
CMP302 Coursework



Overview
• Made in Unity using .NET sockets.

• Server-Client Hybrid (One client also has the server – which relays information 
between all clients).
 Easy hosting for clients.

 No extra downloads if wanting to host.

 But one player has advantage of time (their matches up perfectly with server – they’re 
likely to win all conflicts).

 No dedicated server for people wanting to host big servers (performance overhead).

• Uses UDP for everything.
 As its fast and integrates with event system well.

 3 way handshake and packet delivery verification added when needed.

• Transfers equivalent of structs for packets.
 Fast & small.

 Not much error correction.

• Event Based - Packets are decoded then passed onto events for the relevant 
GameObjects to deal with.



Packet Structure
• Contain a Header.

 In form of class – due to C# technicality.

 Contains Time sent, and Type.

 Type is an Enum to signify what type the packet is for easier debugging and lower overhead 
casting (C# has reflection capabilities).

• Network Packets

 Packets about network events – connect, disconnect, time sync etc.

 Contain acknowledgement versions.

 New Connection packet contains the Player ID for example.

• Position Packets / Gameplay event packets

 Position packet is only gameplay event packet.

 Contains position, whether the player was moving, and speed.



Styles of packets
• Three way handshake equivalent.

 Currently only used when connecting – would be implemented with coins.

• Confirm awareness, signal changes.
 Server asks player if they’re aware of new player.

 Only asks if server is not sure.

 Player would not send back ACK if its not sure, or if its lost.

 Knows if asked again, and the client is aware, the ACK gets sent back as last ACK must’ve 
gotten lost.

• One time.
 Low priority or high frequency events.

 Position updates are high frequency events.

 Send packet but don’t verify that its delivered.

 Trees would be an example of a low priority event (Not implemented).

 Shaking a tree has no functional purpose – so what if it gets lost.

 Just for aesthetics.



Player Connections
• Server keeps track of connections.

 Who are they aware of.

 Their connection status.

 Last time sent and received packet.

• Max 32 connections.

 Theoretically max is how much the PC can handle.

 Slow downs cause rubber-banding due to time syncs.

• Server has array of packets that have to be forwarded on to other players.

• Server sends time syncs every 250ms to all.

 Non guaranteed delivery.

 Ideally would be sent when its detected that latency and server time seem out of 
sync or server slows down (Improvement).



Client Server

WANT_CONNECT

APPROVE_CONNECT

ACK_CONNECT

DATA

Client Server

WANT_CONNECT

APPROVE_CONNECT

APPROVE_CONNECT

Wait a moment and retry

T
y

p
ic

a
l

B
a

d
 N

e
tw

o
r
k

E
x

a
m

p
le

The client would also retry 

to send want_connect until 

it gets a response

ACK_CONNECT

Add new connection to list of 

connection, mark it as TBC

Set state to be 

acknowledged

Mark connection as connected, 

and notify other clients

Add new connection to list of 

connection, mark it as TBC

Mark connection as connected, 

and notify other clients

Connecting Player



ClientServer

New Client Connected, notify 

others.

NEW_CONNECTION

NEW_CONNECTION_ACK

Dispatch Network Event to 

recipients

PlayerManager receives and 

create new player

Mark connection as aware of 

the new connection. 

NEW_CONNECTION

NEW_CONNECTION_ACK

Dispatch event, PlayerManager already 

know its instanced the player, but send 

confirmation regardless (how to make sure 

that the client got the packet)

Wait a some time and send 

another packet stating a new 

connection.



Event Structure
• The client interfaces the server with the ‘ClientConnectionManager’ class

 Handles:

 Connecting.

 Network events (player connect/disconnect/time sync).

 Sending/receiving and decoding packets.

 Passes non connection events onto the NetworkEventDispatcher class.

• NetworkEventDispatcher is the primary ‘interface’ class for any 
GameObjects wanting to subscribe to events.
 Bottom up subscription to make it easier to add new events.

 Although for network events they need to access the ClientConnectionManager (as 
you cant subscribe to a reference of a event – C# technicality).

 Has PositionPacketEvent which is dispatched when a new packet is received.

• Sending packets is not handled via event as a non owner cannot dispatch 
event.
 Therefore its just a function call.



Prediction
• Based off of linear interpolation.

• A new position packet is sent every 30ms.

 Every ~2 frames so the client isn’t more than 4-6 frames behind and doesn’t jitter 
too much.

 Also doesn’t use as much bandwidth + CPU as a sending every 16ms.

 Game isn’t too intensive so a target of 60FPS/16.66ms per frame isn’t unrealistic.

• Due to lack pause between frames interpolation is needed.

• Old packets are discarded – only latest ones are stored.

• Packet sends whether the player is moving.



Testing – Ideal Conditions

• Ideal conditions (no interferences or delay)

• Slight jitter when syncing time.
 Can be fixed by having a time lerp client-side.

Server Client



Testing – Typical Conditions

• 60ms, 0.5% packet loss, 0.2% chance of throttle of 60ms, 0.1% chance of out 
of order.

• Jitter is intensified due to higher time desyncs.



Testing – Horrendous Conditions

• 250ms, 15% packet loss, 10% chance of throttle of 60ms, 1% of 2 duplicate, 
5% out of order.

• Jitter + Rubber banding – partly due to time syncs, and partly due to 
missing packets.



Testing – “A cabin in the woods”

• 1000ms, 60% chance of packet dropped, 50% throttle of 400ms, 40% 4 duplicate, 80% out of order

• Unplayable, still updates eventually.

• Clamping prediction speed to max of player (5u/s) would help the ‘fly away’ effect.



No interpolation
• Done on an earlier build with a time sync bug – but no interpolation.

 Time is used only on interpolation currently.



Fitness for purpose
• Syncs both work well.

• Would be perfect without jitter.

 ‘Dilatating time’ between times would be a very good update.

 Clamping max speed.

• Connection handshake works in all network conditions – as long as 10 
attempts aren’t reached.

• Firewall needing to be disabled would need to be fixed.

 Third party matchmaker to help poke a wall?

 Or adding ports that the client can connect on and sending out packets to poke a 
hole in the firewall.

• Improve prediction with a cubic spline…



Current Prediction
• Currently takes average of last two positions, and bases 

the velocity and moves the player forward.

• If the player doesn’t send anything in 7.5 seconds it will be 
disconnected.



Current Prediction
• Currently takes average of last two positions, and bases 

the velocity and moves the player forward.

• If the player doesn’t send anything in 7.5 seconds it will be 
disconnected.



Current Prediction
• Currently takes average of last two positions, and bases 

the velocity and moves the player forward.

• If the player doesn’t send anything in 7.5 seconds it will be 
disconnected.



Current Prediction
• Currently takes average of last two positions, and bases 

the velocity and moves the player forward.

• If the player doesn’t send anything in 7.5 seconds it will be 
disconnected.



Improvements to Prediction
• Create a Circle collider around the player of some amount.

• While interpolating position, move forward on predicted 
path.



Improvements to Prediction
• Continue moving.

• Enable circle collider.



Improvements to Prediction
• Continue moving checking for collisions.



Improvements to Prediction
• Stop moving/interpolating when detected wall or thing 

collided at, and wait for new packets…

 Server drops client automatically after 5 seconds.



Improvements to Prediction
• New packet!

• Draw Cubic Spline between Last packet, current 
position, and new predicted packet, and interpolate to 
new packet within 30ms.

• Disable the collision constraint because no longer 
interpolating.

Last packet
New Packet



Improvements to Prediction
• Move along spline as normal.

Last packet
New Packet



Improvements to Prediction
• Continue on last path until complete, then interpolate as 

normal.

• Although the players world are now desynced for a 
moment.

Last packet

Old predated position based off of packets.



Improvements to Prediction
• Normal interpolation again!

Last packet



Prediction Improvement Summary
• Change interpolation to use cubic splines (makes life easier – and transition 

neater).

 Can easily predict next point.

• Add a collision circle and stop moving if hit something.

 Triggered after 3 packets missed (90ms) behind.

 Will behave strangely otherwise – stopping when near a wall.

 Edge if player stops, and remains next to a wall when no packets are received.

 Bounding box should be off.

• State machine is perfect for this.

 INTERPOLATING

 STOPPED

 MOVING_ALONG_SPLINE



Improvements
• Overhaul of the way packets are into three distinct generic types mentioned at 

start.
 Three way handshake.

 Confirmation.

 Unimportant.

• Implement ticks.
 Bandwidth conservation – lesser load on socket.

• Firewall penetration.
 Setup a way to say that the server is expecting connections at specified port.

• Time sync.

• Code wise:
 Clean up ConnectionEventArgs.

 Clean up namespaces.

 Make a send/receive queue class. (Remove some responsibilities from ConnectionMgrs).

 Connection Managers reusable across server and client.



Server 
UML

Wrapper for Contains

GameObject

wrapper for 

server network 

manager as it 

allows easier 

exception 

handling

Manages socket and 

player awareness of 

each other and 

relaying positions. Holds details about 

connection, and 

what other players 

its aware of.



Received by

Creates

Received by

Event updates 

position.

Updating 

debug text.

Updates time, 

dispatches 

position events.

Manages socket 

activities, 

dispatches 

network events.

Sends out 

position 

packets 

every 30ms.

Processes Network 

Events and 

interpolates 

position.



Implementing Coins
• Coins weren’t added due to time constraints. Some inactive code is present.

Player collects coin.

Coin marks its self as 

collected and at what time 

relative to server.

NEW_COIN_COLLECTED
Mark coin collected by 

player 1, at time x.

Tell other players that the 

coin was collected.

NEW_COIN_COLLECTED_

ACK

COIN_COLLECTED

Mark coin as collected.

NEW_COIN_COLLECTED_

ACK Mark collection as 

acknowledged by player x.

COIN_COLLECTED_ACK

Mark coin as collected.

Client 1 Server Client 2



Resolving Coin Collection Conflicts
• Previous example only was a typical example.

Player collects coin at time 

1.2.

Coin marks its self as 

collected and at what time 

relative to server.

NEW_COIN_COLLECTED
Mark coin collected by 

player 1, at time 1.2.

Tell other players that the 

coin was collected.

Client 1 Server Client 2

Player collects coin at time 

1.0.

Coin marks its self as 

collected and at time 

relative to server.

NEW_COIN_COLLECTED

NEW_COIN_COLLECTED

NEW_COIN_COLLECTED

Mark coin collected by 

player 2, at time 1.0.

Need to notify the player 

that collected the coin that 

they didn’t collect it.

COIN_CORRECTION
Subtract amount from 

inventory

Verify coin collection.
Verify coin collection.



Client 1 Server Client 2

COIN_CORRECTION
Subtract amount from 

inventory.

Mark coin as need to 

acknowledge correction. 

COIN_CORRECTION_ACK Mark as coin ack to be sent 

back.

COIN_CORRECTION_ACK

COIN_CORRECTION_ACK

Mark as ACK received.

• Time is used to determine when a coin was collected.

• Additional freeze would need to be added if the player is trying to buy something 
it makes the client wait until it got a confirmation for sometime.
 Would need to tell other client that if their sending confirmation took too long they don’t 

get the coin.

• Uses both three way handshake and confirmation.



Cheating and Tampering
• Basic protections exist.

• Players’ connections are indexed by their IPEndPoint/IP + port.

• Verify that the IP that sent packet the same one as the ID is assigned to.

• Verify that the IP is actually connected.

• Throw away packets that failed to decode.

• Nothing stopping attackers from pretending they’re the other player/server and 
messing with timing.
 Could be fixed with public/private (SSL) encryption.

 Not that much overhead.

• Hackers hosting servers would be another risk – they have the master version of 
the game.

 And who gets what packets, and who is connected or disconnected.

 Not much can do except from encrypting memory and stopping with Denuvo or similar.


