
Generating City Layouts using an Artificial Neural

Network and Procedural Generation

Feliks Jakimow

2021

BSc (Hons) Computer Game Applications Development

School of Design and Informatics
Abertay University

Dundee

Contents

1 Introduction 7
1.1 Aim . 8
1.2 Objectives . 8
1.3 Research Question . 8
1.4 Hypothesis . 8
1.5 Overview . 9

2 Literature Review 10
2.1 Generating Roads . 10

2.1.1 Using Procedural Generation 10
2.1.2 Using Artificial Neural Networks 11

2.2 Generating Plots . 13
2.2.1 Polygon Detection . 14
2.2.2 Polygon Subdivision and Scaling 16

3 Methodology 17
3.1 Preparing Training Data . 17
3.2 Neural Network . 18
3.3 Generating Roads . 19
3.4 Plots . 20
3.5 Performance Evaluation . 21

3.5.1 Visualisation . 22
3.6 Progress Bar . 22

4 Results 23
4.1 Generated Graphs . 24
4.2 Generated Graph Statistics 25
4.3 Generated Plots . 28

4.3.1 Verification Of Shortest Path 30

5 Discussion 31
5.1 Training Sequence . 31
5.2 Network Structure . 32
5.3 Activation Functions . 32
5.4 More Diverse Data Sets . 33
5.5 Plot Detection . 33

1

5.6 Plot Subdivision . 34
5.7 Evaluation Methods . 35
5.8 Project Effectiveness . 35

6 Conclusion 37

7 References 38

8 Appendices 40
8.1 A: Quad Graph Polygons . 40
8.2 B: Bounding Box Coordinates Used 41
8.3 C: Python Packages Used . 42

2

List of Figures

1 CityEngine is used to generate roads on Manhattan Island,
New York, United States (top), versus the real-life road layout
(Parish and Müller, 2001). 10

2 Ordnance Survey (n.d.) plot map, with house plots (left),
tenement plots (right) in Edinburgh, Scotland. 13

3 Example output from Keir’s (2020) Procedural City Generator. 14
4 Diagram of the ANN for road generation. 19
5 Bounding boxes used to query roads from. Retrieved using

Racicot’s (2012) bboxfinder. 23
6 The graphs used as input to to the generator to their respective

networks. 24
7 Resulting output given the input in Figure 6 for the respective

networks at their saved 10, 20, and 30 epoch stages. 24
8 Diversity metric (percentage of nodes that overlap with the

ground truth map) for the generated maps and ground truth. . 25
9 Graph density of the ground truth versus the generated graphs

at various epochs. 26
10 Road density distribution of the ground truth vs the generated

graphs at various epochs. 26
11 Junction connectivity distribution of the ground truth vs the

generated graphs at various epochs. 27
12 Transport convenience distribution of the ground truth vs the

generated graphs at various epochs. 27
13 Bounding boxes used for road retrieval in 14. Retrieved using

bboxfinder (Racicot, 2012). 28
14 Plot detection road input graphs, as retrieved from OSM.

Numbers shown are OSM node ID’s. 29
15 Detected plots, as retrieved from OSM. Numbers shown are

OSM node ID’s. 29
16 Three by Three quad lattice graph. 30

3

Thank you to Christopher Acornley for his guidance, advice, and
supervision regarding this dissertation throughout the academic year.

4

Abstract

Creating city layouts manually can be difficult and time consum-
ing. Automating this process to be simple and versatile would benefit
many users, such as game designers and artists who might otherwise
spent a lot of time studying road layouts manually. Existing imple-
mentations use Procedural Generation, which often puts the burden
onto the user to capture the rules of the city. Artificial Neural Net-
works can be used to ’learn’ the distribution of data automatically,
given that it is correctly configured and a lot of data is available.

This project aims to implement a combination of Artificial Neural
Network and Procedural Generation methods to generate city layouts
and evaluate its effectiveness.

The study implements a variety of evaluation techniques which are
to be performed on generated roads, to compare its effectiveness in
relation to the source map. The roads are generated by a Recurrent
Neural Network with Gated Recurrent Unit. This Artificial Neural
Network is trained on data extracted from OpenStreetMap. Plots are
then detected using the Dijkstra algorithm and evaluated.

The road generation Artificial Neural Network was unable to cap-
ture the source road map effectively. The plot detection algorithm
was achieved, however due to time constraints plot generation using
polygon slicing and subdivision was not implemented.

The study offers a basis for future development of similar prob-
lems, especially as no source code for the used Neural Turtle Graphics
approach is available. Further development is required in regards to
road generation and plot subdivision, especially regarding using an
embedding layer instead of manual one-hot encoding to reduce mem-
ory usage.

5

Acronyms

ANN Artificial Neural Network. 3, 5, 7, 8, 10, 11, 17–19, 31, 32, 35

API Application Programming Interface. 17

BFS Breadth First Search. 12, 19

Encoder-Decoder Encoder-Decoder. 11, 12, 18, 19

GRU Gated Recurrent Unit. 5, 11, 12, 18, 33

LSTM Long Short-Term Memory. 12

NTG Neural Turtle Graphics. 5, 11, 12, 15, 17, 19, 22, 35, 37

OSM OpenStreetMap. 3, 5, 7, 17, 29, 35

PG Procedural Generation. 5, 7, 8, 10, 12, 14, 17, 33

RNN Recurrent Neural Network. 5, 11, 12, 33

6

1 Introduction

Creating a layout of a city from scratch can be difficult. Frequently, the city
may be based off real world designs. Due to this, consideration to the original
style must be given to achieve a believable layout. This can be a difficult
task due to the various parameters that one must consider: road length,
angle, distribution, pattern, connectivity, building locations etc. Capturing
the style accurately may prove to be difficult, as doing so requires extensive
analyses of maps. This is time consuming and tedious.

Methods to automate this process have been devised. From Procedural
Generation, which requires the user to manually identify rules, or patterns to
follow (Parish and Müller, 2001); to using Artificial Neural Network, which
must be optimised for identifying them (Chu et al., 2019). This is due to an
Artificial Neural Network typically learning the distribution from the data
provided. This can be done through a number of methods such as supervised
training. In supervised training the network receives the input and the ex-
pected output. This data is given to the network and activation’s tracked,
to be later adjusted (back-propagated) by an optimiser typically using gra-
dient descent. As a consequence, Artificial Neural Networks tend to rely
on large amounts of specifically formatted data which can be processed and
trained on. This training data must be sourced from an appropriate place,
while being arranged into a suitable format and staying general enough (i.e.
not ’overfitted’) to be used outside the training sequence. Due to the na-
ture of an Artificial Neural Network, the resulting model may be difficult to
comprehend as it has often went through hundreds of thousands iterations.

Maps can be found easily online, using services such as OpenStreetMap
(Curran, Crumlish and Fisher, 2012). The data is frequently provided in a
simplified format that can be represented in an undirected graph. This graph
can contain information about the nodes and edges it houses. Analysis can
be performed on this data to generate conclusions, but also training data for
an Artificial Neural Network (Chu et al. 2019).

An Artificial Neural Network can be used in conjunction with Procedural
Generation, which is frequently used for more specialised tasks, however does
not require as much input data. These two methods could be fused together
to help game designers and artists when designing a city-based environment
for a video game, or perhaps create new, procedural gameplay experiences
in realistic city environments.

7

1.1 Aim

This dissertation aims to implement and evaluate a method of generating city
layouts using a combination of Artificial Neural Network and Procedural
Generation. The use of an Artificial Neural Network for road generation
should be more flexible over a Procedural Generation approach due to the
ability to ’learn’ layouts autonomously and on a range of source layouts.
In conjunction with Procedural Generation, plots can be found for where
buildings can go, and help to outline shapes and sizes for buildings.

1.2 Objectives

• Develop a method of extracting data from real world maps.

• Convert the extracted map data into a suitable format for generating
a training sequence.

• Implement a way of generating training data for the network.

• Research and evaluate approaches to generating roads using Artificial
Neural Networks.

• Evaluate the performance of the created Artificial Neural Network.

• Research a method of generating plots using Procedural Generation.

• Evaluate the performance of the plot generation method.

• Provide recommendations on improving the chosen approach.

1.3 Research Question

How effective is the combination of an Artificial Neural Network with Pro-
cedural Generation at generating city layouts accurately?

1.4 Hypothesis

The Artificial Neural Network will generate roads styled after the input map,
and Procedural Generation will be able to generate realistic looking plots.

8

1.5 Overview

Following this section the literature review will discuss current approaches to
generating roads and plots. Next, the methodology will describe the taken
approaches to acquiring training data, network structure, and plot gener-
ation. Continuing, the results will show the quantitative and qualitative
data, and the discussion will interpret the data, and suggest improvements
to the approach. Finally the conclusion will summarise the effectiveness of
the approach.

9

2 Literature Review

The layout of a city can be considered to consist of two items: roads and
plots. Buildings (or other structures such as parks) are placed on these plots,
and they are divided by roads which interconnect the plots. The shape of
the roads and plots vary between cities. These are important qualities to
consider when creating a city layouts. Generating roads and plots can be
considered as two separate procedures, despite being interlinked with each
other.

2.1 Generating Roads

The generation of roads can be approached using Procedural Generation
(PG), Artificial Neural Networks (ANNs), or a combination of both. Both
of the approaches require some initial data to guide the algorithm, or for the
user to determine how close the output is to the desired effect.

2.1.1 Using Procedural Generation

Figure 1: CityEngine is used to generate roads on Manhattan Island, New
York, United States (top), versus the real-life road layout (Parish and Müller,
2001).

10

Typically roads have rules they tend to follow, therefore using a rule
based approach can be used to generate fairly convincing cities. An example
of this given by Parish and Müller (2001) with their CityEngine approach,
which uses extended L-systems to determine the successor road based on a
combination of factors: preceding road, global goals, and local rules. Global
goals consider factors such population density, general road patterns such as
radial, checker, and branching; local rules consider whether the new piece
would be in water, overlapping another piece, or whether some criteria with
highway roads are met.

This approach generates believable cities, however it involves creating
the rules for the generator manually, proving tedious (Chu et al., 2019). In
addition, cities which do not follow rules (such as Istanbul, Turkey), have
different rule sets, or lack planning. This makes them difficult to adequately
describe with rules, causing generation performance to suffer (Chu et al.,
2019).

2.1.2 Using Artificial Neural Networks

Artificial Neural Networks (ANNs) have been used for various applications,
such as predicting values, generating text, and classifying images. Various
architectures are used for different problems. In the case of generating roads,
two prominent examples Neural Turtle Graphics (NTG) and GraphRNN have
used the Recurrent Neural Network (RNN) architecture to facilitate the gen-
eration of roads.

A RNN is a type of neural network that remembers the previous state
of the network, through time steps. Every time a new input value is given
to the input, another version of the network is created and connected to the
previous one, generating a new time step. Typically the final time step is
used to predict the next value in the chain.

A common use of an RNN is the Encoder-Decoder architecture, which
uses two separate RNNs. The encoder network encodes the input data into a
fixed-sized intermediary vector, which is then decoded by the decoder coun-
terpart. This allows the input to be a different size from the output.

In order to achieve the interconnection between other time steps, a specific
architecture of the neurons must be picked that supports this. A common
architecture is the Gated Recurrent Unit (GRU). This architecture typically
contains two inputs, one which determines how much of the incoming data
should be passed to future ones, and the other determines how much of the

11

data should be forgotten. This data is then passed to other neurons, and the
neuron in a future time step. GRU is typically used over Long Short-Term
Memory units as it improves on the vanishing gradient descent problem (Dey
and Salem, 2017).

The GraphRNN approach, as described by You et al. (2018), uses a GRU
Encoder-Decoder RNN architecture to predict the next road. The roads are
stored in an undirected graph format. The first network encodes the state of
the graph, whereas the second network generates the next node. The state
of the graph is encoded using an adjacency matrix, which is then predicted
from the encoded graph.

Chu et al. (2019) describes their approach, NTG, which works similarly
to a graphics turtle (a turtle is given commands to move). It has similarities
with GraphRNN, where an undirected graph is used to store the nodes,
and an GRU Encoder-Decoder RNN is used. However, instead of using an
adjacency matrix generate represent and generate new nodes, the relative
location change to each other is used. A node is generated by using forty
previous nodes, sorted by Breadth First Search (BFS).

Overall, NTG achieves better generation performance than GraphRNN
as it fails to capture the city style due to its lack of positional encoding in
adjacent nodes and ability to encode complex graphs (Chu et al., 2019; You
et al., 2018). For this reason, the NTG approach was chosen. In addition,
the network identifies the rules its self, unlike PG, increasing versatility to
almost any city big enough.

12

2.2 Generating Plots

(a) Real world plot data from around
Cumin Place, Edinburgh, UK.

(b) Real world plot data from around
Marchmont Road, Edinburgh, UK.

Figure 2: Ordnance Survey (n.d.) plot map, with house plots (left), tenement
plots (right) in Edinburgh, Scotland.

Building plots are frequently designated around roads inside of cities. Due
to abundance of roads inside of the city, these plots are surrounded by roads
(see figure 2). For this reason, the detection of areas between roads was
selected. As a result, a plot can be represented as a cyclic path or polygon.
These polygons should later be subdivided and scaled to form usable plots,
similar to ones shown in figure 2.

Generally, the size of the plot corresponds with the size of the building,
and buildings may be connected together. In other cases plots may be used
to determine parks. In the context of a plot generation algorithm, sometimes
large spaces may be left undivided.

Keir’s (2020) Procedural City Generator 1 approach (Figure 3) is designed
to create ”[North] American grid based city” layouts. This incorporates a

1The project title differs between the GitHub and itch.io or maps.probabletrain.com

13

Figure 3: Example output from Keir’s (2020) Procedural City Generator.

PG approach for both road and plot generation, with some context for parks
and unfilled plots. The following sections discuss Keir (2020) approach to
detection and the subdivision/scaling process of polygons.

2.2.1 Polygon Detection

An implementation of plot generation has been devised by Keir (2020) in
their approach using tensors. This method is based on finding the areas
between roads generated by the road generator. The plot detection algorithm
attempts to find a three or four sided polygon. Firstly the comparison vector
created. The comparison vector is defined between the penultimate and last
visited nodes. A second adjacent vector is made between the positions of
the last visited and adjacent node. Subsequently, the angle between the
comparison and adjacent vector is calculated using atan2(y1 − y2, x1 − x2)
where x1, y1 is the comparison vector, and x2, y2 is the adjacent vector. This
process is repeated for every adjacent node, and the node with the ’rightmost’

(documentation page) listings. The itch.io title has been used as the name for this ap-
proach.

14

angle is picked. Each rightmost node is added to a visited queue, from which
a polygon is formed and stored.

This detection method is unable to backtrack if it finds its self stuck in
a dead end due to the angle calculated. This approach works in conjunction
with the road generator designed by Keir (2020) as it generates quads with
no dead ends. Therefore this method unsuitable for real world maps where
dead ends frequently exist.

As the picked road generation approach, NTG by Chu et al. (2019),
represents maps using an undirected graph, a path finding algorithm can
be used. Two popular graph-based algorithms A* (implemented by Hart,
Nilsson and Raphael, (1968)) and Dijkstra (implemented by Dijkstra (1959))
can be used for finding paths.

Both the A* and Dijkstra algorithms ’flow out’ towards the start point
from the destination, and then (if the starting point is found) work their
way back by finding the shortest path using the calculated flow out values.
The flow out process involves associating a value with each node, which is
defined by the weight of the edge between the two nodes (usually number of
jumps from the destination). The flow out process continues until either the
start point is found or the whole graph is visited. A node can only be visited
once. A* differs from Dijkstra as it determines the next node to perform the
flow out calculation on by estimating the distance away from the start node.
The heuristic on an edge-weighted undirected graph, as suggested by Hart,
Nilsson and Raphael (1968) is calculating the flow out values on the lowest
weighted edge.

Once the starting point is reached, the both of the algorithms attempt
to make their way to the destination point based on the calculated flow
out values. A path is mapped from the starting node, by iterating through
adjacent nodes with the lowest flow out values. This results in the shortest
possible path.

In the case of the NTG map graph, an edge’s weight is defined by the
euclidean distance (or equivalent for the geographic coordinate system) be-
tween the two nodes that it connects (as each of the nodes contain a positional
value). Moreover, this heuristic can be modified to consider which node is
closest to the starting point, by calculating the euclidean distance between
it and the start point.

Dijkstra, unlike A* calculates the values of the whole graph until it reaches
the destination node. In the case of the suggested application (plot detec-
tion), this may be beneficial as less flow out operations must be performed

15

given that the result of the previous flow out is cached. This may decrease
the amount of calculation and reduce the programs’ complexity by reducing
code. Due to these reasons, Dijkstra will be chosen as the preferred method.

2.2.2 Polygon Subdivision and Scaling

In Keir’s (2020) Procedural City Generator approach, after detecting plot
polygons, they are subdivided to form building lots. These lots may later be
used by other parts of the program to form buildings and create 3D renders.

Polygons are first shrunk to ensure that every side is an equal distance
from the surrounding roads. Subsequently, the polygon is recursively subdi-
vided until a new polygon with a defined minimum area is produced. This
subdivision process is repeated for most nodes, though includes a probability
that some spaces will not be subdivided. The subdivision is done with the
help of the library PolyK. This library uses a line intersection algorithm to
define create two new polygons.

The drawback of this approach is that it results with plots which are
inaccessible to roads (see Figure 2). However, this subdivision process may
be modified as polygon slicing may be used on multi angle polygons. This
will be the preferred approach due to its flexibility and simplicity.

16

3 Methodology

The NTG approach was chosen for the generation of roads due to the gen-
eration performance described by Chu et al. (2019). NTG requires multiple
acyclic input paths to be provided. This data should then capture the layout
of the city accurately once trained. Consequently, the map data is repre-
sented using an undirected graph.

The project would be ultimately aimed towards artists and designers.
However, as this application will be a prototype to test the feasibility of
generating city layouts using ANN and PG, a graphical user interface will
not be provided. Though performance is not critical, improvements to reduce
the overall execution time are welcome.

3.1 Preparing Training Data

The map data was sourced using OpenStreetMap (OSM), as it contains a
map of the world with an open API allowing the use of the stored data eas-
ily. Initially, roads are fetched from the database (entries tagged as highway)
from a defined bounding box. The information, namely the nodes’ longitude
and latitude, ID numbers, and connections is then parsed into an undirected
graph, called the city graph. The connections between the nodes are repre-
sented as edges between nodes. The NetworkX library (Hagberg, Schult and
Swart, 2008) was used for representing the undirected graph in the imple-
mentation.

Due to one-hot encoding (also commonly referred to as cardinality), any
nodes that are more than one hundred meters apart, are split to ensure that
they can be correctly encoded for training. This method takes into account
each of the node’s geographic coordinate system (i.e. longitude and latitude).

A training sequence is then generated based on the city graph. The input
sequence consists of up to fifty acyclic paths leading to a node, each of which
contain twenty path nodes (half of the NTG specification, due to reasons
mentioned later). There are up to twenty individual sets of fifty paths per
node. A path is generated by getting various paths to all of the nodes up to
twenty nodes away. The prediction is up to six nodes.

The nodes positions are then encoded into ∆x and ∆y between the node
and its successor (or in the case of the prediction, the current node and
its successors). This is to ensure that the nodes are not dependant on the
predictions position (Chu et al., 2019). Additionally, any paths that do not

17

have the full twenty nodes have their change in position marked as zero in
their path. Likewise, if the node does not have twenty previous paths leading
to the node, path(s) with no positional changes are added in order to ensure
that the length of the training sequences are consistent. All empty positions
and paths are added to the start of the training sequence, as information
closer to the end of the training sequence is inputted last, therefore has more
impact on the output (Chu et al., 2019). Moreover, the padding also helps
to ensure that the sequence is a consistent size, hopefully making the ANN
learn the data pattern.

The prediction goes through an almost identical process, except there are
only up to six nodes that can be predicted. Most nodes (except a dead end)
will have at least one node to predict. Unlike the input, the nodes are not
shifted ’forward’, as the input is most likely to be ’remembered’ from the
start.

Lastly, all the changes in distances are encoded using one-hot encoding.
This encoding associates each number into its own index,. Any non-whole
number is rounded. The ’number of features’ must be twice the size of the
maximum absolute value of a distance (in this case, one hundred meters) in
order to account for negative values, as the keras.utils.to_categorical

function does not create indices for negative values. Later, during decoding
half of the maximum possible value is added.

This process is used for up to a thousand nodes, in order to not exceed
hardware limits on memory. Likewise, the batch size has been set to the
maximum number of input paths. This is in order for whole paths to be
processed before the back propagation/gradient descent occurs (Keras Team,
no date). Otherwise, accuracy may be affected negatively if a whole sequence
is not trained on.

The training process uses the ADAM optimizer, as described by Kingma
and Ba (2014). This optimizer was picked due to the low memory require-
ments, and computational efficiency. This in turn would allow a greater
number of samples to be trained on due to the increased space in memory.

3.2 Neural Network

The ANN is implemented using the Keras library. This is as the Keras library
provides an easy to use implementation of the required GRU units, as well
as training capabilities etc.

The ANN (Figure 4) uses an Encoder-Decoder architecture, as per the

18

Figure 4: Diagram of the ANN for road generation.

NTG approach described by Chu et al. (2019). One of the key differences
include that there is no attribute vector for the name of the city being trained,
not allowing the training on multiple networks. Both the encoder and decoder
part of the network use five hundred units, as descibed by Chu et al. (2019),
as they achieved a high generation accuracy.

The one shot model architecture was picked for the model. This is where
the network is given a set of incoming paths that are then used to predict an
output. Other network Encoder-Decoder architectures were considered, such
as the recursive model, however Keras does not support the implementation
of such architectures (Brownlee, 2017).

Another design decision made was creating the one-hot encoding of the
data manually, instead of an Embedding layer due to initial concerns over
training performance. This topic is further discussed in the discussion sec-
tion.

The tanh activation function was used on the encoder and decoder. This
was as the values are more aggressively shifted to 1 or -1, unlike Sigmoid,
which does not shift values as aggressively. This is in addition to performance
benefits (Nwankpa et al., 2018).

3.3 Generating Roads

After training, a section of the source city graph is extracted. The number
of nodes extracted, as well as the starting node can be configured. This is
as due to the ANN used learns a ’language’, which requires existing inputs
to generate new ones. This map extract is generated using BFS, where the

19

initial node is located at (0, 0), and subsequent nodes positions are calculated
by their change in x, and y. The use of a Cartesian graph was done to
simplify the addition of new nodes, as otherwise the generated coordinates
would have to been changed to a geographic coordinate system. Such an
approach would’ve been more complicated to implement than the extraction
of the map.

A stack of nodes which have yet to be processed is generated, with each of
the nodes added to the stack. A training sequence is generated for each of the
nodes. The node at the start is popped off the stack, the input sequence to
the network is generated (albeit with a different distance function to account
for the map extract graph using Cartesian coordinates), and passed to the
network. The network then predicts the outgoing node(s).

As the network is made to return all generated time steps (via the return_sequences=True
option when defining the decoder), the last time step is used to base the pre-
diction. This was kept for diagnostic and debugging purposes.

The generated prediction is a set of up to six nodes. These nodes are
ordered in a two dimensional shape, where the first dimension is the number
of nodes multiplied by the number of dimensions (2D), and the second one
the number of features. These distances are decoded by reversing the one-hot
encoding (finding index with the largest value), then subtracting one hundred
(i.e. half of number of features/cardinality) to restore the encoded negative
values. These values are then converted into ∆x, ∆y pairs and returned.

These values are added to the map, given that all the generated positions
are not zero (as this is an indication that there are no new adjacent nodes).
Any nodes generated are added to the stack for later processing. This con-
tinues until either the stack runs out of nodes, or a limit (in this case five
hundred) is reached.

3.4 Plots

The implementation of plot generation only features plot extraction. This
is due to time constraints. Further developments on plot generation are
mentioned in the discussion section. Plots are represented as areas inside
roads. These areas can be represented as polygons. As the polygons contain
an arbitrary number of sides depending on the generation, a path finding
algorithm was used to find them.

The Dijkstra algorithm was chosen as it finds all possible paths, which
can later be cached for finding later paths. Though the utilized library

20

return_sequences=Truewhich this algorithm was used does not necessarily
guarantee this. The path finding algorithm is then applied on the undirected
graph to find the shortest cyclic paths.

The start point is set as one of the adjacent nodes, and the destination
point as the current node. Subsequently, the edge that connects the two
nodes is temporarily removed, to ensure that the next path found is not
directly back to the start node. The generated path is effectively the shortest
cyclic path. Then, this path is stored in a collection of paths given that the
path does not exist in another ordered permutation, which may be mirrored.
The check involves rotating the path, as well as mirroring the rotated path
to see if it already exists in the collection. This is computationally expensive
as if a node does not exist, the worse case scenario of O(n×n) is reached. As
the collection of polygons must be iterable, it was implemented as a list.
The visited adjacent node is then added, and will not be visited again. This
detection process is repeated for every node in the graph to ensure that every
polygon will be found.

3.5 Performance Evaluation

Performance was evaluated by implementing similar evaluation to Chu et
al. (2019), as it provided a comprehensive overview of the road generation
performance with both qualitative and quantitative techniques. For plot gen-
eration qualitative analysis was chosen, as due to the nature of plot data, it
cannot be necessarily retrieved as easily or potentially require a subscription
to access the API.

The performance metrics for road generation are included as follows:

• Road Density - Calculated using the networkx.classes.function.density()
function, which uses the following equation: density = 2m

n(n−1)
where n

is number of nodes, and m is number of edges.

• Junction Connectivity - Counting the number of adjacent nodes each
node in the graph has.

• Road Length - Measuring each of the edge’s lengths.

• Diversity - Number of overlapping nodes with in 10 meters of the
ground truth.

21

• Transport Convenience - Length of shortest path from all nodes to 25%
of all nodes, to reduce calculation time.

This deviates from Chu et al. (2019) NTG approach and the initial
proposal by:

• Changing road density calculations to use graph statistics instead of
road density in 100m, 200m, and 300m neighbourhoods as the gener-
ated sequences did not have enough roads.

• Changing transport convenience to be calculated by all nodes to ran-
dom nodes, as the generated map may not be 500m wide.

• Not using a neural network to gauge perceptual similarity, as this was
considered out of scope.

3.5.1 Visualisation

The NetworkX library provides visualisation capabilities. The Matplotlib

library is used by NetworkX as the back end to render the maps. This allows
easy rendering of nodes at specific positions with the connecting edges. How-
ever, for an unidentified reason the edges between nodes may not be rendered
correctly, despite existing in the graph.

3.6 Progress Bar

The ProgressBar2 library (van Hattem, 2020) was used to indicate progress
of various operations in order to provide an indication of the stage of the
program.

22

4 Results

(a) Dundee Central, UK bound-
ing box.

(b) New York, US bounding box.

Figure 5: Bounding boxes used to query roads from. Retrieved using Raci-
cot’s (2012) bboxfinder.

The evaluation was conducted on two unique areas:

• Dundee City Center, Dundee, UK around Dundee Central Mosque.

• New York, US around Times Square.

The two areas were picked as they had relatively unique styles. New York
contains a grid layout with a line running through it. Whereas, the Dundee
area is less ordered.

The roads from these areas were extracted, converted to a graph format,
and made into a training sequence. The networks were then trained on this
data. Two separate networks were created for each of the areas, and trained
up to thirty epochs, and saved every ten, resulting in three networks at ten,
twenty, and thirty epochs. These were then compared versus the ground
truth.

23

4.1 Generated Graphs

(a) Dundee network input. (b) New York network input.

Figure 6: The graphs used as input to to the generator to their respective
networks.

The starting node (and by extent the input graph) was selected as it was
around the beginning of the node collection, which guaranteed their inclusion
in the training set.

(a) Generated graphs for each of the
Dundee City Center network.

(b) Generated graphs for the New York
network.

Figure 7: Resulting output given the input in Figure 6 for the respective
networks at their saved 10, 20, and 30 epoch stages.

As Figure 7 shows, the networks did not generate anything given the

24

inputs. Additional starting maps were tried, with different starting input
graphs, however the output was the same.

4.2 Generated Graph Statistics

The qualitative analysis was still performed despite the lack of generation.
This means that all generated graphs will be identical, with the exception of
the ground truth.

(a) Dundee diversity metric. (b) New York diversity metric.

Figure 8: Diversity metric (percentage of nodes that overlap with the ground
truth map) for the generated maps and ground truth.

As the generated graph only contained the input graph, which is a subset
of the ground truth graph, all nodes present overlap therefore resulting in no
diversity.

25

(a) Dundee density. (b) New York density.

Figure 9: Graph density of the ground truth versus the generated graphs at
various epochs.

Each generated graph’s densities have a high disparity between the ground
truth, which remains identical through the various epochs. This is due to
the lack of generated nodes, and much lower amount of nodes and edges in
comparison to the ground truth.

(a) Dundee road length distribution. (b) New York road length distribution.

Figure 10: Road density distribution of the ground truth vs the generated
graphs at various epochs.

The distribution of road lengths was not captured by any generated net-
work. The present distribution is only a subset of the ground truth. They
remain identical throughout the epochs as no new nodes were generated. Due

26

to the lack of data, the box and whisker plot was not accurately conveyed.
Though edges in Dundee Central have a tendency to be mostly longer than
New York, however New York has more outliers and some very long distances.

(a) Dundee junction connectivity. (b) New York junction connectivity.

Figure 11: Junction connectivity distribution of the ground truth vs the
generated graphs at various epochs.

Similarly to Figure 10, there was too little data to generate an accurate
graph of the distribution. Though, most nodes have at least two junctions,
which indicates that most roads in New York are not junctions. Dundee
Central has a similar distribution, though some outliers may more junctions.

(a) Dundee transport convenience. (b) New York transport convenience.

Figure 12: Transport convenience distribution of the ground truth vs the
generated graphs at various epochs.

27

The transport convenience between the different epochs because no new
nodes were generated. The ground truths are slightly different from each
other, where generally the number of number of nodes travelled is lower in
Dundee, however the the results are more consistent across New York.

4.3 Generated Plots

Plot detection was performed on the same areas as Figure 2. This is to be
able to provide a direct comparison to real world plots.

(a) Bounding box around Cumin Place,
Edinburgh, UK.

(b) Bounding box around Marchmont
Road, Edinburgh, UK

Figure 13: Bounding boxes used for road retrieval in 14. Retrieved using
bboxfinder (Racicot, 2012).

28

(a) Around Cumin Place, Edinburgh,
UK.

(b) Around Marchmont Road, Edin-
burgh, UK

Figure 14: Plot detection road input graphs, as retrieved from OSM. Num-
bers shown are OSM node ID’s.

(a) Detected plots from around Cumin
Place, Edinburgh, UK.

(b) Detected plots from around March-
mont Road, Edinburgh, UK

Figure 15: Detected plots, as retrieved from OSM. Numbers shown are OSM
node ID’s.

For Cumin Place (Figure 15a) a total of ten polygons were found. For
Marchmont Road (Figure 15b) thirteen polygons were found. Two of the
retrieved polygons towards the bottom of the graph, from Figure 14a do not
contain the interior roads, as expected. All closed polygons were retrieved.
The triangular polygons towards the top of Figure 15b appear to be from the

29

paths in the park above. While a closed polygon, the independent polygon
at right of figure 15a was created by a road which had a path at the end.

4.3.1 Verification Of Shortest Path

Figure 16: Three by Three quad lattice graph.

To verify that the found polygons are actually of the shortest paths, and
do not contain loops that generate similar shapes, a test case of detecting
polygons on a graph of quads was performed. The input graph consists of a
lattice of quads.

The number of polygons found were nine, and all had four components.
This is the expected result. The results may be viewed in section 8.1.

30

5 Discussion

The neural networks were unable to capture the essence of the input graph.
This is evident throughout the results section, most notably on 7 where none
of the networks, at any training epoch generated nodes. This could be due
to a variety of reasons, which will be discussed in this section. Additionally,
the plot detection algorithm has found all possible closed polygons, which
was a success. This section will also discuss potential implementations of
plot subdivision and review how the current plot generation performs.

5.1 Training Sequence

The training data has fifty input paths paths per node, with each path con-
sisting of twenty nodes, and each node has two dimensions of two hundred
features, encoded as a float32. This resulted in a very large amount of train-
ing data, especially once one-hot encoded. Additionally, due to the padding
required to get the data consistently sized, a lot of the data was filled with
zeros.

Due to the amount of data the initial training sequence for the New York
network was over 12.2GB in size on disk. This is in contrast to the non
encoded training data (i.e. before padding certain parts of the sequence and
performing one-hot encoding), which was just 16MB on disk while including
the prediction data. This resulted in little real training data to be passed in
to the network to train on, and as it requires to learn the ’vocabulary’ of the
map, many sequences may be required.

This may be resolved by using an embedding layer instead of manually
one-hot encoding, as it would reduce the number of space taken up by the
training sequence substantially. Another solution would be to encode the
data just before training, however an embedding layer provides near identical
functionality, while requiring less code. While training may take longer as
all of the encoding would take place before being passed into the encoder,
the ability to train on more samples before exceeding memory capacity limits
may prove more beneficial as the ANN could capture the input graph more
accurately. Additionally, this would allow increasing the number of previous
nodes and paths to numbers specified by Chu et al. (2019) - potentially
improving generation performance to their levels.

The currently described approach may be more beneficial on machines
with large amounts of memory (as the training sequence must fit in memory

31

for training to be performed) by speeding up the network training. This
would also allow more experimentation with adapting the network structure
to achieve better generation performance.

Another method which may aid in improving the network’s capabilities
is by shuffling the sequences, so the possibility of the network over fitting
on a certain node and path set is reduced. A potential pitfall of the current
training strategy is that the network learned to expect twenty sets of fifty
paths per node. This could be mitigated by shuffling the sets of nodes in a
random order to prevent this from happening.

Due to the way the training data was stored, the ability to accurately
gauge loss and accuracy was negatively affected. The training process re-
quired iterating through the training data in sets of twenty nodes, and fur-
ther iterated by the number of epochs. The issues regarding the unnecessary
iteration can be solved by resizing the data, however due to the method of
one-hot encoding, memory limitations were met when trying to reshape the
data. This could be resolved by changing to an embedding layer.

5.2 Network Structure

The network structure picked may be another culprit of why the ANN was
unable to capture the structure of the input graph. Brownlee (2017) suggests
trying a different structure for language model. Especially as they may help
reduce the dependence on the encoder to capture the state of the graph
(Brownlee, 2017). Though, if the suggested approach of feeding the input
back into the network is to be taken, additional consideration would have
to be given onto how the data should be summarised during the training
sequence. Moreover, the two described approaches would require specific
knowledge of TensorFlow to create a suitable network. This is in contrast to
the current ’one shot’ approach described by Brownlee (2017) which is easy
to implement. Overall, consideration may be given to this if changes to the
training data would not suffice.

5.3 Activation Functions

The current activation function is Tanh. According to Nwankpa et al. (2018),
Tanh suffers from vanishing gradient descent, which may prevent it reaching
the local minima. Moreover, the function’s maximum value of 1 is only

32

achieved when the input is zero. This would mean that not every GRU unit
is being used. Such limitations can be rectified by using ReLu.

ReLu is a development on the Tanh function, though RNNs are not listed
as a common use, it is used for similar applications such as speech recogni-
tion (Nwankpa et al., 2018). Additionally, the ReLU activation function
offers better performance, which may offset some of the performance impact
of switching to an embedding layer. Nevertheless, ReLU is prone to over
fitting and gradient descent issues (Nwankpa et al., 2018). Though, further
investigation into this topic would have to be performed before reaching a
definite conclusion.

5.4 More Diverse Data Sets

The input graphs were based on areas in the UK and US. More diverse data
sets may be tried from different parts of the world. This would give a more
accurate gauge of performance across different cities, but also provide more
options for the intended end users, whom may want to set their game in a
city within another place in the world.

5.5 Plot Detection

The plot detection algorithm found all expected polygons, while ensuring
that they are the shortest (see Figure 16). This forms a good basis for later
subdividing the plots into usable areas, and meets the objective of generating
plots using PG. Some additional work may be beneficial for achieving better
plots. Improvements such as detecting dead ends as to know where not to
place plots, or to subdivide the larger polygon where a dead end is detected,
if plots are to be generated in a similar fashion to Figure 2.

An area that it falls behind in is when detecting areas in between roads,
such as towards the right in figure 15b. These plots may not be suitable
for buildings, and should be marked as such. This issue however, should
be tackled by the plot subdivision algorithm when determining which plots
are marked as such, or even to expand the subdivision approach to identify
areas.

The detection algorithm could be improved by reducing the number of
nodes which are required to visit. The current algorithm has a potential worse
case performance of O(n − 1) (where n is number of nodes), as every node
has to be visited, excluding itself. This could be reduced by only performing

33

the polygon detection on points which have more than two edges, as nodes
with only two edges can be considered a straight path. The time impact
would be lessened, as the current plot detection algorithm is computationally
expensive.

The data structure for the currently stored polygons could use optimisa-
tion. It currently uses the list collection, which requires iteration through
every element to see if it exists (resulting in worse case O(n) performance).
This could be solved by using a dict which instead uses a hash function,
that gives near linear (O(1)) performance during look ups.

In conclusion, the plot detection algorithm achieves its goal of finding the
cyclic shortest paths also called polygons. The implementation would benefit
from some optimisations to speed it up and some future improvements to
benefit plot subdivision.

5.6 Plot Subdivision

Plot subdivision was not implemented due to time constraints. However,
Keir’s (2020) City Map Generator approach to generating plots would be
used. This would build upon the current plot generation code to make new
polygons.

Unlike the City Map Generator, the plot subdivision would be carried out
differently, to bring it closer to how real world plots are designed in the UK
(see Figure 16). This would be done by splitting the polygon at its shortest
side, then evenly subdividing the following polygons. A different approach
would have to be carried out on non simple polygons, such as ones found in
figure 15b, where polygons which are rounded on their edge(s) would result
in uneven plots, which is unlike the real world example found in figure ??
which appears to use a radial pattern. In these cases, a radial subdivision
pattern may be used.

As this part of the solution is procedurally generated, more user control
is required than over the network. The subdivision process would benefit
from configurable parameters that would allow the user to generate their
desired plot. Some configuration in terms of maximum and minimum plot
size, where the plots shouldn’t be generated would allow the user to get the
desired effect.

Given that this subdivision process was implemented, while able to gener-
ate plots that would be seen in places such as the UK, it would need further
work for different places with less robust building regulations. This is as

34

in other places of the world, buildings can be built outside of plots or even
less robustly so. Moreover, as mentioned earlier some plots would have to
be discounted for generation of buildings. This could be informed by the
implementation of the user’s parameters.

The plot identification could take place by creating a classification ANN,
which would determine whether a plot is the correct size and shape to have a
building on it. This could be approached by using OSM and classifying areas
with street addresses as such. Though, this approach would not be universal
as not all of the world’s addresses are indexed nor consistent(OpenStreetMap
Wiki Contributors, n.d.). This could be resolved by allowing the user to
manually designate areas as ones they wish for plots to be generated on.

5.7 Evaluation Methods

The implemented evaluation methods attempt to capture the present data
in a graph qualitatively. Overall, the road generation statistics provide an
accurate picture of the key information for a graph. While usable statistics
were only retrieved from the ground truth across most figures, there was
enough difference to discern between Dundee and New York, for example
through road length, junction connectivity, and transport convenience.

The plot evaluation was largely qualitative, which while not a problem
on its own, could have used some measurements of the generated plot’s area,
aspect ratio, and number. While this data could not be as easily compared
to the ground truth due to the plot data not being as freely available on-
line, it would have provided an insight to the user on their plot generation
configuration.

In general, more testing would be welcome, especially if the road gener-
ation aspect is more resolved to be able to compare the output to the NTG
approach. While some modification to the graph density calculations would
have to take place to ensure that it is directly comparable to the finding listed
by Chu et al. (2019), generally the current ones represent a comprehensive
picture of the generated graphs.

5.8 Project Effectiveness

This prototype, while unable to generate roads has provided a basis on which
a fully featured working model can be built upon. This is important, as there
are no implementations of NTG available online. Suggestions have been

35

provided on how to improve the model for future users. The implemented
plot detection capabilities build upon existing procedural work by adding a
unique way of finding plots in real world scenarios, that could prove useful
for other researchers. Evaluation methods have been devised for both, which
is helpful in visualising and describing the generated items.

36

6 Conclusion

This project provided a basis for approaching similar problems related to
city layout generation in the future by simplifying future research into using
techniques like Neural Turtle Graphics, as of the date of writing, no source
code is publicly available. While the network was unsuccessful in capturing
road networks’ structure, a number of suggestions to improve the generation
have been provided. This includes: replacing the one-hot encoding with a
embedding layer to save memory, changing training data order to ensure
that the network is not overfitting, and changing the activation function to
improve performance and accuracy.

The plot generation was partly implemented due to time constraints.
The implemented plot detection algorithm is better than other approach
described as it works on multi-sided polygons. A solution and an approach
were proposed to implementing plot subdivision, which involved building
upon the work of Keir (2020), involving adding more complex polygon slicing
logic to achieve results closer to real world plots. Furthermore, more research
and evaluation would have to be performed into ensuring that the suggested
approach works across different cities, as the current tests were performed
on only two cities across two countries.

In relation to the research question, the effectiveness of the approach is
mixed. The road generator requires more research and modification, and
further investigation into methods of subdividing plots may be necessary.
Consequently, the hypothesis has been disproven as the network did not
generate roads, and more work is required to implement realistic plots.

37

7 References

Brownlee, J. (2017) How to develop a Seq2Seq model for neural machine
translation in keras, Machinelearningmastery.com. Available at: https:

//machinelearningmastery.com/define-encoder-decoder-sequence-s

equence-model-neural-machine-translation-keras/.

Cho, K. et al. (2014) ‘Learning phrase representations using RNN encoder-
decoder for statistical machine translation’, arXiv [cs.CL]. Available at: ht

tp://arxiv.org/abs/1406.1078.

Chu, H. et al. (2019) ‘Neural Turtle Graphics for modeling city road
layouts’, arXiv [cs.CV]. Available at: http://arxiv.org/abs/1910.02055.

Curran, K., Crumlish, J. and Fisher, G. (2012) ‘OpenStreetMap’, Inter-
national journal of interactive communication systems and technologies, 2(1),
pp. 69–78.

Dey, R. and Salem, F. M. (2017) ‘Gate-variants of Gated Recurrent Unit
(GRU) neural networks’, arXiv [cs.NE]. Available at: http://arxiv.org/

abs/1701.05923.

Dijkstra, E. W. (1959) ‘A note on two problems in connexion with graphs’,
Numerische mathematik, 1(1), pp. 269–271.

Hagberg, A. A., Schult, D. A. and Swart, P. J. (2008) ‘Exploring net-
work structure, dynamics, and function using NetworkX”’, in Vaught, T.
and Millman, J. (eds). Pasadena, CA USA, pp. 11–15,.

Hart, P., Nilsson, N. and Raphael, B. (1968) ‘A formal basis for the
heuristic determination of minimum cost paths’, IEEE transactions on sys-
tems science and cybernetics, 4(2), pp. 100–107.

van Hattem, R. (2020) ProgressBar2, Pypi.org. Available at: https:

//pypi.org/project/progressbar2/.

Keir (2020) City Map Generator. Available at: https://github.com

/ProbableTrain/MapGenerator https://maps.probabletrain.com

https://probabletrain.itch.io/city-generator.

38

https://machinelearningmastery.com/define-encoder-decoder-sequence-sequence-model-neural-machine-translation-keras/
https://machinelearningmastery.com/define-encoder-decoder-sequence-sequence-model-neural-machine-translation-keras/
https://machinelearningmastery.com/define-encoder-decoder-sequence-sequence-model-neural-machine-translation-keras/
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1910.02055
http://arxiv.org/abs/1701.05923
http://arxiv.org/abs/1701.05923
https://pypi.org/project/progressbar2/
https://pypi.org/project/progressbar2/
https://github.com/ProbableTrain/MapGenerator
https://github.com/ProbableTrain/MapGenerator
https://maps.probabletrain.com
https://probabletrain.itch.io/city-generator

Keras Team (no date) Model training APIs, Keras.io. Available at: http
s://keras.io/api/models/model training apis/.

Kingma, D. P. and Ba, J. (2014) ‘Adam: A method for stochastic opti-
mization’, arXiv [cs.LG]. Available at: http://arxiv.org/abs/1412.6980

.

Nwankpa, C. et al. (2018) ‘Activation functions: Comparison of trends in
practice and research for deep learning’, arXiv [cs.LG]. Availableat:http:
//arxiv.org/abs/1811.03378.

OpenStreetMap Wiki Contributors (no date) Addresses, Openstreetmap.org.
Available at: https://wiki.openstreetmap.org/wiki/Addresses.

OrdnanceSurvey (no date) ‘Edinburgh Planning Permission Applications
(Map View)’. Houses: Grid Ref NT 25908 71937, Tenaments: Grid Ref NT
25469 72234. Scale: N/A. Available at: https://citydev-portal.edinb

urgh.gov.uk/idoxpa-web/spatialDisplay.do?action=display&searchT

ype=Application.

Parish, Y. I. H. and Müller, P. (2001) ‘Procedural modeling of cities’,
in Proceedings of the 28th annual conference on Computer graphics and
interactive techniques - SIGGRAPH ’01. New York, New York, USA: ACM
Press.

Racicot, A. (2012) bbox finder, Bboxfinder.com. Available at: http:

//bboxfinder.com/.

You, J. et al. (2018) ‘GraphRNN: Generating realistic graphs with deep
auto-regressive models’, arXiv [cs.LG]. Available at: http://arxiv.org/ab

s/1802.08773.

39

https://keras.io/api/models/model_training_apis/
https://keras.io/api/models/model_training_apis/
http://arxiv.org/abs/1412.6980
Available at: http://arxiv.org/abs/1811.03378
Available at: http://arxiv.org/abs/1811.03378
https://wiki.openstreetmap.org/wiki/Addresses
https://citydev-portal.edinburgh.gov.uk/idoxpa-web/spatialDisplay.do?action=display&searchType=Application
https://citydev-portal.edinburgh.gov.uk/idoxpa-web/spatialDisplay.do?action=display&searchType=Application
https://citydev-portal.edinburgh.gov.uk/idoxpa-web/spatialDisplay.do?action=display&searchType=Application
http://bboxfinder.com/
http://bboxfinder.com/
http://arxiv.org/abs/1802.08773
http://arxiv.org/abs/1802.08773

8 Appendices

8.1 A: Quad Graph Polygons

The following output was generated after finding polygons. Note that each
of the polygons only contain four nodes.

[[(0, 0), (0, 1), (1, 1), (1, 0)],

[(0, 1), (0, 2), (1, 2), (1, 1)],

[(0, 2), (0, 3), (1, 3), (1, 2)],

[(1, 0), (1, 1), (2, 1), (2, 0)],

[(1, 1), (1, 2), (2, 2), (2, 1)],

[(1, 2), (1, 3), (2, 3), (2, 2)],

[(2, 0), (2, 1), (3, 1), (3, 0)],

[(2, 1), (2, 2), (3, 2), (3, 1)],

[(2, 2), (2, 3), (3, 3), (3, 2)]]

40

8.2 B: Bounding Box Coordinates Used

Formatted as EPSG:4326, in Latitude/Longitude coordinate format.

• Around Times Square, New York, US: 40.752247,-73.990324,40.759269,-
73.982642

• Dundee City Center around Central Mosque, UK: 56.459124,-2.985106,56.464221,-
2.977424

• Around Cumin Place, Edinburgh, UK: 55.932760,-3.188041,55.936739,-
3.179866

• Around Marchmont Road, Edinburgh, UK: 55.936132,-3.198298,55.939653,-
3.192515

41

8.3 C: Python Packages Used

• OSMPythonTools

• networkx

• Tensorflow

• keras

• numpy

• ProgressBar

42

	Introduction
	Aim
	Objectives
	Research Question
	Hypothesis
	Overview

	Literature Review
	Generating Roads
	Using Procedural Generation
	Using Artificial Neural Networks

	Generating Plots
	Polygon Detection
	Polygon Subdivision and Scaling

	Methodology
	Preparing Training Data
	Neural Network
	Generating Roads
	Plots
	Performance Evaluation
	Visualisation

	Progress Bar

	Results
	Generated Graphs
	Generated Graph Statistics
	Generated Plots
	Verification Of Shortest Path

	Discussion
	Training Sequence
	Network Structure
	Activation Functions
	More Diverse Data Sets
	Plot Detection
	Plot Subdivision
	Evaluation Methods
	Project Effectiveness

	Conclusion
	References
	Appendices
	A: Quad Graph Polygons
	B: Bounding Box Coordinates Used
	C: Python Packages Used

