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Overview
• Made in Unity using .NET sockets.

• Server-Client Hybrid (One client also has the server – which relays information 
between all clients).
 Easy hosting for clients.

 No extra downloads if wanting to host.

 But one player has advantage of time (their matches up perfectly with server – they’re 
likely to win all conflicts).

 No dedicated server for people wanting to host big servers (performance overhead).

• Uses UDP for everything.
 As its fast and integrates with event system well.

 3 way handshake and packet delivery verification added when needed.

• Transfers equivalent of structs for packets.
 Fast & small.

 Not much error correction.

• Event Based - Packets are decoded then passed onto events for the relevant 
GameObjects to deal with.



Packet Structure
• Contain a Header.

 In form of class – due to C# technicality.

 Contains Time sent, and Type.

 Type is an Enum to signify what type the packet is for easier debugging and lower overhead 
casting (C# has reflection capabilities).

• Network Packets

 Packets about network events – connect, disconnect, time sync etc.

 Contain acknowledgement versions.

 New Connection packet contains the Player ID for example.

• Position Packets / Gameplay event packets

 Position packet is only gameplay event packet.

 Contains position, whether the player was moving, and speed.



Styles of packets
• Three way handshake equivalent.

 Currently only used when connecting – would be implemented with coins.

• Confirm awareness, signal changes.
 Server asks player if they’re aware of new player.

 Only asks if server is not sure.

 Player would not send back ACK if its not sure, or if its lost.

 Knows if asked again, and the client is aware, the ACK gets sent back as last ACK must’ve 
gotten lost.

• One time.
 Low priority or high frequency events.

 Position updates are high frequency events.

 Send packet but don’t verify that its delivered.

 Trees would be an example of a low priority event (Not implemented).

 Shaking a tree has no functional purpose – so what if it gets lost.

 Just for aesthetics.



Player Connections
• Server keeps track of connections.

 Who are they aware of.

 Their connection status.

 Last time sent and received packet.

• Max 32 connections.

 Theoretically max is how much the PC can handle.

 Slow downs cause rubber-banding due to time syncs.

• Server has array of packets that have to be forwarded on to other players.

• Server sends time syncs every 250ms to all.

 Non guaranteed delivery.

 Ideally would be sent when its detected that latency and server time seem out of 
sync or server slows down (Improvement).
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ClientServer

New Client Connected, notify 
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Event Structure
• The client interfaces the server with the ‘ClientConnectionManager’ class

 Handles:

 Connecting.

 Network events (player connect/disconnect/time sync).

 Sending/receiving and decoding packets.

 Passes non connection events onto the NetworkEventDispatcher class.

• NetworkEventDispatcher is the primary ‘interface’ class for any 
GameObjects wanting to subscribe to events.
 Bottom up subscription to make it easier to add new events.

 Although for network events they need to access the ClientConnectionManager (as 
you cant subscribe to a reference of a event – C# technicality).

 Has PositionPacketEvent which is dispatched when a new packet is received.

• Sending packets is not handled via event as a non owner cannot dispatch 
event.
 Therefore its just a function call.



Prediction
• Based off of linear interpolation.

• A new position packet is sent every 30ms.

 Every ~2 frames so the client isn’t more than 4-6 frames behind and doesn’t jitter 
too much.

 Also doesn’t use as much bandwidth + CPU as a sending every 16ms.

 Game isn’t too intensive so a target of 60FPS/16.66ms per frame isn’t unrealistic.

• Due to lack pause between frames interpolation is needed.

• Old packets are discarded – only latest ones are stored.

• Packet sends whether the player is moving.



Testing – Ideal Conditions

• Ideal conditions (no interferences or delay)

• Slight jitter when syncing time.
 Can be fixed by having a time lerp client-side.

Server Client



Testing – Typical Conditions

• 60ms, 0.5% packet loss, 0.2% chance of throttle of 60ms, 0.1% chance of out 
of order.

• Jitter is intensified due to higher time desyncs.



Testing – Horrendous Conditions

• 250ms, 15% packet loss, 10% chance of throttle of 60ms, 1% of 2 duplicate, 
5% out of order.

• Jitter + Rubber banding – partly due to time syncs, and partly due to 
missing packets.



Testing – “A cabin in the woods”

• 1000ms, 60% chance of packet dropped, 50% throttle of 400ms, 40% 4 duplicate, 80% out of order

• Unplayable, still updates eventually.

• Clamping prediction speed to max of player (5u/s) would help the ‘fly away’ effect.



No interpolation
• Done on an earlier build with a time sync bug – but no interpolation.

 Time is used only on interpolation currently.



Fitness for purpose
• Syncs both work well.

• Would be perfect without jitter.

 ‘Dilatating time’ between times would be a very good update.

 Clamping max speed.

• Connection handshake works in all network conditions – as long as 10 
attempts aren’t reached.

• Firewall needing to be disabled would need to be fixed.

 Third party matchmaker to help poke a wall?

 Or adding ports that the client can connect on and sending out packets to poke a 
hole in the firewall.

• Improve prediction with a cubic spline…



Current Prediction
• Currently takes average of last two positions, and bases 

the velocity and moves the player forward.

• If the player doesn’t send anything in 7.5 seconds it will be 
disconnected.



Current Prediction
• Currently takes average of last two positions, and bases 

the velocity and moves the player forward.

• If the player doesn’t send anything in 7.5 seconds it will be 
disconnected.



Current Prediction
• Currently takes average of last two positions, and bases 

the velocity and moves the player forward.

• If the player doesn’t send anything in 7.5 seconds it will be 
disconnected.



Current Prediction
• Currently takes average of last two positions, and bases 
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disconnected.



Improvements to Prediction
• Create a Circle collider around the player of some amount.

• While interpolating position, move forward on predicted 
path.



Improvements to Prediction
• Continue moving.

• Enable circle collider.



Improvements to Prediction
• Continue moving checking for collisions.



Improvements to Prediction
• Stop moving/interpolating when detected wall or thing 

collided at, and wait for new packets…

 Server drops client automatically after 5 seconds.



Improvements to Prediction
• New packet!

• Draw Cubic Spline between Last packet, current 
position, and new predicted packet, and interpolate to 
new packet within 30ms.

• Disable the collision constraint because no longer 
interpolating.

Last packet
New Packet



Improvements to Prediction
• Move along spline as normal.

Last packet
New Packet



Improvements to Prediction
• Continue on last path until complete, then interpolate as 

normal.

• Although the players world are now desynced for a 
moment.

Last packet

Old predated position based off of packets.



Improvements to Prediction
• Normal interpolation again!

Last packet



Prediction Improvement Summary
• Change interpolation to use cubic splines (makes life easier – and transition 

neater).

 Can easily predict next point.

• Add a collision circle and stop moving if hit something.

 Triggered after 3 packets missed (90ms) behind.

 Will behave strangely otherwise – stopping when near a wall.

 Edge if player stops, and remains next to a wall when no packets are received.

 Bounding box should be off.

• State machine is perfect for this.

 INTERPOLATING

 STOPPED

 MOVING_ALONG_SPLINE



Improvements
• Overhaul of the way packets are into three distinct generic types mentioned at 

start.
 Three way handshake.

 Confirmation.

 Unimportant.

• Implement ticks.
 Bandwidth conservation – lesser load on socket.

• Firewall penetration.
 Setup a way to say that the server is expecting connections at specified port.

• Time sync.

• Code wise:
 Clean up ConnectionEventArgs.

 Clean up namespaces.

 Make a send/receive queue class. (Remove some responsibilities from ConnectionMgrs).

 Connection Managers reusable across server and client.
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Implementing Coins
• Coins weren’t added due to time constraints. Some inactive code is present.

Player collects coin.

Coin marks its self as 

collected and at what time 

relative to server.

NEW_COIN_COLLECTED
Mark coin collected by 

player 1, at time x.

Tell other players that the 

coin was collected.

NEW_COIN_COLLECTED_

ACK

COIN_COLLECTED

Mark coin as collected.

NEW_COIN_COLLECTED_

ACK Mark collection as 

acknowledged by player x.

COIN_COLLECTED_ACK

Mark coin as collected.

Client 1 Server Client 2



Resolving Coin Collection Conflicts
• Previous example only was a typical example.

Player collects coin at time 

1.2.

Coin marks its self as 

collected and at what time 

relative to server.

NEW_COIN_COLLECTED
Mark coin collected by 

player 1, at time 1.2.

Tell other players that the 

coin was collected.

Client 1 Server Client 2

Player collects coin at time 

1.0.

Coin marks its self as 

collected and at time 

relative to server.

NEW_COIN_COLLECTED

NEW_COIN_COLLECTED

NEW_COIN_COLLECTED

Mark coin collected by 

player 2, at time 1.0.

Need to notify the player 

that collected the coin that 

they didn’t collect it.

COIN_CORRECTION
Subtract amount from 

inventory

Verify coin collection.
Verify coin collection.



Client 1 Server Client 2

COIN_CORRECTION
Subtract amount from 

inventory.

Mark coin as need to 

acknowledge correction. 

COIN_CORRECTION_ACK Mark as coin ack to be sent 

back.

COIN_CORRECTION_ACK

COIN_CORRECTION_ACK

Mark as ACK received.

• Time is used to determine when a coin was collected.

• Additional freeze would need to be added if the player is trying to buy something 
it makes the client wait until it got a confirmation for sometime.
 Would need to tell other client that if their sending confirmation took too long they don’t 

get the coin.

• Uses both three way handshake and confirmation.



Cheating and Tampering
• Basic protections exist.

• Players’ connections are indexed by their IPEndPoint/IP + port.

• Verify that the IP that sent packet the same one as the ID is assigned to.

• Verify that the IP is actually connected.

• Throw away packets that failed to decode.

• Nothing stopping attackers from pretending they’re the other player/server and 
messing with timing.
 Could be fixed with public/private (SSL) encryption.

 Not that much overhead.

• Hackers hosting servers would be another risk – they have the master version of 
the game.

 And who gets what packets, and who is connected or disconnected.

 Not much can do except from encrypting memory and stopping with Denuvo or similar.


