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Chapter 1

Why formal specifications matter
(biographical note)

To briefly describe what (formal) specification is, I will stand on Leslie Lamport’s defini-
tion [4]:

“A specification does not describe the correct behavior of a system, rather it describes
a universe in which the system and its environment are behaving correctly.”

To see this, let us consider the Earth (E) orbiting around the Sun (S) and assume that we
need to predict the position of the Earth (with respect to the Sun) at given time t. All
we have is: Newton’s second law, Newton’s law of universal gravitation, and some basic
knowledge about differential equations.

Our first level of abstraction consists in identifying each celestial bodies with its center of
mass. We make the customary (yet redundant) assumption that the Earth’s orbit lies in
the complex plane (with the Sun at the origin), so that the Earth’s position is a complex
number. The smooth function p : R → C, t 7→ p(t) now maps time t to p(t) the position
of the Earth at time t. First order derivative ṗ = dp/dt is then the Earth’s velocity, as
second order derivative p̈ = d2p/dt2 is the Earth acceleration. Finally, we assume without
loss of generality that our current time is t = 0, so that p(0) = R > 0 is our initial position.

Combined with Newton’s law of universal gravitation (which provides the gravitational
constant G > 0), Newton’s second law leads to

p̈+GMS
p
|p|3 = 0;(1.1)

where MS is the Sun’s mass. Let’s be humble: The problem is crazy hard. Additionally,
it is ill-founded, since we have no assumption about velocity ṗ(0). We may discard the
trivial case “p(0) and ṗ(0) are aligned” (for instance, if the Earth falls into the Sun), but
this is of no help: We are not living in such case. Hopefully, we empirically know that
|p(t)| does not vary much, hence the reasonable assumption |p| = R. Our abstraction now
turns out to be

p̈+ Cp = 0,(1.2)
as C = GMS/R3. So,

p(t) = Re±i
√
Ct (t ∈ R).(1.3)

1



2CHAPTER 1. WHY FORMAL SPECIFICATIONS MATTER (BIOGRAPHICAL NOTE)

In other words, The Earth has a circular orbit of radius R, the Earth velocity remains
constant in magnitude and the whole run has period T = 2π/

√
C ≈ 374 days - a 2, 5%

error, then. If this is sufficiently precise, then we reach a [class of] universe[s] in which the
Earth and its environment (time and Sun) behave correctly:
(a ) A universe Uc, in which the Earth orbits clockwise;

(b ) A universe Ucc, in which the Earth orbits counterclockwise;

(c ) Two other universes U−c,U−cc, in which times goes backward.
Remark that our model does not decide the universe we are living in. Any given ṗ(0)
would divide our options by two, but our scope statement aimed at generality… It is true
that our solutions for p(t) are easy to grasp and look accurate, but only under the rule of
thumb p(t) ≃ R, and as long as a 2, 5% error is an acceptable number. The point is: Even
when we consider two simple objects (our points, equipped with mass attributes) ruled
by two elegant invariants (principles), complexity rises to surface as we start looking at
how those two components interact each other. Furthermore, choosing the right level of
abstraction makes models false - but this is fine as long as we know why.

I started to get interested in formal methods since I believed that a mathematical way of
thinking could help in software development: Not only to find aggresive optimizations but
also to deal with problem boundaries. Clémenceau said that “war is too important a matter
to be left to the military”. I think he was right. Sofware design should not be left to “coders”.

There is a psychological factor: “Coders” may not like formal methods when they believe
they are sufficiently smart to not waste time with them. It is sad to observe how smart
people can believe that Laplacian worlds [8] are effective. In my humble opinion, being
smart is asymptotically of no help: As time goes, any system complexity stops plateauing
and there is always a moment at which no one one on Earth can have a perfect recall of
all the system behaviors. In short,

Being smarter only means that you will fail later.

Note how glossary does matters:
- A coder is someone who encodes, i.e. who turns plain into cipher;

- A developer is someone who develops, i.e. who expands something that already
exists;

- On the other hand, a programmer is someone who programs, i.e. someone who
creates, designs, expects and proves.

To be honest, my point of view is biased. I have studied math and that has probably shaped
my mind for ever. Unless I started to study math due to a prior taste for abstraction.
Anyway, I firmly believe that 90% of bad code is the consequence of bad management
or commercial pressure, but I also believe that sometimes the right mindset is not here.
One possible source of trouble is that human beings tend to identify object definition with
object function. For instance: A shoe, a door, a road, a bridge, … Unfortunately for them,

- Such description is not the object itself, only a “high-level” representation. As an
example, it is easy to picture what a bridge is, but bridges may nest very complex
feats of civil engineering.
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- In contrast, how the very components interact each other is often underestimated:
Behaviors that are not part of the system description remain in the dark. To see
that, let us play billiard with Laplace [8]: Putting the balls in the rack is simple,
being good at the game is hard.

One may object that billiard balls behavior is not discrete. This is a fair objection, so
let us take a card deck, which is a simple object: It is hard to be good at pocker. Note
that I am not putting anything new: Cybertenics people already distinguished functional
complexity from structural complexity.

Another objection (which is actually a variant of the previous “smart-enough” one) may
be stated as ‘Let’s stick to the dev: We have software crafmanship”. Craftmanship is
an intrinsically positive value: More craftmanship is better than less craftmanship. But
if craftmanship means a combination of pragmatism and expertise that opposes concep-
tual thinking, then such “crafmanship” is irrelevant here: It would be like entering a civil
engineering design studio and claim “People, drop the finite elements [7], we have craf-
manship!”. For the record, before finite elements came along, bridges used to collapse for
ages. You may think I am trying some reductio ad absurdum so let us consider the famous
Florence Dome: It was built (not to mention the design) from methods that 3000 years
of craftmanship could not unveil. Closer to us, the first Xbox: By writing its memory
coherence protocol in a specification language (TLA+; see next paragraph), a Microsoft
team (Chuck Thacker and an intern) found a subtle but obnoxious bug [3] just before
the Christmas launch. IBM the manufacturer acknowledged that none of their regression
tests could unveil the bug.

I have already seen bad implementation and some of them were mine. As I keep writing
programs, the longer time goes, the slower I am. Steps by steps, I am starting to think
hard before I write any piece of code. The process is not achieved. I am writing
MarkdownToLaTeX fueled with the ideas from Leslie Lamport’s Specifying Sytems [5].
Actually, MarkdownToLaTeX began as a toy project in which I could implement TLA
(Temporal Logic of Actions), the logic that Specifying Systems is about. The Markdown-
ToLaTeX parsing implements a state machine whose steps are decided by (1) the last
input character, and (2) a bounded memory that stores the necessary context. The state
machine was first written in the specification language TLA+ (as TLA is the logic under-
lying TLA+) then tested within the TLA Toolbox [1]. The whole sourcecode was written
in Python.

By the way, does MarkdownToLaTeX work? The PDF you are reading now has been
made with MarkdownToLaTeX, its source code embeds some Markdown. So, to some
extent: Yes.



Chapter 2

Fundamental objects

2.1 Introduction
In this chapter and the two following ones, we introduce the basic necessary mathematical
concepts, and bind them to programming or Python features.

We expect the reader to be familiar (through intuition or formal training) with the ”basic
usual math”, formally the math that is founded by ZFC set theory. ZFC embedds all usual
material: sets, ordered pairs, union, intersection, tuples, functions, natural numbers, and
so on.

The whole content from chapters 1, 2, 3 may be read as a reminder, not a crash course.

There is absolutely no original work here, even if explicitely connecting associativity of
Cartesian product with concatenation was my personal touch. Here are two references for
further reading: [6][2]

2.2 Logical symbols
2.2.1 Equalities
≜ is a specialization of = We say that x ≜ y if and only if (from now on denoted by iff )
x and y are assumed to be equal. Usually x ≜ y means that x is assigned the previously
known value y (some authors write it x := y) but this is not a limitation. Definitions can
be redundant and may overlap. The only restriction is that x ≜ y is inconsistent whether
x ̸= y.

2.2.2 Logical connectors
TODO

2.3 Sets
2.3.1 ZFC
In set theory, the primitive (fundamental) notion is the notion of set. Sets and operations
over sets are meant to capture what we usually mean by “set” or“collection”, or “x belongs
to X”, e.g. “Bart is a member of the family, among Homer, Liza, Maggie, and Marge”,

4



2.4. NUMBERS 5

hence the naming “set”. So, in ZFC set theory, everything (almost) is a set. Of course we
tend to ignore it when we deal with “high-level” objects, such as real numbers.

2.3.2 Empty set
The empty set ∅ is the set that has no element. Following the context, it may be denoted
by 0, False, ( ) the empty list, [ ] the empty matrix, ε the empty word.

2.4 Numbers
In ZFC, the axiom of infinity more or less implicitely asserts the existence of the natural
numbers. Actually, it seems to be really hard to do anything without prior intuition of
plurality and space. Bear in mind that what you are reading now is a collection of symbols
and that you are reading them from left to right…. But, formally, in ZFC, natural numbers
are defined from the empty set ∅, as follows

0 ≜ ∅(2.1)
1 ≜ {0} = {∅}(2.2)
2 ≜ {0, 1} = {∅, {∅}}(2.3)
...

n+ 1 ≜ {0, . . . , n}(2.4)

Note that 0 ⊆ 1 ⊆ 2 ⊆ · · · , what we usually write 0 ≤ 1 ≤ 2 ≤ · · · . The strict version of
≤ is <, i.e. x < y is x ≤ y with the extra information that x ̸= y. The binary relations
(see Cartesian product) ≥ and > are nothing but ≤, < read from right to left. The set of
all natural numbers is denoted by N. Addition + over N is extended as follows,

n+ 0 ≜ n(2.5)
n+ (k+ 1) ≜ (n+ k) + 1 (n ∈ N, k ∈ N).(2.6)

N can be embedded in Z = {. . . , -2, -1, 0, 1, 2, . . . }, the set of all integers. Z is equipped
with a (commutative) generalized addition + that can be reversed through substraction −
(in the sense that n− n = n+ (−n) = 0). Multiplication × and Euclidian division derive
from Z’s algebra. The whole construction is a long chain of formal computations (we do
not digg into details) whose output is the arithmetic. The set of all nonnegative integers
{0, 1, 2, . . . } is (identified with) N, so that

N ≜ {0, 1, 2, . . . }(2.7)
Z+ ≜ {1, 2, . . . } ≜ N+(2.8)

(2.9)

Rational numbers are defined once Z is constructed, still by arithmetic means. The real
line R is constructed from the rational numbers.

2.5 Cartesian product
Given a set X and a set Y, the Cartesian product X×Y is primarily defined as the set of
all ordered pair(s) (x, y) (x ∈ x, y ∈ Y). Definition: Given X× Y, R is binary relation iff
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R ⊆ X×Y. Inspired by the Python syntax, we set

x, ≜ ∅, x, ≜ {{∅}, {∅, x}}(2.10)
x, y, ≜ (x, y) ≜ {{x}, {x, y}}(2.11)

x, y, z, ≜ ((x, y), z) (provided z ∈ Z)(2.12)

and so on. Such original definition of (x, y) is really formal but, on the other hand, does
not follow from the concept of mapping. It then avoids circular reasoning and ensures that
(x, y) = (x′, y′) iff x′ = x ∧ y = y′. Remark that x, is the ordered pair (0, x).

2.6 Functions and mappings
2.6.1 First definitions
Given a set X and a set Y, a function f is as a binary relation G ⊆ X×Y that satisfies:

((x, y) ∈ G ∧ (x, z) ∈ G) ⇒ y = z.(2.13)

So, each function implicitely conveys such graph G ⊆ X×Y, what we denote by f : X → Y.
Note that the degenerate case f = ∅ may occur. For instance X = ∅ forces G = ∅.
On the other hand, any pair (x, y) of G can be seen as a correspondence “from x to y” and is
then written x 7→ y. Such y may be written f(x) or yx. It commonly referred as “the image
of x by f”. Bear in mind that yx = f(x) is necessarily unique, since the above definition
says that (x 7→ y ∧ x 7→ z) ⇒ y = z. We say that f maps x to f(x) or, alternatively, that f
returns f(x) from x. So, f(x) ranges over an image set f(X), as x ranges over the domain
dom(f) = {x ∈ X : x is an actual input}. Formally,

dom(f) ≜ πX(G) = {x ∈ X : f(x) exists}(2.14)
f(X) ≜ πY(G) = {y ∈ Y : y = f(x) for some x};(2.15)

where πX : X×Y → X, (x, y) 7→ x and πY : X×Y → Y, (x, y) 7→ y.
We say that f is a mapping iff dom(f) = X. The set of all mapping(s) f : X → Y is denoted
by YX.

2.6.2 Inverse image
We say that y of Y has an inverse image x iff y = f(x).

2.6.3 Ontoness
f is said to be onto iff f(X) = Y. In other words, each y of Y has an inverse image x.

2.6.4 Injectivity
f is said to be one-to-one (injective) iff each y of Y that has at most one inverse image x.
In other words, each arrow x 7→ yx is reversed to yx 7→ xy; which defines f -1 : f(X) →
X, y 7→ x the the inverse (mapping) of f.
Remark that f -1 is a bijective) (see below) and that (f -1) -1 = f.
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2.6.5 Bijectivity
f is said bijective (or, alternatively, a bijection) iff each y of Y has a unique inverse image
x.
In other word, f is bijective iff f is both onto and one-to-one.

Remark that ∅ is bijective, since it is vacuously true that S = ∅ satifies every statemenent
(x, y) ∈ S ⇒ conclusion. To see that, assume, to reach a contradiction, that the state-
ment is false as S = ∅, i.e. that there exists (x, y) ∈ S = ∅ such that conclusion fails. We
have then reached a desired contradiction, namely, that (x, y) ∈ S = ∅. So ends the proof.
Furthermore, each set X conveys a bijection X → X, x 7→ x; which is called the identity
mapping (of X).

2.7 Composition and identification
2.7.1 Composition
Given f : X → Y and g : Y → Z, we set

g ◦ f(x) ≜ g(f(x))(2.16)

where f(x) exists and is in dom(f). This defines a function g ◦ f : X → Z, x 7→ g(f(x)) that
is called the composition of f and g. Briefely, x 7→ y 7→ z = g(y) = g(f(x)). Note that g ◦ f
is a mapping iff f is so and f(X) ⊂ dom(g)
// TODO: Add remaks about systems and composing and OOP drawbacks

2.7.2 Composition of bijections
Given bijections f : X → Y, x 7→ y and g : Y → Z, y 7→ z, the compositions g◦ f and f -1 ◦g -1
are bijective as well. To sum it up, the chain

· · · 7→ x f7→ y g7→ z g -17→ y f -17→ x 7→ · · ·(2.17)

does not break.

2.7.3 Identification
When there exists a bijection b : X → Y, we may let us identify X with Y, and let X ≡ Y
denote such identification. The variant X ≡b Y makes the bijection b explicit. Note that
X ≡ X, and that X ≡ Y combined with Y ≡ Z implies X ≡ Z.

2.7.4 Identification and Cartesian product
X ≡ A, Y ≡ B, then X×Y ≡ A× B. The converse does not always hold!

2.8 Sequences
Finite sets

A set I if finite iff I ≡ {0, . . . , n − 1} ⊆ N for some n ∈ N. Remark that the case n = 0
is the degenerate case I = {0, . . . , -1} = ∅. Given a (finite) set I ≡ {0, . . . , n − 1}, n is
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univoquely valued, i.e.

I ≡b {0, . . . , n− 1} ≡b′ {0, . . . , n′ − 1} ⇒ n = n′.(2.18)

n is then an inner property of I that is called the cardinal of I and is denoted by card(I).
Remark that card({0, . . . , n− 1}) = card(n) = n, since n = {0, . . . , n− 1}.

Infinite sets

A set is infinite iff it is not finite.

2.8.1 Countable sets
Countably infinite sets

A set I is countably infinite iff I ≡ N.

Countable sets

A set is countable iff either I is countably infinite or finite. For instance, sets N,Z, Q (the
rational numbers) are countable.

Countable union of countable sets

Given finitely countably countable sets, the union of those sets is a countable set as well.

Uncountable sets

A set is uncountable iff it is not countable. For instance, the real line R is not countable.
Since R countains the countable set Q, there are uncountably many irrational (i.e. not
rational) numbers. For instance,

√
2 is irrational.

2.8.2 Sequences: Definition
We say that a mapping x : I → X is a sequence (over I, in X) iff I is countable.
If I = ∅, then x is the empty sequence [ ] = ∅.
More generally, if I = {0, . . . , n− 1}, then x can then be seen as the list

(0, x0), . . . , (n− 1, xn−1),(2.19)

which justifies the more compact matrix notation [x0 · · · xn−1], or x0, . . . , xn−1 when no
value xi gets repeated.
The integer n = car(I) is also known as the length of the sequence.
More generally, if {0, . . . , n − 1} ≡b I, then [xi · · · xj] denotes x as well; understood that
xi = xb(0), . . . , xj = xb(n−1)

If I is a set of integers i = b(0), i′ = b(1), . . . such that i < i′ < · · · , then the two “versions”
of [xi xi′ · · · ] (one is i 7→ xi, i′ 7→ xi′ , . . . , the other one is 0 7→ xi, 1 7→ xi′ , . . . ), are
identified each other. For instance, every sequence 1 7→ x1, . . . , n 7→ xn shall be denoted by
[x1 · · · xn] and identified with the sequence 0 7→ x1, . . . , n− 1 7→ xn. Finite sequences are
precisely the sequences over finite sets. Unsuprinsingly, sequences over countably infinite
sets are… infinite. We will now see that finite sequences may be seen as a special case of
infinite sequences.



2.9. DATA, INTEGERS AND FINITE SEQUENCES 9

2.8.3 Finite sequences: A Pythonic point of view
In Python, list and tuple are two standard implementations of finite sequences over
{0, . . . n − 1}. Given a finite sequence x of positive length n, x[k] means the value xk
(0 ≤ k < n). Moreover, calling x[-1], …, x[-n] returns x[n-1], …, x[0]. To justify this
syntax, pick a sequence x : {0, . . . , n− 1} → X, then set

x -1 ≜ xn−1,(2.20)
x -2 ≜ xn−2,(2.21)

...

so that [x0 · · · xn−1] is (identified with) any sequence

[x1 x2 · · · x0],(2.22)
[x0 x1 · · · xn−1],(2.23)
[x -1 x0 · · · xn−2],(2.24)
[x -2 x -1 · · · xn−3],(2.25)

. .
.

[x -n x -n+1 · · · x1],(2.26)

. .
.
.

2.9 Data, integers and finite sequences
2.9.1 Special case: Integers and rational numbers
The Euclidian division (say modulo N ≥ 2) furnishes a way to encode integers as finite
sequences of data. For instance, where N = 2, 1 = 20 may identified with [1 0 · · · ], 2 = 21

with [0 1 · · · ], 3 = 20+21 with [1 1 0 · · · ], and so on. Any of those sequences is now seen
as a memory that stores the numerical value of an integer. We let the reader do the same
with the usual decimal numbering (N = 10). Note that appending a value that keeps
track of the sign extends such encoding process to signed integers, then to all rational
numbers. This is actually what we do when we write - 1/3 = - 0, 33 . . . : (1) Only six
symbols are sufficient to encode the rational number -1/3 as a sequence, (2) those symbols
are taken from a finite set of symbols, and (3) there is always a way to get them in a
finite amount of time (computation). In contrast, numerical values of irrational numbers
cannot be encoded within a finite amount of memory. Forunately, (countably) infinitely
many irrationals support finite definitions. For example, sqrt(2) is the only positive real
number such that sqrt(2) ∗ sqrt(2) == 2,

2.9.2 Memory as sequence of data
More generally, finite sequences provide an abstraction for what a memory is. A memory
is (identified with) a finite sequence [x0 · · · xn−1]; where x0 is the first chunk of data, x1
the second one (if n > 1), and so on. At a lower level, every chunk of data is encoded as
a finite sequence of symbols, e.g. 0, 1, …, 9, A, B, …, Z. Those symbols S exist in finite
amount, so that a convention that encodes every S as an integer can be set. Computer
theory assumes that such memory is potentially infinite, i.e. not bounded, in the sense
that a memory x has positive length n and that n can always be increased on demand.



Chapter 3

Cartesian product (extended
version)

3.1 Definition

Consider set(s) X, whose union is C: Choose a mapping I → S, i 7→ Xi then define its
Cartesian product as follows, ∏

i∈I
Xi ≜ {f ∈ SI : f(i) ∈ Xi}.(3.1)

Once the degenerate case I = ∅ is put aside, any f : I 7→ Xi, i 7→ xi ∈ Xi is (definition) a
choice function: The choice function f takes a set Xi then returns a “chosen” element xi of
Xi.

In order to avoid conflict with our previous definition of the Cartesian product X×Y, we
keep assigning the first Cartesian product the symbol ×, as our new version is exclusively
assigned the symbols

∏
and, temporarily, ∗.

3.2 Axiom of choice and Python’s pop method

In ZFC, the axiom of choice asserts that I = ∅ combined with Xi ̸= ∅ (for every i of I)
implies that the Cartesian product

∏
i∈I Xi is nonempty. Equivalently, each Xi conveys (at

least) one choice function f : i 7→ Xi. In Python, the pop method makes such choice, in
the sense that X.pop() returns a random element x of the set X.

3.3 Finite Cartesian product

From now on, we suppose without loss of generality that I = {0, . . . , j, . . . ,m, . . . , n} (where
j, m, and n run through N) and that no Xi is the empty set: The axiom of choice asserts
that

∏
i∈{j...,m} Xi = ∅ forces {j, . . . ,m} = ∅. Conversely, the “worst case” {j, . . . ,m} = ∅

means
∏

i∈{j...,m} Xi = {∅}. Any Cartesian product
∏

i∈{j...,m} Xi is usually denoted by∏m
i=j Xi. It will be temporarily be denoted by [Xj ∗ · · · ∗ Xm] as well. Clearly, [Xj] ≡ Xj,

and
∏m

i=j Xi = [Xj ∗ · · · ∗Xm] = {∅} whether {j, . . . ,m} = ∅.

10



3.4. THE WRITE AND ERASE OPERATIONS 11

3.4 The write and erase operations
Pick n in N then define an append operation, denoted by ∗, as follows

∗ : [X0 ∗ · · · ∗Xn−1]×Xn →
n∏

i=0

Xi(3.2)

[x0 · · · xn − 1], xn, 7→ [x0 · · · xn−1xn]

We can now define a write operation (mapping) over the union of all sets [X0 ∗ · · · ∗Xn−1]
by setting

write(∅) ≜ ∅ = [ ](3.3)
write(x0, ) ≜ ∗(write(∅), x0, ) = [x0](3.4)

write(x0, x1, ) ≜ ∗(write(x0, ), x1, ) = [x0 x1](3.5)
write(x0, x1, x2, ) ≜ ∗(write(x0, x1, ) x2, ) = [x0 x1 x2](3.6)

and so on. Clearly, every write is onto. Furthermore, write has an inverse erase, as
follows,

erase([x0 · · · xn] ≜ x0, x1, x2, . . . , xn, .(3.7)

A possible point of view is that Xi now stores the deleted element xi. We have thus
established that

(((X0 ×X1)× · · · )×Xn ≡ X0 ∗ · · · ∗Xn(3.8)

The case write(x0, ) is the case X0 ≡ [X0] ≜ X{0}
0 . The case write(x0, x1, ) clearly shows

that X0 ×X1 ≡ X0 ∗X1.

3.5 Concat and split operations
Provided the above j, m, n, we easily check that the following mappings concat and split

concat : [X0 ∗ · · · ∗Xm]× [Xm+1 ∗ · · · ∗Xn] → [X0 ∗ · · · ∗Xn](3.9)
[x0 · · · xm], [xm+1 · · · xn], 7→ [x0 · · · xn]

split : [X0 ∗ · · · ∗Xn] → [X0 ∗ · · · ∗Xm]× [Xm+1 ∗ · · · ∗Xn](3.10)
[x0 · · · xn] 7→ [x0 · · · xm], [xm+1 · · · xn],

are bijective and that split is the inverse of concat. Hence

(X0 ∗ · · · ∗Xm)× (Xm+1 ∗ · · · ∗Xn) ≡ X0 ∗ · · · ∗Xn(3.11)

Moreover, we remark that the case n = 1 is [X0]× [X1] ≡ X0 ∗X1 ≡ X0 ×X1 (see above).
It now makes sense to drop our initial definition of the Cartesian product X0×X1 in favor
of

Xj × · · · ×Xm ≜
m∏
i=j

Xi (j ≤ m ≤ n).(3.12)
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This second definition is an extension of the first one, but there is a little drawback.
Indeed, the reader may have noticed that

∏
i∈{0,1}

Xi =
1∏

i=0

Xi = X0 ×X1 = X1 ×X0 =
∏

i∈{0,1}
Xi.(3.13)

Our new definition of the Cartesian product makes it then commutative. Therefore, every
pair (x0, x1) of X0×X1 is no longer ordered, since (x0, x1) = (x1, x0) ∈ X1×X0 = X0×X1.
Nevertheless, we will always stick to the lexicographic convention X0 × · · · ×Xj × · · · ×Xn
(0 ≤ j < n), so that A × B implicitely means X0 × X1 (provided X0 = A,X1 = B), as
B × A implicitely stands for X0 × X1 where X0 = B,X1 = A. This assures that the no-
tation (a, b) keeps expressive, in the sense that (a, b) = (b, a) iff a = b. It is now clear
that B × A ̸= B × A (unless A = B), but “losing” commutativity is not a real drawback.
Actually, it brings clarity!

That being said, previous relations are then restated as

X0 ≡ [X0](3.14)
(((X0 ×X1)× · · · )×Xn ≡ X0 × · · · ×Xn(3.15)

(X0 × · · · ×Xm)× (Xm+1 × · · · ×Xn) ≡ X0 × · · · ×Xn;(3.16)

which is the associativity of the Cartesian product (to see that, take n = 2; j = 0, 1.).
From now on, sequences [x0 . . . xn] (matrix notation) can now be written alternatively
x0, . . . , xn, (Python notation), or (x0, . . . , xn) (tuple notation), or (x0, . . . , xn) or [x0, . . . , xn]
(list notations).

Given a function f : X0 × · · · ×Xn → Y we usually shorten f(x0, . . . , xn, ) to f(x0, . . . , xn).

3.5.1 Commutativity of the extended Cartesian product
3.5.2 Cartesian power and closure under concatenation
The special case Xi = X (i = 0, . . . , n− 1) is the Cartesian power

X0 = X∅ = {∅}(3.17)
X1 = X{0}(3.18)
X2 = X{0,1}(3.19)
...

Xn =
n−1∏
i=0

X (n = 0, 1, 2, . . . ).(3.20)

Back to the definition of ∗ and [Xn], we remark that the identification Xn ≡ [Xn] turns
write into a special case of concat: From now on, ∗ will now stand for concat as well.

The definition of ∗ = concat can be recursively extended, as follows

∗(w0, . . . ,wn−2,wn−1) ≜ ∗ (∗(w0, . . . ,wn−2),wn−1) (w0 ∈ XN0 . . . ,wn−1 ∈ XNn−1 ; n ≥ 2);

(3.21)
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provided natural number(s) N0, . . . ,Nn−1. It is easily shown by induction that such gen-
eralized ∗ still ranges over the whole union X0 ∪X1 ∪X2 ∪ · · · .
Conversely, the inverse split of our new * is recursively defined as well. It is now clear
that w is a finite sequence in X iff it is the concatenation of shorter sequences of X -what
a breakthrough ;) In other words, X∗ is the closure of X under ∗. So,

X∗ =
∞∪
n=0

Xn.(3.22)

3.6 Indexing sequences from 0 or 1? Europe vs the US
In the US ground numbering starts with 1; which means that floors have numbers 2, 3, . . . .
In Europe, floors have numbers 1, 2, . . . and the street ground number 0. C programmers
may find the European convention more consistent: The building being identified with a
sequence x of data, the street floor being the first chunk x[0] of data, the first floor the
second one x[1] and so on …the sequence x is then …the address of the building! Most
people (including most programmers!) do not think of n as the set {0, . . . , n− 1} and do
not write assertions like 0 ∈ 1 (even it is perfectly fine to do so) but it may explain why
it is fair to index from 0 instead of 1: X0 = X∅, since 0 = ∅, X1 = X{0}, since 1 = {∅},
X2 = X{0,1}, since 2 = {0, 1} = {∅, {∅}}, and so on.



Chapter 4

Words and alphabets (TODO)

4.1 First definitions
By alphabet we mean any nonempty finite set Σ whose element(s) - the character(s) - will
be combined into words. A word is then defined as a finite sequence of characters. Since
there is no prior grammatical restriction to what such sequence must be, any finite sequence
of characers is a word. So, “word” is a synomnym of “finite sequence” in the current context.
Still in the current context, the empty word ε will now be an alternative name for ∅.

4.1.1 head, tail , prefix, suffix
Given a nonempty finite sequence (w0, . . . ,wn−1) (n > 0), we define length (len), head
(head), and tail (tail) as follows,

len(x) ≜ n(4.1)
head(x) ≜ w0(4.2)
tail(x) ≜ wn−1(4.3)

We extend the definition of len by setting the length of the empty sequence as 0.

4.2 Python implementations
list and tuple are then general implemenations for words. When our alphabet is more
specifically an abstraction for a writing system, e.g. the latin letters a, b, c, …, the string
type str is a more obvious choice. Note that Python does not provide any abstraction
for the characters themselves (compare with C and the typedef char) As an alternative,
Python identifies a character with a 1-length sequence: In Python ’a’ == ’a’[0] is
True. Actually, this is exactly what we do from the step that turns write a special case
of concat. In short, we will never deal with write/erase operations: Instead, we will
concatenate/split sequences of any length.

4.3 Concatenation
Our alphabet Σ is equipped operation the concatenation ∗; see previous chapter. In
Python, concatenation over list or str objects is denoted by the infix +. Given words u
and v, the concatenation u ∗ v is then the word w such that

wi = ui IF i ≤ len(u) ELSE wi−len(u)(4.4)

14
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Note that u ∗ ε = ε ∗ u.
You may think of u as an operator that takes v as input, so that u(v) = uv. In Python,
this is what extend does : u.extend(v) = u+v. Note that we compose from left to right,
since English and mathematical formulas are written from left to right.

Prefix and suffix
Given a word w, we let p, s range over Σ∗ and say that p is a prefix - or equivalently, that
s is a suffix, iff w = p∗ s. Remark that each word w is both its own prefix and suffix, since
w = ε ∗ w = w ∗ ε.

4.3.1 Python implementation
Alphabet
Our encoding table will be Unicode. Every character is identified with a codepoint. This
is not sufficient to encompass all human writing systems, e.g. Chinese ideograms, but this
is enough for Latin alphabet, cyrillic alphabet, and abjads (Arabic, Persian, Hebrew).

Words
The primary implementation of words is words are list of positive integers. Of course
words can be strings as well. The correspondence between the two types is:

my_string =′′ .join(chr(x) vforv x in my_listof_integers)(4.5)
my_list_of_integers = [ord(x) for x in my_string](4.6)

The empty word is ” (in string) or [] (in list), or ( ) (in tuple).
Remark that set(”) == set([]) == set().

Prefix and suffix
w[: n] , w[n: ], w[:-n]



Chapter 5

The parsing automaton (TODO)
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Chapter 6

The packages’ structure
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Chapter 7

The Command Line Interface
(CLI) TODO
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