD35Tz/7Lz3dkCk8ya21HgCTtx1dLTlxOT02VMi4Ag3PYpcTWWpbbYc/SO56N74HGa8grzPOY8gHV59Yaimz8YU0btUvxnOd5b/uSXvLuK3XvYQ7OrCUII51q9kmSbrN7CZBgXfzrGFPF+tR+MYOEutWr3LHvkCSpbckgAUaNS4DkuBnl9ze/kGWohbg+//12e8fCGUCVGC3ZpG5y0jfonV+4Vd+487A+8PW7ShxXdXTc1xTPf3fP1lU38ebgDAESYOQtunEm2Haz0PP1aHLjI3r2X35ej3/DJ/W5m/Zl16LIqpZkkDheo6OUKsteoPocx2RlVhsmr5ZQPBByeJkqCmsJIqsTFAfU79d21SknjXUQIBlT4RoZJNEkzxrX8MDho5KSHiTMFIGR4jiFk9WU2DpuxcB5GiDZZ7d1lF4AUC0HNCdJ8pb3d1y/9wgnB6W8pFbq4GJbsw1PnuIMm9kZAiTAqAtNvFGYfq67TWoGibVWN90fB40+c2MeIAkiq4aKGST5PI91L1B9xhitqC5JairvQbfYCrLHdY/1mxQfEv/kDffp0FJ+aNIPrU4whyRJ++x2MkiwLv51jKniKbriRhgJJKs1TXwDXVGd8jLAiHEdUwiQkEGynuLtrdinSovxZusBzZNBAlTUZ/7Pk3VA2yVJ3kpngGTfUZq2S53lZSXpTz7+Ld36wFJWYuvic/eWMSwAAxQ5cYCkpqDnnGVSDwMW/98+uJQfGAqiSPUkg8StdWeQMOcDRsGi4j4ks8oPxCy28iCxndDAcLe/v/xW/ezff1U//jdfyq4FYaRd5ogk6QE7rxrBJKyDfx1jKox69x2Z1FM165lWXKt1wU5xkgYYMa5JmrRLBEiOoXj3bxej5Um5nkXb5AQSUFFn7JpRNHOCJKnelUHypVseKGNIlROEvee49SRA0mw0e74OYHSkGSR1BXraQ/bq4rN2drw+ofGRjuoRX7n1AX311gMKI6u//ewtmjHxpqo3NUcPEmAELWpakjRr8h5DC4UMknBSb3xd/vsb90iSbrzvaHYtiKymk8DSoppkkGBd/OsYU36xxFZhwUiAZLVZG3/RxJF5/j7AKHGcYg8SSmytp3i6uphZaNtLkqQlESABqmw5qb3v+kc7rt9+YKmM4VROsEaadFaKx60PcTQAtkKaQdI0bc3Y1fe+Sd0oLK7x7ziwrB996xf1+x+6Tn/+iZu0Q/F3hjuzq6OUKgcDgdGwYJIAifIAyVK7ECBhj0+SNFVzV11rB5Gmk9JkS7bBWhfr4l/HmArDYg+SPP1uUieN65lJvmiOaqqj2RWA6nMNJbaOV3HzMAitgjCStVb+cpxBsqSG6pyqASqr7c1Ikpx2Z3Pi7ubkk8pfY46blthSsrEKYHSFThzovMS5QX98y7O1I+zMoJvUw4DdJQYl6RPXxz3mtpnF+MLUDjJIgBG0qLiH2pzJg8LFDJK1MmgnzVR9dYAkiCJNmzhAsqwGTdqxLnZCxpRb+OD7ZJCsLQqzG+aCJUACjBq3mEESUId/PcXF8837F/SYP/iEfugvP6e6jdOOlyixBVRaWJuVJDnto6tf4wBMx+GgoppJNhFcAiTAqItM/jl2FemHFv5Froq1+MsYVfnW/g6w2q4kqD61syNAQg8SYDRkJbYKGSTFfSvmgLFmbfU6NgitppIMEkps4Vj41zGm/rD5bl03+0v6Kfd/OnqQcPPs1F46kj1eJIMEGDmOY7TfboufHL233MFUXPF00RXfOaBDS76+dde+7NqSSDsGqiyqzUmKM0i6G3IeWabEoB/1nsPVshJbBEiAURc5Xsfz71v6L/157S3Z80ktNdOrOb2R0ZyW5Znk3ji1Q57jrPs7AKonzSApBkiK67pJve91a3qrM0j8MOwosUWABOvhX8e4CtuaDg7r92vv1CXBFdll5kGdVo7Em4PLtq62amr54TF+A0CVuMboTrs7fnLo9nIHU3HFAHmalj2vPFV7WXU1CJAAlRXV4wwSz19YdeClWGphUnWXmDjH3KUnO1/PS2zRgwQYeWGPUnk/6H4pezyp1RJ6bZAaI203ccbhihpSrSmvUGWCTVVgNCxkJbYKAZKIQ9DrSQPA9WhFjokfL4sACdbnHftHMJIa89nDv4herw/oPZI4KdJt5dC9mpeyE+jtNRp8Aqgmx5HutbskSTd/59vas+Jrrskp4V6KjdmPrsQbhs904wB6ZI2sHHqQAFXWiDNIvGBh1caWz/xl1d/go/XfUs0UDr44LHuAUWed9QOdk7rnv9Yaf7vi/iOL7ryaikvTHut3AFRLXmIrP9hWrBJDD5JYMUAeRFY2ivSk6IosLWBZDdU9SgtibeyEjCt/ueNpQ3HzYk6KFESRml97uyRpv+IAydMesrfMEQHYINcYHUlO1SwdOaA/+5+bSh5RdRV7kBxdicvxzCSp2keTvyEltoAKSw6/1MNFdVeT6tWgd9J0n6DsCI5IZJAAY6C7xFYqW+tO6L2w1xrf90P9hPspSZIzvVOSOnqQTOifChg5iyZep/2k9yn9tvdPkmzHvG9S73vdinGin3rHl/XY3/+E5mzety+USwYJ1sW/jnG169yOp092rpbERKjDzZ/U/Lc/IEk66O7SF37re/SgvXMlDwrARriO0VEbn6p5uHOrjt53S8kjqq7iRPpIkkEyZeINhfeHT5BEgASoMmcqnqPUw8WO0goSpwclrfqbrEIGCTDybI8SW5J0rrlL0uSW2Or1HXBO+zo937tMkrT9hFMkdWaQcHASGA1pBokk/YL3Ie3VQQWFrFk+y7Hi/f8r3zmgIytB1qD9fcGTJEnT9dV9SoAUOyHj6tEvkO9MZU/nTZxeSyptweG8X8G/zzxPp2yfWueHAVSR45isLqskvfHO50v3fbPEEVVX0KPEVjM5cbmihiSp0aO5HYBqcJtxBkmjZwYJJbb8dYJEKydcKM3uGeJoAGyF0Gn0vP6cvfslTe5at1dgaKd/X/bYfM//jf9r8gCJQ6UZYCQcLQRIJOl8546OOU/IHFBS7/t/06Rr3TiLePds7+8QQCJAMr68ht7x3V/QR8LHSpIaisupkH5XsHJYUhxNvnfm/JIHA6AfrjFasJ3BTf+2L5c0mmrrVWIrPVWzovhEJqdqgOraviPutzQVLa0KiKwXHJgUnSeoO/8ed//YhySH+xsw6pZrO7Vi4znLu899k/SIH5cknTkTz2smdanba42f9iv49s4nS6c+Jrv+vItP0+k7p/Wci04Z1vAAbMIVepi+ED40e77HHOrou0YWcazXfTA9DLicHAbcRYAE6yBAMsZcY7IbQZMeJJKk5Xaof7vyTh1YbGcBkiOa0UyDsgvAKHK7Mkgk6bIvfKmk0VRbzwwSE28oLNuGnnPRybrgpPlSxgbg2Pbs3i1JmtKKPnv1tzpe4wBMZxZNXUH2+O3B96lGdhwwFtq1WT2z/QY9p/U63br90qw3UzNKqiVM6Fq31//fc0mAxK/Ndlx//Y88Qp/9jadQWhoYEUfNjJ7v/1/9V3ippPizXTz4Nqn3vW7FoFGq+zDgDIcBsQ4CJGPMdYxayQmbNIPETvjN8w8+fJ1e8b6r9X/ed3UeILHTmmsSIAFGkWOMDmtGH02y5STpmYf/RQr9EkdVTWGPDJK8xFZdr3v2w+RQbwGorL0n5CWibr383zpeC3osCidN8QRlXfl3wBuDH1eD/krAWHCM0a32JF1tz437aTTiTf5mGAdIJvUwYK+vgDmTBEg8AiHAOEirJrzce5++dMsD2fWAQzKSev8dmsl88OFnnKg/+OGHdZQZBLqxWhhjK0GY1dpLa+9N+gnDd38p7jty2Q33FzJIpnXytmaZwwLQp7jZpNFL/Jfq8St/kb9w51dLG1NVFUvwpF8FzeRUzbLqqnlMGIEq8+oNHZw5R5JU8490vOZP+PxOyjNImjWnI4OkpZrqBEiAseAUe2gUAyRJBsmExkd6rvHntCxJ8r3ZVa8BGB3pXe8c525J0qxZ0edu2pe9Pul7fKlemTRTJl7rPuXhZ+r5l5wx7CFhxLBaGGOHl3y1klSyX/X+U3t0UJQnLMgySGZ00jYatAOjqJjwcJdOyLLm1F4oZ0AVtnrybPU09ypJ0oqty3OYEgBVt7A3riPv+Z33uElr0BmEkb6zf7EjMzoNAu+db2aZ0y3rSTIESIAxUZz3ucZIzbjE1iP2f0inmn0Tu1HYM0CSZJAENQIkwDjYrcPZ45rC7DE9SGK9psLPdr8YP/A4EI1jY7Uwxo6s+GolGSSS9Ae1v5voEltR18QxXDokKc4gefCJpB4Do6g7TfZqe3b8oL1Ywmiqze+aNe7RoezxDfZ01VwySICqM0m9/UbYGSCZtCbtv/OBa/WUP/m0PnTNPdm1dIPwtB3TesNzHiRJ2UGhusuSBxgHxVKgjpG046zs+U+6l01sLf60tNgp26f0E489TVLeg6RdY50LjIN/D5+UPZ7SSvZ4UksLduu+/88kWXSSpBPOH/JoMIpYLYyxw8t+cnIuttccmNhTNZJ039EV7dARPdrcKElaPnpAUpxBcuFp20scGYBBWbaN+IG/vP4PTqDu00XbTBxECqyjb9nTqMkKjABnapskaTpa6rg+aacH//krd0iS/uITN2XX0uacO3RY3/3NV0mS2kmAxCNAAoyFVSW2zn5y9nxGyxNfYusc3aFH+1dKspoz8VyYDBJgtD3q9B2SpL8Nn5Vdm0r6SEqU2Ep1B0i2qXBg8vRLhzwajCJWC2PsnBNmlVcslEK5E33zvH3/oj7c+G39e+O1eqS5SbNHb5EUZ5DQvBMYXf/085dkj5eVBEhu+G/prq9lxag/eu09uuHeI71+fWJ03/+3KT6Bfoc9oYzhAOiDMx0HSNLSKalgwkpspXZM55nSaXPO37zvN6Q7r5AkLVpKKgDjxC1kkLjGSI4rPfvNkqSzzL36+DfvLWtopYqsVV2+/nblFfqxG35d3+18Q5c4N0iSApq0AyPt1T94gX728Wfpzc+/WEeTRu3f534lOfhrFYSTOQfs1r3VmR4GfEDbJQ4C4jiwKzzGfunJ52jPo38we75dRyc27ViS3vnxL+kkE2eNvL/xu9n1Q5rjZCEwwh5/7m698UcfIUnabZLarDf8t/S2p0if+xNd/u39esm7v6Zn/vnnShxl+fzC5NlToP9be48k6bBm9YvffXZZwwKwAV6SQZKWTklNUgZJsVxssXVSEEa60Hxbp/rfya7do13DHBqALVbc48rKbe06T5J0tnOPjqwEJYyqfGFkNa8lNZNT5e+q/1H+mjdd1rAADMAZu2b06h+8QBeftTPLDHtN7R/0743X6vnuZasCA5OqeBjQUaTf8N4rSTpqZsoaEkYMu8JjbLru6YU/8oN6auuNkqSd5uhE3zwbXeUoUge93UMeCYBBa9RcSdKDzB2dL3z7Mv3LV+/o8RuTpzhpfL33dj3S+bakeKP1ld/3kLKGBWADatPbpf+/vfsOj6O6/gb+nbJFq27Zkpssd9wLNriAqQZjTCehhlBDM6G+8IOEGkIwkECA0NIwgdBD7wYbG4ML7r33IslNfVe7O3PfP2ZndmaLLBdZ0u738zw8Xu3OrkY89tW999xzDtI7gyRoC/b6Q9HHIU3gNGW+49pKwUUxUSpRbBESK5skrwsAoAj7kK7t1HRdIEMKJHyt1tf5CN8NETUFb2S9a3e7+r+07jNsZ///8ID6Ok5WFgMAqqSc5rolamUYIEkDj108GgCQiQA026JyZ6Ufk75chR0V6VGrX07QtPnf4TPYuJMoBZhl8qwSWxHrt5fj40U7muOWWhx7Bsl4Za71+BNtdHPcDhEdBDXTzCBxzt3CaXQCJhC0BYNsi2FNF+gvbXJcWwOW2CJKJfYeJFawxGP02HBJGqAHE70t5YV1gUzUxz2/XC9B0FfYDHdERIdbogCJX7jT+hC0nb1Z/QRljvX4Hc+FzXE71ApxZzgNjOzbFQCgSjpUET1ZMvG/C/Dy9PW49rV5zXRnR5YcMgIklXKu9dzP+lFwq/G/aIiodTEnjBODt2Kl3gV/Cf3CeCGUOHMsHZkZJBJ0ZEVOGU4KXYK/aec1410R0YGIZpDEBEjSqMSWP6RZj+2bAiFdt0qpmmojtbqJKDXIiUpsuaKZYh4t/kBcOtCEgA/ODJLdIgdPhC9x/D8jotZLkSU8EroCi/RoaeSFoldal9G3sydTZ0UOEo2pfwbzPSOSvIPIiQGSdODOhIg0a/faykwt2FIBAFi5Mz0aF5sBkgpXe1wVvBsveK7DV/oxbNBOlALMf8fzRB+MD07CVH0oAMAnOU/TpXMKciiyk5iB6OnKydo4aGCQmKi1cPkS9yAJpVGDTnuAJBiO/txhTaCjtMdx7SfaKJzQu90Ruzcialqyo0m7+UCFUI1gqFsPQAgBIQT++NkK/GPGhma4yyNP14U1592b1RtdA29ieP3LmKEPhsTmxEQp41VtPM4L/hH3h64GALgRauY7ajnMQJEE3RoP/cILNV1rL9IBU5v7BugIkCRoriyooWp4G3mqJqzpCGkCGe7U2ThTw8ZmQljNxPf6UKwSXggE4GaAhKjViw10mqW2Yk/T1Yf1hOnJ6cDMIMmM/D/RhYQA3LhoOGtTE7UWktcIkGRIQbgQRigylQ+mU4AkGA2Q1Iejj0UogByzN8utCyH8FXgYPdCzMOtI3yIRNRE5UQ8SAMKdCSnsRyb8CGkCa8ur8c+ZGwEAvzmhe9znpBpNj2aQaKozc05mgIQo5eTk5gN1xrqOGSQG8/+D13YYsA4eqDL3+6hx+DclTWguY3GY0YgAiRACZz0/E2OenIaA7ZRea6DrAht21SQ8Ja5qxqJZj6Rh19SHAYA9SIhSgCemVF6dMAIkGTH1mOvD6bOJaCeEsAIkGZETNXXw4IXLhuGJCwc1560R0YHwZFsPM219SOpD6TO2JcsgkewlFXO7QOp0NAZ0yk3boDhRKrIHRRyZEW5jrZuJAEKajt010Q0yLcUK9FcFQvhqWanj5zICJMb8TlN9jutZYoso9dQIo8daluRnD5II8/+DvR+TH264mEFCjcSd4TShuYwFtVfsvx7/2vIarCqtxu6aeuysDOz3+pbkkU+X45S/TMcbszc7nhdCwKVHNhLcMQESZpAQtXoel/PfcV0kg8QtaXAhbD1f38qCvodLyNafwFxA++FBUY6HpReIWhPFZWXIZUvROV06BX/t47g9c0YOG4eAQpIbUJgkT5SK7FMWR7Aksr7LlIwAiT3TLJhi4+Pd7y3GjW/Mx7PfrrGe00S0xJYeFyDhPI8o1bh8OQCMXhtMIDHo1mFAYw+zTnggIMPFA9HUSPybkia0yKmaDH3/GSQ7Kvz7vaalem2WERiZ9OUqx/P1YR2+SIN6yZPpeI0BEqLWL77Eltd6nGErs+UPaUmzzFKZ/ZShWYKhTngcmwtE1DrUwtj8yrZlkKTaBmBD7MEg+2Oz11xI8cW9h4hSg2IvsWXf+I9k1/kQQFDTHVUQ7KX4WjshBL5eXgYAeH7aOut5e4kt3RUTIOFcjyhl9O9oBEbGHd0LgBEUZoktg/n/wTwMaB2Y5H4fNRL/pqQJPRIgsTdpT8aZrts6F9zhmDzDoKYjMxJJltzOWtQssUXU+hVme9EpL1pzOQQVIWGUVfHZ0mwf+NjIMvvTFyuP+D02p5BtLDfHQtZkJWqd6uT4AEkqbQDujz1rxB4YUiIltkJKRtx7iCg12LMh5AQZJFkIIKQJVNdHs4dTKYA8ZUWZ9TjLE82UC2vREltxARLGR4hSxuvXjsD7N47CsUeVADDmgul28C8ZTTj7bfojJbeZQUKNxb8paUJ3G5HmjEiAxD5RjA0Q2EuxtNaen7G1Zo1Jo5lB4gyQuBhRJmr13KqMqf/vRMcisC6SRWKWHACAGWt2AQD+8cPGI3p/zS1sG9dzYPweqEImVNZkJWp1aiTjpPRE9SM853oev1Cmp9QGoF0wrMcFf0KaM4PE3BhQwmaAhBkkRKnKPm9xLGEj6zufFEAorDtK8aVSCcKf1u+xHnctiFZF0HQBX+QAjGCJLaKU1SbTjeFd29j6Lvkh2IQEAGCeB8yRjIziShhjJA9EU2Pxb0qaEGaJrUgPkkp/yHotw+1sXmkPLoRbaQaJGT1+/ru1OO3p6Zi7cS8yI5uk5gkjEwdMotTgURXkZrisrwNS4kbt6Wjp9krrca45aRSZUHmskKjVWZpxDADgBGUpzlFm4c+uV+Dz72zmuzr8NF3gsn/Mxog/fYe9tdGGy7HBIPNgjxrpQRJmBglRyrKfBJYTNGnPijRptx/4S6UASV0wmhljDxZrIppBImLWupzqEaWgSFlBRRKQNa51gWiJrVxE17oAS2xR4/FvSrrwmD1IjADJyp1V1kuxKXn2oEgrjY9ACKPcxF+mrMHa8hq88/MWK4MEMZPG2N4FRNR62XtqBKVIBkmaB0i2V/jx8CfLra/bwgiWVCGTPUiIWqHw6DvinnMH9zXDnTStZdsrMW/zPlTUhTDLdmo6FJPebJbckjVjnqepDJAQpSr7RpdjDuOOZpAENT0m0yx1ShD6Q9Gfy/4zhnWBwfJ644uYElsSM0iIUo87E3pkO9cTSr054MEwAyQ5klktwRgLXayYQI3EneE0ISluAIAijMyRhVsqrNcSlaOyHrfWCAmAjbujDekVWUJ2pKyMHFNiixFlotSxuyZ6yliLlBiwl9hKRxe8+KM1Hv7W+wXudL0PAKgXLvYgIWqFLh3ZHQv0no7nzAblqWRPbXTsXlUaPdgT1GL6zEVOh0vhyOlpxXsE7o6ImoM989/RpN3qQeJHSBMIx5TiSxX25vP2nptaWMNgeYPxheocA1liiygFSRJ2ZhiN2jtVLmjmm2kZdAH8SpmCR12TAUQzSCRwDKTG4c5IuogESGRhTKpq6qMltrSYDBJ7wERvxQ2fqvzRFOT6sI4e8g4AgJbf1XEdS2wRpZ7cDBdE5ATd4SixpesCr/20CdNWlR/yZx1pZVXRn/8uvGE9Xim6sAcJUSskyxLCcJZHlYPVzXQ3Tcc+jyutDFiPY0tsWV+HI/X3FU/T3xwRNQt7iS1HZoTLyBzzIIiQpjsCqanUo8kRILH9jLoWXdtXdznF8R4udYlS026v0ag9I7jX8Xy6Nm3XdYE/ul61vt4qCgEApVWBZG8hcuCvyzQhK6rxpxUgiU6uYpNEQrYnwlrrGVxjM2E27YmeptSDfnSUIr842vZ2XMcMEqLUc0qfQoRk4wRdJg59UjRrwx489MlyXD35ZyzaWnHIn9fcdolcvKGNZQ8SolYqKFTH1zvLyvGvmRub6W6ahr1fnn1xG1tiyyyfI5k1uF3MICFKVUlLbMnGmOiChlA4tsRW6gRI/MHoGt7+M0padIwUWR0c72GJLaLUFIr0XFO1Ouu5N2ZvxqBHvsHCLelXdiv2cPe72kkAUqvMIjUt7gynCUk1GhcrME7j1dZHT+U1lEES+1pLtrvGeUp85trd0S9C0V8aSkau4zoGSIhSR5/2RsO6X48qQTAyacw4DCW2yqujC8/FLThAUl4dwJtztiSdCNZKRonBi4MPAJDYg4SolXoifCkW6j2xW+QAALKlOjz9zepmvqvDq8oWILE3aQ+FYwMkzh4kseVliCh12GvJOzIjFGOtq0oagpruLLEVSp3NsUA4cYktM4MOABQ3S2wRpYOwbKx1XbYA6f0fLUN1IIy73l3cXLfVbDRdYIdoAwA4u/6P2IU8AKkVJKempe7/EkoFcmTSKIsEARJdoCoQQkVtCF0KfAjZskZiszJash0VfsfXq0uj5Sb0kPFLIwwFbrfbcR0DJESp450bRqGsKoDeRdlYFJk0+g5DBklNIDpmttRSDSt3VmH8sz8AMDYNLj6mS9w1HmH8v6gTRgkalXUXiFqlpaI7zg/+AU+qr+AidTqyUYfaYOpsAgJAjW2uap+OxmaQnP7MDJw5sD1OiGSQSMwgIUpZ9nWbY+NfNta6Lmj475wtmLKizHopqLXMedvBcGSQ2OajUsgY/0KSG241pgQj4yNEKSkU6bkmh+tQWhlA+9zo/Kc2GE72tpQlBOCLlNauQ7Tcan0odX4HUNPizkiakBQzg0SDrgvHohMAxv5lOk54ahrmbNgDzVZiqzUFSPbVBR1f25t7mqdqgnDF9RxhDxKi1JGb4ULvIiOLxEw7PhxN2qvr7T2NWuYm5JtztliPF26piHtdRRhqJIvQnDSyxBZR61YNo9dSjuRPuYww+4k/3TYfrU+w2fnF0lLIZoCEGSREKcvRpN0+5kXKSavQHMERALjlzYV47PMVVl3+YFjHnA17Es7n1pVX4/+9t7jFliwM2Db6QrpujY1mia2Q7IHXFRsgSa3fDURkCEfKSW/cuRsjH/8OS7ZVWK+FWlGp/MNh2qpyVNeHrd6jb958svVaoIWu3anl4c5wmjAzSFRoCOsC/phU4/JqYyBZsq3Ska7bmpq022tVA87mnoicqglK7riMEWaQEKUm81TN4WjSbs8gaalpuvaFfqJ79Nn+P/hh/L9JtQ1VonRTDSMQnIU6aLpwNPBt7cL2Azu2+WgonHhuqujGGCe7M5r2xoio2dibtOd4XdEXZHOtm/jU9D9+2Ii15TUAgD9/sxoX/302/vjZyrjrHvl0Bd6fvw2PfrYCVYFQ3OvNzZ4NEwjpGPzIN3h99marB5Mme+CJWdsyPkKUmsIxhwHfmL3Zeq2lVjxoCp8v2YmrJ/8MBRo8kvE7oKigAHk+4/fCqO4FzXl71IpwZzhNyNapGh2aLpKmmQVCmqMxe2tq0l5Z55zEOtKpzVM1SBAgYQYJUUoKWyW2Dj1AYi9L2FInnPbgtr1niskMFIWhIBSpsOni+EfUqlULI4MkWzLKjF740k/WKenWzh4IsR/YiS2xZTIzSGSW2CJKWfZ5S0GWrWyyEi2xlYzZr/LvMzYAAF63bSaa5m+ONjb2t8CyheGY8a+6PowHPloGKVItISR54InJIFEYISFKSVa/TXONZ9u7S8V/9mVVAfz12zUor3Kuc1+btQkAUARbY3qXD5/ecjx+d2Yf3Hdm3yN4l9SacWckTchq9FRNWNeTN/ANaq02g6QqkLzOohSO1mV1ycwgIUoHIdXYOGxsiS0hBF6Ytg7Pf7c2boPRXtu/pWaQ2EsiBhIEwbMiG6gBRDcPmUBC1LpVRUpsZaMOALB8RxVWl1U39JZWwx4IsZfYsmeW2JlzPYUZJEQpy34AriAzWmM+mkGSPKgRe5gulhACdbb5XnNm5JVVBfDQx8swbXW54/lkZXN27q4AAGiKG16Xc20rc7JHlJK0mGoJIdtcKbbUXiqY+N8F+Ou3a3Hta/Mcz++tNUrtn6osiD6pelDcxofrT+iBLA9bb1PjcGc4TSiqccLGBQ2aLpKegK4KhBwnU8KtqAdJdQNp0GbacUh2Q5YluJToRJEBEqLUZKYdZzaySfu68ho89fVq/GXKGqzYWeX8LNu42FJ7kNjH60T3mA0jQFIrZ1rPSal4vIgojVQJ499znlRjPVdWdehZcy2BfSPUXmIrWXazC8YC2Zvha9obI6Jm0y47GhTJcNs2AM1qCVLyOdq+SIDEZ3ufPWgS28y9OQ/EvDBtHV6btRlXv/qz4/lkDedXbDX6roRlD9yK7Dg9zvgIUWqKLbFlX6+mYubYvEiG39LtlY7nzUPdOZHDQqF2/VMzhYaaHHeG04QUmTQq0BDSRNIJX5U/5DiF3JqatDdU9sYNY/IblozTRfayWiyxRZSa6txtAQBF0r79XGmosZXR2lMTdLxmP7GXrERhc9OS3KPZZ+ToQuPrWjnriN4XETWd3SIHANAWldZcJ1FZmDVl1dhXG4x7viVzZpBEn082N/VGfv6sTI5xRKmqU14GXr/2WHz22+OdL8hmia3kFQUq/MYY2KswOkbYN9pi18fNmUGydW9dwueTlRjMiASINdkDSZIcfUh4GIYoNYVjSmyptn2t1lQJprHsvTPveX8x7nl/sfFF5EfNkWoBAKGSE470rVGK4M5wmpDMuqyShrXl1diTZJEcCDlLbLWmAIl53/ZTQSaPFSAxTh3Zs0aYQUKUmmq87QEAHaXdCV+PHd/sY19sY077grQ+yeL0cHt//jZc/595jv4nDXFmkBj3KISwfs7bxxQBAPwMkBCljF3IAwB0kXdhmeca/Fr5Om5Tb+ba3Tj9mRm47Z1FR/4GD4E9MO3oQZJkbuqJbBDCxRJbRKlsTK92GNAp1/mksv8SW2tK48sPbtpTaz2OPQATW6708S9W4qmvVx3o7R4UOUFQQ9MFku15mv32zA1Te3mdRJ9FRK2fFhMgsf9Lbz27eI2X7Y2Wynp33ja8O28bKv0h62fNhTGeS97cBO8m2r8m2xl+7LHHMHr0aPh8PuTl5SW8ZsuWLZgwYQJ8Ph8KCwtx9913Ixxu3EYQHSBbXdbL/jEn6WVBTThS82I3EINhHWvLqltkA1DNCpDE1xg0f2kEZaPUGAMkRKmv1mOkTLRDJRJNE2NP4dm/rvI7fxc5gg9HKIPk/723GN+sKMP/Fmxr1PWa7Yi1mVFn32DMWP4uAMCvZB/GuySi5pAR2fzaJaKLQLek4Q+u1xw19AHg+alrAQAz1uw6cjd4GISSzEe1JD1IPFIksK16Er5ORClMNtZ/DTVp/2jRDtTWhx0Zw+XV0ZKEscFle7nSsqoAXpmxAS9MW4/lO5zlXZpCor4hybJHACBDigmQqPYAyWG+OSJqEawMksi/f/sY1hL36w6VPUBiZ/6sOVIk886bf6RuiVJMk+0MB4NB/PKXv8RNN92U8HVN0zBhwgQEg0H89NNPeO211zB58mQ8+OCDTXVL6U2OlthqSCisN5hBcuMb83HaMzPw+dKdh/8eD1FDGSRmc+L6SO19l8IACVGqE5FJoywJuBOUXIhdaNrr2lf6Q5i+Zhd+XLc77toj0YPEOcFt3HsS9SAJ6zryUYU3XI/BtfE7AEC1q+Dw3SgRNYu3rx+Jo7vk4Y2bTgayOzhe88ds8rXWNbKjxJbtZzDHajVm189rZpCo3ia/NyJqYRTjEFxDGSSAERBxlk2NXh9fYiv69Y4Kv/V4XXkNmpp9eNMjA2Cy/iMA4Iv02wurRg8mn4cZJESpzupBEjkMbB/DWlEhmEbr3yE+M0TTBbx6HV5zTcKZylzjyeyiI3xnlCqabGf4kUcewR133IGBAwcmfP2bb77BihUr8MYbb2DIkCEYP348Hn30UbzwwgsIBltXjeRWQYk9VSNwr/oWrlK+clwW1HTHYKrFrKqnrioHAEz+cVNT3el+7az04453FuGil2fh8S9WWhFjM/MlUYAkO9KwyR8JkNiDIh72ICFKSXpksQxE+xDZxTb6DdtOJW+vqMOV/56Ly/85B8Gw7rj2SDTt3GU70Zjhih/TErEHtPfVhTD+2R+woyKA05X5OF5Zbr32WbvrD9+NElGzGFychw9uPg7DStoAvmjQc4/IjjsFLdumOa2pdGqyElvmz5DnczmuN8upMkBClIasElvRAzF3qO/j9aN+wqXHdLaek+AcB/2OAIlz7LSPpWVVAetxbJbenA17MPiRb3D/R0sP7WewsdfaNwMj9rmoJ+aAX2bkBLmmGAGSouzoOMgACVFq0lSzxFYQgHCMYS09g+SN2Zsx+vHvsK48vvRhMqoSP5aFdR0jtPk4UVkCAKgWGfD0POlw3SalmWbbGZ41axYGDhyIoqJodG/cuHGoqqrC8uXLk76vvr4eVVVVjv+oEawMEmOC1VvahhvVT/Gw6z/oL22yLgtpunVKBUi+kFaaMVf37Odn4sOF2zF30168MmMDtu0zTvSYp6e9CTYTc8wMEiUSIGEGCVHqswVIPAkCJA1lkJRWRgMUYV2PySBp+gCJ/ZRgXfDAe5AAwMqdVbj/o6XoIe0AAIjCfsD/WwvhZoktopQy5i7rYQaCcU3a7XO2mkb2NGoJkpXYCukCCjTkxJRaYICEKI3J0X6bAFAsleE29QOM2fw33NVnr3VZWNedAZJg8gwS+9e7a6IHOGN7w7364yZU+kN4Y/aWw/CDGOyN1eutsqnGn4osOdayQLSctLlh2iHPFiDhUpcoJWmK8e9clgQ8CDmy3lr6eZj7P1qGHZUB3P/Rska/J/ZwI2DMD4s1oxx1qcjHecE/QM5kiS06OM3267K0tNQRHAFgfV1aWpr0fY8//jhyc3Ot/4qLi5v0PlOGOWmMnKppL0Unij2k7dbjYFh3nNJLNAgBiaO3R4p9ggpEJ43mZDf2RA0QzSCpj9Te97AHCVHKk2UZ9cLYQEtYYquBJu3b9tVZj79fvQvzNu+zvg4egQCJfeytCzWupFeigPbsDXutAIl0zHVAViE8Lo55RCml//nApe8AMOZ5saeb7eNJlT8+WNxSBR2lIqI/w7Ca6VjhuQZTa87Df12PISNSWsYrmSW22IOEKO1EqiWYJbaKpWjPpbaBzSjINA7NhDThqJDgyCCJa9Iefc0eXK6td46xe2sPf/UL+0rbHAvNP12KBCVmLW6W2NIjAZIe7bKs15hBQpSatEhJPcAYA+xB3ZaeQWIy73l3TT027a5t8NrYw4CAMcftrBsBkn+Hz8BGdDr8N0lp44B2Se69915IktTgf6tWrWqqewUA3HfffaisrLT+27p1a5N+v5ThjtQjjaTfGk2LDQ+7XkMhjM2/2BJb1YHEJw0PdaI1Z8Me/LD28DQLtUpsmQGSBBkkWTEZJPYeJC6W2CJKSYoMBGEEh91SggySmECH/bTyqtJouu/N/13guO5I9CCx30vsafBkEk0aAaB7JECCtr0AIO7UIRG1cpIEdB4OwDg9HQo7x7u6Bk5IB8M6tu6ta5ELaUcPEtv41t8/32rIfpyyHKfJ8wHYMkhcGUfuJomoZXAZazwzUNDZFiDBp7ehi2z0lAtrwnGgJNBAiS37eFljWxPHZvbGZubtqw3igY+W4f352w7mJ7HuM/a+zHmeS5HjejCZTZrNDdNzBndEhktBQaYbHfM4JhKlJFlBvTDWuj7UO3oqtcBpXULmcDz8j9/ipD9/7yhnGMteDtuk6QJdhLHW3SA6opX82NRCqfu/JOquu+7CVVdd1eA13bt3b9RntW/fHnPnznU8V1ZWZr2WjMfjgcfDk2EHzGs0NMpBLW5T/offuj6yXmoj1eBC5Qe8pJ1jlNiyjaalVdGGdPbF6aGU2Nq2rw4X/302AOCbO05A76JDK/di3pbZg6ThDJL4HiTMICFKTbIkoR4uZMMfU2LLGDQaKrHVkNgThk3BHuyIPamYjJZg0ggAHaU9xoP8rgASlyEkolbOVlJQC0VLBAbDOpZujx6KsY97Qgic+8KPWLmzCtcd3w33n9XvyNxrI9nHQfuJb1k4NyMnHpuHT2YLa2OUARKiNGSudSU//uH6M05TnIdbzhPfYiEuQCi2xJZtQzHQ2AySmABJ7NefLtmB12dvxuuzN+OMAe2R5TmgLRcAzo1AM3PELO3lVuS4tbjZpFmPBEiK2/gw9/enQpVlZCToz0lErZ8sSaiDBx6E4JWCCNiCuqEE68JFWyvw/epyTDy5Z8s5JBwTyVm+oxL5PnfCPbpE1RLCukAHsRuQgC2iEHeM7d1kt0qp74B+W7dr1w7t2rU7LN941KhReOyxx1BeXo7CwkIAwJQpU5CTk4N+/VrWAi0lePMAGA3c7nD9L+5ln2QsKmNLbG3eEy0zs68umj6cKAjRWCt2RPvGbNlT16gASUjTkw7i5kAZbqjElhQJkKhGurEjQNJSfjkQ0WElSRKCMEtshaw/P3I/iEqRiVB4jOP6RKdSEjkSPUjC9gySRpbYShTgcSMEjxRZuEc2D64b0x0fLNyOcwZ3PPQbJaKWwRYgEeHofG3xtgrHZSFHfyMNK3cac7IpK8sOKECi6QIvTFuHmvowJp7cE7kZrv2/6QCFHCW2os8rwpkh00YNwIsg3JHeA+acl4jSSGSOAyAuOAJEm5jHZpA4e5DEZJDY5l/2qgp1MQdXKuqiY5IQwhFMWby1Asf1bNvoH8MU0uxZLsZY+OWynQCMgLFXdgY9rACJK1pyJ9t7+MdlImo5JAB+uJEPYwyotMYwgUBIx5wNe+BxKRBCYGiXfFz8yizUh3X4QxruG9+3We45ENIc+3UCzsDHnI17ccPr83Hv+L649vhujveac9hzh3TEx4uMrBFNF8iMHIa+adxQnHtCzyb+CSiVHfhxhkbasmUL9u7diy1btkDTNCxatAgA0LNnT2RlZeH0009Hv379cMUVV+DJJ59EaWkp7r//fkycOJEZIk3BNmm00yBDgW71JglpwrEInb1hDyrqgsjzuVFWFT2RWOU/+Caf63dFawvagy7JfLBgG+7931JMunAgzh8aX1PQDOhEe5DEn5LJhpEJE1Sz4l7LaYJFPRE1P0UCgsIFSEAfeSt+I3+BYfIadJaMMguLw87xJ9TIDJKgbQEd0nRs3F2LXoVZjoaaIU3HzooAuhT4En3EftnvJTbTJZlEp2qyEM0ChNsY/9plezDnvlMhH0ImIBG1MLYAiR6Kjm07K52lCuzjyR5bT7eyqgB0XTR6XJi7cS+enrIGAJDvc+Omk3oc1G03JGgbB3VdoLIuhE17aqHoxmakpmRA0fzIEHXIhTG31CUFsjvzsN8LEbVwqhthxQtVixnz8nvCtW+d1YsurOkxJbaiY2KiJu3LtldCkSXU1EeDIPaMkbCmo9LW2ymkCQRsQZfYMXhNWTWCYR0DOiVem1ufazu0Y47b5hnGLI8aV+7aPOyoqwc37ySi1keWJPiFB5CA3tI23Bj6CpIriNHycvwjPAEX/z167bd3nmiNcf+bv61ZAiT7aoM46c/f49hubaznlmyrxPQ15dbXr0zfAAB49LMVcQES8zDg+AHtMWv9HpRX1yNU77cOyJw0qAfXt3RImuzo/IMPPoihQ4fioYceQk1NDYYOHYqhQ4di3rx5AABFUfDZZ59BURSMGjUKv/rVr/DrX/8af/jDH5rqltKbrKBOil8w7paNjCCz/EworDtKaekCWLDF6E/yxpzN1vMb99NAqSEbdtVYj5/8ejWWxJxujPXy9PUIajrufHcxggk2CvWYHiRelwwPnBufZg+SUCRAUms72ZPjbbI4IRE1I1k2SmwBwJ9dr+Bc5ScrOAIAesjvuD5RgCER+wL6ljcX4PRnZuC9ec460w9/shwnPDUNb8ze7Hg+pOkJa/3runA8n2hhvD+J7j8zMvbVCg9gO23IySNRipFl6JIxn9HD0QMtpZXOcS4Yjo4Tu2uj1wVCOqoCjW/gbm9KvDAyT9yfVaVVOPUv3+OzJTsavG57hR9X/nsudtdE708TAue/+CPOfeFH+APGRmDIkwcA8Gq1yIlkCoddOUZPFiJKO0FXfNAhVDQEAKwNtJDuzCCxP44NkCzbUYmznp+JCc/9gLXl0fWrvfTphwu3O7+fpjvK3JRXG+PV18tL8djnK3D6MzNw1vMz49bS/qCGm96Yj7fmbsGq0ir8uG6P477KqwPWfHDCwA5xPUjMDBLhYoCEKF1IElAH43D5X9wvY4I0E2cqc5En1eJu17uOa6etigYh6hrZ3/JwWr+rBv/4YQMq/SFMWVHmeO2ayfMa9Rnmfp8iR/sw1ddGy8iq3vjD0EQHoskCJJMnT4YQIu6/k046ybqmpKQEX3zxBerq6rBr1y78+c9/hqpys7qpTMm/CJqwTabcWViTMQgArAyS+pgeJACwda+xuLanFpdWBRxBhgOxzhYg2VVdjwc/Xt7g9aW2kzcfL4xfVJvzWnOCWxJchyWe3+D/1Lesa3LgLLFl/1kkLqSJUpIsSdAb+DUXrk9+sroh9eFokOPr5cYE7+8/bHBc8985WwAA93+0zHpuxY4qHP2HKbj0H7MdwZD6sIbTnpmO61+fH723g8ggSdSkPStSk78WrMlPlOp02QgICy0avLDPdwBn8HVvjfMwiT3oATh7z8Wyn6aOfV8y97y/BOt31eKWNxfGvWb/Xne8swjT1+xyvC4EsCGyoaiaJ8G9xglEZfF/8YD6OgAg6Dq0vnZE1Hqt63klQiJ6GGSl3gV6uz4AALdkyyCxzcHsdfrrY0qamkEKXQAbbBUQ7BkkOyri55L2sl3lVfWoD2u44fX5+McPG63nN++Jfp6mC/z2rYX4clkp7vtgKS77xxzHZ9729kIc+9h3+G6lscHZJlyOt2qvw63KB9Y1GQyQEKUdSZJQB2+jrrUfOjkS5aLtqgIhnPqX6Xjx+/WH9DnmHFZVJCiKsYd32+szAQB1wgOXi5Vh6NCw+UIamVp4JfrVv4r+gX/hknYfAHevwx5vVwCw0o5jm7QD0TJYoZiB9GCySDRdYNXOasdzi7ZWNPgee9bIPf9bEve6lUESuW7UrvfgkUK4Sf0Ug6T1+Kvrb8iR6qALCQGXsZguyHLHfQ4RpRZVllAsRU/LzNd74b3wCdbXsRkkiQIMyczesNfxdbIwq72J5qwNe1BdH8bsDXtRbQsw/7xxH9bvqnWcprEHRewnvhsSm0GiIozJ7icAANWCARKiVKfLxtxG2Jq0x45r9rEltrGwvezp8h2VGProFFz32s8Jv5c98BLUdExdVYZHP1vRYEA3NlhjmvTlKvR58Cvc98FSfLF0J+Zu3JvwOpN5qKeurXHIRxIaTlCWAgACOV0bfC8Rpa7Nva7GgPp/oV/g3+gTeBUTgn+C7DbmP25bOWn7fMl+IKWxm4b2HiT28lqAMR7ae8dV+UOOgInJ3qfkvXlb8e3K6BwwNuhslukyg8SDd32CIrELd7reR39pI+5T/4vucqlxMQMkRGlDloBVerH19RK9G7YJo+dRmchzXGsfcxpbNWF/6sMaNjViTzB2/+9gmeO1S5ahyjIk6PiH62kAQACultN4nlotpmukkXyfG/Vwox7Ayt0a4MqA6jIW067IqRohogNmQaYbe2qDVuO52PJWW/fWOeqnBkIaKv0hFOU4o9jryqvx7HfrcNupPbG6tCau4bAiSwnrXm/cXYvi/P1v6pmnDs1NgLqMIuu1TzwPWI9/0Aci5M4BANx52lEIhVfhkmOLQUSpSVVkSIhOAC8MPgIAGKf8jBzJDz3kPPUXbmSmBgBs2VuLUT0KrK+TJaK5bRM1e9bIjgo/ctq7sKu63rGhqOkCiiw5NjUbn0HivG6AtAlFUgUAoNJX0qjPIKLWS1fcQMiZQRKbBWIPuMZu2tl7kkxZUYZKfwjfrixHWNOhxiw67QvtYFi3yiMMK8nHaf2K8N68bRjTqy2K20Q365Qkpf1enm6cKHxr7ha8NXfLfn9OV6RUTk2nMSisXQNsN7Lv9ro7os2v/rPf9xNRagqGddTDeQhOUY3yM2ZgNXY9a5/7mRkksgQ0tH9oDy7HBkjCmnCsdWvqwwgmCLxs2VuHHRV+dMj1YvF+yk3HCnqi9fs/9/zeehwSCoKZHQ7os4io9ZIlCQ+Hr8Q72smogg/bRCGOltbgA8/DCAjnWFhzkNVfGnLrWwvx9fIyvPmbERjdo23S6+ZtbvjgS2NFS2xJUGQJPaQd6Csb88a1ojNGsIQ0HSKG2NLI9Sd0tx6bjZEGlRg9SLrlR9PRzObAbTKNQdU8xRI7uYsdZCf+dwGOf2JqXC3qW99ahE8X78DN/12A+ZuN1y4f0QWrHj0DgLEhGNus/culO3Hyn7/HXe8t3m+EO7bElu6OL68wW++Lm0O3QYnsYg4ryce7N47CBUd3bvCziaj1cikSnghfAgD4b/hU63mzL0m43plBsr8m7V0LfDh7cEcAQE29c2NR0wU+W7IDlXUhRyDErUZ/zdpPJp7x1x+waGsFjnnsW9xgK61VH2kAbw+KHGwPErO3FAD0uPGdRn0GEbVeIpJBImmNyyCJPbBSVh19n70BcKJFdY0tG2RVafRkYG19GF8s3YnffbgUY56c5hgPY2vmJ/vs/TFPgsuqG/jFq8CxNwAX/QdtfrcScmb+AX8eEaWGOtuY5nXJ6N8xBy53JEASCawGYsa9cIIeJDkZDZdp2bbPj2GPTsHTU9bEBUhCmu4o1TVn415sr/DHfgSe/Go1Rk+aim73fYG35m5tzI9nkZT4M65+4ca5wUeh+5JvUhJRapEkQEDGCtEV20QhACAQCRIXZjjnfwdbHh8Abn97IS75+yzUxWQem6WmX/1xEwBjTvfT+t3WmlQII2Pvya9WH/T3tjMD2i5FgipLjrXurcFbDsv3oPTGDJI00jEvAx9NPA5vztmM+8b3BQB0KTQWkv0LvUCkEo15CrmkwIe15TVYU2YsfM0TN5JkZJrYB9k9NfX4LtL46bWfNmFoF+NzAyENK3ZWAQDWlNWgQ66RETKwUy68LgU+t4K6oIaa+jAKsjzW5z373VoAwMeLGm7kCQB/n7Eed767yJp8eoQRbHkzfAp+F74WnaXdkVRDKenpRSJKPaos4w3tNCzWe2CliGZQmKcL/XV1jusD4eQN63oVZuG9G0fhia9WAXBuDgKw6uorsoRx/aNZbI4AScyi/NUfjVrU9tOMgZAOn/vw9CBxS5FJY9FA5OblNeoziKgVU4xNvZo6v5WNFhs4tY8nsU06t+2Njon295357A84e3BH3HdmX+u5PUn6jgTCurOZcVBDlsdYbiSag+1MsNovLr8AAD7gSURBVHG4P+ZJcEl1A/klwJlPHvBnEFHq8ds27xY8cBo8qgJ5qbGWtPptxhz4SxQgyc1wWRUUktlTG8Rz363F8BJnUDYUU2Kr0h/C+S/+1Kj779shBysj6+aGuCJr3U+1kfht6FZ0lnZxrUuUhhL10jUPAmZIznlasjKn+1NTH8ZHkT25/83fhitGdQXgPDyd4zW+521vLcR3q8rx2PkDcPbgjjjruZno0S7zoL5vIrEZJGaAZLNeiDK0aeitRI3CDJI0M6Q4D0/+YjDyI9khUCKnDfXoJDAUKb9wTFdjkFldVo3KupA1COb7jPfU2hbWW/dFF7j2pfh6W0P2DJeC6oDxffIin+GJbB7uqQ1ite0E4oE0jvp2ZTm27fPDPKTogfHLwIieS9gm2sHsEMBJI1H6UBWjSfti0RNBRE8D1gvjcW1dLR77fAWue+1naLqIC3rYDeiUizyf29roi63db9J0gS+WliZ8LRAzrskJJrXmyUZ7uazgfjJbrO8dc12emVmtsucSUToQqlHitK62Gr99awEAxPWVswdfY0tsvTtvq3Uoxh4w3lEZwCszNjg27uwNhu0e+GgZ1tsCJFW209X2DBIzs2RXJGvFo8roWtC42vkqImVwOLYRkc2AjtHSzz63aqz7ItkWVoAk5rCKPWhsZvHm7ieDxK6s2lmuNRgWCXuONMYtJ/ds1HXmYcA6YYz5XOsSpadE/9yt0lqhAE46qp31/MGW2Npu2+f7eNEOrI3ME+2fZ46j5oHpV3/chHd/3oote+swbfUuAECnvEPvh2n1IFFkqLIEV2Q+aF/nEx0KBkjSnRkg0aILWHNjrjDHg25tMyEEsGhbhRUgyfNFNhdtg2JZVXRyaI9O2+tZ+0MaFmypAABkehQAgNdl/PnbNxdi3F9nYOKbC3D72wvjGsBnuBQMK2lc2QS3MBbbAcQvnDlpJEofLiXxv3dzElVTW4N//LAR364sx+JtFQ1OHM1eIpmRAEljJ5kB2yI5dlGeqCm8GSCxl/tKVLs6EfPz7hjbG8VtMnDlsZE61Ao3EYnSge7KAgBkImAFamPHmWCCDJJfDDPKje6rC1llEupD8ePO18uNzwyGdawtq4l73WQukAGgKmCfX0bvpS6oQQiBK/49FwAwuHMeXr5i2H5+QoPLXmKLiChidM+2+PsVwzDt/50UfTIyB0qaQWKbbwVC0QySRLI98cU3yqvqHV+HdR3+BONnYwzqnLv/iwC4rLVu/H1yrUuUPiQkOGxn7oFp9XjlV0Px9EWDATjHOsDZG7MhOyqjAZJ5m/fhvBd+xK7qekemXGzpwgyXgqqYg4cljTwEYxfbR8/cp1QVI4PErJYQYmEkOkwYIEl3SvJ61bIkoX2k4XqlP2RFhs0MEntpBnuAxH4Ke2+SEgw+tzNAYpbH+nzJTiuFzy7To1rv2R93JNUutjGV+TMRUXpQ5cS/4szU423l0YZxQgCllYGE1wPRUllmBsnUleVYENNvKZG6kAZNF1hVWhVX7z+UIPBhLs7Dh9CD5JfDO+OHe07B8M6RlGYGSIjSgvAYPdiyJGNOpekibnFpH09q6o35Upc2PtwxtjcAo2Tqo5+twOSfNsV9/vNT16EuGMayHZWobmSQuCyyeVgXDDt6lXy6eAdW7Kyyxq3u7TKt+eX+uBkgIaIkTu/fHt3a2kq6ROZAqjDGjdiNPH9IwzNT1qA+rFkZJMl6kBTmeOIO35gBlw65xpo5tgfJgSjM8ez/IgBuYa+W4JRs7ktEqSdhBoltXPDsXmFlboR13TF+BRoZyK2L6btZG9TwwYJtjpKGQU13jK2aLuJ6nlgVbA5AUEtcElGVJaiybO37BRkgocOEv0HTnRUgiQYyzNPKsiTB6zL+igSCmjVAmQtY+wlq+8aifdG8u8Z5qsaU4TIGMY/auL+C+T6XVZZrf1y6cS88VUOU3tQkGST7hHHKumr3duu5qavKMGfj3oTXA9EAiZlBUloVwAWNqCmt6QIPfbIMZ/z1B7w7b5vjtdhJH2CUtVm5swq7bdl39g1NIQT+8s1qfLI4PpBsnaoxxzlzXGeAhCg9uKMZJIAxB4vtQWLO8aoDIUyNZHr0LMxCj0JjQ3F7hR//mrkx4cdrusDKndUoi8z5Oufvv1zClf+eCyEEtu71O+7l3g+WYvHWSuvre87oY2Uo749LMuaZiotjGxHtR6Q3k5okgwQwel++9P16K3POrKcfq02mGz53/EZcp7wM6wBNMCysAzGf/fZ4HN+z8U3TPariKEWYjKo3VC2h0d+OiFq5RId/a+GNfrF+mrUeDusCLtsAEdtwPZmgFh/wffXHTY5KMcu2V2HW+j3W1+XVgbi5ZL7PhTd/MwK3j+2V9HuNH9AeP957ivV17CFBMwtGlWUojhJbDJDQ4cFfoenOm2P8WR9dpNozSMwMj0BYs/UgMSaN9kG11FFiK1pOwewrEhuYiM0g2Z/fndkX7bIac6pGoOPmj417ZoktorTmSrJK3CTaAwAed/0LGZGNxB/W7m7ws2IzSA7EG7O3JHx+qq0MjWnGml0Y/+wP+Nu0ddZz9kyTH9buxvNT1+HWtxY63qfrAubeozXOmZmBauNOJBJRK2dmkMDIIKkOhOICJOaJvulrdmF3TRCF2R6c0qfQOvyyfEfiBsFjehmbfBe+9BPmbTay5xoTIAGATXvqsG1fXdzzM9cZdakvPbYL2mS64VEVjOpegI65Xpzer8i6zjl1E8iDUd5Lyshr1PcnojRmZpAgcQaJad6mfVbwJFmwtriNL+E8MCfDBTUy57Q3afe6FGR7D2zemGFbG3dP0ty4+8Y3AUR76tkpzCAhSh8Jt7YkvO69zHi4a5U1JoQ14ehLVxfU8MBHy3DnO4saLLeVqORqaVUAXyzdaX29u6YeV0/+2fZ1fBWZfJ8bo3u0xe1je+Ojicfh92f2jbsm06OiQ040wBPSkpfYUhUpmkEiVJxs67dCdLD4GzTdZRkLUKmmHGYA2iztIkvRAEYgpEVLbGWaGSTG5G/aqnJ8sCB6EntHhR/7aoOoqQ/jsyXGwPn3K4Y5Jnm+SA+SxmaQdMrPQLvs/W/y5SNavmGBHh+dZoCEKH0k+/e+QXSwHl+o/AAA2FeXuBygyexB0pgAidcl44qRJWhsRb97zjgKQ4rzAAAfLtwe97o/pFkT12SNkTXbxNYqr2D2llLYuI4oHUheI0Byt+td9JM2wR/UrbHBzAg2a0Iv224EQk7vXwSvS9lveav2tgWreSqwpE3izTsAOKZrPvq0N+5ny946qxm7ndknxf7Zb/5mBGb+3yl48fKjcdXorvjT+QMdJySz4Yc3UnNayips8J6JiODNAwDkhPcAEAk3+wBjzri/Ju0lbTKtPpp24/oXwR05pR3SdKtJu9clJ81GidW/o3Fo0WsrKZ0o+8SD6Hx1qege93pjMlCIKDXY50f24OpWVzfjwfIPrTFB04Xj0My68hq8PnszPli4PWFAw5Qo6w5Ag5UXErFXgxlSnIdT+sbP4TJcCmRZsu45tg9nbAaJO5JR7Mvw4ZmLhxzQ/RAlwgBJujMXl8EaZEnG4tWM1MpytMTWRwt3WAOneapmxppdmPzjRke0GAB0YZxM3LS7FmqoGiPcG3Fy1Se4IPgZekjG5p9P1AErPsbY+m9xhfINzpNnYrS8DJcp3+GXyve4UJ6B65VP0R57MFJegSK9HL2Lsvb749zv+i8AYIdog2UJJo0Ke5AQpQ1XklN0ZSLfemwuNCtqjQ23CQOjwRP7GjO2xFZDbjm5Jx49bwCyEpRhSCQ3w2Vl5mUmeM++uhBOe2YGAiHNUcLQftrHPuFVzNJi4ciGpMIMEqK00K6P9fCXynT4QxraBDbjX66n8Kb6KB5U/4NqvzHWmZkkbTKN8aHTfrJB1AQZeRdGmrvHGl6Sj5d+Ncw6ZBMM66iNbBieObB9XKPOoyKBFACQJMlYHCsyHj6nPy4b0cVRLrGtZGQ8V4sMuDz7nxcSUZor6AlIMjK0GhSiAoFIECT2EM30Nbvw8yYjOy5ZUOOswR1QkBk/p+rRLsvKWg6GdWtDMcOlICej4blgm0w3RvcowCPn9LfeY0qUCT1ONtbddXImftAHxr3Ow4BE6cP+z90MsgLAbl8P40E4gKxdC4yHurAqxQDA7A3RkljJMusAWIFjk3lYcEeFP9HlSeXFBJ7N3ih2GZEAscuWkWcSInr/qmIEUcyedN3a5ze6HD9RQ1isLd25swBPLlBfiR5SKRahxEpdkyUJHtUYpFbsjJZcsJ8yfPjTFY6Pu3h4Md6ZtxWB5Z+j23cvYKl3k/HCl8AtAG4x55RPG3/8BkCCViGW37neAgCIfz+DU+5Z3+CP4kEQ58hGT4BFes+E18icNBKljWQ9SJbo0eCpD0YQwV4OwZTpVq2AhJntltGIsoBSJBCb4VYa1cg4y6Nakzr7WGu3rrwG63fVOBre1Yd1637tE974HiTMICFKB/qQX+H1zz/HFeq3uFr9GtODIfzf5hvhVfyAAI5Wl+P+6ksADLEWvObYluzEtCn2FJ/PrWB4ST4y3YoV/JhyxwnolJ9h1eh32zYMzWaeOV4XuhZkYvMeo+TWtcd3w7j+RWiIW5GtZqJmpvBekY2CJGM8EZHF5QXadAf2rMMoeTnqQ0ZZF48qoy6YeFOwfW7igyU92mXhzxcNxklPTXOUfvGosrWhV10fhgwdnaRd8JXNw8h9P2KbXIMM1ONzfSTq4UaxVIY81KISmZhy1dHwSGGgIH6emShAcqv6IQBgt7szUBc/BjJAQpSeehVlWyVQazO7WM9nlc8H0BfBsAZ7Ja0vlkVLZJkBkrVl1Xhr7lbcfHIPtI2Ut4/NujOHGDMjubHyM53zTK9LwdKHT8eL36/HS98b+3w5kZKEblWGP6Q5+nVqMWvdkCbggplB0riSr0T7wwBJupMkoMMgYNMPuF+djF9oD1mpa7IUjeLatY3pBeJBECGouGV4Fs7a9Sc84f0SWBf3tkbbLbVBW+FM2ZNCtcDOxdbX5w/tFFeKpq+0BS7JGNxvC92S8LO5liZKH64k/+DLpAL8qPXHccpy3KH+D89rF1gBhgx3dDHq80QDHOYitTFJaIM750U+K3EwxeuKbvYBgM+txpUbdCsyzhjQ3tGMvcofdgRC6kPRAImmCagIo1jaBaVyC/DpRGDzj8aF7EFClBbcqoL3tBNxhfotAKDTomfhFTEn/ALG4tkMeLhtG3D3ju+DSV+uSvjZwZhGmYXZHsiyhCyvagVIerTLchxEMTPvgppmXeNzq46a/GN6tbWCyg39XIgsgrOlSH8V+FDEjUAiaox2fYA96/CE6x/os/x4AMb4lChAkgk/2mlluPwo4JPVdThhYA9cNCgXvbLDQMUWdApUYu4V2Tjv/QpU1xiBj+z6nSgS5eiIfait2I133H/AMfIa4HXgVACnRs4WPo2X4+/tX5E/2/YGJs7FzSf3wG1vL8L4Ae2tMdTUEbvRUzbmhd+2vQKoiP+4gkyeoiZKFwM75SLTraC4jQ89bOXss7xu4MR7gemT4Nm3FkBfBGIOumzdG50fmgcFz3/xJ9TUh/HvHzdizu9ORVGON27+Fx+4FUjSDMUhUYZHtteFnu2i2cDFbXyO72E/nBPWBWToKJHK4F31AR7f/gg6uozx0O2xNaYnOgQMkBBQchyw6Qd0hJFmZw6CsizBqzo3+CTo6L57Ki5W5gMA+khbcLX6tfHiMufHapILt9TfjH79BuK3l/8CIx/7BgW1a3GKvBB3XXkRUNQfD0zdh3fnrIMEgV+23YLC/ifiF6P7AD7JOPW8cTrw+vnGB1Zsxbd3noFZ6/fg0mO7oLQygFm21ECz7EKwaAhCmxP/1XarjWsKT0Stn5qkxFZhtgdv15yM45TlqIVzQpURk0GCSIaJuUjt1yEHp/YpxHcJGqwDwN8uG4rjI82Mk2WbdMjNwMbd0V4imW7FqtVvOrlPOzx7yRBHgKTSH7IC2AAQCGvIjaTghXUdr7smYZSyAvhbzDfMZNM6onTgVmQsET2wSO+BIfJ69Fz5AgBgn8hCjacQxcENUELG2GPO9ewbcDee2CNpgCQ2FmEuWkd1L8BHi3bggqGd4rJ0rQBJWEddJNjscyvItpWvadOIzTx7ANlsQF8LL2vtE1Hj9DsXWPUZvFII+ajCPuQ4avebSqRSfOW+FxnvBTEQwGNeICSdBdf/PnNclw9gOgBrCvkJMMr8eiYOroj57jXAjgU4Z/DR6NchByUFmfj7DGf1hBK5zHq8Jnc0gNK4jynI4qEYonTRqygb8x84DW5Fxnvzt1rPZ3tVoNAou+reuwZAfCawndk3qcZWqeCG1+dDFwJLthl7bJIEdMzNwM0n98DvP1yGHNTiDfefMEjeiN+HrsF/tbFxn+tzK1YgOrbElsle4rV7WyNYYu/pZAppOl5xPY3TlAXAJ0BH22dIXOvSYcIACQEjbwKmT0JHaTdyUIuQlgMFGjLqdqKdXoOO2G1deo7yE3pMfRtP7Kdiyxfasfhd6FpUIBtdCroDkoSXrxyBS/8ucPLxpwG9jwIAZGXUoB7G4rii04l4dPxQ5wf1OAUYfBmw+E2gYjN6DspGz0JjIzF27zMXkQ3HjHwkY/ZUIaLUl6zEVtssD2bWGmNNtuSHB0FrHPLYgqg+WyNO85S1LEv411XHYPKPG60Sg21RiSHyOngz83BWx95AOAio7oRN7Ub3KIAkwREg8XlUXDqii6NkYbfgWkilzo3DqkDIOuEDGJNYszCNFg4bwRG7jHzgpN8Bgy5K+P+BiFKLGaD4Z/hM/M39vPX8A6GrcbtvOgDAHTJKVFkZJGrj5kV3ntYb3ywvs8agHZUBAMDD5/THuUM6WYFhO6vEliasBbLPo6CmPvo9E9WgBgCE/MDKTwFXBgoUYHtkxzHTzCARGSwlQ0SNM+giVH12P3KCZSiRyrFP5GBvbRA3nNgdNbu3QwvVo3rdbLzgfi7ura41tuCI6gXCgbhrdMWDsC7gFtFGx5XIQu4dczBr/W5c9e5GTJBn42b1EyzUe2KV6IK5eh+M76bg5kEysPxDYOtsYPVXkDoNQ68iY60bOz7nRNa6tYXDICnxweWiHAZHiNKNWU3A3icz26tafek8ZQvwG+Uz/EM7y/g60n/TG/mzHi7U+2sBPQ8AUIBKnCQvxp7tOdggOuAkeSdm6f1wwwndcefRLmzauBCnykvwL/dfrO/3mOvfqBFeXHf2SXj6m1WoC4QwWlmOnUoX/CSVYKS8AsXrtgKLdgIDLgRqyoF9GwFZxdDeEzCmV1v0aJeFAZ2MPirm2BeKKbF1srzI8bMv0nvgY200Hjr+zsP1v5PSHAMkBGTkAZIMCB1/cv0Ld+q/xSfu+9H/480YCeCyJBlrU7RhAIDTlPlYqndFn9Ouwfa+1+GkP3/vuM5sdDekOA+LHzrdMdnLih3IE8krNv6s3Op4OvbkT65kTBqljLykP6q3Ef0DiCg1uBPUbgaMZsO+rHzoAQmyJHCt8iVe1M41XpMBM1XYZ2uYHrdItZ2C+Y97EvrJm4EQgL89AMgu4OI38IthPfHU16ut6965fiRGdC/AFf+a4/isTLcCj6pgRLc2mLNxLzLhx71bbwReAVT8B+HIr+oqfwgBWzmIU/8yHf+55lic0Lsd9Or4U4S44kOg49D454kopU3Thzi+/kwfhYmqkfnr0WoAwArg5gVLgRnvAFoY2LUSX7kX4AttBIbJa9DJ40dpKAMFPY9ByYK5WPHL/nh5hRtPLFJx7pBOxvt9bpzcpzDhfZjj5tqyavy03sj4zXSruODotpj80yYM6pyb+LRzfTXweLQB/LNyCcbij9CgINvKIPHttzQXEZGp2tsROcEyjJaXYZHWE6O7t8F9VX8C1n9iXGCPN5z9rLG5+OZFxpyu63HA2IeNXiYVW4Hpk/D39fn4cFdHbBAd8L/fnoJXZmzA7MXL8bN3IgDg3uw/4aXczhg2qCPq392OD/QT8EHwBMc9TTiqDzCyB6DVGwGSfRsdr8eWsjHXusKblzCDzj5vJaL0Yg+QdMrLANq0t77+vetNvKqdgVHyCrzunhT/5veMPzY1VKlqjvFfVwD/SpD8+6z7ReDrF/EqAJhTO2F7HCk6gx//6nifB7fj9Ss/BbqNsJ4zxz77YcNwXSVUyXn48O7QDVgrOuOhzIIGbpyo8fhblAzePMC/FyPlFfhCutuqb6rLbkcTOgDwZBfgX92fwWvrMlBaFUAwYAxUm8ZMQFcAZw/uiE9tZWHsjT9jNxntQZGkAZLcSIBkw3Rg12ogtzOgeOKyl3MlY9Ev+dpAlgBdIE5snX8iSl3tshOfpHPJEoaW5ENeYwwS97jewWf6SFSITFw772xc6NbxsT4aY4SKRWoVPtTGoN36DcDOnUBmAVC7G8P31OIV13LM0fsawRE7PQS8dTH6nzsbE+TZmKkPQC28xvgTDsKj+/GwOhmL9J6Yph6HTvoOQPS2epYUSfusj/rD6Z3xu2+M4MfcjXvxzYoyx7eav3kfTujdDlJMANn4oAEH+7+OiFqxWmTgquDdmOx+Co9qVwEAQi6jbEGuZvR4a+ffhDdcz+L4b5c73ttHBvrIkfEkDPSUAKxfAqw3KkzfBGD4Sc+j9+gTgfeuMk4+lxxv9Inz5QMFvQBvDjDuT9ac7z+zomNkboYLgzrn4fNbj0dhdoKVeNly4J+nOZ7qpm/GbM8tOKH+GavEVh3YkJOIGq/aVwxULcQZys8YIa/CCTuXATtsm22KB3D7gAv+CfQ81agnc++W+A/KKwbOfQE//GsOVpYbVRaMJu0SdiEfXQNvAgD65EWzQO46rTee/W6t1UdubN9CTBjUAeMHdDA+MztSLGbjDCBQBShuQFbhigmC5MFY6+revIQZdDwISJS+7HtuR7XPBlQ30GGw1ce3p7QDf3Yl6IPUEnz9e+DGH6wvzQCJYx+yclvc27aIxAd0iA4WAyRkOO8l4K2L0VaqQlupCgCwfuSfkHf8dRg9aaojervpkQm4FsC1AH7977mYsWaX46P+dP4ALN9RiQ27jFMuOUnqDQLODJIcb5Lr2vYy/ty3EXjhWOvpVyQvbpBvw3R9sHEZjPuWfW2gyBJ0LT5CwokjUfpIdrpYkSUM6JSLp5ZfhLtd7wIAjpFW4xz1J2TXlyFbBm6RPwZKgcEqcKU6BVji/IwuALoowDhlXtLvf9LHI3GS/YTNv40//glEfvt+A+BF4BXj+ckAYlqi4LIZp2B40Wi0rViCaWuHoJPSDQDghwefaqMQCBsZJVKlsYifL/pi2IRrge4nG32ciCgtfa8PtTbqAKAsdzCw9xscrRmD2VWVf8MgxRYc6ToG2LUKqN2FeqHCI4VjP9JyzKo/A3l1RnAEADbPNP4MVgMV5oaihGzpBrgRQpG0FwqMeWR3PQ8oq0B/jxeoCwBBL6BrgKwApUuB966MfqMJTwOrPgPWT0U7qRIj5ZW4QTXK3eyIlIIgImqMFV0uQ5/STzBIjmRpCACyCgy6BDjn+fjazfthP3TnURW4Gnj/b0/thevGdEffB78CAJQUZOL8odEsOeREAiQ1ZcCkYuvpS2QPZso34SvdWP8WRNbo8LVJkkHCdS5RuhrcOQ9Xje4KtypjSHGe8eRFrwPPDgIAdJR2W2W1WpzSJcBPfzN6MWV3wLWB9dDUcrj2tgFg9BcRkQDJSlGCvmffgYk/uFEf2H8fO6IDwQAJGToPd3z5P20MOve+BD2yPPj0t8fj9GdmJHxbZoKJWLbXhWcuGoJzX/gRANA2K/nA1T4nuhuYkyyDpHgEMPpWYM7LgBYd1L0igNfcT+CE+mewRRShk2Sc4pHyiiESZI8A7EFCRECGW4HPreAJ7RyMlFdgjLIMJXIpTlSW7P/NzaB35U+ABFyozMSFykzr+a5SGXYGjfqySsUmAMAWqT2GHfub5rhNImoBbj21F+Zs2IMubXx4b370tF1VTm8AwDCxHFjzNXqG1kbfNO5xYNTNAIxyWP+ZtRm3DlXRrnS6UaZP6MAPfwHWfmNcX7EZ+Or/4r95RhugzwRg4evA8g/wED7AQ7FJIp828ge5/H2g12nA8Gvw05PnYbT/e7zqfsp6eZber5EfREQE1OT0dD7RaThw5SeAO/OgPs9eFcGtylBi+t499YvBjq8zbGtmLbbMQfGxxv1sdx66UfV6vOz+K3oEXocGxVrripxiKPXR75fnc6GiLoTzh3Y6qJ+FiFo/RZbw8Dn9nU/mlyDc6wyoa7/CGHkpcqW65rm5xvjm99bDCwFABXYszwZGjgIASFXbAQClaIe+w6/GllkzAVQe+fuklMYACRky22Kl1AN9xXoAwFy9D0oiJ1N6RxrFJXLh0Z3x5bJS9CrMcjxvT/ErTFLmBgBK2kYnpYU5SYoeShJw+qNG7VehA+F6YMdC4DWj0dSFyg94JvwLFEvlxuV5XRDWEw/+9gbMRJT6hpfkY97mfY7nfG4FEgABGbP0fhijLMOt6kfON7p8xgbd5DPjP7T/BdDXT4Mc2Id6oeK+vt/i6UuGGqegdywyNhTXfQu8+cvD+rPsEdmYqQ/ECfIS5Es1OFFehFcjDZOVKuPU9g6pfUMfQUQp7s7TjEDIlBVljgCJ8LWLXvTmRfBFHs795c84tn9v66VeRdl49LxIeb6SPtH39D07GiCRZMDXFvBkAUMuA6b+EchqD9wwHRDCmKOVLUt4f8KdBSlcb5QibIh5cEeS8GPmWIz2f+94eZ7oE/8eIqIkFJcbz4YvwG3qB8YTI2866OAIAKiyPYNEdhzOW/PH8XFlpe3iAiSKC7juW2ONK3RADwO71wL/PAUAMFhajwWiN4qlSNWGvGKou6IBkn9fdQwy3apRVoeIyC6vCwDgavVr66kz6ichCBU3n9QTL32/FmUiH1nwY4/SFu31UpSLfNTDjX+6nsJYZeGRvd9hV2PH4inoGN6G3D3R761UbgIAlEptAQACSU5EEx0CBkjIcrfnAfy57gG0kyowTRuCixrR/PLUvoV4/8ZR6BkTIMmyZYO0yUweIOmQ48XoHgXwhzScdFS7pNcBMMovQDEmkd3GYG7WqTi25jvcpn6APFSjh7zTuK6wL4D51tsyXAr8kU1EZpAQpZcXLj8az0xZg+N6tsVv3zImWRku1Qi8AigTbeLfNOoW4Ljbgax2wFWfA5t+NMYfTzZQtQM48R4EK8rx3+fuw7/DZ2CkuUiWFaDzMONx79Ohn/Ekpn3+FhbrPXCn6/1D/lnODT6KbaIQ/aVN+NzzO+RLNfCHjLI1rkiJrVK56JC/DxG1fnEZvlnxc6zlegmUrLaN+8A+ZwGrvgDaHQWc9ojztcGXAdkdoiVqbvoR8Ffg9S9n4J2fN6NUFMCFMC4b2RW/Pe8EI4hStcN4T00poHqBYC3w/jXAtrnGZ3jzrI+fIYZiTv2DeN/zBwBAQLB8IBEdGJcs45/hM5EJP1R3Bq7qd+4hfZ59mexWZVwxsgRb99bhrEEdGgyOAED/jjmJP9BlOyzYeRjqPQXw1O/B39zP4T3tJAyWNxiXFvaFsif6PQoy3SgpOPhgDxGlLrnjEMfXG9qPx6pNRtDEn9sd64VxsLgGPkAT2CYVWaGHO0M3YXqPj5C/6QvHZ+hCgixFrrrma6NP8Ke3At1OMP776W9AoMJ4fcCFQGYhMOel6Ad0GW3MJ+e/6rzZ2xYD+V3x3M4PMGnH1XAHK6I/x17jIPd2xShPmKxiDNGhYICELFVyHs4IToIMAR1ywuZvsSRJwvCu8RuMBZluXHB0J7hkGW0yk5fYkmUJb/5m5EHd74Lsk3BszXcAIj0CAJSJPBRlO09Q22u0MoOEKL0U5Xgx6cJB2FHht57zuRUURTLbpulDHNfXZHRG1rjHok90Pd74L4anXVc8Gr4CAKAnmaHJI2/AzZ91Qb2mo5+8GeOy1kHKLQbG3Alt689QZr8AjH/SmDhu+xmlHz+IuyouxM96H7zc62ecMqgb8Pld1uftFAUAgDsmDAG+BTIRQCAS/FXrjObtu+VGbnYSUUrzeZxTfDUjz/H1q9L5eCY4Hu+4G7kU8LUBLns78Wu5Ccq6ZORBKxqIZcKYdz154SBcdEyktr4kRd9j1t73tQGybQFe2+7jsJJ8TN7eB3/q+SZO3PAXPOOf0Lh7JiKKcKkSquHDH8NXoMjnwVWH2KfNvkp2qzL6dczBG9eNaPA9X9w6BnM37sEvhxc3eJ2puu1QeLZ/i47SXivzpUpkQG7bE6q8ybpObsShRiJKT3KfM4GPo1/7pGjJelkCHjq7Hx75dIX1XMfcDGyPrJurkAX54v8AMT2Fu9/7OVwII9OjYlGXkUCXkcDgS42DzJIEnHA3EI58HzWyF3jaH4AN04AuowBvJEjc63Tg7UujH5xtzAnDqnH4Wg3XGZEQSYIaOQy4123MHxkgoabA4/RkMQIiEvTIX4tGxEeSkiQJT180BE/8YtDhubkEVmSNwpOhi7FRjy6oy0R+3HXV9dFGo22zkmezEFHqsjeudCkyxvYtwm/GdEPXLl3wkTbaem1XYeMCtpIkoaTAKFJzdEn8uBP7fW8M3QH9/20AbvwB6H8+lHGPAXesAEbcAGS2BY4aj9cGvY4f9YEIwoWFxb8GjrnO8VkajM+SPEYJhUwEMGVFKV6fvRlyqBYA4Fd8ICKKzSDxulX0DryGS4O/R91dm/BE+GJUIQtZnqY7K9U+N3oaunObjP2/occpCZ++d3wfvHP9SNx96XjMG/0K5ok+GGw2ICUiaoQR3Qqsx/Vh/bB+dqKG6Yn065iDq47r1qhDiACgFsWXEtwh2sKlOg8yqgoDJESUREY+3tTGWl+WDZ5oPc7yqHEB28HFuY6vczMSB5NDUOHz2rLeVLcztU51R4Mj5te9x0WDIwBw1Hjnh0au1yPlDyUIIGRkuMj1Rr+RsNdYdzM+Qk2BGSRkiZ2rtfjTKLKKF7Vz8Z0+FF977gUA7BbOAb1Npht7a43otSpLjgZ5RJQ+fDGnpGVZwu8n9MNrP23CvVt+g6BwYZi8Buv73IxujfzMt68fidWl1Ti+Z/KsDZ9bxb46o9a+otjOJNhPUEe4bIOwtfC94J8QH1yPu0PRxuuS2zhVI0sCGajHAx8tw6VZxuQxzAAJESE+gyTf50IQLszS+8Mv+RCIlOfLbMIASef86HjUv0NuA1dGHH0lEKyLy9rzuhSM6G5sbt50Ug8M7JyDAZ0a8XlERBHtbb0u9dgeIIdIaqI1c974+7GhLoga3Y1Ba/4GACgXeegty46gTGMDLkSUnp7AlXij/hRsFO3xXvFw3Dt+N37euBdnDuwQd23/jrn4YmkpAGBIksMoL/9qGP70xUo8e8mQQ7sxSQIGXQwseQf45WvRp9UMq4zXy1OWYOZOGa/U7QUkQERKsAqmkFATYICELLGTq4ZKY7UE5u1uFYXWc/VwRrhzvGo0QMLTNURpy14P2v5YkSUE4ME94RsAAC9ldWz0Z3bIzUCH3IZPRR9IUFa1BVBc5uNBv8QUcSzefyva8Fjy+CAgQYJAFgLwwwMlbARIdKURp7SJKOXFZpDk+lyQJUAXsIK2AJDpabqDI/075uDBs/qhe7tM5PoaUc5GVoDRtzR4iVuVcUof9loiogMj29a5rWZfzZWB7pc8BWgh4FEjQBKEClmWHOt2paUfaiSiZuXx+rCiuisAIyPkxhN74MYTewAwAg2SFB0X82zztWxv4u3iMwa0xxkD2id87YCd/wpw1l8Bd/RQjaqqqIMHWQjgrZkrsF20Raa33njRl7xyA9GhYoktssRmjHTMa9kbbeZEtw7RE0EBOIM69g1HIkpvV43uip6FWbjw6GjmhismcHq4xwzfAQRIHOUSbI/dXudY7FJU6KoxicyS/PAgZKQgA9BUZpAQUXxwNtOtWsFh8+CIW5GbtDebJEm45vhuOOmowv1fTER0hByO+EhTZY0kZOuXYpZbtVNlrneJKDn7ujI/5hC0JElw29a/+T43xvY15m03nNCj6W9OkhzBEcDoGVUb2ePLgh+5qLVey8iKlNhqLYFualWYQUIWe4BkTK+W3+jXPtB/qB2HM+W5eCF8Ls5Pcg0RpbeHz+kf95wSs6g83JlmPdtlYcm2ykZdaw/W2LNcvC7nYlhVJASzi5GxbxWmee7CHD1ao1qoLTuwTURHhjsm2JvtVeFWZARCOvbWGqfwmjJ7hIiopdIOc4mtI0EbeDGUpe9gbuerMA7OAA3jI0TUkD210cbsiXrPeVTZ6s2U53PhxcuHobQygC4FzXPwzq0o2CoKUSRV4HPP71Eu8gAAu0UOxvZvfLUHogPFAAlZ7KeXc5I0Y2pJXLbF//+Frscj+DUqkJ30GgkMlhCRU2wQ1XWYV5m3je2FsC4wrv/+05DtwRr72BUbIHEpEmp7n4eMOZMAACPkVQCAgHBBUVv+2E1ETS/2dHOmR4XHpQCBMPbWhqzniIjSjX4Yjh4f6VWlct6L0E59CPfndoz7/swgIaKGmMGPZNyqAiAMAGiX5YFblZstOAIYGSQfa6MxXF4DACiUKgAA20RbDO6cBwAQbNNOTYC/Tclir82a28oCJEG44oIjAPuOEFHDYnsvHe4xo6QgE89dOhQTBsU3wYuVPIMkJstFluE/9lYcX/9XR/bIbuQ63kdEZHIpspVVsq/OOEmY6BQhEVGqa5WlWRQVSl4nK/htPzzDJu1E1JDbTu0FAHjiwoEJX/cHw9bjzvnNX67Zrch4XTsdxwWexXRtkPX8BtHR6mnXqyh+74/oUHFlRBa3bXMuO2bR7FZlBMM6urRp/gHTFHvyu0OuF3/55WDHc4f7NDgRpZbYYHBzluWznwC0l8fxqvEltrxuFdtEIe4N/QbnKTOhQsN32tEoYICEiGLkRJpseiLjw54aI0DCDBIiSkeHI4NEbuagxPgB7TFz3S7078jDMUTUsFtO6YlfDOuM4iR7ebVBzXoc28OuOZjz0+1oh9+Hr8EvxAwIIeE97URcELnmD+f0R47XhUuOKW6+G6WUw5URWeyNOmNLunxw02g8P3Ut7h7XJ/ZtzcYVMxn8+JbjUJjtdTxnPw1+JHvpEVHrMLpHgePrw92k/UA4GrM30IPEpcjW5HWj6IBnwr+0XpvQjPdPRC1T3w45AKLjCjNIiCidHY4Aye1je2HaqnJcPrLkMNzRgcvPdOPFy4c1y/cmotbFpchJgyMAMKBTDpZtr8KJvdsdwbtKrtiWxbJNFOKv4V/EXVOQ5cHjFyTOiCE6WFwZkcW+IRcbOR7QKRevXDH8SN9Sg1wxJ3fkBBEQphwTUUNURUbbLA921xhNi5s1g8QW0HX2IIktsSXBm+S0IE8REpFpeEk+5m3eh2uP7wbAlkFSywAJEaWvw9GjvXO+D/PuHxvX74mIqLWZdMEgfLO8tNkCvrFO71+Ec4d0xJdLSxHUGu6fQnQ4cWVEFo89QOJq/tS6/Yk96a0kmKD63AruPK03np6yBn86nxFmIoqX7VWtAImrGTMwlAPIIFEVGW0y3dhbG4QqSwhHVvsu9l0ioohXrz4G63fVYkhxHgBbBkmtWWKr5c/1iIhaKgZHiCgVDOiUiwGdcpv7NiwuRcazlwxFSZvVeG7qOuv52EODRIcbAyRkaagpcEsUu5FpzyB58Kx++PePG3H/hH4obuPDr0eVIM/nPtK3SEStgP0U9eFu0n4g7GOavQeJR5UhSdGmouY9fjzxOGzaU4tPF+/Au/O2Ge9jBgkRRWR7XVZwBIiOD3tr2YOEiIiIiFou+9r4pKPa4YGz+jXj3VA64MqILJ4GTiy3RLEnpSXbvuA1x3fDNZGSEgAYHCGipOynqF1yS8kgsfdPklCQGS0DZl5X3MaH4jY+TFlRFn2f0vLHbiJqHmbgdXuFHwBLbBERERFRy2TvOXzPuD7o0S6rGe+G0gGPmpLF3dpKbMX0CkhUYouIaH+yPC7rcfNmkNgCJDGBjsJsT/S6mCCOPdukW9vkDfiIKL317+gsn8AACRERERG1RI7qCqySQEcA/5aRxaNGN+Rim7S3RC41eYktIqLGyrJlkDRngES1BT5cqvM+inKiAZLYe7RPGE/pW9REd0dErd1dp/fGgE451tcssUVERERELZHbtub1MEBCRwD/lpHFvsmWl9HyS1LFnqJmfISIDkaGO7pJ2JwltuylDX0u58alGfjwuuS4Eohmg3YAyPe5QESUiCRJGGhrwskMEiIiIiJqidSYnpxETY0rI7JU1AWtxz0KM5vxThon9oS1IjNCQkQHzuuKTriUZswgGdolD5ceW4xsrwvFbTIcr116TDEUSUKPdpmOdGPAWW6wNZRHJKLm0yYzegCGGSRElE56F2VhTVlNc98GERE1gj+oWY9zeQiQjgCujMjSr4NRdkGSAJ+75f/VUOXkm4RERI1lz8hozgwSlyLj8QsGJXxNVWRcNqJLwteuPb4bPlq4HX065EBiKh0RNaAgM1qur32OtxnvhIjoyPrnr4/Bne8uwo0n9mjuWyEiov2oCoSsx/Z2AERNpeXvgtMRc8HRnSEAnDGgfXPfSqM4mjYpMjcGieig2McSVzNmkBysgiwPpt9zclxmCRFRrGO7tbEeH9U+uxnvhIjoyOpS4MP7N41u7tsgIqJGqPKHm/sWKM1wN4UsmR4Vvx7VFYXZreNEYbY3Gt9zsyYhER2kE3u3AwCcP7STo9Zpa8LgCBE1xoBOuXjp8qPx1m9Gcu5ERERERC3SSUcZa/R22Z79XEl0eDCDhFqt3IxoHcLWeOqbiFqGYSX5mH//WEdtfiKiVDV+YIfmvgUiIiIioqTG9GqL/900Gj3atfz+yJQaGCChVssZIOEpSCI6eAVZPJlCRERERERE1NwkScKwkvzmvg1KI9xVplYr1xcNkOiiGW+EiIiIiIiIiIiIiFodBkio1cpyRxOg/EE2cCIiIiIiIiIiIiKixmOAhFotWY72HakLac14J0RERERERERERETU2jBAQilBsMQWERERERERERERER0ABkiIiIiIiIiIiIiIiCjtMEBCRERERERERERERERphwESatUy3Upz3wIRERERERERERERtUIMkFCr9uDZ/QAAEwZ1aOY7ISIiIiIiIiIiIqLWRG3uGyA6FBcNL0bPwmz07ZDd3LdCRERERERERERERK0IAyTUqkmShGEl+c19G0RERERERERERETUyrDEFhERERERERERERERpR0GSIiIiIiIiIiIiIiIKO0wQEJERERERERERERERGmHARIiIiIiIiIiIiIiIko7DJAQEREREREREREREVHaYYCEiIiIiIiIiIiIiIjSDgMkRERERERERERERESUdhggISIiIiIiIiIiIiKitMMACRERERERERERERERpR0GSIiIiIiIiIiIiIiIKO0wQEJERERERERERERERGmHARIiIiIiIiIiIiIiIko7DJAQEREREREREREREVHaYYCEiIiIiIiIiIiIiIjSDgMkRERERERERERERESUdhggISIiIiIiIiIiIiKitMMACRERERERERERERERpR0GSIiIiIiIiIiIiIiIKO0wQEJERERERERERERERGmHARIiIiIiIiIiIiIiIko7DJAQEREREREREREREVHaYYCEiIiIiIiIiIiIiIjSDgMkRERERERERERERESUdhggISIiIiIiIiIiIiKitMMACRERERERERERERERpR0GSIiIiIiIiIiIiIiIKO0wQEJERERERERERERERGmHARIiIiIiIiIiIiIiIko7DJAQEREREREREREREVHaYYCEiIiIiIiIiIiIiIjSDgMkRERERERERERERESUdtTmvoFDJYQAAFRVVTXznRARERERERERERERUXMz4wVm/CCZVh8gqa6uBgAUFxc3850QEREREREREREREVFLUV1djdzc3KSvS2J/IZQWTtd17NixA9nZ2ZAkqblvp8WoqqpCcXExtm7dipycnOa+HSKiw47jHBGlMo5xRJTKOMYRUSrjGEfUMgghUF1djY4dO0KWk3caafUZJLIso3Pnzs19Gy1WTk4OB2MiSmkc54golXGMI6JUxjGOiFIZxzii5tdQ5oiJTdqJiIiIiIiIiIiIiCjtMEBCRERERERERERERERphwGSFOXxePDQQw/B4/E0960QETUJjnNElMo4xhFRKuMYR0SpjGMcUevS6pu0ExERERERERERERERHShmkBARERERERERERERUdphgISIiIiIiIiIiIiIiNIOAyRERERERERERERERJR2GCAhIiIiIiIiIiIiIqK0wwBJinrhhRfQtWtXeL1ejBgxAnPnzm3uWyIiijNjxgycffbZ6NixIyRJwkcffeR4XQiBBx98EB06dEBGRgbGjh2LtWvXOq7Zu3cvLr/8cuTk5CAvLw/XXnstampqHNcsWbIEY8aMgdfrRXFxMZ588smm/tGIKM09/vjjOOaYY5CdnY3CwkKcd955WL16teOaQCCAiRMnoqCgAFlZWbjwwgtRVlbmuGbLli2YMGECfD4fCgsLcffddyMcDjuu+f7773H00UfD4/GgZ8+emDx5clP/eESU5l566SUMGjQIOTk5yMnJwahRo/Dll19ar3N8I6JUMmnSJEiShNtvv916juMcUepggCQFvfPOO7jzzjvx0EMPYcGCBRg8eDDGjRuH8vLy5r41IiKH2tpaDB48GC+88ELC15988kk899xzePnllzFnzhxkZmZi3LhxCAQC1jWXX345li9fjilTpuCzzz7DjBkzcP3111uvV1VV4fTTT0dJSQnmz5+Pp556Cg8//DD+/ve/N/nPR0Tpa/r06Zg4cSJmz56NKVOmIBQK4fTTT0dtba11zR133IFPP/0U7733HqZPn44dO3bgggsusF7XNA0TJkxAMBjETz/9hNdeew2TJ0/Ggw8+aF2zceNGTJgwASeffDIWLVqE22+/Hddddx2+/vrrI/rzElF66dy5MyZNmoT58+dj3rx5OOWUU3Duuedi+fLlADi+EVHq+Pnnn/HKK69g0KBBjuc5zhGlEEEp59hjjxUTJ060vtY0TXTs2FE8/vjjzXhXREQNAyA+/PBD62td10X79u3FU089ZT1XUVEhPB6PeOutt4QQQqxYsUIAED///LN1zZdffikkSRLbt28XQgjx4osvivz8fFFfX29d83//93/iqKOOauKfiIgoqry8XAAQ06dPF0IY45nL5RLvvfeedc3KlSsFADFr1iwhhBBffPGFkGVZlJaWWte89NJLIicnxxrT7rnnHtG/f3/H97r44ovFuHHjmvpHIiJyyM/PF//85z85vhFRyqiurha9evUSU6ZMESeeeKK47bbbhBCcxxGlGmaQpJhgMIj58+dj7Nix1nOyLGPs2LGYNWtWM94ZEdGB2bhxI0pLSx3jWW5uLkaMGGGNZ7NmzUJeXh6GDx9uXTN27FjIsow5c+ZY15xwwglwu93WNePGjcPq1auxb9++I/TTEFG6q6ysBAC0adMGADB//nyEQiHHGNenTx906dLFMcYNHDgQRUVF1jXjxo1DVVWVdUp71qxZjs8wr+G8j4iOFE3T8Pbbb6O2thajRo3i+EZEKWPixImYMGFC3FjEcY4otajNfQN0eO3evRuapjkGYAAoKirCqlWrmumuiIgOXGlpKQAkHM/M10pLS1FYWOh4XVVVtGnTxnFNt27d4j7DfC0/P79J7p+IyKTrOm6//XYcd9xxGDBgAABj/HG73cjLy3NcGzvGJRoDzdcauqaqqgp+vx8ZGRlN8SMREWHp0qUYNWoUAoEAsrKy8OGHH6Jfv35YtGgRxzciavXefvttLFiwAD///HPca5zHEaUWBkiIiIiIiJrQxIkTsWzZMsycObO5b4WI6LA56qijsGjRIlRWVuL999/HlVdeienTpzf3bRERHbKtW7fitttuw5QpU+D1epv7doioibHEVopp27YtFEVBWVmZ4/mysjK0b9++me6KiOjAmWNWQ+NZ+/btUV5e7ng9HA5j7969jmsSfYb9exARNZVbbrkFn332GaZNm4bOnTtbz7dv3x7BYBAVFRWO62PHuP2NX8muycnJ4alDImpSbrcbPXv2xLBhw/D4449j8ODBePbZZzm+EVGrN3/+fJSXl+Poo4+GqqpQVRXTp0/Hc889B1VVUVRUxHGOKIUwQJJi3G43hg0bhu+++856Ttd1fPfddxg1alQz3hkR0YHp1q0b2rdv7xjPqqqqMGfOHGs8GzVqFCoqKjB//nzrmqlTp0LXdYwYMcK6ZsaMGQiFQtY1U6ZMwVFHHcXyWkTUZIQQuOWWW/Dhhx9i6tSpcaX+hg0bBpfL5RjjVq9ejS1btjjGuKVLlzoCwVOmTEFOTg769etnXWP/DPMazvuI6EjTdR319fUc34io1Tv11FOxdOlSLFq0yPpv+PDhuPzyy63HHOeIUkhzd4mnw+/tt98WHo9HTJ48WaxYsUJcf/31Ii8vT5SWljb3rREROVRXV4uFCxeKhQsXCgDi6aefFgsXLhSbN28WQggxadIkkZeXJz7++GOxZMkSce6554pu3boJv99vfcYZZ5whhg4dKubMmSNmzpwpevXqJS699FLr9YqKClFUVCSuuOIKsWzZMvH2228Ln88nXnnllSP+8xJR+rjppptEbm6u+P7778XOnTut/+rq6qxrbrzxRtGlSxcxdepUMW/ePDFq1CgxatQo6/VwOCwGDBggTj/9dLFo0SLx1VdfiXbt2on77rvPumbDhg3C5/OJu+++W6xcuVK88MILQlEU8dVXXx3Rn5eI0su9994rpk+fLjZu3CiWLFki7r33XiFJkvjmm2+EEBzfiCj1nHjiieK2226zvuY4R5Q6GCBJUc8//7zo0qWLcLvd4thjjxWzZ89u7lsiIoozbdo0ASDuvyuvvFIIIYSu6+KBBx4QRUVFwuPxiFNPPVWsXr3a8Rl79uwRl156qcjKyhI5OTni6quvFtXV1Y5rFi9eLI4//njh8XhEp06dxKRJk47Uj0hEaSrR2AZAvPrqq9Y1fr9f3HzzzSI/P1/4fD5x/vnni507dzo+Z9OmTWL8+PEiIyNDtG3bVtx1110iFAo5rpk2bZoYMmSIcLvdonv37o7vQUTUFK655hpRUlIi3G63aNeunTj11FOt4IgQHN+IKPXEBkg4zhGlDkkIIZond4WIiIiIiIiIiIiIiKh5sAcJERERERERERERERGlHQZIiIiIiIiIiIiIiIgo7TBAQkREREREREREREREaYcBEiIiIiIiIiIiIiIiSjsMkBARERERERERERERUdphgISIiIiIiIiIiIiIiNIOAyRERERERERERERERJR2GCAhIiIiIiIiIiIiIqK0wwAJERERERERERERERGlHQZIiIiIiIiIiIiIiIgo7TBAQkREREREREREREREaYcBEiIiIiIiIiIiIiIiSjv/H+loz9ijy4ujAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.subplots(figsize=(20, 10))\n",
"\n",
"plt.title(\"x-component of the force vector\", size=20)\n",
"\n",
"plt.plot(f_x, label=\"ground truth\")\n",
"plt.plot(predictions[:,0], label=\"prediction\")\n",
"\n",
"plt.legend(loc=\"upper right\", fontsize=16)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABkAAAANMCAYAAAAE9mF7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5wTZf4H8M/MpGxfeu8gioqAIBZEERWxF+wNOOU8z99Z7ixnOXs7uydWFLCADUGxoihgoVdBAUWKsPS2y9YkM8/vj8lMZpJJNrubbHaTz/v18i6ZTJJnE2byzPN9vt9HEkIIEBERERERERERERERpRE51Q0gIiIiIiIiIiIiIiJKNAZAiIiIiIiIiIiIiIgo7TAAQkREREREREREREREaYcBECIiIiIiIiIiIiIiSjsMgBARERERERERERERUdphAISIiIiIiIiIiIiIiNIOAyBERERERERERERERJR2GAAhIiIiIiIiIiIiIqK0wwAIERERERERERERERGlHQZAiIiIiIgoZd5++22ccMIJaNq0KWRZhiRJ6Nu3b1Le6/7774ckSZAkKSmvnyz1+RkREREREaUTV6obQEREREREmen222/Hk08+mepmNGj8jIiIiIiIao8ZIEREREREaa4hZj5s3rwZzzzzDADgmGOOwWeffYYVK1Zg5cqV+Oijj+J+ndmzZ5t/2+zZs5PU2tRI1GdEjc+oUaMgSRK6dOmS6qYQERERNWrMACEiIiIiono3a9YsqKoKAHj99ddx2GGHpbhFDQ8/IyIiIiKiumEGCBERERER1buioiLzds+ePVPYkoaLnxERERERUd0wAEJERERERPWuqqrKvO12u1PYkoaLnxERERERUd0wAEJERERUA36/H23atIEkSRg+fHi1+69atcpcn+CJJ56o03t/8cUXuPLKK9GtWzfk5uYiKysLXbt2xYgRIzBx4kSUl5c7Pk/TNLzzzjs444wz0KZNG3g8HrRs2RInnXQSXnrpJfh8vqjvGb52RElJCe6//3707t0beXl5aNWqFc444wzMnTvX9rydO3finnvuwWGHHYbc3Fw0b94c5557LpYtWxb1vSZOnGi+18aNG1FVVYWnnnoKRx55JAoLC1FQUICjjz4aL730klkWKJZdu3bhnnvuQb9+/dCkSRNkZWWhS5cuuOqqq/Djjz/GfG6XLl0gSRJGjRoFAFi7di3GjBmDLl26wOv1onXr1jj//PMxf/78atsBAOvWrcMtt9yC3r17o7CwENnZ2ejWrRtGjRqFxYsXR32e0/oWH3zwAU4++WS0bNkS2dnZOPjgg3H77bdj7969Ec83PtMHHnjA3Ga8nvW/jRs3xvV3hNu4cSNuueUWHHbYYcjPz0dOTg4OOuggXHfddVi5cqXjc4zPNlab4mnPxo0bIUkSTjrpJHPbSSedFPFaEydOjPoalZWVePLJJ3HkkUciPz8f+fn5GDhwIMaOHYtAIFBtGyorKzF27FicfPLJ5rHVqlUrnHLKKXjjjTfieg0ntf2MPv30U1x44YXo0KEDvF4vmjdvjmOPPRaPP/44SktLo76f07H33HPP4ZhjjkGLFi0gSRLuv//+iOf99NNPuPbaa3HwwQejoKAAHo8HHTp0wFlnnYUXX3wR+/fvj/qetT0mqtO9e3dIkoRBgwZVu29RUREURYEkSbj99tsd9ykuLsZjjz2GQYMGoWXLlvB4PGjbti3OPvtsTJkyBUKIat/nwIEDePrppzF06FDz30lBQQH69euHf/zjH/jpp5/MfY1z7ptvvgkA2LRpk+Mx66Q2x6PBeF3je/7uu+9w0UUXoWPHjnC73VyLhIiIiBovQUREREQ1cttttwkAQpZlsWXLlpj73nLLLQKAcLlcYtu2bbV6v927d4uTTz5ZAIj534QJEyKeu2fPHjFo0KCYz+vVq5fYuHGj43vfd9995n5//vmn6Nmzp+NrKIoiPvjgAyGEECtWrBDt27d33M/r9YrvvvvO8b0mTJhg7rd06VLRv3//qG0+4YQTxIEDB6J+ZjNmzBAFBQUx/+4bbrhBqKrq+PzOnTsLAGLkyJFi6tSpIicnJ+rf/d5778X8/p588knhdrujtkOSJPGf//zH8bmzZs0y9/v222/FlVdeGfV1evToEfFvzPqZxvpvw4YNMf8GJ2+++abwer1RX1NRFPHoo49G/Wzr2p4NGzbE9bdZjwvrv+ft27eLvn37Rn3e2WefHfXfhxBCLF++vNq/5aijjhLbt2+v8Wdb08+ooqJCnH/++TH3b9eunVi2bJnj+1n/nSxatMjxc7nvvvvM/cvLy8Vll11WbRutz7GqyzFRnXvuucd8jer+HT355JPmey5fvjzi8ZkzZ4rmzZvH/BvPOOOMmOeib775RrRo0aLaz8pg/Tcaz/6G2h6PBut3dtddd0U8v3PnzjE/SyIiIqKGigEQIiIiohpau3atOSgUa0DJ5/OJli1bmoOptVFWViZ69+5tvl///v3Fq6++Kn766SexePFiMW3aNHHLLbeIdu3aRQRAAoGAOPbYY83nnnjiieLDDz8UixcvFtOnTxfnnXee+Vj37t0dB/Gsg3FHH320yMnJEXfeeaeYM2eOWLRokXj22WfNQEN+fr5Yv3696Nixo2jWrJl45JFHxI8//igWLFggHnjgAeHxeAQA0alTJ1FVVRXxXtZB2KOOOkoAEJdccon44osvxOLFi8XkyZPN7QDEeeed5/iZLVu2zHwvt9stbrnlFjFr1iyxcOFC8eqrr4quXbuar3H77bc7voYxAH3kkUeKrKws0bVrVzF27Fgxf/58MW/ePHH//feLrKwsAUAUFBSInTt3Or7OE088Yb7XEUccIV5++WUxc+ZMsXjxYjFp0iTb9/P8889HPN8aADnuuOPMv3vq1KliyZIl4osvvhBnnnmmuc+ll15qe/6+ffvEypUrxfXXX2/us3Llyoj/fD6fY/uj+eyzz4QkSQKAyMvLE/fdd5/44YcfxLx588TTTz9tG/B96aWXbM9du3ZttW2Kpz0+n0+sXLlSjB8/3nyd8ePHR7zWvn37zOdY/z0fd9xxwuPxiBtvvFF88803YsmSJWLy5MmiV69e5j6vvPKK43v//vvvorCw0Pz+77zzTjFt2jSxePFiMWPGDHHDDTcIl8tlHjc1/Xxr+hldfPHF5n59+vQRb731lli0aJGYMWOGGD16tPldNWvWzDFoaz32jjjiCCFJkrj66qvF559/LpYsWSKmTZsmvvjiCyGEEKqqilNPPdXc/6CDDhLPPvus+OGHH8SSJUvEZ599Ju666y7Ro0cPxwBIXY+J6qxevdp8/iOPPBJz3379+gkA4rDDDot47McffzSDNK1btxYPP/yw+PTTT8WSJUvEp59+agtGXnDBBY6v/91335n/DhRFEaNGjRLTpk0TS5YsET/99JMYN26cuOCCC4Tb7Tafs2PHDrFy5Upx7rnnmoErp2PWqi7Ho8F43Pi96d27txg/frxYuHChmDNnTq2+CyIiIqKGgAEQIiIioloYPHiwACB69uwZdZ+pU6eag0rTpk2r1fsYGSSAnrGgaZrjflVVVREzzceOHWs+9+qrr3Z8rnWmr1MwwDpg7PV6xfz58yP2+eyzz8x9WrZsKVq0aCHWrVsXsd+LL75o7jd16tSIx8OzFZyCS36/X5x22mnmPp9//nnEPkaQRFEUMWPGjIjH9+7dKw499FAB6Fk8q1atitjHOgO/f//+ori4OGKfd955x9znmWeeiXj8l19+MQdQ77vvPsfPX1VVcyA1Ly9P7N271/a4NQACQDz88MMRr6Fpmhg2bJgA9Ewjp2CM9XusK5/PJ9q1a2e22SmrYOPGjaJt27YCgMjJyRG7du1KWpusn9GsWbNi7mt9T7fb7bj/nj17ROvWrc0BeidGMKpfv36Of5sQQnz55ZdClmUBQLz22ms1/bMi2huN9fg7+eSTHYOLr732mrnPxRdfHPF4+LH3+uuvR32/559/3tzv/PPPF5WVlY77qaoaEWxJxDERjyOPPDJqYMNgDZSEn2t8Pp/o0qWLACCGDx8uysrKHF/D+rl+/fXXtscqKirM4yQnJyfmv80///wzYtvIkSMFUH3mRaKOR+v3f/LJJ0f9XomIiIgaGwZAiIiIiGrhzTffNAeLfvzxR8d9zj77bAFAtGrVSvj9/hq/x759+8zSS/379xeBQKBGzzdmsrds2VKUlJQ47uP3+8UhhxwiAIimTZtGDHpZB2DvuOOOqO9lDRi8/PLLjvuUl5ebWRO33HJLxOPhs9CjBXs2b95sDqKeeeaZtscWLFhgvsbf/va3qO398ccfzf3+/ve/x/x7VqxY4fgamqaZA4/nn39+xON/+ctfBAAxYMCAqH+LEPr3bJSuCR8otw7u9+/fP+rrfPXVV+Z+n3zyScTjiQyAvP/+++ZrPf7441H3swaInnjiiaS1qbYBkH/+859R9/v3v/8tAL2M0v79+22Pff/99+Zr/PzzzzHfz8jMOO644+L+e6K1N5rTTz/dDOg4DaQbTjnlFDNItnXrVttj1mNv6NChUV9DVVXRoUMHAUB06NAhZuknJ4k4JuLx9NNPm3+PU2krIeylssJLAL711lsCgMjKyoqa3WUYOHCgACAuv/xy2/ZXX33VbMNzzz1X478h3gBIoo5H4zFZlmtVEo+IiIiooeIi6ERERES1cNFFF6GwsBAAMGHChIjHd+zYgS+//BIAcNVVV8HlctX4Pb777jtzYfMbb7wRiqLE/dytW7di9erVAICLL74Y+fn5jvu5XC6MHj0aALBv3z4sXbo06mteeumlUR874ogjAOgL6V5yySWO+2RnZ+Oggw4CAKxfvz5m+0eOHBl1od8OHTpg2LBhAPRFwq0Los+cOdO8fc0110R9/UGDBqFXr14RzwnXu3dv828LJ0kS+vXrB8D57/n0008BACNGjIj6twBAkyZN0Lt3bwDAvHnzou53+eWXR32d/v37m7er+2zryvi8JEnCX/7yl6j7WY+RWJ9xqlxxxRVRHzM+TyEENmzYYHts+vTpAICDDz7Y/N6iOeGEEwAAixYtqvWC6LEEAgHMmTMHADBs2DB07Ngx6r5jxowxnzN79uyo+8X6XJYvX44tW7aYr5eXl1ej9ib6mIjm0ksvhSzrl7qTJ0923Ofdd98FoJ8LOnfubHvM+I5PPPFEtGzZMuZ7Gd9xeDs/++wzAEBubq752SdDoo/HQYMGccFzIiIiSisMgBARERHVQnZ2Ni6//HIAwAcffGAGKgxvv/22OeAZPii1YcMGrFq1yvG/nTt3mvstW7bMvD148OAatW/VqlXm7aOPPjrmvtbHrc8L17Nnz6iPNWnSBADQokULNG3atNr9Dhw4ELNNRx11VMzHBw4cCAAoKyuzDfgb7fd4POjbt2/M1zD+7t9//x0+n89xn0MOOSTmazRr1gxA5N+zadMm7Nq1CwBw5513QpKkmP8tXrwYALB9+/ao7xWrLUY7nNqSaMZn3LVr15iDwx6PxwwQxfp3lSq1/TyN72rt2rXVfq//93//BwDw+/3Yu3dvwv+G9evXm+eeRB3n0QJ+QN3OSck4JqJp164dTjrpJAB6oEMIYXt8wYIF+OOPPwA4B3yM954xY0a17Xzqqacc22l8Vv3790dOTk6N/4Z4Jfp4jPX9ExERETVGDIAQERER1dK1114LQB8gnTJliu0xIyvk6KOPxqGHHmp7bPTo0ejdu7fjfy+99JK53+7du83bbdu2rVHbrIOtrVq1irlvmzZtHJ8XLtYgnjHburqBPmM/a9aGk+ra3Lp1a/O2tc3G7WbNmlWbdWP83UII7Nu3z3Gf2v491kBWTYQH0uJti9EOp7YkmvEZV/cdAaHPOBmD/3VV288zGd9tbSXjOI8VwKzLOam+PzcjsLF582Z8//33tscmTZoEAHC73bjooosinlubtlZUVNjuG59VTT+nmkr08Rjr+yciIiJqjGpei4GIiIiIAABHHnkk+vXrh2XLlmHChAm4+uqrAeizi3/99VcAkdkfqRCr1ExDVdc2p/pvtg6a33vvvY6DrE5yc3OT1aSES/VnnCrGd9unTx+88847cT+vffv2yWoSgMR9HzUptVcT9X1MjBgxAn//+99RWVmJyZMn48QTTzTb8cEHHwAAhg8fjubNm0dt6+mnn44nnniiVu9f3xr6909ERESUKgyAEBEREdXBtddeixtuuAFz5szBhg0b0LVrVzP7Iycnx3HdjFj1961atGhh3t62bRu6du0ad7usJXx27NgRc19r6Rbr81Jpx44dMUtuWf8ma5uN23v27EEgEIiZBWL83ZIkJXzWs3VQ1e124/DDD0/o66eS8RlX9+8KCH3GDeXfVSIY321paWnKv9f6Ps7Dz0nVlYizqu9joqCgAGeddRamTJmCKVOmYOzYsXC73fj222/NzyraeifNmzfH1q1b4fP5at3OFi1aYMuWLdi2bVut/4Z4ZPrxSERERFQdlsAiIiIiqoMrrrgC2dnZEEJg4sSJqKiowHvvvQdAn4FcUFBQ69c+8sgjzdvhJVyqYx20W7BgQcx9Fy5c6Pi8VFq0aFFcj+fk5KBbt27mdqP9Pp8Py5cvj/kaxt990EEHwePx1KG1kbp162YuOPzTTz8l9LVrI5HZGsZnvGHDBnNNByd+v99cByGZ/67qOxPFuvB9bdanSKRu3bqZpbzq4zivyzkpFceEEeDYu3cvvvzySwCh8lf5+fk455xzHJ9nfMeLFy+Ouj5QdYzPavHixbUq4xXvv+uGdjwSERERNTQMgBARERHVQWFhIS688EIAwJtvvokpU6aguLgYQN3LX5100klm+ZcXXnihRms7tGvXDr169QKgL9JeWlrquJ+qqpg4cSIAvfa7dYAzld5+++2IhYsNRUVF+PrrrwEAQ4YMsZVsOeWUU8zb48ePj/r68+bNM8uUWZ+TKIqi4IwzzgAAfP3111i9enXC36MmsrKyzNtVVVV1ei3j8xJCmNlOTqzHQjI+Y0Mi/7Z4GIPmQgg8//zzSX+/WFwul1na6ZtvvsGWLVui7vv666+bzxkyZEit3q9Pnz7o2LGj+XrRzitOUnFMnHHGGWZ216RJk1BZWYlp06YBAM4//3xkZ2c7Ps/4jouLi2P+G4/l7LPPBqCvYfLaa6/V+PnGv+vq/k03tOORiIiIqKFhAISIiIiojozF0Ddt2oTbb78dANC9e3dzYLK2mjRpguuuuw4AsGTJEtx8881RgwJ+vz9i4d4bbrgBALBr1y7ceOONjs974IEHzEDAmDFj4PV669TmRFm+fDmefPLJiO2BQABjxowxZ2Vff/31tscHDhyIAQMGAADGjRuHb7/9NuI1iouLzc9VluWI10iUO++8E4qiQNM0XHjhhTEHp1VVxaRJk2LuUxfWhZj/+OOPOr3Weeedh3bt2gEAHnnkEaxcuTJin82bN+PWW28FoGfpjB49uk7vGUsi/7Z4DBs2DAMHDgQAPPnkk+Z6EtGsXLkSn376adLaYxznPp8P11xzDfx+f8Q+48ePN4OGF1xwQa0X5pZlGbfddhsAYMuWLbj66qujZkhomoatW7fattX3MeHxeMwA9aefforJkyfjwIEDAKKXvwKAkSNHmoGeW2+9tdpslx9//BFz5syxbbvyyivNdV/uvvvuiMetnP5G4zvauXOn2WYnDe14JCIiImpoGAAhIiIiqqMTTjjBXK/CKIkzatSohJTmeeihh9C7d28AwNixY3HUUUdh3LhxmD9/PpYuXYrp06fjtttuQ9euXfHFF1/Ynvu3v/0Nxx57LABgwoQJOPnkk/HRRx9h6dKl+PzzzzFixAg89NBDAPSAzX/+8586tzdRBgwYgDvuuAOXX345vvrqKyxduhTvv/8+Bg0aZJayOfvss3HWWWdFPHfcuHHweDwIBAI444wzcOutt2LOnDlYvHgxxo0bhyOPPNIcJLz11luTVg6md+/eeOqppwAAv/76Kw4//HDcfvvt+Oqrr7Bs2TLMmzcP7777Lm688UZ07NgRV155Jfbv35+Uthx33HHm7VtuuQXff/89fv/9d6xbtw7r1q1DIBCI+7U8Hg9ee+01SJKEkpISDBo0CA899BDmzp2LBQsW4Nlnn8WAAQPMwe+nnnrKtnZEonXq1AkdOnQw32v69OlYu3at+bfFGjyurcmTJ6NZs2ZQVRWXXHIJzjnnHEyaNAkLFy7EkiVL8OWXX+LRRx/FscceiyOOOCLm4HddnXnmmeaC4l9//TWOOeYYTJo0CUuWLMHMmTNx7bXXmkHaZs2a4ZlnnqnT+91www049dRTAQDTpk1D79698fzzz+Onn37CsmXL8OWXX+K+++7DIYccEpH5kIpjwgh0VFRU4F//+hcAoHXr1jj55JOjPsfr9eKDDz6A1+tFaWkphg4diiuvvBJTpkzBkiVLsGjRIkyfPh333XcfjjjiCAwePDgi8JCVlYW3334bLpcL5eXlOOWUU/CXv/wF06dPx9KlSzFv3jxMmDABF110Ebp37x7RBuOY1TQNf/vb3zB//nzz3/S6devM/Rra8UhERETU4AgiIiIiqrP//ve/AoAAIGRZFps3b07Ya+/atUuccMIJ5utH+2/ChAkRz92zZ48YNGhQzOf16tVLbNy40fG977vvPnO/WEaOHCkAiM6dO8fc78QTTxQAxIknnhjx2IQJE8z3Wrp0qejXr1/UNg8aNEiUlJREfZ8ZM2aIgoKCmH/3DTfcIFRVdXx+586dBQAxcuTIOv/dr732msjJyan2+/N4POL333+3PXfWrFnm47NmzYrZFmO/++67z/Hxiy++OOp7b9iwIeZrO5k4caLwer1RX1NRFPHoo49GfX68/7bi8dJLL8V1XMT7nvF87mvXrhWHH354td8rAPHAAw/U6u+Kt70VFRXi/PPPj9mGdu3aiWXLljk+33rsxfNvoaysTFx44YXV/t3R/i3W5ZioKU3TRMeOHW2ve9NNN8X13Hnz5kU8N9p/b775puNrfPXVV6Jp06bVPj+cqqrimGOOiXv/uh6P1X1nRERERI0VM0CIiIiIEuCqq64yb5966qnmjPREaNGiBebMmYOpU6fiwgsvRIcOHeD1epGVlYVu3brhoosuwqRJk3DZZZdFPLdZs2b4/vvv8dZbb2H48OFo3bo13G43mjdvjiFDhmDs2LFYvnw5OnfunLD2JkLTpk0xd+5cPPbYY+jbty/y8/ORl5eHo446Ci+88ALmzJmD/Pz8qM8fNmwY1q1bh7vuugt9+/ZFQUEBvF4vOnXqhCuuuAI//PADxo4dC1lOfnd4zJgxWL9+PR544AEMGjQILVq0gMvlQm5uLnr27IkRI0bglVdeQVFREXr06JG0drzzzjt44oknMHDgQBQWFtb5bx85ciTWrFmDm266Cb169UJubi6ys7PRvXt3jBkzBsuWLcOdd96ZoNbHdv311+Ojjz7CsGHD0KpVK7hcrqS/Z8+ePbF8+XJMnjwZI0aMQKdOnZCdnQ2Px4O2bdtiyJAhuOeee7BkyRLce++9SW1LVlYWpk6diunTp+OCCy5Au3bt4PF40LRpUxx99NF47LHHsHbtWvTt2zch75eTk4MPP/wQ3333Ha666ip07drV/Ns7duyIs88+G6+++qqZcRGuPo8JSZIizo2xyl9ZHXPMMfj999/xyiuv4MwzzzQ/16ysLHTs2BHDhg3DI488gjVr1uDqq692fI3TTjsN69evx6OPPorjjjsOzZs3h6IoKCgowJFHHombb77ZtkC9QZZlfP3117jnnnvQp08f5OXlxcwqbEjHIxEREVFDIgkRpZA0EREREcXtm2++wbBhwwAA77//Pi6++OIUt6jxmThxolmbfsOGDejSpUtqG0RERERERESNGjNAiIiIiBJg/PjxAIDmzZvj3HPPTXFriIiIiIiIiIgBECIiIqI6+uOPPzBlyhQAwOjRo+H1elPcIiIiIiIiIiJKfnFcIiIiojRUVFSE8vJyrF+/HnfccQcCgQCysrJwyy23pLppRERERERERAQGQIiIiIhq5YorrsCcOXNs2x566CG0a9cuRS0iIiIiIiIiIisGQIiIiIjqICcnBz179sTNN9+MkSNHpro5RERERERERBQkCSFEqhtBRERERERERERERESUSA06A0TTNGzduhX5+fmQJCnVzSEiIiIiIiIiIiIiohQSQuDAgQNo164dZFmOuW+DDoBs3boVHTt2THUziIiIiIiIiIiIiIioAdm8eTM6dOgQc58GHQDJz88HoP8hBQUFKW4NERERERERERERERGlUklJCTp27GjGD2Jp0AEQo+xVQUEBAyBERERERERERERERAQAcS2bEbtAFhERERERERERERERUSPEAAgREREREREREREREaUdBkCIiIiIiIiIiIiIiCjtMABCRERERERERERERERphwEQIiIiIiIiIiIiIiJKOwyAEBERERERERERERFR2mEAhIiIiIiIiIiIiIiI0o4r1Q0gIiIiIiIiIiIiasgCgQACgUCqm0GUdlwuF1yu5IUpGAAhIiIiIiIiIiIiclBeXo7du3ejrKws1U0hSlu5ublo0aIFcnJyEv7aDIAQERERERERERERhfH5fNi8eTPcbjfatm0Lr9cLSZJS3SyitCGEQFVVFfbu3YvNmzeja9eu8Hg8CX0PBkCIiIiIiIiIiIiIwuzcuROKoqBz585QFCXVzSFKS9nZ2cjPz8eGDRuwc+dOdOjQIaGvz0XQiYiIiIiIiIiIiCyEECgvL0dhYSGDH0RJpigKCgsLUV5eDiFEQl+bARAiIiIiIiIiIiIiC7/fD1VVkZ2dneqmEGWE7OxsqKoKv9+f0NdlAISIiIiIiIiIiIjIQtM0AGD2B1E9MY4149hLFAZAiIiIiIiIiIiIiBxw0XOi+pGsY40BECIiIiIiIiIiIiIiSjsMgBARERERERERERERUdphAISIiIiIiIiIiIiIKME2btwISZLQpUuXVDcloRrT38UACBERERERERERERFRA9GlSxdIkoSNGzem5P2HDBkCSZIwe/bslLx/IjEAQkREREREREREREREaYcBECIiIiIiIiIiIiIiSjsMgBARERERERERERFRraxatQojRoxAixYtkJOTg969e+O5556DpmlRSzlZt3/yyScYOnQomjVrFlF2ac2aNRg9ejQ6d+4Mr9eLZs2a4eSTT8YHH3zg2JZRo0ZBkiRMnDjR8fGJEydCkiSMGjUq6vaysjLceeed6NGjB7xeL9q0aYORI0eiqKgo6mfw2Wef4cQTT0R+fj4KCwsxePBgfPLJJ/F8fI7t2LRpEwCga9eukCTJ/M/4bGbPng1JkjBkyBCUl5fj3nvvRa9evZCTk2OuyxHPOh3h34/xunPmzAEAnHTSSbb3d/pchRB47bXX0L9/f+Tm5qKwsBDDhg3DvHnzavz3J4Mr1Q0gIiIiIiIiIiIiosZnzpw5OP3001FRUYHu3bvj1FNPxZ49e3DHHXdg/vz51T7/6aefxtixYzFgwAAMHz4cW7duhaIoAIDPP/8cF154ISorK3HwwQfjggsuwM6dOzFnzhx89913mDFjBt54442E/j3FxcU47rjj8Oeff2Lw4ME4/PDDMW/ePLz11luYM2cOVqxYgcLCQttznn32Wfzzn/8EAAwcOBDdu3fH77//jvPOO8/cHq8ePXpg5MiRmDJlCsrKyjBixAjk5eWZj7dp08a2f2VlJYYMGYJff/0VJ5xwAvr06YM9e/bU8q+HGez56quvsGPHDpx22mm29+zRo0fEc0aPHo3Jkydj8ODBOOuss7B8+XJ88803+P777zFnzhwcffTRtW5PIjAAQkREREREREREREQ1UlFRgSuuuAIVFRX417/+hSeeeAKyrBcc+vXXXzF06FDs2LEj5mu8/PLL+OSTT3DOOefYtu/YsQNXXHEFKisr8fDDD+Ouu+6CJEkAgMWLF2PYsGEYP348jjnmGIwZMyZhf9PHH3+M0047DT/88AMKCgoAAPv27cPQoUOxfPlyvPTSS7jzzjvN/X/++WfcdtttkGUZ77//Pi688ELzsUmTJuGqq66q0fsff/zxOP744zF79myUlZXhqaeeipnBsWDBAhxxxBFYt25dRHCkNg455BBMnDgRQ4YMwY4dO/Dvf/8bQ4YMibr/pk2bMHv2bKxatQo9e/YEAKiqir/+9a8YP3487r33XsyYMaPO7aoLlsAiIiIiIiIiIiIiqgEhBMp9gUb5nxAiIZ/BlClTUFRUhM6dO+Oxxx4zgx8AcOihh+I///lPta8xcuTIiOAHAIwbNw7FxcXo378/7r77bjP4AQADBgzA3XffDQB48sknE/CXhOTm5mLChAlm8AMAmjZtin//+98AgJkzZ9r2f+GFF6CqKi666CJb8AMArrjiCse/LdHGjh2bkOBHbb3wwgtm8AMAFEXBI488AkDPEPL7/alqGgBmgBARERERERERERHVSIVfxaH3pnZme239+uBpyPHUfVjYWCfioosugtvtjnj8iiuuwP/93//FfI3woIHBWOti5MiRjo9fc801uPXWW/H7779j69ataNeuXQ1aHt2AAQPQtm3biO29evUCgIh1QIx2XnnllY6vN3LkyFqtBRKvVq1aYfDgwUl7/eq4XC4MHz48YnubNm3QtGlT7Nu3D3v27ElpgIYZIERERERERERERERUI1u2bAGAqCWamjRpErFeRrhozzUCDV27do362s2aNbO1IxE6derkuN3ICKmsrLRtN947WjujbU+UWOWx6kPbtm0dg19A9M+svjEDhIiIiIiIiIiIiKgGst0Kfn3wtFQ3o1ay3UpCX89anqomjwFAdnZ2QttSHU3TYj5uLePVGNT186vu86hOY/i8GAAhIiIiIiIiIiIiqgFJkhJSRqoxa9++PQBg48aNjo8XFxdj//79tX7tNWvWYP369VFfe+/evbZ2AIDH4wEAHDhwwPF5mzZtqlV7YrXzjz/+wMaNG3HYYYdFPB7ts6kP1X0Wfr8f27Ztq88mpUTDD9EQERERERERERERUYNywgknAAA+/PBDBAKBiMcnT55c69ceMmQIAODNN990fHz8+PEAgIMOOsgWADFur169OuI5Qgh8+eWXtW6TkxNPPBEAMGnSJMfH33rrrVq9rhG8cPpc49WyZUt4PB7s3bsXO3fujHh8xowZUV8/Ee/fUDAAQkREREREREREREQ1ctFFF6Ft27bYuHEj7r77bls5pTVr1uDBBx+s9WuPGTMGBQUFWLp0KR599FEIIczHli1bhocffhgAcNttt9med8oppwAA3n77bfz666/mdr/fjzvuuAOLFi2qdZuc/OMf/4CiKPjggw8wbdo022PvvfcePv7441q9bocOHQAAv/zyS63b5na7zSDVPffcY/t+VqxYEXOB+kS8f0PBAAgRERERERERJcy6naW49s3F+HhZUaqbQkRESZSTk4N33nkHWVlZeOKJJ3DwwQfjsssuw2mnnYY+ffpg8ODB5qLiRkZBvFq3bo1JkyYhKysLd999Nw499FBcfvnlOOWUUzBw4EDs3bsXo0ePxpgxY2zPGzRoEM4991yUlpZiwIABGDZsGM4991x069YNr776Km666aaE/f0A0LdvXzz22GNQVRUXXHABjjnmGFxxxRUYOHAgLrvsMtx88821et0RI0YAAK688kqMGDEC1157La699lqsXbu2Rq/z8MMPw+PxYNy4cejVqxcuuugiHHfccTjqqKMwZMgQdO7cOeb733777Tj77LNxzTXX4Nprr8XcuXNr9fekEgMgRERERERERJQwz838DTNX78DN7y9PdVOIiCjJhg4digULFuD888/H3r178fHHH2PLli145JFH8M4772D79u2QZRnNmjWr8WufddZZWLp0KUaOHInS0lJMmTIFS5YsweDBg/Hee++ZZbDCvf/++7jnnnvQtm1bzJ49G/Pnz8fgwYOxdOlS9O3bt45/caTbbrsNn3zyCY4//nisWrUK06dPh9vtxpQpU3DjjTfW6jWvv/56PPbYY+jcuTO++OILvPHGG3jjjTdqvGbH0UcfjTlz5mDYsGHYvn07Pv/8c5SXl+P555/HhAkToj7vzDPPxLhx43D44Yfju+++w/jx4/HGG2/gt99+q9Xfk0qSsOYPNTAlJSUoLCxEcXExCgoKUt0cIiIiIiIiIqrG2S/8iJVFxQCAjY+fmeLWEBHVTmVlJTZs2ICuXbsiKysr1c1plL7//nuceOKJ6N27N37++edUN4cauJocczWJGzADhIiIiIiIiIgSptKvproJRERUT3bt2oUNGzZEbF+1apVZnmr06NH13SwikyvVDSAiIiIiIiKi9FEZYACEiChT/PLLLzjppJNw6KGHolu3bsjOzsaGDRuwdOlSaJqGU089Ff/4xz9S3UzKYAyAEBEREREREVHCVPm1VDeBiIjqSc+ePXHDDTdgzpw5+Omnn3DgwAHk5+fjuOOOw+WXX44xY8bA5eIQNKUO//URERERERERUcKwBBYRUeZo164dxo4dm+pmEEXFNUCIiIiIiIiIKGEqA8wAISIiooaBARAiIiIiIiIiShgfAyBERETUQDAAQkREREREREREREREaYcBECIiIiIiIiIiIiIiSjsMgBARERERERERERERUdphAISIiIiIiIiIiIiIiNIOAyBERERERERERERERJR2GAAhIiIiIiIiIiIiIqK0wwAIERERERERERERERGlHQZAiIiIiIiIiIiIiIgo7TAAQkRERERERERERERpb+LEiZAkCaNGjbJtnz17NiRJwpAhQ+qlHZIkQZKkenmvTMcACBERERERERERERFRAgwZMgSSJGH27NmpbgoBcKW6AURERERERESUHjRNpLoJRERENTZw4ECsXr0aOTk59fJ+q1evrpf3IQZAiIiIiIiIiChBAgyAEBFRI5STk4NDDjmk3t6vPt8r07EEFhERERERERElhMoACBFRRrGuZTFu3Dj0798fubm5aNKkCc444wzMnz/f8XldunSBJEnYuHEjPvnkEwwdOhTNmjWLKB21b98+3Hfffejbty/y8/ORk5OD3r174+GHH0Z5ebnjawcCATz33HPo3bs3srKy0LJlS4wYMQIrV66M+ndUtwbIvn378OCDD2LAgAEoLCxEdnY2unXrhosvvhhffvml7TXmzJkDADjppJPMz0eSJEycONHxcwu3d+9e3HXXXTjssMOQk5OD/Px89O/fH0888QQqKipitt3v9+O///0vDjvsMGRnZ6N58+a44IILMjrjhBkgRERERERERJQQAU1LdROIiCgF/vnPf+K5557DoEGDcO6552LlypX48ssv8c033+CDDz7A+eef7/i8p59+GmPHjsWAAQMwfPhwbN26FYqiAAB+/fVXDB8+HJs3b0bbtm1x/PHHw+12Y+HChfjPf/6Djz76CLNnz0ZhYaH5epqm4aKLLsLHH38Mj8eDIUOGoGnTpliwYAEGDhyIv/zlLzX+21asWIEzzzwTRUVFKCwsxPHHH4/8/Hz8+eef+Oyzz7Bz506cfvrpaNOmDUaOHImvvvoKO3bswGmnnYY2bdqYr9OjR49q32v9+vUYOnQoNm3ahJYtW+KMM86A3+/HrFmzcMcdd+D999/HzJkz0bRp04jn+v1+nHHGGZg7dy5OOOEE9OrVCwsXLsS0adMwa9YsLFu2DF26dKnx39/YMQBCRERERERERAlhzQCRnSe2EhFRGnrllVcwc+ZMDB061Nz25JNP4vbbb8fo0aMxaNAgtGrVKuJ5L7/8Mj755BOcc845tu0VFRU455xzsHnzZtxzzz34z3/+A4/HAwAoLy/Htddei3fffRe33HILxo8fb3u9jz/+GK1bt8asWbPQq1cvAHpWyI033oiXXnqpRn9XWVkZzj77bBQVFeHqq6/Giy++iLy8PPPx4uJiLFq0CIBe1mrixIkYMmQIduzYgX//+99RM0qiufzyy7Fp0yacc845mDx5MnJzcwEAu3btwvDhw7F06VL83//9HyZNmhTx3Llz56Jfv374448/zMBLZWUlzjvvPMyYMQOPPfYYXn311Rq1Jx2wBBYRERERERERJYR1DZBopT2IiNKCEICvrHH+JxJfrvC6666zBT8A4LbbbsOAAQNQXFyM119/3fF5I0eOjAh+AMCbb76JP/74A2eddRYeeughM/gB6Ot1vPbaa2jVqhXefvtt7Nu3z3zsueeeAwDcf//9ZvADAFwuF5555hlbRkY8Xn/9dWzevBl9+/bF+PHjbcEPACgsLMQpp5xSo9eM5scff8SCBQvMv88IfgBAy5Yt8dprrwEA3nvvPWzZsiXi+ZIkYcKECba/MSsrCw888AAAYObMmQlpZ2PDDBAiIiIiIiIiSghrBohIwgAbEVGD4S8HHm2X6lbUzl1bAU9u9fvVwMiRIx23X3311Vi8eDFmz56Nu+66K+LxCy+80PF5n3/+OQDgkksucXw8Ly8PAwYMwBdffIFFixZh2LBhKCoqwrp16wAAV155ZcRzsrKycPHFF+N///tfXH8TAHz11VcAgGuuucYszZUsxtonw4cPR+vWrSMe79+/P/r06YMVK1Zgzpw5uOKKK2yPd+rUCX369Il4nhEIKioqSnyjGwFmgBARERERUcZ47IvVuPHdZSirCqS6KURpyZoBwvAHEVHm6Nq1a8ztThkLAKKuSbF+/XoAwFVXXWVbSNz63xdffAFALw9lfY8WLVpEZGpU185oNm3aBEAvb5VsRoAiVhu7d+9u29eqU6dOjs8pKCgAAFRVVdW1iY0SM0CIiIiIiCgj7DpQhVe/1y+mzz+yPU46OLIONRHVjapaM0BS2BAiomRz5+iZFI2RO6fe3zJaVmB2drbjdk3TAETPhrDq3Llz3RqXJmSZuQ5OGAAhIiIiIqKMUOlXzdsBlSOzRMkQCA5YGYQQXAuEiNKTJCW8jFRjtmHDBvTt2zdi+8aNGwEAHTp0qNHrdezYEWvWrME111wTtUxWuPbt2wMAdu/ejdLSUscsEKM98erUqRNWr16NNWvWJGytj2iM9hvZL06Mx4x9qXoMCxERERERUUbwqaGBWa5NQJQcWtixxUONiCgzvP322zG3DxkypEavd/rppwMAPvjgg7if06FDB3Tr1g0AMHny5IjHq6qq8OGHH9aoHcOHDwcAjB8/HqqqVrO3zliwPRCoWclV4zP66quvsGPHjojHly1bhuXLl0OWZZxwwgk1eu1MxgAIERERERFlBF/AEgBJYTuI0pkWdnDxWCOidBXQNFt2aaZ7+eWXzUW8Dc8++ywWLlyI/Px8XHPNNTV6vb/+9a/o3LkzPvzwQ9xxxx04cOBAxD7bt2/HuHHjbNtuvvlmAMD999+PNWvWmNtVVcWtt96KrVtrVrbs2muvRYcOHbBs2TKMGTMGZWVltsdLSkowc+ZM2zYj2+WXX36p0Xsdf/zxOProo1FRUYHrrrsO5eXl5mO7d+/GddddBwC49NJL0bFjxxq9diZjCSwiIiIiIsoIflsGSAobQpTGIjNABACWwCKi9LN2+wGomkCPVnnI8XCI9brrrsPQoUMxePBgtG/fHqtWrcLKlSuhKArGjx+PNm3a1Oj1cnNz8fnnn+Oss87CE088gddeew1HHHEEOnTogPLycvz2229YvXo1WrVqhTFjxpjPu+GGG/DNN9/g008/RZ8+fXDSSSehadOmWLBgAbZt24brr78eL7/8ctztyMvLw/Tp03HGGWdgwoQJmDZtGgYNGoS8vDxs3rwZy5Ytw8CBA23lsUaMGIEJEybg9ttvx8yZM9GqVStIkoS//OUvOO6442K+3+TJkzF06FB88skn6Nq1K0444QT4/X7MmjULJSUlOPLIIzF27NgafZaZjhkgRERERESUEawZIJyXTpQcYUuA8EgjorSlBlPeSitrVuYoXT377LN46aWXUFJSgo8//hibNm3C8OHD8f3338e9hke4ww47DD///DOeeOIJ9OrVCz///DM+/PBDLFiwALm5ubj11lsxbdo023NkWcbUqVPx9NNPo0ePHpg9eza++eYbHHHEEZg/fz4GDhxY43b069cPK1euxD333IOOHTti9uzZmD59OrZv345zzjkHd955p23/M888E+PGjcPhhx+O7777DuPHj8cbb7yB3377rdr36tatG5YuXYo777wTzZs3x2effYZvvvkG3bt3x+OPP44ff/wRTZs2rfHfkMkk0YCL35aUlKCwsBDFxcUoKChIdXOIiIiIiKgRm/vHblw+bgEA4OUrjsTpvdumuEVE6eeXrcU4838/mvfXPjwcXpeSwhYREdVOZWUlNmzYgK5duyIrKyvi8Z+37AcAtCnMQqv8yMczhSTpWX4NeIiZGonqjjmrmsQNmAFCREREREQZwa+GLsx5iU6UHOHjXxwPI6J0J7HMH1GDxgAIERERERFlBGsJrPB1CogoMXhsEVGmkRj/IGrQGAAhIiIiIqKMwEXQiZJPYwYIEWUYBkCIGjZXqhtARERERERUH6wZIByTJUqO8BrwzAghonRkPddlegksrv1BDR0zQIiIiIiIKCP4bBkgvFgnSoaIDJDUNIOIKKms3Qg5s+MfRA0eAyBERERERJQRrCWwiCg5woOLDDYSUTpidhtR48EACBERERERZYSAGhqs4LgFUXKEZ4CE3yciSgfWUxsTQIgaNgZAiIiIiIgo7ZVWBXDf9F/M+4KFeYiSImJWNA81IkpD1nMdT3NEDRsDIERERERElPZenfOH7T4zQIiSIzL+wYONiBo3x1J+PLURJVyyymYyAEJERERERGlvW3Gl7T4DIESJ8fnP27Dsz33m/cg1QOq7RUREiaEoCgDA7/dHPMZTG1HiGceacewlCgMgRERERESU9ppku233OXBBVHfL/tyHGyYvxfkvzTW3Ra4BwqONiBont9sNr9eL4uLimDPTeZojqjshBIqLi+H1euF2u6t/Qg24EvpqREREREREDVCTnLAACEcriOrkh9934ao3FkZsDw948EgjosasRYsWKCoqwpYtW1BYWAi32w1JklDlVyECPgBAVZWMSkVLcUuJGichBPx+P4qLi1FaWor27dsn/D0YACEiIiIiorSX5ban0nNQlqhunIIfQOSxxVgjETVmBQUFAIDdu3ejqKjI3O5XNewsqdJv73djn5dDrER14fV60b59e/OYSyQenURERERElHk4KEuUFJEZIDzYiKhxKygoQEFBAfx+P1RVBQBs2F2G+z9ZBAD417CeOOOQdqlsIlGjpihKwsteWTEAQkREREREaS98FjoHZYmSg4ugE1G6crvd5iCt7PKj6IAeDKnUXMjKykpl04goBi6CTkREREREaS+gcVCWqD5oYWXwf/h9N/aW+VLTGCKiJLFOpAjPfCOihoUBECIiIiIiSntq2KgshyqIkiP82Lr1wxUY/tz3KWkLEVGyWGMe4ZlvRNSwMABCRERERERpjxkgRPXDaSb0zgNVKWgJEVHyWE91GvsURA0aAyBERERERJT21PAACHNAiJKCM6GJKBNY+xHhfQwialgYACEiIiIiorTnV5kBQlQfOA5IRJnAngHCEx9RQ8YACBERERERpT2uAUJUPzgOSESZhuc9ooaNARAiIiIiIkp74WuAcLSCKDk4E5qIMgEzQIgaDwZAiIiIiIgo7UWuAUJEycCBQCLKBLY1QHjeI2rQGAAhIiIiIqK0F54BwrEKouTgsUVEmcB6ruN5r+Fa9uc+3DB5KTbvLU91UyiFXKluABERERERUbKpEYugc7SCKBkE86uIKANYz3RaeJlNajDOf2kuAL0f+MpV/VPcGkoVZoAQEREREVHaC88A4VgFUXJoWqpbQNX5+pftGPjITMxdtzvVTSFqtKwTKdinaPj2lvlS3QRKIQZAiCx+3rIfv24tSXUziIiIiCjB1LBRWY5VECUH1wBp+P769hLsPFCFv769JNVNIWq0rGc6rgHSMFmDVC0LvClsCaUaS2ARBZVU+nHO2J8AAH88egYUWUpxi4iIiIgoUSLXAOFgBVEiCSEgSRJr4TcivOIlqj37GiA88TVE5T7VvJ3lUlLYEko1ZoAQBe0orjRvB5i3TURERJRWOCudKLmMQyzeNUCEECgu9yexRVSdvCzOiSWqPWsJLPYxGqL9FfyNIR0DIERBVYFQ0IPxDyIiIqL0Ej42wbEKosQyDql4a+H/fdJS9Hnwa6zYvD9ZTaJq5HkZACGqLWs/QuUYUoO0vzy07kdlQI2xJ6U7BkCIgqosJ0NmgBARERGll/DZmfHOUiei+BglYOKdCf3lqu0AgPE/bUhamyjStuIK83ZBtjuFLSFq3KxnOpbAapg27w2d7yp9DIBkMgZAiIKq/KGghxrvtCUiIiIiahTCu3ccqyBKLOMYq+mlVPj6PJRcO0qqzNu92uansCVEjZu1H8ESWA3T9BVF5u0KPwMgmYwBEKIgawksBkCIiIiI0ktECazUNIMoLTjNdjazqmo4EKiqPBrrU8BSq4djtkS1Zz0PcgipYVq6ab95u5IBkIzGAAhRkDUazAAIERERUfpYu/0AZq7eYdvGgT+i2nO6XhK1zABReTDWK79qHbTlZ09UW9ajh2NIDZPfGvBNYTso9WodAPn+++9x9tlno127dpAkCR9//LHt8VGjRkGSJNt/w4cPr2t7iZKm3FIPkJ1wIiIiovRx5v9+iNjGNUCIai/W9VJNB9U1DhzWK+tALQdtiWqPw0YNny/AjDfS1ToAUlZWhj59+uDFF1+Mus/w4cOxbds287933323tm9HlHTWVOAA07CJiIiI0oZ1jQFFlgDwQpioLpwGzjVzEfQavhYPxnrl16yln1PYEKJGzjqRgougN0xVtpJ/9u8ooGr4ZHkRtu6vCH8apSFXbZ94+umn4/TTT4+5j9frRZs2bWr7FkT1ytrx5kwYIiIiovQkSwCrQBPVTawSWDUdCOS1V/1SWQKLKDFE5M1VRcW4YfJS3H7aITjziLYpaRbphBAxS2C9PX8THvj0V2S7Fax+iBWL0l1S1wCZPXs2WrVqhYMPPhjXX3899uzZE3P/qqoqlJSU2P4jqi/W1GvOQiIiIiJKT7JkZIDo/b1Kv4q12w9w9iZRDWgOmQPGEVTTQ4kBkPoVsGWA8LMnqi3r0WOc9657ewk27SnHDZOXpqRNFBLQhO33KPy36cffdwOwrwdM6StpAZDhw4fjrbfewrfffov//ve/mDNnDk4//XSoavR/WI899hgKCwvN/zp27Jis5hFFsPb92BEkSpyft+zH6AkL8duOA6luChERkSUAot+/evxCnPbc9/h85bYUtoqocQk4REBCJbCYAdKQBTjxjyghbIPrwXBISYU/Ra2hcNb1P4DItd+87qTmBFADU+sSWNW59NJLzdu9e/fGEUccge7du2P27Nk4+eSTHZ9z55134p///Kd5v6SkhEEQqjdcDI4oOc4Z+xMAYPW2A5h/l/P5n4iIqL6Ya4AE7y/csBcA8O7CP3HWEe1S1CqixsVp4NzYVOM1QHjtVa+s611yAXqi2rMOqBuHko8L6zQY/rDvIjxu73Up9dgaSrV6C3d169YNLVq0wLp166Lu4/V6UVBQYPuPqL5oXAOEKKm2l1SmuglEREQIJoBElEKQINV/Y4gaKacSWDADIDW7lgrw2qteBTjxjyghnMorhQ+6U+pEZoDYeV3MAMkk9fZtb9myBXv27EHbtlwEiBoma+ePnXCi2nlx1joMf+57rCoqTnVTiIiIHBkZIOEz2CXGP4ji5lQCS0Dgzz3leHLG2hq9Fhfirl8BywAtP3ui2hMO9ziU1HCEZ+OEr/XmYQAko9T62y4tLcXy5cuxfPlyAMCGDRuwfPly/PnnnygtLcVtt92G+fPnY+PGjfj2229x7rnnokePHjjttNMS1XaihFKZAUJUZ0/OWIs12w/g1e/Xp7opREREjow1QP737e/YW+ZLcWuIGienDBBNAF+sqvlaOrz2ql/MACFKDOuAOmOJDU94Bkg4ZoBkllp/24sXL0a/fv3Qr18/AMA///lP9OvXD/feey8URcHPP/+Mc845Bz179sQ111yD/v3744cffoDX601Y44kSyfqDxY4gUd3sZLkrIiJqIMJn/MmWVI93F/7puJ2IYnPMABECLrnmxxGvveqXNQNE5UdPVCPW48d6+Owv92PGL9vrv0EUVXgGSHjGm3UNEJYuS3+1XgR9yJAhERcTVjNmzKjtSxOlBBdBJ0qcMl8g1U0gIiICENmvU6JMAWP8gyh+TqWTBEIl5mqC1171y5oBwkXQieJ364crMGPVdsy6bQha5HltEZCvftmOrxgAaVACYRHe8J8t6++VX9XgjtZBpLTAb5coiAEQosQpr1JT3QQiIiIAkWt9RMv0YAYIUfycJssKUbsyMJx5W79YAouodqYs2YIDVQG8v2gzAH3dI2o8Yn1bPBemPwZAiIKss5jCL5SJqGZKq5gBQkREDUP4Ra1ToKO7VIR/b7sZ+OO7emoVUeMWrQRWbRbVrvQzAFKf7CWweN1LVFNG5hQPn4Yt/PsJr2Jkvee0rhWlFwZAiILsGSChs9+WfeUYPWEh5q7bnYpmETVKZQyAEBFRAxERAHG4AnrF/Rx6Vq0C3j6/nlpF1Lg5DRYJ2AecWhfEt/5nhZ+Zw/WJJbCI6sY4ahgAadjCM3Qivi/LhtoE76lxYQCEKMg6+6XCF+rR3zl1JWat3YXLX1+QimYRNUrhC44REWWyCp+KJZv2caApRSLWAHHIAOkk7ayv5hClBecMkNCA05lHtEWX5rlxvRYDIPXLWhefGSBENWccNjx6GraIDJDwxy23eS5MfwyAEAVZz3c3TF6K6Su2AgB2l/pS1CKixotjfEREISMnLMSIl+di0oJNqW5KRorMAIkMgHglf301hygtOM2W1YQw+4BZLiXudXV8AU6cqU/W746BeaKaMwK94SWVqGEL/754LswsDIAQBYVfHL80ax0AINejpKI5RI1atBTSoU/Pxi3vL6/fxhARpdjCDXsBAO8FF82k+hUrA+TJGWvruzlEacFxEXSE+oCSpJebc4NlURsa6ymRs56Jao4ZII1DrIwPwP47xvhH+mMAhCgo/OK43KenYmczAEJUY9GupdbvKsO0ZUWoCrDUARFlHpfCrncqhA/wRc5K51UvUU0FNA3NUIJz5R9RiFIA+uxa43A7uGwRJm05Db9nXY07XO+msKUUzjpRiVVriWrOyCRg/LBhi5XxEX6fweD0x6swoqBoJ8NsNwMgRLVRXO6PmhZc6efVFhFlHpdD6SVKPmu9eyCyBNYZMtd5I6opTQMec7+O5z0v4WH3eADBNUCEQGvsxZiN/zL3vUr5JlXNJAcaF0EnqhPhcIsanhhrngOwT4LmuTD9MQBCFBSeAWKcHHOYAUJUK30e/Bp3TVvp+BgzQBq+jbvL8PiXa7B2+4FUN4UobSgMgKRE+CSX8K/hbGVe6I4nvx5aRNT4BTQNpymLAQBnK/MB6NdPmgBaS/ts+0pxDBIGmIpQb1TOeiaqMevEvj/3lmPQ499h3A8bUtgiqk7EIuixAiA8F6Y9BkCIgsIDvsbJsEmOx9xW4eOgLVFNvLvQud79XyYuwpQlW+q5NVQT/576M16Z8wdufHdZqptClDbcCgMgqRAI6+T1CazEXa5J8EBf+PxnrXvowaad67NpRI2WJgRUETqnNUMJBPQSWLlSpW3fAJwnlFnPieV+Xmclk6oJTFu2BfPX77ENAnLWM1F8rH2JT5ZvRdH+CizZtC/GMyj1Yp/f7OUAeS5MdwyAEAWFd/6Mk2FTSwDk2zU76rVNROlqVVEJbv1wRaqbQTHMX68v2rx2BzNAiBJFkdn1ToXwPt6jJXfir67PMVKZAQAIWC+JVH99No2o0VI1YBuam/f/7vokmAEikAt7ACRaBojLck4sr2IAJJnm/rEbt7y/Ape+Nh9zfttlbmcGCFF8OEDe+BXtr8C7C/807zMDJLPwKowoKLzzpwn9hGjd/umKrfXdLKK044Uv1U0gIkoJrgGSGtEG+DpL+sQWFyyld1T+RhHFQ9U07BYF5v320m4I6GVicsICINlR+n7CEhgp9wWS0k7S7SkNfQcbdpeZtzftKcfl4+bje0tQhIgi+Vmmr9Fx6v7dOTVUotsa9GB8K/0xAEIUFD47sMqv4oKXfsL/vv3d3LaqqKS+m0WUVo6TV2Ft1ihcp3ya6qYQEdU7rgGSGuGLoBu04KWQC5aBVwZAiOKiavbgYVOpFJrQQxp5YSWw3JJqP86CrINT5Sw1nFSxZjfP/WMP/sXMbKKYmAHS+FT3jVm/U36/6Y8BEKKg8NmBB6oCWLGl2LaNCzcT1c1/XeMAAHe6301xS4iI6h/XAEmNaAN/qhEAkSz9OwZAiOJS6VehWAIgTVBqlsBqJ+0GAKzPOtR8PMshC8R6aJZVMQMkmaob29t1oKp+GkLUSPmjTKaghqu6qlbWpB4GQNIfAyBEQfGc71gWkKhu/FEWwSQiygSyxABIKoQvgm4IZYBYAiABBkCI4vH+os1QLMdOU+kAAAFJrcJ1ymcAgF9yj4UWXCh9mue+iIspa3CSg4vJxcXOieomoLEEVmMjqhnAs/4Gcawv/TEAQhQUT6eQCyMR1U0gLADCmRZElEkkBkBSwujj9ZI24T7Xm6Ht0L8PawBECGb7EsWjINsdkQGiaQI5vn1wB7Oq5jU5G7KkH38HyUVAxT5z/3s/WWULTopqi5VQXUQLBBNRfKKV06TGy1YCi2N9aY8BEKKgeAZieUokiq66GRYAEIDLdp+LyRFROlqzvQRDn56NT1dstU2wiOc8SYlnDPw96J6A0a4Z5vZQACT0WyRUluEhikdA02wBEK8UAHxlUFR9/Y8KJR/l7ib4TD3a8iS9zJIvoOGteZtsr8fx+eTi4B5R3TCI2PhUuwaI5bzIiZnpjwEQoqC9ZdWXPGC/kSi6eI6P8BJYPgZAiCgN/euDFVi/qwz/eHeZPb0+hW3KZEYQ6mBps227cFgEnRkgRPHxq5p9/RwASuVeyJoe5FBlD2RJwgP+q0M7BCrN54ZjgDi5WAKLqG5UlsBqdKr7WeEkpczCAAgR9Gjvz0X7q92PJbCIoovn6AgvgcVUYiJKR5X+0KCgKnhxlWrGrM2tooVtuxrMAHFbSmBJHOAgiotfFbYMEABouvwVuNUKAEBA9kCSJOxCU+wVefoOwQwQp/4fT4/JxdnrRHUT3zlKoLtUBHdwYkVxuT+pbaLYjNKK0SrQaswAySgMgBABKPcFUOmP44KX50SiqOIrgWUPgDz19dpkNYeIKGVccqiLbR1P5wBfahhBqCZSqW27sfaHdRBXBjNAiOIRUDXzGPpDawsAaPbrWxi15joAQJOqbZCDg05V8Og3VD0A4ncINHKiWXIxA4SobuI5gobLi/Ct9za86H4eAPD3yUuS2yiKLfilyVEiINafHZYJTH8MgBABKKuK72LXOCWWVQXwwre/Y9banclrFFEjE891VUDYAyCTF/yJzXvLk9QiIqLUcCmhCy1bCSxeW6WEGpxt3gR6AGSO90QAgCc4Q9Mlha37wS+KqFp+VUAOBg/v9F/ruI8SjID4RHANOGaApAwzQIjqJp4g7bWuLwAAwxQ98PHTuj1JbRPFZnxjcpQMEOs3ygTg9Oeqfhei9CWEQNH+CpT74guAGD96Hy7ejKe/+Q0AsPHxM5PWPqLGRMQxLyY8AwQAqgLsbRBRenEpoTlGthJYTCWtV6omcNlr87FqazEAmCUpyqRcAIAXemkKV1gZH2gqoPAyiSgWvyUDZDcKsVrrhF7yn7Z9pOCs2yq4AQAVFWWoKvc5rgHCDJDksn6+lyvfYptohllavxS2iKhxiecUZQZ7qUHRf4tiB975G5T+eHRSRnv489V448cNaJKjd8oPlTbiBPlnjFdPhy/YUbcyzonbS6rqs5lEjUI8fQanAAhr4hNRY/T9b7vwyOercc3grrh4QEfbYy7LVDP7Aov11ryMt35XKYY+Pce8L0GDIulfQJmkr0eQL+kZiNZF0AEAQgUvk4hi86uaWT4uAAVlyIrYxzgXGgGQf01eiJn+Srx2df+IfZmgkFxGfftu0lY86n4DANClchKAKFOjicgmrgCIwxgSpY7xnUXLALEGRVgCK/2xBBZltMkL9FlK+4OLU33hvQv/dr+Hs+R5jvtz5iZRdPH0GTTLRZYUvGjmBW/q7SvzsTY0UQ3d/+kvWLvjAG6f8nPEY7YAiOXQ4lFWf+7/9Ffbfes6H7tkfTH0s5X5AIRtEXQAegYIEcUU0EKLoKtCRpmIDIB4Xfpwg7EGSMBXAZ+qYdSERQ6vyDNkMgU0gTbYg+YoMbcZZQGJqHrxjAX5bZMneE5LNeM7i7YGiLWPzmvh9McACGW0Zrke83YeQusQFEpljvvznEgUXTydQs3ys2PUXmdgMbV+2VqMfg99gzFvLU51U4galV0xskGta4CotgwQnu/qixpWzNkaANkjNTNvD5ZX2h4DEMwAIaJYAqqAEgweqpDhc8iaynLrmb9GWRij7JwTXmclV/MDazE/6x/40Pugua2dxPUJiOIVTxdOsvQnYp3vqH6EMkCiLYIe+lL5G5T+GAChjGbMSgKA1tI+8/Y+ke/8BIeTIgcziHTxdBpUhwAIFxxLrbfmbgIAfLtmZ4pbQtS4RLmWAgAocuhcZ+0ncBHa+hP+2+KyZHk0636kefttz+M4WVkW9mQGQIiq41M1c/0cFYrZrzO8c+T7yHLr58LKYAZIluSL+nq8pEqupmV/RGxrywAIUUJZz4Ph50SqfzVZBF1lHz3tMQBCGc1a56+lVGzedknOF75OM9V5niTSxRMMtJbA8gRnxXDBsdRivVOi2pGjFxSG2/KY9RjjxVX9WLv9AOattw/sKZYAyJCj+mCp56joLyAYmSeqjhoIQA6uqxOAjJlaKLA4ouo+7M/rbmaAGOuD5KEi6uuxP5hcshYZfGIGCFH84jlFycwAaVCM8YlofXYugp5ZGAChjGY9ybXEfvP2va638ZXnDuSGddKdxi14oiTSVXck9JHW4Vg5VJPdLIHFQyilOCBLVDtKjBSQ6CWwktokCnrg018itrksgxICCpYcdpft8Vv914XuMAOEqFqa5ThRIWO+dqh5vwpuSJIEbzAAckBkA2AAJJUUtTJiGwMgRPGLfY4SOF1egJ5ykbnFi+gZb1S/ovXYrd8of4PSHwMglNGs5RHypVCHvEAqxyHyZlyszLbt7zTDnSdKIl2sCbMuBPCJ9140lw6Y2zwSM0AaAgZAiGpHihkAsZbACm3nmkf1Y/W20CK/TVGCm5SP0FnaAQBQhQRIMnwFnbBdNAUAPOm/GFPUE/XHAK4BQhSHy7XPzdsqFDPIAQA+uCFLklluuBQ5AIBcKXIQnuqHrEauWxUrIEVEdrF6cGfJ8/Gy53m0kvab2zwSS2ClWqgEVvVrgPCaOP0xAEIZzTrwmo3IDnkLS1kswPlHj2O3RLpYA3vnKT9FbDPXAOFBlFLs7BHVjhKjF12QFVoMuLQqdAHM0139sJ7WnnK/ilvcH2Ga9z4AQAAKhABO7NkSV/v+jTv8Y/CGejoAyzpVzAAhik0I3K5MMu+2a16IEuSa92UISFJoEfTSYHAkPzjg3gLFmOa5Fxcrs8znsD+YXIoaORvdujYSEcUWq9zzCOX7iG1GCay/TFzE661UCX7ssSYtmbvyK0p7DIBQRrMHQCI7hU1RarvvdFJkZ51IF+tQeMr9asS20BogyWoRxYMdcqLaiTabDAByPKEAyLbi0Axbdhnqh7VvNkheZXtMhQIBgcPbF6Jf/+PwvnoSKuHVnxe8NHp3/gb85+NVca1tRZSJtID9ukmV3CgPHkcAUAEPZAnIMjNAgiWwghn3N7k+Qj95HZ5wjzOfw8MtuWQtMgOEM9SJ4hfrFOVUTs4ogfXdmp1YsJ7l5lLBmKAZbdKStb/ILO30xwAIZTTruF+OFNkpdJoVE34xzLFDIl2sYOAW0SJimzErhgNMqeVXudgvUW3ECoBYT2tF+1nypb7Zy47ZvyfVcvnTp2MTx8demv0b3p6/CSu22DOBiUjn99lLJ+mnQwnrBj2F6a3+hk2iDWRJQufmelZIBTwAgBzo11uFUlnEa/KaKrkUhwAIM0CI4hfrkjVPiiwnZ1Q7AAA/T3ApYXxn0UtgOd+m9MQACGU0TbNmgER2ClWHQ2TTnnKM/3FD6DV4piQCEHtWTInIjdhmzDpjfzC1vl2zM9VNIGqU5Bi9aGvfYH9ZaKY0Z5fVj1h9MxWy5YI47HnBfp8c/J7Kqzg7msiJ32e/bjLKi+zqdgG+bXapuf3gNvl476/HIAC9FJYSHHDXHJak5TVVcikOa4C4wXMcUfyin6NaIHLChDe43iUQfRFuSq6aBEA4JpH+GAChjGYvgRXZKXQy7Lnv4bPMmI618DNRJol23doGe3CovCliu4cZIA2Oxp4fUdxiZYBY+xcHuAZIvbOXNLB/TwEoURfFNAZlFbBzRxSL6gtltgWu+c48ygSEOYhkHF+HtitAQOgBECPjwDrJbEjPFsaTKYlcWmS5ZzczQIjiFq0PV4hSeB3KyXkdSqxTakTrslsnJnFMIv0xAEIZzTrWly1F/kA51UX1BewXxZytRKSL1mkYoqxw3B5aBD1pTaIa8msc9COKV7wBkJKK0AxAnu7qR6zfFRUymmS7AUReEKtmBgjPhUSxBIIBkHLhhdLhSPN8KESoP2hkWMmSZGaAGAEQTYSGIZqI4uA2niGTyakEFjNAiOIXrW/RXdrquN3D4yvlok14MR9nCayMwgAIZTTrbOcchwwQY42CmK/BMyURgOgDe3tEgeN2IwPkuZm/JalFFA+3EuoQhgd4DcwMIYoUI/4B69I6ByotF8A8lOqFNSAfvsZbXnYWurTQyzKGXxAbARAjA0QACKga9pTGlyVMlClUvx4A8cEFSZLM86EeANFvG2WxJCBUAkvSjy3rJLNDK5cD4ISYZHOJyMl+uW5+6ETxijbZz1rqyrbdMpYUq89IyRMekI943Hab58N0xwAIZTRr8CKr1gGQhDaJqNGKFgyMtsCiMStmwYa9+HNPedLaRbEplh6hX3X+DhnoJYqkxFwE3ZIBUmnNAOGxlGxCCPNc1lHaEfF4bpbXvB2+josWFgDxBTRc9cZC9H94JtbtPJCkFhM1PmXler/ND7dtu14Cyz7gJEmIyABphf3mc3K1A+ZzKbFenv0HJi3Qy9A6lcByKttDRJF+WrcbP67b7fhYtDGjaIERqj/VZ4BYS2DVQ4MopRgAoYxmDV6EzxAE4qvbyFqBRLpoh4InSqfQY+kUlvl4AdYQ+IPT1sMzPk56ejZ2HeAMaCIr68VUeF/AtgZIJdcAqU///MAouygwSvk6cgfZFboZdkFsDGIUSmUAgKqAinnr9wAAPly8JfGNJWqEpizZglsmLQQA+CSjnJx+LGmOGSCRJbBaS3vN1/MEJ6FxUllibS+uxH+/WoO7p62CX9XgFpH9OI/Ecn9E1an0q7ji9QV44bt1jo9HC4BEuwam+hP6PYr9OMDfoEzAAAhlNNW2CLrTrBhmgBDFK9qh4LSWDmCvi8pBwdSxnsOM70EN+0I2763Ai7OcO/1EmUq2ZE+F9wWs98usi6Anu1GEacuKAADD5MW4xvVl5A6WAIhkuSKWJaBJMPDxpPtVAECVpSxghZ+LBRMBwK0frjAH9owMENksgWXNAAkGQKRQeTkjANJSKjZfz2uUZmJnMGn2lfscS2C5JZ7XiKpT5Y8dKIyaAWLZvrfMh0+WF9mygqk+6L8rSpQaWCyBlVlc1e9ClL6ELQBSGfF4PAtXsTQMEfDS7HUoqag+0GFl7RSyw5E6ttTf4PegOkR2q6KsD0KUqazXUgFNgyIr5n1rFlXAcptZo8mjasLMYgOAAXKU9aUs35P1O3QpoXlhHSS9zIX1vFfJAAiRyZjc4jczQPTtAqEAsHXGrT847GAEQLItpYe9ghkgyWD9/PeW+ZDtUAKLizQTVc+vxb4G8sSxBshN7y0HAFzYvwOeuqhPwtpG8ZHAEljEDBDKcNZBvmzJIQOEi6ATVWvz3nI88dVavDLnD8fHo6X/2gIgPIxSxjrgYNx2CoAEVA13Tv0ZT3+9tp5aRtSwWcsnhR8z1r6BdVCep7rk+G3HAfR98GvcP/0Xc5sW5WLXHgAJ7eN2mB1oD4AwCEwEAPlZLrQPBgl9kr6mjjm4JMz/MQOMiixBFaEMEAUqXJbSSx6hT0LjNVViWT/PPaXMACGqLWs/zkn0NUAij7lPlhclpE0Un2pLYNn25W9QumMAhDKabQ0Qx0XQ41kDJJEtImp8qkvljTa77Hb3+1CiLJBO9UcTkbPTw0tgAcCSTfvw7sLNeOG7ddhREpkxR5RprOPlxqLbBmv/wmcZRGefITke/PRXHKgM4L1FmwHoi5+fKi9x3jmnuXkzWgaIocqS9VHdAAhRpijMduM4WQ82rlB6AwgdS5oQlgwQfaMihdYAUaBFDBZ6ggPzPD8mlvV3qLQqALdTAEQwA4SoOr5qsuCjrnfpcA3M81z9qn4R9Mh9KX0xAEIZKzzCm+UQAHHFMTjL2UqU6ao7BNwx0uuPkNYnuDVUE0IIe8cveDt8EXTAnv5d3YUAUSaQmAHSYIRf1/7gvQXd5W3OO3cfanmeJQNEkbBeawMA2KC1BgD4LN9dtItnokyT5w1lgKx399A3Bo8PIULnP+OIkWXLIuiSGjHBzKMxAyQZrNe6miYcF0FXwvronAFNFKnWGSAO23meq1/Gxy1HGfm2Z4AkvTmUYgyAUMayDlZ44YPHIQXYFUdaMOvVUqaL3ZETuMr1TdRHm0oH9L14HKVE+OdufJdOJbCsqnucKBNYx8Otx8S3q3fgs59Dg+8BlcdLsrmiLG7pKLeledNWAkuRcXfgGgCh9QoqfKF+IOMfRDqXIqFdMACy19UKQCjYIWAZcLIcNELWj6kO0m50k+zBSY/DwDzVnbWPF9AE3CJyMFbW7NvYvSOK5AvEPjCiVTvIQ0XENh5i9ctY31KJmgFiCRRzQCLtMQBCGcvo4J0pz8farFGO+8SzMBxnylCmi3WxdLi0Aa2l/VEfL0QZAC6CnirhHT3jrlMJLOv6f06PE2Ua+/o5+h1NE7jmzcW2/axZBIz2JodiCYBIqCZDLauJedNeAkvCfpEHAGgl7QcgUO5jmUaicB5JQ2vsAwDsdevZUsbYUkDV8MeuUts2ANAkl3n7dvf79tczF0Hn+TGRjM+zg7QLRyy6A3nagYh95LASWJzgQhTJV00GSMso17rHKr9GbONprn6Zn3c8JbD43aQ9BkAoYxmdwhc9/4u6T3wlsBLWJKJGKdYFa74UOfPF6hLX7AS3hmrCev5qihKgfI++3aGfX2Gphe9UIoso01gnQBiDRlUO5eFYAiv5rAGQaKUoTNlNzZvhGSDrRVv4hYImUhnaYq/tvMc1QIh0LcUeKJJAlXCj3KUfT8ax9O+pK7Fln973sx6XQlLM201hH4gPBUCS2uyMY/xE/cv1ATpvme64T5ZsP68xCEUUKdbvfw4qcZ7yEwAgIOzDqx2k3XGtKUvJF54o/M8PlgOwT8LUhMAPv+/C5r3l9dgyqk8MgFDGiqeDF08AhBkglOniPQb8InTxu0zTa0YfI68Ovkbi20XVM86DHvixLOtv6DK+N6AGHDM8rLMCOUhBZO9HGMdHpT+y36BxdlnSWQdas8PWdPtKPcq+c14r86Z1QqBbllEFD3aiCQCghVSMyQv+NB/n2kdEulZiLwBgu2gKRdEzO4xDqbgiFIB0KoEFAD3lItvreTT9mOX5MbGM36hY6+0pIoAV9w2LeA4Rhfhj/P53kHaZE/7O9D2KKuHGK4GzUCE8AIBO0s56aSM5i7YI+tSl+u+Q9ZS37M/9uOqNhRj8xKx6ah3VNwZAKGNpQh/0s9obLH1giKcEFgcCKdPFOgaMWS8/a13xROASAPoF85uBYbb9eBilhtHpMxYzBQD4y6A6rFlgzfpgiQQie6aUMWhU4RAAsWK5v+RQLKtbNpdKbI+9EjgbQ6ueCm1o1s286bI8z+3SL44rg4MW4bM2/VzLhQgA4JX0Y6MCXrhd+jHkVF3EFgCxlMAK5xZcBD0ZjK5ajhRjjRXVB68rdB5k944oUlWMDBBj0sUW0QJrRSccXvUGHg9cbk6k/cZ7e720kZwZEzUVScJlyre4Tvk07PHQ7eWb99djyygVovdEiNKcJgQKEEpve9B/FeZrvfCF9y5zmyuuAAh7ipTZYpVD8gaPIR/cGK+ejq2iBRZqB8OYK6gJCTI0ZlKliDEY2wSloY2aClVEdg+sWSE87xHZA7exMkBsz+GhkxSKZfD1U889tscq4MF60Q7nVT2Im0cMwRDLoKw1c8QIhvjgBgB4Jb/tS2YGCJHOLennuQAUuIPHkOQQAVEsUy29sopoy/O4NS6Cnhz6CcxYb298YDgEJFzj+tLcQ4KALEJfDCe4EEWKlQGSbQSEhVffNzjEapwnqWHIEhV4zP0GAOAj9QTsRiEAe1/e62Z+QLrjN0wZY+PuMnzz6w7zvqYJFEr6oF+xyMF49XT8KjrbnqNIAnI1i2lyIJAyXewMED3Lqkq4oULB59ox2IWm2A8920qWBApQxhlnKWJ87s2sM6ZVn+MFsMoMECIb4RAUrDYDhIdOUlgzQIzBCIMR0FguekDktbU95rJETjzB0dqq4P5ZYRkgsWaAEmUSd/DaKAAF7uBx47S8rDUDpFgqjHhcZDUBYFkDhH2LhNIE4EbAzAB5LnAB1ou2EfvJIlQRgROSiCLFygDNCmaAVMBj2367f4x5W4mjrDolh3FK66SGSpoak5zPfuFHlPtCE56zXKFy3QH2+dISAyCUMYY8NRtj3lqMOb/tAqB3CnOCP1hlyAruFdl9d1eTBcJ+ImW6WBdLHikYAAkOKBn8cKFEZAPQy5Xwgis1jEHbJsHZgQAA1e8Y2NWYAUJkY18DRP//Sn/sCyYeOcmhxLii8VsS3t1hO9oyQILBEOP3Knwx9VgzQIkyiSc4s9kPxTxuqiuBVankYXjV43g3cJK5TWrSEQDg1owSWMlqcWbShDCzPzQh4QByIvrjAKColeZtTnAhihTQYpXACpUEtPpIPcG8bcu0p5Rooe0yb7sk/ftcWVSMTXtCFWGsGSBlVQxapSMGQCjjLN20D4DeKTSCGz4R6gyeVvU47vWPNO9XtxA6BwIp0zldK8nQcIj0Jw6VNgEIzcC1KhItAQAdpZ284EoRo+qBEagCEFcGCM97RPZzn3F8VFWbAcJjJxmMDBDruh0LtEPwhP9ibAn+1gD2jA8AcMmR5bCqhHMAxMfZgEQAAHfw2iggXGaQQ3KYRKaEHV9rRCf8qPUO7dBEz7w3SmBxjaTEEgIokPQASCmyISBjtdY5Yj/p7fPM29bftQofBwCJAOfrnu5SEU6RlyAvuAC6sX6YQYWCYpEDAGgqHUh+I8mR8buSJUKlFuMpc3+gyl/tPtT4cA0QyliaJkIdeITS3daKTlintseD7jcBVJ8BwnFbynThncKu0jbM8v7Lts1pxtkm0Rq98Cc6STt5HKWI8d3ZBvpUv2MAxD7Ym+yWETV89gyQ+EpgUXIYiR350AciNCHhUt89EJa5XvlZLhzUKi/seU4lsIKLoEthGSA88REBANySfm3kt1w/yQ7TKmXL8WU8vhf5oR0K2gPQy8O4EGBfMME0IczZ6eXBage/ik74SD0eFcKLK13f6jtuWwFFlqBqwvxdW7JpH0a8PBejjuuC+885LCXtJ2oown/+C1GKqZ77UCiVo0g0BxCZAQIAO0VTFErlaCvtxTrRoT6aSmGMrnoWQpluSpQS9wFLqbNyBoDTEjNAKGNpwtqBt8cCVcjQhN5pdzMDhCim8GPgauXriH18Dotq7xX6QFQBynkcpYjxuXusARDNuQSWFTN2iOwlMNXgnVh1osOfQ4ljLGAePtvZMPigFlh8zylonud1fB4AeFz2NUAiMkBYAosIgH0NEKPKlVMGiCX+YR5rB4LlTwEA2U1DN+FjhlyCBVRhrk9QHpydLiDjX/6/457ANbZ9je/K6P89/fVaAMDEuRvrp7FEDZjTtW6hpJdOai/tARC5BggAbBBtAOiTAyk1jK/Oa8kAiTa+Z53owrGJ9MQACGUsTQgz/c06g0knmduqXwOEJ0fKbOGHQLnDDBinDBBjlm2W5FxyiZLP+NjtGSA+BKr5PnjeI7IfB8Y5rLpjgyVeksMow2PU2S4WubbHFVmC1xXe1wvLAAkLgOQGs0kMPO0R6VxSKIPeOIKc1gBRLBuNQ81WEtWbD2P9xSxU8RhLoE17ynDuiz8hW9IzQCod+uZWxjnU+C1z+j6JMlV43+5E5eeIfXaIphHbNotWAIB2wSAJ1T/jm/MKawZI9QEQ/h6lJwZAGqmyqgBGvDwXL81el+qmNFqqJuAJBjcCEQGQUFaIS1Lx4LmHIccTuQ/AElhE4TMkwmfNAs7HmFlmBNVnHFByGB16W6kXNQCtmhObyu+LyPb7b5zDeGSkhlECq1mwzvYea5kd2BdjtnI5lMAy6nj/w/WxbV/+ThHp3JYJZJKxBojDMWbdZgQbfdase5cXcOs18rMkH4+xBFr6p77mZU6w7IvT7HQr4xwZY61nooxTFVDx7eod2FFSZdveQyqK2He+1iti216h90WachH0lDGvdS0BkGgZIAGud5n2GABppN5d+CeWbNqHJ75am+qmNDrGqUyI0ALn4SWwACBP0k+S7xe+iKuP7eKQ2K2rbqCQKN2FZwu0kvZH7KM5/NxUBmcBZoEXvalifHUea6ZblEXQrZixQ+S8Bkh15zKe6pLDOCU1k0oAAHtEoe3xaAEQpwyQZaJH6HHLRTJPe0Q6WRgTyELXT05HmH0R9GCGlXWhYMUNuPW1KbLhYwA5CbKCa4BUiNgBEOO7Yn+cKOS1OetxzZuL8cw3v5nbJGjIh17+6oyqR/FG4HTc6LsBs7W+Ec/fD73cMxdBTz1rCayoGSABZoCkOwZAGqkq1iGuEyEErh6/IDSDSThkgAS3ta3Us2ycZjYBvCAmCg8CdpJ2ROyjOgVAghdjTaVS24yzf36wHIMe/w7rdrKzmGyhRdB9lo1+M8OjU7McXH1s56jPI8pk1sNAMwMg1Twnie3JZEYAqjn0342swlZ45cr+5uNylFksLiX0gFEi6yN1MCqFG9mSD+2k3Za9+e0RAYAsQiWwDI4lsOTI27YMEMVjZoBko4p9iwQy+tVGCayK4CLo0ZRW6dfEHy7ZnNR2ETUm3/++K2JbLiqhSPq56g/RDg8FrsJ0bRCcwsD7gutdNpGYAZIqZgksLZQB4oqyCLqfGSBpjwGQRop1Oetm055ybNxTDrcUPQPkzsC1AID97tYAon/mrIVPmc6eASLQTdoOANgiWphbVccSWHoGyFnKfGhqaFbG1KVFKNpfgc9+5oJxyRZaBN2aAeIPXTi7FfRsnR/xPJUxeCLbxVG5T8XmveXVrwHCPkNSGN9FXnBR0l5dO+DIzk3Mx2uSASIgoyw4WJhlKenICS9EOlnTjwu/sKwB4rCfrQSWZJTAsqwBIsmAW18UPQt+zrhNIGMiS3ZwEXSnElh/z39BvyGFhoRenPVH8htH1Eg4TYAtCGZ/VAm3Wc45mn1gCayUC/6uuCz9OZfkvMZvgGuApD0GQBqpaBdyVDMdJT2qH3AIgKzX2gIANEkfuI1aAosnR8pw1kHAbtI2FEjlqBRunF/1gLndKfXeOujuLY0MdgRUHlzJZnx19jVAfOaFsyxLjr83qqZh5ZZi+JiNSBnMenF07VuLMfiJWVixuTj2c5LcpkxlZIDkBAf7snPybOeuaN1mlxy6FHJbskEqg4MaWZbsOM4GJNIZ5UMCUDC4pz7ZxamvYFsE3WkNECHMAEi2VMUAcQIJMwBilMCyL4IuScALfzsruLNmKwlTFVAhRb3yJcocilMAJDjRogQ51T5/v5kBwqoGqSKCPW+3sARAomWAqMwASXcMgDRS7JLUgRDwB6O7N7mmAgCOlldH7GZc/DbzbQV+/hD9sRrnyT9CCjth8uRImc4aqDDKX60T7bELTfFC4Dxs0FrjTXVYxPMKpTLztrmAsOV4EhwqTDqnElgPTf8ZP/ymB4cV2Xng8OXZf+DssT/ipveW1Us7iRoip9//z37eartvKy8HMAKSJJoQ8MCPi5Q5AICsnPy4AiD2NQosARDhEADhjBciAICs6RNYurVuivP6tgcQrQRWaKPLKQACAbhzAQB5qOCksgQyJjJnSc4ZIHkeFxRXaNtJ8nJ0knagm7QV/R78BvvKw367iDKQ4lA/s620BwCwO2ytMSdmCSyUgR3A1DC66vYAiHMGiN+SAcLfo/QUOe2dGgUmgMRv3c5SfLfGviZBpd8exDAi+bZ9rB3FqddiAgB4AMknME0bbD7EAAhlOtVyDOQGZ9+WQp/R93TgYjyNix2fZx1YgqrX5bR2NtjxSD7jq7Nm4+wvLsFHP27AXa5JOG/fIig/tcZzuA470MzcZ8UWfZb7l6u212t7iRqS6s5Rp8kL8arnOdzvvxoT1eEAePmbLKom8FflM+RJ+m+J5Mm1rfuhyM5zvlxyZIkeAGZZiyzJZ35p/O4o4y2bBGz4Hqfvew8A0CQv21IiJvLi1Hq9agQkRfj8y7xWAICW0n6WHEkg4/rUyIqrhD0DRFEkwBXa9rrnafP2yVVP4pet7euhlUQNm9OYWw+pCIC+/kd1jBJYbklFHipQGkfWCCWW8bOiWK51jQyQh1zjcZVrJtZp7fAX/23YorYOPY8/SGmJGSCNFEtgxe+UZ+bg0S/W2LZV+NUoe4dUOpTsAYDD5Y22+zw3UqZTLaOAOcHBp1IRe7FFAHgjcLp5Ww7oz7N2NhhcTL5QBkhoVozxHY5SvkIrbSeaF6/EEGVFStpH1JA5XRxZu2cvuPX66ve734r5HKo7VQNOUZaENrizbbW7XVFWQbfO7rR+M8YaVdZAPb86ymjle4FP/g78/J65SVVCA+hOh1i0DCubfL3kcGtpP/t9CaSZJbCCGSBh17UuWQJk57mwXSVObiECnMfcWkn7AQBFonm1z6+Cxzz2uBB6atkzQPSxwKtcMwEAPeStOFVeYpvYtHzzfizfvL8+m0j1gAGQRsppQSaKX2U8AZAoi1rloNJ2n511ynTWYyAPFQCAclQfAClCS6zX2uh3AlXB1wo9zkMr+YzP27oGSB4qAQh4pNB5silYu5YoXPjvf1vswV8D76Il9umPO3SzeVpLDk0I7LGWowjLAIk2ccgaGHEroe/LmATjtS2Czm+PMpi/ImJTeVZb87ZjCSwpjgCILQOEx1iiGCX7sqXgGiBh17WKLEUtKWFkjRBlOqfzltEviDZWFK4seE3M4yo1jJ8VlwhNaLlEmWVb9wiIDFA9/PlqnPfiTyirci6XRY0TAyCNVLQ+JMWnxgGQC8bhFfkSAECuZA+AsK9Omc4atDA6d/FkgLhkyUzJNzJArANMrLeefDtK9M89PAPEVU2nkIgigxlveh7HNdoUvOp5FkCUAAhPa0mhagLbRahMH/zltoGLaP1m6z5Nc9zm7UojA0RiBggRAECLHATa2P4s87bTotnWCXvWAKNPKPqNTscCbr0kjBd+lj5NIGN5viwjAySsBJYrrCzgZb67USX0jJAcqZJjDURwnjxhXDNVRakWEs4YU8pmACQljDVFXSL0G3aCshKXKrNs+0Wb7LetuNJxOzVODIA0UtZTMQcJa0YAqAzY1wB5MXBOxH62AEjLQ7BL0i+smQFCZGedsZcnxZ8BIsuSWWZEUquCrxV6nKe25Lvi9QUA7AGQPFREBECaggEQonDh/a+esl4X+kh5HVpiH1RbN1ugCQ6YF2KUWKoQOGCtrd3pOHgsA67Rfk+sA7SF2dYAiMMi6OzvUQYTDhkgmjt0zFW3CLrXFToeB1S9jBOrngGadQWCC3G7EbCtKUd1I8wSWEYGSNgaIMZ38/f5wOivME87DF9qAwEAuaiES+EwEZHTYWBMjDCuYatTIfRjL9syoYLqTygDxG/bPlheabsfbbLftuLI3z5qvPjL1khZL9gCHCWsMT0DREAT+uc4MTA8Yh8NMsYHhmNls9OANr1REVzUOTcses+PnzKd0bHoK63D9a5PAYQWQY/FLUtmmRHJWAPEMjjIwab647EEQEa7ZtgWRQeAAqmsvptE1ODFOkUtyroB+VLooum/rnFYnnUdjg4sif4kqjVNE+Z5rLjbWUDLnrYBvHhK67QuDAXujYENL9cAIQIALF1vXxdiXOAM24Q8p5nS1hJYWW7FvF2CPAw55ujgTvrgoAd+lsBKIFUTyEM5hirLAYQGYQ1m+b9WvYDOxwIAyoP75KDS9l3cP/0X3D1tpW3NP6JMECsDJN4SWBXmhApmgKSCcdZywx4A8UOx3S9AuePzd5fye0snDIA0Uta01ICmRd+RHAVUARdUyJJ+SqyC8yJwDwauxmc9HgAkCZVSsH5jRAksdgYpsxmBitc8z5jbFmkHV/s8lyKHZs+oRgmsxLePqmddAwQAhimLbffDM0KICDWarXyJazYAYIx/cpJak9n8aigAUtjx8IjHYwXU7xh+CK46pjP6dWxibjOC81mWC2Zm71Am+2n1Ftv9xwKX27M+HDJArI9nuUPDDi9c1g8PnBs8ThX9WPMgwAH2BFKFwM2uj8z7ZWGZ2U5rGxjZ2zlSla0/PnHuRkxa8Cd+2VqcnMYSNVCyw3FiZIZWxlkCy8i+ygYzQFJCGCWwwgMg9vE/d5RrXQ61phfnUV9q+JgBUieqpuFgKdSR98VKYQx+1GVSLgCghWTv/PHjp0xnjCu1kvab2zYai5vHoK8Bonce1aoKnPXCD+jZOt98nBkg9Sc84+Mp96u2+9E6hUSZaF+ZD1v2VdRqsC78gosSo8IfCJ2nXJGDErG+quuHdI/YZvw2eSVrCay6tZGoMetUaC0pJ0GDbKtI4LRkhL0EVmi2rcs6qGiUwJICUDnQlDBCAD0t17o7RRPb404BECN7uykOOE7wqwrwC6LMEnMNkDhLYIUmVDAAkkpKWAAkN6ysvUtyXuycXb/0wgyQRsraZ1FVHpY1pWoCT1gG+GIFQIxF/f6QusAvFLSX9qAt9piPc5CWMp3TMbAfedU+T7GsAfLblh1YVVSCqUuLYr4uJYexMN8rgbMdH3fBuVNIlIlOeHIWzh77Y60Gg2JOuKBaK6tS4TEy2RRvxOM1/T0JrQESumDmbxJlMikQKgPyndZX32Z93KkEluxcAss2q5olsJJC1QRKkGve3yma2h53OyxusFrrDADoK//hGPBlhg5lGqdzkrEGSPwlsPRzXK7ExbRTwfgGvZr++U9X9ZJ/naUdtv2iZoDwdymtMADSSFmPQz/zsmpECD1rpqUlk0OLcSgY/fkKOQe7UQgAaCYdCD2XJ0WiCOGp9k5cljVAri1/A12lbbbHeZ1VP15yP2euVfCTdpjjPm6JGSBEhgOVtQ8IBpgBkhRlVYHQWkauugdAqhwWQWd3jzKZUhma/HWvfzQAe9DDIaEgagmsJtmWQHAwA8TLRdATShMCu0WBeX8v8m2PO5X2WaL1BKBnjhQgckFgjR1zyjBOp6SaZoAYa4A87J4AGRy3q29CAK+4n0WW0K91N4rWAIBD5M22/aKWe+ZpL60wANJIWS/kOBuj5vROYWFc+1q7h9bF4Qzsq1Om04TANcrnYVudiiHYKYpk6zze4PrE9jiPrfpxhrLQvF0mnANXbmaAECWET2IGSKLtLq3C7ztL4TEuXpXIzzjeuUKt8vV+XpXQXyO8ZAVnqFNGWjweZ61/CADwg3o4tqIFgLAMEIenyVEWQW+RbwlSmmuA+DnxJYE0TaA4mAGySusSMdmvc7OciOfsRiGKRHPIkkD3sElJQM3WvSJKB06TJ7w1XAPEeuy1k/bE2JOSQQiB4coi8/5Pam/H/aJd63Kyc3phAKSRsgY9AiyBVWOqBizQDolrX+vsJWNWuzWFkSdFynSaAO52hRb2/dE7OK7nuWXZlj5sBBjN1+WVcD2wf8ZGlls4LoJOlBg+wQyQRLvl/eU4TV6IU5Ul+oY6lMAaP+ooAJYSWJI9AMKfJcpIq6aaNzeLluZt2TKS4FQCK5oWedYAiH7bjQD7fQmkCT2rBgDmaYfaHjvriLa47+xDnZ6GA0IPjGRLVRGPcdIlZZrwf/NZqEJ3WQ8OliOyr+Es9BqaiP88SYlh/QYDBw3HeuG8Tmm0a12e9tILAyCNlPVA5CLoNadqmnmSey5wQcx9JcucpvJgAMSaAcKPnzKd0ARkKXQgPF3w77ie51Ik+CzlYEpgn43GmWbJJYQw07gN/iiDs1wEnSg2Kc6yBn6JAZBE++H33XjV81xogzdyDap4+2qHt9eDwJUOJbD01+HvEmUgb6iU0ifq8eZt6zWSU/zDerj0Dh5bHZpmoyDLch4MlsDySAEeXwmkCmGWBbT2tUcd1wVjLz8SzfOcB2/N9QoQuV4Bvx/KNOF9h7c9j5m3y+Mo9wwAsmUI3lyrjOqN0AQCQh/2ls56NiIbzngsWgaIYA2stMIASCNlnSHjq8UinJlMQEDVLPUbq0lftGWACGaAEIXz+PfZ7sc7C1CRZdsAfIkIC4AwuphUqiZswVwAUKN0C3rJf+JMeX59NIuoUTpRXmG7v0tp7bhfpYh3xiDFY/banZEbe5wasenQtvmR+8Vg/PoMU5bYanazy0cZSdWzAR70X4UFope52drdk6opfTqoRwvMvnUIvrxpsL2fGCyB1UbaB03lZItE0YQwB/T8lgCI4rRYi0VZ8DcqG04ZIAlsIFEjEF728ij5N/N2tLLB4XaIZuZtT/CYnLXGoe9CSSELP1ySfvJSvLkIQLE9XopsAIArynqXHI5ILwyANFLWmdFlPtZmrylV08wIfHULWBndREkKpTrmWDqFrAdNmS6/crt5+83AqXEHQFyyhHyUR32cAZDkCmjCdi47seqZiFkxVi96/lcfzSJqFLJQhTPk+WiNvQCA3LDBIkV2Ppb2SzUbiKfY/vPJqsiN7tCgxGf/OB43nXwQ/n5Sjxq97i7RxLzdAsXmbU56oYzk1ydL7BBNbZut/b3wrt9JB7dEizz7JLMuLXKRnxV23ZUdGhzsXLkmAY0lQJ8saQy2+kToM68m/oEKo9oBS2ARxfzNj7cE1kuBc8zbRlBy9MRF0XanBFPUitAdd27Eta4RAIla7YD9vrTCAEgjZe2AlFYyAFJTqqX0S3UBEKNHL0nAAaGfIJtKB8yH2RekTJdXUQQAWKIdhPsCoyFLwD1n9kLTHDfaFESfHeNSJORLoQCIJyz1lBdayRXQhFnjea/IwybRBmq1i9fzOyECgJtdU/GS5394xfMcPC4ZFbAP9EUriSULTqFNpM17KxDrvHR4+0LccmpP2wLM8Zil9TVvW3+neB1MGSmgDyBVhl0zRVsE/X+X9cOE0QPjmxCTH8qWy1YPxNiRakITsEz2C2WAyFG+k+tO7AbAebJf6DV5AqTMEmupXaMEVpfmOcjxRO9jlCAXm7RWABBRepiSzxXQ+3AByQ0orohqB6XB8T2uAZIZGABppKwlsEqrGACpiY+WFKGkImD+AFnrojqxzpTZFFw06TrlM3MbO4OU6XJ8ewCEZgZKkHDt4G5Y+p9T0bNN9NnOLlkyZ5oBkXVRAxoHCpNJVUMZIEYnPloJLEN4kIooUw2T9dl7/eR1cDtMqZWiDMorXE8n4ZKxRpEKBX9q+mLPBZZMRfb5KCP5jQBIWKDXcuqzDqx7XTUbYtjTpI/+ehoHBxNF1UJrgFhLYMlRUkBOPkQPRJUHS2Bd75ru+JpEmcRe6cP+79/IJLh9+CFYck9k6U0rXzB47JFC11F+1pSrF65gBkiV5Hyta5bAihoA4XkvnTAA0khZS2AxA6RmtpdU4u35mzBUWQ4gjjVAgnOaJEj4VXQGAGRLPrSFPujLviBlOlegDEBoBoUxDbC6mX+KLOEp/0XmfU9Yx4P9wuQKaBqaSSUAQnVsw9OCVck+2/Mh1wTc4XoX/aW15rZ3F/6JA5UctKDMYr2IvUiehdfcz9gel6NlgMS5WDrFx+uSzUG+RDsAfV0qWwZIUt6JqIEzAiAiPNPNuQRWTTOutOA6IIrw1bKBFE4IgTOVhQBCg69A9BJYSrD7txP6ZKaWUjG6S0W2fTgQSJli7h+7cefUn1FSEepfRMvekCWp2rV1jCCkdaFtjuHVD69PL2NaJet9umgZIMZ3M1Bajamee3GI9CcAZv6mGwZAGilrBsgBZoDUWEdph3k7vJ5tOGuH/gett3n7Mte3OEFeAcVflvD2ETUm7uDMirJgFoG1DxirO+hWZGxHc7wYrI0aPoilMgMkqQKawETPkwCALOiDDhGdQm8r2/1LXLNxvetTTPY8Cm/wOXdOXYkHPv21HlpM1HBYL2LvxyvmAosGKcoVU7QZZlQ7khT525EoZgAEofrRHACkjBTQ1wAJzwCx9fesAZAaZoCIYADEpTEAkihyIBS43S0KQ9ujTE4ytr8RGG5uu9M12bYPM0AoU1w+bgHeXbgZK7aE1gC73/Wmefv4qufN27JU/do6RsURa3/lAAMg9eKM5dcBAHJV/bsMv9Y1yv5lSX4MlZfiA+9DOFJeh6+8/wYAfPrzVizZtLceW0zJxABII8UMkLrpK/1h3l4gDom5r3URdEDCQu1gAMCNro/xlue/GLzi9uQ0kqiRcKt6ENAIgEjVriOhcwV7i8bijBEBEF5nJVXAciHbWd4JQC/7YlXmbQ0nXsmPpgjV6p7xy/YktJCogVk4DuKZQ9FdKkIuKmPuGnUNEAZAEsqviqSV5isNZsblSqEACJdwoYwUJQAi2QIglhJYNc0AkfV+oKzxmjZRcoPlaQHgO62feTtadrYRAClBHuaqhwIAOki7bfswAEKZ7DLXLPP2FtHSvC1LUtTAosFYc/ZKZSZaYj8AoITZ8/XCCKx7hf479ugFfWyPW89q4z1PRTx/2Z/7MeLleUlrH9UvBkAaKWtpmDIfO4s11VLSI8DT1WMRe456qHNv7PWheqLt8Y67fwAqi0GUKYQQKK0KYMmmfZi2bAvcwVlmZcEUUinKjMBw/xp2MJrnesy04DzLIBPADJBkUy0RphWavvhl+KyYkpyOEc/bI/R1XfIt31fTnNilBInSwhe3Qiopwrfe25AnxQ6AVCl5jtu5CHriCCH0OvdScgYRjAELa4BFsAgWZZCqgIqLXpmL8kr9fOePWDdRcrgFZLlrmAEiR5bA8gU0zPx1B4r2V0R7GsWQ59eDFxu11rbypkqUjrm1hM8b6ukAQtnBBmbAEQH7hL1/J8uxr3cBwC/0oPBJygq87XkMAOBjred6VeJqBgC4bGAn2/bZWt8Yz+I5L90wANJIWTsgTJ+ruQJJn7FeInKq3Td8psxm0Spyp20/J6RdRI3BTe8tx+H3zcCIl+filvdXoPzAfgBAWTCF1DoLpm/HJlFfp0PTbCy6+xR0aqWXoTtPmYtLlNDsGs40Sy6/pqEsuNjlI/4rAEQGQJZ2/Rs02R7cMM6bhShFVnAR9SY59rVCiDLZWq0DpnZ/GIGWh0U8xkXQE8cfDOLa6nJ7C6PsXXNG3XyvZRCQP0uUSX7fUYpFG/dB0vTzVvg6YdEmvHhdNcsAMUpg9a1aZG6btGATrn1rMS59jTNva8PIANmJJrbt0Ur1WPvuRnlorxRemjZx7SNqbLaIFgCAv/tvsm2XJanadS+t6/AcIm/GYPlnNF0zGd+u3oHZa3cmvrFkKvc0BwB80PYOx8enqcdHBLUMhSgzr3UpPTAA0khZBwZLuQZIjRn1nEuQG/dzjB82oySCjZ+zkyhzTF+x1XZfVOmlkJwyQP56Qjc8eeERaF3gjXgdSZIgyxL8cuiY+q97nHmbAZDkUjWB8mDZstC5MPTlvRY4E+XZbbDorBnYoOmlsD5VjzHr4k/xPog1WaPRGnvhVtidoMyjCucL3tN8T2BX3sHYf8VXeNY/wvYYAyCJEwhmCXqtJbD+PrfOrzvquC4AAMXtjXh9zoCmTGL8e5eDJf1UYf+ttw6aW8uf1jgDJBgAGVC1ENijlyleva0EALB5bwUCHHmvsTy/HgDZJexBYTlKBES2fGVl0PvzuQjLzOb5jzJYAfSKB+Hrx1ZX/gqIzJ572/M4us69C8+89SFGTViEqgD7hsmiSnrwqczdJOKxqerxCMCFM6oeQ4WIrGawIuuvWJM1Gl2kbcluJtUTjlg0UrYACOsH1ljzYAmsA3FlgAT/P3jf6BTa+MsjtxFlgNPkhThGLAcA7IFeGsk6CybH48JFAzqiR6vImRXGNViV4nwcMgCSXAFVhAY1HLoDGvSatlV5HXGG7zH8238t7vRfG5E5d5S8FgFN4NvVO/DTut0Rr0OUrjaJyDVybvb9HYDed5BcXmwQbWyPy1HWBqGa8wf03whz/agmnYHCDnV+3XvPOhTf/etEDDpEfy1riS2O/1EmMbphrmDgNhCeAWK5bS0Pl1XDDJDssqLQnRL9trW05o4DnIFbU4V+fVb5zjgHa62lsUqFEQCphLUEjMZ+OWUoCRryggHB8PGjeAIgH4SVUDd0Cw6s+7nwZdJIwshgjPxdEsFfsW1ojgVar6ivcZK8PClto/rHAEgjZa0ZyBJYNaNAxXmKPkPwgFMwI0z4gs5Gp9CGGSCUoW5wfWLe3h2cZebUDXTqHBrbqhR7JpYEDTI0BkCSLKBpUIKDsZrDt6ZBhizp31MFsvCeOhSlyEEF7FlwZcjC7gNVuObNxbji9QW8QKaMsUG0td0vE158rB0PIFQSwVr2AGAGSCL5gxkg5hodrshMw9qQZQndWuaZs9Jta4AwAkIZRM8AEVAk/d99rBJYvkDo2tRbwwyQrModlhdVLO+t28UASM0IgaF73wMA7BJNMLBrM/OhqCWwLA+UBvt5iiRws+sjczv75ZSpDpE2Q5YEKoUb+xG5Bkh1SqNMus2W9HObP8DJMckiGwEQOXwNK0CzZHL7Ita4CtktCnl9myYYAGmkrCdJP9OCa+QIab15+0ft8Gr3Nyu7BM+PxU5ls5gBQhmqrbTHvL1XFABwXgjOKQBibPLJ9k7hJPej+NpzOyTNF/EcSpyAFkcGiCxFfJ+VYQO6HvixqzQ0OMHuIWWKT9RBtvsVCA3A68HD0ELaBoWLoCdMIDhjMkcOZmgoiQmAmIKvd5EyB8+6X4QXPq4BQhlF0wRky696IGwGbdQASA0zQNyVey1vqh/PAcvBVuVn4LhG9m8ybx5y/Lk464hQsD7abHXrdutv2c2uqWgOvXICSwBSpjpTmQ8AmKsdFlHOKp4MkFI4lFAHkBNcX4LjeckjC30SiyZF/i5Zg/rh/XUrDwK23yRqvBgAaaSsJ0keizXTUdoFAJinHoqNYbM3nbiCYX3jp80HN4rDo/jMAKEMZU2t3wH9tnO2R+Rzjf18LvtMmuOUX9FD3oruvrUJbCmFC6jCzACJFgCRpPAcOCAL9sCUFwHbrEBeIFOmMMr+GawXxbIkQYIUcUHlYgZIwhh94SzZyACJrN9cFyKYUdJSKsb5yk9YmzUKnnVfJvQ9iBoyTdjPWZEZIJbZs5ZrUyVamkEUFQVdQ3dUPQBi7VdUcXZ0zez+HQCwWuuEsua9bf24aGO1iu0BCSWWigd9ZH1dFmaAUCZqhhL8X7DiQVmzwwDAVto5vgCIc9URIwDCc1zyGBkgwiHDw1oBITxj28otBXj+SxMMgDRS1jqBHGyqGa+kD95VIL4LZZcS+aO2RbS0b2AAhDJQS+zDYbI+y+xK351QgzMDnbqBThfDRn8xIDsfi7nqgYS0k5zZSmCJyO6ACJbAksI69tZyMIBeH58BEMpE+4Q9AOIToYsrSZIACdgumtn2OUFaxoUkEsQIgOQqwXOSu/p13WpEifxtcn97L2dqUsbQhLCtWxQ+WcLaO/DVYQDv9+OfCd1R9eu0AAMgcduwuwwzf90RWizeVwYAKEEOst2KrR8XLTgVXsZntehs3m4XzPbmIuiUaQpQiqVZfzPve468DGseGo6Rx3Uxt8UT760QzhmqRoCZ/YrkkYwMEIcSWNYzWpUIBUDu8Y/GK4Gzzfse+BHQ+B2lAwZAGikfM0BqzRtcLLMyzgCI0VG0dh4/VY+177T7t8Q0jqiBs9Y/P0NZaN421v8AnGeXhQ+iA6EZM3u9nbBc6x7xeK5gACSZVE1AgnNdb0Cvi6qvY2DfHj6DPTwgwutjSksO/7D3BMv+GawZIBL0c+F60Q73+EdjnnqoZUeWzUwEY4A0P1hDG+7q13WrEYeSWvtKK/DSrD8S+z5EDZSmhTJFAYcAiKWDUJcgRVVBFyzQDgm+STAAYrnWrUtwJROc88KPuPatxZi+YisAQPPpvzGVwoMst2KboR5PCSwA+Fw92rz9sHsCrlS+YQ18yjhD5J/N21+oAxFo2gNZbgUuS9RDjiMCshNNMN9hkW2PpI9LcRH05DFKYAnZaRF05xJYe0U+Hg9chqmqvq6fB8wASRcMgDRS1k4hF2SsGW+wfEusOn9W7rASWADwhnoGbvT9H572X6hvKFqSyCYSNVjWC1zr4J89ABLZEVRiBEAgK7jcd3fE47laaV2aStWIpwSWLEVm9Lik8ACI33afP0mUlrRAxKbwhTAjS2Dp3lFPxSj/7aEduQ5IQhgzJnOCmb2JzgARDiW1ZEngg8WbE/o+RA2VJgDFMukhVgZIXQaHFEkKZdCp+rnWngHC0oGxHKjSP7NvV+/EPz9Yjv9MWQRAn+yX5ZZtM9SjjdWGZ4ZMUk/BWq2Def9h9wRwkjplmr2WUqcBKPC69HOgEkdQ0U7C9b6bIrYaZYWZAZIkQkAxFkF3KIFlywCxjA2WB9dBMn6XPPAzSJUmGABppKwHIKORNZMVHKwz0tz6dWqCo7o0RdMcN1rkRc72c0oV9sOF6dpx+E7rF9zAEliUGfaUhdZ/MC6KVSFhNywBEIfnhafWA6GLMKeFggHAq1XWqa0UW0ATcEnBElgO3QFhrAES1rGPzACxB0BYAovSkuqP2FQFDyYETrPctwZA7MFgYT0zMgCSEMapJsfMAElwAMSdF7HNjQC8bl4+UWbQROwMEOvA3xVHd4YsAef1bVfj91FkKbTAejADhGuAxMealfH5ym2YurTIHFStgAfZ4Rkg0UpghfX1VCi4x/8X+zb27yjDWM9/n6jHIcutn6es40PxLnnkNNnMOFZ9DIAkh6W/7VQCK9oi6BVCX7TemNjk5RogaSPyXwE1CvYSWDwYa8JYA6QSHvztxO74+0ndkedxIaAJDH16dsT+xhogTsF9c7EktSpZzSVqUL5atd287ZH0GWdzRF/bPk4zYZyyQoxtiixBhQK/UOC2ZBdkC5aJSSZVDc1oVx3CVnoGiBTRsa+2BFbimkjUcDhkgADAHK0PRmMGgLAMENl+7FgXWoTG2cyJYPR/s4MDCPAkNgCi5kcO5LqgwuuKLKNAlI40IeAy1wqTbOVCAPu10ZlHtMXgnsOQ76358IIkSaHzp8MaICyBFZ1TUMIMgAgvstyK7XuKXgIrctsicQguqLofU733AwBLYFHGcQWvcdZqHfCt1h/XBydA2AMg8UVAnCabZQVLYPEclzi7DlShZX5wUrNl8pImRfbdrH3z8mDQAwCK0AJAaKzPjQDXAEkTnMLUSPltJbBS2JBGyMwAgRsjjmyPgiw3ZFmCxyU7fpYup6nrQWakOMAACGWG7cWhbCdvWDaVwakf6FQCK7S//lj4ujwsgZVcgYA1ACLj1av6o1V+KAsutAi6/XlfqwNs9436tQYG5SkdCUsA5LSqx3F05VgAQKnlgslvWwQdkCwXVraZfzxGEsIYi8tOUgaIWtAxYpsbAbMEBlG6sy6C7jR7ObxnV5DldpzwUh1FluAzAyB6n0JVWQIrHk6zko1zYiU8cCn2TN54S2AZNog25m0tykQAonTlDk76KkYuAJgZIHItAiBmlpsFS2Al1uQFf+KoR2bi1TnBtdos5yzhEACxZmevE6FJL0WiOQCYv0se+JkBkibYg2+k/MwAqbF8lOPvysf4q+tzAHqnsDC7+nVAzEXQHWZIm/VqGQChDFG03yEAEpZM6NQPjJUerAR/iSrDymDlghkgyaSpoQEFDTJOO6wNxo86yty2UbQOdurtX95r6lm40fd/+Fg9DoBDBgj78JSGDpSFzn1rRUfsQDMAQClCg+72RdAl27mQJbASz+j/ZiE5ARAtv70twAXo5zsGQChTaBpirhVWm2CHE1mynD81vW9pWwPEz3NmNNZBuWxU4irla1yizAKgX+uqmrD1waN9Z9FKY1knJ0mqz3EfonTlDl7jBIQ+eJ4VzACxL4Ie32s5ZYCcpcxHM5QwAJIgd01bCQB47Ms1+gZLAMSpBNY60d68/Z3WDy8FzsG/fH8zsx2NDBAPArbfJGq82INvpAKWWTE8FqO7fcoK8/ZfXZ/hdvcH5n1V8qBZrn3G+U0nHwQAtrVA3PGUwNL8+lUCUZrbXRq6+AllgNiPI6eLK0+MASNj5kxVWAZIoSipdTupempYAATQz3OX+e7GE/5L8KU2EJIUGbwy1kAqEnp6cGQJLP4oUfop2qtnpPmEAmtQsErONm/7LEFco+8QIkETwW0MgCSECAZAmon9+oasgoS+viS78Iewl8FyIxDz94wonWhCQAmWJnUOgCTmfVyybA4whtYACZ0nuQZIdNZBuSuUb/GQeyJaSnr/uUxk4fB2hbYZ6tEysqPNYrf+rrk0TvijzGKU/TWyN4wSmLZ1deI8ETqdQwHgAuUH+AK8dkoKW9ZaKAPkajyIZ/wX4j31JHObgIwnApfiI+0Ec1uVZRH0ABdBTwvswTdSXAMkPh8s3mLePkpea3ssN68ALsV+CFx8VEd8f9tJeObiPua2aCnBQNjCzVwHhDLAgcpQR8IofeQLzwBxeN5ZR0RfFNMMgISV0uosttWylRQP+xog+rlQliTM0w7DS+q5QHANkGizBQPB710JWxOEQXlKR3NWFwHQF4Y1dG+Zi2euGmzet9YSdslSxOCg+bhgOZdEMM41vbTf9Rtt+0TfuRYkKXLAQpEE13ChjGFdBF11KN+SoPgH3Ip1DZDIDBDOvI3OmgHyL9eHtseO79cbcthvUbTZ6tECI8YafQCgqJV1ayxRI+MOrndpXOsWZOnXqrVZAyRaAMQFlRkgSRLwBwPqQoKshH7DluMQ/E+9wPF3zfb84OMuSeMaIGmCAZBGypoKzAXJ4iEwQLIHQFzNOzvu2al5DtyWwIhbiX6YWGfFsAwWZYKSitB6D17LejpWTgPmsUqGyFHWAGkj7QH8vNiqK19AwzUTF+H+6b/YtlsDIOf202vdh3fiZcmp+J8uIPTv1B0WABEMylMaWvDHTgDWWYAyvv3XEPTrEVonwmU5FlyKbDuebIPpzABJCE0TkKChudinb2jWPaGv7xQAAQBJ8zvsTZR+NFE/JbBcimxZA8TIALFWO2C/Ihrjc+ok7UC2ZC9RFfA2ARDfbPVYZXyMfr7MEliUYdxmBkgwAJKt/7+tBFbcp0EJqojc2QWV57gkWfHnHgD69+eK8UXlepwDIUaAxIUA1wBJEwyANFL7y0MdEB6L1TtbngeXZB9wyGnTM+r+2ZaToLkGiEOH0W+NGrNTSBngQGVo4McofeQLC4A49S+87ugzLEJrgHgiH2RmVZ19/9sufLtmJybO3WhbSFRYSmA9eN4RAELfhUGWol8sG51CY3DEwN8kSkc79pcBcFjE0hU6b1n/6bsVe/BQgmUdEAZAEkITQB4qQ+eg7CYJfX1JkhxrdjMAQpnCngESeSzEP/AXm0uWQudWhwwQTvaLzhiU6yuti3istLAHgDgDIDGCWWYAhCWwKMOEl8AyxoOyLNe18WaAAM7n0SzJxwBIkgQC+u+JChmKYp2UZP/OWuR74cRvBkA0ZiKmiciVYKjBq/SrKPNZarfzhOnImIUsQ8PB8mYAevrb9f6b0UIqwcHNDo76XGsUOLKOt5WEgOSBS/iAAGeqU3rTNIHSqlDWgBd60C+eEljWDJCRx3bGUV2bmfejlcACAKiByG1UI4s37TNvX/X6Qrz712OgyBICls82y6N/9uEdQkmKXuPb7BRKzACh9KeI4EKYMeYOWQfL3YpsO55sg+kMgCSEEAItpf36HcUDuLNj7l9T0QZ3FY0TXigzVJ8Bkpj38bjkiBJY1tm2KvsVURllWdpL+kznKeoJ+F/gfLTCPlxV0AWA/XuKNlgbrQQWEAqA8NxHmcYNewksQ5vCLPN2TQIgej/Qft2UBR+Xkk2Acl8g4r4WvNZVIcc8x7Vvko1Ne8ojtocyQFSuAZImGABphPaV2zsfDEY6EwLoJm3Fx57/oECqAAA8HxiBr7WjAACPxAhs5HpDh4YSzAmOtrdf9sCl+oAAO4WU3qoCmu18Y1wU+0RYAKSaElhjTuiGDk1zIvZ3ygARalXCakxnIr+q4ZU5f5j3F27ci5+37Ee/Tk0hgp1CDaFSPeGd+FjlLaydQiv+JFE6koW9DIITawDEpci2c5dsLafENSQSQhPA/7k+1u8kIQtXgmQG+gHALxS4JZUZIJQxNE2Y63w5169PUAksWTIHGIXqgwRmgMTLGDhtFlz4fI/Ix5+iNf5Ea4ySjb5daP9ogV05RjqPT7gBiSWwKPOYJbCEPfu3TUEoAFLmi3+ynmMGCJgBUlc3vbcM8/7YY9u2fleZWe5ZQ+S6fFbDDm2NuWHPB0KZPwpUTvBLEyyB1QgVV9gvvHgwOlOFwN9d083gBwDsQ7552x2j2GmuJzTAYXy+1pPmxQM6hN5HMmYsMS2Y0lt458xlXhTbO4VOHQxvjFThWCWwtAAHmurCumi9wfgN+W27frGsSaFzYfj1ryxJUWc2+S2dQit24ikdKQjNIotGtQwGusMWnpUgWUpghY6RbcUV+MvERfj+t12JbXAG0ITAQHlN0l5fkoAchPp2xgx1zoKmTGErgSUiS5kqCaqB5VJk+IOTabbuKcY3v+5AwLIoMDNAogtoGnpIW3ClMhMAsFcUmI+5HMo412bdFuN3TxIM3lNmccHI/rWf/7I9Cto3yUae14WuLXJtj3kUGU9d1AcvXn5kxOs5LbqdJfl57VQHVQEVnyzfip0H7GNxuw5UmeWeY/XdAaBz81zH7UbgywWVE/zSBAMgjVB4+hVPmM40IVAicmzbiuWm5m1XjAwQ6xogvkBkTuITF/bBLafoa4ioxmxQzuikNBd+rlGC6+qEl4RxWjbbmgHitNA2oM/OCKcyAFInRmkEWQKO6aaXHSsJBkV+KdJLYwnL5x753UQvcaFa6qJacaImpQO/qtkmnJgZIMKoAx35nF+0LuZtV1gJLMByjrOUwHr0izX4bs1OXD1+YYJanjk0ITBb7aPf6XdVwl9fkoAcKXRBbQ6AcBCQMkR1JbCyY6zvVhNuJbQGyNzftmPMW4tRtD80gY39iuiUXasx03u7uQD6HoQCIEYVA2vfrjZBK3P9A41laSmzGGV+w0tgAcDs24ZgwV0n29YDAfS+yYX9O+DMI9pGPKdAiiyzlIUqnuPqoMphrA7QAyBqlABIeB/e6bxYkOUyxzhcUMEh1/TAAEgjFH7w8YTpTAhgj2UWDABscHUxb7vDV/u18FgGa42TaviJ0jhPalLwR48lESjNhZ9romWAOF1bWY+pQFihU+PC7CxlQcTz/ty1H7sOMLuqtowa2oosIT9Lr+FsLGSf7wnODJRDnfrwEgiyFD1lONQptF8QMyuRGjshBM76348Y8PA3WLmlGIC1BFbkgN9I5b94PnABXlfPNLdFTLKwlsCyBED2lvH8VlvCMjiLpl0S/voSJLwTOAUAMEvtE5oFzQkvlCE0TeBQeROAZAdAQmuAuCW9T7G/PHRdxRJY0eX+/rHt/nKtu3nbVYMSWLEY/XxmgFCm8UTJAAH085a1bLoh3rOVLzihJpslsOqkyh8lAFJaBS3YXxOQowYwHjr3sIgAyAPnHIa/HN/VLHvrggbBHJC0wABII6QKgSxU4VBpIwDBTmEUqiawH3nm/T+0ttihtDPvx17cPNSpP7x9IYDIWe3GQKFZAosXxJTmwge2jdJH4Z1CpwFzjyXgGJ7FFmvxuH+8sxCXvDqvpk2lIOOz1gMg+rnKKIslG4OwsrU8mf35kuSc0QNY04LtHU/24akxKy734/1Fm7F2xwH4VYHFm/ZCCGHOAnS6CF4t98CzgQvhCy4UC0SW2ZQQygARllm0TXIiS/9RfDQhQmsQyYlf1lCSgHHqmbjMdzf+7r/JNhOQKBNoQuAcZS4A4ACyIx7P8iRmKMG6BogbkVkGKq91o/Jlt7bdXyfam7cVMwASPdM3HgEz+MsMEMosLlS//lu4eCeCrRf6uNRh8kZoKldBry1flM9u5ZZicw2QWCWwrjq2S8TYRUATkCUp1O+TAry+TRMMgDRCmhAY734SX3jvwtXK14wYR6EJASkYqQ0IGWf7HoHXUtrKFWMNEABYfM8pWHj3yWiW6zw4YZwoNWMwhJ1CSnPhpxp3lIUxo5XAaprjhsclo10T+0W0ERv5h+//Ip7ngor1u8vwza876tDyzGX8PrhkGQXBDJB1O0sxdekW+IOdQkixy5NFmy0Y4BoglIauHr8A/5660rwvhP7f+fKPAIBD5M0AogcGDeEZIJKkz0ADAGHJgrOWB/TzArhGNBEqxZiMAIgsSVChYJ52GCqQZc6CNt+TKM1pAughFQEAXgicH/F4ojJAJEmCFpxQdqayEM1RbHuca4BE5/c0MW+fWPUMrAvTGxkg1p+rWIudR2OWwBK81qX0Z51cbARA/FDQMt8b1/PjPVut1LoCANpI+yAHIktjUXyq/M6TUr76ZTu27SsDoI9VxPpelPCStZpeINpa7pk/Q+mBAZBGSNMEjlN+BQCcr/zEElhRaFqoNMJX2kCUI8s2Cz3WGiAAkOt1oVV+lnnfqJ/fPjh4a65bYJTAUlkCi9JbxBogMNYACSuB5fDLIkkS5t91MlbcO8xWDst4DAA+1Y6NeJ4xE3Dhhj21bncmC1hKYBkDrVOWbME/P1iB7fv1TqGQQt9fZKk/KeqCmUan0C3ZO57sIFJjtmJLccQ2TQhc5Po+6nOcDpHwLFNZkkIZIMJ5AL3cx8yCmtCECM0WT0IAJMdj/20LRFn3iChdCdWHZlIpAGCZdlDE44kKgACAZjmGX/I8jy7SNpwpzwcg2K+IQQv+nmhCwibRxvaYcwZIzd+D6x9RJrFe7xolsJrk5WLCqKPien685ytrpZKz510MBP6fvfOOkpy43vZbkjpNns05L3nJOeeMwTbgQHL6cPoZMI7YGOecwdg4YGPjgI2NMTY2OaeFhd0lbs55d/JMJ0lV3x+lkkpq9cSe7lZPPefs2W6pu6WZHpVu1b3ve/ODP0mFSzEFCAA8t3oXAD4+9kcwMXzugVOhacRX7MfA8Nb2bqTzKhEcZUo/W1CMOrIMOIWcqrYtgmyNIORrCUO2ehlaBPiJ0xZizoR6HDt/gvN+vt0iSgGiGBsU7QHCghmP8GtLvv5kPN9Ngmfs/bGvtgkmDEwhHa7KxLTVODccxP0iTigCeSfPO19SgAQrYDQiVRAGUAoQxVhhOIUmQZUpryQTChDvmrFshjhM5GEgnbfQnIpBMTgYY944ppVuIVaQCAyaNtMAUjjmKRS1SjzHi08spqFDWqwTGP30UxwqVPMU90dpK/BE4lP82PnrYNPpxd425mFOAd7TdFHBPlHs5+8BMvQMiO1YnmrK7lkxBpAVZ2Kue8Vx8wHHFr1UdLM693FTZguw9E7giA+W9BhjAdEDRAN1Co28MW5XdwZI9G+BBfjHxUeuP8kteBZz3RhsPPTGTtz5wkbsM6URD1x3Yol/CkW5UAqQCCJPxOuQVVUxRaCMuZNUUaksV54PNf5rSsZw2VGzMXdCPQBJAeJ89rpdXVi2uXOEZ61QVC/Fe4AY/b5uIOSJ2ZXmDTg2dws6GJ9oG04zzGDjdMXgEIur99BrccmK63z7hBiY9WOBRQgpaAznfrbrh+//bpQqUVFLUMaGldQLW2RiYlImKUAm9ryBpYmrcWfs20oBMkQowyj3APF/h2IirKkqaMUYIZFrBwB0oNG18BstqBae/D1Ge1NZYPUDs3gCxAzpT6U7iXj5fjSM/Icb72nKAksxBli5o8d9LOahKDI+DcRJe00sum8Vm+nf0LtrWMcY6+RtCg0U98dvwN/jX4VsQiaKZOiACRDvsShE4j1AvGK/e17ZAgBYIf19KKKHSoBEEHkiniJKAVIMmzHobg8QPngFq/lGgpgYi+TKt//zGi669Vlk1AKGokYpUIAQYYHlv67CLGT6Q56YUWjIIe6ruAAKG6crBodNGRaSLZiJHZjT+QIa4HnMaq4CpLgyTiNArEiFp+eLGpwQq+9KUTtQxu1XXqELAAC3Wm8b1Pv6AhJ5jRBXgi/3ADmg5znUkxxO0F9HOqsWl4YC9SlARl/ULioINaUAUYwRiJUDAGRYYT/EoM3fSKEkfIExDtPnya/ww6ho8luYABEKXjm0Cyp9B4Pt9gBRY5+i9nnbz551HwsLLOjhPWFl9pnSCAA4bZ9J7rafvfcQ/OKyQ3H6vpMKXv8gPdy/IVlahclYIWdSTEQn9tU243BtFaag3d0nerYFEyBhPS+9x97/FhPFfvaw1HOK6kMlQCIIlSbOE0k3Ukw1TQqDMUgKED5g+RQgAzQwHQjxbttp2icm4b05tYChqE0Ke4D4FVaC9r7ckD43LKAwHVWJ8He31OR3WNiMIQOvad/Dic+6j/WQBAgJRAWaVlwBYhbxw1dflSKqWCE+whblChCRMHyZ7jWoz5o5rs6/gUgWWPIikqQGSWdVPDcUfAoQffStw8S9TtnAKMYKhHJP+jwKr69nPndqSY/VlglX+r7XeBwxW42NxRAJkGAxEuBZYMlz3uE1QeefrRIgilon6GLgxRgDF1n84QNH4sbz9sUPLz3I3daYjOGcRVNRF/e/f8mki1FgGZ1oHNY5j3Xytu0prAE8l7jGfSxidxuazzWnv2FQlxLHXrGfXczhWxExVAIkglDLv7i4EJuHbDkzFqCMwSD+BdrECCywgoiB020E7CzUquSwolYJJkAMhCtAujLmkD43LAjZl2wCAPwgdhs/Rj8NzhTFsSn1lB4AphKpKsbZzrTiFlhcAdJ/E3QDqgeIojYIa6Ro2zwBkgQf13LOQmCxe/2TnzkZ//zYsa5/sIDAq0CTFSBy/JbLZkdy+mMOJlmdjpYC5OS9PfsKbxFQFbooxgbELp4AaakrbdLxtANmF903M7OipMeqKeziCpB6Z9HV3wNkGIcQChDV71JR4wR7Tno2mwOPd5OakvjQCfPQUleoFhEx4wt0XwDAskkX4sz9JuPK/OcKX6QYEjmTekV9ADTifYfC7nkgBYj8rYsksUaIW+ynE6ryHzWCSoBEEScYFcwmO1UfkBBs6lkjuL7NsgfqCD9fDI7UKZnWoRZoFbVNcJwppgDJmkO7FsKq0XrAq6ebSRoXas/AVLKCYWHZzKfQyDIvgA+zwApaIxBCijY5FbLgCcRveabuR4qokgsZuyzKwAAkwGOvbIgVjMzs8fU4ZFZrwXZCSGEPkK6teEffXd6xTJUAGQq80GX0mqADwO1XHYElN56Oac1J916n4j3FWEFzFSBh9kqlXUborJ9TdF+T1VbSY9USzEmAhPUAqYs7818pzg72NhoMSgGiGCsEe07GXAXIwBZY/SGmsZfnb8AR2Z9jd91C/PyyQ2HNPRXP2vvznYE1PsXgsCiDTvxjk1ij8HqAEDApzdGfnZU8FxZx32R0DGvsVFQfKgESRUz/4DiVtKuK2xCYZI0gbCdkK5f4CPuBiEFQNIAWahP1VShqleIKkJEtPIWFE9eZH3Mf/zT+c9jW0FQlCg5PBHtBYZKYIM73FmqBFfgyNEJcD+kgwqaslfSiFd3udnU/UkSVMAUIZQyM8msH8BQgMoOx1CSSBRbEBPvhm3yvYZaa/A4FSke3CTrA48YJDQkQqRmmagSsGCv0pwAZjpKgP/LJCUizROg+lQApDqP83mSzEAVIolABMpIeILoa+xQ1TlABEnN7gIxM8SbmRhYM7EYLQABD1zB3Qj3a4VhfqRhwWFDGCtwIkk7RkmyBJVPM3hnwkiMaIci763wUU6DuQ7WASoBEEGb7LbASxFSe6yGEKkA0go+cNB/nHDAFh4ZUaA4FMW5mLP5ADLzKjkxRq4g/7bguVE/+BOMRc/g1dc1pC4f0uWEVFc/RA3zPD+l5ckifqeBYtDAoTDhWPq5EeAALrGIJkLeYZ1cxk+x2H6shUBFViilAKGOuAiQHXgWYGGIRRdLQIQT0WdNJ6GY6fK9RCZChwTD6CRAZtwm6qoJWjBE0kQBh/PpqTHrXWamrYQ1dx9G5W7CLtRTsa7C7Ct+g4Dg9icJ6gIj7FPE1+B2OAkQ1QVeMDYKWy6LAdcQxRqD/xBVH8zmUrnmL7EoBMjwoYwXK3JQTs3sKEM03n+1vGBTTYo0A69lUd/tcsr1EZ6yoJKM/W1CUHM32WyTUIasqbkOQs8GuAoQQfP6cfUry+SKAbMvYgC6pTdR3oahRxDiTjGkwdOL+zVtO1dnfPnwMNralMXt8XdHPCEOejJ2+7yQcMqsV339wpe81KUtNfoeDHRIU1iGHLBKSBZacAPG/XyPFm6DnEcM6OgXztB2Iw1PoqCFQEVVyVuHijk0ZKKWocyZT5x0yBz95xcLHT1kwpM/WNQLizKp6Mzk0A0BwMUklQIYELUMPEBlxr1OLgIqxAnHUBUIBcuisVjy5and/bxk2hk7QjQZsZJMwiXT69sVYLvxNCjDbUYCEqLGJVMnsbRv6MbyxTylAFLWNRUdXAQIAb339bCQMz57dZCoBMhJsWtiPMkWyAGt258A2NHzw+Hnu/oIeINL3I1RyhBBQaHiNzsEibQPiUONfLaASIBEkWCH4/4z/ImPlgViqyDvGJpR5sjdRudKf3G2oiI+yAp7QtpLjKGoU6goGCGKEwLC9BOO05iQIIZgzoX7InytfljNa6/DxUxYUJECyGJn36ljFtgsVICnwhYQwC6xgQEiI0wdEIwWTAsCzA0oQ061uUgl5RVTJWSEKEJuB5XqQIjz2uvbC43D5uTFMaAi3aikGIYCm6QAFejJOHMf8xwsqfBX9w5jU42iUeoDIuAoQ1QNEMUbweoDwe/0B05vw4ZPmoTlV2gbogKc2zbHCz45RNTYWxWlM3p8d7V6TG7DPlEYQQrBgUsOQD2G56jc19ilqG9MO9gARCZCRzUPlqZFIfgA8NnQtBm1l9zwcKPX3uwSAH8R+iY/mr3OLZPaf3oJUvfcd9rckqLtN0PlzofwWVriKaKMSIBEkkd5ZsI3tWQXMPKgCZ1O9+BQgTuVKMSuX4eD1AHE+27lBqrU/Ra0iqiM0QnA0XsVsbRcAfg2Maxh+YCivuReT5mdCJsSKgeGN4fxB4dv1Z3CbfYGXAJEWDoMN6cX3YejhCRARtCckBYhKgCiiSlgPEJtSkB4ue+9mdWhKNGDC0HIfAHhsIBIgvSIBEmi2qSywhgZlKKsCRFlgKcYaXgKEX1/NqRiOnT9hVI4lFp1yIQUvcZot2KZwKJIAOWXvie7juriBB647cdiHEOqSDbuUGltR21hSD5BDySos0jbwJyOMMYrNjXRC3J6KSgEyPGzGCgpTjtJW4JXkR5AX6rVAkUx/VoCucs65JwkLSGGFq4g2qgdIBGnoWlGwjWpqcTCI7AcoKlfGD7Fisz/EwCmCwuO0N/hzpQBR1CiuAoQA5+Epd7sBG03J4Y9Bfm9ib/unzQ+7jy2mblfDQe6FJPh07G68kviIZIEVDArlx04CRAv//QsFiCwLViOgIqqE3b8tytwEyE4W3jtssJYihsEnUds703xDsJpWKUCGhM/3uRwWWG4TdJUAUYwNRA8QsUCXjI2e0irm9JfLhTRcjzG18FQUJwEStMD67fuOGPJHfeHcfTC9JYVT95nk2y7Gvr20zXhzW/cwT1ShqH4sqTDlXH2xtyPfN6LPLbY8pGkqATJS7JB+l4K428MlMNcdRFG0q0oMmesqootaUYoglBFsY+N825gS8xQgD4bU+VOf1FjKBAj/v4/xzzxVX4ZWdKseIIqaRVSvEELQgIy7fQObgrr48CfFxbyJ36Rek22igsJhYVEaGhQ2kTRmE0dN2E9VjBjnDL1IH5CQqhimxkBFRKEhM1TKGEivkwDBuIL9g4UQIBXn18u2zl6+MbCQrhQgg8emDJSVuwm6SoAoxhZCAZJz7vVJY/QSICLOCE+AqORwUZwEyKwJTZjR6tlhD6dJ/dUnzseznz8VJ0vqEQDIgM91z9NfxJbdbSM4WYWiujElBUgr6fV2TB2p00r43IhbYDnjqprrDgtfP7giaAVzXf/+eRMLrQFF8V9etntWRB6VAIkgq+a/D8fmfob/NbzD3UbVZKwAxuBav4jKlanNyZJ9vlgkvMM+2902nexRi3+KmmVjG69+IQDGoxMA8GXzKrSjaURVgWGKAwB4k81xH+tMBR3DQQ4KeycejKOzt7j7vhy7kz8g/lBA/g6EJUUx+0BhVREnXlWMEsEpokpYAYNlMyQ2Pw1gZAkQANB0vohoiWbrVDVBHyqMMbz7V8/jnJ8+hWxfD6aQDr4jNbLvZjC4PvgDTLQVilpBCzRBT8RGb+mgvx4gcdUDpDjOfYRpRslsmIP2MH+2T3UfN3StLs1BFIoqRLbAmujMdbMn3AC0zBzR5xabG+mqCfqIoZTBcNb8VtHpeHHuxwpf1M9cF+D2ji/ccBqWfukMd1swKR+HWouoBVQCJIKICkVd+vaorSZjQeQeICfsNQUXHzYDJ+89aYB3DR4xbq5nU/EanQMAmEQ6EWIhrlBEntU7e/CRP74CANDMPhxAeZPypXQBgJHZIsgxSLBi7X82l/BrqjHcsLBsrzEcITp2YHzhiwJVMfJXIKpfillgCV9wuQeIygErokrY365NGZKr7wcAdKJxZAdwJmAzsiuBP1wEbF/u360ssAbEtBleWNeOVTt78cqS55AgJrr0ccD4+aN+bKEA0VXRkWKMEGyCnjBGMwFS3AIrDjU2FkMopJmml6wIL1j0soVNwjI6DwCQyOwqyTEUimrEs8BimK9t449mHDnizy3WA0Tz9QBRc93hYEv94GzoIEF7WQBEH7gHyJTmJFqlRumiCDBMAaIs76OLSoBEEDGA6pKUjgWrCBWwKUMjuM/2SQfOww8uOQipEdj0BJEHzl2OL/hE0qUGREVNsrEt7T4+x3zYffwm4zZVqREpQMJ7gABe0KEp/+dhwXuA8PsDcarPv25e5n9RoCpGl74EkfcoZoGVU03QFTVEsR4gIiv4OIbuqS5DnAvqwu6/AOseB6h/sqtZmbC3KSTkRvX5Xm7F0mOMG3wjlhHQy7i9zES2Z9SPpVBUA7qrAOHxw3BslQaLV21b2AQ9oRQgRUnm+TiYMVpK1oMtzB9/p2O/nVQJEEUNYzlx4ByyA9NJG/JMB5t+2Ig/t9jUSCPeXFcpQIYHpV6xnw0Nr0+5qOA1WsAmVR9KDxAm5rqe24GpKp4ji0qARBBh0SBL8G2VMS6AMsm7MRXeuHQkyIu2u1kzAGASOtTin6ImsaSFwfGEN0BcTyfDcibFI0ku+pug+wMSURWjUTXGDQdLCgqFR/4KNsv/on56gIiKTFkSLjO+iVfEqwSIohYIs8BitgnN5AngdWRkFggaCQ+7004vMc1Kh+5XeOQtb9JZb/cAANJ606gfN2fZeJ7uBwA4mi4d9eMpFNWAqwBxFoBGM80o4g0qHaXHSToaqvlsUeqzvJ9bd3xyyRS4YbanO51iv4RzPIWiFhEL20dojtMBWwgtUdgfYqgUVYBoxE0wqwTI8LAlu2cLGrqNCfj9IXf5XkO0oa9T6G4PkEK3A0sVPEcWlQCJIOJ6kxUglqkWB4NQxtACkQApvTe0HBvuQgsAboGlFv8UtYhcGV2PLADgfnq0uy05AlsEeZoVnHNRjU+6DdUDZFjYlEETFliOAiTjLLa6kOIWWKJCplihzKJ50wAA9USqXFdDoCKihNmHxK1u93EfqRvR5+tFlGx7GF/A15UCZEDkBEiLU+SS1kdoTTYI2vvyeIouAgDMY5uBPtUIWFH76E4CxCyjAqQB3jj4ofyn+XmoGLAodbndAICe2KSSzUHDqqN3OAmQZEYlQBS1iyj4moguAMBGOnlUBabKAmvkcLcDoQDRYVEKW0/5XhNMgAxGwSHuSWnweXOddG+ylAIksqgESAQRPUCebXmbuy1vqcqYIJQyd3KMutInQIhPAdICQPQAUat/itrD80T1EiBplnS3JUegANH8TUB8+5jOrRCUAmR42JTBIMICiyeTMvAnQPqrihGT4EUzmsM/v4lXxM8mniWCGgIVUSVsPpOweBzRzVIFyULBYObGhAA79/1A6L428OtLt5UCZCBylg2A4cvG7/G12O8BAJkyKEAoA7rRgDbmJFt6d4z6MRWKSiMSD64F1igeS6gOGqSCil7wONOAsnouRszuAwCYsfqS1Z+EJUCEBVZCJUAUNYyY7zYSHo/1oC60X8RQKd4DBDCZE1tayupvODDmJUAs6LAoA9WDxX7+Ze9BJUCccXAz4z2Ep1Ev7lMKkOiiEiARRCywb0stRB94dtPKq8XBINS20eT0ABltBcgGNgUAcIS2AlTJFxU1iJzYqyM8ASImpsBIe4AUPn7HodMBAItmTwQAxFQPkGEhV8UQxwIrE/TXDiZApJhOTII/febeOHWfSfj6RQf4Xmq28MbD88h26e0qKFREk7AJatLmCZBepIoqoQZLfuJ+odv3ODaaSgEyMHmL4kCyDu83HnS3mYFKv9HgQCcJLApe0KsWARW1j1CAiH5fM8eNTAXXH4bOlyVkBYgFHp/oTBX6hUIpYk5/FGrUlcwCSw9Z8F3vzHWbO98EVO9RRY0iFCCij2wPUqVJgBRZb9c0WQGi5rrDwaZektxmGmzKwBwHCUGw2G8wCQwxB15PpwIAZtAt3vuLWEMrqh+VAIkgbhN0ArQTLkc1LZUACaLlOqERZ3BKtZT+86Wb4Ut0b5hMxzjSi8ZNj5f8WApFpbFCLLDOP2yhuy05ggRIWA+QH15yEJbddAamjh8PAIiz7LA/fyzDe4DwoFDT+XcUtMAigaoYOaQT1S8LJzfit+87ApccNsP/+a08AbKfthEt4H78qihGEVVoyB+v7IE/0kmwXj8xdPtWxsc5w1YJkIHIWRQnaq/6tllaosirS8dtlx+G8xZNdXu+oVc1AlbUPpqjAJkzqQU/fffB2HvK6NnNxZx4YwfzitbcBIhSgIRjeqpBS0+hVB6kExoLx9TlbD5MpiOe78SadatLchyFotoQ62yNjhKth9WNuPgFKF4cphG5B4hazxsO/h4gOuwwBUigCfpgEhiiL9U6xhMg09lOTEY7ANUEPcqoBEgEEQOzRgiYs3BlKQusAvRcBwCgD3WAHhvg1UNHXgfJIoHFdB9+3Gx7yY+lUFQaeWGw3lGA2DGvEnAkChASogAhhKClLg44jeeSLIttnRnluTlEbErdoFAoQNKScgdAgQJEroIP2iAEnwsLLAD4Qey2gvcrFFEirAk6oTy+sqCP2AfaSBUuHnazFHY5qoKk2TWyA4wB8jbFkdoK37ZyJECmtaRw3ekL0QmnGWqmc9SPqVBUGt2xH501qRUXHjx9dI/lxBc/tC7BPfbxeE/+i4jH+bWtmqCHY2V73cfMSJasAOXw2a247fJDfc3QbejodZwnPnL7k6U5kEJRZYhpplCAdKOuJL2Pil2bGgHyjsJOKUCGB6UMhuN2QOEoQPQEKJO+N8M/980PoQfIbjQjx/gc+tb4zQCUBVaUGXYC5KmnnsIFF1yAadOmgRCCe++917efMYabbroJU6dORSqVwumnn47Vq1W1QCkQ15umEVDHj9pUCRAwxrB8cyeWbuoAYwxahidAerTRqVYKVoL2gC8GE0vdvBS1R5gChMbr3W3J2PDz6fK1FAwyiXOMBM3g2O88hg/+fsmwjzMWsaSgUHOaoPcghbSkAgnKguU14GDCwwg814w4Nk84AQAwkTiLtyy8kl6hqHbC/myJY71iQh/xJDieKFyo38HG4Q02FwAwo/e1EX3+WCBvUbSSHt+2ciRAAH5/6mGO3Vaup/8XKxQ1gOEo4EQ/tlE9lmOB1YEmXG9+DM/T/WHE+HENphQgYdx494sAgDRLoM9kYCUqQCGE4OwDpuLIuX4L6T6ngKYBSpWtqE1sVwHiWGCx0tj+JYzwebKvCbqZBnK9oa9TFMdmXr9LCxpMm4JoumvbBwCI+a1SB1NQ6c15Ce6zjwUAtDpuB4+8qWxQo8qwV6z6+vpw0EEH4dZbbw3d/73vfQ8333wzbrvtNixevBj19fU466yzkM2qG+ZIEV78GgGYkwCxTLXo/tKGDlx467N4x8+fwZ47LsfcZd8HAPRpDaNyvOA6iMjeM6q+C0Xt4esBIhIghpwAKVUPkMACe5Jfv4u09bjO+DteWbVx2McZi1DKXD9tkmh0xi2COiI12iP9KECCCSlCENP9296aexUALzF2wz2v4YCvPIhnVu8p0U+hUJSHcAssT1ZfzAZBG4Q/AmNAc6pQjbqULnQnaXVWxxDOdmzCEyD+BYLN3eVRBhLiFbsgp9Q6itpHNEFnWhkSICHjqFCAxJQCxA9jwL0fx3nbbwEA9CGBDXv6Sm5BGiyC6XUSwPVE2TUqahMRBzY6c6celKbH2NcuPACzx9fh2+9Y5NuuawSmoy7A7hXA9+cDaeUmMhQoY5gAHpO1sybYlEEjxHVnAVCgABmMBZY8/v3ePhMA3PnzN//71khPW1EhjIFfEs4555yDc845J3QfYww/+clPcOONN+LCCy8EAPzhD3/A5MmTce+99+Ld7373cA+rgDcw6xoBhAWWrQLDLR08U3+89jombvyPuz1PksXeMiKCC7V55+ZFlHxRUYPICpAGIhQgDYAjER5ZE3RZAeLfR+I8ATKD7MF1xj1IIQfgkmEfa6xhUYbxpA8AQFItiOka8pZ/sbBAASI9DlvYjekaTNux1SIAjfHvKOUEhTu6+d/H75/fgOMXTijJz6FQlIMw+zbiLABaMIr2ALnlPYfg/Xe8hC+cs2/Rz2YMaKmLI890xJ1KtT2sCd+y3oskeNxgqAKKAcmZNsaj27dt4Yzw3iqlRiPEXQBEtrv/FysUNYDO+JhER8FKOIihF46vNuFzK40wMNsC0Ye9dFFb7HgNWPZHnOA8zbAEOtL5kilABAUJEGcxWClAFLWKKPgrtQJk7oR6PPmZUwq2t9bFYUKah1lZYM0jwIGXluS4YwFKGaaRNgDAdoyHRRkIAZ6jB+C9cHrzBhQgZrGu9BKiBwjg2UfXSWMfpWxQBVCK6mJUeoCsX78eO3bswOmnn+5ua25uxlFHHYXnn3++6PtyuRy6u7t9/xSFiHVIQgioExiqHiDeDasuEJSNljVCcCFEyBeJlQt7uUIRaWwpUBDXGCuRAgQhPUDc50m/gmtvsmX4xxmD2JSh2UmAINWCuGMxcU3+/7wXBRIgA/XQjOle6KARAuoElfXBsVf1a1FEDDtUAeJZYBVLgBwyqxVLv3QGLj1iZuh+AO7CFNW8hcTjcjejCw3IgldX67ABVdDSL7aVR4r4E0XH71v8915KCGQFiLLAUtQ+ujP+sTLYzMmxhaAj643JlrIY9gjMNdNIojNtlqgFukdQBdzH+CJgPZQCRFGbuBZYToGfe88fJSY1Jrwm6AIVXwwJmwKTCVfNbGfjsN/UJmiEoAveOkVQAXLhQbyn1eGzW4t+rpwAFmNfHXIQE+WwvoGK6mdUEiA7duwAAEyePNm3ffLkye6+ML797W+jubnZ/TdzZnkmNFHjsNmtuPrEeThhwQRXAWKbZoXPqvKELVwAgKmNlgLE/zynGlgpahihACGgqHcq/WnCS06k4qVRgAQXGPWWWb7nW5lSFAwFizI0w0mAJFvQm+OLGZuZVzEdVIAM1MRctsAiBGCOAiSYfFYookbY3/4B+WUAAAbSbxP0gfqDiBBlt+7Fxjkn8eHGDwCv/lMUhdmFRSbxxOguUAg0QlwPfOSVT7ei9jFY+XqABNUGAJBnXnxi5lWBmYf/XpVBAicsnIB3HjoDAHDEnOKLekOhUAHiJECIuk8pahNKGQioq3IqlQKkGJOaktjFAtdrThWBDwXKmJOYAM44eAGuOGY2dI34v7uAAuTLb9sPP37XQfjNVYcX/Vx5/MvAsWMkNuKOJWOxtUdFdTMqCZDhcsMNN6Crq8v9t3nz5kqfUlVy/MIJ+MK5++KcRVNBNJ4xzpmqYtAqcwIkuNjhZu9VAkRRgwjrvfHwqlJ8ChCjND1AgteVNnEhVlAvGe5bKFQMiE0ZmiQFyOVH84RSOxrd1xT8zgdYyJWrNAkIEOMBZpzYyqdbEWnCwohzMvcDAI7SVgx4bfT/2fzDb2/9JHawVjy66HvuPpUAGZgtHWm09+VBwqrAY6MT5wUhBMgx57tSal/FGMAQPUDKkACJaYXLElccv8B9bOVVsV8xGpua8KUL9sPnz9kHt11+GH5z1REl+dygLVkfUxZYitrGZgxHa29BIwwW09A9ygqQeRPqkRo/Ha9Qb6xDVvUYGwo2Za4y+LQD5yCma9AI/N9dQAFSFzfw9kNmoKWu+L3NlJwM0vBUkKLgTyVAosmoJECmTOHNHHfu3OnbvnPnTndfGIlEAk1NTb5/iv7RdL7omMurRfdig5Ctj5YFlv+5sMDSlIe3ogYRCcabYn/gG+IN2N7nXXNTmoe/AOVXgPj3xXSCF6jnq5+CWnQaCnZAARJ37hk+JU3vLt974kb/oYEvAUIAFvcCzJSaFCsiTDCOMAIJvRHkP9wEyPrU/jg6dytWjj/N3cegISeaYKoESAFdGRPHf/dxHPaNh9HTG6K8MErTpHQgCPFiPdhqMVZR+5QzAaJLi+2fOWtvvPTF0/HRk/dyt+VNFf8VY8r48WhKxpCM6Tj7gCloTpWmWCiY9BcKuAanP4JCUWtQynCl/hAAYB2bivwoF95pGsEfP3gUnqZSc/RM56ges9agjCEp1gccpQch/StABoM8/lkw3AIYoTZRFljRZFQSIHPnzsWUKVPw6KOPutu6u7uxePFiHHPMMaNxyDGLaAaXVwmQogoQWx8lC6zASm3erQpU34Wi9hALg3uJHhyLLsEp+05GY8LApYfPGHDRvD9IkccAD2Bup+e7zxtJxlWjKAbGCvYAcb4nCwYesg8DAJD5p/rekxgwAeK3wNKMhLt4W68SVIoIE2wgO8XxFBaMTAHC/xfXj2n5j+WqQEyVAAmyrZP7zTMG3PzwG4UvKJMCRCNEqX0VY4ryKkD8dqgTGxMgkipE3/D0qJ9DZAjcq+RClFJiFGmCHuz5plBEndU7e3DJbc/h+XVtbkPte+wTynLsmK7hD9aZ3oZsZ8E1rigOZQwpODGZ40qgEYLdaMYSuhcoCDBx7yF/7vyJ9a5zAuCpQOocC0C1HhFNhr1i1dvbi2XLlmHZsmUAeOPzZcuWYdOmTSCE4LrrrsM3vvEN3HfffXjttddw5ZVXYtq0abjoootKdOoKANAc7/ac6gHia9Ls2z5aCZDAOoiYFL+8bgfSeWUDo6gteIKRYTrZwzcc/TFMb0nh5S+dge9dfNCIPlu2YAomFgFglzYJ3zLfAwA4X39BKd6GgE2pXwEiJTc+Zl6L0/I/Ao7+qO89AydA/BZYukaQdqoC6yRf6IF6IigU1UZQARK0+SiFAkR4Cv/m6XW+/aIfiFKAFCKvA8TDbPYqogBRyV5F7eP1ABn9JuiGFFuEhIJoeO7bo34OkYEF5ryx0UmABGNy0Qi4QfUAUdQYP3hoJV7a0IH/vrYDU53iF58qYxSJGxra0IzPmFfzDW/8E/jdOSoJMkhsylBH/AoQPnQRXJq/CefovwKmDn2tghCCb1y0CGftz3v3CQWcSAAXK75WVDfGcN+4ZMkSnHLKKe7z66+/HgBw1VVX4Y477sBnP/tZ9PX14eqrr0ZnZyeOP/54PPDAA0gmy1OlNVbQDEcBohIgRQchNkoJkODinpgUv0N7Crc98Cz+u0nH2w6ahg+dMG9Ujq9QlBObMiRgopHwSlw0cjvDkSg/BP31AAF4Bdpaa5p3Lh0bgKlDr+QYizA77wWFqRYkjDZ3nwUDm8m0glXdRKz/fi5GQAFiaLwxcCt6fVWBwWp6haLasQN/skHLvREpQJwYxXAqmnty3kL+b993OHJ/Ub0lipGXfJgTCIl3y6gAEbFeZ28aLWU5qkJRIRiDzpxxqsxN0OVCC0HfxEPUNSeggXFwlBIgxRQgF+tPcccDY/T/LhSKcmBIarPx4D04pk6bietOK94ku1QIZfAe1uxt3PQ8kO8FEo1F3qUQ2BSSBZanAAEACg3t2rgRfT5x/CnSLAEQ8Hk1UwqQqDLslauTTz4ZjLGCf3fccQcAvoj1ta99DTt27EA2m8UjjzyCvfbaq/8PVQwZzbHAsi2lOLCdlYvg8oQZaxiV4wUXQtqZd4NKvHgrXt3ShW/c/9aoHFuhKDeWzfyVt0bpqgFJPz1AAF4V+Dg9xH2e/NfVJTt2rRMzJb/8RBPigUWFsPXc4GuCyJMEjXAFSIbxv4ejNDXmKaJLMGmXJH61Wdj4NPjP5v/rIR+SihnuNYR8SI+LMU7e8hIgFVWAwGuC3tnd6zsvhaLmoBY08IGrLBZYUnFFTCquedY4CgDQk5o+6ucQGQI9iNgoLZIG71e7WYv7+KUH78TfXtqsil0UNUFTiq+pEVDohP9N/+YDx+OM/SaP+rFFwnc1C4xxQaWXIhS/BZboAeLtH0nsLn+WcDs4XnsNAPDRP72CrGmP7MMVZWdUeoAoyghxKnWpuvhEI6JYYHJsxepH5XjBwfR/9EjsdALDJuG5r1DUCJQx6JDGGW3YAsICNF+QUhilxHQCCg332scCAIwdy4AilncKP5pj02JrcUDTCxQ7oYux8f4VIL4eIM5nJJzA84uxP4OAfzfKAksRNYIWWOLvWjCyHiBCAVL4GYmYhm7wqrUdu3cN+xi1imnLCZAQBUgJE/L9QSQFSIxY7neqUNQkshqtDBZYcjySkAox9sT4oqCp7E89aCARnGgalcMEY8THpGKkR597EZ/9x6tYsaNnVI6tUJSTdJ7PcXVI80ut//lQqRCFZ1vYRNjNXs8Jtb43OJhtIkac35VrgeXvKTUSxNst8L+Hjxv3oQ5ZvLyxA3cv2Tyiz1aUH5UAiToar0QjQSnsGEQsXBjw3yxobHSqYoKDaRYJ3GZdAACIQd2wFLWFRSkMOSgkpbt9DKQAEROwG80PuNvMnKqSHgyGzS3LLI0vXgQr9cISIO8/bg4IAS44aFrBPsCvACGEf0YL8b6PUIsahSICBNXsKZRuwU0UacgWcoKEoaGL8WKN/73wasmOWSv4FCAkRAESK48CRCNev7fQRIxCUUvY3vjHymB1FJNii5jhjZNGjB87m1V9J3b35PDnxZuQzQV+F8lRUoCE2D3/zLoQADDVaRTd0acSU4roE54AKV2xX39oGnGKYwj2XP64tyOY6FSEQsy090RYYEnLFCNOgDj+MnJRVD34/Fq2s1VEg/Jc1YrRw5Eka0xNxEQPEIP4kw/1TSPz/StG2FgqMsO6SoAoagybegqQPNMRL2F1v68HSIGJnbfgLpqPAcDutg5MmzE6FW+1hKsAcXohdWX8gVpYAuTCg6fjxIUT0VIXC/1MXw8QEBiaBhtelVQKOWRRnopshaKUBCv6k4EESFjyYvCfzf/XtcLkcUtdHH1Of6X3d9wM4OvDPk4tkh9QAVKeHiCyAiQOpQBR1DiOAsRmBFoZFgLlhttx3YspiJN8WbmtDfuN+llUN1fcvhgrdvTAXLAOV0nbSaJlVI4Xdr8SNljjSTcAIGcrRbYi+mScBIgxSm4HAxE3NFh5GzmtDkwzQKilEiCDRLN4/EyhQRNro9I6xUiXLMT75ULQBDEBNrBttKL6UN9YxBGerJpSgLgKkKA/9H5zZ4zK8cLmvSIBohQgilrDspkbFBK9tAEhGSBIEZZLDBpvQAZgT0dHSc+hVtGdBAh17Cu6Mv57RbC6T9BaHy9qYSUnTYjGn3czrwFnUlVGKyJK0AJL7gHydfPyotfLYGD9WGBNb0nhSG2l/GLf/rHea2LAHiBlstvjChCeGI7BLlAMKRQ1hRM/5BHzJSfKgWzXWV/H44t6Q11wwm7q9U17fNtJarQssAq3ibmuWAwc6/cnRW3Ql+exhd/uuTwWWIDXByRn2TCp08DbUvOpwUAsroiz9aQbD5KSWmDx9/fAUxuLAqmgtbSi+lHfWNRRCRAXy2mCfuQsvwy4adzEUTlecCERkINC7+apmsMpagGbMlddZZTYCmGgHiCGNANLO8qC3p7ukp5DLdLRl0dHVycAwNZ50DZ3Qp3vNcNZ1PBZYIEnQP5Hj3S3BRtHKxRRwV/Rz/BV4w4AwFP2ItxunzuiRUDaTxN0AHhy7nXek2yn+/C+5duw/5cfwNf/8+awjx11/AmQysW7BAR55llgKQWIoqZxFCBZxEfcRHaoNCW9QpsZ4/m8TlduBy4aCySC60bH7SBMAWI7y0e6SoAoaoicyf+O/XbP5UuAiIX03T05mIw/bu/LlO34UYZY3AKLGl6Cwr+2MMLPd/5/zPZ6IIkESEwpQCKH+saijrMQaTC14GQ7TZGbA84ryYnzRuV4h81uxYJJDXjnoZ7CxHQmxnICxLTVBFkRfSwqKUBKXBHja1QWcleSK6YzjgLE5/epCOWQrz+M9i6eKKKOBda7jpiFRdOb3dcMp6Jd/j4I4b61P7YudreJoFC1QFdEDSqV9O9FtiDuJH13oRVAuHpj0J/djwIEAF6dfpn3pHub+/DmR1fDtBluf2b9sI8ddeQm6AlSwQSI5vUAMQgFs5TaV1G72HkeZ+UQG3EF7WC54Zx98K7DZ+LIud6CvnA70JUdjIsRSICQ1tGZ6+o+H33+v0iAaCoBoqghRIwmFCAUWvikdJQQVkoWZa6tsJlXSd/BoNuSAsRhNJqg/8Y+192mEiDRRX1jEYeooNDFKtIEnRij40WfjOl4+JMn4oeXHuRuE0GhfA45NUFW1AA2Y15juBJ7opIBFSDeNqEAIaaqihkMIkCjzjgYNzR84tQF7v5i1ej9oetyUMk/I4c4NlGutkuBV42q1K8iasiWRtOIZzEiCv1HMokSn2EUmSxpuoaNdBJ/ku9zt3emVYGLvwdI5eJdTeoBAgDUqZBXKGqR51byRGyWlU8B8uGT5uO7Fx/ot0bVuO2cXsFrv9rQmH9uqde3jspxZAWIWOijLKAAUT1AFDWEUIDQMqo/AM/uOW9RWM56Uj6v4r/BoIseID4FSAl7gDj/WzDwFp0FAEgRkQBR5X5RQyVAoo6zqKUrBYjr3S1Xxfwy+cFRPWbQI990KwO9wDRrqsBQEX1sqQcI9PDm2MNFbnwe1ndCtlzKwLHfMvsKXqcoJCUSIFJVjJz0GE4CJCYrQEDcivaMk5yqZIW2QjESbMnSaALxbPaYM0YN53oJUkwBYmgEaTjXab7X3S4ac45lwiywXscCbB13FMz3/rNs50Hg9QABAGar2FtRu7y6fjsAboFVrCdYWXDcDpQFlkcskAwaLYWOrBIWFepKAaKoRUT4pztrOOVOgIj4Mm9TVwGSVwqQQSEUIExKgDSlvGKVUvUAAbx1CLfAUFmhRg6VAIk4xOATMSPQAySTt3Hr42uwYc/YWSQUCpCYkwza2XoY3nvdd8t7DiFN0FVljKIWsOjoKUBkhXFYiCIvGFqi+lap3gaFSMYKCwnAHwgOZ0FXrmAnxOsjknWCwuO01/m+oZ+uQlFR5ImMUDLJlCIBUuwzdI2gz02AeLFbVi0uufHdxYfNcBUge1JzMP2ahxDb69SynQdXgHiLItRSCRBF7dJo8Pghh5jPhq7cuG4HTCWDBQmpF9KD9uEluTeFISuwY06PAqp6gChqEM8Ci/89szInQESxH1eA8GPnTBVjDAYvAeIV+7XWhc97h4P87izjn3uKtgyA14NYER1UAiTq6EIB4k+A/Hv5Nnz/wZU4+QdPVOCkKgN1EyD8dzF53+PQmCxtpXoxzjlgCgC5Cbq3OCt7iisUUYQxhkfe2ulVnI1mD5CQIEWeeItrjNkqATIYvO/MS1r5LceG/pn+HiDe83rwAHQe4VWjauRTRA25kCuGwsW20VSAaIQg7fQ4khMgtoohPIWvRlwFiKzEKBd87CTIM+ceqCywFDVMjHlN0HuzFYy5dB6/KAWIR1xKgNxqXThqFmVyTC6sXly7Z6fARhX6KWoBEWkZbg+QMidAJAsscY1llQXW4BBFkVKxn5wAGbFATnp/0rG+mkF2A1AxehRRCZCIo8X4ZNmAPyh8dWtnBc6msrg9QIQdmJQFHm1uec8heOT6E7H/DN60T+4BopRxiqjz+MpdADB6CpABFuR7pIm35XgPw1YT4cEQ9p2N1AJLD1hgiee/tc8BADRCNahXRBO5YCFoMQL47UCGi17EL1j3WWCNHfXuYBAVdrpGECf8e6lcAsQ7NlMKEEUNY+Q6AQA5FkNvrnIJEOJYYBmqB4iLsBq93ToHr2P+qFmUyQl70QPEClhg5ZQCRFEDBBUgdtkVIPxay9kUtjPXzeVUjDEYRFEk0b25bkudFyP25Ud275ATwb+zzgYANBLed8RWC32RQyVAIo4bFAaqYuQLldXwhfnmtm5ceOuzeGb1HliU37Dc34UR7+edpcXQNSyY1AhGnB4g8IJBNTAqos663Xwxzu1to5V64an/HiA90sRb+KIypibCg0EkY4kW7oUqN7gcLLGABZaQbW9hEwAA40kP3zf001UoKgr1KUAKxxitBGW2sSLXnKYR9MGvAFEKUo4t4jtJAWJWIgHijGqi3xuzlQJEUXu8sK4N9y3fhku2/xAAcLC2Bt0VVIB4Flgq7hN4Sjhj1OyvAP89L64ssBS1jBNuiXmTXXYFSKEFlmWpYr/BQJxWAPJcNxnzvr/O9Mh+j/IIu9WZ644D7xOoFCDRo7RlvIqyQ5wm6EYgKMxJjbcZK4H0q0r5wB0vYUd3Fpffvhhn7jcZgNcDpJwKEAHVRAJEssBSCRBFxBGTq0opQPqkBIjrv64ssAaFHtK43p8AGfpn+iyw4PVwaWeNAIBWJwGiUEQN+X4dI4VjTClCqaI9QAhBmvkVIMGqNZuyUV3sqlaEwlfXNLcHSL4CUxjNVYA4CRClAFHUIO/+1QsYh268zRmOmkgGbztoasXOhzjxS3CuO5YRPUByiI1aA3QAOG7BePexUEAGm6BbygJLUQMEFSBGrLxFFm4TdMkCa/mmNpzI2KgpvGoGpz8U0cO/s54RJvDlX38H/HNd1QMkeigFSMTRnARILKAAyVmeBVMtKxB2dGfdx54FlvO7cPqjlBOb8IE3RmQLrNr9/SvGBiIoc63dytwDJJ2XxjPVA2RQiHHHVaNJ35m8fjocSx/ZwkcjxFWAdKMeANAMZd+jiCby/TouFTJYI6gEvOSwGQCAy4+eBcDfVFbG0AjSrgKkFwAKqq4r2Yi4kthuAkRa+GOVSID4FSA/f+RNX7ytUNQK40i3+/iJg3+IBZMaK3Yu7lxXWWC5uIlgFhvVpPjcCfXuY3H/CSpALFUBragBxF/xjecsBADUJcu7jhTz9QDhMeeLa3dhycaOsp5HFAmzwColRCp/6mZ1AHhhAMCUAiSCqARIxCnWA0RuSDZWFAgiMDOoY0lglD8BwpyFQLkHiBoXFVFHLPp4CZDSBhjyGvxA6/HCe9hteKYIRYw7esh3Jk+Wh2PpE2yCLj4vy7hNRRxKsq2IJvLtWl5s+6n1jmF/5jffvgh/vfpo3HT+/gCKK0A0TVKAmLyPTnemeGw3lvApQKqgB0iO8WO/sXkP/vjCprKfh0Ix2rSCJ2HX08nILzy/oudCDKcJukqAuCScRrw5xErSm6oYcUkmLKyubDcBwsdltQCoqAXEcllzkv99kxLPdQdCWBLnbdud6+qgeH1rV1nPI2rkLNu1wBot1Y48xJqS+jgGWyWAI4hKgEQczRALTpavcjFogTUWsGyGGWQXpu58gm+ohAWWMyHXfQmQMfIFKGoWzwJrdBIgAylAZCwReKgESL+Icccg/F4gV8XIUmpjWAkQuQcIcT9D2MIYhPrGQIUiKsj3a5Hw/an1duzEuGF/ZtzQcNS88a5/evCa+8VlhwLg6oa+QBP0ggTIGPRaf35tG55ctRsA/90lwYtcsihfnzcBCShAYsTG9s5M2c9DoRhthL1HJxp9fb8qgegBohQgnInowEX6cwAcC6xRVIDI8WLesXopsMBSC4CKGkDEf5qw2itzAiSmFSpAdNhoTJa/2CMKMMZw5wsbcd+ybZ5tmeH/XZUqN+xPgHiKcAMW1uzqxU8eWYWujCr+iwqqB0jE0Z1F/jhMWJR58rkxqACxKcPp2ivehlx38RePEtTxHkxIFdB07K1XKGoMzwLL+WMu4rE5XGRLmGL2MAJPAaICjf5wEyDOgoG/CTqkx0OPDo+YwxeDZ4/nMmDx95GTKrLjMGu295SidpHXcYTFiClZLZUimjICTdDPcPqXaYQgE2iCPtYtsGzK8J5fv+A+1zWCOicB4tqFVQCR7E04sbdCUWs0Ez4GdbL6AeOy0UYU++lMFVYAwInaa+7jyaSjbH2h8o7dn7DAEkUCVI2BihpALJdpzImzSHmboIvr2LSZa7tqwEY6rxK/QV7f2oXzb3nGff4RnY9Fmu4vjInrGnIlKRzyxlgroAD5xytbAACb2tP40aUHl+BYitFGJUAijhHnCZAYLGRN263S8Xnmj5HAxKTUXx2UbCn7OeR07pVajyz4UgkZMwkoRe2iuxZYoiqmtEHhlKYkPnDcXOzuzbmL6zKfPH0v/PiRVQAAmznHpmoi3B/MtcASChAvOSFPloczcT5+4QQ89ZlTML6BB5qeAsQ7RgLmmFEfKmoHWUkr4omR9P8II7iYKJKQukbQ5zZBd3qAjHEFSDDhY2gEKXDrlwyrXALEVYDAUjGeoiZJSYnG1jItsBeDGEoBIpMg3n1hN2selpJ3OAg1iMWUAkRRe7ACBUh5EyBiDS8nNUHXQX1regrOp+9e7nterEdpqRIgckFfPO4lWeR70uMrdo34OIryoCywIk4iKRQgFrZ0eDL8XT1ec/CxEpdYNvMpL7DfhWU/h5zmVEQT5k4e1ORYEXXEgp3wXode2oUnQghuumA/3PKeQ5CMFQac15y2AC998XQA0mKkssDqF8oYLtSewUeM/wAIKkBGlgABgFnj61CfcCyvdA23vOcQfOSUvdzvJ6H6gCgiiKzYjDnjnez3W4plpuA1Jy5HnchN0J0eIFn/dTRWCloEwfBJ1wlShMe3lVSAiH5HKeTU4p+iJkk6icYs4hW3wNJUAsRHwvluAOCv9imj/v188vS9MGd8HT54/FwAhU3QbWV1oKgBxJ2csNGxex4IXbbAYp7KSiVACtnZ7a1znqm9hE/H7uZPAt9ZzCjN2CiH7Y3JOEzmKXQEY61AKcqoBEjUEb6oxMLGNj5htinD5nYvGcLGyAK8aVOvKuaojwBG+f2hLS0Fyvgo2QA+OKu5sSLqiKDMXdQ2yrvwRAjBxEZ+TLHATlQCpF8oAy43HnGfE6kqZig9VwbLBQdNw2fO2gcWcWwAibLAUkQPGqIAyaPUFljy9edV1eoaCekB4h/nxlpBhR34eQ3ZAouWP8YTdIKrfZtJH2x7bH0nitpGzBmTTryXZYmyKQyKoTkKVkMlQAB4sfjfrJOQQ9y1vx4trj19IZ74zCmY0MDjcLc6nSgFiKJ2cJXztDJzXUOysZdVphllgVWAnGy4RH/K28H8SYhSjY1EKn9qTBruWkSMyD1/S3IoRRlQCZCoo4sm6CZ6nErBp5xmkYKxckHalFVsgVZANIJeZwGjgfAk1FhbsFDULt71lazYOYiJ1ysbdmP55s6KnUe1Qxlzq/QAwMh3uo/lFgSlXtjIO42JlQWWIor4e4DwiY1ZYrdYXboAg2os19bJscDKWv7Kv7G20BRUvOia5lpgVVIB0sV4AqQFvQVJGoUiyohLLkV4ojGLeEHfonKjx/i1HoM1Zor6+kPE4qLvmlEmhY4IF4NN0MeaMlFRm4j1GmLzsa/sCRBXAWIj68ylksREn1KAFFCXKBKX9+zwPY2XSAEiF/QlYprUo8VLTk1uqlxMqhgaKgESdZzBOQELWScburkj7XvJWAlMLMo8WXCFFmg1QtCHFACgHjwBooJ1RdQRY4iXAKlc5a1YjDRA8bPH11TsPKodRoEGeEpATQT08Hq6AIBW4gSISbykPGUMa3b1YP2evpIeQ6EYLeT7tRHSBL0U+BUg/msxqAAJNpe1xpjaIPjzj8tsxEyNF/nktcol4rvQAIArQFQDYEUtQV0FiLDAilVNE/Q4sWHbymZEuB24CZAyKXREvBi0wBpriXlFbSL+inUxXyqx3fNAiERm3qJeAgR5pTINoUFKgDQRaY4pzXUBlMweUB5hDU2DKRQgkgVWa33l1kYUQ0MlQKKOIwuOwULO5BdhZ9rvGT1WFuBNm1ZeAUKAtFPBWe/YNKhYXRF1xIQ4TqpHAaLDLmgQrPCg1Mb+2kb3uWZ7ntFErjovsU+VKSywYKI3Z+H0Hz2FU37wxJhJxCuijfxXKiywSq0AkRcT5ctPJ1ICxPQsTWXG2nUUVFectPwz7uPPXXxSuU/HpZPxBMhl+qMwzN6KnYdCUWpEvCcKyrJs9C2WBoLEvIUl21ZxX1ABUq4eLSJhrxQgilrEbYJOK6wAsanbZyyJnFKZhpBwlB2T0IGjtBXeDivve128VAmQgFpbtigTqGKY6KASIFHHyU7HYSLnKECCCZCxcj1aNvN6gFRogZaAIAdRqcTPRVlgKaKO6G/oJhjLXBUj48lObSRCGqYrOMa6R3zPCfWCQrlYcLhN0IthSj1AtnV6TepMlQlWRABfDxDH2zdfcguscAWIrhGkmZQAoXbBxHesVdoG46e67E7+4NQbccDCeRU4I06X0wMkRfJ4z47vVuw8FIpSIy65pDOHySDhs+2rBLruJUCome/nlWMDkZzKOYukq3b2lOW4QQssw0mAPLZiF/60eGOxtykUkUCMfcSujJuIsBp8dk0bsk5yM0nyamE9BJH0fa/xqH+HlQ19XSnRNQLLdaPwFCAqURUdVAIk6jjZaZ0w2FkuAevM+IPDsbIAb1HmNh6vlAJEI15FjlgsHiu/f0XtYrsVgZVVWAGAxaQESIm8PWsRfdMzvudxqUpFXoAtdQLEloLCnNSkTo2Diijg7wHCrxmRdC0Vhq8HCKTHxN/XwkwXTHzH2nVEA3lTw3YsXg98d/lPRkIoQADgkN6n+nmlQhEtxBjzDp3HELwHSGUVIKIHCABY1thOgBBSqACRY63RRMSLtnNPFBZYAPDFf76ODcruVBFhqKsAEQmQ8loaxQxvnPUssEy1sC6xrTODV7d0ut/VOASSvwELrFL15ZDV2oZGfMWY7qFVnV9kKG1Zm6L8xOrchzPangZwEHqzlu8lY0WaOi2/HmfoL/MnFewBIqpF406Aqu5biqgjFuHmtRpADyqbAHEnXnbJ7ZuizuqdPXjozZ34wHFzofXu9O0jUlWMXHWejJU2iWQT7/vJW3JgqAZCRfXjU4CEWGCVQk7fnwIkizgoCDQwYP1TsNks33vHWg8QO9CTxWBOEj5eX6Ez4ggFiEJRa1AGtKLbfb6aziibxVIxdCPmPmb5bD+vrH2akMYlBk+6igRIuSBFLLAEHek85qixURFRRLShiflSmdeSEtI46+sBouZPLsd+5zEAXixeTzL+F1j+BMjXLzoAPdlleP9xc0Z03GCsLtYi4sRy/3DGSsuBWkAlQKJOLImM0YSU1Y1Edg8AIGPavpfU6vUYvCHsZ6/wNE3j5pf/hMAzxDmmFCCK2kJcajFWeQWIaDyWIJayVQpwzk+fhkUZ2vvy+Gym3b9TCgrlxuepEtuIUbcqhiIvfT8qgFdEARaSAJEtsK44ZvaIjyFXU5MCOzon+QEAbWtAAwmQsXYdyQqYOkgT2womQOKGhm7bO36f1qCW/BQ1A2UM88h2AEAvS2Ix27fkStGhomsaelgKjSQDmi+P3VO1cpX+oPvY7RlVJsSfQbAJukJRC4jwz1OAlPf6ikuuBjnmJUDUOlIhYn7pOr8IAgmQqc0p/PXDx4z4ePIdUO4B4leAqO8pKij/kBpg3cTTAACxPK/YyQYSILU6cAYXP4UMLjflMGD2yAe74UAI8Syw3B4gFTkVhaJkiCrcuOM7XMkeIHnn+pL7Hik4oj/Ak6t2Q3MSICvZTL7zjK+5r5PXMpIlToD4FSAqAaKIFrLlkpjYmI7t3s3vOQRHzxs/4mPITdDD7Oj+rp/LN+R6CiywrKAnVI0jjxtn6kv4A6IDenmtKWQeuu5EbGYT3ecbYwsqdi4KRalhFJhMOgAAb7A5AFDxJuiaRtCDFACAZrsHeHVt00TS7uPNbFJZjy1U1zYTCRC7v5crFJFCrJcRuzJN0OUESEYoQEi+wApU4VEPrgBZRafzDef/eFSOU2iBJRIgnuuOsiqLDioBUgNY8WYAQNzsApb9Be/q/DU8Id/YSYC0Ep4AMacfXYnTAeAoQKQFWgCqeZUi8lDKYMDCXpnlfEPLzIqdi3d9Wb4FdoVHV8YEcRIgX7SvBr6wHZh1lLtftg4rdSN5WQEiD30qAaKIAnK8FA9YYOXM0iz2+HuASAkQ57Fb1ZvrLbhuajWeK4aYUM4gu/GD2C/5Rk33z0bLzJwJ9Zg0aTK+YV4GANCZNcA7FIroQBlD0il2yTpVyEaFLbAAoJc5ls+ZsZ0AycFL/m6i5U2AEPcexReG48R2lZIKReRhAAFFy6u38+dlLvZLGN58zGeBNcbivqHQ4Fhgfc96N5/rLjhtVI5DiN+6VlhgxaQksFrviw6Vj2gUI0YkQJJWN3DvR3Bx9h4cRVa4+2t1wuz3wmaYQLoAAKR+XGVOCLyyOq+aoCtqDJsyHKe9gWa7HSAaMPekip1LXrKYW9/Wh2dW71GL6wG6MiaIxYPCPEkA8TrffjmQK7UFlo3wykAVwCuigDyUxIg/AZIvkeWe7rPAkiZVTkTey3ilM3I9BdfNWOsBIizJ9tc2eBvtyjdB1giwlk0DAMRYboBXKxTRgTLmKthFwUmlm6ADQC/h4yLL8WK37qyJ9//uRdzzypZKnlZ5YQyTSCcAYC2dim2YUNbDiz+DXngxZSPSRV6tUEQLyhgOJau9DVMWlfX4sgIkK1tgqTluUeoda9Q+JAvmuqVEvgMaupwAUQqQKKISIDVALsEDoPHmNndbE+lzH9fquCkrQG6P/QBv158FAJBEQ6VOCRohbg8QUT1aq79/xdiBMoZJjiUC5p4EJJsqdi45KcG4uyeHy29fjPuWb63Y+VQjjDEQZ5HQJIVNMuW1jIRR2jCAEqEACSRA1ECoiATFm6DnzNIkQAxfE3Rvu0iM9DBHAZIvtMAaa9eRCPP2i++u7IkE0AhxKzRVAkRRS1AGTwHi/I1XQwKkz+m0U7/8dwCAnzy8Go+v3I3r/7a8kqdVXu66DJdojwMA7rbLX4g0rp7/PVDwniyAf71BoYgyDHATjJi0H7DPuWU9fjykCXqCmGph3SEs/k0E1IrlOLauaaE9QJRVWXRQCZAaIN3A7WjmZ990t2ljwQLLGYwSyOM0fam7XTMq5w1NIC3QEj4o1+rvXzF2oIyhBb38Sf3E/l88yoiGxHGnQhEA3tg6ti0Rgpg2g5njjeFMUijhlivQ4yVOgNhOVYxO/JHgWFu4VUQT8Wc6rj6OOp3/DZvO33Speg7pml9K7253HvdCVoD432uNseuIjxsMe2NjpU/FByHEnXAnVAJEUUMwxlwFe5bFcenhM6rCAqsbvLiN5Hi89+b2Lnffx/70sqsWq1kYA1be7z4VC3Dl5LDZrfjpuw/GUXPHodtRgTQ6HvwKRdRhDGglzly3dU7Zj+9TgMgWWGMs7itG0PoeAOKOUlu4r4wW5x041X2sE7g9QHwWWLV+D6ohKh/RKEZMX+NcAIAGb2D4ZfzHbmOeWs1Ims5ixMFkrW+7ro/uINgfhJACC6yaD8oVNY9NgYmOxRzqRt4EeLhcecxs1/9YXF+AXLOt4HgWFhYpnCTLtjulToAoBYgiyogJzA1n74UU5ZWtJuPX0IzWVEmOEdPlHiDedpEYSYtKNjNTMKEaa9cRZQyfN/6Cs9nTlT4VHxqBuwDYQHv4yolCUQPYjCHpFHDlEMOp+5S3z0QxfksuAgAkdi0D+trQ0efFgP99bQfS+RpvyL3kt76nIjEPABcfNqMsp0AIwYUHT8cZ+01Gt9OTZS7Z7u4fY7cnRY1BGcNEdPIndeW3Uw9LgKSQUwvrDmEJEDdZP8oJkKnNXvyvaZ4FlkG8+85Yi8+jjEqA1ABWcgLW0GkF2/dL8ia4tTpwWpQCYPhr4uu+7bpRuQSIRgh2sRYAwHTSBkAFhIrow6iFqw2n8qxxSsXO42sXHoBfvu8YAEBcToCoa8xHXPIkbc8WWlc0JQ2cuNdETG9J4dj5pU1ouQoQ+APVWr0PKWoLyoB9yCZccv+B7rZbLj8Knzlrb5y3aGo/7xw8xXqAiO056iQtrZyywKIMHzH+49/4tp9V5mQkNEKwmU2CzQjqWBro3VnpU1IoSgK3wBKLSnGfSq2SbNWkee7ax5C1/AmPmu+PdP/1vqeiAvkv/+9ofOcd5e1VkIzp2Mq4/fbN8Vvd7WPt/qSoLRiA0/WX+ZPG0sR7Q0FOgAg7daUA8TBDxniRAMmNcgKkPuElnClloT1A1Dw3OqgESA2gawSfND9WsL0+xr/eWr0g8xbDPKnyREAqqgDxGmPOJ7wni7pxKaLO4et/6T058NLKnQiAZIr7QMsKEKtWZW7DRE4OhQWFhBD84QNH4tnPn4oZraVtGldMATLWrHsU0YQxhuuMf/i2HTpvMj5+ygJoJfLBL+anLxYas8yZaNmFE9+xFk9QxlyveQDADVuBQ6+o3Ak5aIRbLmyHk0DuGkONmBU1DaXM9VXPIVY1CRBbT2AZnc+f5Huxsc3ffNus5TiwZ0fBJqEAOXBGc9ktyuK6hifowQXbx9r9SVFb1LM+7E8cu80D31X24ydCeoAkiVmzTi5DxQqzwHLmu3k2ygmQuOemkM7brgWhrwm6Gv8ig0qA1ACaRvAam4dvjfsWFs/+sLs9QWq7CbdFKVrRU7C9kgkQjQDbGJ8QT3AaadVqAkoxdpjW5fXYQVOh2qys6DwonK3tcjdlzRq3PhgicnIoX2afaJsIBYiywFJED8oYDtDWexv0BBBvKOkxdN1bUJQtMoUCJCsmclah9cFYSyRSxtyiErznLiBR2u9iuBA3WeXYlVnZCp6NQlE6GPM3ltWroAE6wHskbWSTAQDtnZ0F+2taAZJuL9hkOYnySnw/MYPg3/Yx7nNhua3iPEVU6c1ZmEZ3QCMMdt1EYMLCsp9DQ9Kbr4kEyCTSCaoyIACAfCABosOG4fSbHG0FiFwAlTFtV4EnF/up8S86qARIDSAaZy5LHIqvdF+ATZQ3KU46HvC1uADf1pvDB+5YgiaSLtyplb8xnIAQgk7GJ+gt6APAlD2PIvLolDd5/cfsL1X4TAAkGt2HCwivus2YKjiUERZYeaaDlfk2T4UvKlQTdEX0oBRoEE1dr/wXcM0rgBEv6TGMASywMtRRgLStxoVtt/vea4+xibBNpYSukajsyUiIr9BtvKkSIIoagTKvh1gWcVSJAAS6RpBmfAzo7ekq2B/mD18z5PsKNgkLlngFGtTHdR19SLrPxT3TVhNeRQSxbIrTfvgE6sHv4yzRVJHzmNLsXVOy8nWeuaISp1N1BC2wKlXsl8nbsEihBZYa/qKDSoDUAGLSbFOGze1pt0mwaGIX9JCuBX78yCrs6c2hCYVBISpsgdUJngCJERv1yNZkAkoxtqjP83427clZFT4TAOPmuQ9nkN0AeDAy1pGlwXEiPFFLu3A7GHI2vx8Fe4CoBIgiCjAwb1I1bh7QXPrmsoYWHnoLq5mcJOW/oPsvaIRX6DHWriObMs/Sz0j2/+Iy4n5XbgIkX8GzUShKB2UMSckCq2oUIBpBBjwBwvJ8TFwwqcFNKNd2AqTQ7cCEgbiulcyacSjEdAILBjKOAq6BOAmQMZagV9QGvTkLO7tzqCNOAiRWX5HzmFDvFXnsRqv7eKKleowBhRZYcV8CpHxrf1wBIhIgkgJErfdFBpUAqQHkBEg6b7kTsgRq1wKrI80HvUYn6PJRQQWIRghyiLsWFi3orcnfv2JsEaN8smnqlQkKfRACe/bxAIBGp+pMWWABT67ajSb04SvGHThS49VC5ba/AoAeJx4NWmCpRLAiCnD/+9FdcPcrQAq35wLX7WvJD7lJkLFogSWq0aFXkwIkmABRChBFbRBsgq5XiQRE1wjSTgJk9lu/xO9j38H4WB6Njm1MLY+Nm9a+WbDNhO5rmlxOYs5xe8B7yF2j/xNAjduQKWoWMXbUg7sdsHhl5rqaRvCOQ6a7zx+2DwUAJGlIse8YRFhgNSKNn8R+hrP0JQAAk+mwoff31pLCEyA89jOIssCKIioBUgMI9WvWtEGZNyFL1LAFVoPTjCisB0hFLbCc/3exFgDATbE7a/L3rxhbxG1n8c0obcPs4UKSzQC8BGjWtNGbs7BkQ/uYDUC2dGTw5dgf8D7jIXw/9isA5a2IERBn/BW+rAI1MVZEAZ3loRHnb3WULJfkil25wbDYHnbdXhV7FMDYm2BRxqrSAksUHuWZE2/aSgGiqA0Yk5qgs5jPpq+SaASuBRYAnKS/ir+2XYwGjZ9rLStAZj33xYJtFoyKJUBEs+Y2xq2CLjWexOFkhZrvKiKJmJ8IBQgqpAABgB+962D3sUgwJmmI3fsYRFhgfc74Cy7Sn8N3Y78GUP5iv0w+XAGixr/ooBIgNYCYQPfmuOJD2CcICXMtXpD1CT7YzdG4LLCLSQuzFW2Czr+Ll9jeAICz9CVo6lTejYoIY+WhMz62WBUMCmVIkvcBaXCqojOmjav/sAQX3/Y8fvnU2kqeWsXY05vD4WSlb5u7OFdGjt97CgDgWuMePJO4BgeQdQCUNFgRDQxqSk9G33JJXlssWFSXWOQ0Zq/lKucw7DIocoaD7qp1VBN0RW1BmddDMocqaoKuEXSgsWD7IifGkIssbMrw9p8/i6O+9Qh2dNXmtWlCR0yvzHcjFCBL6QJ32zxt+5i7PylqA8uxbnN7gFRIARIkQ/ja1gR7D/CnS4Clf6rwGVWWtLPOuY+22bd9tBugB8mYNk7adyoA4CPGv/Fc4v9wOFkx5gqUooxKgNQAIjjtyfKBwSR8QiYmjbVoydmQ4JnX+WQbAGAFk3oTVNQCi//fKzWvaukqlC4rFJEh3+s+tKtFAeI0qLvSeBgAD0aeW8v7lPx7+faKnVcl2dObQzPxy6TLHRQCwMQm729kBtmDC/XnANTmfUhRe+gsJz0Z/R46sgJEWM2EKUDOIi+gDtmCCRZjrCb7vAkok3uAlL+nUTG0oF2Z6gGiqBGopADJIo4K9NgORdc03G8fjXxygm+7rXFViCUFGbt6sli6qRM7u3NYvL6trOdZcizvnrSOTvE2M71oP6nRRjRe73B6XgLcklYtACqiiKsAgVCAVHau+8cPHoXT9pmEw/eeDQB4e/4+YPVDwL8+VtHzqjTdzjpnC3p928vd79LQCGZPbHGfTyPtuFh/CpTxmFxR/VRJWKMYCSIBIhQglsYHgnPyDwIIV4A88uZOrNwRYh8VEbjsl2GekwBZxWZ6OyuYABHlnN3wqgca+jZW6mwUipHjJECyLAaiVU5d5SM1jv/n+LVmVRN0dGVMtAQSIJWwwAqOv7PILgD+xQmFoloxKF/4s/WEX54xSsiHEGtZxeT888g23wITYwzv+tULOP+WZ2p24cm2mVuNXk0KEK9fi+oBoqgteBN0oQCpHgssXeNzq5fP+BuW7ftpd3tK4+dqSgqQnOnFG229EU9O5r247p/28e5jCzqMSilAnARIO/MUOQ0qAaKIKEK5NI3wZClrmFTJ08HxCyfg9vcdgUTr9IFfPIboyfKxfoG2zbc9zwykYqPfA+RXVxyGGa0p/PKKwwoKpGaQ3QAAlf+IBioBUgOIqkEReBBnFk0JHwyCCZC/v7wFH/rDElx955IynmVpMW2G8ehGE8mAgmATkW4SFbXA4v/fYZ3lbmtIby7yaoUiAuR4AqQPSZ93fUU58moAwHjSg73IZmSkJuhjtfpifO+agm2VaIIeHH8nk3YAtWnFqKg9JtrcVlO3cwO8sjTII6qI5bJSNdtW3YttYrB9C0y7enJ4cX073tzejR3dtbkAz+TEQhUlQMStMO9YzqJMfy8KxWjDmGehnGVV1ATdOY903Qy8PvtKvE7nAADqnQSpbIGVl/qB7OmN+LXp9BeymIY0vDHQhOEmYstN3ODH/Zt9irstQUxlgaWIJDZl0EBxucF7rdFxCwZ4R3nonXZspU+hqujJWphPthZsjyVT+MdHR/93deb+U/DM507FYbPHFcx1p5AOAMruOSqoBEgNEPRnfTTJF9+TzPEyDFyL/1y6BQCwsS26TZUsSt1mVVkWh6lLcsWKNkHn30UbmvHx/DUAgFR2T8XOR6EYMU71WR9LVs1EGHXj3Ie/iP0EWVOpC2b1vVawLccqYBkzaV/f03pHpaOaoCuqlT++sBE/engVAODq3tvKemy5ulrEchYMXJ6/AXjv3fho66+whk4DAMRg+RaY1u7ybAByZm2q4HTJghHxhuIvLDPie/MUIBFfZFUoHChjSBBPAVJNPUAAXq1t2tS99lKiCbqkMs1b3uP2vogrQJwEiAnDlxy3UEkLLF5g2YM6/MK6gG+DWdN2jIraxbQpZjpqdQCwZx5dwbPxyLUsRDsLxD1jeIG9J2thH1JYVDxtXDP2m9ZU3pMZv9D3NEV4DKhUcNFAJUBqgGBVdmNTMwAg5XgZBisy0jVgF2PaDHF4ll9HzZfkilXQAwQAMk6gSuzarMxUjBHy3CqvD0lUyTwYIAQP24cBAOZr230KkLFKmhbKfyuiANnrbPRMOQq9jFcqikT161u7yn8uCsUguPHe13Hzo6uxZlcPZthbynpseUyVkyHP0EXAXmfCpgwm+LUdIxZsaZGvTVrYq4W4LhRhwUiSnkdYFSC+t244xTeZjsqdjEJRQqisAEG8HE6Ag0IkQChlsGyGrFPgkSTOXFC2wLLCkyGRxJISIFJRSx5GxSywkjFvLBZWq/FAgl6hiAo2ZWgELwruYSmQcfMqfEYcXdfwLesy/0YzU5mTqQLa+ooUmlRCHTznOORize7TemfNVbkdRIPqmU0ohk2wKruluQUAkHSaeeYs/8Q4UwMT5bxFXY/aRDKFMxfN8HZW0gJLXs1wBmSivKEVEWbDdl4V04dU9VhgAfik+VH3sdu4biwTUoFckR4g8XqsPvevuDD/dQDcFxoAVu6Mbs8pRe0iW+b15Ww8GT8RANA5+aiyHJ+g/zGVJ0B4IjOoAJEX+fqcHnBRZt3uXqTz/p8jnuaWZBlS2aakQcT3toc5E+DeXf28WqGIDszKoYnwxcAO1lA1ChBN2D0zhrxNXTVEHXEsouzwpIdshxVJHAVIHoabDAeATtaA+nhlCv4mNCTcxznHBjABU1U/KyKJRSkaCZ+rbGfjBojKyodOCJ6wD/Zv/Pe1FTmXamBLRwYJhCj6jEThttEm1Yr7T3sYJ+R+zJ9CKUCihEqA1ADB4HRcSysAIMn4YB60h8nWQLW0RSniIgGSSEKH9DNW0CZBzkXFk7wROlHe0IoIc/N/lwIA0ixRNRNhAOiFtyB2jXFPBc+kOmAhCZBcJRIg4H0NelkKAFCHHABWMasGhaI/5MmKRggSTuFI26yzy3L8gaqrKfMSIHFYPosRubglygqQ3pyFr/37TZz6wyfx7l+94Nt3wrNXAgBaaXslTq0oYjhTCRBFrZHp2AEAMJmOLtS7iYdKI9QOtqMAEfFN0rHrMml4D5DI229KFlh1xIvzOtCIaS2V6YskF0PlxP2JqASIIppYtqQAQV3VqN40DehCvW/b5g2r8am/La+JYuahsrUj49oz+qhEAgQAjdWji/HvJ0EsxGCpMTAiqBWJGiC4KDlhPPfHr2d9AFhBwiPKE2WBaXkWWNATQOcmb2eqtTInBfgmCsk6vkBr5dLY1jl2JYuKaCMmXL1IVU8PkAAfMf7jVoWMVfVpWKJ1zuRW/OEDR5b9XDRC3GadMWIjARNm1KswFTWJrKggBEg4vdOoUR7FQVs//vS3PLoaq3b2SgoQ23e+cnFLXz66CpA7n9+I3z67HgDw6pYuPLN6DzZVeY86YVfWDsd3OlNdCRqFYjjs7snh23c/BQDYg2YwaFWTAHEVIJTBop4C5ILevwPwK0DknkgWjXjsYTsJHqajHt5ckkLD3lPK7Hsv8Z9PHI/rz9hLssBSCRBFNLEoc9XqvSxVNWOerhE3/hO0dXXjH69swXNrx15/2b68hQTCEiCVSQQTABl4x04hq3qSRgSVAKkBggmQyRPGu48PJOsKEiByZQyL6GqhSSniIgtsJIGZziJfrG7gkspRxJC+iwktLQC4l+4za8bejUoRfShlaHKqYtJIVk1VjCDPPDuAFnCv+LHqv6nZhQupB8yaiBP3mlj+cyEEfVJQWIesmhgrqhI5MedLgMTqi72lpKT7sa76odOYPc88Cyy7mAIkF93Clgff2OF7fvnti/H2nz8LankT3eV1x5T7tPpFLJAI+xfVBF1RCzy5ajeaSR8AoNOpbK0W5a84D5tyC6zNjPd+nGjvxKFklU/pIc9z8zWkAHmZ7u1uPm7BeFx29KxKnRUOmN6MD50w19cDxB6j8bci2nRlTIwj3Ka3B9Vjt5k0+Bz3p9bbYTrzXZEA6MlGt+hluOQsWiQBUhkFiKbxcTnnxOj1yOHK3y7Gkg2qIKbaUQmQGiCYqZ4+2WsIfrC2xucTDcBnoSCqCXOWjf+9th1bOqq76k7Am6CLBEgcmHsicNV/gGuWVfS85O/i4HlTAPAEiKp+VkSRh97cgUM1vgi3lk6rmomw4N35L7mPhWd15P2ehwGlDISGVJLHKhPIE8KrEzNOw856kvPZUygU1ULQAivlJECYkRrV4/76ysPRnIrh5vccMuBrXQUICfQAkSrNzAhXOTcmC33s2/ry6Orx+gb9ecpnynlKAyLuhG6fJZUAUdQA9XEdhqOuF+NOtYR9QoFMGbfA+rH1TnffEdpKf9LDki2wojs2ApB6gMSwjC3AJbmbcFT2Z/jS+fuhKVm5npcAv2eqHiCKqPOxP72Cg7U1AIA36ayqUYA0p/i19WPrErw3/0UAcNe+oqz6HS5Z0w5PgFRqrutEgsLxoI5ksWpnLy6+7fmKnI9i8KgESA0gL0o2Jg0018WBI68GAEwmHXhy1W7f6+UCDctmYIzhhntew0f/9Aqu+u2LZTnnkWJa1G+BRQgw9wSgcXJFz0sPaYKeJCYsK+IBuGJMsq0zi2mEVzK8wWZXXQLkFbYXNlB+zTeBVy3mx+C1lrVsbzyUmbx/+U8Gngiv1wkK65GBHeEFWkXtYgaqg0UPEMRHd0J1xn6TseymM3DavgPHLJbT+DbYAyQrKUBohBeeUjE9dHtHV7f7OBdrKdPZDA5xKxT+91C93hQ1QCquu7GElwCpjrhPxJ+mzZyiMoIlU98LABhHuos2QY98AZpjgZV3vo+X2D7YiXFV8b3oGnHPK0HM6PdbUYw5hBPKJNIJAFjHplWN20FTyktwip5HogdGlFW/wyVnUSRISLHflAPLfzLw5rp97lw3W5HzUAwdlQCpAWTbpSuOns29iRunAgAmk068uL4db27zJpJyeJK3Kf62ZDPueWUrAGDt7r6ynPNI6c1ZmEC6+BMjXtmTkZAbwzHJk5CaalBURA+LUre3RoYlXN/zaqLbkStPdRI1QcXbWCCTt8MDr9a55T8ZeFUxfU4j9HpksXpnLzrTxfsdKBSVQPaHp4whLnoJlUFSHzae1sULkwFeD5DiCpAoV94WW6Bs7+Zxa44Z0PVClUglEYuPngJEjW2K6JOM6TDAF9ZE4rVaCl/E2JjJ227iOpfgPS/Hocc3NspqEDnJ/fLGdvz3te3Rsn+WLLBkquFb0Qhxx8AETGWBpYgcYtgQyoIsYlWRXAT8Y6+bAHFi1LGmAGGMIV/MAqtlZvlPCF4Mn2Z8vlBP1FpfVFAJkBpAjjfedYQzCNTxoLDZ8cVfv8dLbMge+ZZNcduT63yfF4VqmZ6sia/H7uBP1j1RyVPxISejqC4nQKKRWFIoZEybudUmOcSqsgl6r7PI/rP4LQD8zS/HCum8jcuMRwt36JVJDmtOZCFkwfUki109OZzygycqcj4KRTHkilVK4dq/VOraWfyF0wq2iQpbA3bRHiBRLrxN58PH7M/8hSuSc4j7YquqwDkd0Z9FKUAUtQBlDDFnDBR/29WyGFif4OfTm7PceWo+3gIAGEd6fIkO+bFIcvflLLzzF8/jY396Bc+uaSvTWZcAiy+qmcyfANGqYEzUCJAGX/xLIaeUvorIIdbExMJ6DvGqSC4GyUmJRqB43DQaVEPCWBQ31oUV++mVsQIUQ7BrgaUUIJFBJUBqgElNCdTFdaRiOmaNc2wbnAaeKfBJWX3CqyqUExwWZRhX75/od2VCsqslZGNb34iTLNXa/Mm3QKzHYBL+u9XyKgGiiB6Wzdxqkxxi0KvwjvEf6jXHfTz+SRxuL6vcyVSIXG+RhmsVqpoWCya9gaCwI21GIsGuGDvIVcM2Y4gxJ/7RK9NUsTEZK+iJIRa+JpBun2JFVoBE2QIr4yStf/Zefz+UpHPvySIOXa+uJYkCBQi1eAZNoYgwlAIx4leAaFUS9zU4CZC+nOXaXdF4E99HMj4LLPmxafGxUZ7bvrm9a9TPt2Q8/GUAXiJcEKuCL4YQgj7mFbpYEb4PKcYmzFWAOHNdFqsaCywA+N47D8Qpe09EzumpKBIgfbn+18EoZWjrHXlhxr1Lt+Kgrz6E59buGfFnjQSRADlDf6VwZ4UKljy3A2GBpQphokLl756KEZOM6Xjmc6fipRtP9ywVHP/qOsIvRlENwxjzVcbkLYrWOv/A0ZkeXALkxfXtaO8bmuz/7iWbcdL3n8AH7nhpSO8LMjvzpvfk1BtH9FmlRK7I0QhBOHBlqgABAABJREFUTueJKC3fW6lTUiiGDbfA8hQg1VIJKPMP+wT38VxtJ35u/CjSdjDDoWHZ7eE7tMpUxYi/krQTFDZIVTEPvrGjAmekUIQjL5TZ1Kt+JhWaUAFALJBpFgtfV+gPBRQg0rlXQYXecBGVjOPrE/j9B45Ek5MASkoLEtWmABGn41uUVCoQRcSxJQVItfUAEQqQvrzlzmOpwRXAdcjCpLLqQ1KDOIlJebxcvyc96udbEna+AXRvAQBsZhN9u4wqSQrL/vdRTsQrxiauAkRyO6gmu+dLj5iJWy87VOoBYqEFPQMqQK6+cwkO+8YjWLqpY0THv+6vy9CdtfCJPy8d0eeMlJxl4736o5hIQpLXFZrrFihAlAVWZFAJkBphXH3crY4BAMR4UDg+7gSyQi4cqL61KMOc8f5mnz3ZgRMgD7y+A5f+8nm8/3dDa5p+9xIeyD29eniZ5EzexvauDN5p/tvbeNj7h/VZo4G8bkEIkHcSIMTsqdAZKRTDx7SZlwBh8aqZCMsEq+LqSW7MNULXO9YW2VGhqhjn76QNvDpzotNcEADekPpRKRSVRi4IYYwh5ox3pAw9QIoRXOxvG3cwAMCGBluK4bKS3V81JH1//9wG3PSv14es8hKvjxsEJ+01ERcdMh2NSOOfCV75nEUcRhVUO8uIyj9XAQIAlkqAKKINpcztAWJCx+SmBJpTlVlcCiISIFs6Mt4Yk+BzrDrk/KqPkMdyXNg9yk4HJWP5Xe7D39tn+XZVTQLE7fWWUQoQReTwFCB8TPDd06sEQ9PcBAgAPJz4LHKZ/pO4j7y1CwDwu2c3lOQcKt1fM2dSHEzWhO+skAWWWBLpAR8Dm6HcXqJCdc0oFKXDscBKMqd5WkgACPDqx1Sg6WZmEL6Ctz3JF9yWbxmajDhtjsy66qJbn8Ux334MHVRK2tSNH9FnlhJdmqRrhLgJEENZYCkiBGMMj6/chaUb2pAg/JrNIlY1zTBlGDTkmX8Mk73xo8Rwq+dyHdsAAH+MXeLfUWFf1G2Mj83TiZfwtpQFlqKKkC2lbJsi7lQ/0wpVlAGFCpA3Wk4BA0ETyaDO8qr55AlpNVTefvm+N/CH5zfirB8/hTuf3zDo94nkjYifGpMG3qY/5+7fwVpLep6lQIR6fgWIaoSuiDY2Ze4YePJ+0/H4p08uGI8qRYNj5fz06j3e2CfsnknOt/gu93YSj+X5b88A9jFVA/F+92vZNN+ueJV8L0IBEic2iEoCKyJGYQ+Q6kuAxHSCPiTxL/tYAMBE0oUZXUsG9d5SqYMrPf/PWbY7l7zNOt+/s0JzXYFQ580myuEgKlTH3VNRehwLrIRjPZK3KO5duhXn3vy072V5mxZUDg6msVJneuCJXltvDrc9uRa7e7yASE6uDKep0sqdXEkxSVQUn/dDVJNZo9wDhAAwDScBYikFiCI6LNvciff/7iUs27jL3ZZDvCqaLgq+fMF+AIDjF0xADn6lQykqVf7+8hZceOuzeHF9kf4aJeaeV7bgoK89hBfWDb05p9W1HQBQP3GWf4dWmR4gQgGyg40DAEwh3qKtqhBUVBPy3yOVFrArqgAJVPbW19Ujk5oCABhvbne3+5ugV/a6kiuu1+3pw5f+9cag+8m5CRBn3GhOxZCUvJRfYQuxpaO6LGs8iwzpu1pxf0XORaEoFZR5CpD6ZAp18crEEGGcuJdnAbWtM8MfOHPdemT9qg8qK0CcBIjtjZe9g3A6qAp6+ILaLdoVoIElG6PKEiAAoFuq2E8RLQoSIKz6EiA83iC41vw/PGQfBgBI71qHfy3bOuB7S1UcU+mltnTexhTC5+Nb2QT/zgoVLImwewPl8flssqufVyuqieq4eypKT8xJgFCeADFthuv+ugyb2zO+lzFWOHFOmwMnQAbjj/h/f16K7/xvBT58p5ellhMgQTuugZArh5vgTIaTLUP6jNHGb4FF0Jfkg+KkvlUVOiOFYujs7OaLT8KDHXCaoFc6ApJ4/3Fz8dbXzsa7jphZULEjNwceDJm8jTN+9CQ+eMdL7jjz6buXY/nmTnzrv2+5r9vUlh41q5nr/7YcPVkLH77z5SG9ryttooFyW6lD99vHv7NCFliuLyrji8gJ6e9I/P4yeRt/W7IZa3ap5LCicsiVwszyFsWIUbkeIEELrE+duTey9dMBAOPyXoVZtoqaoPdkCyuqN+wZ3GKY5SpA+M/dmIy5ixEA0MkakK0yW8PQWoBXfl/281AoSgmVeoBUuqo2yNTmFKa3cKuRje3OHFAoQJALVX0AXnJWLozpjYoCJMtdFrpQX7CrWvoi2dBdld7k9OoKn41CMTQoA3TYiBG+PlWNChAZoayfStpw5/MbB3x9qeas8phaCdJ5G42Er2F2sgb/zgrdq8SvViSBk8Sb6w6nyFtRPlQCpFYRCRCWBcCQL2IJY1MGOzCoZfIDB4aDWQd93qlkfmVTp7tNTq4MxmpLQClDu6Q6aSTVmgCRLbCAXS0HAQAmZDZU6IwUiqEjbGHO0PliPGUENvTwRZ8KkorriBsaGPwnJlf6DYbVu3qwelcvHl2xCy9t8DeM2+pUGv5r2Vac+P3Hcd1fl43onEvNxvY+1DnV0k2t4/w7K+WL6nwfoolqDN73IRY7f/vsenz276/i3b96ofwnqFA4yIUVTGpiXUkFiGw58/UL98fMcXXIiQRIlSpAwjz1Nw9StSGSN0L5UhfXMVlSjT1NFw0qLi0ncj+stOP/jLknVuhsFIrSYFPgTN0pWquyBAgATG3mC03Czook+EJYnNhgkv2SPK6LCm85AdKXi4ZNqpnuBAC026mCfdViTQYAr9CFAIAJmfUVPhOFYmgwxnCKtsx9Xu0JkF2sBQAwEV1IxAYeAx56cyc2tY1cQTuU6f/yzZ14s8T9HjN5Gw3g8/GChHCF7lUMjrrQnet6caoyO6huqufuqSgtjixYA/e0Notkbm3GChUgUmIia9rY0ZUteJ88+dvelRlU9SGlzFclmBmE0gQAVuzoxkFfewjf+e8Kd1uTaDSUbBrUZ5SLoAKEGc73wCIit1Yo4FV6TAZfhDLBvZeryQJLEDc0TCT+XkSZ/NCqheUxb0Obv2pZjG23PMabr/17+bbhnOagGarPas60UEf4xJ8kAuNhhRvDuQkQ4o37YmHi9a38O9vTq3zzFZXDlGMXxwLLZgSarhd5x+gjW2AlYvw8zCZubzfe2unukxUggxHUbulI496lW0dFxdYdYikzGDtVwEuKirhyRmsKkx2b07utE7GGzRh0vFgu5Bj4voTjR22psUwRbWzGcKDmLGKvfqiyJxNCa71fmafFvX6QxPIcDuRxXUxxfT1AImKBtXk7T3jvNv0JeY1U3pNf8OGT5iHj2NASWl2JaoViIBjz9ym87uyDKng2A9PnFFzUkRzqB2lR+P47XhzWsWQVQ3+Fz5vb03hy1W4AwJ7eHC689Vmce/PTJVVBpLNZd67bw+r8OytsgWWGJEBGyy1CURpUAqRWiXmDQwq5onZTlLKC5IU8ab3o1mdx9LcfLcgey1Y4x3z7MXz3wRUYiO6s6RsQgpPjrGn7PFwF7//dS+jJWrhnqed1KGRwCC74VRh5UqwRQDP4oKxTNTFWRAdxHbaQXgDA7+yzAaCqLLAEiZAquJ5sDh19+dBFuTDSUnVx0GteVA+WK5gZ6pzWznnn29QyPvBhFWqC7vwQYVUxqgeIopowZWslp4I4j9igbD5HC0NSks5wLF9o80wAwATbS4DIChA6iInmV+57E9f9dRm+cf+bA77Wsine++sXcP4tT4f28ghObLszhQtf2UEmLcTYKixdDp3VioNb+Lj2MOV+10NRDJeDg2Y2u4+zogeVWV19ShSKoeKbD3ZuqtyJFKEp6Y9p9HgSlPA4g5he8YqsABHji5wAKVYUGDYHrRRbOzOIWzwGDy74VUv/DwC44Zx9ccBM3p9FFfspogZlDM1OUS079Cp8+OQFFT6j/mEGjwlTyA26MGTt7r5hJSPkeW9/MfEJ33scV/32Rby0oR2vbfUKEouNs8Mhn/YUJd0IJEAqZoHFfz6T8XtQ3KcAUXPdaqZ67qCK0qLH3MWvOuTw1vZwKRoN6QEiT3ZX7OD+7P97fbvvNcFx8JdPrhvwlPb05nzP5Qntjq4sjvjmIzj5+0/4Js2UMmwPUaAIGRwSjQMet5zIFTmEAFqMV+0QqoJCRXQQi9Qt4JOvLsdvU6vCO0bcKDyp9u5eHPL1h3HgVx4aVNAn2yFkA/1DRABo0fJMjLUhLrzSvLfopiWqwxdV/ASiKiYeUhWjYkNFNdApxTvMqeA3YQz5OiwlcuL2gBl8oZ2kuL1dHfUW+WRLl2IJ2rbeHG59fA1e29KFR97iyZO/vrR5wHPY0NaH59a24fWt3Xh2zR7fvj29ORz3ncfwTSmREpZsHmoCRMRPhBBMifEYr0fjP/9BM1sG9Vnl4sKDpuP6M/YCAGTgVGebmX7eoVBUP75xJNFc/IUVojnlj2liOoGlc1ss3cqgK23i2/99C0+v9sYssRAlJ0DC4rl/Lt2C/W96EA++saNgXyVYv7vPnev2wG+BFasS9YeAaTzW09RcVxExKPOK/UjduAFeXXlmTOaFbnXIDamXUVvf0Atx5QTGYELit7Z3Y0uHFweVsnDQzvD1yByLIcsCPfoqbNeoFCDRowqXsxQlw5EGp0gOyzZ3hr7Epsy1ThjvSIvDvAJL0TBua6c/kSFnrpdsbEdP1sLWzgw2t3vHDxuwDVhusyrE6wr2VxJ/AoQgmXLOz1ZBoSI6iOq5cYQHHB1wEiBVqACJGxq+al7h27ZhR5v7uJj67fP/eBUX3vosTJv6FCDBCkARw5Qp/9GvrUFfzsJZP37K15idZfl3lEWiMAjUBiePLjXi70RUxRghPUAUimqgU+otBqcHSA5GRfsdrdvtJTlExbOR4LFEjHmFJHKCodhk69bH1+L7D67EBT97xt2WjA1s7yXbCK50CmEEf3phE7Z1ZfHrpz2/97AeIJm8f2wtRjABAgAwebz4/fceg2tOXYAvn7//gJ9TTjSN4Oh5fCFCKECYmVaTXkWkseVA511/qNyJFKEp5Y9pYroGU+djo26lccM/X8Uvn1rnK5xzEyC2XwESLI755F+XI29TfPjOl0fr9IeEaVOkwO9PGea3wKomBQgAMJ2PgZqa6yoiBmMMzUTYqrdU9Fz6458fOxaXHDYD7z5uHwB8bS89hF5GYXb2AyGPmcVCYtlOsDkVQ7tka2yWcOJsZnkhdxpJ0ODydYXcDtx7i5MAMUihKjtvUTz0xo5QJbWiclTXHVRRWmK8SVAKOXSlwy88ypgb8M6fyBc539zeDcaYT0K8pzePFTs8FclwZMJBFYpsgSVnjNMBZUiQBKSfxUgO+TxGE91ngUVQl3Qqk5QFliJCWJQhBgtHatzabgObAqB6PIdl4oaG39nnYE72T7AZP79c1kuiylV/AsumuOulzVi+uRPLN3f6xpzg2CYWtMpljVAsybRmVw/2//KDWLmzB796ylPc0TwP3HNaEogFGmVWKGEl/kxE7xifBZbzexTN4xSKStKZlhUg/LEJA2RILR9Hn1iSX9sJxmMJSplPrVZMbr92d2/hZ+kD/2xygcrObn8cJltviXExTAFyx3Prsd9ND+KfS7f0eyxRjW34EiB8DJ8xcRyuP3NvNNdVX2NScbpZRwHy0uqtOK/EvtcKRVmRGolj2iGVO48iBBUgdXEdttNr0bAzeGlDR8F7RE4yGMNVezFG3rKRIHxcDTZmrqYG6ADANCcBoiywFBGDMmAWcaxFGyZV9mT64ZBZrfj+JQehqZFbv6eQQ9ocfHFy3zAKmQcz712104sxr71rGX78yCr3uV1CCyxh96zFU/iko751qVQT9EAPkKaY9/OK3M9PHlmFq+98Gf/v90vKfXqKfqiuO6iitDiLYXXIoafIwMcTIPzx0fPGIaYTbGpPY0tHBn3SouBfXtyEs3/yNP7+Mp/I5kIWFQea9D25crfvuWyBtb0zPAESnHgDgQSInijYX0l8ChAAdXU8MGdWPjJN9xQKy2aYRvagkWSQZTEsprzipBp7gMTdiSBBzqnE/edLXoIgLAGyq8eb5NcnDN+Yk7f841i5e4AUSzL9eXER2xpnoTBHktWTEHZ+hHxIE3RlgaWoJtp9ChD+OM9ilcodFiWe5AUtceSxuT2NrOWv/Cs2Po0PNA0G/LYGjDF89u/L8d0H/H3c5ARIR9pfwCGPqWIsDesB0uEklz751+Wh5yaOL07drwBxYsJgUreKEJ7YnRaffMfNbqzY0eOLnRWKKEFsac5lVN+1F0yATGpMgjrnqVvp0HmoV8Ti32dJz7/zP//4FxY3DpWsaePxFbuG3b/INr3vojABUmU3KGWBpYgo1MziYLKWP5l1TGVPZjA4xc11yA0pwZAepCWpTJuk5rCKHOv5tXtCtwOlVYBYOT4e2noClx4517+zSpqg1xuSLa2z884XNgIAXtzQXt6TU/SLSoDUMo491AX680VfYlPmLvA1JmMYX88TCp1pMzRbfMM9rwIIT4AMtD7Y1scnymJhISNlrruz3mN5e5hkLOlIgm0tXnVNCTTNrwBpdBIgcZh4PJAAUiiqFZNSTCc8qNnCJoI5t4pKNgYuhtwDREwSvxD7C4BC2wOBrDhbu7sXz0h+0cHXi/GxXNWCxRIgdpFAkjlVMXkt5Vd8pCrnZStULFZID5Bqr7pUjC22ScUXmmOBZcLw3csrRWPCs3uJORZYSeRx7V1LCxbViilAEiF2V53pvNvseOXOHvxtyRb84om1viRK1pcA8cdhr27xmlyK8xhugYd8THfso7ZrR4ZYddmcyojh9sX0VADAIrIO9cgoBYgishAn8UihVdxXPQy5CbquEYyvj7sKkON7HyqaCA66GgD+WO+2J9f69v17+bYRn+uX//UG3n/HS/i8M28eKnJ/N2GzJ6j83SmArhQgimiit69BjNjoZnVA65xKn87AOGt7SZIr6OHbH794fK3PyWUgujImzvrJU+7zYsmMtwIWqTIjKRxcsaMbu6QiaNsZD209CRBp7W/ivhVbCxQ/nXA7kO3uRUzekx15CwFF6amu1WNFaXGuzHGk+IDHFSD8hZpG0JjkE+6eXHgCZEozrzAOtZUJDI5yhUomb7uNhic3Jp1t3utl/2hRjc0YczOnMkISbGvVpf4A/BYOGgHGNXFbsVnabmzcsL5sNjoKxUiwbIbJ4FYC25m3kF6NFlgJw1vg60lMBgCcqy3GHMIbWYaNVeskW5j/+/NSPL/O6xliWuE2CcHJc6l4bs0eHPr1h93nxXJM9Yki/TxMboGV1wLqj8mV88x3e4CEWGC5CpDyn5ZC4bJyRw82O2pXweEvfRIAt0OohqFurymN7uNEilf9JZHHK5s6fQoNoPhEMyxxShlcVXCf5CEtJzHkBIhsofqnxRt9lWyeBVb/k7wNe/rwjp8/i4ff3OnbboUlQORm4lWsABHj3Ho2FVkWg04YWtCr+oAoIgux+IKTSeIVs9DsD9kKb0ZriieqHfVBkqaLFuLZlBUUX/QX04VZBw4Fy6b46xKu2v3XsuElU+y8U/HMCCz4E9lVN8To/Ds4rfc/St6riBR6F19n2oCpVTnmFeAUhdQhh6FMS1/c0I6zf/K0b1tbbw4f/9MreHzFroLXB/sBF1OAbGkv7Bs80HsGYmNbH87+ydM48luPuttonseFTE/4EyBTDhjWMUqBSHKIfpfEzrtzB1p1g7RCRiVAapkTPw0AmEw8T9T3HzcHnz17b0xo4MkDSj2ZlqERNIgESNYKVXkICxzhAd0iBaNioGOM4TN3L/fJjZ9Zs8dtpD6xkR9bbo4p+0eLpk5PrNwd2rxdWGDZeqG1Q6Xx+fcTAIaXpGl56Ue46V9vlP+kFIohYtkUdYRX4PbBW4Ca2lwlFksSImkLAD+b9HX38VTCF+nOu/kZXHjrs74FveVSBXOQvE2xW7LIEnO5sPFwpNiU4b2/WYz2Pk9mXMxmrFjTS+JYYOVJ4Lup4PgofgLXAgvFm8wrFOWmrTeHs37yFE743uO+CrNEvpP/T6yivXjKwZ8+dBRO2msifvKug91thqQAOXJOq288A1B0IlxMcSWav/dKhS6yjZX8+XJ89qcXNvk+RySYw5qgC+KGhmvuWopXNnXi//3B74MsK1cMUcVnyTY81XfPEchJsrTTByRFckrlpogsc7Y/AABIsKE3zC0HsgLkiqNnAwA27ns1AKDFbiu66ERZ/z1AgpZScgw4HD51d3HbvzAsm+I7/1uBG+55DSd//3G8+1fPI5N27E0RR1DzYVSZBVZMtk7r3Vn8hQpFteHMoeS5blXjJEBSyIOO0GLqT4s34f7XtuP9d7xUsK8v7y9qsShz1a2yyjXdj8XfcGOhsLU/6hTGMCPpV3xUskgmYIEFaiElirRVIriqUQmQWqaRy/KP0FahEXyAn9qcxMdOXoBZ4/iAYTPmeghqGkGDU2Xcm7VCB67enAXGmLsYeP81J7j7xOt3dGdx98v+ppfPrtnjKkpEAkS2cJAn3iIx8vjKwow04Flg0WDFcxWgByyw5EXIK4xH8JcXN4W9TaGoKkzKkAKfAKaRwI3n7YsHrzsRM8dVnx1JUrJ4aTMm4Tl7PwDAHbHvYX+yAb05C8s3d+LN7VwJ19GX7/c6fGzFLhzxzUcKto/GotZWqfpcEPS4FgRtVUT1okiAmHrgu6mgfYWrAGGFCRDVA0RRaTZIlW3FJm+VLAQ8bsEE/P4DR/rHWycRoBMGauV9CloA+McrW/r1vw8ibK32SAt9cqJDjs+KJUOA/pugCxK6hje3hSuR5XHVndNudxYPgxPdKkNOkqXBv5865IZd9ahQVJoJ3a9V+hT6ZVpLEo0JAzGd4L1HzQIAWPVc+TvXXo9WVtgEHeCJ1uB1KauDm1N8rnbp4TMAAHt6R5YAGarqY8nGDtz25Fr85cVN2NCWxgvr2vHkmzxOzaIwlqu2JugGlRIgT3yncieiUAwVZ2E9i+pzFQnFscDSCEOMFh+nEo49tGwTHUQu4gjaqqbzhapeizI8tmInDv7aw3jojR3O6/pJgAyj4C1r2rjnla0F25noiWQELLAqaJPqKkDgFWJ+3vizs68ip6QYJNV1B1WUlkn7uA+P1t4E4NnFiIV6SpmbpdQJcatrerJm6MS5O2Mhb1N38ao+7i0+itfL1lnCEurN7d3uRHeSkwDpSJvuxFq2XhCNmuTmSzJCAUKrrAE6UNgEXUizFYooYdnUTYBkWRx7T2nE3pIdS7ViM4Z1jCd+E8TEx4173X1ZJ0hbsjF8glwJgjY2ADAupGkxULiQmbMobrjnVTzx2noAgKkHFSAV9O8WTjaiBwix8S3j1wBUDxBFNeD9DRb7e6ykAiQUqcqNWVk8/FZhle3SkKq5gRQgT67yepPJKg65kbc8TgUnyZ4CpLgFViKmFT0PuYmnAQpsWwpsfM45+eqsQhfUSfFvhvF4tI7kCuxgFYqoQJ1lgUcmXFHhMwmnMRnDg588Ec/fcBrq4jy+sJq8hrjn46nQ99mUFXjYy2OSSOQunMTj3N0hCZDdPTlc/9dl+PPi0heyhfW73NHGlco5FMaE1dYE3bClYp6Xf1e5E1EohopTRJYl1bemFIq04B/vR6kn5ownLpzg2y7HcE1SwV2wiCUssWHZDB+4Ywm6MiY+/MeXndcVj/3EGPvyxg584Z+vuXFnf/z00dW+uBQAfvP0Omze5VivxlL+BEgFVcLiFpKXEiBXaA8CYMoCq8pRCZBaJtmMdJJXxvw6/iMAnmxWNDO2mXeR6hqfqAJA1qKhCZC8TX0T3WRMdzPIYtLX61hYTW9J4Y8fOgoA99sWTGrig9Vvn12PI7/5CPIWRVaqxBGDs6jAmRaw3UkQRwFShQmQGa0pTGpMoClpYP6kBv8gDSCBgQd/haLSmDZzLbDSSHjWJFWOTRl+aF2CF+neAIAm9Ln7RDC3amfxhm2jzV0vbsIvnljrjrlBGxugeMV2cPPGtjTuf/Et3KD/EQBg6QEZsFZJBQj/vxv17rb3Go+DgKrqaEXFGYz6qOoSINL1TM186ERSbugusAPXm0iwZk0ec8mxWY/PDkvuB0JddYkYR5sc60HRSLijn4ltMVUb4NkEtKAH2j//H/Crk4Gnf8B3HnJ50fdVA1ObvTHXtcBCTvUAUUSWuhxfeNpSt2+Fz6Q401pSro0zAGiJFO60TgcAXEYeDH1PmAJErk4WCZBpLfyaDrPA+vvLW3DP0q34wj9fK7DTonTwC16vb+3Cx/70sq8XXTCxDACHMF64mGPVrwCJ2YX3HoUiCghrpVxUFCCazvtggFsVbu/KYOmmjgIFsIit5k9s8G2XbU/lMTGYhE3nCsekHzy00jsNJ0buXwHCP/+dv3gOf168Cd9/cGXo62zJXuuB13f49vVkTfzw/qX4Zuy3AABSRQoQ5hRTyQkQgDvVqDiwuqmuO6ii5NRl/VWCQpEhfOYp8wZJjRB3v01Z0YtXlgYnDM1dHBWvTzuDa31Cd9UeYmCti+u+yXB31sLmjjRy0kKgGEx3ON7cP7j0IJ+EL4XqTYDUxQ08/blT8OIXT+cBestM/LfpUnd/I1SQqKh+LEpdq7kMElVXbVaMA2c0owNNuN06FwCQIt6inFCWDaYCJUgwUfH61i5c85elBU3iZLoypjtWtvflccltz+Hz97yG7z6wwlWhPPjGjoL3mUUTIP7tppnH44lPQSdOMiXWzHcceiX//4RPDfyDjRJeE3QDz1/wmLu9ERmp6tL7ecKsexSK0WIw85JqaILuQ9PAnEmfbZsF4wEQnjwV8d3+05rw+lfPwr5TeYVzzrLBGMNWKWkiW8J0pv2T4ZxFQSlz1SCiGbFpM+QtGloxLWipC1e1vbmtG69u6QTAcFf8GyBv/NP/goYpRT+zGkjFdbcPXsZZPKlDztf/TqGIEnGLJ0TdeCICxHSCh+lhAODaPQehtHB8zIckQKa28IK7tt58QUJDdirYLDX+7cqYOPkHT+D47z42qPjy/FuewX9f24Fr71rmbgtbRJxLtgMAJpHOgn3FesJVChrw4VfVz4oo8MV/voa/PMsX5bMhSqtqhTqL/jE7izN//BTe/vPn8PTqPd5+ytxCn0sOn4lF073xXE7eymrVYB830QPkvEVT3W23P7PefdyYNLCxra/f/phf/fcb+Idkib8lxPa5L2fh+O8+ho//+RUAheP0l//1Ol5MfNx9ThINAPHUt5XsASJ+xwwacP0Kd3srelUPkCqnuu6gipKzar9P+J6LZIXPAssZbAyduNttykIn2IBXGRM3NBDivUdkeoV1Ql3ccNUegvqEgcaEP1OaM/0KkHTewsa2PmxsS0PXCPaa3IiELidA+PHtWD2qkYSh+/oS3DP+anQxfrNqIn3F3qZQVA02ZahzrrMMS1TdZCvIf685ATeety+uOHoOACDjBLJJSXGVcYI5ufplsGzv8suMz7/lGdy3fBuuuWtp6Ot7nYDuqG89is3tafx7+Ta8tMGz3upM5/Hc2j34+RNrAQB7TW5wGx7bRexTghNK2r4R4wlfrPiffQSWTH4X33HBzcANW4EpBwz55ywVcvF8tmEm0o49TDPpdasu5duLihMV5SQsttHhX4AiqLYMCMAIj52oZYUmcfpLilx17Bw0JAzXBjVnUqTztm889CVAMv6FvKxp+ya6opAlb1E8tmIXGAPiRe4Tb2zrch8nDA1rdvWgK2Pi3JufxgfuWIJ9ySbso20ufGO8OmM8mUNntQKAO8bVkayq/FNEFsNpZm1XYY/FYhiahnVsGgAgjvBeRJSxwibottfQVyQtpzqOAxZleGo1V8PkLYrvPbDCjdcAYLO0kPfwmzuxqT2NbV1ZvFGk11EYmzvkXlSFcamIX39pnV+wL1FlMfmmg67DFsatdnLMwH3Lh9YDRaEoN5vb0/jT4k1uUW0+KhZYgKt6uIg8jp4sHzvW7PIUZfLi+8TGBP79ieNdy04x7mXytq9Yo0AB4qzlNSTCrdw70yZO+v4T/Z7mko0d+NTdy93nDcnCz3rkrZ3Y3pXFf1/jBYHB+OmppW+hkXjjbffBH+L9dVvn8A0zj+z3HEYT35k2TQXqJwEAWkivKuyrcqrrDqooObtnvw0A0MN4htSzwOL7ZaWHRvwJENkf9Yvn7ouZTuP0XU4CRDRYEqoR8XrRA6QhYaAhYSAlJQMaEkbBANgd6DeSztvY2c2PMWtcHSY0JBCTFCD1hAfozKhc1ncoaISgm/GJfFOR6iSFopqwbIaUY4GVQdy9xquV/aY14UMnzEPKCfCyLCwBwoO53hBZ70DI1X4ysoWBzPbODHqyFmzKsGpnT0E1ddaiuHep1+SNMc/SoJhFVLCahPXw6sDtbBw+an4StqiWJgRINATfXlaC9kGdjhVWK3rdRVr5p1FhoqKchM1LWuG/lkk1RscaH9+obYZW2Ib1mxRxmRjDRdyWs2y3wk8gJzg6AmNWxrR9i3SiX5xpUzfBIVdUX3nMbHz4xHkAPLstcYzTf/QUTv/Rk0ggj4/r9+J/iRu8Ax0i9R6oNhuyEPaazBU1OxhPhMwn2woWWhWKqCCaWdsRmV8BfF4rbKKSxERYRGGHWWA5xSbyXLcu5s1P3/e7l2BThmfW7PYlPwCvoKYzncefF290t4f18iiG7IYQpgCpc+a6drLV3XaC4+d/idOsvVqg9ZNxTo43P08QC0vWFqqbFYpqQlyrbr/LqFhgwVv/ulj3eh7Jo5u8pibW9cQc89+vbsOX//U6DvjKgz5LKpFIEYi1vLqEjlLRFJIACVpsBwt5JhOvePD/8p9AbPJ+gKYBH30OuP4tYNbRJTu/oVIXC/xuUnysbiG9ofG4onqoximeooRoCV7NIqpixEDoKkCYlwDRNeKzsxIT7EXTm/H/TpznBmu7AwkQ3UmqnH/z01iyod2dVIvFyNY6L8irT+gF2eSg12o6b7tSPDFYxkMUILRKFSBBdI2gD/x7qCfKAktR/diMuddZGsmq8xsuhhgnhB1JUrLA+verPGHQmx38BFWwZEN76PaU1AS3M513Kz7kpsG9OauwmjpvY+VOb8FVTj4XaxYsx4RT0IZDH7sMALCR8T5PoiFoNRBct+xkfJGwhfQOunJdoRgtwiqzztZfdB/fZZ1cfT1AAEDj17htWe41M3+iFweFK0D4LEyML0KdmjVpgcdz3vKebw1YFWQdxQj/DM2N//IWdZUj7zt2Dv537Qn46Mnz8emz9sbp+00u+qPs7snhW7Hf4DOxv3kbj/448LZbpIN2Fb6xyhC/hxcp75lwtPaWUoAoIothOwp7PToKkLiuISd5sMdQmEygrLAJuhjP5IRlzPCP+315C229hbZWWZPCsinO/PFTeGVTp7u9K2P6eov0x4AJECcG33f2VLz9kOm46pjZ+N37jsCznz8Vlxw+c1DHKBc6IW4fJABIMDXXVVQ3Il5KRlAB0nvezwEAzeiDBqGq5z+PTZmvGMUIJEC+/+BK/P75jQVxSiZg9SzGpPoSzi1F4YxMcHkheF43x3hM+Bqdg//QY7x5d7weaJpWsnMbDhccNA2n7zsJN57n9MyqGwcAaEGvigOrnOpZMVGMCnrMaZRELBBQzwKLeAkQcRPQCXEn/ZakABETZxGs7XR6cwgrBfGZfXkbV/72RXz2LN6AWPTtaK6LY5tjIVMfN3yLhgQUybUP4DexP2ANm4HDtZXYtPtI9KWvBwA0OoOlHJTWg38WNSrX+GgoaIQgC/5zJIrIsxWKaoJSLwGSYXFXOVbtiF4l2RALrJc3dmD9nr5hWWAt2xK+ECeSDvct34Zr/rIU5y6agp9fdpiv4ln2eRZkLdunHiGkUEkXRA6mjtbech8vpvsAKC5TrgSyfRAB0MG4IqUFvdgYskirEiCKchL21zZJqjL7gvUhvK0ahzwnAUJt000kXnzYTPzqqbXoSIerQkTVs4jTBqMAyZq22xtE1whsytxqQIBPYkV8l7epO9mui+vYd2oT9p3aBMBf/CIzCR24K/51zNO8KuE/4Hxcefx1/uypXf3xkkgoveiMwweQ9XjVLN4PRaGoWihFjIkESJQUIBry8MaaOEyYgeUNSgvVtVfc/iLu/fhxmDveSyLHdA3NqZhbHZ7O2ejOFsaMWZPbB+4KFPB1pk2c89OnC0+SMWD1w2CbXsBnjdWYTNqxlZ0M4Hh+nBALrDpHhU3i9fixY5EKANNbqu+7MXQCGzqyLIYkMZGgKgGiqG7EtEP0isxFKAHCJi+CzQgMQnFb7Mf4nPn/YFOGHV1ZnP6jJ3HM/PHua8W63kC9PINJ2NFQgIQV6umSAoQW2O8zzCU8TlzFZjqfUbrzGSlxQ8NvrjrC25DiCZBW0qvmtVVONMp6FcPGiHuB0kXas9jntR8AnZsRZ3zAt6nn+xw3NHehM6gMAYDx9fzmsMXxLU3E/BZYAB9AxQJezNneIlW5NCQMJA1v8LpAewFnvPpJnK4vxUeMf+NwbRXe0fNHTFz3LwBAU4oPlnIFurDmYbGIJEA0gpyzIKsSIIooYDNv8pVBAjEtGrcKMVaJhON40oOElATZ0pFGn1P1PJTG7j1FVCOE8Ea+tz62BgBcD9Ng0/Qg6bztkxvLvZSK+YbKwZT4bl6jc/Bj62K+rYqCwqBjmmuBRbyqGPnnVHGiopyETUwmoRMA8APzElBoVa0AIcx2q5Z1DTh8Dp90hTVd9OI4/txLgNCCCa+IBTe28RivKWnggGk8mbG5Pe1a+bXWxd2Y7MZ7X3eVJHHDf59oLdL8/Dz9BTf5sYFOxoLsH3Cz8T6ggfsn45QbgeaZwNEf6/fXUQ2I3+cO8O/AIBQs01nBM1IohonlLVozIzoKEEMjvgTI+/QHca72AhqQRlI4BjDmWl7Jyot/LdtaUC19wzn7uM/78lZo/BfsiSTY1pnB6l0h1qirHgT+fAnIMz/Ex4z78E79GVzT9g1gw7P8OCHWrHVOsR+LQC8ksYgp3A7iVNk9K6obTwHCx4gciU4TdM2IYQPjtsdn6i/j/cYDgJnG06t3ozdn4eE3d7qvDVpgFSMjJWGfXbMHdzvNy0upAAmzB5VPK29Tn0tAEnlohG+4yXwfAPhs9asOYYGFHpUAqXKisaqlGDZGzAtifxz/Beas/DXwkwPwi43n4vvGbaCMudXKyZjua2guK0MAYHwDvzm8sI7bwcxxqmZ29vgbBHvKEf7n1eKzwDKQjHl/dnPJdvexqGQGgCPf+jYAoDHB3yusbeqQxUeM/wCIRlAIADqB60+rEiCKKMAVIDxxkEHCtbmrdogzVmWZV8nzUuKjmARe3U1ApGrlwQd1QW9UwbrdfTj35qexcmePb3tQSlz4ef5xQCP+vkxh+BIgzsR4NZsBOGqL+mpSgAR7gAgLLPSGJjtUoKgoJ2EqK+EzvAstAKq0/YTTA8SA7fY00gjxFL1hCpBAPOZZYNk+VQfgKUCWbuK/i7kT6rFgEr921+zqRUea3xNa6mKYJlUh//d1HscFJ9jyQqMghSyO1d4EAPzROg1n5r8HC4YbewIATvoM8MnXgebp/fwyqgPx+6TQ3F57JDf4RsgKRdVgegkQS49ONXRrfRwUGizGx5/PxP6Gn8dvxuvJD2FF8v24NfYT2NRrdP7hk+a57yUg7qJcXNdACMG7j5yFKU187pzO2aHxX9aiyDlz51RMx7WnLQQA7ArMh13aVrsPN9OJ3vZX/woABWNxg2FhkbYBAMAiYPcs7kFp5iRAbKUAUVQ3IlrymqBHJ+mrawRXm9djkzOWXGPciw88dzpinet9r4vpREqA9B/UinmrZVNc9pvF7vZUXMfN7zlk0Od2xJxWzJ0QPmYFbQj5z+LFjXmb+ubAwvEFgGuxp1VzT9I60QOkT1lgVTkqAVLjGLEEKAsfLM7VF4NSiqb8Tvws9lPMXP0HnzVW0AJrQgMffISFzD5T+MRYXruKG5p70QtliLwwxxMgXvZWNDT/pXUe3pW/CdfmecWfwfJIIevaZR1Fl+IT+j14PHG9+95c615D/n1UAlkBIvckUCiqFVuywEqzhKvmigp70ITn7f0AAE0kg/00r0ml8GeWE7EDUUwBEgZjbEAFSG9gQh3TNXecLZoAkeLGOum7cbdFQAHSIitApP0qTlSUk6AVCgDspfFqt3V0KgBUpQKE6DyW0kHdyarcP2h7V7ZAQSaSi4VN0EMUIM7Y+MhbvHpwv2nNWDCJ29et3tWLxevbAHBlx3WnL3Svc7FAmAgoQIxAQuQ07WW8lfwAztBfBgD81T7FrdzWq/D3PRjk+0gPnKRQrqfIqxWKKsbkVftZFoOuVU88MRANCQMNCcOnApE5S1sCZuVx7bbPYk3icly1+AK8MOEbuFJ/EBnTU9PJVq/C9qV/BYjXE0kkex98Y2fBawkBmNPPaPGEd+CE/E/wbfM9fOfON9zjAMDR2pv4hH4P/hf7vHesxlmD/2VUCHEPEgoQZYGlqHZErJSMoAWWTgjWsum4zPwCdrIWAECMZhHb9arvdfJ620AKEBEPrtvT59teHzfwtoOm4R8fPTb0fTGd4KKDvV4cqbiBiw+bEfrasNhbni/mLeor5BGOL9RI4cMnLcQj15/Y789QcVwFSHi/S0X1oBIgNU48prnyMQDYfNC1wGfXg4KgnuRQ17cJd2c+hPP1xZi1+KtoMncDACzKB6EpaMNvtr8T+EozLn79o2iFV9kmfJ5l8hZ1J8MimJTlag0J3TcgN4AH3L1O5dy/6HHuvmb0Ia5R4JGv4qvdN+FTsb9jMukEADxlL0LvggtG9LspFzohyKkeIIoIYTPmBh5ZxAsWsqodBg3vMW/EC05jWqGYMCl1qwCHIqPtzgy+b0je9ioDi9ETqPaL657lTjExhO2zwOI/TxpexZJIUFcDQQWIqApMIh+q9lAKEEU5CTapTSCP6YQv7nNVVZUmQBwLLAO2m2TViFcR9/Mn1uJHD6/yvUdMOMUCVVxqXp4JJEByzmdu6+Tjy+n7TnKbrK/f04fn1/Lf0aGzW1AXN/D2Q/yT3LAJ9iGzWtzHN8X+5D7uYnV4g81xn0dFZRgkIVm69jBuy0py1d+8XaEowFGAZJDwK7IiwP7TmlxrUABYlP0N9s/ejiyLwSAUDct+jQOyL8MgFPWZbZjS+yY+b9wFM5dxXRDkmFDYvqTzFtr7TPw//T+43vgbROlG1qSuYi5h6KFqNwFjAMvyuXOnnQRAsJQu4DuznQCA3qyJD+j/w13xb+BTsb9jJtsGAHjcPgh2/eQR/35GGzHfzzhV2nFaRAmjUFQJbg+QCDZBF+PzZjYZR+V+jgftwwEA+b523+uGkgBZuYMXbqwKOBqIZHCxPpNfv/AAt18vANTFdF+foo+dPB+fOJWPd0s3deCOZ9f7khxyoiBvUV9xXL1kA/j5c/ZxFclVi6PWS5GcmtdWOdXjmaEYFYIDXmbyYUDdOLTHpmKCuQ0XP/s23/7Lll+J9fpFOHWbha5p1+CF5CfcUt3JbS9iafJFvCP3FSxlC3DI7nuBJ7pxre6fcO+3rgnX6t04eGcL8MQknLl7N8bp3FLhmJ3j0bS4BdfqawEA7zUeBwD0ico5EOxhTZhAutFM+jC/9xVgyY8Kfq5PmR/BHREJ0HVNToAoBYii+mFMUoAgEZkm6EH6nIV3oTTL5r1qv9QQLLD8llYMBhypcMgtdO8bH8DBM1tCP+eUvSfi8ZW7CywVDJ24C65hPv4ATxK0oAeX6Y/iKv0hAJ4kGAD2mly9geElRy8AXuaVViIolH9M1n++SKEoKUELrKR0X+51YpGqDC80oQCx3TFJ1wjk4fmWx9bgU2fu7T4PKnI1SWmWDySCxPO2Pj72T25KuomWnd1Z7O7l20XiI6g6C/YAAYBJjd4YtUefhNmU9/54hB4KKtVgGRHpMxXErwARCRBlgaWIII4CJIN4VSaA+yM41+VqLIJdrAWzyG6Me+4bALj91LbjvoEDX/4C6vJtuHzLV5DL3I75ZCtuYn8HnuDqtK/1PoytMR3zF8/BxTt6cXbsfgDAR+IP4s/5EzBty0KMy8Vwrb4ZU6mFE17uxbV6C7pQj8O0VVjPpsBmOo7QVmAJ2xvai/cAANotHpN2OapYOP2CZqbfwE2xOwt+rhvND+BTEShAEn8veYgkvSr2U1Q3IgoUPUCimAARdDvFFys3bAVwmLtdjk8GssB6bm0b/rVsK/70wibfdtHLrb5IM3RDcjAAuGVWSooNDY24NlevbOrEK5s6MaO1DifuNdFxjfHi0JxFQcCLo6/UH/Zs8iPS8xcxUexnKgusKkclQGqcYFDI4tzOYH3dAZjQta3g9fVmG74dux3YBeC/vw/9zHsSX8GT9oGY8QyX2n0yWPiyGzgrBmAH/3cCgBPEazbxf8H3ECnn28XqMYF0owV9aLa8RmrfM9+FA7V1uNl6O3ajNTITZk0jqgeIIlLYcg8QFp0m6EFEgkBYRuWyGbTaexAnGexP2pEie5BGEnGYeIvNhjnALVEjwHf1X+IS4ykAwO+tM/Bl6/149xEzcddLm93XvbF5D3QQ2PAHjCKQbO/zJ0INXXMXXItVjVDKcJ3xD7zPeMj7+RwLrG+/Y1Ho4mO1MGcybxCcgOlW+8g/JYMKFBXlw6JBBQi/L1tMc6/ZoIqpKhAKEELdqmVCSL+LleJnFRNUkQixGXObngtyJgVjDG29fHwa3xB3x6pdPXwMTcV0THSSGqlAAiSswvCkvSa5tjDZpjlAJ48bv2++y/+jVeGvezDIChDXktBS1c+KCCIUICx6CpDCxT3+/Fb6DnxX+6W79a/2yThg+knYtfk4zN5yHw7uexbd/7sCjyZeAiiAJ7j3/SEADtEBrF+M2dKnxmmGx2BbHwK2OnNZC8C2kLmww/F4w33c54zbXUwkQDoAxtCY3+O+Zisbj67m/fCF3WdgKyYOWLldDYj7Sp459yg2eNW0QlEJhAohRaKnAAkOz6L4oonwNbMZZDeSyGE/AqBtNkAI9rVXYSMSaENz0c+99q5lBdtanT6+xVwT5D4jAI8L5eKYYIIEABavb8Mn/rIU7z1qFo6eN97dnrcoQICPGvfh48Z93huctcuqx3AsAJEP7cmnqB5UAqTGieka3pP/Iv4S/yYAwJq4PwDg4QlXYV1bHodOS2LhrgfwV+tkXHDYXNQt/92gPvck3fMZfLzxAmzp8Pw+W+vj6OjLY/9pTTh0Vive2N6NVzZyBcjR88Zj4aQG3PkC9+S/wngEALfZmdyUwM7unFsZ00J6UU/5oPn6uDPw820XAlIh9kDZ7GpBI/znA4AEUQkQRQSgJmKEX2wZJKp6cb0/hALkNO0VrGIzcMoTX8RFdD2QANAOSAIK/NI6D9+2Luv381rr4rjEfsp9fpXxMP5gn4nrzzzNTYDEYOGR+KfRhxTen/8M3qk/jb/Yp6ADTWit5+PAy854KIhpXgBZEDT17gLufj++s+llJA2/r/IONg77TW3Ce46sco9oNygMr4pRcaKinAR9iOPOfVl4yFdj7gOAXwEiNUHvrymkqwBx4iVXaUZDEiA27y0iFDLNqViBnd84ZwwD/PYKQHhM9u4jZsKmFEfOHQ/c+xcAwLfN92AHxvteF5WCliDyzyx6vbF8utjLFYrqRfQAQTxyCRBD1/CIfQhO15fiReop4B4wTsEMayfetzCHp7dr+GP2dPxA07B20XWYtPkBpEgeTbte6vez/8OOx8FYgRlkT8G+P1qn4XLj0QHPz26cAb1vBx4zDwAgKUCYDeR6EDO5auwluhfelb8J1xy4N5Y9whunRyEBIv5eRBGRTtVcV1HdiG6E9eDzqiglQIIFOt1OAuRUbSn69CQ+E/sb39EH4Bb+8JsAvpnk9oAiYTIYWpzCvWLrADFdcxOgAE+U1EkOC7pGCmLDXz/Nm7Xf/sx6HDGHF8g1oQ/T73sXluE56EZgUuj01qh6DP43lCAm+qz+e4EqKotKgNQ4cUPD83R/LMj+ATFYuCfOB7325Ez8yrqaKzJwJQDg7LPPxH2xk/C2Je8DAPQlJiGdzSFmGGh550+AOcej8weHImczvEVn48RF86Cd+XUcaExCU1sfvvvASry4vh2TaAK7rBw+Nm8+Dj17H7zywkZ8ae3rAIBfHnUYFu4/BV96hsuJ1004FR+e/BaWbT0LXz/nAFx958vYxibgUKzBPLIdczvWAQCseGG/EVFNXe3IPUCSygJLUaXs7M7iW/99C1ceMwcx26tgjaIftGCa4+t/ov4aTtRf48FgET5s3I8NbAqmkjYkYOLDxv3oZUncbL0d40k36pHFsbOnAuv873s08Rmke453n88j2zBb2wUA+HP8m5ivbceB2jp8xPykb/FQ5h2HznAXMYPJgPaX78G4jc9I3T44OS2FZ+gizIhCIliuinEtsGQPWJUBUZSPoAWWUICI+3TV2r84jYkNUNeaStf6byAueh5NWH03sDUPXTsfQLgFVs709y9KGLrr/yyQx7CgBVawCTrAFbBXHDMHANCeFEn1wnEwqvcY+bzF34+ZUw2AFRHE5HFfBonqHQOLENc1fMj8DBrNtNuIe0JDAoQAP8xeitPOOAG3/n05Oju7YegErHkmzsh/H/9IfRMtMRtbMnHM17YDn3gFqJ+IJ279KGjnFmj7X4j/W8YTKqvOX4cl69uxcuUbOLQ1i65jP48b/9WBDRNPwTWzN+LKxTNxvXE3TtRfw6W5L+Fvn7sUd//wE7jZuhB3X/ceTEoxLP7qEwAYMkiimzSiifUAe1bjKLoU0IDNbBIoNFdlB0Sj2K8gAcJUAkRR3VDGMIfsQBPJIMcM7NKrv9dOMdbRqQCAfbTN2Efb3O9rfxv/Hl6hC2GAwoSBdWwKltEFWMVmhr6+KcmvaVntKmNofgVI3NB8sWFMJ/0WuIginZO1ZWjY9mz4i95+W78/U9UgFfvtyCoVXDWjEiA1TtypHLFgwILhBlKvbukseG3C0NDWejDmZP+M8w+ciiPmjMOX73sD5+01FbfudygA4I/HP4wfPMR7fmy49DwAwHgA4xsSGOckJIRPtMgI10lVgpObnIrsfSbh0RW7cPDJF2HKwR/H/fAqn9ezKQCAz8XuApxC6fHjJgIb/Ofb1E/TuWpC04jrixqDGhAV1cnn//EqHl+5G/9atg3nzubXosn0AW2hqpkVbBZOxGsAgJV0BhboO6BL0vyn7QNwgv66+/zbsdt9728gWXwh9hdvQyD5Iaj71TH4knEOdrEWHKStdbfP17h/6dn6S/gMuwunbZ2ILj2Ng7S1eJXORydpwaUf/BQOnTMBy7fwxrmb2tM45QdP4NNn7o3tXRlYDz+NjwS+grNy38FxB8xD+2sWZlX5QgUhxPVFTRDTHeepSoAoKkSwCfoPYtwiRYx1VbsWLylARAKEDKAAsSjFRdozmP3MzwEAx81Yiqv0BuzX0YR0w0kAgPq4jr68jZxlI+tUrdXrFvTlf0ZzugtX6Svcz1tAG4CX1wD7v73AEmGgSuVxMUe1Eq8DAjmCqCZANJUAUdQKrgVWHBEQHfgQCje5snnuhDpsbuc/E2XMVf7FdA0EwBY2EVc0/gYfPXk+PvnX5Thh4QTcOX4+AOCuSdfjgd07sGBbA4BetNbFED/+E3iTrcM33ngLF02fhpOTkwB04K36I2CefjWWvfAIrjRvgOt03DILN+GjyDAbJmXotg2fAnYTmYYD2ErgN6fiHOf3LWz0JjR4CRDTrv74yFAJEEXUYHBVXevZVJhadBQgQR6gR+I/9hIsJFsBAHtrW4q+9ghtFY7QVhVs/4V1AZqQRgZxmDCQQRIXLYyBvLgVSO9BrHcXPmfsQRtrwnSyB3XIIY0E9nntMUzr2IWZRg/2oBlv29OIpldn4NvGC4gTCwesmABmJPHn2HLcYZ+Fh+gRvuOKvpezyU7f9r2zd2AqaYMFHc+0VrnLgUBKgAR7fSqqi+iubCkGRbByRDQiWrWz17e9KWkgYXgyNpsyN1CTJ6YXHzYTP35kNQ6bVShHa63nkz+xlmU4EfSM1pT7mslN/AZz62WH4rWtXTh8tvc5YiL5gH0kPmHc6/vsmXMW4NtzFuE/r27Ds2vaCs6rmtEJgcX4QkEMShKnqE42tXu2HQYVlYDRUFnJ/Pv/jsefFm9ET9bCz197GzpZA+6yT0E7mvDxU+bj1sd5guLDJ87DL59ahxnWbjyTuHbEx/2g8b9+93/cuA9YA3zByduep7/IH7xpAQ+9hLnJafhbfC2+aH4Qq/fMwCf+8gqmNCVxQ8B24WW6ECvZLCwgEwFs90mPqxYpKBTzf7kNg8p/KMpJX967DzcgjUO0NQCASaQTQJX2/wC8HiCwkcmbuM64B4e/+g+0J84AwFWyh5DVwJv3Afu9DQAw29qAn8R/7n7EXlv+ga/GAOwGsPsW7NLfjYaYgR7bwszOOiReeAIf0dfhCuNR4F+7kQD46wUdAP4N4IEv4NAFV+Mj+nZ317yVS4G2+uLnv/pBfk6TJxQUtEQlngsiq29Erzcrr3qAKCKIa4EVPQVIWPJ1/2nN2NrhJUBMJ+gwNC9pbNoMmTzfLlv6iYTKml18rjytJeW+F+Aqwq4MX+RvTsVQnwhfTonpBBkTyNsUbYHeb/eRU3EAVvq2bWET3c8UZMzqX0gTv88cVA8QRTSgDEg5/SHTERzzZPKI4f/MwnnspYfPwPcuPggA8MqS53Hof84u+hkfNf5duHE9gPV/BsC7Kn00bJhz6mMOEPvW8H/vEc9Fu2EdOFZ/E4/ah2A1m4H/2EfhdTbPLYoTjg2CHOLYwKYWPd+qxJnrxmHip4+uxuVHzx7gDYpKoRIgNY6uERAiJSWcIOXIOePw4oZ293WHzW71VRIWS4BMaU7i5RtPL/B+BjyfQPnYAHD4nHE4bsF4MAZMbuSDQzKmu75/Qd5gcwoqs3HwZXhPvA7zJzbg2TXPD+VXUHF0jcCCt3ChUFQjskQ1bjuVgIheRcyiGc34zowD8fX/vIlONOLn9oXuvl6pIqPBmbBuYRPxj3FX453tv3L33W8fCQYNTejDU/RAXKo/gb20rQDRgIVnwh6/ABuf/Tv6kMQibcPITvilXwMAmrEMR2rA3+NfwUG534AyIGdRt4G74N35LwGA698fiYVDxxc1ibxb7WMrBYiiAqzf04fv/E9SNJBtBa+p2ktKSoCcqS3BdcY9wCbgbanXcSs+AwKKfya+DPwN3Mpl/HxMpV6CAk3TsbF+EVZt2Y0z9JcBOEpbG0AMQA+A54HPywmPWB3+mzvIvV5PSG1AS34HYPZh0Vs/xiL5tcsG92PQWKpgWyQSuSGEWWDZeaUAUUQQoQCJYA+QMJuomePqfNaiQgEiN+U1bYolzlxYntcGEyo/ftfBAADd2W5T5iY0xtXHC+z/xFpq3NABWLj/1e04Zr6/79HfcRq+sM9mYMV/3G132mc47/M+z7SqPz5yFSBuE3Rl96yobhgYUo4teYYlqrfwZQS8/7i57uPU9P3xNfMK3BS7E2vpVOQQx15kMwxC+/mE0nOavhSnYSlO0F7FFbEfupa09aQGCkfEXJfksbsnN8CLFZVEJUBqHEKIr7pWVKn85N0H49jvPOZub0zyiZtPAeK8MZgVDyY6BK11fksq8Vm6RvCnDx09pPPe7FTBAACO+T/A6V1y5Nxx+O37Dse8CQ1D+rxKwi2wHAUIUVUxiurEkCaQBnMUICx6CRBB2IJat5QAaUx6t7/HJ7wH77zm+9jTm8N/X9uOm/71hu99v7HPw5SmJF74wmkAAB3AqY8fCwBYRNbh/7N332GSHeXZ8O86oePkzUnSrlZxlVGWQEhISCCCCBLJGDDoBQMGg4kfNtkvBl4TjcGYaDDZJucsCUkIUM5axV3tauPk6XBCfX/UiT09O7Mz3X3O6b5/18VF95mendpVz+mqeup5nh8OfwyY2QssOwJ/dI7A/XsrKAgLJmz82T0Kb8n9D8pSnSS0pA5TOHht/e/wb7lPzhrjoAgzcUZn6iga4STqdfXXBiUG/ACIkfL60Mes6QfGwgwQ2bQHSCJDox70+WvideyWifFZr0ntSUCvB8iJ2v14pfHj4PLayj24rfCK+Gvv+C7whDdhwB0HNKBy2EUovvQ7+OOft+EtD96KN66+D+c4N+D+3VNY1pfDvqk6hkomHnfoMH59126U8jqedtZJwBPfjnf+y++xd0ptFLz5/CPxGvMHwL4HUHdcfP/mR4M55iXHrcZA4QClSSd3ANVxPNp/IoD4v/uBynilWTwA4jVBt7pgIU+9Z0KVT9kv+zMYAJmdATJUNIN7uePKoPRhtGb99tEKto+qv/cxa/qD721s6rt5RV/suuVI3PGouoeNlHKzNk/98tMDRQN7p2rYPjqDfVPqzx8p57B/uq7mcMOHBd/zNft8TKMYfP9LzjoUV923F089If2noGf3AOFal9LNlUBBqPVVBbn0Hnw5SFecuh55Q4ftujh6dXhPW1bO4QvOU/AF5ymx15dQxRdzH8JJYiv2YhDDmIIEMDFyHNbM3AfUJtULV23BXTsnsEnsRB0G7pSH4ljxMMqGxN6+o3DffhsCEmcO7IWojGK3U8ZWdx1ON++H6c6eEx0idkMTYfn7YqRH7nXOsa3/h+mESLUDSjcGQHqMH6RYO1TEC04/BF+/4REAQMFUkzW/RJYdyQBZ6Mm8xsCIsYgisu+/7Dj84/duxy4ZyQ458fmx11xwdLYaVekizABhCSxKq+jveS7DJbB8zRbw373p0eBxf2Sjzj9tt7wvj3M3L2/655XzzRvA3SY3AW8J+378/Id34guPPRh7zeBZr8Ebn3wUrr5vD178+RuC65c7v8d5+q0AgKlDnoS+R34NAHiGdi1+4J6tUrSFmhR+cOhd+MFjRwXfW7P9JsjpLNZ90z9dhKmajZX9BWBaLepLohZ8rkRrYbuMgFCHLCvHg7rNsjLTGwBR84ho8GNOv3kfsG8rnopbAACyrE4f+yWb/lQ4C48OXoBv7tiGx69YjqvH9gITwJG7+3CvPYVNw2U87cInAgBKOQPwFqcjfXng9H8AAOQAfHvPdUE28RMvfRIGvCzfA3nx3ml84cbfxa51QwZI1csAkRYzQCiD9qhyTFvlOhyd1nvgHJo12R0qmcHvpyqB5WeAiKYBkxdHypVE16+HRDJJ/D/vjh3j2Dmu5snLvYblH3veSfj7b94MIAyAvOHCI/F3X78J9++ZxnhF1eVfPVBoGgD5oXt28DhvaHjPM4+DlDITJ9P9f0+LJbAoI6QMM0CyWPZvLn9z7kYcvXpg1vXhcvP1/AwKeF79nbOuf+jsE3DFafHG6E952+y55w+uPAc3PTKGd/1AHRy89w1PgSaAM96hykK/88LNeOnvzobm3RNOrH4WtxT+D/pFBc+xfwzbVevaItT99L+1Z+D91csW+LdNGS+7uYRa06xESo907pxQ20QnUtFfTj/115/zuTIMgCz0ZN6yhpvrYha0f3XmoXjN+YfjTzLc6MPq4w/6z0kTTQC2lwHCEliUVtEF3+HWfQCAvXIwqeEsWXRjyg/wRvk9i4B4k8mc0fxjca4az42itZsb/8xzNy/H6y7YHFx/nfVa4LlfBJ71Wey+8OPB9U/k/g2DUBkjBa8E1n4rHoCp2eFpxjQaLuewYcRrSFpWGX0jmACkGrfNoAclYN1QvPxSs0MJqV0H6/HgzY+cM/DjZ92FD556FY6o/heOqP4XrnIi86Vbvo6ztDvV4/61AMKMMVdK1L0T0dGsDb8/XMEI7zelXPi4r+E+OBKZ9x0w+yNi4/Iy7nrvJXjB6WFjy6ydOPdpsR4g3r+FzdIHlEEVFcjcLYcy9/s4Vwksf207U3eCDBBT12YFQF52zmGxQzHRP2/lQHjf9edbfvADAC49XmVoXHbyuvD7vTnf6kEVEN4xVsFV96p+bptWqD5JdceFXH9q8D2P9J0c+fnq+7MQ/ADCPYS6FwRmE3RKOxnpAVKR3ZMB0iwYDDTPkjuQgSZr2Wb/Ro0/z9RFbD/BFga2Xv4bvNN6Cc6v/SvG0YfdcggA8HZ8EUZN9f7wD/vdiKNRwfwHaVLJW+uWRA3LTN4D04wBkB5w2mGq0fhrzj88dj160/LrlwYZII4MNqgWes88dm084rzYCfRph43gWvc4vKH+t7jhgm8s6s9IE1UCy88AsWOlX4jSIrqRvqWu+u/80n1cUsNZsuj9p/HUNwCcE8n0mKmFp9WiAZDlfeHmXjm3sABIs2CL/2cKIfDGJ4fB3XH0Acc9GzjxeZDFYfzJPTL42rHawwDCtOAJOz4Z9UtgZeLUkjcp1IXESWIrPvXbrbh1e1gChz1AKCl6JADyCfsyAKrZYyqd8UrIQ88BANzibsKn7WdA0wSknocFAxYMvNl6JXDq3wCnXQnn9FfhC/Yl+KR9GexTrwSAWEkYP4usMagBxO9j0QBI9DEA9EVKCTbWwT+QYk6PvT5rG66+Zj1ANIcZIJRBjtqwsWAEmWJZEd3cW96XxzufdiyOXNUfVD0Yna6HPUA0MevgSGNgPLo+XhnJamu8T114zCos65s9v/QDKP7P3zleRcVS99u3PeXo4HX1lSfgW4e9B8+v/yP6iuGfM9dBnDS78JiVQblnBkAo7SRksOleQT7FJ1+a++2bntj0+sFkHvzkdY/Hj/7u3KZfa3aYr1lwpfHnNQZtbVcit3Iz/su5GA96Tc3/T/2NwdeLM4+p//fWutNuditPIB+W5z9V3n6AF1LSWAKrB3zl5Wdg+2gFm1fG+2Y0ywAJeoBIiUpdbQoudONvzWAR5ZyO6boz688/GMu9yeR33cfjmauyuwHr04WALb0eILBhu5KpcZQ60V4ShzoPAQBuczclNJqliy5wl/fn8ehYfFMqHznhHM1GyOvh9XXDpaD2fWMGyOqBAh6bqM5aEJ+zeTnKOR3lvIHdXhO0hZy80YXA5fV34XPm/8OF+k24Uv8x/uwehaJXo3a8IQByx44JAMBAIQMf41r4b/pK40d45c+PjH2ZySDUKY3BNlOo+cpOOYKP2JcDSHE/isPPhzj8fBz3rp9jypufCSFip/J2YQR42kcBANWajfde9XMAwCsGVOlQ/37luBLTNfV3j55w9kXvj9F7X7EhAHLxltX4zl+241knrzvo08rReVBaM9nmEx33mFQnu4v2ZFLDIVo8V90PbOjpvQfOITp/vfzU9fibc1XzX7/sy+hMPZjnmbo2K8Aw0lDBwDTCP29V5P7YOJfrn2P+5b9usBj/c0/fOBKscQF1kOWmgSfhevcRXL5+EPfsmmz6c7IgZ2hBE3QGQCjtXDfMsK8gB2TsIFazgyvAwZWfbzy4HNUsAGK5B98w3XVl7KAMANwsN+MO91Bs0R7GYY/+EHlcFPy3mHbVz920vIwH9k7jcC9jLmteKr+Hb/35r5MeBs0he5+wdNAKpj4r+AHEJ4x+AMSfdNVsF1PeqeiFln4B4ilzi61Nv3F5GYNFE6YucPiK7DQ7n4umiVgJLNvJ1ocs9YbogqskVbBgFH1BBlnWRO8/pxwyFPvaR644MfY8uinaVzCwfrgIIYDzj1oRXG/sAfKeZ27BpuVlfODZ8RJ9x60bxI3vvAjffc05wbU5y2pFNhPVyWyBW1yVqXeBfjN+lnsrVokxAMC47S0sGzYmVvRno1G9vf5MAMAK7+8TxQwQ6pTGd5pflvJ2dyP83I+0bz758zVA3Q/myp6IzjX8+V40AOLP8ZrVi547AyQ+H7zwmJW4+i3nz7qnLkSuCzJAohvFl555HACgX04kNRyig7Jvqob/+P39uHfXJOCqTWsb+oIz/9Mies+OPvYzMN7zwzuDjLdmPUCiAV8AMCPzx1UDc2eAzLUJ6TcfHirFNxHXDRWD/iCAKr9qeaW5Nq3ow1+deQieedLaWPZxVuR0LSiBZbj1eV5NlIyxmTre+p1b8aeH9mO5UJno4zJ7e01zHaQ90AHbH7+uebZHM433rrkIIWJB3UaOq0rkX3Hqelxx6vrg+i6p9haO3/bf+GXuzdikqUyQKS8D5EPPPQGvfuLh+OorzljwmNOgsvlSAMAwJvGW79ya8GhoLhk4OkrtEp0A+qUI/E2+6ZqNqdrc5RHmMhUpJdOYUrxQ5byBa956PixHzjqVk0WmLsLGcMKB5booonlDZaKkRFNbNW9T8PUXHYOnPD5bkw9fdAF5/LpBnH7YCG54aD/+5pyNePYp62Ov9ReggFrg/vIN52GyZmHnWBUf+5Xqh9IYCL54y2pcvGV105+dN3QUIpt7ZkMw+DN/dQr+5ad34+PPD2s++y/5jnMe/sH8DgDgcG1n8PUxS/38nK6h4oZle7ISALGe8DYYX7sMA5iZ9TWWBaROaQy2+QEQK/KZnEv57l8xF7lXi7nL4NUj9zU/U8EvbWM5ErfvGAMADBQNvPzcjfj8NQ8Gr49uCPblw4VwuSEDRAgR9vo5SDk9HsjJomipIFlUjeaHMJmZ5sXU2z70s3vwzT9vw1f/+DCuLnglsKSejdKaEdFNv1zk8QnrhwA8AiDMNDU0bdYmYWP5vugBwZX9s3uA+BpPNv/P356N/77+YbztqUd749LQnzcw6a2Nh0omNK8El+1K1G03mH+ausD7L8tuz0tT1zAD9W9lutV5Xk2UjA/85G5888/bAADfyu0BADwiV2bu83quOVPjejNqy9pBnL5xBDc8uH/O1/zT047Fvqka1jbZw1MVTdSN9L3P3IKd41VsXtmHjcvLePGZh+Jxh84+MOm4LoQQ+NBz1SGZb/15OwDg885TcIF+MwDgEG1P8PrHXNV7dMNICW+55Ghkzczpr0Nx649REuwFl2YMgPSwaADEP1HY7y10p2s2pqpqMnwwAZDJahgAOXPTyKLH1r/AZppZUMoZweZKDjYzQCiVogs7vy7+xlVDsdPGWfKcU9bjzd7pi71TNXziBSfj2vv34uknrp31WqehBlMxp6OY02ObWwe7KRrL+miYp15y3Bpcctya2DV/w2EnluGl9bfgS7kPxb6+11UnlPw60r7Dm2T3pZFmqIWx0aTpNEtgUac0vtf896OD2QdC0iraoFwTB8gAccONNX9x77/2tkfDHjzlvIF/etqxcKXEF//wkPoZkQyQaJC1sQTWUsQzQNL9bz6X6LBFSc15hzHJUqeUCX96SG2EbdtfAVb7GSBG5gKSc2WAXHHqBrzju7fBiqy7zCYZII1ZutGvr4lsBM6XAfK4Q4dnbQIOlswgADJcUgdz8oYGu+6gajlBACSLfT+iTENDFervxwAIpdWD+6aDx2ug7n875LLMNUGfK1PZmGfe0djHrdHLvfKBzehe4BYA/vqsw2LX33fZcU2/55QmQREA+IN7PJ5beye+k39vcO36Uz+CndcMBX9mFmmmv9a153klJSnbn7a0JNENz6K3yelngEzV7KA+dOMJl4XI6VrmountUsrpsP0MEDiwnYOvoUjUbtFJkw71HhVadmPkmiaCMgQXHL0KqwcLePYp65tOGhsDIL5oBtrBTsZii9kFbPBH//z75ZpZX69hdjbcWy45Ck88csWs62kkDK80gmgWAGEEhDpkzgyQ8F6X9o2oaI1n7QAlsCw7rHkffX2jfm8TL/r3jmaARBfMC+0JtxDd0AMkGiQ38mqjNA8LdZvzPEq/2DLNURs2FvTMNUE35giAAMCRq/pjz01da1ICK/48Oic8JJLh1tgEeCFlYvygR/T1Je+eO1N3UG9yn86i/VN1VKS3+ccACKVU7GCbUEHfKnKZy3qbMwNknvvI//fUY/DEo1bgf1999kH/zCNWLfzA3dVvOR+f++tTcd4B1qgPy3gVhYdWPCl4nNU5oaZ7QeAmh/0oPbL9aUtLEp0w+uVd/NMs0zUb45WDzwB5yVmHAgDeP0ckuBdFM0AMOLB43JlSyJ80CbhBAEQzsp2J9d1Xn4Or33J+0x5IUXMFQIQQeMdTj8FZm5bhhWccclA/O5oxIhcQAYnOvbfJVfiafX7T1z31+NUQAnjhGYfg1U/cnJlAswgmhbNPxSyirx7RojT+qvuLFFtGSmClPQASWRhqomETM8JvWBl9fbNF5aC3KZeLZQVHa+CHGSALrQu9ENFNx6xtPviiG6K6qe5xhnBh2Vz8UvrFfu+8HiBOBpugR8temQ3378YTz3lDg66J2InvfEOm8/phFcwcLJpBHxFg9qZjNLgxl+g90y8N7ZcSnKnbkRJY6f7cmc9wOReWwHIYAKF0iv4ORw/AZG0KMleAYL7AwZGr+vGll52OUw45+P6en3zBKXjiUSvw7VedNe9rN4yUcOGxqw64Rt2DIXxl5VtgSR0/dU5DPbIWPJhm7mni75s0q3ZA6ZHd4720ZNHTd37mh5/t4Upg654pAMDaocLsb57DPz7tWLzgjENwVMOJm16WNzRYUv27mrCZAUKp5N8PDITvTy3DGSCAKteykPr0Jx9gInjlEzbhyidsOuiffbCBicYTl3845p340SPPxoer78F3nCcE159/2iH40HNPPKjAdBroepgF12ghASKiVpjdA0QF5OwM9QDRYwEQMedp7WalVRoDDZuWl7GyX83xck3KogLAs09Zj0dHK3jSMQdezB6s6Lgye9ov8lbR9HCjs16vA+Vs9Gei3hX9dbatOgxkNAMk8otoNtxLSpGsNUMTwcaaoWtBplbjPf8ZJ67FcCmHTSvKsXteY3mZweL8AeFoP8zTNqoyeUVvTNN1J9YDJMvecNEReP2f2QOE0i16awsOwEDPzGEy31zjbWfpqI3Ly/jSy05f0p8xUDAwESmX/xPjSXh37Xg40PG6SdU3Q9dE6kvRzkX3AiDMAEm3bO2gUEtFJ4x+BkjR1JEz1KTQPxW9fnjhDS5NXcPRqwdaO9CMk5DB5ooJG3X2AKEU8vvu6JEPbc3o7o+IX73xPPzs9p142Tlz1zxthYVUeGrcmHzrJUfjkGWn4GVfPBq/vSdsEJcztMwFPwBA6HNPClkBizql8b1mCLX5FAuApHzhZTQGQObqAeLNNWJZCg2vfeV5YXA3XgIrXlLmjU8+ammDbiJ64jnt/+Zzif57OiK8L1tWDQAPAlG6Recd1VoNfULdC7PWksdsuF9FRTNAove1aJm6vBn/HkPXcP7RK2f9nMb750J65L3xoiOxeWUfTjtsBAPePNvPAKlEMkDSHnifz8r+Ai4/4wjgJiDnVpIeDlFTzTJAbGiZ6wHSTBbKz3/rVWfhk7/Zih/fuhMAcN0D+wBv/v31P6nm9JtX9GU2Iy7MAJld7UBKmfr/Pr0im+8uaonoSRa/rrMQAusjp1UGCkZmmyCnhZRAHeqGmBcWqhajwpQ+fh+g6Al9Tc/eRvvB2LyyD6+94IggANwuC9nfbyw5oXv352gtfiC7G4V+AERv2gSdERDqjAVlgKT8d0xvKIE1V0C07p8sNiL9nRr+ark5Ng4bS8K0Q/Rnp/3ffC7RDWQZyZis1+tJDIdo0YxIOcCslaSLZn3MLoEV/l5G72uvOu/w8PoC7z9upIbiM09ai1MOGZr3e1YOFPCKx2/CiRvC15aCctNOcCguqxt+UY6p9g9Mt5bwSIiai2a36cE9z4BAtu55zczXAH0u525eDgBYO7jwii+LdfTqAXzqhafEMuN8e7wMkLkap2eBbqiyiLqQEIhXfGEF/PTI/qctLVqzElgAsG44vCll8aRx2hy/fhBVLwBSQB3XP7Av4RERzeaXIdKjJbD0+esb0/y2rJ0/K67x9JF/yrtxYzCzpwT1ueuiclJISQlrQGe0BJYmguw9n+NK/Pbu3fjt3bsBAGYsAyT+d5srC6MT5QdyB2hcnBXR/xZuJAPEthgAofSLlXeK1MNvZxmVdojWi881bALOlQEyUg7vmwsNwO6fDn+vP/a8kxZ9mtfPAPmv6x6CZfuB6mzeA6Nc3QuASJbAonSKHjaLl8BKakSts9h51EefdxJec/7h+OYr5+/t0SoHKvl3zuZlHRtHq+mR3qlGQwBE8rBfanB3u4dFyyJEF9Aj5XDTs90no3vByv4CvvLK84AvAQVY2D7K1GBKH/9zObpBLTRmfy3Fb/7hPGwbreCE9UPzvrZxw8F/3rgRmdW6qNDmLoHFDBDqlMb3mv9+PH3TSuBedS3t2QiNPUAKDeVbdoxV8LIv/Sl4Hl0UN9b2z80RABkotK7Z+Vy6IQMk+u8phQYHGnS4DIBQJoS3EhkrB5i1HiDRzbRZJbDyzQMg0eza/vzC7ndnHb4MwyUTR68eWFIpk5X9qlfGWMUK7sFZ7wECAPAyQHJuVS0qMvY+ou7n3/M0uNCEmg9aGQ2AfPlvTsfrvn4TxisWgDCwerBW9Ofx5ouPbuXQ5nWgOV/joZ4s0YxwD9WADSuy1c6Vbnpkc8VBLXHGxhGcuGEIb7jwyFgjt2jWR4kBkJZYu1w1vssLC6NTPBlD6eM2BEAsqUPP6KnctNi0og/nHbliQa9tLDkxZwZIRjcK/QwQTUhoPBVDCWnMNvJLIJSKYep/2n/HjIYSWBuXl2Nfb8wyjZZFaKztHz11HA2GDJY6EAA5wKntrGgsXeiXUlM9QIjSzZ93RA8mqB4g2fp9NA+QTVYyIyWwIkGPJ29ZhXVDRbzhwiNRXODGYX/BxHVvfxL++xVnLGm8f3/hkQCAh/fNBJuXac88XAhpqACIBgnYvAdS+vgHSMxIjwYbetD3NkvOO3IFvn7lmcHzLO3ZHShbJdPVZ7Rw7tx44I9L3fTI8DuMlmrlQAHff805s65HI699eZ4AbwkzLCs2NT2V4ECImvNLYPkBEAda5k4BZlljACTMAOmOHiCI1Mc3YaOG8JRMBtcdlFGNCxB/gRLt39D4O5c20TJWmhDYtKIP//bCk/Har90EANg5Hj9kEV1oGg0RkPwcGSBDRWaALIYDA4AF27KSHgrRvPxpR7RhqwU9cyWwDhQAiZZ4jjY7XzNYxB/edsFB/6xW9MUcLueQNzTUbBe7vbr3WS0DGOVG1rqwZgCz/T0FiA6Gv9aKVjuwYKBmu3N9S6pF79WlRWaAJGFsJpwjPf6I5bj6vr3B84FChrenI2uJxpLPrHaQHtn/tKWW64/ceKLN42gJIpPCPaNjPPFM6eO9JfVIGYTG08LUPo37Df5iuGt6gDSZFPp/N5cREOqQxgVIXqhSRVIPN2rSvog0GkpgAcClx68JrkXr1APx0iqNf7dEM0Dm+NmZJQFHqH9flsCiLBBNM0CMzDVBj2a5NZYELM7RAyRpgw1B5m4IgGh6DnXp/XtbM8kOhqiJZgEQGzpqFgMgnfToWFgOfv1wKfa1TJff1zQ4cvZ7jNIl+5+21HLRAMjyvnyCI+kimg7ppcXt2T+O+/dMJzwgojh/YzCWAZKxU4BZ1vhv7S/UZ/UAacHpw0To4WLfLzvkb3oy/EFJKUGdvnWNcAGW9kWkHtns8zf+hBDB79PoTGMAJLyHNC4so4GHDSPq30ATwNqhItotdmo7RRuTiyUhvQwQwGEAhDLAn3bkYuVgsjf3i8a1/fuYrxw5yNeK7I1WaQyA5Ixs/Zs3o2kCVXj7Bhb7XVL6hCWwws1pBxpqdjY3q6P36nIGDy2XczoaY79pClQvhu3NAxsDIDz7nB7Z+02htjt+3SB0TUBKiStOXZ/0cLqGMItAzUJB1HHLtjFsXtmX9JCIAv4Hs+71Z7BgsARWBzU21PSfd2MGiL/w8E+mMy2YOqUx28gPgDhmuGmWpk2yZqL3ZbMhGFJ3gNGZePklIxYAacgAiXztqNX9+NHfnYtSTu98E/Ss3tcihBBwhKEyQWwGQCj9/LtHv1Cn9SdkCTKD5U+jw11WzsW+Fs0A6U9RaZVuzADRhcAM8hjADFDnQT9KHz8DRI/0uwREdktgRW5+C+1llCZDpdysz5usH4ixoCMPC4ZwYif8JI/7pUZ6ZgKUGicfMow/veNCSCmxjBkgrWMWgdoESqjim3/ehguPXTVrAkyUFP9jmRkg6dJ4EsbMaLNgCAEbOgw4wXvMX/Az/kGd0lhtrShUAERGAiDFlAdAoiWwoj09/OujDSWwog3G84YOUxewHPUP0RhgPW7dYMvHO5fcHP1Hsub5p23AnTsncO7m5Rj1SmC5DIBQBvibgQNQm9UT8LLAMvbrePKGIbzqvMNx5Kq+WYdJokGPNDXX7cYAiKELzMi8iqzV2e+S0sdfQ5lCrUNsqM/szAZAIvO7gQztKW1cXsaDe6fx7FPWYboWz5Qws/YB1MB/T5mRzEqAa900Sc9MgFJlpOEEDbXA0KHA1C4cJnbhxw/ux9M+eTWufsvBN+Ajagf/FL5/KsaGDjNjpwCzbu1gATsaGhhHAyAnbRiatbjPEj8AYnqnYvwFPzNAqFMaT2CFJbDCkk+pL4GlzS6BBYRBhEf2x2uvNzY+78sbQZZIkpkX0dOKWa2/DQD/8pwTgseuUMsq22YTdEq5mf149vQ3cL4xinO0OwAAE7IMYHZJzrQTQuBtTzm66deWlcODfH359GwQNpYj7IYAiCYEtssV2ITHgP0PAIedm/SQiGL8DF/D25y2vM3qj1xxYmJjWopo9sS6DpQubZVv/J8zcfV9e/GME9fiP69+IPa1zB708/jvKTZBT6/sf9oSZcXyIwEAG8VOAMC2/RX85eH9SY6IKOB/LvvliRyZvTIIWXfBMStnXcsb4Sbhh557wqyvZ0lYF1UtPIIm6JwTUofMygDxAiAy0gMk7WUEokGPeAaIejxeiW++N5YTiG68mQnWnY+Wqlk3nJ2F+4H4ARD2AKHU++N/4IVTX8ZrjB/gJO1+AGEGSDfN/Zb1hfeZYi492x6N5Qi7oQygrgncL9eqJ/u2JjsYoiZkQ79LTTdx9/suweOPWJHksBYtmj27PkPzqFUDBTz3ceuRMzQcuao/9rWsBeAbzdkDJInBUFPMACHqlMIAAKDkldwAgC9f+zAed+hIUiMimiWaAZLxLNTMeeslR8NxgctOWhtci27GZr1kXhU59GEGRajNQb9kD0/FUKfIhvea/3nsmiUAKnMi7T1ANNE8A8SY49Tc3TsnYs+X9+WxfVQ1qE1y000IgavefD5u2jaKsw9fltg4Wsn1eh25DgMglHL77gMA3O+uweGaOpj1qFS/h1rGN6CihkthACRNgZ1SQ8PiJIPRraIJEQTRUJ858IuJEuB4c8DgsJ8w0JfyOd+BjJRzuPLxG/HI/hk86ZhVSQ9nUR5/xPLY8yxXOgCAujQAAeQRP4zEpW56MABC1Cm62ryM1gR8dKyS1GiIYvxNaH9DsIZc5k9hZE1/wcQHnn187No5m5fD0ARGyrnMlyasiCIgxzAopnGxuAHH2g6u0wYh5alJD416ROMCpARVck5GAiBZOokbrZUcLaFy2mHD+NNDowCA+3bHa7Gv7A9LwiTdbPKQZSUcsqw0/wszoq6pv4uoTcN1JXaMV7B+uHv+ftRFxh4BAHzIfh4OFztwtLYNH7UvB5CuQMFS6ZrAS88+DNfdvw/POGld0sMJlBsyDbuhBJauCdSld1DHqR34xUQJcLxqm/5ejC2yvxX6jkuPTXoIS1IwdSwr57BvujsOjlSh1upFUcNF4s8YEZO4wT2aKSApkv3feqKs0NUNMRoAeayh3j9RUqQEVmE/LtRuBKBKIWhdtAjOqpFyDte+/QIIiMwvkCsoAACer/8Gl+nXAjPA63PAHyaeCCCbJ5coWxqzjfwSWIg0QU974Df6N4iXw4o0wyyYeN2TjsAnfn0fXv3Ew2PfHy0Jk6VgTxZUDZXpa9ZH8YZv3Yzv37wDn3zByXj6iWvn+U6iDptRJXj3yQH83D0d0Wodab8HHqx3P2NL0kOYpdTQA8Togn9zXQNq8AIgNgMglD6uVwc1553Ot0W2D5Z1i6GS2TUBEP8e+DTterzA+C0AYLtcDom/TnJYFMEACFGn6OrUZS6SEjc60x03e8o+V0p8OfdBHK1tAwBMyFLXLYKzamV/IekhtERVFAEJnCLui103q3sSGhH1mmjwwISNnFC7fm4kAJL2jahoDCfeED0MZvQVDLz+SUfgwmNW4tg1A7HvjwY9GABprao5CAAwamP4/r07AACf+u1WBkAofbwNav+0alQ3lcBKq8Ym6Fkv+wIAuqah7m8tMQBCKeSXwMoJdRjVEdkuLdwtBjJe4jnK/0w9UQubu6/BPoyz4WVqcOVD1CleCSx/wwUAHN4MKSVyznQQ/ACAITHVVWUQKHkVoRr0HaI1BDwcq8mriVovmgFSRCQDM0MZINEwTjQrzIxkg/TlDeiawAnrh2KBESAeKOFGZ2vVvADImds/j9PE3QC6Y2OTupCt7n+1JgEQzv3a76xN3dH3KEoXAnU/A4R9kCiF/AwQvz+DpTEDJA0KRnb7sDSqeWUADxc7gmu6kJAMCqcGAyBEneKVwIpmgDAAQmlx3OhvYs9PEA+Aa2BqpaponskiXLvpdaJW8+MfRVTx6/ybg+vCCPtizNVMPI1iGSCRx32FuRO8s/T3y5pqXm1qmm4N/537Z6wXzG6jlLL9fm+zT95q3B1ou80r+7D1n5+Cyx+3Hm968pFJD6clNC3c/PMDbERpEmSAeHsxzABJh1zC/ehaaXhQZV3nRcPhPpt9f9Oie95tRGlnzO4BYrsSsrErK1ECDp/6S+z5++0X8+QqtVTVywDxPWBsBgBI12n2cqKW8z9vz9DuwgoxHlyPJknoKd/9m6tsVTSzoz8/dwDETPnfL8umihuCxznh4GnadeCnKKWSnwEiZ28AMgOkMwxdw4cvPxGvveCIpIfSErEMEJsZIJQ+TpAB4jdBZwZIGnRTAOSYDSuaf8FiUDgt2AOEqFO8DJCVJQ2b833YunsKgPow5olMStqgtQsA8Or663C3PATbtLV4X8Jjou5S1cIAyCPuCrjCS3l2WQKLOsOVwKv17+Mt5jdj16PB3rT3ACnkmpcKaCyBNZf0l/jKrsnho2PPDxG7mElJ6eM6weduswwQ3iNoMXRNRHqAcLOP0scvg5oXKkDHAEg65LsoAKLnwpK6jlRB4aKoA/WZBEdFUd3zbiNKO68J+uPWlfDdV58dXLZZBotSIOeqxco0inhAroUm+PFArRUtgTWGPjhBAIQlsKgzTHt6VvADxRFokV3qtG/+zVUr2dCiTdDnLutg8sBF27hDG/G82j/hU/YzAADrxV6MzVjM9KV0idQib14Ci/cIOniaJsL3k8N695Q+fgZIzs8A0VgCKw26KQMEkZK6ezGIKXiH/2wGQNKii95tRCmn+5NCK7ZRwT4glAamqxYrFalOw6R9E5Cypx7JABmXZTjeSUH2AKFOKVhh2attK5+I8Wd9DXjFrxC93aU9A6S4xAyQ49YNtnxMpPQXDPxRHoOr3RMAAOvFHjw6VsF7fnhnwiMjioiczq83ywBh2hItAktgUdr5Wy5hDxBmgKTByYcMJz2E1sn1BQ8fkyPBvgos9gBJC5bAIuoUrwQWnHpsc5kZIJQGppcBUoE6ucAFMLVatAfIbgxjWKgygAyAUKfk7QkAQF0rYcPffg9+fSLt0TAwkvbTz4U5TspFD1b0H6AJ+nlHrsC/Xn4ijlrd3/Kx9To/8LRdqhrQ68ReCLj40rUP4d3P2JLk0IhCXgaIDR0OZgdUNc7/aBF0TQQ9ZVyrwlO2lDqOK3GE2I53mV8BANgaAyBp8MLTD0HddnHmppGkh7J05bAHyC45jKLwsuEYAEkNfjYRdYqfEufUYidMmQFCaWBK9QE94wVAHJbsoBbThRs8HsZkpAcIAyDUGQVnEgAwmV+FaHMGLUM9QJ50zCoAwNrBQuy6scAMECEEnvO49cwEaQP/332nHIEtNeSFjbXYl/CoiBr4DdCbZH8AgMbdAVoEXROY9Mq9VKfGkh0MUROW4+KX+bcEzwXcA7yaOkXXBF5+7kZsWdsF89J8eLhog9iDKrwgG/sipQanOESdYnpNkWpT0DQRlNywXX74UvL8HiBVL1WzZvN9Sa1VdqeCx792T4ErvE1a10loRNRrcrYKgNSMvtj16IZf2sv/bRgp4fq3Pwm//ocnxq6berQHCBO8kzBSVp+fDnTcIzcAAP7B/HaSQyKazcsAmSsAwgxgWgxdE5iUaq2bs6cAHqSilHnS+Pdiz/fnNyQzEOpeuXLw8B65PigLKG32RUoLBkCIOsVPidt/P3D9p7FKU6U4mAFCibvju8h5GSB+CSy+L6nVfpa7GBWZw/3uGnzduSCSAWIlOzDqGcO1HQCAGXNZ7Ho8AyT9U+PVg4VZvUDcyGbTsjLLOiRh88owsLZHDgEAVmI0odEQzcHPAJHN7xNpDwJTOq0ZLGACKgBiCBe47dvAxI6ER0XkueO7eOnEvwdP73HX4+oVz09wQNSVtjwLO/MbUZMm/sV6AerS63fJAEhqpH+VR9QtysvDxz97Gz5t/CsAwHa40UwJcl3g2y8NngapmkQttltbjmNqX8KT6v+K551+KFyv9jh7gFCnrJ+5CwCwe+C42PXofl9WN/8mq+Hv0UCh+cluai8RCaR9wzkfAJATvL9RysyTASKYAUKL0F8w8a5nnQpbettL/3sl8HVuMFNKRNa6T639X1xc/xAcvTD364kWw8jjo0d8GUfVvozHsCz8nHXqyY6LAgyAEHVKYSj29CRxH16n/y8ch+VfKEENNSn9HiBErRbNKvrny46HwxJY1GHDdXUadbR02JyvSXsPkLlMVMJMqrQ3cu8Fdaj7Ww7McKOUmacHCNFiHbaiD+MIS8Bg5y3A3T9ObkBEwKxybHfKwwAAnClROxiRkrR+CSzhMAMkLdoaAHn3u98NIUTsf0cffXQ7fyRRemkacME/xi690fwOcg//LpnxEAGxAMiULIDTQWqXaIkeTRNBCSzBEljUIcP1nQCAqeLa2PVoxT9dz+Y98OItqwEAZ21aNs8rqROsIADCAC+ljJ8BIhkAodbqyxv4N/uyoJwuAOAbLwQqY4mNiQhO83UGk92oHaIHqWrsAZI6bc8A2bJlC3bu3Bn875prrmn3jyRKrye8GXj3OLD2lOBSbscNCQ6Iep5VCR4+s/6+BAdC3a6xr0zQA0Ryg5A6wHXR54wDAGbyy+NfigTnspoB8vJzN+J7rzkHn3vJqUkPhQDUvc1lZoBQ2jyyez8AoMoMEGqxgqnji85TcJb21fgXHvgtXPYWpKTY4Vr32bV3B491RkCoDaKldJkBkj5tD4AYhoHVq1cH/1u+fPn830TU7f76e8FDbWZfcuMg8jJAKloZ98t1CQ+GullDBjpcrwSWxh4g1AmRbDdXL8a+5Lrh46z2ANE0gZM2DKGcN5IeCgGwvB5HDIBQ2vy/n9wKoHkGSFbvf5QOBVNtLVXq8YMt1/36ezju3T/HH7buTWJY1OssNf9zIXCjPCK4zHKh1A5mpARW8DnLDJDUaHsA5L777sPatWuxadMmvOhFL8IjjzzS7h9JlH6FQXzK+Gv1mBFhSpKXAVIXqvn5WZuWwdAEXnjGIUmOirqQI+fIAPECILIxQkLUSrEASLzXUTwDhO3xaOn8sgemYIYbpUteqKBcYw+Qck7Ht155VhJDoi5RMNW8rma7uPMZP0bV2/zbuWcvZuoOvnr9w0kOj3qVlwFSQw7RUs8aM0CoDeIZIOpQEjNA0qOtq7wzzjgDX/rSl/Czn/0Mn/70p/Hggw/i8Y9/PCYnJ5u+vlarYWJiIvY/om7laGrDubEJNVFHee8/S6gNwUtPWIPb33Mx/u+zjk9yVNSF3IYAh/QyQIS0cfuj43jc+3+Fr9/AQxLUJl6w15I6oM1d+oUHAqkV/LIHzAChtMmjeQDklecdjscdOpzEkKhLFL0ACAC8/ncOPmg/HwBgeL2Q6rbb9PuI2mlsXO0pVhqy3pjxRu3QrAfI/TtY8SUt2hoAecpTnoLLL78cJ5xwAi6++GL85Cc/wdjYGL71rW81ff0HPvABDA4OBv/bsGFDO4dHlCjLO3EvmBJHSbJmAIQZIEKEJ7iIWsltWPc6mlcCy7Hwhm/ejP3Tdbz9f29LYGTUE7wASAW5WY0vN4yUgseCJwKpBcISWCzxR+mSRx2Afxo6lDOY/UZLE10/2K6E7d0HdS8A0pgJTNQJX7/2HgBAteGexwwQaodoJrkfALlj2x7cv2cqqSFRREdnOkNDQzjyyCOxdevWpl9/+9vfjvHx8eB/27Zt6+TwiDrK9U+gMiWOklRXARA/A4STQWqXxibotua959waF8XUfpESCI33ucGiiT+87QL8+R8vTGJk1EW+/DenA4g2QWcAhNKlDLXuqMh4KcCczgAILY2uieB9ZDkuHC8AYkCdgGEfdEqCsf2PAICqbAyAJDEa6naGHimBFZkLXn3vHvzj927D6HQ9qaERgI52SpyamsL999+PF7/4xU2/ns/nkc/nm36NqNv4m3+sCUiJeuQ6AMCYvgxAtDIqUWs1BjlsL+tId6oAF8XUbl4TzKqcnQECAOuGirMvEh2k845cgXM3L8c9W8cA+P0WeIOj9CgLFQyeQiF2PW8yAEJLlzc11B0X20crsL1giJ8B4jICQgk4FDsAAKvFaOw6S2BRO+hNSmDlhYW3//BOAMBU1cbHnn9yImOjNmeAvOlNb8Lvf/97PPTQQ7j22mvxrGc9C7qu4wUveEE7fyxRJvg9QFgCixI1oSaF9xRUzw8mgFC7NDY5tzW1+aK7dW4PUvt5GSDVJhkgRK1UMDXUImfMTLAROqVHP7wAiIwHfQsGy5/S0k1Ww6w3RzZmgHC2R51nCvW++7Lz5Nh1ljyldjCaNEGP9oO7dxdLYSWprQGQ7du34wUveAGOOuooXHHFFVi2bBmuv/56rFixop0/ligTmAFCqeCoNMy6VwKLk0Fql8YSWH4QWHeqs4IjRC3nZ4DAZNkDaquCqcOKBUBYBovSo8/LAJlGPAAyUs41eznRQbno2FXBY6uhBwgDIJQE4arN53FZjl3XuealNog3QVefq/lIAIR3wWS1tQTWN77xjXb+8USZ5nqbfxoDIJQkR30g+5s1nApSu6zsL2B0JpwA+kFgZoBQR9h+E/Q8U92orVYNFGBHllgGM0AoRcpQweBJBkCoDQ4dKQWP2QOEUsFVhxD8gJyPbY+oHfTIG6su1VwwFgBhIDhR/LUnSojjNwB2qgmPhHqalwHib9awNAy1yzsuPQZHrurDB5+jyq05ejQDJMmRUS+Q9RkAqgcIT/1RO/3dBZthR5ZYDIBQmgQZIDLeA4QBEGoFI7L5598HdaHugdz4o0R4GSB2w9lvVj2gdoiXwAp7gFA6dLQJOhFFeJt/wmVpBEqQFwAJMkA4F6Q2ecKRK/CLI88Lnvs9QAy3BskcEGqzX9z6EC6GSkdnCSxqp6FSDv/z6nPhfF5AF5IBEEqVIlTm+QzywbVSTseK/vxc30K0YKYefsCGGSDqHthYCpWoE7SGagc+NkGndjCaNEHPsRRqajADhCghUvM2nF0ujClB3qTQFgyAUGc5QQmsGjNAqG227Z/Bb+7ehevveRSA1wOEi15qs7yhBadNGQChNClAHXzxa5P/5HWPx6/eeB4KJpug09IZWpMMEK8ElsO5HiVAk2rzWTdN/OOlx4TXORWkNvOboMdLYCU1GgKYAUKUGOEHQCQjwpSgoASWOqHAEljUKbau6o/n7Ckex6C2efanr8WeyRr+VleLD5bAok7IGxos6MjDgiEYAKH08DdialLN+45dO5DkcKjLGAfIALFsN5ExUW/TvdP3rzr/aNy3si+4zjUvtcPuybC/b02qgwa5WBN0RkCSxC0HoqToXs8FlsCiBNmW+pCesjkJpM4aLWwAAAzUHoPp1uZ5NdHi7PEWIgWhgr0V5Fn2gNoub+hwvGWWydIHlCJ+LXI/A4SolaIlsGwvAKIHTdC58Uedp3uHTTXdjAU9OBekdqha4aEXPwMkxwyQ1GAAhCghQvczQHgykJLz6L4JAMBde9QmIRvCUadMG8OYkEUISKyWe5MeDnWha7eG76u8V/alihxLYFHbqQwQlsCidHFdGZTAqnqZv0StFC2B5Uj1mD1AKEn++08Y8QAIM0CoHV581qE4ft0g3vfMLah6Bw2KIjzox7tgshgAIUqKphYeLIFFSXK8DBBLqlNa3BekTtE0DXVvA0aX1jyvJjp4t2wfDx77jX+rMHmfo7YzdC04/WyAZV8oHWxXhiWwmAFCbdA8A0RtQDMDhJJgeHstQs/F5n88DEPtsLK/gB/+3bl48VmHYUKWAAADmAFDH+nAAAhRQvwMEI0ZIJSgnFCTQv+kKmvjU6eYhoDrTUMENwipDSarYWAtrHvPHiDUfoNFM9j8Gyny/Ubp4DjurB4gRK1k6JEMEPgZIGqOx/gHJcFAWAJLxDJAkhoR9YpxlAEAeWEH2ZeSN8JEMQBClJCgCTok4DIIQsnwa5P7ARCehqFO6csZweJYkwyAUOtNRAIghlDvMQs673PUdromsGJQLXxNlsCilLCtKjShNl+qyOG4dWyATq1laE0yQAQzQCg5elACK54BwsMw1G5TKML2SgEOYhoA80CSZiQ9AKJe5WeAAABcG9D05AZDPSvnTQr9Jl0GNwapQ0p5Ay7U+40ZINQOE5WwxKS/AHagc9FLHSFY6pRSxrGqweOr3n4J+vvKCY6GupEZywCJlwF0GAChBPg9QDTDjB2A4WEYaj+BCZQwgikMimnskiOMgCSMGSBECdGMSOq5y8UxJcMUzAChZJRzOlzvVIxgBgi1wUTVQg4WPm9+GM/S/wBAleTQeZ+jDpC6mudpDIBQSji1GQCAKwWG+suxckVErWDEeoCo91fQA4RTPUqA6fUZVD1A2ASdOmsGBQBAyetFyPhHsjjrIUqIpjEAQsnL+SWwJHuAUGeV85ESWMwAoTaYqTs4XbsbT9JvCq7ZLIFFneKVOtXZ643SojoOAJhEEULjNgC1nqHNzgDxy+2y9j11mutKGMLPAGkogcVbIHWAI+NrXd4Hk8Vfe6KkREtgOQyAUAKkDBrDBU3QuTFIHVLO6wyAUFvZjovjxIOxaw40Nr6kzvACIBoDIJQSwguATIClr6g9zEgGSFXmAAB5qBP4LIFFnWa7MujDpRkmM0Co45wgE45r3TRgAIQoIYauw5HeBy8zQCgJrgPNS8T0e4BwMkidUjQNuGyCTm1kORKrxGjsmgONmW7UGUEAhHM8SgdZmwAATKGU8EioW0XLqlXgBUCEDQ0uXMY/qMNcKeM9QBgAoQ4L1rrengtvg8liAIQoIbomYHupwQyAUCKcevCQGSDUaTlDRDJAeEKaWs9yXIyIydg1R7IEFnWI1wPkfPGXhAdCpIQZIAyAUHuYkc/XqhcAAYAC6iz9Qh3nuGEARNdzELESWJwLUvu5UO8zTfglsJIcDTEAQpQQQxNBbVQGQCgRTQMgSQ2Geo2haZD+pJBpwdQGtiuxDOPxa2yCTh2i1VXwbRCT87ySqDMG/vDPAIBJlsCiNolmgNQQ9rssosYMEOo4R8qg36UwG5ugJzUq6iWNJbAkc0ASxa0uooTomgbb/xVkAISS4FjBQ8sLxjEdmDpF18IMEMHJILWB7bhY1pgBAp33OeqIyqmvBgD0oYKP/PLehEdDPa8+A2NiGwDA4KEDahMj0gNEQkPF6wNSFHU4jIBQhzlO2O/SMHKxAzCcC1InuI0BEN4GE8UACFFCDJ0lsChhXgZIXeqAdxKfJ6OpUww9EgBhk2BqA8uRWCYmYtfYBJ06pjQCABjADD7x6/u4+UfJqobZcCbLTlKb5BpSyf0+IAXU4HLnjzrMcR3oQr3vVA+Q8GsMgFC7vf+y4yLlnhkASQMGQIgSEiuBFTmJT9QxXgDEL38FcDJInWNoWqQxHE+jUuvZjoNhNGaAsAQWdYYoDgEABsQ0AGDb/pkER0M9rxYGgz+N5yY4EOpm0QyQJxy5IugDUkSdG3/Uca4VlnsWugkRWedyLkjt9ldnHoq+Qh5AmAFCyWIAhCghuiaCpki483uJjoV6lBd4iwZAOBmkTjEiJbA0yUkhtV7BmYIp4iedbZbAok4pDAEABqECIDvHqwkOhnpeVQVApmQBt4qjEh4MdStDC7eXVvTlUZOqD8hz9d8zA4Q6zo30u4Sei2eAcM1LHeAKHvZLEwZAiBJiaAKGl4J+57a9+M+rHkh4RNQrpmo2Pnf1A9g1qhbD0QCIwckgdUi0BBYnhdQOfe74rGsOdAZ6qSO0vGo0XUQNADBZZbYvJaim7oePyFXc+KO2MSMZIMv6cpFMX8kygNRxTiQDBJoZOwDTWK6NqB2kCO+BACAZCE4Uf+uJEqLrGr7uXAAA+ON9O/DPP7kLuyZ4OpDa7//+5C58/Md/wf/3jWsBAPVoCSwuiqlDDE2DKxkAofYpO1OzrrEEFnWK0NXJZ0O4ACQmquz3RgnyMkAmUWQWHLWNEdlUHinn8B3nPABAHhZLYFFn1aYga5EyqJoOywnXG0eu6ktgUNRrZGMT9CQHQ5FdLyLqKEMTqEpVFzUPdSrQ5skY6oAb79uOq/J/j2FXbQ5aMlICi4ti6hBDD8sACgZAqA3KsnkAhPEP6gTNyAWPTTjMAKFkeT1AJmSJ90BqGzPy5houmdgNFQjOCwsu17nUKVYV+PiJWFv31rrQYQqBQ5eVsXF5GYcuK2FZXz7hQVIv8DNAdDZBTwUGQIgSomsCtWBSqNIzuflMnXCYtgvDItwYZA8QSkK0B4hwGQCh1pJSouzODoDYkj1AqDM0LwMEAAzYmGQGCCXJOwk9iRIA3gOpPaIZIMWcETRBL6AOhzt/1Cm77gBm9gblbmwYMAHkDA2/fuN5rHhAHeNCBxBWO5DMAUkUS2ARJcSIBkC8DBBODKkT8lp8s3kG4QkYTgipU3RNBLWhpcuNQWotx5UYFKr59H3uuvA6S2BRh+hmPANkqsb7HCXIL4Eli8wAobYxIj1A8oYWNEH3S2Cx/j11xNjDsacWyz1TQpgBki4MgBAlRGWAxEtgMTWYOqFfq8We+6ezAGYhUeeYuhZkgEjJDBBqLcuRGIQKgOzE8uC6KoHF+xy1XzwDxEHd5n2OEuSVwJpiDxBqI1MLt5fyhjbrsB83/6gjZvbFntreKXyiTpPCywAR7AGSBgyAECXE0DRUZXxSyB4g1Al9Ih4AqchoBkinR0O9KpoBorMHCLWY5boYEDMAgFFzZXDdgMMMEOoIoWmwpbrHGXBgs9QfJSnIAGEPEGqfeAaIPqvcs8sICHVCfTr2VHLbkxLiZ4BoXuiDt8Bk8U5AlBBDDzNACt6k0GEAhDqgryEDJPquYwYIdUq0BwgDINRqtiMxANUDZDofBkAKoo4aT+JTh/inTk3YsB3O8ShBXgbIJEoQnOtRmxiR6Jqhi0gPEJZ7pg6yZmJPBc/dU0JmH/bjezFJDIAQJaRZDxCeiqFOKCMeANEiH8Q8GU2dIoSA9DZhztNuCZrDEbWC7bhBDxA3PxRcLwgb64eLCY2Keo1fd9wQDiwGQChJ1XEAKgOE8Q9ql2hwTQCRHiDqsB+XutQRszJAeNOjZPjZRxp7gKQCAyBECdG18FRMUAKLi2PqgNKsAEi48czGcNRJ/qTwyfpf8HL9JwmPhrqJ5UoMQJ0AFMVBfNc5B/e7a/Du178aps7pL3WGn+W2HOMsgUXJ8jJAJtgDhNps0/IycoaGLWsHIyWweNiPOqghAwQMgFBCHO+9FzRBT3Iw5B1LIqKOMzQtOBVTAOuiUucUUYk934+B4DFLYFEn+Y3hAOD5+m/xn87TEhwNdRPbcYMNFyNfxhus1wCQ+FOxnOzAqKcMeVlI/5N/D/6hflrCo6Gexh4g1CG/eMMTYLsSBVOPHPbz17pJjox6Rj0eAJG851FCnIYMEEoWj8ARJUSPlsDyNmnYA4Q6oSCrweMpWcD3nbOD53wHUie5IpyG+A2riVrBclyYcNQT3fSuilh9cqJOWlO5N+khUC9jDxDqEEPXUDDVAZfGcs9c61JHWCyBRengyMYSWLwHJokZIEQJiTaG80/FsDEcdYIfAPmU/Qz8P/sKSGg4cf0gBoomyjl9nu8maiGhB1G3FWIcf6v/AMCliQ6JuoPlSBiwAQBShNNdlvmjpAi3Nv+LiNpBylgGSJG3QeqQmoyXe+bmH3WEVY095S2PkmI3NEHnHTBZzAAhSojepAk6T8VQJ+SlKoE1LQtBD4Zvv+ps/NffnM5TgdRRLuIBt7ea30hoJNRtbEfC8DJAXC0MgDADhJJy97Y9uHfXZNLDoF5kVwFXrTUm2QOEOugzL1NZ5nlhQ8DF92/egWf9+x9w3f37Eh4ZdTWnHnu6XO5PaCDU65wgAMJ9vjRgAIQoIeasHiCSARDqiJyrTsVUkA+umbpg8IM6riIKSQ+BupTlhiWw3EgGiM4ACCWkgDqe/NGrkh4G9SIv+0NCYBoF9gChjjnxsNXB4zwsvOsHd+CmR8bwnh/ekeCoqOu5KgPY1dVa94fmJUmOhnqY4zWgeav5DazAGMZmLNy5YyLhUfUuBkCIErKiP4+aVwJLF+qkqssACHVAzlG9FqahNp91jcEPSsYU2JCa2iOaASI1M7jOAAglxe/3RtRxXv8Px+yDhMYMEOocIzzo4lc8AIBt+9n3jdrIUe+1rWf9C15Z/3t8tvCyhAdEvcoPgADAB83PAgCe+omrkxpOz2MAhCghK/vzQQksQE0KbQZAqANMPwNEqlMx3BCkpEyLUtJDoC5lOy4MMbsEls6NP+qgL9sXBY+jm39EHeVlgNhmf8IDoZ6jG6rfG+L3QB68orbySv45Rhk/d09HXeN6g5LhRLbcL9BvZjP0hDEAQpQQTRM456h1wfM8LDZBp47QpaqLWvcCcKyJT0mZZAYItUndcWGyCTol7F32y/AT53QADIBQgiqq/r2dUwEQZoBQR3lZIHlRn+eFRC3iqPmf483/eMujpBRyudjz/zA/CgCwHO77JYEBEKIEff6lpwW1KQuoswQWdYTu1UWtQ00KmQFCSZkSxdkXXafzA6GuM1cTdKJOm5Tq5Knq90aUgEdvBABMDx4BANC4A0CdZKoASCGaAZLUWKg3eBkgbhAA4TuOknH8hpHY84v0vwAAajbXu0ng9IcoQUIIaDl1ArosqmyCTh2hSxUAsbwACE8CUlKm0CQlvTbZ+YFQ17HnaIJO1Gl+uVP2AKHETGwHAEwPbAbAeR91mKnWun2ohNf4FqR28nqA+Adg+HajpCwbWdb0es12OzwSAhgAIUpecRgAMIgpBkCoI3SpJoU2VE3e8Qo3ZSgZk7JJCazqeOcHQl3HijZBZwCEEhQEQFgCi5Ji19T/6eokPjcDqaOKQwCAQTGd7Diod/g9QLz5H7PeKDH55r23GABJBm8FREnzJoVDYpo9QKgjdKk2BeuSm4KUrKlmTdBrE50fCHUd23VheD1AWAKLkhQGQFQJLDa+pI6zqwAAV1Nld1kOhjoqctjPx3cgtZUT7wHHrDdKTGFg1qV+zKBqsQRWEhgAIUqaNyk8SmxjBgh1hI54BghRUqaaNUGvMgBCS1e3HOQEM0AoeVWpGmD6ARCbcz3qNC8DxNFUMI6t36ijvLXuFu3h4BKDcNRWfgaIt9blu40S0yQD5InazahZzABJAgMgREkzVDr6Zfof4PJUIHVAYw8QoqRMNusBwhJY1AK1elhuyPU2/YiS0NgDpM6yB9RpXgaI7WWA8DQ0dZSp5npP168LLvEtSO3k2urzdte0OgjDgBslxjuAENUvKmyCnhAGQIiSdujZANRmtO0wAELtFwZAmAFCybJEk41plsCiFqjXwwUHm6BTkhp7gDAAQh1nq+wjR1PZSNwLpI7a+AQA8dK7fAtSO9W8OeBHfvMgAN7zKEHe/S+qjAp7gCSEARCipK0/HQDQhxlmgFBH+AGQS07YAAB42glrkhwO9TApgefV/il2za2MJTMY6iq2VQ8eS50BEEpODX4JLC8A4nDRSx3mZYA4gj1AKAFrTwIA9IlKsuOgnqG5aq1rgz1AKGGD6/HTgctjl/pElQGQhHBFSJQ0ry5gn6iAZaGpEwxpAwK44vRN+KunHoaV/fmkh0Q9rN4wFXErEzydQUtm12aCx1LjPY6SU5MqA6Tg9QBhBgh1nFeCw9ZVMI49QKij/LUuwgAIg3DUTga8ageSPUAoeXYu3gi9jAoPPieEewxESYtMCh2eCqQ2c10ZTArLpRJWDxagcSVMCbIbSrHJ6lgyA6Gu4tTViWdLy3OjhRLzk9c9Hs88dRMAoKyrz16e+qOOCzJA/AAI74nUQd5aNy9s5GDN82KiJXJd6EJtLvtrDN7zKElnbV4Ve15GFZIBkEQwAEKUNG9SmBMOhDO7SRJRK01Xa8GksFwqJDwaIgm3YSoi2QSdWsC1VAaIrRWwZd3APK8mao9j1w7g/OMOAQAU2ASdkuJlgPg9QLgZSB2V6wse+lkgfAdS27hhkM3ys8z5hqMELe8vxp6XRRUup4KJYACEKGmRSaFuzxzghURLV4s0Bs7nWRaGkqUJAadxKmIxEExLJ+vq89TR8zj/qJX4yBUn4qevf3zCo6KeZKjPWr8HyHf+sj3J0VAv8g5Y2Zoqx8b4B3WUpqMCdR8sCZWNxPcgtY0TDYD4GSBJDYYIgBavdmDCZgmshDAAQpQ0TQtPQLtMC6b2cuphY2Dh1YImSsrLz90IuzEDxGKTTGoBv+SLXoAQAs8+ZT2OWcNMEEqAWVL/56h72xf+8CCma3aSI6Je420IOt5paJYFpE7zSxGZcBIeCXW9yH4Km6BTKmjxfpcqAJLQWHocAyBEKeAKNSmUDhfE1F6OHTldzwAIJez/PGETvvzyM2PXpLdxTbQUtcoUAEAaLPVHCSsMAgAGRJjlu3eKmW7UOX7274yjlv48DU2d5ngBED0IgPBNSG0S2U/xM0AY/6BEifi2ew42e4AkhAEQohQITmS5PBVD7eVYKgPEkWJWOiZRpwkhsG64L37RYgCElm58YgIAYORKCY+Eel5xGAAwgBloUEWf903XD/QdRK3lbQj+8u59AHgamjrPzwAxwML31GZeBogtNfiBNt7zKFENey45wQyQpDAAQpQCfgYIS2BRu/kZILYw5nklUYc0pAXDYQCElqZuu5iZVhkguQIDIJSwwhAAQBMS/VBZIPunGAChzjGgAiCjVbXjwq1A6jQ/AyTn9ULifjS1i+0d9vODbkSJa1oCixGQJDAAQpQCThAAYQYItZc/KbTAAAilRMOpmAd37kelznshLd6jYxXkoe51ZrFvnlcTtZmRA3LqfTgkVGBuvMIDL9QhrgtdqI2WXVPqs5U9QKjT/LXuD/L/BB0Og3DUNo49e63LDBBKlGAT9LRgAIQoBZgBQp3i+iWweCqG0qJhUmi4NXz7L9sSGgx1g0f2z6AfquG0yLPxOaWAVwZrCCoAUrNZBoY6JLK22D2j3ncGm4BQh+mR0leHil0JjoS6nR8AiWaAMP5BidJmB0AY/0gGAyBEKeD65YjYBJ3aLJwUmgmPhMjTkBacR50ZILQkYzN19HkBEOT7kx0MEQAUhwAAQ2IaAFCzeY+jzpBOWG7Nbwh87FoGhqmzZCTno4g6N6SpbVzb6wESCYBYDg8dUIIa1ro5ZoAkhgEQohQIMkAkF8TUXq4fABHMAKGUaDgVUxDMhKOlma456BMMgFCKeBkgg14GSJ0ZINQhthV+pvobgs87bUNSwyFCATU2AKa28QMgViQAUrX4mUsJEvFtd1UCK6Gx9DgGQIhSwM8AESyBRW0WBEDYA4TSouEY4CCmIcBZIS3edM1Gn9dsGiyBRWngBUBetvxuACyBRZ1jWbXgsQ0d5ZyOlf35BEdEvSmSASLqcLn7R23iellvtgwDIMy6pEQ1lsASDjNAEsIACFEKhD1AWAKL2ssPgDiCARBKCaMQe5oXFkxnKqHBUDeYqtnoZwYIpYlX/mBd/QEA3IyhzvEzQCypAxDYuKLMJuiUqDKqcLj5R20SlMCKrHWZAUKJypXjT2FB8h6YCAZAiFLAzwB5zu2vwfTYnoRHQ91mpm7jyR/9PV739ZuCSaEj2AOEUsIsAlf+Fq8ufwSTsggAKNZHEx4UZdlUzcY6sVc96VuZ7GCIAOC45wIAdKjAR42bMdQhtpcB4pe/2ri8L8nhEKGMChxmgFCbNOsBwkMHlKj1pwFauPdiwsZb/+c2XPKxq/je7DAGQIhSQHoZIIZwcc/X3pzwaKjb3LtrCvfumsIPbtmBrTv3AwAc9gChNFl3CrYam7FfqtP6RYsBEFq86ZqNzeJR9WTlMckOhggABtcBAPKuykxiCSzqFMeK18M/ZKSY5HCI0CcqLIFFbSOblHvmoQNKVGEQeOE3gIveCwDIQ30u3/3YJH57Nw8/dxIDIEQp4EY2o7WJ7QmOhLpRzQpPFjy0ZxwAM0AofaQEJlECAORslsCixbNqFQz4JbD61yQ7GCIAyKlT9zlH9abhiT/qlGgGSM7QcOnxaxMeEfW6PlRYAovaxnW8agexDBAGQChhmy8ETvlrAEBe2DChSt/bLt+bncQi8EQp4EZqVBpOJcGRUDeqO+EH6+S02nxx2QOEUsbUNUxBnUw1GQChJdCtyPsnx3IvlALe+9B0ZgBIbsZQxziR09DXv/1JGCnnEh4R9SQBwIt59IsKuOdH7SKd2T1AWHKNUiEX9iUso4Ix9PO92WHMACFKgWgGSEHWEhwJdaN6ZKPFnxQ6GjNAKF3ypoZJqTJATHs64dFQlmleAMTWi4DOYC+lgNcAU0CigDrLcVDH+E3QHWEw+EGp0IcKXGaAUJs0ywDhJjOlgm6gJgoAVClAgO/NTmMAhCgFLBn+KubBAAi1VvSkqXDChTBRmhQMHZNeBojBDBBaAt1SATTbKCU8EiKPGb4X+1Dl5h91jGtVAcTr4RN1ngge9QmWwKL2kfbstS43mSktqpqaDw5AVeWw+d7sKAZAiFLAiSxK8m41wZFQN4pmgAhXTQpZAovSJm9qmJJeAKTODBBaPN3LIHKMcsIjIfJoWhAEKYg6uN6lTnFr6kBBRbD5OaVDHyqQEpAMglAbBNUOIvsrDLhRWlR1tTbpg8oAcTkh7CgGQIhSIJqiabIEFrVYNACiSf9UDEtgUbrkDQ175SAAoL/ySMKjoSzzS6g5Jvt/UIoYeQBAHnVu/FHHiDoDIJQu/Sz9Qm0UBEAES2BR+kwZIwCAQ7VdAACL782OYgCEKAXqWj54nGcAhFqsZjvBY821AbAEFqXP2Ycvx83ycADAqqm7Ex4NZVnZHgMA2PmhRMdBFGOous95WDyNSh0jLFVmgwEQSlK0BJt/8pn3QWoHyXLPlGKPFI8FABwnHgQA1CznQC+nFmMAhCgFqiKsDV1gDxBqsWgPEBMMgFA6veiMQzA0shIAoLu8D9Lijdjeqaq+dQmPhCgiyACxWAKLOibMACkkPBLqZVYk8zws/ZLUaKirMQBCKVbR+wEABaj3aXSfhtqPARCiFKho4aksDTJ2Yp9oqepO+MFqQL232AOE0sbQNZy8cQUAQJd2wqOhLFvpqACI07c24ZEQRfgZIMJiCSzqmPyEOmUaPWxF1Gk1hNUO+gQzQKh9/AwQrnUpjVxNBYNNoda67AHSWQyAEKVApWFRsnOMjdCpdWpWJANE+Bkg7AFC6SO9SaHGAAgtwYn27QCA2qoTEx4JUUQsA4QLXuqMlff/DwDAErmER0K9rI7ZGSDsy0Bt4c5ugk6UFlJT78ucV5WDt8HOYgCEKAWqWrwu79bdUwmNhLpRdIFh+hkgGieFlELe+5IZILRoUmIl9gEAnJVbEh4MUUTQA6TO0i/UMa6h1hh3mrwfUnLqkQBcQVjQ4fDkM7WM60q8+r//go/+8t5IBog+z3cRdZ5/CNWvysFMuM5iAIQoBWYQD4Bcfe/uhEZC3Sh60jTsAcIMEEofPy1Y805vER00uxbc54zSULJjIYqKZIBwwUsdISWM2hgA4G4GQChB0QwQAMjxPkgt9KeH9uMntz2Gj//6vrAHCA/7UQr5h1D9tQpLonYWAyBEKTDTUALrju37EhoJdaPoASv2AKE0c73AHDNAaLFkdTx4XOobSHAkRA3YA4Q67NvX3R2UlJw2+hMeDfWyH+SeGnueh8UMEGoL9gChNPPLPQeHUnkf7CgGQIhSoCLiGSB7RicSGgl1o+hGS1BvkqdiKI28SaEOB+AGIS1CZWoMADApi+grsOY9pUisB0jCY6Ge8Jmf3gAAqEoTjlZIeDTUy/6kn4Tzah8JnjMTjlqplAvXtbZVB8AACKWTf9gvKEvO22BHMQBClAJVNGzSOLVkBkJdKVoCK8wAYQksSqFoYM5hGSw6eFU/AIIiiibrP1OKBD1A2ASdOqPsqp6CY+iDJkTCo6FeJiXwsFyNaakCwTlh8eQztYxphPc3q84ACKWXfwjVEH4TdN4HO4kBEKIUqCIfey6cakIjoW4U/Vw1BTNAKL2kEQkGsw8ILUJ1ahQAMIMSBDf8KE2iGSDc+KM2u3PHBPrlJABgVPZB03g/pOT4d7ya1wtE3QeTGw91l+h7ybG9AAjXupRCjSWwOB/sLAZAiFKg1pgBYtdZH5paJvq5GnzYMgOEUkgyA4SWaM/evQCAilaa55VEHRb0AKmz5AG13VM/cTWGoTJAxtEHnQFhSpB/yrkeBEBslsCilomeop+uqIOkrjDwseedBAB432XHJTEsoln8tW7Oq8rB+2BnMSxKlAIVxDejc7BgORI5g4sVWrropNCvN+nwVAylkRa5FzIAQotw90M7cCKAaTAAQimjR3uAcMFL7bdFewiAnwGS7Fiot/n3vJo0AQHkUWcJLGqZ6EfqrtFJQFMBkMtOXoeLt6xGMceSqJQOrqYOPhveodQv/uEhHDJSwsvO2ZjksHoGp0JEKbBDW4eb3cOD5zlYqDvMC6bWkLEACDNAKL00TcCSapHyX3/YmvBoKIs0S5V8KfQPJTsQokZsgk4dVEIVf2v8EAAwKUvsAUKJ8ksUBRkggoFgap3YYT+peqlaQm00M/hBaeI2lMACgPf88M6khtNzGAAhSoGLtqzBZfX3YhtWA1CL45rlJDwq6hbRjZY8VF1UR8/N8Wqi5GhCwIZaqHz2d/ckPBrKIrc6DgAYGlqW8EiIGkSaoLPMKbXberEnePxj90zo7AFCKeD3AMnBZgYItUw0ADKAaQDAtD6Q1HCI5uSXwDIF9/qSwAAIUQq89OzD8B8vPhVrlg0BAAqizgwQahmJcFKY85qgO1o+qeEQzUkIAcsLgBiRkzFECyVqqua9URpMeCREDfwMEGFx44/abstANXj8e/dE9gChRAUlsLwASAF1/Mfv78fodD3JYVGXiH6kDgoVAKnofQmNhmhu0iuBleM6NxEMgBClgKFruHjL6mDDph8V1CwGQKg14hkgqq+CywAIpZAmog0y2QOEDlJ9GlfU/gcAYJSHEx4MUYMgA6SOB/dO483fvgX375lKeFDUrQ4zRwEAVzuq+a9gAIQS5AdA9kt1Kn+FGMP3bt6B133jpiSHRV0imlU56GWAVDRmgFD62IbqUVhGJeGR9CYGQIjSpKRKdgyLSWaAUMv4k0ITdrCp7GgsgUXpIwCMSXVia0RMJjsYyp77fxM+Lq9IbhxEzUR6gNiuxLf/sh0v+Oz1CQ+KutUp9T8DAO6T6wEAOlf9lCB/f3qbVJ/N68VeAMDV9+1NakjURdRhP4kcLAwxA4RSrGaqA89lUUOOh/06zkh6AEQUURwBAAxjkhkg1DKuC3zC/CTO1O7CSjEGgAEQSidNE9iHAWzGDizDBOq2i5zBXRtaoFw5eKjrbHpJKeNlgBQQlnzZPVlLajTU5VY5jwEArnFVBgh7gFCS/Gz0HVId9lsl9ic4Guo2rpT4kPFZXGH8Prg2rrMXHKWPbfbDkQK6kBjEFPaAGeudxF0FojQpqQDIiJhE3WFjJGoNV0o8Q78uCH4A7AFC6SSEwF6vPMIyMYHpGuuj0kGIlEDQ+lclOBCiJiJzPKJ2G3LHAAD7vM9UjSWwKFHq83kCqvxLH8u/UAu5UsaCHwBQ08tzvJooOXnTwBhUdtKwYBnUTmMAhChNghJYU8wAoZZp1mvV1RkAofTRBLBLqk3C9WIPHh3jApkWTtph019385MTHAlRE4OqFNE6wZIv1GZSYkiOAwD2QZXbYACEkuSvRaZlEQAwIGYSHA11G7fJtommcauT0idvaNjpZcIdJbYlPJrew7sCUZqUIiWw2AOEWkTK2e8lVzcTGAnRgWlC4F6vXvmVxk+w/U7Wx6eFc2oqYHadcyxyJqu8Usp4AZBhMYUCWPqK2siaCWqLj0rWwafk+U3Qp6ACIMwAoVZyZfy031XO8WD8g9Iob+q43j0GAHCqdk/Co+k9vC0QpYmXATIi2AOEWkd367OuuewBQimkCeA2d1Pw/LjbPpDgaChr7LraUKnBRJ69Yyht8gOQQvWmGQBPP1Mb2WGArQo137ObHZEm6hB/f3rSywDp5z2QWqgxAPID92wIZr1RCuUNDXe6hwIAXmL8EqeLuxIeUW/h6pAoTbwm6Cdp98OpTCQ8GOoWhluddY09QCiNhBC4Ux4SPHdtK8HRUJbct2sSf7hrOwAVAMnpnOJSyggBJ9cPABgQ0wkPhrqaFwCxpQYHKuhmO03qoRJ1SGMGyCHaHgyDa11qEWf2eoHhD0qjvKHjBnlM8Pz1xv8mOJrew9UhUZqsOjZ4WBhjShy1huHEAyA75AhquZGERkM0N00ISGj4u/prAfDEKi3cRR+9Cn+451EAQA05aBqXvpQ+bk41pGYGCLWV1w+pjrDcqd2sIRxRp3hvv4flquDSFu3hhAZD3UZY8c9UW+rse0SplDc0bJcr8Mb6qwAAgzwQ01EMgBClSWEQu8x1AAC3zvrQ1BqGG6+z+3n7KeDeIKWR/77cB7VJaNjcJKSFK0CV+7NZ4o9Sys2rDJB+wfr31EaOuhfWGAChlPAzQGrIYat+OAAEfWqIlkrY4Wfqfe46/Nw9lWtdSqW8qbbgd0KVvjdhQxPA7okqPvare7F7YnblDmodBkCIUsbSCgAA12YAhFoj54TvpT1yAN92zmNdVEol/7TWjFT3wbzLTUJauLxQm36WYIk/SifplcBi/XtqqyADxAgvOcyopORE4291b62bg53QaKjb+Bkgk7KIi+ofRgUFZoBQKuUNVZbSkur/DTjQhMAbvnUzPvar+/B3X78pyeF1PWP+lxBRJ/nNqV2LARBqDb8HyHa5HBfU/hV1mJwUUir5b8sZqA3sgmQAhBbOLytU0UoJj4SoOTc/CADoFwyAUBvZXgaIjGSAsAcIJSjapNoW6n3JDBBqFd2aAgBMoxBc42E/SqO8oXIQbG8rPgcbQgB/2LoPAPDHB/cnNrZewAwQopRx/AAIM0CoRUzvFP2kLAX1oJkWTGnkL1ZmvAVMTjINmOb2zu/fjif96+8wXVOnSP2yQlWtnOSwiObk9wBhBgi1VZMeIBZ7alGC+guRYJwXAMkLBkCoNTRL9VGYksXgGuMflEbFnJcB4gVADOGwRGUHMQBClDIyyADhxh+1huGqYFoFYV18TgopjfzA3LRUGSBF1PHHrbsTHBGl2X9d9zDu3zONb/95GwDgufpVAICq3pfksIjmlveaoDMDhNrJK31ag4lVA+rz9MnHrk5yRNTj3nHp0SjldLztKUdHMkBYAotaQ/MyQKYiGSA87EdptLJffSZbUIEQEzYk4x8dwxJYRGljqJvi1Xc/igtqNsp5/prS0pheAKQqowEQzgopfbSGDBAA+PSvbsMZm5+U1JAoA3aOV7FR7Ayeu2yCTikVNEFnBgi1k5dFXoeJL//N6Zio2HjcocMJD4p62bNOXo/LTloHIQSuvV59RrMEFrWKXp8EEM8AYblnSqPBogoAW5ESWNQ5zAAhShnNVAGQHGx85fqHEx4NdYOc1wOkgrAxMCeFlEb+aa1o41aWA6T57ByvoojwfVLSuKlCKVXwSmAJ9jeiNrLDDJDBoonTN45A53FoSph/+MppyABxWP6Flkj3SmBNI1oCi/c8Sh//fRmUwIIT+3rB5BZ9O/FflyhtdHUqJg8LP7/jsYQHQ93ADAIg4aloroMpjfxJoYQGS6rUYGkxAEIH9lhDAOS68gUJjoZobm7/OgDAceLB4JrlsDcDtZifASIN6NwEpJSxtXgGCO+BtFR6UAIrmgGS1GiI5uevc82GDJC8oScxnJ7BAAhRyvgNC03YsB2eiKGlM2QdAFCLBUA4K6T0ib4v/SwQw60nNRzKiFsfHUNZqEDvHe6hsL1G00RpYx92Piyp40jtURwq1CGXPZMM8lJruK7Ep367Ffft3AdAzfuY+UFpE2SACLXxxwbAtFSGrTJAJtkEnTLCzwAxhQMgvAfaDAi3FQMgRCmzYcUQAOBwsQPjFZbxoKULSmBJNkGndIvu0/jB4KLmzPFqIqVquSh5GSDTKCCnc3pL6aSVhnCzPBwAcJLYCgB4bKKa5JCoi/zu3t348M/vwVeuuRcAUIPBAAiljq2p+d3R4hH1nBt+tER+Bsh0rAk6732UXjbCTA8zUgbLYkC4rbhCJEqZYkk1yHyGfi0DINQSfhP0aA8Q1kWlNGqWAbKsONerqddFAx1lqE3kGVlAzuD0ltLJ0DTc764FALzU+AUAYDcDINQifjZR3istVIMJjQEQSpmaVgIAXKTfCAEXFise0BL5GSC20RdcYwCE0iza7zJaBosB4fbiCpEobbZcBkBFgp3KOF75lT8nOx7KPFP6ARD2AKF0i65VdFOd4tIcloeh5qLvl5JXAmsaeeRYP5dSStcFtkrVB+RkbSvyqOOxcQZAqDUMTS3t/ebSdWmyBwilzp8HLgoeHyW2w3a54UdL4wdA3FwYAOGtj9IsmgFiRAIgrlTlLKk9GAAhSpsNp0OWlkMTEuvFXvz8jl2oWiwBQ4uX8wIg5TJPxVC6Rd+XjtckEw57gFBzrgwXCLEMEJbAopQyNIGvOhcGz7eIh7B/htm+1BoTVfVeygu/95vJEliUOvtz63CXuwEAsEyMw7K52UdL4wdAZK4/uCbAex+lVzQAkm9ohG4xKNw2XCESpZAojQAABjGd8EioG/g9QNYuHwmucT1MaRSNy7lejWiNARCagxM5IRVmgLAEFqWXrglUkcdd7iEAgJKoocZDLtQi373pUQCRDBAGQCiFNE1gHOpQ1hCmudlHS+YHQLR8ObhWd/jZSmkmMCFVOcABEd/zc5gB0jZcIRKlUXEYALBcjAOIn3IlOlg5qTaQlw8PBdemapwUUvpEM0BcLwNEdxkAoeai64Oy1wR9BgUMFIw5voMoWX45ohpUgDePOrN8qWX2T6vPy2gPEJbAorTRBTAmVQBkWEzCZg8QWiLDUYdgtFwYAJnmWpdS6t9eeDLyhga9fwUAYBiTsa+zL1L7MABClEYTOwAAn8p9AlvEQ2AQmJYiJ9WkMF8MJ4XbR2eSGg7RnKL7NNLIAwDKzlgyg6FUa6yPW/JKYE3LApb15Zp9C1Hi/IbUVa8nVx4WqhZPP1Nr+QGQujTYBJ1SRxMCY1KtSd5vfhF2jWsSWhrNOyzl6uH8r1JnAITS6WknrMUd77kY5aFVAICN2mOxr7MRevswAEKURoecFTw8WbsPkhkgtAR+DxBHLwbXHh2rJDUcojlFM0CEULVRL6j9JqnhUIo5DZ+LZa8E1gzyGCnnkxgS0YLVpMoAKaCOPVM1/MtP78adOyYSHhVlnR8YzgsVALEEg8GUPhLAVe4JwXNt9IHkBkNdQfcyQGytEFxrnCcSpYmha0Be9ax5kf6r2Ndsnn5uGwZAiNLogncED/OwcOMjY/jaHx9hIIQWxQ+ASKOAl559GADg7y7YnOCIiJqLBkCmyqpGfhXczKbZGuvjBhkgYAYIpV9QAktY+M3du/GZ39+Pp37i6oRHRVnnb5r4GSCWMJMcDlFTrpT4iXsmHnFV+RdRHU14RJR1epABEq4Z2EeBUm/VsQBUv66o8YqVxGh6AgMgRGk0fBjck14EQDUyfMkXbsD/993b8Ku7dic8MMqiolSp5a5Zxruefixue/eT8bhDR+b5LqLOizZr3bv6XABAQTJbiWZrPA/QL9T7ZEYWcPTq/gRGRLRw0RJYRK3i9wzsg3c/FKUkh0PUlL8vvRuq5yUqDIDQ0uiuV+1ACw/A8BQ9pd6mJwIAyt4hLt8z/u2aBAbTG9glkiilhHeCIRdZHF//wD5cdOyqpIZEGTXojgMA7OIIhBDoL/BEIKXT8esGcfGWVcgbOlavUPc+BkComcbSBocIdUCgf/UmrBksNvsWotTwS2AxAEKt5G/4DYhpAMCU6EtyOERN+YG6Ua8RusYACC2RnwFi63nA+1x1XPZRoJQzVS+kUkMAhL3h2ocBEKK00tXi2BR2cGkH+zbQwXIs9Em1ELYLzPqgdMsZGv7jxacCAB68cS8AoCCr2Dlewf/e+CheePohGC6zvBHFSxscJR7BGrEfAPDPr3hWUkMiWjC/BFYB9YRHQt3Evy8OQGX+TolyksMhasov6TwBlaEk6ux/REvgujD8ElhaGACxHWaAUMrl1Gd0WdQSHkjvYACEKKWE4WeAhAGQfVNcKNNBuv+3AABHCti5oWTHQnQQNK8xXAlVnPYB1Qh9x1gF//ys45McFqWEGwmAnKndBQCorz0NudJwUkMiWrCgBJZgBgi1jh8AGfQyQGYYAKEU8g/m+5lw0uLmHy3BjpuCh46WBzAFIMw0IkqtXPMMEGof9gAhSitjdgms0RkGQOgg7bodAKALCU3TEx4M0cIJb1KYl+Gk8C8Pj2L/dB3b9s8kNSxKiejCdrlQZf7EmhOSGg7RQalAzfG46KVWclyJMipY4d0TpzSWwKL08T+/g8a/Nu+DtAR/+Fjw0Ik0QbeYAUJpl1Of0SXUAPD92gkMgBClla5OB0YDILsneUKGDpKlyqb9l30RNCHmeTFRevgZIKoxnJoUHrGqH+d9+Ld4/Id+i7sfY8mEXhbtAbICYwAAc2BNQqMhOjgTUpV+GRAM5lLrOK7EW41vAAB2yyHs1VYkPCKi2fwETj8AIhwe8KMlWLY5fKyFBW4cNkGntPMO+2lCooA6lvepAN7G5czebBcGQIjSyg+ACCe4NF6xMF2z5/oOotkstbkygzw0xj8oQ/SCmvzpQgaNgh8dncFkVd0DH9rLjcNe5pfQOEu7A883fqee9K9ObDxEB2MC6v42gOmER0LdxJESJ2lbAQBXu8dD17jUp/SRQQaIt1lt84AfLYFXNeMHzlmxw34MgFDqmaXgYRlV5A31mc33bvtwVkSUVk1KYAFshE4HycsAqSIHjREQypDhwcHgcdkrEzM2E94PWdu3t/n//Z+v/za8eOQlCY2G6OCMSxUA8Xs1EC2V60pICRwmHgMA/Lv9DM77KJX82Vvd6wECZoDQUniH/XbJ4dhhP24iU+ppGqqiAAAoiSpyDIC0HQMgRGkVlMCKZ3zwdkgHxQuAVGQeOhfClCGFfA71yKQQAPZNh4tkTg57m//ff0hTC1/3vLcDfSz3QtkwAa8EFpjJRq3hSAkBF33egYEJWea8j1Jp/XARQJgBIhxmgNAS+Gtd5CAiGSC2nypMlGJ1Tc0Hy6ghp6vteR7yax9j/pcQUSKa9AABeEOkg2SHk0L2AKGscc0SUK8GGSDREoC8F/Y2/7+/v4Gsrd6S5HCIDsqoVD2OlnvNqomWynEl+lCFJtS9cQIl9HPeRyn06iduVp/hN6lqB3vGJrF5nu8hmpOXAVJtOOzHg1KUBZZeBByghCosLwPE5nu3bZgBQpRW+T4AQNk7+ezjYQY6KMGpGGaAUAZ5pQDfbHwTr9G/h5I7FXzJdjg57GX+wrZPeGUh8wMJjoZo4Z541ArskMsAAMvEJPJg+RdaOseV6PcCwnWpowaT8z5KpdWDBbz/suOxbpkqdSrZA4SWwlJ7JeqwX3iZm8iUBbam1rpvMr6FZ1g/AyDh8r3bNgyAEKVVQU0KGxtkShbBooPhnYqpyRx0ngSkjCnM7AQAXKjfhDeb38Lz9d8EX3OYAdLTXAmMYAJHYJu6UGAAhLLh488/GV/624sAQ5WBWSv2JTwi6ga2K3G+fjMAYAJlAIIBEEq1EzeuAgCYDdUOiA7K7d8B4PW7FAKvPG8TAOAfLz02yVERLciq6gMAgLP1O3HlxCexRTzMNW4bMQBClFZ+AETE60PzfkgHZWo3AGAMZWi841PGVI5+Tuz5SjEWPObpmN7mSomXGz8JL5RXJjcYooMwWDRx8qEjwCq1OfNJ85MJj4i6getKvNr4PgDAhg4ALH1KqWbk1Mln063jXd+/HZ+7+oGER0SZUw/3SR6RKyGEwNufcgxueeeTcclxqxMcGNHC3Lo6vtZdIUZZvq2NuB1GlFaFIQCzG2QyAEIL5ljAvq0AgK3uOp4EpMypX/pxnF39BD5sXQEA6Ecl+BpPx/Q2x5UYhlcSbfgwYHBdouMhOmgnvQgAcJz2ENaL3QkPhrLOdiVMOACAD1nPAwDO+yjVhKGa/6I+hS9f9zDe/+O7eLiFDo4Vrguuc7cEJbAGS2ZCAyI6OH86+q04t/ZxXOuoQzEDqPA+2EYMgBCllRcA6RcV6N6CBmDjXzoIM/sA14YDgZ0YYQksypxSqYwdWI5JqFIx/ZGMOE4Oe5vjSpiw1ZPHvTTRsRAtymkvx5gYAgCsAJuh09K4UqIEVQv/z/IoAIDGAAilWHXZ0QCAY8VDQS+kfdPsiUQHwSv1bIkcXGjMeqPMKZeK2C5XYBIqIDwgpnnIr40YACFKq+JQkMK+PLIwZgCEFqyu+sdUUICExpOAlDmmrqYpk1JNCjeKx4KvMT24t0kJmMILgOi5ZAdDtEij5goAwLCYTHgklHW246IE1Ux6RhYAAAbnfZRizuBhAICccIIM310T1QRHRJnjB0A0dc/jLY+yZv2wWuP6AZDDxQ64bpIj6m4MgBCllaZjD4YBxBtkcsuPFswLgPgLYQZAKKsmvEnhMdojwQlXhzfDnubISAYIAyCUUVVTzfOWiYmER0JZJ+sz0IT6YJyB6q3AzF9KM13XYEl12M/wPs/3TtWSHBJlTUMARPCeRxmzYURVOZjwDvu9zPg5+uQkJA89twUDIEQptkcsAwCsEqPBNd4MacG8SaG/EGZaMGXV9e6xweOV3v2QJbB6m+NK5PzykAyAUEbVy2sAACeJ+2FoAlJK1G0e/aOD59Smg8cVqHuixpU+pZipa0G1A0Ooz/Opmp3kkChrvB4gdY1rXcqmQ0ZKWDNYwPecc4Jrq+RePO8/rue+XxtwWkSUYhWo0wwFhPVQuedHC1ZXDYJnwAwQyq4nHb0S0yhitxwCgKDEB+uj9jbJDBDqAuPrzgMAXKZfgyHTwau++hec9YFfY3zGSnhklDXSy/qdlnlIb4nPeR+lma4JWF4AxPQONExVGQChgxD0AGEJLMomIQR++cbz8KHXvxRO/3oAgAkbNzy0H3un6rhl2xh+dOuOhEfZPToSAPnUpz6Fww47DIVCAWeccQZuuOGGTvxYosyzhQEgUuccqu450YIEJbC8UgicFVIG/edfn4rfvemJwfvYDwizB0hvizVB181kB0O0SBvPfT4AoCxqWFeo4ed37MK+6Tp+cedj83wnUZwM+r7lg2t+Hy2iNDI0EWaAgBkgtAiNGSBc61IG9eUNHL16IFjP+OsbIYBnfuoPeO3XbsIt28YSHGH3aPus6Jvf/Cbe+MY34l3vehduvPFGnHjiibj44ouxe/fudv9oosyzoQIgOYSTQTZBp4X4999txdeuuQuAOg0IMC2YsknTBIZKZlDSoyS8DBAGQHqaIyWboFPmbVhWhmX2AwA0KyxhxDrmdLCkpfpjVRHeDxkAoTQzdC1Y6/obfpPMAKEFGq9Y+OhPbwEA1IMMEH52UoYZ6vM7561vott+9+6aTGJEXafts6KPfOQjuPLKK/Gyl70Mxx57LD7zmc+gVCrhC1/4Qrt/NFHm2SIeBQYYAKGF+dDP7sGdD6sTpEEzTJ6KoYwydC041VoEAyAEuC6Qg1cmiAEQyjBplgEAViVshF61nKSGQxnlB0BqMsyIyzEAQilmREpg+Rkgn/7d/UkOiTLkc1c/gF37VF/AusYSWJR9wlvP+Ht/0bUu172t0dZZUb1ex1/+8hdceOGF4Q/UNFx44YW47rrrZr2+VqthYmIi9j+iXhaUwIoEQMB7Hy1QCWoxHPQA4akYyihDE6jIeACEweDe5spoE3SWwKLscs0+AEDZu7cBwP7p+lwvJ2pKOur9U/dO1AOAqXPeR+ll6AK2jAdABkv8PKeFmak7wZqgLljtgLpAQwks23WDL7H3ZWu0NQCyd+9eOI6DVatWxa6vWrUKjz02u7btBz7wAQwODgb/27BhQzuHR5R6dkNjOIBN0Gnhyl6poGnpnYrhQUDKKEMTQSZTUbAHSC+rWg6qlqNKYLEJOnUB1ywBAEqiGlybZh18OkhBBgjCDWSWwKI00yM9QPy1rsu5HS2QAFD0+gLWvAAI4x+UaUEGiLofMgOk9VI1K3r729+O8fHx4H/btm1LekhEiXIwuwSWZAoIzcNfPPinYlgCi7JO10RQ19zPbOJJmN4jpcR5H/4tTn7vL1GzHAZAqCv4JbDKCAMgFZbAooNlqzlfLdoDxEjVUp8oxtA0WF7Gki7UPc/mJh8dhKLwM0DYA4Syzy+B5ff/tZzwfmg7vDe2gjH/SxZv+fLl0HUdu3btil3ftWsXVq9ePev1+Xwe+Xy+nUMiypSgBJaI9gBJajSUFf7iwd9MmZGcFFK2CSFQ9RY3/mkvnhLsPTXbxa4Jtdi9f880jg+aoLNkBmWXzHkBkEgGyEydARA6ONILgNRluLxnDxBKM0NnBggtnhDhYb9aUAIryRERLY0w4j1AanY4F2QGSGu0dVaUy+XwuMc9Dr/+9a+Da67r4te//jXOOuusdv5ooq7AJui0GP4HpH8qhhkg1A1cvQgAKAi/CXqSo6EkRE+GTtVsFLxgGMxiQiMiWrqmGSAMgNBBEkEGSBgQNjjvoxQzIiWwjKDmPde5tDBCiOBQVNADhPc8yjK/BJZ3wKtqhYtd3htbo60ZIADwxje+ES95yUtw6qmn4vTTT8fHPvYxTE9P42Uve1m7fzRR5vkZIDk2QaeDYLsu1mEPnq1fA4BN0Kk75Et9wDRQYhP0nmXZ4UJgqmojD0s9MZg9TNnl5lQT9BKiGSDsAUIL874f3Yk/PrgP/7RyAgBgC5bAomzQYwEQr+Y953a0QALhYT8/S1xwrUtZ1tAEvWZFM0B48q8V2h4Aed7znoc9e/bgne98Jx577DGcdNJJ+NnPfjarMToRzeYwA4QWwXEl3m1+OXi+Qy6DEDwVQ9k2MjQETIclsJgK3HusyOR/vGKFGSAGM0Aou6TXBL2PJbDoIEkp8flrHgQA3FbZjTMAuJGeSGyCTmlmatqsElic29FCLa88EBz226evAMASWJRxDT1Aov3gmAHSGm0PgADAa1/7Wrz2ta/txI8i6iq29yvqTwoB9gCh+dmuxEX6jcHzP7pHs/wVZd6pm9cBj4anvTgR7D3RBoB3bNsHQ3gBEWaAUJZ5PUCiGSBVNkGnBahHakHWaxUAgKuH90Nm/lKaac0yQFwJKSVP8tO8rrzthcHj2/OnAKiw3yVlm97YAyT8jGd/pNbgsRCiFHOaNEGXzACheTj1SvD4WbX3oIICN4sp80p9/QDChoecCPYeK7LZ99j+sfAL7AFCWZZT97ZoE/ToopdoLrHNEct7/0QCICwnRGnnYPZal9M7Ohh1qWMM6iABg76Uad6BroJQGe7RwzAWb4wtwQAIUYpNa6ou9DqxN7jGex/NR07tAQDUpIGb5OaER0PUIl6ZGL8HCDd2eo8VyQAJ+n8AsQ0/oqyRTTJAWO6UFqIeCYAYrtowkdEACGuGU8pNeBvXa7EvuGbzfUvzscLDflfU34Wa1yya8Q/KNG+t6x/2i5XAcnhfbAUGQIhS7G5zCwDgRHF/5CoXxTQPLwCyDwNQLeKIuoA3Kdw0pKYuzADpPdFNEb//hwUT0DidpQzzTvxFg3q8vdFCRDNA8n5/LC2HUw4ZgqEJnHfkyqSGRrQgt4ijAQAnaA8E1xj/oHlVxgAAttRwszwcNVttFLMEFmVaTh1+9g/7Va3wZhg9BEaL15EeIES0OJP6IACgICxocOFC46KY5iVn1CmqUdmf8EiIWqjhVAwzQHpPtAdIXqjNYkvLwUxqQEQtoDUNgPD+RvOrRU6H+k1THS2Hb7/qbExVbQyWeHekdBvXBgEJ9IuZ4Jo67KAnNyhKv8ooAGAcZQAiCAbzPAxlWs6rdiD8AEi0CTojw63AWwRRitW1QvDYL43ARTHNR9anAABTYF186iLepNBw1b3QYTS450Qb/gYZIILlryjjTDXXy4kwAMKpHi1E9J7oB4VtLQddEwx+UCZUhJrblaMlALnPR/PxAiBjUp2Y3zet5oTMAKFMayiJWouVwOLEsBUYACFKMRsmHKk+yP1Tz1wU03xkbRoAMCO5MUhdxGt0bTgMBveq6OR/SKhA74zXK4soq4TXs8E/wQ/w/kYLU7Nml8ByNc79KDvqmprbRQMgPOlM86qOAfAzQIA9k2qfRDAAQllm+gEQLwPEZgmsVmMAhCjFNE3DDNTJQD8Vjotimo/wMkCmmQFC3cSbFBqOanzIDJDeE20AuEHsBgCMmqxxT9mm59U8jyWw6GBFM0DCEljM/KDsqOleBogIm1qzxCnNyy+BJcuxyxrjH5RlQQksFRCerIYHYxgYbg0GQIhSTBMCFaiTXCVmgNBCeQEQ5MpYO1g48GuJsqIhA8ThPLDnWF7Qq4gq3mt8CQAwZq5KcERES2fk1L0tFw2A8P5GCxDPAFHvH0dnBghlR01TG359kQwQHnChefklsBDPAmYJLMq0whAAYBhqL2fb/khvJGaAtAQDIEQpJgRQkTkAkRJY4M2PDkxYqgRWTSvy3ULdwwx7gBRQg8Mdwp5jeangL9R/g4JX7/66oacnOSSiJTOCHiDhST/pnXb56C/vxXf+sj2RcVH61eywPngQANFySQ2H6KD5JbCKog4N6jOeARCaV2UMADNAqMsMrgcAbNZ2QMDFQ/umgy9ZPPnXEgyAEKWYJgRm/AwQvwQW7300n7o6LVATBZbRoO7hpQUDwK/yb+YCuQfZrosSqvgn86sAgF84j8Oj5WMSHhXR0uimmuf5PRwAVQLmlm1j+Piv78Obvn1LUkOjlLMjn4N5od4/kgEQyhDHCMv1Frx7IOd3NK/qOABgAqXYZfYAoUwbWBs8/LD5WWwfDUsD2rwvtgQDIEQpZujRElhs/EsLI2wVAKmLAkumUffIlYHjLwcArBd7MWztSnhA1GmWI7FG7Auef9x+NnQudinrDL8HSLQJOrB/pj7XdxABiG8U+6VyLZ393yg7HC0s2eZXO+BGH82rNgEAmJTxAEje4PYmZZhZBNadCgA4Q9wV+xIzQFqDdwiiFDN1DTNSTQz9UzGcEtK8bPVecXUTrzzvcADApSesSXJERK3xnM9hfOAoAMD6+gMJD4Y6zXZdLINa9D7grsYdciPrPVP2GerEfrQHiJQyKINFNJfoRvEyoe6NFXM4qeEQHTTdMFCVJoBwresyAELzqXoBkIYMkMGimcRoiFrnr74DANig7cEGER72Yw+Q1mAAhCjFDE2gAnUy0C+BxQUxzctR7xVHy+NvzjkMP/q7c/HRK05KdkxELTI1eCQA4NKpbyc8Euo0y5a4TL8GALAPAwAAjQWfKeu8/kYFYUWyfeMlT7khSM347wsBF8OYBABUcwyAUHYYmkAVKghc8Mq4MQOE5jVHBkh/gQEQyrjiMO4pqyyQS7U/Bpdt1sFvCQZAiFLM1LWwB4jfBJ1zQmrigT1T+NzVD6BqOZEMkByEEDhu3SByTAmmLjE9oLKaNlpb8cCeKfzs9seYFtwjbLuOFxq/BQCMyn4AgM5bG2VdaRl2YCUA4HHavQBUudNoyVOLC19qwt8oHsAMDKHeI1VzKMERER0cXQvLPbMHCC2YFwCZQrzk30DRSGI0RC11T/+ZAICTta3BNYsZIC3BOwRRihm6QEWqUzGDQvV14JyQmrngX38PAJiuOXi+lwECNsKkLrRj0xU48o6PoSireNG//xY7Kxo++Jzj8bzTDkl6aNRmK3dfFzx+v/1XAMASWJR9QuBRbQ3Wursx4pV4c10ZK3lqOxJ5rtqogeMFxk7S7gcA7JGDgJ4/0LcQpYqpC1UCS4Q9QBgAoXn5JbBkQwCEGSDUBSbzqnT5cjEeXGMGSGvw3BxRihmaFpyKeb3xP1iBMTZBpwP688P7AcfrF8NFMHUhp7gMNa9etFZRDbHv2zWV5JCoQ8za3uDxI3IVAGBZmfc5yr4JV5U77RcVACrbN1rylLWfqRk/A+TVxvcBAPe666FrXN5TduiahqqfASJUHySHa12aj5cBMtHQA6Rg6kmMhqilKl4pS7/vIcB5YKtwhkSUYqYu4EZ+TV9rfJdN0OmADE1A8zJApM4MEOo+mq5hr9f/wS8XwySAHmGpe9vPnNOCS+uGi3O9migz9tkqADIAP9tXIlrZjyWwqBn/pHwfVODsz/JIlgWkTIn2APk38xMYxBQzQOjApIxkgJRw4THqQMyzT1mX5KiIWqaSGwEAHKbtwoeNzwAAyz23CKdIRClm6AK3uRuD5+dpt0JKid/fuwffvWk7G6LTLLqmQQQZIAyAUPfRhcD17rEAgKfrqiTSVM1JckjUAjvHK5iq2Qd8jWarzeEKwnvbxuWluV5OlBmT3inWPi8DxJESdSe8r/HkHzXjbxQvE2oz8BfOqcwAoUzJ6Rq2umsBAENiGq8yfsj7HR2YNQNI9fk4iRJecvah+NqVZ+Ddz9iS8MCIWmO6uD54fLlxFYAw45OWhjMkohQzNA3fc8/Bx+1nq+fCwei0hZd84Qa84Zu34MZHRhMeIaWNoQlobt17Ukh2MERtoGsC/20/CQCwRXsIAObdOG8F15WoWgy0tMMt28Zw1gd+g4s+8vsDnvwUXnZb1euNdeamEZy8YbgjYyRqp8EhddpvtdgPQPV7q9vhaT+e/KNmHFdCwA3KZOyTA8wAoUzJmxrebr8Ct7mHAQA2iN0s90wH5mV/ONAwgzwMTcPZhy9n/w/qGsIw8Svn5Ng1BoZbg1MkohTTNQFA4CfO6QCAAuoYnakHX983VZ/jO6mXRDdGDD0SAGEGCHUhXRMYRxkAUPIaZk5VrbZmxEkp8axPX4tT3vdL3LVzYv5voINy26Oqyd/O8Spm6nMHszRbnY7ftHYF7nrvJfj6lWdC01j/jLLvtFNOBQCcq90OQN1z6pHFLk/+UTO2K/F07TqYQgXn92OAGSCUKXlDgw0D/2E/HQCwQozzfkcHVld9/2ZQBCCQMzgPpO5iaALvsF4ePofNgzAtwhkSUYrZ3o3Or41aQB2VengC2WIkmABcfd+e4HHO0KB5JbCEyebA1H10TWBGquymEqoAgKvu24sT3/MLfPNPj7TlZ1YsB7dsG8NM3cGfHtrflp/Ry6In3Q+076E7XnkgvYBiTodg8xfqEoeeeRkAYKUYQw7WrAwQmwtfakKrT+ITuU8Fz+swofO+SBniN63ei0EAqumvywAIHYit5v41b3/EYNCXuoyuCYyhL3heQJ2B4Rbh3YIoxfwbnV/uIw8LlUgJFptNMQnARCU8Ma0LAV16ARCDARDqPpoQmIF6b+eEAwM2HFdiomrjrf9zW1t+ZnQjkgut1qtFAyAHmODrXgksV+e9jbpMcRjQDADACCbgynjJPR54oWY2P/bT4PGX7CcDUJnARFmRN9ScalSqzb5hMcmNPjow76CfBRU84z2Puo2hCdQQlnQrwGIGSItwFU+UYn6ww88AMYWDej0sexXdlKPeFV0oVG0XumsBYACEupOuCVQQvrf9MljtxHtte9XscKPXaVLK7HNXP4Cf3b4TpjMNAHD1YsfGRtQRQgDlFQCA5WIcUgKT1fBwAw+8UDNrxm8CAPyXfRHeZ78YgDokQJQVeUNtYk/KEgCgD5UD9gKj3jQ+Y+Hyz1yLr17/MOCoda4FdWjAZOMj6jK7J2sABGakWu8WRI09QFqEdwuiFNvr9fjwAyAA4NRngsc8EUgA4EQ2RmqWA8P1S2CxCTp1H10I1GHAlmoKU+xAACSaodBsg56WpmrNnQHyl4f34/0/vguv+uqNWDNzLwBgqu/Qjo6PqCMGNwAAPmj+JwCJyaoVfInzPWomb6ueVLfKTXD809Dsi0QZkvMyQCahAiB5YWN6egr/7+f34Ps3P5rk0ChFPnPV/fjTQ6P4x+/dHmSA1KUKgPCeR91mz6Ra21a9LJAi6jwI0yJG0gMgorn5N79oCpxbrwSPeSMkAIhmRLquhOGVwMoXeEqauo+qQKXKYA2ggpKoAW3eG1xoiSZanGipn8YA092PTQIAlmMcK2sPw5UCu4dP6ej4iDpi0xOB7Tdgi/YwztFux0R1XfAl9gChZgrWOABgTIa1wjVuBlKG6N77dQoFuBDQIHHV7Q/g+/epAPAlx60OskSod03XwozIIADCDBDqUvum1XtcVTyYQgF1WI6ElJL9D5eIdwuiFHvHU48BALzqvM2whMoCcSIBEJZlISCeAaLJ8MToUH9fs5cTZZq/WJ5AGQBwjnZ7239mvEk3AyCtVqmHAZDG+NLeSbUIOE57EACwVa5FfmB5x8ZG1DHnvD54+C7jvzBRYQYIHVjBywAZk+XgGk9DU5b4czoJDVWhDm7JykTw9alIKUDqXbG7mlcCqy5VYIwBEOo2Tz1uNQCgrqu9nCdotwIAXv3fN+JzVz+Q2Li6Ae8WRCl27hHLccu7noy3PeVoWJoqZySs6eDrbBJHQPx9oLlhj5hhBkCoC+neyZeb3cMBAC/Vfx77umxDgKIeOX3N2tStV4lkgDRm2IxV1D1tpRgFADwql+OZJ63t3OCIOiXfh9oF71EPYWE8EgCJZkkR+Qq2ypDzDwQAzAChbOnLhwVJKpoqg2U6U8G1mTrvfdTAywDxK2SwCTp1m78681B88WWnYd2Wc9Vz41cAgJ/e/hj+9ND+JIeWeQyAEKXcYFF9uFf0fgCAXgtPxVjMACHEN2Qf3jUaPF67fDCJ4RC1lX9a8Av2UwAAm7UdOFY8FHy91ob7IjNA2ss6QIDJ7w+yEmMAgH1iGKUcK7hSd5KbLwYADIkp3L873ASsMABCTehydq9AneUxKEOefsJaPOeU9XjX049FXVMZIJoVVjuYrjMDhBAv++M3QfczQDRuaVJ3MXQN5x+1ErknqMzgNWI/hqAOPBRNlgRcCt4tiDKiagwAAAr2eHDNYk1oQnzDcGpmBoCaFG5exQAIdZ/+ggoK3yiPCK6d56UGA4iVjWmVmh3pUcHbbstF72GNPUBq3sbvcqE++6bMZZ0bGFGnFYcAAP2oYKoWZnQyAEJRUzUb3/rzNmiu2hy2ZBgUZgksypLBkol/veJEvOycjbBEHgCgOZEASI0BEGrgZYBYXg8QZoBQ11pxFGT/GgDABrEHAFDMMQCyFAyAEGVExVCb2SUnkgHCUiyEhlJoTg0Agp4xRN1mqGR6jwS+Zl8AAOgXM8HXJ6qtD4AwA6S9ov+mjSXM/I3fQaHKP9ZNBnape2mlYfX/QqIf4X2NJbAo6p3fux1v+c4tMOGdhEYYAGEJLMoqS1MBEN2pBtema7z3ERBLbGsIgLAHCHW1whCAcK1bYAbIkvBuQZQRNVNlgPTLsCQCS2ARED89nfcWw7Yw53o5UaaZuob+glr07MEQAMQ2Cn9z9+6W/8xYAISB55aLBnEbM2zu3KmC/v5/45rB3kbUvTQjh4pUBxgGIoHdCuvgU8SPbt0JA+F7oo5wQ4QZIJRVYQCkFlxjBggBgIi2QbdVAKQeBEB4z6PuJQreHqC3DioxA2RJGAAhyoiad+p1UEQCIKzFQmgMgHjlEBgAoS62rKw2CCekqhcdzQB5ZP9M0+9ZilgTdGaAtFysBFbkcaXu4OF96r9nv1AlMao6AyDUvTQhgsauOYQbf2wETFGaBpiR9wczQKgb2FoBQEMGCO991CiSAaJrIt4fhKjbFNQeoH8ohj1AloYBEKKM8Mt+DCMMgNQdbsRRfMNwhVBN0Gc0bhJS9zpjo+oDMYkSAGAgkgFit+G+GP0dYwZI60VLYEUfj0f6uRwhtgMA6gyAUBcTIlLWI7LBzRJYFKULEXt/6GZY9pQZIJRVfgaI4UZLYDEDhBr45Z6lwfsddb+8ygB5inYDAJbAWioGQIgywg+ADEUyQCp1TgopXj7mWPEwAOCR3OakhkPUdoevLAMAprwMkLIIF8v1NmTGRX/HGP9ovViAKRIA8bMcV2AUI95nX83o7+zgiDpICBGU9YhmgLSjtxFll6YJ5CIlsEwjDIBoPA1NGeVngMQCIFzrEhp6gNQmAQBTKLL/B3U/782/nk3QW4J3DKKMqOeGAACDmA6uTbExHAFw3HDDd6UYAwDsz61JaDRE7ddfUCVi/FIxfu8bIN6vo1ViJZpYAqvlIrew2L+1HwA5TOwKru0sHtGxcRElwW6SAbJ9tJLUcCiFdC3MAKlJA6V8WPaUJ6IpqxxdZYAUUQ+uMQOEACB2V6uOAwDGZZn9P6j7HX85AECDWh+xB8jSMABClBF2bnYGCCeFBMSbBg/zlDT1AL8Jer1Jrfx29EayWQKrrexIBCSaAeL/uxeE2gy5yz0EmsH+RtTd/BJYOcEACDWnCwHTe39YMFAwwyW9wQ1Byqiqt3YZRHSty8N+1JABUhkDAEygBIMZINTtSqrsc8477MceIEtjzP8SIkoDKz8EABiKTgqZFkyIZ4AMQ6UF18yhhEZD1H5+Bkhd+gGQMAPEakcPkGgTdAZAWi76n8xxgb1TNehCBMGsgncatIocF7vU9aI9QHKGhrrtYobzPYrQIhkgdRixkhj+AQGirJnOrQQArPb6GQI87EdKrNG5lwEyIcswmfFG3U5XJS7zQq112QNkabiKJMoIJz87A2SKk0JC/HT6oFAl0vyeMUTdKMwA8WvlRwMg7c0A6cYSWNfctxfP/LdrcOeOiUR+fjSrZsdYBWd/4Dc454O/wZ5J1egyCIDIHHIMgFCXiwZAyt7Gtt2GwC5lly5EkPlowcBwKewB4h8QIMqaMACyL7g2U2cGCMVLYEkvA2QcZW4GU/czVG+kPDNAWoKrSKKMcPLDAIABUYHhLXp4KoaAeMkYPwOk7mUMEXWjgqEmf0EJrEipmHb3AOnC+Af+6vN/xC3bx/GKL/8pkZ8f/fe98ZFR1B0XM3UH9+5S9zO/BFYVJus9U9ezhLqvmbBRyqlgiM3MM4qI9gCxYGBFfz74GjNAKKvq5VUAGjJAmP1GQDwCEmSAlDBczjV/PVG3MNTnu3/owZ8X0uIwAEKUEW5uIHg8gBkArItKSvRk6JCXAWLlmAFC3Svv1TuvNckAqbc7A6SLNyL3Tdfnf1EbRIO4D+yZDh7vnVLj8U89sQQW9QInuK/ZQWmjbr7vUOjGR0bxwJ6peV+naQgDIFJHfz7cEBlgBghllFVaDQBYgTHoUGtcHvajWfwm6CjHst+IupIXAMmjDkCimOM6aCkYPiLKCN00MSFLGBAzWCf2Yr8cwHTdhpQyXheTes5AbSeuyb8Oj8rlGBAqOGZ7GUNE3cgvg2RFNgp97SiB5XR5CSxfUn+zaIBp71Rt1uNoDxCWwKJuZwsTkA0lsNzW39coXbaPzuDZ/34tAOChf7n0gK/VhcA6sRcAsBeDWDlQCL5WyrE8BmWTLK+ALTUYwsVyjGMXRnjYjwAAZWs/fp/7exyq7YZ3DhQTsoxlzAChbucFQHQhYcBB3uBn/FJwFUmUEbomgs3t7+TeDUCVYmFtVDp0+lasF3txhnZ3cE3mBw7wHUTZ5meANG2Cbrd+Gz+6Qe9280nshP5q0X/TWqSE2d6pOoYxgVcZPwQAONBZAou6niO8wK4IS2AxA6T7Pbh3ev4XAcDOW/E0+5f4RO5TAIB73A04alU/3nzxUfjQc07goSjKrEIuh90YAgCsFvsBsAQWKeunblfBj4hxlGPl/4i6khEecMjDgq7xM34pGAAhyggzcuo1H6l3z9Rg0tx42ZqdcgSGwRMx1L3yut8DxN8odCCgNs7rjoubt41hvGLN+f0Hy4mcvna7OgMkmb9bNKsm2sNl72QNHzI/i+VCNWcfk2WWwKKu53g9QI4RD+Of974Obza+wR4gPUBbSODCrgFffAreVPtUcOk6dwt0XeA152/GFadtaOMIidqrmNOwS44ACPuAPLxvJskhUUrknNkB4hnksXF5OYHREHWQHgb5tqzMY1Uk45MOHleRRBkxV7R3igGQnqc7YQDk4/az8Kr63yNn8PZO3SvIAEFY69wvB/Lg3mlc9qk/4PLPXNuynxfvAdKyP5Y8zhwZIOMVC0eK7cHzbzjnxw4DEHUjR1P3tZcYv8Sm+j14jfEDDMrJ7s4+o4UFQGpTQD3eI+Tn7qkweCKUukDR1PGYVCV8V3kZIABw546JpIZEKWFGAiC39Z2L59TeBUBgw0gpuUERdYKmAbo62Pr1Zy9nBsgScRVJlBGrBwq41jl21nXWRiU/A+T7ztn4qH05bpGbGQChrub3gahFAiDX5P8ex4qHguf37pq/kexCOU6kBFY3Z4CkogSW/5kmMVDZhpViDADwhNpHsVWuh8mJP3U5S5t9uu9Y7WFmgXS56KbGnMGuyIGXqjTx9/VXw4bBDRHqCnlTx2MNGSAAsG2UWSC9zrTVe+Db9hPw9L2vxl/kUQDY84h6xMA6AID+pUuAR65PeDDZxh0yoow4Yf0gPmC8CgAwI/NYL/ZAwEXFYgCk1/kBkLo0gms8JU3dTPM2e+ow8RPn9OD6WdqdsdfJFu3oxzNAuncTMg1N0P0MkNfo38dPxetQFOr+tlsOAQBMBnepy9W14qxrZVS7+t5DQDSGMWewywuAVJHD0bUv43vuuQAAQ+N9kbJv9UABu7wMkMPEY1gv9kCDiyrXuj3PD4BMI35AoMgACPWCE54XPn7o6uTG0QU4WyLKCCEEyoPLAQAlUcM1+dfjy+YHYXv1WMZm6rh521jLNvwoO3Speh1ET8MzA4R6xaut1+O7zjkAgH8yv4roNv7oTGv6gEQ3Hv1+FT+4ZQdOeu8v8LmrH2jJz0iDpD4/3CY9QE7U7gcATMs8fiAuQBWqBi6Du9TtmmWAlFCF7bL+XjeLNi+f87+1q8re2pH5HgDwtkjd4Jg1Azhpi6p28FT9BlyTfz2+mXsvAyAUlMCaFQAxGQChHvDEtwFnvVY93rs12bFkHKdLRBlS0QfwS+cUVKVa+Jyh3YW6Vy7k4o9dhcs+9Qfc+MhYgiOkJBhuDUC8H0KeARDqEZcevxbXLntO8Pw1+veDxxMtaoQe3YzygwQf+MldGJux8P4f39X0e1xX4s8P7cfYTL3p19NoMeGPz151P57+yWtwx47xRf/cZifby6gCAN5uXYmPlV8fXDd1lnqh7lbXZ9c0L4kabIcHXLrZwWSA2MKIXdaZAUJd4qizLsVD7qpgrXuy2IpKnQGQXmc4FQDAtGQAhHqQEMD60wDNAOxq0qPJNM6WiDLk0hPX4krrTXju4DcBAHlhA5Ux1GwHuybUJviND48e6I+gLhSUwIoEQHhKmrrd8j6VEfCPTzsGH/77l6N+2PkAgBcZvwpe87lrHsCt28eW/LOiG4/+Zv1ok8BGzXYwU1cndP/7jw/juZ+5Di/8zz8u+ed3ymISQP7vT+7GbY+O4z9+v/hMmGYBkD6hFrtTKKC/wPJ+1DtsfXYJrBJq7AHS5aJ9PJy5gl1eAMRCPADCJujULbSBNXhi/aM4vfYpAIAhXNTrtYRHRUnTm6x1AZbAoh5y1FOBdzwGXPHlpEeSacb8LyGitHj5uZswWDRx9uHLMfnJfvTLSegzuzE6fWjwmg0jsxfO1N2MoARWeEvPcZOQutzVbzkfk1ULKwfUabDahf+C3OfOQD8qwWu+ev0j+M5ftuPO91wS9A1ZjFgJLC8ZRBez/7wXfPZ6bBut4FdvOA+/v3cvAODOnROL/rlZMr6EbJtm+7p93n/HKVlEHwMg1EPyYvbvUok9QLqeQLQE1lwBEPXecGZlgDAAQt3B/4yvIRdcs6psgt7rwgBI/N7HigfUM4zc/K+heTEAQpQhuibwvNMOAQDs0AbR70xCVEeDmvRAuDlHvcOfFNYke4BQ7yjm9NjJL73UD8AvnSQBbzOparl4eP8MNi4vL/pnRTej/H4VjQGV3RPVoAThNVv3otf2o9wl9A85UAbINIrYkI9mt/XYPyz1HEvvm3WtJGrsAdLlovfQOf9b+yWwwAAIdSd//RLta2jXGQDpdbpsngEimhxGIiKaC3fIiDLK0lQUWNYrcJtszlHv8DNA6myCTj3MLKoAiCYkioiXS3hgz9SS/uxokDkIgDQsurbuDn/GttEZcE22cAfqAdJYAouLXep2Nw49GbvkEABguqwOvTADpPvFAiDzlMBq7AHCzDjqFuF7WaAu1FrXrVXm/gbqCbrrrXUlz28T0eJxtkSUUbY3KYQTXxQzANJ7TK8Jeo09QKiHGfkyXKk2x8sNAZC9U0urH+26s3uANJ64najaweOpqh0LkPTCxuVSPnoaP7cEXPQJLwAii+gvhPc2yc846nIb1yzHGbV/x2HVr2HX4c8BAORgswdIl4v+553zM8MrgdXYA6Rgcs5H3SFawtcSqteb42WA3LZ9HLc/Op7IuChZzXqA/OYfzktqOESUUZwtEWWUram699KqNpTA4gK51xSk2iicloXgGmuiUq8Rmo4ZqMVyWVTwvFM3YLXXH2TP5BIDIE0zQOKvma6FAZDJqhXLAKnb3V+6RmLxnz2NARA/+wMAphDvAULU7Y5bNxg8NnKqr1teWJzfdb2Fl8CqufHGvwWDjYCpO0Qz2G3NC4BYNdRsB0//t2vwtE9eg8nq4nuOUTaF1Q7UfHDdUBGbVswuF0lEdCDcISPKKNsrgSXsakMJrKRGREkpSL9WfhgAYQks6kUzUJuFR4ltePKWVXj2KesAAHun6kv6c6O9lfxNyMYSWDP1SACkZsca2tZsZ0k/PwuWlgESf+4HQCypowYT5UivFyaAULcbLoWNLs2c+lzPwZq7LBJ1heh9cO4m6OqzrCobAiAmAyDUHXRNYMvaAawdLECYak4nrQqqVjgRu3PHRFLDo4Q09gBh3yMiWgzukBFllKOrUzGwq7FFk8sISM/xM0BmIgEQlsCiXnSDOB4AcKXxY5i6hnJenRSLBicWI1p2yT+Y27j4mqqFQY7Jqh07rV3zMkAsx8XLvngDPv6r+5Y0njRabPnFZiWtwgboBQAitrm3lEwToiwYKYcBkFzBywCBBcvp/kyyXhadv8/dA0Sdgq42ZIAw65e6yQ9eey5+/5bzIQ2/2kG83+WjY+wJ0msMrweIX+7ZYACEiBaBsyWijHI0PwBSi220OTwe21O27Z+BYavauNESWMwAoV70I+NCAMAasR+mrgWbQrUllqCarwm6lDJWAmuqasc2K2veycVf37Ubv71nDz76q3uXNJ40WuxHT7OY/SCmAajyV0B8c48fcdTthkphjXP/BDQDIN1vQT1A6lMAgIrMxy5r3AykLqJrAqauBQEQWJXYPIzzgN7jl8CqSWaAENHicYeMKKP8DBDNrsRO3rJGdG/5wE/vQlnMzgDJMQOEetCkMQwA6EMFOUMg72UO1KylbRzGNqb8AEjkV8x2JaZjJbAs1COblXXH8f4/uxuYluPitV+7EV+57qGmX198ACT+jTlY+E7uPQDCoG40A6Sx9BhRt+nLG3j6iWvxpKNXYnigH4DqATJZs/GV6x/GI/tmEh4htYNcSA+Qqd0AgD1ysPnXibqJEal2EJmIcaXbe0ypevn5PUAYACGixWBXSaKMcjU/ABLPAGlWToS61+/u2YOSFwCZRngikAEQ6kW2oRoi9qGCnKah4GUOVJfYgyPWZ8l7rEc24uu2GytZMlW1Uc6FUyy/dnVS67Xbto9j10QVFxy9ctEnhX94yw786Nad+NGtO/Hisw6b9fXFlqZqDIAcLx6AJtS1rzsXAAD6Cwb+5pyNuOGhfbjkuNWL+jlEWSGEwCdfcLJ6cs9eACoD5PN/fAS/uHMXAOChf7k0qeFRm0RvhXOWwLrt2wCAPRhq/4CIkmaoDDhhV5pm4lKPmN6HYWcfgPCwHwMgRLQYDIAQZZTrZYDc+vBj0B/aH1xnBkhvyetA2TsVM8MSWNTjbFMFQAzhYtWd/4kHV78IwMFlgEgp8c7v34H7dk/iky84BSv6803LDEYzESzHjTWtnazaGC5HSmDZ7qzvkVJCdCCbYaZu4+n/dg0A4L9fcQbO2bx8UX/O6IwVe75nsharwbzY/YjG7xsSqsTL/qHj8aXHLgEA9BdMvPPpxy7uBxBlmXcCOg8Ld0Qa/zqu5AZQl4lu6jZtgu66wL6tAIBdcrhTwyJKjF8CsPGwH/td9pg9dwMAZmQeD8g16nF9aQebiKg3MQBClFG5skp/L6OK9//inuD6XIfGqDvlveAHAIwMj2DfqJoQMgBCvUgapeDxyuvej8LlLwZwcBkg20cr+Mr1DwMArrp3D57zuPWxjSm/Mkn0Vmu7MrYgn6zFe4D8v5/fg6PX9OOMjSPBNceVMPT2b2A+uHc6eLxrorroP8eJlGSp1B2c9s+/in19sScyG7/P7//h5sMSL/0FTlepR3k18HOw0JePZpU5KOf5e9FNonu69WZ9q2rjwcMfOmcFjy89YU07h0WUGJHzAiBOQwCEa93e4tQBAA/LVQDUvJk9sYhoMThzJsqokWG1kdYnKlg7WMQD3iYXT8X0lhLUhqYrBYqlMjCqTojyZCj1orxpNDw/+B4gtz8abjL5gRO3SemF6GLcdmTsxG7ddjFVDXuCXPfAPlz3wD6sHw4DNJYjYYStLdpm2/6wX8BSmsFH/347xiuzvr7YTx4pgcPFo3icdi/udA/FgFDjlYUwAFLKdeAfiiiNvGzfvLBwz67J4HIlEgDxS592IqOM2idawrbWLGhfGQMAWFoBkyjh2aesw/svOw75TnyQECVA8zNAnGpDAIRr3Z7iqAzkemTrcs4ygUREB8AACFFGHbJmFQCVATJSzoUBEE4Ke8a+qRqc2hSQB6ZRQImnQanHGbrA39Zfj0/nPg43PxD0AGm6mTSHiWpY6skPnMSaoLtNAiCuO+veu3eqPuvPjsYl67aLYmRj/08P7cf20Rk86+T1Cx7rQuybDsfR9FTxAjnzLDYXG3t3XRffyL0PK4QK3t7lbgAAiOJQ8JqBgrm4P5wo63JlAOFhB1/V8oKzrsQV/3EdTF3D1648g0GQDIt+hFQjQfvpmo2f3/EYLhrai34AVWMAgAoMl3Kc91H30rwMEN2tNT2IQj3CywCxIluXzAAhosXgrIkoo7RCPwCgD1XUI5MAh5PCnvHar92EsrcpMoM8XnTGobj+gf2xuvxEvcSVEje5mwEAWm0CI/tuBBDfTJpPJVJX2M+YaNYDxI6UhGrMAAGAqZqNRtE/p96weLv8M9cBAA5f0YcT1g8teLzzmYxkoiwkEDQ2U8eXr30Yv7l7F77yijOC4EP0s6WVdxg5vScIfgDAMdo2dX14Iz7+/JNgOxLD5VwLfyJRhuTVXK8fFag8K/Xb95Ff3IuPPO8kPLx/Bn9+eBQAMF13YmWyKFvUpq6EBhm7V7/7B3fg23/ZjldteARvA1DR1XuiaP7/7N13mNzU1QbwV9LU7cW77r3jhhvGBmyKqaZDIBAIPUAg1BRagIQQSCDlS0gIaUCogdA7pplmDAZcsI1772X77hSV7w+NNFcazexs87b39zx5mNVotJpxRnt1zz3nMPODujYlYJYADCKGhlhyzMRqB92MFQAxkn/f3GNoIqJssEg8UWcVSARApHrHql4OCruP+ev22qtC/eF8nDShD/77g4Px+rWHtfOZEbUPTTdQhVz75+GvnQnAmdXRmAYhWGKtsjYcPUC8MkCMrK69YnAl3c3but3Jnh2abmDJlkr7PJpDLMWVTQbId//+Gf7wzios3lKF/y3c4jiXjJoZfJcqN6VsW6QPRc3o7+KUA/vijMmtmxFD1KmEzNX+fklDEMnr2PNfbwUAVDUktzWwKWynZqgxvBm4CSuCF6Hn1rft7c9+aV6HN23dBgCol/MAMABCXZ8vaJYNPVd5z7GohNWPuplECaw4ktc8ZoAQUXMwAELUWSXqo/eQqhETVopxPNC95EpmE/SCAvP/D9OGlGJEz/z2PCWidqPpBhoQdG01UBNR8cribVkdoyHukQHiKL1g/ld1lcBqNEDgOnY8TTAipulQNR17a6N44L01OPmBT3Dt019nde5eaoTgTzYBkG93JPsMiNkj4vv1KrOjG8C/Pl6Pib98Gy9n+VkDAOr2AAC+0QfhhtgVOCX6S5wauwsIF2d/DKKuyp8LPZH1YWaBOO2pidqPWxIopfYXrNuMUfJmBKU4eu76JOX5QskMju9WzbJAYZa/oi5Oye0BANAgo04IgBisdtC9JDJA2AOEiFqKARCizqrXWGiSD72lfSiO77Q3sy5q92JlgMjBvHY+E6L2ZwYhJJwU/ZW9bUPoe3gr8FP8++lnsjpGxBEA0RLHdf8OZ08MsQRWQEk/tBIDIGIGiHgzH9d03PLCUky5+x384Z1VAIC3liWv8U1VExVLYDUtQi6uLm8sw8WAgbteXY6K+jh+/dqKrH+HETebntcijOf1mVhsmCXMFJbyIwJkGVHZXAWdJ9U7nlI1HRX1yR4/9cwA6dQkNflvqcRrk9uh46e+p3GP/18AgI31ZknADH9qiLqG0ScCAHIQRV0sOZbhvW4349EDhCW/iag5OHQi6qwCuagLlAEACtR99mbdMGAYBuYu34ldNZF0r6YuIlcy/40lBkCIUBA2+1UsNYbYZQIBYKS8Bd9R5mV1DLGMjNU7xPBovqm6S2Alto/rV5jVscVsDPFYcVXHMwu3NLeiVIraSPMDILXRZABEPEev1ZdCSxTsq0ttAJ9W3FzVHjGcfT5kNnMmAgA0JEoeFaHOsT3u6j3UwAyQTk3WUgMghmFglrwEP/S9bD9XZZhlHndURUHUpfnN/68HpTjqIsn/v7PaQTdjl8DyoU+h2Rfm1hNGt+cZEVEnxQAIUScW8yUGhrqzZvwTCzbhsv8sxKWPLmyvU6P9JAzzhkAK5DayJ1HXd8mhgwEAo3rlA2f80/HcaHlzVmUTGjwzQIQm6InHYv1hTdfticjTJ/VNe+x6R3DFOxgS14yMWSRNVZNFAKQox++53VFzW08tAyZqdrxGNYO4ETgDIMwAITJV+c3FLr2lvY7tMVV3BEDqhRXS1AkJARC/ao7rv91Rgx/5XnDsVgtzArBPUWj/nRtRewjk2A937XEu9qNuRMgAuf2kMXjuyhm49LAh7XxSRNQZMQBC1InFfeaqwJAmBEAMA3+btxYAsGRLVbucF+0/uYkSWAgwA4TosOFleO7KGXj80mnAyOOAC15BfOJFAIASVNkZHZk4AiCJ/XVXDxBdd668jmvJJui5AR9Cfu/hlXjsPbXJ1YxiMCUS19Cr0DmxlR9sfq13MYiRrgdIUdg7AOLsAeJdsstzWyOxi6r6eLK8lpUBAuc5MAOEyFQd7AUA6CftdmyPahpU17WDOjFdCIDEzV5MK7bswwHSRsdu72kTAQDnHTxw/50bUXvwhaAnpqu+2bDD3sweIN2M1QPE8KE4x4/JA9kjjoiahwEQok4s7jNLvISFDBDDACrr4+leQl1MjmQFQJgBQgQAkwcWo0deohH64JnwTbsUgPldqY40fm2MCFkaVmBCzHjQDQNx3RlI0HTDzpBQZAlhv2I/d+bkfsljCxOUu4TmxWJgYuHGCjvzxD5+C272xSbo7uNavJqaA+kzQLzOJ9v4R0zVceBdb2Pqr96BqukwrAwQdwksjlCJAAB1AbMRcKlU7dge1wzH95I9QDo3sQSWL5EBUr9nA8JSDBHDj0nSf/HmmSux2BiGiQOKEBL+zhB1SZKEuJxYEBJL9sVhCaxuRiiBxexgImoJ3l4SdWLxRAmsYiOZ6aHpBlfGdHHvfbsT1z/yPq73/Q/X+F40NzIAQuTJKg+Xg6gjGJCOmKVhZXmIGSCabqRkUsQ13REAyQkkMzZ+e8Z4TBtcAsA5QbmrWgiACHfzWysbUkpVNbV3hyibDJB05STE/iFeZcBERpZFsLZXNcAwzPdcUR8XMkBcJbCYAUIEAFD95mKXAjiboMdUHXEt8/eSOg9JS/5NkHTzb5Vab47vq5AL1ZDsv2H5Ie+sPaKuJq6EAQBDYt/a21gCq5uI1gJz7wDm3QvADIDIDIAQUQswAELUidXn9AEAHCJ/Y2/T9GynoaizuviRhRi+5t+41vd8cmPp8PY7IaKOLFEeLleKIhpvvEa+GACxMkAc/S90wzHpCACqZthZEbIkIehLDq9kWUIg8bPYBL0+TUP06oZ4SqBC0w1HmaymEMtYxdIcI91cghg8cTZBT90327lXsfRXVUMMUpw9QIgymTh8AAAgT2pwbI9ruqMEFgMgnZsklMCSDfPvg95gZv3UGmFoumEHw8NpyiwSdTU58QoAwND4GnsbAyDdgGEAn/0V+OSP9qaNRjl8HBsSUQtw9ETUie0snQYAKJcq7W2GYaSdzKKu4UfK8/ih72UAwD4jDw1nPg4ceG47nxVRByVkR6kRs6xIplJYYpDCmlAUr6makRqMUIWeID5ZSlmhZjU1j3g0WAecgYmaiOqZ8dGcLJCoqjleF03TAyXdZML2qgie+WIzgCwyQIRjZEre2ClkvlTWx+0m6FG4S2DxJpcIAPILzQyyfI8MEDEwqTIA0qlJavLvkoxE+cWoWfanBmFoRjIAEvSx/BV1D9/0/Q4AZ4CQAZAuzjCAR08C3r/b3nSbcj0e045mfzgiahEGQIg6MS1QCEDoA4GW1YqnjiUS17CtsiFl+wnKAvvxybG74R89J/OMI1F35g9DT3SlUCO1ePHrrRh/59t4aN5az93FIIWayPRwZIAYqSWwVF23m6ArspRShtCnmL9fzPoQG7LH1eT+DXHN/n2nTexrb482o8FxdYMz46WpGSAA8NPnlmB3TbTRidZs//KIn0FlfRySmiiB5e4BwmsakSlolsA6Qlns2Hzinz92BHN1BkA6NUcGSCIAIkXNZuh1dgaIef0MMQOEuolIqCcAIKAn73V5qevi6vYAGz4yH/tzgas+x+N1U2FAZnYwEbUIR09EnZgRyAEA5EIIgOjOWuwqO8V1Wif9+WPMuPc9fLx6T3KjrmGItAMAMCv6e+yQyuFTeCknSkuSEIHZRFNvqMb1zywCANzzxreeu4sT9Gqi2bkYWNb11ECCuwm6O6DgS3T0jqjpMkC8gxt3nzbWLp/VnAyQqgZnpku6JuiNraasjsShaY38XclyQkKcpK2JJjNAInDWtGcPEKKE3HL74WnyRwgg+b3+cmOF/ZgZIJ2b7BEAkeNmAKQWZgDECpwzA4S6C91n3usGDCEAwmtd17Znlfnf/D7AzZuxSu9jP5Ur9NgjImoqzpoRdWK6P1HbHhFYs0/uQWFdtOmrhqn9GYaB1bvM0gefrdubfKKhAkHJnPzYYpQh5OdNMFFjdinmCkJ/5TpHcKKqPo7dNcmSTJpuYJfws2qXwBLKP3mUwIprzgCIOxPPWrEmBlfEgEZM9b6ZDyiy3U+kOQEQd6mvpjZBt0TjuuM9eTdBz444SRtTdUiqdw8QmSNUIlP/afYk4B8CD+KN4M2QrAwBIVDIsjCdm6SJPUDMf18lbpZtrEUYupHMBBT7TBF1ZbrfvPaFjOTYjNe6Lq5mu/nf0qGArGBvbfLaOKA0p51Oioi6Ao6eiDoxI1Hb3i9pCMAsdaLqBnRhjmvjvrr2ODVqIUe9fXHisdbMBqk0cqFBwfCeefv93Ig6m63+gQCAQJWz7NVhv30PR/7uA7vvx1Ofb3I871UCS9NTS2D9+NnFWLnTXKmryFLKzbnVtFF8nVhqy6s0lU+W4FNke6VvuuyNTFIzQNIFQDIfJ6pqjs8g3lgPEKTP3hCvZ44AiKsEFjNAiBJkGZvPeRcfauMAAEOlbeiNfQCcpfFUjZOCnZmkJ0sWKokAV1Azx/A1RhhAMogeZAks6i785v/3cyRxsUp7nQztF/WJhX85pTAMAzWJxTwH9C5ox5Mioq6AoyeiTkzyJ5v7rgpdgA2hc3FA5XuOybT1exgA6YxUj4bDqqZj6ep1AIAKIw+nHNgHj18yrV3Oj6gziSnmijEjHnFsr46oqImoeOOb7dhe1WCXk7GallslsNzz/ekyKYBEAERP3eYWVXX886N1+PfH6xH3OJ5V+spa6RtJ08A8kz2JbJaiHH/G83b3LPE6V0cPEI/ZBy3LJuhilmJMM5I9QFwZIKzzTJQkFw/C9+M3Y63eGwBwaGkVAOd3mquiOzkj+W+pIBHoSARA6hJlHO0ACEtgUTdhJDJADpZX4HLlFXwQuB75kW3tfFbUpurNAD9ySnDbi9/gB499CQDwM/ONiFqIVxGiTkz2+VFlOFNBz9rxe8fPYnkX6jzEEjvWqs4H3l+Dv77+OQCgAvm4/zsTkBtkLVSixhiyGQAwhBIjohueWYzD7/sAS7ZUAgBOOdCsN2x999ylBa1gxGBpO06SP8UQKXkzLksSDh5SCgDID5nfT6sJumhvbRS/em0FfvnqcuypTb1OW4EPa6Vvc5qgb6kwgwsDS81gefoSWOZ/xca6hw3vYT9etLkSH67abf8c91hpnu3q82xLYEnMACGyWdeQDUYvAMDR8Q9wlvK+I5PMqzQddSJG8t/SJ+mIqhp8iQBIbWKsXx8zs0TYBJ26C9kftB/f7H8Kg+SdGLfv7XY8I2pzQgbIEwuSmdkBj7E0EVFTcOaMqBNTZAmrjH6YKq2yt+muuObeOu8JP+rYnCV3zEnLlxdtwySpHgBQbeTaZXWIKDNDSQRA1PTXw6iqY+1uc7KpvMC84bYm690rq+tjKkpQjfeDN9rbdhpFuCx2I3zyIbj9pAMwoCTHDqR4ZTOI/UC8AtXWCt+QXQLLvA4YhpF1cOD/3l0NABhQkoPFmyszlMAy319uwIdI3PyM8kM+TBpQhK82VeJeV8N41Z3iAmfQ1n1232ytwo+fXYzjx/ZGTiC5cjldAITZH0RO/kRW2kbD7Gd0dOxdHO1/F9+JH4BtMLexCXrnJpbAAoA5976M59TPAAmogVkG6I1vdgBgBgh1H9VlU1O2BbSadjgT2m+i1eZ/Q4WOzQFmgBBRC/EqQtSJ+RQJL2qHOrYFdGeJl321DIB0RuIKa6vefm7Ql2h4b5ZD4AppoizJ5uR6pgCIqCwvEQBJTOq7m5rHK7bgq9AVjm09pUq8HPw5JvxrIAp/0wPX1v0Rg3KiQKQaPo+O3mIApKI+nvJ8wJ0Bour4cNVuTP7VO3hrmTkJtmlvfUpDdouuG3YgYWYim6M+pnquElf0GHpiH/oFau1tPllOO8nmdYxohhJdf3p3Nb7dUYM/vLPK2QNE0yBr5jUtaviT58NrG5GDP3EN2WKUObbnq3vtx+5MNepkDGeW3xXRf6MwseilNtEDxDK8nP3fqHuQA2H8NH6ZY1thbFc7nQ3tF9HEWDTgvM5ZCwGIiJqLGSBEnVhAkfGENhuvaAfjJt/TONf3HsKIQIZuZ4JU1DMA0hlprjIxAJATUJIBECPULudF1BlZJbCgpwYavBTnmgETOwPENbcf2L3MfvyVPgyT5DWpB/n6cfN/AH6m5KO/71A8o83CeHkdXtZmIKYmgwv76jwyQBKp/lYprKiq4bL/LAQAXP7Yl/j+9IH4z/yNOGNSP/zurAmJN2rYDTiqI3H7OnLShD742XNLoBvA3poIyje+Amz5AjjsRiBUhP8YP8eY0DqgAXjWNxP1CGLIrnxUaQGc5d+MP6unYZ3Rxz43rxJYUSEQ4352xY5q+7H72uaVAeIRLyLq1vw+83ttZQLY27Vkn7e2ygDZVR3BhQ9/ge9M6YeLDhncJr+DAOjOAMiZyof24yXGEPvx3OtnYnjP/P12WkTtyadIeEY7AgYk3Ol7FLlSFCGttvEXUucVM/99jUCuYzMDIETUUgyAEHVi1grhauThF+r3ca7vPQBALiKogVkvON3qYOrYxH83q2xNXNORIyUzQIgoO4ZiTq5LaXqAuOUEzOGRNaEYd0VA1EhyQl++5G387R/X4grfK2mPF9ZqcInvDVziewMAcJ//7/i7OgeaT0a5VIFpazbjqoCKZcZAbDdKMVFeg4NrVgD398LP471R4Y9hxIf5eNwvlH1YCBzjB7AUqKsqhlK1EXU1VdigDMSYvkUIGAYe91dAVhSE3n4Pd4T3wB+rQvkfzk0e4/O/AwDGCAkX3/ElJt0qEhsUoByV+F78VsjQ4YPm2QRd7C/izhCpbkiWdtla2WA/Dkb2wN+wG7ohYbtRkvxMmQFC5GBlkdW7Fj/kGMms37Zqgv6vT9Zj+fZq/OKV5QyAtCHJcF5XN+tl6C/vxl3x8+wA9Ph+hQx+ULcSSEx6P6sdjlojjAcD/4eAVt/OZ0VtKmYG9qOyM+AfYACEiFqIARCiTkwcCEThR8xQEJA05KHBDoB4rQh89NMNeGvZDvzj+1PYRLuDEv/drObH9THNUQKLiLJjyOZ1TsoyAyTsN7MzVE2HrhswDOA0+SMoko7/abOgNZgBkGUFhyEnFMC96jm4Vz0HADDvJ4djYHEYqNkO1O4EwkVY/PSdmLDrJcfv+IHvteQPKgAZGI6tzhOp3YEx2AEoAPYA5enKvideFpKAUn0psNn8+VBr/y+W4AIg46jvnvg5mDi4HMWb3sJ4aR3iwSI0IIiesc04RFmGL+QrUCZVQzckrP7mbAAnpz2W+++OIUzMPrlgI06W5+NzfSQK6vYAADYYPVGBAnsflsAicvInMsLcf/tzpWQApK0yQFQh4ysS1xDys/9EW5AMZw+QIslcBf25PsreVpwTAFF3IvY7tK5/AZ0BkC4tEQCpRxhAMkPazyboRNRCnPkk6sScqaASahFGCWqRKzXYNUhiHk1v73jZLN/y2GcbccWsofvhTKmpNGHFeSTxbygGQNyrQIkoPasJurvJbDrhRKNuVTcQ13UcIi/FHwIPAgC+1fsDUTMTQ/PnosA1GehTZLOGU2Ff838A3h/yUzy7tQRR+HGU/DXKpQp8qY8wzwkGchCFAQkRBKBDggEJZUUFOO3IQ/Dowp34ckMFTj2wD15ctM3zfEf3yce67Xvhh5ZSK/6gcg3njVawbFsVPl27Fz2LC3DySafj4H/vRB3C6C3tRaWRh10oxpNHTMPZ/5gGALjsoMGorY/g2m9ORy+pAmWSGfSRJQMDt78J4CSktjs3abrhaNYuTsueo7yHe/z/wma9DG/FzSby1YmAvUVmE3QiB0mS8OVts4GNucCzye3WmABoux4gYmJJZX0cvQoZAGkTrkzDfMnMlqtCsgxMUY4fRN2JOB6wxjfBRAbIrpoILnt0Ic6dNgBnTx3QLudHbSBRAiuu5MAZAGEGCBG1DAMgRJ2YVQLLUmeEUSLVIh/JEiOZVgQ2xLS0z1H7EmvsWxkgB0c+xlm+eQCASrABJlHWEj1A1Fhqrw0vyQwQA6pm4BzlPfu545XPgZiZraD781Oy6Pwek/eSL4jHtaMBmGUcsnF4aRlOm3QQNm9bjpfXrUevvCF4WV/nue/LW9IfZ9ABw4BjRiK6qQJ3r/wUPaNBnDT8KOzA6wCAGiMZfBjcIxd9i8LYWtmAWSPK8fbyHTguei+GSVshw0CuFMHDgfsQileiHJXYheK0vzeuGQgk+haIEZDj5c8BAP3l3Zi+70UAqQHdkJ83uURupXlBoMT5ncuVshvvtURlQ7J0YH0suyAyNZ1kpI7J44aCPUah/XOY2TfUzYhDqtpED6RgIgPkFy8vx+ItVVi8ZSnOmtLfXnRBncf/vtyCDXvqcOMxI8x/v1VvA1VmGnPUl49kPdbUeQ8ioqbiVYSoExNLYBWEfHZqcFhKTvJ51Wq3MJW04xJr6Fs9QI7UPra3valN3e/nRNRZWT1AdlfWpN1nZF4DylEBwEBeIqgR03TEVB0DpF32fofK3yCgmqvTNH8ucgIeGSAuvmZca63re3lBEIDZiLgxo3sXOH4uCPlw8aFmzf5+RebEwc7qKEbe9qbn62VJwotXHYInL52GQ4aVIuiTUYl8LDRG4XNjNN7XJ2KNbtaiHyVvyngujmbnwt8hXRh6jqn7DIBHWZ8A1+cQeQoVOn7MEzJA3L13Wot43PpmLJxZs6sGv3t7Jaoj2ZUg7Kx2VUfwo6e+xhcb9jXvAB4BkKXGYNQL10eWH6PuRgxq1CUWS4T0OizbVoXXlm63n6uNMjjbGf342cV44P01+GpTItCxIlEuVvYjkj/QsS8zQIiopXgVIerExJUQRTkBRGCucg4L6aJiJoGbIvMS0FG5m6Drmo7jJHOy8OrYj7APBeleSkRuiQCIYsQhQ8cNOW/g7MJl9tMnyZ/iLfUSfB66Chcqb6EsP2g/t6c2ir7SHvvncdJ6DIksBwDU5AxA0LUizSvYoTSjpNMpB5rls3oXmoGLj9fsQblwXoDZEFd08/GjcM5ByTIQj158EIoSNeNL85KvjaUJjEsSUJYfxIxhPSBJEoK+1Mm2bw3z+KOkzAEQq3G8rhuJIK6Bg6QVGCOvT9m3DiGICzfZm4oojaKBwLQr7B9z90MARDxsQ7zpAZAT/vQx/vzeGtz7xreteFYdz03PL8Uri7fhO3+b36zXe2WAuEsauv/eEHV1sjA4sDJA/EYcz32xwbFfc65N1HHsqY0B8Qbg68fNDSf/GXHX3zRmgBBRS/EqQtSJiQOBgrAPEZgTXCEkV9nFNR0LN+zDtkqzTILYjLY5Cym2VzXgtSXbWQahjTkzQDTElzxj/7zK6Ncep0TUeclmECBHimJu4Ce4Rn8Mv4nejQumD0Qe6vHnwAP2rnf6/4OQFMdh4Q14L3AD4steQTFqk4eSDAyLrwIA7CseB0mSHCUa/B6B5aY29S4I+TBnfG8AwJGjytEjL4g9tTHsqjGD29fPHoEN987BM5dPt18zoV8hZo4oQ1lesklunhBIyCYII7l6eniVolqhmwGQkfLmjMeyGidbGWx/8j+AZ4J32b1E/q0eZ+9bb4QcE3u5Qa5yJvIkScDxv8EzZT8C4CyBpRltFABpYQaI1YtuYXMzIzqJdbtrG98pEz31s425qlUHmQFC3Yw4dBGzRWP11Y79ovH0FQ+oYxLnJDTdACN4XEcAAIRgSURBVF7/cfLJ0qH2ONLCDDgiaikGQIg6MbGEVY7fhwbDnPgKS1H0KjAHiat31eLMv83HjHvNGvZRoSl6UzNAoqqGY37/Ia568iv89f21LT19ysDZA0SHvtGsm79EH8wACFFT+cxJpInSagyVkyUTfnHCULx7fFXK7tKuZXjMuAVD5B0YOe+HkCXz+6gZzgCBHjAzscS0/OZmgAQUGT85diQA4P/OmWhvzw36MHN4D8e+J04wgyPizaA1+Slmr7gzKX575viM5+A+Ta8MkLWGWQJrkLQz47HUaAPw/q8hv3odXg7cipMV56rod/Xke6xGruN3sQQWUWYxxezdk7cfmqDrwiRVQwsWv3T1rOMWB6A8MkBi8OPymUPsn5kBQt2NmAGiwoeoYVY70BqcAZAIM0A6HbFvlaYbwOYvzB9GnQj0m+qohgCwBxIRtRxHUUSdmJgBUpjjRwRmACSEGA5zTZhZxAFiU8vS76yKoiZRY3VPbXbNhKl5VF0sgaVBi5gD/de0gwGwdwtRU6h+M1ARkFw3yG/dip7V3wAAPi49E9/q/c3t/zjS3kUThko7JOd11QjkmccVrsU+j2BHNj1ACsI+XHXEMCy98xgcMbLc8dygHrmOn8XMjnF9zTJYhw0vSxzHbz/nDoCcNaU//u+7B6Y9B9mVqRL0yACpMPIBAEXIvNo5uOQ/wLzfILjkPxjvUfbqE30sHlBPwfzco/CkdqTjPTWnZwpRdxJXzGvC4cpi3O//GwCjzZqgt7QHiKWrl2/XW7gAXTJSDxCHDzcdP8r+mSugqbtxJ9DWJrJAtIizp1uEGSCdTkxYlKkbBhA1/01/Fz0Fpz/4acrfG3fPPSKipuISO6JOTGyCXpITQINdAiuGoDAJJhIHiE29VY6oyYFIW9WaJpM4kRGN6zAi5ir1GuS01ykRdVq7iw+EZkhQJNd1a+G/7IdV4QFQjOUpr91k9MQwaRti8GEvitAXu5NPBs0ASNAnw7oVlzzKXWWTAWJlQOSHUq/dvQqdTcLFm8B7Th+HxVsqcdaU/onnkkO7XI+bRTFDRJIAcdGyOwAS8sgAqYQ58Voo1aV9LwDg27oQAKDm9cb9FbMgw8CX+gh81/ce3tamAJBwv3o2sNfc/4CwH1sTpRrdZQ+IyCnuS44FzlQ+xG/iZ0PX2yY7VBzuiVnETdXVv9d6CzNAJD01u8ZQApAkCXPG98aHK3fjtIl9W/Q7iDob97ikzgihVKoBotUA8u3t4j0qdQ5ihoeqGYl/U+Clb2uxyajEsm3OLJ8wAyBE1EIMgBB1YuJE25i+BYgsTpTAQhSBNAGQyoaY/didWtoYMXuE8Y+2pWoGRkmb8H3lbTyvHQkjsdKpxtUQk4gaJwdy8YY+DScqnwEAPpt0Pw5e+RsgmshiyC3DxpJDYGz8JOW1PSQz+NiAEL6VhmC8sdr82QjA7zOvs43dlIlZIbLkff30yraw5LsyOcQgx9i+hRjbN9kMfVBpcmLU57HkekiPPPtx36IwtlQkewhIrt29zqnSMF/fQ6rGSGkTVhn9YLgSioOIQalcBwC4ufoMPKvNsJ9bEB+d+gYBiNVxQrzJJcpoe85obNbL0F82A7IhKZbSMLa16O467U0g7t9WGSodRYsDIB4ZIGriVv2BcyYirhlsAkzdjjsAUptYCCZHqwEkA4LPLtyMh+atw8+OG4nhPfNBHZ+YARJX40DMHJPXJu51d9c4q02wBBYRtRRHUUSd3LNXTMcvTh6Ds6b0h6aYq4Rv9P8PJ6+6CTlCbWjL+t3JVbvxJq7Gc2SPtFGzTTJpuo5bfE/gXN97+ItyPwp2mPXzVX8eSnMD+Nlxoxo5AhFZFFnCzfFLcVnsBhwa/SOqh54E/GQNcNsO83/XL0VDXn+sFlZQLyg6AQBQlMh0iCCIJ+ST7ecDiNu9Pxq7KRP7W6TLBvHKtrDkhZIBj7BfyZhRMrxnPu47czweuWiq5/M9C4IYkiipZfUcsbgnGkpyA3CrRDKA8lbwJjwd+BX8MFcuT5eX4ZXALVgZuhCh3UsAADvV3JRjeBHf/+QBxVm9hqi7igUKcVjs/7AvEZAMIo6GFpSnyqQlARBxoU1LAwQdXRPXFKXy6AGiSWaQXZIkBj+oW3IPd9YaZg+0eyN34XD5a7svzjMLt+CdFTvx+7mr9vcpUjOJGYVG7R77cS0SARBXuW2WwCKiluJIiqiTmzqoBBfMGISQX8FG/1B7+8Cd7+CVwK0p+4urfVuWAdK1b2TbW1wzMFTeBgDoKVXa28t69cPC22bjysOHpnklEbn5FQk1yMFcfQq2GOUpJaUAoDDsx1+0U/Dd2G3AJXOxuOxkx/MRKYQdSi88qZr9QZ7TZtq9KhoLgMwaUWY/TnfpDGXIABF7eWRz7f3OlP443NVHxCJJEl646hAsvG02pgwqcTznnmjoU5SacRZFAO+UXYAthtkPZZr8LZYHL0IJqvEz31MYJ29w7L/P8F6JWRByZrWEAwqeu3IGrj1qOM6fPjDT2yPq9qwgqNj7rS7a/Ablbve+8S0eeM/MdtPcjWqbICaOM7v4sLEtMkDiknc2N1F34S4r+oF2oP34kcB9mBNa7HjeKqXZUeyri2Hzvvr2Po0OSZyHKFj7kv04BvO6t7vGuZCzthX/xhFR98QACFEX8kXhcY6fh8rb0QNVjm0NQhCDJbDaVnUkjvdX7mry5wyYTdCtUjOiisIxnj0GiCg9RXYOd3oWpAZAzp02AOMG9MCMo04F+h8EOeT8/tVJuZAlCbeol2JU5GH8VL0cfisA0siqtEKhJGG6r28wQwaIWALrqiOGZfxd2SgM+9EjL2ifv8WdAdK3KOzoNWV5tfQiHBr9k/2zX9IwRV6JYdI2x371SgE2GL08z0Es4wWYQaTJA4tx/dEj7MwaIvJmBUCihnltCSHWapNDWyrq8bd5a3H/26ug6YYjaNvUSf64sMJX6+ILZ1raG08yUv/9NInVqql7cy/MeEmfgQ9yjrF/vhGPO57vaJeZSXfNxWG/fR97XNkM5AyQx/dtAQAs15MLYPbVJct25wd9mDG0x/47OSLqkniHSdSFDCzNxWPqbMe2cfI6x89RVQyANG2UKAZPuvqNbGv4v3dW46KHv8B1Ty9q8mtVzUCuq4TZp9oBKPYoSUNEmflcd9A98oIp++QEfHjhh4fgmqOGAwDUPGdD4SW+sXaAIALz9dZEvXVTJvbfEMnZNEHPkAEilsDKC7behJg7uOEOzoT8CmYK2StW+QGrHOLlsevt5w6QNyJPMq9Zn2oH4O74uTg18De7XrebO+OFzS2JshdKZJ1ZGSBBKd5qARCxlJZhGC3q4yGOM+MtaKDeGbRNDxBmgFD35l6YocKHh4puxJ/VUwEAfdXNUNDxG6AvdzX0JrMHSABxDJO24NTICwCAZ7RZ9vPWvMOsEWX44rbZKMtPHbsTETUFAyBEXUifojA+1sc6tn1fedt+rOsGokIfj1gTb0ajrdgDZMX2atzywtKUBmddyatLzNXQry3d3uTXqrqBAqnOsc0naY5mx0SUHZ+Q6XDaxL4Ze2jYr8kptMs8AcAXysSU1/kSmSU/mDkE//fdA/HoxQc1etx0l85ghvru5fnJjJXWvAF0Z1q4JxoA4IDeyRJWVgDEuil9S5+Kv6hmqbARkrl6TzMknBu/Ff/QTsSqivS/OxxwN3ZnAIQoW1bZvahQAqsm0joBEDHGYaD1eoBEu3oApMUZIKmTuKrMAAh1b17jkrim4+/qifbPp8if2I+NDlprr6UZYl1RXNPx38BdeCf4U3vbN/og+3FDzPyb4VckO+hPRNQSDIAQdSFhv4K39Km4JnY1Yv1nAAAMJAeOqm44bkCbWppJzB7RW3gfe9NzS/Dkgk04/cFPGt+5k8oNNH+ltqrpyIezju3j6tGYMpDNgYmaSswAGVDinZHglhPw4fb4hXhdOwgPqKdgsTI2JQBilZAK+RWccmBfDCzNruG3l0w3d4os4aWrDsENR4/ACeN6N/t3uGUTACkXyoVZZavEbMB9RgEAYIC0C4DVvLLxAFNh2Hl95M0tUfaSARBzgjyIOGqj8VY5thjwMAznz02d5O9OAZCWZkZ7ZYBoErN+qXvzKhsaVXXUINmjbKS82X7ckQoUiIsFm1MOuauLRSOYKK9xbFtojLIfW2XDfDKnLImodfBqQtSFmKucJbysz4A64QIA5k2xRdMNRx+Ppg7GxNUrLU31X7rV7E2yeV/HalbXmnoIK7XFzz0bRrwefsn5mi1GD5R6lO4hoszE701pXnYTSrlBBe/pk/DD+HW4Xz0bPp8vpRZ1c3pVpO8BkvlYE/oX4ZqjhmeVvZKt1B4gqfvkC+W3kiWwktemvXYAZCcAMwCSn0WZroKQc2VzY43kiSgplPgulqESAPDXwJ9wpfHfFmchAK6Ah2E4MkKaOskvlsASF9F0RS1dGGRlgDyqHm1va5DC6XYn6ha8SoiaYxAJr2lm1m2VkVx80pECIC0pH9gt1O50/LghNNpzN2YIE1FrYQCEqAsRJ9Z8QfOmKSglAyBxXXeswFOb2ANE3Lul47jWrGPfmtxBopYQVzSLNbWzoURTa8VqcgAFoY75uRF1ZAOF3hyDe2SXpeFu0q3IUkqGRKCRoIWXdDfn7VHeTnK9H/fPgPNzsPp0iNezfTBLZBVIZjBbCRXg3R/PgtstJ4xy/FwQdgZAcjvo3wSijsgKGH5jDLa3XaG8ik376vHIJ+tRE2l+Noj7GiVO4rWkBFZcM1olQNNRxVq4wtsKgGwxkn2XGpS8Fh2TqLPzWpgRSQRT9xjmuEm81+1IVxgx6MEMkFRKIgCyxeiBy2PX4Y+ld3jul8d7XyJqJQyAEHUhklB2xBcwy5YExAwQzXCswGvqzZp4U9zSDJBgB1ztq+sGTvzzx5h011ys2VXb4uM5Up+buDRQjtWkbAuEwp4TlESUWVleEGP6FKB/SRhTBpZk9Zpc14oznyylZF8Uhpten10zDMcNfXl+ED85diTOPWhAk4+1P+QGk5+DVdZv4756e5uVAWKJKTkp2R1zxvfGD2YOxVvXzbS3ufcpZ3NLoqyF/OYt3P+pp6PmgHMAAD6oOOPBT3HnK8tx+0vLmn1sdwaIkaEHyOZ99bjg35/jkzV7PI/lHme2NEjQlcmJEljVSAbpY3Io3e5E3YJXaU6rJ6UqWSUAk/2POlKgQXMEQDpSaKZj0GPmWLLWCOMt/SBsVhMBLdfionwGQIiolTAAQtSFiGNE2W/eNIklsFraA8R9U9wSgWaUjmlrNVEVK7ZXoz6mYdHmyhYfT/x8m7pqUvEIgEDhjTBRc0iShBevOgRzr59lZzE0xr2fVwZIUU7TAyCGAUcgZeqgElx1xDD4OuA1EXD2MrI+k5jwd2SfRwAk6JMdfVesx+JNbEHY3QSdN7hE2bIanq81+iJ47C8BAIpkYF9dBAAwd/nOtK9tjKMJuuEse+UugXX+vxZg3qrduOrJrzyPFXf1/bAmLjuCfXWxFmXKiIxWqLtjZYCI5Xwgdcy/C0T7i9e6LytTX5XNhRNBxOzn0pXaq47E93sZPjEDRO1AgZn95fHPNuLm55egqsH7Oqtp5r+bCnNsWZ3Yz13yKi/Y9LE2EZEXjqqIuhDH4mSfOVnevyD5NVd13XHz2ZLVKC2tYiCu7miNG8fWYLSg0acXR+3XJn7WvnhqCSzJzxXSRM3lV+QmNdp2Z3f4ZNkRuAj45Gb3rRADKa3Z06MtjOqdjx55QRzQu8CzT4lVAsuyJzwEkiQ5bmCt9yiWvVJcsxqjezuPQ0TpicHEQED4XsEc44njmZ3VEfzzo3VpJ6HcUnqACPN2mmsss2GvuYK3sj557F+8sgx3vbocQOo4s6P0AWmIaZh011yMu/PtVhmD1gtlAcW/HZpu4NM1e7IKtFhN0CNI9qnyWv1O1J14fQciicCqKpvfFcdiP4/7rTW7ajDlV+/gmD98uF8DEY4MkC5a/s8wDOysjqRsVzUdt734DZ76fDNeXbLN87V63Px3UxNTklZg370ghiWwiKi1MABC1IU4Bok+c1CYI2t2qQRVM+y6qUDTM0AMx6rAFmaACBNpUbVjrIpp7WZ14o1/UzNAJC2autHHDBCi/WVwj1xcN3u4/bMsO4PMRWF/s0vSeWVHdFRBn4JPbzoSL199CIK+1IBPFAFUG8keK9sKxgNw9kCy3qNYVqxQyJ559OKDMKSMte6JsnXcmF64fOYQPHzhVEBOTg5ZARDRuf/4DL96bQVufWFpVscWF4AYcAZEtDQLRfqXmH3nKupiePiTDfjXx+tRVR9PKf/ZUcZ726oa7MetcU7imFEMaj/5+Sac+88F+P6/P2/0GDISq9qh4GNtDLYbJVgRHNvicyPqzLwCIFYWqiaZ97oBKVkCy+v+bfn2GsRUHRv31mcdCG4NqnD9i7ZSf8mO5q8frMW0X7+Lxz7b6Ngu/jukzwAx/920RAaIFSh2L7Zh/0siai0MgBB1VdZkuRpBoWxOpmu64cgAiTXxps+Ac1VgS4gBkPomNghvK+KYWWtizw4vzoBKE4+nmYNATbhMy8wAIdpvJEnCdbNH2D/vqY3BL5Spak75K4ssd5wMkGx+f8Anw6fIaZu+L9STn1NDqCcAIOhP7muV95IkCY9dchD+cu4kR8+PQ4aWNuvcibornyLj5hNG44hR5Y4AiA+p46m1u+sAAO99u8velinL1V0CS08T9NhXnyw706vAHHOKPT4a4lpKxkhHCYCIAdq6qJphz+ykW+Ty4tdbAQBfb6ps9BhWCSwNMs6P34yZ0T9Ck8MtPjeizizTEEVLZIDkIIICmNe5xjI8WrMPUWMZbeJ1oaX3zR3VfW+tBAD8/MVvHNuzqYKgqVYGiHk9rrPmA1z/5v2KeR0kotbBAAhRF3Jg/6LkD77E5FL9XiyQLsA5yrtmCaxWygBpaXxAHAx1lIZ1YlZLrBWa1aktyShJBEDiSE6yWn1diGj/610YQs/C5HewKCeQYe9UfYuSN3Bi0MGndPwAiMVa5e32sT7OfmwHQHypGSAAcNjwMswZ39vx96Sj9j8h6hQcGSDpJ+SsldS3vrAUB/36Xeyt9cg0hXOizjCMtNmxu2uiwmvMhui/fn2Fva02qqb0DOkoJbBEddGWn5O4yEX8vIqb8HfCaoKuGzIMyIjDlzboTNRdZMq0NRTz+3WC8jmWhC7DJcprnvdbjvu7VgrC/uPDdRj98zfxwHur0+6jOioBtMqv7TTEa3+6oJSRuNdVDWd2sTvrZ3APZggTUevgqIqoC5kyqAT/umAK3rtxFqA4swWu8z3n0QS9aZPy4t7um9qmEm8WO0oARBwzt0aNWPEYTe0BgkRjuAY5WVrG72/ahCsRtdyrPzoUJ47vjV+dOtYRxCgKNy0D5J8XTMHgHrn40zkT4ZOTw692zwBpQhmvw4aVeW5/QTsEn2hj8KR6JCLhXgCcJQy83mMXLYdNtP9JQr8dqweI126J/z6xYBP21EbxxIJNnodzBkBci1+EH9bvqbMfx1Qd5/9rAV5alKz1XhdVU8qldpQMEDGTpbaVM0B0RwAk+XeisdKxEqwMEGevKaLuLOMQyVUa+CLfW/Z3sS6qYs2uGgDOa1hzAyBPLNiIX7yyDPUx83px9+sroBvA4595X0eB7pEBIvbCsz4bwHkdTLeoUFdTqx0Azn/zG44egZJc3v8SUevgqIqoizlqdE+zlnquc6JKho5IXHcFQJo2CHSvCvR6nI5hGFixvRqPfLIe89fudQQEmhwcaCOO1Sqt3AS9qT1AoJuDyPWBkXhFOxh/V+d4NiAmorY1tm8hHjh3EgaW5qIsLxlYbmoJrNG9C/D+jw/HyRP6IKCIPUDa93vdlB4k4/oV4ifHjkzZXoECfC9+K25RL4Uvkfnh1QNE1FUnA4j2O1m2J5B8dhP01N3csc502RjugIc4NhLHMk8KAZSYqtsN0S21UTVl1bNYhjVbu6ojuODfn+Od5Tub/Np0xPchTto1l2NMKxw75JgczJxpYmWAiBk9AWbHUTcnZgP4XRmzhj/H8XMJauzv4ml//QSzf/8hlm+rdow3mhOEbYhpuPWFb/DwJxvw9rKdjgVu4UBqbzSLmiYw2hG0tJen5aDBJfZjMSvQ0QA+zXyDnugBEoezx4ckBIGvOWo4iIhaC0dVRF2VLwDcugP4zqMAgBDiqIuqiMRbqQRW4vE/P1qHwTe/jmG3vI61u2vTvnbeqt04/v8+wp2vLMc5//jMUYO1yf0x2ohjtUorrFIUm382vQeIOSg0FD9+FL8Gv1a/h6A//SCbiNpeSLjRzQs2vweIWPKpvTNAmlqCa6JYatHreIn348wASR1uzhpZhpBfxtRBxU36/USUSk/c0mUsgSVLjkkvMQt4b23UnrASJ67cTdDFCT0xoOI1nqyNqimBTjHosmRLJV5bsr3RBSJ3vbYC81btxqX/WZhxv6YQgzqtnQEiHlu8vtdEMv8eOdEDxOdPTgb6ufCFujkxAJIbdE6Ux4NFjp9zpChUXUNFXQyrdpr3pAvW73VknGbTA+TrTRV4Y+l2+75QvHeurI+hWvgu5wXTN+hOd11ob2t21eDge97Ff+ZvaPGxcoRxsRhc0rIoO7Z8y15zX3cGSDuPi4mo6+Koiqgr84eB/tMAAGFEURuJOwYna3fXNXsFiHVT+6vXzHrPqm7gqie+sp93H3fJlirHz84eIMnHO6sjOP2vn+D2l5zN1PYH8ZRbIyijNZLlkumzl3QzLRhycpKVGSBE7SskfAfdKxGbwufIAGnvHiBNu6401q/DahQvXq+83mNByI9Ftx+D//5gepN+PxGl0hJNZH1S+rGLLEmOMaA1KfX+yl2Ycvc7OPcfn5nHEpueG4aj55u4UKRByGjwWlVdH0sNgFi/MxLXcPIDn+CqJ79yNGf3snlffcbnmyPd+2guNU3GrxjwqYnEMx5DSmTvhAPJci9BZoBQNycGWnMDzmCDFkxdQOE34li/N1meLy/oc1yHGlvgVh9TcdpfP8WVT3yFT9eaE/Sq4zuto7I+Zv+cKZtVDAx3pAyQO15ehp3VUdz+0rJmvb4uquKP76zCO8t3Oj+buPh+k/uLASRRLO5sgm4pbmKGNRFRtjiqIurq/GbNep+ko7ahIWXgt2ZX+qwNN8NxU5z6vJX6+vcP12LSXXOxameN/Zz7xk8MMIjBgbeX7cBXmyrxn/kb0w6Y2oqWZmVkc3ndEFv//cv7azD17nfT39gnAiCSwgAIUUchljNpSeaGvwP1AGlqAKaxjBHrebEJerr3GPIrXOlH1Ar0RB8QKwPEK6tClsyJK7c3l+6AYQAL1u8zjyW+1nBO8IlDI7GkU0zTMajUWY4mrhop52EFSrZUJMc+e9I0Y7ffWxusnG7qivDGuEueWuNlcUKwutEMEHPfkBAAYQ8Q6u6cGSDOiXI9lBoACSOKBz9Ya/8ciWtNaoK+Sbgv21tnXpvEe9b6mIbKhuQ9baYyzh01A6SlVQ6e/2oL/vjOalz6n4WOcmBiwFfLouxYQDKviSX5zr8dpXlBr92JiFqMoyqirk6oj1pTXZ3ydHVExcWPfIGrnvwq5Tk3Rwksj5tra4Dz69e/RUV9HHcIK0v21sYc+4qDL7FUlGN14n5ujq47AiCt0ARd+IxU3cANzyzCIfe+h+pIHPe9tRJ7aqP44zurPV8rJXqAiAEQd+o3Ee1f4Ub6WmSrY2WANO33+xvJGLFLYPkzZ4AQUeuxM0ASARDv8ZPkKPdk9b4wXC3TVVcJLOfkfvK4DcIilZiqo4dr0iqm6SmLZawx3oY9yUnGxibj3BnErUHTUyfnXlm8DSf830d4dcm2dC9Ly501bB1eHNM+sWAjDMPApY8uxPf//XnKOFpO/NsFgwyAEFnE4UPKfVDYKwASQ0Vd8p6zIa45A56NXG+27GuwH1vBDTHIURdVUS0EQOIZKgY4eoB0nPiHo8dGc4i9PsQFg+L1Try+pVvQKFll/3zOjI8rZg0BABw2vEeLzpOIyI2jKqKuTvHbN8Y1tckAyMDESr2Ne+vw3re78NqS7Y2WARAHb7qRurLPPajcUR2xH++rdwZAIqp3BoijaVor9OFoCqO1AyCuPifPf7UVO6ojeGVx8uY63byg7JEBkpOh0R4RtT1nBkjzh1B+JXN/jP2pqT1AGtvfej/i9UppQbkwImpcMgMkOe54Y+n2lP0iQkbCMwu34JevLHcsbjEMwzFxpRuGY+wnjtHEbJKoqtmTX/mJScqYqqdM8lsrhPcJE5SZJiTd2cOtVUbGqyTOI59uwPLt1bj6ya89S5S+tGgrXvh6i+fx3ONh62dxRbSuG4jEdbyzYic+XLXbUaYHSPYACQv9pfwsgUXdnJgB4r4PUoI5wOUfYk70blQZ5n1tWIo6grMNMd35fW/k/q5CuF+1vsfiPWFdTHNkv2W6XxSvCx2pBFYL4x+OumTi9duRAeJaBOh5mMQ1Lyccsrc9eek0jOlTiC9vm41HLjqohSdKROTEURVRVydJUGVzVZ5eYd64yVJyJbM4KGlsUCiuEtQN5+o/6/XiQLAwnLyJq3cFV2KOAIh3BkhrlKFqCvHtZ0ppzpYjA0TzHgSnW91n9QDxBZIrKrmKmqh9hQNCVkMLJvXF/iEtOU5raHIGSKMBEPO/P5g5NLlN4rWLqC25M0AA4MonvnKMyaKqljJZ9+9P1uODVbvtn2Oa7swAcZfAEl4uLpqJxHU7IJIXMgMgcU1PbYKeCMBUC4ENceyparoj6LGjKrmQxr1vS4iTc9Z4dP2eZEDCPWG3cW8drn16Ea7/72LP0rHu/a3j7651rkQXz9+dGS1bPUCCyXEfM0CouxOHD2IWLgDMGdcb6D0By4zBaID5vSlAvTMA0sQMEPGaZX2vVVfgV7z2ZbpfFDPDvMoSdlbisFEMeoifrZbFokIlUe2gb0k+7jl9HD766RGYMczM+ijNC7Z7iVgi6npYT4WoGzBkH6ADp229D3/ArxD0KfaqMt3jJjDtcYSxW3VDHJc88oXjeUWWHCsCxZU6mfp5xNM0jGyNLIymaMoKoaYez10f2iLWyRdZJbD8QgCkpTVbiahlsulrkQ1fJ+4B0ljGirVas29R2N5WUZ+5+S8RtYxXBgjgXHzSENM8V+K6y5nojn5vhmssYx7fMAzUu8Z16xIBhLxgMgDirntfUR/DaX/9BF9vqrS3WWMbwzBw0gOfYO2uWjx35Qx8s60KG/c6+6TFNd2Riddc7vr0hmE4slI03YD4a8RrWFWDM3Bh7e8+fkzV8c3WZPmu+pgzALXX1fvECoAUhAMAzDGgWMqHqDuShAiIOyAoLiDREut6T1M+wkOxsfb2pvYAEW//rOud+L2Na7ojwJJpsZ74XEfqAdJSYgmtqOq9iDHdfa/jOIYGSIDi8+Ocgwa0wZkSETkxAELUDWwsOxwjt78MSTdvpIJ+2V7FKwYmGms6Lg5ftlY2YGtlg+N5WXLebItjvUzltcSa0mJ5BncQIqbqMGCkDRq0lLMHSMsHquJ4L12mjVgnXyQZ5s2vLJTAiu7ngBAROYW6ZA+Qpq0wbux8rYCOOFGxzfW3gohalxUAETNAhvTIda5U1o2UklJucVV3rGg2DHcjX/O/MU1PO6llZYB4lcB66MN1KROQ1phoT20MK7abpVqf/Hwjnvp8c+r5tVJmsHtC1D3edGeuiONUrxXf7gU7mmagQdccn1Ek7gyA1Loa0lslsMYN6AF8tQMA7M+DiFIXjYmLSeqMECABOmRHgKImojquQ40FIjSvDBDNeX/ovK46v/tRVbPPU1wU2JHiHy0ddYrDQHHuIBr3DoBYn98NzyzC6p21eP6HM+BXZPuaB8XZA4SIqK0wr5aoG9gw6GwAgGIFQHwyfIkMkEialRueGhm9xTXDMdgTb/TcJbDcr7NE4t4ZIJG4hsPvex9nPji/zeqoimPYxoJBWXEEQLzLHgTS1He2MkAMORmnFgeWRLT/BX2tk7khfu/ldi4P1dQAjFiT/oRxvdC/JOx43qvcFbPXiNqWDisDRJj4i6oppUrdJaXcYq6sDcNwDv2s8VemRS1WBkhMM1Ia/3pdC6xtYqB0+fYaz2Nnmxk8d/lOPDZ/g2cvD8C5yjumaSnn5c6UEcepXlk07mCQquuOjGYgkQGiOj9bkZUBEvT7MH1IKQDglAP7ep4/UXcU8qfPAHlDn2Zug+a47n21qcKxgK+xUlSaljqJ7yxl5cwAEYMja3bVYsIv3saPn10MwNnDqCOVwGrpsFOWvTNAIml7gJj7PP/VVizdWoVP1+4FACj2Yj+uySai/YMBEKJuIBg2G8P5EgGQkF+xJ+DEif4bn12Mn/1vSdpBWjZjN7Guc1z3Dmy4qY4AiJABIgyqVu+sxbaqCJZurcKybS1bEffopxtw58vLUm6MxRV/rREAcdSRFd6jWPoh3UcqJwaFkuLHd6f2R9An45JDB7f4nIio+cSshlbLAOlkPUDE8z14SCk++umRjiCIeGN8/3cmYGhZLn587MiWnygRpaVZGSCSkGEQUVEfc2YZ7KxuJACiOjM7DBieE1l1iQBIQJExdVCx4xi5AXMy68uN+7B5n7OEVbrfCQDbheDMqh3eAZBsgqlLt1Thsv8sxM9fWoZ3Vuzy3MfdA8R9XPdCG7WRAEhKD5BECSyRuweIeyW6FQCRFR/+ccEUPHbJQfj+9IGe50/UHaVmgCTHG3EjmQUn3kvuqo447l8bDYB4ZO+7A6ANaRbrfbWxApG4jv99uQW1URU1keT1t6OWwNq4t67xnVwMVwlBi/g5pSsDDZi9nnTdgJwI2EsyAyBEtH8wAELUDYRCZgAkiGQGSLIEVnLgsnhzJf67cLOjZrHISDtdn1RRJwRA1OwyQMSVNZE0PUC2VTV4Pm4qwzBwx8vL8MinG1ICKeJgLdP5Zivd4E8sHZZuNePg+BrzfANmY7jFdxyD/iU5LT4nImo+MfuhJUvoxPrJQ8vyWnJKLXb0AT0BABP6F2W1v18oOWFNEopZLGIGyJmT++HdGw/HsPL2fY9EXV2yB4iz+e8+Vw+JHY0EQOKu0lbuJujWcK0hEVgJBxQ8eN5kxzFygua5fLGhAv/8eH2j524FCsQFNO7MFYtX8MHtw9XJpu6frdvruY/uKoHlLq3lnrCLO0pgpY7bNI/XuwMgEVcPEN2ZWgM5McaWFR/ygj4cNrzMztYmImcWLgD7+3H1EcMQCATMbXBeO+Ka4ZiwbywA4iiX5VECS00pgeVdXisa1xwBkLaqXtAcVpYeACze4n3Pn4n4VsQFg1qapu/u62tcM6CpMVzmex0AIAU5RiSi/YPhVqJuwB8wV+cGEk0Vgz4lWQLL4yazzrVi0JLN4pVvdySDCqrQLDPdzSxgloR6+JP1OHF8H8cNY0woFSCWbWhJdkZVQ/IG2z1/Kd6MZirvkC3x4xIHyOLna71fTTfw9tLNmBbciJLyvhihrgIA7Bl4PEZIUqs0/SSilhEzQNKVVsmGuAp46qCSFp1TS/1g5hBM6FeEMX0KstpfETJArMuaIwDSzj1NiLojXTJv6axxnuU/8zc6ft5R5Wy87ebu7ZHSBD3x2FokkhtQHJNpAJATaNp4xQoK1Ea8x54XzhiElxZtRUV93N738/X70BDXMGtEGQDgg5W7MG/VbsxbtRtVQsNyd6Nx8X1Znvx8Ey45dIjj+dQVy03MANGNlLKy9XF3AER40kiOOWXWwyfylBIASYw3fnzsSBh5o4C5gE9y3r+5r2mNZ4CkZu+LC/VUXXdN+htmNoMsOe5hVd1w9PnpSCWwxOFrc0qUiu8l6nrPFvciQCsApEBD7t5vYKwVrvcFfZp8DkREzcEACFE3IPmDAIAg4gAMBH2yXQLLXaMYMAMMkbiWMumezdDtjW922I+tFR9ilknILzt+BoA/zF2FmqiK/8zfiEGlOcLrvZtFtiQAsrM6eTMsudrAiWNTMWDzwcpdeP6rrbjr1LEoDGd3Y2oYhmOAKa4YrI8mj20NPI/+/TxcXvkHlPg+sJ+rMPJg5HNQSNRR+MXJ/xbczIrX3YCvfVf4+hUZhw7vkfX+YskJ6wZXjHnIDIAQ7XcRORcAkA8zw9QnS1B1A+9/6ywBVd3QWBN0w1UCC+hp7MXvAg/gv+rhWKufDCAZAAkHlJRJyZxA024v1+2pw60vLPVceHLbnNG49LAhePObHQDidmP1sx6aDwD47Rnj8ef3V2PzPu/M4L2uDBiL+B5lSXIsjgHMSdCGmIZfvbYcg0pzHWX+vCYy3du8MkA0zXAGQMTX6Mn37vNxwQuRlwLXPZg4HpEU7wwQIH2WhhdnsMT8vroDoF4ZYkFZcYztYqru6AHSVvEPXTdQ2RBHSW4g+9cIn0G2fZVE6TJqxEw48bCqrtv/Brf6nsBh778JvbC//byc074LgYio+2AAhKgbkP0h87+SAT/MwIbPowSW5b63VuHbHQtx96njcO60Afb2bBY8iwM8a1AlBhPygn5E4s4VeTWJ4Mb6PXXoVxxOeT3gzMhoiGnQdCOrlcbzVu3G7poozpzcDwCwR1gNKK7oAZw3o2Ld7Asf/gKAOVF5/3cmNPo7gdTPShx8i6u/rXrb6/bUYURgi+M1xVItV1MTdSBi83KtBTezitx5y5oEfTIO6F2ANbtq7eyVdCWwiGj/iCiJAIhk9twoCPuxry5mjz1G9crHtztqMmbjAqmrpQ3DwOO+uzBI3olpgW/xbvVqoGEM+s2/Ha8HPsLy+BRIDePtgIsEHeOrP0ApCrEXhQCAy5RXcZ7vXWzRe+B29UKsNZyNvRdtrsSizZWe55ObyC7x+8zrSlzTUSuMz3763JKM72dPbSIAUr8PeGgmULUZGHIEcoZfi5t9TyAOH/5PPQMnPfCx43WqZuD1pdvxxIJNAIBfnzbOfs49YfjAe6tx/9urHNs03bDHetZnoxnOrBBHCSwhA0RhQ2AiT+UFIcfPjhJxcrIHiFvUlbGRie4RLFFdpZ3cQRRVMxD0AdF4+gwQvQVZw5lc/dRXeH3pDvz+rAk4fVK/rF4jfgTNygBJ814cgSbdO2h0vPI5AECu2mw/L408tsnnQETUHBxhEXUDkj85YAwihoBPtmvZe2VTrNhulrG65YWlOGlCb+SHzBU32fQAEVe7xDUdf5i7Cv/4aJ35u31yykpBN3GVjXiTKZaNemLBJvz2rZX423mTMTNR/iCdC/5tDrTG9yvEiJ75jnqs7ptYrZESWF9urMj4u0TuT8pdCkE8B+s8/Egt/+Bv5wbJRJQkCZP7LSmBldOJS9pJkoSXrz4EdTHNzogTAyCdOLZD1GlF7QyQevhkCfkhn6P/R37IvOVrNACi6o6xkG4Ag+Sd9s9HRd8FfjMQ/QBABg6IbAR++xx+4jsFa7VylKAGJ377NE4MAXVGECHEoEjm8QYqO3ETnsJl8R9n/b7sAEhizBrXDMc4rjF2Cay3bjWDHwCw7n0ctO59HJS4C54mr8BuowjT5BVYbfTDBbGf4a1lO/Cr11bYxxEXxbgnUN3BD2sfazI0J6CgOqJC1Q1HLXwtTQYIAyBE3orCfkweWGzfj4kZIEiUjvMMgGjOAEYmjhJYHk3Q45qRkgGsagZWbK/G7+auErbpzibowmv21cXw+tLtmDWirEX9HeOajteXmpUX3vxmRxMCIKn32nVRFapmoDCn8UoH6T5Cd/lEi6oZdh+l7UYJekv77Oc+1sZgBsv+EdF+whEWUTegOAIgcYT9SsYAiOjDVXswZ3xvANllgIjlFeqjGv7v3dX2z+FAMvMkHXGVTUzzDkis3lULALjk0S+w+u4TGj8pAOt212FEz3zHahx3Uzbx/dVG1ZQyYFsrsm++7l7pk26FTVTT7VWCIaSWavBxNpGoQ2rJar6m1sjvaHyKjMJw8toklr1iBgjR/hdR8gEAw+UtuFb6H3ppElYrfjyiHYcY/PZClsb6m7mboKuagajhR1DKXDrrcvklwDVcyZVS+2/MkJdBhg5d2LkY1eglJReYqFCwzugNDQryEg3VA3YARLfHmRJ05CCKOoQhKkAtqpELQMK+uphZn3/PyrTnPlVOTlqWSitwnvIOXvjaWRbQUec+MQEqSc6g+AHSBpyjvIdP9LHQjMMQ08zPOifgQ3VEhaYbiAvHMQwA0RpA9jt7gPg4GUgkuuOkA7BqZw0OG94DD7y/xt7uuKeUzWkt7wyQ7AMgjgwQjx4gmq6nZADHdR0n/dmZRRZzB0CEMePv3l6JJxZswpg+BXjtmsMynk8mG/fW2Y+b0itSHL5GVR2GYWDMHW8BAFb88jiEGxmjpisBmz4DRLc/SxnO++E6hFk6lYj2GwZAiLoBn0+2b2ALpToUynXwKcUAvEtgicTMi2xWPNcIAQbxMQCE/YpztY4H8XzEG8U6j5t2dwDDTey7YWWm1AoZKqrr9bpr1eOqnTUY36/I3hZrQp3UlABImtfGVN0Ojpg9WpxYAouoY2pG2WTbdw8agOe/3ooD+xe12vm0J8ciTF6ziPa7iC8PAHCGkpiEiwDwm5OBf9VOtRuVey166YvdmKUswevaQR4BEM3OTl2iD8Z4eb253ZDxO/Us/Mz/tPf5DJ6N9WtXYrS8GUv1QVg49Gqcve5W5EpR/M3/BwRCORgrb0RRZAt8kvfFVDVkKP81ryevGQaMIOB73Nx3TVC2X/e5PhI7jBL4ZAl9jR2YIK/DdqMEX+gjzeM88wwCW780DyrJ0EtHQN7zbdrP8nB5EXbEJuNi//OYp43Hy/ohjgBITNNx8l8+hiLLeOHKGfb2W31P4BBlGc7HO1gWu9oe21kBb0038Onavfb+hy2/A3jvZUAJACf+AQCgGxJ8Pt6eE4kuOmSw/Vi8j3QsEpOTGSAydAQQRwRmD0zx+9vSDBA1TQaI6rHN0QNEeH7BejMDYtm2as+em9naIizMq41mnxknVnSIa7rj3LdW1mNYeX7G16dbAKSJgSJXnxDrd7jvdRskZwCbiKgtcYRF1A34ZAn1CCKION4L/hix1SH8a/TDAICIRxN0UdS9Wq0RmfYJBxQEGmnuKA7gYpoZHPArEurTDOx2VUdSasJaxHO3VuGIx99dG8GdLy/Dd6b0w5g+hSkpvbtrzNWLfkWyB7+6bmS1UsX9OUTTBJpiarIEVkgyM0D0UBHkSCU+0Cagt8IMEKKOqCUZIAcNLsG7N85C36KucePnLIHFAAjR/lbrL3X8HJMCCBgxHCSvxF81oCCcPgByv/8hTFeWY7K8EjF1lmMyTNXikBMlrK6IXY8cKYK9RgFKpBqsNfpCO+Q63HJ4T+C3gx3HjA0/ASet+D6CiKMOYVxYPAhLjKE4WFqOY5QvYc+BJS4XVUYOIjCb+JagBn5JMwMciVNRhH0BOIImB8lCdkdin97SPpysmI3SIcQ63h13P+7fPAIrItUADGwIfc9+7nuxm/FE4B5MlNdgau3PEFJiOFn+FB9FxzmaG++pjeKbrWap2CVbq+ztvYSyLv7KtYjqZpNfcTW1tWI7H/UYvvM1c6MWA755HgBQhxAUjvuI0hIXWTgWXCRKxwUkFa8FbsEQaTvOiN2Bb4whjix8a2J+V00E5/1zAQaU5OAf359iZ3OJi1usYMk9ryfL4Xk2QfdYEaPqOuqiyeuGbhgwDLMMnhWQBoCd1REMLDVLGL75zQ7846N1+OPZB2ZVGmtbZcR+LAZbGiO2wIypuuN+OZsedeliSKpH9oy13cqicVc72IuiLM6YiKh1MABC1A0osoxaI4xiySwdFdAj6BtZDWBYoxkgYuO4lrZvC/uVRnuAiAO4rRUNmPKruRjduyBtD43NFfVpAyDigHfTPrMxaK0wGP37h+uxYns1Hvl0A9bfc0LKih7rsynPD2FrpbnKZmtlQ1aDUvfcqFUKwS2u6Yir1qoYc1C4+8RH8fAzz+G/8Rl40c8bYaKOKF0JgGwNLctrpTNpf445CJbAItrvagLOfmivDrgJp2/8JfpJu1EmVaFMrkIPVEGOAyrCiCaCDQAwXVkOwMweeUnTnde2eHKyqgJ52GaYpaEqjAIAQFGOH8gpwVaUoy92JV826lSoL38GNXGrKUnAjbHLcaTyNRTo+OHhQ1EdA6752I/tRgkqUGC/1g8VxajBiJ55ePySaQCAHz75FRZuqMCPRlXh41W7sEgfBr+k4TB5ib2ieEBJDrZUNGAUNmCl0R9aoszWbcH/wqebC1qu+rwYEVQnfpOEx9TZON/3Dl7QDsHWxHvLk5KTin5JwxBpO8J1ZThPmYsIAojW9bSft3rmAUAPKRkMUao3Qcsx6/GLq7utRUeDpB1QhLJXWPsuAKAW4UYzpYm6s7Tfj0QJrAnSWoQSJftODizEN9Ehjix8K3ixcEMFVu2sxaqdtdhZHUWvQvNeUndlgDTENFTUi9UD9NQm6B7jwZhquEpnATc/vxSvLtnuCJjsqY3ZAZArHjcz1W54ZhGevWIGGrOrRgyAZJ8BIr7HmKo77vWzuf6ky6IRt2uuHiBW1QXr36Z25Bn4aPkmPCHPwSVZnzkRUcu0WQBk0KBB2Lhxo2PbPffcg5tuuqmtfiURpeGTJdS6aiSHDXMVWmM9QJqaAZJJTkBBoJEASHVDcgD36do9qI6odqqwl62VEUwe6P2cOOCdt2o3DMNAbTQ5iBVvXOcu35kS4Fm/pxaG4Vzp8+C8tfj1aePsn/fWRhEOKMgJOC+n2fYAiam6HRyxVsUsqcnH32LHAQBKcgOeryOi9tXC+EeXIqdbkUlE+0VFsI/9eAvKESkbB2wEhsnb8EXwSuAr4FphrciDuVfiN3sPsxdeWOKxmCPbQVOTfTziHreNhw0zAy83+m/DX2K3Ig8NCF7+LpSQs4SKIknYijI8ph0DALjz6DnYsH4fln80P+WYcfiwC8UYXVgGFJg96ILFfbFrA/Dzb4sBDDJ3NICntKPs1x1a2AOrozX4d7Wz98iF0jwMgnlPapXEsdytfg+f6GPxkT4OUfixVu+NofJ2xz7PBX8BfAMg0Zpj9aqFeBA3AgCqEv1IAoijUKq3XyNFa6GGzD8SASGjw1qEUy70PBHVGmGEeQ0lSitthkKiBFZI6Fc0UtoCwLmYz7qnizmqBMTtAIhYHlnTdWyuSH6vATPY4V4Aky4DxN0U/OkvNqfst7c2tVfS8m3VKdu8VAqBmcYCIFFVgyJJ8Cmy434+rumINKFEGJC+JLYYCBI/I/GzsO519068Glcu3m4G0YmI9pM2zQD55S9/icsuu8z+OT8/cz1BImobiiyhxhUAydGTAZCB0g4UoB4rjAFQ4YMfKkZLG1GBPETjw+zXtKTkCwAU5wQaHViJQYtVO2sbPeY1T32NpVsqceucA1KeE8tOrd9Th711MdSmGSD+4LEvMaKnc0X2/W+vQsAnO85JbCC6vaoB0+95DxP6F+Glqw5xvNb9WaXLYDHLfBlmvVrJPPZPX1oFJFZDimnSRNT+Zo8uxzsrduHMKf3a+1Q6DEcJLGaAEO13e8NDcWf8+xgmbcXHocNx0ajxWPT5UBwor/Xc/8q6B/GcNBjHyV84tv/++Q+xDckG4EbcnJzTDQkqUkuYDikzVy5v8fXH5JqHAAAb+hwI2VWOxStI2tiCmFJhAYg1OZlJ0CejLD+InYkAyNRBxfhiQwXm+Q/DIG0j1uh9Ul4TQRBv6gcBAC6fNQTnLbgHc40rkCdFsELvj9Fy6oTlkLpFCCGKCIJ2Q/YQXJOYsVpouoGT5U9w866XUBmQcGv8Epxa9S0eCLyL/vJuAMBcbRJmyYvt8V8dQsjPogQNUXfVWAaIKD8RlIxpOgpQCxnJRW3+6o2YJK1CBfJRLdwbujNAtrgCIJpupGSA/POjdSm/290XJN39b0V9DDuqInh2YfJa49X30ot1/QEyl8B66vNN+MUryzC+XxGeuXy6MwNEc2aAeAVz3Nzv396uZcgA0Z39LjXZDEYz442I9qc2nVnLz89Hr1692vJXEFEWfLKEWsMZAAnp5oBuTGwJ/hm8EwBQbYTxmnYwTlE+RY5k3swt+/YYYPqfgfxekA0VJ8ifIYwY3tKnoBY5AAzcP7UW69euxGsVfXGwvAIKdEThxxajDAdIGzFA2ol/aidgSNnQlJU0mbgbuvXIC2D26J74cNVuVDbEUZ8YIP7jo/W48ZiRKU3k3GWnbn5+KeYu3+nxmwwMlbZh1c4+mCEvw5nKh9hhlODP6qn49evfIi/oQ0/sw4HyGqiR2far7nvLrDu9eHOlxxGdGusBIq7CFEtTSJxMJOpQ/vH9KWiIaylZX90Zm6ATtS9ZAh7RzMzRvr4wJgwsw6jYXQDM8qNXHzkM9721EhtC59qveSf405Tj9JH22GWuAEBPZIDE4IOjCUeC1eDbPYnlLoUnBkZ7J4IZfiXztULsnTEwi9KjQb/sKOs6uEcuvthQgaf9pyGS0wf/2pYmXTjhewcNxFvf7MCUvQ+iAPXQIeMk5VNokDG1tx8Pb+2HfwR+h1KpBkOk7VhuDBIyQJzjTTkRALnM9xp6q1vQWwaeD94JxAAI8Y2l+hB8awzAj3wvAgBqjDD68hpKlFbajAEldUyWB7N8sRytwVvBm9Bb2oel644CHolhzoaPMCeRELZ4fQkw8HQAZqBinLQOo+RNkGMnobK+B3xQMVrahDqEkKcpOK7yDfRVDKzW++JzYzSeWbgl5XfHXOUE0y0ijKk6rn3665RqB3VRFbmNLIKrFAIgtVEV26saMHf5Thw3ppejPPSvX1uBSFzH5+v3Ia7pGB5bhjm+uXhZm4GY2s9epBdCFBf/8Vk8fuNZGNgjD5v21uOsh+bj4kMH4Qczhwrvxft8nP2jnIEks5emYWeAxBMZO1w0Q0T7U5vevd9777246667MGDAAJx77rm4/vrr4fOl/5XRaBTRaHIFTXV1dul/RJSZT5FTSmCFEhkgg7UN9s1YgdSAc3zvO/Ybs+9t4JVrYZzzNEZXvI/bA38CAAxRT8Yr2gy8GbwJWGru+xNnZQGHC31vo2H3cVi+V0dAHoqlxmBcrLwJP8wgR44UQQAqFunDMEjagV7SPrytTwEADJB2YYdRjN7hQlzauw/QP4SXFm3Fwo1mCYFh0lbUfLgOoXznCsGcygacrwirH1cC5wsxkjxE8DP/0/bPmiFBkZIDth/6XsZ6vScMKBgS2mZuXP9H4IljYAw6DCcsfR5XBnbhxvgVKe/XcMU7YmlW1MQ0PbEyyQwMqYaMhkQA5PrZI9J8mkTUXiRJYvDDRbyBZf9eov1PzLDwKZJjQUhDXLMDFPfFz8JP/M+kPU6e1ICgEUMfaS/WG71h2AEQ70lHa5GGz/XFdwdCFRn46XEj8e+P1+PnJ5oZu431hBPNGlnW6D4BRcbFhwzGLS+Yg9Jw4jNo0BW8aMzELmS+rwz4ZMiyhAiCdqmsh7XjAQA7C3viqy07scMoQalUg3KpEsuN5ASkNZa1SPE66JqKEdJWz9/1tjYZ8/QJeFI7EsfIC+3ta4y+GMsACFFaFx86GCt21OCYA3o6n/DIALECIKPrF6K3ZAYYxlW+C1Q69yvc+CYAMwAiaRG8ErwNADBv9y7UbD8dLwV+jjGyUNq9Cvhu4pL4qXYASqVqDJe2Yp3RG7uNImxHCXqvOQZhox9OVOZjtLQRVXUHYZbvS8Thw5PakdhsmOcf1wzPUs8H//pdXDBjEH587EjH9k/W7MFv3/wWd582DpX1ycVzugFMv+c987xX7sa/LpyKVxZvw+0vfYNhsRWYqSzBGHkDoq9/jHsq/gr4gIt8b6Fq5Z9QsHwflgZDyJfMz0t98BZAUVBshPBerAZPvn0k9EOegKyY19R0PfA0oeeJO5MkrunIQwPkxH12TDarLvg5aCSi/ajN7uCvueYaTJo0CSUlJfj0009x8803Y/v27fj973+f9jX33HMPfvGLX7TVKRF1W4pHBsiYLf/FWGkccvRaQAZ2G4V4WD3Wfv4q30vITWSBYNWbmPKrd3B6ZKVdA7kclbjM95rn79thFKOXR33j8Lo3MRnA5AxtLY5WvrIfH6Z843yyBsDb5sNTAJwi3o9/NDflWH0A3NWE0qJi8MMyWPbIGFn9NqTVb2N2Yn7hMt9rMIwf2RMBf3p3NQrDzl+cqQdIXNVRKpk35hXIgwEZ954+Dt89aED2J09E1E5YAouofTmDkKnfQStA8RftVPxFOwWr86+EP26OOz7WxmCcvB6FUj1yEMVtvsdxvu8dXB67HoZ6BAAg2sgtozsDxH0ZkCUJPzx8GH54eLKsakBJLal1+MgyfLDSLA8lrpjuXRjGH86egJ+/uMzODh5enof/Xj4dk+4yx3+aAYQDycm0cCJQHdcM1Nak1tl3C/jklMwVizWG22kUYww22j08rBI0AclV8itWCyVSgaAUhw4JUcOPsGROVj6hHoVb1WTb33f0yfhF/Hwo0PG0dgTOaCQzhqg7G9EzP6XsMACgdlfKpj7GDkjQUaDutbe9WX4ZjhvbC59urseC5Rtwvf85DFr/X0B/EJAV5MSSwYg8rQITl/wEBV73ggkzlOX242HSNgxDYsHc1x9joQLYlQP3vW3PvF3pewXHRe+FASC/WsFoZQtUHWhAENuNEuShAb6ohpc/2IofzygCckqAyk1AQV/87X+vo66qASf/uQKDyszy8kHEEEYUuYhgK8rw7rfmZ/Gjp75GGSrwQuiO5Al/+aXj/As187Oxgh8A4NMaAA3IRy0gAZf63sDur15C2VQzSJQum8WRAeLRJ6VEqgEAxKQgonJ2mYBERK2pSQGQm266Cb/5zW8y7rNixQqMGjUKN9xwg71t/PjxCAQCuPzyy3HPPfcgGPReJn7zzTc7XlddXY3+/fs35RSJyIPPowcIALwavA3PaYcBAJ7TZuKv2qn2c8coC3GgZNY03ZA7AXv3xhBSkitN/JKKXKvm8dCj8BP1CqxZtRybjXLsQSEOkZfiJHk+9ow8B1effjSwfh5QvRX75v0NJdFkqvC/1eOw0yhGkVSLWfISrDd6Yo7yeaPvaUXJUVi7uxYnKgvsbat6zMaI8mQfjz11MXy2bq/XywEAQaiYIK9FuVSJaiOMz/QDUI8gbo9fhBnyMhwlf4X39QMRQgzlUiVuErJFRMOlrdB0A3VRFev31uH3c1el7JO5CbqO3pJ5nvuMApw0oQ+DH0TUaYgl632sX0+034lBD6+a6s5JJgl7Zv0a37z1MJbqg/En7XQ87P8NjlAWY6q8Euf73gEAPBT4Az6NTwfg3QBd5O7nkakEVrrXAMCJ4/vYARB3zfzTJvbDqQf2xeCbXzefNwwUC+VwGmKaI6hiZYBEVR376hoPgAR9ctoSflYW726jCADQA1UAkgEQdwaIHK9FMGoGSeqVAqxUe2EyzLKpKwzn+E6DgldzTsXuRJCGNfGJmmHQoZ6bnwvciXXaOADAo+rRWFp2Po6bOQFfvbcazyydj+v9z5k7Vm2BVjgAwXiV/VrZ0OCLmj+/rh2ED/XxqJdyMLw0gEd2DsURyiIUoRa7jUIEpTgqjHz0lfbgu8r7GOXRP0j0ZvAm88HnwHcyLdb73fWOHx8DgKDZl+mu2iswRVHxM9/TKE0EF97VJuJrfRjw1V6crSzBb/z/8Dzs9bErMVFeg4n5lRjXkOwFtc0owfqSQ3FwxatQkLx3rdi+DlYeXro2IZqjBJZzp5hqoBfM4FKNUpgoiZWaPUhE1JaaFAC58cYbceGFF2bcZ8iQIZ7bp02bBlVVsWHDBowcOdJzn2AwmDY4QkTNp8gS6ozUAAgAnKF8BACoMnId2/+snoZ/BX4HwCwNBQAhSQiAQE3e8I07E5EVZfjaGG4/f+xJ38VLSw/HX0+fBOQGgLHmqpF/7TsUu+Y/id1GEZbrA7ELxfZrfoNzAACPqitwvPI5fqN+F2FE8Xj+n/FxcCbOmlCO4uWPAsf9Bm9sHIw/bVuDP6mb8Tv/g7hfPRvDB52K205MNkNf+u0uXL3S2eAzW2/qB9mNMS2z5CWYriyHWQc7OcgbJW/GX95bifveXYdRvfI9jxdVvRva7aqJwqjba3/WaqgEd5yU2tCdiKijcmSA8F6WaL8T4wuKx5dQDEwGFBklB5+Ly14tsbfVJ0o+XeR7y/G6QSv/BQCIGZnTaS+YPgg3PrsYJ47vnTgHdwmszAGQgE/GGZP64tQD++DHzy4G4D3JJvZF03XD8bMsOY+ZFzJvc/fUNh78sM4hXQDE6uNWBXOsXJBorpzsAeIOgNTBHzUn++qUQtyo3ojxsSWoRQgf6uNTji8ukmEfJaJmyO+FDcpADNI2OjZPktdgQCKrY69RaJdvimkGtqMUa/Q+GCZvQ/XKeThibm+MbFgHqxWjGo/Db8QBCfhl/HzsQClkCZgYKsZeVOB/2izPU3lSOwr/mboRr3+1FsOkbfi+L7VKwW6jEABQJlWlPJcNWTJwh/Eg3NUJj1K+xlHK18DLz+I3Hpftr4f/CD/fewy+2VaDF/TDcFiPHjj/4IH44WML4IeKBoSA7cBQ6TC8G/yJ/bqt27bCKsxsZJEBEtec++iRajwTNPtSVcuFdlN0lsAiov2pSQGQsrIylJU1XoPVy6JFiyDLMsrLy5v1eiJqPp8sOYIX24eeBal2B3rt/NDeVglnAORdfTJui1+EX/kfRjDRMD2EZIp/QAyAKIGUFNbvTh2A708flHIuR44bhDM+Pjzj+X5ujMbn6mgAQARB6Be8gcv7mQNFHG1miQW3rQEArDL646TYrwEAn322ERfMGIT+iWaZlQ0xuJXmBnDU6HLPhnWNuTR+I47xr8QffnYN5r/7Ah76eBMeCdwHAPDNuwvA9/DtjhrP10ZVHRJ09MY+SDBQgxxUJz7zyMp37f3GnHQtkMdAMBF1Ho2V3yGitiVmXHhlEPiEMdpJE/og6HOWn+rfswzYk3rc4r1mWdJYI7eMZ0zuh1kjy1Caa84cSpIESQKseTKvy4IYrDhnan/84pSxjufTlVlJPm/+9/KZQ/C/L7fgwhmDEBcm4PJDTav07JOlRjNAqg1zfFkAs4+e3lCF85QPUsrMKvFaFNWuBgDU+4pQqRbj5eiMtL+7SmhmzCw6ouaplouARADk/pzrcWh8Pg6Of4YehhkAWWn0R9AKgCSCjl/pwzFM3oYdX7yAvXWXokiutY8XiUbhl8wFbFYfJN1IzU5zi8GPb3udjP9oZnms36tn4l95D2KyughL9MG4Pv5DrDX6AgBumpGHAxf+DAfLKxp9f/O08ZilLMn240hxQ+wK9Ck9D/qe3fa2qKqjIa5BhQ+qcJ2vMvIcr9223ax2oMhS2muz/bnU7QVitQgihmgimpSzPVmx4e3wiRiuWQEQjhmJaP9pkxHW/Pnz8cc//hGLFy/GunXr8MQTT+D666/Heeedh+Li4sYPQEStSpEllAjNH0OxfYjk9nPs86Y2NeV1K3WzBF2/yCrkox5FUnJQGICarHmsBOB33bClG9DkBFJrPjfG53GsgMeKkaiq4+qnvgYAvLtiJ67/7+KUfYpy/OhZEErZno74PuoQxsuRiTACeVhdPBMf6BPt5w6SV2Y8zoa9dfin/3f4NHQNPgldiy+DV2CiZN4cR/aZTTLnhw8Hxp2Z9bkREXUE4pxhuhr6RNR2GgtCimOmW04YlfK85stx/GyNCX2auQAmXRN0UY+8oCMjQ3GcU+qYTRxfifOJP5g5BDkBBdccNTzlNY5zTrzo5hNG48ufH40Zw3o43mdBqAlN4GAGbdyfnXU8KwOkGokAiFSPIGJ4V7sYv/I/jD8G/up4nRKvQ/+KzwAA6/MnNamsFYPIRM1TYCTvdT/KmY2tPue97jx9PLTE5L3VpPuNRLb/iL3voQg1KJcq7f2DRsR+LJYBzBQAsb7rESGrqxL5uCF4JwZFnsTJsbux1uiLgaXmtWQHeuC7sZ/jyOj99v5nRX+OQZEnU459QfwmHBr9Y9rf3Zjn9Zl44IO1WL49+TnFNR0NsdQqBVWuhZGnYB527zWj5Fqat6/qBvDN88B9Q3Hxh4diUfAHCCXKZUu1OwCYJbpe88+2M0SYAUJE+1ObXHGCwSCefvppzJo1C2PGjMHdd9+N66+/Hn//+9/b4tcRUSMkScKbxnT755oRZ2DTyIuwUDeTWV/WpqMCBSmv24dkOacf+F61y2UBrhJYSgANcefgSUozCdacGzuvYErQ7335Wry5EgBwyaML0xxLRl4wOYg9oHfq++4lBEisG2jr7Wi6geqIag/c/qiapb12GJmDu1o8hpmyuWpHMyT4JQ03+5/EsfIXmFz5JgCgylea8RhERB2RswQWJ++I9je5kR4gBw8pxYT+Rbjp+FEo9cgy1XzOya7thlkey6+amQ6N9QBpzjl5LWQBgFtOGI1Ftx+DwT1yPZ+3eK1CFrNKClwZIGP7po733NwBXOt4yQyQRAks1GOctM5eHe6WU78VBQ1mpvHW3LGePVC8zEmUECOiplsQMpujf6KNQcAn442ckxzPRxCEpjkzQNYYfeznr/S9jDv9/7F/tibvAWcWXDxdEwwAJx9oHs8KmlqsIIMsAd/84ljMGWd+19/8xgwM7EmUxAKAWo++nZYaIyftc80RU3XUewRA4vDhXW0iqhK/L0+KYMP8FxDX9PRN0DUd+PoxWGWiw1IMN/j+h2PlL9BnwwsAgJ1GEZZsqcLlj5nN2NnziIj2p6aPZrMwadIkfPbZZ21xaCJqpvnSeJwZvR1+ScNdI06EVhHBmbE7MVDagV2Jpo5ua40+2IjeGIjt9uS9xS+pCCAxYPIFUBdVPY6QqjnjHK9yAO6BpShdbVLAvJnNE26Kjxvby7ESBgDG9CnAUaPL8cSCTaiOmFkueUEfNN1AfUxDZX3MHvyu1c2BblGiHILbT3xPI4wYXtcOgl/SUG2E8bo2Dd/1fYCD5JU4KLASVmWxmkCPtOdNRNRRiVdc3swS7X/i184rCNmrMISXrjok7et3FE8Gtjxi/7zOcE7EN1YCy4vSSGBUXChjwDlu82qQ7ua1CjsovC7flQEydVAJvtla7X6Jg3s1csAnA9HkZKlVLrZUqsYYeWPK6y3hyE57CrM61Dvr66Kf10+iZnsp72y8uG8glumDMM4no9Iox5HR+/FC8E68ppqZHlbvCes+brPRE1tCw9EvshoT5TWO44WRLKXsFQAZ3CMX6/c47/+swG7E1fvRWigY8JkL8azm3zuqzSyTauSgwshDAers6+9D6hxc7nsNAFCZNxSIZA6O3BS/FKfInyb6VWbHDIB438NfEjd7gPzW9xDO8s3DpwsW4G97D0TY713N4dzKh4C69xzbfuB7DcBrQKX5s9j7E2AGCBHtX7ziEHUTOQEfFhqjMF8fg6DfZ5eV2mj0MhueeZJwR/x8AMAEeZ3jGXcGyIkTslu1li4zJBOvElixDKtvqhucA7lpg5ONPt0ZIMeP7YXXrznMsb8sSzhzspk2bWV6BBQZxTlmHdNZ932ABz9YCwCoSGTJ9Jb2ppxHAWpxle9lXOx7E5f63gAAvKtPQg+h4d1mPdlXqc7PAAgRdT7iashQmhtjImo74iRSc4KQO8oOwYOquVr6Fe1gVBnO7Iu4Rwmskyf0SdkmUhrJABE10u7DUyNl+FEQdgZt+henrpzuXegc//pdgRe7BFZiMnObYY7T+km78Qv/oynHqxZ6gehQ8Lk+ElU5A6BkWefeq1QYEWXHkAOYr49BNXLhV2TIsoR1Rh8cJf0Dt6iXAgBW7qzBY/M34KPVyaZHL5ZeBiC1nHFYMjNAYoYCQ5g2s5p9332qs28RkLxndS/Uq4mY96a5AfO6FEi5Jkg4JPonTIw+hAjMLL171HOxSB+KaG5fPHng4wAADQoqBh4HAPjSPxnrh18EBPLx94If4WntSJwXvxnHRu/Fr0e/gOtjV9pH33zYbz0/s7jmnQEi2mD0BAD0l3bhg5W7PTNA+km7cWLd856vFxda7jLcARAGfYlo/2mTDBAi6ngicecEVTZNFktzA1hf38vzuQA0BJDsAXLaxH545ostmL8uNRAgak59eK/VId+d2h9fb6rEOyt2pjy3py6KnICC+piGF344A68s3o4F6/cljiVh0oBi9CoIYcbQUgwrz4MkSRhenofVu8weJ7KU2jwz4JMxaWAxtlY2AEg2rFyvm5/PIHknhkpb7aZ2ADBY2mE/Pk75AgDwqT4GBajHbOVrVCMPf1DPwO8DfwMA1AWSwRAios4iJtS6TlfWhojajvi9a06p0YBfwa/Uc/BX9RTUI4hjZGcZUV0O4MfHjMD6PfX46XEjsWD9Phw1qjzjMRvLShE1I/6BngUepbyEqIi7B8h3pvTDY59txOEjy3DMAb3wwtdbcNPxo/Gnd1dj4oAiAKmTkn6fczJzm2GWKi2U6j3PqdLIQ4FkjhM/6PsDXLz2MFyu+LNubM7JQKLmE79mAUVGVDK/txFdARKL9jbva8DPX1rmeN12yftaFk6UwHL3QFITi+O8rmvWd92dAWKxqhD4PMZK9SkLEiWcGrsLBwQKsPyd9QCAy2cNQfHx/wUATLb3+yPefvBTABXQoGClMQBFlWEs0A/Dkvzj8O6Nh6OvbuCg1Z/h8w37HL8hpuqNVnHYC7M8V7FUA8AsjXiG/CE+00djvLwOv/A/ilojfX/N36tn4l7/PwGYJbBEXp8DEVFbYQCEqJsQe3QU5/gbvcnKCSgYUJqDJXXek/J+qPBLVgaIOTDsW5w+LdeSbR1kkdfKwdK8IP55wRTc88YKPDTPmZ2yuyZqv99+xTmOUgp+RUb/khx8dstRjtf0yAsKARAJeUHnYNevyBhRnpdyHltRhoX6CEyRV2GctD5tAMTymT4aO40S1COITUXTUBdN7lMd7peyPxFRR6cKk47sAUK0/4njnOZkgFgLTWoSTb7dPT9UyYerj0w2JW8s+wNoagZI9iGQJy+bhj+/uwa/Oi119bWVqQsA4UAyG80nS8gP+fH+jw+3t00fagYz7jx5jL0tpQSWlQGSyHKrRQ5e0Q7GbPkrAMDb+hQcIG3EcHkrAKBOKE9jTZr6ZCnr8q9eGc9ElB3xHjPgk+1rUKaeHUAys8stJxEAicNnL6wTj+cONs8Z19u+Fkfi3gEQa4FdU0o/iaWaS4RrnMg99tq41wzS/vDwYfbzd582Fkf/4UPHftuqInh0fvpyfgBQYZj3v6WJAMitW69E78BWxz7liV+/18iHDhlliWoHy/SBds9RAJh84GT85oTZmPKrdwA0b2EkEVFzMQBC1E1MHliMLzdW4MzJ/eBTZM8VFzOGluLTtWYGR9ivID/kh4bkDWSNEcYt8Uvw58ADCCAulMAyV+FlM4hpTnZ/ptUhNx49EkN65OJnzy21tz25YJNdTiEnoDgmBtKtTi7LT64klGXJ0ScEMAfSBeHUEhAAsFQfjCnyKtzpfxQvRg8BYH4Og2VnAOR57VBsTqQRP6UdhfHhQiwxcnFj7ArUIoTyMJtfElHnI2aAENH+J45zrDJKkpR9aSn3ZJw7ABKXvMc/mYiTg605yTVjaA/MGOo9YTmgNAf3nD4OxTkBR9Alm54igFcPEHMMLF7jfhS/xrHPfwO/tB+/rU/BaHlT4ifzw1dkOevFP9lmihBRKrHMciBRAgtwLtLwsnhHxHN7WDJ7gEi+IL6++WiMvO1NAMkAiCxJUGTJzjx74NyJuO8ts4xWNM24yCrDnE22V/+SMDbva3BsK871DoC472+t3iLi/W1z+23UKmYGyER5Dc5V3kVvdWvafW+I/xAL9RE4QVkAHzR8oB2I7SjFvbk/wdaKBgwrGeGospAuU4aIqC1wlEXUTTxw7kTcedIB+OUp5ko398Dr7Cn98eRlB2NkT7OnxfVHJwcoR0Xvw3/UozEr+gesN8ySTwFJRZmUWJGimIOxbFb+NicDJNMgMeCTcfbUAVhy5zE4+gAzuPDy4m3282G/4miKmW7wN2VQsiapLEnI8SsQTzWgyCn1pC2vaNMBAEVSHQZIu+ztQ6Rtjv02G85smpyAAkDCc/pMvKUfxEZwRNQpNba6kojaVsCjB0hj4y1xyOYeZ7mbnqsePUAaI/7+xspyNacHSDrnHDQAx43t5fid2Y6vxAwMScpuknKPUWA/fl870H6sJ5otK5KU9diXJbCImk/8+gR8sn2NswIUQ3rkerwK2FcXwxWx6zBXm4xH1GNwZexax/Oa7HcEca0SWIosOQKtkiTZi/bcPUAs+YnSfNlck3rmp5aVKs9PLf0HACF/4wv83D2OsrXLn6xQ8DPfUxn3rTJyUYcwntUOx1PaUdgOM9Pub3sn4hV9Bg4d3gNBX3JxZUMj/UeIiFoTZ9uIuonehWFceMhg5AS8U2+tBo1PXjYNH/z4cJx38EDkJ1aprDX64nb1IuxDgb0qsLck1BBVkmn+jcnmJrDEtbolmxVxBSE/Sj1Wxciy5LihTDf4G1qWLG8lS+br8oVm6X6fnFJP2vKVkUztfSnwc9zgewYAMFLa7NivxnA24LQa4VmyXaFIRNSRaI11IyaiNuXIAFGsAEjm14jjMffYTDUUx88tzgDZjwEQi7gaPNvAgjuQlM2YdZk+yH68NdEjBEiW9fIpErJd+8N6+ETNl1ICy/XF+86U/vj3hVM8X/umfhAui9+IO9ULsVcIagKAz4g7jh0XgptlroCE1Ufow1W7PX9PYaKaQDb90sRj98gL4MrDh+KQYd7Zbz87bpRnEMSZAeL8PK6bPdy9u6eGQClmR80m6un6H1mqkZPx+V6FzqBOulJhRERtgaMsom7KHaywBomleUEMSqyQcTcCB1IbwQEA8szMi2wab2aT3R/0yRgu9NvI9sY1rnnfQYuDzHTHEt+rNcgdLKwUCiqyPWj1sjRxA1ws1eIa34t4J/BjjJCdKcK1cPZIEetTm+fJlX9E1PnkBllRlag9efUAkRrNAEk+7w5ipvYA8S67ku3xGxsfeo03W1NzSoEpspTVuPZf2gn4q3oybolfgt1IZhPv85Xbx8k6A4Q9lIiazRn0lFMqE/gVCUeO6okBJZkn6VU478+2hUc6gpjJJujA38+fgjF9CvDwRVMBJIOYsTSZsdb9bciveD4vEhcEfnLTkfjZcaPSZo4M75mPJXcci2uPcgY1xL5I7qDLUaN6ps0oEQX9MtYY/bBSb7xXZZXhnWVjKXBd692LHomI2hIDIETdlHsAZSD17rDIo9Ga+6Z4Ve4UwG+u5rjk0MHwyRK+O7V/2t+bzU2g2LgOaPwm3iKuIpk0oAiPJAajASHVNt2Km7xgagDkx8eOtLf5fVLKqhVRhZHv+HmYvC1lnzojhLAw4HVngLAEFhF1Rm09eUlEmTl7gJhjmPu/MwEA8NPjRnq+RlyQ4q6R79UEvanE46cLJPz2zPE4eEgJrj5yWJOP3xTZjiP9jgwQOavm5VEE8Fv1u3hSOwoAcGHsJ/ii/8X4Om8WgEQJrCyHd8wAIWo+8fvqlQFifb+LcjJntOmuKbIN+ZMhSZJ9fOt6qcgSDuhTgNeuOQxHjDQDno1VQxhYagZfwgHn7/B63XenDsAZk/rhb+dNcpSNSifgk/Ej17U0UylAScruvtwq57VNyHBLpwL5aZ+TpeS9712njsWhw3rg7tPGNXpMIqLWwjtWom7K58o2qI2oKfuM6pU6iIkZzstGvZLcp39JDpb98tiMab3ZNML0K3JWq+7czp02AK8t3Y5Dh/XA45dOs7cHsugB4m56DgCHDO2Bw4b3wIL1+3D06J7oVZA+ALLR6Algacr2RRiFsNGAqCHjU30MBvXMxYrtZu+UnKBzMOvOCCEi6gzymAFC1K6CHj1ATp7QB0eMLLNrzrtJEGvaO1cru3uANEjODNZsiOVL043pzprSH2dNSb9oprVkU6IVMBe72K9Rss/cEH2gT8SBA4cjvrsOQNMyQNxjcyLKnuzKAHFfd6yekI0t2lBdARDNF7aPrwvpZF7Xlca+69Y9qTsDJORXUBt13osX5fjxu7MmZDyeW6YgqncApPFjVjfEAQCrjH44AotTnn9MnY2R8mY8q82CDhlzxvfGa0u2p+yXH/LbWTnnHzwQ5x88sPFfTkTUinjHStRNuftqeFWPGte3MGVb3JUWHJedN8WNrVDJ+iawGQGQQ4b1wDs3zEK/Yuc5OXqApBkY5geTEwQR1cwkkWUJj10yzbHf7NHleGfFLrjdp56FJcYQ1Bph/Nj3DIbK5sDvUuUu7KmL2/tNKg7bARB3BkjPDAEWIqKO6sZjRuDdFbtw/nTezBK1B68MEABpgx+Ac+LLnQESdZU7fTswGxc18ZwcPUCaEUhoTdkGFprTA8SLrhuIq2ZQya9I2WegZJsqQkQpxGtO0JdaAiuY6JERSdOg3KK57nV1n5m1YV4PktdKr3veTNUCgOR9qFgRIOSX4XWFaO3you4y0LLkvDY9fNFUXPTwFymv+86U/vj3J+vxZ/U0rDb6YYPeE7/2/8su9bzEGIKfxy6290/XMzOXC/2IqJ1xlEXUTbkHQbpHgeRyjwl5d1mEmNK0VYFSFlcdVdNTBq3ZGlael7KqJihmgPi8jys2jotmaMj2zwum4u3rZ6Zsr0YentUOxxv6NOw0kjWgJdfNrLhS2p3x0aeIARAi6nyGledjyZ3H4OcnHtDep0LULaULgGTiF15zYP8ix3ObjHI8oR6FDXkH4pToL7FPKW/yOYkLWZR2zmzI+jNpQg+QMyb1S9tXrqI+jrqYuZo7N+hzBJt6CxOk7tczA4So+cQ4Y0BJLWFnBSwa6zvh7gGi+XNSjm8eL/Wm9tgxvTL2rrQDIAExAKLAKwKS08oBA0mSHOcmu8rzpavgcOKE3vjop0fgwGED8D9tFhYao1AmVdnPbzHKHPsXhL0DNyzxR0TtjVchom7KPQjR9ew6RLoDIO4MkMZkswow4JOR5elkRZwYSDe4E1fANNYssyhDM3QAuE29GHO1yTguem/K4Ds3KPYAST5WZAmDe+SBiKgzyqahJxG1jRwho9Sd4ZuOmIU6tm8hnr1iOiYNKEpskXCregn+OewBLDaGpUz8ZcPvUZZrf7NKuZ4yoU9W+6f0AMlw3rNGluHjnx2Ja1xNhwHgsc824qPVewBYAZDkcU6a0Aef3XwUPr/1KCy89WjH6zhBSNR84vcsL+RLuee0AhbXHjUchwwrxW/O8O4/oblLYCUW+6WW1Eod9yiyhOPH9k57jtY1JiS8NuxXPKsAeAVYsmG9r1+cPCbt7wfMLEDxMwuk+X0+WUL/khzHYsE6JM/3c32UY/90GSDt9XeAiMjCURZRN+UehGhZRhxS6kL7Cpr0e7MpJ6BqBirqYk06biYBJTnIzKbReGOfRKHQPO+QYakN4dYZfXBZ/EZ8awxw1NgGnOnMOcLj0b3zG12RREREROQmll2JZMhiFeW6+pBNHVSCASU5jm2qlmz221RiNkN7lcB6/NJp+PM5E3H1kalBCi/Fwvgu4MvcBD0/5EPPghAKGuknkOfKAAn5ZPQqDKE8P5TSf87PCUKiZhPvZY8b0yu1BFYi6DC2byGeuPRgnDWlf0rjdCA1ABL3myWh3fewQb/3PWWme00rA8OdAXLrCaMxuEcujh3TEwBw6LAeWZfOczt76gAsvG02LpgxKOW54pzkvaYkSaiLJv9epFskaL3voLDQ5erYNdhi9MAPY9eklAwLp1kQ05y/I0RErYk9QIi6KffgzKsElhfDNSj8qvREHN+E35vNWK4sP4jl26qbcNTMsukBIjIa+SyCPgX/u2I6DADPf7UVn2Bv2n3dYz1NaLZSlhe0H4sDUiIiIqJsieU1K+vjGfZMygmk3ga6x0ixRHP05vTC8GfRBL2t9cgL4qQssz8AYOaIZCkXvyI5AjejeuXj2x019s/WKufGJilzgz7HPv2FIJP7Y2EGCFHzRdXkZH5u0CMDxBWwkCQJYb+Cupj5uoKQH3tqoykT+nsLRiX2d/6+dAEDR+UBn4yYmuw54lUCS5aAI0aV44hRZqnB3TXRFi+K6yHcY4p6FYawtbLB/r0zR/TA819txahe+Y6gdY+8APbUmosRreu3mJGyyBiGQ6N/8vwdfkXCnHG9sXZ3LbZXRVCVaKLO6xsRtTdehYi6KffNaLYZIKIXtRmI+FIbpTfl94r+feEUTBlYjF+dOhb3njEeAPCTY0c2+bzcxIFoprqslmw+iSmDSjB1UAkCjRzPfWMcEQbn4sq/IgZAiIiIqJmOPsBcOTxnfPryKyJ3Bgjg7AsCAPHEoo3m9GVzZIB0kpW/4jm7S2C5mxtbmR+NvbO8oOIIdEwQ+q1IkrPPSDZjVCLyJjY3D3g0Qff6donlO63vdJ2RDB78ST0VimJud5SLUtKXyBMDBUHXpL8VAMkTAtBWoNlSlh9ss2umeB2TJAk3Hz8aNx0/Cs9cMR26cBpXHj7MfmxVjci21Kkiy/jL9ybhjWsPc3wWLIFFRO2NGSBEBADQ0sz6X3vUcPzfu6s9n6s3QhnLA3jJtIrw8BHlOHKUeQM/vGc+Dhl2dKsEBtwrcRrTlFiQGOAoDPvtVS7J5537N8SSo0ux/mthmoZxRERERI156LzJqKiPoTTNyl+36UNK8ckaZware0VzXLUyQJp+Pj6l/TNAmirgOmcxIFGe7/xc8xMZII29tbyg3zH2FUuhAmZ5MC2x9Cbb/i1ElMpd/i8lC9/jBk+c1M9JBIVrIGRpwYB1WRCvY+6ghUi81wz6ZdREhecSBxODJ9F4+mO1tt5CrxFZMoMtV8waCsB5zyqWA5Q9MkAysQLJkiQ5rn2d5e8AEXVdHGUREYD0TdCvmz0c835yOM6c3C/luXoEm1yfNN3YR5JSVxi2VlaEeEPbGiWwRAcPKYEiS5g9uhz3f2dCyvPugM8lhw4GAJw8oY9jgJyfpmEcERERUWNkWco6+AEAP5g5FLecMApvXTfT3ubOQLAm+ZrTw0PsZ9FZJr7EoI0kmSuZLeX5zgyQ4tzUElheK5x75AUgDivd9fHFmIePGSBEzSZm2QOp1x2vRXBiY+8cvxmcVIU1wgp0+zqQ7WVMvO90B5W9vuNRdT8GQIrC9mP3PeqYPgU4bWJf/OjIYY7AkHX9zzYDRPw7In5mzHAjovbGJcdE3djfz5+MHzz2JYD0JbAkScLA0lzPmzozANK03+m+UVQTv7ctG2Q6S2C1btz3uLG9sej2HsgL+jBv1e6U590f2wF9CrDo9qNREPJjw946e3u2q2qIiIiIWirgk/GDmUNTtoniVg+Q7lICy3WeYhCnTMgACfsVu6Gy+JIRPfOxfLuzh51PkR0TszkB5ySiX5YRgfk5c4KQqPkirkwKcYJ/aFkuDhTKz1nEXhzhQOoEvwwd1tcy20V/4r2m+5rqdR+arml4W+hVIJbAcj4nSRL+cPaBAICPVifvab16gGQiZrJJzAAhog6EM25E3dgxY3rZj7VGsh68Bi17jEJIjVY/zu6Yzbm5zlZTe4Bk2xDekh/yQ5Ikz2Z4XoPlopwAZFlqcmkuIiIiorbinpyLdrMSWO73L553kVASJl/o4SbOIs4cUYaLDxmMA3oXAIDdgF2cmHVPIvodNfI5FiRqrkOH9QAAjO1rfv/E7+9fvzfZ855MLEfsDk4CQI2RA0VJzQDp7eoJJMp0fyfeK1571HD4ZAnXHDU87bFam3jtylSWundhMlPE+hyblQEiZrjx+kZE7YwZIEQEIH0JLIs4iPxF/HzMlJfgv9oROL8F97QBRbZvrtsyA8JKaQayW2XTxPiHzd08FEhdXSPKlCJNREREtD+5AwBWBkhzAhhi9oQ4ydiRie9TgjOII44fi4USreJHo8jA7ScdAADYURWxgyZRIQPEPQkrThayBBZR891ywmj0L8nBlIHFAJzf59yg9zUoXQbIzfFLcIK8AA9rx+HWxHdWDBj8+8Kpac9DzCQLuq59fl/yueuPHoGrjhi2XxfBiT2IMgVA+hQlAzzW34HmZICwBwgRdSQMgBARAKBnhpUsgHPQ8rB2PB7WjgeQeYK/MeKNnriyrrUV5vhxw9EjsGlfPQ4d3qPR/ZsbAPEqE5ZpcClONHi9loiIiGh/SWmCbpXAamGZ0sJwJ+xzJkmOsZk4ZutfkmySLGZCi59TL2FcnanJsb+JfeqIyFvAJ9u9FgFneee8oPe0VzBNBshT2lF4SjsKQPIeTawQ0EfIkHATqxq4gxvuLIj9XQHAmQGSfr+cgA+nT+qL3TVR9C82r3fuYE46PsX7msgSf0TU3hgAIerm/nPxQXjss424I7FiLZ10PTpaclNcEPajoj7e4uNkoynpxQaaFwHxunHN9K5Y9oqIiIg6ipQeIKo5HmrOGK0+lsx6cJSM6kTcfUwOGVaKT9fuxbnT+tvbxUnEdJ9S1NWcWRTgYhiiNmEFcAFn5oNIzPrICXjvYwU0YkKz8qA//T2c+D12B5XbOwggfg6N9TT5/VkHOn4OZXjPIvF+WPwVzAAhovbWOUejRNRqZo4ow8wRZY3up6QbsLUkA0QYCMXV9Kvj9rfmZoB4BTSyzQAhIiIiak/ucUlMa34PkIZ4ctLf1wnHOxKc41SfLOE/F09DdUMcxbnJEljiMC/dhGKmKrPMACFqG+Jkf7rvVki4d8tNEwCxXuoIgGRYxCZmgLgDJdk2Um8recJ7VPWm3XtnnQEie2eAsAcIEbU3XoWIKCttkQEiSZK9KlBsyN7emhn/8M4AyfDxtPcqICIiIiKLe1xiTfg1Z+Xurupoq5xTe5Gk1Ebuiiw5gh/mfpLjNV70DCtrxMUz7AFC1HqyyTwTM0CKc71L9SmJifuYkFGSKZDh68D9j8ReKE0NSIgZID0Lgmn3c2TOiQEQXt+IqJ0xAEJEWUmXlt+SoYwE4PFLpuH62SNwywmjW3Ck1mU0MwXEK6DhUyTkp0m7bu9VQEREREQW9wSVNeHXnPHKyQf2AQCM6pXf8hNrBykZIGkm78St6RYF6RlSQBxN0LlCmqjVnDC2NwBgSFlu2n1C/mRAIF2vImsSP65ld38oTvorioQTxnWcRX4+RcYfzp6AX506FmX56YMYXsT9e2XogSJex1gCi4g6EpbAIqKsyGkGLS3LAAEm9C/ChP5FzT5GW8hUqiATrwyQgCLjx8eOxB0vL8N3JvdL+1oGQ4iIiKg9Wc1uLVYN/XRZwJmcP30geheGcHxiErKzKc4JOCbylDTBCXEcnO5TyrSuxlkCi2NBotYyqEcuPrnpSBTneAc2AOcEfdoASBMn7sX9/bKEW+YcAFUzcN7BA5t0nLZy2sT096OZ9BaCHv2Kw1i8uRKAed0Sg0PpmqCzxxERtTcGQIgoK2kzQFowlpFalD/SdpqbASKmUVv8iozvTx+I6UNLMaRH+hVIRERERO1p8sBivPDDGXjwg7V4e/lOuz9bcxITCkJ+nD6peRNtHUGPvKBjIi/dOFj8bNItFsq+BBYzQIhaU9+i9JkKAKAKE/cFbRAAUWQZ5fkh/P37U5p0jI6oVCj/d8jQHnhtyXYAQNivIK6p9nNiUFe8PqYLIhMR7S8MgBBRVtLd1LUkc6GjJj00twdInkfzvIBPhiRJGNGzc5aAICIiou5BkiRMHFCMwYmSMdaq3pZk+3Y2PlmCqhs4dmxPrN5Za29PNwmazWKerJugc4U00X41cUARAGBASQ78aSbom5q54MgA6UJZXbIs4a3rZqI+pqIhrtnbcwI+VEeSAZB0TdC70mdBRJ0TAyBElJU26QHSQW+om5kA4hkkCvqyW+0yeWBx834pERERUSuyxnxWD5DuFAB5/8eHY82uWhwxqhzr99Tb27PJhE7bAyTDwNJRIoYZIET71ZxxvTHw6lz0Kw5ja2WD5z7u+7uwP3Njc2cGSNe6do5M9HT6fP0+e1uOqwKCGNQV7/W72mdBRJ0PAyBElJV0N3UtuSnWdL3Zr21Lzc0A8eLVF0T0yU1HYltlA8b2LWzF30pERETUPO5SJd1p4qp/SQ76l5i9UHxZTGSKE3zphsSZFtaowlg4L8hbc6L9SZIkjOtn3oNtr4p47mNdByTJ/C6P7p05q9+ZAdI1g5riewy5AkLOHiDC9m70d4SIOqaueUUmolbXFj1AomrHDIA0OwXEQ2MD375FYUwdVNJqv4+IiIioJdxNz7tRAoiDswdIuibo3o9FmTJAjh/bCyG/jNvmjHb0AyGi/StdkNNa7PeXcyfh0GE9cPtJYzIfpxs0/hbflzsDRLxWMsONiDoSLjMhoqykr33cfLEOGgDJVKu5MUcf0BNzl++0f+6i414iIiLqonyuWu3ugEh34cgASVO/XuwBkq4fSKYAyNlTB+CsKf07bFlYou4i3T2bdT08YVxvnDCud6PHEa8VXTWoKc4LhFNKYDEDhIg6pq55RSaiVieWQwgIKzjSNUfPRkfNAJmUaIjXHA+dNxnzbz7S/rk1y2kRERERtTX3opfu1ANEFA4k1wqmm7wTN6f7mBpbWMPgB1H7S/c9bGoJQDFg3FUDIGKQPCUDRJgnECshdKdSikTUMTEDhIiyImatBn2y3Rgz2ybfXqJxraWn1areuWEW3lq2AxfOGNTsY8iyhJ75IfvnVqymRURERNTmcl0TWi1Z7NKZ5QWTn0M2pWAZyCDqvNJN0I/pU9Ds43TZAIiwMLIkN+B6zrvsFTNAiKi9MQBCRFkRM0CCfgU1URVAy5q7WUGUjmJYeR6GlQ9r8XHEiYJMZQ+IiIiIOprygpDj5+46bxXyiQEQ7/GuGPTorp8TUVfg9f0tDPsR9CmpT2TgCIB00b4XZflB+3F+yO94Tgx0+NMEQ4iI2gOvQkSUFbGeZ8jvndraVHGt6wcHuv47JCIioq6klysA0l1LlwT9yYnP9D1AvB8TUefiVerPn+Z7n0l3yAApDCeDHnHXgkbx/fuZAUJEHUjXvCITUasTV7+EhBvC5gwM/3zOROQGFDx84dRWObeOrF9xuL1PgYiIiChrRTnOFb3dtQeIuOAnfQ8QIQOEE3xEnZbX97c5wd/ukAECAFMGFgMAThzfx97mVyRHVpzYK6S7BtKJqONgCSwiykpYqAct9v1oTgbISRP64IRxvbv0QOiHhw/Fwo0VuPqIlpfUIiIiItpf2ATdlCs0QU/3GYifVff8lIi6Bq/b0nSl7zLpDk3QAeCJy6ahqj7uuAa6Py9HBkgXDgYRUefAAAgRZSUkDOCcGSDNG8x05eAHAPz0uFHtfQpERERETZYaAGmnE2lnA0tzcPzYXggHlLQTmY4ASDcNFBF1BV5BTh9LYKUV9CkoL1Cwry5mb3P/7RArRbAEFhG1NwZAiCgrYgaIswcIBzNEREREXYXimgjs6otW0pEkCQ+eNznjPo6GvxwTE3VaXvHL5kzap+uB0VWJH5H7b4WY9dFd/44QUcfR9a/IRNQqxKwPsR+IvwuvbCEiIiLqbtwTVcxsSE/8rJRmlMshoo7BHfgFmlcCy9dNMkAs4t8H99+OAJugE1EH0vWvyETUKsS+H+LjrtzcjYiIiKi7cU9icaiXni+LEi/Xzx4BwOwPR0QdU2uVwBKzPkLCosGuSrzsuT9D8ZrIHiBE1N5YAouIsiIOWlraBJ2IiIiIOiaZTdCzJmZ9pJssveaoYTh1Yh8MKMnZX6dFRE3kGQBpRtbCwNIcnDWlH2oiKiYOKGqFM+vYnBkgzud8zAAhog6EARAiykpYKIEV8LEHCBEREVFX5J6oak4ZmO5CLJuTboJPkiQMLM3dX6dERM3gdZlrTt8KSZLw2zMntMIZdQ6OHiCSuwRW+vJYRET7GwMgRJSVktwArp89ApIENMQ1ezszQIiIiIi6jpQyJlzskhZ7gBB1Dd4lsPidboz4ubmzB8XPj4smiai9MQBCRFm7dvZwAMCCdXvx4AdrATiboxMRERFR55baA4QTV+lk0wOEiDq+1iqB1d2IH5v7b4VPYYCYiDoOBkCIqMmmDSnFXaeOxZZ99RhaxpR+IiIioq7CXcaEk4DpOTNA+DkRdVZe8/PMAGmcWCLRfQUc0iM5T5Af4tQjEbUvXoWIqFnOP3hge58CEREREbUyWZYgSYBhmD8zAJKe+NnwcyLqvJgB0jxi4Fc3nM8dO6YX7v/OBNRE4pjYv2j/nhgRkQsDIERERERERGRTJAlqIgLCVdDpiZN//JyIOi8GQFpON5wREEmScObkfu10NkREThylERERERERkU1hZkNWxPIvLIFF1Hl5fX19bNzdJK74BxFRh8IACBEREREREdmY2ZAdBoqIugZJknD+wQMxZ3xve5uPjbubxGAEhIg6MJbAIiIiIiIiIpvYCJ0T++mJn41XCR0i6jzuOnUsAOC1Ja8B4LWvqTQGQIioA2NIm4iIiIiIiGyKImaAcBIwHYWfDVGXxWtf0zBjhog6Ml6hiIiIiIiIyMYMkOwozPog6rIUTug3ScDHz4uIOi5eoYiIiIiIiMgmO3pb8JYxHbEHCGMhRF2LnxkgTRJgvygi6sB4hSIiIiIiIiKbmPXBMk/pMTuGqOvqVxxu71PoVJgBQkQdGZugExERERERkU1mCaysKPxsiLqcf184Be99uwsXzBjU3qfSqTBjhog6MgZAiIiIiIiIyKawBFZWJCFQ1LeIq8WJuoIjR/XEkaN6tvdpdDrDy/Pb+xSIiNJiAISIiIiIiIhsYtaHj6t6M5r3k8PRENdQnBto71MhItrvnrrsYDz31RbccsLo9j4VIqK0GAAhIiIiIiIim7MJOgMgmQwszW3vUyAiajfTh5Zi+tDS9j4NIqKMmM9MREREREREtk176+3HhWF/O54JEREREVHLMABCREREREREtpim24+HlOW145kQEREREbUMAyBERERERERERERERNTlMABCREREREREtutmDwcAfH/6wHY+EyIiIiKilmETdCIiIiIiIrJdfcQwHDa8B8b1LWrvUyEiIiIiahEGQIiIiIiIiMjmU2RMHljS3qdBRERERNRiLIFFRERERERERERERERdDgMgRERERERERERERETU5TAAQkREREREREREREREXQ4DIERERERERERERERE1OUwAEJERERERERERERERF0OAyBERERERERERERERNTlMABCRERERERERERERERdDgMgRERERERERERERETU5TAAQkREREREREREREREXQ4DIERERERERERERERE1OUwAEJERERERERERERERF0OAyBERERERERERERERNTlMABCRERERERERERERERdDgMgRERERERERERERETU5TAAQkREREREREREREREXQ4DIERERERERERERERE1OUwAEJERERERERERERERF0OAyBERERERERERERERNTlMABCRERERERERERERERdDgMgRERERERERERERETU5TAAQkREREREREREREREXQ4DIERERERERERERERE1OUwAEJERERERERERERERF0OAyBERERERERERERERNTlMABCRERERERERERERERdDgMgRERERERERERERETU5TAAQkREREREREREREREXQ4DIERERERERERERERE1OUwAEJERERERERERERERF0OAyBERERERERERERERNTlMABCRERERERERERERERdjq+9TyATwzAAANXV1e18JkRERERERERERERE1N6seIEVP8ikQwdAampqAAD9+/dv5zMhIiIiIiIiIiIiIqKOoqamBoWFhRn3kYxswiTtRNd1bNu2Dfn5+ZAkqb1Pp0Oprq5G//79sXnzZhQUFLT36RARtSpe44ioK+M1joi6Ml7jiKgr4zWOqGMwDAM1NTXo06cPZDlzl48OnQEiyzL69evX3qfRoRUUFPCCS0RdFq9xRNSV8RpHRF0Zr3FE1JXxGkfU/hrL/LCwCToREREREREREREREXU5DIAQEREREREREREREVGXwwBIJxUMBnHHHXcgGAy296kQEbU6XuOIqCvjNY6IujJe44ioK+M1jqjz6dBN0ImIiIiIiIiIiIiIiJqDGSBERERERERERERERNTlMABCRERERERERERERERdDgMgRERERERERERERETU5TAAQkREREREREREREREXQ4DIJ3QX/7yFwwaNAihUAjTpk3D559/3t6nRESU4sMPP8RJJ52EPn36QJIkvPjii47nDcPA7bffjt69eyMcDmP27NlYvXq1Y599+/bhe9/7HgoKClBUVIRLLrkEtbW1jn2WLFmCww47DKFQCP3798dvf/vbtn5rRNTN3XPPPZg6dSry8/NRXl6OU089FStXrnTsE4lEcNVVV6G0tBR5eXk444wzsHPnTsc+mzZtwpw5c5CTk4Py8nL85Cc/gaqqjn0++OADTJo0CcFgEMOGDcMjjzzS1m+PiAgPPvggxo8fj4KCAhQUFGD69Ol444037Od5jSOiruLee++FJEm47rrr7G28xhF1LQyAdDL//e9/ccMNN+COO+7AV199hQkTJuDYY4/Frl272vvUiIgc6urqMGHCBPzlL3/xfP63v/0t/vSnP+Fvf/sbFixYgNzcXBx77LGIRCL2Pt/73vewbNkyzJ07F6+++io+/PBD/OAHP7Cfr66uxjHHHIOBAwfiyy+/xH333Yc777wTf//739v8/RFR9zVv3jxcddVV+OyzzzB37lzE43Ecc8wxqKurs/e5/vrr8corr+DZZ5/FvHnzsG3bNpx++un285qmYc6cOYjFYvj000/x6KOP4pFHHsHtt99u77N+/XrMmTMHRxxxBBYtWoTrrrsOl156Kd566639+n6JqPvp168f7r33Xnz55ZdYuHAhjjzySJxyyilYtmwZAF7jiKhr+OKLL/DQQw9h/Pjxju28xhF1MQZ1KgcddJBx1VVX2T9rmmb06dPHuOeee9rxrIiIMgNgvPDCC/bPuq4bvXr1Mu677z57W2VlpREMBo2nnnrKMAzDWL58uQHA+OKLL+x93njjDUOSJGPr1q2GYRjGX//6V6O4uNiIRqP2Pj/72c+MkSNHtvE7IiJK2rVrlwHAmDdvnmEY5vXM7/cbzz77rL3PihUrDADG/PnzDcMwjNdff92QZdnYsWOHvc+DDz5oFBQU2Ne0n/70p8aYMWMcv+vss882jj322LZ+S0REKYqLi41//vOfvMYRUZdQU1NjDB8+3Jg7d64xa9Ys49prrzUMg+M4oq6IGSCdSCwWw5dffonZs2fb22RZxuzZszF//vx2PDMioqZZv349duzY4bieFRYWYtq0afb1bP78+SgqKsKUKVPsfWbPng1ZlrFgwQJ7n5kzZyIQCNj7HHvssVi5ciUqKir207shou6uqqoKAFBSUgIA+PLLLxGPxx3XuFGjRmHAgAGOa9y4cePQs2dPe59jjz0W1dXV9grr+fPnO45h7cNxHxHtT5qm4emnn0ZdXR2mT5/OaxwRdQlXXXUV5syZk3Id4jWOqOvxtfcJUPb27NkDTdMcF1gA6NmzJ7799tt2OisioqbbsWMHAHhez6znduzYgfLycsfzPp8PJSUljn0GDx6ccgzrueLi4jY5fyIii67ruO6663DIIYdg7NixAMzrTyAQQFFRkWNf9zXO6xpoPZdpn+rqajQ0NCAcDrfFWyIiAgAsXboU06dPRyQSQV5eHl544QUccMABWLRoEa9xRNSpPf300/jqq6/wxRdfpDzHcRxR18MACBERERFRM1111VX45ptv8PHHH7f3qRARtaqRI0di0aJFqKqqwv/+9z9ccMEFmDdvXnufFhFRi2zevBnXXnst5s6di1Ao1N6nQ0T7AUtgdSI9evSAoijYuXOnY/vOnTvRq1evdjorIqKms65Zma5nvXr1wq5duxzPq6qKffv2OfbxOob4O4iI2srVV1+NV199Fe+//z769etnb+/VqxdisRgqKysd+7uvcY1dv9LtU1BQwFWDRNTmAoEAhg0bhsmTJ+Oee+7BhAn/397dhMK3x3Ec/8mYySQPZRqliJKSuhjRKWUxJVaynCSxEFIWUmNhPyuFLKxY2slOZDxkQZlmPEQ2njak1GSKNJrPXd3Tnetu/gvkeL/q1Mycb7/5nc2nqU9zzl9mdnaWjAPwo8ViMfP4+GiampqMy+UyLpfL7O7umrm5OeNyuYzf7yfjAIehAPlB3G63CQQCZmtry/4sk8mYra0tY1nWN+4MAP5MVVWVKSsry8qz5+dnc3h4aOeZZVkmmUyaWCxmz0SjUZPJZExra6s9s7e3Z9LptD2zublpamtruf0VgE8jyYyNjZnV1VUTjUY/3IovEAiYvLy8rIy7vLw0d3d3WRl3enqaVfRubm6awsJCU1dXZ8/8e41/ZvjdB+A7ZDIZ8/b2RsYB+NGCwaA5PT01iUTCPpqbm01vb6/9mowDHOa7n8KOP7OysiKPx6Pl5WWdn59raGhIxcXFenh4+O6tAUCWVCqleDyueDwuY4xmZmYUj8d1e3srSYpEIiouLtba2ppOTk7U3d2tqqoqvb6+2mt0dnaqsbFRh4eH2t/fV01NjUKhkH0+mUzK7/err69PZ2dnWllZkdfr1eLi4pdfL4DfY2RkREVFRdrZ2dH9/b19vLy82DPDw8OqqKhQNBrV0dGRLMuSZVn2+ff3d9XX16ujo0OJRELr6+vy+XyampqyZ66uruT1ejU5OamLiwstLCwoNzdX6+vrX3q9AH6fcDis3d1dXV9f6+TkROFwWDk5OdrY2JBExgFwlvb2do2Pj9vvyTjAWShAfqD5+XlVVFTI7XarpaVFBwcH370lAPhge3tbxpgPR39/vyQpk8loenpafr9fHo9HwWBQl5eXWWs8PT0pFAqpoKBAhYWFGhgYUCqVypo5Pj5WW1ubPB6PysvLFYlEvuoSAfxS/5dtxhgtLS3ZM6+vrxodHVVJSYm8Xq96enp0f3+ftc7NzY26urqUn5+v0tJSTUxMKJ1OZ81sb2+roaFBbrdb1dXVWd8BAJ9lcHBQlZWVcrvd8vl8CgaDdvkhkXEAnOW/BQgZBzhLjiR9z39PAAAAAAAAAAAAPgfPAAEAAAAAAAAAAI5DAQIAAAAAAAAAAByHAgQAAAAAAAAAADgOBQgAAAAAAAAAAHAcChAAAAAAAAAAAOA4FCAAAAAAAAAAAMBxKEAAAAAAAAAAAIDjUIAAAAAAAAAAAADHoQABAAAAAAAAAACOQwECAAAAAAAAAAAchwIEAAAAAAAAAAA4DgUIAAAAAAAAAABwnL8BIKynyxnqrDAAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.subplots(figsize=(20, 10))\n",
"\n",
"plt.title(\"y-component of the force vector\", size=20)\n",
"\n",
"plt.plot(f_y, label=\"ground truth\")\n",
"plt.plot(predictions[:,1], label=\"prediction\")\n",
"\n",
"plt.legend(loc=\"upper right\", fontsize=16)"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABkAAAANMCAYAAAAE9mF7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU5doG8HtmaxKSQOi9KYIIoiAqSBEbYj22o6Ji/dRjxWPveuzdI+pRVMCCig0QFAWlN2nSO4SeQEJ6sm3m/f7YndmZLSm7S7IJ9++6vAy7M7PvLtlh5n3e53kkIYQAERERERERERERERFRAyLX9QCIiIiIiIiIiIiIiIgSjQEQIiIiIiIiIiIiIiJqcBgAISIiIiIiIiIiIiKiBocBECIiIiIiIiIiIiIianAYACEiIiIiIiIiIiIiogaHARAiIiIiIiIiIiIiImpwGAAhIiIiIiIiIiIiIqIGhwEQIiIiIiIiIiIiIiJqcBgAISIiIiIiIiIiIiKiBocBECIiIiIiqhOKouDdd99F//79kZGRAUmSIEkSLr300iPyejfeeCMkSUKnTp2OyPGPhNr+jIiIiIiIGhJrXQ+AiIiIiIiOTtdccw2+++67uh5GUuNnREREREQUO2aAEBERERE1cMmY+bBo0SJ9Yv+CCy7AzJkzsWbNGqxduxb//e9/q32c8ePH61kR2dnZR2i0dSNRnxHVP0OHDoUkSRg6dGhdD4WIiIioXmMGCBERERER1bpZs2YBACwWCyZOnIiMjIw6HlHy4WdERERERBQfZoAQEREREVGt27dvHwCgZcuWnNiPgp8REREREVF8GAAhIiIiIqJa53a7AQA2m62OR5K8+BkREREREcWHARAiIiKiGBj7DlTnv2effTau11NVFV9//TUuv/xydOjQASkpKUhJSUG3bt0wcuRIfP/99/B6vRH39Xg8+OCDD3DmmWeiefPmsNvtaNWqFUaMGIEvv/wSqqpGfd3Q3hE5OTl48MEH0a1bN6SmpqJt27a46qqrsH79etN+2dnZuPfee9GtWzekpKSgZcuWGDlyJLZv3x71tZ599ln98wKAwsJCPPPMM+jZsycaNWqErKwsnHnmmfj666+r9ZllZ2dj9OjR6NmzJ9LT05Gamopjjz0Wt99+O9auXVvpvqF/b8uWLcM111yDdu3aweFwoG3btrj++uuxcePGao1l5cqVuOOOO3DcccehUaNGSEtLw3HHHYc777wTW7ZsibpfaH8LVVXx8ccfY8CAAWjSpAnS0tLQu3dvvPjiiygvLw/bX/tMJ0yYAADYtWtXxN/PWK1duxb/93//h2OPPRapqalIT09Hz549MXr06Kj9OLTXrGxM1TFnzhxIkoSbbrpJf6xz585hx5ozZ07UYxQWFuLpp59Gz549kZaWhsaNG2Pw4MH46quvqjWGoqIivPzyyxg4cKD+3WrdujUuuugifP/99xBCVOs4oWL5jFRVxZdffokRI0agVatWsNvtaN68Oc4880x88MEH8Hg8UV8v9LtXVFSE//znPzjppJPQuHFjSJKE8ePHh+33yy+/4LrrrkOXLl2QlpYGp9OJzp074/LLL8f48eMj/k5qYv1OVKa8vBzp6emQJAkjR46scvvFixfr7/uDDz6IuE1OTg6eeOIJ9OvXD1lZWXA4HGjfvj2uuuoqvURZVQ4dOoTnn38eAwcORIsWLWCz2dCkSROceuqpePjhh7FmzRp9W+2cO3fuXADA3Llzw/7uo/XyieX7CPjPldqxtb/nH3/8ESNGjECbNm1gtVrZi4SIiIjqL0FERERENTZu3DgBoNr/PfPMMzG/1s6dO0WfPn2qfI3Zs2dH3Ld79+6V7nfGGWeI/Pz8iK89atQoAUB07NhR/P3336JVq1YRj5GWlibmz58vhBDijz/+EJmZmRG3a9KkiVi3bl3E13rmmWf07Xbs2CG6du0adcxXXXWV8Hq9UT+zCRMmCIfDEXV/i8UiXnrppaj7G//e3n//fWG1WiMeJzU1VcydOzfqcRRFEaNHjxaSJEUdi9VqFR999FHE/Y2/Z+vXrxdnnXVW1OP0799flJaWRv1MK/svFi+99JKQZTnqMR0Oh5gwYULUzzbe8cyePbtaxzJ+L4y/z5s2bRKdOnWKut9dd91V6evPmjVLNG3atNLXHjFihCgpKanR5xrLZ5Sfny8GDhxY6fY9evQQ2dnZEV/P+HuyZcuWiJ/LuHHj9O3z8vIq/V2MtI8m3u9EVa677jr9nBT6fQh111136a936NChsOe//PJLkZaWVul7vOWWWyo9F1XnGB07dtS3135Hq7u9JtbvoxD+fye07T777DNx/fXXh+0/ZMiQSj9LIiIiomTFAAgRERFRDAoKCsTatWsr/W/48OGmSaVY5OTkiDZt2ujHGTZsmJgwYYJYunSp+Ouvv8S3334rbr/9dpGVlRUWACkpKRFdunTR97300kvF1KlTxfLly8V3330nhgwZoj83YMAA4fP5wl5fm4xr3ry56Ny5s8jKyhIvvfSSWLhwoViyZIl49tlnhd1uFwBEp06dxNatW0V6erpo166dePfdd8WSJUvEggULTBOep556asT3apyEPeWUU4Qsy+KOO+4Qs2bNEsuWLROffvqp6Natm77N/fffH/E406ZN01+rUaNG4plnnhHz588XixcvFm+++aZo1qyZfowPPvgg4jG050877TQhy7I48cQTxWeffSaWLVsm5s2bJ0aPHq1PNnbo0EG43e6Ix/nXv/6lH2vw4MHis88+E3PmzBF//fWXGDt2rOjZs6f+/JQpU8L2NwZABgwYIGRZFqNGjRLTp08XK1asED/99JM4/fTT9W0effRR0/65ubli7dq14pJLLhEARJs2bSL+rtbU+++/r79m8+bNxRtvvCEWL14sFixYIJ599ll9wleSJDF9+nTTvtprVjam6igtLRVr164VL7zwgj6W3377LexYxklw4+/zscceK9LT08WTTz4p5syZI5YvXy7Gjh0r2rVrpx9vxowZEV97wYIFwmazCQCiZcuW4oUXXhA///yzWLFihfj555/1SXgA4rLLLqvx51uTz8jn85l+B4YMGSK+++47sXz5cjF16lRx6aWX6s917do1YkDG+N3r3bu3sNls4p577hEzZ84Uy5cvF19//bVYtGiREEKIsrIy0atXL337vn37io8++kgsXLhQLF++XPz0009i9OjRok2bNhEDIPF+J6ry66+/6vt/9dVXUbfzer2iRYsWAoC44IILwp7/9ttv9fNIly5dxFtvvSVmzJghVqxYIX744QcxYsQI/XVGjx4d8TU+//xzfRun0ynuuece8csvv4iVK1eKefPmiTFjxohzzz1XdO7cWd9n7969Yu3ataJfv34CgOjXr1/Y3/3mzZtNrxPP91EIcwCkd+/eAoAYNGiQmDhxoli+fLmYNWuW+OSTT6r7V0BERESUVBgAISIiIjoCxowZo08ojRw5Mubj/OMf/9CP8+qrr0bdrqSkRBw+fNj02IMPPqjv++STT4bto6qqGDlyZKXBAONq5GbNmolt27aFbWN8r9rE8sGDB8O2e+ihh/TtVq5cGfZ8aLbCxIkTw7YpLi4WJ554ogAgZFkOmyz3eDx6wKhRo0Zi1apVYcfIzs4WrVu3FoA/gyPSym/jOEaMGBExwGGceP/xxx/Dnv/999/156NNHlZUVIhhw4bpq7pDV5KHZhp98cUXYcdwuVzihBNOEABE06ZNI65GN2Y+xOvgwYMiNTVVn5jfvXt32DYrV67UJ13btm0rPB7PERuT8TPauXNnpdsaf58zMzMjZiNt3bpVOJ1OAUBcfPHFYc97PB49Q2L48OGirKws4mt9/PHH+mv9/vvvMb236nxGxu/fDTfcIFRVDdvm8ccf17d5+OGHw543fvdkWRa//fZb1NcbPXq0vu1dd90V8fWEEMLtdoucnBzTY4n4TlSlqsCGxhgoCT3XHDp0SM9iu/nmm6OOQftcZVkWmzZtMj23f/9+/XvSokWLSgN7kb5DWoC6qsyLRHwfjQGQyn6PiIiIiOojBkCIiIiIEmzWrFl6yaT+/fuLioqKmI6zadMmfQXypZdeWqN9XS6XaNy4sQAgevbsGTG7QwghioqK9DI+xx9/fNjzxgnjDz/8MOIxysvL9QljAOLXX3+NuN2OHTv0bd59992w542TsBdeeGHU97Z06VLTBKzRt99+qz/3yiuvRD3Gl19+qW/32muvhT1vXLWdm5sb8RjFxcV69kukFeDaJO7ll18edRxCCLFhw4aoE+XGyf3KMgn+97//6dutXr067PlEBkBeffVV/bW++eabqNsZA0STJk06YmOKNQDy3//+N+p2V199tQAgsrKywp7TVvU7nc6IgT6j/v37CwDi2muvrdZ7iTbeyj6jHj166MHH4uLiiNt4vV69FF6TJk2Ey+UyPW/87t18881RX6ugoECfbO/bt2/U80o0ifhOVMc999wjAAibzSby8vIibqNl6TRq1CgsiPX888/rwYLQz8rI6/WKtm3bCgDi8ccfNz332GOP6e9h8uTJNX4P1Q2AJOL7aAyANG7cOOrvEREREVF9xCboRERERAm0detWXHnllfD5fGjbti0mT54Mp9MZ07GmT5+uN1EePXp0jfZdsWIFCgsLAfib6loslojbZWRk4KqrrgIAbNiwAQcOHIi4nSRJ+nahUlJScOyxxwIAmjRpgvPOOy/idp07d0Z6ejoAYMeOHZWO39jYOlT//v3Rs2dPAAhrQqz9WZIk3HzzzVGPceWVVyIzMzPiMYzOOecctGjRIuJz6enp+vsOfT/FxcV68+0rrrgi6vEBoEePHmjWrBkAf1PmaCpr6ty3b1/956o+23hpn1fjxo1x2WWXRd3u1ltvDdsnWUiShGuvvTbq89rnefjwYf17pJk6dSoAYMiQIWjevHmlrzN48GAAlf+9xmP//v3YuHEjAOCqq67Sv1+hrFar/p0qKCjAypUrox6zst+zP//8U29sfu+990Y9r0RyJL4T0Wjvwev1YtKkSWHPV1RUYPLkyQCASy+9FKmpqabntb/jCy+8EA6HI+rrWK1WnH766RHHOW3aNABAly5dcPHFF9f4PVRXor+PF110UdTfIyIiIqL6iAEQIiIiogQpLCzERRddhIKCAqSkpGDKlClo3bp12HZbtmzBunXrIv5nnGxdtWoVAMBms+G0006r0VjWrVun/3zqqadWuq3xeeN+Rs2aNUNWVlbUYzRu3BgAcMwxx0CSpCq3KykpqXRMp5xySqXP9+/fH4D/s/R4PPrj2vg7d+5c6eS03W7HSSedZNonku7du1c6Du0zCX0/q1atgqqqAIBrrrkGkiRV+l9eXh4AICcnJ6axGP9uqvps46V9XieffDJsNlvU7Vq2bIlOnTqZ9kkWzZo1Q9OmTaM+X9nnuXz5cgDAb7/9VuXf6xtvvAGg8r/XeCT6ew4AvXv3jvqcdk4CgEGDBlVniKZ9E/2diObUU09F165dAQBfffVV2PNTp05FaWkpgPCAj6Io+PvvvwEAH330UZXj/P7778PG6fV69c/4jDPOqPScGK9Efx8r+/snIiIiqo8YACEiIiJKAEVR8M9//hObN2+GJEkYP368aVW+0bnnnotevXpF/E9blQxAnwDMysqC3W6v0XgOHz6s/xwtg0HTqlWriPsZha6QDiXLco22UxSl0u2qGnPLli0BAEIIFBQU6I9r469qfyD4vqO9ZyD293Pw4MEqXz8SbXV9TceijSPSWBIt0Z9xXaju3yuQmL/bioqKGu9THYn+ngP+LK5otHMSgIjB3cocie9EZbTAxqJFi5CdnW16TguKtGjRAmeffbbpucOHD8Pn88U1zsOHD+vZezX9nGoq0d/Hyv7+iYiIiOoja10PgIiIiKghGD16NH7//XcAwFNPPRW1XFRdOJKrj4+UeMdc1+/ZOGn+0UcfYcCAAdXarz5NPtb1Z1xXtL/b888/H6+99lodjyYoUX8fNSlrVRO1/Z0YOXIknn/+eQgh8PXXX+Oxxx4D4J/8/+233wAA//znP2G1mm+JjeO89dZbcd9991Xr9WoapE60ZP/7JyIiIqorDIAQERERxenjjz/Ge++9B8Bf2/7ZZ5+tdPvQ1cjRaDXwDx8+DI/HU6MJNmMJn9zcXHTr1i3qtsbSLZWVuapNubm5aN++faXPA/5JP+MEqTZ+7fnKaO/7SLxnY3ml1NRUnHDCCQl/jbqSlZWFAwcO1PlnXFeaNm2K/fv3w+Px1Pnfa+j3vDKJ+J5r5yQAOHDgADp37lztfWv7O9GtWzf069cPy5cvx8SJE/UAyPfff6+XzYvU78T42QghYhpnVlYWZFmGqqpR+yolytH+fSQiIiKqCktgEREREcVhzpw5uPvuuwEAJ510EiZMmJCwlbgnn3wyAH89+Zo2AjZO2i1durTSbf/666+I+9WlZcuWVev5Y4891hQY0sa/c+dOHDp0KOr+Xq9X72dwJN5znz599N+DhQsXJvz4NZXIbA3t81q5cmWlpYIOHjyIXbt2mfY5Emo7E0XrHbN8+XJT/5m6UNvfc+2cBADz5s2r0b518Z3QAhzr1q3DmjVrAATLX3Xt2jVi3xS73Y6ePXvGNU6bzaZ/xvPnz9fLYdVEdX+vk+37SERERJRsGAAhIiIiitH27dtxxRVXwOv1omXLlpgyZUqVvQVq4oILLtAnwd55550a7du3b1+94fiECRP05sOhSkpKMGnSJADA8ccff8Tr1VfXhAkToj63bNkyvYlvaP1+7c9CCIwbNy7qMb7//nsUFRVFPEYiNG/eXG9cP3HixEqDMbXB6XQCANxud9zH0j6vwsJC/Pjjj1G3+/TTT/WJ3yPxGWu09wYk5v1V5eKLLwYAFBUVVfo7VhvatGmDHj16AAAmTZqkN/YOpSgKxo8fD8BfUsoYyKiJM888E2lpaQCA9957r0b9ZuriO3H11VfrJZ2++uor7N27F/PnzwcQOftDo/0db9q0SS+XVVMXXXQRAH8wdsqUKTXev7rf2WT7PhIRERElGwZAiIiIiGJQVFSEiy66CPn5+XA4HJg8eXKlJZti0a1bN/zjH/8AAEyePBmvv/561G3LyspMzcAdDgduvfVWAP7Vz//5z3/C9hFC4O6779YbG2uZLMlg6tSpemDGqLS0FLfffjsAf6Nq7WfNpZdeijZt2gAAXnzxRaxduzbsGHv27MGDDz4IwF+K56abbkr08AEATz75JACguLgYV1xxBQoLC6Nu63a78f7778Plch2RsWiBrYMHD6KkpCSuY9100016oO/f//439u3bF7bN6tWr8dJLLwEA2rZti0svvTSu16yMMWi3ffv2I/Y6mlGjRunf9QcffLDKTIgFCxZg7ty5R2w8d911FwDg0KFDuPfeeyNu89xzz2HDhg0AgNtuuw0OhyOm12rcuLH+nVuxYgXuv//+qNkNXq83rPF5bX8nWrVqhWHDhgEAvv76a0ycOFEfb2UBkPvuuw+NGjUC4P99X79+faWvM336dD3DRHP33XfrwaLbb79dD9pGsnfv3rDHtN/rHTt2VJpBkmzfRyIiIqJkwx4gRERERDG45557sHHjRgDA/fffj0aNGlU6wdWiRQu0aNGixq/zwQcfYMmSJdi/fz8efvhhzJgxAzfeeCO6d+8OSZKQnZ2N2bNn45tvvsEPP/yAoUOH6vs+/fTT+PHHH7Fjxw48++yzWLt2LW666Sa0bt0aO3fuxJgxYzBnzhwAwOmnn47/+7//q/H4jpR+/frh2muvxdy5c3HFFVcgIyMDa9aswauvvorNmzcD8E/89u7d27Sf3W7Hxx9/jIsuugjFxcUYOHAgHnroIZx11lmwWCxYtGgRXnnlFX1i9o033jD1NUikESNG4L777sO7776LefPmoUePHrjjjjtwxhlnoGnTpigrK8O2bdswf/58/PjjjygoKMCoUaOOyFi0htOqquKOO+7APffcY3rfxxxzTLWP1bx5c7z++uu46667sHfvXvTt2xePPvooBgwYAJ/Ph1mzZuH1119HaWkpJEnCxx9/DJvNlvD3pDnppJPgdDrhcrnw1FNPwWazoWPHjpBl/1qvtm3bIiUlJWGv53A4MGnSJAwdOhSlpaUYNmwYrr76alx66aXo3Lmz3vdhxYoV+Omnn7B27Vq89957GDJkSMLGYHTHHXfgq6++wuLFizFu3Djs2rUL//rXv9C5c2ccOHAAn332mZ4Z0LVrVzz11FNxvd5//vMfzJw5E2vXrsWYMWOwePFi3H777ejVqxfsdrueZfH111/jhRdewI033qjvWxffiZEjR2LmzJnYs2cPXn75ZQD+80tlfZFatmyJCRMm4IorrsCBAwfQr18/3HjjjTj//PPRrl07eL1e7N27F3/99Re+//577NixAz///LPpfNSqVSt8+OGHuOGGG3Dw4EH0798ft912G84//3y0atUKpaWlWLduHaZOnYrNmzeHBe8GDBiAcePG4eDBg3jggQdw3XXXITMzEwD033Eg+b6PRERERElHEBEREVGNDRkyRACo9n/PPPNMzK+1fft2ccIJJ1T5GrNnzw7bd+fOnaJ79+6V7jdw4ECRn58f8bVHjRolAIiOHTtW6/MYMmRIpdt17NhRABCjRo0Ke+6ZZ57Rx7Rjxw7RuXPnqGO+/PLLhdfrjfo648ePFw6HI+r+FotFvPTSS1H3r+7fW1XvW1VV8dxzzwmr1Vrl319aWpooLy837T9u3Dj9+Z07d0Ydx86dO/Xtxo0bF/a8oijitNNOi/rasXjxxReFLMtRj+lwOMSECROi7l/d363qePjhh6v1vajua1bnc1+8eLFo3759tb7/lX0OlanuePPz88XAgQMrHUOPHj1EdnZ2xP2N373qOHTokBg8eHCV7zvS72K834maKi4uFikpKabjvv3229Xad+rUqSIrK6vKccqyLP7888+Ixxg/fnzY64f+F+nvt6SkRHTp0qXa28fzfazq/EFERERUn7EEFhEREVGS69KlC/7++2+MHz8eF1xwAVq3bg2bzYaUlBR069YNN9xwA6ZMmYJBgwaF7dupUyesXr0aY8aMwZAhQ9C0aVPYbDa0bNkSw4cPxxdffIF58+YhKyurDt5ZdJ07d8aKFSvw+OOPo0ePHkhNTUVmZiYGDx6ML7/8Et9//z2s1ujJzKNGjcKmTZtw3333oUePHkhLS0NKSgq6du2K2267DatWrcJjjz12xN+HJEl4+umnsWXLFjz88MPo168fsrKyYLFYkJ6ejuOPPx4jR47EhAkTcODAgYRmKhjJsozff/8dTz75JE488UQ0atQo7ubhjz/+OFatWoXbbrsNXbt2RUpKCtLS0tCjRw/cd9992LRpE2644YYEvYPKvfLKKxg7diwGDRqkf75H2mmnnYatW7fif//7Hy644AK0adMGdrsdTqcT7du3x7nnnosXX3yxVj6HrKwszJs3D59//jmGDx+Oli1bwmazoWnTphg6dCjGjBmDv//+W88aiFezZs0wd+5c/Pjjj7jiiivQrl07OBwOOJ1OdOnSBVdeeSW++uorXHPNNWH71vZ3Ij09Xe/HAQAWiwVXX311tfa96KKLsHPnTrzxxhsYNmyY/rmmpKSgc+fOuPDCC/HWW28hOzsbZ555ZsRjjBo1Ctu3b8cTTzyh92ayWCxo0qQJTjvtNDz++OOYMWNG2H6NGjXCokWL9HNYVf2lkun7SERERJRMJCEqKShKRERERFRLnn32WTz33HMAUGnNeyIiIiIiIqLqYAYIERERERERERERERE1OAyAEBERERERERERERFRg8MACBERERERERERERERNTgMgBARERERERERERERUYPDAAgRERERERERERERETU4khBC1PUgiIiIiIiIiIiIiIiIEsla1wOojKqq2L9/P9LT0yFJUl0Ph4iIiIiIiIiIiIiI6pAQAiUlJWjTpg1kufIiV0kdANm/fz/at29f18MgIiIiIiIiIiIiIqIksmfPHrRr167SbZI6AJKeng7A/0YyMjLqeDRERERERERERERERFSXiouL0b59ez1+UJmkDoBoZa8yMjIYACEiIiIiIiIiIiIiIgCoVtuMygtkERERERERERERERER1UMMgBARERERERERERERUYPDAAgRERERERERERERETU4DIAQEREREREREREREVGDwwAIERERERERERERERE1OAyAEBERERERERERERFRg8MACBERERERERERERERNTjWuh4AERERERERERERUTLz+Xzw+Xx1PQyiBsdqtcJqPXJhCgZAiIiIiIiIiIiIiCIoLy9HXl4eysrK6nooRA1WWloamjVrhtTU1IQfmwEQIiIiIiIiIiIiohAejwd79uyBzWZD69at4XA4IElSXQ+LqMEQQsDtduPw4cPYs2cPOnfuDLvdntDXYACEiIiIiIiIiIiIKMTBgwdhsVjQsWNHWCyWuh4OUYOUkpKC9PR07Ny5EwcPHkS7du0Senw2QSciIiIiIiIiIiIyEEKgvLwcmZmZDH4QHWEWiwWZmZkoLy+HECKhx2YAhIiIiIiIiIiIiMjA6/VCURSkpKTU9VCIjgopKSlQFAVerzehx2UAhIiIiIiIiIiIiMhAVVUAYPYHUS3Rvmvady9RGAAhIiIiIiIiIiIiioBNz4lqx5H6rjEAQkREREREREREREREDQ4DIERERERERERERERE1OAwAEJERERERERERERElGDZ2dmQJAmdOnWq66EkVH16XwyAEBEREREREREREREliU6dOkGSJGRnZ9fJ6w8dOhSSJGHOnDl18vqJxAAIERERERERERERERE1OAyAEBERERERERERERFRg8MACBERERERERERERHFZN26dbj88svRrFkzpKamolevXnjnnXegqmrUUk7Gx6dMmYJhw4YhKysrrOzSpk2bcNNNN6Fjx45wOBzIysrCWWedhUmTJkUcy4033ghJkjB+/PiIz48fPx6SJOHGG2+M+nhZWRkee+wxHHPMMXA4HGjVqhVGjRqFffv2Rf0Mpk2bhiFDhiA9PR2ZmZkYNGgQpkyZUp2PL+I4du3aBQDo3LkzJEnS/9M+mzlz5kCSJAwdOhTl5eV4+umn0aNHD6Smpup9OarTpyP070c77ty5cwEAZ555pun1I32uQgh8/PHH6Nu3L9LS0pCZmYlzzz0XixcvrvH7PxKsdT0AIiIiIiIiIiIiIqp/5s6di/PPPx8VFRXo2rUrzjnnHOTn5+ORRx7BkiVLqtz/zTffxJgxY9CvXz8MHz4c+/fvh8ViAQBMnz4dV1xxBVwuF4477jhcdtllOHjwIObOnYs///wTv/32Gz799NOEvp+ioiIMGDAAu3fvxqBBg3DCCSdg8eLF+PzzzzF37lysXr0amZmZpn3efvttPPDAAwCA/v37o2vXrti6dSsuvfRS/fHqOuaYYzBq1Ch8//33KCsrw+WXX45GjRrpz7dq1cq0vcvlwtChQ7FhwwYMHjwYJ554IvLz82N899CDPTNmzEBubi7OO+8802sec8wxYfvcdNNNmDhxIgYNGoQLL7wQf//9N2bOnIl58+Zh7ty5OPXUU2MeTyIwAEJERERERERERERENVJRUYGRI0eioqIC//73v/Haa69Blv0FhzZs2IBhw4YhNze30mN8+OGHmDJlCi6++GLT47m5uRg5ciRcLhdeeOEFPP7445AkCQCwfPlynHvuufjss89w2mmn4bbbbkvYe5o8eTLOO+88zJ8/HxkZGQCAgoICDBs2DH///Tc++OADPPbYY/r2a9aswUMPPQRZlvHtt9/iiiuu0J/76quvcP3119fo9c844wycccYZmDNnDsrKyvDGG29UmsGxdOlS9O7dG9u2bQsLjsSie/fuGD9+PIYOHYrc3Fw8+uijGDp0aNTtd+3ahTlz5mDdunXo1q0bAEBRFPzf//0fPvvsMzz99NP47bff4h5XPFgCi4iIiIiIiIiIiKgGhBAo9/jq5X9CiIR8Bt9//z327duHjh074uWXX9aDHwBw/PHH46mnnqryGKNGjQoLfgDA2LFjUVRUhL59++KJJ57Qgx8A0K9fPzzxxBMAgNdffz0B7yQoLS0N48aN04MfANCkSRM8+uijAIBZs2aZtn/vvfegKAquvPJKU/ADAEaOHBnxvSXamDFjEhL8iNV7772nBz8AwGKx4MUXXwTgzxDyer11NTQAzAAhIiIiIiIiIiIiqpEKr4Ljn67ble2x2vD8eUi1xz8trPWJuPLKK2Gz2cKeHzlyJO6+++5KjxEaNNBovS5GjRoV8flbbrkFDz74ILZu3Yr9+/ejTZs2NRh5dP369UPr1q3DHu/RowcAhPUB0cZ53XXXRTzeqFGjYuoFUl0tWrTAoEGDjtjxq2K1WjF8+PCwx1u1aoUmTZqgoKAA+fn5dRqgYQYIEREREREREREREdXI3r17ASBqiabGjRuH9csIFW1fLdDQuXPnqMfOysoyjSMROnToEPFxLSPE5XKZHtdeO9o4oz2eKJWVx6oNrVu3jhj8AqJ/ZrWNGSBERERERERERERENZBis2DD8+fV9TBikmKzJPR4xvJUNXkOAFJSUhI6lqqoqlrp88YyXvVBvJ9fVZ9HVerD58UACBEREREREREREVENSJKUkDJS9Vnbtm0BANnZ2RGfLyoqQmFhYczH3rRpE3bs2BH12IcPHzaNAwDsdjsAoKSkJOJ+u3btimk8lY1z+/btyM7ORs+ePcOej/bZ1IaqPguv14sDBw7U5pDqRPKHaIiIiIiIiIiIiIgoqQwePBgA8N1338Hn84U9P3HixJiPPXToUADAhAkTIj7/2WefAQCOPfZYUwBE+3njxo1h+wgh8Ouvv8Y8pkiGDBkCAPjqq68iPv/555/HdFwteBHpc62u5s2bw2634/Dhwzh48GDY87/99lvU4yfi9ZMFAyBEREREREREREREVCNXXnklWrdujezsbDzxxBOmckqbNm3C888/H/Oxb7vtNmRkZGDlypV46aWXIITQn1u1ahVeeOEFAMBDDz1k2u/ss88GAHzxxRfYsGGD/rjX68UjjzyCZcuWxTymSO655x5YLBZMmjQJP/30k+m5b775BpMnT47puO3atQMArF+/Puax2Ww2PUj15JNPmv5+Vq9eXWmD+kS8frJgAISIiIioCqoq8NqMTfh0wc66HgoREREREVFSSE1NxZdffgmn04nXXnsNxx13HK655hqcd955OPHEEzFo0CC9qbiWUVBdLVu2xFdffQWn04knnngCxx9/PK699lqcffbZ6N+/Pw4fPoybbroJt912m2m/gQMH4pJLLkFpaSn69euHc889F5dccgm6dOmCjz76CPfdd1/C3j8A9OnTBy+//DIURcFll12G0047DSNHjkT//v1xzTXX4P7774/puJdffjkA4LrrrsPll1+OW2+9Fbfeeis2b95co+O88MILsNvtGDt2LHr06IErr7wSAwYMwCmnnIKhQ4eiY8eOlb7+ww8/jIsuugi33HILbr31VixatCim91OXGAAhIiIiqsKM9Tn4YM52/GfaBqiqqHoHIiIiIiKio8CwYcOwdOlS/OMf/8Dhw4cxefJk7N27Fy+++CK+/PJL5OTkQJZlZGVl1fjYF154IVauXIlRo0ahtLQU33//PVasWIFBgwbhm2++0ctghfr222/x5JNPonXr1pgzZw6WLFmCQYMGYeXKlejTp0+c7zjcQw89hClTpuCMM87AunXrMHXqVNhsNnz//fe49957YzrmnXfeiZdffhkdO3bEL7/8gk8//RSffvppjXt2nHrqqZg7dy7OPfdc5OTkYPr06SgvL8e7776LcePGRd3vggsuwNixY3HCCSfgzz//xGeffYZPP/0UW7Zsien91CVJGPOHkkxxcTEyMzNRVFSEjIyMuh4OERERHaX++8dWvDXTf6G36T/D4bRZ6nhERERERER0JLlcLuzcuROdO3eG0+ms6+HUS/PmzcOQIUPQq1cvrFmzpq6HQ0muJt+5msQNmAFCREREVAW3Twn+7FUr2ZKIiIiIiOjocejQIezcGV4qeN26dXp5qptuuqm2h0Wks9b1AIiIiIiSXYUnGPTwB0NsdTcYIiIiIiKiJLF+/XqceeaZOP7449GlSxekpKRg586dWLlyJVRVxTnnnIN77rmnrodJRzEGQIiIiIiqUOLy6j+7fcwAISIiIiIiAoBu3brhrrvuwty5c7Fw4UKUlJQgPT0dAwYMwLXXXovbbrsNViunoKnu8LePiIiIqArfrdir/2wsh0VERERERHQ0a9OmDcaMGVPXwyCKij1AiKhGJi7djeHvzMOi7Xl1PRQiolrh8iohf2YGCBEREREREVF9EHMA5OWXX8Ypp5yC9PR0tGjRApdeeik2b95s2sblcuGuu+5C06ZN0ahRI1x++eXIzc2Ne9BEVHce/2ktNuWU4LUZm6vemIioAQhtes4SWERERERERET1Q8wBkLlz5+Kuu+7CkiVLMHPmTHi9Xpx77rkoKyvTtxk9ejR+/vlnfPfdd5g7dy7279+Pyy67LCEDJ6K6dbjMU9dDICKqFW7FnAHi9rIEFhEREREREVF9EHMPkBkzZpj+PH78eLRo0QIrVqzA4MGDUVRUhE8//RQTJ07EsGHDAADjxo1Djx49sGTJEpx22mnxjZyI6pTVItX1EIiIakVoBoiLPUCIiIiIiIiI6oWE9QApKioCAGRlZQEAVqxYAa/Xi7PPPlvfpnv37ujQoQMWL16cqJclojpik9lCiIiODh7FHADZmVdeRyMhIiIiIiIiopqIOQPESFVV3H///Rg4cCBOOOEEAEBOTg7sdjsaN25s2rZly5bIycmJeBy32w23263/ubi4OBHDI6IjgBkgRHS0CM0A2bCf1ydERERERERE9UFClnDfddddWLduHb755pu4jvPyyy8jMzNT/699+/aJGB4RJYiiCv1nq4UZIER0dAjNAAn9MxERERERERElp7hnMO+++25MmzYNs2fPRrt27fTHW7VqBY/Hg8LCQtP2ubm5aNWqVcRjPfbYYygqKtL/27NnT7zDI6IEchka/9pkZoAQ0dEhtOm518cACBEREREREVF9EHMARAiBu+++Gz/99BP+/PNPdO7c2fR83759YbPZ8Mcff+iPbd68Gbt378bpp58e8ZgOhwMZGRmm/4goeVQYJgEtDIAQ0VEiNOPDGyEDRAgR9hgRERERERER1a2Ye4DcddddmDhxIqZMmYL09HS9r0dmZiZSUlKQmZmJW265BQ888ACysrKQkZGBe+65B6effjpOO+20hL0BIqo9HsOqZ2M5LCKihiy0B0hoQGThtjzc/sUKXNKnDV78R6/aHBoRERERERERVSLmDJAPP/wQRUVFGDp0KFq3bq3/9+233+rbvP3227jwwgtx+eWXY/DgwWjVqhV+/PHHhAyciGqfMejhZQCEiI4Sbl/lGSAT/9qNUrcPXy3dXZvDIiIiIiIiohoaP348JEnCjTfeaHp8zpw5kCQJQ4cOrZVxSJIESWJ1ldoQVwmsSP8Zf3mcTifef/99HD58GGVlZfjxxx+j9v8gouRnnPTzsQkwER0lfKqK9lIufrY/jmet403ZcACgMiBMRA3IjHUHMHvzwboeBhFRrft9fQ7GztsRsdwpEVFNDB06FJIkYc6cOXU9FEIcJbCI6OhjzADxKZzwI6KjgyoELpEXoZecjV5yNn7y3W163m4Nridx+xQ4rJbaHiIRUULkl7pxx5crAQDbXxrBnm9EdNRweRX83xcrAADts1Ix/AQu3iU62vTv3x8bN25Eampqrbzexo0ba+V1iAEQIqoBn6kEFlfFENHRQVWBDKk8+IDiNj1vtwQDIGVuBkCIqP4qdvn0n90+Bal23i4S0dGhwqPoPx8qcdXhSIiorqSmpqJ79+619nq1+VpHu5hLYBHR0YcZIER0NFKEgBMewwPusOc1ZW4fiIgaApeXi12I6OhhXOBnDAYTUdWMvSzGjh2Lvn37Ii0tDY0bN8aIESOwZMmSiPt16tQJkiQhOzsbU6ZMwbBhw5CVlRVWOqqgoADPPPMM+vTpg/T0dKSmpqJXr1544YUXUF5eHvHYPp8P77zzDnr16gWn04nmzZvj8ssvx9q1a6O+j6p6gBQUFOD5559Hv379kJmZiZSUFHTp0gVXXXUVfv31V9Mx5s6dCwA488wz9c9HkiSMHz8+4ucW6vDhw3j88cfRs2dPpKamIj09HX379sVrr72GioqKSsfu9Xrx6quvomfPnkhJSUHTpk1x2WWXHdUZJ1zSQ0TV5jMFQHhTTERHB1UVaCQFLzJln3lVoLEnSLHLW2vjSqRrPl6C3BIXpt8zCCl2ZrAQHa2M13cur1LJlkREDYtxsV99vZ4jqmsPPPAA3nnnHQwcOBCXXHIJ1q5di19//RUzZ87EpEmT8I9//CPifm+++SbGjBmDfv36Yfjw4di/fz8sFv89yYYNGzB8+HDs2bMHrVu3xhlnnAGbzYa//voLTz31FH744QfMmTMHmZmZ+vFUVcWVV16JyZMnw263Y+jQoWjSpAmWLl2K/v374+abb67xe1u9ejUuuOAC7Nu3D5mZmTjjjDOQnp6O3bt3Y9q0aTh48CDOP/98tGrVCqNGjcKMGTOQm5uL8847z9QP+5hjjqnytXbs2IFhw4Zh165daN68OUaMGAGv14vZs2fjkUcewbfffotZs2ahSZMmYft6vV6MGDECixYtwuDBg9GjRw/89ddf+OmnnzB79mysWrUKnTp1qvH7r+8YACGialMMq2K8bPpLREcJVQCZKNP/LCse0/PGAEh9nDAsKPNg8Y58AMDSnfkYelyLOh4REdUVdz0/nxERxcpY4aC4ggEQolj873//w6xZszBs2DD9sddffx0PP/wwbrrpJgwcOBAtWoTfa3z44YeYMmUKLr74YtPjFRUVuPjii7Fnzx48+eSTeOqpp2C32wEA5eXluPXWW/H1119j9OjR+Oyzz0zHmzx5Mlq2bInZs2ejR48eAPxZIffeey8++OCDGr2vsrIyXHTRRdi3bx9uuOEGvP/++2jUqJH+fFFREZYtWwbAX9Zq/PjxGDp0KHJzc/Hoo49GzSiJ5tprr8WuXbtw8cUXY+LEiUhLSwMAHDp0CMOHD8fKlStx991346uvvgrbd9GiRTjppJOwfft2PfDicrlw6aWX4rfffsPLL7+Mjz76qEbjaQhYAouIqs14UcgMECI6WihCoLFUqv9ZCimB5TWtmK5/58YdecHgzk7Dz0R09PHU8/MZEVGsjNUOSlgCi6pLCMBTVj//E4lf1Hr77bebgh8A8NBDD6Ffv34oKirCJ598EnG/UaNGhQU/AGDChAnYvn07LrzwQvznP//Rgx+Av1/Hxx9/jBYtWuCLL75AQUGB/tw777wDAHj22Wf14AcAWK1WvPXWW6aMjOr45JNPsGfPHvTp0wefffaZKfgBAJmZmTj77LNrdMxoFixYgKVLl+rvTwt+AEDz5s3x8ccfAwC++eYb7N27N2x/SZIwbtw403t0Op147rnnAACzZs1KyDjrG2aAEFG1sQcIER2NhBBojGAAxKKElMAyTBgaG2jWFwVlwYyWnCI2/SQ6mpky2nz173xGRBQrU7UDLvaj6vKWAy+1qetRxObx/YA9rertamDUqFERH7/hhhuwfPlyzJkzB48//njY81dccUXE/aZPnw4A+Oc//xnx+UaNGqFfv3745ZdfsGzZMpx77rnYt28ftm3bBgC47rrrwvZxOp246qqr8N///rda7wkAZsyYAQC45ZZb9NJcR4rW+2T48OFo2bJl2PN9+/bFiSeeiNWrV2Pu3LkYOXKk6fkOHTrgxBNPDNtPCwTt27cv8YOuB5gBQkTVZlwVY2wSR0TUkCmqQIYUzIywiUpKYNXDCUOf4Xx+gAEQoqNafS/pR0QUK69hgZ+Xi/2IYtK5c+dKH4+UsQAgak+KHTt2AACuv/56UyNx43+//PILAH95KONrNGvWLCxTo6pxRrNr1y4A/vJWR5oWoKhsjF27djVta9ShQ4eI+2RkZAAA3G53xOcbOmaAEFG1MQOEiI5GqirQ2NADxFpJAKQ+ZoAYb/LzSo/OC2Ii8jOez9wsgUVERxHjvS4zQKjabKn+TIr6yJZa6y8popTdSklJifi4GlioFS0bwqhjx47xDa6BkGXmOkTCAAgRVZsxA8SnCgghIElSHY6IiKgWKB7YpGBgw6GasyRMTYN99e+G2ZgBErriW1UFbpmwDE3S7Hjrqj61PDIiqm3Gkn5lHtbAJ6KjhzHo4a6H13NURyQp4WWk6rOdO3eiT58+YY9nZ2cDANq1a1ej47Vv3x6bNm3CLbfcErVMVqi2bdsCAPLy8lBaWhoxC0QbT3V16NABGzduxKZNmxLW6yMabfxa9ksk2nPatlQ1hoWIqNqUkLJXxoAIEVGDpZonAVsjz/RnU9PgepgBYszoC216vOVgCWZvPoQfV+6DynM+UYPnNpTxyy/1VLIlEVHDwgwQovh98cUXlT4+dOjQGh3v/PPPBwBMmjSp2vu0a9cOXbp0AQBMnDgx7Hm3243vvvuuRuMYPnw4AOCzzz6DolTvfk9r2O7z1WxBifYZzZgxA7m5uWHPr1q1Cn///TdkWcbgwYNrdOyjGQMgRFRtoQEPlsEioqOBGhIA6SLtNwUD6nvNfOO53R3Sw8QYEPFwMoCowTOezw6VsCQeER09zD1AeM1DFIsPP/xQb+Ktefvtt/HXX38hPT0dt9xyS42O93//93/o2LEjvvvuOzzyyCMoKSkJ2yYnJwdjx441PXb//fcDAJ599lls2rRJf1xRFDz44IPYv79mZctuvfVWtGvXDqtWrcJtt92GsrIy0/PFxcWYNWuW6TEt22X9+vU1eq0zzjgDp556KioqKnD77bejvLxcfy4vLw+33347AODqq69G+/bta3TsoxlLYBFRtSkhARCvqiIFljoaDRFRLQlZ5dNcKoQiBGT4SwC663sTdGMGS0gGiHECwKuocNp4zidqyIwBUQZAiOhoYsoA8XGhH1Esbr/9dgwbNgyDBg1C27ZtsW7dOqxduxYWiwWfffYZWrVqVaPjpaWlYfr06bjwwgvx2muv4eOPP0bv3r3Rrl07lJeXY8uWLdi4cSNatGiB2267Td/vrrvuwsyZM/Hzzz/jxBNPxJlnnokmTZpg6dKlOHDgAO688058+OGH1R5Ho0aNMHXqVIwYMQLjxo3DTz/9hIEDB6JRo0bYs2cPVq1ahf79+5vKY11++eUYN24cHn74YcyaNQstWrSAJEm4+eabMWDAgEpfb+LEiRg2bBimTJmCzp07Y/DgwfB6vZg9ezaKi4tx8sknY8yYMTX6LI92zAAhomrzKswAIaKjjxDmoEATqdR0k2xugl7/Vgwaz+2hNa+N7y303wAianiM57bdh8sr2ZKIqGEx9kRjBghRbN5++2188MEHKC4uxuTJk7Fr1y4MHz4c8+bNq3YPj1A9e/bEmjVr8Nprr6FHjx5Ys2YNvvvuOyxduhRpaWl48MEH8dNPP5n2kWUZP/74I958800cc8wxmDNnDmbOnInevXtjyZIl6N+/f43HcdJJJ2Ht2rV48skn0b59e8yZMwdTp05FTk4OLr74Yjz22GOm7S+44AKMHTsWJ5xwAv7880989tln+PTTT7Fly5YqX6tLly5YuXIlHnvsMTRt2hTTpk3DzJkz0bVrV7zyyitYsGABmjRpUuP3cDSThBBJezdbXFyMzMxMFBUVISMjo66HQ3TU+3bZbjzyw1r9z389fhZaZDjrcEREREfeR9MX4/Zlw/U/b1Lbo/0TfyPN4U+k7f7Ur3rmxLWndsBL/+hVJ+OM1cfztuOlX/yp4ekOK9Y+dx4AILfYhVNf+kPfbsljZ6FVJs/5RA3ZZwt2YvEvn6O1lI8/Ui/EwifOreshERHVilkbcnHr58sBAO2apGDBI8PqeESUDFwuF3bu3InOnTvD6eR1cDSS5M+MT+IpZqonavKdq0ncgBkgRFRtoT1AvA20Ie5Lv2zEwFf+RH4pSz8QEQBhLmvVRCqBEri4F0KYe4DUxybohnO5sYTXO7O2mrYzroYsdfvwyfwd2FdYceQHSES1xuYpwFj7W3jeNgHHu1bW9XCIiGqN7yhpgj5jXQ4+mb+jQb9HIqJQDIAQUbUpqsBQ+W/8an8EZ8qrTHXjG4pilxcfz/NP6s3beqiuh0NESUCo5qBGY5RBCQQ9fKqAMRZcP3uAGG/4hV4CJ7QhurEJ+tszt+CF6Rtx3SdLa2eQRFQr0kt26j83E/l1OBIiotrlU1WcJm/Ar/ZHMdi7sK6Hc0QUVXhxx5cr8ML0jZjPe10iOoowAEJE1aaqAuPtr6GHvAe3WH5pkPXg8wwNPx1WNvslovAAiEPyQvGUATD3yADCm4jXB6HBbC3wkRLS8Nz4XmduyAUA7MwrO8KjI6LalFaxN/izKGuwpSwUVWDRtjzkFrvqeihElCQUVeAb+wvoIe/Gjerkuh7OEXGgKJi5m1fiqcOREBHVLgZAiKjarL5S/efu8h5To7iGwjh5Gbr6GQDembUF93y9Ci5v/VvlTUQxCgRA3HIqPMIfFBDlh/2PhQRAKuphCazQcobuwHkwNACilUpQVGFqlExEDYfVGwxqZkplYeVPG4rvlu/BtZ8sxT8/WlzXQyGiJKF4gwvheko76nAkR87B4uB7LHH76nAk1NAIIRrsoglqGBgAIaJqs3uKgj/DZyqb0lAYy9e4Q1Zyb84pwTuztuLn1fsxedU+uH0KLhmzAI//tDb0METUgAjVf4MoJBmFSPf/HAiAhGWA1MsSWJHfQ6o9PAAihMBlHyw09f5gDWmihkNSgpNjGShrkNd6ALBou7+8V3Z+eZXbehUVt32+HDeO+6teBrmJqHqsruC9riIkoAFO5uYZelyWuhgAIaKjBwMgRFRtkhq8SEpDBbz1cKKvKsYGxqEru+dsPqj/vOtwOeZtycPqvUWYuHR3rY2PiOpAINtNSDKKkeZ/rKIQQHimmDY5tuNQKa783yLc+eWKpJ8wCy1nqGXCKSE3/h6fgEdRsXpvkenxcndyvz8iqj6LIQCSKZWZev80JOWe4DVtVStW1+wtwswNuZiz+RBmbcw90kMjojoiG6odWCQBKA2vRFSZ4Zq01O2tw5EQEdUuBkCIqNpkNXgRaJEEVG9FJVvXT6YMkJCJzU05JfrPxRVe06pptYGWiCAiAMJ/LlBhQQWc/oc8/lXDoRkgWuD0gv8uwLLsAvy6Lgdf/5XcQdLQclbauS80C86jqIhU+bDUwxWERA2FrBozQMrDMsQainLDJGBVZb4OGfrDrd9ffMTGRER1y+ItNf1ZdZVG2bL+cpkCILx+I6KjBwMgRFRtcsgqGNXV8G4CKzyGHiAhk387DM1+i10+GG+Xp6zeh2FvzMGk5XuO9BCJqLYZSmC5JIf/50Cd/NBMMZdXgRACFYY+QfsLkztYHNrPScsACS3n5fGpYVkhAFDGG2iiBkMOyQAxZoit2FWAD+ZsaxCLPsoryfgNZSwZU+Hx4csluzBpGa/3iBqa0ACI4i6JsmX9ZexjWcoMXiI6ijAAQkTVJomQNGBXw74oNN4QCyGw42Dwori4wmtaNf3gd2uwI68MT01eVzsDJaJaIwJN0IVkgSuQAYJABkhYE3SvgqIKc0mBZO8LEloCyx04D7pCgsC78suQb5gI1HAFIVHDYVzskoFyU4+fyz9chNdmbMbEJM9qqw7j+3J7Kz9H55cGP5ODJW48OXkdHv5hDYpdLB9D1JBYPOYAyCd/rAvLkq3vjNekpTyH1QgbfBPVjiP1XWMAhIiqTVZCJrk8DTADxBu5BFZusRslhkm+YpfXVNdfuziuahUhEdVDItgDRMsAQaAEoHaeSLH5G4a7vAoKys03lMneZDK8Cbr/z6Hnsxemb8SQ1+eE7c8eIEQNh0U1Z4BEKg+1eEd+bQ7piDAFQKq4diszlPkzBkOSPbuPiGrG4isz/fm3VduxYFteHY3myDBWO+ACluqxWPzX+F4vA0ZEtUH7rmnfvURhAISIqk0OyQDxleQ1uJUQxptgYzBkY4452OP2qlEvGhvaZ0J01DNkgLglLQPEf5Os9QBpnGoD4M+acIWsJk72EgNeRaCddBDHSHvhhFsff+j7iMajJPf7I6LqMwZA0lBhChRotuTU/wxg4/VeaC+nUMbrvcPlwWvhvYcZACFqSIw9kAAgTarAil0FdTSaI8OYAVISskCnoWW7JIrNZoPD4UBRURHv84mOMCEEioqK4HA4YLPZEnpsa0KPRkQNmqyYVz38OG8FppYdj5cv6w3AP1n27NT1GHpcCww/oVVdDDFuxht9Y9PLl3/ZCMA/yVlY7oVXUbFuf1HEY5R7FKQ5eHolajD0AIgcDIB4zSWwMlNsOFDkAuAvkWeU7D0yBh3+Du87PgAA7BXNsNI9C0DwvbXMcCC3OLz0lSa0XxIR1V9WwwSgDb6IAZCtB+t/Y+BoJU8jKTecwwvKggEQY2YIETUAIdUOmqA07JquKrvyy9C0kQONkvRe0NwDxFzd4JIxC7G3oBwPnnsc/m9wF0iShKJyL2QZSHcmdiKyvmnWrBn27duHvXv3IjMzEzabDZIk1fWwiBoMIQS8Xi+KiopQWlqKtm3bJvw1kvOsTERJSVLNF4AtUIj3/9qDly/rjb0F5Rg7bwe+WbYH3yzbg50vj4AkSZi96SC25JboF1HJzlgKZo9hZZ+22KNHqwws3pEPj6Jia27kCQC3T0Wa44gOk4hqkzD0AAkEQKSQJugZhhvD0B4gi3fkQwiRtOfATq6N+s/tpDx4Vz4LnDxBv0l+8Nzj8MRP6+AJmQgddGwzzN+ax9J/RA2IxdADxC4p8Bq+3zaLpPcMKir3IjO1/k6IGc9b7ir6NJUZSp4aM0C4WpqoYQm9120uFaLcU/0s1/lbD+H6T/9Cx6apmPPg0KS87osWAPnmr93Ymee/tn351004pkUjnNI5C2e9NQeNU+2Yds8ZEAJIsSe2JE19kZGRAQDIy8vDvn376ng0RA2Xw+FA27Zt9e9cIjEAQkTVZgkpgdVS8qcEF5Z7cMars03PbTtYimNbpuOm8csAAN1apuPM7i1qZ6BxMDYD3naoFOUeH1LtVv0C8cITW2Pxjnx4fWrUG+ZIqyWJqB4zlMAqkpsAAKzlBwH4S6c0RwFOEIegWoux1tcehYEASKpFRSs1BwpkrN9XiBPaNamb8VchRTGXs+m8dzLgLtUnCJuk2vGvM7vinVlbTds5rP5KqlVNHhJR/WER5mwvxRv8s0UOBkD2FJQjMzUTgH/V3vr9xTimRSM4bfVjcqxGGSCGTA9j9ZOnJq/DjHU5ePT87ujSvFHCx0hEtSs8AFKEjdUsBwoAy7L998a78svhVQTs1uQLgBizdktdPr2k09j5O03b7T5cDp8qkFfqQV6pB92fmoGsNDt+u38wmqcfnSv9MjIykJGRAa/XC4XlX4kSzmKxJLzslREDIERUbaElsG6wzsS3ypkRS6M8/tNafHfHAP3P6/cX1ZMAiLkm9Ib9xejXKUsPgGSl2v3PKSLqDXNVtaSJqJ7Rm6BbcMjiP4813fkzoCpom/0jljmfAnIBWIF5Ui+sL50AABjb6H8Y6F4AANgxcylw08d1MvyqpCr+bLaXfNfhceuX/ge/uQY3FjVGa/tWHDevKdxtbwSQatrPYfVPdDIDhKjhsKoh/d4MARDj9Y0x023cwmw8P20DzjimGb689dQjP8g4CWG+hqtqhXdZlD5OZR4Fv2/IRbeW6XjwvOMSOkYiqn1SSAmsf1mn4lb3vdXeXzVkhVV4FNityddy12sYo0/1nwt/WXvAVPoZ8Ae8d+eXmx47XObBjHUHcP3pnWpjqEnLZrMd0UlaIjoyku+MTERJS1bDa6BeZ5kZsRn4+v3FpnJSeaWesG2SkS+knMHhMg+EEPp7bBwIgHgVNWrd+9BjEFE9J4I9QHIcnYOPz3sdp699yrTpGfI6FOUfwP3W7/XgBwB02fVtrQw1FqmqPwNkm+1YjPFd4n9w5zz8wzMVp8kb0SRnAU7aMyFsPz0DhD1AiBqM0ACIlgHiU1QYL29KXMFrwil/+8uBLNiWd+QHmABeRZgyOUpdlffycFWxApyZv0QNgyT857UCEczo6lK6LGy7aI2wjRmxFTXIHKlNimo+X5W5fViwNfzcLUsSil3h9/4F5TXriUJElCwYACGiapMDF4Vr1U76Y+dYVqCgOLwXRrlHMdVJLq8njSJDszcKy70o9yj6jXJWmiEAwhJYREcFKRAAgSSjuFGn4BM75ug/vtXhfeTJzSBLAr78bNxg+d10DLdszp5IJmmqv+az6sjAWN8FEbdJd+WY/txBysWDO2/FH/Z/w1Gy64iPkYhqhzWk3Knq8wdAQjO9iqsIGiQzV8j1W6m78gm90P5HodgLhKhh0EpgLVODGV03H37XtM2PK/fixOd+x6IIAd9Sd/IHQIzlngF/hltGSng2g6IKUwN4G3w4RdoEyRO5ByYRUbJjAISIqk0K1MHfKVpjhPslAEAzqRi+g5sjbn+4LHgT3cy1G8hZC2z5HXAVH/nBxqh56SbcZZkMG/w39ofLPSgLZH/IEpCR4q8c6A+AGG+IBc6WV6AlDrMEFlEDIxmaoKc7bJir9PY/sXsxAOAD38U459yLUGrNAgC0KPwbWZL/BnF6z7cAAEoSX3JZ4b/BtdpTUARzHfvnvNcDANKLt2Kb4zpsc1yHKfYn8a7tfbRxbUVX+QAuXFv98hBElNzCMkA8/gBI6LVNiTEAYmj0G21ldDIJzVorqSKY41Mqf0+MfxA1DJLqPxfsFi3wle8sAIBDuEzbPDBpNYpdPrwwfaN558M7kFm0EUPlv5GB0qRd/NfOtQ0vW8fiJetYHCvtRanbh0Ol4eWsyzw+U6D7C/vL+M7xPIZveSpsWyKi+oA9QIio+oT/IsgHCzaITlirdkIvORvK4d3IRBqusfyJFMmDDWpH/KaeotcSvVBejIe3vQdsCxznhCuAKz6tozdRuet3PIgM22E8ZJuEJ703obC8K0oCAZA0hxV2i38S06sIKIGAkAUKptmfQA95N5aoPeBVLqyz8RNR4kmGHiDpTivykGF6/pDIROfmadhtbwp4gH4ViwAAO5w9Ud7iJGA94FTLAFUF5OQLhFgCAR6n3d/UconaA6fJ/hv7acrpeLzZAtiKdsIq+T+HE6Udpv2zXLtrcbREdCTZomSAhGZBGEtgGdv8ehRV7w+UrEIzNkJLua7fX4Q3ftuMK/u1x4herU0lXSNR60HQh4iqJgcCwD5Y8abvEoy0/oEmohDweYCtvyFv23KMtu7GdrUNcp2G+z1vBfDfk/AoANiBP5U+cHnPqYu3UKWryr7EadYlAIBOUi7KPFeiPEI563K3omeAvGn7QL8uPLZgfu0NlogogRgAIaJq0yYB1cBK5t2iBXohGx0P/IIVjj/0yTFVSBjo/i8OlbjRFEUYY3/PfKB13ydtACTDd1j/+QXbOHyV3xtl7ssAAOkOK2yGZnba/fN426voIfsnAE+TN2JRFc00iah+kfUAiIxGTisKRLrp+TVSdzRyWFHgaAuUAieL9QCAnJRjkZLexH8MCMBdDKQ0rtWxV4clkPHmcPoDIFd7nsSQthL+2udCBZzAXUsB12Es3J6HgVPOCNvfLafAUasjJqIjJbwEln8CrLpZE2VuJekDIKGlSvND+tR9vmgXZm8+hNmbD2H1M+eamgZHwgAIUcOgZYB4YUEBGsEjLLBLCrDmG2DqPWgG4L7ADNqb9hMAnA54yoF3TzQdZ5jlbyzwJGdFgObKQf3nAZYNyPn1RkiW0WHblbp9aFS+G9/bX0E/eYv5SZ8HsNqP9FCJiBIq+ZYhElHS0srAKMJ/6lilHgsAOOHwTD34AQCyJPCt/Xnk//UdRll/q/2BxqFcNpd/GbltNHp/0hHZzmtxt/ga9tL9aIM8tEEeXrKORbbzWgyyrDPtM/qTX7Erv6w2h01ER5KhBFabzBSM8w03Pb3L2R0A8HdTc/+MwpR2cDpT4QucM+GtOPJjjYEF/vO33a7dzEqYuw+ogBPDureAze4AMlpj4Em9MFH1r2gsFU5MOHUagPCSOURUf4VmgBwqLIHLq8CjhPTNMARAjE3CyyKsJE42oRkg87YeMpXu2l8UPFfvzi9nBgjRUUIOVDvwCisEZGwQnfxPTL0HALAbrbBB7QgAuHP3v4ENU/Dr1K+BsoNhx0rWHiBN1XzTn1vlzsVn+y/FVsf1mGZ/HO2kQ2iDPNhL9+Hi4onhwQ8AyN9aS6MlIkocBkCIqNr0AEjg1DFZMa8EnqGcgkm+IQCADvIh3JbzLO61TgYAfNn8ATzhvRkAsB/NamnENaR4kar66/aPtj4R9vS1nu/gHNMbi5z3YpHzXlxrna0/N0UZgL/VLgCAcy3L8c4sXhgSNRQSghkgJ7ZvjH1ojn/a34fPnon/+i5FhtO/HDAv/ThM9J2p71eS0h4WiwQPAs0llSQMFKiqHgA57ZiWYU83TjU3xnwPV+N2z2j0dn8C2eEPGFugAEryT3oSUdW0AIhb+L/7k5Zswz8/XhLWBL3E0DjcONFXlqR17418gQCI3SLDYZWxK78ci7YHJwVzi4M1//NK3WFNg0OxBwhRwyAHmqD74M9ie833T9Pz473n4E3fFQCAVFEGTLoB5697AAAwy3EOnrP7fy4UaVDUJMwAUVU0FkUAgDHt3sBStbv+lE1ScIKcjQWO+7DIeS8e33IlznLNAgBsUdvi3547sFDp6d94z1+1PnQiongxAEJE1SaHBEDykIl/up/CdKU/Pvedg/u8d+EV3zX4j/c6HBBZ+n6KkLDGdiIWqCcAABqjpPYHXx3u4LjWOU/GBe6XsNdxjP6YFzbA6oRL2PT/VqtdcK3ncYz2/ksPCN1gmRlWK5uI6i850O8HkgUtM/zFnlZXNMWcS5biLd9VSA8EQGwWGb+op+n7laZ1gE2W4Q3cSCdnACQ4idm9TRZevqyX6ekmqeYSB8VohN/UU6BChsWeEnzCl5zZLURUA6oCK/znu1I4AQAZUhlW7yk0ZXkA5hJYZe76lQHiC0xMZqRYcVW/9gCATxfs1J8vKA+eFw+VutFd2Yo/7P/GN5ljICP8+q4+NH4noqoZS2ABwCL1BFyl/AfZLc/F174z8a0yFH+oJ+Nx7y3Ik7JM+37nHYgFvuMBAI2lMihVBE7rhOGaL63zKfin52kMc36DazPG4xPf+VCsqfDJDriEDR7JDjfsmKf0wnmeV/GDOhgrhL/6A6bdD/C8R0T1DHuAEFH1BQIgnVtk4PUBvWG3yrjvG2Cpt4e+iRt2fKqMwDhlOAbLq5EGN3aJFsiQWsEtigEANiTpzXFgclIVEpx2B9aKTnil41ic2jkLT01Zj/NPaIUPr+uLE5/8VV8J6bDKsNtlWLwKZtrOxLP4HMfK+2DxJGmQh4hqTNJLYMlokuYPCLi8Kg6V+W8k053+ldI2i4TNajt9P1dae1iTPQNECd4MW202OG1e09ONU8wZILIUbHdsNQVA3IDD3BuFiOoZw/lgB9qhKTbiFsuvmKP2wfZD5tKexYEAyPLsw8gr9TdKb4YidP71ekAqATLaApeNBRzm0qLJwKcIjLL8hgHqdvQpaY250gBk56fpz7sMvdzySt0YLi1CV/kAuroP4CZLF3yqjDAdL7SkFhHVT3oJLMM02XJfVwzd1VX/8zMXHY/nfpawwHkh3jnlMD6dtRoHRBbWyd3hUEoRiB1D9blrdezVYrgObdnYf82WWy4B1iZ4wXc9eo/8AHmlbvzrq5U4pVMTHChyYW9BBc49viVyi12Yta+vXt0BFQVAalaEFyEiSk4MgBBRtWlN0K1WG67s1x4Lt+WFbXNBr9Yodnkxf2se5qgn6Y/39an6JKANCqCqgJxcSWg+jwtWAB5YkeLwnx49PhUlgdWMjQKP2S2yHgCxW2T88cAQFFZ48ezU9SjY2whNpFJkunPq5D0QUeIFS2BZkO6wwipL8KkCBwr9WQ+pdv9KQass4xCa4F7PXfDAhj7OVNgsEjza5VYy3gyrwYC0xWqH02pe3dw4zZwBYoh/wGG3wi1scEjepO1vQkQ1IIIT/3/Kp+MUsRGDLOtwrfoncouOQy9pB863/AUJAvaiDMDVC1f8bzEAwAEPZjgeQVaOf7ELDqwGtv8JHH9xXbyTSkmluXjONgFQAWwHZton49yKcfrzLl/wczhU4sYJKNL/fJa8Ep8qI3CitA1v2z7Aq75roIp2IKL6L7QEFmAucfft/52mL3qp8KnYmt4f09XAYhBFhWScXlOS8JrPEORunJ4KACjzKHoZQ7tVRlrgfrfMrej3u6PP6YaF2/Lwwt7guRDecgAMgBBR/cEACBFVm3EVNOC/SDIa0q053h95Mq77ZGnYvhUexbSaBooHkJ1HbrAxKCkrQxMAHtgwsGsz/LXzMLyKqpdz0C4IbVYZCFzTWiwSWmQ40SLDCatFxn7RFE2kUjT2hTfDI6L6SSv/B8kCSZKQmWJDfpkHB0v8JwLtXGiz+KMDU9WBAIBTrTKssgyPsAISTDeeScMQALHZHVVngMjBCIjDKsMNGxzwJmdwh4hqRg1O/O+2dgICp4OXbJ/iv4eG4VP7G2ghFfof9AB4czIetp4FADhPXoZmUrHpcOWH9yL1yI+6xuSSfaY/OyQvXvS+Bijnw+cqwXX4BQ6LFy2lAnTYbENHaYe+bV95Kxzw4F/Wqegi5+Aj+9t4QFxay++AiI4EbbGfMQBi1L9zFnbllwPw39seLjNfM3kM97rCl4RZv4Zrvsy0YBZvfpl/rHaLrC/4K3F74Q4ERhxWGdbA9V+ZnIE0tRjwmLMCiYiSHQMgRFRtwQCI/6LQERIA0Sb/vIb+F5ed1BY/rtqHwnKP6aIQihuwJVcAxOP2N730wIZOzfy37B5FRWmgzINW599uCb5vqyGLxetTUST8JRQyJK6GJmoojE3QgeC5T8sOCwZAzOdEh9USUgIrCYMEgaCMT8iwWWQ4bOb3ENoDJNVmQWFgVtRhtcAFOzJQzh4gRA2BIQNkm72HHgABgHs3jfQHcgHsF1loIx0GvGX4l3Wq6RB/t7oc6/cWYqT1D+zZtQPHnVEbA68ZS2kuAGCTfAw69egH5/pvcIa0BvhPU1gBPGOM+5bC1DXTIXkx2voDzrMs1x/LdB8A0KcWRk5ER5IWAFEhhT1nt8qQJEnP+i33+FDqNgdABGR4hQU2SYGUjAtDAtd8XmFBit0Kp02Gy6vCo1U2sAavAwvLvfrjDpsFlsA1rlt2BgIgpXXwBoiIYscACBFVmyxCJwHNq2MsgZUhPkOu8L/POw4/rtqHvFKPOQMkCVfFeD3+AIhXsuoTmV6fQGmguWcwA8RQA9+wGtqjqKiAv0GyE8n3/ogoNpIIlsACAGvg/FAeCIBoARFrSADEafMHFYIlsJLvvKAqXsgAFFhgtchw2szn9cap5gyQjBQb9hf5z5UOq+G9JWN/EyKqGTW4gMVic6C3ayzG2t/EqfIm/fHZ9qG4tfgW3GaZjuZSsByKF1YsUE+AsA5FH/Gp/3Clh2pv7DVgqfCPq0DOQqdLP8AHq8txm2U6bFIwAPSHchLOsqwCAExVTscO0RpXNd6CNqXrcIf1Z9PxGntya2/wRHTE6Iv9IgRAtGu9lEAARBUIywAB/FkgNijJeV1kKPFls8jIcNrg8gYDNQ5DCawSl8/0uHbP65ICCxg95bU0aCKixGAAhIiqLZgBEsiECMkA0Sb/fIYMkKaB+vEeRQUgwyMssEtKUq6E9rj9K5i9sOlZHm5F1Vf3aCnBxlXeVkvwAlkIgQr4369VcdXKmInoyJP0ElhaoCNQBiDQKFc7X9gs5htme+CGsTSJgwRerwcOAF74s1VCM/siBUA0DpsMRcj+VeGquXdITRS7vHhu6gYc27IR7hjSteodiOjICJRHUYUEh92KYqThGs+TmGMfjQ6yP2iwqPFFUIot+J8SpbfHtnx0t/jPE25XcmaGCa//Gs0tOeGwynjNdzXe9V2GVLjQq10mlu51A1YnbF4PvIoKd+Dabnjql2hTui7seDY1Od8nEdWU/1qmdZM0nNOiJWZuCAY3tYV/KYaFIodKwu9nPbAhDW6IJLzXhaI1efdf8zVt5NDLuQL+QEeGM3yK0BwACZTOYgksIqpnkqsDMREltdAeIGElsAIXRpf39TeDPLFdJpw2C1pnBktd6aVgkjAt2Of2j8kn2f19PgCs3lOI39b7L34jlcAyBkMEAFcgA8SqMgBC1FDo2W+y/6bXFih999fOwwCil8BKd9pgs8jB7LckvBn2BbJSfLDAbpHRvJHD9HzjkBJY7ZsEK/o7rBYo2qWkoa50Tf2xMRc/rNyLV37dhGJXEvZJITpaBK7zFMhwBib7VMg43/MKLnK/gDPc72BvxkkRd7321A76z8FrvSS9FgqcixXZBkmScM7xLeGGHQXIwPoCG9yww2mzQLU49OCHVZZQ4WwZ8XA2hQEQogZB+KsY9O3UDGNv6KcvfgPM2b7aveCh0kgBkOTN+tUyQLywwiJLpnt0wF/twGqR0ayR+drPabPoi3+CGSAsgUVE9QsDIERUbaFlYEIzQCyBScGRp3bEV7eeii9uPRUAcNnJbfVtkrlcis/jv4FVJFvYSm4AOKZFIwDmSU6LbN6uQjADhKih0XqAIHDuC/3ea+dCa8jj6U7/DaZbaD1Akm9yX/H6z8VeWGCVJbTIcCLTkOWRZjeXxHpsRHf07dgEr1/RGzaLDEVrFGroHVBTBYYSEkXlyfcZER01Ak3QVchIcwS/+2VIwVrRBXtFCzisMs7uYQ4EdGqaihEntNb/rAVApCS81gOgB2Z8kv+a7cORJ+Ox87sDCDYD1koYaqwWCS5nc9NhVqtdAAA2XvMRNQjava4UWOxX6jaUgTL0SNPKYB0qDv/ue0Tynv983uCiF5sso5UhAGKVg/1NHju/h2k/m0XW7/O1oHAyLmYkIqoMAyBEVG2SCJRGiNIEPSPFH9ywyBIGHtMMGU7/BeCNAzrr2yR1BkigJIIi20zpzYD/5r5by3QA5jI3oROeFcwAIWpwQrPffCHlnuyWQGZISAZIhtMGq0XSM0BEEq6GVrz+87oCix7YubRPG/15STKf45o1cuCHOwfgyn7tYbNICckAKarwRvyZiGqZIQMkzRG5UnIjpxWPj+huesxpsyDVEDDRgr5yEma9AdBXZityYNGKRcbAY5qZNkmxWUzXe1mpdnhSWuh/vsj9AvaLpgBYAouoodADIIHJ/lvOCN7DGisAaIGCgxFKYPlkLQCSfOc/X6DfhxdWf5WGjGAApHGqTb/m06o5GGmVHg6VB66BkzDAQ0RUGQZAiKjatItCrQ5+aLPcTk3TIu7XPN2B167ojeE9W8EjkjcDRPEESiJINtONf/dW6fj1vsH65KYtWgksAb0HiI0BEKIGQxbmDJDiCvNkv5YB4vKasyAyUqywycESWGoSlkNQAjfoPlj0G9+7hx2Lpml2UyAkEn8GiBYAiT0DhAEQoiShVh0ASXfa9NXPGqfNYioVo2X7ymrynfOA4MSkTw6WeWmSFl7yxXiN1zzdgeLGwVXRRUhDeWDRi53XfEQNhPl6z3gedBjue7VzoE/1l8zqkBUsD6pq55UkvNf1aOWehQV2qzkDxJj9G4m2SEY7v5e7eN4jovqFTdCJqNpkfRV0cLWzLAGBaz8c27JR1H2v6tce/TtlwbtVq4uavKtiFIsdmYab+1aZTtPNvrH0V2gpHHegBJadqwGJGgwJ5nNfaJ8K7ZxwapempscznDZ4FRW+QJko1af9lDwUr/+9KIZLwubpDix9/Kyw81sohzUxAZBiBkCIwmzKKcbCbfm4cUCnKr+LCRMI9iqQTQENo0YOa1iWrNMm6yuiAcAdyPa1JGkAJNgDJBj0aJnuQLrTihKXP8DttFlQ5gkGu5unO+Bq1BLzlF5oLJVin2iGcuGfPOQ1H1HDoC32kwMZIMYyoMbKB6khQeAzjm2GiUt3+49htQMeJGffN60ElmQJ9ABJ0Z9rEtLzLZQWEE7mRT1ERJVhAISIqk2rg69KwVOHFvwAgFM6ZVW6v80qo0I77ajJN8klAvX5hWRFmj34Ho0/A6EZIMFJCYHgqhgpjnr4RJRc9Oy3wA1xucf8/dYCIJ2bpWHuQ0Px5OR16NO+sZ4l5wsECVQl9jJRR4rPFwiASOabeaul6iRhYw8QRfHGHNypMGTOlLqS7zMiqgsX/neBvrrYWIbliFK1knjRAyAZTmtYBkhKWAZIIAAiknOCTPKFB0CsFhnv/LMPbpmwHEB4D5Dm6Q7YrBbc4H0M/is+SQ/0WEXyTXQSUc0Fe775v/up0QIgNvP58ZHh3dG9VToynDbIM/0BECkJr/m82mK/wP1qN8PixXZNUkzbXtC7NaavOYBzj/f3fEp3+vfxCf9nIhgAIaJ6hgEQIqo2LQNEuygMFVr/Pvx5SV8JLRQfamk9Y7Vpk5NCtppqWcshKy/NPUDM71kNTHRKcayGJqLkopXAElLkKX5j2YCOTdPwxS2n6n+2ypIeJEjG1XKqFgCJIXxhM2SAKHFkt/gMkfQKL8+dREDwezFzQ04tBkCMTdCj9wCxh2QAO20WpBoWi2hNgG1JmgGiNSdWZfOK534dgwt5rLIMm+Ear3kjB6z69Z///9r5TxKG1UBEVG8Fe4D4r2iM5zVjAMRpCIx0b5WOzBQbbji9EwBgx6zAPiL5AiBaBoi2mLFFhhNdmqdhx6EyDO7W3LTtm1eeiNM6Z+GMY/2Pa9e6wQwQBn6JqH5hAISIqk0KKYFlVFXdUABwWCym1cLJdgLSJgKFZDU1urOERGraNg7WeXX7DJN1QugrvZkBQtRwyNCCv+Hnvn+f0w3n9GgZdV+LLOmr5ZQkXA2oaM2ApZqfkY1N0H2KF5UXT4jOpwSbyjMAQgQIw4R6hacWvxOGJuiNDAtBRvRqhV/W5gDwBwkkSUKKzYKywNjSnVZTeVAtM8KO5Mv2BQD4ArXrrQ7Tww6beVGLzRq8AGye4Qxb6KPymo+oQdGCmcEAiDEDJPizlg0BAFeENAwXgespSUm+85/XG571+/0dA7Arvwwntmts2tZps+D6QFAHADJT/ed1D0tgEVE9lWzzj0SUxKRKVkE3T3eEPRbKZg1mgCheT/KdgAJluYQcbAYMAM0amd/bYyO647OFOwEAK3cXmp7TAjwyb4aJGgy9BFaE7Ld7zjq28n0lCaqkZb4l383w4ZIydIK5B0h12WQZighmgMTKmAESWl6M6GhU4jZ8n6RazJeN0gT95oGdcc7xLXF6l2Z601zZMK5Hhnc3HUa7wrMjOSfI1EAZGJvdXPLFuMIbMGf5ZqXaw3qfBDNAVCTCF4uz0TozBWcfHz2oTkRHjlYCSwp891MdkTNAbhrQCZsOFMMqyzi/V2vTMUQgeIIkvBdUAlkbxnLWWWl2ZKVVvYQlPAMkOc/vRETRJN38IxElL70Juhw+CXhq58r7fwBavfj4J8uOFKGtzpb9F3ivXNYLc7ccwk0hpSdsFhmSBESqeKAFeLSmyURU/+nZb3Jsl03ajWYy9gDZsr8AJwNwqzWfZJXlYHAnnnO6YgiAuJgBQgS3NzihXuKqxcCp1gRdyOjcLE1vvt6xaRr6hfR5c/uCYwydPNMCINYknAAEABEogWV3OE2PS1L0kqehjd4BQNWLucYfANmUU4ynpqwHAGS/ckHcxyOimtOboAeubUxN0A0ZYv06ZeGPfw+NeIzgopfku+ZTPOYSWDWhZcBoARD2ACGi+qbqDpdERAHapL4wVHqfdPvpuPbUDnhsRI8q97fKEryBUjBa491kEuwB4h/j1f074MPr+qJt45SwbV+9rDcA4PrTOuqPCQRvhhORAfLs1PW44L/zsTu/PO5jEVHsZL0pZmxdLlQ5eXuAWALnqrQUZxVbRqZlBMZT3sucAZJ8EwZEtU01rLDIL62980awJ5CMVhlOLHxkGBY+Mixilq9XDU76a4GD83r6MxdaNvY31rUk6WIQ7XrP4YievWy1SKaSV3arbOoH0CbTiUZO//6JyACpzb9nIoosmAHiP6elRCmBVRkRWEgnqcl3r6vdf6ty1aWrI3HaZHi1fp5JeE1LRFQZZoAQUbXpJbAMq6D7d85C/2pkfwBaKRj/vkoyXjRp5Wmqscr7yn7t0KdDY3RulqY/JgT0Wv/xBkAUVWD8omwAwLS1+/GvocfEdTwiip3+fZZjC4BoQWOhJuHkfuAG3emMLQASzACJ/Ubf1APEEz6ROHX1frRId+C0Lk1jfg2i+qSusqI27C/ACfD3trBbZTRtFH2SLFIW7H8uPQEDj2mGk9KLgO8BSwIyI44ErRyh0xG97EuTVDvyy4LXqnaLOQNk7Kh+sC+YA2xITADEKgezTbyKGtZvhIiOPP27HLgXTDMEPe3W6n0n9VLRavIFgPUm6DFmNLdId8JbpGU1xx/gef7nDdicW4wJN/WHlec8IjrCeJYhomrTJwEj1MGvLpGAybIjJjA5KVXjolCSJHRrmR52g6r1AIm3IWapof63XEX979xiF4a/Mw93frkCqhphRoKI4qJlgIgYz33ajWYylsAKlv6LtbyX/5x3uKQi5jEYJ3srvObPaOXuAtz79Spc/fGSmI9PVN8YvxO+Wvx3vajcXx9egYx0Z81XCLdId+KG0zvpGSBWJN85Dwie95yO6IHflhlO2A0lsPwZIMbV4DIgJ64JunHyz1hejIhqjwT/+VbWeoAYvvP2ak7Q603QRfKd/8or/NdqFmvVPT8iaeSw6iWwoMS/mPGzhTuxcFs+luw4HPexiIiqwgAIEVVbcFVMbKugAUBJQL34I0VbnS1iTAsGAF/gtGpJaAAk8jZ7DpfD5VWwZEc+NuWU4Nd1OdiZXxbX6xJRuGATdP/569pTOwAA7q2iAbpGXw2YhAEQLQMk1v4mFYG3tCuvKOYhGCd4PSETf7M3HYz5uET1lbEElqKKWlvcEAwMxDY5ppGt/usoa5JmgGgLXlIilMC696xj0bV5Gm4f3AUpIau/U0w9QCT93wQpAe/TmAHCXkhEdUPWeoBEaIJeXdr1lJSEWb8VLhcAwGqLMQDitCasB4gw/jsXKaWQiCjBGAAhomqTA7Wc1bgyQMLTZtfsLcRZb87Bh3O2xzfAOAVXQsda5kboGSDxln0wNj31KuEXhTPWHcCg12bj6o+XmJ7fsL84rtclonB6D5DAueH5i3ti2j1n4P7qBkACN8MiAeUCEk6JL/DbLCMVACAj9ptXn+EcFrryObfYFfNxieqr0KwPY7+NI0moWq+3qq/ztADw7YO7hD0nB855siSgKsk3ma/V5k9xhk8CPnBON/zx76FokmY3N0AO6QFilSVIegZI/H8/xglABkCI6oYezAycw1JtwXOA21e972WwBFbyBUDK4wyAXHxiG70HSLwZIMbrPWu01X5ERAnEAAgRVZtWAksLYsRCK5eiGkpg/bx6P7YfKsOrMzbhUIk7vkHGQVupI1limwg8rmUGFC0DJM7Gn6Wu4EWzL0IAZM7mQwCAv/cUmi7Ii11JOMFKVM9pwV+t/J/VIuOEtpmQq3nDpvU+EkmcARJrCaxUbQIxjht9n2FyNzQDpMwdPL8JrhCkBuiT+Tvw/uxtpsdCMz4iXQccCdo5SrtWq8zos4/F4seG4dHzu4c9Z7EGr6OUZAz8BgI9ac7oTdABcwNku8UCiyzhnmHHYOSpHdCpWVowAyQRARBT35ckzZwhauBCS2AZr/NCr0+i0jNAki+Q6XL577Pt9srPfdFc27+Dvtgv3h4nxkBvVeWeiYgSgU3QiajaQsvAxELIVkA19wAprghOnO3MK0Pz9NguyuJWgx4gkTx1YQ9MyF8A5BpWjMeoxFACyxdh5aexEV9uUXCFNG+aiRJPO/eJWM99WgZIEq4GjPe8p9e6juO9GSf+vIr5HFZqOhcK2Cy8SaaGI7/UjRembwQAjDy1Axqn+gOKoeVAaisAomqlQKtxrpMkCa0zUyI/ZwyAeD2w2aP32qhtPkX1L+iRgJSUyscVqQHyv889LrhBICtQTkAAxPh3zAwQorqhXe9JhmoH7197Mj5ZsAM3DexcrWMIWQuMJt81n9vtv2eMNQAiyxK6tMgACuK/pq3wcoELEdUuBkCIqNribQTs3ze8GXBhRTCFtqQuMxi0CzlLbKfGxql2XDegC/BT/BkgbkMgI1IJLOOq6L2FwebDvGkmSjxtckuKtTye3gMkCVdCayWwYsx80z+TOFYCGs9xnpAAyNwth/SffYqALfb4O1HS2XigRP+5oNwbDICEZICEfi+OGK0EVhzXeQBgMZxPjNd7B4oqUOFR0KV5o7iOHw+3T9Wv0RxVlIExZYBYwz+T4CRpYjNAqltqh4gSS7vXlSzB7/4FvVvjgt6tq30MraRoUgZAPP4MEGeE/kfVJiWm9F+5J3ieq+6/cUIISMwWIaIYsQQWUZL6dMFOvDVzS9TnhRD4YcVerNtXBCEEnp6yDq//tumIjkkW8fXIAIKrYow9QArKDdkgdRkAEfGVwAKCq6jjDYAYV0H7IlwUlrqDn5OxbFiFhzfNRImmlcASsZ77kjgDRKuFL8UY+E1ErWslShP00JKItdUHgai25JUGf8cLy4OLQUJ/1SNlgh4Jqh4AiS/SGKkEVmG5B0Nfn4Nhb87Fqt0FcR0/Hl5FhS1wTrfYKr/eM9aljxgA0TNA4r/2Mv4dl/NajqhOaD1A5HjudaXEnRcSTfH6z8eOOAIg+r8Pcb4/4z1rpMV+oe74YgUufX9h9UuRERGFYACEKAkJIfCfaRvw3z+2Yld+WcRtZm7Ixb+/W40L31uA7YfK8PniXXh/9nZszS2JuH0iBEtgxZ48FqkZcHFF8OcSV91NEMqBCTw5xlIwQHAS0RLnRaEpAKKGXxQay8IUGgJI0TJAXF4Fi7bn8aKRKAYWbXWvFFtwVDvvVRYk+HtPIaavORDT8eMSmPCUYmyCrgfE41gJ6IsSADFOCAOAl+cvamCMq16N/5aHBjyilcA6VOLGmr2FiSsfkqAMENlihSr8wQMRmHDbW1ChN72dVhfnugCPosIiBQIgVSx4yUoLZojYLRE+E63UTYIyQLpJe/Cx7U3gwJqYjxNp0QxRQ/DL2gO4cdxfeuB40bY8/G/u9oQu/tJ6gEhyHNUOkrgHiNb3TbbGvthPC4BIcQbmjfesVd2fqqrAjPU5WL23CMuzD8f1ukR09GIAhCgJGSeDiirCMyIqPAru+XqV/ucvl+zSf96UUwKPT8W4hTux7WBigyGJKIGl9Q8xNgM21gAtjvB+a402EWiNJwASWPUT582wcbIj0spPY5P0AsMkYUWUAMijP6zBtWOX4uVfN8Y1LqKjkb6KL9YSWHoAJPrN8KXvL8RdE1di3b6imF4jVloGCGLMfNPfWxwN3qM1QQ/NCAwNBpd7fDhQVAGi+sq42KGwwgNVFZi0fA/W7y82bRepPIgQAhf8dz4uHrMQf2w8mJDxaNdmIo6FLgBgkSX4AreZSiDwa5zsCs3uqk1eRcCql7mp/Lx3SZ+2+MdJbXHzwM5RMkACpWAQfwDKpwr87ngE51pWoPPad2I6xtNT1qHnM79h5oZc7DlcjknL9oT1VSKqr/711UrM2XwIny7YCSEEbhy3DK/8ugmfL85O2GtoJU/jyQAJ9gYyX8Os21eEL5bsqrN+F6oqYAlUO5CtlZf/q4w+DxBvBojXmAFS+XnKZSgLeKi07v79IKL6jT1AiJKQcfJbuyDwKiokAFaLjBd/2aCvogOArYZAR2G5BxOX7sJzP28AAGS/ckHCxiWJOMvAIFgX1VgCy3hTXOquu9UyWq3WmFdCG/a1Qo2rTqnHVAIr/ELZ+PdfUFZ1AGTy3/sBAOMWZuOZi3rGNCaio5Ve0i7Gc5/eYFytOsC7/VApTmibGdPrxEI/78VYAktKwI2wYuoBEvy5uMIcVAm9QR782mzklXow/+Ez0T4rNebXJ6orxqymUreCV3/bhI/m7gjbLtJ1gMur4mAgkLA5twRnH98y7vGIRGWASIAHFgAKKlxu7NxdgDLDKu2CkOyu2uT1qXDq5/TKz3t2q4y3/9kn6vNSAkvdGEsBppXuqmTL6D5f7N9v7PwdWLu3CBVeBfllHtw5tGvc4yOqS6F9kVxeVb9X+mvnYdw+JDG/47JeAiuefpf+e8HQ88KF7y0AADRJteHC3m1iPn6svKoKG/zXVZY4MkC0xYxSAktgResBsm5fEZZlH8bwE1rpjxnve4mIaoIZIERJyLwaViCv1I1TX/oDQ16fgzK3D18u2W3a3riSrqDci7X7zCsHE0W7kIurNrReAit40WO8AKrLxo96Caw4eoDIWgksSUGEylXVZpzoi1QX1RgAMU4qsAk6UeLp574Yy+NpgV8oHrz3x1a91NV3y/fg+xV7TdtGK3VzpFhU/42kZI2xHrTe7DP2c4+5BJYhIzA0AyTks8kr9Y994ba8mF+bqC4Z/32v8PgiBj/824VPDpUcgZ5pIkE9QCRJgg/+Y7z2yzpc9sEiU7ZyfmkdBkAMPUCqCoBUScsAScCKbp/hurhcTou4TW6xC9eOXYJf11ZeQqzU5dMXxMzenJjsIKIjrdzji5odYawQ0DLdYbo+SGRANVgCK/4MkGjXRWv21m6mr8bjU2HV+x/F0wNEW/gSX3ZZRTVKYD30/Ro89/MGvDAtWMGgjD2SiChGzAAhSkKhGSCr9xTicGC1w+Lt+WHbmwMgHmSkBL/a8WQhhNLLOsUVANFKYBkzQNSIP3sVFZ8v3oXe7TJxSqes2F+zmiQ9LTiOU2MgAGKFClUIWBDbZ2/uARJ+UeiOEujw+OomrZqoIdPPfTHeEKsWf6kBt6sCb87cAgDo1nIwHvreX+f9vJ7BldtKLZdGsIrAxIHVGdsB5PibYZqC/opxRXzlGSD6EOTE/BtHVNuMv+/5laxqjRgAMXw/ElUDXwuAIM4MEAB6AGTtnnwAbTFzQ67+XKTyrrXFo6hxZ/Vp9AyQBPQAsbiCjeHLVHN5msXb87HxQDE25RRj0fZ8LNqej+xXLoAQArsPl6Nt4xRYDT1KjOfUaNeLRMnkj425uP2LFTivZyu8P/LksOfLPMHznYA5IJLI84kWAImrCbqs9YM0jNlwbVfbC100Hp8KW6D/kWyJvQRWVQGe6nJVUQKr2OXFxgP+RZ3TDUHf0GtDIqLqYgYIUZJQVYE7v1yBV37dZFoN6/YFSxwAwOu/bQ7b19g4vLDci3RnMINhZ17kJuqx0Jugx3FRqFr8K04kxf+eFFWYJgCMGSBvz9yC/0zbgAe/Wx31eDsOleL6T5dimaEh2uEyT0wrIy2B8jSSLaXG+2q0C2YLFKhxTGR6FYFTpE340/4ABub/EPa8O8pKGUU1Tx4eiRWiREcbi4hvtXDoeQ8APpizXf85z7AautYzQBT/a8uxrgbUboTjaPaphPybp/05tOm5cbW8cTLBkqAgP1FtM076bMstDXveDi8AEdb/BjBf+0Urf1ljQusBEl9gAACUQABEW3FsZJzMrG3GHiCx9j7SaH3f4p0IBADZFVwVrnjMvY2uGbsEz0/bgCmBcqaasfN3YMjrc3DME78i23C9b+wTZ1xYRJSsvliyCz5VmCa6jcrc5slyYwZIUUXizid6CSxLHAGQwDWfxVD21HiOVuJsHh4rryIC/6bEcc0HQxP0OM975R4FvaXtmGl/CMft+Dzs+ZwiV8T9yhgAIaIYMQBClCRW7y3Er+ty8L+5200rtyq8CnKLgxcAm3PDG5sbb4wLyv1NNDWTQ26W4qGvmIvjxli7KJR8/vcUWrLJOLH/XaA0zK78cri8ClxeJSxFdvg78zF/ax4emPQ3ACC/1I0z35iDS95fWOMmc3bhn5yUYl0JjWAdfQtUxLOQ2+NT8Z3jeXSRczAif0LY89ECINrvwob9xTj5+Zno+59ZWFtHqdZEDYUlznIpkW6G/95TqP980HCOr+0bY0sgA8RqjzHwq/c3if2G1Di3KwSQF2hwGTrpa1rVbDgHWpgBQvWUMQCSW2Ke7DlF2oQ1jlsx3vZaWDAQME9yJywAosTf603j0wMg4WMvr8N+b15FhTVQBz/eElhaBkgimqAbM6NtakXEbYznPVUVWJ4dzBp56ZdgiZj9holDVx2WliWKxuVVcPsXyzFp+R4A/gV8lTGu+vcqwtQjrKjCk7DG4loAJJ4SWNqiF1vgvlIIYXp/tZ3pq/H4VDgDAZCYs36B4DxAAkpgTXU8hWPlfei5KzwAklcSudm59rtQ4VFw11crMeXvfXGNg4iOHgyAECUhYykDl0eJelFogYLWyAdgDIB4UW7Yf83ewoSN60hkgITetLu9KrYfKsVbM7eYSnut31+EQa/NxtlvzTWt+tGyR7Sb6XdmbUVRhRc7DpVVeTEdyhaYCJTtsa+KkQP18C2BElix8vmCK8IbqcWA1zwxEq1XirZ6/Oc1++FR/A0C1+9nAIQoHnKc5VJEoNSARQ2e04zZeYdKg49HC27ml7rx7NT1mLamekFtRRVYu7coatkojRzoAWJzxHYzLOmlEGK7ETYG7B1W/2XpgcDkXWhTTGMGiPHfOSaAUH1l/J02ZnQAwDDLKjglL4ZaVsNTHv7veOmRKIEl4l/oolGkYEZsKI+iRq35rtmVX4ZXZ2zC0h3hpV/j4fX6YJECn3uCeoAkogSWagiApIrIARCjCq9iCv7mRpksZG84SkZf/7Ubv63PxcOBUqDG85np3LD9T2DvCtOqf4/PnAHiVUTCgsDBElixT5Np97pW1YO7Jq7EuW/Pw2rDohdjpu/y7MP4eN52Uybskcre9ygKHIiz7CkAofc+ijMDxBAIT/UVhj2fF6Us5Mpd/sDv2Pk7MH3tAdz3zd8A/NeTh6KcB4mIAAZAiJKG3Rr8Ohpvgss9voipnjJU/GB/Boud9+Al6ye43vI7vrU/D5QdRIU3uP3hSmpK15Q2CRhPaQQRuOByVZTj1RmbwtJb3T4F90xchf/+sdX0+I8r9+FQiRu7D5dj7uZDAIAiQ4Dj2JaNAABLdwZvlHOKXXhh2gbcOmGZ6cIyGj0AYkuN4Z35SXoPkPiaoMvekJtfb7n+o6qKiI3RgWApma2GUhqRSmcQ1Vcen4rf1+eENcg+kuItgQU9ABJ5zAeLgzdsxoy/nXlleOzHNVi0LQ8/rtyH8YuycffEVVWe190+BWe/NRcXjVmARwKTC5EIIWBT48sAkQKfiSRiywAxBorbNvaPIafIf/4LLQdmnBQxTnbUVT1tongZf6dDAyAOBM8XlvwtYfsaF0IkKgACNYEBkMBtpg2Rzw3RxuxfLe3BxWMW4sM52/HID8FzWHUm84UQ2FdYYVoRvjW3BLvz/ddRXp/hPBxnposcuOaT41wJDQDCkEVnR/AcH21lu8enmj6P8ihlYRL2u0GUQKHnO+NijfX7i7BhfzHmzZ0JfPEP4JNhyNj6E761P49s57UYvP11Uw8QIHG/59p3OZ4eIKrFf69rEx5MX3MAWw+W4ump6/XntcUdBWUeXPG/xXjpl01483d/iev5Ww+h93O/4/3Z26r9em/9vhkDXv4Dn8zfUel2Hp+AQwp8brb4M0BiXfii+XB2sKx3GfzXf6Vun/5vW7RgRnZ+OTw+Fdn55jLf93/7N055cZaeVUTUEOQWu7App7iuh9FgMABClCRkwxJW48RehVc1rXTV9JJ2oI/sv9AZKK/Hf2zjcaq8CZ+U3Y9Sw4qK/NIEBkCEVhoh9hVzInBRWFhcjA/nbMel7y80Pe/2qthwIPwkv9qQyXLP16sw/J152HowWA7MZpGhqMK0qjqnyIVPFuzErI0HTT1CNGVuH6au3o/8wOpru54BkogSWPH1AIEnpHeLISASuiraSCsRk2dYUV6d4A9RffHhnO34vy9W4M4vV9Taa1r0JugxlsCyBm+GI1m/P3jO+31Drj7h9fIvG/H1X3tw18SVyCsLfqfnbTlU6ettPFCinwt/XLUPB4qil1OxByYn7Y5YS2DFVwvaXwpCYLj8Fwam+m9atcC4L+RcZ1wVaZzsqOycSJTMjJN+oat+M6XgQgZRfhhf/7Ubd365Ai9M2wCXVzFliyWsp4YWAIlj9bPGA/8qaH3CLcTiHfmYvuZA2DXKE5PXoc/zM/XGxtn55Sgs9+C39Tno+cxvmLQs+uRWbrELV/xvMQa+8ic+mue/Rs4rdePiMQtx5ptzkFvsguIxLLyJpwwMACnQLF5KQAaIsQSWXYRnOofyKKqpv0dhlEbQxS7Wy6fkY1z4B5iDm//4YBFG/Hc+lvw+SX+s5a6pOFXeBADomzMJxRXm6ylXFRll1aX3AInjHKiVPbUarvmMk/la4Ht0oHwzECz7fOeXKyFE5J6f+vGFwLNT1+O5n9dDCIH//rkN+4tceGH6xkpLgXkUFU49AyT2fpdCSkwGSJf04Fg9woItuSUY8PIfuOp/i+FTVOwtKDdv3yxN/7nM7TOVgQSAqav9GdITFmXHNS6iZCGEwKkv/YHh78yP2hOHaoYBEKIkYbwBNNY1rfD4It7YZkrBCfKO8kH953SUYZMhgJDYDBCtLmocF4U28w1xaHZCtNJOW0Oag27KKcEXS3YZ9lNRXOE1ZUZsNETLyz0+zN58EHd+uQKvztgEIQTu+XoV7v16FUZ+shRCCNjhvzi1xFoLH8Ym6GpcpVElnzkA4nOX44mf1uKHFXvhrqShpfZ7ZLzQZgYINSTfLtsNAFi4LbFlUSoTd/+jQAaINUoAZMWuYIB2V365HhBZFSiZUFDuRWFZcHJrbhUBkNCVkZOW7Y24XYVHgUMKlMByxpgBYtEyQGK7ERYCuNIyF/+zv4OnDz2AxijBgUAWjDfk3FVQHvz8jJMlbpZ4oXrKGAAJzexsguB1j6e8GI/9uBa/rsvBJwt2YtzCbFP2SKKu9YIlsOIsDQXAJfmv91IReRXvHV+uwF0TV2LmhlzT4xOX7g7b9mCJG7d/sQKKKvDwD9Gz2m7/YgVWBMqjvPKrf7L0yyW7UOFVoKgC14xdAtXtv75SIcUdANECwIkogQUl+HdoN2T/RGtiPmnZHlN/j4IEXu8THWl2S/Be0uNTTU3ONRlScAK8af5K03MVZeb7wkSVepO1EliWOBb7BbIrbGrkc5923jfe2+aVunGgqMJUCkyTU+QyVYMYtzAb4xdlY9zCbP18pzlYSQkofw+QwHkijgwQKUEZIHY1eK8rQcW4hdkodvmwem8R/so+jD2HzYt3MlJssFn8C0bdPjVq4L+q0q9E9cWsjcE5vtCMJ4pN/Fe3RJQQxknqogpjBogSsVlktBtKp+RF9sFCaF/vCq+CCo+CFHv85Qy0tGCB2I/lC9wQG0s7GLm8Khqn2sL6d0Sqiz/F0ODd7VXCSuJMWRV83uNT8fbMrXoT+dO6NMWfm/z/qGzKKcHSnYdxrPACUpwBEEugB4gkoKgKAJv+XInLi2KXTy/zUulxvOZVL2t35eCrpcX4aulu/HDngKj7eRUBIYSpp0BtN1UmOpLSnTYgsArm7Lfm4sLerXH/2d305xVVYPuhUhzbohGkBDWHkOPNANHLIXgxRF6NrtJ+lMKJvaI5ukt7YCmWoFj8/wY0k4ogZs6E2u1Y3OhZBae1FPtEM7TNTsGT1j0oQwqK1qShpOWxSHfYIr5e0wNFuNkSbArZYesiIK2t/w+SBHQeArQ8Ht+t2IMBgQwQS4wTgVoPkFhLwCiqwM2WGQD8GTID5PXIK+kBIDwDpKA88qpoZoBQfTBn80F8PG8H/jX0GJxxbDMA4UEPI+PkX1FRIYAO+p+3HypFj9YZ+p8TtthFTVwTdFcgAyQlyvWqxpi5G231cmi5nEgOlbjxt6HOftM0f+B58qrguTA7rwzb9vlwNgCP5IQzzn8jpIT2ADGWwPL5o8OShFdnbIq4/Zszt6BNZvC8XdliF6+iwmbhukdKHtpENuCvfBBpMtt47rAr5sk/d7m5WkDCSmAFAiAWS/z9Li1q5POyVxEo9/iwrzA4wS8E8PzPG/Q/pzv915urdhfgsg8XoU1mCuY+NBSyJOHtmcGSiC//aj4/7CusQMuMyNdzO/NKcVoCMkDizfzVONXg+3fAi2zDvwXT1xzArI25Yfs4rBZ4FR9cXiVqHymu+6P6ZGtuCe78aiXuPetYXHxiG9NzSxLcA40YACFKGsaJHuNEfrlHiXhRmIboaXAZKEM+MvU/55e50c4ee18Ljd4IOI5VMSd3bQ1s8U/yfWR7C+dZlqNYpGKXaIFecjag9fkMXLtVCDt2ixY4Tt4Lt7DCIfmwVW2Lw0jXU6FnKKdgQcUIdBhzCbKdhs+qyH+c+zz/QsbOXLxS9BHKbRa87LsGOz8fj2zn73jX9w+87bsSV3+8BOsc/otCSxyflWT4bIw3swBw5htzkFfqwdLHz4p6caqxKua/3/zCIgD+m4W7vloZYQ8/RRUocftMF4WVTbAQ1TfGpq/bDpbinVlbTQGQByb9jSl/78f/ruuL4Se0SsxrBm7ypBhviCWrFvj1YIL91SgvYvg52//fXRKCV2qlMF+1zYn+ej0B9DTGRnIB/GbeprD/g7h56VuwyoFzRWCMNZWIHiDHSsEMlcZSGSau3Is3rzox7NxlXOHsNZzjqmqmTJQMxs7fgUXb87Foez7++PcQdGmWFjXrFUCwWS2A0uJC83NW2fR7n1/mgRAi7qCvlMAeIG7JAQggRao8ALJ6TyEe/WENhp/QCr3aZkbc5oXpwYnBDKcVucUuPPjdalzTvwNG9GoNANiSW2Lap12TFJS5fcjON/RQE8DSLXtwBwDY4pgADJD1818iMkCC51BZEliz6xCyi3wRM2I0+6tZEqOw3Ivm6bGd44mOBOO/7weL3YgU+4y22A8AhLsExmImF763AG9ceSKu6Nsu9kEJAVkKDESO/VwqDD1A/mWZgrMsK5GBcrSV8pAqubF/bzukvrQXn9hOwiuW23GbPBXL3e0wO/tcDJVX4WLLYrziugZ/vTsSFW1PhxCdsa+wAgdL3FBdpXhJfQsz5P6Yrp6GFbsK9Czl2y3TkL5kMdDhBSB3PfDrI4C7BGh3Cvb3/Tee+2EZ/nQkoAeI3gQ9vvOeQy3Xbm3hgBd7C4Pn6h9X7ou8j1VGqdu/MNJYPcMYPI+rBDVRLbvn61XYdrAU9369KiwAYszoT1SW29GOARCiJOEzlcAy1zmP1AMkVaokACKVI19k4CbLDBSLNBSUnYF2TeIcoBD6qph4quc5nf7gQlspH20t+fp4e0nZEbdPkTw4LjA55pD8N4fHyuaLouGWZRhetizqa75r/wDQ2gVYgGmWJ/Xn7rP+hNPkjbDBh0aBz9SSgB4gAKAa6jkXVXiRF+jHsmF/cZUBELtizgDJzskH4F8xml/mxr8sU9BH3gYPrDggmsICFWVwYprv2rAAiTEVODUBmUBEdaXU7YvYI0ib+MstdumZYb+uO5C4AIheAityxkVV1CqyyiYr/qyuNlI++sv+us/r1E44Qc4GABwSmXAJO9rL/tJXM5WTUQYnmjdyoFe7TCzeng+bRcbgbs1hlSVsPViK9fuL0MhhRanbh1S7FT3bZGBtdi6GW/znysZ/vaHfeKqwQM7qHNN7k+T4SiGoioBVCu6bEgjuz950UD932S0yPIpqWuVunDw5XBY5o5AomRgDFk9NXoeNB4pNWU2hjJmy/gyQIP+EtoIrLXPQTjqED3yXoMyjoJEjzls7bUVvIjJAJP91Tgoqz06ZsT4HAPDNsj344c7TI26zaneh/nNGig1j5+3A/K15mL81D7MeGIJjWjTCvgJzuZQSt0/vi2G3yGiV6cTuw+UoLCwCHIDkSEO8JEPZ07gp5t+Fa/43T28MHK/Ccg8DIJRUjJn9OcWR+5RVGjz1lALIwJWWORCQ8L0yBA9+tzquAIhQfdplESxx9LvUFpS0EgfxoHVSMKgS0Mbnv68927IKZ+MOQAX+aQNyvZPQ0l4IALjMsgAoAFAwDdmBW8aDM26AVJaLiyxLcJFlCcpFEzTy5uM9+5jgwTcAePY983gO/I02y8Zig/HWM64eIIkJ/NpUl774xyH5sK+gDNocQ4VXwc2WX3FRxnbsLJVxUDRB21IZhbDgVYzAltwSrDT8u1BhmBxm/IPqE2MmWChj9mu0cphUMwyAECUJUw8QQwbIvK2HTA3SNSOOywB2RD5WE5Sgo5yLZ2xfAAC2zyoCLn8WSI9jMlA1BGHiuDEW6W2q3qiWaZkkAFAuHGjUpEXsBzOumjSUnpq2JliOKyOl6klUOaRu7NqdOdACIM2UPDzs/DbifleX/olB+e8CCN7oGuvBNkm1V/naRLVNCIF/fbUSrTKdeOainlG3+21dTsTHtx8qxTEt0vGtoTlus0aJm+zRAyAxZoAIWzo2qh3QQ/av5M0RTfCHcjKypGKM9w3HUtFD3/Y6y0xIEPhCORcj5CU4RtqP95RLISDhX5YpcDbvjLdyTvRvXBD4L+D7U05Hv05Z+GnGJnywazuGdW3hL/XnBaRt/pvCO9WpeMT2jb5PhTUTKXcvBDJjnDSIsweIqpozR7QVnwu35cEXCHI0T3dgX2GFabLYGNhdvbcwptcmqk3Ga7lF26sua2AMgDiVEpwkbcUxKaVwuyow4KALZ+39E81t/gvBFHhwuPS8xAVApAQ0QTf0ALFHKXsaanX2QX3bq/q1x77C8rB+T6VlKryeCn27EW/NwoJHzkRxWSns8KJ7qwxsyilGYUkpikpKYIcXjZ1OtGnsD4A4tb5HCQiAaJ9TIkpgCdX8GTng1QMgqXChuVSIcuHAITSGFQp8NbiNryzQRlQXjKuZc4oiBzoqywCRPWXoKx3A67aPAQA2+PCTckZcY1J8wW+VJY5qBz5HY/3n0OBHZVpKhZU+32LT56Y/j5OeA2K4rVNTsiDHes0H6Oc9CfGtSLeoXlP2s0344A68oQyU4mnbF0AFcJK2TWCe+DLHdFw0bSyMU5kF5V60Rj7K4IQq4q96QVRbKivxWeIO/ttdWcYwVR8DIERJwtwDJHgizCv1wGEN3og64EEfaTtOqlgcfgxYYYUP/eVNGGFZqj/eNftr5H28Cs3+vTRsn2ozTG6JeJpjNm6PnWpLdJb9dT0nKwNwqWURJlkuxB8Vx+Aj+zuYpZyEw60G4arGmzCq8FaIfSvweaBsjHBmosTeAhnFWwEAZ7rfhBUKnnV8hT62vUjz5mNlxlmY4e2DR8vfgiwJFIo0NJbKMFU5HT5YcJllAWYqJ2O9rRfuzFoOW8FWyIoHipDwqXI+7kmJ46ZYjpwBYmzkplSjOKkUciPc1r0daeiKMqSgg+TvXXJQNMa3ylCkwYVz5BVoLx9Cc6kY79v+i498F2KPaIEDaIoN+4Mr5pkWTMloS24pfg0EN5684HhTmSujwpDm3h2kXFwiL8T8dW1xzLA+2HM4mDkV2gg8HpY4e4DYLBIe8v4fpjn82WeTlTPwiu+aiNt+qZyj//yLeprpuQ+US/HPdu2BnD2huwHwZ5q9/tsmfDBnOwCgS7M0/Bl4TvvqV/QZBawPBkBmXrgIFzeO/UZY63skxxgAUXzm1eFpgRWfhRVe/XzVIkMLgAS3Nfb9yA/0PCr3+DBjXQ7O6t4SmamxZesQHSk1LV/gkILnsP+zTsf/WacDKvwTXkXmba+1/IHtBXno0LQD4qGv6E1ABog7kAHyiO0bU9C1UrOBm7VVyusC/4+UMLsGeM74+LvArQBudQIoNOzzKbDFCXgVK0oPZqHMoaKdlAcAkBMQAJEDQXEJ8V9biZCyqVqApzFKMM8x2tQTRhESXvBdh3HK+dU6diL/PSRKBGMGSF6pOdBhhxd9pG1oJRWE7qZr49qCM63z9T+/bPsU/eQtAC6LeUyKGgyASNbY73W9qa2wRO2B0+SNAIA3vVdggLwBW0VbLFOPM2dsRLFG7Yze8k7TYy5rJlRJRqo3+udSlZJ2ZyJ91NfxlQCMM/MXCGRuh5RO7Srtx27RAqVIRfvAeRoAxvpGQIbAOY4N6KDsQprkxlOuN/GBdAk2ig4oRSpKDu7GYuc9KBKpON/3ZczjIkomxRU+tEY+rrLMgVrWDkDbuh5SvccACFGSMDaqNt6oOOHGe9IYbLB2wNu+K/GS7RNcblkAHPA/v01tg/bSIawRnZHbfgQu3PcOHjXcaG5W2+E4eS+alWwCKgqBlMaxDdC4SleOfWWg1SLhYd+teMH6GXaLFnjIewfu996N7q3SsamsBJ1cEwEA17bpgKv+0QvujxdjiXoiOrkmIsVmwcZHh2PDjnxc/fESAECLdAcOlrhxnfsRnNW5BWZtPIgnz+qBXdmH0WV934hjeMD7LwDAzudH6PWyh74+W68TfU/M7w6mCVJh+MyMUfvqBEAsIauiH7Z9i39bJ2G3aKEHj3ZJ7fCm7yoAwH9wHX61P4bu8h6cZVmFsyyrAAAXuF/C33s66cdhrXxKRqZmmBVeNEmLvKTN+D3KQCnmOUYDALatywOG/oRrsp/A846l+EQZgdXlwW+yT1FhjaMBrJ4BEmMAxGqRsU50wSPe29AURfhYubBa+9171rHYdKAYv28INoLs2Cz6yrb1+4vx/uzt+p9bZTrhsMr6RMPVp7RH/27N4VlngV1S8K1vKDqkx1liRVsBHWMARISc67QSWIoqoKgCPaWdOMXWGFvhQFGpExsPFENRhZ4dAkAvE/nET+vw06p9OOf4lhh7Q7+YxkN0pFTUNAASIWvCld4RB4vK0SFQDm+92hHNpCK0lArhXP8tcMxDcY1Ry+SKa6FLwGFrC1Qz8eOIs8GHJr6DaGKMrac2i/u4Wg+kRGSASCElsOySDxBAD3k3MqRyqELSV5NbJIHrLLP0AEiKzVLp75dP5bUfJRfj9Zxx8QoAPGn9EjdYZ+p//lE5A+fJy/CdMgT7RVM8bvsaNxZ/ZO6dBuACeQlUnw9yjMELoQTHFE8JLFmS8Kb3SrxiG4sckYVPlBF4TwkGZjZnnotuLdMxbc0BPDGiB/7cdBBrduzFeuctAICd/5yDiyfsx+2Wn/GY7Wt9vzf6zEBxuQuvbTgz4uuulbphi68lLrfMNz0+RzkRN3ofQZtMJxbcPCyu/iYA9GoHsV73Af6Fn7aQDJJfHI9DFRJ2ixboFLjXzUnrgRfzrwMATGudiZcKHkQP30acaVmNMy2rAQCnud5DxWZ/hnWmVA4Pe19SA6G6irHQcS9kSeDA8l3AwD/qekj1HgMgREnCOJlTVOFFZ+kAXrd9FFjNApyDFfAJCwbK6/3bN+6C3VIbXHrgRpTCPyF2f/NMuPa+D2dg1eAux3E4r+gZ/GH/N7rKB4CtM4HeV8Y2QFMJrNhPHRZZwmK1J87yvGl6vHWmE5tygg0stTIONsOkpda/4vg2Gfpjp3dtiqmr90MIYME2/2qRnm0yUeZW8Nv64KRhJMZmoY+N6IHbv1iBC3u3jvGdBciyfpOq+oITe8bAQ3UCIHIgA2SX2gLlcKCHvAcWSaCzFHxPy+z9EZgrhICMUZ5H8LhtIrpJe/VSO+Ptr+A09/s4Xd6ApWoPeHxWCCGwM68MHZumRV1pT1SbjKVhiioJgBjrnz5iDZaB61SwCNi3HCeXzQck4B7rZLy2xYFP5mehTeMU3P/t3xh5aodKy2tVRguASLEGQALfs2+VyDetkTROteGBc7rhlV83wd/FHJAkoG3j8IBF/05Z+Cv7MBZtzzM9npliQ7rTCneg/1DPNhlo3yQVl3uew1WWOXjddxV+TI+vLF5wAjDGEli+yCWwHFYZ3tJ8/GB/Fs59XjzuBHLKmuKcd19FCcxBoIpAAOSnVf7+UDM3VH7uJ6oLNa3f7AzpnVEupWD3tfMx/N0F6JOaj7M7WfHWhnTcbpmGR2zfIO3giihHqj69CXocC100v6RehL+LGsEpuWHtfAauPrMv2jdJxXt/bsWk5ZGz2DSzHhiCVhlOTP57P56cvBYA8Oj53fHhnO0oqiKb4eHh3dGvYxNc9ZE/U1oC8I+uwCU9m2DMtCXoI2/DvUM6QupzbdzvUZa1AHACAgwhweBmKEK6VIF+kr8v1EK1J+7y3osmUin+sD+IrvIBLHTcA69kxw6pAx7xjsIhNI54aC8nBCkJHCiqwMPfr8Go0zvB5VXRQcrFa7aPcfK6LXjRAeSILHyvDMFA2Z/+tUttgdL0Lngy/2Y8AP/itROlbaZj7rW0x6Cyl7HecQtSJTdKc7egUdvjYxqfYrgekeMogSXLwDLRPexeV1PmVvDLWv9Kxm6t0rFoex7KkIK3vFegsVSKC9t2h0U+gI+UC9HFegj/lGbhZs+DWLBkF07p1AQf+y7A/1mnY3Hr6/Dj7lQ8bf0CiiMTP7V5AuM2WeARVmwXbbBG7YKHMv+Ae9Bz+CCjPU5s3xhyAu77RAKaoPsUATuCn7dIbwOpZD9kSaCT4V43u+kgQKuCKEl4s+mzuGT/2+gl7dSDJDMcj2Lh/htxUmAzY4lUovpspPsbfeFD64LldTyahoEBEKIkoajmAMgz1s/14Ifm37bvAQA+IaN41B+Yu6EIpT9vCG7QqAXGKhfgHutkAMDalhcDRcAS9Xh/AOTQJsTMuMpDir00gjXKTfVxrTIwe/P/s3fWYZKUV9++S1rHdd0VdtnF3S0QnAQSiBP5eOMQQjxvhIS8cXd3IUZICJbg7i7Lssu6j09LyfdHSVf1zOxI+8y5r4uL7urq7rPT3U89z/M753d2+Pfrorp7fm6ilow579sYj3Dlact4enMPHz9jX+54YSe7+zP+5sK+MxuZ357kV/euY2dfhq9csJqdfWmWTm9g+fQGXv29ezg9rznyK1ZM54b3H8uM5ok3QPcwUZ3NwIBoFBJAxmBDpdrOAv8Zex6XZp0s9xObtxLteZl+4jxqLWZRx0zo6fKfs41W3pd9NwCfXPgCl2z+XzqUHl6MvwGA3xgn8Wnz7fzxwQ186M9PcMlRC/jkWRNbJAhCMQlaAObbXDknZECPkg5kuJ7gVjkB7I7NpLPr5dBTroz8gWPueS2JiEbGsPjZXesmLIB42b3KBG1hInupPlGUnD1VMqr51QytrgjUEM9N1ZoTERa0h21bLj5sLqoC96/bzZObwg3iGxMRdgUah5+xaiaaovCEvZAnjIUAtNUV1itF0QrLgLbN8CbvidojqIZFLNvNB19+hy/oA0xnF/upa9lst6FhsdNuopt6+jMGttj7CVXOcBn6OgbnqHczvy7Nc/31XGcdjrNlbw+pANmgz6cx4YwLT6XbmaVPx2ILPa4gmF9BMBF8T/ciWGBZWoJrrSMBOCM5g1WL5gDQ2rqbPn9HayjLpjUwvdPpxXb6wXU8vdsmrqu8+sjFbB6M+BZ/I7Fg1nT2XdDB+884iKv+6VjQ6NMXcOAR+/DK6DIWd9ajzG0p+N8H+H+nYlSA5Asgf4l9KnR/G630UE+PXc+DsUM5PHMvsxTn7zjf3sKnIjbvyr5/2JeWChChGrjqume444Wd3PHCTs4/YCbfjHyb/dXc73musoPL1Wv8++dnPs3Fqw9i4D850eNxeyHPRvZledZZ/3ad8lU+mlnM5pvbWKxsJrV784QFkGBPMnWCPd8gnGA3HF7T45iucsj8Fv7wgDN//aZbJXJxIkoyqtGbsvlQ+hI+xCVegNy1Zhd38TpWvvmbPLm5mz+99Cx/Mo/npxcdzLtmN/PTq27mI8bbAThkfguHXHrFhP8dI//73N5vBfQAMSyLiCuAmAtPQnvjX5wHtj1N94anee9fnudRaxEfXnkEPP+E+36QibXynux7AXir9k8+EfkNzUo/Z2z5jv/aWXPicQlCpVCGmUccYeQSW7ris0ZIcRDGgwggglAlBDcAX9rZx2ExZ9H2A+MMfmWeyp2x9/mPP2IvZnmigZZkrq+Eojgl8FcbFxAlS0SxOens99H5g/sYHHQzfK0CFsdFaoKua8NPCo9b2sH3b8tNgutcsSNoW5OM5Iasdx6/2L+9sL2O3e4m35zWBE2JCE2JCPd85CT6UgbNyUhoMnrXh08cNoZl0xsm8C8aiolKBBPLDFpgBStARl+Iau5nlQ3Ud/c278MDXTnhpi6mEdGUYTP71naexJrULSzefbt/7HX6LXws9VY+8Teniuind70kAohQFeQLwCHu/xHc8DFY+SpS6rsAx85keqD7d9Toh55NQ143pmus3zUw5Ph48XuATDAjcKRxD5wFsCfeLuqo54lNjrl/2zACSEsyyqrZzfzojQez78xGLMtmWmOcb9ziiOV96fAGWksyyrFLOrjt+R3MbU36okqQ5kJ7ZbjXA23CPUDCMbcpvfw3ejm7N62gzXT6HT0x7Ry6N6/haO0pfhv9vH9u2tY5KfNlNtqd/oYCONcEQag2UpncbyRJii9Hvs8rtfudA1kgCnsy9bTRy3P2bD/r772Zd9Gq9NI34yQ+lXB+r1nTZrdb2ZVxl3OKFRYTJ4Kf0VtAootHUPiN67nXa4jvfcwJirwxXeOjr9zHv//BVyzzBZCWZISFHfU8tD7sh3/I/FYA3nr0An5738us3dnP0UvaUBSFCw6eM/F/0DCo3vinWFiWXVh29Qhz9F47QW+0g2syxwKwuLOew9/7D6696WbuW7uTK/Xf07TlLs7Q7ufX5lM8rq+iPxMejw2pABGqgGCvj2n9z/jix9XZi7jZOpBbYjkLv2esuXzxTSfxcp49lo3Kxxo/D10v81h/M/+Ydzhvn9HIc/9x5jd9g4NM1NwuuG7TCljraqMIIB4Hzm0hGdVD46OuKsR01RVADDcWZYh7wOyWJJ2NcT7/r2dprYtywrJOFEVhcWc9a7b3AfCZc1ZO+N+wV5TiVIDoijNOqXpgbjptX5qm7csHZ3RzyzPbOXPVDD7ylyf8h4M24T8xz+Ck5m0c2X9zODwzw3+e3cZ3/vsi7z5hMScs75xwnIJQDi7QbuWT+q944YZPseQVl3LFnx7DtmyuYrt/jmamR34BYcyIACIIVUJwYqNjklCchex3jHPooZ7XZz7CSerDmKj80Tye63SN9vpc5m5UU12xQOFq43U0JyNc0t7Ab952GDd/6+fum4Q3msaFK4BYtoJSwAJPH+G5+8wIiw/JqGeBlTs/ER1+Mvrpc1bw2h/ei64qXHHqMv94RFNHtNIpJaaiAVnswGI2WAEyloWoZ4GVCQzTnQ3h6pSYrhGPaGSH+Vwb4hGu3/cr3P2fv3GA8gJXRv7IHrveeU0pDRaqjOD4N5gJfJ8H98C/3Oy1x37LonkruVq/iZO1h/zNQYCoNQDdjgCyxW5lhrIbgKWZp1ljFNYUGAI9QCa4KTjSuAfO2J0TQOp8AWSma3XVGNgs9MSKU/adFnqN5sTw49zslgQfeeVyFnXU85pDht/4Gy1TcVQKzYB2My7TdoTYspPg+X8zT93OvF5n0v8H43h69/kI9Zs+POSpMcXgIOV5Ntqd3Ld2t3+8ISEN0IXq4sd3rEVNd3GF/k8aGOB12i3oytDfzG+iVw85doN1CGminJqYRl1UQ1XAsmFrj+OBmbU9AaTwChDf073YAkgkd/uV+83gJ3e+xOkrp/OD29cOed6CjpEFzOB4pSgKX75gNZ/+x1Pc+twOEhGN2648nnhE8x+/9j1Hs7M3zfwSiaKeAKJgY9k2KhMfT73P75/mofzVPIZD1Gd52prH362jOWPZDO593LHMyZoW6FHOPv2VnA3Qdzp82UkK+oD+J9ZHH6HHMllvT/Mrhg1rv4L+nYJQDIJjQjTtCJdPWvP5gXkWABemP8Hp2v1YqDzW+gq+uc80rnlo45DXGbB0NhjTMTD837ulaGDDXc9tZf6hE4vPdCsHTFtBK6BvnDrGedWFh8wGIBYJCsQ6iqK4TgjOhucBc5pZMq2e392/wT9nTmsCRVG47j1H05TIJfpdcepSPnjN4xw6v5XlRUrsG4I37ytAAMkGKkDQh85hV85qYuWspvDbKsqQJMJr5n2Crz9yBKsa+/l4+qvOQTPLFX96nN39GT78l8e576MnTzhOQSg1MTJ8KfJDABru+RADK45i1WOf5Tj1MRJqLrElYqUqFeKkQgQQQagSghUgkYAnZtb9md5p7ced7gImEdGI6mqoYiFtWKFNNq+HhqoquSoCs4DsQHdRbKCiFLDAG6nnRH6D4pju3A9aZnlVIfmsmNnE3R8+kUREK6jRcbEw3b+3HaoAyWXjWeOwwPI2NgA6G8NWNfFIOEMoSH1MR1HgHmsFG5ROruSPQ/zEWwrN/BaEIhEUQII++X07N1AfOO+N6z8amrnsshtoU3qJW4PYPRtRgF8ZJ3Nl5I8AfDf1YU5SvsSL9kxU7Ik1Q7dzjRqVCVaAzBymb4dHLKKB+xtuTkb5+VsO4bEN3bzqoFkAHDw/Z9XSOoJdVdMIv+VpjXFmNieGVHqdtLyTW57dzuELW8f17xgORXXee6LNMC3XtsdAI3bOd+BLi0KPX2cdzmmJJL82T2aluo4WpZdHrMUM2HEu1G/jG9HvcpDxAs9v+Ij/nP50AWK/IBQZw7S46p/P8JXIL3mVdmfosQespbxb/Ri/nH0tyzb+echzu/R20ji/saiuoigKjYkIXQNZtnS7VU+a87hiFf699zJ67SJYYAUTWOKBDb6Ohhi3X+n0Q6qL6fz2vpe5/JSlXPnnxwE4ZvHY87cXtNfx87ccykDGIGvYQ8bC+pjuz4dLgmuTo2ExhvZue8fy5tk6N1sHcbN1kP9QXSABKGvkbTrWd/C9unfyP/3f5WD1eQ42nh+ywn/mqcdhn09CQ1g8F4RyEhwTbNOrdM99We+39+F+w6n4OiDeDDDs7zdrWr6lYMITQNQImKDZExeCvSboJuqYqziGY6x5gvUxZ7wK/r7r3arfYNLf7JZEKAnOq/YAhogEp62cwSn7Ti9tj0fFE34LsMAK9ADx5pEjMa8tyfpdAxy7tIMbn94aeqwlGeUv9j68kFb5uHssguE7Q2zrkax5obpppzt0P/njo3ljYNgzbBVdsdAt+S4XAxFABKFKCGY0DCeAHLfUsTEBp7EtOIvIIPowi01NUXKb6AVZYDkxWagFlfhHhukBsqC9LjQpBoi52YLBf1MiMvKQNZqlQjnxBJCgn3Ow6sIYwyrZm8Bn91IB0tkQpzkRHXZy1xDXSbmLg7Tt/G0cP3EbXAFrWmPh/U4EoRgE++IEffJvfWojZ47wnPutZXzXOIefR7+IioW1cw0K8II9G0tPoBrO5uC3It9mq93CEmUT/X3H0dTUOL7gghluExRAjlw0/IZeczJCNE+QOX5ZJ8cvy5Xrz25J8vO3HMLv79/AG4+cN+zrNOVVPBy5qI1z95814gL4s+eu5NDHNnP6yhnj+WcMi+I1AZ5wDxBnrDMVDera+ftp93Da9ccQU5zxc5vdQn1M50l7IWdmcvZXZ6t3cyG3AfBG/SbMR2/hYeXjPGAvp28YUVgQKsX63QPMYBenqo6X803mQTxtz2Oj3c6fzONY2F5POh7emP5/mcswUFmw7Ch4zMn685JcGuOOAOKJxZFoDEzH9qNQlCJWgOgjVIAEee9JS3jPiU71Qiyi0l4f48gxCiDBvj/JqA7lL/hFda1gHAFk9LldX9rgzhd2cNiCtiEVyp6AZTD0b18X2ATODFNFfEfdqezo6qVJ6WNWU5zB7h3MUnZyovYoAPus/zXcGoGzvj7Wf5ogFJ1gBYhthC388klGvb6PQx8fzJh+4owngDTVJaFnaF+x8WAF1rqFMFJlbXPSGbs9vMS+YJJMThTJ/bunNcVDa7Y3jTAX9Cip+AFFqQAxLTu336HtffD+2zuP4o41Ozl5n07+/WS+AOL8vfakLIyYs1Ec3EcRhGphMGMSj6hDxoeoMvL39UFrKb80TuWb0W+j21knUaIICSpTGRFABKFKCPZxiAYyKryF0LtOWOwLII2J3E935axGv/FtUFzwJlOqomB4P/VCGmRauayYSAETq3zx5GuvWc0RC9uHCCPepmAwazA5ggVWtWG6E2cr0DclnQ32ABmDAGINFUDa6qOhhsnTGuMjZn43xHX/O5VydwVUxcm2ybjZpAOZiWfuCEIxCQrAqYAAcs/zWzgTWG91Mq9Jh97NAFxjHssV2UsBm4ytEVVM1J3PAbBVaWfgipf5xVVv5V36teyrrmdf1gOwffMT0HTU+IILZlUrE5s2aa6ns9cL6C1HzWdmU4LDFrby/t8/6p935qrhBYl8USSf6Xli5tXn78e8tpEtX2Y2J/h/xy0a8fFxoTp/E22CmYBepZx3rVMSzfzDOpJXa7ezW2lhnT3dt0QMcq11JPem9uEH0a9xgLoGDYvX6TfzQHa5VIAIVcXWXT38Ovp5GpRBnrNm8z/Z9+XmZUB7fYzNs16B8vy/iGLwv8ZbuNdysqDfXDcdWAeApg5NDAFXABnMWWcWgi9kFrsCRB/59bzNgHP2nzWm133b0Qv48Z0v8bEzKt/DTNW8ZsD2mASQq657mt8/sIGTlnfykzcfEnrMs8Ay7KF/q4aYzrn7z+Rvj27m0uMWDn3hSIKfmqcDcERTG60zo/zziS3sY6zn6siPnV4LD/0M2pfAEe8a7z9TEIrCsAKIPZIA4hyPDSOeBvtAxKPumsuthLONiY+DVqACpBBGWia3JqMhAaTBFTvmtycDx4ZWgMxtTYYSXRa2B2ujy48SsP7Dtp1GpOMkawaECm3vSYwtdVHOXj0TGOqiEBSHs+joZPzKEkGoFl7c0ccrv3EH5x84m6vPD1tSer+DbjtJPYNorsXzP81DeVf2/cQJJLpmByFW2d9/rVN5rxhBmOLYts3W7hRGoEIgijM5cjL3nUlFMHsu6AkfnEwGF8XeREFVIVMUCywnPhO1qJkl5x0wm+lNcVRVCU0YPT/U4L+11gSQoAVWsAJkLAKIajvPjcZyG5vNiQjBed/8tmTIxurYpR3+7fpYxM8W9ewzwKsCcRjIyARRqA6CfXG8CpC+tMGaLY5HdBYdorkF4qDtZYsp7CRc/t8bnUZdLMIfrJN52eoIPZY2JuBREhBAlFEWaXsjOH4loxpvP3Yhq2Y3E9WHCtfjZcXMRr9p+vTGOLMm+DoTwVsIFyqAeJVzUU3hquzr+EnDpXyk4XNkiBDT1SGVMgDbaeG8zGe4PHMpAK30AtCfMULZ4YJQUbY9ziJ1C2k7wluzV4TED4D2hijpliWclfk8r8h8kTXJ/f3Hgptg3k/gk2eGN/5j7jyhGAJIMStAgvPT+mGyuCfKR1+5D3dceQKvPmh20V5zoqjjtMD6k9vP4JZntw990LfAGvq3j0U0vvjq1Vz3nqO55KgFQx4PXkciuoqNE8wz9jxelfkUXQm3F9ZNn4RU95DnC0I5CIqi2/Y438PsCPm4ni2UPoxzQK+b5KAouYQ5PBulApL9rLz5yEQZaZ3cnJe05lWAHDK/1Xd1+PIFqwHYsCfX/H3lzKZQ8mP+65QdJfCZWBOb+xmWTcRtgj5aBUiQ/zk+nLwTTJT0vkuRvWTUC0Il+OODG0gbFr+7/+Uhj3kCyABxdgXWtIM4c7vgPg7ZwdIGOgUQAUQQKsx3b32Rw6++hU/942n/mHfhDpYFBxeSwebnwcqJ4ITLKxnWVCU3uSyoAiQ3KYyUqM9GqDmeezuY8TJcFnA1Yg3TAyTUBH0Mq2TdtcBaPCPn/7/vzLB1zyn7TqMt8F1Y2pnLCGiM6/73IYOOZTu3L9Gu98/pT0sFiFAdBC2wPFuXXX3pwFgYwY7kNvUHyH3vt9vNueN2DBKtKIpCb3wGx2a+wSGp7/qPW9n+8QcXWNwpwyzEx0pw/IoFsqGLsUmoayrfe/1BvOrA2fz4TQeXtxeSWwEyUSsErweIL4DoKl008PfYWazF2eDUNcXvCxXks+eupCGm+1VtXq8Wyw5bqQlCJUkN9AGwzp7GRntoJVdrXTQ0DgT7nQUrJ7zGukum5fq/xXSV9ibnvmIXvunj9/IpQgVIuIdb8eZvqqowpzU5+ollwLsmjNUCa299BbzPz+vbd/rK6f5jPYNZorrKyllNw9rQRkPzZ4Vgn2ATjT/s/wvnjmXAwK5R4xSEUhAc57zrdTZUDZfbCPfGjL2tORMRza8gsz0BpAAh2KvcL5UFVr6VcXPS+fc2xCP8491Hc9NlxzK3zRnb1u/KCSCrZjdx1KJ2Ljp0Dp85Z8WIr1821MB4PsH+b+EKkLELIGevnslNlx3LCcs6eO+Ji30LNMiNne/V/wpIEoxQPQR/+z2p3BhlWbleOBlbp9vOVe97yX42Kj22My4Mfv9EuOMr5Qh50iICiCBUmOuf3DLkmDchyDL8JtnyGbnFb7DqI3iOJxxoJbDAyrdfKBYhAcTd7ApmvNROBcjQHiBB0cMaRwVIW2M9Z62eyZuPnM/sltyCf1ZzAl1TueSo+Zy9eiYffMUyDpibE0tmtyb9ChBQUN1yyssif2a24mQeDmbNMcUiCKUm3ATdGWsGMqY/FmbQ2NiXG3cGAwLIi/ZM//ZN1kFMa3KEEq8v0A6aecKaD4CVnkDmTLACZJRGjXsjWMUX3MwPZkTWFyDyHrqgla9cuHpIQ8xSo/oWWBPtARK2wPKuAxnD8sfNiKYOscF49wmLecPh85jWFPeTBYJZf31igyVUCalBZ9wZLrMfnO93SAgNiAXBzH7vdkcg8WFxZz2q7tpcFsMCy5172AWMdR5RPTC2lbIReQXxxj8Fe0zzqb1VUHuf34Hz2/n02Sv4wqtW+Y+NZlkai4TXC3be5l+/Wg+JVueOUXivGEEYD1nTYmOgogGCa93c2HDqipzo5wkgwXEkn+Dmt7eJrhSw1rWt0lpgdTaGe3cG+5tMb4qHxO3gvFhRFFRV4erzV/HGI+YXFFtRCFYITrACxLRs/p/2D+fOOPrrKYrCkmkN/Owth3L5qctC18g2xakCPl+7k+XKhgnFJQilIDgm7O7LXYMzASEwi043AQEksNa9xToAgETfy7Dp4RJHO7mZnLNRQagRLMvm+a19Q45H8yaFoRJfYEZTTkUOZvrqgdHV6w2hqoovpNhWlglLF3YuK6ZUzdUa47q/aeVtEAYrQBK1IoAoGti5iTSERY/xNEFHi/KtCw8Y8vhB8xyxY3FnA9+8yHn83rW5rL7pjfERP6cZ7GYjThbqYNYsamamIEyE4G/ix3es5aOv3IeBjBEaC1/qtpnjDgGDdm5S+NnsG3hYWUlLXYxf7lnBie74uLkrJ3Z4k0g7G16Aj4lQBcjEx6BwBUjQujB3e7jM3qrHtYBRAxZYqazJB695nGOXtHPBwXP2+nTbCjRBJ3ete3Zrr2/lpatKqGpmv1lNXH7KUv98XwAJ+D73p03I7SUIQsVIZRz/5pGsXs5aPTPkad8QD1b/BvpoRHJVUh5nr56JtclpClsMAUTzqkiKIIAEK0AmrwCSs8DKjiGfRN/LGO/Zj8XjMd505HwA3nfSEn55zzreevRQ26sgwTVCRFOHVMANZgyyiu7UyhVihysIE+AtP3uAO9fsDB3zrtf7zmnn7IaZvP/kJTy4fg+/vc+xiEkOY4FVF9XoD4iB8ZAA4o4xhVSAuAkZllKoADL877ytLiyA7K1a9/uvP4gP/ukxvvqa/QuKpRSE5sITrgCx2U4LM9gNybYJxzLSmDpd2cWz9twJv64gFJNgEkN3YL6XMS0/eSuL7ld6QFgA+VT2TdxlreSkpS2cfvChZYh48iIVIIJQQXb1Z0K9ITzys2I0RSESyIAJbqS98fB5ABy+sDVUmRGsAMl6DeYKyfqyvCxdtWQWWK2B0mdvg3BpIBumVipAvNJpOzAJD1r8jKUHiGeBZef1HLjuPUfzhsPn8amzVwx5zqHzW3n1QbP58OnL0VRlxM9pppJbhPRLHxChCggKhI3u2BWsAMnaemgiGLTA6qKB32aP5Q/GsfRQ71dKnbU6VxmS8sqI0xMRQNyxz1Yn1OjRIyjgRgOb+aEFfA3iVcUEK0BueGor/3hsMx+85vHRe3F4Gw6uUD8t0NB9kyti5VeAtNVHfbEooqv+tTIa6HHUmyp8M1gQioGZcZv9DiOAXH7KUg6c2xISNRoCvc+CmzvBseJDpy3nxOWdvOGIeaA645ufOFEAmreZNY6M3JEI23pNTgFk3BZYe6mgVr1qQzU3F77slKU89PFTmN9eN8KzHEI9QDSV/FB+dMdLbO1zD4oAIpSZfPEDcsl+nc2NfPOiA1jYUR9KDvFE00jgWHMyysxAEmDQLrCYFSCFWmDlJ6DNb0uiKnD0kvYRz8nntJXTeex/T+WUfacVFEtJ0AqvADGCFliLT55wKJFh7FEBZitDv3OCUCkGRxBA0lkr4Hag08Nw/S5h8bw5XGMex+0NZ8Dik8oQ8eRFBBBBqCBbuoe3Y/EGQqcJupMVHFxIBoWAk/edxs2XH8cvLjmUTKDBryeAqIEeIHZBFljO5paFutcMtkJoDWTGeNm+S6c1cNGhc9h3RiMnLh/qnV2NeJnMthmoABmnAOL7cOf5oq6c1cRnz11Ja91Qv1RVVfjyBau59DinQVxwcv1p443+7W9Ev8vzsTfwWu0/DKRNtvemMIYR4gShXAQrQEy3IXp/2vQ3tLPovGDP8s/ptutDz7dt2NHrZFm//diFAFx9/n7+434FiDFxCywTrRD9I2TVEFzkX/mKZSxor+NHbzx44i9eQbwNQDUggAT9qbf1pPf6fCvPAmt+e10o6x28HiDDW0LGNNUX+aOBCpBgBZAgVBTL2XA2bI03uEkrHgfPd6o5gxn8oQqQwFgRtNH7n+MX8dM3H+IkxLiJEmoReoBoFM8CK2j30jbMnGUyoPgWWNaYLLCC8+f8uaDXA0TRwqL4WCoD820VhxOePQHuvhc2j/p6glBqvLWuGhma/Ab4TcEjge9/RFM4OSAIBF0CvKo1xZq4wOf1JCu8B0j49g2XHcsDHzvZr96HvNhHoGqrgoMVMhPs/2ZY9oR6gOQT7IX6oezb/dtXRX7GC7E3cIl2PVlZ4woVJphw+uUbnwOcdcohn7uZWCDx+TkrV7UUtMM6203qe3DdHnb17X1dJewdEUAEoYL0DA5drOoYLFM3ArkKkLqoFrrAR/OyHRZ31hPTNQYCg6u32aapSs53upCsL3dD3rTVUDlyMZnWkFssB/+NV5+/in+97xjmte09A65asIbpARJqSDmOCpBCJoXBhfbvlFdyy4HfosttrhVVTN6k3cCda3Zy6Odu4bI/Pjbh9xGEQjGHsYgbzBpEFGfcyaDzXeMcvm+cyXeMs7nJOnDE1/IWlfGI5tuGDOJWgGQKqAChsLEvKFwHqxlWzmriv1ccX51ZfmNA1d0KEHt4y7+uwb1fdxS3Us4KeEqfsd+M0DkRTQ1tjITsXnQl0ATd8G2zvnbTCwDs7EvzlRufY8PuCXz2glAM3LnXrPamIVZGnpgXFPUaAxUgwblfsCF6CL8HSBEEEE9E0QoXQN585Hy++OpVfOH8/UatYKhZlGAFyOinB61x8m2q1ALsx4LjYyKqDdsLyhNAvnnT0+N+fUEoJhom89Rtzm19aPIb5OyigmOjqiihKtGQiOCOg0oB46BlFqcCJPg7j+kqMV2jrT5sf9XZEMt/Ws2gBJugBypAbNvms9c9zYeueXxU0cERQLxkv4lfb4IJM38wT+CizMfYaTc6jykmb9H+TdoQAUSoLMEKkMc3dvPyrgF+cudLQE4MXjitmZ+ap/Ed42y+b5zJ400n+s/xeuK+sL2PD/xJ9mwKYXLWIwtCjWC4u+Lt9VF6+/rYT1nLD6NfpVVx+oJ4vTtO2XdayAJrpE24oC+ql4GrKYq/6CmsAsR5bQOtZE3QLz1+EU9s6kZRFNrrazdb0G+eF5gUDrfBuzeK4cMdrACJ6Rq7Zp7AgXf/gGXKBq6PfYRlykbO/NtjgMY/HtvMty4a2mtEEMpB8Pfh3e5LmyE7wAHifMG4eFyv+6HTlnPc0g4GrqmHDJCdSAWI1xRToxDtN2iBFRtpI7MGUQIe+B7BTKdUdu8LT68CxAw0iJ7pihgeEVXN65uSG9uimkqX3wTdZJ8ZjWzqGvT7SV32h0e544Wd/O3RTdxx5YkIQtlx5162Ghkyf/ISFUZqgh4PjBsHzG0e9uUVzRMhi2iBpRa+RIxHNC4cpQdQzeONf4o9JgusIOmsGfqsPQFLmcBmYDBpKBnV+J/jF6Eo8MyWHm54ytlo9oTiKAaDGbNm+uoJk4cIBvspa/lW9FvMUpy+hVqwAiSQHNLe4BwPjpk2To9Dj8aAAKJ6lXCF9ELyLLCUwn4bYQEk/FoNMZ3etOFX/9Uiqqpg2QqqYod6gLywvc/f1D17/5kctbh9pJcIW2AVkuyXZ/d8j7WCQ9LfZbaygztilzFH3cGuvi7qYyPHIgilJpMnwj22scuv6vV+By0N9aSJ8iXjtQC894AlvDoZYV5bcliXF2FiiAAiCBXEWyzNblD5VuaDzFF3hB6fO62dC6fN5pNnrQgtjqP68ALEyft08om/wb4zGv1jqhpovFmQAOL5tKtD7EmKxaKOeq5/3zFA2EKl1vAtsAJZSMEeIGNZJPsVIHohk8LAJqGukohoWKg8a88ha2tEFJMOutjKxJvPCUIxCAuEziSxeyBDp7IHGN4730NRGOJ37hHVVY5d2sH1ehwyoEzAAssys6gUXgESnPxOa6zdzL98vExALdAEfSAdboi+VzyLMSX3GU8PeHyDa4EVGd4C65ktvTQEeoBccvR8bn5mGzv60ti2zR0vOD7QG3aLJZZQIXwBRB8yhnjf5eC8LmiBVRfVuPnyY3l59wAHzB1+w0xxN490O+sMhgXMn1T3d6wUQQCZEgQ2Sk1zdC/8YFZ0fg/AXAXI+P/20ZBNrk48ovH+k5fy3VvXBASQ3Di5tSfFgslalSNUFd78TsPk+uiHWayGLdi0WO57eODcFo5f1kF9TGdJp9MDMni9t207ND9oTgTWSK4AohRgBWj5CS+FVoDkbgetCwF+8IaDuO2FHbzt6IUFvUclURUFE9W5XgSS/TYFrEd3jmLTkzVMv8q7EAEkOky/SxuVDfY0euwkjcoA2a6N0CYCiFA58vd+BjMm9TFnzJqjOPt/ih4jEdH86tAZTXEuOtSxxLr1ue3+c0UAKQyZ3QpCBTFcr/vzMtf54sf6yELM9ADP23M47fSP88WFqwFCfr4jZQ/PaErwyCdOoT6weNaUgAVWIVkxdm5SGCuRBRbUtvDhYfsVILlJePDz8z73vaFTuA2FFrRN01R/U8VGZQfNzGQXJ2qP8ltTmmkJlSUogETtNNaa/9K0dQNv0P8GgLGX6UpwTnnogtZhz8lq7oJ5AhUgpmmg4ox90QLGp119OSuo/YaxJ6lVFM0TQIavAMm3eRmCuzkcrAAJZniC1wMk3OTXY2tPiri7Cdmm9HLotSdxW9S5hvYOHDfOf40gFB/Fsx/VosP2t4Gc3QsQslJKRnUWdzaw2N0MHPb1g5tHllHYvMHdPLSLYIE1JQhcE+wxCCBBITydVx2nuPPsYlSAeDQEKkyCvZLW7+oXAUQoC57o9xrtVl/82KjPY7axnr+aR3He/rnK3nhE4+dvOTT0/OD13rKdZDldVTAsm3MPmOk/prhWWoVUgNi+BVaBFSBqOAEtyJGL2zlyL5URtYCiKK5NmBmqANnSlfJv7+zbu/2pbQQ+pwKuN3tzpdhqt9CoDKC/8G9YtP+E30MQCiV/62cwa9IQ13m/fg3v1//iHNR0ktGcANKSDPZHyo1JQZtUYfyIACIIFcSybRQsLhj4nXP/4Lfxc/sSfnbXOgDWLTzeP1dRFF5z8By29aZCFR75tOQ1mtRUhYztVYAU0AMkkBVTqibokwUvk9k2AxUgQYufMVWAeFYIxekBEtNVOhtym4q79OnMNHdxmPqMCCBCRdndnwn5mX5A/xPqr//FGwLn3GgeNOLzj1rcxl1rHCuFH7x++PMM1fnuT6wCJGfRpBVQ/Rbs0TQZhF6PXAVIbjNvIGDHmB5FAPEq5YKWE/kVIPkWWMFN5KMWt7FuTa56Uu9exzwV5rGdLS/cFXqd7/x3De86YfGo/yZBKCqWJypEQ5VMkLM0Dc7dZjbnvv/JsdgUBSxkMLNFEUCUIjRBnxKouc/HskcXQIJe9PkVIP7ffgKfX2wkASSwURK0wPr+bS9y/LLOcb+PIIyXtGGhY/Bh3VnrcsDr+eiuN3H78851+7yWeXt9ftDOV1Wc+cHf3nUUrXXRkF2m97tRC6gAsT0BWCks0a89IGhPxmxtVRne7jnY822nW4WbNe0hIhCAZQQqRAppgp5XAVIf030L1I12B0vZRHTz/RN+fUEoBlae/Xl2sJd9u//D6z3xA2Cfc0iu19jV79xtrRveHnAyjinlRJqgC0IFMSybBgZJ2s6mnHrcB9H2sjH2f69exc/fcmgos2Q0FEXxLZkKs8DKCSD5kw0hzHBN0MM9DkZvxlbsJuhRXaUj0HDvnmkXAbBM2TDh1xeEYuAtgj3erv8rdP/yzKXcaB0y4vM/e85K3nviYv57xfFDBGAPQ3MWyepEBBA3S81A2+v4PBregmyyofo9QIYXPUbrAWIP0wMkXwBJxrRQ9lPwGvSDNxzsb+wB2FqMuxWnn5G6Mbzo/dINz+39HyMIJUCx3E0hVQ9tVENYzLvuPUfzhfP347ilHf6xWGT0+VZow7yQRBdAL0JT2ilFYKO0qz+X/Xz3mp187abn6RrIfR6mZYd6wOV7gvsCiD7+/MSmZO7zSkRzzw/aqamuSH2mdg97+gvvFyMIYyFrWuynvESjMuAcOPETQ8bBseL11lg5q2lIrzDVtQzWCqgAKVYT9KZkhK9euJolnfV89JX7FPRa1YimKjkBxM6NY9lAn4L+tMFrfnAvqz59A49v7BryGqYRuFYVJICE5+XBzeEfmWcAENv97IRfXxCKgZkngBz+3P9xyOOf9O8fkf4WrLqAusD1uyVwXQ+OmSKAFIbsYgpCBTEtmwbcCaEWg4bpBWUYj/g+ijtQFiCA2IEeIJpUgOwVy10Q24GsmOB1byxN0PWiNIYLV4AEMwla560AYKbbhFAQKkUuC9ZmhbLOP/6otYhvGeeS2P/Ve+2ZsbCjnstPXbZXOw/TtcCaiABiehv0dmFj35WnLQfgTUfsPdux5nAtsHTF8v3IMoFa79F6gCjDVIDkZ0/GdC20EZzfMHqA3PnK8jN4OOpUAj15303j/ucIQrFRzVxCg64qoRYdwQauK2c18dpD54ayZceScKJqeRUgBaAV0IdiShIYt+55IefRffGP7+Mbt7zAL+5e7x/LFzzSRnhsVAuwwApaqNWNUAHSjXONPEF7jG07d4SsWQWh2Ni2zU/ufIk/PriBTqXLOTjnMGiYzhuPmEciovHaQ+aM6zX3loOi6l4FSBGaoBdhi+z8A2dz0+XHceSi2ra7Gg5dVbFwP4zAWjfY46g/bXL/ut2ksha/umd9/ktguQKIhRKqpBsv+dfIoOi7xnIs0qL9W2AMyYeCUCo894/6mMYiZRMrt/8DgEesxVyR/X9ssZ1+rIkRrt/xQPVwowggBSGzW0GoIKZl06C4G3Jxx9YqUoL+Gp4lk1JgVoyGkwVdaBP0joYYO3rTLO6sL+h1qhWv4kYJCSCBJujjEECUApqgh3qA6M7m7X+vOB7DtFi73pmMNioDaJih7GtBKCdeVswX9R9yoX4bAC+p8zk39VkA7jxlBWcdPMhrf3jvxN/DF0BSo5w5FNvMVYAUYv/3ihXTuf+jJ4UqsSYDamDhalsmiqaHFsH3v7Sb17pN/Dyuf2ILiqJw2srpWIEG0bnXVHj1QbO55qGNvOuERUB4UZt/DeonwXsz72K1upa3nvhx1m68DdJwkvYIHdkudtBctH+vIIwXzXKsPhQtiqI4/Wy8yqjIMGNKcEOneQwL3WRMJ2NrRBVzQhUggxkTRXEW2JpUgIyPwPin4lzLgqLvjr7cNSdf8EjnV4C4f3t1An/7YILLvLakfzs4bv7SOJWzNOc62mztoT9jUh+TrQChNFz3+BY+e93TAFyguZ4ucaf/2TFLOnjy068Yd1LJ3uxDVbcHiFaIBZYngCiyJtobxy/rwPyXc52y3D55EBZAguPgmh19Q17DE0BMRS9IbsrvARLMjt+D0ztLsS0Y3A11k0+MEmoDb+/nE9oveE3McTrojc/kvK5PA+GEVY94IPFLKkCKh1SACEIFCVWAuJPCua3JvTxjYlhFqAAx/Ua1aihjcSL85m2Hcf6Bs/jJmw4u6HWqFXsUC6yxVIBEitwDxMsoXdBex5JpDaiJZv+xZvpIRGSyL1QG7/dwYvRJ/9hnU68GoLMhxsymxITtEjx8AcQcvwBiGp5Fkzou+8Hh6GyMT6r+HxDerLPczYNgpvMjG7pC57+8a4D/+c3DXPrrh+hLG36PFUsJb8R9/rz9uPGyY3nHsY4A0hpoBjhcVvy11lF81ngDtC1ia2KJf/z1ulSBCJVlefoJAEx3nhdMdBluPhXRVL7/+gP5xmv3p61+dMG0OREh6+W0jTPRZTBjcvJXb+Pc79yFbduB6lPZGB8TAQssy53zbe3OXWeCY1W+4JFfEaL6877x/+07A8L6/LZcNWSwMvIBezldMScjupVeelNigyWUjvWekT3QmLfWBSZUUbu3BDLNrQAZTQDJGBZ3vrBz2OpUz+3Ali2yvVIX030LLCPQ7zIbqP4dDPx9d/cPFeZttweIoRS2mRvNu4YGN4cNdPbYbrJlf9huVxDKiVcBcrj9uH/sgSXvwxM/ZrmWfsE5Q7AaONQEPSHzs0KQ0V0QKohl27Qqvc6dmFMBcv6Bs3j7MQuKKg6YbjPLQipAUmnnuRZqwZuRS6c18NUL92de28iWNbWMlzlkBwSQYAVIvg/kcBTDAiu4uMifIMZiMbptR2y7VP8HhpQGCxXCNC3eoN1Iu+XYse2f+gH/sQ4E4MbLjkVVldDEbyLYmpsZOAEBxPsdS5XU8AQ367xqjmAWYP4m24Prd/u3N+we8Cts7LyMy6iusnRag38/2N8lXwA5YZnTM+FYt3dCIh7ne8ZZAByuPsMp6oMcpjwzJDZBKAfTzC0AdM84GiAkpOZnr3qctnIG5+w/a0yv35QMCCDjTHR5aP0eNnUN8uzWXv76yCa0AmyYpiTBccv1wt/Rl2vuG9xkHWqBld8DxKsAGf+8r7Mxzk/edDDXXHpESFSLRzS+/pr9OXXfadx8+bE0tzsCyDRlD72pydmXSqgOgg5rfv+PgAAyEbJ7WauoEbcHyCgCyFX/fJrX/+Q+PvrXJ4Y85vckU2SDcW9ENMW3CfOShCA8vxrI5I7v7htOAMlVgBQWS74FVvjatcN2v3Nbn0QQKoVlwxf1HzDP3gjAJ+b/jjUdp/iPf+nVq4CR926CNsCStFoYIoAIQgUxLJtXavc5d6bvBzjZgB87Y19O2mda0d7Hb4JegACyp9+x6tI1XZqgj4LfBN3OLXzDTdDHUAHiCiBqARZYw1WAeMR0lU22s1n4dv1fvI7rxQ9aqAimDedpd/r3u8hZ4yXdZnBjaQS8V1ybEsUe/+a33wNELBGGRdFyfxevmiO4CN7ZlwkthPsDzeBf3j0wrAXWcLQFBJBE3vfh6vNX8amz9uX/XuVcR5Mxnf+YTiP0w9Rn+VH0q/wh9lkWKpsZyOy9J4kgFBXbpsF2El3MhtkABBOfi2F72pKMkvXmHeO0wLr+yS3+7cv/+BiKV4UgPUDGRuDzs90GysExbjAw3uRbYA1pgu5bn05MfDppn2kcPL91yPFzD5jFD994MIs7G6DF6UF1deTH9A6O3y5NEMaKHbj1Ku1252aBAohp7q0CJCeA2LZNTyo7bPPtX7r9KP7y8KYhj9ky3xsTuqr6FSAjCSDBsa83bQxZ+1qG6yxRaAVI3vo2njc/vMlyesLxl7fB3d8q6L0EYaJoZsq3ed5mN/P8YINfMXXhwbM5crFjz6aHEmSGFz3aJ5mVcrmRXUxBqCC2aXCq+qBz56A3l+x9PAssxbZCzcrGQ1efI4BoEckKHA3L7wESrADJPW5aNqZlc8nPH+Dc79xFzzA2BDrOMbWAv3cwiyA/gz4W0Xht5mP+/U9Ffkl294YJv5cgTBTTsvwGmW+0/hevHDiqqf7CptCqM9vrgzQBb2hvQVyMppiTkaAFlrcBmMnbpOgayI1xQQGieyAL7nPsUbIAD1nQytGL2zlj1QxeuWpG6LHpTXHefNQCZjQ5JeRNCZ2NrsAbZKGyZdSm7IJQVFLdaDibQnbS2ZzWxlABMh6aAxUgXlbtWHlua2/ofkR6gIwb79pgu0kvwTEuaAPj9X3xGCKAuM/XSvm3P+JdADQr/WR2DW1MLAjFwtvwXqm8xGxlp3NwwXEFvWZ2rxZYzqZgBBPDsjnvO3dx9rfv4rbnx2F95CYKSg+QvRPRFEzb+RsZgbVuJiiA5M21hlTfmk6lnFWgABLRVL/v0XFLO4b0R7jePDR358aPw/ZnC3o/QZgI9dk9/u3j0l9jc2/WHyODPVv1EZJiIprKn//nCP7wjsNpjMv8rBBkNS8IFWJXX5q1zz9JQsmQUWIwY3XJ3iu0sWRmSWVNLvj+3Vz4/XvGvBmUTjsTlYk0Z5xqWJ4ntNdML2/Cblo2L+8e4D/PbufRDV08uG53/kv4PUAi0fiE4whW6tTFwpP5+phOD/Wckf68f8xec8uE30sQJophmkzDmRhuUXMb28nAd7ZQCyzPpmkiFSBehYIlFljDooYqQFwLrLyNveCGYPB2f8bAdjPWR6sAaYxH+PXbDuM7Fx9IZ8Pex8WO+jjbaCFjhz+zDqVLKkCEkmPbNjc9vY3NXYOw0Uly6bdjRGOOQKcG+gDpBfYVAmhORMnazu9nMD3U5s8wLYwRrN/2DIQFEx3PAmvi1adTDdud89muPU+wAiQ43mTMoRZYG3YP8MV/P8v23pTfBL2k9mOzDmJtZDEA+rbHRzlZECaO932fruQ2/lhYmACytwp6zbXAiigGWdPixR1OD5J/PLZ5zK/vz/fEAmuvKIrir3XNQGVbsAdI/lwrf/zz7E/NIlQb/vbth/O6w+by/pOXDOmb9aS9kM9nL8od2CrjnlB+6k1nHOyLTSNFjK3dKV8kDM4Dtb0kxRw0r5XDFraVNtApgAggglABDNPioKtuZtPzDwOwNTbft2gpBV4PEOdOhsc2dPHAuj3cv243z+Zl/42EkXU9jUUAGRU/c8jrHWAPFUCCC+S+tDnkcc8CKxFPTDiOYJZpa114M2Nms7OB+JQ9nz8ZxwKgPvePCb+XIEyUaGoPEcXEQqFHbfaP10Vzi6L8EvdvX3wAy6Y18Nu3HTa2N/EtsMZfAWKJJcJeUVUNy3bGGtsVffMz/QZHyIjuTxv+c4p5DexoiGGhstluDx3vpCsUiyCUgn8+sYW3//JBzv72XXD7lwB4zp7je5O3JHPXY0UpXACJR1QMd8Oub2Ag9NiuvjQHfPYm3vXbh/1jGcPiXb99mF/fuz5UnQU2EUV6gIwXr2Gy1y8quPEXTDJKD6kAMbn4x/fy3Vtf5AN/fMzv/VbqSuuN8aUArHrkkyD934QS4VU4tSk9ANwfOaTg1xxJyIWAAIJB1situ0YaYfOtkiBnyzRaQoaQq3wzjNw1JPj55CdY5ifGmFlHfLeUwsX2Wc0JPnfefhwwt4X2+qGv90PzLH5qnObcefIvBb+fIIyXRlcAMRPtNCUiZE2bpzY7Y2OwErgYSTHC3hEBRBAqwLZn7+HB2KV8L/INALbGFpT0/UJVG2aW7b3DN2jsHshy2tdv56If3jtkktnd5yyqZVE8Ovk9QPIzlgzLDmdBp8ObsgOpNJriPCeRmLgAEryIttWFM2KSgc3lf1rOJrK64zm47wfQv2vC7ykI4yWR3g5Av96CHRhf6kIVIOHpyqELWrnhsmN9z9TRUNzNQdUe/+Z3zgJLBJDhUBXF94IergcIMGIPkP6M6WcBUsQNhxmuwLshzwarRekdYssgCMXm2kedjONdfYPYbrbpD4yzaIw73/Fjloxt3BorTjau89r9A4Ohxx7d0EVvyuCGp7axYbczj/vrIxv55+Nb+PjfnqRr0Pn9veWo+X71BwCabACOFSu/AiQw3oUssPJ7gJgWG3Y7n9c9L+7yK0BKXWm9tulwAGLZbthwX0nfS5i6NPeu4f7YO7la/zEAPVrLhF/rY6/cB4CvXLj/iOcELbDyqw2Goz42dIwzjeLPRyYrfhN0c/QeIM5jubXwk5u6+ffjLwOE5v3FYHrj8BXC/zZdAW7709C/U8Rfoaw0mF0AZOJtzG+vA2DTHmdOFur7UYS+cMLekb+wIJSbTQ+ReO5vtCs9qIqNZSs823hkSd8yEo1guhm6WFl2BASQdCAj4561O3l2ay/3rN3F2p39/nHbtnnoJcdDNYsIIKPhl0672YBWfgWInVcBksoTQAZzGxix2MQbXQWbZ7UNkxHzufNWcu7+M3mZ6QBovRvh+ivhH++d8HsKwnhJpJ2xpTfSnmfblluA5gsg2nizpn0LrLFvfqeyJhnD8i0RpAJkeFSFIQJIfg+QkCd+vvjrjpPFzLg8cK6z0bIprwKkWemTChCh5HhVFbOVHSjZAdJ2hJusg/wKkAUddUV/T9u1rBocDAsgwT4T23sde6wt3TmbLC9BY3pjPCSAiAXW2LH9ql/nbz2QHn686xkM93sLVoSoquL//VW9tH/7dZ0n87TlNEOnS/qACCVgy2Psu/tmOpUuf637TGzVhF/u7ccu5OnPvIJT9p024jlegl4EI5TcN9J0cWdfhnSeKOnNYUQAGR3fAssM2vwFLLD20gPkDT+5z3c6KHa1zf5zm4c9vt52vztd6+FLi+DWzw97niAUwgvbevngnx7j5V3halyvAiQbb6PeTfDrHnSrPkM9QKQCpNSIACII5WTjg/CjE2l9/IcAfN84k/3TP+CZlhNK+rYxXfMbZG7a2c1nrnvafywdmKCsDwzWr/re3Rx59S1s2D1AT8og6k5U+sfvIDPlyFlguT1A8ixrTdMOZQj25VWA7OnNiU+KNnEBpCUZ4fwDZnHA3GaOHiZT/nWHzePrrz2APZHp7Lbrcw88e92E31MQxsv07scA6IrNCtm2BS2wFEUhEigR1sY7QVTH1wMklTXZ71M3cMKXb/Ube0tTzOEJVoDYI1aAjNADJG36z1GKuAhuSkT43usO5AFreeh4C31SASKUHBWL/9V/wU8jXwZgjT0TVdV8y5WTljsbMTOaJt7jKx/TTbzIZsM9PXoDCRbd7gb8cL+BlrporgE6oOqyAThWbDwLwOEssHJjYXeeABLMUlcgIICUNtGoIa7zjD3HufPkn0v6XsIUZPsz8INjOWnHLwD4lXEyB6R/wH0Npxb0ssHK9WFxRVsdg939uXEw+Bu08xLSLv3VQ/7trd0p3+1ABJDRsd2q6FAFiBH8W4fPD453eway/vXGVos73o3UM3A7zaTigarg27/EKV+9bcgaXBAK4aIf3cefHtrIO371YOh4k9UFQDbe7q9vvaSIsfYAEYqDCCCCUE62PRm6u9aeQQ/1oYaYpSCmq74A8n//CseQCkxWNnflMgd7Uwabu1Pcs3YXO3pT/sIsv6msMAxuVozi9QAZzgIrnZcFHeB/fnFP7k4BpcGKovDV1+zPX9951JCmcCG0KKemv0Tvwlc69xOtE35PQRgvnf3PAbCu+bCQyJGMhsea1bOb/duJ6PjGIdXtL6GOsQfIs1t7yZo2m7oGsbxKLrHAGhZFAdP921h5PUA8y5+QBVbIHiZXAVLsDYfT95vBX62jeX3mI/yu/T0ANCkigAil50DjEd6i38ASdRMAD1jLaEpE/H4f05vi3PuRk7jxsmOL9p6m4swVLCMsgPSkcpvuvgAyTBVUazLqWzABKEXelJrMeBUgtu0JIMEm6AEBaiBPAAnMvxUlJ4BoJa4AaUpE2Gh3OndeuAnyvjOCUBA7nw/dfcmeQTf1Q3q5FR230jeimOzqzzkd3Llmp387ldeH57/P7eC6xzezsy/NMV/8D4+sc88VAWRUvAoQyxjeAiuf4GMNcd1PrLTLVG1oo/L3ld+CZWc48dgaL2zv44mN3WV5f2FqsLPPGXvye+w2ugKIkWjzHQ48UTCY1HfxoXMBOEKanZcMEUAEoYzc93JuMBywYzxoLQNKX+7mCCDOAu3pjTtDjwUrQLrystPAUae396bRFWeikrZlUjgavgWWa7dj5Qkglr33CpCBQceeImNrI9duF5GIprKTJrYe8iHngDn0eyAIpSKZ7QJgINYeytzK92e+7JSlHL24nZ+86eARM7xGwiuxH60HyGDG5L2/e4T//XtOKPZ7gEgFyLAowQoQyxk7+l2Bt6XOWdgGhfZgdrRh2jkBpAS+968/YgF3Wvtx2JFOlWULfQxmJNtPKCG2zXk9vwFgk93G75d9g6uNi1k1uyl02vSmuG+JVQw8AQQjw/0v7ea/zzq9lUIVIO4GfFfeRryiQFMy4mfkWraCqsl4N1a8OZ/iCsD9Qcu/wBx790BYaEjnNQX2BZAS9185Z/9Z/NzwsvFtxxNfEIpGbt2StiPc51ZiRkqd2azlmqDv7Mv91nb3Z3xLrKAY4vHu3z7Cb+97maxp52wARQAZFU/49ZKEYBQBJNCYXlMV3wLLv3YVkWOXOpUebzlqfuj4VQ+ocNbXAUcoA9vfsBaEUtJkOUKbkegI9biE8D7gyllN3P+xk/jVWw8ta3xTCRndBaGM/OXB9RwWgXvMfXlL9oOkcLLy1VILIBENw/25By0OILwxFSzPn84uPh35BXu2vo2eluOJus87dGFnSWOdDHiTQr8CxN57E/SgAGJZNlFXbFL1idtfjQev78J7/vAU/wawRAARykfScHxR05GWUIZgMm+CeNTido4aY9PzfBRtbALIvWt3ce1jm0PHLLcppq1IzshIeAIIrl2Yl3XekoyyftdASAQOVrwZlu2Pk6XYcPj02Su48rTl1PesBaQHiFBaLMvmVz//Lm/KOBvKt5gHctVT08hgsbCjfpRnF4Yn8g4MDvK6HzhVpP+94njuXbvLP6cnZdA9mOUfj4fHOF1VaIjr/uZfFs2vVhFGJ9cDxK0ACYxxqayFZdmoqsJd7ubr9MY4W3tSIQEklbXQY+WpAGlJRthDI89bs1iqboKUZEALRcRdQzxmLeS1mY8ziGP1F+zxVhLUXA+QoAUWwK7+DLOaEzy/rXe4Z3L3i85vU1Oc36BSYhFyMuA3QQ/0Ucnm9X8LErTAMkybiLvWNUqwHfn91x/IU5t7OHBuC68/fB7/fnIrX7rhOVCca6V3ddOw2CUCiFAGmi1nrWsk2qgzwt/5WCQ8NnY2FM8eVRjKhK9Et99+O2eddRYzZ85EURT+9re/hR5/85vfjKIoof9OO+20QuMVhJrGy3boos4XP6A8FSAZXwAJZ7/6FSCWyWu3fYU/RD/DH6Kf4d74e3iF9iDnPXOZszBzn9fZXNpF/GTAylsM5zdBt6y8JujB2xnD/4y0SHnKgr1N590pN06pABHKSNLoAiAdbQ01O6+LFW9RpIyxAqR3GC9g0/09SAXIyPhN0C3Dbx4PMDueRsEK2QAGq98MK1cBUooNB0VRnEqipGPr16QM0Dsoi12hNDy/vRdr7W3+/XX2dP+30JQoraWUl0X74tY9/rETvnwr972027/fnzG47vHNIW92FYvztLvofOGPtCo9ABhoJbdmnUzYrsWi7VeA5M2z3e/Axj2Ozezxy5zs5ExeBYiXoKRFSvtd0TWV+phOL0k3wJ6Svp8wxXCrZrvtOl/8AMpggeUJIGbI0hlgZ69z3Y/0beaHkdxa9w/Rz/C9yNfYudWxK/QrQEpQkTrZ8CrfrMCacW8VIE9s7AKcPiz9gbVutgQCSDKqc8j8VjRVYVFHPW89egHgVERe9ONcbwYdk139YgEolJ5m20k0sBLtNCXD40up54dCmAmPOP39/axevZpLLrmE888/f9hzTjvtNH72s5/592Ox8mQzC0K1MtLFvuQVILqKYWvgegzHdJVz9p/JHx/c6C/M+tfey2mpfw+RRWPWIKmsGZgUlmdTvpax/IbLrgCSNx80LCuvEXDYosL7nihl+lt7Ao3h9TiwTSdoVTLehRJjZIhajuWbEW0iFsn9LupGa3g5DhTXzmW0JugDwwggvgWW9AAZEa8HiG0aflO/P0Y/w6EbnuX0yKFstn7gnxvsf2SYlt84WCnlhkO82b/58HMvwcnLRz5XECbIQMZExRljdthN/N48wX/M64dTKiw3+3lNQADJpz9tsK07xVnq3fyP/g/W2508bi3iQ+rv4Ra4Ul8FeAJIScOdVORbYA3kVZkNZAwimsJAxuTN2r+58plreX9M4XsD3yI46fZ6sJSj/0pTIkJvvyuApEQAEYqI6Wwo5691o6WuAAlYYP3ynvWhh7yq1CVbruME7aEhT70zvR9rONlf60oPpNExPQusMQogn/rH0xy9pIMZTXFsOyf4mkrpq23iEY32+hg7+9I8vHkAT5eLYkgTdKFk9KSyNMYjYNs02H0AWIkWltc3hM4TAaS8TPhKdPrpp3PVVVdx3nnnjXhOLBZj+vTp/n8tLS0TfTtBmBRMq3cmC1lG9v4rBdFAE/R2pZuPaL9ijvEyjfSRSadgx/N0P/I3AJ605vPOzHv5g3F87vlda/xmZZIVMzr5i+F8CyxzSAVIoA9LQAApl9jk+fWHFitigyUUmVTW5Nbntoes9oKZp2asPlQBUswJoV8Bwt4rQPqHsUcyXQssSzyhRyQngJj+53uo+iwAZ2j3h8bA4GLTMG1s9+8bjZZwvNN0zIiz4Fi3cZN4PgslIZ21/Ov3L4xTGQhkP2f2sjFUDLzxKb/KF+C0FdMBV3zs3863ot9mX3U9p2sP8KHI7/3zVqjrAGcuIBUgYyffAit/Q20wa9KXNmilh0/ovyJpdDFd2cN5W78ZfBV0xf2OlGGe3ZiI0EsCgHU3fgc7P1NHECbInc9tAQJJVS4lt8DSchZY+QwMpmHH87T1vwDAteYRvDPzXp6tc3z2j1MfYxq70V0BO1LiKqzJgO2udb05HOzdAgtg/a5+f3z0PqcF08qzP9he78wxg3swOobYogol4/zv3u3cMFL+992KNnLQ3FaS0dz3sLGI/eCE0Snpav7WW2+ls7OTlpYWTjzxRK666ira2kbuaJ9Op0mnc4vSnh7JSBEmF41RIA1GXiNxvcSZ9jFd8ze3P67/mrnKDnj2n7wnDtzr/DfTPfdRdQX/sg5nk93Oa/RbATj/7vNyo4VsAo6K7Qsg7sZpZpALtf/SRD+3W6swrea8HiDu5NFIM/dv53Jd7GHnfpnEpoyR8/32MbNQph4kwtTgSzc8x0/ufInjl3Xw87e4zd1c7/E+O46m6SEBpDlZRAHE7wESXhh73uwewzXINrzFnVhgjYjnBY1lsKMvTYywpYBngWWYVsj33rAsP3swVkoBBNDqWqGrlxZ62dOfob1exjehuKQN089qzd/8m9WcLOl7W64FVjQg8ipYfGB/m8P4N7o6yOI9HRyYfXjE12gPWGDVF9GCcLLj932zDQzT8q2uPFJZC9s22F9dg6bkNgj3T93PVyPf5Vz1Lrqoyz2hDPPspoROt+285/zBp1j/nx8x7+T/V/L3FSY/tzy9iaM1Z02xsKOOtTv6gXIIIM4cQlNsjlSf5B3aP9lHXc80pQvrrzrYBqvcU2+3VvEv63AubOhjef/9nKo9xInqIzzgNmxfOK25tLFOAoZYYPVs5vzMtaS0NHdbK3jKXjDkOX1pr0rY5oLInQDE4+Xpd9DREOPZrb3YqJi2gqY4Te+HS3wShGKwZnsftm2juFWWlq2gxOppSkY4enE7Nz69DXASEoTyUbIZ1mmnncb555/PggULePHFF/noRz/K6aefzj333IOmDb+JcPXVV/PpT3+6VCEJQsXxNsTzK0DikdJurDUmdP8956o7hj2ny65ju93MmiVvhKdMeoKLsSBigTUqXlmw6mYDJp65hi9GfgTAJfa/eaf585BHtFeBweZHaNoZ2JxINJclXm9DMlQBYoonqlBc/vzwRgBufS4wBrkCSC9JVEUhpufGwuZk8cYaxf1Nalhg26AoXPPQRj517VP88I0HceQip7n68BUgpWvSPVnwKkAsy2RbT4oGwhuAhpsVOJAN/30Ny/YtsEpaAQKQaIGu9TQp/fSkxPJAKD5pw0JXhiYUfOLMfTlt5fSSvrftJkwklBQf0n9Hp7KHA5UXWPCss8A+JApsHdtrGWi0igAyZrwG9Ipl8MiGLjKGxdxID3NjvTzd10Aqa5LKmnQqXQDsbD2I9t2ODc/5mrMJ2Epf7gXLcK3Z3Z/hd+ZJnK/dSVJJ0/TitSACiFAEVCsLmrOm2GdGoy+AlLwHSOB389PIl4grucoEL/mlX21gk9HIbaYjhVjJXGKurlgcoT0NQH1CmhCPhqXmrE8BuOFjfMD6C0Rgj13PoenvDrFBG8iY9Pb384/ox1jMBudgXWdZ4g0mvWTR0cgSxRg28UkQikX3YJZm1+2gjwSa+7t59UGzueOFncxtTbK4U/rrlpOSzbBe+9rX+rf3228/Vq1axaJFi7j11ls56aSThn3ORz7yES6//HL/fk9PD3PmzClViIJQdhRr+B4g8UhpJ4Ud9bEh7/nM3Iv43ppWGuob+EvPUr9R3Vua5wDreMmezp/No5kb7ecQ85HcE8UCa1S8ChDchsuZXev8x2You5mReoF6S+F4dStpIjye3gcsE/71wfALnfVNyoFnzWEGXREtmRAKxUUbzlLFnRT22El0VWHPQE54aylBBQgAvVugcSZX/OkxAC7+0X088LGT6WiIDdsDxDRFABkNb+ywzSzbetM0Kv2hxy1X/O/P+/sapu0vnmPREldkJBybhWnKHt8PXBCKSdqwhu315jVgLSW2WwFylnoPC9RtQx7faLczW9np33935j18O/otALYp7UxTun3rS8PWSr9ZOYnIWWCZ3PnCTuYq27hFu5KIkaU7lmRdz4FkEx204wj+/Q3zUXY9T5vSO/wLlmGe/fy2PmA+78m+m59Ev4Ix0MWZ37qD45Z28MFXSI8kYeIkNSfhoSGZ4A2Hz+OfjzuWWFGtxLZ6gQQ9T/z4ZeQC+gdTLFl9FCef/Xre+ZtnuO35XBLOwIJTeXzNNaxU1qEGqrPQZL43Gr4FlpmlezCLuflFWt3HWpQ+Dlafo9dO0K70sMtu5Al7If2pLPNufCdtrt0i9dPhmA+UJd6grW4WnThZdMXMJSEKQglIG5af7NdD0m+veuqK6Tzz2dMqGNnUpWyj+8KFC2lvb2fNmjUjCiCxWEwapQuTGtXd6Mm3RkiUuAKkoyE25D03LXwN1z4/gN6nYJCb9DX4PoQKH8i+E7Lws8j/cYLmbBbSJKLkaHhe3Kq7mZDuCzcl/W7/B6AfcOfq3XYS83sL0HY8BcCHs29D2/9iPjdjFeUgZ8+vkLE1ooopFSBC0QlaTd363HaOX9bpN1/tJYmmKtz9Ym6Dbum0hiGvMeH3Dm4oXf8heM2vQo9/7p9P8/XXHjCkeS2A5Y7biioWWCNhKu6M3rboTWVpZCD0eCTjfM7eQlPHoIl+DKvesduj9BZYXkXdFyI/5u+Dl+/9XEGYAOmsSaNvgeXMA0rd483Dcsc4T/y4w1zJddYRHHj6W1g8Zwav+t49nNvwHIcnNvCN7QdgBBIeXlZnM62pEXavdWOXsW48eBUgWCZ7BjKcqj5IBGdca1IG0O76GjtmncK+qtOYOZvoYKfd5Asgz1hz2Ud9OfeCZWjAPLMpzubuFIM46+6enh6eHOzhyU09IoAIBaFYWVDhyCXT2dOas/4rVw8Qjx12I39reQsP93Zxaf0i6jdlhvT/qu+cz9mZz9FIPzfHPuhXadE4u7SxTgIsV/gdTKU58LM3cYO+g1bVqf5oUfr4XfRzofMftxbQeX+Ctj6nyubXjW/j9Zd9GcrUbypoM+Rd4yIYQyqTBaGYbNwzyLSs63ZgJ9DKNCcURqZs6T0bN25k165dzJgxo1xvKQhVh2I7m8pDK0BKu9hsSUbJ5PcdaegAHAuSII1xnY+fsU/o2NuzH+BNmQ/x9wN+BEtFrR4NvweIWwFi9DsCSEoZvqS6SRnwxY//tr+O35sn0tnSWIZIHfaZkXsv/7tpSoa0UFyCG4Fv/tkDzg23AqTXThDVVa44dRkA7zh2YVHHRSVovdm1fsjjf3t0MwCzuh7in9GP8I3It1HdZpiW1wNEMgJHJNcDJEs6aw2pAKkfdP6+AxkDFYt/RT/CQ/H/4byBP/kCU2NdorRBti3xb/YNDO7lREGYGGnDQidsgVXq+Z2PGhYQ/24dxR/ME6hvbGVOi7MJeW3fMn4dOZ8ttNFFTmDeo7bCslf691OI1el4yM35DPYMZJmvOF5jKVdcWLnxd5x83yW8UrsfgL621ey0m/znv2znWcCUuC8gwLcuPtCJ0XY+a9XMbQxnTWmILkwM27bR3Co4VY+G+rpFSm6BpeXmIsAeu4E21/bo+7e9yGt/eC9PbQ73l/Uq3Xqo45T0F/nFnKvgTf+A/S4obayTANsVal/e2YNp2TS5875brdXDnr9KfYnprvjxG+Mkbm+/qGziBwytAAGIYA5b+S0IxeJV37sbK5jsV8bvvDA8E74S9fX18eijj/Loo48C8NJLL/Hoo4/y8ssv09fXxwc/+EHuvfde1q1bxy233MI555zD4sWLecUrXlGs2AWh5lB9C6z8HiClboKuhkQXA41EU/uw59bHdN52zELuuPKEwPk6t1mrOez4s8uyMKt1LCXnB41ts2Tb9QDcNfdSblaP4j5rOTeZB/H2jt/ycesduefZCpdsPB2A2S0l3gwMcPX5+3H26pmcvM+0XOanWGAJRSY/6+XPD23EHuwCnEmhrqpcctQC/vXeY7jyFcuK+t5K0L7KtUlYFqgwWdhRB4/9nvdvuowV6nrO0e7mEOU5INfgURELrBHxeoDYlkXGtIb0AGkedESngf5efhT5CkvVTQCsTj/k90yoT5S4Avj4j5BSnY3gc257JQzsLu37CVOOVNbMWWC5SSelnt952Hnj03prGgCzWhK018dIRDQsG57c5CzEs+istZy+JA9FD4HjP8yvzZO5w1zJt4zzyhLzZMFWvSboJl0DGVrcyo5/1Z3HfdZy1lgz/XP3KM10zzyaneQEkD12PTeaBwGwddYpZYn5oHktHLOknbQrdiWUnACSb1UoCGMla9pEXBFY0SMhKz3bHulZxcNQcuPgDruZGU3DJ55dedoybrrs2FBVSjf1PN96PCw4Vta6Y8Ab9zKZNFGydChOlvu3jXP5s3k091nLudk8gI/P/jl3zn936LmfNN4ccJwoD2EBxIldx/T7YApCqTAHugDH7lmVCpCKM+HV/IMPPsgJJ+Q2SL3eHW9605v43ve+x+OPP84vfvELurq6mDlzJqeeeiqf/exnxeJKmNIobhM2ww4LILESZwhGdDVkaXCHfjhL2oavMKiPO8NCfV4DzM+es4LpI0wkhTw0bzFs8OANv+Fg97DdvpTP7z7Bbwh4dutM/r3nVH7TdyznqnfxiL0Y29WlD5jbXLZw95/TzDcvOoCf3vkS2bVeBYhYYAnFJV8A+cCfHmPVAZtZgjMpbNRVVFVh35nFr35StaECSHBjchnr4a/vDT1npfoS95n7BCywRAAZiVwFiEHGGFoBEs90AdDw/F84XMv1lJrJLna7mehKqX3vVZU19Qezsud26tPb4Lnr4YDXlfY9hSmF0wPEs8AqbwXIpqYDSG2OEFeybLQ7eMqeD8Cs5gSqqnDQvBbuXJOzGOxsiHFe72eYo2xHaz8AYg18UXsHPSmjbLZdkwU7kPSyqy/jW1ttjS/g8l1nA7BY2cjx6mPsnnYU50eToQqQ2a11vH/7a7jZOpDzDn0r08sU9/+etYJ3fO1xAOLk5ny9KYPmpFQBCeMna+aq4LS8ChCb0isgJjq43+W7rRXMDVhwBXn1gbPpbIzzyMthi2JvDSyMjtd3KpvNcpr6gH98s93mWGi7nB6fzrPzVvP6Z4/gLPUenrHnYqLRmCjv33pWcy6xMGvroDgWWBkRQIQSYw52E8FJ9ouW2gpQGJUJjzzHH3889l6k/BtuuGGiLy0IkxbN7QmRb4FV6nK4qKaGqk7+EHs132lKENEUsma+BZYzoUlEw4v2uphMCsdKcDH80J3/4mAdHrYWYy44nuS6tf55iYhGW12MnX0Z/mod4x8/cG4zCzvqyx020UCl0HdueQZ7epR3n7hklGcJwtgYbpzr2rMLcCaF7SVskBkSQNxm2INZkzPUezldu5/je58Y8pxmpQ/Ab9KtiAXWiPgVIKazmOzI7wFiOoJIb1/4+AxlFz22u0FRBt/7G+e8j5VP3e7c6d4A2RRERNgXikPasNCVcKXv9MbyfL82tx7G6vSPiGCwdPY0LpzbhqYqdDQ4iWfBzR9wKkMe6a2n267nYHdB/t3XHcRV/3yaz5+/X1linjS4mdC6neE1u7/H4eozAGSizf4pa+zZrDFnc0S8DV1TQgLIgzMvZud2hT+aJ3Bh07Syhb24s57jV86FFyBOzva0PyMVIMLEyJqWXwWn6lE0rbwVIKai4+ksD1jLeHtb3ZBzdFWhpc4R+PL7kgSrBIS941WAGNkMS9SNALxgzWKQ8DVPUxV3D0HhH9aR/vFyV4ActqCVVx80m2se2hjoAWKSNqQHiFBazAGvB0jS32cTKoes5gWhjGh2FpShFlilLr/UNYXNtmN5tdVuYYM+H01VaElG2d4bbgjnZcvEdBVNVTDdHiH5FSHCyFhuVkw028v/0/8JwB/MEzg/GScZyf0dE1GNhR11PLfNyRZMRDQGsyaXHreo/EHjCiC2Bgrc/MRGHnk8wbkHzGJ2y/AZVIIwHoYr+62znO9+j11X0gaZmqay0W5ntrITehz7pXQmw1cj3yOm5DZ+srZGD0nalF6acQSQ5rTTvyIdaS5ZfLWOpajOpoNlkjaHVoBEDOf+nsHwxlpMMWjF+Q5Qhibz6bpZfMM4j/fpf4Vbr3b+u+wpaJKGp0LhpI2cBdY7jl/G1ueb+PIFw/uhF5uIppImSpoomq7zqbNXhB4PZtueuWoG3YO5cU93xeejl7Tz7/cfW5Z4JxOe/dhhPTeyWnnSP769bhnki8G6SkRT2BXowRKrbwG6gKHJRyVHczYrY0oWBQsblb6UCCDCxMiYFlG8pJEISpn97vdEOqlP97DLbuAJFg2xwDpl32mcd8Asf76p5yXeqOLPP3bccW+BsZZT9IcA+K154pDTdFUZdn7fWOZqG1VV+PIFq1k+vYHsTc57R5WsVIAIRSO/OKCDPTQqA3Tt3k4d0EOSuliZr/HCEKQGRxDKSNxOATDgZkd84JSlHLOknWOXDt+Po1hENJWvGa/ibZkPcGr6/8C1Ghku08XrPaEoCsmAdYMIIGPHy4rpGHzRP/Yf8wAaE5HQ4jYR1VgUqPT4zxXH8ft3HM6pK8plgBAmpqv+d9Pzg163c2BvTxGEMRPUP96h/YN18YvZd7sjEG6xW0srgCgKfzfdzLPNj4CZJZLpCYkfAMemv863jXMBaHErQOakngdge5NkRY9ErgeIUwEyT9kOgKE4WZZRsx8G93D6y18GYHtisf/cTlwLijJYjMUiGs9Y88IHn7u+5O8rTA3S2ZwF1kELO/n7u49mfvvQDORSkAjM1/Rh/OuDfa2/fMHqkDVN2Rq1T1bcsWul8VTu2IfWY8bbhpwa1RR0VSVl5yyhEw2582J6eT8LW89tEHs2WL3SA0SYIFnTJqk4a10lFq5kt6zSl4D8aPbVvDvzHk5Ofwk1kqAhb5P9rUcv4JX7zfDv54+V0hB7HLjj3inaQ/6hm6yDhpymayrWMOU/I9mTlZq6mE4Pznu/VvsPtpGqSBzC5MMMjHExMtwQ+xC3xD7IrBd+DcAutR1dLLAqjnwCglAmbNsmaTuNYfttR2R4z0lL+NVbDyv5gieqqQwS52brIHqo9/2dm5NhAeTkfaaFBubgZn2jlAWPmfxmpM9bs9hBsyOABDYakhGNtx+7kBOXd/KJM/dlRlOCwxcOXTCXC0cAcRbl9W4T45/e9VLF4hEmF4ZpU88AR6hP8dHI70KPbbbbhmTiFZOIpjJN6codyPRTb+S8nz9nvZnbL17DFtrY5VqTHKE+xXnqHTTZTulytnFOyeKrdSxyTYDThsUKxRk3NrUcAkDUHMC6/8f++ZG2uaxzmzRH3SbolLoHCE7flxusg/n2/G9DotU5uGddyd9XmBqkjZz/fTks3YIEexoNN5bu7k8HztVCzYmDYogwARRn/NMUZ/Pj2y0fgkRz6DPx0FUVXVNIk/t+NDXWBx4vbwa6rScwbCfOWYrTI0aaoAsTJWtY1ONuKEfDAkgZHLDoi3VynXUEe2gkEdWGJO8l8yqsInlj5arZzaUOcfKQt9b9rXEiG+3OIafpqjJE/PrMOSs4aZ/y2f0FiUdUGnGqks/Q7udi5cbQxrUgTBQzIPRNV3bT6ibSeXRHOsodkjAMMuMVhDJhWDZ1blZMH+X1HM/PrPasaIIVIJ85ZwXfvviA0HnB6cDcNrFBGiteDxCPO6xVgFPum8yrAGlKRPjpmw/hrUcvKGuMwxHVVQbcrMTL9WsAm/88u50deTZpgjARspbFFyI/4nfRzw157Fl7Tkkbw3U0xGgiYMtkpDjCfBBwPIt/arzCtyLc0HwIaVunTenla9HvAZCxNY5cubRk8dU6luJ8dk4FiEmj4lSO9STnAhAz+0jv3uCfX9//MrvIa3ZfhgqQuK5ho/JsdAUc8lbnoCHjm1AcghZYaOVtIh2s4hiumu6IRU5yRYO7IRhMvJEKkMLIT3ox2vcFhv+7OhZYKrdb+7HZbuVWczWtdTFfhJrRXN71gabr6Ipz7bs5diWLlY1igSVMiFTW5KSv3kadm0BFrCH0eDl6gETUoLCrDelfmcj7TQaT/g5d0MpJ+wzdwBdGIG/cu9k6EIBz958ZOq6pCos7c2LYde85mjce4VhxV4JERGOakkuAWqhsERssoShY7tfoYu0WbotdPuTx9fHlZY5IGA4RQAShTGRNy8+qnz2tgx+/8eCyvXd+houXYRZcJJ+5auaQxVp7vbMZrihI06ZxkL8Y3mE30ZyMUBfVQ1mX1bbpENU09lXXA7Bc3cByxdmwvPaxzZUMS5gkZLMWZ2r3hY79fdV3OSX2W3qoL6kF1rTGOD8xT/fvG1ue4Art9wA8bi/AtGw/6zXSNI3/a/xo6Pk7aGX5jLwNe8HHs8DCssgYFkkcUWF3gzPZnzv4LJn+7tz5c45gl50vgJR+PIy5GdnXPb6Frox7XTQzJX9fYWqQNqycrZ5eOQFkuCqCVx04m2+8dn+uf/8xACHBOV5m26XJhmaFRdS6mc64FxtOANEUdFVhkDjHpr/Om7NXUhfVeOSTp/DEp04tuwVWfrXQzbEr6ZMKEGECrN3RjxlI9htaAVJ6BSS4xkpENWJuz53gsSCRwFj5hsPnlb1nSU2TV7V79P778uHTl/PJs8L9p3RV4eD5rXz9Nfvz93cdxcpZTeWMcgixiObvxwC0KT0igAhFwasA+XzkJ6Hjr0l/gpWpH2MkpAKkGhABRBDKhLnpURapWwD45KsO5+R9y1f6GcmzN/CyLo5Z4gzEEU2htW7oYv3/XrUfbzlqPr9562GlD3ISYanhv+Wd1kr+8e6jUVUlZDURrTLbiVhEDZVrvlX7FwCf/9czlQpJmEQoZniT6DFrIf/J7Eu35QitpRRA2uuj3Gfv699X//kBNMVmt13PVdnXA/D+PzwKONlhH7/scs5Vv+mf36s3y8J4L1jedNIyMIwsCcURFbZ2HEna1mkw96DvehaAbUoHnPwpdg4RQEpfAdJRn/Pdf36n+300syOcLQjjI501afSaXseby/reiVEqQHRN5Zz9ZzG7xanmrQ944w9n1SSMnYauZ0P3l81yqm3ys83BEZ68z8dABxQSUY1kVKehAolGEVXlS9kLQ8f6UjImCuNnIGPwau02VqtrnQNuBcjrD59La12U1x8+by/PLg6hPosRDUVRQr/D/N9kcB22anZlN+ZrDTuw1t1hNzJ9yUFcetyiEatszj1gFqvnNJczxGFJRDQ+ZrzVv9+m9JA2zApGJEwWTHOoyPtd42zus/ehj2Ro3iVUDvkUBKFMxG7OZRRryfJOsvKtZTwB5LWHzMGwrBH7Tqya3Sx+qBNge3Ip/zYPYUV8Bz8fOJrt9fswx232Fpxsl9vreTSimkra1okpTvbfUcmXocdp6mVZtm+dJggTQQlkyZ6Q/gob7A6MR3PVRfmVasVE11TqYzob7XZmKztRu51Kp2vM49iTZ8UU01VUVWFnbA7r+qcxX93GS3UHIoXLI2O6HvjYJqqRy6wzok28YM9mpbKOuj3OJuGv697I5Q1t7FHyroNl6JlwwvJOWuui7O7PsGPAXaiYYoElFIdsNkuD4n7/4+Wd54UqQMYwlp6z/0x+cudLQ54rjJ+1B3yIFXe+B4AvZl/DZa7d2HDCUkRTh3w+ddHKLcd1TeHr5rncaB3MTbErARgcHBzlWYIwlP60wUf13+QOxJ251VXn7senz15ZFsuj+DBiR9DmKpn3W2tORnnzkfOJRzTmtdWVPL7JxEsdJxBfdxM6Fl82LuBtCWedm58rVG1r3XhE40/m8QzaMb4d/RbTld2+Ba4gFIJp22jkxLSj019no52r+sjvSSRUBvkUBKEc9GwhusmxfnnUWsj+reXt95A/+dBcj1RVVXjjEfPLGsuUQI9wafYyDp/Tyr1rdzNLG77qo1L+pyORjGq8LXsFv4p+AYBOcytOJxiFlGEOWTgIwnhQzTRoYNkKL9nTgfD3v5QVIADNyQjpvkjobX+tnk1bXZRd/TkbJM+2RFMVzs18hjO1e2mYfyGn57+g4BOsADk8dZd/XNHjbLNbWMk6/5ipJ1EUhX+ah3Gy8iANygC9DUtY1l76HisRTeWyU5byib896Vtg3fjEBur238lRi9tL/v7C5GZF3725O7HyWuYlosHkitHH0uBCfDirJmHs7Jn3Subf7IgeuqpwpXstG05Y0jVlyOeT35i5nHjX3bX2DP+Ykeob6XRBGBGra5NfRf5b4wQunrbSf6xc651g9UHc/V2pgR352DCV9586e8WQY8Lo9DUs4ILMp/z77xnm7w3Vt9b1viP3WU5a0wx28Vz/ALRKr1OhMEzLJkqugtKx+s19/+tjYidfDUjNsyCUgdSWp/3br8l8suzvr6lKKCOj2rIxJhve3zqVdTJKgqJH0N95LJsU5WRGc4I7rFUsSf0S01bQzRTt9AAwmJHyYKEwVLfXQpoI+eIHDLXqKzZNiQhpciX7PXaSgUgrf33nUaHzvAWypih00cCvzVNo75yBMDKm4mymxvc8z4cz3/KPa5pCL4nQuXbEWWQ+bc3jFZkvcmT62/xmyVdBK4/A6i1+By1X6LKyvOXnD5TlvYVJTO9Wruz6dO5+lfUAySdoxTDcpqAwdoJTub3Z7YAzB8yvDMnvS1BOvO+KiUbadjZnzLQIIML4sXudit4NVgcfNd4+tBSgDCRDFljuXC7wc5NK9uIRyVvDepVs+YKHXuLkpvHijcs7aCZFFE2x6dr6UoWjEiYDlm0TCwggGcKCR4NYYFUF1TUiCcIkZdtWZ1J4n7U8tAFXLhRFCWVXiwBSWjR30v/ohi4gbO1TzRUgXkZoFp3dri3QLN1pXDyYFQFEmDiWZROxHauhNMNnwORb9RWbpkSEuco2//415rHEozpz25JMb4z7x73NqWBJ/FzJDNsrA4rz9+l44Y+h47qq0meHBRBTH2ozkc6Wz37AF0BM5/8RDGmAKRTObf/n3+xt37/sb9+czM0tx2KB1SCZiEVDC2aYB0SPpuTQv3F9TBtSGVLJ6trg5mRaca6DVrq/UuEINcy/7n0cgF2Ut/otyHACpCb920pC/nUmGfMqQPLOq7K17ty2JO8/eQlfevVqenSn8rd7+4YKRyVMBgwrJ4BkbQ2T/Gu9VNtWAyKACEIZGOjaDsAeu6FiMdQFBl3xey4ts1rCG35B8Sm4yVttAgjAJ8/cl0MXtBJtmg7ArIhTAZISAUQogKxl+ZPCkQSQUmfG1Md0IgFv1s8Zr6N70ImpKZGLyavS2tSV80E/ZH5LSWOrdTwBJMiWM39FXUynl7zHoo4AcuSiXO+pujL64npWQQOuABJTskMW7IIwbrY9BcCL1gy2nvmrsr99W11OABlLwkKwCmGfGZWbm04GgnO54N+1vS425NxEVB9i91jJuWAwQSejuYkAGRFAhPGxflc/2uAuAHbajSzsqEw/jXiwAsSzZJILfEnIr+zwNneVKrfAAnj/yUu54OA5ZBNOf4buDU9VOCJhMmBZNjHFFUDUoQnP1SYGTlVEABGEMpDtcyaFe+z6isXQEsgOHK4xo1A8TtlnWuh+cLEbi1R3Jc4lRy/gj//vCJo6ZgMwU3MrQDKSIS1MnKyZy4rxbDaC6KpSchuWqK5xSfYKLFT+0vp2TDTee+ISABoTe7eDCWZXC0MZyBM5Lsp8DGvxKTTEdXrzKkA8AeTz5+3nHzpjVfksxrwEgJ0ppwl6BGOIZ7UgjBd7wJnnfdy4hKbWzrK/fzCxpWcwu5czHRRF4bKTl3LRoXM5fmn5451MBDf8gp9Da331XzeCVqym7o7jGbHAEsZHKmvRhrNe2GU38Yu3HFqROJKRocl+QXFYKB6RvDVssJItKHpU41rXI9LszD1fu/XLsP7uCkcj1DpmoAIkmUgOSa7Sqsz6fKoin4IglIHsgDMp7MnPhC0jwVJ8qQApLfm2ByELrCqvAPFpXQjAUmUTIBZYQmFkDcvPihnOBrAhrg/JGis2UU3lLms/fnrsHfxWPw/IVWs1xodWgAhjZ0ANZ3v22Qmimkp9TGcHzaHHFFcAmd9ex70fOYlrLj2Cg+aVr8LGu/7tGMgJIIZlkzVF5BUmjj2wG3CaXg5nfVQOZjQ5Gfz7zhibBc37Tl7C1efvJxnSBTJSBchwG6+mVV3jTNDGJhtrdW7076pQNEKtoqkK7YpTMd45fRZzKmQb2hwYez0LrPedvIT2+igfOGVpRWKarIxUAQJhG6xq6wESJL3s7Nyd566vXCDCpMC0bWI4/S7R45ywLJxcUsU/hSmFfAyCUAZst6HggB0f5czSEa4AkQ2+UpK/gWpatn872AOkmrNimLEagMX2ekAEEKEwsubeLbDqy9AYLqo7v7dBO8bOfmeC2l7vWJQ0Bi2wpEJu3Awo4SqPAWJEdZX6uM71ZjgTVInmKiGnN8U5eH5rWWL08DZFvO9hFAMYW9a8IAyLZaGkXxsSEQABAABJREFUugDIxporJqL+6q2HcvX5+/GO4xZV5P2nKsEeA3E9nIF+zaVH8KdLj/CP5euslZ4HBhN0rKRjB6MObOe6xzdXKiShBrFsmzZXAOnTK2cZOr0pt872xuETl0/jwY+fwntOWlKpsCYl+cl9QbeDYEJTpce4vRFf/Wo+kn0rAH0bnqhwNEKtE6wAQY/xhVetCj0uySbVgazyBaEMqFnHT7efON+5+MCKxDCzOTgplJ9+Obnw4Dn+7eDGSFVXgDTOBKDV3gMgTYKFgsiYFnE3K2ZYAaQMDXm9xVnWtNjZ58TS5lqUhHuAyPg4XlJ5FSADdpyYrtIQ1+knLPwnkpWzgoScAJKxHdHNW6xs701XLCahxhnYhWI718j2jukVC2NxZwMXHTqX+jL21BEg6GqRL6AfPL+VQwIib9BuEcJNmytBcNOyrm0WAJ1KF9c9tqVSIQk1SNbMWWD1680Vi6OzITffsLH3cqZQKEH7PK8BukdQFK7mtW5bXdTvz9rX01XZYISax7Rs4kquAqSjIcZrAntA1SwGTiVklS8IZUA1BgA4efWCsnqdB3nVgbP923sGMhWJYSrxy0sOZV5bknedsIgLQgJIoAJEq+ILYb1TttlsdwGIPYxQEIZpU4fTVLwvvycEEC3Db8Gzn+tJGfSlnax/vwIkHuwBIhVy46U/rwn6ADGimkprMkpTMtwIuKOxcpWQkFuoe83ZGxTn+rw50PReEMbFk38GwLQVFk4rb0WTUHmCG3z5Dc49rj5/P05bMd2fiy/udITg45Z1lD7AvXDoglb2mdHI6Sun0zpjAQDv1K+lfus9FY1LqC2yZq4CpL+CFSBRXeUNh89jUUcdZ1ZovT1VCK5h66JhYTdkgVXFm76qqtDS3AyAbg5UNhih5jEtm3pSzp2YI6xpgd+J9BusDiRFSBBKSG8qy7f/u4YTB3oB0OINFYvlgLm5CWn3oFGxOKYKxy7t4LYPnjDkeNACq6qbYdU5Akij1Y2GKQKIUBBZ06JecTaYexkqgFx82NySxxBxf3trtjuWhFFN9YWPRqkAKYhBJVwBYmhxVFVBReGk5dPg6dxjHQ0xKolnB9ltOzE30Q/YbO5OVTAqoab594cA0BSbJdMqW+EklJ/gpoY2wgbHRYfO5aJDc9e5L5y/H7c9v4P/Ob6ydmWdDXGuf98xzp3ntvvH3z74E+DdlQlKqDkM02JWFVhgAXz23JUVff+pQtACKxENJw4Fx8Rq7gECMHtaB7wkAohQONt6UtS7yX6eABIUAKtZDJxKVPeIJAg1zqeufZof3LaWWZbjpRtJVMfCuEsqQCpGzfQASTgLGBUnc18ssIRCyJiWPykcrgKkHBZYXgXInWt2ArCgvc73KQ4KIF6PJLGRGTuDaq4CxLBVFD0ncgQ3hPvtGJ0VFkAirvDVjSOA6IrFQmUL3XJdFCZK/TQAbjVXM6t56PgmTG7UCdi9HDy/lQ+cuoxktIquM/OO9G8mLamIE8ZOxjDoUBwLrINXSLPxqUDQAqsuXwCpoU1fK+LMXyOGCCBCYTy9ucdP9ssJIMHE1+r+LUwVRAARhBLRnzb488MbaaSf2Yqz4Zaoa6poTG892ilvv/wUmZxWipheIxdCPQqakyldT4qsKV66wsTJmjYHqGsA6BumAqQ8TdDDU54jF7f5txvjQytAfvymg2mI63zlgtUlj63WCfYAyaKHBK0ZTXH+Zjoba980z6+KDPm2+hgpov79n0a+RE9KKiOFidETdWyMfm6eSjwqFnpTjeBcrqrndaMRb2L9q64DQPcauQrCGGhed4N/+8j9ZI05FQja/eULucFhsNrHRFt3k2FE9BUKZFPXIKvUtc4dTwDRgvMD2XqvBqoo7UQQJhc3P7MNgNnKDv/Y7FXHVygah4+fsQ+XnbJUMpsrSM1UgABE62FwN3VKSiywhILIZjOcoj0MQKebJRikHGNSJK/PSENA9Ag2pvWa2B6+sI3HPnlqKJNNGJ5gBYiKRV2gIWZnQ5zXZd/J14xXs1GZzkeqIOO5JRnhJRT67Rh1Spr56jaM3p2VDkuoMX51zzoWddYzbecuGlXotxPEpYfQlCNoe1Xr14tI1OnRFLFFABHGTqRvg387WAEqTF6Cc+q6/Cboob5IVT4mRh0BJGoOgm2D9GkQJsjmrkFepd3h3Nn9EpCfIFGJqIR85GMQhBKxyW2oWuc2Q9qgzKSuvnI9QAAURRHxo8JEA1e/ql8ox5xM7XoGRQARCiK67TH/9qwjXsWq2U28+qDZ/rFyjEvRvJlnsGS/OZGrBvAssKAGfqNVgq3mPj8TjfqAuNTZGMNCZb09nY+fsW8lwhtCa52zQXN8+qv+saU7bqxUOEINcveLO/nE35/iQz++lkXqFgAGiBOPyNJqqhHcL6v6xJZR0D0BBKmIE8aOku4H4N+JV1Y4EqFcBHt7JPISWxSlhrLeY44AomBDVqpAhImT6Ho+d2fFeUB4TlD1v4UpgnwKglAitvekAahTHAHE0JN7O12YIsQCm6tVv1COOoJdnZIiLT1AhALQutcD0K00ctBpl3Dtu4/mhGWd/uPlsMCK5FlgJQOiy7LpDZy1eian7DuNVbMra1VYiwRHMgOV+kA24Py2Ol9sOnBuZZujerTVOYLXDlp4BscaUs0MrUwShJF4fmsvAF+K/NA/1kd8SDNYYfITyvCs8ezhaMyxqIySxbLE+lQYG0q2D4CMKmvdqUJwDZvfAyRSQz1AlEjgO5vpr1wgQs3TbjjJMJYahYPeDOT3AKlEVEI+kgouCCViV7/TUNWrADEjlfc9FypPqAKk2hfKbgXImeo9bDXPr3AwQi0z9+nvAfB47CCOcSeDlp3bXCmPBdbIFSCaqvCtiw4oeQyTleD61kALfZ6aqnDblSfwwrY+Vs9pLn9ww9Ban6v4eSKyin2yLxE1ZOErjJ2BrAnA4eoz/rE9dr1YYE1BggJIrVcNRqJOdVyULBnTIq7K91kYHdUTQDQRQKYKe+sBEqykrvYeIJGIzoAdI6mkIdsPdFQ6JKFGaTUcK92eWcfS7F47g9bnVb/vM0UQHUoQSoThWgbVK045ZVYmhQJDGzFXNW4mTIvSJxZYwsTZcD+NPU4DdK9ZMEDK3UCE8gggiUh4Iyd/wSZMnKDdgYmGQniS314f44hFbflPqxheBQiA6jYqjJoDlQpHqEFSGWf8ut3cD4D/mPvTQ31o40eYGgQ3Nao923k0vAoQTbFJpzMVjkaoBboHs+zctQuAjFZX4WiEchGs3G4LJJVAnttBlfcAiWoq/bh9a6QCRCiANms3AEbddP9YuPdrDe0BTWLkUxCEEmFYNioW/xf5EQBpKQsWgFjgQmhUu73AEe8GIEGarFnlsQrVy64X/ZvpSLN/OxWwVStHhlj+xqT0Qyoe+RUgbz1mQeWCGQOdjXH/tp5sBCBuycJXGDsDrgASU5xm0X8yjwOGCq3C5Cd4/VJqPMNTj+YaWKcz4ocvjM5bfnofh/T9F5Bkv6nE9MA8Kp9EpHY2faO6yoDt/ltEABEKIGk7lXB2Imf3GxRAxAKrOpCPQRBKhGnZdNDl33++/pDKBSNUDUELrNa66F7OrAKiTiZXUkmTkR4gwkQJNMhGT/g304EKkHKQvzHZUhcZ4UxhvIQrQFRmNif2cnbl6WzIbfJFk07Pl5glFSDC2Bl0xy/P5nTQzSCNSRP0KUeNF32EUPTcpmYmlapgJEKt8MKGLf7tTcllFYxEKCdB4Xe/WeHeebVkgRXVVQb8CpC+ygYj1DRJ2xHQ7FijfyymBQUQmR9WA5L+KAglwrBs4opTPp62dR5qeSUXVjgmofKoqsK/338MGcOiKVHlG7BRJ5MrSVossISJE7QHCUwE57eV1yohEQ1PPNvqYiOcKYyXUBN0W2N6lYu7C9pz371Eo2PN1WD1VCocoQbxrokJ0gB0trXyhWP2EwusKYgaqgCpYCDFQNWxUFCxMTIigAijEydnlbYtsaSCkQjl5vr3HcMzW3o4Zkl76HjwOhipcgusiKYwgFSACIVTZzuJVIprrQtSAVKNiAAiCCXCtCxiONYIvSSxEQshwWH59MbRT6oGIs4mYYKUCCDCuFmzvZf1uwY4Id3vl5sGF0In7dPJZ85ZMSRzrFTkb0xKBUjxUPMqQKp9E3haY5yvXriaRzd0sWhuAh6HFrur0mEJNYTh2kIuUp3s59MOWMiJh86tZEhChdAC4191b/WNAUUhi06MLNm0CCDC6MTcZL8BO4auVfe1Xygu+8xoZJ8ZQ9e0iRqqANFUlX7fAksqgYWJU2cPOJOAeO43ERZARAGpBkQAEYQSYZi2nxWTorqzYQVhWAIWWNIDRBgPtm1z9rfvYiBj8s9DN7PCPb6l+UD/HEVReOMR88sWU74FVkyXhXqxCGY9W0pt/F3PP3A25x84m81rnwZgDttg5wvQLhmswugYls1qZY1/X0u27OVsYTJT7Rt84yVFjBhZzLTYwQijk/DXuhGi+uT6LQgTI1ZDPUB0NVgBImOeMHHqcCtA4rnEvkjQAqvmS0QnB9U9IglCDWPZtl8BkrYjKLWfFyZMNTwBhDQZqQARxkHGtPwmwXv27AbgGWsuxx17QsViSkRzG/OvPWROxeKYjIQqQJTayq3Rm6Zj2k789k9OATNb4YiEWiCe7eLvsU/69+2W+ZULRqgowT2NybC/0as49h1m/+4KRyLUAl6y3yCxqt/sFspDQyw3D6x2gVhTFfr9HiBigSVMkJ7NrFDWAaAmcgJIuAKkun8LUwW5SglCiQj1ACEqFlhC7ZFsw0KlQRmkbeClSkcj1BDBiqFUfy8Ad1krmdearFRIoQqQ9nrp/1FMgpt+tSaAxBINXJG9FABlcA9sfaLCEQm1wCFd1/u3v22cQzJaW997oXiELbBqf4OjT3X9y1N7KhuIUBP4bgd2NJTtLExdzlg1079d7aKwpigM2iKACIVh/+P9/m01aIGliQBSbchVShBKhGkFKkAQr3mhBkk0s63jCACW9j9U4WCEWiJr5CqGMgPdANjRulAT9HLTGM+Nw12Dmb2cKYwXRVG4wTwYgD9Ezq1sMOMkEdW4lmN52FrsHOjZVNmAhJqgJbvdv/1T4/QhFnvC1GGybWr0ewLIQFdF4xBqg4SSBpxkv2pveC2Uh0PmtzC/LUlLMsLMpkSlw9krmqbQ71lgZUUAESbI9qf9m2qi2b8tTdCrD0lXEoQSEeoBYkc5aZ9pFY5IEMZPV9sBzNhxF6/f8x24OQYn/2+lQxJqgGzAMs0e6AIV9HhD5QIC1MAm1ZyWylWiTEYU4J3Z9zHH2I7eWFs9NKK6yspZTaS3ur26jHRlAxJqgoTpCLufy17MbhpDFnvC1EKp9hTncTKgNUIWtMEdlQ5FqHJSWTPQ7zKCLgKIgJsUc9mxZAyr6q+Nuqow4DVB795Y2WCEmsUGv/5TS+QqQBrjue32RES23qsB0aEEoUSYls2h6rMALJ/Twan7igAi1B697fvn7tz51YrFIdQWXs+YGBnOUO8GIJps3NtTysJf3nkklx63qKzN16cCqgImGuvsGcT02ptanrVqRq5S05TqIGF0kkYPAF3UA1T9Jo9QHrKToF/a1tg8AJY/+RXY8XyFoxGqme7BLNMVp1dMvx0XCyzBJ6ZrNMSr3wHD6QHiCiBP/RUe/1NlAxJqk0DylJ7IJfwt7qznilOXctnJS9lnRmUTAQUHuUoJQomwzCxnavcA0NJQP+kyxISpQW/noaRtyVgQxofXA2SpksumakxGKxWOz4FzW/jw6ctls7LIBK9vtSiAHLGoLSeAGKnKBiPUBEnLEUD22M6CNikWWAIwkDErHULBPJM8NHdHEl+EvdDVn+a12q0A3GOtEAFEqDl0VeU/1gG5Ay/dWrFYhNrjLw9v5Mirb6EnOc8/pmu5+aCiKLz7xCW87+QlshdYJchVShBKxJcHPk6r0ufcOfx/KhuMIEwQLZbg9MwXnDvxpsoGI9QM2UAFiMcMra9S4QglJmiBH61BAWRWc4KM6wprZkQAEUYnag4C+JmjIqoKMDkEkK31y/lq9tXOnb5tlQ1GqGo6r3sj+6rrAbjbWiE9QISaQ1MV1toz+Vb0EudAVuaAwti5/I+Psbk7xZadewD4inHBpOsLNtmovVWqINQAX7vpeVaYjv3VYMsymHdUhSMShIkR1VRStpu5L5NCYYxk3Cbo18Q+4x/rX/iKSoUjlJzcZD+q195GcCKqkcYZ5zKZwQpHI1Q7pmWjmm7jX9upHKrFyieh+AxmjUqHUDBRTWWtPcO5Y2YrG4xQ1dRvewiAHXYTT9nz0VUZB4XawtusHrBizoGszAGF8XGM+jj72GsAWMfMCkcjjIZcpQShBHz7lmfRFWcDcO2ZfwKZEAo1SkRXA974abDtygYk1ATD+aDXz11dgUiEchCqAKlBC4yoppJ1xzkjLUKvsHf++sgmooqz0e1dH8XaQIDJUQES0zW/Ik56Igl7wzaczeJz0p8li05EhGChxtDdCeygm8xAdqCC0Qi1yK+iX/BvP6CsqmAkwliQq5QglIB4wPZFjcQrGIkgFEZECwggEGryJQgj4fUACTKzWcbCyUpw77cG9Q8URcFUnQoQQypAhFHY1pPy7f1C10dhyuJZ/x08r6XCkRROVFdzAojM+YSRsCyiOEJwyq2g1MX6Ragx/AoQ9zssfeCEQshExS682pHOtoJQAmLkSsa1qGz6CbVLRFP8hQ3gTAxF1BNGYbgKkI76WAUiEcqBGlBAatUCw9JiYEkPEGF0UlnT3/jLiAAiADdfdhw3Pr2Viw+bW+lQCiamq7nvtVhgCSMR2Cj21glSJC7UGrkKEM/uWSpAhLFhDzPgzW1NViASYTzU5ipVEKoY07J9ASRt62ha7fmhC4LHjKYEBhqm7UwQU4P9FY5IqAWGE0D0WiwNEMZEuAKkRjNANXcDJ9Vd4UCEamcgYwbmeSKACDC3LcnbjllIMlr7uYVRXSVrexZYUgEiDI8V6As4p6OF5mSEwxa2VjAiQRg/3py13/IssCQJRhgbhjVUAFnYUVeBSITxILsRglBkMoZFTMlZI0g5sFDLtNZFaa+P+w2C73l+c4UjEmqB4SywhMmLEqoAqc1rnqknAGh6+ZYKRyJUO6lMloji9HrISDG9MMmI6RpZ6QEijEI61QdA1tb4y7uP5aGPn8KijvoKRyUI48OrWh6w3AqQnc/xf9c/zZ5+GfuEvWO6AkjWdpKdv5h9Da+bBFWgkx0RQAShyKSNQGYgkZA1iCDUIvvMaPB9zlXxgxbGgFMBkhNBzGRH5YIRSk7wKqfWqACysd5pXKhmpcpN2DtGOpchmg5aRArCJCDUA0QssIQRSA06VkFpIsQjWu1WfwpTGs+1dYuV691w5+238LO7XqpQREKt4LkdDOBYPC89/iIOmidVcNWOCCCCUGTShhUQQKLEI2KBJdQ29THd9/dVTSkNFkYna+aaYwJob7uxgtEIpUadBBUgVtsyAHQrBaYxytnCVCabHvRvZ9A5Y9WMCkYjCMUlJk3QhTGQSXkCSFTED6Fm8SpANllt/rF6ZZCNewZHeoogALkKkATOdfLcQ5dWMhxhjIgAIghFJp21Qt7QjQmxRxBqm5iu+j7nmiWLYWF0MoZFkoBY1iQlwZOZydADpL0tt/gl01u5QISqx3A9wi1UPv+qA/jC+ftVOCJBKB5RXQ1YYEkFiDACmx4GIKNIHyShdvHmrKZtY89YDeDs49TmVFYoI1nTJoJB1LVEJSoN0GsBEUAEocikDZOY4iwYMkSI6VIBItQ2UV31LbA0SzxRhdHJmBYtiuMPTbQBNBGCJzOToQJkRlsjaa/xb7qvssEIVY2S6QHA0mJceMhcGuKyAShMHmK6SsZNepEm6MJIaDueAqCDPRWORBAmjjdntW2wVMfKKEYWRRQQYRRMy6YZN2FKUSHWtPcnCFWBCCCCUGQcC6xcE3RBqHWiuupbYCligSWMgY/99UlavElhsqWywQglJ2j1WKs9QGY1J+jDaYRORgQQYWQWpp4FoK9pWYUjEYTiE64AycB9P3R2BwXBJZU1+ddjGwC4Rj2twtEIwsSJ6rnt0Od3OQmsMbJIC1dhNLKmRbPi9g2MN+cayghVjXxKglBkgk3QU9IcU5gERDXNF/OsjHiiCmOj2asASUhDuMlOXTQngNRqBUhHQ4x+O+7cSYsFljAyc7JOc9S+NrG+EiYf0xrj9JCkzxsPr/8grLuzskEJVcXDL+8hajtr3ZfT9RWORhAmTl1MZ2aTM9Zt6XeE3piSIWNYlQxLqAEMy2aa4lbAJWWtWyuIACIIRSbYA6S5oaHC0QhC4UQDPUCsrFSACHvHawrXjCeASAXIZCcZy1mcaTWaARWLaAzi2B+QHahsMEJVM9NwMp9TzYsqHIkgFJ/DFrSSIcIXjItyB7c/XbmAhKrjua29vt2zuB0Itc6HTl8O5L7LMbKksmYlQxKqnN5UlhO+fCtv0G5yDkRFCK4VanOVKghVTNqw/EnhstntFY5GEAon2APkhsfW88TG7gpHJFQzacNZNCQV1zs8WlfBaIRyUB+r/QqQeMDqz5RKN2EvzDY3AZARAUSYhCiKQmtdlJvNA3MHk22VC0ioOrb3pom6yX4HL5pe4WgEoTAOW+CMb0EB5Mant3Hv2l2VDEuoYq5/cisApred3jCjgtEI40EEEEEoMkELLEWPVzgaQSicWGBj8FjzPi78/h0VjkioZgYzjgDijYNEEhWMRigHyWiuAqRWe4DEIpo/zn3/Fsl2FkbAzDLddha+RosIIMLkJBHR2Eob2USnc8CQZuhCjp7BrD/HO3m/uRWORhAKY3pTnL+/6yjStjMH9L7bH/jjY5UMS6hiYm7vGH+tu/yMCkYjjAcRQAShyASboCMCiDAJuPjQuX5WzEnaI7zKvrnCEQnVzGDWE0BkHJwq1E2CCpBYwOrvhU07KxyNULWketBxvMHtOsl8FiYn3pje0+FWgYgtoOCSypo8sambKAYAkViywhEJQuGsntNMVnErQFwnj01dUg0sDE+dm/gV99a6kuxXM4gAIghFJtgDBD1W2WAEoQi01EWZOS230XOBdlsFoxGqnVTW2RyMKyKATBWaE1H/tlajAkhEU0m7FSD+d1cQ8rGc+Z1pK0Qi4n0vTE4S7uZOWnHHdkP6vwkO7/jVQzy+sdvfJEaL7v0JglAj7LEdy943ajdWOBKh2rFsp9+lPw7Knl/NIAKIIBSZtGHKxp8w6bhvziX+7e12c+UCEaqeVDbfAkvGwcnOPjMa/dumZVcwksLwKt38jC5ByMd0xjUDjYhWm2KfIIxGMuJUgGQUZ1PHSEsFiOBw+/M7AKnyFSYfd5j7AdCi9LFY2VjhaIRqJmO6yX7+OCgVILWCCCCCUGTShsViZbNzR9RgYZJgxNv5jXESADay6SMMj23bfOOWF4DgpFAWx5OdaY25a92egdoVD7weIL54Jwj5WI7tiyOAyDJKmJx4Flj3b3AsYB57aUslwxGqBC/BBWz2V9c6N3WpABEmB7MPONm/PU/ZVsFIhGonY+QLILLnVyvIzF0Qikz7jvt4hfagcycivqjC5CCmq9xmrQKgQ+mucDRCtXLr8zu46Wln0ZCzAhQBZLKjKDlRtGfQqGAkheH1AJEKEGFEAgKILhUgwiSlo8G5bu9MO1sFj60VAUTICSDv1/+cOyhrXWGScNW5K9k0wxFBZivSC04YGU8AybkdSAVIrSACiCAUmbk7bgXAQoUV51U2GEEoErGIyk67CYB2RAARhmfNtj7/tm8FKJPCKUVfunarJ7wKkMsif8bY/XKFoxGqEtcCK4tOVCpAhEnK1m6n8mPQdvsikaF7sHbHdqE4eLYvp6kPADDQshxmHljJkAShaCSjOjPnLQNgtrKjwtEI1YxvgSW29zWHzNwFochEM3sA+M+cd0HH0gpHIwjFIaqpbKcZgA6lC+za9fkXSsegmx14tno352p3OwelLHhK0Zuq3QqQeUtX+bf/+d0rSBvmXs4WpiKm4Sx2TVR0EUCEScrrD58H5EThuJJhzfbeSoYkVAFZ05n7tyrOd2HzCV8TCyxhUqG0OGPfbGUHzclIhaMRqpGMYXHDU1v5tP6znCuGCCA1g8zcBaHIxF0BJBtrqXAkglA8YhGN3bbT6DiuZCHTX+GIhGrEE0BO0h7OHZTswCnByftMA+BNR86vbCAFsPrcy/3bqVSaJzZKtZsQxjByFSDSBF2YrBy/rBOAQZwEhjgZUlmrkiEJVUDWsACbFhwBREm2VTYgQSg2jbMAmKHsJi1jnjAM3/7PC9y1ZhdnaPflDjbNrlxAwrjQKx2AIEw2EkYXAEastbKBCEIRiekqmeAlwxSPfGEonidqgrRz4NTPwSwRQKYC33v9gWzaM8j89rpKhzJhIrrKd4yzeZd+Lf3EQ71NBAHAdAUQw5Ym6MLkRVMVNFUhjZMBnSDNYEYq4qY6hmXRyAARxfkuqHUigAiTjFg94Ii+ns2RIAT5/QMbgED/j3fdDxGpAKkVZOYuCEWmPrsbACPRXuFIBKF4RHUVAy13wJKFsDAUTXU2jP0m0nUyDk4VIppa0+IHON/fVMDzXvQPIR8z64i7Bhq6Kl8QYfIS1VQGba8CJEtKLAGnPBnDpoEBANJ2hEhcGqALk4yI851OkMa0bAwRQYQ8YhFnC91f68YaKhiNMF5EABGEYmJmaTB2AZCtn1HhYASheMR0DVDI2q4IYkkzTGEopuX4Q0sDdKEWiWiqn/EcU7JYlvQ6EsJks861z0STHiDCpCaqq34PkISSFgssgaxpEVWcPl9pdKIyBgqTDXfdknDXMVIFIuQT1VQ0TL8STvp/1BZy1RKEYtK7FRWbjK1hJyXzWZg8HDSvhca4nqsCMUUAEYbiZUr5WTG6CCBC7aCpir/hFyND2pCFrxAmm3WboCvaKGcKQm0T1VUGA+NhKisVIFMdw7KIurYvGSJiAyhMPtwKkLhr5WtKIoyQR0zX/HEQAD1WuWCEcSNXLUEoJqkuALqpIxaJVDYWQSgirXVR/nPF8WRdAcQWAUQYhqy7UEggFSBC7aGrCml/wy9LWixfhDwMXwCRNorC5Caqqb4l4D7qBlIZo8IRCZUmY9hEcb4HGXQiumwlCZMMrwLEXcdYkgcj5FEX03KJfiAVIDWGXLUEoZhkBwEYtGPEZFIoTDIiaq4PiGFIE3RhKEMqQEQAEWoIRVFI264FFlnSYvki5GFknLHNlgoQYZIT0RT2kPM2n7n1lgpGI1QDWTNQAWJHxAJLmHy465aIYqJjYIgCIuTRXh/zG6BbagRUmQ/WEnLVEoRiknUaww0S8xskCcJkQdcUDJysVy8LVhCCGKYN2MxRdzgHJCtGqDE8C6y4IhZYwlA88d+SChBhkqOqCmvtmTxqLQRgxq57KxyRUGnCPUAiRDSlwhEJQpFxLbDAqQIRCywhn7Rh+b0uFUn0qzlkh1YQiojtVYAQdZtGC8LkIRHR/AqQgcFUhaMRqpGsZbNCWZ87EG+qXDCCMAH8JuhigSUMg2kEsv4EYRKjKs7m9m/MkwFoGNhQyXCEKiBr2n7mcwYdRREBRJhkaFFQnC3SOGlMWwQQIUwqa/rjoCL9P2oOEUAEoYhs27UHgBQxZjRJ5rMwuVBVxc967ekfrHA0QjVimBYdyp7cgeY5lQtGECZAKtADZDAjAogQxqt+lAoQYbLjbW1vtDsAaMhsq1wwQlUQtMCaP621wtEIQglQlFwjdCXjVrYLQo6gACJOB7WHCCCCUEQyg/0ADNpRFnbUVzgaQSg+tups+vQNiAAiDMXJDnQbpc45vLLBCMIE8HqAxMnw1ZueJyM2WEKAnj5nnmep0QpHIgilJeL2d/DGRMXMVjIcoQrIGJbfBL2hrq7C0QhCiQg0QrekAkTII5W1cr0uRQCpOUQAEYQiYqadhbEWS45ypiDUJrZr+9EzMFDhSIRqxLCsQFaMbBAKtYdvgaVk6UkZ3Pj01gpHJFQLT27q5qbH1gKQ1WTRK0xu6mNOwkvW7f2m2iKATHVShulXgKDJHE+YpOieAJLGkB4gQh4pwySmSAVIrSICiCAUETPjbAobqjREEiYnqu5sDr64tauygQhViWHaxBTJihFqF78JupvdtWmPVLsJDr+9/2US7vfC1GSeJ0xuorqzTeAJIJolAshUZzBj+k3QEe97YbLiVYAo0gRdGEo6G0j2i8hat9YQAUQQisCTm7pZt7MfyxVATMkMFCYpesTZHLztmc0VjkSoRhx/aHdxLNmBQg3yitVzAfzFze7+TCXDEaqI5kSEpJIGQJVKX2GS4419WTQAVNvAFjuYKU3asKQCRJj8uAJInDRfvfH5CgcjVBuprCkWWDWMCCCCUCBPb+7hzG/dyclfvY3MYB8Api6ZgcLkpCHpfLd1TCzJihHyMCxbGsMJNc37T1sNQFzJAjY7+0QAERzmsoV36tcCoEREABEmN8csaQegLuF81zXbYGtPqpIhCRVmMGOSxBGBiUoPEGGS4l7fE2T491NigyqECTdBl0q4WkOvdACCUOus2+X0/TAsm8F+RwCxNBkMhclJLOpkfE1X9pC1LGKqVuGIhGrCMAPZgSKACDVINOaIvCoWEUz2DIgAIjgc+dK3/NspRcY3YXLz3pOWML0pzulzTfgJRDDY1pNmRpMkeU1VBrMmjZ7NaUS+B8Ikxf1uz1e2VTgQoRpJGRZxsXuuWaQCRBAKpC9t+Le9HiC2ZAYKkxQl1gDAh/XfkTWlAkTI0T2Q5bGN3dIEXahtAouZGBn6UsZeThamEk29L/q3Vy+cUcFIBKH01MV03nLUAqa3NAIQUwz29KUrHJVQSVJZk4RXASICiDBZSTQD8KHI71GxKhuLUFVkTQtT3A5qGhFABKFABgICiJ11mqXaMhgKk5Wj3gc4jeGy/V2VjUWoKn73wMsAxBSZFAo1TKCcvV3ppicljX8Fh75Yp3+7vbWtgpEIQhnRIv7N3X0DFQxEqDSDIQFELLCEScrRl/k3O9lTwUCEaiOVNQFEAKlhRAARhALpz5j+7Z6eHkCaoAuTF23BUXTZzqLH6tpQ4WiEauK5rb0cpDzne+RLg0yhJlEUSDre9/+IfpxMSjb8BAfTXTYNaA2w7zkVjkYQykTgWr6nt7+CgQiVZjBjklSkAkSY5Ezfj422Mw+cqeyqcDBCNfHSzn4OV5/mQ5HfOwcisudXa4gAIggF0h+oAPGyYkxNJoXC5GUrTuar1b2pwpEI1cTGPQOcod2XOzBjdeWCEYRCOOUzADQogyxMPV3hYIRqQTUdz+e/zf4gxJsqHI0glAk1VwGydptkQ09lugayxKUJujAF2GK3AjBd2V3hSIRq4us3v8B7tb/kDszYv2KxCBNDBBBBKBBPAFmkbOJY7QkALF0EEGHy0oPTB4TB7soGIlQVGcNihpcpdfTlsPL8ygYkCBPlgNeRWnwGAHONddi29DsSQLPcjT+p8hWmEgELrBe3iAAyldF7X+YM7X7njlSACJOYnbaT5NCq9FY4EqGa2DOQoUNx9z/O+wEc+IbKBiSMGxFABKFABl0vwOPVR/1ju+uXVCgaQSg9A4qz6LHSPRWORKgmbCPD6doDzp1ZB1Y2GEEokEj7AgBOU+9ld3+mwtEI1YBqugJIoE+MIEx6FAXbrQLZvKubjCFNgaciacNk3u67cwem71e5YAShxOy2GwFoQ9a6Qo7ugSwNimuN27G8ssEIE0IEEEEoEG8h0Kw4vrh/M4+kr35+BSMShNIyqCYBsFOSFSPkaDe25O7MPrRygQhCEdCa5wBwqPocW7oGKxyNUA1oliuEiQAiTDW8PiBWlq4BEYSnIne/uIvZyk4AMvu+WmxOhUnNbtftoEUqQIQA3YNZGnAFELFCrUlEABGEAsmajjVGC84Fcr09HV1VKhmSIJSUQcURQMj0VTYQoapQzCwA2VgLNEyrcDSCUCDLz/BvPrNZPKAFqMu63wNdLLCEqYXi2h3VkSZriSXgVKNrIMNbfvYAM10BJDr7gApHJAilZY/tCCBigSV42LZN3+AgdYpbDSwCSE0iAoggFEjarwBxNoP32PVY4hcuTGIGVbfxYVomhUIA2xFAbNkcFCYDyVb/5u3PbKpgIEJVsHMNCcuZ5ylSASJMNeqdpIZOZQ9ZscCacvzu/g0AzHIFEJpmVzAaQSg9u10BxEtwFYRU1iJhDeQOxBoqF4wwYUQAEYQCyZoWYLNCWQfAdrsZS7KjhEnMgOZc8LdvfFGaAws+iuEKIGpklDMFoQbQcpvcz2/aVcFAhKrggR/5NzVdr2AgglAB3KrOU9UHMSwRQKYaimtsMFNxr4WuRaQgTFb2kKsAkX0dASCVNf3+H3YkCZqsd2sREUAEoUAyhkUzfSxQtwFwu7UKQy6UwiTmrvQiAGZ0P8rTW6Q5nOCg2q4vuOcVLgi1jKph4+z67OntlwXwVMdI+TcHpM+bMNVwKztXqy/61r/C1EFTFCIYTGOPc6BJBBBhcvOBc48AYIW6HsMU0VeAlGHS6Pb/UMT+qmYRAUQQCiRjWrQr3QB02XX0kcSUrHhhEvPYYAcAHUo3O7ukNFhw8HqASEaMMClQFL/ZtW4bdA9mKxyQUFGygwBclX0dWlQssIQpxspXAaBjYogAMuVQVYVpym5UxSarRKGuo9IhCUJJWbJwoX/b2vRQBSMRqoVU1qLRrQAh1ljZYIQJIwKIIBRI1rTocAWQHXYzgGSKCpOaPTSQsTUAzN5tFY5GqBZUyxNAZHNQmBwobjVTVMmyeyBT4WiEipJ1Fr0pokRUpcLBCEKZcTP+E2TIigXWlENXFV6v3QxAd6Qz54klCJMUtTnX58bes76CkQjVQtowaXArQIiLAFKriAAiCAWSMSw6cASQnbZTDicWWMJkpiUZZQfNzh0RQAQX1W2Cji4WWMIkwa1mimCyp18EkCmNWwEyaMeIaLJ8EqYYkQQASSUtTdCnIKqqMF3ZDYCtahWORhBKj66q3GweAICdErtnwakAacCZC0oFSO0iM3hBKJCMadGhdAGwA0cAkQoQYTLz3dcdxG7baQ5nD0hzYMHBqwBRxAJLmCy41UxRDFJZ2fSb0ngCCFEiuiyfhClGtA6AOGlJ8pqCaIpCvbvxd++0iyscjSCUHlWBPhzh10r3VTgaoRpIZU0alX7njlSA1CwygxeEAskYuR4gXgWI9AARJjNHLGoj1tAGgD2wp8LRCNWAadnotuHckSbowmTBFfOiZMX2ZarjWmANEiOqif2LMMXwKkBIkzXMCgcjlBtdVWhQHAEko9VVOBpBKD2KotBP0rmTln6XgiOA+BUg0gS9ZhEBRBAKJGtadHoVIG4PkM6GeOUCEoQykIk4F3413VXZQISqIGtaRBRHAFHEAkuYLLhN0CMY0vh3quNWgKSIigWWMPWIOBuBumJhZsUOcKqhqoq/8ZeNNFQ4GkEoDwOKI/zaIoAIuBZY0gS95tErHYAg1Dppw2KVshaA0447iu1ds3nbMQsqHJUglJZs1Lnwq+nuCkciVAMvbOsjiiOAqFIBIkwW/CboBoYpFSBTFdu2sTMDqEDKjqKLACJMNVwBBMDO9lcwEKESWLZNvdv8N1Ynmc/C1KAfp9pJGRS3A8Fpgt4oTdBrHpnBC0KBDGayLFI2A7D68JP5yoWrSUZFWxQmN+loKwB16R0VjkSoNJZlc/a3b+dT+i8AqQARJhGuBdYr1AfIiu/9lOUDf3qMri6nAXAfCSJigSVMNfQoBk7zayszWOFghHJjWrZvgZVoaKlwNIJQHraqnQBo3esrHIlQDaQzJq/Rb3XuxEQIrlVEABGEAjAtG90YRFXcjZF4c0XjEYRy0d2wBIDpA89XOBKh0mRMi5PVh9EVJ0NeaZ5T4YgEoUgYaQDalB6pAJnC/OXhTdSRAqDPThCVChBhCpJRYu4NqQCZahim5TdBP3jZvApHIwjlYZM6AwC9e11lAxGqgpbtd+futC2qXCBCQcgMXhAKYCBj+BNCW9H8JoGCMNnpr3cWQA1ZqQCZ6mRMizmK8z3YYHWgHP+RygYkCMXi2CsATwCRCpCpiGnZRMkSc3sc9ROXHiDClCSjumscqQCZemQHiSgmAO1t7RUORhDKw4BaD4Aqoq8A1Hc9B8DG2GJYdGKFoxEmiszgBaEABjIm9W5JMLEGUMQWQZgaKDFnUhizZCE81ckaFo2Kszho3O90iMQrHJEgFIn6aQB00EXWkgqQqciuvjR15K5zjgWWLJ+EqYdXAWJJD5Aph5btA8BCgWh9haMRhPKQVRwbVMtIVTgSoRpIDGwB4MXGQ2TPr4aRGbwgFMBAxvQrQJSYNEP6/+z9ebRk6Vnf+f7ePUacOFNOlVlZlTWopNI8IAlJIAHCyAgMGDB2A6YbzF0tt/u2u5uLfX2bbhrbGDe277osGl9suk3btLm0Ads00BaWDQIDAg3WPBVSzXPOeaaY9vTeP94dcU5V5XQyI+KNiP39rFVLJw4p6lnKzH323r/3eR40h0nXJNUBiOVkdJMVlR0vhds4wslALJE6ADlutukAaaidQTE+6NKzqSoFKgjD0EBF6DpAsv6e50owa2G+K0kaBh1e/KExnt11932xzXnWhdqDs5Kkbnqn50pwOwhAgNvQy4oXdoAADTHqAAlUSXnPczXwKSsqnTHn3YcWS+GwRFbdAsx101fFCIRGystKq6P9H3IvgANeAKKBqogApKmCzP2eD8IVz5UAs5MpHn9d5nSBNF0ruyJJGrY47LfICECA27Ddz8cdIAQgaJIoXVVp65dAQx6GmywvCv3p8JPuQ4tOOCyRdF25SSRJyeCS52LgQ1bsL/9NOxt639fcr9ee5jqH5qli9/K7GBAGN02U1R0gIeOv0BzDAwHIzh7XvaZbyS9Lkor2Uc+V4HYQgAC34ZHze1obd4BwU4jmSOJQXdW7HjICkCar+lv7Hx74Bm91ABNnjPYi96CT9s97LgY+5GU17vTd2Dii/+FbXiNDBwiaqO4AKTn00jhR4X7Ph2HHcyXA7GSKxl/v7nHda7qVYkuSVNABstAIQIDb8Cdnd+kAQSOlUaBuPQ5Ew12/xcCras+djN/TinTkXs/VAJN1Ob1LkrSx95jnSuDDc9sD7vMASXHbHfR65NkLevoyo0+bJK4DkIwABI1iNLSuC2SvSwdIk9kiU6fckSSZDgHIIiMAAW7DlwhA0FBJFKhr6QCBpJ4LQLYN10Asn3MrD0qSjnQf9VwJZs1aq//mX3zqwK43Rl+huU4c3ZQktTXUJ5+64rcYzFSUjzpAmHaA5vjBd943HoNVDPueq4FP//pDn5Ukldbo+IlTnqvB7SAAAW7D2e0BD8ZopCQKtDcagcU4hGbru5mou4ZrIJZPLzkmSUrzLb+FYOau9HJJUqdegs6oUzRZVP/5b5tMRWk9V4NZGnWA5BEdIGiOv/ltr1VhXABSFUPP1cCnX/rdj0uSLmtd9x7nXnCREYAAt6Gfl1pX3QaecDFEc8RBoB4dIJAU1B0gOwEBCJZPnmxIktJ823MlmLWiqiRJdxoX8tLpi0aL3djTFQ1VVgQgTZIUbtQtAQiaJjeJ+4IApNEeWHEHYbbMhh44wTu/RUYAAtwia60udzOdGj0Yr9/ptyBghqLQsAMEkqSXf+S/kyRlpuW5EmDyqtYRSVKSbfktBDM3esn7juCL7htn3uGxGsCzxL38bmuovA4H0Qyrw/OSpF560nMlwGxlJpUk2ZwdIE310PM7ynbcNfDMmXsUBMZzRbgdBCDALfpnf/SEEuX6U+Gn3Tc2Wf6L5ohDsz8Ciw6Q5jrwEuTlJTsSsITaRyVJtndZv/el856LwSyNxvyMO32PvsxjNYBndQdI2wwZgdUkVanXb31QktTrnPZcDDBbvWBFkhRmHPZrqr/2q5/RceMWoKcbhMCLjgAEuEV/97ce0hvNgRd+J1/rrxhgxqLgwBJ0doA014EHgiygAwTLJ1pxo91WzUC/9slnPVeDWaqse8m7YuodIAnjX9BgsXsR+J3hH6lgBFZznPvC+Mut9Vd7LASYvV7gxh0FTDtorN1hrh+Lf1GSZBh5v/AIQIBbZKTxAnS7clxavcNvQcAMRaHR3mgEFh0gzdXfGn/5C0f/W391AFNi6sW/KxqIrvdmGb3kHS9BT1Y8VgN4duA5x2Z9j4VgpuoXv0Mbabh6t+digNnqG3fwIcjYA9dUWXFg5CMHYRYeAQhwiwJjtCr3AGDu4EQMmiUOD3aAcCqmsQZbkqQLdl3PrL7Bby3AFPTr3TYdM1TCXXOjVJVVqFItk7tvcPIPTfaK9+5/XfT81YHZqg85fcmeURzyQxDNMuoAuePZ3/VcCXzJD458fNv7/BWCieCnGHCL3nD3hlbM0H3goRgNEwX7S9AtI7Caa+BORG3bVa0koedigMnr2f3Rbjbn1HOTFJXViob73+DkH5osSlSYWJJkuBY2xvb2FUlS17aVEICgYaogkiSt7j7iuRL4Yots/0P7iL9CMBH8FANu0Ym1dNwBwkMxmiYKg/ES9IoOkObK3CnQrlpqE4BgCX3VK+9WZd3sq4qwt1HKymplNP4qiKQw8VsQ4Fle7/oyBQFIU/zKhx6SJHWVKo6YA4lm+Wjn3e4LW13312F5heWBjseYd36LjgAEuEX9vNx/ME7pAEGzJGGgrq13gPBSsLnqlyADJWrHkedigMm778Saishd61qDi56rwSyVldVbgy+7D+m6ZHj5h2bLg1QSAUiTnL14SZLUVVtJyEEXNMtOdFySFHLNayRrrZKy3vkbJlLEQZhFd8sByB/8wR/o277t23T69GkZY/Trv/7rL/i/W2v1Yz/2Y7rzzjvVbrf1nve8Rw8//PDt1gvMjV5WqmNGizEJQNAsUWjUFTtAGi9318ChjRmBheVVn/z/yr0Pei4Es1RUVj+b/Iz70L/stxhgDhSBC4ODnB0gTfD5Z7fVqacddG1LcUgIjGYZXfOisi9VdIE0TVlZtesDz5buj6VwywFIt9vVG9/4Rv3sz/7sVf/v/+Af/AP9zM/8jH7u535OH/3oR9XpdPTe975Xg8HglosF5skwLw+MwCIAQbNEgdHeaDZ+RgdIYx3sACEAwZLqbb5SkrRSbHuuBLNU2QOLL+//On+FAHOiCN19X8Bp6KU3yEt96z/80PiwX1ctxRHDQ9AsRbQiSTKy42ceNEdWVvu74JIVv8VgIm55XsU3f/M365u/+Zuv+n+z1uqnf/qn9aM/+qP69m//dknSP//n/1wnT57Ur//6r+t7vud7bvVfC8yNvLQHlqCTCKNZjDEaBPWNAAFIY/W6e1qRC0COr9IWjOV06eXfpc3zH9Wx8oLvUjBDRWn1aHWnHgiel77u/+W7HMC7UQASFhxoXHY7/VyS1NF+AMISdDRNWV/zJLm9h7zzaZS8sFo3XUmSSdc9V4NJmMpPsccff1xnz57Ve97znvH3NjY29Pa3v10f/vCHr/nfGw6H2tnZecE/wLwqK7vfAcIOEDTQoG4LNgQgjfXcxSuSpL5N9Y2vOeW5GmA6ytU7JUlHK8YgNUllrVomcx/itt9igDmQRWuSpDS/4rkSTFs3KyVpvwPEthQTgKBhgjBUz7rdRxz4a57ffuic1lWPfGxveq0FkzGVn2Jnz56VJJ08efIF3z958uT4/3Y1P/mTP6mNjY3xP2fOnJlGecBEFFW1vwSdEVhooCxwp2CCoi9Vpedq4EM2cDeFG+trOtKhAwTLKVjZlCR1bNdvIZiporIHRh9w6hPotk9LktaH136ex3LoDgtJBztA2jq13rrefwVYOmFg1FUdgLD7qFHO7w701//lZ7Ru3O+7aW36LQgTMVcx/o/8yI9oe3t7/M/TTz/tuyTgmsrKas2wAwTNNQwOnIjlVEzjWGv1mSfcS5C4xVxULK+gtSFJWrE9/ezvPeK5GsxKVVm1RwEIHSDAOAA5mj3ruRJMW6/uANmox79877teo3uOca+HZgkDo/64A4RDME1ycdd1AL8t+BP3jfpZAIttKgHIqVNuDMa5c+de8P1z586N/29Xk6ap1tfXX/APMK/CcqA3Bo+5D5wMRAP1bKTM1ouve5f8FoOZ+/Bjl3Tf4MuSpIAQGEss7ByRJK2Zvv4//+4hz9VgVoqyVMu4OfiKefEH7Ky9XJJ0ekAQvOy6WaE3mkf0jsD9zHvwDGNO0TyhMerKdT5197Y9V4NZ2h3kOqodfVf4h+4bK0f9FoSJmEoAcv/99+vUqVP64Ac/OP7ezs6OPvrRj+qrvuqrpvGvBGbuTPnM/odTr/dXCODJW+89qs/b+yVJ5eN/5LkazNrZ7YEeDFyn5qVjX+G5GmB6wvb+gZw1MQKhMfL+/td0gADqHnmVJOlE9oxkredqME29Yam3B/uBf3LPmz1WA/gRhUb9egTWv/rwlzxXg1na6ue60xw44Pnm7/dXDCbmlgOQvb09ffrTn9anP/1pSW7x+ac//Wk99dRTMsboh37oh/QTP/ET+s3f/E197nOf0/d///fr9OnT+o7v+I4JlQ74lVbuJchw/T4SYTTSf/9nXq1HKzcOYffS856rwaytptF4NnSxcb/naoDpSZKWtqzr9Hx38Gm/xWB2DgYgEQEIYOolsJFKqRj4LQZT1R0W6hg3AvA/rH6LzPppzxUBsxcYo651HSCPP3veczWYpa1eNt4D92h1p3THqz1XhEmIbvW/+PGPf1xf//VfP/78wz/8w5KkH/iBH9Av/MIv6G/8jb+hbrerv/yX/7K2trb0rne9Sx/4wAfUarE8C8shte7G36aMakMzveLkmj4RdyQrFQN2gDSNqYrxeJiVtU2/xQBTlESB/qB6g/5s+GG9OnhavazQSnLLt9BYAGVl9Wsf/bL+tKShSZUGc7U2EfAiTFdVWaPAWGmwQ2fUEtsZ5FqpD7l83Rte7rkawI8o2O8AOZrknqvBLPWyUh3jroGjPwNYfLf89Pbud79b9jqtr8YY/fiP/7h+/Md//Fb/FcBcSyt3MtDG7P9Ac2XBilRK1XDXdymYsXy4vwzwT7/xZR4rAaYrDgN9pnpAfzb8sO42F9TPSgKQJfcHD1/Qw8+el1IpMymPvoCkNI60p7bW1ZOGu9LaSd8lYUq2+7nurAMQk7LnDc1kDuwAORoTgDRJVlRq1x0gPe4ClwbHmYBb1LJ1AMICdDRYUY8FsUM6QJqm7LvQq1SgdptToFheSRTorHWjLk+YLRUVs++X3fmdgdrKJEk9m3iuBpgPaRxoV/XP++GO32IwVdv9XCv16WfxrIuG2h0Uumg3JEkPBs96rgazlBXVeARW3xKALAsCEOAW3WfrJeh0gKDBysj9+bdZ9wa/EsukrKwGOxckScOgLRnjuSJgeqLAaKBYkpQqV15WnivCtIVBMD75N+DkHyBJasWh9iwBSBNs93N16msgAQia6tvfdFofrdzuh9P9L3uuBrOUlZVWjTvwPOoCwuIjAAFuwQ//6qf1XvMRSZJhLjQarIhWJEmnnnq/50owS//jr39O7/rY/12SlAV0f2C5GWOU11NjExUqSjpAll1RVmob1wGytsauN0CS0ijQrtx9nxh9utTO7wzHO0A47Iem+toHT+i73vV6SVJSjz/H8tsZ5Pq1Tzyjvx3/75LYAbJMeHMLHNJ2P9evffLZ8Qmo4u63e64I8Keb3rH/YcBpwKb4w//4cd1pLkuSPnL0O/wWA8zAqaNuBEJCB0gj5JUdd4Ac3dz0WwwwJ9LoQAcI93xLa1iU+vBjl9SqQ2CW3aPJTOJ24BCANMf/9P6HVG7vjzz7P8t3eawGk0QAAhxWffAzkVuEZe94ncdiAL+eWH/b/gdOAzbChx6+qE25kWfP2aP6o9M/6LkiYPr+p7/wFklSrEI5HSBLryj3l1/y8g9w0ijQ3ngHCPd8y+qPHrkoaf9ZVxHjX9BcQct1QKUEII3x/s8+r069A+mKXdWHqtd7rgiTQgACHFJl3YuP1LibwiCmJQ7Ntd5JtWPrcQg5N4ZN8KFHLu7PRLVttZPQc0XA9EWxewGUmEJFRQfIsitKOx6BpXjFbzHAnFhvx9qpO0AG3S2/xWBqdvqFJKlt3H8qSjxWA/gVpGuSpNQOJO7/GuHEWjpegM7+j+VCAAIcUjkKQOpTMUHCyUA01/HVVH3VD0Y5i9Cb4JHzu+O50F21tJZGnisCZiB01zlGYDVDXh3sACEAASTpyEqsvXoHyK9+6Aueq8G0DPJSkrQeu/+kAwRNFrbcCKxAVio47NcEJ9bScQdI33LYeZkQgACHVFUuABm1BYcxN4VorhOriXqjG4Os57cYzMSlbqbOKACxLa22CEDQAJG7ziWMwGqEorSMwAJexBijztqmJCnK99TLCr8FYSr6dQCS2NEILF4AornWVtf3P3z5A/4KwcykcXjgsB/Xv2VCAAIcUp1/jDtAQkZgocHuPrqift0aevbiZc/VYBa2+7nuMFuSXAfIKh0gaIIDHSAFAcjSK8pKbUMHCPBi3/G2l0uSUpPpsQt0/i6jQe66HOPRDpCQZ10019HVA3/+d8/6KwQzU1bVeARWz7b0c//pWzxXhEkhAAEOqbRWRpXSei5qyAgsNNg7HziuXn0y4uFnz3uuBrOw0y/0A+G/lyQNlBCAoBnqE7CpKZQXpediMG15ZdXWaAcI93nASKfj5uG3lY07BbBcRr+vka2vgXSAoMGOdVL9SvFuSVKRMQKrCYrSaqUegXX/6RP6pted8lwRJoUABDikqrJKtN/ybRiBhQZLomD8MFwOOQm47Ky12unn2qlngD9m71QUciuBBgj3l8AWxdBjIZiFoqzUGo3ASugAAcbqjqi2hsoL9iEto2EdgMTVKADhWRfNtdaKlJtYktTtMu65CSprdYe2JEknT532WwwmircWwCFV1o7HX0niphCNV9WnY+1wz3MlmLasrJSVlVr1yejy3q/V1z543HNVwAwcCECqnABk2eWlVduMOkAIQICx+uBX22TKSgKQZdTPS4UqFWi0BJ0OEDRXEBh1Vtx9wKXtHc/VYBaKyur+4HlJUnDs5Z6rwSQRgACHVFZW/030a5IkKyMFjH9Bs5WRuym0Oadilt2wPu05mo3/177lTUqj0GdJwGxELQ2NewkU9hj3t+zycn/+MyOwgAPqQLCljH1IS6qflfrL4fv3v0EAgobrdFYlSd0u0w6aoKysTuqK+7Bxxm8xmCgCEOCQbN4bz783D3y9ZIznigC/bFS/HMoIQJZdNgpAxMloNEwQ6Jn4PknS2qXP+a0FU1eUVsdMfdKzfcRvMcA8qQPBljLldIAspWFejA/76fSbuddD4wV155vNB54rwSwUB7uAk47fYjBRBCDAIdlhV7GpW4K/71/7LQaYAzaubwzoAFl6+wEIJ6PRPA+33yhJOnn2P/gtBFOXV5XuMXWnz+a9fosB5snBHSAVHSDLqBj291/+/cBvctgPjRcmLgCp2AHXCJW1Bw77Me5+mRCAAIdk874kaaBECvgrBJjEvQQPCgKQZTcsKhlVapl6DxKnAtEg59tuDnA8vOy5EkybzXq6w2y5D0fu81kKMF/qn/v3BueV18uysVxGz7qSpIiDLkBUByAq6ABpgqKySpl2sJR4ewsc0uimcKjkBr8SaIagbg0Ni/4NfiUWXVbsL0CXRAcImqW+1hmudUsv3n1GkpRFa4zAAg469oByxZKkd3zsr3ouBtNQ1iNtKxNJIbsugag+7EcA0gxlZcf7LhXRAbJMCECAQ3rm3CVJUkYAAkiSTP1S8NW9j0s5LwaXWVZU6uhA+zcnA9EgJnGnwAh7l999Ox+XJA1X72b8C3BQ3NYTrVdJktZ3H/FcDKai/hlX8eIPkCTFqXveeUXv01LGIvRlV1QHDvzRAbJUCECAQ/jwo5f0s7/9eUnS0BCAAJJUbZyRJB2vLkq///c9V4NpyspSJ0ZjYVaOMwYQjRLUAUhUEoAsu5cPvyBJGt75Fs+VAPPnX9/xX0uSgop5+MvIZu6UexUSgACSZDfuliR1bFf6nb/ltxhMXVWJHSBLijcXwCH85meeU6teCjdU6rkaYD507/tG5TZ0H7ae9lsMpmpYVDpl6v0H63f6LQaYsSB13W5RyQiEZXZpbzjuZoxPv9FzNcAcqjsDwpIAZBmNxjxaOkAASVJ+5p26YDfcB551l15RlmobOkCWEQEIcEijNDijAwSQJHVasf528f3uA7NRl1pWVDpt3BhArd/ltxhgxqI6AIkrOkCW2aef3hqPPthYX/dcDTB/bOQOgYV0gCwlM7qXZ88bIElabyf6u/n3uQ886y696ODPNoLgpUIAAhzS6KF4aOgAASRpJQk1rBdiqsyu/4ux0LKi0gPmOffh6AN+iwFmLGqtSpISXvottfO7Q6Umdx8i7vWAF7P1/q+4GkrWeq4Gk/bW4lOSJMOLP0CStJpGPOs2yAvCfYLgpUIAAhxS27gL4tBwUwhI0koSaWjrm0JOxSy1rKx0jznnPhwjAEGzRCtu/EGkQhrseK4G03Jhd6h0NPs54sEXeDFzYCb6v/ss42CWSVFWusNekCSFwyueqwHmw1orUqZIkmRznnWXXWLd+z4bRFIYe64Gk0QAAhzSunqSpJ5hHiAgSevteHwqpsw5Gb3MsqJSqvpkdLrmtxhgxuKVDV2xrgtE27z0W1aX9ob71zk6QICXOLgc+9OPPe+xEkxaNyvH0w6qr/qrnqsB5sNqK9JQbvx5RQCy9OK6A8RyCGbpEIAAh7RmRgFIx3MlwHzoJKFUPwwXQ2bjL7OsqBSb0n0IIr/FADO2koR6xh53H1iCubT6+f4LQEYfAC/14J1HVFojSYos42CWyd6w0IrcC9545ajnaoD5kEahqqAOQJh2sPT2AxAmviwbAhDgkNbkXvD2AgIQQJKMMVrpuJdEJadillpWVgpFAIJmaiehtm39s3+467cYTM2wqNgBAlzHn3vLmfFp6HzQ81wNJqk7LNQx9b18wrMuMBIl9ctwph0sNWutwrK+BnIIZukQgACHtFaPwOoTgABj7ZYbCWcLbgqX2TCvFI8CEGaiomHacai+6hfieddvMZiawcEOEE7/AS8RBkZB4u77isGe52owSf/+C2fVVn0vTwACjG3noSSp1+f+b5kNi0otQxfwsiIAAQ7puNmWJHVD5t8DI6MW0aAkAFlmWVkpGneAEICgWVaSgwEI4/6W1bCo1BrvACEAAa4mj90+JDvc8VwJJuniXqaO6AABXmyncAGIKYbKispzNZiWYVHpK8wjkiQTs/N32RCAAIf0muBJSdIz0X1+CwHmSf2SqN0/y4vBJTYsDo7ACv0WA8zYShKpb0cBCGNfllWe5VoxdZjf2vBbDDCnytT93QiH254rwSRlZaW2oQMEeLGhdQe/UuW6sMeBv2U1zEv9jfhXJElGBF3LhgAEOITAFjplrkiSzsZ3e64GmB97yYn9D099xF8hmKqsYAQWmqsdh+rVHSDlgBEIyyrKD7zQTdf9FQLMMTsKQDI6QJZJUVZapQMEeIkf/pY3SpJSk+vsFUb/LavBMB9/be54jcdKMA0EIMAhJNX+yfZhSEscMFIk63q8Ouk+9K/4LQZTkxUsQUdztZNQg3rxbzEkAFlWce4W3BdRRwq5zgFXVXdHJTkByDIpi1zt0fz7hHHPwMif/+rXjr/e3rrksRJM03B4YJLFn/l/+ysEU0EAAhxCWroXHpkNldUvQQBISRToYVt3RQ22vNaC6cnKUrFhBwiaKYkCDesOkGrvoudqMC1x/UK3TOj+AK7FrByVJHWKLb+FYKKCg+Md01V/hQDzJow1MG7kc7Z72XMxmJbsYId3xBL0ZUMAAhxCWrmbwj21Za31XA0wP+Iw0JatH5ToAFlaWXFgCTono9FAO+ERSVLrS78mPfMJz9VgGtqFC0CqlP0fwLWYDXfo5Xh5znMlmKSgcC//ShNJUeq5GmC+9EP3rJt3edZdVtnAdYAUCnnWXUIEIMAhtOoApGvbigL++gAjSRRoW/Ws4P6W11owPYzAQtN9MP46PVadkrGV9Llf9V0OpuBYeV6SVKzd5bkSYH7Fx+6TJJ3WBWUFi2KXRZy7AKSI2P8BvNgwdGPhyt6W30IwNUXmroFDpr0sJd7gAoeQlC4R3lNLccRfH2AkCQNt2/phiRFYS6ufl/tL0BmBhQYy6ar+Vfl17kPGEsxldEd9or3aOOO5EmB+pZunJElHtKvusPBcDSYlLEYBCLsugRfrJ270X9R9znMlmJZBzx14LgwByDLiDS5wCEm9A6SrtuLAeK4GmB9xaOgAaYDusFSo+qQnbcFooFYcaqg6/CuGfovBVByt6tEWa6f9FgLMsXDFjQNcNz3tEYAsjbh0L/9KOkCAl9hefZkkaW33cc+VYFr2uu5wUxEwAnAZEYAAhxCPAhDbUskOEGAsiQJtj3aA0AGytLpZoVj1iw5GYKGB0ig4EIAM/BaDibPWasNuS5KC1eOeqwHmWMvtyNlQV92MAGRZjA77lTEBCPBig9V7JEmrg+c9V4Jp6dcdIFVIALKMCECAQxjNRd1TS8OcebfASBwe3AHCYrhl1R0W+0vQGYGFBnrgjlUNRnOBcwKQZTMsKh01u5KkiAAEuLY6AFkxQ/XqF0ZYfKMOkCpe9VwJMIc6d0iSVvLLngvBtGT1gvsqanmuBNNAAAIcwqgDZM+uaFiUnqsB5kd8cAdIf9tvMZia7qBQZOrwlw4QNNA3vfaUhpYOkGU1LCodkQtA4jUCEOCa6gBEkvq7HHxZFqN9lxUdIMBLmDUXgHQKrnnL6q4rH5Uk7a2wB24ZEYAAh5DUp2K6amlY0AECjLTjcL8DhBFYSykrKm1tH7jhZwcIGuhoJ9nvACEAWTrDotS6cfd64cqm32KAeRaEGhg3ImTY2/NcDCYlqdxhvyqhAwR4sbAOQNZLApBldWLwpCTp2RPv8lwJpoEABDiEd2//n5LcCKwf/ZbXeK4GmB+dNNzvABnuSBUdUsvmo49f0ruCz0uSqtU7pXTjBv8NYPkc6STsAFliw7zSitxye5NwAhq4nty4ESG//ZnHPFeCiSgLvW/wv0uSjOE1EfBiycZJSdK63ZVKdh8toyOZ2+/S79ABsoz4yQYcgpWRJL3jNS/XVz1wzHM1wPzopNF+B4gkDRiDtWx2+oWOmR1JUnDXm6WAWwg0z1or0sC6DhDLDpClM8xztU3mPjACBriuQR2AhEXfcyWYiHOfG39ZrPPyD3ix1c07VFqjQFZV96LvcjAFG8UlSVLeudNzJZgG3l4AN6uqlFr3suPi/d/quRhgvnTSSKVC7dq2+waL0JdOPy+1pnrRaWvdbzGAJ+uteNwBYnNe+i2brN/d/5Cs+CsEWADtzpokyRQsQV8Kg53xl7uv/c88FgLMp3uOr+mK3DPQI48/7rkaTFyRqWXdvb1tH/FcDKaBAAS4WXlXgawkyTL6BXiBTuL2QeyqDkDoAFk6/azQWj0bXykBCJopjQINTX2dy7rX/8VYOB/64pP7H6K2v0KABWDrvyMmJwBZCsNdSdLHqweVbp7yXAwwf6Iw0DBx74H+6HNf9lwNJq4+wFlZI9Pe9FsLpoIABLhZQ7fgr7CBgqjluRhgvnTSUJLUt24h5jMXLvksB1PQz0ut0wGChjPGqErrU8/DHclazxVhkn7/Cy4AGZoWY/6AG4ldlxQjsJZDVXeA7Nm2Vur7egAvtNJxAchzPOsun/5lSdK2OkqiyHMxmAbu7IGbVZ+K2VNbUcRNIXDQ6Q13CrAnF4D86K9+zGc5mIJeVmrd1Cfe6QBBg9n6z7+xpcQYrKVyrO8CEMP4K+DGErcnZ7W47LkQTML7P+5OtO+pNe7sBvBCcXtVktTd2/VcCSauvyVJ2rYdJRGvypcRv6vAzToYgITGczHAfDnSSfT3/tzr1ZPrjmop81wRJq2fl7rT1C851k/7LQbwaHVtQ5Wt7wOGO9f/xVgYVWX1xuxTkqS4YLwZcCN2zS2JfX35Rc+VYBIeeuJZSa4DpB1z2A+4mjB1wa/J9jxXgonL3b1fTy0CkCXF7ypwE7Z6mR599nlJ7qYwCghAgBd70z2bGthEkrSigaqK0TDLpJ+VOmPOuw+b9/otBvDoB776fu3V+452P/4vPFeDSdkdFApUSZKqV/4Zz9UA86+8++2SpLWKk9DLYM24jsY9tRXwrAtcVVR3gMTVQIO89FwNJipzo557SpUy8WUpEYAAN+Ev/bP/qH/wGx+XJHXVUsRcaOAlNtrxeATWihlqZ5B7rgiT1B/mOim3HE4bd/stBvDoO77iLhUmliRlH/5fPVeDSdnqZ1rRUJIUnnqd52qA+Re33IvAUIWKsvJcDW7XqvYDEABXF6XuureiobZ6POsulbwOQGyqlA6QpcTvKnATPv30ljqjm0LLCCzgag4GIC1l2u5zU7hMzHBLoam7elaO+S0G8OyvZ+9zXww5+bws9oaF2sYFIKPdBgCuLU5c12+sUsOCAGSRWWu1WneAPHgPY06BazH1/UHbDHnWXTLV0I3A6itVizGAS4kABLiB0Ymm1XFbcIsRWMBVtONQPet2gNxtLigvGYG1TKKB6/7IolUpSjxXA/j1ueplkqRN7UkVIxCWQT8r1a47QBSzBB24kaC+F4hUqOCeb6ENi2rcAfL1b3zAczXAHEvc/cGKhupmhediMEmXt9yz7tC0dO8x7gOXEQEIcAOXu26Z88vMaAfICiOwgKswxujj1YOSpLcHf6KccQhLJa4DkDw94rkSwL+//T1fI0kKjVXVu+K5GkxCLyvHI7AIQIAbC6P9DpC84p5vkfWyUuvGjX9J2hueqwHmWN0BsqKBekMOwCyTvd0dSVLU6igOed+3jPhdBW6gl7kfbH8p+veSpNBUjMACruHP/emvlSStmR6nAZdMlG9LksqEB2PgPa+7WzvWzUnvbl3wXA0moZ+XB0ZgEYAANxKMAxA6QBbd//gbn9e63PiXkAAEuLa4DkAMHSBLpap08uF/4b6MGYO6rAhAgBvIymq8/0OSPl49yExA4Bq+7nVuLExHA2V0gCyVMHcPxpbZ+ICSKNBAbuTf7t6252owCYzAAg4pjCVJkUoVdIAstH//2afH0w507GV+iwHm2YERWP2MDpClceEhtQfnJUlf3vwaz8VgWghAgBvIikp/NvxjSdJZe0R/sPpndO9RHoyBq0pWJUkd9ZUX3BQuk6Csg2ACEECSNDCpJKkY9DxXgknoZaWOmD33ob3ptRZgIQSRJCkyJR0gC+6bg48pNYWu2FVp8z7f5QDzq+4OaGtAB8gyGe6Ov7xw7K0eC8E0EYAAN5CVld4VfE6S9EvFN+j/eN87FLAEHbi61AUgiSlV5kPPxWCSwty95DWcjAYkSQPjOkDKQddzJZiE3jDTcdXdPKsn/RYDLIK6AyRRQQfIghs96/5K+W6JXZfAtSX7I7DYAbJEMncA5vPVfVpvxZ6LwbTw0w24gayo9DJzVpJ09+vepfuOc/oZuKa6A0SS7GDHYyGYtLBwAUjYWvNcCTAfhnUAUtUPTVhsO5fOKTL1S9zOCb/FAIsg2B+BldMBstBeHjwrSfpU9XLPlQBzrh6B9ebgkfGuWCyBobuX76rFuPslRgAC3EBWVFrRQJL03e96redqgDkXhBrIjYWxQ14KLotBXiqx7joYtVdv8KuBZsgCOkCWyesf/oeSpG7rzvHJdgDXcXAHCAHIQjsiN/7lkl33XAkw5w50iK7sPu6xEExU5u7lezYlAFliBCDADWRFpRUzWorZ9lsMsACyei5+lfc9V4JJ2R0U6tRBcEIHCCBJOmq3JEmnv/hP/BaC2/b5Z7b0+u5HJEnVK77RczXAgqgDkFiFckZgLbSjxgUgV8Q9HnBdd7x6/GU43PJXByYrG3WAtNWOeU2+rPidBW4gKyu1NQpAmH0P3EgW1B0gGQHIstgZ5HpD8JgkyWyc9lwNMB9OVW485urWn3iuBLfr4w89rFPmiiRp7dv+nudqgAUR7AcgdIAssLLQhnFjTl9+372eiwHm36X2/ZIky2G/5VEvQe9aRmAtMwIQ4AayvNTKKABJ2P8B3Ehed4DYemk2Ft+/+sQzesA85z7c+9V+iwHmxL9c/0FJUhYzMmTRXbngrm/9aGM83xvADdQdIKGxKorCczG4VWV/a/z1T3zPu/wVAiyIMnQjUE1BALI0uhckSZe1RgCyxAhAgBso874CU59qogMEuKGi7gBRPvBbCCZmkJf7nXCtDb/FAHPiibbbC5ZHHI5YdIPt85KkPD3quRJggQTR+MuiyDwWgtuR9XYkSX2bqNNOPVcDzL8qcgGI6ABZHnvnJEnn7SYByBIjAAFuoBoeWG5KBwhwQ3m9GPi5i5c8V4JJybJMqalPdxIEA5KkKnb3BHaw67kS3K64nuNdtDa91gEslGj/Zbnl0MvCynr16Be1lEa8+ANupArdXlhTcN1bGrturO15e0QtdoAsLX5ngRvo7m5LkjKTSAE3hcCNZCaRJD157rLnSjAp1XBv/wNBMCBJykMXBiZVX186SwiyyNrFliSpTI/4LQRYJKNT0JIqTkIvrLwO8ftqKQyM52qA+Wfra1/ACKzlUJXS2c9Lkh6zd9IBssQIQIAbeOrpJyVJGWMRgJuysebm4bdGI5Ow8GzmOuEqE0lh4rkaYD6849X3SJISU+rTT5z3XA1uRyt3h12qNvd6wE0zRoPR3reMk9CLKu/vByAAbmwUgJiS695S2HpSynY1UKIv2TNaTaMb/3ewkAhAgBuwe+6lRrVywnMlwGJYWV2VJFVDTsUsjcwttC/CtmQ4HQhI0re99RXjr1/QJYWF0yldACICEOBQMjOahd+9/i/E3CpHHSCGAAS4KbEbgRUSgCyHXbf/45w9okqBNldizwVhWghAgBs4PXhEkmQ7BCDAzYhW3AuktNiStdZzNZiIzL3cLSP2fwBjYay8HvlnCUAWWqd0S4BN55jnSoDFMr4GMgJrYa1//hclScOg7bkSYDHYdEOSlGTbnivBROw+L0k6ZzclSRttApBlRQACXI+1+ub8dyRJ5d3v8FwMsBjiI3dJkk5Ul9TPS8/V4HbtDQs9+ZxbDFfG7P8ADspGL4wyTj8vsrXKBSDBCh0gwGHsd4AQgCyqsOtOP18OCICBm7F50o1ATfvntTvIPVeD27V78VlJ0nm7qTAwjMBaYgQgwHXkexd1t7kgSTJv+8ueqwEWwygAOWWuaG9QeK4Gt+vHfuPzOiI3HqFs8XAMHEQAsvh+8t8+pHXrApBo9bjnaoDFkgdp/QUByCJ69NyW2lsPS5J+qfP9nqsBFsPaiTOSpDvMFT27xbVv0f3GH31aknTRbujISiLDuOelRQACXEd/17U19m2iztqG52qAxWDWT0uSTprL6mZ0gCy6X//Us3rAPCdJqtpHPFcDzJcsdGPhgpwRWIvqf/n9x7Qp9/tHAAIcTh7UHSAFs/AX0X/58/9BgSpJ0iChAw64KWunJEkntKULu0PPxeB2hf1LkqRLdl0Pnlz1XA2miQAEuI6iXgrXVUtxSBIM3JR11wHy6uBpdYd0gCy6ykp/Lf5XkqTI8vsJHFTUe3EMHSALqarcnqqjxt3vtTfZ9wYcRhbWy4CzXc+V4Fb09y5Lkro2VRSnnqsBFsTanZKkk+aKzu8QgCyyH/m1z+m4cYeeL2pDb72PIHiZEYAA11HWAUhPLVrhgJtV3xRKUvDkhzwWgklY1/6L3ez0V3qsBJg/xbgDhABkEeVVpViF1tWTJIUsQQcOpRu5l0Xp8JLnSnBYZWXH175draidhJ4rAhbE6kn3H2ag3e3LnovBrbLW6l987CkdN24M6iW7rne/koMwy4wABLiOsj8KQNqeKwEWSHtz/GVy/jP+6sBE3G+elyQNbaze23/IbzHAnOmn7oX50f6TnivBrciKSm8yjygwVpfsmrTCCCzgMHqxG43ZIgBZOFlRad24AGTHruhdL+f6B9yUdFW7dfi7eulznovBrcpKN/7vuOoOELuhE6t0wi0zAhDgOqqhC0D6hgAEOIzf6PwFSVKw+7znSnC77jBbkqSH7BlOBwIvcu7IWyVJZ7qf91wJbkVeWt0bnJMkfb66Xwp4NAIOo5u4l+at4UXPleCwhkU53n/UC1b13V95xnNFwOJ4Zv3NkqSN7Yc8V4JbNSwqBap0JrggyY3AOraaeK4K08RdPnAd1dDdFBKAAIfTS++QJAXds54rwe0aBSAX7BG1YgIQ4KDe6j2SpI38vOdKcCuyotJGPeavSDf9FgMsoH69OLudMQZm0QyLSifNFUnSqx98UJ008lwRsDjylusA3tsi/F1Uw7zSe4JPjD9ftBtaSbgOLjMCEOA6bN0BMggIQIDDMBtuD0i8RwfIIqsqqzvqh+PzdlOtiNsG4KCsc1qSdKQ4L1nruRocVl5WWjcuAHnX6x/wXA2weAap6wDp5IzAWjSDvNQp44Kr9CjdH8Bh2HRdkrSzdVEfeYzr3yLKykpnjOv+yGyoX/gvvt5zRZg23mQA11N3gAzpAAEOpV0/SN21x1zURfahRy7qDm1Jks7aI4pCbhuAF1h3AUhih1L/iudicFjDAx0g6SoL0IHDGu1BWsnpAFk0w6Iad/mOljoDuDndYE2StG56evjcrudqcCuGeal7jRuD+kvlexh/1QC8yQCuJ3MPxcNgxXMhwGJZOXHP/ofHft9fIbgtv/Lxp8fjEc7riOdqgPlzYnNdF+yG+7D9tN9icGh5WWmj7gBRa8NvMcACGrTci/NOsSUNeQm4SIZ5pY4G7kNr3W8xwIJ53QPusN+Gutoblp6rwa1Y+dQ/0fdHvy1JumzXlHDQb+nxOwxch8nqDpCQAAQ4jLUT92jH1p1Tv/idjIZZMEVZ6ef/8DH9zhfPjQOQN776VZ6rAubPyY2WnrPuBHR2mQBk0WRFpbtMPb+77uYBcPPKdFPn7Kb7cOFLXmvB4QyLUiujACTu+C0GWDDrR064/zQ9dYeF52pwK0798d8af31eRxQTgCw9foeB66k7QDICEOBQjq+19J9lP+I+2FI6+1m/BeFQfueh8/qJ9z/0gvEIf/Eb3ua3KGAO3bXZ1nbouqP+8NMPea4Gh5WXle6rxx/o6Mv8FgMsoCg0eqyqw8PLj/stBocyLCqtmKH7kBCAAIdSd426DhACkEVUBfsjrz5avUoJuy6XHr/DwHWMlqDnITtAgMM4sZbqM/bl+nx1n/vG3nmv9eBwdge5JClSoWPacd9cO+WxImA+teJQx0+4l3+7V7jOLZosL3Rc2+7Dxt1+iwEWUBwEek71/pztp/wWg0N5QQcIAQhwOHUAsm4IQBbV1p3vkiR9vHpQT9g7FYfGc0WYNgIQ4DouXb4kSRoYOkCAw1hvRUqiQD2l7ht1NxUWw3o7liQd17YCY2VNKK0c91wVMKc6RyVJ7Zwl6IumGrhrnCSptem1FmARRaHRs3YUgDzrtxgcyiCvtCI6QIBbUt8zbKirvQEByCKqSnfg75fLr5fkDjVhuRGAANfRMe5UTHuVxZjAYRhjdGI1Vd/WAUje91sQDsXWO1tG46/Kzkkp4JYBuJoidQHISrHltxAcWjDckiQNlEpRcv1fDOAlOkmkvdHOt7zntxgcyrAotWLoAAFuSd0B0jK5VAw8F4PDutLN9OVn3WHnzLqDf+wAWX78DgPXkZbupe0r77nTcyXA4tlox+qPOkB4KF4oZeX+c7QAnfFXwLVVbReAdIptz5XgsMzA/Z51g1XPlQCLab0daag6PCyGfovBoQwPdoDEjHsGDqW1oSxelySdGrL/aNH8+qefVWJc585QkedqMCsEIMB1pJV7aWtSHoyBw7r/eEf90UMxHSALpao7QF5h3DiLYJ0QGLiWUQCyWhGALJpw6HYcdQ33ecCtWG/FykYvjwhAFsowL9VW5j7EdIAAh2KMLh95kyTpgcHn/daCQ+skkRK5EViZYp1YSz1XhFkgAAGuo23dS9ugte65EmDxvPd1pw6MwKIDZJG4AMTqu8I/kCQFD77Xb0HAPGu7+fcP5l+Shruei8FhBPXPpkHA6WfgVqy3Yw3r8SEqCUAWSZH193cgxS2/xQAL6PKxr5AkPTB8yHMlOKz1dqRErgOkNLF+86++03NFmAUCEOA6WnUAEtIBAhzaeitiBNaCqqxVRwM9EDzvvvGab/dbEDDHbOf4/od/+YP+CsGhmcLd52WGl3/ArXAdIC4AsczBXyjl8EB3drzirxBgQQ1W75YkrZdbfgvBLRl1gLz7tXfrzg0OwjQBAQhwLWU+viiG7TXPxQCLZ70dMwJrQZWV9sciSONFfwBeqjrysv0Pj/y2v0JwaKZw4XweMPoAuBWnNloq678/27tdz9XgMMrM/X6VCqUw9lwNsHjKxD0frVR0/y6avLTjHSDvfs3dnqvBrBCAANdyYIxF1KIDBDis9Vak3mgEVsZD8SKprFXLuFEWPZtKxniuCJhfSRTqe7If3f9G/4q/YnAoX37mvCQpC+gAAW5FEgUKEvf3p9vd81wNDqPK3OGkggAYuCVl6sakdyqufYsmLyul9WHnl5066rkazAoBCHAt9QvboY2UpLTEAYfVTiINxiOw6ABZJNbacQfIuIsHwFUlUaCPVK/RRW26b2w95bUe3JyPPX5ZTzx/UZKUE4AAt+ydrzwtSQqq7Aa/EvMkG7hn3SLkORe4FTZ1HSAdSwCyaIrSjgMQRdwDNgUBCHAtmftB1lVLScRfFeCwWlEwfnlu2QGyUNwILNcBEqUdz9UA8210j7Cn+iVSxvVuEXz8yctqG/fCNjOcgAZu1aljm5KkkABkoTz23AX3BS//gFtSto5IklZsT8rZgbRIsrIaP+uyA6k5eKsLXMuwDkBsWykBCHBorTgcj8CqeCG4UCpr1ao7QDbW2IEEXE8SunuEzEbuGywCXgjDvFKrfvilAwS4dWnq/v4QgCyOC7tDXdzaliSZhJd/wK2w7WO6YlcVyEoXv+S7HBxCmQ8Vm9J94BrYGLzVBa6hqgOQPTpAgFvSisPxCCw7ZAfIIqms1X3BWfchZAQWcD2jQxLDUQBS8hJwEbjTf+73qluxABi4VWnbdYomdui5Etysp6/0xgddWivsugRuRRgEetS6EYC6/LjfYnA4Bw9nxkw7aAre6gLXUAzcEvS+UjpAgFsQBkZZvVjRsgNkoVSV1T+I/4n7cP4LfosB5tzokMRA9Uv0gpeAi6Cs7Hj8wU5JAALcqrTj5uC3bV+y1nM1uBlZUY0DkCBmBwhwK8LA6IqtA8TBltdacDg2d4czS4VSxGG/puCtLnANxdC9sO3blA4Q4BZV9WJFdoAsjrKy+vBjl/a/Ybj+AdczukfIbP0SnQ6QhVBWVm3jApC9iodf4Fa1O+uSpEgl178Fkb9g/j0BCHArwsBoR3X3QH/Lay04HJO5ACQLuf41CW81gGsoMjfDe6h4PN8bwOHkkZupGWR7nivBzfrfPvSY/t0Xzulz1X3uG9/5v3itB5h34x0gGu0AoQNkEbgOEPeytm8JQIBblbTX9z8Mud9bBFlRqWVy94EABLglQWC0Y+v9EYNtv8XgUEw9nSIPuP41CW91gWso67mAuUlkjPFcDbCYutFRSVLYvyRVpedqcDM++NB5SdKG6r0tm/d6rAaYf1EYKDBSNh6BxRL0RXBwBFZfBCDArWq14nGIaIc7nqvBzcgKOkCA2xUFRtujDhBGYC0UU9Tv+ugAaRQCEOAayty9wCgCHoqBW9WPNyVJxpbSxYf9FoObMhrns2HqAKS96a8YYEEkUbDfAcIImIVQWqu2cb9XPZt6rgZYXK041J5akqS8v+u5GtyMrNzfAaKo5bcYYEEFxmh31AEy5Nq3SKLM/X5lIQvQm4QABLiGqh6BVRoCEOBWRfGBl0of/6f+CsFNi8NAktWq6sX16fp1fz0ANwZrOOoiYATWQqgqq1Z9ArrHCCzglrWiUNv1IuDy8Q95rgY3Y1hUOm7qkT3xit9igAUVhUZ7qjsIGP+3UKK8DkCiVc+VYJYIQIBrqOgAAW5bHAUajBYDR/xdWgRxaBSpVGhs/Q1OBgI3kkShMksHyCI5uAOEAAS4dXFo9BH7GkmSvfBlz9XgZuRlpR+M/p37YCu/xQALKjRmv4OUfZcLJS7c71cRE4A0CQEIcA2jAKQkAAFuWRIa/UL5XvfBWr/F4KYkUahU+f43GI0A3FAaBRqyA2ShlFWl9XrUHyOwgFtnjNEz5rQkyfYue64GNyMrDoQeqyf9FQIssCAw6tbj/5R1/RaDQ0lz1wGXR2ueK8EsEYAA12DHAQgPxcCtisNA5ehHDUvQF0IcmhcGICHXQOBGkihQX/XflbzvtxjclOODJ3XU7GlgYz1enfJdDrDQeqEbl9l5+DekZz/huRrcSFZU2hntLnjtd/otBlhQUWDUtfUILDpAFso3XvgFSVIRE4A0CQEIcA2bz/2+JKkK6QABblUcBipGi4Grwm8xuDlW48WYuYmlgFsF4EbSKFDXjk4B8hC8CFYKd/rvWXtce4zAAm5LPzqwL+yf/Cl/heCmZEWlZHTYhRG1wC0JjFF3dPiFDpCFshduuP9cu89vIZgp3moA19DZfVySZIPYcyXA4orDQIUddYDk1//FmAtFZZUa93uViYdi4Gast2P1eAheKGHpFqAPlaiqGNEI3I6d+JjvEnAIeVGqVd/r0ekL3JooNOqNRmCxBH2htCp3r37+jnd5rgSzRAACXMNo98dnO1/tuRJgcaURHSCLprR2PAIrNwQgwM04sZoemAPd81sMbkpQjQKQWCU7qoDb8kz6oIaWQ2OLIi+y/Q8RAQhwK0JjNBh1kBaMP10YZa7UuntApevX/7VYKgQgwNVYq7ByN4bD5IjnYoDFFYdGxehHTUkAsgjK0iqtR2AN6QABbsqx1UT90SJtRmAthPF9nmKVdIAAt6WVRPr27O9Iki5aXijNu6redSmJAAS4RWutWIPRs1KZse9yUQx3979OV/3VgZkjAAGuptwf1RNwUwjcMrcEPXQf6ABZCKW1amk0AovTnMDNOHNkZdwBUg0ZgbUIwlEHiI31D7/3KzxXAyy2VhyMZ+G3NfRcDW7kBQEII7CAW9JOQh3bPBD4FoNr/2LMjzoA6dtEUcz1r0kIQICrOfDDy3BRBG5ZHAXKCUAWSllZpWb/ZDSAG/v+r75XXduWJA33rniuBjdj1AHysjuP6Zted6fnaoDF1opCDewoAMkkxsrNNZu7kKo0kRTwSgi4VWfuOLr/IScAWQh1ALKnluKQ61+T8LsNXE25PxeVVBi4dQkdIAunrPZ3gAwYgQXclDQK9ZpX3C9JCvoXPVeDmxHVHSCGTl/gtrWSUP36niEw9oUdBpg/9WG/0c5LALfm5ac2ldn6WZcOkMVQjHbAJYpD47kYzBIBCHA19Q+vzIaK48hzMcDiesEOEAKQhVBWVq16B8iAhabATbvrrnskSWmxKx1cMIu5FNUdIBXjX4Db1orCFxya6F0567Ea3IitXwBWAdc/4HbcsZbuX/sIQBZD/fs0tDEdIA3D7zZwNQdS4TQKPRcDLK5WHKqoT8XYA7t1ML/cCKy6A4QABLhpD9x7Rnl9vRs++geeq8GNjHaAWAIQ4La14kCF9g+NFQ+932M1uKH6BWAVcp8H3I6VJNJwFIDkfb/F4OaMAhAlBCANw+82cBWjUzGZIqURf02AW/Xe155SUY/AGgxZirkIDo7AYjQCcPPe+fI79LyOS5K2H/5jz9XgRlLrXlQQgAC3b/QS6anqhCSp393zWQ5uIM22JUlZcsRzJcBiW0lCDWz9vLT9jN9icFOeubglye267KQcdm6Sqb7Z/Vt/62/JGPOCf171qldN818JTMTf+78+I8ldFBMCEOCWve6uDd15dE2SNBgyEmYRlHY/AHnj/SwGBm5WEgX64/SdkqSiyyL0efeq4RckSf31+/wWAiyB73nbGb3z5cf0h9UbJEm9HgHIPFvJL0uS8tYxz5UAi60Vh0rqznl96bf8FoOb8pnH3YjGTLFefWrdczWYpam/2X3ta1+r559/fvzPhz70oWn/K4HbduXxT0iSMhszAgu4TUdW25KkLKMDZBEUB3aAbK6veq4GWCxFsiFJqnqXPVeCGzlSXZIk7R59g+dKgMX3qlPr+qX//B264+imJOnClW2/BeG6VsstSVLeOuq3EGDBrSShPlfd7z4YDs4ugip3I7CObKwpCFiC3iRT3+4cRZFOnTo17X8NMDF5WekN5jFJ0jGzoxNrjEYAbsdmxwUgZcES9EVQHdgBoqjltxhgwVTphrQnqb/luxTcQGrrUD5e8VsIsEROHduUdqRLBCBzrV3uSJKqFiOwgNuxkoT6o+pVek/4qfEeWcw3Wwcghufcxpl6RPnwww/r9OnTetnLXqbv+77v01NPPXXNXzscDrWzs/OCf4BZu9LNFKiSJP2r8mt1eoMLI3A7Wi33d8hWLEFfBMWBHSAEIMDh2JbrAAmGvPybd6MAxCZtz5UAy+PIhhsnYlkGPNficlB/0fFbCLDgWnGooWL3oV6ujfk22vfLc27zTDUAefvb365f+IVf0Ac+8AH943/8j/X444/ra77ma7S7u3vVX/+TP/mT2tjYGP9z5syZaZYHXNXlXjY+/fycPab7jnNjCNyOVuq6qEzJDpBFUFVWaT0CixtD4HBs4sbGhSUPwXPNWiXj6xwdIMCktFbcNZAAZL5FVf0zigAYuC0b7XgcgOQZ172FUHeA2IhJL00z1QDkm7/5m/UX/sJf0Bve8Aa9973v1W/91m9pa2tLv/qrv3rVX/8jP/Ij2t7eHv/z9NNPT7M84Kr6WTk+/fxdb3tApze5MQRuR9xx7fWt8urhN+ZLUVVqazQahgAEOAxTP0wFJWMQ5lqZKay7fQ3XOWBiOnUAElZDDfLSczW4lrhyAXDACEDgttx9pK31NXfdu7TFBJuFMDqkxEG/xpn6DpCDNjc39eCDD+qRRx656v89TVOlKSkc/BoW1TgAedXdJzxXAyy+ZOOkJGmt3JaslQzLxuZZZaUTph7f07nDbzHAgglid2girAhA5lreG39pEl4AApOStt3fp5Yy9bJSrTj0XBGuJrHuBWBABwhwW4wxet2ZO6SHpW6367sc3IRRlzY7QJpn6jtADtrb29Ojjz6qO++8c5b/WuBQDgYgpMLA7WttugAkViENmIs/77Ki0ilz2X1Y4+c1cBimDkAiApD5lu2/pIgTDl8BkxIkBwOQwnM1uJak3oEUEAADt+3EEbf/rcwZf7oIgtGuFq5/jTPVAOSv//W/rt///d/XE088oT/+4z/Wd37ndyoMQ33v937vNP+1wG0Z5uV4B4iYCwjctrXVjvZsHSb2LvktBjeUldV+B8jaSb/FAAsmTNy1LqzYeTTXPvVL4y+TcKbnwYDlVh8ea5lM/YwRWPMqHXeAsOsSuF1HN9clSYYl6Ath1AEy6tpGc0x1BNYzzzyj7/3e79WlS5d04sQJvetd79JHPvIRnTjBWCHMr6ys1GIBMDAx661YPbW0qoFs3hMDsOZbVhzYAVIvdAZwc0b7JCICkPl2YBRjGhOAABNTXwNbytVnB8h8KjK9zTwkSQpbnIAGbtfKivt7FFnu/RZBPOrSJgBpnKkGIL/8y788zf/3wFQM80qb2nMf6AABbttGO9ZFm0hGGva7Ilacb1lRKQnqLrgw8VsMsGCiep56bDN2Hs2z0l3jfqH4Rr0nIgABJiZy18BUmXboAJlL1ef+1XgMSNje9FkKsBSSluukSi3jTxfBaAeSYgLgpuGOH3iRqr+le4Pz7gMdIMBtW0lCDeTCxH53x3M1uJG8LJWaem43ITBwKGHqXv4FqqSK+ffzypbulGahUAkBCDA59YlaRmDNr3L7ufHX4T1v91gJsBxa68clSUe0q7ysPFeDG4nrTh0b866vabjjB14k3Xli/8ORe73VASwLY4yywL1I73X3PFeD66kqq6DK979BBwhwKKMOEElS3vdXCK6rKtx1rlCkNAo9VwMskVEAokw9ApC5VObulPr/r/gGJUnsuRpg8bU2T0mS2iZTb4/DfvNu3KnDCKzGIQABXqQqXCJcKpTWT3uuBlgOReBOWAx6BCDzLCsrJToQgNABAhxKfDAAKRiFMK/K+l4vU6iUDhBgckZL0JWxA2ROlfXPpkyxooAxjcDtStpr6lt3aGy4fdZzNbiRZLTrMiIAaRru+IEX+cBnnpIkXUzPeK4EWB5F6B6Isz4ByDxzAciBsT0hAQhwGGkcamjrE7XFwG8xuKaqfgFY2EhJyOMQMDEHOkD6w/wGvxg+VHUHSBnEMuypAm6fMdo2a5Kk4c5lz8XgRlp1B4ihA6RxuOMHXqQTW0mSCWkJBialqk9YrD37B54rwfVkxX4HiA1iKeA2ATiMNAo01CgAoQNkXpX1CKwqCBVwAhqYnLoDJDRWgyHXwHk0mnZgDc+6wKQMjbv27e5ue64EN8IIrObizQbwIv2BO7G5vrriuRJgebQCtxCud/YRz5XgevKyUlIvQDeMvwIOLY0DDVTvzinYATKP8rLS73zuaUnSoIo8VwMsmWRVuXHXwNY293zzaBSAVAEBCDAptj7sd2mLAGTepXLXQJPwvq9pCECAA/KyUpm5RDiKWP4LTMoXj3+jJClQ5bkSXM/BDhAWoAOHl0YHR2Bx+nkePb81UGBd0FuIBejARIWRrrTuliR95ZM/77kYXI09MAILwITU3QRXtglA5l0qRmA1FQEIcMCVbqZIbmFfGHP6GZiUt77mQUlSVDETf55lRaV0tAOEDhDg0F44Aovr3TzaHebjez0CEGDyLncecF+Umd9CcFW2/n2xHHQBJiZMO5Kk7Z0dz5XgRlrjDhACkKYhAAEO2BkUiuuXf+wAASan03GL4aKKh+F5tt3P9S3hR9wHHoyBQ0ujkABkzu2+4F6P6xwwac8df5ek/bHCmC92tAOEDhBgYuKWC0D2dglA5lpZKK4PwQQRAUjTEIAAB/SzUnE9/56Xf8DkrHZWJbmZm3nJGKx5daWXq123BTO+Bzi8JDq4A4S/Q/PIBSDu4fev/KlXea4GWD5R3UXf77MHaS6V7mcTHSDA5ESp2ydRZT3PleC6DuznC1J2gDQNAQhwQC/bfygWHSDAxHRW9wOQ7X7uuRpcy5VuppVRAPK29/ktBlhAaRSMd4CUQx6C59HuINfXhZ+VJN11bN1zNcDyeeXdxyVJsSmUFRx6mTt1B4gCAhBgYuqF2v/V8Oeliuve3MoPBCDsAGkcAhDggF5ejsci0AECTE5Yz9hMlWurxxisefUzv/uwVkw9siLp+C0GWEBpvL8DpNw777kaXE25c27/A2PKgIk7uu7uH2IV6mel52rwEqU7iGQjDvsBk1IcO9BRevlRf4Xg+uoApG8TRSGvw5uG33HggH52MADhphCYmHrGZmoKbe3xwmlerabR/gismLZg4LDSKNQlbbgPT/9Hv8XgquyA+dzANMX1CKxEpXp54bkavFhQuO5EG3L6GZiU/pv/8v6H3mV/heC6bO6ufwMlCgLjuRrMGgEIcEB3WOhvRL9cf7jotxhgmUTp+MudvT2PheB6+nm5PwKLDhDg0MLA6HN6uSTJ9i55rgZXUw4P/Ax67Z/zVwiwrOou+liFenSAzJ10cEGS1I2Pea4EWB7tJNJnqpe5D/0rfovBNY3G0/aVKCIAaRwCEOCAfl4qMfWN+qMf9FsMsEwOzNj8oy8967EQXE8/K7Vi6AABbsde6DpAqoJxf/PIZl1J0qX07vHMbgATdCAAYQTWnKkqtYfukF8vPeG5GGB5tOJA29YdHiu6HICZV2U2GoGV0gHSQAQgwAHPbR0YzfNNf99fIcCyCUJVCiVJ/+7TT2qQ80A8jwZ5uT8CixeDwC0J6rnqtsg9V4KrsZk7/VeEXOOAqajHCMemUJ/7vfnSv6zAurFkg9Zxz8UAy6MVh7qiNUlSscckkXk1GoE1VKLQEIA0DQEIcMAnHz1wMv1Nf9FfIcASMpE7Eagq15OXen6LwVUN8mp/BFbMCCzgVkT1yL+qJACZR6buACki5t8DU1F3gCSMwJo/u89Lki7adUWj+3IAty2NAl2xq5KksssIrHlVjTpAlCikA6RxCECA2pVupueffVKSVIUtKV3zXBGwXMyBkQiPX+x6rgYvVpSVsrJSy9ABAtyOUQeISkZgzZvdQa6PP/yMJKlkATAwHXUI7EZgsQR9ruyelSSdt0eURLwKAibFGKNu4N4fVYzAmlujLuCBJQBpIn7qAbWtfq7j2pEkBat3SLTEAZMVjU4E5toZcDJ63gyKSpIOdIAQgAC3Iordyz/RATJ3PvD5s+M9RwUBCDAdoxFYdIDMn71zkqTzdpMABJiwsnVEkpTtEoDMK5sf6ADhfV/j8FMPqG33cx032+7DKkvhgIk70AHSHXIicN64RaVWbdWn1hNGYAG3Ioz3x/1hvmz1cq3I7XvbLhn/AkxFfb/XUqbBcOi5GLxA77Ik6bLWCECACQtXj0mSyi47QObVqANkqIQl6A3ETz2gtnMwAOnc4bcYYBnVJwITFdobEIDMm0FeqqVMgbHuG3SAALdkPFe95Do3b7b62bgDpLXCqFNgKjontBeuKzRWG+c/7rsaHNR3uwm2bUdJyKsgYJJaR+6SJIX1rh3Mn7LeATI0qedK4AM/9YDaziDXcY0CkON+iwGWUehuNBJTaI+Z0HOnn5f7468kAhDgFsWJC0AMHSBz50ovV7u+zr3i7pOeqwGWVBjrufYrJUlJ91nPxeAFeu5k+rY6SmNeBQGTdOZ+d91bHZ6VrPVcDa7mc4/X4VTEGNQm4qceUOsOiwMjsOgAASbuwAgsOkDmzyAv96+BUVsKuEUAbkWUuLB3OBzoiYtdz9XgoO1ePg56oxYdIMC09BM3CibqMwt/blgrffKfS5J27QodIMCE3XnmZZKkVNl43Bzmy7MX3O/LK8/wvq+J+KkH1IrKMgILmKYDSzHZATJ/+lmpbw4+5rsMYOHF9RL0SKX+0//to56rwUHDotKKcTtAlNDlBkxLlrpuert33nMlGBvujL983J5Syg4QYKLuOr6pXes6C86eYwzWvBkWpYYDdzDpvlPHPFcDH/ipB9TKstIrzTPuwxpjEYCJi+oRWCqUl7QFz5t+Xqpdz8bX8Vf4LQZYYGk9AitSqWeu9D1Xg4OystIbzOPuA2P+gKkpWpuSpL0r5/wWgn39rfGXv1t9BUvQgQk7shKrF6xKkj7z8JOeq8GL9YalWjaTJLXZA9dI/NQDauFgSy8PnnMfXvZur7UAS+nAEvSsrDwXgxcb5KXW1XMfXvWtfosBFlicjjpA6HSbN2vDs3pFUO8kSNf9FgMssXtPuQ6QuH7ZhDlQL0A/ZzclGQIQYMKMMSqSDUlS3mUE1rzJy0ot434mBQk7QJqIn3pALchdO1xuEql9xHM1wBKqd4C8MnhKOQHI3OnnpdZMHYC0eDEI3Ko0bUmSElNqJeFWe5482P/sgQ/f6K8QYMmtdtwp6LgayrIMeD4MtiRJ27YjSUrC0GMxwHLKYvcMZdkBMnfyyqpd74FTTADSRDyVATVTuBd/w4CLITAViXvgerV5SgUjsObO3rDUqupxPZyMBm5ZXI/AkqR7NpLr/ErMWli6a9yFu97DYRdgiqKWGzGXKmPs6bwYuF2X23L34195H9dAYNK6K3dLko5tffYGvxKzlheVWqq7EiPe+TURAQhQq4Z7kqScAASYjnqs0obpMgJrDn3s8ctaM6MAhLmowK16xytOj78+1uLF3zwJy/rkX9TyWwiw5KLUBSAtk2lQlJ6rgSQpc4f9+jbVB//a1+mOda6DwKRdPP5WSdKx3mOeK8GLFVWlDeOmvjDtoJkIQABJT1zs6v/6+COSpCzkZhCYirU7JUnr6jECaw49t9XXEe26D5yMBm7Z3SeOyspIkqKy57kaHBRWA/cFow+AqYpHAYgyDXICkHnw3KUtSdJAidZakd9igCVlVu+QJK3kVzxXghfLCqvT5pL7sH6X32LgBQEIIOn/+3uPaEXuoTgPVjxXAyypllsKt266jMCaQ91hoaOmDkA6J/wWAywyY1TVrfVBMfRcDA6Ky1EAwmEXYJpMHTK2lGuYc+hlHjx/0b2QHSrWidXUczXAcrIrxyVJa+W250rwYkU20AlT/75s3O23GHhBAAJISqNAnXohUh5yKhCYilEAQgfIXPqm7m/oiHGjAAlAgNtT1gEIHSDzJbLuXi+gAwSYrmgUgGQaMgLLu+e3+/qdzz4pSTpxZFPGGM8VAcvJtl0AslptS5YDf/PE7D0vyYXAWjnmuRr4QAACSEqjUG3jHooLRmAB01EHIG2TyXIqer4Md/VD+c/vf2YEFnBb7DgAGXiuBAfFlfvZYxK6fYGpqrusWibTgA4Q7/7ZHz2hlnHLfw0BMDA1QdvtUYxUSmXmuRocZHaekyRdNMckQuBGIgABJKVxMB6BVdABAkxHuj6ei5+We56LwQv0Lo+/vPK1f0cKuD0AboeN3Qv2qOx7rgQHta3ryKEDBJiy1L0EXFNPg6zwXAwkKZV7GRsmXP+AaYnTA3+/Cg7BzJN7PvGTkqSLIZMOmoo3HICkVhRqZTwCi1OBwFQEgarEPRC3CgKQeVL0tiRJ5+2m7Nv/it9igCUw7gCpePidJ99u/lCSFPACEJiueg5+y+TqdXc8FwNrrVrjAIRnXWBakqSlytbdBUw8mB9757V+6TOSpN9pvddzMfCFAARQ3QFi3EuKgRiBBUxLlaxLktrVrudKcNBg55Ikadt2tJpGnqsBFp9NVt1/9rf183/4mOdqIElVeWAPwZ1v8FcI0ARJR0PjFm1nO+c9FwNJ4wAkSgmAgWlJ48jtmJD08HMXPVeDsfNflCSds5v64843eC4GvhCAAJJCY8YdIH2lnqsBlleVugDkDeVDnivBQXvb7gZ9L1hVEnFrANyuauNeSdJ9wVn9xPu53s2DbLDfeRjc/RaPlQANYIz2Qrf7LScAmQsr9b7LKKUDBJiWNA7GAcivffQRz9VgrOuedR+tTisK2P/RVLzlACTlVTUOQLp0gABTY2QlSW+0X/RcCQ7q7W5JkrKw47cQYFkce0CSdJ8567kQjOR1AFJZo5gXgMDUDSIXgJT1mE34Y6100lyRJBWdk56rAZZXGu0HIJ2Q/UdzI3c74HpKOezXYPzOA5KK0o5HYHVt4rkaYHlVb/hPJEntqq9+Vt7gV2NWPvbwc5IkGxEAA5PQOnpaknRMzL6fF3nfBSB9JUqi0HM1wPLLI3eo4oOf5hS0b6W1Oi037rRYu8tzNcDyisJAQ+sCkJWAAGRuZF1JUk8trbdjz8XAFwIQNN6jF/b0U7/9Za2qL0nas8xFBaYlveuNkqRjZkcX91gMNy9M4QLgzBAAA5MQrd4hSTpq2Hc0L4qBe/jtqyVjGH8ATJtJ1yRJx+PMcyXoZ6VOmC1J0pl77vdbDLDEOkmoodzzVMvknqvBSDlw9+M9m+oNd214rga+EICg8b7vn3xUknTcbEuSLmvdZznAUjOdE5JcAPID//RjnqvBSFC6AOTMiaOeKwGWxIr7u/Ta4EkdpQtkLoweftn1BszG0aPHJUlJ2fVcCXrDfPwy9vjRY56rAZbX5koiE7v7jCofeK4GI8VwvwPk+95xr+dq4AsBCBrv7I77wXTcuBcU2yEvAIGpaW9KktbV01afUzHzIqxcNw4jsIAJWd2fsf4P43/osRCM2K4b/zIwXOeAWTBtd6gsJQDxbvTyT5IUM+0AmKZOZ1WSVA57nivBSNl3h2AGpqVOwhjUpiIAASRJVsflOkD+b9/4Ns+1AEsscg9dqck1yJmLOi+i0gUgJuJkNDARG3dp+PrvkyS9PnhMZWU9F4Tk6Q9Jkp4zLAAGZiFsuQCkbXtcAz3qZYU+8qVn978REYAA01TGbvxfmDMGdV6UdQicBW3GoDYYAQggKVWu2LiFzPfddafnaoAlduAFe5kPZC0PxPNg1AHCqUBgcrKv++8lSasaqCgJfH0z/SuSpC9Er/ZcCdAMUcstQW9rqH5eeq6muf7u+x9SW+4+rwxTKeAVEDBNeeJ2TKTZlt9CMFYN9yRJRbjiuRL4xE8/QBrfFEriBSAwTQdGLKU2V1ZWHovBSFjVC0pjRsMAkxK13QNwYKzKwZ7naqDCjTwtAq5zwCxEiXvR1DK5+hkBiC//8uPPqGXcfV4V8pwLTFvROiJJahXbnivBiM1cB0hJB1yjEYCg8cLAqCV3U1iaSApjzxUBSyyMZeXaTlPlGmQEIPMgqtyLQUMAAkxMmKwot27OcNFjEbp3dQBShlzngFkwowBEQwIQj06spePDfpaDfsDUVemmJKlVcO83N+oApIjoAGkyAhA0XhoFatenYngoBqbMGJm6CyQ1uQYFD8TzoGVHAQg3hcCkRGGgPbmXTdWAh2DfbFG/AAzZdQTMRH2/11amHnvfvHnFyVUdN+4kephwnwdMm225DuBWSffvvBiNwArSjudK4BMBCBpvJQnHHSAVAQgwffUekFQZJwLnxNHqsvtileXAwKQEgTkQgDAGwbu8L0mKU05AAzNRdxu0lCkv2Pnmy1or1tuDP5EkhRunPVcDLD+TrkqS0qrvuRKMZH0XgLzsNM+6TUYAgsY7vnqwLZhTMcDUjTpAlLMUcx7sntVr7CPu69VTfmsBlsxALvC1OQ/Bvtl6BBYBCDAj9XNV2wzZ+ebRIC91VLvuw71f7bcYoAFMsiZJSque50owVo/Aev39d3ouBD4RgKDx7lhvac24FxOMRQBmYNwBkmtAAOLfY7+///XGXf7qAJbQUIkkqcoGniuBqUdgJS0CEGAm6r1iLeXKCUC8GRaV0nrcs9J1v8UADRC0XAdIiwBkLmR5oVXrApC77jjhuRr4RACCxosCo/9n9CuSpJXthz1XAzTAgR0gdIDMgTIbfxlucCoGmKT9AIQOEN9M6QKQVotuX2Am6g6QVfUIQDwa5KUS1TtYIg77AdMW1gFIXPb1rz/xjOdqsP30F7RqBurZVGt3vsJ3OfCIAASNV1RWXbH7A5iZejHcEe1qmPNA7JsdurEI/1f5DiUhtwXAJGXGBSDKu34LwbgDZGNtzXMlQEMcfUCSdE9wQepe8FxMcw2LSqly9yHimReYtrDtOq1WzUA//m++6LkadM8/Lkl62pxWECeeq4FPvOlA41WV1Y6tTwN+2//stxigCTbuliTdZS7SATIHysGOJGnXttVKQs/VAMslM+60LSOw/AtK93tw78mjnisBGmL1hC4GxyVJ4Q6noH0Z5qVS1d2+BCDA1J084RZtb6irV5/seK4GvZ3LkqRBtOq5EvhGAILGKyur1vimkLnQwNRtnpFUByAZAYhvZd91gHTVVjsmAAEmKTex+6JgBJZvK3K/B2sbRzxXAjRHP6hf/tXdppi9rKyUGEZgAbOSHj2j0sRKTa6Xt7Z8l9N4g90tSVIRE4A0HQEIGq+0Vq3RYriYAASYurZ7+bRm+hoUBCC+FXUHSN+0FTMCC5ioUQeIZQeIX8VwPAM/bG94LgZojlEAYghAvCkre2AEFgEIMHVhpO6Km3iw3n/WczHIulckSWW87rkS+MabDjTeCzpACECA6Uvc6YuO+nSAzIGq7gAZhrRoA5NWjAKQghFYXh14+Rq32QECzMro3sJkBCC+FCUBCDBrReJetofZnudKUPa33RctApCmIwBB47kAhMVwwMyk7uVTRwMNC5ag+zZagp6FK54rAZbPYPTyb7Dlt5CGq/r7u47iOPZcDdAcWX0N7Ow96bmS5nIdIOwAAWapqg/8hQUBiG/ZntsBkq4yArXpCEDQeJWlAwSYqToAWTV99bLCczEYncrMWQwHTNy5+C5JUn7uS54rabZi4E7/7amtKDSeqwGaowxcx8HLnvl1v4U0WFFVSk192C9M/BYDNIStA5Co6HmupNmyopLdOy9JWjt+2nM18I0ABI1XlAd2gHAqBpi+8Qisgbb7uedioLo1u4wYgQVM2qe6xyVJ9vITurA79FxNc5W7FyVJ27ajhF1HwMw803mNJCkPOWTmS1QOdFJuBr7WeQEIzIJJ3HNVXBKA+PTlc7taK9317+677/VcDXzjCQCNV9kDbcF0gADTl7oAZMN0daVHAOJbMApAYjpAgEl7ZuBOP6+ZHgGIR9XWU5Kk5+1RxQQgwMw8vfoGSVJcdD1X0lxnqmcVGquydVRaO+W7HKAZ6ufdpOTa59N2P9cxuTGoyfpJz9XAN54A0HgvWIJOBwgwfcderspEOmWu6EsPfVafeuqK74oabRSAJCsbnisBls+udbt11tRTVpSeq2mw7WclSc/rmMKAEVjArNjYnYLmJaA/K5W7z6vaxzxXAjTHaARWy/Y9V9JsO/1ca6b+PWjxrNt0BCBotGe3+nr0/I4SU7+UoAMEmL7WhgYdNxd/o7is7/xHf6wr3cxzUc0V1cv5WqvcFAKTtit3X5GYUvmQh2BfbM8twNwyXOeAWSpjt/ctrgZSyd43H1I7kCTZhFGnwMzUAcgKAYhXO4NcbdUd2MmK32LgHQEIGu2df+9397s/JDpAgBlJ2+6msF3v37mwx2iYWfv9L1/Q/+Nf/EfFlfvffmVt029BwBLqqqXKuo6Dsr/lt5gG292pA5CS+zxglmx6YLxmtuuvkAZL6gCEl3/A7Iy63+gA8WundyAAibkGNh0BCBqPAASYvTBxp6JHf/8Cw0iSWfuv/49P6oOfeWz8+eV3MxcamDSrQFuqH4Ivft5zNc31uUefkSTtiYdfYJbCuKWhjd2H4Z7fYhrolz/2lFY0CkDY9QbMTOq638Z//+BFt99VaKz7QADSeAQgaKyqchfCUSJchakU8FcCmIn4hQEIM9lnb2dQaLW+Kc9spD/zFff5LQhYUh+pXiNJ6lz8rOdKmmtV7gTmnmXUKTBLSRRoT/UBsyEdILP23/3a57RSP+saOkCAmTEpI7DmwbB3IHgnAGk83vaisXYGuSSpVY/gsSHdH8DM1N1WbcPoK59W66Vwg5C50MA0hIHR89YtnrU5D8G+jK51o50sAGYjDs04eLxw6aLnapppdALd0AECzM5oB4i49/Np2HPBe2liKYw8VwPfCEDQWFu9OgCR+0/L+CtgduoOkLT++1fWHVmYrdGp6DzkRAwwDb/6X7xDfSXuAwGIN2vqSZKGAdc6YJbiMNBeHTz+L7/9Gc/VNMvo3nrV1CN4Ug67ALMy6gB5tXlSYgecN1nfdYAUEQdgQACCBsvLSpKU1iN4CECAGXrRCKzKEoD4MDoVXcScCgSm4S33HtXdd7gOEFMQgPhyR7AjSfrv/5Ov81wJ0CwHA5Dnzp33XE2zbPfdIaM7zSVJUrB+l89ygEapjr9y/8OXP+CvkIbLB11JUhVxAAYEIGiwvHQvXDeMuyiKuajA7ESpJOk7ww9JkoqSAGTWWnGgTj0WoYw4FQhMSxW6l38EIJ5kXXXqbrdw/ZTnYoBmScJgPAJrdOgCszE67He3uSBJCjbP+CwHaBTTPqJfLN4jSbLP0/3mw8PndvX4cy54t3SAQAQgaLDRTeEbzGOSpPLEa32WAzRL5oLH1wZPSqIDxAdr919G5BEdIMC0lPVDV1AMPFfSUBcfliR1baqgte65GKBZkijQjtwhsw11PVfTLKMRWHeZevfK5r0eqwGaJQqMnrDu0IXdPeu5mmb68X/zRa3U+0YDRgBCBCBosKJyAciZwJ2KqU68ymc5QLO88S9KkjIbSpIKdoDMXF5W4x0gJ08c81wNsLyqesRmSAeIH49+UJL08eqVCgPjuRigWeIw0EW7IUk6Ybb1U//+S54rao6ysopV6JSuuG/QAQLMTBAYnbVH3Yed5/0W01B/+PDF8bjtkAAEIgBBg2WFe+F6XNuSpGDtDp/lAM1y4kFJkq1/DJV1IInZKMpKlZXeGXxektRaWfNcEbC8RiOwoooOEC96lyVJf2LPKCIAAWYqDo3O201J0h3min7mdx9RxaGXmais1SlzSYGxGthY6pzwXRLQGGFgdEl112n/kt9iGmylHvccEYBABCBosFEHyHFTByAdAhBgZlJ3Q5iaXKkyleQfMzXagfSe8FP1NziZDkxLOQpASv6eeTF0C9B37QodIMCMtZNwHICcqA+dZdz0zURZWd1dj7/aTu+UDNc/YFZCYzSwiftQDP0W00CDvJSk8Qgsw75fiAAEDZYXpf5Z/Pf1uuAJSVK4edpvQUCTpOuq5B7E1tUbB5KYjayoJB04gfnqb/NWC7DsRiOwopIOEC8GdQCiFUUhLwCBWfrK+46qqg+Z3WG2JO2/mMJ0VdbqJ6J/Kkk6eeblnqsBmiUIpKFi94GDZjO3OygkSUfMnvtGQgcICEDQYNHu0/r68DPjz+Gp13usBmiYINAwdjOh3xA8KvKP2RqWpY5od/8br/wWf8UAS66K3KkzRmB5UneA7NABAsxcKw71vj/z1ZLcCCxJGhbc9M3E7lk9ENS7B5h0AMxUaMx+AEIHyMyNgvb3he9334jpAAEBCBrMDnZf+I2Avw7ALKWv+kZJ0huCx+kAmbG8tPqK4BH3oXOHFCV+CwKWmK07QMphV09c7Hqupnls343d2dWKIu71gJmzqyclSRump1SZhjn3fLNgD546Z/wVMFNhsD8CyxQcgJm1YeECkKGpn3E57AwRgKDJDtwUDm3ksRCgmYKj90uSjmlbP/H+h9TPGIkwK1lR6c3Bw+7DK/6032KAJWdjtwOkrUw/9ptf8FxNA7EDBPDKtDY0tO4k9AmzrUHB/d5M5Adeuq6d8lcH0EDGGOXGXfdMOZSsvcF/A5M0yCslynVCW+4br/kOn+VgThCAoJEudzPZrDf+/L3Zj3qsBmiozglJ0jGzo0fO7+lnf+8RzwU1R15W2lQ9E3XzHr/FAEvORnUAYjJd2O7d4Fdj4sY7QNqKCECAmQvDQBfkxp7eoSt0gMzICzpA3vnf+isEaKg8SPc/0AUyU4O81FuCL7sPyaq0ctRvQZgLBCBonE8+dUVv/ju/rV/8w4ckSZ+uHtAn7YOeqwIaaNXNIz5Zz4R+5Pyez2oaJSsq3WPOuw+tTa+1AMtutANEklom91hJQ412gIgOEMCHKAh03m5Kkk6Zy+PRJJiy3AXuT5q7pPYRz8UAzZObAyOGCUBmapBX+gpzYNoBYwAhAhA00D+qT5m3lUmS+jbV17/yhM+SgGY67oLHNweP6GuCz3JfMkN5f09fG37OfUhX/RYDLLt6BJYkpZZFmDNV5jKFOwW9a1foAAE8CAOjP6nOSJK+IfwUS9BnpR6BNTTpDX4hgGmwwYEx61/4dW91NNEgL3XE1IcrN+72WwzmBgEIGqc7dKeO2sa9hGh1VvXzP/CVPksCmunYK8Zf/mLy9whAZsjsPbf/gVOBwFSVMrpg1yVJp3TeczUNU4+/kqQ9tekAATyIAqPfr94oSXqZeV6DnA6QWbB1B0im5Aa/EsA0hObA69Z/80Pe6miiQVHqu8I/cB/ajL+CQwCCxullhSSpVXeAhAkjEQAvwujGvwZTUWQHTqE/+E3+CgEaoKysHqnc6bP7qmc8V9Mww21JUtemUhDJkLQDMxcGRs/bY5KkO80ldTMCkFkwBR0ggE8B75j82XleR0cdIFXhtxbMDQIQNM7opntF9QvAA6MpAKAJqqE7FXguuEMKQs/VAMstLys9Zd3Oo+MlHSAzNV6AzmEXwJc4DPS8dSdw79CWdvuMApwFU7h7vZwABPCCsZv+HL34H/c/3P91/grBXCEAQeOUlZUkrRl3U1gm6z7LARrti62vGH9txE3irFT1XOjCMBYBmLaitDorN2ruSHnJczXNYgeuA2TXriik+wPwIgyMdtSRJAXGatjd9lxRM5ihO/3cD1Y8VwI0UxAY/Vr5Lt9lNFKUuZ8zl8MT0j1v91wN5gUBCBpndAJwTS4AUYsABPDlN4/955Kkp6sTIv+Ynaoei1AEBCDAtBWV1bn69PO3DH9LuvKE34Ia5MqVi5KkXbXVZ+8A4EUUGA0VK7Ou4zQjAJmJ0QvAbrDquRKgmUJj9I+KP+s+sIdipoL6WffhlTf5LQRzhQAEjTNqRVwzfUlSkBKAAL6YuCVJapkh+ccM2cxd/xiLAExfUVb6aPWq/W/8o6/yV0zDVL39DhAAfoShkWS0K/f3sOwRgExbVlT6kyfczqkeAQjgxUY71kD1YbO877eYhjGF+9+7CFueK8E8IQBB48Sh+2O/rq4kKVjZ9FgN0GxB4h6GW8o9V9Istj4VU9IBAkxdUVk9au/a/0bek6z1V1CDVMNdSa4D5DvedNpzNUAzjcbPjYLIIQHI1P3hwxfU370sSdqqCIABH06spRrY+rBZ0efeb4bCOgDJAwIQ7CMAQeOEL+oAOXnihM9ygEYbBSBtsRBzluxoB0hABwgwbXlZSZL+bv4X979Zh5CYrtG+Ixu19NPf8xU3+NUApiEK3bPXntqSpJ0r7EKatp1BrvV63PO5nHs9wIdWHGigeP8b3PvNTFC6d30lHSA4gAAEjRPXN+EtZZKkE0eP+CwHaLQgdQ/DkakUqfBcTXNUmbsBr0IeioFp+0tffZ8k6Z+V37T/TR6CZ2IU9paEvYA3aRTqn3z/W7W24WbgX7x0URd2OfgyTWW1/6x7aRh5rgZopj//ljPq68D9B2OwZiYc7bsM254rwTwhAEHjjDpAknrkjol4KAZ8qeL9ucTtsuuxkmaxuTsVWEWcigGm7RUn1/Qb/9U7VShUOdp2VPDybxYY9wfMhz/9mpO6+9RJSdKa6enL53Y9V7TcyqpSatyzbr8iAAF8+KbXndJr7z6qvq3vQYY7fgtqkLAc3f/xrIt9BCBonChwf+zT0c4BXgAC3pgw1q51JzNWqj3P1TRHlLkb8CJe91wJ0AxHO4kko+HoIZgOkKl78lJX7//kE5Kk0nDYBfAtbG9IklbVV1ZUnqtZbkVlldYdIMODI3gAzNTRTqJtddyH/pbXWpokZAQWroIABI1T7+Ebn4oRHSCAN3uDQjtye0A6lgBkVqLMLSAtEgIQYBbi0N1yj2dB0wEydf/Tbz00PuxShrwABLxL1yS5DpCsJACZprKy4+sfAQjgzx1rqXase9bVYNtvMQ2SFO69Qn5g2gRAAILGsdb9Jx0ggH+DotSOdadi0oIAZFbi3I2eKJMNz5UAzTBaAjxU3QHCHOipK0o7HnfKDhBgDrTcoYs1OkCmrigPBCCWAATw5aseOLbfAUIAMjNp6Z5183jNcyWYJwQgaJyqTkD2AxAeigFf/srXPjDuABndqGD6kqL+37pFAALMwqgDZPwiig6QqYtCM+72ZQcIMAfqDpBV9ZXTATJVZWXH179x8A5g5u45uqJdOkBmrlWMAhCmHWAfAQgap6xGAYibi0oHCODPPcdWdPeJo5KkqOSF4Kxk3foGPOVUDDALnSRUFJj9USTsAJm6KAjGh11syGEXwLvI7XxLTU4AMmWl3e8A+R++/U1+iwEa7MRqS4M6hLR0/85MWo5GYBGAYB8BCBrHWsmoUmJK9w0CEMCrqn4xFVYEILPQz8rx/9Zpa8VzNUAzRGGgM0dXxg/BjMCavig04xeAFQEI4F/ddZ8qZwTWlJXV/gjAr37lXZ6rAZrrxFqqTJEkaTjk8MtMVJXSsitJKghAcAABCBqntFaJiv1vRLQFAz6NXkxFVea5kma41B2OXwq+7r6TnqsBmuO+Yyvate4EtIY7fotpgDAwWjUuaCpDDrsA3tWHzlLlykrruZjlVpRWHVMfLCIABrxpJ6Hyuvs3zwhAZqIcKpD7GWPjtudiME8IQNA4lbX7468kbgoBz8YdIJYAZBZ2+sX4VCAdIMDs3H98VTsswpyZ2Bg9aJ6RJF1u3+e3GAAv6ABhBNZ0Hd/5/P4H9l0CXo32kJUZ0w5m4uCYWa5/OIAABI1TWWlV7qKYKaIDBPDM1jeFIR0gM7Hdz8eLMQmAgdm5/ziLMGdpxfR0xLgZ0L31l3muBsA4ADEZI7Cm7Ojew/sf2kf8FQJApXEdIGVOB8hMFC5oKq1REMaei8E8IQBB41SV1ZrpSZJ6puO5GgBVxAisWdoZ5OMRWJyKAWbnvuMd7cgFILZPADJtq9bd6w1tpIRuN8A/OkBmJsndmMXPHfsmyRjP1QDNNjrsV+V0gMxEHYAMlSgMeeWNffxpQONU1mpN7qG4a3ggBnyzox0glpvCWdgdFAcCEObiA7Py8jtWxx0gFy5d8FzN8ls37qRlVy0NOW0O+HdwBwh/J6fm/O5ADz3+lCRpGLEAGPCtqrsQbEEHyEzUAUimSFFAAIx9BCBonMpKa/VSzC4dIIB3LEGfrX5e0gECeHDnRlt9uVOA+bDvuZrllpeVvvz085Kkrm3rSi/3XBGAUQCSKFdGB8jU/P1/+yVtyo3/y2ICEMC3KnDPW1XBYb+ZqIOmoWKFAa+8sY8/DWicqtrvAOnRAQL4VwcgMUvQZ2KYFfs7QOgAAWbq9PFN9wWnAKfqp377y3r+wkVJ0p5a+nNvvstzRQD2d4AwAmuaPvHkZW2YriQpi9c8VwPAhu7wi2UE1myMRmDZWHFIBwj2EYCgcSprxzeFe2bVczUAqtC9hCcAmQ3b39r/QAcIMFOjjjdT8hA8Tf/y489oVa7LJmpv6N0PnvBcEQBFbUnSunoqcu75piUKA21oFIBseK4GgEYBSMl1bybGHSCJVpLIczGYJwQgaJzKWh03bjHcVrDptxgAqhIXRLaqrudKmuGui3+4/yFu+ysEaKDRIkzDGISpCox01OxKkqLOERmWAAP+HblPg2hDbZPpVPdPfFeztKLAaL0+7JcTgADe2cjd+4l7v9kYL0GPtZKEnovBPCEAQeNUVjqmbUnStuGmEPCtbLm/h6vVrudKmiEYugB4Nz4u1Uv5AMyGjegAmYXAGJ0x5yVJu+3TnqsBIEkKI3Xbd0qS4ox7vmmJD3SAFAk7QADfisgd9ouyHc+VNETdAZIpUismAME+AhA0TmWtjtUdIDshAQjgW5luSpJWqz2/hTSEyd1YmKc23+65EqB5bD3yLyAAmarASHcZtwOkSwACzI3RGECV7EGaljg02qw7QPoRAQjg2156UpLU6p/zXElDZO7617UtOkDwAgQgaJyysurI3XR3TcdzNQDK9Igkac1yGnAWgqInSaoYfwXMXt0BQgAyXcaY8Q6QghEwwNyw0SgEJgCZljgMxtc/pQQggG+9lgtAVobnJGs9V9MAdYdhV221CUBwAAEIGsdaqW3ci4dMLAAGfLOtTUl1AMJN4dSZwj0U23jFcyVAA41e/lUswpymIJBacv8b27jluRoAI6MOkIBZ+FMT2kKxKSVJ99953HM1AIatE5KkqMqkIWOwpm7opkrsqa02I7BwAAEIGqeydvxQnAUEIIBvVd0BEqqShnSBTFtU1qcCIwIQYObqDpCQAGSqAmPUMu5/4zDhWgfMjXEITAAyLUF90EWSvvIVd3msBIAkhUlbQ+v2Lv7i733GczXLb293y/2nbWk1jfwWg7lCAILGKSurdh2ADA0BCOCbSdrq28R96F/2W0wDxCUdIIAvQd2NEDH+ZapCY8b3ekmLax0wL0YjsM5d2vJbyBIz9c8XKzP+mQPAnzQOtC03ev03P/pFz9Usv4vnnpEktTobOtJJPFeDeUIAgsaprManAnNxQQR8C4y0pVX3oX/FbzENEFfuwbiK2AECzFqZuHnsadlVUVaeq1lexkhpHYBEKQEIMDfqACRVrkcv7HkuZjmFxYH7PGM8VwOgFYXati4A6ZRc96btvif+pSQXgAAHzSQA+dmf/Vndd999arVaevvb366Pfexjs/jXAldlD4zAGgacigF8CwKjrfqmkABk+jqVmz1b1rtXAMxOlbqHschm+lN/79+qOyw8V7ScDo7AIgAB5sdoB0jLZHr0PC8CpyGsO3056ALMh4MdIJtB13M1S67Mx1+eO/Imf3VgLk09APmVX/kV/fAP/7D+5t/8m/rkJz+pN77xjXrve9+r8+fPT/tfDVxVeSAAyRmBBXgXGqNtOkBmZq3ckiQVLRZjAjOXrKqw7vZ7uHtZv/cl7oenwZj9JehR2vFcDYCRfj0Hv6VM7YTltNMwGrFYhRz0A+ZBeqADZMMQgExV94IkKbehrhx7i+diMG+mHoD81E/9lN73vvfpB3/wB/Wa17xGP/dzP6eVlRX903/6T6f9rwauKqkGWjXuxnAoAhDAtzAw2rIEILOyUQcg5coxv4UADZTE4Xjk34bpylrPBS2pN2Wf0FHjTpe/7DRhLzAvzpw6KUlaU0/9rPRczXIK61Gnlg4QYC6k0YEOEAKQ6do7J0m6qA1trPCuDy801QAkyzJ94hOf0Hve8579f2EQ6D3veY8+/OEPv+TXD4dD7ezsvOAfYNK+zn58/HUv5FQg4JsxYgTWrFirVbsrSapaRz0XAzRPEgXjU4Cb2hP5x3T8qfwPxl+n6yc8VgLgoNHfx6NmV/2cAGQa2vWOAZsw/g+YB+vteL8DRAQgU1W/S9iyq2rHrLzGC031T8TFixdVlqVOnjz5gu+fPHlSZ8+efcmv/8mf/EltbGyM/zlz5sw0y0ND3WnduImHqjOMwALmQBiYA0vQt7zWsvSKgULVi5eTVb+1AA2UhGZ8CtB1gBCBTEOrcjPwLz343VK65rkaAGN19+kRs6seHSBTcbS6KEkqV097rgSAJN17dEU79b3fOgHIdOXu/q+vREnEmEW80FxFYj/yIz+i7e3t8T9PP/2075KwZKy1OmHdTeEHqzd7rgaA5HaA7Nr6lNpg228xy66+KZSkgJOBwMy9oAPEsAB4WlLrRsD0T7/dcyUAXqAOQI6KAGRa7rCXJEl2/S7PlQCQpNfdtaE8docxVtXzXM2Sq591BzZREs3V627MgWia/8+PHz+uMAx17ty5F3z/3LlzOnXq1Et+fZqmSlNO5GN6hkWlI3Kj1S7aDRljPFcEIAiMhnJLMVVmfotZdrm76R7aSGE01VsAAFcRh/tzoNfVVUUHyFS06gAkSOl0A+ZKa12StGr66meF52KW06bdloykDuP/gHkQBkY/8LWvkn5fiizPulNVuPu/gQhA8FJT/RORJIne8pa36IMf/OD4e1VV6YMf/KC+6qu+apr/auCqelmpFQ0lSV21RPwB+Bcao2yUxxdDv8Usu9GpGCWKQ66AwKwlYaAt617Kf2P4CZagT0lL7gHYJOx6A+ZK7LpPW8q0OyQAmTRr7TgANi3G/wHzIkrakqS4IgCZqgPPuklIAIIXmvrxzx/+4R/WD/zAD+itb32r3va2t+mnf/qn1e129YM/+IPT/lcDL9EdFlox7gVrz7Z05igjYADfAmM0VCJJKvOBmNY5RXUHSF+pwoCbQmDWkijQ4/ZOSdJpXdIzBCBTsWIHkqEDBJg7sXsJ2FKm7V7uuZjlk5dW7fqwX0AADMyNOHXXvsjmKiurMOAg2lQc6AA5whJ0vMjUA5Dv/u7v1oULF/RjP/ZjOnv2rN70pjfpAx/4wEsWowOz4DpA3EXxTS87re/61td4rgjAWitSVo/Aeu7ils54rmepjRbD2UQRN97AzCVhoI9Wr5YktUwm8o/pGHWABCkvAIG5UneApKbQdrd/g1+Mw8rLSp06AIm4/gFzI0pakqTU5BoWpVYSRhFPxXgHSKyUDhC8yEz+RPzVv/pX9eSTT2o4HOqjH/2o3v52FhLCj1/75DPjEVjv+4bX6Wgn8VwRgCOdRG95wO2F6va6nqtZcnUHyECpIkZgATOXRIH6dcdbS5ksM7Amzlo7vtejAwSYM3UHiCT9wRef9ljIcipKq7ZxAXDYIgAB5kWc1uGvMj1xkUXoU1MHIEN2gOAq+BOBRvk3n31e7XoElhLGXwHz4h0P3iVJKjNOA07V7/6EJGlXbUWMwAJmLg4DDex+AMIS9Mkry0qdugMk5AQ0MF+i1vjLtjKd3xl4LGb5ZGVFAAzMoXDUAaJc3/2/fthzNUvsQz8liSXouDr+RKBRvvqBY+ObQsU8FAPzYmPNPaQFZaZ//B8e9VzNEjv3BUnSB8q3MQIL8CCJAg3qDpDYlMpzlmFOWpH1FRgXLIUtXgACc8UY2dEidDNULys9F7Rc8rIa77s0Cdc/YG5E+wHI7qDwXMwS65yQJD1vjxKA4CX4E4FGMUb7AQiL4YC50em4v4+Jcv39D/yJnrzEKKyJK4vxYrj/s3wny/cAD+JwPwCRNG7Vx+QUg93x1zEBCDB3TD0Gq61MJV1wE5WX1XgJOtMOgDkSpZKkxLjwIy8rn9Usr8y9Q/jd6iuUsAMEL8KfCDSKLQulJncfCECAudFuuYe0B4Lntaae9oacjJm4fD9U6qqtmJtCYObSKNBQsSpbB5CM/Zu4cuCudX2bKIpYMgrMnbozYU09VRUByCTlB0YAjhbOA5gDoQtAWnKdv3SBTEFVjvdd9myLDhC8BH8i0ChReeBFAzeFwNwwnWPjr78//PfKCk7FTNqH/+QpSVJuQ2WK6AABPHAPY2bcBVLRATJxxdB1gHTV4joHzKP2EUnShunSATJheV6oNT7sRwccMDfSNUnSEbOn07qonX7uuaAllO8vl++KAAQvxZ8INEpYByCVgnEbIoA5cOQ+PRPfJ0k6aa4QgEzBL3/oIUlST6kko9WUk9HArI06r9zfQynMdq/3y3ELqoF7AO4rlTEEIMDcWTkqSdrUnko6QCaqHB4YIcsILGB+bNylc8FJSdKrgqe0MyAAmbh6/FVpjYaKlUah54IwbwhA0CijDpAibLuFIADmxsmv+UuSpI7pKy95IJ60Y7Frue7KLeFrxdwCALM2Oo32jHVLGtd6T/ksZynZwbYkN+oPwByqO0C+MviSKs67TFRejwCsZMZLlwHMhxNnHpQkdTTgWXca6gDEPesapXSA4EX4E4FGiUcBSMSJGGDexO11SdKqBsrK0nM1y2fVuKWYPeseiDkZDcxeHLq/d4/aOyVJa/2nfZazlGz/iiRpx6x5rgTAVdVL0N8SfJkRWBOW9V1X4UAtDvsBcyZI3Vi6FTOk+20asj1JUq8+7McSdLwYfyLQKHcNHpZUd4AAmC/1bNSO+ozAmoZ6CfqeOBEI+DJ6GNuy7nqX5IzAmrj+liRpV8y/B+bSK94rSYpU8hJwwqJLX5IkDQPu9YC5k3QkuQ6QouRZd+JGHSC2pSgwCtgDhxchAEGjPNj/lCQpqoaeKwHwEvWyxlUzUEZb8MSZ0akYy0Mx4Muo86pb7wCJit71fjluRd0BsmcIQIC5tHGXJCk1uSwdIBO18dyHJEmJzTxXAuAl6gBkRQMVhL8TZ4ejDpCU/31xVQQgaJS0HoH15F3f6rkSAC9RtwV3NKADZArMgbmof/+7Xu+5GqDZRkFkWN+XYHI+9DnX7ft8TrcvMJfq3RSpcjpAJsxkrqvwE2vv9lsIgJeqD/t1zIBr3xQ8c/6SpP0RWMCLRb4LAGapU+1IkrY3X+O5EgAvMb4pZATWpO0NC+3ubEmx9OaX361jX3mP75KARuvWD2dxSQfIJFlrVXUvS5G0bekAAebSwQCEDpCJioeuA+65zms9VwLgJegAmaqLly/rjNwILOBq6ABBo6yVW5KkIj3qtxAAL1XvAFnVQDlzUSfqT57f0YoGkqS19Q3P1QAYdYAkBCATdWFvqE3jut3uuvOU52oAXFWYSHIBSMXt3kQVuxckSRnPusD8Ge0AMUOVXPwmbmfbBcB0gOBaCEDQKGt1B0je5qYQmDujDhD1leWl52KWy+VupvdF75ckJSsEIIBv4w6QihFYk3R+Z6j1OgD5i+9+k99iAFzdqAPE5LwEnLAk25IkDaJ1v4UAeKnxEvQ+HSBT8NWP/4wkKRTvEXB1BCBojqrUah2AlJyKAeZPvQMkNFZVzqnoSdrq5RrKnbhU57jfYgCoVy9BT9gBMlGDvNSm3BLMYOWI52oAXFWU7n9dDP3VsYQ6cj9T3vLK+/wWAuClkv19l+wAmby4cj9PIpX69jed9lwN5hEBCJqjf0WB3A+asrXptxYALxV39r8e7vmrYwld7g61LncqWq/7836LARpuox2P5xOndIBM1CCvtGbqAD3lBDQwl6L98SQ2H3gsZPl0rLv+nTh+wnMlAF5itAPEDFWUBCCTlht32O/s6/+Kfvq73+S3GMwlAhA0R++SJGnLdmTq2bMA5kgQaBisuK9zApBJ6vf2lJrCfWgxAgvw6V//l189nk9MADJZ/bxUp953NNorBWDOhLEqGUmSLQlAJsXmfSX1vV57ddNvMQBeajwCiw6QibNWga1HX23eI2OM33owlwhA0Bx9txRpy64qDLggAvMoC10AEmQEIBM12JYkVQp4KQh49vI7VvXXvvXNkqTUEoBM0iArtKJ6pE7Suf4vBuCHMcrrsZyGDpCJGextj79eWeWwCzB36hFYKxqwA2TS8t7+7g8O++EaCEDQHPVInT21FRCAAHMpHwUgeddzJcslGG5JkobRmsSJGMC7IHUv51M7kFgCPDHZcKDY1A/ABCDA3BoGrgvOcL83Mf09d9hv17bVTpl2AMyd1TskSXeaSzIc9pus/pYkKbehQu7/cA0EIGiOoVuAvqe2Ql4AAnMpj9wNCx0gk2Xq618W0/0BzIX6FGAgKxV0gUxKMdjd/xDzAAzMq4FpS5JM3vNcyfIY7m1Jkroc9gPm05H7tB0eVWJKre4+4ruapfKlJ5+RJO1oRUkceq4G84oABM1Rv1Ddsy1GYAFzqqgDkJATgRMV1wFIHrMUGJgHrZVVVba+F3n4t/0Ws0SqgbvXy0wihZHnagBcyyBwAUjAzreJyXtuBFbPrHiuBMBVGaO96IgkKcp2b/CLcRj/w7/4kCRp23aURrzmxtXxJwPNMXQ/ZPbUVkAHCDCXyjoAiQoCkEmKcheAFAQgwFxYbycKTD3/+eKX/RazRKp63GlWv1wFMJ+GZhSA0AEyKbbv7vW6BCDA3BqGo8N+BCCTtG7cz5IdrRCA4Jr4k4HmqAOQrm3TAQLMqTImAJmGpHAPxWXKUjhgHmy0Y/3PxXe6D7tn/RazREanyUf7pADMp2EdUobc701MNXAdIP2A6x8wr0YBSET320RtyP0s2bEdJQQguAb+ZKA56gBkV22F/MkH5lKRuBf0rfqFPSYjrTtAKgIQYC6st2NdsJuSpHLneb/FLBFTuBOAdIAA821Qv6Rn5OnkdHe3JEkDOkCAuTUM3Q64iA6QiTrYAdJiBwiugdfAaI5xB0iLEVjAnCrbRyVJnXLLbyFLJi3c9c+2CECAebCWRrps1yRJW5fOea5meQSZe5maRyxAB+bZXrgpSWoNzvstZEnkZaV/+3E3TvH5QeK5GgDXMro/iekAmaj1Ax0gay12wOHqCEDQHKMl6GIEFjCvitZxSdJqseW3kCXTqdz1z6abfgsBIEkKAqOuXJeCHfIQPClR3QFSMAILmGsX0rslSWt7T/gtZEk8fbmndeNeAG6LABiYV/3UPesS/k7WfgdIR+ut2HM1mFcEIGiMol4MxxJ0YH7ZzjFJ0hodIBPVse4Fa5myBB2YF2975T2SpKhkCfCkhKMAJGIEFjDPLiTu+rfWfcJvIUvi/O5Q66pfAFoCYGBelWtnJEkr/Wc9V7Jc9neArBCA4JoIQNAI3WGhzz76tCRpz7bVivmjD8yjdPWIJKlVciJ6kjqVuym0rU2/hQAYq5J6DAJLgCdmFCYVjMAC5trF1AUg672npKryXM3i+/VPPTvuANkRAQgwr4IjLgBZHdIBMkkHd4CsMgIL18BbYDTCw+f31Kr6klwHyErCRRGYRytrLgBJbd9zJctlte4AqdgBAswNG7tFmDEdIBMzGoFVMgILmGu7rTslSVE1lHqXPFez+J650j/QAUIADMyrzrrbd5mWHH6ZpNEOkG3bYdw9rokABI1gJK3WN4Vd21KHAASYS6vrLgDp2J6yghOBkzIKQGxKAALMjdQFIEk1kKrSczHLYdQBUsYEIMA8i5NEXZu6D9mu32KWQF5WLzgBDWA+tdc23X9y2G+ijoTuf88//87Xeq4E84wABI3Qz0t1zECStKsVtZPQc0UArmZtFIBooH/7uec8V7M81upTMWIEFjA/ktX9rzNOAk5CUroH4CriBSAwz9IoUFf1rp4hY09vV1HZ8QlodoAA86vVcYfR2how/m+C1urDfg/ee7fnSjDPCEDQCIO81KrcQ3HXtpRE/NEH5lHYWpMkxabU1g4nAieiLNSpr39iBBYwN8K4pcLW9yMZLwAnYTROrIoZAQPMsyQKtGtHAQj3e7erONAB8kPf+jbP1QC4llZnXZIUyEo5h18mZa2e9mJWNv0WgrnGW2A0wnAwUGoKSW4HCIA5deBEtOWF4GQMd/a/JgAB5kYah+qq5T7QATIRSb3vjQAEmG9pdPD6x/3e7cqLarwD5F2vf8BzNQCupdNZGx9+yfs7N/jVuClVNQ5AAqYd4DoIQNAI5YEfLuObbQDzJwg0DFxIaTgROBmDLUlS16YK48RvLQDG0ijYP5TB9W4iRgGIEgIQYJ6lUaAuHSATs1FeVGzqXVIcdgHm1koaj99HDfa2PVezHOxwR4GxkqRghesfro0ABI1QDtwPl55N9Y/+M9qCgXk2DN2LK8OJwMmoZ2t31VZojOdiAIwkUaCe5QT0JKWjDpCD+1UAzJ0XBMBc/27b27OP7H+I2QECzKvkwP6jwd6W32KWRNnbkiQNbKwoYdoLro0ABI1QDdzJojzq6L2vPeW5GgDXk4XuwS3IOBE4EfVona5NFQYEIMC8eOEIGEZgTcJK5V6k2mTNcyUArscFIPX1jw6Q2zYKf/ubr5Q47ALMtZ5xz7pZjw6QSRgFINvqKAp5xY1r408HGsHWN9bDkBMxwLzLQ3dyN2Ax3GSMAhC1CUCAOZJEgfYsLwAnabVyI09t64jnSgBcTxIF6o6vf3SA3K5RANI9/XbPlQC4kV7dAWK595uIsndFkrRjO4p41sV1EICgEcLc3VhnATOhgXmXR3UAQgfIZNT/O3bVIgAB5kgSBtpVfTBjwCnA21ZVWrX1i9Q2AQgwz9Io1F59/at4CXjbUjtwX8Q86wLzbtQB8vBTZ1VW1nM1iy948o8kSaFKAhBcFwEIGiGsT5JndIAAc6+oH97Cgg6QSbD1ycoeI7CAuZLGgbatu95VfQKQ2zbcUahKkhR0jnouBsD13HWkPe6Ae+bsOc/VLL5RB4hJCECAedc3rgPkdz/7qH7po096rmbxJZ/+BUnSptnjWRfXRQCCRohGHSARN4XAvCvrACQmAJkIe3AEFnOhgbmRhIF25K53H3voMc/VLIG6i6ZvE8UpSzCBefbWe48orw+m9fcIgG9Xa9QBQgACzL1B4K59a+rrX3/iGc/VLD4buTD9t6uvlOFZF9dBAIJGiAoXgOQhN4XAvCtjNwJr9PcWt6ca1COwbEthyE0hMC/SONSOdQ/Bjz/znOdqlkDuTkD3lCqNQs/FALgeY4ze9qp7Je3fp+DWteQCEJPyrAvMu34dgHRMn46FCSjaxyRJv6e3eq4E844ABI3QGV6QJHWT454rAXAjtg5AEjpAJmK/A6RFBwgwR5Iw0HbdAbJuuN7dtrwnSeorVRLxiAPMu9WNTUmSYefbbetYd/0z6ZrnSgDcyKDeS7uqvqKA+5XbVQ3d9S8L6P7F9fG3DY2wNjwrSdprnfJcCYAbqZI6ACl7nitZDqMdICxBB+ZLEgXjDpB1cb27bXUHyMAmSglAgLm3ueF29VQDOn5vh7VWR+RCJNPhsB8w74Z1B8gqHSC3raqsLly+IknaLWPP1WDe8XSARljP3HK9butOz5UAuKH69NprBp/yXMiSGC9BJwAB5kka7e8A2aAD5LbZcQdIojTmEQeYd0ePurElHfX16ae3/BazwMrK6phxe1SCVQIQYN4N67Hsa+orYjzxbdkdFGqbzH1NAIIb4OkAjbBRByC9Nh0gwLyr0k1J0h3VeanI/BazDDIXgOwxAguYK2kUaNvWI7DU0//2occ9V7TYyqELkfpKlYbsAAHm3fFjLgBZNX09cp4ukFtVlKWO1h0g4eoJz9UAuJHBwQCEw2m3ZWeQqyX3vqCvxHM1mHcEIFh+xVBrxWVJUrdNBwgw73bu+Yb9D8Mdf4UsCVsHID21FHCTDcyNJAq0o3oElunq7/z/27vvOLmq+v/jr3un7mzfbElvQBICIRBKCL1JtYKKCH5/FlQUEcGvBbt8VRC+Nvyigr2CgICCgobeAoSQkEBIgPRetpfpc35/3JnZmWST7CbZ3J277+fjwcMpd2c/iZuz95zP+XzOg0vZ3hV3OarStXbLdiDbAksVICJDXu68igpitEeTLkdTuuI9nfgsA4C/vNblaERkT7qMc1ZFhdWDT2eA7JP2ngRlOPfOURNyORoZ6vSvTbyvx0l+pIyd31kuIkOXr6yKntwNTEI7AvdVe7NzBlLurAERGRpCfh8dBRUgYHhjiw4D3lt3PLMcyB6C7tMUR2TIy575FrKSdHbrHKS9lYz1tlAMhnSvJzLUtWfCgHMIuuybrs42/FbGeYwOQZfd0+xAvC/fEzqETy0RRIa8oN+mG+fGMHd+heyd9s5uajreAGClUQWcyFBSFvTx5XcfA4DfyhAiSTSRdjmq0tQVT+FPOBWDXZSp2k2kFGQrQADi3e0uBlLaUnFnrhszASztJhcZ8tpyCRArSntU7Z73Rbp5JQDNppKe3PqByC7oN6R4XyoGQIyAeiyKlICgz6bbZG9gVAGyTzoWP0jQStNlwqwxTW6HIyI7uODog/KPK4jSrQTIXtneGWeMtQ2A6qZJLkcjIv3iC5CynYrfaFebu7GUsFTc2UUeV/97kZLQlnbmuZVEWd2s6rd94e9YB8A60+hyJFIKlAAR70s6N4UxE8LvUwJEZKgLFVaAKAGy117d0M5fHnkBgHmZ6aTwuxyRiOwo4PPTnW35F7FiRBMplyMqTc3dcUZbzQCcNedol6MRkf5KB5w2gO1trS5HUrpyFSBxS/3vRUpBS8qZ54atJG2d3cSS2vyyt6y40zq2zVS4HImUAiVAxPvyLbCCqgARKQGFLbBeXbUBY4zLEZWmC3/2HCbh9IVup4LJDeUuRyQiO7Jti+5sz+IKYvSoAmSvNHclqLayffAjI9wNRkT6L9sGq72tRfd7eymdS4CoAkSkJIxqbMg/rqRH9377wMqu9fWgBLDsmRIg4n3JXAusIH71RRUZ8oJ+m+2mGoB7n5jP4vXqC703EukMEcsZ/7pNiD9fPtvliESkL7kKkHKimgTvpfZokjKyfbQDOgRYpFQEyqoASMc6WbGtew9XS6F0xrCxLUo6uwCYtJQAESkFX33HDDp8tQCMsbbTHVf1796yks7vjagSINIPWg0W7ys4BF0tsESGvqDPZoUZDcBB1ka2dsZdjqh0RXD+7k6aPoFR1WUuRyMifclXgFhRetQCa68k04YynIQvQVW7iZQKO+IsAtbTzoa2qMvRlJYr/rSAE258jKdec3rgJ9QCS6QkHDqqiqrRUwH4iv8vdOveb6/c/O9lPPv6WgB6jMY/2TMlQMT78meABPGpBZbIkFcW9LHJOC1M6q120pmMyxGVpoDPyidAJo9u2MPVIuKWzcZZAJxirVcFyF5KZTJErGyyPKBkr0jJGHEIAJ/z/0198Ado7tItACxauQmApK0FQJGSkW3/Z4DuuMa+vXHr4ysoy8511QJL+kMJEPG8zNZlAHQSUQsskRIQCfpJWM4ZIGXESabVE3pvpDOGsdY2ACztiBYZslZmK96+7L+TxevbSaaV9B0opwIklwDReCdSMuqnAFBndSgBspe+HLgDgG2+kS5HIiL9dsxHAYhYcVX/7oNDrTWAWmBJ/2g1WDwv9fo/Afh3+himNFW4HI2I9MeX3nEUAGVWnHRGCZCBMsYQNHFO8S1xXlACRGTIejEzDYAoQRasaeWzdyx0OaLSk0xnes8ACeoMEJGScdh7ACi34sQSSZeDKT3VdDHW2g7Agsgcl6MRkX7L3quESegMkL10qLWGk32vAtBtwgR9Wt6W3dNPiHhbvItg65sArK45jskNSoCIlIKGEU5LmAhx7YbeC+mM4ST71d4XDjnHvWBEZLdeyRwEkF3ANzz06mZ3Ayoxjyzdws8eeomAld09rhZYIqWjYINGKtbjYiClabqd3f1sgrxWdYrL0YhIvwWcBEiEGPGU5roDZYzhXN/8/PPHOJa512oMlN1TAkS8rdNZROg0ZYwaOcblYESk37I3hWWoAmRvpI1hvLUVgOS0d0G1xj+RoSrXt9i2DCG0A3qgLv/DS3zF/xcA4nYZBCtdjkhE+i3QW7GViisBMlDjsvd6z2cOpS4SdDkaEem33FzXipNSu+cBS6QzjLecc5C+l7yEc085gQkj1PFAdk8JEPGsrZ0x5j1yNwBbTC21uikUKR35m8IESSVABiyTgdHZlgimepzL0YjI7hT2Lc6fYyEDcpHvaQBeGXEB+PwuRyMi/WbbJC1njpaOd7scTOkwxrk3HmM1A7DR1FOjua5I6QjmNvslSGVUATJQiVSGEXQA0GyqCaj9lfSDfkrEs/7r1y/S9tqjABgsqiMBlyMSkX7LtkQYZbUQ6NnmcjClJ20MU6z1AFi1k1yORkR2J4NN3Dj3KBElQAbsCGtFvv3VS6MucTkaERmopM9pW6cESP8lszvGG2gFYLOppa5cc12RkpHd7FdhxSDR5XIwpSeeyjDCyiZAqFICRPpFPyXiWcs2dxLAOVDqn5nZVJfpplCkZISr8w9nvvUzFwMpTem04XB7lfNk7Cx3gxGR3brlkqOIW04VSJnlJEB09lH/5dr9AXRH1O5PpNSkbCcB8tyCl/nPazoDqT8S2d8RkezvjB7Cav8iUkrCNfmHk9fc414cJeqOF9ZSYzmJoxZTqQPQpV/0UyKeFiYBwMrMKKqUABEpHRWNrIgcCcDItgXuxlKC0sZQSRQAX0Wjy9GIyO68c+ZoKiqdcys+6XsQgJ5E2s2QSkouafRY+kj8Pp/L0YjIgPmdBPBNgdu48eFlLgdTGpLZQ5PLsnPdKCHefsQoN0MSkYEIhFlQeQYA9a2L3I2lxKza3s0P5r6Rr5qeNLqRcw4b6XJUUgqUABFPK7Ocm8IYQSpD6gktUkr+Ov7rAFRF10E65XI0pSWdSuZbwtiBMpejEZE9scvrAXi//0kmWxvpSWjM66/cZpcYQQI+y+VoRGSgto0/F4AGq4PWrpjL0ZSGXAVIbvxrqqvBsjT+iZSSRTVnAVAR2+hyJKWlI5oEese/n1w2h/EjIm6GJCVCCRDxpNzBcIWT4rKgdgWKlJJoqJ6E8eEzaejc5HY4JSWTKFhACITdC0RE+ucdP8k/nGRtIp5UC6z+Cud3QAfVA1qkBI278Duks8sSU81Kl6MpDYlsBUg4u9nPH9Lin0ip6Qw6VQsNna9D19Y9XC05TgLYEMJJhKDNftJPmiWIJ8VTxbtioiZEWUAJEJFS4vMF2GzqnCcd2hkzEJlUtPeJXwkQkSFvzNEw7e0AjLaa8/cxsme5FjBxE8SvBIhIyQkGg9g4m9dOST+f38gmu5arACnLtoDxh3X+h0ipaYlM6H2yQS2f+6snkSZICtvK/q7ItlEU2RPNEsSTYkmn9UuuL7QqQERKj9+26MbZ0ZGOd9HanXA5otJhEk4CJGF8YGvsEykJFU0A1FsdxFM6A6S/cjugo4TUAkukRKUOPgeAoEkoAdwPyR1aYAXDqgARKTWWP8z8zBQAHlq4yuVoSkc0kcqPfQD4VQEi/aMEiHhSNJkmQIrRVovznKAqQERKjM9nESMIwI0PLOKY7z7C8yubXY6qNKSzCZB49u9PREpAtoQ/hBYAByK3A1r3eiKlyzfmSMBZ0O+O6wykPUmkMlTTxRR7AwCBcIXLEYnIQPl9Nl3Gufd7dMlqd4MpIT2JdL79VcZY4Au4HJGUCiVAxJNiyQyf8v0j/7zHhAkH9OMuUkoCtk3UOAv4m7e3kM4Ynnpjm8tRlQaTdM4AiVtKgIiUjGwCJExCZ4AMQCh33psJMqJCY55IKbJz45+VpCehCrg9SaYz3B78Yf65TwkQkZLjt3s3+4VJqP1fP/Uk0oSs3rN+sVT9K/2jFWHxpFgyzRR7PQBRE2QjIwhrV6BISfHZFlGcnp65Fie2bnD6J3sGSEIVICKlI3teTxkJtcAagHqrA4B2yhlRrj7QIiUp4LRwChPPn28huxZPZZhiOXPdBZlD6K46yOWIRGSg/L6Cua6qf/stmkjnW2DFUfWH9J8SIOJJsWSaOpwJ8ZeSHwcstUUQKTFBv00se1OTu8mxlf/on66tgFpgiZSU3AKglSChSXC/HWxvBGCdaaA2ojFPpCQFnARwmASptHZB70kykaCabgA+mbiWcFCLgCKlxmfbxIzzb7eMuNr/9VMinaHBagfIV9CI9IcSIOJJ0WSaOqsTgBaq8NkWlWHdGIqUksqwn1h2V0yux3syo0nxnsSSadoe/h4AKxjrcjQi0m8FC4DaBdhPbWuZbG0CIFY5kXF1OghTpCRlE8BlJPIHfMuumWgbtuXcE7dSQcivZR2RUhOwrfxcN2wl6FICpF/SGcNVvvsAeDMzxuVopJToN6V4UjyZySdAWk0lY2rKCOrGUKSkRIL+/BkgR9orAKNd0f2wbHMnk7ILgr9PnO5yNCLSb/6CM0DUAqt/mt8CoMVUcP1H34WlNokipSnbAjBsJUhps8seWT3NALSZctL4GFOr5K9IqfH7bKLZCoaLfE/T09nickSlIZUxTLadue5d6dPcDUZKilaExZNiyTTlOD3wOyhj6shKlyMSkYHy2dCDMyE+3/ciF9lPKwHSD8l4lErLGf9eyUx2ORoR6bdA7wKgKkD6KeVUB641TfjVI1GkdGXHvwhx0hmNf3tiEl0AdFHGNWdNYc7kES5HJCIDlTGGFlMFwEirlcpXfu1yRKUhne5td78gM8XlaKSUKAEinhRLJim3nElxtylj9qQ6lyMSkYGyLYt/pmfnn0+x12lXdD9kurcBkDQ+Oih3ORoR6bdsC5iJ1mbiCbVB6JdsAiROgIBP0xqRkhWpB6DeaiepM0D2LO6c/0GwgqvPOkTVbyIlqK48yJ/SZ9FpnAouf8c6lyMqDb5kF0HLWRNoQRudpf80UxBPSka784+7CTO6RmXBIqWmoTLEK+Zgvp/8AAAjrE5VgPRHd7YtAhWAJsQiJWPkEQA0WW1M3PiAy8GUiFwCxCgBIlLSaicA0GC1k4lHXQ6mBCSdCpCErTmuSKl679Fj+eSZh/G91AcB8EXVAqs/QvFWALpNiLENtS5HI6VEMwXxpHTMKYlLGZs4AY6ZoIFRpNTMmTyCT546mebszo46OkjoYMw9yiR6AOg2YZcjEZEBqRrF2vIZAJR3r3c5mNJgUjEAEvjx+5TwFSlZ4Rp6cBbz7a4NLgdTArL3ekmfEiAipSrgs7n2bVOobxwNgC/a7HJEpcGXchLAnUT4w8dm7+FqkV5KgIgnZeLOoBi3y3jk2tNorNJCoEipsSyL6847NN8btc7qJJ5UAmRPMkln52ScAOcc1uRyNCIyEGurjwEglGh1OZLSkEk6CZA4AQK2pjUiJcuyaLerAS0C9oeVdLodJFUBIlLy4kFns24g0eZuICXCn3ISwMFIFWPU6UUGQDMF8SSTTYCk/OUc3FjhcjQisi86jdMXv4KoDgbuh0zcWRCMEeT/PjjL5WhEZCASIefMMiVA+ieddFpgJQgQ8KsCRKSUdfqyCZCY2sDsSS4BkvJr8U+k1GUCznqVL7uwL7uXS4AkfRGXI5FSowSIeJI/u3Mo5q9yORIR2VfdhAAot2KkMkqA7Ekm5VSARCLl6okvUmJSIWcXYFmyzd1ASkBzV5znljutcuImgF8VICIlrdOuAVQB0h9Wtt1zJlDuciQisq+skPPvOB3r4v6FagG4J4F0brOzEiAyMJopiCeFYtsA6Ak1uByJiOyr7mxP6HKipDPG5WiGPpPdEZ22Qy5HIiIDZYLOmUeBtHYB7snX//4qr6zeCmQrQHQGiEhJ6/E5458v3uZuICUgFMuOfWUjXY5ERPZZ0EmAlBPjc39d6HIwQ58/6dwjp1QBIgOkBIh40oT2+QDEwkqAiJS6ruxh3uXESKoF1p5le+KnfUGXAxGRAQs5bRCCSoDs0ZPLt3GKvRiAhBXAspQAESll8exilp3U+LdbxnBcywMAJMtHuRyMiOwrK+jc+9mWIUzC5WiGvtwmoZRfFXAyMEqAiPd0b2dm+6MAbK071uVgRGRf5SpAfJbBn4m5HM3QZ7ItsNJ22OVIRGTAsrsAg5moy4EMfTWRIFOsdQCkCLgcjYjsq9yB3rb64O/WmjcW5R/H66a6F4iI7Bd2qHchvxzNdfekLNUOQDJY7XIkUmqUABHvaV+PjwwtpoL149/pdjQiso96CJExzs7eQKrb5WhKQMq5cc741AJLpNTY2QqQkBIgezShJkBZdqfkX1OnuByNiOyrpO1UgCR6OvnHKxvpiCVdjmho+tfcuQDEjZ/UqFkuRyMi+yoc9NNtes+8lN2rTG0H1O1FBk4JEPGehHMoUqupJBzwuxyMiOyrmWNraMHpC12ZbnU5miFu6+ucvvb/nMcBVYCIlBo77Ix1IRMFozOPdmdmz3PYliFuAqw2TW6HIyL7KOl3KkBWbtzCZ+9YyHcffN3liIamcPasy39njuXYibUuRyMi+6os4KMdpwqklk6Xoxnioq0c2/U4APFwo8vBSKlRAkS8J+HsEO8mTFnQ53IwIrKvfvPhY0lkd3jUpltcjmaIe+Pf+YdtlVNcDERE9oYvWwHiJw1p9YHenVHdzuJoyEpiNKURKXlpn5MAKScOwN9f2eBmOENWyHJ+Nxx10GhGVKjaV6TUhQM+Nps6AEZa2uy3W68/SMg4vyPaRsx0ORgpNZotiPdkK0C6TRnhgH7ERUrdiIoQ5fVjARiV1mR4t5JO25yn04fz1oQPuByMiAyUP1xJ0mQ3b3RvczeYIWxDWxR/vA2AH6cudDcYEdkvTPYMpLJsD3yfZbkZzpDlzzgJEKNWpyKeEA7YbMomQN7le9blaIa4eAcAqzJNRKsPcTkYKTVaHRbviWcTIIQI+1UBIuIFPaOPB+Cy5D2QSbsczdBlks6iwXIzThVwIiUoFArkdwGycaG7wQxhD7+6mRrLqfhtNlUuRyMi+4MJ1QBQZzlzOZ+tBEhf/Bln97Pxq9WpiBeEAz4eTM8B4Bx7PsTaXY5oCMuedfli5lD9jpABUwJEvCfbAquHMEG/fsRFvKBtxscAqKctv/NDdratrQ2AGEFCSgCLlJyQ32YT2QTIXy/TOSC7kEhlqMa532s3FS5HIyL7Q6J8FACHWOsBJUB2xW+yFSBKgIh4Qjjg46HMbOImgM8yEG1zO6ShK7vZL04Av35HyABpdVi8J5sA6TJKgIh4hS8UIWWy/55TcXeDGcKs7K6YuAkQTaRcjkZEBirk9/GX1Jm9L6ST7gUzhCXTGWqyu8RnTpnIrR+c5XJEIrKvMpVOAiRgpfmc/x58tuZxfQlkK0BQAkTEE8IBZ9NaD9m2dtn5nOxs3TbnjJQYQa31yYDpJ0a8J3sGiCpARLzDZ1vECThPdFO4S7kWWDGCtEe1cCpSakJ+m4cyx/W+kIq6F8wQlkxnqM62wPrYWbO44IhRLkckIvvKH6klkT0D6ThrGT5N4/oUMEqAiHhJebZtsea6e7Z07RbA+bs6YmyNu8FIydFthXhP7hB0wgR05yziCQHbJpG/KVQFyK6kE85iaYwg58/QgqBIqQn6beIEyJhsWb/Guz4l04YanPs9ympcjUVE9o/ysJ/Lk/8NQI3VjV8VIH0KZA9BJ6AEiIgXjK+LABAzQeeFpBIguxLE2eDXWFdNQ2XI5Wik1OiuQrwn2wKr24QJKgEi4gk+nypA+sMknQRIfU0VkxvUF1+k1IT8NlAw3iVVAdKXdDJOhZX9XVBW624wIrJfVIUDtJty57HVjfIffQtmzwBRBYiIN+QW8jXX3TNftgXgEROaXI5ESpFuK8R7ClpgqQJExBv8tkXcqAJkT0ZvfQqA6spKlyMRkb0RyvaBjpHdBahJcJ/8iXYADBaEq12ORkT2h7G1EdpwNm/U0IUxLgc0RAVwEiBWoMzlSERkf7AsixsunKEESD/UpLYDGv9k72h1WDzHxLMtsHQIuohn+AvOADHaEd23aFv+oanQrhiRUlQW2KEPtMa7PgUSHQDE/ZVg+1yORkT2h7G1ZfkKkAorRiaVcDmioSlXAWKpBZaIZ5wypUGbX/Ykk+aI5GIA7IDaX8nAaXVYPMcUnQFiuRyNiOwPftvOLwim1Re1b/HO/MPuUce7GIiI7C2fbXHze4/o7QOtSXCfAsk2AOKBKncDEZH9pjzkd5KaWWXpLhejGbp6EyDaAS3iFT5L3Q72KN6Rf9gz9mQXA5FSpQSIeI6JZ88AUQssEc/w+yzi2V0xmYQWBPtikj0AtJsI9ZWaFIuUqkOaKnt3AaoCpE+hpNMCKx5Q+ysRLxlZU06HcQ4ELkt37uHq4SmYa4GlM0BEPMO20b3fnmTP+k0YH9SMdzkYKUVaHRZPSWcMW7Y7fQF7jBIgIl7hKzgDJKObwj5taW4DIEqI6aO1K1qkVFWEfL0tsBb8ztVYhqpQ0tkFmFIFiIin+G2LtmwbrEi6Yw9XD0+hbAWIHdRmFxGv8Fm97Z4z6nbQt1yre8oIqdW97AX91IinbGqPEso4i6NdlOGz1QJLxAtsyyKarwDpcTmaoWlrSysAcYIcMbbG3WBEZK+Vh/y9Zx5ZulXvSyjlLIwmg6oAEfESv8+mnWwCJNOJ0UnoO8lVgNg6A0TEM5x2z85cV+dd7kJBq3slQGRv6KemFMXaYftb0LHJ7UiGnEwGynEy5j1GByOJeIXPtugmu9Mtrp7QfWlpdxYEtSNQpLSVh/zcnT4VgIzGuz4FU87fSzpQuYcrRaSUBHxW/iD0arpJZZQA2VEYVYCIeI1tU9DtQBUgfcqed9llyggqASJ7QT81pejZW+D/joZnfuR2JENOIhknbCUBJzMsIt5gW9BtnH/TJqEFwb7kKmNStsY+kVJWHvTnx7tMTD3w+xJKO+NdOljhciQisj+NqSmjDeffdY3VTSKVcTmioSeIM9dVAkTEO3y21XsGSEoVIH0x2QSIUwHiczkaKUVKgJSikLPb7YklK4gl0y4HM7Skor0LoxfNmeZiJCKyP1mWRY+VXdjXjui+Zcul07aq30RKmc+2SPmcQ4CNxrs+BdPOQZgmqAoQES/51jsPo6xqBOBUgCTTSoAUyqRShKwUAL6AEiAiXmEXnAFiVAHSp1TnNgBaTQWhgJayZeD0U1OCmpNOZjjW1c6rG9pdjmZoybWKSOLn6+860t1gRGS/iuZbYGlHdF8qO1cAkPKpAkSk1GWCTgsYVbz1zZd0/l4CER2CLuIlTVVhzjxqKgA1VpcqQHaQKjgHTxUgIt7hty1iJncGiBIgfYluWwXAZquBypDf5WikFCkBUoKaU87u3nKixHVTWCSdbRURVfsrEc+J5ipAEt3uBjJE1Xe8BsC2sskuRyIi+yzgJEAsjXd9CqScv5dwhQ5BF/GccA0A1VY3CVWAFMlkd0BHTRB/qNzlaERkf/HZqgDZk0TLWgC6QiOxLMvlaKQUKQFSglqyCZBKK0o8pRZYhUzM2REYtbQjRsRrOrM9oe1Yq8uRDE2B7KHAmypnuByJiOyrdMhZ2PfHWyGjBcBCPYkUwYyzCzpSUetyNCKy35U5/66rUQXIjjIdGwHYYmrx+bSUI+IVlmURt3QGyO6kutsAsCJ17gYiJUu/NUtQS7YFVgVR4kndFBZKZ1tFxGwlQES8Zqvt9IS2uza5HMnQ5M/eLGcC2hEoUuqiZSNJGRs7k+TV5cvdDmdIefjVzVTijHflVTXuBiMi+19ZDeBUgCTTxt1Yhph052YAtlJDQAkQEU9J2846X2bTqy5HMjSZWAcAoYoadwORkqXfmiVoWzYBUm7F1AJrR9mzAeKWWmCJeM1WqwEAf+cGlyMZmgJpZ0e0CSoBIlLqIuEQG42T9P3enx92OZqhpT2apDybAPGXqQWWiOdkK0Bq6FYFyA7S7c4moG2mFp+tFjAiXtJNBIBIxwrisZ49XD0MZTc7RypV/St7RwmQEvT2Y6cA2QoQtcAqlu2VHbcjLgciIvtbi+WUu/oSHZBUafCOghnn78QKVrgciYjsq0jQxzZqAKjMtLsbzBDTHU9RYWV/B2i8E/EenQHSp7vmr+POR18EYLulBUARr/l36qj84/bt6niwI3/2/LcyVYDIXlICpASNqKsHsmeAJFMuRzPEZLPCCZ9aYIl4TY9dTtz4nSfd290NZggKpnMLgqoAESl1FSE/rcZZ3K+1Ol2OZmjpTqSpIHtAaKjS3WBEZP8rPAMkqc1+OV/822IaLOccvGZLPfBFvKYrE2KLqQGgu3Wzu8EMQeG0kwDRvZ/sLSVASlHBP/hMrNvFQIYef7QFgG5fjbuBiMh+57NtWqgC4Kt/eYKlGztcjmgIyWQImVwFiBIgIqWuPOSn1Tj3e3UoAVIoHu0hZCWdJ5oEi3hP9gyQkJUinVAbmEJNOAmQluy5eCLiLS3Gmeu+tWq1u4EMNcZQlnHWPo3u/WQvKQFSivxh0vgAMHEtABYKRLcC0BXQTaGI12ztjNGcvSncsH4ttz7xlssRDSHR1vxDk104EJHSVR7y04ozwauxulyOZmhJxQoSQmqBJeI9wQrS2WUK09O6h4uHlyarDYBWn1pgiXhRc3bzyz+ff5VXN6gFal6iCz9O9xsT1vgne0cJkFJkWcR9zhkXVly7AnPuefRZpq37KwDpSIPL0YjI/pYx0JLfEd1BRzTpckRDSNcWwLlpDgRCLgcjIvuqLhLIV4A0+ZUAKWSy975JXxh8fpejEZH9zrLosrM7fGNKgOTU084h9gYA2nza7CfiRbluByOsDhas0fiX1+N0eomZAFZI3Q5k7ygBUqKSPucfvZVQAiRn3qP/yD/uajzaxUhEZLBspxpwbgp9tuVyNENIl9MndpupIejXr3aRUnfcpBG0ZCtARgWiLkcztLS1NgOQ8av6Q8SrurMJECumHdA5R9vL84+3+0e7GImIDJZct4M6q4O1LWoBmNeywvkfKgloDUD20qCtkkycOBHLsor+u/HGGwfr2w078eykL5BUAgQgkcoQsZwDMZ9Kz8A3+kh3AxKRQZG7KXyP71naVQHSK7srptVUKgEi4gHTR1dx5JRJANRmml2OZujIZAzNzc7fhx2ucjkaERksPfkEiHZA55TjzHXnpadj/EGXoxGRwZCb6x5jv0Fbj+a6eYvvAiBuAgR8muvK3hnUn5zrr7+eTZs25f+76qqrBvPbDStxvzMwKgHi6I6n8jeFW0wtp09rdDkiERkM7capfptkbaJdN4W9Es6hcF2ElQAR8YiZUyYDcEh6BdH2Zm57cgUrtw3vdljN3QmCGWdHpD+iBIiIV0V9TgLEjqsCJCdixQFopUILgCIe9IP3zWSTcdrbHWm9RSyZcjmioWNzu3Pv94YZh9+nChDZO4P6m7OyspKRI0fm/ysvV6+2/SWXAAmldAg6QFc8la8A6SFEQ6V64It40T8zxwPgI60KkAIbtm4HoIcwIU2KRTwh3TQz//iufz/GDQ8t44wfPOliRO7b0hFjpOXsCLdClS5HIyKDJZqd6/pjbe4GMkSk0pn8Zr8ewkqAiHjQRUeP5aMfuxKAkJUilYi5HNHQ8coK5/yjJzMzCWr8k700qD85N954IyNGjOCoo47i5ptvJpXafQYzHo/T0dFR9J/0LRFwJn3hZJu7gQwRXfEU5Ti7Yk6bMcnlaERksOTKgoNWmu5oFGOMyxG5b+HaVu545nUAuk1IFSAiHhGIVLA0MwGAtZu2uBzN0LCtK85s2xnvqBrjbjAiMmjifmeu60uoAgSgO5Hu3exnQloAFPGowyYWnO+TrfAXiNA7/vk1/sle8g/WB3/2s59l1qxZ1NXV8dxzz3HdddexadMmfvjDH+7ya2644Qa+/e1vD1ZInhIN1QNwUNcClyMZGja3xyjLDooTRqr9lYhX9dBb3RXKROmKp6gMB1yMyH3zV7dQbvXuClQCRMQbwn4fWwkDUI4OQgfojKWoJ7sgOvEkd4MRkUETD9QAEEroDBDIdjvIbvbrIUzArxYwIp7k85O2g/gyCaykEiA55QXdXtQCS/bWgFZJvvzlL+90sPmO/y1btgyAa6+9ltNOO40jjjiCK664gh/84Af89Kc/JR6P7/Lzr7vuOtrb2/P/rVu3bt/+dB62pXYWADWJTS5HMjTcu3AD5dm+qATVak3Eq1L4SWRz9+XEdDgcMKq6jEqcvqjdaosg4hnhgI8uUwZAhRIgAMSSacqshPOkrMbVWERk8HSFnA1tkdhmlyMZGrrjqfzvgW4T0r2eiIdlAtn1rGFcAWKM4eo7F/KZv7xMJmPyCeBuwqqAk702oAqQz3/+83z4wx/e7TWTJ0/u8/XZs2eTSqVYvXo1U6dO7fOaUChEKKSzG/ojVjYSgGBGfQEBEql0vixOCRARb4tZZQRNJxErxrwVzYyri7gdkqtsy+Iy/6MARNUCS8QzQn6b7mwFSJkSIEA2AZKdBBMoczcYERk0XWGnDUxlbKPLkQwNnbEU462tAGww9YT9PpcjEpHBkvFHIN6KnRq+CZD2aJK/L3LG/y+fN633DCQTVgWI7LUBJUAaGhpoaGjYq2+0aNEibNumsVHtifYH43cW/IKZGOmMYXtXnKaqsMtRuae5K5EfFJUAEfG2mBWmynRysr2EDW2nux2Oa4wxrNzeTWt3jIyxsC3Da2Yil2pXjIgnhAM+OrMVIOF07yT4rvnrOKixnKMn1LkVmmtiyTRhshUggeGd/BbxsljYWXMIxVtcjmRoaOlOMMN2FgPfMmOYHNC9nohXmWA5dMNx8fnAJ90OxxWxZCb/uCOaYqSVrYAjjN/W+Cd7Z1DOAJk3bx4vvPACp59+OpWVlcybN49rrrmGyy67jNra2sH4lsOOyU76AibOh379PM+uaOHvV57IzHE17gbmkpbuRP5gOCVARLytynQCMMnazNbM8D0E/V9LNnPlX16mim4uCzt/Dy9kDiWkChART3AqQJwESCjTk3/9i39bDMDqGy9wJS43xZIZwrkWWP7hu/FHxOsS/goAgumePVw5PGxpj3IaHQBsNTVMD6gCRMSrfAlnrluX2oIxBssafhUP3YlU/nFrd5wp2XbP7aZcLbBkrw3KT04oFOLOO+/k1FNP5bDDDuO73/0u11xzDbfffvtgfLvhKVv2b2N4aYXTG3XxhnY3I3JVWzRJOToDRGQ4uL/yUgAqrR5SwzgB8uyK7QBUWc4NYdQESRAgEhqUvQ0icoDZtkXUcja8hLUICEC0qAWWKkBEvGrWIeMBCFkpSO36DNHh4lePvUbASgPQTjlhJUBEvOvk/wagLNNFc3fC5WDc0R3vTYC0tbfht5yKkHbKCakCTvbSoKySzJo1i+eff34wPlqyTEHf4wgx4gTpiqV28xXe5hyKqQSIiJddefpB3Pr4Ck46cho8BVX0kDHDNwHy1tYuAKpwWuN0EOHm9x5BhRIgIp4R8zmL/IUVIPn3kulhtwgWS6Sos5yxT2eAiHhXU/2I3ifxTvAP73NCqyznXi9pfEQJaQFQxMMClfUAVFvdrGnuob5i+I1/3fF07+N2Z9NfwviIEaQ2EnQrLClx+s1Zovx+PzETAKAs2wu5PZp0MyTXGGOYmFrFWMsZGAlWuBuQiAyKL5wzjeXfOZexI0cCUGt1kkoP3wTI1g6n7V91dlJsQtW875hxboYkIvtZwuds6igzOx+E2dozvHYFbuuM88q8ub0v6H5PxLMCAT/dxln0++8/PcNDSza5HJG7Dk2+DjibXcAioB74It5VVgPALOtNOqPD614vp6egBdavH1kEONUfYBFUu2fZS/rJKVE+26Yz2xe63nJaX7UP08Exlc7wq8BNvS+Ea1yLRUQGV8jv670ptN9icusz7gbkom2dcWZZb3Bb4IcAtAZHuhyRiOxv6Wwf/BmJVxjNdqA36dvaPbw2vsxduoXJdsEiaPmIXV8sIiUt6LPpys51l67ewKf+/LLLEbkok+b6zE8BaDZVAAzDIwFEho8y59xkv5Wh7vU/uhyMO7qyLbCmWOu42PcEAM2m2r2AxBOUAClRftvitcwkAGbaKwDoiA7PFljJVc8x2mpxHp/5bahscjkiERlUTYfnH56y+fcuBuKenkSK7kSa6wO/o8qKArAtPMnlqERkf0uHnMWuMuI8F/4s1/rvzr8XTQ6v+763tnZRlT0EMzX9IpejEZHBFPTbdBknAVKBc59TuCN4ODGrnyZkOQnv76U+CDAsD0UWGTYaD8s/nPL6rS4G4p5tnXEixPh78Ot81P8wAG+Z0Xz0RM13Ze8pAVKifLbFauMs9DdabQDEUxkXI3LR8n8CkDI2/pOudjkYERl0kTp+f9wDAIzteQ26m10O6MDb3ulU/NVZHQBsMTUsaHi3ixGJyGBYXXEkCzKH5J8faa3IP44nh9d9XzSZyrf880dq3A1GRAZVwNfb7aAiu9GjuWt4djtIr34OgHvTJ9E+9nQqQn7edqg2/Il4ls/PreN/BEA40UKqZa3LAR14m9tj1FvtlFm94/7m+hP4xjumuxiVlDolQEqU37ayPfDgKv/9XOx7nHRqeLVCyDEx5zDMe81p2g0jMkx0R0bzemY8NgZWPu52OAfcti7n/I8IcQA+mPgqHZHxboYkIoOgrCzCRYlv8ankNQBErHj+vVgqvasv86SDW59ijv2a8ySsNggiXhbw9VaAXOu/h1PsV4bleZeJVIbW1lYAtplq/vqJOSz8xtuYMVZjoIiXbak9Jv/4/T/8B/NXt7gYzYG3uSOWn+e2mgqOjd3KayPf7W5QUvKUAClRPtui24Tzz78f+CWHdr/gYkTuySSc3YBr7TEuRyIiB4rftlhqsgv+HRvdDcYF2zqdG8Ky7I1hjwkT9OlXuojXVIQCgEVX9jDg3GQQIDacKkCaV/CxdV/lOHu587yi0d14RGRQBXwW3dkKkMPt1fwh+H26O4bXAqAxhnff+iz/XuhU/kUJE/BZBHS/J+J5ZeEAKzKjAPCnY1z++5dcjujA2tIRI4Kz4a/dlLONWuorgi5HJaVOvz1LlN+2qcyWA+dUJYdfGxgAE3cqQBJ2xOVIRORA8dk20eyCIMno7i/2oJbuJH5ShCynH3YPIU2IRTwoEvQB0JNPgMTy78WSw6cCZMP6VQB0mAivT/gQHHGxyxGJyGCyLIseq6zotVjHdpeicUdLd4KlmzrylX8Ju0zdDkSGiZDfRwxnwT9sJYZdBdzmjlh+7Ivi3ANPaap0MyTxAK2WlCifbdFqigcAf6bHpWhclsweiOkL7+FCEfEKv23lb4ZyY8BwkkxninaC9xBWAkTEgz584kTA+TcOO7TAGkYVID/+1yIA1phGlsz4EkTq3A1IRAZdzCqe20W7O12KxB0dMWeTS+5+L+kr293lIuIhIb+dn+uWMfzOP9raEac8u+mnO3sPPLmh3M2QxAO0WlKiAj6Lv6TP4M7UaWw1Nc5r6djuv8ijrGwLrJRfA6LIcGHbFtHsrpjhWAFix1q4zv8XAJLGRxI/ZUH9ShfxmqYqZ9LXk50EN1ptTLHWARAfRmeAdHV2AE4iKOTXWCcyHNxtn8fD6WPzz5PZcx+Hi47sju9c5V/Kr24HIsNFyG8TMwEAwgWb3oaLTDrBhb6ngd4qaKctrMje0wyiRIUDPmKE+HLqEzyQngNAcJhVgNw1fx1/+M7HqNy+EIC0X7tiRIYLv20RM8O3AmT28pu4xO8c/r6FWgDKAj43QxKRQVAR8hMO2PQUnPv2z+BXmGxtpCcxPBIgXfFUfgd01Kjdn8hwsc4/gSuS17A8MxaAzHBLgMSSfMZ3H6f4lgCQUQJEZNgorAAJW8Or/VUmY/iC76+c43POPenAGftybWFF9pZmECUqXLDQldsVGMwMrwqQ3z30NP+Vuif/vD04ysVoRORA8g3zCpCqnrUAvMl4Ppm4FoCQEiAinlQRCrCNah5IHw9AwEpzsLWBXzyxwuXIDoyV27ooy7b+6iZEUAkQkWHBlz3vIrcImIl3uxnOARdt385/B+7OP2/VXFdk2Cg8A6QsuwnEGONmSAdMKmOYZjlz3aSvjNtTbwegPOR3MyzxAM0gSlRZQfYztyswlBlei4C+aO+h7++OX09LeJyL0YjIgeSzCs4AaVvrbjAuCCfbAfhh8ApeMxMBVYCIeFVFyAdYXJX8LI+kjwKgzuqkqXp4nH22tSPODMs5BD1GiKBaYIkMC6mMc85Rd3au64817+5yz0l2bMk/vij+TTZHprgYjYgcSKGATcw4CZAz7ZcJkcifC+R16Yyh1nLOfJo36wcsNgcBqgCRfacZRIkKF0z+ciVhMzOvQ3p4DIqJVIYRltMP+tXMRBaZg9UTWmQY8fssotmbQta/yF9uvorW7uFzQFxNbD0AyWBN/jUlQES8KRLs3fHWaioBqKOTZHp4HIK+rTPKxf4nAKcPtFpgiQwPqYyz2zl3AO4pG37lZjgHXKprOwCrMk0sMFN1nycyjIT8NivMaABO9r3Kd/y/YUvH8Oj4kjaGGfZq53G4Nv+61vtkX+knqEQVVoA8nZkBwDg2w+qn3ArpgOqKp3in7zkAWrKLAWHdFIoMGz7b4qXM1PzzcR0v8+yK7S5GdACtezH/MFlwU6gxUMSbKgpK/pupAmC8tYVkangkQNLNq/KP70+fSHt0+CS7RYazVNpJgDyTORyA6tQ2trzxkpshHVBjN84FoBVnrqsEiMjwEfTb3Js+Of98ir2ejW3Do+OL2bw0/7hyRG/rPyvbFlFkbykBUqLC/t4boLWmKX843KvLl7sV0gHVHU8xxnIWOy2cm2NlhEWGD79tsYEGPpr8EgAjrE7ao8PkgLjm3r7/4erG/GO/TzeFIl4UCfXe80UmzwHgJN+rJNLDoxc03dsAWJNpZIGZyiFNlS4HJCIHQq4F1p/Sb8u/9te/3+9SNAdeRfa8Nz9pQO1fRIaTkN/HVmp5d/x6wKn83doZdzmqA6T5jfzDWTNmcsWpB/G/75vpYkDiFVoxLlG2bRX1QF5qJgDw8utvuhXSARVNpvOHQf0pfRag3c8iw4md3QGyNeMshE20NtMRHR4tAEk6h4A+lD6WKQULgZoYi3hTYQXImSefBEAlPcOmBZbd4/T9t8pHcO+nT+CghgqXIxKRAyGdbYGVweau1KkAxNq2uhnSAdXS2gbAH9JnAxDWfZ7IsFFdFgCgJVsBNs7eRvswafdsEj0APJWZge2z+fJ503jv0WNdjkq8QAmQEla42HXo5IkAHNk5PFpg9STSlOP0QMz1w1YFiMjwkat2yP37j1hx/C1v7O5LvCPplD/34PTC/+PHjuNrFxzKjDHVLgcmIoPhwlljqC4LMH1UFU0j6gAoI05qmCRAKrrXAGAiI5g1vnYPV4uIVyQLqtzOPe4wAKbZa8lkvF/91h5NErGcue5247Q+jGizn8iwcdho5999rt07QNWmZ9wK54DKxJ3NfrHs+U8i+4t/z5fIUDWiPEhbj9PyxR+pAeBgs9bFiA6cnkSKkdmbwm7KAFWAiAwnPttJeG5kRP61irZlwHkuRXQAZRMgMRPC77M4+ZAGTj6kweWgRGSwnDGtiUXfeJvT+7inBYCglcakhkfbv0mdLwMQLx/jciQi4pZQVT0A7/TNI5bOELa9Pe97fVMHDWQ3vBhnEbBMFSAiw4ZlWUwfVcXSTb2vhbqGx1ofSacCRAkQ2d+0Zb6ENVb2DgidB78dAB8ZjPH+rphoIk2EXAIkBEB1JOBmSCJyAAV9zq8vg83c9CzncbzLzZAOnOxNYZQgAVu/xkWGg/zBj8Hy/Gv+dHRY3PNVppwzQNqbZrsciYi4ZvLp+YeJlPdbnm7tjBOxnHbP2uwnMjydcJCz0e/etNP+NBMbHnNdk8hWgFghlyMRr1EFSAlrquodEMpqnV1xIStJLB4nHPZ2trQnnqLKcnbFdBvnprA2EnQzJBE5gEKB3oX/7uzuECsxPG4KcxUgUUKU2zr4XGRY8QUxlg/LOGehpTKGgM/b40Ag5SR9gzWqABEZrgJN0/KPk9EuKPP2wlhXNMkoy6n4y23201lvIsPLtWdPYXNHjOqNtdAFdvYcSM/LngESs7y9pikHnraOlrD3Hj0u/7iurrcncjza6UY4B1R460IA0saik1wCRBUgIsNFrgIEepOgw+amMFcBYoKeX/gUkR1YFgQjgHP2kdcPQs9kDKGMk/Rtaqh3ORoRcYsdLCNlnHu/1DCY61ZsfiH/uMM4lX9lqgARGVYiQT//98FZTBzdBIAvNbzmunElQGQ/UwVICTvpkHp+8+Fj6IqnaaiuJG78hKwUye52qPV2P/jq7U4/6GXB6cTizq6YunJv7wQSkV7hggqQrmwFiM/DCZAV27r44j2LOXVKA5/NlQUTwu/TPgaRYSdQDvFOIsSKDgn2onkrmzkq2/K0vq7O5WhExDWWRQ9hqughFfN+AqSy7bX84xacw5B1BojI8GSFKgAIp7w/9gHY0e0AdFqVe7hSZGC0clLizpjWxDtnjsayLHqylRDpFu8fjlTX+goAW6uO4LvvOZyLjxnHrPE17gYlIgdM0Nc7CcxVgLw3fq9b4Qy6+17ewII1rfxw7htk2jcAsNXU4FcLLJHhp9yphKi3OjxfAfLTR5bl++D7y6pcjkZE3BTN7gbODIMESF3HMgAerv1g/jVVgIgMT1bISQS8LT4XhsHZb4HO7FzX9vambjnwlADxkLjlnIFR958rXY5kkBnDxO1PAdAdGcOlsyfw/fceoZ3QIsNI4RkgbxqnL3wGC5Ixt0IaVLk8Rxkx7HXPA7DeNOhATJFhyKocCUCj1erpBEg8leag9ff1vhCscC8YETngarLtjcfUOBtdcpv96p653rWYDpSD258DoHvkbMqzlR+TGzQGigxHibFzep90b3MvkEG0tTPGNX9dxMK31hFqfdN5zd/kclTiNVox9pAX7KOcB13b2N7pzUVAAFJx/CYBwKrGM10ORkTcUHgGyEOZ48gYCxsD25a5GNXgiWcXOWfbr+dfW2lGKQEiMhxlEyCjaCGZ8u5OwC3tcd5pPwOACUTAr1anIsPJHR8/ngtmjOL3Hz0OgG7LOQsjsnm+t3dBG0NZust53HQ4T37xdJ750ukc3KgEiMhwZI06gjWZRgC+/au/8vLaVpcj2v++dt+r3LdwA9//zZ34Ut1sNTWs8U1yOyzxGCVAPOTnkU8CECDJXU+94nI0gyjRlX9olakftMhwVFgBAhZPZ2YAkFn6D3cCGmS5Rc5KnMOAN9uNdFBedBaKiAwTIw4GYIq9noSHK0A2tEUZYzl9oK1L73EOgBeRYePQUVXceums/ML/1yJfB8AyKehpdjO0QZPJGJat34qNM7aHy6uorwgxtjbicmQi4paygI/5ZhoA47c/zQ3/en0PX1F6Vm53zrisxlnrW2sawdZGP9m/tHLiIZUVFWwzTn/k15Z5cxf0f17bzK8eWwJAjwkRDgVdjkhE3BDcoeXdS5kpAMTaNrsRzqBLpNMA+V74K6wJAKoAERmOmpyE7yHWelIZ7yZAtnf2MJIW50ndZHeDERHXxQI1bDE1zpP2da7GMhi2dsT43XOr+eCtj+VfC0dU9SEy3DVUhliaceZ+I6wONrRGXY5o/8ttcamxnERImynHb2u5WvYv/UR5iIVFm3EOSCrPeO9wuPaeJJ/44wLuec5J7nQToqos4HJUIuKGHc/86cr2hX7klZVsavfeTWEi5SxyVmQrQLqNcxBoyK9f4yLDTqXTE7nO6vB0C6xUdyt+K5vgKddBmCLDXchv02yqAVi/Yb3L0exfC9a0ctz3HuX6B5cSsZxW1j0mRGUk7HJkIuK2cMDHzIPGAhAhhm17ryI2V+Rbk60AaacCnwf/nOIurZx4yKT6ctpweqP6423uBrOfpTOGmdf/B4Dy7AJgjwnTWKl+0CIC3TgTxHJifPrPL7sczf6XS4BEcCbFHRln7FMFiMgwFBkBQC1dJFJpl4MZPOlup/ojapeDz+9yNCLitkjQT5tx5rrLVq11OZr96/VNHfnHFdl7vW5CVIQ09okIHDZxNAAVVsyTRyBZ2RqQWsvZyN1uygn4lACR/UsJEA/54rlT8Zc7k+JAot3laPavlducTHA1Xfwt9G0AuimjsVK7YkSGq2Mm1OYf92QrIsqtGO3RpFshDZpEOkMNnVzmfwSA1pTT/i/sVwJEZNjJnn/mtzJkYt663ysSdQ75jPqqXA5ERIaCSNBHG05LKK/NdTMFK5rfC/wKcO5tx4/Q2R8iAgePdap/I8SIp7zX/tSy4DBrNVf4HwScM0DqytXuXvYvJUA8ZERFiOmTxwMQSXeQ9NDBmJs7nJ0wR9lv5l97LjOdMTVlboUkIi77n3cfTsBncflJkziioCw4lvDejmiTiPFQ6DqarDYAOowzIdYh6CLDUCBMT7btHz3b3Y1lEPQkUiTTGUyPkwCJ+ZUAERHw+6x8BUgg0eZuMPtZomBB8yBrIwDbQ+NUASIijqAz9pUT82T1b6Xp4t7gN/PP3zJj6IqnXIxIvEi/UT0mUDMGgNHWdlp7Ep6pkNjc7iRAcot/CzKH8K/RV3F5RGeAiAxXh46q4pVvnk1ZwAdrWuB3cIS9iimJpcCZboe3XzXFVjDKctrBPJA+nnvTJ2NbUK6Jsciw1GlXEclEsXta3A5lv+qIJTnq+rkc0ljBFdXbAIgHa9wNSkSGBGOgGecMkLLYNpej2b+SaacCJEKMaqsHgNubvsFtbgYlIkNH0Kl+O8jexMTUKpeD2f/GZdYTspwuDn9IvY15melMiXsv0SPu0tZRj7FHTAJgnLWNXz/tnYEx19KmEWc34BuZsYyrU0mwyHAXCfqxLAurYVr+tVPS81yMaHBUJzYDTvL3quRn2UADFx87XgkQkWGq03aqIqzozgmQldu6inYTl5L5q1pIZwzLNndS3uPsgu6JjHY5KhEZCtIZw1rTCEBV1FuHoOc6N3xshrO5r8OUYbILniIiVI/NP3yf9QjGYweBjGYrAC9kpvGN1EdI4+OWDxzpblDiOUqAeE3NBADGWVu5e8F6MhlnYEyVeDusRDb+8QGn3+tWammq8kZ1i4jsB+X19Jz4JQAazfb82OcV1UnnpnCTGZF/7cJZY9wKR0Rc1ulzdkHbseIEyEurWzjjB0/ysd/PdyOsfWYVnHdZEdsEQFQJEBHJWptx+uD721fzk0fe3MPVpSOXAGkwzYBzvxf0a6lGRLLK64kf/UkARtLMhT9/jtP/9wnWtfS4HNj+MTbb6WCDqc+/dkhTpVvhiEfpt6rX1DoJkLHWNlq7Y3TGUnz+rlc4/Fv/5pk3S7dPdG4n42hfNgFiahhVrQSIiPTyNTlVIKOtZmKpNK9uaOeu+euGzA6Zvy/awO+fWz2g5Exu7KtOOAmQDQUJkHG1qoITGa66swmQ7tYt3L9wA08sd8aIx7P/+/Sb24mXYI9oi94MSFXcqXyLlSvZKyLwsZMmsSZbATLG2s5PH1nqckT7T26zX12qd8NLjVo9i0ihg04HnLnuwrVtrNrezSOvb3E5qP2jKuWsVW4xtS5HIl6m3hleUzUWLB8hUjTSRiyV5m8vOyXCv312FScdUr+HDxiacrtiRvvaIO0MjCdX6wB0EekVqB0PwEirhavvXMTcpc4NoW1bvPfosbv70kG3tTPG1XcuAuCw0VUcM7Fut9e39ST47j9f5+4F6/nwCRM5Oen8WbbQO4Y3VoYGLV4RGdpajLMrbvEbK/n+0kUA3H3FHKrLehfMWruTjKz2uRHeXosXtO6qTTnjXrxcFSAiAiccXM8Vbz+R2NwAYSvJaKvZ7ZD2m2TK2RxTk3LONtlk6qiv0H2eiPTy1zrz2ZFWb/XvpuxZuaWuOpsAOWzaNM5INXLVGQe7HJF4kSpAvMbnh8qRgDMwRhO9u/82lvDgmNsFXW+cM0Ba7TqOmajssIj0smucm8ImWnls6cb8648sdX9nTHtPMv+4uTuxx+s//oeXuHuBk7z+3XOrGZF2JsRWde9OaNu2+vxaEfG+5R1BAGrpzL/2q6dX0lNw39fSj7FmqOlJpACwyNCQcSbDCVWAiEhWWSjAxmw17Ch2PgNpINIZk99k57ZcHIUtTy+YMcrNkERkiPFl54EjrE5COPd4G1qjA/6cWDLN7U+t4K2tnXu++ABY09xNOOaMfY2jJ/GbDx/LUeO11if7nxIgXlTp3CyNtFqIJnsnws1d8Z0u7YwlufIvL/PD/ywver0rnuJXT69kfevOPQWT6cwBaymTSmfIZAzJtCFAioqkMxm+9VPv1K4YESlW3kjS+PBZhkba8i+XBd3fAR1L9k6wCxPTuzJ/dWvR81HZXY7vPeN4Tj6knlsuOWr/BigiJaUVpwKkzuqdvM5f3Vo0vrT2lF4CpDsbfyNtBEiRMjap8pEuRyUiQ0U44GOzcapoR2bvjTa1R3lh5cCqQZZu7GDW/8xl5rf/MyQWAXMJkKpsy9PLzjlB/e9FpFhZLT3GWQPLVYE0d++8xrcriVSGx5dv5X8eXMr3/rWMs3741KCEORCt3Qm++Y/XaLKyc99K3fPJ4FECxIuqcgmQVrriqfzLseTOi26/fmYV/1y8iVsee4vOWO8O5f/993K+88/X+cDtzxdd3xFLcsKNj/GJPy4YpOB7bWyLMut/5nLFnxYQT2U4334eCwO+ECNHudvORkSGINtmC85ukVFDrC1CrKAXf08/EiCFAqRowDn/6NCp0/njx2bzzplqCSMynKXCzlg3wurIv9YeTRbd95VkBUg2/jGWs+FlM3UEAuqDLyKOcMDHJpwEyCirBWMMc254jItvf56Fa1v38NW9/v7KBtqjSXoSaf7xyqbBCrffEukMn/L9gwmt8wBoHD/V5YhEZMixLLaYGoD8Zr+2gi4DfdnYFiWVTbD+/IkVfOS38/nzC2v3OZSeRKrP9cWcdMbwy6dWsnRjxy6vuePFtRz1P3N5cvkWGnHGb6tKc1wZPEqAeFGlM2iMtFqK2q4k+ijxXby+Pf94XUtv+dxjy5zdJ+tbo0W7CR9ZuoVtnfF8b/3BNHfpFjpiKf6zdAvPr2zmBDt70F2wHGz96IrIzvJtEQp6o3ZEk1x372LO/8nTrN7e7UpchTeIuRYvOZmM4SePvMmvn1nV59c2WS3YliFjB6G8NCKBrBYAADbKSURBVM9xEpH96zPvPBko7gOdzhi2F1T7dsdTO33dUJerABmbTYBsMPUEfLrnExFHcQVIS9G5Qc+v7H9LrOWbe6s+Vmzt2n8BDsDWzhjXP7CUx5dvJZk2vN3nJD+wAzB+jisxicjQto0aABqsNgDWNO/csSVn/uoWTrjxMb74t8UAPLZsz2t4b23t7LMLTKFYMs1h3/w3J9/0+C6v+e2zq/juv17n/Fue3uU11927BIA6OglaaTLGwlfVtMcYRfaWZhRelK0A+YDvcdqjvQmQeGrn1lWF729o602AlAV6W8Zc8sveKpB0pvfr+9PGZV+8VXAzumZ7JzPtFc6Td/50UL+viJSudaYBgB8Fbs3vJHl02VbueHEdSzd1cN/CDfvl+7y5pZOv3b+EReva9njtN/7+Kp/+08v55zuOnU+8sZUfPfIG//PgUtY29xSN0zYZxlnO+R/JitFg6dwPEYHxk6YAMMZq5q7gtznOeh0o3szSVYIJkJ54iho6+W7g1wCsVwJERAo0VobYlN3scpnvkQFX1eYU3osVzocPpN8+u5rfPLuKj/x2PslksrcFzMcfA9v99q0iMvRMnjgZgJ8Fb2EkzUSTaZ7vowVgOmP4zoPOBuJ7X3bmv+HA7seV9miSs374FCd9/3GMMWxuj/GOnz7DXS+tK7rujS2dGAPbOuM8vmwr3/z7qyxe31Z0zbwVvTHtrn2+TSbfuaGZKkKh8G5jFNkXmlF4UZ0zKNZaXRz28jfyLxtT3IcenJ3ROYUtsCrC/vzjRevaWNfiZIGLzhQZQL/BvdERSwKG3wduZGX4MqbZ2YF3zNGD+n1FpHS9Ne69AAStNG/z7dyq77XdlOEOxNfuf5U/Pb+Wq+54ebfXpdIZ/jBvDZ0FC5GF4+gLK5v5/kO9ZzB1xJL53Yw/CtzKyvBl3BH8LgDpSpUEi0hWRRPd/hoAjrOX89nQAwAs3dQ7xu3twuCBZozhgVc2smp7N92JNJ/w/5NKy0nkrMqMUgJERPIOHVXFO047EQC/lcF+4ef59wz9P6MyVlA54lYCpC17TtP7fE/w05XnUZ9raVg1xpV4RGToq598ZP7xhyrmA/DX+cUJiuauOLO/9wivFHR76UmksPewka7wzOCtnXG++Y9XWbKhnS/es7jousL7y0//+WV+P28Nn9yhRX4o0Hvv1txHS1ZjDN/x/5qV4ct4MPQ1AFpMZdHXiexv+unyoqnn02lXATBtw98I0ntT1xErvsHrjPUuyuXaDqQzhgVrinuors0mQDa2xfKvbekYnATIXS+t432/eI7lmzuZYq3nVF/vgLu17ph8hYuIyI4+edml/D19AlDcGiZnbxO3G9ui3Ldwfb4KLjdGrmuJ8sTyrbvcaZ1M7zwZz900Ll7fxsW3P8/yLb1tGGLJNNFEmjo6eI/v2aKvSx30tr2KXUQ8yPbx2vn3cmfqNABmWCtgh8W/HVtgbeuM87X7lxRV2PbH5vYY9y1cn+8hvb/9+7UtXHXHQk7/3yfoSaQ42n4DgFWZJv6YfhtBvyrfRKTX7DMvoosyAMKL/7jba9t7klxy+/Nc/vuXyBR0MognB1YBYozhx4+8wUNL9t95IbFkhnKi3By4nQDOeN1SewRE6vbb9xARjznpWhh5BADnTXDGtA2t0aJLvvmP19jeVZx0OOHGx5jXR6VIocK7yJXbuovaa53746d4JNsGv7CCLrexb1N7bKc2zzl9nUn32uqNXOZ/tOi1VzIHEfKp+k0GjxIgXuQL8L2pf8s/bcgekATFVR47Ps9NlOcu3Zx/7bDRTiIlN2i9trE3i7xgTf/7rA7EF+9ZzPzVrSzb3Mm1/nsAWJ4Zy5Gx23jmxN8NyvcUEW8oD/lZnhkLwId8c/lD4AbK6b0p3NNBcTnpjGFNc3e+ZPe/fvMi1/z1FW5/aiUAfl/vgtyHfzufT/1p52oTYwzJzM4LhtFEmhXbuvJnLRWKpzJEk2k+53fG8K7ACI6M3cbhsV9hjr+qX7GLyPBw7FGzOPgjv8D4glSbTi6wXyh6f8fE7Adun8efnl/L5+9aNKDvc8kvn+eav77Cr/o4p2j+6hZW7XC20qb2KF+4+xUeeGVjvz5/4breTTemp43Z9jIAPpH8PO1UqAJERIrZNu8POC2Rw21vMgJnflqY4Mi56BfPMW9lM4+8voVVzb1jVWwXCZB4Ks19C9cXzXkB5q9u5cePvMmn/vzybtu5DERHNMk12bkuwPvi3+DZU+9Qu1MR2TV/EI66DIDxa+/njsB36GovnlMuKzjjKKc/c+BkurgyrrByY9nmTi7/w0vAriuMtxZskE6kesfJvhIgb9zzbQA6TRlHxX7B+fHv8X3/J4o60Yjsb5pReFRlZSXrMk4v/O8Ffs2h1hpCJOgoqPhIZ0y+6gOcvsvg7PTLGV8XAZxBq60nwbNvbc+/d9/C/k1s95ZFhmNspzXM39Mn0EYlZUENiCKyawGfzVIzAYAaq5tTfEs439e7KLjjQt2ufP6uRZx68xP86mlnwS+3Y/oP81Y738cu/vX59JvbOffHT/HBXz5POmPojCU5+abH+dydi3b67L++tI4zf/AkP37kzZ3eiyXTRJNpZttOP//Xak6njUq6iFCpG0IRKWBZFsccNAqrfioAF/sep4IeKnF27LX2FE84V2xzxr/Clgj9kRs379/hDKV/LdnE+34xjwt/9mxRtcntT63k7gXrueqOhf1aKAz5e3f7vbP5lwC0mwgrjNP2TwkQEdlRd7Ce1zPjAfhz8HuMorloXgvOPVVhxdvrBS0CC9tCF+5a/vvCjVzz11e44JZn+MxfetucFo6nfS3m7Y3OaJKzbWdBcV56OvPNVAJ+3euJyB6MnAGAP9nJHN9Sjut+Kv/W+taeAVX6FiaOkwVJi1gynV8fLBRNpHd5SHqiIIGSKtgE2JodM2PJNNu74nz8Dy8xsdPZPDg3czStVLHUTOTZr56Hz1YCWAaPZhQeVRMJsMY0AnCqbzEPha7jlsD/FZ35sWOJWlfcuWnM3Ty+/5ix1JUHAedGb0tHnMKNNRvbikvtFq5tZVN78Wt7Y2SVc/DRodZa6q0OYnaEX6bfDkBjVWifP19EvO2JzJG8O349/0k75wXdHLidM+3eCo1XN+x68c8YQzKd4f5FToL399mER862Tmdni8+3883Zss2dPLeimYtvm8cVf1rA+tZon1UeuxNPZYglUkywnBLjuVUX5d+zdUMoIn05/2YAjreX8kDwqzwa/gJh4jy5fFuf7QgCfYxf/dG9w2ctyy4mtvYkmZttiwDkz40Dp4c0wOPLt/LtB14jkdq5Ki5c0O95Ssxpe3qX7+1kstOUvY1XRLyrLOBjXmY6ANPsdcwLX0Vty6Kia3L3bDnNBS1hYqneZEkybfI7nwurRB5c3NvuqqtgE+HiASaRCz3wykaO+c5cfvPMKsp71jHe3kbc+PlY8r8BSy3/RGTPxs+Bjz9O9JB3AvAt+1ckX7mLPz6/hpO+//iAPmrmt//D3xc5G1wKExjRZJp0H5tYZn/vEW54aFmfn1V4j1dYTdKWXYP8wO3Pc8x3HmHu0i2Mt5w58vxRH8xft6dD2kX2lRIgHlUXCfKz9LuKXjvH9xKJtt6qjegOu2Ryu/dy/xsJ+vMlaN3xVL48uCYSAJyyuNwg98q6Nt7zs+e45Pbn9zn2XMuGsdY2ANrKJ5PEiaOxMrzPny8iXmexyBzML8yF+Vcu9fX2GF2+Q1nwLY++yRk/eIKtnTEuvv15zvrhk/n3dmynkMoYPv3nBbstI35pTSvPvrX7Hqu7EkumSXVtI2wlyWARrNNBmCKyB2OPIY2PoJVmkr2FRlo5uXor3Yk0n/7zy7y5pbOoEmNvu7fs2NFve8Eu6K/etyT/eHVBz+g1zT0kUhk+8tv5/PbZ1dz78vr8e4lUhnff+iw3Pbyco6w3+YL/TsannYM8t0x6T/66oPpBi8gOwgEf96ZPKnrto29cCdvfyj/f2hkrer+w9XNhCyzobenSskPf/Nx12wsOB84tFu6NGx9axvauBNc/uJTKmJNgWWOa6MGZ46riTUT2yLJgzCxSx34i/9KmR27l6/e/OuCP6oynuPrORVz++5e4+LZ5+dejifRO931AUUeZHRUmUAqrSZLpDLFkmkXr2gAIkaDecjbRdId1vq8cOPoN61E1kSDPZQ7n2NitdJhI/vWqdb2LgDv27tuYrd7IvV4R8hMJOImHaDKdT4BMqIvkS9NyBwo/uNhJrKxu7uGu+ev2Ou5MxuQTICOyg2JVfe+gqAoQEdmTC49ykgbvefs7+FbjTwA41F6bT952xVP85YW1fOfBpTz1xjZ+OPcNVm7r5vsPLefFVS1FB7715V9LNu/2/YGaVF+efxxPZQhueBGA7dYIPnn6dC48agy//+hx+/V7ioiH+ALEmmYVvXRilXNO2xPLt/Hh386nI9o7YU1lTFG709155s3e1qeFlRjpjGHpxt52Mt2JNK3dCZZt7ihqvdDSnWBdQauEwhY0T72xjUXr2ggT5w/BG7nS/4/8e6ccexTHTazj/BkjGVtb1q9YRWT4CAdsXjWT+fq0f9JsKgHwk4I3HspfU9iPHnoX7owxRS2woLczQmGio/B5YeeDhdlFvD15Y0tnUUUcFCdlwklns0yzqc6/pgSIiPRXYNIJnB3/PgB1nTu3Vh6IR17fQqpg49+uKkB2p7ACpDAZkkhlisbQc21nrttuIsT9lXsbssiA6TesR+VaV22jlmPjP+O3qXMACHWsAZws7I4JkDe2OLuicwmISMhHWdD5EYkmehMg1ZEgE7Jng7y02jm4svCzvnLfkr3ujdpZ0GdwBM4kOVIzkr996gTu+/QJRX2iRUT68q13HcbfPnUCHzp+AslK50D0JlqZWOOMi13xFF+5bwm/emYV//WbF/Nfl0vkFrIOwEGUP3j/TN5+hJPoDbW+wZRnrwFgaXAG1ZEAP7z4SE6d0jDocYhI6Sr/6P28L/4N5mZb/0319+5Q3tAWpS1afF/28tpWdtQZS/LFe17h6Te35V/70/Nr8o9zC4YL17Zy+v8+kd/Jl7NkQzsX31ZcCdzakyhqQ/PsimbWZpPMuYn2LPtNKq3eifFLmSmMrqvgrivm8LNLj1b7PxHZSVm2Vcq6aJAT4j/l/1LZzgctq/LXbNshmZFrBR0tqP7IberLzWV3TIDkxq91rb1jVGFL6Qde2cg9C9aT3qFi+NUN7Zz9o6c4+abHeXFVS59/hvKUMw43U5V/TQkQEemvkN9mvXHmiBV058+A2x/+/drmnca1PfnsHQt5YaWT2C1sgZVIZ9jc4SR/m2jhJ8GfAfBC5lD8qvKVA0i/YT2qNrvTGSBOkA2mHoBw90a+dM9ijvnOI6xtcXqcjsgmS7Z0xGnrSeR3wJQH/fmby2gyTUu22qOmLMB5M0YCvQuGnbHinYWL17cBMH91C2//6dP8+JE3+nUQ5tbswDjB3s6nK55wXqxo4ugJtRw1vnbAfw8iMvxUhQMcPcEZLwKVjcRNANsynB5+gzFsI92yhjo68JEmQApwxqZ4H73pD4RIwCbsd34dT153H750nA4T4d7q/3IlHhEpQaEKloUO58nMEQCMjb1V9PaObfuWFVRigJMQedetz3LXS+v50K+dxLAxpihR0tKTwBjDH+atYW12V3NNJMDhY5zFu8eWbc1vlpk5rgaA6+5dwtcKWjK8tbWLs370JBvbouTyy7k+0ACtpoIvJy8nEtRBwCKya7le8c1dCeIE84uAnVtX56/ZsQIkN1/N/a/PtqivcObBudbQWzt3rABxxr3CM906YimMMaxp7uaqOxby33e/wu+eW130dVfdsTD/+P23zctX3Vk4A98MayUfsucCUDGit91pUAkQEekny7JI+yO0mgoATrBf4/xxSR67fDLnTdq3xMLenHW0tTPOxdmW+IUJkGQyTXf2vOEP+HrPKPlJ6iL8OudNDiDNLjyquiABArA2eyD6oc1zqdzcyEXYbHnkCS7z9UB4PCt8DSzr8LN8UzuZ7hYmWJtpSDdgZ+KMs7YQj9eytqWHWjq4rOOfhA+/glshv/uvMxrji/47+bT/HyzOTKLu4UbaQjfzy18/wA3W3YS3JelZEqH84l9BpA5+fTY0TodAGSx7EMYeCzXjGbl2MfNDW2iwOiB3/znm6AP3FycinhIKBnjVTORo602u3vgFrg4DS+CzfRwnlDA+VpjRfCP5EVaaURgsfAT3WywXzhrDvS9vIEiS4+xlvJ4Zz9H2Gxzy+8/wzbTNiYGpjFn3KlhwXfJyesrG7rfvLSLe9+BVJ/Hk02lY9FvGtT7P/NBS3syM5ZPJaxn79/exOtxb8cZzwBHPwvoXST90HeNTQX5uqviC9UkWm4MwxrB5ezMndj/CxcEnWJdp4IupT/DYsq109USZY7/GN2seZmpsMbHWII8GDudXb13LRGsTt1X+hpbAMYSDz5LEx3Edy/mr/zS+kfowYRK0pyp4fPlW6iuctqajLafN1h9TZ/H11EcBZxOOiMiu5Dbp5boO5Oa6lWsfhed+CrafSSs3c4mvk1TVeJa32azbaGjpPpzOjna+5v8jET/8x38BBot7XlrH9FFVbO+Kc4nvUcZW+bmt9Wi2d8X555JNRd87nTH0JNJF5x39a8kmPnbSpPzzwso3mwxbHr6JkZll/Me/gNH+bQSt3iqUnsYjIdtdNaBD0EVkAMIBH0tSkzjFt4Tbgj+CbcCf4OdA9mghtpoaekyIP6TP5q70qXQR2c0n7jtjDMm0wSbDV/x/5vJnH6K9aio/DDRwvL0UgJuT7+c1M5GpqvKVA8gy/dmW75KOjg6qq6tpb2+nqqpqz18geR2xJEd86z/553V08FLoU9jW3v/f/XroCA6NL84/fzp9OACzq1oIdu/cOmafhaph6rnwzv8D//5bhBSR4ePGh5ax6enfc33gd5T7MiTTGWwMIWvXh5jvKH3Fcxz049VFr9lkyAygiPKghnK+8+4ZXPLL5/lZ4Mec73txl9fGTYBj47dy0oyD+dmlSgCLyAAYAzeOh3jHnq/dhZgJEO5jjNxmqvlQ4jr+N/ALDrdX7/Xnfyd5KZEZb+e0+g5eeuIffML/TwD+J3kpv05fAMAb3zmPoF87oUWkb1+5bwl/eWEtQb9NIpUhQoxFoY8XJRb68qng9/j69M2MXnRL0eu3BC/nss9+l7abZjLZdrIRGWNxavBOLjxuMh1P3MJX/X9mK7V8JnEVt375Cp5+Yzt/vfdurg/8jq8nP8Jv3zeRink305OGypbX2G6q+Gnj9YzY9ASf9d+/UyxrMw0s8x1C+9k/5gt/d6r2Hv38qRzUULF//pJExPNmf+8Rjux6hhsDvyRMgnDAh4WBVN9nvXWZMGfHb2Ij9YMWU1NViC0dcT7ru5drA/fs9H7S+DgxfguXnz+HVdt7uOPFtQCsvvGCQYtJvGsgeQMlQDwqkcow5Wu9h8BNG1nJ9K3/5OzIG/TEE/jI0FThI93VwuGB9VRnBl7itr91n/w1vv/kFl5NjuEzFxzLGSed5HZIIlLivv/wMn7+xArn8UUz+NLflgAwkmZGWJ0k8RHItsL6tP/vnO1b0Ofn/CD5Xs7yvcxMe2XR69tMFXenT+MQaz1LzUSOs5Yxx7d0p6/vJkL5LvqyZmons6zhXP72mjMOL8oczAIzlQtnjeGH7z9yb//oIjJcvfxHuh7/EdGObU5FbYm4IP5dXjOTOGJsNf/4jO4BRWTXrn9gKb95tve8j2Mm1NK07iEuKFvCWVPrWbhmO9s6ehhBJ0eH1xNMuj8WxqddyJcWj+QtM5ptpoYt1DFhRITr33U4/y97Jt3TXzydcXWDuztbRLzj1JsfZ022Gu2iWWP5wftnAnDPrV/hvdtudR6nT+G9vqf69XmvZibyueSnuc5/By9mpnFb+h18wPcY59svsMKMptFq5XPJz/Be35PcEPj1Lj/nhcw0ZtvL8s+/n/wACZzKvaVmIt+79kom1ZezsS3KO376DB84bhxfOGfaXv0dyPA2kLyB6ss9KuCzsC3InVt0ypQGbt98Cvd2nZK/ZlqokmWtnbztkCZuOrue3/z0fzjI3sizmcNZmpnILy8cS3Pj8cz75TUcbq3imcwM1pt6vntGHZWNE3h+VTN/eWEtx9nLGGtt5z+ZY3j/UU38a+EqxlQHidRPYP6KTYRJ8lpmAo1WW7bfPtRYXfwzfTwNVjtz7Ne45L8+xX/PbWVxop3GyhAnzJ7jxl+biHjM1KbK/OOKUG9rwM2MYLMZAcBpUxsYUR7iky9P5m3pBZzrm8+FvmeKPufzfexeAWiwOvi0/x8AvI2XdxnHrpIfT4dO4aTP/oPJqQydwVeZWF/OgoeXO1+jFjAisjdmfYiXK87lv37zInV0ECZBGpvubC+EFD5CJLnkyDqOHFfN1x54ix5CWBgmRhI0xlby2+DNgHMmR8UnHuKjt/6TXwX+l5DVe+bb9qkfpP5d3+U/r65n5T9u4ij7TRLGT9ekczlvej3/2lTO2gX/JkCaVWYkX6p5jMpu51D1JH7wh3k1MZLnMtN5KzOG8PhZfHvmaC47fsKB/zsTkZJSFiyuEDu4sYI71xzPI/ET+FzjFL7/srPwVhnyc9dH5/DVW37NL4I/ptFqA5xFvn83Xc7njwnCQ18c9Hg3hA8hfvqPuX9R8f1lZdjP6Orevqzqhy8iA1EZ7p0vzjloRP7xMyPex3+vO4EgKRIEeDB9PO/yPct7fM/u9vMOt1fzSMgZE8/0LeS6wB35907B2Uh4gW/P51QWJj8uiH+P18xEACaMiPC1C6Yzqb4cgNE1Zbz0tbOwLI19Mvi0uuJRlmURDvjoyR7odv6MUfxj0UY2d/SWwm3vcnqmRoI+akdOZM3hn+Gnr/S2svJPO5PDK0LcOvXzfO+1zfnXf3TG+WBbJMLb+Me8F/lH5kQALj9pEsFZY7n9paehBd41fjR/T29kTE0ZG9qiuXOGizSbapalx9OzJJ0/aOmGC2fkD7YTEdkX75w5mk3tMY6dWEtXPNXnNdNHVTG5oYK/vbye/2SO5T+ZY7k2+Wk+7bufLwbuGpS4njjtHk6t3sKJ096RH69veu9M4qk0N2UTIJoEi8jeKg9l++NTvBPq/ceM5a6X1hMjxC8WJTipy7Cd6vz7/hGjeHxdNR9PXEubqYAJc7h7zBE0zMwwfeFhlBPDYNFJhEfOPIX6SCVNo2w+kbok/xlXjzuE846fwvnAqW+Ny+9MPP/CrzG2KsilP7yHbf5RfP/dR3D1nYvyX/f9Y8Zy8bHjB+8vRUQ8o2yHuWJuMS2eyvD9h3sX3g4bU0VVWYCXzRTOjd/IcfYygiR5MjOTC8cfDrMP47cvbeOgzQ+zIDOFqfY6lja9k89/+GLuuekT1Jh26vwJOlM+zNnf5YGX3mTN1jZ+NvphmppfYIupYcWUj7O6JcZB2+YSIMV2U83/pd7NNlPDN85o4OuPtXLUxIO4IpZhR5WhAKNqyvLPc4eki4j0x6jqMl7d4FS4TRvZu/Evkc4AFgmcDYBPZI7kzcyYPSZABsNq05R/fNahTbxtelPR+0p+yIGiBIiHFSZAKsN+Dh9TtUMCxDmcLRJ0biDH1JYVfX11WQDLsvjg7PE8nE2ABP02vuxBRXXlxedyHNRYwZiCG7h/Lt6U/9wNbdHdxvrXl9YBYFlw+tTGgf1BRUR2wbYtPnXaQQA88+b2Pq+pDAeYNb5mp9d/ln4XBps4AY63l3KavYi5maO5LvlxZtuvM9HazCz7Tc7zzQecQ9RbqOKx9JE040x+U/gIk+DsCRY//OR7OOwr95HAz/fKp2Ed9badprkhf++EPpMZsh0qRWSIqysP9fn6xceO4+Jjx3HRz+cB8MxbxeNidzZRPDdzDAAvfHAWAN99zwyOmVjHXS+tY9G6NsCZdAMcNrqKqrCfjpjztRWh3unFpPryfAJkwohyRpQHWWeaIJkpSn4A2vwiIv2243gxfXTfbS8qQn5GVoU5dmIt81fDw5nj8u8dOa4GgA0TLuTb645yXkzD/xx9GFZFI7dWXu0cdJ49Eukvow9lS2WABVuaubHxDO7bsAGAPxx7HM3r2vjK3D46GIw6ku28TEs0zfMrm3d6u6rMT0XIz0dOnEhHNEVTVd9jt4hIXw4fXc3cpVuorwhxWME4GE3sfB7SBhr4QOJr/CzwY+qsLgAeTM/muuTHiRPAwhAmQQVRLMvwrcO2c9TqX7I5EeaXqQu4xn8PE+yt+c+7K3UqXZRxse9xyq04r2Qm8+PURUy2NnGMvRyDxQPpOXTTu0ZYHtIStLhHP30eFvT1lgZXhv2Mryvv87qygPNjUDhhLQv48gtx5Tu8njOiojgBMnFEOdWRQL71Viq7eHfa1AZeXNWC37Z47rozuGfB+vwO56vOOJifPvZW/jO+fsF0bFsZYBHZ/wo3l5wypYGn3tgGQEXIx+SGCr75junMX93C6VMbeX5lC397eT0/T78TgN+kzyv6rNziIGnyE+Nd6aaMzkgjlm1z+hGTmLeieaedL32ZMbamv380EZEik+rLufHCGXz53iVFr09pqqQyHGDCiEg+MVEbCfDREyfxg7lvcPWZh3DVHQvz1zdVOa1ZyoI+Pjh7PIlUOp8Ayd0f+n025xw2krsXrAeK2zFcefrBLFzbxpiaMkZWhfHZVm9l8A5COvRcRPqpMAEyuaGckw6uZ9rISpZt7iy6rizox2db3H3FCTzwysai8e2dM0cDMLKgBVU4YPPB2U4bvlHVZU4CJKu+IkRV2NlNfd/CDfnXTz6knnQfm1ZOPHgEtdkNg609CZZnYzuooZwV27oBqI0473/zHYcN9K9ARISPnDSRpqoQZ01vKqqkiOwi0fB8Zjqz4rfv8vPiBGmnAgxsOvgMXhv5bn70yBsA3J/o+3y2H/s/mt8EA/A4R/Hr9Pl9XlsbCfT5usiBoJmGh2UKzrevDAUYX1fW53W5CpDCCWtNwcC0Y2Ikp74ilK8Ggd7S48+cfnDR5x86qop7rpjDny+fTWNlmHcdOYZI0Md7jx7LuYePLLp2wggd+iYig2PmuBosyxlnChfayrJnbXzkxEn87NKjed8x4/jehYfv1++dm6j/3yVH8fx1Z+YnxH158KqT+Mbbp/Oeo8bs1xhEZHj5wHHjmdxQvPmlMrt4d8JB9fnXRlSE+MwZBzP/q2fxjuyC4K58aM5EvnzeNO76ZPFO58Iq4qaCxcRjJ9ax4Gtn8eBVJ+XvGU+f1tDnZ4dUASIi/VQ4b73lA0dhWRb3fvoEfnTxzKLrAgXtRI+ZWJt/fOns8fnFwsIEyCGNlfmxalRN7+vgdD+oLitevLvi1IOwLIvDx/S2Evz826bw9bdP55YPHJXvmNDanWBrp9OJ4dOnHcwJB42gviLE5SdPHvgfXkQkqyoc4APHjae+orh67J27uZ/b1Ua8j588qej5iPIg9ZV9z1kbKnu/X+EYmnPsxFoumjV2p9dzSV8RN6gCxMNSBTtRwgGbI7JlvjsqyyZAChMdhTd3FQU3mLlrAQI+m/MOH8mDizdRGfbnS3bH1hYnMarCAY6e0HvDOaamjFe+eTa2ZZHKFPdCPaSxEhGRwVAR8rPkW+cQ9Nlcc9ei/OvhwM57AQor6PbGx0+exGPLtuZ3+OUSzZZlEfTvvsrt8DHVRRNpEZG99fuPHMfJNz2+0+uFh+7WlQexLCs/mf3Tx2Zz+R/m8+137rwj2WdbXHHqQTu9XtgWddQOE2H/DuPpOYeN5E/Pr93pM8J+JUBEpH9On9bIxceMY0J9JH/PFAn6uWDGaP78/FpeWtMKFN/Pjaou46GrT+bJN7ZxyXG95w2Nr+udu05p6p2LFi7w+WyL2kiw6DWAt01vzF/71fMPZfmWTv7fiRPzlSLp7IbEtmiSLR1O++lRNWH+8vHj9/0vQURkF845bCQ/v3QWIypCLN/SyR/nreaNLU7bq1/+1zGsbe7hJ4++yd9eXp//mq+cfygfOG48Z/7gSQAaK0Mk0zufXfSnj81mTG0Zp//vEwC0dCd2uuZrF0xn1fbuos8HqFYFiLhICRAPKxysLMviiDHVnDKlgU1tUd7a1kWuQCTX3iC3KxCKM7MVwd4fE98O7am++Y7DaKwMc96MkfldNGN3OEtkXB+VJ4HszajP9nH4mCpe3dDBQQ3ljFcFiIgMolyiN1QwIe5r0a0/h7FdeNQYrj17Ctfe9Qovrmopeu9t00dSEwly87+ddn87HtYpInIgjKuL8O4jR3P/oo1Fr48uOLOt8Pw2gJMOqef1688d0KGUDQU7D8fV7v5eLnd2yI76SkaLiPSlKhzg++89YqfXg36bu6+Yw6Tr/gWA31c8jh06qopDRxWfFzJ1ZCUBn0UybYrOEikc15oqnc4HjQUJkJvfewRHT6jLP//4KTtXc+Tm1MbAqu3OpphdjYEiIvvTeTNGAXDcpDoeWrIpnwABGD8iwg/eP5P6iiC3PbUScOa/k+vLueqMg4km0hw1vpbmguTGEWOrOX/GKE46pL7o+5wypYH7F26gsBPghBGRPhMjI3bTBUFksCkB4mE79iL1+2z+8FHn4LdpX3+IWNJJkJx1qLNzpbAfX2ESozzUu3CX2iED3FAZ4hvvmF702riCXTRlAV/RzWNfbn7vTP70/Bo+fMLEPf2RRET2i0jBuLang3fff8xYrj5rCj955A3uemk9V55+EJPqKzh/xkgiQT81ZTvvZAkH7KI2W+GgEiAi4o4vnDuNN7Z0Fd1nnTW9ifNnjGTltm4+ddrOFR0DSX6Asxv7kuPGc+a0xj0ecLmrQ351MKaI7A+F41egHxW9Ib+P7190BCu3dXPZ8b2VIX21eClMXpxwcPEiYF8CPpvKsJ/ObH/83DlIIiIHUl/nFAGcP2MUtz21Ml+9a1kWnz97av79YMF89o6PH9/nvdoFM0bx1fMP5djvPpJPglSXBajqY458UEPFvvwxRPaJZhoeduqUBh56dfNOrQiAfPIDoCa7M2VifW+f6MaCyWlh64LWnj2c9kvxrsIjxlbvcRJ96KgqvvueGXv8XBGR/aUi1HtDtqddx2NrI4ypKePGC4/g6rOm7DRx7atvfTjgK0qARAL6dSsi7hhTU8a/rj656LXqsgA/u/To/fY9wgEfN1zYv3u5ynCAS2eP588vFLfB2lPliIjIQPW3pemFffSqP+ngeqY2VbJ8SydnZXvmnzKlgctPmsTI6nC/Exm1kWA+ARIJ+ooWFEVEDoRYaudWVuCckfngVScVreEVKpzP7lhR9+BVJ7FkQztnTGvEsizOOrSJ/yzdwvnZ7jDVZcXz3zP6sUlGZDDpp8/Drn/X4YytLeMDBT1Od2dEeZCxtWWsb41y9vSRfV6zYwusXV1z1qFNPPL6Fr547tQ9Xi8icqAVHp65qwqQmkiAtp4kZ2ar5Oxd7NoL9DEuhv0+QgWttcqCmuyKiOT815yJOyVAylQpJyL7WX8qQHZlREWIf19zCrFkOn+vGPTbfO3t0/fwlcUaKkOsbekB4EPHT9jreERE9lZbz87tqHJ2d/Zk4Xw2YBePpzueW/nd98zg/BmjOH2aM3euLuttd/W3T53AzLE641LcpQSIhzVUhvjqBX3foF18zDj++tI6PlHQq9SyLP5y+fF0xJI7DYJfPHcqP577Jrd/qH+7BX908Uy2dMQ5uFElbiIy9FSEChMgfU+On/jv09jcEWPayKo+38+J93E4XDhgEyr43MJzlUREhrsdx93b+nl/KSIyEPuSAMnZU6vUPTl/xigWZA9lPz/bk19E5EBq7eM8jv6YVNAlxt7DZuiGyhDvPmpM/nl9RZDLjh+PbVnMGl8z4PaqIvubEiDD1LfeeRhvnzmK2ZNGFL2+q0PIP33awXzi5MlF7bB2pzIcKDpUXURkKClMgIT6OAQdnPaANf1IXMST6Z1eKw/5iz53RIUSICIiOYVj8P+86zDOOazvymMRkb0xpqaMDW1Rzj6sye1Q+MgJE9naGaOpMrzbndYiIoNl9uQRzF26hXF1AzuDqK48yMOfO5myvUgEW5bFd96tVvcydCgBMkyVBX2cfEjDgL6mv8kPEZGhrjAhUbWPydoJI8p3eq085C+qABlR3vehvyIiw9GIit4xsfCgYRGR/eE/15zC9q54n/doB5ptW1x33qFuhyEiw9iNF87g8NHVvPeYnc872pM9dUMQKRVKgIiIyLBz4sH1fOGcqYyqDlMd2bcEyKdOO4iQ3+bYiXU889Z2zs4elDmutneHzfg6He4rIlLooatP5oWVzar+EJH9rjzk12G7IiJZIypCXH3WIW6HIeIqyxhj3A5iVzo6Oqiurqa9vZ2qKmUdRUSktCxZ305Z0Obgxkq3QxERERERERER8YSB5A20LUJERGSQzBirXs8iIiIiIiIiIm7RoQ4iIiIiIiIiIiIiIuI5SoCIiIiIiIiIiIiIiIjnKAEiIiIiIiIiIiIiIiKeowSIiIiIiIiIiIiIiIh4jhIgIiIiIiIiIiIiIiLiOUqAiIiIiIiIiIiIiIiI5ygBIiIiIiIiIiIiIiIinqMEiIiIiIiIiIiIiIiIeI4SICIiIiIiIiIiIiIi4jlKgIiIiIiIiIiIiIiIiOcoASIiIiIiIiIiIiIiIp6jBIiIiIiIiIiIiIiIiHiOEiAiIiIiIiIiIiIiIuI5SoCIiIiIiIiIiIiIiIjnKAEiIiIiIiIiIiIiIiKeowSIiIiIiIiIiIiIiIh4jhIgIiIiIiIiIiIiIiLiOUqAiIiIiIiIiIiIiIiI5ygBIiIiIiIiIiIiIiIinqMEiIiIiIiIiIiIiIiIeI4SICIiIiIiIiIiIiIi4jlKgIiIiIiIiIiIiIiIiOcoASIiIiIiIiIiIiIiIp6jBIiIiIiIiIiIiIiIiHiOEiAiIiIiIiIiIiIiIuI5SoCIiIiIiIiIiIiIiIjnKAEiIiIiIiIiIiIiIiKeowSIiIiIiIiIiIiIiIh4jhIgIiIiIiIiIiIiIiLiOUqAiIiIiIiIiIiIiIiI5ygBIiIiIiIiIiIiIiIinuN3O4DdMcYA0NHR4XIkIiIiIiIiIiIiIiLitly+IJc/2J0hnQDp7OwEYNy4cS5HIiIiIiIiIiIiIiIiQ0VnZyfV1dW7vcYy/UmTuCSTybBx40YqKyuxLMvtcIaUjo4Oxo0bx7p166iqqnI7HBGR/UpjnIh4mcY4EfEyjXEi4mUa40SGBmMMnZ2djB49Gtve/SkfQ7oCxLZtxo4d63YYQ1pVVZUGXBHxLI1xIuJlGuNExMs0xomIl2mME3Hfnio/cnQIuoiIiIiIiIiIiIiIeI4SICIiIiIiIiIiIiIi4jlKgJSoUCjEN7/5TUKhkNuhiIjsdxrjRMTLNMaJiJdpjBMRL9MYJ1J6hvQh6CIiIiIiIiIiIiIiIntDFSAiIiIiIiIiIiIiIuI5SoCIiIiIiIiIiIiIiIjnKAEiIiIiIiIiIiIiIiKeowSIiIiIiIiIiIiIiIh4jhIgJejWW29l4sSJhMNhZs+ezYsvvuh2SCIiO3nqqad4xzvewejRo7Esi/vvv7/ofWMM3/jGNxg1ahRlZWWcddZZvPnmm0XXtLS0cOmll1JVVUVNTQ0f+9jH6OrqKrpm8eLFnHzyyYTDYcaNG8dNN9002H80ERnmbrjhBo499lgqKytpbGzk3e9+N8uXLy+6JhaLceWVVzJixAgqKiq46KKL2LJlS9E1a9eu5YILLiASidDY2MgXvvAFUqlU0TVPPPEEs2bNIhQKcfDBB/O73/1usP94IiL8/Oc/54gjjqCqqoqqqirmzJnDQw89lH9fY5yIeMWNN96IZVl87nOfy7+mMU7EW5QAKTF//etfufbaa/nmN7/Jyy+/zMyZMznnnHPYunWr26GJiBTp7u5m5syZ3HrrrX2+f9NNN3HLLbfwi1/8ghdeeIHy8nLOOeccYrFY/ppLL72U1157jblz5/Lggw/y1FNP8YlPfCL/fkdHB2effTYTJkxgwYIF3HzzzXzrW9/i9ttvH/Q/n4gMX08++SRXXnklzz//PHPnziWZTHL22WfT3d2dv+aaa67hgQce4O677+bJJ59k48aNXHjhhfn30+k0F1xwAYlEgueee47f//73/O53v+Mb3/hG/ppVq1ZxwQUXcPrpp7No0SI+97nPcfnll/Pvf//7gP55RWT4GTt2LDfeeCMLFizgpZde4owzzuBd73oXr732GqAxTkS8Yf78+dx2220cccQRRa9rjBPxGCMl5bjjjjNXXnll/nk6nTajR482N9xwg4tRiYjsHmDuu+++/PNMJmNGjhxpbr755vxrbW1tJhQKmTvuuMMYY8zSpUsNYObPn5+/5qGHHjKWZZkNGzYYY4z52c9+Zmpra008Hs9f86UvfclMnTp1kP9EIiK9tm7dagDz5JNPGmOc8SwQCJi77747f83rr79uADNv3jxjjDH/+te/jG3bZvPmzflrfv7zn5uqqqr8mPbFL37RHHbYYUXf6+KLLzbnnHPOYP+RRER2Ultba371q19pjBMRT+js7DSHHHKImTt3rjn11FPN1VdfbYzRfZyIF6kCpIQkEgkWLFjAWWedlX/Ntm3OOuss5s2b52JkIiIDs2rVKjZv3lw0nlVXVzN79uz8eDZv3jxqamo45phj8tecddZZ2LbNCy+8kL/mlFNOIRgM5q8555xzWL58Oa2trQfoTyMiw117ezsAdXV1ACxYsIBkMlk0xk2bNo3x48cXjXEzZsygqakpf80555xDR0dHfof1vHnzij4jd43u+0TkQEqn09x55510d3czZ84cjXEi4glXXnklF1xwwU7jkMY4Ee/xux2A9N/27dtJp9NFAyxAU1MTy5YtcykqEZGB27x5M0Cf41nuvc2bN9PY2Fj0vt/vp66uruiaSZMm7fQZufdqa2sHJX4RkZxMJsPnPvc5TjzxRA4//HDAGX+CwSA1NTVF1+44xvU1Bube2901HR0dRKNRysrKBuOPJCICwJIlS5gzZw6xWIyKigruu+8+pk+fzqJFizTGiUhJu/POO3n55ZeZP3/+Tu/pPk7Ee5QAERERERHZS1deeSWvvvoqzzzzjNuhiIjsV1OnTmXRokW0t7dzzz338P/+3//jySefdDssEZF9sm7dOq6++mrmzp1LOBx2OxwROQDUAquE1NfX4/P52LJlS9HrW7ZsYeTIkS5FJSIycLkxa3fj2ciRI9m6dWvR+6lUipaWlqJr+vqMwu8hIjJYPvOZz/Dggw/y+OOPM3bs2PzrI0eOJJFI0NbWVnT9jmPcnsavXV1TVVWlXYMiMuiCwSAHH3wwRx99NDfccAMzZ87kJz/5icY4ESlpCxYsYOvWrcyaNQu/34/f7+fJJ5/klltuwe/309TUpDFOxGOUACkhwWCQo48+mkcffTT/WiaT4dFHH2XOnDkuRiYiMjCTJk1i5MiRReNZR0cHL7zwQn48mzNnDm1tbSxYsCB/zWOPPUYmk2H27Nn5a5566imSyWT+mrlz5zJ16lS1vxKRQWOM4TOf+Qz33Xcfjz322E6t+I4++mgCgUDRGLd8+XLWrl1bNMYtWbKkKNE7d+5cqqqqmD59ev6aws/IXaP7PhFxQyaTIR6Pa4wTkZJ25plnsmTJEhYtWpT/75hjjuHSSy/NP9YYJ+Ixbp/CLgNz5513mlAoZH73u9+ZpUuXmk984hOmpqbGbN682e3QRESKdHZ2moULF5qFCxcawPzwhz80CxcuNGvWrDHGGHPjjTeampoa8/e//90sXrzYvOtd7zKTJk0y0Wg0/xnnnnuuOeqoo8wLL7xgnnnmGXPIIYeYSy65JP9+W1ubaWpqMh/60IfMq6++au68804TiUTMbbfddsD/vCIyfHzqU58y1dXV5oknnjCbNm3K/9fT05O/5oorrjDjx483jz32mHnppZfMnDlzzJw5c/Lvp1Ipc/jhh5uzzz7bLFq0yDz88MOmoaHBXHfddflrVq5caSKRiPnCF75gXn/9dXPrrbcan89nHn744QP65xWR4efLX/6yefLJJ82qVavM4sWLzZe//GVjWZb5z3/+Y4zRGCci3nLqqaeaq6++Ov9cY5yItygBUoJ++tOfmvHjx5tgMGiOO+448/zzz7sdkojITh5//HED7PTf//t//88YY0wmkzFf//rXTVNTkwmFQubMM880y5cvL/qM5uZmc8kll5iKigpTVVVlPvKRj5jOzs6ia1555RVz0kknmVAoZMaMGWNuvPHGA/VHFJFhqq+xDTC//e1v89dEo1Hz6U9/2tTW1ppIJGLe8573mE2bNhV9zurVq815551nysrKTH19vfn85z9vkslk0TWPP/64OfLII00wGDSTJ08u+h4iIoPlox/9qJkwYYIJBoOmoaHBnHnmmfnkhzEa40TEW3ZMgGiME/EWyxhj3Kk9ERERERERERERERERGRw6A0RERERERERERERERDxHCRAREREREREREREREfEcJUBERERERERERERERMRzlAARERERERERERERERHPUQJEREREREREREREREQ8RwkQERERERERERERERHxHCVARERERERERERERETEc5QAERERERERERERERERz1ECREREREREREREREREPEcJEBERERERERERERER8RwlQERERERERERERERExHOUABEREREREREREREREc/5/8EKiGY+FfTZAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.subplots(figsize=(20, 10))\n",
"\n",
"plt.title(\"z-component of the force vector\", size=20)\n",
"\n",
"plt.plot(f_z, label=\"ground truth\")\n",
"plt.plot(predictions[:,2], label=\"prediction\")\n",
"\n",
"plt.legend(loc=\"upper right\", fontsize=16)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.9 Features\n",
"\n",
"The most important feature looks as follows:"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/markdown": [
"```sql\n",
"DROP TABLE IF EXISTS \"FEATURE_1_3\";\n",
"\n",
"CREATE TABLE \"FEATURE_1_3\" AS\n",
"SELECT AVG( \n",
" CASE\n",
" WHEN ( t2.\"4\" > -0.563815 ) AND ( t2.\"8\" > -5.915106 ) AND ( t2.\"4\" > -0.560007 ) THEN -7.035334308806516\n",
" WHEN ( t2.\"4\" > -0.563815 ) AND ( t2.\"8\" > -5.915106 ) AND ( t2.\"4\" <= -0.560007 OR t2.\"4\" IS NULL ) THEN -62.74602640372516\n",
" WHEN ( t2.\"4\" > -0.563815 ) AND ( t2.\"8\" <= -5.915106 OR t2.\"8\" IS NULL ) AND ( t1.\"10\" > 0.262721 ) THEN -16.94725742676829\n",
" WHEN ( t2.\"4\" > -0.563815 ) AND ( t2.\"8\" <= -5.915106 OR t2.\"8\" IS NULL ) AND ( t1.\"10\" <= 0.262721 OR t1.\"10\" IS NULL ) THEN -12.11164189597631\n",
" WHEN ( t2.\"4\" <= -0.563815 OR t2.\"4\" IS NULL ) AND ( t2.\"38\" > -5.460974 ) AND ( t2.\"36\" > -3.092528 ) THEN 5.036006845911339\n",
" WHEN ( t2.\"4\" <= -0.563815 OR t2.\"4\" IS NULL ) AND ( t2.\"38\" > -5.460974 ) AND ( t2.\"36\" <= -3.092528 OR t2.\"36\" IS NULL ) THEN -52.99309740580681\n",
" WHEN ( t2.\"4\" <= -0.563815 OR t2.\"4\" IS NULL ) AND ( t2.\"38\" <= -5.460974 OR t2.\"38\" IS NULL ) AND ( t2.\"62\" > -0.143896 ) THEN 0.473437318248295\n",
" WHEN ( t2.\"4\" <= -0.563815 OR t2.\"4\" IS NULL ) AND ( t2.\"38\" <= -5.460974 OR t2.\"38\" IS NULL ) AND ( t2.\"62\" <= -0.143896 OR t2.\"62\" IS NULL ) THEN 77.8375239280841\n",
" ELSE NULL\n",
" END\n",
") AS \"feature_1_3\",\n",
" t1.rowid AS rownum\n",
"FROM \"POPULATION__STAGING_TABLE_1\" t1\n",
"INNER JOIN \"DATA_ALL__STAGING_TABLE_2\" t2\n",
"ON 1 = 1\n",
"WHERE t2.\"rowid\" <= t1.\"rowid\"\n",
"AND ( t2.\"rowid__30_000000\" > t1.\"rowid\" OR t2.\"rowid__30_000000\" IS NULL )\n",
"GROUP BY t1.rowid;\n",
"```"
],
"text/plain": [
"'DROP TABLE IF EXISTS \"FEATURE_1_3\";\\n\\nCREATE TABLE \"FEATURE_1_3\" AS\\nSELECT AVG( \\n CASE\\n WHEN ( t2.\"4\" > -0.563815 ) AND ( t2.\"8\" > -5.915106 ) AND ( t2.\"4\" > -0.560007 ) THEN -7.035334308806516\\n WHEN ( t2.\"4\" > -0.563815 ) AND ( t2.\"8\" > -5.915106 ) AND ( t2.\"4\" <= -0.560007 OR t2.\"4\" IS NULL ) THEN -62.74602640372516\\n WHEN ( t2.\"4\" > -0.563815 ) AND ( t2.\"8\" <= -5.915106 OR t2.\"8\" IS NULL ) AND ( t1.\"10\" > 0.262721 ) THEN -16.94725742676829\\n WHEN ( t2.\"4\" > -0.563815 ) AND ( t2.\"8\" <= -5.915106 OR t2.\"8\" IS NULL ) AND ( t1.\"10\" <= 0.262721 OR t1.\"10\" IS NULL ) THEN -12.11164189597631\\n WHEN ( t2.\"4\" <= -0.563815 OR t2.\"4\" IS NULL ) AND ( t2.\"38\" > -5.460974 ) AND ( t2.\"36\" > -3.092528 ) THEN 5.036006845911339\\n WHEN ( t2.\"4\" <= -0.563815 OR t2.\"4\" IS NULL ) AND ( t2.\"38\" > -5.460974 ) AND ( t2.\"36\" <= -3.092528 OR t2.\"36\" IS NULL ) THEN -52.99309740580681\\n WHEN ( t2.\"4\" <= -0.563815 OR t2.\"4\" IS NULL ) AND ( t2.\"38\" <= -5.460974 OR t2.\"38\" IS NULL ) AND ( t2.\"62\" > -0.143896 ) THEN 0.473437318248295\\n WHEN ( t2.\"4\" <= -0.563815 OR t2.\"4\" IS NULL ) AND ( t2.\"38\" <= -5.460974 OR t2.\"38\" IS NULL ) AND ( t2.\"62\" <= -0.143896 OR t2.\"62\" IS NULL ) THEN 77.8375239280841\\n ELSE NULL\\n END\\n) AS \"feature_1_3\",\\n t1.rowid AS rownum\\nFROM \"POPULATION__STAGING_TABLE_1\" t1\\nINNER JOIN \"DATA_ALL__STAGING_TABLE_2\" t2\\nON 1 = 1\\nWHERE t2.\"rowid\" <= t1.\"rowid\"\\nAND ( t2.\"rowid__30_000000\" > t1.\"rowid\" OR t2.\"rowid__30_000000\" IS NULL )\\nGROUP BY t1.rowid;'"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pipe1.features.to_sql()[pipe1.features.sort(by=\"importances\")[0].name]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As we can see, the predictions are very accurate. This suggests that it is very feasible to predict the force vector based on other sensor data."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2.9 Productionization\n",
"\n",
"It is possible to productionize the pipeline by transpiling the features into production-ready SQL code. Please also refer to getML's `sqlite3` and `spark` modules."
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [],
"source": [
"# Creates a folder named robot_pipeline containing\n",
"# the SQL code.\n",
"pipe1.features.to_sql().save(\"robot_pipeline\", remove=True)"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
"# Creates a folder named containing the SQL code for Apache Spark.\n",
"pipe1.features.to_sql(dialect=getml.pipeline.dialect.spark_sql).save(\"robot_pipeline_spark\", remove=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"getml.engine.shutdown()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3. Conclusion\n",
"\n",
"\n",
"The purpose of this notebook has been to illustrate the problem of the curse of dimensionality when engineering features from datasets with many columns.\n",
"\n",
"The most important thing to remember is that this problem exists regardless of whether you engineer your features manually or using algorithms. Whether you like it or not: If you write your features in the traditional way, your search space grows quadratically with the number of columns."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
},
"vscode": {
"interpreter": {
"hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}