{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "i08G0MDzth1H" }, "source": [ "# U.S. Population Migration Data:\n", "### Strengths and Limitations\n", "\n", "####
Census Bureau Processing
\n", "\n", " The first step in creating the migration data file is to assign a geographic code (geocode) to the IMF data. The Census assigns these geocodes based on “ZIP plus 4” codes and State of residence reported on the tax return. The “plus 4” codes actually consist of a pair of two-character codes—a sector code and a segment code. According to U.S. Post Office guidelines, each sector code identifies a single county. Using the combination of ZIP sector codes and State of residence codes for each individual return, Census assigns each record a State/county geocode. To prepare the migration data, which examine year-to-year changes, Census must geocode 2 consecutive filing years of IMF data. County equivalent codes are assigned to the District of Columbia, the Virgin Islands, Puerto Rico, APO/FPO (military), and “other foreign” areas.\n", "\t\n", "####
Identifying Migrants
\n", "\n", " Once the geographic codes are assigned, Census determines who in the file has, or has not, migrated. To do this; \n", " - first, coded returns for the current filing year are matched to coded returns filed during the prior year. \n", " \n", " - The mailing addresses on the two returns are then compared to one another focusing on: (1) the street address and (2) State plus ZIP code. \n", " \n", " - If the two are identical, the return is labeled a “non-migrant.”\n", " \n", " -If any of the above information changed between the 2 years, the return is considered a mover. However, the return is only classified a “migrant” if the taxpayer’s geographic code also changed from one year to the next.\n", " \n", " - For cases in which the geographic code did change from one year to the next, a taxpayer is considered an “in-migrant” for the address on the return filed in the current filing year, and an “out-migrant” for the address on the return filed for the prior year. \n", "\n", "####
Limitations and Margin of Error in dataset:
\n", "\n", " Although the filer’s return address determines the migration status of the record, there are instances for which the taxpayer may not have changed residences but the return address suggests a move. This may happen if: \n", " 1. the filing address is that of a financial institution or tax preparer, and not that of the actual taxpayer; \n", " 2. the taxpayer is a college student living away from home who filed with a home address one year and the college address another; \n", " 3. the taxpayer reports his or her place of business as the return address; \n", " 4. the taxpayer maintains dual residences, primarily residing in one county but filing the tax return from the other; or \n", " 5. the taxpayer uses a post office box for mailing purposes.\n", "\n", "As mentioned, those who are not required to file United States Federal income tax returns are not included in this file, and so the data under-represent the poor and the elderly. Also excluded is the small percentage of tax returns filed after late September of the filing year. Most taxpayers whose returns are filed after this date have been granted an extension to file by the IRS. These taxpayers are likely to have complex returns that report relatively high income, and so the migration data set may under-represent the very wealthy, as well.\n", "\n", " The matching process also causes some returns to be excluded from the counts. When the current-year tax return is compared to the prior-year tax return, only the Social Security Number of the primary taxpayer is considered. If a secondary filer exists (as in the case of a married couple filing jointly), that Social Security Number is not recorded or compared in creating the migration dataset. If, for example, a husband and wife file a joint return in the prior year, but divorce and file separately in the current year, only the husband’s current-year return will have a match with the prior-year return. The now ex-wife’s current-year return becomes a non-match and will not be included in the data counts. Other changes in filing status—from from joint to married filing separately—will also affect the data.\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "id": "E6bHpbR0tvrk" }, "source": [ "# Links to preceeding notebooks and dataset \n", "\n", "\n", "Notebook:\n", "[ETL Pipeline for Migarion Data, Notebook](https://colab.research.google.com/drive/1mVsEgKZ1UHhnOrEtuRMxCH_r2OqD981L?usp=sharing)\n", "\n", "XLS:\n", "\n", " - [Migrants Inflow Trend by Tax Returns, (1993-2020)](https://drive.google.com/file/d/1-MEo7EOXbAmy6qPH4gg6SVvxzqxDUuJR/view?usp=share_link)\n", "\n", " - [Migrants Inflow Trend, (2012-2020)](https://docs.google.com/spreadsheets/d/1om_F3PLc4Bm0P__cQe-tMwluD_ANSHHRrSGcyNf2zzA/edit?usp=sharing)\n", "\n", "Raw Folder:\n", "[Migration Raw data files](https://drive.google.com/drive/folders/18yvDHWkru90jEiQKwhqyaAsekex9P7C2?usp=sharing)\n", "\n", "Cleaned and Prepped Folder: [Migration Cleaned Data](https://drive.google.com/drive/folders/1QTHi7S5Ph5n-OLe8fa-8cWMA3afl3Wrw?usp=share_link)\n" ] }, { "cell_type": "markdown", "metadata": { "id": "1dQ5irGwwAE3" }, "source": [ "# Features \n", "\n", "* In-migrant_returns: No of Returns Filed from a different location in Current Year compared to the previous Year. (Household Migration Count)\n", "\n", "* Out-Migrant_returns: No of Returns for year 1 whose address change in Year 2. \n", "\n", "* Non-migrant_returns: No of Non-Migrant Returns , where return was filed from the same address in both years. (Household Non-Migration Count)\n", "* Inmigrants: No. of Individuals filing tax from a different location in Current Year compared to the previous Year. \n", "* Nonmigrants: No. of Individuals filing tax from same locations in both years. \n", "\n", "* %Outflow = $ 100*\\frac{OUT-migrant\\ returns}{Non-migrant\\ returns}$\n", "\n", "\n", "* %Inflow = $ 100*\\frac{IN-migrant\\ returns}{Non-migrant\\ returns} $ \n", "\n", " %Inflow represents the approximate ratio of households flown in County A to the total number of households residing there. Therefore, the feature might help assess a county's load on Infrastructure/Demand.\n", "\n", "* %Flow = %Inflow - %Outflow \n", " - Positive value would represent Influx into the County \n", " - Negative Value would represent Outflux from the County\n", "\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "executionInfo": { "elapsed": 37326, "status": "ok", "timestamp": 1669957097833, "user": { "displayName": "Sabaina Haroon", "userId": "03287014315776100364" }, "user_tz": -300 }, "id": "M9a9ak_HtZI8", "outputId": "e7ecf161-efb0-4f2a-d012-3a12a7b6f755" }, "outputs": [], "source": [ "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "import plotly.express as px\n", "import json\n", "from urllib.request import urlopen\n", "import glob as glob" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "id": "ALP-l6rEXVEE" }, "outputs": [], "source": [ "migration = pd.read_csv('/Users/gigisung/ca_git_index/Research/migration/data/processed/migration_cleaned.csv')\n", "migration = migration[~(migration['County Code'].isin([57005]))].reset_index(drop=True)" ] }, { "cell_type": "markdown", "metadata": { "id": "mfIx1Q_a1wAa" }, "source": [ "# Loading prepped Data For Analysis" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "id": "Xf4xFjxPte_v" }, "outputs": [], "source": [ "#@title Loading Inflow\n", "inflow_all = pd.read_csv('/content/gdrive/MyDrive/Data/Research Data/07Research/Research Papers/Hypothesis developed from research papers/migration_cleaned_prepped/inflow_all_final.csv')\n", "inflow_all[inflow_all.destination_countyfips==10001]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "id": "sV5_5Hmu4JSu" }, "outputs": [], "source": [ "#@title Loading Outflow\n", "\n", "outflow_all = pd.read_csv('/content/gdrive/MyDrive/Data/Research Data/07Research/Research Papers/Hypothesis developed from research papers/migration_cleaned_prepped/outflow_all.csv')\n", "outflow_all[outflow_all.origin_countyfips==10001]\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "O-x1DHd95ioX" }, "outputs": [], "source": [ "countynames = pd.read_csv('/content/gdrive/MyDrive/Data/Helper/county_list_original.csv')\n", "countynames.drop(columns='Year', inplace=True)\n", "countynames.drop_duplicates(inplace=True)\n", "countynames = countynames.reset_index(drop=True)\n", "\n", "outflow_all_countynames = outflow_all[['County Code', 'county']].drop_duplicates(subset='County Code').reset_index(drop=True)\n", "outflow_all_countynames = outflow_all_countynames.merge(countynames, on='County Code', how='left')\n", "outflow_all_countynames.loc[(outflow_all_countynames.County.isna()), 'County'] = outflow_all_countynames.loc[(outflow_all_countynames.County.isna()), 'county']\n", "outflow_all_countynames = outflow_all_countynames[['County Code', 'County', 'State']]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "id": "F9rjjALd4t33" }, "outputs": [], "source": [ "#@title Merge Inflow Outflow , Calculate net Flow\n", "\n", "inflow_all.rename(columns={'destination_countyfips':'County Code'}, inplace=True)\n", "outflow_all.rename(columns={'origin_countyfips':'County Code'}, inplace=True)\n", "migration = inflow_all.merge(outflow_all, on=['County Code', 'nonmigrant_returns','Year'], how='outer')\n", "migration.drop(columns=['county_x', 'county_y'], inplace=True)\n", "migration = outflow_all_countynames.merge(migration, on=['County Code'], how='left')\n", "migration = migration[~(migration['County Code'].isin([57001]))].reset_index(drop=True)\n", "migration = migration[['County Code', 'County', 'State', 'Year', 'nonmigrant_returns', 'inmigrant_returns', 'outmigrant_returns', '%inflow', \"%outflow\"]]\n", "migration['%flow'] = migration['%inflow'] - migration['%outflow'] \n", "migration = migration[~(migration['County Code']==57007)].reset_index(drop=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "lbVSIolfEm4q" }, "outputs": [], "source": [ "migration.to_csv('/content/gdrive/MyDrive/Data/Research Data/07Research/Research Papers/Hypothesis developed from research papers/migration_cleaned_prepped/migration_cleaned.csv', index=False)" ] }, { "cell_type": "markdown", "metadata": { "id": "Q4zPAPWfcE0G" }, "source": [ "# Data Exploration" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "migration=pd.read_csv('/Users/gigisung/ca_git_index/Research/migration/data/processed/migration_cleaned.csv')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "colab": { "base_uri": "https://localhost:8080/", "height": 606 }, "executionInfo": { "elapsed": 11931, "status": "ok", "timestamp": 1668729288809, "user": { "displayName": "Sabaina Haroon", "userId": "03287014315776100364" }, "user_tz": -300 }, "id": "kBGu6TSr-XTr", "outputId": "61d15a5f-a252-418b-9b6d-b4c9896354f7" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ8AAAJNCAYAAACfq9RvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeZxcVZn4/8+5tfe+huwbCWYhpLMYQkKUgVFBFBBQVERQf1/HcUNlRnBwBnDF7zAiID9nEBBlUEYRlXFDQMFECGQnC4GsdDpr79W13+X5/lHVnd6SdCfdXd3p5/16FVV17r11T3U3qVPPfc5zjIiglFJKKaWUUkoppdRgsPLdAaWUUkoppZRSSil1+tLgk1JKKaWUUkoppZQaNBp8UkoppZRSSimllFKDRoNPSimllFJKKaWUUmrQaPBJKaWUUkoppZRSSg0aDT4ppZRSSimllFJKqUHjz3cH8qGqqkqmTp2a724opZRSapCsW7euQUSq890PdZSOv5RSSqnT37HGYKMy+DR16lTWrl2b724opZRSapAYY97Mdx9UVzr+UkoppU5/xxqD6bQ7pZRSSimllFJKKTVoNPiklFJKKaWUUkoppQaNBp+UUkoppZRSSiml1KAZlTWflFJKDW+2bVNXV0cqlcp3V9QwFw6HmThxIoFAIN9dUUoppUYNHaup/o7BNPiklFJq2Kmrq6O4uJipU6dijMl3d9QwJSI0NjZSV1fHtGnT8t0dpZRSatTQsdrodjJjMJ12p5RSathJpVJUVlbqYGaYcj3Bdj0c18PxPFxP8EQQkSHthzGGyspKveqqlFJKDbHRNlZzPQ9viMc5w9nJjME080kppdSwNFoGMyOJ5wkZ1yPjeBzr12PI/u4s0/W+vT17P3C/X/07UUoppfJjNH0Gp22PgM/C8o+e93wi/f39a+aTUkop1QtjDDfddFPH87vuuovbb799yM7/1FNPceeddw76eX7961+zbdu2XrfdfvvtTJgwgZqaGmbPmcMjj/43tuvh9xl8Vs9bW7SVBx/4TwBcAcf1SDseKdslabskMg7xjEMs7dCWsknZ7qC/P6WUUkqdnoqKigbldZctW9bluSeCk8v6Hih79+7lpz/96TG3RSIRampqmDNnDh/96Eexbfu4r/fII49w4MCBAevfYNDgk1JKKdWLUCjEk08+SUNDQ17Of9lll3HLLbf0eX/HcU7qPMcLPokIn7vxC6xcvYaf/vwJvvC5z+C5xz5Pa0sLD/zXf2EMWAasXgJU7TfLGFwvm77uuhqEUkoppdTw8OKLL3Z57nmCMeB4guf1nHp3MuOY4wWfAM4880w2btzI5s2bqaur4+c///lxX+9kgk8nO3Y8WRp8UkoppXrh9/v55Cc/yd13391j2969e7nwwgs555xzuOiii6itrQXghhtu4POf/zzLli1j+vTpPPHEE70eO2vWLG644QbOOussrr32Wp599lmWL1/OzJkzeeWVV4DsIOKzn/0sALt27WLp0qXMmzePr371qx1X+p5//nlWrFjBZZddxpw5cwC44oorWLRoEXPnzuWBBx7oOG9RURG33nor8+fPZ+nSpRw+fJgXX3yRp556in/+53+mpqaGXbt2Admgk+162K6H63pYxvCWs84iUlBAc3MzAHf/x3+wYtlSlixawDe+dgcA//bVW9mzexdL37qIf7nlZv76wgtcdcXlHX340o2f59Gf/BiAOWfN4F9v/QoLFy7kF7/4BVOnTuW2225j4cKFzJs3j+3btwPwwgsvUFNTQ01NDQsWLKCtre1kf6UKMMaEjTGvGGM2GWO2GmPuyLU/YozZY4zZmLvV5NqNMeZeY8xOY8yrxpiFnV7remPMjtzt+ny9J6WUUqPb888/zwUXXMDVV1/NrFmzuPbaa3utQ3nBBRfwxS9+kcWLFzN79mzWrFnDlVdeycyZM/nqV7/asV/7OMvzPD796U8zd84cLr/0Eq5+32X8/IlfADB16lRuvvnmjnHMD3/4Q9761rcyf/58rrrqKhKJBHDsseEtt9zCypUrqamp6XWs2c7n87FkyRL2798PwLp163j729/OokWLeNe73sXBgwd54oknWLt2Lddeey01NTUkk0mmTp3acQF17dq1XHDBBUA2q/26665j+fLlXHfdddx+++18/OMf54ILLmD69Once++9AMTjcS699FLmz5/P2Wefzf/8z/+cyq8I0OCTUkopdUyf+cxneOyxx2htbe3S/rnPfY7rr7+eV199lWuvvZbPf/7zHdsOHjzIqlWr+O1vf3vMzKWdO3dy0003sX37drZv385Pf/pTVq1axV133cW3vvWtHvvfeOON3HjjjWzevJmJEyd22bZ+/Xruuece3njjDQAefvhh1q1bx9q1a7n33ntpbGwEsoOIpUuXsmnTJt72trfxwx/+kGXLlnHZZZfx7//+72zcuJHp06fjuB6JjEsy4wImW6fJwIYN65kxYwZjxozh2WeeYdfOHfz1by+xes06Nqxfz6qVK/naN77JtOlnsnrNOr5153dO+POtqKhk/fr1fPCDHwSgqqqK9evX84//+I/cddddQHa64/3338/GjRtZuXIlkUjkhK+rjisNXCgi84Ea4GJjzNLctn8WkZrcbWOu7RJgZu72SeAHAMaYCuA24FxgCXCbMaZ8CN+HUkop1WHDhg1873vfY9u2bezevZu//e1vve4XDAZZu3Ytn/rUp7j88su5//772bJlC4888kjHmKndk08+yd69e1m78VUefPgR1ry8uiNrG6Cy8ug45sorr2TNmjVs2rSJ2bNn89BDD3Xs19vY8M4772TFihVs3LiRL37xi8d8X6lUipdffpmLL74Y27b53Oc+xxNPPMG6dev4+Mc/zq233srVV1/N4sWLeeyxx9i4ceMJx0rbtm3j2Wef5Wc/+xkA27dv5+mnn+aVV17hjjvuwLZt/vjHPzJ+/Hg2bdrEli1buPjii4//C+gDLTiulFJqWLvjf7ey7UB0QF9zzvgSbnvv3BPuV1JSwkc/+lHuvffeLh/kL730Ek8++SQA1113HV/+8pc7tl1xxRVYlsWcOXM4fPhwr687bdo05s2bB8DcuXO56KKLMMYwb9489u7d22P/l156iV//+tcAfPjDH+af/umfOrYtWbKkyxK39957L7/61a8A2LdvHzt27KCyspJgMMh73vMeABYtWsQzzzzT5Ryu55G2PRxP8FkGvy8bdPr+fffw3z/5MTt2vMEvnsz24blnn+G5557lvCWLAYjH4uzauYNJkyad8Gfa2VVXv7/L8yuvvLKjf+0/3+XLl/OlL32Ja6+9liuvvLJH8E31j2QvBcdyTwO52/GW77kc+EnuuNXGmDJjzDjgAuAZEWkCMMY8A1wM/Gyw+q6UUmp4yudYrd2SJUs6xgg1NTXs3buX888/v8d+l112GQDz5s1j7ty5jBs3DoDp06ezb98+KisrO/ZdtWoVV119NYJh7LixvO3tF+DlVvgFuOaaazr23bJlC1/96ldpaWkhFovxrne9q2NbX8aG3e3atYuamhr27NnDpZdeyjnnnMOWLVvYsmUL73jHO4DsdL/2/vfHZZdd1mVce+mllxIKhQiFQowZM4bDhw8zb948brrpJm6++Wbe8573sGLFin6fpzvNfFJKKaWO4wtf+AIPPfQQ8Xi8T/uHQqGOx72lfHffx7KsjueWZfV7/n1hYWHH4+eff55nn32Wl156iU2bNrFgwYKOJXADgUDHqiQ+n6/jPCKQcVziaRdP6Ag6tfvs525k7cZN/PTxn/PpT32SVCqFiPBP//xlVq9Zx+o169j82nau/9jHe/TN7/fheUeLc6bSXZfjLejU984/l879u+WWW3jwwQdJJpMsX768YzqeOnnGGJ8xZiNwhGwA6eXcpm/mptbdbYxp/yOdAOzrdHhdru1Y7UoppdSQ6zy26jyOONZ+ncdf7c97O0ZEeqzw25791HkMdsMNN/D973+fzZs3c9ttt3WMv7r37Vhjw+7aaz7t2rWLdevW8dRTTyEizJ07l40bN3bUg/rTn/7U6/F+v79jDNa5L9373b1/7T+7s846i/Xr13eUfPja177Wp34fj2Y+KaWUGtb6c9VrMFRUVPCBD3yAhx56iI9/PBtgWbZsGY8//jjXXXcdjz322IBcDTqepUuX8stf/pJrrrmGxx9//Jj7tba2Ul5eTkFBAdu3b2f16tXH3FcEUrZLuKCQ1mgbft/xl8u99L3v5ceP/IjHHv0Jf/+Od/L1O27jmg99mKKiIg7s348/EKCouJhY7GhNpsmTp7B9+2uk02mSySTP//kvnLdseb/e+65du5g3bx7z5s1jzZo1bN++nVmzZvXrNVRXIuICNcaYMuBXxpizga8Ah4Ag8ABwM3DKI01jzCfJTtdj8uTJp/pySimlhqF8j9UGy/Lly/nRI4/wgQ99hMP1Daz86wu8/wMfxOll1bu2tjbGjRuHbds89thjTJhw/OsxxcXFfapjWVVVxZ133sm3v/1tXnjhBerr63nppZc477zzsG2bN954g7lz5/Z4valTp7Ju3TouueQSfvnLX/b7vR84cICKigo+8pGPUFZWxoMPPtjv1+hOM5+UUkqpE7jpppu6rHp333338aMf/YhzzjmHRx99lHvuuWdQz/+9732P7373u5xzzjns3LmT0tLSXve7+OKLcRyH2bNnc8stt7B06dIe+3gi2I6H42ULin/gmg9w793f5bwli9mdKzh+LF+59Vbuu+ceLrzoIj5wzQf5u7edz1sX1nDth64h1tZGZWUlS89bxuIFNfzLLTczcdIkrrzqat66oIbrPvwh5tfUnNR7P/vssznnnHMIBAJccskl/X4N1TsRaQH+AlwsIgclKw38iGwdJ4D9QOf5lBNzbcdq736OB0RksYgsrq6uHoy3oZRSSg2Kq666inHjJ7B4wXw+ccP1zK9ZQGlZKU4vK959/etf59xzz2X58uV9ukh2zjnn4PP5mD9//nELjkN22l4ikeDll1/miSee4Oabb2b+/PnU1NR0rMx3ww038KlPfaqj4Phtt93GjTfeyOLFi/H5fP1+75s3b2bJkiXU1NRwxx13dCnIfrJMX9O+TieLFy+WtWvX5rsbSimljuG1115j9uzZ+e7GsJFIJIhEIhhjePzxx/nZz37Gb37zm369RnYFOyHtZJcD9hkDx092GlTtw4/C0KknYff292KMWScii0/5xU8zxphqwBaRFmNMBPgT8B1gnYgcNNm5mXcDKRG5xRhzKfBZ4N1ki4vfKyJLcgXH1wHtq9+tBxa114DqjY6/lFLq9DEaxmqeJxxubKG0tJjGxkbevnwZzz7/AtVjziAS8OH3aS5Pf8ZgOu1OKaWUGubWrVvHZz/7WUSEsrIyHn744X4d77geKcdDRLCM6VG7QI0q44AfG2N8ZDPgfy4ivzXG/DkXmDLARuBTuf1/TzbwtBNIAB8DEJEmY8zXgTW5/b52vMCTUkopNdK4InzgqitobW3Bztjc/C//wtixY/E8cDzB3/+EolFNg09KKaXUMLdixQo2bdrU7+NcL5vp5LjZFewsS6NOo52IvAos6KX9wmPsL8BnjrHtYaB/kVCllFJqhHA94Q9/eg6rW4KTZcB2PUJ+q2MxF3ViGnxSSimlTjOeJ2Rcj4zjYRlzwmLiSimllFLqKBHBcbPjqB4MINnglI6x+k6DT0oppYal7NK2+oHeH9m6Th5pJ7sKy2gYEI3G2pVKKaXUcHA6j9U8AYFj1sc06NS7/o7BtEKWUkqpYSccDtPY2HhaBRZEZNDeT3vQKZ52SDsePmPwjYIpdiJCY2Mj4XA4311RSimlRpXTcazWmXeC92UZg+16p+37P5GTGYNp5pNSSqlhZ+LEidTV1VFfX5/vrpwUEUHIrujmiXTcQ3awYhkwucLfhlMrAO6J4LiCl7v6OFJCTkL2qmHQf2rXwcLhMBMnThyQPimllFKqb0b6WO1EbNfD846f2eWJEPRbvU/NGwX6OwbT4JNSSqlhJxAIMG3atHx344REhLTjkbJdEmmXllSGaNIhabsdQaCAZRH0W4T8FgJknOy0OMfzMGSDUIUhP2WRAKUFASIBH+GA74SZS8mMy97GOEdaUxSEfRQER9ZHetpxsSzD7Mnl+e6KUkoppfpppIzVToaIsGpnA8WhwHEXa2lL2pSWhZleXTSEvRu5RtZIVSmllMoT1xNStkvSdomlHFqTGaIpB8/LZjQZYwj6soGmwmMEggwQzgWX2rUHsA62ptjXnMgFrQyFIR9lBQFKI0EiQR9hv4XfZ2G7HnXNCd5sTOC3LCoLg6dtvQWllFJKqaGWyLh4npzwQmBh0MfB1hTTqgp1LNYHQxJ8Msb4gLXAfhF5jzFmGvA4UAmsA64TkYwxJgT8BFgENALXiMje3Gt8BfgE4AKfF5Gnc+0XA/cAPuBBEblzKN6TUkqp05+I0JKwqW1O0BzPYMgWoAz4LII+i+JQ4JRrKxljeg1IZVyPw61p6pqTuf2gMOgnZbs4nlAWCY6Kuk5KKaWUUkOpLWXTl0pOfp+FnbSJpR2Kw4FB79dIN1SZTzcCrwElueffAe4WkceNMf9JNqj0g9x9s4jMMMZ8MLffNcaYOcAHgbnAeOBZY8xZude6H3gHUAesMcY8JSLbhuh9KaWUOg3ZrkdDW5o3mxIkMy6RgI+KgqHLMDLGEPL7CHVbQiXjeBQG/fh9ul6IUkoppdRgaIhliAT6toydz2dojmc0+NQHgz56NcZMBC4FHsw9N8CFwBO5XX4MXJF7fHnuObntF+X2vxx4XETSIrIH2Aksyd12ishuEcmQzaa6fLDfk1JKqdNTMuOypyHG6t2NvH64jYBlUVUUojDkHxbp1MHc1DullFJKKTXwPE9oime6ZKQfT2HQz4HW1Khd9a4/hiLz6XvAl4Hi3PNKoEVEnNzzOmBC7vEEYB+AiDjGmNbc/hOA1Z1es/Mx+7q1nzvQb0AppdTpS0SIJh3qWhLUt6XxGUNx+NSn0ymllFJKqZElnnHwRPq8gl3AZxFN2iQyLoUhLal9PIN6+dQY8x7giIisG8zz9LEvnzTGrDXGrD1dl4NUSinVd47rcSSaYu3eJtbXNhNNOFQUBCkr0FpKSimllFKjUVvS6RF42lzXwm1PbSHjeL0eY1mG5kRmKLo3og127v5y4DJjzF6yU+IuJFscvMwY0x4WnAjszz3eD0wCyG0vJVt4vKO92zHHau9BRB4QkcUisri6uvrU35lSSqkRKWW71DbGWb27kW0Ho4ChqihEUXh4TK1TSimllFL5UR9LEe5Wc/PpbYdZX9vC+trmXo8pCPo42JIciu6NaIMafBKRr4jIRBGZSrZg+J9F5FrgL8DVud2uB36Te/xU7jm57X+W7OTJp4APGmNCuZXyZgKvAGuAmcaYacaYYO4cTw3me1JKKTUyRVM22w9FWb27kT0NcQqDfioLQ32e06+UUkoppU5frie0JBzCgaNhEk+EDbmg08odDb0eF/L7iKddkhl3SPo5UvV5UqIx5kygTkTSxpgLgHOAn4hIy0mc92bgcWPMN4ANwEO59oeAR40xO4EmssEkRGSrMebnwDbAAT4jIm6uX58FngZ8wMMisvUk+qOUUuo043lC0naJZxxqmxK0JW2CvqFdtU4ppZRSSo0MsbSDIF3Gibvr40RTDuUFAV7Z20jacXusRgyAgeZ4hkgwMoQ9Hln6UxHrl8BiY8wM4AGy2Uo/Bd7dl4NF5Hng+dzj3WRXquu+Twp4/zGO/ybwzV7afw/8vi99UEopdfqyXY9ExiWWsmmMZ2hN2Li5lUcKAn6qisJ57qFSSimllBquokkbi64XKNun2n3i/Onc9afXWbu3meUzqnocWxj0czCaYny5Bp+OpT/BJy+3At37gPtE5D5jzIbB6phSSil1PCnbJZ52aE3aNMUzxNIOBjDGEPJblEQCfV6pRCmllFJKjW71sTSRYNespvW1zUyvLuT8GVX8cOVuVu5s6DX4FA74aIynSdmulnQ4hv4En2xjzIfI1mR6b64tMPBdUkoppbryPCFhu8RTNk2JbLDJdjww4LcswgGLysJQvruplFJKKaVGINv1iCZtKgqCHW2JjMP2Q228r2YCPsuw7MxKntt+5LgBptZEhnCpZj/1pj/Bp48BnwK+KSJ7coW/Hx2cbimllBrJUrbL7voYiYyLwWAscllJZJ8bsIzJtrVvw2BZpmM/yO4TTdlEkw5ebgpdyO+jMOjHF9asJqWUUkopderinTLo271a14rrCQsnlwGwYmY1f9hyiDV7m1gxs7rHa0QCPg5FU5yhwade9Tn4JCLbgM93er4H+M5gdEoppdTIVd+WYvvBNowxRAI+BEE8yMWOAEEEhI6G3POOzdljcg0Bn0WpTqFTqgdjzP8FvgEkgT+SXQzmiyLy33ntmFJKKTXCtCbsHmPN9bXNRAI+Zo0rAWDOuBLKCwKs3NFwzOBTUyJDxvEI+q0e20e7/qx2txy4HZiSO84AIiLTB6drSimlRhLb9dhVH+NAS5KySJCATz90lRpk7xSRL+fqce4FrgT+CmjwSSmllOqH7vWeRIT1tc3Mm1DaMab1WYblM6p4eushEhmHgmDXcEp71lRr0qa6WMtBdNefbwYPAd8FzgfeCizO3SullBrlWhM2a/c2cSSapqowpIEnpYZG+6j3UuAXItKaz84opZRSI1HG8WhLO4T8R4NPB1tTHI6mO6bctVsxsxrbFV7Z09Tra4X9Pg5HU4Pa35GqP98OWkXkDyJyREQa22+D1jOllFLDnusJexpirHuzCb9lUV4Q7DJXXik1qH5rjNkOLAKeM8ZUAzriVUoppfohnnZ6BEbW1zYDsHBKeZf2WWOLqSwMsmpnQ6+vVRD00RBLY7veYHR1ROtPwfG/GGP+HXgSSLc3isj6Ae+VUkqpYS+ednjtUJS2pENlUUhrMik1xETkllzdp1YRcY0xceDyfPdLKaWUGkma4hl8Vtfw0/raZsaVhhnXrXi4ZQznz6jid5sPEks7FIV6n3oXTdpUFunUu876E3w6N3e/uFObABcOXHeUUkoNdyLCodYUrx9uI+T3UaUfrErl0yxgqjGm85juJ/nqjFJKKTXSNMTSFHSq92S7Hpv3t3LhrDN63X/FzGp+s+kAL+9u5KLZPfcJ+XwcaUtr8KmbPgWfjDE+4CkRuXuQ+6OUUmoYS9kuO4+0caQtQ3kkgF9rOymVN8aYR4EzgY2Am2sWNPiklFJK9UnKdknabpfi4a8djJKyvR71ntqddUYRY4pDrNrZ0GvwqSDko74tzcwxno6VO+lT8CmXyv0hQINPSik1SjXG0rx2MIoxhmq9kjNqxVIOK3fWE005QHbp23am2wOTe9B5Rmb7Q8cTzhxTyMLJXWspqH5ZDMwREcl3R5RSSqmRKJ52erStr23BZxnmTSjt9RiTm3r3m00HaEvZFIcDXbZbxuCJ0JZyKC8MDkq/R6L+TLv7mzHm+8D/APH2Rq35pJRSpzfH9djdEGNfU5KySJCgX6/gjEa76mP8bvNBXnijnowzMEU03z1vLDcsmzYgrzVKbQHGAgfz3RGllFJqJGqKZwh2y07aUNvM7LHFXbKhulsxs5onN+znpd2NvHPO2B7bA5ZFfSytwadO+hN8qsndf61Tm9Z8UkqpU+B5QsJ2iaVsmuIZokmHYMCiMOinIOgjHPAR9FsEfRZBv4XPGtqi3tGUzbYDUVK2S3VRSFeyG2Vs1+PFXY387tUDvHaojaDf4u/Oqubd88YxuaIAyA4EOmvPwZHclt5yckQg7boENBX9VFUB24wxr9B1MZjL8tclpZRSauRoiKWJBI7We2qOZ9jdEOejS6cc97gzqwsZWxJm1Y6GXoNPhSE/R6IpZlQXYQ3x+P1EmmJpfD6L0kjgxDsPoD4Hn0Tk7wazI0opNRo4rkc8kw02NcQytCZtvNy387A/G2hyXaEpnuFw1MMT6ZimJEDAZxEJ+gY9OOV5Ql1zgp31MYqCASoLdZrdaNIYS/OHrYd4eushWhI240rDfOL8afz9rDMoCvfnutWxWQ7DbjA2At2e7w4opZRSI1Uy45JxhKLQ0YthG/Y1A7DgBGUBjDGsmFnFL9fX0Zq0ewRyfJbB8bJT70oLhjbIczyNsTTr32xhzvji4Rt8Msb8W2/tIvK13tqVUkpBxvFIZBxaEzYN8QyxtI1Idi54yJ+94mB1yybqdPGlB9cTbNc7bnAq7PdhjpVQ0i0LpdesFATHFZK2S0VBaMizrVR+iAhb9rfyu80HeWl3IyKweGo5l84bz4LJZT3+TlV+5RaD+S8RmZXvviillFIjUSztdGRqt1tf20JpJMD06sITHr9iZhW/WFfHi7sauOTscT22+y2Lhlh62ASfWhIZXq1rJV9D+/5cvox3ehwG3gO8NrDdUUqpkS1lu8TTDs2JDE2xDHHbxSIbbAoHfJRHgqc0dc1nGXzWsaNTric4noeXW/eqL6cymB7Pg35DYWhgMlzU8JbMuPzl9SP8bvNBapsSFIX8XFEzgUvOHsfY0nC+u6eOIbcYzOvGmMkiUtvX44wxYeCvQIjsOPAJEbnNGDMNeByoBNYB14lIxhgTIrt63iKgEbhGRPbmXusrwCfIrrT3eRF5euDeoVJKKTW4GmNpQr6j42pPhA21zSycXN6ni25TKwuZUBZh1c7eg0+FQR8HW1NMry7Me+mK1oTNxn0tFIf9JDLuiQ8YBP2ZdvcfnZ8bY+4CdJChlFLkaiPtj5J2XITslY5IwEdV4dAGcE4UnFKq3b7mBL/ffJA/bz9CIuNyZnUhn79wBitmVhM+XvqdGk7Kga25mk+dF4M5Xs2nNHChiMSMMQFglTHmD8CXgLtF5HFjzH+SDSr9IHffLCIzjDEfBL4DXGOMmQN8EJgLjAeeNcacJSL5GdEqpZRS/SAiNMQyFHW62Lq7Pk405bBwSs8pdyLSI4BkjOH8mVX8Yu0+mhMZygu6Fhf3+ywcz6Yt7VASzl/2UzRls3FfM4VBPyG/b/gHn3pRAEwcqI4opdRI1ZLIsKmulYjfR4XWRlLDmCfCmr1N/B8iLV4AACAASURBVPbVg2zc14Lfyi4VfOk543jLGcV5vyqn+u1f+3uAiAgQyz0N5G7tC8h8ONf+Y7L1pH4AXM7R2lJPAN832T+Uy4HHRSQN7DHG7ASWAC+dzBtRSimlhlLSdnE9r0t5ifW1uXpPk8p67F8fSxP2+yjpVidpxYwq/mfNPl7c2cCl54zvcZzPGJpimbwFn9pSNhtrmykI+vN+cbE/NZ82c7RaiA+oBr4+GJ1SSqmRoqEtxeb9UYrD2SsJSg1Hrie88EY9T6zbx77mJFVFQT6ydArvnHNGj6t0auQQkRdO5rhcvah1wAzgfmAX0CIiTm6XOmBC7vEEYF/ufI4xppXs1LwJwOpOL9v5GKWUUmpYa0vaPdrW1zYzvbqQsm5jI9cTAj6D7Xk9jplSWcikigJWHiP4VBjyc7A1yZTKgiG/yBdLO2zc10LYn//AE/Qv8+k9nR47wOFOgxSllBp1DrUk2XYwSllBUJeMV8NSxvF4bvthfrm+jsPRNFMqCrjpHWexYma1FpI/DRhj2jh6YTBINospLiIlxzsuNzWuxhhTBvwKGLSi5caYTwKfBJg8efJgnUYppZTql8Z4psuF40TGYfuhNt5X0/M6SjLjUlUUpiWZwXa9HuP+FTOq+NkrtTTG0lQWdZ0FEfBZRFM28YzbZYrfYIunHTbWNhPMrZQ9HPTn3X9DRK7r3GCMebR7m1JKjQZ1zQleP9xGRUEQvwae1DCTzLj8cetBfr3hAE2JDGedUcT/WTGdt06t0FXrTiMiUtz+uNNUuKX9OL7FGPMX4DygzBjjz11YnAjsz+22H5gE1Blj/EAp2cLj7e3tOh/T+RwPAA8ALF68uJf1NZVSSqmh5XlCYyxDcaepcJvqWnE9YeHknlPu0q7LmJIiCoM+apsSPTKjzp9ZxU9fqeVvuxq4bH7P4JXPGJrjmSELPiUy2YyngM+iIDh8FhDqzzemuZ2f5AYgiwa2O0opNbyJCHsbYrxxuI3KgpAGntSw0pay+dkrtXzix2t4+G97mVgR4RuXn81dV8/n3GmVGng6jUnWr4F3HW8/Y0x1LuMJY0wEeAfZ1Yv/Alyd2+164De5x0/lnpPb/udc3aingA8aY0K5lfJmAq8M4FtSSimlBkXCdnE96ZIFvqG2mUjAx6xxPZOHBSgO+6ksDuF4Pa+jTCovYGplAat2NPR6voKgnwMtyQHr//EkMy6b9rXgM2ZYBZ6gD5lPuWV0/wWIGGOi0LEmd4bclSyllBoNPE/YXR+jtilJZVFIv8iPEvubk6yrbcLzwJjsyiZWp3vLGIwBC9Nle0d77j7gs5hYHuGMkvCA/+00xzP8ZtN+fr/5EEnbZcnUCt6/eCKzxh539pUa4YwxV3Z6agGLgdQJDhsH/DhX98kCfi4ivzXGbAMeN8Z8A9gAPJTb/yHg0VxB8SayK9whIluNMT8HtpEtx/AZXelOKaXUSNCWtOk8FBMR1tc2M29CaY8pdSnbpSQcIOT3EfJDUchH2nF71HpdMbOaR1e/SX1bmurirlPvgn6LtrhNIuMMakAoZbtsqmsBMRSGh1fgCfoQfBKRbwPfNsZ8W0S+MgR9UkqpYcf1hDcOt3EomqSqKKSrgp3mbNfjpV2NPL31EK/ubx3Q144EfEytKmR6VSHTcrcplQUnVbD+SDTFkxv288y2wziex/kzqrh60SSmVRUOaJ/VsPXeTo8dYC/ZqXfHJCKvAgt6ad9NdrW67u0p4P3HeK1vAt/se3eVUkqp/KuPpbsU4D7YmuJwNN17vSfbZXr10XHVhLIC3jjS1kvwqYpHV7/Jqp31vG/BxB6vY4CWuD1owaeUnc148jzpMp1wOOnPO7/VGPMRYJqIfN0YMwkYJyKaYq2UOq05rsfrh9o40pamslADT6ezAy1Jnt56iGdfO0w05TCmOMR1S6dwwVuqKQz6EQFPBCF3L9mrZW7H46PtHke3eyKkbY83mxLsbYizuyHOn7cfIWlnE0UsA+PLIkyvKswFpoqYVlVIeUGg17+3uuYET6yr4/k36jHA380aw9ULJzK+LDK0PzCVbw+KyN86NxhjlgNH8tQfpZRSalhzPaElYVMaORqgWV/bDMCCyeU99vc86VLjqaIo2Oun7LjSCDOqi1i1s6HX4FNB0M+B1iTjywd+rJZ2XLbUteJ4QskwDTxB/4JP9wMecCHwdSCWa3vrIPRLKaWGBdv12HogSmsyQ1W31SvU6cF2PVbvzmY5baprxTJw7rRK3jV3LAsmlw3oFLnOdQQ8EY5E0+xpiLG7Ic6ehjjbD7Xx1071AsoiAabmsqOmVxVSXhDkD1sP8eLOBgJ+i3efPZb3LZjYI71bjRr3AQv70KaUUkopIJ5x8ES6jO/W1zYztiTc4yKe6wl+n0Vhp9XiwgEfpZFAr1Pozp9ZxSMv7uVQNMXYknCXbeGAj8Z4mljaGdDC4xnHY3NdK2nXG9aBJ+hf8OlcEVlojNkAICLNxpjgiQ5SSqmRKu24bK5rJWm7VBTol/vTzcHWJE9vPcxzrx2mJWlTXRziI+dO5u9nn9FjmdzBYBnD2NIwY0vDnHdmVUd7LO10ZEdl72P876YDHQUuC4I+rl40kcvmj++x2ooaHYwx5wHLgGpjzJc6bSoBhsd6ykoppdQwFE3aXQJPtuuxeX8rF846o8e+8bTDmJKesx4mlEXYeiDaM/g0Ixt8WrWjgasX9cx+Cvgs1uxpoiDoo7IoSHlBkMKQv8sUwP7I9r2FpO1SFhn+Y8L+BJ/sXHFKgexqKWQzoZRS6rSTzLi8WteC48mI+Mdc9Y3jery8p4k/bj3Exn0tWAbeOrWCi+eOZcHk8i6rnuRLUcjP2RNKOXtCaUeb43rsb0lysDXF2RNKh2ypXjVsBYEisuO44k7tUY6uWKeUUkqpbhpiaSKdgj2vHYySsj0WTi7rsa/teb3OfCgrCGKZbGmFzoGpM0rCvOWMYlbtrO81+NSemWS7Hoda09Q1Z1fAC/tzwajCIEV9DEa1z85IpN0RczGyP6PXe4FfAWOMMd8kO7j56qD0Siml8iiedthU14IRM+zTV1XfHIqm+NPWQzzz2mFaEjZVRSE+vGQy75wzNFlOp8rvs5hSWciUSi0krkBEXgBeMMY8IiJvGmMKRCSR734ppZRSw5njerQmbco7XVheX9uMzzLM63TRD7KBJYDiXlaNC/otqotDtCZ7TqE7f0YVD/1tDwdaksesxRnwWZRGjq6qZ7se9W1p9rckMRj8PkNVUZCKwhCFIR+RgK9LkMtxPbYdiNKayFBROPzHse36FHwyxljAHuDLwEVki7VfISKvDWLflFJqyEVTNpv2tRD0WRRodsmIZLseB1tT1DUn2N+cZMuBVjbUtmAMLJpSzsVzx7FoyvDIclLqFI03xvyBbBbUZGPMfOAfROTTee6XUkopNezE0y4IXQI562tbmD22uMcUupTtUVYQIOCzur8MAGNLIxyOtvQIPi3PBZ9W7mzgmsWT+tSvgM/qch7H9WiK2RxsTWEAn2VRWRSksjBIQcjPnoYYLcmRFXiCPgafRMQzxtwvIguA7YPcJ6WUyouWRIZX61qJBHwnPfdaDZ3WpJ0NMLUkqWtOdgSbDkVT5MojAXBGSYhr3jqJd84Zq4W51enme8C7gKcARGSTMeZt+e2SUkopNTy1JjNdAk/N8Qx7GuJ8dOmUHvsmbIeJ5cU92tuVRgL4fQbXky4XNKuLQ8weV8KqHfV9Dj515/dZFPksinLhmvYV+o5EUwhgDCOyHm1/Lus/Z4y5CnhS2nPQTsAYEwb+CoRy53pCRG4zxjwCvB1oze16g4hsNNm/hHuAdwOJXPv63Gtdz9Fpft8QkR/n2hcBjwAR4PfAjX3tn1JKtWtoS7F5f5TisJ+QXwNPw4XrCYdaU+xvSeQCTEnqWrKBpraU07FfwGeYUBZhWnURK2ZWM7E8wsTyAsaXhXtcyVLqdCIi+7oVQnXz1RellFJqOKtvy3Sp97RhXzMACyaX99xZoLTg2OU3fJZhbEmYw9E0pZGu+50/o4ofrtzNvuYEk8oLTrnfPstkM6wGYFaGJ8JfXj/ClIqeAbfB1p/e/wPwJcAxxqTITr0TESk5zjFp4EIRiRljAsCqXHo4wD+LyBPd9r8EmJm7nQv8ADjXGFMB3AYsJlvwfJ0x5ikRac7t83+Al8kGny4G/oBSSh1HynZJZFxakxkaYxmiSZuyguAxU2tV/2zZ38rq3Y04nuC4HrYnOK7geF6Xezu33el0b7uCm9uesF3cTmlMZQUBJpZFWH5mFRPKIx1BpuqikE6jU6PRPmPMMkBy46wbAS2JoJRS6pR1z+gZ6WzXoy1tU9lpqtr62hZKIwGmVxf22DcUsCgIHv+C9JiSMPtbkj3al59ZyYMrd7NqRwMfWjJ5YN7AAHA94Z7n3uAvr9czqTzCx88vGtLz9zn4JCLHzjkDjDFzRWRrt2MEiOWeBnK342UlXQ78JHfcamNMmTFmHHAB8IyINOXO9QxwsTHmeaBERFbn2n8CXIEGn5QaFGnHJe14pG2PeNrB8TyKQn6Cfh9Bv0XQZxHwmR7LkeabiJC0XeJpl+ZEhsZYmrSTXazTb1mEAxbVxeE89/L0kMy4PPLSXn6/+SBBX/Zn6/dZ+C1DIHfv9xn8loXfZwj6DAXBQK7dItBteyTgY0JZNsA0oTyiq7wp1dWnyGaMTwD2A38CPpPXHimllBoxRISM65GyPdKOSyzlEE3ZxFIOInDWGcWcUXp6jJHjaYfO31A8ETbUNrNwcjlWt+8uiYzLuNLwCb/TFIf8BP0Wtut1uYBdWRRi7vgSVu4cPsGnjOPxf5/ezst7mrhq4QTeOeeMIe/DQI7iHwUWdm80xviAdcAM4H4RedkY84/AN40x/wY8B9wiImmyg6d9nQ6vy7Udr72ul3al1EkSkY4AU9pxsx9AaYe2lNMlA8VvWRhgv5fsiCiLgM+CgqCfSMBHYchPQTAXmPJbPYrpDRbXE+IZh1jSoSmRoTmRwfMEAUI+H6GAj6KQrmI30F6ta+Ge53ZQ35bm8vnj+cjSKVo7S6lBkhtf3SMi1+a7L0oppYa3jvG945G2s+P7aMohns6O7w3ZDJGAlR2zF4UCiAhbD7TSksxwZnUR/hE+O6A5kcFnHX0Pu+vjRFNOr1PuHM+jsijYo707yzJMKI1Q25SgrKDr/ufPrOY/X9jFm43xvK9WnMg4fPN3r/Hq/lb+4W3TWT6jKi/JAgMZfOq19yLiAjXGmDLgV8aYs4GvAIeAIPAAcDPwtQHsS8/OGfNJ4JMAkycPj+ijUvnkee0fQi7JjEtb2qEt6RDP2LRXTev8IVQcCvQp9VYkO20qlnZoTtg4ntfxgQbgtwyRgJ/CUDY4FfJbGGMwJvuPiNXx2GCsbJsxBqu9zdCx3TLZba4nJDIO0aRNQzw7hQ6yx4YDvj73XZ2cztlO40vDfPvKecwdX3rC45RSJ09EXGPMFGNMUEQy+e6PUkqp4aM1aZPMZC8et6Ud4ikHLzfA7zy+LwkHemT9HGWoKgpxKJqiLekwe3wJhSM4A72hLd2l3tP62vZ6T2Vd9hMRjKHP2faVxSF2N8R7tC87s5IH/rqLlTsb8hp8iiZtbv/freyqj3HTO87igreMoTmRn2HDQP71HLfIt4i0GGP+AlwsInflmtPGmB8B/5R7vh/oXBJ+Yq5tP9mpd53bn8+1T+xl/97O/wDZQBeLFy/WguRqVHFcj6TtkrRdWhM2rUk7u9Rop/9tgz4fAb+hNBI8zofQiRljCPoNQXq/OuJ62Xo/zQmb+rY0bu6D0GCQXH9M52iVyWZUHe1RdmP3/4nbA1fhgI+KguCwm/p3utJsJ6XyajfwN2PMU0DHyFdEvpu/LimllMqn5niGDbXN+HIlD4J+i5LI8YJMx2aMoaIgRDztsHZvE7PHlTCmZORNw0s7LrG0S1XR0fDH+tpmplcVUt4tYylpu5QXBPuc6VUU8lMU8pF23C6LFpUXBJk3oZRVOxq4dsnkvHw3aYyl+dentnKoNcmt757NkmmVQ96HzgY1dGmMqQbsXOApArwD+I4xZpyIHMytbncFsCV3yFPAZ40xj5MtON6a2+9p4FvGmPacuHcCXxGRJmNM1BizlGzB8Y8C9w3me1JquOseaGpJZEjYbkc2U9BnEfL7KC8I5OUfQZ9l8Fm+gVisQeVRMuPyoxf38IcthzTbSan82ZW7WcBxa3MqpZQ6/Tmux+uH2ygOBwb0YmBhrrbRlgNRJidtplUXjahZBfG0S+evPYmMw/ZDbbyvpmfFnqTtMrWyfyvUTSgr4I0jbT1WzD5/RjX3P7+TPQ1xplcPbXHvAy1J/vU3W2hLOdzx3rnMm1h24oMG2UB+/estd2sc8ONcXQIL+LmI/NYY8+dcYMoAG8kWzITsanXvBnYCCeBjALkg09eBNbn9vtZefBz4NPAIECFbaFyLjatRw24PNKUdWlMOLfFsoKlde6CpokAjPWrgbKpr4V7NdlIq70TkjuNtN8bcJyKfG6r+KKWUyq8DLUlStttlRbeBEvBZVBUGqWtJ0pKymTuulMgJVoMbLpriaQKd6j1tqmvF9YSFk3sGZAyGksiJ6z11VlEUhCM92887s5IfvLCTVTsbhjT4tKchzr89tQXXE755xdnMPGN4XJ/q8zdSY8xzInLRsdpEZGn3Y0TkVWBBL+0X9naO3Cp3va7SIiIPAw/30r4WOLsv70Gpkcr1JLvSXK4IeGvSpjlhk7Tdjulo2ULaFpVBDTSpwaHZTkqNOMvz3QGllFJDI5Fx2FUf7zGNbCAZY6gsDBFLOazZ28iccSVUDfMVo0WEw9E0BZ0CZRtqm4kEfMwaV9JlX9v1CAWsfgfVwgEfpZEAiYxDQafvYqWRADWTyli5o4Hrlk4Zklknrx2McsdvtxIJ+PjWFfOYVNG/LK7BdMJvqcaYMFAAVOWmvbX/xErQleWUGjCdV6HIOB7xdLZAYCxlk3a8LhX9g7lAU6EGmtQQ0WwnpZRSSqnhSUTYeSRGyG8NyXS4orAf27V4dX8rkyscplUVDttpeG1pB9v18IezK12LCOtrm5k3obTHKtzxtMPEishJnWdCWYStB6Jdgk8A58+o4t4/72TnkdigZyCtr23mW79/jYrCIN+4/OxhV5+rL99c/wH4AjAeWMfR4FMU+P4g9Uup05btHg0wta9CEUs7JDJOl1Xm/JZFwGcI+30UhQJ57bMaXLGUw5o3m3h5TxMZx2VCWYTxZREm5G4VhfkroJ7IODzy4t6ObKc7rzqHOd2uEimllFJKqfxpiKVpjKWpKhq6YEPAZ1FZGKKuOUE0mWHO+NJheWGyMZbG12kcfbA1xeFoutd6T64IFQUnN2WxrCCIZdpXyzt6vvOmV/H/P7+LVTsbBjX49LedDdz1p9eZVFHAHZfNHdQMuJN1wuCTiNwD3GOM+ZyIaDFvpfop43jE0g5N8TQNbRlSztGaTBaGgN8i6LMoi+gKbaPJkbYUL+9u4uU9jWze34onUFEYpCTsZ1NdKxnH69g3EvAxvizcIyg1oTzS4+rKQOqc7XRFzXiuPVeznVQ2gN6WsoFsoLzr4pQGy2RXnvRZBssYLKvrczWk9AeulFKnOdv1eONwjJLw0AcbrNw0vLaUzZo9TcwZX0Jl0cDXmzpZIsKBlhRFoa6r3AEsmFzeZV9PBMsYisInN7YO+i2qi0O0Jp0u5ysK+6mZVMaqnQ3csGzqoHzf+9O2Q9z/l528ZWwJ//aeOV3OP5z0uVcicp8xZhkwtfNxIvKTQeiXUiOW6wmxtEM0aXMkmiaatrEAn2VREPRROEz/MVCDS0R4szHB6j2NrN7dyK767KrokyoKuGrhRJZOr2TGmCIsY/BEaIilOdCSYn9Lkv3NCfa3pHj9cBsrdzR0fNEHKC8I9AhIlUYCGEyXVT0MdPmwM+bot9Jss+Hof+H3Ww5qtpPqImW7xDMOfstienURlUVBPMn+m3f0ls3qzLgejitkXA/byd47GQ/Hy/71GsATqCwaflflRhJjzPtF5BfHabsnD91SSik1hGobE9iuR0k4fzMlisMBMo7HproWplUVMqWiEGsYTMPrPuUOssGnsSVhxpd1nV6XzLhUFQVPafrg2NIIh6MtPYI/K2ZWcfezO3j9cBuzxg7smPrJ9XX86MW9LJxczlcumTWsLxT3p+D4o8CZZFena0/dEECDT2pUExESGZe2lE19LENTLIMgWBgiQR9Vg7DahBoZXE/YfijK6t2NrN7dxKFoCgPMGlvMx5ZN5dxplUwo7zmv3DKGMcVhxhSHqZnUdRWOjONxKJrqCEjtb8nev7ynidakPWB9N6DZTgrI1j9IOdkCmnPGZa9onuzATCQbpHI86bjCqE7JV4BfHKtNRB4Z6g4ppZQaOm0pmzeb4oOyul1/Bf3ZaXhvNiZoTTrMGluc9zFk9yl3tuuxeX8rf/eWMT32TTkuZxaf2op0pZEAfp/B9aTLWOncaZX4rZ2s2tEwYMEnEeHR1W/yi3V1nD+jii+946weNayGm/6kYCwG5uRWpFNqVEvZLrG0Q2MsTX1bBsfLTpGKBHyUFQT0C9UolnZcNu1rYXVuSl005eC3DDWTyrh60USWTK2gvPDksz2CfovJFQVM7mXliljKoa4lQSztgBydCpX9Vzv7THLPO/4hF+m2X9b4sgjTqgpPup9qZBMRoimHjOtRWRjkLWOLKSsInHKquDEGv8/g13jmKTHGXAK8G5hgjLm306YSwMlPr5RSSg0lEeGNw20UBPzD5rtH+zS8aNJm7d4mzp5QSlmeag/1NuVu28EoKdtjYbcpd+2KT3LKXTufZRhbEuZwNE1p5Gi2VWHIz6Ip5azc2UDNpDKqi0NUF4dOunyGJ8J/vrCLP2w5xLvmjuUf337msC343ll/3u0WYCxwcJD6otSwlXE8EhmH5kSG+miahJ1N/gv6LIpC/hHxP7saXKt3N/Ln7UdYX9tM2vEoDPpYPLWCpdMrWTi5bFBrM7UrCvsHPJVXjS6uJ0RTNq4njCsLM7G8YNjWDRjlDgBrgcvILgbTrg34Yl56pJRSakgdbk0RTTpUDaMaS+1KIoHsBdm6Vs6dVpGXDKjeptxtqG3GZxnOmVjaZd+041IY9A1IP8eUhNnfkuzRftGsMby8p4k7fruto60w6KO6OERVUagjIFXd6XFlYc9sc8f1uPvZHfx1Rz1XLZzI9edNGTF1g/szoqwCthljXgHS7Y0ictmA90qpPEvZLomMS3M8Q1M8TSzjYsiuQBcJ+Kgs1C9jKiuWdvjB87v46456KgqDXDT7DJZOq+DsXpZvVWq4sl2PaMrGMoZJFRHGlUbyniqvjk1ENgGbjDE/FZGBm2+rlFJqREg7LjvqY12ya4abkN9HPO1Q35ZmUi8Z+4Ot+5Q7gPW1LcweW9zjonAi7TK1amD6WBzyE/Rb2K7X5bvAeWdW8ZOPLeFwW4r6tnT2Fjt6//rhNtpSXZOXLZNdkKhzQGpXfZyN+1q4/rypXL1o4oD0eaj05xv07YPVCaXySURI2R7xjENTPENjLE06t9JYe7CpSoNNqheb61r47rM7aIqn+ci5k7l60STNglMjSjKTLSIeClicNaaY6pKQBk1HliXGmNuBKWTHdAYQEZme114ppU57nic0xtOAoTQSIOgf+s8OzxPaUg71sRQZ12NMcZiScH76MtT2NMRBGPaf2cXhAHXNCSaURYa0AHlvU+6a4xn2NMT56NIpPfb3EMpOoSxGZ5ZlmFAaobYp0WPKYXlhkPLCILPG9n5synaPBqQ6Baca2tLsOBLjxV2NCPDpC87kkrPHDUh/h1J/Vrt7YTA7otRQ8TwhabvEUjZNCZvG2NGaTUGfRTjgoyg0fK8iqPyzXY/HXn6TJ9fvZ1xpmH+/ej5nnVGc724p1SciQjzjkrRdSsJ+5k0spaIgOCxWpVH99hDZaXbrOLoYjFJKDRoRoSVhs+tIjLa007GybkVhkHGlkUEPRIkIbbm6q/ubUziei9/y4bMMR6KtQHYl4LElYUoLgqdlFm9rwmZ/c5LqYTjdrruAzyKasomm7CGt/dTrlLt9zQAs6FbvyfUEnzEUDWCJjMriELsb4v0+LhzwMam8gEnlvWdheSLYrkdohBbP7M9qd0uB+4DZQBDwAXER0QIjatiLpR2iCZvGRIaWeAYvV2Q55PdpzSbVL7VNCf7jT6+zuyHOu+aO5f87f9ppObBRp5+OIuKOS3VxiDnjSiiJ+EdMnQDVq1YR+UO+O6GUGh2iKZvdR2I0JzIUBgMdtYZEhGTGZeuBbPCnojDI2JIwZQXBAQtExdIOTbE0+1uSpGwPv2UoCvnx+44GF4pC/mxfbJfXDrV1tI0tDVNeEKQg6Bvxn3muJ7xxOEpx6NQXARkqQZ/FwdbUkAafjjXlrjQSYHp11wV1khmXquLQgF6E+3/svXeYHNd5p/uequqcp3vyAJMwiARAgiDBJIqksigrWMmyLFm21pKDVpYt33sd9q4te72PvbJly7ZsS6vsXUsrW7ItibSVSIpizhEk0gzCAIPJoXOls39Ud88MZgDMAJNx3ufp6emqru5T3dVV5/zO9/2+aMAgGtAp286SCkWaEOtWeILFpd39DfAzeOV79wPvB7YuR6MUiqXAdlzG8iYnRwvkTBuBpybHQ6oanWLxSCm56/kBvvTgcYI+jf9y5w4OdKZXu1kKxUVxpSRbsrBdSVNCmYhvMO4VQnwS+Baz/TifWr0mKRSKjUa+bHNiNM/gVNmzo4gGZ60XQhD2G4T9xgwhagohLk+IKlQsMU6PFymYDoYmiASMC2YozGwLeGlMx4ZySOmNA5oSQeqifqJ+Y11G/A5MFsmbDunI0kU9VSenRqopXrkyIzmTjnSYV26tv2yRKxIwGJwq0VUfWRHhZL6UO1dKnj45zr7NjQLkOwAAIABJREFUqTnjwLLjUB+LLnk7WpNhDg9l16RYNLPC9UqyqN6nlPKoEEKXUjrAl4QQTwO/szxNUygujXzZ5uxkidMTRVwpifiNJT1BK648xvMmf/mjIzx1cpxr21P8+h09pJYoL1yhWC4ctyI6SUlbMkRrKrQiVRcVK8qByv3+GcskcMcqtEWhUGwwSpbDqbEC/eNF/LpGOuK/qBBxISEqFfHTHA+SCPvOOyAvWQ5jOZMzk0WylUIY0YCPTPTSrl9B33QFM8txOTVW4PhoHkMTNMaDZKIBYkEDY417J8G0kJYMLa4PWjBtRnImI1UPoZznIVQTm/ImZsXvtoomwJXw0LFRPnL7FuKXYWxeFXvGcibNydAlv85CmS/lrnc4z1TJnpNyB95FMxZc+v5RXdQPQ0v+spdNrmSj66xoJFqVxXzKBSGEH3hGCPE/gAFg7f9KFVcEjisZL5icHCswWbAwNEE86FPpdIrL5pHeUf76niOULJdfvrWLN+5uXjdhzoqlw5US15XronPquJKJookmYFNdWFWu28BIKW9f7TYoFIqNh2m7nJkocnw0j64J6iL+S8oaOJ8QhYC6sM/ziAp7AsFE3uTMZInJolfAM+I35kRYXS4+XasNuB1XMjTlpfFpQpCJ+mlJhlZlQL5QeodzGLp20fHN9148yyO9o564lCuTL8+2BNQEpMJ+MtEAnfVRru/0Ux8LkIl6t/pogHjIx7efPc1XHz7Bf/7a03zs1T3zCjcLJRow6B8v0JQILns/ev6Uu6rfU3LW8pLlEA+eXwy9HII+nUTIR8G018zk30TBJOTTubq1jpB/5fuGi/kU3ocnNn0Ez9xyE/D25WiUQrFQiqbD4FSJ/vECtisrocAqyklx+ZQsh8//pJfvHRykKxPh46/dxuZVKBOrWF2qQo4A/IaGWbaQ0ispBt5smUBgaAJDF+iawNAu3jFcDizHZapkoWuCrkyExkRwTYZ6K5YWIcSdwC6gNkqTUv7hBZ6/Cfgq0Ih3CH9OSvnpStW8XwKGK0/9XSnl3ZVtfgf4IJ6p+UellN+rLH898Gk8H9DPSyn/ZGn3TqFQrCS243J2qkTfSB7HlSRD/iW7ns0RoiyHgwNTVLN/BBD2rVy2gq6JWjSPKyWTRZuBqXHa6yJ0pMNrbrJpLG9ydqp8UZPxZ09N8Df3HqU1GaItFWJXS2KGsOSnPhqgLuJf0P697Zo29rYl+bPvH+K/fvtF3rK3hfff2HFJPl4BQ2c0VyZbtokHl6+w03wpd+CJT12ZCKlzxMWi5czxgFpKWpMhXjwzterik5SSsYJJKuxnR3N81SpCLuhTEELowH+XUr4XKAGfWNZWKRQXwHUlE0WLU+MFxnLmDMPBtXWRUKxfDg9m+fPvH2JgssTb97Xx3gOb13wpW8XSYleEHO0cIUdKieVIbNfFcryKI5btUrQcSpZDyXLJm164dxWBN8LX8AQqn67hW8DM5UIxbZds2cLQBVsaojTGg+p4vUIQQvw9EAZuBz4PvAN47CKb2cDHpZRPCSFiwJNCiB9U1v2FlPLPznmPnXien7uAFuCHQoiq5+dngNcA/cDjQohvSykPLsGuKRSKFcR1JSO5MkeHc5Qtl2TIt6z96nOFqOqy1cJL7TMI+3X6xwtM5E22t8TXjD+i7bgcOjtF7CLtKZg2n77nCK3JEH/57quXJOq5qz7Kp951NV9+6Dj/9uwZnu2f4Ldeu4329OIFG0PXGJwsLav4NF/KXcG0eflslrde3Trn+a4rlzXaLRn2I4QncK6W57DjSsbyJq2pIFsaYquaGbSgX5SU0hFCtAsh/FJKc7kbpVDMR8lyGM6WOTVewLRdgoa+oNxzhWKhOK7kn548xdceO0ldJMAfv203u1sTq90sxQpSjR4yNEH3PEKOEAK/IfBfJOvcdSWW62I7Etvx/i9bDgXTIW/a5CoG4FVhSiDwLVKYKlkOOdMiaOhsb4yRiQWUCH/lcZOUco8Q4jkp5SeEEH8OXLD6nZRyAM86ASllVgjxEjC3Rz7NW4CvSynLQJ8Q4ihwfWXdUSllL4AQ4uuV5yrxSbEhsR0X25UEDG3D9D2llIwXLI4MZilYNvGAn9gFzLyXg7X0WWpCkI4EKJg2j/eNsa0xRnNy+dPELsbp8SJl2yUaufB388UHjzOaK/OnP71nSdPtgz6dX35lN9e2p/irHx3hN77xDL9wUydv2rM4K4powGBgskRHJrJsk2Tzpdw92z+J40r2nZNy51TsFCLLmH7mNzQaYgEmi/aqiJmW4zJeNOlpiLKpLrzqx/JiPoFe4EEhxLeBfHWhlPJTS94qxRWPlBLb9aIKypbLmckiQ1NlNAGxoG/FL4yKjc/ZyRKf+sEhXjqb5daeen7ltu41M+OlWH6q0UM+XWNrQ4yG+OUJOZomCGg6FzqELMfFtL1byXLIle05whR4HXNDmxamTNslb9mEfTq7mhNkoktbHlixrihV7gtCiBZgFGhe6MZCiA7gGuBR4GbgI0KI9wNP4EVHjeMJU4/M2KyfabHq1DnLD6BQrDOcSn/TctzaZEHJdCjZLkXToWw5lGwHVwISdF1QF/aTjvqJBn2EffqaPwc7rqzdbNet3MuKV6rpGXpHltZfaT0T9hsEDJ2XB7OMFsr0NMRWzTsxX7bpHcnPSRc7l6dOjPO9F8/y09e0sr05vixtua6jjr96zzX81Y+O8Lmf9PLEiXE+9qqFF+HRNYErJeN5k4b40h9v50u5e6xvlJBPZ8c5n0u+bNMQDyy7INOUCDE4NbHi44qS5U147m5JLMvnfSks5hM4VrlpQGx5mqO4Uqhe4M3Kxb5sORQth6LlUizbtYt89VTg11WUk2J5GM2Vebh3lK8+fAIh4OOv2cpt2xpWu1mKFWJm9NCOphiZWHDFwpGrYtJ89hbnFabKFkGfzp6GBKmwf80PeBTLzneEEEngk8BTeIF0/3MhGwohosA3gY9JKaeEEH8H/FHlNf4I+HPgFy+3gUKIDwEfAti8efPlvpxCsSCqk5h2JU3au5eY9nR/s1xJl/bEfoFkOhpVF9P+fYaukfDptZQZr5KozXCu7IlRmiAZ8VMf9RMJGET8xrKem13X6z/b5whKlu2lg5uOS9l2MS0Xy3Uxq8IZIAQ130IJFa/UtTEoXWvomqA+GmCqaPHE8TF2tiSoW+FKx1JKjg7lCBgXjojOlW3+6p4jbEqFeO+B9mVtUyrs57++aSd3v3CWLz7Qx0e+9hS//qoeru9ML2j7sM/g1HhxWcSQ+VLuyrbDg0dHuak7PSfaynLdFfEKToR8GLrAceWK9THzlc/imk2pmqn/WmDB4pOUUvk8KRZF0XQomLY3S2/aFC1vJqlo2bOEpZleKIamYegaSZ+uhCbFsjCSK/PC6Umer9wGJr3AgV0tcX7z1VvXzMyAYnkpms6ajh66kDClUAAIITTgR1LKCeCbQojvAkEp5eQCtvXhCU//W0r5LQAp5eCM9f8T+G7l4Wm8IjNV2irLuMDyGlLKzwGfA9i/f788d71CsVCqIktVSLIdL4KnZDmUbZdSRXAp2Q62604Xh6gqLUxHklaLQ0QDi6+MrGvCE5kqUQyulBTKNodyZa9PKwTJsI9MJEA05IlRi3kPKauTsxLT9kSyvGmTLzs1f8HplG3vj5ReX1qr7JsmvHYGdI3QDOFMsXjiQR+m7fL0qXHaU2E6MpEVS3EfzpYZzZepv4hA+IUHehkvmPzuG/euiJG0EII7dzezuzXBn3//EH9010u84aomfvHmzotGiIX8OqP5MvmyXfsNLRXzpdw91jdG0XK4/ZyJZSklEogFlz8aSdcETfEgg1NlEqHlF4KqxWf2taeW/DO+XBbcGiHEd6idumtM4oVmf1ZKWZq7leJKQUpJyXLJlW3GCybD2TK2I5FINCoX+YqfSSJ0aeVaFauLlJKByRLP9U/ybP8Ex4ZzNMQCdNVH6cpE6G6I0pIIraqJ3XyM5Mo1oemFGWJTJKBzVUuCN+5u5qqWBF31EXVcXgEUTJuiZRP1+9jTqqKHFOsXKaUrhPgMXtocFU+m8sW2E97MzheAl2ZaJwghmit+UABvA16o/P9t4B+FEJ/CMxzvwTM1F0CPEKITT3T6GeBnl2LfFAqgFvU5nC0zmivPSkeGafFFq0QpaRoYmrZosedy0WaYZ4MnRhVNhyP5bM3TLxk2yEQDRIM+In4dCbXoVsvx+s9F0yE/I/q/SrWiqk/XCOje/ilWFr+hUR8JcHqiyHjBZEdLYtlTqEzb5fBQlkTwwtFWj/WN8cOXhnjntW1sbVzZ5KTNdWH+7J17+YdHTvAvT5/muf5Jfuu129jSEL3gdromGMqW6Axc+HmL4Xwpd/cdGqYu4ueqczxcSxVj/ZUq0NIQD3J6orjs7zOWLxMLGuxqTazJiseL9XyqB75WefxuIAtsxQvxft/SNk2xlqmWSM2VbcZyJqN5s1bdKaDrhH06RlAZ3653RnNlnjs9yXP9EzzbP8lw1hvXpCN+tjbGGM6V+e5zZ7Acr5cUMDS6MhG66qN013v3m+vCK1p5ayFi0+7WBB3pyJoTyhTLR75sU7AckmEfWxtTJMM+FV2p2Aj8SAjxduBbsloy6uLcjNdne14I8Uxl2e8C7xFCXI03pj8OfBhASvmiEOIbeEbiNvBrUkoHQAjxEeB7gA58UUr54tLsluJKxHElubLNRN5kKFsibzpI6ZkdX0qE0mpxrhhVnaA9NpzHnfEznZkBYGhareiEiv5fmwghqJthRt7TGKU1GVq27+rkWAHHkfgvMJ7Kliw+c+9ROtJh3nP96qQ1+3SNX7y5k2s3p/iLHx7m//nnZ/m5G9p569Wt5/3NxgI+To8X2Vy3dH3x+VLuJosWT54c5817W+a8T8Gy2ZpaObEuHjTwGxqW4y7LuMiVkrFCmcZYkK2NsTVbgGYx4tNNUsrrZjz+jhDicSnldUII1dnY4EgpvSpNZZvRvMlozsR2XBCe2LTSs0yK5SFbsnjh9CTPVqKb+sc9hT4WMNjdluAd+9rY25akZUblD9txOTVepHc4x7HhHL0jee55eYi7nncAMDTB5nSY7sy0INWZiVyyceNMY1CzUuL+yFDuvGJTNSy4XYlNGwopJa6kZpzquuBIz/tipm+HAFygLuxnR3OceMhQnXrFRuLDwG8CthCiRCXBSEp5XrdZKeUDwHw/grsvsM0fA388z/K7L7SdQnExiqZDtmQxlC0zljdr5cgjfoN0ZGNE+AghCPl1QstYUUuxclTNyI8M5hgvmMtiRp4tWZway1N3kdz7z/2kl8mSxf//pp0rOtE7H3s3Jfnr91zD39x7lC8/dJwnT4zzG6/eSn1s7j7omsByJJNFa8l8tEayc1PuHjg6guNKbt9WP3cDyYp6IQkhaE2EODlWIHkR8/jF4rie8NSRjtCRjqzpiP7FnNWjQojNUsqTAEKIzUA1Vs5c8pYpVpWq2JQrWZ7YlDdxXS83NmDoRANKbNoIlCyHg2emeLZ/guf6Jzk2nKt8xxq7WhK8Zkcjezcl6cycPyXN0DU6MxE6MxFetaMR8NT3s5Mljg3nODacp3c4x6N9o/zgJc9SRACtqRAd6QiGLrBsd5a/gelUjTNdTEfWhCarYrA5H0psWlsUTc+jovoVzPzWxEwDjhlL5TnLZj5rWkzynqcJb7bNr+uEAzoBQ6vdDF2b5emha2JFPBAUipVGSqkKwCjWFXYlxWwsbzI0VaZkexNVQUMnEfKp9HfFukDXBJkZZuTbKwVLLofq5KrpuBwZzBLyGRf8PTzcO8p9h4Z5z3WbLprmtlLEgj5++/Xb+dFLQ3z2J8f4z19/it949VYOzGNGHvLp9I8XlkR8qlqDzE25G6K9LkxHOjJrueW4BHwa4RUWhNOxAL0j+SV9TdN2mSya7GiO05wMLelrLweLEZ8+DjwghDiGNw7oBH5VCBEBvrIcjVOsHNWQ4GzZYjRnMpIr41QG+UFDJ7aOwp0Vs3GlZKpoMV4wGc9792enSjx/epJDZ7PYrsTQBNuaYrzn+s3saUuwtTF2WTMomhC0JEO0JEO8osebbZBSMpo3veio4TzHhnMcHcoB4DM0/LrAr2v4DI2Q3+f9r2v4DVERGaqP5y7vzESU2LRGMG2XqZJFNKBz9aYkAZ93HEnpiUdVg8da5oEEiayt55znSOR01SHd872oCksqgklxpSOE2DfP4knghJTSXun2KBTnUp3MzJYsBqfKTBRNpPTSzMJ+fc2Z4SoWxtnJEt96up+nT06wty3Bbdsa2NkSv+LEw6oZ+XOnJ9mcsi5oRl6N2rdsz1C+ZDk1S4Ci6WA5bm2CTRfigtExk0WLv733KF2ZCO/cv+m8z1sNhBC8emcjO1vi/Ol/vMxf/PAwX/7A9XOiw8J+nbG8SclyLjtybL6Uu4HJIi+fzfLzN3bM6S8WTIemRGDF+5HRgEE0oJMtWfgNrTZBeqkUTYeCZbN3U5L0ClTtWwoWU+3ubiFED7C9sujQDJPxv1zylimWnepJz0ujK1O2XSSSoGEosWkdULIcT1AqWIznzXn+98SmiaLJucFCAuiuj/LmvS3sbUuysyW+5CHD5yKEN0uUiQbmnQFRrG8cVzJRNPHpGrta4muuepxCsUH5W2Af8Hzl8W48o/CEEOJXpJTfX7WWKa5YLMclV7IZzZcZnCpj2Z5NQ8inkwr51cTBOubYcI5vPtXPg0dH0IRgd2uCHx8Z5nsHB2mIBXjl1npu39bAprrwsrfFE30mePz4OC8NTNFdH+Gm7gxXb0quaAqa39DIVMzIxwomXfVRXNcTXQuWTbHsUrBsnBmG+RK8ibVKpPZi7Us+e/8xcmWbP3zLVauebnc+WpIhPnRrF7/9ref58eFhXreradZ6Ibw4+OFs+bKPl/lS7u47NAzAK7fOTbmzXZfMKok1WxqinJkoUbK8avBVz+SZxwYwPfFaKdqlCTHrGMmWLCRwbXuKWHDl0gcvl4uKT0KIO6SU9wghfvqcVd1CCKolehVrn2pnYLxgMpItU7C8UGdfZfYpGlg/B+6Vgislg1Ml+kbytVv/eJGxvEmx8v3NRBOQDPlJRXykwn66MlFSET+psPd45v/LLTYprgxc6eXsg6S7PkpzIrhmTQ4Vig3IGeCDVaNvIcRO4A+B/xf4FqDEJ8WyUy1CM1W0GJwqMV6wgGrlOX1WNIJi/SGl5Nn+Sb75VD/PnJog7Nd52zWtvHlvK3URPyXL4ZHeUe47PMw3n+rnn57sp7s+wm3bGri1p37JPH3AK4TzxIlxHj8+xjOnJijbLgFDY1tjjIePjfLDl4YI+XSu66jjpu4017anVqS/O9OM/IXTk4B3/FerFMaDS5dS+sDREX5yZISfu6Gdzkzk4husIjub43RmInz3uTO8dmfjHOE5FvTRP16gNRm65AnL+VLupJTcd2iI3a2JOZ5TUkqEYNmrFZ6PVCRAaoaXl5QSy5HYrmctYjsSuxIZV7K9e9N2KZh2reKnxGv/Va2JdTeeW8in/krgHuCn5lkn8To3ijVItWrIZMFkOGuSLVsIQNc0Qj59wxg5bhRKlsOJ0YInMo3m6RvOcXy0UBOZNOHNIrSnw1zb7lXrqgv7K6KSJyjFgipiTbEySCmZKnkzNpvqwmyqC63Jkq4KxQZn68wKc1LKg0KI7VLKXhVdolhOqt5NozmvMl3Zmo5uqgur6KaNgONKHjo2wreeOs3R4RypsI8P3NTB63c1zUqXDPp0btvWwG3bGhgvmPzkyDD3HhrmCw/08aUH+9jbluT27Q3c0JletOm6KyXHhnI8fnyMx4+Pc3TYs2uojwV49Y5GruuoY3drolZF7Ln+SR46NsIjvaPcf2QYv6Fx7eYUN3Wnua6jbtnTPGdWOVwOJgomf3ffUbbUR3nHvrZle5+lQgjBnbub+Zt7j3JwYIpdLYlZ6326xlTJYqpkXbIJ93wpd0eGcpyZLPGOa+d+RkXLIRX2r5mJUiEEfkPg5+LtcV2J5brYjqx5nK43LvrrkFL+fuX+F5a/OYqFIKXEdr2qTrYrcRzvQHRcSdlyKNteGN9k0UJKz3/HE5vWRy7oRqfqfdQ3kqe3Es10fCTPmYliLdQy7NfpSEe4Y3tDzcx7c1143anbio1JvmxTtBwa4wE6MpFl7WgpFIoL8qIQ4u+Ar1cevxs4KIQIANbqNUuxESmaDlNFk8FsmfHCbO8mFT2/cSjbDve8PMS/PH2agckSrckQH7l9C3dsb7hoilcq7OfNe72oqFNjBe47PMx9h4b41A8OEzA0buxKc9u2Bq7elDzvZGnJcnjm1ASPHx/jiePjjBVMBLC9Kcb7b2jn+s46NteF5wicPl3j2vYU17an+NXbtnDwzCQPHRvlod5RHu4dxdAEezcluak7zYHONInQ+jpmpZT87X3HKJgOH3t1z7qZbH7l1nq+9FAfdz0/MEd8AvDrGgOTpUsWn+ZLubv35SF8uuCm7syc5xcth4708qeFLgeaJghoOuvZKm/BTRdCJIH3Ax0zt5NSfnTpm7XxcV2JWykV7t3P+L8iKlm2S7lS+atsuzVhyXZdpJyu+lSrCCWZVd1J5dWvPlJKhrNlDg/lODKY5ehQjr6RPNnytA9sYzxAZybCrT0ZOuujdGYiNMZW3gRPsbpYjku+bONKiRCCgKER9OlryryzZDnkyt7s1M7WOHGVSqFQrDYfAH4V+Fjl8YPAb+EJT7evUpsUGwApPVPkounMqkwn8CJdVB9z45Er2dz9wgDfefYME0WLrY1RPnDTdg50pi9J6NhUF+Z9N7Tz3gObeWlgivsODfPA0RHuOzxMMuTj1oo/VHd9hOFsmcePj/HY8XGePz2B5UjCfp19m1Nc11HHte2pRYlFuibY3ZZkd1uSX7q1i8ODWU+IOjbCX98zzmfEUa5qSXBTd5obutLrwqz5/iMjPNw7ygdu6qA9vfzpdk5lrHq5nlJBn85rdjTynecGGM2V53zWkYDB4FSJrvrIoiPo50u5sx2X+48Mc31n+ryRbvHQ0qWCKhbHYnSzu4FH8Ewt3YVsIIQIAvcDgcp7/bOU8veFEJ14s3Rp4EngfVJKszJT91XgWmAUeLeU8njltX4H+CDgAB+VUn6vsvz1wKcBHfi8lPJPFrFPS0rZdhicLGE6Lq70Dn7LkThVQalSJt5x5bxlx70y4h7VkuJ6paqTXjEZW6whnWJlmSpaHBnKcXgwy5GhLEcGc0wUq94Hgo5MhJu603RmInRUIppU1MiVSzVtwZESv6HRVhciGfJTMG1GciaTRQtXTledDPr0Vfn9W45XwS7k09m7KUUq7FODDoViDSClLAJ/XrmdS26Fm6NYh0gpKxOcLmXbqaTA2OTL0wbJuqpMt6EZzZX512fO8L0Xz1K0HPZtTvGOfa1c1ZpYkmu9JgS7WhLsaknwoVu7eOL4GPceGubu5wf49rNnSIR8Fe9IaE4EeeNVzVzXWceu5viSpBVpQrC9Kc72pji/cFMHfSP5mhD19/f38vf397K9KcaNXWleu7OJaHDtHedjeZO///ExtjXGeOvVrZf9etUsGsvxUrhsV1IdnVaDG3y6hia8ynqpsP+y+p9vuKqZf6scYz97oH3Wuuok61jOpDkZWtTrzpdy9/SpCaZKNrdvm2s0bjkuQZ++6PRPxdKxmF9XUEr5m4t8/TJwh5QyJ4TwAQ8IIf4d+E3gL6SUXxdC/D2eqPR3lftxKeUWIcTPAH8KvLtioPkzwC6gBfihEGJr5T0+A7wG6AceF0J8W0p5cJHtXBJKpsvhwRwhn46mCTTh/YCF8BT4gKETFJXlauC27ilZDr0jeU9oGsxyeDDH2SmvAKQA2urC7GtPsbUxxtaGKB2ZyJqtSKFYOWYKTj7dE5zS0QCxgFE7L6QiflpTYa9aiuWQK1mM5U1G8yaOI0FAQNcJ+pY339txJZNFE10XbG+M0RAPqgp2CsUaQAjxDSnlu4QQzwPy3PVSyj2r0CzFGsZ1p8u7lyyHbMlmqmhTMO3aJIfEK0LjN5bWIFmxNjk1VuBbT/dz36FhXCm5taeen97XSmcmumzv6dM1buzOcGN3hlzJ5sFjIzzXP0FPQ4zrOupoTS1OfFgsQgi66qN01Uf5uRvaOTVW8NLyjo3wpYeO8y/PnOaXbuniFT2ZNTNWk1LymXuPYtruotLtTNv1xCXXM7OeGeCgCW9SMxwwCPk0In4Dv6HhMzT8uoZP97JoHFfSP1agdyRP2K9f8oR5SzLEvvYU//HiWd65f9Oc8VA0YHBqvEBTIrioz33+KndDxAIG+zan5jw/X7Zpq1veY0xxYRZzBP2DEOKXgO/iiUoASCnHzreBlFIyPfPmq9wkcAfws5XlXwH+AE98ekvlf4B/Bv5GeEfgW4CvSynLQJ8Q4ihwfeV5R6WUvQBCiK9Xnrsq4hOATxfE11kOseLiOK7k5Fiew4Ne+tzhoRwnRvO4lS5/Jhpga2OU11/VRE9DlC0NURXRpKixEMFpPjRNEA0YRAMGTYlQraJQvuwwli8zmjMxixYIb8AQ8usLEjhlJc1Xzkj3lTPuHSlxXC/AtTMToTkZUsKpQrG2+PXK/ZtWtRWKNUu+bDNZsMiZNlNFi7xpVywbPHx6RWQKKZFpPqpFe3Ilm2zZqtzbGJqgMxOhJRla05+b5biM5k1Gc2WGs2VGciYjuTIjuTLDOa//MFm08Bsar7+qibde3UpjPLiibYwGDV63q4nX7Wpa0fedyaa6MO+uC/Pu/Zs4OpTjM/cd5ZPfP8SPXh7iV27rpmmFP5P5uPfQEI8dH+ODN3fSllqYV1G25PUN68J+wn6doF+viUreTSxI5NE1QXsmQirq5+WBKUbzZVJh/yUd+2/a3cwnvnuQR3pHeUXP7KikgKEzmiuTLdsLtnSYL+WuYNo80jvGq3bM70/mSEldeO1rWRdOAAAgAElEQVSnWG5kFjM6NoFPAr/H9CybBLoutJEQQsdLrduCF6V0DJiQUlZNb/qBavxgK3AKQEppCyEm8VLzWvFS/phnm1PnLD+wiH1SKM5L1fDw0b5RHj8+XgsJjgYMehqiXH/tJrY2RulpiJFawjKyio3BpQpOF0IIUaukUi0dW7Ic8mWb8YLJaM5kqmSdk747/T9Mp/nqmoahC68MsCG8xxo1zzi/oZGJBpTJvUKxBpFSDlTuTwAIIeIsrk+nWEJc10tdK1kOBdNGE4JUxL/i50/LcRnPm5waLzJVtNAE+A1v0HklezRZjstIrsxEwSJbssmWLLI1YckmV6osL3vrciWbvOlc8DWDPo2OdMSLoslE6K6PsrkujN9Y/okax5WM5afFJO9mVkSmcm1fzw2JjAR0MpEAmViAnoYYrckgd2xvXHfG28vFloYof/aOvdz1/AD/65ET/No/PsV7r9/MW65uXTXLk9Fcmc/d38vO5jg/tbdlQdtYjleEan9H3ZKll8WDPq5tr+PkWJ6+4TzRgG/Rr72vPUVTPMh3nxuYIz4BGLrG4GRpweLTfCl3Dx8bxXRcbt/WMOf5rpRoQqzJtMoricV8+h8HtkgpRxbzBlJKB7i6Ylj+L8D2xWy/VAghPgR8CGDz5s2r0QTFOmA8b/LY8TEe7Rvl2VOTmI5LxK9zbbtndri9KUbzIkNCFVcOtuOSNx0sx8VvaLSmQmRilyc4XYygz/OCSkcDbGnwvOdKplfyWquk/Gqikv4rvP9V6pxCsTEQQnwY+ARQYhETg4pLY6Y/UtGymSp5UUUF00HKab8Ut/JVxII+2pJBEuHlE6KklGTLNoOTJQYmS7hSEvYZZNaBgfJScK4QUxVghnNlRrLe8qr35rlowjM7jgd9RAMGyZCPtlSIWMAgFvQRC3qRxzP/r1ou9I3kOTac475DQ9z9vCdU6ZpgUypEVyZKZ32E7kyEzvrorMiMi+FKyUTBmrUv3v54UUwjuTJjebMWeV8l5NPJRP1kogE60hHv/1iATDRAfTRAOupXEfkLQNcEb97bwo1daT57/zG+9NBx7js8zEdu38LWxtiKtkVKyV/fexTLlfz6qxaWbudKyXjRZG9rYsl9jXRN0JmJUhcJ8NLAFGP5MslFREFpQnDn7ma+8GAffSO5Oemd0YDBwGRpwTYl86bcHR6mMR5ge9Pc76poOqQjl+ddpbh8FnMWOgoULvWNpJQTQoh7gRuBpBDCqEQ/tQGnK087DWwC+oUQBpDAMx6vLq8yc5vzLT/3/T8HfA5g//79c/wRFFcmUkpOjRd5tHeUR/vGODyYRQINsQCv29XIgc40u1qWxvBQsXHxOosmuiZoToSojy+v4HQhAoa+6GohCoVi3fJbwFWLnRjciFQrBQvhDXIEXJbQbtX8kVxyZYupohcdY88Y9fsrqWvJ0PxFGEqWw0tns0gJybCP1mSIRNi3JOfosu0wljM5OVagaDoYuufTtNEGVq6U9I8XOT1RnCXGjGQ9QWYsX54jxIT9OpmoJ7x010fIxDwBJhX2Ewt6YlI0aBD2X1pF2a766UGzKyVDU2WODefoHcnTO5zjmf4J7jk0VHtOQyxAd32UrvoIXZkIqbCf0VmCmclo3hObxvLmrGMMvOOsKibtaUtW9s1PfWUfM7EAEb+uJkaXkPpYgN974w4e7h3ls/f38lv/9Cx37mnmfTe0r5iI94OXBnnyxDgfekUXLQs04h4vmLTXRcjEli9dMBHysb89xfHRAidG88SDvgWL66/e0cg/PHqCu54b4CN39Mxap2vCE8/yJg0XSXecL+VuNFfm2VMTvOu6TfOfj22H7vjy+ZkpFsZifj154JmKgDTT8+mj59tACFEPWBXhKYRnDP6nwL3AO/Aq3v088G+VTb5defxwZf09UkophPg28I9CiE/hGY73AI/hZZT0VKrnncYzJa96SSkU8+K4koMDUzzW5wlOA5OeSfiWhijvPbCZ6zvTdKTD6iKuWBBF0yFXtmhPR2hPh5VQqVAoVpJjXMbE4Ebi9ESRI4PZOYKTJkATGrrmiVLVaFCt+rjyv655lZ3Kllfds2S7tVrEPs1LXYsGFifuVCNTq359BwemkEBdxE9zPEgy7F9UmpbrSqZKFmcmSgxlvb5LNGCsizLxCyVftjk0mOXlgSlePpvl8GB2VgqcTxe1aJ49bYkZAsy0GLOSVfk0IWhKBGlKBLl5S6a2fKJg0juc9wSpkRy9w3ke6R2dkwpnaIJ0JWJpZ3O8JiZVo5gy0QDx4OpMZl3pCCG4qTvD3rYk//CIJ5g8fGyUD7+ymxu70sv63kPZEp//SR+7WxPcuad5QdvkSjaxoEFnJrKsbQMvRW5LQ5RM1F+JgrJJhS+e2hsNGty2tZ57Dw/zgZs656TAhX0Gp8aLFxWf5ku5u//IMBK4bevclL5qZGpMpdytOov5Bv61clsMzcBXKr5PGvANKeV3hRAHga8LIf4b8DTwhcrzv4BnbH4UGMMTk5BSviiE+AaekbgN/FolnQ8hxEeA7wE68EUp5YuLbKPiCqBg2jx90vNveuL4eM00cu+mJG+7ppXrO+o2VOdNsfy4UjJeMAn5dK7tqFOeCQqFYjX4HeAhIcSjLHBicKNiOxK/oc85F1cLKwC1qm6ulDi2t07iFVqQ0hOadE0QNHSigaU7p8/065NSUjQdXjwzhRCQjvhpToZIhHznTTUpWQ7D2TL94wXKtktA1y/Z9Hct4UrJ6fEiL5/1hKaXz2Y5NVao+RW2p8Pc0lPP9qYYHekI9bH1I8Qkw372tfvZ1z5dcatoOhwfzTNRtEhHPLEsEVaG72udSMDgl1/ZzW3b6vnMvUf573e/xA1ddXz41u5lSW+VUvLX9xxFIvnoq3oWdHxYjovlOlzdnF7R6Mdk2M/+jjr6RnKcGi+SCF48svPO3c18/+AgP3xpkLde0zprXcivM5ovky/bFxSR569yN0xPQ3ReU/Z82aEhpnxM1wILFp+klF9Z7ItLKZ8DrplneS/T1epmLi8B7zzPa/0x8MfzLL8buHuxbVNsbBxX1kKfn+uf5IXTk9iuJBYwuK6jjus767hmc1LlvysuiYJpkzdtOjMRNtdFNlyag0KhWDd8FrgHeB5wV7ktaxIhBHrlFK2z+ufqc4WofNnhhdOTgJfq0xQPkqik8U0WLfrHC4zmTDTheUgtpSi20hRMm0MVkenls1kODU6RL3tRTdGAwbamGK/oybC9Kc7Wxo1XNTjk19nRHF/tZiguke1Ncf7iXVfzr8+c4WuPn+RX//dTvP/Gdt5wVfOS9QPzZZvvvXiWZ05N8KsLrLZXnQzd07b0Pk8LwadrbG2MUx8NcnBgioLpnDcVGby01Z3Nce5+YYA3X90yR1zTNcFQtkRnYP4UuflS7k6MelGGv/SK+e0Oy45Na1L99tYCCz6rCyFuBv4AaK9sJwAppVSmlopVR0rJmYkSz/ZP8MypCZ4/PUmu7BVU7EiHedOeZg50ptnRHFdCgeKScVzvAl8VMWMLrMihUCgUy4RPSvmbq90IxaUhhCASMIgEDFwpmSraDGcnawUiLEcS8umkI+uzUl22ZPHEiXFePD3Jy2eznJwR1bSpLswt3Z7QtK05RmsypCKAFGseQ9d4x7Vt3LIlw9/ed5TP3t/LfYeG+bXbtyw43c1xJcM5L5Lx9Hix5mnWP15gvOCZ41+9KcnrdzUt6PXGCybt6Qj1y+jztBBSET/XddTRO5LjzESJRNB33rTiO3c388nvH+Kpk+Psb6+btS4W8HF6vHjeyd1s2ca03VlV8e47NIwm4BU9mTnPN22XoGEQD20sMXu9sphv4QvAbwBPAheuP6pQrADjeZNn+ycqgtMkIzkv46A+FuDGrjR7NyXZ05YgFfavcksVG4F82fbMCusjtKbCSsRUKBRrgX+vVPP9DrPT7sZWr0mKS0ETgmjAq6jmSi8VcD1eZ85Olnikb5TH+sZ48cwkroSIX2dbU4ybt2TY1hRjW2NsRX2ZFMuDlJJsyZvojQSMdXm8XipNiSCfePMufnx4mM8/0MfH/s/TvO2aVn7mus211K6CaXO6Jix54tLpCe+x5Uy7f8UCBm2pEPvb62hNhWhNhrhmc3JBgvNK+jwtBL+hsb0pTibi5+XBLAULEsG5UVA3dqdJhX3c9dzAHPFJ1zzhfbJoUReZO4YbyZYxZhxrrpTcd3iYazan5h3z5coWPQ2xdSngb0QWc+aflFL++7K1RKG4CAXT5oXTU7XoppNjnsdqLGCwpy3Bu/a3sbctSXMiqE4wiiWjGu0UDxlc1Va3qJLJCoVCscy8p3L/OzOWSUBFpa9jNCFYAxmCC8KVkqNDOR7p9QSnE5W+WXtdmLfva+OGrjRbGqIqqmkD4biSbMnCdiXNySCaEAxNlbBdiU/TVkWIMm0XiVzRar9CCG7b1sC17Sm+9NBxvvnUaX5yZISmRJD+8SJjebP2XE1AUzxIWyrMNZtTtFVEprZU+JI9Q1fL52khZGJBrgv5ODaU4+xkiXQ0MOsc4NM1Xr+ria8/foqBySLNidnV/EI+nf7xwhzxab6UuxfPTDGSK/OBmzrmtMOVEgmkYyoQYa2wmFHUvUKITwLfYvbs2lNL3iqFAi+yqW80z0sDUzx7aoJDg1lc6ZWc3dkS547tDextS9KZUZ47iuUhV7IpOw5bGqJeSoA6zhQKxRpCStm52m1QXHmYtstz/RM80jfG431jjBU8T6pdLQn+0y2dXN9ZN2cwqVj/WI5LtmQhBLSlwrQkQ7Uon+76KNmSxVC2vCJClOW4FE0Hy3WREqIBHSEEo3lviBo0dEJ+fUVEz1jQx0fv6OGObQ18+aHjlC2XqzclaUuFaKsITE2J4HkLClwKcpV9nhZCwNDZ2ZJA1wTDWXOOyPa6XU1848l+7n7+LB+8ZfalLOzXGcublCxnlkn4/Cl3Q4R8Ogc6Z0dQgdePb0oEV1SUVFyYxYhPByr3+2csk8AdS9ccxZWI5bj0jxfoGynQN5Ln+Gie4yNeNRDwZgt6GmK8fV8bV29Ksr0pvqjSxArFYrEdl4mSSTLkZ09jQqUHKBSKNYsQ4iaggxl9OinlV1etQYoNyVTR4okTYzzSO8bTp8YpWS4hn86+zUkOdKXZ355SPogblLLtkKtUie5uiNIQC87ph+uaIBn2kwz75whRliPx6RrRyxCiHNerElmyHQQQ9Ok0JgLURQJEAnpNXChZDtmSzdBUidG8iSslhqYR8esYSyj+zMdVrQn+7J17l/U9qowVTNrrwqvu87QQ2lJhBiZKSClnZaako55Nyg9eOst7D2yeJTIJIRDAcLbMprrp6nXDU7NT7kzb5cGjI9zYlZ63kp3puEoIX2Msptrd7cvZEMWVwXjB9ASmkTx9FZGpf7yIXamD7NMF7XUR9nek6MxE6EhH6KqPqlQnxYqRLVmYjsu2hjhNiaCKdlIoFGsWIcQ/AN3AM0z7cUpAiU+Ky8JyXM5MFHn65ASP9I3y0sAUroS6iJ/btzVwoDPNnrbEkkZzKNYWRdMhb9mEfDo7m+Oko4EFiUczhagt9VGmShbD2TKDlYgoQ7u4EOW4kpLliU1I8BkamaifdNQbE8wnNIAnSgV9OvWxQC09cDRnMpgtYZYsBBD2n3/79UCuZBMNGnTWz18Nbq0RCRg0xANMFKw5AvWb9jTzwNERfnx4mNedY7AeC/roHy/UMg/mS7l7/PgYedPhtm31c963bDuE/TrxoBpDriUWU+0uAfw+cGtl0Y+BP5RSTi5HwxTrG8eV9I8XODbsRTJVI5omKlUcANIRP52ZCPvb6zyhKROhNRlSKXSKVcFyXCaKFumIn2saY2s2jFmhUChmsB/YKaWUF32mQnEOrpSM5kzOVEyQq7czE0UGp0pU5gXpSId557WbONBZR7fyb9rQSCnJmw4lyyEWMtjbmCQZ8l3yRJw2JyLKZjhX4uzkbCFKCC9qqWh5YpOuC9IRP13RCNGgQcinL9rPdaYI1lUfoWA6TBRMzk6Va+l5AUMnvELpeUuB5biYjsPezXXrarzUVhfm7NQYMWaLTzub43Skw9z1/ACv3dk46zv26RpTJYupkkUy7CdbtrEcF0Offo17Dw2RCvvY05ac8565ss22RmU0vtZYjBT4ReAF4F2Vx+8DvgT89FI3SrG+qCrRR4ZyHB3KcmQox7HhHCXLBbxops11Yfa3p+hIR2oRTfFLNNhTrC6OKymYNqbj1pb5NA2/4d3WywVcSknZdilZDq6UaEKwsylGozKsVygU64cXgCZgYLUboli7ZEtWTVTqHy/WxKYzkyVMe/paHjA0WpMhuuuj3NpTT0syxM6WOE3xtZ/ao7g83ErlOstxyEQD7GyJEw8aS9of0jRBIuwjEfbRlZktRLkSkmEf7ekw0aCPsE9f0shzIQSRgEEkYNCaClO2p9PzRnIrm553qcz0eQr711c0Tzzooy7sJ1+2Z1lZCCG4c3cLn7nvKC+dzbKzOT5rO7+ucWaiRDLsn5NyN1W0ePLEOG/a0zxHiHOlRAgvtU+xtljMkdstpXz7jMefEEI8s9QNUqx9RnNlDg/lODKYrQhOOXJlr9SqX9fozER49Y5GehpidNdHaFNl6dc9luOSL9s4UmJogvpYgPpYEEMXlCyHqaLFVMlmqmjhuN4JH8Cv6/gNDZ8uVl3QsRyXsuVSdrzMFIEgFjLYHAsTD/mIBAzlJaZQKNYbGeCgEOIxZheDefPqNenKZapocXaqRHs6vGoGt5bj8mz/BI/0jnFiNM/piSLZkl1bX6261ZIMsbctSWsqREvSq7yVjvhX/VqtWFmqqWmOlDQnvGpsK+Fzea4QJWFFxwoBQycQ1clEvfS8XMlmNF/m9EQRKSER8q25ydT15PM0Hx2ZCE+fHJ9zfN22rZ4vP9THXc+dmSM+RQIGQ9kSXVZkTsrdg8dGsF3Jbdsa5rxXtmTTnAipfv0aZDFnl6IQ4hYp5QMAQoibgeLyNEuxVpgqWhwZynFkKMuRQU9oGit4pUM1AR3pCDd3p+lpjNHTEGVzXXjNzhgoFkfJcsibNkgvh35TXZhUxE8sYMyajYoHfTRULoTVaKKy5VK07JogNV6wK0aDnuhTjZJaLq8IV0rKlkvJdpBS4kqvbGs65icZ9hH2eyHcShRVKBTrnD9Y7QZcidiOy+mJYs1SoG+kwPHRfK20ut/QuGZTkhs60+zvSJEML2+Zb8txefrkBA8eHeHRvlHypkPIp7OlIcpN3Rlak0Fak57I1BQPqn7aFYArJa4rcaTEdancy9o9le6PJgSb6kI0J0Kr5oO02t6a+gwhrC0V5uRYgVNjBYKGTnSN+AXlyjbRwPrxeZqPRMhHLOCjaDqzrC2CPp1X72jku88P8MG8SV1k+nxZFQBPjhbmSbkbZlNdmK5MZM57WY5Dc2J9inQbncX8on4F+ErF+wlgHPj5pW+SYrVwXMnJsQIHz0xycGCKQ4NZBqdqE6m0pULs2ZSgpyHG1oYonfURVbpyA+FKr5JI0XIQwjP629oQIxnxLTjXXghRM3tM4KOpcrZwXUnJdihbLgXTZrJkMVW0maqYPyI8I0HvHQQSWflPIIR38RF4HRStImBp2vRyiSeWVVMBdSGIh3w0J4PEggYhv66OVYVCseGQUv54tduwFjg1VuCel4cwHZemeJBowCAaNJbEy2W8YHJ8ZKZ/pTcwrRZKMTTBprowe9sSdKQj1McCvHhmikf7xni0bwwBbG+Oc6Czjus769iUCl/4DReIabs8dXKcB4+O8NjxMQqmQySgc6ArzS1bMly9KanMwCvYjovpuJi2i5Ren0Eia/0HqGkxUFk2+6gRlS1m49c1gj59RT9nq7Ifpu3i1vpK1TaLyn4JhJD4DR2fphH0C/y6hs8Q+HWdgKGhaQK9koqmokOm8RsaWxqiNCWCHBvKMZIrEQv6VrUP6X3nDns3rS+fp3MRQtBZH+H505NzfFXfuLuZf3v2DN978SzvuX7zrHXRgMHAVHFWyt3ZyRIvDUzx/hva54xPSpZDLOBT1TfXKIsRn14C/gdeVZUkMAm8FXhuGdqlWAFM2+XIUJaDZ6Y4ODDFSwNT5E0vJaku4mdHU4w3XNVMT0OULQ3RdZdfrLg4tuOSNx1s10UTgkzUT3dDlHjIWNILraYJwn6DsB9SET+tM97fcqQ3Q1eZnav+70iJlN5zbFdiOS6unN7GkRLHkdiuiy68VMBk2E/YrxNaYq8AhUKhWEsIIR6QUt4ihMjCrDGxAKSUMn6eTTckj/aN8Ud3HZyzXBMQ8XtCVDRgEKvcR4M+YgGjJlJV1/l0jf7xQi2S6fhInonidKGUurCfjkyEfZuTdKQ9/8rWVGiO+PCKnno+fGsXvSN5Hu0d5dHjY3z5oeN8+aHjtCZDXN9Zx4HOOrY3xRc1mCxZTkVwGuXx42MULYdYwODm7gw3bUmzt+3KFpxcKTFtl7LtYrvTXlZ+XfMmpBIGhqah697ElRDnTHB54dneJNeMZUJQi9yeaYw9UbCYyJtMlaaPkYCuE/BdfmT3+fYl6NOJhw0SQR9+Q8fQBJomMDSBXr0JofpAl0k0YLCnLcForsyRir1IMuRfcfFHSslE0eSqlvXn8zQfqbCfoE+nbDuzxhktyRD7Nqf4jxfO8s5r22ZFZwYMnVzZJjbDK/jHh4cAeOXWuVXucmWbXS1X1CVwXbGYo/jfgAngKeD08jRHsZzkyjYvD0zxYkVsOjyYrc3cbUqFuKWnnp3NcXa1xGmIBVTe/xpjZiqZe5HCRjNn87zHYu6cnQRD12hKBMhEA0QDxoqH4hu6hgpIUigUisUhpbylch9b7basBV5/VRN1YT99I3kknnFyrmyTq9x7jy1yZZuByRK5sk2+bNequZ1LrVBKh1copaNSKCWxiEIpQgi666N010f52QPtDGVLPN43xiN9Y3zn2TP8y9OniQcNruvwhKhrNqfmTXsqWQ5PnPAinJ44MUbJcokHDW7tyXDTlgx7WhNXXBqdlBLL8cQZs+LjCN5EVyxokI4GiQV9BH3LE5nk0zViMywHbMelaDkUyjaTJXuuIGV40UbztWOh+xLy6wQN7Yr7rlcTIQSZWJBk2M+ZiSK9I3nvuw8srRH7hRgvmLSlQjRsENN/TRN0ZSIcHJiaM8n9pj3N/OF3D/Jw7yiv6JktKqUj08bhUkruPTTsjVfP+VwcV6JrglRkeVOdFZfOYsSnNinl65etJYolZyRXrglNB89McmK0UDP021If5af2trCzOc6O5viiOlSK5afmnVSZ8arOvsVDPpoSgekO6jnXPnHuAuDc62P1od+olrdVIqNCoVBcKQghNgFfBRrx5ik+J6X8tBCiDvg/QAdwHHiXlHJceBeJTwNvBArAB6SUT1Ve6+eB/1J56f8mpfzKSu5LlWjAoDMTwW9oC+7PuFJSMJ2aSJUtWZRtt+aNtNQRDg2xIHfuaeHOPS3kyzZPnRzn0b4xHukb5UcvD+HTBXvbkhzoTLN3U4IjgzkePDbCEyfGMW2XZMjH7dsauLk7w1WtiXWdfrMYamlmjutVsAJAEAl4Po7xoEHIZxDwaQQMbVX6NIauEasIUo2J6XYXLYdi2Wa8YDFRtGYJUlXEGtsXxVwMXWNzOkJDPEjfSJ6BySIRv7HskUi5SmW4rsz69Xmaj3Q0gE/XsBx3liC7b3OKpniQu54fmCM+zeToUI7TE0Xedk3rnHXZkkVLMnhFR4CudRbzq3lICLFbSvn8srVGcUEcV5IvV2bzKrfa49L0smzJ5thwjqGs59cU8ulsb4px85YMu5rj9DTGVs1UUDE/luNOexZJb7YlGjRoSQZJhLwZr4X6LikUCoVCcQFs4ONSyqeEEDHgSSHED4APAD+SUv6JEOK3gd8G/j/gDUBP5XYA+DvgQEWs+n1gP56I9aQQ4ttSyvEV36NLQBPCS7sLGLDCGRqRgMEreup5RU89tuPy4sAUj/WN8UjvKE+cmP74UmEfr9nRyM3daXa2bGzBaT6RSeKlmcWCRq0qbdCnETTWfmq9T/cineJBH42JEODtY8F0KFsOuiZqfpQb+XvdSAR9Ojua47QkQhwZzDKSL5EI+pdF6Jjp87TRot10TdCeDnN0KDcroknXBG/c3cQXHzxO30ieznmMxAHuOzyMoQlu7s7MWWe7kqbK702xNlmM+HQL8AEhRB9eOd+qr8CeZWnZOqNkOXz3uTMcH8kT8uu4supd45kt1zxtZj2erj4h5bTXTW0m7hxRqWA6F2yDTxfEAj4iQYOehihvubqFnc0JOjMRdWFbQ9iOS8l2KdvT32fYp1MfC5BQldgUCoVCsYxIKQeAgcr/WSHES0Ar8BbgtsrTvgLchyc+vQX4qpRSAo8IIZJCiObKc38gpRwDqAhYrwe+tmI7swEwdI29bUn2tiX5T7d0cmK0wPOnJ+mqjyzaE2o9cCGRKR42vH5swCBgeClzG2n/fbpGIqSByjZY1yTCPva1pxiaKnF0OIfjSpJh/2UXN5BSYrsS25HkTGvD+DzNR2MliqyaJlfl1Tsa+V+PnOSu5wf4yO1b5mznuJL7Dw9zfWfdnEqERdMhHvJ5EwqKNctivp03LFsrNgDZks3v/esLl7StVjE71IRXwSvk04kGvR9POuqnPR2uzc5VjTGjAYNIwJi1XFXzWpuYthd6XTWMDBgaybCfVDhMOOAJTSo8VKFQKBQrjRCiA7gGeBRorAhTAGfx0vLAE6ZOzdisv7LsfMsV/5e9O4+P66rv//86s2/aZXm3Zcc2xrEd23FMVjChSVlCA+m3X9r0m4R9L4HSQkoogdLwgzY/UngUSNNvQ6BQ9oSEsDUkpCSELHbiOHZix7stR7b2ZTSa7d7z/eNeyZIt2bI92t/Px2Memjl30blHM6Mznznnc86QMcbLLzXMN/6TTd+I/dJZGQkAACAASURBVIKfPsDi9XGnepBJpr5AwDCrMk51KsrBNm8FzFgoeEJAZKC+4FLBcSn6C+YMys9qvPxg8XCQ2ZWpKZPnaSjhYIAFVQn2t/ZQPWD0U1kszGteMYNHdjbx9ovrTwgkbTnUQUdvgY2vqDvhnJlCkRW1SjQ+0Y04+GStPTCaFZnsqhJh7v/QJew82kV1wkvWHTB9S8P3rTwxIMg0YJtMHX25mnoLx5KCp6Le9Lm+ldg05VFERMabMSYF/AT4qLW2a+C0bmutNcacfGWLkf+e9wLvBViwYMEp9pbJrm8lONe1hIIB6sqj1CQjmmImU1IkFGBJXYpZFTH2NKVpSWeJhUM4rsXxv3TueyMNGIiFgiSiIZKRIIlIkEgoSCQUIBw0RILTK8/XrMoY+1p7cK0d9Hn4Tatm8+ALR3noxaNcvWbw9xmP7GwiFQ2xfmHVoHLHtYQChmolGp/wNC6tRELBAAtrkrRn8oMiuDK19a1Alys6ONZijBe1ry9PUB73ptBFQhrVJCIiE4cxJowXePqutfYev/ioMWa2tbbRn1bX5JcfBuYPOHyeX3aYY9P0+sofOf53WWvvBO4EWL9+fUkCWjJxOK6lt+CQKzpYC+WxMItnJKlMREhGlKtSpodUNMTqeRW0pnM0pXPEQyGSUW9mQzgUIBL0Akx6PRwTDQWZV5WgsbOXyvixoNE5M1K8cnY5P3++kTefN6c/MNWbd/jD3lZe+4q6E2aMdOcKzKuKT7n8WFORgk8ip8FxLbmiQ7bgYPFGslXEQ8ypSlIWC5OMBPXGJyIiE5a/et1/AC9aa788YNP9wA3AF/2f9w0o/7Ax5vt4Ccc7/QDVr4EvGGP6voK+Evi7sbgGGV/5oktPvohrLUFjqC2LMqMsRZlSQMg0ZoyhtixGbdnUnS5XanMr4zS0Z7DWDgrMvWnVbG777508e7CD8/1RTk/sayVXdNn4ihNXwis6LnVq90lBwSeRITj+nOy+G4C1EAwaqhJeHq5k1FtmVUPIRURkErkEuA543hizxS/7FF7Q6YfGmHcBB4D/7W/7BfBGYDeQAd4BYK1tM8Z8Hnja3+8f+pKPy9RirTe6qbfggIV4JMjC6gSVyQhl0dCEX3lORCameCTIrIoYrd15ygck4r/4nBoqE2Ee2Ppyf/DpkZ1N1JVFeeXswXmdMvkiVYkISSUanxT0V5Jpy7V9ASZLoegyMO1fKGBIxUJUJaOkoiFiYW9O9mRY3ldERGQ41trH8FYsHsrrhtjfAh8a5lx3AXeVrnYynoqO66225Voc10uIbAAMVCUi1NckKI97+ZtEREphXlWCxo7soLJwMMDrz53FD54+xJHOLNFQgC2HOvhf588/IV9yb8FhSV1qLKssZ0HBJ5nyXGvJFhzyRRfHHgswBQwkI2Gqk2FS0SBxPz9TNBTQ6nMiIiIyJQxcwr3oegEm11o/sGT8KS8QCXorz5XFQsQj3qpbkVCAVDSklAIiMipS0RC1qQjpXHHQ6navP3cWP9x0iF9sa6QmGcG1sHHZ4Cl3RcclFDBUJpRofLJQ8EmmnL5gU9/w8GDAUJmMMLsiRCJ6LMA03VaVEBERkdJxXEu+6JJ3XIoDVrbqC9MkIqExX+F24BQ501cff5WtWCRIPBzuX3kuHDSEgwFC03ClLRGZOBbUJHnmQPug4FNNKspF59Ty4AtHqU1FWDIjxfzqxKDj0rkiC6oTSoEyiSj4JJPeoGATEDResGlhTYJULEwirKlyIiIicmaGCjKBNzUkFQ1RVx4lGQ0RCweIhoK41tKRyfNyZ5aWdA5jIB72RhKNRoDHcS29eYec4/WDqpMRFtUmScVC3mpbGrUkIhNYRTxMRSJMJl8kETkWnrhq1Wx+v7uFdK7Iuy9dNOiYvhGddeVKND6ZKPgkk46CTSIiIjJQwECu6NDW4weHDGANFgvWW53WGG9FKsPAx2Dw7geM8QJNIwwyRULDB3VmVcSZVREnW3DozOQ50pWlNZMHC4nI2Qeiio5LT96h6LoEA4baVJS6shTl8bCCTSIy6dTXJHnuUMeg4NO5c8qpr0lwsC3Dq5cOnnKXyTtUp5SDbrJR8EkmvL5gU7bgYFGwSURERAabUxWnKhXBWu8bcdd6/QfXesEn57hE2tYv6yt3rcV1IRoOnFaQ6VRi4SCxijgzK+Lkig6dmQJHurK09+SxeNPhEpGRBaIKjktPvojjWkKBALMqotSmopTFwpp2IiKTWlUiTDIaJFtw+qcrG2P4wMYlHGrLUJUcnNept+iwbFbZeFRVzoKCTzIh9QWbHGsJGEOVgk0iIiIyjMkwvSwaClJXHqSuPEa+6NKVLXCkM0trTw5rIRoMkogGB63mlC049OSLgDd1b2F1gqpkhFQ0pBxNIjJlGGOor0myvbFzUK68FbPLWTG7fNC+BcclEgxQGQ+PdTXlLCn4JBNC0XHJ5B0KrosFyqNh6muTVCTCpCIhBZtERERkyoiEAtSmvJFLBcelq7dAU3eO5u4cjuutPmctlMfDLKsrozIZHjQdRURkqqlJRYmGghQc96RfJnRnCyyekdLnw0lI/8VkXAyaSme9TtjMiijVySgpf0U6ERERkakuHAxQk4pSk4qytM6lO1uk6FrKYmO/Wp6IyHgJBgyLapLsONJNbSo65D5906pnlA29XSa2Uf2Eb4yZb4z5rTHmBWPMdmPMjX75Z40xh40xW/zbGwcc83fGmN3GmJ3GmD8eUP56v2y3MeamAeWLjDFP+uU/MMYMnhAqE0au6NCeydPak6MjUyAZDbF8VhkbFldz0Tk1LKkrozoZUeBJREREpqVQMEBVMsKMsqgCTyIy7cwoixIOGoqOO+T2nrxDXbneHyer0R75VAQ+bq19xhhTBmw2xjzob7vdWnvbwJ2NMSuAPwfOBeYAvzHGLPM3fw24AmgAnjbG3G+tfQH4kn+u7xtj7gDeBXxjlK9LjnN8ck/XBYul6FhvKp2FsliI+poEFQkvV4GSY4qIiIiIiAh4AfiFNUn2tqSpTpw4uilbcHjlbCUan6xGNfhkrW0EGv373caYF4G5JznkauD71tocsM8YsxvY4G/bba3dC2CM+T5wtX++y4Fr/X2+BXwWBZ/OiuNackWHXNHFda23XDH+qsUcu8+AxwEDwUCAcMAQCgYIhw3hkCESDFCViJCKhYiGFKEWERERERGRoc0sj7GvJY3j2kGDFQqOSywcoDymROOT1ZjlfDLG1ANrgSeBS4APG2OuBzbhjY5qxwtMPTHgsAaOBasOHVf+KqAG6LDWFofYX0bAWkuu6JIruhRdb3hjMGCoTESYUxkmGgpgjCEYMAQMBAKGoDEEjCEQYMB9jWISERERERGRMxcJBZhfnaChrZfKxLGMOl3ZAkvqlGh8MhuT4JMxJgX8BPiotbbLGPMN4PN4A2c+D/z/wDtHuQ7vBd4LsGDBgtH8VRNawXHJFVxyjgOAwZCKhZhbFaM85q2kEgsHtHyviIiIiIiIjLnZFXEOtGZwrSVgDNZaLAybiFwmh1EPPhljwniBp+9aa+8BsNYeHbD934EH/IeHgfkDDp/nlzFMeStQaYwJ+aOfBu4/iLX2TuBOgPXr19uh9plq+qfPFVws3gs2FgpSnQpTGU+QiIZIRJR7SURERERERCaGWDjI7IoYzd15KuJh0rkiM8tiSjQ+yY1q8Ml4w2f+A3jRWvvlAeWz/XxQAG8Ftvn37wf+yxjzZbyE40uBp/BSDC01xizCCy79OXCttdYaY34L/C/g+8ANwH2jeU0ThbUWx7UU3WM/i44L5lg+pkDAUBEPM6cyTlnMCzRpJTkRERERERGZyOZVJWjsyGKtJe+4zK2Mj3eV5CyN9sinS4DrgOeNMVv8sk8Bf2GMWYM37W4/8D4Aa+12Y8wPgRfwVsr7kLXWATDGfBj4NRAE7rLWbvfP90ng+8aYfwSexQt2TVqO660WNzCw5LgulsFJvgMGIqEgsXCAslCIWNi7Hw4GCAUDRIIBTZ8TERERERGRSScZDVFXHqWpK0csEqQ8PmbpqmWUjPZqd49xLGYy0C9OcsytwK1DlP9iqOP8FfA2HF8+XhxryeSLuBZc15vq5roWF4vBYLH9q8Z5DeOXGbAWQv5qcQODSolIkFAwQChoCAe8n6GAUWBJREREREREpqR51QkOt2dZVpXQZ98pQOHDEgqHDDNSUQLGCyAFAxAJBgj5AaP+leL8leO8FeS8W99qcnpRiYiIiIiIyHRXHguzfFYZtWVKND4VKPhUQolIiFXzKse7GiIiIiIiIiKT3vyaxHhXQUpE2adFRERERERERGTUKPgkIiIiIiIiIiKjRsEnEREREREREREZNQo+iYiIiIiIiIjIqFHwSURERERERERERo2x1o53HcacMaYZODDe9RhltUDLeFdiilGbjg61a+mpTUtPbTo6RrNdF1prZ4zSueUMTJP+F+j9YjSoTUtPbTo61K6lpzYdHWPeB5uWwafpwBizyVq7frzrMZWoTUeH2rX01KalpzYdHWpXmYr0vC49tWnpqU1Hh9q19NSmo2M82lXT7kREREREREREZNQo+CQiIiIiIiIiIqNGwaep687xrsAUpDYdHWrX0lOblp7adHSoXWUq0vO69NSmpac2HR1q19JTm46OMW9X5XwSEREREREREZFRo5FPIiIiIiIiIiIyahR8miSMMXcZY5qMMdsGlJ1njPmDMeZ5Y8zPjDHlfnnEGPNNv/w5Y8zGAcc8YozZaYzZ4t/qxuFyJgRjzHxjzG+NMS8YY7YbY270y6uNMQ8aY3b5P6v8cmOM+aoxZrcxZqsxZt2Ac93g77/LGHPDeF3TRFDidnUGPFfvH69rGm9n0KbL/feGnDHmb4471+v994DdxpibxuN6JoISt+l+//12izFm03hcz0RxBu36l/7r/nljzOPGmPMGnEvPVZkQ1AcrPfXBSk/9r9GhPljpqQ82OiZFH8xaq9skuAGvBtYB2waUPQ28xr//TuDz/v0PAd/079cBm4GA//gRYP14X89EuAGzgXX+/TLgJWAF8E/ATX75TcCX/PtvBH4JGOBC4Em/vBrY6/+s8u9Xjff1TfZ29belx/t6JsLtDNq0DrgAuBX4mwHnCQJ7gMVABHgOWDHe1zeZ29Tfth+oHe9rmgi3M2jXi/veL4E3DHhf1XNVtwlzQ32w0WhT9cEmaJv629T/OvN2VR9sjNrU37Yf9cHOtF3HvA+mkU+ThLX2d0DbccXLgN/59x8E/tS/vwJ42D+uCegA1o9BNScVa22jtfYZ/3438CIwF7ga+Ja/27eAt/j3rwa+bT1PAJXGmNnAHwMPWmvbrLXteH+L14/hpUwoJWxX8Z1um1prm6y1TwOF4061Adhtrd1rrc0D3/fPMe2UsE1lgDNo18f9902AJ4B5/n09V2XCUB+s9NQHKz31v0aH+mClpz7Y6JgMfTAFnya37Rx7IvwZMN+//xzwJ8aYkDFmEXD+gG0A3/SHJv69McaMXXUnLmNMPbAWeBKYaa1t9DcdAWb69+cChwYc1uCXDVc+7Z1luwLEjDGbjDFPGGPegoy0TYej5+oQzrJNASzw38aYzcaY945KJSehM2jXd+F9Cw96rsrEpz5YiagPVnrqf40O9cFKT32w0TFR+2ChUpxExs07ga8aY/4euB/I++V3Aa8ENgEHgMcBx9/2l9baw8aYMuAnwHXAt8e01hOMMSaF1xYftdZ2DewLWmutMUZLQp6BErXrQv/5uhh42BjzvLV2zyhVecLTc7X0StSml/rP0zrgQWPMDn+kxLR1uu1qjHktXsfn0jGtqMiZUx+sBPR/rfTU/xodeq6Wnvpgo2Mi98E08mkSs9busNZeaa09H/ge3txMrLVFa+3HrLVrrLVXA5V4cz6x1h72f3YD/4U3rG7aMsaE8V6c37XW3uMXH+0bduz/bPLLDzP428t5ftlw5dNWidp14PN1L16ujLWjXvkJ6jTbdDh6rg5QojYd+DxtAu5F76un1a7GmNXA/wWutta2+sV6rsqEpj7Y2VMfrPTU/xod6oOVnvpgo2Oi98EUfJrE/AgvxpgA8GngDv9xwhiT9O9fARSttS/4Q8Br/fIwcBWwbciTTwP+cPf/AF601n55wKb7gb7VUm4A7htQfr3xXAh0+kMYfw1caYypMt7qAVf6ZdNSqdrVb8+of85a4BLghTG5iAnmDNp0OE8DS40xi4wxEeDP/XNMO6VqU2NM0h/FgP++eyV6Xx1xuxpjFgD3ANdZa18asL+eqzKhqQ92dtQHKz31v0aH+mClpz7Y6JgUfTA7ATKz6zai7PXfAxrxEq014A2NuxHv27SXgC8Cxt+3HtiJl2TsN3hDZwGSeKuubMXLVfAVIDje1zaObXop3jzhrcAW//ZGoAZ4CNjlt1+1v78Bvob37ebzDFixBm/4/W7/9o7xvrap0K54KzA8j5c/43ngXeN9bZOoTWf57xNdeMluG4Byf9sb/feMPcDN431tk71N8VYCec6/bZ/ObXqG7fp/gfYB+24acC49V3WbEDfUBxuNNlUfbIK2Kep/nW27qg82Rm2K+mBn265j3gfr+0cpIiIiIiIiIiJScpp2JyIiIiIiIiIio0bBJxERERERERERGTUKPomIiIiIiIiIyKhR8ElEREREREREREaNgk8iIiIiIiIiIjJqFHwSkUnLeB4zxrxhQNmfGWN+NZ71EhEREZmq1P8SkTNhrLXjXQcRkTNmjFkJ/AhYC4SAZ4HXW2v3nMG5QtbaYomrKCIiIjKlqP8lIqdLwScRmfSMMf8E9ABJ/+dCYCUQBj5rrb3PGFMP/Ke/D8CHrbWPG2M2Ap8H2oHl1tplY1t7ERERkclH/S8ROR0KPonIpGeMSQLPAHngAWC7tfY7xphK4Cm8b+Us4Fprs8aYpcD3rLXr/c7Pz4GV1tp943MFIiIiIpOL+l8icjpC410BEZGzZa3tMcb8AEgD/xt4szHmb/zNMWAB8DLwr8aYNYADDPyG7Sl1fERERERGTv0vETkdCj6JyFTh+jcD/Km1dufAjcaYzwJHgfPwFlvIDtjcM0Z1FBEREZlK1P8SkRHRanciMtX8GvgrY4wBMMas9csrgEZrrQtcBwTHqX4iIiIiU436XyJyUgo+ichU83m8RJdbjTHb/ccAXwduMMY8ByxH37aJiIiIlIr6XyJyUko4LiIiIiIiIiIio0Yjn0REREREREREZNQo+CQiIiIiIiIiIqNmWq52V1tba+vr68e7GiIiIjJKNm/e3GKtnTHe9ZBj1P8SERGZ+obrg03L4FN9fT2bNm0a72qIiIjIKDHGHBjvOshg6n+JiIhMfcP1wTTtTkRERERERERERo2CTyIiIiIiIiIiMmoUfBIRERERERERkVEzLXM+iYjI5FAoFGhoaCCbzY53VWSCisVizJs3j3A4PN5VkTOg1/jo0OtCREQmGgWfRERkwmpoaKCsrIz6+nqMMeNdHZlgrLW0trbS0NDAokWLxrs6cgb0Gi89vS5ERGQi0rQ7ERGZsLLZLDU1NfpQ6nNcS9Fxx7saE4YxhpqaGo2amcT0Gi89vS5EREqvrSdPtuCMdzUmNQWfRERkQtOH0mOKjku+qODTQHp+TH76G5ae2lREpLQOtPbQ1VsY72pMago+iYiInERDQwNXX301S5cu5ZxzzuHGG28kn8+f8rgvfOELZ/V7N23axEc+8pFBZUXXUnQtrrVnde6BHnnkER5//PEht919993MmDGDNWvWsHz5cm6//fZTnu9sr1tkLDU3N3PppZeycuVKfvrTn/aXX3311bz88svDHnfnnXeyfPlyli9fzoYNG3jsscdO+buOf601Nzfzqle9irVr1/Loo49SX19PS0vL2V2QiIiUnONaOjJ52npO3f+T4Sn4JCIiMgxrLddccw1vectb2LVrFy+99BLpdJqbb775lMeebRBm/fr1fPWrX+1/7FqL4wedHPfE4JO1Ftc9/VFRJws+AbztbW9jy5Yt/P73v+fWW2/l0KFDJz3fmVx3sVg87WNESuF73/se73//+3nqqaf4l3/5FwB+9rOfsXbtWubMmTPkMQ888AD/9m//xmOPPcaOHTu44447uPbaazly5MhJf9fxr7WHHnqIVatW8eyzz3LZZZeV7qJERKSkMvkiroX2jIJPZ0PBJxERkWE8/PDDxGIx3vGOdwAQDAa5/fbbueuuu8hkMtx99918+MMf7t//qquu4pFHHuGmm26it7eXNWvW8Jd/+ZcnnDeVSvG3f/u3nHvuufzRH/0RTz31FBs3bmTx4sXcf//9gPdB9aqrrgK8ERJXXnEFr1p3Hn/1wfdxzuJFtLS0sH//fl7xildw/fXXs3LlSg4dOsQHPvAB1q9fz7nnnsstt9zS/zvr6+u55ZZbWLduHatWrWLHjh3s37+fO+64g9tvv501a9bw6KOPDtsWNTU1LFmyhMbGRgC+853vsGHDBtasWcP73vc+HMc54br379/PypUr+89x22238dnPfhaAjRs38tGPfpT169fzla98hY0bN/LJT36SDRs2sGzZsv66bN++vf/3rF69ml27dp3Jn1JkSOFwmEwmQy6XIxgMUiwW+Zd/+Rc+8YlPDHvMl770Jf75n/+Z2tpaANatW8cNN9zA1772NYBBI5g2bdrExo0bh3ytfeITn+C+++5jzZo19Pb2DvodX/7yl1m5ciUrV67sD4r98z//c39A+mMf+xiXX3454L1PDfU+IyIipbHrSDe/3NZItuAo79NZGJfgkzEmZox5yhjznDFmuzHmc3753caYfcaYLf5tjV9ujDFfNcbsNsZsNcasG3CuG4wxu/zbDeNxPSIiMjVt376d888/f1BZeXk5CxYsYPfu3cMe98UvfpF4PM6WLVv47ne/e8L2np4eLr/8crZv305ZWRmf/vSnefDBB7n33nv5zGc+c8L+n/vc53jNxtfy1DPP8dZr/pRDBw/2T73btWsXH/zgB9m+fTsLFy7k1ltvZdOmTWzdupX/+Z//YevWrf3nqa2t5ZlnnuEDH/gAt912G/X19bz//e/nYx/7GFu2bDnp6IuDBw+SzWZZvXo1L774Ij/4wQ/4/e9/z5YtWwgGg3z3u9895XUfL5/Ps2nTJj7+8Y8D3giovhEon/vc5wC44447uPHGG9myZQubNm1i3rx5pzyvjB1jzI3GmG1+f+6j412f03Xttddy3333ccUVV/CpT32Kr3/961x33XUkEolhjxnqfWH9+vVs37592GOGeq39wz/8Q//Iwng83r/v5s2b+eY3v8mTTz7JE088wb//+7/3j47qC8pu2rSJdDpNoVDg0Ucf5dWvfvVZtoSIiAznu08d5MebD9PYmaU3r+DTmQqN0+/NAZdba9PGmDDwmDHml/62v7XW/vi4/d8ALPVvrwK+AbzKGFMN3AKsByyw2Rhzv7W2fUyuQkRExsznfradF17uKuk5V8wp55Y3n1vSc45EJBLh9a9/PQCrVq0iGo0SDodZtWoV+/fvP2H/xx57jO98/0cEjOHKP/5jKquqcP2pdwsXLuTCCy/s3/eHP/whd955J8VikcbGRl544QVWr14NwDXXXAPA+eefzz333DOiuv7gBz/gd7/7HTt27OBf//VficViPPTQQ2zevJkLLrgAgN7eXurq6k67Hd72trcNejywfn3tcNFFF3HrrbfS0NDANddcw9KlS0/798joMMasBN4DbADywK+MMQ9Ya4ePzJ7EeLzGKyoq+PnPfw5Ae3s7X/ziF7n33nt5z3veQ3t7Ox//+Me56KKLSlqnU3nsscd461vfSjKZBLzXxaOPPsoHPvABNm/eTFdXF9FolHXr1rFp0yYeffTRQVN0RUSktLb7/5v2NPXQ2VugKhkZ5xpNTuMy8sl60v7DsH87WfbUq4Fv+8c9AVQaY2YDfww8aK1t8wNODwKvH826i4jI9LFixQo2b948qKyrq4uDBw+yZMkSQqHQoDxLI13aPBwO969GFQgEiEaj/feHy39ksfQtYGWAguP92+z7gAqwb98+brvtNh566CG2bt3Km970pkF16vs9fdOLRuJtb3sbW7du5fHHH+emm27iyJEjWGu54YYb2LJlC1u2bGHnzp390+kGOlX7DKz7cPW79tpruf/++4nH47zxjW/k4YcfHlG9ZUy8EnjSWpux1haB/wGuGec6nbHPf/7z3HzzzXzve9/j0ksv5Vvf+taQz+uh3hc2b97Mued6Qa6Bz/uRvieMRDgcZtGiRdx9991cfPHFXHbZZfz2t79l9+7dvPKVryzZ7xERkWMyuSJ7W3oA2N2cplVJx8/YeI18whgTBDYDS4CvWWufNMZ8ALjVGPMZ4CHgJmttDpgLDMxw2uCXDVcuIiJTzHiMUHrd617HTTfdxLe//W2uv/56HMfh4x//OG9/+9tJJBLU19fz9a9/Hdd1OXz4ME899VT/seFwmEKhQDgcPut6XHTxxdz74x/zN5/4BL958EHa29txXBd73Kp3XV1dJJNJKioqOHr0KL/85S/ZuHHjSc9dVlZGV9epR5usX7+e6667jq985Stcd911XH311XzsYx+jrq6OtrY2uru7Wbhw4aDrnjlzJk1NTbS2tpJKpXjggQf6R3yN1N69e1m8eDEf+chHOHjwIFu3bu3PdSPjbhtev60G6AXeCGw605ONx2u8z65du2hoaGDjxo0899xzxGIxjDEn5GIC+MQnPsEnP/lJfvWrX1FTU8OWLVu4++67efLJJwFvit3mzZt5wxvewE9+8pP+40b6Wrvssst4+9vfzk033YS1lnvvvZf//M//7N922223cdddd7Fq1Sr++q//mvPPP78/mC0iIqX1/OFO8kWXSCjAziPdpHMFHNcSDOh993SNW8Jxa61jrV0DzAM2+EO3/w5YDlwAVAOfLNXvM8a81xizE94+wwAAIABJREFUyRizqbm5uVSnFRGRKcwYw7333suPfvQjli5dyrJly4jFYv0rul1yySUsWrSIFStW8JGPfIR16/pTEvLe976X1atXlyQR8N/d/Pc8/NBvWL92Dffe82NmzppFqqzshFXvzjvvPNauXcvy5cu59tprueSSS0557je/+c3ce++9p0w4DvDJT36Sb37zm8yfP59//Md/5Morr2T16tVcccUV/YnIB153OBzmM5/5DBs2bOCKK65g+fLlp33tP/zhD1m5ciVr1qxh27ZtXH/99ad9Dhkd1toXgS8B/w38CtgCDEqGMVn6XzfffDO33norAH/xF3/BN77xDS644AJuvPHGE/b9kz/5E975zndy8cUXs3z5ct7znvfwne98h9mzZwNwyy23cOONN7J+/XqCwWD/cSN9ra1bt463v/3tbNiwgVe96lW8+93vZu3atYAXfGpsbOSiiy5i5syZxGIxrZQnIjKKNh1oA+B1y+s40pWlI1OgJ69Ves+EOf5b03GphDfSKWOtvW1A2Ubgb6y1Vxlj/g14xFr7PX/bTmBj381a+z6/fNB+w1m/fr3dtOmMv5gTEZEx8uKLL2o6CdDamSYUChEOh3jyiT9w4199mMef3EQoGCAWDp76BFPcUM8TY8xma+36carStGSM+QLQYK39+lDbh+p/6TU+etS2IiJn793fepon97Xx4deew//3y5381WvP4S8vXMisivipD56mhuuDjcu0O2PMDKBgre0wxsSBK4AvGWNmW2sbjTd2+C14w7kB7gc+bIz5Pl7C8U5/v18DXzDGVPn7XYk3ekpERGRKcF3LwYMHeft11+K6LpFIhK994w4CxlBwXKKhgKbcyLgxxtRZa5uMMQvw8j1deKpjREREJgNrLS82drOsroxFM1KEgoa9LRla03kFn87AeOV8mg18y8/7FAB+aK19wBjzsB+YMnhDt9/v7/8LvDwCu4EM8A4Aa22bMebzwNP+fv9grW0bw+sQEREZVY61nLNkKX94aogRu9bbHlLwScbPT/ycTwXgQ9bajvGukIiISCm0dOd5uaOXS5fUUhYNsbg2ya6mbtozeay1+vLvNI1L8MlauxVYO0T5kBlErTc38EPDbLsLuKukFRQREZkgHNcSOEnnpuhYQuOWwVGmO2utEg6JiMiUtOlgGxaor0lQm4qybGYZv9x2hJ58kWzBJR5R6oPToe6qiIhMaBMhN+F4sdZSdFyGW1AlaAxF58RV76aT6XztU4X+hqWnNhUROXub97cDsKAmQVUywroFVTiuZV9Lj5KOnwEFn0REZMKKxWK0trZO2w9SrgUL3mT0oRiwFtxp2j7WWlpbW4nFYuNdFTlD0/01Phr0uhARKY3nGjqYXREjFQ2RiAS5+JwaAPY29dCRyY9z7Saf8cr5JCIickrz5s2joaGBibxE+2hyXEvBcU867c61llDAEApOz++TYrEY8+bNG+9qyBma7q/x0aLXhYjI2Sk6Li8dTbN2fiUBY4iHg8ytijOnIsbu5jTtPQo+nS4Fn0REZMIKh8MsWrRovKsxbl5s7KI7UyAVHf7fteO49DguFy6uGcOaiZTGdH+Ni4jIxLS3pYfO3gKLZ6Qoj4cxxpCIhFg6s4xNB9rozhUpOC7hafrl35lQS4mIiExA1lpa0zni4ZMnswwHA2TzDj055R4QERERKYWn97cBsKA6TnUyAkAwYFg9r4KenENjR5ZMzhnPKk46Cj6JiIhMQJm8Q9G1BIfLNj6AMSj3gIiIiEiJPHOgnXDQMK8qTlns2Aj0vrxPu5vSdOcK41W9SUnBJxERkQkonR15hyYRCdHYmR3F2oiIiIhMH9tf7mJRbZJQMEA8cmwU+itnlVMeC7G7OU1rWl/8nQ4Fn0RERCaglnSeWOjkU+76xMJB0rki2YKGf4uIiIicjUy+yN7mHpbWlRELBYkO6I8lYyGW1qXYdTRNV28B19VqrSOl4JOIiMgE47qWtp48sVPkexrIoKl3IiIiImdra0MnecdlUW2S6lRk0LZwMMC5cys40pWltSdPr774GzEFn0RERCaYTMHBOS7fk+Na7nmmgXR26MTi8bCm3omIiIicrc372wFYUBOnMhE+YfuG+moAdjV105PXgi8jpeCTiIjIBNPdW8Acl2f82YPtfPPx/fx8W+OQx8TCATp7C+SK+gZORERE5Ew9e6idsliIGakoiUjohO0XLKomHDTsa+6hI6Ok4yOl4JOIiMgE05zOnTDlbvNB71u4x3Y1D3mMMQZroatX38CJiIiInAlrLS80drFsZhkBEyA+RAqEiniYxbUpXmpK05rOjUMtJycFn0RERCYQx7V0ZAonBp8OtBMKGPa3ZjjUlhny2EQkyNEuTb0TERERORMt6RyNHVmWzEhRFg8NSoHQJxYOsnx2GftaeujKatT5SJ118MkY80/GmHJjTNgY85AxptkY839KUTkREZHppidfxLWWwIB5dy939NLYmeWta+digEeHGf0UDwdpSecoOO4Y1VZERKarfNGlqP83MsVs2t+OBRbWJKhORIbdb/3CKhzXsre5h0xOwaeRKMXIpyuttV3AVcB+YAnwtyU4r4iIyLTT3VsYFHgCL98TwB+9ciYr51bw6O4WrD1xaV/jH9fVq/wDIiIyelzX8vzhDnY1pce7KiIltfmA1+daWJOgPH5isvE+F51TC8Ceph71u0aoFMGnvgxcbwJ+ZK3tLME5RUREpqXmdI5Y6MR8T7MrYsypjHPZ0loa2nvZ3zr01LtoMEhTt/IPiIjI6Gloz9CdLXKks5fmbk33lqnjuYYO5lTGSEVDJCIn5nvqM6cyxpzKGHua07Rm8mNYw8mrFMGnB4wxO4DzgYeMMTMAvQOJiIicpqLj0tlbIBY+9u85X3TZ2tDJugVVAFx8Ti0BM/zUu0TUm3rnuCeOjBIRETlbXdkCe5p7qIxHqIhH2HGkm2xB045k8nMcl51HullWV0YoGDgh/+ZA8XCQZTPL2Hm0m85MQf2uETjr4JO19ibgYmC9tbYA9ABXn+15RUREppuevIO1x6bPAbzQ2EWu6PYHnyriYVbPq+SxYabeBYzBcS3dWQ0BFxGR0io6Ljsau0hEggQDhnAwQMAY9jSlh/yfJDKZ7GnuoStbZPGMJFXJ4afcgddXWzu/kkzeoaE9Qyav1YZPpVSr3S0H3maMuR74X8CVJTqviIjItNHVWyDA4HxPfavcrZ5X0V922dJaGjuz7GnuGfI84UBAU+9ERKTk9rdmyOQdEpFQf1l5LExTd46mLv3fkcnt6QNtACyoPnmy8T6XLKkBYFdTmp6cgk+nUorV7v4TuA24FLjAv60/2/OKiIhMN83pHPHj8gs8c7CdlXMrBg39vmhxDcGAGXbqXTIaoqkri6sh4CIiUiIdmTwH2zJUDfGhvCIeZufRLk2/k0ntmQPthIOGedVxEtHQKfdfNrOM8niIvc09tCnv0ymdukVPbT2wwmqcpYiIyBkrOC5dvYVB37Q1d+c42Jbhj15ZN2jfsliYtfO9qXdvv7h+0DQ9gGDAUHQt3bkiFSdZqUVEZKpzXUu26JAvuqSiIULBUk38mF4KjssLjV2URUMnrMgKEA4GCJoAO490s3pexQn/l0Qmg22Hu1hUmyQUCJA4Sb6nPslomGV1Zew62k1buoC1Vs/9kyhF8GkbMAtoLMG5REREpqWeXBHD4HxPzxz0lvvty/c00GVLa7n9N7vYebSb5bPKT9geCgRoTecUfBKRaSNfdOktOGTzRTqzRbp6C/TkHMBi8QLzcyvjzCyPkRzBqAY5Zk9zmqJjKYsO/4G8PB6mJZ2jsSPLnKr4GNZO5Oz15ovsbUlz5YpZIw5UBwOGVfMq2HSgndZ0jlzRPWmS8umuFO+6tcALxpingP6JvtbaPynBuUVERKaFzkzhhG+TNx9opzYVZUF14oT9X7WohlBgN4/uahky+JSMBDnSlWVRbVLfwonIlNI3milbcOnJFenoLdDVW6DguBjAApFggGgoSFUi3P8e6LiWwx29HGjtoSoRYX51gspEhGBA75En09Kd5eWOLLXJU+fAqYyH2dWcpjIZHpQXSsZOruiw+2ia+tqkgqyn4bmGTgqOpb4mOeTU0uG8alE13/z9fl5q6ubSXK2CTydRimfjZ0twDhERkWnt+HxPRcfluYYOLltSO2TwKBkNcf7CKn6/u4V3XbrohMBVKBgg31sgnStSFtPoJxEZO9ZasgWXTL7YnwPIYAgEvNGdxivAYDCG/lGffe9ixt+G8e5bC7mCQ2dvga7eIulckb7RTAFjiIYCJCOhQUEk11qOdGbZ05xmX0sPyWiI1y2vo9L/UJnJF3n+cCehQIAF1XHqymP60DiEXNFhx5FuKmLhEX2REQoGiAS86XfnzaskoMDemDvameVwRy8t6Rznzimntiw23lWaFDb7ycbraxNUJEbeb1q/sJpw0LC7qYeOTIGaVHS0qjjpnVXwyRgTBP7NWru8RPURERGZdvJFl+5ckdrksQ7LzqPdZPIO6xaeOOWuz2VLZ/DkvjZebOzi3DkVJ2wPBgztPXkFn0Rk1AwMNKWzRdp783T3FnHtseCQt6M3IslaS1+UqW+U0kCGobf1jWaKhAKDRjOBl49of2sPe5vT7G3uYU9LD/tbeuj1A1/BgMFxLd954gCXLa3lqtVzWDazjEQkRNFx2d+aYU9zD7WpCPOqElTEwwqa4P2tdh9NAxAJDZ6C1NCe4ZfbjvBn58/rD+j1ScVCtKRzHO7oZf4QI3dl9BQclwNtGerKYjiu5bmGTpbMcFhQk9Ao6FN49mAH5bEQM1IRkqcxaq8iEWbxjBS7m7ppV9Lxkzqr4JO11jHG7DTGLLDWHixVpURERKaTvnxPA20+0E4wYDhvXuWwx22oryYSCvDorpYhg0+JSIjGziwLapIlrvHZyxYcunoL1JXrG1mRyaIv0NRbcOjuLZwQaAoaQywcpDweHjIpdSlk8kVeaOpiT7MfbGrp4VBbhqK/umc8HKS+NsnrltexeEaSRbUpFtYkONKV5RfPN/LQi038dmczS+tSXLV6NpcumUFVIoK1lnTOYcuhDmLhAAuqE9SWRYmGpu9oqKauHEe7s8xIDX6fPtSW4VM/fZ6OTIHnDnXwj29ZeUIAqioRYXdTmqpkhJSmfo2Z5q4cjmsJBgzBgKEmGWVPS5p0rsiyWWWElXB/WC80drF0ZhnBYIBYeOTtFA4GOHd2OT/dcpjWdI6C46qdh1GKd4IqYLuf86mnr1A5n0REREamPZMnFBjcUdl8sJ3ls8pOmq8hHglywcIqfr+nhfdctviEvCWRUIDudIFMvjihcm8UHJdthzsJBIyCTzKl9OUcmuwrqllrcVxLwbH0FhzS2QLtmTxdxwWaoqHBgSbXWg639/LS0W52NaXZ1dRNb8ElHDREggHCwQDhoPF/Bvwy/3Gor8x7HBqwvbUn3x9oauzM9tezMh5m8Ywk5y+Yy+IZSRbXpphdGRsy8DW/KsH7Xn0O1124kN/ubObnW1/m9t/s4j8e28eVK2bxhpWzqCuPkYqGKDguu5vS7GpKM6sixuyKOOWx0LQaOdKbd9hxpIvK+OCg0oHWHj79020YAx9+7RLufHQvn/7pthMCUMGAIR4OsqOxi7ULqpRXaww4rmVfaw/lA0Y7BwOGGakYbT15njnQzsq5FcoDNYRmP6/ZpUtqqUxETvu1fsGiKu559jD7WnrI5B0q4pP7f8BoKcUz7+9LcA4REZFpq6U7R3xArpH2njx7m3u4/sKFpzz2sqUz+P2eVra93DnkKCljvPNNlOCT61p2HOmiI1OgOjXyhJ4iE1XBcenqLXCkK0tzd45wMMArZqbGPc9KXwDJ6fs58GYthaJLvmgpuC6FokvOcSkWXfKOi2MtfbPjhgs0WWtpSed55mA3u5q62XXUC9b0TXWLh4MsqUsxIxWl4FjyjkvBcUnnHAqOpeC45IsuxQHbCo6Le/w8PN+s8hiLZyR53Stnsrg2yeLaJNXJU39ItLbv/JZ4OEgiEuJNq2bzxpWz2Hq4k59vbeSeZxu459kGNiyq5qpVc1g9r4LqZBTXWtrSeY50ZklEgiysTlBbFpvygRTXtbx0tLs/SNhnf0sPN//0eUKBALe+dSXzqhLMqojxDw+8wM0/3catxwWgklFv+l1DW4aFtRNvBO5U0zfqpnyIqfaViQg9uSKb9rcpD9QQNu33Vheur0lSfRr5nvpctLgWgF1NadLZglYaHsZZ90Sttf9TioqIiIhMR7miQ0/eoTZ17F/ys4e8TtDJ8j31OX9hFbGwN/VuqOBT39S7uVXjn3fDWsvu5m5auvNUnkHnTiYeY8zHgHfjxSieB95hrc2e/KjJr+i4dPYWONqVpTmdw1r8ldUiFByXrYc7mVWeY/GM1Jgnsc4XXQ62ZXi5I4N7LL0SlsH3AxgCAUPQeInAA8Z4o41CwSGDK93ZAi8e7OIlP9D0UlM3HZkCAKGAYVFtktcur2NZXYplM8uYWxU/o6l33ogrLzBV8INGZbHQiEZrOK4lV3TIFV1ca/sTmScjISriQVrSeVxrSYRDxCNBzptXyXnzKmnqzvKrbUf49fYjPLG3jXlVca5aNZvXLq/rz5mXKzq80NhNWUcvy2eVT+mpZC939tKWyVGbPBag2NeS5uafbiMSDPCFt65iTmUcgPPmVfKZq1YMG4CqSkTY05KmKhUZMigipeG6lr0tPSd9XiajISKhQH8eqPnVCeU2820+4PW7FtYkSEVP/3k6qyLG3Mo4e5rTtGUKzD11921aOut3TWNMN8fyAUaAMNBjrT1x3edjx8SA3wFRvw4/ttbeYoxZBHwfqAE2A9dZa/PGmCjwbeB8oBV4m7V2v3+uvwPeBTjAR6y1vz7baxIRERkrPTmH4z+fbT7QTlUizOIRfFMcCwfZUF/D43taeP+rF58w3ScWDtLakyNbcMZ9JaeDrRka2rLUpiLkHXdc6yJnzxgzF/gIsMJa22uM+SHw58Dd41qxUVJ0XLqyRS/g1J3DtZZoKEhlPDIoyBINBalNBmjrydOabmPZzDLqyqOjPmXLdS1Hu7Lsbk5jLVQcV6+RKPqjuLqyBTp6C+xv6eGlo970uYHT3eZVxVk3v4plM1MsnVnGotpkyXKceLlqgid9v+obzZT3R2r1CQcDVMbDzKkMk4yGiIeDREOB/g/YRcelrSfPwfYMrekcwYChLBamrizG9RfV8+cXLOCx3c08sLWRO363l2/94QCXL6/jTatmM786QTQVpCdX5Ol9bSypSzG3Mj7lPrync0V2HU1TlTi2AMbupjSfuW8b0XCQL7x1JbMr4oOOOVkAKhjwgn87GrtYt6Bq0k9JnajaM3l68w61p1hpLRwMUJOMsrfVywO1dGbZCcnkp6PnGjqYUxkjEQ0NWnl4pGLhIMtnlfGHva20deew1k6rabojVYqRT2V9943XwlcDF57isBxwubU2bYwJA48ZY34J/DVwu7X2+8aYO/CCSt/wf7Zba5cYY/4c+BLwNmPMCrxOzrnAHOA3xphl1lrnbK9LRERkLLT15AgPyPfkuJZnD3ZwwaLqEXdcLltay+92NbO1oXPI0VIG6MzkiR33gWEsHe30PhTXJEf/Q7iMqRAQN8YUgATw8jjXp6Qc19LVW6CpO0tTd46iY4mFgt5qaCd5HhtjqIh7o6BeaOziSFeEZTPLzuhDzUi09+R5yV8hsyIeJhwMYK0lky/S1Vuk0w8odfYW+oNLJ5RnC/TkTuxC16YiLK0r44oVM1k2s4wlM1KnHIVUcFx68w4F1x1y5FXf44EPAsaA8X56I5a8dgwYsBbyjjeaCQsBP6AxoyxKRSJMLBwkFgqe8kN0KBigrjxGXXmMdK7I0c4sjZ29FN1jU/IuXz6Ty5fP5KWj3fx8ayO/3n6Enz/fyHnzKrhm7TzWLawiFg6yuylNU3eW5bPKp0wOHce17GjsIh4+Nvpt19Fu/v7+bSQiIb7wllXMqhh6utZ58yq55aoVfG6IAFQiEqK1J8fBtgyLZ6TG7HqmC2st+5pPPuppoGDAUJv08kA9e1B5oFzXZceRbs5fUEUifOr3keGsW1jFQzuaONieobfgTJh0BxNJSVvEWmuBnxpjbgFuOsV+af9h2L9Z4HLgWr/8W8Bn8YJPV/v3AX4M/OuAQNf3rbU5YJ8xZjewAfhD6a5KRERk9LR05wd9IN3dlKY7V+T8BSMfs33+wioSkSCP7m4eMvgUD4d4uTPLzHEKPnVk8mxv7KQ6EZnyuVKmE2vtYWPMbcBBoBf4b2vtf49HXTozedozBS95dShAKBAgaAzBoDetrG/lp5E8/xzX0p31ptQ1dXsrR0WCAcqi4SGPd1zLi41d/GFvKzuPdPPqZbW8ceVsQn6+nNpUlO5sgSf3tbKkLsWcitKNlunJFdnTnKYlnacsGqImGeHxPa3811MHebmjt38FuOOFAobyeJiKeJjyWIildSnKY2HK4+FB5XMr49ScYiQFeFP9egsORdfFWm8xhJkVUaoSEeKRIH7MyEtW7oLF4lr/sT2Wn6roWtwBOapcC471RjaVRb3RTLFwgFgoeNZtmIqGSNV5K+F19BY41JahJZ0lFAiQioZYNrOMZVeU8Y5L6nnwhaP8YtsRbvnZdl6zbAbvvWwxtako6VyRp/e3lfzvOl4a2jJ0Z4v9o2deOtrNZ+7bRjIa4gtvXcXMUywQsfokAaiqRIT9rRlqkl7AUEqnI1MgnS9Q40+T3NHYhWMtK2aXn/TLHuWB8uxp7qE7W2RRbZKq5Jnnorz4nBrAy/vUk1PwaSilmHZ3zYCHAWA9cMq5/saYIN7UuiXA14A9QIe1tujv0gDM9e/PBQ4BWGuLxphOvKl5c4EnBpx24DEiIiITWrbgkCs6g75xfOZgOwEDa+afmL9pOOFggAsX1fCHva18cOOJS/zGwgFaM3lyRWfMlw1P54o8d6iD8lhY0y2mGGNMFd4XgYuADuBHxpj/Y639zoB93gu8F2DBggWjVpe2ngK7m9NEgwFcf0xNAHDxRtBYPwYTMPQnUQ4HA0RCpn/VtWg4SGdvgaauLEXXEg4MH3AqOC5bGzr5w54WntjXRmevF/iaUxHn3x/dxy+3HeFdly5i/cJqAMpiYRzXsutomqNdWV5xljmD+vI6HWrLEA0FmJGKsrc5zZ2P7mX7y13U1yS4es1cymMhL5DUH1AKUx73pqOd6QhEay25oku24HiJyYFUJMicyhiViQjJaHDM32fORsgPENamomTyRZq6cjS0Zyg4lkTEG+X2Z+vn85a1c/nx5gZ+sOkQzx3q4P2vOYdLltQSDwfZ1dRNc3eOV8wqm7QfODt7C+xtOTbdbseRLm65fzvlsTC3vnUldUMEJhw/uDnwNTIwAPWpn27jC34AKmAMZdEQLzZ2cn59tZaiL6H9rT3Ew97zrrk7x6fv20au6LKoNsmbV8/m1ctmDPua7M8DdbiTc2qLLKhOTvog6ul6en8b4OV7qkqcefBp2cwUFfEwe5rStGfyzCg7deB+uinFu+ObB9wvAvvxOiIn5U+NW2OMqQTuBZaXoC7DGqvOj4iIyEilc0WOH5ew+UA7S+vKKD/NlVIuW1rLwzubePZgBxsWVQ/aZowBC129RWaUjd2HwmzBYWtDB7Hw5PowKiP2R8A+a20zgDHmHuBioD/4ZK29E7gTYP369cOsY1Ya8XDwlCsMWeuPpnGtN1on3zfCxvsZCgZIDRNwyhYcNh9o5w97W3l6fxuZvEM8HOSC+iouOqeWdQsqiYeDPL2/jf94bB+f+9kLnL+winddsoj51Qlvqksq2p8zaHFtknl++Ug5ruVoZ5Y9zWksUJ2M0NVb4F8f3sV/v3CUsliID248hytXzCrZKMO+YFNv3sHiBZvKomEWVCeoSIRJREJTJmdMIhKivjbE/OoEHZk8DR29tPXkCRhDKhriLzYs4MLFNXzloZf44q92cMk5NbzvNedQm4yRzhZ5al8by+rKmF0Zm1TTi4uOy47GLpIR77n/YqMXeKpMhLn1LauG/BCdzhYpuA6upT+Be5/V8yr57FUr+OxxASgvB2GR/S09LJ1ZdsI55fR19hboyOSpTXnBwbsf34e18K5LFvGbF4/y1Yd3883H9/P6c2fxxlWzh8wJFQ4GqE1G2dfaQzpXZNnM8inzmh6JzQfaCQcN86vjJM5ianQiEmLZzBQvNaVp+3/svXeYHGl1t30/1Tl3z/TkrJFWOa42rxaWtISNJBNsg23AfLA4vP4cgM8ks/BiTLQNNgYciWZZYGGBXdImNkla5ZU0QZocumc656p6vj+qZzSjGcXpCZLqvq6+erqqq/rpmpqpU7/nnN/JFCs4wsuHSohPX5VSPjlzgRDiJmD8fDaWUsaFEL8GbgCCQghrOfupGRgqv20IaAEGhRBWIIBhPD61fIqZ25z+OUsW/JiYmJiYmJwPk5ki9hmzv8lcieNjKd587fyTJLKcZTCf18zWliBeh5XHuyNzxCcwbszHkvklm4kraTqHhhJIHdyuSzMTwOSc9APXCyHcGGV3LwV2L++Qzo4QAovgvIWZdF7l2ZMT/LZnguf74xQ1Hb/Tyk2rw9y4qpqtLcE5GRzXdlSzvTXETw6M8O3n+rn3W3t5zeYG3nxtKz7nVOmYhRMTGUaTedY1+M+rLfeUr1OupBFw2pDAD/cN8e3nBiioOndubeRN17ZeUEaVdlqZm6ZLNGksmz5mCPwuKx01HvxOG26H5bLPWrEogmqvg2qvg1xRI5LKMxDLkciXaAq6+MwbtvH9vYN889l+DgwleNeuVbzoqhqcusKxsRSRdGFRPb4qzclohnxJo8rj4PBwgo8+eISQ28Yn7tk8p+xSl5LJTBG/y8q2hmpUXefwcJJYtkjQZZsW3TafJkDdd/cmQm47VW47/bGmG7fEAAAgAElEQVQsYa9jQSVOJgYDkxmcVuNv/tBQgse6orzpGiNT765tjRwcSvDggWHu3zvI/XsHubEzzB1bG1lf75slkCrC8IGKXYE+UIeGkqyq8WKzWHAtoDGLEIJtLUGeOxljOJZblmzzlU4lzqh/BHacx7JphBA1QKksPLmAl2OYiP8aeD1Gx7u3AT8sb/Kj8uunyut/JaWUQogfAd8UQnwWw3B8DfBsBb6TiYmJiYnJoiKlJJIq4J4R6OwbiCOBHWfwe4rnSuhSUu2Zf+byhs5qnuiKUlT1ObOWbruFaLpASZtblldpdF1ydDRJtqgtKIXdZGUjpXxGCPE9YC9G9vvzlCf6lpLHjkf4+58dxWG1UF1u526UmlkNDyPnqZIzp005Z0bKZKbI070TPNU7wcGhBJouCXvtvGJjHTeuqmZDY+Cc4pXNonD39iZuXVfL/zzdx08OjvCbYxHecl0rr9rUYIgbHkPY2NMXozXkou0MHeOmfJ0m0gW8DhtVbvt0dtVwIs/OthB/dHMHzSH39DaabpiNT4lLU2bf06bfwnhlVRQcVgW7dfbzlG+W1WIYe1/JXm0uu4XWag/NITcTmQLHRlNI4A07W8pZUF185pHjPN4V5T0v7iTsdZDMlXj2xARX1fmoD6zsLKhYuftftcfBwaEEH/vxYao9Dj5xz2aqThOHiqpOPF+kvdpDe7WnfF5YuLotRNdYitFknpDLPl1iPVOA+uAMASrgtHFkJMk17VVXVIZNpUkXVCKpItUeO5ou+crjvYS9Dl63oxkwxJAtzUG2NAcZTeZ56OAIDx8Z5YnuKJ01Hu7Y0siuNTWzfgdBt51s0fAy23QF+EDliho90TS3bajH77IuuOTw+lXV/NvjJ+iOpMkVTfHpdC5afBJC3ICRWl0jhPg/M1b5gXMd5QbgP8u+TwrwXSnlj4UQR4BvCyE+jhHAfK38/q8B/102FJ/E6HCHlPJwua3vEYyg571mpzsTExMTk0uBfEmnpOlYnacyHvb0x/A5rayunb8bkK5LFMUokZjPP2nX6jCPHBljT98kN3SGZ62buvlJ5krnZSB8sUgp6Y6kiKaK52z5bHLpI6X8MPDh5RyDKPs4jafy9EbTJPPqtBfN6dgtyrQoFXDONtdGCPacnORoWVxoCrq4Z1sTN3RWs6bWe14CQr6kIQTTNxwBl4333rqaV29u4KtP9PKvj/Xy0KFR3nFTBzvaQrjsFhw2haF4jvF0gXX1/ukb/oKqMTCZY2Ayi9NqIex10jeR4atPnGDfQJzmkIuP3LGRq2c0GdCl0Z1Pl5KGoAuXzYLDqmBRhGHCbhFYy8brVkWsaFFkpaEoghqfE3/Z02U0kac+4ORTr9vCg/uH+e+n+3jvN/fyjptX8dL1tYYR/eipLCjnAjIqFouianRj9DlsHBpK8LEfH6HW5+C+uzfPyUpK5kroSLY1B+dcQ2wWhfUNfkJuO0dHU7jtlmnvqykB6qOnCVC5okZvNM26ev+Sfd/LjcFYFpvFENQfPjzCiWiGv37lunnPtXq/kz+8qYO3XNvKr4+N8+CBET7/y67pkrxXbaqf/r267VZsFoVDw0l2tlsX5E+30tk/EEPVJG3VbqoqMFm2vTWI3aLQPZ4mmStNG+6bGCzkTLID3vI+ZhbtJjGyk86IlPIAsH2e5b0Y3epOX54H3nCGfd0H3HfeozYxMTExMVkBpAvqrNe6lOztj7G9JXRGg2On3UKd38FgLEfQNTeg2dIcJOCy8Xh3dI74BOCwWBhPFRZVfOqfyDI4mSfsNQMuk6Vh15oamoNuhuI5Ai4bUkqyRY1ErkQyXyKZK5HMqSTKP59arjKazJPIlcgWjbnLVTUe3npdKzd0hmkJuc4pzkgpyZU0ciVje5/ThqrpRDMFvHbr9E1gR9jDx+/axDMnJvn6kyf48IOHZ2UsVXkcFFSN5/tjNAZd+J1WeiOZaV+nTEHlXx/t4aFDI7jsFt65q2O6o94UqXyJgqrTHHLRUuVekWLH5YDDamF9g5+w18GxsRSKENy9vYlrO6r44q+6+MKvuni8O8p7b+2k1uckUc6CWlvnp9bvWFGCX08kja5LjkVSfOwnR6j3O2d1qAPj2hTLFgm67ayrP7OIJoSgIejC57JxeCjBZKZAyG1HCMHm+brguWwMx3OEPfbLPrtmMcgVNUYTearcdlL5Ev/9VB+bGv3cVO64diacNguv2tTAKzfWs38wwYP7h/nu7gG+t3eQmzrD3LG1gbV1PmwWBYfVQvd4mq3NgRV13laS3X0xwPgf7XMuvAtj0GWns8ZD93iaiUyR1mrPgvd5OXHR4pOU8lHgUSHEf0gp+4QQbilltoJjMzExMTExuWyZSBdwWE4F8SeiGeLZEle3zd/lLlNUaQ25Cfsc9E3Mf7m1KIIbO6v51dFx8iVtzk2C22GU3mm6XJQymrFEnu5ImmrPyrrBMjk7QogngEeBx4EnpZSpZR7SghBC4HFY8TisNOI6r21Kmk5B1c9rhn9K3MqrmiEOuW20V7sJlA2VdV0ymSlwIpqZJUIJIbh+VTVXt4V4cP8w39k9wL3fet7wg7qmFa/TSo1XIZouMJbME3Aa/jkPHRzhG8/0ky2qvHJTA2+5tnWWR1S2qJIpqtT6HHSEvVeMT8tyIoSg1m9kQXWXO93V+IxStYcOjvCfT53k3m8+zx/c1M4rN9aj6pIjI0kiaTura5c3C0rTDcE0ni0yksgxMJHlvoeO0hh08vG7N886twqqRjKv0hF203aeXdC8Dis72kL0RNIMx3IE3XZsFmVeASrgNDKlttgsWIRACMNjDMqVoTOYen36eoHx+1AEV9R1ZyiexVLOXvzGM/1kiirvuqXzvI/BlD/RtpYgI4kcPzkwwiMvjPFYV4Q1tV7u2NrIzavDxDJFIqkCtf7LUyDcV+7GG/baK+LRpiiCTU0B7t87yHhy8eKtS5VKXJ0ahRA/xciCahVCbAX+WEr5ngrs28TExMTE5LJDSkk0XZx1o7u3PPu2vWV+vydNk1R57XgcRslQrqjNGyjtWh3mp4dGee7kJLvW1MxapwiBqktS+cqngsezRQ6PJKhy281A69Lj94BdwOuATwshCsDjUso/X95hLR02i3JWLzRdSrIFjYJmZDiFvQ46/V78LuscTw9FEYR9Tqq9DiYzRXoj6VkilM2i8NodzbxkXS3/80w/D+4f5tfHxnnrdW28cmP9dFbj3v4YX33iBAOTWbY2B3jHzatoD5+aRS+qOsl8CZ/Dyo7WkFnesQw4bRY2NgYYTxY4NpbEIhRu39LIzvYq/vFXXXzpNz080R3lfbeuoT5wKgsq5HHgc1jxOq04rMr0eVFp9LLQZGQCFolnS7OybnsjGT71s6O0hNx87K5Ns4SnZL6ElJLtLcELNga3WRTW1fsJOm0cHUvhtFrwOKyGAHXHRj764GE++MBB7rtnM1ZFsLcvxqyrRtmgTCAMnzJxquHG6Ux5mQVcNtbW+6bL/S5n8iWNwViOkNvOyWiGnx4a4VWbGugo/39QNZ1EvoQixPT5NV+jkikaAi7esWsVb72ujV8dHePBAyN89pHj/OKFMT58+waOj6cIuu2XpT/XkeEka+q8OG2WionC13ZU8b97BumJpLmxWF2RjKrLhUr8dX4euA3DFBwp5X4hxC0V2K+JiYmJicllSa6koen6LJFmT3+MVTWeeYN8VdOxWZVpsao56OLISHJe8WlDY4CQ28bjXdE54hOA02LhhZEk9QEnVW4HHodlXv+oCyFdUNlfnj1c6L5Mlh4p5QkhRB4olh+3AuuXd1TLj6ZLMgWVkq6jCEGNz0Gtz4vfZTsvoUAIo2NalcfOZKbIiUiGaLqAt9ztLui2c++tq3nN5nr+7fET/MujPTx0cIQ37mzhseMRnj05Sb3fyQdfvZ7rOqqmMxo0XRLPFbFbFTY2GuVfCzXJNbl4hBDUBZwE3DaOlT2ewh47H79rEz8/PMbXnzzBvd/ay9tuaOc1WxqQErIFlUS2hKrr0/uxWRTDIN9hxeM0zhGH9eyi6Ex0XZJXDaEpmSsRy5ZI51XAEG1sioLDplBVLoV77uQk//enR2mtdvPxuzZN3yBruiSWK1DldrD2LGV250N9uQzvheHkdBne5qbAHAFqviYaF0o6r/LcyRhX1XpXvMn7QhlN5FGEkQP2lcd78ditvPW6U11y47kSnTUerIrCRLZIPFNEkxIB2K0WnFZl3mu1y27hNVsaedXmBn60f5ivPXGCx7uibG8N0j+ZPaMf5aVKJFVgOJHn5jU1FW2Ocv2qagTQNZ4iW1BN8WkGFZGGpZQDp/2Bm6bfJiYmJiYmZyCVK816nSmoHB1N8drtTfO+P1PUaJgRTFd57ChCzJvObVEEN60O8/DhMbJFdc4ssNdppaTpDMXy9E1kEQJCbju1Pgd+lw1XuTzofMmXNA4Mxss3SqbHzKWIEKIHiALfxGjy8j4ppX72rVYWNqugpOlMZAqzurpNZUoIjLIcRRhm24oQKMrs12AIvZmihqrrWBWjtKrGa/xtXGxG30wRKpYt0TueJpou4LFbcdktdIS93Hf3Jp7uneDrT57kHx4+hstm4e03tnPn1sZp8WHKTFwi6azx0hBwmmLvCsJps7ClOcBoIs+xsRQOi4VXbqrn6rYQ//Trbr7yeC9PdEd594s6aat247bPPp80XZItqNNCwRQOq4LXaSPgtOJ2nBKlVM3oaJjKq8RzRZI5dTo7aKqLYchtm/5/nsqXeGEkRfd4mp5Imqd7J2gPe/i7OzfhdRrXiXxJI5UvsbrWS3PIXRFR0+Owsq01SG80Pe1XOFOA+pv7D7CjNYSt3G3RbpnRddFy6nnmuunn8s9OmwWv04qq6Sve5H2hFFWd/sksfqeNJ3uMjpz/z4s6pwWOVL5ElcdOS5UbIQSNIdd0BlymoDKZKTKRKVLKlUAY54rLZpmV1aQIwZ1bG3myO8rXnzzBl9p30D+Zoc7vuKyElN0nJwFoq3YRclfue9UHnDQFXfSMZ5jMlqgLnF/595VAJcSnASHEjYAUQtiAPwVeqMB+TUxMTExMLksmMsVZQs3+wTiaLmd1rZqJquuzOsdZLQoNASdjycKsMokpdq2p4ccHRnj2xCQvXls7Z73NohBwGYGmlJJcUePoaAok2KwKdX4HVR4HXof1rGn2JU3n0FACJLhNn5lLmS8CNwNvxmgI86gQ4jEpZc/yDuv8aQ65qfc70aRE10GTEk2TxrMu0XSdoqpT1HRUTVLUdEqq8awWddRydzyrYvxthb0OfM6Ft92eiRCCKo+dUHtohgiVx2O34bJbuKEzzM72Kvb0xVhb55uVBZnMlSjpOs0hNy1VLlPoXaFMmW5PZUFFM3mqPA4+cscGfnl0nK8+0cuffPt57FaF5qBr+vfZEnLTHHLRGHTNmTBQNX1eUWpKXJ0SmgIu27SImsiVODKcpCeSpjuSpns8zXiqML1trc/BLWtqeOctq6YzahO5IkIIrm6rIlDBG3EwrllX1fkJuuy8MJLEbrVMC1D//OtuHj0eoaAZf6MXgyLgto31vP3Gdmq8DpLl8sZ19X5qfJeXB+F4Ko+UkpKm87UnTtAR9nDbxnrAOFeKms72Ot+s76wop3zwpryb8mUxKpYtMpkuEs2UEBjC01SXzPe8eDV/9p3n+Z+n+3nbje10j6fZ1hK8bI7nnnK5Z0fYU9EYxmZRWN/o54muKNFUARoqtutLnkoc5XcDXwCagCHgYeC9FdiviYmJiYnJZYeuSyYyRXyOU8H93r4YbruFtXW+Oe/XdIlVEficsy/ZdQEng7HcvJ+xrt5H2Gvn8a7ovOLTTIQQuO3W6RseVdMZSxSm9+132agrZ0V57KduxnVdcnQ0SbaoVTRd3WTpkVJ+AfiCEMIL/AHwEaAZuKQUDqtFuejAVpZFqikD38VkjggVNUSoqb/D61ed6laVLapkiyq1PiftYY9pJn6J4LZb2docZDiRo2ssjdNm4WXr67i6NcQzJyYZiGUZjGV5YTTJY12R6e0UYfjvNIcMQaqlyhComkOuM3p6xbNFDg0n6BlP0xPJ0B1JE5khNDUEnKyp8/GqTQ2srvWyKuzBP2PSQtMlk1nDMP2qOt+iCpu1fidep5Ujw0kmMgU2Nfr5l9+9enq9lBJVlxRUnZKqU9DKz6pOSTslIM96LmcC/ezQKLv7Ytz74tXsaAtR0nQODyeo8zvprPVeFoKtqumcjGbwOW387+4BoukCf/Hyq6azMmO5EuvrfedlnD3lcVTtdUCtkVGVLaokcyUmMkVi2RI+l5XbtzTy4P5hXra+jiqv/bIyH98/GJ8WfCvtFbazLcQjR8Y4Ec1wTUfVZZmFdzEs6CgLISzAF6SUb63QeExMTExMTC5rsiUNTTtVLielZE9/nK3NwXlLaDIFlVq/c04Ghs9hxW23UFC1uYbHQnDz6jA/PjBCuqCeVwevKawWBf+MrKiCqtMTyaDrEqtFEPY6CPscTKQLRFPFWRlZJpcmQojPYGQ+eYGngA9hdL67YhBCYLUs7Wz+tAjlDhHPluiJppnI5HHZrFgUQaqg4nNa2dFa+UwUk8VHUQTNITcht52jo4bYEnTZeeWm+lnvyxU1huI5BmJZBiazDMaMn3f3xdD0U5lOYa/dyJQKufA4rJyIZqbbuU/RFHSxvt7H7Zsb6Kz10hn2TpfUzUe+pJEqlFhT66M55FqSjBa33cr21hAnImn6JrOEyt3wwPibsFmE8foCLy0vXVfLF3/VxYcfPMzL1tfyRzetIux1MpkpMnli0piU8V3aokkkVaCkSSYzRe7fO8Qta8JsagoARnZktcdOfeDivqNRxmgn6LbTWu1B0yUnohletbmeJ7qjfOnRbj712i0cH7s8zMd1XefoaIodrSF8josvqz4TN3WGAegaT5Mtzu0+fKWyIPFJSqkJIdqEEHYpZfHcW5iYmJiYmFzZpPOGz8IUA7Ec0XSBN13TMu/7S7pOzTwCjxCClpCbrvHUvDO6u9bU8IN9wzzdO8HL1tdd1FiFELM6wGi6JJYpMZrMA1B9gR2QZpLKl/DNUzJosiw8Bfy9lHJsuQdyJSKEIOSxc/UMEaqk6mwqm4lfLiUuVyoeh5XtLSEGY1l6IhncdsusLAuX3cLqWu8cM2dV0xlJ5hmczDJQFqQGJ3M88sIYhZJOU8jF5qaAITLVeOms8Zwze8Mo15IUVI2CquOwKUaZ3RL/L7YogtV1PgJuGy+MJNF0Y9JETPmylT3ZBKe82YwHZ/x7WNfg5/O/s51vP9fP/XsH2dMX4z0vXs31q6opqjoHhpI0BousCnsvSeFE1yUnJzL4nTY+88gxEPD2GzsA41xRdZ2rTiu3WwgWRdBW7WYsmeftN7bz2UeO88iRMW5eE6ZvIsOaeTK1LyV6IhlSeZVVYQ8hT+XP/9V1HoIuGz2RNPFskaoFxEuXE5XIL+sFnhRC/AjITC2UUn62Avs2MTExMbmC0PWyB4suKak6JV0n4LJdFunyU0TSRVwzZsD29BmGlzta5/o96VKiiLkld1NU++wcHzduKE4PONfUeqnzO3i8K3rR4tPpWBSB12nFu8DwIZou8P7vH+KajhA726oqMjaTi0dK+T0hxJ0zuhU/KqV8cFkHdQUyU4Saem1yeaAogtZqo5vpsdEUE5lTZXEKwjDbtijYLKfKPq0WxSi9C7m5Yca+dClRNXlOAUXT5Smfs3JXPYHA47BQ43MQcNmWPYOlxufE57SRyqvo0hivqklU3bj+l1SjHLZUjgtUTZ/VRGCqk9+UV1HAZeP3b2jnxs4wX/jlce576AVuWRPmXbd0EvbYGU8WmMwU2dDgP2MZ40olmi6QVzV6Ihl+2zPB717XSo3PmJi6kHK7C8FmUVhb56VQUtneEuR/nunjhs5qBiaz1AWc+C9h8/Hnymbj7WH3ooivTpuVtfU+jo+lmMwUWTW3+fAVSSXEp57yQwEubQnUxMTExGTR0HVpBJPaKWEpXzTaQmdLGoWSMRM7s1OVJiVOm4WNjYEln5ldDHRdEssUZ32Xvf1xWqvc00HkTLJFjRqf44wdrRxWC7U+B4msOqe0QgjBzatr+MG+IZK50iyPj+UkkirwwR8cJJErccMMbxuT5UMI8UngWuAb5UV/IoS4QUr5gWUc1hWLKTpdvvicNna2V1HSDB+jQkkjV9JI51XSBZVYrgTylKhiU051epsqC1KEwG6dfY7M9EOSZVNyRRH4nTZq/YZ5/lQWa6XLixbKzOza80HXTzUS0KeedRhL5RiM5fA5bKyu9fLZN27j/r2DfOe5AfYNxHn3izq5eXWYgqqzpy9GW5Wb9rDnkugYKaWR9eSyWvnKY73U+R3cs70ZWHi53bmo9jqo9Tt563VtvP+BA/z7kyd5z4s76RpLsb0lVNGmDEvJnr4YdotCS2jxvPR2tAZ55sQk/ZNZtrXMb61wpbHgIy2l/OjZ1gsh/lFK+b6Ffo6JiYmJyaXFWCJPLFskr2rkinOFJQlYhDBMghWBy2bF65gbxORLGnvL3Z8ags5L+sYsU1Sns5nA+G6HhhLcvqVx3vcXVI1an3fedVM0Bl2MJePzZiPtWhPm/r2DPNU7Md0NZzkZT+X54AOHSOZL/O3t61nX4F/uIZkYvAbYJqXUAYQQ/wk8D5jik4nJImCzGKLS6X58U9m/hZJOQTX8mNJ5jXRBpaSd6gSnIDiVAwROqwW/20rQacftMMQch1W5pK+XZ0JRhJEtdppeFXDbqPU5OVrOLAu67LzpmlZuWFXNF37Zxd///BiPd0V594s6CXsdDMVzTGSKrGvwr/jJrVi2RKag8VTPBP2TWT7w6vXYrcqilNudjhCCzhof0XSR125v5ju7B3jFhjqaQi7Gk3nqg65F+dzF5uBQglU1HuxWgWORsv+u76zmy4/20jWWIlPUprsMX8ksRcuMm5bgM0xMTExMVhDpgsqRkSROmwWrInBaLXgdFxfcOW0WbBaFo2NJEvkSq2u90+aklxqpnDotPIER/Ki6ZGfb3JK7qdnrc2Us+Z02HDaFkqbPOS6rwh4aA04e74osu/g0nszzgR8cJJVX+didm2gPu5d1PCZzCAKT5Z8DyzkQE5MrFUUROJWpTCAbtZzKZpmZLZUvadisCq5y1tClek2sNEG3nZ1tIQZiWU5Gs7hsFtqqPXz69Vv54b4hvvFMP+/55h7eefMqXrKulnxJZ2/fJO1hD61VnhWXFQZGLNAbTaNqOt94to9tLUGu7zDK1Rer3O50pnzJXrq+lse6Inz50R4++8atdEXShLz2S84aIV/UOBHN8IoN9YTc9kUT7ra3hLBbFbojGTJ5dcWLnEuB+Z/KxMTExKSiSCnpHjdaS3sdRqr/QlONLYog7HEwnsyzrz9GpqBWaLRLSyRdwGmd6fcUw2FV2NA4NwMoV9Ko8tjPeVOhKILmoIv0PMdECMGuNTUcHEoQyy5fX5CxZJ73P3CQdF7l7+7axNp6s0p/hfFJ4HkhxH+Us572APct85hMTExmMJUpVe110BRyU1v2SzKFp9lYLQodYS8720NYrYJo2vDXeu2OZr74pu20VXn4/C+7+MiDR0gVSoTcDk5GszzfF5v3OrrcJHMqyZzK/XuHyBU13rlrFUIIkrkSYe/ildudTkPARcht4+03tjMUz/HggRGQ0DeROffGK4znB+OUNEl7tdGNcrHwOa2srvHSPZZmchljsJWE+d/KxMTExKSiRNMFYpninHKChWK0JXeg6bD75CSRVL6i+19sNF0Sz5Zw2k5devf2x9jSHJj35iFX0qj3n19QWeNzzmrJPZNda8LoEn7bM3FxA18go8k8H3jgIJmiITxddYl3yLkckVJ+C7ge+D5wP3CDlPI7yzsqExMTk4vH57SxoyXEmjov8VyRZK5EU8jFJ1+7mT++ZRVHRhLc+83nefjIKFUeO6ou2XNykvgKEwlOTmYYTeT5+eFRbt/SSGuVm5Kmo8nFLbc7HYsiuKrez5o6Hzd2VvPd5wbIlTQGY3mS+dKSjKFS7D0ZA2BVjQfPGRq6VAIhBFtaApyczDAcz01ntF/JLIX4tPLyF01MTExMFoWSpnN8LL2oHVA8Dis+p40Dgwm6x9NnFF1WGumCiuRUV7rheI6RRJ6r5+lyNxWgBNzndxxddgsht41sce6sbVu1h9YqN493RRYw+otjNGEIT9mixsfv2nzJt2a+3BBC7Jh6AA3AYPnRWF5mYmJicsmiKILmkJvrOqrxuaxE0wU0XXL7lkb+8c07WFPn5Uu/6eFvf3CIVF7F47DyfH+c8eTKmNxK5UtMpAr899N9+F023nxtKwCJXImran0XZNReCQIuG80hJ2/c2YKiwFce68VtUzg+lkK/RGIxMCb+Ai4bVR477kUuWby+vQopoWssRa6kLepnXQosWHwSQrzhHMu+sNDPMDExMTG5NBiMZVE1fdFbN9ssCmGvg4HJLAcG4+QvgQt6IlvEMmOGcm+/MfN2dVvVnPfmSzoBl+2CfBSaq9xnDGx2rQlzZDjJRLow7/rFYCSR4/0PHCRf1Pj43ZtYXXt243STZeEzZ3n8wzKOy8TExKRiuOwWNjcF2NjoJ1NUieeK1PkcfPyuTdx762q6xtPc+629PN07ScBl4+BwgoHJ7LJnqgxM5tjTF+OFkSS/f0MbXoeVRK5EtddO3RKV251Oe7WXsNfO7+xsYXdfjANDSVL5EmMrRLA7H46MJFld68Vjty562ep1ndUIoGs8Taaw8mPVxaYSR/v9Z1smpfyPCnyGiYmJickKJ1tUORnNEnAtXv38TBQhCHsdZAsau1dgqvxMpJQMx/Oz2vnu6YvRGHDO69eQK6k0XGBgGXLbsShi3kywXatrkMCTPdELHvvFMBzP8YEHDlIoGcJTZ40pPK1QviylvBX4Iynlrac9XrLcgzMxMcxe+7wAACAASURBVDGpFEIIav1Oru2oosbnIJopUFB1bttYz5feuoPVtV7+4eFj/PjAMNVuB11jKXoimWXL6MkWVfomMnz7uQFW13h52fo6SpqOvsTldqdjtypcVefj5jVh2qvdfOWxXuwWC93jaQrqyhdXIqk8I4k8nWEPVd7Fj1frfE6aQy66x9MrOk5dKi5afBJCvEoI8Y9AkxDiizMe/wGsPLc2ExMTE5NFQ0pJTySN3aIsebcYfzlDaG9fbEXMVM5HpqiRK6nTM2xFVefAUIId83S5A5DS6NpzIVgUQWPARWoe74WmkItVYQ+PHV988WlaeFJ17rtnE6tM4Wkl8zfl5+8t6yhMTExMlgiH1cK6ej/bW0Kous5kpkCVx87H7tzETavDfP3Jk/zHb08Q8tgZiGU4OppclvL+wViOnx4aZSJT5F23rEIRYtnK7U6nxueg1ufk7Td0EE0X+P7eQRBwMrryzcefK/s9tYc9SzJZqiiCjY0BuiNpoqmlyz4/G7ouOTqaZCyRW/LPXkjm0zCwG8hjdEWZevwIuG3hQzMxMTExuVSIZUtEUwX8y9RG1mmzUOVx0DWe4shwkqKqL8s4zsREqjCr49/h4QRFVZ/X76mganid1osKLusCTtQzBMk3rwlzbCy1qF4WQzGj1K6k6Xzi7s10hE3haYUzIYR4GFglhPjR6Y/lHpyJiYnJYhHy2LmmvYqWKjeTmQKqrvNXt63lji0N/GDfMJ97pIuA0854qsChocSSxhX5ksa+/hgPHRzh1rU1rG/wk8iVCPuWr9xuJkIIVtd6aQu7eem6Wn6wb5hEpsRQPE8it7LNx/f2xRDAqrAHj2NpRLxrOkLkSzrHx9PLHp9quuSFkSQ945kzxouLyUWLT1LK/VLK/wRWSyn/c8bj+1LKWAXHaGJiYmKygtF0yfGxFF7H8ghPU1gUQY3XyWSmyN7+2LwZQMuBlJLhRA6P/VTJ3d7+GDaLYFNTYM77MwX1olsnex1WfE7rvB5Yu1bXAPBE9+JkPw3GsnzggYNouuQT92ymPexZlM8xqSivAT4ERJjf98nExMTkssVqUVhV4+Xq9iosQhDLFnnHzR28/cZ2HuuK8JEHD+OyWUjmSxwYWDp/yeF4jm8/N4DNovC2G9qny+3W1C5fud3peBxWVoU93L29EbfNwpcf68FtU+gaXdnm4/sH4zQGXXgcVpwX4Ku5EG7oDAPQNZ6atzHMUlHSdA4NJYik8nSPp9CXoVKgEp5P1wohHhFCHBdC9AohTggheiuwXxMTExOTS4DheI58SVv2NPApgm47Ath9MsZofOlTik8nXVAplPRZppZ7+uNsagzMe8ykNPybLpaWkIvMPMFNfcDJmlovj3dVXnwaKAtPupTcd/cm2qpN4elSQEpZlFI+DXxQSvnozAdQu9zjMzExMVkK/E4b29tCNAadTGRL3LO9iT9/2VUcHk7yN98/iK5DUdPZ2x8jU1g88UDXJdF0gZ8cHGFvf5w37myh2usgkSuxts6/YuKsKZpCLmp8Tt5yXSuHh5M8c2KSVEFlNLEyzcellLwwkmJ1rRe/y4ayRDYRa2o8BN02usfSpPLLIz4VVZ2Dg3Fi2SIPPD/M537RxcOHx5Z8HJUQn74GfBa4GbgG2Fl+NjExMTG5zMmXNHoiaYJLZDJ+vrjtVoIuG0dGkhwfWx6/hikm0sVZAc54Ks/AZHZev6eSpuO0W2YZk18oIY8DAfPOaO1aE6Y7kubQUKJix2Rg0hCeJHDfPZtN4enS5G/mWTZfQxkTExOTyxKLIlhT66Mz7CGaLvCiq2r40O0bGE3k+cvv7SeeK2ERgr19MRLZymZWF1Wd4ViOp09MsK8/xree7ach4OSubY0k80a5Xa3fUdHPrARWi8LaOh/XdIRYW+fj60+exKoIuiOpFdmFuGs8Tbqg0hH2UOVZurjVZrWwvt5P13iaiczS+z7lSxoHBuIkcyX+/cmT/HD/MK/YUMcrNtYt+VgqIT4lpJQ/lVKOSyknph4V2K+JiYmJyQqnN5LGtgwm4+eD1aIQ9joYmMwtqs/R2ZgqufPOEJP29sUB5vV7yhRVGhfo52C3KtQFnPPOzt68ugaHVeH9Dxzkjf/6FH/xv/v40m+6+dmhUY6PpS7Yi6C/LDwJ4BP3bKa1yr2gsZssLWbzGBMTE5NTCCFoC3vY0OBnMlNgc1OAT9yzmaKq89ffO0D/RBanzcLe/hiR1MLjilxRo2c8zVO9UY6Pp3BaLfy2Z4LheJ537loFGNlQK6nc7nRCHjtNQTe/f0MrqXyJbz7bjyIEJydWnvn47hOTAHSEPficFz/JdzFc3RZiIlPkxBJ3UMwVNfYNxEnmS3zhl908ejzC79/Qxluva0VZhnOqEkf910KITwPfB6alPCnl3grs28TExOSc6LpcstRZk1PEs0VGk3nCnpU3GzeFEIKAy8ZgLEt9wLnkwVuqoFJUdXwz/LD29seo9TloDrnmvF/TJKEKzMY1+F3zpr3X+Bz881t2cGQkSc94mt5ohseOR/jpoVEAFAGtVW5Whb2sqvHQWWM8u+1zw4W+iQwf/MEhLEJw3z2baA6ZwtMlyFTzmDsxmsZMkQL+fFlGZGJiYrLMNARd2K0KB4cSNIdcfPr1W/nQjw7xwR8e4q9uW8uO1hAHh5KsrZM0zXMtPxfJfInByRzjqTwWReB32Dg8kuQHz3ezuy/GzrYQ17RXEUnnz1iiv5LoCHuIpgq8alMDDx0c4aXrailqOg1+FwH38vqBzmRPfwy7VaEp6MJlX9pjev2qKv7p13BsNEWmqOJzLv5xyRRU9g/GSeVU/uHhY/RE0vzpS9bwsg11xLLFRf/8+aiE+HRd+XnnjGUSeEkF9m1iYmJyRlL5Er2RDMl8ifZqD3V+J3ZrJRI6Tc6FPmUybret2Nm4KRxWC9F0nlRBxb8EF/uZTKQLWGYcH1XT2TcQ50VX1cw5bqqmY7Mqs7KkLha/y4rDqlDSZntNAdT5ndT5ndy61rD0kVIylizQEzHEqN5ImucHYvzq2Pj0Ng0BJ6vCU2KUF6dN4RMPvYDVovCJuzdfVPBtsvxIKfcD+4UQ35BSmplOJiYmJmWqvQ62t4Y4MBjH57Ty6ddv5aMPHuYTD73Ae168mpetr+PYWJKiptFe7TlnLKTrkli2yMmJLMlcEYfVgt9h5YmeCX7w/BC90QxBl423XtfKHVuMcrtan4Ma38qd4JvCabOwutbLqzfX81TPBF9+tIf77trM8bEkO9qqVkx2/MGhBKvCHrwOK44lMhufYltrELtVoTeaYV9/nI4aDw0B16Idm1S+xL6BOPFMkU/+9CjRdJEPvno913ZUU9J0VF3iWgZRc8ERrpTy1koMxMTExOR8yRZV+iayjCTyuGwWvHYrvZE0J6IZWqvc1AecK36W6FJnNJEnW9SoXsFZTzOxWSyMJfJLKj5JKRmO52eJSS+MpsiVtHn9njJFjYYKZWcJIWipctM9nj7n70gIQX3ASX3AyU2rw9PLY5kiPdE0PRFDkOqJZHiy51RVfbXHzifu2Uxj0BSeLgO6hBBz6gCklKuWYzAmJiYmK4GAy8bVbSEODCYQwigv/9TPjvJPv+5mIl3gd65p4WQ0S0E1OtHNJySUNJ1oqsDJiQwFVcdts+K0WXn48Cg/2j/MRKZIS8jF+16ymhdfVYu9PHGUKaisXsHldqdT5zfiiN+9vpUv/qqbXx8f54bOakYSuRWRGZ0rqvRGMty2sZ6QZ+mzsbwOG2tqvXSNp/E6rHSNpemfzLK6xkvY66hoBUciW2LfQIyxZIFP/vQFSprk43dvYn2Dn4KqkcqrbG7yU+Vd+hi+IsWOQojXABuBaaMKKeXHKrFvExMTkykKqsbAZI6BySw2i0LYY5++KFd5HGi6pH8yy8mJDM0h95Kl1eZLGolskVRBJex14HcuXQeN5WDKZDywxFlEC8HrsDKSyNMe9szJBFospkruZgpee/tiWBTB1ubAnPeruk64gjOcYa+DrrE0UsqLCl5DHjs7PVXsbKuaXpYuqJyIpBmM59jZVnVJzMianBczs9edwBuAqjO818TExOSKwW23sq0lyOHhBJmCxgdfvZ5//k0333pugMlMkXe/qJOReJ6SprOu3j8dY+RLGiOJHAOTOXQp8TlsZAoa/7O3j0eOjJEraWxpDnDvravZ0Raa9t+RUpLIFdl4CZTbzURRBFfV+Yhni2xtDvDfT/dxXUcVvZEMdX7nksVeZ2L/YBxVl7SH3QvqKLwQtrUE+eaz/RwdTbGpKUBR1Tk8nMTnsNJZ662I7cJkusD+wQR9Exn+/ufHcNstfPxuw5MzW1QpqBo7WkPLVg65YPFJCPEvgBu4Ffgq8Hrg2YXu18TExGSKkqYzEs9xciKDQFDlsc9rkmdRBCG3HU2X5Qt+lsagk+aQe0Hdw+ajoGoksiWG4jni2RJCgFVRGJjM4bApNAddhH2Oeb1yLnVOTmRAGIbeF0uuqJHIlYhni8RyJRLZEvFckUS2VH5dJJ4r4bRZ+ONbVrGu3r+gMVsUgS4lsUyRWv/CDL3Pl0iyMCfY2tsfY0ODf855oekSqyLwVfA8ddoshL12MgWtYue/12Flc3OQzc3BiuzPZGUwT6OYzwsh9gAfWo7xmJiYmKwknDYLW5qDHB1NEk0Ved+tq6nyOPju7gFi2RJ/edtaYpkSBwbjdNZ4GU3mGYnnsSoCv9NGTyTNVx8/wW97oggh2LUmzN3bmuis8U5/hqZL0oUSJU3SGHRdkpM7PqeNjrCXt1zXygcfOMR/PtXHH9zUTqagElwmwWeK3X0xAFaFPbgrfE9wvtyzo4kfHxjh/Q8cZEdriN+7vo3VtV5yRY3nB+JUe+ysqvFctB9UJJXn0FCSI8NJPv/L49T7nXz0zk3U+Byk8yo6kh1tVRWxd7hYKvHJN0optwghDkgpPyqE+Azw0wrs18TE5ApH0yXjyTw90TSaJgm47OdVG21RBEGXHV1KIqkiw/EcdX4nLVXuBRn8TQlOI4kcsXKbXbfNSvWMDCwwxLKTE1l6IxkCbhtNQRdVHvuCxJqVQiJXYjieJ3yO2ZlYtsiT3VFiWUNgMoSmErHyz4UzdFXzOCwEXXaCbhttVW6Oj6f56/sP8IarW3jTNS0LOoZum5WBWG5JxCddl4wk8nhmZN5NZor0RjO87Yb2Oe/PFFRq/c6KZ8w1hdzsH4hXXHw1ubwQQuyY8VLByIQ650kjhFgLfGfGolXAh6SUn6/sCE1MTEyWF5tFYUNDgC5LiuF4nrde10q1x86/PNrD//eDQ/zt7RvIlwxfR5uiEHLbeO5kjB/sG+LwcBKP3cLd25q4Y2sj4RnlTiVNJ5kvIYCmkIvGoOuSnrhsqXIzmsxz9/ZGvrdniBs7q2mtci+7+PR8X5yAy0a1x7EsXkcAGxsC/P3rN/NUzyTf2zPIn393Hzd1VvPW69toCblJF1R2n4zREHTSVuW5oOqN0XiOIyNJnjkxyVce62VtvY8P3b4Bn9NGMl/CZhFsawotudH66VTizJ5qp5MVQjQCE0DD2TYQQrQA/wXUYZiTf0VK+QUhxEeAdwKR8ls/IKV8qLzN+4E/AjTgT6SUPy8vfyXwBcACfFVK+X8r8J1MTEyWESkl0XSBnkiGfEnD77Rhc1646KCUO51JaSWeLTGWjFHltdNe5TnvdNOiqk93dZvIFBGAy2ahym0/YymTzaJMp/RmiypHRpIoM3x1fA7rJVPDPxNdl3SNp/DYLWcdv6rpfOTBw/RGMijC8EwIuu0EXDYagn6CM14H3bZpsSngss3JFMoWVb7yWC/f2T3A7r5J/uLla2mpujjvAJfdQjRdIFNQF12MSRVUVF3Hapnd5Q7g6ra5WUMlXadmEWrvjWMqUDX9shA/TRaNz8z4WQVOAm8810ZSymPANgAhhAUYAh5YhPGZmJiYLDsWRbC2zofDqnAiWvYPctv49MPH+Ov7D/DROzcScNn41dFxfrhviOFEnlqfg3fc3MHLN9TNEpXyJY10QcVmEXTWeKn1O5bcBHsxsFkUrqr18vL1dTzRNcF3dw+wtSXIqhlZXsvB4eEkq2u9+N22ZTNAd9oUPHYbd29r4pUb63lg3xA/3DfEU70TvGRdLW++ppUan4NoqshIPE9btZumkOuc58VgLMvR0SSPHB7jO7sHuaY9xF/dtg6nzcJkpoDPaWVjU2BFnF+ViL4fFEIEgU8DezHEpH87xzYq8BdSyr1CCB+wRwjxSHnd56SU/zDzzUKIDcCbMHylGoFfCCGuKq/+Z+DlwCDwnBDiR1LKIxX4XiYmJstAPFukO5ImlVfxOawVMbQWQuBz2vBheNbs7Y8RcNvoqPYQdM/t1lZUdRI5I8NpMlNESnDbLVSfRXA6E267FbfdWs7iKjAcz+G0WWgJuaj2Oi6pev7xZJ5UTp01Yzcf3909QG8kw1+/ch03dlbPWyJ5vrjtVv7sZVdxXUcV//Trbv7sO/t4241t3L6l8aL2a7UIxlN5OhyLGwRFUwWsytySuyq3nfZqz6zlupQoQuBzVl4QsyiCppCLwViOoGt5Zx1PR9PliumAc6VToeYxLwV6pJR9FdiXiYmJyYpECEFH2IvDYuHoWIqd7VX83V2b+PhPXuD//d/9aFKSyqusqfXyV7et5cbO8KxrXaagkldV3HYrGxv9VHsdl921MOxz0hRycctVYb67e5DReJ58SVu2mHckkWM0mWfXmjBVy5iBJYSg2msnkiwQdNv43evauH1zA9/bM8hDh0b4zbEIr9xUzxt3thBy2xmYzDIUy9FR46He75wziSilpH8iS9d4iu/uHuThI2O8bH0t9966BkVANF0g7LOzvt6/YiYgFxTpCiEU4JdSyjhwvxDix4BTSpk423ZSyhFgpPxzSgjxAtB0lk3uAr4tpSwAJ4QQ3cC15XXdUsre8ni+XX6vKT6ZmFxipPIlTkQzRNNFPHYL4UXqouZ1WPE6rGSLKvsGYvgcNtprPPicVlJ5ldFEnmi6AJw7w+lCsChGFhYY4lbXeJrjY2nCXjtNITcB1/LNxJwPRVWnO5Ke/g5nons8zXd2D3Dr2hpuntE5baHc0BlmXb2ff/x1F//2+AmePTHJn770qgv2RPA5bAzFcrRWeRbteOtlzzGv49Sx0nTJ8/1xrl9VNed8yhY1anyORQsMan1OTkazi7LviyVTUKfNWU2WHyFEAPgwcEt50aPAx84Vz53Gm4BvVXpsJiYmJiuRxpALu1VwcChJZ42XT71uC5/62VEaAk7u2d7Ehgb/9PVeLwtSJU2nymNnbb1v3snPy4nOGh8bGoxr/OGRBDetCS+b+PRMr2Fr2BH24D9HHLvYtFd70HSdSKqI02Yh6Lbzjl2ruGtbE995rp+HDo7wyJEx7tzayGu3N+O0KXSPz+2MJ6WkJ5KhZzzFv//2JE/3TvKGq5v5vevbkEA0U6Ap6GJNrW9FNUFakPgkpdSFEP8MbC+/LgCFC9mHEKK9vP0zwE3AvUKI3wd2Y2RHxTCEqadnbDbIKbFq4LTl113wFzExMVk2ckWNvskMw7EcLpt1UUqP5mMqIylf0jg4mAABAnBaKyc4nQm7VaHa6kBKSaagsX8gjs0iaAi4qAs4l9UI8Ez0T2bRJWftVlJUdT73i+ME3Xbetauz4mMIeez87Ws28PCRMb76RC/v+9Ze3v2iTl50Vc15/74sikDVJfFskepFOtdSeRX1tKyeY2Mp0gWVHa2hOe8vqBq1vsXLxPI4rPhdNnJFbdlr/QESuSI2i8LV7aFL2tfiMuPrwCFOldr9HvDvwGvPZ2MhhB24E3j/POveBbwLoLW1tRJjNTExMVkRhH1OdrRZODAQJ+y1889v2TFrvaZLkvkSupQ0BJw0hdwrMsZbDFx2Cy9ZX8tnHjnOkeEkkVR+2UzUn+6dRAAd1R7cyxwHuewWNjUFSeZLnIxmiKTzuG1WanwO7n3JGl67o5lvPNPP/5azoV63vZk7thrZ/oeHk3gdFjprfURSebrGUnz50V4ODyd5564O7tzahKZLJjMF2sMeOsKeFSdwVuLs/6UQ4nXA96WU8kI2FEJ4gfuBP5NSJoUQXwb+DqN07+8wPAj+sAJjNIMfE5NlREpJUdMpqDpFVSdX1MgUVDIFrWyCpxD2OpblH6TTZlm2mRghBB6HFY/DKMsbjufon8xS47PTVn3x3S4qTbqgMjCZpeocJuPffLaP/sksH7ljI95FKCED45jdtrGeLc0BPvfIcT7zyHGeOTHJe17ced7Hy2WzMBjPLZr4FEnn55Tc/ebYOHarwtVts8WnqcvmYs/EtYRcHBlJLqv4JKVkMlsk5LazvsGP3boyUsBNAOiUUr5uxuuPCiH2XcD2rwL2SinHTl8hpfwK8BWAnTt3XlCcaGJiYrLSCbhs7GgLcWAwTjJXwu+yUVR1UoUSFkXQWuWmPuC8pGwWKkVz0M2W5gAHBxNEUgV0XS55Fo6mS545MTnt97RSfg9+p40tzUESuRInImki6QIeu4XGoIu/vG0tr7+6if95up//erqPHx0Y5o1Xt/DKTfWomuTAYIxYtsTnf9HFUCzHX75iLbdcVUNJ04lli6yt99Ecujh/1MWmEncHfwz8H0AVQuQxkgeklPKsufRCCBuG8PQNKeX3MTYam7H+34Afl18OAS0zNm8uL+Msy2dhBj8mKx1dl2hSokuJlEaKrl5+ljrT63QpsSkKTpsFh1VZMamUun66wKSSLqpkCxqZogrSUJXBMAK3WRRsFjGnU9yVikURBN12pJSkchq7T8YIe+20hT34l1GEklLSNZbCabOc1WPp6EiSB54f4rYNdXMElsWgIeDik6/dwvf3DvKNZ/s5MpzkT1665rw+22WzMJkpLkomkK5LRhP5WSV3JU3nia4o13dUz8n0yZU0qjz2s2aUVYKQx44ixLL5LGm6JJYt0hh0srrWt6JLTK9QckKIm6WUTwAIIW4Gchew/ZsxS+5MTEyuUDwOK9tbQxwaShBJ5XHZLayt8xH2ORb9+r6SURTBLWtqeLJ7ghPRDDvaQks+sdoXzXAimuENVzcT8qyMSd2ZBFw2trYYIlRvNEM0ncdjt9ER9vK3t2/g6EiS/3q6j6883ssD+4Z4yzWtXFXv45MPHSWVV/nwHRvZ1hKkoGqk8iqbmwJL0tX5Ylmw+CSl9F3oNsK40/wa8IKU8rMzljeU/aAA7sFIAQf4EfBNIcRnMQzH1wDPYghda4QQHRii05uAt1zsdzExWQzyJY1CSSdTUEnkixRUHU0DTddRpUTTjcdMhKHhIjFOcjgl3DBj2VTmTMBllNU4bRZcNsuiXeiKqk5J06ef0wWVTDmLqVDSp0cqAatiiEs2i0LIZQpM54sQAq/Tihcr6bzK7pOThL0O2qo95/RbWgwiqQLxbOmsJuP5ksbnfnGcsNfBH97csWRjsyiCN+xsYUdbiM88cpyPPHiYV29u4A9ubD/rzJYQAkUIIqk8raeZfy8Uw9NhtsCzpy9GqqBy67qaOe/PlTQ6wpUdw3zYLAr1ASfjycKSn0dTM3Frar20VLnN/wUrk3cD/1X2fgKIAW87nw2FEB6Mxi9/vEhjMzExMVnxOG0WtrYEyRRU/E7bipkcXm5evqGOT/70KIeGk7x0fWnJxaefHxkFYFOjf1nNxs+GEMYE9PYWG/FsiZ5Immi6gNdhZV2Dn/vu3sS+gTj/9XQfX/hVF2CIVp+4ZzOra73kihrZksr21iDBFfodp1iw+CSE2DHP4gTQJ6VUz7DZTRh+AgdnpHV/AHizEGIbxn32ScqBjJTysBDiuxhG4irwXimlVv78/5+9+46S5LoPe/+9VdU5Tw47O7uzOWCBXSyRSQIEEwhQpESLtAJNSXyPfrakp3j8JFs6zzItH1nHki3xyZIlChSVJVuiSYIBBBFIISxAIm3CLjaHiTuxp3NX1X1/VM3szM4sMDvTE3r29zmnT3dXd9dU367uufWr3/3dnwEeB0zgUa31saW+JyEWw3U1ZdulWHXIlapMlGwmChUc1wvGTGX7WIZ34GuZBkGlUIpFzwamtfc3ByfKXB67epI6ZBkkwwGSkQDxkLXgLKmqczW4VHFcCmXvx6xQdihUbFw9Oxg2FWAKmgYxqd1Sc9NBqLLNKxdGaYiH2LSCQaiq4xVGf7vMqz9/4Tx9EyV+86N7V6WGz5bmOP/t47fxF4fO879f6+O1i2P84vt2sKPt+udG4iGLy+NFNmSiNe0gDk6WCF4T/H365BDpSID9XfMPuUtFV+bzbEuF6R27kWSWpZuaSnrfhhTNibV7Ju5mp7V+HbhVKfUu4DcAA9gCHF7Aa/NA4/JuoRBCrH0B01jzB/8rbWNDlO7GKMd6JxiaLNPVsLLDwZ45eYVMNMDGxijRNV5vSylFJhbk9miGsUKVM0OTDOfLxINeZt1tXWkOnR3huTMj/OgdG+lIR8iVbRzX5fZVyCpbjFp8Av8dOAAc8e/fgpexlFJK/Sut9beufYGf1j1fb//r1/sjWuvfBH5znuVff6vXCbEcbMel5NcumixVGS9WyZVsXD86YypF0DKIh5Z3BjOl1Lw1i2w/K2kkX5k+wFVKEQtapKJelpRCUazYFCoO+bJDseoVSb42uGQZXtAsFQkuOkgmlmZqhr5c2eblC6M0xvwg1DIHLS6PFbAdl+Bb/DM7fHmcrx7u55F97ezbkF7W7XkrQcvg0/f18I5NDfzXb5/i3/zD63z8YBefONg17yxyAdNgolglW6rWrKPouJqh7Owhd7myzUvnRvnQLe1zfgtKVZdUJEDIWpn6A4mQRTRoUrHdFam3NFmq4qK5fVNmVYeOiutTSrVprQdmLPoZ4EP+7ZeAL638VgkhhFgvLNPgYHeG//1qH0PZ0or1QQCyxSqHL09w79ZGTKN+TpQrpWiIBUl3NzCSL3P2y0E2RAAAIABJREFUSp7hXJlE2OLuLU3cvcWbTTpb8uqKHeiunwlcarGVfcCnpzKOlFK7gf8A/BvgH4E5wSch6knZdihVvRpG2ZLNeL5CoepMP24ZBiHLIB1ZO1OmWqaBZRrMPKaeKvo9M0vK9DOwAqZa9kCZWLqpIFS+bPPKxTEyUW9MeDJi1XzfK1Rszg8XyLxFYKZQsfm9J0/RkQrzqbs31fTvL9a+DWk+9yP7+ePvnuFvv3eJ718Y4xfft52ueQovhi2TvvFizYJPk6XqnFnunjs9jO1qHtjRMuf5xarNxsYbHrm+aEopujJRTg1N0mAt74wzY4UK0YDJ3g2pNVPcU8zrj5RSrwC/rbUuAePAPwNcILuqWyaEEGJdeM/OFv7hlV6O92e5s6eRBmtlssOeOz1MseqwrzNNUyJYd8c5hqFoToRpjIUYzpU5cyVHrmyTCAXIV2xiIZO9nakVO4lZC7UIPm2fOdRNa31cKbVTa312rRyIC7EQrqsp+YGmfNlmvFglW6xSdVy/AhOETJNQwKCxTqLLMymlCFlmXf1AiflNzZBXqNi8fHGMdDRAT5M3HO9Gf3ddV1N1XaqOxna84ZalisNQrkzIMt7yH/Wjz51nOFfmt35o35oKMMRDFr/4vh3cubmRP3j6NL/096/zRz9++5zZ+mIhk8HJMj1VpybbPzRZJmDMHXLXlYmwpXluXSetWfH0/MZEkJNDXjB6Of5Ha60ZyVdoTgTZ0Za8qQut1gOt9UeVUh8GHlNK/Tnw83i1M6PAR1d144QQQqwL92xpImwZHO/LMpovv+3sybXyxPFBTEOxrS1OSx0P/TcMRUsyTGM8xEiuzOkrOVKRALs76q+fVYsj6GNKqT8E/ta//wnguFIqBFRrsH4haq7qeLWZSlWHbLHKRMEmX7HR+mp9ppDlpWfWW5Rc3DyiQYto0AtCvXpxnFQ0wObGGOmoF4S6XmCpZLsUKjbFikPZdqfXNxVkNf36ZG81dvyVC2M8fmyAH9rfya72t5zcdNXcu7WJjY1RfvqvXuGbR/v50Tu7Zz2ulMIARnMVOjKRJf0tx9UMZkskZgy5G8yWONaX5ZN3dc8J9JRth3jYWvGgXcgyaU2EmCjYxMO1DaI7rmY0X2ZjY4yeppgUW60TWuuvKqW+DvxrvGF2v6m1/u4qb5YQQoh1Ih31AiVHeicYypbY0hxf9tEijqs5dG6EvR1JIgGTRI37PKvB9INQTfEQSrFmRtzciFp8Cj+B12H5ef/+c8Av4wWeHqjB+oVYEsfVTJaq3mxzxSoTxeqsA+6AYRAKrK1hc0LciJlBqNcujRENWrh+MfopMwNLll/4PmyZs+oTLVSubPP7T52iqyHKj10T0FlrujJRbu/O8M1jA/zwwa45Z4jioQAXxwq0p8NL+v5ni1Wca4bcPfPmFQDu3z53lrt82WZrS3zRf28pOjNRhnPjjOTLgDf8MBwwlxRor9guE8UKO9qSdC4xkCdWjlLqB4BfwJvM5T8BfwH8ulLqXwP/Tmt9ZjW3TwghRP1TSnHv1iY+99RpLo4WuW2js+w1ik70Z+kbL/H+XW0kwitXX3Ml1PPJvSV/6lrrIvA7/uVauaWuX4jF0FqTLdlcmSwxMFHCdjUGXhHwxR5wi7XFcTUvnB3hyTcG6UxHeHBXC5ubVudgfq2YCkJNDRVdrv38T757lrFChV97ePeKFY1cikf2dfDvv3qM504Pc/81tZeClkE2VyVbspc0i+DQNbPcaa15+sQQezuStCTnpnqvxpC7KalIgHu3NlGo2OTLNqOFCqO5qj8zp8YyDCIBc8GfbaFiU6o63NaVpiG+vLWkRM39R+AOIAI8rrW+A/glpdQ2vEle/vlqbpwQQoj14b27WvncU6c52jvBAzualz349Pgxby6NXe0J2pLSN1krFv2pK6X+Xmv9caXUEbwT6rNorfctacuEuEFaa/IVh+HJMn0TRSq2i2Us/4xzYmUVKw7ffmOQL7/ey2C2TFM8yGuXxvny6330NMV4z84W3r29eUUP7F2tuThSIBG2aFwDB9/LOf770NkRnjo5xCfe0bVqmTs3av/GNB2pMI8d7p8TfAIImgYDE8VFB58cVzM0WZ415O7UUI7e8SI/uL9zzvOrjks4aBJbxSl/TUORCAdIhAO0pSJoP1MuX7YZL1QZK1QYzpcxmKoXZxAOmHNmvMyWqhgKbt/UQHyNT2Es5jUB/BBejaehqYVa61NI4EkIIUSN7GpP0pIIcawvy5VchdbU8mZJf+fNK7SnwrSmwqt2sk/MtZSe4s/514/UYkOEWKxCxWYkV6FvvEix6mAailjQmnUgKOrfaL7CY4f7+MbRAXJlm13tST59Xw93bGogX7b5p1NX+PaJIT7/7Dm+8Px5DnZneHBnCwc3NSxLMGayVOXVi+O8fHGMVy6OMV7wStztbEtwz5ZG7t7SRNs8GS/1bKJY5Q+ePk1PU4xPHOxa7c1ZMEMpHt7Xzp/80zlODU6yrXX2DHPxsMVAtsTmpviiMrnmHXJ3coiA6aWZXytfselumDv73mpSShEOeMPvpgKoVcelUHHIlaqM5CtMFKo42jvXFDQNqo5LImyxu0NmtKtjPwj8CF6phB9d5W0RQgixTgUtgwPdGZ4+McRgtsSu9uSyJQeM5Moc68/y0J42AqZBNCh9lLVi0cEnrXW/f30BQCmVXMr6hLgRparDWL5C73iRyVIVQynioQCNMdkF15sLI3m+/FofT58cwnE1d29p5Adv62TnjCLXyUiAh/d18PC+Di6M5HnqxBBPnxzixXOjJMIW797ezIM7W9nSHFt0XR9Xa04P5Xj5whgvXxjj1NAkroZEyGL/xjT7N2YYyVd4/swwjz53nkefO09Pc4x7tjRxz5ZGujJrK9iwGH/0nTPkyjaf/cjeuptd48GdrfzFoQs8dqSfX7gm+GQohdYwli8v6kzcQLZEyLzasbEdl++eGuaOzY3zZgM5jiazQjO9LEXANEhFDFKRAJ2ZKK6rKVYdChWHsUIFBWxuimHV2b4grtJaDwOfW+3tEEIIsf49sKOZbx4d4OTAJAc3NSyp3MFbefrEELaj2d2Roi25tJqeoraWfKSulPqXwG8AJa4Ov9NAz1LXLcRMFdtlvFChf6LIaN4b6hENWjTF11d2ifCGUB7uneBLr/by8oUxgpbBB/a08ZHbOmh/m+BAd2OMn7x3M//i7k28emmMJ98Y4ptHB3jscD+bGqO8Z2cL929vWdDB/0SxyisXx3jlgpfdlC3ZKGBba5xPHOziQHeGbS2JWWduPnGwi4GJEi+cHeb5MyP85aEL/OWhC3Q1RLlnSyP39DSyuWnxQbDV8k+nrvDs6WE+eVc3m5piNVuv42ocV2O7rn+tcbWeLpAO3hCxdGRpwZpYyOI9O1t54vgAP3Xv5jkdnljQ4tJo8YaDT7bjcmWyPGt9r14aZ6JY5YEdcwuN245LwDLqcoiaYShiIYtYyKI5sfrDS4UQQghRPx7Y0YJpKI71ZZkoVJYt+PTtNwYJWQbbWmI0xtf+yb6bSS16v78M7PXPnglRM67r1SApVGwGsyWuTJbRQCRg0hgL1t3Bu3h7tuPy7OlhvvRaL2ev5ElHAvz4nRt5aG87yRv8B2UaioPdDRzsbiBXsvmn01d48o0hHn3uPH/2/Hlu787w4M5W7th8dVie42reHJzk5YtedtOZoRwar0Dzge4Mt2/MsH9j5m3/Wbalwvzg/g384P4NjOTKvHB2hOfPjPA/v3+Jv/veJdqSYS8QtaWJba3xOXV01pqxfIU/fOYM21vjfOzAhgW/ruq4VGwX2w8wabygEniBJYXCMqdm3bMIBaYKXZsETG9WPkPB+eE8g9ky6UhgSVk2D9/SzteP9PP4sQE+fs2wwXDAZCRfZrJUJRFe+L6WLdm4Ws/6DJ85OUQibHFgY2bO8/MVh/aUnIUTQgghxM2lORFie2ucI70TDE2W2dhYu5OZU6q2w0vnR7mtK03Q71+KtaMWn8YZoFCD9YhFcl1NxXG9i+1SrDi4rqYxEaqbL5zjD+coVhwmS1XGi1VyJRutNRoIWSaZqASc1qtCxeZbxwb58ut9DOfKbMhE+JkHtvLAjpaazKYWD1s8tLedh/a2c2mswFNvDPHUySG+d/4E8ZDFfVubyJVtXrs0Tq5sYyjY0ZrgR+/cyO0bM2xpWXyAqDEe4pF9HTyyr4OJYpVDfiDqK6/38Y+v9tIUD3JXjxeI2r2M498XS2vNHzxzmrLt8vPv3b7g7avYLpPlKi3JEGHLJBIwCVgGAcPAMr2gU8AwFjRd7K72JJloiZODk4StxRfq3tgQ5dYNKb5xtJ+PHdgw571YhsFgtnxDwafBa4bcFSo2h86O8r7drfMOTbRdlybJGhJCCCHETUYpxd09jTz63HkujxW4ZUOKkFXbekyvXhpnNF/l1g1pGmJBKQ2wxtQiMvGrwPNKqReB8tRCrfX/XYN115VCxebUUI6A6c8MZF092DJNhWUoLMPAMtSCDrhmsmcElyq2S65sk6845MveFNfKH6SiAVMpNHB2OE8ibNGVidAQD62ZGi0V26VkOxTLNhMlm4lChXzFAbxMCNPw2i8dCUiwaR3TWnNlsszXjvTzzWMDFCoOezuS/Kt3b+HgpsyyZQN1ZaJ86p5N/Phd3bx+aZwnTwzx1IkhYiGTOzc3cHt3htu60jcUgFioVCTAB/a08YE9beTKNi+dG+WFs8N869ggjx3uJx0J8M5tTTx0S/uaqRH11Amvdtan79284G1ytWa8WOG2rnRNZv9TStGejpCMBHijL8tIvkwmGlzUPvLIvg5+8+tvcOjsyJxi4PGQRf9EkU2N0QV1VmzHZWiyNGtI4POnR6g4LvfPM+TOcTWWoUjUyUkBIYQQQohaenBXC48+d56jvVneua2ZULy2wafHjw0CsKsjQYuc7FtzatED/h/AU8ARwK3B+upW1daM5MpEA5ZXx0R7tUumzKxhYhmKkGUS9KevDlkGIcsgYBkovILa+YpDrmxTKNvYrp61DsswCJiKoGkQDZjXDdKUqg7H+ycxjEnakmHaUhGSYWvFgjqlquO9l7LNRLHKRLFK2b66m4RMk1DAkELhM2itmSzZjBe96c7HC1XGCxXG/Ouy7bKxIcqW5jhbmmM0rJEhiFprChVn+nO+3iVb9DLbssUqtqsxFNy7tYmP3tbJ9msKQS8n01Ac6M5woDtD1XGxDLWi7RgPWbxnZwvv2dlCseLw8sUxnjs9zDeODvDVw/3cuiHFw7e0c8fmxlXLhroyWeZP/uksezqSfPjWjgW/bjRfoac5VpPA00yxkMX+7gznhvNcGM2TCgdu+IzZOzY10JII8djhvjnBJ9NQOK5mvFilaQHbPlGsojWzgmBPvzlERyrMjnn25XzZpiUZvuGTD0IIIYQQ68GBjRmSYYvj/VlG8pWa9xWfPXWFzU0xMtHgDZfsEMuvFkf8Aa31L9ZgPeuCqdSChoQ4flHdctWbytqZURMFwEARML3hKfFQYNEHn1NTZ7taMzxZoX+iRDhgsjETpTERrGmqo9aaUtXLyhorVBjJlan4gSaF8gJtlkk8dPP9EEwFZkbylVmBpPGCH2AqXg0wTfjTtl/LMhSpSICgZfDc6eHpQGY6GvADUV4waktznJZEqKaBFFdrRvMVBiZK3iVbYnCyxHhhbjBpPpGASSoSIBUJ0BgPsqU5TjISIB0NcHdPI63J1S0av9pZgZGgyX1bm7hvaxPjhQrfOj7IN44O8J++cYKmeIgP7m3jA7tbSUdXrmii1prPPXUK29X83IPbFvwblC1VaYgF6W6o/Th+8AJEW1viNMSCHO+boGy7JG8gS800FB+6pZ0/e/4854bzbL6meHokYHJptLCg4NNgtjTrN3Q4V+bI5Ql+5I6N837/qq5Da0ImSBBCCCHEzSkStLhtY5pXL44zmC2xrSVes2OWvvECbw7l+KH9ncRDFuFAbbOqxNLVIvj0DaXUZ4CvMnvY3WgN1r1umYbCRLFS3wlDqenob8V2OTU0yckhaE2EaE9FSEUCN3w2fmra7VypykihwmiuiuO6aCBoeoWDb4ZAk6s12WKVkbwXcBvOVRjOlWfdH8mXKVXnJgZOBZQy0SCZaHA6Up+OBkhHvOup+/HQ1Yy1YsXh3EieM0M5zlzxLq9eHGMq9hMPWdOBqKlLezr8lsOUihWHwawXWJoKME3dHsyWZgWWDAVN8RCZaJCmeIgtzfHp4FLSv555qUXdpptFOhrk4we7+NiBDbx0fpSvH+nnLw9d4G9fusi9W5t45JZ2drQllj1L65vHBnj10jj/17u3vO0Mg1NKVW/47M72xLJn9zTEghzc1MCpoUmGJ71heAsNkL1vVyt//eJFvna4j595z7ZZj0WDFsO5EoWKTTR4/X+RVcflSq48a8jdMyevoPFmc5nv+SHLJBmRLE8hhBBC3Lzeva2Z7745zJmhHAc2ZhZdy/Na3z4+iNawtyO16ie2xfxq8Un/iH/9qzOWaaCnBusWyyBoGTRYIbTWTBRshibHCVoGG9IRmhNhIsH5I2KOqylUbPJlm+FchbF8ZXpY4dRsAmutWHItaK3pnyhxbjjPSN4PJs0IKo3kKnMyfgwFDbEQTfEgm5pi3N6doSkepCEWInOdgNKNiARNdrcn2d2enF5WsV3Oj+T9YJR3/ZXX+6a3LRIw2dwUY0tzjM5MlLFChcGJEv1+cGm8WJ31N2JBk7ZUmE2NUe7qaaA1GaYtGaY9FaEpLgX8lptpeEUZ7+5p5PJYga8f6efJE0N8580r9DTHePiWdt61rbnmZ3W01lwcLfDoc+e4rSvNQ3vbFvQ6x9VMlqvc3t1Q8+KR1xMOmOztSNE7XuTUYI5o0HzLgNGUZCTAu3c08/SbV/iJezYTD89+jWUYDGXLbGq6/rqy1wy501rz9MkhdrUlaEvN7fBkS1W21vDsnhBCCCFEPXrPrhY++7U3OHx5gg/ubatZ8OnJE1dIhC26G6Kko+s/AaIe1eKT3qW1Ls1coJSSUGMdUEoRD1vEsag6LudHCpy5kqchFmBDJkoiHJjObBrOVZgoVnG1N1V6OGCSCC9+OOBa5ria8yN5jvVlOd43wfH+LGOFq4GZoGnQGA/SGAuyqy1JY9wLMjXGgv7tEKnIyrdN0DLY3pqYVTfJdlwujRU4M5SfzpD61vFByrY7nb3Ulgpzx+YGvyZYePp6sYExUXsbMlE+864tfPKuTTzz5hBfP9LP5546zReeO897d7Xw0N52OtILy06aUqo69I0X6R0vcnnMu+4dL9I3XqRQcYgETH72PVsXXNR7NF9he1uC1AqPr1dKsSETJRUJcNwvRt6wgJkxP7yvnSeOD/LEGwP84P4Nsx6LhywujxXoaohe93vcP1EiPCPIdm44z8XRAv/6/i1znqv9IP1ChvIJIYQQQqxn3Q0xNjVGOdaXZWiyTNsCM+zfSrnq8PKFMQ52ZwgGzLqZ8f1mU4tP5XngwAKWiTUsYBpk/HoyhYrNkd4JNF6Bc0MpwpZXs2e5ZiBbTVPDEI/1ZTnWl+XEQJaCP/tecyLErRvS7O5Isr01QXM8RGIFC7YvlWUabG6Ks7kpzntpBbzg2lihQioSWPVaR+LGRIImD+1t54N72jjen+Wxw/189XA///u1Pg5szPDwLe3c3p2ZDpg4rjejoBdYKnB5rDgdcBrOVWatuzkRojMd4YEdLXSmI+zfmKZlgfWJxgoV2lLe61dLIhzg9u4MZ4dzXB4rkX6b/XtzU5w9HUm+dqSfH7i1c1aQyTINbFczUfTqV12r6rgM57wg15SnTw5hGYr7riliDpCvODQnQlJ7QAghhBA3PcNQ3LG5gf/18mX6xovsbk8ueUTFC2dHyJVt9namaE3WtvatqJ1FB5+UUm1AJxBRSu3Hi1MAJIG1MUe4WJRo0FrQ0JV6lS/bvDGQ5bgfbDo1NEnV8TITuhqivGtbM3s6kuzuSC744LuemIaSDIw6p5RiT0eKPR0pRvMVHj82wDePDvDZrx2nNRlic1OMvvES/RPF6X0bvKGUnZkIt3Sm6ExH6MxE6Ux7QykXGxgpVGxClsG21uWvQ/V2LNNge2uSTDTIif7JWbXu5vPwLe389uMnefnCKHdsbpz1WNgy6R0rzBt8mvCHqE69X8fVfOfNKxzclCExT/HzUtVhZ9vKzeQohBBCCLGWPbirlb///mWO9WW5u6eJVHRpwadvHRvEULCrPSHHOWvYUiIMHwB+AtgA/O6M5ZPAv13CeoWoqbFCxc9qmuB4X5bzI3lc7QVhtjTHePiWDvZ0JNnVnlzxIUNCLFVDLMiP3LGRH759A4fOjfKNI/1cHivSmY5wsDtDRzrChkyEzrQ3sUAtA0RVx6VYdTi4qWFNZdE1J8IkwgFODEwynLt+MfK7exppjAX56uH+OcGnaNBkOFehVHXmBOYGrhly9/rlccYK1esXGg8Y8tsihBBCCOG7Z0sj4YDBsd4Jb0TGEmo0aa157vQwO9uSXkmZ8PpNoqh3i/5ktNZfBL6olPqY1vofarhNQizJWKHC0d4JjvROcLR3gktjRQBClsGOtgSfONjFno4UO9oSMgxGrBuWaXDf1qZ5h30tB60148UKe9pTa3JcfThgsq8zxeWxAmeu5EiGg3NmXbRMg4f2tvGXL17k0liBrszVpF2lFIaCK5NluhquLq/YLiN+QGvK0yeHiIVM3rGpYc52TJaq9DTHl332PyGEEEKIepEIB9jbkeJw7wSDE0U2NcUWva5zw3kujBb40Ts2kokG19QJUTFbLY4Y9iql9ly7UGv9H2qwbiHe1nihwtG+LEf8gNOl0QLgze62uyPJg7ta2duRYktzTGZoE8tCa02+4lC2HaIB67ozRq4no4UKGzIRWueZ2W2tMAzFxsYYIcvg+ECWJmvutn5gTxt/+71LfP1wP//y3bOLhSfCAS6PFdiQiUxnjE0Uq149PP9+seLwwpkR7t/RMqezo7XG1V49LSGEEEIIcdU7tzXx/QtjnB3Jc+vGzKKTAr51bACAPR1JWqXPtabVIviUm3E7DDwCvFGD9Qoxr7cNNu1s4ZbOFFua4+tyNj5xlas1kyUb23WJBizCAWNF6w6VbYd82cYFmuMhNsWiDGRLjOTLAMSC1rrMrsuVbBJhiy3N9VHHqDkRJjycp2K7c7Kf0tEg921r4skTQ3zy7u5Z9e4CpkG2VCVbtKfTwfsnikRmfKaHzo1Qtl0e2NE85+8WKg5N8eC63AeEEEIIIZbivbta+a/fPsXR3izv220vur/01IkhmuNBOlJhkpG5tTrF2rHk4JPW+ndm3ldK/Rfg8aWuV4gpbxVs2tWe5D07poJNktl0syjbDrmyjQLaUmFSkQD9EyVGC94MbpGASSRgLksgynE1ubJN1XGIBi22tSRoTAQJ+TWA2tMRSlWH0VyFvvEiI/kyhlLEQ9a6SAOu2C6263Jbe0PdBHcNQ7GlOc6xvuy8RSg/vK+DZ05e4ck3hvjwrR2zHguZJn0TRVLRABXbZTRfmT3L3YkhWhIhdrcn56y3aDtsl0LjQgghhBBz7GxP0poMcaw3y/BkeVGFwnOlKq9dnuCBHc3EQjfH6IN6thyFOqJ4RciFWLBS1WEwW6JvokT/eJH+CW+mrr6JElcmvSyScMBgd3tKgk03Ka29oE/ZdokGTXa0JmiMh6YzWdpSEcq2w0ShykC2xFi+ggZClkk0aGIsIRCltaZYdShUbSzDoD0VoTUZIh6y5g1whQMmHZkIHZkIhYrNSK5C73iRiWIF0zBIhKy63Hddv87TbV3puvvn3hgPEQoYVB13ThBwe2uC7a1xvnakn4f3tc/aV2Ihk8FsiZ7mGBOFKlpfHXI3mq/w+uVxfvj2rjn7ge24BAyDtBQaF0IIIYSYwzQU79jUwBPHB+mfKLKj7cZnTv7Om1eo2C57O1K0reFSEMKz5OCTUuoIMDWXtwG0AJ9d6nrF+lOsOAxki/4U8F5waep6OFeZ9dxE2KIjFWFPe5LuvTEJNt3Eqo5LtuTV2WlNhOlMR0hG5g/6hCyTlqRJSzJMxfZeN5QtcSVXRmsviyUSNBecsTP1twEysSBbW+KkIoEb2g+jQYtog8WGTIRc2WY4V6ZvvES1VMUyDOIhq24yiEbzFXqaYzTW4RS2pqHY3BjjxMDkvGfWHtnXwe8+8SavXRrnwMbM9PLpQFOuwlCuTHRG0O27b17B1cw7y91k2WZTY1QKjQshhBBCXMcD25t57HA/b/RN8o7NjTc8ic233xgkYCp2tCVIx2TI3VpXi8ynR4AM8E4gDXxda/1yDdYrbpDtuPRPlLg8VqAlGaanKbai9W9mGsmVOXRulNNDk16AafzqkKgp6UiA9lSYfZ1p2tNhOlIR2lNh2lMRmSLzJjdVwNub5t5ga0ucpnjohsaCBy2DpniIpngI23HJlmwGsyWGc2UcVxMwDGLzBH6mhtXZrkvYMhf1t+ejlCIRDpAIB+huiDFZtrkyWWJgooTtaoKmtz1LydBaTtlSlYZYkO6Gxc9GstqaEyHOXMnNm/1039YmHn32HI8d7psVfAKIhywujBQo2g6N18xyt701TmcmMudvOa6mOSFn4IQQQgghruddO5oxDcWRvgmyheoNBZ9c1+X5MyPc0pkiGjSJB+X4ca2rxSf0EeD/BP4RUMAXlFJ/orX+XA3WLeZRsV16x4tcGi1wcazApVHv0jdRwnH19POaEyHu2tzAXT2N7OlILXt2xUC2xAtnhnn+zAgnBiYByEQDdKQjHOhO056K0JGeCjCFZxX2FQK8AOpk2cbVmsZYkJ1tCVKRwJKzRyzToCEWpCEWxHE1k6UqQ5NlhrJe4McyDAKmolh1MJSiLRWmNRkmGZ4/w2qpDEORigRIRQJsboozWaoymC0xmC3jar3mCpWXqg4zGli0AAAgAElEQVQAO9sTdZ3JY5kGm5vinBqapDE2O/spYBp8YE8bf//9SwxMlGalbocsk8lSGaWuZkJdGMlzdjjPZ97ZM+fvFCo2DfFg3Q1NFEIIIYRYSc2JMDtaExztnWAoV6JjnhN613O8f5LBbJkP7W2nORGq6z7qzaIWR///B3CX1joPoJT6z8ALwE0VfCpVHX7nWyeZLFdpioeIBiyiIdMbchM0/Yt3O2QtbEauUtXh8liRi35w6dJYgYujBQazJaZiTIaC9lSEroYId/U00tUQpTMd4eJIgUPnRnj82CBfPdxPImTxDj8Qtb8rXbMD20ujBZ4/O8LzZ4Y5eyUPQE9zjB+/q5t7/O0RV9mOi+1/eFqDRvvXgH9/6rPVWqOnnqe1F9oFFAoFhAIGIWvhQ8iWSmtN2XYpVR0crWc9przNn3GtMA2FqRSGwfRt01Dz7vuFik2h4hAwDTY1RmlJhpct+GIainQ0SDoaZGtznMmSNxQuX7HZ3BQjEwuuaGHwmduzpdllrFDh/HCekXyJSMBa9SCt42omy1Vu726YLqpez1qSIc4N57Add87wyYf2tvG/XrnM14708en7ZgeVkuEAM79qT5+8gmko3rV97ix3xarD1pb4smy/EGuNUioNfB7Yi/cv4Ke01i+s7lYJIYSoF/dsaeTzz57j3HCePR2pBffDHz86AMCezuSiipWLlVeLoxoFODPuO0wfJt88ssUqf//yJUpV922fayjmDUpFgxaRgMFwvsKl0QJDfqFtAMtQdKQj9DTHuX97M10NUboyUTozkXm/oNtbE7x3dyulqsOrF8c4dHaUl86N8tSJIYKWwf6uNHf1NPKOTQ2kbqAgrtaas8N5nj8zwgtnhrk0VgRgZ1uCn7p3E3dvaaItKUNNplRsl2LVwXa9/SJkGYQCph+UURiAMsBUBoYCpcCYCtLgBSam7qP8wJOCctVhvFBlvFil6rgovMdqGZCyHZeS7VK2va+3QpGIWHQnoyTCASJBk4BpYLsujqunL7arsR2Xsu1Ssf3rqftlZzq4NhWo0lqTiXr1lNLR4IrWPzIMRSoaIBVdG0WhLdOgORGmKR5ivFDlwkie4VyJkGVet7j5chvNV9juZ6CtBwHToLsxxtkrORquyX5qjIe4u6eRJ94Y5Mfu7J4VAJ0qbA9e4fXvvDnEgY3pOe1iOy6WH1AU4ibxe8A3tdb/TCkVxJt4RgghhFiQ9+5q5fPPnuNob5YHdrQsuA/1nTevsCEToSkeIhFeH/3U9a4WwacvAC8qpb7k3/8o8Kdv9QKlVBfw50Ar3vHnH2utf08p1QD8HbAJOA98XGs9prwjrt8DPgQUgJ/QWr/ir+tTwK/5q/6PWusv1uA93bCWZJgXf/W9vHxhlEjAIu9nchSmr6+5XfZvV20KZS+Q0DdepFB1aIgG2dWe5P17omzMRNjQEKU9GV5Use1wwOTuLU3cvaUJ23E51p/l0NkRDp0d5cVzoxgKdrcnuaunkbt6GmmdJ3Dkas2bA5M8d2aEF84OM5gtYyjY25ni4VvauaunsS4LENfaVGZQsepMZy3FQxYd6TDpaJBo0KxpNk+nX5amVPVqI+XLNmOFKhOLCEhNbXvZdrFd77XTQ9WiUaIhLwNnvnWYxo29Jy9A5U4HqixDrXp2z1qjlCITC5KJBcmWqlweLTCYLWMZimQksGJ1ocYKFdpSITrTC0+BrgetyTDnhvM4rp6zTz+yr51nTw/zzMkrfHBv27yvP9I7wXCuwk/du3nOY7myTVdDtG6KyAuxFEqpFPAu4CcAtNYVoPJWrxFCCCFmOtDtncw71jvBaL6yoODTaL7Msb4sD+9rIxMNzDpJKNauJR/xaa1/Vyn1DHCfv+gntdavvs3LbOCXtNavKKUSwMtKqSfwOi9Paq1/Syn1K8CvAP8P8BCwzb/cCfwhcKcfrPp/gYN4QayXlVJf0VqPLfV9LZZpKOJha00WzLZMg1s3pLl1Q5rPvLOHM1fyHDo3wotnR/j8s+f4/LPn6GmKcVdPI3dubiBXtr0Mp7MjjOYrWIbitq40Hz/YxZ2bG9dNJsRiuVpPB36mhpolIxabUzGS4QDRkLkiw7fCAS+olY4GrxuQGi9Up4NKUwEpraFkX01aTIQDbMhESEYCNQ+UzWQa6oYDVjezZDjA7o4Um5pseseK9I4XMZQiGQ4sa4CjULEJWQbbWm982tu1LmgZdDdEOT+Sn5P9tLs9yeamGI8d7uMDe1rnfe/PnBwiGjS5Y3PDnMds16UlKcF4cdPYDFzBq/d5K/Ay8HNTpRiEEEKItxO0TA5sTPO982MMTJToaX770gVPvjGEozV7OlLzJk+ItakmERI/C+mVG3h+P9Dv355USr0BdOIVL7/ff9oXgWfwgk8fAf5ca62BQ0qptFKq3X/uE1rrUQA/gPVB4G+W/q7WN6UUW1vibG2J8+N3dtM/UeTFs6McOjfC37x0kb9+6SLgHaTdvjHDPVu8IXqxG5z+cj2ZGoZW8QM2hlKkY0G6MlHiEYvYdTKDVsNCAlKGAZuiUWJvkdUk1o5o0GJba4KuhigDEyUujhZwtSYZDiw5yOlqPT1EcmqIaMA0uLUrvaL1r1ZSWzrMhdG52U9KKR7Z187nnjrN0d4JbtmQnvW6UtXhudMj3Le1aU4NrELFJhMNSiafuJlYwAHgZ7XWLyqlfg/vxOGvTz1BKfUZ4DMAGzduXJWNFEIIsba9e3szT5+8won+LAe6M297EvzbbwwSDXqzUidv8oSIerLqPWSl1CZgP/Ai0OoHpgAG8IblgReYujTjZZf9ZddbLm5QeyrCR/d38tH9nYwXKrx8YYxI0OTAxrf/8q8XjqupOi624127aL+0t1cIPGQZpKNBGmMxYiGLSMCsq1kV5gtIifoTDphsaorRmYkwmC1xYaRAtuRNTbuQguCOqynbDmXbnR4eaiqvnldzIkIi7M20V2/7940KWSZdDVEujRbJXJPe/e7tzfzZc+f56uH+OcGnl86NUqw63L9j/kLjW6TQuLi5XAYua61f9O//L7zg0zSt9R8Dfwxw8ODB2bNVCCGEEMCDu1r5ja8e50hflsmS/ZbHn47jcujsKLd1pYkFV39yHrFwq/pJKaXiwD8AP6+1zs4c3qC11kqpmnVS5MzbwqWjQR7c1fr2T6wzs4JLrour9XRlfI2X5RUNmqSiAWJBk1DAJGgZBE3vsp4PxEX9CZgGGzJR2lMRRnJlzg3nGc6XiQUsIkHvH/Z04XfnaqDJMgxS0QAd6QDxkOUHJRc2A+d6056KcGHEyyCbWUcrZJm8f08rX3q1l6HJEi2Jq+ncT58coikeYm9nata6HL9+WVrOvombiNZ6QCl1SSm1Q2t9EngQOL7a2yWEEKK+bMhE2NQU41jfBFdyJZoT1y9h8P0LY0wUq9zSmaI1JaUO6smqBZ+UUgG8wNNfaa3/0V88qJRq11r3+8PqhvzlvUDXjJdv8Jf1cnWY3tTyZ+b7e3Lm7ebiuF49prLt1WPSQNC8GlyKBMzp2dpClkHANGTYmahLpqFoSfoz5BWrnB3OMZwro5Q3u2IqGiAdDhILWYSDxoKyo24W4YDJhkyU/oki6cjs7KeH9rbzpVd7+ebRAf7F3ZsAGC9UeOXiGD+0f8Ocou+T5Sqd6ciiJoYQos79LPBX/kx3Z4GfXOXtEUIIUWeUUtzV08Dffe8Sl0YK7GxNXvfE/7eODaKAPZ3JObU7xdq2KsEnf/a6PwXe0Fr/7oyHvgJ8Cvgt//rLM5b/jFLqb/EKjk/4AarHgf+klJoaRPR+4FdX4j2ItWPuTG0K01BkogE2Rr16TJHAyhT/FmK1GIaiIRYkE81QrDoETEP2+QXYkIlwaXRu9lNrMsw7NjXw+LEB/vk7NhK0DL57ahhXM++QO9vRUvBS3JS01q/hTfwihBBCLNqDu1r5m5cucaR3gnu2NpEIz59N/p1TV9jaEicTDRK/iesR16PV+rTuBT4JHFFKveYv+7d4Qae/V0p9GrgAfNx/7OvAh4DTQAH/rJrWelQp9Vnge/7z/sNU8XGxfk0V/i6/xUxtIevmHEYkhFJKxr7fAC/7yauflbom++nD+zp48dwo3z11hffuauWZk0P0NMfobozNel6x4pCMBG7qCRmEEEIIIZbi7p5GwgGDo71ZJorVeYNP/RNFTg/l+OHbN9AUD8nIlTqzKj1lrfWzwPX2lAfneb4Gfvo663oUeLR2WyfWEsf1ZuEq2c50zZqQZZCJBslEo0RlpjYhxBJ1ZiL0jhfRWs8KWu/bkKKrIcpjh/vY2Zbg1FCOT9+3ec7rC1Wb3U3JldxkIYQQQoh1JRay2LchzZHeCQYmSmzIROc851vHBgHY25l8y7pQYm2S07RiTZgqBj5zqnetIWAqEuEAbakQyUiASNCUmjVCiJqKBi3aUmGGJyukZhQMV0rxyC3t/OF3zvA/vnsWQ8G7ts0ecue4GtMf8iiEEEIIIRbvXduaeOncKG8OTrJvQ5qgNbuExJNvDJKJBuhqiJIISyij3sgnJlaUq71MportUvWDTACWoYiHLRrjYeL+VO8hS4ojCyFWRlcmSv94Ea2tWdlPD+xo4YsvnOe1S+Mc2JieE2TKlW3aU1JoXAghhBBiqR7c1cJ/+dabHO2d4IN722mwrva7KrbD986PcXdPI6lIUI4T65AEn8SysR2XQsWh6roovBnnTEORCFtkYl4mU8jypnkPmlKjSQixemIhi9ZkhLF8heSM7KdI0OS9u1r5yut9PLCjZc7rqo5La1LSvoUQQgghlmpHa5K2VJijfVlG8+VZJ/2ePT1CseqwtzNJu0zyUpck+LSOTM36Vqo6OFoTMk0iQXNF6yGVqg7FqlefyTINWpIhUpEAoYAEmYQQa1tXg1d4/NraT//swAaCpsE9W5pmPb9UdUiErevOxiKEEEIIIRbOMBR3bGrgm0cH6B0rsqU5Pt0ne+L4AJah2N2RJBWVvlc9kuBTHXNcTanqULYdNKBQJCIW3cko4aDJWL7CcK6C7bh+oW6TSKC2wShXawoVh1LVm3kuGQ7Q0xwjHQ0SC5oSaBJC1I1EOEBzIshk0SE+o45AJhbkU/dsmvP8XNlmT4cUGhdCCCGEqJX37GzhK6/3caR3gndsbpiexfmfTg2zqz1Jyp/dXNQfCT7VkarjZTVVHG8Ym2koMtEgm+JRYvPM+taSCLNda4pVh1zZZiRXYSRXwfFrLXlD3m48GFX1h9PZrotpKBpjQba2xEn4tZqEEKJebWyM8f3zo8Tf5t/jVKHxjBQaF0IIIYSomXdtb8IyFEd7J5gsVokGLc4M5bg8VuT+7c20JMKS4FCnJPhUQ8rwZkcazVfQ6Ok6RwAGCsNQmIbCVArDAFN59+f78swcQudqjQbCAZPmRIhMLEg06GUxvd0XTylFNOgFploSYbSfqZQrVRnJVxjJV3BcbyvD1wlGTW1LoWKjNYQCBh3pMI2xEPGwtaLD+oQQYjklwwEa4yHyZZtY6Pr/Ir1C42ECUmhcCCGEEKJmGmIhdrYlONqX5UquQmsqwuPHBwDY25miMS4n/uqVBJ9qKBkOcPeWRhxXY7sax9E4WmO7LlXbpWy72K4XyKlUXUq2Q9Vx8WM/s4JVAMlIgO5klEQ4QDRk1qSiv1KKWMjyiuumIrOCUcO5CqNTwSgFAcOg6npD9tKRANtaEqSiXpqjRJuFEOvVpoYYr1wce8vgU9VxaE1JsUshhBBCiFp757Ym/vA7Zzk9lGNXe5KnTgzRlgzTkY5Irc06JsGnGguYBjc68swLVrk4rp7OQrp2CN1yuTYY5bqaQtULRk2WbBpiQRLhAEFLzu4LIW4OqWiAVDRAoWJP1xmYqVR1iIcsEm8RnBJCCCGEEIvznl2t/OF3znKkd5w7Nzfw+qVxHtzZSmMsKKNu6pj0nNcA01CYxtqolWQYinjIIh6yaEut9tYIIcTq6GmK8erFsXmDT/mKza62hGSACiGEEEIsg/1dadKRAEcuT/DNY/1UHc0tG5K0JCXrvJ5J8EkIIYS4RioSIBEJUKw4RGbMqOJqLzs1Ewut1qYJIYQQQqxrlmlwe3eGQ2dHiIYswpbBjtYEibCEL+qZjKUSQgghrqGUoqcpTr5iz1qeK3mFxmUoshBCCCHE8rl/RzP5isOzp4bZ25kiHQ3KzOp1TnrPQgghxDwy0QDxkEmp6kwvq7oubanIKm6VEEIIIcT6995drSjAdjW3dqVplSF3dU+CT0IIIcQ8lFL0NMfJ+dlPZdshEjBJSsq3EEIIIcSyak9H6GmOAXBLR5JMLLjKWySWSnrQQgghxHVkokGiAS/7KV+x2dEqhcaFEEIIIVbCj965kUNnRmlKhIkFZchdvZPgkxBCCHEdhqHY3BTjaN8EhlI0xOWsmxBCCCHESvjYgQ10pCK0pUJy8m8dkOCTEEII8Raa4iEiAZNMLEjIkrNuQgghhBArIR6ySEQCNMosw+uCBJ+EEEKIt2AYil3tSZnhTgghhBBiBVmmwfaWOMlIYLU3RdSABJ+EEEKIt5GOynA7IYQQQoiV1iKz3K0bchpXCCGEEEIIIYQQQiwbCT4JIYQQQgghhBBCiGUjwSchhBBCCCGEEEIIsWwk+CSEEEIIIYQQQgghlo0En4QQQgghhBBCCCHEslFa69XehhWnlLoCXFjt7VhmTcDwam/EOiNtujykXWtP2rT2pE2Xx3K2a7fWunmZ1i0W4Sbpf4H8XiwHadPakzZdHtKutSdtujxWvA92UwafbgZKqe9rrQ+u9nasJ9Kmy0PatfakTWtP2nR5SLuK9Uj269qTNq09adPlIe1ae9Kmy2M12lWG3QkhhBBCCCGEEEKIZSPBJyGEEEIIIYQQQgixbCT4tH798WpvwDokbbo8pF1rT9q09qRNl4e0q1iPZL+uPWnT2pM2XR7SrrUnbbo8VrxdpeaTEEIIIYQQQgghhFg2kvkkhBBCCCGEEEIIIZaNBJ/qhFLqUaXUkFLq6IxltyqlXlBKHVFKfVUplfSXB5VSX/CXv66Uun/Ga55RSp1USr3mX1pW4e2sCUqpLqXU00qp40qpY0qpn/OXNyilnlBKnfKvM/5ypZT6faXUaaXUYaXUgRnr+pT//FNKqU+t1ntaC2rcrs6MffUrq/WeVtsi2nSn/9tQVkr98jXr+qD/G3BaKfUrq/F+1oIat+l5//f2NaXU91fj/awVi2jXH/O/90eUUs8rpW6dsS7ZV8WaIH2w2pM+WO1J/2t5SB+s9qQPtjzqog+mtZZLHVyAdwEHgKMzln0PeLd/+6eAz/q3fxr4gn+7BXgZMPz7zwAHV/v9rIUL0A4c8G8ngDeB3cBvA7/iL/8V4D/7tz8EfANQwF3Ai/7yBuCsf53xb2dW+/3Ve7v6j+VW+/2shcsi2rQFeAfwm8Avz1iPCZwBeoAg8Dqwe7XfXz23qf/YeaBptd/TWrgsol3vmfq9BB6a8bsq+6pc1swF6YMtR5tKH2yNtqn/mPS/Ft+u0gdboTb1HzuP9MEW264r3geTzKc6obX+LjB6zeLtwHf9208AH/Nv7wae8l83BIwDB1dgM+uK1rpfa/2Kf3sSeAPoBD4CfNF/2heBj/q3PwL8ufYcAtJKqXbgA8ATWutRrfUY3mfxwRV8K2tKDdtV+G60TbXWQ1rr7wHVa1Z1B3Baa31Wa10B/tZfx02nhm0qZlhEuz7v/24CHAI2+LdlXxVrhvTBak/6YLUn/a/lIX2w2pM+2PKohz6YBJ/q2zGu7gg/DHT5t18HfkApZSmlNgO3z3gM4At+auKvK6XUym3u2qWU2gTsB14EWrXW/f5DA0Crf7sTuDTjZZf9ZddbftNbYrsChJVS31dKHVJKfRSx0Da9HtlX57HENgXQwLeUUi8rpT6zLBtZhxbRrp/GOwsPsq+KtU/6YDUifbDak/7X8pA+WO1JH2x5rNU+mFWLlYhV81PA7yulfh34ClDxlz8K7AK+D1wAngcc/7Ef01r3KqUSwD8AnwT+fEW3eo1RSsXx2uLntdbZmX1BrbVWSsmUkItQo3bt9vfXHuAppdQRrfWZZdrkNU/21dqrUZve5++nLcATSqkTfqbETetG21Up9QBex+e+Fd1QIRZP+mA1IP/Xak/6X8tD9tXakz7Y8ljLfTDJfKpjWusTWuv3a61vB/4Gb2wmWmtba/0LWuvbtNYfAdJ4Yz7RWvf615PAX+Ol1d20lFIBvC/nX2mt/9FfPDiVduxfD/nLe5l99nKDv+x6y29aNWrXmfvrWbxaGfuXfePXqBts0+uRfXWGGrXpzP10CPgS8rt6Q+2qlNoHfB74iNZ6xF8s+6pY06QPtnTSB6s96X8tD+mD1Z70wZbHWu+DSfCpjvkRXpRSBvBrwB/596NKqZh/+32ArbU+7qeAN/nLA8AjwNF5V34T8NPd/xR4Q2v9uzMe+gowNVvKp4Avz1j+L5TnLmDCT2F8HHi/UiqjvNkD3u8vuynVql399gz562wC7gWOr8ibWGMW0abX8z1gm1Jqs1IqCPxzfx03nVq1qVIq5mcx4P/uvh/5XV1wuyqlNgL/CHxSa/3mjOfLvirWNOmDLY30wWpP+l/LQ/pgtSd9sOVRF30wvQYqs8tlQdXr/wboxyu0dhkvNe7n8M6mvQn8FqD8524CTuIVGfs2XuosQAxv1pXDeLUKfg8wV/u9rWKb3oc3Tvgw8Jp/+RDQCDwJnPLbr8F/vgL+AO/s5hFmzFiDl35/2r/85Gq/t/XQrngzMBzBq59xBPj0ar+3OmrTNv93IotX7PYykPQf+5D/m3EG+Her/d7qvU3xZgJ53b8cu5nbdJHt+nlgbMZzvz9jXbKvymVNXJA+2HK0qfTB1mibIv2vpbar9MFWqE2RPthS23XF+2BT/yiFEEIIIYQQQgghhKg5GXYnhBBCCCGEEEIIIZaNBJ+EEEIIIYQQQgghxLKR4JMQQgghhBBCCCGEWDYSfBJCCCGEEEIIIYQQy0aCT0IIIYQQQgghhBBi2UjwSQhRt5TnWaXUQzOW/bBS6puruV1CCCGEEOuV9L+EEIuhtNarvQ1CCLFoSqm9wP8E9gMW8CrwQa31mUWsy9Ja2zXeRCGEEEKIdUX6X0KIGyXBJyFE3VNK/TaQB2L+dTewFwgA/15r/WWl1CbgL/znAPyM1vp5pdT9wGeBMWCn1nr7ym69EEIIIUT9kf6XEOJGSPBJCFH3lFIx4BWgAjwGHNNa/6VSKg28hHdWTgOu1rqklNoG/I3W+qDf+fkasFdrfW513oEQQgghRH2R/pcQ4kZYq70BQgixVFrrvFLq74Ac8HHgw0qpX/YfDgMbgT7g/1NK3QY4wMwzbC9Jx0cIIYQQYuGk/yWEuBESfBJCrBeuf1HAx7TWJ2c+qJT698AgcCveZAulGQ/nV2gbhRBCCCHWE+l/CSEWRGa7E0KsN48DP6uUUgBKqf3+8hTQr7V2gU8C5iptnxBCCCHEeiP9LyHEW5LgkxBivfksXqHLw0qpY/59gP8OfEop9TqwEznbJoQQQghRK9L/EkK8JSk4LoQQQgghhBBCCCGWjWQ+CSGEEEIIIYQQQohlI8EnIYQQQgghhBBCCLFsbsrZ7pqamvSmTZtWezOEEP8/e3ceJ9dZ3fn/89x7a+nu6n3Vvm+2LMu2ZOMdL2BIDA47JokxZOLALwsQZ5JMmEnIL7/MJBMmMASCx5kEAgHjAIZAMDF4X7AtyfsiyZa8SK2t1S31Wsute+/z+6OqW1t3q5fqKrX0fb9e9eruW1W3jlpS91PnnuccEZEZ8tRTT3Vba1srHYccofWXiIjI6W+sNdgZmXxavHgxW7ZsqXQYIiIiMkOMMW9WOgY5ltZfIiIip7+x1mDadiciIiIiIiIiIjNGyScRERERmRJjTIMx5nvGmG3GmK3GmIsrHZOIiIices7IbXciIiIiUhL/G/gPa+37jTFxoLrSAYmIiMipR8knERGRU0Q+n6ezs5NsNlvpUGaNZDLJ/PnzicVilQ7ljGOMqQeuAG4GsNb6gF/JmERERCZDa6+pm+waTMknERGRU0RnZye1tbUsXrwYY0ylwznlWWvp6emhs7OTJUuWVDqcM9ES4CDwNWPMucBTwKestUOVDUtERGRitPaamqmswdTzSUREZsSew2nyYVTpMGaVbDZLc3OzFj8TZIyhublZVysrxwPOB75qrT0PGAL++OgHGGNuMcZsMcZsOXjwYCViFBE5o0SRZfchXQOYKK29pmYqazAln0REZEbs68uS9sNKhzHraPEzOfp+VVQn0GmtfbL49fcoJKNGWGtvt9ZusNZuaG1tLXuAIiJnmlwQcaA/h7W20qHMGlpLTM1kv29KPomISMnlw4iBbJ5cXsmn2eTgwYNcdtllrF27lh/+8Icjx2+44Qb27t076nM+97nP8fnPf/6k577xxhtZt24dX/jCF7j55pv53ve+V7K4pTKstfuB3caYVcVD1wAvVzAkEZEznh9GpP0QX9Xns4YxhltvvXXk689//vN87nOfG/c5Dz74IL/4xS9Gve/rX/86ra2trF+/nvXr13PTTTcBVHz9peSTiIiUnB9E5AJLfzZf6VBkEu644w4+8YlPsGnTJr74xS8C8OMf/5jzzjuPuXPnTvm8+/fvZ/PmzTz//PN85jOfKVW4cmr4XeBbxpjngfXAf69wPCIiZzQ/iMj4IX6g5NNskUgkuOuuu+ju7p7wc8ZLPgF86EMf4tlnn+XZZ5/lG9/4RinCnDYln0REpORyQQTGMpgLKh2KTEIsFiOdTpPL5XBdlyAI+OIXv8gf/uEfTuj5b33rW/mjP/ojLrzwQlauXMkjjzwCwNvf/nb27NnD+vXrR44Nu++++zjvvPM455xz+PjHP04ul2Pz5s28973vBeDf/u3fqKqqwvd9stksS5cuLe0fWqbFWvtscazWer0AACAASURBVFvdOmvtr1hrD1c6JhGRM1k2H5ILQvKhtt3NFp7nccstt/CFL3zhhPsOHjzI+973PjZu3MjGjRt57LHHeOONN7jtttv4whe+MOraaiIqsf7StDsRESm5rB+SdF0GsgHWWu2ln4I///FLvLy3v6TnPGtuHX/2rrPHvP8jH/kIH/nIR7j99tv567/+a/7+7/+eX//1X6e6unrCrxEEAZs2beLuu+/mz//8z7n33nv50Y9+xPXXX8+zzz4LwD/+4z8ChSafN998M/fddx8rV67kpptu4qtf/Sq/8zu/M/LYRx55hLVr17J582aCIOCiiy6axndARETk9JbJh3iOo9YHU1CJtdew3/7t32bdunUnXPD71Kc+xWc+8xkuu+wydu3axXXXXcfWrVv5xCc+QSqV4g/+4A9GPd+dd97Jo48+OnKOj33sYyP3VWr9peSTiIiU3KAfkPBccmGh50DCcysdkkxAfX09P/nJTwA4fPgwf/VXf8UPfvADfvM3f5PDhw9z6623cvHFF497juErZhdccAFvvPHGuI/dvn07S5YsYeXKlQB89KMf5Stf+Qqf/vSnWbZsGVu3bmXTpk38/u//Pg8//DBhGHL55ZdP/w8qIiJymhrKBVTFXYZ8VZ/PJnV1ddx000186UtfoqqqauT4vffey8svH2mn2N/fz+Dg4EnP96EPfYgvf/nLo95XqfWXkk8iIlJyg7kAzzXkwsIWPCWfJm8iV8lm0l/8xV/w2c9+ljvuuIPLLruM97///bz3ve/lnnvuGfd5iUQCYGTb3lRdccUV/PSnPyUWi3Httddy8803E4Yhf/M3fzPlc4qIiJzu0n5IMuYylFPl02RVeu316U9/mvPPP/+YKqUoinjiiSdIJpNliWEm11/q+SQiIiU3lAuIew7WQi6vhpezzauvvkpnZydvfetbSafTOI6DMYZMJlPS11m1ahVvvPEGO3bsAOCb3/wmV155JQCXX345X/ziF7n44otpbW2lp6eH7du3s3bt2pLGICIicroII0s+jEh6Dhltu5t1mpqa+OAHPzjSngAKfTP/7u/+buTr4W1xtbW1DAwMTOl1KrX+UvJJRERKyg8iwsjiGEPMdRjQxLtZ57Of/Sx/+Zd/CcCNN97IV7/6VTZu3MinPvWpkr5OMpnka1/7Gh/4wAc455xzcByHT3ziEwBcdNFFHDhwgCuuuAKAdevWcc4556h/mIiIyBjyYYTB4LkO2XxIFKnp+Gxz6623HjP17ktf+hJbtmxh3bp1nHXWWdx2220AvOtd7+IHP/jBlBqOV2r9Zaw98/5BbtiwwW7ZsqXSYYiInJYGsnmeevMwzTUJMn5IIuZw7oKGSoc1K2zdupU1a9ZUOoxZZ7TvmzHmKWvthgqFJKPQ+ktEZGb1Z/M88+ZhmmoSHBrKcdHSZpIxtT4Yj9Ze0zOZNdisqXwyxvyTMabLGPPiKPfdaoyxxpiWSsQmIiJH+MGRbXZxz2Egq4aXIiIiIjPNDyKGS0ss4IdqfSCnjlmTfAK+Drzj+IPGmAXA24Fd5Q5IREROlPZDnGJprusYgig6JiElIiIiIqWXy4c4HNkeldf6S04hsyb5ZK19GDg0yl1fAP4QOPP2D4qInIKGcgEx99hfL7lATS9FREREZlLaD0fWYA6GrJqOyylk1iSfRmOMuQHYY619rtKxiIhIwWAuIH5C8klX3ibqTOzFOB36fomIiBSk/RDPLVQ+ea4h7Sv5NBFaS0zNZL9vszb5ZIypBv4E+NMJPv4WY8wWY8yWgwcPzmxwIiJnKGstaT8g5h4p+fYch0H1fZqQZDJJT0+PFkETZK2lp6eHZDJZ6VBEREQqLu0HeE5hDRZzHYZ8rb9ORmuvqZnKGsybwXhm2jJgCfBccezffOBpY8yF1tr9xz/YWns7cDsUpq2UM1ARkTOFH0ZYyzHjWGOuYSCnxc9EzJ8/n87OTnSRZOKSySTz58+vdBgiIiIVFUUWP7CkEoX6Es8xZFT5dFJae03dZNdgszb5ZK19AWgb/toY8wawwVrbXbGgRETOcLmjpqwMi7sOg9l8ReKZbWKxGEuWLKl0GCIiIjLLFCbbHVmFea5DLpsnjCyuY8Z+4hlOa6/ymTXb7owxdwCPA6uMMZ3GmN+odEwiInIsP4gwHLvA8VyHbBARaNyviIiIyIzIhydeADQY8lp/ySli1lQ+WWtvPMn9i8sUioiIjCGdCxjt4poBskFEyp011zxEREREZg1/1OEuFj+MSMbcsscjcjy9CxARkZIZ9APi3ui/WnIa9ysiIiIyI0arPreMlZQSKT8ln0REpGQGMwGxUaqbHKNxvyIiIiIzZei4acNQWH9ldfFPThFKPomISElEkSUThCMjfo+W8Bz6M2o6LiIiIjIT0n6I5xz79j7mOLr4J6cMJZ9ERKQk/DACazDmxORTzHUYyAUViEpERETk9Jf2Qzz3+KEvhiGtv+QUoeSTiIiURC44dsTv0WKuQzYfEkaj3y8iIiIiU2OtJTdK9XnMVeWTnDqUfBIRkZLIBeEYqadjHyMiIiIipeOHEdZyQvW56xj8INLFPzklKPkkIiIlkc6d2GvgeNm8Jq6IiIiIlFI+HDu55BhNvJNTg5JPIiJSEgO5E6esHM3BkPHVd0BERESklMZLLlmKfTlFKkzJJxERKYmhXEDMHfvXSsxzGMgq+SQiIiJSSn4QMvblP1U+yalByScREZm2MLJk8+G4yaeE59CfyZcxKhEREZHTX9ofu/WBYwzZvHpuSuUp+SQiItPmB9G4V9wAPMeQyUdEanopIiIiUjJpP8Qbo/VBzHUYyqnyXCpPyScREZm2iZRzFyawWHIq/RYREREpmfQ4rQ88x5BW5ZOcApR8EhGRacsFIROtZ8oFWgCJiIiIlIK1lmwQ4jljVz6lVfkkpwAln0REZNoGcwGxMXoNHM0YQ8ZX8klERESkFPKhJbLDFeYnch1DEFkCTbyTClPySUREpm0gO/6ku2Exx2FAV99ERERESiI/gaSSAXwln6TClHwSEZFpS/sBcW8CySfPMJBR8klERESkFCYy9AUgH2jgi1SWkk8iIjItQRiRCyLcMXoNHC3uOgz6eazVAkhERERkuvJhdNK+mxbIhWp7IJWl5JOIiEyLH07sihsU+xFYo4l3IiIiIiWQ9kO8k/TddI0hq56bUmFKPomIyLTk8pNNJNkpPEdEREREjpf2A2Lu+JcBY67DoK+2B1JZSj6JiMi05ILJX0nL5LUAEhEREZmuiVQ+ea4hk9OFP6msWZN8Msb8kzGmyxjz4lHH/sYYs80Y87wx5gfGmIZKxigiciaa6KS7YTHXYSCr5JOIiIjIdKX9AG8ClU9pXfiTCps1ySfg68A7jjv2c2CttXYd8ArwX8odlIjImW7In0LyKacFkMjpwhjjGmOeMcb8e6VjERE5k+TDiMiCY8ZPPjnGEEaWfKjqJ6mcWZN8stY+DBw67tjPrLXD72CeAOaXPTARkTPc4CQrn+Kew1A20MQ7kdPHp4CtlQ5CRORMk5/M0Jfi40UqZdYknybg48BPKx2EiMiZJB9GBJHFdSa69ClcfYus1cQ7kdOAMWY+8MvA/610LCIiZxp/kmupyT5epJROi+STMeazQAB8a5zH3GKM2WKM2XLw4MHyBScichqbTgJJySeR08IXgT8E9B9aRKTM/DBionXktvh4kUqZ9cknY8zNwPXAr9px9nBYa2+31m6w1m5obW0tW3wiIqezqV5Bs0xtSp6InDqMMdcDXdbap8Z5jC7+iYjMkOwEJt0N8xyHdE5rL6mcWZ18Msa8g8LVtndba9OVjkdE5EyT8QOcCXcbOCLmOPRn8jMQkYiU0aXAu40xbwDfAa42xvzL0Q/QxT8RkZkz5Ad4E2x9EHONJt5JRc2a5JMx5g7gcWCVMabTGPMbwJeBWuDnxphnjTG3VTRIEZEzzJAfTqrZ+LC45zCoiXcis5q19r9Ya+dbaxcDHwbut9b+WoXDEhE5Y6RzEZ47seSTKp+k0rxKBzBR1tobRzn8j2UPRERERgxkAmLeFCqfXIfBrCqfRERERKYqkw9IJWITeqznGvoyeay1GDP5tZvIdM2ayicRETm1WGtJ54MpVT65jiEfWk1dETlNWGsftNZeX+k4RETOFMEkJw4Xpg1DPpxoi3KR0lLySUREpiQfWoLQ4kzx6pkxkFXTcREREZFJy4d20l03DZDXxDupECWfRERkSnJByHSrtnN5LYBEREREJmuq1eOqOpdKUfJJRESmxA8i7DQqtz3HYUhNx0VEREQmzQ8jJrsMs6jySSpHyScREZmStB9OuM/AaOKuQ19GTcdFREREJiubD3EnWYLuOZo2LJWj5JOIiEzJUG5qzcaHxT0tgERERESmIu2HeJNch8VcQ8ZXv02pDK/cL2iMeRR4CHgEeMxaO1DuGEREZPoGcwHxaSSfChPvIvJhNK0kloiIiMiZZsgP8CZZgR5z1fJAKqcSq/1fB7YD7wN+YYzZYoz5QgXiEBGRKbLWkvYDYu40O44DOTW+FBEREZmUjB9O+uKd5xiyQYidTtNOkSkqe+WTtfZ1Y0wW8Iu3q4A15Y5DRESmLldsNm6mO+6OQs+CVKLsv45EREREZqUwsuTDaNK9N40xRBbyoSXuTX8NJzIZZa98MsbsBH4ItAP/CKy11r6j3HGIiMjUTWXCymhcY0ir/FtERERkwvJhxHRSR74m3kkFVGLb3ZeAXcCNwO8BHzXGLKtAHCIiMkW5fGkWLXHPYSCr5JOIiIjIRE23ZUFeLQ+kAsqefLLW/m9r7QeAa4GngM8Br5Q7DhERmbqMH0x6vO9o4q5DfzZfgohEZKqMMX9hjHmbMaam0rGIiMjJ5adRgW6AXKCJd1J+ldh297+MMU8CTwLnAn8KrCh3HCIiMnUD2YC4N/1fIZ7rkAsiApV/i1TSaxQq0rcYYzYV12o3VDooEREZXS4f4kzxIqDnOAz5qjqX8qtEh9fHgf9prT1QgdcWEZESGMoFk56wMpbCFbgIr0TnE5HJsdZ+DfiaMaYD+CDwB8AtQG1FAxMRkVGl/ZCYM7V1k+ca0r4u+kn5VWLa3feMMe82xlxRPPSQtfbH5Y5DRESmJoos6XxIU8wtyfkshYl3NZp4J1IRxpj/C5wFHAAeAd4PPF3RoEREZExDfoDnTq3yKeY6GvYiFVGJbXf/A/gU8HLx9nvGmP9e7jhERGRq/DDCYDAl6PkE4BhD2lfvAZEKagZcoBc4BHRba/XORETkFJXxQzxnqtvuDNkgxNpSzC0WmbhKXGb+ZWC9tTYCMMb8M/AM8CcViEVERCapMGGldAuWuOswkFPTcZFKsda+B8AYswa4DnjAGONaa+dXNjIRETleFFn8wJJKTK2OxBiDtYWLiQmvNFXsIhNRqT0ODRSurAHUVygGERGZglwQljD1BHHPoT+jIguRSjHGXA9cDlxBYY12P4XtdyIicorxSzSkxQ+UfJLyqkTy6X8AzxhjHqDQZ/YK4I8rEIeIiExBOhfiTbHJ5WhirkN/Nk8YWdwplpCLyLS8g0Ky6X9ba/dWOhgRERmbH0bYElwGzIfadiflVYmG43cYYx4ENhYP/ZG1dn+54xARkakZyAXEptjkciyFiXch1XE1HRcpN2vt7xhj2oGNxpjzgU3W2q5KxyUiIifKB9OvfDIYcnn125TyKlvDcWPM+cM3YA7QWbzNLR4TEZFZYCgXEHdL++vDArm8xv6KVIIx5gPAJuADwAeBJ40x769sVCIiMho/iHCY3kVAzzEM+Wp5IOVVzkvM/2uc+yxw9XhPNsb8E3A90GWtXVs81gTcCSwG3gA+aK09XIpgRUTkRGFkyeZDakpcoeRgSPsBjTXxkp5XRCbkvwIbh6udjDGtwL3A9yoalYiInGDID/CmWYEecx2Gcqp8kvIqW+UT8FVr7VXAb1hrrzruNm7iqejrFHoSHO2PgfustSuA+1DvKBGRGeUH0TSvtY0u5jkMZHUFTqRCnOO22fVQ3jWiiIhM0FAJem96riGjbXdSZuVcWAwnhqZ0Fc1a+zBHJuQNuwH45+Ln/wz8ytRCExGRicgFE1uo9AzmeGlv34TPG3cdBnNKPolUyH8YY+4xxtxsjLkZ+Alwd4VjEhGRUWTyYUkqn7L5kChS03Epn3Juu+sxxvwMWGKM+dHxd1pr3z2Fc7Zba/cVP98PtE8nQBERGV8uH05ovsptD+9k8xuHue1XL6CjPnnSx8dcw+F0QBRZHE28Eykra+1/Nsa8D7i0eOh2a+0PKhmTiIicKIpsYUBLzJ32uQyFyXlJZ/rnEpmIciaffhk4H/gm4/d/mhJrrTXGjPmeyBhzC3ALwMKFC0v98iIiZ4SBXEDsJKXevWmfzW8cJows39m8i09fu/Kk5zXGAJZcEFEV1yJIpNystd8Hvl/pOEREZGz5KAI7vG6aHksx+VSCRJbIRJQt+WSt9YEnjDGXWGsPlui0B4wxc6y1+4wxc4AxxwJba28HbgfYsGGD6gtFRKZgKBcSO8mkuwe3HySMLBsWNfLA9i4+uGEBcxuqJnT+XBAq+SRSJsaYAQrvP0zx48hdFK7r1VUkMBERGZUfRBOqQJ+ofKBJw1I+lWgm2WiMud0Y8zNjzP3Dtyme60fAR4uffxT4t9KEKCIioxnMBcS9sX91WGv5+dYDrGqv5feuWUHMdbhj064Jnz+r5pci5XSutbbOWltb/Fh39NeVDk5ERI6VD0uXenIwWndJWVUi+fRd4BkKY33/81G3cRlj7gAeB1YZYzqNMb8B/BXwNmPMq8C1xa9FRGQGBGFEPoxwx+nJ9GrXILsOpbl2TTuN1XGuXzeHh145yK5D6ZOeP+669GvinUg5fRfAGHNfpQMREZGT84MQpwRb7qAw8S7tK/kk5VPOnk/DAmvtVyf7JGvtjWPcdc004xERkQnIBREnW+7cu/UAcc/h8hUtALznvPnc/cJ+vr1pF3/8jtXjPjfmGQYySj6JlJFjjPkTYKUx5vePv9Na+7cViElERMYw5Ae4JUo+xVyHIV/rLimfSlQ+/dgY8/8YY+YYY5qGbxWIQ0REJsE/SV+AXBDy8CsHuWRZMzWJwrWN+qoY7zp3Lo/t6Ob17qFxnx93HYb8PNaqLZ9ImXwYCClcjKwt3lJH3URE5BSS9iM8t0SVT44ho8onKaNKJJ8+SmGb3S+Ap4q3LRWIQ0REJiGbD8edrvLEa4cY8kOuXdN+zPH3rJ9HTdzl25veHPf8xhisNeTU/HJM2XzIYE5XKaU0rLXbrbV/DXzcWvvnwD3AJRSqyl+oaHAiInKCTC446eCXifJch1wQEUW66CflUfbkk7V2ySi3peWOQ0REJmcwF+CN0+/p3q0HaKtNcM68+mOOp5IeN6yfxxOvHWJH1+BJXsWSyyv5NJYHX+nixc5eLRSlJIwxHQDW2p8WD/0+8B7gncD/W6m4RETkRNZaskE47lpssgwGP9S6S8qjbMknY8zVxY/vHe1WrjhERGRqBsa52tY1kOW53b1cu6Z91EaYN6yfSyrh8a0nx69+skA2r8qe0Tz0Shef+ObT/PDZvXQP5iodjpwebjPG/KkxJln8uhd4P4UEVH/lwhIRkePlQ0tkGbcKffKskk9SNuWsfLqy+PFdR92uP+omIiKnsPQ4yaf7t3VhgatXt416f3Xc473nzWPLm4fZtm/s97Rx12FA28pG9eX7dwBw9wv7eHFPH6Gqn2SarLW/QmEC8b8bY24CPg0kgGbgVyoZm4iIHGsmkkSWk/f0FCmVsiWfrLV/Vvz4MWvtx4D/A8wFlgE/LlccIiIyefkwIh9Z3FFKvSNruXfrAc6dX097XXKUZxdcv24u9VUxvrVp15iPibkO/Vkln4733O5eNr9xmIuXNtOfDfjRc3s52J+tdFhyGrDW/hi4DqgHfgC8Yq39krX2YGUjExGRo+UnMHV4shxjyOXVdFzKo5zb7jqOO6S+AiIis0RunAXPS3v6ONCfO6HR+PGq4i7vO38ez+7u5aW9faM+Ju45DOUCTbw7zpcf2EHSc/i1tyzkgkWN/MdL+3lmdy+BSuVlGowx7zbGPAD8B/Ai8CHgBmPMd4wxyybw/AXGmAeMMS8bY14yxnxqpmMWETlT5Wfgd37McRjSxDspk3Juu1NfARGRWWq8kuyfbz1AddzlLUubT3qed66dQ2N1jH954s1RE0yOMYSR+g8c7c2eIe7beoBr1rTTkkrwySuXkgsifvjsHg70q/eTTMv/R+Ei4AeBv7bW9lprbwX+G/CXE3h+ANxqrT0LeAvw28aYs2YsWhGRM9hQLsR1Svv23XMNaV8V51Ie5dx2p74CIiKzVMYPcEapfUr7AY/t7OGKFa0kY+5Jz5OMubz/ggW8uLef5ztHr34yQFYT70Z85YEdGGO4Zk0bS1pquGxFK5ctb+G+rV1sfqNnRq6EyhmjD3gv8D6ga/igtfZVa+2HT/Zka+0+a+3Txc8HgK3AvBmKVUTkjJb2A2JuaTfexVyHoZwqn6Q8yln5pL4CIiKz1JAfjtps/JFXu/GD6KRb7o72jrM7aEnF+daTo1c/WSAXaCEE0DOY44fP7OWy5S101CdpTiVIxlx+96rlANz19B729WYqHKXMYu+hcBHQAz4ynRMZYxYD5wFPTjsqERE5QSYf4k2g8umbT7zJz1/eP6Fzuo4hH0YaYiJlUc6eT9PqKyAiIpUzkAmIeSdebbt36wEWNFWzsj014XPFPYcPbljA1v0DPL2r94T7PcdhUE3HAfiHh1/DDyOuO7udxU01Iw3f1y9s5Jo1bTy6o5tf7OzRpBqZEmttt7X276y1t1lrp9wCwRiTAr4PfPr48xhjbjHGbDHGbDl4UNcaRUSmKu0HeCepfOrL5PneU7v5lyd3TTihZNDEOymPclY+TbevgIiIVIC1liE/f0Ll0+7DabbtH+Da1W0YM7ky8GvXtNNWm+BfRql+SngO/dn8tOOe7dJ+wLc27eL8hQ0saKqmtS4xcl/cc/jdq1cQdx2+91Qne3rTFYxUzmTGmBiFxNO3rLV3HX+/tfZ2a+0Ga+2G1tbW8gcoInIayIcRkS30xhzP4zt7iCwcGvJ5vvPEC3xjUa9NKYdyJp+m1VdAREQqwx9jwXPf1i4cA1etapv0OWOuw4c3LmBH1yCb3jh0wn2qfIJvPP4mA9mAd67tYFFT9QnJvzVz6vildXPY8uZhHtjWRVajkqXMTCHr/I/AVmvt31Y6HhGR05U/ztThoz22s5uOuiQ1CZf7t3ed/AkU2h2o8knKoZzJp5L1FRARkfIZbUESRpb7tx1g4+ImGmviUzrvVavamFOf5FtP7iI6qvrJdQxBZM/ohVAQRvzTo6+zsi3FyvZa2uuTJzzGdQy/c9VyUgmP7z+9h87D6v0kZXcp8OvA1caYZ4u3X6p0UCIip5uJDBfpy+R5vrOXy1e0cNnyVh7f2UPGP/mFKccYXcCSsijntLuS9BWQsUWRJeOHHBryOTiQO6PfuIlI6eRG+Vny9K7DHE7nuWYSjcaP57kOH964kNe7h3h8Z88or3vmLoR+8MweugZy/NK6OcxvrCbhjT5JcHFzDe87fx4v7e3nnhf3T2iRKVIq1tpHrbXGWrvOWru+eLu70nGJiJxu/DDiZB2cnnitsOXusuUtXLWqlVwQ8fhrJ66vjleYeKeKc5l5XqUDkKkJwohsEJHxQ/oyPv3ZgMFsQBBGdA3kqK+KUR136ahP0lFfRV3Sm3RPFhERgIwfnrDl7ucvH6C+KsbGRY3TOveVK1v57lO7+famXbxlafNIQ22AbD6i9sSCn9OetZbbHtrJvIYqzplXz7zGqjEf6ziGT751GT9+fh93PdPJNWtaWT2nvozRioiIyEzL+CefdPfojm7m1CdZ0lIDQHtdgge2d3H16vHbI3iOIa3KJykDJZ9KKAgjejN5XGNwHIPnGFzH4JjC544zteRPLgjJ+hGZfEBvOk9fJk8mH9KfzdN5KMPe3gydhzPsPpxm16E0+dCSjDlcsqyFi5c2s6ythpq4x8KmappTCeJeOXdbishsN5DLEz+q31BfJs/mNw5x/bo5eO70fp64juEjFy7kf96znUd3dHPlykJDYs8pXIVrrU2c5Aynn/u3dbHz4BC/efkS5jdWkYyNXvU0rL0uyY0XLuArD+zk35/fz4KmGmoS+vUuIiJyuhjyA7xx3ksOb7l73/nzRwoOrlrVxp2bd9MzmKM5NfZ6KuY6DOY06EVmnlanJTSUC3lmVy8x12AoNG9zMAwXSTqm8J975OYZ4q5DvPi15zojV/0Hs3n6sgF96TyZfMD+viy7D6XZ25el83CGN3uGOJw+8kOisTrG4uYarl83lwWNVWzfP8DDr3Zz/7Yu2usSvHVlKxsWN9Fam6CjPsmcuirqqlQNJSInl86FxzS7fuiVLoLIcu00ttwd7dLlLSzavJs7Nu3isuUtuI4h5hoGztAS8K88sIPG6hgXLm5kfmP1SR9vjOHjly3hrqf3cNcznVx3dgfnzFf1k4iIyOkik4vw3LHftw1vubt0ecvIsatWtfGdzbt58JWDvO/8+WM+d7jXZhBG076oKDIeJZ9K5PCQzxV/8wAxx1Cd8Eh6LsmYQzLmUhV3ScZckp5D3HNIei6JWCHpFPeKySfPIVG8v3swx57DGTp7M+w+lGFPb4YwKiSwYq5hYVM15y9sZHFLDUuaa1jUXE1DdaHhbz6MyAURFy1p5uOXLuHJNw5x39YD3Lmlkzu3dLJuXj2XLW9h3YJ6GqrjLGysprk2PmY/ERE5s1lrGfIDGqviI1///OUDLG9Lsai5piSv4RjDRy5ayP/46TYe3N7FNWvaSXgu/Zkz7yrc028e4uldvdy4cQFzG6snXMHUXJPgY5cu5r/fvY0fPrOHxS3V1CZjMxytiIiIlEMmYAz1eAAAIABJREFUH4z7e/2x4pa7pS1H1mZzG6pY3VHLA9u6eO9588YtOjBAPrToLaHMJCWfSsRxDNevm0vn4TSRhVw+JJMPOZz22dcXkcmHZIu36GTd4opaUgkWN1dz0ZImlrTUsLi5hrkNVbiOIYwsuSDEDyKCyNIzmMM4kPRcGqpjuI6hqz/LOfPq2bi4iaFsnvu3H+S+bQf4+4d2UhVzuXRZM29Z2sSythTtdVXMa1A1lIgcKxdEYBn5ubDz4BBv9KT55JXLSvo6Fy9tZmlrDd/ZvJsrV7biuQ75MCIfRsdUXZ3uvvzATqriLpevaGFB08mrno72kQsX8u0nd/HDZ/dw/bkdnLewaYaiFBERkXIJwsL7veP7bw7rz+R5rrOX9543/4T3cVetauOrD+3k9e4hlramxn0dP4ioiiv7JDPntEg+GWM+A/wnCjvdXgA+Zq3NljOG+qoYf/yO1Ty9+zANyRjGGBzDCT8ArLXkQ3tMMiqTD8nljySoCkmnGlJJj8gWxo37QUQ+iujN+EBh+15t0qOjLkkq6ZGMuSQ855hSyWWtKfoyefb1ZcgFIW8/u50b1s9l58Eh7t16gEd2dHPvti7mNSS5bHkrb1naSEd9FQuaqmlJJU7aZ0RETn/HT7q7d+sBYq7hihWtJX0dYwy/euEi/uInL3Pfti6uO7tj5PXPlOTTzq5BHtjWxfXr5jC3oYq6SVYupZIxPnnlMv7orhf41y2dLG2tpb5K1U8iIiKzmR9GjFca8MTrJ265G3bZ8hb+4ZHXuH9b17jJJ1t8HZGZNOuTT8aYecDvAWdZazPGmH8FPgx8vdyxxDxDbdIjF4QEEYTRkZGYxgC20Alq+FjMNcTcGKlk8a/BFrafFP7zhxwainAMVCc82usT1FXFitv33Ak1DXcdQ1NNnKaaOLkgpHfIZ3dvhjn1CW6+ZDG/cekSNr1+iHu3HeDOLbv57lO7OXd+A29Z2sR5Cxtpr0vgFKcqWGuxo1Rs2aOGflrLsSNALWAg4TokYg5VMZe45+I5Bs81hT5XjtHeYpk2a60q9maIHxz5OeYHEQ+9cpCLl7Yc+blVQhsXN7KyPcWdW3Zz9eo2bLGKNHWGNM/++wd34DqGa9a0sbhlalsabzhvHv/8+Jv8+/P7ePe6ubxlWbP+b4iIiMxi+WD8bTOP7eimoy7JstYT1w51VTE2Lm7ioVcP8rFLlxwzVfhorjFk/AA48wa9SPmcLit6D6gyxuSBamBvJYKojntsWHTsNocoskTWElmIigmcyFpCa7ERxfsK9xeqoiIMhuqEO1LNVIo3DgnPpb2+ivb6KtJ+QPdAjj29GdYvbGDjkiYGsnke3H6Q+7Z18cxDr5FKeMxvrComlApxH/M5RxJSw58Pbye01o4ci3kOdckYqYRHbXL4FqM26VFX/Fhf5dFYk6A67hZ7ZRX6ZXmuQ8xx8FyDMWAofjz6cwoVE4WPJ1aayekpiiyDfkDvkM8rBwZwHGiuSdKSipNKxqiJu0pqlshQLhgZ7fvk6z0M5gKuXTP+yN6pGq5++rMfv8TPXj7ApcuaGcoF405oOV10DWT50XN7uWx5C/MbqqdcsZSMufzu1cv55Lee5s4tu1kzt26kJ6CIiIjMPuNVJA1k8zzX2cevrB+7p9NVq1p5/LUentl9+IT3qsNirkPaD0sSr8hYZn3yyVq7xxjzeWAXkAF+Zq39WYXDGuE4BmfcQsnyq457LGz2WNBUTX82oKs/i8XyznM6uOHcubx6cJAHt3fRM+iPJHRGkjwjCR9G9h075rhE0FHJoVwQ0pfOs/tQmr5snqHc6D/UHMNIUqo26VGbOPJ5VbxYLeUUpgEef/OO+9xzTTFp5RSry440d48d9bHwdwPGKUwldB0z8udyjto26RqDW5xg6I08vzCpUMmu8vGDiIFsnv19GR7b2cMzu3p5vrOPPb0Zkp7Dyo5aVrbXsqo9xZKWGhqrEzSn4tRXxahOuGqqP0VDuYBYcbrKvVsP0JJKsG5+w4y93nkLG1gzp45/3bKbS5c1M5A9Mybe3f7wawSh5bq1HSxprZnWz5Zr1rSzYXEj97y0n3evn8tVq9r0s0pERGSWyvjBmP2ennithzCyXDbKlrthGxY3UZvweGDbwTGTT55rxnyfJlIqsz75ZIxpBG4AlgC9wHeNMb9mrf2X4x53C3ALwMKFC8se56nIGEN9VYz6qhhLWmroy+TZ25thYXM1H71kMVUxt7AN0I6zve6oaqjil8XH2JGvXXMkORQVJ2cNZgP6MgG9aZ/+bJ6+TEBfJk9fxqcvE7CnN0Nvxp+xH4KOAc8pJJG8ke1/ZuSY6xx1vJj4SsYdWlIJWlJxWlIJ2moTzKlPUl8VpybhUR0vbIccTm5NpU+NtbY46tSSjyKCsDD2NJsPGfJD9vVmGMwFzG1I0pxKUJuMjUxSPB0rfdJ+QH8mz8v7+nn01W6e7+zjpb39ZPIhnmM4e24d16xp49Cgzwt7+vjeU50AxD2H1e2FZNTK9hRLWmuoTcZoqonTWB2nJuFSFXP1hnwCBnIBcbcwhfOZXb18cOOCMUu2S8EYw69dtJDP/vBFHtjexduLvZ9OZ4O5gO9s2sUFixpZ0lxD4zQrleKew6evWcGv/9Mm7ty8m/ULGmmqUfWTiIjIbJT2wzHX+Y/u6KG9LjHqlrthMdfhshUt3Leti7QfUB0/MQUQcx0GsmfelGEpr1mffAKuBV631h4EMMbcBVwCHJN8stbeDtwOsGHDhgnOmztzeK5DcypBcypBLgg5POTTNZDD2iNVToZClZABHOMcUwUFRyqGjq6CgkL1kx8WmqZn8xbPMdRXF5JeC5uqgCNJK8ccqWRyjAFr8cOI0EIYFRIzYWgJosLUhyPHCl8P38KokLQZvj8II/LDSZ3iBK0gKnw+fGz46+OPZfMhQVhImv1isOeYvlaOgaaaQjKqqSZOazE51ZxK0FGXYF5DNfXVMWoShabwcc8BC/koIh8Umsz3Znz29+Xo6s/SPZjjcDpPXyZPbzpPb8YvJOXSeQaywchre45hXkMV85uqWNhUzYLGala2p5jfWNiuUx33SMSckm3bLJcwsgxmAw4OZnlsRw9b3jjE8519vHkoDUBzTZwrVrRwweImzplbBxhyYSFB+aGNC/CDiFe7Bnlpb18hGfV0MRnlOqxsT7Gqo5YV7SmWtaRIxl2aquM0p4aTh96MJlVmoyiy5PIR1TGX+7d1YYFrV7fP+Ouum9/Aunn13PXMHi5a2kQQRqdlcnXYP//iDQZzIe88p4MlLdU4Jfh3+JalzVyxopX7t3Xx5GvdXHf2nJKct5SyfkA+suOOjhYRETnTpYsXXY9X2HLXy6+sn3vS9f7Vq9r46Yv7+cWOHq4968S1nGPMyHuhM2XQi5Tf6ZB82gW8xRhTTWHb3TXAlsqGNLslPJeO+io66qtm7DUKSaFiZc9RyaJcEJELCtP/cmGEHxT6Y0XFJFjcdcCzWHvsD0VzzGdHpYeMGanCgkKy6PgqLYM5Utllj99eaEaeZyicqzebp2cwx8GBHAcGCkmjroEcrxwY5InXekZ6Xw0/r7G6kJxqTsVJJTz6s4XE0nCCKZM/sbrLdQwNVTEaa+LMqavirI46GovN4+Ouw+7DaV7vHuLlvf08tqNn5HmN1TEWNFWzoLGQlFrUUsPKthRNNYmRqYhVMfeUSrLkgpCBbMCrBwZ4cPtBnuvs5cU9fQzmQhwDa+bUcdPFi9iwqImOugTZICKylsBaWlNxWmpTI1drugdzeF4tq+fU8oELFhBEETu6Bnlxbz8v7u3jrqf3YCk0+1/ZXsvqjlqWtaZY3lY4h+eakYb+VfFCRVmy+P0a3sbpOYWKuFPtjfxM8MNo5P/GvVsPsHZuHR31yQk9N7KW3rSPpVBlmChWBE70395HLlrIH9/1Avdt7WLDoqbTtu+TH0R87bHXWd1Ry+qOOlpqJ/b9PRnPdbj1bSt5bEc33960mw2Lm2gt0blLofNwmt/65lNcvLSZ/3r9WZUOR0RE5JSV8UNqRqlWevK1Q4SR5dJlY2+5G7aqo5Y59Uke2N41avIJCu99lHySmTTrk0/W2ieNMd8DngYC4BmKFU5y6ipsw3OZzBCr4xucw/Dnx27947hjI83Ri8eP3ioYHXV85FixSXwYFe4Li19bC9kgwnUNNQmXBU3VwJF0l+c4GGPpSwf0DOXoHvA5MJClqz/HgYEsr3YNMpgNaKiO0VgdZ2lrisbqGE3V8UJiqTpOQ3Wh11V13CskWIqvPfwaw4my8xYWeu4YY0j7IXt7M+w+lOb1niHe6B7iP/b2ExazYDHXML+xmvmNVSxsrGZBcxUrWlM01yaJe4VkilNM7A0nWYwpbJccqWZzjnw9XAk3nEQIj/p+hdYSRUc+D4crzaKIMAI/HzLoBwxkAgayeXqGfF7e189znX28fnAICzRUxbhwSTMbFjWybl4DjjOcBAHXdVjSUEVDdYyauHdMAqi+Ksb8xmqCMGLID+nP5Dk4mCv0guqo5f0XzCeMLK8dHOSFPX28uKefHzyzh8gWKslaUomRPmOpROFWk/CoibvUJD3qksPHYqSSLlUxr9gg3ylWmblUxV3qkrEJTaOcDXL5wmjfl/f1s68vy4c3LpjQ8/JhxOG0z5KWGlJJj8FsQH82z2A2Tz60I9WSnnOkH9vxSamz59Zz3oIGfvL8PhY113D9OXNY0FSaqqBTyfef3k33oM9Nb1nEoubqkiaG186r57qz27n7xf08/Go371k/75T4/j3y6kF+745nis3rZ76STkREZLYKi9VIo60PHt3ZTVttguVtqZOexxjDVavauGPTLroGsrSNcUHKDyI0p0RmyqxPPgFYa/8M+LNKxyEza7giqfhVJUPBFrcD5kNLPihs1Uv7Iel8QNLzqK0qNHQfjtJSSNjEHAfLiUklxxSSSq4xhSmHsSNVN4nYkal/sWIfqqC4HSrtF3plNVbHWNpaw5W0FuOD7sEcnYczvNkzxOvdQzy3u5dHXu0+5s8Rcw0JrzBVcTiBEnedQkLFc0gUJy7GPYek545s5Yt7LnHX4IcR2XxE1g/J5EOy+ZBMPhr5vHCLjrovPCZJCIW/yZXttdx44UIuWNTA/MZqssOPM9BSm6C5Jk4q6U2oabjnOtRXOdRXFarAgjBiKBfSl/E5OOCzrC3FsrYU7zt/PpG17Dw4xEt7++kezNGfydOfCeg8nKE/myebH3u6SHXcLTbHLySpUgmPRc01bFzcyLK2FB11SRqq47M6EZULQyzw85cPUBVzuWQCV9ay+ZDBXMA58+ppqyssbNpqj9zvBxHZYnXjQLawnXQgmyc4qmRwOCl1yxVL+cu7t/L5e7azff8AH71kMWfPrSMZOz2ax0eR5baHXmN+YxXrFzbQXlfayiTHMfz+21Zx39Yu7ti0i8uXt4z8nVSCtZb/89BOPv+zV2iqifMXN6xlZUftyZ8oIiJyhvKDaNR3PYPZgOd29/Luc0++5W7YVava+PamXTy0/SAf2HDiBUXL+JP1RKbrtEg+iZSbMcNJG2CM3UBBGBUSVIEtJmkKyRfHQFXMJe65xzQ8n8yWJM8tjFSvr44xp6Fq5PWyQUTGDxnI5mmojtFRl+T8hY1YLMbCULFKal9/lowfkguOJIdy+ZBsEI0kD7oHo5H7s/nwmOTAaIb/XFXxwoTC6phLbTJGe11hq191vHBfdfzI19Vxj2WtNcRchyAqVDfFPYf5jVXUV8epiU+/KbjnOtRXO9RXx1jYXEM+jBjKBfSmC9v0lrTWsLS1plDNZQrb6QofIQgtaT9gMBfQny00Px8oVvEc+3mhSf5jO3v49qZdrGxPccGiRjYubmJ5W4o59VXUV82+iqjBbEAQWh7b2c0VK1pPmvQZzAaENuL8RY3UV43ex2e4KT9JaK098p/HD478exvKFZKqdVUxPvtLa/jWk2/yo+f28mrXAJ+8chmXLm85Lbbh/fzl/bzZk+Y3L1/CoqaaGSlzX9paww3r53Lnlk5+9vJ+brxwUUW23Q7l8vzn7z7P3S/u59z59fz2VctJxhyWNFeXPRYREZHZYqxk0BOv9xBElkvHmXJ3vI76JGfNqeOB7V28/4L5J6yxPcchnQtB14Vkhij5JDJDPLc4ga5Mpaue65ByHVIJb+RNvbWWXDEhlfYD+rJ5GmtiLG9PHdMd6+gKLUaOmWOazUfW4geFhFquWO2VLFZHJWMOnuOMbHOMitvvjBneLnjk/KZ49uFeQjHXoa220Ow+lfBmPEETcx0aquM0VMdZ3FKDHxSSHYO5gFwQFicNWvx8BMYS9xzqnBh1VTGcpuqRLZzmqP5hw9sTu/qzPLXrMI/t6OaOTbu5Y9PukUTUhkWNrGivnVWJqCE/ZMubh8jmo5Nujzo0lKMm7nHe/KYpVSYNJ6Vqj0tKZfMh85uqWPXMHv7liV381x++yH+6fAnXr5vLouaaU6p/2WR95cGdNNfEecvSJjoaZqYiyRjD7127kp+8sJ87Nu3m6lXtzG2cuX5+o3mze4jf/OYWXjkwyPvOn8cvnzOHumSMs+bVjTpxR0RERAryxdYTx3tsR2HL3YoJbLk72lWr2vjKgzvY0TXIivZjs0yeY0jng2lEKzI+rfpETmOmuI0vGXNprIkzr3h8eKJfZIdvhURVVOyDNZw8OjJRMCKKICj2bgqLx6HQv2u4gssxjGwNjLmFSXuOKTzGmOEphkeSNUffVymFpEeh79ZYrD3yvRjpxTXc26q4F98PLI3VMVpqE7ztrHYODfo8teswv9jZM5KIWtFWSERduLiRlR2F5t31VbFTtrHjYDbPQ9sPMq+hitVjbI+KrKVnKEd7bZKVHbUl/7MkYy5r59ZTn4yxpLmG//PIa/ztz19l2/4BPnrxItbNb6QqPvu24W16vYfnO/u48cIFLGpOTWhL6VTNa6jixgsX8A+PvM6PX9jLxy9dUrZ/c/dvPcBn/vU5svmQP7xuFWvmFP7dr2hLndYTDEVEREoh44eFCeBHGcwFPLu7l+vXTXzL3bDLlrdw+yM7eWB71wnJp5hbrHwSmSFKPomcgWKuw2nSNqcsjCkk2CbyPQvCiP5swIH+LK11hURUz4DP07sP8/jOHr6zeTff2byb5W3DW/MaWX0KJqLCyPJmT5qt+wf46MWLR13cBGHE4Uyexc01LG6umbFm1sYYFjbX8K5z48xrrOYbj7/B3S/sZ8eBQT751qVctqL1lJrkNhFfeWAHqYTHlStamdcw85VIn7xyGd9/eg93btrNO8/uYGFzzYy+XhRF/N39O/jSfTtoq0vwZ9efRWNNjBXtKeY1VFU04SwiIjJbZPIhMefYteGTrxW23F02iS13w1JJjwsXN/Hwq918/NIlx1wI8lxDXyY/7ZhFxqLkk4hICXmuQ1NNnKaaOGFkR6butdcXElHdgz7P7urlF691c+fm3dy5eTfLWmtGekStmVNHaypObVWMqtj0e15NVS4IeWxHN46Bq1a1nnD/cG+wszpq6ShD8gSgvjrGJcubaamNs6I9xTcef5P/9m8v87FLF3PDuXNZ0pqaFdvwXtnfz0OvdPOudXNY3FpTlsqtplSCmy9ZxN/+/FW+//Qefvuq5TO29XMwm+fTdz7LvVu72LCokVsuX0p1wuWceQ3UV4/eC0xEREROlPYDPPfYtc2jO7pprU2wsn1yW+6GXb26jcd29vD0rl4uXNI0ctwxhsgWdkicKhdD5fSi5JOIyAxxHUNjTWFL37LWFAPZQpPzjroE157VSs9gnmd2Hebx13r41y2d/OuWThY2VbNmTi1nzalj7bw6FjXX0FRTnn5YR8v4IY/u6Ob8hY0nNPcezAUEUcT5CxvLnkxIeMduw7v9kdf5u/t38MqBAW6+ZDHnLmg45fsIfeXBncRdh2vXtDG/sXwNtz9+6RLu2LSb7z61m6tXtzG/sYraZGn7j73aNcBvfeMpXuse4sMbF/D2s9tpqIpx1tz602ZKoYiISLlk/JCq2JF1zZEtd3OmfIHy/IWN1CU9HtjedUzyCQq9Wf1AySeZGaf2Cl1E5DThOmak0fnSlhQDuYDugRztdUmuPaudnoEcz3b28VxnL/dv6+Kelw7gGFjakmLNnFpWz6njvAUNLGiqpr46Rk3cm9Eqn4dfOcjhdP6ERuO9aZ9kzGH9gqaK9Voa3oZXXxWno76Kb296k3teOsCOrkE+eeUyrljZSlvdqbkNb19fhp88v4/LV7SyrC1FKlG+X8OpZIzfunIpn/vRy3zqO89wzrx61s6rZ/2ChpJMmLznxf3c+t3nCCPLn7xzNcvbUsxvrGJZa+2sqEgTERE5lURRYXBQKnHkd+imKUy5O57nOlyxopV7Xt7PYC44YS2SH2PCnsh0KfkkIlJmjmOor4pRXxVjSUsNg35Az2COOY1VXLO6jXwYsetQmm37B3hhTx8/eWEfP35+HzHXsLwtxZo5dZw9t44LFjYypz45I1v0fvDsHlIJb+SKWGQth4Z8WmrjrO6oOyWuiB29DW9ley1fe+wN/vRHL/GxSxbz7vVzWdZ66jW1vv2h14is5R1r21nQNLN9l0Zz48aFvHpgkKfePDzy76oq7rKmo5Zz5tVz7oIG1s6rpyWVoDbpTejvOYoiPv+zV/jqQzuZ11DFH7xtFfXVMdaUcUumiIjI6cYPIwwnbrlrSSVY1T76IJiJump1G//+wj4e29HNdWd3jBy3FCqfRGaCkk8iIhXkOIa6ZIy6ZIzFzTUM+SEDmTzt9UlWtNfyy+vmkMtHvN49xNZ9/Ty/p4+7nt7DXU/voSrmsrI9xVlz6jh3QT3nL2qkJZWkJuHiGIM9ajavLQ7qtaPM6z3+cb1pn1/s6OFtZ7UTc51iY3GfhU01LG2ZucbiUzG8Da+hKs7Cxmr+4dHX+cqDO9l2YICPXbKY9Qsby1pdNJ6+TJ47t+xmw6JGVrTXUl9V/v5HiZjLJ9+6jO37BwhCy46uQZ7v7OXp3b08vasXHn+TjrokZ8+r45x59Vy0pIlFTTXUV8eoHqUqqi/j87vffoaHX+3mkmXNfPzSJVQnXNbOq6cuqf5OIiIiU+WH0cj6DWAoF/DMrl5++Zypb7kbtqKtMADkge1dxySfPMdhSBPvZIacGityERHBGEMq4ZFKeMxpqCKMLEN+wEAmT0d9gjVza3nP+fMYygbs7B7i5b39vLCnjzs27+aOzbtJJTxWz6llbv1o1SZHZ52OLFjsKNmofX1Zgsjy9rM6yAUh/dk8azrqmHOKVrEYY1jQVM071s6hoz7JnZt3c/eL+9nZNcgnrlzGlStb6ahPVnzC2tcfe520H/LOc+awZIanzY1nXkMVqYTHoSGfhuoYa+fV8aGNCzg0lGfrvn6e7ezlkVe7uW9rF65jWNmWYu28es5f1MDGRU00F6uidhwc5JZvPMXuw2luungRV61qpakmweo5tSQ89XcSERGZjvxxFUhPvn5oylPujmeM4erVbXzziTc50J+lvdiuIOYa0n4w7fOLjEbJJxGR/7+9O4+S46oPPf691VW9r7OvGu2jzZYX2djY4AUwNnuAAAmLwZzHeycJjzUvJISTvBDOSTgneeBAEgiBsJg1ELbHA4wXjBfJlhfZlmztu2ak0ey9V1fd90dVj1qyZWvpnukZ/T7nlLq6ulVddaem5/avf797m1SgJiuqNxOl4rjkyg5TBZvuTISL+1K8g34m8zY7j2XZNjTFk4cm2LxvnOcLs5xN7OWS/jTdqTCFssNlizKko8G6nVejpKIWVy1rpSUeZHlnnK/dv4+//tlW3nPVAO996RJ6MnMXPCvaDv/x4D5vIPmeJOk5nPVNqZrxx9rjFG2H6aJX+tmVCvGyFW3Yjsv+0Txbh6Z4/MA4P3j0ED949BCpiMXaniT9LRF+tmUIQyk+9do1DLRGGWiNsbi1uTLjhBBCiPmqaDsYNT26B3Ydpy0eZGXX+ZXcVV2/sp1vbtzPvduP8fYrFgFgBQzyZcl8Eo0hwSchhJgnzIBBKmKQilj0t0SxHZd8yWEiX6Y3E2HD4gyKAQylzjvLp+K6GAZc3p9p+tnjaj1fGd6Xf7eXZMTitmuXzNm5/MOvtzOet/lvL1vK4rbYnGdh1QpbAcJWgPZECK21F+DM23QkQ6zoivPGS3qYLthsP5rlyUOTPH5wnAd3j7KkLcZHX7mChB+Qak805yDvQgghxHyULzuYAa+/kCtVeOzAOK+5qBujTn2IjmSYdT1J7tk+wts29KOUwjQU2ZKN1rqp+ipiYZg/nyiEEEKcxAoYpKIGqajFQFuMcsUlV6owXbQ534lKAgZ0pSIEzeYasPtMVMvwkmGL1niIT/74Kb56/z7W96W5ZnnbrGfmbN43xr/fv5eXr2jj0kVpWmOhWX39s1Fb+tmTiXjZdiWH8XyZrlSYywcyvJcBxrJlMrEg8ZDJ2t5U04yrJYQQQiwU+bKDaXj9sIf31a/krtaNqzq4/e5d7DiaZbArgVIKV4PtaIKmBJ9EfUlvUQghFoigaRA0g2RizV8iNxuqs+F97FUr+dP/fJIv3ruLJe0x+jLRWTuGou3wke8/QToa5G1X9LNknpWlmTUBzsVtMYq2Q65UYTRXxtWapW3xeRmgFKIeKo5LxdXYjovtaCqOS9F2CBiKRMQiFjQJzKPfdyFEcynYDiF/1tkHdh2nNRZksE4ld1XXLG/jX3+7h3u2Hztp32XHlb/vou4k+CSEEGLBCpkBXr++lwd3j/LDxw7znYcP8EfXLyc2S5k6f/vzbRwcK/Dnt6xiUUuUztT8Lk2rlui1xps3e0tcmKqBUUMpryRFgaGYua+UN+6dobyJyw2lThsI1lpTdlwqjqbieOvlikPBdijYLsWyF4CdyNtkixWmijZTRS/rtFRx6ctEWNERpy0eJhOzaIuFSERMYkFzXgWfhRAmMQA/AAAgAElEQVRzx3U1RdshFjTJl72Su1vW1a/krioaNHnJ0hbu2zHC+69dguUHu+yKC/KnfkEqlh1uv3sn73zJInpn8QtZkOCTEEKIBS5oGnzillVs3j/O1x/cz4aBDNet7Gj4h8D7d41wx6YDvGp1J2u6k6zsTMj4CUI0wLPDU3z/kYNMFGxCpkHAH7fEMBQBw1sPGAYBAwKG4d/3HwsoLMMgaCpMw2CyYDOaKzNdtJkuVpj2g0vTxcpMoGm6WKHiPnemUPACXtWH2uMhBrsSLG+PsaIzQV8mQms8RFs8SCJsEQ0G5D1BCPG8yo47M9T4w3vHsB3NNXUuuau6cbCD3+08zqP7x7lqaSsKKFVk0PGFaMuhCT783cfZezxPZyLErdcsmdXXl+CTEEKIBa89EeavXr+GD3zzUW6/axfLO+L0t8Qa9nrZUoWPf/9J2hMh3nJZD4NdCcJWoGGvJ8SFbOvhKb76wL6G7DtiBUhFLFIRyxuEvzNOKhIkFTFJRSySEYt0JEjSv28aBvtGc2w9MsW2I5M8fWSS+3cdByARMhnsSrCsPcbKzgRLO2J0JsO0xULEwyYRS4JRQgiP7bhUQ9z3+yV3q+pccld16aIM6YjFPduPcdXSVkxDZrxbaBzH5fa7dvLF3+4magX48CtW8Mo1nbN+HBJ8EkIIcUF4+Yp2/vDKRXzjof38xwP7+ehNKxtWfvdXP3mao1NFPvna1Qy0xelIzu9yOyGa2Zsv6+Xi3hT7jueIBAM4GhzXG4/JdTWOq/1tmorrldN563rmeY6rcbUXIEpGLJJhk0TYwgwo/zGN64KjvX1WPxYqBVqDAnIlB5RDJmpx7fJWXr6ijZBpMJYr88zQNFuHJtl6ZIrN+8cBLytzRXuc5Z1xVnbEGexKzmRHJcKmBKyFuIDZjvceUy25u3ltV91L7qoChuLlK9v5xVNDZIsVzIAiJ8Gn55gu2piGQSQ4v96b9x7P8qHvPsGThya5YnGG9750MamIRSJizfqxSPBJCCHEBcEMGHzsVSvZtGeMbz98gA1LMrx6TVfdy+9+s+0oP3zsMK+9qJvV3UmWtcfrun8hxMmUUl7AKGqhgYDWuDpAUINGo7VGazi1UE5x8jbl/6O1Vz5X0S6GNrBMRTAQwAoY/qKw/PK+gF/eZxre2FIBwwtW5csO0wWb8UKZaMjksoE0lw6kCQYMCrbDzqNZth6ZZOvQFD/bcgTXf83FrTFWdMa5pD/N5Yta6MtEyMSC8+7DjhDi/JRsB4VqeMld1Q2DHfx0yxF+t2uEV67upFCqNPT15pNC2WHjnlEe2jPKmq4k/a1R+jMR0tFgUw/KrrXmjo0H+MwvnkGj+ePrl3H5QJrOZITlnXFC5uz/XZHgkxBCiAtGKhrkb964llu/+jC3/2Yna7qTDLTWr/xuMm/zZz98kt50hDes72ZNd7KpOyZCLBSdqfCLDuivtfZvvaCT1nom+KT9QJXixHhQ58oKeIPzt8SCDBDDdTUF2yFfdpjIlxnPlVnVnWBVd4K34mVk7R/N88zwNFuPTHL3s8f41dajpCIWly1Kc8XiFi4fyMwEoqJB6b4LsdDlyhVMQ/HA7uO0xIKs7k429PWWtcfob4lyz7PHuHltF9MlB631BV0KbDsuzxyZ4ov37uKuZ45RcTUKWNOd5LKBDJcPZFjZGacrFSEVsZpqdtOR6SIf+/4W7tt5nFVdCf77y5bSmgiyqitJeyI0Zz/XBfHXSymVBr4CrMPrT9ymtX5obo9KCCFEM7picQvvu3YJ/3Lvbr702z38xWtXE69T+d2f/+hJJvI2n3rdcpa1x8nEgnXZrxDi/FU72yf63LPT+TYMRSxkEguZtCe86aNsxyVfdsgVK4znywTNAEvaYrz2oi7KFZdnh6fZuHeMB3ePcs/2EZJhk8sHMlyxuIVL+9P0tURpiQVnbeZOIcTsKtgutuPy6P5xXt3AkrsqpRQ3Dnbw9Yf2MTxVJGgalB13TrJj5prrag5P5Pnne3fzkyeOUCg7vHJ1J69Y3cETByd4YNdxvrlxP9/auJ9V3QkuH8hw1ZIWVnUn6UiGSYTMOQ3a/eKpI/zFj55mulThXVct4oaVHbQlQk0x/uhC+Yv1eeCXWuu3KqWCwOzOGSiEEGLeMAzFB29YzgM7j/ODRw/ykqUtvP7invMuv/vZliP84ulh3nxpL6u7kyxua9yA5kKI+c0KGKQiBqmIRU8mgtaaUsWdKddLRy3W9SZ5z1WL2HE0y6bTBKLW96fpz0RoiYeIyex5QiwYhVKFLYcmsB3NtQ0uuau6frCdbzy0j3u3j3DT2k7KlQsv+DSeL/PV+/fy7U0HGM2V2TCQ4T1XD9ASC2I7mpvXdnHLui5Gpkts3jfOA7uP862NB7hj4wEGuxJsWJzhmmWtrOtN0xqf3UzVbNHmkz9+mp88cYT+TIQ/u3kV3ekwKzsSdKfDTfH3Yd4Hn5RSKeDlwHsBtNZloDyXxySEEKK5RUMmn3nTOt7xbxv5/G92clFvkqXt5z6LzPFsiU/++CkGWqPcfFEnq3uSmAEptxMLn1LqZrwvAQPAV7TWfzfHhzQvKaUIW4ET5XptMfLlCuO5Mq2xEBf1pnj31YvYPpzl4VMCURsGMmxY3ML6vjR9mQgt8SDxOf7mXQhx7rTWFCoOD+0ZpSXa+JK7qrZ4iIv7Utyz/RivWtMxM+j5haBQdvjRY4f40n27OTBWYFl7jA+/cgVL2+KUHZf2RIhF/izJU4Uy6ahFWyLEzRd1cWyqxGMHxnlg9+hMIGplV4INAxluGOzgot4k6ViwoYG8TXtG+cj3nmBossgb1vfwuou6aU14104zlWo3z5GcuyXACPA1pdR64FHgQ1rr3NwelhBCiGa2ri/Fn9ywnL//1Xa+cM9u/vcb1pIIn/3MH1prPv79LeRLDv/rpqUMdiRJnsN+hJhvlFIB4IvAq4BDwCNKqZ9qrbfN7ZEtDNGgSTRo0puJUig7M4Goi/1A1I7hLA/vG+OB3aPcXZsRNdDCxf0pulJhUhFvsPKwaUhAXIh5ouy4FMoOj+2f4KY1nQ0vuat1w2AHn7trJ7uP5VjVNTtBr7lkOy73bR/h//xmB08fmaIjEeJjr1rJZQMZShWHTMxioDV2UolzJBihMxWhXHGZLtocS5boToe5eV0Xw5NFHj8wzoN7xrhj0wG+vekAKzsTXLE4w01ru1jXmyIWChAMGHX5gsB2XP7uF8/wtQf3kYkG+dTrVrO0Pc7Sthh9mWjdJ9U5Xwsh+GQClwEf1FpvUkp9HvgE8KnaJymlPgB8AGDRokWzfpBCCCGai1KK2162hN/uGOEnTxzh6iWtvPnyvrMeMPIHjx7i3h0jvGNDP6t7EvS3SOW3uGBcCezSWu8BUEp9F3gjIMGnOosEA0SCEXoykZMCURf1pnjXVScCUQ/tOZERtawjTm86Ql/GW5a2xWhLhEmGTSJBk4gVkAkRxJzSWuO4GkOppvuQPJdsR/PEwQnKjtvwWe5OdfWyVv75t7t5aM8o169qn9XXnk2uq9l6ZJLP/mo79+88Tixk8v5rlnDjqg5Kjks8ZHJRX+oFv0wMmgat8RCt8RCOq5ku2hzPlOhviXLLum4vEHVwgof2jPKtTQe4Y9MBlrbH6ElHaE+E6EtH6G+NsqwtRm8mStgKEDINggHjjH4fnhma4n9+53F2Hsty3cp23n5FHx3xMIPdiXP6MnU2LITg0yHgkNZ6k3//P/GCTyfRWn8Z+DLAhg0bLpwcQiGEEKcVMgN85vfW8eZ/eYjP3bWTS/rTrOg68/K7ockC//unW1nREeemtZ2s7k5KB1pcSHqBgzX3DwEvmaNjuWC8WCBq53CWzQfG2T2SY8vBCVy/12saiu5UhN5MmL5MhN50lCVtMZa3x0jHgsSCJpGg9+FHSvbmlutqXH82RldrbzZGzUnbFN6XKIYCQylU9RYaEsxx3VOOBz1zTI6rcbX3HEdrXFdTcTS26w2aXXE0FVdjOy6Of2s7LkOTRQ6PF4iGArTHQ3SnIrQlQkT8EtRgwMAyFVbAwLqAMvfsissj+8bJRK1ZK7mrigZNXrq0lY17R5nI27P62rPl4Fief7hzOz/fMoRS8HuX9vL69T2gIGQarO1NkopYZ/U+GDAU6WiQdDTIsvY42VKFibzNso4Yt6zr4vBkgScOTPDU4UmePjzJ+CltawUUbfEQ7fEQ7YkQXakw/S1RFrdGWd4epy0RImgahMwACvjSfbv5xzt3EDIDfPSVK1nXm2RJe4xFLbGmmnXvVPM++KS1HlZKHVRKDWqttwOvQL5xE0IIcYaWdST401ev5C9/vJV//M0OPvvWi8/oGyOtNR/53hPYrua2a5ewqqu56uqFaAaSed5YpwtEretNgfICFqPZEocnChwcK7BvNMfukRwb94yd2IcVoCcdpi8TpT8Tob8lyuruBItaYsTDJiH/A49kSZ05rTW2o6m4LrajKdoORyeLHBzPczxbolB2KTkOZdulXHEpO/7ir1ccXRO08fZRcVw/gOMFprzAjEEwoAiZAayAwjINP3PCux+yDMJWwAvmmAFCVoBI0CASNEmEAmSiQVBqJmikXXBcFxcvqFQNgrmnfG2vFN784ngremYNFAqNxsALgBnKC5JNF232jOTYPZJl17EsO49lyZYqz2m7kGmQjlqkIhbpiEU6GiQVschELbpSYbqSYXrSETqTIUKW6Z134MyzRRpJ+211vh/+x/Mlnjw0wU1ruuYkkHDDYAf37hjhwV2jXNyXXjC/+5N5my/eu4s7Nu0nV3K4YbCdt1/RPzPe3rL2GG3x0HkH35VSJMIWibBFf4tXNj1ZKLO2JzkT0CtXXEazZcbyZUazZUazJY5Nlzg6XWT33iy5knPSPqPBgB+cCpItO2wfnubS/jTvvWaAzmSE1d1ewKzZLZRe8geBO/yZ7vYA75vj4xFCCDGPvP2KRdz97Ai/fHqYa5a18gcvGXjRDt83HtrHxj1jvPuqAdb2JOlOh2fnYIVoHoeB/pr7ff62GZJ5PntODURNl2yyxQqZmEVnKsz6/vRMgKDiuAxPVoNSefaN5nhs/zi/3TEys79UxKInHaY7FaE7FaY/E2F5Z5yBlijJsEXYMglZzfGhfzbVZu5UHE2+XOHweIHDE94yPFVkZLrEWK7MeK7MWN5mIl9+TgDndBT4mT5eUMX014N+9o8VUBhKkbcdSgWbcsXxglYVl1LFC1CdKSug6EiE6U6F6Uqd+Fn3pMK0J8IErBPBo7NRtB12j2TZcXSaHUe922PTJQAMBYtaorx0WSsrOxMsaomSLdlM5m0mCjbjeZvxfJmxXJlD4wWeOjxFwXae8xpWQJGsBqgiFq3xEJ3JML2ZCAMtXlZfZzJE0A+c1itzquK4jOZK7B3JsW8sz76RHAfG8hyeKHBsukRHIsTl/kDTlyxKn9Pg//c8O4Lt6Fkvuata35+mJRrkX+/bzS+3DtOXibCiI86q7gTretK0JYLzJiBdHZfpR48f5su/3cNItsT6vhTvuWqA1kQIK2CwrC1GRzLcsPex6ntzlz9OVLHiYFdcirZDvuwthXKFYsWdeY/OlSpecCpXZjRX5ni2xMh0iaNTRfJlhw+8bClXLs0w0BJjcVts3mQGKq0vvH7Ahg0b9ObNm+f6MIQQQjSRIxMF3vCF+zGU4j/edwVrelKnfe7+0Ryv/tx9LGuP82evHuTKpa2ErQtrOuJmp5R6VGu9Ya6PYyFTSpnADrys88PAI8Afaq23Pt/zpf81d7TWlB2Xou1SLFeYKlaYLlXIFm209jJV0Jp82SuFOjSeZ/9YnsPjBQ6O58mXT3z4D1sGXUkvYNGdjtCTirCkNcryzjgtsRDRoJdhE6rjB/65VihXuPvZY9y/8zjHpkuM58t+gMRmqmBz6qepsD8WTFs86N+GaIlaZGJBYqEApmEQMBSmofx1vNvAc4M9tR+Hdc02fZrHXb/ErXxKuZt33/XXNYWyw9GpIkOTRYYmCxyZLFKuuDP7Mg1FZ/XnnPKyjarBqY5EaGYAe8fVHBzLs/3oNDuPTrPjWJb9o7mZYFtHIsSKzgQrO+IMdiVY1h4nbAVwtWayYAOaWNCi7DiUHRetT2RPVc+zZLtMFytMFb32nix4gaqJfJnxvO19OJ8uUrBdagUDBq3xIK2xIG3xEN3pML3pCAOtMQZao/RmIsSC5kkBVK01uXKFA6N59o/m2Xc8x/6xPAfH8wxNFDk6XXxOVko8ZNKZ9H7OB8fyHJksApCMmKzrSXHV0hZuXNXJ8o74GfUV3vlvG3n6yBRff9+Vc1ZCtfXIJHduO8qBsTwHx/IUa66NlqhFbyZKf0uE5e1x1nQnWdOTIhOzCFuBOf29L1dcjk0V2bh3lEf2jbPtyBS7RrIUyg6LW6PcevViFrdFMQMGS9pidCXDTTMZg+v/3trVLMiKS65cmQlQlSoO1dCNFTBY050kEwvO7UGfxun6YBJ8EkIIIXz/9fghPvq9LVw/2M7n/+DS5x1o0nE1b/mXB9k+PM2n37SW61a2056QrKdmI8Gn2aGUeg3wOSAAfFVr/ZnTPVf6X81Ha02p4lKyXQq2F5SaKtjkyw7aH1/IC0o5HJ3ySkIOjxc4NF7g0ESBET+bBbxSrA5/rJKearZUS5T2RIhgwMA0vLIwy6iue5k91fGJVM1+qrN7Gf6YRgHDy3I5lyySc+W6mn2jOe7YuJ9fPD3MkB9QiIUCtMVCM8GltniIlliQdNTLwEmGLS8jRJ0IDGm8YE7EMglbXrmcwjsvQyn/FsyAMTOW06ljOKGYCUwZfklltVTOK43zSr601jPlehXXG4+pulT8sZgc/7FSxSVkGsT9mbzGcuUTwagJ79a7Xzwp+8hQ0JkMkwxb7B/LUfSDPrFQgJUdCVZ2JljZGWdFZ8Ir7auhtWa6VKFccVnUEqWvJTIzBX11APLKzLH6pYZ+VlfJzxbxsrwcHJcTQSr/Oj2eLfvBQZvRXInRbJmRaS9rZKJw8jg7SkEmeiI4lS1VGJ4sMpornZSpFjAUHQkvs6oj4Y3L0xoP0hoP0h4PEQubaO0FBBQwNFFg2/AUzw5l2XpkcuZ1O5Mh1veluXZ5GzcMdtCdfm7gI1+ucMnf3MmNgx388Q3Lz/XyfV6OX0ZZcbwyS8dv4+q1Wls+aSjvfEoVF601x7NljkwUGJ4scmSyyEE/IGc7JxqqPR6iNxOhvyXCys4Eq7oSrO5OkghbBAMGQdOoezCtZDvsODrNQ3tGeXTfONuGpzg0XvCDmF6W3aruJOv7UqztToKCxa0xutOReZG5Vav6JYLt6KYP7p+uD7ZQyu6EEEKI8/aG9b3c9cwxfv7kEN97+AC3Xbv0OR2lL9+3mycOTvD+axazticlgSdxQdNa/wL4xVwfhzg3SqmZ8U5SWHT5CZ+uH5goVRyKtsN0sUJXOkKuVKHiaKrxH7viMporMzxZZGiqyKHxAofH82w7MnXSh9IXUg0u1WYDBWqWagbO+r40GxZnWNmZoC0eIhE2G1Imky9VuHPbMN995BCP7Buj4moGOxO89fI+LulLYwUMXD/gASc+qEf9GQRDluFl05jVMZm8YFuzZFfUmiraHBorcHSqiBVQZGJepta63pMzf7XWTBRshiaLHJkozASoJvI2r1zd6QWbOhL0pMMvGBycLtqUKg496QiLWmJEgidnASmlMAMK8wwTid2ZQNWJcbFsxyVfdihWHIq2S6HsYDteOVOp4jLulzCN5W2vpClbZjRXYt9ojnjIZLArQXuijbZ4kJZYkM5EiEw0iPKvx6hlEgkZxIPerJHVoIoVOPEzLtoO163qYNQvldp3PMfWoSm2D09z384Rfr3tKIqtLG6LctmiDNetbOfa5W1kYkHueuYY5YrLy1acfcldbcbMqdeoQhEw8GZUs4yZyQWqQQzTMDAD3jlagRNBIsf1xiwrVVxypQrTJZupQoWi7aBdzdHp0kxQ6vBkgUNjBZ4+PMnPtgzNHFcsGCATC9IS9ds0FaY7GfYnP/Ay0FqiQYL+2GUvdg1t3jfGpj1jPHZgnGeHp5kqemOHRawAg10Jrl3WxvKOBAOtEayA4Z2/gt50lL5MZN5mqivlje8WmscRHMl8EkIIIWqMZku8/p/up2A7fP22K7i4LzPz2M6j07zm9t+xtifFx29ayZVLWufdN2cXCsl8aj7S/1oYqlknpYpLvlRh2i/hK9ku1WIw1/WCFcemSxRtF8f1ZjlztDegdbUcrJrl4vjBg9r7tSVju45lGc2VUcDyjjiX9HuBqPV9KTqSEZJh87yCO46r2TuS5VubDvDLp4cZnioSDQa4cVUHNw520BoPovGyfVJhi6BlzAxyXRt0mK9qx61SQCoSrGuGSq5UIW9X6EiEWNwWn8m0mi2uW515rxqg8gIqRduhWHEplCoUK15mV9gMEAuZxEIm0eCJ8aLOddworTUF2yFbrHA8543Zs+tolq1Hpnh2eJqdR7M4WmMFFCs7ExTKDsdzJb7xvpec9mdg1wxO79Z8lo9YARIRk2TYImIFZsYLM/1sw3oGa18oKOW4LsNTJY6MF7yxz/Le2GdjfqBvIv/cUtWgafjBKYs2f/yunrQ3hpfrwqP7x3ni4AR7judw/LS0rmSY1d1ept2S1hgdyZCXRakgagW8weqjXltU20PMDim7qyGdHyGEEC/kN9uO8oFvbubKJS186d0bSEUsbMflDV+4n4NjBf7mjWu5cVUH6Whz1toLCT41I+l/LWzPly2VK1fIlZyZmdNqZ0OrUjP/+tuUovr5pPpR2dWaoYkiTx6e5JF9Y+weyQFeGdMl/WkuXZTmqiWt9GaiJCPmTBnXi8kWbX65dZgfbD7E5v3jOK5mdXeCV6/pYn1/aiYzbFEmSqs/yPJCVp2V78B4HsfVJMPWeZX2FMoOubJNOhpkaXu86Wfj0lo3vKzTG1PKIVu0GcmWGZoo8MzQFNuGptg2NM3BsTy3rO3ij25YftogU9gKkIyYJEIWsZBXyhkyA3M2PlSt5wtKFe0T5ZIAjuMyUbD9wJTNhD8o/0TBG79rNFtiPGfj1JyzFVAsb48z2JVkaXuUxa0xkv71FAtKoKnZSNmdEEIIcYZesbqDt23o57uPHOTrD+zlj25Yzj/dtZNnhqb5H9ct5eK+tASehBCihmEof1YnL0DT9TxzNmit0doLM1WnpdfomUF03ed5HA0V16U3U2ZRa5Sb13Uxkbd5ZmiKzfvHufvZY/xq61FiwQAX9aW4tD/NNcvbWN4RJxUJPqe0q+K47B7J8q2N+/nV1qMcmy4RD5m89qJu/0sFy8tySniDUycjszfO1FwLWwEG2mL0ZCKMTJXYO5pjqmgTD515QA+gVHGYKlZIhkwu6c+Qjlrzog1n4xiVUsRDJvGQSVcqwtruJFcva2W6UGEkW+TweJGQaTCaK3lBpuiJIFPINAhbzRFkOp2AofzMMWg5ZTDsaplkdaZI23WxKy4F+0SZZMn2Bp53XM10ocJ4vowG+jMRzIAhgaZ5ToJPQgghxCmUUnzytavZtGeUL/9uD+3JMF+8dzdXLm7hhsEOFrdG5/oQhRBi3qkOpO3fO6v/2xoPsbw9TrZcYTxbpisV5uplrRRth11Hszx+cILN+8fZuGeML9+3l8GuBJf2p7l6WQvr+zPEQya/3jrMfz52iMf2T+BozdqeJO96ySLW92XQyhvEtzpI+kLPcnohVsCgJxOhMxVmNFti7/Ecx3MlolaAaPD0Hx9tx2WqaBM2DS7qTdIWD82LoNNcMgxFImyRCFv0ZCKs69WUKk7TZDLVk2EogoZ60eEKThrLq+LdBk1DAk0LgJTdCSGEEKexcfdx3vXvD1NxNamIxd++aR3XDbY/7yx4orlI2V3zkf6XqLd8ucJk3mZ4qshkwcZ1NQfHC2w5NMEje8c4OF4AoC8ToWS7jGRLJMImr1jVyY2r2klFLFwNHcmQl+UUthoyiPl8Vx3Da8/xLNOFCmErcNK4TRXHZbJoYwYUy9ridCTDCy5wIoQ4c1J2J4QQQpylq5a1cdu1S/i33+3hvS8dYH1fSgJPQgjRJKJBk2jQpDsdoVzxsm660xGWtsd4w/oejmfLbD08yaMHxjGU4taXDnBxXxpXa4KmQX/Gy3Kar7NfzRbDULTEgmSiGaYKFQ6M5TieLWEFDBzXxVCKZe1xulNhyUwRQpyWBJ+EEEKIF/DxmwbZMJChNR6kLyPldkII0YyCpkFbPERbPITjam92sWyJ3nSY6wbb0WgUikzUoi8TJRWRLKezpZQiFbW4KJomW6pweDxP0DToTUdl5lchxIuS4JMQQgjxAoKmwUuXt9V9mmIhhBCNETC8IEkqarG0PUa+7JArV0iGLclyqpN4yGSwKznXhyGEmEck+CSEEEK8iNqxLYQQQswfSlVn35L3cSGEmEuSHymEEEIIIYQQQgghGkaCT0IIIYQQQgghhBCiYST4JIQQQgghhBBCCCEaRoJPQgghhBBCCCGEEKJhJPgkhBBCCCGEEEIIIRpGaa3n+hhmnVJqBNg/18fRYG3A8bk+iAVG2rQxpF3rT9q0/qRNG6OR7TqgtW5v0L7FObhA+l8g7xeNIG1af9KmjSHtWn/Spo0x632wCzL4dCFQSm3WWm+Y6+NYSKRNG0Patf6kTetP2rQxpF3FQiTXdf1Jm9aftGljSLvWn7RpY8xFu0rZnRBCCCGEEEIIIYRoGAk+CSGEEEIIIYQQQoiGkeDTwvXluT6ABUjatDGkXetP2rT+pE0bQ9pVLERyXdeftGn9SZs2hrRr/UmbNsast6uM+SSEEEIIIYQQQgghGkYyn4QQQgghhBBCCCFEw0jwaZ5QSn1VKXVMKfV0zbb1SqmHlFJPKaV+ppRK+tuDSqmv+du3KKWur/k/9yqltiulnvCXjjk4naaglOpXSt2jlE6NcKgAAAe8SURBVNqmlNqqlPqQv71FKXWnUmqnf5vxtyul1O1KqV1KqSeVUpfV7OtW//k7lVK3ztU5NYM6t6tTc63+dK7Oaa6dQ5uu8t8bSkqpj5+yr5v994BdSqlPzMX5NIM6t+k+//32CaXU5rk4n2ZxDu36Tv/3/iml1INKqfU1+5JrVTQF6YPVn/TB6k/6X40hfbD6kz5YY8yLPpjWWpZ5sAAvBy4Dnq7Z9ghwnb9+G/Bpf/2Pga/56x3Ao4Dh378X2DDX59MMC9ANXOavJ4AdwBrgs8An/O2fAP7eX38N8P8ABVwFbPK3twB7/NuMv56Z6/Ob7+3qP5ad6/NphuUc2rQDuAL4DPDxmv0EgN3AUiAIbAHWzPX5zec29R/bB7TN9Tk1w3IO7frS6vslcEvN+6pcq7I0zYL0wRrRptIHa9I29R+T/te5t6v0wWapTf3H9iF9sHNt11nvg0nm0zyhtb4PGDtl80rgPn/9TuAt/voa4G7//x0DJoANs3CY84rWekhr/Zi/Pg08A/QCbwS+7j/t68Cb/PU3At/Qno1AWinVDbwauFNrPaa1Hsf7Wdw8i6fSVOrYrsJ3tm2qtT6mtX4EsE/Z1ZXALq31Hq11Gfiuv48LTh3bVNQ4h3Z90H/fBNgI9Pnrcq2KpiF9sPqTPlj9Sf+rMaQPVn/SB2uM+dAHk+DT/LaVExfC7wP9/voW4A1KKVMptQS4vOYxgK/5qYmfUkqp2Tvc5qWUWgxcCmwCOrXWQ/5Dw0Cnv94LHKz5b4f8bafbfsE7z3YFCCulNiulNiql3oQ40zY9HblWn8d5timABn6tlHpUKfWBhhzkPHQO7fp+vG/hQa5V0fykD1Yn0gerP+l/NYb0wepP+mCN0ax9MLMeOxFz5jbgdqXUp4CfAmV/+1eB1cBmYD/wIOD4j71Ta31YKZUAfgi8G/jGrB51k1FKxfHa4sNa66navqDWWiulZErIc1Cndh3wr9elwN1Kqae01rsbdMhNT67V+qtTm17rX6cdwJ1KqWf9TIkL1tm2q1LqBryOz7WzeqBCnDvpg9WB/F2rP+l/NYZcq/UnfbDGaOY+mGQ+zWNa62e11jdprS8HvoNXm4nWuqK1/ojW+hKt9RuBNF7NJ1rrw/7tNPBtvLS6C5ZSysL75bxDa/0jf/PRatqxf3vM336Yk7+97PO3nW77BatO7Vp7ve7BGyvj0oYffJM6yzY9HblWa9SpTWuv02PAfyHvq2fVrkqpi4GvAG/UWo/6m+VaFU1N+mDnT/pg9Sf9r8aQPlj9SR+sMZq9DybBp3nMj/CilDKAvwT+1b8fVUrF/PVXARWt9TY/BbzN324BrwOeft6dXwD8dPd/B57RWv9jzUM/BaqzpdwK/KRm+3uU5ypg0k9h/BVwk1Iqo7zZA27yt12Q6tWufnuG/H22AdcA22blJJrMObTp6TwCrFBKLVFKBYF3+Pu44NSrTZVSMT+LAf999ybkffWM21UptQj4EfBurfWOmufLtSqamvTBzo/0wepP+l+NIX2w+pM+WGPMiz6YboKR2WU5o9HrvwMM4Q20dggvNe5DeN+m7QD+DlD+cxcD2/EGGfsNXuosQAxv1pUn8cYq+DwQmOtzm8M2vRavTvhJ4Al/eQ3QCtwF7PTbr8V/vgK+iPft5lPUzFiDl36/y1/eN9fnthDaFW8Ghqfwxs94Cnj/XJ/bPGrTLv99YgpvsNtDQNJ/7DX+e8Zu4JNzfW7zvU3xZgLZ4i9bL+Q2Pcd2/QowXvPczTX7kmtVlqZYkD5YI9pU+mBN2qZI/+t821X6YLPUpkgf7Hzbddb7YNU/lEIIIYQQQgghhBBC1J2U3QkhhBBCCCGEEEKIhpHgkxBCCCGEEEIIIYRoGAk+CSGEEEIIIYQQQoiGkeCTEEIIIYQQQgghhGgYCT4JIYQQQgghhBBCiIaR4JMQYt5SnvuVUrfUbPt9pdQv5/K4hBBCCCEWKul/CSHOhdJaz/UxCCHEOVNKrQN+AFwKmMDjwM1a693nsC9Ta12p8yEKIYQQQiwo0v8SQpwtCT4JIeY9pdRngRwQ828HgHWABfy11vonSqnFwDf95wD8idb6QaXU9cCngXFgldZ65ewevRBCCCHE/CP9LyHE2ZDgkxBi3lNKxYDHgDLwc2Cr1vpbSqk08DDet3IacLXWRaXUCuA7WusNfufn/wLrtNZ75+YMhBBCCCHmF+l/CSHOhjnXByCEEOdLa51TSn0PyAJvA16vlPq4/3AYWAQcAb6glLoEcIDab9gelo6PEEIIIcSZk/6XEOJsSPBJCLFQuP6igLdorbfXPqiU+mvgKLAeb7KFYs3DuVk6RiGEEEKIhUT6X0KIMyKz3QkhFppfAR9USikApdSl/vYUMKS1doF3A4E5Oj4hhBBCiIVG+l9CiBckwSchxELzabyBLp9USm317wP8M3CrUmoLsAr5tk0IIYQQol6k/yWEeEEy4LgQQgghhBBCCCGEaBjJfBJCCCGEEEIIIYQQDSPBJyGEEEIIIYQQQgjRMBJ8EkIIIYQQQgghhBANI8EnIYQQQgghhBBCCNEwEnwSQgghhBBCCCGEEA0jwSchhBBCCCGEEEII0TASfBJCCCGEEEIIIYQQDSPBJyGEEEIIIYQQQgjRMP8fdjsC4dn0JYAAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "#@title Time Series Plots\n", "fig, ax = plt.subplots(3, 2, figsize=(20,10))\n", "\n", "sns.lineplot(data=migration, x='Year', y='nonmigrant_returns', ax=ax[0][0], label='Non migrant Returns')\n", "sns.lineplot(data=migration, x='Year', y='inmigrant_returns', ax=ax[0][1], label='In migrant Returns')\n", "sns.lineplot(data=migration, x='Year', y='outmigrant_returns', ax=ax[1][0], label='Out migrant Returns')\n", "sns.lineplot(data=migration, x='Year', y='%outflow', ax=ax[1][1], label='% Outflow')\n", "sns.lineplot(data=migration, x='Year', y='%inflow', ax=ax[2][0], label='% Inflow')\n", "sns.lineplot(data=migration, x='Year', y='%flow', ax=ax[2][1], label='Net Flow')\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "colab": { "base_uri": "https://localhost:8080/", "height": 616 }, "executionInfo": { "elapsed": 4463, "status": "ok", "timestamp": 1668752118008, "user": { "displayName": "Sabaina Haroon", "userId": "03287014315776100364" }, "user_tz": -300 }, "id": "anyvloPEYAck", "outputId": "e9bbc4b0-9322-4380-aeb2-7a0c2f22b0fd" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABKIAAAJXCAYAAACg6/waAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde7ydZ1ng/d+11z4kTXpMgoUeSAsVpiBQiKWIOggIBbWdGctQRAQH7ahUUXTGgjMF+8o7ojMy8JaKFToCIgUKYnSqCIJSlB5Sem4phLbQlNamSZs0afbe63C9f6xn7azs7LX32slez7MPv+/nsz5Z6zmt+97Pzsqda133dUdmIkmSJEmSJA3aUNUNkCRJkiRJ0spgIEqSJEmSJEmlMBAlSZIkSZKkUhiIkiRJkiRJUikMREmSJEmSJKkUBqIkSZIkSZJUihUfiIqIKyLi4Yi4fYGu14yIm4vH5oW4piRJkiRJ0nIQmVl1GyoVET8K7AE+mpnPXoDr7cnMtYffMkmSJEmSpOVlxWdEZeZXgJ3d2yLiaRHxdxFxY0RcExHPrKh5kiRJkiRJy8aKD0T1cDnwq5n5AuC3gMvmce6qiNgSEddGxL8bTPMkSZIkSZKWnuGqG7DYRMRa4IeAT0dEZ/NYse8/AJfMcNoDmfnK4vlTM/OBiDgV+FJE3JaZ3x50uyVJkiRJkhY7A1EHGwIey8znTd+RmZ8FPjvbyZn5QPHnPRHxj8AZgIEoSZIkSZK04jk1b5rM3A3cGxGvAYi25/ZzbkQcGxGd7Kn1wIuBOwfWWEmSJEmSpCVkxQeiIuITwNeAZ0TEtoh4M/B64M0RcQtwB3Bun5f7N8CW4rwvA7+fmQaiJEmSJEmSgMjMqtsgSZIkSZKkFWDFZ0RJkiRJkiSpHCu6WPn69etz48aNVTdDkiQNyI033vhIZm6ouh06kGMwSZKWt9nGYCs6ELVx40a2bNlSdTMkSdKARMR3qm6DDuYYTJKk5W22MZhT8yRJkiRJklQKA1GSJEmSJEkqhYEoSZIkSZIklcJAlCRJ0jITEWdHxN0RsTUiLpph/1hEfLLYf11EbOza9/Zi+90R8cp5XPP9EbFnUH2SJEnLg4EoSZKkZSQiasAHgFcBpwOvi4jTpx32ZuDRzHw68F7gPcW5pwPnA88CzgYui4jaXNeMiE3AsQPtmCRJWhYMRJVgvN7k31/2z9x8/2NVN0WSJC1/ZwJbM/OezJwErgTOnXbMucBHiudXAS+LiCi2X5mZE5l5L7C1uF7PaxZBqj8E/uuA+3XI6s0Wr/ngv/Av336k6qZIkrTiLYlAVEScFBFfjog7I+KOiHjrDMe8JCJ2RcTNxePiKto6k+2PT3DTdx/jtgd2Vd0USZK0/J0A3N/1eluxbcZjMrMB7ALWzXLubNe8ENicmQ/O1qiIuCAitkTElu3bt8+rQ4dr1746N9z3KDfe92ip7ytJkg42XHUD+tQAfjMzvx4RRwI3RsQXMvPOacddk5k/WUH7ZtVoJQD1RqvilkiSJC2ciHgK8BrgJXMdm5mXA5cDbNq0KQfbsgNNFGOwXfvqZb6tJEmawZLIiMrMBzPz68Xzx4G7OPibvUWr0WwPfiabBqIkSdLAPQCc1PX6xGLbjMdExDBwNLBjlnN7bT8DeDqwNSLuA46IiK0L1ZGFMmkgSpKkRWNJBKK6Fau6nAFcN8PuF0XELRHxtxHxrB7nl54WXm+2v/SbNCNKkiQN3g3AaRFxSkSM0i4+vnnaMZuBNxbPzwO+lJlZbD+/WFXvFOA04Ppe18zM/5uZx2fmxszcCDxRFEBfVCYaTcBAlCRJi8FSmZoHQESsBT4D/Hpm7p62++vAUzNzT0S8Gvgc7cHTAapIC2+0iowoA1GSJGnAMrMRERcCnwdqwBWZeUdEXAJsyczNwIeBjxXZSztpB5YojvsUcCft0ghvycwmwEzXLLtvh6ozBts9biBKkqSqLZlAVESM0A5CfTwzPzt9f3dgKjOvjojLImJ9Zla+PEonI6ru1DxJklSCzLwauHratou7no/Tru0007nvBt7dzzVnOGbtobR30PbXiGpU3BJJkrQkpuYVywl/GLgrM/+oxzHHF8cREWfS7tuO8lrZWycANWFGlCRJUummMqKcmidJUuWWSkbUi4E3ALdFxM3FtncAJwNk5gdp1zf45YhoAPuA84taB5VrdGpEmRElSZJUOmtESZK0eCyJQFRmfhWIOY65FLi0nBbNT72oEVU3I0qSJKl0nYyoPRMNGs0Ww7UlMSlAkqRlyX+FS2BGlCRJUnW6yyM8Pm6dKEmSqmQgqgSNpqvmSZIkVaU7EOX0PEmSqmUgqgT1VpERZSBKkiSpdAaiJElaPAxElaBTG8qpeZIkSeXr/jJw97iBKEmSqmQgqgSNllPzJEmSqtJZNQ/MiJIkqWoGokpQt1i5JElSZSadmidJ0qJhIKoEnWLldQNRkiRJpbNGlCRJi8dw1Q1YCRoWK5ckSarMRL3FmtEa9Waye1+j6uZIkrSiGYgqwdTUPANRkiRJpZtsNhkbqbF61IwoSZKqZiCqBJ0peQaiJEmSyjdRbzE2PMTq0Rq7DURJklQpa0SVoFMjarLIjJIkSVJ5JpstRoeHOHr1iBlRkiRVzEBUCepTNaKacxwpSZKkhdbJiDIQJUlS9QxElWB/RpRT8yRJksrWnRG1e9xAlCRJVTIQVQKLlUuSJFVnotFkbLjGUavMiJIkqWoGokrQaLUDUK2EZss6UZIkSWWabOyfmrd7X52W4zFJkipjIKoE9cb+wY5ZUZIkSeWaaOyfmtdK2DPZqLpJkiStWAaiSlBv7Q8+GYiSJEkqV3dGFMBup+dJklQZA1ElaDS7MqIsWC5JklSqdkZUjaNWDwNYJ0qSpAoZiCpBozsjykCUJElSqToZUUcVGVEGoiRJqo6BqBLUm9aIkiRJqspEozlVIwqcmidJUpUMRJWg0bRGlCRJUlUmDqoRZbFySZKqsiQCURFxUkR8OSLujIg7IuKtMxwTEfH+iNgaEbdGxPOraOtMujOi6k7NkyRJKlVn1Tyn5kmSVL3hqhvQpwbwm5n59Yg4ErgxIr6QmXd2HfMq4LTi8ULgj4s/K9cdfJowI0qSJKk0mVnUiKqxdnSYoTAQJUlSlZZERlRmPpiZXy+ePw7cBZww7bBzgY9m27XAMRHx5JKbOqNGK6kNBeDUPEmSpDJ1FooZGx5iaCg4avWIgShJkiq0JAJR3SJiI3AGcN20XScA93e93sbBwSoi4oKI2BIRW7Zv3z6oZh6g0WxxxGgNcNU8SZKkMnWy0ceG28Peow1ESZJUqSUViIqItcBngF/PzN2Hco3MvDwzN2Xmpg0bNixsA3uoN5M1o+1ZkHUzoiRJkkrTyUYfLQJRR60aYfe4gShJkqqyZAJRETFCOwj18cz87AyHPACc1PX6xGJb5epmREmSpBJFxNkRcXexiMtFM+wfi4hPFvuvKzLOO/veXmy/OyJeOdc1I+LDEXFLsVjMVcUXh4vG9IyoI1cNs2fcVfMkSarKkghERUQAHwbuysw/6nHYZuDnitXzzgJ2ZeaDpTVyFo1WcsRYEYgyI0qSJA1QRNSAD9BeyOV04HURcfq0w94MPJqZTwfeC7ynOPd04HzgWcDZwGURUZvjmr+Rmc/NzOcA3wUuHGgH52l6RtSqkRrjjWaVTZIkaUVbKqvmvRh4A3BbRNxcbHsHcDJAZn4QuBp4NbAVeAL4+QraOaN6s8Wa0THAjChJkjRwZwJbM/MegIi4kvaiLt2rDZ8LvKt4fhVwafHF37nAlZk5AdwbEVuL69Hrmp1yCcX5q4EcYN/mbaIIOo0Nt78UXDUyxHjd8ZgkSVVZEoGozPwqEHMck8BbymnR/DSauX9qnhlRkiRpsGZawOWFvY7JzEZE7ALWFduvnXZuZ/GXnteMiP9D+wvBO4HfnKlREXEBcAHAySefPK8OHY6pjKhakRE1XGO8bkaUJElVWRJT85a6RqvFEWPtmJ+BKEmStNxk5s8DTwHuAl7b45jSF4yBrhpRI0PFnzUzoiRJqpCBqBK0V82zWLkkSSpFPwu4TB0TEcPA0cCOWc6d85qZ2QSuBH76sHuwgA7KiBoZYsKMKEmSKmMgqgTtVfPaGVF1M6IkSdJg3QCcFhGnRMQo7eLjm6cdsxl4Y/H8POBLRZmDzcD5xap6pwCnAdf3umaxSMzTYapG1DnANwbcv3mZqhE10qkRZbFySZKqtCRqRC11jWayaqTGUJgRJUmSBquo+XQh8HmgBlyRmXdExCXAlszcTHs14o8Vxch30g4sURz3Kdq1nhrAW4pMJ3pccwj4SEQcRbue5y3AL5fZ37l0MqLGhvfXiKo3k2YrqQ3NWoJUkiQNgIGoEtRbLUZqwUhtyBpRkiRp4DLzatorCndvu7jr+Tjwmh7nvht4d5/XbNFe3XjR6tSIGh3ePzUPYLzeZM2YQ2FJksrm1LwBa7aSTBgeGmJ0eMiMKEmSpBJNTM+IKqbouXKeJEnVMBA1YPUi8DRcC8aGzYiSJEkqU8+MKMdkkiRVwkDUgDVaCeDUPEmSpArsrxG1v1g5mBElSVJVDEQNWGeVPKfmSZIklW9q1bwiI6oTkDIQJUlSNQxEDVi91Q48jQwPMVobmpqqJ0mSpMHrZESN1qYXK3dMJklSFQxEDVijWUzNG4p2RpRT8yRJkkoz0WivXjw0FMD+qXkTZkRJklQJA1ED1glEDdeGGKkNTRXMlCRJ0uBN1FtT0/Ggq0ZUw0CUJElVMBA1YFNT82pmREmSJJVtstmcWjEPnJonSVLVDEQN2FRG1NAQY8PWiJIkSSpTOyOqKxBlsXJJkiplIGrAOoGn4VowUnPVPEmSpDJNNlvTMqI6gSjHZJIkVcFA1IB1AlGjtfaqeU7NkyRJKs9BGVFTU/PMiJIkqQoGogas0eoUK2/XiKoXU/UkSZI0eD0zoixWLklSJUoPREXEZyPiJyJiRQTBpqbmDQ1ZrFySJM3LShs3DcJEo3nAqnmd7Cin5kmSVI0qBjWXAT8DfCsifj8inlFBG0rTKVY+UtSImjAQJUmS+reixk2DMNloMVrbP+SNCMaGh5hwap4kSZUoPRCVmV/MzNcDzwfuA74YEf8SET8fESNlt2fQGq1OsfL2qnmTpoFLkqQ+rbRx0yBMNFqMjRw45F01UrNGlCRJFakkzTsi1gFvAn4BuAl4H+0B1heqaM8gTTaKGlFD1oiSJEnzt5LGTYMw2TiwWDm0C5Y7NU+SpGpUUSPqL4FrgCOAn8rMczLzk5n5q8DaHudcEREPR8TtPfa/JCJ2RcTNxePiwfVgfjoZUaPDQ4zUgsmmgx5JktSfQxk36UATjRajXTWioMiIMktdkqRKDFfwnn+amVd3b4iIscycyMxNPc75M+BS4KOzXPeazPzJBWrjgunUiBoeCkZrNZqtpNlKakNRccskSdIScCjjJnWZMSNq2Kl5kiRVpYqpeb83w7avzXZCZn4F2DmY5gxWZ9W8kdrQ1NLBrpwnSZL6NO9xkw400WhOjcE6nJonSVJ1SsuIiojjgROA1RFxBtBJCTqKdrr54XpRRNwCfA/4rcy8o0c7LgAuADj55JMX4G1n12gVGVG1YKTW7vJks8VqarOdJkmSVrASxk0rxsQMGVFjFiuXJKkyZU7NeyXtQpsnAn/Utf1x4B2Hee2vA0/NzD0R8Wrgc8BpMx2YmZcDlwNs2rRp4JXDG0VG1PDQ0NQgyIwoSZI0h0GOm1aUdo2og1fN27WvXlGLJEla2UoLRGXmR4CPRMRPZ+ZnFvjau7ueXx0Rl0XE+sx8ZCHf51BMFjWiRmqxf2qeBcslSdIsBjluWkkys6gRNa1Y+fAQD5sRJUlSJcqcmvezmfnnwMaIeNv0/Zn5RzOc1u+1jwf+NTMzIs6kXftqx6G3duE0ZqgRVTcjSpIkzWKQ46aVpPPl30HFyp2aJ0lSZcqcmrem+HPeSw1HxCeAlwDrI2Ib8E5gBCAzPwicB/xyRDSAfcD5mTnwaXf9OLBGlBlRkiSpL4c8btJ+E41egSiLlUuSVJUyp+b9SfHn7x7Cua+bY/+lwKWH2LSBmlo1b2iI0Zo1oiRJ0twOZ9yk/TpjrplqRI03zIiSJKkKQ3MfsrAi4g8i4qiIGImIf4iI7RHxs2W3oyyNZjIUMDS0v0bUhIEoSZLUh5U2blpovTOinJonSVJVSg9EAa8oiov/JHAf8HTgv1TQjlLUWy2Gi0yoTkZU3al5kiSpPytq3LTQemZEDben5i2SSg6SJK0oVQSiOtMBfwL4dGbuqqANpak3kpGhAPYPgpyaJ0mS+rSixk0LbaKYfjd91byxkVqx3zGZJEllqyIQ9TcR8Q3gBcA/RMQGYLyCdpSi0WoxUgSgDERJkqR5WlHjpoU2lRFVO3hqHsCEBcslSSpd6YGozLwI+CFgU2bWgb3AuWW3oyz1ZjI8dGAgyql5kiSpH4c6boqIsyPi7ojYGhEXzbB/LCI+Wey/LiI2du17e7H97oh45VzXjIiPF9tvj4grImLk8Hq9cKZqRI0cvGoeYMFySZIqUNqqedM8E9gYEd3v/9GK2jJQjWaLkVp7at5IZ9U8A1GSJKl/8xo3RUQN+ADw48A24IaI2JyZd3Yd9mbg0cx8ekScD7wHeG1EnA6cDzwLeArwxYj4/uKcXtf8ONApoP4XwC8Af3xYPV4gPTOiiql6FiyXJKl8pQeiIuJjwNOAm4HOv/7Jcg1EtZLhIhDVGQRZj0CSJPXjEMdNZwJbM/Oe4hpX0s6i6g5EnQu8q3h+FXBpRESx/crMnADujYitxfXodc3MvLqrvdcDJx5abxfeVI2okQNrRHWm5o07NU+SpNJVkRG1CTg9V8gyJfVmi5Fiat6YNaIkSdL8HMq46QTg/q7X24AX9jomMxsRsQtYV2y/dtq5JxTPZ71mMSXvDcBbZ2pURFwAXABw8skn99+bw9AZc41NXzWvMzXPjChJkkpXRbHy24HjK3jfStSbrakpeZ0/rRElSZL6tJTGTZcBX8nMa2bamZmXZ+amzNy0YcOGUhrUyUIfPSgQ5dQ8SZKqUkVG1HrgziJ1e6KzMTPPqaAtA9dodk3NMyNKkiTNz6GMmx4ATup6fWKxbaZjthW1p44Gdsxxbs9rRsQ7gQ3Af567S+XprIp38Kp5nWLljskkSSpbFYGod1XwnpWpt5Lh2oGr5hmIkiRJfXrXIZxzA3BaRJxCO1h0PvAz047ZDLwR+BpwHvClzMyI2Az8RUT8Ee1i5acB1wPR65oR8QvAK4GXZeaiGuR0VsVbPXpgjagxi5VLklSZ0gNRmflPEfFU4LTM/GJEHAHU5jpvqWo0W4wMtTOihoeCCFfNkyRJ/TmUcVNR8+lC4PPFsVdk5h0RcQmwJTM3Ax8GPlYUI99JO7BEcdynaBc2bwBvycwmwEzXLN7yg8B3gK+1653z2cy8ZAF/DIesE2ha1bNYuYEoSZLKVsWqeb9Iu1DlcbRXgTmB9gDmZWW3pQzdU/MigpHakIEoSZLUl0MdNxUr2V09bdvFXc/Hgdf0OPfdwLv7uWaxvYoM+77sm2yPuVb1KFY+4ap5kiSVropi5W8BXgzsBsjMbwFPqqAdpZjsKlYOMFYbcmqeJEnq14oaNy208UaTkVpMlUnomMqIapgRJUlS2aoIRE1k5mTnRVEgcz5LEi8pjdaBgajRYQNRkiSpbytq3LTQ9k02D5qWB07NkySpSlUEov4pIt4BrI6IHwc+Dfx1Be0oRaOZDBc1ogBGakPUnZonSZL6s6LGTQttotEjEFVM1Rt3ap4kSaWrIhB1EbAduI32Er9XA/+tgnaUot40I0qSJB2yFTVuWmj7JpusniEQNVwbYngozIiSJKkCVaya14qIzwGfy8ztZb9/2Rqt/cXKoQhEmRElSZL6sNLGTQttvN6aKkw+3aqRmhlRkiRVoLSMqGh7V0Q8AtwN3B0R2yPi4rnOXcraU/O6MqIsVi5JkuawUsdNC21ffeaMKGivnGexckmSylfm1LzfoL3qyw9m5nGZeRzwQuDFEfEbJbajVO1V8/ZnRI2NDPntmyRJmsuKHDcttPF6k7GegaiaU/MkSapAmYGoNwCvy8x7Oxsy8x7gZ4Gfm+3EiLgiIh6OiNt77I+IeH9EbI2IWyPi+Qva8sPQmFYjau3YMHsmGhW2SJIkLQGHPG7SfuOzZkTVmPDLQUmSSldmIGokMx+ZvrGodzAyx7l/Bpw9y/5XAacVjwuAPz7ENi64RvPAGlFrRofZayBKkiTN7nDGTSrMXiNqiH1mREmSVLoyA1GTh7iPzPwKsHOWQ84FPppt1wLHRMSTD6GNC67eOjAjas2YgShJkjSnQx43ab9Za0QNOzVPkqQqlLlq3nMjYvcM2wNYdZjXPgG4v+v1tmLbgwe9WcQFtLOmOPnkkw/zbefWLla+PyNq7VjNqXmSJGkugxw3rRjj9SarZpma98SkYzJJkspWWiAqM2ceBZQsMy8HLgfYtGlTDvi9aLSS4ekZUZNNMpOImOVsSZK0Ui2WcdNSt2/WQNQQO/daI0qSpLKVOTVvkB4ATup6fWKxrVL1ZjvONdKVEbVmbJhmK5loOPCRJEkapIl6q2cgamykxnjDqXmSJJVtuQSiNgM/V6yedxawKzMPmpZXtkarHWwaGT5w1TzA6XmSJEkD1Gwlk83WrDWiXDVPkqTylVkj6pBFxCeAlwDrI2Ib8E6KFWMy84PA1cCrga3AE8DPV9PSA3Uyog6sEdX+ke+daLB+7Vgl7ZIkSVruOoXIZ1s1z2LlkiSVb0kEojLzdXPsT+AtJTWnb41mkRE1rUYUmBElSZI0SPuKINPq0d7Fyg1ESZJUvuUyNW9RarSKjKjaTBlRDnwkSZIGZSojarh3sfJxa3ZKklQ6A1EDVO9kRA11Z0S1B0N7zYiSJEkamKlAVK+MqOEazVZOjdckSVI5DEQN0FSNqBkyoh43ECVJkjQw40Uh8lXDvWpE1YrjzFKXJKlMBqIGaLYaUWZESZIkDc5cNaLWriq+HBx3TCZJUpkMRA1QJyNqpCsjykCUJEnS4O1fNW/mQNS6NaMA7NgzWVqbJEmSgaiBarTaGVHD3TWiim/lXDVPkiRpcPZNFhlRvQJRa8cAeGTvRGltkiRJBqIGaqYaUcO1IVaNDJkRJUmSNECdFfFWjcw83F2/1owoSZKqYCBqgGaqEQXtguV7JiyMKUmSNCjjk3NMzSsyonbsMSNKkqQyGYgaoKmMqKE4YPuasWEzoiRJkgZovDF7IGrNaI2x4SF27DUjSpKkMhmIGqB6USNqZNqywWtGDURJkiQN0lw1oiKC9WvHeMSMKEmSSmUgaoAanVXzhmaammcgSpIkaVDG650aUTMHogDWrR21RpQkSSUzEDVAnRpR3cXKAdaM1dg7aSBKkiRpUPbVm4zWhqhNK5HQbd2aUXa4ap4kSaUyEDVA9VaREXVQIGqYvRYrlyRJGpjxerPninkd69aOsdOMKEmSSmUgaoCmMqKcmidJkkoUEWdHxN0RsTUiLpph/1hEfLLYf11EbOza9/Zi+90R8cq5rhkRFxbbMiLWD7pv/WoHonpPy4P21LxH9k6SmSW1SpIkGYgaoHqPqXlrXTVPkiQNSETUgA8ArwJOB14XEadPO+zNwKOZ+XTgvcB7inNPB84HngWcDVwWEbU5rvnPwMuB7wy0Y/M0Xm+yenT2QNT6NWNMNlp+QShJUokMRA1QvShWPlqbtmre2DBPTDZptfz2TZIkLbgzga2ZeU9mTgJXAudOO+Zc4CPF86uAl0VEFNuvzMyJzLwX2Fpcr+c1M/OmzLxv0J2ar331JquG586IAixYLklSiQxEDdD+YuUHT80DLFguSZIG4QTg/q7X24ptMx6TmQ1gF7BulnP7ueasIuKCiNgSEVu2b98+n1MPyXi9xao5MqLWrR0DsGC5JEklMhA1QJ007zVjBw6C1hSBKNPAJUnSSpGZl2fmpszctGHDhoG/Xzsjao5i5WvaGVGPmBElSVJpDEQN0O7xBqtGhhgbnh6Iar+2TpQkSRqAB4CTul6fWGyb8ZiIGAaOBnbMcm4/11xUJvqpEdXJiDIQJUlSaQxEDdDufXWOWjVy0Pa1UxlRzbKbJEmSlr8bgNMi4pSIGKVdfHzztGM2A28snp8HfCnbS8dtBs4vVtU7BTgNuL7Pay4q/dSIOm5Np0aUU/MkSSqLgagB2j1e56jVBweiOlPzzIiSJEkLraj5dCHweeAu4FOZeUdEXBIR5xSHfRhYFxFbgbcBFxXn3gF8CrgT+DvgLZnZ7HVNgIj4tYjYRjtL6taI+FBZfZ3NeL01Z0bU6PAQR60aZsdeM6IkSSrLcNUN6FdEnA28D6gBH8rM35+2/03AH7I/TfzSzKx0ILR7X4OjVh38I15rjShJkjRAmXk1cPW0bRd3PR8HXtPj3HcD7+7nmsX29wPvP8wmL7h99SarRub+znXd2jEeMSNKkqTSLIlAVETUgA8AP057lZYbImJzZt457dBPZuaFpTewh93j9amU725mREmSJA3WeL3JqpHZM6KgXbDcGlGSJJVnqUzNOxPYmpn3ZOYkcCVwbsVtmlOvGlEWK5ckSRqsvgNRa0fZsdeMKEmSyrJUAlEnAPd3vd5WbJvupyPi1oi4KiJOmmE/EXFBRGyJiC3bt28fRFun7B5vcNTq2abmWaxckiRpoTWaLerNZHVfgagxM6IkSSrRUglE9eOvgY2Z+RzgC8BHZjooMy/PzE2ZuWnDhg0Da0xm9syIWj1SYyjMiJIkSRqE8UYLoK8aUevXjLLziUmarRx0syRJEksnEPUA0J3hdCL7i5IDkJk7MrOTV/0h4AUltW1G++pNGq2ccdW8iGDN6LDFyiVJkgZgvN7OOu83IyoTHn3CrChJksqwVAJRNwCnRcQpETEKnA9s7j4gIp7c9fIc2ksLV2b3vnaQaaaMKGgXLDcjSpIkaeHtm2wHosb6rBEFOD1PkqSSLIlV8zKzEREXAp8HasAVmXlHRFwCbMnMzcCvRcQ5QAPYCbypsgbTXjEPmLFGFLQLlu+dNBAlSZK00AdCTTEAACAASURBVCYa88iIWjMGwI49E8CRg2yWJEliiQSiADLzauDqadsu7nr+duDtZberl137ikBUj4yotWPDFiuXJEkagH2TnRpRcwei1hcZUdv3uHKeJEllWCpT85ac3UUg6ugZakQBrF3l1DxJkqRBGJ9HRtQJx65mpBbc+b3dg26WJEnCQNTA7J+a16NG1KiBKEmSpEHo1IjqZ9W8I0aHef7Jx3LNtx4ZdLMkSRIGogZmf7HymWc/rh0b5vFxA1GSJEkLrbNqXj9T8wB+5LT13PngbrY/7vQ8SZIGzUDUgHSm5h0526p5FiuXJElacPvmHYjaAMC/fNusKEmSBs1A1IDsHq+zeqTG6PDMP+I1Y07NkyRJGoSJertY+erR/gJRzz7haI5ePeL0PEmSSmAgakB272tw1OreixIetXqYejOnaklJkiRpYUxlRPX4QnC62lDw4qev46vfeoTMHGTTJEla8QxEDcju8TpH9ZiWB/C8E48B4Mb7Hi2rSZIkSStCp0ZUvxlR0J6e99Ducb69fc+gmiVJkjAQNTC7x+s9V8wDOOPkYxmtDXHtPTtKbJUkSdLytz8jqv9A1A8/fT0AX/mm0/MkSRokA1EDsntfo+eKedD+hu55Jx1jIEqSJGmBjddbjA4PMTQUfZ9z0nFHcMr6NfzNrd9zep4kSQNkIGpA5sqIAjjr1OO47YFd1omSJElaQOP1Zt/1obr94o+cyte/+xhX3/bQAFolSZLAQNTA7N43e40ogLOeto5Wwpb7dpbUKkmSpOVvvN6cV32ojtf+4En8mycfxf979V1TdaYkSdLCMhA1AJnJ7vHZV80DeP5UnSgDUZIkSQtlX73JqpH5B6JqQ8E7f+p0HnhsH5d/5Z4BtEySJBmIGoC9k02areToOabmrRqp8byTrRMlSZK0kMbrTVYfQiAK4KxT1/ETP/BkLvvHrdz90OML3DJJkmQgagB272vXfJprah60Bzu3WydKkiRpwXxnxxNsOHLskM9/50+dztqxEX75z2/kccdokiQtKANRA9AJKs1VrBzgRae260T9493bB90sSZKkZW/PRINv/uvjnHHysYd8jScdtYoP/MwZfGfnE/zXq251FT1JkhaQgagB2L2vAfSXEbVp47E8/Ulr+Z+fv9uimJIkSYfp1m2P0Uo44+RjDus6Lzx1Hb999jP429sf4t3/9y6DUZIkLRADUQMwNTVvjmLlACO1Id75U6fz3Z1P8OGv3jvopkmSJC1rN333MQDOOOnwAlEAv/gjp/LGFz2VD331Xt65+Q5aLYNRkiQdLgNRAzA1Na+PjCiAHzltA6981vdx6Ze28r3H9g2yaZIkScvaTd99lFM3rOGYI0YP+1oRwbvOeRYX/OipfPRr3+FXPv51tj8+sQCtlCRp5TIQNQD7M6L6C0QB/LefOJ1WJr/05zfynR17B9U0SZKkZSszuem7j3HGSYdeH2q6iODtr3omb3/VM/nSNx7mZf/rH/nYtd+xpIIkSYfIQNQA7B5v14g6ctXcU/M6TjruCN53/hnc+8heXvW+a/j4dd+h0WwNqomSJEnLzv0797Fj7+Rh14eaLiL4z//2aVz91h/hmccfxX//3O2c+e4vcvFf3c7f3f4QDzy2zxpSkiT1qf9Iifq2e1+dI0ZrjNTmF+c7+9nH8wMnHs1vfeoWfucvb+fD19zLhS99Omc/+3iOGPVWSZIkzebr330UgOcfxop5s3n6k9byyf98Ftfdu5NPXP9drrz+fj76te8AsGa0xknHHcHJxx3BU9cdwUnHHcGTjhxj/dr2Y8ORY6wZczwnSdKS+dcwIs4G3gfUgA9l5u9P2z8GfBR4AbADeG1m3ld2O6FdI6rf+lDTnXDMaj7+Cy/k7+98iP/9xW/xtk/dwkWfuY3nP/UYnvF9R7Ju7RjHrRll/dpRjlszxrq1o6xbM8rRq0eIiAXuiSRJWooOZ9wUEW8H3gw0gV/LzM/Pds2IOAW4ElgH3Ai8ITMnB93Hmdz03Uc5YrTG93/f2oG9R0Rw1qnrOOvUdbznp5vc9eBubn9gF9/evpf7dz7BvY/s5Z++uZ2JxsGZ7WvHhjnx2NXF44iDnjuekyStBEsiEBURNeADwI8D24AbImJzZt7ZddibgUcz8+kRcT7wHuC15bcWdu9r9LViXi9DQ8HZz34yrzj9eP7l2zu45lvb+erWR/jsTQ/weDHtb7rhoeC4NaNFkKodrOoEqTrBq9UjNSYbLSabLerNFpONFiO1IVaP1lg9UjvozyNGa6waqTE2POSgSJKkJeJwxk0RcTpwPvAs4CnAFyPi+4tzel3zPcB7M/PKiPhgce0/HnxPD3bT/Y/xnBOPZnieWemHatVIjTNOPpYzpmVgtVrJI3sn2P54+/HInkke2TPBQ7vG2fboPrY9+gTX3rOTPRMHjuvWjg1z/NGrWDUyxEit/RitDTFSi/br4f2vR4e79xeP4Tjw9fTjhottXceMDrevPVwbYiggCCIgAKa9joipYwgO2N7+c//xTHt90HGOLSVpxVoSgSjgTGBrZt4DEBFXAucC3QOqc4F3Fc+vAi6NiMgKJuwfTkZUt6Gh4IdPW88Pn7Z+attEo8mje+vs2DvBjj2T7NzbHtjs3DvJjj2T7Ng7yc69E9z/6BPs3DPJ4xMzB67m1Y5gf4BqtMaq4RoRkAmtTBJotpJ9k0321ZtE0fah6Dyg1nk9BEMR1KI9KKl1HzcEtShGNbOYbe9cY5rZz+29d66h0mzvG3OdPeu5h/aec73vnOceRn8OdVw514B0qd33uc6e/Wd86O87qPsuDdLasWH+4LznVt2M5eSQx03F9iszcwK4NyK2FtdjpmtGxF3AS4GfKY75SHHd0gNR4/Umd35vN7/4o6eW/dYHGRoKnnTkKp505Kqex2Qmu/c1uP/RJ6aCU9se3cdDu8bbXxgWXxw+Mdmg3swDttUb0143k2ZradaoGoqDA1lMBa5mDmTR/XpakIwDjj/4fDrb+7h2d2AOprXzoKBddx9m7tP06/VjXsfOOYKY/zXno3tMFQdsp8f2AxvS65zuPf22vd8u9nO9hf65Ot7SYvKDG4/j5198Sunvu1QCUScA93e93ga8sNcxmdmIiF20U8Qf6T4oIi4ALihe7omIuwfSYiB+5YCX66e3ZZmzv8vbSusvrLw+29/lbdH19w8Hd+mnDu7Si9bhjJtOAK6ddu4JxfOZrrkOeCwzGzMcf4CyxmAX/Q+4aOZdi+73vkT2fWWy7yuTfV+ZDqnvfwz8p4VvS0fPMdhSCUQtmMy8HLi87PeNiC2Zuans962K/V3eVlp/YeX12f4ubyutv1ocqhqDdazk33v7bt9XGvtu31eapdb3cibQH74HgJO6Xp9YbJvxmIgYBo6mXXxTkiRpJTmccVOvc3tt3wEcU1yj13tJkiRNWSqBqBuA0yLilIgYpV1Ec/O0YzYDbyyenwd8qYr6UJIkSRU7nHHTZuD8iBgrVsM7Dbi+1zWLc75cXIPimn81wL5JkqQlbklMzStqF1wIfJ72ksFXZOYdEXEJsCUzNwMfBj5WFNXcSXuAtJhUlopeEfu7vK20/sLK67P9Xd5WWn9XlMMZNxXHfYp2YfMG8JbMbALMdM3iLX8buDIifg+4qbj2YrSSf+/t+8pk31cm+74yLam+h0lDkiRJkiRJKsNSmZonSZIkSZKkJc5AlCRJkiRJkkphIGqBRcTZEXF3RGyNiItm2D8WEZ8s9l8XERvLb+XC6aO/b4qI7RFxc/H4hSrauRAi4oqIeDgibu+xPyLi/cXP4taIeH7ZbVxIffT3JRGxq+veXlx2GxdSRJwUEV+OiDsj4o6IeOsMxyybe9xnf5fbPV4VEddHxC1Fn393hmOWzWd0n/1dNp/RUi9zjVWWil6f2xFxXER8ISK+Vfx5bLG9579ZEfHG4vhvRcQbu7a/ICJuK855f0RE+T3tLSJqEXFTRPxN8fqU4rN6a/HZPVps7/lZHhFvL7bfHRGv7Nq+aH9PIuKYiLgqIr4REXdFxItWyn2PiN8oft9vj4hPFP+2Lcv7HjOMvcu4z73eo0w9+v6Hxe/8rRHxlxFxTNe+ed3PQ/mdKdNM/e/a95sRkRGxvni9PO59ZvpYoAft4p3fBk4FRoFbgNOnHfMrwAeL5+cDn6y63QPu75uAS6tu6wL190eB5wO399j/auBvgQDOAq6rus0D7u9LgL+pup0L2N8nA88vnh8JfHOG3+dlc4/77O9yu8cBrC2ejwDXAWdNO2Y5fUb3099l8xntw8dMj37GKkvl0etzG/gD4KJi+0XAe4rnM/6bBRwH3FP8eWzx/Nhi3/XFsVGc+6qq+z3tZ/A24C86/zYBnwLOL55/EPjl4vmMn+XFz+sWYAw4pfjdqC323xPgI8AvFM9HgWNWwn0HTgDuBVZ33e83Ldf7zgxj7zLuc6/3WAR9fwUwXDx/T1ff530/5/s7sxj6X2w/ifYiId8B1i+ne29G1MI6E9iamfdk5iRwJXDutGPOpf2PCcBVwMsW07cO89RPf5eNzPwK7ZWFejkX+Gi2XQscExFPLqd1C6+P/i4rmflgZn69eP44cBftAVC3ZXOP++zvslLctz3Fy5HiMX3FjmXzGd1nf6XlbtmMVWb53O7+3PoI8O+K573+zXol8IXM3JmZjwJfAM4u9h2Vmddm+38lH+26VuUi4kTgJ4APFa8DeCntz2o4uO8zfZafC1yZmROZeS+wlfbvyKL9PYmIo2n/J/XDAJk5mZmPsULuO+1V3ldHxDBwBPAgy/S+9xh7l3Gfe71HaWbqe2b+fWY2ipfXAicWz+d1Pw/xs6JUs/y/673Af+XA8duyuPcGohbWCcD9Xa+3cfB/7KaOKf5i7QLWldK6hddPfwF+ukgbvCoiTiqnaZXo9+exnLwo2tN+/jYinlV1YxZKkZZ7Bu0Mkm7L8h7P0l9YZvc42tM6bgYepv2Pdc97vAw+o/vpL6ycz2itTCvhc/v7MvPBYtdDwPcVz3v1fbbt22bYvlj8b9r/IWsVr9cBj3X9R7W7vb0+y+f7M1kMTgG2A/8n2tMSPxQRa1gB9z0zHwD+J/Bd2gGoXcCNrIz73lHGfe71HovJf6KdyQPz7/uhfFZULiLOBR7IzFum7VoW995AlAbtr4GNmfkc2lHZj8xxvJaOrwNPzcznAv8f8LmK27MgImIt8Bng1zNzd9XtGbQ5+rvs7nFmNjPzebS/VTszIp5ddZsGqY/++hktLTGzfW4X33Yvu8zHiPhJ4OHMvLHqtlRgmPaUnT/OzDOAvbSn0ExZxvf9WNoZG6cATwHWAGdX2qgKlXGfF+PvUkT8DtAAPl51W8oSEUcA7wBKq89a9r03ELWwHqA9j7PjxGLbjMcUKaZHAztKad3Cm7O/mbkjMyeKlx8CXlBS26rQz/1fNjJzd2faT2ZeDYx0iugtVRExQntw//HM/OwMhyyrezxXf5fjPe4opjV8mYMHtMvpM3pKr/6usM9orUwr4XP7XzvTxIs/Hy629+r7bNtPnGH7YvBi4JyIuI/2dJuXAu+jPSVluDimu729Psvn+zNZDLYB27oyWq+iHZhaCff95cC9mbk9M+vAZ2n/LqyE+95Rxn3u9R6Vi4g3AT8JvL4IlMD8+76D+f/OVO1ptAOwtxSfeycCX4+I41km995A1MK6ATitqMo/Srvg2eZpx2wGOhXszwO+1PWXaqmZs7/T6uecQ7uewXK1Gfi5YiWDs4BdXamOy05EHN+14sKZtD9PFsMH9yEp+vJh4K7M/KMehy2be9xPf5fhPd4QxYorEbEa+HHgG9MOWzaf0f30d4V9Rmtl6mdstiTM8rnd/bn1RuCvurbP9G/W54FXRMSxRcbJK4DPF/t2R8RZxXv9XNe1KpWZb8/MEzNzI+17+KXMfD3tAPt5xWHT+z7TZ/lm4Pxor5R1CnAa7SK+i/b3JDMfAu6PiGcUm14G3MkKuO+0p+SdFRFHFG3r9H3Z3/cuZdznXu9RqYg4m/Z03HMy84muXfO6n8XvwHx/ZyqVmbdl5pMyc2PxubeN9mIVD7Fc7n1WUBV+OT9oV7H/Ju2K/b9TbLuE9l8ggFXAp2kXVbseOLXqNg+4v/8DuIP2qgVfBp5ZdZsPo6+foD0/vU77w+DNwC8Bv1TsD+ADxc/iNmBT1W0ecH8v7Lq31wI/VHWbD7O/P0w7HfVW4Obi8erleo/77O9yu8fPAW4q+nw7cHGxfVl+RvfZ32XzGe3DR6/HTGOVpfiY5XN7HfAPwLeALwLHFcf3/DeLdr2VrcXj57u2byo+L74NXApE1f2e4efwEvavmndq8Vm9tfjsHiu29/wsB36n6N/ddK0Ot5h/T4DnAVuKe/852itirYj7Dvwu7S9Rbgc+RnultGV535l57D3w+9zrPRZB37fSrnnU+bz74KHez0P5nam6/9P238f+VfOWxb3vNECSJEmSJEkaKKfmSZIkSZIkqRQGoiRJkiRJklQKA1GSJEmSJEkqhYEoSZIkSZIklcJAlCRJWnQi4oqIeDgibu/z+P8YEXdGxB0R8ReDbp8kSZIOjavmSZKkRScifhTYA3w0M589x7GnAZ8CXpqZj0bEkzLz4TLaKUmSpPkxI0rSohURl0TEy0t4n1+PiCMW6FrvWIjrSCtdZn4F2Nm9LSKeFhF/FxE3RsQ1EfHMYtcvAh/IzEeLcw1CSVr2IuJfFug6T4mIqxbiWnO8z/Mi4tULdK2XRMQPLcS1JJXPQJSkRSszL87ML/Z7fEQMH+Jb/TrQdyAqImqz7J53IOow2i2tNJcDv5qZLwB+C7is2P79wPdHxD9HxLURcXZlLZSkkmTmggRiMvN7mXnefM6ZYyzUy/OAvgNRc4yPXgLMq/+Ot6TFw0CUpL5FxMaIuCsi/rSow/L3EbG6+Ibr2oi4NSL+MiKOLY7/x4h4T0RcHxHfjIgfKba/KSI+FxFfiIj7IuLCiHhbRNxUXOe44rg/i4jziuevjohvFJkQ74+Ivym2vysiPhYR/wx8rGjjNRHx9eLxQ8VxLynac1VxnY9H268BTwG+HBFfnqXveyLif0XELcCLIuJni37dHBF/EhG1iPh9YHWx7eNFW27vusZvRcS7un42/zsitgBvneVn9ayu97m1mIIkrTgRsZb2fzo+HRE3A38CPLnYPQycRvs/Jq8D/jQijqminZJUlojYU/w54xin2HdfRPyPYhyxJSKeHxGfj4hvR8QvFcdMjVci4oiI+FS0a+79ZURcFxGbOu83bSx0cUTcEBG3R8TlXe950JgmIkaBS4DXFm15bY8+TR/XbYiIzxTvc0NEvDgiNgK/BPxGca0f6R4zzvCzuSYiNgN3zvGz+v2i37dGxP9c8BsmaYqBKEnzdRrtKTDPAh4Dfhr4KPDbmfkc4DbgnV3HD2fmmbSzjrq3Pxv4D8APAu8GnsjMM4CvAT/X/YYRsYr2fzpfVWRCbJjWptOBl2fm64CHgR/PzOcDrwXe33XcGUU7TgdOBV6cme8Hvgf8WGb+2Cz9XgNcl5nPBXYU135xZj4PaAKvz8yLgH2Z+bzMfP0s1+oYzcxNmfm/itcz/ax+CXhf8T6bgG19XFdajoaAx4q/X53Hvyn2bQM2Z2Y9M+8Fvkn7s0qSVoqDxjhd+75bjCOuAf4MOA84C/jdGa7zK8CjmXk68N+BF3TtmxoLZeZXgUsz8weLOn6rgZ/sOvaAMU1mTgIXA58sPr8/OUtfusd17wPem5k/SHvM+aHMvA/4YLH9eZl5zRw/m+cDb83M7y9eH/Szioh1wL8HnlWMZ39vjmtKOgwGoiTN172ZeXPx/EbgacAxmflPxbaPAD/adfxnu47d2LX9y5n5eGZuB3YBf11sv23acQDPBO4p/oMJ8Ilp+zdn5r7i+QjtbIjbgE/THmR0XJ+Z2zKzBdw8w/vMpgl8pnj+MtoDsxuKzIyX0R7IzNf0QdhMP6uvAe+IiN8GntrVT2lFyczdwL0R8RqAIqPxucXuz9HOhiIi1tOeqndPFe2UpIrMNsbZXPx5G+1AUmf8NTFD9ugPA1cCZObtwK1d+7rHQgA/VmRM3Qa8FHhW175e479+dI/rXg5cWoy3NgNHFRmy83F91xiy83r6z2oXMA58OCL+A/DEPN9D0jwYiJI0XxNdz5vAXNNfOsc3aU+fmek6ra7XrWnH9WNv1/PfAP4VeC7tDKLRHu85vT1zGc/MZvE8gI90ZWU8IzPfNcM5DQ78nF01S7u72zfVtsz8C+AcYB9wdUS8dB5tlpasiPgE7UDsMyJiW0S8GXg98OZiWsgdwLnF4Z8HdkTEncCXgf+SmTuqaLckVWS2MU73GGv6+OuQxkJFtvplwHmZ+QPAn3LgOKfX+K8f3eOjIeCsrjHXCZm5Z4ZzpsZcETHEgeO/XuOtqfZlZgM4E7iKdmbX382zzZLmwUCUpMO1C3i0U9MIeAPwT7McfyjuBk4tagJAe1pcL0cDDxbfcr0B6KeY5uPAkfNozz8A50XEkwAi4riIeGqxrx4RI8XzfwWeFBHrImKMA1PW+xIRp9LOBns/8FfAc+Z7DWkpyszXZeaTM3MkM0/MzA9n5r2ZeXYxLeT0zLykODYz823Fth/IzCurbr8kLVH/DPxHgIg4HfiBHsd1gk6PFBlK/RQ7n+94C+DvgV/tvIiI5/W41n3sn0Z4Du0M+b4VfTg6M6+m/aXmc+c4RdJhMBAlaSG8EfjDiLiV9ooolyzkxYv07F8B/i4ibqQ9+NjV4/DLgDcWGRPP5OBvwWZyeXHtnsXKp7XnTuC/AX9f9PkL7C+afDlwa0R8PDPrtH8W1xfHfKOf60/zH4Hbi5T0Z9OuxyVJkjQIlwEbigzT36OdfXrQmCszH6OdBXU77azUG/q49peB02crVj6DXwM2FQXE76RdOxPaJR3+fadYedGWf9sppE5/479uRwJ/U4zrvgq8bZ7nS5qHyMyq2yBJc4qItZm5p1jZ5APAtzLzvVW3S5IkabmIiBowkpnjEfE04IvAM4pi45K0IFZ0IGr9+vW5cePGqpshSZIG5MYbb3wkM6evtKmKOQaTJGl5m20MNt/CccvKxo0b2bJlS9XNkCRJAxIR36m6DTqYYzBJkpa32cZg1oiSJEmSJElSKQxESZIkSZIkqRQGoiRJkiRJklQKA1GSJEmSJEkqhYEoSZIkSZIklcJAVMl++c9v5L9/7vaqmyFJkrQi/ZdP38JvfuqWqpshSdKKNVx1A1aam+9/jKdtWFt1MyRJklakex7ZS6PZqroZkiStWGZElajRbPHw4xNMOviRJEmqRL3Z4onJZtXNkCRpxTIQVaJH9kzSbCWTDQNRkiRJVZhsGIiSJKlKBqJK9OCufUD7mzhJkiSVr95ssa9uIEqSpKoYiCrRQ7vGAQNRkiRJVZlstnhislF1MyRJWrEMRJXowSIQ5dQ8SZKkatQbyXi9RauVVTdFkqQVyUBUiR7a3cmIcuAjSZJUhU5mutPzJEmqhoGoEk1lRDk1T5IkqRKdcZgFyyVJqoaBqBI9VBQrd2qeJElaTCLi7Ii4OyK2RsRFM+x/W0TcGRG3RsQ/RMRTu/a9MSK+VTzeWG7L528qI8pAlCRJlTAQVaL9U/MMREmSpMUhImrAB4BXAacDr4uI06cddhOwKTOfA1wF/EFx7nHAO4EXAmcC74yIY8tq+6HolEh4om7BckmSqmAgqiStVvKvuyYAA1GSJGlRORPYmpn3ZOYkcCVwbvcBmfnlzHyieHktcGLx/JXAFzJzZ2Y+CnwBOLukds9bs5U0iyLlTs2TJKkaBqJKsvOJSSabLY49YoR6M12pRZIkLRYnAPd3vd5WbOvlzcDfzvfciLggIrZExJbt27cfRnMPXfeXgU7NkySpGgaiSvJQUaj85OOOAKDeMitKkiQtLRHxs8Am4A/ne25mXp6ZmzJz04YNGxa+cX3oXjDGjChJkqphIKoknRXzTl63Bthfn0CSJKliDwAndb0+sdh2gIh4OfA7wDmZOTGfcxeLeqM7EGWNKEmSqmAgqiSdFfNOPm414Mp5kiRp0bgBOC0iTomIUeB8YHP3ARFxBvAntINQD3ft+jzwiog4tihS/opi26LU/UWgU/MkSarGcNUNWCke3DXO8FBw/NHtQJQFyyVJ0mKQmY2IuJB2AKkGXJGZd0TEJcCWzNxMeyreWuDTEQHw3cw8JzN3RsT/QzuYBXBJZu6soBt96f4icF/dQJQkSVUwEFWSh3aN831HrWLVcDsJzYwoSZK0WGTm1cDV07Zd3PX85bOcewVwxeBat3CsESVJUvWcmleSB3eN8+SjVzHaCUSZESVJklQqV82TJKl6BqJK8tDucY4/ehUjtfaP3Kl5kiRJ5aqbESVJUuUGGoiKiLMj4u6I2BoRF82wfywiPlnsvy4iNnbte3ux/e6IeOVc14z4/9m79zi76vLQ/59nbplBkgAhXiBowkU0Xoo2gleq9Ybt0dhTLLEXweKPYuXUa1s8PcdafuVXqT31ilJaVMQLKGJN+0Opd7EKJGrkajQGKkHUECBccpnZez/nj732ZGey99wya89kz+f9es1r1l57rbW/370nk+886/k+37gkIn4YETdGxJURcXCZfZuKzOTu7TvrGVGNQFTFVfMkSZI6aa+MqBFXzZMkaTaUFoiKiF7gQuBlwErg1RGxcsxhZwL3ZeaxwHuAC4pzV1JfseVJwCnAhyKid4Jrvjkzfy0znwr8DDinrL5N1fadI+waqfGoRYP0j07N8y6cJElSJw033Qg0I0qSpNlRZkbUicCmzNycmcPA5cDqMcesBi4ttq8EXhj1pVhWA5dn5u7MvB3YVFyv7TUz8wGA4vwhYM6kHD20u37HbdFQP/29Aew9EJIkSVL5LFYuSdLsKzMQdSRwZ9PjLcW+lsdkZgXYDiwZ59xxrxkRHwV+ATwBpcxE/wAAIABJREFU+ECrRkXEWRGxPiLWb926deq9moaRaj3oNNDbwwKLlUuSJM2KkWLV4v7esFi5JEmzpKuKlWfma4EjgNuA09occ3FmrsrMVUuXLu1IuypF0KmvN/YUK68YiJIkSeqkRo2oxUP97Bi2RpQkSbOhzEDUXcBRTY+XFftaHhMRfcBiYNs45054zcysUp+y97v73YMZ0sh+6uvpcdU8SZKkWdIYky0a6ndqniRJs6TMQNQ64LiIWBERA9SLj68dc8xa4PRi+1Tga5mZxf41xap6K4DjgBvaXTPqjoXRGlGvAH5UYt+mpNKYmtcXDDg1T5IkaVY0yiUcMtTPzhEDUZIkzYa+si6cmZWIOAe4BugFPpKZt0TEecD6zFwLXAJcFhGbgHupB5YojvsMcCtQAd5QZDrR5po9wKURsQgI4IfA68vq21RVansyogaKjKhhp+ZJkiR1VGP8tXionzvv2znLrZEkaX4qLRAFkJlXA1eP2feOpu1dwKvanHs+cP4kr1kDnjMDTS5FY4W8/t6e0Yyoxh05SZIkdUZzjSiLlUuSNDu6qlj5XNXIiOpvKlY+XHHwI0mS1Elji5XXK0JIkqROMhDVAY0aUX29PfT3BmBGlCRJUqcNNwWiagm7LZUgSVLHGYjqgMagp7/XYuWSJEmzZaQol7BoqB/A6XmSJM0CA1Ed0MiI6u/tob/HYuWSJEmzYaRao7cnWDhYL5O6w5XzJEnqOANRHdCoR9DXE/T0BH09MbpPkiRJnTFcrdHfGwwN1ANRZkRJktR5BqI6YGR0al797R7o6zEQJUmS1GHDlRr9vT0c1N8LGIiSJGk2GIjqgEptz9S8xnen5kmSJHXWSLXGQG8PBw3UA1E7hiuz3CJJkuYfA1EdMNJUrLz+vYdhV82TJEnqqJFqPSNqqBGIskaUJEkdZyCqA0aKoFNfkRG1wKl5kiRJHTdSTfr7goOsESVJ0qwxENUB+2ZEhVPzJEmSOmx4n6l5BqIkSeo0A1EdUBlTrLy/14woSZKkTmsUKx8cLVZujShJkjrNQFQHjE7N66lnRLlqniRJUueNVGsM9JkRJUnSbDIQ1QH1wphBxJ5i5budmidJktRRo8XK+w1ESZI0WwxEdUCllvT17HmrB5yaJ0mS1HEjlaS/N+jpCQb7e9jpqnmSJHWcgagOGK7U6CsKlUNjal7OYoskSZLmn+FqjYG+ejbUQQN97LBGlCRJHWcgqgMqtfoKLQ2umidJkuaSiDglIjZGxKaIOLfF8ydHxPcjohIRp455rhoRG4qvtZ1r9dQNV2oMFDcHh/p7nZonSdIs6JvtBswHlWrulRHlqnmSJGmuiIhe4ELgxcAWYF1ErM3MW5sO+xlwBvC2FpfYmZknlN7QGdCoEQVw0EAvOw1ESZLUcQaiOmC4Wtu7RlRfD8MGoiRJ0txwIrApMzcDRMTlwGpgNBCVmXcUzx3QA5ixgSgzoiRJ6jyn5nVApZoM9O1drNypeZIkaY44Eriz6fGWYt9kDUbE+oi4LiJe2e6giDirOG791q1bp9vW/TJSzdFA1JAZUZIkzQoDUR0wUq3R1+PUPEmS1JUel5mrgN8H3hsRx7Q6KDMvzsxVmblq6dKlnW1hoV6svJER1ceOEYuVS5LUaQaiOqD57hu4ap4kSZpT7gKOanq8rNg3KZl5V/F9M/AN4Gkz2biZNFJtKlbu1DxJkmaFgagOqNRq9I8pVu7UPEmSNEesA46LiBURMQCsASa1+l1EHBoRC4rtw4Hn0FRbaq4ZrjTViOrvZZeBKEmSOs5AVAeMVGv0NWVE9feFxcolSdKckJkV4BzgGuA24DOZeUtEnBcRrwCIiGdExBbgVcA/RcQtxelPBNZHxA+BrwPvGrPa3pwyUq3R39dUrHzEQJQkSZ3mqnkdUJ+atycjakFRIyoziYhxzpQkSSpfZl4NXD1m3zuattdRn7I39rzvAE8pvYEzIDPHFCvvc2qeJEmzwIyoDmheKhjqU/MyoVKzTpQkSVInNOpzNmpEHTTQy3ClRtXxmCRJHWUgqgMqY4qVN1LCXTlPkiSpMxrjroGmqXkAO4ZdOU+SpE4yENUBI9UafT17puANFEGpkYp34CRJkjqhsVBM4+bgYH89ELXTOlGSJHWUgagO2GdqXnEnbnfVgY8kSVInNDKiRmtEFYGoXcNmqEuS1EmTCkRFxFUR8dsRYeBqGiq1vYuVN2oTNGoVSJIkzQTHbO01ViweGJMRtavijUFJkjppsoOUDwG/D/wkIt4VEceX2KauM1Kp0deUEdWoTTBS8Q6cJEmaUY7Z2mjcAOzvq98QHBqoj8d2unKeJEkdNalAVGZ+JTP/AHg6cAfwlYj4TkS8NiL6y2xgNxgZkxHVSAkftli5JEmaQY7Z2hstVt5bz4QazYiyRpQkSR016bTtiFgCnAG8DvgB8D7qg5wvl9KyLlIZWyOqEYgyI0qSJM0wx2yt7SlWXr85aLFySZJmR99kDoqIzwPHA5cBL8/Mu4unroiI9WU1rluMVJO+nhZT88yIkiRJM8gxW3uNTPTGojFDZkRJkjQrJhWIAv45M69u3hERCzJzd2auKqFdXWWkWhutRwB7imSaESVJkmaYY7Y2GrU59ylWPuJ4TJKkTprs1Ly/bbHvuxOdFBGnRMTGiNgUEee2eH5BRFxRPH99RCxveu7txf6NEfHSia4ZEZ8s9t8cER+ZS3UQKrWkv2ffqXmumidJkmbYtMZs88FosfLevTOinJonSVJnjZsRFRGPBo4EhiLiaUAjrWcRcNAE5/YCFwIvBrYA6yJibWbe2nTYmcB9mXlsRKwBLgBOi4iVwBrgScAR1AttPr44p901Pwn8YXHMp6jXRfjwRG9A2Wq1pFpL+pqKlTs1T5IkzaT9GbPNF41xV6NG1GggylXzJEnqqImm5r2UerHLZcA/Nu1/EPifE5x7IrApMzcDRMTlwGqgORC1GnhnsX0l8MGIiGL/5Zm5G7g9IjYV16PdNZvT0CPihqLNs26k1hj0NGdE1QdAu52aJ0mSZsb+jNnmhUaNqMYNwQX99e+7KgaiJEnqpHEDUZl5KXBpRPxuZn5uitc+Eriz6fEW4KR2x2RmJSK2A0uK/deNOffIYnvcaxZT8v4IeGOrRkXEWcBZAI997GMn35tp2pMGvm+NKDOiJEnSTNjPMdu8MDymRtSCvh4iYJcZUZIkddREU/P+MDM/ASyPiLeMfT4z/7HFabPtQ8C3MvPaVk9m5sXAxQCrVq0qvUhTpbpvRpRT8yRJ0kw6QMdsHTUyZkwWEQz29bLLDHVJkjpqoql5jyi+HzyNa98FHNX0eFmxr9UxWyKiD1gMbJvg3LbXjIi/BpYCfzKN9paikRHV17tvsXJXzZMkSTNkf8Zs88JoIKpvz5hsaKDXGlGSJHXYRFPz/qn4/jfTuPY64LiIWEE9WLQG+P0xx6wFTqe+msupwNcyMyNiLfCpiPhH6sXKjwNuoF54s+U1I+J11OsjvDAz50yEZ3TQ07Nnal6/U/MkSdIM2s8x27ww3KJcwlB/r6vmSZLUYT0THwIR8fcRsSgi+iPiqxGxNSL+cLxzMrMCnANcA9wGfCYzb4mI8yLiFcVhlwBLimLkbwHOLc69BfgM9cLmXwLekJnVdtcsrnUR8CjguxGxISLeMel3oUSVMUsFw56peY0BkSRJ0kyYzphtvhgpMtEX9PaO7lvQ38MuA1GSJHXURFPzGl6SmX8REb8D3AH8d+BbwCfGO6lYye7qMfve0bS9C3hVm3PPB86fzDWL/ZPtS0c1Vmjpa1Gs3Kl5kiRphk1rzDYf7Jmat3dGlIEoSZI6a1IZUewJWP028NnM3F5Se7pOpbb3Ci2wJyXcqXmSJGmGOWZro3EDsDlLfbC/l10jjsckSeqkyWYR/XtE/AjYCbw+IpYCu8prVveotChW3tfbQ08YiJIkSTPOMVsbjXFXX481oiRJmk2TyojKzHOBZwOrMnMEeBhYXWbDukWrqXlQvxvn1DxJkjSTHLO1N1xNBnp7iNgzJhvsd9U8SZI6bSp1lZ4ALI+I5nM+PsPt6TqNjKjmqXmNx8NmREmSpJnnmK2FkWptdMGYhsH+HnZVDERJktRJkwpERcRlwDHABqDxv3XioGZCrdLAob5ynhlRkiRpJjlma2+kWhut09kw1N/LLjOiJEnqqMlmRK0CVmZmltmYbjQaiBqTEdXf22ONKEmSNNMcs7UxXKntVagciql51oiSJKmjJrtq3s3Ao8tsSLdqNzWvvy8YqTpGlCRJM8oxWxvD1X0DUUMDrponSVKnTTYj6nDg1oi4Adjd2JmZryilVV1kpE2x8gGLlUuSpJnnmK2NkWq2qBFVz4jKzL2KmEuSpPJMNhD1zjIb0c1GavWsp7F34PotVi5JkmbeO6dzUkScArwP6AX+JTPfNeb5k4H3Ak8F1mTmlU3PnQ78r+Lh32bmpdNpQ9lGKvvWiBrsr4/PdldqDPb3zkazJEmadyYViMrMb0bE44DjMvMrEXEQ9YGKJjBSZD2NHfgM9FkjSpIkzazpjNkiohe4EHgxsAVYFxFrM/PWpsN+BpwBvG3MuYcBf029NlUC3yvOvW+m+jRTWq2aN1QEn3aNVA1ESZLUIZOqERUR/w9wJfBPxa4jgX8tq1HdpFJrXazcqXmSJGmmTXPMdiKwKTM3Z+YwcDmwuvmAzLwjM28Exg5eXgp8OTPvLYJPXwZO2c9ulKJVjahG8MmC5ZIkdc5ki5W/AXgO8ABAZv4EeGRZjeomjYLkYzOiXDVPkiSVYDpjtiOBO5sebyn2Tcakz42IsyJifUSs37p16yQvP3NarZq3JyPKMZkkSZ0y2UDU7uIOGQAR0Uc9/VoTaASb+nvGrprXw7Cr5kmSpJk1Z8dsmXlxZq7KzFVLly7t+OuPVGv7rGI8mhE1bEaUJEmdMtlA1Dcj4n8CQxHxYuCzwL+V16zuUWlkRPU5NU+SJJVuOmO2u4Cjmh4vK/ZNxv6c21Ej1WxbrHxXxUCUJEmdMtlA1LnAVuAm4E+Aq9mzOorG0VgZr69nbLHycGqeJEmaadMZs60DjouIFRExAKwB1k7y9a4BXhIRh0bEocBLin1zzrjFys2IkiSpYya7al4tIv4V+NfM7Pyk/gPYaEbUmFRwa0RJkqSZNp0xW2ZWIuIc6gGkXuAjmXlLRJwHrM/MtRHxDODzwKHAyyPibzLzSZl5b0T8v9SDWQDnZea9M9+z/WexckmS5oZxA1EREdSX5D2HInsqIqrABzLzvPKbd+Cr1Gr0BPSOzYhyap4kSZoh+ztmy8yrqWdPNe97R9P2OurT7lqd+xHgI9NufIe0qhE1NGCxckmSOm2iqXlvpr7yyjMy87DMPAw4CXhORLy59NZ1geFqjb7efd/m/j4zoiRJ0oxxzDaB8VbNMyNKkqTOmSgQ9UfAqzPz9saOzNwM/CHwmjIb1i0q1aR/TDYUmBElSZJmlGO2CYxUk/6+vcdkC4pi5QaiJEnqnIkCUf2Zec/YnUXNgf5ymtRdRqq1fVbMAxjo6xktZC5JkrSfHLNNYKRSY6C3d699jYyo3QaiJEnqmIkCUcPTfE6FkWrS19Nial5vMFIUMpckSdpPjtkmMFyt7ZMRNVqs3FXzJEnqmIlWzfu1iHigxf4ABktoT9epVGsM9LaamtdLtZZUa7lPIXNJkqQpcsw2gVbFyvt7e+jrCXZVDERJktQp4waiMrN3vOc1sZE2xcoHm2oSHLxgonigJElSe47Zxlep1qgl+xQrh/r0vJ3DlkuQJKlTJpqap/00Ukv6WmRELRqql2t4YOdIp5skSZI0rzTKIbQKRC3o77VYuSRJHWQgqmSVFmngAIuLQNR2A1GSJEmlaqxU3N/i5uDQQI/FyiVJ6iADUSUbqbbOiDIQJUmS1BmNjKehgX1nMA6ZESVJUkcZiCrZSLXWMg3cQJQkSVJn7BiuAHBQi0DUYH8vuwxESZLUMQaiSjZSrdHfYyBKkiRptuwYLjKi+vddIGbQjChJkjrKQFTJKm2m5i0atFi5JElSJzQCTe0yonaOuGqeJEmdYiCqZCO1bDk1b+FgHxEGoiRJksrWyIhqFYga6rdYuSRJnWQgqmQjlVrLFVp6eoKFC/qcmidJklSyncMWK5ckaa4wEFWySq11sXKAxQf1G4iSJEkq2c6RRrHy1jWiLFYuSVLnGIgq2Ug16WsXiBoyECVJklS28abmDfb3jmZMSZKk8hmIKll91bx9p+aBgShJkqROGG9qXj0jymLlkiR1ioGoklWqrYuVg4EoSZKkThjNiOpvXSNquFqjWstON0uSpHmp1EBURJwSERsjYlNEnNvi+QURcUXx/PURsbzpubcX+zdGxEsnumZEnFPsy4g4vMx+TcVItUZfi2Ll0AhEVTrcIkmSpPllx3CVgd6eluUShgbq+6wTJUlSZ5QWiIqIXuBC4GXASuDVEbFyzGFnAvdl5rHAe4ALinNXAmuAJwGnAB+KiN4JrvmfwIuA/yqrT9MxUm1frHzRUD8P7DIjSpIkqUw7hystp+VBfWoe4Mp5kiR1SJkZUScCmzJzc2YOA5cDq8ccsxq4tNi+EnhhRESx//LM3J2ZtwObiuu1vWZm/iAz7yixP9MyUk3622RELRrsZ7hS8w6cJElSiXYMVxlqMS0P9gSiHI9JktQZZQaijgTubHq8pdjX8pjMrADbgSXjnDuZa44rIs6KiPURsX7r1q1TOXVaKrXauKvmAdaJkiRJKtGOkWrLFfPAQJQkSZ0274qVZ+bFmbkqM1ctXbq07NcqMqIMREmSJM2WncPVtlPzhkYDUa6cJ0lSJ5QZiLoLOKrp8bJiX8tjIqIPWAxsG+fcyVxzzqgUq6/097QvVg4GoiRJksq0Y7jSNiNqyBpRkiR1VJmBqHXAcRGxIiIGqBcfXzvmmLXA6cX2qcDXMjOL/WuKVfVWAMcBN0zymnNGpVoPRE04NW+HgShJkqSy1DOi+lo+N9jfM3qMJEkqX2mBqKLm0znANcBtwGcy85aIOC8iXlEcdgmwJCI2AW8Bzi3OvQX4DHAr8CXgDZlZbXdNgIj4s4jYQj1L6saI+Jey+jZZw9V6ine7YuVmREmSJJVvx3CVgyxWLknSnND61tAMycyrgavH7HtH0/Yu4FVtzj0fOH8y1yz2vx94/342eUZVRgNR1oiSJElzV0ScArwP6AX+JTPfNeb5BcDHgV+nXkbhtMy8IyKWU785uLE49LrMPLtT7Z6sHcMTFyt3ap4kSZ1RaiBqvhutEdUmELWoCEQ9sMtAlCRJmh0R0QtcCLyY+orE6yJibWbe2nTYmcB9mXlsRKwBLgBOK577aWae0NFGT9HOkfbFyhsBqh1OzZMkqSPm3ap5nTRcqWdE9bWZmtfbEyxc0GdGlCRJmk0nApsyc3NmDgOXA6vHHLMauLTYvhJ4YUS0HuDMQeMVKz/84AUA/OqB3Z1skiRJ85aBqBLtyYhqP05bNNRvIEqSJM2mI4E7mx5vKfa1PKao2bkdWFI8tyIifhAR34yI57V7kYg4KyLWR8T6rVu3zlzrJ1CrJbtGam2LlQ/09XD4wQP84oGdHWuTJEnzmYGoEo1MUCMK6oGoBwxESZKkA9PdwGMz82nUF575VEQsanVgZl6cmasyc9XSpUs71sBG7ad2GVEAj148yC+27+pUkyRJmtcMRJWoEYjq62n/Ni8ecmqeJEmaVXcBRzU9Xlbsa3lMRPQBi4Ftmbk7M7cBZOb3gJ8Cjy+9xVPQqP00biBq0RB3G4iSJKkjDESVqFKdeGreYqfmSZKk2bUOOC4iVkTEALAGWDvmmLXA6cX2qcDXMjMjYmlR7JyIOBo4DtjcoXZPyq4iI2qov30g6jGLB/nFAwaiJEnqBFfNK9FkpuYZiJIkSbMpMysRcQ5wDdALfCQzb4mI84D1mbkWuAS4LCI2AfdSD1YBnAycFxEjQA04OzPv7Xwv2tuTEdV+2PvoxYPcv2OEncPtV9eTJEkzw0BUiUaKjKh2q+aBgShJkjT7MvNq4Oox+97RtL0LeFWL8z4HfK70Bu6HHcMVYPypeY9ZPAjALx7YxYrDH9GRdkmSNF85Na9EjYyogQkyonaN1NhdqXaqWZIkSfPGziIjanCcqXmPXlQPRN293ZXzJEkqm4GoElVqRbHyCQJRAA/srHSkTZIkSfPJpIqVFxlRv7ROlCRJpTMQVaLRqXk97afmLSoCUU7PkyRJmnk7RiYfiHLlPEmSymcgqkSjU/P62r/NBqIkSZLKs7OoETVeEfKDBvpYPNTPLwxESZJUOgNRJapMIiNqz9Q8A1GSJEkzbTKr5kG9YLkZUZIklc9AVImGi4yo/nFqRC09eAEAd91vcUxJkqSZNpkaUVCfnmdGlCRJ5TMQVaJGRtR4gahlhw7xqEUL+O7mbZ1qliRJ0ryxc7hKBCwYp1QC1FfOMyNKkqTyGYgq0Z5V89pPzYsInn3M4Vz3023UatmppkmSJM0LO4arHNTfS0T78RjUM6K2Pbyb4UqtQy2TJGl+MhBVovsertd9OnjB+DUJnn3MErY9PMzGXz7YiWZJkiTNGztHKgxNUB8K6jWiMuFXD5oVJUlSmQxEleju7Ts5/OABBvvHr0nw7GMPB+A7P3V6niRJ0kzaMVydsD4UwKMXDwFYJ0qSpJIZiCrRz7fv4jHFoGY8Rx4yxPIlB/Hdn97TgVZJkiTNH5MNRD1m8SCAdaIkSSqZgagS3X3/ztFBzUSefezhXL/5XipV6xJIkiTNlJ3DVYYmlRFVH7OZESVJUrkMRJXo7u27OOKQiTOioF4n6sHdFW66a3vJrZIkSZo/dgxXJpURtXBBHwcN9JoRJUlSyQxEleSBXSM8tLsy6YyoZx29BLBOlCRJ0kzaMVxlqH/iYuURwaMXD3L39p0daJUkSfOXgaiS3H1//W7aYyaZEbXk4AU85cjFrN3wczKzzKZJkiTNGztHJlcjCuD4Ry3kxi1mp0uSVCYDUSX5eXE37YhJZkQBnPHs5Wz85YN888dby2qWJEnSvFLPiJpcIOqkFYdx1/07ufPeHSW3SpKk+ctAVEmmmhEF8PJfO4JHLxrkn765uaxmSZIkzSu7JlmsHOCZx9RLJVx/+71lNkmSpHnNQFRJ7t6+k56ARy1cMOlzBvp6OPO5K/ju5m388M77S2ydJElS98tMdkxhat7jH7mQQw7q5/rN1uyUJKksBqJK8vP7d/HIhYP09U7tLV5z4lEsXNDHxd8yK0qSJGl/DFdrVGs56UBUT09w4vLDzIiSJKlEBqJKcvf2nTzmkMnXh2pYONjPHz3rcfz/N93Nt39yTwktkyRJmh92DlcBGBqYeNW8hpOOXsLP7t3h6nmSJJXEQFRJ7t6+iyMWT74+VLP/8ZvHcfTSR/DWz27gvoeHZ7hlkiRJ88OOIhA12YwoqBcsB7h+s1lRkiSVwUBUCTKTn9+/k8dMYcW8ZkMDvbx/zdO49+Fhzr3qRjJzhlsoSZLU/aYTiHriYxaxcLCP66wTJUlSKQxEleC+HSPsrtSmtGLeWE8+cjF//tLjueaWX3Lu525i10h1BlsoSZLU/Uan5vVPPhDV2xOctMI6UZIklcVAVAl+fn+9psAR08yIanjdc4/mDS84hivW38krL/xPbrv7gZloniRJ0rywY7gCwEFTqBEF8PzjH8nt9zzMZ9ffWUazJEma1wxEleDu7bsA9isjCuort/z5S5/AR1/7DH7xwC5e9r5red2l6/j6j37Flvt2UKs5ZU+SJKmdHSONYuWTz4gCePWJj+XZxyzhf3/hZm8ESpI0w6Z2e0iT0lhlZX8zohpecPwj+fpbn8+l372DS79zB1+57VcADPT18NjDDmL5koN4/KMW8qQjFnP8oxey7NAhBqeQgi5JktSNdk6jRhTUp+e9b83T+O33X8uffvL7fPbsZ3H4wQvKaKIkSfNOqYGoiDgFeB/QC/xLZr5rzPMLgI8Dvw5sA07LzDuK594OnAlUgT/LzGvGu2ZErAAuB5YA3wP+KDNnZcm5n9+/i/7emNEBy6GPGOBNL3o8Z518NBt+dj93bNvBf217mDu2Pczt9zzMNzZupdKUIXX4wQtYdugQyw4dYvmSR3D00kdw9NKDOXrpI1g02D9j7ZIkSQe+MsZsc0Ejm2mqgSiApQsX8IFXP40/vOR6nv/ub/CnLziG01YdxaEHDdDTEzPdVEmS5o3SAlER0QtcCLwY2AKsi4i1mXlr02FnAvdl5rERsQa4ADgtIlYCa4AnAUcAX4mIxxfntLvmBcB7MvPyiLiouPaHy+rfeO7evpNHLRosZZBy0EAfzz72cJ597N77d1eq/PgXD7Fp64Pcdd9OthRfN921nS/e/AuqTUGqwx4xwGGPGODQg/oZ7O+ltyfo64nie0/9e29jX8/oc/29ez/u6wn6epse9xbHNV1jz7V7mq6553X6e8e87uhr99DTAz0RxRcEQYzuq3+HvR9HQISDQ0mSJquMMVtmzuoqK9VacsGXfsTF39rM849fylGHHjSt65x09BK++MaTedcXb+Pvv7SRv//SRnp7giMOGeTXH3soT3/coRy8oI+eCBYf1M+Rhwyx9OAFLOjvYUFffYwlSZL2VmZG1InApszcDBARlwOrgeZBzWrgncX2lcAHox5FWA1cnpm7gdsjYlNxPVpdMyJuA34T+P3imEuL685OIOr+XRyxeP/qQ03Vgr5enrJsMU9Ztnif54YrNX527w42b32Izfc8zM/u3cF9Dw9z345hHt5doVpLKrWkUk0qtdro4z37a3s9rhZfc1UEBHuCWBF7glXNQaoYsxGj58de12r1XIx5vvmofc9pPJ74umOfb3f+TCozblfWpcsKNpb650JJFy+zzQfa+1zuz/KB9++vLGX8XBwy1M+nz3rmjF9Xk1bGmO27HWr7qN2VKi+aOvlzAAAgAElEQVT/wLfZOVLloV0V7tsxwh8983H89ctX7tfNwWMfeTD/cvoz+N5/3cuNW7Zzz0O7uf2eh/n2pm3864afj3tuX0+woK9+s623p7i51lMfk/QW21MZJ0xq7LLPNfYen6g1b2Tuy3dE6n4veMJS/vylT+j465YZiDoSaF5qZAtwUrtjMrMSEdupT607ErhuzLlHFtutrrkEuD8zKy2O30tEnAWcVTx8KCI2TqFPUxKv32fX4cA9Zb3eHGWf5wf7PD/Y5+43a/29/E9Ku/TjSrty9yhrzLaXTo7BKH6W/xb42xJfZI6Zb7+vGuZjv+djn2F+9ts+zx+z0u8vAn9R3uXbjsHmXbHyzLwYuHg2Xjsi1mfmqtl47dlin+cH+zw/2OfuN9/6q87q5BhsPv4sz8c+w/zs93zsM8zPftvn+WO+9bunxGvfBRzV9HhZsa/lMRHRByymXgCz3bnt9m8DDimu0e61JEmStK8yxmySJEktlRmIWgccFxErImKAeiHLtWOOWQucXmyfCnwtM7PYvyYiFhSr4R0H3NDumsU5Xy+uQXHNL5TYN0mSpG5RxphNkiSppdKm5hX1A84BrqG+FPBHMvOWiDgPWJ+Za4FLgMuKwpb3Uh/4UBz3GepFMivAGxqrr7S6ZvGSfwlcHhF/C/yguPZcMytTAmeZfZ4f7PP8YJ+733zrryhvzDbL5uPP8nzsM8zPfs/HPsP87Ld9nj/mVb+jfjNLkiRJkiRJKleZU/MkSZIkSZKkUQaiJEmSJEmS1BEGojogIk6JiI0RsSkizp3t9kxVRBwVEV+PiFsj4paIeGOx/50RcVdEbCi+fqvpnLcX/d0YES9t2t/yvSgKpF5f7L+iKJY6qyLijoi4qejb+mLfYRHx5Yj4SfH90GJ/RMT7i/bfGBFPb7rO6cXxP4mI05v2/3px/U3FudH5Xu4REcc3fZYbIuKBiHhTt33OEfGRiPhVRNzctK/0z7Xda8xin98dET8q+vX5iDik2L88InY2fd4XTbdv471/s9Tn0n+Wo16w+Ypi//URsbwzPW7b5yua+ntHRGwo9nfF5yy10u7fbbeJKYxTDmRtfrd19e+jmfo/7EAS7f/e6NrPepw+d/tnPRgRN0TED4t+/02xf86NrWbKOH3+WETc3vRZn1DsP+B/vieUmX6V+EW96OdPgaOBAeCHwMrZbtcU+/AY4OnF9kLgx8BK4J3A21ocv7Lo5wJgRdH/3vHeC+AzwJpi+yLg9XOg33cAh4/Z9/fAucX2ucAFxfZvAV8EAngmcH2x/zBgc/H90GL70OK5G4pjozj3ZbPd5zE/t78AHtdtnzNwMvB04OZOfq7tXmMW+/wSoK/YvqCpz8ubjxtznSn1rd37N4t9Lv1nGfhT4KJiew1wxWz2eczz/wd4Rzd9zn75NfZrvH+33fbFFMYpB/JXm9/nXf37aCb+D5vtPkyjz+3+3ujaz3qcPnf7Zx3AwcV2P3B98RnOubFVB/r8MeDUFscf8D/fE32ZEVW+E4FNmbk5M4eBy4HVs9ymKcnMuzPz+8X2g8BtwJHjnLIauDwzd2fm7cAm6u9Dy/eiuNv+m8CVxfmXAq8spzf7bTX19sHe7VwNfDzrrgMOiYjHAC8FvpyZ92bmfcCXgVOK5xZl5nVZ/23zceZWn18I/DQz/2ucYw7Izzkzv0V9xadmnfhc271G6Vr1OTP/IzMrxcPrgGXjXWOafWv3/pWuzefczkz+LDe/F1cCLyyOL914fS7a8HvAp8e7xoH2OUstHPDjrv00a//XlGWG/t8+oMzQ/2EHlHH+3ujaz3oG/8Y6oBSf2UPFw/7iK5mDY6uZMk6f2zngf74nYiCqfEcCdzY93sL4v2DmtCIV8mnUo7gA5xTpgh9pSv9u1+d2+5cA9zf9UTxX3qME/iMivhcRZxX7HpWZdxfbvwAeVWxPtc9HFttj988Va9j7D9Zu/pyhM59ru9eYC/6Y+l2XhhUR8YOI+GZEPK/YN52+zcXff2X/LI+eUzy/vTh+tj0P+GVm/qRpXzd/zpq/5tPP41TGKd1mvv4+msr/YQesMX9vzIvPej//xjrgRERv1MsF/Ir6Dd2fcuCNraZkbJ8zs/FZn1981u+JiAXFvq75rNsxEKVJi4iDgc8Bb8rMB4APA8cAJwB3U5/20U2em5lPB14GvCEiTm5+ssgWGC+SfUAq5mO/AvhssavbP+e9dOJznUs/OxHxV0AF+GSx627gsZn5NOAtwKciYtFkrzeX+tbCvPpZHuPV7B1c7ubPWZov5uU4Zaz50k/myf9hLf7eGNWtn/U8/BuLzKxm5gnUM/JPBJ4wy00q3dg+R8STgbdT7/szqJf8+MtZbGJHGYgq313AUU2PlxX7DigR0U/9F+QnM/MqgMz8ZfEPqgb8M3tSQ9v1ud3+bdTTDfvG7J9VmXlX8f1XwOep9++XjbTI4vuvisOn2ue72Hsq1Jzoc+FlwPcz85fQ/Z9zoROfa7vXmDURcQbw34A/KAZ3FOne24rt71G/Q/V4pte3OfX7r0M/y6PnFM8vLo6fNUU7/jtwRWNfN3/Omvfmzc/jFMcp3Wbe/T6axv9hB5xWf2/Q5Z/1DP2NdcDKzPuBrwPP4gAaW+2Ppj6fUkzPzMzcDXyULv6sxzIQVb51wHFRXwVggPqUp7Wz3KYpKebgXgLclpn/2LS/eZ7q7wCNlT3WAmuivsLBCuA46sVvW74XxR/AXwdOLc4/HfhCmX2aSEQ8IiIWNrapF3a+mXrfGiukNbdzLfCaYoWDZwLbizTia4CXRMShRVrtS4BriuceiIhnFu/va5jlPjfZK3Oimz/nJp34XNu9xqyIiFOAvwBekZk7mvYvjYjeYvto6p/r5mn2rd37Nys69LPc/F6cCnytEeSbRS8CfpSZo1Puuvlz1rx3wI+7JmMa45RuM+9+H03j/7ADSru/N+jiz3oG/8Y6oBRjkMZqzUPAi6nXxzqQxlZT0qbPP2oKsgb1mljNn/UB/fM9oZwDFdO7/Yt61fsfU7/j/Fez3Z5ptP+51NNgbwQ2FF+/BVwG3FTsXws8pumcvyr6u5Gm1eDavRfUV7e5gXrRvc8CC2a5z0dTX5Xih8AtjbZSn4/8VeAnwFeAw4r9AVxY9OsmYFXTtf646Ncm4LVN+1dR/2XzU+CDQMyBz/oR1O8wLG7a11WfM/Ug293ACPX51md24nNt9xqz2OdN1OeeN/5NN1Yj+d3iZ34D8H3g5dPt23jv3yz1ufSfZWCweLypeP7o2exzsf9jwNljju2Kz9kvv1p9tft3201fTHGcciB/tfl93tW/j2bq/7AD6Yv2f2907Wc9Tp+7/bN+KvCDon83s2dF3zk3tupAn79WfNY3A59gz8p6B/zP90RfjcGlJEmSJEmSVCqn5kmSJEmSJKkjDERJkiRJkiSpIwxESZIkSZIkqSMMREmSJEmSJKkjDERJkiRJkiSpIwxESZIkSZKIiKUR8e2IuDkiXtm0/wsRccQ0r3lCRPxW0+MFEfGViNgQEadFxDciYtVMtF/SgcFAlKRSRcQZUx24RMQREXFlWW1qep29Bkb7ea3nR8SzZ+JakiRJs+TVwEXAicCbACLi5cAPMvPn07zmCUDzeOtpAJl5QmZesR9tlXSAMhAlqWxnAFMKRGXmzzPz1KmcExG9Uzm+MHZgNNFr9I3z9POBKQWiJrieJElSp40ABwELgGoxVnkT8PeNA4obeddFxI0R8fmIOLTYP5rZFBGHR8QdETEAnAec1siAAj4BPKN4fEzzi0fEqyPipiIj64Ji36si4h+L7TdGxOZi++iI+M+S3w9JJTAQJWnKIuItxQDh5oh4U0Qsj4ibm55/W0S8MyJOBVYBnywGG0PFoOTvisfrI+LpEXFNRPw0Is4uzh+9XkQcFBGfiYhbi8HO9U2DnIci4v9ExA+BZ0XEOyJiXdGuiyMiiuO+EREXRMQNEfHjiHhem4FRq76+MyIuKwY6lxUp658rXmddRDwnIpYDZwNvLq71vIj4WNH/xnUeKr4/PyKujYi1wK3F429ExJUR8aOI+GRTu99V9PvGiPiHGf0QJUmS9vUpYDXwZeD/A/4UuCwzdzQd83HgLzPzqcBNwF+3u1hmDgPvAK5oyoB6HXBt8finjWOLDPoLgN+kfrPwGcX0wGuB5xWHPQ/YFhFHFtvfmoE+S+ow78ZLmpKI+HXgtcBJQADXA99sdWxmXhkR5wBvy8z1xfkAP8vMEyLiPcDHgOcAg8DN1NPBm/0pcF9mroyIJwMbmp57BHB9Zr61uPatmXlesX0Z8N+AfyuO7cvME4upeH+dmS+KiHcAqzLznAm6vRJ4bmbujIhPAe/JzG9HxGOBazLziRFxEfBQZv5D8fpnjnO9pwNPzszbI+L51FPUnwT8HPhP4DkRcRvwO8ATMjMj4pAJ2ihJkrRfMnM78NsARabTucDvRMQ/A4cCHwAOyczG2O9S4LMz9PLPAL6RmVuL1/8kcHJm/mtEHBwRC4GjqAfLTqYeiLpqhl5bUgcZiJI0Vc8FPp+ZDwNExFXsuUs1WWuL7zcBB2fmg8CDEbG7RcDlucD7ADLz5oi4sem5KvC5pscviIi/oJ5SfhhwC3sCUY2ByveA5VNtb2buLLZfBKwsAmoAiyLi4Cle74bMvH3M4y0AEbGhaN91wC7gkoj4d+Dfp/gakiRJ++N/A+dTrxv1beBKxh+PVNgz42ZwhtvyHeo3QjdSz5D6Y+BZwFtn+HUkdYBT8yTNhEPY+/fJRIOP3cX3WtN24/FUAuS7MrMKEBGDwIeAUzPzKcA/j2lH43WqU3wNgIebtnuAZxbp5Cdk5pGZ+VCLc0YHYxHRAwy0uV5z20bbl5kV6oVCr6Se2fWlKbZZkiRpWiLiOGBZZn6D+g2+GpBAL3BfRDRuQv4RezLj7wB+vdhurvX5ILBwEi97A/AbRX2pXuoBsMa1rwXeRn0q3g+AFwC7iwwuSQcYA1GSpupa4JVF7aZHUJ8+9kXgkRGxJCIWUA+cNEx28NHOfwK/BxARK4GntDmuEXS6p8hQmkyx8+m07T+A/9F4EBEntLnWHewZjL0C6J/KixR9WJyZVwNvBn5tiu2UJEmarvOBvyq2Pw28HlhHPUv9dODdRZb6CdRrbgL8A/D6iPgBcHjTtb5OPZu8bU1OgMy8m/pUwK8DPwS+l5lfKJ6+lvq0vG8VNyHvpJ6lJekA5NQ8SVOSmd+PiI9Rv2sF8C+ZuS4iziv23QX8qOmUjwEXRcRO6inUU/Uh4NKIuLW47i3APne/MvP+on7BzcAvqA+WJvJ14NxiOtzfTXIJ4T8DLiwGX33U78ydTX0K4JURsZp6oOqfgS8UhdS/xL5ZUBNZWJw/SL0W11umeL4kSdK0ZObvNW3/in1XBn5mi3N+BDy1adf/KvbfS73+U7NvNJ33/KbtT1MPfI299k+pj4caj18ycS8kzVWRmbPdBklqq0jN7s/MXVFf4vcrwPHFKiySJEmSpAPIvA5EHX744bl8+fLZboYkSSrJ9773vXsyc+lst0N7cwwmSVJ3G28MNq+n5i1fvpz169fPdjMkSVJJIuK/ZrsN2pdjMEmSutt4YzCLlUuSJEmSJKkjDERJkiRJkiSpI0oNREXEKRGxMSI2RcS5LZ5fEBFXFM9fHxHLm557e7F/Y0S8tGn/RyLiVxFx85hrvTsifhQRN0bE5yPikDL7JkmSJEmSpKkprUZUsdLVhcCLgS3AuohYm5m3Nh12JnBfZh4bEWuAC4DTImIlsAZ4EnAE8JWIeHxmVqkvBf9B4ONjXvLLwNszsxIRFwBvB/6yrP5JkiRJkqTuMDIywpYtW9i1a9dsN+WAMjg4yLJly+jv75/0OWUWKz8R2JSZmwEi4nJgNdAciFoNvLPYvhL4YEREsf/yzNwN3B4Rm4rrfTczv9WcOdWQmf/R9PA64NQZ7c00VGvJvQ8Ps3ThgtluiiRJkkpy/45hBvt7Gezvne2mSJKmacuWLSxcuJDly5dTD0toIpnJtm3b2LJlCytWrJj0eWVOzTsSuLPp8ZZiX8tjMrMCbAeWTPLc8fwx8MVWT0TEWRGxPiLWb926dQqXnLp/v/HnnPz3X2fHcKXU15EkSdLsWXPxdbz3Kz+Z7WZIkvbDrl27WLJkiUGoKYgIlixZMuUssq4rVh4RfwVUgE+2ej4zL87MVZm5aunSpaW2ZeuDu9k5UmXHcLXU15EkSdLsueehYe55aPdsN0OStJ8MQk3ddN6zMgNRdwFHNT1eVuxreUxE9AGLgW2TPHcfEXEG8N+AP8jMnG7DZ0q1lnt9lyRJUvep1GqO9yRJmqQyA1HrgOMiYkVEDFAvPr52zDFrgdOL7VOBrxUBpLXAmmJVvRXAccAN471YRJwC/AXwiszcMYP9mLZKMSCpODCRJEkdVNLKxS2vGXXnR8SPI+K2iPizsvs311Sr6XhPkrTfIoK3vvWto4//4R/+gXe+853jnvONb3yD73znOy2f+9jHPsbSpUs54YQTOOGEE3jNa14DwBlnnMGVV145Y+2eqtICUUXNp3OAa4DbgM9k5i0RcV5EvKI47BJgSVGM/C3AucW5twCfoV7Y/EvAG4oV84iITwPfBY6PiC0RcWZxrQ8CC4EvR8SGiLiorL5N1mhGVNWBiSRJ6oymlYtfBqwEXl2sSNxsdOVi4D3UVy5mzMrFpwAfiojeCa55BvVM9idk5hOBy0vs3pxUqSXVWm22myFJOsAtWLCAq666invuuWfS54wXiAI47bTT2LBhAxs2bODjH//4TDRzv5W5ah6ZeTVw9Zh972ja3gW8qs255wPnt9j/6jbHH7tfjS3BnowoByaSJKljyli5mHGu+Xrg9zOzBpCZvyqxb3NStZZUvPEoSV3jb/7tFm79+QMzes2VRyzir1/+pHGP6evr46yzzuI973kP55+/dzhk69atnH322fzsZz8D4L3vfS9HHnkkF110Eb29vXziE5/gAx/4AM973vOm1K6vfvWrvO1tb6NSqfCMZzyDD3/4w9x444383d/9HVdddRVf+MIXWLNmDdu3b6dWq7Fy5Uo2b948tc6P0XXFyueSxp0xawZIkqQOKmPl4vGueQxwWrEq8Rcj4rhWjerkysWdZo0oSdJMecMb3sAnP/lJtm/fvtf+N77xjbz5zW9m3bp1fO5zn+N1r3sdy5cv5+yzz+bNb34zGzZsaBmEuuKKK0an5n30ox/d67ldu3ZxxhlncMUVV3DTTTdRqVT48Ic/zNOe9jQ2bNgAwLXXXsuTn/xk1q1bx/XXX89JJ520330sNSNqvrNGlCRJmgcWALsyc1VE/HfgI8A+I+HMvBi4GGDVqlVdMziq1ZJaOt6TpG4yUeZSmRYtWsRrXvMa3v/+9zM0NDS6/ytf+Qq33ronufmBBx7goYcemvB6p512Gh/84AdbPrdx40ZWrFjB4x//eABOP/10LrzwQt70pjdxzDHHcNttt3HDDTfwlre8hW9961tUq9UpZ1y1YiCqRI3aUN4hkyRJHTSVlYu3TGHl4nb7twBXFdufB/a+3drlqul4T5I0s970pjfx9Kc/nde+9rWj+2q1Gtdddx2Dg4MdacPJJ5/MF7/4Rfr7+3nRi17EGWecQbVa5d3vfvd+X9upeSUyI0qSJM2CMlYuHu+a/wq8oNj+DeDHJfVrTqpaE1SSNMMOO+wwfu/3fo9LLrlkdN9LXvISPvCBD4w+bkydW7hwIQ8++OC0Xuf444/njjvuYNOmTQBcdtll/MZv/AYAz3ve83jve9/Ls571LJYuXcq2bdvYuHEjT37yk6fbrVEGoko0umqeAxNJktQhZaxc3O6axbXeBfxuRNwE/B3wuk70c66o1MyIkiTNvLe+9a17rZ73/ve/n/Xr1/PUpz6VlStXctFFFwHw8pe/nM9//vOccMIJXHvttVN6jcHBQT760Y/yqle9iqc85Sn09PRw9tlnA3DSSSfxy1/+kpNPPhmApz71qTzlKU+hvrbJ/onM+fuf5qpVq3L9+vWlXf/tV93Ep2/4GVec9UxOOnpJaa8jSZJai4jvZeaq2W6H9lb2GKyTtu8Y4dfO+w+e/thDuOpPnzPbzZEkTdNtt93GE5/4xNluxgGp1Xs33hjMjKgS1bxDJkmS1NUqrpIsSdKUGIgqkTWiJEmSulvV8Z4kSVNiIKpEVe+QSZIkdTVrRElS95jPpYumazrvmYGoEjkwkSRJ6m5mRElSdxgcHGTbtm0Go6YgM9m2bRuDg4NTOq+vpPYIByaSJEndzhuPktQdli1bxpYtW9i6detsN+WAMjg4yLJly6Z0joGoEjkwkSRJ6m6NUgyNouWSpANTf38/K1asmO1mzAtOzSvRnowoByaSJEndaPTGY9Ubj5IkTYaBqBKZESVJktTdKlVLMUiSNBUGokq0J1XbgYkkSVI3qnrjUZKkKTEQVaLGHTIHJpIkSd1pNAPeVZYkSZoUA1ElctU8SZKk7la1RpQkSVNSaiAqIk6JiI0RsSkizm3x/IKIuKJ4/vqIWN703NuL/Rsj4qVN+z8SEb+KiJvHXOuwiPhyRPyk+H5omX2bjD3FKy1WLkmS1I0qVUsxSJI0FaUFoiKiF7gQeBmwEnh1RKwcc9iZwH2ZeSzwHuCC4tyVwBrgScApwIeK6wF8rNg31rnAVzPzOOCrxeNZZUaUJElSd3NxGkmSpqbMjKgTgU2ZuTkzh4HLgdVjjlkNXFpsXwm8MCKi2H95Zu7OzNuBTcX1yMxvAfe2eL3ma10KvHImOzMdFq+UJEnqbntuPJoBL0nSZJQZiDoSuLPp8ZZiX8tjMrMCbAeWTPLcsR6VmXcX278AHtXqoIg4KyLWR8T6rVu3TqYf02ZGlCRJUndrjPNqCTXHfJIkTagri5VnZgItRwKZeXFmrsrMVUuXLi21HY07Y2ZESZKkTiqpTmfLa0bExyLi9ojYUHydUHb/5pJqUyaUK+dJkjSxMgNRdwFHNT1eVuxreUxE9AGLgW2TPHesX0bEY4prPQb41bRbPkPMiJIkSZ1WRp3OSVzzzzPzhOJrQ4ndm3Oax3nefJQkaWJlBqLWAcdFxIqIGKA+qFk75pi1wOnF9qnA14psprXAmuJu3QrgOOCGCV6v+VqnA1+YgT7slz3FK60ZIEmSOqaMOp2Tuea81Bx88uajJEkTKy0QVdR8Oge4BrgN+Exm3hIR50XEK4rDLgGWRMQm4C0UK91l5i3AZ4BbgS8Bb8jMKkBEfBr4LnB8RGyJiDOLa70LeHFE/AR4UfF4VpkRJUmSZkEZdTonuub5EXFjRLwnIha0alQn63R2UqXalBFVdcwnSdJE+sq8eGZeDVw9Zt87mrZ3Aa9qc+75wPkt9r+6zfHbgBfuT3tn2mjxSgNRkiSpe72d+kIxA8DFwF8C5409KDMvLp5n1apVXTM42jsjyix4SZIm0pXFyucKM6IkSdIsKKNOZ9trZubdWbcb+Cj1aXzzxl41oixWLknShAxElahSddU8SZLUcWXU6Wx7zabFYgJ4JXBzqb2bY/ZaNc8xnyRJEyp1at58Z0aUJEnqtMysRESjTmcv8JFGnU5gfWaupV6n87KiTue91ANLFMc16nRW2LtO5z7XLF7ykxGxFAhgA3B2p/o6FzSP8yrWiJIkaUIGoko0umqegxJJktRBJdXp3Oeaxf7f3N/2Hsias6DMiJIkaWJOzSuRGVGSJEndba+MKMd8kiRNyEBUiRoFK6uuoCJJktSVzIiSJGlqDESVpFZLGguneHdMkiSpOzXXhap481GSpAkZiCpJxbtjkiRJXc9V8yRJmhoDUSWpWi9AkiSp61kjSpKkqTEQVZKKd8ckSZK6njWiJEmaGgNRJTEjSpIkqftZjkGSpKkxEFWSvQclFq6UJEnqRmZESZI0NQaiSrJXRlTVQYkkSVI3ai7HYBa8JEkTMxBVEtO0JUmSul/zDUez4CVJmpiBqJJUmwclaSBKkiSpG1XMgpckaUoMRJXEVfMkSZK6nzWiJEmamlIDURFxSkRsjIhNEXFui+cXRMQVxfPXR8TypufeXuzfGBEvneiaEfHCiPh+RGyIiG9HxLFl9m0i1oiSJEnqfhVXSpYkaUpKC0RFRC9wIfAyYCXw6ohYOeawM4H7MvNY4D3ABcW5K4E1wJOAU4APRUTvBNf8MPAHmXkC8Cngf5XVt8mwRpQkSVL3q9Zq9PVEse2YT5KkiZSZEXUisCkzN2fmMHA5sHrMMauBS4vtK4EXRkQU+y/PzN2ZeTv/t737j5K0Kg88/n26emYEUQQcfw3ooEzCGTdrdEeM0WSNxoAaxd3FdTAaYiTkGDlJdLMuJLvEsGFP0D1ozGpcspAlBAVCJM4mbIgEoyRRfhj8AehIB8gCIYKIGFR+VNWzf7y3emp6quvX9FvVXf39nFOn37r11u33vef0zHPufd7nwkLpr1+fCTyxHB8M/GNN9zWUTiCyaX5ur8f0JEmSNDuarWTTfBVSmxElSdJg8zX2vQW4s+v9XcCLljsnM5sR8SBwWGn/3JLvbinHy/V5MnBFRHwP+DbwQ70uKiJOAU4BeOYznznaHY2geyLK1TFJkqTZ1GonmzY0+M6jLXfNkyRpCLNUrPydwKsz83Dg94Fzep2Umedm5o7M3LF58+baLqazIrZxvuHqmCRJmqhJ1uns+vyDEfFQXfe0WjXbezKiWs5DSZI0UJ0TUXcDR3S9P7y09TwnIuapHqm7v893e7ZHxGbgeZl5bWm/BPjhlbmN8ZgRJUmSpmEKdTqJiB3AIbXe2CrV2msiypkoSZIGqXMi6npgW0QcGREbqYKaXUvO2QWcVI5PAK7OzCztO8tq3ZHANuC6Pn0+ABwcEd9X+nol8JUa722gTl2oqkaUE1GSJGliJlqns0xSvQ94d833tSo1220et6FRjo35JEkapLYaUaXm06nAlZX6aVIAACAASURBVEADOD8zb46IM4EbMnMXcB5wYUQsAN+kmliinHcpcAvQBN6RmS2AXn2W9p8D/jgi2lQTUz9b170No7X4aN4cre8ZlEiSpImZdJ3OU4FdmXlPNZfV26TqdE7a3hlRxnySJA1SZ7FyMvMK4IolbWd0HT8MvGGZ754FnDVMn6X9cuDy/bzkFdNZEdu0oUHTggGSJGkGRcQzqGK5lw06NzPPBc4F2LFjx8zM2DTbyUZ3zZMkaWhDPZoXER+PiNdExCwVN69Vq2WNKEmStH/GjMEmVqcTeD5wFLAQEXcAB5ZM93WjyohqLB5LkqT+hg1qPgy8Cbg1In4rIr6/xmuaCc2uYuWujkmSpDGNE4NNrE5nZv5ZZj4tM7dm5lbgu6UA+rrRbO15NK/ZMuaTJGmQoSaiMvOqzPwp4AXAHcBVEfG3EfHWiNhQ5wWuVXt2zWu4OiZJksYyTgyWmU2quk1XUm3ecmmnTmdEvK6cdh5wWMleehdwWvnuzUCnTuefU+p0LtdnPXe9trTayYbGHBHumidJ0jCGrhEVEYcBbwbeAtwIXAS8lGo17WV1XNxatrhr3oYqIyoz6VfAU5IkqZdxYrBJ1ulccs5B/T6fRc12m0YjmJ8Ls+AlSRrCUBNREXE58P3AhcBrM/Oe8tElEXFDXRe3lrW6Hs0DaCc0nIeSJEkjMAZb/VrtZH4uaMyFWfCSJA1h2Iyo3yurYIsiYlNmPpKZO2q4rjWv+9G8zvvGnDNRkiRpJMZgq1yzxHjzc9YFlSRpGMMWK//NHm2fXckLmTVLM6JcIZMkSWMwBlvlzIiSJGk0fTOiIuJpwBbggIh4PtBJ6XkicGDN17amLe6at6HsotJuA40pXpEkSVorjMHWjiojao55J6IkSRrKoEfzjgV+BjgcOKer/Z+BX63pmmZCr0fzJEmShmQMtkZ0Z0T5aJ4kSYP1nYjKzAuACyLi32XmH0/ommZCc8mjeQYmkiRpWMZga8djrTaNxUfz2tO+HEmSVr1Bj+a9OTP/ENgaEe9a+nlmntPja4LFQGRjwxpRkiRpNMZga4cZUZIkjWbQo3mPLz8PqvtCZs2+NaIMTCRJ0tCMwdaIZjtpNMIaUZIkDWnQo3n/s/z8jclczuxotZbsmtcyMJEkScMxBls7zIiSJGk0c8OcFBHvjYgnRsSGiPjLiLgvIt5c98WtZZ1AZON89655kiRJwzMGW90yk9birnlzLjxKkjSEoSaigJ/IzG8DPwncARwF/Me6LmoWtNrJXMAGa0RJkqTxGYOtYp34zowoSZKGN+xEVOcRvtcAf5SZD9Z0PTOj2U7m5+aYn4vF95IkSSMyBlvFOvFdYy6Yb7hrniRJwxhUrLzjTyPiq8D3gLdHxGbg4foua+1rtTtb+ZoRJUmSxmYMtop14rsNjSojyifzJEkabKiMqMw8DfhhYEdmPgZ8Bzh+0Pci4riI2B0RCxFxWo/PN0XEJeXzayNia9dnp5f23RFx7KA+o3JWRHwtIr4SEb84zL3VpdWu0rTNiJIkSeMaNwbTZOzJiJoru+aZESVJ0iDDZkQBHA1sjYju7/zBcidHRAP4EPBK4C7g+ojYlZm3dJ32NuCBzDwqInYCZwNvjIjtwE7gucAzgKsi4vvKd5br82eAI4CjM7MdEU8Z4d5WXKvdplFWxzrvJUmSxjBSDKbJ2adGlClRkiQNNOyueRcC/x14KfDC8tox4GvHAAuZeVtmPgpczL4reMcDF5Tjy4BXRESU9osz85HMvB1YKP316/PtwJmZ2QbIzHuHube6NMtWvosZUQYmkiRpRGPGYJPOSj8vIr4YEV+KiMsi4qD9uuk1pLMrcqNMRFmKQZKkwYbNiNoBbM/MUf533QLc2fX+LuBFy52Tmc2IeBA4rLR/bsl3t5Tj5fp8DlU21b8B7gN+MTNvXXpREXEKcArAM5/5zBFuZzTVVr5dGVEjDZ0kSRIwRgw2haz0d5ad/YiIc4BTgd8a/5bXjr0zouZotltTviJJkla/YXfNuwl4Wp0XsgI2AQ9n5g7g94Dze52Umedm5o7M3LF58+baLmZx17xG59E8J6IkSdLIxonBJpqV3jUJFcABwLoJejoZ742SBW+8J0nSYMNmRD0ZuCUirgMe6TRm5uv6fOduqppNHYeXtl7n3FXqHhwM3D/gu8u13wV8vBxfDvx+/1uqV6udzM2xuGuexcolSdIYxonBJp2VTkT8PvBq4BbgP/S6qEllpU/SYkZUqQtqvCdJ0mDDTkS9Z4y+rwe2RcSRVJNFO4E3LTlnF3AS8FngBODqzMyI2AV8tKR3PwPYBlwHRJ8+/wT4MeB24F8DXxvjmlfMYkZU59E8a0RJkqTRvWfaFzCMzHxreSTwd4A30mNBMDPPBc4F2LFjx0wERu6aJ0nS6IaaiMrMT0fEs4BtmXlVRBwINAZ8pxkRpwJXlnPPz8ybI+JM4IbM3AWcB1wYEQvAN6kmlijnXUq1qtYE3pGZLYBefZZf+VvARRHxTuAh4OThh2HltdrtvWpEuUImSZJGNU4MxuSz0jvX2oqIi4F3M+XM9EnZZ9c84z1JkgYaaiIqIn6OKpX6UKqi4FuAjwCv6Pe9zLwCuGJJ2xldxw8Db1jmu2cBZw3TZ2n/FvCaAbcyMc1WLgYlYI0oSZI0ujFjsIllpZe6UM/JzIVy/Drgq/t/52tD96551oiSJGk4wz6a9w6qIpXXAmTmrRHxlNquagYs3TWvaaq2JEka3cgx2CSz0iNiDrggIp5INVn1ReDtKzsEq9c+u+ZZikGSpIGGnYh6JDMfrRa6oKRw+z9tH1WNqNhTI8oVMkmSNLqxYrBJZaVnZht4ycC7mFF7akRVMV87jfckSRpkbsjzPh0RvwocEBGvBP4I+D/1Xdbat29GlIGJJEkamTHYKrYnI2qORsMaUZIkDWPYiajTgPuALwM/T7Ua9p/ruqhZ0Gy3y6551RCbESVJksZgDLaKdR7Fs0aUJEnDG3bXvHZE/AnwJ5l5X83XNBPabcyIkiRJ+8UYbHVbzIhqBHMRNFvWBJUkaZC+GVFReU9EfAPYDeyOiPsi4ox+31PJiGp01YgyMJEkSUMyBlsbHnPXPEmSRjbo0bx3UhWgfGFmHpqZhwIvAl4SEe+s/erWsMUaUQ0zoiRJ0siMwdaAVqtr1zxrREmSNJRBE1FvAU7MzNs7DZl5G/Bm4KfrvLC1zl3zJEnSfjAGWwOW7ppnvCdJ0mCDJqI2ZOY3ljaWGgUb6rmk2eCueZIkaT8Yg60BnYmnDY05GnNzNNtJpjGfJEn9DJqIenTMz9a9KiPKXfMkSdJYjMHWgOaSGlEAhnySJPU3aNe850XEt3u0B/C4Gq5nZrTaydxcUGISJ6IkSdIojMHWgMVd8/bKgm/TmGtM87IkSVrV+k5EZab/i46p2W4zPxdEWDNAkiSNxhhsbVhaIwqg7UbJkiT1NejRPI2p1crFlbHGnLuoSJIkzZo9GVFze2VESZKk5TkRVZPOrnlAyYgyKJEkSZolvTKizIKXJKk/J6Jq0tk1D2DOjChJkqSZ02pVC43z7pQsSdLQnIiqyb4ZUQYlkiRJs2QxI6oRNNwpWZKkodQ6ERURx0XE7ohYiIjTeny+KSIuKZ9fGxFbuz47vbTvjohjR+jzgxHxUF33NKx2OxcDksbcnKtjkiRJM6Z717x5M6IkSRpKbRNREdEAPgS8CtgOnBgR25ec9jbggcw8Cng/cHb57nZgJ/Bc4DjgwxHRGNRnROwADqnrnkbRbCfzja6MqJZBiSRJ0izprhHVeTTPmE+SpP7qzIg6BljIzNsy81HgYuD4JeccD1xQji8DXhERUdovzsxHMvN2YKH0t2yfZZLqfcC7a7ynoXXXiHLXPEmSNEmTzEqPiItK+00RcX5EbKj7/laL7l3zOguQ7ponSVJ/dU5EbQHu7Hp/V2nreU5mNoEHgcP6fLdfn6cCuzLznn4XFRGnRMQNEXHDfffdN9INjaLZbu+pEdVw1zxJkjQZU8hKvwg4GvgB4ADg5Bpvb1XpLDTOBXsyolx8lCSpr5koVh4RzwDeAPzOoHMz89zM3JGZOzZv3lzL9bTbSTsxI0qSJE3DRLPSM/OKLIDrgMNrvr9Vo1UWHiOsESVJ0rDqnIi6Gzii6/3hpa3nORExDxwM3N/nu8u1Px84CliIiDuAAyNiYaVuZFSt3FO4svPT1TFJkjQhk85KB6A8kvcW4M97XdSkstInqblXKQZ3zZMkaRh1TkRdD2yLiCMjYiNVmveuJefsAk4qxycAV5fVtF3AzlK/4EhgG9UKW88+M/PPMvNpmbk1M7cC3y2p5lPRWixc6a55kiRp3fgw8JnMvKbXh5PISp+0Viv3WngEJ6IkSRpkvq6OM7MZEacCVwIN4PzMvDkizgRuyMxdwHnAhSV76ZtUE0uU8y4FbgGawDsyswXQq8+67mFce3ZQqd6bESVJkiZolKz0u4bMSqdfnxHx68Bm4OdX4PrXjOaSzWk6bZIkaXm1TURBVTMAuGJJ2xldxw9T1Xbq9d2zgLOG6bPHOQeNc70rpbNt756MKGtESZKkiVnMIKeaLNoJvGnJOZ2s9M/SlZUeEbuAj0bEOcAz2JOVHsv1GREnA8cCr8jMdbU7S6udzDf2xHudNkmStLxaJ6LWq862vd2p2m2DEkmSNAFTyEr/CPAPwGereud8PDPPnNDtTlXvjKh1NRcnSdLInIiqwZ4aUd275hmUSJKkyZhkVnpmrtt4stlqs8EaUZIkjaTOYuXrVucxvMWMqIY1oiRJkmZNq500GtaIkiRpFE5E1WBpRtRcWCNKkiRp1jTbyXypCdr52akVKkmSenMiqgadiaj5xp5UbTOiJEmSZkvLXfMkSRqZE1E1aLaX7po3R9PVMUmSpJnSbLf3KsUA1oiSJGkQJ6Jq0FpaI8qMKEmSpJnTOyPKDWokSerHiagadAKQxcCk4a55kiRJs6aqEbX3rnntdPFRkqR+nIiqgRlRkiRJs69nRpTlGCRJ6suJqBo0l+ya15hz1zxJkqRZ02z12DXPmE+SpL6ciKrBnoyoTmBiRpQkSdKs6c6IKmGfi4+SJA3gRFQNOinZnYCkMTdnUCJJkjRjmu324m55ZkRJkjQcJ6JqYEaUJEnS7Ou9a54xnyRJ/TgRVYN9ds2bC5otd82TJEmaJb12zWu5U7IkSX05EVUDd82TJEmafWZESZI0OieiarDPrnkNd82TJEmaNVVG1J5SDACtljGfJEn91DoRFRHHRcTuiFiIiNN6fL4pIi4pn18bEVu7Pju9tO+OiGMH9RkRF5X2myLi/IjYUOe99dPuZEQ19mREtdOgRJIkaZaYESVJ0uhqm4iKiAbwIeBVwHbgxIjYvuS0twEPZOZRwPuBs8t3twM7gecCxwEfjojGgD4vAo4GfgA4ADi5rnsbpLnk0Tx3zZMkSZM04cXAU0tbRsST67631aTZbi/GexFBw8VHSZIGqjMj6hhgITNvy8xHgYuB45ecczxwQTm+DHhFRERpvzgzH8nM24GF0t+yfWbmFVkA1wGH13hvfbUWH82rhrcRQeaeTClJkqS6TGEx8G+AHwf+odYbW4VarT0ZUVA2qDHekySprzonorYAd3a9v6u09TwnM5vAg8Bhfb47sM/ySN5bgD/vdVERcUpE3BARN9x3330j3tJwlmZEdR7RMzCRJEkTMOnFwBsz8466b2o1arZzMc4DN6iRJGkYs1is/MPAZzLzml4fZua5mbkjM3ds3ry5lgvobNu7tGaAgYkkSZqAqSwGDjKJxcBJa3UVK4cqC75psXJJkvqqcyLqbuCIrveHl7ae50TEPHAwcH+f7/btMyJ+HdgMvGtF7mBM+2RELRavbE/tmiRJkqZpEouBk9ZsL3k0rxGLC5KSJKm3Oieirge2RcSREbGRqt7AriXn7AJOKscnAFeXGk+7gJ2lkOaRwDaquk/L9hkRJwPHAidm5lQjgD01osyIkiRJEzfxxcD1qsqI2vvRPEsxSJLUX20TUSXN+1TgSuArwKWZeXNEnBkRryunnQccFhELVFlMp5Xv3gxcCtxCVevpHZnZWq7P0tdHgKcCn42IL0TEGXXd2yCdlOxOqva82/lKkqTJmehi4Hr2WKtNo7F3sXIXHiVJ6m++zs4z8wrgiiVtZ3QdPwy8YZnvngWcNUyfpb3WexnFYkZUo5MRNbdXuyRJUl0ysxkRnYW7BnB+ZzEQuCEzd1EtBl5YFgO/STWxRDmvsxjYpCwGAvTqs7T/IvBu4GnAlyLiisw8eYK3PDX7ZkTNufAoSdIAq2byZpZ0ApBGLK0RZWAiSZLqN+HFwA8CH9zPS15zMrPUiOoqVm5GlCRJA83irnlTt+yuee6iIkmSNBM6803WiJIkaTRORNVgn13zGu6aJ0mSNEuaSxYeO8fumidJUn9ORNWg3U4iYM5d8yRJkmZSa8nCI/honiRJw3AiqgbNHlv5dtolSZK09i3WBO2O+RpOREmSNIgTUTVotXNJmra75kmSJM2STu3PvTKiwhpRkiQN4kRUDaqMqD1DO++jeZIkSTNlMSOq4a55kiSNwomoGuybEeWjeZIkSbOkV42o+bk5mu6SLElSX05E1aDZbu9TuBLMiJIkSZoVy++aZ7wnSVI/TkTVYPmMKLfzlSRJmgU9M6IaYbwnSdIATkTVoNnqvWueK2SSJEmzodeueWZESZI0mBNRNWi1k0bDGlGSJEmzak9G1N4b1BjvSZLUnxNRNdh317zquGXxSkmSpJnQKUpuRpQkSaNxIqoGrXbSFZOYESVJkjRjHmtVtaCW7prnRJQkSf05EVWDate8royohjWiJEmSZsk1t94HwLanHrTYZkaUJEmDORFVA3fNkyRJml2tdvKx6+7kJUcdxrMOe/xie8MaUZIkDeREVA1a7VzMggJ3zZMkSZoln7n1Pu7+1vd40zHP2qvdjChJkgardSIqIo6LiN0RsRARp/X4fFNEXFI+vzYitnZ9dnpp3x0Rxw7qMyKOLH0slD431nlv/TSXy4iyWLkkSZqA9RqDTcpHr/1/PPmgjbxy+1P3aq92zTMDXpKkfmqbiIqIBvAh4FXAduDEiNi+5LS3AQ9k5lHA+4Gzy3e3AzuB5wLHAR+OiMaAPs8G3l/6eqD0PRWtdu5VuPIJmzYwPxf81z+7hQ9c9TX+4f7v8PBjrWldniRJmmHrOQarU2bSbif3PPg9rv7qvZzwr45g4/zeoXRjLni02eahR5pkrt8FyAe+8yhX3fJ1zv/r2/ncbffzvUeNeyVJe8zX2PcxwEJm3gYQERcDxwO3dJ1zPPCecnwZ8D8iIkr7xZn5CHB7RCyU/ujVZ0R8BXg58KZyzgWl39+t59b6e/nRT6HdFXwcfOAGdp36Un77L7/GB666lQ9cdSsAB2xoELFcL5IkrQ+HHLiRvznt5dO+jFmyLmOwZqvND7znL/ZqWxpndcKzJMmErN6Q1dFiW2aWn8v/vhOPOWKftsdvmueB7z7Gv/j1K9k0P7fXwuR6kcB3l0w8NeaCTfNWBNFsWMdzzJpBr33e03nvCc+b+O+tcyJqC3Bn1/u7gBctd05mNiPiQeCw0v65Jd/dUo579XkY8K3MbPY4fy8RcQpwSnn7UETsHuGeRvLz8GTgG3X1v844livHsVw5juXKcjxXzpobyzi9tq6fNfiUmbPuY7BJ2Hr2Xm/X3N/cKuG4jcdxG4/jNh7HbTxrYty+Cryvvu6XjcHqnIhalTLzXODcSfyuiLghM3dM4nfNOsdy5TiWK8exXFmO58pxLLUaTTIGmzT/5sbjuI3HcRuP4zYex208jlt/debI3g105ywfXtp6nhMR88DBwP19vrtc+/3Ak0ofy/0uSZKk9cAYTJIkrVp1TkRdD2wrO6lspCp8uWvJObuAk8rxCcDVWVV23AXsLDu6HAlsA65brs/ynU+VPih9fqLGe5MkSVqtjMEkSdKqVdujeaXewKnAlUADOD8zb46IM4EbMnMXcB5wYSmE+U2qoIZy3qVURTWbwDsyswXQq8/yK/8TcHFE/CZwY+l72mYy/XxKHMuV41iuHMdyZTmeK8exXMeMwabCv7nxOG7jcdzG47iNx3Ebj+PWR6znrWUlSZIkSZI0Oe6jKkmSJEmSpIlwIkqSJEmSJEkT4URUDSLiuIjYHRELEXHatK9nNYqI8yPi3oi4qavt0Ij4ZETcWn4eUtojIj5YxvNLEfGCru+cVM6/NSJO6vW7Zl1EHBERn4qIWyLi5oj4pdLueI4hIh4XEddFxBfLeP5GaT8yIq4t43ZJKdZLKeh7SWm/NiK2dvV1emnfHRHHTueOpi8iGhFxY0T8aXnvWI4hIu6IiC9HxBci4obS5t+5NGXGfXszxhudsdz4jNvGZ3w2HuOxFZKZvlbwRVXA8++BZwMbgS8C26d9XavtBfwo8ALgpq629wKnlePTgLPL8auB/wsE8EPAtaX9UOC28vOQcnzItO9tCmP5dOAF5fgJwNeA7Y7n2OMZwEHleANwbRmnS4Gdpf0jwNvL8S8AHynHO4FLyvH28ve/CTiy/LvQmPb9TWlM3wV8FPjT8t6xHG8c7wCevKTNv3Nfvqb4Mu7rOSbGeKOPmbHc+GNn3Db+2BmfjTduxmMr8DIjauUdAyxk5m2Z+ShwMXD8lK9p1cnMz1Dt0tPteOCCcnwB8Pqu9j/IyueAJ0XE04FjgU9m5jcz8wHgk8Bx9V/96pKZ92Tm35Xjfwa+AmzB8RxLGZeHytsN5ZXAy4HLSvvS8eyM82XAKyIiSvvFmflIZt4OLFD9+7CuRMThwGuA/1XeB47lSvLvXJou474ljPFGZyw3PuO28RifrTj/VkfkRNTK2wLc2fX+rtKmwZ6amfeU438CnlqOlxtTx3qJkir7fKrVIMdzTCVV+QvAvVT/Mfw98K3MbJZTusdmcdzK5w8Ch+F4dnwAeDfQLu8Pw7EcVwJ/ERGfj4hTSpt/59J0+Tc1HP+tGpKx3OiM28ZifDY+47EVMD/tC5B6ycyMiJz2dawlEXEQ8MfAL2fmt6uFiorjOZrMbAE/GBFPAi4Hjp7yJa1JEfGTwL2Z+fmIeNm0r2cGvDQz746IpwCfjIivdn/o37mktcB/q5ZnLDce47bRGJ/tN+OxFWBG1Mq7Gzii6/3hpU2Dfb2kKlJ+3lvalxtTx7qIiA1UgctFmfnx0ux47qfM/BbwKeDFVKm0ncn77rFZHLfy+cHA/TieAC8BXhcRd1A9rvJy4LdxLMeSmXeXn/dSBdrH4N+5NG3+TQ3Hf6sGMJbbf8ZtQzM+2w/GYyvDiaiVdz2wrew6sJGqoNuuKV/TWrEL6OwYcBLwia72ny67DvwQ8GBJfbwS+ImIOKTsTPATpW1dKc9onwd8JTPP6frI8RxDRGwuK2pExAHAK6lqNXwKOKGctnQ8O+N8AnB1ZmZp31l2GjkS2AZcN5m7WB0y8/TMPDwzt1L9W3h1Zv4UjuXIIuLxEfGEzjHV3+dN+HcuTZtx33D8t6oPY7nxGbeNzvhsfMZjKyhXQcX0WXtRVcf/GtXzyb827etZjS/gY8A9wGNUz8S+jepZ478EbgWuAg4t5wbwoTKeXwZ2dPXzs1SF8RaAt077vqY0li+lelb5S8AXyuvVjufY4/kvgRvLeN4EnFHan031n+sC8EfAptL+uPJ+oXz+7K6+fq2M827gVdO+tymP68vYsyuLYzn6+D2bameaLwI3d/5v8e/cl6/pv4z79hkPY7zRx8xYbvyxM27bv/EzPhttvIzHVugVZRAkSZIkSZKkWvloniRJkiRJkibCiShJkiRJkiRNhBNRkiRJkiRJmggnoiRJkiRJkjQRTkRJkiRJkiRpIpyIkrSqRcTmiPjriLgpIl7f1f6JiHhGOT4zIn58QD+bIuKqiPhCRLwxIv4qInbUff2SJEmzYsi47OgSb90YEc+JiIemd8WSViMnoiStdicCHwGOAX4ZICJeC9yYmf8IkJlnZOZVA/p5fjn3BzPzkhqvV5IkaVYNjMuA1wOXZebzM/Pvp3OZklYzJ6IkrXaPAQcCm4BWRMxTBT7v7ZwQEf87Ik4ox3dExG9ExN9FxJfLqtxTgD8EXlhW6J7T/Qsi4sRy7k0RcXZpe0NEnFOOfykibivHz46Iv5nAfUuSJK02feOyiHh1ef/2iPhU9xej8r4Sb305It5Y2j8UEa8rx5dHxPnl+Gcj4qyJ3ZmkiXEiStJq91HgeOCTwH8DfgG4MDO/2+c738jMFwC/C/xKZt4LnAxcUzKiFlfnShr52cDLgR+kmqx6PXAN8CPltB8B7o+ILeX4Myt5g5IkSWtE37gsM6+gyph6f2b+2JLv/luqWOt5wI8D74uIp7N3zLUF2F6OjbmkGeVElKRVLTMfzMzXZOYO4O+A1wKXRcTvRcRlEfHiHl/7ePn5eWDrgF/xQuCvMvO+zGwCFwE/mpn/BBwUEU8AjqAKvH6UKii6Zr9vTJIkaY0ZMy7reCnwscxsZebXgU9TxWHXAD8SEduBW4CvlwmqFwN/W+sNSZoKJ6IkrSX/BTiLqj7BXwMnAe/pcd4j5WcLmN+P3/e3wFuB3exZrXsx4KN5kiRpvRs2LusrM+8GngQcR5UBdQ3w74GHMvOfV+piJa0eTkRJWhMiYhtweGb+FVVtgjaQwAH72fV1wL+OiCdHRIMqmPp0+ewa4FeogqIbgR8DHsnMB/fzd0qSJK1ZY8Zl1wBvjIhGRGymyjS/rnz2OaraUp2JqF/BDHRpZjkRJWmtOAv4tXL8MeDtwPXAb+9Pp5l5D3Aa8Cngi8DnM/MT5eNrqB7L+0xmtoA7qVb8JEmS1rNx4rLLgS9RxVtXA+8upRCgirnmM3OB6pG/Q3EiSppZkZnTvgZJkiRJkiStA2ZESZIkSZIkaSKciJIkSZIkSdJEOBElSZIkSZKkIuRBTwAAADBJREFUiXAiSpIkSZIkSRPhRJQkSZIkSZImwokoSZIkSZIkTYQTUZIkSZIkSZqI/w/MRSITSBwWSwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "#@title Density Plots\n", "fig, ax = plt.subplots(3, 2, figsize=(20,10))\n", "\n", "sns.kdeplot(data=migration, x='nonmigrant_returns', ax=ax[0][0], label='Non migrant Returns')\n", "sns.kdeplot(data=migration, x='inmigrant_returns', ax=ax[0][1], label='In migrant Returns')\n", "sns.kdeplot(data=migration, x='outmigrant_returns', ax=ax[1][0], label='Out migrant Returns')\n", "sns.kdeplot(data=migration, x='%outflow', ax=ax[1][1], label='% Outflow')\n", "sns.kdeplot(data=migration, x='%inflow', ax=ax[2][0], label='% Inflow')\n", "sns.kdeplot(data=migration, x='%flow', ax=ax[2][1], label='Net Flow')\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 112 }, "executionInfo": { "elapsed": 11, "status": "ok", "timestamp": 1668729200903, "user": { "displayName": "Sabaina Haroon", "userId": "03287014315776100364" }, "user_tz": -300 }, "id": "pvRrf0mFAohB", "outputId": "866f9497-1dbe-44ca-f84c-2935a173f80e" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
County CodeCountyStateYearnonmigrant_returnsinmigrant_returnsoutmigrant_returns%inflow%outflow%flow
\n", "
" ], "text/plain": [ "Empty DataFrame\n", "Columns: [County Code, County, State, Year, nonmigrant_returns, inmigrant_returns, outmigrant_returns, %inflow, %outflow, %flow]\n", "Index: []" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "migration[migration['County Code']==57007]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 300 }, "executionInfo": { "elapsed": 46, "status": "ok", "timestamp": 1668729147278, "user": { "displayName": "Sabaina Haroon", "userId": "03287014315776100364" }, "user_tz": -300 }, "id": "HXJzmoJQAb9f", "outputId": "26a24964-9fd5-4224-bdbc-5b860521fb00" }, "outputs": [ { "data": { "text/html": [ "\n", "
\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
County CodeYearnonmigrant_returnsinmigrant_returnsoutmigrant_returns%inflow%outflow%flow
count87876.00000087876.0000008.787400e+0487830.00000087852.00000087829.00000087852.00000087806.000000
mean30404.4365922006.5011613.240490e+042341.0786292324.3587517.7079497.6571280.050368
std15157.7783538.0695871.048374e+056187.3602326488.35633319.2144973.41105919.130384
min1001.0000001993.0000001.000000e+001.0000001.0000000.0000000.000000-369.991733
25%18179.0000002000.0000003.470000e+03243.000000255.0000005.5837566.002499-0.834427
50%29177.0000002006.0000008.039000e+03575.000000581.0000006.9687077.153510-0.139058
75%45081.0000002013.0000002.127600e+041612.0000001573.0000008.9035438.6260150.680439
max57007.0000002020.0000003.768510e+06142428.000000185198.0000005525.000000373.4637645525.000000
\n", "
\n", " \n", " \n", " \n", "\n", " \n", "
\n", "
\n", " " ], "text/plain": [ " County Code Year nonmigrant_returns inmigrant_returns \\\n", "count 87876.000000 87876.000000 8.787400e+04 87830.000000 \n", "mean 30404.436592 2006.501161 3.240490e+04 2341.078629 \n", "std 15157.778353 8.069587 1.048374e+05 6187.360232 \n", "min 1001.000000 1993.000000 1.000000e+00 1.000000 \n", "25% 18179.000000 2000.000000 3.470000e+03 243.000000 \n", "50% 29177.000000 2006.000000 8.039000e+03 575.000000 \n", "75% 45081.000000 2013.000000 2.127600e+04 1612.000000 \n", "max 57007.000000 2020.000000 3.768510e+06 142428.000000 \n", "\n", " outmigrant_returns %inflow %outflow %flow \n", "count 87852.000000 87829.000000 87852.000000 87806.000000 \n", "mean 2324.358751 7.707949 7.657128 0.050368 \n", "std 6488.356333 19.214497 3.411059 19.130384 \n", "min 1.000000 0.000000 0.000000 -369.991733 \n", "25% 255.000000 5.583756 6.002499 -0.834427 \n", "50% 581.000000 6.968707 7.153510 -0.139058 \n", "75% 1573.000000 8.903543 8.626015 0.680439 \n", "max 185198.000000 5525.000000 373.463764 5525.000000 " ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "migration.describe()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
County CodeYearnonmigrant_returnsinmigrant_returnsoutmigrant_returns%inflow%outflow%flow
count87874.00000087874.0000008.787200e+0487828.00000087850.00000087827.00000087850.00000087804.000000
mean30403.8311222006.5014573.240551e+042341.0614152324.3652707.7067977.6564330.049910
std15157.4195138.0694401.048385e+056187.4296066488.42999619.2131873.40798519.130339
min1001.0000001993.0000001.000000e+001.0000001.0000000.0000000.000000-369.991733
25%18179.0000002000.0000003.470000e+03243.000000255.0000005.5837566.002458-0.834448
50%29177.0000002006.0000008.039000e+03575.000000581.0000006.9686787.153457-0.139096
75%45081.0000002013.0000002.127600e+041612.0000001573.0000008.9032868.6258820.680238
max57005.0000002020.0000003.768510e+06142428.000000185198.0000005525.000000373.4637645525.000000
\n", "
" ], "text/plain": [ " County Code Year nonmigrant_returns inmigrant_returns \\\n", "count 87874.000000 87874.000000 8.787200e+04 87828.000000 \n", "mean 30403.831122 2006.501457 3.240551e+04 2341.061415 \n", "std 15157.419513 8.069440 1.048385e+05 6187.429606 \n", "min 1001.000000 1993.000000 1.000000e+00 1.000000 \n", "25% 18179.000000 2000.000000 3.470000e+03 243.000000 \n", "50% 29177.000000 2006.000000 8.039000e+03 575.000000 \n", "75% 45081.000000 2013.000000 2.127600e+04 1612.000000 \n", "max 57005.000000 2020.000000 3.768510e+06 142428.000000 \n", "\n", " outmigrant_returns %inflow %outflow %flow \n", "count 87850.000000 87827.000000 87850.000000 87804.000000 \n", "mean 2324.365270 7.706797 7.656433 0.049910 \n", "std 6488.429996 19.213187 3.407985 19.130339 \n", "min 1.000000 0.000000 0.000000 -369.991733 \n", "25% 255.000000 5.583756 6.002458 -0.834448 \n", "50% 581.000000 6.968678 7.153457 -0.139096 \n", "75% 1573.000000 8.903286 8.625882 0.680238 \n", "max 185198.000000 5525.000000 373.463764 5525.000000 " ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "migration.describe()" ] }, { "cell_type": "markdown", "metadata": { "id": "GF1W-uo0T1km" }, "source": [ "# Choropleths" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "id": "nbnf1Pe9Tzlv" }, "outputs": [], "source": [ "import plotly.express as px\n", "import json\n", "from urllib.request import urlopen\n", "\n", "with urlopen('https://raw.githubusercontent.com/plotly/datasets/master/geojson-counties-fips.json') as response:\n", " counties = json.load(response)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 542, "output_embedded_package_id": "1b6K5hLC1Lmpb06UNA3NkEPbozpNr2k9M" }, "executionInfo": { "elapsed": 10021, "status": "ok", "timestamp": 1668767919134, "user": { "displayName": "Sabaina Haroon", "userId": "03287014315776100364" }, "user_tz": -300 }, "id": "h8ZXn0qcDKR3", "outputId": "04c2f3d9-1585-40d8-df0e-cfdb8d330cae" }, "outputs": [], "source": [ "#@title 2020 Migration %Flow\n", "\n", "df = migration.copy()\n", "df['County Code'] = df['County Code'].astype('str').str.zfill(5)\n", "df = df[df.Year.isin([2020])].reset_index(drop=True)\n", "fig = px.choropleth(df, locations=\"County Code\",\n", " geojson=counties,\n", " color=\"%flow\",\n", " hover_name=\"County\",\n", " scope=\"usa\",\n", " range_color=(-8, 8),\n", " color_continuous_scale='RdBu_r')\n", " \n", "fig.update_layout(showlegend=False, title='2020 Migration Flow')\n", "fig.update_traces(marker_line_width=0.25)\n", "fig.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "colab": { "base_uri": "https://localhost:8080/", "height": 542, "output_embedded_package_id": "1hCsTP-NifC-odw4LIwHJMYboEvJtCAj9" }, "executionInfo": { "elapsed": 8856, "status": "ok", "timestamp": 1668767976754, "user": { "displayName": "Sabaina Haroon", "userId": "03287014315776100364" }, "user_tz": -300 }, "id": "8gIFHYdrDseg", "outputId": "73520815-0c9c-4279-f48c-32f71fac4226" }, "outputs": [], "source": [ "#@title '2012 Migration %Flow'\n", "\n", "df = migration.copy()\n", "df['County Code'] = df['County Code'].astype('str').str.zfill(5)\n", "df = df[df.Year.isin([2012])].reset_index(drop=True)\n", "fig = px.choropleth(df, locations=\"County Code\",\n", " geojson=counties,\n", " color=\"%flow\",\n", " hover_name=\"County\",\n", " scope=\"usa\",\n", " range_color=(-8, 8),\n", " color_continuous_scale='RdBu_r')\n", " \n", "fig.update_layout(showlegend=False, title='2012 Migration Flow')\n", "fig.update_traces(marker_line_width=0.25)\n", "fig.show()" ] }, { "cell_type": "markdown", "metadata": { "id": "GM8ehoyIZw7y" }, "source": [ "# Choropleth Animations\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "colab": { "base_uri": "https://localhost:8080/", "height": 622, "output_embedded_package_id": "1sXIIioGT034sQiqs_KO7eO3zpMB-rfja" }, "executionInfo": { "elapsed": 39999, "status": "ok", "timestamp": 1668774130046, "user": { "displayName": "Sabaina Haroon", "userId": "03287014315776100364" }, "user_tz": -300 }, "id": "3wzJdVdHrfxE", "outputId": "dbeb305d-b9c2-4da6-9039-6b5c1bab4cac", "scrolled": false }, "outputs": [], "source": [ "#@title % Inflow Yearly Transition\n", "from IPython.display import HTML\n", "from base64 import b64encode\n", "mp4 = open('/Users/gigisung/Library/CloudStorage/GoogleDrive-gigi@climatealpha.ai/Shared drives/Climate Alpha/Research and Data/Internal Migration/migration_cleaned_prepped/percentage_inflow.mp4','rb').read()\n", "data_url = \"data:video/mp4;base64,\" + b64encode(mp4).decode()\n", "HTML(\"\"\"\n", "\n", "\"\"\" % data_url)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "colab": { "base_uri": "https://localhost:8080/", "height": 622, "output_embedded_package_id": "1eT0dva7UNuAIV8YLg_iBVgW3G4fXe3eg" }, "executionInfo": { "elapsed": 34663, "status": "ok", "timestamp": 1668774290539, "user": { "displayName": "Sabaina Haroon", "userId": "03287014315776100364" }, "user_tz": -300 }, "id": "3u_FBokjiL9R", "outputId": "21aef274-fbd6-4af3-f0e2-c9805db28d96" }, "outputs": [], "source": [ "#@title % Outflow Yearly Transition\n", "from IPython.display import HTML\n", "from base64 import b64encode\n", "mp4 = open('/Users/gigisung/Library/CloudStorage/GoogleDrive-gigi@climatealpha.ai/Shared drives/Climate Alpha/Research and Data/Internal Migration/migration_cleaned_prepped/percentage_outflow.mp4','rb').read()\n", "data_url = \"data:video/mp4;base64,\" + b64encode(mp4).decode()\n", "HTML(\"\"\"\n", "\n", "\"\"\" % data_url)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "colab": { "base_uri": "https://localhost:8080/", "height": 622, "output_embedded_package_id": "1dB0aJd3T11uFvfQBY325x3_B3IySQM62" }, "executionInfo": { "elapsed": 58540, "status": "ok", "timestamp": 1668775131424, "user": { "displayName": "Sabaina Haroon", "userId": "03287014315776100364" }, "user_tz": -300 }, "id": "fu8cRVEosxHO", "outputId": "f0f73ca0-71b7-4526-d300-3dbab6dc5fcd" }, "outputs": [], "source": [ "#@title % Net Flow Yearly Transition (Blue Outflow, Red Inflow)\n", "from IPython.display import HTML\n", "from base64 import b64encode\n", "mp4 = open('/Users/gigisung/Library/CloudStorage/GoogleDrive-gigi@climatealpha.ai/Shared drives/Climate Alpha/Research and Data/Internal Migration/migration_cleaned_prepped/netflow.mp4','rb').read()\n", "data_url = \"data:video/mp4;base64,\" + b64encode(mp4).decode()\n", "HTML(\"\"\"\n", "\n", "\"\"\" % data_url)" ] }, { "cell_type": "markdown", "metadata": { "id": "-xKBQsE1DBFV" }, "source": [ "# Anomalies in Data (Outliers)\n", "\n", "- Jewell County Kansas (20089)\n", "- Smith County Kansas (20183)\n", "\n", "Both these counties have a drastic increase in In-migrant population for the year 2012. Similarly a drastic decrease in Non-Migrant population. \n", "\n", "Data shows that disruption for a huge number of people moving into both counties were from Washington County, Kansas. ( CONFIRM THIS FROM OUTFLOW TREND )\n", "\n", "Detailed description of the tables is given below: " ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "id": "uXSNRi6_A2ry" }, "outputs": [], "source": [ "\n", "inflow_2020 = pd.read_csv('/Users/gigisung/Library/CloudStorage/GoogleDrive-gigi@climatealpha.ai/Shared drives/Climate Alpha/Research and Data/Internal Migration/irs_migration_raw/unzipped_2012_2020/countyinflow1920.csv')" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "colab": { "background_save": true }, "id": "8_zbUvcSUgcA" }, "outputs": [], "source": [ "inflow_2012 = pd.read_csv('/Users/gigisung/Library/CloudStorage/GoogleDrive-gigi@climatealpha.ai/Shared drives/Climate Alpha/Research and Data/Internal Migration/irs_migration_raw/unzipped_2012_2020/countyinflow1112.csv', encoding=\"ISO-8859-1\")" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 457 }, "executionInfo": { "elapsed": 882, "status": "ok", "timestamp": 1668670380509, "user": { "displayName": "Sabaina Haroon", "userId": "03287014315776100364" }, "user_tz": -300 }, "id": "UbYlQozXgBu4", "outputId": "54ef32ba-a10e-4fc1-d1be-b991025b1373" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
y2_statefipsy2_countyfipsy1_statefipsy1_countyfipsy1_statey1_countynamen1n2agi
4666620183960KSSmith County Total Migration-US and Foreign1532315069082
4666720183970KSSmith County Total Migration-US1532315069082
4666820183971KSSmith County Total Migration-Same State1496306367093
4666920183973KSSmith County Total Migration-Different State36871989
4667020183980KSSmith County Total Migration-Foreign-1-1-1
466712018320201KSWashington County1451297665245
466722018320183KSSmith County Non-migrants1703537313
4667320183580SSOther flows - Same State45871849
4667420183590DSOther flows - Different State36871989
4667520183593DSOther flows - Midwest1229402
4667620183595DSOther flows - South1027370
4667720183597DSOther flows - West14311217
4667820183579FRForeign - Other flows-1-1-1
\n", "
" ], "text/plain": [ " y2_statefips y2_countyfips y1_statefips y1_countyfips y1_state \\\n", "46666 20 183 96 0 KS \n", "46667 20 183 97 0 KS \n", "46668 20 183 97 1 KS \n", "46669 20 183 97 3 KS \n", "46670 20 183 98 0 KS \n", "46671 20 183 20 201 KS \n", "46672 20 183 20 183 KS \n", "46673 20 183 58 0 SS \n", "46674 20 183 59 0 DS \n", "46675 20 183 59 3 DS \n", "46676 20 183 59 5 DS \n", "46677 20 183 59 7 DS \n", "46678 20 183 57 9 FR \n", "\n", " y1_countyname n1 n2 agi \n", "46666 Smith County Total Migration-US and Foreign 1532 3150 69082 \n", "46667 Smith County Total Migration-US 1532 3150 69082 \n", "46668 Smith County Total Migration-Same State 1496 3063 67093 \n", "46669 Smith County Total Migration-Different State 36 87 1989 \n", "46670 Smith County Total Migration-Foreign -1 -1 -1 \n", "46671 Washington County 1451 2976 65245 \n", "46672 Smith County Non-migrants 170 353 7313 \n", "46673 Other flows - Same State 45 87 1849 \n", "46674 Other flows - Different State 36 87 1989 \n", "46675 Other flows - Midwest 12 29 402 \n", "46676 Other flows - South 10 27 370 \n", "46677 Other flows - West 14 31 1217 \n", "46678 Foreign - Other flows -1 -1 -1 " ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "inflow_2012[(inflow_2012.y2_statefips==20) & (inflow_2012.y2_countyfips==183)]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 520 }, "executionInfo": { "elapsed": 499, "status": "ok", "timestamp": 1668679990026, "user": { "displayName": "Sabaina Haroon", "userId": "03287014315776100364" }, "user_tz": -300 }, "id": "b-luLK2BE8fV", "outputId": "e6bf0db7-e505-4c8a-e390-cec6fee06979" }, "outputs": [ { "data": { "text/html": [ "\n", "
\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
y2_statefipsy2_countyfipsy1_statefipsy1_countyfipsy1_statey1_countynamen1n2agi
454082089960KSJewell County Total Migration-US and Foreign1326266757060
454092089970KSJewell County Total Migration-US1326266757060
454102089971KSJewell County Total Migration-Same State1299260955749
454112089973KSJewell County Total Migration-Different State27581311
454122089980KSJewell County Total Migration-Foreign-1-1-1
45413208920201KSWashington County1256252453975
4541420892089KSJewell County Non-migrants24481404
45415208920123KSMitchell County1324380
454162089580SSOther flows - Same State30611394
454172089590DSOther flows - Different State27581311
454182089591DSOther flows - Northeast-1-1-1
454192089593DSOther flows - Midwest1739905
454202089595DSOther flows - South-1-1-1
454212089597DSOther flows - West1019407
454222089579FRForeign - Other flows-1-1-1
\n", "
\n", " \n", " \n", " \n", "\n", " \n", "
\n", "
\n", " " ], "text/plain": [ " y2_statefips y2_countyfips y1_statefips y1_countyfips y1_state \\\n", "45408 20 89 96 0 KS \n", "45409 20 89 97 0 KS \n", "45410 20 89 97 1 KS \n", "45411 20 89 97 3 KS \n", "45412 20 89 98 0 KS \n", "45413 20 89 20 201 KS \n", "45414 20 89 20 89 KS \n", "45415 20 89 20 123 KS \n", "45416 20 89 58 0 SS \n", "45417 20 89 59 0 DS \n", "45418 20 89 59 1 DS \n", "45419 20 89 59 3 DS \n", "45420 20 89 59 5 DS \n", "45421 20 89 59 7 DS \n", "45422 20 89 57 9 FR \n", "\n", " y1_countyname n1 n2 agi \n", "45408 Jewell County Total Migration-US and Foreign 1326 2667 57060 \n", "45409 Jewell County Total Migration-US 1326 2667 57060 \n", "45410 Jewell County Total Migration-Same State 1299 2609 55749 \n", "45411 Jewell County Total Migration-Different State 27 58 1311 \n", "45412 Jewell County Total Migration-Foreign -1 -1 -1 \n", "45413 Washington County 1256 2524 53975 \n", "45414 Jewell County Non-migrants 24 48 1404 \n", "45415 Mitchell County 13 24 380 \n", "45416 Other flows - Same State 30 61 1394 \n", "45417 Other flows - Different State 27 58 1311 \n", "45418 Other flows - Northeast -1 -1 -1 \n", "45419 Other flows - Midwest 17 39 905 \n", "45420 Other flows - South -1 -1 -1 \n", "45421 Other flows - West 10 19 407 \n", "45422 Foreign - Other flows -1 -1 -1 " ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "inflow_2012[(inflow_2012.y2_statefips==20) & (inflow_2012.y2_countyfips==89)]" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 896 }, "collapsed": true, "executionInfo": { "elapsed": 654, "status": "ok", "timestamp": 1668679124160, "user": { "displayName": "Sabaina Haroon", "userId": "03287014315776100364" }, "user_tz": -300 }, "id": "ccvApqTTRXFZ", "outputId": "92cbd71a-8df9-4efc-e750-fffb294354d0" }, "outputs": [ { "ename": "type", "evalue": "name 'inflow_all' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[23], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m inflow_all[((inflow_all\u001b[39m.\u001b[39mdestination_countyfips\u001b[39m==\u001b[39m\u001b[39m20089\u001b[39m))]\n", "\u001b[0;31mNameError\u001b[0m: name 'inflow_all' is not defined" ] } ], "source": [ "inflow_all[((inflow_all.destination_countyfips==20089))]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 927 }, "executionInfo": { "elapsed": 496, "status": "ok", "timestamp": 1668755167337, "user": { "displayName": "Sabaina Haroon", "userId": "03287014315776100364" }, "user_tz": -300 }, "id": "xzwqZER8jpsr", "outputId": "c653f42a-6ba4-4617-ec2d-fedb553f1ea0" }, "outputs": [ { "data": { "text/html": [ "\n", "
\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
County CodeCountyStateYearnonmigrant_returnsinmigrant_returnsoutmigrant_returns%inflow%outflow%flow
845620089Jewell CountyKansas19931502.088.0106.05.8588557.057257-1.198402
845720089Jewell CountyKansas19941475.095.096.06.4406786.508475-0.067797
845820089Jewell CountyKansas19951472.084.087.05.7065225.910326-0.203804
845920089Jewell CountyKansas19961470.0100.091.06.8027216.1904760.612245
846020089Jewell CountyKansas19971486.075.092.05.0471066.191117-1.144011
846120089Jewell CountyKansas19981484.074.0104.04.9865237.008086-2.021563
846220089Jewell CountyKansas19991475.082.0103.05.5593226.983051-1.423729
846320089Jewell CountyKansas20001453.085.0116.05.8499667.983482-2.133517
846420089Jewell CountyKansas20011427.058.0112.04.0644717.848633-3.784163
846520089Jewell CountyKansas20021410.064.0110.04.5390077.801418-3.262411
846620089Jewell CountyKansas20031375.070.097.05.0909097.054545-1.963636
846720089Jewell CountyKansas20041313.067.092.05.1028187.006855-1.904037
846820089Jewell CountyKansas20051286.061.080.04.7433906.220840-1.477449
846920089Jewell CountyKansas20061284.071.089.05.5295956.931464-1.401869
847020089Jewell CountyKansas20071243.051.086.04.1029776.918745-2.815768
847120089Jewell CountyKansas20081351.065.075.04.8112515.551443-0.740192
847220089Jewell CountyKansas20091299.068.090.05.2347966.928406-1.693610
847320089Jewell CountyKansas20101134.066.065.05.8201065.7319220.088183
847420089Jewell CountyKansas20111276.079.081.06.1912236.347962-0.156740
847520089Jewell CountyKansas201224.01326.01.05525.0000000.0000005525.000000
847620089Jewell CountyKansas20131253.053.083.04.2298486.624102-2.394254
847720089Jewell CountyKansas20141237.051.038.04.1228783.0719481.050930
847820089Jewell CountyKansas20151235.022.037.01.7813772.995951-1.214575
847920089Jewell CountyKansas20161190.029.053.02.4369754.453782-2.016807
848020089Jewell CountyKansas20171199.039.047.03.2527113.919933-0.667223
848120089Jewell CountyKansas20181196.047.041.03.9297663.4280940.501672
848220089Jewell CountyKansas20191200.037.043.03.0833333.583333-0.500000
848320089Jewell CountyKansas20201170.040.041.03.4188033.504274-0.085470
\n", "
\n", " \n", " \n", " \n", "\n", " \n", "
\n", "
\n", " " ], "text/plain": [ " County Code County State Year nonmigrant_returns \\\n", "8456 20089 Jewell County Kansas 1993 1502.0 \n", "8457 20089 Jewell County Kansas 1994 1475.0 \n", "8458 20089 Jewell County Kansas 1995 1472.0 \n", "8459 20089 Jewell County Kansas 1996 1470.0 \n", "8460 20089 Jewell County Kansas 1997 1486.0 \n", "8461 20089 Jewell County Kansas 1998 1484.0 \n", "8462 20089 Jewell County Kansas 1999 1475.0 \n", "8463 20089 Jewell County Kansas 2000 1453.0 \n", "8464 20089 Jewell County Kansas 2001 1427.0 \n", "8465 20089 Jewell County Kansas 2002 1410.0 \n", "8466 20089 Jewell County Kansas 2003 1375.0 \n", "8467 20089 Jewell County Kansas 2004 1313.0 \n", "8468 20089 Jewell County Kansas 2005 1286.0 \n", "8469 20089 Jewell County Kansas 2006 1284.0 \n", "8470 20089 Jewell County Kansas 2007 1243.0 \n", "8471 20089 Jewell County Kansas 2008 1351.0 \n", "8472 20089 Jewell County Kansas 2009 1299.0 \n", "8473 20089 Jewell County Kansas 2010 1134.0 \n", "8474 20089 Jewell County Kansas 2011 1276.0 \n", "8475 20089 Jewell County Kansas 2012 24.0 \n", "8476 20089 Jewell County Kansas 2013 1253.0 \n", "8477 20089 Jewell County Kansas 2014 1237.0 \n", "8478 20089 Jewell County Kansas 2015 1235.0 \n", "8479 20089 Jewell County Kansas 2016 1190.0 \n", "8480 20089 Jewell County Kansas 2017 1199.0 \n", "8481 20089 Jewell County Kansas 2018 1196.0 \n", "8482 20089 Jewell County Kansas 2019 1200.0 \n", "8483 20089 Jewell County Kansas 2020 1170.0 \n", "\n", " inmigrant_returns outmigrant_returns %inflow %outflow \\\n", "8456 88.0 106.0 5.858855 7.057257 \n", "8457 95.0 96.0 6.440678 6.508475 \n", "8458 84.0 87.0 5.706522 5.910326 \n", "8459 100.0 91.0 6.802721 6.190476 \n", "8460 75.0 92.0 5.047106 6.191117 \n", "8461 74.0 104.0 4.986523 7.008086 \n", "8462 82.0 103.0 5.559322 6.983051 \n", "8463 85.0 116.0 5.849966 7.983482 \n", "8464 58.0 112.0 4.064471 7.848633 \n", "8465 64.0 110.0 4.539007 7.801418 \n", "8466 70.0 97.0 5.090909 7.054545 \n", "8467 67.0 92.0 5.102818 7.006855 \n", "8468 61.0 80.0 4.743390 6.220840 \n", "8469 71.0 89.0 5.529595 6.931464 \n", "8470 51.0 86.0 4.102977 6.918745 \n", "8471 65.0 75.0 4.811251 5.551443 \n", "8472 68.0 90.0 5.234796 6.928406 \n", "8473 66.0 65.0 5.820106 5.731922 \n", "8474 79.0 81.0 6.191223 6.347962 \n", "8475 1326.0 1.0 5525.000000 0.000000 \n", "8476 53.0 83.0 4.229848 6.624102 \n", "8477 51.0 38.0 4.122878 3.071948 \n", "8478 22.0 37.0 1.781377 2.995951 \n", "8479 29.0 53.0 2.436975 4.453782 \n", "8480 39.0 47.0 3.252711 3.919933 \n", "8481 47.0 41.0 3.929766 3.428094 \n", "8482 37.0 43.0 3.083333 3.583333 \n", "8483 40.0 41.0 3.418803 3.504274 \n", "\n", " %flow \n", "8456 -1.198402 \n", "8457 -0.067797 \n", "8458 -0.203804 \n", "8459 0.612245 \n", "8460 -1.144011 \n", "8461 -2.021563 \n", "8462 -1.423729 \n", "8463 -2.133517 \n", "8464 -3.784163 \n", "8465 -3.262411 \n", "8466 -1.963636 \n", "8467 -1.904037 \n", "8468 -1.477449 \n", "8469 -1.401869 \n", "8470 -2.815768 \n", "8471 -0.740192 \n", "8472 -1.693610 \n", "8473 0.088183 \n", "8474 -0.156740 \n", "8475 5525.000000 \n", "8476 -2.394254 \n", "8477 1.050930 \n", "8478 -1.214575 \n", "8479 -2.016807 \n", "8480 -0.667223 \n", "8481 0.501672 \n", "8482 -0.500000 \n", "8483 -0.085470 " ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "migration[migration['County Code'].isin([20089])]" ] }, { "cell_type": "markdown", "metadata": { "id": "LYMI9J-kHII2" }, "source": [ "#### Identifying and removing outliers using choropleth timeseries visualizations" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "0XN1OL2xHGWt" }, "outputs": [], "source": [ "inflow_all = inflow_all[~((inflow_all.inmigrant_returns==1) & (inflow_all.nonmigrant_returns==1))].reset_index(drop=True)\n", "# inflow_all = inflow_all[~((inflow_all.destination_countyfips==20089) & (inflow_all.Year==2012))].reset_index(drop=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 363 }, "executionInfo": { "elapsed": 610, "status": "ok", "timestamp": 1668678641891, "user": { "displayName": "Sabaina Haroon", "userId": "03287014315776100364" }, "user_tz": -300 }, "id": "9XWD1wqnCzyw", "outputId": "cb0d931f-1a97-4fab-bfdd-a77ed8f68d9b" }, "outputs": [ { "data": { "text/html": [ "\n", "
\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
y2_statefipsy2_countyfipsy1_statefipsy1_countyfipsy1_statey1_countynamen1n2agidestination_countyfips
3083820201960KSWashington County Total Migration-US and Foreign60126230220201
3083920201970KSWashington County Total Migration-US60126230220201
3084020201971KSWashington County Total Migration-Same State60126230220201
308412020120201KSWashington County Non-migrants2181495812377320201
308422020120117KSMarshall County214981020201
3084320201580SSOther flows - Same State3977149220201
3084420201591DSOther flows - Northeast-1-1-120201
3084520201593DSOther flows - Midwest-1-1-120201
3084620201595DSOther flows - South-1-1-120201
3084720201597DSOther flows - West-1-1-120201
\n", "
\n", " \n", " \n", " \n", "\n", " \n", "
\n", "
\n", " " ], "text/plain": [ " y2_statefips y2_countyfips y1_statefips y1_countyfips y1_state \\\n", "30838 20 201 96 0 KS \n", "30839 20 201 97 0 KS \n", "30840 20 201 97 1 KS \n", "30841 20 201 20 201 KS \n", "30842 20 201 20 117 KS \n", "30843 20 201 58 0 SS \n", "30844 20 201 59 1 DS \n", "30845 20 201 59 3 DS \n", "30846 20 201 59 5 DS \n", "30847 20 201 59 7 DS \n", "\n", " y1_countyname n1 n2 agi \\\n", "30838 Washington County Total Migration-US and Foreign 60 126 2302 \n", "30839 Washington County Total Migration-US 60 126 2302 \n", "30840 Washington County Total Migration-Same State 60 126 2302 \n", "30841 Washington County Non-migrants 2181 4958 123773 \n", "30842 Marshall County 21 49 810 \n", "30843 Other flows - Same State 39 77 1492 \n", "30844 Other flows - Northeast -1 -1 -1 \n", "30845 Other flows - Midwest -1 -1 -1 \n", "30846 Other flows - South -1 -1 -1 \n", "30847 Other flows - West -1 -1 -1 \n", "\n", " destination_countyfips \n", "30838 20201 \n", "30839 20201 \n", "30840 20201 \n", "30841 20201 \n", "30842 20201 \n", "30843 20201 \n", "30844 20201 \n", "30845 20201 \n", "30846 20201 \n", "30847 20201 " ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "inflow_2020[inflow_2020.destination_countyfips==20201]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 896 }, "executionInfo": { "elapsed": 556, "status": "ok", "timestamp": 1668678651811, "user": { "displayName": "Sabaina Haroon", "userId": "03287014315776100364" }, "user_tz": -300 }, "id": "weTGhxwIDOFV", "outputId": "930837b9-046b-47ab-9a15-9a3f52d7a617" }, "outputs": [ { "data": { "text/html": [ "\n", "
\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
destination_countyfipscountyinmigrant_returnsnonmigrant_returns%inflowYearCounty Code
224620201Washington104.02443.04.257061199320201
412120201Washington (Total Migrant)130.02382.05.457599199420201
725420201Washington120.02361.05.082592199520201
1664420201Washington Coun Tot Mig-US & For96.02440.03.934426199620201
1351720201Washington Coun Tot Mig-US & For94.02409.03.902034199720201
1038620201Washington Coun Tot Mig-US & For81.02245.03.608018199820201
2290120201Washington Coun Tot Mig-US & For113.02178.05.188246199920201
1977120201Washington Coun Tot Mig-US & For107.02190.04.885845200020201
3229720201Washington Coun Tot Mig-US & For110.02174.05.059798200120201
2916620201Washington Coun Tot Mig-US & For121.02308.05.242634200220201
2603620201Washington Coun Tot Mig-US & For99.02282.04.338300200320201
3542820201Washington Coun Tot Mig-US & For110.02224.04.946043200420201
3855520201Washington Coun Tot Mig-US & Fo101.02337.04.321780200520201
4168820201Washington Coun Tot Mig-US & Fo102.02321.04.394657200620201
4482020201Washington Coun Tot Mig-US & Fo97.02290.04.235808200720201
5109020201Washington Coun Tot Mig-US & Fo111.02367.04.689480200920201
4795720201Washington Coun Tot Mig-US & Fo170.03171.05.361085201020201
5421920201Washington Coun Tot Mig-US & Fo122.02313.05.274535201120201
5735620201Washington County Total Migration-US and Foreign83.02338.03.550043201220201
6363920201Washington County Total Migration-US and Foreign95.02305.04.121475201320201
6049820201Washington County Total Migration-US and Foreign91.02289.03.975535201420201
7306320201Washington County Total Migration-US and Foreign47.02308.02.036395201520201
6992220201Washington County Total Migration-US and Foreign98.02262.04.332449201620201
6678120201Washington County Total Migration-US and Foreign113.02214.05.103884201720201
7929020201Washington County Total Migration-US and Foreign95.02252.04.218472201820201
7619620201Washington County Total Migration-US and Foreign48.02244.02.139037201920201
8242620201Washington County Total Migration-US and Foreign60.02181.02.751032202020201
\n", "
\n", " \n", " \n", " \n", "\n", " \n", "
\n", "
\n", " " ], "text/plain": [ " destination_countyfips \\\n", "2246 20201 \n", "4121 20201 \n", "7254 20201 \n", "16644 20201 \n", "13517 20201 \n", "10386 20201 \n", "22901 20201 \n", "19771 20201 \n", "32297 20201 \n", "29166 20201 \n", "26036 20201 \n", "35428 20201 \n", "38555 20201 \n", "41688 20201 \n", "44820 20201 \n", "51090 20201 \n", "47957 20201 \n", "54219 20201 \n", "57356 20201 \n", "63639 20201 \n", "60498 20201 \n", "73063 20201 \n", "69922 20201 \n", "66781 20201 \n", "79290 20201 \n", "76196 20201 \n", "82426 20201 \n", "\n", " county inmigrant_returns \\\n", "2246 Washington 104.0 \n", "4121 Washington (Total Migrant) 130.0 \n", "7254 Washington 120.0 \n", "16644 Washington Coun Tot Mig-US & For 96.0 \n", "13517 Washington Coun Tot Mig-US & For 94.0 \n", "10386 Washington Coun Tot Mig-US & For 81.0 \n", "22901 Washington Coun Tot Mig-US & For 113.0 \n", "19771 Washington Coun Tot Mig-US & For 107.0 \n", "32297 Washington Coun Tot Mig-US & For 110.0 \n", "29166 Washington Coun Tot Mig-US & For 121.0 \n", "26036 Washington Coun Tot Mig-US & For 99.0 \n", "35428 Washington Coun Tot Mig-US & For 110.0 \n", "38555 Washington Coun Tot Mig-US & Fo 101.0 \n", "41688 Washington Coun Tot Mig-US & Fo 102.0 \n", "44820 Washington Coun Tot Mig-US & Fo 97.0 \n", "51090 Washington Coun Tot Mig-US & Fo 111.0 \n", "47957 Washington Coun Tot Mig-US & Fo 170.0 \n", "54219 Washington Coun Tot Mig-US & Fo 122.0 \n", "57356 Washington County Total Migration-US and Foreign 83.0 \n", "63639 Washington County Total Migration-US and Foreign 95.0 \n", "60498 Washington County Total Migration-US and Foreign 91.0 \n", "73063 Washington County Total Migration-US and Foreign 47.0 \n", "69922 Washington County Total Migration-US and Foreign 98.0 \n", "66781 Washington County Total Migration-US and Foreign 113.0 \n", "79290 Washington County Total Migration-US and Foreign 95.0 \n", "76196 Washington County Total Migration-US and Foreign 48.0 \n", "82426 Washington County Total Migration-US and Foreign 60.0 \n", "\n", " nonmigrant_returns %inflow Year County Code \n", "2246 2443.0 4.257061 1993 20201 \n", "4121 2382.0 5.457599 1994 20201 \n", "7254 2361.0 5.082592 1995 20201 \n", "16644 2440.0 3.934426 1996 20201 \n", "13517 2409.0 3.902034 1997 20201 \n", "10386 2245.0 3.608018 1998 20201 \n", "22901 2178.0 5.188246 1999 20201 \n", "19771 2190.0 4.885845 2000 20201 \n", "32297 2174.0 5.059798 2001 20201 \n", "29166 2308.0 5.242634 2002 20201 \n", "26036 2282.0 4.338300 2003 20201 \n", "35428 2224.0 4.946043 2004 20201 \n", "38555 2337.0 4.321780 2005 20201 \n", "41688 2321.0 4.394657 2006 20201 \n", "44820 2290.0 4.235808 2007 20201 \n", "51090 2367.0 4.689480 2009 20201 \n", "47957 3171.0 5.361085 2010 20201 \n", "54219 2313.0 5.274535 2011 20201 \n", "57356 2338.0 3.550043 2012 20201 \n", "63639 2305.0 4.121475 2013 20201 \n", "60498 2289.0 3.975535 2014 20201 \n", "73063 2308.0 2.036395 2015 20201 \n", "69922 2262.0 4.332449 2016 20201 \n", "66781 2214.0 5.103884 2017 20201 \n", "79290 2252.0 4.218472 2018 20201 \n", "76196 2244.0 2.139037 2019 20201 \n", "82426 2181.0 2.751032 2020 20201 " ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "inflow_all[inflow_all.destination_countyfips==20201].sort_values(by='Year')" ] }, { "cell_type": "markdown", "metadata": { "id": "4VK59R79Cb6S" }, "source": [ "# Top performing counties w.r.t Migration" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 426 }, "executionInfo": { "elapsed": 667, "status": "ok", "timestamp": 1669099976882, "user": { "displayName": "Sabaina Haroon", "userId": "03287014315776100364" }, "user_tz": -300 }, "id": "ij-VwqsbCgzd", "outputId": "e8daa1af-3ba0-4ec3-f94c-3b5cf3f42c36" }, "outputs": [ { "data": { "text/html": [ "\n", "
\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
County CodeYearnonmigrant_returnsinmigrant_returnsoutmigrant_returns%inflow%outflow%flow
count87871.00000087871.0000008.786900e+0487825.00000087847.00000087824.00000087847.00000087801.000000
mean30402.9229322006.5018833.240175e+042338.5237692320.7541637.7052247.6541140.050657
std15156.8812828.0692461.048382e+056171.5250836457.15743619.2116263.38464419.130219
min1001.0000001993.0000001.000000e+001.0000001.0000000.0000000.000000-369.991733
1%1063.0000001993.0000003.540000e+0225.00000028.0000003.0718703.620709-4.074074
5%5094.0000001994.0000009.910000e+0265.00000075.0000004.0930484.593113-2.264291
25%18179.0000002000.0000003.470000e+03243.000000255.0000005.5837456.002434-0.834376
50%29177.0000002007.0000008.039000e+03575.000000581.0000006.9686377.153414-0.139034
75%45081.0000002013.0000002.127500e+041612.0000001573.0000008.9027768.6257200.680414
95%53065.0000002019.0000001.377436e+0510446.40000010167.70000013.24154112.1853972.661095
99%55125.0000002020.0000004.145701e+0530310.76000030733.54000018.47154617.6617384.966393
max57003.0000002020.0000003.768510e+06142428.000000185198.0000005525.000000373.4637645525.000000
\n", "
\n", " \n", " \n", " \n", "\n", " \n", "
\n", "
\n", " " ], "text/plain": [ " County Code Year nonmigrant_returns inmigrant_returns \\\n", "count 87871.000000 87871.000000 8.786900e+04 87825.000000 \n", "mean 30402.922932 2006.501883 3.240175e+04 2338.523769 \n", "std 15156.881282 8.069246 1.048382e+05 6171.525083 \n", "min 1001.000000 1993.000000 1.000000e+00 1.000000 \n", "1% 1063.000000 1993.000000 3.540000e+02 25.000000 \n", "5% 5094.000000 1994.000000 9.910000e+02 65.000000 \n", "25% 18179.000000 2000.000000 3.470000e+03 243.000000 \n", "50% 29177.000000 2007.000000 8.039000e+03 575.000000 \n", "75% 45081.000000 2013.000000 2.127500e+04 1612.000000 \n", "95% 53065.000000 2019.000000 1.377436e+05 10446.400000 \n", "99% 55125.000000 2020.000000 4.145701e+05 30310.760000 \n", "max 57003.000000 2020.000000 3.768510e+06 142428.000000 \n", "\n", " outmigrant_returns %inflow %outflow %flow \n", "count 87847.000000 87824.000000 87847.000000 87801.000000 \n", "mean 2320.754163 7.705224 7.654114 0.050657 \n", "std 6457.157436 19.211626 3.384644 19.130219 \n", "min 1.000000 0.000000 0.000000 -369.991733 \n", "1% 28.000000 3.071870 3.620709 -4.074074 \n", "5% 75.000000 4.093048 4.593113 -2.264291 \n", "25% 255.000000 5.583745 6.002434 -0.834376 \n", "50% 581.000000 6.968637 7.153414 -0.139034 \n", "75% 1573.000000 8.902776 8.625720 0.680414 \n", "95% 10167.700000 13.241541 12.185397 2.661095 \n", "99% 30733.540000 18.471546 17.661738 4.966393 \n", "max 185198.000000 5525.000000 373.463764 5525.000000 " ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "migration.describe(percentiles=[0.01,0.05,0.25,0.50,0.75,0.95,0.99])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 206 }, "executionInfo": { "elapsed": 4, "status": "ok", "timestamp": 1669099981184, "user": { "displayName": "Sabaina Haroon", "userId": "03287014315776100364" }, "user_tz": -300 }, "id": "m-oA9-ghChce", "outputId": "521549bb-09e2-4d1e-b21e-9415b0b5cc9c" }, "outputs": [ { "data": { "text/html": [ "\n", "
\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
County CodeCountyStateYearnonmigrant_returnsinmigrant_returnsoutmigrant_returns%inflow%outflow%flow
329022087St. Bernard ParishLouisiana20072803.02347.0728.083.73171625.97217357.759543
847520089Jewell CountyKansas201224.01326.01.05525.0000000.0000005525.000000
900720029Cloud CountyKansas2012593.03061.054.0516.1888709.106239507.082631
979020183Smith CountyKansas2012170.01532.01.0901.1764710.000000901.176471
3915513125Glascock CountyGeorgia1995742.0476.050.064.1509436.73854457.412399
\n", "
\n", " \n", " \n", " \n", "\n", " \n", "
\n", "
\n", " " ], "text/plain": [ " County Code County State Year nonmigrant_returns \\\n", "3290 22087 St. Bernard Parish Louisiana 2007 2803.0 \n", "8475 20089 Jewell County Kansas 2012 24.0 \n", "9007 20029 Cloud County Kansas 2012 593.0 \n", "9790 20183 Smith County Kansas 2012 170.0 \n", "39155 13125 Glascock County Georgia 1995 742.0 \n", "\n", " inmigrant_returns outmigrant_returns %inflow %outflow \\\n", "3290 2347.0 728.0 83.731716 25.972173 \n", "8475 1326.0 1.0 5525.000000 0.000000 \n", "9007 3061.0 54.0 516.188870 9.106239 \n", "9790 1532.0 1.0 901.176471 0.000000 \n", "39155 476.0 50.0 64.150943 6.738544 \n", "\n", " %flow \n", "3290 57.759543 \n", "8475 5525.000000 \n", "9007 507.082631 \n", "9790 901.176471 \n", "39155 57.412399 " ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "migration[migration['%flow'] > 50.0]" ] }, { "cell_type": "markdown", "metadata": { "id": "cSGNG-9JEENg" }, "source": [ "#### Removing Jwwell County, Kansas for now, as an outlier, to study the distribution for other counties" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 426 }, "executionInfo": { "elapsed": 572, "status": "ok", "timestamp": 1669101286289, "user": { "displayName": "Sabaina Haroon", "userId": "03287014315776100364" }, "user_tz": -300 }, "id": "-bmn1ZGNDej4", "outputId": "7e40c916-6647-4411-ac2e-5cab795beaa4" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
County CodeYearnonmigrant_returnsinmigrant_returnsoutmigrant_returns%inflow%outflow%flow
count87846.00000087846.0000008.784400e+0487800.00000087822.00000087799.00000087822.00000087776.000000
mean30407.1188672006.5014573.241543e+042341.7732922325.0817907.6448727.657055-0.012653
std15158.7160738.0694371.048537e+056188.2862866489.3401374.7483023.4081894.279813
min1001.0000001993.0000001.000000e+001.0000001.0000000.0000000.000000-369.991733
1%1063.0000001993.0000003.544300e+0225.00000028.0000003.0728643.622349-4.079044
5%5093.0000001994.0000009.910000e+0265.00000075.0000004.0936674.593949-2.264319
25%18179.0000002000.0000003.474000e+03243.000000255.0000005.5845576.002687-0.834085
50%29179.0000002006.0000008.042000e+03576.000000581.0000006.9691757.153870-0.138920
75%45081.0000002013.0000002.128525e+041613.0000001574.0000008.9041108.6269370.680766
95%53065.0000002019.0000001.379271e+0510455.35000010171.95000013.24212412.1881542.661280
99%55125.0000002020.0000004.146929e+0530367.32000030753.11000018.48319517.6818584.963639
max57005.0000002020.0000003.768510e+06142428.000000185198.000000901.176471373.463764901.176471
\n", "
" ], "text/plain": [ " County Code Year nonmigrant_returns inmigrant_returns \\\n", "count 87846.000000 87846.000000 8.784400e+04 87800.000000 \n", "mean 30407.118867 2006.501457 3.241543e+04 2341.773292 \n", "std 15158.716073 8.069437 1.048537e+05 6188.286286 \n", "min 1001.000000 1993.000000 1.000000e+00 1.000000 \n", "1% 1063.000000 1993.000000 3.544300e+02 25.000000 \n", "5% 5093.000000 1994.000000 9.910000e+02 65.000000 \n", "25% 18179.000000 2000.000000 3.474000e+03 243.000000 \n", "50% 29179.000000 2006.000000 8.042000e+03 576.000000 \n", "75% 45081.000000 2013.000000 2.128525e+04 1613.000000 \n", "95% 53065.000000 2019.000000 1.379271e+05 10455.350000 \n", "99% 55125.000000 2020.000000 4.146929e+05 30367.320000 \n", "max 57005.000000 2020.000000 3.768510e+06 142428.000000 \n", "\n", " outmigrant_returns %inflow %outflow %flow \n", "count 87822.000000 87799.000000 87822.000000 87776.000000 \n", "mean 2325.081790 7.644872 7.657055 -0.012653 \n", "std 6489.340137 4.748302 3.408189 4.279813 \n", "min 1.000000 0.000000 0.000000 -369.991733 \n", "1% 28.000000 3.072864 3.622349 -4.079044 \n", "5% 75.000000 4.093667 4.593949 -2.264319 \n", "25% 255.000000 5.584557 6.002687 -0.834085 \n", "50% 581.000000 6.969175 7.153870 -0.138920 \n", "75% 1574.000000 8.904110 8.626937 0.680766 \n", "95% 10171.950000 13.242124 12.188154 2.661280 \n", "99% 30753.110000 18.483195 17.681858 4.963639 \n", "max 185198.000000 901.176471 373.463764 901.176471 " ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "migration_1 = migration[~(migration['County Code'].isin([20089]))].reset_index(drop=True)\n", "migration_1.describe(percentiles=[0.01,0.05,0.25,0.50,0.75,0.95,0.99])" ] }, { "cell_type": "markdown", "metadata": { "id": "OzU0VRNQErEv" }, "source": [ "### Average Migration Performers of 28 years" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "id": "tLqvJCRqEvMo" }, "outputs": [], "source": [ "migration_avg = migration_1.groupby(['County Code','County', 'State'], as_index=False).mean().drop(columns='Year').reset_index(drop=True)" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 300 }, "executionInfo": { "elapsed": 4, "status": "ok", "timestamp": 1669100139240, "user": { "displayName": "Sabaina Haroon", "userId": "03287014315776100364" }, "user_tz": -300 }, "id": "3nWADZ_dFGVF", "outputId": "09a031f7-092e-4f30-d580-b63bfb937caf" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
County Codenonmigrant_returnsinmigrant_returnsoutmigrant_returns%inflow%outflow%flow
count3135.0000003.135000e+033135.0000003135.0000003135.0000003135.0000003135.000000
mean30404.6679433.225921e+042329.6608342312.4877197.6400857.653137-0.013932
std15161.0981771.039662e+056077.2932616355.1580432.8874642.5409501.307491
min1001.0000001.169231e+011.0000001.0000000.0000000.000000-13.583161
25%18592.0000003.440250e+03245.392857255.1071435.7323306.181630-0.706826
50%29181.0000007.993679e+03576.750000587.8214297.0268057.155985-0.197575
75%45082.0000002.126614e+041620.6071431580.2500008.7940178.4547000.495471
max56045.0000003.179761e+06106468.928571137998.71428643.79563849.77774631.404964
\n", "
" ], "text/plain": [ " County Code nonmigrant_returns inmigrant_returns \\\n", "count 3135.000000 3.135000e+03 3135.000000 \n", "mean 30404.667943 3.225921e+04 2329.660834 \n", "std 15161.098177 1.039662e+05 6077.293261 \n", "min 1001.000000 1.169231e+01 1.000000 \n", "25% 18592.000000 3.440250e+03 245.392857 \n", "50% 29181.000000 7.993679e+03 576.750000 \n", "75% 45082.000000 2.126614e+04 1620.607143 \n", "max 56045.000000 3.179761e+06 106468.928571 \n", "\n", " outmigrant_returns %inflow %outflow %flow \n", "count 3135.000000 3135.000000 3135.000000 3135.000000 \n", "mean 2312.487719 7.640085 7.653137 -0.013932 \n", "std 6355.158043 2.887464 2.540950 1.307491 \n", "min 1.000000 0.000000 0.000000 -13.583161 \n", "25% 255.107143 5.732330 6.181630 -0.706826 \n", "50% 587.821429 7.026805 7.155985 -0.197575 \n", "75% 1580.250000 8.794017 8.454700 0.495471 \n", "max 137998.714286 43.795638 49.777746 31.404964 " ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "migration_avg.describe()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "colab": { "base_uri": "https://localhost:8080/", "height": 542, "output_embedded_package_id": "1LBfdAG-UKzBQm9kCVYY6AJg1ynq5Ga4_" }, "executionInfo": { "elapsed": 22852, "status": "ok", "timestamp": 1669099574168, "user": { "displayName": "Sabaina Haroon", "userId": "03287014315776100364" }, "user_tz": -300 }, "id": "-vhl9DhsFONG", "outputId": "5b7ca8fb-88df-4dd9-eca5-edfda6010157" }, "outputs": [], "source": [ "#@title Average Migration (28 Years) %IN-FLOW\n", "\n", "df = migration_avg.copy()\n", "df['County Code'] = df['County Code'].astype('str').str.zfill(5)\n", "fig = px.choropleth(df, locations=\"County Code\",\n", " geojson=counties,\n", " color=\"%inflow\",\n", " hover_name=\"County\",\n", " scope=\"usa\",\n", " # range_color=(0, 20),\n", " color_continuous_scale='Blues'\n", " )\n", " \n", "fig.update_layout(showlegend=False, title='Average Migration %InFlow')\n", "fig.update_traces(marker_line_width=0.25)\n", "fig.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "colab": { "base_uri": "https://localhost:8080/", "height": 542, "output_embedded_package_id": "1basmYOJy6t16OXpr6HKl5x8jdR6D_VQK" }, "executionInfo": { "elapsed": 17728, "status": "ok", "timestamp": 1669099721122, "user": { "displayName": "Sabaina Haroon", "userId": "03287014315776100364" }, "user_tz": -300 }, "id": "We6gEmbcFfQU", "outputId": "02a209e9-5038-41a1-94c0-8dd30a1baa52" }, "outputs": [], "source": [ "#@title Average Migration (28 Years) %Out-FLOW\n", "\n", "df = migration_avg.copy()\n", "df['County Code'] = df['County Code'].astype('str').str.zfill(5)\n", "fig = px.choropleth(df, locations=\"County Code\",\n", " geojson=counties,\n", " color=\"%outflow\",\n", " hover_name=\"County\",\n", " scope=\"usa\",\n", " range_color=(0, 20),\n", " color_continuous_scale='Blues'\n", " )\n", " \n", "fig.update_layout(showlegend=False, title='Average Migration %OutFlow')\n", "fig.update_traces(marker_line_width=0.25)\n", "fig.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "colab": { "base_uri": "https://localhost:8080/", "height": 542, "output_embedded_package_id": "1FITyC2BQunvdaNHw0beqt2mzqIXJtXwc" }, "executionInfo": { "elapsed": 18917, "status": "ok", "timestamp": 1669099833138, "user": { "displayName": "Sabaina Haroon", "userId": "03287014315776100364" }, "user_tz": -300 }, "id": "M0yNnYqNFuhf", "outputId": "cde3d36c-9ab6-452a-8db1-d1140888146f" }, "outputs": [], "source": [ "#@title Average (28 Years) Migration %Flow\n", "\n", "df = migration_avg.copy()\n", "df['County Code'] = df['County Code'].astype('str').str.zfill(5)\n", "fig = px.choropleth(df, locations=\"County Code\",\n", " geojson=counties,\n", " color=\"%flow\",\n", " hover_name=\"County\",\n", " scope=\"usa\",\n", " range_color=(-8, 8),\n", " color_continuous_scale='RdBu_r'\n", " )\n", " \n", "fig.update_layout(showlegend=False, title='Average Migration %Flow')\n", "fig.update_traces(marker_line_width=0.25)\n", "fig.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 301 }, "executionInfo": { "elapsed": 903, "status": "ok", "timestamp": 1669100309641, "user": { "displayName": "Sabaina Haroon", "userId": "03287014315776100364" }, "user_tz": -300 }, "id": "PDbqzyS3Hlon", "outputId": "34a7915c-1fef-4c2c-edd1-6b4008de31c4" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEcCAYAAAAydkhNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXxTVaIH8F/WJt0oDW1JAUXgAR0WQdoioIAslqWlwAxTB6kfRoVx5Y2jyCLDqqPgvOeMDqjgwmPgMzKotFBFEUQQZJV1LItCkaWlhZbSpm2a5Oa+P0JCa5s2bXNvbsvv+/n4sUlu7j33kubXc84956hEURRBRERUC3WgC0BERMrFkCAiIq8YEkRE5BVDgoiIvGJIEBGRVwwJIiLyiiFBVI/09HRs2LAh0MWQxOOPP46NGzdKfpy33noLL7zwguTHIf9jSFCjpaenIyEhATabLdBFabK33noLPXr0QN++fT3/rVq1SpZjf/rpp4iLi/Mcd9iwYZgzZw5ycnIkP/Z7772HCRMmeMrxu9/9rtH7mj17Nnr27Im+ffsiMTERv//973H27NkG72fYsGH47rvvGl0O8i+GBDXKpUuXcOjQIahUKmzfvt3v+3c4HH7fZ31Gjx6NI0eOeP6bNm2abMfu06cPjhw5gkOHDmH16tUICgrCxIkTcebMGdnK4A+PPfYYjhw5gp07dyIyMhJz5swJdJGoiRgS1CgZGRm4++67MWHCBGRkZAAAbDYb4uPjq32xFRUVoXfv3igsLAQA7NixA6mpqYiPj8dDDz2EU6dOebYdNmwYVq5ciZSUFPTp0wcOhwMrV67EiBEj0LdvX4wZMwZfffWVZ3tBEPDaa6+hf//+GDZsGNauXYtu3bp5Aqa0tBRz587Ffffdh/vvvx9vvPEGBEFo0nk7nU6sWLECDzzwAAYMGIAXX3wRpaWlAIBZs2bhgw8+AADk5+ejW7duWLduHQDgwoULSExMhNPprHP/Go0Gd9xxBxYuXIjExET84x//8Lx29OhRPPTQQ4iPj8e4ceOwf/9+z2vp6en429/+hoceegh9+/bFo48+iqKiIgBAZWUlXnjhBfTv3x/x8fH49a9/jWvXrnnet2HDBpw9exYLFizA0aNH0bdvX8THx+P48eMYOHBgtWu2detWjBs3rt7rZDQakZKSgh9//LHW17dv346xY8ciPj4e6enpnhrHzJkzkZubiyeeeELW2hx5x5CgRsnMzERKSgpSUlKwe/duXLt2DXq9HiNHjsRnn33m2W7Lli1ISEiAyWRCdnY25s6di8WLF2P//v1IS0vDU089Va256rPPPsPKlStx6NAhaLVadOjQAevWrcP333+PZ555BjNnzkRBQQEA4N///jd27dqFzMxMbNy4Edu2batWxtmzZ0Or1WLr1q3IyMjAnj17mty38Omnn2Ljxo1Ys2YNtm3bhvLycixevBgAkJCQgAMHDgAADhw4gA4dOuDgwYOex/369YNa7fuv3MiRI3Ho0CEArtD5wx/+gCeffBIHDhzArFmzMGPGDE8QAEBWVhZeffVV7N27F3a73RNYGzduhMViwTfffIP9+/dj0aJFMBgM1Y7VuXNnLFq0qFqNpnfv3oiIiMDu3bs922VmZmL8+PH1lr2srAybN29GXFxcjddycnLw/PPPY+7cudi7dy8GDx6MJ554AjabDa+//jpiY2PxzjvvyF6bo9oxJKjBDh06hNzcXIwePRo9e/ZEhw4dkJWVBQBISUmpFhKbN29GSkoKAGD9+vVIS0vD3XffDY1GgwkTJkCn0+Ho0aOe7dPT02E2mz1fYqNHj0ZMTAzUajXGjBmDO++8E8ePHwfgCqBHHnkEbdu2RatWrTB9+nTPfq5du4adO3di7ty5CA4OhslkwtSpU6uV7Ze++OILxMfHe/7Lz8+vsc3mzZsxdepUdOjQASEhIfjTn/6Ezz//HA6HA4mJifj+++/hdDpx8OBBPP744zh8+DAA4ODBg0hMTGzQdY6OjsaNGzcAuL6cBw8ejCFDhkCtVmPQoEHo2bMndu7c6dl+4sSJuOuuu2AwGDBq1CicPHkSAKDValFcXIyff/4ZGo0GPXv2RGhoqE9lGD9+PDZt2gQAKC4uxu7du5GcnOx1+w8++ADx8fF48MEHUVZWhtdee63GNp9//jmGDBmCQYMGQafT4bHHHoPVasWRI0d8vjYkH22gC0DNT0ZGBgYNGoTIyEgAQHJyMjZu3IipU6eif//+sFqtOHbsGEwmE06dOoURI0YAAHJzc5GRkYG1a9d69mW32z01AwAwm801jvXhhx/i8uXLAIDy8nJcv34dAFBQUFBt+7Zt23p+zs3NhcPhwH333ed5zul01th/VaNGjcJf//rXOs+9oKAA7dq18zxu164dHA4HCgsLcccdd8BoNOLkyZP4/vvv8fTTT+Pjjz/GuXPncPDgQaSnp9e571/Kz89Hq1atPOfzxRdfYMeOHZ7XHQ4H+vfv73kcFRXl+dloNKK8vBwAkJqaiitXruBPf/oTSkpKMG7cODz33HPQ6XT1liE1NRWjR49GeXk5tmzZgvj4eERHR3vd/tFHH8Vzzz1X5z4LCgoQGxvreaxWq2E2m2sNZQo8hgQ1iNVqxZYtW+B0OjFo0CAArr6IkpISnDp1Ct27d8eoUaOQlZWFNm3aYOjQoZ6/Ws1mM5544gk8+eSTXvevUqk8P1++fBnz5s3D6tWr0bdvX2g0GqSmpnpej4qKwpUrVzyPq/7ctm1b6PV67Nu3D1qt/z7m0dHRnsACXF/eWq0WJpMJgKvJ6csvv4TdbkdMTAwSEhKQkZGBGzdu1Nr0Updt27YhPj4egOvapaam4uWXX25wmXU6HZ555hk888wzuHTpEqZPn4677roLkyZNqrZd1WvvFhMTg759+2Lr1q3IzMxs0t1PbtHR0dX6rURRRF5eHmJiYpq8b/I/NjdRg2zbtg0ajQafffYZMjIykJGRgc8//xzx8fGeDuyUlBRs2bIFmzdvrtY0MWnSJHz00Uc4duwYRFFEeXk5vvnmG1gsllqPVVFRAZVK5amxfPLJJ9U6QkePHo01a9YgPz8fJSUl1To5o6OjMWjQILz22muwWCxwOp24cOGCp8+gsZKTk/F///d/uHjxIsrKyvDGG29g9OjRniBKTEzE2rVrPV/u/fv3x9q1a9GvXz9oNJp69y8IAi5evIglS5bgwIEDePrppwEA48aNw44dO/Dtt99CEARUVlZi//791YLRm3379uH06dMQBAGhoaHQarW19o2YTCbk5+fXuKU5NTUV77//Ps6cOYMHH3yw3uPVZ/To0di5c2e1vhO9Xo++ffsCANq0aYOLFy82+TjkHwwJapCNGzdi4sSJiI2NRVRUlOe/hx9+GJs3b4bD4cDdd98No9GIgoICDB482PPeXr16YcmSJVi8eDESEhLw4IMP4tNPP/V6rC5duuDRRx/FQw89hIEDB+LMmTO45557PK//9re/xaBBgzBu3DiMHz8eQ4YMgVar9XwZL1u2DHa7HWPGjEFCQgJmzJiBq1evNun8f/3rX2PcuHGYMmUKhg8fDr1ejz//+c+e1xMSElBWVoaEhAQAQL9+/WC1Wj2h4Y37rqJ+/frhkUcegcViwccff4xu3boBcNUkVqxYgXfffRcDBgzAkCFD8P7779d7txTg6p+ZMWMG+vXrhzFjxiAxMbFajczt3nvvRZcuXXDfffdVa8YaOXIkLl++jJEjR8JoNPp0nerSqVMnvP7661iyZAnuvfde7NixA++88w70ej0AYPr06Xj77bcRHx+P999/v8nHo6ZRcdEhail27tyJhQsXVmu3J/8YMWIEFi9ejIEDBwa6KCQz1iSo2bJardi5cyccDgfy8/OxfPlyTyc5+c+XX34JlUqFe++9N9BFoQBgTYKarYqKCkyZMgXnzp2DwWDA0KFD8dJLL/l8eyfVLz09HT/99BOWLVuG+++/P9DFoQBgSBARkVdsbiIiIq8YEkRE5BVDgoiIvGpxI66vXy+D09k8ullMplAUFtY+kOx2wWvgwuvAawAE5hqo1Sq0bh3i9fUWFxJOp9hsQgJAsyqrVHgNXHgdeA0A5V0DNjcREZFXDAkiIvKKIUFERF4xJIiIyCuGBBERecWQICIirxgSJLucvBKcPF8U6GIQkQ8YEiS79dt/xD+3nql/QyIKuBY3mI6UzSmKuFBggVMUwQmIiZSPIUGyulZcAatNAACUVzoCXBoiqg+bm0hWF/JvzUtzvaQygCUhIl8wJEhWFwpKPT9ftzAkiJSOIUGyupBvQYjB1cp5vZQhQaR0DAmS1YX8UvS4KxIqAEUl1kAXh4jqwZAg2ZSU2VBsseEuczjCQ/WsSRA1AwwJkk3+9XIAgNkUgtahQQwJomaAIUGyqah03foabNCidRhDgqg5YEiQbKw217gIg16DyDADihgSRIrHkCDZVN4cRGfQa9A6PAgVlQ6UW+0BLhUR1YUhQbKxekLC1dwEAIU3eIcTkZIxJEg21Zub3CFREcgiEVE9GBIkG6tNgFajhlajRniIHgBQzH4JIkVjSJBsrDYBBr0GABAc5Bp1XWblJH9ESsaQINlYbQ5PSBhvhgQ7romUjSFBsqlak9Bp1dCoVajgdOFEisaQINm4QsJVg1CpVDDoNShncxORojEkSDZVaxKAq8mpjM1NRIrGkCDZVO2TAFwhUcGaBJGiMSRINlWbmwDAyOYmIsVjSJBs2NxE1PwwJEgWoii6mpuC2NxE1JzIFhI5OTlIS0tDUlIS0tLScP78ea/bnjt3DnfffTeWLl0qV/FIYjaHE6KIas1NhiAtyitZkyBSMtlCYsGCBZg8eTK+/PJLTJ48GfPnz691O0EQsGDBAowYMUKuopEMrFVmgHUzBmlQVsGaBJGSyRIShYWFyM7ORnJyMgAgOTkZ2dnZKCoqqrHtypUrMXToUHTs2FGOopFMKm9O7hekqxISei0cghN2hzNQxSKiesgSEnl5eYiJiYFG4/qC0Gg0iI6ORl5eXrXtTp06hd27d2Pq1KlyFItkVHWacDf31BwVNtYmiJRKW/8m8rDb7fjzn/+MV1991RMmjWEyhfqxVNKLigoLdBFkUVBqAwC0jQ71nHN0G9e/lTEkCFFtmte/mxRul89CXXgNlHcNZAkJs9mM/Px8CIIAjUYDQRBQUFAAs9ns2ebq1au4cOECpk+fDgAoKSmBKIqwWCxYsmSJz8cqLLTA6RT9fg5SiIoKw9WrpYEuhiyuFJQAAKwVNs85O252WufmlUAnNo9/M6ncTp8Fb3gNAnMN1GpVnX9cyxISJpMJcXFxyMrKQmpqKrKyshAXF4fIyEjPNrGxsdi/f7/n8VtvvYXy8nLMmjVLjiKSxGprbjK4m5s4yR+RYsl2d9PChQuxdu1aJCUlYe3atVi0aBEAYNq0aThx4oRcxaAAcYeEscrdTcEMCSLFk61PonPnztiwYUON51etWlXr9s8++6zURSIZWStvLV3q5h5Yx45rIuXiiGuShbsmEaSvfgssAFRUCgEpExHVjyFBsrDaBei1amjUtz5y7ltgraxJECkWQ4JkYbUJ1WoRgGt1Oq1GjXL2SRApFkOCZPHLtSTcgg1aWNncRKRYDAmShbWy+loSbiEGHTuuiRSMIUGy8FaTMBo4XTiRkjEkSBY2hxN6Xe3NTRU2NjcRKRVDgmRhdzih19b8uIUYdJ4xFESkPAwJkoXN4YSulpAwGrS8u4lIwRgSJAu7Q4BeW0tzU5DWM9COiJSHIUGysNmd0OlqqUkEaTmYjkjBGBIkC299EsEGHRyCyNXpiBSKIUGSE0URNocAXS3NTZyag0jZGBIkOcEpQhThpSbhXsKU/RJESsSQIMnZ7K6mpLpCgrfBEikTQ4IkZ3e4agm13gLraW5iTYJIiRgSJDnbzU7p2vokgg06AOyTIFIqhgRJzh0Sei+3wAJceIhIqRgSJLm6mps8fRKsSRApEkOCJHer49r7LbCsSRApE0OCJGf39EnU/Li515hgTYJImRgSJDnbzeam2vok1GoVDHoN724iUiiGBEnOXsfdTQBg0GtQwXESRIrEkCDJ1TWYDnBP8seaBJESMSRIcu67m7yFhEGv4TrXRArFkCDJ1TWYDnB1Xlt5dxORIjEkSHJ1DaYDuKYEkZIxJEhydocAlQrQqFW1vu7quGZNgkiJGBIkOZvdCb1WA5Wq9pAw6lmTIFIqhgRJzu5w1jqQzs0Q5BonIYqijKUiIl8wJEhyNofgtT8CcDU3CU4RDoFLmBIpDUOCJOeqSdR+ZxNwa2oO9ksQKQ9DgiTn6pPw/lEzBrkChGMliJSHIUGSszuEukPCPckfaxJEisOQIMnZ6uu41rtqErzDiUh5GBIkOVt9fRLuNSU4fxOR4mjlOlBOTg5mz56N4uJiREREYOnSpejYsWO1bT755BOsXr0aarUaTqcTkyZNwiOPPCJXEUkidkfdfRKemgRngiVSHNlCYsGCBZg8eTJSU1ORmZmJ+fPnY82aNdW2SUpKwsSJE6FSqWCxWJCSkoLExER0795drmKSBOwOAbo6boF1r07HmWCJlEeW5qbCwkJkZ2cjOTkZAJCcnIzs7GwUFRVV2y40NNQzKtdqtcJut3sdpUvNh83HmgTvbiJSHllCIi8vDzExMdBoXF8GGo0G0dHRyMvLq7Ht9u3bMXbsWDzwwAN4/PHH0a1bNzmKSBKy2+vukwjSaaACx0kQKZFszU2+Gj58OIYPH47c3Fw8/fTTGDx4MDp16uTz+02mUAlL539RUWGBLoLk7IITEeEGr+caHR2OYIMWao36trge3tzO5+7Ga6C8ayBLSJjNZuTn50MQBGg0GgiCgIKCApjNZq/viY2NRa9evfDNN980KCQKCy1wOpvHHEBRUWG4erU00MWQlFMUYXc4Ybc5aj1X9zXQ6zQoKq5o8dfDm9vhs1AfXoPAXAO1WlXnH9eyNDeZTCbExcUhKysLAJCVlYW4uDhERkZW2+7s2bOen4uKirB//3507dpVjiKSROyetSS8NzcBXFOCSKlka25auHAhZs+ejRUrViA8PBxLly4FAEybNg0zZsxAr169sH79euzZswdarRaiKGLKlCm477775CoiScDuWZWu7r9HXEuYsk+CSGlkC4nOnTtjw4YNNZ5ftWqV5+e5c+fKVRySic1e9/rWbka9hjUJIgXiiGuSlKe5qY67mwCuc02kVD6HxLZt2+Bw8C89ahibr81NQRqOkyBSIJ9D4s0338R9992HxYsX49ixY1KWiVoQm+Nmc1MdI66Bm0uYsiZBpDg+h8SmTZuwevVqBAUF4dlnn0VSUhJWrFiBS5cuSVk+aubsdndNop7mpps1CS5hSqQsDeqT6N69O2bNmoWdO3diwYIF+OKLLzBy5Eg8/PDD2LRpE5xOLj9J1dk8fRL11yRE8db2RKQMDb676cKFC9i0aRM2bdoElUqFGTNmwGw2Y926ddi6dSv+8Y9/SFFOaqY8dzfVM06i6kywQfVsS0Ty8Tkk1q1bh8zMTPz8888YPXo0li1bhj59+nheT0pKwsCBAyUpJDVfvvZJGKrMBNtK8lIRka98Doldu3bh97//PYYPHw69Xl/jdaPRiLfeesuvhaPmz+bzLbCcCZZIiXzuk0hMTMTo0aNrBMSHH37o+Zmjo+mXbDc7roN8uLsJ4EywRErjc0gsX7681ufffvttvxWGWh5f+yRuLTzEmgSRktTb3LR3714AgCAI2LdvX7VbFC9duoSQkBDpSkfNns0hQKUCNOq6F4+61XHNmgSRktQbEi+99BIAwGazVZtbSaVSISoqCvPmzZOudNTs2exO6HWaelcYNLAmQaRI9YbE119/DQB48cUXsWzZMskLRC2LzS4gqJ4xEkDVjmvWJIiUxOc+CQYENUblzZpEffRaNdQqFSoqWZMgUpI6axKjR4/Gli1bAABDhgzx2mTwzTff+L1g1DLYHYJPIaFSqWDQa2BlTYJIUeoMiSVLlnh+fv311yUvDLU8Noez3ik53IxBGlhZkyBSlDpDIj4+3vNzYmKi5IWhlsdm960mAbg6r1mTIFIWn/skPvzwQ5w8eRIAcPToUQwdOhTDhg3DkSNHJCscNX+uPgnfPmauJUxZkyBSEp9DYvXq1Wjfvj0A4H/+538wdepUPPnkk/jLX/4iWeGo+bM5BATVMyWHm1HPmgSR0vgcEqWlpQgLC4PFYsHp06eRnp6OSZMmIScnR8ryUTPnam5qQE2CfRJEiuLzBH9msxmHDx/GTz/9hPj4eGg0GlgsFmg0nNaZvLPZnfUuOOTGPgki5fE5JF588UXMmDEDer0eb775JgBgx44d6NWrl2SFo+bP5vC9JmHUa1HOmgSRovgcEkOGDMHu3burPTdq1CiMGjXK74WilsNmd/q8iFCIQYtKmwCH4IRW06BFE4lIIg1ama60tBQ5OTkoKyur9vyAAQP8WihqGRyCE4JT9HmcRLDB9XEsr3QgPLjmmiVEJD+fQ+LTTz/F4sWLERwcDIPB4HlepVJh+/btkhSOmje7e8Ehn2sSOgBAuZUhQaQUPofEG2+8gb///e8YMmSIlOWhFsTXtSTc3DWJMqtdsjIRUcP43PArCAJXnqMGqfQsXerbx6xqTYKIlMHnkJg2bRrefvttOJ1OKctDLYi7JuFrxzVrEkTK43Nz0+rVq3Ht2jW89957iIiIqPYaZ4Gl2rjXt/b1FtgQI2sSRErjc0hwFlhqKHdNwtfBdCGemgRDgkgpfA4JzgJLDWVzNKwmodWoodepUc7mJiLF8LlPwmaz4Y033sDw4cPRr18/AMDu3buxdu1ayQpHzZunT8LHmgTg6rxmTYJIOXwOib/85S84c+YM/vrXv3pWqPuv//ov/Otf/5KscNS82RzuW2B9Hz0dbNCirII1CSKl8Lm5adu2bdi6dSuCg4OhVrt+6WNiYpCfny9Z4ah5u9Vx3YCaRJCWHddECuLzn3g6nQ6CUH2GzqKiohp3OhG5eQbTNaC5KZjNTUSK4nNIjBo1CrNmzcLFixcBAAUFBVi8eDHGjh0rWeGoeatsYMc14LrDqbySzU1ESuHzb+9zzz2HDh06YNy4cSgpKUFSUhKioqLw9NNP+/T+nJwcpKWlISkpCWlpaTh//nyNbZYvX46xY8ciJSUFEydOxLfffuvziZDy2OwCNGpVg2Z0ZU2CSFl87pO4cOEC7rrrLvzhD3+AIAgYMWIEunXr5vOBFixYgMmTJyM1NRWZmZmYP38+1qxZU22b3r1749FHH4XRaMSpU6cwZcoU7N69u9qEgtR82B2+r2/txunCiZSl3t9CURQxZ84cpKSk4N1338WOHTuwYcMGTJgwAXPmzIEoivUepLCwENnZ2UhOTgYAJCcnIzs7G0VFRdW2u//++2E0GgEA3bp1gyiKKC4ubsx5kQLY7ILPA+ncqk4XTkSBV29NYv369Thw4ADWr1+P3r17e54/fvw4nn/+eXz00Uf43e9+V+c+8vLyEBMT41nqVKPRIDo6Gnl5eYiMjKz1PRkZGbjjjjvQtm3bhpwPKUil3enz5H5unC6cSFnqDYnMzEzMmzevWkAArqahuXPn4t133603JBrqwIED+Pvf/44PPvigwe81mUL9WhapRUWFBboIklFpVAg26uo9x6qvm2NcC1rpDfW/r6W53c63NrwGyrsG9YbE2bNnkZCQUOtrCQkJePHFF+s9iNlsRn5+PgRBgEajgSAIKCgogNlsrrHtkSNHMHPmTKxYsQKdOnXy4RSqKyy0wOmsvwlMCaKiwnD1ammgiyGZUosNGhXqPMdfXgPHzWamy1dKEBmsk7yMStHSPwu+4DUIzDVQq1V1/nFdb1uAIAgIDa19B6GhoT5NHW4ymRAXF4esrCwAQFZWFuLi4mo0NR0/fhzPPfcc3nzzTfTo0aPe/ZKy2exCg8ZIAECI8eYkfxx1TaQI9dYkHA4H9u3b57WD+pcD7LxZuHAhZs+ejRUrViA8PBxLly4F4FqnYsaMGejVqxcWLVoEq9WK+fPne963bNmyBt1FRcphcwgINTasXyH4Zp8Eb4MlUoZ6Q8JkMmHu3LleX/fW8fxLnTt3xoYNG2o8v2rVKs/Pn3zyiU/7oubBahNgCm/4LbAAaxJESlFvSHz99ddylINaIKtNgCHI56E4AFzThYcYtLhRbpOoVETUEBytRJKx2hww6BvWJwEA4SF6lFgYEkRKwJAgSYiiCGulAKO+YTUJAGgVomdNgkghGBIkiUq7ABGAsYHNTcDNmkQZQ4JICRgSJImKStddb41tbrrBkCBSBIYEScJqc93CaghqeEi0CtGj0iag0u7b7dVEJB2GBEnCanPXJBrX3ASATU5ECsCQIElU3Jxew9iI5qZWN0OCTU5EgceQIEm4axKN6bhuFRIEgDUJIiVgSJAk3DWJxnZcAwwJIiVgSJAkPH0SjahJhN2c/ZXNTUSBx5AgSbjvbmpMn4RWo0aoUceaBJECMCRIEhWVAjRqVaPXqeaAOiJlYEiQJCpsDhiDtFCpVI16f3iwjlNzECkAQ4IkYa0UGtVp7dYqNIiT/BEpAEOCJOGaAbbhndZu4cGc5I9ICRgSJImKSkejpuRwiwh1Tc3hvpWWiAKDIUGSsNoaN024W0SYa0BdsaXSX0UiokZgSJAkKmwCjE2oSUTeDInrpQwJokBiSJAkGrsqnVsEQ4JIERgSJAnX3U2Nb25qHcqQIFIChgT5ndMpotLetFtg9ToNQgxaXGefBFFAMSTI75oyA2xVEWFBKGZNgiigGBLkd555m5oYEq3DgtjcRBRgDAnyu6ZME15V69AgNjcRBRhDgvyuKUuXVtU6zDU1h0Nw+qNYRNQIDAnyuwqbf2oSEWFBEMHFh4gCiSFBfmetdNckmhYSHFBHFHgMCfK78pt9EqFGXZP2E8GxEkQBx5Agv7NU2AEAIYamhURrd02CnddEAcOQIL8rq7BDq1FBr2vaxyvUqINOq8b1EoYEUaAwJMjvyqx2hBh0jV6Vzk2lUqF1WBCKSq1+KhkRNRRDgvyurMKBkCb2R7iZwg0oYk2CKGAYEuR3rppE08ZIuEWGBchxwxAAABE9SURBVKGwhDUJokBhSJDfWSocTe60dosMN6DYUgnByQF1RIHAkCC/K7PaEWL0U00iPAiiCBSXckAdUSDIFhI5OTlIS0tDUlIS0tLScP78+Rrb7N69GxMnTkTPnj2xdOlSuYpGfubuuPYHU7gBANh5TRQgsoXEggULMHnyZHz55ZeYPHky5s+fX2ObDh064JVXXsFjjz0mV7HIz+wOATa7028d161vhgT7JYgCQ5aQKCwsRHZ2NpKTkwEAycnJyM7ORlFRUbXt7rzzTsTFxUGr9U9TBcmvzOqf0dZunqk5eIcTUUDI8m2cl5eHmJgYaDSuuXw0Gg2io6ORl5eHyMhIvx7LZAr16/6kFhUVFugi+FW5IAIAzNFhPp9bfduFGHUotztb3LX6pZZ+fr7gNVDeNWhxf7IXFlrgdIqBLoZPoqLCcPVqaaCL4VeXcm8AAAS7w6dz8+UatA4NwuX80hZ3rapqiZ+FhuI1CMw1UKtVdf5xLUtzk9lsRn5+PgTBNTuoIAgoKCiA2WyW4/Ako7Kb8zaF+qnjGnDd4VTEPgmigJAlJEwmE+Li4pCVlQUAyMrKQlxcnN+bmijwLFb35H7+q6Sawg0o4kywRAEh291NCxcuxNq1a5GUlIS1a9di0aJFAIBp06bhxIkTAIBDhw5h8ODB+PDDD/HRRx9h8ODB+Pbbb+UqIvlBWYWr49pfdzcBrpqEpcLuWTubiOQjW59E586dsWHDhhrPr1q1yvNzfHw8du3aJVeRSAJlVjvUKlWTFxyqKqZ1MACg4HoF7ohRVqceUUvHEdfkV2UVrtHWTZ0BtqqYSFdIXCkq99s+icg3DAnyK4vVf/M2uUW3NgIA8hkSRLJjSJBfuWsS/hSk08AUHsSaBFEAMCTIr/w5b1NVMZHBuFJU4ff9ElHdGBLkV5YK6UIiv6gcotg8BkoStRQMCfIbpyjihsWGiDC93/fdtnUwyisdKL05WI+I5MGQIL+xVNghOEVEhAb5fd/uO5zYeU0kL4YE+U3xzVHRrSUIibaRrjucrhQyJIjkxJAgv7lR5lo9ToqahKmVARq1inc4EcmMIUF+465JRIT6v09Co1ajXVQIzl+5vWcJJZIbQ4L8ptjiColWEtQkAKBTbCucv1ICJ+9wIpINQ4L8pthiQ6hRB51Wmo9VJ3M4KioF5LFfgkg2DAnym2JLpSRNTW6d24UDAM7dXNiIiKTHkCC/cYWENE1NgOs2WGOQFjm5JZIdg4iqY0iQ3xRbbJKGhFqlQidzGM4yJIhkw5Agv3A6pRttXdVdsa1w6aqFCxARyYQhQX5RWm6DU5RmtHVV3e+IgCgCJ89fl/Q4ROTCkCC/KLZIN5Cuqq4dImAM0uLIT9ckPQ4RuTAkyC+uW9wD6aQNCa1Gjd6dTTj20zU4nRwvQSQ1hgT5xfUSKwCgdZi0IQEAfbq0QWm5HefYgU0kOYYE+cXla2UwBmkkHSfh1qtTJDRqFQ7/eFXyYxHd7hgS5BeXrpahXZtQqFQqyY8VbNChx12R2PvDFTgEp+THI7qdMSSoyURRxOWrFrSPCpHtmEP6xOKGxYbjZwtlOybR7YghQU1WbLGhzOpAu6hQ2Y7Zu7MJrcOC8M3Ry7Idk+h2xJCgJrt81QIAstYkNGo17u9txg/nirjGBJGEGBLUZJeulgGArDUJAHjgnvbQ6zXYsOMnWY9LdDthSFCTXb5qQatQPUKNOlmP2ypEj+QBd+LIj9dw8meOwCaSAkOCmuzS1TK0l7kW4fZgQgeYwg348POTuHFzQB8R+Q9Dgpqk3GrHpasW3BkTFpDj67QaPDWhJ0rKbfjbx8c58R+RnzEkqEmO/nQNglNE365tAlaGu8zheCK1Jy7kl+KdzB8gODl2gshfGBLUJIdOXUVkeBA6mcMDWo4+XdpgyoPdcPxsIT7axo5sIn9hSFCjVVQ68J+cIvTrGi3LSOv6PNC3HUbGd8D2w5dwjLPEEvkFQ4Ia7fCZq3AITiR0jw50UTx+M7Qz2keF4MMtp1BSZgt0cYiaPYYENYpDcCLru/OIbROCTu0C29RUlU6rxvSUHqiodGDFxhOc24moiRgS1Cg7j+Yi/3oFfjO0M9QKaGqqqn10KH4/pjvOXLqBlZuzWaMgagJtoAtAzc+1GxXI3J2Dbh0icHdnU6CLU6t7f9UWhTes2LgrByfOFWJQz7YYfHcs7gjQrbpEzZVsIZGTk4PZs2ejuLgYERERWLp0KTp27FhtG0EQ8PLLL+Pbb7+FSqXC9OnTMWnSJLmKSD4ot9rx9w3HIThFpCd1U0SHtTdjB3TEPV2jkPXdeew6loevD1/GnW3DMKRPLO79VQwMev6NRFQf2X5LFixYgMmTJyM1NRWZmZmYP38+1qxZU22bzZs348KFC9i6dSuKi4sxfvx4DBgwAO3bt5ermFSFKIoorbCj8IYVhTesuHTVgh1HLqPc6sCffns3YtvIN6FfY5lNIZiW0gOTR9qx74d87DyaizVfnMaGHT9hYA8z+nZtgztiwqDVqKBWqaBW3/o/EQEqURQlXyi4sLAQSUlJ2L9/PzQaDQRBQP/+/bF161ZERkZ6tps+fTomTpyIUaNGAQAWL16M2NhYPP744z4f6/r1sgavfVxR6cChUwWw2gXYHU7YHU5UVLpG7up1Gui1ami1aqhVgObml4iq6peICIgAUOVSiu7nbm4gVt0Ori9gozEI5eWVcAgiKm0OVNqdgArQa9XQ6zQI0qmh02qgQvX939r3rf1W2l1lttoEiHCXE54vPY1aBY1GDb1ODb1GDZVaBdEpwgkRTqcIp+jaT3mlA0WlVhSXVuK6pRJ2e/WO367tW+HBxDv81mxjMoWisNDil335QhRFXMi3YO8PV3Ds7DUIQu2flWCDDqbwIESGGxBi0EKlUkEQnHAITjicgFajQpBOA71WA71ODY2mAaFSyyGDg/UoL6+976RBn2aJf50FUYTDIcLmcMLhEOAQnNBo1DDotAgKUkOjrt7NWeOqqH758NYTVa+B+Muzrvthnef9y5dqbil6f1TPe+v7+qz6cr3/MiJgMOpgrbDXuh+H0wm7XYDN4YSIW98Teq0awQYdErpHw6DX1HeUGtRqFVq39v4Hnyw1iby8PMTExECjcZ2ARqNBdHQ08vLyqoVEXl4eYmNjPY/NZjOuXLnSoGPVdbJ1aR8b0aj3UdOZTPLO+9SmTRju6WGW9ZhEzRXvbiIiIq9kCQmz2Yz8/HwIggDA1UFdUFAAs9lcY7vc3FzP47y8PLRt21aOIhIRUS1kCQmTyYS4uDhkZWUBALKyshAXF1etqQkARo0ahQ0bNsDpdKKoqAjbtm1DUlKSHEUkIqJayNJxDQBnz57F7NmzUVJSgvDwcCxduhSdOnXCtGnTMGPGDPTq1QuCIGDx4sXYs2cPAGDatGlIS0uTo3hERFQL2UKCiIiaH3ZcExGRVwwJIiLyiiFBREReMSSIiMgrhoTMMjMzkZKSgl/96ldYu3ZttdcqKirwxz/+ESNHjsSoUaOwY8eOAJVSejk5OUhLS0NSUhLS0tJw/vz5QBdJFkuXLsWwYcPQrVs3nDlzxvP87XQ9rl+/jmnTpiEpKQkpKSl45plnUFRUBAA4evQoxo0bh6SkJDz66KMoLCwMcGml89RTT2HcuHEYP348Jk+ejJMnTwJQ4GdBJFmdPn1a/PHHH8WZM2eK//znP6u99tZbb4kvvfSSKIqimJOTIw4cOFC0WCyBKKbk0tPTxYyMDFEURTEjI0NMT08PcInkcfDgQTE3N1d84IEHxNOnT3uev52ux/Xr18V9+/Z5Hr/22mvinDlzREEQxBEjRogHDx4URVEUly9fLs6ePTtQxZRcSUmJ5+evvvpKHD9+vCiKyvsssCYhs65du6JLly5Qq2te+i1btnjGhXTs2BE9e/bErl275C6i5AoLC5GdnY3k5GQAQHJyMrKzsz1/TbZk8fHxNWYauN2uR0REBPr37+953KdPH+Tm5uI///kPgoKCEB8fDwB46KGH8MUXXwSqmJILC7s1SabFYoFKpVLkZ4ET6itIbm4u2rVr53ncmAkOmwNfJ3y8XdzO18PpdOJf//oXhg0bVmOCz8jISDidTs8aNC3RSy+9hD179kAURbz33nuK/CwwJPxswoQJ1eafquq7777z/OMTEbBkyRIEBwdjypQp+OqrrwJdHNm98sorAICMjAwsW7YM//3f/x3gEtXEkPCzjRs3Nvq9sbGxuHz5sucvhry8vGrV8pai6oSP7vVFapvw8XZxu16PpUuX4ueff8Y777wDtVpdY4LPoqIiqNXqFluLqGr8+PGYP38+2rZtq7jPAvskFGTUqFFYv349AOD8+fM4ceIE7r///gCXyv98nfDxdnE7Xo///d//xX/+8x8sX74cer0eANCzZ09YrVYcOnQIAPDRRx95FiBracrKypCXl+d5/PXXX6NVq1aK/Cxw7iaZZWVlYdmyZSgpKYFOp4PRaMQHH3yALl26oLy8HLNnz8bJkyehVqsxc+ZMjBgxItBFloS3CR9bupdffhlbt27FtWvX0Lp1a0REROCzzz67ra7Hjz/+iOTkZHTs2BEGgwEA0L59eyxfvhyHDx/GggULUFlZiXbt2uH1119HmzZtAlxi/7t27RqeeuopVFRUQK1Wo1WrVpg1axZ69OihuM8CQ4KIiLxicxMREXnFkCAiIq8YEkRE5BVDgoiIvGJIEBGRVwwJIj8SRRFz5sxBQkICfvOb32D//v0YPHhwoItF1GgMCSIfvPLKK0hISEBaWlq1+bQ2b96Ml19+2fP4+++/x549e7Bz5058/PHHgSgqkV8xJIjqcfz4cfzwww/Ys2cP7rnnHqxcuRIAUFpaivfffx9//OMfPdtevnwZ7dq1Q3BwcKCKS+RXDAmiely6dAn9+vWDXq/HgAEDcPHiRQDAG2+8gcceewyhoaEAgA0bNmDevHk4evQo+vbtizfffLPGvs6ePYv09HTEx8dj7Nix2L59OwDg4sWLiI+Ph9PpBADMmzcPAwYM8Lxv5syZWL16tcRnSlQTQ4KoHl26dMGhQ4dgtVqxd+9edOnSBSdOnEBOTg5SUlI8202aNAmLFi1Cnz59cOTIEcyYMaPafux2O5544gkMGjQI3333HebNm4cXXngB586dQ4cOHRAaGors7GwAwMGDBxEcHIyzZ896HicmJsp30kQ3MSSI6tG1a1ckJSXht7/9LfLy8jBt2jS88sormDdvHtasWYOHH34Yzz//PEpKSurcz7Fjx1BeXo7p06d7aiUPPPAAPvvsMwBAQkICDh48iKtXrwIAkpKScODAAVy8eBEWiwXdu3eX/FyJfolThRP5YOrUqZg6dSoAYN26dZ6moX//+9/YuHEjVq1ahZUrV9Y5EVtBQQHatm1bbVXC2NhY5OfnAwASExOxfft2xMTEICEhAf3790dmZqZntbbaVjMkkho/dUQNcO3aNaxfvx5PP/00fvzxR3Tr1g06nQ69evXC6dOn63xvdHQ0rly54ul3AG6tSge4ahLff/89Dhw4gISEBPTr1w+HDx/GwYMHkZCQIOl5EXnDkCBqgFdffRXPPvssjEYj2rdvjxMnTqCsrAwHDhxAhw4d6nxv7969YTAY8N5778Fut2P//v34+uuvMWbMGACudc2DgoKwadMmJCYmIjQ0FCaTCV9++SVDggKGIUHko71796K0tBQjR44E4PrSHzJkCIYOHYr9+/dj+vTpdb5fr9fjnXfewa5du3Dvvfdi0aJFWLZsGTp37uzZJjExEREREZ6VyBITEyGKInr06CHdiRHVgetJEBGRV6xJEBGRVwwJIiLyiiFBREReMSSIiMgrhgQREXnFkCAiIq8YEkRE5BVDgoiIvGJIEBGRV/8PlBhTVg0NnZoAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.set()\n", "sns.kdeplot(data=migration_avg, x='%flow')\n", "plt.title('Average Flow Density Plot')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "colab": { "base_uri": "https://localhost:8080/", "height": 542, "output_embedded_package_id": "1bXOiqkaN2ffSomXNX155mhl3JCyz0iXl" }, "executionInfo": { "elapsed": 16059, "status": "ok", "timestamp": 1669100432041, "user": { "displayName": "Sabaina Haroon", "userId": "03287014315776100364" }, "user_tz": -300 }, "id": "bTOwYLq4IbwM", "outputId": "0c93959b-6f1f-4ff0-da84-5fb4d7d53388" }, "outputs": [], "source": [ "top_df = migration_avg.sort_values(by='%flow').head(10).reset_index(drop=True)\n", "top_df = top_df.append(migration_avg.sort_values(by='%flow').tail(60).reset_index(drop=True))\n", "\n", "#@title Primary Performers Average (28 Years) Migration %Flow\n", "\n", "df = top_df.copy()\n", "df['County Code'] = df['County Code'].astype('str').str.zfill(5)\n", "fig = px.choropleth(df, locations=\"County Code\",\n", " geojson=counties,\n", " color=\"%flow\",\n", " hover_name=\"County\",\n", " scope=\"usa\",\n", " range_color=(-8, 8),\n", " color_continuous_scale='RdBu_r'\n", " )\n", " \n", "fig.update_layout(showlegend=False, title='Average Migration %Flow, Top Performers')\n", "fig.update_traces(marker_line_width=0.25)\n", "fig.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 363 }, "executionInfo": { "elapsed": 702, "status": "ok", "timestamp": 1669103450863, "user": { "displayName": "Sabaina Haroon", "userId": "03287014315776100364" }, "user_tz": -300 }, "id": "Q7E6IcKaGTpt", "outputId": "8d508e94-0edf-4d2d-cc26-8219c8ab8753" }, "outputs": [ { "data": { "text/html": [ "\n", "
\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
County CodeCountyStatenonmigrant_returnsinmigrant_returnsoutmigrant_returns%inflow%outflow%flow
98220201Washington CountyKansas2328.571429100.285714417.4285714.29294817.876108-13.583161
115022087St. Bernard ParishLouisiana15739.6785711163.1428571470.10714311.20797520.463665-9.255690
682016Aleutians West Census AreaAlaska1447.000000290.142857379.21428620.36644326.988162-6.621719
41213053Chattahoochee CountyGeorgia1571.857143801.785714912.21428643.79563849.777746-5.982107
57816065Madison CountyIdaho6225.8928571022.9642861291.35714315.90284219.790877-3.888035
91320061Geary CountyKansas10771.6428573175.6071433575.60714329.59916133.300589-3.701428
712060Bristol Bay BoroughAlaska366.64285750.11111162.39285712.79802316.162332-3.561875
116422115Vernon ParishLouisiana14122.7857142939.8928573400.85714321.02757124.366057-3.338485
114222071Orleans ParishLouisiana120338.67857111136.57142913159.89285710.56251013.813414-3.250904
672013Aleutians East BoroughAlaska568.500000102.714286119.64285718.42189321.393086-2.971193
\n", "
\n", " \n", " \n", " \n", "\n", " \n", "
\n", "
\n", " " ], "text/plain": [ " County Code County State nonmigrant_returns \\\n", "982 20201 Washington County Kansas 2328.571429 \n", "1150 22087 St. Bernard Parish Louisiana 15739.678571 \n", "68 2016 Aleutians West Census Area Alaska 1447.000000 \n", "412 13053 Chattahoochee County Georgia 1571.857143 \n", "578 16065 Madison County Idaho 6225.892857 \n", "913 20061 Geary County Kansas 10771.642857 \n", "71 2060 Bristol Bay Borough Alaska 366.642857 \n", "1164 22115 Vernon Parish Louisiana 14122.785714 \n", "1142 22071 Orleans Parish Louisiana 120338.678571 \n", "67 2013 Aleutians East Borough Alaska 568.500000 \n", "\n", " inmigrant_returns outmigrant_returns %inflow %outflow %flow \n", "982 100.285714 417.428571 4.292948 17.876108 -13.583161 \n", "1150 1163.142857 1470.107143 11.207975 20.463665 -9.255690 \n", "68 290.142857 379.214286 20.366443 26.988162 -6.621719 \n", "412 801.785714 912.214286 43.795638 49.777746 -5.982107 \n", "578 1022.964286 1291.357143 15.902842 19.790877 -3.888035 \n", "913 3175.607143 3575.607143 29.599161 33.300589 -3.701428 \n", "71 50.111111 62.392857 12.798023 16.162332 -3.561875 \n", "1164 2939.892857 3400.857143 21.027571 24.366057 -3.338485 \n", "1142 11136.571429 13159.892857 10.562510 13.813414 -3.250904 \n", "67 102.714286 119.642857 18.421893 21.393086 -2.971193 " ] }, "execution_count": 64, "metadata": {}, "output_type": "execute_result" } ], "source": [ "migration_avg.sort_values(by='%flow').head(10)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "executionInfo": { "elapsed": 4, "status": "ok", "timestamp": 1669100246045, "user": { "displayName": "Sabaina Haroon", "userId": "03287014315776100364" }, "user_tz": -300 }, "id": "7U9BKuWPIG_Q", "outputId": "acc89e60-bc69-4d0b-d3db-e3389e1cd2c2" }, "outputs": [ { "data": { "text/html": [ "\n", "
\n", "
\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
County CodeCountyStatenonmigrant_returnsinmigrant_returnsoutmigrant_returns%inflow%outflow%flow
262748221Hood CountyTexas14916.7142861840.3571431402.57142912.5671319.5804732.986657
149829043Christian CountyMissouri21773.6785712917.1071432335.85714313.82981210.8290563.000756
266648299Llano CountyTexas5252.321429671.571429512.89285712.7467769.7375713.009204
46413157Jackson CountyGeorgia15821.9285711961.6428571481.35714312.3837029.3383253.045377
264548257Kaufman CountyTexas28356.8571433665.6428572751.50000012.7192949.6647943.054500
32812017Citrus CountyFlorida44251.0714294423.5714293114.07142910.1070377.0481583.058880
2648039Elbert CountyColorado6301.392857882.750000727.71428614.86435511.7970673.067287
270648379Rains CountyTexas2820.535714365.821429280.17857113.0847449.9687243.116020
53313297Walton CountyGeorgia20728.8214292277.2500001730.35714311.2849938.1472773.137716
63617093Kendall CountyIllinois29366.8928573564.6428572757.28571412.5331049.3831273.149977
38412129Wakulla CountyFlorida7975.000000885.392857665.60714311.6349308.4606203.174310
257748121Denton CountyTexas176198.10714325844.92857120654.71428615.26617012.0800783.186092
270348373Polk CountyTexas15886.2142862132.4285711687.50000013.72645710.5353073.191150
34512053Hernando CountyFlorida51027.8928575547.8214293964.64285710.9126817.7085483.204133
72018057Hamilton CountyIndiana79554.2500009335.5357147039.25000012.3536529.1337973.219855
252648019Bandera CountyTexas5821.642857715.785714545.03571412.6965689.4668463.229722
40113029Bryan CountyGeorgia8743.2857141512.7500001244.07142917.26157514.0076643.253911
205739041Delaware CountyOhio55703.6551726838.8965525108.93103412.6098829.3480203.261861
37012101Pasco CountyFlorida135702.03571416253.14285711913.60714311.9611668.6968213.264345
221041017Deschutes CountyOregon49280.4642865454.5357143891.85714311.3328338.0510433.281790
2908091Ouray CountyColorado1361.428571201.035714158.07142915.27114811.9890493.282098
49813227Pickens CountyGeorgia8607.571429914.285714654.71428610.8143717.4821083.332263
1094025Yavapai CountyArizona63185.6428576864.6785714940.07142911.3440328.0098153.334217
268648339Montgomery CountyTexas117785.50000014281.82142910524.53571412.4380879.0691063.368981
39313013Barrow CountyGeorgia18109.4285712347.5000001761.28571413.0454779.6425453.402932
41413057Cherokee CountyGeorgia59321.6071437297.0000005474.10714312.8505899.4152733.435316
49313217Newton CountyGeorgia25803.2857143290.6428572500.82142912.8460789.4027563.443322
80819049Dallas CountyIowa19662.4285712817.1428572123.42857114.04836910.6026303.445739
262148209Hays CountyTexas39598.2500006405.3928575075.53571416.60247213.1289413.473530
264648259Kendall CountyTexas10086.6428571319.428571957.57142913.0476639.5721983.475465
52513281Towns CountyGeorgia3292.035714354.392857240.67857110.7577797.2370903.520689
53013291Union CountyGeorgia6112.107143615.178571396.50000010.1087056.4234573.685248
58616081Teton CountyIdaho2445.607143351.392857268.25000014.84341611.1388773.704539
2478007Archuleta CountyColorado3487.857143455.035714346.28571413.91866510.1382243.780441
35312069Lake CountyFlorida91903.10714311177.7142867865.78571412.2280498.4192653.808785
37412109St. Johns CountyFlorida56696.8928577375.0000005189.25000013.2560369.4010823.854954
279749053Washington CountyUtah33116.6428573880.1785712774.92857112.5031598.6402123.862947
55316015Boise CountyIdaho1914.892857290.107143223.92857115.93110212.0088303.922272
38512131Walton CountyFlorida15072.3214292159.7500001567.21428614.17533910.2473113.928028
256248091Comal CountyTexas33433.1071434600.6785713254.42857113.5176929.5866623.931030
255948085Collin CountyTexas208759.60714329824.17857122869.35714315.17986311.2454353.934429
42813085Dawson CountyGeorgia5791.285714839.214286627.14285714.75092410.7149094.036015
175032019Lyon CountyNevada14426.2857142175.1428571646.71428615.66105711.5718474.089210
271548397Rockwall CountyTexas18793.1785712903.9285712174.32142916.20833612.0402684.168068
2918093Park CountyColorado4578.142857800.000000631.07142918.24522114.0454624.199759
46113151Henry CountyGeorgia52024.1785717231.2500005467.96428614.51257410.2625564.250018
286651107Loudoun CountyVirginia86517.17857111562.2142868576.53571414.52972610.1270554.402671
49613223Paulding CountyGeorgia33047.0000004470.3214293251.60714314.1082279.6838544.424373
189337019Brunswick CountyNorth Carolina31236.1428573718.6428572280.82142911.7957617.3129074.482854
239646083Lincoln CountySouth Dakota12611.2500002010.3214291476.92857115.87545811.3879304.487528
2588027Custer CountyColorado1218.178571180.321429129.50000015.43078110.8901614.540621
175232023Nye CountyNevada11552.5357141713.7142861224.00000015.81808910.9954614.822628
276248491Williamson CountyTexas109799.17857116770.25000012001.92857116.28475311.4175374.867216
1074021Pinal CountyArizona66648.82142910547.4285717098.07142915.79165210.4068145.384838
33612035Flagler CountyFlorida27274.9642863570.9285712255.21428613.5784128.1070005.471412
2628035Douglas CountyColorado73528.42857111565.3571438605.60714317.72975712.1612675.568489
44413117Forsyth CountyGeorgia44443.0714296091.7500003978.28571415.0630929.1411975.921895
37912119Sumter CountyFlorida25986.6785713678.6428571874.53571414.3593397.5219896.837351
89720029Cloud CountyKansas3294.642857319.535714247.82142924.6347067.57198617.062720
97320183Smith CountyKansas1523.678571121.17857178.50000036.3911944.98623031.404964
\n", "
\n", " \n", " \n", " \n", "\n", " \n", "
\n", "
\n", " " ], "text/plain": [ " County Code County State nonmigrant_returns \\\n", "2627 48221 Hood County Texas 14916.714286 \n", "1498 29043 Christian County Missouri 21773.678571 \n", "2666 48299 Llano County Texas 5252.321429 \n", "464 13157 Jackson County Georgia 15821.928571 \n", "2645 48257 Kaufman County Texas 28356.857143 \n", "328 12017 Citrus County Florida 44251.071429 \n", "264 8039 Elbert County Colorado 6301.392857 \n", "2706 48379 Rains County Texas 2820.535714 \n", "533 13297 Walton County Georgia 20728.821429 \n", "636 17093 Kendall County Illinois 29366.892857 \n", "384 12129 Wakulla County Florida 7975.000000 \n", "2577 48121 Denton County Texas 176198.107143 \n", "2703 48373 Polk County Texas 15886.214286 \n", "345 12053 Hernando County Florida 51027.892857 \n", "720 18057 Hamilton County Indiana 79554.250000 \n", "2526 48019 Bandera County Texas 5821.642857 \n", "401 13029 Bryan County Georgia 8743.285714 \n", "2057 39041 Delaware County Ohio 55703.655172 \n", "370 12101 Pasco County Florida 135702.035714 \n", "2210 41017 Deschutes County Oregon 49280.464286 \n", "290 8091 Ouray County Colorado 1361.428571 \n", "498 13227 Pickens County Georgia 8607.571429 \n", "109 4025 Yavapai County Arizona 63185.642857 \n", "2686 48339 Montgomery County Texas 117785.500000 \n", "393 13013 Barrow County Georgia 18109.428571 \n", "414 13057 Cherokee County Georgia 59321.607143 \n", "493 13217 Newton County Georgia 25803.285714 \n", "808 19049 Dallas County Iowa 19662.428571 \n", "2621 48209 Hays County Texas 39598.250000 \n", "2646 48259 Kendall County Texas 10086.642857 \n", "525 13281 Towns County Georgia 3292.035714 \n", "530 13291 Union County Georgia 6112.107143 \n", "586 16081 Teton County Idaho 2445.607143 \n", "247 8007 Archuleta County Colorado 3487.857143 \n", "353 12069 Lake County Florida 91903.107143 \n", "374 12109 St. Johns County Florida 56696.892857 \n", "2797 49053 Washington County Utah 33116.642857 \n", "553 16015 Boise County Idaho 1914.892857 \n", "385 12131 Walton County Florida 15072.321429 \n", "2562 48091 Comal County Texas 33433.107143 \n", "2559 48085 Collin County Texas 208759.607143 \n", "428 13085 Dawson County Georgia 5791.285714 \n", "1750 32019 Lyon County Nevada 14426.285714 \n", "2715 48397 Rockwall County Texas 18793.178571 \n", "291 8093 Park County Colorado 4578.142857 \n", "461 13151 Henry County Georgia 52024.178571 \n", "2866 51107 Loudoun County Virginia 86517.178571 \n", "496 13223 Paulding County Georgia 33047.000000 \n", "1893 37019 Brunswick County North Carolina 31236.142857 \n", "2396 46083 Lincoln County South Dakota 12611.250000 \n", "258 8027 Custer County Colorado 1218.178571 \n", "1752 32023 Nye County Nevada 11552.535714 \n", "2762 48491 Williamson County Texas 109799.178571 \n", "107 4021 Pinal County Arizona 66648.821429 \n", "336 12035 Flagler County Florida 27274.964286 \n", "262 8035 Douglas County Colorado 73528.428571 \n", "444 13117 Forsyth County Georgia 44443.071429 \n", "379 12119 Sumter County Florida 25986.678571 \n", "897 20029 Cloud County Kansas 3294.642857 \n", "973 20183 Smith County Kansas 1523.678571 \n", "\n", " inmigrant_returns outmigrant_returns %inflow %outflow %flow \n", "2627 1840.357143 1402.571429 12.567131 9.580473 2.986657 \n", "1498 2917.107143 2335.857143 13.829812 10.829056 3.000756 \n", "2666 671.571429 512.892857 12.746776 9.737571 3.009204 \n", "464 1961.642857 1481.357143 12.383702 9.338325 3.045377 \n", "2645 3665.642857 2751.500000 12.719294 9.664794 3.054500 \n", "328 4423.571429 3114.071429 10.107037 7.048158 3.058880 \n", "264 882.750000 727.714286 14.864355 11.797067 3.067287 \n", "2706 365.821429 280.178571 13.084744 9.968724 3.116020 \n", "533 2277.250000 1730.357143 11.284993 8.147277 3.137716 \n", "636 3564.642857 2757.285714 12.533104 9.383127 3.149977 \n", "384 885.392857 665.607143 11.634930 8.460620 3.174310 \n", "2577 25844.928571 20654.714286 15.266170 12.080078 3.186092 \n", "2703 2132.428571 1687.500000 13.726457 10.535307 3.191150 \n", "345 5547.821429 3964.642857 10.912681 7.708548 3.204133 \n", "720 9335.535714 7039.250000 12.353652 9.133797 3.219855 \n", "2526 715.785714 545.035714 12.696568 9.466846 3.229722 \n", "401 1512.750000 1244.071429 17.261575 14.007664 3.253911 \n", "2057 6838.896552 5108.931034 12.609882 9.348020 3.261861 \n", "370 16253.142857 11913.607143 11.961166 8.696821 3.264345 \n", "2210 5454.535714 3891.857143 11.332833 8.051043 3.281790 \n", "290 201.035714 158.071429 15.271148 11.989049 3.282098 \n", "498 914.285714 654.714286 10.814371 7.482108 3.332263 \n", "109 6864.678571 4940.071429 11.344032 8.009815 3.334217 \n", "2686 14281.821429 10524.535714 12.438087 9.069106 3.368981 \n", "393 2347.500000 1761.285714 13.045477 9.642545 3.402932 \n", "414 7297.000000 5474.107143 12.850589 9.415273 3.435316 \n", "493 3290.642857 2500.821429 12.846078 9.402756 3.443322 \n", "808 2817.142857 2123.428571 14.048369 10.602630 3.445739 \n", "2621 6405.392857 5075.535714 16.602472 13.128941 3.473530 \n", "2646 1319.428571 957.571429 13.047663 9.572198 3.475465 \n", "525 354.392857 240.678571 10.757779 7.237090 3.520689 \n", "530 615.178571 396.500000 10.108705 6.423457 3.685248 \n", "586 351.392857 268.250000 14.843416 11.138877 3.704539 \n", "247 455.035714 346.285714 13.918665 10.138224 3.780441 \n", "353 11177.714286 7865.785714 12.228049 8.419265 3.808785 \n", "374 7375.000000 5189.250000 13.256036 9.401082 3.854954 \n", "2797 3880.178571 2774.928571 12.503159 8.640212 3.862947 \n", "553 290.107143 223.928571 15.931102 12.008830 3.922272 \n", "385 2159.750000 1567.214286 14.175339 10.247311 3.928028 \n", "2562 4600.678571 3254.428571 13.517692 9.586662 3.931030 \n", "2559 29824.178571 22869.357143 15.179863 11.245435 3.934429 \n", "428 839.214286 627.142857 14.750924 10.714909 4.036015 \n", "1750 2175.142857 1646.714286 15.661057 11.571847 4.089210 \n", "2715 2903.928571 2174.321429 16.208336 12.040268 4.168068 \n", "291 800.000000 631.071429 18.245221 14.045462 4.199759 \n", "461 7231.250000 5467.964286 14.512574 10.262556 4.250018 \n", "2866 11562.214286 8576.535714 14.529726 10.127055 4.402671 \n", "496 4470.321429 3251.607143 14.108227 9.683854 4.424373 \n", "1893 3718.642857 2280.821429 11.795761 7.312907 4.482854 \n", "2396 2010.321429 1476.928571 15.875458 11.387930 4.487528 \n", "258 180.321429 129.500000 15.430781 10.890161 4.540621 \n", "1752 1713.714286 1224.000000 15.818089 10.995461 4.822628 \n", "2762 16770.250000 12001.928571 16.284753 11.417537 4.867216 \n", "107 10547.428571 7098.071429 15.791652 10.406814 5.384838 \n", "336 3570.928571 2255.214286 13.578412 8.107000 5.471412 \n", "262 11565.357143 8605.607143 17.729757 12.161267 5.568489 \n", "444 6091.750000 3978.285714 15.063092 9.141197 5.921895 \n", "379 3678.642857 1874.535714 14.359339 7.521989 6.837351 \n", "897 319.535714 247.821429 24.634706 7.571986 17.062720 \n", "973 121.178571 78.500000 36.391194 4.986230 31.404964 " ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "migration_avg.sort_values(by='%flow').tail(60)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "executionInfo": { "elapsed": 3029, "status": "ok", "timestamp": 1669102105266, "user": { "displayName": "Sabaina Haroon", "userId": "03287014315776100364" }, "user_tz": -300 }, "id": "8pQSLHjdH3qF", "outputId": "567dff83-d5bf-4a7a-a2ad-42a1f55f0e77" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABYIAAAH1CAYAAABLBIpyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeZwfR33n/1dVH99rDmlGki/Jty1f2IAtOeY2BmMTjgVnIQckBAxJYMkmYRf47ebakOwuIQESErOBcHnNEmCBAAYMDhDYgPFtMPKBseVLtiVrJM3xvfqq3x/d32sOaSTrmtH7+Xi0uqq6uru+3/mqv92frq6vcc45RERERERERERERGTZsoe6ASIiIiIiIiIiIiJyYCkQLCIiIiIiIiIiIrLMKRAsIiIiIiIiIiIisswpECwiIiIiIiIiIiKyzCkQLCIiIiIiIiIiIrLMKRAsIiIiIiIiIiIisswpECwiIiIicoC9/vWv5/Of//yhboaIiIiIHMEUCBYRERER2Y2/+Iu/YMOGDbz2ta/liSee6JZ/9atf5c///M+7+Q996EOcffbZPOMZz+hOH/3oRw9Fk0VERERE5lAgWERERERkAT/5yU/YtGkTP/jBD3jmM5/JRz7yEQCmp6f52Mc+xu/93u8N1L/88su5/fbbu9Ob3/zmQ9FsEREREZE5FAgWEREREVnAo48+yvnnn08Yhlx00UU88sgjAHzgAx/gTW96E0NDQ3u9zSzLuOqqq7j44ou56KKLeOc738n09DQA73rXu/j4xz8OwNatW1m/fj2f/vSnAXj44YfZuHEjWZbtp1cnIiIiIkcSBYJFRERERBZw6qmncsstt9Bqtbjhhhs49dRTufPOO9m8eTMvf/nL92mbX/ziF/nSl77E1Vdfzb/8y7/QaDT4sz/7MwA2bNjATTfdBMBNN93EunXruPnmm7v5888/H2t1Ci8iIiIie09nkSIiIiIiCzj99NN5yUtewmte8xoef/xx3vzmN/MXf/EX/OEf/iFXX301v/Zrv8Y73vEOpqamALjuuuu44IILutPWrVvnbPOrX/0qb3jDG1i3bh21Wo0/+IM/4Otf/zpJkrBx40ZuvfVWsizj5ptv5sorr+S2224D4Oabb2bjxo0H9fWLiIiIyPKhQLCIiIiIyG684Q1v4Ctf+Qof/OAH+cY3vsEFF1xAlmV87nOf45Of/CSnnHJKd+zgyy67jFtuuaU7HXXUUXO2t23bNo477rhu/rjjjiNJEiYmJjj++OOpVCrcfffd3HrrrVx88cWsWbOGBx54gJtvvpkNGzYctNctIiIiIsuLAsEiIiIiIouwfft2PvvZz/K2t72N++67j/Xr1xMEAU972tO49957F72dNWvWsGXLlm7+sccew/d9xsfHgXx4iG9+85vEccxRRx3Fhg0b+Od//mcmJyc588wz9/vrEhEREZEjgwLBIiIiIiKL8D/+x//g7W9/O5VKhbVr13LnnXdSr9e7Y/ku1ste9jI+9alP8cgjj1Cv1/nABz7A5Zdfju/7AGzcuJFrrrmGCy64AIALL7yQa665hvPPPx/P8w7IaxMRERGR5U+BYBERERGRPbjhhhuYnp7mxS9+MQDnnnsuz3/+83nBC17AjTfeyFve8pZFb+uKK67gFa94Ba973eu45JJLCMOQP/qjP+ou37BhA/V6vTsMxPnnn0+r1eoGhkVERERE9oVxzrlD3QgREREREREREREROXDUI1hERERERERERERkmVMgWERERERERERERGSZUyBYREREREREREREZJlTIFhERERERERERERkmVMgWERERERERERERGSZ8w91Aw4HO3fWyTJ3qJtx0IyPDzExMXOom7FX1OaDQ20+ONTmg2MpthmWZrvV5oNDbT441OaDQ20+ONTmg2cptlttPjjU5oNDbT441ObDn7WGlStrCy5XIBjIMndEBYKBJfl61eaDQ20+ONTmg2MpthmWZrvV5oNDbT441OaDQ20+ONTmg2cptlttPjjU5oNDbT441OalTUNDiIiIiIiIiIiIiCxzCgSLiIiIiIiIiIiILHMKBIuIiIiIiIiIiIgscwoEi4iIiIiIiIiIiCxzCgSLiIiIiIiIiIiILHMKBIuIiIiIiIiIiIgscwoEi4iIiIiIiIiIiCxzCgSLiIiIiIiIiIiILHMKBIuIiIiIiIiIiIgscwoEi4iIiIiIiIiIiCxzCgSLiIiIiIiIiIiILHMKBIuIiIiIiIiIiIgscwoEi4iIiIiIiIiIiCxzCgSLiIiIiIiIiIiILHMKBIuIiIiIiIiIiIgscwoEi4iIiIiIiIiIiCxzCgSLiIiIiCxROx+rc++NT+Ayd6ibIiIiIiKHOf9QN0BERERERPbNpu88xmP37uKY00fZ+OqTKNWCQ90kERERETlMqUewiIiIiMgS1ZhsU1tRYuv9U3zrqk08+eD0oW6SiIiIiBymFAgWEREREVmiGpMRJ567ikveciZeYPnXj9/Dpu9uIdNQESIiIiIyiwLBIiIiIiJLUBKlRM2U4bESK4+t8eLfOZvjzx1n03ce4/ufvJfmdHSomygiIiIihxEFgkVERERElqDGZB7oHVpZBiAoeWy84iQ2vOokJh6t862/38Tj900eyiaKiIiIyGFEgWARERERkSWoFwgudcuMMZz0zFW8+LfPojwU8P+u/hk//uYjZGl2qJopIiIiIocJBYJFRERERJag2T2C+42sqXDJb53FKRtWc++/PcF3P3YP9Z3tg91EERERETmMKBAsIiIiIrIENTuB4BWleZf7geX8V5zIRa89haltLb511SYe3bTjYDZRRERERA4jCgSLiIiIiCxBjamI8lCAF+z+lH7dOWO8+K1nMTxe5of/dD+3XfsQaayhIkRERESONAoEi4iIiIgsQY3JiOpouKi6Q2NlLr7yDE5/9lH8/MZtfPsjdzO9vXWAWygiIiIihxMFgkVERERElqDGrojKIgPBAJ5vefplx/Oc151GYyri+g9v4qE7th/AFoqIiIjI4USBYBERERGRJcY5R3Nq8T2C+x27fgWXvvVsVh5b48YvbOamL24midID0EoREREROZwoECwiIiIissTErZQkyvYpEAxQHQ15/hvWc9YLjuXBO7Zz/YfvYtcTjf3cShERERE5nCgQLCIiIiKyxDQmI4B9DgQDWM9wziXH8fw3rCdupXz7H+7i/pu34ZzbX80UERERkcOIAsEiIiIiIkvM/ggEdxx18giXvu1sVp84zK1feYgbPns/USt5ytsVERERkcOLAsEiIiIiIktMJxC8Nz8WtzvloYDnvv50zr10LVvu3sn1V93Fjkdn9su2RUREROTwoECwiIiIiMgS05iMMNZQHgr22zaNNZzx3GO4+E1n4pzj2x+9h3t/8AQu01ARIiIiIsuBAsEiIiIiIktMczKiMhxgrdnv2151/BCXvvVsjl0/yo+ve4R/+/R9tOvxft+PiIiIiBxcCgSLiIiIiCwxjcmI6or9MyzEfMKKz7N+5VSe8bLj2Xr/FN+6ahNPPjh9wPYnIiIiIgeeAsEiIiIiIktMYzKiOnLgAsEAxhhOu/AoLnnLmXiB5V8/fg+bvruFTENFiIiIiCxJCgSLiIiIiCwhLnM0p6L99kNxe7Ly2Bov/p2zOf7ccTZ95zG+/8l7aU5HB2XfIiIiIrL/KBAsIiIiIrKEtOoJWeqoHqRAMEBQ8th4xUlseNVJTDxa51t/v4kn7ps8aPsXERERkadOgWARERERkSWkOdkGOKiBYMiHijjpmat48W+fRXko4PtX/4wff/MRsjQ7qO0QERERkX2jQLCIiIiIyBLSmMyHZTjYgeCOkTUVLvmtszhlw2ru/bcn+O7H7qG+s31I2iIiIiIii6dAsIiIiIjIEtKYOrSBYAA/sJz/ihO56LWnMLWtxbeu2sSjd+08ZO0RERERkT1TIFhEREREZAlp7IrwfENY9Q91U1h3zhgvfutZDI+X+eFnfs5t1z5EGmuoCBEREZHDkQLBIiIiIiJLSGMyojIaYow51E0BYGiszMVXnsHpzz6Kn9+4jW9/5G6mt7cOdbNEREREZBYFgkVERERElpDmVHRIh4WYj+dbnn7Z8TzndafRmIq4/sObeOiO7Ye6WSIiIiLSR4FgEREREZElpDEZUR0tHepmzOvY9Su49K1ns/LYGjd+YTM3fXEzSZQe6maJiIiICAoEi4iIiIgsGVma0ZqOD7sewf2qoyHPf8N6znrBsTx4x3au//Bd7HqicaibJSIiInLEUyBYRERERGSJaE7HOAeVwzgQDGA9wzmXHMfz37CeuJXy7X+4i/tv3oZz7lA3TUREROSIpUCwiIiIiMgS0ZiMAA7rHsH9jjp5hEvfdjarTxzm1q88xA2fvZ+olRzqZomIiIgckRQIFhERERFZIpqdQPDI0ggEA5SHAp77+tM599K1bLl7F9dfdRdb7t1Jlqp3sIiIiMjB5B/qBoiIiIiIyOIstR7BHcYaznjuMaw+cZgbPnc///yB2/ECy8pjq4yvHWJsbY3xdTUqIyHGmEPdXBEREZFlSYFgEREREZElojEZEZQ9grJ3qJuyT8bXDXHp286m/nibB+/azsSjde770dZu7+DyUJAHhdfWGFs3xNixtSX7WkVEREQONwoEi4iIiIgsEY3JaEkNCzGfsOxz3MaVrDypBkCaZEw+0WDi0To7Hq0z8egMj92zK69sYGR1JQ8Mr60xtnaI0TUVrKdewyIiIiJ7S4FgEREREZElojEZUVliw0LsiedbxtYOMbZ2qFvWbiTs2FJnxyMzTDxaZ8s9u9h82/a8voaUEBEREdknCgSLiIiIiCwRzcmIseNqh7oZB1yp6nPMaaMcc9ooAM456jvbTDxSZ8ejM3OHlBgOGDuub0iJ42oEJQ0pISIiItJPgWARERERkSUgiTPajWTJ/VDc/mCMYWiszNBYmRPOGwf2bkiJ8bVDjGhICRERETnCKRAsIiIiIrIENKcigCMyEDwfDSkhIiIisncUCBYRERERWQIakwoE78m+DCkxvrbG2HF7GFLCZdCaAhQ0PpCCLTfA1/+O8okvo7X+CvD0WRcREdmfFAg+wnzhx49xzgnjrF9ROtRNEREREZG90NiVB4KX24/FHUgLDSmx64kGO/qGlNhy90JDStRY1fghwzf/JUxuJrzkg0SnvuwQvqLlq3TvFxn+zjvACxje/D2qN3+Qxvlvo3XGa8AvH+rmiYiILAsKBB9hfrh5J3/1nft5z0vP4EXrVx/q5oiIiIjIInV7BI8oEPxUeL5lfO0Q44scUsI3ZVaV38TqoR0E//cHpOti3LoLsYGHF1h83+AFFi+wWN/i+Xna65R381ZjFM/HOaq3fojajX9JdNxFhK/7DJObvk/1lr9h+Hv/heotf0PzGb9D86xfg6ByqFsrIiKypCkQfIT5b5ev553X3s1//drdRGnGS8866lA3SUREREQWoTkVUar5eIE91E1ZdvqHlPC33kH1R++j9eDPeNzbwJbRV7Gt/jTu3dEmaT2T7B4P7tmyT/sx1uAFJg8O9wWIu2V9gWM7TyB5vnpzyjtlviVLs/38Tu1naczQ995N5e7P0jr91Uy/8H2srqwkOuGFRMdfTPDoD6je8kGG/u1Pqd76dzSe/hZa5/w6Lhza46ZFRERkLgWCjzBDJZ9PvXEjv/GPN/Kn37iXdpLxqnOPOdTNEhEREZE9aExGc8YHNq2dsGsXsOLQNGoZ8Xb8jNqNf0npgevIymPEz3874+e8nvFiWILVq4d5ctsU5ZveT/nmv6d59LPZ9bz3k3jDpHFGmmTF3OXzTlmnPHZk/fnZ9ZOMeCYeyHfmWeL2/XUFlqDkEZSLaXZ6zjJ/sF7JOyA3H0w0zch1v0X4yPepX/AfaWz8T9D/w33GEK97DpPrnkPw2I1Ub/lbhm7471Rvu4rmeVfSPPc3caXR/d4uERGR5UyB4CNQNfR5/787m3d99S7++/X3EacZr3nGcYe6WSIiIiKyG43JiOHx/HceTH0b1dv/F5VNV0PSYuT4i2k+/c3Ea587GEyTPbJTD1O76f2U7v0CLqhR3/gOmue9ef5ep8bQuvAduBUnMvyd/0z1+iuY/MVPkY2fdEDb6DJHmg4GiLN5Asm9uSNNMkqBz+SOJnE7JW4lxK2UuJ3SnIq66STac69h65k5weEFg8cLBJ29wGKKz6adfozRr/063s6fM/XCv6Z95mt3u//42AuZfMWn8Z+4jeqtf0vtpr+icsc/0Dz3jTTPuxJXXrlf3mcREZHlToHgI1Q58HjfK87mv1x7N+/7zv20k4zXb1h3qJslIiIiIgtoTLY5ap1P7d/+LA8ApxHt019N+ehTCW76GKWv/CrJytNpnvcmWutfDb7GU90dW99K9Za/pXzX/wFjaT7jt2g8822LCiq2119BNryWkW9cycovvILJyz9GcuzGA9ZWYw2+Nfh72TN39ephnnxyerd1ssyRtNM8MFwEh/N0QtROSQbKeumZiXaeLib20GnZWPLAcJBRbj1MaH4De9Rp+JvWENz/EH4RRN66apJGK8bzTTHmct/cW493wYcJT7+PoU0fp3LTxxm6/RqSc15L8xlXQm3NXr0/IiIiRxoFgo9goW/5ny8/kz/+xr387fc3004y3vQLx3fv1IuIiIjI4SGeeIKknbHqvg9TeexLtE9/NY0Lfpd0xcmUVw8zceabKd33VSo//ijD//ouaj/6nzTPfh2tp/0GWe3oQ938w4pp7aR621VU7vwEZAmts36VxgW/u9fvU3zshey84iuMfu03WPHlX2b6kr+mffqrDlCrDxxrDWHFJ6zs+6WhyxxJlBG3kzkB46iVdgPN6faH4MGbaPsjNFY+nTgqET803Q0mu70a0vjXignYAnxzM559ABv4eIGfj7E8EEjOf6zP82132cDcs3MCzwPLAovnzROcXirjMYuIiKBA8BHP9yzveekZhJ7hH374EO0k463POVHBYBEREZHDgK1vpXL7h2nc/l3gryivPZGdl/8r6YqTByt6Jdpn/BLt9VcQPPYjKj/+R6q3/h3V2z9M+9SX0zzvSpI15x2S13DYiOpUf/KPVG7/X5hohvbpr6K+8Q/IRk/c501mK05i1xVfZuS6tzBy/dup79pMY8PvH3HDcxhrukNAsMCwveWfXsPQff+V5OQzmXrZJ+cE3p3Lh7gYGaqwbet0MZ5yb1zlLHG9eTq4zM1M4D16M2y/n5SQ9ugZRCvOIjXlvnqOJEpp1xOyWet30m7fh2IGwC9ZwrJPWPEIKj5h2SOs+AQVrxtsn1NWzofWsN6R9ZkREZFDQ4FgwbOGP75sPaFv+eRNj9BOMn7/BScrGCwiIstOmjl2NWMqIwnOuQP2XeecI85immmTZtqgmTRppU2aSZNGUs/Lk2Yxb9BMm7SSom63XqO7vJU2cTiyBaIUhvlfx+5e3kLrsGA5C75fC60xFA4xGqxkZTjGytIYY6UxVobFvDOFY1Q0hMEcnQBw5af/G7KELUf9B9gG5tlXkq4YXnhFY4iPu4j4uIuwkw9RufMTlO/6J8o/+xLxMRtonHcl0UkvAXsEXQYkLSqbrqF664ewzQnaJ72E+oX/mXT8jP2yeVdeyeTLP533xL75/XiTm5l+4V+BV9ov21/yXEbtR/+T6m1X0T7hhUxd+mEIa3OqGWPwQ4/aaImhKNrLnRwDnIOdfIjqbX9P+Z53wU5Ha/0v0Xjm28hWLG4M5yx1CwaJ02Tusk5wOk0yAuuza6JB1EyImylRK2F6ok3crBO1UtJ49z2Ge0HkvkByxSMsDwaNZweWg7KHtbpuExGRxVkWZ4CbN2/m3e9+N7t27WLFihW8973v5cQTTzzUzVpSrDH8fy86jdCzfOa2LURpxjsvORWrYLCIiCwBUZIx0YjYPhOxvd6bJmbldzYisiKWWvIt49WAlbWAlVXDSCVluJpRKyVUSinlMCYIEgI/IqOdB3L7ArfdQG4R6B0sb5C6dNHtL3sVKl6Fil+h4lWp+BWGg2HWVNZQ8aqUvTLDtSqN5nzBkfmDw243XdsWWuJ2N8jnAttbaB0HpF6bx6e28mj9Ye7c+WMmo13z1q14VVaWVjJWGi+CxkW6L3jcCRyXvfLCbVwGbH0rlduuorLpGsgS2uuvoH7+25m4rwZ3PkR1NFz0trLRE6g/509pbHwH5bs/S+UnH2f0ut8iHV5L82m/SeusX8aVFui+uRxkCeV7Pk/15g/gzTxGtPY51C98J8nRz9z/+/JCpl/4ftLRk6nd+F686S1MXv6PuMrY/t/XUpK0GP7271P++Vdpnv16Zp73ngN6EyIbPYGZi/+SxgW/R/X2qyjf9RnK93yO9mn/jsb5bycdO22361vPYD0Pf/H/zbr2NB5zGmdErYSomRI3E6JWStScm4+b+Xz6ySZRK1+WJrvvqhyUvDw4XJ4bRB7Id3ogF/P2UELUSoC+m4PzXP7Ne0nYV2jmJBZad+4+5ltXHZJERA6cZREI/pM/+RN+9Vd/lVe+8pV8+ctf5o//+I+5+uqrD3WzlhxjDO+4+BRKvsfVN+c9g//w0tPxdIdZ5MiWpdCewUQzDISPukEhNysPc8JM8y3bTZlhd/XdnEXztiuoYesRzgbgBcU8zH+tRpaMZpzOCe5un2kX8yLYW4+YbCVAivEaGL+O8epYv0Gt0qZablEabbJyVYMxr0FqZohdi1baoOFaTLsWDxsHKTBdTAtxBksJ35QJbZmSzYO3Q36NNaXVjIQ1Rks1Kn6Vqlel7HcCvNW+QO9gvuxVsIv4XC7mR58ON7PbnGQJu6Kd7GjvYGd7BzujHexoT7CzvZOd7R3siCZ4uP4QP95xO1Px5LzbrPrVolfxOCtLKwfTpfGBwHFpCfXItPUnigDwp/Nxa9f/Eo0L3t4dtqAx+SjGQHlo7yNULhymed6VNJ/2m4QPXk/lx//I0A/fQ+2mv6Z15mtonvvGuUNNLGUuo/Tza6ne9Ff4ux4gXvN0pl/4fuJ1zzmw+zWGxgVvJx09geFv/z4r/+/LmXzZ1aQrTzmw+z1MmdZORr/+RoLHb2bmov9K8xm/fdCGzMiGj2XmeX9O4/y3U7njI1R+ejWln32J9im/mI+tveqsg9KOfl5gqQQhld106F/IwkHkvrKiF3LcTPcqiLxkFB+dPFhvsF4xZnMxbnM+L8Zz7i8rJs+fW+71rWeL9byB7fWVzSqfU+YZBbAPIuccuPy0v5NO4pQ0yfLDjDEYc2TdVHDO5e9H1jefk3ZkWV8+K9abVTfbzTamRppMz7Qw1mCtwViDsfSlZ5V7C5T31T/S/laH2pIPBE9MTHDXXXfxiU98AoCXvexlvOc972HHjh2MjR3hd+D3gTGG//DcEyn7lo/c8BBxmvGnl63H9/ZP4MRlGSQJLokhSSCOcUmSl8Vxb1mcDNSbHikTzUTgeeB5GM8Da8HzMdYW5bPytqjXXeZhbJEv6uhg02OnHoZdjxFMtfJAmfHyk3Xj4Ywtymx3mZuVxxic8Wata/vK7GDeWsCC9QBzxI2ld0CkMSZpYOI6Jm7m86SBieqYuAHdZY18mp1faFnaBmDVIX55+2J8njJnvCIwHA4EiHsB4xCsj/MCsGExD3BeWMznL+8t20Pdzj4XWt6IMe1m7/+L7fyfsssmiO2cY7qdzAnm9uefrDfZ0ZqkmU5jvHoR3G10A7yVUpMgbGIqDUpr6oyZGWLXmLOvTmw39auMBisYCUcZDVczVluBTYJuoLbqV6l4VUpemSwNiZOAdhTQjDwaLZ+Zlsd0w7KzZdhZj9nRiNnWiEjnub72rWGsGjBWDRmrFfNqyHg3HWBqIbVqQNkLjqinb3zrs6q8mlXl1XusG2cxu6JdeYC4PZEHjts72BHt6KYfmnmQO9q3MRVPzbuNml8b6E08u4dxJ4A8Fo4RHqKg8ZwA8Bm/ROP8t88Zt7YxGVEeDp7aOKLWIzr5MqKTL8N/8k4qP/4Y5U2fpnznp4hOfBHN864kPu5ZS/c72TnCh75D9ca/JNi+iWRsPZOXf4zopEv36jU145QHdzR4YHuDByYaPDBRZ/NEg53NmFW1kDVDIWuGS6wZKnXnRw3nZSsrAe3TXkE6fByjX38jK77wCqYu/2j+vi4RzjnIsmJKIc1wrsinRVnmcFnaVy/Lz/PTFJzDTD7M0L/+IXHjSSbP/0Oi4Fnwkzt2v14enWDm6HHcGU/fL+fpWe0o6s/+IxrPfCvVOz5K+c5PUr7/WtonvYTGBf+RZM25++EdO/CeShA5ibM5geKoCCbXqiEz9fa8j4nM+1TJfPfyeyvMrrbAdufb4JySBdtUKQfMTLe7Q3VknXnqirI8nzQTsqS/PE936qepW/jxmH3UH3juBYstfmBJOz8maIq+1wM9oIuC2ZdEpuipPafuQtsZ7HFt+v6Zu10Gdtbbbr7PMPRot5P879UJMA6kO4FYV5T3p+crm7t8vmBu53O3u+Wd7S2a6b3HppMuXnD3LevOXd9b2kvnnVQ6+bxR3TI3zzyPsOZ1OuliTpZ208YYMuvjPC+//rAeznr59ba1OCzOmHyOobvXbgCXboB3735s8/CTB4qZN2g8mF+o3sLrH3fKStY9U/HBDuN299zgEvDTn/6Ud73rXXzta1/rlr30pS/lfe97H2efffaitjExMUOWLem3YdF++MHreGxixZzy/HDS+UbI34ssg8w5jAG/r9y4Trrz5dk54BVp11tmekf9vnnfPmf1CMx34wbz3f3sjcWvYPq/Qed+EwzOF1jW/yXb/bK1Jn8tRVH+hdOfNr2ybrrvblin3PbSWFPU7ZQXc9sry/O2uLPWl/bs4DJrMS7Cn9xMsOtevJktGNP5Gw9+u5riwV/T3yPT9b4Qe2/5fH9D13kb6P/MdHp89pb19tZL2lllxRd2d+38rn9mLcaz4PsYz8P5Pvgexg9w1mKsjzPewAR+N9DWLesLcjs6ZV5Rr1NWBOUoyowFeoFxR7GN4ks7r9erD4ZqtUSzXse4GJMlmCzCuBibxXm6mGwxJ4uwWRuTRpisXaQ781YxRVgXY8iKdycrTmRcX1mRN8Wb7oXghwdM61wAACAASURBVOCXwA8xfrkvXwK/DEE+rwwP0Wwl+TaLE6g8bWbN6c57f+f8gtK4/hMjios/iovC/jIHxeS68+LEKV2obmdb+QWlyxzlkk87ijGewxoHHlhbvC82yyeTYkyKtSmGDGsTIMGaBEOMJYEsgSQmy1JckuKyBJKMLMtwaYrLUlzqyMj/7pnzcHhkWJwr5nhFuSXDI3N2Vp1OWfEZ6v5vyv+CuM472fvM0TkpLD5v+f8XS4btfmbB9q0zuyz/fOafW5N/vot9Za7YtjPFodsWJ5y2yJv8pByDcwbP8/LhFmz+aUsxJM6QALEzRBk0cTSzlJbLaJIS25TEZCQ2JbUZqZeS2YTMS8i8mNTEYMDhcKZ3THGAbz1KfpmyV6bklSj7Fcp+iYpXoeSXez1v/Uq+zCvje37nkA3GMDxUYnqmTfdAtAfzXg87RyvOqEcJ9Sil3k6pRwmNKKUepcU86abnG9/XApXQpxZ61AKPasmjGnjUQo9q2En7VEOPsRUV2o1o1kFz1hF0MXGT+R7dnV24iO0sZl9nbTyWtksW0ainJs5idrV3DvQw3tGeYGcRNO7vgTwdz+pV7fJzmCF/iLFgjJXVUSwhJb9C2S9T9iqUvDJlr9SX7nz+eumF8gv19rYzj+cB4Lv+T18A+HfJRk+Yt/6/fvwe0tRxyZvPnLPsqfQWN/VtVH56NZVN/xvbnCAZP5PGeVfSPu2V+ffAAbK/e7gHj91I7UfvJXj8JtKRE6hvfEf+Gqw3UM91ohlZRqMV8+BEnQe3z/DQRJ2HJ+o8PDHD1ql2/p3gHIGBdaMhJ6yocOyKMlsnZtg53WTXTIupehuyFD9L8VyG5zJCMsbKHmMlj+O9Xfzi5D8xFO1g8zGvJD7qmYz4hqoHJk1xaZoHQDvpJIE0WaC8Uz9ZoLwzJXkniyJvcaRxMhi8TbNu0JU0mxOYfcq/mLYfjP7DJwjOWty13N4wrZ1UfvJxKj/5OLY9Sfv4i2ls+D2So89/ytteDk9t7G8uyyCOcFEE7QjXSUcRLmpDFOOidl42sGxWvTjOy9ptymWfViuetac9jkkxp6x7HlOcv2fOkmHyucnPpwbKinMs102b4vzNDNYtzqf617W+lweei4s/139hSPfEuhd27F0k5tc8A1Ha3nXQrOht99yxP0LcH9YcWHdgvcH30GEIfEuapn0l/VvsrOHoP2PtD4bODoz2rv17wdHOdcFgvhMw7QVPB/KdY1dRnufzG1CegSROiuNaVvRgzbrXEr10cX3RfZ96f5M58+77PF8Zveu9zvtrio5O1hYBXZPnjcXZ4nzd2u61ozFAHBcdehJIovz6sPP6uu9Dfq1iOmljML6HDXyM72NDHxP4mNDHBiG2FGDCEFvKJ1MuYUslbKWUp8tlbLmEtbYbaO32zO1L23nKV66ssWNipug5TLencNbXy7iX7pXPWzddaBu98ixzuCQlS1JckpGlGS7N8nzqcMXfO0sX2IZzjK0KedbvbJh7TFimrDWMjw8tuFyB4CPMDa/8TSaiNUDnoAX9XwTdg2HnorsINjqT31HJg4i2CK51DnJerweu9cDzByfb6dFW9AIdSBtM92BYbL/T682aIjBXHGQ7J+69W2B9Zb1pdtme63S2nfVtm7zng2MvtjO7rK+5nXzxTdvZLHTSfV/+s+cDZXZgmTOzl89fb+Evt+J9Xya9DA9vnWBsj8NboO7yZ4oTNjPr5M/Qd8ecvpO/brrv5JHeiWIv7bonSXnQsBew7wbuuzcA8hP9bqC/exOgv763/P6PdLsL9N3A656s05fuO8l3kH+G6QsQ9Nebe2HSu6gwg983u6nXvYhZTu/3Ee7o+EHOb367G1zqD8LNn88v0jplDrdX+e42F7E/5/o/9/PL8nsjZJ3JzsrPKnN9ZZ3lFOdPnclYU1zkxWAc1i9jKiNYP8R4PraYvL655wXcmr2KYW8X51VuxfNDfC/A90Os7+fnTp3XxuC5yB7LO8vSFHY+CNvvg+au/IfOxk7GrTw5vzk4u/5823Eu/5sMnuQsvF73wjzr/k3ysrR7kw9X3PRL097nIyt6qKYZJG1caxqSCLA4r5w/pdG/vTTNt9EJNBymnOcVN7V9rO9hihvc+H5f2sN4e1Hued2n5YxXnGN7tjhnL867F1pWnOt3lhmvOPfvLrPFU3pe0dnAwzx+G9z0EaiN4Z7/Tlq1o2nEGY3U0Ygd9cRRjzNm4ox64piJUmbijJnIMR1neDu281tf/xAfe86v88NTNnbPnHofKTfw8eotc7PqFeffs+p1yqo0+GW+ya+7axkz0/zIncP/cq/mZs4qbnL29tddt/uHmtsWY2C4HDBayacV1YAVRXq0GrKiKBvtzsNu3dA/NN95rXvvJdm2Ddduk7XbuHYnAFvkoygva7fJosG8i6K8bL581FknygNcT5XnYUolbBhiwrB4qrDPfP+nF1k27xj38x0i9mEfrjjeuW4gD0xaHJfSdODYJ4XOMaVz3PL9WXOvd3zy/PyY1PdEsPE8TPE5MUGw8BQGmCAs5vNPFHPbty0G6oR928qDrqbTzqfIxTHpzAzZzAzZ9PTc9PQM2cw06XRens5MF2WD6T3e1DMGOzSEHR7CGxoeTA8P4Q0NYfvTw0WdUqn4Px/1jgtx7wbOwLIo7h4jOnWyTnnUO150ls9Z1rkp9BS/u8NTT+GUa699SttYTpZ8IHhiYoKXvOQl3HjjjXieR5qmXHjhhXzrW99a9NAQR1KP4Gx6itG4zs6ZKO8hSoxNWxjXxKQNvKyBSevYaBoTTWOjKR587HF+vuUJ1lVizlqZ4UUzmGgqXx7X97hP51fISiO4cAQXDuNKI2Td9DAuHCUrDRf5UVw4TNaXduEQq9eMLus77N2L1k7vj2xWT5DZPUP2pl6W4pIEb+Je/C234G/9CSZukQYjJOPnEI+fQ1Yex6UZ1XJAoxX3Al/W4Fxxot+5U23zXq3FLcKirsFQ1O/0MrRFELqzLgZnOz0QTW8fBkzn7qkxZDhSHInLcCYjdRmJc6RFOnUpaVEndQnlsk97soGNU2wc5/MkxkYpNoowSYKNYkw7yudxjIkiTDvveWDaUZ5vtSGOoN3CxAmd4Bgw2BO6m+8PhhXz4k5s746sze/Shh7Gt5jQw/qWoOQTRQ6XGbIUXGryO5tJ/mvVpK57x9PFKS7Jh1BxnTvcfcF813k/57tb3Z3bvjy9dTwfghCCAPz+yQc/wPXl/XKJOAVs0YO6e0OnCJ527mzbvt7RA0FW2/0b93pP9/7uvR6qs9Od19mXd+TruL7Ho1wRRMzfPjKXYSwkSYIjBZfiyMAlOJd2J7IE55K8PCt6/2ZJEYTI0ybLe2iZTj5NsEWPLC9Li3yKl2X43XmGl+bzIE276d7d/bQIXqcDd/x7Qe/Znz838FkDR2ogtY7UOhIPEq9IW0fq0U0nniPxTL7cg9RS1C8mOzttBpcX5el89T1DavN7h9aBn1nKVBkyVYZshVFbZoVXYdiWqJmQmvOpElDNLDU8ypkhSDNIi+GCkrjo7ZanXdE7Lus8Mpx0emCnuLTziHLewy0PFGXdR+Xy4E9xkd4/tlkRjxrsJ2T6/k93iooAN73ZwKm9Mb2T0m6PEjdQf876xTYd81frr+8cGOMGbij6WQuA1ATUvRGm7Ch1U8s/85nrdKQnc47Uue6P4g0GvgZf+eyXZE1+g7a4V4tnwBpbxDINnjFY8uN2ni/WsQZr8rwxefpnQ88l9mr8Qv3LeY+TzuMEne+RzpMr/eXdfJ421nTr9pd3JmNtcR/BLrCd4oazYWC/u9tHrVaiPtWk+yh8Z0ozsiwlTSOSNCZNI9IkJs0S0iQmyxLSNCZLk96U5XOXpWRJBO1piJv58csEZNbvPfVQBD+Nc9ji/5TN8o+icXDv0z7I+JPf49hHvzTv8m6vrmLuij+1M2Zu2bz1BsvBDS7rfqfMqjdnv6a7zux9DezTmO52XV/Hg26683eyvXMGZ3t/J0OGieuQtfL6pRGy0kj+FIKDKIN25minEDnynnzFdsLAoxT4lEoB5dCnGgaUw6B4eioPQBhrMcbrBjyt9anUSjSjlMyzOC9vj7N5OvMMzvPyMs+SFcsyz9BMU4KH/4WhXT9l+9Cp3L7ihexILFNxymScMhllRAMHJoc1UAs9hks+Q2WfoZLPcMljqOQxVPIZKuVPDtj+95m+wFbx/742VKJZj/GMhzVeMbd4Rbo/n8/9gXycQiuGdgzNOKMVGZqxoxk7GpGjGTka7Yx6O+M5U9fyK/XPcI85lf+c/ke2tGv5eSTF/715jj9DpeI1lnyGSz6jPvynv3kLtz77ldz0/CsoPirF0at3jOxsqX/Z7A6gpjhWddL99SmWBVmTX9j5FZ438U8MJzt4sPo0vrP6N7i/tqE4Nsxe18zab57OHKTWsHVnk+lWwmQrZqqVMNVKmGkn88YWO6qBx0jZZ7jsM1r2GSkHjJT9YupP5/nRom412Pdh7tLtT7Lz1S/bc3DF9zFBCGGIKYUQlrpBr06asIQpFUHaoJiHYR4oKxXpsJQH0cIShAGJFxBbn8gLiKxPZD3aNqBlPNrGo2l8mng08Wg5QytOaSUZ7SRjqBqSxgmhZyn5lsCzhL6l5FkCz1Dy83zoFVOxLC8zvWW+3e3QTM456kmdmXia6XiK6Xg6TyfTTMfTTEdTffkiXdSZiWfImBvgrXhVxkvjjJdXMV5axXh5nPGwbwpWMhaupGLL+TlO54aX6wyhUpQV142doHJ+Y61vGJeBev1DuxR1O+t2nhBwnWFaemXDIxWmG3FxA8gWHbx6gdrOcIumf5nv9TqB9QVzuzdCixtH+MW6Xm/Z/hi2Ub3ye1yW4VpN3MwMrj6Dq9fzaSZPZ/WifKazrAg21+tkxTo06pinejPH84rjQVAcS4p59zgSDuTzgHsepKcIthOWBvL5sWbW9jrbCXtB+s5+CUPWHH8U23c298+buwTsqUfwkh8jeHx8nDPPPJNrr72WV77ylVx77bWceeaZGh94Ad+fuYWHo5/TasYYbHFxZzGYbtp6FlO12NoYlnHM0adw17EzfPPu7ay1Ff79LxxH2ffxjJdfrKRtbNrGT9rYpNWd/KSJTVp4cRObNIt8Exttw288iBc1sUkdL42w5Bc0RVgrv7iBYiQcw/TKE2mu2UB07EbiNefkY2m6zsmu691xBZzLihKgW17ku+n+dVxfj4FeWXfrffmsf5nrq9W/j2LZyEyFqan8YDP4pTZ4UpmnO2eTZk5Zt8SC6Y4LOF+9vjJjAB9veivBlh8QbP0RXnMCt6ZMct4G4uOeTTJ+Vt8dy3zdkdEy23dOkWYJsYtJsoTEJSRZTNxNt7vlcRaTZDGJS4s6cVGnWMfFpFlabCsmyVISV9Tr23aSJfn2s3j+O/O7E+fvDaVi2g9M5ggTKMX5FCYQxlBKoBTny8qJpRRDOTGUEpPXTSBMEkpxkq9X1A3r+XpB4ghjh59C6ltS35L5Hi7wuxOloPsFaMMQG5awQQkblvFLZbxSBT+sEJSq+KUKYamGmfXlOP+X7awv1CDYqzvWlZEKTz45XQSJiphKJ20MxQgme30C55wjziIaSYNG2qCZNGgkDZppM58nDRpJfTfLGjTTYp40aaQNMpfuecfzMFh8E+KZEI8AS4DBx7gQnI9zPi7zcVlAlnmkqU+aeiRplSTN8y7zi7oBzE5nPl5q8FNDkFhqWIasR814DBkYso6KyShVSsTkj3oRBHlvv74eCDYI8QIf3/fwPUNgbT4MunX4nsWz+aNxngXfM8UyqFqDZxyeZ/AtGOvwjMnr22Ju8vr5ObkrQpuOrAhQZ27WsZO8Z8vxRx1NOuNT8apP+ST+YFmSFwu1mKlbv0zpgW8QPvI9TNIiK40Snfgi2idfRrTu+RBUu/Wdc7STjGac0ow787Sbb/Wlm7PSrUWssycXNwPObXu8ZN0vg6F7gV7yvWJuKRfz+cs9SsHsOgut7w3UKft2n3/fYNXqYdwePhvOOZpxRqMY+qMZ58N/zLRTGnE+PEhniBC//jjP3nYNF01+HUPGd0qXcI3/S9yfrCrqJURpL4yHScFEGBuDjTAmpupSfmdbwBfOOJ17nvXrhEFKGCT4foznxRibUW8nNOOUdjL/3yb0DJXAoxJ4lENLxfeoBDbPF/NK4BF4vYCaaU3ib/8p/o6f4bKYrHYMyepzSEdOGDhnWeibe3ff6eWyT73RIuvc5HUpGRmZy8iKfOoG85nLyJImbvJhTGs7sbFM+uNMMEwrdSQuxZCCcRiT4VvwvKyIHedDA0HW3VdabHuvLDRaRlZMC1kBrFgJTACfz6/Cim3ZBTYbAzuKibiYZvauuQdNCHeugg+vWgu0gPcy+xLUYrFFQNo3Hp613QB1ajymjKVuPHat8CjPfI9k9SSj4QpGgxWsCFcwGubjvHfSK8IVlL3KfvjeOYdW8vtw12dYd9tVvPGh/0S85uk0Nvwe0QmXMCfCvICFvlfSzDHTTorAcMxUO2GqmTDZSphu5wHjyVbCVDNmup2weUejWzeebyD6gmdNETj2GS4FjFY6aZ/RTgC54jNSGgwmD5cDsoceBOc4+k//hNbxp0EQkAUhsfVpW4+28Wnh0XLQjjNaSUorzgOxnXQemO2lW8XxZ066ndKqF+sW5b1X1flg75lnDWXfkjloJymL68flwLbz3xiwTYzXm7BNPL+F7zexflFum+A1caZBZpp0n5Kdh8EjNDVKtkbZDlG2NYa91RxdGaI2PMyQP8xwMMxQMMzwiGH79BPMpDuZjHcw0drOPZN3MbF1O+2sPWfb8waMS530KsZK46wqr6Lq1xb13u2LFauHiZfYedKRaPb5SL3v/KMzXFkjCqlHlnpUpRGPUSelEaTUqwl1P6VRTamP5ucjsw85QZpQTZrU4hbVpE0tbhKmCbHnE1mfuDN5PrH1ennrY8KAUhgUw53lw5xVw2L4s8Dr5vO03xsWLRwcIq1arO/bfT/WG3/Jhz73qyXfIxjg/vvv593vfjdTU1OMjIzw3ve+l5NPPnnR6x9JPYL/9Lb/ws3bbyTNipNpXDdwKrI3fOPj2wDf+AS2l/atT2ADvL7ywAR4tsibAN/6xXpFeWdb1ifoW+7bgMD6xbaCYh9eUZ7vb2zlEDt2zeCcKy4Ws+6FpHOOjHxczsyl3YDW7DrprGWuuDh0fXW72+9epGbFOr3tZ8U2XPF/K3PpvNv3QphszNBKm7SSFs20QStt5fm0RZzt3Z3Xki11x0GteBXKXm9cy0oxdfLdOkX9bp2+vMtCHtyecO8Tbe7aOsOmJ6Z5cibq7dAkGNvOT6yLCRt1y6zXKY+w3uCygbnJ05hFPhLnPIwrY1wJ48pYV8K4ErYo8ygX+QoeIZ6tEEUeUewRJZZ2bIliD+eCbsCW/vQ8Q3X4thM46QVJKuGsfHeyg8v9Tjo/iekEWqphHrBaqBfKkgxQqs0HxUCb4ybhI9+j9MB1hA9ej21P4vwy0brn50HhE1+EK688YG3pBJkbCwWWo5SZu3aR3jFJ89I1tL28ficw0O5OaV96MFDQmfb1DMUzzAkQl/YQYC77lnIl5MldjV4wtwjyNmaN/7yndh3DBG/1v8Jrve9ijeMb3gv5v9XXUC8f270gqvVf7IR+Pk70rIugWuiTTLT50Sd+xrN+5VTWnjX379r/2UjSjIlGzETfjzD2zyfqMRP1NtvrUV8Auif0DOO1MJ+qIauGQo4N2zxr5huc+/jnqLUeJxpaR/Pc3yQ++1dw4T78ehWL+z842Yx5YKLB5ok627Y+yvmPfpIXN79O5gxXpy/mw8kraPgrOGm8ysnjVU4arxXzKseMlPEWedHYCUb3gs6dfNr97k5JWbGyws4d+Y9SDvZOHbwpP/sGf+82viF46NuMfP+PyMrjTL/4b8hWnjq47qyh23o3+h31dsaT9YgnZ9psn4l4sjvFbKu32T4dUY/Svj12NpVHqY3Jb+p18piM0IdaaKiVLNXQUA0NlRAqgaESGsqBoRxAOTCUAij5hpLvCH1D4DtM0iL46SexO+6mue55NE+6tBtg77ynvXnS99723uP+fOpSfvHvb8TUW3zod9ayK9rFZLSLdIGAfWDDIjA8ymiQB4hHw1FWhCsHgsaj4Sij4UpGgxE8u5uAQNqmfM/nqd7693jTjxCvOpvGBb9LdPLl7GnYov39vdI5zk52AsitvmByN53nJ1sJ033p/HOwsFc+ciO/fevn+YNX/zceDUZpJ+m8x4PF6L8pVw68It87zpb9/ByoNDsdeAPrlX1bLOulQ8/i2YSUFpFr0kjqeLWUR5/cymQ0xa72FJPRFFNRX6/dZJpGMk0jnaGZ1vMnwhZg8Aio4lPDo4rnqhhXxWQVyKqQVsnSMmlSIUvLJHGZKMrn7cQnXeQp7Oz3q9Ore7jsUyvFlEoz+OE0xp/G2Ulis4s2k9TTHcykO9kVTRDtIWDcCQ7vr4Dxkj9Pegpc8VRVryNZZxSqTrev/Omr7hAyxdNYnQf38uu+3vqddGf9zHU6oMHwaIVHn5jaTRB38PcmZv8GRTNe3E0Ra+j99kTJ7wZja6XifCTwqJV6Qdmhzm9WlHrnJ3na4+g1Izz82K5uW5pxr12986beOVPnZvlAnSihEXd+Q2Nxf5eSbwcCyPMFizuvZXadZ5y6Gj868L9ZcbhY9mME7w9HUiAY5j9A5gGzwWBXHgRzA0Gx//fAdv779T/jpPEy/+2l6xkuefMExnrBtNkBOOccKWl3P/2BtP76/QHq1KWMDFeY3jlJsPM+/O2bCJ7chNfcjgGyoWNJV59DsuppZOOnY2zY93iYKdL9p+adfN+8eMbM0J83xUNsg/U6wxx0ej/21RrY5/jYEDt21un/L9YLuPeVudnLesvdQD3Xt2SwHnEdf8sPKT30XbytP8bgiMdOJzrhBURrn4crjw5so3/b/dtbuaJKfSruBWv7A7NFEDcP8j71R3f2l+V4kpJkCa20STNt0UqaRToPEuf5Fs1OWZHv1kl6AeXO8mZffm96PjlnMC4gsGVKXkictYhdk4zFbcPg4VPBN2V8yvimjEee9vonU8ZzZSx5MNe6MpYynithyNPWlYretX0nV8UJWOfEazDtCAIfzznKgaVaBGTLRVC2Eti+tEclLIK4/mCgN9jHHoVPxXL8TB+OllWb05jg8ZvynsKbv4k38zjOeMTH/gLtk19CdNJlZMPHHvT2PnbvLv7tmvu45C1nMr5u4ZPR3XHOEaeuGzRuzQoa9weSdxdgbiUZ7Xj+wPPs7Vpj5u21MhCwHch7VINeT5YV8TbW3ftRVt73OSCjdcZraZz/H8hG1u3ze7nlrp384DM/50W/fRZjx829oN+Xz7Nzjpl2OhgkbkRsnxmcT9RjdjXzG5QeKZfaW3ij/w022J8xQ4Xr/Bfx3dF/RzZyAuO1kFWdIHItYFWtxHgtYLjkzzlv6G/zrkbM/RN1Nk802DzR4IGJOg9MNNjRiBlhhrf4X+ON3nWUTMwNI5dz18lvYfUxJ3LyeI2jR0q7fbx7f9pfxw1/6x2MfP2NmKTJ1GX/QLzuefuhdbmZdsKTMxHbpttsnWmTWAtxkg+9UPYZ6QzDUPYZCv2nND6trW9l5GtvwN++iZnn/Tmtc359v7yG5O/+msnrrmP82uuB3iP6k0VQuBMcnox2MRlPdsumussmqScLd50eDobzoHFpBaPBaBEo7vUyHg1HGfWGWb3lRo75yacYnXyQdOXpNC54O+1TXzHnBwg7DqfvlSRzzPQPUdEuAsjNPHh82lc+xRk/+ibX/MnV4FwefA16T2PMl54vuLvQ8ApxFtNI6tSTOs2kQT2p509/LTRPG3Pqd+YL3QTo8IxX9LwdYTgoeuH298YNhhnuLhvpKxt+yj3Kk8wRpxlRkhGl+XdIlGbEiaNdlLfTDK8U8Oi2aabbCZPNwZ7g033B/dYCT3SAw9g2Q7U61XKdUnmGIJzGBjM4b5LETBK5XTTdThIXzVm77FVYNSs4PFZaNaesP2B8oD7PSdrrNZ7P817m+dNIs5el3eW9eoPrpnGTs6MfszG+maPdk91rXEN+7Bh4dqUTqSV/Erlb3sl3htTq2wZA9wfVZ12J9/9onpmnbGAbc/bXyRkifBLnEeMT4RMXU4qH8wKwYXdu/QDrh1gvzJ8S9Ev4foAflvCDED8oUwpLBGGJUqlEGJYpl0qEYSn/oXAbFNsKcJ28DcALyH8kfc//H/bnZ6O/Y8G8weIo7S7rpHt1knkDzfNF9tYMl/jaWy7cL21eChQIXgQFgvfODx7YwTu/sonjV1b5u196GuO1cD+2bn5z2uwc3s6fEz78XcKHvkvw2I2YLML5VaK1zyE64YVEJ1xMNnzcAW/botu8v6Ux4SPfp/SzL1La/E1M0iIdOYHW6a+ivf7VpCsW3yu+43A6gV0stXnxsixjy9QMdzy2nU1bJ7jnyQnu37GL2LXARNRKKceNWY4aMYwNwYpqBjaimTTxQiDxqXpVqn6Vil/MvUqRrw0sq3gVQu/AHxt2Zyl+NmBptlttPjgW1Wbn8J/8CeED11F64Dr8nfcBEK85j+ikl9A++TLSlact+lHnp2JyW5Nvfuin/MK////Zu+/4Nu77buCfuwNw2IukOABSpKYlUVK8tx0P2U4sbydOm+dJs5fTNG1mm/RJneZJ87gjieMsu4nTNE2TOJG87URedRLvqWVbsiRKBDgkcQDEPODunj8OAEmRkkiKxGF83q8XXyBxGF9AEHH84Hvf3xJ0rGtY8PubL3N9bYhjfXC+fDvsO3+J+QqAi3Y/O4hXHjyAq7/4Ntjd1nmreaZyqobhVG5CV7EC68HXsK7vl1g/9gREaPiDcDp+lLsCT+dX4siO1IldxsWg2OGw4vVoDHsPpzCSHj8SxmWT0NXgxEq/gOtyQLDXPgAAIABJREFUD+KMgZ/Dlh9Devk1SJ/x2Tnt38yX+XyexbEofA/+BaTh3Uhc+A1k1rx3Xm73SAv12pCG3oTvgfdBzIwgfvkPoHReMm+3Ld53Nw7+8z8j+NCjED3eOd1GTsshrsQQU2IYVUYQz8Uwmh1FLDceGhvbxkPlvD59t5gVEvyaimBOgU+0weNfAU/DGvjk4PjICqsPjUEv4qMZY+yeIEKcOHpPECeN5RMFsTAqw7isVBrVJ0EUBIgonAoSBAjG9sL15kP8y1+Aun8/VvzuofGjCbT81JBWHf/ZCHOPFuhOvvxMj25zFPYdjS8XXBYXHBYnXBYXnBbX+DbJBafVCafkRLipGWpSKoW78zMeZGHN9P+hktdKof1YcWTIhA7w4vzpsWx+Ulf4WCZXOKTfGIUhWuIQLHEIljGIljgk2xhstgREaxyQxqCKo9CFqf9GNsEOn60BQVsD2rwhuPUm+K2t8EmtcIstgGafEswWw9v0xNA2ryFbPFroiMvm55C7FEcbFbvHW8Q4zsNLOCv/AtYpr8CuZ5AV7Biydxhd2kccWVEcLK4XWrhKp0LxZ6PBa1JEO+E2itcpnl/6WZiwXRAm3Z9QmIkvHHFbk4acQ4DNIkBQFVj1PCSosOg5SHoeop6DqOWgqcVRjMVRiznkAeQEAXmhcAoBucL3OYyfb/wM5AvfF69Xui6EqbcjSsiJIvKCCEUwTnNi8XLG7QuSBJtoh2xxQbZ6IMs+2OQg7LIPdskOufBlfC+XjkqVJRl2sbDNYi99L0vyvP1u03Udmbw2KSxO5VSsaA/Crc+hhb9K1fyMYCq/c5cE8W/XdeOz9+zAx3/9Gr534zos8szTcNaZEgSoweVIB5cj/baPAkoStujThWD4ccg9vwcA5AMroCy+CErHRci1nWF8ClbNdB2WwVdg37UJ8u77IGaGodkDyJx0EzIrr0e++ZSy/HFP1SGRzWPnwBh2DIxhe79xOpQ0ugSskoCTFjXjmhXL0N3qRXerByGf/ag70tUYmhHVJUFAftF65BetR+qsL0Ia2QPbPiMUdj13K1zP3Yq8fwmUJVcg23U58s0nH/dw57ly+Y333MTw1MNZa4k4FoXzpdthf/2XAIDMqpuQOuVT0LzhebuPVEyBaBEgu8zZdbdKIpo9Mpon7e+1ArgCsUQ/7Nt/hvO3/ycu1J9HtnkNIsveh7caNuBQBlNGU/SOpvFKJAYdwOKAExcsbcCSRmOcQ1fQiWYn4Nj5C7he/C7E9CFkOy/F8JlfgNq42pTHvlA0Twij12+G53efhOfJL0Ia3YvkOV9esP+P88na+0d4H/kIdIsTo9f/FvmmtfN6+7bFHQAANRqBeNLc/t2totWYr2pvnNHldV1HKp9CLDd6ROdxDDFlBDFlFGOjuxAf3YPB0R0YHnsTYycwr/JETA2Qi+FyIUguBMqCIJQuWwyehcJl/ubN/RgNWPGZTe9EIptAMp+Eok3tJJ2OMWZscljb7GguhbnjAa5rUsBbOk8yTh0Wx5zCn1reJ7VZRDRajA/MZkPXdSQVdUpYfGTHcfErllYQzyaQUIeR0UdLgbFiiSNpHUO/JY7Xh3uM4HgCLe+CrjRAUxqg5RqhKQ2wqE2w6YvgkNywW8bnzrtsFjS4jNEfxaPyiiM/ih3ljuJ4kNK2wlF7pU50I/yVBEAaeh1yzxbYeh6FZfBVCNChuluhLH83Yp2XQgmdg7bWpop8beS0HA6mBzGYHsBgegAD6f7SaVIdMwJyHchrQE7ToOo6cppxnqYXF8OZfwKMD7osggBLYXUUqyDCogNWCJBgnFp1Izh06Do80CFqKjLZEaT1QxgWBaQFARlBREYUkBZEqHP41WgTbaUxhbIkHxEkj59vl+yQxelD5uJ1imG0XbZjkdMOuySjvcGBocPJeX4GqxeDYJqTMxcH8N0b1uIzm7bjY79+Dd9/1zq0eo+2ekYZ2FxQujZA6dowpVvYsfUuOF/9ETSrC7nweVA6LjK9W3i2xNF9sO/aDHnXJlhiPdAlGdmuy5BdcT2UjgtNCbgnHgqVU43DnnJ5HYqqlb6Kh0XliuflNSiqcb1svni+XjqcatqfC9dRJtzXxJ+Lf5y2eGW0ee3Gqc+OFq8dbV4Zfoe14rsE5kNe1fDW4eR46Ns/hp7hVOnQmI6AA2cu9mNNiwdrWr1Y0eQyZewBEZWXGliKdOBmpE+5GWKiH7aeLZD3PgLHq3fA+fL3obqajU7hrsuRC509r+8nFpsEp8+G5EhtBsFTA+D3GB3AC7B/kRpV4PTaKvL9THO3InXWF5E69dOw79oEx2s/xtLnvogux78gvfZ9SK/539CdU0PxKWGOlof85ia4Xvg3SGMRKG1nIfmOO5FvPa2Mj6a8dJsH8SvvgvuPX4Xz1R9BivUgvuG7kxZ9rDTy67+G58kvQPUvRWzjzxbk9W5tN4JgLRoF5hgEz5YgCHBZXXBZXWhzHuMx6TpsPY/C+eK3gYOvYdjTiv41N+Fw+3lwBz0YHkkcew2JI9abKI7jU6dZ22LiehNTrnfkmhYTR/IdMYpvyvV0FY0je9C/chG6G7sh5W1TunGN06lhrkNyHHvGMplCEAS4C2Nf4JvddfOqdkRobATJXq8dyWQCSW0QCW0Ao/kBDCt9OKz0YTATwVD2ldJt6ACsNj9anCGEXO0IOcMIucIIOcMIu8JwW+cwS17Nwhp5CnLPo7D1PAopEQVgHOGUOuOzyHZuMD4grID3xayaxWAh3DUC3smB71Dm8KSRjyJENNqb0OxoQZevC1pOKKydI01YW2fC+jvTrbcz8XzBCosoHX1tngnr80w8TxKmH3NzPKX3byUJaawXUrwXUnw/xPgBSPFeaLH9UMYiyGpZZIRCUCwKSNmDSLqakHIGkbYHkLL7kLa5kLI6kJEsyGgKsmoGWTWDjJo1Rh/mUxjJjhTOM76yauaoR3AczYrACvzw7J/O6fHWIv4Wpzk7OezD7Teuxac3bcNHf/kafvDudQj7HWaXdZRu4T/Btv8J2A48AXnf7wBM6BZefDFyradXXLewkB6C/Nb9sL+5CdbBl6FDQC50NsZO+RSyS98JXZ7boXJH88COAfxp/xsYSynHDV9zqjZlRdG5sojGKvJWSYRNEmArfV/4sgjwWCXIUuF8i1DaZpVEWGwS9h1MoD+ewSuR2JTFMewWEa0TA2KPcdrqtaPVKyPospVttuB80XUd/fEstvfHsWPACH3fOJgorRTvd1jR3erBZSc1obvVg9UtHnjtUw8lJqL6orlbkel+HzLd74OQGYVt/2OQ9/0O9jfuhmP7z6DZvFA6LzEWm2t/O2A78dXIfY2OmguCxXjEGAHx+q8ALGwAXJSKK3D4Kms/ZQqrA5k170Vm9Z/D2vsUHK/9O1zP/yucL92OzIprkV73oem7enUdtj0PwvX8v8Ay8hZyi9Zj7KJbkQufXxF/4C840YLE+V+H6uuC64+3wL/5RsSv/Ak0V4vZlU2m63A+/69wvfhtKOHzEb/iR/O+L1pkazc+OFCjvQty+ydEEIzmk85LYe19CsEXv4PmZ78N7dX/gOhvR063GHM3LTJ0UTa+l2yF08k/65I8YVvhVHQUthXPO/IyU29ztl3k2uHDGFYew/mn/hnee8EHK7KDksrHIokIOG0IOCe/x4x/WDf9e1tWzaIvFUE0GUEkFUFfMoJIqhevDb2CLdFHJl3Wa/Uh7ApPExK3TwqJhdRhY9+kZwtsB56CkE9BtzigtF+A1OmfQXbxJdBdi+b7KTiuVD45HvKmBjCYGcBAqhj89mNEGZl0eUmQsMjejGZnC05tOB0tzlY0O1rQ4jBOm+yLYCl8oFLVHe42F9SGk6A2nDR1m65DTB+GJ34A/kJALMb3G6Hx4B6IiT4IE0Y16KIVqicMzdsB1dsB1dsJ1d8BzbcYqqcdut0/6ebzWh5ZNYuslkE6ny59nzkiSC5+v7LFvLFSlYhBMJ2QtW1e/OBd6/Cp32zDR3/1Gr5/4zp0NlRYF4PNBaXrMihdl413C+9/HLYDT8Cx9SeTu4UXXwSl42JTFtUBAOTTkPdtgbxrE2wHnoSg5ZEPrkTi7L9Ddvm1C1KXruv44dP78ZNnD2BxgxNemwSbRYTHKk0KY62SOH0YaxEhS8J4eGsphrQTA97i+YXbKZxvlYQTDmGPfPMcy+TRH88UvrLjp7EMdg6MIZaZ/OmhTRLQUgiFjS5i+6Tu4ia3PONVxxfKWMYY8bB9II7t/WPYOTCG4ZQx10u2iFi5yI0b1rcWun09aPMefcQDEREA6HY/sitvQHblDUA+DVvvH2Db+zvIPb+Hfddm6JIMpf0CIxTu3ADdEZzT/Xga7Yi8OXL8C1YBMR6B86Xvwv7GrwEAmdV/htQpN5flCKN0TEFT1xw6qswgCMh1XIhcx4WQRt6CY+tPYH/j13C8/isooXORfttHoCy+GNB1WA88Cdezt8J6aCvygeWIXXEHlCXvqI8AeCJBQHr9h6F6F8P7+5vh/81ViF35H5UzDkNV4Hni87C/+VtkTno3xt7+zQVtoBCdTogNjVCj0QW7jxNWeJ2Ptl8Aa98zsO/8b9j1FPR0ClAVCJkYRFUBNAWCqgBqtnBq/CzMcIbuTOiipbCYlA26RR4PnMXpA+d01Phwzj38KPCHEdgsbVB9XVB9nfPyAWDd0lSIY72wjO6FVPwa2QMptg9wNcAdWI18UzfyTWuRb1xd0Z3/MyFLMro8S9HlWTplmxESRxFN9iJaOo1MGxL7LG60Q0ZHZgydY4fQkcshbPWjZcXVsHe9A0r4HMCysM1midzY+LiGVP+krt7BdD/iuckjMqyiDc2FoPds73mlgLd42mBvnHO3bc0QBOjOJuSdTci3nDp1u5qDmIhCih8ofYnxXkjxA5D3bIWYmbzvqMk+qJ52aL4OqJ52qL7FcHjaC0FxyPhQ7BiqOnBfAAyC6YSd1OzBD29aj5vv3oqPFWYGL2uq0J2Iid3CJ3/s6N3CwZVQOt5enm5hTYU1+gzsuzbBtuchiLkEVFcz0us/jMyK6xf0j4C8puObW3bj3u0DuKa7Bf/6ZydjZLi6Z+d47BZ47G6sWDT9cPSUok4OimPjgfEf9gyVAtYiSRTQ7JHRdmRQ7DNOm90yLPM4YiGnath9KFno9DWC3/0j6dL2zqADZ3cF0d3iQXerB8saXfN6/0RUhyyO0gemCS0Pa//zhcXmfge5Zwt0QUSu9YzCXOErZjX71tvoQPr5Qah5DZKlOn9XifHeQgB8NwChrAEwAGiajvSYAmeldwRPQw0sQ+LCbyB55udh3/kLOLb9FL4H34+8rxPwtsDf+yxUTzvil3wb2RXXAWJ9/+GsdG3A6PWb4H3w/fBvug5jl31/XhdhmwshMwrvIx+FLfo0kmd8DqnT/qosQb0YDldmR/CRBAG50DnIhc6BvcmD2EyDBl0rhcLjp9lCSKwA+SwENTseHKsKoGWPuLwCQT3yvCMD58Jt5FMQsqMQVAVqTwoA4Bx7BnjswUmTBFRnM1RfJ1R/ZykcVv1LjJC4yoPLeaHrEDIjkEb3wDKyB1KsEPaO7oMU6zH+7Qo02QfVvwS5tjMhqXHIPVvgeMM4kkSHADWwFPnGQjDc1I1845opXY/VygiJl6DLM7ULM6vEcajnYQxGHkPf0FZE1H4csFrxsuzEwwHf+ACF9NPw7t6BUF+41EUcdrajzWWMm/BYZ3ZEgq7riOdiEwLeqUFvMj/571+7ZEezowXNjlac5F+NFkfLpKA3IAfnbXGzuiVZofk6ofk6Md3HYoIyVgiG908YPdELaXgXbD2PGb8fC3QI0NwtUL0dEzqK26F6F0PztkNzlr+LvNIxCKZ5sazRhR+9ez0++Zut+PivX8PtN67FSc1V0LkypVt4dykUXuhuYenwTmPRt133QEoOQLO6kV16JbIrr0eu7awF/2Mok1Pxdw+8jj/sHcYHz+rAx89ZXBeBotMmYWmjC0sbp/+wIpNTMRDPon8sMykk7o9n8dz+ERxOKJg4FUMUgCb3eFDc6rOj1SMbp15jFIXtKOGHruuIxjLY0T+G7YURD28eHINSmLsRdFrR3erFO1c3Y02rB2taPMbsLyKihSJaSqFG8rxbYDm8vRAKPwL3H/8B7j/+A3KN3UYovOQKqMGVxwyFfI0O6Lqx2JmnwcS1BOZgPAD+NQARmdV/XgiAy3vUUGYsB11DVQbBRbo9gPQpNyO9/qOQ9z4Mx2v/DsT7MHbB15FZ/ecVN57LTPmmbozeeD+8D34A3oc+gMT5X0Nm7ftNqUWM98L3wPuM2cWXfsc4gqBMpFA7cs89U7b7KztBBCx26Bbj9+I8TVybkeQd3wek/0T8L1+GPWjB8J4dkGL7YBndBzHWA0tsH+SexyGmD026nupsPiIg7hrvJK61kDifgRTbB2l0LywjeycEvnsgZmOli+mitRSWK52XQPUvQd6/FGpgKXR7sPT+aG/yYOhgHGKyH5ZD22E5tA2WQztg7X8O9t33lG5P9XYUQuG1yDV1I9/UDd3ZVPaHP9+MkQ+PQ+7ZAmvvUwjnktAtdijhC6B0XQpl8SXQXM3Iqln0p/oQTfUimjTGTkRTEWwdfhWP9f1+0pxdr9U7adRE2NkOf8KFXYN7pwS9GTUzqR6XxYXmQqi7Lvi2KUGvz+bn0ZUm020eqI2rjzJSSoOYOggxdgDS2AFIsQOQxnohxg7AGvkj5MQAhAmvFV2SgWWXAJfeUcZHUNmYKNC86Wxw4o6b1uMTv96KT9y9FbddvxZr2xZmdtiCEASowRVIB1cgffLHICgJWCN/Ki06N6lbePFFUDoumnW3sJjog7zrHth3bYJl6A3oogVKx0VInvtVZLsuXfDDXopG0zn8zeYd2N4fxxcuWYZ3vc2kURgVyG6V0NngPOqIEyWvYXAsO+34iVciMfzujYPQjtibb3TZSjOJW312+D12vLh3CDsGxjCaHh/xsKrZjXe9LYQ1rUa3b4tH5k4IEZlHEAqdSmuROvPzkEb3GuMj9j1izAp9/l+gehcju+QKZJe8A/mWU6bMqvQ2Gu9ryZFs9QTBIz1wP/HNQgewiMya9xoBsNuc98pUzOh6qeYguESyIrv8amSXX42mJg8yPExzWpq7FaPX/RbeLX8Jz1NfgTS6F8lzv1rWjmnLwdfge+D9gJpF7KqfIxc+t2z3DQBSKITs0GHo6TQERwWsQVJD1GgUYksrBIsFkD1Qm9ZAbVoD5YjLCUoCUqyn1O0qxfZBiu2D3PPY1JDY1TxtQKz6ugBrhf776RrERD+k0T2FkHdvaayDOBaZFCSprmao/qXILrva6JD2L0HevwSatx2Y6eJ5ggDN3QbF3WY0IRXPTh2G5fD2QkC8HdZD2yDveWjSfRvjJLpL78mau7WyR+joOqThN2DrMeb9WgZehgAdqqsF2RXXQencMO3IB1mS0enpQqena8pNKmoWfak+RFORSSMnto28Nm1IvMjRgnZXB05rPGM86HW2osXROrfF66hyCCI0Vws0VwvyOGPqdjULaSwKMbbfWMwuth/ORuYdEzEIpnkV9jtw53vW4xN3b8WnfrMN376+GyeHZ7l0aYXQbW4oSy6HsuTyqd3Cr/0Yzld+OKNuYSEbh7znIci7NsEafQYCdOSaT8HYBV9HdtnVc567OFcD8Qz+8rfb0BfL4JtXr8bFyxvLev/VzmYR0R5woD0w/U5tXtVwMKFMHT8xlsWOgTE8vvswVF1HV9CJ85cE0d3qwZpWL5Y2OOuiI5uIqpfqX4L0KZ9A+pRPQEwOwrZvC+R9D48fQeNoQrbrMmSXXGGERpKtFAQnhk9wwTgtP+Ew6PHDpYuHTwta4VDofHb88OqJlytcb+Lh1NNdTsingcFXYK+AALgoFTPiGYe3BoJgmjmbC/F33AnX01+H87U7IcX2Y+yy70G3TT/6al7vet8WeH//SWiOBsSu/RXU4IoFv88jSaF2AIDaF4Vl6bKy338t06K9kELHH/Gj29yFmbbdU7YJytjUkHh0H+SeRyGmD0+6rOpqKYTDhW7i4vfezrKExEI2VpjVuxfSyF5YRo3QV4rtg5Af7xTVrC6o/qXItZwC9aR3GYFvYCnyviULOjtZdzYi1/F25DrePqlmy+EdsBzaUege3g7b/sdLi2tp9sCEkRJG97DmWzzrhQPnlZqFNfos5J4tsPU8BmnMGO2SW7QeqTP+Bkrnpcg3ds85wLbNICT2BxywZTxwWip0TCWVhySXPrApjp1wNnkAfvhcwiCY5l2L1447blqPT969FZ/+7Tb867VrcMbigNllnZg5dAtjSIPnhf+C3LMFgppF3teJ1Ol/jcyK66D5p76BlcNbh5L49KZtSOdU3HbDWpzaXhtzqCqJRRLR5rOjzTd955uq6fAHXRgbTZW5MiKi+aO5mpHp/l/IdP8vCNm4sQjr3kdg37UZjp3/Bc3mgbL4YsitqyCJp0HZ9jjc6a1HCW6nCXiPDG51dV7q1kVrYcEkedLppMWUTv8Ihk/6gOkBcFExCHb6GQTXHVFC8ryvQvV3wf3U38O/6XrENv50QV+b9q13wf3HryLftBaxd94F3WXObEUxZMzgVqMRBsHzSNd1qNEI5DVrT+x2bJ5Sd+qRhGy8EA6PB8RSrAfyvt9DTA9Nuqzqbh0PiH1dE0ZPLJ7dkZKqYiw4VRjfMKm7d0IwrQuSMTvUvxRK+PxC2GsERpqzuWK6bHXZVxrTVJJLwTL0+oTREtvhePXO0sKDmtWNfNOaSQGxGlg6847lORDSQ+MjHw78D8TSyIfzkTr1U1A6L4Hmalmw+y8qhsRNAS4IRjQTDIJpQTS5ZfzopvW4+e5t+OvN23Hr1Wtw7pLydr4upCndwsO7SqFwsVsYAGz2IDKr/wyZFdcj33yyqTsXL0dG8dl7dsBhlXDnTW+r3AX9apwkCrBbJXAXhYhqhS57kV1xLbIrrsVYPgNb5E+w7X0Ycs8WCLvvhUe8HanBIch4YEL4WghiLYUg1uqDJtlLq9pPuVzp1FY4T57+cpYJlxdt0C2TLzeTbqmmJg+0CvpDMh1TYJFF2Ozcba9Xme73QfW0w/u7T8B/91WIX3kX8ovWze+d6Bpcf/pHOF+7E9nOyxC/7HZT574WO1bVaMS0GmqRHotBTyRm1BE85/uQvcgvWjfta3Q8JN43qZtY3vsIxMzwpMsaIXHX5JET3g4gkYW9Z0cp8JVG90CK9076wFBzNCLvX4ps56VQCzN7Vf8S4/rVOpPc6kS+5VTkW04dP0/NwjK8qzRWwnJoGxw7fl7qdNYlGfnG1ePhcNNa5IMrjPfDudB1SMNvwtbzKOSeR2EZeKkw8qEZ2eXXQunaACV8btnGHRLR3HCPkhZM0GnDD969Dp/+7TZ87t4d+MbGVbioFscQCALUhpVIN6xE+uSPG93C0afhC3gx5DkVkKxmV4jHdx/G3z/4Otp8dtx2w1q0eqtkTiMREVUXix1K5yVQOi9BQtfR1OiG/VuvYCS5HEMfutns6qpSKqbAybEQdS+3+CKM3rAZvgfeD//mGxDfcLvRkDAvN56G99FPQ977MFJrP4Dkef9Q1nnE0xE9XgheLzQGwfNKjRqH6y9kEHwsxw6JY9OPm9j78JSQ2ANAt9ih+rqQb+xGdvk1RlDsNwJfXa7O0YSzJslTO7O1PKSRPRPmDm+DvGszHNt/BsA4MiYfXDEeDDetRb5h1dE/+FEVWPueNcZB7X8MUvwAACDXtA6p0/8aSteGExr5QETlxyCYFpTfYcX3blyHv9q0HX97/0587Z0n4bKTzDnErFx0m9tYAKBC5tD85tU+3PrYW+hu9eDfruuG32F+ME1ERHVAEABRhDsoY6g3YXY1VSsVU2pjoTg6YWrDKozceD98D30A3oc/jOS5/wfp9R8+oQBGSB2G76EPwDL4KhLn/YNxexVCCrWzI3ieqRHj+RRNCoKPRZd9yC9aj/yi9VO2CZlRIxyOH4C3uQ1DQmthwTSurzGFaIHasBJqw0pkV95gnKdrEGP7YTm8A9bCWAl53xY4Xv+VsVkQofqXjofDjWuA6Ai82+4vjHxIQJdkKO3nI3XKJ6EsvsR4/omoKjEIpgXnsVvw3Ru78debd+DvH3oDiqph45qFnxVU73Rdx4+e3o8fP3sA5y0J4p82roLdam53BxER1R9XQEYuo0JJ52FzcNdztlIxBf5W8w7Rp8qiuxZh9NrfwPvYX8H9p1sgje5F4oJ/nNMcUGlkD3wPvA9icgDxd9wBZck7FqDiuZPCYeS2bzW7jJqi9UUAQYDUWhkz0GdKt/uRt78N+ea3ARU2vqcqCCI0fxcUfxeUZRuN83QdYqK/0DlshMPW6DOw79pcuprF2Yzs8quhdG6AEj6vLIv7EdHC4944lYXLZsFt13fjc/fuwC2P7IKS13D9+uraAakmeU3HNx/djXu3DeDq7mb87YYVsIg8XIeIiMrPHTBmESaGswiGuOs5G2peQzaZh9M3x3mOVJusDsQv/yFcz34Tzpe/Dyl+APHLfwBd9s78Jvqeg/ehDwKiBaPX3o18yykLWPDciG1haI9tgZ7LQbDyiLb5oEYiEBc1Q5D5O6XuCQI0TxsUT5txNGvx7NRhWA7vgL81hGHLEnZdE9Ug/q+msrFbJfzrtd1Gd+qjb+G/X46aXVJNyuRUfPG+nbh32wA+eFYHvnIZQ2AiIjKPK2gEDsmRrMmVVJ90XAEAjoagqQQRybP/DmMX3Qpr9E/wb7oOYrx3RleVd90D371/Bs3RiJEb7qvIEBgwOoKhadD6+8wupWao0V7T5gNTddCdjch1XAi0ncwQmKhG8X82lZVsEXHr1atx0fJG/NsTe/DT5w6YXVJNiaVzuPk32/CHPUP4/MXL8IlzOyFwcD8REZnIFWAQPFepGINgOrbM6j9HbOPPISb6EfjNVbBTNhhoAAAgAElEQVQMvHz0C+s6HC/dDu+WTyHXcjJGb7gHmm9x+YqdJanNCCzVPjaPzBc1EoEUbje7DCIiMhGDYCo7qyTiGxtX4fKTmvC9P/bgjqd7oOu62WVVvYF4Bh/55Wt4fXAM/3TVKrz7ZI7eICIi81llCbLTggSD4FlLjTIIpuPLtZ+H0RvuhW51wn/Pu2B764GpF1JzcD/5Bbif/SYyy69B7OpfQLcHyl/sLEjhQhAcmVmnMx2blkhAj41CbAuZXQoREZmIQTCZwiIKuOUdJ+GqNc2485kDuP0P+xgGn4C3Difxof9+FQcTWXz3hrW4ZEWT2SURERGVuIIyksMMgmer2BHs8HI+Kh2bGlyOkRvvR75pLXy/+zgcL38PKOxbC8oYfA+9H46d/43kqZ/G2IbvAlLlz4gVAkEIDic7gueJFo0AADuCiYjqHFfsINNIooCvXL4CNouIn70QQTav4bMXLeUog1l6JRLDZ+/ZAdki4s73rMfyJrfZJREREU3iCsgYiSbNLqPqpOIKZKcFFptkdilUBXRHA0av+SU8j38W7mf+CdLoPuCyv4V/03sgDe/C2EW3IrP6z80uc8YEQYAYCrEjeJ6oUeN55IxgIqL6xiCYTCUKAr54yTLIFhG/eCkKRdXwpUuXQ2QYPCNP7j6MLz/4Olq9dnz3xrVo9drNLomIiGgKd0BGZMcINE2HyAVMZywdU+DgWAiaDYsdYxtuh+rrhOvF7wBv3A3R4kBs438g1/F2s6ubNSnUDnXfHrPLqAlqpNARzCCYiKiuMQgm0wmCgM9cuASyRcRdz/VCyWv4yuUrYeEfisf029f6cOtjb2F1iwffurYbficPGyUiosrkCsrQNR3puAKXv/IPSa8UqZhSWmyPaMYEAakzPw/V3wXvm7/E6Dlfg9q42uyq5kQKhaA8/QfoqgpBYmf8iVCjEYgNjRAcDrNLISIiEzEIpoogCAI+eV4XZIuIH/5pPxRVx9fesRIWiWOsj6TrOu54ej/+/dkDOG9JEN/YuAoOK3eMiYiochXDzORwlkHwLKRiCpo6PWaXQVUqu/JG4LwPQD00ZnYpcyaF2oFcDtqhg5BaWs0up6qp0V6IYXYDExHVOwbBVFE+dNZi2CQRtz21DzlVw/+9chVsFobBRXlNx62P7cbmrQO4ak0z/m7DcoblRERU8dyFIDgxksUik2upFrmsilxGhcPL0RBUv8RQCIDRzcog+MRokQisZ5xldhlERGQyJkhUcf736e34/MVL8eRbQ/j8fTuQyalml1QRMjkVX7pvJzZvHcAHz2zH31++giEwERFVBYfXBkEUkBzOml1K1UjFFACAy88gmOqXFG4HAGjRiMmVVDc9nYY2dBgSO4KJiOoeUySqSO8+OYQvb1iOZ/aN4K/v2YGUkje7JFPF0jnc/JtteGrPED5/8VJ84rwuCFxQj4iIqoQoCXD5bUiMMAieqXQhCOZicVTPxKZFgM0GNdJrdilVTe2LAiiM2iAiorrG0RBUsa5d1wqbRcQtj7yJi//lf7Bx9SJcs7YFLV672aWV1UA8g09v2o7IaBrf2LgKl65sMrskIiKiWXMFZCQZBM9YsSPYySCY6pggipBa20pBJs2NGjWCdHYEExERg2CqaO9c3YxFbhm/2tqPHz97AD957gDO6Qri2rWtOHdJEBaxtrti9xxO4tO/3YakouK269fitA6/2SURERHNiSsoI7pzxOwyqkYqpgAC4PBYzS6FyFRiKMyO4BOkRozRGmIbg2AionrHIJgq3mkdfrzj1HZs3XMI924bwH3bB/C5e3egyW3D1d0tuGZtC1prsEv41UgMf3PPDsgWEXfctB4rFrnNLomIiGjOXH4Z2WQeuawKqyyZXU7FS8UUONxWiFwPgOqcFAoj98pL0HWdo9HmSItGIPh8ED0es0shIiKTMQimqtHqtePj53biw2cvxp/2DmHz1gH85NkD+MmzB3B2VwDXr2vFuUsaaqJL+Mndh/GVh95As0fGd29YizZf7QXdRERUX9xBGQCQHMnC3+I0uZrKl4opcHKhOCJIoTCQTkMfHoLQ0Gh2OVVJjUY4H5iIiAAwCKYqZBEFXLisERcua0R/PIP7tg3g3u0D+Ny9O9HktuGq7hZcW8Vdwpu29uP/Pbobq5o9+PZ13fA7eUgoERFVP1egEAQPMwieiXRMga/FYXYZRKaTwkaAqUajEBkEz4kajcC6dr3ZZRARUQXgsWZU1Vq9dnzs3E7c95Ez8S/XrMHKRW7c9ewBXHPn8/irTdvw5O7DyKua2WXOiK7ruPPp/finLbtxVmcAP3j3OobARERUM4odwQkuGHdcuq4jFVe4UBwRAKktBGB8wTOaHV1RoA0OQORCcUREBHYEU40wuoQbcOGyBgzEM7hv+wDu3TaAz9+3E40uG67ubsY1a1srdsSCqun4f4/txuatA9i4phlf3rAcFs4EJCKiGmJzWGC1S0gyCD4uJZWHmtMYBBMBEFtaAUmCGo2YXUpVUvv7AF3naAgiIgLAIJhqUIvXjo+e04kPnrUYT+8bxuat/fjp872467lenNlpzBI+f0mwYoLWTE7F3z/0Bp58awjvP6MdnzyvkwthEBFRTXIHZQbBM5CKKQDAIJgIgGC1QlzUDI1B8JxoEaOTWmJHMBERgUEw1TCLKOCCpQ24YKnRJXz/9kHcs60fX7hvJxpKXcItCPnMm78XS+fw2Xt2YGtfHJ+7aCluOiVkWi1EREQLzeWXETuYNruMiscgmGgyKdzOjuA5Kj5vUhuDYCIiYhBMdaLFa8dHzlmMD5zVgWcKXcL/8XwvfvpcL85cHMB161txQZm7hAfiGXx603ZERtP4vxtXYcPKprLdNxERkRlcQRl9u0ahazoEkUe/HE0qbgTBDp9sciVElUFqCyH7xKNml1GV1GgEgssFwe83uxQiIqoADIKprlhEAecvbcD5SxswOJYtzRL+4n07EXRacXV3C65Z24Kwf2G7hPcOJfGXv9mGpKLituvX4rQO7pgREVHtcwVkaHkd6UQOTi+7XY8mHVMgSgLsLu6qEwGAGG6HHo9Di8cgen1ml1NV1GgEYqido+eIiAgAg2CqY80eGR85ezE+eGYHnukZxuatA/jZC7346fO9OHOxH9eta8WFSxvmvUv4tWgMf3PPDlglET+6aT1WLnLP6+0TERFVKnfQ6HBNDmcZBB9DalSBw2tj1zRRgRQyxhqo0SiD4FlSoxFYVqw0uwwiIqoQDIKp7kmigPOWNOC8JUaX8P3bB3DPtgF86f7XEXRacVV3C66dpy7h/3nrML784Bto9si47YZuU+cTExERlZsrUAiCR7Jo6vSYXE3lSsUVzgcmmqAYBGvRCLBqtcnVVA89n4fW3wfpokvMLoWIiCoEg2CiCZo9Mj589mJ84MwOPNszgs1b+/HzF3rxH8/34oyOQpfwsgZY59AlvHlrP7756G6c1OzBt69bg4CTf+AREVF9cfpsEAQgMZI1u5SKloopaFrMoJyoSGozFlRWo70mV1JdtMEBQFVLQToRERGDYKJpSKKAc5cEce6SIA6OZXH/jgHcs3UAf/uA0SW8cY3RJdweOH5Hr67r+PdnD+COp/fjnK4AvnnVajisUhkeBRERUWWRLCIcXhuSwwyCj0bTdKTjOTjYEUxUItjtEBuboEajZpdSVdRoBAAYBBMRUQmDYKLjWOSR8aGzFuP9Z3Tg2f0juGdrP/7rxV787IVenF7oEn77UbqEVU3HPz/+Fn77Wj+uXNOMr2xYPu8zh4mIiKqJKygjyY7go8omctA1naMhiI4ghsLsCJ6lYhAshttNroSIiCoFg2CiGZJEAed2BXFuVxCHElncv30Q92zrx9898DoCDis2rmnGteta0VHoEs7kVHzp/p148q0h/MUZ7bj5vE6u1ktERHXPHZDRvztmdhkVKxVTAIBBMNERpHAYuWefMbuMqqJGegFZhtjQaHYpRERUIRgEE81Bk1vGB8/qwF+c0Y7n9huzhH/xUgT/+WIEp3X4cXV3Mx7YeQgv9AzjsxctxXtOCZldMhERUUVwBWRkxnLIKyosNo5KOlIpCPYyCCaaSGoLIzt0GHo6DcHBBZdnQotGIIXa2YxCREQlDIKJToAkCjinK4hzuoI4nMji/h2DuGdrP/7PQ2/CKgn4+pUn4bKTFpldJhERUcVwB2UAQHJUgW8Rw5wjlYJgP4NgoomksDHnVo1GYFm23ORqqoMaiUDq6DC7DCIiqiAMgonmSaNbxgfONLqEXzgwio4WL1pldjoRERFN5AoUguCRLIPgaaRiCiw2EVY79yGIJioueKb2MQieCV3ToPZHYTv7XLNLISKiCsJVq4jmmSgIOHNxAOvCfrNLISIiqjgTg2CaKh1T4PDaeCg30RHEtkIQHImYXEl10A4dAhQFYqGTmoiICGAQTERERERlJLsssNhEJIYZBE8nFVO4UBzRNESPB4LPB62PQfBMqNFeAOOd1ERERACDYCIiIiIqI0EQ4ArI7Ag+CgbBREcnhdrZETxDWuF5ksLtJldCRESVhEEwEREREZWVKyAjyY7gKdS8hkwyxyCY6CikUBhqlEHwTKjRXsBqhdjEhauJiGgcg2AiIiIiKit3UEZiJAtd180upaKkx3KADjgYBBNNSwyFoR0chK4oZpdS8dRoBFJrGwSJC08SEdE4BsFEREREVFaugAw1pyGbzJtdSkVJx4xwix3BRNOTQmFA06AO9JtdSsVToxGInA9MRERHYBBMRERERGXlCsgAwDnBR0iNGs8Hg2Ci6RUXPtM4HuKYdF03OoI5H5iIiI7AIJiIiIiIyspdCIITnBM8SYodwUTHJIWNIJhzgo9NHx4C0ulScE5ERFTEIJiIiIiIysrJjuBppeIKbA4JFhtnehJNR/AHIDhdDIKPo/j8sCOYiIiOxCCYiIiIiMrKYhXh8FiRYBA8SSqmsBuY6BgEQYAYCkGNMAg+luLzI7WFTK6EiIgqDYNgIiIiIio7V1BGkqMhJknHFDgYBBMdkxQKQ4v2ml1GRVP7IoAkQWxpNbsUIiKqMAyCiYiIiKjsXAGZoyGOwI5gouOTQmGo/X3QVdXsUiqWGolAbG6BYLWaXQoREVUYBsFEREREVHaugIxUXIGa18wupSLkFRVKWoXTyyCY6FikUBjI56EdHDS7lIqlRXu5UBwREU2LQTARERERlZ07IAO60QVL48+D0y+bXAlRZRMLAScXjJuerutQI71cKI6IiKbFIJiIiIiIys4VNAJPzgk2lIJgjoYgOiYpZAScDIKnp8dj0BMJdgQTEdG0GAQTERERUdm5A0YQnOCcYADjQTAXiyM6NrGpCbDZoEUYBE9HLTwvIoNgIiKaBoNgIiIiIio7u9sKySKwI7ggFVMAAXB4uLgT0bEIogipNQS1j0HwdIrPCzuCiYhoOgyCiYiIiKjsBFGAKyAjyY5gAEA6psDuskKycPec6HikcLjU+UqTaZEIIAiQ2kJml0JERBWIe5pEREREZApXQOZoiIJUTIHTz7EQRDMhthkdwbqum11KxVGjvRCbFkGQufAkERFNxSCYiIiIiEzhCshIDmcZ5qAQBHsZBBPNhBRuBzIZ6ENDZpdScdRoBFKYYyGIiGh6DIKJiIiIyBSuoIxcVoWSVs0uxVS6riMdV7hQHNEMFeffck7wVGokArGNQTAREU2PQTARERERmcIdMA5drvc5wUpaRV7R4GQQTDQjpSCYc4In0ZIJ6KMj7AgmIqKjYhBMRERERKZwFYPg4foOgtMxBQAYBBPNkNjSCkgS1Giv2aVUFC0aBQBIoXaTKyEiokrFIJiIiIiITFEMgut9wbhUnEEw0WwIFgvE5haoheCTDMVgnB3BRER0NAyCiYiIiMgUVlmC7LLU/WiIFDuCiWZNCoWhsSN4kuKoDIkzgomI6CgYBBMRERGRaVwBmUFwTIEgCpDdVrNLIaoaUijMjuAjqNFeCMEgBKfT7FKIiKhCMQgmIiIiItO4AzISdT4jODWahcNrhSgKZpdCVDWkUBj6WBxaPGZ2KRVDjUY5H5iIiI6JQTARERERmcYVlJGKZaGputmlmCYdz3EsBNEsiWEj8GRX8DgtGoEU4lgIIiI6OgbBRERERGQaV0CGro0vmFaPUjGFQTDRLEmhEABwTnCBnslAO3SQC8UREdExMQgmIiIiItO4gzIA1O2cYF3TkY4zCCaaLanNCIKLC6TVO7XP6IzmaAgiIjoWBsFEREREZBpXoBAE1+mc4EwyD03V4WAQTDQrgmyH2LQIapRBMACoEaMzWmRHMBERHQODYCIiIiIyjcNrgyAKSNRpR3AqZjxup5dBMNFsiaEwg+CC4vPAGcFERHQsDIKJiIiIyDSiKMDlt9VtR3A6ZsxG5mgIotmTGASXaNEIBK8XosdrdilERFTBGAQTERERkalcQbluZwSnikGwXza5EqLqI4XC0IeHoKdSZpdiOjUa4XxgIiI6LgbBRERERGQqd0Cu49EQCiSrCJtDMrsUoqojFebhqn3sClajvaXng4iI6GgYBBMRERGRqVxBGUoqj1xGNbuUskvFFDi9NgiCYHYpRFVHaisEwdGoyZWYS1cUaIODENkRTEREx8EgmIiIiIhM5SqMRajH8RCpmAIH5wMTzYlYWBhNjfSaXIm51IF+QNMghUJml0JERBWOQTARERERmcodNILgehwPkY4pXCiOaI5EtxuCzw+tr747grXCgnmcEUxERMdTEUHwvffei6uuugqrV6/Gz3/+80nb0uk0PvOZz2DDhg244oor8MQTT8xoGxERERFVB1egPjuCNVVDOpFjEEx0AqRwmB3BxSCYM4KJiOg4LGYXAACrVq3Ct771Ldxxxx1Ttv34xz+G2+3Gli1b0NPTg/e+9734/e9/D5fLdcxtRERERFQdbA4LbA4JieH6CoLTYzlAB4NgohMghdqR2/qq2WWYSo30QnC6IPgDZpdCREQVriI6glesWIFly5ZBFKeW8/DDD+Omm24CAHR2dqK7uxtPPfXUcbcRERERUfVwBeS66whOxRQADIKJToQYCkEbHICuKGaXYho1GoEYCnPRSSIiOq6K6Ag+lr6+PoQmDL1vbW3FwMDAcbfNRkOD+8QLrTJNTR6zS5g11lwerLk8WHN5VGPNQHXWzZrLo5ZrDra4MRRNVMRjLFcNI/uSAIBQZwDBphM7oq0SnrfZYs3lUes121YtR1rX4cvGIIeWLGBVx2fWcx3vj8K5atWc7r/WXx+VgjWXB2suD9Zc3coSBF933XXo6+ubdtvTTz8NSZLKUcZRDQ0loGm6qTWUU1OTB4cOjZldxqyw5vJgzeXBmsujGmsGqrNu1lwetV6zxSkifjiNg4NxCKJ5XW3lfJ4HeuMAgIyWO6H7rPXXRqVgzeUx25pzngYAwOFtb8LmaVqoso7LrOdaz+ehRCKQznv7rO+/Hl4flYA1lwdrLg/WXPlEUThmw2tZguDNmzfP+bptbW2IRqMIBoMAgP7+fpx55pnH3UZERERE1cMdlKGpOtJj9bN4WjquwGqXYJXNbYogqmZSqB3A+IJp9UY7OAioKheKIyKiGamIGcHHcsUVV+BXv/oVAKCnpwfbtm3D+eeff9xtRERERFQ9XAEZAOpqTnAqptRN6E20UAS/H4LLVbdBcPFxFwNxIiKiY6mIIPiBBx7ABRdcgEceeQTf+c53cMEFF+Ctt94CAHzoQx9CPB7Hhg0b8LGPfQxf+9rX4Ha7j7uNiIiIiKqHO2gEwYlhBsFENHOCIEBsC9dvEBzpBQCI7AgmIqIZqIjF4jZu3IiNGzdOu83pdOK2226b9TYiIiIiqh5Onw2CUH8dwcHwiS0SR0SAFA4jv3uX2WWYQo1GAFmG2NBodilERFQFKqIjmIiIiIjqmyiJcPpsSAxnzC6lLPKKCiWVh9PLjmCiEyW1haEN9EPP580upey0aARSWwiCyD/tiYjo+PhuQUREREQVwRWQkRxVzC6jLNLxHADA6WcQTHSipHAYyOeNhdPqjBqNQApxLAQREc0Mg2AiIiIiqgiuoIxkncwITsWMwJszgolOnFgIQtW+qMmVlJeuaVCjUUhhLhRHREQzwyCYiIiIiCqCKyAjk8ghr6hml7LgGAQTzZ9iR2xx4bR6oR0+BCjZUhBORER0PAyCiYiIiKgiuAMyACA5UvvjIVIxo/PZwRnBRCdMbGwCbDK0aH11BKvRCACwI5iIiGaMQTARERERVQRXsBgE1/54iFRMgeyyQLJwd5zoRAmiCKmtDWq0zjqCCx3QUlvI5EqIiKhacM+TiIiIiCpCsSM4MZIxuZKFl44pXCiOaB5J4fZSh2y9UKMRwGKBuKjZ7FKIiKhKMAgmIiIioopgc1pgsYl1MhpCgZNjIYjmjdgWghqNQNd1s0spGzUagdTaBsFiMbsUIiKqEgyCiYiIiKgiCIIAV0BGcri2R0Poum4EwVwojmjeSOF2IJuFNnTY7FLKRo1GIIY4H5iIiGaOQTARERERVQx3UEaixmcE5zIq8ooGB4NgonkjhcIAAK1OxkPoug4tEoEUDptdChERVREGwURERERUMVwBGcmRbE0f3p2KGaMv2BFMNH+KQbAaqZMgeGQYejpVetxEREQzwSCYiIiIiCqGKyhDzWnIJPJml7Jg0vFiECybXAlR7RCbWwBJghrtNbuUsigG3gyCiYhoNhgEExEREVHFcAeMcDQ5kjG5koXDjmCi+SdYLBBbWqFGo2aXUhZqH4NgIiKaPQbBRERERFQxXKUgWDG5koWTiikQRMDusZpdClFNkUJhaPXUESyKEFvbzC6FiIiqCINgIiIiIqoYLr8RBCeGa3fBuNSoAofHBlEUzC6FqKZI4Xao0UhNzxgv0qK9EJtbIFj5gRIREc0cg2AiIiIiqhiSVYTDa0VypIaD4LgCB8dCEM07qS0EPZGAHo+ZXcqCU6MRSOF2s8sgIqIqwyCYiIiIiCqKKyDXdBCcjimcD0y0AMRCMFoPc4LVSARSW8jsMoiIqMowCCYiIiKiiuIOykgM1+ZicbquIxVnEEy0EIrBqFrjc4K1eAz6WLwUfBMREc0Ug2AiIiIiqiiugIz0WA5qXjO7lHmXTeah5XUGwUQLQGoLAYIALRIxu5QFVex4lkJhkyshIqJqwyCYiIiIiCqKKyADurGoWq1JxYzH5PQyCCaab4IsQ2xqgtpX20GwVuh4lsIMgomIaHYYBBMRERFRRXEHZABAogbnBBeDYC4WR7QwpFA71FrvCC48Ps4IJiKi2WIQTEREREQVxRU0guDkcO0GwU4/g2CihSCGwjXfEaxGeyEuWgRBtptdChERVRkGwURERERUUexuKySLgMRI7S0Yl44pkCwCZKfF7FKIapIUCkMfHoaWSppdyoJRIxGIbRwLQUREs8cgmIiIiIgqiiAIcAXkmu0IdnhtEATB7FKIalJxATWtsKBaLVL7IlwojoiI5oRBMBERERFVHFdQRrImZwRn4eR8YKIFUwxI1WhtjofQUknow8OQwu1ml0JERFWIQTARERERVRxXQEZyRIGu62aXMq9SMYULxREtIDFkLKCmRntNrmRhFDud2RFMRERzwSCYiIiIiCqOOyAjl1WhpFWzS5k3mqojM5ZjRzDRAhJdbgiBINQaHQ2hRoyAmx3BREQ0FwyCiYiIiKjiuAIyACA5XDsLxmUSCnQdDIKJFpgUCkGr0Y7g4siLYuczERHRbDAIJiIiIqKK4w4aQXCihuYEp2IKAAbBRAtNCoVrtyM4GoEQCEJ0uswuhYiIqhCDYCIiIiKqOOMdwTUUBI8yCCYqBykUhnZwEHq2dn5/FGnRCOcDExHRnDEIJiIiIqKKY7FJsLsttdURHDeCYC4WR7SwxFA7oOtQ+/vMLmXeqdFeSGEGwURENDczDoJ/9rOf4Y033ljIWoiIiIiISlwBGckRxewy5k0qpsAii7DZLWaXQlTTpML8XK0wT7dW6NkMtIMHIYW4UBwREc3NjPdCt2/fjrvuugvJZBKnnnoqzjjjDJx++ulYs2YNBEFYyBqJiIiIqA65AjKGepNmlzFv0jEFTp9sdhlENa8YlKo1FgSrfcbcYy4UR0REczXjIPjWW28FAEQiEbzwwgt4/vnn8b3vfQ8A8OKLLy5MdURERERUt1wBGb3bh6GpGkSp+ieapWIK5wMTlYHg80Fwu2svCI4Yj4cdwURENFezOi5t7969pRD45ZdfRmdnJ04//fSFqo2IiIiI6pg7KEPXjADVHbSbXc4JS8UUBNpcZpdBVPMEQYDYFq65ILg46oIzgomIaK5mHASfc845cLlcuPzyy3HNNdfglltugdvtXsjaiIiIiKiOuQLGGIXkSLbqg2A1pyGbzMPhZUcwUTlI4TDyu940u4x5pUYjEDxeiF6f2aUQEVGVmvExdhdffDEkScKjjz6KRx99FE888QQGBwcXsjYiIiIiqmPuoBEEJ4azJldy4lJxY9E7joYgKg+pLQytvw96Pm92KfNGjUbYDUxERCdkxh3BX//61wEAhw8fxgsvvIAXXngBt9xyCwKBALZs2bJgBRIRERFRfbJ7bBAlAcmR6g+C07FCEOxnEExUDlI4DKgqtIODkNpqY3E1NdIL65pus8sgIqIqNqsZwTt37sTzzz+P5557Di+99BIcDgfWrVu3ULURERERUR0TRQFOv60mguBUjB3BROUkhYzOWTUaqYkgWM/loA0OQLzsCrNLISKiKjbjIPj000+Hx+PBaaedhosvvhhf+tKXsHjx4oWsjYiIiIjqnDsgI1FDQTBnBBOVh1gMgiO9wOlnmlzNidMG+gFNKwXcREREczHjIHjz5s0Icx4REREREZWRKyhjeFvS7DJOWCqmQHZaYLHOeIkOIjoBYkMjIMvQ+qJmlzIv1GgEACCF2k2uhIiIqtmMg+BwOIyenhcp3UMAACAASURBVB488MADOHjwIBYtWoQrr7wSXV1dC1kfEREREdUxV0CGklahpPOwOWY11ayipGIKHBwLQVQ2gihCagsZHcE1oPg4uFgcERGdiBm3JDz++OO4/vrrsW/fPvh8Puzbtw833ngjHnvssYWsj4iIiIjqmDsgA0DVzwlOxxTOByYqMykULnXSVjs1GoHgcEIIBM0uhYiIqtiM2yq+9a1v4fvf/z7OOuus0nnPPfcc/vEf/xGXXHLJghRHRERERPXNNSEIDrS5TK5m7lJxBU1dHrPLIKorYigM5YXnoGsaBLG6x7KokQjE/8/evYfHVZd7//+steaQzEwOk7ZJk5kgttRSOZQN3eChHAVaQA5FUFAEFdmCbKUIFSwULAi1FChnVKRAEQs+W0GRM4goG9k+PP50g2JRsTQzadJDkkmTmWQya83vj0lGCm2aNnPO+3VdXFcza63vulfp1U4+uef+hkIyDKPYpQAAytiY/zXs6OjQnDlztnntoIMOUkdHR86LAgAAAKTMjGBJZb1h3NCAraEBm45goMCsUFgaHJSzZXOxSxk3J9rGfGAAwLiNOQjee++9tWrVqm1eu++++zRr1qycFwUAAABIkqfKJU+1VdajIeKxpCQRBAMFZoUzwalT5uMh0rYte0M784EBAOM25tEQ3/72t3XBBRdo9erVam5u1oYNG1RdXa3vfe97+awPAAAAE5y/wav+rjIOgnszQTCbxQGFZYUywakdjch9wIFFrmb3ORs7pVQq+zwAAOyuMQfB06dP15NPPqk//vGP2rhxoxobGzV79my53e581gcAAIAJLhD0qntDvNhl7DY6goHiMBubJMsq+w3jRuo3w4yGAACMz5iDYElyuVzvmxMMAAAA5JM/6FX0zR45TlqmWX4bJSViSRmGVF1DEAwUkuFyyWxuKf8gONImSXQEAwDGbdQg+PDDDx/TrqS//vWvc1UPAAAAsA1/0CvHTmtga1K+Om+xy9ll8digqmrcMq3yC7GBcmeFwrIj5R0EO9GI5PHInDyl2KUAAMrcqEHwihUrClUHAAAAsF2Bhkz429c1WKZBcJKxEECRWKGwUn9+Xel0ekxNTqXIjkZktYRkmGPe6x0AgO0aNQi+8cYb9ZOf/ESSdMcdd+g///M/C1IUAAAAMMIfzIS//d2D0geLXMxuiMeSqp/qK3YZwIRkhcJK9/UpHYvJqK8vdjm7xY5GZDEfGACQA6P+SHHdunUaHMzs0Lxq1aqCFAQAAAC8m6/OI8PMdASXm3Q6rUQsKV89HcFAMYzM1S3XOcFpx5EdjchkPjAAIAdG7Qj+xCc+oXnz5ikUCmlwcFCf+9zntnveQw89lJfiAAAAANMy5avzZjqCy0wynpKdSjMaAigS811BsHuffYtcza5ztmyWBgfZKA4AkBOjBsHLli3Ta6+9pmg0qtdff12nnXZaoeoCAAAAsvzB8gyC47GkJMlXSxAMFIPV3CIZhpxoW7FL2S3O8EZ3BMEAgFwYNQiWpDlz5mjOnDkaGhrSggULtHXrVv3gBz/QW2+9pdbWVp133nmFqBMAAAATmD/o0Ya1PcUuY5dlg2A6goGiMLxemVMay3Y0hN0+HAQzIxgAkANj3nZ0pBv4mmuukc/n0+c//3n5fD5ddNFFeSsOAAAAkKRA0KuBvpRSSbvYpeySkSC4us5b5EqAicsKh8s3CI5EJMuS2dhU7FIAABVgp0Hwddddp/7+/uzXGzZs0H/8x39o7ty5Ov/88/X222/ntUAAAADA35AJUsttPEQ8lpRpGary7/SDeADyxAy1yo5Gi13GbrGjbTKbW2S4+DsEADB+Ow2C999/f33+85/Xk08+KUk69thjdcopp+jSSy/VggULdMopp+S9SAAAAExsgWAmCO7rKq8gOBFLqrrWI8M0il0KMGFZoZDS3V1y4v07P7nE2JEIYyEAADmz0x8rnnjiiTriiCN0yy236Kc//amuuOIKfexjH9Nbb72ls88+W/vvv38h6gQAAMAE5m+oklSeHcHMBwaKywplglQnGpU540NFrmbs0um0nGhE7v34nhsAkBtj+nxJTU2NlixZojfeeEOLFy/WwQcfrAsvvFBeL7POAAAAkH+eaktur6W+MgyCp+xZU+wygAnNCoUlSXakTa5yCoJ7upWO99MRDADImZ2Ohujs7NR3vvMdfeUrX9FTTz2lu+66S01NTfrMZz6jF154oRA1AgAAYIIzDEP+oKesOoIdJ63E1qSq6QgGisoMhSSp7DaMG6l3JMgGAGC8dhoEX3TRRfJ4PDrrrLOUTqd13XXX6XOf+5x++MMf6qmnntL5559fiDoBAAAwwfmDXvWX0Yzggb4hpR0xGgIoMtPnl9HQUH5BcCRTr0lHMAAgR3Y6GuLtt9/Wgw8+KLfbrYMPPlif/vSnJUmTJ0/WjTfeqFdffTXvRQIAAAD+Bq86/hZTOp2WYZT+5muJWFISQTBQCqyWsJxyC4KjEck0ZU1tLnYpAIAKsdMg+OSTT9YXv/hFHXTQQXrttde0YMGCbY5/5CMfyVtxAAAAwIhAsEp2Kq2BviFV15R+uBrvIQgGSoUVDmvoD/+v2GXsEifaJrOpSYaHv0MAALmx0yD4iiuu0P/+7/8qEonok5/8pGbMmFGIugAAAIBt+BsyGxX3dw2WRxDcSxAMlAqrJazBp59UenBAhreq2OWMiR2JyGphPjAAIHd2OiNYkvbff38df/zxhMAAAAAomkAwEwT3lcmGcfFYUi6PKXeVVexSgAnPDGcCVbu9vciVjJ3dHpEVJggGAOTOmIJgAAAAoNh89R7JkPrLKAj21XnKYp4xUOlGOmvt9miRKxkbZ2uv0rGYzBAbxQEAcocgGAAAAGXBcpmqrnGXTRCciCVVzVgIoCSMdNY6kbYiVzI29vDGdlaIjmAAQO4QBAMAAKBsBBqq1NdVHkFwPDbIfGCgRBi1dTICNeXTERwZDoLDdAQDAHKHIBgAAABlwx/0lkVHsJ1yNNCXkq+WIBgoBYZhyAqFZJdNR3CmTqslVORKAACVhCAYAAAAZcMf9CrROyR7yCl2KaNK9CYlidEQQAkxQ61l0xFsRyIyJ0+RUVVV7FIAABWEIBgAAABlI9DglST195R2V3A8lgmC/fUEwUCpsEIhORvalU6lil3KTtntEZnMBwYA5BhBMAAAAMqGP5gJVkt9PERiOAiuZjQEUDKsUKtk23I6O4pdyk7ZkUh2gzsAAHKFIBgAAABlwx/MfEy6r8SD4P7hIJjN4oDSMRKs2tFIkSsZXToeV7prSya4BgAghwiCAQAAUDaqAi5ZblP9XaUdBCdiSXmqLbk8VrFLATBsZNRCqQfBdnumPjqCAQC5RhAMAACAsmEYhvxBb8mPhojHknQDAyXGnDRZ8npLPwiODAfBLQTBAIDcIggGAABAWQkEveor8Y7gTBDsLXYZAN7FMAxZobCcUg+Ch+tjszgAQK4RBAMAAKCs+BsyHcHpdLrYpexQojepajqCgZJjhcKyI23FLmNUdjQioz4oMxAodikAgApDEAwAAICy4g96lEo6SsZTxS5lu4YGbSUTNqMhgBJkhcKy29uVdpxil7JDTrSN+cAAgLwgCAYAAEBZCQSrJEl9JTonOBFLShJBMFCCzFBYSg7K2byp2KXskB2JyGIsBAAgDwiCAQAAUFb8wczs3f4SnRMc7yUIBkqVFW6VJDnRaJEr2b704ICcjZ0EwQCAvCAIBgAAQFnxBzMBa6l2BMfpCAZKltUSkiTZ0dKcE2y3t0uSzFBrkSsBAFSikgiCly5dqvnz5+ukk07SGWecoddffz17bPPmzfrSl76kefPm6aSTTtKf/vSnMR0DAABAZXJ5LFUF3Oov5SDYkKpr3cUuBcB7mI1Nksslu0Q7gu32TF10BAMA8qEkguDDDjtMjz/+uH7xi1/oK1/5ii6++OLssZtuuklz5szRM888o6uuukqLFi3K7hA92jEAAABULn+Dt3RHQ8SSqgq4ZVol8VYbwLsYLpfMqc0l2xHsRDJ1sVkcACAfSuLd6ZFHHim3O9MxccABB6ijo0PO8C6uTz/9tM444wxJ0pw5c+TxeLIdw6MdAwAAQOXy13tKtiM4EUsyFgIoYVa4VXYkUuwytsuORmQEamTU1hW7FABABXIVu4D3euihh3TEEUfINE11d3crnU6roaEhe7y5uVkdHR1qbW3d4bH9999/l+45aVIgZ/WXiylTaopdwi6j5sKg5sKg5sIox5ql8qybmguDmv+lMVyrtte71NDgl5Xjztvx1jzYl9KkFn9B/3/xZ6MwqLkw8l2zvdc0xd74X02eHJBhGDlbNxd1JzZukPcDe6ixsTYHFe0cfz4Kg5oLg5oLg5rLW0GC4AULFqh9eOj9e73yyiuyLEuS9MQTT+jxxx/XQw89VIiysrZs6ZPjTJyRElOm1GjTpq3FLmOXUHNhUHNhUHNhlGPNUnnWTc2FQc3bMryG0mlp/d+3KNBQlbN1x1tzOp3W1q4BNU4v3P8v/mwUBjUXRiFqTjY0yunr08a/tckMBnOyZq7qTvxznVx7f7gg/9/481EY1FwY1FwY1Fz6TNMYteG1IEHwo48+utNznnvuOa1cuVL333+/Jk+eLEkKDv+j3NXVle383bBhg6ZOnTrqMQAAAFS2QINXktTXNZjTIHi8kglb9pCjakZDACVrZCM2uz2SsyA4F9KplJzODllHH1vsUgAAFaokZgS/+OKLWrZsme69916F3zMUf/78+Xr44YclSa+99poGBga077777vQYAAAAKpc/mAmCS21OcDyWlCT5agmCgVJljgTBJTYn2OnYINm2rFBrsUsBAFSokpgR/K1vfUtut1tf//rXs6/df//9CgaDuuSSS7Ro0SI99thj8nq9uuGGG2Samfx6tGMAAACoXNU1bpmWob6u0gqCEyNBMB3BQMmymlskw5AdbSt2Kduwo5lg2npPcxQAALlSEkHwq6++usNjU6ZM0f3337/LxwAAAFC5DNOQv95buh3BBMFAyTI8HpmNTXKi0WKXsg07kgmmR0ZXAACQa7TPAgAAoCz5G0oxCB6UaRmqCriLXQqAUVihcGl2BFdXy2iYVOxSAAAViiAYAAAAZckfLMUgOKnqGrcM0yh2KQBGYYVbZZdaR3A0IqslJMPg7w8AQH4QBAMAAKAsBRq8SiZsJROpYpeSFY8lVc1YCKDkmS0hpXu65fT3FbuULCcakRVmozgAQP4QBAMAAKAs+YNeSSqpruBELMl8YKAMjASupTInOG3bstujzAcGAOQVQTAAAADK0kgQ3NdVGkFw2kkrsXWIIBgoA1YoJEklMyfY2bRRGhqSFaIjGACQPwTBAAAAKEv+YCZw7e8pjSB4oH9Ijp2Wr85b7FIA7ITVkum8tSORIleSYUcygbQ5HFADAJAPBMEAAAAoS54qlzw+l/pLpCM4HktKEh3BQBkwfD4ZDZNkR0skCB6ugxnBAIB8IggGAABA2QoEveorkRnB8Z5MEMxmcUB5sELhkgmCnWhE8nhkTmksdikAgApGEAwAAICy5Q96S6cjuJeOYKCcWKGwnPbSCILtaERWc0iGybfoAID84V8ZAAAAlC1/g1f9PUk5TrrYpSgRS8pym/JUW8UuBcAYWKGwnI0blR4cKHYpsiMRWeFwscsAAFQ4gmAAAACULX/Qq7STVmK4G7eY4rGkfHUeGYZR7FIAjMFI8Gq3txe1jnQ6LTvaJjNEEAwAyC+CYAAAAJStQNArSeovgTnBI0EwgPJgtgwHwUWeE+xs2SwNDsoiCAYA5BlBMAAAAMqWvyETBPeVwJzgeCzJRnFAGRnpCHYibUWtwxkOogmCAQD5RhAMAACAsuWr9cgwi98RbKccDfQNyVdLEAyUC7O2TkZNrez2aFHrsCPDQXC4tah1AAAqH0EwAAAAypZpGfLVedVf5I7gga1DUlqMhgDKjBUKyS5yR7AdbZMsS2bT1KLWAQCofATBAAAAKGuBBq/6itwRHI9lNqvz1RMEA+XEDLUWvyM4GpHZ3CLD5SpqHQCAykcQDAAAgLLmD3qLPhoiGwQzGgIoK1YoJKdjg9KpVNFqsCMRWS2hot0fADBxEAQDAACgrPmDXg32pzQ0aBethpEgmM3igPJihVol25bTsaEo90+n03KibcwHBgAUBEEwAAAAylog6JVU3A3j4rGk3FWW3F6raDUA2HVWOCwpM56hGNKxmNL9/bJC4aLcHwAwsRAEAwAAoKz5G4ofBCdiSTaKA8qQ1VLcINiOZjaqIwgGABQCQTAAAADKmn+4I7iYG8bFCYKBsmRMmiRVVRUvCI5k7msyGgIAUAAEwQAAAChrnmpL7ipL/V1FDIJ7CYKBcmQYhqyWsJxidgQbhqzmlqLcHwAwsRAEAwAAoKwZhiF/vbdooyFSSVvJeIqN4oAyZYXDResIdiIRmY1NMjz8/QEAyD+CYAAAAJQ9f0PxguB4LClJdAQDZcpqCctujyrtOAW/t90eYT4wAKBgCIIBAABQ9gLBTBCcdtIFv3eilyAYKGdmOCwlk3I2bSr4ve1IRBbzgQEABUIQDAAAgLLnb/DKTqU10DdU8HvTEQyUt5GOXLu9sOMhnK1blY71yKQjGABQIATBAAAAKHuBoFeS1FeE8RAjQXB1LUEwUI5GgmAn0lbQ+zrDwbMVJggGABQGQTAAAADKnr8hEwT3dxUnCK4KuGS5eGsNlCOzsUlyuWRHowW9rx0ZDoJbCIIBAIXBu1UAAACUPV+dRzKK1xFczVgIoGwZliWruUV2tLAdwSP3Y7M4AEChEAQDAACg7FkuU75aj/qLEAQnYkn5GAsBlDUz1Co7WtgZwXY0KnPSZBnV1QW9LwBg4iIIBgAAQEXwB70FD4LT6bTisaR89d6C3hdAblnhsJxoVOl0umD3tKNtMpkPDAAoIIJgAAAAVAR/g7fgM4KHBmylkk5mNAWAsmWFwkrH+5Xu6S7YPZ1IRFaotWD3AwCAIBgAAAAVIRD0KrF1SKkhp2D3jMeSksRoCKDMjczpLdR4iHQiIWfLZlmhUEHuBwCARBAMAACACuEPZsYzxAs4HmIkCGazOKC8mSNBcKQwQfBI4ExHMACgkAiCAQAAUBFGguC+IgTBjIYAyps1tVkyTdntBQqCh+9jMSMYAFBABMEAAACoCIGGTBBcyA3jErGkDFOqqnEX7J4Acs/weGQ2NskpVEfw8H3MFoJgAEDhEAQDAACgInj9Lllus6BBcDyWVHWNR6ZpFOyeAPLDCoULNiPYiUZk1NXLrKkpyP0AAJAIggEAAFAhDMNQIOhVX1cBg+DeJGMhgAphhQsXBNuRNsZCAAAKjiAYAAAAFcPf4C1sR3BPko3igAphtoSVjvXI6evL+73saEQWYyEAAAVGEAwAAICK4Q9mguB0Op33e6WdtBJ0BAMVY6RD18lzV3A6mZSzsVMmHcEAgAIjCAYAAEDF8Ae9SiUdDfan8n6vwXhKjp0mCAYqxEiHrh1ty+t97A3tUjotK9Sa1/sAAPBeBMEAAACoGIEGryQVZDxEPJaUJIJgoEJYoeEgOJLfjmAnkgmamREMACg0gmAAAABUDH+QIBjA7jGqq2VOmiy7Pb9B8MiGdHQEAwAKjSAYAAAAFcNfnwll+7oKEQRn7sFmcUDlMEOhvHcE29GIDL9fRl1dXu8DAMB7EQQDAACgYrg8lqpq3AXrCLZchrw+V97vBaAwrFCrnPZoXu9hR9pkhlplGEZe7wMAwHsRBAMAAKCiBIJe9RUgCE7Ekqqu8xDmABXECoXkbNqo9OBA3u5ht0eZDwwAKAqCYAAAAFQUf9Cr/oKMhkgyHxioMCNze+08dQWnUyk5G9qzG9MBAFBIBMEAAACoKP6gV4nepOyUk9f7EAQDlcccDmjzNSfY6eyQbJuN4gAARUEQDAAAgIoSaPAqnc4Etfni2GkNbB1SdS1BMFBJRkY22NH8BMF2pC1zn1AoL+sDADAagmAAAABUFH/QK0l53TAusTWpdFp0BAMVxqyplVFbKydfQfDwumaYjmAAQOERBAMAAKCi+BsyQXBfHucEJ4a7jX313rzdA0BxWKFw/jqCoxHJ65U5aXJe1gcAYDQEwQAAAKgo1QG3TJeR147gkbETPkZDABUnn0GwE43ICrXKMIy8rA8AwGgIggEAAFBRDNOQv96r/jx2BMd7h4NgRkMAFccMheV0bFB6aCjna9uRSHYOMQAAhUYQDAAAgIrjD3rV35PHILgnKbfXkrvKyts9ABSHFQpLjiOnY0NO103btuz2SGZ9AACKgCAYAAAAFSfQ4M3rjOB4LKlquoGBimSFMhu52e3RnK7rbN4kDQ3JJAgGABQJQTAAAAAqjj/o1dCArWQilZf1E71JxkIAFcoKhSRJdqQtp+uOrEdHMACgWAiCAQAAUHECQa8k5a0rOB4jCAYqldEwSaquzvmGcU4002FshVtzui4AAGNFEAwAAICK42/IBMH93bkPglNDjgb7UwTBQIUyDENWSyjnQbAdbZPcbplTGnO6LgAAY0UQDAAAgIrjz2NHcKI3KUkEwUAFs8Kt2Q7eXLGjEVktIRkWm0wCAIqDIBgAAAAVx+215PW51N+T+yA4HssEwWwWB1QuqyUkuz2itG3nbE070iazJZSz9QAA2FUEwQAAAKhI/gav+vPRERyjIxiodFa4VRoakrN5U07WS6fTstujzAcGABQVQTAAAAAqkj/ozcuM4JGOYF8tQTBQqcxQWJJyNic43bVFSiRkDa8LAEAxEAQDAACgIgWCXvX3JOXY6ZyuG48l5fW7ZLl5Kw1UqpHA1onkJggeCZTpCAYAFBPvXgEAAFCR/A1epZ10dnO3XInHkoyFACqcOaVRcrtlt+coCB4OlOkIBgAUE0EwAAAAKpI/6JUk9eV4PEQ8llQ1YyGAimZYlqzmlmyAO152tE2yLJlTm3OyHgAAu4MgGAAAABUpMBwE53pOcCKWlK+eIBiodGYonNOOYLNpqgyXKyfrAQCwOwiCAQAAUJGqaz0yTEP9XbkLgocGbA0N2oyGACYAK9wqJxJROj3+OeNOe4SxEACAouPHkduRTqfV1xdTItEnx7GLXU7ObdxoynGcgt7TNC1VVwcUCNTJMIyC3hsAAExMpmXIX+/J6WiIeCwzb9jHaAig4lktIaUTcaW7u2Q0TNrtddLptOxIm7zHzM9hdQAA7DqC4O3o7t4kwzDU0NAky3JVXHDpcplKpQoXBKfTadl2Slu39qi7e5MaGhoLdm8AADCx+YPenI6GiMcya9ERDFQ+K9wqSbKjUZnjCYJ7Y0r39dERDAAoOkZDbEcyOaD6+klyudwVFwIXg2EYcrncqq+fpGRyoNjlAACACcTf4M3paIiRjuBqgmCg4lktIUnDG72Nw8iGc+ZwsAwAQLEQBG9XWobBb02uZX5Pxz9fCwAAYKz89V4NxlMaGszNuK94LCnDkKprCIKBSmc2t0imKTsaHdc6djQTBI8EywAAFAtpJwAAACpWoMErSTkbD5HoTaqqxi3T4lNjQKUz3G6ZTU1yxtkR7ETbJMMgCAYAFB1BMHbZk08+rgsuOLfYZQAAAOyUPzgcBOdoPEQ8lmQ+MDCBWKHW7GiH3WVHIzKnNMrwenNUFQAAu4fN4nbRs88+rUceeUjr16+Tz+fTXnvN1Nlnf0mzZx+Q1/vOnTtHDz/8qMK7OVeqv79PP/zh9/XSS7/S1q29CgYb9PGPH6ZzzjlX9fX1Oa4WAACgNIx0BPflqCM43pNUsMWXk7UAlD4rFNbgr18Y1xp2NCIrzEZxAIDiIwjeBQ8//CP96EcPaNGib+nggz8qt9utV199RS+//FLeg+DxGBoa0kUXfVWBQEA33XS7pk+fpi1buvTzn/9Mb775hj760bnFLhEAACAvPNUuuausnIyGSKfTSvQm1TKLH6IDE4UZCisdi8nZulVmTc1urWFHIvIceniOKwMAYNcxGmKM+vr6dO+939c3vnGZDj/8KFVXV8vlcmnu3MN04YUXSZKSyaRuvfUmnXzyfJ188nzdeutNSiYzO0tvb5zC3LlzFIlk5k1dd923ddNNy7Vo0UU65pjDdN555yg6vKnAhReeJ0n6whfO1DHHHKoXXnhWn//8p/Xyy7/JrpVKpXTCCZ/QW2/99X21P/30E+rs7ND119+oD35wmkzTVDDYoC984cvZEHjdun/qP//zPzR//hE666xP6+WXX8peH4v16LLLLtaxxx6u8847O1vXiHfeWaeFC7+q4447SmeeeapeeOG5cf1eAwAA5FKgwau+HIyGGIynZKfS8tXx8W5gorBCmU5ep333xkM4fX1K93TLCjEfGABQfATBY/TGG/+rZDKpww47YofnrF69Sn/+8+u6//4f6/771+jNN/+sBx64d8z3eOGFZ/XFL56np576lcLhVv3gB3dKku688x5J0v33r9Fzz/1Wn/jEsZo//wQ9++xT2Wt/97uXNWnSZH3oQ3u/b93XXvsfHXLIR+Xzbf9jjKlUSpdddrEOPvgjevzx53TxxYu0dOkSrV+/TpJ0883L5fF49fOfP61vfesqPfHEL7LXJhIJXXzxhTrmmPl6/PFntXTp9br55u/qn/98e8zPDQAAkE/+em9OOoITscwP+JkRDEwcI0Hw7s4JdoabaKzQ7o34AwAglwiCx6i3N6a6unq5XDuepvHss0/pi1/8soLBBgWDQX3xi+fpmWeeHPM9DjvsCH34w/vK5XLp2GPn629/e2uH586bd7x+97v/Vn9/nyTpmWee1Lx5x2/33FgspkmTJu9wrT//+XUlEgmdddYX5Ha7ddBB/66PfWyunnvuGdm2rV//+lf68pfPV3V1taZN20vHHffJ7LWvvPJbTZ3arBNOOEkul0sf+tDeOvzwo/Tii8+P+bkBAADyyd/gVX/PoNJOelzrdUK/XQAAIABJREFUxAmCgQnHasl08trR3QuC7eFOYmYEAwBKATOCx6i2tk6xWI9SqdQOw+DNmzerqak5+/XUqc3avHnTmO/R0DAp+2uvt0qJRGKH506ePEX77Tdbv/71r3TYYUfq1Vdf0UUXXbrdc+vq6rRly+YdrrV58yY1NjbJNP/1c4GR2nt6umXbthobm7LHmpqmZn/d0bFBf/nLG5o//4jsa7Zt7zCUBgAAKDR/0CsnlVaib0i+2t0PcQmCgYnHqK6WOXnK7gfBw53EVgtBMACg+AiCx2jfffeX2+3Wb3/7ax155NHbPWfy5Mnq7NygadOmS5I6Ozs0efIUSVJVVbUGBwey544WzI7VccedoF/+8ueybVv77LO/pkxp3O55c+YconvuuVuJRELV1dXbqXuKNm7slOM42TC4s7NDra17qL4+KMuytHFjpz7wgT2zx0Y0NjbpgAMO1C233DXu5wEAAMiHQENmpm9/1+C4g2DTMuT18RYamEjMUEh2tG23rrWjbTIaJsnYwZg+AAAKidEQYxQIBHTuuefr5ptv0G9+82sNDAwolUrpd7/7b911162SpKOPnqcHHlil7u5u9fT06L777tGxxx4nSdprrxn65z/f1t/+tlaDg4NateoHu3T/hoZJam+PbvPaYYcdobVr/6r/83/WaP78HXfgzpt3vBobm3TFFd/UO++sk+M4isV6tHr1Kv3udy/rwx/eV15vlR56aLVSqZT+8IfX9N///VsdffQ8WZalww8/SqtWfV8DAwP65z/f1tNPP5Fd++MfP1Rtbev19NNPKJVKKZVK6c03/6x16/65S88HAACQL/7gcBA8zjnB8VhSvjqPDNPIRVkAyoQVapUTje78xO2wIxHGQgAASgZB8C4488yz9LWvXawHHrhXn/zk0Tr11BP0s5/9RIceeoQk6ZxzztXee8/SF75whs455zOaOXNvnXPOuZKkPfb4gL7whS9r4cKv6swzT9X++x+wS/f+0pfO03XXXa3584/QCy88JykzPuKII47Shg3tOvzwo3Z4rcfj0S233KUPfGBPXXzxhfrEJw7Veeedo1isRx/+8L5yu91avvxm/c//vKITTviEbr55ua68cmm2A/jii7+pRCKhk06ap+uv/7aOP/7E7No+n18rV96hF154VqecMl8nnTRPd999u4aGkrv0fAAAAPniq/PIMKS+rvEFwYlYUtWMhQAmHCsUkrN5k9IDAzs/+T2caISxEACAksHn2nbRsccel+3yfS+v16uFCxdp4cJF2z1+zjnnZoNhSdvM0b3iim9vc+6BB87Ro4/+a6O5U045Taecctr71mxqmqrDDjtSvp181CgQCOiiiy7RRRddIpfLVCrlbHN82rTpuuOO7XcpB4NB3XDDLTtce4899tSKFbeOen8AAIBisVymqms9OekInrJnTY6qAlAurFCrJMluj8o1PAZwLNIDA3I2b6IjGABQMugILmO9vTH98pc/10knLSh2KQAAACXN3+AdVxDsOGkltibZKA6YgEaCXDuya3OC7eHRfiNBMgAAxVYSQfDdd9+tE088UaeccopOPvlkPfnkvzphE4mEFi5cqGOOOUbz58/Xiy++OKZjle4Xv3hUp556gj7ykY/pgAMOLHY5AAAAJS0Q9KpvHEHwwNYhpR0xGgKYgMzh0Q52NLJL140ExyYdwQCAElESoyHOOussXXDBBZKkzs5OHXfccfr4xz+uuro63XvvvQoEAnruuee0bt06fe5zn9Ozzz4rv98/6rFKd9JJC+gEBgAAGCN/0KuBrUNKJW25PNYuXx+PZfY/8NcTBAMTjVlTI6OuTs6uBsHD51shgmAAQGkoiY7gmpp/zVqLx+MyDEOOk5lh+9RTT+kzn/mMJGnPPffUvvvuq9/85jc7PQYAAACMCDR4JUn9Pbu3oW1iOAiuriUIBiYiqyW8yx3BTrRNRm2tzJraPFUFAMCuKYmOYElas2aNHnjgAXV0dOj6669XMBiUJLW3tysUCmXPa25uVkdHx06P7YpJkwLbfL1xoymXqyQy8rwp1vOZpqkpU3Zvk5Xdva6YqLkwqLkwqLlwyrFuai4Mat599rRMk4HL3vl7ke0dj9jdkqQ9pjfI63PnvsBxKpXf511BzYVBzbmRnP5BJf74x1Fre++x+MYN8u65Z0k+z4hSrm1HqLkwqLkwqLkwyrHmfClIELxgwQK1t7dv99grr7wiy7J05pln6swzz9TatWt16aWX6qMf/Wg2DM63LVv65Djp7NeO4yiVcgpy72JwucyiPZ/jONq0aesuXzdlSs1uXVdM1FwY1FwY1Fw45Vg3NRcGNY/PkGxJUnRdj/zN3h2et6OaN0V75fKYivUlZPQP5K3O3VFKv89jRc2FQc25MzSpSUPt7drY3iXD/f4fBm2v7oF178i97/4l+TxS6f5ej4aaC4OaC4OaC6Mcax4P0zTe1/D6bgUJgh999NExnztz5kw1Njbq97//vebNm6eWlhZFo1E1NDRIkjZs2KBDDjlEkkY9BgAAAIzw+l1yeUz17+aGcfFYUr46jwzDyHFlAMqBFQ5LjiOnY4Os1j12en46mZTT2SlzXmsBqgMAYGxKYv7B3//+9+yv29ra9Oabb2qvvfaSJM2fP1+PPPKIJGndunV6/fXXdeihh+702EQQi/Xo0ku/rjPPPFVnn/0ZLV68SN3dmY8tvvHG6zrnnDN1xhmn6uKLL1R3d1f2uquuukInnzxfc+fOUTwe32bN3t6Yrr56sc4441Sdddandd999xT0mQAAAPLBMAz5g97dD4J7M0EwgInJCmUC3bHOCbY7NkiOw0ZxAICSUhIzgm+//Xb9/e9/l8vlkmVZuvLKKzV9+nRJ0rnnnqvLL79cxxxzjEzT1DXXXKNAILDTYxOBYRj67GfP1oEHzpEk3Xnnrfre927XZZddqWuvXaLFi7+t2bMP0P33/1B33327Fi++WpJ00kkn62tfu1gnnnjs+9a87rpv66CD/l1Ll14vSdqyZXPhHggAACCP/EGv+rt2LwhOxJKqn+rLcUUAyoU1vDeNHWkb0/nO8HlWmCAYAFA6SiIIvvXWW3d4zOfz6bbbbtvlYxNBbW1dNgSWpH322VePPvpTrV37pjwej2bPPkCSdMopp+n000/MBsFz5hy83RnBbW3r9Y9//F3f/e7N2dcmTZqc56cAAAAojECDV53/6FU6nd6lEQ92ytFAX4qOYGACM4INMqp9stujYzp/pHOYjmAAQCkpiSC4XD3x50794o2OvKx90r5TdcI+TWM+33EcPfroTzV37mHq7OzQ1KnN2WP19fVyHEe9vTHV1tbtcI11697WlCmN+u53r9Xf/rZWDQ2T9NWvXqRp06aP61kAAABKgT/olT3kaLA/parA+zd72pFEb1KSCIKBCcwwDJmh0Jg7gu1ImwyfX0Z9YTZABwBgLEpiRjDGb+XKFfL5qvWpT316t9dwHEd/+csbOv74E7Vq1UM68cRTdPnl38hhlQAAAMXjD3olSX27OB4iHiMIBpCZE+yMtSO4PSozFGaDSQBASaEjeBxO2Kdpl7p28+WOO25RJLJey5evlGmaamqaqo6ODdnjPT09Mk1z1G5gSWpqmqrGxqmaPfvfJEmHH36UrrlmiXp6elRfX5/XZwAAAMi3wHAQ3N89qMl7jH1fiX8Fwd681AWgPFjhsJKv/FZp25ZhWaOea0fa5JrxoQJVBgDA2NARXOa+//07tXbtm1q27CZ5PJkulZkzZ2lwcFB/+tMfJUmPPfZfOvLIo3e61syZs1RdXaW33/6HJOmPf/yDamvrVFc3eoAMAABQDnzvCoJ3xUgQXF079nESACqP1RKWhobkbNo46nnpVErOhnZZodYCVQYAwNjQEVzG3n77H3rwwfvU2rqHzj//S5Kk5uYWLVt2o5YsuUYrVlyvZDKpqVObddVV12avu+yyS/SXv/xZkvTZz35K06ZN18033yHDMLR48dVatmypkskhVVVV6brrbuDjTAAAoCK43Kaqa9zq28UgOBFLyuNzyeUZvQMQQGUzw5mN3+xoRNa79mR5L2djp2TbskKhQpUGAMCYEASXsWnTpuvll1/b7rH99put1asf2e6x5ctvUirlbPfY3nt/WPfcszpnNQIAAJQSf4NX/bsxI9hXy3xgYKKzQpkg2IlGpIP+fYfnjWwoR0cwAKDUMBoCAAAAE4Y/6N2t0RBsFAfAnNIoeTyyo5FRzxs5PtJBDABAqSAIBgAAwIThD3oV703K3sGno7YnHkvKV08QDEx0hmnKam4ZWxDs9cqcNLlAlQEAMDYEwQAAAJgwAkGvlP7XBnA7MzRoa2jAVjWjIQBIMkPhnQbBTjQiKxSWYfLtNgCgtPAvEwAAACYMf4NXksY8JzgxHBgzGgKAlJkTbEcjSqfTOzzHjrTJamGjOABA6SEIBgAAwIQRCGaC4L4xzgmOEwQDeBcrFJYSCaW7tmz3eNpxZLdHZYXZKA4AUHoIggEAADBhVAXcslzGmDuCCYIBvNtIwGtHo9s97mzeJCWTMkNsFAcAKD0EwQAAAJgwDNOQP+jdtY5gQ6qudee5MgDlYGTkgx1t2+7xkfnBdAQDAEqRq9gFYHzuuOMWvfTSr7RhQ7tWr35Y06btJUn61rcuUXt7u0zTUHW1TxdfvEgzZsyUJK1f/46WLr1KsVhMdXV1uvLKpWpt3UOSdNppJ8rj8cjjyXxs8oILvqZDDvmoHMfRBRecq4GBAUnSpEmTtWjRt9Tc3FKEpwYAANh9/qB37B3BvUlVB9wyLfonAEjm1GbJsnbcERzJBMQWHcEAgBJEEFzmDj30CJ1++hm68MLztnn9iiuWKhAISJJ++9tfa9mya7Rq1UOSpOXLr9Opp56uefOO1zPPPKkVK67Xbbd9L3vtd76zPBsojzBNUzfddHt2zZ/8ZI1uv32lrr9+RT4fDwAAIOf8Qa82v9OndDotwzBGPTcRS6qasRAAhhlut8ymqXJG6wh2uWQ2NhW4MgAAdo4geBy8f/0vVb35cF7WHph1hgb3Pm2n582efcB2Xx8JbCWpr69PhpHpYunu7tLatX/VzTffKUk6+uh5WrnyBnV3dysYDI56r3evGY/3yzRH/8YJAACgFPkbvBoatJVM2PL6Rn87HO9Jqm5qdYEqA1AOrFA4OwLivexIRFZziwzLKnBVAADsHEFwBfvud6/V73//qiTpxhtvkyR1dnZqypRGWcNvTCzL0uTJU7RxY2c2CF66dImktPbb7wB95SsXqqamJrvmpZd+XW+9tVZ1dXVaufLOwj4QAABADgSCmRFY/d2DowbB6XRa8d6kmmfWFao0AGXACoU1+KvntnvMjrbJDDEfGABQmgiCx2Fw79PG1LVbLJdfvkSS9PTTT+iuu27NhsGjufPOe9TUNFXJZFK33XaTVq68QVdddW32+I033ibHcfTgg/fp/vvv1aWXXp63+gEAAPLBPxIEdw2qIeTf4XnJhC17yJGP0RAA3sUMhZXu7ZWztVdmTW329XQ6LScalfuAA4tYHQAAO8auFxPA/Pkn6A9/+H+KxXrU1NSkTZs2yrZtSZJt29q8eZMah2dYNTVNlSR5PB4tWHC6Xn/9T+9bzzRNffKTJ+uZZ54s3EMAAADkyEgQ3Nc9+oZx8VhSkgiCAWxjZCO4946HSHd3KZ2Is1EcAKBkEQRXoHg8rs7OjuzXL7/8G9XW1qq2tk7BYINmzJip559/RpL0/PPPaMaMmQoGg0okEurr65OU+Wn2888/o732+pAkqbu7Wz09Pdk1X3zxeU2fvu2GcgAAAOXA7bXk9bvUv5MgODEcBLNZHIB3Gwl6nci2QbA9/LUVZjQEAKA0MRqizN1yywq99NKL6uraooULL1RtbZ1uu+1uLVlyuQYGEjJNS7W1tVq+fGV2V+zLLluspUuv0n33/VA1NTVasmSpJKmra4uuvPKbchxHtu1ozz0/qEsuuTx77Lrrvi3bTimdTqu5uUVLllxTtOcGAAAYD3/Qu9MguD+WOU5HMIB3s1pCkiS7/T1BcLRtm+MAAJQaguAyt3DhIi1cuOh9r//gB/fv8Jo99/yg7rnngfe9HgqFdd99P97uNdOn76VVq36023UCAACUkkDQqy2R/lHPScSSMi1DVX53gaoCUA6MqiqZUxqzHcAj7GhEMk2ZzS1FqgwAgNExGgIAAAATjr/Bq3hsUI6d3uE58VhS1bUeGaZRwMoAlAOzJZTtAB7hRCMym6bKcPPDIwBAaSIIBgAAwITjD3qVdqR4b3KH58RjScZCANguKxyWE41u85odjTAfGABQ0giCAQAAMOEEGrySpP6uHc8JTsSSqq6lsw/A+1ktYTlbNiudSGRfsyOR7EZyAACUIoJgAAAATDj+YCYI7tvBhnGOk1a8d4iOYADbZYUzga/dnukKtnt6lN7aK5MgGABQwgiCAQAAMOGMzP7t30EQPNg3pLSTlq/OW+DKAJQDK5QZATEyJzi5fv3w6wTBAIDSRRAMAACACcc0DfnrPTscDRGPZWYH++rpCAbwfiOdv3YkIklKvjMcBIcJggEApctV7AIwPnfccYteeulX2rChXatXP6xp0/aSJA0ODur222/Wa6/9Xh6PR/vss78uu+wKSdL69e9o6dKrFIvFVFdXpyuvXKrW1j12et1pp50oj8cjjyfTGXPBBV/TIYd8tAhPDQAAMH7+Bu8OO4KzQXAtQTCA9zMDARl19XLah4PgtuEguCVUzLIAABgVQXCZO/TQI3T66WfowgvP2+b1u+++TR6PR2vW/EyGYaira0v22PLl1+nUU0/XvHnH65lnntSKFdfrttu+t9PrJOk731meDZsBAADKWSDoVVt793aPxXszQXA1M4IB7IAVCmc7gofeWS+zsVGGt6rIVQEAsGOMhihzs2cfoKamqdu8Fo/H9fTTT+jLX75AhmFIkhoaJkmSuru7tHbtX3X00fMkSUcfPU9vvfVXdXd3j3odAABApfE3eJWMp5QcSL3vWLwnKcttylNtFaEyAOXACoVlj3QEr1+fnRsMAECpoiN4HJ6NPKWnIr/My9rHhT+pY8PH7da10WhEtbV1uu++e/SHP7ym6upqnXfeVzV79gHq7OzUlCmNsqzMNzWWZWny5CnauLFTpmnu8LoRS5cukZTWfvsdoK985ULV1NTk4nEBAAAKzl+fGXfV352Up3nbt8WJWFK+Ok/2h+MA8F5mKCznhWeVHhpScv16uT7y8WKXBADAqOgIrkCO46i9PaoZM2bq3nsf1AUXfF1XXLFI/f1947ruzjvv0QMPrNE996yWlNbKlTcU4GkAAADyI9AwEgS/f05wvDcTBAPAjlihsOQ4st/+u+wtW2SF6QgGAJQ2OoLH4djwcbvdtZtPTU1TZVmWjjkmM/5hn332VX19vdra1qupaao2bdoo27ZlWZZs29bmzZvU2NgkwzB2eN3ee384O4LC4/FowYLTdfnl3yjaMwIAAIyXPzhKEBxLqnlGXaFLAlBGrHBYkpT8n1czX4fCxSwHAICdoiO4AtXX1+vAA+fo//7f/5EkrV//jrq7uxQKtSoYbNCMGTP1/PPPSJKef/4ZzZgxU8FgcNTrEomE+voyncHpdFrPP/+M9trrQ8V5QAAAgBzwVLvkqbbU17VtEGynHA30DbFRHIBRjQS/yd//LvM1HcEAgBJHR3CZu+WWFXrppRfV1bVFCxdeqNraOv3oRz/RpZd+S8uWXaM77lgpl8ulK6+8JjvP97LLFmvp0qt0330/VE1NjZYsWZpdb0fXRaMRXXnlN+U4jmzb0Z57flCXXHJ5sR4bAAAgJ/xB7/s6ghNbh6S0GA0BYFRGfVCGz6/UG69LksxQqMgVAQAwOoLgMrdw4SItXLjofa+HQmHdcccPtnvNnnt+UPfc88B2j+3oulAorPvu+/H4igUAACgx/qBXsY7ENq8lYklJBMEARmcYhsxQSPbf3pI1aZJMn7/YJQEAMCpGQwAAAGDC8ge96u8ZVNpJZ1+LjwTBtQTBAEY3Mh7Cs8ceRa4EAICdIwgGAADAhBVo8Mqx05lxEMNGgmBmBAPYGSuUmQtMEAwAKAcEwQAAAJiw/EGvJG0zJzgeS8pTbcnttYpVFoAyYQ3PBXZ/gCAYAFD6CIIBAAAwYQUaMkFwX9e7g+BBVTMWAsAYmOGRjuAPFLkSAAB2jiAYAAAAE5avziPD2LYjOBFLslEcgDFx73+A/F+7WDWfOKrYpQAAsFMEwQAAAJiwTMuUr86jvq6B7GtxgmAAY2RYlqo/fabM6upilwIAwE4RBAMAAGBC8we92Y7goaStZMImCAYAAEDFcRW7AOy+WKxH1157laLRiNxut8LhPbRo0WIFg0G98cbrWrHieg0ODqq5uVlXXXWtgsEGrV//jm68cZk2b94ky7I0a9Y+uuSSy+T1VkmSXn75N7rrrltl27ZmzpylxYuvVlVVlZLJpC6//BKtXfsXSdITT7xQzEcHAADIGX+DVxvWxiQp2xlMEAwAAIBKQ0dwGTMMQ5/97Nlas+ZnWr36EYVCYX3ve7fLcRxde+0SfeMbl+nhh3+m2bP/TXfffbskye1266KLvqEf//ineuCBhzUwMKA1a34kSYrH47rhhuu0fPlKPfLIY/L5fFqz5kFJkmmaOvPMs3TLLXcV7XkBAADywR/0aqBvSKmknd00rpogGAAAABWGjuBxGHj6CQ088Xhe1q464URVzT9h1HNqa+t04IFzsl/vs8++evTRn2rt2jfl8Xg0e/YBkqRTTjlNp59+ohYvvlrNzS1yuUylUo5M09SsWfvonXf+KUl69dVXtPfes9TausfwdZ/Sd77zbX3xi+fJ5XLp3//9EG3Y0J6X5wUAACiWQNArServTioZS0miIxgAAACVh47gCuE4jh599KeaO/cwdXZ2aOrU5uyx+vp6OY6j3t7YNtcMDg7oiSd+oblzD5MkdXZ2qKnpX9c1NU3Vxo2dhXkAAACAIvE3jATBg+obnhVcXUsQDAAAgMpCR/A4VM0/Yaddu4WycuUK+XzV+tSnPq3f/ObFnZ6fSqV09dWLddBBczR37uEFqBAAAKA0jXQE93UPaDCWUlXALctFvwQAAAAqC+9wK8Add9yiSGS9li5dJtM01dQ0VR0dG7LHe3p6ZJqmamvrJEm2beuaa5aopqZWCxcuyp7X1DRVnZ3/uq6zs0ONjU2FexAAAIAi8PhccnlM9XdlOoIZCwEAAIBKRBBc5r7//Tu1du2bWrbsJnk8mW9aZs6cpcHBQf3pT3+UJD322H/pyCOPlqThjeSulmmauvzyJTIMI7vWRz7yUb355l/U1rZ++Lqf6qijji7wEwEAABSWYRjyB73q706qr2uAjeIAAABQkRgNUcbefvsfevDB+9TauofOP/9LkqTm5hYtW3ajliy5RitWXK9kMqmpU5t11VXXSspsCPf0009q2rTpOvfcz0uS9ttvti655DL5fH5985uL9c1vLpTjOJoxY6YuuujS7P2+/OWztWlTp7Zu3aoFC47XIYd8VJdfvqTwDw4AAJBjgQavtm4eULx3SJM/WFPscgAAAICcIwguY9OmTdfLL7+23WP77Tdbq1c/8r7XP/axuXr11T8olXK2e92hhx6hQw89YrvHfvjD1btdKwAAQCnzB71qX9ujtCNGQwAAAKAiMRoCAAAAE56/wav08M/JCYIBAABQiQiCAQAAMOEFgt7srwmCAQAAUIkIggEAADDh+d8VBLNZHAAAACoRQTAAAAAmPH99Jgg2TUNVAXeRqwEAAAByj83iAAAAMOFZblPVtW5ZLlOmaRS7HAAAACDnCIIBAAAASXWN1XJ7eHsMAACAysQ73TIWi/Xo2muvUjQakdvtVji8hxYtWqytW3u1YsX12rJlsyzL0qxZ++iSSy6T11slSfrtb1/S7bffItu2NXPmLC1efLWqqjLHVq9epWeffUqW5ZLP59OiRYs1bdp0vfji83rggVXZe2/a1KnZsw/U9devKMqzAwAA5NrBp03TpIaA+gcHi10KAAAAkHPMCC5jhmHos589W2vW/EyrVz+iUCis733vdrndbn3taxfrxz/+qR544GENDAxozZofSZLi8biWLfuOli9fqUceeUw+n09r1jwoSfrb39bq5z//me65Z7UeeGCNjjrqGN11162SpCOPPFr33//j7H+NjU065ph5RXt2AACAXKvyu+WrZaM4AAAAVCaC4DJWW1unAw+ck/16n332VUdHh5qbW/ShD+0tSTJNU7Nm7aOOjg2SpFdffUWzZs1Sa+sekqRTTvmUXnjhueEVDKVSKQ0MDEiS+vv7NGVK0/vuu3btX7Vp00bNnXt4Hp8OAAAAAAAAQK4wGmIc1v1/m/XPP2zOy9ofPHCy9vy3yWM+33EcPfroTzV37mHbvD44OKAnnviFzj//QklSZ2eHpk5tzh5vapqqjRs7JUkzZnxIn/nM53T66ScqEKhRIFCjO+/8wfvu9cQTP9cxxxwnt5sdtQEAAAAAAIByQEdwhVi5coV8vmp96lOfzr6WSqV09dWLddBBc8bUvdvRsUEvv/ySHn74MT322FM6/vhP6rrrvr3NOclkUs8994xOOOGkXD8CAAAAAAAAgDyhI3gc9vy3XevazZc77rhFkch6LV++UqaZyfZt29Y11yxRTU2tFi5clD23qWmq/vjH17Jfd3Z2qLExM/7hV796XtOm7aXJkzPPNH/+CVq16v9v716DoyzvPo7/doUImDQktWBQtIAmtYpKoaAEOQTLKSQhabUOI9MpNB4iBFBayQFBhCI6Yg+JSmmGzrS0jmOAoRCQ0iScKiEMCKQwVE594iCHnMAISUj2el44bIPCBsO9myvL9/MKciWb7252739y7Z3N5WcEb9lSpB49btfdd9/j76sFAAAAAAAAwCGcEdzOLV2aq0MBfKh2AAATBUlEQVSHDmrRojcVEvLlHzfxeDz69a/nye12a/bsOXK5XN73f/jhR3TgwAGVl/+fJGn16nzFxT0mSerRo4f27/9YFy5ckCR99NF29erV57LPt27dGs4GBgAAAAAAANoZzghux44ePaI//3m5eva8U88+O1mSFBXVQwkJE/Thh+vVu3cfTZkySZLUt++DevHFl9Slyy3KyMjWr341Qx6PR/fcE6Pp02dJkoYNi9OBA2WaMuUpdewYorCwMGVmzvV+vlOnTmr//r2aP/+1wF9ZAAAAAAAAAK3GRnA71rt3H23btuuKa1d7uyQNHTpcgwcP/drbXS6X0tKmKy1t+hU/rnv327Rp07bWxQIAAAAAAABoM7w0BAAAAAAAAAAEOTaCAQAAAAAAACDIsREMAAAAAAAAAEGOjeArcskYT1tHBJ0vb1NXW2cAAAAAAAAANxw2gq8gJKSTamoq1Nh4UcaYts5p94wxamy8qJqaCoWEdGrrHAAAAAAAAOCG06GtA2wUEfEd1daeVVXVKXk8TW2d4zi32y2PJ7BnPLvdN6lz51CFhoYH9PMCAAAAAAAAYCP4ilwul8LCuiosrGtbp/jFd74TpjNnPm/rDAAAAAAAAAABwktDAAAAAAAAAECQYyMYAAAAAAAAAIIcLw0hye12tXVCwLXH60xzYNAcGDQHRntsltpnN82BQXNg0BwYNAcGzYHTHrtpDgyaA4PmwKDZbi1dV5cxxgSoBQAAAAAAAADQBnhpCAAAAAAAAAAIcmwEAwAAAAAAAECQYyMYAAAAAAAAAIIcG8EAAAAAAAAAEOTYCAYAAAAAAACAIMdGMAAAAAAAAAAEOTaCAQAAAAAAACDIsREMAAAAAAAAAEGOjWAAAAAAAAAACHJsBAMAAAAAAABAkGMjuJ1bvHix4uLiFBMTo//85z/etxcXFys5OVkJCQl66qmnVF5efk1raWlpSkxM1IQJEzRx4kQdPHjQ+uZLcnJyvnaZtjbHxcVpzJgxSkpKUlJSkrZu3Wp9c319vebOnatRo0YpISFBc+bMsbr5008/9d6+SUlJiouL08CBA61ulqSioiJNmDBBSUlJSkxM1MaNGx1v9kf3tTxGr0d1dbVSU1M1evRoJSQkaOrUqaqqqpIkffzxx0pMTNTo0aM1efJkVVZWej+utWu2Nr/44osaMmSIYmJi9MUXXzja66/uY8eOadKkSRozZozGjx+vjIwM1dXVWd3s8Xj005/+VImJiUpMTNSUKVP06aefWt3cXEZGhl/uI/5ojomJUUJCgvdYfejQIeuba2pq9MILL2j06NGKj49XTk6O1c27d+++bB4OGTJEycnJVjdL0gcffOC9b6SkpGjXrl3WN+fn5yshIUHx8fF69tlnVVNTY0Wzr9lh6yz01ezvWeh0cyDmoD+6bZ6F13IfsG0W+mq2dRb6arZ1Fl6t2eZZ6Ot2tnUW+mq2cRa2dBwuLCzUmDFj9KMf/UgzZszQhQsXHG22jkG7Vlpaak6cOGFGjBhhDh06ZIwxpqamxgwcONAcPXrUGGPM6tWrzeTJk1tcM8aYc+fOef/9j3/8w0yYMMH6ZmOMKSsrM1OmTLnsMm1u9lenP5tfffVVs3DhQuPxeIwxxpw5c8b65uYWLFhgXnnlFaubPR6PGTBggPdyDh48aB566CHT1NRkdfc3+Tq0VnV1tdmxY4f3/6+99prJyMgwTU1N5rHHHjOlpaXGGGNyc3PN7NmzjTGm1Wu2NhtjzL/+9S9TUVFhoqOjTW1traO9/uouLy83//73v73vN336dJOTk2N1szGXz8M//elP5vnnn7e+2Rhj/vnPf5qMjAy/3Ef80ezP+7K/mp955hmzfPly7/9Pnz5tfXNzzz33nPnjH/9odXNVVZXp16+f93uNTZs2mbFjx1rdfPjwYTNkyBBTWVnpXZszZ06bNxtz9dlh6yz01dzSmo3NgZiD/ug2xs5Z2FKzMfbNwpaabZyFLTXbOAtbam7Ollnoq9nWWeir2dZZ6Os4XFtbawYPHmyOHTtmjDEmMzPT/P73v3e02TZsBAeJ5ps5e/fuNePGjfOuVVdXm+joaFNZWelz7atWrVplkpOTrW+ur683TzzxhCkvL/f7BqtTzYHYCHayuba21vTv39+v36A43dxcfX29GTRokCkrK7O62ePxmIEDB5pdu3YZY4zZuXOnGTVqlN+aner+JscVp2zYsMH87Gc/M3v37jXx8fHet1dWVpqHHnrIe31as2Zrc3P+/oGhOSe7jTEmLy/PZGZmtqvmnJwcM23aNOubq6qqTHJysjl37lxA7iNONAfyvuxE87Fjx8yIESO8T4q2h+bmKioqzAMPPOCXJ3OdbL707+PHjxtjvvye9Oc//7nVzQUFBSY1NdW7VlZWZsVcae6rjzdbZ6Gv5mtdc5KTzcYEZg4a43y3LbOwuSs12zgLW2q2cRb66rN1Fjbn6za1aRY299VmW2ehr+b2MAuNufw4XFBQYJ5++mnv2r59+y772TYY8dIQQahXr16qqKjQvn37JEl///vfJUmfffaZz7VLsrKyNHz4cL311ltavHix9c2//e1vlZiYqDvuuCMgrU40S9KsWbOUkJCgefPm6dy5c1Y3l5eXq2vXrsrJyVFKSoomTZrk+K+lON3cXGFhobp376777rvP6maXy6Xf/OY3SktL04gRI/T8888H7DF4Pd3X+nVwisfj0d/+9jfFxcXps88+U48ePbxrkZGR8ng8qqmpafWarc1twenuuro65efnKy4url00p6amKjY2VuvXr1dWVpb1zfPnz1d6errCwsL81up0syRNmjRJSUlJevPNN9XQ0GB18+HDh9W9e3dlZWUpOTlZqamp+uSTT6xubm716tWKjY3VrbfeanVzZGSk5s+fr+TkZA0fPlxLlizR3LlzrW7+3ve+p/3796u8vFzGGK1du1bnz59v87nii62z0CZONwdiDkrOdts2C1ti4yy8FrbNQl9snYXXyqZZ6Iuts9CX9jALv3oc/urH9ejRw28/x9qCjeAgFBYWprfeekuLFi1SSkqKKisr9a1vfUs33XSTz7VLFi5cqOLiYs2cOVOvv/661c179uxRWVmZJk6cGJBOJ5olacWKFVqzZo3y8/NljNH8+fOtbm5qalJ5ebm+//3va+XKlZo1a5amTZum2tpaa5uby8/P149//GO/t15vc2Njo5YuXaq3335bRUVFeueddzRjxgy/vRasU93X+nVwyquvvqouXbroqaee8svl+0N7bJac7W5sbNTMmTP18MMPa+TIkQ7UXZmTzcuWLdPWrVsVHx+vd955x4G6K3OiuaCgQB07dtTw4cOdC/PBqdu5uLhYK1eu1IoVK3T48GHl5uY6VPh1TjR7PB7t3btXKSkpWrVqlR5//HE999xzDlZezuljx8qVK/0+D51orq2t1YoVK/TBBx+ouLhYs2fP1tSpU2WMcbD0f5xo7tWrl7KzszVz5kw98cQTCg8PlyR16NDBqczLtMe5cqM3B2oOSsxCZuHVMQuZhVdzI8zCQB6Hbeafrwba3ODBgzV48GBJUkVFhfLy8nTnnXe2uNbchAkT9PLLL6u6uloRERFWNv/lL3/RkSNHvA/ikydPasqUKVq0aJGGDBliZbMkRUVFSZJCQkI0ceJEvw5OJ5rr6urUoUMHjR8/XpL04IMPKiIiQseOHVPfvn2tbL7k1KlTKi0tDdiTGtfTfPDgQZ0+fVr9+/eXJPXv31+dO3fWkSNH9MADD1jb3dKakxYvXqz//ve/evfdd+V2uxUVFaUTJ05416uqquR2u9W1a9dWr9naHGhOdjc1NWnWrFkKDw9XdnZ2u2i+xO126yc/+YlGjRqlefPmWdu8c+dO7dix47KzzMaPH69ly5bp7rvvtrJZ+t88DA0N1eOPP67ly5c72up0c1RUlKKiojRgwABJ0qhRo/TLX/5SVVVVioyMtLL5ko8//lhnz57VsGHDHO30R/OGDRsUFham3r17S5LGjRunjIwMVVdXW307x8fHKz4+XpK0b98+/fWvf1VoaKijvd+02RdbZ6EtnGwO1ByU/HNb2zQLfbF1FrbExlnYUq+Ns/Ba2DYLfdm2bZuVs7Alts7Cqx2Ho6KiVFJS4v3/iRMnvI/JYMUZwUHqzJkzkr58tm7JkiV68skn1aVLF59rX3zxxWWnwBcWFio8PDxg35C1pvnpp5/Wtm3bVFhYqMLCQt12223Ky8sLyCZwa5vPnz+vzz//XJJkjFFBQYHuvffegPS2tjkyMlKDBg3S9u3bJX35VzcrKyt11113Wdt8yapVqzRs2LCAPJlxvc233XabTp48qaNHj0qSjhw5osrKSr9sqDrZ3dKaU5YsWaKysjLl5uYqJCREknT//ferrq7O+1Il7733nsaMGXNda7Y2B5KT3R6PR7Nnz9ZNN92khQsXyuVyWd9cVVXl/evDkrRhwwbFxMRY3Txv3jxt2bLFOw8lae3atY7/4Otk89mzZ71/sbmxsVEffvihX+ah08eOLl26eH8FtrS0VOHh4Y7PGH8cO/Lz85WYmOi3s3KcbL7jjjt04MAB71/73rFjh0JDQ62/nS/Nwvr6ev3ud7/T5MmTHe1tTbMvts5CGzjZHKg56HS3rbPQF1tnoS+2zkJfbJ2F18K2WeiLrbOwJTbOQl/H4UcffVT79+/X8ePHvR83duxYx5tt4jL+Oq8cAbFgwQJt3LhRFRUVioiIUNeuXbVu3TplZWVp9+7dunjxomJjY5WZmambb75Zkq66VlFRobS0NF24cEFut1vh4eF66aWXHH9dVSebvyouLk7vvvuuoqOjrW0uLy/XtGnT1NTUJI/Hoz59+ig7O1vdunWztlmSysvLlZmZqZqaGnXo0EEzZsxw/JlUf9w3Ro8eraysLA0dOtTRVn81r1mzRsuWLfMOp/T0dD322GPWd1/rY7S1PvnkE40fP17f/e531alTJ0lffnOUm5ur3bt3a+7cuaqvr9ftt9+uN954w/uaX61ds7V56tSp2rdvn06dOqVu3bopOjpaeXl5jjX7o7u4uFjPPPOMoqOj5XZ/+fzzD37wA0df48zp5kOHDikjI0MXL16UJN1+++3KyspSz549rW3+qpiYGO3evVu33HKLtc179uzRyy+/LJfLpcbGRvXr10+ZmZlWN0vS/v379corr6ihoUGdO3dWVlaWo7+14Y/muro6xcbG6v3331efPn0ca/Vn8/Lly/X++++rY8eOCgkJ0ezZs71nn9na/Itf/EInTpzQxYsXNW7cOE2fPt173GvLZl+zw9ZZ6KvZ37PQ6eZAzEF/dNs8C6/1PmDTLLxas82z0NftbOss9NVs6yz01WzrLPTVbOMsbOk4vGnTJr3xxhvyeDy699579dprrzl+UpNN2AgGAAAAAAAAgCDHS0MAAAAAAAAAQJBjIxgAAAAAAAAAghwbwQAAAAAAAAAQ5NgIBgAAAAAAAIAgx0YwAAAAAAAAAAQ5NoIBAAAAAAAAIMixEQwAAAB8Q7NmzVJGRsZlb9u5c6cGDRqk06dPt1EVAAAAcHVsBAMAAADfUFZWlrZs2aLt27dLkurr6zVnzhy99NJL6tat23VffmNj43VfBgAAANAcG8EAAADANxQREaHs7GzNmTNH58+fV05Ojnr27KnevXvrySef1IABA5SYmKiSkhLvx+Tn52vs2LHq16+fRo4cqffee8+7VlJSoqFDh+oPf/iDYmNjv3a2MQAAAHC9OrR1AAAAANAejR07VgUFBXrhhRe0Z88erVy5UikpKXr99df16KOP6qOPPlJ6errWr1+vyMhIffvb39bSpUvVs2dPlZaWKjU1VX379tV9990nSaqoqNDZs2dVVFQkj8fTxtcOAAAAwYYzggEAAIBWmjt3rkpKSpSWlqZ169Zp6NChGjZsmNxut2JjY3X//fdr8+bNkqThw4frzjvvlMvl0sCBAxUbG6tdu3Z5L8vtdis9PV0hISHq1KlTW10lAAAABCnOCAYAAABa6dZbb1VERITuuecebdy4URs2bFBRUZF3vbGxUYMGDZIkbd68Wbm5uTp+/Lg8Ho/q6uoUHR3tfd+IiAjdfPPNAb8OAAAAuDGwEQwAAAA4ICoqSklJSVqwYMHX1hoaGpSenq7Fixdr5MiR6tixo9LS0mSM8b6Py+UKZC4AAABuMLw0BAAAAOCAxMREFRUVaevWrWpqalJ9fb1KSkp08uRJNTQ0qKGhQZGRkerQoYM2b96s7du3t3UyAAAAbiBsBAMAAAAOiIqK0ttvv62lS5fqkUce0bBhw5SXlyePx6PQ0FBlZ2drxowZ+uEPf6i1a9cqLi6urZMBAABwA3GZ5r+PBgAAAAAAAAAIOpwRDAAAAAAAAABBjo1gAAAAAAAAAAhybAQDAAAAAAAAQJBjIxgAAAAAAAAAghwbwQAAAAAAAAAQ5NgIBgAAAAAAAIAgx0YwAAAAAAAAAAQ5NoIBAAAAAAAAIMj9P1j5E+iWov81AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABXkAAAH1CAYAAACjqP0cAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXhU9dn/8c85k0zIhCQTSDITFkVAkaJFBdciWIqKdam2tVWf2tqqrctjwQWlKKAiIIti3fcFq6DPT9FaFxR3lGp51D4ulFoXEMkMBJIJySSZzDnn98cwo8gamDmTGd6v6/KCzFm+95lw4fjxzv01HMdxBAAAAAAAAADISWa2CwAAAAAAAAAA7DxCXgAAAAAAAADIYYS8AAAAAAAAAJDDCHkBAAAAAAAAIIcR8gIAAAAAAABADiPkBQAAAAAAAIAcVpDtAgAAAIB8U1dXpzFjxuiTTz7RL3/5S5WUlGjFihWaPXt2tksDAABAHqKTFwAAAHln6tSpOvjgg/XLX/5SoVAo9fozzzyj6667bpNz//Of/+i8887TkCFDdOCBB+rMM8/Ue++9t8Nr3XLLLbrssss2ee2xxx5TRUWF3nvvPY0fP37XHgYAAADYDkJeAAAA5JX/+7//08cff6y33npLBx10kO6++25J0oYNG3Tfffdp7NixqXNXrlyp008/XQMGDNDLL7+sN998U0cffbTOPvtsvf/++ztdw+rVq9WvXz8ZhrHLzwMAAABsDyEvAAAA8sqqVas0ZMgQeb1eHX744frqq68kSXPmzNHZZ5+trl27ps695ZZbdMABB+jiiy+W3+9X165d9etf/1onnXRSarTCO++8o+HDh2+yxsiRI/X222/rjTfe0F133aXnn39eBx54oE466SSNHz9eTz31lO677z4deOCBevvttzer8eWXX9bxxx+voUOH6swzz9Rnn30mSXriiSd03nnnpc475phj9Mc//jH19YgRI7Rs2bL0vVkAAADIC4S8AAAAyCv9+/fX0qVL1draqiVLlqh///768MMP9cUXX+jEE0/c5Ny3335bo0eP3uwexx13nN577z21trZuc63hw4frD3/4g4477ji9//77+utf/6rrr79eJ554Yqob+Igjjtjkmi+++EKXXnqpJkyYoCVLlmj48OE677zzFIvFdMghh2jp0qWybVvhcFjt7e364IMPJElfffWVotGoBgwYsIvvEAAAAPINIS8AAADyyj777KNjjz1Wv/jFL1RbW6tzzz1XU6dO1VVXXaW5c+fqv/7rv3TppZeqsbFR9fX1qqqq2uweVVVVsm1bkUgk7fU999xzGjFihH7wgx+osLBQZ599tlpbW/X++++rd+/eKikp0bJly7R06VINGzZM1dXV+uyzz/Tuu+9qyJAhMk0+wgMAAGBTBdkuAAAAAEi3s846S2eddZYk6ZFHHtHQoUNl27Yef/xxLViwQPfcc4/uvvtuVVRUaO3atZtdv3btWpmmqbKysrTXtmbNGvXo0SP1tWmaqqmpUTgcliQdfPDBevfdd7VixQodfPDBKi0t1T/+8Q998MEHOuSQQ9JeDwAAAHIfbQAAAADIW3V1dXrsscd04YUX6tNPP9WAAQNUWFio/fffX8uXL9fhhx+uF154YbPrnn/+eR1wwAEqLi5WcXHxJmMbLMvS+vXrU193dHO16upqrV69OvW14ziqra1VIBCQJB1yyCF655139L//+7865JBDdMghh+gf//iH3n33XR188MEdfQsAAACwGyDkBQAAQN6aPn26LrroIhUXF6tXr1768MMP1dzcrHfffVe9e/fWf//3f+v999/XnDlz1NDQoKamJj388MN6+umnddlll0mS9tprL7W1tem1115Te3u77rjjDsVisdQa3bt319dffy3btneopuOOO06vv/66lixZovb2dt1///3yer068MADJSU6ed955x21trYqGAxq6NChevPNN9XQ0KDvfe976X+TAAAAkPMIeQEAAJCXlixZog0bNujoo4+WJH3/+9/XiBEjdNRRR+mdd97R73//e/Xp00ePPvqo/vWvf2nkyJE68sgj9eKLL+ree+/VkCFDJEmlpaWaPHmyrrrqKg0fPlzFxcUKBoOpdZIbtx166KE65ZRTtltX3759NWvWLE2ZMkWHHXaYXn31Vd15553yer2SEqFySUmJhg4dKknq2rWrevXqpYMOOkgejyet7xEAAADyg+E4jpPtIgAAAAAAAAAAO4dOXgAAAAAAAADIYYS8AAAAAAAAAJDDCHkBAAAAAAAAIIcR8gIAAAAAAABADiPkBQAAAAAAAIAcVpDtAjKtvr5Ztu1kuwzXdO/eVevWNWW7jA6hZndQszuo2R3U7A5qdk8u1k3N7qBmd1CzO6jZHdTsnlysm5rdQc3uyMWad4VpGqqoKNnq8bwPeW3b2a1CXkk5+bzU7A5qdgc1u4Oa3UHN7snFuqnZHdTsDmp2BzW7g5rdk4t1U7M7qNkduVhzpjCuAQAAAAAAAAByGCEvAAAAAAAAAOQwQl4AAAAAAAAAyGF5P5MXAAAAAAAAQPo5jqOmpohaWppk25ara69ZY8q2bVfXdENBgVcVFVXyeDoW2xLyAgAAAAAAAOiw+vq1MgxD3boF5PEUyDAM19YuKDAVj+dXyOs4jpqbG1Vfv1aVlTUdupZxDQAAAAAAAAA6LBZrld/fXQUFha4GvPnKMAyVlJQpHo91+FpCXgAAAAAAAAA7wZFhEC+m086G5XwXAAAAAAAAACCHEfICAAAAAAAAQJo999wzOv/8s11Zi43XAAAAAAAAAKTViy++oMcee0QrV34pn8+n/v0H6Ne//p0GDz4go+sOGzZU8+cvUK9evXfq+ubmJt177116/fVXtGFDoyoquukHPxiu3/zmbPn9/jRXmz6EvAAAAAAAAADSZv78v+gvf3lI48b9SYcccrgKCwv197+/rcWLX894yLsr2tvbNWbMBeratatuuOEW7blnH0UiDXr66Se1bNlHOvzwYdkucasY1wAAAAAAAAAgLZqamnTffXfpkkuu0IgRI1VcXKyCggINGzZcF144RpIUi8X05z/foJ/8ZLR+8pPR+vOfb1AsFpO05REHw4YN1apVX0mSpk69WjfcMEOXXPJHHX30cJ177m/09derJEkXXniuJOmss07X0UcfqZdfflFnnvkLLV78Rupe8Xhcxx//I/373//arPYXXnhW4XBI06bN1l579ZVpmqqo6KazzjonFfB++eUX+u///r1Gjz5Kv/rVL7R48eup6yORBl1xxcU65pgROvfcX6fqSlqx4kuNHXuBjjtupE4//ad6+eWXdum9/jZCXgAAAAAAAABp8dFH/6dYLKbhw4/a6jlz596vjz/+UA8++KgefHCeli37WA89dN8Or/Hyyy/q7LN/r+eff0W9evXW3XffJkm67bZ7JEkPPjhPL730pn70o2M0evTxevHF51PXLlmyWN27V2qfffbd7L5Ll76jQw89XD6fb4vrxuNxXXHFxTrkkMP0zDMv6eKLx+maayZq5covJUk33jhDXm+Rnn76Bf3pT5P07LN/TV3b0tKiiy++UEcfPVrPPPOirrlmmm688Xp98cXnO/zc20LICwAAAAAAACAtGhsjKi/3q6Bg61NiX3zxef32t+eooqKbKioq9NvfnquFC5/b4TWGDz9Kgwbtp4KCAh1zzGh9+um/t3ruscf+WEuWvKXm5iZJ0sKFz+nYY3+8xXMjkYi6d6/c6r0+/vhDtbS06Fe/OkuFhYUaMuRgHXHEML300kJZlqXXXntF55xznoqLi9W3b38dd9wJqWvffvtNBYM1Ov74k1RQUKB99tlXI0aM1KuvLtrh594WZvICAAAAAAAASIuysnJFIg2Kx+NbDXrr6uoUCNSkvg4Ga1RXt3aH1+jWrXvq90VFXdTS0rLVcysrq7T//oP12muvaPjwH+rvf39bY8ZctsVzy8vLtW5d3VbvVVe3VtXVAZnmN32zydobGuplWZaqqwOpY4FAMPX7UKhWn3zykUaPPir1mmVZWw2cO4qQFwAAAAAAAEBa7Lff91VYWKg333xNP/zhqC2eU1lZqXC4Vn379pMkhcMhVVZWSZK6dClWW1tr6txtha476rjjjtff/va0LMvSoEHfV1VV9RbPGzr0UN1zzx1qaWlRcXHxFuqu0po1Ydm2nQp6w+GQevfeQ35/hTwej9asCWvPPfukjiVVVwd0wAEH6aabbt/l59kSxjUAAAAg7335QZ0a67be4QEAAID06Nq1q84++zzdeONMvfHGa2ptbVU8HteSJW/p9tv/LEkaNepYPfTQ/aqvr1dDQ4MeeOAeHXPMcZKk/v331hdffK5PP12utrY23X//3R1av1u37lq9+utNXhs+/CgtX/4v/c//zNPo0VvvnD322B+rujqgK6+8XCtWfCnbthWJNGju3Pu1ZMlife97+6moqIseeWSu4vG43ntvqd56602NGnWsPB6PRowYqfvvv0utra364ovP9cILz6bu/YMfHKmvvlqpF154VvF4XPF4XMuWfawvv/yiQ8+3NYS8AAAAyGvxmKV3n/hCH762avsnAwAAYJedfvqvdNFFF+uhh+7TCSeM0k9/eryefPJxHXnkUZKk3/zmbO2770CdddZp+s1vfqkBA/bVb35ztiRpjz321FlnnaOxYy/Q6af/VN///gEdWvt3vztXU6dO1ujRR+nll1+SlBjpcNRRI1Vbu1ojRozc6rVer1c33XS79tyzjy6++EIde+wInXvubxSJNOh739tPhYWFmjHjRr3zzts6/vgf6cYbZ+iqq65Jde5efPHlamlp0UknHatp067Wj398YurePl+J5sy5VS+//KJOPnm0TjrpWN1xxy1qb4916Pm2xnAcx0nLnTqpdeuaZNt5/YibqKoq1dq1G7JdRodQszuo2R3U7A5qdgc1uycX686lmhvXtuiFmz9SvwOrNOSnfbJdTofk0vucRM3uoGZ3ULM7crFmKTfrpmZ37E41h0IrFAzumYGKtq+gwFQ8bu/w+Q88cI+++mqlJk2aksGq0mNL76tpGurevetWr6GTFwAAAHktGkl0R2xY37qdMwEAAJCPGhsj+tvfntZJJ52S7VIyhpAXAAAAeY2QFwAAYPf1178u0E9/erwOO+wIHXDAQdkuJ2MKsl0AAAAAkEnJkLdlQ7viMUsFXk+WKwIAAIBbTjrplLzu4E2ikxcAAAB5LRnyfvf3AAAAQL4g5AUAAEBea4nEZJiGJCnaQMgLAACA/EPICwAAgLwWbYipoodPktTc0JblagAAAID0I+QFAABA3nIcR9HGmLr3KpFpGmqmkxcAAAB5iJAXAAAAeSsWjctqt1VSUaSSiiJF6eQFAABAHirIdgEAAABApiQ3WvOVe1XWvQszeQEAAHZDkUiDpkyZpK+/XqXCwkL16rWHxo2boIqKCn300YeaNWua2traVFNTo0mTpqiiopsk6ZprrtJ77y3VunV1evHFN+Tz+VL3bGyM6IYbZmj58n+poKBAP/rR0frtb8/N1iPSyQsAAID89e2Qt7RbF2byAgAA7IYMw9AZZ/xa8+Y9qblzH1PPnr105523yLZtTZkyUZdccoXmz39SgwcfqDvuuCV13Qkn/EQPPvjoFu85derVGjRoP82f/6T+8pfHddJJp7j1OFtEJy8AAADyVjLkLS4vUtfuXdS6oV22Zcv00OsAAADglmc/DuuvH4XSek/DkBxHOmm/oI4fFNjmuWVl5TrooKGprwcN2k8LFjyh5cuXyev1avDgAyRJJ5/8c5166omaMGGyJGnIkIO3eL+vvlqpzz77j66//sbUa927V+7qI+0SQl4AAADkrWgkJtNjqEtJgUq7dZHjSNHGdnWtKMp2aQAAAMgC27a1YMETGjZsuMLhkILBmtQxv98v27bV2BhRWVn5Vu/x5Zefq6qqWtdfP0Wffrpc3bp11wUXjFHfvv3ceIQtIuQFAABA3opGYiou88owDZV275J4rb6NkBcAAMBFxw8KbLfbtqMKCkzF43aHr5szZ5Z8vmL97Ge/0BtvvLpTa9u2rU8++UjnnfffGjx4kl5//RWNH3+JHn/86Z26Xzrwc2oAAADIWy2RmHzlXklSabdEyNvM5msAAAC7pVtvvUmrVq3UNddMl2maCgSCCoVqU8cbGhpkmuY2u3glKRAIqro6qMGDD5QkjRgxUuvW1amhoSGj9W8LIS8AAADyVvTbIW9FF8mQomy+BgAAsNu5667btHz5Mk2ffoO83sTnwwEDBqqtrU3//OcHkqSnnvp/+uEPR233XgMGDFRxcRd9/vlnkqQPPnhPZWXlKi/fdjicSYxrAAAAQF6yLUctG74JeT2Fpoq7Fqo5QicvAADA7uTzzz/Tww8/oN6999B55/1OklRT00PTp8/WxInXatasaYrFYgoGazRp0pTUdRMmjNOyZR9Lks4442fq27efbrzxVhmGoQkTJmv69GsUi7WrS5cumjp1pgzDyMrzSYS8AAAAyFOtTTE5tuTze1Ov+fxeOnkBAAB2M3379tPixUu3eGz//Qdr7tzHtnhs2rRZW73nvvt+T/fcMzct9aUD4xoAAACQl6IbO3aTnbyS5PMXKcpMXgA7wLEsxevrs10GAAA7hJAXAAAAeWlLIW+J36toJCbHdrJVFoAc0fbcM/ps1NFyWlqyXQoAANtFyAsAAIC8lAx5i7/TyWtbjlqa2rNVFoAcEf/Pp7Kbm2WFVme7FAAAtsu1mbwXXHCBVq1aJdM05fP5NHHiRA0cOFAjR46U1+tVUVGRJOmyyy7TkUceKUn64IMPNGnSJLW1talnz56aNWuWunfv7lbJAAAAyGHRSEwFRaa8Xb75yFuycT5vtKFNvjLv1i4FANnhUOLXUEjaq1+WqwEAYNtcC3lnzJih0tJSSdKiRYs0YcIELViwQJJ08803a5999tnkfNu2NW7cOE2fPl1Dhw7V7bffrtmzZ2v69OlulQwAAIAcFm2IyVdetMlrPn9R6pj2yEZVAHKFFard5FcAADoz18Y1JANeSWpqapJhGNs8/6OPPlJRUZGGDh0qSTrttNP0wgsvZLRGAAAA5I+Wxtgm83ilbzp5m9l8DcB2pDp5N/4KAEBn5lonryRdeeWVeuutt+Q4ju69997U65dddpkcx9GQIUN0ySWXqKysTLW1terRo0fqnG7dusm2bTU0NMjv9+/wmt27d03rM+SCqqrS7Z/UyVCzO6jZHdTsDmp2BzW7Jxfr7uw1tzS2q6aff5M6a3r61aWkUHab0+nrT8qVOr+Nmt1BzZljbdiguqYmSVJh/dqcqTsp1+qVcrNmKTfrpmZ37C41r1ljqqAge1t+dWTtm2+eo1dffVm1tav1yCOPq1+//pKkyy+/RKtXfy3TNFVcXKxLL71C++wzQJK0cuUKXXvtJEUiEZWXl2vSpCnaY4/Ej4OdfPLxKioqktebaCK48MI/6rDDjpBt2/r973+r1tZWSVJlZaUuv/zKTXLO7TFNs8PfD1dD3qlTp0qSnnrqKc2cOVP33HOPHnnkEdXU1CgWi2nq1Km69tprNXv27LStuW5dk+zdaPfkqqpSrV27IdtldAg1u4Oa3UHN7qBmd1Cze3Kx7s5ec7zdVmtTu0yvkaozWXNxeaHW1TZ16vqTOvv7vCXU7A5qzqz4fz5N/T664qucqVvKrfc5KRdrlnKzbmp2x+5Us23bisftDFS0fQUFZofW/sEPRuhnP/ulLrzwXFnWN3VPmHC1unZNNIm++eZruu66q3X//Y9Ikq6/fqpOOeVUHXvsj7Vw4XO6/vrrdPPNd6buOWXK9erbt3/q6+Q9Z8++JXXPxx+fp5tuukHTps3a4Vpt297s+2GaxjabWV0NeZNOPvlkTZo0SfX19aqpqZEkeb1enXHGGTr//PMlSTU1NVq9+ptdTNevXy/TNDvUxQsAAIDdU0skMY7hu+Makq9tqGt1uyQAOcTaOKKhaO/+ag8xrgEAdlXRv/6fuiybn9Z7GoYhx3HUOvA0te378+2eP3jwAVt8PRnGSskRs4nu4Pr69fr3v/+lOXNukySNGnWs5syZqfr6elVUVGxzrW/fMxptlmlue2xtOrgS8jY3N6uxsTEV6L7yyisqLy9XUVGRNmzYoNLSUjmOo+eee04DBw6UJO23335qbW3V0qVLNXToUM2fP1+jR492o1wAAADkuOi2Ql5/kUL/aZTjONvdJwLA7sneuNla8dChaps3X04sJsO7+d8nAID8cP31U/Tuu3+XJM2efbMkKRwOq7KyWh6PR5Lk8XhUWVmlNWvCqZD3mmsmSnK0//4H6A9/uHCTPckuu+yP+ve/l6u8vDwVFGeSKyFvS0uLxowZo5aWFpmmqfLyct15551at26dLrroIlmWJdu21a9fP02ePFlSYvbEzJkzNXnyZLW1talnz56aNWvH25oBAACw+0qFvP7NQ5mSCq+sdluxaFxFJYVulwYgB9ihkOT1qni//dWg+bLXhOXp1TvbZQFAzmrb9+c71G3bER0d17At48dPlCS98MKzuv32P6eC3m257bZ7FAgEFYvFdPPNN2jOnJmaNGlK6vjs2TfLtm09/PADevDB+3TZZePTUuvWuBLyVlZW6vHHH9/isaeeemqr1x100EF65plnMlUWAAAA8lQ00iZJKi7bQshbXiRJam6IEfIC2CIrXCuzOqDCXr0SX4dqCXkBYDcwevTxmjlzmiKRBgUCAdXVrZFlWfJ4PLIsS3V1a1VdHZAkBQJBSYkRtKeccqrGj79ks/uZpqkTTviJTjvtpxkPebO3/R0AAACQIdFITF26FsizhR2Xk9290YY2t8sCkCPsUEieYI0KeyZ2QrfDzOUFgHwUjUYV/tbf8YsXv6GysjKVlZWroqKb+vffR4sWLZQkLVq0UHvvPUAVFRVqaWlRU1OTJMlxHC1atFD9++8jSaqvr1dDQ0Pqnq++ukj9+vVXpmVl4zUAAAAgk6KRmIq3MI9XSszklaTmjSMdAOC7rHCtvIcPU2EgIJmmLDZfA4Ccd9NNs/T6669q/fp1Gjv2QpWVlevmm+/QxInj1draItP0qKysTDNmzEnt2zBu3ARdd91kPfDAvSotLdXEiddIktavX6errrpctm3Lsmz16bOXLr10fOrY1KlXy7LichxHNTU9NHHitRl/PkJeAAAA5J2WSEyllV22eMxb7FGB11S0nk5eAJtz2trkrF8vT7BGRmGhzMrK1EZsAIDcNXbsOI0dO26z1++++8GtXrPnnn10zz0PbfZ6z5699MADj27xmn79+uv++/+y03XuLMY1AAAAIK84jqNoJJbq2P0uwzDk8xepuYFOXgCbS45mMIOJWYtmoIZxDQCATo+QFwAAAHmlvdVSPGbLt5VxDZJU4vcqSsgLYAusjYGuJ1CT+DUYlEUnLwCgkyPkBQAAQF5JhrfbCnl9/iJFI4xrALC55GiGTTp514TlWFY2ywIAYJsIeQEAAJBXoo3bD3lL/F7FWiy1txHaANiUFQ5JpimzqlrSxrDXsmTX1WW5MgAAto6QFwAAAHklGtmRTt7EsWgD3bwANmWHamVWVskoSOxT7gkmxjbYYUY2AAA6L0JeAAAA5JVoQ5sM01BR18KtnlOycVM2Nl8D8F1WKJQa1SBJZiCYeh0AgM6KkBcAAAB5JRqJyVdWKNM0tnpOspO3mU5eAN9hh0OpTdckybMx5LXZfA0A0IkVZLsAAAAAIJ2ikZiKtzGqQZK6lBTK9BipTdoAQJKceFz22jWbdPIaxcUy/BWyw3TyAkAuu/XWm/T666+otna15s6dr759+0uS2tradMstN2rp0nfl9Xo1aND3dcUVV0qSVq5coalTr1YkElF5ebmuuuoa9e69x3av+/nPT5TX65XXm/jpsfPPv0iHHnp4Rp+PkBcAAAB5pSUSU/c9um7zHMM05PN7mckLYBP2ujrJslJzeJM8waAsOnkBIKcdeeRROvXU03Thhedu8vodd9wsr9erefOelGEYWr9+XerY7NnT9dOfnqpjj/2xFi58TrNmTdPNN9+53esk6brrZqSCZDcQ8gIAACBv2LajaGO7em+nk1dKzOVlJi+Ab0uOZEjO4U0yAzWyvvw8GyUBQF54cdXzen7V39J6T8OQHEc6rtcJOqbXcds9f/DgAzZ7LRqN6oUXntWTTz4nw0iM+urWrbskqb5+vf79739pzpzbJEmjRh2rOXNmqr6+XkVFRVu9LlsIeQEAAJA32pra5diOfOVF2z3X5/eqdnnEhaoA5Irk5mrmdzp5zWBQsb+/JcdxUv8xDwDIfV9/vUplZeV64IF79N57S1VcXKxzz71AgwcfoHA4rMrKank8HkmSx+NRZWWV1qwJyzTNrV6XdM01EyU52n//A/SHP1yo0tLSjD4LIS8AAADyRjSS6MxNbqy2Lb7yIrU2tctqt+UpZD9iAJIdTnTyer7TyesJ1khtbXIaGmRUVGSjNADIacf0Om6Hum07oqDAVDxu79I9bNvW6tVfa++9B+jCC8fo448/0hVXXKzHHluw09eVlHTVbbfdo0AgqFgspptvvkFz5szUpElTdqnW7eHTLAAAAPJGKuQt25FxDYlzoo2MbACQYIVCMvwVMrp02eT15PgG5vICQH4JBILyeDw6+uhjJUmDBu0nv9+vr75aqUAgoLq6NbIsS5JkWZbq6taqujqwzeuS95Ukr9erU045VR9++M+MPwshLwAAAPJGhzp5N57TXM/mawAS7FCtPMHgZq8nN2KzCXkBIK/4/X4ddNBQ/eMf70iSVq5cofr69erZs7cqKrqpf/99tGjRQknSokULtffeA1RRUbHN61paWtTU1CRJchxHixYtVP/++2T8WRjXAAAAgLwRjcRU4DVV2MWz3XNL/Im5vVE2XwOwkR0OybNXv81eNzcGv1Y45HZJAIA0uemmWXr99Ve1fv06jR17ocrKyvWXvzyuyy77k6ZPv1a33jpHBQUFuuqqa1Pzc8eNm6DrrpusBx64V6WlpZo48ZrU/bZ23ddfr9JVV10u27ZlWbb69NlLl146PuPPR8gLAACAvBGNxCyC96UAACAASURBVOQr9+7QxkjFZV4ZptTcQCcvgES3lRUOqfDwH2x2zOhaKsNXQicvAOSwsWPHaezYcZu93rNnL916691bvGbPPfvonnse2uKxrV3Xs2cvPfDAo7tW7E5gXAMAAADyRjTSpuLy7Y9qkCTTY6i41EsnLwBJktNQL7W1pUYzfJthGDKDQdl08gIAOilCXgAAAOSNlo2dvDvK5/em5vgC2L1ZoUSAm9xk7bvMYA0brwEAOi1CXgAAAOQFK26rtSneoZC3xF/EuAYAkr7ZVG1LnbzJ1+0QnbwAgM6JkBcAAAB5oaUx0ZHb0U7elsaYbMvJVFkAckRyU7XkJmvfZQaCcpo2yG5ucrMsAAB2CCEvAAAA8kJytq6vvGiHr/H5i+TYUssGRjYAuzs7VCvDVyKja+kWj3s2hr908wIAOiNCXgAAAOSF5Gzdjo1rSJzL5msA7HBIZjAowzC2eNwMJMY42MzlBQB0QgXZLgAAAABIh2TIW9zBmbyS1NzQpiptuXsPwO7BCtVuddM16ZtOXjZfA4DcE4k0aMqUSfr661UqLCxUr157aNy4CaqoqNBHH32oWbOmqa2tTTU1NZo0aYoqKrpp5coVmjVrmtatq5PH49HAgYN06aVXqKioiyRp8eI3dPvtf5ZlWRowYKAmTJisLl26KBaLafz4S7V8+SeSpGeffdmVZ6STFwAAAHkhGompyFeggsId/4ib7PqlkxeAHQptddM1STIqukleL+MaACAHGYahM874tebNe1Jz5z6mnj176c47b5Ft25oyZaIuueQKzZ//pAYPPlB33HGLJKmwsFAXXXSxHn30CT300Hy1trZq3ry/SJKi0ahmzpyqGTPm6LHHnpLP59O8eQ9LkkzT1Omn/0o33XS7q89IJy8AAADyQjQSk8+/4128kuQpNNWla4GaG9oyVBWAXGA3N8lp2rDNTl7DNGVWB2SF6eQFgI5qfeFZtT77TFrvaRiS40hdjj9RXUYfv81zy8rKddBBQ1NfDxq0nxYseELLly+T1+vV4MEHSJJOPvnnOvXUEzVhwmTV1PRQTU0PSYngduDAQVqx4gtJ0t///rb23XegevfeY+N1P9N1112t3/72XBUUFOjggw9Vbe3qtD7v9tDJCwAAgLwQjcRUXNaxkFdKbL5GJy+we0t2526rkzd5nE5eAMhttm1rwYInNGzYcIXDIQW/9Xe/3++XbdtqbIxsck1bW6ueffavGjZsuCQpHA4pEPjmukAgqDVrwu48wFbQyQsAAIC80BKJqbpvx+fq+sq9aghFM1ARgFyR3EzNDG69k1eSzEBQsSWL3SgJAPJKl9HHb7fbtqMKCkzF43aHr5szZ5Z8vmL97Ge/0BtvvLrd8+PxuCZPnqAhQ4Zq2LARO1OqK+jkBQAAQM6LtcbV3malZux2RIm/SNFITI7tZKAyALnACm/s5A1sv5PXWb9eThsjXgAgF916601atWqlrrlmukzTVCAQVOhbG2o2NDTINE2VlZVLkizL0rXXTlRpaZnGjh2XOi8QCCr8rfE94XBI1dUB9x5kCwh5AQAAkPNaIolxC76dGddQ4ZUdd9TaHE93WQByhB2qlQoLZXTrts3zzI0/0muHGdkAALnmrrtu0/LlyzR9+g3yehOfGQcMGKi2tjb9858fSJKeeur/6Yc/HCUpMdZh2rSrZZqmxo+fKMMwUvc67LDDtWzZJ/rqq5Ubr3tCI0eOcvmJNsW4BgAAAOS8aDLk7eDGa1Kik1eSog1tKi4tTGtdAHKDFQ7JDARlmNvug/JsHOdghUPy7LGnG6UBANLg888/08MPP6DevffQeef9TpJUU9ND06fP1sSJ12rWrGmKxWIKBms0adIUSYnN1RYufF59+/bT2WefKUnaf//BuvTSK+Tzlejyyyfo8svHyrZt7b33AI0Zc1lqvXPO+bXWrg1rw4YNOuWUH+vQQw/X+PETM/qMhLwAAADIeamQdyfGNSSviTbE1L13WssCkCPsUEiewLbn8Urf6uT91o/2AgA6v759+2nx4qVbPLb//oM1d+5jm71+xBHDtnqNJB155FE68sijtnjs3nvn7lSdu4JxDQAAAMh50YaYDFPq0nXnO3mbI8zYBHZXVqh2u5uuSZJZWSV5PKkZvgAAdBaEvAAAAMh50UhMxaVemR5j+yd/R2EXjwq7eNRcH8tAZQA6O6etTc76ddvddE2SjIICmZVVdPICADodQl4AAADkvGhjbKdGNSSV+L2KNtDJC+yO7DVhSdqhTt7keRYhLwCgkyHkBQAAQM6LNsRUvAshr89fpGgDnbzA7ig5eiE5b3d7PIEa2SHGNQAAOhdCXgAAAOQ0x3bUkoZO3uZImxzHSWNlAHJBcvTCjmy8JiU6ee26tXLi8UyWBQBAhxDyAgAAIKe1NsdlW84uhbw+f5HibbbaW600VgYgF1ihkGSaMqsDO3S+J1AjWZbsurUZrgwAgB1HyAsAAICc1hJJzNLd1U5eSWpmZAOw27HDtTIrK2UUFOzQ+cnZvWy+BgDoTHbs32IAAABAJxWNJILZXe3klaRoQ5sqanxpqQtAbrBCIZmBHZvHK0mejbN7rVBIhZkqCgCQVpFIg6ZMmaSvv16lwsJC9eq1h8aNm6ANGxo1a9Y0rVtXJ4/Ho4EDB+nSS69QUVEXSdLixW/o9tv/LMuyNGDAQE2YMFlduiSOzZ17v1588Xl5PAXy+XwaN26C+vbtp1dfXaSHHro/tfbatWENHnyQpk2bldFnpJMXAAAAOS09IW+yk7ctLTUByB12uFae4I7N45Ukc+PsXjtMJy8A5ArDMHTGGb/WvHlPau7cx9SzZy/deectKiws1EUXXaxHH31CDz00X62trZo37y+SpGg0qpkzp2rGjDl67LGn5PP5NG/ew5KkTz9drqefflL33DNXDz00TyNHHq3bb/+zJOmHPxylBx98NPVPdXVARx99bMafkU5eAAAA5LRoJCZPoSmvb+c/2hb5CuQpNBVlXAOwW3EsS/aaNR3q5DWKimR065aY5QsA2CFfvl+nL96rS+s9DUNyHGmvgyrV58DKbZ5bVlaugw4amvp60KD9tGDBE6qp6aGamh6SJNM0NXDgIK1Y8YUk6e9/f1v77jtQvXvvIUk6+eSf6brrrtZvf3uuJEPxeFytra0qLi5Wc3OTqqo2n+2+fPm/tHbtGg0bNiItz7wtroW8F1xwgVatWiXTNOXz+TRx4kQNHDhQX3zxhcaPH6+Ghgb5/X7NmDFDffr0kaRtHgMAAACkRMjrK/PKMIydvodhGCrxe5nJC+xm7Lo6ybJSc3Z3lCdQIztMyAsAuci2bS1Y8ISGDRu+yettba169tm/6rzzLpQkhcMhBb71PwEDgaDWrAlLkvbeex/98pf/pVNPPVFdu5aqa9dS3Xbb3Zut9eyzT+voo49TYWHmB/y4FvLOmDFDpaWlkqRFixZpwoQJWrBggSZPnqwzzjhDP/nJT/T0009r0qRJmjt3riRt8xgAAAAgbQx5/Ts/qiHJ5y9SlHENwG4lOXIhOWd3R5nBoKz/fJqJkgAgL/U5cPvdth1VUGAqHrc7fN2cObPk8xXrZz/7Req1eDyuyZMnaMiQoTvUdRsK1Wrx4tc1f/5Tqqys1KOPztXUqVdr5sybUufEYjG99NJC3XLLXR2ucWe4NpM3GfBKUlNTkwzD0Lp16/TJJ5/ohBNOkCSdcMIJ+uSTT7R+/fptHgMAAACSopGYindhHm+Sz+9lXAOwm0mOXEjO2d1RnkCNrHBIjt3xcAEAkD233nqTVq1aqWuumS7TTMSilmXp2msnqrS0TGPHjkudGwgEFf7W/PVwOKTq6sRIhldeWaS+ffursjIRXI8efbzee2/pJmu98car6tGjp/r33zvTjyXJ5Y3XrrzySh111FGaM2eOZsyYodraWgUCAXk8HkmSx+NRdXW1amtrt3kMAAAAkCQrbqu1qX2XNl1LKin3qi0aVzxmpaEyALnADm3s5O1gyGsGg1IsJqeeJiQAyBV33XWbli9fpunTb5DXm/jsaNu2pk27WqZpavz4iZuM/zrssMO1bNkn+uqrlZKkp556QiNHjpIk9ejRQx9++IFaWlokSUuWvKW99uq3yXrPPvtXHX/8SW48miSXN16bOnWqJOmpp57SzJkzNWbMmIyv2b1714yv0dlUVZVu/6ROhprdQc3uoGZ3ULM7qNk9uVh3Z6i5sa5FcqRAr7Idqmdb59TvUa4P9bWKjEJ1qypJZ5m7pDO8zx1Fze6g5l1XG1mntooKVe9RvdVztlTzhn36qllSWVujiqv2ymCFO6ezvc87IhdrlnKzbmp2x+5S85o1pgoKXO0h3cSOrv3555/p4Ycf0B577Knzz/+dJKlHj5466aSTtXDh8+rXr7/OOedMSdL3vz9Y48b9SWVlpfrTn67SFVdcLNu2tM8+++rMM3+jggJTP/rRKC1b9rHOOedMFRYWqrS0VJMmXZOqJxwO6cMP/6lp02bu1PtjmmaHvx+uhrxJJ598siZNmqRgMKhwOCzLsuTxeGRZltasWaOamho5jrPVYx2xbl2TbNvJ0JN0PlVVpVq7dkO2y+gQanYHNbuDmt1Bze6gZvfkYt2dpea1XyZqsEx7u/Vsr2bLTPzY9aov1ssq7Bw/gt1Z3ueOoGZ3UHN6NH+5UkZ1YKt1ba3meHG5JGndvz5TUY++Ga2xozrj+7w9uVizlJt1U7M7dqeabdveqbm46dCRmbx77LGXFi9eusVjW3o9ed8jjhiuI44YvsVj55//R51//h+3eKx792otWrR4k9c6wrY3/2xrmsY2m1ldidqbm5s3GbPwyiuvqLy8XN27d9fAgQP1t7/9TZL0t7/9TQMHDlS3bt22eQwAAACQlNooLR3jGnwVRZKkZubyArsNOxyS2cFN1ySlrknO9AUAINtc6eRtaWnRmDFj1NLSItM0VV5erjvvvFOGYejqq6/W+PHjdfvtt6usrEwzZsxIXbetYwAAAEA0kghk0xHyFnctlOkxUsExgPzmOI6sUK0KDz28w9eaXbvK6NpVdpiQFwDQObgS8lZWVurxxx/f4rF+/frpf/7nfzp8DAAAAIhGYvIWe1Tg9ezyvQzTUHGZV1E6eYHdgtPQILW1ybMTnbxSopvXCrExOIDdnSHHsWUY2ZvLm28cZ+fGzvIdAAAAQM6KRmJp6eJNKvF71Rwh5AV2B1Y4EdCageBOXe8J1shmXAOA3ZzX20UNDXWKx9t3OpzENxzHUXNzowoKOv75NisbrwEAAADpEI3EVOIvStv9fP4ihT+LpO1+ADqvZEC70528gaDa3//fdJYEADmnoqJKTU0RrV8flm1brq5tmqZsu3NslptOBQVeVVRUdfy6DNQCAAAAuCIaialyz9K03c/n96plQ7usuC1PAT/0BuQze+OoBTO4c528ZrBGTnOz7A0bZJam7+8hAMglhmGotNSv0lK/62tXVZVq7doNrq/bWfHJFQAAADmpvc1Se6uV9nENcqSWRkY2APnOCodkFPtklJbt1PWejWMe7DBzeQEA2UfICwAAgJwU3Tg7N70hb2L0QzObrwF5zw7VygwGZRjGTl1vbhzzYNUS8gIAso+QFwAAADmpJRny+tMX8ibvFW1oS9s9AXROVjgkM7Bz83glyRNMdvKy+RoAIPsIeQEAAJCTmjPQyVtc5pUMOnmB3YEdCqWC2p1h+CukoiJZITp5AQDZR8gLAACAnNQSiUmGVFxamLZ7egpMFZcWKkrIC+Q1O9osZ0PjTm+6JiU2G/IEgrJDdPICALKPkBcAAAA5KRppU3FpoUxPej/S+vxFamZcA5DXksGsZxfGNUiSGQiy8RoAoFMg5AUAAEBOikZiaR3VkFRS7qWTF8hz9sYRC7vSyZu4vkYWnbwAgE6AkBcAAAA5KdqQmZDXV1GkaCQm23bSfm8AnYO1cbM0M7hrnbyeYI2chno5ra3pKAsAgJ1GyAsAAICc4ziOWhpjKs5EJ6/fK8d21LqhPe33BtA52KFaqbBQZrfuu3SfZEicDI0BAMgWQl4AAADknLZoXFbcka+8KO339vkT94wylxfIW1YoJLM6IMPctf8k9mwc95Ac/wAAQLYQ8gIAACDnJGfmZmomryQ1M5cXyFt2uFaewK7N45Ukc+PGbTadvACALCPkBQAAQM5piWQu5PX5E/ekkxfIX3YotMvzeCXJrKyUPB5ZtXTyAgCyi5AXAAAAOac5gyFvgdejIl8BnbxAnnJiMdnr6lKjFnaF4fHIrK6WHSbkBQBkFyEvAAAAck5LJCazwFBRSUFG7u/ze+nkBfKUvSYs6ZtRC7vKDNTICjGuAQCQXYS8AAAAyDnRSJt8ZV4ZhpGR+5f4i+jkBfKUtXGTNDMNnbxSYvM1OnkBANlGyAsAAICcE43EMjKqIcnn9yoaiclxnIytASA7kpukedIwk1dKdPLadXVy4vG03A8AgJ1ByAsAAICcE43EUhukZYLPXySr3VZblNAGyDdWKCQZhsyq6rTczxMMSradGgMBAEA2EPICAAAgp9iWo9YN7Souy1zIW7IxQI4ysgHIO3aoVmZllYzCwrTcz9zYEWyFmcsLAMgeQl4AAADklJYNMTlOots2U5L3bq5n8zUg39jhkMxAeubxSt+MfbBDzOUFAGQPIS8AAABySjSS6K7N5EzeVCdvhE5eIN9YodrEiIU0MasDkiQ7RCcvACB7CHkBAACQU1pcCHkLu3hUWORRcwOdvEA+cSxL9pqwzEB6Nl2TJMPrldm9UlaYTl4AQPYQ8gIAACCnNDdkPuQ1DEM+v5eZvECesdfVSZYlM42dvJJkBoN08gIAsoqQFwAAADmlpTGW6rTNpETISycvkE+SQWxyjm66mIEaWczkBQBkESEvAAAAckq0IZbRLt6kEn9RqmsYQH5IjlRI58ZrkuQJBmWvCcux7bTeFwCAHUXICwAAgJwSjbgT8vr8XrW3Woq1xjO+FgB3ZKyTN1gjtbfLXr8urfcFAGBHEfICAAAgp0Qjbe508pYXJdajmxfIG3a4VkZ5uYzi4rTe17OxM9hmZAMAIEsIeQEAAJAz4jFLsRZLxS518kqEvEA+sUIhmYH0dvFKGzt5JTZfAwBkDSEvAAAAckY0kghcS9zo5K1IdPI2s/kakDfsUEieYHrn8UqSufGeyZm/AAC4jZAXAAAAOSMZ8rrRyVtUUiBPgUEnL5AnHMeRFa5N+6ZrkmT6SmSUldHJCwDIGkJeAAAA5IxkyOvzF2V8LcMw5CsvopMXyBNOJCK1tqZ907UkM1Aji5AXAJAlhLwAAADIGdFITDKk4tJCV9bz+b2pYBlAbrM3jlIwMzCuQZI8wWBqDQAA3EbICwAAgJzREompS9dCeQrc+Rjr83sVpZMXyAvJLltPBjZekxKbr9mhkBzHycj9AQDYFkJeAAAA5IxoJCafC/N4k0r8RWptiivebru2JoDMsEMZ7uQNBOW0ROU0RjJyfwAAtoWQFwAAADkjGonJV+ZmyJtYi25eIPdZ4ZBUXCyjrDwj9zc3zvpl8zUAQDYQ8gIAACAnOI6TCHn97oW8yQ3emMsL5D47VCtPICjDMDJyf8/GDmGLubwAgCwg5AUAAEBOiLVYstptFbs4riEZKDc3EPICuc4KhVLdtplgBujkBQBkDyEvAAAAckKym7bExZC3uNQrw2RcA5AP7HCikzdTjPJyqUsXWSE6eQEA7iPkBQAAQE5IBq1udvKaHkPFZV5F6eQFcpoTjcppbMxoJ69hGPIEamSH6eQFALiPkBcAAAA5IdqYCFp95UWurlviL1IznbxATkvOyU3Ozc0UMxiUxbgGAEAWEPICAAAgJ0QbYjI9hrqUFLi6rq+cTl4g1yXn5Cbn5maKJ1gjm43XAABZQMgLAACAnNASiam4zCvDNFxdt6SiSC2NMdmW7eq6ANInOSfXzHgnb42cSEROS0tG1wEA4LsIeQEAAJATopGYfC7O403y+b1yHKmlsd31tQGkhx0OSQUFMrtXZnSd5DgINl8DALjNlZ91q6+v1+WXX66VK1fK6/Vqzz331LXXXqtu3bppwIAB2meffWSaibx55syZGjBggCTplVde0cyZM2VZlgYNGqTp06eruLjYjZIBAADQyUQjMVX1KXV93RJ/IlhubmhTSYW784ABpIcVCsmsDsgwM9vnlBwHYYdqpb36ZnQtAAC+zZVOXsMwdM4552jhwoV65pln1Lt3b82ePTt1fP78+Xr66af19NNPpwLe5uZmTZw4UXfeeadeeukllZSU6L777nOjXAAAAHQytu2oZUO2OnkTwS5zeYHcZYdrM77pmvTNOAg6eQEAbnMl5PX7/Tr00ENTXx9wwAFavXr1Nq954403tN9++6lPnz6SpNNOO03PP/98JssEAABAJ9W6oV2OLRVnI+QtS3byEvICucoOhTK+6ZqkxDiIgoLEeAgAAFzk7tbEkmzb1rx58zRy5MjUa2eeeaYsy9Lw4cN10UUXyev1qra2Vj169Eid06NHD9XWdvz/hnbv3jUtdeeSqir3f4xxV1GzO6jZHdTsDmp2BzW7JxfrdrPm2saIJKlmj/JdWndnr/WVeWW32ln5PvFnwx3U7I5s1OzEYqpbV6fSvnvu1PodvaaxpkaF9XVZ/f7wZ8M9uVg3NbuDmt2RizVniush75QpU+Tz+fSrX/1KkvTaa6+ppqZGTU1NGjdunG677TZdfPHFaVtv3bom2baTtvt1dlVVpVq7dkO2y+gQanYHNbuDmt1Bze6gZvfkYt1u17x6Rb0kqV3WTq+7KzUXlxdqXajZ9e8TfzbcQc3uyFbN1terJMdRa2m3Dq+/UzVXVSu68qusfX/4s+GeXKybmt1Bze7IxZp3hWka22xmdWVcQ9KMGTO0YsUK3XTTTamN1mpqEj8y07VrV5166ql67733Uq9/e6TD6tWrU+cCAABg9xKNJEYl+Pzuj2uQJF95kaINbVlZG8CuSc7HNV2YySslNl+zQ4xrAAC4y7WQ98Ybb9RHH32k2267TV5v4sN5JBJRa2urJCkej2vhwoUaOHCgJOnII4/Uhx9+qC+//FJSYnO24447zq1yAQAA0IlEIzEVFJnydnH9B9EkJcLlaCQmZzf6CTEgXyQDV0/QnaYhMxiUva5OTnu7K+sBACC5NK7h008/1V133aU+ffrotNNOkyT16tVL55xzjiZNmiTDMBSPx3XggQdqzJgxkhKdvddee63+8Ic/yLZtDRw4UFdeeaUb5QIAAKCTaYnE5Csvytr6Jf4i2Zaj1uZ2FZdmp5sYwM6xwrWSYcisDriynifYQ3Ic2WvC8vTs5cqaAAC4EvLuvffeWr58+RaPPfPMM1u9btSoURo1alSmygIAAECOiEZi8pVnL1xNjomINsQIeYEcY4dCMrtXyigsdGW95FgIK1RLyAsAcI2rM3kBAACAnZHtkLdkY8jbXM9cXiDX2OFa1+bxSt+MhWAuLwDATYS8AAAA6NTi7bbamuNZ7uRNjIpobohlrQYAO8cKhWQG3NvE26yqlgwjMSYCAACXEPICAACgU2tpTASr2Qx5C4s88hZ7FI3QyQvkEse2E7NxXezkNQoLZVZWya4l5AUAuIeQFwAAAJ1atCH7Ia+U6OaN0skL5BR7XZ0Uj8sMuBfySpIZCMoOM64BAOAeQl4AAAB0atFIIlgtznLIW+L3Mq4ByDHJubjJOblu8QSDskJ08gIA3EPICwAAgE4tGfL6yjpDJ2+bHMfJah0Adpy9cS6umxuvSZIZqJG9JizHslxdFwCw+yLkBQAAQKcWjbSpqKRAnsLsfnT1+b2Kx2zFWghtgFxhbRyZ4HFx4zVpY6hsWYlxEQAAuICQFwAAAJ1aSyQmnz+7XbySVLJxXES0gc3XgFxhh0Iyyspk+HyurpscD5EcFwEAQKYR8gIAAKBTi0ZiWR/VIEklFUWSxFxeIIdYoZBMl7t4JaU2erPCzOUFALiDkBcAAACdluM4iZDXX5TtUlI10MkL5A47XCuPy/N4JTp5AQDuI+QFAABAp9Xeaikes+Urz34nr7fYowKvSScvkCMcx5EdCskMut/JaxQXyyj3pzZ+AwAg0wh5AQAA0GlFI4lAtTOEvIZhyFfupZMXyBHOhkY5LVF5Au538kqSJxiURScvAMAlhLwAAADotDpTyCslRjYkawLQuSVHJWSjkze5rh2ikxcA4A5CXgAAAHRayUC1uJOEvCV+r5rr6eQFcoH1/9m78zg363r9/9d9Z5sks2Sm7UympXTfaGnpQgscEGllUeFgAQEREBC/rsj5nSPoAaSKICKIylFQj3j0KIJHVlkEPKhHXKAUgVKgLaVQCp2k02UyM0km233//shkEC2dTDvJneX1/ItOJsmVPIaZzDXvvD+DBasTO3ml/OFruUiXbNt25P4BAPWFkhcAAAAVKxFLyzANNTR6nI4iKT/Jm07mlEnlnI4CYBhWdHCSt8OZSV5XuFNKpWT39Dhy/wCA+kLJCwAAgIqV6EnJ3+yRaRpOR5GUn+SVpASHrwEVLxfpkhoaZLS0OHL/5uAu4ByHrwEAyoCSFwAAABUr2ZupmH28Un6SV5ISMVY2AJXOikbk6uiUYTjzRyLX4C5gi8PXAABlQMkLAACAipXoSVVUyVuY5I0zyQtUPCvSJdOhfbyShu6bw9cAAOVAyQsAAICKZFm2kn2VNcnb0OiR6TKU6GGSF6h0uUjEsUPXJMloapbhDygXZZIXAFB6lLwAAACoSKn+jKycrUCLz+koQwzTUKDFyyQvUOHsZFJ2rMexQ9ckyTAMmZ2dTPICAMqCkhcAAAAVKRHLF6mBUOVM8kr5PEzyApWtMD3r5LoGKX/4GpO8AIByoOQFAABARRoqeZsrq+QNhnxM8gIVzhosVl0OTvJK+cPXOHgNAFAOlLwAAACoSIWS119BO3mlzi47kAAAIABJREFU/CTvQF9GuazldBQA7yA3uCKhEiZ57b5eWfF+R3MAAGofJS8AAAAqUiKWlttryut3OR3lbYKh/I7gQgkNoPJYkYjkcskcM9bRHK5w51t5AAAoIUpeAAAAVKRELC1/s1eGYTgd5W0KO4ITrGwAKpYV7ZLZ3iHD5ewfiQqTxBy+BgAoNUpeAAAAVKRkLF1xh65JUmBwkjfO4WtAxcpFIkNTtE4q7ATm8DUAQKlR8gIAAKAiJWIpBSpsH68kBZo9MgwmeYFKZkW7ZHY4u49Xkoy2NsnjYZIXAFBylLwAAACoOLmspYH+bEWWvKbLVEOTh0leoELZ2aysHTtkVsAkr2GaMjvCTPICAEqOkhcAAAAVJ9mbn5KtxJJXkoKtPiZ5gQplbY9KliVX2PlJXklydYQ5eA0AUHKUvAAAAKg4iVih5PU5nGTPAi1eJZjkBSpSYWq2EtY1SPnD13KsawAAlBglLwAAACpOYUq2Yid5Qz4lejOyLNvpKAD+TmH/bSUcvCZJrvB42bt2yk7xhyEAQOlQ8gIAAKDiFCZ5/RVa8gZCXtmWrYE+VjYAlaawGsFs73A4SZ45uDbC2h51OAkAoJZR8gIAAKDiJGJp+QJuuT2V+XI1GMqvkYizlxeoOLlol8wxY2V4K+OPRK6O/EQxh68BAEqpMl81AwAAoK4lYumKneKV8pO8kpTYzduvgUpjRSJD07OVYGiSt2ubw0kAALWMkhcAAAAVJxlLV+w+XkkKMMkLVKxcNCKzozL28UqSOa5dMk0meQEAJVV0ydvb21vKHAAAAMCQRIWXvG6PKV/QPbQ7GEBlsC1LVjQiVwVN8hput8yx44YOhAMAoBTcxX7ikUceqalTp+rQQw/V0qVLtWTJErW2tpYyGwAAAOpQeiCrTCo3tBKhUgVDPsV7WNcAVBJ71y4pk5EZrpxJXim/siEXYZIXAFA6RU/yPvXUU/r85z+v5uZm/fd//7eWL1+uk046SVdddVUp8wEAAKDOJAenYwPNlV3yBkJeJVjXAFSUXDQ/LevqqJxJXil/+JrFugYAQAkVXfL6fD4dfvjhuvDCC/Xxj39cZ5xxhrZt26ZHHnmklPkAAABQZworECp9kjdf8qZk27bTUQAMsganZStxktfq3i47m3U6CgCgRhW9ruH666/XmjVrFI1GtXDhQi1ZskS/+MUvNH369FLmAwAAQJ0ZKnkreCevlF/XkMvaSsWzamj0OB0HgKTc4N5bs4J28kqSK9wp5XKydu6ouCljAEBtKLrk/fnPf66xY8fqQx/6kJYuXaqDDz5YbnfRVwcAAACKkoilZZhSQ2Nll7yFEjrek6LkBSqEFY3IaGqWGQg6HeVtzMFi14p0UfICAEqi6Jb2qaee0vPPP6+nnnpKt9xyi1566SVNnz5dhx56qD71qU+VMiMAAADqSKInLX+TV6bLcDrKXgVbfZLyeccc4HAYAJLyk7yVNsUrSWbneElSLhKRZ4HDYQAANanoktftdmvhwoWaOnWqpkyZoieeeEL33nuvnnrqKUpeAAAAjJpEb1r+Cl/VIL21Mzjek3I4CYACKxqRa/wEp2P8A1dHhyTJGjwYDgCA0VZ0yXv11Vdr9erV2rJli+bNm6clS5bopptu0sKFC0uZDwAAAHUmGUurdUJlvdV6T7wNbnkaXEr0pJ2OAkCSbduyIhF5Fi1xOso/MHwNMlrblOui5AUAlEbRJW9LS4suu+wyLVy4UD6fb0R3snv3bl166aV6/fXX5fV6NWnSJF111VVqa2vTs88+qyuvvFKpVEoTJkzQ9ddfrzFjxkjSXi8DAABA7bEtW4lYWhMOanU6SlECLV5KXqBC2P19shPxit156wqHZUUjTscAANQos9hPvOiii3TYYYdp586deuaZZ7Rt27ai78QwDF144YV65JFHdP/992vixIm64YYbZFmWLrnkEl155ZV65JFHtGTJEt1www2StNfLAAAAUJtSiaysnD10qFmlC4Z8rGsAKoQVyReoZrjT4SR7ZnaEZUWY5AUAlEbRJW93d7fOPvtsHXfccbrooot03HHH6cMf/rCi0eiw1w2FQlq2bNnQvw855BBt27ZN69atk8/n05Il+bfTnHnmmXr44Yclaa+XAQAAoDYlBgvTail5AyEmeYFKkRssUCvx4DVJcoU7lYtGZdu201EAADWo6HUNq1at0uzZs/WDH/xAgUBAiURCN954o1atWqXvfe97Rd+hZVm6/fbbtXz5cnV1dWn8+PFDl7W1tcmyLPX09Oz1slAoVPT9jRnTWPTn1opx45qcjjBiZC4PMpcHmcuDzOVB5vKpxtylyNz7RlKSNGFya0luf7Rvs/2AZm16cruagw3yBTyjetsFfG2UB5nLo5SZd/XvVp+k9rkz5G4bvfsZrcyuaZOVTKfUZqblHjt2VG7znfC1UT7VmJvM5UHm8qjGzKVSdMn79NNP69vf/rY8nvyL10AgoEsvvVRHHXXUiO7wK1/5igKBgM4++2z95je/GVnafbBzZ78sq37+UjpuXJO6u/ucjjEiZC4PMpcHmcuDzOVB5vKpxtylyhx5PSZJSlmZUb/9UmS23fnXma9v2qVQZ2BUb1via6NcyFwepc7c/8prks+nXVm3jFG6n9HMnGrM7xrf/sImeQ4a2Tk3I8HXRvlUY24ylweZy6MaM+8P0zT2Osxa9LqGlpYWvfLKK2/72ObNm9Xc3Fx0mOuuu05btmzRt771LZmmqc7Ozrft9t21a5dM01QoFNrrZQAAAKhNiVhaLo8pb6DoWQRHBUP5tRLs5QWcZ0UicoU7ZRiG01H2yDW4RsKKspcXADD6in71fOGFF+q8887TaaedpvHjx2vbtm26++67dfHFFxd1/RtvvFHr1q3TD37wA3m9+RfD8+bN08DAgNasWaMlS5bojjvu0AknnDDsZQAAAKhNiVhagWZvxZY0fy8Qyk/jJWLs5QWcZkW7ZHZU5j5eSTI78gfC5QYPiAMAYDQVXfKefvrpmjhxoh544AFt2LBB7e3t+sY3vqHDDz982Ou+/PLL+v73v6/JkyfrzDPPlCQdcMAB+u53v6uvf/3rWrVqlVKplCZMmKDrr79ekmSa5jteBgAAgNqUiKXlr5JD1yTJF3TL5TGZ5AUqQC4SkW/mbKdjvCOzqUlGY6OsCJO8AIDRN6L3wR1++OFFlbp/b8aMGdqwYcMeL1u0aJHuv//+EV8GAACA2pOMpdUxo8XpGEUzDEOBFq8Su5nkBZxkDwzI7tld0ZO8kmR2hGVFmeQFAIy+vZa83/72t4u6kWJXNgAAAADvJJe1lOzPKNBcPZO8khQIeRWPMckLOCk3WJya4U6Hk+ydK9ypHJO8AIAS2GvJG2FXEAAAAMpkoC8j2fnStJoEQz71dCWcjgHUtcIKhMLhZpXK7Agr8+xfnY4BAKhBey15586dq7PPPluStGXLFk2aNKksoQAAAFB/CoeXBapoJ6+UL6VT8ayy6ZzcXpfTcYC6VFiBUDjcrFKZ4U7Z8bisvj6ZTU1OxwEA1BBzbxd+85vfHPrvlStXljwMAAAA6le1lrzBkE/SW/kBlF8u0iW5XDLHjnU6yl4VJo2tKCsbAACja6+TvBMnTtTXvvY1TZ8+XdlsVnfeeeceP++0004rSTgAAADUj0RPfq9ttZW8hfUSiZ60msf5HU4D1CcrEpHZ3i7DVdnT9IVJ41wkIvf0mQ6nAQDUkr2WvN/85jf1wx/+UA8++KCy2azuu+++f/gcwzAoeQEAALDfEr1pef2uqlt5EBwseeM9HL4GOCUX7ar4VQ3S30zycvgaAGCU7bXknTJliq655hpJ0kc+8hH95Cc/KUsoAAAA1J9ET7rqpnglqaHJK8M0FO9hXQPgFCsSkWfRYqdjDMtobZO8vqEdwgAAjJa97uT9W4FAYI8f/8xnPjNqYQAAAFC/ErG0Ai0+p2OMmGkaCrR4h9ZNACgvO5uVtaO7KiZ5DcOQq6Mjv0MYAIBRVHTJ++STT+7x46tXrx61MAAAAKhfyd60/FU4ySvl9/ImmOQFHGF1b5csa2gVQqUzw51M8gIARt1e1zVI0re//W1JUiaTGfrvgq1bt2r8+PGlSQYAAIC6kUnllE7mqnJdg5Tfyxt9pdfpGEBdsiL5wtQMV/4kr5TPmf7jy07HAADUmGFL3sjgD0zbtof+u6Czs1MXXXRRaZIBAACgbiRj+SnYai15Ay0+DfRlZOUsma6i3ywHYBTkovnVB66O6pjkdYXDsnfvkp0akOFrcDoOAKBGDFvyXnvttZKkhQsX6vTTTy95IAAAANSfRLWXvCGvbFtK9GbU2Fp9e4WBajY0ydve4XCS4hR2B+ciEbknTXY2DACgZgxb8hYcfvjh2rp16x4vmzhx4qgFAgAAQP0ZKnlD1VnyBkP5YjfRk6LkBcosF+mS0TZGhq86/t8r7A62Il0SJS8AYJQUXfIee+yxMgxDtm0PfcwwDEnSSy+9NPrJAAAAUDcSsbRkSP4mj9NR9kmhnI7vTktTHA4D1BkrGpGrSvbxSm/tDubwNQDAaCq65F2/fv3b/t3d3a3vfOc7WrJkyaiHAgAAQH1JxNLyN3mqdp9toMUrGflJXgDllYt0yT1zltMximaOGSu5XMpFupyOAgCoIfv8KnrcuHG6/PLLdeONN45mHgAAANShRCxVtft4JcnlNuVv9Cg+uHYCQHnYliVre7RqDl2TJMPtljmufWiXMAAAo2G/RiU2b96sZDI5WlkAAABQpxKxdFWXvFJ+ZQOTvEB52bt3Sen00AqEamF2hJWLMskLABg9Ra9rOOuss4Z28EpSMpnUpk2b9OlPf7okwQAAAFAfbNtWMpbW+Nkhp6Psl0DIp91vxp2OAdSV3OA0bDVN8kr5w9cyz/zV6RgAgBpSdMn7wQ9+8G3/9vv9mj17tiZPnjzamQAAAFBHUomsclm76id5gyGv3nxxt2zLlmEaw18BwH6zBqdhq26SN9wpa0e37GxWhrvoX8sBAHhHRf80WblyZSlzAAAAoE4lB/fYBlp8DifZP4GQT1bOVrI/o0BzdRfWQLUoTPKa4Sqb5O0IS5Ylq3u7XJ3jnY4DAKgBRe/kzWQyuummm7RixQodfPDBWrFihW666Sal0xwuAQAAgH2X6CmUvNVdjAZD+fzs5QXKx4pGZDQ2yQw2Oh1lRMzBYpfD1wAAo6XoSd7rr79ea9eu1Ze//GWNHz9e27Zt080336z+/n5ddtllpcwIAACAGpborY2SNxDKTyInetLSgQ6HAepELtJVdVO80ls7hHPRLnkczgIAqA1Fl7wPP/yw7rvvPrW2tkqSpk6dqoMOOkgnn3wyJS8AAAD2WaInLdNtyBes7r2UhUneeA/vdAPKxYpE5BpffesOzPYOSZLV1eVwEgBArSh6XYNt2yP6OAAAAFCMRCytQLNXhlHdh5W5vS55A27WNQBlZEW7ZHZU3ySv4fPJaBujXJSSFwAwOooueU844QR98pOf1OOPP65XXnlFf/jDH/TpT39a733ve0uZDwAAADUuEUtV/aqGgmDIyyQvUCZWX5/seFxmuNPpKPvEFe5kJy8AYNQU/Z64Sy65RLfccouuuuoqdXd3q729Xe9///v1yU9+spT5AAAAUOMSsbQ6pjU7HWNUBFq86tsx4HQMoC5Yg1Owriqc5JUkMxxWduMGp2MAAGpE0ZO8Xq9XF198se6++26dc845mjx5svr6+rR79+5S5gMAAEANs3K2Bvoy8jfXxiRvIORTvCfNSjOgDHKDU7BVO8nbEZYVjci2LKejAABqQNElb8FVV12lYDCoc889V4FAQBdffHEpcgEAAKAOJPvSsu18OVoLgq1e5TKW0oms01GAmmdFBid5w9U6ydspZTKyd+1yOgoAoAYMW/Jec801isfjQ//u6urSxz72MR155JH6xCc+oc2bN5c0IAAAAGpXMpbfX1szO3lb8mU1e3mB0rOiEcnnkxFqdTrKPimsmeDwNQDAaBi25J0/f77OOeccPfTQQ5Kk4447Th/4wAf0uc99TitXrtQHPvCBkocEAABAbUoUSt6aWdeQfxyJnpTDSYDal4t0ydURlmEYTkfZJ4U1Exy+BgAYDcMevHbSSSfp3e9+t771rW/prrvu0uWXX64jjjhCGzdu1Lnnnqv58+eXIycAAABqUKLGJnkLayfiMSZ5gVKzohGZVXrompQ/eE3Kl9UAAOyvYUteSWpqatIXv/hFrVu3TpdddpmWLl2qT3/60/L5amN3GgAAAJyRiKXlaXDJ0+ByOsqo8PpdcntNJVjXAJRcLhKR98iZTsfYZ2awUUZTc37tBAAA+2nYdQ3RaFRXX321Pv7xj+vXv/61br75ZnV0dOiMM87QY489Vo6MAAAAqFGJWLpmpnglyTAMBUI+xXezrgEoJTs1IHv3rqo9dK3ADIeV62KSFwCw/4YteS+++GJ5vV6dffbZsm1b11xzjT784Q/rhz/8oX7961/rE5/4RDlyAgAAoAYlemqr5JWkYMjLJC9QYrloVJJkdnQ6nGT/uDrCsjh4DQAwCoZd17B582b99Kc/lcfj0dKlS3X66adLksaOHasbbrhBTzzxRMlDAgAAoDYletMaMzHodIxRFQj5tHNrv9MxgJpmDe6xrf5J3k5lnl4j27ar9gA5AEBlGLbkPfnkk3X++edr8eLFWrNmjVauXPm2yw877LCShQMAAEDtyqZzSiey8tfgJG86mVMmlZPHVxu7hoFKY0Xye2zNcPVP8trJhOy+XhnNLU7HAQBUsWFL3ssvv1xr167VG2+8oRNPPFEzZswoRy4AAADUuEQsv9IgWGMlbyCUfzyJnpRaOgIOpwFqUy7aJblcMseMdTrKfimU1FYkIpOSFwCwH4YteSVp/vz5mj9/fqmzAAAAoI4ke/Mlb+1N8vokSfGeNCUvUCJWJCJzXLsMd1G/0lYsc3DdRC7SJffMWQ6nAQBUs2EPXgMAAABKIT54OFmtHbz21iQvh68BpZKLdsnsqO59vJLkGjw4zopGHE4CAKh2lLwAAABwRDKWlgzJ31xbJW9D0CPTZSjek3I6ClCzrEik6g9dkyQjFJJ8PuUGD5IDAGBfUfICAADAEYlYWg1Bj1zu2npJapiGAiGvEpS8QEnY2aysHd1Vf+iaJBmGIVe4k0leAMB+q61X1AAAAKgaiVh6aLVBrQmGfEPrKACMLmtHt5TLyVUD6xqk/OFrFpO8AID9RMkLAAAARyRiaQVqbFVDQX6Sl5IXKIVCIVoLk7yS5AqHWdcAANhvlLwAAAAoO9u2a3qSN9Di00B/RrmM5XQUoObkIvnVBjUzydvRKTsWk51MOh0FAFDFylbyXnfddVq+fLlmzZqljRs3Dn18+fLlOuGEE3TyySfr5JNP1uOPPz502bPPPqt//ud/1vHHH68LLrhAO3fuLFdcAAAAlFA6mVMuY8nfUpslb3CwvE70Ms0LjDYrOjjJWysl7+ABckzzAgD2R9lK3hUrVui2227ThAkT/uGym266Sffdd5/uu+8+HXXUUZIky7J0ySWX6Morr9QjjzyiJUuW6IYbbihXXAAAAJRQIpYvP4M1WvIWJpTjuzl8DRhtuUhERlubDJ/P6SijwtWRXzvB4WsAgP1RtpJ3yZIl6uwsfmfSunXr5PP5tGTJEknSmWeeqYcffrhU8QAAAFBGycGSt2YneVvz5RN7eYHRZ0UjQ8VoLWCSFwAwGtxOB5Ckz33uc7JtW4sXL9a//uu/qrm5WV1dXRo/fvzQ57S1tcmyLPX09CgUChV922PGNJYickUbN67J6QgjRubyIHN5kLk8yFweZC6fasy9P5kjL8QkSROntinYUr5pvHI9z2PagjJMQ8rs/33W29eGU8hcHqORubc7qobZs8v2+Et9P3ZbQLvdbjX07hq1+6rXrw0nVGNuMpcHmcujGjOXiuMl72233abOzk6l02ldc801uuqqq0Z1LcPOnf2yLHvUbq/SjRvXpO7uPqdjjAiZy4PM5UHm8iBzeZC5fKox9/5m3v5mr0yXofhASol0eaZdy/08+5s86n6zb7/usx6/NpxA5vIYjcy2bSu9rUuuw44sy+Mv1/NsjmtX/6tbZIzCfdXr14YTqjE3mcuDzOVRjZn3h2kaex1mLdu6hndSWOHg9Xp11lln6a9//evQx7dt2zb0ebt27ZJpmiOa4gUAAEBlSvSk5W/25qdda1Qg5B3aPQxgdNi7d0np1NCKg1rhCncqF2EnLwBg3zla8iYSCfX15Rt327b10EMPac6cOZKkefPmaWBgQGvWrJEk3XHHHTrhhBMcywoAAIDRk+hNK1Cj+3gLgiGf4j0cvAaMpkIRaoZrZyevJJkdYQ5eAwDsl7Kta7j66qv16KOPaseOHTr//PMVCoX0ve99TxdddJFyuZwsy9K0adO0atUqSZJpmvr617+uVatWKZVKacKECbr++uvLFRcAAAAllOhJa9zk2t6hFgh5lXw+LStny3TV7sQyUE5WNH84maujtiZ5zXCnrB3dsjMZGR6P03EAAFWobCXvFVdcoSuuuOIfPn7vvfe+43UWLVqk+++/v5SxAAAAUGaWZSvZV/uTvIGQT7YlJfvSCobKd7gcUMtqdZLXFe6UbFtW93a5xk9wOg4AoAo5vpMXAAAA9WWgLyPbkvw1XvIGQ/nHl+hhLy8wWqxIl4xgUGbjOx88U40KO4ZzXduG+UwAAPaMkhcAAABlVTiMrFCC1qrC9C57eYHRY0UjMjtqa4pXGpzklWRx+BoAYB9R8gIAAKCskoMlr7+5tkvewjoKJnmB0ZOLdA1NvdYSs71DMgzlBncOAwAwUpS8AAAAKKt4LD/ZGqjxSV6Xx1RDo5tJXmAUWdHI0NRrLTE8HpljxjLJCwDYZ5S8AAAAKKtkLC23z5S3oWxnADsmEPIxyQuMEqu/X3Z/v8yO2pvklfJ7eS0meQEA+4iSFwAAAGWViKUVqPFVDQWBFi+TvMAosSL5AtRVg+saJMns6FSOSV4AwD6i5AUAAEBZJWJpBQYPJat1wVafErG0bMt2OgpQ9XLRfAFaiwevSfny2toelW1ZTkcBAFQhSl4AAACUVSKWHjqUrNYFQl5ZWVsD8azTUYCqV/uTvGEpm5W1c4fTUQAAVYiSFwAAAGWTzVhKxbN1U/IGByeWE6xsAPabFYlIXq+M1jano5RE4UA5Dl8DAOwLSl4AAACUTbI3fwhZvZS8hcfJ4WvA/stFu2S2d8gwa/PXWLNQ8nL4GgBgH9TmT0cAAABUpESsvkrewiRvPMYkL7C/rEhkaNq1FhUeW66LkhcAMHKUvAAAACibwkSrv05KXk+DS54GF5O8wCjIRbvye2trlOH3y2hpYZIXALBPKHkBAABQNkOTvM31UfJKUjDkVXw3k7zA/rBTKdm7dtX0JK8kmR2dyrGTFwCwDyh5AQAAUDbJ3rR8Qbdcnvp5GRoI+ZjkBfaTFc0Xn2a4did5JckVDnPwGgBgn9TPq2sAAAA4LtGTqpt9vAXBkFfxWEq2bTsdBahaucGS19VR65O8YeWiXXy/AACMGCUvAAAAyiYRS9ddyRsI+ZRNWcoM5JyOAlQtK5LfU1v7k7yd0sCA7FjM6SgAgCpDyQsAAICysG27LkveYCj/eOOsbAD2WS4akUxT5rh2p6OUVKHE5vA1AMBIUfICAACgLDIDOWXTlgIhn9NRyqrweBM9HL4G7Csr0iVz7DgZbrfTUUqqsI6Cw9cAACNFyQsAAICySMTyk6yB5vqa5A0MTfJS8gL7KheJ1PyqBulvJnkjTPICAEaGkhcAAABlMVTyhuqr5PUF3HJ5TCVY1wDsMysaqflD1yTJaG6R/P6hg+YAACgWJS8AAADKolDy+utsJ69hGAqGvOzkBfaRnc3K6t5eF5O8hmHIFe5kkhcAMGKUvAAAACiLRCwtwzTU0OhxOkrZBUI+dvIC+8jauUPK5eQK1/4krySZHZ3KUfICAEaIkhcAAABlkYyl5W/2yDQNp6OUXSDkZV0DsI8KU61mR+1P8kqSKxyWxcFrAIARouQFAABAWSRiaQXqbFVDQbDFq1Qiq2w653QUoOrkBgtPs14mecNh2X29shJxp6MAAKoIJS8AAADKop5L3kDIJ0lM8wL7wIrmJ3ld9TLJO3jAHNO8AICRoOQFAABAydmWrWRv/Za8wVD+ccfZywuMWC4SkRFqldHQ4HSUsigcMMfhawCAkaDkBQAAQMkNxDOycrYCLT6nozgi0Jp/3HEmeYERsyJdcoXrY4pXemstRS7KJC8AoHiUvAAAACi5wpqCep3k9Td6ZLoMJZjkBUbMikZkdtTHPl5JMtvGSB4Pk7wAgBGh5AUAAEDJJWL1XfIapiF/s5edvMAI2batXDQytMKgHhimKbO9Y+jAOQAAikHJCwAAgJIrlLz+Oi15pfxe3niMkhcYCbtnt5RKyRWun0leKX/IXOHAOQAAikHJCwAAgJJLxNJye015/S6nozgmEPKxrgEYocI0q9lRP5O8kmR2dspikhcAMAKUvAAAACi5ZCwtf7NXhmE4HcUxgZBXyb6MclnL6ShA1Sjspa2/Sd5OWTt3yE7xhyEAQHEoeQEAAFByiVhagVD9rmqQpGDIJ9lSspeVDUCxctHBSd462skrvfV4re1Rh5MAAKoFJS8AAABKLhFL1+2hawXBwZI7zuFrQNGsSJeMQFBGY5PTUcrKHJxcLpTcAAAMh5IXAAAAJZXLWhrozyjQXN8lb2GSmb28QPGsaERmOFx3q15cgzuIC+sqAAAYDiUvAAAASqqwnqDe1zX4m72SwSQvMBK5SFfdHbomSWZ7h2SaQwfPAQAwHEpeAAAAlFQiNljy1vm6BpfblL/JowQlL1A0KxKpu0PXJMlwu2WOHSsryiQvAKA4lLwAAAAoqbdKXp/DSZwXCPlY1wAUyYr3y+7eW4mmAAAgAElEQVTvq8tJXkkyOzqZ5AUAFI2SFwAAACVVmFz1N3scTuK8YIuXdQ1AkazBgrMeJ3klyRUOM8kLACgaJS8AAABKKtGbli/gltvrcjqK4wKtPiViaVmW7XQUoOIVDh0zw/U7yWtt3y47l3M6CgCgClDyAgAAoKSSsbT8db6PtyAY8sq2bA30ZZyOAlS8XHRwkrejPid5zXBYyuVk7djhdBQAQBWg5AUAAEBJJXrSdX/oWkEglN9LzF5eYHhWpEvyeGS0tTkdxRGFNRWsbAAAFIOSFwAAACWV6KXkLQgOPg/s5QWGl4tGZHaEZZj1+WurOVjy5rooeQEAw6vPn5bAfrBtdugBAFCszEBOmYGcAiFKXklDzwOTvMDwrEhEro763McraeixM8kLACgGJS9QpN2JtG7546t6z81/0Td/s9HpOAAAVIVELD+xGmim5JUkt9clX8CteIxJXmA4uUhX3R66JklGQ4OMUKtykYjTUQAAVaAsJe91112n5cuXa9asWdq48a1y7NVXX9UZZ5yh448/XmeccYZee+21oi4DyinSO6AbfrtJJ/3nav3Xk1vV6vfo24+9rD+/usvpaAAAVLxELD+xyrqGtwRavUrsZpIX2Bs7lZK9a2fdHrpW4AqH87uJAQAYRllK3hUrVui2227ThAkT3vbxVatW6ayzztIjjzyis846S1deeWVRlwHl8NquhK56eIM+cOtTuvO5Lh07a5z+57wl+tk5izQ73KRVv96g7X38ggYAwN4MTfKyrmFIsMXHTl5gGNb2qCTV9SSvJJkdnbKiTPICAIZXlpJ3yZIl6ux8+19gd+7cqRdffFEnnniiJOnEE0/Uiy++qF27du31MqDUNkT79e/3v6jT/2uNHt3QrdMWdOrejx6qVSfM0uQxATV4XPruhxcplc3pigdfUtZiRy8AAO8kEUvLMKSGRkregkDIq0QszZ5/YC9yg8Vm4fCxemWGw8pFI3y/AAAMy+3UHXd1damjo0Mul0uS5HK51N7erq6uLtm2/Y6XtbW1jeh+xoxpHPXslW7cuCanI4xYJWRe/eouffd3m/R/G7vV5HPrU8dM0/n/NEVjG33/8LnjJF17ynz9yy+e1c+e3aZLjp9d/sD7oBKe55Eic3mQuTzIXB7VmFmqztzFZLZStoIhnzrCzWVINLxKeJ7bD2jWxj9H1eRvkL9p+PK7EjKPFJnLo5Yz98R3q1fSuIOmy+vw43TyeXZNm6yBVEptrozcY8YUfb1a/tqoNNWYm8zlQebyqMbMpeJYyVsuO3f2y6qjSctx45rU3d3ndIwRcTKzbdv686u79V9Pvq7ntvWq1e/Rp46crA8eMl6NPrfsZFrdyX98O+W4cU36pwOadfK8sG7+3Sua3ebXYZNH9geIcuNrozzIXB5kLg8yl0815i428+5oXL4mT0U8vkp5nm13/rXp66/sUtuE4F4/t1IyjwSZy6PWM8dffk0yTfW4gjIcfJxOP8+pxlZJ0vYXNskzp7h3RDideV9UY2apOnOTuTzIXB7VmHl/mKax12FWx0rezs5ORaNR5XI5uVwu5XI5bd++XZ2dnbJt+x0vA0ZDzrL12MZu/Xj1Vr3cHVe4yadLlk/TP88Lq8HjKvp2Prd8mtZFenXlQxt027mLNG4PU78AANSzRCyt1mGKzHoTCOVfLyR6UsOWvEC9sqJdMseOleGu+bmkvXINrquwIl3SnIMcTgMAqGRl2cm7J2PGjNGcOXP0wAMPSJIeeOABzZkzR21tbXu9DNgfmZyl+57v0uk/XqPLH1yvdNbSqhNm6p6PHqrTF04YUcErSQ0el6498SAlMzld8eB69vMCAPA3bMtWojetQAv7eP9WcPAQOg5fA95ZLhKR2cGQT+HguRyHrwEAhlGWP4teffXVevTRR7Vjxw6df/75CoVCevDBB/WlL31JX/jCF3TzzTerublZ11133dB19nYZMFLJTE73rO3SbWve0Pb+tOZ0NOq6k+bo6Olj5TKN/brtKWMC+sJ7ZuhLD2/QD/+yRZ/4p8mjExoAgCqXSmRlZW1K3r/jaXDJ43Mp3pNyOgpQsaxolzzz5jsdw3FGY5OMYFBW1zanowAAKlxZSt4rrrhCV1xxxT98fNq0afrlL3+5x+vs7TKgWL0DGf3PM9t0x1/fVGwgq0UHtOiLx8/UskmtMoz9K3f/1vvndujprT360ROva+EBLVo2qXXUbhsAgGqViOUnVSl5384wDAVCXiWY5AX2yM7lZG3fziSv8t8vzI5OWUzyAgCGUd8LjlCzdsTTuv3pN3Tns11KZHI6cmqbzls6UQsmtJTsPi9ZMV3rIn268qH1uu2cRRrLfl4AQJ1LDE6qUvL+o3zJyyQvsCfWjh1SLje0qqDemeGwcpEup2MAACocJS9qypuxpH761Bu6f11EWcvWsbPG6SNLJ2rGuHc+fXC0+D0ufe2kOfrIz57RFx9ar++cNn+/V0EAAFDNEr1M8r6TYMinHVv6nY4BVCQrmi80C4eO1TtXuFPZtc86HQMoO7N3q7yv/Uaa8y7JM93pOEDFo+RFTXhlR1w/Wb1Vj67fLsMwdOLcDp176ERNbPWXNcfUMUFdumK6rnpko259Yov+3xGTy3r/AABUkkRPWi63IW+Al5x/LxDyKjOQU2YgJ0/DyA5+BWpdLpJfTWB2MMkr5Z8Hu79fVn+/zMbSD68ATjLSffJtelC+DXfKu+2J/Af/aCp48PlKLLtEtpf/B4B3wituVLUXunr149Vb9ftNO9XgNnXGogn68OID1N7k3KqEk+aF9fQbMf3wL/n9vIceyH5eAEB9SsTSCrT4RnUPfq0ItuRfq8R7UgqFAw6nASqLNbiawEXJK0lyDa6tsCJdMqfPcDgNUAJWVt6tf5Bvw13ybX5YRi6lbMsUxZddotSU49S26Q4F1twq3+Zfq//oryo9+T1OJwYqEiVvrcil1PSbi6WpS2UceIrshpDTiUrGtm099XqPfrx6q556vUfNDW597PADdfrCCQr5PU7HkyR9fsV0vdjVpyseXK/bzl2ssUHepgoAqD+JWFp+VjXsUSCUf14SPWlKXuDvWNGIjJaQDH9535VXqQoH0OWiEbkpeVFDXDteVMP6O9Ww8R6ZyW5ZvhYNzDlTA7NOVbZjoVT4I/HsG7X7wBPV9LvPq+XB8zQw7UTFj/qyrGCHsw8AqDCUvLXCtmVm+qXfXKkx7ms1MOs0JedfoFxb7bwIsGxbj7+yU//15Fa9EOnTmKBXn33XFJ2yoFNBb2V9Kfs9Ln31pDk677ZndOVD6/Ufpx7Mfl4AQN1JxtLqmFG6Q0+rWbD1rUleAG+Xi3QNTa/i7ZO8QLUz4xH5Nt6rhg13yr1zvWzTo/Sk5RqYfZrSk5ZLrj2/Kzfbeah2n/GwAs98T4E135Z36x8UP+IyDRx0lmSYZX4UQGWqrGYM+87doNhJP9O43Gsa+L//UMP6/5H/hZ8qPfFoJedfoPSkY6r2G1/WsvXo+u36yeqt2rwzofEtDfr390zX++eG5XNX7mOaPjaoS5dP11ce3agfPfm6Pnb4JKcjAQBQNlbOUrI/o0Azk7x74gu65XIbSvSknY4CVBwrGpFr8hSnY1QMo7VN8nplDe4qBqpOJinfqw+rYcOd8mx9XIZtKdOxUH3vukapGf8su6HIFYcurxJLPqvU9BPV+PvPq+n3X1DDhrvU9+7rlGubWdrHAFQBSt5aEz5Y/cu/ofjhl8n/wm1qWPcTtTz4EWVbpig5/3ylZp9eNYvKU1lL96+L6Kdr3tC22ICmjQ3oK++brffMGie3U1Ox6bi8bzwuBZZLGv6X1pPmdWjN1h798C9btOiAFi2eWLtrNAAA+FvJ3oxkv7WWAG9nGIYCLT4meYG/Y9u2cpEueZYd7nSUimGYpsz2DuWiTPKiitiWPG/+Rb4Nd8v3ygMyM3HlGicosegzSs06VbnWaft807nQVMVO/h81vPQLBf/8FbX+4nglFn1aicWfkdwNo/gggOpCyVujbP8YJZZ8VomFn5Rv80PyP3ermh6/UsEnr9fAnDOUPPg8WS2TnY65R/F0Vnc/16Xbnn5TO+Npzets0r++e5qOmtYm04mDW4aWwN8t36uPyMgmpU3HS8fdOuxVDcPQF94zQy9G+nT5g+t12zmLNIb9vACAOpCI5SdUA+zkfUeBkHfoeQKQZ/f0SKmUXOFOp6NUFFfneNY1oCq4dm+Sb8Ndathwt1z9b8ryNCo1/USlZp2mzPhlo/cOY8PQwEFnKjX5PWr845cUXPMt+Tbdr/5jrlNm/GGjcx9AlaHkrXUuj1IzTlZqxslyR5+R/7lb5X/+x/I/d6vSk9+j5PyPKnPAP7210NxBPYmM7njmTf3PM9vUl8pq6YEhXf2+2Vo8saX8p3Lbttzbn5Vvw91q2HS/zOSO/BL4madILo/8z/9Ynlm/U2bSMcPeVMDr0tdOOkjn/fwZrfr1et106sHOlNUAAJQRJe/wAiGvujb0OB0DqCiFaVWzg528f8vsCCu96WWnYwB7ZCR3ybfpV2pYf6c825+VbZjKTHyX4of/u1JTjpc8pTtE0Q6MVd9x39HArFPV9H+XKXTPaUoe9CHFD7+8pg+kB/aEkreOZDsWqu+47ygev0IN634q/ws/k+9Xv1G2bZaS8y/IF5gl/Ob7TrpiSd30u1d0z9ouDWQtvXv6GJ237EDNDTeVPYvZ86oaNt4j38a75Y69JtvlU3ryezQwc2V+r7HLJ+XS8r/5uBr/9GXtPuBIyeUZ9nanjwvqc8dM0zW/eVk/fnKrLjjswDI8GgAAnEPJO7xgyKeB/qyyGUtuT+WeMwCUU2HvLJO8b+cKh2Xv3iU7NSDDx9vRUQFyKXlfe0wNG+6Sd8tvZVgZZcccpP4jvqjUzA/ICnaUNU5m0jHa9aHHFFz9Dfmf+6F8r/6v+o/6slLTT6qIoTagHCh565AVDCux7BIlFl8k38v3KfDcrWr6/ecV/Mu1Gph7lpLzzpPVNL7kOXoHMvrO46/qgReisixbJ8xp17lLJ2rqmGDJ7/tvGcmd8r38KzVsvFue6DOyZSgz4XD1LfqMUtPeK9v3d6eCu7zS8dfIffuZ8q/7iZILLizqfk4+OKw1W3v0/T+/pgUTmtnPCwCoaYlYSl6/S26vy+koFSs4uK840ZNS87jy/6EdqESFlQRmmEnev2V25EvvXDQq94Ec6AyH2Lbc0b+qYcNd8r18n8xUTLlAe35obNapyo09yNl8noDi//RFpWauVOPvLlXzo59SasOd6n/XV2U1H+BsNqAMKHnrmbtBqTlnKDX7dHm6nsyvcnjme/I/832lpr5XyQUfVTa8pCR/9Vq9Zbe+/PAG7Uxk9KGlE/XBeWGNbynjX6QzCflefVS+jXfL+/r/ybBzyo6Zo/7DL1dq5smyGocpuWeeoPTEoxV46psamHmKbH/bsHdpGIb+/dgZeinary8+tF4/O2eR2gJMNwEAalMilmaKdxiBkE9S/rmi5AXyctGIDH9ARlOz01Eqimuw9LYiXRIlL8rM7N2aL3Y33CV37FXZ7galphyvgVmnKTPxKMmsrGopO26eek77lfzP/1jBJ76uttuPUXzZJUrOv6DisgKjia9uSIahzPjDlBl/mMzerfI//2M1vHSHGl55QJlx85VccEH+LQ4u337fVTpr6eY/vqbbnn5DB7b69aMPzdXRB49Xd3ffKDyQYVhZed74kxo23i3fK7+WkU0o19ip5MKPa2DmSuXGzCn+tgxD/UeuUusdxyq4+gb1H/3Voq4W9Lp17YlzdP7Pn9Gqhzbo26fOYz8vAKAmJXrSCoQoefem8PzEezh8DSiwIl0yw+Hyn8lR4czB9RWFdRZAqRmpXvleeVC+DXfKu+1JSVJ6wuHqXfwZpae9T7a3/OsVR8R0K7ngQqWmnKDGP1yuxj9dJd/Ge9R/zNeVHXew0+mAkqDkxdtYzRMV/6cvKr7039Sw4S751/5Izf/7L7L+dI2S885Wcu45soPt+3Tbm7rj+uJD67VpR1ynLujUxUdPld9T4rdw2rbc3Wvl23iPGjbeJzPZLcvbrIGZJys185T9Ot0z1zZTyXnn5lc2zD276LemzGxv1L8dM03X/u8m/WT1Vp2/jP28AIDak+xNa+ykCv8F0GH+Jq8MM7+uAUBeLhoZWk2At5hjx0ku19DBdEBJWFl5t/5Bvg13ybf5YRm5lLKhqYovu1QDM0+pypUHVvMB6n3/j+Xb9IAaH79SoV++X8kFH1N86b9JnoDT8YBRRcmLPfMENDDvHA3MPVuerX+Qf+2tCj71TQWe/o5SM/5ZyfkfVbZ9flE3Zdm27vjrm/ru46+q0efWN1fO1ZFTx5Q0vhnbooaX75Vvw91y97wi2/QqPXm5BmaeovSk5ZJ7dFZDJJb+qxo23qPGP35JsZN/UfRqi5XzO/X01pi+/6fXdMiEFi08oGX4KwEAUCUyqZzSyRzrGoZhugz5m71KMMkLDLEiEXnmMmX39wy3W+bYcUzyYvTZtlw7XlTDhjvVsPHe/GCUL6SBg87UwKzTlG0/pPoPLjMMpWacpPTEoxT8y7UKPPt9+V55UP1HfzXfDwA1gpIXe2cYyhx4tDIHHi1Xz2b51/5IvvW/VMOGu5TpPFSJ+R9VeuoJ77jXZntfSl9+eINWv96jo6a26YrjZ5ZsD62R3CXfpvvVsPEeeSJrJEnp8Yep75D/p9S098tuGP2DzuyGVsWXfU5Nf7hC3lcfVnrqe4vLOrSft09XPPiSbjtnsUIBz6jnAwDACclYvrSk5B1eMORTnEleQJJkJeKy+3o5dO0dmOEwk7wYNWY8It/Ge9Ww4U65d66XbXqUnrxCA7NOyxefrtr7GW43hNR/zHVKzTpFjb//vFoeOFcDM05W/5Ffkh0Y53Q8YL9R8qJoudBU9b/rasWXXaqGl34h//P/pZZHPpHfazvvIxqY+2HZDa1Dn//Yxm599TcvK5219O/HztDKg0uwWyublO/V38i38R55X/+dDCurbNss9R/2BaVmrpTVNGF0728PBuaeLf+6n6rxT1dr14HHFD0l3Ohz69oTD9IFtz+jVQ+v1zdXsp8XAFAbEr2UvMUKtHjV/VoZziYAqkBhStXFuoY9cnV0KvPcM07HGH1WVtq9RbJbq39itNJlktLah9Wy5qfybH1chm0p07FIfUd/VanpJ73t9/lalhm/TLvPeESBp7+rwNPfkff13yt+xBUamHMmX4OoapS8GDHb16zkIR9Tcv4F8m55TP7nblXjE19TcM23NDDzFO2c/RFd+5xbD74Q1UHhJl313lma1DaKu26snDxv/lkNG++R95WHZGb6lQuGlVxwoQZmnpI/QK2c35hNt/qP/LJCvzpT/ud+qOTizxR91Vkdjfr/3j1N1z22ST996g19ZOnEEgYFAKA8CusHOHhteMFWn15fu1NWzpLp2rdzAiqFke6Te8cLknuGpNKu5kJtsiL5KVUmeffMDIdlPdYtO5uV4a7uX+WN5C55X/+dvFt+K+/rv5dSMbV0LlP8iMuUDS92Ol7tSccVWHur/M98T0r3ytV0gBKLL1Jq1qnKhaY6nc4ZLp8SS/9VqeknqfH3X1DT7y6Rb8Nd6n/3dcq1TnM6HbBPqvsnA5xlupSecpzSU46Ta+dL8q/9kbzr79IBL/5cH7bm6l1zztG7jj1Dbs8orCGwbbl3vCDfhrvle/k+uRJRWd4mpaa/f/AAtcMks8SHuO1FZuKRSk05XsE1Nyk1+4Oygh1FX/fUBfn9vLf88VUdMqFZCyawnxcAUN0SsbRkSP4mVhENJxDyyralZG9GwVaf03GKl0nIveMFebY/J/f2tXJ3r5Vr9ysyZEuGS02zTlV8yWdltUx2OimqSC6an+Q1w0zy7okr3CnlcrK6t8vVOd7pOCMzuPfVt+Uxebc8JnfkrzJky/KPVXrK8WoYP1Puv3xfrXedrNSU4xVfdqlyY2Y5nbr65dJqeOE2BdfcJDPZrdSU4+U7+rPaFTh4nw8grzW5thmKrfylGl68XcE/X6PWO45VYslnlVj0qZpcWYHaRsmLUZEKzdJ3PJ/Svcl362OBx3W+/391xKtfUO6OW5Scf74G5pwh2zvyE7bN3q1q2HivfBvvkXv3xvyeoEnL1T9zpdKTV0hufwkezb7pP+IKtd2+QsEnrlPfihuLvp5hGLr8uBlav71Plz3wkm47d7FCfn4pBgBUr0QsLX+jp+onU8shODjtHO9JVW7Jmx2Qe+dLcm9fO1jqPifX7pdl2JYkKRcMK9u+QKmZK5UdO08tu56Sb/V/yrfhLg3MPk2JJRfLaj7Q4QeBamBFuiSPR2Ybk+B7Uii/rUikOkreTELeN/4o72v5YtcVz5f4mfYFShz6L0pPWpE/zNsw1TCuSTunnTM4bXqLWn9xrFKzTlN86b+VZQVfzbFy8r18j4Krb5Sr93Wlxx+m+Pt+qGx4scaNa5K6WRP0NoapgbkfVmrysWr845cUXH2DfC//Sn3HXKds56FOpwOKRsmL/fbaroSufGi9Xor266S50/Xe5cerz/UVpTc/LP/aW9X4xy8p8OT1Gph9ugbmnz/s20GMgd3ybXpQDRvvlqdrtSQp07lUfUd/Tanp76/YPUFWaIqSCz6qwDO3KDnvXGU7Din6uvn9vHN0we3P6ssPb9A3PjCX/bwAgKqViKVZ1VCkQChf7BZWXDgul5F71wa5B8tc9/a1cu9aL8PKSpIs/xhl2hcoNfW9yrYvULZ9/j++g+nQD2jXrPPl/+vN8r/wMzVsuEsDs09XYvFnZTUf4MCDQrXIRSIy2ztkmPyBaE9cHfk1Frlolyp1JMSMbZF3y2PybXlMnjefkJFLyfI0KjPxKCUmrVB60jHv/K5Hb1CJJZ9Vcu7ZCjz9HfnX/US+jfcqefBHlFh8kWx/W3kfTDWybXlf+42CT1wn964Nyow7WH0n/UyZiUeza7YIdrBdfcffrNSsU9X4f5ep9e6VSs49R/HDvyDbxztuUfkoebHPbNvW3Wu79M3fb1aD29R1J83R8plvnUiZmnGSUjNOknv7c/I/d6v8L/xM/ud/rPSk5UrOv0CZie966wdNdkDe1/43v2d3y29lWBllW2covuzzGpj5AVnN1bGrNrHks2pYf6ca/7hKPafcO6IfpLM7mvQvR0/T9b/dpNvWvKFzDq2OxwwAwN9LxFIKhUdxH38NCzQXJnkdKHmtrFy7Xx6c0F2bL3V3viQjl8pf7GtRtn2Bkod8Qpn2+cq2L5DVOL6o1zdWsEPxo76s5KJPyv/0d+V/4TY1rP+lBuacocTii5jMwx5Z0a6hIhP/yBx8bgoH1FWEXEaertX53bpbHpN79yZJUjY0Vcl55yo9aYUy45eO6G3vtr9N8SOvzA/QrL5R/rW3quGlO5Rc+Akl5l8oeYOlejRVzfPmXxR84mvyRJ5WtmWKeo+7Ranp72ctwz5IT16hXeN/q+DqG+Rfe6u8rz6q/nddpfTU91GWo6JR8mKf7IyndfWjG/XHzbu0bFJIq06YpXGNe36LYbZ9gfqOvUnxIy5Xw7qfyv/Cz+S7/8PKts7QwEEfkhKbNeaF+2Sm+5QLdCh58PlKzTpF2bFzq+4bqO1tUv/hX1Dzb/9NvpfvVWrmyhFd/4OHdOqvb/Tou4+/qgUTWjR/fHOJkgIAUBq2bSsZS2v87JDTUaqCy2OqodGjRE+qtHdkW3L1bB6azvV0r5W7e52MbFKSZHkalW0/WMmDz1O2fYEy7QvyKxb287WYFQwr/q6vKLnokwo8/V01vHi7Gl76hQYOOkuJxZ/Ol8bAICsSkWfZ4U7HqFiGzyejrU25wQPqHMuR2CHv67+T77X/lWfrH2Sm+2SbXmUmHKb+uWcrNWmFrNCU/b4fq2mC+ld8Q8lD/p+CT35dwSevl3/tjxU/9GINHHQW+1IHubvXKfjE1+R9/ffKBcPqe/d1Gph9uuSq1HnvKuENKn7kKqVmrlTj7y5Vy8MfV2rysep/1zWymvjZhcpEyYsR+8MrO3X1IxsVT2f1b8dM0+kLxxe1WsAKdiix7HNKLLlIvpfvz69y+NNVkrdJ6aknaGDmKcpMOMLRA9RGQ2r2B5V5/icK/vkapaYcL3mKn2QyDENXHDdT66P9+f285yxSC/t5AQBVJJ3IKpe1FWjhl+9iBVu9ozvJa9sye7e8NZ3bvVbu7c/LzPTnL3Y3KDvuYCUPOkvZ9vnKth+iXGhKSae9rMbx6j/6GiUWfVqBp/9DDS/+XA0v3q6BuWcpsfgzsoJMb9Y7O52WtXOHXGG+FvbG1dEpK1rmSV7bkrt7nbxbHpP3tcfk3v6cDNnKBTqUmn6i0pNWKH3AUSWbsM2NmaXe990qd+RpBf/yVTX94QoFnv1PxZd9TqkZJ9ftpKqrZ7MCT96ghk2/kuULqf+IK5Q8+CMVdW5NLci2z1fPBx+Q/7lbFVx9g1pvP0aJZZcqefB5Vd9doPZQ8qJoyUxO3/r9Zt29tkszxgV1y/vma9rYffhB7vIpNfs0pWadKlfPZrVNnqm+WG70AzvFMNX//7N33/Ft1Pcfx193p9NpWMMrHrGd5SwnTuIMAmGFsAmz0FJmB/xKSwst3b/+WihdUEpbRgstHZRSWtoCpWXPMgIEyN57J7bjeEjW1o3fHyfLziLLtjy+z8dDnHw6nb4SsXx663Of78m3k//UJXgWPUBs5teP6O55moOfnD+e67r055X6WUWzIAiCMHjFQnZY6Qn00UnE+iBPQKN1V/To7mxZyJFdOHYv3SvUlZMh+2bZiV5UQ3LspaQzPXSN/GqQc/MxwPSVE5l9RybsvQ/Xyr/gWvU34hOuIj71iwfv1SkMeObuRgDkkrIcj6Rvk0tL0dev6/HHkVIR1O1v2cHu1v+ixHZjIaGXTCF23NdIDT8dvWhir555qZdOI14E9g8AACAASURBVHTxEzi3/Rfve3fif+Um0ot/Q/T4b5Oumt3vzgI9WnKkHs+H9+Ba/TgoGtHpXyY+5QYsTZwF2mNkB/G6G0iOOhffm98hb95taOueov20n2EU1eR6dIKQJUJe4bCsbGjn1ufXsL01zjXTK/j8icNxOo7xG1NJwsgfBU4PMLBm99TLZpAYfRGexQ+SGP/JI55kpKbUx1dOHcnd/93IXxfu5KrpYpISQRAEoX/oDHlFJe/h8gSd7FzdimVaSPJHhxRytNGeDG33kmzbBTneDIAlO9ALxpEcdX6mQncyesGYPnlKs+mvIHLaXcSmfQnPgvtwL38E98rHiE+8ltjUG7E8xYfeyWBlmTgaF0PMCe7eDdl6UkcLAllU8n4kpaSM1DtvY5lmt09Qp7RtsnvrbnkVddf7SGYa0+knVXUq0cykaZa7sFsf84hJEqlhc0hVzUZb9zTeD+4m+Ow1pMqPJ3rC/6KXTsvt+HqQlGjFs+jXuJc9DJZpv19Ov1m8X/Yi019F6PxH0db/m7x5t5H/j3OJ191AdPotoIoKaiH3RMgrfCTdtHjkg2387t2tFHqdPPDxSUyvEj32Dkf0hO+gbX4J73s/of3sB474/p+oK2fhjhD3v72ZyUP9TCwT38wKgiAIfZ8IeY+cN6hhGhaJaBq3r/N1kxKtsH4+nvXz7WC3aSlK1K52tCQZI380yWFnZALdSeiF48HhytXTOCqmv4rInLuJTfsS3gX34V72R9wrHyU+8VPE6r6A5SnK9RD7BsvEUb8AbeNzaJueR4nYgWhwyGRi024mNeLMfn/KekcLAqVUVPJ+FLm0FFIprNYWpMJj/P0wUqi73u9swxDaDICeP4b45OvsSdNKp/fN3q6STHLsx0hWn49r5WN4F9xL/pMXkRx5DtGZ38IoGJ3rEXafVBTPsj/gXvwbpFQ7ybGXEj3ua/1mcvIBR5JIjrmYVNWpeN/9MZ5FD6BteJb2U+8gXXVqrkcnDHIi5BUOakdbnNteWMuyXWHOGlvMt86oxu/qg3/g+yjTN5RY3Y14P/wFidpPkS6feUT3lySJ7501hqsfXch3nl3NX66ZKl5/QRAEoc+LhVLIDgnNKw4zD5cnaAe7sbYUbi2NtvkltPVP49z+Fpg6Huyzn9JDTyQ+ZJLddqFowhH1/e/rzMBw2k//BdFpN+FdcC/upb/DveLPxGs/bYe97oJcD7H3mQZq/QdoG5/FufFFlFgjlqKRqjyV6PHfwu+WkN/8BYEXrkMvHEds2s0kR83ttz0ijYYGkCTk4iG5HkqfJmdCcKOhAfkoQl452mhX6259DXX728jpqP3vauisTLA7x550sb9QnCQmfYbEuE/gWfoQ7sW/JX/zyyTGfZzYjK/17wmyjFQ2wJbje0iOOJvozG9gFI7L9cgEwHLlE5lzN8mxHyPvjW8TfOYqEmM+RuSk23Jf8S4MWuLoW9iPZVk8u7KRu1/fiCzDD88bxznjxcHW0YjVfQHX6sfxvn0bbR9/7ogPun0uuz/v9Y8v5QcvruNnF9WI/ryCIAhCnxZrS+HxO8XfqyPg9dmvlfnWgxRFHkLS4xh55cQn/w+eSefR7KzGcvpyPMreYQZH0H7GPcSm3YRnwT24F/8G9/JHiE/6DLG6z2O58nM9xJ5l6qg752cqdl9Aju+xA7hhc4iOmktq+Omd/xaKfbRUXIS2/mk8C3+F/+Ub0YOjiE27yZ6Mqi9WX34Es6EeuagYSe1f4+5tSondzsJsqIcJEw99B8vE0bgk01v3ddSm5QAYeWUkx1ySmTTtxP7/pZHTS2zGLcQnXotn4f24l/8Z17qn7S+Kpn2pf713mAba+n/hff/nKO3b7VYU5/1hQLei6M/SQ2fRevnLeBbej2fRAzi3/ZfIibdC0WdyPTRhEBIhr7CXtniaO15Zz+vr9zC1IsD3zx1Lmb9/nfbXp6huorP+D//LX8S15h8kaq444l1MKPNz0ykj+OUbm/jbop1cOU305xUEQRD6rlg4JVo1HA7LtKs01z2Nb92rwIPEG5pITLuM5JiLSZfNAEnGU+zDahpYcxccDiN/FO1n3k9s+pfxfPhL3IsewLX8T8QnfZb4lM/1r8DmUIw06s53MsHui8iJViyHm+Sw00mNmkty2BxwHmSyY9lBcuxlJEdfgnPTC3gX3Iv/ta9gfPgLYlNvJDHu46D0j0kQzcYG5BLRj/dQOit56w++USKEc8PzaJlJ0+T4HixJRi+dRuT4b5MaNgejcPyA6efcleUuJHrS94lPuh7vhz/HveQhXKv+SrzuRmKTr+vbYbZl4dzyCt75P8XRspZ0cS3ts+8gXXnqgPx/NaA4XMRmfoNk9YX43vgW/tdugQ9/jq90BunymaTLj8cIjhL/H4UeJ0JeIWv+lhZuf3EdbfE0N508gqumV6AcYvIP4dCS1ReSXv4nvPN/SrL6/KOqxLli6lAWbQ9x/1ubmTw0wITSwVHNIwiCIPQ/sbYkQ0aKPvIHZFkozatxrXsKbf2/USL1dpg34mycu02aqj9PZPbIXI+yTzHyq2k/69fEpt2MZ8E9eBfej3vZw8QnX0d88v9gufrpXBFGCuf2t3FufB5t84vIyRCm6iU1/AySo+aSqjrtyCbxkRVS1eeTGjUX55ZX8Sy4B98b38az4F5idV+wCw0cfXtSIKOhHvVwKlNzxTTATCOZaTC6LlNgpMHUs9clM21va6TBTGWW+943hWTqmWU6s4999mvqSEaqy77s29s0CXXeb8mX/rj/Yxhp0OMEsDC1IKmq2aSGn06qavbA+nLkEEx/Be2n/5LYlBvwzr8L7/s/xbX8YWIzvkJi/BV9rtJd3fke3vl3ojYsRA+MIHzWgySr5/b7XtuDjVE4lraPPYW27in8u97AuXkernX/AsB0F5IuOy4T+s5EL6zpt+11csaykMPbUBsX42hcjLp7CUy8AMZen+uR9Rki5BVIpA1+PW8Ljy/ayYgCD/dcMpGxJXm5HtbAIUlETrqd4D/n4llwL9FZ3z2KXUjces4Yrn50Ed95ZhV/uWYaPpf49RUEQRD6FtOwSLSnRSXvPuTQVlzr/4227mkcreuwZIfdV/WE75AcfhY4vXg2rCQW1nM91D7LKBxL+9kPEpt+M94Pf2n37c2GvddjaYFcD/HQ9ATO7W/bPXY3v4KcCmM6faSGn0my+nxSlacc+8R5kkRqxJmkhp+Buv0tvAvuxff2rXgX3E9syudITLwGy9n3jvMtw8Dc3Yg858xcD8WWjqFtehHXuieh/kOK9ASSZfbYw1myE2QHlqKC7Mws1S5Lp72UHViqF0fASTrhRC8c02U7J5bsAMWJJ1hIa8EM9JI6kAf3ZwajcBzhuX/EUf8hee/dge/N7+Be8hCxmd8kWX1+zkNUR9MKvPPvxLntDQxvKe2zf0pi3Cf6XAgtHAFJJjn2MjjpMzTvDqOENqPuet++1H+AtukFAEynj3Tp9M7Qd8ikfnPmRW+RkiEcu5faoW7DItTdS5DjzQBYDhd68SQoGJXjUfYtg/sdX2Dd7gjfe34Nm5pjXF5XzpdOHoFLFd8mdTd9yCQS4z6Be+kfSNRciRE88iodv0vt7M/70lruulD05xUEQRD6lkQkhWUhQl5AijWhbXgG17qnURsXAZAqm0n7qXeQHDV3v4nEvEEn7c3JXAy1XzEKxxM+5yGUPavwfvgLvB/+EveyPxKf/D/EJ1/X93oX63Gc295A2/Aczi2vIqcjmFqA1Mhz7IrdypN65kO9JJGuOpW2qlNRd83Hs+A+8t77MZ5FvyY++Xrikz7Tp4Jxs3kPGAZyaQ7bNVgm6s73cK19AufG55HTUYy8oVB3DTFDA0XFklVQnPZyvxDW0Xm9Y9v9AljVDnS73I7sOPJTuN/7OsldO2k/+8ED3uwp9qEPwjYvH0Uvm0HbJU/i3Poa3vfuwP/yjaQXP0j0+G+Trjyl10+jV9o24Xn/blwb/oOpBYnM+i7x2k/1+Yp74QhJEkZwJEZwZLZ1o9y+C7X+fdRdH6Dueh9t/p0AWIpGuqQu294hXTL14K16BiJTx9G8BkfjomylrqN1Q/ZmPX80qWGnky6pQy+pQy8YC4pKcbEPxPtdlgh5BynTsnhswQ4efGcLfpfKvR+byKwRg3DW4l4UPf5baBufxfvODwnPffio9jGxzM9NJ4/gnjc38Y/Fu7h86tBuHqUgCIIgHL1YWwoAT3BwVqJIqXacm160g90dbyNZJnphDZETvkNy9EWYvoP/3fYENRo3hrEsS3yJexiMohrC5/4eR9MKPB/8Au8Hd+Ne+jviU24gPumzua1WTcdwbn3d7rG75TUkPYapBUlWn09y1FzSFSeC0ntfhKTLjyd04fE4GhbhWXi//Vot+S3x2s/YVdDu3H8GMBsaAFAy/WZ7k9K8Fte6J9HW/QslUo/p9JGsvoDk2EtJl8+keEiAWB8LEOSSUtKLFor3iyMlSaSGn0Gq6rTMxGZ3E3zmKlJDTyR6wv+il0zp8SHIkXo8H96Da/XjoGhEp3+Z+JQbsDTR5miwMH3lJH2XkBxzCQBSvAW1/oNsta9n4f1IC+7FkhT04tpspW+6bMbAabliWciRXXbLhczF0bQMSU8AmdYWJXUkx1xih7pDJvepLyb7MhHyDkIN4QS3v7iWBdtDzK4u5P/OHEPQI04H6WmWdwix6V8m772foG57k3TVqUe1nyunDWXh9jbueXMTteV+akR/XkEQBKGPiIUyIa9/EFXyGkmcW/+Ltu5ptC2vIBlJDF8lsalfJDn6YozCsYe1G0/QiZ4yScUNNI84RD9cevFE+1Ts3cvwfPgLvO/fhXvp74hNuYF47Wd6rQpKSkVwbn0NbeNzOLe+jqQnMN2FJMZ+zA52y4/P+enXeulUwnMfRmlaiXfhffZM8Et/R3zitcSnfA7TW5KzsRmN9iRivTXxmhTbg2v902hrn0RtWo4lKaSqTiU663skR5zZ56sp5dIyrFgUK9KO5BPh4BGTFXvCwuoLcK94FM+C+8h/4nySo84jOvNbGPndf/q3lGjFs+jXuJc9DJZJfOK1xKbfjOUp7vbHEvoXy11AauQ5pEaeA9hfGDsaFqLueh/nrvdxL3sYz5LfAqAXjiNdlgl9y4/D9PaPySqlVATH7qXZUNfRuAQl1gjY7Wr04onEa65CL6kjXVKH6a8Sk9QdJXEEOci8vGY3d766Ad00+d5ZY7hgYon49rcXxSdfh3vlY+TNu53WT758VD2yJEnitnPGcvWji/jfZ1fzl6univ68giAIQp+QDXkHersG00DdNR9t3b/QNj5v91Z1F5KouYLEmEvQS6Ye8YcTb+Y1i7UlRch7FPQhkwjP/ROOxsV4PvgFefPvxLPkIWJ1nyde+2lQPd3+mFIyjHPLK2gbn8e57Q074PcMITH+cjvYLZvZJyfVMYonED7ntygt6/As/BXupb/DvfxPJGquIFb3hY+sOO8pvVLJq8fRNr+CtvZJ+/+XZZAuriVy0vdJjL6oX4VtSiYMNxsakEXIe/QUjfjk60mM/yTuJb/FveQh8je9RGL85cRm3IKZ1w3/HlNRPMv+gHvxg0ipCMmxlxI97muY/spj37cwIFlOH+mq2aSrZhMD0BOou5dk2zu41vwT94pHADD8w0iVH98Z+vqH5T4cNQ2U1nWdk6M1LkZpWZfta64HhpOumEWspA69ZCp6UU2vnt0y0IkjyEGiPaFz1+sbeHH1bmrLfPzgvHFUBPv2N9QDkqIROfFWAi9ch2vFoyQmfeaodhNwq/z4/PF87u9L+dHL67jzgvEirBcEQRByLhZKoboUVFffC7aOmWXhaFpuV+xu+DdKtBFT9ZIaeS6JMReTrjjpmCY48ubbLS6ibSnyywdRD75uppfUEb7gURwNC/F++Avy3vsJniW/JVZ3I/GJ14J6bMe/UqItE+w+h3PbW0hmCsNbSnzCVaRGzSVdOr1PBrsHYhSMof3M+4jOuAXPol/jWvkXXCsfIzHuMmJTv4gZGN5rYzEb65ECASR3N38+sUy75+XaJ9E2PoecasfIKyNedwOJMZcedqV9XyNnwnCjoR7H6DE5Hk3/ZznziB33NeITP4Vn4X24VzyKa+2TxCd9ltjUL2K5gke+UyOFa+VjeBfcixzfQ3LE2URnfgOjcFz3PwFhYHO47B695cfbP5s6jj0rs+0dtM0v4V7zdwAMb4m9bdlxpMtnYhSM6fHJBeVoY5cK3UU4di9DTkftoWoB9JIpJEeem63SHTAtJ/ooEfIOAgu3t/H9F9bSFEnyuVnD+MzMKhyyCARzJTXiLFIVJ+H94G6SYy4+6je5SeV+vnjScO57azP/XFLPJ+rKu3mkgiAIgrA/ObQV/ytfAtnE7y7H8FVi+CswfZXEmwrx+AfW4aXStskOdtc/jaNtE5askho2h8iYS0gNO/2YQ8MOHX2MY21i8rXuoJdOI3TBYzjqF+D94OfkvftDPIt/Q2zqjcQnXn1Ep+NLiVa0TS+hbXwWdcc8JFPHyBtKvPbTJKvnopfU9fiH6J5kBkcQmXM3sRm34Fn8AK5Vj+Na/Q+SYy4mNvVLGAWje3wMRkMDckn3VfEqrRvR1j6Ja91TKO077C9kRp1HYsylpIee0G+C+INRMhPUmY0NOR7JwGJ5ioie/APik6/H+8HPcS/+Da5VfyVW9wXik647vPd708j0+/05Svt2UuXHEz3vD+il03r+CQiDg+xAHzIZfchk4lM+B5aJ0rI+M5nb+6i75uNa/28ATC2YDXzT5TPRiyce0xfSpOM4mpZn+uguwtG4GCWyCwBLdqAX1pAcd1lmcrSpGIERua8sHmQG1lG4sJe0YfKbd7by6IfbqQi6+P0VU5hYJk7nyTlJInLS98n/+1l4P/g5kVN+dNS7ump6BYt2hLjnzY1MKvcxrkT05xUEQRB6jhTdTfA/VyIl26ByBkrzerv/qGEHk8k9dxNUWin8/ZUY/kpMX0UmBK7E9Fdi+CowfRW5nRTrMMjRBrT1z6Ctfxp191IsJNJDT6C97vMkR553dFVdh+B0KzicMtHM5HVC99DLphO66G84dn1gh73v3I578YPEp36R+ISrwOE64P2k2B60zS+ibXwedcc7SJaB4a8iPvl6kqPmog+ZMuA+uJq+oURO+TGxaTfjXvxb3CsfRVv7FMlRc4lNvxmjqKbnHruhAWXYsGPahxRvQVv/b1xrn0TdvQRLkklXnkx05jdJjjynR1p25IoUzAdNw2ioz/VQBiTTX0X7GfcSm3ID3vk/JW/+nbiXP0xsxi0kxl1+4P7aloVzyyt45/8UR8ta0sW1tM++g3TlqQPuvULoYyQZo3AsRuFYEhOvtSc1C2+zA99M8KtteRkAy+EhXTY9M5HbcaRLphz8S0/LRGnbhKNhUbb1gqN5NZJlAGD4KkmXTieeqdDViyf0+X7mg4EIeQeozc0xvvf8GtbujnBxbSm3zB6Fx9m/v7EeSIzCcSQmXoNrxaPEJ1x91KftyJn+vFf9eSH/++xqHr16Knma+LUWBEEQup+UDBN49hrk2G7aLnqc/NrZtDa1g2UhxfeghLfT/vs0BWU+kqMuQGnfjtK6dwjcwXTlY/gqMf2ZENhXkfMQWEqG0Da+gLbuX6g730XCIl08iciJt5KsvqB7ejN+1ONLEp6AU1Ty9hC9/DhCF/8dded7eD74OXnzbsO9+AFiU79EouYKwIcU3Y226QW0jc+h7pqPZJnogeHE675gV+wWTRwUYY3pLSF60q3Epn0R99Lf4172MK6Nz5Icfiax6TfblcvdyLIsjMZ61ONmHvmdjSTOLa/iWvMkzm2vI5k6emENkVnfIznm4pxOJteTJElCKS3DFCFvjzKKagif/wjqrvfxvncHvje+jXvJQ0RnfpPUqLnZ9wN153t459+J2rAQPTiS0Nm/ITXqvH5d4S/0Y5KEGRhGMjCM5PhPAHZLBXXXB6j18+1/z+//DMhMelYyhXTZcaTKZ0KLE8/6d7OTo8mpMACmmodeMoXY1Bs72y70oz7mg4lIgwYYy7L4x+Jd3PfWJtyqwt0X1XBqdVGuhyUcQPS4r6Ote5q8ebcTuvCvR/2hIehW+cn547nh70v58cvr+cn540R/XkEQBKF76Qn8z38WR8taQuc9vPdpp5KE5Skm4SggmVyEs7qOyKlzO2/vEgIr7TuQ27ejhHfYIXDLOpxbXstdCKzHcW55Ddf6p3FueR3JTKEHhhOb8RWSoy/ukRnWP4onqGUnrxN6RnroCYQueQJ1xzt4PvgFvre/h2fRr6FwJIXb3kPCQg+OIjbtJpKj5mIUjh8Uwe6BWO5CYsd/i/iUG3Av/xPupb8n/4kLSFWeSmz6zaTLjyKUPdDjhEKQSBz+pGuWhaNhAa41T6BtfBY5GcLwlBCfdB2JsZf2aMVxXyKXlIqQt5eky2fS9rF/ZSt1Ay99nnTxJOKTPwsvPUtww6sY3lLaT7uLxLhPHNvp8ILQA0xvCcnRF5AcfQFgtyFS6xeg7pqPWv8B7sUP4ln0KwA8koxRMI5k9QXZQNfIr+73bW4GC/HuM4Dsiab4+jMf8ua6JmaNyOd7Z4+lyCtmKeyrLFc+0eO+hu/tW3FueYXUiLOOel+Thwb4wkkj+NXbm5m2NMBlU0R/XkEQBKGbmDr+l7+Ic9d8wmf+ivSw0w64WUc46Qnsc+yRCYF1TzF66dT979jbIbCpo+54xw52N76AnI5geIYQr72W5OiL0YdMzlmo5w06adkZzcljDzbpihMJDZ2FumMengX3oiTbic24xQ52C8YM2mD3QCxXkNiMrxCffD2uFY/iWfJbgv+6lFT5TGLTv0y64uRjer3MRjuolDN9Zg9GDm3BtfZJXGufQglvxXK4SY48l8TYSzMTHw6uAEIpLSO5dk2uhzF4SJI9t8qw09HWPYX3/bvxv/oVcOcTmfVd4rWfEqeqC/2G5conNeJMUiPOtFekoqiNiwkW+NnjrB5Q7W0GGxHyDhCxlMFVf15INGXwzdOruWxymajm7AcSE67BveJR8ubdTkvVqaBoR72va2ZUsGhHG798YyO15X7GDunb/Q4FQRCEfsCyyHvj22ibX6L95B+QHHPxQTeNhw8S8h5Kb4XA3iGwYDGFy55EjjdhOn0kq+eSHH1Jn5mIyRPUSMV00kkDVcv9eAY8SSJdeTKhypMpLvYRa2rP9Yj6NMuZR3zqF4jXfhr3qr/iXvwgwf9cSbqkjtj0L9sTER7F5w+jwZ48TDnAxGtSohVtw7N2n92GBXZ/7IqTiM64heTIc8HpPebn1V/JJaVYoTaseBzJLcLFXiMrJMd9nGT1Bai75hOccArxdtGWQejnnF7SlSdBsQ/E38J+rU+EvHPmzMHpdKJpdsD19a9/nZNPPpklS5Zw6623kkwmGTp0KD/72c8oLCzM8Wj7Js0hc+W0Ci6eUUlAZLv9h6ISOek2gs9cjXvpH4lP/cJR70qWJG4/ZxxXPbqQ7zy7mkeuqhP9eQVBEIRj4p1/J+7VjxOd/mUSkz77kdsetJL3WHVnCKxopIefQWLMxaSqTjvopFu54g3ar12sLUWgRIQ2Qh+luolPvo74xKtxrfknnoW/JvDcp9ELa4hOv/mIe5F2tBzIVvIaKZxbX8e19kn799dMoReMJXLCd+w+u3nijDUAOdPewmhswDF8RI5HMwg5XKSrZoPLB+0iFBMEoW/oMwnQfffdx5gxY7I/m6bJN77xDe644w6mT5/OAw88wN13380dd9yRw1H2XYos8anjKiku9tEkvnnpV9JVs0kOPxPPgntJjL0UyzvkqPcV9Kj8eO54Pv+Ppdzxynp+NFf05xUEQRCOjnvJQ3gW/Zr4hKuJHff1Q24fa0uBBG5/L7eKOqwQuBklspP8UbWE+3DFlSdoFzzEQkkR8gp9n6KRmHA1iXGXo61/Gs/C+wm89Hn0/NHEpn2J5OiLDqs3qdHYAG43amwj7iVPoW34D3KiFdNdRLz2UyTHXopeNEG00NiHkgnFzcYGECGvIAiCAPTZo9wVK1agaRrTp08H4JOf/CQvvvhijkclCD0jeuL3kIwk3vd/esz7mlIR4IYTh/Py2ib+tbyhG0YnCIIgDDbamifIe+cHJEfNJXLKjw8rXImFU7i8Koqjjx1eShKWp8jutesK5Ho0H6mjkjfaJiZfE/oRRSU57uO0XvFfwmc9AJKM/9UvU/DYqbhW/Q2Mg/97lsPbkdbMw+lKUPDURbhWP06q8hRC5/+Z5k8vIHrSbejFE0XAewBypr2FISZfEwRBEDIky7KsXA9izpw55OXlYVkW06ZN46tf/SrvvfceTz75JA899FB2u8mTJ/Pmm28SDAZzOFpB6CEvfxfe/RV87r9QXndMuzJNi0//6UPmb2rm6RtPpKbc302DFARBEAa8dS/B366A4SfCVU+A4/D6xf/n3sUk4wYf//b0Hh7gwGWZFr+5+Q2mnF7JCZdU53o4gnB0TBPWvQBv3gX1S8BfASd9BequAdUFiRCsfBqWPg7b3mXTS0U48oNU/egrUHMRuMRx6+GwDIM1k6dQ+NnPMuSrt+R6OIIgCEIf0CfaNTz22GOUlZWRSqX48Y9/zA9+8APOPPPMbtl3c3ME08x5jt1r+mO7BjFmm1TzBQoW/xXjmW/QdslTx1yx8H+nj+LqXSE+/+gC/nx1HcOH5ovXuReIMfcOMebeIcbce/rKuB31HxL8z7XoRRMInfEQVmsKOHAV3r5jbmuKExji7hPP42D6yuv8UTx+J027Itlx9ocx70uMuXf06TEXngKXnIy67Q28C+5Fff7rGG/chVI5A2vDq0hGEj2/muTMb5F67l9ItWfRVHkxtNPn+pv25ddZLi4msnkr0j7j68tjPpj+OGbon+MWY+4dYsy9oz+O+VjIskRhYd7Bb+/FsRxUWZl9qonT6eTKUrY0EQAAIABJREFUK69k0aJFlJWVsWvXruw2LS0tyLIsqniFAcvS/ESP/xZq/YdoG5455v0VeJz8aO44drTFueOV9fSBon1BEAShD1OaVxN47tMYeeWELngUy3nwA8h9WZZFLJTC3d2Trg1CnqCTWFsy18MQhGMnSaSHnUbbx/5F28X/wCgYA7sWEa+5ktbLnqX1iv8SrbkOqz2SnURMODJySRlGg2jPJgiCINhyHvLGYjHaM9/WWpbF888/z/jx45k4cSKJRIIFCxYA8Pjjj3POOefkcqiC0OMS4y4nXTQB77s/gnT8mPc3tSLIDbOG89KaJm58bBGPfriddze30NieFKGvIAiCkCWHtxH4z9VYDhehC/6K5S48ovun4gZG2sQTFCHvsfIGNdGTVxhYJIn00FmELnocvraG6Ck/RC+ZApKE0Wj3k+2YREw4MkppKaboySsIgiBk5LxdQ3NzMzfddBOGYWCaJqNGjeK2225DlmXuuusubrvtNpLJJEOHDuVnP/tZrocrCD1LVoiefDvBf12GZ/GDxI776jHv8tMzK9kdSTJvcwsvrOj8pt+nORhV5GFUkTdz8VBd5MXvUo/5MQVBEIT+Q4rtIfCfK5GMBG2XPIXprzjifcRCdijp8YuQ91h5gk4S7WkM3ex7k9gJQjczM1WoHZOICUdGLi3H3NOElU4jqeIYXhAEYbDLechbWVnJ008/fcDbpk6dyjPPHPtp64LQn6TLjydRfQGexQ+QGP9JTF/5Me1PliS+fcZoiot9bNjWwsbmKBv3xNi4J8rGPVFeWrObSNLIbl+c57RD30Iv1cV2CDyiwINLVY71qQmCIAh9jJRqJ/DsNSjRBtoufByjcOxR7SfeEfKKSt5j5g3aE93FQil8ha4cj0YQepaRqUKVRSXvUVFKS8GyMJt2o5QPzfVwBEEQhBzLecgrCML+oif8H9rml/G+92Paz/p1t+034FaZWhFkakVnb2vLstgdSWVD3417omzYE+Of23eSMuyWDrIEFUF3Jvz1UF1sh8AV+W4c8rFNECcIgiDkiJ7A//x1OJpXEz73D+hl0496V9lKXtGT95h1BOWxNhHyCgOf2dgADgdyYVGuh9IvySV2OG401IuQVxAEQRAhryD0Raa/gljd5/EuuJd47afRy2b02GNJkkSJT6PEpzFrREF2vWFabG+Ls2lPlA17Oqt/39ywBzPTztepSAwv6Ax9O9o+lPg0JEmEv4IgCH2WaeB/5SacO98lfMa9pIaffky7i4WSyIqEyytOFz5Wnkwlb1RMviYMAkZDA/KQEiRZtCY5GkpmwjpTTL4mCIIgIEJeQeizYlO/iGv138l7+zbaPv4sSL178KvIdoA7vMDDnDHF2fWJtMHWlngm+LUD4AXb2nh+1e7sNnma0iX07ez3G3CLD/+CIAg5Z1nkvfm/aJteIHLS90mOvfSYdxkLpXD7nUji7I5j5vGrSJJdySsIA53ZWC8mXTsG8pASwH4dBUEQBEGEvILQV6keoid8B/+rN6Ot+SfJ8ZfnekQAuFSFsSV5jC3J22t9OJFm055YNvzduCfKK2ubeGpZ50FnkddJdZGXkZnQd1SRl5GFot+vIAhCb/K8/zPcq/5KdNpNxCdf3y37jIVSolVDN5EVGZdPFZW8wqBgNjSgzpiZ62H0W5LTiVxYhCEqeQVBEAREyCsIfVpyzCWkVzxC3nt3khp1HpbTl+shHZTfpTKlIsCUikB2nWVZNEVS2cneNuyJsmlPlCeX1pPUTQAkoCLoylb9doS/lfnuHD0TQRCEgcu99Pd4F95HvOZKYjO/2W37jYVSFA/ru3+j+htvviYqeYUBz0qnMZv3iEnXjpFcWorZICp5BUEQBBHyCkLfJklETrqd/CfOx7PwfqInfCfXIzoikiQxxKcxxKdxwvC9+/3uDCX2qvrduCfKWxubs/1+VUViiM+FU5ZwqTIuh4xLVXCpCm5VxuVQ7PWqkr3N7ej82a0e4PbM/VRFEj2DBUEYdLS1T5E37/skR55L5NQ7oJveB03TIh4WlbzdyRNw0rwtkuthCEKPMpt2g2WhlJTleij9mlxShr52da6HIQiCIPQBIuQVhD5OL5lCYtzHcS/5PfGaKzEDw3M9pGOmyBJV+W6q8t3MGd05m3JSN9nSEsuGvlEDQpEE8bRJQjcIJ3Qa25MkdJNE2iCRNomnDawjfXzJbjuhdQ2DHZkQuEsovG847Mpuu+/9OgPlYIHZvS+WIAhCN3BufR3f618lNfQEwmfeD3L3tclJRNJYJrhFyNttvEGN7StaMc0j/QsnCP2Hkak+FZW8x0YpLSX11n+xTFNMYCcIgjDIiZBXEPqB6PHfQtvwHHnv/JDweX/I9XB6jOaQGTskj7FD7H6/xcU+mpraP/I+lmWRMiw79NXt0DeZCYXjHUGwbi87w+HObTuC4oRukkwb7ImkSOj7rNcPP7jVHDLjS/KoLfMzqdxPbbmfQq8IPgRByB1Hw0L8L34OvWAc4fP+CA5Xt+6/o62AqOTtPp6gE8u0SLSnoCTXoxGEnmFm+sgqpaKS91jIpWWg65jNe1CKh+R6OIIgCEIOiZBXEPoB01tKdPrN5M2/E3X7PNKVJ+V6SH2GJEloDgnNIRM49OZHxbQskpmAuKOqeN9wOJ75eU/S4IONe3h88U4eXbADgPKAyw58y/xMKvdRXZyHQ8xALwhCL1Ca1xJ49loMbymhCx7tkd7u8ZAIebubN6gBEBV9eYUBzGysB0lCHiK+yTgWSoldCW02NIiQVxAEYZATIa8g9BPxydfjXvVX8ubdRuvlL4Esfn17iyxJuFW7LUP+IbbtqD5O6iZrGttZXt/O8l1hFm5v48XVuwFwOWQmlPmoLbMrfSeV+Ql61J5/IoIgDCpyeAeBZ67CUlyELvwrlqe4Rx4nFhYhb3fzBO3XUky+JgxkRkMDcmERkiqOgY6FXGZXQpuN9VA7KcejEYTuY1omm9o3sLJ1OVXRciqVaopcPXMsIwgDhUiJBKG/cLiIzPougRc/h2vlYyRqP5XrEQkfQXPITB4aYPJQu77Ysiwa2pMs3xVm2a4wy+vbeXTBDoxMv8WqfDe1ZT5qMxW/o4q8KKLaVxCEoyTFmwk8cyWSHqftkicw/VU99lixtiQOTUZ1dV+f38HO01HJ25rM8UgEoeeYDfWiH2836Ji4zsi0vxCE/sqwDDaFN7CkZTFLmxexvHUp7em9W/eVuEupCU5kQn4tE/NrGemrxiGKnwQhS/w2CEI/khp5Lqmhs/B+cDfJ0RdiuQ5VVyr0FZIkUeZ3UeZ3cdY4+1S6RNpgdWMkG/y+t6WV51bZ1b5ep0JNqS9b6TuxzEfALSpdBEE4NCkVIfDstSjtO2m78G8YheN79PFioRQevxNJEl9MdReHKqN5HcRCopJXGLiMxgYc42pyPYx+T/J4kPx+zMxEdoLQX+wb6i5rWUpEt0Pdcs9QTi6ZzeTCOmrzJ4MnybzN77OydTnLW5fy3/pXAdBkjXHBGibk1zIhWEtN/gQCzmAun5Yg5JQIeQWhP5EkIid9n/x/nIPnw18SPfkHuR6RcAxcqkJdRYC6is5q352hBMvrwyzbaVf7PvL+NozM5OrDC9x7Teg2otCDLEIVQRC6MpL4X7geR9MKwuf9Ab38uB5/yFgola08FbqPN6gRbROVvMLAZJkm5u5GlNlzcj2UAUEuKcNoFJW8Qt9mWAYbwxtY2ryIJS2LWdayhKgeAWCop4JTymYzpWAqkwvqKHbv3V+6uNhHKcO5bMTlAOyON7KydTkr25azsnUFf9/0GIZlAFDhrWJCptp3Qv5EhuWNQJbk3n2ygpAjIuQVhH7GKKohUXMV7uWPkJhwNUbBmFwPSegmkiRREXRTEXRz7nh7EpJYymBVQ7sd/O4K89bGZp5Z2QhAnqYwsbQj9PUxscxPnibe1gVh0DIN/K/cjHPHPMKn30Nq+Bm98rCxUIr8cm+vPNZg4gk6CTXGcz0MQegRZkszpNPIJaJdQ3dQSksxtm/L9TAEYS92qLueJZlQd3nL0myoW+GpZHbZHCYX1B0w1D2UIe4ShrhLOK3cPtZJGAnWhlazsnU5q1pXML/pXV7a+TwAXkceNcEJTMivpSY4kfHBCXhVcdwiDEwiDRCEfig68+toG/5D3rzbCV3wFxDVnAOWx6kwvSrI9Cr7tCPLstjWGmd5fZjlu9pZtivM797bigVIwMgiz14Tug0rcItTqAVhMLAs8t76LtrG54jM+h7JcZf1ysMaaZNkVBeTrvUAT9BJ/boQlmXleiiC0O06WgsopWU5HsnAIJeWkVrwAZZlieM+IWcMU2dDeL3dfqFlMctblhDVo4BdXTu7bA5TCqYyqbCO4m6eQM2luLKBMWTOkIztyIa+K9uW88j6P2BhISExwjeqS7VvLeWeoeJ3RxgQRMgrCP2Q5S4kNuMW8uZ9H+fW13qtWkvIPUmSGFbgYViBh/Mn2NUvkaTOyob2bG/f19bt4enl9il7fpcjE/r6qC3zM6HMh9cp3voFYaDxfPBz3CsfJTb1RuJ1N/Ta48bCds9YEfJ2P29Qw0ibxNvTuR6KIHQ7MzNJmJh4rXsoJaUQj2OFQ0gB0Y9U6B17hbqZidI6Qt1KbxWnlZ3B5EI7eC3q5lD3UCRJosJbSYW3krMrzgMgko6wum0lq9pWsLJ1Oa/Xv8Iz258GIOgMZid0m5Bfy9jAeDRFtKIS+h/xSV8Q+qn4xE/hWvkXvPNuJ1V5CijiA/Zglac5mDksn5nD7In4TMtia0ucZbtCdrVvfZh3NrcAIEswqshrt3jI9PctKsrL5fAFQThGrmV/xLvgHuLjLyd6/P/26mN3TAzmFiFvt+sIztubE8h5orpIGFiMxkwlb4mo5O0OcqYi2mxoQBYhr9BDDFNnfXjdXqFuTI8Bdqg7p+zMbKhb6CrK8Wj3l6fmMaN4JjOKZwJ2O4ltkS12b99WO/h9d/c8ABRJodo/hgn5tUzMtHkY4i7J5fAF4bCIkFcQ+itFJXrirQSevRb3sod7tXJL6NtkSWJEoYcRhR4uqrUP+sOJNCvq7Wrf5fVhXly9myeX2h+wXKqMX3MQcKsE3CpBV+Z6dqkScDsyS3u9z+UQk74JQh+grXsa39u3khxxNpHZP+319j3xkKjk7SnefLuCqL0lQSDPnePRCEL3MhsakPx+JI8n10MZEJRMRbTRWI9j7Lgcj0YYKAxTZ114XXaitBVdQt0q7zBOLz+bKQV1TCqY0idD3UNRJIURvlGM8I3i/KqLAWhLtrKqbaXd5qFtBc9t+zdPbfkHAMWuIXalb3AiNfm1VPtHo8pqLp/CoJMwEoRTIcLpEOFUmHA6zAmuaWgEcj20PkOEvILQj6WGzSE5bA6eBfeQGHsplqf//XEVeoffpTJrRAGzRhQAYJgWm5tjLKsPsyehU98SIxRPE0rorG+KEkrohBNpzIO0gpQl8Gn7hMCZADjYJSAO7hMSOx1iZltB6C7qtjfwvfYVUuUzCZ/1K5B7/7Cuo5LX4xchb3fzBDsreQNVIuQVBhajoQFZVPF2m47X0qyvz/FIhP5s31B3ectS4oYd6g7LG84Z5WfbfW8L6yjQCnM82p4R1PKZVXISs0pOAkA3dTaG17OyrbPa94361wBwyk7GBsZnWjxMpCY4kXytIJfD7zd0UyecDhNOhWhPh7OhbSgdoj3V+XPHbaHMdikztd++LgxfyFfGfjsHz6JvEiGvIPRz0RNvI//x0/G+fxeR0+7K9XCEfkKRJaqLvVQXeyku9tHU1L7fNqZlEUnqhOI6oUQ6u2zLhMGheOe63e1JOxyOp0no5kEf163Ke1UE77XsGg53qSLO0xQxEYIg7MPRsIjAC/+DkT+G8HkPgyM3IWAslELzOlBU8QVOd3O6HDg9Dpa/sYNYIsnwKUU43eLQXRgYzMZ6lIrKXA9jwJACAXC7MRobcj0UoR/RTZ314bUsaV6UmShtWZdQdwRnDj2bKYVTmVRQR8EgDS8dsoOxwfGMDY7nY8M/AUBTfDcr21awqnU5K9tW8MTmx3l8kw7AUE8FNfkTmRCsZXRyOLF2HVVWUWUnTlnNXt97nRNF6p+fd0zLJKpHslW1nVW2IdrT7YSy18OZbezbOyrCD0SRFPxqAL8zgF/1U+YpZ2xgPH5nAJ/qy94WUAP4VD91w2sItSR78Vn3beJIURD6OSN/FPHaz+Be+nsSE69FL56Y6yEJA4QsSfhdKn6XSiWHHyAldTNTFZzuEhDbwfC+AXFDe4RQPE04oXOw+eMVya5E7toyojjgBsNAc8i4HDIuVTnA9cxS3ft6x22qIvXLgylBUFrWE3j2WkzPENou+AuW5s/ZWGKhlGjV0IOOv2wka99uYMnz21n+yk4qawuonlFMQYXopS70X5ZlYTY0oE4/LtdDGTAkSUIpKcVsEJW8wsGljCTrw+vY0LCKd7fNZ0Xr8r1C3bOGnsPkwqlMKpgyaEPdw1HsHsJs9xxml80BIGkkWR9ay4q25axsXc6Cpvd5ZeeLsPLw9ykh7Rf8qvuEwk7ZiVNx7hMUH/w+zn0CZXsfB1rXeT89EmFLeFc2kA1lA9qQHeJ2vZ4KEUm3Y3LgAh8JiTw1D38mjA1q+VTlDcuGt3ZYu//SrXiO6DOaU3ECIuTtIEJeQRgAYjO+gmvtk3jn3Ubo4id6vSejIHSlOWSG+DSG+A5/RlrTsmhP6J0B8AEC4lA8TVtCpz6cYGNzjHhKJ5E2SejGQdtKfBRZYr8wWHMomaC487qWCY67Xu8IlLVMgNw1PN5/XwoOWfxOCt1Dbt9J4JkrQVZpu/AxLO+QnI4n1pbEV+TK6RgGstLRAWpnVbBuaQMbP2xi27JmtizaQ365h1EzhlA1qQCHU8n1MAXhiFjtYax4DKWkNNdDOWKmZWJYBrqpY1h69rre5fre6w37Z9Owt+lYdrm+13ozc9/D3V+Xx7/Y1YZnUyO/n38jDoeMYqq4HW7cigeXw41bsS/Z6w43LqXjume/daqsii/D+zHTMtkR3cbqtlWsaVvFmtAqNoY3oFt2xenwvBGcVXFutqeuaDNw9DRFY2LBJCYWTALsL7Ia4vXgSbK7pY20kSZtpkmbKdJmmlRmmc4uD39dKBXab13aTJHKLA3L6JHn6FLcdjCbCWOHuEvwq358qn+vqtrOsDZAnpqHIoljlN4mQl5BGAAsLUB05jfxvfltnBufI1V9fq6HJAhHRJakbMsG8g9dNdy1xYRlWeimRSJtktQNErq593XdJJnuvJ5IGySz6+2QuOv1pG4SS5m0xtL7b/8RrSg+iiJL5GkOgi4HBV4nhR6VAo+TAq9KocfZuc7rpMDjRBO9i4UDkOItBJ65CikVoe2SJzEDw3M6HsuyiIVSlIzKXSXx4bIsi2jKwJfumQ8/R8OyLAzLyFzssMYwjS7r7EtM8xILxBh6ppPSU0tpWhFn16IIC/69hcUvbqO81kfVtCD+EhcyCrIkIUkyMnsvJbrn7AXdtGiLp2mNpWiJpmmJp2iNpWmO2uta42kCXo0Sj4OqfA9V+W6q8t32+7sgYE+6BiCXdl9PXsMySBlJ4kaChBEnaSRIdFz0BEkzQVyPkzASe99mxLtc77gtTsJIZm9LmUk7bDWNg1as9RQZGUVWUCQHDsmBIiv2UlKy1zvW7wlITNxmV7PJkkw4HWZ3ojHzvOPEjThpM33Yj61ICm7Fkwl+Xdnre4XB2fDYs3943BEwK67OEFlxoeSgf/xg0JzYw5qQHeiublvF2tBqonoUAI/Dw9jAeD4+4grGBWs4tfoEzIg4C6enSJJEmafc/rzC/i3xepJpmfsFv3sHzAdal/nZSFMQ8EHSSaBLda1P9WeqZYX+QLzDCsIAkai5AveKR8h754e0DD89Z/0ZBaG3SZKEqkioioyvh/+sWZa1V+C7dwBsZCqLO6/bt9nbmLLMzuYozbE065uitMTaaE/qB3wcr1OhcJ/gtyBzvdCjUthlnUsV35APCqkogWevRQlvJ3ThYxhFNbkeEam4jp4y8QQPv2q/pyTSBg3tSRq7XBrCcXa276ExvpuWVBNpqQ2kFKpioanYF4d9UR3gdFg4FAtVsVBkcCgmDtlCli1k2cS09g9gDxbMdlTaGZZx4Psda1g0CkqHjKCm8URSC+vYviDELt8GVpW8y6bCJZjygcNsiY8IgJEAGZCwrK4XMC0J0wLTtJdYEhYSIIElZfYso8gyDkXBilsk201oBDLNeBQZnIqM02G/XzsV+73bqcggdW5nWZllx88c+LbsCRz7bd/l1uyiy23W3qd+dNzmdKg4cOJSNDTFhUtxockuNEWzryuu7G3Z2xUNl7z3z53XM9vL2qAOtUzLzFSaptFNA2IJmrauQAW2eCJE9ywgbsQzwWxyr9A1mQlo4we4bd/tDzQZz6FosobL4UaTtWyQqSkuAs58ShQNl+JGU1wE8/JIJywUScEhO7qErPbSITlwdLm+93o7oO0MapXstso+9zvQelk6/C99Y1seIfb+r/nlpLsZMqzkgPMt6KZuB756nLgRyyzjXdbFiesxEkYiez2eeY07rjcnm4nH9r6PeQTVg6rszIbBHVXELsVFgTdIoVJCVd4wqrzDqMwbRsAZOOz9DiZxPcba0Jpshe7qtlU0JXYDdjg/0lfN6eVnMS5Yw7hADZV5VXtVVBa6fTRFejd8FHqHLMmZv0VHd2x2sLlahP5j8B5xCMJAIytETr6d4NOfwLPkIWLTv5zrEQnCgCNJkt264SiC1QMdNCV1k9ZYiuZYmpZoipZYipZYmuZoiuZompZYio17onwYayOcOHggXJCtDO4Mhgu7rCvIBMNuEQj3T0aKwIv/g6NpOeFzf0e6/PhcjwiASKtdMebx92x1h26Y7I6kaGhP2AFuOEl9OMrOyO5sgBu3WpEdISQ1nFmGkB1h8JjgAQX7kt1n5hK1ZEAGXcZKy1gdP1syWAqQWWfJyJKSCXk6wxtVdqAqKk7FjVNx4FYcaA4HLlXFpTjQHGqX4KbLRVb2Xyd1DYOUbMDj97sJhWN2H1PLxGLvpRlvwFjnoXzNMMo3VGNtvxJrdIjYyD1EtDixlG5f0jrxdOcyoXcsDQzTBMnETkUtkOylqoDmkHA7JJwOCacm4VRAddhLhyKhKuCQJWTZtMeIidPpIJnUSeom8bR9dkU8bRBPm8TiJind7NKHXcLlkHGrCh7Vgdup4FUdeJz2e63d7aYjhCZbjbz3fz/iNmmfbeisZu56m8MpEYpFSBoJkkaScCpM0thNwrR/ThoJ4kbiiMKsDqqsHjowlrV9QuIu28oHDpDjWoDdkRC6mc6est+xTJtpDEsnbdotAPZd19EaYN91upnOtg9IZ67b6wx7eyvzWPtsv/fjp7OtBQ70ep37oclngG9u/QntTQeuLpeQ0BQXbsWVCVvt0NWluCjUCrOvhSsTzna8Lp3bu7LrO2/rDHI1RTvsALW/hB5Kqd3+wmish2ElB9zGITvIk33kqb5ue1zLskibKeJGIhscdw2AE10C5USXbfYNl7eEtvBW+9ukuwT2AWcwE/hW2UvvMKryhlHqLh00X54Yps7myKZshe6atlVsjWzJflFY7hlKbf5kxgVrGB+sodo/5qgDPkEQ+r/B8c4oCINEeugskqPOw7PwVyTGfQIzr/tOgxMEoftpDplSv4tS/6F7mqZ0MxsCt2ROk26OpWiOdq7b0hxj0fYUoYMEwh5VocCrZquAC71dl3tf94g+n92io/o7ktSJJA0iKb3zelInkjKIpXQKgx6ktI7X6SBPc+B1KpmlxMh3vopz+1uE5/yc1Iizcv2UstpbEgB4gkcf8pqWRXM0tVcF7s5QmB2RRjvATTYRNVuQugS3khpCViKgWZD5HOsCHJKTfLWYIlcx5d5xlHhKKHbZPxe7hlDkKqayZAitzbFMgLr3TNYdLR06eoKHu/YGz/YL33t9S0Kn/SMmjpQl8GkOux1NdgJJ+2e/y4HXZS8DbpWgS8WfmWDSrcrZsXUETIm0QUss0yah430glqY1lqZFSdEyPIXanGZoi0zVigLyVhTS5DBYqulsdJhYkj2RZb7HSb5HpdLjJN/X+X6Qnz1zQCXfba93HmXrmEOFYrGUwfa2ONta42xrjWWWcba2xPc6w0GRJSoCrkzLBw9VBW6GZdo/FHmd3dov9HCDPLsSsvOU/6SRJGl2PdU/2eW2RKbaNNFlm+Ret0XSezq3Nzvv25u6VpI6ZLXzenap2l9uZG5zO9z73ObY5z4HWScpFAT8DFn6Iqa2gP875W40x97ha0eQ65S79//vYCCX2Mf9He0weoskSTgVDaeiEeDoK2+Li3007G6jMd7AtshWtke2si26lW2RrbzXOI/nU89kt1VllaGeCqryOoPfSm8Vld5heFVvdzytnOjo5dq1Qnd9aC1J0/5S1a8GGBes4ZSy0xgXqGFccDwBZzDHoxYEoS8RIa8gDDCRWd+lYMtreN+7g/Yz78v1cARB6CbOIwiE04a5XxjcEt27Ynhra5zFO0IHDYRdDpkin4amSHgy1cv2UsbjVHCr+17kbOWdJ/Nzx20d6/vbBHTZgDZlB7LRAwS17Uk9G9ZGk/o+Ya59P/1oZga0R8Dtjj8xyfEKP0lfwV9eqSDvrfmZIFjZa+nVFPI6lpqDPKeCd59lnuZAc8jdFpx0VPK6AwcOeS3LIpTQaQwnaWhP0hBOsLO9jR2RBnbHGmlO7aHdaAYlhKyGkByZENcRs49QffZFAzTJS9BZRLGrlHLvZEo9JRS7h9jhrVZMsbuYPIfvkM/No3qIKgdpZSDZvbPzNAdDjyCnMEyL9uSBQ+BsOJwJjZsidnV+KK4T+4j+wKoi4c8EwCbQFE4edHuvUyHfo5LvduItd6NXq4Rk5f/be/N4Oao6//tzauv9rrlJbkjCEk0jeQryAAAgAElEQVSIgMKwKUGWwLCTEGZ0fHj0Na/RQUdURId5JIRN0Z+iz+gs4DIOL+aZ3zjjzxFwFJBhHEARBcKwRhAlBAxmu0vu0t23u2s5zx+1dFV3387NTfe91cnn/Xr1PWud/t7qqjpVn/Otc9C728RRbxRxZEGFntWw/IQFOPrUhch0z7+HV9pQsWphFqsWZiP5UkqMT1l4IyT8+p+nfjcWmRc9ratY5gm+/udwTwzOJdv3iON6QmaR1bP7rjxLpJSoOJWImFxxynUCcjqrYypvQVU06J4QqwoNeo3IGuQFQm5VeN3fKQEOlIGBHLYWHoW9eClOWfiuOfveQwHF9+TdtXOeLZk9qlCxJH0YlqQPwzsXnhYpm6hMYLsn+vrha5Ov4ee7H4t4jPcnFkSmfPA9gQeSC+f0WJ8JE5UJvDL+UmRxtLHKGADAUAy8tXsVLll+GY7uWY3VPcdgMLWEgx+EkKZQ5CXkIMPpWo7i8R9G5n/+HlPH/SmsxSfOt0mEkDlGVxUsyiWwKLdvMccKCcJVEdhNTznA3skSihX3NeuxKdOL28Gr1/uDoQqkmgrG9cJwOpSX0lWkDE9QDrWjq40XlKp60FoNhdrJUjW/kVA7OUOB1ve6zXpC64KsgcONVCAYZoPyap1sspqfNlTketJ4/fdjKHi2Fco2Dn/5Dhz32n/hfwb/b8jFH8Vl/v/g21yxsGuyFKRn8nuoinCFX1/8jXgNNw8DYdlQoakKRoeKEArw3PAkdm8r442JYfw+vxu7p3ZjtDyESXsEjjIG4XvfauMQasV9iz7jfgwAKaUbPfoCDCSPwJLMIizJLsLC5CIsCLxwB5DS0vt1rM0lqiLQk9LRs58Li1UsBxOBOGxiwheGpyxXHC6ZmChZ6MoYSCsCvWl3ocbetB7M0d2baj4vt2NL7HxlDFs378HWx3bhtcd3YcnRvVhx8gAWHdUFEbOBFyEEetI6etLdeEeN0u5IiT2TZbwREX+LeHn3JP77N0MIn6p9aT0k/lYXf1vak4r9wpa2I2HaDiq2AtNOwbIScOwcpO1A2BKq5UC3HUjbQVcqg27VDI6/ZAsHcdqJs2tnIEiS1qH0LwA0Dc7uufXknSu6jC4cYxyHY3qPi+Sbjomdxd/jd57n7/b87/C7whv4yY6HULDyQb2kmsTSjDvtw/Ls4YEX8NLMsjmZ3qBil/HqxG8ji6P9vvgmAHd6kuXZI3DqwGlY3XMMju55G47KrYB2CExJYdlO48WRQ+tblC0HS0emkHBsDGQT6E5qHXGtI2Q+OPivGocIUkq8sPc5WIUiJida/4pX7SIVraS3mEVh0ox6GIjo62L13gdVDwVe4Osp/sHHkXz5e8g+dhPG/vhHQMxGrUn7cKSDKWsKRauAglXAlF1EwSygaBVQtItuaBW98iKmrAJUQ0CaChKK+6pdwlsoxvDChJqAoRrVeF1ZKM7XKzsOTVWwMJfAwlwCtrTdY8MsIG9NIZVTYRUyyOk5ZLVc3cq6jufpOmXaKFbcm/GiLwBXbExZrhA8VSMMF00bpWAbG0P5Sqjc3dbej25HFfDEXxUpQ0O+ZGKybMGcQSMZT/D0Rdi+tIHlvSlP3PRE2bA4m9CQS1Tz04YKpQXHfNrQMJBNYMBzDkxu+WfkXvsmSke/B8vXfgkfnsF3WI5E0fMgLuxHOJSvYNtI0ROLTViyDKGWIZQSoJRCcTcUahmqWsK5u47HEnUh7njhT10hV/G8wpPuR4VAl9LnCripVViSWYSl2cVY6HvgJgfQn1hwyK7YbGgKFmgGFmSa//8HMh+oogoc9rZeHPa2XuRHS9i6eQivPzOM37+0F9m+BFacshBHnLAAiXT8HwkUIYK3GU49vDdSVrEc7BgveQKw6wX8xt4pPL5tL364ZXdQTwAY7EpEhN/lfW6YyCUxWqygYjmo2BIV23HFVsuB6aXdsmraFWNlKN9Nm6G64bRpOyjXpP3yspfen2tfLYbqDjh0e6Jv9aMF8e6kF3p587F4p71rFxJHr57z7+0EbEeiFCzkWl3QtWTa1TBSVq0zZdp4X7YXLz/9a9z6T5uR0QQWZAz0ZxJYkHWvNW7aiP1gx/6gKzqWZ4/A8uwRkXwpJfZWRgPR1/cAfmlsCx7Z+ZNg0UUBgUWpxZGpH3wv4F6jd1b3tY508Gbhd/j12Mt4eexX+PX4S9g68Sos6faT/YkFWN1zDC5cdglW9xyDlV1Hx2qaibDw2mgx4SA9jShbVy+StiMLGM/mmpfQFAxkDSzMJjCQNbAol8BA1r2XXejl92WMjnuDjJBWEP87OjIjClYe1z55NexZLAbR6ahCha7o3qto072Spte9nqZ59atisu6teOuX6VAVFbrQI6/BaYqOnokMCpMVKELxPu6rbqofh+Kl1Ugd1Y/DXXRlJvUi7Xr5+8TIoPCujej672uQeOUelI/+4/b/EGTWSClRsktVYdYqomCFhFmziKLtirN15VZYuC1iyi7O6DsNxUBaSyOtZWBoOqbMEip22ZsPsHxA1xJDMUJicFQc9ld7DeIhYdlQjKZCc3g7FPuQNy0k1AQHe0JU7DLyVh55cxIFqxAJ81YBhbowj4KVR94LC1ahaftJNYmc3oWcnkNO70JWz6GrUZjOYbDbSxtdyGjZ/XpFUkoJ05bTCsPh/Ei8YkNoChRHBiJsWKgNi7NZwxVo1Rg+ACR++yNkf7oJ5SPOxeTZXwFmcHw70kHJLqIkCygrBVS0AiwUYKlFOHoBjlUArAKEVYBiFqBYBWjex7AKSFpF2JZbT047w2wVFQZ6d50MK13AiQvfjiWZRVieW+zNg+sKuH1G7yGzME4nkO1L4h3nL8Ox5xyGN3+1F1s378HzD27Hiz95E8uO6cOKUwbQvyzbkddTQ1NwRH8aR/SnAfRHyvJly53/d9Sb99cTge9/aQKFSmvvmw1VQFcVJDQFuqoEaUNVvHyBbl0N0obm1a9Ju+Ui1E60LUNz07nuFF7fOYGxKRPjUybGgo+FsSkTr+zJB9OITEdSUyKCsC/+djcRiWc7VzMAOMUi5PhYMH9sJxEIX16fcyBirJ9XrtmmMgvFSxUIFoU9K9mL5N4h7BgvYWiihNFiBY1eSMklNFfwDYm/wSfrCsELMgYyhtqR1wTAfTOgL9GPvkQ/3tF/QqSsZJfw+8J2bC/8zvUA9ryAXxh9LjIndlbLVRd9y1a9gJekl0a8bEdKwxEP3VfGXw7uqVJqGqt6jsZ7jvy/cHTP23B0z9swkBw44P/Pn1Kq6N0b+Z9CkLZQNB1v8U0bBe/+qVixYQuBfLFSFXLNkPBqObBnOc1UQnOvf0k/1NUgnUkbSOp+uVqtqytIaGrDbfy0oSpQUzp+s30Me/Jl7JmsYE++jKF8GS/umMDDhUrdwL4igAUZo078Hci5oS8Qz8dAFyHtRMh2umjGgJGRPJxZz4XXWYyUhqHnHIyONn9Iny3t6OCllOjuTWJoZByWt2JvdTXf6Oq9DVf/bbSSb6NVhb10pMyxYPorC0svXbNScFwJhGDUCswhMRgK9OIQFMcCug6HoRuQDqAIBSIQl6P1G4nWra3ri+CiXhhvULenK4OJiSkA4eMvtCp2EIaOzZpVtCP1Isdwo3r+StxoXk/Ut+3HMjkdO0eGXRE28JwNe8/6Im0xEGunrGKwQm4zVKEio2WQ1jKBQFuNp5FW3byMlkFKS9fV9fPTWhq6Un2tuJGXmO1YgeBbdsquAGyXUXEqXlhf5sYrwXaVmrywiByJe+FMhKVGKFCmEYYNGGoCSSXZxEM5KiI39k6Oluuz9FbelzeeIx0UrQLyVh4FM++JtdV4s7BguXHTMfe5rzJ6BlktN32oZZDV3XCgrwc7R4YxaU5g0pysDysTmLTc0F8UpBECAlk920AUrgrG04VJNblf+7tTVkF3pAPL658qjol0t4Ltu/egvOMXwC+/gIneIzF0/AdRcMzg2uFfTwo11xT/GjMTUqp7DfCvD+HrREbPhvKr15hGdTVFw4N/+yJ6lqTxzvesaPPeah2dcnyEaafN47uLrnfvc8Owyg66F6Ww4pSFOPzt/dCTs3/w7YT9LKXEaNEMpn2ArqFSMuuEWUMTnsjq5XnpQJz10prSeNqYdjLzxeIkJkuu+BsVgz1BuFQrEpvIl6cXwDOGGiwg2DON13B3WChOatBUVxjumtiD1y6+BNmbPofkH15Q17Y/XYVpS5iOF4a8p62Q97PpSJiWF3qe1NV6nre1I6Pb2NE2TcctC9exQp7api3dtyRMe1bCl6EKV4D1xKrGoSt6JfV910l5Ux2Fy/x9CwCTX7wV5pO/xKrHH8PQ0CRsR2LvlImRfAXDhQqGC2U39NIjhWrYSGBOakqdF3B/SAz287tT+gG/1RKH64YjHQyV9gRev2Ev4JHycFDPnzt4YWoRfj+1HbsKu4L8o3JvccXcbnce3WXZ5VCFWifKFkLCrJtnBXlTZrS84L3l5G7nzum+P289GapA2hvcTusqcmkdqpQ1gqo6axE2qbmDT614s2k6mh0fjpQYmzIxNFnBbk/83ZOvYM+kF/dE4UYDe91JzROCXUF4kSf+usKwm59LzM6hJA7H9P5Cm+OPogj090+/LgDdKw4i+pMLMNCTQ5fZWQf4QG8OvVb8bJZSwpZ2RFA2vXhPbwpDIxNwpON+YMORDmzpwJF2kG/7cbj5trS9Og3qoZrfsA6q8bo6cBpuI9NDUH/3KCppG8rAUSiWypCBzVX7/P/VlGakfSllTft2UDdsrxvKuv0gpZyReHkwIyBqhNY0UloaC5ID9WKtmq4RaNNV8UXLzFpcnA2qoiGtaEhrc/PqmJQSpmOi4lSF5IiYHBaUnTKMlMDI+HidUOzHSyEhecQcqSsv2+VZD+QIiGm9kRt5H/t1c9tT2DMxWi/OemHRKu5T6E6qSWQ0d8GfjJZBt9GNJeklzUXbUJhS0/svmCZmdn2u2BXkrUlMVCaQNycxYTYKJzBhTiJvTmD31O4g7TTxHNeEVhV9jS7kNC+cRhRepi/C8MQkLBkd4LOlBcuxIwN54Xx/sC+c7w/82ZEBxWrYLN+sKa9tr+m1cVEfgHHgpa8BqF5HwteFrJbFwuSiSF5GyyCtu2FVkK3GU1oKqmiNx4p0JPJ7y1iymqt6dzLdi9L4g0sOx3F/uBS/e3EUW5/ag2d+9AZe+M/tWP6Ofqw4eSF6B+M7H/KBIIQIBKsTlnYf1A+JmiLQmzbQm5751CiW7WC8ZAWi73iNl3D488beKYxPmU09o7MJFT0pHScP/QYfBnDD5r14+bUnYDkymALDOsDpKhoh4Hp6a4oIPKT1SKhAVwR0TUFKF4EHthbynu7KJiBNG0lvjviwwJqoSVdFWFcIm+u3RdTFi1EeGYZTqbhpRQRC7Kom20npLiDZSAD2078ZKmDk9b0Nf2dVEehP61iQTUS8gvtrBeK0HhGl5wsppTugEMyB7R5/7iBBDl3OMViZWI0jNAdmTsKyJSYreewubceeypsYKm/HqLkDb4ztQbf+FhxrnIu0cwRUaynKwyp+s9PGcxUbxcowipXd+y3KJjR37YGUN6VUWlfRldSwuCuBtLduQcZQkTY0pHQ/rgYibrXcTdfu84PteqcIgb60gb60gVWLphe/ChUrKgQHHsGuIPzr3XmMFusdJhKa4k0J4U8R4XkG56phX9qI5dth5NCDIi8h0yCEcKdxgAao0dXsB7pySJU7o2PMTV6NxKv3Q7zzBoyWk+78vEKFFAqgqIBQXddVoUIK1ctTAKG4aa8+FBWAmNFrw2F8odeJiNCNBeFaIbu3N4PRvYVgTuioAOblyXCOjJSF88IvLTSMyQbbRP+TGdUb6OtCeRKB8JJUUx37mttcIoSAoRoznpuzFTen03krl51KjXeyG5bs0j69kct2GeOVvRGR2S93pIO0lo4Ir4O1Am3Ii7Y2zOjZiAd23DBUA32q+1rk/iClxJRdDMTgWg/hWg/ikfIIXs9vw6Q5GVlQpdWoQg1N++NO46MKtcG88dXV7NNaGqrQ6vI1oUFVtOqUQH4bXr6uaFiomsj87P9FWk1BnnkbUrllnpibQUJNxm5F8FLBhGNLpLvbv1gNaT96QsWKkwZw1IkLMPr7ArY+NYQ3nh3Ga5uH0L8sgxUnL8TSY/ug6fE6Dkn70FQlEMFnSsVyMF6qnzYiLBIfucvtuweOOhxdPb11AqwWmq4iEGBDaUNVoKkCuupto7je1LoSFXDdegpUceBvI3aSIOZPg2Ht3Amk+2a8nRACXUkdXUkdR/U3H+CfMu16Idj3CM5XsGO8hBd2uNOI1H0PgJ6UHpkSwv8sX9yF8fGpqMf1NF7aYQ/sunxLwnKi3t+m486dbYU8xWc/njDofar4omzaKAXCandSw5KuhCe+akjrSuBNmzGqi8xmasTZRqIsaQ0ZQ0OmX/Om9mmMaTsYLriir+8NHBaCn//9OPbkK3UL86oC6M9UPYAHsgYG+zNwKlbgJZ0Keea78XoPfs4j3BhHuuewP61IxQvLtoOTu1LzbV6soMhLyEFO4V0bkXjtQeD/uwQzv9WbHumLvmEhWFGj4nFIGI6k/TohIbkqLisAlKAtKVQkEjoOK5sAJCAlRFjElQjyq3nSDf16flqiZlvZZFvUbFutIxq2j8i2mqrAcuD9D0r1/4QI/c8KpPDSCNURoroNFE98V6JtQUT3vYi2CyEgI22G2oHfTs02mQTSBdP7fae5sWgwXQYaTJMx87xI49Xd3mBKDTTKyyaQzE8/PcBMqX+Mmcktv+F9cq45M+xJc9kkJosWpKIDigYoBqSqAYoOqbghFC2IS6EDUoe0LMApAlYl2FYqOqDq1UGaTkM6gGNC2CaEYyJjm8g6DuDoEKIL0FMQSi+gWRBOBbBNCMcCnAqEbQbbWnYZBauASauACbuASXsKlmbDrDiemKpD9UL3Y0BVjWooDOiqAUVLQFMTUBU31NQk0PC3Cf9GXn4L9r+S34H+ey+HY0rsvfw7cHqObMFObi/FcddLLN19aC6adrAihED/0iz6l2Zx/IXL8Pqzw9i6eQhP3bMNz/34dzjihAVYcfJC5BYk990YOeQwNMVbQHL6wR85+jhGVBX/z3tOhVA5F2arURYvBgCYO3YAb2nFnX89KV3Fst4UlvU2F1ZM28FIrRCcDwnChQpeGy5gpFCZkYerqojAu7rZwEBKV6CrWr3XthLy3lZrt3cHCrRp8iOe3zWDCcsGu7G3TdMlkrlHVxUMdiUx2DV9P+dPDxEWgofyZezOVzA0Wca2kSKefKOx1/u+0BTRYFqWepHYzavWC79FULd9eEoY7cDWo5BSomJLlC07KrraDsqmK7qWI0KsjbItUfYW6auEysuhbd25of3y+rabLaa87h1LcOO5b5n1/3SwQZGXkIMcJzuI0fc9hP7KNoyPFyCkA0jb/TgOhLRdwcXLF44NQAKOV0eG6jjhtO2Km9IGHDvUrtdOUN+tJ0LfWW23xhZYgGVXt68oUFzFtF4wFCKUH82TECHdUACKl9d0W4S2DX1XuE64rEEdCQEtocIuVbz9IAE4of9VVvd1kB/e/44rRsvwNtF23HwZ2teOt3+dSB3/u6r5sv57QsRnPd+Zk5tvA2ZBO2yWdQKkF6p6A3HSE5hVDVIxmpR58UwamXzBFVUdC7ArEI4JOBaEXfHyTU+EdcP6umZVmPXrtnCR0N66HIGZifWtwR2k8veZGhGG68X7BvtZqNBGXgZK4xi/7N87QuAFgOIYRd6DHSOlYeVpi/HWdy3C0LZJbN28B799Yg9+84vdWHhUDitOXojDVvdAoccZ2Q/MHTugLFxEgbdNqItdD1NX5D12Xm3RVQWLu5JY3EQsA6qCmUgaGB8ruiKqUvXa9sN2zvd6INDr9tAjPD3E0Yumr9ffn8Wbu8Yjiy2WvEWD/QXvphrkN1rAccp0MD5l1pXPZrHGRnOF+8KwrmvIT1UaCrF+/EAwVIGEN52N4c3rnPAWLE3pCrpTWjDHc8KbK9pQlZq86sdQFZx13BLYxQN3/jlYoMhLyCGA030EMHAcKh3yqpnPwEAOYx1mc3Igh4lOsDnwVHYw0J/B0PAk6j2Zg0QkqEt4daPCcY238zTbTCvGNSoPtbWgP4PhkTZ5TbTpIWJBXxojQ2OuQOoJpYE4GsoLygJxtCYvHNoVL92ozJxmuwpgFiCCdkNlthsG3yltpBQ98Bx2BUo9EJADj2JFd0VjPTNNXcMVOVW9Ki6rRlUA9eKuZ7NR1361rbAw7ZXV5A0s6sHQnnH3/7AtCGlV/x+7Zl9I2xOmw/s/vA+safZ/bb1waNfUC32vtBv+Bk6iG+rl34CVmd8H8v2hOOGKvCmKvAc9QggsPKoLC4/qwtSkiW3PDOG1p4fwy/+zFcmsjiNPXICjThpApodTd5B9Y+7YEQiRpB7pSDiOhGNJOLYDx5ahjwPbqsYjZZabtisqJg87A3tfLEHNDEE3VGgJBZqhQkuo0AwFuhequhKLKcV8wWxgIIch6qXkIELxvHJTevsGtSzH9aoNi8FlTwSeTlwumb5QHM0vVmzo0h24yBhaRIhNeoJqXV6NEJtoIsa2a3G+voyBIYq8ARR5CSHkUCTwZlYAzQBmOBduM+bOdxJANgc51QFiephsDs5UZ80ZNTCQw3AnDFrUIhRATQBqosFM3fFkYCAHdNC+Lo5VoBkKjBS98Q4lUjkdbztzCY5+9yB2/XYcWzfvwcs/24lf/2wnBlf2YMUpA1j0lu75NpPEGHPHDqjHnzjfZtTh2A6sigOzbMOqOLBC4WiygPGxYiCo2la9+OoKrc0F2Nqy+nYkpNOC3uqtfwLsAvCD15vXE3BFX0P1RGAlEvpicCTPUDyx2CurEY7p2U8aIaWEbTqwTCc4r2zTgVWxYZX9fO+cC8Jq3DYdJJMabMjqMakr7mCFfyz6+eHyhAJV9wY1tIPz2NQUAc3QsB/Tpzelk+YgJ42hyEsIIYQQQvaLqfEKcn3JWHiBkblHUQSWrOrBklU9KIyV8drTQ9j2P0PY8b/HkOkxsGx1H0zbhqq5D9aq7n00BaouGuQ1KNMUKJrgMXYQIS0L1p490A/Qk1dKCduSnhDriUQVdz52P88s+wJSVTiqy/NCs2LDsWYnriqqqPko0bjmxTV3Sq9IXc2tq9ZtVy2rb9M9Rxp+p+bGJzd+GolUAvqN/yvYN5H/P/y/1+xDq+KgNGnCLJci9Wa8PzRRFYObeBFHhWM3bo7ZmCyUoOoKND16jVBUXgfmgkCMrXjCa9kXWZuJsVVR1p5OqDWd/RptVzUREm9dwdYq2SgVTdh+u6btzoA3Q4QiGorBql6b5+XXiMnTlavsp9qOlDIYSLNtxw0tJ3jjoadr+oX0DkUo8hJCCCGEkP2iOFFBtpev5xMg05PAcecuxdvOWoIdvx7Da08P4c1X9sL0PLVsy9mvB/EIAp5QLKKCcEQcnk40FvV5tWJyKL+UNlEpWRBCeC+7uGE0zgd5wH3gdmd9kt6U/zK0Xq2XJ6X7u4fS9q5dKCQWwMouRWHbRCAi1nrPmo2EWF+M9ESjmR5TQhHQEyGBJuF6qCazelSENFS3XkSMdOMLF3dhbKJYL7gqAuIAFjBqF/aiHji/fqllU6hIR1Y9MGuEc6vs/V5hsb2BwF6aNL167m/q7Oc8or64rYbFX11A09Xoue59tJq0qtXnaf71wIheC5R5+E2l43l3h73Arfq4PY13eGQajwYe5XZNW4pQMJWvtESMjQiingiaTic8T9rq1CDB+aZP43kbEl0bifq1HqZSuqJfrfBs1/w/jUXoanm5aKI4FvUc3p/jUwi4/79eLwKn0gZMy4aiuNciRXWvGf61w0/X56G+bu32oWtQw/qqaPydwbauTdP1a/XCqnec+QJrjdgaEV/tUH5NOjhe/fZC6br6oe2a8daTF+GEdctn/Jsd7FDkJYSQWSClBEwTslyCLJeBkhtO7TFgjubdGyTHgbuInQwtfCbdbaX0yr16fp6XLxvl+wuqOe6TlHQa50fr1LYR+m7PlpFcClMlC9B1CE33QhXQdAjdS6saoGtuOqijAVo1T2gaoOuAqsb+QVhKCViW+9tVypDlshevuPFKGfDyZKXixivlUP1KtU6D7Ru1OeLY7sJcdftO8/a1l9do/6ruvhX+/o38LtW61Xh9e9W4Fqrj52vROpoGoRycr7UdKFJKwPYWkXQcSNty47a72KQMxd1yO1Ifjg1ZW+44KPRlYU6WAVV1f2NVAxTFi6tBfpBWFEDVQnF1Ts+94lgFiw7vmpPvIp2BqilYdmwflh3bV/cw7tgObNN9WLNNJxB/g9CS9flmKL/hdhKVohVqI7pNu2gqANflNSoX1RmT9iUoe3nhbcN5uq6iUrECobVWZEVIgG1axxNkI+lphFpfzJ01p94MbAGw5ZWGxWGvOl90NdIa0j2GK9AGXqCuYKRHpg0ICbSJ1r2i3TOQhqm0bsHQdqMsGkT50YchbbslC9y5QrkrjgP6gRsIwLaioppVtpFJJTA6XAhe6w+f95YZugaE8ywHlZINe9Ksyz8Q7+xm4rA/iKQZKhRNIGnoKBTKdfMo2+F03RzLYWG2RdN0NPg/ar3CVW+QIpnRoWjCFWNDImtDMTYR8mYN4q6IOR+CuI8Qwh2w0xUk0q2VtfzpW3xv5sC7OSwSe97Ndo3IHJSXbeTLJfdNAe83dhw39EV96SDI29+Bj1YhfAHaF4wBWAdw/tR/Ady3FbwBW0WtvqmjaO4xqWoKjKRafVPBK/e9+INQV4JjWvW2VTSBlccvRqHMOXl9KPKSliLDIpKbUQ0jee5NJKSEU1DgFPKeEBYSq6QDOBJShkQqX7DyH64BL88Jbe/myXBeWAzz26wV2Pw2ZbRueHu/zfHuFMr5CqAIbzV1BVAUVxSp+UTyhAKoCoSiVhmMjb8AACAASURBVLcVwn0wb1ivGo9s620DIdzviLmgNldIKaviWqlUFelqhNgg7dWTlVB9Lx3EvfqRdMVtK7qomMvYPPzfB0oxFJcQkEJAChVSKAAEpFCCT21aevP6RvMUQNchNW9hLN0LNVeslKoGaAakH68NFbUaenEpVEhVBYSbZxgazFIJsLzFrSwLwvIW2rJMdzEt01u4zDQBqwJhVgCrAlQqEFYFwrEhvOuLkA4EnIZp4V2z3Lh7vRGqAsUTvYWhu3FDh2LoEHoKItMDJaFB1Q2IhAFhGMh0pVHMTwGWCWlarshsufZJy0ubpntsFvJwLAswvTpeGSwTsOxgu0bHYMtQVYxoGqSnPAihAALe3aCIxhVXsXCvWaLxxxONm9bx2hNKOI2aeKgOom1DUTCV0FCZquyfCOvYXp4DGYrDseHYnseY4w6KSNeIBueEcI990ajMP1dE9RypjfvlQej+v8E5Fi73ztNwGJQpCqSien2TCqkoNXG3XAgFUlEghVrtd4K0CPJl8Bt7Zd5vUbKXA8/+AvkXt7q/i/fdwcKFNXHh2+n/tuF46PcVDX/3muNNeJ4n+/iISDtuW2PZBEoTxei9QM39hQzS3rESuXeovT/wBswatAPpuA/uNXn+tjLcRridmranEjoqNiBUJSr0q97vXDMQ0HhQYAb1lH20sR/1LM2Cs3eyes45DhTbhuI40BynOvDh7WPpOICwAdUNpeoARmjf2NV2/PNV+nFH1g2aSM/ryLKlW90CbFvC9r/aG3uxHeGd7gKqpsE07ci5Vl1W1DuGZCg/OB9RPS8j23ihFN5tb23daj2J+jrV7aP1qvOMC9iqAseRwbnjnqohkdjz0vIf4qFVvcaEd14rSqieqlTLg/tQN66oiltPVSNtBMK0UrXBvYaH0t45bG15HpUf3ovuT12DxJJFUXHW86idT9HoYEEZHAQsC6OXng+RSgJGAiKZdD+JJJBIBPG6vGQSIpEAvDCok5ymnVmKyL4nfVicGxjIITnUGhEZgLeAXROBODRw1KiObUnXMzQ0CFUpWnXbqprieVKGvLx9MUsV0HQlOv1GA9G1booOTfGm8Wg8fYeqVeNKOB7aJvx8KB0HslCAnJyALBTQk0tg794CIO3QvWT4eR3VZ/IpAMVomYSE1eg5309Pl19TJqcr87WCUHuTA90wTQGRSkOk0xCpNJBOQSRTLXdMUFQFRkqBcYBLaezP/LbB4JpdFYOdiCDcWBhuLB5Hyxynpl17mvYdiXTaQMW0gmPLF2RVtYHwGkoHIq5/7HrpZt7CrSLdZaAwRJHXhyLvQYJTKOJXn/k7VEwRjATK6B+gJhq5eEaSjerLxlrCDPQF2fSkFg3jUkxXp3H+9PUbbzu9TTO3x73h99PVG36/TrS8Wf1ofF9t+w8ADbcV0Qd+eMID4F5ca20M2hThNqNl8GyJfm81v/qgEv0fwvYKeIdK6H9CKF09jEI7Wnjb+d6wvvgWiPm++O9ABA/ODiIt+uKcZ4l/PojgJkaBQApAClVhyX3AgaIACQGR8oQrxQ+VaKiG0qoC3dBgmk7NQ179A5xnkfvw5+8f98eovacJTuNqG6F/J1wvfE/k3zjV3jPBv4+S0W2cac7xuUYCsL3PbFG9T4sWIDggLO9TADDmH/KiehopgEgASLoZwekbnF/hU666nQhdWyC8o0oCQoRv1KtXlGraiwOBeO3fWAdlUrplUkJR3BvJ6MFR03cE59t06ZnUCT84zOR7GvdTACBsAcfwr4euOBoIrqheE4MBjYg4U58+pJBOjcQkq4McTug4kRIJOYnMrx5FeXJb9eEseLMAdfHqgC1C1++azxyQP9AG/EGFmlAIxROto6EQSsP6bp+jVOuHBnlFpB0Bx3TfHnBsbwDCtt3Bi5CXuOsxbnlldiCMwp4f78PRefnW6RFwH3o0oPobeF7wwhusF6rietmH7yH84zeSJ6PXnemcG8L1D0Z8h4Ma4R+q4r6J4O/f0ICEnBiHMzyE/lMOhzDi0EkfnCTOPgfJwhgKu0fqHRVKJcjJSaBccuOlUlBnVseqrgdCcFQYTgCJqmgsEl65Ly57onK4TmFRL6wKgGQKIuV/0u7bRrNAUQQUbyqOdjJXC1VJ24Ys5CEnx+BMTEBOTkJOTsCZnITMT8KanIScnIQzWVM2OQlZyFcdnNCZTilN97B/rKTT7nHjicBBOiQMzyQPhjHnTlTBoJkiMJ9L2nLhtc6HIu9BggUVW/vPQMVpxejn9B1880tddLsZ6bTwHCNkqNo+rqf111sRCfb93aKqTzaoIxq0V2ucoghPJJN1VUVVWQmVyQbxqGgiZKOysDDjp6OiZeA3EhqFDYs3fl1FCDi+N5EvXcjodsEEZ1G10BN8vDpOtCxozxMVhZSh7evrhQWk6HfVbichFAVS0aoPDkrUY8h/gHC91AzX09NLu9v6ZVUvNb9c+h5iihL9ZQKzQqKTFw/epJJwH/hq/gVAwhQqbM2pE+sCT5dApBOoOiKGBT4xo21F7bYKAmE8yA+0+gavhqJaJ5MxMDVleiOtqHro+F45QRgqD+UrSk2dptuF2g95FzVqt64+JIRjA5aJBQuyGJ6ouL+l94ppEEp4onUozwnlN8qL1G1UPtN6NeWhvHTaQKFQjhxTsukxJWuOSTcRuvREj9Pw8bqv8kheyJYaO3RdQ6VioZMwDA2mVZ1Xs/64Cp0ftWXh4zR0DKLB9nXHacN2wt/T4Fj34hBAX18GY2PFmutAzSvcQKS9xteFRq+CNz73G11L9oeBgcta+iAQeRtoGuF4WrG4ZroaiUb5DvoX5DCydyokwIYE1ZDoGi2rCrXz8ebMgTxwBdOL7EsMtqxIOlIvLBg3qRe0b1nIZpPIT5nuPov01eE3mqpvKomQ6BpMUxJsI4J+HWq1nbptgkFYNagnQt8RtDvNbzgXD7ZN33jzw8hFHpH6wXHtFS/oTWF4z4Q3DUyj3zn0O3nuy3W/e+j3lYGLs+ctXfvb1rZjO4AdPSbg2JBWA1scB7AHkbt8AwXeNqN0dWPgk5/cr+PZfRuu4r7tFrwNFxaCy54wXM2PvCFXKrnlgaBcAkZH4JTKkBV3O/j5IbExzMR0xmmaK76lkm6YTAKptOvB6XtyplL16VTKq5es2d4rmwchT1oWZD4fEmAnosJsfrIqzAYCrldWKIRuHBug6xC5HJRsDiKXg+jtg778cIhcVyi/CyKXRXdfDhPjUwhuMuocflBfFi738iPPzZE2wvXC7dZ8V+T+o74s/FDdk9Ew+vshyKkp91MseGERcqoI1OaN7YWzc0dQLovFaY+9OlTVE3xrxeNMVAxukBeOlyezsIYm3GumZVX7VcuK9qnhuOX30eE61YFdf9ugjYbtWY3bDr7frrfFi+9Vvbe4NNWbFsx7Fte8KcI0Nx1MKxfOa1a3Ll8L8iPbNaxbbSMoV6vlsmfFzH7XQwSKvAcJRiaB9Te/CwtqblCnFTLn4SFlOjpxtIg2zw20eW7oLJtVIGFAzWahTE0GWZ1AZ+1nF9o8dwwM5KAOtfZ1w05D1D5MNqpzgN+hD+SgGp13fMwWIYQ377d7yz9Xd399AznYHXgetpuZHONNt69Jqz05KGaHdIIenXqNPtgRQrjTLyQSQFd3274nWBPBF3xDInJ3UmDvrlFXrJsquvlTRcgpLyxNVQW+qSnIsVE4O0Pp0pQ7ldVMUZRAHEYq5D2cTNWJyiKVrtZJpqpliQTyukTpzd2BMCvz+ZA37WQkLouF5jYZCSi5HIQn1CoLFkA58ihXtM11uWWRuCfg5rrc32+G15fcQA6lDjsPUwM5GIOztzmY1q84FYi+jcTiZnnO7l2RPExNNf3OtnhMK0q9qNpQBPXjoXw9BWgaFN9ZyhdSgzoqkkkDU/linfAcCNBeXJamANt2p5drJFI3Ep7b9HaRs2ED9E9vbEvbnUjsRd5t27bhuuuuw9jYGHp6enDbbbfhiCOOmG+zYkmw6iLnsiKEEEIIIYQQEiOEENWFZHO5SFlmIIfiAQqP0jQjYjBKU66oV5qqEYxLVfHOr+eLxZOTcIb2RARlVKaf73O8NiOZhOKJryKbhbpoMcRb3hoVZrO5OpFW5HKuyE7agjuQ4c0n3dvbkjalbbue7MUiEIjGVc/hXC6JyaJZnbM+IsRO4+XaMO4N1vpvrLSRdg7EVd8usoL1SBoKwjX5Ua9mv9wKPJIXnHla/Xl4CBN7kffmm2/GFVdcgfXr1+M//uM/cNNNN+Gf//mf59ssQgghhBBCCCGExAQRCMhdLW038FysFYnLZfQO9mPc1qoeuJyO5JBBqCpEOgOkMw3LuwdyqHSYx3Q7Cb9dJFo4nmEM5ADu54BYi7wjIyN46aWXcNdddwEALrnkEtx6660YHR1FX1/fPFtHCCGEEEIIIYSQgxmhqhCZLJDJ1pWlB3IoUGAihMQEIWWz2bvnly1btuAzn/kM7r///iDvoosuwle+8hUcc8wx82gZIYQQQgghhBBCCCGExINYe/K2gpGRPBwntjp2y+nExQxo89xAm+cG2jw30Oa5gTbPHZ1oN22eG2jz3ECb5wbaPDfQ5rmjE+2mzXMDbZ4bOtHmA0FRBPr7698qCMrn0Jb9ZnBwELt374btrcJn2zb27NmDwcHBebaMEEIIIYQQQgghhBBC4kGsRd7+/n6sXr0a9913HwDgvvvuw+rVqzkfLyGEEEIIIYQQQgghhHjEfrqGW265Bddddx2+/vWvo6urC7fddtt8m0QIIYQQQgghhBBCCCGxIfYi74oVK/Dv//7v820GIYQQQgghhBBCCCGExJJYT9dACCGEEEIIIYQQQgghpDkUeQkhhBBCCCGEEEIIIaSDochLCCGEEEIIIYQQQgghHQxFXkIIIYQQQgghhBBCCOlgKPISQgghhBBCCCGEEEJIB0ORlxBCCCGEEEIIIYQQQjoYiryEEEIIIYQQQgghhBDSwVDkJYQQQgghhBBCCCGEkA6GIi8hhBBCCCGEEEIIIYR0MBR5CSGEEEIIIYQQQgghpIPR5tuAdqMoYr5NmHM68X+mzXMDbZ4baPPcQJvnBto8d3Si3bR5bqDNcwNtnhto89xAm+eOTrSbNs8NtHlu6ESbZ8u+/lchpZRzZAshhBBCCCGEEEIIIYSQFsPpGgghhBBCCCGEEEIIIaSDochLCCGEEEIIIYQQQgghHQxFXkIIIYQQQgghhBBCCOlgKPISQgghhBBCCCGEEEJIB0ORlxBCCCGEEEIIIYQQQjoYiryEEEIIIYQQQgghhBDSwVDkJYQQQgghhBBCCCGEkA6GIi8hhBBCCCGEEEIIIYR0MBR5CSGEEEIIIYQQQgghpIOhyEsIIYQQQgghhBBCCCEdDEXeGHPbbbdh7dq1WLVqFX7zm98E+Y8++ig2bNiASy+9FO9///uxffv2GZVdddVVWLduHS677DJcccUVePnll2Nvs8/tt99e12ZcbV67di0uuOACrF+/HuvXr8djjz0We5vL5TJuvvlmnHfeebj00ktx4403xtrmN998M9i/69evx9q1a3HKKafE2mYAeOSRR3DZZZdh/fr1WLduHR566KHY2zyT8/NA2bt3L6688kqcf/75uPTSS/Hxj38co6OjAIDnnnsO69atw/nnn48PfvCDGBkZCbabbVlcbf7Lv/xLnH766Vi1ahUKhUJL7W2Hzdu2bcMHPvABXHDBBbjkkkuwceNGlEqlWNvsOA7+5E/+BOvWrcO6devwoQ99CG+++WZLbW6H3WE2btzYlmOkHTavWrUKl156aXCtfuWVV2Jv89jYGD796U/j/PPPx8UXX4zbb7891jY/88wzkf7w9NNPx4YNG2JtMwB8//vfD46Nyy+/HE8//XTsbb777rtx6aWX4uKLL8Zf/MVfYGxsLBY2N+s74toXNrM5rn3hdHbFuS+czua56AvbcWz4tKsfbJfdce0Lm9kc175wOpvj3Bc2289x7Qub2RzHvnBf1+GHH34YF1xwAf7wD/8Q11xzDaamplpqc+yQJLZs3rxZ7tixQ5599tnylVdekVJKOTY2Jk855RT52muvSSml/MEPfiA/+MEP7rNMSiknJiaC+H/913/Jyy67LPY2Synlli1b5Ic+9KFIm3G2uV12ttPmW2+9VX7hC1+QjuNIKaUcGhqKvc1hPv/5z8vPfvazsbbZcRx50kknBe28/PLL8vjjj5e2bcfW5v35DQ6EvXv3yieeeCJIf+lLX5IbN26Utm3Lc889V27evFlKKeUdd9whr7vuOimlnHVZXG2WUspf/OIXcnh4WK5cuVLm8/mW2tsOm7dv3y5/9atfBfU++clPyttvvz3WNksZ7Qv/6Z/+SX7sYx9rqc3tsltKKf/7v/9bbty4sS3HSDtsbtex3E6bP/KRj8i77rorSO/Zsyf2Nof56Ec/Kv/xH/8x1jaPjo7KE044IbjX+MlPfiIvvPDCWNv86quvytNPP12OjIwEZTfeeOO82yzl9H1HXPvCZjbvqyyONse1L2xms5Tt7wvbYbOU7e0H22V3HPvCfdkcx75wXzaHiUtf2MzmuPaFzWyOa1/Y7Dqcz+flaaedJrdt2yallPL666+Xf//3f99Sm+MGRd4OICzWPP/88/Kiiy4Kyvbu3StXrlwpR0ZGmpbVcu+998oNGzbE3uZyuSzf+973yu3bt7ddPG2VzXMh8rbS5nw+L0888cS23ny02uYw5XJZnnrqqXLLli2xttlxHHnKKafIp59+Wkop5VNPPSXPO++8WNu8P9eUVvLggw/KP/3TP5XPP/+8vPjii4P8kZERefzxxwf/02zK4mpzmHY/DLTDZimlvPPOO+X111/fUTbffvvt8hOf+ERbbZayNXaPjo7KDRs2yImJiTk5Rlph81wdy62yedu2bfLss88OBjw7weYww8PD8u1vf3tbBmpbabMff/3116WU7j3pn/3Zn8Xa5gceeEBeeeWVQdmWLVti0a+EqT3f4toXNrN5pmWtpJU2SxmfvjDMvmyei76wFTbPdT/YKrvj2Bc2sy+ufWGYZvs0Tn1hmFqb49oXNrO5E/pCKaPX4QceeEB++MMfDspeeOGFyPPtwQina+gwjjzySAwPD+OFF14AAPzoRz8CAOzcubNpmc+mTZtw1lln4Wtf+xpuu+222Nv8t3/7t1i3bh2WLl06J7a2wmYAuPbaa3HppZfilltuwcTERKxt3r59O3p6enD77bfj8ssvxwc+8IGWvyrSapvDPPzww1i0aBGOOeaYWNsshMDf/M3f4KqrrsLZZ5+Nj33sY7E/B2f6G7QSx3Hwb//2b1i7di127tyJJUuWBGV9fX1wHAdjY2OzLourzXNNq20ulUq4++67sXbt2o6w+corr8SaNWvw4x//GJs2bWqbza20+3Of+xyuvvpq5HK5ttrbSpsB4AMf+ADWr1+Pv/7rv0alUom1za+++ioWLVqETZs2YcOGDbjyyivx29/+NtY2h/nBD36ANWvWYMGCBbG2ua+vD5/73OewYcMGnHXWWfjqV7+Km2++OdY2H3300XjxxRexfft2SClx3333oVgsznu/0oy49oVxotU2x6kvnAlz1Re2yua57AeB1u7ruPWFzYhrXzhT4tQXNiOufWEzOqEvrL0O1263ZMmStj7LxgGKvB1GLpfD1772NXzxi1/E5ZdfjpGREXR1dUFV1aZlPl/4whfw6KOP4lOf+hS+/OUvx9rmZ599Flu2bMEVV1wxJ3a2wmYA+M53voMf/vCHuPvuuyGlxOc+97lY22zbNrZv3463ve1tuOeee3DttdfiE5/4BPL5fGxtDnP33Xfjj/7oj9pu64HabFkWvvWtb+HrX/86HnnkEXzjG9/ANddc05b5xFpl80x/g1Zy6623Ip1O4/3vf3/bvqPVHOo2W5aFT33qU3jnO9+Jc845pwXWNaaVNn/729/GY489hosvvhjf+MY3WmDd9LTC7gceeAC6ruOss85qnWFNaNW+fvTRR3HPPffgO9/5Dl599VXccccdLbKwnlbY7DgOnn/+eVx++eW499578Z73vAcf/ehHW2hllFZfO+65556294etsDmfz+M73/kOvv/97+PRRx/Fddddh49//OOQUrbQ0iqtsPnII4/EDTfcgE996lN473vfi+7ubgCApmmtMjPCod6vzBXsC+emL+zEfhBgX8i+cHrYF8azL5yr63Dcac+vQdrKaaedhtNOOw0AMDw8jDvvvBPLly/fZ1mYyy67DDfddBP27t2L3t7eWNr8L//yL9i6dWtwgu7atQsf+tCH8MUvfhGnn356LG0GgMHBQQCAYRi44oor2toptsLmUqkETdNwySWXAADe8Y53oLe3F9u2bcNxxx0XS5t9du/ejc2bN8/ZgMWB2Pzyyy9jz549OPHEEwEAJ554IlKpFLZu3Yq3v/3tsbR5X2Wt5rbbbsMbb7yBb37zm1AUBYODg9ixY0dQPjo6CkVR0NPTM+uyuNo8l7TSZtu2ce2116K7uxs33HBDR9jsoygK/viP/xjnnXcebrnllljb/dRTT+GJJ56IeIddcskl+Pa3v423vOUtsbQZqPaH2WwW73nPe3DXXXe11NZW2zw4OIjBwUGcdNJJAIDzzjsPf/VXf4XR0VH09fXF0maf5557DuPj4zjzzDNbamc7bH7wwQeRy+Vw1FFHAQAuuugibNy4EXv37o31fr744otx8cUXAwBeeOEF/Ou//iuy2WxL7d1fm5sR174wLrTS5jj2hTOl3X1hq2yey36wlXYD8ewL92VvHPvCmRC3vrAZP//5z2PZF+6LuPaF012HBwcH8eSTTwbpHTt2BOfkwQo9eTuQoaEhAO4o21e/+lW8733vQzqdblpWKBQibukPP/wwuru75+xmazY2f/jDH8bPf/5zPPzww3j44YexePFi3HnnnXMi8M7W5mKxiMnJSQCAlBIPPPAAVq9ePSf2ztbmvr4+nHrqqXj88ccBuKtTjoyM4PDDD4+tzT733nsvzjzzzDkZqDhQmxcvXoxdu3bhtddeAwBs3boVIyMjbRNMW2HzvspayVe/+lVs2bIFd9xxBwzDAAAce+yxKJVKwfQh3/3ud3HBBRccUFlcbZ4rWmmz4zi47rrroKoqvvCFL0AIEXubR0dHgxV6AeDBBx/EqlWrYm/3Lbfcgp/97GdBfwgA9913X8sfbFtp8/j4eLCysWVZ+M///M+29Ietvnak0+ngtdTNmzeju7u75X1MO64dd999N9atW9c2b5pW2rx06VK89NJLwarYTzzxBLLZbOz3s98flstl/N3f/R0++MEPttTe2djcjLj2hXGglTbHtS9sxlz1ha20ea76wVbbHde+sBlx7QtnQtz6wmbEtS/cF3HsC5tdh9/97nfjxRdfxOuvvx5sd+GFF7bc5jghZLv8wckB8/nPfx4PPfQQhoeH0dvbi56eHtx///3YtGkTnnnmGZimiTVr1uD6669HIpEAgGnLhoeHcdVVV2FqagqKoqC7uxuf+cxnWj6PaSttrmXt2rX45je/iZUrV8bW5u3bt+MTn/gEbNuG4zhYsWIFbrjhBixcuDC2NgPA9u3bcf3112NsbAyapuGaa65p+QhoO46N888/H5s2bcIZZ5zRUlvbZfMPf/hDfPvb3w46nquvvhrnnnturG2e6fl5IPz2t7/FJZdcgiOOOALJZBKAe+Nzxx134JlnnsHNN9+McrmMww47DF/5yleCObZmWxZXmz/+8Y/jhRdewO7du7Fw4UKsXLkSd955Z2xtfvTRR/GRj3wEK1euhKK4Y8Z/8Ad/0NL5xFpt8yuvvIKNGzfCNE0AwGGHHYZNmzZh2bJlLbO5HXbXsmrVKjzzzDPIZDKxtfnZZ5/FTTfdBCEELMvCCSecgOuvvz7WNgPAiy++iM9+9rOoVCpIpVLYtGlTS9+2aIfNpVIJa9aswfe+9z2sWLGiZba20+a77roL3/ve96DrOgzDwHXXXRd4jcXV5j//8z/Hjh07YJomLrroInzyk58Mrn3zaXOzviOufWEzm+PaF05nV5z7wulsnou+sB3HRph29IPtsDvOfWGzfR3XvrCZzXHtC5vZHNe+sJnNcewL93Ud/slPfoKvfOUrcBwHq1evxpe+9KW2OC3FBYq8hBBCCCGEEEIIIYQQ0sFwugZCCCGEEEIIIYQQQgjpYCjyEkIIIYQQQgghhBBCSAdDkZcQQgghhBBCCCGEEEI6GIq8hBBCCCGEEEIIIYQQ0sFQ5CWEEEIIIYQQQgghhJAOhiIvIYQQQgghhBBCCCGEdDAUeQkhhBBCCAlx7bXXYuPGjZG8p556Cqeeeir27NkzT1YRQgghhBAyPRR5CSGEEEIICbFp0yb87Gc/w+OPPw4AKJfLuPHGG/GZz3wGCxcuPOD2Lcs64DYIIYQQQggJQ5GXEEIIIYSQEL29vbjhhhtw4403olgs4vbbb8eyZctw1FFH4X3vex9OOukkrFu3Dk8++WSwzd13340LL7wQJ5xwAs455xx897vfDcqefPJJnHHGGfiHf/gHrFmzps5LmBBCCCGEkANFm28DCCGEEEIIiRsXXnghHnjgAXz605/Gs88+i3vuuQeXX345vvzlL+Pd7343fvnLX+Lqq6/Gj3/8Y/T19aG/vx/f+ta3sGzZMmzevBlXXnkljjvuOBxzzDEAgOHhYYyPj+ORRx6B4zjz/N8RQgghhJCDDXryEkIIIYQQ0oCbb74ZTz75JK666ircf//9OOOMM3DmmWdCURSsWbMGxx57LH76058CAM466ywsX74cQgiccsopWLNmDZ5++umgLUVRcPXVV8MwDCSTyfn6lwghhBBCyEEKPXkJIYQQQghpwIIFC9Db24u3vvWteOihh/Dggw/ikUceCcoty8Kpp54KAPjpT3+KO+64A6+//jocx0GpVMLKlSuDur29RC/S9wAAAXNJREFUvUgkEnP+PxBCCCGEkEMDiryEEEIIIYTsg8HBQaxfvx6f//zn68oqlQquvvpq3HbbbTjnnHOg6zquuuoqSCmDOkKIuTSXEEIIIYQcYnC6BkIIIYQQQvbBunXr8Mgjj+Cxxx6Dbdsol8t48sknsWvXLlQqFVQqFfT19UHTNPz0pz/F448/Pt8mE0IIIYSQQwiKvIQQQgghhOyDwcFBfP3rX8e3vvUtvOtd78KZZ56JO++8E47jIJvN4oYbbsA111yDk08+Gffddx/Wrl073yYTQgghhJBDCCHD75ERQgghhBBCCCGEEEII6SjoyUsIIYQQQgghhBBCCCEdDEVeQgghhBBCCCGEEEII6WAo8hJCCCGEEEIIIYQQQkgHQ5GXEEIIIYQQQgghhBBCOhiKvIQQQgghhBBCCCGEENLBUOQlhBBCCCGEEEIIIYSQDoYiLyGEEEIIIYQQQgghhHQwFHkJIYQQQgghhBBCCCGkg/n/ARjr0KyxpfLDAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#@title Top 5 Performers by Outflow\n", "\n", "top_5_outflow_fips = [20201, 22087, 2016, 13053, 16065] \n", "\n", "top5outflow_df = migration_1[migration_1['County Code'].isin(top_5_outflow_fips)].reset_index(drop=True)\n", "\n", "\n", "fig = plt.figure(figsize=(24,8))\n", "\n", "g = sns.lineplot(data=top5outflow_df, x='Year', y='%flow', hue='County Code', palette='tab10')\n", "g.set_xticks(range(1993,2021)) # <--- set the ticks first\n", "g.set_xticklabels((migration.Year.unique()))\n", "plt.title('%Flow')\n", "plt.show()\n", "\n", "fig = plt.figure(figsize=(24,8))\n", "g = sns.lineplot(data=top5outflow_df, x='Year', y='%outflow', hue='County Code', palette='tab10')\n", "g.set_xticks(range(1993,2021)) # <--- set the ticks first\n", "g.set_xticklabels((migration.Year.unique()))\n", "plt.title('%Outflow')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "ZBXSxhHQMlfj" }, "outputs": [], "source": [ "top_5_inflow_fips = [20183, 20029, 12119, 13117, 8035]" ] } ], "metadata": { "colab": { "authorship_tag": "ABX9TyPuoWrbz9Hf13/06ix04F65", "provenance": [ { "file_id": "1SFKubW16hLo2t-c0Df4b59u6iU5r0e6o", "timestamp": 1668601560838 } ], "toc_visible": true }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.4" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": false, "toc_position": {}, "toc_section_display": true, "toc_window_display": false }, "vscode": { "interpreter": { "hash": "1a1af0ee75eeea9e2e1ee996c87e7a2b11a0bebd85af04bb136d915cefc0abce" } } }, "nbformat": 4, "nbformat_minor": 1 }