
1

Duplicacy: A New Generation of Cloud Backup
Tool Based on Lock-Free Deduplication

Zonghui Li, Gilbert (Gang) Chen∗, Yangdong Deng, Member, IEEE

Abstract—The pervasive deployment of cloud services poses an ever-increasing demand for cross-client deduplication solutions to
save network bandwidth, lower storage costs, and improve backup speeds. However, existing solutions typically depend on lock based
approaches relying on a centralized chunk database, which tends to hinder performance scalability. In this work, we present a new
cross-client cloud backup solution, named Duplicacy, based on a Lock-Free Deduplication approach. Lock-Free Deduplication stores
chunks to network or cloud storage using content hashes as file names. It then adopts a two-step fossil deletion algorithm to solve the
hard problem of deleting unreferenced chunks in the presence of concurrent backups, without the need for any locks. Experiments
demonstrate that Duplicacy enables significant performance improvement for backups over previous well-known backup tools. In
addition, Duplicacy can work with many general-purpose network or cloud storage services which only support a basic set of file
operations, and turn them into sophisticated deduplication-aware storage servers without server-side changes.

Index Terms—backup tool, lock-free deduplication, cloud storage, concurrent backup, cross-client deduplication

F

1 INTRODUCTION

A S the cost of cloud storage continues to drop and the
internet bandwidth keeps growing, more and more

backups will be saved to the cloud [1]. According to the
Cisco Global Cloud Index (2016-2021) [2], the data stored
in cloud will grow 4.6-fold and reach 1.3 ZB by 2021. With
the unprecedented growth of cloud storage, the large-scale
deployment has been emerging as the tendency of a backup
solution. Hundreds of computers may share similar sets of
files, such as OS system files or a large code base. As a
result, cross-client deduplication is extremely important as it
saves network bandwidth and storage costs, and improves
backup speeds.

Deduplication [3], [4] is the method to save multiple
identical copies of the same data as one copy. There are ac-
tually two levels of deduplication. File-level deduplication
means two identical files must be stored as one copy, even
if they come from different directories or backup clients.
Chunk-level deduplication means same parts from different
files, or different versions of the same file must be stored
as one copy. Chunk-level deduplication is more desirable as
it occurs more frequently in practice and often implies file-
level deduplication. Cross-client deduplication refers to the
fact that deduplication can be exploited by multiple backup
processes running concurrently on different computers.

Once it is clear how files can be split into chunks, we
need to decide how to store chunks in the storage server.
It is a common practice for previous deduplication-enabled
backup tools [5], [6], [7], [8] to combine multiple chunks

• Z. Li is with the Beijing Key Laboratory of Transportation Data
Analysis and Mining, School of Computer and Information Tech-
nology, Beijing Jiaotong University, Beijing, China, 100044. E-mail:
zonghui.lee@gmail.com.

• Gilbert (Gang) Chen is with the Acrosync LLC, 4 Annabel Pl, Clifton
Park, NY 12065, USA. Gilbert (Gang) Chen∗ is the corresponding author.
E-mail: gchen@acrosync.com.

• Y. Deng is with the School of Software, Tsinghua University, Beijing,
China, 100084. E-mail: dengyd@tsinghua.edu.cn.

into a packed file which is then uploaded. The consideration
here is to reduce the overhead of uploading files. A chunk
database is then needed to map chunks to packed files in
order to quickly locate a chunk. Such a centralized database
leads to four performance-loss problems as follows.

• If there are multiple backup clients, the chunk
database must be shared and synchronized by all
clients, otherwise the chunk-level deduplication will
be reduced.

• The chunk database is usually cached locally for
performance improvement, but that makes it hard
to delete a chunk in presence of multiple clients.

• Storage space can only be freed when all chunks
belonging to a packed file are deleted.

• To download a single chunk the entire packed file
must be downloaded if the storage service does not
provide segmented downloads.

Moreover, the deleting procedure in deduplication further
weakens the concurrent performance if it uses a locked or
atomic operation to delete a chunk whose reference count
becomes zero [9].

To solve these problems of the lock-based solutions
above, we propose a new deduplication solution called
Lock-Free Deduplication. First, the proposed deduplication
takes a much simpler approach to manage chunks without
a centralized database. That is, each chunk is uploaded to
storage server individually, and stored in a file using the
hash of the chunk content as the file name. Such a straight-
forward naming scheme leads to an important property:
duplicate chunks can now be checked by a simple file-name
lookup. With this property, many cloud storage services
can now be made deduplication-aware by the Lock-Free
Deduplication, as long as they provide an API method that
checks whether a file with the given name exists or not.
The absence of the chunk database significantly reduces the
complexity, rendering the implementation less error-prone.



2

Second, the proposed deduplication then employs a two-
step fossil deletion to delete unreferenced chunks in the
presence of concurrent backups, without using any locks.
Instead of deleting unreferenced chunks immediately, the
first step, called fossil collection, identifies and renames those
chunks not referenced by all backups. A chunk that has been
renamed is called a fossil. The second step, namely the fossil
deletion step, conditionally deletes those fossils. If a new
reference to a fossil is detected, this step will turn the fossil
back into a normal chunk. Combining with the defined oper-
ation rules, we prove that the two-step fossil deletion is lock-
free. Finally, we present the implementation of the proposed
lock-free deduplication in a new cloud backup tool named
Duplicacy [10]. Duplicacy has widely been combined with
many commercial cloud storage services including Ama-
zon S3, Google Drive, Microsoft OneDrive, etc., to enable
deduplication-aware cloud storage. It is already open source
in the github repository [10]. Furthermore, compared with
previous well-known backup tools, namely Duplicity [5],
Restic [6], and Attic [7], [8], Duplicacy achieves significant
improvements for backup performance.

Our main contributions are threefold as below.

• First, we propose a new cross-client deduplication
solution called Lock-Free Deduplication that elim-
inates the previous use of lock based solutions as
well as a centralized database, and prove that the
proposed techniques are lock-free.

• Second, we implement Lock-Free Deduplication in
a new cloud backup tool named Duplicacy that can
work with many general-purpose network or cloud
storage services to enable deduplication-aware cloud
storage, and open source for the new backup tool.

• Finally, we evaluate the backup performance for
Duplicacy compared with the previous well-known
backup tools, which demonstrates that Duplicacy
achieves significant performance improvement in
various datasets.

The rest of the paper is organized as follows. Section 2
describes the background and related terminology. Section
3 presents the technical details of Lock-Free Deduplication
and gives the corresponding proof. Following these pro-
posed techniques, a new cloud backup tool, Duplicacy is
implemented in Section 4. Section 5 reports the evaluation
for the backup performance of Duplicacy. Section 6 presents
the related work. Finally, Section 7 concludes this paper.

2 BACKGROUND

To understand the proposed lock-free deduplication better,
this section presents the background for the related tech-
niques and terminology.

2.1 Chunking
Splitting files into chunks is the first step towards chunk-
level deduplication. There are two types of chunking algo-
rithms: fixed-size chunking and variable-size chunking.

The fixed-size chunking algorithm simply splits a file
into chunks of the same size. It has little overhead, with
the downside being that deduplication is lost when a small
portion of the file is deleted or new data is inserted. To fix

this problem, Rsync [11], the popular Unix file synchroniza-
tion and backup tool, makes use of the fixed-size chunking
algorithm where the chunk size is determined by the file size
(the square root of the file size), but adds a simple rolling
hash algorithm to detect insertions and deletions, at the cost
of one lookup every time the sliding window is shifted by a
byte, thus incurring a significant amount of overhead.

The variable-size chunking algorithm, also called
Content-Defined Chunking, has become well-known in the
industry [3], [4]. The idea is to use a rolling hash, similar to
that of Rsync, but only to identify breakpoints whose hash
values follow a specific pattern, for example, ending with
a given number of zeros [12]. These breakpoints serve as
the boundaries between chunks, and the selected pattern
controls the expected size of chunks. The main advantage is
that a lookup to check duplicates is performed only after a
breakpoint has been identified (which indicates the end of a
chunk), rather than one per byte as in the case of Rsync.

2.2 Naming Chunks
The major concern with the naming-by-hash scheme is that
it may create too many chunks if there are millions of small
files. Lock-Free Deduplication addresses this concern by first
packing together all files, small or large, in alphabetical
order according to their names, as if it were creating one
big tar archive, and then splitting the conceptual tar archive
into chunks.

This pack-and-split approach makes the number of
chunks only dependent on the total size of files, regardless
of individual file sizes. Thus, a relative large chunk size can
be selected (at the megabyte level), reducing the overhead
with the chunk lookup and upload. As files are split into
chunks, a backup is now no more than a list of chunk hashes
as well as a few metadata fields. Each backup can now be
represented by a so-called manifest file. The manifest file is
to be uploaded to the storage after all chunks that compose
the backup have been uploaded. To restore a backup, the
manifest file is downloaded first, and all needed chunks can
be identified by parsing the chunk hash list contained in the
manifest file, and then be downloaded thereafter.

The backup manifest file can become too large for a big
backup. Uploading large manifest files may waste storage
space and increase upload time, especially for incremental
backups where only a few files have been changed. To
address this issue, backup manifest files are also split into
chunks using the same variable-size chunking algorithm.
The final manifest file being uploaded becomes a much
shorter list of hashes representing all the chunks that make
up the real manifest file.

It is worth noting that the method of searching chunks by
their content hashes is well-established [12], [13]. However,
naming chunks by their content hashes and thus eliminating
the need for a chunk database, as far as we know, has not
been attempted before by any backup tool. A centralized
chunk database actually makes it trivial to delete chunks
not referenced by any backup, with synchronous locking
operations or reference counters. This perhaps explains
why such a chunk database is widely used in previous
deduplication systems [3], [4], [5], [6], [7], [8]. But cen-
tralized databases and locking operations prevent concur-
rent access and thus hinder the performance of cross-client



3

deduplication. Our proposed techniques build a practical
deduplication-enabled backup tool on top of the naming
scheme without a centralized chunk database or locking op-
erations, which is fundamentally different from approaches
adopted by other deduplication tools [5], [6], [7], [8].

3 LOCK-FREE DEDUPLICATION

Concurrent deduplication includes three basic concurrent
situations: concurrent backup, concurrent deletion, and con-
current backup and deletion. In this section, we first present
the technical details for backup and deletion procedures in
the proposed lock-free deduplication, and then prove such
three concurrent situations are lock-free.

3.1 Naming Chunks Based Backup
The backup procedure in Lock-Free Deduplication uses the
naming chunk techniques described above. It eliminates
a centralized indexing database for tracking all existing
chunks and for determining which chunks are not needed
any more. Instead, to check if a chunk has already been
uploaded before, one can just perform a file lookup via the
file storage API using the file name derived from the hash
of the chunk. More importantly, the absence of a centralized
indexing database means that there is no need to implement
a distributed locking mechanism on top of the file storage.

The lock free approach in the backup procedure has two
implications. First, each chunk is saved individually in its
own file named by content hash, and once saved there is
no need for modification. Data corruption is therefore less
likely to occur because of the immutability of chunk files.
Any modification in source files will lead to new named
chunks due to the changes of content hash. The backup
procedure simply uploads these new chunks and original
chunks will be deleted by the deletion procedure. Second,
after one client creates a new chunk, other clients that
happen to have the same source file will notice the existence
of the chunk with a simple lookup, and therefore will not
upload the same chunk again. We defined a policy below
for the backup procedure.

Policy 1 (Checking before Uploading). Before uploading a new
chunk, the backup procedure always performs a lookup with a
filename determined only by the chunk content hash.

Thus, after a chunk has been uploaded by one backup
client, if another client happens to encounter the exact
same chunk, such a policy will find the existing chunk,
and avoid uploading the chunk again. By eliminating the
chunk indexing database, the backup procedure can achieve
the highest level of deduplication. That is, clients without
actively communicating directly with each other can share
identical chunks with no additional effort.

3.2 Two Step Fossil Deletion
The deletion procedure is to delete those chunks unrefer-
enced by any backups. To implement lock-free deletion,
we propose a two-step fossil deletion procedure, namely
fossil collection step and fossil deletion step. The procedure
is inspired by the optimistic approach to Parallel Discrete
Event Simulation (PDES) [14], [15], [16]. There, events can

Algorithm 1: Fossil Collection

1 Step 1: Download all backup manifest files.
2 Manifest[] allManifests = downloadAllManifestFiles();
3 Step 2: Divide manifest files into two groups, one to keep

and the other to prune, based on user-specified retention
options;

4 Manifest[] keptManifests, prunedManifests =
applyRetentionOptions(allManifests,
retentionOptions);

5 Step 3: List chunks referenced by manifest files to keep
6 List[] referencedChunks =

getChunkList(keptManifests);
7 Step 4: List chunks referenced by manifest files to prune
8 List[] unreferencedChunks =

getChunkList(prunedManifests);
9 Step 5: Remove any chunk from the set of unreferenced

chunks if it referenced by other backups.
10 for chunk in unreferencedChunks do
11 if chunk in referencedChunks then
12 unreferencedChunks.remove(chunk);
13 end
14 end
15 Step 6: For each chunk in the set of unreferenced chunks,

turn it into a fossil by renaming it (such as either adding a
suffix to its file name or moving it to a different location).

16 Fossil[] fossils;
17 for chunk in unreferencedChunk do
18 Fossil fossil = getFossilByRenaming(chunk);
19 fossils.addFossil(fossil);
20 end
21 return fossils;

be processed out-of-order as fast as possible, for maximum
performance, but processed events are still kept in the
memory. When a causality error occurs, processed events
are rolled back to guarantee the correctness of simulation.
A Global Virtual Time (GVT) algorithm [14], [17] is used
to reclaim memory associated with processed events by
the timestamps and simulation-constrained policies of these
events. Our approach follows the same idea: the fossil collec-
tion step aggressively identifies unreferenced chunks based
on only existing backups, ignoring backups that may be still
in progress. However, unreferenced chunks are renamed
rather than deleted, offering the fossil deletion step an
opportunity to correct the mistake if some of them are in
fact needed by new backups.

Step One: Fossil Collection is illustrated in Algorithm
1. It first downloads all known backup manifest files. It
then lists chunks from manifest files to keep, and chunks
from manifest files to prune, and then compares these two
lists to identify chunks that will become unreferenced after
deleting manifest files that will be removed. Instead of delet-
ing unreferenced chunks immediately, this step performs a
renaming operation on these chunks which can be rolled
back later if need be. A chunk that has been renamed is
called a fossil, and thus this step is called the fossil collection
step. To clarify the difference between fossils and chunks,
we define the access policy for fossils as follows.



4

Policy 2 (Fossil Accessing). The following two rules present the
access policy for fossils.

1) A restore, list, or check procedure that reads existing
backups can read the fossil if the original chunk cannot
be found.

2) A backup procedure cannot access any fossils. That is, it
must upload a chunk if it cannot find the chunk, even if
a corresponding fossil exists.

Step Two: Fossil Deletion will permanently delete fos-
sils, which is presented in Algorithm 2. This step will not
run unless the defined policy is met.

Policy 3 (Fossil Deleting). The following two conditions should
be met before deleting fossils permanently.

1) For each backup client, there is a new backup that was
not seen by the fossil collection step.

2) For each backup client, the new backup must have fin-
ished after the fossil collection step.

The backup clients are concurrent backup procedures.
Each computer may run one or multiple backup clients
and each client can be identified by a unique id. The first
condition defines a new backup as a backup not seen by
the fossil collection step. A backup not seen by the fossil
collection step implies that the fossil collection step did not
use its manifest file to collect fossils. The second condition
emphasizes that the finish time of a new backup must be
after the end time of the fossil collection step. If a backup
satisfies the first condition but not the second condition, the
fossil deletion step will not be activated.

When both conditions in Policy 3 are met, the fossil dele-
tion step lists all chunks referenced by these new backups.
For each fossil from the fossil collection step, if it exists in the
list, it is turned back into the original chunk by recovering its
original file name. Finally, remaining fossils will be deleted
permanently.

The two steps are integral parts of the algorithm and
together they guarantee that no fossil needed by new back-
ups can be deleted. The fossil collection step collects fossils
and generates a local fossil collection file that records the
list of collected fossils as well as the finish time of this
step. The fossil deletion step deletes these recorded fossils
conditionally according to Policy 3. As a result, both steps
can be repeatedly invoked at regular intervals. The local
fossil collection file is only visible locally, and will be deleted
when the fossil deletion step finishes.

3.3 Guaranteed Lock Free
We now show that concurrent backups, concurrent dele-
tions, and concurrent backup and deletion are all lock-free.

Theorem 1. The proposed backup procedure is concurrently lock-
free.

Proof. In the proposed backup procedure, each chunk is
saved individually in its own file named by the content
hash. When multiple backup clients runs at the same time,
only new chunks and new manifest files will be generated
due to new or changed content, and then uploaded. In
case of different backup clients generating the same chunk,
multiple copies of the same chunk are usually resolved by

Algorithm 2: Fossil Deletion

1 Step 1: Download all known manifest files and then check
whether Policy 3 is met. If so, then proceed to Step 2;
otherwise exit and wait for next invocation.

2 Manifest[] allManifests = downloadAllManifestFiles();
3 Manifest[] previousManifests =

getPreviousManifests();
4 Manifest[] newManifests = diff(allManifests,

previousManifests);
5 for client in allClients do
6 Boolean met = false;
7 for backup in newManifests do
8 if backup.id == client and backup.finishTime >

lastFossilCollectionFinishTime then
9 met = true;

10 break;
11 end
12 end
13 if !met then
14 exit;
15 end
16 end
17 Step 2: Recover fossils referenced by new manifests and

permanently delete others.
18 Fossil[] fossils = getLocalFossils();
19 for fossil in fossils do
20 if isReferenced(fossil, newManifests) then
21 recoverFossil(fossil);
22 end
23 else
24 deleteFossil(fossil);
25 end
26 end

the storage server (which tends to keep the most recent
copy). In any case, each backup process runs independently
of each other. Therefore, the proposed backup procedure is
concurrently lock-free.

Theorem 2. The proposed two-step fossil deletion procedure is
concurrently lock-free.

Proof. Since the deletion procedure includes two steps,
namely fossil collection and fossil deletion, when considering
the concurrent deletion, there are three cases to be consid-
ered.

Case one: multiple processes are performing fossil col-
lection. They respectively download all manifest files and
compute the set of fossils. They may attempt to rename the
same chunk into a fossil at the same time. Only one renam-
ing operation will be successful, and others will report an
error which can be safely ignored. So, multiple processes
performing the fossil collection step are lock-free.

Case two: multiple processes are performing fossil dele-
tion. They respectively check whether each known backup
client generates a new backup and meets Policy 3. If so, the
collected fossils will be deleted. They may attempt to delete
the same fossil at the same time. Similar to case one, only
one deletion will be successful and others can be ignored.



5

Thus, multiple processes performing fossil deletion are lock-
free.

Case three: some processes are performing fossil collection
while other processes are performing fossil deletion. fossil
collection operates on chunks and fossil deletion operates
on fossils. The only link between them is the local fossil
collection files. fossil collection generates this file and fossil
deletion deletes fossils recorded in the file. As this file is
kept locally, if we only allow one deletion process on each
computer, then we can guarantee that the fossil collection step
and the fossil deletion step cannot run at the same time. Thus,
the processes performing fossil collection and the processes
performing fossil deletion will not affect each other, and are
therefore lock-free.

Considering all these 3 cases, the proposed two-step
fossil deletion procedure is concurrently lock-free.

Theorem 3. The interplay of the backup procedure and the
deletion procedure is concurrently lock-free.

The backup procedure generates referenced chunks
while the deletion procedure collects fossils and then deletes
unreferenced fossils. The proof of Theorem 3 is to prove
that there is no deletion of chunks referenced by backups
in the concurrent interplay of the backup procedure and the
deletion procedure.

Proof. Assuming there exists a referenced chunk that is
deleted by the deletion procedure, the backup generating
the reference to the chunk is a new backup that was not
seen by the fossil collection step. Otherwise, the chunk will
not be collected as a fossil and then not be deleted by the
fossil deletion step. We denote the backup as backup A. So, A
is a new backup.

For example, Fig. 1 illustrates an interplay instance be-
tween the backup procedure and the deletion procedure.
The start and end are the positions making timestamps. For
the case (a), although the end time of the backup was before
the start time of the fossil collection step, due to the delay such
as networking delay, the time of the manifest file reaching
Storage was later than the start time of the fossil collection
step. Fortunately, the arrival time was earlier than the time
of the request to download manifest files. As a result, the
backup was seen by the fossil collection step. That is, the
chunks referenced by the backup will not be collected as
fossils and will not be deleted. For the case (b), the time
of the manifest file arriving at Storage are later than the
time of the request to download manifest files. As a result,
the backup is not seen by the fossil collection step and thus
the chunks only referenced by the backup are collected as
fossils.

So, backup A is like the case (b) not seen by the fossil
collection step in Fig. 1. If A is also not seen by the fossil
deletion step, the step will delete the fossil referenced by A
as a result that a referenced chunk is deleted. Otherwise,
the fossil deletion step will rename the referenced fossil
into the chunk according to the manifest file as a result
that the deletion of a referenced chunk will not happen.
Furthermore, the start time of A is earlier than the end time
of the fossil collection step. Otherwise, the fossil collection step
has collected the chunk as a fossil before the start time of A.
According to Policy 2, when A looks up the chunk, it cannot

find the chunk, even if the corresponding fossil exists, and
thus it uploads the chunk. As a result, the deletion of the
fossil will not lead to the deletion of a referenced chunk.

In fact, according to Policy 3, the fossil deletion step will
not delete fossils until each backup process generates a
new backup whose end time is after the end time of the
fossil collection step. So, the backup process also generates a
new backup called backup B whose end time is after the
end time of the fossil collection step. The B is not the A
because B is seen by the fossil deletion step before the step
start deleting fossils according to Policy 3. In addition, the
same backup process will not start another backup until the
current backup successfully ends just like Backup1 following
Backup2 in Fig. 1 (d). Now, we discuss the order of A and B
as follows.

1) A is before B. Since B is seen by the fossil deletion
step, A is also seen by this step, which is a contra-
diction that A is not seen by the fossil deletion step.

2) A is after B. Since the end time of B is after the end
time of the fossil collection step according to Policy 3,
the start time of A is also after the end time of the
fossil collection step, which is a contradiction that the
start time of A earlier than the end time of the fossil
collection step.

Above all, the interplay of the backup procedure and the
deletion procedure is concurrently lock-free.

In addition, the second condition in Policy 3 is very
important for the lock-free interplay. Ignoring the second
condition will lead to the deletion of a referenced chunk.
For example, in Fig. 1, cases (b), (c) and (d) are all new
backups from the same backup process. If the fossil deletion
step immediately checks Policy 3 after the end time of the
fossil collection step, the first condition is met due to case
(b). If the second condition is ignored, Policy 3 is met. And
then, the fossil deletion step starts deleting fossils. If case (c)
is not seen by the fossil deletion step, since the chunks only
referenced by case (c) are collected as fossils by the fossil
collection step, the fossil deletion step will delete these fossils
as a result that these referenced chunks are deleted. If the
second condition in Policy 3 is not ignored, even if the fossil
deletion step immediately checks Policy 3 after the end time
of the fossil collection step, since the second condition is not
met, the fossil deletion step will not delete fossils until case
(d) is seen by this step, which is illustrated in Fig. 1. When
case (d) is seen by the fossil deletion step, the step also sees
case (c). As a result, the deletion of a referenced chunk will
never happen.

Concurrent deduplication includes three basic concur-
rent situations: concurrent backup, concurrent deletion and
the concurrent interplay of backup and deletion which are
all proved to be lock-free by Theorem 1, Theorem 2 and
Theorem 3, respectively. So, the proposed deduplication is
concurrently lock-free.

4 DUPLICACY

In this cloud age, with a wide variety of competing cloud
storage services to choose from, users willing to spend
efforts and resources to protect their data always expect that



6

Deletion

Storage

Backup

time

time

time

start end

Fossil Collection

end
Backup

(a) Backup is seen by Fossil Collection 

time

time

time

start end
Fossil Collection

Backupstart

(c) Back p is not a new backup

Deletion

Storage

Backup

time

time

time

start end

Fossil Collection

Backup

(b) Backup is not seen by Fossil Collection 

Deletion

Storage

Backup

time

time

time

start end
Fossil Collection

Backupstart end
Backupstart end

(d) Backup is a new backup

Deletion

Storage

Backup

start
Fossil Deletion

end

end

Fig. 1. An instance of the interplay between the proposed backup procedure and the proposed deletion procedure. Timestamps are made at these
positions pointed by start and end.

Local Disks

SFTP Servers

Duplicacy

Fig. 2. The wide range of cloud storages and local or networked drives
that are all supported by Duplicacy.

there is a single backup tool to support all those different
storage services.

This requires that a backup tool should be built on
top of only 6 basic file access APIs: upload, download,
deletion, lookup, list, and renaming. Besides, to provide
high storage efficiency and to enforce privacy, we argue that
the following 6 essential features are expected of a state-of-
the-art backup tool:

• Incremental backup: only back up what has been
changed.

• Full snapshot: even if each backup is incremental,
it must appear to be a full snapshot independent of
others for quick restoration and easy deletion.

• Deduplication: identical parts from the same or dif-
ferent files must be stored only once.

• Encryption: encrypt not only file contents but also
file paths, sizes, timestamps, etc.

• Deletion: every backup can be deleted individually
without affecting others.

• Concurrency: multiple clients can back up to the
same storage at the same time.

Among these 6 essential features, deduplication is perhaps
the most important one. Deduplication not only reduces
bandwidth consumption and storage space, but also speeds
up backup operations due to identical parts stored only
once. Furthermore, deduplication is also the basis for en-
abling other features. For instance, deduplication only stores
the changed parts and does not store other identical parts
repetitively, which naturally enables incremental backup.

Duplicacy [10] is the first backup tool built on the
techniques of the proposed lock-free deduplication. Since
the lock-free deduplication only depends on the 6 basic
file access APIs, Duplicacy is capable of supporting a
wide range of cloud storage systems including Amazon
S3, Google Cloud Storage, Backblaze B2, Microsoft Azure,
Google Drive, Microsoft OneDrive, Drop-box, and hubiC,
as well as local or networked drives, SFTP servers like
Linux computers or NAS devices (Fig. 2). The command line
version of Duplicacy is written in the Go language, so it runs



7

on all platforms supported by Go. It is free for personal use
and the source code is available on github.com [10]. The GUI
version of Duplicacy is a web-based wrapper around the
command line version to provide additional features such
as easy configurations, email notifications and so on. There
is also a special edition, called Vertical Backup [18], which is
specifically developed and optimized for VMware vSphere
Hypervisor (ESXi) to back up virtual machines.

We also declare that Duplicacy supports all 6 afore-
mentioned essential features. Since lock-free deduplication
allows for concurrent backups and deletions, Duplicacy
natively support 3 of them, namely, deduplication, deletion
and concurrency, which have been detailed in Section 3.
Here we present how other features are made possible
by the lock-free deduplication, as well as some efficiency
considerations in the design of Duplicacy.

4.1 Incremental Backup and Full Snapshot
Duplicacy adopts the variable-size chunking algorithm by
default. Specifically, the cyclic polynomial hash [19] is cho-
sen. What is different in Duplicacy from other implementa-
tions is that Duplicacy uses a relatively long sliding window
for two reasons: 1) it can lower the chance of chunk break-
points occurring too frequent and 2) the size of the slicing
window becomes the minimum chunk size, reducing the
number of configuration parameters.

Duplicacy also supports fixed-size chunking algorithm.
If the minimum chunk size, the average chunk size, and
the maximum chunk size are set to the same value when
initializing a storage, Duplicacy will switch to the fixed-
size chunking algorithm. This eliminates the overhead of
computing the rolling hash and is therefore preferable when
backing up large files unlikely subject to insertions and dele-
tions, such as databases and virtual machine disk images.
The ESXi edition, Vertical Backup [18], uses only the fixed-
size chunking algorithm in order to achieve the maximum
performance.

A chunk-based approach provides native support for
incremental backup and full snapshot. A backup is com-
posed of a number of chunks, so for each new backup,
only new chunks are needed to be uploaded. Backups are
independent of each other, even if they may share some
chunks. To restore a backup, only chunks referenced by this
backup are needed to be downloaded. Any backup other
than the latest one from each backup client can also be
deleted individually, by the two-step fossil deletion algo-
rithm.

4.2 Caching
Lock-Free Deduplication requires that a file lookup is per-
formed before uploading each chunk, which means two API
calls per chunk. To alleviate this overhead, it is preferable
to maintain an in-memory cache to store hashes of chunks
referenced by the last backup from the same client. As a
backup finishes, a copy of the backup manifest file can be
saved in a local disk. The next backup will load this backup
manifest file and construct the chunk cache accordingly.
Only chunks that are not in the chunk cache will trigger
a lookup on the storage. With a cache set up this way, the
fossil collection step should not attempt to remove the last

backup for each backup client. This is mainly to avoid race
condition between the fossil collection step deleting a backup
manifest file and the backup procedure reading the same
one to build the chunk cache.

Theorem 4 illustrates the feasibility of caching the last
backup in each backup client, that is, caching does not break
the availability of the two-step fossil deletion algorithm.

Theorem 4. Caching the last backup in each backup client does
not invalidate the two-step fossil deletion algorithm.

Proof. As a fact, a backup starting before the end of the
fossil collection step will always have their chunks taken
into account in the fossil deletion step according to Policy
3. Suppose that there is a backup that starts after the fossil
collection step finishes but before the fossil deletion step makes
a reference to a chunk. If the chunk is not in the cache, it
will issue a lookup and the chunk will be uploaded if the
chunk has been made a fossil. If the chunk is in the cache, it
must be referenced by the previous backup as well. And the
previous backup may issue the lookup, or it may inherit the
chunk from the other backup before it. Therefore, there must
be a chain of backups that trace back to either a backup that
is known to the fossil deletion step, or to a backup that is still
unknown to the fossil deletion step. If it is the latter, since the
backup is unknown to the fossil deletion step, the start time of
the backup is later than the finish time of the fossil collection
step. As a result, the lookup of the unknown backup for the
already fossilized chunk should have failed, which caused
the same chunk to be uploaded again according to Policy
2.

4.3 Compression and Encryption
A chunk-based approach also lends itself to compression
and encryption since each chunk can be individually com-
pressed and encrypted. It is apparent that compression must
be done before encryption so as to reduce the encryption
cost, but should the hash used as the chunk file name be
calculated before or after compression and encryption?

Duplicacy calculates the hash before applying the com-
pression and encryption algorithms because the hash is
directly used for the chunk lookup and if the chunk turns
out to be identical to an existing one, there will be no need
to perform the compression and encryption. However, if
the hash of the chunk content in plaintext is to be used as
the file name, then it becomes susceptible to the identifying
files attack [20], i.e., an attacker can determine if a given
chunk exists in the original file. To avoid this vulnerability,
Duplicacy applies an HMAC function to the chunk hash,
and uses the result as the file name of the chunk. Since the
HMAC secret is shared by all backup clients but not known
publicly, it is impossible to deduce the chunk hash from the
chunk name without knowing the HMAC secret.

When encryption is enabled, Duplicacy will generate
four random 256 bit keys as follows:

• Hash Key: for generating a chunk hash from the
content of a chunk.

• ID Key: for generating a chunk id from a chunk hash.
• Chunk Key: for encrypting chunk files.
• File Key: for encrypting non-chunk files such as

manifest files.



8

HMAC-SHA256

HMAC-SHA256

HMAC-SHA256

Chunk Content

Chunk Hash

Hash Key

Chunk ID

File Key
ID Key

Chunk Key

AES-GCM

Encrypted Data

Fig. 3. The process flows of chunk encryption with four random 256 bit
keys, namely Hash Key, ID Key, Chunk Key, File Key.

Fig. 3 shows how these keys are used. Both the chunk hash
and the ID Key are used to generate the chunk id which
becomes as the file name for the chunk. So, chunk hashes
are never exposed unless the manifest files are decrypted.
Chunk content is encrypted by AES-GCM, with an encryp-
tion key that is the HMAC-SHA256 of the chunk Hash with
Chunk Key as the secret key. The manifest files are also
encrypted by AES-GCM, using an encrypt key that is the
HMAC-SHA256 of the file path with File Key as the secret
key. These four random keys are saved in a file named
’config’ in the storage, encrypted with a master key derived
from the PBKDF2 function on the storage password chosen
by the user.

5 EVALUATION AND ANALYSIS

In this section, we demonstrate the advantages of Duplicacy
in the following three aspects.

• Backup Performance: It compares the execution
times of backup and restore, the two most frequent
use cases of a backup tool, among Duplicacy and
other well-known backup tools [5], [6], [7], [8].

• Storage Efficiency: It illustrates the amounts of stor-
age space used by Duplicacy and other backup tools.

• Ubiquity Integration: It presents the wide support
of Duplicacy for cloud storage systems and local or
networked drives.

5.1 Experiment Setup
Tool Selection for Comparison: Three popular backup tools
selected for comparison are Duplicity [5], Restic [6], Attic
[7], [8]. Both Restic and Attic, like Duplicacy, employ a
chunk-based approach, while Duplicity is a more traditional
backup tool selected only for its popularity. Table 1 lists

TABLE 1
The main configuration of four backup tools used in experiments.

Configuration Duplicacy Restic Attic Duplicity

Version 2.1.1 0.9.2 1.1.7(Borg) 0.7.12

Average 2 MB 1 MB 2 MB 25 MB
Chunk Size

Hash Blake2 SHA256 Blake2 SHA1

Compression LZ4 \ LZ4 ZLIB
Level 1

Encryption AES-GCM AES-CTR AES-CTR GNUPG

main configuration parameters for these tools used in exper-
iments. We believe that these configurations have significant
impacts on the overall evaluation, so similar options were
chosen whenever possible to ensure an unbiased base.

Dataset Selection: Two typical datasets [21], [22] are
chosen in these experiments. The first dataset is the Linux
code base [21] which is the largest github repository that
we could find. It has frequent commits and its total size
is 1.76 GB with many small files about 58K files, so it
is good for testing incremental backups. It also represents
a popular use case where a backup tool runs alongside
a version control program such as git to frequently save
changes made between checkins. The second dataset is the
VirtualBox virtual machine file [22], a 64 bit CentOS 7 disk
image. Its size is about 4 GB and is widely used nowadays.
It is selected to target the other end of the use case spectrum
– a dataset with fewer but much larger files.

All tests were performed on an ESXi virtual machine
running on a Dell XPS 8700 with an i7 4-core processor and
16 GB memory. The virtual machine was assigned 2 virtual
CPUs and 4GB memory. No other virtual machines were
running during the experiments. Backups were all saved
to a storage directory on the same hard disk as the source
directory, to emulate the situation with unlimited network
bandwidth, and also to eliminate the performance variations
introduced by different implementations of networked or
cloud storage backends. The scripts to run these tests are
available from our github page [23].

5.2 Backup Performance
Linux Code Base: To test incremental backup, a random
commit on July 2016 was selected, and the entire code base
was rolled back to that commit. After the initial backup was
finished, other random commits were chosen such that they
were about one month apart. The code base was then moved
forward to these commits one by one to emulate incremental
changes.

Fig. 4 shows the elapsed time (in seconds) as reported by
the time command for each backup. Duplicacy was clearly
the best performer by a comfortable margin. It is interesting
to note that Restic, being the second fastest, did not im-
plement compression so it had an unfair speed advantage
(at the cost of using larger storage space), and yet it was
still considerably slower than Duplicacy. The performance
fluctuations are caused by each commit having different



9

0

5

10

15

20

25

30

35

40

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

R
u

n
n

in
g

 
ti

m
e
s 

o
f 

e
a

c
h

 b
a

c
k

u
p

 (
in

 s
e
c
o

n
d

s)

Backups of the Linux code base

Duplicacy

Restic

Attic

Duplicity

Fig. 4. The comparison of the incremental backup time cost of the Linux
code base.

sizes and numbers of updated files. The first commit, the
initial backup, has the most new files, and thus takes the
most running time. Unlike other chunk-based backup tools
where chunks are grouped into pack files and a chunk
database is used to track which chunks are stored inside
which pack file, Duplicacy takes a database-less approach
where every chunk is saved independently using its hash
as the file name to facilitate quick lookups. Fig. 5 shows the
elapsed times of each restore. The destination directory was
emptied before each restore. Again, Duplicacy was not only
the fastest but also the most stable.

0

10

20

30

40

50

60

70

80

90

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

R
u

n
n

in
g
 t

im
e
s 

o
f 

e
a
c
h

 r
e
st

o
r
e
 (
in

 s
e
c
o
n

d
s)

Restores of the Linux code base

Duplicacy

Restic

Attic

Duplicity

Fig. 5. The comparison of the restore time cost of the Linux code base.

VirtualBox Virtual Machine Image: For this experiment,
the fixed-size chunking algorithm is enabled in Duplicacy
but not in others (Duplicacy is the only one to support both
fixed-size and variable-size chunking algorithms). Three
typical backup scenarios are evaluated in the experiment.
The first backup was performed right after the virtual
machine had been set up without installing any software.
The second backup was performed after installing common
developer tools. The third backup was performed after a
power on immediately followed by a power off. Fig. 6
shows the incremental backup time cost and Fig. 7 shows

0

20

40

60

80

100

120

140

1st 2nd 3rd

R
u

n
n

in
g
 t

im
e
s 

o
f 

e
a
c
h

 b
a
c
k

u
p

(i
n

 s
e
c
o
n

d
s)

Backups of the VirtualBox virtual machine image

Duplicacy

Restic

Attic

duplicity

Fig. 6. The comparison of the incremental backup time cost of the
VirtualBox virtual machine image.

0

50

100

150

200

250

300

1st 2nd 3rd

R
u

n
n

in
g

 t
im

e
s 

o
f 

e
a

c
h

 r
e
st

o
r
e
 (
in

 s
e
c
o

n
d

s)

Restores of the VirtualBox virtual machine image

Duplicacy

Restic

Attic

Duplicity

Fig. 7. The comparison of the restore time cost of the VirtualBox virtual
machine image.

the restore time cost. Duplicacy is still the fastest in all cases.

5.3 Storage Efficiency
Fig. 8 shows the comparison of storage usage cost for each
backup of the Linux code base. Our Duplicacy gets the
second highest storage efficiency and lower than that of
Duplicity because Duplicity benefits from compressing the
entire source directory as opposed to individual chunks
used by ours.

We also ran another experiment to determine deduplica-
tion efficiency with multiple source directories concurrently
backing up to the same storage, for Duplicacy and Restic
only, as concurrent backups are not supported by Attic
and Duplicity. In this experiment, the Linux code base
was duplicated to another directory, and both directories
with identical contents were backed up to the same stor-
age concurrently. As indicated by Fig. 8, Duplicacy was
capable of exploiting cross-client deduplication on the fly
to maintain the roughly same level of storage usage, while
Restic failed to do so and its storage usage literally doubled.



10

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

S
to

ra
g

e
 c

o
st

 o
f 

e
a

c
h

 b
a

c
k

u
p

 (
in

 M
B

y
te

s)

Backups of the Linux code base

Duplicacy

Duplicacy - concurrent

Restic

Restic - concurrent

Attic

Duplicity

Fig. 8. The comparison of storage usage for each backup of the Linux
code base.

This clearly demonstrates one major advantage of not using
a chunk database. The chunk database in Restic cannot
be concurrently shared by multiple backup clients, so the
information regarding new chunks uploaded by one client
can only become available to other clients after the end of
the backup. As a result, different clients running in parallel
will upload their own versions of identical chunks led to the
doubled storage usage.

The experiment for storage efficiency of the VirtualBox
virtual machine image has almost the same results as that
of the Linux code base. So we omit the result report of
the VirtualBox virtual machine image here and the integral
report is available from our github page [23].

5.4 Ubiquity Integration
Here we test and compare the performances of major cloud
services when used as backup storage systems for Dupli-
cacy. All tests were performed on a Ubuntu 16.04.1 LTS
virtual machine running on a dedicated ESXi server with
an Intel Xeon D-1520 CPU (4 cores at 2.2 GHz) and 32G
memory. The server is located at the east coast of USA, so
the results may be biased against those services who have
their servers on the west coast. The network bandwidth is
200Mbps. A local SFTP storage is also included in the test
to provide a base line for the comparisons. The SFTP server
runs on a different virtual machine on the same ESXi host.
All scripts to run the tests are available in our github page
[24].

Fig. 9 and Fig. 10 present the backup performance com-
parison of cloud storage systems for Duplicacy based on
the Linux code base and the VirtualBox virtual machine
image, respectively. They demonstrate similar results. These
results indicate that the performances of different cloud
storage systems vary a lot. That is, while S3-compatible
ones (Amazon, Wasabi, and DigitalOcean) and Azure can
back up and restore at speeds close to those of the local
SFTP storage, others are much slower. S3-compatile ones
and Azure all support Simple Storage Service API that
has become the de-facto standard for create, read, update,
and delete operations for object storage. Storages designed
to be primarily accessed via an API are generally faster
than storages that are offered as cloud drives, because the

latter are perhaps more optimized for their own clients with
the API access merely being an addon. In additions, most
cloud storage systems support simultaneous connections, so
we can keep increasing the number of threads to improve
performance, until the local processing or the network be-
comes the bottleneck. The bottom charts in Fig. 9 and the
right charts in Fig. 10 are the results with four threads.
Compared with the single-thread charts in Fig. 9 and Fig. 10,
most of them demonstrate the significant improvement for
performance. Google Drive was the only cloud storage that
didn’t benefit from the use of multiple threads, possibly
due to strict per-user rate limiting. Such results suggest
that cloud backup can be as fast as local backup, with
only modest network bandwidth, especially if we can use
multiple threads. Dropbox doesn’t support simultaneous
writes, so it was missing from the multiple-threads charts.

6 RELATED WORK

Deduplication is a technique to eliminate file redundancy,
and may incur significant benefits with regard to storage
efficiency, network bandwidth and even backup speeds.
According to [25], data deduplication achieves storage re-
duction by more than 50% in standard file systems and by
up to 90% to 95% for backup applications, which is supe-
rior to data compression and dominates storage efficiency.
Many research works including some recent surveys [1],
[3], [4] renewed the interests in data deduplication. Most of
them focus on two directions of data deduplication, namely
secure data deduplication and accelerated deduplication.
The former often uses encryption based privacy strategies
[4], [26], [27] that can be integrated into our backup tool,
Duplicacy, as illustrated in Section 4.3. The latter comes
from popular backup tools for general purpose [5], [6], [7],
[8], [28], [29] and custom-built proprietary [30], [31] storage
systems.

Duplicity [5], Attic [7], [8], Obnam [29] and Duplicita
[28] are all well-known and widely used backup tools for
general storage systems. Duplicity [5] works by applying
the rsync algorithm (implemented by the librsync library
[32]) to find the differences from previous backups and
then uploading the differences. A backup is either full or
incremental, but an incremental backup becomes dependent
on previous back-ups. As a result, frequent full backups
are required, otherwise the dependency chain would be too
long led to rendering deletion impossible and restoration
slow. The deficiency in this incremental model is evidently
reflected by its poor performance. Attic [7], [8], Obnam [29]
and Duplicita [28] embrace the chunk-based approach. They
all got the incremental model right in the sense that every
incremental backup is actually a full, independent snapshot.
But, their common disadvantage is the lack of support for
concurrent backups – they all assume that only one client
can back up to the storage exclusively. This requirement
makes them less likely to be adopted for large-scale de-
ployment where cross-client deduplication can be the main
source of deduplication.

Very few backup tools are designed to support concur-
rent backups to cloud storages. Restic [6] is the closest to
our Duplicacy in terms of the ability to exploit cross-client
deduplication. However, as shown by Fig. 8, for concurrent



11

Fig. 9. The performance comparison of major cloud services when used as backup storage systems for Duplicacy based on the Linux code base.



12

32

64

128

256

512

1024

Initial backup 2nd backup 3rd backup Initial restore 2nd restore 3rd restore

R
u

n
n

in
g

 t
im

e
s 

o
f 

e
a

c
h

 b
a

c
k

u
p

 o
r
 r

e
st

o
r
e

(i
n

 s
e
c
o

n
d

s)

Backups and restores of a VirtualBox virtual machine (1 thread)

SFTP

Amazon S3

Wasabi

DigitalOcean Spaces

Backblaze B2

Google Cloud Storage

Google Drive

Microsoft Azure

Microsoft OneDrive

Dropbox

32

64

128

256

512

1024

Initial backup 2nd backup 3rd backup Initial restore 2nd restore 3rd restore

R
u

n
n

in
g

 t
im

e
s 

o
f 

e
a

c
h

 b
a

c
k

u
p

 o
r
 r

e
st

o
r
e
 

(i
n

 s
e
c
o

n
d

s)

Backups and restores of a VirtualBox virtual machine (4 threads)

SFTP

Amazon S3

Wasabi

DigitalOcean Spaces

Backblaze B2

Google Cloud Storage

Google Drive

Microsoft Azure

Microsoft OneDrive

Fig. 10. The performance comparison of major cloud services when used as backup storage systems for Duplicacy based on the VirtualBox virtual
machine image.

backups it loses this ability due to the use of a chunk
database. Moreover, Restic relies on locking and a prune
operation will therefore completely block all other clients
connected to the storage from doing their regular backups.
More fundamentally, as most cloud storage services do not
provide a locking service, the best effort is to use some basic
file operations to simulate a lock, but distributed locking
is known to be a hard problem [33] and it is unclear how
reliable Restic’s lock implementation is. A faulty implemen-
tation may cause a prune operation to accidentally delete
chunks still in use, resulting in unrecoverable data loss.

There are also custom-built proprietary storage systems
that work as concurrent deduplication servers, where either
reference counting is available [30] or there are special
OS primitives to record writes during garbage collection
[31]. However, these techniques are not applicable to cloud
backup storage systems which are distributed in nature and
often come with limited APIs. [34] handles the conflicts
of editing collaboration on the same file. It can solve the
conflicts that happen in different parts of the same file to
avoid a lock while it cannot solve the conflicts that happen
in the same part of the same file. In such a case, a lock is
still needed to synchronize different editing operations. On
contrast, our work targets the lock-free deduplication for
backups. Any update to a chunk file will lead to a different
hash value causing a new chunk file to be uploaded. Our
method can create lock-free backups even if multiple clients
concurrently operate the same part in the same source file.

7 CONCLUSION

In this paper, we propose a new cross-client deduplication
solution called Lock-Free Deduplication to improve backup
speeds at the cloud storage era. Its key idea can be summa-
rized as follows:

• Use a fixed-size or variable-size chunking algorithm
to split files into chunks.

• Store each chunk in the storage using a file name
derived from its hash, and rely on the basic file
system APIs to detect duplicates.

• Apply a two-step fossil collection algorithm to re-
move chunks that become unreferenced after a
backup is deleted.

These proposed techniques are implemented in a new cloud
backup tool called Duplicacy. It highlights lock-free con-
currency and achieves significant improvements for backup
performance compared with those other backup tools. Fur-
thermore, with the only requirements of a basic set of file
APIs, Duplicacy achieves a wide range support for cloud
storage systems and local or network drives, turning them
into sophisticated deduplication-aware storage servers.

ACKNOWLEDGMENTS

This research is sponsored in part by the NSFC Key Sci-
entific Instrument and Equipment Development Project
(No.20151310834), in part by the Fundamental Research
Funds for the Central Universities (No.2019RC046) and
the Project funded by China Postdoctoral Science Foun-
dation (No.2019M660439), and in part by the Na-
tional Key Research and Development Program of China
(No.2018YFB1702602). The authors would like to thank
anonymous reviewers for comments.

REFERENCES

[1] Y. Mansouri, A. N. Toosi, and R. Buyya, “Data storage
management in cloud environments: Taxonomy, survey, and
future directions,” ACM Comput. Surv., vol. 50, no. 6, pp.
91:1–91:51, dec 2017. [Online]. Available: http://doi.acm.org/10.
1145/3136623

[2] Cisco. (2019, 11) Cisco global cloud index: Forecast
and methodology, 2016-2021. [Online]. Available: https://
www.cisco.com/c/en/us/solutions/collateral/service-provider/
global-cloud-index-gci/white-paper-c11-738085.html

[3] W. Xia, H. Jiang, D. Feng, F. Douglis, P. Shilane, Y. Hua, M. Fu,
Y. Zhang, and Y. Zhou, “A comprehensive study of the past,
present, and future of data deduplication,” Proceedings of the IEEE,
vol. 104, no. 9, pp. 1681–1710, Sep. 2016.

[4] Y. Shin, D. Koo, and J. Hur, “A survey of secure data
deduplication schemes for cloud storage systems,” ACM Comput.
Surv., vol. 49, no. 4, pp. 74:1–74:38, jan 2017. [Online]. Available:
http://doi.acm.org/10.1145/3017428

[5] Savannah and Launchpad. (2019, 05) Duplicity: Encrypted
bandwidth-efficient backup using the rsync algorithm. [Online].
Available: http://duplicity.nongnu.org/

[6] A. Neumann. (2018, 08) Restic: Fast, secure, efficient backup
program. [Online]. Available: https://restic.net/

[7] J. Borgstrm. (2015, 05) Attic: an efficient and secure way to backup
data. [Online]. Available: https://attic-backup.org/

http://doi.acm.org/10.1145/3136623
http://doi.acm.org/10.1145/3136623
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
http://doi.acm.org/10.1145/3017428
http://duplicity.nongnu.org/
https://restic.net/
https://attic-backup.org/


13

[8] T. Waldmann, A. Beaupr, R. Podgorny, and Y. DElia. (2018,
08) Borg: an efficient and secure way to backup data with
compression and authenticated encryption. [Online]. Available:
https://borgbackup.readthedocs.io/

[9] I. Dropbox. (2019, 08) Dropbox: Simple & secure cloud storage.
[Online]. Available: https://www.dropbox.com

[10] L. Acrosync. (2019, 08) Duplicacy: A new generation cross-
platform cloud backup tool with client-side encryption and
the highest level of deduplication. [Online]. Available: https:
//duplicacy.com/

[11] A. Tridgell, P. Mackerras et al., “The rsync algorithm,” Technical
Report, 1996.

[12] A. Muthitacharoen, B. Chen, and D. Mazières, “A low-bandwidth
network file system,” in Proceedings of the Eighteenth ACM
Symposium on Operating Systems Principles, ser. SOSP ’01. New
York, NY, USA: ACM, 2001, pp. 174–187. [Online]. Available:
http://doi.acm.org/10.1145/502034.502052

[13] S. Quinlan and S. Dorward, “Venti: a new approach to archival
storage,” in Proceedings of the 2002 USENIX Conference on File
and Storage Technologies (FAST 02). Montery, CA, USA: USENIX,
2002, pp. 89–102. [Online]. Available: https://www.usenix.org/
legacy/events/fast02/quinlan/quinlan html/

[14] D. R. Jefferson, “Virtual time,” ACM Trans. Program. Lang.
Syst., vol. 7, no. 3, pp. 404–425, Jul. 1985. [Online]. Available:
http://doi.acm.org/10.1145/3916.3988

[15] R. M. Fujimoto, “Parallel discrete event simulation,” Commun.
ACM, vol. 33, no. 10, pp. 30–53, Oct. 1990. [Online]. Available:
http://doi.acm.org/10.1145/84537.84545

[16] G. Chen and B. K. Szymanski, “Lookback: A new way
of exploiting parallelism in discrete event simulation,” in
Proceedings of the Sixteenth Workshop on Parallel and Distributed
Simulation, ser. PADS ’02. Washington, DC, USA: IEEE
Computer Society, 2002, pp. 153–162. [Online]. Available:
http://dl.acm.org/citation.cfm?id=564062.564087

[17] G. G. Chen and B. K. Szymanski, “Time quantum gvt: A scalable
computation of the global virtual time in parallel discrete event
simulations,” Scalable Computing: Practice and Experience, vol. 8,
no. 4, 2007.

[18] L. Acrosync. (2019, 08) Vertical backup: A new network
and cloud backup tool for vmware vsphere (esxi) fast,
deduplication, encryption, live backup, schedule. [Online].
Available: https://www.verticalbackup.com/

[19] J. D. Cohen, “Recursive hashing functions for n-grams,” ACM
Trans. Inf. Syst., vol. 15, no. 3, pp. 291–320, jul 1997. [Online].
Available: http://doi.acm.org/10.1145/256163.256168

[20] D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Side channels in
cloud services: Deduplication in cloud storage,” IEEE Security
Privacy, vol. 8, no. 6, pp. 40–47, Nov 2010.

[21] L. Torvalds. (2019, 08) Linux kernel source. [Online]. Available:
https://github.com/torvalds/linux

[22] Umair. (2019, 08) Centos virtual machine images for vmware
and virtualbox. [Online]. Available: https://www.osboxes.org/
centos/

[23] L. Acrosync. (2019, 08) Experimental benchmarks and executable
scripts. [Online]. Available: https://github.com/gilbertchen/
benchmarking

[24] L. Acrosyn. (2019, 08) Cloud storage comparison. [Online]. Avail-
able: https://github.com/gilbertchen/cloud-storage-comparison

[25] D. T. Meyer and W. J. Bolosky, “A study of practical
deduplication,” Trans. Storage, vol. 7, no. 4, pp. 14:1–14:20, Feb.
2012. [Online]. Available: http://doi.acm.org/10.1145/2078861.
2078864

[26] P.-L. Aublin, F. Kelbert, D. O’Keeffe, D. Muthukumaran, C. Priebe,
J. Lind, R. Krahn, C. Fetzer, D. Eyers, and P. Pietzuch, “Libseal:
Revealing service integrity violations using trusted execution,”
in Proceedings of the Thirteenth EuroSys Conference, ser. EuroSys
’18. New York, NY, USA: ACM, 2018, pp. 24:1–24:15. [Online].
Available: http://doi.acm.org/10.1145/3190508.3190547

[27] J. Dave, P. Faruki, V. Laxmi, B. Bezawada, and M. Gaur,
“Secure and efficient proof of ownership for deduplicated
cloud storage,” in Proceedings of the 10th International Conference
on Security of Information and Networks, ser. SIN ’17. New
York, NY, USA: ACM, 2017, pp. 19–26. [Online]. Available:
http://doi.acm.org/10.1145/3136825.3136889

[28] Duplicati. (2019, 07) Duplicati:free backup software to store
encrypted backups online. [Online]. Available: https://www.
duplicati.com/

[29] Obnam. (2017, 08) Obnam: An easy, secure backup program.
[Online]. Available: https://obnam.org/

[30] P. Strzelczak, E. Adamczyk, U. Herman-Izycka, J. Sakowicz,
L. Slusarczyk, J. Wrona, and C. Dubnicki, “Concurrent deletion
in a distributed content-addressable storage system with global
deduplication,” in Presented as part of the 11th USENIX Conference
on File and Storage Technologies (FAST 13). San Jose, CA: USENIX,
2013, pp. 161–174. [Online]. Available: https://www.usenix.org/
conference/fast13/technical-sessions/presentation/strzelczak

[31] F. Douglis, A. Duggal, P. Shilane, T. Wong, S. Yan, and F. Botelho,
“The logic of physical garbage collection in deduplicating
storage,” in 15th USENIX Conference on File and Storage Technologies
(FAST 17). Santa Clara, CA: USENIX Association, feb 2017, pp.
29–44. [Online]. Available: https://www.usenix.org/conference/
fast17/technical-sessions/presentation/douglis

[32] Librsync. (2018, 02) Librsync: Remote delta-compression library.
[Online]. Available: https://github.com/librsync/librsync

[33] M. Kleppmann, Designing Data-Intensive Applications: The Big Ideas
Behind Reliable, Scalable, and Maintainable Systems. OReilly, March
2017. [Online]. Available: https://martin.kleppmann.com/2016/
02/08/how-to-do-distributed-locking.html

[34] J. Chen, M. Zhao, Z. Li, E. Zhai, F. Qian, H. Chen, Y. Liu, and
T. Xu, “Lock-free collaboration support for cloud storage services
with operation inference and transformation,” in 18th USENIX
Conference on File and Storage Technologies (FAST 20). Santa Clara,
CA: USENIX Association, Feb. 2020, pp. 13–27. [Online]. Available:
https://www.usenix.org/conference/fast20/presentation/chen

Zonghui Li received the B.S. degree in com-
puter science from the Beijing Information Sci-
ence and Technology University in 2010, and
the M.S. and Ph.D. degree from the Institute
of Microelectronics and the School of Software,
Tsinghua University, Beijing, China, in 2014 and
2019, respectively.

He is currently an assistant professor in the
School of Computer and Information Technology,
Beijing Jiaotong University, Beijing, China. His
research interests include embedded and high

performance computing, real-time embedded systems, especially for
industrial control networks and fog computing.

Gilbert (Gang) Chen received the BE and
ME degrees in Electrical Engineering from
Tshinghua University in China, and the PhD
degree in Computer Science from Rensselaer
Polytechnic Institute.

He is currently an independent software de-
veloper focused on building reliable and robust
cross-platform software solutions for efficient
storage backup and synchronization. He is the
founder of Acrosync LLC.

Yangdong Deng received the BE and ME de-
grees from the Electrical and Electronics De-
partment, Tsinghua University, Beijing, China,
in 1998 and 1995, respectively, and the PhD
degree in electrical and computer engineering
from the Carnegie Mellon University, Pittsburgh,
PA, in 2006.

He is currently an associate professor at the
School of Software, Tsinghua University, Beijing,
China. His current research interests include in-
dustry data analytics, brain inspired computing,

and computer architecture. He is a member of the IEEE. He received a
best paper award from ICCD 2013.

https://borgbackup.readthedocs.io/
https://www.dropbox.com
https://duplicacy.com/
https://duplicacy.com/
http://doi.acm.org/10.1145/502034.502052
https://www.usenix.org/legacy/events/fast02/quinlan/quinlan_html/
https://www.usenix.org/legacy/events/fast02/quinlan/quinlan_html/
http://doi.acm.org/10.1145/3916.3988
http://doi.acm.org/10.1145/84537.84545
http://dl.acm.org/citation.cfm?id=564062.564087
https://www.verticalbackup.com/
http://doi.acm.org/10.1145/256163.256168
https://github.com/torvalds/linux
https://www.osboxes.org/centos/
https://www.osboxes.org/centos/
https://github.com/gilbertchen/benchmarking
https://github.com/gilbertchen/benchmarking
https://github.com/gilbertchen/cloud-storage-comparison
http://doi.acm.org/10.1145/2078861.2078864
http://doi.acm.org/10.1145/2078861.2078864
http://doi.acm.org/10.1145/3190508.3190547
http://doi.acm.org/10.1145/3136825.3136889
https://www.duplicati.com/
https://www.duplicati.com/
https://obnam.org/
https://www.usenix.org/conference/fast13/technical-sessions/presentation/strzelczak
https://www.usenix.org/conference/fast13/technical-sessions/presentation/strzelczak
https://www.usenix.org/conference/fast17/technical-sessions/presentation/douglis
https://www.usenix.org/conference/fast17/technical-sessions/presentation/douglis
https://github.com/librsync/librsync
https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html
https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html
https://www.usenix.org/conference/fast20/presentation/chen

	Introduction
	Background
	Chunking
	Naming Chunks

	Lock-Free Deduplication
	Naming Chunks Based Backup
	Two Step Fossil Deletion
	Guaranteed Lock Free

	Duplicacy
	Incremental Backup and Full Snapshot
	Caching
	Compression and Encryption

	Evaluation and Analysis
	Experiment Setup
	Backup Performance
	Storage Efficiency
	Ubiquity Integration

	Related Work
	Conclusion
	References
	Biographies
	Zonghui Li
	Gilbert (Gang) Chen
	Yangdong Deng


