

Spring	MVC:	A	Tutorial

Second	Edition

	

Paul	Deck

Spring	MVC:	A	Tutorial,	Second	Edition

Second	Edition:	April	2016

ISBN:	9781771970310

Copyright	©	2016	by	Brainy	Software	Inc.

Cover	image	©	Dollar	Photo	Club

All	rights	reserved.	No	part	of	this	book	may	be	reproduced	or	transmitted	in	any	form
or	 by	 any	means,	 electronic	 or	mechanical,	 including	 photocopying,	 recording,	 or	 by
any	 information	 storage	 and	 retrieval	 system,	 without	 written	 permission	 from	 the
publisher,	except	for	the	inclusion	of	brief	quotations	in	a	review.

	

	

Trademarks

Oracle	and	Java	are	registered	trademarks	of	Oracle	and/or	it’s	affiliates
UNIX	is	a	registered	trademark	of	the	Open	Group
Apache	is	a	trademark	of	The	Apache	Software	Foundation.
Firefox	is	a	registered	trademark	of	the	Mozilla	Foundation.
Google	is	a	trademark	of	Google,	Inc.

Throughout	this	book	the	printing	of	trademarked	names	without	the	trademark	symbol
is	for	editorial	purpose	only.	We	have	no	intention	of	infringement	of	the	trademark.

	

Warning	and	Disclaimer
Every	effort	has	been	made	to	make	this	book	as	accurate	as	possible.	The	author	and
the	publisher	shall	have	neither	liability	nor	responsibility	to	any	person	or	entity	with
respect	to	any	loss	or	damages	arising	from	the	information	in	this	book.

About	the	Author
Paul	 Deck	 is	 a	 Java	 and	 Spring	 expert	 who	 has	 developed	 large-scale	 enterprise
applications	 and	 is	 currently	 an	 independent	 contractor.	 He	 is	 the	 co-author	 of	 How
Tomcat	Works.

Table	of	Contents
Introduction

The	Hypertext	Transfer	Protocol	(HTTP)

Servlet	and	JSP	Overview

Downloading	Spring	or	Using	STS	with	Maven/Gradle

About	This	Book

Downloading	the	Sample	Applications

Chapter	1:	The	Spring	Framework

Dependency	Injection

XML-Based	Spring	Configuration

Using	Spring	to	Manage	Dependencies

Summary

Chapter	2:	Model	2	and	the	MVC	Pattern

Model	1	Overview

Model	2	Overview

Model	2	with	A	Servlet	Controller

Model	2	with	A	Filter	Dispatcher

Validators

Dependency	Injection

Summary

Chapter	3:	Introduction	to	Spring	MVC

The	Benefits	of	Spring	MVC

Spring	MVC	DispatcherServlet

The	Controller	Interface

Your	First	Spring	MVC	Application

The	View	Resolver

Summary

Chapter	4:	Annotation-Based	Controllers

Spring	MVC	Annotation	Types

Writing	Request-Handling	Methods

Using	An	Annotation-Based	Controller

Dependency	Injection	with	@Autowired	and	@Service

Redirect	and	Flash	Attributes

Request	Parameters	and	Path	Variables

@ModelAttribute

Summary

Chapter	5:	Data	Binding	and	the	Form	Tag	Library

Data	Binding	Overview

The	Form	Tag	Library

Data	Binding	Example

Summary

Chapter	6:	Converters	and	Formatters

Converters

Formatters

Choosing	Between	Converters	and	Formatters

Summary

Chapter	7:	Validators

Validation	Overview

Spring	Validators

The	ValidationUtils	Class

A	Spring	Validator	Example

JSR	303	Validation

A	JSR	303	Validator	Example

Summary

Chapter	8:	The	Expression	Language

A	Brief	History	of	the	Expression	Language

The	Expression	Language	Syntax

Accessing	JavaBeans

EL	Implicit	Objects

Using	Other	EL	Operators

Referencing	Static	Fields	and	Methods

Creating	Sets,	Lists	and	Maps

Accessing	List	Elements	and	Map	Entries

Manipulating	Collections

Formatting	Collections

Formatting	Numbers

Formatting	Dates

Configuring	the	EL	in	JSP	2.0	and	Later	Versions

Summary

Chapter	9:	JSTL

Downloading	JSTL

JSTL	Libraries

General-Purpose	Actions

Conditional	Actions

Iterator	Actions

Formatting	Actions

Functions

Summary

Chapter	10:	Internationalization

Locales

Internationalizing	Spring	MVC	Applications

Summary

Chapter	11:	File	Upload

Client	Side	Programming

The	MultipartFile	Interface

File	Upload	with	Commons	FileUpload

File	Upload	with	Servlet	3	or	Later

Upload	Clients

Summary

Chapter	12:	File	Download

File	Download	Overview

Example	1:	Hiding	A	Resource

Example	2:	Preventing	Cross-Referencing

Summary

Chapter	13:	Testing	Your	Application

Unit	Testing	Overview

State	Testing	vs.	Behavior	Testing

Using	JUnit

Using	Test	Doubles

Unit	Testing	Spring	MVC	Controllers

Integration	Testing	with	Spring	MVC	Test

Changing	the	Web	Root	in	Integration	Testing

Summary

Appendix	A:	Tomcat

Downloading	and	Configuring	Tomcat

Starting	and	Stopping	Tomcat

Defining	A	Context

Defining	A	Resource

Installing	TLS	Certificates

Appendix	B:	Using	Spring	Tool	Suite	with	Maven

Installing	the	Spring	Tool	Suite	(STS)

Creating	a	Spring	MVC	Application

Selecting	the	Java	Version

Creating	An	index.html	File

Updating	the	Project

Running	the	Application

Appendix	C:	The	Servlet	API

Servlet	API	Overview

Servlet

Writing	A	Basic	Servlet	Application

ServletRequest

ServletResponse

ServletConfig

ServletContext

GenericServlet

HTTP	Servlets

HttpServletRequest

Working	with	HTML	Forms

Using	the	Deployment	Descriptor

Summary

Appendix	D:	JavaServer	Pages

An	Overview	of	JSP

Comments

Implicit	Objects

Directives

Scripting	Elements

Summary

Appendix	E:	Deployment

Deployment	Descriptor	Overview

Deployment

Web	Fragments

Summary

Introduction
Welcome	to	Spring	MVC:	A	Tutorial,	Second	Edition.

Spring	MVC	 is	 a	module	 in	 the	 Spring	 Framework	 (or	 Spring	 for	 short)	 for	 rapidly
developing	 web	 applications.	 The	 MVC	 in	 Spring	 MVC	 stands	 for	 Model-View-
Controller,	a	design	pattern	widely	used	in	Graphical	User	Interface	(GUI)	development.
This	 pattern	 is	 not	 only	 common	 in	 web	 development,	 but	 is	 also	 used	 in	 desktop
technology	like	Swing	and	JavaFX.

Sometimes	 called	 Spring	 Web	 MVC,	 Spring	 MVC	 is	 one	 of	 the	 most	 popular	 web
frameworks	today	and	a	most	sought-after	skill.	This	book	is	for	you	if	you	want	to	learn
how	to	develop	Java-based	web	applications	with	Spring	MVC.

Learning	Spring	MVC	will	be	much	easier	if	you	already	master	Spring	Framework	as
well	as	Servlet	and	JavaServer	Pages	(JSP),	the	two	Java	technologies	upon	which	Spring
MVC	 is	 based.	 If	 you’re	 new	 to	 Spring,	 Chapter	 1	 presents	 a	 short	 tutorial	 on	 Spring
Framework.	If	you	are	not	familiar	with	Servlet	and	JSP,	don’t	despair.	You	can	find	two
crash	courses	that	will	help:	Appendix	C,	“Servlet”	and	Appendix	D,	“JavaServer	Pages.”
If	you	are	interested	to	know	more	about	Servlet	and	JSP,	I	recommend	Servlet	and	JSP:	A
Tutorial,	Second	Edition	(ISBN	9781771970273)	by	Budi	Kurniawan.

The	rest	of	this	introduction	talks	about	HTTP,	web	programming	with	Servlet	and	JSP,
and	the	content	of	the	book.

The	Hypertext	Transfer	Protocol	(HTTP)
The	Hypertext	Transfer	Protocol	(HTTP)	enables	web	servers	and	browsers	 to	exchange
data	 over	 the	 Internet	 or	 an	 intranet.	 The	 World	 Wide	 Web	 Consortium	 (W3C),	 an
international	 community	 that	 develops	 standards,	 is	 responsible	 for	 revising	 and
maintaining	 this	 protocol.	 The	 first	 version	 of	 HTTP	 was	 HTTP	 0.9,	 which	 was	 then
replaced	by	HTTP	1.0.	Superseding	HTTP	1.0	is	HTTP	1.1,	which	is	defined	in	the	W3C’s
Request	 for	Comments	 (RFC)	 2616.	At	 the	 time	 of	writing,	HTTP	 1.1	 is	 still	 the	most
popular	version	of	HTTP.	The	current	version,	HTTP/2,	was	released	in	May	2015.	Table
I.1	shows	the	HTTP	versions	and	their	release	dates.	Note	that	the	second	major	version	of
HTTP	is	commonly	written	as	HTTP/2	rather	than	HTTP	2.

Version Release	Date

HTTP	0.9 1991

HTTP	1.0 1996

HTTP	1.1 First	released	in	1997	and	updated	in	1999

HTTP/2 May	2015

Table	I.1:	HTTP	versions	and	release	dates

An	 HTTP	 server	 (also	 known	 as	 a	 web	 server)	 runs	 24x7	 waiting	 for	 HTTP	 clients
(normally	web	browsers)	to	connect	to	it	and	ask	for	resources.	In	HTTP	it	is	always	the
client	that	initiates	a	connection,	a	server	is	never	in	a	position	to	contact	a	client.

To	 locate	 a	 resource,	 an	 Internet	 user	 would	 click	 a	 link	 that	 contains	 a	 Uniform
Resource	Locator	(URL)	or	enter	one	in	the	Location	box	of	his/her	browser.	Here	are	two
examples	of	URLs:

http://google.com/index.html

http://facebook.com/index.html

The	first	part	of	the	URLs	is	http,	which	identifies	the	protocol.	Not	all	URLs	use	HTTP.
For	instance,	these	two	URLs	are	valid	even	though	they	are	not	HTTP-based	URLs:

mailto:joe@example.com

ftp://marketing@ftp.example.org

In	general	an	HTTP-based	URL	has	this	format:

protocol://[host.]domain[:port][/context][/resource][?query	string

|	path	variable]	

or

protocol://IP	address[:port][/context][/resource][?query	string	|

path	variable]

The	 parts	 in	 square	 brackets	 are	 optional,	 therefore	 a	 URL	 can	 be	 as	 simple	 as
http://yahoo.ca	or	http://192.168.1.9.	An	 Internet	Protocol	 (IP)	 address,	 by	 the	way,	 is	 a
numerical	 label	 assigned	 to	 a	 computer	 or	 another	 device.	 In	 other	 words,	 instead	 of
typing	http://google.com,	you	can	use	its	IP	address:	http://173.194.46.35.	To	find	out	the
IP	address	of	a	domain,	use	the	ping	program	on	your	computer	console:

ping	google.com

An	IP	address	is	hard	to	remember,	so	people	prefer	to	use	the	domain.	A	computer	may
host	more	than	one	domain,	so	multiple	domains	can	have	the	same	IP	address.	And,	did
you	know	that	you	can’t	buy	example.com	or	example.org	because	they	are	reserved	for
documentation	purpose?

The	host	part	of	a	URL	may	be	present	and	identify	a	totally	different	location	on	the
Internet	or	an	intranet.	For	 instance,	http://yahoo.com	(no	host)	brings	you	to	a	different
location	than	http://mail.yahoo.com	(with	a	host).	Over	the	years	www	has	been	the	most
popular	host	name	and	become	the	default.	Normally,	http://www.domainName	is	mapped
to	http://domainName.

80	 is	 the	default	port	of	HTTP.	Therefore,	 if	a	web	server	 runs	on	port	80,	you	don’t
need	the	port	number	to	reach	the	server.	Sometimes,	however,	a	web	server	doesn’t	run
on	port	80	and	you	need	to	type	the	port	number.	For	example,	Tomcat	by	default	runs	on
port	8080,	so	you	need	to	supply	the	port	number	when	requesting	a	resource:

http://localhost:8080/index.html

localhost	 is	 a	 reserved	name	 typically	 used	 to	 refer	 to	 the	 local	 computer,	 i.e.	 the	 same
computer	the	web	browser	is	running	on.

The	context	part	of	a	URL	refers	 to	 the	application	name,	but	 this	 is	also	optional.	A
web	server	can	run	multiple	contexts	(applications)	and	one	of	them	can	be	configured	to
be	the	default	context.	To	request	a	resource	 in	 the	default	context,	you	skip	 the	context
part	in	a	URL.

Finally,	 a	 context	 can	 have	 one	 or	 more	 default	 resources	 (ordinarily	 index.html	 or
index.htm	 or	 default.htm).	 A	URL	without	 a	 resource	 name	 is	 considered	 to	 identify	 a
default	resource.	Of	course,	if	more	than	one	default	resource	exists	in	a	context,	the	one
with	the	highest	priority	will	always	be	returned	when	a	client	does	not	specify	a	resource
name.

After	a	resource	name	comes	one	or	more	query	string	or	path	variable.	A	query	string
is	a	key/value	pair	that	can	be	passed	to	the	server	to	be	processed.	Two	query	strings	are
separated	by	an	ampersand	(&).	A	path	variable	 is	 like	a	query	string,	but	contains	only
the	value	part.	Two	path	variables	are	separated	with	a	forward	slash	(/).

The	following	subsections	discuss	HTTP	requests	and	responses	in	more	detail.

The	HTTP	Request
The	HTTP	request	consists	of	three	components:

Method—Uniform	Resource	Identifier	(URI)—Protocol/Version
Request	headers
Entity	body

Here	is	a	sample	HTTP	request:

POST	/examples/default.jsp	HTTP/1.1

Accept:	text/plain;	text/html

Accept-Language:	en-gb

Connection:	Keep-Alive

Host:	localhost

User-Agent:	Mozilla/5.0	(Macintosh;	U;	Intel	Mac	OS	X	10.5;	en-US;

rv:1.9.2.6)	Gecko/20100625	Firefox/3.6.6

Content-Length:	30

Content-Type:	application/x-www-form-urlencoded

Accept-Encoding:	gzip,	deflate

lastName=Blanks&firstName=Mike

The	method—URI—protocol	version	appears	as	the	first	line	of	the	request.

POST	/examples/default.jsp	HTTP/1.1

Here	POST	 is	 the	 request	 method,	 /examples/default.jsp	 the	 URI,	 and	HTTP/1.1	 the
Protocol/Version	section.

An	 HTTP	 request	 can	 use	 one	 of	 the	 many	 request	 methods	 specified	 in	 the	 HTTP
standards.	HTTP	1.1	supports	seven	request	types:	GET,	POST,	HEAD,	OPTIONS,	PUT,
DELETE,	 and	 TRACE.	 GET	 and	 POST	 are	 the	 most	 commonly	 used	 in	 Internet
applications.

The	URI	specifies	an	Internet	resource.	A	Uniform	Resource	Locator	(URL)	is	actually
a	type	of	URI	(See	http://www.ietf.org/rfc/rfc2396.txt).

In	 an	 HTTP	 request,	 the	 request	 header	 contains	 useful	 information	 about	 the	 client
environment	and	the	entity	body	of	the	request.	For	instance,	it	may	contain	the	language
the	browser	is	set	for,	the	length	of	the	entity	body,	and	so	on.	Each	header	is	separated	by
a	carriage	return/linefeed	(CRLF)	sequence.

Between	the	headers	and	the	entity	body	is	a	blank	line	(CRLF)	that	is	important	to	the
HTTP	request	format.	The	CRLF	tells	the	HTTP	server	where	the	entity	body	begins.	In
some	Internet	programming	books,	 this	CRLF	is	considered	 the	fourth	component	of	an
HTTP	request.

In	the	previous	HTTP	request,	the	entity	body	is	simply	the	following	line:

lastName=Blanks&firstName=Mike

The	entity	body	can	easily	be	much	longer	in	a	typical	HTTP	request.

The	HTTP	Response
Similar	to	the	HTTP	request,	the	HTTP	response	also	consists	of	three	parts:

Protocol—Status	code—Description
Response	headers
Entity	body

The	following	is	an	example	of	an	HTTP	response:

HTTP/1.1	200	OK

Server:	Apache-Coyote/1.1

Date:	Thu,	29	Sep	2013	13:13:33	GMT

Content-Type:	text/html

Last-Modified:	Wed,	28	Sep	2013	13:13:12	GMT

Content-Length:	112

<html>

<head>

<title>HTTP	Response	Example</title>

</head>

<body>

Welcome	to	Brainy	Software

</body>

</html>

The	first	line	of	the	response	header	is	similar	to	the	first	line	of	the	request	header.	It	tells
you	that	the	protocol	used	is	HTTP	version	1.1,	and	that	the	request	succeeded	(200	is	the
success	code).

The	 response	 headers	 contain	 useful	 information	 similar	 to	 the	 headers	 in	 an	 HTTP
request.	The	entity	body	of	the	response	is	the	HTML	content	of	the	response	itself.	The
headers	and	the	entity	body	are	separated	by	a	sequence	of	CRLFs.

Status	code	200	is	only	issued	if	the	web	server	was	able	to	find	the	resource	requested.
If	 a	 resource	 cannot	 be	 found	 or	 the	 request	 cannot	 be	 understood,	 the	 server	 sends	 a
different	request	code.	For	instance,	401	is	the	status	code	for	an	unauthorized	access	and
405	 indicates	 that	 the	HTTP	method	 is	not	 allowed.	For	a	complete	 list	of	HTTP	status
codes,	refer	to	this	online	document.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Servlet	and	JSP	Overview
Java	Servlet	technology,	or	Servlet	for	short,	is	the	underlying	technology	for	developing
web	 applications	 in	 Java.	 Sun	 Microsystems	 released	 it	 in	 1996	 to	 compete	 with	 the
Common	Gateway	Interface	(CGI),	 the	 then	standard	for	generating	dynamic	content	on
the	web.	The	main	problem	with	the	CGI	was	the	fact	that	it	spawned	a	new	process	for
every	 HTTP	 request.	 This	 made	 it	 difficult	 to	 write	 scalable	 CGI	 programs	 because
creating	a	process	took	a	lot	of	CPU	cycles.	A	servlet,	on	the	other	hand,	is	much	faster
than	 a	 CGI	 program	 because	 a	 servlet	 stays	 in	 memory	 after	 serving	 its	 first	 request,
waiting	for	subsequent	requests.

Since	 the	 day	 Servlet	 emerged,	 a	 number	 of	 Java-based	 web	 frameworks	 have	 been
developed	 to	help	programmers	write	web	applications	more	 rapidly.	These	 frameworks
let	you	focus	on	the	business	logic	and	spend	less	time	writing	boilerplate	code.	However,
you	 still	 have	 to	 understand	 the	nuts	 and	bolts	 of	Servlet.	And	 JavaServer	Pages	 (JSP),
which	 was	 later	 released	 to	 make	 writing	 servlets	 easier.	 You	 may	 be	 using	 a	 great
framework	 like	Spring	MVC,	Struts	2,	or	JavaServer	Faces.	However,	without	excellent
knowledge	 of	 Servlet	 and	 JSP,	 you	 won’t	 be	 able	 to	 code	 effectively	 and	 efficiently.
Servlets,	by	the	way,	are	Java	classes	that	run	on	a	servlet	container.	A	servlet	container	or
servlet	engine	is	like	a	web	server	but	has	the	ability	to	generate	dynamic	contents,	not	just
serve	 static	 resources.	 Servlet	 3.1,	 the	 current	 version,	 is	 defined	 in	 Java	 Specification
Request	(JSR)	340	(http://jcp.org/en/jsr/detail?id=340).	It	requires	Java	Standard	Edition	6
or	 later.	 JSP	 2.3	 is	 specified	 in	 JSR	 245	 (http://jcp.org/en/jsr/detail?id=245).	 This	 book
assumes	 you	 know	 Java	 and	 object-oriented	 programming.	 If	 you’re	 new	 to	 Java,	 I
recommend	Java:	A	Beginner’s	Tutorial	(Fourth	Edition),	ISBN	9780992133047.

A	servlet	 is	a	 Java	program.	A	servlet	application	consists	of	one	or	more	servlets.	A
JSP	page	is	translated	and	compiled	into	a	servlet.

A	servlet	application	runs	inside	a	servlet	container	and	cannot	run	on	its	own.	A	servlet
container	passes	requests	from	the	user	to	the	servlet	application	and	responses	from	the
servlet	application	back	to	the	user.	Most	servlet	applications	include	at	least	several	JSP
pages.	As	such,	it’s	more	appropriate	to	use	the	term	“servlet/JSP	application”	to	refer	to	a
Java	web	application	than	to	leave	JSP	out.

Web	 users	 use	 a	web	 browser	 such	 as	 Internet	 Explorer,	Mozilla	 Firefox,	 or	 Google
Chrome	to	access	servlet	applications.	A	web	browser	is	referred	to	as	a	web	client.	Figure
I.1	shows	the	architecture	of	a	servlet/JSP	application.

Figure	I.1:	Servlet/JSP	application	architecture

The	web	server	and	the	web	client	communicate	in	a	language	they	both	are	fluent	in:	the
Hypertext	Transfer	Protocol	(HTTP).	Because	of	this,	a	web	server	is	also	called	an	HTTP
server.

A	servlet/JSP	container	is	a	special	web	server	that	can	process	servlets	as	well	as	serve
static	contents.	In	the	past,	people	were	more	comfortable	running	a	servlet/JSP	container
as	a	module	of	an	HTTP	server	such	as	the	Apache	HTTP	Server	because	an	HTTP	server
was	considered	more	robust	 than	a	servlet/JSP	container.	 In	 this	scenario	 the	servlet/JSP
container	would	be	 tasked	with	generating	dynamic	 contents	 and	 the	HTTP	 server	with
serving	 static	 resources.	Today	 servlet/JSP	 containers	 are	 considered	mature	 and	widely
deployed	 without	 an	 HTTP	 server.	 Apache	 Tomcat	 and	 Jetty	 are	 the	 most	 popular
servlet/JSP	 containers	 and	 are	 free	 and	 open-source.	 You	 can	 download	 them	 from
http://tomcat.apache.org	and	http://jetty.codehaus.org,	respectively.

Servlet	and	JSP	are	 two	of	a	multitude	of	 technologies	defined	 in	 the	Java	Enterprise
Edition	(EE).	Other	Java	EE	technologies	include	Java	Message	Service	(JMS),	Enterprise
JavaBeans	 (EJB),	 JavaServer	 Faces	 (JSF),	 and	 Java	 Persistence.	 The	 complete	 list	 of
technologies	in	the	Java	EE	version	7	(the	current	version)	can	be	found	here.

Http://www.oracle.com/technetwork/java/javaee/tech/index.html

To	 run	 a	 Java	EE	 application,	 you	 need	 a	 Java	EE	 container,	 such	 as	GlassFish,	 Jboss,
Oracle	WebLogic,	 and	 IBM	WebSphere.	 You	 can	 deploy	 a	 servlet/JSP	 application	 in	 a
Java	EE	container,	but	a	servlet/JSP	container	is	sufficient	and	is	more	lightweight	than	a
Java	EE	container.	Tomcat	and	Jetty	are	not	Java	EE	containers,	so	they	cannot	run	EJB	or
JMS.

http://www.oracle.com/technetwork/java/javaee/tech/index.html

Downloading	 Spring	 or	 Using	 STS	 with
Maven/Gradle
The	 Spring	 Framework	 website	 recommends	 that	 you	 use	 Maven	 or	 Gradle	 to

download	 Spring	 and	 its	 dependencies.	 A	 dependency	 is	 a	 piece	 of	 software	 that	 your
application	 depends	 on	 and	 without	 which	 your	 application	 cannot	 run.	 A	 modern
application	may	 have	 a	 lot	 of	 dependencies	 that	 in	 turn	 have	 dependencies.Maven	 and
Gradle	are	popular	dependency	management	systems.	Using	a	dependency	manager	saves
you	 from	 having	 to	 download	 and	 resolve	 dependencies	 yourself.	 In	 addition,	 these
software	suites	help	you	build,	 test	and	package	your	apps.	Using	Maven	or	Gradle	 is	a
good	idea	if	you	already	know	how	to	use	it.	The	fact	is,	there	are	many	Java	developers
out	 there	who	 are	 not	 familiar	with	Maven	 or	Gradle,	who	 do	 not	 like	 using	 it	 or	who
choose	not	to	use	it.	Asking	them	to	first	learn	Maven	or	Gradle	before	being	able	to	build
and	test	their	Spring	applications	defeats	the	purpose	of	a	good	tutorial.	As	such,	I	present
all	examples	in	this	book	in	two	forms:	one	for	Maven/Gradle-free	distribution	and	one	for
Maven-based	distribution.	If	you	are	not	familiar	with	Maven	or	Gradle,	you	will	not	be
forced	to	learn	it.

Maven	used	 to	be	 the	sole	dependency	management	 system	 that	Spring	supported.	 In
fact,	the	Spring	development	tool,	an	Eclipse-based	IDE	called	Spring	Tool	Suite	(STS),
bundles	a	recent	version	of	Maven.	This	is	good	news	for	those	who	do	not	know	Maven
but	want	to	take	advantage	of	its	benefits.	If	you	are	familiar	with	Eclipse,	you	will	feel	at
home	 with	 STS	 and	 can	 enjoy	 dependency	 management	 without	 learning	 Maven.
However,	 at	 the	 time	 of	writing,	 the	 latest	 version	 of	 STS	 is	 not	without	 its	 flaws.	 For
example,	when	using	STS	to	create	a	Spring	MVC	application,	the	generated	application
lacks	the	servlet	deployment	descriptor	(web.xml	file)	and	the	Maven	plug-in	gives	you	an
error	message.	This	can	be	frustrating	because	you	are	forced	to	handle	a	Maven	issue.	Of
course,	 you	 can	 fix	 it	 by	 simply	 creating	 a	web.xml	 file.	 However,	 a	web.xml	 file	 is
optional	since	Servlet	3.0	and	you	can	build	a	Spring	MVC	app	without	a	web.xml	file.

These	 subsections	 provide	 instructions	 on	 working	 with	 Spring	 with	 and	 without
Maven/Gradle.

Downloading	Spring	Manually
If	you	do	not	want	to	use	Gradle	or	Maven	to	build	your	applications,	your	safest	bet	is	to
download	the	Spring	libraries	from	its	repository.

http://repo.spring.io/release/org/springframework/spring/

Click	 the	 link	 to	 the	 latest	version	 (currently	version	4.2.5)	 and	 select	 a	distribution	zip
file.	The	name	of	the	distribution	zip	file	has	this	format:

spring-framework-x.y.z.RELEASE-dist.zip

Here,	x.y.z	indicates	the	major	and	minor	versions.

Once	 you	 download	 the	 zip	 file,	 extract	 it	 to	 a	 folder	 of	 your	 choice.	 The	 zip	 file
includes	documentation	and	Java	sources.	The	libs	folder	in	the	extract	directory	contains
the	Jar	files	you	need	to	develop	applications	with	the	Spring	Framework.

http://repo.spring.io/release/org/springframework/spring/

Using	STS	with	Maven/Gradle
If	 you	 choose	 to	 use	Maven	 or	Gradle,	 you	 do	 not	 have	 to	 download	Spring	manually.
Instead,	head	straight	to	Appendix	B,	“Using	Spring	Tool	Suite	with	Maven”	to	learn	how
to	use	STS	with	Maven.

Downloading	Spring	Source	Code
The	Spring	Framework	 is	an	open	source	project.	 If	you	are	 feeling	adventurous	or	you
want	the	latest	version	of	Spring	that	has	not	made	it	to	a	release,	you	can	download	the
source	by	using	Git.	Here	is	the	command	to	clone	Spring	source	code.

git	clone	git://github.com/spring-projects/spring-framework.git

To	 build	 Spring	 from	 the	 source	 (i.e.	 compile	 the	 Java	 sources	 to	 jar	 files),	 you	 need
Gradle.	Both	Git	and	Gradle	are	beyond	the	scope	of	this	book.

About	This	Book
This	section	presents	an	overview	of	each	chapter.

Chapter	1,	“The	Spring	Framework”	introduces	the	popular	open	source	framework.

Chapter	2,	“Model	2	and	the	MVC	Pattern”	discusses	the	pattern	on	which	Spring	MVC
was	built.

Chapter	 3,	 “Introduction	 to	 Spring	 MVC”	 presents	 a	 gentle	 introduction	 to	 Spring
MVC.	In	this	chapter	you	learn	to	write	your	first	Spring	MVC	application.

Chapter	 4,	 “Annotation-Based	 Controllers”	 discusses	 one	 of	 the	 main	 pillars	 of	 the
MVC	 pattern,	 the	 controller.	 In	 this	 chapter	 you	 learn	 how	 to	 write	 annotation-based
controllers,	an	approach	introduced	in	Spring	MVC	2.5.

Chapter	 5,	 “Data	 Binding	 and	 the	 Form	 Tags”	 discusses	 one	 of	 the	 most	 powerful
features	in	Spring	MVC	and	how	to	use	it	to	repopulate	form	fields.

Chapter	6,	“Converters	and	Formatters”	talks	about	two	object	types	that	help	with	data
binding,	the	converter	and	the	formatter.

Chapter	7,	“Validators”	teaches	you	how	to	validate	user	input	by	building	validators.

Chapter	 8,	 “The	 Expression	 Language”	 explains	 one	 of	 the	 most	 important	 features
added	 in	 JSP	 2.0,	 the	 Expression	 Language	 (EL).	 The	 EL	 aims	 to	 make	 it	 possible	 to
author	script-free	JSP	pages	and	can	help	you	write	shorter	and	more	effective	JSP	pages.
In	this	chapter	you	will	learn	to	use	the	EL	to	access	JavaBeans	and	scoped	objects.

Chapter	 9,	 “JSTL”	 explains	 the	 most	 important	 libraries	 in	 the	 JavaServer	 Pages
Standard	 Tag	 Library	 (JSTL),	 a	 collection	 of	 custom	 tag	 libraries	 for	 solving	 common
problems	such	as	iterating	over	a	map	or	collection,	conditional	testing,	XML	processing,
and	even	database	access	and	data	manipulation.

Chapter	10,	“Internationalization”	shows	how	to	build	multi-language	web	sites	using
Spring	MVC.

Chapter	 11,	 “File	 Upload”	 shows	 how	 to	 write	 controllers	 that	 can	 handle	 uploaded
files.	Two	approaches	are	discussed.

Chapter	 12,	 “File	 Download”	 explains	 how	 to	 send	 a	 resource	 to	 the	 browser
programmatically.

Chapter	 13,	 “Testing	 Your	 Application”	 explains	 unit	 testing	 and	 integration	 testing
with	JUnit,	Mockito	and	Spring	MVC	Test.

Appendix	 A,	 “Tomcat”	 explains	 how	 to	 install	 and	 configure	 Tomcat	 and	 run	 it	 in
multiple	operating	systems.

Appendix	 B,	 “Using	 Spring	 Tool	 Suite	 with	 Maven”	 explains	 how	 to	 install	 and
configure	Spring	Tool	Suite	and	use	it	to	create	and	run	Spring	MVC	applications

Appendix	C,	“Servlet”	introduces	the	Servlet	API	and	presents	several	simple	servlets.
This	 chapter	 focuses	 on	 two	 of	 the	 four	 Java	 packages	 in	 the	 Servlet	 API,	 the

javax.servlet	and	javax.servlet.http	packages.
JavaServer	 Pages	 (JSP)	 is	 a	 technology	 that	 complements	 Servlet.	 Appendix	 D,

“JavaServer	Pages”	covers	the	JSP	syntax,	including	its	directives,	scripting	elements,	and
actions.

Appendix	 E,	 “The	 Deployment	 Descriptor”	 explains	 how	 to	 configure	 your	 Spring
MVC	applications	for	deployment.

Downloading	the	Sample	Applications
You	can	download	the	zipped	sample	applications	used	in	this	book	from	this	web	page.

http://books.brainysoftware.com/download

Chapter	1

The	Spring	Framework
The	Spring	Framework	(or	Spring	for	short)	is	an	open	source	framework	for	developing
enterprise	 applications.	 It	 is	 a	 light-weight	 solution	 composed	 of	 about	 twenty	 different
modules.	This	book	covers	Spring	Core	and	Beans	modules	as	well	as	Spring	MVC	and
Spring	MVC	Test.

This	chapter	explains	the	Core	and	Beans	modules	and	how	they	provide	solutions	for
dependency	 injection.	 For	 the	 uninitiated,	 the	 concept	 of	 dependency	 injection	 is	 also
discussed	 in	 detail.	You	will	 use	 the	 skills	 you	 acquire	 in	 this	 chapter	 to	 configure	 the
Spring	MVC	applications	developed	in	the	next	chapters.

Dependency	Injection
Dependency	injection	has	been	widely	used	in	the	past	few	years	as	a	solution	to,	among
others,	 code	 testability.	 In	 fact,	 dependency	 injection	 is	 behind	 great	 frameworks	 like
Spring	and	Google	Guice.	So,	what	is	dependency	injection?

Many	 people	 use	 the	 terms	 dependency	 injection	 and	 Inversion	 of	 Control	 (IoC)
interchangeably,	 even	 though	 Martin	 Fowler	 argues	 that	 they	 are	 not	 the	 same	 in	 his
excellent	article	on	the	subject.

http://martinfowler.com/articles/injection.html

For	those	in	a	hurry,	the	short	explanation	of	dependency	injection	is	this.

If	you	have	two	components,	A	and	B,	and	A	depends	on	B,	you	can	say	A	is	dependent
on	 B	 or	 B	 is	 a	 dependency	 of	 A.	 Suppose	 A	 is	 a	 class	 that	 has	 a	 method	 called
importantMethod	that	uses	B,	as	defined	in	the	following	code	fragment.

public	class	A	{

				public	void	importantMethod()	{

								B	b	=	...	//	get	an	instance	of	B

								b.usefulMethod();

								...

				}

				...

}

A	must	obtain	an	instance	of	B	before	it	can	use	B.	While	it	is	as	straightforward	as	using
the	new	operator	 if	B	 is	a	concrete	class,	 it	can	be	problematic	 if	B	 is	an	 interface	with
many	implementations.	You	will	have	to	choose	an	implementation	of	B	and	by	doing	so
you	reduce	the	reusability	of	A	because	you	cannot	use	A	with	the	implementations	of	B
that	you	did	not	choose.

Dependency	 injection	 deals	with	 this	 kind	 of	 situation	 by	 taking	 over	 object	 creation
and	 injecting	 dependencies	 to	 an	 object	 that	 needs	 them.	 In	 this	 case,	 a	 dependency
injection	framework	like	Spring	would	create	an	instance	of	A	and	an	instance	of	B	and
inject	the	latter	to	the	former.

To	make	 it	possible	 for	a	 framework	 to	 inject	 a	dependency,	you	have	 to	create	a	 set
method	or	a	special	constructor	in	the	target	class.	For	example,	to	make	A	injectable	with
an	instance	of	B,	you	would	modify	A	like	this.

public	class	A	{

				private	B	b;

				public	void	importantMethod()	{

								//	no	need	to	worry	about	creating	B	anymore

								//	B	b	=	...	//	get	an	instance	of	B

								b.usefulMethod();

								...

				}

				public	void	setB(B	b)	{

								this.b	=	b;

				}

}

In	the	revised	version	of	A,	there	is	a	setter	method	that	can	be	called	to	inject	an	instance
of	 B.	 Since	 dependency	 injection	 provides	 dependencies	 for	 an	 object,	 the
importantMethod	method	in	A	no	longer	needs	to	create	an	instance	of	B	before	being
allowed	to	call	its	usefulMethod	method.

Alternatively,	if	you	prefer	a	constructor,	you	could	modify	class	A	like	this.

public	class	A	{

				private	B	b;

				public	A(B	b)	{

								this.b	=	b;

				}

				public	void	importantMethod()	{

								//	no	need	to	worry	about	creating	B	anymore

								//	B	b	=	...	//	get	an	instance	of	B

								b.usefulMethod();

								...

				}

}

In	this	case,	Spring	would	create	an	instance	of	B	before	it	creates	an	instance	of	A	and
injects	the	former	to	the	latter.

Note
Objects	that	Spring	manages	are	called	beans.

Spring	 gives	 you	 a	 way	 to	 intelligently	 manage	 dependencies	 of	 your	 Java	 objects	 by
providing	an	Inversion	of	Control	(IoC)	container	(or	a	dependency	injection	container,	if
you	 wish).	 The	 beauty	 of	 Spring	 is	 your	 classes	 do	 not	 need	 to	 know	 anything	 about
Spring,	nor	do	they	need	to	import	any	Spring	types.

Spring	 supports	 both	 setter-based	 and	 constructor-based	 dependency	 injection	 since
version	 1.	 Starting	 from	 Spring	 2.5,	 field-based	 dependency	 injection	 is	 also	 made
possible	 via	 the	 use	 of	 the	 Autowired	 annotation	 type.	 The	 drawback	 of	 using
@Autowired	 is	 you	 have	 to	 import	 the
org.springframework.beans.factory.annotation.Autowired	 annotation	 type	 in	 your
class,	which	makes	 it	dependent	on	Spring.	 In	such	scenarios,	porting	 the	application	 to
another	dependency	injection	container	would	not	be	straightforward.

With	Spring,	you	practically	hand	over	 the	creation	of	all	 important	objects	 to	 it.	You
configure	Spring,	either	 through	XML	files	or	annotations,	 to	 tell	 it	how	it	should	 inject
dependencies.	 You	 would	 then	 create	 an	 ApplicationContext,	 which	 essentially
represents	 a	 Spring	 IoC	 container.	 The
org.springframework.context.ApplicationContext	 interface	 comes	 with	 several
implementations,	 including	 ClassPathXmlApplicationContext,

FileSystemXmlApplicationContext	 and	WebApplicationContext.	 All	 expect	 an	XML
document	or	multiple	XML	documents	 that	contain	 information	on	the	beans	that	 it	will
manage.	A	ClassPathXmlApplicationContext	will	 try	 to	 find	 the	 configuration	 files	 in
the	class	path	whereas	a	FileSystemXmlApplicationContext	will	try	to	find	them	in	the
file	 system.	 A	WebApplicationContext	 by	 default	 will	 look	 in	 the	 web	 application
directory.

For	 example,	 here	 is	 code	 to	 create	 an	 ApplicationContext	 that	 searches	 for
config1.xml	and	config2.xml	files	in	the	class	path.

ApplicationContext	context	=	new	ClassPathXmlApplicationContext(

								new	String[]	{"config1.xml",	"config2.xml"});

To	obtain	a	bean	from	the	ApplicationContext,	call	its	getBean	method.

Product	product	=	context.getBean("product",	Product.class);

The	getBean	method	above	looks	for	a	bean	with	the	id	product	that	is	of	type	Product.

Note
Ideally,	 you	 only	 need	 to	 create	 an	 ApplicationContext	 in	 a	 test	 class,	 and	 your
application	should	not	know	that	it	is	being	managed	by	Spring.	With	Spring	MVC	you
do	 not	 deal	 with	ApplicationContext	 directly.	 Instead,	 you	 use	 a	 Spring	 servlet	 to
handle	the	ApplicationContext.

XML-Based	Spring	Configuration
Spring	supports	XML-based	configuration	 since	version	1.0	as	well	 as	annotation-based
configuration	 starting	 version	 2.5.	 The	 following	 section	 discusses	 how	 an	 XML
configuration	 file	 would	 look	 like.	 The	 root	 element	 of	 a	 Spring	 configuration	 file	 is
always	beans.

<?xml	version="1.0"	encoding="UTF-8"?>

<beans	xmlns="http://www.springframework.org/schema/beans"

		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

		xsi:schemaLocation="http://www.springframework.org/schema/beans

		http://www.springframework.org/schema/beans/spring-beans.xsd">

							

			...	

</beans>

You	 can	 add	more	 schemas	 to	 the	 schemaLocation	 attribute	 if	 you	 need	 more	 Spring
functionality	 in	 your	 application.	 You	 can	 even	 use	 a	 version-specific	 schema	 like	 this
rather	than	the	default	schema:

http://www.springframework.org/schema/beans/spring-beans-4.2.xsd

However,	I	recommend	you	always	use	the	default	schema	so	you	can	upgrade	the	Spring
libraries	without	changing	your	configuration	files.

You	can	split	your	XML	configuration	file	into	multiple	files	to	make	it	more	modular.
Implementations	of	ApplicationContext	are	designed	to	read	multiple	configuration	files.
Alternatively,	 you	 can	 have	 a	 main	 XML	 configuration	 file	 that	 imports	 other
configuration	files.

Here	 is	 an	 example	 of	 importing	 three	 other	 XML	 configuration	 files	 from	 a	 main
configuration	file.

<?xml	version="1.0"	encoding="UTF-8"?>

<beans	xmlns="http://www.springframework.org/schema/beans"

		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

		xsi:schemaLocation="http://www.springframework.org/schema/beans

		http://www.springframework.org/schema/beans/spring-beans.xsd">

							

				<import	resource="config1.xml"/>

				<import	resource="module2/config2.xml"/>

				<import	resource="/resources/config3.xml"/>

			...	

</beans>

You	will	learn	the	other	subelements	of	<beans>	in	the	next	section.

Using	Spring	to	Manage	Dependencies
In	this	section	you	learn	how	to	use	Spring	to	manage	your	objects	and	dependencies.

Creating	A	Bean	Instance	with	A	Constructor
To	get	 an	 instance	 of	 a	 bean,	 call	 the	getBean	method	on	 an	ApplicationContext.	 For
example,	the	XML	configuration	file	in	Listing	1.1	contains	the	definition	of	a	single	bean
named	product.

Listing	1.1:	A	simple	configuration	file

<?xml	version="1.0"	encoding="UTF-8"?>

<beans	xmlns="http://www.springframework.org/schema/beans"

		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

		xsi:schemaLocation="http://www.springframework.org/schema/beans

		http://www.springframework.org/schema/beans/spring-beans.xsd">

							

				<bean	name="product"	class="springintro.bean.Product"/>

				

</beans>

The	bean	declaration	will	tell	Spring	to	instantiate	the	Product	class	using	its	no-argument
(default)	constructor.	If	such	a	constructor	does	not	exist	(because	the	author	of	the	class
defined	another	constructor	and	did	not	explicitly	define	 the	default	constructor),	Spring
will	 throw	 an	 exception.	 The	 no-argument	 constructor	 does	 not	 have	 to	 be	 public	 for
Spring	to	create	an	instance	of	the	class.

Note	that	you	use	the	name	or	id	attribute	to	identify	a	bean.	To	use	Spring	to	create	an
instance	 of	Product,	 call	 the	ApplicationContext’s	 getBean	 method,	 passing	 the	 bean
name	or	id	and	its	class.

ApplicationContext	context	=

								new	ClassPathXmlApplicationContext(

								new	String[]	{"spring-config.xml"});

Product	product1	=	context.getBean("product",	Product.class);

product1.setName("Excellent	snake	oil");

System.out.println("product1:	"	+	product1.getName());	

Creating	A	Bean	Instance	with	A	Factory	Method
Most	 classes	 will	 be	 instantiated	 using	 one	 of	 their	 constructors.	 However,	 Spring	 is
equally	happy	if	it	has	to	call	a	factory	method	to	instantiate	a	class.

The	 following	 bean	 definition	 specifies	 a	 factory	 method	 for	 instantiating
java.time.LocalDate.

<bean	id="localDate"	class="java.time.LocalDate"

				factory-method="now"/>

Note	that	instead	of	the	name	attribute,	I	used	the	id	attribute	to	identify	the	bean.	You	can
then	use	getBean	to	get	an	instance	of	LocalDate.

ApplicationContext	context	=

								new	ClassPathXmlApplicationContext(

								new	String[]	{"spring-config.xml"});

LocalDate	localDate	=	context.getBean("localDate",	LocalDate.class);

Using	A	Destroy	Method
Some	classes	come	with	methods	that	should	be	called	before	instances	of	the	classes	are
put	for	garbage	collection.	Spring	supports	this	notion	too.	In	your	bean	declaration,	you
can	use	the	destroy-method	attribute	to	name	a	method	that	should	be	invoked	before	the
object	is	decommissioned.

For	 example,	 the	 following	 bean	 element	 instructs	 Spring	 to	 create	 an	 instance	 of
java.util.concurrent.ExecutorService	 by	 calling	 the	 static	 method
newCachedThreadPool	 on	 the	 java.util.concurrent.Executors	 class.	 The	 bean
definition	defines	the	shutdown	method	as	the	value	of	its	destroy-method	attribute.	As	a
result,	Spring	will	call	shutdown	before	destroying	the	ExecutorService	instance.

<bean	id="executorService"	class="java.util.concurrent.Executors"

				factory-method="newCachedThreadPool"	

				destroy-method="shutdown"/>

Passing	Arguments	to	a	Constructor
Spring	 can	 pass	 arguments	 to	 a	 class	 constructor	 if	 using	 the	 constructor	 is	 how	 it	 is
intended	to	instantiate	the	class.	Consider	the	Product	class	in	Listing	1.2.

Listing	1.2:	The	Product	class

package	springintro.bean;

import	java.io.Serializable;

public	class	Product	implements	Serializable	{

				private	static	final	long	serialVersionUID	=	748392348L;

				private	String	name;

				private	String	description;

				private	float	price;

				public	Product()	{

				}

				public	Product(String	name,	String	description,	float	price)	{

								this.name	=	name;

								this.description	=	description;

								this.price	=	price;

				}

				public	String	getName()	{

								return	name;

				}

				public	void	setName(String	name)	{

								this.name	=	name;

				}

				public	String	getDescription()	{

								return	description;

				}

				public	void	setDescription(String	description)	{

								this.description	=	description;

				}

				public	float	getPrice()	{

								return	price;

				}

				public	void	setPrice(float	price)	{

								this.price	=	price;

				}

}

The	following	bean	definition	passes	arguments	to	the	Product	class	by	name.

<bean	name="featuredProduct"	class="springintro.bean.Product">

				<constructor-arg	name="name"	value="Ultimate	Olive	Oil"/>

				<constructor-arg	name="description"	

								value="The	purest	olive	oil	on	the	market"/>

				<constructor-arg	name="price"	value="9.95"/>

</bean>

In	this	case,	Spring	will	use	the	following	constructor	of	the	Product	class.

public	Product(String	name,	String	description,	float	price)	{

				this.name	=	name;

				this.description	=	description;

				this.price	=	price;

}

Passing	arguments	by	name	is	not	 the	only	way	to	do	business	 in	Spring.	Spring	allows
you	to	pass	argument	by	index.	Here	is	how	the	featuredProduct	bean	can	be	rewritten.

<bean	name="featuredProduct2"	class="springintro.bean.Product">

				<constructor-arg	index="0"	value="Ultimate	Olive	Oil"/>

				<constructor-arg	index="1"	

								value="The	purest	olive	oil	on	the	market"/>

				<constructor-arg	index="2"	value="9.95"/>

</bean>

If	you	choose	to	pass	arguments	to	a	constructor,	you	must	pass	all	the	arguments	required
by	the	constructor.	An	incomplete	list	of	arguments	will	not	be	accepted.

Setter-based	Dependency	Injection
Consider	the	Employee	class	in	Listing	1.3	and	the	Address	class	in	Listing	1.4.

Listing	1.3:	The	Employee	class

package	springintro.bean;

public	class	Employee	{

				private	String	firstName;

				private	String	lastName;

				private	Address	homeAddress;

				

				public	Employee()	{

				}

				

				public	Employee(String	firstName,	String	lastName,	Address	homeAddress)	{

								this.firstName	=	firstName;

								this.lastName	=	lastName;

								this.homeAddress	=	homeAddress;

				}

				

				public	String	getFirstName()	{

								return	firstName;

				}

				public	void	setFirstName(String	firstName)	{

								this.firstName	=	firstName;

				}

				public	String	getLastName()	{

								return	lastName;

				}

				public	void	setLastName(String	lastName)	{

								this.lastName	=	lastName;

				}

				public	Address	getHomeAddress()	{

								return	homeAddress;

				}

				public	void	setHomeAddress(Address	homeAddress)	{

								this.homeAddress	=	homeAddress;

				}

				@Override

				public	String	toString()	{

								return	firstName	+	"	"	+	lastName

																+	"\n"	+	homeAddress;

				}

}

Listing	1.4:	The	Address	class

package	springintro.bean;

public	class	Address	{

		private	String	line1;

				private	String	line2;

				private	String	city;

				private	String	state;

				private	String	zipCode;

				private	String	country;

				

				public	Address(String	line1,	String	line2,	String	city,

												String	state,	String	zipCode,	String	country)	{

								this.line1	=	line1;

								this.line2	=	line2;

								this.city	=	city;

								this.state	=	state;

								this.zipCode	=	zipCode;

								this.country	=	country;

				}

				//	getters	and	setters	omitted

				

				@Override

				public	String	toString()	{

								return	line1	+	"\n"

																+	line2	+	"\n"

																+	city	+	"\n"

																+	state	+	"	"	+	zipCode	+	"\n"

																+	country;

				}

}

Employee	depends	on	Address.	To	make	sure	that	every	Employee	instance	contains	an
instance	of	Address,	you	can	configure	Spring	with	these	two	bean	elements.

<bean	name="simpleAddress"	class="springintro.bean.Address">

				<constructor-arg	name="line1"	value="151	Corner	Street"/>

				<constructor-arg	name="line2"	value=""/>

				<constructor-arg	name="city"	value="Albany"/>

				<constructor-arg	name="state"	value="NY"/>

				<constructor-arg	name="zipCode"	value="99999"/>

				<constructor-arg	name="country"	value="US"/>

</bean>

<bean	name="employee1"	class="springintro.bean.Employee">

				<property	name="homeAddress"	ref="simpleAddress"/>

				<property	name="firstName"	value="Junior"/>

				<property	name="lastName"	value="Moore"/>

</bean>

The	simpleAddress	 bean	 instantiates	Address	 and	 passes	 values	 to	 its	 constructor.	 The
employee1	bean	uses	property	elements	to	inject	values	to	its	setter	methods.	Of	special
interest	is	the	homeAddress	property,	which	is	given	the	reference	of	simpleAddress.

The	bean	declaration	of	a	dependency	does	not	have	to	appear	before	the	declarations	of
the	beans	that	use	it.	In	this	example,	employee1	may	appear	before	simpleAddress.

Constructor-based	Dependency	Injection
Since	the	Employee	class	in	Listing	1.3	provides	a	constructor	that	can	take	values,	you
can	 inject	an	Address	 to	an	 instance	of	Employee	 through	 its	constructor.	For	 instance,
these	 bean	 definitions	 create	 an	 instance	 of	 Employee	 and	 inject	 three	 values	 to	 its
constructor.

<bean	name="employee2"	class="springintro.bean.Employee">

				<constructor-arg	name="firstName"	value="Senior"/>

				<constructor-arg	name="lastName"	value="Moore"/>

				<constructor-arg	name="homeAddress"	ref="simpleAddress"/>

</bean>

				

<bean	name="simpleAddress"	class="springintro.bean.Address">

				<constructor-arg	name="line1"	value="151	Corner	Street"/>

				<constructor-arg	name="line2"	value=""/>

				<constructor-arg	name="city"	value="Albany"/>

				<constructor-arg	name="state"	value="NY"/>

				<constructor-arg	name="zipCode"	value="99999"/>

				<constructor-arg	name="country"	value="US"/>

</bean>

Summary
In	 this	 chapter	 you	 learned	 about	 dependency	 injection	 and	 how	 to	 use	 the	 Spring	 IoC
container.	You	will	apply	what	you	learned	in	this	chapter	to	configure	Spring	applications
in	the	chapters	to	come.

Chapter	2

Model	2	and	the	MVC	Pattern
There	are	two	models	used	in	Java	web	application	design,	conveniently	called	Model	1
and	Model	2.	Model	1	is	page-centric	and	suitable	for	very	small	applications	only.	Model
2	is	the	recommended	architecture	for	all	but	the	simplest	Java	web	applications.

This	 chapter	 discusses	Model	 2	 in	 minute	 detail	 and	 provides	 four	Model	 2	 sample
applications.	The	first	example	features	a	basic	Model	2	application	with	a	servlet	as	the
controller.	The	 second	example	 is	 also	 a	 simple	Model	2	 application,	 however	 it	 uses	 a
filter	as	the	controller.	The	third	example	introduces	a	validator	component	for	validating
user	input.	The	fourth	application	illustrates	the	use	of	a	home-grown	dependency	injector.
In	real-world	applications,	you	should	use	Spring	instead.

Note
At	the	 time	of	writing,	an	effort	 is	being	made	 to	standardize	MVC	web	frameworks
through	JSR	371.

Model	1	Overview
When	 you	 first	 learn	 JSP,	 your	 sample	 applications	 would	 normally	 enable	 navigation
from	one	page	to	another	by	providing	a	clickable	link	to	the	latter.	While	this	navigation
method	is	straightforward,	in	medium-sized	or	large	applications	with	significant	numbers
of	pages	 this	approach	can	cause	a	maintenance	headache.	Changing	 the	name	of	a	 JSP
page,	for	instance,	could	force	you	to	rename	the	links	to	the	page	in	many	other	pages.	As
such,	Model	1	 is	 not	 recommended	unless	your	 application	will	 only	have	 two	or	 three
pages.

Model	2	Overview
Model	 2	 is	 based	 on	 the	 Model-View-Controller	 (MVC)	 design	 pattern,	 the	 central
concept	behind	the	Smalltalk-80	user	interface.	As	the	term	“design	pattern”	had	not	been
coined	at	that	time,	it	was	called	the	MVC	paradigm.

An	application	implementing	the	MVC	pattern	consists	of	three	modules:	model,	view
and	 controller.	 The	 view	 takes	 care	 of	 the	 display	 of	 the	 application.	 The	 model
encapsulates	the	application	data	and	business	logic.	The	controller	receives	user	input	and
commands	the	model	and/or	the	view	to	change	accordingly.

In	Model	 2,	 you	 have	 a	 servlet	 or	 a	 filter	 acting	 as	 the	 controller.	 All	 modern	 web
frameworks	are	Model	2	implementations.	Frameworks	such	as	Struts	1,	JavaServer	Faces
and	Spring	MVC	employ	a	servlet	controller	in	their	MVC	architectures,	whereas	Struts	2,
another	popular	framework,	uses	a	filter.	Generally	JSP	pages	are	employed	as	the	views
of	the	application,	even	though	other	view	technologies	are	supported.	As	the	models,	you
use	POJOs	(POJO	is	an	acronym	for	Plain	Old	Java	Object).	POJOs	are	ordinary	objects,
as	opposed	to	Enterprise	JavaBeans	(EJB)	or	other	special	objects.	Many	people	choose	to
use	JavaBeans	(plain	JavaBeans,	not	EJBs)	to	store	the	states	of	model	objects	and	move
business	logic	to	action	classes.

Figure	2.1	shows	the	architecture	of	a	Model	2	application.

Figure	2.1:	Model	2	architecture

In	 a	Model	 2	 application,	 every	 HTTP	 request	 must	 be	 directed	 to	 the	 controller.	 The
request’s	Uniform	Request	Identifier	(URI)	tells	the	controller	what	action	to	invoke.	The
term	“action”	refers	to	an	operation	that	the	application	is	able	to	perform.	The	Java	object
associated	with	an	action	is	called	an	action	object.	A	single	action	class	may	be	used	to
serve	different	actions	(as	in	Struts	2	and	Spring	MVC)	or	a	single	action	(as	in	Struts	1).

A	 seemingly	 trivial	 operation	may	 take	more	 than	 one	 action.	 For	 instance,	 adding	 a
product	to	a	database	would	require	two	actions:

1.	Display	an	“Add	Product”	form	for	the	user	to	enter	product	information.

2.	Save	the	product	information	in	the	database.

As	mentioned	above,	you	use	 the	URI	 to	 tell	 the	controller	which	action	 to	 invoke.	For
instance,	to	get	the	application	to	send	the	“Add	Product”	form,	you	would	use	a	URI	like
this:

http://domain/appName/input-product

To	get	the	application	to	save	a	product,	the	URI	would	be:

http://domain/appName/save-product

The	controller	examines	the	URI	to	decide	what	action	to	invoke.	It	also	stores	the	model
object	 in	 a	 place	 that	 can	 be	 accessed	 from	 the	 view,	 so	 that	 server-side	 values	 can	 be
displayed	 on	 the	 browser.	 Finally,	 the	 controller	 uses	 a	 RequestDispatcher	 or
HttpServletResponse.sendRedirect()	 to	 forward/redirect	 to	 a	 view	 (a	 JSP	 page	 or
another	 resource).	 In	 the	 JSP	 page,	 you	 use	 the	 Expression	 Language	 expressions	 and
custom	tags	to	display	values.

Note	 that	 calling	 RequestDispatcher.forward()	 or
HttpServletResponse.sendRedirect()	 does	 not	 prevent	 the	 code	 below	 it	 from	 being
executed.	 Therefore,	 unless	 the	 call	 is	 the	 last	 line	 in	 a	 method,	 you	 need	 to	 return
explicitly.

if	(action.equals(...))	{

				RequestDispatcher	rd	=	request.getRequestDispatcher(dispatchUrl);

				rd.forward(request,	response);

				return;//explicitly	return.	Or	else,	the	code	below	will	be	executed

}

//	do	something	else

Most	of	the	time,	you	would	use	a	RequestDispatcher	to	forward	to	a	view	because	it	is
faster	than	sendRedirect.	This	is	due	to	the	fact	that	a	redirect	causes	the	server	to	send
the	HTTP	response	status	code	302	with	a	Location	header	containing	a	new	URL	to	the
browser.	Upon	receiving	the	status	code	302,	the	browser	makes	a	new	HTTP	request	to
the	URL	found	in	the	Location	header.	In	other	words,	a	redirect	requires	a	round-trip	that
makes	it	slower	than	a	forward.

What	is	the	advantage	of	using	a	redirect	over	a	forward?	With	a	redirect,	you	can	direct
the	browser	to	a	different	application.	You	cannot	do	this	with	a	forward.	If	a	redirect	is
used	to	hit	a	different	resource	in	the	same	application,	 it	 is	because	it	yields	a	different
URL	than	the	original	request	URL.	As	such,	if	the	user	accidentally	presses	the	browser
Reload/Refresh	button	after	a	response	is	rendered,	 the	code	associated	with	the	original
request	URL	will	not	be	executed	again.	For	instance,	you	would	not	want	the	same	code
that	makes	a	 credit	 card	payment	 re-executed	 just	because	 the	user	 accidentally	pressed
the	Reload	or	Refresh	button	of	her	browser.

The	 last	 example	 in	 this	 chapter,	 the	appdesign4	 application,	 shows	 an	 example	of	 a
redirect	and	demonstrates	how	it	can	be	done.

Model	2	with	A	Servlet	Controller
This	section	presents	a	simple	Model	2	application	 to	give	you	a	general	 idea	of	what	a
Model	2	 application	 looks	 like.	 In	 real	 life,	Model	2	 applications	 are	 far	more	 complex
than	this.

The	 application	 can	 be	 used	 to	 enter	 product	 information	 and	 is	 named	appdesign1.
The	 user	 fills	 in	 a	 form	 like	 the	 one	 in	 Figure	 2.2	 and	 submits	 it.	 The	 application	 then
sends	a	confirmation	page	 to	 the	user	and	display	 the	details	of	 the	saved	product.	 (See
Figure	2.3)

Figure	2.2:	The	Product	form

Figure	2.3:	The	product	details	page

The	application	is	capable	of	performing	these	two	actions:

1.	Display	the	“Add	Product”	form.	This	action	sends	the	entry	form	in	Figure	2.2	to	the
browser.	The	URI	to	invoke	this	action	must	contain	the	string	input-product.

2.	Save	the	product	and	returns	the	confirmation	page	in	Figure	2.3.	The	URI	to	invoke
this	action	must	contain	the	string	save-product.

The	application	consists	of	the	following	components:

1.	A	Product	class	that	is	the	template	for	the	model	objects.	An	instance	of	this	class
contains	product	information.

2.	A	ProductForm	class,	which	encapsulates	the	fields	of	the	HTML	form	for	inputting
a	product.	The	properties	of	a	ProductForm	are	used	to	populate	a	Product.

3.	A	ControllerServlet	class,	which	is	the	controller	of	this	Model	2	application.

4.	An	action	class	named	SaveProductAction.

5.	Two	JSP	pages	(ProductForm.jsp	and	ProductDetails.jsp)	as	the	views.

6.	A	CSS	file	that	defines	the	styles	of	the	views.	This	is	a	static	resource.

The	directory	structure	of	this	application	is	shown	in	Figure	2.4.

Figure	2.4:	appdesign1	directory	structure

Let’s	take	a	closer	look	at	each	component	in	appdesign1.

The	Product	Class
A	Product	 instance	 is	 a	 JavaBean	 that	 encapsulates	 product	 information.	 The	Product
class	(shown	in	Listing	2.1)	has	three	properties:	productName,	description,	and	price.

Listing	2.1:	The	Product	class

package	appdesign1.model;

import	java.io.Serializable;

import	java.math.BigDecimal;

public	class	Product	implements	Serializable	{

				private	static	final	long	serialVersionUID	=	748392348L;

				private	String	name;

				private	String	description;

				private	BigDecimal	price;

				public	String	getName()	{

								return	name;

				}

				public	void	setName(String	name)	{

								this.name	=	name;

				}

				public	String	getDescription()	{

								return	description;

				}

				public	void	setDescription(String	description)	{

								this.description	=	description;

				}

				public	BigDecimal	getPrice()	{

								return	price;

				}

				public	void	setPrice(BigDecimal	price)	{

								this.price	=	price;

				}

}

The	Product	 class	 implements	 java.io.Serializable	 so	 that	 its	 instances	 can	 be	 stored
safely	 in	HttpSession	 objects.	 As	 an	 implementation	 of	 Serializable,	 Product	 should
have	a	serialVersionUID	field.

The	ProductForm	Class
A	form	class	is	mapped	to	an	HTML	form.	It	is	the	representation	of	the	HTML	form	on
the	server.	The	ProductForm	class,	given	in	Listing	2.2,	contains	the	String	values	of	a
product.	At	a	glance	the	ProductForm	class	is	similar	to	the	Product	class	and	you	might
question	why	ProductForm	 needs	 to	 exist	 at	 all.	A	 form	 object,	 as	 you	 can	 see	 in	 the
section	 “Validators”	 later	 in	 this	 chapter,	 saves	 passing	 the	 ServletRequest	 to	 other
components,	such	as	validators.	ServletRequest	is	a	servlet-specific	type	and	should	not
be	exposed	to	other	layers	of	the	applications.

The	 second	 purpose	 of	 a	 form	 object	 is	 to	 preserve	 and	 redisplay	 user	 input	 in	 its
original	 form	 if	 input	 validation	 fails.	 You	 will	 learn	 how	 to	 do	 this	 in	 the	 section
“Validators”	later	in	this	chapter.

Note	 that	most	 of	 the	 time	 a	 form	 class	 does	 not	 have	 to	 implement	Serializable	 as
form	objects	are	rarely	stored	in	an	HttpSession.

Listing	2.2:	The	ProductForm	class

package	appdesign1.form;

public	class	ProductForm	{

				private	String	name;

				private	String	description;

				private	String	price;

				public	String	getName()	{

								return	name;

				}

				public	void	setName(String	name)	{

								this.name	=	name;

				}

				public	String	getDescription()	{

								return	description;

				}

				public	void	setDescription(String	description)	{

								this.description	=	description;

				}

				public	String	getPrice()	{

								return	price;

				}

				public	void	setPrice(String	price)	{

								this.price	=	price;

				}

}

The	ControllerServlet	Class
The	 ControllerServlet	 class	 (presented	 in	 Listing	 2.3)	 extends	 the
javax.servlet.http.HttpServlet	 class.	 Both	 its	 doGet	 and	 doPost	 methods	 call	 the
process	method,	which	is	the	brain	of	the	servlet	controller.

I	 am	 probably	 raising	 a	 few	 eyebrows	 here	 by	 naming	 the	 servlet	 controller
ControllerServlet,	but	I’m	following	the	convention	that	says	all	servlet	classes	should	be
suffixed	with	Servlet.

Listing	2.3:	The	ControllerServlet	Class

package	appdesign1.controller;

import	java.io.IOException;

import	javax.servlet.RequestDispatcher;

import	javax.servlet.ServletException;

import	javax.servlet.annotation.WebServlet;

import	javax.servlet.http.HttpServlet;

import	javax.servlet.http.HttpServletRequest;

import	javax.servlet.http.HttpServletResponse;

import	appdesign1.action.SaveProductAction;

import	appdesign1.form.ProductForm;

import	appdesign1.model.Product;

import	java.math.BigDecimal;

@WebServlet(name	=	"ControllerServlet",	urlPatterns	=	{

								"/input-product",	"/save-product"	})

public	class	ControllerServlet	extends	HttpServlet	{

				private	static	final	long	serialVersionUID	=	1579L;

				@Override

				public	void	doGet(HttpServletRequest	request,

												HttpServletResponse	response)

												throws	IOException,	ServletException	{

								process(request,	response);

				}

				@Override

				public	void	doPost(HttpServletRequest	request,

												HttpServletResponse	response)

												throws	IOException,	ServletException	{

								process(request,	response);

				}

				private	void	process(HttpServletRequest	request,

												HttpServletResponse	response)

												throws	IOException,	ServletException	{

								String	uri	=	request.getRequestURI();

								/*

									*	uri	is	in	this	form:	/contextName/resourceName,

									*	for	example:	/appdesign1/input-product.

									*	However,	in	the	event	of	a	default	context,	the

									*	context	name	is	empty,	and	uri	has	this	form

									*	/resourceName,	e.g.:	/input-product

									*/

								int	lastIndex	=	uri.lastIndexOf("/");

								String	action	=	uri.substring(lastIndex	+	1);

								//	execute	an	action

								String	dispatchUrl	=	null;

								if	("input-product".equals(action))	{

												//	no	action	class,	just	forward

												dispatchUrl	=	"/jsp/ProductForm.jsp";

								}	else	if	("save-product".equals(action))	{

												//	create	form

												ProductForm	productForm	=	new	ProductForm();

												//	populate	action	properties

												productForm.setName(request.getParameter("name"));

												productForm.setDescription(

																				request.getParameter("description"));

												productForm.setPrice(request.getParameter("price"));

												//	create	model

												Product	product	=	new	Product();

												product.setName(productForm.getName());

												product.setDescription(productForm.getDescription());

												try	{

													 			product.setPrice(new	BigDecimal(productForm.getPrice()));

												}	catch	(NumberFormatException	e)	{

												}

												//	execute	action	method

												SaveProductAction	saveProductAction	=

													 	 new	SaveProductAction();

												saveProductAction.save(product);

												//	store	model	in	a	scope	variable	for	the	view

												request.setAttribute("product",	product);

												dispatchUrl	=	"/jsp/ProductDetails.jsp";

								}

								if	(dispatchUrl	!=	null)	{

												RequestDispatcher	rd	=

																				request.getRequestDispatcher(dispatchUrl);

												rd.forward(request,	response);

								}

				}

}

The	process	method	 in	 the	ControllerServlet	 class	 processes	 all	 incoming	 requests.	 It
starts	by	obtaining	the	request	URI	and	the	action	name.

String	uri	=	request.getRequestURI();

int	lastIndex	=	uri.lastIndexOf("/");

String	action	=	uri.substring(lastIndex	+	1);	

The	value	of	action	in	this	application	can	be	either	input-product	or	save-product.

The	process	method	then	continues	by	performing	these	steps:

1.	Instantiate	a	relevant	action	class,	if	any.

2.	If	an	action	object	exists,	create	and	populate	a	form	object	with	request	parameters.
There	are	three	properties	in	the	save-product	action:	name,	description,	and	price.
Next,	create	a	model	object	and	populate	its	properties	from	the	form	object.

3.	If	an	action	object	exists,	call	the	action	method.

4.	Forward	the	request	to	a	view	(JSP	page).

The	part	of	the	process	method	that	determines	what	action	to	perform	is	in	the	following
if	block:

								//	execute	an	action

								if	("input-product".equals(action))	{

												//	no	action	class,	just	forward

												dispatchUrl	=	"/jsp/ProductForm.jsp";

								}	else	if	("save-product".equals(action))	{

												//	instantiate	action	class

												...

								}

There	 is	 no	 action	 class	 to	 instantiate	 for	 action	 input-product.	 For	 save-product,	 the
process	method	creates	a	ProductForm	and	a	Product	and	copies	values	from	the	former
to	the	latter.	At	this	stage,	there’s	no	guarantee	all	non-string	properties,	such	as	price,	can
be	 copied	 successfully,	 but	 we’ll	 deal	 with	 this	 later	 in	 the	 section	 “Validators.”	 The
process	method	then	instantiates	the	SaveProductAction	class	and	calls	its	save	method.

												//	create	form

												ProductForm	productForm	=	new	ProductForm();

												//	populate	action	properties

												productForm.setName(request.getParameter("name"));

												productForm.setDescription(

																				request.getParameter("description"));

												productForm.setPrice(request.getParameter("price"));

												//	create	model

												Product	product	=	new	Product();

												product.setName(productForm.getName());

												product.setDescription(productForm.getDescription());

												try	{

													 product.setPrice(new	BigDecimal(productForm.getPrice()));

												}	catch	(NumberFormatException	e)	{

												}

												//	execute	action	method

												SaveProductAction	saveProductAction	=

													 	 new	SaveProductAction();

												saveProductAction.save(product);

The	Product	is	then	stored	in	the	HttpServletRequest	so	that	the	view	can	access	it.

												//	store	action	in	a	scope	variable	for	the	view

												request.setAttribute("product",	product);

The	process	method	concludes	by	forwarding	to	a	view.	If	action	equals	input-product,
control	is	forwarded	to	the	ProductForm.jsp	page.	If	action	is	save-product,	control	 is

forwarded	to	the	ProductDetails.jsp	page.

								//	forward	to	a	view

								if	(dispatchUrl	!=	null)	{

												RequestDispatcher	rd	=	

																				request.getRequestDispatcher(dispatchUrl);

												rd.forward(request,	response);

								}

The	Action	Class
There	is	only	one	action	class	in	the	application,	which	is	responsible	for	saving	a	product
to	some	storage,	such	as	a	database.	The	action	class	is	named	SaveProductAction	and	is
given	in	Listing	2.4.

Listing	2.4:	The	SaveProductAction	class

package	appdesign1.action;

public	class	SaveProductAction	{

				public	void	save(Product	product)	{

								//	insert	Product	to	the	database

				}

}

In	this	example,	the	SaveProductAction	class	does	not	have	implementation	for	its	save
method.	You	will	provide	an	implementation	in	the	next	examples	in	this	chapter.

The	Views
The	 application	 utilizes	 two	 JSP	 pages	 for	 the	 views	 of	 the	 application.	 The	 first	 page,
ProductForm.jsp,	 is	 displayed	 if	 the	 action	 is	 input-product.	 The	 second	 page,
ProductDetails.jsp,	is	shown	for	save-product.	ProductForm.jsp	is	given	in	Listing	2.5
and	ProductDetails.jsp	in	Listing	2.6.

Listing	2.5:	The	ProductForm.jsp	page

<!DOCTYPE	html>

<html>

<head>

<title>Add	Product	Form</title>

<style	type="text/css">@import	url(css/main.css);</style>

</head>

<body>

<form	method="post"	action="save-product">

				<h1>Add	Product	

								Please	use	this	form	to	enter	product	details

				</h1>

				<label>

								Product	Name	:

								<input	id="name"	type="text"	name="name"	

												placeholder="The	complete	product	name"/>

				</label>

				<label>

								Description	:

								<input	id="description"	type="text"	name="description"	

												placeholder="Product	description"/>

				</label>

				<label>

								Price	:

								<input	id="price"	name="price"	type="number"	step="any"

												placeholder="Product	price	in	#.##	format"/>

				</label>	

				<label>

								 	

								<input	type="submit"/>	

				</label>	

</form>

</body>

</html>

Note
Do	not	use	an	HTML	table	to	format	a	form.	Instead,	use	CSS.

Note
The	step	 attribute	 in	 the	 price	 input	 field	 forces	 the	 browser	 to	 allow	 for	 a	 decimal
number.

Listing	2.6:	The	ProductDetails.jsp	page

<!DOCTYPE	html>

<html>

<head>

<title>Save	Product</title>

<style	type="text/css">@import	url(css/main.css);</style>

</head>

<body>

<div	id="global">

				<h4>The	product	has	been	saved.</h4>

				<p>

								<h5>Details:</h5>

								Product	Name:	${product.name}

								Description:	${product.description}

								Price:	$${product.price}

				</p>

</div>

</body>

</html>

The	ProductForm.jsp	 page	 contains	 an	 HTML	 form	 for	 entering	 product	 details.	 The
ProductDetails.jsp	 page	 uses	 the	 Expression	 Language	 (EL)	 to	 access	 the	 product
scoped-object	in	the	HttpServletRequest.

In	this	application,	as	is	the	case	for	most	Model	2	applications,	you	need	to	prevent	the
JSP	pages	from	being	accessed	directly	from	the	browser.	There	are	a	number	of	ways	to
achieve	this,	including:

Putting	the	JSP	pages	under	WEB-INF.	Anything	under	WEB-INF	or	a	subdirectory
under	WEB-INF	 is	 protected.	 If	 you	 put	 your	 JSP	 pages	 under	WEB-INF	 you
cannot	 access	 them	 directly	 from	 the	 browser,	 but	 the	 controller	 can	 still	 dispatch
requests	to	those	pages.	However,	this	is	not	a	recommended	approach	since	not	all
containers	implement	this	feature.
Using	a	servlet	filter	and	filter	out	requests	for	JSP	pages.
Using	 security	 restriction	 in	 the	 deployment	 descriptor.	 This	 is	 easier	 than	 using	 a
filter	 since	 you	 do	 not	 have	 to	write	 a	 filter	 class.	 This	method	 is	 chosen	 for	 this
application.

Testing	the	Application
Assuming	you	are	running	 the	application	on	your	 local	machine	on	port	8080,	you	can
invoke	the	application	using	the	following	URL:

http://localhost:8080/appdesign1/input-product

You	will	see	something	similar	to	Figure	2.2	in	your	browser.

When	you	submit	the	form,	the	following	URL	will	be	sent	to	the	server:

http://localhost:8080/appdesign1/save-product

Using	 a	 servlet	 controller	 allows	 you	 to	 use	 the	 servlet	 as	 a	welcome	 page.	 This	 is	 an
important	 feature	 since	 you	 can	 then	 configure	 your	 application	 so	 that	 the	 servlet
controller	 will	 be	 invoked	 simply	 by	 typing	 your	 domain	 name	 (such	 as
http://example.com)	in	the	browser’s	address	box.	You	can’t	do	this	with	a	filter.

Model	2	with	A	Filter	Dispatcher
While	a	servlet	is	the	most	common	controller	in	a	Model	2	application,	a	filter	can	act	as
a	 controller	 too.	 Note,	 however,	 that	 a	 filter	 does	 not	 have	 the	 privilege	 to	 act	 as	 a
welcome	page.	Simply	typing	the	domain	name	won’t	invoke	a	filter	dispatcher.	Struts	2
uses	a	filter	as	a	controller	because	the	filter	is	used	to	serve	static	contents	too.

The	 following	 example	 (appdesign2)	 is	 a	 Model	 2	 application	 that	 uses	 a	 filter
dispatcher.	The	directory	structure	of	appdesign2	is	shown	in	Figure	2.5.

Figure	2.5:	appdesign2	directory	structure

The	JSP	pages	and	the	Product	class	are	the	same	as	the	ones	in	appdesign1.	However,
instead	 of	 a	 servlet	 as	 controller,	 you	 have	 a	 filter	 called	 FilterDispatcher	 (given	 in
Listing	2.7).

Listing	2.7:	The	DispatcherFilter	class

package	appdesign2.filter;

import	java.io.IOException;

import	javax.servlet.Filter;

import	javax.servlet.FilterChain;

import	javax.servlet.FilterConfig;

import	javax.servlet.RequestDispatcher;

import	javax.servlet.ServletException;

import	javax.servlet.ServletRequest;

import	javax.servlet.ServletResponse;

import	javax.servlet.annotation.WebFilter;

import	javax.servlet.http.HttpServletRequest;

import	appdesign2.action.SaveProductAction;

import	appdesign2.form.ProductForm;

import	appdesign2.model.Product;

import	java.math.BigDecimal;

@WebFilter(filterName	=	"DispatcherFilter",

								urlPatterns	=	{	"/*"	})

public	class	DispatcherFilter	implements	Filter	{

				@Override

				public	void	init(FilterConfig	filterConfig)

												throws	ServletException	{

				}

				@Override

				public	void	destroy()	{

				}

				@Override

				public	void	doFilter(ServletRequest	request,

												ServletResponse	response,	FilterChain	filterChain)

												throws	IOException,	ServletException	{

								HttpServletRequest	req	=	(HttpServletRequest)	request;

								String	uri	=	req.getRequestURI();

								/*

									*	uri	is	in	this	form:	/contextName/resourceName,	for

									*	example	/appdesign2/input-product.	However,	in	the

									*	case	of	a	default	context,	the	context	name	is	empty,

									*	and	uri	has	this	form	/resourceName,	e.g.:

									*	/input-product

									*/

								//	action	processing

								int	lastIndex	=	uri.lastIndexOf("/");

								String	action	=	uri.substring(lastIndex	+	1);

								String	dispatchUrl	=	null;

								if	("input-product".equals(action))	{

												//	do	nothing

												dispatchUrl	=	"/jsp/ProductForm.jsp";

								}	else	if	("save-product".equals(action))	{

												//	create	form

												ProductForm	productForm	=	new	ProductForm();

												//	populate	action	properties

												productForm.setName(request.getParameter("name"));

												productForm.setDescription(

																				request.getParameter("description"));

												productForm.setPrice(request.getParameter("price"));

												

												//	create	model

												Product	product	=	new	Product();

												product.setName(productForm.getName());

												product.setDescription(product.getDescription());

												try	{

																product.setPrice(new	BigDecimal(productForm.getPrice()));

												}	catch	(NumberFormatException	e)	{

												}

												//	execute	action	method

												SaveProductAction	saveProductAction	=	

																				new	SaveProductAction();

												saveProductAction.save(product);

												

												//	store	model	in	a	scope	variable	for	the	view

												request.setAttribute("product",	product);

												dispatchUrl	=	"/jsp/ProductDetails.jsp";

								}

								//	forward	to	a	view

								if	(dispatchUrl	!=	null)	{

												RequestDispatcher	rd	=	request

																				.getRequestDispatcher(dispatchUrl);

												rd.forward(request,	response);

								}	else	{

												//	let	static	contents	pass

												filterChain.doFilter(request,	response);

								}

				}

}

The	doFilter	method	performs	what	the	process	method	in	appdesign1	did.

Since	 the	 filter	 targets	 all	 URLs	 including	 static	 contents,	 you	 need	 to	 call
filterChain.doFilter()	if	no	action	is	invoked.

								}	else	{

												//	let	static	contents	pass

												filterChain.doFilter(request,	response);

								}

To	test	the	application,	direct	your	browser	to	this	URL:

http://localhost:8080/appdesign2/input-product

Validators
Input	 validation	 is	 an	 important	 step	 in	 performing	 an	 action.	 Validation	 ranges	 from
simple	 tasks	 like	 checking	 if	 an	 input	 field	 has	 a	 value	 to	 more	 complex	 ones	 like
verifying	a	credit	card	number.	In	fact,	validation	play	such	an	important	role	that	the	Java
community	has	published	JSR	303,	 “Bean	Validation”	 to	 standardize	 input	validation	 in
Java.	Modern	MVC	frameworks	often	offer	both	programmatic	and	declarative	validation
methods.	In	programmatic	validation,	you	write	code	to	validate	user	input.	In	declarative
validation,	you	provide	validation	rules	in	XML	documents	or	properties	files.

Note
Even	though	you	can	perform	client-side	input	validation	with	HTML5	or	JavaScript,
don’t	rely	on	it	because	the	savvy	user	can	bypass	it	easily.	Always	perform	server-side
input	validation!

The	following	example	features	a	new	application	(appdesign3)	 that	extends	 the	servlet
controller-based	Model	2	application	in	appdesign1.	The	new	application	incorporates	a
product	validator	whose	class	is	given	in	Listing	2.8.

Listing	2.8:	The	ProductValidator	class

package	appdesign3.validator;

import	java.util.ArrayList;

import	java.util.List;

import	appdesign3.form.ProductForm;

public	class	ProductValidator	{

				public	List<String>	validate(ProductForm	productForm)	{

								List<String>	errors	=	new	ArrayList<>();

								String	name	=	productForm.getName();

								if	(name	==	null	||	name.trim().isEmpty())	{

												errors.add("Product	must	have	a	name");

								}

								String	price	=	productForm.getPrice();

								if	(price	==	null	||	price.trim().isEmpty())	{

												errors.add("Product	must	have	a	price");

								}	else	{

												try	{

																Float.parseFloat(price);

												}	catch	(NumberFormatException	e)	{

																errors.add("Invalid	price	value");

												}

								}

								return	errors;

				}

}

The	 ProductValidator	 class	 in	 Listing	 2.8	 offers	 a	 validate	 method	 that	 works	 on	 a
ProductForm.	 The	 validator	makes	 sure	 that	 a	 product	 has	 a	 non-empty	 name	 and	 its
price	 is	 a	 valid	 number.	 The	 validate	 method	 returns	 a	 List	 of	 Strings	 containing

validation	error	messages.	An	empty	List	means	successful	validation.
Now	 that	 you	 have	 a	 validator,	 you	 need	 to	 tell	 the	 controller	 to	 use	 it.	 Listing	 2.9

presents	 the	 revised	 version	 of	ControllerServlet.	 Pay	 special	 attention	 to	 the	 lines	 in
bold.

Listing	2.9:	The	ControllerServlet	class	in	appdesign3

package	appdesign3.controller;

import	java.io.IOException;

import	java.util.List;

import	javax.servlet.RequestDispatcher;

import	javax.servlet.ServletException;

import	javax.servlet.annotation.WebServlet;

import	javax.servlet.http.HttpServlet;

import	javax.servlet.http.HttpServletRequest;

import	javax.servlet.http.HttpServletResponse;

import	appdesign3.action.SaveProductAction;

import	appdesign3.form.ProductForm;

import	appdesign3.model.Product;

import	appdesign3.validator.ProductValidator;

import	java.math.BigDecimal;

@WebServlet(name	=	"ControllerServlet",	urlPatterns	=	{	

								"/input-product",	"/save-product"	})

public	class	ControllerServlet	extends	HttpServlet	{

				

				private	static	final	long	serialVersionUID	=	98279L;

				@Override

				public	void	doGet(HttpServletRequest	request,	

												HttpServletResponse	response)

												throws	IOException,	ServletException	{

								process(request,	response);

				}

				@Override

				public	void	doPost(HttpServletRequest	request,	

												HttpServletResponse	response)

												throws	IOException,	ServletException	{

								process(request,	response);

				}

				private	void	process(HttpServletRequest	request,

												HttpServletResponse	response)	

												throws	IOException,	ServletException	{

								String	uri	=	request.getRequestURI();

								/*

									*	uri	is	in	this	form:	/contextName/resourceName,	

									*	for	example:	/appdesign1/input-product.	

									*	However,	in	the	case	of	a	default	context,	the	

									*	context	name	is	empty,	and	uri	has	this	form

									*	/resourceName,	e.g.:	/input-product

									*/

								int	lastIndex	=	uri.lastIndexOf("/");

								String	action	=	uri.substring(lastIndex	+	1);	

								String	dispatchUrl	=	null;

								if	("input-product".equals(action))	{

												//	no	action	class,	there	is	nothing	to	be	done

												dispatchUrl	=	"/jsp/ProductForm.jsp";

								}	else	if	("save-product".equals(action))	{

												//	instantiate	action	class

												ProductForm	productForm	=	new	ProductForm();

												//	populate	action	properties

												productForm.setName(

																				request.getParameter("name"));

												productForm.setDescription(

																				request.getParameter("description"));

												productForm.setPrice(request.getParameter("price"));

												

												//	validate	ProductForm

												ProductValidator	productValidator	=	new

																				ProductValidator();

												List<String>	errors	=	

																				productValidator.validate(productForm);

												if	(errors.isEmpty())	{

																//	create	Product	from	ProductForm

																Product	product	=	new	Product();

																product.setName(productForm.getName());

																product.setDescription(

																								productForm.getDescription());

																product.setPrice(new	BigDecimal(productForm.getPrice()));

																

																//	no	validation	error,	execute	action	method

																SaveProductAction	saveProductAction	=	new	

																								SaveProductAction();

																saveProductAction.save(product);

																

																//	store	action	in	a	scope	variable	for	the	view

																request.setAttribute("product",	product);

																dispatchUrl	=	"/jsp/ProductDetails.jsp";

												}	else	{

																request.setAttribute("errors",	errors);

																request.setAttribute("form",	productForm);

																dispatchUrl	=	"/jsp/ProductForm.jsp";

												}

								}

								//	forward	to	a	view

								if	(dispatchUrl	!=	null)	{

												RequestDispatcher	rd	=	

																				request.getRequestDispatcher(dispatchUrl);

												rd.forward(request,	response);

								}

				}

}

The	 new	 ControllerServlet	 class	 in	 Listing	 2.9	 inserts	 code	 that	 instantiates	 the
ProductValidator	class	and	calls	its	validate	method	on	save-product.

												//	validate	ProductForm

												ProductValidator	productValidator	=	new

																				ProductValidator();

												List<String>	errors	=	

																				productValidator.validate(productForm);

The	 validate	 method	 takes	 a	 ProductForm,	 which	 encapsulates	 product	 information
entered	 to	 the	 HTML	 form.	 Without	 a	 ProductForm	 you	 would	 have	 to	 pass	 the
ServletRequest	to	the	validator.

The	validate	method	returns	an	empty	List	if	validation	was	successful,	in	which	case	a
Product	will	be	created	and	passed	to	a	SaveProductAction.	Upon	successful	validation,
the	 controller	 stores	 the	 Product	 in	 the	 ServletContext	 and	 forwards	 to	 the
ProductDetails.jsp	 page,	which	 then	 displays	 the	 product’s	 details.	 If	 validation	 failed,
the	 controller	 stores	 the	 errors	List	 and	 the	ProductForm	 in	 the	 ServletContext	 and
forwards	back	to	ProductForm.jsp.

									if	(errors.isEmpty())	{

																//	create	Product	from	ProductForm

																Product	product	=	new	Product();

																product.setName(productForm.getName());

																product.setDescription(

																								productForm.getDescription());

																product.setPrice(new	BigDecimal(productForm.getPrice()));

																

																//	no	validation	error,	execute	action	method

																SaveProductAction	saveProductAction	=	new	

																								SaveProductAction();

																saveProductAction.save(product);

																

																//	store	action	in	a	scope	variable	for	the	view

																request.setAttribute("product",	product);

																dispatchUrl	=	"/jsp/ProductDetails.jsp";

												}	else	{

																request.setAttribute("errors",	errors);

																request.setAttribute("form",	productForm);

																dispatchUrl	=	"/jsp/ProductForm.jsp";

												}

The	ProductForm.jsp	page	in	appdesign3	has	been	modified	to	give	it	the	capability	of
showing	 error	 messages	 and	 redisplaying	 invalid	 values.	 Listing	 2.10	 shows	 the
ProductForm.jsp	in	appdesign3.

Listing	2.10:	The	ProductForm.jsp	page	in	appdesign3

<!DOCTYPE	html>

<html>

<head>

<title>Add	Product	Form</title>

<style	type="text/css">@import	url(css/main.css);</style>

</head>

<body>

<form	method="post"	action="save-product">

				<h1>Add	Product	

								Please	use	this	form	to	enter	product	details

				</h1>

				${empty	requestScope.errors?	""	:	"<p	style='color:red'>"	

						+=	"Error(s)!"

						+=	""}

				<!--${requestScope.errors.stream().map(

										x	->	"-->"+=x+="<!--").toList()}-->

				${empty	requestScope.errors?	""	:	"</p>"}

				<label>

								Product	Name	:

								<input	id="name"	type="text"	name="name"	

												placeholder="The	complete	product	name"

												value="${form.name}"/>

				</label>

				<label>

								Description	:

								<input	id="description"	type="text"	name="description"	

												placeholder="Product	description"

												value="${form.description}"/>

				</label>

				<label>

								Price	:

								<input	id="price"	name="price"	type="number"	step="any"

												placeholder="Product	price	in	#.##	format"

												value="${form.price}"/>

				</label>	

				<label>

								 	

								<input	type="submit"/>	

				</label>	

</form>

</body>

</html>

You	can	test	appdesign3	by	invoking	the	input-product	action:

http://localhost:8080/appdesign3/input-product

Unlike	 the	 previous	 examples,	 if	 the	 Product	 form	 contains	 an	 invalid	 value	when	 you
submit	 it,	 an	 error	message	will	 be	displayed	along	with	 the	 incorrect	value.	Figure	2.6
shows	two	validation	error	messages.

Figure	2.6:	The	ProductForm	with	error	messages

Dependency	Injection
People	have	been	using	dependency	injection	in	the	past	decade	as	a	solution	to,	among
others,	code	testability.	In	fact,	dependency	injection	is	behind	great	frameworks	such	as
Spring	MVC	and	Struts	2.	So,	what	is	dependency	injection?

Martin	Fowler	wrote	an	excellent	article	on	this	subject:

http://martinfowler.com/articles/injection.html

Before	Fowler	coined	the	term	“dependency	injection,”	the	phrase	“inversion	of	control”
was	often	used	 to	mean	 the	 same	 thing.	As	Fowler	 notes	 in	 his	 article,	 the	 two	 are	 not
exactly	the	same.

If	you	have	two	components,	A	and	B,	and	A	depends	on	B,	you	can	say	A	is	dependent
on	B	or	B	is	a	dependency	of	A.	Suppose	A	has	a	method,	importantMethod,	that	uses	B
as	defined	in	the	following	code	fragment:

public	class	A	{

				public	void	importantMethod()	{

								B	b	=	...	//	get	an	instance	of	B

								b.usefulMethod();

								...

				}

				...

}

A	must	obtain	an	instance	of	B	before	it	can	use	B.	While	it	is	as	straightforward	as	using
the	new	keyword	if	B	is	a	Java	concrete	class,	it	can	be	problematic	if	B	is	not	and	there
are	various	implementations	of	B.	You	will	have	to	choose	an	implementation	of	B	and	by
doing	so	you	reduce	the	reusability	of	A	because	you	cannot	use	A	with	implementations
of	B	that	you	did	not	choose.

As	an	example,	consider	the	appdesign4	application	that	illustrates	the	use	of	a	home-
made	dependency	injector.	In	real-world	applications,	you	should	use	Spring	instead.

The	sample	application	is	used	to	generate	PDFs.	It	has	two	actions,	form	and	pdf.	The
first	does	not	have	an	action	class	and	simply	forwards	to	a	form	that	can	be	used	to	enter
some	text.	The	second	generates	a	PDF	file	and	uses	a	PDFAction	class.	The	action	class
itself	relies	on	a	service	class	that	generates	the	PDF.

The	PDFAction	 and	PDFService	 classes	 are	 given	 in	 Listing	 2.11	 and	 Listing	 2.12,
respectively.

Listing	2.11:	The	PDFAction	class

package	action;

import	service.PDFService;

public	class	PDFAction	{

				private	PDFService	pdfService;

				public	void	setPDFService(PDFService	pdfService)	{

								this.pdfService	=	pdfService;

				}

				public	void	createPDF(String	path,	String	input)	{

								pdfService.createPDF(path,	input);

				}

}

Listing	2.12:	The	PDFService	class

package	service;

import	util.PDFUtil;

public	class	PDFService	{

				public	void	createPDF(String	path,	String	input)	{

								PDFUtil.createDocument(path,	input);

				}

}

PDFService	uses	a	PDFUtil	class,	which	in	turn	employs	the	Apache	PDFBox	library	to
create	PDF	documents.	Feel	 free	 to	 look	up	 the	PDFUtil	 class	 in	appdesign4	 if	 you’re
interested	in	working	with	PDF.

What’s	important	is	this.	As	shown	in	Listing	2.11,	PDFAction	requires	a	PDFService
to	 do	 its	 job.	 In	 other	 words,	 PDFAction	 is	 dependent	 on	 PDFService.	 Without
dependency	 injection,	 you	 would	 have	 to	 instantiate	 the	 PDFService	 class	 inside	 the
PDFAction	class	and	this	would	make	PDFAction	less	testable.	On	top	of	that,	you	would
have	to	recompile	PDFAction	if	you	need	to	change	the	implementation	of	PDFService.

With	dependency	injection	every	component	has	its	dependencies	injected	to	it	and	this
makes	 testing	each	component	easier.	Far	easier.	For	a	class	 to	be	used	in	a	dependency
injection	environment,	you	have	to	make	it	inject-ready.	One	way	to	do	it	is	to	create	a	set
method	 for	 each	 dependency.	 For	 example,	 the	PDFAction	 class	 has	 a	 setPDFService
method	 that	 can	 be	 called	 to	 pass	 a	 PDFService.	 Injection	 can	 also	 occur	 through	 a
constructor	or	a	class	field.

Once	 all	 your	 classes	 are	 inject-ready,	 you	 can	 choose	 a	 dependency	 injection
framework	 and	 import	 it	 to	 your	 project.	 Spring	 Framework,	Google	Guice,	Weld,	 and
PicoContainer	are	some	good	ones.

Note
Dependency	injection	in	Java	is	specified	in	JSR	330	and	JSR	299.

The	 appdesign4	 application	 uses	 the	 DependencyInjector	 class	 in	 2.13	 in	 lieu	 of	 a
dependency	injection	framework.	(In	a	real-world	application,	of	course	you	would	use	a
proper	framework.)	This	class	has	been	designed	to	work	with	appdesign4	alone	and	can
be	instantiated	easily,	with	or	without	a	container.	Once	instantiated,	its	start	method	must
be	 called	 to	 perform	 initialization.	After	 use,	 its	 shutdown	method	 should	 be	 called	 to
release	resources.	In	this	example,	both	start	and	shutdown	are	empty.

Listing	2.13:	The	DependencyInjector	class

package	util;

import	action.PDFAction;

import	service.PDFService;

public	class	DependencyInjector	{

	

				public	void	start()	{

								//	initialization	code

				}

	

				public	void	shutDown()	{

								//	clean-up	code

				}

	

				/*

					*	Returns	an	instance	of	type.	type	is	of	type	Class

					*	and	not	String	because	it's	easy	to	misspell	a	class	name

					*/

				public	Object	getObject(Class	type)	{

								if	(type	==	PDFService.class)	{

												return	new	PDFService();

								}	else	if	(type	==	PDFAction.class)	{

												PDFService	pdfService	=	(PDFService)	

																				getObject(PDFService.class);

												PDFAction	action	=	new	PDFAction();

												action.setPDFService(pdfService);

												return	action;

								}

								return	null;

				}

}

To	obtain	an	object	from	a	DependencyInjector,	call	 its	getObject	method,	passing	 the
Class	 of	 the	 expected	object.	DependencyInjector	 supports	 two	 types,	PDFAction	 and
PDFService.	For	example,	to	get	an	instance	of	PDFAction,	you	would	call	getObject	by
passing	PDFAction.class:

PDFAction	pdfAction	=	(PDFAction)	

								dependencyInjector.getObject(PDFAction.class);

The	beauty	of	DependencyInjector	(and	all	dependency	injection	frameworks)	is	that	the
object	it	returns	comes	injected	with	dependencies.	If	a	dependency	has	dependencies,	the
dependency	 is	 also	 injected	with	 its	 own	dependencies.	For	 instance,	 a	PDFAction	 you
obtain	from	a	DependencyInjector	already	contains	a	PDFService.	There	 is	no	need	 to
create	a	PDFService	yourself	in	the	PDFAction	class.

The	servlet	controller	 in	appdesign4	 is	given	 in	Listing	2.14.	Note	 that	 it	 instantiates
the	 DependencyInjector	 in	 its	 init	 method	 and	 calls	 the	 DependencyInjector’s
shutdown	method	in	its	destroy	method.	The	servlet	no	longer	creates	a	dependency	on
its	own.	Instead,	it	obtains	it	from	the	DependencyInjector.

Listing	2.14:	The	ControllerServlet	class	in	appdesign4

package	servlet;

import	action.PDFAction;

import	java.io.IOException;

import	javax.servlet.ReadListener;

import	javax.servlet.RequestDispatcher;

import	javax.servlet.ServletException;

import	javax.servlet.annotation.WebServlet;

import	javax.servlet.http.HttpServlet;

import	javax.servlet.http.HttpServletRequest;

import	javax.servlet.http.HttpServletResponse;

import	javax.servlet.http.HttpSession;

import	util.DependencyInjector;

@WebServlet(name	=	"ControllerServlet",	urlPatterns	=	{

				"/form",	"/pdf"})

public	class	ControllerServlet	extends	HttpServlet	{

private	static	final	long	serialVersionUID	=	6679L;

				private	DependencyInjector	dependencyInjector;

	

				@Override

				public	void	init()	{

								dependencyInjector	=	new	DependencyInjector();

								dependencyInjector.start();

				}

	

				@Override

				public	void	destroy()	{

								dependencyInjector.shutDown();

				}

				protected	void	process(HttpServletRequest	request,

												HttpServletResponse	response)

												throws	ServletException,	IOException	{

								ReadListener	r	=	null;

								String	uri	=	request.getRequestURI();

								/*

									*	uri	is	in	this	form:	/contextName/resourceName,

									*	for	example:	/app10a/product_input.

									*	However,	in	the	case	of	a	default	context,	the

									*	context	name	is	empty,	and	uri	has	this	form

									*	/resourceName,	e.g.:	/pdf

									*/

								int	lastIndex	=	uri.lastIndexOf("/");

								String	action	=	uri.substring(lastIndex	+	1);

								if	("form".equals(action))	{

												String	dispatchUrl	=	"/jsp/Form.jsp";

												RequestDispatcher	rd	=	

																				request.getRequestDispatcher(dispatchUrl);

												rd.forward(request,	response);

								}	else	if	("pdf".equals(action))	{

												HttpSession	session	=	request.getSession(true);

												String	sessionId	=	session.getId();

												PDFAction	pdfAction	=	(PDFAction)	dependencyInjector

																				.getObject(PDFAction.class);

												String	text	=	request.getParameter("text");

												String	path	=	request.getServletContext()

																				.getRealPath("/result")	+	sessionId	+	".pdf";

												pdfAction.createPDF(path,	text);

												

												//	redirect	to	the	new	pdf

												StringBuilder	redirect	=	new	

																				StringBuilder();

												redirect.append(request.getScheme()	+	"://");

												redirect.append(request.getLocalName());

												int	port	=	request.getLocalPort();

												if	(port	!=	80)	{

																redirect.append(":"	+	port);

												}

												String	contextPath	=	request.getContextPath();

												if	(!"/".equals(contextPath))	{

																redirect.append(contextPath);

												}

												redirect.append("/result/"	+	sessionId	+	".pdf");

												response.sendRedirect(redirect.toString());

								}

				}

				@Override

				protected	void	doGet(HttpServletRequest	request,

												HttpServletResponse	response)

												throws	ServletException,	IOException	{

								process(request,	response);

				}

				

				@Override

				protected	void	doPost(HttpServletRequest	request,

												HttpServletResponse	response)

												throws	ServletException,	IOException	{

								process(request,	response);

				}

}

The	servlet	supports	two	URL	patterns,	form	and	pdf.	The	form	pattern	simply	forwards
to	a	form.	The	pdf	pattern	uses	a	PDFAction	and	calls	its	createDocument	method.	This
method	takes	a	file	path	and	a	text	input.	All	PDFs	are	stored	in	the	result	directory	under
the	application	directory	and	the	user’s	session	identifier	is	used	as	the	file	name.	The	text
input	becomes	the	content	of	the	generated	PDF	file.	Finally,	the	pdf	action	is	redirected
to	the	generated	PDF	file.	Here	is	the	code	that	creates	the	redirection	URL	and	redirects
the	browser	to	the	new	URL:

												//	redirect	to	the	new	pdf

												StringBuilder	redirect	=	new	

																				StringBuilder();

												redirect.append(request.getScheme()	+	"://");	//http	or	https

												redirect.append(request.getLocalName());	//	the	domain

												int	port	=	request.getLocalPort();

												if	(port	!=	80)	{

																redirect.append(":"	+	port);

												}

												String	contextPath	=	request.getContextPath();

												if	(!"/".equals(contextPath))	{

																redirect.append(contextPath);

												}

												redirect.append("/result/"	+	sessionId	+	".pdf");

												response.sendRedirect(redirect.toString());

You	can	test	appdesign4	by	invoking	this	URL:

http://localhost:8080/appdesign4/form

This	will	send	a	form	to	the	browser	(See	Figure	2.7)

Figure	2.7:	The	PDF	form

If	you	enter	some	input	in	the	text	field	and	press	the	Submit	button,	the	server	will	create
a	PDF	file	and	send	a	redirect	to	your	browser	to	fetch	it.	(See	Figure	2.8)

Figure	2.8:	A	PDF	file

Note	that	the	redirection	URL	will	be	in	this	format.

http://localhost:8080/appdesign4/result/sessionId.pdf

Thanks	 to	 the	 dependency	 injector,	 each	 component	 in	 appdesign4	 can	 be	 tested
independently.	For	example,	 the	PDFActionTest	 class	 in	Listing	2.16	can	be	 run	 to	 test
the	class’s	createDocument	method.

Listing	2.16:	The	PDFActionTest	class

package	test;

import	action.PDFAction;

import	util.DependencyInjector;

public	class	PDFActionTest	{

				public	static	void	main(String[]	args)	{

								DependencyInjector	dependencyInjector	=	new	DependencyInjector();

								dependencyInjector.start();

								PDFAction	pdfAction	=	(PDFAction)	dependencyInjector.getObject(

																PDFAction.class);

								pdfAction.createPDF("/home/janeexample/Downloads/1.pdf",	

																"Testing	PDFAction….");

								dependencyInjector.shutDown();

				}

}

If	you	are	using	a	Java	7	EE	container	like	Glassfish,	it	is	possible	to	have	the	container
inject	dependencies	to	a	servlet.	The	servlet	in	appdesign4	would	look	like	this:

public	class	ControllerServlet	extends	HttpServlet	{

				@Inject	PDFAction	pdfAction;

				...

				@Override

				public	void	doGet(HttpServletRequest	request,

												HttpServletResponse	response)	throws	IOException,

												ServletException	{

								...

				}

				@Override

				public	void	doPost(HttpServletRequest	request,

												HttpServletResponse	response)	throws	IOException,

												ServletException	{

								...

				}

}

Summary
In	 this	 chapter	 you	have	 learned	 about	 the	Model	 2	 architecture,	which	 is	 based	on	 the
MVC	pattern,	and	how	to	write	Model	2	applications	using	either	a	servlet	controller	or	a
filter	 dispatcher.	 These	 two	 types	 of	 Model	 2	 applications	 were	 demonstrated	 in
appdesign1	and	appdesign2,	 respectively.	One	clear	advantage	of	using	a	servlet	as	 the
controller	over	a	filter	is	that	you	can	configure	the	servlet	as	a	welcome	page.	In	a	Model
2	application,	JSP	pages	are	often	used	as	the	view,	even	though	other	technologies	such
as	Apache	Velocity	and	FreeMarker	can	also	be	used.	If	JSP	pages	are	used	as	the	view	in
a	 Model	 2	 architecture,	 those	 pages	 are	 used	 to	 display	 values	 only	 and	 no	 scripting
elements	should	be	present	in	them.

In	this	chapter	you	have	also	built	a	simple	MVC	framework	incorporating	a	validator
and	 equips	 it	 with	 a	 dependency	 injector.	While	 the	 homemade	 framework	 serves	 as	 a
good	 educational	 tool,	 going	 forward	 you	 should	 base	 your	MVC	projects	 on	 a	mature
MVC	framework	like	Spring	MVC	and	not	try	to	reinvent	the	wheel.

Chapter	3

Introduction	to	Spring	MVC
In	Chapter	2,	“Model	2	and	the	MVC	Pattern”	you	learned	that	the	widely	used	design	of
modern	web	applications	follow	the	MVC	pattern.	You	also	learned	the	advantages	of	the
Model	2	architecture	and	how	to	build	Model	2	applications.	Spring	MVC	is	a	framework
that	helps	developers	write	MVC	applications	more	rapidly.

This	 chapter	 starts	 by	 discussing	 the	 benefits	 of	 Spring	 MVC	 and	 how	 it	 expedites
Model	 2	 application	 development.	 It	 also	 discusses	 some	 basic	 components	 of	 Spring
MVC,	such	as	the	Dispatcher	Servlet,	and	teaches	you	how	to	write	“old-style”	controllers
that	were	the	only	way	of	writing	controllers	in	older	versions	of	Spring	prior	to	version
2.5.	Another	 type	of	controller	 is	covered	 in	Chapter	4,	“Annotation-based	Controllers.”
The	old	style	controller	is	discussed	here	because	you	might	still	have	to	work	with	legacy
code	written	with	older	versions	of	Spring.	For	new	developments,	however,	you	should
use	annotation-based	controllers.

Introducing	Spring	MVC	configuration	is	another	objective	of	this	chapter.	Most	Spring
MVC	applications	will	have	an	XML	file	for	declaring	various	beans	that	are	used	in	the
applications.

The	Benefits	of	Spring	MVC
When	writing	a	Model	2	application	without	a	framework,	it	is	your	responsibility	to	write
a	 dispatcher	 servlet	 and	 controller	 classes.	 Your	 dispatcher	 servlet	 must	 be	 capable	 of
doing	these	things:

	Determine	from	the	URI	what	action	to	invoke.
	Instantiate	the	correct	controller	class.
	Populate	a	form	bean	with	request	parameter	values.
	Call	the	correct	method	in	the	controller	object.
	Forward	control	to	a	view	(JSP	page).

Spring	 MVC	 is	 an	 MVC	 framework	 that	 employs	 a	 dispatcher	 servlet	 that	 invokes
methods	 in	 controllers	 and	 forwards	 control	 to	 a	 view.	This	 is	 the	 first	 benefit	 of	 using
Spring	MVC:	 You	 don’t	 need	 to	 write	 your	 own	 dispatcher	 servlet.	 Here	 is	 the	 list	 of
features	that	Spring	MVC	is	equipped	with	to	make	development	more	rapid.

Spring	MVC	provides	a	dispatcher	servlet,	saving	your	writing	one.
Spring	MVC	 employs	 an	 XML-based	 configuration	 file	 that	 you	 can	 edit	 without
recompiling	the	application.
Spring	MVC	instantiates	controller	classes	and	populates	beans	with	user	inputs.
Spring	 MVC	 automatically	 binds	 user	 input	 with	 the	 correct	 type.	 For	 example,
Spring	MVC	 can	 automatically	 parse	 a	 string	 and	 sets	 a	 property	 of	 type	 float	 or
decimal.
Spring	MVC	 validates	 user	 input	 and	 redirects	 the	 user	 back	 to	 the	 input	 form	 if
validation	 failed.	 Input	 validation	 is	 optional	 and	 can	be	done	programmatically	or
declaratively.	On	top	of	that,	Spring	MVC	provides	built-in	validators	for	most	of	the
tasks	you	may	encounter	when	building	a	web	application.
Spring	MVC	is	part	of	the	Spring	framework.	You	get	everything	Spring	has	to	offer.
Spring	 MVC	 supports	 internationalization	 and	 localization.	 This	 means,	 you	 can
display	messages	in	multiple	languages	depending	on	the	user	locale.
Spring	MVC	supports	multiple	view	technologies.	Most	of	the	time	you’ll	be	using
JSP,	but	other	technologies	are	supported,	including	Velocity	and	FreeMarker.

Spring	MVC	DispatcherServlet
Recall	 that	 in	 Chapter	 2,	 “Model	 2	 and	 the	 MVC	 Pattern”	 you	 built	 a	 simple	 MVC
framework	 that	consisted	of	a	servlet	 that	acted	as	a	dispatcher.	With	Spring	MVC,	you
don’t	have	to	do	that.	Spring	MVC	comes	with	a	dispatcher	servlet	that	you	can	instantly
use.	Its	fully	qualified	name	is	org.springframework.web.servlte.DispatcherServlet.

To	use	 this	 servlet,	 you	need	 to	 configure	 it	 in	your	deployment	descriptor	 (web.xml
file)	using	the	servlet	and	servlet-mapping	elements,	like	this.

<servlet>

				<servlet-name>springmvc</servlet-name>

				<servlet-class

								org.springframework.web.servlet.DispatcherServlet

				</servlet-class>

				<load-on-startup>1</load-on-startup>				

</servlet>

<servlet-mapping>

				<servlet-name>springmvc</servlet-name>

				<!--	map	all	requests	to	the	DispatcherServlet	-->

				<url-pattern>/</url-pattern>

</servlet-mapping>

The	load-on-startup	element	under	<servlet>	is	optional.	If	it	is	present,	it	will	load	the
servlet	 and	 call	 its	 init	 method	 when	 the	 application	 is	 started.	 Without	 the	 load-on-
startup	element,	the	servlet	will	be	loaded	when	it	is	first	requested.

By	itself	the	dispatcher	servlet	will	use	many	default	components	that	come	with	Spring
MVC.	 In	addition,	at	 initialization	 it	will	 look	 for	a	configuration	 file	 in	 the	WEB-INF
directory	of	the	application.	The	name	of	the	XML	file	must	conform	to	this	pattern

servletName-servlet.xml

where	servletName	 is	 the	name	given	to	 the	Spring	dispatcher	servlet	 in	 the	deployment
descriptor.	 If	 you	 have	 given	 the	 servlet	 the	 name	 springmvc,	 you	will	 need	 to	 have	 a
springmvc-servlet.xml	file	under	the	WEB-INF	directory	of	your	application	directory.

However,	 you	 can	 place	 your	 Spring	MVC	 configuration	 file	 anywhere	 within	 your
application	directory	as	long	as	you	tell	the	dispatcher	servlet	where	to	find	it.	You	do	this
by	 using	 an	 init-param	 element	 under	 the	 servlet	 declaration.	The	 init-param	 element
would	have	a	param-name	element	that	has	the	value	contextConfigLocation.	It	would
also	 have	 a	 param-value	 element	 containing	 the	 path	 to	 your	 configuration	 file.	 For
example,	you	can	change	the	default	name	and	location	of	the	configuration	file	to	/WEB-
INF/config/simple-config.xml	by	using	this	init-param	element.

<servlet>

				<servlet-name>springmvc</servlet-name>

				<servlet-class>

								org.springframework.web.servlet.DispatcherServlet

				</servlet-class>

				<init-param>

								<param-name>contextConfigLocation</param-name>

								<param-value>/WEB-INF/config/simple-config.xml</param-value>

				</init-param>

				<load-on-startup>1</load-on-startup>				

</servlet>

The	Controller	Interface
Prior	 to	 Spring	 2.5,	 the	 only	 way	 to	 write	 a	 controller	 was	 by	 implementing	 the
org.springframework.web.servlet.mvc.Controller	 interface.	 This	 interface	 exposes	 a
handleRequest	 method	 that	 must	 be	 overidden	 by	 implementing	 classes.	 Here	 is	 the
signature	of	the	method.

ModelAndView	 handleRequest(HttpServletRequest	request,	

								HttpServletResponse	response)	

An	 implementation	has	access	 to	 the	HttpServletRequest	and	HttpServletResponse	 of
the	 corresponding	 request.	 The	 implementation	must	 also	 return	 a	ModelAndView	 that
contains	a	view	path	or	a	view	path	and	a	model.

A	controller	implementing	the	Controller	 interface	can	only	handle	one	single	action.
On	 the	 other	 hand,	 an	 annnotation-based	 controller	 can	 house	 many	 request-handling
methods	 and	do	not	 have	 to	 implement	 any	 interface.	You	will	 learn	 about	 the	 latter	 in
Chapter	4,	“Annotation-based	Controllers.”

Your	First	Spring	MVC	Application
The	 springmvc-intro1	 sample	 application	 showcases	 a	 basic	 Spring	MVC	 application.
The	application	is	very	similar	to	the	appdesign1	application	you	learned	in	Chapter	2.	It
was	deliberately	made	so	 to	 show	you	how	Spring	MVC	works.	The	springmvc-intro1
application	also	has	two	controllers	that	are	similar	to	the	ones	in	appdesign1.

The	Directory	Structure
Figure	 3.1	 shows	 the	 directory	 structure	 of	 springmvc-intro1.	 Note	 that	 the	WEB-
INF/lib	directory	contains	all	the	jar	files	required	by	Spring	MVC.	Of	special	interest	is
the	spring-webmvc-x.y.z.jar	file,	which	contains	the	DispatcherServlet	class.	Also	note
that	Spring	MVC	depends	on	 the	Apache	Commons	Logging	component	 and	without	 it
your	Spring	MVC	applications	will	not	work.	You	can	download	this	component	from	this
site.

http://commons.apache.org/proper/commons-logging/

Figure	3.1:	The	directory	structure	of	springmvc-intro1

The	 JSP	 pages	 for	 this	 application	 are	 stored	 under	 /WEB-INF/jsp	 to	 keep	 them	 from
direct	access.

http://commons.apache.org/proper/commons-logging/

The	Deployment	Descriptor	and	Spring	MVC	Configuration
File
Now	look	at	the	deployment	descriptor	(web.xml	file)	in	Listing	3.1

Listing	3.1:	The	deployment	descriptor	for	springmvc-intro1

<?xml	version="1.0"	encoding="UTF-8"?>

<web-app	version="3.1"	

				xmlns="http://xmlns.jcp.org/xml/ns/javaee"	

				xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

				xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee	

http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd">

				<servlet>

								<servlet-name>springmvc</servlet-name>

								<servlet-class

												org.springframework.web.servlet.DispatcherServlet

								</servlet-class>

								<load-on-startup>1</load-on-startup>				

				</servlet>

				<servlet-mapping>

								<servlet-name>springmvc</servlet-name>

								<!--	map	all	requests	to	the	DispatcherServlet	-->

								<url-pattern>/</url-pattern>

				</servlet-mapping>

</web-app>

Nothing	spectacular	here.	You’re	just	telling	the	servlet/JSP	container	that	you	want	to	use
the	Spring	MVC	dispatcher	servlet	and	map	it	 to	all	URLs	by	using	/	 in	the	url-pattern
element.	Since	there	is	no	init-param	element	under	the	servlet	element,	the	Spring	MVC
configuration	 file	 is	 assumed	 to	 be	 under	 /WEB-INF	 and	 follow	 the	 usual	 naming
convention.

Next,	 examine	 the	 Spring	 MVC	 configuration	 file	 (springmvc-servlet.xml	 file)	 in
Listing	3.2.

Listing	3.2:	The	Spring	MVC	configuration	file

<?xml	version="1.0"	encoding="UTF-8"?>

<beans	xmlns="http://www.springframework.org/schema/beans"

		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

		xsi:schemaLocation="http://www.springframework.org/schema/beans

		http://www.springframework.org/schema/beans/spring-beans.xsd">

							

				<bean	name="/input-product"

								class="controller.InputProductController"/>

				<bean	name="/save-product"	

								class="controller.SaveProductController"/>

</beans>

Here	 you	 declare	 two	 controller	 classes,	 InputProductController	 and
SaveProductController,	 and	 map	 them	 to	 /input-product	 and	 /save-product,
respectively.	The	controllers	are	discussed	in	the	next	section.

The	Controllers
The	 springmvc-intro1	 application	 has	 two	 “old-style”	 controllers,
InputProductController	 and	SaveProductController.	 Both	 implement	 the	Controller
interface.	 The	 InputProductController	 class	 is	 given	 in	 Listing	 3.3	 and
SaveProductControler	in	Listing	3.4.

Listing	3.3:	The	InputProductController	class

package	controller;

import	javax.servlet.http.HttpServletRequest;

import	javax.servlet.http.HttpServletResponse;

import	org.apache.commons.logging.Log;

import	org.apache.commons.logging.LogFactory;

import	org.springframework.web.servlet.ModelAndView;

import	org.springframework.web.servlet.mvc.Controller;

public	class	InputProductController	implements	Controller	{

				private	static	final	Log	logger	=	LogFactory

												.getLog(InputProductController.class);

				@Override

				public	ModelAndView	handleRequest(HttpServletRequest	request,

												HttpServletResponse	response)	throws	Exception	{

								logger.info("InputProductController	called");

								return	new	ModelAndView("/WEB-INF/jsp/ProductForm.jsp");

				}

}

The	 handleRequest	 method	 of	 the	 InputProductController	 class	 simply	 returns	 a
ModelAndView	 that	 contains	 a	 view	 with	 no	 model.	 In	 this	 case,	 the	 request	 will	 be
forwarded	to	the	/WEB-INF/jsp/ProductForm.jsp	page.

Listing	3.4:	The	SaveProductController	class

package	controller;

import	javax.servlet.http.HttpServletRequest;

import	javax.servlet.http.HttpServletResponse;

import	org.apache.commons.logging.Log;

import	org.apache.commons.logging.LogFactory;

import	org.springframework.web.servlet.ModelAndView;

import	org.springframework.web.servlet.mvc.Controller;

import	domain.Product;

import	form.ProductForm;

public	class	SaveProductController	implements	Controller	{

				private	static	final	Log	logger	=	LogFactory

												.getLog(SaveProductController.class);

				@Override

				public	ModelAndView	handleRequest(HttpServletRequest	request,

												HttpServletResponse	response)	throws	Exception	{

								logger.info("SaveProductController	called");

								ProductForm	productForm	=	new	ProductForm();

								//	populate	action	properties

								productForm.setName(request.getParameter("name"));

								productForm.setDescription(request.getParameter(

																"description"));

								productForm.setPrice(request.getParameter("price"));

								//	create	model

								Product	product	=	new	Product();

								product.setName(productForm.getName());

								product.setDescription(productForm.getDescription());

								try	{

												product.setPrice(

																				Float.parseFloat(productForm.getPrice()));

								}	catch	(NumberFormatException	e)	{

								}

								//	insert	code	to	save	Product

								return	new	ModelAndView("/WEB-INF/jsp/ProductDetails.jsp",	

																"product",	product);

				}

}

The	handleRequest	method	in	the	SaveProductController	class	creates	a	ProductForm
object	and	populates	it	using	the	request	parameters.	It	then	creates	a	Product	object	that
gets	 its	 property	 values	 from	 the	 ProductForm.	 Since	 the	 price	 property	 of	 the
ProductForm	is	a	String	and	its	counterpart	in	the	Product	class	is	a	float,	some	parsing
is	necessary.	In	the	next	chapters	you	will	learn	how	Spring	MVC	eliminates	the	need	for
form	beans	like	ProductForm	and	makes	things	much	simpler.

The	 handleRequest	 method	 in	 SaveProductController	 concludes	 by	 returning	 a
ModelAndView	 that	 contains	 a	 view	 path,	 a	 model	 name,	 and	 a	 model	 (the	 Product
object).	 The	model	 added	 to	 the	ModelAndView	 object	 will	 be	 available	 to	 the	 target
view	for	display.

The	View
The	springmvc-intro1	application	comes	with	two	JSP	pages,	the	ProductForm.jsp	page
(given	in	Listing	3.5)	and	the	ProductDetails.jsp	page	(printed	in	Listing	3.6).

Listing	3.5:	The	ProductForm.jsp	page

<!DOCTYPE	html>

<html>

<head>

<title>Add	Product	Form</title>

<style	type="text/css">@import	url(css/main.css);</style>

</head>

<body>

<div	id="global">

<form	action="save-product"	method="post">

				<fieldset>

								<legend>Add	a	product</legend>

								<label	for="name">Product	Name:	</label>

								<input	type="text"	id="name"	name="name"	value=""	

												tabindex="1">

								<label	for="description">Description:	</label>

								<input	type="text"	id="description"	name="description"	

												tabindex="2">

								<label	for="price">Price:	</label>

								<input	type="text"	id="price"	name="price"	tabindex="3">

								<div	id="buttons">

												<label	for="dummy">	</label>

												<input	id="reset"	type="reset"	tabindex="4">

												<input	id="submit"	type="submit"	tabindex="5"	

																value="Add	Product">

								</div>

				</fieldset>

</form>

</div>

</body>

</html>

This	is	not	a	place	to	discuss	HTML	and	CSS,	but	I’d	like	to	stress	here	that	the	HTML	in
Listing	 3.5	 has	 been	 written	 with	 proper	 design	 in	mind.	 Among	 others,	 I	 did	 not	 use
<table>	to	lay	out	the	input	fields.

Listing	3.6:	The	ProductDetails.jsp	page

<!DOCTYPE	html>

<html>

<head>

<title>Save	Product</title>

<style	type="text/css">@import	url(css/main.css);</style>

</head>

<body>

<div	id="global">

				<h4>The	product	has	been	saved.</h4>

				<p>

								<h5>Details:</h5>

								Product	Name:	${product.name}

								Description:	${product.description}

								Price:	$${product.price}

				</p>

</div>

</body>

</html>

The	 ProductDetails.jsp	 page	 has	 access	 to	 the	 Product	 object	 passed	 by	 the
SaveProductController	 with	 the	 model	 attribute	 name	 product.	 I	 used	 the	 JSP
Expression	Language	expressions	to	display	various	properties	of	the	Product	object.	You
will	learn	about	the	JSP	EL	in	Chapter	8,	“The	Expression	Language.”

Testing	the	Application
To	test	the	application,	direct	your	browser	to	this	URL:

http://localhost:8080/springmvc-intro1/input-product

You	will	 see	 the	 familiar	Product	 form	 like	 the	one	 in	Figure	3.2.	Type	 in	values	 in	 the
empty	 fields	 and	 click	 the	Add	Product	 button.	You	will	 see	 the	 product	 properties	 are
shown	in	the	next	page.

Figure	3.2:	The	Product	form	in	springmvc-intro1

The	View	Resolver
The	view	resolver	in	Spring	MVC	is	responsible	for	resolving	views.	To	use	and	configure
the	 view	 resolver,	 declare	 a	viewResolver	 bean	 in	 your	 configuration	 file,	 such	 as	 this
one.

<bean	id="viewResolver"	class="org.springframework.web.servlet.

view.InternalResourceViewResolver">

				<property	name="prefix"	value="/WEB-INF/jsp/"/>

				<property	name="suffix"	value=".jsp"/>

</bean>

The	viewResolver	bean	above	configures	 two	properties,	prefix	and	suffix.	As	a	 result,
your	 view	 paths	 will	 be	 shorter.	 Instead	 of	 setting	 the	 view	 path	 to	 /WEB-
INF/jsp/myPage.jsp,	 for	 example,	 you	 just	 write	myPage	 and	 the	 view	 resolver	 will
prefix	and	suffix	the	string.

As	 an	 example,	 consider	 the	 springmvc-intro2	 application,	 which	 is	 similar	 to
springmvc-intro1.	 However,	 the	 name	 and	 the	 location	 of	 the	 configuration	 file	 have
been	 changed.	 In	 addition,	 it	 configures	 the	 default	 view	 resolver	 to	 add	 a	 prefix	 and	 a
suffix	to	all	view	paths.

Figure	3.3	shows	the	directory	structure	of	springmvc-intro2.

Figure	3.3:	The	directory	structure	of	springmvc-intro2

In	springmvc-intro2	 the	Spring	MVC	configuration	 file	 has	been	 renamed	 springmvc-

config.xml	and	moved	to	/WEB-INF/config.	In	order	to	tell	Spring	MVC	where	to	find	it,
you	need	to	pass	the	location	of	the	file	to	the	Spring	MVC	dispatcher	servlet.	Listing	3.7
shows	the	deployment	descriptor	(web.xml	file)	for	springmvc-intro2.

Listing	3.7:	The	deployment	descriptor	for	springmvc-intro2

<?xml	version="1.0"	encoding="UTF-8"?>

<web-app	version="3.1"	

				xmlns="http://xmlns.jcp.org/xml/ns/javaee"	

				xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

				xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd">			

				<servlet>

								<servlet-name>springmvc</servlet-name>

								<servlet-class>

												org.springframework.web.servlet.DispatcherServlet

								</servlet-class>

								<init-param>

												<param-name>contextConfigLocation</param-name>

												<param-value>

																/WEB-INF/config/springmvc-config.xml

												</param-value>

								</init-param>

								<load-on-startup>1</load-on-startup>				

				</servlet>

				<servlet-mapping>

								<servlet-name>springmvc</servlet-name>

								<url-pattern>/</url-pattern>

				</servlet-mapping>

</web-app>

Pay	 special	 attention	 to	 the	 init-param	 element	 in	 the	 web.xml	 file.	 To	 refer	 to	 a
configuration	 file	 that	 is	not	using	 the	default	naming	and	 location,	you	need	 to	use	 the
contextConfigLocation	initial	parameter.	Its	value	should	be	the	path	to	the	configuration
file,	relative	to	the	application	directory.

The	configuration	file	for	springmvc-intro2	is	given	in	Listing	3.8.

Listing	3.8:	The	Spring	MVC	configuration	file	for	springmvc-intro2

<?xml	version="1.0"	encoding="UTF-8"?>

<beans	xmlns="http://www.springframework.org/schema/beans"

		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

		xsi:schemaLocation="http://www.springframework.org/schema/beans

		http://www.springframework.org/schema/beans/spring-beans.xsd">

				<bean	name="/input-product"	

												class="controller.InputProductController"/>

				<bean	name="/save-product"		

												class="controller.SaveProductController"/>

				<bean	id="viewResolver"	

												class="org.springframework.web.servlet.view.

InternalResourceViewResolver">

								<property	name="prefix"	value="/WEB-INF/jsp/"/>

								<property	name="suffix"	value=".jsp"/>

				</bean>

</beans>

To	test	the	application,	direct	your	browser	to	this	URL:

http://localhost:8080/springmvc-intro2/input-product

You	will	see	a	form	similar	to	Figure	3.2.

Summary
This	chapter	is	a	gentle	introduction	to	Spring	MVC.	It	teaches	you	how	to	write	simple
applications	 similar	 to	 the	 examples	 in	 Chapter	 2.	 You	 don’t	 need	 to	 write	 your	 own
dispatcher	 servlet	 in	 Spring	MVC	 and	 controllers	 can	 be	 written	 by	 implementing	 the
Controller	 interface.	 This	 is	 the	 old	 style	 controller.	 In	 Spring	 2.5	 and	 later,	 there	 is	 a
better	way	of	writing	controllers,	i.e.	by	using	annotations.	Chapter	4,	“Annotation-Based
Controllers”	discusses	this	type	of	controller.

Chapter	4

Annotation-Based	Controllers
In	 Chapter	 3,	 “Introduction	 to	 Spring	 MVC”	 you	 built	 two	 simple	 Spring	 MVC
applications	 using	 some	 old	 style	 controllers.	 The	 controllers	 were	 classes	 that
implemented	 the	 Controller	 interface.	 Spring	 2.5	 introduced	 a	 new	 way	 of	 creating
controllers:	by	using	the	Controller	annotation	type.

This	 chapter	 discusses	 annotation-based	 controllers	 and	 the	 various	 annotation	 types
that	 can	 be	 beneficial	 to	 your	 applications.	 Two	 sample	 applications,	 annotated1	 and
annotated2,	accompany	this	chapter.

Spring	MVC	Annotation	Types
There	are	several	advantages	of	using	annotation-based	controllers.	For	one,	a	controller
class	 can	 handle	 multiple	 actions.	 (By	 contrast,	 a	 controller	 that	 implements	 the
Controller	 interface	 can	 only	 handle	 one	 action.)	 This	 means,	 related	 actions	 can	 be
written	 in	 the	 same	 controller	 class,	 thus	 reducing	 the	 number	 of	 classes	 in	 your
application.

Secondly,	with	annotation-based	controllers	request	mappings	do	not	need	to	be	stored
in	 a	 configuration	 file.	 Using	 the	RequestMapping	 annotation	 type,	 a	 method	 can	 be
annotated	to	make	it	a	request-handling	method.

Controller	and	RequestMapping	annotation	types	are	two	most	important	annotation
types	in	the	Spring	MVC	API.	This	chapter	focuses	on	these	two	and	briefly	touches	on
some	other	less	popular	annotation	types.

The	Controller	Annotation	Type
The	org.springframework.stereotype.Controller	 annotation	 type	 is	 used	 to	 annotate	 a
Java	 class	 to	 indicate	 to	 Spring	 that	 instances	 of	 the	 class	 are	 controllers.	 Here	 is	 an
example	of	a	class	annotated	with	@Controller.

package	com.example.controller;

import	org.springframework.stereotype;

...

@Controller

public	class	CustomerController	{

				

				//	request-handling	methods	here

}

Spring	 uses	 a	 scanning	mechanism	 to	 find	 all	 annotation-based	 controller	 classes	 in	 an
application.	To	ensure	Spring	can	find	your	controllers,	there	are	two	things	you	need	to
do.	 First,	 you	 need	 to	 declare	 the	 spring-context	 schema	 in	 your	 Spring	 MVC
configuration	file,	like	so:

<beans	

				...

				xmlns:context="http://www.springframework.org/schema/context"

				...	

>

Second,	you	need	to	use	a	<component-scan/>	element	in	your	configuration	file:

context:component-scan	base-package="basePackage"/>

In	your	<component-scan/>	element,	specify	the	base	package	of	your	controller	classes.
For	example,	if	you	put	all	your	controller	classes	under	com.example.controller	and	its
subpackages,	you	need	to	write	a	<component-scan/>	element	like	so.

<context:component-scan	base-package="com.example.controller"/>

Integrating	<component-scan/>,	your	configuration	file	would	look	like	this:

<?xml	version="1.0"	encoding="UTF-8"?>

<beans	xmlns="http://www.springframework.org/schema/beans"

				xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

				xmlns:p="http://www.springframework.org/schema/p"

				xmlns:context="http://www.springframework.org/schema/context"

				xsi:schemaLocation="

								http://www.springframework.org/schema/beans

								http://www.springframework.org/schema/beans/spring-beans.xsd

								http://www.springframework.org/schema/context

								http://www.springframework.org/schema/context/spring-context.xsd">

				<context:component-scan	base-package="com.example.controller"/>

				<!--	...	-->

</beans>

You	would	want	 to	make	sure	all	controller	classes	are	part	of	 the	base	package.	At	 the
same	time,	you	don’t	want	to	specify	a	base	package	that	is	too	wide	(say,	by	specifying
com.example	instead	of	com.example.controller)	because	this	would	make	Spring	MVC
scan	irrelevant	packages.

The	RequestMapping	Annotation	Type
Inside	 a	 controller	 class	 you	 write	 request	 handling	 methods	 that	 each	 will	 handle	 an
action.	To	 tell	 Spring	which	method	handles	which	 action,	 you	need	 to	map	URIs	with
methods	 using	 the	 org.springframework.web.bind.annotation.RequestMapping
annotation	type.

The	RequestMapping	annotation	type	does	what	its	name	implies:	map	a	request	and	a
method.	You	can	use	@RequestMapping	to	annotate	a	method	or	a	class.

A	method	annotated	with	@RequestMapping	becomes	a	request-handling	method	and
will	be	invoked	when	the	dispatcher	servlet	receives	a	request	with	a	matching	URI.

Here	is	a	controller	class	with	a	RequestMapping-annotated	method.

package	com.example.controller;

import	org.springframework.stereotype.Controller;

import	org.springframework.web.bind.annotation.RequestMapping;

...

@Controller

public	class	CustomerController	{

				

				@RequestMapping(value	=	"/input-customer")

				public	String	inputCustomer()	{

								//	do	something	here

								return	"CustomerForm";

				}

}

You	 specify	 the	 URI	 mapped	 to	 the	 method	 using	 the	 value	 attribute	 in	 the
RequestMapping	annotation.	In	the	example	above,	the	URI	input-customer	is	mapped
with	the	inputCustomer	method.	This	means,	the	inputCustomer	method	can	be	invoked
using	a	URL	having	this	pattern.

http://domain/context/input-customer

Since	the	value	attribute	is	the	default	attribute	of	the	RequestMapping	annotation	type,
you	can	omit	 the	 attribute	name	 if	 it	 is	 the	only	 attribute	used	 in	 the	RequestMapping
annotation.	In	other	words,	these	two	annotations	have	the	same	meaning.

@RequestMapping(value	=	"/input-customer")

@RequestMapping("/input-customer")

However,	 if	more	 than	one	attributes	appear	 in	@RequestMapping,	you	must	write	 the
value	attribute	name.

The	value	of	a	 request	mapping	can	be	an	empty	 string,	 in	which	case	 the	method	 is
mapped	to	the	following	URL:

http://domain/context

RequestMapping	 has	other	 attributes	besides	value.	 For	 instance,	 the	method	 attribute
takes	a	set	of	HTTP	methods	that	will	be	handled	by	the	corresponding	method.

For	 example,	 the	 processOrder	 method	 below	 can	 only	 be	 invoked	 with	 the	 HTTP
POST	or	PUT	method.

...

import	org.springframework.stereotype.Controller;

import	org.springframework.web.bind.annotation.RequestMapping;

import	org.springframework.web.bind.annotation.RequestMethod;

...

				@RequestMapping(value="/process-order",

												method={RequestMethod.POST,	RequestMethod.PUT})

				public	String	processOrder()	{

				

								//	do	something	here

								return	"OrderForm";

				}

If	there	is	only	one	HTTP	request	method	assigned	to	the	method	attribute,	the	bracket	is
optional.	For	instance,

@RequestMapping(value="/process-order",	method=RequestMethod.POST)

If	the	method	attribute	is	not	present,	the	request-handling	method	will	handle	any	HTTP
method.

The	RequestMapping	 annotation	 type	can	also	be	used	 to	annotate	a	controller	class
like	this:

import	org.springframework.stereotype.Controller;

...

@Controller

@RequestMapping(value="/customer")

public	class	CustomerController	{

In	 this	 case,	 method-level	 request	 mappings	 will	 be	 deemed	 relative	 to	 the	 class-level
request	mapping.	For	instance,	consider	the	following	deleteCustomer	method

...

import	org.springframework.stereotype.Controller;

import	org.springframework.web.bind.annotation.RequestMapping;

import	org.springframework.web.bind.annotation.RequestMethod;

...

@Controller

@RequestMapping("/customer")

public	class	CustomerController	{

				@RequestMapping(value="/delete",

												method={RequestMethod.POST,	RequestMethod.PUT})

				public	String	deleteCustomer()	{

								//	do	something	here

								return…;

				}

Because	the	controller	class	is	mapped	with	“/customer”	and	the	deleteCustomer	method
with	“/delete”,	the	method	can	be	invoked	using	a	URL	with	this	pattern.

http://domain/context/customer/delete

Writing	Request-Handling	Methods
A	request-handling	method	can	have	a	mix	of	argument	types	as	well	as	one	of	a	variety	of
return	types.	For	example,	if	you	need	access	to	the	HttpSession	object	in	your	method,
you	can	add	HttpSession	as	an	argument	and	Spring	will	pass	the	correct	object	for	you:

@RequestMapping("/uri")

public	String	myMethod(HttpSession	session)	{

				...

				session.addAttribute(key,	value);

				...

}

Or,	 if	 you	 need	 the	 client	 locale	 and	 the	HttpServletRequest,	 you	 can	 include	 both	 as
method	arguments	like	this.

@RequestMapping("/uri")

public	String	myOtherMethod(HttpServletRequest	request,	

								Locale	locale)	{

				...

				//	access	Locale	and	HttpServletRequest	here

				...

}

Here	 is	 the	 list	 of	 argument	 types	 that	 can	 appear	 as	 arguments	 in	 a	 request-handling
method.

javax.servlet.ServletRequest	or	javax.servlet.http.HttpServletRequest
javax.servlet.ServletResponse	or	javax.servlet.http.HttpServletResponse
javax.servlet.http.HttpSession
org.springframework.web.context.request.WebRequest	 or
org.springframework.web.context.request.NativeWebRequest
java.util.Locale
java.io.InputStream	or	java.io.Reader
java.io.OutputStream	or	java.io.Writer
java.security.Principal
HttpEntity<?>	parameters
java.util.Map	 /	 org.springframework.ui.Model	 /
org.springframework.ui.ModelMap
org.springframework.web.servlet.mvc.support.RedirectAttributes
org.springframework.validation.Errors	 /
org.springframework.validation.BindingResult
Command	or	form	objects
org.springframework.web.bind.support.SessionStatus
org.springframework.web.util.UriComponentsBuilder
Types	 annotated	 with	 @PathVariable,	 @MatrixVariable,	 @RequestParam,
@RequestHeader,	@RequestBody,	or	@RequestPart.

Of	special	 importance	 is	 the	org.springframework.ui.Model	 type.	This	 is	not	a	Servlet
API	 type,	 but	 rather	 a	 Spring	 MVC	 type	 that	 contains	 a	Map.	 Every	 time	 a	 request-
handling	method	is	invoked,	Spring	MVC	creates	a	Model	object	and	populates	its	Map
with	potentially	various	objects.

A	request-handling	method	can	return	one	of	these	objects.

A	ModelAndView	object
A	Model	object
A	Map	containing	the	attributes	of	the	model
A	View	object
A	String	representing	the	logical	view	name
void
An	HttpEntity	or	ResponseEntity	object	 to	provide	access	 to	 the	Servlet	 response
HTTP	headers	and	contents
A	Callable
A	DeferredResult
Any	 other	 return	 type.	 In	 this	 case,	 the	 return	 value	 will	 be	 considered	 a	 model
attribute	to	be	exposed	to	the	view

You’ll	learn	how	to	write	request-handling	methods	in	the	sample	applications	given	later
in	this	chapter.

Using	An	Annotation-Based	Controller
The	annotated1	application,	a	rewrite	of	the	sample	applications	in	Chapter	2	and	Chapter
3,	presents	a	controller	class	with	two	request-handling	methods.

The	main	difference	between	annotated1	and	the	previous	applications	is	the	controller
class	in	annotated1	is	annotated	with	@Controller.	In	addition,	the	Spring	configuration
file	 also	 includes	 additional	 elements.	 Various	 parts	 of	 the	 application	 are	 given	 in	 the
following	subsections.

Directory	Structure
Figure	 4.1	 shows	 the	 directory	 structure	 of	 annotated1.	 Note	 that	 there	 is	 only	 one
controller	 class	 instead	 of	 two.	 An	 HTML	 file,	 index.html,	 has	 been	 added	 to	 the
application	 directory	 to	 show	 how	 static	 resources	 can	 still	 be	 accessed	when	 the	URL
pattern	of	the	Spring	MVC	servlet	is	set	to	/.

Figure	4.1:	The	directory	structure	of	annotated1

Configuration	Files
There	 are	 two	 configuration	 files	 in	 annotated1.	 The	 first,	 the	 deployment	 descriptor
(web.xml	 file),	 registers	 the	 Spring	MVC	 dispatcher	 servlet.	 The	 second	 configuration
file,	springmvc-config.xml,	is	a	Spring	MVC	configuration	file.

Listing	 4.1	 shows	 the	 deployment	 descriptor	 and	 Listing	 4.2	 the	 Spring	 MVC
configuration	file.

Listing	4.1:	The	deployment	descriptor	for	annotated1	(web.xml)

<?xml	version="1.0"	encoding="UTF-8"?>

<web-app	version="3.1"	

				xmlns="http://xmlns.jcp.org/xml/ns/javaee"	

				xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

				xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee	

								http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd">

				<servlet>

								<servlet-name>springmvc</servlet-name>

								<servlet-class>

												org.springframework.web.servlet.DispatcherServlet

								</servlet-class>

								<init-param>

	 					<param-name>contextConfigLocation</param-name>

												<param-value>

																/WEB-INF/config/springmvc-config.xml

												</param-value>

								</init-param>

								<load-on-startup>1</load-on-startup>				

				</servlet>

				<servlet-mapping>

								<servlet-name>springmvc</servlet-name>

								<url-pattern>/</url-pattern>

				</servlet-mapping>

</web-app>

Note	 that	 in	 the	 <servlet-mapping/>	 element	 in	 the	 deployment	 descriptor,	 the	 URL
pattern	 for	 the	 Spring	MVC	 dispatcher	 servlet	 is	 set	 to	 /.	 Setting	 the	URL	 pattern	 to	 /
means	that	all	requests,	including	those	for	static	resources,	are	directed	to	the	dispatcher
servlet.	 In	 order	 for	 static	 resources	 to	 be	 handled	 properly,	 you	 need	 to	 add	 some
<resources/>	elements	in	the	Spring	MVC	configuration	file.

Listing	4.2:	The	springmvc-config.xml	file

<?xml	version="1.0"	encoding="UTF-8"?>

<beans	xmlns="http://www.springframework.org/schema/beans"

				xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

				xmlns:p="http://www.springframework.org/schema/p"

				xmlns:mvc="http://www.springframework.org/schema/mvc"

				xmlns:context="http://www.springframework.org/schema/context"

				xsi:schemaLocation="

								http://www.springframework.org/schema/beans

								http://www.springframework.org/schema/beans/spring-beans.xsd

								http://www.springframework.org/schema/mvc

								http://www.springframework.org/schema/mvc/spring-mvc.xsd					

								http://www.springframework.org/schema/context

								http://www.springframework.org/schema/context/spring-context.xsd">

				<context:component-scan	base-package="controller"/>

				<mvc:annotation-driven/>

				<mvc:resources	mapping="/css/**"	location="/css/"/>

				<mvc:resources	mapping="/*.html"	location="/"/>

				

				<bean	id="viewResolver"	

								class="org.springframework.web.servlet.view.

InternalResourceViewResolver">

								<property	name="prefix"	value="/WEB-INF/jsp/"/>

								<property	name="suffix"	value=".jsp"/>

				</bean>

</beans>

The	main	 thing	 in	 the	Spring	MVC	configuration	file	 in	Listing	4.2	 is	 the	presence	of	a
<component-scan/>	 element.	 It	 is	 to	 tell	 Spring	MVC	 to	 scan	 classes	 under	 a	 certain
package,	 in	 this	 case	 the	 controller	 package.	 On	 top	 of	 that,	 there	 are	 also	 an
<annotation-driven/>	 element	 and	 two	 <resources/>	 elements.	 The	 <annotation-
driven/>	 element	 does	 several	 things,	 including	 registering	 beans	 to	 support	 request
processing	 with	 annotated	 controller	 methods.	 The	 <resources/>	 element	 tells	 Spring
MVC	which	static	resources	need	to	be	served	independently	from	the	dispatcher	servlet.

In	 the	configuration	file	 in	Listing	4.2	 there	are	 two	<resources/>	 elements.	The	 first
makes	sure	that	all	files	in	the	/css	directory	will	be	visible.	The	second	allows	displaying
of	all	.html	files	in	the	application	directory.

Note
Without	<annotation-driven/>,	the	<resources/>	elements	will	prevent	any	controller
from	being	invoked.	You	don’t	need	an	<annotation-driven/>	element	 if	you	are	not
using	resources	elements.

The	Controller	Class
One	of	 the	advantages	of	using	 the	Controller	 annotation	 type	 is	 that	 a	 controller	 class
can	contain	multiple	request-handling	methods.	As	can	be	seen	in	the	ProductController
class	in	Listing	4.3,	there	are	two	methods	in	it,	inputProduct	and	saveProduct.

Listing	4.3:	The	ProductController	class	in	annotated1

package	controller;

import	java.math.BigDecimal;

import	org.apache.commons.logging.Log;

import	org.apache.commons.logging.LogFactory;

import	org.springframework.stereotype.Controller;

import	org.springframework.ui.Model;

import	org.springframework.web.bind.annotation.RequestMapping;

import	domain.Product;

import	form.ProductForm;

@Controller

public	class	ProductController	{

				private	static	final	Log	logger	=	LogFactory.getLog(ProductController.class);

				@RequestMapping(value="/input-product")

				public	String	inputProduct()	{

								logger.info("inputProduct	called");

								return	"ProductForm";

				}

				@RequestMapping(value="/save-product")

				public	String	saveProduct(ProductForm	productForm,	Model	model)	{

								logger.info("saveProduct	called");

								//	no	need	to	create	and	instantiate	a	ProductForm

								//	create	Product

								Product	product	=	new	Product();

								product.setName(productForm.getName());

								product.setDescription(productForm.getDescription());

								try	{

												product.setPrice(new	BigDecimal(productForm.getPrice()));

								}	catch	(NumberFormatException	e)	{

								}

								//	add	product

								model.addAttribute("product",	product);

								return	"ProductDetails";

				}

}

Note	that	the	second	argument	to	saveProduct	in	the	ProductController	class	is	of	type
org.springframework.ui.Model.	 Spring	 MVC	 creates	 a	Model	 instance	 every	 time	 a
request-handling	 method	 is	 invoked,	 whether	 or	 not	 you’ll	 use	 the	 instance	 in	 your
method.	 The	 main	 purpose	 of	 having	 a	Model	 is	 for	 adding	 attributes	 that	 will	 be
displayed	 in	 the	 view.	 In	 this	 example,	 you	 added	 a	 Product	 instance	 by	 calling

model.addAttribute:

model.addAttribute("product",	product);

The	 Product	 instance	 can	 then	 be	 accessed	 as	 if	 you	 had	 added	 it	 to	 the
HttpServletRequest.

The	View
In	annotated1	there	are	two	views	similar	to	the	ones	in	previous	sample	applications,	the
ProductForm.jsp	page	(given	in	Listing	4.4)	and	the	ProductDetails.jsp	page	(shown	in
Listing	4.5).

Listing	4.4:	The	ProductForm.jsp	page

<!DOCTYPE	HTML>

<html>

<head>

<title>Add	Product	Form</title>

<style	type="text/css">@import	url(css/main.css);</style>

</head>

<body>

<div	id="global">

<form	action="save-product"	method="post">

				<fieldset>

								<legend>Add	a	product</legend>

								<p>

												<label	for="name">Product	Name:	</label>

												<input	type="text"	id="name"	name="name"	

																tabindex="1">

								</p>

								<p>

												<label	for="description">Description:	</label>

												<input	type="text"	id="description"	

																name="description"	tabindex="2">

								</p>

								<p>

												<label	for="price">Price:	</label>

												<input	type="text"	id="price"	name="price"	

																tabindex="3">

								</p>

								<p	id="buttons">

												<input	id="reset"	type="reset"	tabindex="4">

												<input	id="submit"	type="submit"	tabindex="5"	

																value="Add	Product">

								</p>

				</fieldset>

</form>

</div>

</body>

</html>

Listing	4.5:	The	ProductDetails.jsp	page

<!DOCTYPE	HTML>

<html>

<head>

<title>Save	Product</title>

<style	type="text/css">@import	url(css/main.css);</style>

</head>

<body>

<div	id="global">

				<h4>The	product	has	been	saved.</h4>

				<p>

								<h5>Details:</h5>

								Product	Name:	${product.name}

								Description:	${product.description}

								Price:	$${product.price}

				</p>

</div>

</body>

</html>

Testing	the	Application
To	test	annotated1,	direct	your	browser	to	this	URL:

http://localhost:8080/annotated1/input-product

You’ll	see	the	Product	Form	in	your	browser,	like	the	one	in	Figure	4.2.

Figure	4.2:	The	Product	form

Pressing	the	Add	Product	button	will	invoke	the	saveProduct	method	in	the	controller.

Dependency	 Injection	with	@Autowired	 and
@Service
One	of	 the	benefits	of	using	the	Spring	Framework	is	 that	you	get	dependency	 injection
for	free.	After	all,	Spring	started	as	a	dependency	injection	container.	The	easiest	way	to
get	a	dependency	injected	to	a	Spring	MVC	controller	is	by	annotating	a	field	or	a	method
with	 @Autowired.	 The	 Autowired	 annotation	 type	 belongs	 to	 the
org.springframework.beans.factory.annotation	package.

In	order	 for	a	dependency	 to	be	found,	 its	class	must	be	annotated	with	@Service.	A
member	 of	 the	 org.springframework.stereotype	 package,	 the	 Service	 annotation	 type
indicates	 that	 the	annotated	class	 is	a	service.	 In	addition,	 in	your	configuration	file	you
need	 to	 add	 a	 <component-scan/>	 element	 to	 scan	 the	 base	 package	 for	 your
dependencies.

<context:component-scan	base-package="dependencyPackage"/>			

As	 an	 example	 of	 dependency	 injection	 in	 a	Spring	MVC	application,	 consider	 another
example,	 the	 annotated2	 application.	 The	ProductController	 class	 in	 the	 annotated2
application	 (See	 Listing	 4.6)	 has	 been	 modified	 from	 the	 identically	 named	 class	 in
annotated1.

Listing	4.6:	The	ProductController	class	in	annotated2

package	controller;

import	java.math.BigDecimal;

import	org.apache.commons.logging.Log;

import	org.apache.commons.logging.LogFactory;

import	org.springframework.beans.factory.annotation.Autowired;

import	org.springframework.stereotype.Controller;

import	org.springframework.ui.Model;

import	org.springframework.web.bind.annotation.PathVariable;

import	org.springframework.web.bind.annotation.RequestMapping;

import	org.springframework.web.bind.annotation.RequestMethod;

import	org.springframework.web.servlet.mvc.support.RedirectAttributes;

import	domain.Product;

import	form.ProductForm;

import	service.ProductService;

@Controller

public	class	ProductController	{

				private	static	final	Log	logger	=	LogFactory

												.getLog(ProductController.class);

				@Autowired

				private	ProductService	productService;

				@RequestMapping(value	=	"/input-product")

				public	String	inputProduct()	{

								logger.info("inputProduct	called");

								return	"ProductForm";

				}

				@RequestMapping(value	=	"/save-product",	method	=	RequestMethod.POST)

				public	String	saveProduct(ProductForm	productForm,	

												RedirectAttributes	redirectAttributes)	{

								logger.info("saveProduct	called");

								//	no	need	to	create	and	instantiate	a	ProductForm

								//	create	Product

								Product	product	=	new	Product();

								product.setName(productForm.getName());

								product.setDescription(productForm.getDescription());

								try	{

												product.setPrice(new	BigDecimal(productForm.getPrice()));

								}	catch	(NumberFormatException	e)	{

								}

								//	add	product

								Product	savedProduct	=	productService.add(product);

								

								redirectAttributes.addFlashAttribute("message",	

																"The	product	was	successfully	added.");

								return	"redirect:/product_view/"	+	savedProduct.getId();

				}

				@RequestMapping(value	=	"/view-product/{id}")

				public	String	viewProduct(@PathVariable	Long	id,	Model	model)	{

								Product	product	=	productService.get(id);

								model.addAttribute("product",	product);

								return	"ProductView";

				}

}

A	couple	 of	 things	make	 the	ProductController	 class	 in	annotated2	 different	 from	 its
counterpart	in	annotated1.	The	first	thing	is	the	addition	of	the	following	private	field	that
is	annotated	with	@Autowired:

@Autowired

private	ProductService	productService

Here,	ProductService	is	an	interface	that	provides	various	methods	for	handling	products.
Annotating	productService	with	@Autowired	causes	an	 instance	of	ProductService	 to
be	injected	to	the	ProductController	instance.

Listing	 4.7	 shows	 the	 ProductService	 interface	 and	 Listing	 4.8	 its	 implementation
ProductServiceImpl.	 Note	 that	 for	 the	 implementation	 to	 be	 scannable,	 you	 must
annotate	its	class	definition	with	@Service.

Listing	4.7:	The	ProductService	interface

package	service

import	domain.Product;

public	interface	ProductService	{

				Product	add(Product	product);

				Product	get(long	id);

}

Listing	4.8:	The	ProductServiceImpl	class

package	service;

import	java.math.BigDecimal;

import	java.util.HashMap;

import	java.util.Map;

import	java.util.concurrent.atomic.AtomicLong;

import	org.springframework.stereotype.Service;

import	domain.Product;

@Service

public	class	ProductServiceImpl	implements	ProductService	{

				private	Map<Long,	Product>	products	=	

												new	HashMap<Long,	Product>();

				private	AtomicLong	generator	=	new	AtomicLong();

				public	ProductServiceImpl()	{

								Product	product	=	new	Product();

								product.setName("JX1	Power	Drill");

								product.setDescription(

																"Powerful	hand	drill,	made	to	perfection");

								product.setPrice(new	BigDecimal(129.99));

								add(product);

				}

				@Override

				public	Product	add(Product	product)	{

								long	newId	=	generator.incrementAndGet();

								product.setId(newId);

								products.put(newId,	product);

								return	product;

				}

				@Override

				public	Product	get(long	id)	{

								return	products.get(id);

				}

}

As	you	can	see	in	Listing	4.9,	the	Spring	MVC	configuration	file	for	annotated2	has	two
<component-scan/>	 elements,	 one	 for	 scanning	 controller	 classes	 and	one	 for	 scanning
service	classes.

Listing	4.9:	The	Spring	MVC	configuration	file	for	annotated2

<?xml	version="1.0"	encoding="UTF-8"?>

<beans	xmlns="http://www.springframework.org/schema/beans"

				xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

				xmlns:p="http://www.springframework.org/schema/p"

				xmlns:mvc="http://www.springframework.org/schema/mvc"

				xmlns:context="http://www.springframework.org/schema/context"

				xsi:schemaLocation="

								http://www.springframework.org/schema/beans

								http://www.springframework.org/schema/beans/spring-beans.xsd

								http://www.springframework.org/schema/mvc

								http://www.springframework.org/schema/mvc/spring-mvc.xsd					

								http://www.springframework.org/schema/context

								http://www.springframework.org/schema/context/spring-

context.xsd">

				<context:component-scan	base-package="controller"/>

				<context:component-scan	base-package="service"/>				

				<mvc:annotation-driven/>

				<mvc:resources	mapping="/css/**"	location="/css/"/>

				<mvc:resources	mapping="/*.html"	location="/"/>

				

				<bean	id="viewResolver"	class="org.springframework.web.servlet.view.InternalResourceViewResolver">

								<property	name="prefix"	value="/WEB-INF/jsp/"/>

								<property	name="suffix"	value=".jsp"/>

				</bean>

</beans>

Redirect	and	Flash	Attributes
As	 a	 seasoned	 servlet/JSP	 programmer,	 you	 must	 know	 the	 difference	 between	 and	 a
forward	 and	 a	 redirect.	A	 forward	 is	 faster	 than	 a	 redirect	 because	 a	 redirect	 requires	 a
round-trip	to	the	server	and	a	forward	does	not.	However,	there	are	circumstances	where	a
redirect	is	preferred.	One	of	such	events	is	when	you	need	to	redirect	to	an	external	site,
like	a	different	web	site.	You	cannot	use	a	forward	to	target	an	external	site	so	a	redirect	is
your	only	choice.

Another	 scenario	where	you	want	 to	use	 a	 redirect	 instead	of	 a	 forward	 is	when	you
want	to	avoid	the	same	action	from	being	invoked	again	when	the	user	reloads	the	page.
For	example,	in	annotated1	when	you	submit	the	Product	form,	the	saveProduct	method
will	 be	 invoked	 and	 this	 method	 will	 do	 what	 it’s	 supposed	 to	 do.	 In	 a	 real-world
application,	this	might	include	adding	the	product	to	the	database.	However,	if	you	reload
the	 page	 after	 you	 submits	 the	 form,	 saveProduct	 will	 be	 called	 again	 and	 the	 same
product	would	potentially	be	added	 the	second	 time.	To	avoid	 this,	after	a	 form	submit,
you	may	prefer	 to	 redirect	 the	 user	 to	 a	 different	 page.	This	 page	 should	 have	 no	 side-
effect	when	called	repeatedly.	For	instance,	in	annotated1,	you	could	redirect	the	user	to	a
ViewProduct	page	after	a	form	submit.

In	 annotated2	 you	 probably	 noticed	 that	 the	 saveProduct	 method	 in	 the
ProductController	class	ends	with	this	line:

return	"redirect:/view-product/"	+	savedProduct.getId();

Here,	you	use	a	 redirect	 instead	of	a	 forward	 to	prevent	 the	saveProduct	method	being
called	twice	if	the	user	reloads	the	page.

The	trade-off	when	using	a	redirect	is	you	cannot	easily	pass	a	value	to	the	target	page.
With	a	forward,	you	can	simply	add	attributes	to	the	Model	object	and	the	attributes	will
be	accessible	to	the	view.	Since	a	redirect	 is	a	round	trip	to	the	server,	everything	in	the
Model	is	lost	when	you	redirect.	Fortunately,	Spring	version	3.1	and	later	provide	a	way
of	preserving	values	in	a	redirect	by	using	flash	attributes.

To	use	flash	attributes	you	must	have	an	<annotation-driven/>	element	in	your	Spring
MVC	 configuration	 file.	 And	 then,	 you	 must	 also	 add	 a	 new	 argument	 of	 type
org.springframework.web.servlet.mvc.support.RedirectAttributes	 in	 your	 method.
The	 saveProduct	 method	 in	 ProductController	 in	 annotated2	 is	 reprinted	 in	 Listing
4.10.

Listing	4.10:	Using	flash	attributes

@RequestMapping(value	=	"save-product",	method	=	RequestMethod.POST)

public	String	saveProduct(ProductForm	productForm,	

								RedirectAttributes	redirectAttributes)	{

				logger.info("saveProduct	called");

				//	no	need	to	create	and	instantiate	a	ProductForm

				//	create	Product

				Product	product	=	new	Product();

				product.setName(productForm.getName());

				product.setDescription(productForm.getDescription());

				try	{

								product.setPrice(new	BigDecimal(productForm.getPrice()));

				}	catch	(NumberFormatException	e)	{

				}

				//	add	product

				Product	savedProduct	=	productService.add(product);

				

				redirectAttributes.addFlashAttribute("message",	

												"The	product	was	successfully	added.");

				return	"redirect:/view-product/"	+	savedProduct.getId();

}

Request	Parameters	and	Path	Variables
Both	request	parameters	and	path	variables	are	used	to	send	values	to	the	server.	Both	are
also	part	of	a	URL.	The	request	parameter	takes	the	form	of	key=value	pairs	separated	by
an	ampersand.	For	instance,	this	URL	carries	a	productId	request	parameter	with	a	value
of	3.

http://localhost:8080/annotated2/view-product?productId=3

In	 servlet	 programming,	 you	 can	 retrieve	 a	 request	 parameter	 value	 by	 using	 the
getParameter	method	on	the	HttpServletRequest:

String	productId	=	httpServletRequest.getParameter("productId");

In	Spring	MVC	there	is	an	easier	way	to	retrieve	a	request	parameter	value:	by	using	the
org.springframework.web.bind.annotation.RequestParam	 annotation	 type	 to	annotate
an	argument	to	which	the	value	of	the	request	parameter	will	be	copied.	For	example,	the
following	method	contains	an	argument	that	captures	request	parameter	productId.

public	void	sendProduct(@RequestParam	int	productId)

As	you	can	see,	the	type	of	argument	annotated	with	@RequestParam	does	not	need	to
be	String.

A	path	variable	is	similar	to	a	request	parameter,	except	that	there	is	no	key	part,	just	a
value.	For	example,	the	view-product	action	in	annotated2	is	mapped	to	a	URL	with	this
format.

/view-product/productId

where	productId	is	an	integer	representing	a	product	identifier.	In	Spring	MVC	parlance,
productId	is	called	a	path	variable.	It	is	used	to	send	a	value	to	the	server.

Consider	the	viewProduct	method	 in	Listing	4.11	 that	demonstrates	 the	use	of	a	path
variable.

Listing	4.11:	Using	path	variables

@RequestMapping(value	=	"/view-product/{id}")

public	String	viewProduct(@PathVariable	Long	id,	Model	model)	{

				Product	product	=	productService.get(id);

				model.addAttribute("product",	product);

				return	"ProductView";

}

To	use	a	path	variable,	first	you	need	to	add	a	variable	that	is	the	value	attribute	of	your
RequestMapping	 annotation.	 The	 variable	 must	 be	 put	 between	 curly	 brackets.	 For
example,	the	following	RequestMapping	annotation	defines	a	path	variable	called	id:

@RequestMapping(value	=	"/view-product/{id}")

Then,	 in	 your	 method	 signature,	 add	 an	 identically	 named	 variable	 annotated	 with
@PathVariable.	Take	a	look	at	 the	signature	of	viewProduct	 in	Listing	4.11.	When	the
method	is	invoked,	the	id	value	in	the	request	URL	will	be	copied	to	the	path	variable	and
can	be	used	in	the	method.	The	type	of	a	path	variable	does	not	need	to	be	String.	Spring
MVC	will	 try	its	best	 to	convert	a	non-string	value.	This	great	feature	of	Spring	MVC’s
will	be	discussed	in	detail	in	Chapter	5,	“Data	Binding	and	the	Form	Tags.”

You	 can	 use	 multiple	 path	 variables	 in	 your	 request	 mapping.	 For	 example,	 the
following	defines	two	path	variables,	userId	and	orderId.

@RequestMapping(value	=	"/view-product/{userId}/{orderId}")

To	test	the	path	variable	in	the	viewProduct	method,	direct	your	browser	to	this	URL.

http://localhost:8080/annotated2/view-product/1

There	 is	 a	 slight	 problem	 when	 employing	 path	 variables:	 in	 some	 cases	 it	 may	 be
confusing	to	the	browser.	Consider	the	following	URL.

http://example.com/context/abc

The	browser	will	think	(correctly)	that	abc	is	the	action.	Any	relative	reference	to	a	static
file,	 such	 as	 a	 CSS	 file,	will	 be	 resolved	 using	 http://example.com/context	 as	 the	 base.
This	is	to	say,	if	the	page	sent	by	the	server	contains	this	img	element

The	browser	will	look	for	logo.png	in	http://example.com/context/logo.png.

However,	note	that	if	the	same	application	is	deployed	as	the	default	context	(where	the
path	to	the	default	context	is	an	empty	string),	the	URL	for	the	same	target	would	be	this:

http://example.com/abc

Now,	consider	the	following	URL	that	carries	a	path	variable	in	an	application	deployed	as
the	default	context:

http://example.com/abc/1

In	ths	case,	the	browser	will	think	abc	is	the	context,	not	the	action.	If	you	refer	to		 in	 your	 page,	 the	 browser	 will	 look	 for	 the	 image	 in
http://example.com/abc/logo.png	and	it	won’t	find	the	image.

Lucky	for	us	there	is	an	easy	solution,	i.e.	by	using	the	JSTL	url	tag.	(JSTL	is	discussed
in	 Chapter	 8,	 “JSTL.”)	 The	 tag	 fixes	 the	 issue	 by	 correctly	 resolving	 the	 URL.	 For
example,	all	CSS	imports	in	the	JSP	pages	in	annotated2	have	been	changed	from

<style	type="text/css">@import	url(css/main.css);</style>

to

<style	type="text/css">

@import	url("<c:url	value="/css/main.css"/>");

</style>

Thanks	to	the	url	tag,	the	URL	will	be	translated	into	this	if	it	is	in	the	default	context.

<style	type="text/css">@import	url("/css/main.css");</style>

And	it	will	be	translated	into	this	if	it	is	not	in	the	default	context.

<style	type="text/css">@import	url("/annotated2/css/main.css");

</style>

@ModelAttribute
In	the	previous	section	I	talked	about	the	Model	type	that	Spring	MVC	creates	an	instance
of	every	time	a	request-handling	method	is	invoked.	You	can	add	a	Model	as	an	argument
for	your	method	if	you	intend	to	use	it	 in	your	method.	The	ModelAttribute	annotation
type	can	be	used	to	decorate	a	Model	 instance	in	a	method.	This	annotation	type	is	also
part	of	the	org.springframework.web.bind.annotation	package.

@ModelAttribute	can	be	used	to	annotate	a	method	argument	or	a	method.	A	method
argument	 annotated	 with	@ModelAttribute	 will	 have	 an	 instance	 of	 it	 retrieved	 or
created	and	added	 to	 the	Model	object	 if	 the	method	body	does	not	do	 it	explicitly.	For
example,	 Spring	MVC	will	 create	 an	 instance	 of	Order	 every	 time	 this	 submitOrder
method	is	invoked.

@RequestMapping(method	=	RequestMethod.POST)

public	String	submitOrder(@ModelAttribute("newOrder")	Order	order,

				Model	model)	{	

			...

}

The	Order	instance	retrieved	or	created	will	be	added	to	the	Model	object	with	attribute
key	newOrder.	If	no	key	name	is	defined,	then	the	name	will	be	derived	from	the	name	of
the	 type	 to	 be	 added	 to	 the	Model.	 For	 instance,	 every	 time	 the	 following	 method	 is
invoked,	an	instance	of	Order	will	be	retrieved	or	created	and	added	to	the	Model	using
attribute	key	order.

public	String	submitOrder(@ModelAttribute	Order	order,	Model	model)		

The	 second	 use	 of	@ModelAttribute	 is	 to	 annotate	 a	 non-request-handling	 method.
Methods	annotated	with	@ModelAttribute	will	be	invoked	every	time	a	request-handling
method	in	the	same	controller	class	is	invoked.	This	means,	if	a	controller	class	has	two
request-handling	methods	and	another	method	annotated	with	@ModelAttribute	method,
the	annotated	method	will	likely	be	invoked	more	often	than	each	of	the	request-handling
methods.

A	method	 annotated	 with	@ModelAttribute	 will	 be	 invoked	 right	 before	 a	 request-
handling	method.	 Such	 a	method	may	 return	 an	 object	 or	 have	 a	 void	 return	 type.	 If	 it
returns	an	object,	the	object	is	automatically	added	to	the	Model	that	was	created	for	the
request-handling	method.	For	example,	 the	 return	value	of	 this	method	will	be	added	 to
the	Model.

@ModelAttribute

public	Product	addProduct(@RequestParam	String	productId)	{

				return	productService.get(productId);

}

If	your	annotated	method	returns	void,	then	you	must	also	add	a	Model	argument	type	and

add	the	instance	yourself.	Here	is	an	example.

@ModelAttribute

public	void	populateModel(@RequestParam	String	id,	Model	model)	er);

				model.addAttribute(new	Account(id));

}	

Summary
In	 this	 chapter	 you	 learned	 how	 to	write	 Spring	MVC	applications	 that	 use	 annotation-
based	controllers.	You	have	also	learned	various	annotation	types	to	annotate	your	classes,
methods,	or	method	arguments.

Chapter	5

Data	Binding	and	the	Form	Tag	Library
Data	 binding	 is	 a	 feature	 that	 binds	 user	 input	 to	 the	 domain	 model.	 Thanks	 to	 data
binding,	 HTTP	 request	 parameters,	 which	 are	 always	 of	 type	 String,	 can	 be	 used	 to
populate	 object	 properties	 of	 various	 types.	 Data	 binding	 also	 makes	 form	 beans	 (e.g.
instances	of	ProductForm	in	the	previous	chapters)	redundant.

To	 use	 data	 binding	 effectively,	 you	 need	 the	 Spring	 form	 tag	 library.	 This	 chapter
explains	data	binding	and	 the	 form	 tag	 library	 and	provides	 examples	 that	highlight	 the
use	of	the	tags	in	the	form	tag	library.

Data	Binding	Overview
Due	 to	 the	 nature	 of	HTTP,	 all	HTTP	 request	 parameters	 are	 strings.	Recall	 that	 in	 the
previous	chapters	you	had	 to	parse	a	string	 to	a	BigDeciimal	 in	order	 to	get	 the	correct
product	price.	To	 refresh	your	memory,	here	 is	 some	code	 from	 the	ProductController
class’s	saveProduct	method	in	the	sample	applications	in	Chapter	4.

@RequestMapping(value="save-product")

public	String	saveProduct(ProductForm	productForm,	Model	model)	{

				logger.info("saveProduct	called");

				//	no	need	to	create	and	instantiate	a	ProductForm

				//	create	Product

				Product	product	=	new	Product();

				product.setName(productForm.getName());

				product.setDescription(productForm.getDescription());

				try	{

						 		product.setPrice(new	BigDecimal(productForm.getPrice()));

				}	catch	(NumberFormatException	e)	{

				}

You	had	to	parse	the	price	property	in	the	ProductForm	because	it	was	a	String	and	you
needed	a	BigDecimal	to	populate	the	Product’s	price	property.	With	data	binding	you	can
replace	the	saveProduct	method	fragment	above	with	this.

@RequestMapping(value="save-product")

public	String	saveProduct(Product	product,	Model	model)

Thanks	to	data	binding,	you	don’t	need	the	ProductForm	class	anymore	and	no	parsing	is
necessary	for	the	price	property	of	the	Product	object.

Another	 benefit	 of	 data	 binding	 is	 for	 repopulating	 an	 HTML	 form	 when	 input
validation	 fails.	With	manual	HTML	 coding,	 you	 have	 to	worry	 about	 repopulating	 the
input	fields	with	the	values	the	user	previously	entered.	With	Spring	data	binding	and	the
form	tag	library,	this	is	taken	care	of	for	you.

The	Form	Tag	Library
The	 form	 tag	 library	 contains	 tags	 you	 can	 use	 to	 render	HTML	 elements	 in	 your	 JSP
pages.	To	use	the	tags,	declare	this	taglib	directive	at	the	top	of	your	JSP	pages.

<%@taglib	prefix="form"	

				uri="http://www.springframework.org/tags/form"	%>

Table	5.1	shows	the	tags	in	the	form	tag	library.

Each	of	 the	 tags	will	be	explained	 in	 the	 following	subsections.	A	sample	application
presented	 in	 the	 section,	 “Data	Binding	Example”	demonstrates	 the	use	of	 data	 binding
with	the	form	tag	library.

Tag Description

form Renders	a	form	element.

input Renders	an	<input	type=“text”/>	element

password Renders	an	<input	type=“password”/>	element

hidden Renders	an	<input	type=“hidden”/>	element

textarea Renders	a	textarea	element

checkbox Renders	an	<input	type=“checkbox”/>	element

checkboxes Renders	multiple	<input	type=“checkbox”/>	elements

radiobutton Renders	an	<input	type=“radio”/>	element

radiobuttons Renders	multiple	<input	type=“checkbox”/>	elements

select Renders	a	select	element

option Renders	an	option	element.

options Renders	a	list	of	option	elements.

errors Renders	field	errors	in	a	span	element.

Table	5.1:	The	Form	tags

The	form	Tag
The	form	tag	renders	an	HTML	form.	You	must	have	a	form	tag	to	use	any	of	the	other
tags	that	render	a	form	input	field.	The	attributes	of	the	form	tag	are	given	in	Table	5.2.

Attribute Description

acceptCharset Specifies	the	list	of	character	encodings	accepted	by	the	server.

commandName The	name	of	the	model	attribute	under	which	the	form	object	is
exposed.	The	default	is	‘command.’

cssClass Specifies	the	CSS	class	to	be	applied	to	the	rendered	form	element.

cssStyle Specifies	the	CSS	style	to	be	applied	to	the	rendered	form	element

htmlEscape Accepts	true	or	false	indicating	whether	or	not	the	rendered	value(s)
should	be	HTML-escaped.

modelAttribute The	name	of	the	model	attribute	under	which	the	form-backing
object	is	exposed.	The	default	is	‘command’.

Table	5.2:	The	form	tag’s	attributes

All	attributes	in	Table	5.2	are	optional.	The	table	does	not	include	HTML	attributes,	such
as	method	and	action.

The	commandName	attribute	is	probably	the	most	important	attribute	as	it	specifies	the
name	of	the	model	attribute	that	contains	a	backing	object	whose	properties	will	be	used	to
populate	 the	generated	form.	If	 this	attribute	 is	present,	you	must	add	 the	corresponding
model	attribute	in	the	request-handling	method	that	returns	the	view	containing	this	form.
For	 instance,	 in	 the	 tags-demo	 application	 that	 accompanies	 this	 chapter,	 the	 following
form	tag	is	specified	in	the	BookAddForm.jsp.

<form:form	commandName="book"	action="save-book"	method="post">

				...

</form:form>

The	inputBook	method	in	the	BookController	class	is	the	request-handling	method	that
returns	BookAddForm.jsp.	Here	is	the	inputBook	method.

@RequestMapping(value	=	"/input-book")

public	String	inputBook(Model	model)	{

				...

				model.addAttribute("book",	new	Book());

				return	"BookAddForm";

}

As	 you	 can	 see,	 a	Book	 object	 is	 created	 and	 added	 to	 the	Model	 with	 attribute	 name
book.	Without	the	model	attribute,	the	BookAddForm.jsp	page	will	 throw	an	exception

because	the	form	 tag	cannot	find	a	form-backing	object	specified	in	its	commandName
attribute.

In	 addition,	 you	 will	 still	 normally	 use	 the	 action	 and	method	 attributes.	 Both	 are
HTML	attributes	and	therefore	not	included	in	Table	5.2.

The	input	Tag
The	input	tag	renders	an	<input	type=“text”/>	element.	The	most	important	attribute	of
this	tag,	the	path	attribute,	binds	this	input	field	to	a	property	of	the	form-backing	object.
For	 example,	 if	 the	 commandName	 attribute	 of	 the	 enclosing	<form/>	 tag	 is	 assigned
book	and	the	path	attribute	of	the	input	tag	is	given	the	value	isbn,	the	input	tag	will	be
bound	to	the	isbn	property	of	the	Book	object.

Table	 5.3	 shows	 all	 the	 attributes	 in	 the	 input	 tag.	 All	 attributes	 in	 Table	 5.3	 are
optional	and	the	table	does	not	include	HTML	attributes.

Attribute Description

cssClass Specifies	the	CSS	class	to	be	applied	to	the	rendered	input	element.

cssStyle Specifies	the	CSS	style	to	be	applied	to	the	rendered	input	element

CssErrorClass
Specifies	the	CSS	class	to	be	applied	to	the	rendered	input	element	if
the	bound	property	contains	errors,	overriding	the	value	of	the
cssClass	attribute.

htmlEscape Accepts	true	or	false	indicating	whether	or	not	the	rendered	value(s)
should	be	HTML-escaped.

path The	path	to	the	property	to	bind.

Table	5.3:	The	input	tag’s	attributes

As	an	example,	this	input	tag	is	bound	to	the	isbn	property	of	the	form-backing	object.

<form:input	id="isbn"	path="isbn"	cssErrorClass="errorBox"/>

This	will	be	rendered	as	the	following	<input/>	element:

<input	type="text"	id="isbn"	name="isbn"/>

The	cssErrorClass	attribute	has	no	effect	unless	 there	 is	an	input	validation	error	 in	 the
isbn	 property	 and	 the	 same	 form	 is	 used	 to	 redisplay	 the	 user	 input,	 in	which	 case	 the
input	tag	will	be	rendered	as	this	input	element.

<input	type="text"	id="isbn"	name="isbn"	class="errorBox"/>

The	 input	 tag	 can	 also	 be	 bound	 to	 a	 property	 in	 a	 nested	 object.	 For	 example,	 the
following	 input	 tag	 is	 bound	 to	 the	 id	 property	 of	 the	 category	 property	 of	 the	 form-
backing	object.

<form:input	path="category.id"/>

The	password	Tag
The	password	 tag	 renders	an	<input	type=“password”/>	 element	and	 its	attributes	are
given	 in	 Table	 5.4.	 The	 password	 tag	 is	 similar	 to	 the	 input	 tag	 except	 that	 it	 has	 a
showPassword	attribute.

Attribute Description

cssClass Specifies	the	CSS	class	to	be	applied	to	the	rendered	input	element.

cssStyle Specifies	the	CSS	style	to	be	applied	to	the	rendered	input	element

cssErrorClass
Specifies	the	CSS	class	to	be	applied	to	the	rendered	input	element	if
the	bound	property	contains	errors,	overriding	the	value	of	the
cssClass	attribute.

htmlEscape Accepts	true	or	false	indicating	whether	or	not	the	rendered	value(s)
should	be	HTML-escaped.

path The	path	to	the	property	to	bind.

showPassword Indicates	whether	the	password	should	be	shown	rather	than	masked.
The	default	is	false.

Table	5.4:	The	password	tag’s	attributes

All	 attributes	 in	Table	5.4	 are	optional	 and	 the	 table	does	not	 include	HTML	attributes.
Here	is	an	example	of	the	password	tag.

<form:password	id="pwd"	path="password"	cssClass="normal"/>	

The	hidden	Tag
The	hidden	tag	renders	an	<input	type=“hidden”/>	element	and	its	attributes	are	given
in	 Table	 5.5.	 The	 hidden	 tag	 is	 similar	 to	 the	 input	 tag	 except	 that	 it	 has	 no	 visual
appearance	and	therefore	does	not	support	a	cssClass	or	cssStyle	attribute.

Attribute Description

htmlEscape Accepts	true	or	false	indicating	whether	or	not	the	rendered	value(s)
should	be	HTML-escaped.

path The	path	to	the	property	to	bind.

Table	5.5:	The	hidden	tag’s	attributes

All	attributes	in	Table	5.5	are	optional	and	the	table	does	not	include	HTML	attributes.

The	following	is	an	example	hidden	tag.

<form:hidden	path="productId"/>

The	textarea	Tag
The	textarea	tag	renders	an	HTML	textarea	element.	As	you	know,	a	textarea	element	is
basically	an	input	element	that	supports	multiline	input.	The	attributes	of	the	textarea	tag
are	presented	in	Table	5.6.	All	attributes	in	Table	5.6	are	optional	and	the	table	does	not
include	HTML	attributes.

Attribute Description

cssClass Specifies	the	CSS	class	to	be	applied	to	the	rendered	input	element.

cssStyle Specifies	the	CSS	style	to	be	applied	to	the	rendered	input	element

cssErrorClass
Specifies	the	CSS	class	to	be	applied	to	the	rendered	input	element	if
the	bound	property	contains	errors,	overriding	the	value	of	the	cssClass
attribute.

htmlEscape Accepts	true	or	false	indicating	whether	or	not	the	rendered	value(s)
should	be	HTML-escaped.

path The	path	to	the	property	to	bind.

Table	5.6:	The	password	tag’s	attributes

For	example,	the	following	textarea	tag	is	bound	to	the	note	property	of	the	form-backing
object.

<form:textarea	path="note"	tabindex="4"	rows="5"	cols="80"/>

The	checkbox	Tag
The	checkbox	tag	renders	an	<input	type=“checkbox”/>	element.	The	attributes	that	can
appear	within	the	checkbox	tag	are	listed	in	Table	5.7.	All	attributes	are	optional	and	this
table	does	not	include	HTML	attributes.

Attribute Description

cssClass Specifies	the	CSS	class	to	be	applied	to	the	rendered	input	element.

cssStyle Specifies	the	CSS	style	to	be	applied	to	the	rendered	input	element

cssErrorClass
Specifies	the	CSS	class	to	be	applied	to	the	rendered	input	element	if
the	bound	property	contains	errors,	overriding	the	value	of	the	cssClass
attribute.

htmlEscape Accepts	true	or	false	indicating	whether	or	not	the	rendered	value(s)
should	be	HTML-escaped.

label The	value	to	be	used	as	the	label	for	the	rendered	checkbox.

path The	path	to	the	property	to	bind.

Table	5.7:	The	checkbox	tag’s	attributes

For	example,	the	following	checkbox	tag	is	bound	to	the	outOfStock	property.

<form:checkbox	path="outOfStock"	value="Out	of	Stock"/>

The	radiobutton	Tag
The	 radiobutton	 tag	 renders	 an	 <input	 type=“radio”/>	 element.	 The	 attributes	 for
radiobutton	are	given	in	Table	5.8.	All	attributes	in	Table	5.8	are	optional	and	the	table
does	not	include	HTML	attributes.

Attribute Description

cssClass Specifies	the	CSS	class	to	be	applied	to	the	rendered	input	element.

cssStyle Specifies	the	CSS	style	to	be	applied	to	the	rendered	input	element

cssErrorClass
Specifies	the	CSS	class	to	be	applied	to	the	rendered	input	element	if
the	bound	property	contains	errors,	overriding	the	value	of	the	cssClass
attribute.

htmlEscape Accepts	true	or	false	indicating	whether	or	not	the	rendered	value(s)
should	be	HTML-escaped.

label The	value	to	be	used	as	the	label	for	the	rendered	radio	button.

path The	path	to	the	property	to	bind.

Table	5.8:	The	radiobutton	tag’s	attributes

For	instance,	the	following	radiobutton	tags	are	bound	to	a	newsletter	property.

Computing	Now	<form:radiobutton	path="newsletter"	value="Computing	Now"/>

Modern	Health	<form:radiobutton	path="newsletter"	value="Modern	Health"/>

The	checkboxes	Tag
The	checkboxes	tag	renders	multiple	<input	type=“checkbox”/>	elements.	The	attributes
that	may	appear	within	checkboxes	are	given	in	Table	5.9.	All	attributes	are	optional	and
the	table	does	not	include	HTML	attributes.

Attribute Description

cssClass Specifies	the	CSS	class	to	be	applied	to	the	rendered	input	element.

cssStyle Specifies	the	CSS	style	to	be	applied	to	the	rendered	input	element

cssErrorClass
Specifies	the	CSS	class	to	be	applied	to	the	rendered	input	element	if
the	bound	property	contains	errors,	overriding	the	value	of	the	cssClass
attribute.

delimiter Specifies	a	delimiter	between	two	input	elements.	By	default,	there	is
no	delimiter.

element Specifies	an	HTML	element	to	enclosed	each	rendered	input	element.
The	default	is	‘span’.

htmlEscape Accepts	true	or	false	indicating	whether	or	not	the	rendered	value(s)
should	be	HTML-escaped.

items The	Collection,	Map,	or	array	of	objects	used	to	generate	the	input
elements.

itemLabel The	property	of	the	objects	in	the	collection/Map/array	specified	in	the
items	attribute	that	is	to	supply	the	label	for	each	input	element.

itemValue The	property	of	the	objects	in	the	collection/Map/array	specified	in	the
items	attribute	that	is	to	supply	the	value	for	each	input	element.

path The	path	to	the	property	to	bind.

Table	5.9:	The	checkboxes	tag’s	attributes

For	 example,	 the	 following	 checkboxes	 tag	 renders	 the	 content	 of	 model	 attribute
categoryList	as	check	boxes.	The	checkboxes	tag	allows	multiple	selections.

<form:checkboxes	path="category"	items="${categoryList}"/>

The	radiobuttons	Tag
The	radiobuttons	 tag	 renders	multiple	<input	type=“radio”/>	 elements.	The	 attributes
for	radiobuttons	tag	are	presented	in	Table	5.10.

Attribute Description

cssClass Specifies	the	CSS	class	to	be	applied	to	the	rendered	input	element.

cssStyle Specifies	the	CSS	style	to	be	applied	to	the	rendered	input	element

cssErrorClass
Specifies	the	CSS	class	to	be	applied	to	the	rendered	input	element	if
the	bound	property	contains	errors,	overriding	the	value	of	the	cssClass
attribute.

delimiter Specifies	a	delimiter	between	two	input	elements.	By	default,	there	is
no	delimiter.

element Specifies	an	HTML	element	to	enclosed	each	rendered	input	element.
The	default	is	‘span’.

htmlEscape Accepts	true	or	false	indicating	whether	or	not	the	rendered	value(s)
should	be	HTML-escaped.

items The	Collection,	Map,	or	array	of	objects	used	to	generate	the	input
elements.

itemLabel The	property	of	the	objects	in	the	collection/Map/array	specified	in	the
items	attribute	that	is	to	supply	the	label	for	each	input	element.

itemValue The	property	of	the	objects	in	the	collection/Map/array	specified	in	the
items	attribute	that	is	to	supply	the	value	for	each	input	element.

path The	path	to	the	property	to	bind.

Table	5.10:	The	radiobuttons	tag’s	attributes

For	 example,	 the	 following	 radiobuttons	 tag	 renders	 the	 content	 of	 model	 attribute
categoryList	as	radio	buttons.	Only	one	radio	button	can	be	selected	at	a	time.

<form:radiobuttons	path="category"	items="${categoryList}"/>

The	select	Tag
The	select	tag	renders	a	HTML	select	element.	The	options	for	the	rendered	element	may
come	 from	 a	 collection	 or	 a	map	 or	 an	 array	 assigned	 to	 its	 items	 attribute	 or	 from	 a
nested	option	or	options	tag.	The	properties	of	the	select	tag	are	given	in	Table	5.11.	All
attributes	are	optional	and	none	of	the	HTML	attributes	is	included	in	the	table.

Attribute Description

cssClass Specifies	the	CSS	class	to	be	applied	to	the	rendered	input	element.

cssStyle Specifies	the	CSS	style	to	be	applied	to	the	rendered	input	element

cssErrorClass
Specifies	the	CSS	class	to	be	applied	to	the	rendered	input	element	if
the	bound	property	contains	errors,	overriding	the	value	of	the	cssClass
attribute.

htmlEscape Accepts	true	or	false	indicating	whether	or	not	the	rendered	value(s)
should	be	HTML-escaped.

items The	Collection,	Map,	or	array	of	objects	used	to	generate	the	input
elements.

itemLabel The	property	of	the	objects	in	the	collection/Map/array	specified	in	the
items	attribute	that	is	to	supply	the	label	for	each	input	element.

itemValue The	property	of	the	objects	in	the	collection/Map/array	specified	in	the
items	attribute	that	is	to	supply	the	value	for	each	input	element.

path The	path	to	the	property	to	bind.

Table	5.11:	The	select	tag’s	attributes

The	items	attribute	is	particularly	useful	as	it	may	be	bound	to	a	collection,	a	map,	or	an
array	of	objects	to	generate	the	options	for	the	select	element.

For	 example,	 the	 following	 select	 tag	 is	 bound	 to	 the	 id	 property	 of	 the	 category
property	of	the	form-backing	object.	Its	options	come	from	a	categories	model	attribute.
The	 value	 for	 each	 option	 comes	 from	 the	 id	 property	 of	 the	 objects	 in	 the	 categories
collection/map/array,	and	its	label	comes	from	the	name	property.

<form:select	id="category"	path="category.id"	

				items="${categories}"	itemLabel="name"	

				itemValue="id"/>

The	option	Tag
The	option	 tag	renders	an	HTML	option	element	to	be	used	within	a	select	element.	Its
attributes	are	given	in	Table	5.12.	All	attributes	are	optional	and	the	table	does	not	include
HTML	attributes.

Attribute Description

cssClass Specifies	the	CSS	class	to	be	applied	to	the	rendered	input	element.

cssStyle Specifies	the	CSS	style	to	be	applied	to	the	rendered	input	element

cssErrorClass
Specifies	the	CSS	class	to	be	applied	to	the	rendered	input	element	if
the	bound	property	contains	errors,	overriding	the	value	of	the	cssClass
attribute.

htmlEscape Accepts	true	or	false	indicating	whether	or	not	the	rendered	value(s)
should	be	HTML-escaped.

Table	5.12:	The	option	tag’s	attributes

For	example,	here	is	an	example	option	tag.

<form:select	id="category"	path="category.id"	

								items="${categories}"	itemLabel="name"	

								itemValue="id">

				<option	value="0">--	Please	select	--</option>

</form:select>

This	code	snippet	renders	a	select	element	whose	options	come	from	a	categories	model
attribute	as	well	as	from	the	option	tag.

The	options	Tag
The	options	tag	generates	a	list	of	HTML	option	elements.	Table	5.13	shows	the	attributes
that	may	appear	in	the	options	tag.	It	does	not	include	HTML	attributes.

Attribute Description

cssClass Specifies	the	CSS	class	to	be	applied	to	the	rendered	input	element.

cssStyle Specifies	the	CSS	style	to	be	applied	to	the	rendered	input	element

cssErrorClass
Specifies	the	CSS	class	to	be	applied	to	the	rendered	input	element	if
the	bound	property	contains	errors,	overriding	the	value	of	the	cssClass
attribute.

htmlEscape Accepts	true	or	false	indicating	whether	or	not	the	rendered	value(s)
should	be	HTML-escaped.

items The	Collection,	Map,	or	array	of	objects	used	to	generate	the	input
elements.

itemLabel The	property	of	the	objects	in	the	collection/Map/array	specified	in	the
items	attribute	that	is	to	supply	the	label	for	each	input	element.

itemValue The	property	of	the	objects	in	the	collection/Map/array	specified	in	the
items	attribute	that	is	to	supply	the	value	for	each	input	element.

Table	5.13:	The	options	tag’s	attributes

The	tags-demo	application	provides	an	example	of	the	options	tag.

The	errors	Tag
The	errors	tag	renders	one	or	more	HTML	span	element	that	each	contains	a	field	error
message.	This	tag	can	be	used	to	display	a	specific	field	error	or	all	field	errors.

The	attributes	of	the	errors	tag	are	listed	in	Table	5.14.	All	attributes	are	optional	and
the	table	does	not	include	HTML	attributes	that	may	appear	in	the	HTML	span	elements.

Attribute Description

cssClass Specifies	the	CSS	class	to	be	applied	to	the	rendered	input	element.

cssStyle Specifies	the	CSS	style	to	be	applied	to	the	rendered	input	element

delimiter Delimiter	for	separating	multiple	error	messages.

element Specifies	an	HTML	element	to	enclose	the	error	messages.

htmlEscape Accepts	true	or	false	indicating	whether	or	not	the	rendered	value(s)
should	be	HTML-escaped.

path The	path	to	the	errors	object	to	bind.

Table	5.14:	The	errors	tag’s	attributes

For	example,	this	errors	tag	displays	all	field	errors.

<form:errors	path="*"/>

The	following	errors	tag	displays	a	field	error	associated	with	the	author	property	of	the
form-backing	object.

<form:errors	path="author"/>

Data	Binding	Example
As	an	example	of	using	the	tags	in	the	form	tag	library	to	take	advantage	of	data	binding,
consider	the	tags-demo	application.	This	example	centers	around	the	Book	domain	class.
The	 class	 has	 several	 properties,	 including	 a	 category	 property	 of	 type	 Category.
Category	has	two	properties,	id	and	name.

The	application	allows	you	to	list	books,	add	a	new	book,	and	edit	a	book.

The	Directory	Structure
Figure	5.1	shows	the	directory	structure	of	tags-demo.	The	content	of	the	lib	directory	is
not	shown	to	save	space.

Figure	5.1:	The	directory	structure	of	tags-demo

The	Domain	Classes
The	Book	class	and	 the	Category	class	are	 the	domain	classes	 in	 this	application.	They
are	given	in	Listing	5.1	and	Listing	5.2,	respectively.

Listing	5.1:	The	Book	class

package	domain;

import	java.math.BigDecimal;

import	java.io.Serializable;

public	class	Book	implements	Serializable	{

				

				private	static	final	long	serialVersionUID	=	1L;

				private	long	id;

				private	String	isbn;

				private	String	title;

				private	Category	category;

				private	String	author;

				

				public	Book()	{

				}

				

				public	Book(long	id,	String	isbn,	String	title,	

												Category	category,	String	author,	BigDecimal	price)	{

								this.id	=	id;

								this.isbn	=	isbn;

								this.title	=	title;

								this.category	=	category;

								this.author	=	author;

								this.price	=	price;

				}

				//	get	and	set	methods	not	shown

}

Listing	5.2:	The	Category	class

package	domain;

import	java.io.Serializable;

public	class	Category	implements	Serializable	{

				private	static	final	long	serialVersionUID	=	1L;

				private	int	id;

				private	String	name;

				

				public	Category()	{

				}

				

				public	Category(int	id,	String	name)	{

								this.id	=	id;

								this.name	=	name;

				}

				//	get	and	set	methods	not	shown

}

The	Controller	Class
The	example	provides	a	controller	for	Book,	the	BookController	class.	It	allows	the	user
to	create	a	new	book,	update	a	book’s	details,	and	list	all	books	in	the	system.	Listing	5.3
shows	the	BookController	class.

Listing	5.2:	The	BookController	class

package	controller;

import	java.util.List;

import	org.apache.commons.logging.Log;

import	org.apache.commons.logging.LogFactory;

import	org.springframework.beans.factory.annotation.Autowired;

import	org.springframework.stereotype.Controller;

import	org.springframework.ui.Model;

import	org.springframework.web.bind.annotation.ModelAttribute;

import	org.springframework.web.bind.annotation.PathVariable;

import	org.springframework.web.bind.annotation.RequestMapping;

import	domain.Book;

import	domain.Category;

import	service.BookService;

@Controller

public	class	BookController	{

				@Autowired

				private	BookService	bookService;

				private	static	final	Log	logger	=	

												LogFactory.getLog(BookController.class);

				@RequestMapping(value	=	"/input-book")

				public	String	inputBook(Model	model)	{

								List<Category>	categories	=	bookService.getAllCategories();

								model.addAttribute("categories",	categories);

								model.addAttribute("book",	new	Book());

								return	"BookAddForm";

				}

				@RequestMapping(value	=	"/edit-book/{id}")

				public	String	editBook(Model	model,	@PathVariable	long	id)	{

								List<Category>	categories	=	bookService.getAllCategories();

								model.addAttribute("categories",	categories);

								Book	book	=	bookService.get(id);

								model.addAttribute("book",	book);

								return	"BookEditForm";

				}

				@RequestMapping(value	=	"/save-book")

				public	String	saveBook(@ModelAttribute	Book	book)	{

								Category	category	=

																bookService.getCategory(book.getCategory().getId());

								book.setCategory(category);

								bookService.save(book);

								return	"redirect:/list-books";

				}

				@RequestMapping(value	=	"/update-book")

				public	String	updateBook(@ModelAttribute	Book	book)	{

								Category	category	=	

																bookService.getCategory(book.getCategory().getId());

								book.setCategory(category);

								bookService.update(book);

								return	"redirect:/list-books";

				}

				@RequestMapping(value	=	"/list-books")

				public	String	listBooks(Model	model)	{

								logger.info("listBooks");

								List<Book>	books	=	bookService.getAllBooks();

								model.addAttribute("books",	books);

								return	"BookList";

				}

}

BookController	 is	 dependent	 on	 a	 BookService	 for	 some	 back-end	 processing.	 The
@Autowired	annotation	is	used	to	inject	an	instance	of	BookService	implementation	to
the	BookController.

@Autowired

private	BookService	bookService;

The	Service	Class
Finally,	 Listing	 5.4	 and	 Listing	 5.5	 show	 the	 BookService	 interface	 and	 the
BookServiceImpl	class,	respectively.	As	the	name	implies,	BookServiceImpl	implements
BookService.

Listing	5.4:	The	BookService	interface

package	service;

import	java.util.List;

import	domain.Book;

import	domain.Category;

public	interface	BookService	{

				List<Category>	getAllCategories();

				Category	getCategory(int	id);

				List<Book>	getAllBooks();

				Book	save(Book	book);

				Book	update(Book	book);

				Book	get(long	id);

				long	getNextId();

}

Listing	5.5:	The	BookServiceImpl	class

package	service;

import	java.util.ArrayList;

import	java.util.List;

import	org.springframework.stereotype.Service;

import	domain.Book;

import	domain.Category;

@Service

public	class	BookServiceImpl	implements	BookService	{

				

				/*

					*	this	implementation	is	not	thread-safe

					*/

				private	List<Category>	categories;

				private	List<Book>	books;

				

				public	BookServiceImpl()	{

								categories	=	new	ArrayList<Category>();

								Category	category1	=	new	Category(1,	"Computer");

								Category	category2	=	new	Category(2,	"Travel");

								Category	category3	=	new	Category(3,	"Health");

								categories.add(category1);

								categories.add(category2);

								categories.add(category3);

								

								books	=	new	ArrayList<Book>();

								books.add(new	Book(1L,	"9781771970273",

																"Servlet	&	JSP:	A	Tutorial	(2nd	Edition)",	

																category1,	"Budi	Kurniawan",	new	BigDecimal("54.99")));

								books.add(new	Book(2L,	"9781771970297",

																"C#:	A	Beginner's	Tutorial	(2nd	Edition)",

																category1,	"Jayden	Ky",	new	BigDecimal("39.99")));

				}

				@Override

				public	List<Category>	getAllCategories()	{

								return	categories;

				}

				

				@Override

				public	Category	getCategory(int	id)	{

								for	(Category	category	:	categories)	{

												if	(id	==	category.getId())	{

																return	category;

												}

								}

								return	null;

				}

				@Override

				public	List<Book>	getAllBooks()	{

								return	books;

				}

				@Override

				public	Book	save(Book	book)	{

								book.setId(getNextId());

								books.add(book);

								return	book;

				}

				@Override

				public	Book	get(long	id)	{

								for	(Book	book	:	books)	{

												if	(id	==	book.getId())	{

																return	book;

												}

								}

								return	null;

				}

				

				@Override

				public	Book	update(Book	book)	{

								int	bookCount	=	books.size();

								for	(int	i	=	0;	i	<	bookCount;	i++)	{

												Book	savedBook	=	books.get(i);

												if	(savedBook.getId()	==	book.getId())	{

																books.set(i,	book);

																return	book;

												}

								}

								return	book;

				}

				

				@Override

				public	long	getNextId()	{

								//	needs	to	be	locked

								long	id	=	0L;

								for	(Book	book	:	books)	{

												long	bookId	=	book.getId();

												if	(bookId	>	id)	{

																id	=	bookId;

												}

								}

								return	id	+	1;

				}

}

The	BookServiceImpl	 class	 contains	 a	List	 of	Book	 objects	 and	 a	 List	 of	Category
object.	 Both	 lists	 are	 populated	 when	 the	 class	 is	 instantiated.	 The	 class	 also	 contains
methods	for	retrieving	all	books,	retrieve	a	single	book,	and	add	and	update	a	book.

The	Configuration	File
Listing	5.6	presents	the	Spring	MVC	configuration	file	for	tags-demo.

Listing	5.6:	The	Spring	MVC	configuration	file

<?xml	version="1.0"	encoding="UTF-8"?>

<beans	xmlns="http://www.springframework.org/schema/beans"

			xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

			xmlns:p="http://www.springframework.org/schema/p"

			xmlns:mvc="http://www.springframework.org/schema/mvc"

			xmlns:context="http://www.springframework.org/schema/context"

			xsi:schemaLocation="

						http://www.springframework.org/schema/beans

						http://www.springframework.org/schema/beans/spring-beans.xsd

						http://www.springframework.org/schema/mvc

						http://www.springframework.org/schema/mvc/spring-mvc.xsd					

						http://www.springframework.org/schema/context

						http://www.springframework.org/schema/context/spring-context.xsd">

								

			<context:component-scan	base-package="controller"/>

			<context:component-scan	base-package="service"/>

			...	<!--	other	elements	are	not	shown	-->

					

</beans>

The	component-scan	beans	causes	the	controller	and	service	packages	to	be	scanned.

The	View
The	 three	 JSP	 pages	 used	 in	 tags-demo	 are	 given	 in	 Listings	 5.7,	 5.8,	 and	 5.9.	 In	 the
BookAddForm.jsp	and	BookEditForm.jsp	pages,	the	tags	from	the	form	tag	library	are
used.

Listing	5.7:	The	BookList.jsp	page

<%@	taglib	uri="http://java.sun.com/jsp/jstl/core"	prefix="c"	%>

<!DOCTYPE	html>

<html>

<head>

<title>Book	List</title>

<style	type="text/css">@import	url("<c:url	value="/css/main.css"/>");

</style>

</head>

<body>

<div	id="global">

<h1>Book	List</h1>

<a	href="<c:url	value="/book_input"/>">Add	Book

<table>

<tr>

				<th>Category</th>

				<th>Title</th>

				<th>ISBN</th>

				<th>Author</th>

				<th>Price</th>

				<th> </th>

</tr>

<c:forEach	items="${books}"	var="book">

				<tr>

								<td>${book.category.name}</td>

								<td>${book.title}</td>

								<td>${book.isbn}</td>

								<td>${book.author}</td>

								<td>${book.price}</td>

								<td>Edit</td>

				</tr>

</c:forEach>

</table>

</div>

</body>

</html>

Listing	5.8:	The	BookAddForm.jsp	page

<%@	taglib	prefix="form"	

								uri="http://www.springframework.org/tags/form"	%>

<%@	taglib	uri="http://java.sun.com/jsp/jstl/core"	prefix="c"	%>

<!DOCTYPE	html>

<html>

<head>

<title>Add	Book	Form</title>

<style	type="text/css">@import	url("<c:url	value="/css/main.css"/>");</style>

</head>

<body>

<div	id="global">

<form:form	commandName="book"	action="save-book"	method="post">

				<fieldset>

								<legend>Add	a	book</legend>

								<p>

												<label	for="category">Category:	</label>

													<form:select	id="category"	path="category.id"	

																items="${categories}"	itemLabel="name"	

																itemValue="id"/>

								</p>

								<p>

												<label	for="title">Title:	</label>

												<form:input	id="title"	path="title"/>

								</p>

								<p>

												<label	for="author">Author:	</label>

												<form:input	id="author"	path="author"/>

								</p>

								<p>

												<label	for="isbn">ISBN:	</label>

												<form:input	id="isbn"	path="isbn"/>

								</p>

								

								<p	id="buttons">

												<input	id="reset"	type="reset"	tabindex="4">

												<input	id="submit"	type="submit"	tabindex="5"	

																value="Add	Book">

								</p>

				</fieldset>

</form:form>

</div>

</body>

</html>

Listing	5.9:	The	BookEditForm.jsp	page

<%@	taglib	prefix="form"	

								uri="http://www.springframework.org/tags/form"	%>

<%@	taglib	uri="http://java.sun.com/jsp/jstl/core"	prefix="c"	%>

<!DOCTYPE	html>

<html>

<head>

<title>Edit	Book	Form</title>

<style	type="text/css">@import	url("<c:url	value="/css/main.css"/>");</style>

</head>

<body>

<div	id="global">

<c:url	var="formAction"	value="/update-book"/>

<form:form	commandName="book"	action="${formAction}"	method="post">

				<fieldset>

								<legend>Edit	a	book</legend>

								<form:hidden	path="id"/>

								<p>

												<label	for="category">Category:	</label>

													<form:select	id="category"	path="category.id"	items="${categories}"

																itemLabel="name"	itemValue="id"/>

								</p>

								<p>

												<label	for="title">Title:	</label>

												<form:input	id="title"	path="title"/>

								</p>

								<p>

												<label	for="author">Author:	</label>

												<form:input	id="author"	path="author"/>

								</p>

								<p>

												<label	for="isbn">ISBN:	</label>

												<form:input	id="isbn"	path="isbn"/>

								</p>

								

								<p	id="buttons">

												<input	id="reset"	type="reset"	tabindex="4">

												<input	id="submit"	type="submit"	tabindex="5"	

																value="Update	Book">

								</p>

				</fieldset>

</form:form>

</div>

</body>

</html>

Note	that	in	the	BookEditForm.jsp	page,	the	form’s	action	attribute	is	given	a	value	from
<c:url/>:

<c:url	var="formAction"	value="/update-book"/>

<form:form	commandName="book"	action="${formAction}"	method="post">

This	is	because	the	form	needs	to	target	the	/update-book	mapping	and	giving	the	action
attribute	a	static	value	“update-book”	 is	problematic.	If	 the	book	id	is	sent	as	a	request
parameter	to	the	Edit	Book	page,	the	page	URL	will	be	as	follows:

http://domain/context/edit-book?id=1

the	form	will	be	correctly	submitted	to	http://domain/context/update-book.

However,	if	the	book	id	is	sent	as	a	path	variable,	the	page	URL	will	be	as	follows:

http://domain/context/edit-book/id

and	the	form	will	be	submitted	to

http://domain/context/edit-book/update-book

Because	of	 this,	you	should	use	<c:url/>	 to	make	sure	 the	form	target	 is	always	correct
regardless	 of	 the	 page	 URL.	 Unfortunately,	 the	 form’s	 action	 attribute	 cannot	 take

<c:url/>.	 As	 such,	 you	 need	 to	 create	 a	 variable	 formAction	 and	 refer	 to	 it	 from	 the
action	attribute.

Testing	the	Application
To	test	the	application,	go	to	this	page.

http://localhost:8080/tags-demo/list-books

Figure	5.2	shows	the	list	of	books	when	the	application	is	first	started.

Figure	5.2:	The	book	list

You	can	click	 the	Add	Book	 link	 to	add	a	book	or	an	Edit	 link	 to	 the	 right	of	a	book’s
details	to	edit	the	book.

Figure	5.3	shows	the	Add	Book	form	and	Figure	5.4	the	Edit	Book	form.

Figure	5.3:	The	Add	Book	form

Figure	5.4:	The	Edit	Book	form

Summary
In	 this	 chapter	you	 learned	about	data	binding	and	 the	 tags	 in	 the	 form	 tag	 library.	The
next	 two	 chapters	 discuss	 how	 you	 can	 further	 take	 advantage	 of	 data	 binding	 with
converters,	formatters,	and	validators.

Chapter	6

Converters	and	Formatters
In	Chapter	5,	“Data	Binding	and	the	Form	Tag	Library”	you	witnessed	the	power	of	data
binding	and	learned	to	harness	it	using	the	tags	in	the	form	tag	library.	However,	Spring
data	binding	is	not	without	limit.	There	are	cases	where	Spring	is	clueless	on	how	to	bind
data	correctly.	For	example,	Spring	will	always	try	to	bind	a	date	input	to	a	java.util.Date
using	 the	default	 locale.	 If	you	want	Spring	 to	use	a	different	date	pattern,	 for	example,
you	need	to	use	a	converter	or	a	formatter	to	help	Spring.

This	 chapter	 discusses	 the	 converter	 and	 the	 formatter.	 Both	 are	 used	 to	 convert	 one
type	of	object	to	another.	Converters	are	generic	components	that	can	be	used	in	any	tier
of	the	application.	Formatters,	on	the	other	hand,	are	specifically	designed	for	the	web	tier.

This	 chapter	 comes	 with	 two	 accompanying	 applications,	 converter-demo	 and
formatter-demo.	 Both	 use	 a	messageSource	 bean	 that	 helps	 display	 controlled	 error
messages.	The	functionality	of	this	bean	is	explained	in	Chapter	10,	“Internationalization.”

Converters
A	Spring	 converter	 is	 an	 object	 that	 converts	 a	 type	 to	 another	 type.	 For	 example,	 user
input	for	a	date	can	be	in	many	forms.	“December	25,	2016,”	12/25/2016,”	“2016-12-25”
can	 all	 represent	 the	 same	 date.	By	 default,	 Spring	 expects	 the	 input	 to	 be	 in	 the	 same
pattern	as	the	current	locale,	which	is	probably	in	MM/dd/yyyy	format	if	you	live	in	the
United	States.	 If	 you	want	Spring	 to	use	 a	different	date	pattern	when	binding	an	 input
string	 to	 a	 LocalDate,	 you	 need	 to	 write	 a	 string-to-date	 converter.	 The
java.time.LocalDate	 class	 is	 a	 new	 type	 in	 Java	 8	 that	 replaces	 java.util.Date.	 You
should	use	the	new	Date/Time	API	instead	of	the	old	Date	and	Calendar	classes.

To	 create	 a	 converter,	 you	 must	 write	 a	 Java	 class	 that	 implement	 the
org.springframework.core.convert.converter.Converter	 interface.	 The	 declaration	 of
this	interface	is	parameterized:

public	interface	Converter<S,	T>

Here,	S	represents	the	source	type	and	T	the	target	type.	For	instance,	to	create	a	converter
that	can	convert	a	Long	to	a	LocalDate,	you	would	declare	your	converter	class	like	so.

public	class	MyConverter	implements	Converter<Long,	LocalDate>	{

}

In	your	class	body,	you	need	to	write	an	implementation	of	the	convert	method	from	the
Converter	interface.	The	signature	of	this	method	is	as	follows.

T	convert(S	source)	

For	example,	Listing	6.1	shows	a	converter	that	can	work	with	any	date	pattern.

Listing	6.1:	The	StringToLocalDate	converter

package	converter;

import	java.time.LocalDate;

import	java.time.format.DateTimeFormatter;

import	java.time.format.DateTimeParseException;

import	org.springframework.core.convert.converter.Converter;

public	class	StringToLocalDateConverter	implements	Converter<

								String,	LocalDate>	{

				private	String	datePattern;

				public	StringToLocalDateConverter(String	datePattern)	{

								this.datePattern	=	datePattern;

				}

				@Override

				public	LocalDate	convert(String	s)	{

								try	{

												return	LocalDate.parse(s,	DateTimeFormatter.ofPattern(

																				datePattern));

								}	catch	(DateTimeParseException	e)	{

												//	the	error	message	will	be	displayed	in	<form:errors>

												throw	new	IllegalArgumentException(

																				"invalid	date	format.	Please	use	this	pattern\""

																												+	datePattern	+	"\"");

								}

				}

}

Note	that	the	convert	method	in	Listing	6.1	converts	a	String	 to	a	LocalDate	using	 the
date	pattern	passed	to	the	constructor.

To	 use	 custom	 converters	 in	 a	 Spring	 MVC	 application,	 you	 need	 to	 write	 a
conversionService	bean	 in	your	Spring	MVC	configuration	file.	The	class	name	for	 the
bean	 must	 be	 org.springframework.context.support.ConversionServiceFactoryBean.
The	bean	must	contain	a	converters	property	that	lists	all	custom	converters	to	be	used	in
the	 application.	 For	 example,	 the	 following	 bean	 declaration	 registers	 the
StringToDateConverter	in	Listing	6.1.

<bean	id="conversionService"	class="org.springframework.context.support.

ConversionServiceFactoryBean">

				<property	name="converters">

								<list>

												<bean	class="converter.StringToLocalDateConverter">

																<constructor-arg	type="java.lang.String"	

																								value="MM-dd-yyyy"/>

												</bean>

								</list>

				</property>

</bean>

After	 that,	 you	 need	 to	 assign	 the	 bean	 name	 (in	 this	 case,	 conversionService)	 to	 the
conversion-service	attribute	of	the	annotation-driven	element,	like	so

<mvc:annotation-driven	

								conversion-service="conversionService"/>

The	 converter-demo	 application	 is	 a	 sample	 application	 that	 uses	 the
StringToLocalDateConverter	 to	 convert	 a	 String	 to	 the	 birthDate	 property	 of	 the
Employee	object.	The	Employee	class	is	given	in	Listing	6.2.

Listing	6.2:	The	Employee	class

package	domain;

import	java.io.Serializable;

import	java.time.LocalDate;

public	class	Employee	implements	Serializable	{

				private	static	final	long	serialVersionUID	=	-908L;

				private	long	id;

				private	String	firstName;

				private	String	lastName;

				private	LocalDate	birthDate;

				private	int	salaryLevel;

				//	getters	and	setters	not	shown

}

The	EmployeeController	class	in	Listing	6.3	is	the	controller	for	the	Employee	domain
object.

Listing	6.3:	The	EmployeeController	class	in	converter-demo

package	controller;

import	org.springframework.stereotype.Controller;

import	org.springframework.ui.Model;

import	org.springframework.validation.BindingResult;

import	org.springframework.validation.FieldError;

import	org.springframework.web.bind.annotation.ModelAttribute;

import	org.springframework.web.bind.annotation.RequestMapping;

import	domain.Employee;

@Controller

public	class	EmployeeController	{

				@RequestMapping(value="/add-employee")

				public	String	inputEmployee(Model	model)	{

								model.addAttribute(new	Employee());

								return	"EmployeeForm";

				}

				@RequestMapping(value="/save-employee")

				public	String	saveEmployee(@ModelAttribute	Employee	employee,	

												BindingResult	bindingResult,	Model	model)	{

								if	(bindingResult.hasErrors())	{

												FieldError	fieldError	=	bindingResult.getFieldError();

												return	"EmployeeForm";

								}

								//	save	employee	here

								model.addAttribute("employee",	employee);

								return	"EmployeeDetails";

				}

}

The	EmployeeController	 class	 has	 two	 request-handling	methods,	 inputEmployee	 and
saveEmployee.	 The	 inputEmployee	 method	 returns	 the	 EmployeeForm.jsp	 page	 in
Listing	6.4.	The	saveEmployee	method	takes	an	Employee	object	that	gets	created	when
the	Employee	form	is	submitted.	Thanks	to	the	StringToLocalDateConverter	converter,
you	do	not	need	to	do	parsing	in	your	controller	class	to	convert	a	string	to	a	LocalDate.

The	 BindingResult	 argument	 of	 the	 saveEmployee	 method	 is	 populated	 with	 all
binding	errors	by	Spring.	The	method	uses	 the	BindingResult	 to	 log	 any	binding	error.

Binding	errors	can	also	be	displayed	in	a	form	using	the	errors	tag,	as	you	can	see	in	the
EmployeeForm.jsp	page.

Listing	6.4:	The	EmployeeForm.jsp	page

<%@	taglib	prefix="form"	uri="http://www.springframework.org/tags/form"%>

<%@	taglib	uri="http://java.sun.com/jsp/jstl/core"	prefix="c"	%>

<!DOCTYPE	html>

<html>

<head>

<title>Add	Employee	Form</title>

<style	type="text/css">@import	url("<c:url	value="/css/main.css"/>");</style>

</head>

<body>

<div	id="global">

<form:form	commandName="employee"	action="save-employee"	method="post">

				<fieldset>

								<legend>Add	an	employee</legend>

								<p>

												<label	for="firstName">First	Name:	</label>

												<form:input	path="firstName"	tabindex="1"/>

								</p>

								<p>

												<label	for="lastName">First	Name:	</label>

												<form:input	path="lastName"	tabindex="2"/>

								</p>

								<p>

												<form:errors	path="birthDate"	cssClass="error"/>

								</p>

								<p>

												<label	for="birthDate">Date	Of	Birth:	</label>

												<form:input	path="birthDate"	tabindex="3"	/>

								</p>

								<p	id="buttons">

												<input	id="reset"	type="reset"	tabindex="4">

												<input	id="submit"	type="submit"	tabindex="5"	

																value="Add	Employee">

								</p>

				</fieldset>

</form:form>

</div>

</body>

</html>

You	can	test	the	converter	by	directing	your	browser	to	this	URL:

http://localhost:8080/converter-demo/add-employee

Type	 in	an	 invalid	date	and	you’ll	be	 redirected	 to	 the	same	Employee	 form	and	see	an
error	message	in	the	form.

Figure	6.1:	Conversion	error	in	the	Employee	form

Formatters
A	formatter	is	like	a	converter,	it	also	converts	a	type	to	another	type.	However,	the	source
type	for	a	formatter	must	be	a	String	whereas	a	converter	can	work	with	any	source	type.
Formatters	are	more	suitable	for	the	web-tier	whereas	converters	can	be	used	in	any	tier.
For	 converting	 user	 input	 in	 a	 form	 in	 a	 Spring	MVC	 application,	 you	 should	 always
choose	a	formatter	over	a	converter.

To	 create	 a	 formatter,	 write	 a	 Java	 class	 that	 implements	 the
org.springframework.format.Formatter	 interface.	 Here	 is	 the	 declaration	 of	 the
interface.

public	interface	Formatter<T>

Here,	T	 represents	 the	 type	 to	which	 the	 input	string	should	be	converted.	The	 interface
has	two	methods	that	all	implementations	must	override,	parse	and	print.

T	parse(String	text,	java.util.Locale	locale)	

String	 print(T	object,	java.util.Locale	locale)	

The	parse	method	parses	a	String	to	the	target	type	using	the	specified	Locale.	The	print
method	does	the	reverse,	it	returns	the	string	representation	of	the	target	object.

As	 an	 example,	 the	 formatter-demo	 application	 employs	 a	LocalDateFormatter	 for
converting	 a	 String	 to	 a	 LocalDate.	 It	 does	 the	 same	 job	 as	 the
StringToLocalDateConverter	converter	in	converter-demo.

The	LocalDateFormatter	class	is	given	in	Listing	6.5.

Listing	6.5:	The	LocalDateFormatter	class

package	formatter;

import	java.text.ParseException;

import	java.time.LocalDate;

import	java.time.format.DateTimeFormatter;

import	java.time.format.DateTimeParseException;

import	java.util.Locale;

import	org.springframework.format.Formatter;

public	class	LocalDateFormatter	implements	Formatter<LocalDate>	{

				private	DateTimeFormatter	formatter;

				private	String	datePattern;

				public	LocalDateFormatter(String	datePattern)	{

								this.datePattern	=	datePattern;

								formatter	=	DateTimeFormatter.ofPattern(datePattern);

				}

				@Override

				public	String	print(LocalDate	date,	Locale	locale)	{

								return	date.format(formatter);

				}

				@Override

				public	LocalDate	parse(String	s,	Locale	locale)	

												throws	ParseException	{

								try	{

												return	LocalDate.parse(s,	

																				DateTimeFormatter.ofPattern(datePattern));

								}	catch	(DateTimeParseException	e)	{

												//	the	error	message	will	be	displayed	in	<form:errors>

												throw	new	IllegalArgumentException(

																				"invalid	date	format.	Please	use	this	pattern\""

																												+	datePattern	+	"\"");

								}

				}

}

To	 use	 a	 formatter	 in	 a	 Spring	 MVC	 application,	 you	 need	 to	 register	 it	 using	 the
conversionService	 bean.	 The	 class	 name	 for	 the	 bean	 must	 be
org.springframework.format.support.FormattingConversion-ServiceFactoryBean.
This	is	a	different	class	than	the	one	used	in	converter-demo	for	registering	the	converter.
The	 bean	 can	 have	 a	 formatters	 property	 for	 registering	 formatters	 and	 a	 converters
property	 for	 registering	 converters.	 Listing	 6.6	 shows	 the	 Spring	 configuration	 file	 for
formatter-demo.

Listing	6.6:	The	Spring	configuration	file	for	formatter-demo

<?xml	version="1.0"	encoding="UTF-8"?>

<beans	xmlns="http://www.springframework.org/schema/beans"

			xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

			xmlns:p="http://www.springframework.org/schema/p"

			xmlns:mvc="http://www.springframework.org/schema/mvc"

			xmlns:context="http://www.springframework.org/schema/context"

			xsi:schemaLocation="

						http://www.springframework.org/schema/beans

						http://www.springframework.org/schema/beans/spring-beans.xsd

						http://www.springframework.org/schema/mvc

						http://www.springframework.org/schema/mvc/spring-mvc.xsd					

						http://www.springframework.org/schema/context

						http://www.springframework.org/schema/context/spring-context.xsd">

			<context:component-scan	base-package="controller"/>

			<context:component-scan	base-package="formatter"/>

			<mvc:annotation-driven	conversion-service="conversionService"/>

			<mvc:resources	mapping="/css/**"	location="/css/"/>

			<mvc:resources	mapping="/*.html"	location="/"/>

			<bean	id="viewResolver"

	 				class="org.springframework.web.servlet.view.

InternalResourceViewResolver">

						<property	name="prefix"	value="/WEB-INF/jsp/"	/>

						<property	name="suffix"	value=".jsp"	/>

			</bean>

			<bean	id="conversionService"

										class="org.springframework.format.support.

FormattingConversionServiceFactoryBean">

						<property	name="formatters">

									<set>

												<bean	class="formatter.LocalDateFormatter">

															<constructor-arg	type="java.lang.String"	

																		value="MM-dd-yyyy"	/>

												</bean>

									</set>

						</property>

			</bean>

</beans>

Note	that	you	also	need	to	add	a	component-scan	element	for	the	formatter.

To	test	the	formatter	in	formatter-demo,	direct	your	browser	to	this	URL:

http://localhost:8080/formatter-demo/add-employee

Using	a	Registrar	to	Register	A	Formatter
Another	way	of	registering	a	formatter	 is	by	using	a	Registrar.	For	example,	 the	code	in
Listing	6.7	is	an	example	of	a	registrar	that	registers	the	LocalDateFormatter.

Listing	6.7:	The	MyFormatterRegistrar	class

package	formatter;

import	org.springframework.format.FormatterRegistrar;

import	org.springframework.format.FormatterRegistry;

public	class	MyFormatterRegistrar	implements	FormatterRegistrar	{

				

				private	String	datePattern;

				public	MyFormatterRegistrar(String	datePattern)	{

								this.datePattern	=	datePattern;

				}

				@Override

				public	void	registerFormatters(FormatterRegistry	registry)	{

								registry.addFormatter(new	LocalDateFormatter(datePattern));

								//	register	more	formatters	here

				}

}

With	 a	 registrar,	 you	 don’t	 need	 to	 register	 any	 formatter	 in	 your	 spring	 MVC
configuration	 file.	 Instead,	 you	 register	 the	 registrar	 in	 the	 Spring	 configuration	 file,	 as
shown	in	Listing	6.8.

Listing	6.8:	Registering	a	registrar	in	the	springmvc-config.xml	file

<?xml	version="1.0"	encoding="UTF-8"?>

<beans	xmlns="http://www.springframework.org/schema/beans"

				xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

				xmlns:p="http://www.springframework.org/schema/p"

				xmlns:mvc="http://www.springframework.org/schema/mvc"	

				xmlns:context="http://www.springframework.org/schema/context"

				xsi:schemaLocation="

								http://www.springframework.org/schema/beans

								http://www.springframework.org/schema/beans/spring-beans.xsd

								http://www.springframework.org/schema/mvc

								http://www.springframework.org/schema/mvc/spring-mvc.xsd					

								http://www.springframework.org/schema/context

								http://www.springframework.org/schema/context/spring-

context.xsd">

				<context:component-scan	base-package="controller"	/>

				<context:component-scan	base-package="service"	/>

				<mvc:annotation-driven	conversion-service="conversionService"	/>

				<mvc:resources	mapping="/css/**"	location="/css/"	/>

				<mvc:resources	mapping="/*.html"	location="/"	/>

				<bean	id="viewResolver"

												class="org.springframework.web.servlet.view.

InternalResourceViewResolver">

								<property	name="prefix"	value="/WEB-INF/jsp/"	/>

								<property	name="suffix"	value=".jsp"	/>

				</bean>

				<bean	id="conversionService"

												class="org.springframework.format.support.

FormattingConversionServiceFactoryBean">

								<property	name="formatterRegistrars">

												<set>

																<bean	class="formatter.MyFormatterRegistrar">

																				<constructor-arg	type="java.lang.String"

																												value="MM-dd-yyyy"	/>

																</bean>

												</set>

								</property>

				</bean>

</beans>

Choosing	 Between	 Converters	 and
Formatters
A	converter	is	used	as	a	general	purpose	utility	to	convert	one	type	to	another,	such	as	a
String	to	a	LocalDate	or	a	Long	to	a	LocalDate.	A	converter	can	be	used	not	only	in	the
web	tier,	but	also	in	other	tiers.

On	the	other	hand,	a	formatter	can	only	convert	a	String	to	another	Java	type,	such	as	a
String	 to	 a	Date.	 It	 cannot	 be	 used	 to	 convert	 a	Long	 to	 a	LocalDate,	 for	 instance.
Therefore,	 a	 formatter	 is	 suitable	 for	 the	 web	 tier	 and	 as	 such,	 in	 a	 Spring	 MVC
application,	a	formatter	is	more	appropriate	than	a	converter.

Summary
In	 this	 chapter	 you	 learned	 about	 converters	 and	 formatter,	which	you	can	use	 to	direct
data	 binding	 in	 a	 Spring	 MVC	 application.	 Converters	 are	 a	 general-purpose	 tool	 for
converting	 any	 type	 to	 another	 type	 whereas	 formatters	 are	 for	 converting	 String	 to
another	Java	type.	Formatters	are	more	suitable	to	be	used	in	the	web-tier.

Chapter	7

Validators
Input	validation	is	one	of	the	most	important	web	development	tasks	that	Spring	handles
extremely	 well.	 There	 are	 two	 ways	 you	 can	 validate	 input	 in	 Spring	MVC,	 by	 using
Spring’s	own	validation	framework	or	by	utilizing	a	JSR	303	implementation.

This	 chapter	 covers	 both	 methods	 of	 input	 validation	 and	 comes	 with	 two	 sample
applications,	spring-validator	and	jsr303-validator.

Validation	Overview
Converters	and	formatters	work	on	the	field	level.	In	an	MVC	application,	they	convert	or
format	a	String	to	another	Java	type,	such	as	a	java.time.LocalDate.	A	validator,	on	the
other	hand,	works	on	the	object	level.	It	determines	whether	or	not	all	fields	in	an	object
are	valid	and	pre-defined	rules	are	followed.	A	typical	Spring	MVC	application	uses	both
formatters/converters	and	validators.

The	 sequence	of	 events	 in	 an	application	 that	 employs	both	 formatters	 and	validators
goes	 like	 this.	 During	 the	 invocation	 of	 a	 controller,	 one	 or	more	 formatter	 will	 try	 to
convert	 input	strings	to	field	values	in	the	domain	object.	Once	formatting	is	successful,
the	validators	step	in.

For	example,	an	Order	object	may	have	a	shippingDate	property	(of	type	LocalDate,
obviously)	whose	value	cannot	be	earlier	than	today’s	date.	When	the	OrderController	is
invoked,	a	LocalDateFormatter	would	convert	a	string	 to	a	LocalDate	and	assign	 it	 to
the	shippingDate	property	of	the	Order	object.	If	the	conversion	failed,	the	user	will	be
redirected	 to	 the	 previous	 form.	 If	 the	 conversion	 was	 successful,	 a	 validator	 will	 be
invoked	to	check	if	shippingDate	is	earlier	than	today.

Now,	 you	 may	 ask	 if	 it	 is	 wise	 to	 move	 the	 validation	 logic	 to	 the
LocalDateFormatter.	After	all,	 it	 is	not	hard	to	compare	dates.	The	answer	is	no.	First,
the	LocalDateFormatter	 may	 be	 used	 for	 formatting	 other	 strings	 to	 dates,	 such	 as
birthDate	or	purchaseDate.	Both	dates	have	different	rules	 than	shippingDate.	 In	 fact,
an	employee’s	date	of	birth,	for	example,	cannot	be	a	future	date.	Second,	a	validator	may
work	 by	 inspecting	 the	 relationship	 between	 two	 or	 more	 fields,	 each	 of	 which	 is
supported	 by	 a	 different	 formatter.	 For	 example,	 given	 an	 Employee	 object	 with	 a
birthDate	 property	and	a	startDate	 property,	 a	 validator	may	 rule	 that	 there	 is	 no	way
someone	 starts	 working	 in	 the	 company	 before	 he	 or	 she	 was	 born.	 Therefore,	 a	 valid
Employee	object	must	have	its	birthDate	property	value	that	is	earlier	than	its	startDate
value.	That’s	a	job	for	a	validator.

Spring	Validators
Right	 from	 the	 start,	 Spring	has	 been	 designed	with	 input	 validation	 in	mind.	This	was
even	before	JSR	303	 (Java	validation	specification)	was	conceived.	As	such,	 the	Spring
Validation	 framework	 was	 commonplace	 even	 today,	 although	 JSR	 303	 validators	 are
generally	recommended	for	new	projects.

To	 create	 a	 Spring	 validator,	 implement	 the
org.springframework.validation.Validator	 interface.	 This	 interface	 is	 given	 in	 Listing
7.1	and	has	two	methods,	supports	and	validate.

Listing	7.1:	The	Spring	Validator	interface

package	org.springframework.validation;

public	interface	Validator	{

				boolean	supports(Class<?>	clazz);

				void	validate(Object	target,	Errors	errors);

}

The	supports	method	 returns	 true	 if	 the	 validator	 can	 handle	 the	 specified	Class.	 The
validate	method	validates	the	target	object	and	populate	the	Errors	object	with	validation
errors.

An	 Errors	 object	 is	 an	 instance	 of	 the	 org.springframework.validation.Errors
interface.	An	Errors	 object	 contains	 a	 list	 of	FieldError	 and	ObjectError	 objects.	 A
FieldError	 represents	 an	 error	 that	 is	 related	 to	 one	 of	 the	 properties	 in	 the	 validated
object.	For	example,	if	the	price	property	of	a	product	must	not	be	negative	and	the	price
of	a	Product	object	being	validated	is	negative,	then	a	FieldError	needs	to	be	created.	An
ObjectError	is	any	error	that	is	not	a	FieldError.	For	example,	if	a	Book	that	is	for	sale
in	Europe	is	being	purchased	on	an	American	online	branch,	then	an	ObjectError	should
be	raised.

When	 writing	 a	 validator,	 you	 don’t	 need	 to	 create	 an	 error	 object	 directly	 as
instantiating	 ObjectError	 or	 FieldError	 takes	 a	 lot	 of	 programming	 effort.	 This	 is
because	the	ObjectError	class’s	constructor	expects	four	arguments	and	the	FieldError
class’s	constructor	takes	seven,	as	you	can	see	in	the	constructor	signatures	below.

ObjectError(String	objectName,	String[]	codes,	Object[]	arguments,	

								String	defaultMessage)

FieldError(String	objectName,	String	field,	Object	rejectedValue,	

								boolean	bindingFailure,	String[]	codes,	Object[]	arguments,	

								String	defaultMessage)

The	 easier	way	 to	 add	 an	 error	 to	 the	Errors	 object	 is	 by	 calling	 one	 of	 the	 reject	 or
rejectValue	methods	on	 the	Errors	 object.	You	 call	reject	 to	 add	 an	ObjectError	and
rejectValue	to	add	a	FieldError.

Here	are	some	of	the	method	overloads	of	reject	and	rejectValue.

void	reject(String	errorCode)	

void	reject(String	errorCode,	String	defaultMessage)

void	rejectValue(String	field,	String	errorCode)	

void	rejectValue(String	field,	String	errorCode,

								String	defaultMessage)

Most	of	the	time,	you	just	need	to	pass	an	error	code	to	the	reject	or	rejectValue	method.
Spring	can	then	look	up	the	error	code	against	a	properties	file	to	obtain	the	corresponding
error	message.	You	can	also	pass	a	default	message	that	will	be	used	if	the	error	code	is
not	found.

The	error	messages	in	an	Errors	object	can	be	displayed	on	an	HTML	page	by	using
the	 errors	 tag	 of	 the	 form	 tag	 library.	 Error	 messages	 can	 be	 localized	 through	 the
internationalization	 feature	 that	 Spring	 supports.	More	 about	 internationalization	 can	 be
found	in	Chapter	10,	“Internationalization.”

The	ValidationUtils	Class
The	org.springframework.validation.ValidationUtils	class	is	a	utility	that	can	help	you
write	a	Spring	validator.	Instead	of	writing	this.

if	(firstName	==	null	||	firstName.isEmpty())	{

				errors.rejectValue("price");

}

you	can	use	the	ValidationUtils	class’s	rejectIfEmpty	method	like	this.

ValidationUtils.rejectIfEmpty("price");

Or	instead	of	this.

if	(firstName	==	null	||	firstName.trim().isEmpty())	{

				errors.rejectValue("price");

}

you	can	write	this.

ValidationUtils.rejectIfEmptyOrWhitespace("price");

Here	 are	 the	 complete	 method	 overloads	 of	 rejectIfEmpty	 and
rejectIfEmptyOrWhitespace	methods	in	ValidationUtils.

public	static	void	rejectIfEmpty(Errors	errors,	String	field,	

								String	errorCode)	

public	static	void	rejectIfEmpty(Errors	errors,	String	field,	

								String	errorCode,	Object[]	errorArgs)	

public	static	void	rejectIfEmpty(Errors	errors,	String	field,	

								String	errorCode,	Object[]	errorArgs,	String	defaultMessage)	

public	static	void	rejectIfEmpty(Errors	errors,	String	field,	

								String	errorCode,	String	defaultMessage)	

public	static	void	rejectIfEmptyOrWhitespace(Errors	errors,

								String	field,	String	errorCode)	

public	static	void	rejectIfEmptyOrWhitespace(Errors	errors,

								String	field,	String	errorCode,	Object[]	errorArgs)	

public	static	void	rejectIfEmptyOrWhitespace(Errors	errors,	

								String	field,	String	errorCode,	Object[]	errorArgs,	

								String	defaultMessage)	

public	static	void	rejectIfEmptyOrWhitespace(Errors	errors,	

								String	field,	String	errorCode,	String	defaultMessage)

In	addition,	ValidationUtils	also	has	an	invokeValidator	method	for	invoking	a	validator.

public	static	void	invokeValidator(Validator	validator,	

								Object	obj,	Errors	errors)

You	learn	how	to	use	this	useful	tool	in	the	example	in	the	next	section.

A	Spring	Validator	Example
The	 spring-validator	 application	 contains	 a	 validator	 named	 ProductValidator	 for
validating	Product	objects.	The	Product	class	for	spring-validator	is	given	in	Listing	7.2
and	the	ProductValidator	class	in	Listing	7.3.

Listing	7.2:	The	Product	class

package	domain;

import	java.io.Serializable;

import	java.math.BigDecimal;

import	java.time.LocalDate;

public	class	Product	implements	Serializable	{

				private	static	final	long	serialVersionUID	=	1L;

				private	String	name;

				private	String	description;

				private	BigDecimal	price;

				private	LocalDate	productionDate;

				//	getter	and	setters	methods	not	shown

}

Listing	7.3:	The	ProductValidator	class

package	validator;

import	java.math.BigDecimal;

import	java.time.LocalDate;

import	org.springframework.validation.Errors;

import	org.springframework.validation.ValidationUtils;

import	org.springframework.validation.Validator;

import	domain.Product;

public	class	ProductValidator	implements	Validator	{

				@Override

				public	boolean	supports(Class<?>	klass)	{

								return	Product.class.isAssignableFrom(klass);

				}

				@Override

				public	void	validate(Object	target,	Errors	errors)	{

								Product	product	=	(Product)	target;

								ValidationUtils.rejectIfEmpty(errors,	"name",

																"productName.required");

								ValidationUtils.rejectIfEmpty(errors,	"price",	"price.required");

								ValidationUtils.rejectIfEmpty(errors,	"productionDate",	

																"productionDate.required");

								BigDecimal	price	=	product.getPrice();

								if	(price	!=	null	&&	price.compareTo(BigDecimal.ZERO)	<	0)	{

												errors.rejectValue("price",	"price.negative");

								}

								LocalDate	productionDate	=	product.getProductionDate();

								if	(productionDate	!=	null)	{

												if	(productionDate.isAfter(LocalDate.now()))	{

																errors.rejectValue("productionDate",	

																								"productionDate.invalid");

												}

								}

				}

}

The	ProductValidator	validator	is	a	very	simple	validator.	Its	validate	method	checks	if	a
Product	 has	 a	 name	 and	 a	 price	 and	 the	 price	 is	 not	 negative.	 It	 also	 makes	 sure	 the
production	date	is	not	later	than	today.

The	Resource	File
You	don’t	need	to	explicitly	register	a	validator.	However,	if	you	want	the	error	messages
to	 be	 taken	 from	 a	 properties	 file,	 you	 need	 to	 tell	 Spring	 where	 to	 find	 the	 file	 by
declaring	a	messageSource	bean.	Here	is	the	messageSource	bean	declaration	in	spring-
validator.

<bean	id="messageSource"	class="org.springframework.context.support.

ReloadableResourceBundleMessageSource">

				<property	name="basename"	value="/WEB-INF/resource/messages"/>

</bean>

The	 bean	 essentially	 says	 that	 error	 codes	 and	 error	 messages	 can	 be	 found	 in	 the
messages.properties	file	under	/WEB-INF/resource.

Listing	7.4	shows	the	content	of	the	messages.properties	file.

Listing	7.4:	The	messages.properties	file

productName.required.product.name=Please	enter	a	product	name

price.required=Please	enter	a	price

price.negative=Price	cannot	be	less	than	0

productionDate.required=Please	enter	a	production	date

productionDate.invalid=Please	ensure	the	production	date	is	not	later	

than	today

typeMismatch.productionDate=Invalid	production	date

The	Controller	class
You	can	use	a	Spring	validator	in	a	controller	class	by	directly	instantiating	the	validator
class.	The	saveProduct	method	 in	 the	ProductController	 class	 in	Listing	7.5	 creates	 a
ProductValidator	 and	calls	 its	validate	method.	To	 check	 if	 the	validator	 generated	 an
error	message,	call	the	hasErrors	method	on	the	BindingResult.

Listing	7.5:	The	ProductController	class

package	controller;

import	org.apache.commons.logging.Log;

import	org.apache.commons.logging.LogFactory;

import	org.springframework.stereotype.Controller;

import	org.springframework.ui.Model;

import	org.springframework.validation.BindingResult;

import	org.springframework.validation.FieldError;

import	org.springframework.web.bind.annotation.ModelAttribute;

import	org.springframework.web.bind.annotation.RequestMapping;

import	domain.Product;

import	validator.ProductValidator;

@Controller

public	class	ProductController	{

				private	static	final	Log	logger	=	LogFactory

												.getLog(ProductController.class);

				@RequestMapping(value	=	"/add-product")

				public	String	inputProduct(Model	model)	{

								model.addAttribute("product",	new	Product());

								return	"ProductForm";

				}

				@RequestMapping(value	=	"/save-product")

				public	String	saveProduct(@ModelAttribute	Product	product,

												BindingResult	bindingResult,	Model	model)	{

								ProductValidator	productValidator	=	new	ProductValidator();

								productValidator.validate(product,	bindingResult);

								if	(bindingResult.hasErrors())	{

												FieldError	fieldError	=	bindingResult.getFieldError();

												logger.debug("Code:"	+	fieldError.getCode()	+	",	field:"

																				+	fieldError.getField());

												return	"ProductForm";

								}

								//	save	product	here

								model.addAttribute("product",	product);

								return	"ProductDetails";

				}

}

Another	 way	 of	 using	 a	 Spring	 validator	 is	 by	 writing	 an	 initBinder	 method	 in	 your
controller,	 and	 passing	 the	 validator	 to	 the	WebDataBinder	 and	 calling	 its	 validate
method.

@org.springframework.web.bind.annotation.InitBinder

public	void	initBinder(WebDataBinder	binder)	{

				//	this	will	apply	the	validator	to	all	request-handling	methods

				binder.setValidator(new	ProductValidator());

				binder.validate();

}

Passing	a	validator	to	the	WebDataBinder	will	apply	the	validator	to	all	request-handling
methods	in	the	controller	class.

Alternatively,	 you	 can	 annotate	 the	 object	 argument	 to	 be	 validated	 with
@javax.validation.Valid.	For	example,

public	String	saveProduct(@ModelAttribute	Product	product,

								BindingResult	bindingResult,	Model	model)	{

The	Valid	annotation	 type	 is	defined	 in	JSR	303	and	I	will	defer	any	discussion	of	JSR
303	until	the	next	section.

Testing	the	Validator
To	test	the	validator	in	spring-validator,	direct	your	browser	to	this	URL.

http://localhost:8080/spring-validator/add-product

You	will	see	a	blank	Product	form.	If	you	click	the	Add	Product	button	without	entering
any	value,	you	will	be	redirected	back	to	the	Product	form	and	this	time	there	will	be	error
messages	from	the	validator,	as	shown	in	Figure	7.1.

Figure	7.1:	The	ProductValidator	in	action

JSR	303	Validation
JSR	 303,	 “Bean	 Validation”	 (published	 in	 November	 2009)	 and	 JSR	 349,	 “Bean
Validation	1.1”	(published	in	May	2013)	specify	a	set	of	API’s	for	applying	constraints	on
object	 properties	 through	 annotations.	 JSR	 303	 and	 JSR	 349	 can	 be	 downloaded	 from
these	URLs,	respectively.

http://jcp.org/en/jsr/detail?id=303

http://jcp.org/en/jsr/detail?id=349

Of	course,	a	JSR	is	just	a	specification	document	and	of	little	use	until	someone	writes	an
implementation	 of	 it.	 In	 the	 case	 of	 bean	 validation	 JSR’s,	 there	 are	 currently	 two
implementations.	 The	 first	 is	 Hibernate	 Validator,	 which	 is	 currently	 at	 version	 5	 and
implement	both	JSR	303	and	JSR	349.	It	can	be	downloaded	from	this	site.

http://sourceforge.net/projects/hibernate/files/hibernate-validator/

The	second	implementation	is	Apache	BVal,	which	can	be	downloaded	from	this	site.

http://bval.apache.org/downloads.html

With	JSR	303,	there	is	no	validator	to	write.	Instead,	you	embed	constraints	in	the	domain
class	by	using	JSR	303	annotation	types.	The	list	of	constraints	is	given	in	Table	7.1

Constraint Description Example

@AssertFalse Applied	to	a	boolean	property.	The
value	of	the	property	must	be	false.

@AssertFalse

boolean	hasChildren;

@AssertTrue Applied	to	a	boolean	property.	The
value	of	the	property	must	be	true.

@AssertTrue

boolean	isEmpty;

@DecimalMax
The	value	of	the	property	must	be	a
decimal	value	lower	than	or	equal	to	the
specified	value.

@DecimalMax(“1.1”)

BigDecimal	price;

@DecimalMin
The	value	of	the	property	must	be	a
decimal	value	greater	than	or	equal	to
the	specified	value.

@DecimalMin(“0.04”)

BigDecimal	price;

@Digits

The	value	of	the	property	must	be
within	the	specified	range.	The	integer
attribute	specifies	the	maximum
integral	digits	for	the	number	and	the
fraction	attribute	the	maximum
fractional	digits	for	the	number.

@Digits(integer=5,
fraction=2)

BigDecimal	price;

@Future The	value	of	the	property	must	be	a
date	in	the	future.

@Future

Date	shippingDate;

@Max
The	value	of	the	property	must	be	an
integer	lower	than	or	equal	to	the
specified	value

@Max(150)

int	age;

@Min
The	value	of	the	property	must	be	an
integer	greater	than	or	equal	to	the
specified	value

@Min(0)

int	age;

@NotNull The	property	must	not	be	null
@NotNull

String	firstName;

@Null The	property	must	be	null
@Null

String	testString;

@Past The	value	of	the	property	must	be	a
date	in	the	past.

@Past

Date	birthDate;

@Pattern The	value	of	the	property	must	match
the	specified	regular	expression

@Pattern(regext=”\d{3}”)

String	areaCode;

@Size The	size	of	the	property	must	be	within
the	specified	range.

Size(min=2,	max=140)

String	description;

Table	7.1:	JSR	303	Constraints

Once	 you	 understand	 how	 it	 works,	 JSR	 303	 validation	 is	 easier	 to	 use	 than	 Spring
validators.	As	with	Spring	validators,	you	can	overwrite	error	messages	from	a	JSR	303
validator	by	using	property	keys	in	this	format	in	your	properties	file.

constraint.object.property

For	 example,	 to	 overwrite	 a	message	 from	@Size	 constraining	 the	name	 property	 of	 a
Product	object,	use	this	key	in	your	properties	file.

Size.product.name

To	 overwrite	 a	 message	 from	@Past	 constraining	 the	 productionDate	 property	 of	 a
Product	object,	use	this	key.

Past.product.productionDate

A	JSR	303	Validator	Example
The	 jsr303-validator	 application	 shows	 JSR	 303	 input	 validation	 in	 action.	 The
application	is	a	modified	version	of	spring-validator	with	a	few	differences.	First,	there	is
no	ProductValidator	class.	Second,	the	jar	files	from	the	Hibernate	Validator	library	have
been	added	to	WEB-INF/lib.

Listing	7.6	shows	the	Product	class	whose	name	and	productionDate	fields	have	been
annotated	with	JSR	303	annotation	types.

Listing	7.6:	The	Product	class	in	jsr303-validator

package	domain;

import	java.io.Serializable;

import	java.math.BigDecimal;

import	java.time.LocalDate;

import	javax.validation.constraints.Past;

import	javax.validation.constraints.Size;

public	class	Product	implements	Serializable	{

				private	static	final	long	serialVersionUID	=	78L;

				@Size(min=1,	max=10)

				private	String	name;

				private	String	description;

				private	BigDecimal	price;

				@Past

				private	LocalDate	productionDate;

				//	getters	and	setters	not	shown

}

In	 the	ProductController	 class’s	 saveProduct	method,	 you	must	 annotate	 the	Product
argument	with	@Valid,	as	shown	in	Listing	7.7.

Listing	7.7:	The	ProductController	class	in	jsr303-validator

package	controller;

import	javax.validation.Valid;

import	org.apache.commons.logging.Log;

import	org.apache.commons.logging.LogFactory;

import	org.springframework.stereotype.Controller;

import	org.springframework.ui.Model;

import	org.springframework.validation.BindingResult;

import	org.springframework.validation.FieldError;

import	org.springframework.web.bind.annotation.ModelAttribute;

import	org.springframework.web.bind.annotation.RequestMapping;

import	domain.Product;

@Controller

public	class	ProductController	{

				private	static	final	Log	logger	=	LogFactory

												.getLog(ProductController.class);

				@RequestMapping(value	=	"/add-product")

				public	String	inputProduct(Model	model)	{

								model.addAttribute("product",	new	Product());

								return	"ProductForm";

				}

				@RequestMapping(value	=	"/save-product")

				public	String	saveProduct(@Valid	@ModelAttribute	Product	product,

												BindingResult	bindingResult,	Model	model)	{

								if	(bindingResult.hasErrors())	{

												FieldError	fieldError	=	bindingResult.getFieldError();

												logger.info("Code:"	+	fieldError.getCode()	+	",	object:"

																				+	fieldError.getObjectName()	+	",	field:"

																				+	fieldError.getField());

												return	"ProductForm";

								}

								//	save	product	here

								model.addAttribute("product",	product);

								return	"ProductDetails";

				}

}

To	 customize	 error	 messages	 from	 the	 validator,	 two	 keys	 are	 used	 in	 the
messages.properties	file.	This	file	is	printed	in	Listing	7.8.

Listing	7.8:	The	messages.properties	file	in	jsr303-validator

productName.required.product.name=Please	enter	a	product	name

price.required=Please	enter	a	price

price.negative=Price	cannot	be	less	than	0

productionDate.required=Please	enter	a	production	date

productionDate.invalid=Please	ensure	the	production	date	is	not	later	

than	today

typeMismatch.productionDate=Invalid	production	date

Past.productionDate=Production	date	must	be	a	past	date

To	test	the	validator	in	jsr303-validator,	direct	your	browser	to	this	URL.

http://localhost:8080/jsr303-validator/add-product

Note	that	the	latest	version	of	Hibernate	Validator	at	the	time	of	writing	this	book	(version
5.2.4)	surprisingly	still	cannot	validate	fields	of	 type	LocalDate	or	LocalDateTime	 that
are	annotated	with	@Past	or	@Future.	This	is	a	shame	because	LocalDate,	a	type	in	the
new	Java	Date/Time	API,	should	be	used	in	lieu	of	java.util.Date.	As	such,	 this	project
contains	 a	 custom	 validator	 and	 a	 rewrite	 of	 Hibernate	 Validator’s	 ConstraintHelper
class.

The	 replacement	 ConstraintHelper	 class	 must	 be	 placed	 in	 the	WEB-INF/classes
directory	so	that	it	will	be	loaded	instead	of	the	ConstraintHelper	class	in	the	Hibernate
Validator	jar	in	the	WEB-INF/lib	directory.	(Section	10.5	of	the	Servlet	3.1	specification
says,	 “The	Web	 application	 class	 loader	 must	 load	 classes	 from	 the	WEB-INF/classes
directory	first,	and	then	from	library	JARs	in	the	WEB-INF/lib	directory.”)	Hopefully,	the
next	version	of	Hibernate	Validator	will	be	able	to	validate	LocalDate	and	related	classes.

Summary
In	this	chapter	you	learned	the	two	types	of	validators	you	can	use	in	your	Spring	MVC
applications,	Spring	MVC	validators	and	JSR	303	validators.	JSR	303	validators	are	 the
recommended	 validation	 method	 for	 new	 projects	 as	 JSR	 303	 is	 a	 formal	 Java
specification.

Chapter	8

The	Expression	Language
One	of	the	most	important	features	in	JSP	2.0	was	the	Expression	Language	(EL),	which
JSP	authors	can	use	to	access	application	data.	Inspired	by	both	the	ECMAScript	and	the
XPath	 expression	 languages,	 the	EL	 is	 designed	 to	make	 it	 possible	 and	 easy	 to	 author
script-free	 JSP	 pages,	 that	 is,	 pages	 that	 do	 not	 use	 JSP	 declarations,	 expressions	 or
scriptlets.	 (Chapter	 11,	 “Application	 Design”	 explains	 why	 script-free	 JSP	 pages	 are
considered	good	practice.)

This	 chapter	 shows	 how	 you	 can	 use	 EL	 expressions	 to	 display	 data	 and	 object
properties	in	your	JSP	pages.	It	covers	the	EL	3.0,	the	latest	release	of	the	technology.

All	 examples	 in	 this	 chapter	 can	 be	 found	 in	 the	 el-demo	 project	 in	 the	 zip	 file	 that
accompanies	this	book.

A	Brief	History	of	the	Expression	Language
The	 EL	 that	 was	 adopted	 into	 JSP	 2.0	 first	 appeared	 in	 the	 JSP	 Standard	 Tag	 Library
(JSTL)	1.0	 specification.	 JSP	1.2	programmers	could	use	 the	 language	by	 importing	 the
standard	 libraries	 into	 their	 applications.	 JSP	 2.0	 and	 later	 developers	 can	 use	 the	 EL
without	JSTL,	even	 though	JSTL	is	still	needed	 in	many	applications	as	 it	also	contains
other	tags	not	related	to	the	EL.

The	 EL	 in	 JSP	 2.1	 and	 JSP	 2.2	 is	 an	 attempt	 to	 unify	 the	 EL	 in	 JSP	 2.0	 and	 the
expression	language	defined	in	JavaServer	Faces	(JSF)	1.0.	JSF	is	a	framework	for	rapidly
building	 web	 applications	 in	 Java.	 Because	 JSP	 1.2	 lacked	 an	 integrated	 expression
language	and	the	JSP	2.0	EL	did	not	meet	all	the	requirements	of	JSF,	a	variant	of	the	EL
was	developed	for	JSF	1.0.	The	two	language	variants	were	later	unified.

As	of	version	3.0,	which	was	released	in	May	2013	under	JSR	341,	the	EL	is	no	longer
part	 of	 JSP	 or	 any	 other	 technologies.	 An	 independent	 specification,	 the	 EL	 3.0	 adds
support	 for	 lambda	 expressions	 and	 allows	 for	 collection	 manipulation.	 The	 lambda
support	in	the	EL	3.0	does	not	require	Java	SE	8.	Java	SE	7	is	good	enough.

The	Expression	Language	Syntax
An	EL	expression	can	be	specified	using	one	of	these	two	constructs:

${expression}

#{expression}

For	example,	to	write	the	expression	x+y,	you	use	the	following	construct:

${x+y}

or

#{x+y}

Both	 ${exp}	 and	 #{exp}	 constructs	 are	 evaluated	 in	 the	 same	 way	 by	 the	 EL	 engine.
However,	 when	 the	 EL	 is	 not	 being	 used	 as	 a	 stand-alone	 engine	 but	 rather	 with	 an
underlying	 technology,	 such	as	 JSF	or	 JSP,	 that	 technology	may	 interpret	 the	 constructs
differently.	For	instance,	in	JSF	the	${exp}	construct	is	used	for	immediate	evaluation	and
the	 #{expr}	 construct	 for	 deferred	 evaluation.	 An	 expression	 is	 said	 to	 use	 deferred
evaluation	when	the	expression	is	not	evaluated	until	its	value	is	needed	by	the	system.	On
the	 other	 hand,	 expressions	 that	 require	 immediate	 evaluation	 are	 compiled	 when	 the
containing	 JSP	 page	 is	 compiled	 and	 are	 executed	 when	 the	 JSP	 page	 is	 executed.	 In
addition,	 in	JSP	2.1	and	 later,	#{exp}	expressions	are	only	allowed	 in	 tag	attributes	 that
accept	deferred	expressions	and	cannot	be	used	elsewhere.

It	 is	 common	 to	 concatenate	 two	 expressions.	 A	 sequence	 of	 expressions	 will	 be
evaluated	from	left	to	right,	coerced	to	Strings,	and	concatenated.	If	a+b	equals	8	and	c+d
equals	10,	the	following	two	expressions	yield	810:

${a+b}${c+d}

And	${a+b}and${c+d}	results	in	8and10.

If	an	EL	expression	 is	used	 in	an	attribute	value	of	a	custom	tag,	 the	expression	will	be
evaluated	and	the	resulting	string	coerced	to	the	attribute’s	expected	type:

<my:tag	someAttribute="${expression}"/>

The	${	sequence	of	characters	denotes	the	beginning	of	an	EL	expression.	If	you	want	to
send	the	literal	${	instead,	you	need	to	escape	the	first	character:	\${.

Reserved	Words
The	following	words	are	reserved	and	must	not	be	used	as	identifiers:

and	eq	gt	true	instanceof

or	ne	le	false	empty

not	lt	ge	null	div	mod

The	[]	and	.	Operators
An	EL	expression	can	return	any	type.	If	an	EL	expression	results	in	an	object	that	has	a
property,	you	can	use	 the	 []	or	 .	 operators	 to	access	 the	property.	The	 []	and	 .	 operators
function	similarly;	[]	is	a	more	generalized	form,	but	.	provides	a	nice	shortcut.

To	access	an	object’s	property,	you	use	one	of	the	following	forms.

${object["propertyName"]}

${object.propertyName}

However,	you	can	only	use	the	[]	operator]	if	propertyName	 is	not	a	valid	Java	variable
name.	 For	 instance,	 the	 following	 two	EL	 expressions	 can	 be	 used	 to	 access	 the	HTTP
header	host	in	the	implicit	object	header.

${header["host"]}

${header.host}

However,	to	access	the	accept-language	header,	you	can	only	use	the	[]	operator	because
accept-language	 is	not	a	legal	Java	variable	name.	Using	the	 .	operator	 to	access	it	will
cause	an	exception	to	be	thrown.

If	an	object’s	property	happens	to	return	another	object	that	in	turn	has	a	property,	you
can	 use	 either	 []	 or	 .	 to	 access	 the	 property	 of	 the	 second	 object.	 For	 example,	 the
pageContext	implicit	object	represents	the	PageContext	object	of	the	current	JSP.	It	has
the	request	property,	which	represents	the	HttpServletRequest.	The	HttpServletRequest
has	 the	servletPath	property.	The	following	expressions	are	equivalent	and	result	 in	 the
value	of	the	servletPath	property	of	the	HttpServletRequest	in	pageContext:

${pageContext["request"]["servletPath"]}

${pageContext.request["servletPath"]}

${pageContext.request.servletPath}

${pageContext["request"].servletPath}

To	access	the	HttpSession,	use	this	syntax:

${pageContext.session}

For	example,	this	expression	prints	the	session	identifier.

${pageContext.session.id}

The	Evaluation	Rule
An	 EL	 expression	 is	 evaluated	 from	 left	 to	 right.	 For	 an	 expression	 of	 the	 form	 expr-
a[expr-b],	here	is	how	the	EL	expression	is	evaluated:

1.	Evaluate	expr-a	to	get	value-a.

2.	If	value-a	is	null,	return	null.

3.	Evaluate	expr-b	to	get	value-b.

4.	If	value-b	is	null,	return	null.

5.	If	the	type	of	value-a	is	java.util.Map,	check	whether	value-b	is	a	key	in	the	Map.	If
it	is,	return	value-a.get(value-b).	If	it	is	not,	return	null.

6.	If	the	type	of	value-a	is	java.util.List	or	if	it	is	an	array,	do	the	following:

a.	Coerce	value-b	to	int.	If	coercion	fails,	throw	an	exception.

b.	 If	 value-a.get(value-b)	 throws	 an	 IndexOutOfBoundsException	 or	 if
Array.get(value-a,	value-b)	 throws	an	ArrayIndexOutOfBoundsException,	 return
null.	Otherwise,	return	value-a.get(value-b)	if	value-a	is	a	List,	or	return

Array.get(value-a,	value-b)	if	value-a	is	an	array.

7.	If	value-a	is	not	a	Map,	a	List,	or	an	array,	value-a	must	be	a	JavaBean.	In	this	case,
coerce	value-b	to	String.	If	value-b	is	a	readable	property	of	value-a,	call	the	getter
of	 the	 property	 and	 return	 the	 value	 from	 the	 getter	 method.	 If	 the	 getter	 method
throws	an	exception,	the	expression	is	invalid.	Otherwise,	the	expression	is	invalid.

Accessing	JavaBeans
You	can	use	either	the	.	operator	or	the	[]	operator	to	access	a	bean’s	property.	Here	are	the
constructs:

${beanName["propertyName"]}

${beanName.propertyName}

For	example,	to	access	the	property	secret	on	a	bean	named	myBean,	use	the	following
expression:

${myBean.secret}

If	the	property	is	an	object	that	in	turn	has	a	property,	you	can	access	the	property	of	the
second	object	too,	again	using	the	.	or	[]	operator.	Or,	if	the	property	is	a	Map,	a	List,	or
an	array,	you	can	use	the	same	rule	explained	in	the	preceding	section	to	access	the	Map’s
values	or	the	members	of	the	List	or	the	element	of	the	array.

EL	Implicit	Objects
From	a	JSP	page	you	can	use	JSP	scripts	to	access	JSP	implicit	objects.	However,	from	a
script-free	JSP	page,	it	is	impossible	to	access	these	implicit	objects.	The	EL	allows	you	to
access	 various	 objects	 by	 providing	 a	 set	 of	 its	 own	 implicit	 objects.	 The	 EL	 implicit
objects	are	listed	in	Table	8.1.

Object Description

pageContext The	javax.servlet.jsp.PageContext	object	for	the	current	JSP.

initParam A	Map	containing	all	context	initialization	parameters	with	the
parameter	names	as	the	keys.

param

A	Map	containing	all	request	parameters	with	the	parameters
names	as	the	keys.	The	value	for	each	key	is	the	first	parameter
value	of	the	specified	name.	Therefore,	if	there	are	two	request
parameters	with	the	same	name,	only	the	first	can	be	retrieved
using	the	param	object.	For	accessing	all	parameter	values	that
share	the	same	name,	use	the	params	object	instead.

paramValues

A	Map	containing	all	request	parameters	with	the	parameter	names
as	the	keys.	The	value	for	each	key	is	an	array	of	strings	containing
all	the	values	for	the	specified	parameter	name.	If	the	parameter	has
only	one	value,	it	still	returns	an	array	having	one	element.

header

A	Map	containing	the	request	headers	with	the	header	names	as	the
keys.	The	value	for	each	key	is	the	first	header	of	the	specified
header	name.	In	other	words,	if	a	header	has	more	than	one	value,
only	the	first	value	is	returned.	To	obtain	multi-value	headers,	use
the	headerValues	object	instead.

headerValues

A	Map	containing	all	request	headers	with	the	header	names	as	the
keys.	The	value	for	each	key	is	an	array	of	strings	containing	all	the
values	for	the	specified	header	name.	If	the	header	has	only	one
value,	it	returns	a	one-element	array.

cookie
A	Map	containing	all	Cookie	objects	in	the	current	request	object.
The	cookies’	names	are	the	Map‘s	keys,	and	each	key	is	mapped	to
a	Cookie	object.

applicationScope A	Map	that	contains	all	attributes	in	the	ServletContext	object
with	the	attribute	names	as	the	keys.

sessionScope A	Map	that	contains	all	the	attributes	in	the	HttpSession	object	in

which	the	attribute	names	are	the	keys.

requestScope A	Map	that	contains	all	the	attributes	in	the	current
HttpServletRequest	object	with	the	attribute	names	as	the	keys.

pageScope A	Map	that	contains	all	attributes	with	the	page	scope.	The
attributes’	names	are	the	keys	of	the	Map.

Table	8.1:	The	EL	Implicit	Objects

Each	of	the	implicit	objects	is	given	in	the	following	subsections.

pageContext
The	pageContext	object	represents	the	javax.servlet.jsp.PageContext	of	the	current	JSP
page.	It	contains	all	the	other	JSP	implicit	objects,	which	are	given	in	Table	8.2.

Object Type	From	the	EL

request javax.servlet.http.HttpServletRequest

response javax.servlet.http.HttpServletResponse

out javax.servlet.jsp.JspWriter

session javax.servlet.http.HttpSession

application javax.servlet.ServletContext

config javax.servlet.ServletConfig

pageContext javax.servlet.jsp.PageContext

page javax.servlet.jsp.HttpJspPage

exception java.lang.Throwable

Table	8.2:	JSP	Implicit	Objects

For	 example,	 you	 can	 obtain	 the	 current	 ServletRequest	 using	 one	 of	 the	 following
expressions:

${pageContext.request}

${pageContext["request"]

And,	the	request	method	can	be	obtained	using	any	of	the	following	expressions:

${pageContext["request"]["method"]}

${pageContext["request"].method}

${pageContext.request["method"]}

${pageContext.request.method}

Table	8.3	lists	useful	properties	of	pageContext.request.

Property Description

characterEncoding The	character	encoding	used	in	the	request

contentType The	MIME	type	of	the	request

locale The	preferred	locale	of	the	browser

locales An	Enumeration	containing	all	user	locales

protocol The	HTTP	protocol	used	to	send	the	request,	e.g.	HTTP/1.1

remoteAddr The	client’s	IP	address

remoteHost The	client’s	host	name	or	IP	address

scheme The	scheme	used	to	send	the	request,	e.g	HTTP	or	HTTPS

serverName The	server	host	name

serverPort The	server	port	number

secure Whether	or	not	the	request	was	sent	over	a	secure	channel

Table	8.3:	Useful	properties	of	pageContext.request

Request	 parameters	 are	 accessed	more	 frequently	 than	 other	 implicit	 objects;	 therefore,
two	 implicit	 objects,	 param	 and	 paramValues,	 are	 provided.	 The	 param	 and
paramValues	implicit	objects	are	discussed	in	the	sections	“param”	and	“paramValues.”

initParam
The	 initParam	 implicit	 object	 is	 used	 to	 retrieve	 the	 value	 of	 a	 context	 parameter.	 For
example,	 to	 access	 the	 context	 parameter	 named	 password,	 you	 use	 the	 following
expression:

${initParam.password}

or

${initParam["password"]

param
The	param	implicit	object	is	used	to	retrieve	a	request	parameter.	This	object	represents	a
Map	containing	all	the	request	parameters.	For	example,	to	retrieve	the	parameter	called
userName,	use	one	of	the	following:

${param.userName}

${param["userName"]}

paramValues
You	use	 the	paramValues	 implicit	 object	 to	 retrieve	 the	 values	 of	 a	 request	 parameter.
This	object	represents	a	Map	containing	all	request	parameters	with	the	parameter	names
as	the	keys.	The	value	for	each	key	is	an	array	of	strings	containing	all	the	values	for	the
specified	 parameter	 name.	 If	 the	 parameter	 has	 only	 one	 value,	 it	 still	 returns	 an	 array
having	 one	 element.	 For	 example,	 to	 obtain	 the	 first	 and	 second	 values	 of	 the
selectedOptions	parameter,	you	use	the	following	expressions:

${paramValues.selectedOptions[0]}

${paramValues.selectedOptions[1]}

header
The	header	implicit	object	represents	a	Map	that	contains	all	request	headers.	To	retrieve
a	header	value,	use	the	header	name	as	the	key.	For	example,	to	retrieve	the	value	of	the
accept-language	header,	use	the	following	expression:

${header["accept-language"]}

If	the	header	name	is	a	valid	Java	variable	name,	such	as	connection,	you	can	also	use	the
.	operator:

${header.connection}

headerValues
The	headerValues	 implicit	 object	 represents	 a	Map	 containing	 all	 request	 headers	with
the	 header	 names	 as	 keys.	 Unlike	 header,	 however,	 the	 Map	 returned	 by	 the
headerValues	 implicit	object	returns	an	array	of	strings.	For	example,	 to	obtain	the	first
value	of	the	accept-language	header,	use	this	expression:

${headerValues["accept-language"][0]}

cookie
You	 use	 the	 cookie	 implicit	 object	 to	 retrieve	 a	 cookie.	 This	 object	 represents	 a	Map
containing	 all	 cookies	 in	 the	 current	HttpServletRequest.	 For	 example,	 to	 retrieve	 the
value	of	a	cookie	named	jsessionid,	use	the	following	expression:

${cookie.jsessionid.value}

To	obtain	the	path	value	of	the	jsessionid	cookie,	use	this:

${cookie.jsessionid.path}

applicationScope,	 sessionScope,	 requestScope	 and
pageScope
You	use	the	applicationScope	implicit	object	to	obtain	the	value	of	an	application-scoped
variable.	For	example,	if	you	have	an	application-scoped	variable	called	myVar,	you	may
use	this	expression	to	access	the	attribute:

${applicationScope.myVar}

Note	that	in	servlet/JSP	programming	a	scoped	object	is	an	object	placed	as	an	attribute	in
any	 of	 the	 following	 objects:	 PageContext,	 ServletRequest,	 HttpSession,	 or
ServletContext.	 The	 sessionScope,	 requestScope,	 and	 pageScope	 implicit	 objects	 are
similar	 to	 applicationScope.	 However,	 the	 scopes	 are	 session,	 request,	 and	 page,
respectively.

A	 scoped	 object	 can	 also	 be	 accessed	 in	 an	EL	 expression	without	 the	 scope.	 In	 this
case,	the	JSP	container	will	return	the	first	identically	named	object	in	the	PageContext,
ServletRequest,	HttpSession,	 or	ServletContext.	 Searches	 are	 conducted	 starting	 from
the	 narrowest	 scope	 (PageContext)	 to	 the	 widest	 (ServletContext).	 For	 example,	 the
following	expression	will	return	the	object	referenced	by	today	in	any	scope.

${today}

Using	Other	EL	Operators
In	 addition	 to	 the	 .	 and	 []	 operators,	 the	 EL	 also	 provides	 several	 other	 operators:
arithmetic	operators,	 relational	operators,	 logical	operators,	 the	conditional	operator,	and
the	empty	operator.	Using	these	operators,	you	can	perform	various	operations.	However,
because	the	aim	of	the	EL	is	to	facilitate	the	authoring	of	script-free	JSP	pages,	these	EL
operators	are	of	limited	use,	except	for	the	conditional	operator.

The	EL	operators	are	given	in	the	following	subsections.

Arithmetic	Operators
There	are	five	arithmetic	operators:

Addition	(+)
Subtraction	(-)
Multiplication	(*)
Division	(/	and	div)
Remainder/modulo	(%	and	mod)

The	 division	 and	 remainder	 operators	 have	 two	 forms,	 to	 be	 consistent	with	XPath	 and
ECMAScript.

Note	that	an	EL	expression	is	evaluated	from	the	highest	to	the	lowest	precedence,	and
then	from	left	to	right.	The	following	are	the	arithmetic	operators	in	the	decreasing	lower
precedence:

*	/	div	%	mod
+	-

This	means	that	*,	/,	div,	%,	and	mod	operators	have	the	same	level	of	precedence,	and	+
has	the	same	precedence	as	-	,	but	lower	than	the	first	group.	Therefore,	the	expression

${1+2*3}

results	in	7	and	not	6.

Relational	Operators
The	following	is	the	list	of	relational	operators:

equality	(==	and	eq)
non-equality	(!=	and	ne)
greater	than	(>	and	gt)
greater	than	or	equal	to	(>=	and	ge)
less	than	(<	and	lt)
less	than	or	equal	to	(<=	and	le)

For	instance,	the	expression	${3==4}	returns	false,	and	${“b”<”d”}	returns	true.

Logical	Operators
Here	is	the	list	of	logical	operators:

AND	(&&	and	and)
OR	(||	and	or)
NOT	(!	and	not)

The	Conditional	Operator
The	EL	conditional	operator	has	the	following	syntax:

${statement?	A:B}

If	statement	evaluates	to	true,	the	output	of	the	expression	is	A.	Otherwise,	the	output	is	B.

For	example,	you	can	use	the	following	EL	expression	to	test	whether	the	HttpSession
contains	 the	 attribute	 called	 loggedIn.	 If	 the	 attribute	 is	 found,	 the	 string	 “You	 have
logged	in”	is	displayed.	Otherwise,	“You	have	not	logged	in”	is	displayed.

${(sessionScope.loggedIn==null)?	"You	have	not	logged	in"	:

								"You	have	logged	in"}

The	empty	Operator
The	empty	operator	is	used	to	examine	whether	a	value	is	null	or	empty.	The	following	is
an	example	of	the	use	of	the	empty	operator:

${empty	X}

If	X	is	null	or	if	X	is	a	zero-length	string,	the	expression	returns	true.	It	also	returns	true	if
X	is	an	empty	Map,	an	empty	array,	or	an	empty	collection.	Otherwise,	it	returns	false.

The	String	Concatenation	Operator
The	+=	operator	is	used	to	concatenate	strings.	For	example,	the	following	prints	the	value
of	a	+	b.

${a	+=	b}

The	Semicolon	Operator
The	 ;	 operator	 is	 used	 to	 separate	 two	 expressions.	 For	 an	 example,	 see	 the	 section
“Formatting	Dates”	later	in	this	chapter.

Referencing	Static	Fields	and	Methods
You	can	reference	static	fields	and	methods	defined	in	any	Java	classes.	Before	you	can
reference	a	static	field	or	method	in	a	JSP	page,	however,	you	have	to	import	the	class	or
the	class	package	using	the	page	directive.	The	java.lang	package	is	an	exception	because
it	is	automatically	imported.

For	instance,	the	following	page	directive	imports	the	java.time	package.

<%@page	import="java.time.*"%>

Alternatively,	you	can	import	a	single	class,	e.g.

<%@page	import="java.time.LocalDate"%>

As	 a	 result,	 you	 can	 reference	 the	 LocalDate	 class’s	 now	 method,	 which	 is	 a	 static
method,	like	so.

Today	is	${LocalDate.now()}

You	will	learn	how	to	format	a	date	later	in	this	chapter.

Here	is	another	example	of	referencing	a	static	member	and	a	static	field	of	a	class.

<p>

				√ 36

				=	${Math.sqrt(36)}

</p>

<p>

				π	=	${Math.PI}

</p>

Since	Math	 is	 a	member	of	 java.lang,	 you	do	not	need	 to	 import	 this	 class.	Figure	8.1
shows	how	this	code	is	rendered	in	a	JSP	page.

Figure	8.1:	Referencing	static	members	of	a	class

Another	way	of	importing	a	package	is	by	doing	so	programmatically	in	a	ServletContext
listener.	Listing	8.1	shows	a	listener	that	imports	two	packages,	java.time	and	java.util.

Listing	8.1:	Importing	types	programmatically

package	listener;

import	javax.el.ELContextEvent;

import	javax.servlet.ServletContextEvent;

import	javax.servlet.ServletContextListener;

import	javax.servlet.annotation.WebListener;

import	javax.servlet.jsp.JspFactory;

@WebListener

public	class	ELImportListener	implements	ServletContextListener	{

				@Override

				public	void	contextInitialized(ServletContextEvent	event)	{

								JspFactory.getDefaultFactory().getJspApplicationContext(

																event.getServletContext()).addELContextListener(

																								(ELContextEvent	e)	->	{

																												e.getELContext().getImportHandler().																																				

																												importPackage("java.time");

																												e.getELContext().getImportHandler().

																												importPackage("java.util");

																								});

				}

				@Override

				public	void	contextDestroyed(ServletContextEvent	event)	{

				}

}

Creating	Sets,	Lists	and	Maps
You	can	dynamically	create	sets,	lists	and	maps.	The	syntax	for	creating	a	set	is	this.

{	comma-delimited-elements	}

For	example,	the	following	EL	expression	creates	a	set	of	five	positive	integers:

${{	1,	2,	3,	4,	5	}}

The	syntax	for	creating	a	list	is	as	follows.

[comma-delimited-elements]

For	example,	this	EL	expression	creates	a	list	of	flower	names:

${["Aster",	"Carnation",	"Rose"]}

Finally,	here	is	the	syntax	for	creating	a	Map:

{	comma-delimited-key-value-entries	}

Here	is	an	EL	expression	that	contains	a	Map	of	countries	and	their	capital	cities.

${{	"Canada":"Ottawa",	"China":"Beijing",	"France":"Paris"	}}

Accessing	List	Elements	and	Map	Entries
You	can	access	a	List	 element	by	 its	 index.	For	example,	 the	 following	 returns	 the	 first
element	in	cities:

${cities[0]}

To	access	the	value	of	a	map	entry,	use	this	format:

${map[key]}

For	instance,	the	following	expression	returns	“Ottawa.”

${{	"Canada":"Ottawa",	"China":"Beijing"	}["Canada"]}

Manipulating	Collections
The	EL	3.0	brings	a	lot	of	goodies.	One	of	its	main	contributions	is	a	feature	to	manipulate
collections.	 You	 can	make	 full	 use	 of	 this	 feature	 by	 first	 converting	 a	 collection	 to	 a
stream	by	calling	the	stream	method.

Here	is	how	you	convert	a	list	to	a	stream,	assuming	myList	is	a	java.util.List:

${	myList.stream()	}

Many	 of	 the	 stream’s	 operations	 return	 another	 stream,	 enabling	 these	 operations	 to	 be
chained.

${	myList.stream().operation-1().operation-2().toList()	}

At	 the	 end	 of	 the	 chain,	 you	 normally	 call	 the	 toList	method	 so	 that	 the	 result	 can	 be
printed	or	formatted.

The	following	subsections	presents	some	of	 the	operations	 that	you	can	perform	on	a
stream.

toList
The	toList	method	returns	a	List	containing	the	same	members	as	the	stream	on	which	the
method	 is	 called.	 The	main	 reason	why	 you	would	 call	 this	method	 is	 so	 that	 you	 can
easily	print	or	manipulate	the	stream	elements.	Here	is	an	example	of	converting	a	List	to
a	Stream	and	back	to	a	List:

${	[100,	200,	300].stream().toList()}

Of	 course	 this	 example	 does	 not	 do	 anything	 useful.	 You	will	 see	more	 examples	 that
make	more	sense	later	in	the	next	subsections.

toArray
Similar	to	toList,	but	returns	a	Java	array.	Again,	it	is	often	useful	to	present	elements	in
an	array	because	many	Java	methods	take	an	array	as	their	argument.	Here	is	an	example
of	toArray:

${	["One",	"Two",	"Three"].stream().toArray()}

Unlike	 toList,	however,	toArray	 does	not	print	 the	elements.	Therefore,	 toList	 is	more
frequently	used	that	toArray.

limit
The	limit	method	limits	the	number	of	elements	in	a	stream.	Consider	the	following	List
called	cities	that	contains	seven	cities:

[Paris,	Strasbourg,	London,	New	York,	Beijing,	Amsterdam,	San	Francisco]

The	following	code	limits	the	number	of	elements	to	three.

${cities.stream().limit(3).toList()}

When	executed,	the	expression	will	return	this	List:

[Paris,	Strasbourg,	London]

If	the	argument	passed	to	limit()	is	greater	than	the	number	of	elements,	all	the	elements
will	be	returned.

sorted
This	method	sorts	the	elements	in	a	stream.	For	example,	this	expression

${cities.stream().sorted().toList()}

returns	this	List,	which	is	sorted.

[Amsterdam,	Beijing,	London,	New	York,	Paris,	San	Francisco,	Strasbourg]

average
This	method	 returns	 the	 average	of	 all	 the	 elements	 in	 a	 stream.	The	 return	value	 is	 an
Optional	 object,	which	wraps	 an	object	 that	 could	potentially	be	null.	You	need	 to	 call
get()	to	obtain	the	actual	value.

As	an	example,	this	expression	returns	4.0:

${[1,	3,	5,	7].stream().average().get()}

sum
This	method	calculates	the	total	of	all	elements	in	a	stream.	For	example,	this	expression
returns	16.

${[1,	3,	5,	7].stream().sum()}

count
This	method	 returns	 the	 number	 of	 elements	 in	 a	 stream.	 For	 example,	 this	 expression
returns	7.

${cities.stream().count()}

min
This	method	returns	 the	minimum	in	 the	elements	of	a	stream.	Like	average,	 the	 return
value	is	an	Optional	object,	so	you	need	to	call	get()	to	get	the	actual	value.

For	example,	this	expression	returns	1.

${[1,3,100,1000].stream().min().get()}

max
This	method	returns	the	maximum	in	the	elements	of	a	stream.	Like	average,	 the	 return
value	is	an	Optional	object,	so	you	need	to	call	get()	to	get	the	actual	value.

For	example,	this	expression	returns	1000.

${[1,3,100,1000].stream().max().get()}

map
This	method	maps	each	element	in	a	stream	and	returns	another	stream	that	contains	the
mapping	 results.	 This	 method	 accepts	 a	 lambda	 expression	 that	 will	 be	 used	 in	 the
mapping.

For	example,	this	map	method	takes	a	lambda	expression	x	->	2	*	x,	which	practically
doubles	each	of	the	elements	and	return	them	in	a	new	stream.

${[1,	3,	5].stream().map(x	->	2	*	x).toList()}

If	executed,	this	expression	returns	this	List:

[2,	6,	10]

As	another	example,	this	map	method	capitalizes	a	stream	of	strings.

${cities.stream().map(x	->	x.toUpperCase()).toList()}

It	returns	the	following	List.

[PARIS,	STRASBOURG,	LONDON,	NEW	YORK,	BEIJING,	AMSTERDAM,	SAN	FRANCISCO]

filter
This	method	filters	all	elements	in	a	stream	against	a	lambda	expression	and	returns	a	new
stream	containing	elements	that	passed.

For	example,	 the	following	expression	tests	 if	a	city	starts	with	an	“S”	and	returns	all
that	do.

${cities.stream().filter(x	->	x.startsWith("S")).toList()}

Here	is	the	List	that	it	yields:

[Strasbourg,	San	Francisco]

forEach
This	method	performs	an	operation	on	all	the	elements	in	a	stream.	It	returns	void.

For	example,	this	expression	prints	all	elements	in	cities	to	the	console.

${cities.stream().forEach(x	->	System.out.println(x))}

Formatting	Collections
Since	the	EL	defines	how	to	write	expressions	and	not	functions,	unsurprisingly	there	 is
nothing	 that	 can	 be	 directly	 used	 to	 print	 or	 format	 collections.	 After	 all,	 printing	 and
formatting	 are	 not	 the	 domain	 of	 the	 EL.	 However,	 printing	 and	 formatting	 are	 two
important	tasks	that	cannot	be	ignored.

If	you	are	new	to	the	EL	3.0	but	familiar	with	JSP,	the	easiest	way	to	format	collections
would	to	use	the	JSTL,	which	is	discussed	in	Chapter	6,	“JSTL.”	However,	that	would	be
a	 shame	 because	 with	 such	 powerful	 features,	 the	 EL	 3.0	 alone	 should	 be	 enough	 to
resolve	these	issues	and	allow	us	to	ditch	JSTL	completely.

The	EL	3.0	specification	says	nothing	about	formatting	collections.	However,	 the	new
features	in	the	EL	3.0	are	powerful	enough	to	present	such	an	opportunity.	For	example,
you	might	try	forEach,	which	at	first	glance	looks	similar	to	JSTL’s	forEach.	In	fact,	the
following	actually	works	in	Tomcat	8.

${cities.stream().forEach(x	->	pageContext.out.println(x))}

Sadly,	this	does	not	work	in	GlassFish	4,	so	forEach	is	definitely	out.

The	two	solutions	I	finally	came	up	with	are	not	as	clean	as	forEach,	but	at	least	they
work	 with	 all	 major	 servlet	 containers.	 The	 first	 solution	 works	 with	 Java	 SE	 7.	 The
second	 solution	 is	 arguably	 a	more	 elegant	 solution	 than	 the	 first,	 but	 only	works	with
Java	SE	8.

Here	they	are.

Using	HTML	Comments
A	string	representation	of	a	List	looks	like	this:

[element-1,	element-2,	...]

Now,	if	I	want	to	present	the	elements	in	an	HTML	list,	I	need	to	write	it	like	so.

				element-1

				element-2

				...

Now,	you’ve	probably	noticed	 that	 each	 element	must	 be	 turned	 to	element-n.
How	do	I	do	that?	If	you’ve	been	paying	close	attention,	you’ll	probably	still	remember
that	the	map	method	can	be	used	to	transform	each	element.	So,	I’ll	have	something	like
this:

${myList.stream().map(x	->	""	+=	x	+=	"").toList()}

which	gives	me	a	List	like	this:

[element-1,	element-2,	...]

Close	enough,	but	you	still	need	to	remove	the	brackets	and	commas.	Unfortunately,	you
have	no	control	over	 the	string	representation	of	a	List.	Fortunately	though,	you	can	use
HTML	comments.

So,	here	is	an	example:

<!--${cities.stream().map(x	->	"-->"+=x+="<!--").toList()}-->

The	result	looks	like	this:

<!--[-->Paris<!--,	-->Strasbourg<!--,

-->London<!--,	-->New	York<!--,	

-->Beijing<!--,	-->Amsterdam<!--,	-->San	

Francisco<!--]

-->

This	effectively	comments	out	the	brackets	and	commas.	Sure	the	result	looks	a	bit	messy,
but	it	is	nonetheless	valid	HTML	and,	more	importantly,	it	works!

Figure	8.2	shows	how	it	is	rendered.

Figure	8.2:	Using	HTML	comments	to	format	collections

Here	is	another	example	that	uses	the	same	technique,	this	time	formatting	a	collection	of
Address	objects	in	an	HTML	table.

<table>

				<tr><th>Street</th><th>City</th></tr>

				<!--${addresses.stream().map(a->"-->

<tr><td>"+=a.streetName+="</td><td>"+=a.city+="</td></tr><!--").toList()}

-->

</table>

Using	String.join()
This	second	solution	works	because	the	EL	3.0	allows	you	to	reference	static	methods.	It
so	 happens	 that	 Java	 8	 adds	 some	 new	 static	 methods	 to	 the	 String	 class.	 One	 of	 the
methods,	join,	is	exactly	the	solution	I	was	looking	for.	There	are	two	overloads	of	join,
but	here	is	the	one	that	is	of	interest.

public	static	String	join(CharSequence	delimiter,

								Iterable<?	extends	CharSequence>	elements)

This	method	 returns	a	String	 composed	of	copies	of	 the	CharSequence	elements	 joined
together	 with	 a	 copy	 of	 the	 specified	 delimiter.	 This	 is	 perfect	 because	 the
java.util.Collection	 interface	extends	 Iterable.	Therefore,	you	can	pass	 a	Collection	 to
join().

For	example,	here	is	how	you	would	format	a	List	as	an	HTML	ordered	list:

${""	+=	String.join("",	cities)	+=	""}

This	expression	is	good	for	collections	with	at	least	one	element.	If	there	is	a	possibility
that	you	are	dealing	with	an	empty	collection,	here	is	a	better	expression:

${empty	cities?	""	:	""	

								+=	String.join("",	cities.stream().sorted().toList())	

								+=	""}

Formatting	Numbers
To	format	a	number,	again	you	can	take	advantage	of	the	fact	that	the	EL	3.0	allows	you	to
reference	static	methods.	The	String	class’s	format	method	is	a	static	method	that	can	be
used	to	format	numbers.

For	example,	the	following	expression	returns	a	double	with	two	decimal	points.

${String.format("%-10.2f%n",	125.178)}

More	formatting	rules	can	be	found	in	the	JavaDoc	for	java.text.DecimalFormat.

Formatting	Dates
You	can	also	use	String.format()	to	format	a	date	and	a	time.	For	example,	the	following
expression	formats	a	date.

${d	=	LocalDate.now().plusDays(2);	String.format("%tB	%te,	%tY%n",	d,	d,	

								d)}

First,	LocalDate.now().plusDays(2)	is	evaluated	and	its	return	value	is	stored	in	d.	Next,
String.format()	is	used	to	format	the	LocalDate,	referring	to	d	three	times.

More	date	formatting	rules	can	be	found	here:

https://docs.oracle.com/javase/tutorial/java/data/numberformat.html

Configuring	 the	 EL	 in	 JSP	 2.0	 and	 Later
Versions
With	the	EL,	JavaBeans,	and	custom	tags,	it	is	now	possible	to	write	script-free	JSP	pages.
JSP	 2.0	 and	 later	 versions	 even	 provide	 a	 switch	 to	 disable	 scripting	 in	 all	 JSP	 pages.
Software	architects	can	now	enforce	the	writing	of	script-free	JSP	pages.

On	 the	 other	 hand,	 in	 some	 circumstances	 you’ll	 probably	want	 to	 disable	 the	EL	 in
your	applications.	For	example,	you’ll	want	to	do	so	if	you	are	using	a	JSP	2.0-compliant
container	 but	 are	 not	 ready	 yet	 to	 upgrade	 to	 JSP	2.0.	 In	 this	 case,	 you	 can	 disable	 the
evaluation	of	EL	expressions.

This	section	discusses	how	to	enforce	script-free	JSP	pages	and	how	to	disable	the	EL
in	JSP	2.0	and	later.

Achieving	Script-Free	JSP	Pages
To	disable	scripting	elements	in	JSP	pages,	use	the	jsp-property-group	element	with	two
subelements:	 url-pattern	 and	 scripting-invalid.	 The	 url-pattern	 element	 defines	 the
URL	pattern	to	which	scripting	disablement	will	apply.	Here	is	how	you	disable	scripting
in	all	JSP	pages	in	an	application:

<jsp-config>

				<jsp-property-group>

								<url-pattern>*.jsp</url-pattern>

								<scripting-invalid>true</scripting-invalid>

				</jsp-property-group>

</jsp-config>

Note
There	 can	be	only	one	 jsp-config	element	 in	 the	 deployment	 descriptor.	 If	 you	have
specified	 a	 jsp-property-group	 for	 deactivating	 the	 EL,	 you	 must	 write	 your	 jsp-
property-group	for	disabling	scripting	under	the	same	jsp-config	element.

Deactivating	EL	Evaluation
In	some	circumstances,	such	as	when	you	need	to	deploy	JSP	1.2	applications	in	a	JSP	2.0
or	later	container,	you	may	want	to	deactivate	EL	evaluation	in	a	JSP	page.	When	you	do
so,	an	occurrence	of	the	EL	construct	will	not	be	evaluated	as	an	EL	expression.	There	are
two	ways	to	deactivate	EL	evaluation	in	a	JSP.

First,	you	can	set	the	isELIgnored	attribute	of	the	page	directive	to	true,	such	as	in	the
following:

<%@	page	isELIgnored="true"	%>

The	default	value	of	the	isELIgnored	attribute	is	false.	Using	the	isELIgnored	attribute	is
recommended	if	you	want	to	deactivate	EL	evaluation	in	one	or	a	few	JSP	pages.

Second,	you	can	use	the	jsp-property-group	element	in	the	deployment	descriptor.	The
jsp-property-group	 element	 is	 a	 subelement	 of	 the	 jsp-config	 element.	 You	 use	 jsp-
property-group	to	apply	certain	settings	to	a	set	of	JSP	pages	in	the	application.

To	use	the	jsp-property-group	element	to	deactivate	EL	evaluation,	you	must	have	two
subelements:	 url-pattern	 and	 el-ignored.	 The	 url-pattern	 element	 specifies	 the	 URL
pattern	to	which	EL	deactivation	will	apply.	The	el-ignored	element	must	be	set	to	true.

As	an	example,	here	is	how	to	deactivate	EL	evaluation	in	a	JSP	page	named	noEl.jsp.

<jsp-config>

				<jsp-property-group>

								<url-pattern>/noEl.jsp</url-pattern>

								<el-ignored>true</el-ignored>

				</jsp-property-group>

</jsp-config>

You	 can	 also	 deactivate	 the	 EL	 evaluation	 in	 all	 the	 JSP	 pages	 in	 an	 application	 by
assigning	*.jsp	to	the	url-pattern	element,	as	in	the	following:

<jsp-config>

				<jsp-property-group>

								<url-pattern>*.jsp</url-pattern>

								<el-ignored>true</el-ignored>

				</jsp-property-group>

</jsp-config>

EL	evaluation	in	a	JSP	page	will	be	deactivated	if	either	the	isELIgnored	attribute	of	its
page	 directive	 is	 set	 to	 true	 or	 its	URL	matches	 the	 pattern	 in	 the	 jsp-property-group
element	whose	 el-ignored	 subelement	 is	 set	 to	 true.	 For	 example,	 if	 you	 set	 the	page
directive’s	isELIgnored	attribute	of	a	JSP	page	to	false	but	its	URL	matches	the	pattern	of
JSP	 pages	 whose	 EL	 evaluation	 must	 be	 deactivated	 in	 the	 deployment	 descriptor,	 EL
evaluation	of	that	page	will	be	deactivated.

In	 addition,	 if	 you	 use	 the	 deployment	 descriptor	 that	 is	 compliant	 to	 Servlet	 2.3	 or
earlier,	the	EL	evaluation	is	already	disabled	by	default,	even	though	you	are	using	a	JSP
2.0	or	later	container.

Summary
The	EL	is	one	of	 the	most	 important	 features	 in	JSP	2.0	and	 later.	 It	can	help	you	write
shorter	and	more	effective	JSP	pages,	as	well	as	helping	you	author	script-free	pages.	In
this	chapter	you	have	seen	how	 to	use	 the	EL	 to	access	JavaBeans	and	 implicit	objects.
Additionally,	you	have	seen	how	to	use	EL	operators.	 In	 the	 last	section	of	 this	chapter,
you	 learned	 how	 to	 use	 EL-related	 application	 settings	 related	 in	 a	 JSP	 2.0	 and	 later
container.

Chapter	9

JSTL
The	JavaServer	Pages	Standard	Tag	Library	(JSTL)	is	a	collection	of	custom	tag	libraries
for	 solving	 common	 problems	 such	 as	 iterating	 over	 a	 map	 or	 collection,	 conditional
testing,	XML	processing,	and	even	database	access	and	data	manipulation.

This	chapter	discusses	the	most	important	tags	in	JSTL,	especially	those	for	accessing
scoped	objects,	 iterating	over	a	collection,	and	formatting	numbers	and	dates.	 If	you	are
interested	to	know	more,	a	complete	discussion	of	all	JSTL	tags	can	be	found	in	the	JSTL
Specification	document.

Note
With	 the	 release	of	 the	Expression	Language	3.0,	all	 JSTL	core	 tags	can	be	 replaced
with	EL	expressions.	Older	projects,	however,	would	still	 contain	JSTL	so	mastering
the	JSTL	would	still	help.

Downloading	JSTL
JSTL	is	currently	at	version	1.2	and	defined	by	 the	JSR-52	expert	group	under	 the	Java
Community	Process	 (www.jcp.org).	The	 implementation	 is	 available	 for	download	 from
java.net:

http://jstl.java.net

There	 are	 two	 pieces	 of	 software	 you	 need	 to	 download,	 the	 JSTL	 API	 and	 the	 JSTL
implementation.	The	JSTL	API	contains	the	javax.servlet.jsp.jstl	package,	which	consists
of	 types	 defined	 in	 the	 JSTL	 specification.	 The	 JSTL	 implementation	 contains	 the
implementation	 classes.	You	must	 copy	 both	 jar	 files	 to	 the	WEB-INF/lib	 directory	 of
every	application	utilizing	JSTL.

JSTL	Libraries
JSTL	 is	 referred	 to	 as	 the	 standard	 tag	 library;	 however,	 it	 exposes	 its	 actions	 through
multiple	tag	libraries.	The	tags	in	JSTL	1.2	can	be	categorized	into	five	areas,	which	are
summarized	in	Table	9.1.

Area Subfunction URI Prefix

Core

Variable	Support

http://java.sun.com/jsp/jstl/core c
Flow	Control

URL	Management

Miscellaneous

XML

Core

http://java.sun.com/jsp/jstl/xml xFlow	Control

Transformation

I18n

Locale

http://java.sun.com/jsp/jstl/fmt fmtMessage	formatting

Number	and	date
formatting

Database SQL http://java.sun.com/jsp/jstl/sql sql

Functions
Collection	length

http://java.sun.com/jsp/jstl/functions fn
String	manipulation

Table	9.1:	JSTL	Tag	Libraries

To	use	a	JSTL	library	in	a	JSP	page,	use	the	taglib	directive	with	the	following	format:

<%@	taglib	uri="uri"	prefix="prefix"	%>

For	instance,	to	use	the	Core	library,	declare	this	at	the	beginning	of	the	JSP	page:

<%@	taglib	uri="http://java.sun.com/jsp/jstl/core"	prefix="c"	%>

The	prefix	can	be	anything.	However,	using	 the	convention	makes	your	code	 look	more
familiar	 to	 the	other	developers	 in	your	 team	and	others	who	 later	 join	 the	project.	 It	 is

therefore	recommended	to	use	the	prescribed	prefixes.

Note
Each	 of	 the	 tags	 discussed	 in	 this	 chapter	 is	 presented	 in	 its	 own	 section	 and	 the
attributes	for	each	tag	are	listed	in	a	table.	An	asterisk	(*)	following	an	attribute	name
indicates	 that	 the	 attribute	 is	 required.	 A	 plus	 sign	 (+)	 indicates	 the	 value	 of	 the
rtexprvalue	 element	 for	 that	 attribute	 is	 true,	 which	 means	 the	 attribute	 can	 be
assigned	a	static	string	or	a	dynamic	value	(a	Java	expression,	an	Expression	Language
expression,	 or	 a	 value	 set	 by	 a	 <jsp:attribute>).	 A	 value	 of	 false	 for	 rtexprvalue
means	that	the	attribute	can	only	be	assigned	a	static	string	only.

Note
The	body	content	of	a	JSTL	tag	can	be	empty,	JSP,	or	tagdependent.

General-Purpose	Actions
The	following	section	discusses	three	general-purpose	actions	in	the	Core	library	used	for
manipulating	scoped	variables:	out,	set,	remove.

The	out	Tag
The	out	tag	evaluates	an	expression	and	outputs	the	result	to	the	current	JspWriter.	The
syntax	for	out	has	two	forms,	with	and	without	a	body	content:

<c:out	value="value"	[escapeXml="{true|false}"]

								[default="defaultValue"]/>

<c:out	value="value"	[escapeXml="{true|false}"]>

				default	value

</c:out>

Note
In	a	tag’s	syntax,	[]	indicates	optional	attributes.	The	underlined	value,	if	any,	indicates
the	default	value.

The	body	content	for	out	is	JSP.	The	list	of	the	tag’s	attributes	is	given	in	Table	9.2.

Attribute Type Description

value*+ Object The	expression	to	be	evaluated.

escapeXml+ boolean
Indicates	whether	the	characters	<,	>,	&,	‘,	and	”	in	the	result
will	be	converted	to	the	corresponding	character	entity	codes,
i.e.	<	to	<,	etc.

default+ Object The	default	value

Table	9.2:	The	out	tag’s	attributes

For	example,	the	following	out	tag	prints	the	value	of	the	scoped	variable	x:

<c:out	value="${x}"/>

By	default,	out	 encodes	 the	 special	 characters	<,	>,	 ‘,	“,	 and	&	 to	 their	 corresponding
character	entity	codes	<,	>,	',	",	and	&,	respectively.

Prior	to	JSP	2.0,	the	out	tag	was	the	easiest	way	to	print	the	value	of	a	scoped	object.	In
JSP	 2.0	 or	 later,	 unless	 you	 need	 to	 XML-escape	 a	 value,	 you	 can	 safely	 use	 an	 EL
expression:

${x}

Warning
If	a	string	containing	one	or	more	special	characters	is	not	XML	escaped,	its	value	may
not	be	rendered	correctly	in	the	browser.	On	top	of	that,	unescaped	special	characters
will	make	 your	web	 site	 susceptible	 to	 cross-site	 scripting	 attacks,	 i.e.	 someone	 can
post	a	JavaScript	function/expression	that	will	be	automatically	executed.

The	default	attribute	in	out	lets	you	assign	a	default	value	that	will	be	displayed	if	the	EL

expression	 assigned	 to	 its	 value	 attribute	 returns	 null.	 The	 default	 attribute	 may	 be
assigned	a	dynamic	value.	If	this	dynamic	value	returns	null,	the	out	 tag	will	display	an
empty	string.

For	 example,	 in	 the	 following	 out	 tag,	 if	 the	 variable	myVar	 is	 not	 found	 in	 the
HttpSession,	the	value	of	the	application-scoped	variable	myVar	is	displayed.	If	the	latter
is	also	not	found,	an	empty	string	is	sent	to	the	output.

<c:out	value="${sessionScope.myVar}"	

								default="${applicationScope.myVar"/>

The	url	Tag
The	url	tag	is	surprisingly	useful.	In	short,	this	tag	does	either	of	these:

If	 the	 current	 context	 path	 is	 “/”	 (i.e.	 the	 application	 is	 deployed	 as	 the	 default
context),	it	prepends	an	empty	string	to	the	specified	path.
If	 the	 current	 context	 path	 is	not	 “/”,	 it	 prepends	 the	 context	 path	 to	 the	 specified
path.

Why	 this	 is	 very	 important	 can	 be	 explained	 by	 presenting	 a	 small	 application	 whose
structure	is	given	in	Figure	9.1.

Figure	9.1:	The	structure	of	the	demo	application

The	application	consists	of	two	JSP	pages,	main.jsp	and	admin.jsp.	The	main.jsp	file	is
located	in	the	application	directory	and	the	admin.jsp	file	in	the	admin	folder.	Both	need
to	display	the	two	images	in	the	image	folder,	image1.png	and	image2.png.	Note	that	the
absolute	paths	to	the	images	are	as	follows.

http://host/context/image/image1.png

http://host/context/image/image2.png

Because	both	images	are	referenced	several	times	from	different	locations,	it	is	convenient
to	reference	them	from	an	include	file	and	add	the	include	file	to	any	JSP	page	that	needs
to	display	the	images.	Four	include	files	in	the	 include	 folder	depict	four	attempts	 to	do
this.

Listing	9.1	shows	the	content	of	the	first	include	file,	inc1.jspf.

Listing	9.1:	The	content	of	inc1.jsp

inc1.jsp

As	 you	 can	 see,	 the	 first	 include	 file	 contains	 paths	 that	 are	 relative	 the	 current	 page.
Assuming	the	URL	to	the	main.jsp	page	is	http://host/context/main.jsp,	the	URLs	to	both
images	will	be	resolved	to	these	URLs:

http://host/context/image/image1.png	

http://host/context/../image/image2.png

It	is	not	hard	to	imagine	that	the	result	is	less	than	satisfactory.	The	first	image	is	shown	as
expected,	but	not	the	second	image.

The	admin	page	can	be	invoked	using	http://host/context/admin/admin.jsp.	Referenced
from	this	page,	the	URLs	to	the	images	will	be	resolved	as	follows.

http://host/context/admin/image/image1.png	

http://host/context/admin/../image/image2.png

As	a	result,	the	first	image	won’t	show	but	the	second	image	will.

It	is	clear	that	using	paths	that	are	relative	to	the	current	page	does	not	work	because	the
include	 file	may	 be	 called	 from	 JSP	 pages	 in	 different	 directories.	Our	 only	 hope	 is	 to
make	the	image	URIs	relative	to	the	application	itself.	So	comes	the	second	include	file,
inc2.jspf,	printed	in	Listing	9.2.

Listing	9.2:	The	content	of	inc2.jspf

inc2.jsp

This	looks	good	and	should	work,	right?	Unfortunately,	it	does	not	work	in	all	cases.	This
is	because	oftentimes	the	deployment	context	path	is	not	known	at	the	time	the	application
is	being	developed.	Depending	on	whether	or	not	the	application	is	deployed	as	the	default
context,	the	admin.jsp	page	may	have	one	of	the	following	URLs:

http://localhost/jstl-demo/admin/admin.jsp

http://localhost/admin/admin.jsp

In	both	cases	the	browser	does	not	know	the	context	path.	In	fact,	in	case	of	the	first	URL,
it	thinks	that	the	application	is	deployed	as	the	default	context	and	jstl-demo	is	a	directory.
As	 such,	 it	will	 resolve	 the	URI	 to	 the	 first	 image	as	http://localhost/image/image1.png,
which	makes	the	image	irretrievable.

Both	 images	will	 display	 if	 the	 application	 has	 been	 deployed	 as	 the	 default	 context.
However,	this	is	enough	to	illustrate	that	inc2.jspf	is	not	the	right	solution.

The	url	tag	comes	to	the	rescue.	Look	at	the	content	of	inc3.jspf	in	Listing	9.3	that	uses
the	url	tag.

Listing	9.3:	The	content	of	inc3.jspf

<%@taglib	uri="http://java.sun.com/jsp/jstl/core"	prefix="c"	%>

inc3.jsp

<img	src="<c:url	value="/image/image1.png"/>"/>

<img	src="<c:url	value="/image/image2.png"/>"/>

This	solves	the	problem	because	the	url	tag	is	executed	on	the	server	so	it	knows	what	the
context	path	is.	As	such,	it	can	resolve	the	paths	to	the	images	correctly.

You	can	also	use	an	EL	expression	if	you	want,	as	shown	in	inc4.jspf	in	Listing	9.4.

Listing	9.4:	The	content	of	inc4.jspf

inc4.jsp

<!--${cp=pageContext.request.contextPath}-->

The	context	path	can	be	obtained	by	using	this	expression:

${pageContext.request.contextPath}

The	same	expression	will	be	used	several	times,	so	I	also	created	a	shortcut	cp.

${cp=pageContext.request.contextPath}

The	value,	however,	will	still	be	sent	to	the	browser,	which	is	why	it	is	put	in	an	HTML
comment.	 Then,	 you	 just	 need	 to	 test	 if	 the	 context	 path	 is	 “/”	 (default	 context)	 or
something	else.

${cp=="/"?	""	:	cp}

Figure	9.2	shows	the	admin.jsp	page	in	a	non-default	context.

Figure	9.2:	The	four	attempts	to	reference	images

As	you	can	see,	only	inc3.jspf	and	inc4.jspf	(employing	the	url	tag	and	EL,	respectively)
work.

The	set	Tag
You	can	use	the	set	tag	to	do	the	following.

1.	Create	a	string	and	a	scoped	variable	that	references	the	string.

2.	Create	a	scoped	variable	that	references	an	existing	scoped	object.

3.	Set	the	property	of	a	scoped	object.

If	set	is	used	to	create	a	scoped	variable,	the	variable	can	be	used	throughout	the	same	JSP
page	after	the	occurrence	of	the	tag.

The	set	tag’s	syntax	has	four	forms.	The	first	form	is	used	to	create	a	scoped	variable	in
which	the	value	attribute	specifies	the	string	to	be	created	or	an	existing	scoped	object.

<c:set	value="value"		var="varName"

								[scope="{page|request|session|application}"]/>

where	the	scope	attribute	specifies	the	scope	of	the	scoped	variable.

For	instance,	the	following	set	tag	creates	the	string	“The	wisest	fool”	and	assigns	it	to
the	newly	created	page-scoped	variable	foo.

<c:set	var="foo"	value="The	wisest	fool"/>

The	 following	 set	 tag	 creates	 a	 scoped	 variable	 named	 job	 that	 references	 the	 request-
scoped	object	position.	The	variable	job	has	a	page	scope.

<c:set	var="job"	value="${requestScope.position}"	scope="page"/>

Note
The	 last	 example	might	be	a	bit	 confusing	because	 it	 created	a	page-scoped	variable
that	references	a	request-scoped	object.	This	should	not	be	so	if	you	bear	in	mind	that
the	 scoped	 object	 itself	 is	 not	 really	 “inside”	 the	 HttpServletRequest.	 Instead,	 a
reference	(named	position)	exists	that	references	the	object.	With	the	set	tag	in	the	last
example,	you	were	 simply	creating	another	 scoped	variable	 (job)	 that	 referenced	 the
same	object.

The	 second	 form	 is	 similar	 to	 the	 first	 form,	 except	 that	 the	 string	 to	 be	 created	 or	 the
scoped	object	to	be	referenced	is	passed	as	the	body	content.

<c:set	var="varName"	[scope="{page|request|session|application}"]>

				body	content

</c:set>

The	second	form	allows	you	to	have	JSP	code	in	the	body	content.

The	 third	 form	 sets	 the	 value	 of	 a	 scoped	 object’s	 property.	 The	 target	 attribute
specifies	 the	 scoped	object	 and	 the	property	 attribute	 the	 scoped	object’s	property.	The
value	to	assign	to	the	property	is	specified	by	the	value	attribute.

<c:set	target="target"	property="propertyName"	value="value"/>

For	example,	the	following	set	 tag	assigns	the	string	“Tokyo”	to	the	city	property	of	the
scoped	object	address.

<c:set	target="${address}"	property="city"	value="Tokyo"/>

Note	 that	you	must	use	an	EL	expression	 in	 the	 target	 attribute	 to	 reference	 the	 scoped
object.

The	fourth	form	is	similar	 to	the	third	form,	but	 the	value	to	assign	is	passed	as	body
content.

<c:set	target="target"	property="propertyName">

				body	content

</c:set>

For	example,	the	following	set	tag	assigns	the	string	“Beijing”	to	the	city	property	of	the
scoped	object	address.

<c:set	target="${address}"	property="city">Beijing</c:set>

The	list	of	the	set	tag’s	attributes	is	given	in	Table	9.3.

Attribute Type Description

value+ Object The	string	to	be	created,	or	the	scoped	object	to	reference,	or	the
new	property	value.

var String The	scoped	variable	to	be	created.

scope String The	scope	of	the	newly	created	scoped	variable.

target+ Object The	scoped	object	whose	property	will	be	assigned	a	new	value;
this	must	be	a	JavaBeans	instance	or	a	java.util.Map	object.

property+ String The	name	of	the	property	to	be	assigned	a	new	value.

Table	9.3:	The	set	tag’s	attributes

The	remove	Tag
You	use	the	remove	tag	to	remove	a	scoped	variable.	The	syntax	is	as	follows:

<c:remove	var="varName"	

								[scope="{page|request|session|application}"]/>

Note	 that	 the	 object	 referenced	 by	 the	 scoped	 variable	 is	 not	 removed.	 Therefore,	 if
another	scoped	variable	is	also	referencing	the	same	object,	you	can	still	access	the	object
through	the	other	scoped	variable.

The	list	of	the	remove	tag’s	attributes	is	given	in	Table	9.4.

Attribute Type Description

var String The	name	of	the	scoped	variable	to	remove.

scope String The	scope	of	the	scoped	variable	to	be	removed

Table	9.4:	The	remove	tag’s	attributes

As	an	example,	the	following	remove	tag	removes	the	page-scoped	variable	job.

<c:remove	var="job"	scope="page"/>

Conditional	Actions
Conditional	actions	are	used	to	deal	with	situations	in	which	the	output	of	a	page	depends
on	 the	 value	 of	 certain	 input,	which	 in	 Java	 are	 solved	 using	 if,	 if	…	 else,	 and	 switch
statements.

There	 are	 four	 tags	 that	 perform	 conditional	 actions	 in	 JSTL:	 if,	 choose,	when,	 and
otherwise.	Each	will	be	discussed	in	a	section	below.

The	if	Tag
The	 if	 tag	 tests	 a	 condition	 and	 processes	 its	 body	 content	 if	 the	 condition	 evaluates	 to
true.	 The	 test	 result	 is	 stored	 in	 a	Boolean	 object,	 and	 a	 scoped	 variable	 is	 created	 to
reference	the	Boolean	object.	You	specify	the	name	of	the	scoped	variable	using	the	var
attribute	and	the	scope	in	the	scope	attribute.

The	syntax	of	if	has	two	forms.	The	first	form	has	no	body	content:

<c:if	test="testCondition"	var="varName"

								[scope="{page|request|session|application}"]/>	

In	this	case,	normally	the	scoped	object	specified	by	var	will	be	tested	by	some	other	tag
at	a	later	stage	in	the	same	JSP.

The	second	form	is	used	with	a	body	content:

<c:if	test="testCondition	[var="varName"]	

								[scope="{page|request|session|application}"]>

				body	content

</c:if>

The	body	content	is	JSP	and	will	be	processed	if	the	test	condition	evaluates	to	true.	The
list	of	the	if	tag’s	attributes	is	given	in	Table	9.5.

Attribute Type Description

test+ Boolean The	test	condition	that	determines	whether	any	existing	body
content	should	be	processed

var String The	name	of	the	scoped	variable	that	references	the	value	of	the
test	condition;	the	type	of	var	is	Boolean

scope String The	scope	of	the	scoped	variable	specified	by	var.

Table	9.5:	The	if	tag’s	attributes

For	example,	 the	following	 if	 tag	displays	“You	 logged	 in	successfully”	 if	 there	exists	a
request	parameter	named	user	 and	 its	value	 is	ken	 and	 there	 exists	 a	 request	 parameter
named	password	and	its	value	is	blackcomb:

<c:if	test="${param.user=='ken'	&&	param.password=='blackcomb'}">

				You	logged	in	successfully.

</c:if>

To	simulate	 an	else,	 use	 two	 if	 tags	with	 conditions	 that	 are	 opposite.	 For	 instance,	 the
following	 snippet	 displays	 “You	 logged	 in	 successfully”	 if	 the	 user	 and	 password
parameters	are	ken	and	blackcomb,	respectively.	Otherwise,	it	displays	“Login	failed”.

<c:if	test="${param.user=='ken'	&&	param.password=='blackcomb'}">

				You	logged	in	successfully.

</c:if>

<c:if	test="${!(param.user=='ken'	&&	param.password=='blackcomb')}">

				Login	failed.

</c:if>

The	 following	 if	 tag	 tests	 whether	 the	 user	 and	 password	 parameters	 are	 ken	 and
blackcomb,	respectively,	and	stores	the	result	in	the	page-scoped	variable	loggedIn.	You
then	use	an	EL	expression	to	display	“You	logged	in	successfully”	if	the	loggedIn	variable
is	true	or	“Login	failed”	if	the	loggedIn	variable	is	false.

<c:if	var="loggedIn"

								test="${param.user=='ken'	&&	param.password=='blackcomb'}"/>

				...

${(loggedIn)?	"You	logged	in	successfully"	:	"Login	failed"}

The	choose,	when	and	otherwise	Tags
The	choose	and	when	tags	act	similarly	to	the	switch	and	case	keywords	in	Java,	that	is,
they	 are	 used	 to	 provide	 the	 context	 for	mutually	 exclusive	 conditional	 execution.	 The
choose	 tag	 must	 have	 one	 or	 more	 when	 tags	 nested	 inside	 it,	 and	 each	 when	 tag
represents	 a	 case	 that	 can	 be	 evaluated	 and	 processed.	The	otherwise	 tag	 is	 used	 for	 a
default	conditional	block	that	will	be	processed	if	none	of	the	when	 tags’	test	conditions
evaluates	to	true.	If	present,	otherwise	must	appear	after	the	last	when.

choose	 and	 otherwise	 do	 not	 have	 attributes.	 when	 must	 have	 the	 test	 attribute
specifying	 the	 test	 condition	 that	 determines	 whether	 the	 body	 content	 should	 be
processed.

As	an	example,	 the	following	code	 tests	 the	value	of	a	parameter	called	status.	 If	 the
value	 of	 status	 is	 full,	 it	 displays	 “You	 are	 a	 full	member”.	 If	 the	 value	 is	 student,	 it
displays	“You	are	a	student	member”.	If	the	parameter	status	does	not	exist	or	if	its	value
is	neither	full	nor	student,	the	code	displays	nothing.

<c:choose>

				<c:when	test="${param.status=='full'}">

								You	are	a	full	member

				</c:when>

				<c:when	test="${param.status=='student'}">

								You	are	a	student	member

				</c:when>

</c:choose>

The	 following	example	 is	 similar	 to	 the	preceding	one,	but	 it	 uses	 the	otherwise	 tag	 to
display	“Please	register”	if	the	status	parameter	does	not	exist	or	if	its	value	is	not	full	or
student:

<c:choose>

				<c:when	test="${param.status=='full'}">

								You	are	a	full	member

				</c:when>

				<c:when	test="${param.status=='student'}">

								You	are	a	student	member

				</c:when>

				<c:otherwise>

								Please	register

				</c:otherwise>

</c:choose>

Iterator	Actions
Iterator	actions	are	useful	when	you	need	to	iterate	a	number	of	times	or	over	a	collection
of	objects.	JSTL	provides	two	tags	that	perform	iterator	actions,	forEach	and	forTokens,
both	of	which	are	discussed	in	the	following	sections.

The	 forEach	 TagforEach	 iterates	 a	 body	 content	 a	 number	 of	 times	 or	 iterates	 over	 a
collection	 of	 objects.	 Objects	 that	 can	 be	 iterated	 over	 include	 all	 implementations	 of
java.util.Collection	and	java.util.Map,	and	arrays	of	objects	or	primitive	types.	You	can
also	iterate	over	a	java.util.Iterator	and	java.util.Enumeration,	but	you	should	not	use
Iterator	 or	 Enumeration	 in	 more	 than	 one	 action	 because	 neither	 Iterator	 nor
Enumeration	will	be	reset.

The	syntax	for	forEach	has	two	forms.	The	first	form	is	for	repeating	the	body	content
a	fixed	number	of	times:

<c:forEach	[var="varName"]	begin="begin"	end="end"	step="step">

				body	content

</c:forEach>	

The	second	form	is	used	to	iterate	over	a	collection	of	objects:

<c:forEach	items="collection"	[var="varName"]	

								[varStatus="varStatusName"]	[begin="begin"]	[end="end"]

								[step="step"]>

				body	content

</c:forEach>	

The	body	content	is	JSP.	The	forEach	tag’s	attributes	are	given	in	Table	9.6.

Attribute Type Description

var String The	name	of	the	scoped	variable	that	references	the	current
item	of	the	iteration.

items+

Any	of
the
supported
type.

Collections	of	objects	to	iterate	over.

varStatus String
The	name	of	the	scoped	variable	that	holds	the	status	of	the
iteration.	The	value	is	of	type
javax.servlet.jsp.jstl.core.LoopTagStatus.

begin+ int

If	items	is	specified,	iteration	begins	at	the	item	located	at	the
specified	index,	in	which	the	first	item	of	the	collection	has	an
index	of	0.	If	items	is	not	specified,	iteration	begins	with	the
index	set	at	the	value	specified.	If	specified,	the	value	of

begin	must	be	equal	to	or	greater	than	zero.

end+ int
If	items	is	specified,	iteration	ends	at	the	item	located	at	the
specified	index	(inclusive).	If	items	is	not	specified,	iteration
ends	when	index	reaches	the	value	specified.

step+ int
Iteration	will	process	only	every	step	items	of	the	collection,
starting	with	the	first	one.	If	present,	the	value	of	step	must	be
equal	to	or	greater	than	1.

Table	9.6:	The	forEach	Tag’s	attributes

For	example,	the	following	forEach	tag	displays	“1,	2,	3,	4,	5”.

<c:forEach	var="x"	begin="1"	end="5">

				<c:out	value="${x}"/>,

</c:forEach>

And,	the	following	forEach	 tag	 iterates	over	 the	phones	property	of	an	address	 scoped
variable.

<c:forEach	var="phone"	items="${address.phones}">

				${phone}"

</c:forEach>

For	each	iteration,	the	forEach	tag	creates	a	scoped	variable	whose	name	is	specified	by
the	var	 attribute.	 In	 this	 case,	 the	 scoped	 variable	 is	 named	phone.	 The	EL	 expression
within	the	forEach	tag	is	used	to	display	the	value	of	phone.	The	scoped	variable	is	only
available	from	within	the	beginning	and	closing	forEach	tags,	and	will	be	removed	right
before	the	closing	forEach	tag.

The	 forEach	 tag	 has	 a	 varStatus	 variable	 of	 type
javax.servlet.jsp.jstl.core.LoopTagStatus.	The	LoopTagStatus	 interface	 has	 the	 count
property	 that	 returns	 the	 “count”	 of	 the	 current	 round	 of	 iteration.	 The	 value	 of
status.count	is	1	for	the	first	iteration,	2	for	the	second	iteration,	and	so	on.	By	testing	the
remainder	of	status.count%2,	you	know	whether	the	tag	is	processing	an	even-numbered
or	odd-numbered	element.

As	an	example,	consider	 the	BooksServlet	servlet	and	books.jsp	page	 in	 the	 iterator
sample	application.	The	BooksServlet	class,	presented	in	Listing	9.5,	creates	three	Book
objects	 in	 its	 doGet	 method	 and	 puts	 the	 Books	 in	 a	 List	 that	 is	 then	 stored	 as	 a
ServletRequest	attribute.	The	Book	class	is	given	in	Listing	9.6.	At	the	end	of	the	doGet
method,	the	servlet	forwards	to	the	books.jsp	page	that	 iterates	over	 the	book	collection
using	the	forEach	tag.

Listing	9.5:	The	BooksServlet	class

package	servlet;

import	java.io.IOException;

import	java.util.ArrayList;

import	java.util.List;

import	javax.servlet.RequestDispatcher;

import	javax.servlet.ServletException;

import	javax.servlet.annotation.WebServlet;

import	javax.servlet.http.HttpServlet;

import	javax.servlet.http.HttpServletRequest;

import	javax.servlet.http.HttpServletResponse;

import	app05a.model.Book;

@WebServlet(urlPatterns	=	{"/books"})

public	class	BooksServlet	extends	HttpServlet	{

				private	static	final	int	serialVersionUID	=	-234237;

				@Override

				public	void	doGet(HttpServletRequest	request,	

												HttpServletResponse	response)	throws	ServletException,	

													IOException	{

								List<Book>	books	=	new	ArrayList<Book>();

								Book	book1	=	new	Book("978-0980839616",	

																"Java	7:	A	Beginner's	Tutorial",	

																BigDecimal.valueOf(45.00));

								Book	book2	=	new	Book("978-0980331608",	

																"Struts	2	Design	and	Programming:	A	Tutorial",	

																BigDecimal.valueOf(49.95));

								Book	book3	=	new	Book("978-0975212820",

																"Dimensional	Data	Warehousing	with	MySQL:	A	Tutorial",	

																BigDecimal.valueOf(39.95));

								books.add(book1);

								books.add(book2);

								books.add(book3);

								request.setAttribute("books",	books);

								RequestDispatcher	rd	=	

																request.getRequestDispatcher("/books.jsp");

								rd.forward(request,	response);

				}

}

Listing	9.6:	The	Book	class

package	domain;

import	java.math.BigDecimal;

public	class	Book	{

				private	String	isbn;

				private	String	title;

				private	BigDecimal	price;

				

				public	Book(String	isbn,	String	title,	BigDecimal	price)	{

								this.isbn	=	isbn;

								this.title	=	title;

								this.price	=	price;

				}

				

				//	getters	and	setters	not	shown

}

Listing	9.7:	The	books.jsp	page

<%@	taglib	uri="http://java.sun.com/jsp/jstl/core"	prefix="c"	%>

<!DOCTYPE	html>

<html>

<head>

<title>Book	List</title>

<style>

table,	tr,	td	{

				border:	1px	solid	brown;

}

</style>

</head>

<body>

Books	in	Simple	Table

<table>

				<tr>

								<td>ISBN</td>

								<td>Title</td>

				</tr>

				<c:forEach	items="${requestScope.books}"	var="book">

				<tr>

								<td>${book.isbn}</td>

								<td>${book.title}</td>

				</tr>

				</c:forEach>

</table>

Books	in	Styled	Table

<table>

				<tr	style="background:#ababff">

								<td>ISBN</td>

								<td>Title</td>

				</tr>

				<c:forEach	items="${requestScope.books}"	var="book"

												varStatus="status">

								<c:if	test="${status.count%2	==	0}">

												<tr	style="background:#eeeeff">

								</c:if>

								<c:if	test="${status.count%2	!=	0}">

												<tr	style="background:#dedeff">

								</c:if>

								<td>${book.isbn}</td>

								<td>${book.title}</td>

				</tr>

				</c:forEach>

</table>

ISBNs	only:

				<c:forEach	items="${requestScope.books}"	var="book"

												varStatus="status">

								${book.isbn}<c:if	test="${!status.last}">,</c:if>

				</c:forEach>

</body>

</html>

Note	that	the	books.jsp	page	displays	the	books	three	times,	the	first	one	using	forEach
without	the	varStatus	attribute.

<table>

				<tr>

								<td>ISBN</td>

								<td>Title</td>

				</tr>

				<c:forEach	items="${requestScope.books}"	var="book">

				<tr>

								<td>${book.isbn}</td>

								<td>${book.title}</td>

				</tr>

				</c:forEach>

</table>

The	second	 time	 the	books	are	displayed	using	 forEach	with	 the	varStatus	 attribute	 in
order	to	give	the	table	rows	different	colors	depending	whether	a	row	is	an	even-numbered
row	or	an	odd-numbered	row.

<table>

				<tr	style="background:#ababff">

								<td>ISBN</td>

								<td>Title</td>

				</tr>

				<c:forEach	items="${requestScope.books}"	var="book"

												varStatus="status">

								<c:if	test="${status.count%2	==	0}">

												<tr	style="background:#eeeeff">

								</c:if>

								<c:if	test="${status.count%2	!=	0}">

												<tr	style="background:#dedeff">

								</c:if>

								<td>${book.isbn}</td>

								<td>${book.title}</td>

				</tr>

				</c:forEach>

</table>

The	 third	 forEach	 is	used	 to	display	 the	 ISBNs	 in	comma-delimited	 format.	The	use	of
status.last	makes	sure	that	a	comma	is	not	rendered	after	the	last	element.

				<c:forEach	items="${requestScope.books}"	var="book"

												varStatus="status">

								${book.isbn}<c:if	test="${!status.last}">,</c:if>

				</c:forEach>

You	can	test	the	example	by	using	this	URL:

http://localhost:8080/iterator/books

The	output	should	be	similar	to	the	screen	shot	in	Figure	9.3.

Figure	9.3:	Using	forEach	with	a	List

You	can	also	use	forEach	to	iterate	over	a	map.	You	refer	to	a	map	key	and	a	map	value
using	the	key	and	value	properties,	respectively.	The	pseudocode	for	iterating	over	a	map
is	as	follows.

<c:forEach	var="mapItem"	items="map">

				${mapItem.key}	:	${mapItem.value}

</c:forEach>

The	next	example	illustrates	the	use	of	forEach	with	a	Map.	The	BigCitiesServlet	servlet
in	 Listing	 9.8	 instantiates	 two	Maps	 and	 populates	 them	 with	 key/value	 pairs.	 Each
element	 in	 the	first	Map	 is	a	String/String	pair	and	each	element	 in	 the	second	Map	 a
String/String[]	pair.

Listing	9.8:	The	BigCitiesServlet	class

package	servlet;

import	java.io.IOException;

import	java.util.HashMap;

import	java.util.Map;

import	javax.servlet.RequestDispatcher;

import	javax.servlet.ServletException;

import	javax.servlet.annotation.WebServlet;

import	javax.servlet.http.HttpServlet;

import	javax.servlet.http.HttpServletRequest;

import	javax.servlet.http.HttpServletResponse;

@WebServlet(urlPatterns	=	{"/bigCities"})

public	class	BigCitiesServlet	extends	HttpServlet	{

				private	static	final	long	serialVersionUID	=	1L;

				@Override

				public	void	doGet(HttpServletRequest	request,	

												HttpServletResponse	response)	

												throws	ServletException,	IOException	{

								Map<String,	String>	capitals	=	

																new	HashMap<String,	String>();

								capitals.put("Indonesia",	"Jakarta");

								capitals.put("Malaysia",	"Kuala	Lumpur");

								capitals.put("Thailand",	"Bangkok");

								request.setAttribute("capitals",	capitals);

								Map<String,	String[]>	bigCities	=	

																new	HashMap<String,	String[]>();

								bigCities.put("Australia",	new	String[]	{"Sydney",	

																"Melbourne",	"Perth"});

								bigCities.put("New	Zealand",	new	String[]	{"Auckland",	

																"Christchurch",	"Wellington"});

								bigCities.put("Indonesia",	new	String[]	{"Jakarta",	

																"Surabaya",	"Medan"});

								request.setAttribute("capitals",	capitals);

								request.setAttribute("bigCities",	bigCities);

								RequestDispatcher	rd	=	

																request.getRequestDispatcher("/bigCities.jsp");

								rd.forward(request,	response);

				}

}

At	 the	 end	 of	 the	doGet	method,	 the	 servlet	 forwards	 to	 the	bigCities.jsp	 page,	which
uses	forEach	to	iterate	over	the	Maps.	The	bigCities.jsp	is	given	in	Listing	9.9.

Listing	9.9:	The	bigCities.jsp	page

<%@	taglib	uri="http://java.sun.com/jsp/jstl/core"	prefix="c"	%>

<!DOCTYPE	html>

<html>

<head>

<title>Big	Cities</title>

<style>

table,	tr,	td	{

				border:	1px	solid	#aaee77;

				padding:	3px;

}

</style>

</head>

<body>

Capitals

<table>

				<tr	style="background:#448755;color:white;font-weight:bold">

								<td>Country</td>

								<td>Capital</td>

				</tr>

				<c:forEach	items="${requestScope.capitals}"	var="mapItem">

				<tr>

								<td>${mapItem.key}</td>

								<td>${mapItem.value}</td>

				</tr>

				</c:forEach>

</table>

Big	Cities

<table>

				<tr	style="background:#448755;color:white;font-weight:bold">

								<td>Country</td>

								<td>Cities</td>

				</tr>

				<c:forEach	items="${requestScope.bigCities}"	var="mapItem">

				<tr>

								<td>${mapItem.key}</td>

								<td>

												<c:forEach	items="${mapItem.value}"	var="city"	

																								varStatus="status">

																${city}<c:if	test="${!status.last}">,</c:if>

												</c:forEach>

								</td>

				</tr>

				</c:forEach>

</table>

</body>

</html>

Of	special	importance	is	the	second	forEach	that	nests	another	forEach:

				<c:forEach	items="${requestScope.bigCities}"	var="mapItem">

												<c:forEach	items="${mapItem.value}"	var="city"	

																								varStatus="status">

																${city}<c:if	test="${!status.last}">,</c:if>

												</c:forEach>

				</c:forEach>

Here	the	second	forEach	iterates	over	the	Map’s	element	value,	which	is	a	String	array.

You	can	test	the	example	by	directing	your	browser	here:

http://localhost:8080/iterator/bigCities

Your	browser	should	display	several	capitals	and	big	cities	in	HTML	tables	like	the	ones
in	Figure	9.4.

Figure	9.4:	forEach	with	Map

The	forTokens	Tag
You	 use	 the	 forTokens	 tag	 to	 iterate	 over	 tokens	 that	 are	 separated	 by	 the	 specified
delimiters.	The	syntax	for	this	action	is	as	follows:

<c:forTokens	items="stringOfTokens"	delims="delimiters"

								[var="varName"]	[varStatus="varStatusName"]

								[begin="begin"]	[end="end"]	[step="step"]

>

				body	content

</c:forTokens>

The	body	content	is	JSP.	The	list	of	the	forTokens	tag’s	attributes	is	given	in	Table	9.7.

Attribute Type Description

var String The	name	of	the	scoped	variable	that	references	the	current	item
of	the	iteration.

items+ String The	string	of	tokens	to	iterate	over.

varStatus String
The	name	of	the	scoped	variable	that	holds	the	status	of	the
iteration.	The	value	is	of	type
javax.servlet.jsp.jstl.core.LoopTagStatus.

begin+ int The	start	index	of	the	iteration,	where	index	is	zero-based.	If
specified,	begin	must	be	0	or	greater.

end+ int The	end	index	of	the	iteration,	where	index	is	zero-based.

step+ int Iteration	will	process	only	every	step	tokens	of	the	string,	starting
with	the	first	one.	If	specified,	step	must	be	1	or	greater.

delims+ String The	set	of	delimiters.

Table	9.7:	The	forTokens	tag’s	attributes

Here	is	an	example	of	forTokens:

<c:forTokens	var="item"	items="Argentina,Brazil,Chile"	delims=",">

				<c:out	value="${item}"/>

</c:forTokens>

When	pasted	in	a	JSP,	the	preceding	forTokens	will	result	in	the	following:

Argentina

Brazil

Chile

Formatting	Actions
JSTL	 provides	 tags	 for	 formatting	 and	 parsing	 numbers	 and	 dates.	 The	 tags	 are
formatNumber,	 formatDate,	 timeZone,	setTimeZone,	parseNumber,	 and	parseDate.
These	tags	are	discussed	in	the	sections	to	follow.

The	formatNumber	Tag
You	use	formatNumber	to	format	numbers.	This	tag	gives	you	the	flexibility	of	using	its
various	attributes	to	get	a	format	that	suits	your	need.	The	syntax	of	formatNumber	has
two	forms.	The	first	is	used	without	a	body	content:

<fmt:formatNumber	value="numericValue"

								[type="{number|currency|percent}"]

								[pattern="customPattern"]

								[currencyCode="currencyCode"]

								[currencySymbol="currencySymbol"]

								[groupingUsed="{true|false}"]

								[maxIntegerDigits="maxIntegerDigits"]

								[minIntegerDigits="minIntegerDigits"]

								[maxFractionDigits="maxFractionDigits"]

								[minFractionDigits="minFractionDigits"]

								[var="varName"]

								[scope="{page|request|session|application}"]

/>

The	second	form	is	used	with	a	body	content:

<fmt:formatNumber	[type="{number|currency|percent}"]

								[pattern="customPattern"]

								[currencyCode="currencyCode"]

								[currencySymbol="currencySymbol"]

								[groupingUsed="{true|false}"]

								[maxIntegerDigits="maxIntegerDigits"]

								[minIntegerDigits="minIntegerDigits"]

								[maxFractionDigits="maxFractionDigits"]

								[minFractionDigits="minFractionDigits"]

								[var="varName"]

								[scope="{page|request|session|application}"]>

				numeric	value	to	be	formatted

</fmt:formatNumber>

The	body	content	is	JSP.	The	formatNumber	tag’s	attributes	are	given	in	Table	9.8.

Attribute Type Description

value+
String
or
Number

Numeric	value	to	be	formatted.

type+ String

Indicates	whether	the	value	is	to	be	formatted	as
number,	currency,	or	percentage.	The	value	of	this
attribute	is	one	of	the	following:	number,	currency,
percent.

pattern+ String Custom	formatting	pattern.

currencyCode+ String ISO	4217	code.	See	Table	9.9.

currencySymbol+ String Currency	symbol.

groupingUsed+ Boolean Indicates	whether	the	output	will	contain	grouping
separators.

maxIntegerDigits+ int The	maximum	number	of	digits	in	the	integer	portion
of	the	output.

minIntegerDigits+ int The	minimum	number	of	digits	in	the	integer	portion
of	the	output.

maxFractionDigits+ int The	maximum	number	of	digits	in	the	fractional
portion	of	the	output.

minFractionDigits+ int The	minimum	number	of	digits	in	the	fractional
portion	of	the	output.

var String The	name	of	the	scoped	variable	to	store	the	output
as	a	String.

scope String The	scope	of	var.	If	the	scope	attribute	is	present,	the
var	attribute	must	be	specified.

Table	9.8:	The	formatNumber	tag’s	attributes

One	of	the	uses	of	formatNumber	is	to	format	numbers	as	currencies.	For	this,	you	can
use	the	currencyCode	attribute	to	specify	an	ISO	4217	currency	code.	Some	of	the	codes
are	given	in	Table	9.9.

Currency ISO	4217	Code Major	Unit	Name Minor	Unit	Name

Canadian	Dollar CAD dollar cent

Chinese	Yuan CNY yuan jiao

Euro EUR euro euro-cent

Japanese	Yen JPY yen sen

Sterling GBP pound pence

US	Dollar USD dollar cent

Table	9.9:	ISO	4217	Currency	Codes

The	examples	of	how	to	use	formatNumber	are	given	in	Table	9.10.

Action Result

<fmt:formatNumber	value=“12”	type=“number”/> 12

<fmt:formatNumber	value=“12”	type=“number”	
minIntegerDigits=“3”/> 012

<fmt:formatNumber	value=“12”	type=“number”	
minFractionDigits=“2”/> 12.00

<fmt:formatNumber	value=“123456.78”	pattern=”.000”/> 123456.780

<fmt:formatNumber	value=“123456.78”	pattern=”#,#00.0#”/> 123,456.78

<fmt:formatNumber	value=“12”	type=“currency”/> $12.00

<fmt:formatNumber	value=“12”	type=“currency”	
currencyCode=“GBP”/> GBP	12.00

<fmt:formatNumber	value=“0.12”	type=“percent”/> 12%

<fmt:formatNumber	value=“0.125”	type=“percent”	
minFractionDigits=“2”/> 12.50%

Table	9.10:	Using	the	formatNumber	tag

Note	that	when	formatting	currencies,	if	the	currencyCode	attribute	is	not	specified,	the
browser’s	locale	is	used.

The	formatDate	Tag
You	use	the	formatDate	tag	to	format	dates.	The	syntax	is	as	follows:

<fmt:formatDate	value="date"

								[type="{time|date|both}"]

								[dateStyle="{default|short|medium|long|full}"]

								[timeStyle="{default|short|medium|long|full}"]

								[pattern="customPattern"]

								[timeZone="timeZone"]

								[var="varName"]

								[scope="{page|request|session|application}"]

/>

The	body	content	is	JSP.	The	formatDate	tag’s	attributes	are	given	in	Table	9.11.

Attribute Type Description

value+ java.util.Date Date	and/or	time	to	be	formatted

type+ String Indicates	whether	the	time,	the	date,	or	both	the
time	and	the	date	components	are	to	be	formatted

dateStyle+ String Predefined	formatting	style	for	dates	that	follows
the	semantics	defined	in	java.text.DateFormat.

timeStyle+ String Predefined	formatting	style	for	times	that	follows
the	semantics	defined	in	java.text.DateFormat.

pattern+ String The	custom	pattern	for	formatting

timezone+ String	or
java.util.TimeZone The	time	in	which	to	represent	the	time

var String The	name	of	the	scoped	variable	to	store	the	result
as	a	string

scope String Scope	of	var.

Table	9.11:	The	formatDate	tag’s	attributes

For	possible	values	of	the	timeZone	attribute,	see	the	section,	“The	timeZone	Tag”.

The	 following	 code	 uses	 the	 formatDate	 tag	 to	 format	 the	 java.util.Date	 object
referenced	by	the	scoped	variable	now.

Default:	<fmt:formatDate	value="${now}"/>

Short:	<fmt:formatDate	value="${now}"	dateStyle="short"/>

Medium:	<fmt:formatDate	value="${now}"	dateStyle="medium"/>

Long:	<fmt:formatDate	value="${now}"	dateStyle="long"/>

Full:	<fmt:formatDate	value="${now}"	dateStyle="full"/>

The	following	formatDate	tags	are	used	to	format	times.

Default:	<fmt:formatDate	type="time"	value="${now}"/>

Short:	<fmt:formatDate	type="time"	value="${now}"

								timeStyle="short"/>

Medium:	<fmt:formatDate	type="time"	value="${now}"	

								timeStyle="medium"/>

Long:	<fmt:formatDate	type="time"	value="${now}"	timeStyle="long"/>

Full:	<fmt:formatDate	type="time"	value="${now}"	timeStyle="full"/>

The	following	formatDate	tags	format	both	dates	and	times.

Default:	<fmt:formatDate	type="both"	value="${now}"/>

Short	date	short	time:	<fmt:formatDate	type="both"	

		value="${now}"	dateStyle="short"	timeStyle="short"/>

Long	date	long	time	format:	<fmt:formatDate	type="both"	

		value="${now}"	dateStyle="long"	timeStyle="long"/>

The	following	formatDate	tags	are	used	to	format	times	with	time	zones.

Time	zone	CT:	<fmt:formatDate	type="time"	value="${now}"

								timeZone="CT"/>

Time	zone	HST:	<fmt:formatDate	type="time"	value="${now}"	

								timeZone="HST"/>

The	following	formatDate	tags	are	used	to	format	dates	and	times	using	custom	patterns.

<fmt:formatDate	type="both"	value="${now}"	pattern="dd.MM.yy"/>

<fmt:formatDate	type="both"	value="${now}"	pattern="dd.MM.yyyy"/>

The	timeZone	Tag
The	 timeZone	 tag	 is	 used	 to	 specify	 the	 time	 zone	 in	which	 time	 information	 is	 to	 be
formatted	or	parsed	in	its	body	content.	The	syntax	is	as	follows:

<fmt:timeZone	value="timeZone">

				body	content

</fmt:timeZone>

The	body	content	is	JSP.	The	attribute	value	can	be	passed	a	dynamic	value	of	type	String
or	java.util.TimeZone.	The	values	for	US	and	Canada	time	zones	are	given	in	Table	9.12.

If	the	value	attribute	is	null	or	empty,	the	GMT	time	zone	is	used.

The	following	example	uses	the	timeZone	tag	to	format	dates	with	time	zones.

<fmt:timeZone	value="GMT+1:00">

				<fmt:formatDate	value="${now}"	type="both"	

												dateStyle="full"	timeStyle="full"/>

</fmt:timeZone>

<fmt:timeZone	value="HST">

				<fmt:formatDate	value="${now}"	type="both"	

												dateStyle="full"	timeStyle="full"/>

</fmt:timeZone>

<fmt:timeZone	value="CST">

				<fmt:formatDate	value="${now}"	type="both"	

												dateStyle="full"	timeStyle="full"/>

</fmt:timeZone>

Abbreviation Full	Name Time	Zone

NST Newfoundland	Standard	Time UTC-3:30	hours

NDT Newfoundland	Daylight	Time UTC-2:30	hours

AST Atlantic	Standard	Time UTC-4	hours

ADT Atlantic	Daylight	Time UTC-3	hours

EST Eastern	Standard	Time UTC-5	hours

EDT Eastern	Daylight	Saving	Time UTC-4	hours

ET Eastern	Time,	as	EST	or	EDT *

CST Central	Standard	Time UTC-6	hours

CDT Central	Daylight	Saving	Time UTC-5	hours

CT Central	Time,	as	either	CST	or	CDT *

MST Mountain	Standard	Time UTC-7	hours

MDT Mountain	Daylight	Saving	Time UTC-6	hours

MT Mountain	Time,	as	either	MST	or	MDT *

PST Pacific	Standard	Time UTC-8	hours

PDT Pacific	Daylight	Saving	Time UTC-7	hours

PT Pacific	Time,	as	either	PST	or	PDT *

AKST Alaska	Standard	Time UTC-9	hours

AKDT Alaska	Standard	Daylight	Saving	Time UTC-8	hours

HST Hawaiian	Standard	Time UTC-10	hours

Table	9.12:	US	and	Canada	Time	Zones

The	setTimeZone	Tag
You	use	the	setTimeZone	tag	to	store	the	specified	time	zone	in	a	scoped	variable	or	the
time	configuration	variable.	The	syntax	of	setTimeZone	is	as	follows:

<fmt:setTimeZone	value="timeZone"	[var="varName"]

								[scope="{page|request|session|application}"]

/>

Table	9.13	presents	the	setTimeZone	tag’s	attributes.

Attribute Type Description

value+ String	or
java.util.TimeZone The	time	zone

var String The	name	of	the	scoped	variable	to	hold	the	time
zone	of	type	java.util.TimeZone

scope String The	scope	of	var	or	the	time	zone	configuration
variable

Table	9.13:	The	setTimeZone	tag’s	attributes

The	parseNumber	Tag
You	 use	 parseNumber	 to	 parse	 a	 string	 representation	 of	 a	 number,	 a	 currency,	 or	 a
percentage	in	a	locale-sensitive	format	into	a	number.	The	syntax	has	two	forms.	The	first
form	is	used	without	body	content:

<fmt:parseNumber	value="numericValue"

								[type="{number|currency|percent}"]

								[pattern="customPattern"]

								[parseLocale="parseLocale"]

								[integerOnly="{true|false}"]

								[var="varName"]

								[scope="{page|request|session|application}"]

/>

The	second	form	is	used	with	body	content:

<fmt:parseNumber	[type="{number|currency|percent}"]

								[pattern="customPattern"]

								[parseLocale="parseLocale"]

								[integerOnly="{true|false}"]

								[var="varName"]

								[scope="{page|request|session|application}"]>		

				numeric	value	to	be	parsed

</fmt:parseNumber>

The	body	content	is	JSP.	The	parseNumber	tag’s	attributes	are	given	in	Table	9.14.

As	 an	 example,	 the	 following	 parseNumber	 tag	 parses	 the	 value	 referenced	 by	 the
scoped	variable	quantity	and	stores	the	result	in	the	formattedNumber	scoped	variable.

<fmt:parseNumber	var="formattedNumber"	type="number"

								value="${quantity}"/>

Attribute Type Description

value+ String String	to	be	parsed

type+ String Indicates	whether	the	string	to	be	parsed	is	to	be
parsed	as	a	number,	currency,	or	percentage

pattern+ String Custom	formatting	pattern	that	determines	how	the
string	in	the	value	attribute	is	to	be	parsed

parseLocale+ String	or
java.util.Locale

Locale	whose	default	formatting	pattern	is	to	be
used	during	the	parse	operation,	or	to	which	the
pattern	specified	via	the	pattern	attribute	is	applied

integerOnly+ Boolean Indicates	whether	only	the	integer	portion	of	the
given	value	should	be	parsed

var String The	name	of	the	scoped	variable	to	hold	the	result

scope String The	scope	of	var

Table	9.14:	The	parseNumber	tag’s	attributes

The	parseDate	TagparseDate	parses	the	string	representation	of	a	date	and	time	in	locale-
sensitive	format.	The	syntax	has	two	forms.	The	first	form	is	used	without	a	body	content:

<fmt:parseDate	value="dateString"

								[type="{time|date|both}"]

								[dateStyle="{default|short|medium|long|full}"]

								[timeStyle="{default|short|medium|long|full}"]

								[pattern="customPattern"]

								[timeZone="timeZone"]

								[parseLocale="parseLocale"]

								[var="varName"]

								[scope="{page|request|session|application}"]

/>

The	second	form	is	used	with	a	body	content:

<fmt:parseDate	[type="{time|date|both}"]

								[dateStyle="{default|short|medium|long|full}"]

								[timeStyle="{default|short|medium|long|full}"]

								[pattern="customPattern"]

								[timeZone="timeZone"]

								[parseLocale="parseLocale"]

								[var="varName"]

								[scope="{page|request|session|application}"]>

				date	value	to	be	parsed

</fmt:parseDate>

The	body	content	is	JSP.	Table	9.15	lists	the	parseDate	tag’s	attributes.

Attribute Type Description

value+ String String	to	be	parsed

type+ String Indicates	whether	the	string	to	be	parsed
contains	a	date,	a	time,	or	both

dateStyle+ String The	formatting	style	of	the	date

timeStyle+ String The	formatting	style	of	the	time

pattern+ String Custom	formatting	pattern	that	determines	how
the	string	is	to	be	parsed

timeZone+ String	or Time	zone	in	which	to	interpret	any	time

java.util.TimeZone information	in	the	date	string

parseLocale+ String	or
java.util.Locale

Locale	whose	default	formatting	pattern	is	to	be
used	during	the	parse	operation,	or	to	which	the
pattern	specified	via	the	pattern	attribute	is
applied

var String The	name	of	the	scoped	variable	to	hold	the
result

scope String The	scope	of	var

Table	9.15:	The	parseDate	tag’s	attributes

As	 an	 example,	 the	 following	 parseDate	 tag	 parses	 a	 date	 referenced	 by	 the	 scoped
variable	 myDate	 and	 stores	 the	 resulting	 java.util.Date	 in	 a	 page-scoped	 variable
formattedDate.

<c:set	var="myDate"	value="12/12/2005"/>

<fmt:parseDate	var="formattedDate"	type="date"	

								dateStyle="short"	value="${myDate}"/>

Functions
In	addition	to	custom	actions,	JSTL	1.1	and	1.2	define	a	set	of	standard	functions	you	can
use	in	EL	expressions.	These	functions	are	grouped	in	the	function	tag	library.	To	use	the
functions,	you	must	use	the	following	taglib	directive	on	top	of	your	JSP.

<%@	taglib	uri="http://java.sun.com/jsp/jstl/functions"	

								prefix="fn"	%>

To	invoke	a	function,	you	use	an	EL	in	this	format.

${fn:functionName}

where	functionName	is	the	name	of	the	function.

Most	of	the	functions	are	for	string	manipulation.	For	instance,	the	length	function	works
for	both	strings	and	collections,	returning	the	number	of	items	in	a	collection	or	array	or
the	number	of	characters	in	a	string.

All	these	functions	are	described	in	the	sections	to	follow.

The	contains	Function
The	contains	 function	 tests	whether	a	string	contains	 the	specified	substring.	The	return
value	 is	 true	 if	 the	 string	 contains	 the	 substring,	 and	 false	 otherwise.	 Its	 syntax	 is	 as
follows:

contains(string,	substring).

For	example,	both	of	these	EL	expressions	return	true:

<c:set	var="myString"	value="Hello	World"/>

${fn:contains(myString,	"Hello")}

${fn:contains("Stella	Cadente",	"Cadente")}

The	containsIgnoreCase	Function
The	 containsIgnoreCase	 function	 is	 similar	 to	 the	 contains	 function,	 but	 testing	 is
performed	in	a	case-insensitive	way.	The	syntax	is	as	follows:

containsIgnoreCase(string,	substring)

For	instance,	the	following	EL	expression	returns	true:

${fn:containsIgnoreCase("Stella	Cadente",	"CADENTE")}

The	endsWith	Function
The	endsWith	 function	 tests	whether	a	 string	ends	with	 the	 specified	 suffix.	The	 return
value	is	a	Boolean.	Its	syntax	is	as	follows:

endsWith(string,	suffix)

For	example,	the	following	EL	expression	returns	true:

${fn:endsWith("Hello	World",	"World")}

The	escapeXml	Function
This	function	is	useful	for	encoding	a	String.	The	conversion	is	 the	same	as	the	out	tag
with	its	escapeXml	attribute	set	to	true.	The	syntax	of	escapeXml	is	as	follows:

escapeXml(string)

For	example,	the	EL	expression

${fn:escapeXml("Use	
	to	change	lines")}

is	rendered	as	the	following:

Use	
	to	change	lines

The	indexOf	Function
The	 indexOf	 function	 returns	 the	 index	 within	 a	 string	 of	 the	 first	 occurrence	 of	 the
specified	substring.	If	the	substring	is	not	found,	it	returns	-1.	Its	syntax	is	as	follows:

indexOf(string,	substring)

For	instance,	the	following	EL	expression	returns	7:

${fn:indexOf("Stella	Cadente",	"Cadente")}

The	join	Function
The	 join	 function	 joins	 all	 elements	 of	 a	 String	 array	 into	 a	 string,	 separated	 by	 the
specified	separator.	The	syntax	is	as	follows:

join(array,	separator)

If	the	array	is	null,	an	empty	string	is	returned.

For	example,	if	myArray	 is	a	String	array	having	 the	 two	elements	“my”	and	“world”,
the	EL	expression

${fn:join(myArray,",")}

returns	“my,world”.

The	length	Function
The	 length	 function	 returns	 the	 number	 of	 items	 in	 a	 collection,	 or	 the	 number	 of
characters	in	a	string.	Its	syntax	is	as	follows:

length{input}

As	an	example,	the	following	EL	expression	returns	14:

${fn:length("Stella	Cadente",	"Cadente")}

The	replace	Function
The	replace	function	replaces	all	occurrences	of	beforeString	with	afterString	 in	a	string
and	returns	the	result.	Its	syntax	is	as	follows:

replace(string,	beforeSubstring,	afterSubstring)

For	example,	the	EL	expression

${fn:replace("Stella	Cadente",	"e",	"E")}

returns	“StElla	CadEntE”.

The	split	Function
The	split	function	splits	a	string	into	an	array	of	substrings.	It	does	the	opposite	of	the	join
function.	 For	 example,	 the	 following	 code	 splits	 the	 string	 “my,world”	 and	 stores	 the
result	 in	 the	 scoped	 variable	 split.	 It	 then	 formats	 split	 into	 an	 HTML	 table	 using	 the
forEach	tag.

<c:set	var="split"	value='${fn:split("my,world",",")}'/>

<table>

<c:forEach	var="substring"	items="${split}">

				<tr><td>${substring}</td></tr>

</c:forEach>

</table>

The	result	is	this:

<table>

				<tr><td>my</td></tr>

				<tr><td>world</td></tr>

</table>

The	startsWith	Function
The	startsWith	function	tests	whether	a	string	starts	with	the	specified	prefix.	The	syntax
is	as	follows:

startsWith(string,	prefix)

For	instance,	the	following	EL	expression	returns	true:

${fn:startsWith("Stella	Cadente",	"St")}

The	substring	Function
The	 substring	 function	 returns	 a	 substring	 from	 the	 specified	 zero-based	 begin	 index
(inclusive)	to	the	specified	zero-based	end	index.	The	syntax	is	as	follows:

substring(string,	beginIndex,	endIndex)

For	example,	the	following	EL	expression	returns	“Stel”.

${fn:substring("Stella	Cadente",	0,	4)}

The	substringAfter	Function
The	substringAfter	function	returns	the	portion	of	a	string	after	the	first	occurrence	of	the
specified	substring.	Its	syntax	is	as	follows:

substringAfter(string,	substring)

For	example,	the	EL	expression

${fn:substringAfter("Stella	Cadente",	"e")}

returns	“lla	Cadente”.

The	substringBefore	Function
The	substringBefore	function	returns	the	portion	of	a	string	before	the	first	occurrence	of
the	specified	substring.	Its	syntax	is	as	follows:

substringBefore(string,	substring)

For	instance,	the	following	EL	expression	returns	“St”.

${fn:substringBefore("Stella	Cadente",	"e")}

The	toLowerCase	Function
The	 toLowerCase	 function	 converts	 a	 string	 into	 its	 lowercase	version.	 Its	 syntax	 is	 as
follows:

toLowerCase(string)

For	example,	the	following	EL	expression	returns	“stella	cadente”.

${fn:toLowerCase("Stella	Cadente")}

The	toUpperCase	Function
The	 toUpperCase	 function	 converts	 a	 string	 into	 its	 uppercase	 version.	 Its	 syntax	 is	 as
follows:

toUpperCase(string)

For	instance,	the	following	EL	expression	returns	“STELLA	CADENTE”.

${fn:toUpperCase("Stella	Cadente")}

The	trim	Function
The	trim	function	removes	the	leading	and	trailing	whitespaces	of	a	string.	Its	syntax	is	as
follows:

trim(string)

For	example,	the	following	EL	expression	returns	“Stella	Cadente”.

${fn:trim("																	Stella	Cadente		")}

Summary
You	can	use	JSTL	for	common	tasks	(such	as	iteration,	collection,	and	conditionals),	for
processing	XML	documents,	formatting	text,	accessing	databases	and	manipulating	data,
etc.	 This	 chapter	 discussed	 the	 more	 important	 tags	 such	 as	 the	 tags	 for	 manipulating
scoped	 objects	 (out,	 set,	 remove),	 for	 performing	 conditional	 tests	 (if,	 choose,	when,
otherwise),	for	iterating	over	a	collection	or	token	(forEach,	forTokens),	for	parsing	and
formatting	dates	and	numbers	(parseNumber,	formatNumber,	parseDate,	 formatDate,
etc),	and	JSTL	1.2	functions	that	can	be	used	from	EL	expressions.

Chapter	10

Internationalization
In	 this	 era	 of	 globalization,	 it	 is	 now	 more	 compelling	 than	 ever	 to	 be	 able	 to	 write
applications	 that	 can	 be	 deployed	 in	 different	 countries	 and	 regions	 that	 speak	different
languages.	There	 are	 two	 terms	you	need	 to	be	 familiar	with	 in	 this	 regard.	The	 first	 is
internationalization,	often	abbreviated	to	i18n	because	the	word	starts	with	an	i	and	ends
with	an	n,	and	there	are	18	characters	between	the	first	i	and	the	last	n.	Internationalization
is	 a	 technique	 for	 developing	 applications	 that	 support	 multiple	 languages	 and	 data
formats	without	rewriting	the	programming	logic.

The	second	term	in	localization,	which	is	the	technique	for	adapting	an	internationalized
application	 to	 support	 a	 specific	 locale.	A	 locale	 is	 a	 specific	 geographical,	 political,	 or
cultural	 region.	An	 operation	 that	 takes	 a	 locale	 into	 consideration	 is	 said	 to	 be	 locale-
sensitive.	For	example,	displaying	a	date	 is	 locale-sensitive	because	 the	date	must	be	 in
the	format	used	by	the	country	or	region	of	the	user.	The	fifteenth	day	of	November	2016
is	 written	 11/15/2016	 in	 the	 US,	 but	 printed	 as	 15/11/2016	 in	 Australia.	 For	 the	 same
reason	internationalization	is	abbreviated	i18n,	localization	is	abbreviated	l10n.

Java	was	designed	with	internationalization	in	mind,	employing	Unicode	for	characters
and	 strings.	 Making	 internationalized	 applications	 in	 Java	 is	 therefore	 easy.	 How	 you
internationalize	your	applications	depends	on	how	much	static	data	needs	to	be	presented
in	different	languages.	There	are	two	approaches.

1.	If	a	large	amount	of	data	is	static,	create	a	separate	version	of	the	resource	for	each
locale.	This	approach	normally	applies	to	web	application	with	lots	of	static	HTML
pages.	It	is	straightforward	and	will	not	be	discussed	in	this	chapter.

2.	If	the	amount	of	static	data	that	needs	to	be	internationalized	is	limited,	isolate	textual
elements	such	as	component	labels	and	error	messages	into	text	files.	Each	text	file
stores	 the	 translations	 of	 all	 textual	 elements	 for	 a	 locale.	 The	 application	 then
retrieves	each	element	dynamically.	The	advantage	is	clear.	Each	textual	element	can
be	edited	easily	without	 recompiling	 the	application.	This	 is	 the	 technique	 that	will
discussed	in	this	chapter.

This	 chapter	 starts	 by	 explaining	 what	 a	 locale	 is.	 Next	 comes	 the	 technique	 for
internationalizing	your	applications,	followed	by	a	Spring	MVC	example.

Locales
The	 java.util.Locale	 class	 represents	 a	 locale.	 There	 are	 three	 main	 components	 of	 a
Locale	 object:	 language,	 country,	 and	 variant.	 The	 language	 is	 obviously	 the	 most
important	part;	however,	sometimes	the	language	itself	 is	not	sufficient	to	differentiate	a
locale.	 For	 example,	 the	 English	 language	 is	 spoken	 in	 countries	 such	 as	 the	 US	 and
England.	However,	the	English	language	spoken	in	the	US	is	not	exactly	the	same	as	the
one	used	in	the	UK.	Therefore,	it	is	necessary	to	specify	the	country	of	the	language.	As
another	example,	 the	Chinese	language	used	in	China	is	not	exactly	the	same	as	the	one
used	in	Taiwan.

The	variant	argument	is	a	vendor-	or	browser-specific	code.	For	example,	you	use	WIN
for	Windows,	MAC	for	Macintosh,	and	POSIX	for	POSIX.	Where	there	are	two	variants,
separate	 them	with	 an	underscore,	 and	put	 the	most	 important	one	 first.	For	 example,	 a
Traditional	 Spanish	 collation	 might	 construct	 a	 locale	 with	 parameters	 for	 language,
country,	and	variant	as	es,	ES,	Traditional_WIN,	respectively.

To	construct	a	Locale	object,	use	one	of	the	Locale	class’s	constructors.

public	Locale(java.lang.String	language)

public	Locale(java.lang.String	language,	java.lang.String	country)

public	Locale(java.lang.String	language,	java.lang.String	country,

								java.lang.String	variant)

The	 language	 code	 is	 a	 valid	 ISO	 language	 code.	 Table	 10.1	 displays	 examples	 of
language	codes.

The	country	argument	is	a	valid	ISO	country	code,	which	is	a	two-letter,	uppercase	code
specified	 in	 ISO	 3166	 (http://userpage.chemie.fu-berlin.de/diverse/doc/ISO_3166.html).
Table	10.2	lists	some	of	the	country	codes	in	ISO	3166.

Code Language

de German

el Greek

en English

es Spanish

fr French

hi Hindi

it Italian

ja Japanese

nl Dutch

pt Portuguese

ru Russian

zh Chinese

Table	10.1:	Examples	of	ISO	639	Language	Codes

Country Code

Australia AU

Brazil BR

Canada CA

China CN

Egypt EG

France FR

Germany DE

India IN

Mexico MX

Switzerland CH

Taiwan TW

United	Kingdom GB

United	States US

Table	10.2:	Examples	of	ISO	3166	Country	Codes

For	 example,	 to	 construct	 a	 Locale	 object	 representing	 the	 English	 language	 used	 in
Canada,	write	this.

Locale	locale	=	new	Locale("en",	"CA");

In	 addition,	 the	Locale	 class	 provides	 static	 final	 fields	 that	 return	 locales	 for	 specific
countries	or	 languages,	such	as	CANADA,	CANADA_FRENCH,	CHINA,	CHINESE,

ENGLISH,	 FRANCE,	 FRENCH,	UK,	US,	 etc.	 Therefore,	 you	 can	 also	 construct	 a
Locale	object	by	calling	its	static	field.

Locale	locale	=	Locale.CANADA_FRENCH;

In	addition,	the	static	getDefault	method	returns	the	user	computer’s	locale.

Locale	locale	=	Locale.getDefault();

Internationalizing	Spring	MVC	Applications
Internationalizing	and	localizing	your	application	require	you	to

1.	isolate	textual	components	into	properties	files

2.	be	able	to	select	and	read	the	correct	properties	file	This	section	elaborates	the	two
steps	and	provides	a	simple	example.

Isolating	Textual	Components	into	Properties	Files
An	internationalized	application	stores	its	textual	elements	in	a	separate	properties	file	for
each	locale.	Each	file	contains	key/value	pairs,	and	each	key	uniquely	identifies	a	locale-
specific	 object.	Keys	 are	 always	 strings,	 and	 values	 can	 be	 strings	 or	 any	 other	 type	 of
object.	 For	 example,	 to	 support	American	English,	German,	 and	Chinese	you	will	 have
three	properties	files,	all	of	which	will	have	the	same	keys.

The	 following	 is	 the	English	version	of	 the	properties	 file.	Note	 that	 it	has	 two	keys:
greetings	and	farewell.

Greetings=Hello

farewell=Goodbye

The	German	version	would	be	as	follows:

greetings=Hallo

farewell=Tschüß

And	the	properties	file	for	the	Chinese	language	would	be

greetings=\u4f60\u597d

farewell=\u518d\u89c1

If	 you	 are	 a	Chinese	 speaker,	 you	 can	 use	 any	Chinese	 text	 editor	 and	write	 the	Kanji
characters.	Once	you	are	finished,	convert	the	file	to	Unicode.

Now,	you	need	to	master	the	java.util.ResourceBundle	class.	It	enables	you	to	easily
choose	 and	 read	 the	 properties	 file	 specific	 to	 the	 user’s	 locale	 and	 look	 up	 the	 values.
ResourceBundle	is	an	abstract	class,	but	it	provides	static	getBundle	methods	that	return
an	instance	of	a	concrete	subclass.

A	 ResourceBundle	 has	 a	 base	 name,	 which	 can	 be	 any	 name.	 In	 order	 for	 a
ResourceBundle	 to	 pick	 up	 a	 properties	 file,	 the	 filename	 must	 be	 composed	 of	 the
ResourceBundle	base	name,	followed	by	an	underscore,	followed	by	the	language	code,
and	optionally	followed	by	another	underscore	and	the	country	code.	The	format	for	 the
properties	file	name	is	as	follows:

basename_languageCode_countryCode

For	example,	suppose	the	base	name	is	MyResources	and	you	define	the	following	three
locales:

US-en
DE-de
CN-zh

Then	you	would	have	these	three	properties	files:

MyResources_en_US.properties
MyResources_de_DE.properties

MyResources_zh_CN.properties

Reading	the	Properties	Files
ResourceBundle	 is	 an	 abstract	 class.	 Nonetheless,	 you	 can	 obtain	 an	 instance	 of
ResourceBundle	by	calling	its	static	getBundle	method.	The	signatures	of	 its	overloads
are

public	static	ResourceBundle	getBundle(java.lang.String	baseName)

public	static	ResourceBundle	getBundle(java.lang.String	baseName,

								Locale	locale)

For	example:

ResourceBundle	rb	=	ResourceBundle.getBundle("MyResources",	Locale.US);

This	will	load	the	ResourceBundle	with	the	values	in	the	corresponding	properties	file.

If	a	suitable	properties	file	is	not	found,	the	ResourceBundle	object	will	fall	back	to	the
default	properties	file.	The	name	of	the	default	properties	file	will	be	the	base	name	with	a
properties	extension.	In	this	case,	the	default	file	would	be	MyResources.properties.	If
the	 default	 properties	 file	 is	 not	 found,	 a	 java.util.MissingResourceException	 will	 be
thrown.

To	read	a	value,	use	the	ResourceBundle	class’s	getString	method,	passing	a	key.

public	java.lang.String	getString(java.lang.String	key)

If	 the	 entry	with	 the	 specified	key	 is	not	 found,	 a	 java.util.MissingResourceException
will	be	thrown.

In	Spring	MVC,	you	don’t	work	with	ResourceBundle	 directly.	 Instead,	 you	 use	 the
messageSource	bean	 to	 tell	Spring	MVC	where	you	store	properties	files.	For	example,
the	following	messageSource	bean	reads	two	properties	files.

<bean	id="messageSource"	class="org.springframework.context.support.

ReloadableResourceBundleMessageSource">

				<property	name="basenames"	>

								<list>

												<value>resource/messages</value>

												<value>resource/labels</value>

								</list>

				</property>

</bean>

In	 the	 bean	 definition	 above,	 the	 ReloadableResourceBundleMessageSource	 class	 is
used	 as	 the	 implementation.	 Another	 implementation	 includes
ResourceBundleMessageSource,	which	 is	 not	 reloadable.	This	means,	 if	 you	 change	 a
property	 key	 or	 value	 in	 any	 properties	 file	 and	 you	 are	 using
ResourceBundelMessageSource,	 you	 have	 to	 restart	 the	 JVM	 before	 the	 changes	 take
effect.	On	the	other	hand,	you	can	set	ReloadableResourceBundlemessageSource	to	be
reloadable.

Another	 difference	 between	 the	 two	 implementations	 is	 that	 with

ReloadableResourceBundleMessageSource	 the	 properties	 files	 are	 searched	 in	 the
application	directory.	With	ResourceBundleMessagesource,	 the	properties	files	must	be
located	in	the	class	path,	in	other	words	under	the	WEB-INF/classes	directory.

Note	 also,	 if	 you	 only	 have	 one	 set	 of	 properties	 files,	 you	 can	 use	 the	 basename
property	instead	of	basenames.	Here	is	an	example.

<bean	id="messageSource"	class="org.springframework.context.support.

ResourceBundleMessageSource">

				<property	name="basename"	value="resource/messages"/>

</bean>

Telling	Spring	MVC	What	Locale	to	Use
The	most	common	method	for	choosing	a	locale	to	use	for	a	user	is	probably	by	reading
the	value	of	the	accept-language	header	of	the	user	browser.	The	accept-language	header
carries	information	about	the	user’s	language	preferences.

Other	 methods	 for	 choosing	 a	 locale	 include	 reading	 a	 certain	 session	 attribute	 or	 a
cookie.

To	select	a	locale	in	Spring	MVC,	you	use	the	locale	resolver	bean.	There	are	several
implementations,	including	the	following.

AcceptHeaderLocaleResolver
SessionLocaleResolver
CookieLocaleResolver

All	 these	 implementations	 are	 part	 of	 the	 org.springframework.web.servlet.i18n
package.	AcceptHeaderLocaleResolver	is	probably	the	easiest	one	to	use.	If	you	choose
to	use	this	locale	resolver,	Spring	MVC	will	read	the	browser’s	accept-language	header	to
determine	 the	 locale(s)	 that	 the	 browser	 will	 accept.	 If	 one	 of	 the	 browser’s	 locales
matches	 a	 locale	 supported	 by	 the	 Spring	 MVC	 application,	 that	 one	 will	 be	 used.	 If
nothing	matched,	the	default	locale	will	be	used.

Here	 is	 the	 definition	 of	 the	 localeResolver	 bean	 that	 uses
AcceptHeaderLocaleResolver.

<bean	id="localeResolver"	class="org.springframework.web.servlet.i18n.

AcceptHeaderLocaleResolver">

</bean>

Using	the	message	Tag
The	 easiest	 way	 to	 display	 localized	 messages	 in	 Spring	MVC	 is	 by	 using	 the	 Spring
message	tag.	To	use	this	tag,	declare	this	taglib	directive	at	the	top	of	all	JSP	pages	that
use	the	tag.

<%@taglib	prefix="spring"	uri="http://www.springframework.org/tags"%>

The	 attributes	 that	 may	 appear	 in	 the	 tag	 are	 given	 in	 Table	 10.3.	 All	 attributes	 are
optional.

Attribute Description

arguments Arguments	for	this	tag	written	as	a	delimited	string,	an	object
array,	or	a	single	object

argumentSeparator The	character	used	for	separating	arguments	to	this	tag.

code The	key	to	retrieve	the	message.

htmlEscape Accepts	true	or	false	indicating	whether	or	not	the	rendered	text
should	be	HTML-escaped.

javaScriptEscape Accepts	true	or	false	indicating	whether	or	not	the	rendered	text
should	be	free	from	JavaScript

message A	MessageSourceResolvable	argument.

scope The	scope	to	store	the	variable	defined	in	the	var	attribute

text The	default	text	to	render	if	the	code	attribute	is	not	present	or	the
given	code	failed	to	retrieve	a	message

var A	scoped	variable	for	storing	the	message.

Table	10.3:	The	message	tag’s	attributes

Example
For	example,	the	i18n	sample	application	illustrates	the	use	of	the	localeResolver	bean	to
localize	messages	 in	 the	JSP	pages.	The	directory	structure	 is	 shown	 in	Figure	10.1	and
the	Spring	MVC	configuration	file	for	i18n	is	given	in	Listing	10.1.

Figure	10.1:	The	directory	structure	of	i18n

Listing	10.1:	The	Spring	MVC	configuration	file	for	i18n

<?xml	version="1.0"	encoding="UTF-8"?>

<beans	xmlns="http://www.springframework.org/schema/beans"

			xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

			xmlns:p="http://www.springframework.org/schema/p"

			xmlns:mvc="http://www.springframework.org/schema/mvc"	

			xmlns:context="http://www.springframework.org/schema/context"

			xsi:schemaLocation="

						http://www.springframework.org/schema/beans

						http://www.springframework.org/schema/beans/spring-beans.xsd

						http://www.springframework.org/schema/mvc

						http://www.springframework.org/schema/mvc/spring-mvc.xsd					

						http://www.springframework.org/schema/context

						http://www.springframework.org/schema/context/spring-context.xsd">

			<context:component-scan	base-package="controller"	/>

			<mvc:annotation-driven/>

			<mvc:resources	mapping="/css/**"	location="/css/"	/>

			<mvc:resources	mapping="/*.html"	location="/"	/>

			<bean	id="viewResolver"	class="org.springframework.web.servlet.view.

InternalResourceViewResolver">

						<property	name="prefix"	value="/WEB-INF/jsp/"	/>

						<property	name="suffix"	value=".jsp"	/>

			</bean>

			<bean	id="messageSource"	class="org.springframework.context.support.

ReloadableResourceBundleMessageSource">

						<property	name="basenames"	>

									<list>

												<value>/WEB-INF/resource/messages</value>

												<value>/WEB-INF/resource/labels</value>

									</list>

						</property>

			</bean>

			<bean	id="localeResolver"	class="org.springframework.web.servlet.i18n.

AcceptHeaderLocaleResolver">

			</bean>

</beans>

Two	beans	are	of	interest	here,	the	messageSource	bean	and	the	localeResolver	bean.	The
mssageSource	 bean	 declaration	 sets	 the	 basenames	 property	 with	 two	 base	 names,
/WEB-INF/resource/messages	 and	 /WEB-INF/resource/labels.	 The	 localeResolver
bean	enables	message	localization	using	the	AcceptHeaderLocaleResolver	class.

Two	 locales,	 en	 and	 fr,	 are	 supported,	 so	 each	 of	 the	 properties	 file	 comes	 in	 two
versions.	To	enable	 localization,	every	piece	of	 text	 in	 the	JSP	page	is	replaced	with	 the
message	 tag.	 Listing	 10.2	 shows	 the	 ProductForm.jsp	 page.	 Note	 that	 for	 debugging
purpose,	the	current	locale	and	accept-language	header	are	shown	at	the	top	of	the	page.

Listing	10.2:	The	ProductForm.jsp	page

<%@	taglib	prefix="form"

				uri="http://www.springframework.org/tags/form"%>

<%@	taglib	

				prefix="spring"	uri="http://www.springframework.org/tags"%>

<%@	taglib	uri="http://java.sun.com/jsp/jstl/core"	prefix="c"%>

<!DOCTYPE	html>

<html>

<head>

<title><spring:message	code="page.productform.title"/></title>

<style	type="text/css">@import	url("<c:url	

				value="/css/main.css"/>");</style>

</head>

<body>

<div	id="global">

Current	Locale	:	${pageContext.response.locale}

accept-language	header:	${header["accept-language"]}

<form:form	commandName="product"	action="product_save"	

				method="post">

				<fieldset>

								<legend><spring:message	code="form.name"/></legend>

								<p>

												<label	for="name"><spring:message	

																code="label.productName"	text="default	text"	/>:

												</label>

												<form:input	id="name"	path="name"	

																cssErrorClass="error"/>

												<form:errors	path="name"	cssClass="error"/>

								</p>

								<p>

												<label	for="description"><spring:message		

																code="label.description"/>:	

												</label>

												<form:input	id="description"	path="description"/>

								</p>

								<p>

												<label	for="price"><spring:message	code="label.price"	

																text="default	text"	/>:	</label>

												<form:input	id="price"	path="price"	

																cssErrorClass="error"/>

												<form:errors	path="price"	cssClass="error"/>

								</p>

								<p	id="buttons">

												<input	id="reset"	type="reset"	tabindex="4"	

																value="<spring:message	code="button.reset"/>">

												<input	id="submit"	type="submit"	tabindex="5"	

																value="<spring:message	code="button.submit"/>">

								</p>

				</fieldset>

</form:form>

</div>

</body>

</html>

To	 test	 the	 internationalization	 feature	 of	 i18n,	 change	your	 browser’s	accept-language
header.

In	Chrome,	open	the	Settings	window,	click	Show	advanced	settings	and	then	click	the
Language	and	input	settings	button.	Add	a	language	and	move	the	language	to	the	top	of
the	list.

In	Internet	Explorer,	go	to	Tools	>	Internet	Options	>	General	 (tab)	>	Languages	>
Language	Preference.	In	the	Language	Preference	window,	click	the	Add	button	to	add	a
language.	To	change	the	priority	of	a	language	when	multiple	languages	are	selected,	use
the	Move	up	and	Move	down	buttons.

Information	on	changing	 the	accept-language	 header	 in	other	browsers	can	be	 found
here.

http://www.w3.org/International/questions/qa-lang-priorities.en.php	

To	test	the	application,	direct	your	browser	to	this	URL:

http://localhost:8080/i18n/add-product

You	will	 see	either	 the	English	or	French	version	of	 the	Product	 form,	 shown	 in	Figure
10.2	and	Figure	10.3,	respectively.

Figure	10.2:	The	Product	form	with	en_US	locale

Figure	10.3:	The	Product	form	with	fr_CA	locale

Summary
This	chapter	 explains	how	 to	develop	an	 internationalized	application.	First	 it	 explained
the	java.util.Locale	class	and	the	java.util.ResourceBundle	class.	It	then	continued	with
an	example	of	an	internationalized	application.

Chapter	11

File	Upload
Once	upon	a	time	not	long	after	Servlet	technology	had	emerged,	file	upload	programming
was	still	a	challenging	task	that	involved	parsing	raw	HTTP	responses	on	the	server	side.
To	 alleviate	 the	 pain,	 developers	 would	 resort	 to	 commercial	 file	 upload	 components.
Fortunately,	in	2003	the	Apache	Software	Foundation	released	its	open	source	Commons
FileUpload	 component,	 which	 soon	 became	 a	 hit	 with	 servlet/JSP	 programmers
worldwide.

It	took	years	before	the	designers	of	Servlet	realized	that	file	upload	was	essential,	but
file	upload	was	finally	a	built-in	feature	in	Servlet	3.	Servlet	3	developers	do	not	have	to
import	the	Commons	FileUpload	component	into	their	projects	anymore.

As	such,	there	are	two	methods	for	handling	file	upload	in	Spring	MVC:

1.	By	using	Apache	Commons	FileUpload	component.

2.	By	 taking	 advantage	of	Servlet	 3.0	or	 later	 built-in	 support.	You	 can	only	use	 this
approach	if	you	will	deploy	your	application	to	a	container	that	supports	Servlet	3.0
or	later.

No	matter	which	approach	you	choose,	you’ll	be	using	the	same	Spring	API	to	handle	the
uploaded	 files.	 This	 chapter	 shows	 how	 to	make	 use	 of	 the	 Commons	 FileUpload	 and
Servlet	 3	 file	 upload	 feature	 in	 a	 Spring	 MVC	 application	 that	 need	 support	 for	 file
upload.	 In	 addition,	 it	 also	 demonstrates	 how	 you	 can	 enhance	 user	 experience	 with
HTML5.

Client	Side	Programming
To	upload	a	file,	you	must	set	the	value	of	the	enctype	attribute	of	your	HTML	form	with
multipart/form-data,	like	this:

<form	action="action"	enctype="multipart/form-data"	method="post">

				Select	a	file	<input	type="file"	name="fieldName"/>

				<input	type="submit"	value="Upload"/>

</form>

The	form	must	contain	an	input	element	of	type	file,	which	will	be	rendered	as	a	button
that,	when	clicked,	opens	a	dialog	to	select	a	file.	The	form	may	also	contain	other	field
types	such	as	a	text	area	or	a	hidden	field.

Prior	 to	HTML5,	 if	you	wanted	 to	upload	multiple	 files,	you	had	 to	use	multiple	 file
input	elements.	HTML5,	however,	makes	multiple	file	uploads	simpler	by	introducing	the
multiple	attribute	in	the	input	element.	You	can	write	one	of	the	following	in	HTML5	to
generate	a	button	for	selecting	multiple	files:

<input	type="file"	name="fieldName"	multiple/>

<input	type="file"	name="fieldName"	multiple="multiple"/>

<input	type="file"	name="fieldName"	multiple=""/>

The	MultipartFile	Interface
Handling	uploaded	files	 is	very	easy	 in	Spring	MVC.	A	file	uploaded	to	a	Spring	MVC
application	will	be	wrapped	in	a	MultipartFile	object.	Your	only	responsibility	is	to	write
a	domain	class	with	a	property	of	type	MultipartFile.

The	 org.springframework.web.multipart.MultipartFile	 interface	 has	 methods	 for
getting	the	name	and	content	of	an	uploaded	file.	Table	11.1	shows	these	methods.

Method Description

getBytes Returns	the	file	content	as	a	byte	array.

getContentType Returns	the	content	type	of	the	file.

getInputStream Returns	the	file	content	as	an	InputStream.

getName Returns	the	name	of	the	parameter	in	the	multipart	form.

getOriginalFilename Returns	the	original	file	name	in	the	client’s	local	drive.

getSize Returns	the	file	size	in	bytes	as	a	long.

isEmpty Indicates	whether	or	not	the	uploaded	file	is	empty.

tranferTo Saves	the	uploaded	file	as	a	java.io.File.

Table	11.1:	The	methods	in	MultipartFile

For	example,	to	save	the	uploaded	file,	you	can	use	the	transferTo	method:

File	file	=	new	File(...);

multipartFile.transferTo(file);

The	examples	in	the	following	sections	show	how	you	can	retrieve	an	uploaded	file	in	a
controller.

File	Upload	with	Commons	FileUpload
Only	 servlet	 containers	 that	 implement	 Servlet	 3.0	 or	 later	 specification	 support	 file
upload.	 For	 pre-Servlet	 3.0	 containers,	 you	 need	 the	 Apache	 Commons	 FileUpload
component	that	you	can	download	from	this	web	page.

http://commons.apache.org/proper/commons-fileupload/

Commons	 FileUpload	 is	 an	 open	 source	 project.	 In	 order	 for	 Commons	 FileUpload	 to
work	successfully,	it	needs	another	Apache	Commons	component,	Apache	Commons	IO.
You	can	download	Apache	Commons	IO	from	here.

http://commons.apache.org/proper/commons-io/

Therefore,	you	need	to	copy	two	JARs	to	the	WEB-INF/lib	directory	of	your	application.
The	Commons	FileUpload	JAR	will	have	a	name	that	follows	this	pattern:

commons-fileupload-x.y.jar

where	x	is	the	major	version	and	y	the	minor	version	of	the	software.	For	example,	the	one
used	in	this	chapter	is	commons-fileupload-1.3.jar.

The	name	of	the	Commons	IO	JAR	follows	this	pattern.

commons-io-x.y.jar

Here,	x	is	the	major	version	and	y	the	minor	version	of	the	software.	For	instance,	the	one
used	in	this	chapter	is	commons-io-2.4.jar.

In	 addition,	 you	 need	 to	 define	 this	 multipartResolver	 bean	 in	 your	 Spring	 MVC
configuration	file.

<bean	id="multipartResolver"

								class="org.springframework.web.multipart.commons.

CommonsMultipartResolver">

				<property	name="maxUploadSize"	value="2000000"/>

</bean>

The	upload1	 application	 shows	 how	 to	 use	 Commons	 FileUpload	 to	 handle	 uploaded
files.	 This	 example	 will	 also	 work	 in	 Servlet	 3.0	 containers.	 upload1	 has	 one	 domain
class,	the	Product	class,	which	contains	a	list	of	MultipartFile	objects.	You	learn	in	this
example	how	to	write	a	controller	that	can	handle	uploaded	product	images.

The	Domain	Class
Listing	11.1	shows	the	Product	domain	class.	 It	 is	similar	 to	 the	Product	classes	 in	 the
previous	 examples,	 except	 that	 the	 one	 in	 Listing	 11.1	 has	 an	 images	 property	 of	 type
List<MultipartFile>.

Listing	11.1:	The	Revised	Product	domain	class

package	domain;

import	java.io.Serializable;

import	java.math.BigDecimal;

import	java.util.List;

import	javax.validation.constraints.NotNull;

import	javax.validation.constraints.Size;

import	org.springframework.web.multipart.MultipartFile;

public	class	Product	implements	Serializable	{

				private	static	final	long	serialVersionUID	=	74458L;

				@NotNull

				@Size(min=1,	max=10)

				private	String	name;

				private	String	description;

				private	BigDeciimal	price;

				private	List<MultipartFile>	images;

				//	getters	and	setters	not	shown

}

The	Controller
The	 controller	 for	 upload1	 is	 shows	 in	 Listing	 11.2.	 There	 are	 two	 request-handling
methods	in	this	class,	inputProduct	and	saveProduct.	The	inputProduct	method	sends	a
product	form	to	the	browser.	The	saveProduct	method	saves	the	uploaded	image	files	in
the	image	directory	under	the	application	directory.

Listing	11.2:	The	ProductController	class

package	controller;

import	java.io.File;

import	java.io.IOException;

import	java.util.ArrayList;

import	java.util.List;

import	javax.servlet.http.HttpServletRequest;

import	org.apache.commons.logging.Log;

import	org.apache.commons.logging.LogFactory;

import	org.springframework.stereotype.Controller;

import	org.springframework.ui.Model;

import	org.springframework.validation.BindingResult;

import	org.springframework.web.bind.annotation.ModelAttribute;

import	org.springframework.web.bind.annotation.RequestMapping;

import	org.springframework.web.multipart.MultipartFile;

import	domain.Product;

@Controller

public	class	ProductController	{

				private	static	final	Log	logger	=	

								LogFactory.getLog(ProductController.class);

				@RequestMapping(value	=	"/input-product")

				public	String	inputProduct(Model	model)	{

								model.addAttribute("product",	new	Product());

								return	"ProductForm";

				}

				@RequestMapping(value	=	"/save-product")

				public	String	saveProduct(HttpServletRequest	servletRequest,

												@ModelAttribute	Product	product,	

												BindingResult	bindingResult,	Model	model)	{

								List<MultipartFile>	files	=	product.getImages();

								List<String>	fileNames	=	new	ArrayList<String>();

								if	(null	!=	files	&&	files.size()	>	0)	{

												for	(MultipartFile	multipartFile	:	files)	{

																String	fileName	=					

																								multipartFile.getOriginalFilename();

																fileNames.add(fileName);

																File	imageFile	=	new	

																								File(servletRequest.getServletContext()

																								.getRealPath("/image"),	fileName);

																try	{

																				multipartFile.transferTo(imageFile);

																}	catch	(IOException	e)	{

																				e.printStackTrace();

																}

												}

								}

								//	save	product	here

								model.addAttribute("product",	product);

								return	"ProductDetails";

				}

}

As	you	can	see	in	the	saveProduct	method	in	Listing	11.2,	saving	an	uploaded	file	is	easy.
You	just	need	to	call	the	transferTo	method	on	the	MultipartFile.

The	Configuration	File
Listing	11.3	shows	the	Spring	MVC	configuration	file	for	upload1.

Listing	11.3:	The	Spring	MVC	configuration	file	for	upload1

<?xml	version="1.0"	encoding="UTF-8"?>

<beans	xmlns="http://www.springframework.org/schema/beans"

				xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

				xmlns:p="http://www.springframework.org/schema/p"

				xmlns:mvc="http://www.springframework.org/schema/mvc"	

				xmlns:context="http://www.springframework.org/schema/context"

				xsi:schemaLocation="

								http://www.springframework.org/schema/beans

								http://www.springframework.org/schema/beans/spring-beans.xsd

								http://www.springframework.org/schema/mvc

								http://www.springframework.org/schema/mvc/spring-mvc.xsd					

								http://www.springframework.org/schema/context

								http://www.springframework.org/schema/context/spring-

context.xsd">

				<context:component-scan	base-package="controller"	/>

				<mvc:annotation-driven	/>

				<mvc:resources	mapping="/css/**"	location="/css/"	/>

				<mvc:resources	mapping="/*.html"	location="/"	/>

				<mvc:resources	mapping="/image/**"	location="/image/"	/>

				<bean	id="viewResolver"

												class="org.springframework.web.servlet.view.

InternalResourceViewResolver">

								<property	name="prefix"	value="/WEB-INF/jsp/"	/>

								<property	name="suffix"	value=".jsp"	/>

				</bean>

	

				<bean	id="multipartResolver"

												class="org.springframework.web.multipart.commons.

CommonsMultipartResolver">

				</bean>

</beans>

You	 can	 use	 the	maxUploadSize	 property	 of	 the	multipartResolver	 bean	 to	 set	 the
maximum	file	size	that	will	be	accepted.	Without	this	property,	there	is	no	maximum	size.
Setting	no	restriction	on	the	file	size	does	not	mean	you	can	upload	any	size.	A	very	large
file	will	take	a	long	time	to	upload	and	cause	the	server	to	time	out.	To	handle	very	large
files,	you	can	slice	the	file	using	the	HTML5	File	API	and	upload	each	chunk	separately.

The	JSP	Page
The	ProductForm.jsp	page	that	you	can	use	to	upload	an	image	file	is	presented	in	listing
11.4.

Listing	11.4:	The	ProductForm.jsp	Page

<%@	taglib	prefix="form"	uri="http://www.springframework.org/tags/form"%>

<%@	taglib	uri="http://java.sun.com/jsp/jstl/core"	prefix="c"	%>

<!DOCTYPE	html>

<html>

<head>

<title>Add	Product	Form</title>

<style	type="text/css">@import	url("<c:url	value="/css/main.css"/>");</style>

</head>

<body>

<div	id="global">

<form:form	commandName="product"	action="save-product"	method="post"	

								enctype="multipart/form-data">

				<fieldset>

								<legend>Add	a	product</legend>

								<p>

												<label	for="name">Product	Name:	</label>

												<form:input	id="name"	path="name"	

																cssErrorClass="error"/>

												<form:errors	path="name"	cssClass="error"/>

								</p>

								<p>

												<label	for="description">Description:	</label>

												<form:input	id="description"	path="description"/>

								</p>

								<p>

												<label	for="price">Price:	</label>

												<form:input	id="price"	path="price"	

																cssErrorClass="error"/>

								</p>

								<p>

												<label	for="image">Product	Image:	</label>

												<input	type="file"	name="images[0]"/>

								</p>

								<p	id="buttons">

												<input	id="reset"	type="reset"	tabindex="4">

												<input	id="submit"	type="submit"	tabindex="5"	

																value="Add	Product">

								</p>

				</fieldset>

</form:form>

</div>

</body>

</html>

Pay	 attention	 to	 the	 input	 element	 of	 type	 file	 in	 the	 form.	 That	will	 be	 rendered	 as	 a
button	for	selecting	files	to	upload.

Submitting	 the	 Product	 form	 will	 invoke	 the	 save-product	 method.	 If	 this	 method

completes	 successfully,	 the	 user	 will	 be	 forwarded	 to	 the	 ProductDetails.jsp	 page	 in
Listing	11.5.

Listing	11.5:	The	ProductDetails.jsp	Page

<%@	taglib	uri="http://java.sun.com/jsp/jstl/core"	prefix="c"	%>

<!DOCTYPE	html>

<html>

<head>

<title>Save	Product</title>

<style	type="text/css">@import	url("<c:url	value="/css/main.css"/>");</style>

</head>

<body>

<div	id="global">

				<h4>The	product	has	been	saved.</h4>

				<p>

								<h5>Details:</h5>

								Product	Name:	${product.name}

								Description:	${product.description}

								Price:	$${product.price}

								<p>Following	files	are	uploaded	successfully.</p>

								

								<c:forEach	items="${product.images}"	var="image">

												${image.originalFilename}

												<img	width="100"	src="<c:url	value="/image/"/>

												${image.originalFilename}"/>

												

								</c:forEach>

								

				</p>

</div>

</body>

</html>

The	 ProductDetails.jsp	 page	 displays	 the	 details	 of	 the	 saved	 Product,	 including	 its
images.

Testing	the	Application
To	test	the	application,	direct	your	browser	to	this	URL:

http://localhost:8080/upload1/input-product

You	will	see	an	Add	Product	form	like	the	one	in	Figure	11.1.

Figure	11.1:	A	product	form	that	includes	a	file	field

Type	 in	 some	 product	 information	 and	 select	 a	 file	 to	 upload.	 When	 you	 press	 Add
Product,	you	will	see	something	like	the	web	page	in	Figure	11.2.

Figure	11.2:	Showing	the	uploaded	image

The	uploaded	image	will	be	save	in	the	image	directory	under	your	application	directory.

File	Upload	with	Servlet	3	or	Later
With	 Servlet	 3,	 you	 don’t	 need	 the	 duo	 Commons	 FileUpload	 and	 Commons	 IO
components.	Server	side	file	upload	programming	in	Servlet	3	and	later	containers	centers
around	 the	MultipartConfig	 annotation	 type	 and	 the	 javax.servlet.http.Part	 interface.
Servlets	that	handle	uploaded	files	must	be	annotated	@MultipartConfig.

The	following	are	attributes	 that	may	appear	 in	 the	MultipartConfig	annotation	type.
All	attributes	are	optional.

maxFileSize.	The	maximum	 size	 for	 uploaded	 files.	 Files	 larger	 than	 the	 specified
value	 will	 be	 rejected.	 By	 default,	 the	 value	 of	maxFileSize	 is	 -1,	 which	 means
unlimited.
maxRequestSize.	 The	 maximum	 size	 allowed	 for	 multipart	 HTTP	 requests.	 By
default,	the	value	is	-1,	which	translates	into	unlimited.
location.	 The	 save	 location	when	 the	 uploaded	 file	 is	 saved	 to	 disk	 by	 calling	 the
write	method	on	the	Part.
fileSizeThreshold.	The	size	threshold	after	which	the	uploaded	file	will	be	written	to
disk.

The	 Spring	 MVC	DispatcherServlet	 handles	 most	 or	 all	 requests.	 Unfortunately,	 you
cannot	 annotate	 the	 servlet	 without	 changing	 the	 source	 code.	 Fortunately,	 there	 is	 an
easier	way	to	make	a	servlet	a	MultipartConfig	servlet	in	Servlet	3:	by	passing	values	to
the	servlet	declaration	in	the	deployment	descriptor	(the	web.xml	file).	The	following	has
the	same	effect	as	annotating	DispatcherServlet	with	@MultipartConfig.

<servlet>

				<servlet-name>springmvc</servlet-name>

				<servlet-class>

								org.springframework.web.servlet.DispatcherServlet

				</servlet-class>

				<init-param>

								<param-name>contextConfigLocation</param-name>

								<param-value>

												/WEB-INF/config/springmvc-config.xml

								</param-value>

				</init-param>

				<multipart-config>

								<max-file-size>20848820</max-file-size>

								<max-request-size>418018841</max-request-size>

								<file-size-threshold>1048576</file-size-threshold>

				</multipart-config>												

</servlet>

As	simple	as	 that.	On	 top	of	 that,	you	need	 to	use	a	different	multipart	 resolver	 in	your
Spring	MVC	configuration	file.	Here	it	is.

<bean	id="multipartResolver"	

								class="org.springframework.web.multipart.support.

StandardServletMultipartResolver">

</bean>

The	upload2	 application	demonstrates	 how	 to	 handle	 file	 upload	 in	 a	Servlet	 3	 or	 later
container.	It	is	a	rewrite	of	upload1,	so	the	domain	and	controller	classes	are	very	similar.
The	 only	 difference	 is	 the	web.xml	 file	 that	 now	 contains	 a	multipart-config	 element.
Listing	11.6	shows	the	web.xml	file	for	upload2.

Listing	11.6:	The	web.xml	file	for	upload2

<?xml	version="1.0"	encoding="UTF-8"?>

<web-app	version="3.1"	

				xmlns="http://xmlns.jcp.org/xml/ns/javaee"	

				xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

				xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee	

http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd">

				<servlet>

								<servlet-name>springmvc</servlet-name>

								<servlet-class>

												org.springframework.web.servlet.DispatcherServlet

								</servlet-class>

								<init-param>

												<param-name>contextConfigLocation</param-name>

												<param-value>

																/WEB-INF/config/springmvc-config.xml

												</param-value>

								</init-param>

								<load-on-startup>1</load-on-startup>

								<multipart-config>

												<max-file-size>20848820</max-file-size>

												<max-request-size>418018841</max-request-size>

												<file-size-threshold>1048576</file-size-threshold>

								</multipart-config>												

				</servlet>

				<servlet-mapping>

								<servlet-name>springmvc</servlet-name>

								<url-pattern>/</url-pattern>

				</servlet-mapping>

</web-app>

Listing	11.7	presents	the	Spring	MVC	configuration	file	for	upload2.

Listing	11.7:	The	configuration	file	for	upload2

<?xml	version="1.0"	encoding="UTF-8"?>

<beans	xmlns="http://www.springframework.org/schema/beans"

				xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

				xmlns:p="http://www.springframework.org/schema/p"

				xmlns:mvc="http://www.springframework.org/schema/mvc"

				xmlns:context="http://www.springframework.org/schema/context"	

				xsi:schemaLocation="

								http://www.springframework.org/schema/beans

								http://www.springframework.org/schema/beans/spring-beans.xsd

								http://www.springframework.org/schema/mvc

								http://www.springframework.org/schema/mvc/spring-mvc.xsd					

								http://www.springframework.org/schema/context

								http://www.springframework.org/schema/context/spring-

context.xsd">

				<context:component-scan	base-package="controller"	/>

				<mvc:annotation-driven	/>

				<mvc:resources	mapping="/css/**"	location="/css/"	/>

				<mvc:resources	mapping="/*.html"	location="/"	/>

				<mvc:resources	mapping="/image/**"	location="/image/"	/>

				<mvc:resources	mapping="/file/**"	location="/file/"	/>

				<bean	id="viewResolver"

								class="org.springframework.web.servlet.view.

InternalResourceViewResolver">

								<property	name="prefix"	value="/WEB-INF/jsp/"	/>

								<property	name="suffix"	value=".jsp"	/>

				</bean>

	

				<bean	id="multipartResolver"

								class="org.springframework.web.multipart.support.

StandardServletMultipartResolver">

				</bean>

</beans>

To	test	the	application,	direct	your	browser	to	this	URL.

http://localhost:8080/upload2/input-product

Upload	Clients
While	 the	 file	upload	 feature	 in	Servlet	3	makes	 file	upload	a	breeze	 to	program	on	 the
server	side,	it	does	nothing	to	enhance	user	experience.	An	HTML	form	alone	will	not	let
you	display	a	progress	bar	or	show	the	number	of	files	successfully	uploaded.	Developers
have	 used	 different	 techniques	 to	 improve	 the	 user	 interface,	 such	 as	 by	 inquiring	 the
server	using	a	separate	browser	thread	so	that	upload	progress	can	be	reported,	or	by	using
third-party	 plug-in	 technologies	 such	 as	 Java	 applets,	 Adobe	 Flash,	 or	 Microsoft
Silverlight.

These	 plug-in	 technologies	 used	 to	work.	 To	 some	 extent	 and	with	 limitation.	 Today
Java	 applets	 and	 Silverlight	 are	 practically	 dead.	 Chrome	 no	 longer	 allow	 applets	 and
Silverlight,	 and	 Edge,	Microsoft	 new	 browser	 that	 replaced	 Internet	 Explorer,	 does	 not
support	plug-ins	at	all.

You	can	still	use	Flash,	as	Chrome	can	still	run	it	and	it	is	integrated	in	Edge.	However,
its	days	are	numbered	as	more	and	more	people	embrace	HTML5.

HTML5	adds	a	File	API	 to	 its	DOM	to	allow	 local	 file	access.	Compared	 to	applets,
Flash,	and	Silverlight,	HTML5	seems	ideal	as	the	perfect	solution	to	client	side	file	upload
limitations.

To	demonstrate	the	power	of	HTML5,	the	html5.jsp	page	in	upload2	(given	in	Listing
11.5)	uses	JavaScript	and	the	HTML5	File	API	to	provide	a	progress	bar	that	reports	the
upload	 progress.	 The	 upload2	 application	 also	 contains	 a	 copy	 of	 the
MultipleUploadsServlet	 class	 to	 save	 uploaded	 files	 on	 the	 server.	 However,	 as
Javascript	is	beyond	the	scope	of	this	book,	explanation	will	only	be	given	cursorily.

In	short,	we’re	interested	in	the	change	event	of	the	HTML5	 input	element,	which	 is
triggered	 when	 the	 value	 of	 an	 input	 element	 changes.	 We’re	 also	 interested	 in	 the
progress	event	added	to	the	XMLHttpRequest	object	in	HTML5.	XMLHttpRequest	 is
of	 course	 the	 backbone	 of	 AJAX.	 When	 the	 XMLHttpRequest	 object	 is	 used
asynchronously	 to	 upload	 a	 file,	 it	 triggers	 the	 progress	 event	 continuously	 until	 the
upload	 process	 is	 complete	 or	 canceled	 or	 until	 the	 process	 is	 halted	 by	 an	 error.	 By
listening	 to	 the	 progress	 event,	 you	 can	 easily	 monitor	 the	 progress	 of	 a	 file	 upload
operation.

The	Html5FileUploadController	 class	 in	 upload2	 has	 the	 capability	 of	 saving	 an
uploaded	file	to	the	file	directory	under	the	application	directory.	The	UploadedFile	class
in	Listing	11.8	shows	a	simple	domain	class	that	contains	only	one	property.

Listing	11.8:	The	UploadedFile	domain	class

package	domain;

import	java.io.Serializable;

import	org.springframework.web.multipart.MultipartFile;

public	class	UploadedFile	implements	Serializable	{

				private	static	final	long	serialVersionUID	=	1L;

				private	MultipartFile	multipartFile;

				public	MultipartFile	getMultipartFile()	{

								return	multipartFile;

				}

				public	void	setMultipartFile(MultipartFile	multipartFile)	{

								this.multipartFile	=	multipartFile;

				}

}

The	Html5FileUploadController	class	is	given	in	Listing	11.9.

Listing	11.9:	The	Html5FileUploadController	class

package	controller;

import	java.io.File;

import	java.io.IOException;

import	javax.servlet.http.HttpServletRequest;

import	org.apache.commons.logging.Log;

import	org.apache.commons.logging.LogFactory;

import	org.springframework.stereotype.Controller;

import	org.springframework.ui.Model;

import	org.springframework.validation.BindingResult;

import	org.springframework.web.bind.annotation.ModelAttribute;

import	org.springframework.web.bind.annotation.RequestMapping;

import	org.springframework.web.multipart.MultipartFile;

import	domain.UploadedFile;

@Controller

public	class	Html5FileUploadController	{

				private	static	final	Log	logger	=	LogFactory

												.getLog(Html5FileUploadController.class);

				@RequestMapping(value	=	"/html5")

				public	String	inputProduct()	{

								return	"Html5";

				}

				@RequestMapping(value	=	"/file_upload")

				public	void	saveFile(HttpServletRequest	servletRequest,

												@ModelAttribute	UploadedFile	uploadedFile,

												BindingResult	bindingResult,	Model	model)	{

								MultipartFile	multipartFile	=	

																uploadedFile.getMultipartFile();

								String	fileName	=	multipartFile.getOriginalFilename();

								try	{

												File	file	=	new	File(servletRequest.getServletContext()

																				.getRealPath("/file"),	fileName);

												multipartFile.transferTo(file);

								}	catch	(IOException	e)	{

												e.printStackTrace();

								}

				}

}

The	saveFile	method	 in	Html5FileUploadController	 saves	 the	uploaded	 file	 to	 the	 file
directory	under	the	application	directory.

The	html5.jsp	 page	 in	Listing	 11.10	 contains	 JavaScript	 code	 that	 allows	 the	 user	 to
select	multiple	 files	 and	 upload	 them	 in	 one	 button	 click.	 The	 files	 themselves	will	 be
uploaded	one	at	a	time.

Listing:	11.10:	The	html5.jsp	page

<!DOCTYPE	html>

<html>

<head>

<script>

				var	totalFileLength,	totalUploaded,	fileCount,	filesUploaded;

				function	debug(s)	{

								var	debug	=	document.getElementById('debug');

								if	(debug)	{

												debug.innerHTML	=	debug.innerHTML	+	'
'	+	s;

								}

				}

				function	onUploadComplete(e)	{

								totalUploaded	+=	document.getElementById('files').

																files[filesUploaded].size;

								filesUploaded++;

								debug('complete	'	+	filesUploaded	+	"	of	"	+	fileCount);

								debug('totalUploaded:	'	+	totalUploaded);								

								if	(filesUploaded	<	fileCount)	{

												uploadNext();

								}	else	{

												var	bar	=	document.getElementById('bar');

												bar.style.width	=	'100%';

												bar.innerHTML	=	'100%	complete';

												alert('Finished	uploading	file(s)');

								}

				}

				

				function	onFileSelect(e)	{

								var	files	=	e.target.files;	//	FileList	object

								var	output	=	[];

								fileCount	=	files.length;

								totalFileLength	=	0;

								for	(var	i=0;	i<fileCount;	i++)	{

												var	file	=	files[i];

												output.push(file.name,	'	(',

																		file.size,	'	bytes,	',

																		file.lastModifiedDate.toLocaleDateString(),	')'

);

												output.push('
');

												debug('add	'	+	file.size);

												totalFileLength	+=	file.size;

								}

								document.getElementById('selectedFiles').innerHTML	=	

												output.join('');

								debug('totalFileLength:'	+	totalFileLength);

				}

				function	onUploadProgress(e)	{

								if	(e.lengthComputable)	{

												var	percentComplete	=	parseInt(

																				(e.loaded	+	totalUploaded)	*	100	

																				/	totalFileLength);

												var	bar	=	document.getElementById('bar');

												bar.style.width	=	percentComplete	+	'%';

												bar.innerHTML	=	percentComplete	+	'	%	complete';

								}	else	{

												debug('unable	to	compute');

								}

				}

				function	onUploadFailed(e)	{

								alert("Error	uploading	file");

				}

				

				function	uploadNext()	{

								var	xhr	=	new	XMLHttpRequest();

								var	fd	=	new	FormData();

								var	file	=	document.getElementById('files').

																files[filesUploaded];

								fd.append("multipartFile",	file);

								xhr.upload.addEventListener(

																"progress",	onUploadProgress,	false);

								xhr.addEventListener("load",	onUploadComplete,	false);

								xhr.addEventListener("error",	onUploadFailed,	false);

								xhr.open("POST",	"upload-file");

								debug('uploading	'	+	file.name);

								xhr.send(fd);

				}

				function	startUpload()	{

								totalUploaded	=	filesUploaded	=	0;

								uploadNext();

				}

				window.onload	=	function()	{

								document.getElementById('files').addEventListener(

																'change',	onFileSelect,	false);

								document.getElementById('uploadButton').

																addEventListener('click',	startUpload,	false);

				}

</script>

</head>

<body>

<h1>Multiple	file	uploads	with	progress	bar</h1>

<div	id='progressBar'	style='height:20px;border:2px	solid	green'>

				<div	id='bar'	

												style='height:100%;background:#33dd33;width:0%'>

				</div>

</div>

<form>

				<input	type="file"	id="files"	multiple/>

				

				<output	id="selectedFiles"></output>

				<input	id="uploadButton"	type="button"	value="Upload"/>

</form>

<div	id='debug'	

				style='height:100px;border:2px	solid	green;overflow:auto'>

</div>

</body>

</html>

The	 user	 interface	 in	 the	 html5.jsp	 page	 consists	 mainly	 of	 a	 div	 element	 called
progressBar,	a	form,	and	another	div	element	called	debug.	You	guessed	it	right	that	the
progressBar	div	is	for	showing	the	upload	progress	and	debug	is	for	debugging	info.	The
form	has	an	input	element	of	type	file	and	a	button.

There	are	two	things	to	note	from	the	form.	First,	the	input	element	identified	as	files
has	 a	multiple	 attribute	 to	 support	 multiple	 file	 selection.	 Second,	 the	 button	 is	 not	 a
submit	button.	So,	clicking	it	will	not	submit	the	containing	form.	In	fact,	the	script	uses
the	XMLHttpRequest	object	to	do	the	upload.

Now,	 let’s	 look	at	 the	Javascript	code.	This	assumes	some	knowledge	of	 the	scripting
language.

When	the	script	is	executed,	the	first	thing	it	does	is	allocate	space	for	four	variables.

				var	totalFileLength,	totalUploaded,	fileCount,	filesUploaded;

The	 totalFileLength	 variable	 holds	 the	 total	 length	 of	 the	 files	 to	 be	 uploaded.
totalUploaded	is	the	number	of	bytes	uploaded	so	far.	fileCount	contains	the	number	of
files	 to	 be	 uploaded,	 and	 filesUploaded	 indicates	 the	 number	 of	 files	 that	 have	 been
uploaded.

Then	 the	 function	 assigned	 to	window.onload	 is	 called	 after	 the	window	 completely
loads.

				window.onload	=	function()	{

								document.getElementById('files').addEventListener(

																'change',	onFileSelect,	false);

								document.getElementById('uploadButton').

																addEventListener('click',	startUpload,	false);

				}

This	maps	the	files	input	element’s	change	event	with	the	onFileSelect	function	and	the
button’s	click	event	with	startUpload.

The	change	event	occurs	every	time	the	user	changes	a	different	set	of	files	from	a	local
directory.	The	event	handler	attached	to	this	event	simply	prints	the	names	and	sizes	of	the
selected	files	to	an	output	element.	Here	is	the	event	handler	again:

				function	onFileSelect(e)	{

								var	files	=	e.target.files;	//	FileList	object

								var	output	=	[];

								fileCount	=	files.length;

								totalFileLength	=	0;

								for	(var	i=0;	i<fileCount;	i++)	{

												var	file	=	files[i];

												output.push(file.name,	'	(',

																		file.size,	'	bytes,	',

																		file.lastModifiedDate.toLocaleDateString(),	')'

);

												output.push('
');

												debug('add	'	+	file.size);

												totalFileLength	+=	file.size;

								}

								document.getElementById('selectedFiles').innerHTML	=	

												output.join('');

								debug('totalFileLength:'	+	totalFileLength);

				}

When	the	user	clicks	the	Upload	button,	the	startUpload	function	is	called	and	it	in	turns
calls	 the	 uploadNext	 function.	 uploadNext	 uploads	 the	 next	 file	 in	 the	 selected	 file
collection.	 It	 starts	 by	 creating	 an	XMLHttpRequest	 object	 and	 a	FormData	 object	 to
which	the	file	to	be	uploaded	next	is	appended	to.

								var	xhr	=	new	XMLHttpRequest();

								var	fd	=	new	FormData();

								var	file	=	document.getElementById('files').

																files[filesUploaded];

								fd.append("multipartFile",	file);

The	 uploadNext	 function	 then	 attaches	 the	 progress	 event	 of	 the	 XMLHttpRequest
object	 to	 the	 onUploadProgress	 and	 the	 load	 event	 and	 the	 error	 event	 to
onUploadComplete	and	onUploadFailed,	respectively.

								xhr.upload.addEventListener(

																"progress",	onUploadProgress,	false);

								xhr.addEventListener("load",	onUploadComplete,	false);

								xhr.addEventListener("error",	onUploadFailed,	false);

Next,	it	opens	a	connection	to	the	server	and	sends	the	FormData.

								xhr.open("POST",	"file_upload");

								debug('uploading	'	+	file.name);

								xhr.send(fd);

During	the	upload	progress,	the	onUploadProgress	function	is	called	repeatedly,	giving	it
the	opportunity	to	update	the	progress	bar.	An	update	involves	calculating	the	ratio	of	the
total	 bytes	 already	 uploaded	 and	 the	 number	 of	 bytes	 of	 the	 selected	 files	 as	 well	 as
widening	the	div	element	within	the	progressBar	div	element.

				function	onUploadProgress(e)	{

								if	(e.lengthComputable)	{

												var	percentComplete	=	parseInt(

																				(e.loaded	+	totalUploaded)	*	100	

																				/	totalFileLength);

												var	bar	=	document.getElementById('bar');

												bar.style.width	=	percentComplete	+	'%';

												bar.innerHTML	=	percentComplete	+	'	%	complete';

								}	else	{

												debug('unable	to	compute');

								}

				}

At	the	completion	of	an	upload,	the	onUploadComplete	function	is	invoked.	This	event
handler	 adds	 to	 totalUploaded	 the	 size	 of	 the	 file	 that	 has	 just	 finished	 uploading	 and
increments	filesUploaded.	It	then	checks	if	all	selected	files	have	been	uploaded.	If	yes,	a
message	is	displayed	telling	the	user	that	uploading	has	completed	successfully.	If	not,	it
calls	uploadNext	 again.	The	onUploadComplete	 function	 is	 reprinted	 here	 for	 reading
convenience.

				function	onUploadComplete(e)	{

								totalUploaded	+=	document.getElementById('files').

																files[filesUploaded].size;

								filesUploaded++;

								debug('complete	'	+	filesUploaded	+	"	of	"	+	fileCount);

								debug('totalUploaded:	'	+	totalUploaded);								

								if	(filesUploaded	<	fileCount)	{

												uploadNext();

								}	else	{

												var	bar	=	document.getElementById('bar');

												bar.style.width	=	'100%';

												bar.innerHTML	=	'100%	complete';

												alert('Finished	uploading	file(s)');

								}

				}

You	can	test	the	application	using	this	URL:

http://localhost:8080/upload2/html5

Select	 a	 couple	 of	 files	 and	 click	 the	Upload	 button.	You’ll	 see	 a	 progress	 bar	 and	 the
information	on	the	uploaded	files	like	the	screen	shot	in	Figure	11.3.

Figure	11.3:	File	upload	with	progress	bar

Summary
In	this	chapter	you	learned	how	to	handle	file	upload	in	a	Spring	MVC	application.	There
are	two	ways	of	handling	uploaded	files,	by	using	the	Commons	FileUpload	component	or
by	 taking	 advantage	 of	 the	 Servlet	 3	 native	 file	 upload	 feature.	 The	 accompanying
examples	for	this	chapter	showed	how	to	use	both	approaches.

You	also	learned	how	to	use	HTML5	to	support	multiple	file	upload	and	enhance	user
experience	on	the	client	side	by	utilizing	the	File	API.

Chapter	12

File	Download
A	 static	 resource,	 such	 as	 an	 image	 or	 an	 HTML	 file,	 can	 be	 downloaded	 by	 simply
pointing	the	browser	to	the	right	URL.	As	long	as	the	resource	is	located	in	the	application
directory	 or	 a	 subdirectory	 under	 it	 and	 not	 under	WEB-INF,	 the	 servlet/JSP	 container
will	 send	 the	 resource	 to	 the	 browser.	 However,	 sometimes	 a	 static	 resource	 is	 stored
outside	the	application	directory	or	in	a	database,	or	sometimes	you	want	to	control	over
who	 can	 see	 it	 and	 prevent	 other	 websites	 from	 cross-referencing	 it.	 If	 any	 of	 these
scenarios	applies	to	you,	then	you	have	to	send	the	resource	programmatically.

In	 short,	 programmatic	 file	 download	 lets	 you	 selectively	 send	 a	 file	 to	 the	 browser.
This	chapter	explains	what	it	takes	to	programmatically	send	a	resource	to	the	browser	and
presents	two	examples.

File	Download	Overview
To	 send	 a	 resource	 such	 as	 a	 file	 to	 the	 browser,	 you	 need	 to	 do	 the	 following	 in	 your
controller.

1.	 Use	 the	 void	 return	 type	 for	 your	 request-handling	 method	 and	 add
HttpServletResponse	as	an	argument	to	the	method.

2.	Set	the	response’s	content	type	to	the	file’s	content	type.	The	Content-Type	header
specifies	the	type	of	the	data	in	the	body	of	an	entity	and	consists	of	the	media	type
and	 subtype	 identifiers.	 Visit	 http://www.iana.org/assignments/media-types	 for
standard	 content	 types.	 If	 you	 do	 not	 know	 what	 the	 content	 type	 is	 or	 want	 the
browser	 to	 always	 display	 the	 Save	As	 dialog,	 set	 it	 to	APPLICATION/OCTET-
STREAM.	This	value	is	not	case	sensitive.

3.	 Add	 an	 HTTP	 response	 header	 named	Content-Disposition	 and	 give	 it	 the	 value
attachment;	 filename=fileName,	 where	 fileName	 is	 the	 default	 file	 name	 that
should	appear	in	the	File	Download	dialog	box.	This	is	normally	the	same	name	as
the	file,	but	does	not	have	to	be	so.

For	instance,	this	code	sends	a	file	to	the	browser.

FileInputStream	fis	=	new	FileInputStream(file);

BufferedInputStream	bis	=	new	BufferedInputStream(fis);

byte[]	bytes	=	new	byte[bis.available()];

response.setContentType(contentType);	 	 				

OutputStream	os	=	response.getOutputStream();

bis.read(bytes);

os.write(bytes);

The	code	above	first	 reads	 the	file	as	a	FileInputStream	and	 load	 the	content	 to	a	byte
array.	 Then,	 it	 obtains	 the	HttpServletResponse’s	OutputStream	 and	 calls	 its	 write
method,	passing	the	byte	array.

A	better	way	of	sending	a	 file	 to	an	HTTP	client	 is	by	using	Java	NIO’s	Files.copy()
method:

Path	file	=	Paths.get(...);

Files.copy(file,	response.getOutputStream());

The	code	is	shorter	and	runs	much	faster.

Example	1:	Hiding	A	Resource
The	 download	 application	 demonstrates	 how	 to	 send	 a	 file	 to	 the	 browser.	 In	 this
application	a	ResourceController	class	handles	user	login	and	the	sending	of	a	secret.pdf
file	 to	 the	 browser.	 The	 secret.pdf	 file	 is	 placed	 under	WEB-INF/data	 so	 that	 direct
access	is	not	possible.	Only	authorized	users	can	view	it.	If	a	user	has	not	logged	in,	the
application	will	forward	to	the	Login	page.

The	ResourceController	 class	 in	 Listing	 12.1	 presents	 a	 controller	 responsible	 for
sending	 the	 secret.pdf	 file.	Access	 is	 only	 granted	 if	 the	 user’s	HttpSession	 contains	 a
loggedIn	attribute,	which	indicates	the	user	has	successfully	logged	in.

Listing	12.1:	The	ResourceController	class

package	controller;

import	java.io.IOException;

import	java.nio.file.Files;

import	java.nio.file.Path;

import	java.nio.file.Paths;

import	javax.servlet.http.HttpServletRequest;

import	javax.servlet.http.HttpServletResponse;

import	javax.servlet.http.HttpSession;

import	org.apache.commons.logging.Log;

import	org.apache.commons.logging.LogFactory;

import	org.springframework.stereotype.Controller;

import	org.springframework.ui.Model;

import	org.springframework.web.bind.annotation.ModelAttribute;

import	org.springframework.web.bind.annotation.RequestMapping;

import	domain.Login;

@Controller

public	class	ResourceController	{

	

				private	static	final	Log	logger	=

								LogFactory.getLog(ResourceController.class);

	

				@RequestMapping(value="/login")

				public	String	login(@ModelAttribute	Login	login,	HttpSession	session,	

												Model	model)	{

								model.addAttribute("login",	new	Login());

								if	("paul".equals(login.getUserName())	&&

																"secret".equals(login.getPassword()))	{

												session.setAttribute("loggedIn",	Boolean.TRUE);

												return	"Main";

								}	else	{

												return	"LoginForm";

								}

				}

				@RequestMapping(value="/download-resource")

				public	String	downloadResource(HttpSession	session,	

												HttpServletRequest	request,	HttpServletResponse	response,	

												Model	model)	{

								if	(session	==	null	||	

																session.getAttribute("loggedIn")	==	null)	{

												model.addAttribute("login",	new	Login());

												return	"LoginForm";

								}

								String	dataDirectory	=	request.

																getServletContext().getRealPath("/WEB-INF/data");

								Path	file	=	Paths.get(dataDirectory,	"secret.pdf");

								if	(Files.exists(file))	{

												response.setContentType("application/pdf");

												response.addHeader("Content-Disposition",	

																				"attachment;	filename=secret.pdf");

												try	{

																Files.copy(file,	response.getOutputStream());

												}	catch	(IOException	ex)	{

												}

								}

								return	null;

				}

}

The	first	method	in	the	controller,	login,	sends	the	user	to	the	login	form.

The	LoginForm.jsp	page	is	given	in	Listing	12.2.

Listing	12.2:	The	LoginForm.jsp	page

<%@	taglib	prefix="form"	uri="http://www.springframework.org/tags/form"%>

<%@	taglib	prefix="c"	uri="http://java.sun.com/jsp/jstl/core"	%>

<!DOCTYPE	html>

<html>

<head>

<title>Login</title>

<style	type="text/css">@import	url("<c:url	value="/css/main.css"/>");</style>

</head>

<body>

<div	id="global">

<form:form	commandName="login"	action="login"	method="post">

				<fieldset>

								<legend>Login</legend>

								<p>

												<label	for="userName">User	Name:	</label>

												<form:input	id="userName"	path="userName"	

																				cssErrorClass="error"/>

								</p>

								<p>

												<label	for="password">Password:	</label>

												<form:password	id="password"	path="password"	

																cssErrorClass="error"/>

								</p>

								<p	id="buttons">

												<input	id="reset"	type="reset"	tabindex="4">

												<input	id="submit"	type="submit"	tabindex="5"	

																value="Login">

								</p>

				</fieldset>

</form:form>

</div>

</body>

</html>

The	user	name	and	password	that	must	be	used	for	a	successful	login	are	hardcoded	in	the
login	method.	The	username	must	be	paul	and	 the	password	must	be	secret.	 If	 the	user
logs	in	successfully,	he	or	she	will	be	redirected	to	the	Main.jsp	page	(printed	in	Listing
12.3).	This	page	contains	a	link	that	the	user	can	click	to	download	the	document.

Listing	12.2:	The	Main.jsp	page

<%@	taglib	uri="http://java.sun.com/jsp/jstl/core"	prefix="c"	%>

<!DOCTYPE	html>

<html>

<head>

<title>Download	Page</title>

<style	type="text/css">@import	url("<c:url	value="/css/main.css"/>");</style>

</head>

<body>

<div	id="global">

				<h4>Please	click	the	link	below.</h4>

				<p>

								Download

				</p>

</div>

</body>

</html>

The	second	method	 in	 the	ResourceController	class,	downloadResource,	checks	 if	 the
user	has	successfully	logged	in	by	verifying	the	presence	of	the	loggedIn	session	attribute.
If	the	attribute	is	found,	it	sends	the	file	to	the	browser.	If	not,	the	user	will	be	sent	to	the
Login	page.	Note	that	if	you’re	using	Java	7	or	later,	the	new	try-with-resources	feature	is
a	safer	way	for	handling	resources.

You	can	test	the	download	application	by	invoking	the	FileDownloadServlet	using	this
URL:

http://localhost:8080/download/login

Example	2:	Preventing	Cross-Referencing
Competitors	might	try	to	“steal”	your	web	assets	by	cross-referencing	them,	i.e.	displaying
your	 valuables	 in	 their	 websites	 as	 if	 they	 were	 theirs.	 You	 can	 prevent	 this	 from
happening	by	programmatically	sending	the	resources	only	if	the	referer	header	contains
your	domain	name.	Of	course	the	most	determined	thieves	will	still	be	able	to	download
your	 properties.	 However,	 they	 can’t	 do	 that	 without	 breaking	 a	 sweat.The	 download
application	uses	the	ImageController	class	in	Listing	12.4	to	send	images	to	the	browser,
only	if	the	referer	header	is	not	null.	This	will	prevent	the	images	from	being	downloaded
directly	by	typing	their	URLs	in	the	browser.

Listing	12.4:	The	ImageController	class

package	controller;

import	java.io.IOException;

import	java.nio.file.Files;

import	java.nio.file.Path;

import	java.nio.file.Paths;

import	javax.servlet.http.HttpServletRequest;

import	javax.servlet.http.HttpServletResponse;

import	org.apache.commons.logging.Log;

import	org.apache.commons.logging.LogFactory;

import	org.springframework.stereotype.Controller;

import	org.springframework.web.bind.annotation.PathVariable;

import	org.springframework.web.bind.annotation.RequestHeader;

import	org.springframework.web.bind.annotation.RequestMapping;

import	org.springframework.web.bind.annotation.RequestMethod;

@Controller

public	class	ImageController	{

	

				private	static	final	Log	logger	=

												LogFactory.getLog(ImageController.class);

	

				@RequestMapping(value="/get-image/{id}",	method	=	RequestMethod.GET)

				public	void	getImage(@PathVariable	String	id,	

												HttpServletRequest	request,	HttpServletResponse	response,

												@RequestHeader	String	referer)	{

								if	(referer	!=	null)	{

												String	imageDirectory	=	request.getServletContext().

																				getRealPath("/WEB-INF/image");

												Path	file	=	Paths.get(imageDirectory,	id	+	".jpg");

												if	(Files.exists(file))	{

																response.setContentType("image/jpg");

																try	{

																				Files.copy(file,	response.getOutputStream());

																}	catch	(IOException	e)	{

																				e.printStackTrace();

																}

												}

								}

				}

}

In	principle	the	ImageController	class	works	like	ResourceController.	The	if	 statement
at	 the	 beginning	 of	 the	getImage	method	makes	 sure	 an	 image	will	 be	 sent	 only	 if	 the
referer	header	is	not	null.

Writing	 the	 image	 content	 to	 the	ServletOutputStream	 is	 done	 using	 the	 Java	NIO
Files.copy()	method,	a	more	efficient	approach	than	using	Java	IO.

You	can	use	the	images.html	file	in	Listing	12.5	to	test	the	application.

Listing	12.5:	The	images.html	file

<!DOCTYPE	html>

<html>

<head>

				<title>Photo	Gallery</title>

</head>

<body>

</body>

</html>

To	see	ImageServlet	in	action,	point	your	browser	to	this	URL.

http://localhost:8080/download/images.html

Figure	12.1	shows	the	images	sent	by	ImageServlet.

Figure	12.1:	ImageServlet	in	action

Summary
In	 this	 chapter	 you	 learned	 how	 programmatic	 file	 download	 works	 in	 Spring	 MVC
applications.	You	also	learned	how	to	select	a	file	and	sent	it	to	the	browser.

Chapter	13

Testing	Your	Application
The	 importance	 of	 testing	 in	 software	 development	 cannot	 be	 overstated.	 The	 main
objective	 of	 testing	 is	 to	 find	 bugs	 early,	 right	 when	 the	 code	 is	 being	 developed	 if
possible.	It	is	logical	to	think	that	the	sooner	a	bug	is	found,	the	cheaper	it	is	to	fix	it.	If
you	 find	 a	bug	when	you	 are	programming,	 you	 can	 change	your	 code	 right	 away.	 If	 a
teammate	finds	your	bug	after	you	have	released	your	code	to	a	shared	repository,	it	has
now	 involved	 at	 least	 two	 people.	 Imagine	 if	 the	 bug	 is	 found	 by	 a	 customer	 after	 the
software	has	been	released.

There	are	a	number	of	different	tests	in	software	development.	Two	of	these,	unit	testing
and	integration	testing,	are	the	topics	of	this	chapter.	You	normally	start	with	unit	testing
to	test	individual	methods	in	your	classes,	then	proceed	with	integration	testing	to	test	if
different	modules	can	work	together	seamlessly.

The	 examples	 in	 this	 chapter	were	written	 using	 the	 JUnit	 test	 framework	 as	well	 as
types	in	the	spring-test	module.	The	API	in	the	module	can	be	used	for	both	unit	testing
and	 integration	 testing.	 You	 can	 find	 Spring	 test-related	 types	 in	 the
org.springframework.test	 and	 its	 subpackages	 as	 well	 as	 in
org.springframework.mock.*	 packages.	 The	 examples	 are	 grouped	 into	 two
accompanying	 projects	 called	 unit-test	 and	 integration-test.	 The	 first	 project	 contains
classes	and	unit	tests.	The	second	project	contains	classes	and	integration	tests.

Unit	Testing	Overview
With	 unit	 testing,	 the	 idea	 is	 to	 create	 a	 test	 class	 for	 each	 of	 your	 classes	 and	 a	 test
method	 for	 each	method	 in	 a	 class,	 excluding	 trivial	methods	 such	 as	 getter	 and	 setter
methods	that	simply	return	and	assign	values	to	fields.

In	test	parlance,	the	class	being	tested	is	called	the	system	under	test	(SUT).

Unit	 tests	 are	 meant	 to	 run	 fast	 and	 often.	 They	 verify	 the	 code	 itself	 and	 not	 its
dependencies.	Any	dependencies	should	be	replaced	by	helper	objects	called	test	doubles,
which	 will	 be	 explained	 later	 in	 this	 chapter.	 Testing	 that	 involves	 dependencies	 is
normally	done	in	integration	testing,	not	unit	testing.

At	first	glance,	writing	unit	tests	looks	like	unnecessary	extra	work.	After	all,	you	can
test	 a	 class	 from	 within	 the	 class	 itself	 using	 the	main	 method.	 However,	 you	 should
consider	the	benefits	of	unit	tests.	First,	test	code	in	a	separate	test	class	does	not	clutter
your	 class.	Second,	unit	 tests	 can	be	used	 in	 regression	 testing	 to	make	 sure	 everything
still	works	when	some	logic	was	changed.	Another	major	benefit	of	unit	testing	is	it	can	be
automated	 in	 a	 continuous	 integration	 setup.	 Continuous	 integration	 refers	 to	 a
development	approach	whereby	programmers	check	in	their	code	into	a	shared	repository
often	 and	 each	 code	 commit	 triggers	 an	 automated	 build	 that	 includes	 running	 all	 unit
tests.	Continuous	integration	allows	problems	to	be	detected	early.

In	unit	testing,	classes	are	instantiated	using	the	new	operator.	The	Spring	Framework
dependency	injection	container	is	not	used	to	create	beans.

Let’s	take	a	look	at	the	class	in	Listing	13.1.

Listing	13.1:	A	class	to	be	tested

package	com.example.util;

public	class	MyUtility	{

				public	int	method1(int	a,	int	b)	{	...	}

				public	long	method2(long	a)	{	...	}

}

To	unit	test	this	class,	create	a	new	class	like	that	in	Listing	13.2.	Note	that	each	method
should	have	at	least	one	test	method.

Listing	13.2:	A	test	class

package	com.example.util;

public	class	MyUtilityTest	{

				public	void	testMethod1()	{

								MyUtility	utility	=	new	MyUtility();

								int	result	=	utility.method1(100,	200);

								//	assert	that	result	equals	the	expected	value

				}

				public	void	testMethod2()	{

								MyUtility	utility	=	new	MyUtility();

								long	result	=	utility.method2(100L);

								//	assert	that	result	equals	the	expected	value

				}

}

The	convention	is	to	name	your	test	class	the	same	name	as	the	SUT	suffixed	with	Test.
Therefore,	 the	 test	 class	 for	MyUtility	 should	 be	 named	MyUtilityTest.	 The	 test	 class
should	also	have	the	same	package	as	the	SUT,	to	allow	the	former	to	access	the	protected
and	 default	members	 of	 the	 latter.	However,	 test	 classes	 should	 be	 placed	 in	 a	 separate
source	folder	than	the	classes	they	test.

A	test	method	does	not	have	a	return	value.	In	it	you	instantiate	the	class	to	be	tested,
invoke	the	method	to	be	tested	and	verify	the	result.	To	make	writing	test	classes	easier,
you	should	use	a	test	framework,	such	as	JUnit	or	TestNG.	This	chapter	presents	examples
written	with	JUnit,	the	de	facto	standard	unit	test	framework	for	Java.

State	Testing	vs.	Behavior	Testing
Most	of	 the	 time	you	are	only	 interested	 in	whether	or	not	a	method	 returns	 the	correct
result.	This	is	called	state	testing.	Sometimes,	however,	you	also	perform	behavior	testing
(also	known	as	interaction	testing)	when	you	want	to	make	sure	that	a	method’s	behavior
is	correct.	For	example,	you	might	want	to	verify	that	a	method	calls	some	other	methods
in	 the	 correct	 order.	 Or,	 you	 might	 want	 to	 make	 sure	 that	 your	 method	 calls	 another
method	exactly	n	times	during	an	operation.

You	 will	 learn	 how	 to	 perform	 both	 state	 testing	 and	 behavior	 testing	 later	 in	 this
chapter.

Using	JUnit
For	unit	testing,	I	recommend	JUnit,	which	you	can	download	from	http://junit.org.	Once
you	click	the	Download	and	Install	link,	you	will	be	redirected	to	a	Download	page.	You
need	 to	 download	 both	 the	 junit.jar	 and	 hamcrest-core.jar	 file.	 The	 latter	 is	 a
dependency	of	JUnit,	which	is	currently	at	version	4.12.

If	you	are	using	Maven	or	STS,	add	this	element	to	your	pom.xml	file	to	download	both
JUnit	and	its	dependency.

<dependency>

				<groupId>junit</groupId>

				<artifactId>junit</artifactId>

				<version>4.12</version>

				<scope>test</scope>

</dependency>

Despite	 its	 name,	 JUnit	 is	 also	used	 extensively	 in	 integration	 testing,	 as	you	will	 learn
later	in	this	chapter.

You	 can	 learn	 more	 about	 JUnit	 and	 how	 to	 write	 JUnit	 tests	 by	 reading	 the
documentation	on	its	website.	The	following	is	a	crash	course	on	JUnit.

Writing	a	JUnit	Test
Writing	 a	 unit	 test	 cannot	 be	 easier.	 Simply	 annotate	 all	 test	 methods	 with
@org.junit.Test.	In	addition,	you	can	create	an	initialization	method	by	annotating	it	with
@org.junit.Before.	An	initialization	method	gets	called	before	any	test	method	is	invoked
and	you	can	write	code	that	prepares	the	test	methods,	such	as	creating	an	object	that	will
be	used	by	the	test	methods.

You	can	also	create	a	clean-up	method	by	annotating	a	method	with	@org.junit.After.
A	clean-up	method	gets	called	after	all	test	methods	in	a	test	class	are	executed	and	can	be
used	to	release	resources	used	during	the	test.

Listing	13.3	shows	a	Calculator	class	that	needs	to	be	unit-tested.

Listing	13.3:	The	Calculator	class

package	com.example;

public	class	Calculator	{

				public	int	add(int	a,	int	b)	{

								return	a	+	b;

				}

				

				public	int	subtract(int	a,	int	b)	{

								return	a	-	b;

				}

}

Listing	13.4	shows	a	test	class	for	Calculator.

Listing	13.4:	A	test	class	for	Calculator

package	com.example;

import	org.junit.After;

import	org.junit.Assert;

import	org.junit.Before;

import	org.junit.Test;

public	class	CalculatorTest	{

				@Before

				public	void	init()	{

				}

				

				@After

				public	void	cleanUp()	{

				}

				

				@Test

				public	void	testAdd()	{

								Calculator	calculator	=	new	Calculator();

								int	result	=	calculator.add(5,	8);

								Assert.assertEquals(13,	result);

				}

				

				@Test

				public	void	testSubtract()	{

								Calculator	calculator	=	new	Calculator();

								int	result	=	calculator.subtract(5,	8);

								Assert.assertEquals(-3,	result);

				}

				

}

The	 CalculatorTest	 class	 comes	 with	 two	 test	 methods,	 an	 initialization	 method
(annotated	 with	 @Before)	 and	 a	 clean-up	 method	 (annotated	 with	 @After).	 The
org.junit.Assert	 class	 provides	 static	 methods	 for	 asserting	 results.	 For	 example,	 the
assertEquals	method	compares	two	values.

Running	A	Unit	Test
Eclipse	and	STS	know	if	a	class	is	a	JUnit	test	class.	To	run	a	test	class,	right-click	on	the
test	 class	 in	 the	Package	Explorer,	 and	 then	 select	Run	As	 >	JUnit	 Test.	 Alternatively,
open	the	test	class	with	an	editor	and	press	Ctrl+F11.

When	a	 test	 is	 complete,	Eclipse	or	STS	will	open	 the	 JUnit	view	 if	 it	 is	not	already
open.	If	the	unit	test	completes	successfully,	you	will	see	a	green	bar	in	the	JUnit	view	as
shown	in	Figure	13.1.

Figure	13.1:	A	successful	test

If	one	of	the	tests	failed,	you	will	see	a	red	bar	like	the	one	in	Figure	13.2.

Figure	13.2:	A	failed	test

Running	All	or	Multiple	Tests	with	A	Test	Suite
In	a	small	project	with	a	dozen	classes,	you	will	have	a	dozen	test	classes.	With	a	bigger
project,	you	will	have	more.	Running	one	test	class	is	easy	with	Eclipse	or	STS,	but	how
about	running	all	your	test	classes?

With	 JUunit	 the	 solution	 is	 very	 simple.	 Create	 a	 Java	 class	 and	 annotate	 it	 with
@RunWith(Suite.class)	and	@SuiteClasses().	The	latter	should	list	all	classes	and	other
suite	 tests	 that	you	want	 to	run.	Listing	13.5	shows	an	example.	The	class	body	may	be
left	empty.

Listing	13.5:	A	test	suite

package	com.example;

import	org.junit.runner.RunWith;

import	org.junit.runners.Suite;

import	org.junit.runners.Suite.SuiteClasses;

@RunWith(Suite.class)

@SuiteClasses({	MyTest1.class,	MyTest2.class	})

public	class	MyTestSuite	{

}

If	you	are	using	a	CI	server,	you	can	set	up	the	server	to	run	your	unit	tests	automatically
every	time	new	or	modified	code	is	committed.

Using	Test	Doubles
The	system	under	test	(SUT)	seldom	lives	in	isolation.	Often	in	order	to	test	a	class,	you
need	 dependencies.	 In	 test	 speak,	 dependencies	 that	 your	 SUT	 needs	 are	 called
collaborators.

Collaborators	 are	often	 replaced	by	other	objects	 called	 test	doubles.	Test	double	 is	 a
term	coined	by	Gerard	Meszaros	in	his	book	xUnit	Test	Patterns:	Refactoring	Test	Code.
His	explanation	can	be	found	in	this	web	page:

http://xunitpatterns.com/Test%20Double.html

There	are	several	reasons	for	using	test	doubles.

The	real	dependencies	are	not	ready	yet	at	the	time	of	writing	the	test	class.
Some	dependencies,	such	as	HttpServletRequest	and	HttpServletResponse	objects,
are	obtained	from	the	servlet	container.	 It	would	be	 time-consuming	to	create	 these
objects	yourself.
Some	dependencies	are	 slow	 to	 start	 and	 initialize.	For	example,	DAO	objects	 that
access	the	database	can	be	too	slow	for	a	unit	test.

Test	doubles	are	used	extensively	in	unit	testing,	even	though	they	are	used	in	integration
testing	 too.	There	 exist	many	 frameworks	 for	 creating	 test	 doubles.	Even	Spring	has	 its
own	classes	for	creating	test	doubles.

A	mocking	framework	can	be	used	to	create	test	doubles	and	verify	your	code	behavior.
Here	are	some	popular	frameworks.

Mockito
EasyMock
jMock

In	addition	to	the	libraries	above,	Spring	also	ships	with	classes	for	creating	mock	objects.
You	 will	 learn	 to	 use	 Spring	 classes	 to	 unit	 test	 Spring	 MVC	 controllers	 in	 the	 next
section.	In	this	section,	you	learn	to	use	Mockito.

No	direct	download	is	available	for	Mockito,	so	you	have	to	use	Maven.	However,	the
sample	project	for	this	chapter	includes	the	Mockito	distribution	(a	mockito.jar	file)	and
its	dependency,	an	objenesis.jar	file.

To	 download	Mockito	 using	Maven,	 add	 the	 following	 dependency	 to	 your	 pom.xml
file.

<dependency>

				<groupId>org.mockito</groupId>

				<artifactId>mockito-core</artifactId>

				<version>2.0.43-beta</version>

				<type>pom</type>

</dependency>

Before	you	start	writing	test	doubles,	you	should	know	the	theory	first.

These	are	five	types	of	test	doubles.

dummy
stub
spy
fake
mock

Each	of	these	types	is	explained	in	a	subsection	below.

Dummies
The	most	primitive	type	of	test	double,	a	dummy	is	an	implementation	of	a	collaborator
that	does	not	do	anything	and	does	not	change	the	behavior	of	the	SUT.	It	is	often	used	so
that	 the	SUT	can	be	 instantiated.	Dummies	are	only	used	 in	 the	very	early	development
stage.

For	 example,	 consider	 the	 ProductServiceImpl	 class	 in	 Listing	 13.6.	 This	 class
depends	on	a	ProductDAO	passed	to	the	class’s	constructor.

Listing	13.6:	The	ProductServiceImpl	class

package	com.example.service;

import	com.example.dao.ProductDAO;

public	class	ProductServiceImpl	implements	ProductService	{

				private	ProductDAO	productDAO;

				public	ProductServiceImpl(ProductDAO	productDAOArg)	{

								if	(productDAOArg	==	null)	{

												throw	new	NullPointerException("ProductDAO	cannot	be	null.");

								}

								this.productDAO	=	productDAOArg;	

				}

				@Override

				public	BigDecimal	calculateDiscount()	{

								return	productDAO.calculateDiscount();

				}

				

				@Override

				public	boolean	isOnSale(int	productId)	{

								return	productDAO.isOnSale(productId);

				}

}

The	ProductServiceImpl	 class	cannot	be	 instantiated	without	a	non-null	ProductDAO.
At	the	same	time,	the	ProductDAO	 is	not	used	in	the	methods	to	be	tested.	As	a	result,
just	so	that	ProductServiceImpl	can	be	instantiated,	you	can	create	a	dummy	like	the	one
in	Listing	13.7.

Listing	13.7:	The	ProductDAODummy	class

package	com.example.dummy;

import	java.math.BigDecimal;

import	com.example.dao.ProductDAO;

public	class	ProductDAODummy	implements	ProductDAO	{

				public	BigDecimal	calculateDiscount()	{

								return	null;

				}

				public	boolean	isOnSale(int	productId)	{

								return	false;

				};

}

The	method	 implementations	 in	a	dummy	class	do	nothing	and	 its	 return	values	are	not
important	as	these	methods	are	never	used.

Listing	13.8	shows	a	test	class	that	can	proceed	thanks	to	the	dummy.

Listing	13.8:	The	ProductDAOTest	class

package	com.example.dummy;

import	static	org.junit.Assert.assertNotNull;

import	org.junit.Test;

import	com.example.dao.ProductDAO;

import	com.example.service.ProductService;

import	com.example.service.ProductServiceImpl;

public	class	ProductServiceImplTest	{

				@Test

				public	void	testCalculateDiscount()	{

								ProductDAO	productDAO	=	new	ProductDAODummy();

								ProductService	productService	=	

																new	ProductServiceImpl(productDAO);

								assertNotNull(productService);

				}

}

Stubs
Like	a	dummy,	a	stub	is	also	an	implementation	of	a	dependency	interface.	The	difference
between	a	dummy	and	a	stub	is	that	methods	in	a	stub	return	hard-coded	values	and	those
methods	are	actually	used.

Listing	 13.9	 shows	 a	 stub	 that	 can	 be	 used	 to	 test	 the	ProductServiceImpl	 class	 in
Listing	13.6.

Listing	13.9:	The	ProductDAOStub	class

package	com.example.stub;

import	java.math.BigDecimal;

import	com.example.dao.ProductDAO;

public	class	ProductDAOStub	implements	ProductDAO	{

				public	BigDecimal	calculateDiscount()	{

								return	new	BigDecimal(14);

				}

				public	boolean	isOnSale(int	productId)	{

								return	false;

				};

}

Spies
A	spy	is	a	slightly	more	intelligent	stub	because	a	spy	can	retain	states.

Consider	 the	 following	 car	 rental	 application	 that	 among	 others	 contains	 a
GarageService	 interface	 and	 a	GarageServiceImpl	 class	 in	 Listing	 13.10	 and	 Listing
13.11,	respectively.

Listing	13.10:	The	GarageService	interface

package	com.example.service;

import	com.example.Car;

public	interface	GarageService	{

				Car	rent();

}

Listing	13.11:	The	GarageServiceImpl	class

package	com.example.service;

import	com.example.Car;

import	com.example.dao.GarageDAO;

public	class	GarageServiceImpl	implements	GarageService	{

				private	GarageDAO	garageDAO;

				public	GarageServiceImpl(GarageDAO	garageDAOArg)	{

								this.garageDAO	=	garageDAOArg;

				}

				public	Car	rent()	{

								return	garageDAO.rent();

				}

}

The	GarageService	 interface	only	has	one	method,	rent.	The	GarageServiceImpl	class
is	 an	 implementation	 of	GarageService	 and	 has	 a	GarageDAO	 as	 a	 dependency.	 The
rent	 method	 in	 GarageServiceImpl	 calls	 the	 rent	 method	 in	 GarageDAO.	 An
implementation	of	GarageDAO	 is	 supposed	 to	 return	a	Car	 if	 there	 is	 still	 a	 car	 in	 the
garage	or	null	if	there	is	no	more	car.

Since	the	real	implementation	of	GarageDAO	is	not	finished	yet,	the	GarageDAOSpy
class	in	Listing	13.12	is	used	as	a	test	double.	It	is	a	spy	because	its	method	returns	a	hard-
coded	value	and	it	keeps	the	number	of	cars	in	the	garage	through	a	carCount	variable.

Listing	13.12:	The	GarageDAOSpy	class

package	com.example.spy;

import	com.example.Car;

import	com.example.dao.GarageDAO;

public	class	GarageDAOSpy	implements	GarageDAO	{

				private	int	carCount	=	3;

				

				@Override

				public	Car	rent()	{

								if	(carCount	==	0)	{

												return	null;

								}	else	{

												carCount--;

												return	new	Car();

								}			

				}

}

Listing	 13.13	 shows	 a	 test	 class	 that	 tests	 the	 GarageServiceImpl	 class	 using	 a
GarageDAOSpy.

Listing	13.13:	The	GarageServiceImplTest	class

package	com.example.spy;

import	com.example.Car;

import	com.example.dao.GarageDAO;

import	com.example.service.GarageService;

import	com.example.service.GarageServiceImpl;

import	org.junit.Test;

import	static	org.junit.Assert.*;

public	class	GarageServiceImplTest	{

				@Test

				public	void	testRentCar()	{

								GarageDAO	garageDAO	=	new	GarageDAOSpy();

								GarageService	garageService	=	new	GarageServiceImpl(garageDAO);

								Car	car1	=	garageService.rent();

								Car	car2	=	garageService.rent();

								Car	car3	=	garageService.rent();

								Car	car4	=	garageService.rent();

								

								assertNotNull(car1);

								assertNotNull(car2);

								assertNotNull(car3);

								assertNull(car4);

				}

}

Since	there	are	only	three	cars	in	the	garage,	the	spy	can	only	return	three	cars	and	must
return	null	when	its	rent	method	is	called	the	fourth	time.

Fakes
A	 fake	 behaves	 like	 a	 real	 collaborator	 but	 is	 not	 suitable	 for	 production	 because	 it
contains	shortcuts.	An	in-memory	store	is	a	perfect	example	of	a	fake	because	it	behaves
like	a	DAO	but	does	not	persist	its	states	to	a	hard	drive.

As	 an	 example,	 consider	 the	Member	 and	MemberServiceImpl	 classes	 in	 Listing
13.14	 and	 Listing	 13.15,	 respectively.	 The	Member	 class	 contains	 an	 identifier	 and	 a
name	 for	 a	member.	 The	MemberServiceImpl	 class	 can	 add	Members	 to	 a	 store	 and
retrieve	all	stored	members.

Listing	13.14:	The	Member	class

package	com.example.model;

public	class	Member	{

				private	int	id;

				private	String	name;

				public	Member(int	idArg,	String	nameArg)	{

								this.id	=	idArg;

								this.name	=	nameArg;

				}

				public	int	getId()	{

								return	id;

				}

				public	void	setId(int	idArg)	{

								this.id	=	idArg;

				}

				public	String	getName()	{

								return	name;

				}

				public	void	setName(String	nameArg)	{

								this.name	=	nameArg;

				}

}

Listing	13.15:	The	MemberServiceImpl	class

package	com.example.service;

import	java.util.List;

import	com.example.dao.MemberDAO;

import	com.example.model.Member;

public	class	MemberServiceImpl	implements	MemberService	{

				private	MemberDAO	memberDAO;

				public	void	setMemberDAO(MemberDAO	memberDAOArg)	{

								this.memberDAO	=	memberDAOArg;

				}

				@Override

				public	void	add(Member	member)	{

								memberDAO.add(member);

				}

				@Override

				public	List<Member>	getMembers()	{

								return	memberDAO.getMembers();

				}

}

A	MemberServiceImpl	depends	on	a	MemberDAO.	However,	since	no	implementation
of	MemberDAO	 is	 available,	you	can	create	a	MemberDAO	 fake	 so	 that	you	can	 test
MemberServiceImpl	 right	away.	Listing	13.16	shows	such	a	fake.	It	stores	members	 in
an	ArrayList,	not	persistent	storage.	As	such,	it	cannot	be	used	in	production,	but	is	good
enough	for	unit	testing.

Listing	13.16:	The	MemberDAOFake	class

package	com.example.fake;

import	java.util.ArrayList;

import	java.util.List;

import	com.example.dao.MemberDAO;

import	com.example.model.Member;

public	class	MemberDAOFake	implements	MemberDAO	{

				private	List<Member>	members	=	new	ArrayList<>();

								

				@Override

				public	void	add(Member	member)	{

								members.add(member);

				}

				@Override

				public	List<Member>	getMembers()	{

								return	members;

				}

}

Listing	13.17	shows	a	test	class	that	tests	MemberServiceImpl	using	MemberDAOFake
as	a	test	double	for	MemberDAO.

Listing	13.17:	The	MemberServiceImplTest	class

package	com.example.service;

import	org.junit.Assert;

import	org.junit.Test;

import	com.example.dao.MemberDAO;

import	com.example.fake.MemberDAOFake;

import	com.example.model.Member;

public	class	MemberServiceImplTest	{

				@Test

				public	void	testAddMember()	{

								MemberDAO	memberDAO	=	new	MemberDAOFake();

								memberDAO.add(new	Member(1,	"John	Diet"));

								memberDAO.add(new	Member(2,	"Jane	Biteman"));

								Assert.assertEquals(2,	memberDAO.getMembers().size());

				}

}

Mock	Objects
A	mock	object	is	philosophically	different	from	the	other	test	doubles.	You	use	dummies,
stubs,	spies	and	fakes	for	state	testing,	i.e.	to	verify	the	output	of	a	method.	By	contrast,
you	 use	 mock	 objects	 to	 perform	 behavior	 (interaction)	 testing	 to	 make	 sure	 a	 certain
method	is	really	called	or	to	verify	a	method	is	called	a	certain	number	of	times	during	the
execution	of	another	method.

For	example,	consider	the	MathUtil	class	in	Listing	13.18.

Listing	13.18:	The	MathUtil	class

package	com.example;

public	class	MathUtil	{

				private	MathHelper	mathHelper;

				public	MathUtil(MathHelper	mathHelper)	{

								this.mathHelper	=	mathHelper;

				}

				public	MathUtil()	{

								

				}

				

				public	int	multiply(int	a,	int	b)	{

								int	result	=	0;

								for	(int	i	=	1;	i	<=	a;	i++)	{

												result	=	mathHelper.add(result,	b);

								}

								return	result;

				}			

}

MathUtil	has	one	method,	multiply,	that	performs	multiplications.	It	does	it	very	naively,
using	multiple	additions.	In	other	words,	3	x	8	is	calculated	as	8	+	8	+	8.	The	MathUtil
class	 does	 not	 even	 know	 how	 to	 do	 additions.	 For	 this,	 it	 depends	 on	 a	MathHelper
object,	whose	class	is	printed	in	Listing	13.19.

Listing	13.19:	The	MathHelper	class

package	com.example;

public	class	MathHelper	{

				public	int	add(int	a,	int	b)	{

								return	a	+	b;

				}

}

You	 are	 interested	 not	 in	 the	 result	 of	 the	multiply	 method,	 but	 in	 finding	 out	 if	 the
multiply	method	behaves	as	expected.	Therefore,	it	should	call	MathHelper.add()	 three
times	 when	 calculating	 3	 x	 8.	 Listing	 13.20	 shows	 a	 test	 class	 that	 uses	 a	 mock	 of
MathHelper.	Mockito,	a	popular	mocking	framework	is	used	to	create	the	mock	object.	I
will	explain	more	about	Mockito	later	in	this	chapter.	In	this	section,	I	just	want	to	show
you	the	concept.

Listing	13.20:	The	MathUtilTest	class

package	com.example;

import	static	org.mockito.Mockito.mock;

import	static	org.mockito.Mockito.times;

import	static	org.mockito.Mockito.verify;

import	static	org.mockito.Mockito.when;

import	org.junit.Test;

public	class	MathUtilTest	{

				

				@Test

				public	void	testMultiply()	{

								MathHelper	mathHelper	=	mock(MathHelper.class);

								for	(int	i	=	0;	i	<	10;	i++)	{

												when(mathHelper.add(i	*	8,	8)).thenReturn(i	*	8	+	8);

								}

								MathUtil	mathUtil	=	new	MathUtil(mathHelper);

								mathUtil.multiply(3,	8);

								verify(mathHelper,	times(1)).add(0,	8);

								verify(mathHelper,	times(1)).add(8,	8);

								verify(mathHelper,	times(1)).add(16,	8);

				}

}

Creating	a	mock	object	with	Mockito	is	very	easy,	simply	call	the	static	mock	method	of
the	org.mockito.Mockito	class.	Here	is	how	you	create	a	MathHelper	mock	object.

MathHelper	mathHelper	=	mock(MathHelper.class);

Next,	you	need	to	prepare	the	mock	object	by	using	the	when	method.	Basically,	you	tell
it	 that	given	a	method	call	using	 this	set	of	arguments,	 the	mock	object	must	 return	 this
value.	 For	 instance,	 this	 statement	 says	 that	 if	mathHelper.add(10,	 20)	 is	 called,	 the
return	value	must	be	10	+	20;

when(mathHelper.add(10,	20)).thenReturn(10	+	20);

For	this	test,	you	prepare	the	mock	object	with	ten	sets	of	arguments	(not	all	argument	sets
will	be	used).

								for	(int	i	=	0;	i	<	10;	i++)	{

												when(mathHelper.add(i	*	8,	8)).thenReturn(i	*	8	+	8);

								}

You	then	create	the	object	to	be	tested	and	call	its	argument.

								MathUtil	mathUtil	=	new	MathUtil(mathHelper);

								mathUtil.multiply(3,	8);

The	next	three	statements	are	behavior	tests.	To	do	this,	you	call	the	verify	method:

								verify(mathHelper,	times(1)).add(0,	8);

								verify(mathHelper,	times(1)).add(8,	8);

								verify(mathHelper,	times(1)).add(16,	8);

The	 first	 statement	 verifies	 that	mathHelper.add(0,	 8)	 was	 called	 exactly	 once.	 The
second	 verifies	 mathHelper.add(8,	 8)	 was	 called	 once	 and	 the	 third	 verifies
mathHelper.add(16,	8)	was	also	called	once.

Unit	Testing	Spring	MVC	Controllers
You	have	learned	how	to	test	individual	classes	in	a	Spring	MVC	application.	Controllers
are	 a	 bit	 different	 because	 they	 normally	 interact	 with	 Servlet	 API	 objects	 such	 as
HttpServletRequest,	HttpServletResponse,	HttpSession,	 etc.	 In	 many	 cases	 you	 will
need	to	mock	these	objects	to	test	your	controllers	properly.

Frameworks	like	Mockito	or	EasyMock	are	general-purpose	mocking	frameworks	that
can	mock	any	Java	objects.	You	have	to	configure	the	generated	objects	yourself	(using	a
series	of	when	statements).	Spring-Test	mock	objects	are	specially	built	for	working	with
Spring	and	resemble	the	real	objects	much	closer	and	are	easier	to	use.

The	 following	 subsections	 discuss	 some	 of	 the	more	 important	 types	 for	 unit	 testing
controllers.

MockHttpServletRequest	and	MockHttpServletResponse
When	 invoking	 a	 controller,	 chances	 are	you	may	need	 to	pass	 an	HttpServletRequest
and	 an	HttpServletResponse.	 In	 production	 both	 objects	 are	 provided	 by	 the	 servlet
container	itself.	In	a	test	environment,	you	can	use	Spring	MockHttpServletRequest	and
MockHttpServletResponse	classes	from	the	org.springframework.mock.web	package.

These	 two	 classes	 are	 easy	 to	 use.	You	 can	 create	 an	 instance	 by	 invoking	 their	 no-
argument	constructors:

MockHttpServletRequest	request	=	new	MockHttpServletRequest();

MockHttpServletResponse	response	=	new	MockHttpServletResponse();

The	MockHttpServletRequest	class	implements	javax.servlet.http.HttpServletRequest
and	 allows	 you	 to	 configure	 the	 instance	 to	 look	 like	 a	 real	 HttpServletRequest.	 It
provides	methods	to	set	all	the	properties	in	an	HttpServletRequest	as	well	as	obtain	the
values	of	its	properties.	Table	13.1	shows	some	of	its	methods.

Method Description

addHeader Adds	an	HTTP	header

addParameter Adds	a	request	parameter

getAttribute Returns	the	specified	attribute,	if	any

getAttributeNames Returns	an	Enumeration	containing	all	the	attribute	names.

getContextPath Returns	the	context	path

getCookies Returns	all	the	cookies

setMethod Sets	the	HTTP	method

setParameter Sets	a	value	for	the	specified	HTTP	parameter

setQueryString Sets	the	query	string

setRequestURI Sets	the	request	URI

Table	13.1:	More	important	methods	in	MockHttpServletRequest

MockHttpServletResponse	 implements	 javax.servlet.http.HttpServletResponse	 and
offers	 additional	methods	 to	 configure	 an	 instance.	 Table	 13.2	 shows	 some	 of	 its	more
important	methods.

Method Description

addCookie Adds	a	cookie.

addHeader Adds	an	HTTP	header.

getContentLength Returns	the	content	length.

getWriter Returns	the	Writer	to	write	to	the	response	body.

getOutputStream Returns	the	ServletOutputStream	to	write	to	response	body.

Table	13.2:	More	important	methods	in	MockHttpServletResponse

As	an	example,	consider	the	VideoController	class	in	Listing	13.21.

Listing	13.21:	The	VideoController	class

package	com.example.controller;

import	javax.servlet.http.HttpServletRequest;

import	javax.servlet.http.HttpServletResponse;

import	org.springframework.stereotype.Controller;

import	org.springframework.web.bind.annotation.RequestMapping;

@Controller

public	class	VideoController	{

				@RequestMapping(value	=	"/mostViewed")

				public	String	getMostViewed(HttpServletRequest	request,	

												HttpServletResponse	response)	{

								Integer	id	=	(Integer)	request.getAttribute("id");

								if	(id	==	null)	{

												response.setStatus(500);

								}	else	if	(id	==	1)	{

												request.setAttribute("viewed",	100);

								}	else	if	(id	==	2)	{

												request.setAttribute("viewed",	200);

								}

								return	"mostViewed";

				}

}

The	VideoController	class’s	getMostViewed	method	adds	a	request	attribute	“viewed”	if
there	 exists	 a	 request	 attribute	 id	with	 a	value	1	or	2.	Otherwise,	no	 request	 attribute	 is
added.

The	VideoControllerTest	class	in	Listing	13.22	verifies	this	with	two	test	methods.

Listing	13.22:	The	VideoControllerTest	class

package	com.example.controller;

import	org.junit.Test;

import	static	org.junit.Assert.*;

import	org.springframework.mock.web.MockHttpServletRequest;

import	org.springframework.mock.web.MockHttpServletResponse;

public	class	VideoControllerTest	{

				@Test

				public	void	testGetMostViewed()	{

								VideoController	videoController	=	new	VideoController();

								MockHttpServletRequest	request	=	new	MockHttpServletRequest();

								request.setRequestURI("/mostViewed");

								request.setAttribute("id",	1);

								MockHttpServletResponse	response	=	new	MockHttpServletResponse();

								videoController.getMostViewed(request,	response);

								assertEquals(200,	response.getStatus());

								assertEquals(100L,	(int)	request.getAttribute("viewed"));

				}

				

				@Test

				public	void	testGetMostViewedWithNoId()	{

								VideoController	videoController	=	new	VideoController();

								MockHttpServletRequest	request	=	new	MockHttpServletRequest();

								request.setRequestURI("/mostViewed");

								MockHttpServletResponse	response	=	new	MockHttpServletResponse();

								videoController.getMostViewed(request,	response);

								assertEquals(500,	response.getStatus());

								assertNull(request.getAttribute("viewed"));								

				}

}

The	testGetMostViewed	method	 instantiates	 the	VideoController	class	and	creates	 two
mock	objects,	a	MockHttpServletRequest	and	a	MockHttpServletResponse.	It	also	sets
the	request	URI	and	adds	an	attribute	“id”	to	the	MockHttpServletRequest.

								VideoController	videoController	=	new	VideoController();

								MockHttpServletRequest	request	=	new	MockHttpServletRequest();

								request.setRequestURI("/mostViewed");

								request.setAttribute("id",	1);

								MockHttpServletResponse	response	=	new	MockHttpServletResponse();

It	then	calls	the	VideoController’s	getMostView	method,	passing	the	mock	objects,	and
then	verifies	that	the	response	has	a	status	code	200	and	the	request	contains	an	attribute
“viewed”	with	a	value	100.

								videoController.getMostViewed(request,	response);

								assertEquals(200,	response.getStatus());

								assertEquals(100L,	(int)	request.getAttribute("viewed"));

The	 second	 method	 in	 VideoControllerTest	 acts	 similarly	 but	 does	 not	 add	 an	 “id”
attribute	 to	 the	 MockHttpServletRequest	 object.	 As	 a	 result,	 upon	 invoking	 the
controller’s	 method,	 it	 receives	 an	 HTTP	 response	 status	 code	 500	 and	 no	 “viewed”
attribute	in	the	MockHttpServletRequest	object.

ModelAndViewAssert
The	ModelAndViewAssert	class,	part	of	the	org.springframework.web.servlet	package,
is	 another	useful	Spring	class	 for	 testing	a	ModelAndView	 returned	 from	a	controller’s
request-handling	 method.	 Recall	 from	 Chapter	 4,	 “Annotation-Based	 Controllers”	 that
ModelAndView	is	one	of	the	types	that	a	request-handling	method	can	return.	Recall	also
that	a	ModelAndView	is	a	bean	that	contains	information	about	the	model	and	view	of	a
request-handling	method.

Table	13.3	shows	some	of	the	methods	in	ModelAndViewAssert.

Method Description

assertViewName
Taking	a	ModelAndView	and	an	expected	name,	this
method	if	the	ModelAndView’s	view	name	matches
the	expected	name.

assertModelAttributeAvailable
Taking	a	ModelAndView	and	a	model	name,	this
method	checks	if	the	ModelAndView’s	model
contains	an	attribute	with	the	expected	model	name.

assertModelAttributeValue

Taking	a	ModelAndView,	a	model	name	and	an
Object,	this	method	checks	that	the	ModelAndView’s
model	contains	an	attribute	with	the	specified	name
and	value.

assertSortAndCompareList-
ModelAttribute

Sorts	a	List	in	the	model	of	the	specified
ModelAndView	and	then	compares	it	with	an
expected	list.

Table	13.3:	More	important	methods	in	ModelAndViewAssert

As	an	example,	consider	the	Book	class	in	Listing	13.23.	This	is	a	simple	bean	class	with
four	properties:	isbn,	title,	author	and	pubDate.

Listing	13.23:	The	Book	class

package	com.example.model;

import	java.time.LocalDate;

public	class	Book	{

				private	String	isbn;

				private	String	title;

				private	String	author;

				private	LocalDate	pubDate;

				

				public	Book(String	isbn,	LocalDate	pubDate)	{

								this.isbn	=	isbn;

								this.pubDate	=	pubDate;

				}

				

				public	Book(String	isbn,	String	title,	String	author,

												LocalDate	pubDate)	{

								this.isbn	=	isbn;

								this.title	=	title;

								this.author	=	author;

								this.pubDate	=	pubDate;

				}

				

				//	getters	and	setters	not	shown	to	save	space

			

				@Override

				public	boolean	equals(Object	otherBook)	{

								return	isbn.equals(((Book)otherBook).getIsbn());

				}

}

The	BookController	class	in	Listing	13.24	is	a	Spring	MVC	controller	which	contains	a
request-handling	method	getLatestTitles.	 The	method	 accepts	 a	pubYear	 path	 variable
and	returns	a	ModelAndView	that	will	contain	a	list	of	books	if	the	value	of	pubYear	is
“2016”.

Listing	13.24:	The	BookController	class

package	com.example.controller;

import	java.time.LocalDate;

import	java.util.Arrays;

import	java.util.List;

import	org.springframework.stereotype.Controller;

import	org.springframework.web.bind.annotation.PathVariable;

import	org.springframework.web.bind.annotation.RequestMapping;

import	org.springframework.web.servlet.ModelAndView;

import	com.example.model.Book;

@Controller

public	class	BookController	{

				@RequestMapping(value	=	"/latest/{pubYear}")

				public	ModelAndView	getLatestTitles(

												@PathVariable	String	pubYear)	{

								ModelAndView	mav	=	new	ModelAndView("Latest	Titles");

								

								if	("2016".equals(pubYear))	{

												List<Book>	list	=	Arrays.asList(

																				new	Book("0001",	"Spring	MVC:	A	Tutorial",	

																												"Paul	Deck",	

																												LocalDate.of(2016,	6,	1)),

																				new	Book("0002",	"Java	Tutorial",

																												"Budi	Kurniawan",	LocalDate.of(2016,	11,	1)),

																				new	Book("0003",	"SQL",	"Will	Biteman",	

																												LocalDate.of(2016,	12,	12)));

												mav.getModel().put("latest",	list);

								}

								return	mav;

				}

}

An	 easy	 way	 to	 test	 BookController	 is	 by	 using	 the	 static	 methods	 in

ModelAndViewAssert,	 as	 demonstrated	 in	 the	 BookControllerTest	 class	 in	 Listing
13.25.

Listing	13.25:	The	BookControllerTest	class

package	com.example.controller;

import	static	org.springframework.test.web.ModelAndViewAssert.*;

import	java.time.LocalDate;

import	java.util.Arrays;

import	java.util.Comparator;

import	java.util.List;

import	org.junit.Test;

import	org.springframework.web.servlet.ModelAndView;

import	com.example.model.Book;

public	class	BookControllerTest	{

				@Test

				public	void	test()	{

								BookController	bookController	=	new	BookController();

								ModelAndView	mav	=	bookController.getLatestTitles("2016");

								assertViewName(mav,	"Latest	Titles");

								assertModelAttributeAvailable(mav,	"latest");

								List<Book>	expectedList	=	Arrays.asList(

																new	Book("0002",	LocalDate.of(2016,	11,	1)),

																new	Book("0001",	LocalDate.of(2016,	6,	1)),

																new	Book("0003",	LocalDate.of(2016,	12,	12)));

								assertAndReturnModelAttributeOfType(mav,	"latest",	

																expectedList.getClass());

								Comparator<Book>	pubDateComparator	=	

																(a,	b)	->	a.getPubDate().compareTo(b.getPubDate());

								assertSortAndCompareListModelAttribute(mav,	"latest",	

																expectedList,	pubDateComparator);

				}

}

Integration	Testing	with	Spring	MVC	Test
Integration	 testing	 is	 testing	 that	 is	 performed	 to	 test	 if	 different	 modules	 can	 work
together.	 It	 also	 makes	 sure	 data	 flows	 between	 two	 modules	 seamlessly.	 The	 Spring
Framework	dependency	injection	container	is	used	and	wiring	of	beans	must	be	checked.

Without	a	proper	tool,	integration	can	take	a	lot	of	time.	Imagine	if	you	are	building	an
online	 store	 and	 you	 have	 to	 use	 a	 web	 browse	 to	 test	 if	 the	 shopping	 cart	 calculates
correctly.	Each	time	you	change	your	code,	you	have	to	launch	your	browser,	login	to	the
system,	add	the	several	items	to	the	shopping	cart	and	check	out	to	see	if	the	total	amount
is	correct.	Each	iteration	could	easily	take	five	minutes!

Luckily,	Spring	comes	with	a	module	for	integration	testing:	Spring	Test.

While	 the	Spring	classes	MockHttpServletRequest,	MockHttpServletResponse	 and
ModelAndViewAssert	 are	 good	 for	 unit	 testing	 Spring	 MVC	 controllers,	 they	 lack
features	 that	 are	 normally	 associated	with	 integration	 testing.	 For	 example,	 they	 invoke
request-handling	methods	directly	and	cannot	be	used	 to	 test	 request	mappings	and	data
binding.	They	also	do	not	test	bean	wiring	as	SUT	classes	are	instantiated	using	the	new
operator.

For	 integration	 testing,	 you	 need	 a	 different	 set	 of	 Spring	 MVC	 Test	 types.	 The
following	subsections	discuss	the	API	for	integration	testing	and	provide	an	example.

The	API
A	 module	 of	 Spring,	 Spring	 MVC	 Test	 provides	 utility	 classes	 that	 make	 it	 easy	 to
perform	 integration	 testing	 on	 a	 Spring	MVC	 application.	 Beans	 are	 created	 using	 the
Spring	dependency	injector	and	obtained	from	an	ApplicationContext,	just	like	in	a	real
Spring	application.

The	MockMvc	class,	part	of	the	org.springframework.test.web.servlet	package,	is	the
main	 class	 in	 Spring	MVC	 Test	 to	 aid	 in	 integration	 testing.	 This	 class	 allows	 you	 to
invoke	request-handling	methods	using	predefined	request	mappings.	Here	 is	a	common
way	of	creating	an	instance	of	MockMvc:

MockMvc	mockMvc	=	MockMvcBuilders.webAppContextSetup(webAppContext)

								.build();

Here,	webAppContext	 is	a	reference	 to	an	 injected	 instance	of	WebApplicationContext,
which	 is	 a	 subclass	 of	 ApplicationContext	 discussed	 in	 Chapter	 2,	 “The	 Spring
Framework”	 and	 which	 every	 Spring	 developer	 should	 be	 familiar	 with.	 To	 get	 a
WebApplicationContext,	you	must	declare	this	in	your	test	class.

@Autowired	private	WebApplicationContext	webAppContext;

The	MockMvcBuilder	reads	a	Spring	configuration	file	or	files	defined	for	the	test	class.
I	will	discuss	how	you	can	specify	configuration	file(s)	for	your	test	class,	but	first	I	would
like	to	discuss	MockMvc.

MockMvc	is	a	very	simple	class.	In	fact,	it	only	has	one	method,	perform,	that	is	used
to	invoke	a	Spring	MVC	controller	indirectly	through	a	URI.

The	perform	method	has	the	following	signature

ResultActions	perform(RequestBuilder	requestBuilder)

To	 test	 a	 request-handling	 method,	 you	 need	 to	 create	 a	RequestBuilder.	 Fortunately,
there	 is	 the	MockMvcRequestBuilders	 class	 that	 offers	 static	 methods	 with	 the	 same
names	 as	 HTTP	 methods:	 get,	 post,	 head,	 put,	 patch,	 delete,	 and	 so	 on.	 To	 test	 a
controller	using	the	HTTP	GET	method,	you	would	use	get,	to	test	with	a	POST,	use	post,
and	so	forth.	These	static	methods	are	also	easy	to	use,	you	just	need	to	pass	a	string	that
contains	the	URI	for	the	controller’s	request-handling	method.

For	 example,	 to	 invoke	 a	 request-handling	 method	 named	 getEmployee,	 you	 would
write	code	like	this:

ResultActions	resultActions	=	mockMvc.perform(get("/getEmployee"));

Of	course,	you	have	to	import	the	static	get	method	of	MockMvcRequestBuilders.

To	 verify	 if	 a	 test	was	 successful,	 you	would	 need	 to	 call	 the	andExpect	method	 of
ResultActions.	Here	is	the	signature	of	andExpect.

ResultActions	andExpect(ResultMatcher	matcher)

Note	 that	andExpect	 returns	 another	 instance	 of	ResultActions,	 which	means	multiple
calls	to	andExpect	can	be	chained,	as	you	can	see	later	in	an	upcoming	example.

The	 MockMvcResultMatchers	 class	 provides	 static	 methods	 to	 easily	 create	 a
ResultMatcher.	 MockMvcResultMatchers	 belongs	 to	 the
org.springframework.test.web.servlet.result	 package.	 Table	 13.4	 shows	 some	 of	 its
methods.

Method Return	Type Description

cookie CookieResultMatchers Returns	a	ResultMatchers	for	asserting	cookie
values

header HeaderResultMatchers Returns	ResultMatchers	for	asserting	HTTP
response	headers

model ModelResultMatchers
Returns	a	ResultMatchers	for	asserting	the	model
associated	with	the	invoked	request-handling
method

status StatusResultMatchers Returns	a	ResultMatchers	for	asserting	the	HTTP
response	status

view ViewResultMatchers
Returns	a	ResultMatchers	for	asserting	the	view
associated	with	the	invoked	request-handling
method

Table	13.4:	More	important	methods	in	MockMvcResultMatchers

For	instance,	to	make	sure	that	the	request	mapping	for	the	controller’s	method	is	correct,
you	can	use	the	status	method:

mockMvc.perform(get("/getBook")).andExpect(status().isOk());

The	isOK	method	asserts	that	the	response	status	code	is	200,	and	notice	how	easy	it	is	to
integration	test	a	controller	using	MockMvc	and	its	related	classes?

The	Skeleton	of	A	Spring	MVC	Test	Class
Now	that	you	know	some	of	the	more	important	types	in	Spring	MVC	Test,	take	a	look	at
the	skeleton	of	a	Spring	MVC	Test	class	below.

import	org.junit.After;

import	org.junit.Before;

import	org.junit.Test;

import	org.junit.runner.RunWith;

import	org.springframework.beans.factory.annotation.Autowired;

import	org.springframework.test.context.ContextConfiguration;

import	org.springframework.test.context.junit4.SpringJUnit4ClassRunner;

import	org.springframework.test.context.web.WebAppConfiguration;

import	org.springframework.test.web.servlet.MockMvc;

import	org.springframework.test.web.servlet.setup.MockMvcBuilders;

import	org.springframework.web.context.WebApplicationContext;

@RunWith(SpringJUnit4ClassRunner.class)

@WebAppConfiguration

@ContextConfiguration("...")

public	class	ProductControllerTest	{

				@Autowired

				private	WebApplicationContext	webAppContext;

				private	MockMvc	mockMvc;

				@Before

				public	void	setup()	{

								mockMvc	=	MockMvcBuilders.webAppContextSetup(webAppContext)

																.build();

				}

				

				@After

				public	void	cleanUp()	{

				}

				@Test

				public	void	test1()	throws	Exception	{

								mockMvc.perform(...).andExpect(...);

				}

				@Test

				public	void	test2()	throws	Exception	{

								mockMvc.perform(...).adnExpect(...);

				}

				...

}

First,	look	at	the	types	that	you	have	to	import.	At	the	top	of	the	list	are	types	from	JUnit
and	 Spring	 MVC	 Test.	 Like	 unit	 test	 classes,	 a	 Spring	 MVC	 test	 class	 may	 include
methods	annotated	with	@Before	and	@After.	Both	annotation	types	are	part	of	JUnit.

Then,	things	start	to	deviate	from	the	unit	testing	norm.	First	off,	the	test	class	runner.

You	need	a	SpringJUnit4ClassRunner.class	with	your	@RunWith	annotation:

@RunWith(SpringJUnit4ClassRunner.class)

This	runner	allows	you	to	use	Spring.

Then,	you	need	to	annotate	your	test	class	with	these	annotation	types:

@WebAppConfiguration

@ContextConfiguration("...")

The	 WebAppConfiguration	 annotation	 type	 is	 used	 to	 declare	 that	 the
ApplicationContext	 loaded	 for	 an	 integration	 test	 should	 be	 of	 type
WebApplicationContext.	 The	 ContextConfiguration	 annotation	 type	 tells	 the	 test
runner	how	to	load	and	configure	the	WebApplicationContext.

In	addition	to	the	annotations,	you	need	two	objects	in	your	test	class:

private	WebApplicationContext	webAppContext;

private	MockMvc	mockMvc;

Example
The	following	example	shows	how	you	can	perform	 integration	 testing	on	Spring	MVC
controllers	and	test	their	wiring.

The	configuration	file	 in	Listing	13.26	shows	 the	packages	 that	will	be	scanned.	This
file	looks	like	a	typical	Spring	MVC	configuration	file,	minus	any	resource	mapping	and
view	resolver.	However,	you	can	use	an	actual	configuration	file.

Listing	13.26:	The	test-config.xml	file

<?xml	version="1.0"	encoding="UTF-8"?>

<beans	xmlns="http://www.springframework.org/schema/beans"

			xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

			xmlns:p="http://www.springframework.org/schema/p"

			xmlns:mvc="http://www.springframework.org/schema/mvc"

			xmlns:context="http://www.springframework.org/schema/context"

			xsi:schemaLocation="

						http://www.springframework.org/schema/beans

						http://www.springframework.org/schema/beans/spring-beans.xsd

						http://www.springframework.org/schema/mvc

						http://www.springframework.org/schema/mvc/spring-mvc.xsd					

						http://www.springframework.org/schema/context

						http://www.springframework.org/schema/context/spring-context.xsd">

			<context:component-scan	base-package="controller"/>

			<context:component-scan	base-package="service"/>				

			<mvc:annotation-driven/>

</beans>

The	SUT	in	this	example	is	the	EmployeeController	class	in	Listing	13.27.	There	is	only
one	request-handling	method	in	the	class,	getHighestPaid,	which	is	mapped	to	/highest-
paid.

Listing	13.27:	The	EmployeeController	class

package	controller;

import	org.springframework.beans.factory.annotation.Autowired;

import	org.springframework.stereotype.Controller;

import	org.springframework.ui.Model;

import	org.springframework.web.bind.annotation.PathVariable;

import	org.springframework.web.bind.annotation.RequestMapping;

import	service.EmployeeService;

import	domain.Employee;

@Controller

public	class	EmployeeController	{

				

				@Autowired

				EmployeeService	employeeService;

	

				@RequestMapping(value="/highest-paid/{category}")

				public	String	getHighestPaid(@PathVariable	int	category,	Model	model)	

				{

								Employee	employee	=	employeeService.getHighestPaidEmployee(

																category);

								model.addAttribute("employee",	employee);

								return	"success";

				}

}

Listing	13.28	shows	the	test	class	for	the	EmployeeController	class.

Listing	13.28:	The	EmployeeControllerTest	class

package	com.example.controller;

import	static	org.springframework.test.web.servlet.request.

MockMvcRequestBuilders.get;

import	static	org.springframework.test.web.servlet.result.

MockMvcResultHandlers.print;

import	static	org.springframework.test.web.servlet.result.

MockMvcResultMatchers.model;

import	static	org.springframework.test.web.servlet.result.

MockMvcResultMatchers.status;

import	org.junit.After;

import	org.junit.Before;

import	org.junit.Test;

import	org.junit.runner.RunWith;

import	org.springframework.beans.factory.annotation.Autowired;

import	org.springframework.test.context.ContextConfiguration;

import	org.springframework.test.context.junit4.SpringJUnit4ClassRunner;

import	org.springframework.test.context.web.WebAppConfiguration;

import	org.springframework.test.web.servlet.MockMvc;

import	org.springframework.test.web.servlet.setup.MockMvcBuilders;

import	org.springframework.web.context.WebApplicationContext;

@RunWith(SpringJUnit4ClassRunner.class)

@WebAppConfiguration

@ContextConfiguration("test-config.xml")

public	class	EmployeeControllerTest	{

				@Autowired

				private	WebApplicationContext	webAppContext;

				private	MockMvc	mockMvc;

				@Before

				public	void	setup()	{

								this.mockMvc	=	MockMvcBuilders.webAppContextSetup(webAppContext)

																.build();

				}

				

				@After

				public	void	cleanUp()	{

								

				}

				@Test

				public	void	testGetHighestPaidEmployee()	throws	Exception	{

								mockMvc.perform(get("/highest-paid/2"))

																.andExpect(status().isOk())

																.andExpect(model().attributeExists("employee"))

																.andDo(print());

				}

}

The	EmployeeControllerTest	 class	 contains	a	 setup	method	 that	gets	 called	before	any
test	is	invoked.	It	creates	a	MockMvc	object.	The	testGetHighestPaidEmployee	method
performs	 the	 test	and	expects	 that	 the	 response	status	code	 is	200	and	 the	model	has	an
employee	attribute.

The	test	method	also	calls	andDo(print())	to	print	various	values	in	the	response	object.
You	should	see	something	like	this	if	your	test	passed	successfully.

MockHttpServletRequest:

						HTTP	Method	=	GET

						Request	URI	=	/highest-paid/2

							Parameters	=	{}

										Headers	=	{}

Handler:

													Type	=	controller.EmployeeController

											Method	=	public	java.lang.String	controller.EmployeeController.getHighestPaid(int,org.springframe-work.ui.Model)

Async:

				Async	started	=	false

					Async	result	=	null

Resolved	Exception:

													Type	=	null

ModelAndView:

								View	name	=	success

													View	=	null

								Attribute	=	employee

												value	=	Xiao	Ming	($200000)

											errors	=	[]

FlashMap:

							Attributes	=	null

MockHttpServletResponse:

											Status	=	200

				Error	message	=	null

										Headers	=	{}

					Content	type	=	null

													Body	=	

				Forwarded	URL	=	success

			Redirected	URL	=	null

										Cookies	=	[]

Changing	 the	 Web	 Root	 in	 Integration
Testing
By	default,	a	Spring	integration	test	class	that	is	annotated	with	@WebAppConfiguration
will	 use	 the	 /src/main/webapp	 directory,	 relative	 to	 the	 project	 directory,	 as	 the	 root
directory.	This	is	a	Maven	standard	layout.	If	you	are	not	using	STS	and	instead	using	an
IDE	that	does	not	rely	on	Maven,	such	as	Eclipse	or	NetBeans,	this	could	be	problematic
in	 some	 rare	 cases.	 For	 example,	 if	 you	 need	 to	 use	 the	 value	 from
ServletContext.getRealPath(),	you	will	get	a	value	that	is	relative	to	/src/main/webapp
and	not	relative	to	your	web	application	directory.

Unfortunately,	you	cannot	 just	use	the	 /src/main/webapp/WEB-INF/classes	directory
as	 an	 output	 directory	 in	 Eclipse	 because	 it	 would	 mean	 nesting	 it	 within	 a	 source
directory,	which	is	forbidden	in	Eclipse.	Fortunately,	this	problem	can	be	easily	fixed	by
passing	 the	 actual	 application	 directory	 to	@WebAppConfiguration.	 For	 example,	 the
following	will	make	any	WebApplicationContext	 to	use	 /approotdir	as	 the	application
directory.

@WebAppConfiguration("/approotdir")

As	an	example,	Listing	13.29	shows	a	WebAppController	 class	 that	has	a	method	 that
returns	the	real	path	of	an	online	resource.

Listing	13.29:	The	WebAppController	class

package	controller;

import	javax.servlet.ServletContext;

import	org.springframework.beans.factory.annotation.Autowired;

import	org.springframework.stereotype.Controller;

import	org.springframework.ui.Model;

import	org.springframework.web.bind.annotation.RequestMapping;

@Controller

public	class	WebAppController	{

				//	ServletContext	cannot	be	used	as	a	method	parameter,	inject	

				//	instead.

				@Autowired

				private	ServletContext	servletContext;	

				@RequestMapping(value="/getWebAppDir")

				public	String	getWebAppDirectory(Model	model)	{

								model.addAttribute("webAppDir",	servletContext.getRealPath("/"));

								return	"success";

				}

}

Listing	13.30	shows	a	test	class	for	integration	testing	the	WebAppController	class.	Note
the	value	passed	to	the	@WebAppConfiguration	annotation.

Listing	13.30:	The	WebAppControllerTest	class

package	com.example.controller;

import	static	org.springframework.test.web.servlet.request.

MockMvcRequestBuilders.get;

import	static	org.springframework.test.web.servlet.result.

MockMvcResultHandlers.print;

import	static	org.springframework.test.web.servlet.result.

MockMvcResultMatchers.model;

import	static	org.springframework.test.web.servlet.result.

MockMvcResultMatchers.status;

import	org.junit.After;

import	org.junit.Before;

import	org.junit.Test;

import	org.junit.runner.RunWith;

import	org.springframework.beans.factory.annotation.Autowired;

import	org.springframework.test.context.ContextConfiguration;

import	org.springframework.test.context.junit4.SpringJUnit4ClassRunner;

import	org.springframework.test.context.web.WebAppConfiguration;

import	org.springframework.test.web.servlet.MockMvc;

import	org.springframework.test.web.servlet.setup.MockMvcBuilders;

import	org.springframework.web.context.WebApplicationContext;

@RunWith(SpringJUnit4ClassRunner.class)

@WebAppConfiguration("/webapp")

@ContextConfiguration("test-config.xml")

public	class	WebAppControllerTest	{

				@Autowired

				private	WebApplicationContext	webAppContext;

				private	MockMvc	mockMvc;

				@Before

				public	void	setup()	{

								this.mockMvc	=	MockMvcBuilders.webAppContextSetup(webAppContext).build();

				}

				

				@After

				public	void	cleanUp()	{

				}

				@Test

				public	void	testWebAppDir()	throws	Exception	{

								mockMvc.perform(get("/getWebAppDir"))

																.andExpect(status().isOk())

																.andExpect(model().attributeExists("webAppDir"))

																.andDo(print());

				}

}

Summary
Testing	is	an	important	step	in	software	development	and	there	are	two	types	of	tests	that
you	should	perform	early	in	your	development	cycle,	unit	testing	and	integration	testing.
Unit	 testing	 verifies	 the	 functionality	 of	 a	 class	 without	 dependencies.	 In	 unit	 testing,
dependencies	are	commonly	replaced	by	test	doubles,	which	may	include	dummies,	stubs,
spies,	fakes,	and	mock	objects.	JUnit	is	a	popular	framework	that	aids	in	unit	testing	and	is
often	used	in	conjunction	with	a	mocking	framework	such	as	Mockito	or	EasyMock.

Integration	testing	makes	sure	that	different	modules	in	the	same	application	can	work
together	and	request	mapping	and	data	binding	also	work.	Spring	Test	MVC	is	a	Spring
module	 that	provides	an	API	that	makes	 it	easy	to	perform	integration	testing	on	Spring
applications.	In	this	chapter	you	have	learned	how	to	use	Spring	Test	MVC.

Appendix	A

Tomcat
Tomcat	is	the	most	popular	servlet/JSP	container	today.	It’s	free,	mature,	and	open-source.
You	 need	 Tomcat	 8	 or	 another	 compliant	 servlet/JSP	 container	 to	 run	 the	 sample
applications	 accompanying	 this	 book.	 This	 appendix	 provides	 a	 quick	 installation	 and
configuration	guide	and	is	by	no	means	a	comprehensive	tutorial.

Downloading	and	Configuring	Tomcat
You	should	first	download	the	latest	version	of	Tomcat	from	http://tomcat.apache.org.	You
should	get	 the	 latest	 binary	distribution	 in	 either	 zip	or	 gz.	Tomcat	8	 requires	 JRE	7	or
JDK	 7	 to	 run.	 Earlier	 versions	 of	 Tomcat	 required	 a	 JDK	 because	 they	 needed	 a	 Java
compiler	 to	 compile	 code	 in	 JSP	 pages.	 Tomcat	 5.5	 and	 later	 bundle	 the	 Eclipse	 Java
compiler	so	they	no	longer	require	a	JDK.

After	you	download	the	zip	or	gz	file,	unpack	the	file.	You	will	see	several	directories
under	the	installation	directory.

In	 the	bin	 directory,	 you	will	 find	 programs	 to	 start	 and	 stop	 Tomcat.	 The	webapps
directory	 is	 important	 because	 you	 can	 deploy	 your	 applications	 there.	 In	 addition,	 the
conf	 directory	 contains	 configuration	 files,	 including	 the	 server.xml	 and	 tomcat-
users.xml	files.	The	 lib	directory	is	also	of	interest	since	it	contains	the	Servlet	and	JSP
APIs	that	you	need	to	compile	your	servlets	and	custom	tags.

After	extracting	the	zip	or	gz	file,	set	the	JRE_HOME	or	JAVA_HOME	environment
variable	to	a	JRE	or	JDK	installation	directory.	The	easiest	way	to	do	so	is	by	creating	a
setenv.sh	 file	 (in	Linux	or	Mac	OSX)	or	 setenv.bat	 file	 (in	Windows)	 in	Tomcat’s	bin
directory.	This	file	should	contain	a	single	line	of	code	that	will	be	executed	when	Tomcat
is	started.

Here	is	an	example	setenv.sh	file:

JRE_HOME=/opt/java/jdk1.7.0_79

And,	here	is	a	sample	setenv.bat	file:

set	JAVA_HOME=C:\Program	Files\Java\jdk1.7.0_06

Windows	users	 can	 also	download	 and	 configure	Tomcat	by	using	 a	Windows	 installer,
which	can	be	downloaded	from	Tomcat’s	website.

Starting	and	Stopping	Tomcat
Once	you’ve	downloaded	and	extracted	a	Tomcat	binary,	you	can	start	Tomcat	by	running
the	startup.bat	(on	Windows)	or	the	startup.sh	file	(on	Unix/Linux/Mac	OS).	Both	files
reside	under	the	bin	directory	of	Tomcat’s	installation	directory.	By	default,	Tomcat	runs
on	port	8080,	so	you	can	test	Tomcat	by	directing	your	browser	to	this	address:

http://localhost:8080

To	 stop	 Tomcat,	 run	 the	 shutdown.bat	 (on	 Windows)	 or	 shutdown.sh	 file	 (on
Unix/Linux/Mac	OS)	in	the	bin	directory.

Defining	A	Context
To	deploy	a	servlet/JSP	application	to	Tomcat,	you	need	to	define	a	Tomcat	context	either
explicitly	or	implicitly.	Each	Tomcat	context	represents	a	web	application	in	Tomcat.

There	are	several	ways	of	defining	a	Tomcat	context	explicitly,	including

Creating	an	XML	file	in	Tomcat’s	conf/Catalina/localhost	directory.
Adding	a	Context	element	in	Tomcat’s	conf/server.xml	file.

If	 you	decide	 to	 create	 an	XML	 file	 for	 each	 context,	 the	 file	 name	 is	 important	 as	 the
context	 path	 is	 derived	 from	 it.	 For	 example,	 if	 you	 place	 a	 commerce.xml	 file	 in	 the
conf/Catalina/localhost	directory,	the	context	path	of	your	application	will	be	commerce
and	a	resource	can	be	invoked	using	this	URL:

http://localhost:8080/commerce/resourceName

A	context	file	must	contain	a	Context	element	as	its	root	element.	Most	of	the	times	the
element	does	not	have	child	elements	and	is	the	only	element	in	the	file.	For	example,	here
is	an	example	context	file,	consisting	of	a	single	line.

<Context	docBase="C:/apps/commerce"	reloadable="true"/>

The	only	required	attribute	is	docBase,	which	specifies	the	location	of	the	application.	The
reloadable	attribute	is	optional,	but	if	it	is	present	and	its	value	is	set	to	true,	Tomcat	will
monitor	the	application	for	any	addition,	deletion,	or	update	of	a	Java	class	file	and	other
resources.	When	 such	 a	 change	 is	 detected,	 Tomcat	will	 reload	 the	 application.	 Setting
reloadable	to	true	is	recommended	during	development	but	not	in	production.

When	you	add	a	context	file	to	the	specified	directory,	Tomcat	will	automatically	load
the	application.	When	you	delete	it,	Tomcat	will	unload	the	application.

Another	 way	 of	 defining	 a	 context	 is	 by	 adding	 a	 Context	 element	 in	 the
conf/server.xml	 file.	 To	 do	 this,	 open	 the	 file	 and	 create	 a	Context	 element	 under	 the
Host	 element.	 Unlike	 the	 previous	 method,	 defining	 a	 context	 here	 requires	 that	 you
specify	the	path	attribute	for	your	context	path.	Here	is	an	example:

<Host	name="localhost"		appBase="webapps"	unpackWARs="true"

								autoDeploy="true">

				<Context	path="/commerce"	

												docBase="C:/apps/commerce"

												reloadable="true"

				/>

</Host>

Generally,	 managing	 contexts	 through	 server.xml	 is	 not	 recommended	 as	 updates	 will
only	 take	effect	 after	you	 restart	Tomcat.	However,	 if	 you	have	a	bunch	of	 applications
that	you	need	to	test	quickly,	like	when	you	are	learning	to	write	servlets	and	JSP	pages,

you	 may	 find	 working	 with	 server.xml	 almost	 ideal	 as	 you	 can	 manage	 all	 your
applications	in	a	single	file.

Finally,	you	can	also	deploy	an	application	implicitly	by	copying	a	war	file	or	the	whole
application	to	Tomcat’s	webapps	directory.

More	information	on	Tomcat	contexts	can	be	found	here:

http://tomcat.apache.org/tomcat-8.0-doc/config/context.html

Defining	A	Resource
You	 can	 define	 a	 JNDI	 resource	 that	 your	 application	 can	 use	 in	 your	 Tomcat	 context
definition.	A	resource	is	represented	by	the	Resource	element	under	the	Context	element.

For	 instance,	 to	 add	 a	 DataSource	 resource	 that	 opens	 connections	 to	 a	 MySQL
database,	add	this	Resource	element.

<Context	[path="/appName"]	docBase="...">

				<Resource	name="jdbc/dataSourceName"	

								auth="Container"

								type="javax.sql.DataSource"	

								username="..."	

								password="..."	

								driverClassName="com.mysql.jdbc.Driver"

								url="..."

				/>

</Context>

More	information	on	the	Resource	element	can	be	found	here.

http://tomcat.apache.org/tomcat-8.0-doc/jndi-resources-howto.html

http://tomcat.apache.org/tomcat-7.0-doc/jndi-resources-howto.html

Installing	TLS	Certificates
Tomcat	supports	TLS	and	you	should	use	it	to	secure	transfer	of	confidential	data	such	as
social	security	numbers	and	credit	card	details.	You	can	generate	a	public/private	key	pair
using	 the	 KeyTool	 program	 and	 pay	 a	 trusted	 authority	 to	 create	 and	 sign	 a	 digital
certificate	for	you.

Once	you	receive	your	certificate	and	import	it	into	your	keystore,	the	next	step	will	be
to	install	it	on	your	server.	If	you’re	using	Tomcat,	simply	copy	your	keystore	in	a	location
on	 the	 server	 and	 configure	Tomcat.	 Then,	 open	 your	 conf/server.xml	 file	 and	 add	 the
following	Connector	element	under	<service>.

<Connector	port="443"	

				minSpareThreads="5"	

				maxSpareThreads="75"

				enableLookups="true"	

				disableUploadTimeout="true"		

				acceptCount="100"	

				maxThreads="200"	

				scheme="https"

				secure="true"

				SSLEnabled="false"	

				keystoreFile="/path/to/keystore"	

				keyAlias="example.com"	

				keystorePass="01secret02%%%"	

				clientAuth="false"

				sslProtocol="TLS"

/>

The	lines	in	bold	are	related	to	TLS.	Make	sure	the	SSLEnabled	attribute	is	not	used	or
set	to	false	to	prevent	old	browsers	from	using	SSL,	which	is	no	longer	secure.

Appendix	B

Using	Spring	Tool	Suite	with	Maven
Spring	also	comes	with	its	own	integrated	development	environment	(IDE)	called	Spring
Tool	Suite	(STS),	which	is	probably	the	best	IDE	to	build	Spring	apps	with.	STS	bundles
Maven	as	 its	default	dependency	management	 tool	 so	you	do	not	need	 to	 install	Maven
separately.

This	appendix	provides	a	short	tutorial	on	how	to	use	STS	and	Maven.

Installing	the	Spring	Tool	Suite	(STS)
The	Spring	Tool	Suite	is	an	Eclipse-based	integrated	development	environment	(IDE).	It	is
an	excellent	tool	suite	and	is	probably	the	best	IDE	for	working	with	Spring	framework.	It
is	 also	 a	 one	 stop	 shop	 that	 includes	 other	 libraries	 and	 applications	 that	 you	 need	 for
Spring	 MVC	 application	 development.	 For	 example,	 it	 ships	 with	 Maven	 and	 the
developer	edition	of	Pivotal	tc	Server,	a	modified	Tomcat.	If	you	have	not	decided	which
IDE	to	use,	I	would	recommend	that	you	give	the	STS	a	try.

To	start	working	with	STS,	first	download	it	from	this	web	page:

https://spring.io/tools/sts

The	STS	is	distributed	as	a	zip	file.	Once	you	download	the	zip	file,	extract	the	content	to
a	 directory	 of	 your	 choice.	 The	 zip	 file	 contains	 an	 sts-bundle	 directory	 that	 in	 turn
contains	three	directories:

1.	legal.	Contains	license	agreements	of	various	tools.

2.	pivotal-tc-server-developer-x.y.z.RELEASE.	Contains	Pivotal	 tc	Server	developer
edition	version	x.y.z.

3.	sts-x.y.z.RELEASE.	Contains	STS,	where	x.y.z	is	 the	major	and	minor	versions	of
STS.

You	will	find	an	STS.exe	in	the	Windows	version	and	a	STS	file	in	the	Linux	version	of
this	distribution.	Double-click	the	exe	file	or	run	the	STS	file	from	the	command	line	to
launch	 STS.	 If	 this	 is	 the	 first	 time	 you	 run	 STS,	 you	 will	 be	 prompted	 to	 select	 a
workspace.	Click	OK	and	you	will	see	the	STS	main	page,	like	that	in	Figure	B.1.

Figure	B.1:	The	STS	welcome	page

The	main	window	may	remind	you	of	Eclipse,	even	though	the	icon	has	changed.

Now	you	are	ready	to	create	your	own	Spring	MVC	apps.

Creating	a	Spring	MVC	Application
The	STS	relies	heavily	on	Maven	and	allows	you	to	create	applications	that	by	default	use
Maven	to	manage	dependencies.	To	create	a	Spring	MVC	application,	follow	these	steps.

1.	Click	File	>	New	>	Maven	Project.	You	will	see	the	New	Maven	Project	dialog	like
that	in	Figure	B.2.

Figure	B.2:	The	New	Maven	Project	dialog

2.	Check	the	“Create	a	simple	project	(skip	archetype	selection)”	check	box.

3.	Click	Next	to	configure	your	project.	The	dialog	will	change	to	show	text	fields	like
those	in	Figure	B.3.

Figure	B.3:	Configuring	your	project

4.	 In	 the	Group	 Id	 field,	 type	 in	 a	 package,	 such	 as	 com.example.	 in	 the	Artifact	 Id
field,	enter	your	project	name,	e.g.	firstSpringMVC.

5.	Select	war	 from	 the	 Packaging	 drop-down	 to	 tell	 the	 STS	 that	 you	 are	 creating	 a
Spring	MVC	application.	War	is	the	file	extension	for	servlet/JSP	applications.

6.	 Click	Finish,	 and	 you	will	 see	 your	 project	 in	 the	 Package	 Explorer.	 (See	 Figure
B.4).

Figure	B.4:	The	initial	directory	structure

7.	The	STS	will	create	a	project	that	includes	a	directory	structure	like	the	one	in	Figure

B.4	and	a	pom.xml	file,	a	Maven	configuration	file.	You	are	not	finished	yet,	though.
You	 still	 have	 to	 edit	 the	pom.xml	 file	 to	 tell	Maven	how	 to	handle	dependencies.
Double-click	 the	 file	 to	 open	 it	 with	 the	 default	 editor.	 The	 editor	 comes	 with
multiple	tabs	that	provide	different	ways	to	view	and	edit	the	file.	The	tab	names	are
shown	 at	 the	 bottom	 of	 the	 dialog.	 One	 of	 the	 tabs	 is	 the	Dependencies	 tab	 that
allows	you	to	manage	dependencies	needed	by	your	project.	Click	the	Dependencies
tab	and	you	will	see	a	dialog	like	that	shown	in	Figure	B.5.

8.	 For	 beginners,	 adding	 dependencies	 through	 the	Dependencies	 tab	 is	 a	 relatively
easy	option	and	I	will	show	how	to	do	it	here.	A	typical	Spring	MVC	app	needs	at
least	three	libraries:	The	Servlet	API,	the	Spring	MVC	libraries	and	JSTL.	To	add	the
Servlet	API,	click	the	Add	button	in	the	Dependencies	pane	(and	not	the	one	on	the
Dependency	Management	pane).	The	Select	Dependency	dialog,	 like	 that	 in	Figure
B.6,	will	open.

The	values	to	enter	are	as	follows.

						Group	Id:	javax.servlet

						Artifact	Id:	javax.servlet-api

						Version:	3.1.0

						Scope:	provided

The	scope	value	provided	indicates	that	when	the	application	is	distributed,	the	library
will	be	provided	by	the	container	and	does	not	need	to	be	included	in	the	war	file.

Click	OK	after	you	type	in	and	select	the	values	above.	The	dialog	will	close	and	you
will	be	back	to	the	Dependencies	tab.

9.	Next,	 add	 the	Spring	MVC	 libraries	using	 the	 same	method.	Click	 the	Add	button
and	type	in	the	following	values:

						Group	Id:	org.springframework

						Artifact	Id:	spring-webmvc

						Version:	4.2.4.RELEASE

						Scope:	compile

Figure	B.5:	Adding	dependencies	through	the	Dependencies	tab

Figure	B.6:	Adding	Servlet	API

10.	Now,	add	the	JSTL	libraries.	Click	the	Add	button	and	type	in	the	following	values:

						Group	Id:	javax.servlet

						Artifact	Id:	jstl

						Version:	1.2

						Scope:	runtime

11.	Save	the	pom.xml	file	by	pressing	Ctrl+S	or	by	clicking	File	>	Save.	As	soon	as
you	do	this,	the	STS	will	try	to	build	the	project	by	downloading	the	dependencies.
Needless	to	say	you	need	to	be	connected	to	the	Internet,	unless	you	have	previously
used	Maven	to	download	the	required	libraries.

After	 Maven	 finishes	 downloading	 the	 dependencies,	 you	 will	 see	 a	 Maven
Dependencies	folder	in	your	package	explorer.	(See	Figure	B.7).

Figure	B.7:	Maven	Dependencies

The	pom.xml	 file	 still	 has	 an	 error	 because	 it	 cannot	 find	 a	 web.xml.	 To	 rectify	 this,
double	click	the	pom.xml	file	in	the	package	explorer	to	re-open	the	editor	and	click	the
pom.xml	 tab.	 Look	 for	 the	 <dependencies>	 element	 in	 the	 pom.xml	 file	 and	 add	 the
following	right	above	it.	The	failOnMissingWebXml	element	turns	on	and	off	the	error
message	caused	by	a	missing	web.xml	file.

<build>

				<plugins>

								<plugin>

												<groupId>org.apache.maven.plugins</groupId>

												<artifactId>maven-war-plugin</artifactId>

												<configuration>

																<failOnMissingWebXml>false</failOnMissingWebXml>

												</configuration>

								</plugin>

				</plugins>

</build>

Selecting	the	Java	Version
You	can	select	the	Java	version	for	your	application	by	adding	a	property	to	your	pom.xml
file.	To	do	this,	follow	these	steps.

1.	Click	the	Overview	tab	of	the	pom.xml	editor.	The	Overview	tab	is	shown	in	Figure
B.8.

Figure	B.8:	The	Overview	tab

2.	Click	the	Create	button	to	the	right	of	the	Properties	drop-down.	The	Add	Property
dialog,	as	shown	in	Figure	B.9,	will	be	opened.

Figure	B.9:	Selecting	the	Java	version

3.	Enter	maven.compiler.target	in	the	Name	field	and	1.8	in	the	Value	field.

4.	Save	the	pom.xml	file.

If	the	STS	complains	because	it	cannot	find	JRE	1.8,	you	can	tell	it	where	to	find	Java	by
following	these	steps.

1.	Click	Window	>	Preferences.

2.	Select	Java	>	Installed	JREs	on	the	left	pane	and	click	the	Add	button.

3.	Select	Standard	VM	and	click	Next.	You	will	see	 the	dialog	 like	 the	one	 in	Figure
B.10.

Figure	B.10:	Browsing	to	the	JRE	directory.

4.	Click	the	Directory	button	and	browse	to	the	JRE	home	directory.

5.	Click	Finish.	You	will	see	the	JDK	in	the	installed	JREs	list.	(See	Figure	B.11)

6.	Click	OK.

Figure	B.11:	The	installed	JRE

Creating	An	index.html	File
To	 complete	 the	 sample	 application,	 you	 need	 to	 create	 an	 index.html	 file	 and	 save	 it
under	src/main/webapp.	Listing	B.1	shows	a	simple	HTML	page.

Listing	B.1:	The	index.html	file

<!DOCTYPE	html>

<html>

<head>

<title>First	Spring	MVC	app</title></head>

<body>

Welcome

</body>

</html>

Updating	the	Project
Before	you	can	run	an	application,	you	need	to	update	the	project.	Right	click	the	project
icon	in	the	Package	Explorer	and	click	Maven	>	Update	Project.

After	that,	the	project	in	Package	explorer	will	look	like	the	screenshot	in	Figure	B.12.

Figure	B.12:	The	updated	project

Running	the	Application
You	 need	 Tomcat	 or	 another	 servlet	 container	 to	 run	 your	 application.	 If	 you	 have	 not
installed	Tomcat,	please	do	so	now.	Appendix	A,	“Tomcat”	provides	instructions	on	how
to	do	that.

To	run	your	application,	follow	these	steps.

1.	Right-click	on	the	project	and	select	Run	As	>	Run	on	Server.	You	will	see	the	Run
On	Server	dialog	like	that	in	Figure	B.13.

2.	 Select	 a	 server	 type,	 e.g.	Tomcat	 v8.0	 server	 under	 Apache.	 If	 you	 do	 not	 see	 a
Tomcat	instance,	click	the	Add	link	(circled	in	red	in	Figure	B.13)	and	browse	to	the
Tomcat	directory.

3.	Enter	a	host	name	in	the	Server	Host	Name	field.

4.	Click	Finish.

The	STS	will	start	Tomcat	and	run	your	application.

Figure	B.13:	Selecting	Tomcat

To	manage	Tomcat	and	all	applications	deployed	on	it,	open	the	Server	view	in	the	STS.
(See	Figure	B.14)

Figure	B.14:	The	Servers	view	for	managing	Tomcat	instances	and	apps

Figure	B.15	shows	a	web	browser	inside	the	STS	with	your	default	page	displayed	on	it.

Figure	B.15:	Your	first	web	application

You	are	now	ready	to	add	dynamic	content	by	following	the	instructions	in	each	chapter.

Appendix	C

The	Servlet	API
Servlet	is	the	underlying	technology	behind	Spring	MVC.	Understanding	the	Servlet	API
is	your	gateway	 to	becoming	a	 formidable	Spring	MVC	developer.	There	are	more	 than
seventy	types	in	this	API	and	it	is	imperative	that	you	be	familiar	with	the	most	important
ones.

This	appendix	introduces	the	classes	and	interfaces	in	the	Servlet	API	that	you	should
know.	 In	 addition,	 it	 teaches	 you	 to	 write	 servlets.	 All	 examples	 can	 be	 found	 in	 the
servletapi1,	servletapi2	and	servletapi3	sample	applications.

Servlet	API	Overview
The	Servlet	API	comes	in	four	Java	packages.	The	packages	are	as	follows.

javax.servlet.	 Contains	 classes	 and	 interfaces	 that	 define	 the	 contract	 between	 a
servlet	and	a	servlet	container.
javax.servlet.http.	Contains	classes	and	 interfaces	 that	define	 the	contract	between
an	HTTP	servlet	and	a	servlet	container.
javax.servlet.annotation.	 Contains	 annotations	 to	 annotate	 servlets,	 filters,	 and
listeners.	It	also	specifies	metadata	for	annotated	components.
javax.servlet.descriptor.	Contains	types	that	provide	programmatic	access	to	a	web
application’s	configuration	information.

This	appendix	focuses	on	members	of	javax.servlet	and	javax.servlet.http.

The	javax.servlet	Package
Figure	C.1	shows	the	main	types	in	javax.servlet.

Figure	C.1:	Prominent	members	of	javax.servlet

At	 the	 center	 of	Servlet	 technology	 is	Servlet,	 an	 interface	 that	 all	 servlet	 classes	must
implement	either	directly	or	indirectly.	You	implement	it	directly	when	you	write	a	servlet
class	that	implements	Servlet.	You	 implement	 it	 indirectly	when	you	extend	a	class	 that
implements	this	interface.

The	Servlet	interface	defines	a	contract	between	a	servlet	and	the	servlet	container.	The
contract	boils	down	to	 the	promise	by	 the	servlet	container	 to	 load	 the	servlet	class	 into
memory	and	call	specific	methods	on	the	servlet	instance.	There	can	only	be	one	instance
for	each	servlet	type	in	an	application.

A	user	request	causes	the	servlet	container	to	call	a	servlet’s	service	method,	passing	an
instance	 of	 ServletRequest	 and	 an	 instance	 of	 ServletResponse.	 The	 ServletRequest
encapsulates	the	current	HTTP	request	so	that	servlet	developers	do	not	have	to	parse	and
manipulate	 raw	HTTP	data.	The	ServletResponse	 represents	 the	HTTP	response	for	 the
current	user	and	makes	it	easy	to	send	response	back	to	the	user.

For	each	application	 the	 servlet	 container	also	creates	 an	 instance	of	ServletContext.
This	object	encapsulates	the	environment	details	of	the	context	(application).	There	is	only
one	 ServletContext	 for	 each	 context.	 For	 each	 servlet	 instance,	 there	 is	 also	 a
ServletConfig	that	encapsulates	the	servlet	configuration.

Let’s	 first	 look	 at	 the	 Servlet	 interface.	 Other	 interfaces	 mentioned	 above	 will	 be
explained	in	the	other	sections	of	this	appendix.

Servlet
The	Servlet	interface	defines	these	five	methods.

void	init(ServletConfig	config)	throws	ServletException

void	service(ServletRequest	request,	ServletResponse	response)	

								throws	ServletException,	java.io.IOException

void	destroy()

java.lang.String	getServletInfo()

ServletConfig	getServletConfig()

Note	 that	 the	 convention	 for	 writing	 a	 Java	 method	 signature	 is	 to	 use	 fully-qualified
names	for	 types	 that	are	not	 in	 the	same	package	as	 the	 type	containing	 the	method.	As
such,	in	the	signature	of	the	service	method,	javax.servlet.ServletException,	which	is	in
the	 same	 package	 as	 Servlet,	 is	 written	 without	 the	 package	 information	 whereas
java.io.Exception	is	written	fully.

init,	 service,	 and	destroy	 are	 lifecycle	methods.	 The	 servlet	 container	 invokes	 these
three	methods	according	to	these	rules.

init.	The	servlet	container	invokes	this	method	the	first	time	the	servlet	is	requested.
This	 method	 is	 not	 called	 at	 subsequent	 requests.	 You	 use	 this	 method	 to	 write
initialization	 code.	 When	 invoking	 this	 method,	 the	 servlet	 container	 passes	 a
ServletConfig.	Normally,	you	will	assign	the	ServletConfig	to	a	class	level	variable
so	that	this	object	can	be	used	from	other	points	in	the	servlet	class.
service.	The	servlet	container	invokes	this	method	each	time	the	servlet	is	requested.
You	write	the	code	that	the	servlet	is	supposed	to	do	here.	The	first	time	the	servlet	is
requested,	 the	 servlet	 container	 calls	 the	 init	 method	 and	 the	 service	method.	 For
subsequent	requests,	only	service	is	invoked.
destroy.	The	 servlet	 container	 invokes	 this	method	when	 the	 servlet	 is	 about	 to	be
destroyed.	This	occurs	when	the	application	is	unloaded	or	when	the	servlet	container
is	being	shut	down.	Normally,	you	write	clean-up	code	in	this	method.

The	 other	 two	 methods	 in	 Servlet	 are	 non-life	 cycle	 methods:	 getServletInfo	 and
getServletConfig.

getServletInfo.	This	method	returns	the	description	of	the	servlet.	You	can	return	any
string	that	might	be	useful	or	even	null.
getServletConfig.	 This	 method	 returns	 the	 ServletConfig	 passed	 by	 the	 servlet
container	to	the	init	method.	However,	in	order	for	getServletConfig	to	return	a	non-
null	value,	you	must	have	assigned	the	ServletConfig	passed	to	the	init	method	to	a
class	level	variable.	ServletConfig	is	explained	in	the	section	“ServletConfig”	in	this
appendix.

An	important	point	to	note	is	thread	safety.	A	servlet	instance	is	shared	by	all	users	in	an
application,	 so	 class-level	 variables	 are	 not	 recommended,	 unless	 they	 are	 read-only	 or
members	of	the	java.util.concurrent.atomic	package.

The	next	 section,	 “Writing	A	Basic	Servlet	Application,”	 shows	how	you	can	write	a
Servlet	Implementation.

Writing	A	Basic	Servlet	Application
Writing	a	servlet	application	is	surprisingly	easy.	All	you	have	to	do	is	create	a	directory
structure	and	place	your	servlet	classes	in	a	certain	directory.

In	this	section	you’ll	learn	how	to	write	a	simple	servlet	application	named	servletapi1.
Initially	it	will	contain	one	servlet,	MyServlet,	which	sends	a	greeting	to	the	user.

You	 need	 a	 servlet	 container	 to	 run	 your	 servlets.	 Tomcat,	 an	 open	 source	 servlet
container,	 is	 available	 free	 of	 charge	 and	 runs	 on	 any	platform	where	 Java	 is	 available.
Appendix	A,	“Tomcat”	shows	how	to	install	Tomcat	and	manage	it	outside	an	IDE.

Writing	and	Compiling	the	Servlet	Class
After	making	sure	you	have	a	servlet	container	on	your	local	machine,	the	next	step	is	to
write	and	compile	a	servlet	class.	The	servlet	class	for	this	example,	MyServlet,	is	given
in	Listing	C.1.	By	convention,	the	name	of	a	servlet	class	is	suffixed	with	Servlet.

Listing	C.1:	The	MyServlet	class

package	servletapi1;

import	java.io.IOException;

import	java.io.PrintWriter;

import	javax.servlet.Servlet;

import	javax.servlet.ServletConfig;

import	javax.servlet.ServletException;

import	javax.servlet.ServletRequest;

import	javax.servlet.ServletResponse;

import	javax.servlet.annotation.WebServlet;

@WebServlet(name	=	"MyServlet",	urlPatterns	=	{	"/my"	})

public	class	MyServlet	implements	Servlet	{

				

				private	transient	ServletConfig	servletConfig;

				@Override

				public	void	init(ServletConfig	servletConfig)

												throws	ServletException	{

								this.servletConfig	=	servletConfig;

				}

				

				@Override

				public	ServletConfig	getServletConfig()	{

								return	servletConfig;

				}

				@Override

				public	String	getServletInfo()	{

								return	"My	Servlet";

				}

				@Override

				public	void	service(ServletRequest	request,

												ServletResponse	response)	throws	ServletException,

												IOException	{

								String	servletName	=	servletConfig.getServletName();

								response.setContentType("text/html");

								PrintWriter	writer	=	response.getWriter();

								writer.print("<!DOCTYPE	html>"

																+	"<html>"

																+	"<body>Hello	from	"	+	servletName	

																+	"</body>"

																+	"</html>");

				}

				@Override

				public	void	destroy()	{

				}				

}

The	first	thing	that	you	may	notice	when	reading	the	code	in	Listing	C.1	is	this	annotation.

@WebServlet(name	=	"MyServlet",	urlPatterns	=	{	"/my"	})

The	WebServlet	annotation	type	is	used	to	declare	a	servlet.	You	can	name	the	servlet	as
well	 as	 tell	 the	 container	what	URL	 invokes	 the	 servlet.	The	name	 attribute	 is	 optional
and,	 if	 present,	 ordinarily	 given	 the	 name	 of	 the	 servlet	 class.	What’s	 important	 is	 the
urlPatterns	 attribute,	 which	 is	 also	 optional	 but	 almost	 always	 present.	 In	MyServlet,
urlPattern	tells	the	container	that	the	pattern	/my	should	invoke	the	servlet.

Note	that	a	URL	pattern	must	begin	with	a	forward	slash.

The	 servlet’s	 init	 method	 is	 called	 once	 and	 sets	 the	 private	 transient	 servletConfig
variable	to	the	ServletConfig	object	passed	to	the	method.

				private	transient	ServletConfig	servletConfig;

				@Override

				public	void	init(ServletConfig	servletConfig)

												throws	ServletException	{

								this.servletConfig	=	servletConfig;

				}

You	need	to	assign	the	ServletConfig	passed	to	init	to	a	class	variable	if	you	intend	to	use
the	ServletConfig	from	inside	your	servlet.

The	service	method	sends	the	String	“Hello	from	MyServlet”	to	the	browser.	service	is
invoked	for	every	incoming	HTTP	request	that	targets	the	servlet.

If	 you	 are	 using	 an	 IDE,	 you	 never	 have	 to	worry	 about	 having	 to	 compile	 a	 servlet
class	manually.	If	you	are	not	using	an	IDE,	to	compile	the	servlet	you	have	to	include	the
types	in	the	Servlet	API	in	your	class	path.	Tomcat	comes	with	the	servlet-api.jar	file	that
packages	members	 of	 the	 javax.servlet	 and	 javax.servlet.http	 packages.	The	 jar	 file	 is
located	in	the	lib	directory	under	Tomcat’s	installation	directory.

Application	Directory	Structure
A	servlet	application	must	be	deployed	in	a	certain	directory	structure.	Figure	C.2	shows
the	directory	structure	for	this	application.

Figure	C.2:	The	application	directory

The	web	 directory	 at	 the	 top	 of	 the	 structure	 is	 the	 application	 directory.	 Under	 the
application	directory	is	a	WEB-INF	directory.	 It	may	have	 the	following	subdirectories,
both	optional:

classes.	Your	servlet	classes	and	other	Java	classes	must	reside	here.	The	directories
under	 classes	 reflect	 the	 class	 package.	 In	 Figure	C.2	 there	 is	 one	 class	 deployed,
servletapi1.MyServlet.
lib.	Deploy	jar	files	required	by	your	servlet	application	here.	The	Servlet	API	jar	file
does	not	need	to	be	deployed	here	because	the	servlet	container	already	has	a	copy	of
it.

A	 servlet/JSP	 application	 normally	 has	 JSP	 pages,	 HTML	 files,	 image	 files,	 and	 other
resources.	 These	 should	 go	 under	 the	 application	 directory	 and	 are	 often	 organized	 in
subdirectories.	For	instance,	all	image	files	can	go	to	an	image	directory,	all	JSP	pages	to
jsp,	and	so	on.

Any	resource	you	put	under	 the	application	directory	is	directly	accessible	 to	 the	user
by	typing	the	URL	to	the	resource.	If	you	want	to	include	a	resource	that	can	be	accessed
by	a	servlet	but	not	accessible	to	the	user,	put	it	under	WEB-INF	or	a	directory	under	it.

Invoking	the	Servlet
To	test	your	servlet,	direct	your	browser	to	this	URL:

http://localhost:8080/servletapi1/my

Figure	C.3:	Response	from	MyServlet

ServletRequest
For	every	HTTP	request,	the	servlet	container	creates	an	instance	of	ServletRequest	and
passes	 it	 to	 the	 servlet’s	 service	method.	 The	ServletRequest	 encapsulates	 information
about	the	request.

These	are	some	of	the	methods	in	the	ServletRequest	interface.

public	int	getContentLength()

Returns	 the	 number	 of	 bytes	 in	 the	 request	 body.	 If	 the	 length	 is	 not	 known,	 this
method	returns	-1.

public	java.lang.String	getContentType()

Returns	the	MIME	type	of	the	request	body	or	null	if	the	type	is	not	known.

public	java.lang.String	getParameter(java.lang.String	name)

Returns	the	value	of	the	specified	request	parameter.

public	java.lang.String	getProtocol()

Returns	the	name	and	version	of	the	protocol	of	this	HTTP	request.

getParameter	is	the	most	frequently	used	method	in	ServletRequest.	A	common	use	of
this	 method	 is	 to	 return	 the	 value	 of	 an	 HTML	 form	 field.	 You’ll	 learn	 how	 you	 can
retrieve	form	values	in	the	section	“Working	with	Forms”	later	in	this	appendix.

getParameter	 can	 also	 be	 used	 to	 get	 the	 value	 of	 a	 query	 string.	 For	 example,	 if	 a
servlet	is	invoked	using	this	URI

http://domain/context/servletName?id=123

you	can	retrieve	the	value	of	id	from	inside	your	servlet	using	this	statement:

String	id	=	request.getParameter("id");

Note	that	getParameter	returns	null	if	the	parameter	does	not	exist.

In	 addition	 to	 getParameter,	 you	 can	 also	 use	 getParameterNames,
getParameterMap,	and	getParameterValues	to	retrieve	form	field	names	and	values	as
well	as	query	strings.	See	the	section	“HttpServlet”	for	examples	of	how	you	can	use	these
methods.

ServletResponse
The	 javax.servlet.ServletResponse	 interface	 represents	 a	 servlet	 response.	 Prior	 to
invoking	a	servlet’s	service	method,	the	servlet	container	creates	a	ServletResponse	and
pass	 it	 as	 the	 second	 argument	 to	 the	 service	 method.	 The	 ServletResponse	 hides	 the
complexity	of	sending	response	to	the	browser.

One	 of	 the	 methods	 defined	 in	 ServletResponse	 is	 the	 getWriter	 method,	 which
returns	a	java.io.PrintWriter	that	can	send	text	to	the	client.	By	default,	the	PrintWriter
object	uses	ISO-8859-1	encoding.

When	sending	a	response	to	the	client,	most	of	the	time	you	send	it	as	HTML.

Note
There	 is	 also	 another	 method	 that	 you	 can	 use	 to	 send	 output	 to	 the	 browser:
getOutputStream.	However,	this	method	is	for	sending	binary	data,	so	in	most	cases
you	will	use	getWriter	and	not	getOutputStream.

Before	sending	any	HTML	tag,	you	should	set	the	content	type	of	the	response	by	calling
the	setContentType	method,	passing	“text/html”	as	an	argument.	This	is	how	you	tell	the
browser	 that	 the	 content	 type	 is	HTML.	Most	browsers	by	default	 render	 a	 response	 as
HTML	in	the	absence	of	a	content	type.	However,	some	browsers	will	display	HTML	tags
as	plain	text	if	you	don’t	set	the	response	content	type.

ServletConfig
The	servlet	container	passes	a	ServletConfig	to	the	servlet’s	init	method	when	the	servlet
container	initializes	the	servlet.	The	ServletConfig	encapsulates	configuration	information
that	you	can	pass	 to	 a	 servlet	 through	@WebServlet	 or	 the	deployment	 descriptor.	 The
deployment	descriptor	is	an	XML	file	that	contain	configuration	values.	It	may	or	may	not
be	present	in	a	servlet/JSP	application.

Every	piece	of	 information	passed	to	 the	ServletConfig	 is	called	an	 initial	parameter.
An	initial	parameter	has	two	components:	key	and	value.

To	 retrieve	 the	 value	 of	 an	 initial	 parameter	 from	 inside	 a	 servlet,	 call	 the
getInitParameter	method	on	the	ServletConfig.	The	signature	of	getInitParameter	is	as
follows.

java.lang.String	getInitParameter(java.lang.String	name)

In	 addition,	 the	getInitParameterNames	method	 returns	 an	Enumeration	 of	 all	 initial
parameter	names:

java.util.Enumeration<java.lang.String>	getInitParameterNames()

For	example,	to	retrieve	the	value	of	a	contactName	parameter,	use	this.

String	contactName	=	servletConfig.getInitParameter("contactName");

On	top	of	getInitParameter	and	getInitParameterNames,	ServletConfig	offers	another
useful	method,	getServletContext.	Use	this	method	to	retrieve	the	ServletContext	 from
inside	a	 servlet.	See	 the	 section	“ServletContext”	 later	 in	 this	 appendix	 for	 a	discussion
about	this	object.

As	an	example	of	ServletConfig,	let’s	add	a	servlet	named	ServletConfigDemoServlet
to	servletapi1.	The	new	servlet	is	given	in	Listing	C.2.

Listing	C.2:	The	ServletConfigDemoServlet	class

package	servletapi1;

import	java.io.IOException;

import	java.io.PrintWriter;

import	javax.servlet.Servlet;

import	javax.servlet.ServletConfig;

import	javax.servlet.ServletException;

import	javax.servlet.ServletRequest;

import	javax.servlet.ServletResponse;

import	javax.servlet.annotation.WebInitParam;

import	javax.servlet.annotation.WebServlet;

@WebServlet(name	=	"ServletConfigDemoServlet",	

				urlPatterns	=	{	"/servletConfigDemo"	},

				initParams	=	{

								@WebInitParam(name="admin",	value="Harry	Taciak"),

								@WebInitParam(name="email",	value="admin@example.com")

				}

)

public	class	ServletConfigDemoServlet	implements	Servlet	{

				private	transient	ServletConfig	servletConfig;

				@Override

				public	ServletConfig	getServletConfig()	{

								return	servletConfig;

				}

				@Override

				public	void	init(ServletConfig	servletConfig)	

												throws	ServletException	{

								this.servletConfig	=	servletConfig;

				}

				@Override

				public	void	service(ServletRequest	request,	

												ServletResponse	response)

												throws	ServletException,	IOException	{

								ServletConfig	servletConfig	=	getServletConfig();

								String	admin	=	servletConfig.getInitParameter("admin");

								String	email	=	servletConfig.getInitParameter("email");

								response.setContentType("text/html");

								PrintWriter	writer	=	response.getWriter();

								writer.print("<!DOCTYPE	html>"

																+	"<html>"

																+	"<body>"	

																+	"Admin:"	+	admin	

																+	"
Email:"	+	email

																+	"</body></html>");

				}

				@Override

				public	String	getServletInfo()	{

								return	"ServletConfig	demo";

				}

				

				@Override

				public	void	destroy()	{

				}				

}

As	you	can	see	in	Listing	C.2,	you	pass	two	initial	parameters	(admin	and	email)	to	the
servlet	in	the	initParams	attribute	in	@WebServlet:

@WebServlet(name	=	"ServletConfigDemoServlet",	

				urlPatterns	=	{	"/servletConfigDemo"	},

				initParams	=	{

								@WebInitParam(name="admin",	value="Harry	Taciak"),

								@WebInitParam(name="email",	value="admin@example.com")

				}

)

You	can	invoke	ServletConfigDemoServlet	using	this	URL:

http://localhost:8080/servletapi1/servletConfigDemo

The	result	should	be	similar	to	that	in	Figure	C.4.

Figure	C.4:	ServletConfigDemoServlet	in	action

Alternatively,	you	can	pass	 initial	parameters	 in	 the	deployment	descriptor.	Utilizing	 the
deployment	 descriptor	 for	 this	 purpose	 is	 easier	 than	 using	@WebServlet	 since	 the
deployment	 descriptor	 is	 a	 text	 file	 and	 you	 can	 edit	 it	without	 recompiling	 the	 servlet
class.

The	 deployment	 descriptor	 is	 discussed	 in	 the	 section	 “Using	 the	 Deployment
Descriptor”	later	in	this	appendix.

ServletContext
The	ServletContext	represents	the	servlet	application.	There	is	only	one	context	per	web
application.	In	a	distributed	environment	where	an	application	is	deployed	simultaneously
to	multiple	containers,	there	is	one	ServletContext	object	per	Java	Virtual	Machine.

You	 can	 obtain	 the	ServletContext	 by	 calling	 the	 getServletContext	method	 on	 the
ServletConfig.	In	addition,	there	is	also	a	getServletContext	method	in	ServletRequest,
that	returns	the	same	ServletContext.

The	ServletContext	 is	 there	 so	 that	 you	 can	 share	 information	 that	 can	 be	 accessed
from	all	 resources	 in	 the	application	and	 to	enable	dynamic	 registration	of	web	objects.
The	 former	 is	 done	 by	 storing	 objects	 in	 an	 internal	Map	 within	 the	 ServletContext.
Objects	stored	in	ServletContext	are	called	attributes.

The	following	methods	in	ServletContext	deal	with	attributes:

java.lang.Object	getAttribute(java.lang.String	name)

java.util.Enumeration<java.lang.String>	getAttributeNames()

void	setAttribute(java.lang.String	name,	java.lang.Object	object)

void	removeAttribute(java.lang.String	name)

GenericServlet
The	 preceding	 examples	 showed	 how	 to	 write	 servlets	 by	 implementing	 the	 Servlet
interface.	However,	 did	 you	 notice	 that	 you	 had	 to	 provide	 implementations	 for	 all	 the
methods	 in	Servlet	 even	 though	 some	 of	 them	 did	 not	 contain	 code?	 In	 addition,	 you
needed	to	preserve	the	ServletConfig	object	into	a	class	level	variable.

Fortunately,	the	GenericServlet	abstract	class	comes	to	the	rescue.	In	keeping	with	the
spirit	of	easier	code	writing	in	object-oriented	programming,	GenericServlet	implements
both	Servlet	and	ServletConfig	and	perform	the	following	tasks:

Assign	the	ServletConfig	in	the	init	method	to	a	class	level	variable	so	that	it	can	be
retrieved	by	calling	getServletConfig.
Provide	default	implementations	of	all	methods	in	the	Servlet	interface.
Provide	methods	that	wrap	the	methods	in	the	ServletConfig.

GenericServlet	 preserves	 the	 ServletConfig	 object	 by	 assigning	 it	 to	 a	 class	 level
variable	 servletConfig	 in	 the	 init	 method.	 Here	 is	 the	 implementation	 of	 init	 in
GenericServlet.

public	void	init(ServletConfig	servletConfig)	

								throws	ServletException	{

				this.servletConfig	=	servletConfig;

				this.init();

}

However,	if	you	override	this	method	in	your	class,	the	init	method	in	your	servlet	will	be
called	 instead	 and	 you	 have	 to	 call	 super.init(servletConfig)	 to	 preserve	 the
ServletConfig.	To	save	you	from	having	to	do	so,	GenericServlet	provides	a	second	init
method,	which	 does	 not	 take	 arguments.	This	method	 is	 called	 by	 the	 first	 init	method
after	ServletConfig	is	assigned	to	a	variable	servletConfig.	Here	is	the	implementation	of
the	first	init	method	in	GenericServlet.

public	void	init(ServletConfig	servletConfig)	

								throws	ServletException	{

				this.servletConfig	=	servletConfig;

				this.init();

}

This	means,	you	can	write	initialization	code	by	overriding	the	no-argument	init	method
and	the	ServletConfig	will	still	be	preserved	by	the	GenericServlet	instance.

The	 GenericServletDemoServlet	 class	 in	 Listing	 C.3	 is	 a	 rewrite	 of
ServletConfigDemoServlet	 in	 Listing	 C.2.	 Note	 that	 the	 new	 servlet	 extends
GenericServlet	instead	of	implementing	Servlet.

Listing	C.3:	The	GenericServletDemoServlet	class

package	servletapi1;

import	java.io.IOException;

import	java.io.PrintWriter;

import	javax.servlet.GenericServlet;

import	javax.servlet.ServletConfig;

import	javax.servlet.ServletException;

import	javax.servlet.ServletRequest;

import	javax.servlet.ServletResponse;

import	javax.servlet.annotation.WebInitParam;

import	javax.servlet.annotation.WebServlet;

@WebServlet(name	=	"GenericServletDemoServlet",	

								urlPatterns	=	{	"/generic"	},

								initParams	=	{

												@WebInitParam(name="admin",	value="Harry	Taciak"),

												@WebInitParam(name="email",	value="admin@example.com")

								}

)

public	class	GenericServletDemoServlet	extends	GenericServlet	{

				

				private	static	final	long	serialVersionUID	=	62500890L;

				@Override

				public	void	service(ServletRequest	request,	

												ServletResponse	response)

												throws	ServletException,	IOException	{

								ServletConfig	servletConfig	=	getServletConfig();

								String	admin	=	servletConfig.getInitParameter("admin");

								String	email	=	servletConfig.getInitParameter("email");

								response.setContentType("text/html");

								PrintWriter	writer	=	response.getWriter();

								writer.print("<!DOCTYPE	html>"

																+	"<html><head></head><body>"	

																+	"Admin:"	+	admin

																+	"
Email:"	+	email

																+	"</body></html>");

				}

}

As	you	can	see,	by	extending	GenericServlet	you	do	not	need	to	override	methods	 that
you	 don’t	 plan	 to	 change.	As	 a	 result,	 you	 have	 cleaner	 code.	 In	 Listing	C.3,	 the	 only
method	 overridden	 is	 the	 service	 method.	 Also,	 there	 is	 no	 need	 to	 preserve	 the
ServletConfig	yourself.

Invoke	 the	 servlet	 using	 this	 URL	 and	 the	 result	 should	 be	 similar	 to	 that	 of
ServletConfigDemoServlet.

http://localhost:8080/servletapi1/generic

Even	though	GenericServlet	is	a	nice	enhancement	to	Servlet,	it	is	not	something	you	use
frequently,	however,	as	it	is	not	as	advanced	as	HttpServlet.	HttpServlet	is	the	real	deal
and	used	in	real-world	applications.	It	is	explained	in	the	next	section,	“HTTP	Servlets.”

HTTP	Servlets
Most,	if	not	all,	servlet	applications	you	write	will	work	with	HTTP.	This	means,	you	can
make	use	of	the	features	offered	by	HTTP.	The	javax.servlet.http	package	is	the	second
package	 in	 the	 Servlet	 API	 that	 contains	 classes	 and	 interfaces	 for	 writing	 servlet
applications.	Many	of	the	types	in	javax.servlet.http	override	those	in	javax.servlet.

Figure	C.5	shows	the	main	types	in	javax.servlet.http.

Figure	C.5:	The	more	important	members	of	javax.servlet.http

HttpServlet
The	 HttpServlet	 class	 overrides	 the	 javax.servlet.GenericServlet	 class.	 When	 using
HttpServlet,	you	will	also	work	with	the	HttpServletRequest	and	HttpServletResponse
objects	 that	 represent	 the	 servlet	 request	 and	 the	 servlet	 response,	 respectively.	 The
HttpServletRequest	 interface	 extends	 javax.servlet.ServletRequest	 and
HttpServletResponse	extends	javax.servlet.ServletResponse.

HttpServlet	overrides	the	service	method	in	GenericServlet	and	adds	another	service
method	with	the	following	signature:

protected	void	service(HttpServletRequest	request,

								HttpServletResponse	response)	

								throws	ServletException,	java.io.IOException

The	difference	between	 the	new	service	method	and	 the	one	 in	 javax.servlet.Servlet	 is
that	the	former	accepts	an	HttpServletRequest	and	an	HttpServletResponse,	instead	of	a
ServletRequest	and	a	ServletResponse.

The	 servlet	 container,	 as	 usual,	 calls	 the	 original	 service	 method	 in
javax.servlet.Servlet,	which	in	HttpServlet	is	written	as	follows:

public	void	service(ServletRequest	req,	ServletResponse	res)

								throws	ServletException,	IOException	{

				HttpServletRequest	request;

				HttpServletResponse	response;

				try	{

								request	=	(HttpServletRequest)	req;

								response	=	(HttpServletResponse)	res;

				}	catch	(ClassCastException	e)	{

								throw	new	ServletException("non-HTTP	request	or	response");

				}

				service(request,	response);

}

The	original	service	method	downcasts	the	request	and	response	objects	from	the	servlet
container	 to	HttpServletRequest	 and	HttpServletResponse,	 respectively,	 and	 call	 the
new	service	method.	The	downcasting	is	always	successful	because	the	servlet	container
always	 passes	 an	 HttpServletRequest	 and	 an	 HttpServletResponse	 when	 calling	 a
servlet’s	 service	method,	 to	 anticipate	 the	 use	 of	HTTP.	 Even	 if	 you	 are	 implementing
javax.servlet.Servlet	 or	 extending	 javax.servlet.GenericServlet,	 you	 can	 downcast	 the
servlet	request	and	servlet	response	passed	to	the	service	method	to	HttpServletRequest
and	HttpServletResponse,	respectively.

The	new	service	method	in	HttpServlet	then	examines	the	HTTP	method	used	to	send
the	request	(by	calling	request.getMethod)	and	call	one	of	the	following	methods:	doGet,
doPost,	doHead,	doPut,	doTrace,	doOptions,	and	doDelete.	Each	of	the	seven	methods
represents	 an	HTTP	method.	doGet	 and	doPost	 are	 the	most	 often	 used.	As	 such,	 you
rarely	 need	 to	 override	 the	 service	 methods	 anymore.	 Instead,	 you	 override	 doGet	 or
doPost	or	both	doGet	and	doPost.

To	 summarize,	 there	 are	 two	 features	 in	 HttpServlet	 that	 you	 do	 not	 find	 in

GenericServlet:

Instead	of	the	service	method,	you	will	override	doGet,	doPost,	or	both	of	them.	In
rare	cases,	you	will	 also	override	any	of	 these	methods:	doHead,	doPut,	doTrace,
doOptions,	doDelete.
You	 will	 work	 with	 HttpServletRequest	 and	 HttpServletResponse,	 instead	 of
ServletRequest	and	ServletResponse.

HttpServletRequest
HttpServletRequest	 represents	 the	 servlet	 request	 in	 the	HTTP	environment.	 It	 extends
the	 javax.servlet.ServletRequest	 interface	 and	 adds	 several	 methods.	 Some	 of	 the
methods	added	are	as	follows.

java.lang.String	getContextPath()

Returns	the	portion	of	the	request	URI	that	indicates	the	context	of	the	request.

Cookie[]	getCookies()

Returns	an	array	of	Cookie	objects.

java.lang.String	getHeader(java.lang.String	name)

Returns	the	value	of	the	specified	HTTP	header.

java.lang.String	getMethod()

Returns	the	name	of	the	HTTP	method	with	which	this	request	was	made.

java.lang.String	getQueryString()

Returns	the	query	string	in	the	request	URL.

HttpSession	getSession()

Returns	the	session	object	associated	with	this	request.	If	none	is	found,	creates	a	new
session	object.

HttpSession	getSession(boolean	create)

Returns	the	current	session	object	associated	with	this	request.	If	none	is	found	and	the
create	argument	is	true,	create	a	new	session	object.

HttpServletResponse
HttpServletResponse	represents	the	servlet	response	in	the	HTTP	environment.	Here	are
some	of	the	methods	defined	in	it.

void	addCookie(Cookie	cookie)

Adds	a	cookie	to	this	response	object.

void	addHeader(java.lang.String	name,	java.lang.String	value)

Adds	a	header	to	this	response	object.

void	sendRedirect(java.lang.String	location)

Sends	a	response	code	that	redirects	the	browser	to	the	specified	location.

Working	with	HTML	Forms
A	web	application	almost	always	contains	one	or	more	HTML	forms	 to	 take	user	 input.
You	can	easily	send	an	HTML	form	from	a	servlet	to	the	browser.	When	the	user	submits
the	form,	values	entered	in	the	form	are	sent	to	the	server	as	request	parameters.

The	value	of	an	HTML	input	field	(a	text	field,	a	hidden	field,	or	a	password	field)	or
text	area	is	sent	to	the	server	as	a	string.	An	empty	input	field	or	text	area	sends	an	empty
string.	 As	 such,	 ServletRequest.getParameter	 that	 takes	 an	 input	 field	 name	 never
returns	null.

An	HTML	select	element	also	sends	a	string	to	the	server.	If	none	of	the	options	in	the
select	element	is	selected,	the	value	of	the	option	that	is	displayed	is	sent.

A	multiple-value	select	element	(a	select	element	 that	allows	multiple	selection	and	is
indicated	 by	 <select	 multiple>)	 sends	 a	 string	 array	 and	 has	 to	 be	 handled	 by
ServletRequest.getParameterValues.

A	 checkbox	 is	 a	 bit	 extraordinary.	 A	 checked	 checkbox	 sends	 the	 string	 “on”	 to	 the
server.	 An	 unchecked	 checkbox	 sends	 nothing	 to	 the	 server	 and
ServletRequest.getParameter(fieldName)	returns	null.

Radio	buttons	send	the	value	of	the	selected	button	to	the	server.	If	none	of	the	buttons
is	 selected,	 nothing	 is	 sent	 to	 the	 server	 and	ServletRequest.getParameter(fieldName)
returns	null.

If	 a	 form	 contains	 multiple	 input	 elements	 with	 the	 same	 name,	 all	 values	 will	 be
submitted	 and	 you	 have	 to	 use	 ServletRequest.getParameterValues	 to	 retrieve	 them.
ServletRequest.getParameter	will	only	return	the	last	value.

The	FormServlet	class	in	Listing	C.4	demonstrates	how	to	work	with	an	HTML	form.
Its	doGet	method	 sends	 an	 order	 form	 to	 the	 browser.	 Its	doPost	method	 retrieves	 the
values	entered	and	prints	them.	This	servlet	is	part	of	the	servletapi2	application.

Listing	C.4:	The	FormServlet	class

package	servletapi2;

import	java.io.IOException;

import	java.io.PrintWriter;

import	java.util.Enumeration;

import	javax.servlet.ServletException;

import	javax.servlet.annotation.WebServlet;

import	javax.servlet.http.HttpServlet;

import	javax.servlet.http.HttpServletRequest;

import	javax.servlet.http.HttpServletResponse;

@WebServlet(name	=	"FormServlet",	urlPatterns	=	{	"/form"	})

public	class	FormServlet	extends	HttpServlet	{

				private	static	final	long	serialVersionUID	=	54L;

				private	static	final	String	TITLE	=	"Order	Form";

				@Override

				public	void	doGet(HttpServletRequest	request,

												HttpServletResponse	response)

												throws	ServletException,	IOException	{

								response.setContentType("text/html");

								PrintWriter	writer	=	response.getWriter();

								writer.println("<!DOCTYPE	html>");

								writer.println("<html>");

								writer.println("<head>");

								writer.println("<title>"	+	TITLE	+	"</title></head>");

								writer.println("<body><h1>"	+	TITLE	+	"</h1>");

								writer.println("<form	method='post'>");

								writer.println("<table>");

								writer.println("<tr>");

								writer.println("<td>Name:</td>");

								writer.println("<td><input	name='name'/></td>");

								writer.println("</tr>");

								writer.println("<tr>");

								writer.println("<td>Address:</td>");

								writer.println("<td><textarea	name='address'	"

																+	"cols='40'	rows='5'></textarea></td>");

								writer.println("</tr>");

								writer.println("<tr>");

								writer.println("<td>Country:</td>");

								writer.println("<td><select	name='country'>");

								writer.println("<option>United	States</option>");

								writer.println("<option>Canada</option>");

								writer.println("</select></td>");

								writer.println("</tr>");

								writer.println("<tr>");

								writer.println("<td>Delivery	Method:</td>");

								writer.println("<td><input	type='radio'	"	+

																"name='deliveryMethod'"

																+	"	value='First	Class'/>First	Class");

								writer.println("<input	type='radio'	"	+

																"name='deliveryMethod'	"

																+	"value='Second	Class'/>Second	Class</td>");

								writer.println("</tr>");

								writer.println("<tr>");

								writer.println("<td>Shipping	Instructions:</td>");

								writer.println("<td><textarea	name='instruction'	"

																+	"cols='40'	rows='5'></textarea></td>");

								writer.println("</tr>");

								writer.println("<tr>");

								writer.println("<td> </td>");

								writer.println("<td><textarea	name='instruction'	"

																+	"cols='40'	rows='5'></textarea></td>");

								writer.println("</tr>");

								writer.println("<tr>");

								writer.println("<td>Please	send	me	the	latest	"	+

																"product	catalog:</td>");

								writer.println("<td><input	type='checkbox'	"	+

																"name='catalogRequest'/></td>");

								writer.println("</tr>");

								writer.println("<tr>");

								writer.println("<td> </td>");

								writer.println("<td><input	type='reset'/>"	+

																"<input	type='submit'/></td>");

								writer.println("</tr>");

								writer.println("</table>");

								writer.println("</form>");

								writer.println("</body>");

								writer.println("</html>");

				}

				@Override

				public	void	doPost(HttpServletRequest	request,

												HttpServletResponse	response)

												throws	ServletException,	IOException	{

								response.setContentType("text/html");

								PrintWriter	writer	=	response.getWriter();

								writer.println("<html>");

								writer.println("<head>");

								writer.println("<title>"	+	TITLE	+	"</title></head>");

								writer.println("</head>");

								writer.println("<body><h1>"	+	TITLE	+	"</h1>");

								writer.println("<table>");

								writer.println("<tr>");

								writer.println("<td>Name:</td>");

								writer.println("<td>"	+	request.getParameter("name")

																+	"</td>");

								writer.println("</tr>");

								writer.println("<tr>");

								writer.println("<td>Address:</td>");

								writer.println("<td>"	+	request.getParameter("address")

																+	"</td>");

								writer.println("</tr>");

								writer.println("<tr>");

								writer.println("<td>Country:</td>");

								writer.println("<td>"	+	request.getParameter("country")

																+	"</td>");

								writer.println("</tr>");

								writer.println("<tr>");

								writer.println("<td>Shipping	Instructions:</td>");

								writer.println("<td>");

								String[]	instructions	=	request

																.getParameterValues("instruction");

								if	(instructions	!=	null)	{

												for	(String	instruction	:	instructions)	{

																writer.println(instruction	+	"
");

												}

								}

								writer.println("</td>");

								writer.println("</tr>");

								writer.println("<tr>");

								writer.println("<td>Delivery	Method:</td>");

								writer.println("<td>"

																+	request.getParameter("deliveryMethod")

																+	"</td>");

								writer.println("</tr>");

								writer.println("<tr>");

								writer.println("<td>Catalog	Request:</td>");

								writer.println("<td>");

								if	(request.getParameter("catalogRequest")	==	null)	{

												writer.println("No");

								}	else	{

												writer.println("Yes");

								}

								writer.println("</td>");

								writer.println("</tr>");

								writer.println("</table>");

								writer.println("<div	style='border:1px	solid	#ddd;"	+

									 	 "margin-top:40px;font-size:90%'>");

								writer.println("Debug	Info
");

								Enumeration<String>	parameterNames	=	request

																.getParameterNames();

								while	(parameterNames.hasMoreElements())	{

												String	paramName	=	parameterNames.nextElement();

												writer.println(paramName	+	":	");

												String[]	paramValues	=	request

																				.getParameterValues(paramName);

												for	(String	paramValue	:	paramValues)	{

																writer.println(paramValue	+	"
");

												}

								}

								writer.println("</div>");

								writer.println("</body>");

								writer.println("</html>");

				}

}

You	can	invoke	the	FormServlet	by	using	this	URL:

http://localhost:8080/servletapi2/form

This	will	cause	the	doGet	method	in	the	FormServlet	to	be	executed.	The	doGet	method
sends	this	HTML	form	to	the	browser.

<form	method='post'>

<input	name='name'/>

<textarea	name='address'	cols='40'	rows='5'></textarea>

<select	name='country'>");

				<option>United	States</option>

				<option>Canada</option>

</select>

<input	type='radio'	name='deliveryMethod'	value='First	Class'/>

<input	type='radio'	name='deliveryMethod'	value='Second	Class'/>

<textarea	name='instruction'	cols='40'	rows='5'></textarea>

<textarea	name='instruction'	cols='40'	rows='5'></textarea>

<input	type='checkbox'	name='catalogRequest'/>

<input	type='reset'/>

<input	type='submit'/>

</form>

The	form’s	method	is	set	to	post	to	make	sure	the	HTTP	POST	method	is	used	when	the
user	 submits	 the	 form.	 Its	 action	 attribute	 is	 missing,	 indicating	 that	 the	 form	 will	 be
submitted	to	the	same	URL	used	to	request	it.

Figure	C.6	shows	an	empty	order	form.

Figure	C.6:	An	empty	Order	form

Now,	fill	in	the	form	and	click	the	Submit	button.	The	values	you	entered	in	the	form	will
be	 sent	 to	 the	 server	 using	 the	 HTTP	 POST	method	 and	 this	 will	 invoke	 the	 servlet’s
doPost	method.	As	a	result,	you’ll	see	the	values	printed	as	shown	in	Figure	C.7.

Figure	C.7:	The	values	entered	into	the	Order	form

Using	the	Deployment	Descriptor
As	you	can	see	 in	 the	previous	examples,	writing	and	deploying	a	 servlet	 application	 is
easy.	One	aspect	of	deployment	is	configuring	the	mapping	of	your	servlet	with	a	path.	In
the	examples,	you	mapped	a	servlet	with	a	path	by	using	the	WebServlet	annotation	type.

Using	 the	deployment	 descriptor	 is	 another	way	 of	 configuring	 a	 servlet	 application.
The	deployment	 descriptor	 is	 always	named	web.xml	 and	 located	 under	 the	WEB-INF
directory.	 In	 this	 appendix	 I	 show	 you	 how	 to	 create	 a	 servlet	 application	 named
servletapi3	and	write	a	web.xml	file	for	it.

The	 servletapi3	 has	 two	 servlets,	 SimpleServlet	 and	 WelcomeServlet,	 and	 a
deployment	descriptor	to	map	the	servlets.	Listings	C.5	and	C.6	show	SimpleServlet	and
WelcomeServlet,	 respectively.	 Note	 that	 the	 servlet	 classes	 are	 not	 annotated
@WebServlet.	The	deployment	descriptor	is	given	in	Listing	C.7.

Listing	C.5:	The	unannotated	SimpleServlet	class

package	servletapi3;

import	java.io.IOException;

import	java.io.PrintWriter;

import	javax.servlet.ServletException;

import	javax.servlet.http.HttpServlet;

import	javax.servlet.http.HttpServletRequest;

import	javax.servlet.http.HttpServletResponse;

public	class	SimpleServlet	extends	HttpServlet	{

				private	static	final	long	serialVersionUID	=	8946L;

				

				@Override

				public	void	doGet(HttpServletRequest	request,

												HttpServletResponse	response)	

												throws	ServletException,	IOException	{

								response.setContentType("text/html");

								PrintWriter	writer	=	response.getWriter();

								writer.print("<!DOCTYPE	html><html><head></head>"	+

									 	 "<body>Simple	Servlet</body></html");

				}

}

Listing	C.6:	The	unannotated	WelcomeServlet	class

package	servletapi3;

import	java.io.IOException;

import	java.io.PrintWriter;

import	javax.servlet.ServletException;

import	javax.servlet.http.HttpServlet;

import	javax.servlet.http.HttpServletRequest;

import	javax.servlet.http.HttpServletResponse;

public	class	WelcomeServlet	extends	HttpServlet	{

				private	static	final	long	serialVersionUID	=	27126L;

				@Override

				public	void	doGet(HttpServletRequest	request,

												HttpServletResponse	response)	

												throws	ServletException,	IOException	{

								response.setContentType("text/html");

								PrintWriter	writer	=	response.getWriter();

								writer.print("<!DOCTYPE	html><html><head></head>"

																+	"<body>Welcome</body></html>");

				}

}

Listing	C.7:	The	deployment	descriptor

<?xml	version="1.0"	encoding="UTF-8"?>

<web-app	version="3.1"

				xmlns="http://xmlns.jcp.org/xml/ns/javaee"	

				xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

				xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee	

http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd">

				<servlet>

								<servlet-name>SimpleServlet</servlet-name>

								<servlet-class>servletapi3.SimpleServlet</servlet-class>

								<load-on-startup>10</load-on-startup>

				</servlet>

				<servlet-mapping>

								<servlet-name>SimpleServlet</servlet-name>

								<url-pattern>/simple</url-pattern>

				</servlet-mapping>		

				<servlet>

								<servlet-name>WelcomeServlet</servlet-name>

								<servlet-class>servletapi3.WelcomeServlet</servlet-class>

								<load-on-startup>20</load-on-startup>

				</servlet>

				<servlet-mapping>

								<servlet-name>WelcomeServlet</servlet-name>

								<url-pattern>/welcome</url-pattern>

				</servlet-mapping>

</web-app>

There	are	many	advantages	of	using	the	deployment	descriptor.	For	one,	you	can	include
elements	that	have	no	equivalent	in	@WebServlet,	such	as	the	load-on-startup	element.
This	element	loads	the	servlet	at	application	start-up,	rather	than	when	the	servlet	is	first
called.	Using	load-on-startup	means	the	first	call	to	the	servlet	will	 take	no	longer	than
subsequent	calls.	This	is	especially	useful	if	the	init	method	of	the	servlet	takes	a	while	to
complete.

Another	 advantage	 of	 using	 the	 deployment	 descriptor	 is	 that	 you	 don’t	 need	 to
recompile	your	servlet	class	if	you	need	to	change	configuration	values,	such	as	the	servlet
path.

In	 addition,	 you	 can	 pass	 initial	 parameters	 to	 a	 servlet	 and	 edit	 them	 without
recompiling	the	servlet	class.

The	 deployment	 descriptor	 also	 allows	 you	 to	 override	 values	 specified	 in	 a	 servlet
annotation.	A	WebServlet	annotation	on	a	servlet	that	is	also	declared	in	the	deployment
descriptor	will	 have	 no	 effect.	However,	 annotating	 a	 servlet	 that	 is	 not	 declared	 in	 the
deployment	 descriptor	will	 still	work.	This	means,	 you	 can	have	 annotated	 servlets	 and
declare	servlets	in	the	deployment	descriptor	in	the	same	application.

Figure	C.8	presents	the	directory	structure	for	servletapi3.	The	directory	structure	does
not	 differ	much	 from	 that	 of	 servletapi1.	 The	 only	 difference	 is	 that	 servletapi3	 has	 a
web.xml	file	(the	deployment	descriptor)	in	the	WEB-INF	directory.

Figure	C.8:	Directory	structure	for	servletapi3	(with	deployment	descriptor)

Now	that	SimpleServlet	and	WelcomeServlet	are	declared	in	the	deployment	descriptor.
You	can	use	these	URLs	to	access	them:

http://localhost:8080/servletapi3/simple

http://localhost:8080/servletapi3/welcome

Summary
Servlet	 technology	is	part	of	the	Java	EE.	All	servlets	run	in	a	servlet	container,	and	the
contract	between	the	container	and	the	servlets	takes	the	form	of	the	javax.servlet.Servlet
interface.	The	javax.servlet	package	also	provides	the	GenericServlet	abstract	class	that
implements	Servlet.	 This	 is	 a	 convenient	 class	 that	 you	 can	 extend	 to	 create	 a	 servlet.
However,	most	modern	servlets	will	work	in	the	HTTP	environment.	As	such,	subclassing
the	javax.servlet.http.HttpServlet	class	makes	more	sense.	The	HttpServlet	class	itself
is	a	subclass	of	GenericServlet.

Appendix	D

JavaServer	Pages
There	are	two	drawbacks	associated	with	servlets.	First,	all	HTML	tags	written	in	a	servlet
must	be	enclosed	in	Java	strings,	making	sending	HTTP	response	a	tedious	effort.	Second,
all	 text	and	HTML	tags	are	hardcoded;	as	 such,	even	minor	changes	 to	 the	presentation
layer,	such	as	changing	a	background	color,	require	recompilation.

JavaServer	 Pages	 (JSP)	 solves	 the	 two	 problems	 in	 servlets.	 JSP	 does	 not	 replace
Servlet,	though.	Rather,	it	complements	it.	Modern	Java	web	applications	use	both	servlets
and	JSP	pages.	The	latest	version	of	JSP	at	the	time	of	writing	is	2.3.

JSP	can	be	written	in	standard	syntax	or	XML	syntax.	JSP	pages	written	in	XML	syntax
are	called	JSP	documents.	JSP	in	XML	syntax	is	very	rarely	used	and	is	not	covered	here.
In	this	appendix	you	will	learn	JSP	in	standard	syntax.

This	appendix	starts	with	an	overview	of	JSP	and	discusses	comments,	implicit	objects
and	three	syntactic	elements	(directives,	scripting	elements,	and	actions).	Error	handling	is
covered	towards	the	end	of	this	appendix.

Note
Good	 design	 says	 that	 you	 should	 not	 write	 Java	 code	 in	 JSP	 pages,	 unless	 your
application	 will	 only	 consist	 of	 one	 or	 two	 simple	 JSP	 pages	 and	 will	 never	 grow.
Instead,	you	should	embrace	Model	2,	which	dictates	that	JSP	pages	be	used	only	for
displaying	values	in	Java	objects.

An	Overview	of	JSP
A	JSP	page	is	essentially	a	servlet.	However,	working	with	JSP	pages	may	be	easier	than
dealing	 with	 servlets	 for	 two	 reasons.	 First,	 you	 do	 not	 have	 to	 compile	 JSP	 pages.
Second,	 JSP	 pages	 are	 basically	 text	 files	with	 jsp	 extension	 and	 you	 can	 use	 any	 text
editor	to	write	them.

JSP	pages	run	on	a	JSP	container.	A	servlet	container	is	normally	also	a	JSP	container.
Tomcat,	for	instance,	is	a	servlet/JSP	container.

The	first	time	a	JSP	page	is	invoked,	a	servlet/JSP	container	does	two	things:

1.	Translate	 the	JSP	page	 into	a	JSP	page	 implementation	class,	which	 is	a	Java	class
that	 implements	 the	 javax.servlet.jsp.JspPage	 interface	 or	 its	 subinterface
javax.servlet.jsp.HttpJspPage.	 JspPage	 is	 a	 subinterface	 of	 javax.servlet.Servlet
and	this	makes	every	JSP	page	a	servlet.	The	class	name	of	the	generated	servlet	is
dependent	on	the	servlet/JSP	container.	You	do	not	have	to	worry	about	this	because
you	 do	 not	 have	 to	 work	 with	 it	 directly.	 If	 there	 is	 a	 translation	 error,	 an	 error
message	will	be	sent	to	the	client.

2.	If	the	translation	was	successful,	the	servlet/JSP	container	compiles	the	servlet	class.
The	container	 then	loads	and	instantiates	 the	Java	bytecode	as	well	as	performs	the
lifecycle	operations	it	normally	does	a	servlet.

For	subsequent	requests	for	the	same	JSP	page,	the	servlet/JSP	container	checks	if	the	JSP
page	has	been	modified	since	the	last	time	it	was	translated.	If	so,	it	will	be	re-translated,
re-compiled	and	executed.	If	not,	the	JSP	servlet	already	in	memory	is	executed.	This	way,
the	first	invocation	of	a	JSP	page	always	takes	longer	than	subsequent	requests	because	it
involves	 translation	and	compilation.	To	get	around	this	problem,	you	can	do	one	of	 the
following:

Configure	 the	 application	 so	 that	 all	 JSP	 pages	 will	 be	 called	 (and,	 in	 effect,
translated	and	compiled)	when	the	application	starts,	rather	than	at	first	requests.
Precompile	the	JSP	pages	and	deploy	them	as	servlets.

JSP	comes	with	an	API	that	comprises	four	packages:

javax.servlet.jsp.	 Contains	 core	 classes	 and	 interfaces	 used	 by	 the	 servlet/JSP
container	 to	 translate	 JSP	 pages	 into	 servlets.	 The	 JspPage	 and	 HttpJspPage
interfaces	 are	 important	 members	 of	 this	 package.	 All	 JSP	 page	 implementation
classes	must	implement	either	JspPage	or	HttpJspPage.	In	the	HTTP	environment,
HttpJspPage	is	the	obvious	choice.
javax.servlet.jsp.tagext.	Contains	types	for	developing	custom	tags.
javax.el.	Provides	the	API	for	the	Unified	Expression	Language.
javax.servlet.jsp.el.	 Provides	 classes	 that	 must	 be	 supported	 by	 a	 servlet/JSP
container	to	support	the	Expression	Language	in	JSP.

With	 the	 exception	 of	 javax.servlet.jsp.tagext,	 you	 rarely	 have	 to	 use	 the	 JSP	 API

directly.	 In	 fact,	when	writing	 a	 JSP	page,	 you’re	more	 concerned	with	 the	Servlet	API
than	the	JSP	API	itself.	Of	course,	you	also	need	to	master	the	JSP	syntax,	which	will	be
explained	throughout	this	 .	One	example	where	the	JSP	API	is	used	extensively	is	when
developing	a	JSP	container	or	a	JSP	compiler.

You	can	view	the	JSP	API	here:

https://docs.oracle.com/javaee/7/api/javax/servlet/jsp/

package-summary.html

A	JSP	page	 can	 contain	 template	 data	 and	 syntactic	 elements.	An	element	 is	 something
with	a	special	meaning	 to	 the	JSP	 translator.	For	example,	<%	 is	 an	element	because	 it
denotes	the	start	of	a	Java	code	block	within	a	JSP	page.	%>	is	also	an	element	because	it
terminates	 a	 Java	 code	 block.	 Everything	 else	 that	 is	 not	 an	 element	 is	 template	 data.
Template	data	is	sent	as	is	to	the	browser.	For	instance,	HTML	tags	and	text	in	a	JSP	page
are	template	data.

Listing	D.1	presents	a	 JSP	page	named	welcome.jsp.	 It	 is	 a	 simple	page	 that	 sends	a
greeting	to	the	client.	Notice	how	simple	the	JSP	page	is	compared	to	a	servlet	that	does
the	same	thing?

Listing	D.1:	The	welcome.jsp	page

<!DOCTYPE	html>

<html>

<head><title>Welcome</title></head>

<body>

Welcome

</body>

</html>

In	Tomcat,	the	welcome.jsp	page	is	translated	into	a	welcome_jsp	servlet	after	the	page’s
first	invocation.	You	can	find	the	generated	servlet	in	a	subdirectory	under	Tomcat’s	work
directory	The	servlet	extends	org.apache.jasper.runtime.HttpJspBase,	an	abstract	class
that	 extends	 javax.servlet.http.HttpServlet	 and	 implements
javax.servlet.jsp.HttpJspPage.

Here	is	the	generated	servlet	for	welcome.jsp.	Do	not	worry	if	you	find	it	too	cryptic.
You	can	continue	without	understanding	it,	even	though	it	is	better	if	you	do.

package	org.apache.jsp;

import	javax.servlet.*;

import	javax.servlet.http.*;

import	javax.servlet.jsp.*;

public	final	class	welcome_jsp	extends	

								org.apache.jasper.runtime.HttpJspBase

								implements	org.apache.jasper.runtime.JspSourceDependent	{

				private	static	final	javax.servlet.jsp.JspFactory	_jspxFactory	=

								javax.servlet.jsp.JspFactory.getDefaultFactory();

				private	static	java.util.Map<java.lang.String,java.lang.Long>	

								_jspx_dependants;

				private	javax.el.ExpressionFactory	_el_expressionfactory;

				private	org.apache.tomcat.InstanceManager	_jsp_instancemanager;

				public	java.util.Map<java.lang.String,java.lang.Long>	

								getDependants()	{

												return	_jspx_dependants;

				}

				public	void	_jspInit()	{

								_el_expressionfactory	=						

																_jspxFactory.getJspApplicationContext(

																getServletConfig().getServletContext())

															.getExpressionFactory();

								_jsp_instancemanager	=			

																org.apache.jasper.runtime.InstanceManagerFactory

															.getInstanceManager(getServletConfig());

				}

				public	void	_jspDestroy()	{

				}

				public	void	_jspService(final		

								javax.servlet.http.HttpServletRequest	request,	final	

								javax.servlet.http.HttpServletResponse	response)

								throws	java.io.IOException,	javax.servlet.ServletException	{

								final	javax.servlet.jsp.PageContext	pageContext;

								javax.servlet.http.HttpSession	session	=	null;

								final	javax.servlet.ServletContext	application;

								final	javax.servlet.ServletConfig	config;

								javax.servlet.jsp.JspWriter	out	=	null;

								final	java.lang.Object	page	=	this;

								javax.servlet.jsp.JspWriter	_jspx_out	=	null;

								javax.servlet.jsp.PageContext	_jspx_page_context	=	null;

								try	{

												response.setContentType("text/html");

												pageContext	=	_jspxFactory.getPageContext(this,	request,	

																response,	null,	true,	8192,	true);

												_jspx_page_context	=	pageContext;

												application	=	pageContext.getServletContext();

												config	=	pageContext.getServletConfig();

												session	=	pageContext.getSession();

												out	=	pageContext.getOut();

												_jspx_out	=	out;

												out.write("<html>\n");

												out.write("<head><title>Welcome</title></head>\n");

												out.write("<body>\n");

												out.write("Welcome\n");

												out.write("</body>\n");

												out.write("</html>");

								}	catch	(java.lang.Throwable	t)	{

												if	(!(t	instanceof	

																				javax.servlet.jsp.SkipPageException)){

																out	=	_jspx_out;

																if	(out	!=	null	&&	out.getBufferSize()	!=	0)

																				try	{	

																								out.clearBuffer();	

																				}	catch	(java.io.IOException	e)	{

																				}

																if	(_jspx_page_context	!=	null)			

																			_jspx_page_context.handlePageException(t);

												}

								}	finally	{

												_jspxFactory.releasePageContext(_jspx_page_context);

								}

				}

}

As	 you	 can	 see	 in	 the	 code	 above,	 the	 body	 of	 the	 JSP	 page	 is	 translated	 into	 a
_jspService	 method.	 This	 method	 is	 defined	 in	 HttpJspPage	 and	 is	 called	 from	 the
implementation	 of	 the	 service	method	 in	HttpJspBase.	 Here	 is	 from	 the	HttpJspBase
class.

public	final	void	service(HttpServletRequest	request,	

								HttpServletResponse	response)	throws	ServletException,	

								IOException	{

				_jspService(request,	response);

}

To	override	 the	 init	and	destroy	methods,	 you	 can	declare	methods	 as	 explained	 in	 the
section	“Scripting	Elements”	later	in	this	.

Another	aspect	where	a	JSP	page	differs	from	a	servlet	is	the	fact	that	a	JSP	page	does
not	 need	 to	be	 annotated	or	mapped	 to	 a	URL	 in	 the	deployment	descriptor.	Every	 JSP
page	 in	 the	 application	 directory	 can	 be	 invoked	 by	 typing	 the	 path	 to	 the	 page	 in	 the
browser.	 Figure	 D.1	 shows	 the	 directory	 structure	 of	 jspdemo,	 a	 JSP	 application
accompanying	this	.

Figure	D.1:	The	application	directory	of	jspdemo

With	 only	 one	 JSP	 page,	 the	 structure	 of	 the	 jspdemo	 application	 is	 very	 simple,
consisting	of	an	empty	WEB-INF	directory	and	a	welcome.jsp	page.

You	can	invoke	the	welcome.jsp	page	using	this	URL:

http://localhost:8080/jspdemo/welcome.jsp

Note
You	do	not	need	to	restart	Tomcat	after	adding	a	new	JSP	page.

Listing	 D.2	 shows	 how	 to	 use	 Java	 code	 in	 JSP	 to	 produce	 a	 dynamic	 page.	 The
todaysDate.jsp	page	in	Listing	D.2	shows	today’s	date.

Listing	D.2:	The	todaysDate.jsp	page

<%@page	import="java.util.Date"%>

<%@page	import="java.text.DateFormat"%>

<!DOCTYPE	html>

<html>

<head><title>Today's	date</title></head>

<body>

<%

				DateFormat	dateFormat	=	

												DateFormat.getDateInstance(DateFormat.LONG);

				String	s	=	dateFormat.format(new	Date());

				out.println("Today	is	"	+	s);

%>

</body>

</html>

The	todaysDate.jsp	page	sends	a	couple	of	HTML	tags	and	the	string	“Today	is”	followed
by	today’s	date	to	the	browser.

There	are	two	things	to	note.	First,	Java	code	can	appear	anywhere	in	a	JSP	page	and	is
enclosed	by	<%	and	%>.	Second,	to	import	a	Java	type	used	in	a	JSP	page,	you	use	the
import	 attribute	of	 the	page	 directive.	Without	 importing	 a	 type,	 you	have	 to	write	 the
fully-qualified	name	of	 the	 Java	 type	 in	your	code.	The	 java.lang	 package,	 however,	 is
implicitly	imported.

The	 <%	 …	%>	 block	 is	 called	 a	 scriplet	 and	 is	 discussed	 further	 in	 the	 section
“Scripting	Elements”	later	in	this	.	The	page	directive	is	explained	in	detail	in	the	section
“Directives”	later	in	this	.

You	can	invoke	the	todaysDate.jsp	page	using	this	URL:

http://localhost:8080/jspdemo/todaysDate.jsp

Comments
Adding	comments	to	a	JSP	page	is	good	practice.	There	are	two	types	of	comments	that
can	appear	in	a	JSP	page:

1.	JSP	comments,	which	are	comments	documenting	what	the	page	is	doing.

2.	HTML/XHTML	comments,	which	are	comments	that	will	be	sent	to	the	browser.

A	JSP	comment	starts	with	<%—	and	ends	with	—%>.	For	instance,	the	following	is	a
JSP	comment:

<%--	retrieve	products	to	display	--%>

A	JSP	comment	is	not	sent	to	the	browser	and	cannot	be	nested.

An	HTML/XHTML	comment	has	the	following	syntax:

<!--	[comments	here]	-->

An	 HTML/XHTML	 comment	 is	 not	 processed	 by	 the	 container	 and	 is	 sent	 to	 the
browser	as	is.	One	use	of	the	HTML/XHTML	comment	is	to	identify	the	JSP	page	itself:

<!--	this	is	/jsp/store/displayProducts.jspf	-->

This	is	particularly	useful	when	working	with	an	application	that	has	many	JSP	fragments.
The	 developer	 can	 easily	 find	 out	 which	 JSP	 page	 or	 fragment	 is	 generating	 a	 certain
HTML	section	by	viewing	the	HTML	source	in	the	browser.

Implicit	Objects
The	servlet	container	passes	several	objects	to	the	servlets	it	is	running.	For	instance,	you
get	an	HttpServletRequest	and	an	HttpServletResponse	in	the	servlet’s	service	method
and	a	ServletConfig	 in	 the	 init	method.	 In	 addition,	you	can	obtain	 an	HttpSession	by
calling	getSession	on	the	HttpServletRequest	object.

In	 JSP	 you	 can	 retrieve	 those	 objects	 by	 using	 implicit	 objects.	 Table	 D.1	 lists	 the
implicit	objects.

Object Type

request javax.servlet.http.HttpServletRequest

response javax.servlet.http.HttpServletResponse

out javax.servlet.jsp.JspWriter

session javax.servlet.http.HttpSession

application javax.servlet.ServletContext

config javax.servlet.ServletConfig

pageContext javax.servlet.jsp.PageContext

page javax.servlet.jsp.HttpJspPage

exception java.lang.Throwable

Table	D.1:	JSP	Implicit	Objects

For	example,	the	request	implicit	object	represents	the	HttpServletRequest	passed	by	the
servlet/JSP	container	 to	the	servlet’s	service	method.	You	can	use	request	as	 if	 it	was	a
variable	reference	to	the	HttpServletRequest.	For	instance,	the	following	code	retrieves
the	userName	parameter	from	the	HttpServletRequest	object.

<%

				String	userName	=	request.getParameter("userName");

%>

pageContext	refers	to	the	javax.servlet.jsp.PageContext	created	for	the	page.	It	provides
useful	 context	 information	 and	 access	 to	 various	 servlet-related	 objects	 via	 its	 self-
explanatory	 methods,	 such	 as	 getRequest,	 getResponse,	 getServletContext,
getServletConfig,	and	getSession.	These	methods	are	not	very	useful	 in	scriptlets	 since
the	objects	they	return	can	be	accessed	more	directly	through	the	implicit	objects	request,
response,	session	and	application.	However,	the	PageContext	allows	those	objects	to	be

accessed	using	the	Expression	Language.

Another	 set	 of	 interesting	methods	offered	by	PageContext	 are	 those	 for	 getting	 and
setting	attributes,	the	getAttribute	and	setAttribute	methods.	Attributes	can	be	stored	in
one	of	four	scopes:	page,	request,	session	and	application.	The	page	scope	is	the	narrowest
scope	and	attributes	stored	here	are	only	available	in	the	same	JSP	page.	The	request	scope
refers	to	the	current	ServletRequest,	 the	session	scope	the	current	HttpSession,	and	the
application	scope	the	ServletContext.

The	setAttribute	method	in	PageContext	has	the	following	signature:

public	abstract	void	setAttribute(java.lang.String	name,	

								java.lang.Object	value,	int	scope)

The	 value	 of	 scope	 can	 be	 one	 of	 the	 following	 static	 final	 ints	 in	 PageContext:
PAGE_SCOPE,	 REQUEST_SCOPE,	 SESSION_SCOPE,	 and
APPLICATION_SCOPE.

Alternatively,	 to	 store	 an	 attribute	 in	 the	 page	 scope,	 you	 can	 use	 this	 setAttribute
overload:

public	abstract	void	setAttribute(java.lang.String	name,	

								java.lang.Object	value)

For	example,	the	following	scriptlet	stores	an	attribute	in	the	ServletRequest.

<%

				//	product	is	a	Java	object

				pageContext.setAttribute("product",	product,	

												PageContext.REQUEST_SCOPE);

%>

The	Java	code	above	has	the	same	effect	as	this:

<%

				request.setAttribute("product",	product);

%>

The	out	 implicit	object	references	a	javax.servlet.jsp.JspWriter,	which	is	similar	to	the
java.io.PrintWriter	you	get	from	calling	getWriter()	on	the	HttpServletResponse.	You
can	call	its	print	method	overloads	just	as	you	would	a	PrintWriter	to	send	messages	to
the	browser.	For	instance:

out.println("Welcome");

The	implicitObjects.jsp	page	in	Listing	D.3	demonstrates	the	use	of	some	of	the	implicit
objects.

Listing	D.3:	The	implicitObjects.jsp	page

<%@page	import="java.util.Enumeration"%>

<!DOCTYPE	html>

<html>

<head><title>JSP	Implicit	Objects</title></head>

<body>

Http	headers:

<%

				for	(Enumeration<String>	e	=	request.getHeaderNames();

												e.hasMoreElements();)	{

								String	header	=	e.nextElement();

								out.println(header	+	":	"	+	request.getHeader(header)	+

																"
");

				}

%>

<hr/>

<%

				out.println("Buffer	size:	"	+	response.getBufferSize()	+

								"
");

				out.println("Session	id:	"	+	session.getId()	+	"
");

				out.println("Servlet	name:	"	+	config.getServletName()	+

								"
");

				out.println("Server	info:	"	+	application.getServerInfo());

%>

</body>

</html>

You	can	invoke	the	implicitObjects.jsp	page	with	this	URL:

http://localhost:8080/jspdemo/implicitObjects.jsp

The	page	produces	the	following	text	on	my	browser:

Http	headers:

host:	localhost:8080

connection:	keep-alive

accept:	text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,

/;q=0.8

user-agent:	Mozilla/5.0	(X11;	Linux	x86_64)	AppleWebKit/537.36	(KHTML,	

like	Gecko)	Chrome/43.0.2357.130	Safari/537.36

accept-encoding:	gzip,	deflate,	sdch

accept-language:	en-US,en;q=0.8,id;q=0.6,ms;q=0.4,fr;q=0.2,de;q=0.2

cookie:	JSESSIONID=4E3D1A4994B7F7ED5D7B96C2E3CF3BDE;	

Buffer	size:	8192

Session	id:	A4EC1E2FFCE1377FD6DF6545BDDD7909

Servlet	name:	jsp

Server	info:	Apache	Tomcat/8.0.20

What	 exactly	 you	 see	 in	 your	 browser	 depend	 on	 the	 browser	 you’re	 using	 and	 your
environment.

Note	that	by	default	the	JSP	compiler	sets	the	content	type	of	a	JSP	page	to	text/html.	If
you’re	 sending	 a	 different	 type,	 you	 must	 set	 the	 content	 type	 by	 calling
response.setContentType()	 or	 by	 using	 the	 page	 directive	 (discussed	 in	 the	 section
“Directives”	 later	 in	 this	 appendix).	For	 example,	 the	 following	 sets	 the	 content	 type	 to
text/json:

response.setContentType("text/json");

Note	also	that	the	page	implicit	object	represents	the	current	JSP	page	and	is	not	normally
used	by	the	JSP	page	author.

Directives
Directives	are	 the	 first	 type	of	JSP	syntactic	elements.	They	are	 instructions	 for	 the	JSP
translator	 on	 how	 a	 JSP	 page	 should	 be	 translated	 into	 a	 servlet.	 There	 are	 several
directives	defined	in	JSP	2.3,	but	only	the	two	most	important	ones,	page	and	include,	are
discussed	in	this	appendix.	The	other	directives	are	taglib,	tag,	attribute,	and	variable.

The	page	Directive
You	use	the	page	directive	to	instruct	the	JSP	translator	on	certain	aspects	of	the	current
JSP	page.	For	example,	you	can	tell	the	JSP	translator	the	size	of	the	buffer	that	should	be
used	for	the	out	implicit	object,	what	content	type	to	use,	what	Java	types	to	import,	and
so	on.

The	page	directive	has	the	following	syntax:

<%@	page	attribute1="value1"	attribute2="value2"	...	%>

The	space	between	@	and	page	 is	optional	and	attribute1,	attribute2,	 and	so	on	are	 the
page	directive’s	attributes.	Here	is	the	list	of	attributes	for	the	page	directive.

import.	Specifies	a	Java	type	or	Java	types	that	will	be	imported	and	useable	by	the
Java	code	in	this	page.	For	example,	specifying	import=“java.util.List”	imports	the
List	 interface.	You	can	use	 the	wildcard	*	 to	 import	 the	whole	package,	such	as	 in
import=“java.util.*”.	To	 import	multiple	 types,	 separate	 two	 types	with	a	comma,
such	as	in	import=“java.util.ArrayList,	 java.util.Calendar,	 java.io.PrintWriter”.
All	types	in	the	following	packages	are	implicitly	imported:	java.lang,	javax.servlet,
javax.servlet.http,	javax.servlet.jsp.
session.	A	value	of	true	indicates	that	this	page	participates	in	session	management,
and	a	value	of	false	indicates	otherwise.	By	default,	the	value	is	true,	which	means
the	invocation	of	a	JSP	page	will	cause	a	javax.servlet.http.HttpSession	instance	to
be	created	if	one	does	not	yet	exist.
buffer.	Specifies	the	buffer	size	of	the	out	implicit	object	in	kilobytes.	The	suffix	kb
is	mandatory.	The	default	buffer	size	is	8kb	or	more,	depending	on	the	JSP	container.
It	is	also	possible	to	assign	none	to	this	attribute	to	indicate	that	no	buffering	should
be	 used,	 which	 will	 cause	 the	 output	 to	 be	 written	 directly	 to	 the	 corresponding
PrintWriter.
autoFlush.	 A	 value	 of	 true,	 the	 default	 value,	 indicates	 that	 the	 buffered	 output
should	be	flushed	automatically	when	the	buffer	is	full.	A	value	of	false	indicates	that
the	buffer	is	only	flushed	if	the	flush	method	of	the	response	implicit	object	is	called.
Consequently,	an	exception	will	be	thrown	in	the	event	of	buffer	overflow.
isThreadSafe.	 Indicates	 the	 level	 of	 thread	 safety	 implemented	 in	 the	 page.	 JSP
authors	are	advised	against	using	this	attribute	as	it	could	result	in	a	generated	servlet
containing	deprecated	code.
info.	Specifies	the	return	value	of	the	getServletInfo	method	of	the	generated	servlet.
errorPage.	Indicates	the	page	that	will	handle	errors	that	may	occur	in	this	page.
isErrorPage.	Indicates	if	this	page	is	an	error	handler.
contentType.	Specifies	the	content	type	of	the	response	implicit	object	of	this	page.
By	default,	the	value	is	text/html.
pageEncoding.	Specifies	the	character	encoding	for	this	page.	By	default,	the	value
is	ISO-8859-1.
isELIgnored.	Indicates	whether	EL	expressions	are	ignored.
language.	Specifies	the	scripting	language	used	in	this	page.	By	default,	its	value	is
java	and	this	is	the	only	valid	value	in	JSP	2.2.
extends.	 Specifies	 the	 superclass	 that	 this	 JSP	 page’s	 implementation	 class	 must

extend.	This	attribute	is	rarely	used	and	should	only	be	used	with	extra	caution.
deferredSyntaxAllowedAsLiteral.	Specifies	whether	or	not	 the	character	sequence
#{	is	allowed	as	a	String	literal	in	this	page	and	translation	unit.	The	default	value	is
false.	 #{	 is	 important	 because	 it	 is	 a	 special	 character	 sequence	 in	 the	 Expression
Language.
trimDirectiveWhitespaces.	Indicates	whether	or	not	template	text	that	contains	only
white	spaces	is	removed	from	the	output.	The	default	is	false;	in	other	words,	not	to
trim	white	spaces.

The	page	directive	can	appear	anywhere	in	a	page.	The	exception	is	when	it	contains	the
contentType	 or	 the	 pageEncoding	 attribute,	 in	 which	 case	 it	 must	 appear	 before	 any
template	data	and	before	sending	any	content	using	Java	code.	This	is	because	the	content
type	and	the	character	encoding	must	be	set	prior	to	sending	any	content.

The	page	directive	can	also	appear	multiple	times.	However,	an	attribute	that	appears	in
multiple	page	directives	must	have	the	same	value.	An	exception	to	this	rule	is	the	import
attribute.	 The	 effect	 of	 the	 import	 attribute	 appearing	 in	 multiple	 page	 directives	 is
cumulative.	For	example,	 the	 following	page	directives	 import	both	 java.util.ArrayList
and	java.io.File.

<%@page	import="java.util.ArrayList"%>

<%@page	import="java.util.Date"%>

This	is	the	same	as

<%@page	import="java.util.ArrayList,	java.util.Date"%>

As	another	 example,	here	 is	 a	page	 directive	 that	 sets	 the	 session	 attribute	 to	 false	 and
allocates	16KB	to	the	page	buffer:

<%@page	session="false"	buffer="16kb"%>

The	include	Directive
You	use	the	include	directive	to	include	the	content	of	another	file	in	the	current	JSP	page.
You	can	use	multiple	include	directives	in	a	JSP	page.	Modularizing	a	particular	content
into	an	include	file	is	useful	if	that	content	is	used	by	different	pages	or	used	by	a	page	in
different	places.

The	syntax	of	the	include	directive	is	as	follows:

<%@	include	file="url"%>

where	the	space	between	@	and	include	is	optional	and	url	represents	the	relative	path	to
an	include	file.	If	url	begins	with	a	forward	slash	(/),	it	is	interpreted	as	an	absolute	path
on	the	server.	If	it	does	not,	it	is	interpreted	as	relative	to	the	current	JSP	page.

The	 JSP	 translator	 translates	 the	 include	 directive	 by	 replacing	 the	 directive	with	 the
content	of	 the	include	file.	In	other	words,	 if	you	have	written	the	copyright.jspf	 file	 in
Listing	D.4.

Listing	D.4:	The	copyright.jspf	include	file

<hr/>

©2015	Brainy	Software	Inc.

<hr/>

And,	you	have	the	main.jsp	page	in	Listing	D.5.

Listing	D.5:	The	main.jsp	page

<!DOCTYPE	html>

<html>

<head><title>Including	a	file</title></head>

<body>

This	is	the	included	content:	<hr/>

<%@	include	file="copyright.jspf"%>

</body>

</html>

Using	 the	 include	 directive	 in	 the	main.jsp	 page	 has	 the	 same	 effect	 as	 writing	 the
following	JSP	page.

<!DOCTYPE	html>

<html>

<head><title>Including	a	file</title></head>

<body>

This	is	the	included	content:	<hr/>

<hr/>

©2015	Brainy	Software	Inc.

<hr/>

</body>

</html>

For	the	above	 include	directive	to	work,	 the	copyright.jspf	 file	must	reside	in	 the	same
directory	as	the	including	page.

By	convention	an	include	file	has	jspf	extension,	which	stands	for	JSP	fragment.	Today
JSP	 fragments	 are	 called	 JSP	 segments	 but	 the	 jspf	 extension	 is	 still	 retained	 for
consistency.

Note	that	you	can	also	include	static	HTML	files.

The	include	action,	discussed	in	the	section	“Actions”	later	in	this	appendix,	is	similar
to	the	include	directive.	The	subtle	difference	is	explained	in	the	section	“Actions”	and	 it
is	important	you	understand	the	difference	between	the	two.

Scripting	Elements
The	second	type	of	JSP	syntactic	elements,	scripting	elements	incorporate	Java	code	into	a
JSP	 page.	 There	 are	 three	 types	 of	 scripting	 elements:	 scriptlets,	 declarations,	 and
expressions.	They	are	discussed	in	the	following	subsections.

Scriptlets
A	scriptlet	 is	 a	 block	 of	 Java	 code.	A	 scriptlet	 starts	with	<%	 and	 ends	with	%>.	 For
example,	the	scriptletTest.jsp	page	in	Listing	D.6	uses	scriptlets.

Listing	D.6:	Using	a	scriplet	(scriptletTest.jsp)

<%@page	import="java.util.Enumeration"%>

<!DOCTYPE	html>

<html>

<head><title>Scriptlet	example</title></head>

<body>

Http	headers:

<%--	first	scriptlet	--%>

<%

				for	(Enumeration<String>	e	=	request.getHeaderNames();	

												e.hasMoreElements();)	{

								String	header	=	e.nextElement();

								out.println(header	+	":	"	+	request.getHeader(header)	+	

																"
");

				}

				String	message	=	"Thank	you.";

%>

<hr/>

<%--	second	scriptlet	--%>

<%

				out.println(message);

%>

</body>

</html>

There	are	 two	scriptlets	 in	 the	JSP	page	 in	Listing	D.6.	Note	 that	variables	defined	 in	a
scriptlet	is	visible	to	the	other	scriptlets	below	it.

It	is	legal	for	the	first	line	of	code	in	a	scriptlet	to	be	in	the	same	line	as	the	<%	tag	and
for	the	%>	tag	to	be	in	the	same	line	as	the	last	line	of	code.	However,	this	would	result	in
a	less	readable	page.

Expressions
An	expression	is	evaluated	and	its	result	fed	to	the	print	method	of	the	out	implicit	object.
An	expression	starts	with	<%=	and	ends	with	%>.	For	example,	 the	 text	 in	bold	 in	 the
following	line	is	an	expression:

Today	is	<%=java.util.Calendar.getInstance().getTime()%>

Note	that	there	is	no	semicolon	after	an	expression.

With	 this	 expression,	 the	 JSP	 container	 first	 evaluates
java.util.Calendar.getInstance().getTime(),	 and	 then	 passes	 the	 result	 to	 out.print().
This	is	the	same	as	writing	this	scriptlet:

Today	is	

<%

				out.print(java.util.Calendar.getInstance().getTime());

%>

Declarations
You	 can	 declare	 variables	 and	methods	 that	 can	 be	 used	 in	 a	 JSP	 page.	You	 enclose	 a
declaration	with	<%!	 and	%>.	 For	 example,	 the	 declarationTst.jsp	 page	 in	 Listing	D.7
shows	a	JSP	page	that	declares	a	method	named	getTodaysDate.

Listing	D.7:	Using	a	declaration	(declarationTest.jsp)

<%!

				public	String	getTodaysDate()	{

								return	new	java.util.Date();

				}

%>

<!DOCTYPE	html>

<html>

<head><title>Declarations</title></head>

<body>

Today	is	<%=getTodaysDate()%>

</body>

</html>

A	declaration	can	appear	anywhere	in	a	JSP	page	and	there	can	be	multiple	declarations	in
the	same	page.

You	 can	 use	 declarations	 to	 override	 the	 init	 and	 destroy	 methods	 in	 the
implementation	 class.	 To	 override	 init,	 declare	 a	 jspInit	 method.	 To	 override	 destroy,
declare	a	jspDestroy	method.	The	two	methods	are	explained	below.

jspInit.	This	method	is	similar	to	the	init	method	in	javax.servlet.Servlet.	jspInit	is
invoked	when	 the	 JSP	page	 is	 initialized.	Unlike	 the	 init	method,	 jspInit	 does	 not
take	 arguments.	 You	 can	 still	 obtain	 the	 ServletConfig	 object	 through	 the	 config
implicit	object.
jspDestroy.	This	method	is	similar	to	the	destroy	method	in	Servlet	and	is	invoked
when	the	JSP	page	is	about	to	be	destroyed.

Listing	 D.8	 presents	 the	 lifeCycle.jsp	 page	 that	 demonstrates	 how	 you	 can	 override
jspInit	and	jspDestroy.

Listing	D.8:	The	lifeCycle.jsp	page

<%!

				public	void	jspInit()	{

								System.out.println("jspInit…");

				}

				public	void	jspDestroy()	{

								System.out.println("jspDestroy…");

				}

%>

<!DOCTYPE	html>

<html>

<head><title>jspInit	and	jspDestroy</title></head>

<body>

Overriding	jspInit	and	jspDestroy

</body>

</html>

The	lifeCycle.jsp	page	will	be	translated	into	the	following	servlet:

package	org.apache.jsp;

import	javax.servlet.*;

import	javax.servlet.http.*;

import	javax.servlet.jsp.*;

public	final	class	lifeCycle_jsp	extends

								org.apache.jasper.runtime.HttpJspBase

								implements	org.apache.jasper.runtime.JspSourceDependent	{

				public	void	jspInit()	{

		System.out.println("jspInit…");

				}

				

				public	void	jspDestroy()	{

								System.out.println("jspDestroy…");				

				}

				private	static	final	javax.servlet.jsp.JspFactory	_jspxFactory	=

												javax.servlet.jsp.JspFactory.getDefaultFactory();

				private	static	java.util.Map<java.lang.String,java.lang.Long>	_jspx_dependants;

				private	javax.el.ExpressionFactory	_el_expressionfactory;

				private	org.apache.tomcat.InstanceManager	_jsp_instancemanager;

				public	java.util.Map<java.lang.String,java.lang.Long>	

												getDependants()	{

								return	_jspx_dependants;

				}

				public	void	_jspInit()	{

								_el_expressionfactory	=		

																_jspxFactory.getJspApplicationContext(

																getServletConfig().getServletContext())

																.getExpressionFactory();

								_jsp_instancemanager	=	

																org.apache.jasper.runtime.InstanceManagerFactory

																.getInstanceManager(getServletConfig());

				}

				public	void	_jspDestroy()	{

				}

				public	void	_jspService(final	

												javax.servlet.http.HttpServletRequest	request,	final				

												javax.servlet.http.HttpServletResponse	response)

												throws	java.io.IOException,	

												javax.servlet.ServletException	{

								final	javax.servlet.jsp.PageContext	pageContext;

								javax.servlet.http.HttpSession	session	=	null;

								final	javax.servlet.ServletContext	application;

								final	javax.servlet.ServletConfig	config;

								javax.servlet.jsp.JspWriter	out	=	null;

								final	java.lang.Object	page	=	this;

								javax.servlet.jsp.JspWriter	_jspx_out	=	null;

								javax.servlet.jsp.PageContext	_jspx_page_context	=	null;

								try	{

												response.setContentType("text/html");

												pageContext	=	_jspxFactory.getPageContext(this,	request,		

																response,	null,	true,	8192,	true);

												_jspx_page_context	=	pageContext;

												application	=	pageContext.getServletContext();

												config	=	pageContext.getServletConfig();

												session	=	pageContext.getSession();

												out	=	pageContext.getOut();

												_jspx_out	=	out;

											

												out.write("\n");

												out.write("<!DOCTYPE	html>\n");

												out.write("<html>\n");

												out.write("<head><title>jspInit	and	jspDestroy"	+

																				"</title></head>\n");

												out.write("<body>\n");

												out.write("Overriding	jspInit	and	jspDestroy\n");

												out.write("</body>\n");

												out.write("</html>");

								}	catch	(java.lang.Throwable	t)	{

												if	(!(t	instanceof	

																				javax.servlet.jsp.SkipPageException)){

																out	=	_jspx_out;

																if	(out	!=	null	&&	out.getBufferSize()	!=	0)

																				try	{	

																								out.clearBuffer();	

																				}	catch	(java.io.IOException	e)	{

																				}

																if	(_jspx_page_context	!=	null)				

																				_jspx_page_context.handlePageException(t);

												}

								}	finally	{

												_jspxFactory.releasePageContext(_jspx_page_context);

								}

				}

}

Notice	that	the	jspInit	and	jspDestroy	methods	in	the	generated	servlet?

You	can	invoke	lifeCycle.jsp	by	using	this	URL:

http://localhost:8080/jspdemo/lifeCycle.jsp

You	 will	 see	 “jspInit	 …”	 on	 your	 console	 when	 you	 first	 invoke	 the	 JSP	 page,	 and
“jspDestroy	…”	when	you	shut	down	your	servlet/JSP	container.

Disabling	Scripting	Elements
With	the	advance	of	the	Expression	Language	in	JSP	2.0,	the	recommended	practice	is	to
use	the	EL	to	access	server-side	objects	and	not	to	write	Java	code	in	JSP	pages.	For	this
reason,	 starting	 JSP	 2.0	 scripting	 elements	 may	 be	 disabled	 by	 defining	 a	 scripting-
invalid	 element	 within	 <jsp-property-group>	 in	 the	 deployment	 descriptor.	 The	 jsp-
property-group	element	must	be	nested	within	<jsp-config>.

<jsp-config>

				<jsp-property-group>

								<url-pattern>*.jsp</url-pattern>

								<scripting-invalid>true</scripting-invalid>

				</jsp-property-group>

</jsp-config>

Actions
Actions	 are	 the	 third	 type	 of	 syntactic	 element.	 They	 are	 translated	 into	 Java	 code	 that
performs	an	operation,	such	as	accessing	a	Java	object	or	invoking	a	method.	This	section
discusses	 standard	 actions	 that	must	 be	 supported	 by	 all	 JSP	 containers.	 In	 addition	 to
standard	actions,	you	can	also	create	custom	tags	that	perform	certain	operations.

The	following	are	some	of	the	standard	actions.

useBean
This	 action	 creates	 a	 scripting	 variable	 associated	with	 a	 Java	 object.	 It	was	 one	 of	 the
earliest	 efforts	 to	 separate	presentation	and	business	 logic.	Thanks	 to	other	 technologies
such	as	custom	tags	and	the	Expression	Language,	useBean	is	now	rarely	used.

As	 an	 example,	 the	 useBeanTest.jsp	 page	 in	 Listing	 D.9	 creates	 an	 instance	 of
java.util.Date	 and	associates	 it	with	 scripting	variable	 today,	which	 then	be	used	 in	 an
expression.

Listing	D.9:	The	useBeanTest.jsp	page

<!DOCTYPE	html>

<html>

<head>

				<title>useBean</title>

</head>

<body>

<jsp:useBean	id="today"	class="java.util.Date"/>

<%=today%>

</body>

</html>

The	action	will	be	translated	into	this	code	in	Tomcat.

						

java.util.Date	today	=	null;

today	=	(java.util.Date)	_jspx_page_context.getAttribute("today",	

								javax.servlet.jsp.PageContext.REQUEST_SCOPE);

if	(today	==	null)	{

				today	=	new	java.util.Date();

				_jspx_page_context.setAttribute("today",	today,	

												javax.servlet.jsp.PageContext.REQUEST_SCOPE);

}

Running	this	page	prints	the	current	date	and	time	in	your	browser.

setProperty	and	getProperty
The	 setProperty	 action	 sets	 a	 property	 in	 a	 Java	 object	 and	 getProperty	 prints	 a	 Java
object’s	 property.	As	 an	 example,	 the	getSetPropertyTest.jsp	 page	 in	Listing	D.11	 sets
and	gets	the	firstName	property	of	an	instance	of	the	Employee	class,	defined	in	Listing
D.10.

Listing	D.10:	The	Employee	class

package	jspdemo;

public	class	Employee	{

				private	String	id;

				private	String	firstName;

				private	String	lastName;

				public	String	getId()	{

								return	id;

				}

				public	void	setId(String	id)	{

								this.id	=	id;

				}

				public	String	getFirstName()	{

								return	firstName;

				}

				public	void	setFirstName(String	firstName)	{

								this.firstName	=	firstName;

				}

				public	String	getLastName()	{

								return	lastName;

				}

				public	void	setLastName(String	lastName)	{

								this.lastName	=	lastName;

				}

}

Listing	D.11:	The	getSetPropertyTest.jsp

<!DOCTYPE	html>

<html>

<head>

<title>getProperty	and	setProperty</title>

</head>

<body>

<jsp:useBean	id="employee"	class="jspdemo.Employee"/>

<jsp:setProperty	name="employee"	property="firstName"	value="Abigail"/>

First	Name:	<jsp:getProperty	name="employee"	property="firstName"/>

</body>

</html>

include
The	 include	 action	 is	 used	 to	 include	 another	 resource	 dynamically.	 You	 can	 include
another	JSP	page,	a	servlet,	or	a	static	HTML	page.	For	example,	the	jspIncludeTest.jsp
page	in	Listing	D.12	uses	the	include	action	to	include	the	menu.jsp	page.

Listing	D.12:	The	jspIncludeTest.jsp	page

<!DOCTYPE	html>

<html>

<head>

<title>Include	action</title>

</head>

<body>

<jsp:include	page="jspf/menu.jsp">

				<jsp:param	name="text"	value="How	are	you?"/>

</jsp:include>

</body>

</html>

It	 is	 important	 that	you	understand	 the	difference	between	 the	 include	 directive	and	 the
include	action.	With	the	 include	directive,	 inclusion	occurs	at	page	 translation	 time,	 i.e.
when	 the	 JSP	 container	 translates	 the	 page	 into	 a	 generated	 servlet.	 With	 the	 include
action,	 inclusion	 occurs	 at	 request	 time.	 As	 such,	 you	 can	 pass	 parameters	 using	 the
include	action,	but	not	the	include	directive.

The	 second	 difference	 is	 that	 with	 the	 include	 directive,	 the	 file	 extension	 of	 the
included	resource	does	not	matter.	With	the	include	action,	the	file	extension	must	be	jsp
for	 it	 to	be	processed	as	a	JSP	page.	Using	 jspf	 in	 the	 include	action,	 for	example,	will
make	the	JSP	segment	be	treated	as	a	static	file.

forward
The	 forward	 action	 forwards	 the	 current	page	 to	 a	different	 resource.	For	 example,	 the
following	forward	action	forwards	the	current	page	to	the	login.jsp	page.

<jsp:forward	page="jspf/login.jsp">

				<jsp:param	name="text"	value="Please	login"/>

</jsp:forward>

Error	HandlingError	handling	is	well	supported	in	JSP.	Java	code	can	be	handled	using	the
try	statement,	however	you	can	also	specify	a	page	that	will	be	displayed	should	any	of
the	pages	in	the	application	encounters	an	uncaught	exception.	In	such	events,	your	users
will	see	a	well	designed	page	that	explains	what	happened,	and	not	an	error	message	that
makes	them	frown.

You	make	 a	 JSP	 page	 an	 error	 page	 by	 using	 the	 isErrorPage	 attribute	 of	 the	page
directive.	 The	 value	 of	 the	 attribute	 must	 be	 true.	 Listing	 D.13	 shows	 such	 an	 error
handler.

Listing	D.13:	The	errorHandler.jsp	page

<%@page	isErrorPage="true"%>

<!DOCTYPE	html><html>

<head><title>Error</title></head>

<body>

An	error	has	occurred.	

Error	message:	

<%

				out.println(exception.toString());

%>

</body>

</html>

Other	 pages	 that	 need	 protection	 against	 uncaught	 exceptions	 will	 have	 to	 use	 the
errorPage	attribute	of	the	page	directive,	citing	the	path	to	the	error	handling	page	as	the
value.	For	example,	the	buggy.jsp	page	in	Listing	D.14	uses	the	error	handler	in	Listing
D.13.

Listing	D.14:	The	buggy.jsp	page

<%@page	errorPage="errorHandler.jsp"%>

Deliberately	throw	an	exception

<%

				Integer.parseInt("Throw	me");

%>

If	you	run	the	buggy.jsp	page,	 it	will	 throw	an	exception.	However,	you	will	not	see	an
error	 message	 generated	 by	 the	 servlet/JSP	 container.	 Instead,	 the	 content	 of	 the
errorHandler.jsp	page	is	displayed.

Summary
JSP	 is	 the	 second	 technology	 for	 building	 web	 applications	 in	 Java,	 invented	 to
complement	Servlet	technology	and	not	to	replace	it.	Well	designed	Java	web	applications
use	both	servlets	and	JSP.

In	this	appendix	you’ve	learned	how	JSP	works	and	how	to	write	JSP	pages.	By	now,
you	should	know	all	there	is	to	know	about	the	implicit	objects	and	be	able	to	use	the	three
syntactic	 elements	 that	 can	be	present	 in	 a	 JSP	page,	directives,	 scripting	 elements,	 and
actions.

Appendix	E

Deployment
Deploying	 a	 Servlet	 3.0	 or	 Servlet	 3.1	 application	 is	 a	 breeze.	 Thanks	 to	 the	 servlet
annotation	 types,	 you	 can	 deploy	 a	 servlet/JSP	 application	 without	 the	 deployment
descriptor.	 Having	 said	 that,	 the	 deployment	 descriptor	 is	 still	 needed	 in	 many
circumstances	 where	 more	 refined	 configuration	 is	 required.	 When	 the	 deployment
descriptor	 is	 present,	 it	 must	 be	 named	 web.xml	 and	 located	 under	 the	 WEB-INF
directory.	 Java	 classes	 must	 reside	 in	WEB-INF/classes	 and	 Java	 libraries	 in	WEB-
INF/lib.	All	application	resources	must	then	be	packaged	into	a	single	war	file.	A	war	file
is	basically	a	zip	file	with	.war	extension.

This	appendix	discusses	deployment	and	the	deployment	descriptor.

Deployment	Descriptor	Overview
Before	Servlet	3.0	deployment	always	involved	a	web.xml	file,	the	deployment	descriptor.
With	Servlet	3	the	deployment	descriptor	is	optional	because	you	can	use	annotations	to
map	a	resource	with	a	URL	pattern.	However,	the	deployment	descriptor	is	needed	if	one
of	these	applies	to	you.

You	need	to	pass	initial	parameters	to	the	ServletContext.
You	have	multiple	 filters	and	you	want	 to	specify	 the	order	 in	which	 the	 filters	are
invoked.
You	need	to	change	the	session	timeout.
You	want	to	restrict	access	to	a	resource	collection	and	provide	a	way	for	the	user	to
authenticate	themselves.

Listing	E.	1	shows	the	skeleton	of	the	deployment	descriptor.	It	must	be	named	web.xml
and	reside	in	the	WEB-INF	directory	of	the	application	directory.

Listing	E.1:	The	skeleton	of	the	deployment	descriptor

<?xml	version="1.0"	encoding="ISO-8859-1"?>

<web-app	version="3.1"	xmlns="http://xmlns.jcp.org/xml/ns/javaee"	

				xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

				xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee	

http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd"

				[metadata-complete="true|false"]

>	

				...

</web-app>

The	xsi:schemaLocation	attribute	specifies	the	location	of	the	schema	against	which	the
deployment	descriptor	can	be	validated.	The	version	attribute	specifies	the	Servlet	version
used.

The	optional	metadata-complete	attribute	specifies	whether	the	deployment	descriptor
is	 complete.	 If	 its	 value	 is	 true,	 the	 servlet/JSP	 container	 must	 ignore	 servlet-specific
annotations	 like	@WebServlet.	 If	 this	 element	 is	 set	 to	 false	 or	 if	 it’s	 not	 present,	 the
container	must	 examine	 the	class	 files	deployed	with	 the	application	 for	 servlet-specific
annotations	and	scan	for	web	fragments.

The	web-app	element	is	the	root	element	and	can	have	subelements	for	specifying:

servlet	declarations
servlet	mappings
ServletContext	initial	parameters
session	configuration
listener	classes
filter	definitions	and	mappings

MIME	type	mappings
welcome	file	list
error	pages
JSP-specific	settings
JNDI	settings

The	rules	for	each	of	the	elements	that	may	appear	in	a	deployment	descriptor	are	given	in
the	web-app_3_1.xsd	schema	that	can	be	downloaded	from	this	site.

http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd

The	 web-app_3.1.xsd	 schema	 includes	 another	 schema	 (web-common_3_1.xsd)	 that
contains	most	of	the	information.	The	included	schema	can	be	found	here.

http://xmlns.jcp.org/xml/ns/javaee/web-common_3_1.xsd

In	turn,	web-common_3_1.xsd	includes	two	other	schemas:

javaee_7.xsd,	 which	 defines	 common	 elements	 shared	 by	 other	 Java	 EE	 7
deployment	types	(EAR,	JAR	and	RAR)
jsp_2_3.xsd,	which	defines	elements	 for	configuring	 the	 JSP	part	of	an	application
according	to	JSP	2.3	specification

The	rest	of	this	section	lists	servlet	and	JSP	elements	that	may	appear	in	the	deployment
descriptor.	 It	 does	 not	 include	 Java	 EE	 elements	 that	 are	 not	 in	 the	 Servlet	 or	 JSP
specification.

Core	Elements
This	section	discusses	the	more	important	elements	in	detail.	Subelements	of	<web-app>
can	appear	in	any	order.	Certain	elements,	such	as	session-config,	jsp-config,	and	login-
config,	 can	appear	only	once.	Others,	 such	as	 servlet,	 filter,	 and	welcome-file-list,	 can
appear	many	times.

The	more	 important	 elements	 that	 can	 appear	 directly	 under	<web-app>	 are	 given	 a
separate	 subsection.	 To	 find	 the	 description	 of	 an	 element	 which	 is	 not	 directly	 under
<web-app>,	trace	its	parent	element.	For	example,	the	taglib	element	can	be	found	under
the	 subsection	 “jsp-config”	 and	 the	 load-on-startup	 element	 under	 “servlet.”	 The
subsections	under	this	section	are	presented	in	alphabetical	order.

context-param
The	context-param	 element	 passes	 values	 to	 the	ServletContext.	 These	 values	 can	 be
read	 from	 any	 servlet/JSP	 page.	 This	 element	 contains	 a	 name/value	 pair	 that	 can	 be
retrieved	by	calling	the	getInitParameter	method	on	the	ServletContext.	You	can	have
multiple	context-param	elements	as	long	as	the	parameter	names	are	unique	throughout
the	 application.	 ServletContext.getInitParameterNames()	 returns	 all	 ServletContext
parameter	names.

The	context-param	element	must	contain	a	param-name	element	and	a	param-value
element.	The	param-name	 element	 contains	 the	parameter	name,	 and	 the	param-value
element	 the	 parameter	 value.	 Optionally,	 a	 description	 element	 also	 can	 be	 present	 to
describe	the	parameter.

The	following	are	two	example	context-param	elements.

<context-param>

				<param-name>location</param-name>

				<param-value>localhost</param-value>

</context-param>

<context-param>

				<param-name>port</param-name>

				<param-value>8080</param-value>

				<description>The	port	number	used</description>

</context-param>

distributable
If	 present,	 the	 distributable	 element	 indicates	 that	 the	 application	 is	 written	 to	 be
deployed	 into	 a	 distributed	 servlet/JSP	 container.	 The	 distributable	 element	 must	 be
empty.	For	example,	here	is	a	distributable	element.

<distributable/>

error-page
The	error-page	 element	contains	a	mapping	between	an	HTTP	error	code	 to	a	 resource
path	or	between	a	Java	exception	type	to	a	resource	path.	The	error-page	element	dictates
the	container	that	the	specified	resource	should	be	returned	in	the	event	of	the	HTTP	error

or	if	the	specified	exception	is	thrown.

This	element	must	contain	the	following	subelements.

error-code,	to	specify	an	HTTP	error	code
exception-type,	to	specify	the	fully-qualified	name	of	the	Java	exception	type	to	be
captured
location,	 to	 specify	 the	 location	of	 the	 resource	 to	 be	 displayed	 in	 the	 event	 of	 an
error	or	exception.	The	location	element	must	start	with	a	/.

For	example,	the	following	is	an	error-page	element	that	tells	the	servlet/JSP	container	to
display	the	error.html	page	located	at	the	application	directory	every	time	an	HTTP	404
error	code	occurs:

<error-page>

				<error-code>404</error-code>

				<location>/error.html</location>

</error-page>

The	 following	 is	 an	 error-page	 element	 that	 maps	 all	 servlet	 exceptions	 with	 the
exceptions.html	page.

<error-page>

				<exception-type>javax.servlet.ServletException</exception-type>

				<location>/exception.html</location>

</error-page>

filter
This	element	specifies	a	servlet	filter.	At	the	very	minimum,	this	element	must	contain	a
filter-name	 element	 and	 a	 filter-class	 element.	 Optionally,	 it	 can	 also	 contain	 the
following	elements:	icon,	display-name,	description,	init-param,	and	async-supported.

The	filter-name	element	defines	the	name	of	the	filter.	The	filter	name	must	be	unique
within	 the	application.	The	 filter-class	 element	 specifies	 the	 fully	qualified	name	of	 the
filter	class.	The	 init-param	 element	 is	used	 to	 specify	 an	 initial	 parameter	 for	 the	 filter
and	 has	 the	 same	 element	 descriptor	 as	 <context-param>.	 A	 filter	 element	 can	 have
multiple	init-param	elements.

The	following	are	two	filter	elements	whose	names	are	Upper	Case	Filter	and	Image
Filter,	respectively.

<filter>

				<filter-name>Upper	Case	Filter</filter-name>

				<filter-class>com.example.UpperCaseFilter</filter-class>

</filter>

<filter>

				<filter-name>Image	Filter</filter-name>

				<filter-class>com.example.ImageFilter</filter-class>

				<init-param>

								<param-name>frequency</param-name>

								<param-value>1909</param-value>

					</init-param>

				<init-param>

								<param-name>resolution</param-name>

								<param-value>1024</param-value>

				</init-param>

</filter>

filter-mapping
The	 filter-mapping	 element	 specifies	 the	 resource	 or	 resources	 a	 filter	 is	 applied	 to.	A
filter	 can	 be	 applied	 to	 either	 a	 servlet	 or	 a	URL	 pattern.	Mapping	 a	 filter	 to	 a	 servlet
causes	the	filter	to	work	on	the	servlet.	Mapping	a	filter	to	a	URL	pattern	makes	filtering
occur	to	any	resource	whose	URL	matches	the	URL	pattern.	Filtering	is	performed	in	the
same	 order	 as	 the	 appearance	 of	 the	 filter-mapping	 elements	 in	 the	 deployment
descriptor.

The	filter-mapping	element	contains	a	filter-name	element	and	a	url-pattern	element
or	a	servlet-name	element.

The	 filter-name	 value	 must	 match	 one	 of	 the	 filter	 names	 declared	 using	 the	 filter
elements.

The	following	are	two	filter	elements	and	two	filter-mapping	elements:

<filter>

				<filter-name>Logging	Filter</filter-name>

				<filter-class>com.example.LoggingFilter</filter-class>

</filter>

<filter>

				<filter-name>Security	Filter</filter-name>

				<filter-class>com.example.SecurityFilter</filter-class>

</filter>

<filter-mapping>

				<filter-name>Logging	Filter</filter-name>

				<servlet-name>FirstServlet</servlet-name>

</filter-mapping>

<filter-mapping>

				<filter-name>Security	Filter</filter-name>

				<url-pattern>/*</url-pattern>

</filter-mapping>

listener
The	 listener	 element	 registers	 a	 listener.	 It	 contains	 a	 listener-class	 element,	 which
defines	the	fully	qualified	name	of	the	listener	class.	Here	is	an	example.

<listener>

				<listener-class>com.example.AppListener</listener-class>

</listener>

locale-encoding-mapping-list	and	locale-encoding-mapping
The	 locale-encoding-mapping-list	 element	 contains	 one	 or	 more	 locale-encoding-

mapping	 elements.	 A	 locale-encoding-mapping	 element	 maps	 a	 locale	 name	 with	 an
encoding	and	contains	a	locale	element	and	an	encoding	element.	The	value	for	<locale>
must	 be	 either	 a	 language-code	 defined	 in	 ISO	 639,	 such	 as	 “en”,	 or	 a	 language-
code_country-code,	 such	 as	 “en_US”.	When	 a	 language-code_country-code	 is	 used,	 the
country-code	part	must	be	one	of	the	country	codes	defined	in	ISO	3166.

For	instance,	here	is	a	 locale-encoding-mapping-list	 that	contains	a	 locale-encoding-
mapping	element	that	maps	the	Japanese	language	to	Shift_JIS	encoding.

<locale-encoding-mapping-list>

				<locale-encoding-mapping>

								<locale>ja</locale>

								<encoding>Shift_JIS</encoding>

				</locale-encoding-mapping>

</locale-encoding-mapping-list>

login-config
The	login-config	element	is	used	to	specify	the	authentication	method	used	to	authenticate
the	user,	the	realm	name,	and	the	attributes	needed	by	the	form	login	mechanism	if	form-
based	 authentication	 is	 used.	 A	 login-config	 element	 has	 an	 optional	 auth-method
element,	an	optional	realm-name	element,	and	an	optional	form-login-config	element.

The	auth-method	element	specifies	the	access	authentication	method.	Its	value	is	one
of	the	following:	BASIC,	DIGEST,	FORM,	or	CLIENT-CERT.

The	realm-name	element	specifies	the	realm	name	to	use	in	Basic	access	authentication
and	Digest	access	authentication.

The	form-login-config	element	specifies	the	login	and	error	pages	that	should	be	used
in	form-based	authentication.	If	form-based	authentication	is	not	used,	these	elements	are
ignored.

The	form-login-config	element	has	a	form-login-page	element	and	a	form-error-page
element.	 The	 form-login-page	 element	 specifies	 the	 path	 to	 a	 resource	 that	 displays	 a
Login	page.	The	path	must	start	with	a	/	and	is	relative	to	the	application	directory.

The	 form-error-page	 element	 specifies	 the	 path	 to	 a	 resource	 that	 displays	 an	 error
page	 when	 login	 fails.	 The	 path	 must	 begin	 with	 a	 /	 and	 is	 relative	 to	 the	 application
directory.

As	an	example,	here	is	an	example	of	the	login-config	element.

<login-config>

				<auth-method>DIGEST</auth-method>

				<realm-name>Members	Only</realm-name>

</login-config>

And,	here	is	another	example.

<login-config>

				<auth-method>FORM</auth-method>

				<form-login-config>

								<form-login-page>/loginForm.jsp</form-login-page>

								<form-error-page>/errorPage.jsp</form-error-page>

				</form-login-config>

</login-config>

mime-mapping
The	mime-mapping	element	maps	a	MIME	type	to	an	extension.	It	contains	an	extension
element	and	a	mime-type	element.	The	extension	element	describes	the	extension	and	the
mime-type	 element	 specifies	 the	 MIME	 type.	 For	 example,	 here	 is	 a	mime-mapping
element.

<mime-mapping>

				<extension>txt</extension>

				<mime-type>text/plain</mime-type>

</mime-mapping>

security-constraint
The	security-constraint	element	allows	you	to	restrict	access	to	a	collection	of	resources
declaratively.

The	 security-constraint	 element	 contains	 an	 optional	display-name	 element,	 one	 or
more	web-resource-collection	 elements,	 an	 optional	 auth-constraint	 element,	 and	 an
optional	user-data-constraint	element.

The	 web-resource-collection	 element	 identifies	 a	 collection	 of	 resources	 to	 which
access	 needs	 to	 be	 restricted.	 In	 it	 you	 can	define	 the	URL	pattern(s)	 and	 the	 restricted
HTTP	method	or	methods.	If	no	HTTP	method	is	present,	the	security	constraint	applies	to
all	HTTP	methods.

The	 auth-constraint	 element	 specifies	 the	 user	 roles	 that	 should	 have	 access	 to	 the
resource	 collection.	 If	 no	 auth-constraint	 element	 is	 specified,	 the	 security	 constraint
applies	to	all	roles.

The	user-data-constraint	element	is	used	to	indicate	how	data	transmitted	between	the
client	and	servlet/JSP	container	must	be	protected.

A	 web-resource-collection	 element	 contains	 a	 web-resource-name	 element,	 an
optional	description	element,	zero	or	more	url-pattern	elements,	and	zero	or	more	http-
method	elements.

The	 web-resource-name	 element	 contains	 a	 name	 associated	 with	 the	 protected
resource.

The	http-method	 element	 can	 be	 assigned	 one	 of	 the	HTTP	methods,	 such	 as	GET,
POST,	or	TRACE.

The	 auth-constraint	 element	 contains	 an	 optional	 description	 element	 and	 zero	 or
more	role-name	element.	The	role-name	element	contains	the	name	of	a	security	role.

The	 user-data-constraint	 element	 contains	 an	 optional	 description	 element	 and	 a
transport-guarantee	 element.	The	 transport-guarantee	 element	must	 have	 one	 of	 the

following	values:	NONE,	INTEGRAL,	or	CONFIDENTIAL.	NONE	 indicates	that	the
application	 does	 not	 require	 transport	 guarantees.	 INTEGRAL	 means	 that	 the	 data
between	the	server	and	the	client	should	be	sent	in	such	a	way	that	it	can’t	be	changed	in
transit.	CONFIDENTIAL	 means	 that	 the	 data	 transmitted	must	 be	 encrypted.	 In	most
cases,	Secure	Sockets	Layer	(SSL)	is	used	for	either	INTEGRAL	or	CONFIDENTIAL.

The	 following	 example	 uses	 a	 security-constraint	 element	 to	 restrict	 access	 to	 any
resource	 with	 a	 URL	 matching	 the	 pattern	 /members/*.	 Only	 a	 user	 in	 the
payingMember	role	will	be	allowed	access.	The	login-config	element	requires	the	user	to
log	in	and	the	Digest	access	authentication	method	is	used.

<security-constraint>

				<web-resource-collection>

								<web-resource-name>Members	Only</web-resource-name>

								<url-pattern>/members/*</url-pattern>

				</web-resource-collection>

				<auth-constraint>

								<role-name>payingMember</role-name>

				</auth-constraint>

</security-constraint>

<login-config>

				<auth-method>Digest</auth-method>

				<realm-name>Digest	Access	Authentication</realm-name>

</login-config>

security-role
The	 security-role	 element	 specifies	 the	 declaration	 of	 a	 security	 role	 used	 in	 security
constraints.	This	element	has	an	optional	description	element	and	a	role-name	element.
The	following	is	an	example	security-role	element.

<security-role>

				<role-name>payingMember</role-name>

</security-role>

servlet
The	servlet	element	is	used	to	declare	a	servlet.	It	can	contain	the	following	elements.

an	optional	icon	element
an	optional	description	element
an	optional	display-name	element
a	servlet-name	element
a	servlet-class	element	or	a	jsp-file	element
zero	or	more	init-param	elements
an	optional	load-on-startup	element
an	optional	run-as	element
an	optional	enabled	element
an	optional	async-supported	element
an	optional	multipart-config	element

zero	or	more	security-role-ref	elements

At	a	minimum	a	servlet	element	must	contain	a	servlet-name	element	and	a	servlet-class
element,	 or	 a	 servlet-name	 element	 and	 a	 jsp-file	 element.	 The	 servlet-name	 element
defines	the	name	for	that	servlet	and	must	be	unique	throughout	the	application.

The	servlet-class	element	specifies	the	fully	qualified	class	name	of	the	servlet.

The	jsp-file	element	specifies	the	full	path	to	a	JSP	page	within	the	application.	The	full
path	must	begin	with	a	/.

The	init-param	subelement	can	be	used	to	pass	an	initial	parameter	name	and	value	to
the	servlet.	The	element	descriptor	of	init-param	is	the	same	as	context-param.

You	 use	 the	 load-on-startup	 element	 to	 load	 the	 servlet	 automatically	 into	 memory
when	the	servlet/JSP	container	starts	up.	Loading	a	servlet	means	instantiating	the	servlet
and	calling	its	init	method.	You	use	this	element	to	avoid	delay	in	the	response	for	the	first
request	to	the	servlet,	caused	by	the	servlet	loading	to	memory.	If	this	element	is	present
and	 a	 jsp-file	 element	 is	 specified,	 the	 JSP	 file	 is	 precompiled	 into	 a	 servlet	 and	 the
resulting	servlet	is	loaded.

load-on-startup	is	either	empty	or	has	an	integer	value.	The	value	indicates	the	order	of
loading	this	servlet	when	there	are	multiple	servlets	in	the	same	application.	For	example,
if	there	are	two	servlet	elements	and	both	contain	a	load-on-startup	element,	the	servlet
with	the	lower	load-on-startup	value	is	loaded	first.	If	the	value	of	the	load-on-startup	is
empty	or	 is	a	negative	number,	 it	 is	up	 to	 the	web	container	 to	decide	when	 to	 load	 the
servlet.	 If	 two	servlets	have	 the	same	 load-on-startup	value,	 the	 loading	order	between
the	two	servlets	cannot	be	determined.

Defining	run-as	 overrides	 the	 security	 identity	 for	 calling	 an	Enterprise	 JavaBean	by
that	servlet	in	this	application.	The	role	name	is	one	of	the	security	roles	defined	for	the
current	web	application.

The	security-role-ref	 element	maps	 the	 name	 of	 the	 role	 called	 from	 a	 servlet	 using
isUserInRole(name)	 to	 the	 name	 of	 a	 security	 role	 defined	 for	 the	 application.	 The
security-role-ref	element	contains	an	optional	description	element,	a	role-name	element,
and	a	role-link	element.

The	role-link	element	is	used	to	link	a	security	role	reference	to	a	defined	security	role.
The	role-link	element	must	contain	 the	name	of	one	of	 the	security	 roles	defined	 in	 the
security-role	elements.

The	async-supported	element	is	an	optional	element	that	can	have	a	true	or	false	value.
It	indicates	whether	or	not	this	servlet	supports	asynchronous	processing.

The	 enabled	 element	 is	 also	 an	 optional	 element	 whose	 value	 can	 be	 true	 or	 false.
Setting	this	element	to	false	disables	this	servlet.

For	 example,	 to	map	 the	 security	 role	 reference	 “PM”	 to	 the	 security	 role	with	 role-
name	“payingMember,”	the	syntax	would	be	as	follows.

<security-role-ref>

				<role-name>PM</role-name>

				<role-link>payingMember</role-link>

</security-role-ref>

In	 this	 case,	 if	 the	 servlet	 invoked	by	a	user	belonging	 to	 the	“payingMember”	 security
role	calls	isUserInRole(“payingMember”),	the	result	would	be	true.

The	following	are	two	example	servlet	elements:

<servlet>

				<servlet-name>UploadServlet</servlet-name>

				<servlet-class>com.brainysoftware.UploadServlet</servlet-class>

				<load-on-startup>10</load-on-startup>

</servlet>

<servlet>

				<servlet-name>SecureServlet</servlet-name>

				<servlet-class>com.brainysoftware.SecureServlet</servlet-class>

				<load-on-startup>20</load-on-startup>

</servlet>

servlet-mapping
The	 servlet-mapping	 element	 maps	 a	 servlet	 to	 a	 URL	 pattern.	 The	 servlet-mapping
element	must	have	a	servlet-name	element	and	a	url-pattern	element.

The	following	servlet-mapping	element	maps	a	servlet	with	the	URL	pattern	/first.

<servlet>

				<servlet-name>FirstServlet</servlet-name>

				<servlet-class>com.brainysoftware.FirstServlet</servlet-class>

</servlet>		

<servlet-mapping>

				<servlet-name>FirstServlet</servlet-name>

				<url-pattern>/first</url-pattern>

</servlet-mapping>		

session-config
The	 session-config	 element	 defines	 parameters	 for	 javax.servlet.http.HttpSession
instances.	 This	 element	 may	 contain	 one	 or	 more	 of	 the	 following	 elements:	 session-
timeout,	cookie-config,	or	tracking-mode.

The	session-timeout	element	specifies	 the	default	session	timeout	 interval	 in	minutes.
This	 value	must	 be	 an	 integer.	 If	 the	 value	 of	 the	 session-timeout	 element	 is	 zero	 or	 a
negative	number,	the	session	will	never	time	out.

The	 cookie-config	 element	 defines	 the	 configuration	 of	 the	 session	 tracking	 cookies
created	by	this	servlet/JSP	application.

The	tracking-mode	element	defines	the	tracking	mode	for	sessions	created	by	this	web
application.	Valid	values	are	COOKIE,	URL,	or	SSL.

The	 following	 session-config	 element	 causes	 the	HttpSession	 objects	 in	 the	 current
application	to	be	invalidated	after	twelve	minutes	of	inactivity.

<session-config>

				<session-timeout>12</session-timeout>

</session-config>

welcome-file-list
The	welcome-file-list	element	specifies	the	file	or	servlet	that	is	displayed	when	the	URL
entered	by	the	user	in	the	browser	does	not	contain	a	servlet	name	or	a	JSP	page	or	a	static
resource.

The	 welcome-file-list	 element	 contains	 one	 or	 more	 welcome-file	 elements.	 The
welcome-file	 element	 contains	 the	 default	 file	 name.	 If	 the	 file	 specified	 in	 the	 first
welcome-file	element	is	not	found,	the	web	container	will	 try	to	display	the	second	one,
and	so	on.

Here	is	an	example	welcome-file-list	element.

<welcome-file-list>

				<welcome-file>index.htm</welcome-file>

				<welcome-file>index.html</welcome-file>

				<welcome-file>index.jsp</welcome-file>

</welcome-file-list>

The	 following	example	uses	a	welcome-file-list	 element	 that	contains	 two	welcome-file
elements.	The	first	welcome-file	element	specifies	a	file	in	the	application	directory	called
index.html;	 the	second	defines	the	welcome	servlet	under	the	servlet	directory,	which	is
under	the	application	directory:

<welcome-file-list>

				<welcome-file>index.html</welcome-file>

				<welcome-file>servlet/welcome</welcome-file>

</welcome-file-list>

JSP-Specific	Elements
The	jsp-config	element	under	<web-app>	contains	elements	specific	to	JSP.	It	can	have
zero	or	more	taglib	elements	and	zero	or	more	jsp-property-group	elements.	The	taglib
element	 is	 explained	 in	 the	 first	 subsection	 of	 this	 section	 and	 the	 jsp-property-group
element	in	the	second	subsection.

taglib
The	 taglib	 element	 describes	 a	 JSP	 custom	 tag	 library.	 The	 taglib	 element	 contains	 a
taglib-uri	element	and	a	taglib-location	element.

The	 taglib-uri	 element	 specifies	 the	 URI	 of	 the	 tag	 library	 used	 in	 the	 servlet/JSP
application.	 The	 value	 for	 <taglib-uri>	 is	 relative	 to	 the	 location	 of	 the	 deployment
descriptor.

The	taglib-location	element	specifies	the	location	of	the	TLD	file	for	the	tag	library.

The	following	is	an	example	taglib	element.

<jsp-config>

				<taglib>

								<taglib-uri>

												http://brainysoftware.com/taglib/complex

								</taglib-uri>

								<taglib-location>/WEB-INF/jsp/complex.tld

				</taglib-location>

		</taglib>

</jsp-config>

jsp-property-group
The	jsp-property-group	element	groups	a	number	of	JSP	files	so	they	can	be	given	global
property	 information.	You	 can	 use	 subelements	 under	<jsp-property-group>	 to	 do	 the
following.

Indicate	whether	EL	is	ignored
Indicate	whether	scripting	elements	are	allowed
Indicate	page	encoding	information
Indicate	that	a	resource	is	a	JSP	document	(written	in	XML)
Prelude	and	code	automatic	includes

The	jsp-property-group	element	has	the	following	subelements.

an	optional	description	element
an	optional	display-name	element
an	optional	icon	element
one	or	more	url-pattern	elements
an	optional	el-ignored	element
an	optional	page-encoding	element
an	optional	scripting-invalid	element
an	optional	is-xml	element

zero	or	more	include-prelude	elements
zero	or	more	include-code	elements

The	url-pattern	 element	 is	 used	 to	 specify	 a	URL	 pattern	 that	will	 be	 affected	 by	 the
property	settings.

The	el-ignored	element	can	have	a	boolean	value	of	true	or	false.	A	value	of	true	means
that	 the	 EL	 expressions	 will	 not	 evaluated	 in	 the	 JSP	 pages	 whose	 URL	 match	 the
specified	URL	pattern(s).	The	default	value	of	this	element	is	false.

The	page-encoding	element	specifies	the	encoding	for	the	JSP	pages	whose	URL	match
the	specified	URL	pattern(s).	The	valid	value	for	page-encoding	is	the	same	as	the	value
of	the	pageEncoding	attribute	of	the	page	directive	used	in	a	matching	JSP	page.	There
will	be	a	translation-time	error	to	name	a	different	encoding	in	the	pageEncoding	attribute
of	the	page	directive	of	a	JSP	page	and	in	a	JSP	configuration	element	matching	the	page.
It	 is	 also	 a	 translation-time	 error	 to	 name	 a	 different	 encoding	 in	 the	 prolog	 or	 text
declaration	of	a	document	in	XML	syntax	and	in	a	JSP	configuration	element	matching	the
document.	It	is	legal	to	name	the	same	encoding	through	multiple	mechanisms.

The	 scripting-invalid	 element	 accepts	 a	 boolean	 value.	 A	 value	 of	 true	 means	 that
scripting	is	not	allowed	in	the	JSP	pages	whose	URLs	match	the	specified	pattern(s).	By
default,	the	value	of	the	scripting-invalid	element	is	false.

The	is-xml	element	accepts	a	boolean	value	and	true	indicates	that	the	JSP	pages	whose
URLs	match	the	specified	pattern(s)	are	JSP	documents.

The	 include-prelude	 element	 is	 a	 context-relative	 path	 that	 must	 correspond	 to	 an
element	in	the	servlet/JSP	application.	When	the	element	is	present,	the	given	path	will	be
automatically	 included	 (as	 in	 an	 include	 directive)	 at	 the	 beginning	 of	 each	 JSP	 page
whose	URL	matches	the	specified	pattern(s).

The	include-coda	element	is	a	context-relative	path	that	must	correspond	to	an	element
in	 the	 application.	 When	 the	 element	 is	 present,	 the	 given	 path	 will	 be	 automatically
included	 (as	 in	 the	 include	 directive)	at	 the	end	of	each	 JSP	page	 in	 this	 jsp-property-
group	element.

For	example,	here	is	a	jsp-property-group	element	that	causes	EL	evaluation	in	all	JSP
pages	to	be	ignored.

<jsp-config>

				<jsp-property-group>

								<url-pattern>*.jsp</url-pattern>

								<el-ignored>true</el-ignored>

				</jsp-property-group>

</jsp-config>

And,	here	is	a	jsp-property-group	element	 that	 is	used	 to	enforce	script-free	JSP	pages
throughout	the	application.

<jsp-config>

				<jsp-property-group>

								<url-pattern>*.jsp</url-pattern>

								<scripting-invalid>true</scripting-invalid>

				</jsp-property-group>

</jsp-config>

Deployment
Deploying	 a	 Servlet/JSP	 application	 has	 always	 been	 easy	 since	 the	 first	 version	 of
Servlet.	 It	 has	 just	 been	 a	 matter	 of	 zipping	 all	 application	 resources	 in	 its	 original
directory	structure	into	a	war	file.	You	can	either	use	the	jar	tool	in	the	JDK	or	a	popular
tool	 such	 as	WinZip.	 All	 you	 need	 is	 make	 sure	 the	 zipped	 file	 has	 war	 extension.	 If
you’re	using	WinZip,	rename	the	result	once	it’s	done.

You	must	include	in	your	war	file	all	libraries	and	class	files	as	well	as	HTML	files,	JSP
pages,	 images,	 copyright	 notices	 (if	 any),	 and	 so	 on.	 Do	 not	 include	 Java	 source	 files.
Anyone	who	needs	your	application	can	simply	get	a	copy	of	your	war	file	and	deploy	it
in	a	servlet/JSP	container.

Web	Fragments
Servlet	3.0	added	web	fragments,	a	new	feature	for	deploying	plug-ins	or	frameworks	in
an	existing	web	application.	Web	fragments	are	designed	to	complement	the	deployment
descriptor	without	having	to	edit	the	web.xml	file.	A	web	fragment	is	basically	a	package
(jar	file)	containing	the	usual	web	objects,	such	as	servlets,	filter,	and	listeners,	and	other
resources,	such	as	JSP	pages	and	static	images.	A	web	fragment	can	also	have	a	descriptor,
which	 is	 an	 XML	 document	 similar	 to	 the	 deployment	 descriptor.	 The	 web	 fragment
descriptor	must	be	named	web-fragment.xml	and	reside	in	the	META-INF	directory	of
the	package.	A	web	fragment	descriptor	may	contain	any	elements	that	may	appear	under
the	web-app	 element	 in	 the	 deployment	 descriptor,	 plus	 some	 web	 fragment-specific
elements.	An	application	can	have	multiple	web	fragments.

Listing	E.2	shows	the	skeleton	of	the	web	fragment	descriptor.	The	text	printed	in	bold
highlights	the	difference	between	it	and	the	deployment	descriptor.	The	root	element	in	a
web	 fragment	 is,	 unsurprisingly,	web-fragment.	 The	web-fragment	 element	 can	 even
have	the	metadata-complete	attribute.	If	the	value	of	the	metadata-complete	attribute	is
true,	annotations	in	the	classes	contained	by	the	web	fragment	will	be	skipped.

Listing	E.2:	The	skeleton	of	a	web-fragment.xml	file

<?xml	version="1.0"	encoding="ISO-8859-1"?>

<web-fragment	version="3.1"	xmlns="http://xmlns.jcp.org/xml/ns/javaee"	

				xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

				xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee	

http://xmlns.jcp.org/xml/ns/javaee/web-fragment_3_1.xsd"

				[metadata-complete=”true|false”]

>

				...

</web-fragment>

As	 an	 example,	 the	 fragmentdemo	 application	 is	 practically	 empty	 except	 for	 a	 web
fragment	 in	 a	 fragment.jar	 file.	 The	 jar	 file	 has	 been	 imported	 to	 the	WEB-INF/lib
directory	 of	 fragmentdemo.	 The	 focus	 of	 this	 example	 is	 not	 on	 fragmentdemo	 but
rather	 on	 the	 fragment	 project,	 which	 contains	 a	 servlet
(fragment.servlet.FragmentServlet,	printed	in	Listing	E.3)	and	a	web-fragment.xml	file
(given	in	Listing	E.4).

Listing	E.3:	The	FragmentServlet	class

package	fragment.servlet;

import	java.io.IOException;

import	java.io.PrintWriter;

import	javax.servlet.ServletException;

import	javax.servlet.http.HttpServlet;

import	javax.servlet.http.HttpServletRequest;

import	javax.servlet.http.HttpServletResponse;

public	class	FragmentServlet	extends	HttpServlet	{

				private	static	final	long	serialVersionUID	=	940L;

				public	void	doGet(HttpServletRequest	request,	HttpServletResponse	response)

												throws	ServletException,	IOException	{

								response.setContentType("text/html");

								PrintWriter	out	=	response.getWriter();

								out.println("A	plug-in");

				}

}

Listing	E.4:	The	web-fragment.xml	in	project	fragment

<?xml	version="1.0"	encoding="ISO-8859-1"?>

<web-fragment	version="3.1"	xmlns="http://xmlns.jcp.org/xml/ns/javaee"	

				xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

				xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee	

http://xmlns.jcp.org/xml/ns/javaee/web-fragment_3_1.xsd">

				<servlet>

								<servlet-name>FragmentServlet</servlet-name>

								<servlet-class>fragment.servlet.FragmentServlet</servlet-class>

				</servlet>

				<servlet-mapping>

								<servlet-name>FragmentServlet</servlet-name>

								<url-pattern>/fragment</url-pattern>								

				</servlet-mapping>

</web-fragment>

FragmentServlet	 is	 a	 simple	 servlet	 that	 sends	 a	 string	 to	 the	 browser.	 The	 web-
fragment.xml	file	registers	and	maps	the	servlet.	The	structure	of	the	fragment.jar	file	is
depicted	in	Figure	E.1.

Figure	E.1:	The	structure	of	the	fragment.jar	file

You	can	test	the	Fragment	servlet	by	invoking	using	this	URL:

http://localhost:8080/fragmentdemo/fragment

You	should	see	the	output	from	the	Fragment	servlet.

Summary
This	appendix	explained	how	you	can	configure	and	deploy	your	servlet/JSP	applications.
The	 appendix	 started	 by	 introducing	 the	 directory	 structure	 of	 a	 typical	 application	 and
then	moved	to	an	explanation	of	the	deployment	descriptor.

After	 the	application	 is	 ready	for	deployment,	you	can	deploy	 it	by	retaining	 the	files
and	directory	structure	of	your	application.	Alternatively,	you	can	package	the	application
into	a	WAR	file	and	deploy	the	whole	application	as	a	single	file.

	Introduction
	The Hypertext Transfer Protocol (HTTP)
	Servlet and JSP Overview
	Downloading Spring or Using STS with Maven/Gradle
	About This Book
	Downloading the Sample Applications

	Chapter 1: The Spring Framework
	Dependency Injection
	XML-Based Spring Configuration
	Using Spring to Manage Dependencies
	Summary

	Chapter 2: Model 2 and the MVC Pattern
	Model 1 Overview
	Model 2 Overview
	Model 2 with A Servlet Controller
	Model 2 with A Filter Dispatcher
	Validators
	Dependency Injection
	Summary

	Chapter 3: Introduction to Spring MVC
	The Benefits of Spring MVC
	Spring MVC DispatcherServlet
	The Controller Interface
	Your First Spring MVC Application
	The View Resolver
	Summary

	Chapter 4: Annotation-Based Controllers
	Spring MVC Annotation Types
	Writing Request-Handling Methods
	Using An Annotation-Based Controller
	Dependency Injection with @Autowired and @Service
	Redirect and Flash Attributes
	Request Parameters and Path Variables
	@ModelAttribute
	Summary

	Chapter 5: Data Binding and the Form Tag Library
	Data Binding Overview
	The Form Tag Library
	Data Binding Example
	Summary

	Chapter 6: Converters and Formatters
	Converters
	Formatters
	Choosing Between Converters and Formatters
	Summary

	Chapter 7: Validators
	Validation Overview
	Spring Validators
	The ValidationUtils Class
	A Spring Validator Example
	JSR 303 Validation
	A JSR 303 Validator Example
	Summary

	Chapter 8: The Expression Language
	A Brief History of the Expression Language
	The Expression Language Syntax
	Accessing JavaBeans
	EL Implicit Objects
	Using Other EL Operators
	Referencing Static Fields and Methods
	Creating Sets, Lists and Maps
	Accessing List Elements and Map Entries
	Manipulating Collections
	Formatting Collections
	Formatting Numbers
	Formatting Dates
	Configuring the EL in JSP 2.0 and Later Versions
	Summary

	Chapter 9: JSTL
	Downloading JSTL
	JSTL Libraries
	General-Purpose Actions
	Conditional Actions
	Iterator Actions
	Formatting Actions
	Functions
	Summary

	Chapter 10: Internationalization
	Locales
	Internationalizing Spring MVC Applications
	Summary

	Chapter 11: File Upload
	Client Side Programming
	The MultipartFile Interface
	File Upload with Commons FileUpload
	File Upload with Servlet 3 or Later
	Upload Clients
	Summary

	Chapter 12: File Download
	File Download Overview
	Example 1: Hiding A Resource
	Example 2: Preventing Cross-Referencing
	Summary

	Chapter 13: Testing Your Application
	Unit Testing Overview
	State Testing vs. Behavior Testing
	Using JUnit
	Using Test Doubles
	Unit Testing Spring MVC Controllers
	Integration Testing with Spring MVC Test
	Changing the Web Root in Integration Testing
	Summary

	Appendix A: Tomcat
	Downloading and Configuring Tomcat
	Starting and Stopping Tomcat
	Defining A Context
	Defining A Resource
	Installing TLS Certificates

	Appendix B: Using Spring Tool Suite with Maven
	Installing the Spring Tool Suite (STS)
	Creating a Spring MVC Application
	Selecting the Java Version
	Creating An index.html File
	Updating the Project
	Running the Application

	Appendix C: The Servlet API
	Servlet API Overview
	Servlet
	Writing A Basic Servlet Application
	ServletRequest
	ServletResponse
	ServletConfig
	ServletContext
	GenericServlet
	HTTP Servlets
	HttpServletRequest
	Working with HTML Forms
	Using the Deployment Descriptor
	Summary

	Appendix D: JavaServer Pages
	An Overview of JSP
	Comments
	Implicit Objects
	Directives
	Scripting Elements
	Summary

	Appendix E: Deployment
	Deployment Descriptor Overview
	Deployment
	Web Fragments
	Summary

