
Matrix Product States

Glenn LeBlanc ∗

May 17, 2021

1 Introduction

1.1 Many-Body Wavefunctions as
Tensors

Consider a spin-1
2

particle or two-level system.
The systems’s state is given by |ψ〉 ∈ C2, and
for some basis labeled by {|0〉 , |1〉} we can write

|ψ〉 = α |0〉+ β |1〉

with
|α|2 + |β|2 = 1.

This is the principle of superpostion– the system
is in a superposition of the two basis states |0〉
and |1〉. Now if we add a second spin-1

2
parti-

cle or a second two-level system, the state of the
many-body system is described by a vector |Ψ〉 in
a tensor product Hilbert space H = C2 ⊗ C2 and
may be in some superposition of the four basis
states

|Ψ〉 = α |00〉+ β |01〉+ γ |10〉+ δ |11〉 .

Generally, for N qubits (qudits) the system is
fully parameterized by 2N (dN) complex numbers:
|Ψ〉 ∈ C2N . Notice the exponential scaling here–
storing the individual coefficients of |Ψ〉 for 30
sites requires about 8 GB of memory, and deal-
ing with the raw coefficients of 40 sites requires
over 8 TB. If we want to time evolve |Ψ〉 under
some Hamiltonian Ĥ

|Ψ(t)〉 = e−itĤ/h̄ |Ψ〉

we need to exponentiate the matrix −itĤ/h̄ ∈
C2N×2N and multiply the vector |Ψ〉 by this result,

which takes O
((

2N
)3
)

time. Thus it is extremely

worthwhile to find more efficient ways of storing
and manipulating the quantum state |Ψ〉 without
completely sacrificing fidelity. As a first step, it
is useful also to notice the isomorphism between
the two spaces

C2N ∼= C2×···×2

meaning we can instead conceptualize |Ψ〉 as a
tensor :

|Ψ〉 ∈ C2×···×2

where in this paper a tensor Ψ is just a multi-
dimensional array with some number of indices
such that plugging in an assignment for each in-
dex spits out a complex number. More succinctly,

Ψi1i2···iN ∈ C

A contraction between two tensors Ψ and Φ is a
summation over a shared index:

Tijlm =
∑
k

ΨijkΦlkm

is an example of a contraction. Note that dot
products, matrix multiplication, and trace are all

∗This project was part of the Berkeley Physics Directed Reading Program, which allows undergraduates to explore
novel material under the auspices of a graduate student mentor. Karthik Siva very graciously directed this project.

1

different vestiges of tensor contraction:

a · b =
∑
k

akbk

(Ax)i =
∑
k

Aikxk

Tr(A) =
∑
k

Akk

1.2 Tensor Networks

A tensor network is an undirected graph whose
nodes represent tensors and whose edges corre-
spond to tensor indices. An edge between two
tensors corresponds to a contraction along the de-
picted axis of each tensor. Use of this graphi-
cal language for representing quantum systems is
attractive since it unveils relevant entanglement
properties and simplifies the expression of ten-
sor network operations involving many indices [1].
The rank of a tensor is given by the number of
indices that are associated with it— this is some-
what of an abuse of terminology, since rank has an
entirely different meaning when associated with
linear operators, and any tensor is isomorphic to
a (multi)linear operator.

i i

j

i

j

k

Figure 1: A graphical depiction of a scalar c, vec-
tor vi, matrix Mij, and a tensor Tijk of rank three.

See figure 1 for a graphical depiction of tensors
of rank zero to three. Each tensor is denoted as a
node with free edges representing each index.

Figure 2 depicts the previous examples (dot
product, matrix multiplication, trace) of tensor
contraction using this graphical language.

A

A x

a b

i k

k

k

Figure 2: A graphical depiction of three examples
of tensor contraction.

An example of an insight this graphical lan-
guage provides is in proving trace cyclicality. The
standard proof is as follows:

Tr(ABC) =
∑
ijk

AijBjkCki

=
∑
ijk

CkiAijBjk

= Tr(CAB)

The tensor network proof is depicted in figure 3:

= =

Figure 3: Proof of trace cyclicality.

The graphical depiction of trace provides sim-
pler insight into the cyclic structure of the un-
derlying tensor contractions required to calculate
Tr(ABC), and thus allows for a totally visual and
immediately obvious proof of the invariance of
trace under cyclic permutations of A, B, and C.

2 Matrix Product States

A matrix product state (MPS) is a particular class
of tensor network consisting of a chain of tensors
each having one dangling edge and a bond be-
tween their nearest neighbors. See figure 4 for an
example of an MPS with three sites with periodic
and open boundary conditions. From here we only
consider MPS with open boundary conditions.

2

χ1 χ2

i j k

χ1 χ2

χ3

i j k

A

A B C

B C

Figure 4: Two three-site MPS, the first lacking
periodic boundary conditions and the second with
open boundary conditions.

The indices α, β, γ in figure 4 are called bond
indices and are associated with a bond dimension
χ. The free indices i, j, k are site indices. Alge-
braically, the MPS decomposition of a tensor Ψ is
written as:

Ψi1i2···iN =
∑

χ1χ2···χN−1

A
[1]χ1

i1
A

[2]χ1χ2

i2
· · ·A[N]χN−1

iN

where the first and last local tensors A[1] and A[N]

are matrices and every other tensor in the chain
is of rank three. If each bond index is constrained
to be of the same dimension χ then this represen-
tation approximates the 2n coefficients of Ψ using

2χ+ (N − 2)2χ2 + 2χ = 4χ+ (2N − 4)χ2

parameters, which grows as O(N) for fixed χ. For
a given choice of site indices (e.g., i1 = 0, i2 = 1,
i3 = 0, · · ·), the coefficient Ψ010··· is given by a
matrix product– hence the name matrix product
state.

Consider a state |Ψ〉 ∈ C2×···×2 associated with
N qubits. The Schmidt decomposition of |Ψ〉 with
respect to a partition of sites A : B is written

|Ψ〉 =

χA∑
α

λα |Φ[A]
α 〉 ⊗ |Φ[B]

α 〉

where χA is the Schmidt rank of the partition
A : B and is a natural measure of the entangle-
ment between the qubits in A and those in B [2].
If maxA χA = χ and

2N > 4χ+ (2N − 4)χ2,

then the MPS decomposition of |Ψ〉 with uniform
bond dimension χ is exact and requires less mem-
ory than storing the individual 2N coefficients of
|Ψ〉.

2.1 Left normality, right normality

Left and right normality is loosely a a generaliza-
tion of orthonormality. Algebraically, if a tensor
Tlir ∈ Cb×d×b is right normal, then∑

ir

TlirT
∗
l′ir = δll′

and likewise if T is left normal then∑
il

TlirT
∗
lir′ = δrr′ .

See figure 5 for a graphical depiction of this prop-
erty.

==

Figure 5: Left normality (green) and right nor-
mality (red). Bottom tensors are complex conju-
gated.

2.2 Generating an MPS from a
tensor

We now give a presription for how to express an
arbitrary wavefunction as an MPS of a given bond
dimension, starting from an exact represntation
as a vector. The first step of the iterative process
for generating an MPS from a tensor is depicted
in figure 6 for an initial tensor with three indices,
each of dimension d. The input tensor ψ is re-
shaped into a matrix ψMAT by squashing indices
the two leftmost indices into one index while keep-
ing the rightmost index separated. The singular
value decomposition (see appendix) is then per-
formed on ψMAT . Σ is truncated and renormal-
ized to Σ′ such that the bond index between V
and Σ is less than or equal to the bond dimension

3

χ. The truncated matrix Σ′ is contracted to the
left into U , resulting in the d2 × χ matrix ψ′MAT .
Finally, the index of dimension d2 is unsquashed
into two indices of dimension d each. The process
is repeated for ψ′, with the only change being that
the middle site index is squashed with the bond
index and the leftmost site index is kept sepa-
rate. This process is repeated iteratively for every
site index in the original tensor ψ until the ten-
sor corresponding to the leftmost site is the only
untouched tensor. See figure 7 for a depiction of
this iterative process.

ψ ψMAT

U Σ V † ψ′

ψ′

Figure 6: Separating the first site index from ψ.

Figure 7: How an MPS is generated using itera-
tive SVD with an input tensor with four indices.
The final orthogonality center is in blue.

The leftmost site in figure 6 is an orthonormal
matrix by definition of the SVD. Non-boundary
sites in the final chain resulting from

If an MPS consists entirely of a nonnegative
(possibly zero, as in figure 7) number of left nor-
mal tensors facing a single unconstrained tensor

followed by a chain of right normal tensors we call
the single unconstrained tensor the orthogonality
center.

2.3 Moving the Orthogonality
Center

The orthogonality center presents a useful way of
evaluating the expectation of a local operator M
on site i, depicted in figure 8.

M M

Figure 8: A quick way to find 〈M (i)〉ψ exploiting
orthogonality. Left: the full contraction equiva-
lent to 〈ψMPS|M (i) |ψMPS〉. Left and right normal
tensors can be removed, leaving the contraction on
the right as the only necessary computation.

Figure 9: Moving the orthogonality center one site
to the right using the QR factorization. This can
be repeated to move the orthogonality center to any
site to the right of its current position. To move
the orthogonality center to the left, a similar pro-
cess is used substituting the LQ factorization for
the QR factorization.

4

However, this requires that the orthogonality
center is already located on site i. Since this
clearly will not always be the case, we need a
way to move the orthogonality center from one
site to another. The general idea is depicted in
figure 9. Briefly, the orthogonality center’s site
index is squashed with the left (right) bond in-
dex. Next it is split into two matrices using the
QR (LQ) decomposition, and the left (right) nor-
mal matrix is reshaped into a rank three tensor.
The remaining matrix is contracted into the cor-
responding right (left) neighbor tensor.

2.4 Time Evolving Block Decima-
tion

Time evolving block decimation (TEBD) is a
method for efficiently simulating 1D quantum sys-
tems with low entanglement. By leveraging the
fidelity of the system’s MPS decomposition, a
Suzuki-Trotter [3] decomposition of the propoga-
tor

Û(t) = exp{−iĤt/h̄}

can be applied step-by-step to the MPS with bond
dimensions truncated after each step. For the 1-D
transverse field Ising model

Ĥ =
N−1∑
i=1

σ(i)
z σ

(i+1)
z + J

N∑
i=1

σ(i)
x (1)

this amounts to applying p Trotterized operators
(setting h̄ = 1):

Û(t) ≈

[(
N−1∏
i=1

e−iσ
(i)
z σ

(i+1)
z ∆t

)(
N∏
i=1

e−iσ
(i)
x ∆t

)]p

where the step size ∆t = t
p
. A depiction of one

TEBD sweep with this Hamiltonian is shown in
figure 10.

· · ·

Figure 10: One step of time evolving block dec-
imation. The orthogonality center is moved to
the leftmost site. Trotterized operators Rx(∆t) in
blue and Rzz(∆t) in yellow are applied to the or-
thogonality center and its rightmost neighbor. A
SVD is performed and the singular value matrix
is truncated and contracted to the right to enforce
the bond dimension χ. The sweep continues until
reaching the last site, at which point the orthog-
onality center is again moved to the leftmost site
and the above process is repeated p− 1 additional
times.

This approximation is not sufficient when the
Hamiltonian Ĥ generates sufficiently high entan-
glement, since enforcing the maximum bond di-
mension χ bounds the maximum amout of entan-
glement the MPS can ever reach. If, however,
Ĥ consists entirely of single-site terms, then this
method is exact since the systems entanglement
cannot grow through time evolution under Ĥ. See

5

the rightmost heatmap in figure 12 for an exam-
ple of what time evolution under a nonentangling
Hamiltonian might look like.

3 Package Overview

This section provides an overview of the real core
of this project: a Julia package for creating and
manipulating matrix product states, located at
https://github.com/gl3nnleblanc/pdrp2021.

3.1 Toolchain

This package is written in Julia, a modern pro-
gramming language incubated at MIT in 2009
and designed from the beginning with high per-
formance in mind [4]. Julia is fast, easy to use,
and open source. Git and TravisCI proved useful
during development.

3.2 Algorithms

The following section contains pseucode outlin-
ing the main ideas of what was implemented
in the package. Again, the full code writ-
ten in Julia is available at the repository.

Algorithm 1: Helper function for split-
ting a tensor.

Data: input tensor T , dleft, dright, χ
Result: length(Σ), Tnext, V
TMAT ←[reshape(T, dleft, dright);
Tnext, Σ, V † ←[SVD(TMAT);
V ←[(V †)†;
Σ ← [truncate to chi(Σ, χ);
Tnext ←[truncate to chi(Tnext, χ);
return length(Σ), Tnext, V ;

Algorithm 1 is a helper method to slice a
tensor along some specified axis using the SVD,
and runs in time O(d2

leftdright + dleftd
2
right) [5].

Algorithm 2: Generating an MPS from
input tensor Ψ.

Data: input tensor Ψ, desired bond
dimension χ

N ←[tensor rank of Ψ;
sites ←[[];
dnext, Tnext, Tcurr ←[split tensor(Ψ, 2N−1,
2, χ);

sites.append(Tcurr);
for i ← [2 to N − 1 do

dnext, Tnext, Tcurr ←[split tensor(Tnext,
2N−i, 2i, χ);
if length(Tcurr) = 2χ2 then

Tcurr ←[reshape(Tcurr, χ, 2, χ);
else

dprev ←[length(Tcurr) ÷
(2× dnext);
Tcurr ←[reshape(Tcurr, dnext, 2,
dprev);

end
sites.append(Tcurr);

end
, Tnext, Tcurr ←[split tensor(Tnext, 2,
dprev, χ);
Tcurr ←[reshape(Tcurr, 2, 2, :);
sites.append(Tcurr);
sites.append(Tnext);
return MPS(sites) having bond
dimension χ and orthogonality center at
N ;

Algorithm 2 returns an MPS wrapper consist-
ing of an array of tensors arranged from left to
right in descending order. Said another way, the
Nth entry of this array is the leftmost site. For an
input tensor T of rank N with each index having
dimension 2, algorithm 2 requires N SVD compu-
tations on matrices of logarithmically decreasing
size, resulting in a runtime of O(22N), which is
dominated by the runtime of the first SVD. The
truncated SVD can be used to avoid exponential
cost, but was not in this package, as there are
currently no suitable TSVD implementations in
Julia. (This would be a good next step.)

6

Algorithm 3: Moving the orthogonality
center.
Data: MPS M , target site
Result: MPS M ′

N ← [M .sites.length;
if target site = M .orthogonality site then

return M ;
else

updated sites ←[copy(M .sites);
if target site > M .orthogonality site
then

for every site between
M .orthogonality site and
target site do
dleft ← [site.left dim;
L, Q ←[LQ(reshape(site, dleft,
:));

contract L into left neighbor
and replace entry in
updated sites;

end

else
for every site between
M .orthogonality site and
target site do
dright ←[site.right dim;
Q, R ←[QR(reshape(site, :,
dright));

contract R into right neighbor
and replace entry in
updated sites;

end

end

end
return M ′(updated sites);

Algorithm 3 moves the orthogonality center of
an MPS. Since O(N) QR (LQ) decompositions
and on matrices of size 2χ × χ (χ × 2χ) are re-
quired, along with O(N) contractions along in-
dices of dimension χ, the total runtime isO(Nχ3).

Algorithm 4: A single TEBD sweep.

Data: MPS M , H1, H2, t
Result: MPS M ′

updated sites = new array;
previous site ←[M .sites[N];
for i = N to 2 do

left site ←[previous site;
right site ←[M .sites[i-1];
ψabχ ← [contract(left site, right site);
ψabχ ← [

∑
i,j,k,l ψijχ

[exp(−itH1/2)]ik[exp(−itH1/2)]jl
[exp(−itH2)]abjl;

new left site, new right site ←[
split tensor(ψ, 2×left edge dim,
2×right edge dim);

new left site 7→ updated sites[i];
previous site ←[new right site;

end
previous site 7→ updated sites[1];
return M ′(updated sites);

Algorithm 4 performs a single sweep of
TEBD, as depicted in figure 10. H1 and H2

represent the single and double body terms,
respectively, of the Hamiltonian of interest.
The runtime of a single sweep is O(Nχ3) [2].

Algorithm 5: Full TEBD.

Data: MPS M , H1, H2, t, resolution
Result: MPS M ′

M ′ = M ;
for 1 to resolution do

M ′ = single tebd step(M ′, H1, H2,
t/resolution);

end
return M ′;

The runtime for 5 is clearly O(rNχ3) with res-
olution r.

3.3 Examples

There are three example notebooks contained in
the repository (as linked above). Some highlights:

7

Figure 11: Compressing an image with an MPS.
Clockwise from top left: χ = 2, χ = 9, χ =
20, χ = 100, with compression ratios of 1927.5,
126.2, 31.3, and 2.24, respectively. Lossless stor-
age as an MPS results in a compression ratio less
than 1.

Figure 11 displays four images compressed as
MPS with successively higher bond dimensions.
The initial 512×512 image is mapped to a tensor
with 18 indices, each having dimension 2. The
resulting tensor is fed into algorithm 2 over a
variety of different bond dimensions. χ = 100
results in very few visual artifacts, although ar-
tifacts become more visible when either the full
RGB spectrum is used or the original image con-
tains noisier features. Lossless storage as an MPS
requires χ = 512, which results in a compression
ratio ≈ 0.3 < 1, meaning redundant information
is required to store the image as an MPS in this
case, and hence there is no advantage to using
an MPS when lossless compression is required. It
would be interesting to investigate better meth-
ods of transforming the input image into a rank
18 tensor, as the visual artifacts seem to be closely
tied to the way in which the image was reduced
to a tensor.

Figure 12: Heatmaps of 〈σz〉 for each site in a
chain of 12 qubits time evolving under a (J = 1)
1D Ising model with (left) and without (right) the

local interaction term σ
(i)
z σ

(i+1)
z .

Figure 12 displays heatmaps of 〈σz〉 for each
site in a chain of 12 qubits time evolving under
a (J = 1) 1D transverse field Ising model (equa-
tion 1) with (left) and without (right) the local

interaction term σ
(i)
z σ

(i+1)
z . Time increases from

bottom to top. Using an MPS with χ = 32 and
running 1000 sweeps on an Intel i5-6600k @ 3.9
GHz took ≈ 3 minutes, whereas the same calcu-
lation with the full 4096×4096 Hamiltonian takes
over 25 minutes. Gains in runtime efficiency in-
crease exponentially with the number of sites for
fixed χ.

Figure 13 plots the same values as the left
heatmap in figure 12, but with the value of 〈σz〉
at each site superimposed on top of each other.
At J ≈ 1, 〈σz〉 → 0 with increasing t.

8

Figure 13: Graph corresponding to the left
heatmap in figure 12.

Figure 14: Fidelity between target state and
TEBD with 50 sweeps over time. After about
t = π/2, trotterization error kicks in.

Figure 14 plots fidelity between the target
state |ψ(t)〉 = Û(t) |ψ〉 found using matrix multi-
plication and its approximation found via TEBD
using fifty sweeps for a system with eight sites us-
ing the ising model in eq. 1 with J = 1. A variety
of bond dimensions are used, demonstrating the
increase in fidelity for increasing χ. For χ > 2N/2,
fidelity stops increasing, and the observed fidelity
loss is due solely to Trotterization error.

Figure 15 depicts the bipartite Von Neumann
entropy of an eight site system with J = 0,
J = 0.5, and J = 1 initialized in the |↓ · · · ↓〉
state. At J = 0, entanglement does not increase.
At J = 0.5, the entanglement entropy stays below
about 0.7. With J = 1, the entanglement entropy

quickly surpasses this value.

Figure 15: Bipartite entanglement entropy for
eight site system under transverse field Ising
model.

3.4 Next Steps

Two things that I’d like to implement are
DMRG [6] and a neural network using an MPS

9

whose sites correspond to lifted features [7, 8].

References

[1] R. Orus, A Practical Introduction to Ten-
sor Networks: Matrix Product States and
Projected Entangled Pair States, Annals
Phys. 349 (2014) 117–158. arXiv:1306.2164,
doi:10.1016/j.aop.2014.06.013.

[2] G. Vidal, Efficient classical simulation
of slightly entangled quantum computa-
tions, Phys. Rev. Lett. 91 (2003) 147902.
doi:10.1103/PhysRevLett.91.147902.
URL https://link.aps.org/doi/10.1103/

PhysRevLett.91.147902

[3] N. Hatano, M. Suzuki, Finding expo-
nential product formulas of higher or-
ders, Lecture Notes in Physics (2005)
37–68doi:10.1007/11526216 2.
URL http://dx.doi.org/10.1007/

11526216_2

[4] J. Bezanson, A. Edelman, S. Karpinski, V. B.
Shah, Julia: A fresh approach to numerical
computing, SIAM review 59 (1) (2017) 65–98.
URL https://doi.org/10.1137/141000671

[5] G. Golub, C. Van Loan, Matrix Computa-
tions, 4th Edition, The Johns Hopkins Uni-
versity Press, Baltimore, MD, 2013.

[6] N. Nakatani, Matrix product states and den-
sity matrix renormalization group algorithm,
in: Reference Module in Chemistry, Molecular
Sciences and Chemical Engineering, Elsevier,
2018. doi:https://doi.org/10.1016/B978-0-12-
409547-2.11473-8.
URL https://www.sciencedirect.

com/science/article/pii/

B9780124095472114738

[7] S. Efthymiou, J. Hidary, S. Leichenauer,
Tensornetwork for machine learning (2019).
arXiv:1906.06329.

[8] W. Huggins, P. Patil, B. Mitchell, K. B.
Whaley, E. M. Stoudenmire, Towards quan-
tum machine learning with tensor networks,
Quantum Science and Technology 4 (2) (2019)
024001. doi:10.1088/2058-9565/aaea94.
URL https://doi.org/10.1088/

2058-9565/aaea94

A Singular Value Decompo-

sition

The singular value decomposition decomposes a
matrix A ∈ Fn×m as

A = UΣV †

where V ∈ Fm×m is orthonormal, Σ ∈ Fn×m is
diagonal, and U ∈ Fn×n is orthonormal. Equiva-
lently,

A =
r∑
i=1

σi |ui〉 〈vi|

for orthonormal sets {|ui〉}ni=1, {|vi〉}mi=1 and non-
negative values σi, with rank(A) = r. The
time complexity to calculate the SVD of a A is
O(n2m+m2n) [5].

B QR and LQ Decomposi-

tions

The QR decomposition of a matrix A ∈ Fn×m

decomposes A as

A = QR

where Q ∈ Fn×n is orthonormal and R ∈ Fn×m
is upper triangular. Similarly, the LQ decompo-
sition expresses A as

A = LQ

where Q ∈ Fm×m is orthonormal and L ∈ Fn×m
is lower triangular. Either decomposition can
be calculated by the Gram-Schmidt process in
O(m2n) time.

10

